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ORDER OF PROCEEDINGS
AT THE

FORMAL CELEBRATION BY THE UNIVERSITY OF CAMBRIDGE

OF

THE JUBILEE OF

Sir GEORGE GABRIEL STOKES, Bart., M.A., Hon. LL.D., Hon. Sc.D.

Thursday, 1 June, 1899.

In the evening the Vice-Chancellor was present at a Conversazione in the

Fitzwilliam Museum. About one thousand guests accepted the invitation of

the University.

Lord Kelvin, on behalf of the subscribers to the marble busts of Sir G. G.

Stokes by Hamo Thornycroft, R.A., offered one of them to the University,

and the other to Pembroke College. The former was accepted on behalf of the

University by the Vice-Chancellor, the latter on behalf of the College by the

Rev. C. H. Prior, M.A.

Friday, 2 June, 1899. A Congregation was held this day at 11 a.m.

Sir G. G. Stokes sat on the right hand of the Vice-Chancellor.

The Delegates sent by Universities, Academies, Colleges and Societies were

presented to the Vice-Chancellor in the chronological order of the Institutions

represented.

The names of the Institutions and of the Delegates were announced by
the Registrary, ae follows :

University of Paris Professor Gaston Darboux, Doyen de la Faculte

des Sciences.

Sir William Reynell Anson, Bart., M.P., and

Robert Edward Baynes, M.A., Lee's Reader

in Physics.

University of Heidelberg Professor Quincke.

6 2

University of Oxford



V1U ORDER OF PROCEEDINGS.

University of St Andrews

University of Glasgow

Academies of Upsala, Copenhagen, Helsingfors

University of Aberdeen

University of Edinburgh

University of Dublin

Royal Society

Academie des Sciences, Paris

University of Pennsylvania
American Philosophical Society

Gesellschaft der Wissenschaften zu Gottingen
New York, Columbia University

Princeton University, New Jersey

Imperial Academy of Military Medicine, St

Petersburg
Bataafsch Genootschap voor Physika, Rotter-

dam
Academie Royale des Sciences des Lettres et

des Beaux Arts de Belgique
Manchester Literary and Philosophical Society

Royal Irish Academy

Royal Society of Edinburgh

St Edmund's College, Ware

Ecole Polytechnique, Paris

Ecole Normale Superieure, Paris

Royal Institution

P. R. Scott Lang, MA., Regius Professor of

Mathematics.

Very Rev. Robert Herbert Story, D.D., Prin-

cipal, and Lord Kelvin, M.A., Hon. LL.D.,

GC.V.O.

Professor Mittag-Lefner.

Sir William Duguid Geddes, LL.D., Principal.

George Chrystal, M.A., Professor of Mathe-

matics, and G. F. Armstrong, M.A., Pro-

fessor of Engineering.

George Salmon, D.D., Provost, and Benjamin
Williamson, M.A., D.Sc.

Lord Lister, Hon. LL.D., President.

Alfred Bray Kempe, M.A., Treasurer.

Michael Foster, M.A., Professor

of Physiology.

Arthur William Riicker, M.A. Y Secretaries.

(Oxon.), Professor ofPhysics,

Royal College of Science. >

Professor Becquerel.

Professor G. F. Barker, Vice-President.

Edward Riecke, Professor of Physics.

Robert S. Woodward, Ph.D., Professor of
Mechanics and Mathematical Physics,

Dean of the Faculty of Pure Science.

Professor Edgar Odele Lovett.

Professor Egoroff.

Dr Elie van Rijckevorsel.

Professor Alphonse Rdnard, Professor G. Van

der Mensbrugghe.

Reginald Felix Gwyther, M.A., Secretary.

Earl of Rosse, K.P., President, George F.

FitzGerald, M.A., Professor of Natural

and Experimental Philosophy, Trinity

College, Dublin.

Lord Kelvin, M.A., Hon. LL.D., President, and

Sir John Murray, K.C.B., Hon. Sc.D.

Right Rev. J. L. Patterson, M.A. (Oxon.),

Bishop of Emmaus.

Professor Cornu and Professor Becquerel.

Professor Borel.

Sir J. Crichton Browne, M.D. (Edinb.),

Treasurer.
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Philosophical Society of Glasgow

University of Bonn

Cambridge Philosophical Society

Royal Astronomical Society

University of Toronto

St David's College, Lampeter

Institution of Civil Engineers

King's College, London

British Association

University of Durham

Solar Physics Committee, Science and Art

Department

Cambridge Ray Club

University of London

London Chemical Society

Queen's College, Belfast

Queen's College, Galway

University of Sydney

Royal College of Science, London

The Owens College, Manchester

University of Bombay
University of Madras

London Mathematical Society

University of New Zealand

Durham College of Science, Newcastle-on-

Tyne

University of Adelaide

University College of Wales, Aberystwyth

Physical Society of Paris

Yorkshire College, Leeds

Physical Society of London

Mason College, Birmingham

Lord Blythswood.
Professor Kayser.

Joseph Larmor, MA., President.

George Howard Darwin, M.A., Plumian Pro-

fessor of Astronomy , President.

R. Ramsay Wright, M.A., B.Sc, Professor of

Biology.

A. W. Scott, M.A., Trinity College (Dubl.),

Professor of Physical Science and Mathe-

matics.

William Henry Preece, C.B., President.

Archibald Robertson, D.D. (Durham), Prin-

cipal.

Sir William Crookes, President.

Ralph Allen Sampson, M.A., Professor of

Mathematics.

Prof. G. H. Darwin.

Alfred Newton, M.A., Professor of Zoology

and Comparative Anatomy.
Sir H. Roscoe.

Dr T. E. Thorpe.
Thomas Hamilton, D.D., President.

Alexander Anderson, M.A., President.

Philip Sydney Jones, M.D. (Lond.), Fellow of

the Senate of the University of Sydney.

John Wesley Judd, C.B., LL.D., Dean; W. A.

Tilden, Professor of Chemistry.

Alfred Hopkinson, Q.C., M.A., Principal.

Dr H. M. Birdwood, M.A., C.S.I.

Hon. H. H. Shephard, M.A., Puisne Judge of
the High Court of Madras.

Lord Kelvin, M.A., Hon. LL.D., President.

Edward John Routh, M.A., Sc.D.

Henry Palin Gurney, M.A., Principal.

Horace Lamb, M.A., Professor of Mathematics

in Owens College, Manchester.

Robert Davies Roberts, MA.
M. Henri Deslandres.

Leonard J. Rogers, M.A., Professor of Mathe-

matics.

Oliver J. Lodge, D.Sc, Professor of Physics,

University College, Liverpool, President.

John Henry Poynting, Sc.D., Professor of

Physics.



ORDER OF PROCEEDINGS.

Johns Hopkins University, Baltimore

Firth College, Sheffield

University College, Bristol

City and Guilds of London Institute for

Advancement of Technical Education

University College, Dundee

University College, Nottingham
Victoria University

Royal University of Ireland

Royal College of Science for Ireland

University College, Liverpool

University of the Punjab

University College of South Wales, Cardiff

University College of North Wales, Bangor

Royal Indian Engineering College, Coopers
Hill

University of Allahabad

University of Wales

Simon Newcomb, Hon. Sc.D., LL.D., Professor

of Mathematics and Astronomy ;
and

Professor Ames.

William Mitchinson Hicks, Sc.D., Principal.

Frank R. Barrell, M.A., Professor of Mathe-

matics.

Sir Frederick Abel, K.C.B.

John Yule Mackay, Principal.

John Elliotson Symes, M.A., Principal.

Nathan Bodington, Litt.D., Vice- Chancellor.

Right Rev. Monsignor Molloy, D.D., D.Sc.

Walter Noel Hartley, Professor of Chemistry.

Richard Tetley Glazebrook, M.A., Principal.

Sir Charles Arthur Roe, M.A., late First

Judge of the Chief Court, Punjab; late

Vice-Chancellor of the University.

H. W. Lloyd Tanner, M.A. (Oxon.), Professor

of Mathematics.

Henry R. Reichel, M.A. (Oxon.), Principal.

Prof. A. Lodge, M.A. (Oxon.), Professor of
Mathematics.

G. Thibaut, Ph.D., Principal of the Muir

Central College, Allahabad.

J. Viriamu Jones, M.A., Vice-Chancellor.

The following Institutions sent Addresses :

Yale University.

American Academy of Arts and Sciences, Boston.

Royal Academy of the Netherlands.

Imperial University of Tokio.

Reale Accademia dei Lincei di Roma.

A telegram was received from the Hungarian Academy, and a letter from

Professor Pascal, in the name of himself and the University of Pavia.

At 1.30 p.m. the Vice-Chancellor gave a luncheon at Downing College, at

which the Chancellor, Sir G. G. Stokes, the Delegates, the invited guests of

the University, and many members of the Senate were present.
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A second Congregation was held at 2.45 p.m.

A Procession was formed at the Library at 2.35 p.m. in the following

order :

The Esquire Bedells

Sir G. G. Stokes The Chancellor

The Recipients of the Degree of Doctor in Science, honoris causa :

1. Marie Alfred Cornu 2. Jean Gaston Darboux

3. Alfred Abraham Michelson 4. Magnus Gustaf Mittag-Leffler

5. Georg Hermann Quincke 6. Woldemar Voigt

The Lord Lieutenant The Vice-Chancellor accompanied by the Registrary

The Representatives in Parliament

The Heads of Colleges

Doctors in Divinity

Doctors in Law

Doctors in Medicine

Doctors in Science and Letters

Doctors in Music

The Public Orator

The Librarian

Professors

Members of the Council of the Senate

The Proctors

The Procession passed round Senate House Yard, and entered the Senate

House by the South Door.
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The following Address, as approved by the Senate, and sealed with the

University seal, was read by the Public Orator, and presented to Sir George
Gabriel Stokes by the Chancellor.

Baronetto insigni

Georgia Gabrieli Stokes

Juris et Scientiarum Doctori

Regiae Societatis quondam Praesidi

Scientiae Mathematicae per annos quinquaginta inter Cantabrigienses Professori

S. P. D.

Universitas Cantabrigiensis.

Quod per annos quinquaginta inter nosmet ipsos Professoris munus tam praeclare

ornavisti, et tibi, vir venerabilis, et nobis ipsis vehementer gratulamur. Iuvat vitam tam

longam, tam serenam, tot studiorum fructibus maturis felicem, tot tantisque honoribus

illustrem, tanta morum modestia et benignitate insignem, hodie paulisper contemplari. Anno

eodem, quo Regina nostra Victoria insularum nostrarum solio et sceptro potita est, ipse

eodem aetatis anno Newtoni nostri Universitatem iuvenis petisti, Newtoni cathedram postea

per decern lustra ornaturus, Newtoni exemplum et in Senatu Britannico et in Societate

Regia ante oculos habiturus, Newtoni vestigia in scientiarum terminis profeiendis pressurus

et ingenii tanti imaginem etiam nostro in saeculo praesentem redditurus. Olim studiorum

mathematicorum e certamine laurea prima reportata, postea (ne plura commemoremus)

primum aquae et immotae et turbatae rationes, quae hydrostatica et hydrodynamica

nominantur, subtilissime examinasti
;

deinde vel aquae vel aeris fluctibus corporum motus

paulatim tardatos minutissime perpendisti; lucis denique leges obscuras ingenii tui lumine

luculenter illustrasti. Idem etiam scientiae mathematicae in puro quodam caelo diu vixisti,

atque hominum e controversiis procul remotus, sapientiae quasi in templo quodam sereno

per vitam totam securus habitasti. In posterum autem famam diuturnam tibi propterea

praesertim auguramur, quod, in inventis tuis pervulgandis perquam cautus et consideratus,

nihil praeproperum, nihil immaturum, nihil temporis cursu postea obsolefactum, sed omnia

matura et perfecta, omnia omnibus numeris absoluta, protulisti. Talia propter merita non

modo in insulis nostris doctrinae sedes septem te doctorem honoris causa nominaverunt,

sed etiam exterae gentes honoribus eximiis certatim cumulaverunt. Hodie eodem doctoris

titulo studiorum tuorum socios nonnullos exteris e geutibus ad nos advectos, et ipsorum
et tuum in honorem, velut exempli causa, libenter ornamus. In perpetuum denique obser-

vantiae nostrae et reverentiae testimonium, in honorem alumni diu a nobis dilecti et ab

aliis nomismate honorifico non uno donati, ipsi nomisma novum cudendum curavimus. In

honore nostro novo in te primum conferendo, inter vitae ante actae gratulationes, tibi

omnia prospera etiam in posterum exoptamus. Vale.

Datum in Senaculo

mensis Iunii die secundo 'L.S.I

A. S. mdcccxcix. ^—y
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A Commemorative Gold Medal was presented to Sir G. G. Stokes by the

Chancellor.

Professor Cornu and Professor Becquerel presented the Arago Medal to

Sir G. G. Stokes on behalf of the Academy of Sciences, Paris.

The following degrees were conferred :

Doctors in Science (honoris causa)

Marie Alfred Cornu

(Professor of Experimental Physics in the Ecole Polytechnique, Paris)

Jean Gaston Darboux

(Dean of the Faculty of Sciences in the University of France)

Albert Abraham Michelson

(Professor of Experimental Physics in the University of Chicago)

Magnus Gustav Mittag-Leffler

(Professor of Pure Mathematics, Stockholm)

Georg Hermann Quincke

(Professor of Experimental Physics in the University of Heidelberg)

Woldemar Voigt

(Professor of Mathematical Physics in the University of Gottingen)

The Public Orator made the following speeches in presenting the several

recipients of honorary degrees to the Chancellor.

Primum vobis praesento artium plurimarum Scholae Parisiensis professorem, quern in

hoc ipso loco die hesterno perspicuitate solita disserentem audivistis, virum non modo solis

de lumine in partes suas solvendo, sed etiam orbis terrarum de mole metienda per annos

plurimos praeclare meritum. Lucis in natura explicanda, quanta cum doctrinae elegantia,

quanta cum experimentorum subtilitate, quam diu versatus est. Idem quam accurate

velocitatem illam est dimensus, qua per aeris intervallum immensum lucis simulacra

minutissima transvolitant,

'

suppeditatur enim confestim lumine lumen,

et quasi protelo stimulatur fulgere fulgur.'

Lucis transmittendae in XapiraSrifyopla quam feliciter lampada a suis sibi traditam ipse

etiam trans aequor Atlanticum alii tradidit.

Duco ad vos Alfredum Cornu.

Vol. XVIII.jjQ
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Sequitur deinceps vir insignis Nemausi natus, Parisiensium in Universitate illustri

geometriam diu professus et scientiarum facultati toti praepositus. Peritis nota sunt

quattuor ilia volumina, in quibus superficierum rationem universam inclusit
;
etiam pluribus

notum est, quantum patriae legatus deliberationibus illis profuerit, quae a Societate nostra

Regia primum institutae, id potissimum spectant, ut omnibus e gentibus quicquid a

scientiarum cultoribus conquiritur, indicis unius in thesaurum, gentium omnium ad fructum,

in posterum conferatur. Incepto tanto talium virorum auxilio ad exitum perducto, iuter

omnes gentes ei qui rerum naturae praesertim scientiam excolunt, sine dubio vinculis

artioribus inter sese coniungentur.

Duco ad vos Iohannem Gastonum Darboux.

Trans aequor Atlanticum ad nos advectus est vir insignis, qui ea quae professor

noster Lucasianus de aetheris immensi regione, in qua lux propagatur, orbis terrarum

motu perturbata, olim praesagiebat, ipse experiments exquisitis adhibitis penitus exploravit.

Lucis explorandae in provincia is certe scientiarum inter lumina numeratur, qui olim

fratrum nostrorum transmarinorum in classe non ignotus, lampade trans oeeanum e Gallia

sibi tradita feliciter accepta, etiam exteris gentibus subito affulsit, velocitatem immensam

eleganter dimensus, qua lucis fluctus videntur (ut Lucretii verbis ntar)

'per totum caeli spatium diffundere sese,

perque volare mare ac terras, caelumque rigare.'

Duco ad vos Albertum Abraham Michelson.

Scandinavia ad nos misit scientiae mathematicae professorem illustrem, qui studiorum

suorum velut e campo puro laudem plurimam victor reportavit. Idem Regis sui auspiciis,

qui praemiis propositis magnum huic scientiae attulit adiumentum, etiam exterarum

gentium ad communem fructum prope viginti per annos Acta ilia Mathematica edidit, quae
in his studiis quasi gentium omnium internuntium esse dixerim. Ipse Homerus (ut Pindari

versus verbo uno tantum mutato proferam) ayyeXov i<r\6v ecpa Ti/j,dv fieyiarav irpdyfiaTt

iravTi (pepeiv av^erai nal M.ddrja-i'i oV dyyeX.la'i 6p6a<s.

Duco ad vos Magnum Gustavum Mittag-Leffler.

Universitatem Heidelbergensem abhmc annos quadraginta professorum par nobile

spectroscopo invento in perpetuum illustravit. Adest inde discipulorum plurimorum in

scientia physica praeceptor, qui et in instrumentis novis inveniendis sollertiam singularem
et in eisdem adhibendis industriam indefessam praestitit. Ei qui in scientiae physicae
ratione universa versati, viri huiusce inventis utuntur, etiam de sua scientia verum esse

confitebuntur, quod de arte oratoria praesertim dixit Quintilianus :
—'in omnibus fere minus

valent praecepta quam experimenta.'

Duco ad vos Georgium Hermannum Quincke.
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Universitatem Goettingensem, a Rege nostro Hanoveriensi Georgio secundo conditam,

vinculo non uuo cum Universitate nostra coniunctam esse constat. Constat eandem etiam

per aunos prope quinquaginta Caroli Frederici Gaussii, scientiae mathematicae et physicae

professoris celeberrimi, gloria esse illustratam, qui cum ingenio fecundissimo disserendi genus
consummatum coniunxit. Iuvat inde professorem ad nos advectum excipere, qui scientiae

eiusdem pulcherrimam nactus provinciam, etiam lucem ipsam et crystalla ingenii sui lumine

illustravit.

Sex virorum insignium seriem consummavit hodie Woldemar Voigt.

In the evening the Chancellor presided at a dinner in the Hall of

Trinity College (kindly placed at the disposal of the University by the

Council of the College), at which Sir George Gabriel Stokes, the Delegates,

and the invited guests of the University were entertained.

JOHN WILLIS CLARK,

Registrars/.
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LA THEORIE DES ONDES LUMINEUSES:

SON INFLUENCE SUR LA PHYSIQUE MODERNE*.

Par ALFRED CORNU,
- DE l'aCADKMIE DES SCIENCES ET DE LA SOCIETE ROYALE DE LONDRE8,

PBOFE8SEUR A l'eCOLE POLYTECHNIQUE.

THE REDE LECTURE (l
er JUIN 1899).

Notre epoque se distingue des ages precedents par une merveilleuse utilisation des

forces naturelles
; l'homme, cet etre faible et sans defense, a su, par son ge"nie, acquerir

une puissance extraordinaire et plier a son service des agents subtils ou redoutables, dont

ses anc&tres ignoraient meme l'existence.

Cet admirable accroissement de la puissance materielle de l'homme dans les temps
modernes est du tout entier a l'etude patiente et approfondie des phenomenes de la

Nature, a la connaissance precise des lois qui les regissent et a la savante combinaison

de leurs effets.

Mais ce qui est particulierement instructif, c'est la disproportion qui existe entre le

phdnomene primitif et la grandeur des effets que l'industrie en a fait jaillir. Ainsi, ces

formidables engins fondes sur l'e'lectricite' ou la vapeur ne derivent ni de la foudre, ni

des volcans
;

ils tirent leur origine de phenomenes presque imperceptibles qui seraient

* En dehors de l'interet que presente un eoup d'ceil se borne a decrire les faits, puis les resume dans un enonce

d'ensemble sur les progres et Pinfluence de l'Optique, cette empirique, sans explications hypothetiques. II se defend

lecture offre les conclusions d'une e^ude approfondie du meme de faire aucune theorie, quoique l'intervention des

Traits d'Optique de Newton. On verra que la pens^e du ondes excitees dans lather lui apparaisse comme fort pro-

grand physicien a 6t6 singulierement alteree par une sorte bable. De sorte que l'impression generate resultant de la

de l^gende repandue dans les trails elementaires ou la lecture du Traits d'Optique, et surtout des "Questions" du

theorie de remission est exposee. Pour rendre plus claire troisieme livre, peut se returner en disant que Newton,

la theorie des acces, les commentateurs ont imagine de loin d'etre l'adversaire du systeme de Descartes, comme on

materialiser la molecule lumineuse, sous la forme d'une le represente g^neralement, est, au contraire, tres favo-

fleche rotative se presentant alternativement par la pointe rable aux principes de ce systeme: frappe des ressources

et par le travers. Ce mode d'exposition a contribue a qu'offrait l'hypothese ondulatoire pour l'explication des

faire croire que toute la theorie newtonienne de Remission phenomenes lumineux, il l'aurait sans doute adoptee, si

etait renfermee dans cette image un peu enfantine ; il n'en l'objection grave relative a la propagation rectiligne de la

est rien. Nulle part, dans son Traits, Newton ne donne lumiere, r<5solue seulement de nos jours par Fresnel, ne

une representation mecanique de la molecule lumineuse : il Ten avait detoume\
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demeures e"ternellement caches aux yeux du vulgaire, mais que des observateurs penetrants

ont su reconnaitre et appre"cier.

Cette humble origine de la plupart des grandes decouvertes dont l'humanite Wneficie

montre bien que c'est l'esprit scientifique qui est adjourd'hui le grand ressort de la vie

des nations et que c'est dans le progres de la Science pure qu'il faut chercher le secret

de la puissance croissante du monde moderne.

De la une s^rie de questions qui s'imposent a l'attention de tous. A quelle occasion

le gout de la Philosophie naturelle, si chere aux philosophes de l'Antiquite\ abandonnde

pendant des siecles, a-t-il pu renaitre et se de"velopper ? Quelles ont etd les phases de

son deVeloppement ? Comment ont apparu ces notions nouvelles qui ont si profonde'ment

modifie nos id6ea sur le me'canisme des forces de la Nature ? Enfin, quelle est la voie

feconde qui, insensiblement, nous conduit a d'admirables generalisations, conform^ment au

plan grandiose entrevu par les fondateurs de la Physique moderne ?

Telles sont les questions que je me propose, comme physicien, d'examiner devant

vous : c'est un sujet un peu abstrait, je dirai meme un peu severe
;
mais nul autre ne

m'a paru plus digne d'attirer votre attention, a la fete que l'Universite de Cambridge

celebre aujourd'hui, pour honorer le cinquantenaire du professorat de Sir George-Gabriel

Stokes, qui, dans sa belle carriere, a precis^ment touche
-

d'une main magistrale aux

problemes les plus profitables a 1'avancement de la Philosophie naturelle.

Ce sujet est d'autant mieux a sa place ici qu'en citant les npms des grands esprits

qui ont le plus fait pour la Science, nous trouverons ceux qui honorent le plus l'Universite'

de Cambridge, ses professeurs ou ses eleves, Sir Isaac Newton, Thomas Young, George

Green, Sir George Airy, Lord Kelvin, Clerk Maxwell, Lord Rayleigh ;
et le souvenir de

gloire qui se perp^tue a travers les siecles jusqu'au temps present rehaussera leclat de

cette belle ceremonie.

I

Cherchons done, dans un rapide coup d'ceil sur la Renaissance scientifique, a reconnaitre

l'infiuence secrete, mais puissante, qui a ^te la force directrice de la Physique moderne.

Je suis porte' a penser que l'e'tude de la lumiere, par l'attraction qu'elle a exercee

sur les plus vigoureux esprits, a 6t6 l'une des causes les plus efficaces du retour des

ide"es vers la Philosophie naturelle, et a, considerer l'Optique comme ayant eu sur la

marche des Sciences une influence dont on ne saurait exagerer la ported.

Cette influence, deja visible des la creation de la Philosophie experimentale, par

Galilee, a grandi dans de telles proportions qu'on prevoit aujourd'hui une immense synthese

des forces physiques, fondee sur les principes de la The'orie des ondes lumineuses.

On se rende compte ais&nent de cette influence lorsqu'on songe que la voie par

laquelle arrive a notre intelligence la connaissance du monde exterieur est la lumiere.

C'est, en effet, la vision qui nous fournit les notions les plus rapides et les plus

completes sur les objets qui nous entourent; nos autres sens, l'oui'e, le toucher, nous

apportent aussi leur part d'instruction, mais la vue seule nous fournit une abondance

d'informations simultan^es, forme, ^clat, couleur, qu'aucun des autres sens ne peut nous

donner.



SON INFLUENCE SUR LA PHYSIQUE MODERNE. XIX

II n'est done pas etonnant que la lumiere, lien perpe'tuel entre notre personnalite

et le monde exteVieur, intervienne a chaque instant, par toutes les ressources de sa

constitution intime, pour preciser l'observation des phenomenes naturels. Aussi chaque
decouverte relative a- quelque propriety nouvelle de la lumiere a-t-elle eu un retentissement

imm^diat sur les autres branches des connaissances humaines
;
souvent meme, elle a deter-

mine la naissance d'une science nouvelle en apportant un nouveau moyen d'investigation

d'une puissance et d'une ddlicatesse inattendues.

L'Optique est veritablement une science moderne
;

les anciens philosophes n'avaient

pas soupconne la complexity de ce qu'on appelle vulgairement la lumiere : ils confondaient

sous la meme denomination ce qui est personnel a l'homme et ce qui lui est exteVieur.

Ils avaient cependant apercu une des proprietes caracteristiques du lien qui existe entre

la source lumineuse et l'ceil qui percoit l'impression : la lumiere se meut en ligne droite.

L'experience vulgaire leur avait reVele" cet axiome, en observant les trainees brillantes

que le Soleil trace dans le ciel en percant les nuees brumeuses ou en penetrant dans

un espace obscur. De la etaieut result^es deux notions empiriques : la definition des

rayons de lumiere et celle de la ligne droite
;

la premiere devint la base de l'Optique ;

l'autre, la base de la Geom^trie.

II ne nous reste presque rien des livres d'Optique des anciens
;
nous savons, toutefois,

qu'ils connaissaient la reflexion des rayons lumineux sur les surfaces polies et l'explication

des images formees par les miroirs.

II faut attendre bien des siecles, jusqu'a la Renaissance scientifique, pour rencontrer

un nouveau progres dans l'Optique ;
mais celui-la est considerable, il annonce l'ere nouvelle :

e'est 1'invention de la lunette astronomique.

L'ere nouvelle commence a Galilee, Boyle et Descartes, les fondateurs de la Philo-

sophic experimentale ;
tous trois consacrent leur vie a m^diter sur la nature de la lumiere,

des couleurs et des forces. Galilee jette les bases de la Mecanique, et, avec le telescope

a refraction, celles de l'Astronomie physique ; Boyle perfectionne l'expe'rimentation ; quant

a Descartes, il embrasse d'une vue p^netrante l'ensemble de la Philosophic naturelle
;

il repousse toutes les causes occultes admises par les scholastiques ;
il pose en principe

que tous les phenomenes sont gouvernes par les lois de la Mecanique. Dans son systeme

du monde, la lumiere joue un role preponderant*; elle est produite par les ondulations

excitees dans la matiere subtile qui, suivant lui, remplit tout l'espace. Cette matiere

subtile (qui repre"sente ce que nous appelons aujourd'hui Tether), il la considere comme

formee de particules en contact imme'diat
;

elle constitue done en meme temps le vehicule

des forces existant entre les corps materiels qui y sont plonge"s. On reconnait la les fameux

tourbillons de Descartes, tantot admires, tantot bafoues aux siecles derniers, mais auxquels

d'habiles geometres contemporains ont rendu la justice qui leur est due.

Quelle que soit l'opinion qu'on porte sur la rigueur des deductions du grand philosophe,

on doit rester frappe de la hardiesse avec laquelle il affirme la liaison des grands problemes

cosmiques, et de la penetration avec laquelle il annonce des solutions dont les generations

actuelles s'approchent insensiblement.

* Le Monde de M. Descartes ou le Traite de la Lumiere. Paris, 1664.
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Pour Descartes, le mecanisme de la lumiere et celui de la gravitation sont inseparables ;

le siege des phenomenes qui leur correspondent est cette matiere subtile qui remplit

l'Univers et leur propagation doit s'effectuer par ondes autour des centres actifs.

II

Cette conception de la nature de la lumiere heurtait les id^es en faveur
;

elle souleva

de vives oppositions. Depuis l'Antiquite, on avait coutume de se repr^senter les rayons

lumineux comme la trajectoire de projectiles rapides lance's par la source radiante, leur

choc sur les nerfs de l'ceil produisant la vision; leur rebondissement ou leur changement

de vitesse, la reflexion ou la refraction.

La th^orie cartesienne avait toutefois des aspects sdduisants qui lui amenerent des

d6fenseurs : les ondes excitees a la surface des eaux tranquilles offrent une image si

claire de la propagation d'un mouvement autour d'un centre d'e"branlement ! D'autre part,

n'est-ce pas par ondes que nous arrivent les impressions sonores ? L'esprit eprouve done

une veritable satisfaction a penser que nos deux organes les plus precis et delicats, l'ceil

et l'oreille, sont impressionnes par un mdcanisme de meme nature.

Cependant, une grave difference subsiste; le son ne se meut pas ne'cessairenient en

ligne droite comme la lumiere
;

il tourne les obstacles qu'on lui oppose et parcourt les

routes les plus sinueuses presque sans s'affaiblir.

Les physiciens se partagerent alors en deux camps: les uns, partisans de remission,

les autres, partisans des ondes. Comme chacun des deux systemes se pretendait superieur

a l'autre, et l'etait en effet sur quelques points, il fallait en appeler a d'autres phenomenes

pour trancher entre eux.

Le hasard des decouvertes en amena plusieurs qui auraient du decider en faveur

de la th6orie des ondes, ainsi qu'on le reconnut un siecle plus tard
;

mais les claires

verites n'apparaissent jamais sans un long labeur.

Un compromis singulier s'etablit entre les deux systemes, a l'abri d'un nom illustre

entre tous, et la victoire fut attribute, pendant un siecle, a la th^orie de remission
;

en voici l'etrange histoire :

En 1661, un jeune eieve plein d'ardeur et de penetration entrait a Trinity College

de Cambridge ;
il se nommait Isaac Newton

;
il avait deja, lu dans son village YOptique

de Kepler. A peine entre, tout en suivant les lecons d'Optique de Barrow, il etudie

avec passion la Geometrie de Descartes
;

il achete sur ses economies un prisme pour

etudier les couleurs et, entre temps, medite deja longuement sur les causes de la

gravite. Huit ans apres, ses maitres le trouvent digne de succeder a Barrow dans la

chaire lucasienne, et il enseigne a son tour l'Optique. L'eieve depasse bientdt le maitre

et annonce une decouverte capitale : La lumiere blanche, qui semblait le type de la

lumiere pure, n'est pas homogene ;
elle est formee de rayons de diverses refrangibilites.

Et il le demontre par la ceiebre experience du spectre solaire, dans laquelle un rayon

de lumiere blanche est decompose en une serie de rayons colores comme l'arc-en-ciel
;

chacune de ces couleurs est simple, car le prisme ne la decompose plus. Telle est

l'origine de l'analyse spectrale.
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Cette analyse de la lumiere blanche amena Newton a expliquer les colorations des

lames minces qu'on observe en particulier sur les bulles de savon
; l'experience fonda-

mentale, dite des anneaux de Newton, est l'une des plus instructives de l'Optique, et

les lois qui la resument sont d'une admirable simplicite. II en exposa la theorie dans

un discours adresse' a la Societd Royale sous le titre : Hypothese nouvelle concernant la

lumiere et les couleurs.

Ce discours provoqua de la part de Hooke une vive reclamation. Hooke avait

anterieurement observe aussi les colorations des lames minces et cherche a les expliquer

dans le systeme des oiides : il avait eu le merite (que Newton lui-meme reconnut sans

peine) de substituer a l'onde progressive de Descartes une onde vibratoire, notion

nouvelle et extremement importante : il avait meme apercu le role des deux surfaces

re'nechissantes de la lame mince, ainsi que Taction mutuelle des ondes reflechies. Hooke

eut e^e" ainsi le veritable precurseur de la theorie moderne, s'il avait eu, comme New-

ton, la perception claire des rayons simples ;
mais ses raisonnements vagues pour ex-

pliquer la coloration 6tent toute valeur demonstrative a sa theorie.

Newton fut tres affecte de cette reclamation de priority ;
il combat les arguments

de son adversaire en rappelant que la theorie des ondes est inadmissible, parce qu'elle

ne rend pas compte de l'existence du rayon lumineux et des ombres. II se defend

d'avoir constitue une theorie, il declare qu'il n'admet ni l'hypothese des ondes, ni celle

de remission
;

seulement il est oblige, pour abreger le discours et faire image, d'avoir

recours a l'une et a l'autre, comme s'il les admettait.

Et, en fait, dans la XII6

Proposition, au IIe livre de son Optique*, qui constitue

ce que Ton a appele" depuis la thiorie des acces, Newton reste absolument sur le terrain

des faits.

II dit simplement :

" Le phenomene des lames minces prouve que le rayon lumineux

est mis alternativement dans un acces de facile reflexion ou de facile transmission."

II ajoute, toutefois, que si Ton desire une explication de ces alternances, on peat les

attribuer aux vibrations excitees par le choc des corpuscules et propag^es sous forme

d'ondes par l'^therf.

En resume", malgre son desir de rester sur le terrain solide des faits, Newton n'a

pas pu s'empecher d'essayer une explication rationnelle
;

il a trop lu les ecrits de Des-

cartes pour n'etre pas, au fond, comme Huyghens, partisan de l'universel mecanisme et

pour ne pas desirer secretement trouver, dans les ondulations pures, Texplication du

beau phenomene qu'il a rdduit en lois si simples.

Son admirable livre des Principes porte la trace de ses profondes meditations sur la

propagation des ondes, car on y trouve, pour la premiere fois, l'expression mathematique

de leur vitesse, aussi bien pour les vibrations longitudinales des corps compressibles que

pour les vibrations transversales des surfaces fluides.

*
Prop. XII.—Tout rayon de lumiere dans son passage reiringente, et entre les retours, a etre aisement r<5flechie

a travers une surface reiringente est mis dans un certain par elle.

etat passager qui, dans la progression du rayon, revient a (Sir Isaac Newton, Opticks or a Treatise of the Ke-

intervalles egaux et dispose le rayon, a chaque retour, a flections, Befractions, Inflexions and Colours of Light.—
dtre facilement transmis a travers la prochaine surface London, 1718, second edition, with additions, p. 253.)

t hoc. cit., p. 255.

Vol. XVIII. d
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Mais c'est surtout le troisieme livre de son Optique, qui t^moigne le plus vivement

de ses aspirations cartesiennes et surtout de sa perplexite. Ses fameuses "
Questions

"

sont un expose" si complet des arguments en faveur de la theorie des ondes lumineuses

que Thomas Young les citera plus tard comme preuve de la conversion finale de

Newton a la doctrine ondulatoire. Newton aurait certainement cede" a ce secret en-

trainement si la logique inflexible de son esprit le lui avait permis ; mais, apres avoir

^numere toutes les ressources dont la theorie des ondes dispose pour expliquer la nature

intime de la lumiere, arrive aux dernieres questions, il s'arrete comme pris d'uu remords

subit et la rejette rdsolument. Et le seul argument qu'il donne, c'est qu'il n'y voit

pas la possibility de rendre compte du rayon lumineux rectiligne *.

*
Voici, d'abord, un extrait des "Questions" qui prouve

la tendance des vues de Newton vers la theorie ondulatoire

et les id^es cartesiennes.

"
Question 12.—Les rayons de lumifere, en frappant le

fond de l'oeil, n'excitent-ils pas des vibrations dans la

tunica retina 1 Ces vibrations, etant propagees le long des

fibres solides des nerfs optiques dans le cerveau, causent la

sensation de la vision...

"
Question 13.—Les diverses sortes de rayons ne font-

elles pas des vibrations de diverses grandeurs, qui, suivant

leurs diverses grandeurs, exeitent les sensations des diverses

couleurs, de la meme maniere que les vibrations de l'air,

suivant leurs diverses grandeurs, exeitent les sensations

des divers sons? Et, en particulier, ne sont-ee pas les

rayons les plus refrangibles qui exeitent les plus courtes

vibrations pour produire la sensation du violet extreme ;

les moins refrangibles, les plus grandes, pour produire la

sensation du rouge extreme, etc.?...

"
Question 18.—La chaleur d'un espace chaud n'est-elle

pas transmise a travers le vide par les vibrations d'un

milieu beaucoup plus subtil que l'air, qui reste dans le vide

apres que l'air en a ete' enleve ?

"Et ce milieu n'est-il pas le meme que le milieu par

lequel la lumiere est refractee et r^fKichie, par les vibra-

tions duquel la lumiere communique la chaleur aux corps

et est mise dans les acces de facile reflexion et de facile

transmission ?

" Et ce milieu n'est-il pas infiniment (exceedingly) plus

rare et subtil que l'air et infiniment plus e^astique et actif ?

Et ne remplit-il pas tous les corps? Et (par sa force

filastique) ne se repand-il pas dans tout 1'espace celeste?"

Newton examine ensuite le r61e possible de ce milieu

(l'ether) dans la gravitation et dans la transmission des

sensations et du mouvement chez les etres vivants (ques-

tions 19 a 24). Les propri^tes dissymetriques des deux

rayons du spath d'Islande attirent egalement son attention

(questions 25 et 26).

Puis arrive cette volte-face soudaine, cette espece de

remords d'avoir expose avec trop de complaisance les

ressources de la theorie cartesienne fondee sur le plein : il

fait, en quelque sorte, amende honorable et continue ainsi:

"
Question 27.—Ne sont-elles pas erronees toutes les

hypotheses qui ont ite inventees jusqu'ici pour expliquer

les ph^nomenes de la lumiere par de nouvelles modifica-

tions des rayons ?

"
Question 28.—Ne sont-elles pas erronees toutes les

hypotheses dans lesquelles la lumiere est supposee con-

sister en une pression ou un mouvement propage^ a travers

un milieu fluide?
" Si elle (la lumiere) consiste seulement en une pression

ou un mouvement propage^ instantanement ou progressive-

ment, elle se courberait dans l'ombre. Car une pression
ou un mouvement ne peut pas se propager en ligne droite

dans un fluide au dela de l'obstacle qui arrete une partie
du mouvement ;

il y a inflexion et dispersion de tous cotes

dans le milieu en repos situe' au dela de l'obstacle...

"... Car une cloche ou un canon peuvent s'entendre au
dela d'une colline qui intercepte la vue du corps sonore, et

les sons se propagent aussi bien a travers des tubes courbes

qu'a travers des tubes droits. Tandis que Ton ne voit

jamais la lumiere suivre des routes tortueuses, ni s'in-

flechir dans l'ombre."

Devant cette objection, Newton se voit oblige de revenir

a la theorie corpusculaire.
"
Question 29.—Les rayons de lumiere ne sont-ils pas

de petits corps e"mis par les substances brillantes?...
"
Question 30.—Les corps grossiers de la lumiere ne sont-

ils pas convertissables l'un dans l'autre?... Le changement
des corps en lumiere et de lumiere en corps materiels est

tres conforme au cours de la nature, qui se plait aux trans-

mutations."

La logique le force a poursuivre l'hypothese du vide et

des atomes et meme a invoquer (question 28, p. 343), a ce

sujet, l'autorite des anciens philosophes de la Grece et de
la Phenicie: on ne doit done pas s'etonner de voir sa per-

plexite se traduire par les paroles suivantes :

"
Question 31° et derniere.—Les petites particules des

corps n'ont-elles pas certains pouvoirs, vertus ou forces,

par lesquels elles agissent a distance non seulement sur les

rayons de lumiere pour les r^flechir, les refracter ou les

inflechir, mais aussi les unes sur les autres pour produire
une grande partie des phenomenes de la Nature? "

Mais il s'apereoit qu'il va peut-etre un peu loin et qu'il

va se compromettre : aussi ses secretes tendances, deVelop-

p^es dans la premiere question, reparaissent-elles un in-

stant :
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Conside're a ce point de vue, le troisieme livre de YOptique n'est plus la discussion

seulement impartiale de systemes opposes ;
il apparait comme la peinture des souffrances

d'un g^nie puissant, tourmente par le doute, tour a tour entraine" par les suggestions
seduisantes de l'imagination et rappele par les exigences imperieuses de la logique.

Nous assistons a un drame, a l'eternel combat de l'amour et du devoir, et c'est le

devoir qui a ete le plus fort.

Telle est, j'imagine, la genese intime de la Theorie des acces, melange bizarre des

deux systemes opposes ;
elle a ete beaucoup admire"e a cause de l'autorite du grand

geometre qui a eu la gloire de ramener l'ensemble des mouvements celestes a la loi

unique de la gravitation universelle.

Aujourd'hui, cette theorie est abandonnee
;

elle est condamnee par Vexperimentum
cruris d'Arago, realise par Fizeau et Foucault : on doit pourtant reconnaitre qu'elle a

constitue" un r^el progres par la notion precise et nouvelle qu'elle renferme. Le rayon
de lumiere consider^ jusque-la etait simplement la trajectoire d'une particule en mouve-

ment rectiligne : le rayon de lumiere tel que le ddcrit Newton possede une structure

periodique reguliere, et la peYiode ou longueur d'acces caracterise la couleur du rayon ;

c'est la un resultat capital. II ne manque plus qu'une interpretation convenable pour
transformer le rayon lumineux en une onde vibratoire

;
mais il faut attendre un siecle,

et c'est le Dr Thomas Young qui, en 1801, aura l'honneur de la decouvrir.

Ill

Reprenant l'etude des lames minces, Thomas Young montre que tout s'explique

avec une extreme simplicite, si Ton suppose que le rayon lumineux homogene est

l'analyse de 1'onde sonore produite par un son musical
; que les vibrations de Tether,

soumises aux lois des petits mouvements, doivent se composer, c'est-a-dire interferer,

suivant l'expression qu'il propose pour exprimer leur action mutuelle. Quoique Young
eut pris l'habile precaution de se re'clamer de l'autorite de Newton*, l'hypothese n'eut

aucune faveur; son principe d'interfeYence conduisait a cette singuliere consequence que
la lumiere ajoutee a de la lumiere pouvait, dans certains cas, produire l'obscurite;

resultat paradoxal, contredit par 1'experience journaliere. La seule verification que Young

apportat e"tait l'existence des anneaux obscurs dans 1'experience de Newton, obscurite

due, suivant lui, a l'interference des ondes r^flechies aux deux faces de la lame
; mais,

comme la the"orie newtonienne interpre"tait le fait autrement, la preuve restait douteuse;

il fallait un experimentum cruris, Young ne reussit pas a l'obtenir.

" Comment ces attractions (gravite, magnetisme et elec- initiateur de la theorie de remission. En reality, il he^ite

tricite) peuvent-elles se produire, je ne m'y arrete pas ici. entre les deux systemes opposes dont il apereoit claire-

Ce que j'appelle attraction peut etre produit par des impul- ment l'insuffisance et, dans cette discussion, il s'efforce de

sions ou par d'autres moyens que j'ignore..." s'eloigner le moins possible des faits bien etablis : voila

II y aurait encore bien des remarques curieuses a faire pourquoi il ne formule aucune theorie dogmatique. II

sur l'etat d'esprit du grand physicien, geometre et philo- serait done injuste de rendre Newton responsable de tout

sophe, qui se revele naivement dans ces "
Questions." Les ce que les partisans de remission ont abrite' sous son

courts extraits qui precedent suffisent, je crois, a justifier autorite\

la conclusion qui ressort de cette etude, a savoir, que
* The Bakerian Lecture, on the Theory of Light and

Newton n'avait pas, sur le mecanisme de la lumiere, les Colours.—By Thomas Young. Philos. Trans, of the Royal
idees arretees qu'on lui prete en le considerant comme Society of London, 1802, p. 12.

d2
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La theorie des ondes retombait done encore une fois dans l'obscurite des contro-

verses, et le terrible argument de la propagation rectiligne se dressait de nouveau

contre elle. Les plus habiles g^ometres de l'dpoque, Laplace, Biot, Poisson, s'e"taient

naturellement ranges a l'opinion newtonienne : Laplace en particulier, le ceUebre auteur

de la Mdcanique c&este, avait meme pris l'offensive
;

il etait alle attaquer la theorie

des ondes jusque dans le plus solide de ses retranchements, celui qui avait dte e'leve

par l'illustre Huyghens.

Huyghens, en effet, dans son Traitt de la Lumiere, avait r^solu un probleme devant

lequel la theorie de remission etait rested muette, a, savoir, l'explication de la bire-

fringence du cristal d'Islande
;

la theorie des ondes, au contraire, ramenait a une con-

struction ge'ome'trique des plus simples la marche des deux rayons, ordinaire et extra-

ordinaire
; l'experience confirmait en tous points ces r^sultats. Laplace r^ussit, a son

tour, a l'aide d'hypotheses sur la constitution des particules lumineuses, a expliquer la

marche de ces etranges rayons. La victoire de la theorie particulaire paraissait done

complete : un nouveau phenomene arrivait m&me tout a point pour la rendre eclatante.

Malus d^couvrait qu'un rayon de lumiere naturelle, reflechi sous un certain angle,

acquiert des proprie'te's dissymetriques semblables a celles des rayons du cristal d'Islande;

il expliqua ce phenomene par une orientation de la molecule lumineuse, et, en conse-

quence, nomma cette lumiere, lumiere polarisee ;
e'etait un nouveau succes pour remission.

Le triomphe ne fut pas de longue durde
;
en 1816, un jeune inge"nieur, a peine

sorti de l'Ecole Polytechnique, Augustin Fresnel, confiait a Arago ses doutes sur la theorie

en faveur et lui indiquait les experiences qui tendaient a la renverser
; s'appuyant sur

les id^es d'Huyghens, il avait attaque" la redoutable question des rayons et des ombres et

l'avait re"solue
;

tous les phenomenes de diffraction etaient ramenes a un probleme

d'analyse et l'observation verifiait merveilleusement le calcul. II avait, sans les connaitre,

retrouve les raisonnements de Young, ainsi que le principe des interferences; mais, plus

heureux que lui, il apportait Yexperimentum cruris, l'experience des deux miroirs
; la,

deux rayons issus d'une meme source, purs de toute alteration, produisent par leur

concours, tantot de la lumiere, tant6t de l'obscurite. L'illustre Young fut le premier

a applaudir au succes de son jeune e"mule et lui t^moigna une bienveillance qui ne

se dementit jamais.

Ainsi, grace a l'experience des deux miroirs, la theorie du Dr

Young, e'est-a-dire

l'analogie complete du rayon lumineux et de l'onde sonore, est solidement etablie.

En outre, la theorie de la diffraction de Fresnel montre la cause de leur dissemblance;

la lumiere se propage en ligne droite parce que les ondes lumineuses sont extremement

petites ;
au contraire, le son se diffuse parce que les longueurs des ondes sonores sont

relativement tres grandes.

Ainsi s'evanouit la terrible objection qui avait tant tourmente l'esprit du grand

Newton.

Mais il restait encore a expliquer une autre difference essentielle entre l'onde

lumineuse et l'onde sonore ; celle-ci ne se polarise pas, comment se fait-il que l'onde

lumineuse se polarise ?

La reponse a cette question paraissait si difficile que Young dedara renoncer a
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la chercher. Fresnel travailla plus de cinq ans a la decouvrir; elle est aussi simple

qu'inattendue :

L'onde sonore ne peut pas se polariser parce que ses vibrations sont longitudinales ;

la lumiere, au contraire, se polarise parce que ses vibrations sont transversales, c'est-a-dire

perpendiculaires au rayon lumineux.

Desormais, la nature de la lumiere est completement etablie
;

tous les ph^nomenes

presentes comme des objections absolues s'expliquent avec une merveilleuse facility, jusque
dans leurs plus minutieux details.

Je voudrais pouvoir vous retracer par quel admirable enchainement d'experiences et

de raisonnements Fresnel est arrive" a cette decouverte, l'une des plus importantes de la

science moderne
;

mais le temps me presse. II m'a suffi de vous faire comprendre la

grandeur des difficulte's qu'il a fallu vaincre pour l'accomplir ; j'ai hate d'en faire res-

sortir les consequences.

IV

Vous avez vu, au debut, les raisons purement physiologiques qui font de l'^tude

de la lumiere le centre necessaire des informations de 1'intelligence humaine. Vous devez

juger maintenant par les pdripeties de ce long deVeloppement des theories optiques, quelle

preoccupation elle a toujours causee aux puissants esprits qui s'inte"ressent aux forces

naturelles. En effet, tous les ph^nomenes qui se passent sous nos yeux impliquent une

transmission a distance de force ou de mouvement
; que la distance soit infiniment grande,

comme dans les espaces celestes, ou infiniment petite, comme dans les intervalles mol^-

culaires, le mystere est le meme. Or, la lumiere est l'agent qui nous amene le mouve-

ment des corps lumineux : approfondir le mecanisme de cette transmission, c'est approfondir

celui de toutes les autres, et Descartes en avait eu l'admirable intuition lorsqu'il embrassait

tous ces problemes dans une meme conception mecanique : voila le lien secret qui a

toujours attire
-

les physiciens et les geometres vers l'etude de la lumiere.

Envisagee a ce point de vue, l'histoire de l'Optique acquiert une portee philosophique

considerable ;
elle devient l'histoire des progres successifs de nos connaissances sur les

moyens que la Nature emploie pour transmettre a, distance le mouvement et la force.

La premiere ide"e qui est venue a l'esprit de l'homme, des 1'etat sauvage, pour

exercer sa force hors de sa portee, c'est le jet d'une pierre, d'une fleche ou d'un pro-

jectile quelconque ;
voila le germe de la the'orie de remission : cette th^orie correspond

au systeme philosophique qui suppose un espace vide ou le projectile se meut librement.

A un degre de culture plus avance", l'homme, devenu physicien, a eu l'idee plus

delicate de la transmission du mouvement par ondes, suggere"e d'abord par l'etude des

vagues, puis par celle du son. Ce second mode suppose, au contraire, que l'espace est

plein : il n'y a plus ici transport de matiere, les particules oscillent dans le sens de

la propagation, et c'est par compression ou dilatation d'un milieu elastique continu que

le mouvement et la force sont transmis. Telle a <Ste l'origine de la the'orie des ondes

lumineuses; sous cette forme, elle ne pouvait representer qu'une partie des phenomenes,

ainsi qu'on l'a vu pre'c^demment ;
elle e"tait done insuffisante. Mais les ge"ometres et
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les physiciens avant Fresnel ne connaissaient pas d'autre me"canisme ondulatoire dans un

milieu continu.

La grande de'couverte de Fresnel a 6t& de reVeler un troisieme mode de trans-

mission, tout aussi naturel que le prtice'dent, mais qui offre une richesse de ressources

incomparable. Ce sont les ondes a vibrations transversales excitees dans un milieu

continu incompressible, celles qui rendent compte de toutes les propri^te's de la lumiere.

Dans ce mode ondulatoire, le deplacement des particules met en jeu une elasticite
-

d'un

genre special ;
c'est le glissement relatif des couches concentriques a l'ebranlement qui

transmet le mouvement et l'effort. Le caractere de ces ondes est de n'imposer au

milieu aucune variation de density, comme dans le systeme de Descartes.

La richesse de ressources annonc^e plus haut provient de ce que la forme de la

vibration transversale reste inde'termine'e, ce qui confere aux ondes une variete infinie

de proprietes diffe'rentes.

Les formes rectiligne, circulaire, elliptique, caracteYisent precisement ces polarisations

si inattendues que Fresnel a decouvertes et a l'aide desquelles il a si admirablement

explique" les beaux phenomenes d'Arago produits par les lames cristallisees.

L'existence possible d'ondes se propageant sans changement de densite a modifie

profondement la th^orie mathematique de l'Elasticite. Les geometres retrouverent dans

leurs equations ces ondes a vibrations transversales qui leur etaient inconnues; ils apprirent,

en outre, de Fresnel la constitution la plus generale des milieux elastiques, a laquelle

ils n'avaient pas songe.

C'est dans son admirable Memoire sur la double refraction que le grand physicien

6met l'idee que, dans les cristaux, l'elasticite" de l'ether doit etre variable avec la direction,

condition inattendue et d'une extreme importance qui transformera les bases fondamentales

de la Mecanique moleculaire; les travaux de Cauchy et de Green en sont la preuve

frappante.

De ce principe, Fresnel conclut la forme la plus generale de la surface de l'onde

lumineuse dans les cristaux et retrouva (comme cas particulier) la sphere et l'ellipsoide

que Huyghens avait assignes au cristal d'Islande.

Cette uouvelle decouverte excita l'admiration universelle parmi les physiciens et les

geometres ; lorsque Arago vint l'exposer devant TAcademie des Sciences, Laplace, si long-

temps hostile, se declara convaincu. Deux ans apres, Fresnel, elu membre de l'Academie

a l'unanimite' des suffrages, etait elu, avec la meme unanimite, membre etranger de la

Societe Royale de Londres
;

ce fut Young lui-meme qui lui transmit la nouvelle de cette

distinction avec l'hommage personnel de son admiration sincere.

L'e"tablissement d^finitif de la theorie des ondes impose la necessity d'admettre l'existence

d'un milieu dlastique pour transmettre le mouvement lumineux. Mais toute transmission

a distance de mouvement ou de force n'implique-t-elle pas la meme condition ? C'est

a Faraday que revient l'honneur d'avoir, en veritable disciple de Descartes et de Leibnitz,
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proclame
-

ce principe et d'avoir resolument attribue aux reactions du milieu ambiant

l'apparente action a distance des systemes electriques et magnetiques. Faraday fut re-

compense" de sa hardiesse par la decouverte de l'induction. Et, comme l'induction s'exerce

meme a travers un espace vide de matiere ponderable, on est forc£ d'admettre que le milieu

actif est justement celui qui transmet les ondes lumineuses, l'ether.

La transmission d'un mouvement par un milieu Elastique ne peut pas etre instantan^e
;

si c'est vraiment lather luminifere qui est le milieu transmetteur, l'induction ne doit-elle

pas se propager avec la vitesse des ondes lumineuses.

La verification etait malaisee
;
Von Helmholz, qui tenta la mesure directe de cette

vitesse, trouva, comme autrefois Galilee, pour la vitesse de la lumiere, une valeur pratique-

ment infinie.

Mais l'attention des physiciens fut attirEe par une singuliere coincidence numerique :

le rapport de l'unite de quantity electrostatique a l'unite" electro-magnetique est reprdsente

par un nombre precisEment egal a la vitesse de la lumiere.

L'illustre Clerk Maxwell, suivant les idEes de Faraday, n'hesita pas a. voir dans ce

rapport la mesure indirecte de la vitesse d'induction, et, par une sErie d'intuitions

remarquables, il parvint a. Clever cette cElebre thEorie Electro-magnetique de la lumiere,

qui identifie, dans un meme mecanisme, trois groupes de phenomenes en apparence

completement distincts : Lumiere, Electricity, Magnetisme.

Mais les theories abstraites des phdnomenes naturels ne sont rien sans le controle

de l'experience. La thEorie de Maxwell fut soumise a l'epreuve et le succes depassa

toute attente.

Les rEsultats sont trop recents et trop bien connus, ici surtout, pour qu'il soit

necessaire d'y insister.

Un jeune physicien allemand, Henry Hertz, enleve" prematurEment a, la Science,

empruntant a von Helmholz et a Lord Kelvin leur belle analyse des decharges oscil-

lantes, re'alisa si parfaitement des ondes electriques et electro-magne'tiques, que ces ondes

possedent toutes les propriety des ondes lumineuses
;

la seule particularity qui les dis-

tingue, c'est que leurs vibrations sont moins rapides que celles de la lumiere.

II en resulte qu'on peut reproduire, avec des de'charges Electriques, les experiences

les plus dedicates de 1'Optique moderne: reflexion, refraction, diffraction, polarisation

rectiligne, circulaire, elliptique; etc.

Mais, je m'arrete, Messieurs; je sens que j'ai assume une tache trop lourde en

essayant de vous Enume'rer toutes les richesses que les ondes a vibrations transversales

concentrent aujourd'hui dans nos mains.

J'ai dit, en commencant, que 1'Optique me paraissait etre la Science directrice de

la Physique moderne.

Si quelque doute a pu s'Elever dans votre esprit, j'espere que cette impression

s'est effacee pour faire place a un sentiment de surprise et d'admiration en voyant

tout ce que l'etude de la lumiere a apporte d'ide"es nouvelles sur le mecanisme des

forces de la Nature.

Elle a ramenE insensiblement a la conception cart£sienne d'un milieu unique rem-

plissant l'espace, siege des phEnomenes electriques, magnetiques et uraineux; elle laisse
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entrevoir que ce milieu est le de'positaire de l'energie r^pandue dans le monde materiel,

le v^hicule necessaire de toutes les forces, l'origine meme de la gravitation universelle.

Voila l'oeuvre accomplie par l'Optique ;
c'est peut-etre la plus grande chose du siecle !

L'etude des propriety's des ondes envisages sous tous leurs aspects est done, a

l'heure actuelle, la voie veritablement feconde.

C'est celle qu'a suivie, dans sa double carriere de g^ometre et de physicien, Sir

George Stokes, a qui nous allons rendre un hommage si touchant et si merite
-

. Tous

ses beaux travaux, aussi bien en Hydrodynamique qu'en Optique theorique ou expeYi-

meutale, se rapportent pr^cisement aux transformations que les divers milieux font subir

aux ondes qui les traversent. Dans les phenomenes varies qu'il a decouverts ou

analyses, mouvement des fluides, diffraction, interferences, fluorescence, rayons Rontgen,

l'id^e directrice que je vous signale est toujours visible, et c'est ce qui fait l'harmo-

nieuse unite" de la vie scientifique de Sir George Stokes.

Que l'Universite" de Cambridge soit fiere de sa chaire Lucasienne de Physique

mathematique, car, depuis Sir Isaac Newton jusqu'a Sir George Stokes, elle contribue

pour une part glorieuse aux progres de la Philosophic naturelle.
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I. On the analytical representation of a uniform branch of a monogenic function.

By G. Mittag-Leffler.

[Received 25 April, 1899.]

Let a denote a point in the plane of the complex variable x, and associate with

a an unlimited array of quantities

F(a), FV(a), F»(a),..., F»(a), (1),

where each quantity is completely determinate when the position which it occupies in

the array is known.

Suppose that, as is possible in an infinite number of ways, these quantities F are

chosen so that Cauchy's condition* that the series

P(x\a)= % ±-FW(a)(x-ay (2),

shall have a circle of convergence, is satisfied.

In the theory of analytic functions constructed by Weierstrass, the function is defined

by the series P (x\a) and by the analytic continuation of this series. The function is

completely determinate provided the elements

F(a), FU(a), F®(a),..., F^(a),...

are given. We denote generally by F(x) the function in its totality which is defined

by these elements.

If JET is a continuum formed by a single piece, which nowhere overlaps itself and

encloses the point a, and if it is such that the branch of the function F(x) formed

by P (x\a) and by its analytic continuation within K remains uniform and regular, I

shall denote this branch by FK(x). The problem to be discussed here is that of finding

*
Cauchy, Cours <i'Analyse del'Ecole royaUpolytechnique, is a finite magnitude. It is known that, if this finite

l
{re

partie, Analyse Algebrique, Paris 1821, ohapitre 9, § 2, .. , , , n L 1 ,u *-.i • *i. j- >
L i

' „ . ' '

.

'

, , magnitude be denoted by -, the quantity r is the radius of
theoreme i, p. 286. Expressed in modern phraseology, r

Cauchy's condition would be formulated thus : The upper the circle of convergence of the series (2).

limit of the limiting values of the moduli

l

\{h
FM{a)Y\
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an analytical representation of a branch FK(x) which is to be chosen as extensive as

possible.

Merely from the definition of the analytic function F(x) and from that of the branch

FK(x), there follows at once a kind of analytical representation of the branch FK{x)
in question. In effect, such a representation is always given by an enumerable number

of analytical continuations of P (x\a). But as the radius of the circle of convergence

of such an analytical continuation is given only by Cauchy's criterion already quoted,

this mode of representing FK{x) becomes extremely complicated and rather unworkable.

The analytical continuation ought rather to be regarded as the definition of the function

than as a mode of representation.

There is another mode of representation which arises immediately from the principles

upon which Cauchy's theory of functions is based. Such a representation is given by
the formula

«w.j*sa* (3)>

where the integral is taken along a closed contour S within K. By the definition of an

integral, it is clear that the integral (3) can be replaced by an infinite sum of rational

functions of x, the coefficients of which are expressed by special values of x (there being
an enumerable number of these) and the corresponding values of FK(x). This observation

was the point of departure of the investigation of M. Runge* as well as of the subsequent

investigations of MM. Painleve, Hilbert and others. The analytical representation thus

obtained accordingly requires a knowledge of the value of FK (x) at an infinite and

enumerable number of points. Now in the customary problems of analysis these values

are not known. In general it is, on the contrary, the series of values

F(a), FM(a), F*(a),...

which is given. Adopting the usual point of view, it is thus for instance in the problem
of the integration of differential equations.

When, then, we have to find the analytical representation of FK(x), it must be drawn

from the elements (1) and, by means of those elements alone, a formula must be constructed

to represent the branch FK(x) completely. Let C denote the circle of convergence of the

series (2). The expression

I —,Fto(a)(x-aY

then gives the analytical representation of FC(x), the equality

FC(x)= 2 —
,

FM (a) (x
- ay

holding for all points within G. This expression is constructed by means of the elements

F(a), FM(a), #"*(<*),...

* " Zur Theorie der eindeutigen analytisohen Functionen,
"

§ 1, pp. 229—239, Acta Alathematica, tome 6.
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and of the rational numbers — independent of the choice of the elements: and it is to

be remarked that the expression is formed without any a priori knowledge of the radius

of the circle C. This radius is determinate, in connection with the elements, by Cauchy's

theorem, and there are various methods of obtaining it from them; but it does not enter

explicitly into the expression. Thus Taylor's series is formed simply by the elements

F(a), /»(<*), F®{a),...,

when these are the derivatives of the function.

The following question may therefore be proposed : Is it possible to obtain for a branch

FK (x) with the greatest range possible an analytical representation of this nature ? As I

have shewn in various notes, published in Swedish by the Stockholm Academy of Sciences

during the past year, the reply is in the affirmative, and consequently it is possible to fill

an important lacuna in the theory of analytic functions. In fact, hitherto it has been

impossible to give for the general branch FK (as) an analytical representation similar to that

found from the very beginning of the theory for the branch FG(x).

For a fundamental treatment of the question which has been proposed, it is first

necessary to define a domain K which shall be as great as possible. This I shall do by

the introduction of a new geometrical conception
—a Star-figure.

In the plane of the complex variable x, let an area be generated as follows. Round

a fixed point a let a vector I (a straight line terminated at a) revolve once : on each position

of the vector, determine uniquely a point, say a„ at a distance from a greater than a

given positive quantity, this quantity being the same for all positions of the vector. The

points thus determined may be at a finite or at an infinite distance from a. When the

distance between a, and a is finite, the part of the vector from at to infinity is excluded

from the plane of the variable.

The region which remains after all these sections (coupures) in the plane of x have

been made is what I call a (Star-figure. Manifestly the star is a continuum formed of a

single simply-connected area.

Associate with a the elements

F(a), FU(a), f* (a), ...
, F^(a),...

satisfying Cauchy's condition; and form the series

P(x\a)= I —. F* (a)(x- aY-

Construct the analytical continuation of P(x\a) along a vector from a. It may be the

case that every point of this vector belongs to the circle of convergence of a series which

itself is an analytical continuation of P(x\a) obtained by proceeding along the vector; but

it is also possible that, on proceeding along the vector, a point is met not situated within

the circle of convergence of any analytical continuation of P(x\a) along the vector. In the

latter case, I exclude from the plane of the variable that part of the vector comprised

1—2
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between the point thus met and infinity. On making this vector describe one complete

revolution round a, a Star-figure (as defined above) is obtained.

This star being given in a unique manner as soon as the elements (1) are assigned, I

call it the Star belonging to these elements, and I denote* it by A. In defining the star,

straight lines have been used as vectors : it is easy to see that curved lines, suitably

defined, might have been chosen for the purpose.

In accordance with the phrase the star belonging to the elements (1), I speak of the

function F (x), as well as of the functional branch FA (x), belonging to these elements.

These preliminaries being settled, my main theorem is as follows:—
Denote by A the star belonging to the elements

F(a), FV(a), F^(a),

and by FA{x) the corresponding functional branch belonging to the same elements; let X
be any finite domain within A ; and let a denote a positive quantity as small as we

please. Then it is always possible to find an integer n such that the modulus of the

difference between FA(x) and the polynomial

gn (x) = -Zc
<

?)

F"(a)(x-ay
V

for values of n greater than n, is less than <r for all the values of x belonging to X. The

coefficients c, are chosen a priori and are absolutely independent of a, of F(a), Fw
(a),

F®(a), ..., and of x.

It is very important to observe that the explicit knowledge of the star is not

necessary for the construction of the function gn (x). When the elements F(a), F {1)

(a),

F®(a), ... are once given, the star belonging to them is definite; but it does not enter

explicitly into the expression gn {x )-
The case is precisely the same as for Taylor's

series where the radius of the circle of convergence does not enter explicitly into the

expression.

The theorem can be proved by very elementary considerations, using especially the

fundamental theorem established by Weierstrass in his memoir Zur Theorie der Potenzreihen,

datedf 1841.

Passing from the same theorem for functions of several variables, we can easily obtain

a generalisation of my main theorem which includes the case of any finite number of inde-

pendent variables.

The coefficients denoted by cj are given a priori. They are quite independent of

the special function to be represented just as are the coefficients — in Taylor's series.

But the choice of these coefficients is not unique. On the contrary it can be made in

an infinitude of ways; and when conditions are given, the problem arises of making a

choice which is the best adapted to these conditions.

* As the first letter of the word iar-qp. t Gee. Werke, Bd. i, p. 67.
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The formula

rfi af jj2" 1 /™ _ n\hl+h2+...+ hn

gives an expression for #„ («) which perhaps is the simplest of all as regards the mere

form. There are other forms in -which the coefficients c*
n) are rational numbers, or are

numbers depending in a special manner upon the transcendents e and tt, and which are of

great simplicity.

Upon this I shall not dwell : but I enunciate another theorem which is an almost

immediate consequence of my main theorem.

Denote by A the star which belongs to the elements

F(a), FM(a), F^(a), ,

and by FA(x) the corresponding functional branch belonging to the same elements. This branch

FA(x) can always be represented by a series

2 <?„(*),

where the quantities G^(x) are polynomials of the form

GM 0) == Xti^F^ia) (x
-

a)",
V

each coefficient t^ being a determinate member (which can be taken as rational) depending

only upon //.
and v. The series

00

2 G>0),

converges for every valve of x within A, and it converges uniformly for every domain within

A. For all values within A we have

00

2 <?„(«)
= Lim gn(x),

11=0 »=a>

where gn {x) is the polynomial in my main theorem.

In what precedes, a definition has been given of the star belonging to the elements

F(a), FU(a), F<*(a), (1).

In accordance with this terminology, we can speak of the circle belonging to the

elements (1) which, in fact, is the circle of convergence G of the series

P (x | a)
= 2 —. FM(a) (x

- ay.

It is evident that this circle is inscribed in the star which belongs to the same elements.

The circle may be regarded as a first approximation to the star. To the circle G corre-

sponds an analytical expression P (x | a) which has the property of representing FA (x)

within 0, of converging uniformly for any domain within C, and of ceasing to converge outside
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G. Between the circle and the star, intermediary domains (7M
, (fj.

— l, 2, 3, ...), exist,

unlimited in number
;
each of them in succession includes the domain that precedes it

;

and they can be chosen so that, corresponding to each domain Ow
, there is an analytical

expression representing FA (%) within GM which converges uniformly for every domain

within CM and ceases to converge outside OH On this question there is an interesting

study to be made which I have merely sketched in my Swedish memoirs
;

to it I shall

return on another occasion.

The only writer who, so far as I know, has found a general representation of FA (x)

valid outside the circle belonging to the elements (1) is M. Borel. In two important

memoirs*, M. Borel is concerned with what he calls the summability of a series. It appears

to me that the chief interest of this investigation of M. Borel is that the author really

finds an expression valid for a domain which in general includes the circle C. The

domains which I have called CM can easily be chosen so that C"1
' becomes this domain

K: so that M. Borel's domain K becomes the second approximation to the Star, the

circle being the first as already indicated.

But M. Borel has discussed the same class of ideas in another publication. In his

bookf published without any acquaintance with my Swedish Notes of the same year, the

author saysj:
—

"Pour resumer les resultats acquis sur le probleme de la representation analytique

"des fonctions uniformes, nous pouvons dire§ que nous en connaissons deux solutions

"completes; l'une est fournie par le theoreme de Taylor, l'autre par le theoreme de

"M. Runge||. Ces deux solutions ont une tres grande importance a cause de leur

"
generalite* ;

mais chacune d'elles a de graves inconvenients dont les principaux sont, pour
"
la serie de Taylor, de diverger en des regions oii la fonction existe

; et, pour la repre-

sentation de M. Runge et celles de M. Painleve", d'etre possibles d'une infinite" de
" manieres If.

" Le but ideal a atteindre, c'est de trouver une representation reunissant les avantages

"de la se"rie de Taylor et des series de M. Runge ou de M. Painleve, sans avoir aucun
" de leurs inconvenients**, et le but immediat, c'est de trouver une telle representation

"pour des classes de fonctions de plus en plus etendues+f."

* Journal de MathSmatiques, 5me Ser., t. ii. (1896), require the knowledge of an enumerable number of values
" Fondements de la theorie des series divergentes som- of the function which correspond to points that approach

mables," pp. 103—122 ;

" Sur les series de Taylor admettant indefinitely near the limit of existence of the function.

leur cercle de convergence comme coupure," pp. 441—454. **
It will be seen that I have achieved this aim, not only

t Lemons sur la th(orie des fonctions, Paris, 1898. for uniform analytic functions but also for the functional

% pp. 88 ft. branch FA (x). It might be asked whether it would not be

§ All that follows on the analytical representation of possible to achieve the same aim for the function F (x) in

uniform functions can be applied, mutatis mutandis, to the its totality. It is not so : such a question is too general.

functional branch FA (x). The problem was mainly that of limiting the question so as

||
I have indicated above that, in M. Runge's theorem, to make a solution possible without diminishing the

there is nothing which is not already in principle contained generality more than was necessary. I believe that this

in the representation by Cauchy's integral. problem is solved by the introduction of the star and of the

IT In what precedes, I have pointed out what appears to functional branch FA (x).

me a graver inconvenience, viz. that these expressions +t It appears that M. Borel has not regarded his own
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There exist a certain number of other investigations having relations with my theorems
but belonging to a range of ideas quite different from M. BorePs. I have already spoken
of the representation which follows from Cauchy's integral

„A/ \ 1
f
s FA(z) ,FA (x)

= =—..

^ dz.
Zin J z — x

With M. Runge, we can transform this integral into a series every term of which is a poly-
nomial in x. But in order to construct these polynomials, it is necessary to know not only
the star A but also the values of the function for an enumerable number of points

approaching indefinitely near the boundary of A. Investigations have been carried out

in which the elements F(a), F<» (a), F®(a),... are substituted for these values of the

function. But these investigations always abut, in a manner more or less direct, upon
the conformal representation of the circle of convergence on another figure known before-

hand : and they still require that we should know, as to the function which is to be

represented, that it is regular within the domain represented on the circle. The most

interesting and the most significant theorem in this range of ideas appears to me to

be that of M. Painleve"*:

Given a convex domain D and an internal point a, a set of polynomials

nw W, nM1 0r), ..., n^o); (^ = 1, 2, 3,...),

can be constructed such that any function F(x) holomorphic in D is developable in that

domain in the form

F(x) = I {^ (a) IU 0) + F« (a) 11^ (x)+... +JW (a) nw (#)}.
ji
=

The resemblance between M. Painleve^s formula and mine is obvious. Writing

nM„ (x) = tw (x
- ay

in M. Painleve's formula, mine follows. Yet the resemblance is entirely formal, because the

formation of the polynomials IT^ (x), H^ (x), ...
, Tl^ (x) requires the a priori establishment

of the domain D and the knowledge of the function F(x) that it is holomorphic in D:
whereas with me the formula of representation, so far from supposing any a priori know-

ledge of the star A, gives on the contrary the means of determining the starf.

In other publications, it is my intention to develop other theorems in the same range
of ideas as well as to return to the numerous applications that can be made of my
theorems: I restrict myself in this place to the following indications. I have just

explained that, besides the circle C and the star A, there is an infinite number of other

investigations on the summability of series from the point

of view just indicated so clearly in his book. Otherwise he

rather might have said : that the immediate aim was to

find a general representation valid for a domain still more

extensive than this domain K (that is, CI 11
).

*
Comptes Rendus, t. cxxvi (24 Jan., 1898), pp. 320, 321.

t While the present note was passing through the

press, a new and interesting note of M. Painleve's, dis-

cussing the relation of these investigations to my own, has

appeared in the Comptes Rendus (23 May, 1899). In the

same number of the Comptes Rendus, there is a note by
M. Borel related to my investigations. The reader is also

referred to an addition to the " m^moire sur les series

divergentes par E. Borel "
(Ann. de l'£c. Norm., 1899), and

to two important notes by M. Picard (Comptes Rendus,
5 June, 1899) and M. Phragm^n (Comptes Rendus,

12 June, 1899) : all of them are connected with these

investigations.
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stars C (1

>, C (2)
,

(3)
,
... each of which is circumscribed to that which precedes it and is

inscribed* to that which follows it; to these there correspond expansions PCm (x\a),

PC® (x\a), PC® (x\a), ... which preserve all the principal characters of the Taylor's series

PC{x\a). The expression PC^ (x\a) is merely a (/*+l)-ple series with limited convergence.

There is another method of generalising Taylor's series as follows :

Denote by A a star with its centre at a, and by A iS) an associate star, concentric

with A and inscribed in A, defined with reference to A in some suitable manner. This

star A (S) is to be such that it becomes a circle when 8 = 1 and that it encloses in its

interior every domain within A when tlie quantity 8 is sufficiently small.

Now suppose that A is the star belonging to the elements F(a), Fa)
(a), F® (a), . . . ,

and construct the series

Ps (x\a)
= F(a)

+ I
{&,<*> (S) F« (a) (x-a) + A,« (S)F *

(a) (x
- af + . . . + A»> (8) F* (a) (x

-
af] . . .(5).

The coefficients

% W'
\\ = l, 2,...,

r»=\, 2,..., X
oo

,

can be assigned a priori, independently of a, of F(a), Fw (a), F® (a), ... and of x, so

that the series possesses the following properties: it converges for every point within A iS)

and converges uniformly for every domain within A iS>
. If convergence takes place for any

value, the value necessarily belongs to the interior of A {S} or is a point of the star A iS)
.

When 8 = 1, the series becomes Taylors series.

The equality

FA{x) = Pi {x\a),

exists throughout the interior of A m
.

Among other differences between the two generalisations of Taylor's theorem, this

may be noted: that in the first the stars C tl)
,
C ti}

,
Cm

,
... form, so to speak, a discontinuous

sequence of domains of convergence, while in the second there is a continuous transition

from the circle C(= J.'1

') to the star A (= A®).

The star which belongs to the elements F(a), F (1)

(a),... is given at the same time

as these elements, just as the circle which belongs to the elements also is given. But

in order actually to construct the star on the circle, we must in the first case know

the points of the star (it is thus that I describe the points formerly denoted by a
t)

and in the second case the distance between a and the nearest point of the star.

It might be difficult to deduce this knowledge simply by the study of the elements

F(a), Fw
(a), F®(a),.... But in some problems the points of the star are directly given:

e.g. the determination of the general integral of a differential all of whose critical points

are fixed, being finite in number. In this case, we can construct the star directly and

can obtain an analytical expression for the integral valid over the whole plane except

* A star is inscribed in another which circumscribes it if the whole of the first star belongs to the second and if

the two stars have common points such as a
t
.
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at a finite number of determinate sections. Notwithstanding the remarkable researches of

M. Fuchs and M. Appell and others, this problem of finding a representation, which at

once is unique for the whole plane and is sufficiently simple, has not hitherto been

solved.

The beautiful researches of MM. Fabry, Hadamard, Borel and other French writers,

which have their origin in M. Darboux's memoir* "Sur l'approximation des fonctions de

tres-grands nombres
"
and which aim at the development of the criteria whether a point on

a circle belonging to the elements F(a), F<v (a), F®(a),... is a singularity of the function

or not, are well known. My theorems make it possible to study this problem from a

more general point of view than these writers and to find the criteria which distinguish
the points of the star belonging to the elements F(a\ F^(a), F® (a), ... from other points.

It can be stated that, to each selection of the coefficients called c(n)
,
there corresponds

a special system of criteria.

For these investigations, the following theorem can serve as the point of departure:
—

If x is a point within the star A belonging to the elements F(a), F® (a), Fl2)

(a), . . .
,

and if e is a positive quantity sufficiently small, it is always possible to choose a positive

number 8 so that, a being a positive quantity as small as we please, a positive integer

\ exists such that

\h,w (8)jpa> (a) (i + 6) (x _ a) + }hm (g) pm (a) {(1 + e) (x-a)Y+ . . . +h£\a)F*(a){(l + e) (»-a)}*|< a,

provided^ \^\.

If on the contrary, x does not lie within A, this property does not hold.

M. Poincare has pointed out a certain substitution which is of great value in the study
of certain mechanical problems, particularly in that of n bodies. When this substitution is

used, a development of the function in powers of the time can be obtained which is valid

for real values of the time as far as the first positive or negative singularity nearest the

origin. But the mechanical problem requires in general a knowledge of the first positive

singularity, and not merely the nearest singularity, positive or negative. It is obvious that

the resolution of this problem can be brought within my theorem. In fact, knowing the

elements F(t ), Fw
(t ),

F® (t ),
... at a given epoch t

,
we can obtain a development which

represents the function and is valid for all real values of t > t„ up to the first singularity of

the function.

Recently I had an opportunity of giving an account of a portion of my investigations

before the Academy of Sciences of Turin. My friend M. Volterra then made the following

interesting communication.

If in any dynamical problem the unknown functions be regarded as analytic functions

of the time, the problem will be solved completely from the analytical point of view when

it can be shewn that the real axis of the time falls completely within the stars of the

*
Liouville, Journ. de Math., 3°> e

Ser., t. iv. (1875), f The quantities 5 and ft
(A)

(3) have the same significance

PP' '

as in the formula (o).

Vol. XVIII. 2
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unknown functions, the centre of the stars being the initial value of the time. In fact,

it is sufficient to employ M. Mittag-Leffler's expansions to obtain the unknown functions

for any value of the time. The coefficients in the expansions will be determined by the

initial conditions of motion.

1°. A very extensive class of dynamical equations can be reduced to the integration

of differential equations of the type

i i

where a,.' + a%? = 0. Since in this case a finite strip enclosing the real axis is contained

in the stars of the functions p„ the centre being 1 = 0, new forms of the integrals of

these equations can be derivable by M. Mittag-Leffler's expansions*.

2°. Passing to the problems of attraction, it may be remarked that the problem of

the motion of a point attracted by fixed points placed in a straight line, the force being

according to Newton's law, has not been resolved when the number of attracting points

is greater than two. Let us consider the general case and suppose that the moment of

the initial velocity of the moving point m, with reference to the axis x of fixed points,

is not zero. Then ^ being the angle which the plane mx makes with a fixed plane

through x, and r being the distance of m from the axis x, we have the areal integral

r2S = C = constant,

and the integral of vis viva T— P = h = constant, where

T=lm(P + r>fr + J?), P=2— ,

T being the vis viva and P the potential : in the latter expression the masses of the

fixed point are denoted by Mt and their distances from m by r
( . It is at once obvious

that r cannot vanish. In effect, if for t = t
,

r can become indefinitely small, let us

take this quantity as an infinitesimal of the first order. On account of the areal

integral, & would be infinitely great of the second order, and consequently r252

(= C$)
would also be of the second order : T therefore would be infinitely great of the second

order. But P if it become infinitely great, can be so only to the first order because the

quantities r
4

are greater than r
;

hence if r could become infinitely small, the integral of

vis viva would not be verified. It therefore is to be inferred that the real axis of the

time is contained in the stars of the unknown elements : and consequently these elements

are expressible by Mittag-Leffler's series.

3°. Given n points repelling one another according to the Newtonian law of force,

the integral of ris viva may be written

i i,s
r
{,8

*
I have studied this class of equations in three Notes class can be still further extended so as to include many

published by the Academy of Turin in 1898 and 1899. The of the classical problems in dynamics.
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where xt , yit zt are the coordinates of the moving points, m( their masses, r
i>s

their

distances, and A is a constant quantity. By noting that in this equation all the terms

are positive, we infer that the points cannot collide and that their velocities are finite.

Hence in this case also, the real axis of the time lies within the stars. But we can

pass from the case of repulsion to that of attraction by changing t into tj — 1. Through
this transformation, the components of the velocities become imaginary if they were real,

and vice versa. But if at the beginning of the time they were zero, the transformation

leaves them zero. Hence we deduce the very curious theorem :

Consider the problem of n bodies in the most general case, with the sole condition

that the initial velocities of the bodies are zero : then taking the origin at the beginning

of the time, the real axis is not included within the stars of the coordinates, but the

imaginary axis is always completely included. That is to say, M. Mittag-LefHer's expansions

will be valid for imaginary values of the time even if they are not so for all real

values.

4°. Finally it may be remarked that M. Mittag-Leffler's expansions can be used for

the motion of straight and parallel vortices. Reference may be made to Lecture XX. in

Kirchhoff's Mechanik for the differential equations of the motion.

The interest of this development is manifest. I remark, however, that the main im-

portance of my theorems so far as concerns mechanics appears to me to be that they provide

a means of finding a real and positive point of my star, and of determining whether

this point is at infinity or not. M. Volterra on the contrary supposes as always known

beforehand that this point is at infinity. My principal theorem also provides in this case

a means of representing the function, with any approximation desired for any real domain

whatever, by a polynomial into which there enter no elements taken from the function

other than a limited number of the quantities F(Q, F^ (t ),
F® (t ) It appears to me

that this point of view may become useful in applications to mechanics.

Perugia, April, 1899.

2—2



II. Application of the Partition Analysis to the study of the properties of

any system of Consecutive Integers. By Major P. A. MacMahon, R.A.,

D.Sc, F.R.S., Hon. Mem. C.P.S.

[Received 15 May, 1899.]

INTRODUCTION.

The object of this paper is to solve a problem, concerning any arbitrarily selected

set of consecutive integers, by the application of a new method of Partition analysis.

I will first explain the problem, and afterwards the analysis that will be used.

In the binomial and multinomial expansions, the exponent being a positive integer,

every coefficient is an integer. This fact depends analytically upon the circumstance

that the product of any m consecutive integers is divisible by factorial m
;
we have

In + 1\
f
n + 2

\
ln + 3\ ln + m\

an integer for all values of n.

The present question is the determination of all values of Oj, cu, Oj, ... am for

which the expression

ln+1 \"' In + 2\"' In + 3\** In + m\m m

is an integer for all values of n; in particular the discovery of the finite number of

ground or fundamental products of this form, from which all the forms may be generated

by multiplication.

There is a parallel theory connected with the algebraic product

l\ — xn+1y /l — #n+V« /l - a;"+a\"» II — a;
n+m\ a"

V 1-a; ) { 1-a? ) \l^af)
"'

\ l-xm )

where alt otj, a3 ,
... ctm have to be assigned so that the product is finite and integral

for all values of n. This has been discussed by me in the 'Memoir on the Theory
of the Partitions of Numbers, Part II.

'

Phil. Trans. R. S. 1899. It will be observed

that the algebraic product merges into the arithmetical product for the particular case

x=l, so that all algebraic products which are finite and integral produce in this manner

arithmetical products which are integers. This, however, is as much as can be said, for
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otherwise the theories proceed on widely divergent lines; as might be expected the

arithmetical products form a more extended group than the algebraical.

Denote, for brevity,

1-0?+' . n + s
-= r and
1 — x1

s

by Xs and Ns respectively.

The principal X theorem, that has been obtained loc. oil, is to the effect that con-

structing any X rectangle

zt
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This is accomplished by constructing the sum

for all sets of values of a,, a2 .../3i, /32 ,
... which satisfy the relation. The expression

obtained is found to indicate the ground solutions of the relations and the syzygies that

connect them.

The sum is expressible in the crude form

n i

^ 1 — m^'is, . 1 — m^x^ ... 1 — m*« xe . 1 — mr^yx . 1 — m~**y% ... 1 — m~*' yt

where the symbol of operation

ft

is connected with the auxiliary symbol m in the following manner :
—

The fraction is to be expanded in ascending powers of a;,, xlt ... ylt y2 ,
...

;
all

terms containing negative powers of m are to be then deleted
; subsequently, in the

remaining terms, m is to be put equal to unity.

Slight reflection will shew that the conditional relation will be satisfied in all

products which survive this operation, and that if we can perform the operation so as

to retain the fractional form we shall arrive at a reduced generating function which

will establish the ground solutions and the syzygies which connect them.

As a simple example of reduction which is of great service in what follows take

aj > A ;

fi l
this leads to ^ ^ ,

1 — mx, .1 Vi

and observing that

1

1 1 m Vl

we find

also

t n
1 1 — mxx . 1 — xx yx , 1 ,

1 - mx1 . 1 - - yx
a 1 - -

y, . 1 - xly1

D, 1 1

1 - M, .1 W,
J

O m* xx

*

> .
.,

1 1— #, . 1 — xly1

1 - mXi .1 Vi

which is the solution of % ^ /3i + s
;
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so that the solution of

is given by

Again, if

we have

the solution.

Also the solution of
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shewing that the ground products are N^, N^?,

or (**>-(!. °); (!- !)
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The fact is that we can reduce the three relations (a), (b), (c) to two by writing a„ + a3

for a,, a tranformation that the relation (b) permits, and then we have to write K2Na for

Ns in the sum

We next eliminate c, obtaining

n 1

"l-aN1 .l--N2 .l-a*N'1N2N3

'

it

an expression that would have presented itself if we had been summing

for the single relation Oj + 2a3 $s a2 ,

obtained from the relation

aj + a3 ^ a2 ,

by writing 0^ + a.j for au a transformation permitted by the relation

0, 3s a,.

The process employed is therefore equivalent to a gradual reduction in the number

of the conditional relations associated with a proper transformation of the product to be

summed.

To eliminate a we require the subsidiary theorem

1 _ 1 4- xy
—
xyz

—
xyz'ft

3s 1 1 — x .1 — w.I — yz . 1 — xz*
'

1 — a?x .1 — ay .1 z " J

and thence we derive

1 + NJST%*Nt
- N*N?N, - N'NiN,

1-^.1- N,Nt . 1 - N,N2N3 . 1 - iWiV,

-
l-Jj.l- N,N2 . 1 - N^Jf, . 1 - ffJTSN, 1 - N.N.fN,

In this result the denominator indicates the ground products, and the numerator the

simple and compound syzygies which connect them.

It is manifest that the ground products are

Nlt &&,, M^T,, 2Wtf„ NJTfNt

connected by the simple syzygies

(A) = (NO (NMN,) - (N&) (NxNjr») = 0,

(B) = (2V0 (NMN,) - (N&) (NMN,) =
0,

(C) = WNJT,) (NMN,) -(WW? =
;

Vol. XVIII. 3
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and the compound syzygies
(N1)(C)-(N1N2N3)(B) = )

(i\WJV.) (B)
- (N,N2°N3) (A) = 0;

indicated by the numerator terms:

-ffffifF,, -N?N2»N3 , -fffFtW, +&&&,; +NWNJ
respectively.

The generating function takes also the suggestive form :
—

1 - N^N2'N3

l-.ffi.l- N,Nt . 1 - N,N2N3 . 1 - NMN,

+
1 - J^ff, . 1 - N,N2N3 . 1 - A\tf*N,

By proceeding in this manner we not only obtain the new ground products appertaining

to the order but also those of lower orders previously obtained. It would be desirable to

exclude the latter, and in the case before us we see d posteriori that this could have been

secured by impressing the additional condition

«i = <*3 ;

but no method, similar to this, seems to be available for an order higher than 3, as no

equation invariably connects the indices of the ground products.

Order 4.

Or
1
)* (

n

2-T trrT i~VT '******
When n is of the form condition is

4m +1, Oi + 2a3 > a2
+ 2a4 ,

4m. + 2, Oj ^ a
4 ,

4m + 3, 2a, + a3 > a2 + 2a4 ,

3m + 1, a2 > a3

3m + 2, O] + o4 > a3 •

The ft function which can be at once written down is somewhat troublesome to deal

with, so that I find it appropriate to divide the generating function into two parts according

as ajSsa,,, e^>«,.

Case 1. a, ^ a3 .

The conditions reduce to

eti 3* a3 («).

«, + 2a3 > Oj + 2a4 (6),

a2 ^ a4 (c),

a, > a3 (d),
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and it is convenient to add the implied condition

We obtain, for ZN^N^N^Nf*,
1

to-

ll

1 -abeN, . 1 - °4n,. 1 --,N3 . 1 - ^-N,'o ad b*ce

and, eliminating d and e, this is

XI

l-abN1 .l- rNt .l--NJ t̂ .l-^-N1N4,'
o a be

which, eliminating c, is

1-iJVx^JMT,

I - abN,. 1 -^iV2 . 1 -- N2N3 . 1 - ^i^gy, . 1 -N.N^N,
C&

and, eliminating a, this becomes

n l-NfNfNJft

l-bNx .l-j-Nt.l-^ NJfJSTi . 1 - VN.NzNs . 1 - NlN ŝNi

'

the term 1 — r NxN^N3Nt disappearing.

This is equal to

N,

P JWV, )

i -www . i - jwjmt.
! _

i^^ ; 2̂w
1 - iV a . 1 -N& . 1 - NtNjr, . 1 - NxN^tNt

n F*
l-WVWi^.i-fiy.

1 Ar

•

1 - N,N, . 1 - N^NtNt

+
pA

r,«

^-^.i^w; i-w.i-^^ra
3—2
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1
"
l-N.A-N.N, . 1 - N.N.N, . 1 - N\N2N3Nt

N,N^N3 +NtN,'N3

+

1 -NxNt . 1 - Nrfjr, . 1 -N^N^ . 1 - N.N^Nz

^N,N4

1-^.1- N,N, . I - NtN&y* 1 - N^N.N,
'

Case 2. a3 > a, .

The conditions become

»3 > ai (a),

2o! + a, > a2 + 2a4 (6),

« > at (c),

a2 Ss a3 (d),

ai + a4 5s a
3 (e) ;

to which it is convenient to add the implied conditions

«ti > a* (/).

a3 >otj (#);

the XI function is

1

n a

>i-fifFl .i-*jr1 .i-5fj-i .i-
]B£c^a o ae 62

c/jf

1

n «

>i-2!jrI .i-*j;.i--»j;.i-5j'1jypia o ae cd

il de
s

>
1 - % N,N3 .l-fN„.l-^-N3 .l- eN^X.Nta o

'

ae

i a J«iW

N.NiNfNt H 1
.

1 N.N.N.N, >
j _ b*NiNiNs . i _

1 ^ . i _ NiNjN'Nt

NlNa*2rfNt (l+N1Na>Nt)

1 - J^tf, . 1 - ^iV.'JV, . 1 - N.JSf^N, . 1 - N^NfN*
"
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The complete generating function can be obtained without difficulty, but, on account

of its great length, I restrict my endeavours to the establishing of the 13 ground

products. I find it necessary to adopt abridged notations, and in future, where it is con-

venient, I denote

N1

a>N3"*N3'*Ns*N's
a> by (a^ow,).

Further, if a portion of the generating function presents itself, which involves merely

ground products already obtained in the previous work, I enclose it in brackets
[ ]

and

thenceforward omit it. For example, I write

A = [B]+C = C = [D] + E = E;

and so on.

In + l\ a
' In + 2\ a» In + 3\ a» In + 4\ a« In + 5\ a=„ In + 1N«' In + 2\" In + 3\"a In + 4\°' In + 5\ a

For [—J h 1 (-T-) [ TV (—
= Nf'NsiNS'NpNp = (a1a2a3a4a5).

When n is of form
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For Case 1. The conditions become

a! + 2a3 + a6 > a2 + 2a4 (a),

(ai^as (6),

(«2>«3 (c),

a4 >a 5 (d),

«s>a5 (e),

««>«< (/),

for which the generating function is

n i

>
l-abiri .l-£Nt .l--Nt .l-4,N<.l-?-Nl

'

ab c a?f de

which, eliminating b and c, is

n i

>
1 - aN, . 1 -fN.N, . 1 - a?efh\NaNs . 1 - *N< . 1 - £Ns

'

and eliminating d, e, and /,

1-(2211)

1- jy^,. 1 - a^NJfs . 1 —-N^N,. 1 -oiV,. 1 -o(lllll). l-(llll)

Now
n i

> i
1 — a?x . 1 — ay .1 — az.l—- w

i n
1 — xw > +

a2

1 — a2# . 1 — ay . 1 — az
1-ay.l-az.l* a2

+ yzw

l—x.l—y.l—z.l — xw 1 — xw .1 — z .1 — zhu

wy*n
^ w

1 — ay . I — az . 1—-.1 —xw

z*w + yzw

l—x.l—y.l—z.l—xw 1— xw.l—z.l— z2w

yHv yhv (yhv + yzw)
1 — y.l—z.l— zhv .1 — xw I - y .1 — yhv . 1 - zhv . 1 — xw'



24 Major MACMAHON, APPLICATION OF THE PARTITION ANALYSIS TO

Hence, putting x = N1N,N3 , y=Nlt *- (11111), w = N,NiNi ,
we have

«tm> = (2211),

y*w = N^NiN*,

z*w = (33232),

yzw = (32121);

and we arrive at the three ground products

(11111),

(32121),

(33232),

which, as far as this case is concerned, are irreducible.

Case 2. «t>0«. «* > a2 -

The system of conditions reduces to

ai>a2 (a),

a3 > a-> (b),

ok ^ a4 (c),

a.2 + a6 3sa3 (d),

«4>a5 (e),

and ZNS'N^Nf'N^Ff

1

_n 6

*
1 - oJV, . 1 - ^iV2 . 1 -^,. 1 --iV4 . 1 --N6

ab a c e

_fl £^
^l-o^.l --

JT,J\T,. 1 -i if,. 1 -i iV
r
4 . 1 -- JVJV,

a ace
_ 12 c

*
1 - iV, . 1 - cN^N, . 1 - -N,NtNt .'l--jr4 .l --iV

T
4A

T

5

c c c

= (11211)

l-.ffj.l- ^^^3 . 1 - N.N.N.N,. 1 - (11111) . 1 - (11211)
'

yielding the new ground product

(11211).
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Case 3. as >a1) 0,>a„ aj + ajSta,,.

The reduced conditions are

«2> a
i (a),

«*>«* (6),

% + «^>«, (c),

g, + 2a3 + a5 > a, + 2a4 (rf),

a 1 + a4 ^a3 (e),

a2>«4 (/),

a^ a* (g),

a3 >a5 (A),

«i > a5
(t),

of which the generator is

1

n a

a. d 6ce d2/ gr/fi

5

= £^
'

1 - bcefN.N, . 1 - &Nt .l-£-2rt
.l-

JL-Ft
.1-ced N.N.N^N,

'

the result of eliminating a, g, h and i.

It might be thought advisable at this stage to eliminate b or /. but experiment shews

an advantage in proceeding with d.

Consider

P
n d

^1-d'x.l-^.l-dz.l-^a2 a

P / V_ \ / !?

O rf

[ 1_ _£_][ J_ d

^l—xy.l—ziv\ 1 — cfe « II I — dz w
\ &f \ ~d/

l I
Q 3 O df^_
~^\ —xy . 1 — i«J . 1 — d2x . 1 — dz ^ ^ ,7, i w

1 — xy .1 — zw .1 — d'x . 1 — -r

Q jig
1— xy .1— zw.l — dz .1 — ^

Vol. XVIII. 4
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poo _. Pl_

1—x.l-xy.l-zw 1 — x.l—z.l — xy.l-zw

pxw (1 + xw) pyz
3

1— x.l — xy .1 — zw.l — xw* L—z.l — xy.l—zw.l-yz*'

Hence the generator is :
—

[putting p = bfNs ,
x = j—N3 , y = -

f
Nt ,

2 =
ced(lllll)J

( L
ft

N,N3
ce

+

l-r-2rt.l-±-.N3Nt . 1 - 6ce/(12111) . 1 - bcefN.N,
bee bej

6ce/(12111)

1 -
J

iV3 . 1 -ce(lllll). 1 - ~ N.N.A -beef(\2U\).\ -beefN,Nt

be3
(34343)

1 - c (11111) .I'-a X.^. 1 - 6c/(12111) . 1 - -
(22232) . 1 - bcfN.N,.

y^WNs (l + £N2N3)
ce V ce

'

/

1
~bVe FsA~WN'N* ' 1 ~ fce/(12111 ) A ~ bj

cJ
Nl *N° Y ~ hcefNiN:

=A+B + C+ D, suppose.

N A
n hf±Now A = >"

1 - bceN.N, . 1 - bee (12111) . 1 - e (12221) . 1 - £- N3
bee

— TV WWn tee
* a *

"
1 - bceN.No. 1 - e(llll) . 1 - e (12221) . 1 -J- N3

=
> 1 — ce^JVa . 1 -ce(12111). 1 -e (12221). 1 -N,JV2N3 . 1 -(12211)

H be (2321)+ ^ 1-beN^. 1 - e (1111). 1 - (12221) . 1 -N^N,

(13211) {1- (121) (11111)}~~

1 - (111) . 1 -(12111). 1 -(12211). 1 - (12221)

,
(121) {1- (121) (11111)}T

1 - (11). 1 - (111) . 1 - (12111). 1 -(12211). 1 - (12221)

, (121)(1111)
1 -(11) . 1 - (1111). 1- (111). 1 -(12221)'
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a result which indicates the new ground forms

(12111),

(12211),

(12221),

(13211).

B is easily shewn to have the expression

(12111)
1 - (11). 1 - (111). 1 -(1111). 1- (11111). 1- (12111)

(12211) .

l-(lll).l-(Hll).l- (11111). 1- (12111). 1-(12211)-

C, by elimination of b and c (in one operation), becomes

(34343) D,

>-(»")-i-<>»»)>
1 _/cinil) . 1 _/(11) . 1 _^tBI)

1

(34453) n I+
1-(1111).1-(11111).1-(12221) 3*

" '

1' V ' V ;

1-/(12111). 1-i (22232)

(34343) {1
-

(45343)}
1 - (11). 1- (1111). 1- (11111). 1- (12111). 1- (34343). 1 -(33232)

(46564)

l-(llll).l-(lllll).l-(12221).l-(12ill).l-(34343)
;

wherein observe that (45343) = (11) (34343),

(46564) = (12221) (34343);

so that (34343) is the only new ground product that emerges.

Separating the numerator terms of D it can be written D, + D2 .

For Z>! we require the result

w
n

~e_

1 -I 1
z

1
w

1 — ex .1 — ew . 1— .1s
e e

yw xw x^vfi

1—y.l—xz.l — yw 1—x.l — y.l—xz.l — yw 1— x .1 — xz .\— xw . 1 — yw

y
2zw

1 — y . 1 — xz . 1—yz.l— yw
'

4—2
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which
(putting

«« be/(121 11), y = bcf{\\), *»g-JV„
w=^-N2

2N3
j

brings it to

n fty gap
>

1 -
g^

JWT4 . 1 -/(12211) . 1 - &»/» (181) . 1 •- 6^(11)

+
n i>

3

/' (14211)

1 - ~ iVr3iV4 . 1 -/(12211). 1 -6 2/3

(131). 1 -6c/ (11). 1 - 6c/(12111)
bcj

O b*f (28422)

1 - }-.N,Nt . 1 -/(12211) . 1 - 62/3

(131) . 1 - 6c/(12111) . 1 - 62/3
(14211)

bcj

n Ppjuiy
*

1 -
j^tf*

• 1 -/(12211) . 1 - &»/»(181) . 1 - 6c/(ll) . 1 -/(Hi)

(131)

+

1 - (11). 1 - (1111). 1- (131). 1- (12211)

(14211) {1 -(11) (12221)}

1-11 . 1 - (1111). 1 -(131). 1 -(12111). 1 -(12211) . 1 -(12221)

(14211)
3

1 - (131). 1 - (12111) . 1 - (12211) . 1 - (12221) . 1 - (14211)

(121)
2

1 - (11) . 1 - (111) . 1 - (1111) . 1 - (131) . 1 - (12211)
'

yielding the single new ground product

(14211).

For D2 we require the result

P
n <?

1 — ex .1 — ey . 1 .1J
e e

p J y* xy a? xsw y'z 1

1 — xx. 1 — yw [1
—
y 1 — y 1 — x .1 — y 1 — x .1 —xw 1 — y .1 — yz)

'

and putting p = -£WW, x = 6c/(12111), y = 6c/(ll),

* = lc Ns, w=^WN„
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and observing that we may put b=f=\ and that moreover

xz -(12111), 2/w
= (131),

pf == (121) (131), pay = (121) (1*211),

px* = (13211) (14211), p«
3w =

(13211)(14211)
2
,

^2 = (121)
3
, xw = (14211), y*-(lll),

while operation upon the remaining letter c produces no new form, it is clear that no new
form arises.

Case 4. a2 > a, ,
a2 > a„ o3 > otj + a5 .

The reduced conditions are

a2 >«i (a),

«2>a3 (6),

a3 >a1 + a5 (c),

2^ + a3 + 2a5 3s a, + 2a4 (d),

ai + a4 ^a3 (e),

«^ a< (/),

a4^«5 (#),

ai^a6 (A);

leading to 2,N1
a
>lS

T
2
a>N

:i

a'Ni
a>N5

a°

n
i_

ac

^i_^^.i_^.i_^^.i_^jv4 .4iv-5

:

ac a be d?f cgh

and this by elimination of a, b, c, e, g and h becomes

^-flWr,

and since

1 - #/(lll) . 1 - #/(12211) . 1 -^N2 . 1

-^yN,
. 1 - i iV2 i\

T
3 4̂

1n
35

1 -/# . 1 -fy . 1 -/« .l-7«)

+ yw
1 — «.l— y.l— z A — zw \ — y.\— yw . 1 — zw

xw
\—x.\ — yA — yw . 1 — zw

aW
1 — x . 1 — #«/ . 1 — yw . 1 — zw



30 Major MACMAHON, APPLICATION OF THE PARTITION ANALYSIS TO

this becomes :
—

(putting
« = #(111), y = # (12211), *=\n*.

w =
j^\

a hN-™ i
i

>
1 - ^NtN,Nt 1 -#(111). 1 -#(12211) .l-JjT,.l-i^

(12221)+ -

1 - # (12211) .1-4 ^2 -^4 • 1 - (12221)

+ (mi)

1 -#(111). 1 -#(12211). 1-1 Jv"2 iV4 .l- (12221)

the fourth fraction being omitted as obviously contributing nothing new.

Now writing # = (111), y- (12211), z=JSf2 ,
w =N2N3N4 ,

w
n d-
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xw{\ +xz)(l + y*p) xw (yz + y"zp)
1— x.l — y .1— xw.l — xz1 .1 — y

3

p
2 1 —y.l—xw. 1 — y

3

p*

xw (xyp + xyzp + x*p
2 + x^yp

2 + x'zp'
1 + x*y*p

3 + xi

y"-zp'
1 + x3

yz
lpi + a?y*zp

3

)

1 — tf . 1 — xw . 1 — xz* . 1 — xPp* . 1 — ifp*

In verifying these laborious calculations the relations

z

1 1 + dyz d

, ,, , z 1 — yz
2

. 1 - d^y -. . , *

1 + df-p d3 d* d

will be found useful.

On examining these results we find that

yw = (13321)

is a new ground form, and that every other term is expressible by means of it and

of ground forms previously reached.

Case 5. a2 > c< i. a-3> a
«., Hi + a-^a3 .
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(12211)(11211) ( (12211)"
1 -(11111). 1 -(11211) |l -(12211) . 1 -(111). 1 -(1111)

(12221)T 1- (12211). 1- (12221). 1 — (llll)j
'

so that new forms do not arise.

Case 6. <% >*u a3 > a2 ,
a
3 > a

t + a
6

.
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and

1 — czx . 1 — c2y . 1 — c2w .1 z
c

+
l—x.l—y.l-w l—x.l—y.l—w.l — wz

+ «? 4. V*^
i „ i „. i i .._ "t"1— x.l—y.l—wz.l—yz 1-y.l—wz.l—yz

xz3 + a?z* + a^^5

1 — a; . 1 —wz .1— yz .1 — a?z's
'

Putting now
x = (11211), y=(lll), tv = (12211), * = (0111),

we can examine the generating function.

It is clear that

xz = (12321)
is a ground product.

Also «V = (12321) (13431) = (25752)

is a ground product, (13431) not being a solution of the conditions.

Further

(12211) (12321)*= (12321) (13321),

ws- (13321),

(12211) (12821) y**- (121) (25752),

(12211) (12321)« = (13321) (25752) ;

so that there are no more ground products.

We have therefore in Case 6 obtained the new fundamental forms :
—

(12321),

(25752).

The investigation that has been given does not establish that the 13 forms obtained

are ground products qnd the whole of the six cases, but it does prove that all the ground

products are included amongst these 13. But it is clear that all forms in which o^
= 1 are

necessarily ground products. This accounts for 9 of the 13 and it is easy by actual experi-

ment to convince oneself that the remaining 4, viz.:—

(25752),

(32121),

(33232),

(34343),

are, in fact, irreducible.

Vol. XVIII. 5
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Hence the 13 ground products of order 5 are established.

Finally, to resume the foregoing, it has been shewn, in respect of the arithmetical

function

In + ly>
In + 2\^ in + 3\"* In + 4\ a' In + 5\"=

\ 1 J \ T) \V) \ 4 ) \~b ) =
(«,, a

2 , «„ au «,)'

n being any integer whatever, that all integral forms are expressible as products of

{(1) order 1,

{(11) order 2,

((HI)

j(121)
order 3,

1(131)

[(1111)

j(3101)
order 4,

((1221)

.(mil)
(11211)

(12111)

(12211)

(12221)

(12321)

<[
(13211) order 5.

(13321)

(14211)

(25752)

(32121)

!

(33232)
1

(34343)



III. On the Integrals of Systems of Differential Equations.

By Professor A. R. Forsyth.

[Received, 28 July, 1899.]

Introductory.

The present paper deals with the character of the most general integral of a system
of two equations of the first order and the first degree in the derivatives of a couple
of dependent variables with regard to a single independent variable, the integrals being
determined with reference to assigned initial values. It will be seen that corresponding
results can be established for a system of n equations, of the first order and the first

degree in the derivatives of n dependent variables.

When the equations are given in the form

dy /•/ x dz , .

then Cauchy's existence-theorem shews that, if x = a, y = b, z = c be an ordinary combina-

tion of values for the functions f and g, so that f and g are regular in the vicinity of

x = a, y = b, z = c, there exist integrals y and z of the equations, which are regular

functions of x and which acquire values b and c respectively when x = a
;

these solutions

are the only regular functions satisfying the assigned conditions; and it may be (but it

is not necessarily) the case that they are the only solutions of the equation (whether

regular or non-regular functions of x) determined by the assigned conditions.

If however a, b, c be not an ordinary combination of values, then the character of

the integrals of the equations depends upon the character of the functions f and g in

the vicinity. One important form, which includes a large number of cases, occurs when

a, b, c is an accidental singularity of the second kind for both / and g, that is, the two

functions are each of them expressible in the form

P (x
—

a, y
—

b, z — c)

Q(x — a, y — b, z — c)
'

where P and Q are regular functions of their arguments, each of them vanishing when

x = a, y = 6, z = c. It is necessary to obtain an equivalent reduced form of the equations:

and one method is the appropriate generalisation of Briot and Bouquet's method as applied

to a single equation of the first order. This has been carried out in the case of

5—2
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n variables by Konigsberger*, and in the case of two variables by Goursatf. For our

system, the most important reduced equivalent form is

t^maln+&v+ rit+ ... - ex {u, v, t)

,v \
(A >>

t~ = a2U + l32V + y2t + ... = e2 (U,V,t)
]

j

where 1 and 3 are regular functions of their three arguments each of which vanishes

with U, V, t. The relations between the variables are

x- a -<*, y-b = (b 1 + U)t?, z-c =
(c1 + V) i*,

where 6, <j>, ijr
are positive integers with no factor common to all three, and bx and Cj

are appropriately determined constants. The new conditions attaching to the dependent
variables U and V are that U = and V = when t =

;
these correspond to the initial

conditions that y = b and z = c when x = a
;
and the matter to be discussed is the determ-

ination of integrals of the equations (A) subject to the condition that U = and V=0
when t = 0.

The integrals, so determined, are either regular or non-regular functions of t: their

existence and their character are affected by the nature of the roots of

(£-«,)(£- ft) -^, = 0,

which may be called the critical quadratic. Various theorems have been from time to

time enunciated in various investigations. Thus PicardJ proved that the equations possess

integrals, satisfying the required conditions and expressible as regular functions of t

provided neither root of the critical quadratic is a positive integer; and Goursat shewed §

that, if the real parts of each of the roots of the critical quadratic are negative, then

the equation possesses no integrals other than the regular functions of t satisfying the

required conditions. Also Poincare|| and, following him, BendixsonH, have discussed the

integrals of n equations of the form

t~ =
r (u1 ,u2 ,...,un), (r=l,...,n),

the functions r being regular functions of their arguments and vanishing when m, = 0,

1*2
= 0,..., un = 0: these can be made to include the system (A) by writing n = 3, and

taking the third equation in the form

du3

with the condition that «,, uit us all vanish with t. In this case, there is a critical

* Lehrbucli der Theorie der Differentialgleichungen, 743—745 ; see also his Cours d'Analyse, t. in, ch. i.

Leipzig (1889), pp. 352 et seq. § Amer. Journ. Math., vol. xi, p. 342.

t Amer. Journ. Math., vol. xi (1889), pp. 340, 341.
|| Inaugural Dissertation, 1879.

X Comptes Rendus, t. lxxxvii (1878), pp. 430—432, II Stockh. Ofoer., t. Li (1894), pp. 141—151.
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cubic corresponding to the critical quadratic specified above
;
one root of the cubic being

unity. But all the alternative possibilities for the general equation are not set out in

detail in the memoirs specified, so that all the possibilities for the limited cubic would

have to be considered independently.

Again, a considerable portion of Chapter v. of Konigsberger's treatise, already cited,

is devoted to the corresponding discussion for n equations ;
some difficulties as regards

adequacy of proof of the theorems, independently of the general statement, prevent me

from thinking the investigation entirely satisfactory, that is, if I understand it correctly*.

Some papers by Hornf may be consulted : further references will be found in them.

My intention in this paper is to take account of the different general cases that can

arise owing to the various possibilities of the form of the roots of the critical quadratic.

For this purpose, the method used by Jordan J for the corresponding discussion of a single

equation is adapted to the system of two equations. The different cases are:—

I. The quadratic has unequal roots :
—

(a) neither root being a positive integer :

(b) one root being a positive integer, the other not :

(c) both roots being positive integers.

II. The quadratic has equal roots :
—

(a) the (repeated) root not being a positive integer :

(b) the (repeated) root being a positive integer.

It should be added that a further assumption will be made for the present purpose,

viz. that the critical quadratic has not a zero-root. As a matter of fact, the existence

of a zero-root would imply (as for a single equation of the first order) that the reduced

form of the system belongs to a type different from that here considered.

* The investigation seems to imply (p. 397) that, taking are

n= 2, the non-regular integrals of bB . cB' „,

ax • the unexpressed terms being terms of higher order in

when the real parts of \ and X, are positive, are
^ ^ ^ and ^ f> denoting /,_ /. respectively. The

yl=^' Zc:r"1+V'" +X2,'
,!

'| only way in which /> can be a factor of x is by having

¥ = x** 2cy*2+Xll'»1+A2,'M
) B=0, and then ih is not a factor of y ; and similarly as

that is, z
A

'
is a factor of F, and x*> a factor of Yt. But regards «*• and z

K
'

.

theint gralsof
t CreUe, t. cxvx (1896) pp. 265-306, »., t. cm.

B
(1897), pp. 104—128, 254-266.

z -^ = \x + azx + bzy + cy
2

| } Cours d'Analyse, t. in, §§ 94—97.
dz

z JL = \y + azx+pzy + yy
i

dz
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It is convenient to transform the variables. When the roots of the critical quadratic

(£-«i)(£-&)-«A-0

are unequal, say ft and f2 ,
we introduce new variables u and v, such that

u = \U + pV, v = \'U+ fji'V,

where (a,
- £) \ + a2 /i

= 0) (a,
-

£,) \' + *#! =

A*. + (A - ft) /»
- 0j

*

&V + (ft
-
&) /*'

=

the ratios X : fi and \' : fi are unequal, and consequently the new variables u, v are

distinct. The equations become

t-^=^u + <f>1 (u,v, t))

where
</>, , $2 are regular functions of their arguments, vanishing with them

; except for

a term in t, they have all their terms of the second or higher orders in u, v, t combined.

When the roots of the critical quadratic are equal, having a value f, say, we

introduce a new variable u such that

u = \U+ fiV,

where (a,- f)X + «Wt = 0, AX + (&-£)/* = 0.

Then we have

mm+fV++»(% V,t),

say.

It therefore appears that the equations corresponding to the cases I (a), I (6), I (c),

are

dv
I

'

tfa=^ + <p,(u,v,
t)j

where & and £2 are unequal to one another: and that the equations corresponding to

the cases 11(a), 11(6), are

dt
= *M + & (u ' v ' *'

t-fa=KU+^V+(f)i (u,V, t)
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In both forms, the functions fa and fa are regular functions of their arguments
and vanish with them; and the only term of the first order in fa and fa is possibly
a term in t. For both forms, the initial conditions are that u = 0, v = 0, when t = 0.

For brevity, integrals, which are regular functions of t, will be called regular

integrals : and integrals, which are not regular functions of t but are regular functions

of quantities that themselves are not regular in t, will be called non-regular integrals.

The results are obtained for the transformed equations in u and v; since U and V
are linear homogeneous combinations of u and v, the results apply to the original equations.

REGULAR INTEGRALS.

Case I (a) : the critical quadratic has unequal roots, neither being a positive integer.

1. If the equations

j.
du « ,

, jX A dv t. ,
.

,.

t
-jj

= ftw + fa (u, v, t), t-^
= £# + fa (u, v, t),

possess regular integrals vanishing with t, these integrals must have the form

00 00

u = 1 ant
n

,
v = 2 bnt\

That they may have significance, the power-series must converge ;
that they may be

solutions, they must satisfy the equations identically.

Accordingly, substituting the expressions and comparing coefficients of t
n

,
we have

(»
-

ft) a» -'/», (n
-

£,) bn = gn ,

where fn and gn are the coefficients of t
n in fa and fa respectively after the expres-

sions for u and v are substituted. From the forms of fa and fa, it is clear that fn
and <7„ are linear combinations of the coefficients in fa and fa, that they are rational

integral combinations of the coefficients a,, a2 , ..., blt 62 , ..., and that they contain no

coefficient a after a„_j and no coefficient b after bn-x in the respective sets. Since

neither ft nor ft is a positive integer, the equations can be solved in succession for

increasing values of n, so as to determine formal expressions for all the coefficients.

In particular, an and bn are obtained each of them as sums of quotients ;
the numerators

of these quotients are integral algebraical functions of the coefficients in fa and fa,

and the denominators are products of powers of the quantities

1-ft, 2 -ft, ..., n-l-ft, n-ft,

1-ft. 2-ft,..., n-l-ft, w-ft.
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To discuss the convergence of the power-series, we introduce an associated set of

dominant equations. The functions fa and fa are regular in the vicinity of u = 0, v = 0,

t.= ;
let their domain of existence include a region 1

1
! < r, u\^.p, |

v
|
^ p" : of the

two quantities p' and p", let p denote the smaller, so that fa and fa are certainly

regular in a region \t\^.r, \u\tp, \v\^.p. Within that region, let M' denote the

greatest value of
| fa |

and M" the greatest value of fa \
: of the two quantities M'

and M", let M denote the larger, so that

\fa\<M, \fa\zM,

within the region specified, and M is a finite magnitude. Then if fa and g^ are the

coefficients of uiroHk in fa and fa respectively, it is known that

M M

Further, no one of the quantities in — £, ,
m —

f2 for integer values of m vanishes
;

there is therefore a least (and non-zero) value of |m — f,|, \m — f,|, for the various

values of m
;

let it be denoted by e.

Now consider the equations

„ AI - M „. Tr . . \

eZ = — « + 2 -Ta-j Z«F«*r p
l+-> r*

eF-^f+ 2-^r-T.FF**

where the summation is for integer values of i, j, k such that i +j + k^ 2. Clearly

X =Y\ and each of them is given by

rf^l+ X *,!*«.#
?• p

,+^ r*

I

*./, Xv P

and therefore

,M\f, X\* M X\X
H"X-f/=n-^-f)'

In this cubic equation, the term independent of X vanishes when t = 0, and the

term involving the first power does not vanish because e is not zero. Hence when

t = 0, the cubic equation has one root and only one root which vanishes. It therefore

follows, from the continuity of roots of an algebraical equation, that the cubic has one

root which vanishes with t and which is a regular function of t for values of \t\ less

than the least modulus of a root of the discriminant, that is, for a finite range.
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To obtain the expansion of this root as a regular function, it is sufficient to determine
the coefficients in the power-series

X = Aj + A 2r- + ... + A nt
n + ...

,

so that the equation

-pr
M . ^ M —-j, .eX=
r

t+ %^ Xl+Hk

is identically satisfied; because the root which vanishes with t is the only root of the

cubic of that type, and the series for X is known to converge within the finite range
indicated. Clearly we have

A Fn
d-n — ,

e

where Fn is the coefficient of t
n on the right-hand side of the equation for eX. When

this value of An is used for successive values of n, and the new expressions for

A lt . ..,_4n_i are substituted in Fn , the ultimate formal expression obtained for Fn is the

M
quotient of an integral algebraical expression in the coefficients

f+ .
,. by a power of e.

r

Comparing the quantities |/„ |

and Fn , we note that a quantity greater than |/„| is

obtained when in its numerator every term is replaced by its modulus
;
that this greater

quantity is further increased when the modulus of the coefficient of uivHk in fa or in

M
fa is replaced by -jn-j ;

and that this increased quantity is still further appreciated

when every factor of the type |

m — £ |

in the denominator is replaced by e. But, on

comparing the two coefficients an and An , it is clear that these three changes turn

/„ into Fn ; accordingly

\fn\<Fn .

Similarly for gn and Fn ,
so that

i ffn i

< Fn .

Also
I

» — £1 1

> e,
|

n — £2
1
^ e

;

hence \an \<A n , \bn \<A n .

The series A 1 t + A 2t
2 +A 3t

3 + ...

converges absolutely within a finite region round t =
;
therefore also the series

a-f, + aj? + a3t
s + ... ,

b 1t+b2t
2 + b3f+ ...,

converge absolutely within that region.

Hence the differential equations possess regular integrals which vanish with t. It is

not difficult to prove that they are the only regular integrals which vanish with t.

Vol. XVIII. 6
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Case I (b) : the critical quadratic has unequal roots, one of which is a positive integer

and the other of which is not a positive integer.

2. The equations may be taken in the form

du
t
-jr
m mu + at -f {u, v

t t)

dv
t -r- = tjV + 0t + (f) (ll, V, t)

where m is a positive integer, f is not a positive integer, 6 and
<f>

are regular functions

of their arguments, vanishing with u, v, t, and contain no terms of dimensions lower

than 2.

If regular solutions exist, which vanish with t, we can take

u = t (X + l^), V = t(fi + Vi),

choosing the constants \ and fi so that w, and v
x
vanish with t. Then t- is a factor of

8 arid
<f>

after this substitution is made, say

6 (u, v, t)
= t%' («,,»!, t), <f> (u, v, t)

=
&<)>,.' («, ,vu t);

but 0/ and $/ do not necessarily vanish when t, ult Vi vanish. The equations for the

new variables are

t -,.
1 = (m - 1) \ + a + (wi

-
1) «j + tffi (vi, vu t)

'

Now as it|, »! are regular functions of £, the expressions on the left-hand side vanish

when t = 0; hence

(m-l)\ + a=0, (f-l)/* + /S = 0.

If 0/(0, 0, 0) = a1( 0/(0, 0, 0)
= A. the equations are

t-^
= (m-l) », + a,* + *0, (u„ »„ t)

h ,

where
X
and

<£,
are regular functions of their arguments and vanish when

it, =0, v
t
= 0,

£ = 0. The equations are, in form, the same as before, except that the coefficients of

the first power of the dependent variables on the right-hand side have been reduced by

unity; and the relation between the two sets of dependent variables is

*( a
\ Ju = t\ — I+*)'

v = t

{-f^l
+ V

)-

It is manifest that the equations in ux and vx can be subjected to a similar trans-

formation with a corresponding result
;

and that, as m is a positive integer while f is
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not, the process can be carried out m — 1 times, but not more. Denoting the dependent
variables after all these transformations have been effected by u', v', we have equations in

the form

.du' ,
. .

, ,

^

( ,7= u + at + h (u ,
v , t)

. dv' , , , , , , .

t
-j-

= kv + bt + k(u , v , t)

where k, = %—m + l, is not a positive integer; h, k are regular functions of their

arguments, vanishing with t and containing no terms of order less than 2. The

relation between the variables u, v and u, v is of the form

u = p,n_! + £
m-v, v = Qm_, + r-y,

where Pm_! and Q,„_! are algebraical polynomials of degree tn — 1 vanishing with t
;

and u = 0, v'= when t = 0. The coefficients a and b are algebraical functions of the

original coefficients.

The equations can possess regular integrals only if a is zero. For regular integrals

must be of the form

u =p1t + pJ?+ ..., v = qj + qj
2 + ...;

substituting these, remembering that h and k are then of the second order at least in

t, and equating coefficients of t in the first of the equations, we must have

which is possible for non-infinite values of p1 only if a is zero.

Suppose now that a is zero. Since v! and v' (if they exist as regular functions

of t) vanish with t, we can assume

u'=tr) lt v -=17]^,

the sole transferred condition being that % and % are regular functions of t, which

now need not necessarily vanish with t. We have

r-'^
= h(tVl , tVs , t)

= r-H(Vu Vi , t),

t
2

-~=(ic-l)tr,2 + bt + k(tVu t*h, t)

-<*-l)«ih+fe+«
,
JE'(fl, l %, t),

where H and K are regular functions of their arguments. The second equation shews

that, when t = 0, then (k
- 1 ) i)2 + b =

; accordingly taking

b

1-K + &,

6—2
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we have ?, vanishing when t = 0. As regards t/, ,
there is, as yet, no restriction upon

its value when t =
; denoting it by A, we take

ih-A + fc,

where £i vanishes when t = 0. Both £, and f2 are regular functions of t. When the

values are substituted, A remains undetermined by the equations; and therefore an

arbitrary (finite) value can be assigned to A. The equations for £ and f2 now are

<*6

*y-(«- i)6+i* (4+&, rb+6, *),

with the condition that f, and f2 must be regular functions of t vanishing with t.

Let them, if they exist, be denoted by

»=1 n=l

substituting in the equations which must be satisfied identically, and equating coefficients,

we have relations

nan =fn , (n-/c + l)bn = gn ,

similar to those in the Case I (a).

These equations are treated in the same way as in the Case I (a). Since k is

not a positive integer, no one of the coefficients of bn vanishes
;
and thence it is easy

to see that the whole of the treatment in I (a) subsequent to the corresponding stage

can, with only slight changes in the analysis, be applied to the present case. It leads

to the result that the power-series for §i and f2 converge absolutely for a finite region

round £ = 0; and from the form of the equations for £i and f2 ,
it is clear that the

coefficients in the power-series will involve the arbitrary constant A.

Hence it follows that, unless the condition represented by a=0 be satisfied, the

equations do not possess regular integrals vanishing with t = Q. If that condition be

satisfied, the equations possess regular integrals vanishing with t = and involving an

arbitrary constant: in other words, they possess a single infinitude of regular integrals

vanishing with t = 0.

The condition represented by a = can be obtained from the original equations

t-fj
= mu + at + (u, v, t)

dv
t

di
= Zu + &t + (l>( u >

v
>

as follows. Let

u= 2 fp tP + t
m
U,

p-i

v = "% gp tP + t
m
V;

P=i
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substitute in the equations, and determine (by comparison of the coefficients) the values
°f /i. •••. fm-i, g-i, .... gm-i- Then the condition is that the coefficient of t

m in

/m-l m-l \

at + e[ tfpP, 2 gp tP, t)
\p=i p=i I

shall be zero. This statement can easily be verified.

Case I (c) : the critical quadratic has unequal roots, both of which are positive integers.

3. Let m and n be the two unequal roots, of which m is the smaller, so that

the equations may be taken in the form

, du . n ,

Ett = mu + at + V (w, v, t)

jdv _ , . . .

t T7 = nv + fit + <f> (u, v, t)

These equations can be transformed, as in the Case I (6), by m-l substitutions in turn :

and ultimately they acquire the form

j.
du' , . ,,,,,,

t -57 » u +at + h(u, v
, t)

av f 1 1 / 1 1

t —f- = kv + bt + k(u, v
, t)

at

where k, =n — m+1, is a positive integer greater than unity, u and v' are regular functions

of t vanishing when t = 0, and the functions h, k have the same signification as in I (b).

If the equations possess regular solutions, the latter must be of the form

u'= 2 p,#, «f- 2 qit
1

;

1=1 1=1

substituting these values and equating coefficients, we have

Pi
= Pi + a, #!

=
«#, + b,

(I
—

\)pi = coefficient of t
l in h(u, v', t),

(l
—

ic)qi= $ in k(u, v',t).

It is clear that, if a is different from zero, the first equation cannot be satisfied; and

therefore as one condition for the possession of regular integrals, a must be zero.

Assuming this satisfied, we see that p1 is left undetermined: let a value a, provisionally

arbitrary, be assigned to it.

Solving now the remaining equations for the values 1= 1, 2, ...,« — 1 in successive

sets, each set being associated with one value of I, we have the values of plt ..., pK_lt

y„ ..., }«_,; all these in general involve a. In order that qK may have a finite
value^
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so that (I
—

k) qi vanishes for I = k, we must have the coefficient of t" in k (u, v', t) zero.

If this coefficient be zero, the value of qK is undetermined
;

let a value /3, provisionally

arbitrary, be assigned to it. For the remaining values of I, the equations determine

formal expressions for the remaining coefficients, involving a and y9: and no further

formal conditions need to be imposed. When the values of pl ,...,pK_1 , g,, ..., qK_x are

inserted in k (u\ v', t), the coefficient of t' in that quantity may be an identical zero
;

in that case, the functions u, v' involve two arbitrary constants a and /3 so that, if the

functions actually exist, there is a double infinitude of regular solutions vanishing with t.

Or the coefficient may be zero only if some relation among the constants of the original

equations be satisfied; if the relation is not satisfied, there are no regular integrals of

the original equations vanishing with t : if the relation is satisfied, there is a double

infinitude of regular integrals. Or the coefficient may be zero only if some relation

among the constants of the original equations and a be satisfied
;

this relation is then

to be regarded as determining a, and then for each value of a so determined, there is a

single infinitude of regular solutions vanishing with t.

These results are stated on the assumption that the power-series, as obtained with

the coefficients p and q, converge : the assumption can be justified as follows. Let

A K_1 =p1t + p.2t*+...+ #_, t'~\

£„_! = qj, + qit>+...+ qK^f-\

the coefficients p and q being known; then if functions u' and v' exist of the specified

form, we can assume

where V and V are regular functions of t that vanish with t. Thus, assuming a = 0,

we have

t^p + *^ + («
-

1) r- U' -A^ + <«-> U' + h (A K_, + tr« U\ BK_X + *«- V, t).

Now the quantity

is equal to the aggregate of the terms involving t, I
2
,..., £*

-1 in

h(A K_u BK_lt t).

Also in h (u\ v', t) there are no terms of dimensions lower than 2 so that, in

h (A K_, + tr*W, BK_, + t<->V, t) -h(A K_u BK_U t),

the coefficients of t
K~l

U', t'^V are of dimension at least unity, and therefore this

expression may be taken as equal to
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where If1 is a regular function of its arguments, which vanishes with them and contains

no terms of dimension lower than 2. Also let the terms in h (A K_lt BK_,, t) of order higher
than k — 1 be

cKt* + clt+1 t<
+1

+...;
then

and therefore

J IT'

^It + (* " 2) *"
_1 U ' =^ + C"+it

'+1 + • • * + *"
_1H> (U'>

V '< 0.

t^-
= (2- K)U' + cKt + H(U', V, t),

on absorbing the other powers of t into ff1 and denoting by H the new function which

has the same character as H
x . Similarly

dV
*

dt
= V' + h*t + K (U',V',t\

where the terms in k(A K-lt £K-ly t) of order higher than k— 1 are

bKt"+...,

and K is a function of the same character as H.

As k is a positive integer >1, 2 — k is not a positive integer >1, Thus the coefficient

of V is not a positive integer, while the coefficient of V is unity; and thus the two

equations for U' and V are a particular instance of the general form discussed in 1(6).

There is no regular integral vanishing with t unless bK = ;
the significance of this

condition, either as an identity, or as a relation among the constants of the original

equations, or as an equation determining a, has already been discussed. Assuming the

condition bK = satisfied, it is known from the preceding result that the equations in V
and V possess regular integrals, which vanish with t and involve an arbitrary constant

that does not appear in the differential equations. The inferences stated earlier are

therefore established.

It appears from the investigation that two conditions must be satisfied in order to

the possession of regular integrals : one of them is a relation among the constants of the

equation represented by a = : the other of them is the relation represented by bK = 0.

To obtain them directly from the original forms, we can proceed as follows. Let

Ji = 2»(«', v = 1qit
l

,

i=i i=i

be substituted in the original equations: and determine^, ...,j)m-i, <fr, ••-, gw-i- The first

condition is that the coefficient of t
m in

(m-l

m-1

i=i i=i
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shall vanish. Take pm =a; and then from the original equations determine pm+1 ,..., ^„_,,

<?»»>•••, ffn-i-
The second condition is that the coefficient of t

n in

/w-l »-l \

\i=\ 1=1 I

shall vanish. It is not difficult to verify these statements.

Summarising the results, it appears that, unless one condition be satisfied, the equations

possess no regular integrals vanishing with t. When the condition is satisfied, another relation

must be satisfied. If this relation determines a parameter, the equations possess a single

infinitude of regular integrals; if it involves only the constants in the differential equations,

then, when it is not satisfied, there are no regular integrals vanishing with t: and, when it is

satisfied, there is a double infinitude of such integrals.

Case II (a) : the critical quadratic has equal roots, not a positive integer.

4. The equations are

t J7 = fM + 01 (u > ».

I ['
t -T

;

= KU + gv + fa (U, V, t)

where £ is not a positive integer; the functions fa and fa are regular and (with the

possible exception of a term in t) contain no terms of order lower than 2. If they possess

regular integrals vanishing with t, they must have the forms

u = 2 pn t
n

, v - 2 qn t
n

.

»=1 M=l

Substituting these expressions and equating coefficients, we find

(«-£>P»=/»

(«
-

£) In
= 9n + Kpn

where fn and gn are the coefficients of t
n in fa and fa respectively, when the series for u

and v are substituted. It is clear that /„ and gn are linear in the coefficients of fa and

fa, that they are integral algebraical combinations of plt pt ,..., qlt qit ..., and that they

contain no coefficient p or q in the succession later than pn_^ and qn-i- As £ is not an

integer, the foregoing equations, taken for successive values of n, determine formal ex-

pressions for the whole set of coefficients p and q ;
in particular, pn and qn are obtained as

sums of quotients, the numerators of which are integral functions of the coefficients in (^

and fa, and the denominators of which are products of powers of the quantities

1-fc 2-f,..., »-£.

To discuss the convergence of the power-series for u and v with these coefficients, we
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introduce an associated set of dominant equations. Let a common region of existence of

<p! and
<f>2

be determined by the range

|w|</>, \v\^<r, |*|<r;

within this region let the greatest value of |0,| be M, and that of \tp2 \
be N, so that

within the region

\<Pi \<m, |A|<.2r,

ilf and iV denoting finite magnitudes. Also, let e denote the smallest value of
|

m —
f |

for

values of the integer m
;

and let k
|

= c. Then we consider the dominant equations

given by

r p o*t*

N NeY=cX+-t + 2 -™ XT'**
r p

l a1 rK

where the summations on the right-hand side are for integer values of i, j, k such that

i+j+k^2.

The general course of the argument is similar to that in I (a). In the first place, X
and Y can be determined by the simultaneous equations

eZ =
,w *

V ,
-M-MX - M Y

>.

rj \ p J \ c

N N N
eY=cX+ - % -.-N--X--Y

From these we have

XeX = M (eF- cX),

so that

when this value is substituted for Y in either equation, say in the first, we have

p a- ae J \ pi [

^*(-f).{>-fM-
r

a cubic equation in X. The term independent of X vanishes when t = ;
and the term

involving the first power of X does not vanish when t = 0, because e is not zero. Hence

the cubic has one (and only one) root vanishing when < = ().
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It follows, as before, that this root of the cubic vanishing with t can be expressed as a

regular function of t in the form of a power-series, which converges absolutely for values

of
1

1
1

less than the least modulus of a root of the discriminant, that is, for a finite range.

When the power-series for X has been obtained, the power-series for Y is given by

say X = P1 t + P2 t* + ... +Pn t
n + ...

F=ft< + Qtf + ... + Qn t
n + ...

In the second place it can, as before, be shewn that the analysis, effective for the

determination of pn and qn in connection with the original equations, is effective for the

determination of Pn and Qn in connection with the dominant equations by merely making
literal changes, and that these literal changes are such as to give

\Pn\<Pn , \qn \<Qn

for all values of n. It therefore follows that the series

frt +&*+&*+...,

q,t + q2V + q,t
3 +

converge absolutely within a not infinitesimal region round t = 0. Consequently the

equations possess regular integrals vanishing with t: and it is not difficult to prove that

these regular integrals are unique as regular integrals with the assigned conditions.

Case II (b) : when the critical quadratic has equal roots, the repeated

root being a positive integer.

5. The equations are

.
du . .

,. \

t
-j-

= mu + at + ff (u, v, t)
J

L.

t -77 = KU + mv + ftt + <f> (u, V, t)

where m is a positive integer, the functions 6 and
<f>

are regular, vanishing with u, v, t,

and containing no terms of dimensions lower than 2.

We transform the equations as in I (6) by successive substitutions, each of which

leads to new equations of a similar form with a diminution by one unit in the

coefficients of u and of v after each operation. We take

u = t (X + iii), v = t(fi+ »,),

choosing X and
ft,

so that u± and ^ vanish with t: then u^ and v1 are regular functions

of t, if the equations possess regular integrals. To secure this form of transformation,

we must have

(m- 1)X +a = 0,

«X + (m- 1)^ + ^ = 0,



that

\ =

DIFFERENTIAL EQUATIONS.

a KQL y8
'

m-1 ' M ™
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and the new equations are

du
t -jT = (™ - 1) «i + a'* + #i («!, »,,

*-T7 ™ *"i + (*»
-

1) «! + /#'* + <£i (tt, ,«!,<)

A similar transformation can be effected upon this pair, with a similar result; and the

process can be carried out m — 1 times in all, leading to equations

.
du' , , , , , „

t -J- = u
' + at + h (u, v, t)

dv'
t -j- = ku +v' + bt + k («', v

, t)

where h, k are regular functions, vanishing with u', v', t, and containing no terms of

dimensions lower than 2
;

also u', v' are to vanish with t.

There are two sub-cases to be considered, according as k is zero and k is different

from zero.

First, let k be
;
so that the equations are

_,
du' , ,

. , , . ..

t~j-=u + at + h(u,v ,t)

t -37 =v' + bt + k(u', v', t)
at

It is easy to see, by substituting expressions of the form

u'=p1t+p2t
2 + ..., v' = q1t+ qfi + ...,

that the equations cannot possess regular integrals vanishing with t unless

a = 0, 6 = 0.

Assume, therefore, that a = 0, 6 = 0. If the equations then possess regular integrals

vanishing with t, we can take

u
' = tU', v' = tV,

where now the only transferred condition to be imposed upon V and V is that they

are to be regular functions of t. Substituting these values, we find

V
dJ

^ = h (t U', tV, t)
= PH ( XT, V, t),

t*

d
-^ = k (tW, tV, t)

= VK ( U', V, t),
(tt

7—2

\
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so that

^ -H ( U', V, t), ^ = K( IT, V, t\

where H and K are regular functions of their arguments. To these equations, Cauchy's

general existence-theorem can he applied ;
it shews that they possess integrals which

are regular functions of t and assume assigned (arbitrary) values when i = 0. Accord-

ingly, the equations in v! and v', in the case when the conditions a = 0, 6 = are satisfied

and when the constant k is zero, possess a double infinitude of regular integrals which

vanish when t = 0.

Secondly, let k be different from zero. If the equations possess regular integrals,

they are expressible in the form

u' = a-f, + a$ + ..., v' = b
t
t + b,t" + ...

;

substituting these, and taking account of the first power of t on the two sides of both

equations, we have

a, = a x + a, 6a
=

/cctj + bx + b.

Hence we must have a =
;
then bt is undetermined, and

b
al
=—

,

K

a finite quantity because k is not zero.

Assuming that the condition a = is satisfied, and assigning an arbitrary value

A to b\, let

u'=t(-- + Vl\ v' = t(A + rj2),

so that
rj!

and n2 are to be regular functions of t vanishing with t
;

the equations

for t?x and % are

P W"*(~ «
+ *h '

tA + tr)i >
f
)

= t
2

H(r) 1 , T)2 , t),

dv* if .b

that is, they are

t
2~= Ktni+ k(- t-+tt}u tA+tvt, t

=
Ktt)x + PKfa, T)2 , t),

t

-^
= KVi + tKfa, rj2 , t)

where H, K are regular functions of their arguments and involve the arbitrary constant A.
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These equations are now the same as in the Case II (a) when £ is made zero.

Accordingly, all the analysis of that earlier discussion applies when in it e is taken

equal to unity. The equations in % and rj2 possess regular integrals vanishing with t,

and their expression involves A, the arbitrary constant
;

and therefore the original

equations in u and v possess no regular integrals vanishing with t unless the condition

represented by a = be satisfied; but if that condition be satisfied, they possess a simple

infinitude of regular integrals vanishing with t.

The conditions represented by a = and 6 = in the sub-case when k is zero, and

the condition represented by a = in the sub-case when k is different from zero, can

be expressed as before. For the former sub-case, we determine coefficients a and b so

that

+ am_1 t
m~ l +...)

satisfy the equations

u = a,£ +
v = bit +

du
. n / ,\

t-~rr = mu + at + a (u, v, t)

t ~j- = niv + fit + <f> (u, v, t)

and the conditions are that the coefficient of f* in

(m—

1 m— 1 v

2 ait
1

,
2 bit

1

, t),
i=i i=i I

and the same coefficient in

(m-l

m-1 \

2 ait
1
,

2 bit
1

, t),
i-i i=i 1

shall vanish. For the latter sub-case, we determine the 2(m— 1) coefficients in u and

v so that the equations

du
t-n = mu + at + 6 (u, v, t)

t-j: = ku + mv + fit + d> (u, v, t)
dt

are satisfied
;
and the single condition is that the coefficient of t

m in

/m-l m— 1 '

at + d{ 2 ait
1
, 2 bit

1

, t

\i=i i=i

shall vanish.

This completes the discussion of the regular integrals vanishing with t, with the

respective results as enunciated in the various cases.
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NON-REGULAR INTEGRALS.

6. It has been seen that, either in general or subject to certain conditions, the

equations

t

c

^= ai u+f31 v+r/lt+... = e1 (u, v,z)

dVt~ = aM + l32r+ 7lt+...^e,(U, V,z)

possess regular integrals which vanish with t: and these are unique as regular integrals.

Denoting them by uu v,, let

U= !«! + «, V^Vi + y;

so that if functions x and y exist, different from constant zero, they are non-regular

functions of t, and they must vanish with t because U, uit V, vt all vanish with t. Then

dx \

are equations to determine x and y. On the right-hand sides there are no terms

involving t alone; the only terms of the first order are a^ + fiiy, a^x + ^.2y respectively;

and the coefficients of the other powers of x and y are functions of t and of w,, vlt

that is, after substitution of the values of Hj, vlt these coefficients are regular functions

of t. Hence we may take the equations in the form

dec
t
-^

= «d« + fry + ^i (x , y, t)

dy

t-^
= a&+p3y + %(x,y, *)

J

where S, and % are regular functions of x, y, t, vanishing when x = 0, y — 0, and con-

taining no terms of dimensions lower than 2 in x, y, and t. The dependent variables

x and y, if they exist as other than zero constants (which manifestly satisfy the

equations), are to be non-regular functions of t which vanish when t = 0.

It is convenient to transform the equations by linear changes of the dependent
variables, as was done for the discussion of regular integrals: the new forms depending

upon the roots of the critical quadratic

(£-«.)<f-/8»)-«A-0.
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When the roots of the quadratic are unequal, say £ and £,, we take new variables

U = \x + fiy, t„ = X'x + fi'y,

where

the equations become

(a,
-
ft)X + a2 A<.

=

/8,\ + (A-fi)/* =
(«h

- £0 *•' + a2 /*'
= 01

AV + 08.-f.)A*' = OJ
;

'jet™ lA+&(*n *2.

where the regular functions fa and
<£2 vanish when

t,
= 0, £2

= 0, and contain no terms

in f,, t2 ,
t of dimensions lower than 2.

When the roots of the quadratic are equal, the common value being f, the cor-

responding forms are

t

<

^ = &1 + fa(tl ,t2 ,t)

t~~=Kt1 + i;t2 +fa(t1 , to, t)

with the same characteristic properties of the functions fa and fa as for the former

case; here t2
= y and t1

= \x + py, where

(a,-f)X + o^ = 0, &*+ (&- ?)/* = 0,

and the constant k is given by /eX = a2 .

We proceed to deal with the various alternative cases, as for the regular integrals:

merely remarking that, for those instances of the original equations which do not possess

regular integrals because the appropriate condition is not satisfied, it will be necessary

to return to those original equations for the discussion of the non-regular integrals.

7. Some indication of the character of the solutions may be derived from the

consideration of two simple examples, one of each form.

A simple example of the case when the roots of the critical quadratic are unequal is

t -tt =M + atta
at

t^ =
trt* + btt,

integrals (if they exist) are required which vanish when t = 0. The solution of these

equations, which are linear, can be made to depend upon that of a linear equation
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of the second order having t = for a singularity : it appears that the integrals are

normal in the vicinity of t = 0. Their full expression is

(l +-^ +• ^ +...}t
1
= At*h +

+
l-p (

+
2(3- P)

+
2.4(3 -p)(5-p)

1 + p \ 2(3 + p) 2.4(3 + /»)(5 + p)

+^
I

1 +
27I^7)

+
2T4(nrp)(3--7)

+ •••

where p
= \ — ft: in order that the solution may be satisfactory, it is manifest that p

may not be an integer, positive or negative. For the present purpose, the general

integrals must be chosen so that they vanish with t; and consequently the most

important terms in the immediate vicinity of t
— are

1-p

U=-A- At^ + Bt*
1 + p

the quantities A and B being arbitrary.

If the real part of X and the real part of p, be both positive, then, when the

variable t approaches its origin not making an infinite number of circuits round that

origin, ij and <2 ultimately vanish when t = 0, that is, as X and p. are not integers,

there is a double infinitude of non-regular integrals vanishing with t.

If the real part of X be positive and the real part of p, be negative, then, when

t tends to zero as before, tfa can tend to zero only if B be zero : and if 5=0, then

tx and fc. ultimately vanish when t = 0, that is, there is a single infinitude of non-

regular integrals vanishing with t.

Similarly, if the real part of X be negative and the real part of p be positive,

there is a single infinitude of non-regular integrals vanishing with t.

If both the real part of X and the real part of p. be negative, then tt and ^

vanish with t only if A = 0, B = : that is, non-regular integrals vanishing with t do

not then exist. This last result is in accordance with Goursat's result already quoted

in the introductory remarks.

It will be noticed that the parts depending upon t
x

alone, when they exist, are of

the form

k = t
x
pu ti

= t
K
p2 ,
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where p l is an arbitrary finite quantity and p2 is zero when t = 0; and that the parts

depending upon p- alone, when they exist, are of the form

t1
= Pa1 , t.2

= Pa2 ,

where a2 is another arbitrary finite quantity, and o^ is zero when t = 0. These particular

results are general and, in this form, can be established by an appropriate modification

of Goursat's argument (I.e.). They are included in the more general theorems that will

be considered immediately.

A simple example of the case when the roots of the critical quadratic are

equal is

t
-jt Mi + atti

Idt

dt2

di
t ,

— Kli T" A/Co

integrals (if they exist) are required which vanish when t = 0. The solution of these

equations can, as for the preceding example, be made to depend upon the solution of

a linear equation of the second order, having t = for a singularity ;
and their expressions

can be obtained in the form

S,
= AaP+1

(1 + \aict +...)+ Ba {atd
K+1

(1 + \<iKt + . ..) log t + (1
- faVi

2 -
...) t

K
\,

t.2
= Atx {\ + a/ct+ ...) + B [aict

k
(l + cud + ...) log t +(«-aV«- ...)t

k
).

When the real part of X is positive, these integrals vanish with t; and there is a double

infinitude of them. When the real part of \ is negative, then it is necessary that

A and B both vanish : that is, the integrals do not exist if they are to vanish

with t.

When B is zero, then the integrals become of the form

tl
= t

x
p1 ,

t2
= t

K
p2 ,

where p2 is an arbitrary finite quantity, and p! is zero when t = 0. This result is

general. There is no corresponding simple inference from the parts that depend solely

upon B : the complication is caused by the term k^ in the second equation.

The special results here obtained are included in the theorems relating to the

equations in their general form : they suggest that integrals exist which are regular

functions of t, t
K
, and i

x
log t, when the real part of \ is positive.

Vol. XVIII.
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Case I (a) : the critical quadratic has unequal roots, neither of them being

a positive integer.

8. It has been proved that the original equations in this case possess regular

integrals vanishing with t: and therefore, in order to consider the non-regular integrals

(if any) that vanish with t, we transform the equations as in § 6, and we study the

derived system

t~T. = fl^l +</>l(*l, U, t)

t jT*
= &2 + <f>i(tl, t2 , t)

where fa and fa are regular functions of their arguments, vanishing when tx
= 0, t,

= 0,

and containing no terms of dimensions less than 2 in t,, t2 ,
t. The integrals tx and tt

are to be non-regular functions of t, required to vanish with t.

The main theorem is as follows :
—

When the roots of the critical quadratic £, and £2 have their real parts positive,

and are such that no one of the quantities

(X- 1) ft + /*&+ *, X£+0*-l)&+ *,

vanishes for positive integer values of \, /i, v such that X + fi + v > 2, then the equations

possess a double infinitude of non-regular integrals vanishing with t, these integrals being

regular functions of t, t
(
', tf*.

Immediate corollaries, when once this theorem is established, are as follows :
—

If the real part of ^ be positive and that of %2 be negative, there is only a single

infinitude of non-regular integrals vanishing with t: they are regular functions of t

and &*.

Likewise, if the real part of £2 be positive and that of fj be negative, there is only

a single infinitude of non-regular integrals vanishing with t: they are regular functions

of t and fa.

If the real part both of f, and of f2 be negative, there are no non-regular integrals

of the equations that vanish with t.

These results (the last of which is due to Goursat in the first instance) will be

found sufficiently obvious to dispense with any proof subsequent to the establishment

of the main theorem.

9. In discussing the equations, it will be convenient to replace t( ' and <*» by new-

variables, say

so that, by the general theorem, regular functions of zlt zt , t are to be established as
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solutions of the equations. Accordingly, regarding <, and t2 as functions of these three

arguments, assume

t\
= 2,z,z,amny z^ z2 tp

]

t^ — 2<**^bmnp z
l z<t t"J

where the summation is for all positive (and zero) values of the integers to, n, p, with

the conventions

Moreover

. d 9
, j. 3 „ 9

'ar'g*+ft*s;
+
ft*£--

Hence the differential equations are

' i + ft*
?i

+ *»*
s£

= ** + ^ <* *• *>

. 9£2 -. 9i2 j.
9t> «,

di
+ ^lZl

dz
+^

dz
~

*** + ^2
' *2 ' '

Substituting the assumed values of ^ and t2 ,
and afterwards equating coefficients of

z^zftP, we have

{(to
-

1) f, + nf2 + ^} amnp = a'm„p]

{mfx + (n
-

1) f2 + ^>} &mnp =£'m„,J

where a'm„j,
is a rational algebraical function of the coefficients in fa, of the coefficients

fflm'n'p'
in ii such that

m' < to, w' < n, p' < ^),
to' +.*' +pf< m + ?! + p,

and of the coefficients 6m „y in t2 with the same restrictions : and likewise for $mnp

in relation to fa.

As there is no term in fa(ti, t2 , t) of dimension unity in t, ti, t2 ,
there can be

no term of dimension unity in zlt z2 , t after substitution of the values of ^ and t2 :

hence

{(m
-

1) & + «£> + £>} dmnp = 0,

when to + n + j)
= 1 . Accordingly

but there is no limitation upon a^^, so that it can be taken arbitrarily : we assume

For similar reasons

{ml-! + (n
-

1) & + p} &m»P = 0,

when m + m + p = 1
;
and we infer that

bm = 0, &ooi
= 0, bm = B,

where B is arbitrary.

8—2
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Suppose now that no one of the quantities

(rw-l)f1 + nfa + j3, wif1 + (n-l)& + />,

for positive integer values of m, n, p such that

m + n + p^2,

vanishes. Then when the equations

{(m
-

1) £, + «& + p) amnp = a'mnp

{ml-, + (n
- 1 ) f, + ^} 6mnp

= 0'mnp \

are solved in groups for the same value of m + n + p, and in successive groups for increas-

ing values of m + n + p beginning with 2, they lead to results of the form

"mnp = &innpt Umnp Pmnpt

where amnp , /37nnp are rational integral functions of the coefficients that occur in fa and fa,

these functions being divided by a product of factors of the forms

(m - 1) f, + w£2 + p, «!& + (n
—

1) & + p, for m + n + p > 2.

It has been seen that am = 0, bm = : we easily see that a^p
= 0, b^p

= for all values

of p. For every term in fa(ti, t2 , t) and every term in fa(tx ,
t2 , t) involve tx ,

or t2 , or

both : and the equations for a^, b^, are

\P ~ Si) aoop
=

-"oqp> \P ~ £2) "oop
=

-Ooop>

where A^p, -B
oop

are integral functions of the coefficients in fa and fa, and of coefficients

«oop'. &oop'
sucn ^at p'<p, these integral functions being divided by factors of the form

p'
—

^i, p'
— ff No term occurs either in A^p, B^p independent of

a„op'> b^ because there

is no term in fa or in fa independent of tx and t^. Hence if all the coefficients a^,

bwp* vanish when p' < p, then a^p, bMp also vanish. But am = 0, bm =
: hence a^ = 0,

bm =
: and so on with the whole series.

Consequently in the expressions for tx and t2 ,
there occur no terms that involve t

alone without either zlt or z2 ,
or zx and z2 : which is therefore one general characteristic of

the non-regular integrals if they exist.

From tx and t2 ,
let all the terms which do not involve z2 be gathered together.

By what has just been proved, there are no terms which involve t alone : hence the

aggregates of the selected terms contain zx as a factor, and the aggregates of the remainders

contain z2 as a factor, so that we can write

t x
= z1p + z2® 1 ,

L = zxr + z2%„,

where p and t are regular functions of £ and «,, which will be proved to be such that

p
= A, t = 0, when t = 0, A being an arbitrary constant: and ©,, ©2 are regular functions
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of t, *,, z2 ,
which will be proved to be such that ©i = 0, ®2

= B when t = 0, B being an

arbitrary constant.

The first stage of the proof will establish the existence of the parts z
xp, z-^t. the

second stage will establish the existence of the parts z2%lt ^2®2 . It may be added that,

had it been deemed desirable, a selection from tx and t2 of terms that do not involve zx

might first have been made : the forms of t, and t2 would then have been

U = £#! + z^i, t = Jfcf, + z{V2 ,

where px
= 0, r

x
= B when < = 0, and plt t, are regular functions of t and z2 : also ^, = 4.,

^2
= when t = 0, and ^lt ^R, are regular functions of t, «,, z2 . Further, it will be seen

from the forms of the functions that p, r, "9X ,
T2 all vanish when -4=0: and that ©1; ©2 ,

Pi, Tj all vanish when B = 0.

10. It is clear that if the equations under consideration possess integrals of the

form

tl=pZlt t2
= TZu

where p and t are to be regular functions of z and *,, then, taking account of the forms

of
<j>x

and
<f>2 ,

the quantities p and t must satisfy the equations

's + 6*S"' s" (f-- *>' + »<" T
' *• ()

The functions i|r,, >/r2
are regular in their arguments: both of them vanish when p = 0,

t = 0: in each of them, every term, which is of dimensions \ in p and r combined,

possesses a factor zf~
l

: and no term is of dimensions less than 2 in p, r, t combined.

Because p and t are to be regular functions of t and zlt they will be expressible in

the forms

p = Z!kmniff\ t = l^lmnzrtn ;

v r

substituting these values and equating coefficients on the two sides of both equations, we

find

(n + mfO kmn = k'„

{n + (m + 1) £ - £,} ink = fj

where &'„,„ and l'mn are linear in the coefficients of ^ and
i/r2 respectively, and are

rational integral functions of the coefficients &mV , UiW in P and T sucn that »»'<»», w'<»,

m' + n' < m + it.

From the forms of the functions ^ and
-\/r2 ,

we have k'w = 0, l'oo
= 0. Hence when

m = 0, w = 0, the first of the coefficient-equations leaves &00 undetermined : we therefore

make it an arbitrary (finite) quantity A : the second of the coefficient-equations gives

1^ = 0, for & and f, are unequal.
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Since no one of the quantities

vanishes for integer values of m, n, p such that m + n + p ^ 2, it follows that no one of the

quantities
n + mfi, n + (m+ l)f,- &

vanishes for integer values of m and n such that m + n^l. Hence when the coefficient-

equations for k and I are solved in groups for the same value of m + n, and in

successive groups for increasing values of m + n beginning with 1, they lead to results

of the form

^mn == ymn> "inn
= ^mny

where y and X are integral functions of the coefficients that occur in
yfrx and

i/ra ,
each

divided by a product of factors of the forms

n + mi;!, n + (m + l)£i-f2 .

Moreover each of the coefficients k and I, thus determined, contains A as a factor.

It now is necessary to prove that the series for p and t, the formal expressions

of which have been deduced, are converging series. For this purpose, we construct

dominant equations as follows.

Let a region of common existence of the functions
yfrx

and
ifr.,

be denned by the

ranges \t\^.r, \zx \^rx , \p\^a, |t[</3: so that
ifrx and

yfr2
are regular functions of their

arguments within these ranges. In this region, let Mx be the greatest value of
| ^r, |

and M2 the greatest value of
| ifr3 1

: let M denote the greater of the two quantities

Mx and i/2 . Further, since the quantities n+mf-x , n + (m+ 1) £ — f2 do not vanish for

integer values of m and n such that m + n^l, there must be a least value for the

moduli of the quantities for the various combinations of m and n; let this value be

7], so that

|»+«fe|<n. \

n + (
W1 + l)£i-&|<'?,

in all instances. Also let \A\=A'. Then the dominant equations are chosen to be

V (P-A') = VT

M M
lir

z
1P ,f zx T)-M M

zxP\ /_ ZlT\ , t r,a r,/3

v r/ V r,a/ \ rx/3J

Clearly P — A' = T: their common values are given as the roots of the cubic

equation

(V n/3 r^/ »-,« J V rx@J \ rx a rx aj

M {A' m ( 1 1 A'zx

+ T [ +—5 -
. < |r,a V^a n/3 n2

a/3/ n 2

«/3

r
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When t = and «,
= 0, the term in this equation independent of T vanishes : but the

term in the first power of T does not vanish because rj is not zero. Hence there is

one root, and only one root, of the cubic equation which vanishes when t = and

*,
=

;
it is a regular function of t and zx in the immediate vicinity of t = over a

region which is not infinitesimal. Actually solving the equation for this root, we find

„, MA' ft A' \ , . .
1 = - H zx ) + higher powers ol t and z1 ;

V^a \r r-jO /
° r

and then

„ ., MA' /t A' \ ,
. .r = A H -H ^i + higher powers ot t and z-,.

r/r^a \r r,a /
6 r

Now knowing that such a solution of the dominant equation exists, we can obtain its

formal expression otherwise. Let

P = A' + -Z2z1

m
t
nrm

substitute these values in the dominant equations, expand their right-hand sides in the

form of regular series, and equate coefficients of zj
n
t
n on the two sides. We find

T — 1Z'
*- mn — -"- mn*

Instead of actually evaluating K'mn ,
the analysis used to determine ymn can be adopted. To

this end, construct the value of
j
ymn |

and, in its expression, effect the following changes in

succession :
—

i. Replace every modulus of a sum by the sum of the moduli of its terms:

ii. Replace each denominator-factor \n + m^l
\

and \n + (m + 1) £ —
£„| by rj:

iii. Replace the coefficients of
/!>"•» 7*»jj*** in

tp1 and
<f>3 by M +a»i/9"»r,i»*»*(

for all

values of m.y ,
nlt plt ft:

iv. Replace \A\ by A'.

The final expression, so modified, is K'mn- But the effect, upon the initial expression for

1 7m» I ,
of each of these changes is to appreciate the value : hence, taking the cumulative

result, we have

I Ivm I

*- 1 mn •

Similarly

|

A"mn
!

**- A mn*

But the series

A' + l,'Ez1
m

t
nTmn

converges for a finite region round the origin t =
;
hence the series

p
= A +22ymnzl

'

T = ItXmnZj
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converge absolutely : that is to say, the formal expressions p and t have significance, being

regular functions of zx and t. The equations accordingly have integrals

<!
=

pZi, ta =TZ1 ,

of the characteristics indicated.

This completes the first stage of the proof.

11. For the second stage, let

the equations for Tj and T2 are

*W~tlTl + * ipZl + Tl ' TZl + T*' ^ ~ *> &»*• TZi ' o

after substitution for p and t. Here i/^ and
i/r2

are regular functions of their arguments

vanishing when T^ = 0, T2
=

; they contain no terms of aggregate dimensions lower than 2

in Tt ,
T2 , ti, t. In accordance with the statement in § 9, it has to be proved that these

equations possess solutions of the form

7, = *,©,, T2
= z2®2 ,

where ©! and ©2 are regular functions of t, zlt z2 : it will appear that @2
= .B (an arbitrary

constant) and ©! = 0, when t = 0. Substituting these values for Tx and Ta , we find

*W+^ +^S =f* (
®

1 ' *• *• * °l

the functions
_/i

and /2 are regular in their arguments, every term involves 0, or ©2

or both, and a term involving ©j and ©2 in the form © 1
A ©2

'1 has also a factor z2
K+»~\

If quantities ©1 ,
©2 exist, being regular functions of t, zlt z2 and satisfying these

equations, the substitution of expressions of the form

6, = 22%m„^f, ©2
=22%m„ *,'*,»*»

in these equations must lead to identities. Accordingly, equating coefficients of z{z2
m

t
n

on the two sides of both equations, we have

{n + (I
-

1) f + (m + 1) £,} pim„ = 7r'imn ,

(n + 1%! + m£2) ^te„
= «';,„„ ,
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where tt imn , K\mn are linear functions of the coefficients in yj and /2 ,
and are integral

functions of the coefficients prm'„- and qVm:n; such that

I' ^.l, m! < ra, n'^n, V + m +n' < 1 + m + n.

Owing to the forms of/i and /2 ,
we have

T 000
= "> K 000

= "•

Hence ^ooo
= 0, and

(fro,
is left undetermined

;
we take

^ooo
= B,

where B is an arbitrary constant. Moreover, no one of the quantities

» + (l-l)ft+ «ft, »+*& + (»- 1)6,

vanishes for values of I, m, n such that n + 1 + m > 2
;

hence in the equations for

Pimn, qimn> no one of the coefficients of ptmn , qimn vanishes when n + l + m^l. Hence

these equations can be solved for all the coefficients p and q after pm , qm . They
are most conveniently solved in groups for the same value of n +l + m, and in

succeeding groups for increasing values of n + l + m, beginning with 1
;

the results are

Plmn = TTlmn > qimn
= ^Imn >

where irimn, «;mn are sums of integral functions of the coefficients in fx and /2 ,
each

divided by products of factors of the types

Expressions thus are obtained as formal solutions of the equations : it is necessary to

establish the convergence of the infinite series. As before, we construct dominant

equations for this purpose, as follows.

Let a common region of existence of the functions f± and /2 ,
which are regular

in their arguments, be defined by the ranges

\i\<r, \*i\<pt, \**\<Pt, |®i|<°-i. |©2 |sSo-2 :

and within this region, let N denote the maximum value of [/i| and |/2 |,
so that N

is a finite quantity. Also let t? denote the least among the values of

|» + (l-l)S» + (m + l) &l, |« + !& + «&(.
for the various combinations of the integers I, m, n such that I + m + n ^ 1

;
and let

\B\
= B'. Then the dominant equations to be considered are

9*1 -*K*. -*)
1
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The common value of <£>! and 4>„ — B' is determined as a root of the cubic equation

\ P2°"l P&J /Vaj V Pa«", /\ P&1 PlF-l'

i_*Vi_:?A l/'2<r2 />j<Tl /JjtTj prfVi<V pa^o-jj

When £ = 0, ^ = 0, 22 = 0, the term in this equation independent of 4>j vanishes : but

the term in the first power of <&i does not then vanish, because 17 is different from

zero. Hence there is one root, and only one root, of the cubic which vanishes when

t = 0, ^ = 0, z2
= 0: and it is a regular function of t, f,, z2 in the immediate vicinity*

of t = 0. Actually solving the equation for this root, we find

, NB' It B, z2B'\ . ,. . ,

<P,
= - h 1 + terms 01 higher orders

;

VP&2 Vr pi p&J

and then we have

- n, NB' (t g. z2E\ . , . , ,

<I>2
= B H - + — + -2-1

: + terms of higher orders.

VP2V2 \r pi p2<r2J

As in the preceding stage of proof of the main theorem, we can obtain the

expression of these particular quantities fy and <J>2 otherwise. Knowing that 4>i and

&2
—

B', equal to one another, are regular functions of t, iu z2 ,
let

ft,
= 4>2

- B' = ISZP^zJtrr ;

substitute in the dominant equations, expand the right-hand side in the form of regular

series, and equate the coefficients of zjz2
m

t
n on the two sides. We find

Limn = Li-lmn*

But instead of actually deriving Uimn from the equations so obtained, we can utilise

the analysis that leads to the quantities 7T;mn ,
*Jm„, as follows. Construct l^mnl and,

in its analytical expression, effect the following changes in succession :
—

i. Replace every modulus of a sum by the sum of the moduli of the terms :

ii. Replace each denominator-factor \n + (l
-

1) £ + (m + 1) £2
1

and \n + l^ + m%2

by V :

iii. Replace the coefficient of ®i
mi®2

'»« zf* z^tp in /, and f2 by N-^-a-^aj^p^p^r^,
for all values of wij, m2 ,

nlt n 2 , p:

iv. Replace \B\ by B
1

.

The final expression, after all these modifications have been made, is TLimn . But the

*
It remains a regular function so long as

1

1
1

is less than the least of the moduli of the roots of the

discriminant of the cubic.
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effect, upon the initial expression for \irlmn \,
of each of the modifications is to appre-

ciate the value; hence taking the cumulative effect, we have

I 7J"fom| < n2mn .

Similarly \Ktmn\<nimn .

Now the series for <J>2 ,
when Plmn is replaced by Ulmn , converges for a finite

region round the origin; hence the series

©2
= 5 + S22/cimn^2™^j

also converge for that region. Consequently the modified equations have integrals of the

character

and therefore the original equations have integrals

U = pZy + Z2®i , t2
= «i + Z2®2 ,

where p and t are regular functions of t and zx : and ®lt @„ are regular functions of

t, zlt z2 .

This completes the proof of the main theorem with the specified conditions.

Case I (6) : one root of the critical quadratic is a positive integer, the other is not

a positive integer.

12. Let the integer root be denoted by m, the non-integer root by f ;
the equa-

tions can be taken in the form

du „
t-r:= mu +at + o (u, v, t)

dv f
'

tj-t =Zv
+ /3t + <p(u,v, t)\

where 6 and
<f>

are regular functions of their arguments, vanish with u, v, t and

contain no terms of dimension's lower than 2. The same transformations as were used

in § 2, viz.

$
;

'(-m^l
+4 •-'(-|=T

+ ik
)'

can be applied m — 1 times in succession : and ultimately we have equations

dt

t-^
= t1 + at+f1 (tu t2 , t)

tjj-tdi
+ U +/,(«,, t.2 , t)

9—2
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where k,
= f-m + l, is not a positive integer, the functions f and /2 are regular

functions of their arguments of the same type as 6 and
<f> above, and the integrals

tx and t3 are to vanish with t.

It has been proved that there are no regular integrals of the equation vanishing

with t unless a is zero : and that, if a = 0, there exists a simple infinitude of regular

integrals satisfying the equations. We proceed, not in the first place to the complete

theorem but only to a partial theorem, by shewing that when a is not zero, there

exists a simple infinitude of non-regular integrals vanishing with t, these integrals being

regular functions of t and t log t : and when a is zero, these non-regular integrals do

not exist.

To establish this result, we proceed from equations

„ dx n , ^
t-r- = <TX + at+0x (x, y, t)

t-£
= Ky+bt + 3 (x, y, t)

where a is taken to be a real positive quantity, a little less than 1 initially and

equal to 1 ultimately : and, as the explicit forms of 6X and 82 are required, we

suppose
X (W, y, t)=tl.^aijp

xi

yHP,

(i+j + p>2).

2 {x, y, t)
= X2,Zb

ijpxytP,

With these equations, we associate a set of dominant equations. Let

then the dominant equations are

t^ - <jX + At m 8, (Z, F, t)

dV
t
a

^-KY±Bt = B
i {X, Y,t)

where
®X (X, Y, t)

= 2Z2A
ijp
Xi

YHP\
@2 (X, Y, t)

= 222 B^X'YHp)
'

If k be real, not being a positive integer, we choose that sign for the term + Bt,

which makes
B
K-l

a positive quantity ;
if k be complex, we choose a term + Bt, such that

B

is a real positive quantity and |£|>|6J.

1
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By the theorem of § 10, we know that solutions exist, which vanish with t and
are expressible as regular functions of t and f. Let a new variable 6 be introduced,
defined by the equation

and, in the solutions indicated, replace V by t+(l-a)0; they then become regular
functions of t and 6, expressed as converging power-series. To obtain their coefficients

in this form directly, let

X = Z2amn 0™t»,

FVXS ****»,

where aoo=0, 600 =0; then since

we have

and

•S-r*-*

7 TT

t
-^

= 22am„ [nd
m

t
n + m&m-nn (ad - t)}

= 22 {(« + am) 0"V» - m^m-1
<"+1

}
amn ,

dY
t
-j-

= 22 {(n + am)
m

t
n - md™- 1?*1

}
bmn .

dt

Substituting in the differential equations and comparing coefficients, we have

(n + am - a) amn - (m + 1) am+h „_, =Hmi J

(n + am -
k) bmn - (to + 1) bm+li „_! = JTm, J

'

where i?mjn and Km>n are sums of terms of the form

-" mn = 2,-"AijpQ'm ln l
• • • ^"rmm "miV • "N0V >

and similarly for Km<n ,
such that

Wj + . . . + mi + to/ + . . . + to/
= to! >

^ + «! + ...+ «f + n/ + . . . + n/ = w J

iV being a numerical quantity, representing the number of integer solutions of the last

two equations.

As regards the initial coefficients, we have the following expressions.

For to + n = 0, so that to = 0, n = ; then

aw = 0, bM = 0.

For to + m = 1, so that to = 1, w = 0: and to = 0, n = l; then

. Ojo = 0, (a-
-

k) bw = ;

(1
-

a) a01 -a10
= —A, (1

-
K)b01

- bK = + B ;
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so that

0^0 = (1 -a-)a01 + A, (l-ic)bM = + B, &,
= 0;

thus a01 is undetermined and therefore can be taken arbitrarily, say = C, where C is positive.

Thus am , Oio, &oi are positive.

For to + n = 2, so that to = 2, w = : to = 1, «. = 1 : and to = 0, n = 2
;
then

0*^20 = -"200^ 10 I

(2cr-/c)620
= £200^,0

'

Ctll ""&20 "^ ^-"-200^10^01 T" -^110^10^01 ~T -"-101 ^10
|

(1 + o- - /c) 6n
-

26a, = 2-Bax,aI„a i + -Suo a]o6 i + -Bioi^n

(2
—

ff) Clo2
—

tin = ^20o<;t
2
oi + -4 noCfoi Ooi + -"oa)0

2
oi + -"101&01 + -^on^oi +A

(2
-

k) bm - bu = Bm a"M + j5uo Ooi601 + B^b^

I T -"-101 ^01 H" -"011 "01 + -"002
|

I
+ -"101 ^01 + -"011 Ooi + -t>002 J

And so on, taking in succession the groups of terms . for increasing values of m + n, and

taking, in each group, the equations for increasing values of n beginning with zero.

The result is to give
O'mn = "mn > "mn = <P?nn >

where 6mn and
</>,„„ are sums of a number of terms; each term is a quotient, the

numerator being a positive integral function of the coefficients of ff1 and 2 and

containing a10
m as a factor, and the denominator being a product of quantities of the

form
n + am —

a, n + crm — k.

It can be proved, by an argument precisely similar to that in Jordan's Cours d'Analyse,

t. iii, § 97, that the number of quantities entering into the denominator product for

each of the terms in 6mn and
<f>mn is

< to + 2w — 1.

On account of the theorem of § 10, establishing the existence of the integrals as regular

functions of t and V, it follows that the series

converge absolutely.

Now proceed to the limit in which a increases to, and ultimately acquires, the value

unity ;
then 6 becomes — t log t, the differential equations become

*W~ X + At = ®i(X,Y, t)

dY
t

t̂
-KY±Bt = ®2 (X,Y,t)

and the integrals change to

2'2la'mn0»t
n

, Xlb'^&^P,

where a'mn and b'mn are the values of amn and bim when a is replaced by 1.



DIFFERENTIAL EQUATIONS. 71

In ffmn ,
let T be any one of the terras, and let T' be the value of T when <r is

replaced by 1. As regards the numerator in T, it is the sum of a series of positive

quantities: and it is unaffected by the change of <r, except that aw is replaced by A,

that is, by a diminished quantity; hence the numerator of T' is less than that of T.

As regards the numerical denominator, each factor n + crm — cr is replaced by n + m — 1,

which is a greater quantity than the factor it replaces, unless m vanishes
;

but when

m = 0, then
n — a

n-l <2-<r,

because then n > 2. Also every factor n + crm — k is replaced by n + m — k
;

the imaginary

portions (if any) of these two are the same, but the real part of the new factor is greater

than that of the old except when rn = 0, and then they are the same. The number of

factors in the denominator is not greater than m + 2n — 1 : hence

IT
n + <rm — a n + crm — k

\

n + m—1
"

n + m — k
^ (2

- Cr)
m+m-1

< (2
-

crf>
n+m

.

The changes made have diminished the numerator of T\ thus

n + crm — cr n + crm — k

T <n
|

n+ffl-1 n + m — k

< (2
-

cr)
2m+2'1

.

Remembering that mn is a sum of terms T and bearing in mind the character of T,

we have

< (2
-

<r)
2m+2m

.

Similarly
b'v

<(2-crf

Now the series

22am„^P, SSfcrnnfl"**"

converge absolutely for a finite region round the origin. Let this be denned by \t\<r,

\d\<s; and let Mu M2 be the respective maximum values of the moduli of the series

within that region. Then

and therefore

Mx

0"<nn <
smr„
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Consequently the series

22a'mn 0™«", 22b'mn m
t
n

converge absolutely for a finite region round t = 0.

If the original equations

t y- = x + at + 61 (sc, y, t)

t-£=icy
+ bt + d2 (<c,y,t)

possess integrals vanishing with t in the form of regular functions of t and t log t, these

integrals may be assumed to be

y = 22gmn m
t
n
\'

when substituted, they must satisfy the equations identically. Choose fm so that

I/.I-G

where is the arbitrary constant in the integrals of the preceding equations.

When the relations that arise from the comparison of the coefficients are solved

so as to give fmn , gmn ,
it is easy. to see that the same results are obtained as would

be given by changing, in a'mn and b'mn ,
A into —a,B into + b, A

iiP
into a,^, and

Bijp into
bijp,

for all values of i, j, p. Bearing in mind that

\a\
= A, \b\^\B\, \aijp \=A ijp , \byp \

= B
ijp ,

it is manifest that the real positive quantities \a'mn
\

and \b'mn \

are superior limits for

|/,„„| and \gmn \, that is,

Jmn I

^
I
O an

|
>

| 9mn \

<
|

O mn
\

.

But the series

22a'mn0^n
, 2S6'mn^i«

converge absolutely : hence also the series

also converge absolutely, and the equations accordingly possess integrals as stated in the

theorem.

Note. If a is zero, then a'w = ; a'%,
=

0, a'u = ;
and it is immediately obvious

that

^ mn = "i

for all values of m > and all values of n. Similarly

P mn == ^>

for the same combinations of m and n. In this case, 6 disappears entirely from the

expressions

so that the integrals become regular functions of t, which are known to be solutions

of the equations when a = 0.
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13. The main theorems as to the equations

At
t
Tt

=
ti + at +A(ti, t»t)

t-^
= *t2 + bt+f2 (t1 ,t.2 ,t)

so far as concerns the non-regular solutions, are :
—

When a is not zero, so that the equations do not possess any regular solutions that

vanish with t, they possess non-regular solutions that vanish with t. If k have its real

part positive, not itself being a positive integer, there is a double infinitude of such solutions;

they are regular functions of t, t" and t log t. If k have its real part negative, there is

only a single infinitude of such solutions ; they are regular functions of t and t log t.

When a is zero, so that the equations possess a single infinitude of regular solutions

vanishing with t, then if k have its real part positive, not itself being a positive integer,

there is a single infinitude of non-regular solutions vanishing with t which are regular

functions of t and t
K

; but if k have its real part negative, the equations possess no non-

regular solutions vanishing with t.

These theorems can be established by analysis and a course of argument similar

to those which have been adopted, wholly or partially, in preceding cases. The actual

expressions for the integrals, when a is not zero, are

t,
= a6 + At + ZZ2glmn ?0m t

n

j

t2
=
ji-

1 + bz+ tt%hlmn ?0»*»j

'

where the summation is for values of I, in, n such that I + ra + w>2, the coefficients

A and B are arbitrary, £ denotes t" and denotes t log t.

When a is zero, all the coefficients gtmn ,
hhnn for values of m>0 vanish; so that

disappears from the expressions for tx and t2 . The resulting expressions then can be

resolved each into the sum of two functions : one a regular function of t which

involves A, the other a regular function of t and f which involves B, and vanishes

when 5 = 0.

It may be noted that a slight degeneration occurs in the solutions when k is the

reciprocal of a positive integer; a regular function of t and t" is then merely a

regular function of t".

When the equations in their first transformed expression are

t
-j-

= mu + at + (u, v. t)

r
«
j| -£»

+# + * (»,M)I

the general results are the same as above; the value of k is f-m+1, and the

critical condition, which is represented by a = 0, is stated at the end of § 2.

Vol. XVTII. 10
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Case I (c) : the roots of the critical quadratic are unequal, and both

are positive integers.

14. Denoting the roots by m and n, of which m may be taken as the smaller

integer, the equations can be transformed so as to become

t
-j

= mu + at + 6 (u, v, t)
|

dv

t-j
= nv + fit + </> (w, v, t)

They can be modified by substitutions similar to those adopted in the preceding case
;

such substitutions can be applied m — 1 times in succession, leading to the forms

t-jt

= k+at+Mh,h,t))
r >

tj^Kts+bt+fsit^U, t)j

where k, = n—m+l, is a positive integer greater than 1, the integrals ^ and t2 are to

vanish with t, and the functions f, f are regular functions which vanish with their

arguments and contain no terms of dimensions lower than 2 in tit <2 , t combined.

It has already been proved (§ 3) that the equations possess no regular integrals

vanishing with t, unless two relations among the constants be satisfied
;

one of them

is represented by a = 0, the other by (say) (7= 0, where G is a definite combination

of a, b, and the constant coefficients in f1 and f. The theorem as regards the non-

regular integrals is :

The equations in general possess a double infinitude of non-regular integrals which

vanish with t ; they are regular functions of t, and t log t. If both of the conditions

represented by a = 0, (7 = are satisfied, the equations possess no non-regular solutions

vanishing with t: they are known to possess a double infinitude of regular integrals

which vanish with t.

The method of establishing this theorem is similar to that for the case when k

is unity so that the critical quadratic has a repeated root. As that case will be

discussed later in full detail, we shall not here reproduce the analysis and the argument,
which follow closely the corresponding analysis and argument in that later discussion.

It may be added that the conditions for the equations

.
du

. n , .^
t -rr = mu + at + (u, v, t)

dv
t -j- = nv + fit + <b (u, v, t)

represented for the modified forms by a = 0, (7=0, have already (§ 3) been given.
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Case II (a) : the critical quadratic has equal roots, not a positive integer.

15. It has been proved that, in this case, the original equations possess regular

integrals vanishing with t: and therefore, in order to consider the non-regular integrals

(if any) that vanish with t, we transform the equations as in § 6, and we study the

derived system

t
dt

=Ktl + ^ + ^2 ^" *2 ' ^

where fa and fa are regular functions of their arguments, vanish when ^ = 0, <,
= 0,

and contain no terms of dimensions less than 2 in tlt t2 , t combined. The integrals tf,

and tt are to be non-regular functions of t, required to vanish with t.

The non-regular integrals are given by the theorem :

When the repeated root £ of the critical quadratic has its real part positive, not

itself being a positive integer, there is a double infinitude of non-regular integrals vanishing

with t, these integrals being regular functions of t, t^ tf log t.

When the theorem is established, there is an immediate corollary :

If the real part of the repeated root £ of the critical quadratic be negative, then

the equations do not possess non-regular integrals vanishing with t; the regular integrals

possessed by the original system of equations are the only integrals that vanish with t.

The forms of the theorem and the corollary are indicated by proceeding nearly to

the limit of the theorems for the case of I (a) when the roots of the critical quadratic

are equal to one another. If £2
= £ + 8, where 8 is infinitesimal, then

(*.«**.(! +8\ogt+ ...),

so that a function of t, t(
>,

t& becomes a function of t, t(\ t('

log t
;

but further investi-

gation is needed in order to shew that, in passing to the limit, the functions under

consideration continue to exist. Instead of adopting this method of proof, we proceed

independently.

It is convenient to take

r-**, -v^tnogt.

If therefore integrals of the character indicated in the theorem exist, they can be

expressed in the forms

t^ttla^^t")

10—2
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and these values must, when substituted, satisfy the differential equations identically. Now

so that

tj (i;
l

r)

m
t
n
)
= (n + Zf + f»f) £Vre

i" - m^ l+l T
)

m-1
t
n

.

Hence equating coefficients of ^
l

r\
m

t
n on the two sides of both equations after substi-

tution of the assumed values of Z, and £2 , we have

{n + (I + m -
1) f )

aimn - ma^lt m+h „ = a'imn

[n + (I + m -
1) f )

6im„ - rnftn, m+1 ,
„ = 0aton + £ Imn)

where a';TO„, /8'(mn , being the coefficients of %
l

r)
m

t
n in fa and $2 respectively, are linear

functions of the constants in fa and fa2 ,
and are integral functions of the coefficients

ai'rrtri, bi'm'n', such that V < I, m'^.m, n'^.n, V + m' + n' < I + m+n.

Assuming that the real part of £ is positive but that £ is not a positive integer,

we see that no one of the quantities n + (l + m — l)f can vanish if l + m + n^2.

If I = m = n = 0, then a'imn = 0, ft'imn = ;
hence

<^ooo
=

"j

^000
= "^000 = "•

For values such that l + m + n=l, we have

. «MU = 0, that is, a io
= K,

aooi
= "i

. aim = 0, that is, a^ = -£
;

• &oio
= $ • aoio

= $-^>

. &ioo
= 9 tt100

= #-£

In order therefore to obtain finite values for the coefficients a and 6, we must have

K = 0, L = 0,

and then 6010 ,
6100 are arbitrary; that is, we have

^010
= "> ^001

= "> ^100 = "
)

"010
=

-O) "oo!
= 0, O100

= V.

To obtain the terms of dimension two in f, rj, t in ^ and t2 ,
we require the

explicit expressions of fa and <£2 : let them be

fa
= attx + btt.2 + cti> + e^2 + kt2

* + . . . ,

2
= aft, + #ft2 + 7<!

2 + e^f2 + k<2
2 + . . . .



DIFFERENTIAL EQUATIONS. TJ

The terms in tx and t2 of dimension one, obtained as above, are

t,
= 0, t2

= C£+Bv ,

so that, as far as terms of dimension two in fa and fa after substitution, we have

fa
= bt (Br, +CO+ k (Br, + CO2

,

fa = fit (Br, + C?) + * (Br, + <?£)».

Accordingly, for l + m + n=2, we have

£a» = fcfi», aon = bB, (2-%)am =
0,

Old = ^C, (1 + f) Olio
-

«020
= 2&SC,

£#200 = n^
j

^b<m = K& + 0am , bm-QB+ fam, (2- £)b(m =0am ,

bm = fiC+ 0ain , (1 + f) 6I10
- &020 = 6am + 2kBG,

^aoo = kC" + 0am ;

and therefore the terms in tt and t2 ,
of dimensions two in the arguments t, r,, t, are

, 2kBC+j&
£
C*? + 1+ g

fo +
1
^Y + 6(7# + 65^>

in ^: and

* +
JJ J^ +

\
K+

J) 7
7
>

2 + (P + Ob)CZt + (/3 + 0b)Br,t

+
1 r+?

+—
(Tttt
—

I**

in £2 . And so on.

The equations, when solved in groups for the same value of 1 + m + n beginning
with a zero value of I, and solved in successive groups for increasing values of

l + m + n, give values of «;,„„, b!mn which are sums of integral functions of the literal

coefficients of fa and fa, and of the arbitrary coefficients B and C, each such integral

function being divided by a product of factors of the form n + (l +m— l)f. Let the

values thus obtained be

Q>lm,n.
= *!mm "Imn — Hlmn-

As in § 9 for the former case, it can be proved that

for all positive integer values of p, so that there are no terms in tj or in t> involving

t alone
; every term involves either £ or r, or both f and r,.
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To establish the convergence of the series thus obtained, we proceed in two

stages as in the corresponding question (§§ 10, 11) when the roots of the critical

quadratic are unequal.

Extract from t
t

and t2 all the terms which are free from t? ;
as each of them

involves f, their aggregate can be taken in the respective forms fp, £r; and the

remaining terms then have r) for a factor, so that we may write

£!
=

£/>
+ 7?®,,

h = ?t + »?®a .

It will be proved, first, that solutions of the form
l

exist, where p and r are regular functions of t and f, p vanishing at t = and r

having an arbitrary value there : so that the functions involve one arbitrary constant,

and there consequently is a simple infinitude of such solutions.

Then substituting

it will be proved that functions <B>, and ©2 exist, so that they are regular in their

arguments f, rj, t, they involve an arbitrary constant C, O, vanishes at t = and ©2

acquires the value C there. Thus for an assigned value of B, these will represent another

(and an independent) simple infinitude of integrals.

In each stage, the details of the analysis follow the detailed analysis of the

former case somewhat closely : it therefore will be abbreviated for the present purpose.

16. Substituting tl
=

^p, U = %r in the equations for tx and t,, we find p and t

determined by

«J-*k(p.T. It)

tjt

= eP + +AP , r, {; t)

where the general character of
aJi-j

and
v|r2

is as before. If these are satisfied by regular

functions of t and f, their expressions

p=2-Zkmn^tn
,

must, when substituted in the above equations, satisfy them identically. Accordingly,

comparing coefficients of %
m

t
n on the two sides of both equations, we have

(n + m%)kmn = K'mn ,

(n + m^)jmn = J'mn + 0kwl ,
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where K'mn ,
J'mn are linear in the literal coefficients of p and t, and are integral

functions of kmV , jmv, such that m'^.m, n'^.n, m + ri < m + n. Also, from the form of

yJT}
and

yfr2 ,
K'm = 0, J'm = ;

hence we have

But jm is undetermined, and it can therefore be taken arbitrarily: let its value be B,

where B is any arbitrary constant.

When the equations for kmn and jmn are solved, in groups for the same value of

m + n and in succeeding groups for increasing values of m + n, they lead to results of

the form

™mn == Kmn > Jmn ~ *"mn >

where Kmn ,
imn are sums of integral functions of the coefficients in ^ and

i/r2 , divided

by products of factors of the form n + m£.

The dominant functions are constructed as before. Let e denote the least value

of |w + m£| for integer values of m and n, so that e is a finite (non-vanishing) quantity;

and let |0|
= ®, \C\

= C. Also, let a common region of existence for the functions ^
and Vs De given by the ranges |£|<r, 1 4T| < »*i» \p\^h, \r\^k; and within this region

let M be the greatest value of \^\ and ^l. Then consider functions P and T, defined

by the equations

<=P =
M
n
hri

eT = eC' + ®P +

k?\

M

M
I-'-'

r

I
1 >-© krj

M
I- 1

-M^-M n
hri krx

Clearly

that is,

(e + &)P=e(r-C),

(T-C).P =
e + @

The value of P is a root of a cubic equation which, when t = and f= 0, has

no term independent of P and has a non-vanishing term involving the first power of

P : so that it has one and only one root vanishing with t and f, and this root is a

regular function. To obtain its expression without actually solving the cubic, we take

P = 22iTm„rP,

where KM = : we expand the right-hand side of the dominant equations as a regular

function of t, £ P, T, and compare coefficients. The analysis that leads to the values

of Kmn ,
im„ can be used to obtain the value of Kmn , by making appropriate changes

similar to those in the earlier corresponding case. These changes are now, as was the

case before, such as to make
<K„ <Km
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aud therefore as the series

converges, the series

also converge. The existence of the integrals, connected with the first stage, is therefore

established.

17. Now writing
t1
=

^p + V®1 ,
£2 =£t + i?02 ,

where p and t are the regular functions of t and f as just determined, the equations

for @] and @ 2 are

where J\ and f2 are regular functions of their arguments, vanishing when ©, = and ®2
=

;

the coefficients of the first powers of @j and @2 vanish when £ = 0; and any term,

involving ®1 and @2 in the form ®/©./, contains 17*+*-' as a factor.

The method of proof and the general course of it are the same as before (§ 11).

The regular functions of f, tj, t, which are the formal solution of the equations, are

proved to converge, by being compared with the functions which satisfy the dominant

equations

t*±> =. M M -M^-M***
era, <ra2

M
1 - i-*tfi-*Vi_s^

<raj \ era-J

M

-;)M
-M^-M^

<ra. acu

and are such that, when t = 0, £=0, t?
= 0, then <£>i is zero and 4>2 = [C|. There exists a

single quantity <!>!, satisfying these equations and vanishing with t, which is expansible as

a regular function of t, f, t\ in a non-infinitesimal region round t, the power-series which is

its expression being consequently a converging series within that region. And therefore

<J>2 , being given by

4)2 =|0| +
(l

+ ^* 1 ,

is also expressible as a regular function of t, f, 77 which, when t = 0, acquires the

value I CI.
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A comparison of the coefficients of £
l nm t

n in ©! and ©2 with those of the same

combination of the variables in <!>! and <I>2 is easily seen to lead to the inference that

the moduli of the former are less than the modulus of the latter; consequently the

former series converge and therefore integrals of the equations, defined by the specified

conditions, are proved to exist. Their explicit expressions, as power-series, are obtained as

in 8 11.

Case II (b) : the critical quadratic has a repeated root which is a positive integer.

18. Denoting the repeated root by m, the equations are

t-j7 = mu + <xt + 8 (w, v, t)

dv
t -r = ku + mv + /3t + <j) (u, v, t)

where the functions 8, $ are regular, vanish with u, v, t, and contain no terms of

dimensions lower than 2 in their arguments.

The equations can be transformed as before (§ 5) by the appropriate substitutions;

and this transformation can be effected m — 1 times, leading to new equations of the

form

At
t—^^ + at + eAtutt.t)

rlt

t ,- = Kti + ts + bt + 6s (t, ,t2 ,t)

where tx and U are to vanish with t; and 6U 62 are of the same type and properties

as 8, 4> iQ tne nrst form.

There are two sub-cases according as k is zero, or k is not zero.

19. First sub-case: « = 0. The equations can be taken in the form

t -77 = x + at + 8X {x, y, t)

tft
= y + bt +

8.Ax,y,t)\

the integrals are to vanish with t; and the functions 8U 82 are regular functions of their

arguments, which vanish when *-0, y = 0, t = and contain no terms of order lower

than 2 in x, y, t combined.

The integrals vanishing with t are defined by the theorem:

The equations possess, in general, a double infinitude of non-regular integrals vanishing

with t, which are regular functions of t and tlogt; and it is known that there are no

Vol. XVIII. n



82 Prof. FORSYTH, ON THE INTEGRALS OF SYSTEMS OF

regular integrals vanishing with t. If, however, both a = and 6 = 0, the equations do

not possess non-regular integrals vanishing with t; the only integrals vanishing with t

are the double infinitude of regular integrals which the equations are known to possess.

This theorem can be established, as in other cases, by the construction of dominant

equations and comparison with their integrals which actually are obtained in explicit

expression.

For this purpose, consider the equations

,dX
dt

t~-<rX + At = 222 A ijp
X1 YHr

where i +j + p > 2 in the two triple summations. The quantities <r and p are real, positive,

and less than unity : ultimately they will be made equal to unity. It follows, from the

theorem of § 8, that there is a double infinitude of integrals vanishing with t, these

integrals being regular functions of t, t", f.

Let two new variables and
<f>

be introduced such that

t°=t-(<r-l)0 + (a-iy<p,

t" = t-(P -i)d + (p-iT4>;

we easily find

t t̂
+d =

(<r + p-l)4> = acf>

where a and yS are constants which, when
/»
=

1, «"=1, are equal to 1 and respectively.

The regular functions of t, t", f are expressible in the form of absolutely converging

power-series ;
when V and f are replaced by their values in terms of 6 and

<f>,
the new

functions are regular functions of t, 6, <f>.
To obtain their expressions in this last form

directly from the differential equations, we substitute

X = %%S,hlmn t
l m

<f>

n

Y=222kimn t
t 8m

ct>

n

in the equations which are to be satisfied identically. Now

,dX_fd .did ^|\ 7*
dt ~Ydt

+t
dtd0

+
dtdcpj*

= 222 {(l + m + an) hlmn t
l 0™

<j>

n

- mhlmn t
l+i 0™->

<f>

n - nhtmn t
l m+1

(fr-
1 + 0mhlmn t

l 0™-> 0»+
1

} ;
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hence, comparing coefficients of t
l 6"1

(f>

n on the two sides, we have

(l + m+an- a) h lmn
- (m + 1) ht_lim+hn

-
(n + 1) /^,m_1>n+1 + (m + 1) £*,,„*.!,„_,

= a'imn .

Similarly

(l + m + an- p) lctmn
- (m + 1) ^_1|m+1 ,

n - (n + 1) ^,m_lin+1 + (m + 1) fiktim+lin_1
=/3W

Here a'jmn , $'imn are expressions which are linear in the coefficients AyP ,
B

iip respectively,

being an aggregate of terms of the form

JXl -aijp »(,«,«, ... huimm "V«i ,'n,'
••• "'h'm/n/t

-" l -"is) %, m, »,
••• 'HimiM "V"h'"i' ••" ^Vm/n'y

respectively; the subscripts are subject to the relations

wij + . . . + m; + m/ + . . . + m/ = m i

p + ^ + ...+ (,+ J/+...+ //
= /

and the numerical factor JV^ is the number of integer-solutions of these equations.

In particular, we have

"'000
= "> ^000

= "•

When l + m+n=l, the equations for the coefficients in X are

(1
—

<r) A100
— A io

= — -4
,

(1
-

CI") /%„
—

Ac! = 0,

(a
-

<r) AM1 + $hm = 0,

which are satisfied by
hm = (\

-
<r)h1W) + A

^ooi
= (1

-
<*) Km

and &100 is arbitrary.

When I + m + n = 2, the equations for the coefficients in X are

(2
—

(T) /l 20
—

"'011
= * 020

(1 + a - <x) A011 + 2/9^020
—

^002
= "'on

(2a
—

o") hm + /3A n = a'oo2

(2
—

<t) hlw
— 2hm — hm = a uo

(1 + a — a-) hm - hon + fihno = a 101

(2
— C) "200

—
"110

= a 200

11—2

and A™ is arbitrary. Similarly,
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The first three equations, when solved, determine hm ,
hou ,

hm ;
when the values of h^

and hou are substituted in the next two equations, they determine hno, h101 ;
the last equation

then determines the form of h^.

Similarly for the coefficients in Y.

For values of I + m + n > 2, the equations can be solved in a similar way. They are

solved in groups for the successively increasing values of I + m + n. In each group, say

that for which l +m+n=N (so that the coefficients Aj<m-„', ki mn'>
sucn tna*

V + m +n'^N-l,

are supposed known), the convenient method is to arrange the equations in sets, determined

by the values of I and in sequence according to increasing values of I beginning with :

in each set, the equations are arranged in sequence according to increasing values of n

beginning with 0. In each set, we use the equations in succession to express himn in terms

of hiiN_li0
and previously known coefficients and constants; when the first N—l equations

in the set have thus been used, the remaining equation, on substitution of the values of

hi,o,N-i, hlihN_i_lt then determines h
ity_i^ and so also the values of all the coefficients

hi, m,n, such that m+n = N—l. Likewise for the coefficients kimn .

And then, as the solutions are known to be regular functions of t, 8, <j>,
the series

222 h lmnmp, 222 A,,,,^^"

with the values of himn ,
k[mn which have been obtained, converge absolutely.

As regards the forms of the coefficients himn , kimn , they are the aggregates of positive

terms T. The numerator of each term T is the sum of a number of positive quantities:

it is an integral algebraical function of the coefficients A
ijp ,

B
ijp

: it is also an integral

algebraical function of ht+m+n , ki+m+n such that l + m+n=l. The denominator of the

term T is of the form

P + Qfr

where P is the product of factors of the types

l + m + an — cr, I + m + an — p,

and where Q is an aggregate of quantities, each positive and similar to P but con-

taining two factors fewer than P.

As regards the number of factors in P, being a part of a denominator in a term

T in himn or klmn , it can be proved, by an amplification of Jordan's argument quoted
in § 11, that this number

< 3/ + 2m + n.

It is known that, so long as a- and p are different from unity, the convergence
of the power-series is absolute: hence this will be the case when

<r=l-£, p = l-e,
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where e is a real positive quantity that can be taken as small as we please. Proceed
therefore to the limit in which a- and p acquire the value unity, so that e passes
from small values to zero. The effect is to give to and <p the values

d = -t\ogt, 4>
= y(\ogty;

to change the differential equations to the forms

t~ - X + At = ZSS^X'F^

.dY
dt

y\

t-4z -Y+Bt = SS2 5ft,Z'F^

and to change the integrals to the forms

x = fz?,h'lmn ti(- 1 logty* {i*(iog *)*}»

Y = 222*W (- 1 log t)
m
$t (log

2

}" J
'

where h'imn and k'imn are the respective values of himn and k!mn when <r=l, p = l.

It is necessary to compare the coefficients h\mn and himn : and likewise the co-

efficients k'imn and kimn . Let T be one of the terms in himn , as explained above: and

let T' be its value when a = \, p = 1. The effect of the change on the numerator is

to replace (l-a-)him + A by A, hm by 0, (l-p)km + B by B, km by 0, in every case

a decrease : and therefore, as the numerator is a sum of positive terms, the whole effect

on the numerator is to decrease it, that is,

numerator of T' < numerator of T.

As regards the denominator of T, in the form

P+Q/3,

the quantity /3 is of the second order of small quantities ; Q is an aggregate of a

limited number of products, each containing a limited number of factors; hence Q/3 is

of the second order of small quantities. Let P' be the changed form of P, obtained

from P by changing

l + m + an — a into I + m + n — 1,

and I + m + on — p into l + m + n — l.

Now l + m + an— <r —
(I +m+ n— 1)

= — (2n
—

1) e,

a small quantity of the first order unless n =
;

so that, unless n = 0,

I + rn + an — <7_.
l+m+ n-1

~ ~ y'
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where 7 is a positive small quantity of the first order. When n = 0,

I + m - o- - (I + m -
1)(2

-
a) = e(2

-
I - m),

so that as I + m > 2, we have

l + m-a
l + m-1 ' '

where 7' is a positive small quantity of the first order, unless I + m = 2, and then 7'
= 0.

Hence
P' 1 1= n —— nP I-7 2-0--7'

1>n
2-0-

1

(2
-

a-y+^m+n
•

the difference between the two sides being a small quantity of the first order. Also

P'

is a small quantity of the second order, that is, a quantity of an order less than the

foregoing difference; consequently

P' 1

P + Q@
>
(2- a-f

+mi+n "

The changes depreciated the numerator of T into that of T ': hence
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and let Mlt Mt be the maximum values of the moduli of the series respectively within
this region; then

h
M^

h <
M

Mmn *~-

consequently

yd™ m~ n '

11 Imn S ""

|(2 -cr)»J \(2-a

* ton <

)
3

) 1(2 -^);

(2-<r)«j 1(2 -ery| [(2 -<r>

Hence the series

converge absolutely for values of t such that \t\<r.

The existence of integrals of

dec

t-^
= x + at + 222 ai^yiW

*
jg
- y+ i*+222 kjpxiyip

can be deduced from the preceding result, by choosing

|

a
|

= A, \b\
= B,

| a.#p |

= AyP ,
\ byP |

=
B{jP ,

as the quantities A, B, A iip , ByP for those dominant equations. The expression for the

integrals is

where Htmn is derived from h'imn ,
and Ktmn from k'imn , by changing J. into -a,

B into -
6, A ijp

into aiA„ and 5^ into b
ijp

. The effect of these changes is to give

I
-"imn

I

^ ™ Zmn?

!

-"• Imn
I

^ * Imn j

and therefore the series for x and y converge absolutely.

The actual values are

x = at log t + Cjt + 222 Himn t'0
m

<l>")

y = bt log t + 04 + 222Klmn #9"4i*\
'

where = -<log£, </>
= |£ (log £)

s
,
the summation is for values of I, m, n such that

l + m + n>2, and the coefficients Cu G2 are arbitrary constants.
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But the formal expression is more general than the actual value. The equations

determining the coefficients are

(l + m + 1l- \)Himn — (m + 1) Hl-i t m+1, n
—

(«• + 1) #1, m-1, »+l = Elmn)

(l + m + n-1)Klmn -(m + l)Ki. 1>m+l!n -(n + l)Kti m_h n+1 = F^J
'

with
-" 100

= ^1 > "oio = — a >
H 001

= 0,

-*£ 100
=

t/j >
A 010

= — O, Ajd, = 0.

It is clear that, when l + m + n = i

2,

Elmn = 0, Flmn = 0, if n=l, 2;

hence 2?&»», -£&»„ both vanish for l + m + n=2 if n = l, 2.

Thus for I+ m + n = 3,

^ta. - 0, Flmn = 0, if n = 1, 2, 3
;

hence also .#&„„, Kimn both vanish for J + wi + w = 3 if n=l, 2, 3. And so on: all the

coefficients Himn , Kimn vanish if

n > 0;

that is, the quantity <f>
does not actually occur in the expressions for x and y which

accordingly are regular functions of t and t log t.

The theorem is therefore established.

Note 1. Any term in x and y is of the form

Ktm (t\ogt)
n

,

that is, Ktm+n (log t)
n

;
and therefore the index of log£ is never greater than the index

of t.

If, however, the equations were

dec

t^=x+at + ctlogt+ S22Sa^9 xytP (t log tf

t-£
= y+bt + c'tlogt + 2222b

ijpq afykf (t log if

where i+j + p + q^2 for the summations, then the values of x and y satisfying the

equations are

x = - \ct (log ty + ctf log t + Cj + 222Hlmn t
l

&>^
n

\

y = -\c't (log if + bt log t+C2t + 222Klmn t
l6m

4>
n

)

'

where t, 6, <p have the same values as above, and the summations are for values of
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I, m, n such that l+m + n>2: and the coefficients Hlmn , Klmn are determinable as

before. Any term in x is

Htl+m+n (log t)
m+in

,

that is, the index of log t is not greater than twice the index of t.

Note 2. If a vanishes but not b, the solutions are still non-regular functions of

t; likewise if b vanishes but not a. In these cases, it is known that no regular integrals

vanishing with t are possessed by the equation.

If a = 0, 6 = 0, then Hlm = 0, Kim = 0, if m ^ 1 : that is, t log t disappears from the

expressions for x and y, which then become regular functions and are the double

infinitude of regular integrals that vanish with t. In this case, the regular integrals

are the only integrals vanishing with t that are possessed by the equation.

20. Second sub-case: k not zero.

The theorem is:_

The equations possess in general a double infinitude of non-regular integrals vanishing

with t which are regular functions of t, t log t, ^t (log if ; and it is known that there

are no regular integrals which vanish with t. If however a = 0, then the integrals can

be arranged in two sets; one is a simple infinitude of non-regular integrals vanishing

with t which are regular functions of t and tlogt; the other is the simple infinitude of

regular integrals vanishing with t which the equation is known to possess. (It is necessary

that the constant k be different from zero : otherwise some of the coefficients in

the second set are infinite unless b also is zero, in which form we revert to the first

sub-case already considered.)

The method of establishment is similar to those which precede : it need therefore

not be repeated after the many instances of it which already have been given.

The initial terms in the integrals of the equations as taken in § 15 are

t1
= ad+ At+ ...,

U = Ka<j> + (kA + b)0 + Bt+ ...,

the unexpressed terms being of higher order in t, 6, <f>:
here A and B are arbitrary,

= t log t, and
<f)
= ^t (log t)

2
. Any term in the expansion of t) or U which involves

<j>

contains k in its coefficient; the disappearance of the terms in
<f>

from the integrals

in the first sub-case is thus explained, for k then is zero.

Concluding Note.

21. Some sub-cases still remain over from Case I (a), when the roots ^ and £, of

the critical quadratic do not satisfy the conditions that (§ 8) prevent some one (or

more) of the quantities

(X- l)&+tf2 + v, Xfc+0»-l)fi + »'
)

Vol. XVIII. 12
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from vanishing for integer values of X, ft, v such that X + /j, + p > 2. The real parts of

fn & are supposed to be positive.

The instances that can occur are obviously for \ = in the first set and /x
= in

the second set
;
both are included in the form

£ = fir) + v,

where £ and rj are the roots of the quadratic, and fi + v^2. The cases ^ = 0, /a
=

1,

have already been discussed. For the remaining cases, we have the theorem : The

double infinitude of non-regular integrals vanishing with t are then regular functions of

t, P, #"'
+ "

log t, where fi and v are integers. It can be established in the same manner as

the similar theorems in the preceding sections.



IV. Ueber die Bedeutung der Constante b des van der Waals'schen Gesetzes.

Von Prof. Boltzmann und Dr Mache, in Wien.

[Received 1899 August 14.]

In dem Buche von Professor Boltzmann "
Vorlesungen iiber Gastheorie, II. Theil

"

wurde die van der Waals'sche Formel aus der Vorstellung abgeleitet, dass die Gasmolekiile

Anziehungskrafte auf einander ausiiben, deren Wirkungssphare gross ist gegen den Abstand

zweier Nachbannolekiile. Der Fall, wo diese Annahme nicht mehr zutrifft, wurde in

demselben Buche auf Seite 213 kurz behandelt. Es zeigt sich, dass dann Erscheinungen,
wie sie bei der Dissociation zweiatomiger Gase vorkommen, nicht eintreten konnen, falls

die Anziehungskraft gleichmassig nach alien vom Atomcentrum ausgehenden Richtungen
wirkt. Die an jener Stelle abgeleiteten Formeln konnen aber benutzt werden, um die

Zustandsgleichung zu entwickeln. Es wurde dort die Annahme gemacht, dass die daselbst

mit x bezeichnete Grosse constant ist. Lassen wir diese Annahme fallen, so tritt an

Stelle der Formel 233 allgemein der Ausdruck

J ITn- V

Es wird also jetzt angenommen, dass die Trennungsarbeit von der Tiefe abhangig ist,

bis zu welcher das Centrum eines zweiten Molekiils in den kritischen Raum des ersten

eingedrungen ist. Dagegen soil zunachst der Fall dahin vereinfacht werden, dass die

Anziehungskraft innerhalb dieses kritischen Raumes constant bleibt. Dann wird

/(r)-0<<r+ 8-r>

Schreibt man zur Abkiirzung 2hO = c und fuhrt die Integration durch, so hat man

* -
7$r l

ecS KC£r + iy + !]
- Kc~* + 1)

2 + i]l
=
| «.'

Es gilt aber allgemein fur ein Gasgemisch aus n^ und n? Molekillen verschiedener

Art die Beziehung

pV^^fa+nJ = MET( ni + n2 ).
o

12—2



92 Prof. BOLTZMANN und Dr MACHE, UEBER DIE BEDEUTUNG

Nennen wir a die Zahl der Molekiile bei vollkommener Dissociation, so ist

a = iix + 2tt2 = n, + icnf.

Hingegen ist die Zahl der freien Molekiile im betrachteten Zustand

»»*»+«,- —y~

Durch Elimination von n2 und Entwickeln der Wurzel findet man hieraus den Naherungs-

wert n = a—=- und folglich auch weiters
25

pV= aMRT g
— «.

Ist aber m die Masse eines Molekiils, p. das Atomgewicht, y das specifische

Volumen, endlich r die Ga.sconstante des betrachteten Gases, so ist M=—, -== = -
p, V v

endlich — = r und es wird auch

rT arT
r

V zv

oder wenn man auf den Ausdruck fur k zuriickgeht

r
v v2 &m '

v v2

Hiebei ist aber in v noch der von den Deckungspharen der Molekiile ausgefullte Raum

p = — . |7ro-
3 abzuziehen. Wir erhalten also als Zustandsgleichung

rT A'
P v — p (v

— pf

Zur Discussion dieser FormeL finde noch folgende Betrachtung Raum. Es ist, wie

man sich leicht durch Rechnung iiberzeugt,

2* 2 £f
e
a

[(co- + l)
2 + 1]

• -
[(c<r + S + l)

2 + 1]
= cVS % (cS)"-

1
1
- + ~2_ + _J£L (

LV
„=i [n ! n + 1! ra+2'J

I,
2S 2

(

8

)

Feme,- fat ^
,_-.

2TO=jrrY (c5
)-.|-

+^ +^.
|

1
Es gilt weiters die Beziehung—&-=zhC= — .

yp.

-1 /"is

Setzt man endlich —
. 27rcr

2S = a,
— = 8, -k = e,m mr o

so ist auch p = — . iira3 = 2aer m 3 3
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und es lasst sich die obige Zustandsgleichung in der Form schreiben:

Die Constanten dieser Gleichung haben folgende Bedeutung:

Es ist a gleich dem halben im Volumen der Masseneinheit vorhandenen kritischen

Raume,

fir » .— -

gleich dem Potential der Anziehungskraft auf der Oberflache der Deckungs-

sphare,

endlich e = ~ gleich dem Verhaltnis aus dem Durchmesser des Molektils und der

Distanz, auf welche die Anziehungskraft wirkt.

Da die Gleichung 233, von welcher wir ausgegangen sind, voraussetzt, dass die

Anzahl der Tripelmolekule gegen die Anzahl der Doppelmolekiile verschwindet, so ist auch

die obige Gleichung an die Voraussetzung gebunden, dass die Abweichungen des Gases

vom Boyle-Charles'schen Gesetze noch klein sind. Es darf also auch das letzte Glied unserer

Gleichung, welches ja den Innendruck darstellt, nicht iiber einen gewissen Wert hinaus

wachsen. Dies wird um so weniger der Fall sein, je grosser e ist. Aus den Versuchen

von Arnagat und Andrews iiber die Compressibilitat des Kohlendioxyds berechnet sich e

fur dieses Gas zu ungefahr 100. Nach dieser Vorstellung scheint also der Anziehungs-

bereich sogar noch relativ klein zu sein gegen den Durchmesser des Molekiils.

Wir haben bisher unsere Zustandsgleichung abgeleitet, indem wir fur f(r) ein

bestimmtes einfaches Abhangigkeitsverhaltnis einfuhrten. Lasst man f(r) ganz will-

ktirlich, so ergibt sich leicht, dass dies den Typus der Zustandsgleichung, auf welche

man kommt, in keiner Weise verandert.

rT A
Es wird stets p = -, r„ und es ist nur noch A von fir) abhangig.

v — p {v
— pf

J

Dies gilt freilich nur solange man die Anzahl der Tripelmolekule und der noch

hoheren Congregationen vernachlassigen darf. Ist dies nicht mehr der Fall, so werden

noch weitere Glieder hinzutreten, welche in ihren Nennern das v — p in der dritten,

vierten und hoheren Potenzen enthalten. Es ergibt sich dann fur p eine Potenzreihe,

wie sie ahnlich auch schon Herr Professor Jager von anderen Betrachtungen ausgehend

aufgestellt hat. Leider begegnet die Auswertung ihrer weiteren Coefficienten kaum zu uber-

windenden Schwierigkeiten.



V. On the Solution of a Pair of Simultaneous Linear Differential

Equations, which occur in the Lunar Theory. By Ernest W. Brown,

Sc.D., F.R.S.

[Received 1899 July 14.]

In the calculation of the inequalities in the Moon's motion by means of rectangular

coordinates a certain pair of differential equations is continually requiring solution. The

left-hand members are linear and always the same; the right-hand members are known

functions of the independent variable—the time—and vary with each class of inequalities

considered. It has been the practice to obtain the required particular integral by assuming
the solution (the form of which is known) and then to determine the coefficients by
continued approximation. This method is troublesome to put into a form which a com-

puter can use easily and is besides peculiarly liable to chance errors
;

a large number

of processes would have to be learnt before the computer could proceed quickly and

securely. The main object of this paper is to put the solution into a form which will

avoid these difficulties, but I believe that some of the results may be found to be of

a more general interest. Further, the question of the convergence of the series used

to represent the coordinates in the Lunar Theory may be somewhat narrowed. In fact

it being granted that the series forming the ' Variation
'

inequalities and the elliptic

inequalities depending on the first power of the Moon's eccentricity are convergent, it

is not difficult to demonstrate, by means of equation (14) below, that all the terms

multiplied by a given combination of powers of the eccentricities, inclination and ratio

of the parallaxes, that is, all the terms with a given characteristic, form a convergent

series.

The equations to be considered are

t-™t+L* +L'y= R >
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where
T T"

j,
are of the forms 2»^

C
?
S

(2i + l)(ra-0(£- £„),

R, cos

R ',
of the forms 2,^ {i (t

- 1 ) + t (t
-

1^} (n
-

n'),sin

t
, ti, t, w, »', q t being known constants, and i taking all positive and negative integral

values; t is either an integer, in which case ^ = <
,

or is incommensurable with an

integer.

The corresponding particular integral required is, in general,

x m Pi cos . _ _
y £> i sin

' v 7

If we substitute this solution in the differential equations and equate to zero the

coefficients of like periodic terms, we obtain an infinite series of linear equations with an

infinite number of unknowns. The series are assumed to be convergent and in most cases

the coefficients diminish rapidly as i increases. Nevertheless, it is frequently found

necessary to proceed as far as i = + 5, demanding the determination of about 20 unknowns

from the same number of equations.

In the determination of the latitude the equation

occurs; Llt R" are of similar forms to L, R', respectively. If zlt z2 be two particular

integrals of

it is known that the particular integral required is

z.C= zJz1 R" dt - s,
jz

2 R" dt,

where C is a constant given by
dz2 dzi

Tt~ Zi
~dl-

C = Zi-n-z*

I shall show in what follows how we may obtain a similar expression for the solution

of the simultaneous equations above, having a sufficiently simple form to be of use in

computations. Later the significance of the solutions is explained and certain exceptional

cases occurring in the Lunar Theory are treated. The results obtained have in fact been

used in the calculation of the terms of the third* and fourth orders in relation to the

eccentricities, the inclination and the ratio of the parallaxes.

* Mem. R. A. S., Vol. liii. pp. 163—202.
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In order that the series which occur may be all algebraical instead of trigonometrical,

we use the conjugate complexes u, s, where

u = w + yc, s= x — yi.

We also put
f = exp. i(n

—
ft') (t

— t ),

fe

df i(n-ri)dt'

n'm =
,, £(,

= () = <!.
n — ft

The generality of the results is not affected by the last supposition.

The simultaneous equations then take the form

(D + m)2 + Mu + Ns = A
)

(D - m)2 + Ms + Nu = A

where M, N are of the form Ipit?,

(1).

i' = 0, ± I,...
A is of the form 2p t £

2i+I+T + Ip'^ 1

'*, J

M=M.

The bar placed over a letter or expression denotes here and elsewhere that t has been

changed to —
i, that is, £

-1
put for £

To obtain the particular integrals of equations (1), it will first be necessary to obtain

four independent particular integrals of

(D + mVft + Mu. + Ns =
)

(2).

(D-my-s + Ms + JVu=0 J

Denote these integrals by

u=Uj, s =
Sj, j=l, 2, 3, 4,

so that if Qj denote an arbitrary constant, the general solution of (2) is

u = 1} Qj Uj, s = 1j Qj Sj, j = 1, 2, 3, 4.

By supposing the Qj to have variable instead of constant values we can then proceed

to find a particular integral of (1) and thence their general solution.

In order to make certain of the later arguments clear it is necessary to indicate the

manner in which the equations (1) arise.

The equations

D*u + 2mDu + lm*(u +s)-~=0,
2

v '

(us)-

D*s - 2m Ds + 1 m2 (u +*) - -^ = 0,
2 (us)*
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with their first integral,

Fa Du . Ds + ? m2
(u + sf + J~, = C,4 x

(us)*

admit a particular solution,

U = w = 2a* {*+* s = s = Sa_f £*-»,

containing two arbitrary constants
;

these constants are the quantities denoted by n, t

above. The coefficients a^ are functions of n and the known constants present in the

differential equations.

Put u = u + u1 ,
s = s + .

and, after expansion in powers of uu slt neglect- squares and products of these quantities.

Omitting the suffix, and giving proper meanings to M, N, the resulting equations

become those denoted by (2) above.

The first integral F=C becomes

dF dF n

If, however, we had deduced this first integral directly from (2), it would have been

<f>
= C, where C is an arbitrary constant. When the equations (2) are considered inde-

pendently the constant C must be retained.

Three independent solutions of (2) are known. In finding the principal part of the

motion of the lunar perigee Dr Hill* gave one of them, namely, u = Du
,

s = Ds
,
and

obtained the forms of the other two; the coefficients of the latter have been obtained

by myselff. It is therefore only necessary to find a fourth solution, linearly independent

of the other three, in order to obtain the general solution.

II.

The Fourth Integral of the Equations.

(D + myu + Mu + Ns = (3),

(D - m)
2 s + Ms +Nu = (3').

The known integrals may be denoted by

«,-2i«
/

<£*
+I"e

. «.-X(€_< F-*-« I (4).

u3
= 2 4 (2» + 1)a^+

\ s3 = 2i (2t
- lja.^

1'-1

,

* Acta Math. Vol. vm. pp. 1—36. t Mem. R.A.S. Vol. Lin. p. 94.

Vol. XVIII. 13
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If Qi> $2> Qs be three arbitrary constants, then

u=1
} QjUj, s = XjQjSj, j = l, 2, 3 (5)

is a solution of the equations. Owing to the introduction of Qlt Q2 , Q3 ,
we can consider

«!, ... s, completely known; c is a constant which is supposed incommensurable with

unity.

To discover the fourth integral, the method of the Variation of Arbitrary Constants

is used in the usual way, by assuming that

U.DQ, + u2DQ2 + u3DQ3
= 0.

By substituting (4) in the differential equations we find

Du, . DQ, + Du2 . BQ2 + Du3 . DQ3
= 0,

Ij{SjD*Qj+ 2Dsj. DQj -2mSjDQj) = (6).

Put u2Du3
— u3Du2 = a] , etc.

Then BQ 1 = DQ^BQs = Lt (suppose,
a, a2 a3

Substituting in (6), the equation for L may be written,

(2<xs)DL+2LD(£as)-L(ZsDa + 2m2<zs) = ((i'),

where 2as = ajS, + a2s2 + a3 s3 ,
etc.

The last term of this equation can be shown to be zero. Substitute ult Si and u2 , s2

successively in (3): multiply the resulting equations by s2 , Sj respectively and subtract.

We thus obtain

(D + 2m) (SaDi/j
- s1Du2) + (m2 + M) («,«!

- w2 Si)
= 0.

Also, treating (3') in a similar manner,

(D — 2m) (u2Ds! — v^Ds^) + (m
2 + M) («,*,

—
S^i) = 0.

The sum of these two equations is integrable and gives

s2Dui — u1Ds2 + WjDs, — sj)u2 + 2m (s2th
—

m^Si)
= Cu ,

where C12 is a constant. It should be noticed that this constant is not arbitrary since

the values of Wj, su u2 , s2 were definitely fixed, so that Cl2 may be treated as a known

constant.

Denote the last equation by
fu-On (7).

We find in an exactly similar manner

/jj
= C03 . /31

= ^31 ( ' )•

Multiply these three equations by a,, u2 ,
u3 and add. Noticing the meanings attached

to alt Oa, as ,
we obtain

ihCo3+ ua C31 + u 3C12
= 2 as.

Similarly = i^Df^ + u.2Df31 + u3Df12

= 2sDa + 2m$as.
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Substituting the last result in (6'), we find

which, on integrating, gives

h zas

Z= L"

CZasf (^Cn + UiCn + u^y
where L is a new arbitrary constant.

Thence & = (Q,)+Zoi>-' „ ^
"' —

, etc.,

in which (&) is a new arbitrary constant and Z)-1 denotes an integration, i.e. the operation
inverse to D.

If, finally, we now let Qx , Q2 , Q3 , Qt represent four arbitrary constants, the general
solution of (2) is

« = Qi «i + Q2«2 + Qsu3 +Qi ui ,

s = QiSt + Q2s2 + Q3 s3 + Qt8it

where ut
=WH

(^+^+ <^ . 3
= L 2, 3.

This result is true whatever particular solutions are represented by

W], 5j I W2 , ^2 • **3> ^3

as long as they are linearly independent. As, however, the expression for ut can be

very much simplified by using the values given earlier, I shall immediately proceed to

the special case under consideration.

It is easy to show that C31
= = C^. For, looking at the forms assumed, we see

that «i, Sj contain the factor {?, «2 ,
s2 the factor f

-0 and u3 ,
s3 have no such factor.

Hence fa has the factor J", f31 the factor f~
c
. As c is supposed incommensurable with

unity, the equations (7') are only possible if C31
= and C23

= 0.

Hence we have

m2Jm3
- u3Bu2 n-1 •«lDml-mlDm, UjDu^-i^Diii

M4 12 -Mji/ —
i- M2 xy +^8^ —

^
—

.

t*3 «3 U3

The first two terms of the right-hand side are integrable and become

Mo M,

«! M2
—

,W3 W3

that is, zero. Whence considering Cl2
* as absorbed in the arbitrary Qit we have

r._l fuiDu2 -Uo_Du1\
. .

M<
=^'( y J

(8) -

We may similarly show that

Si
= S>D \ i? J'

13—2
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III.

Although this is probably the simplest form obtainable for w4 ,
it is unsuitable for

calculation. The values of Wj, ... are all of the form

sum of cosines + 1 (sum of sines).

To adapt w4 to calculation it is best to express it in the form

u3 (P + Ql)

where P, Q are real. I shall show that

u3 V u» 1

= s,M a
-

u,s, .

^)
_1

( Cn sm - u,«2 /
2m t

Du3 _ Ds3\)

* UaS3
$

|m3*j U3S3 \ Ut 83 J)

Since /^ = =f31 and /, 2
= Clit we have

Cn _ Uifl3
—

Uxfw _ i fn_ _ _ UiDuy- UjDuj u^Dsj — u^Ds^ -+ s^Du^ - SjDih
* u3 s,

~
it3% u3s3 ut

*
211383

s, u2
—

«! s2 Du3 s1u2
— u1 $2 _ u 1Du2

— v2Diil

uss3 « 3 trA M,
a

s1 ui
— u1s„fDu3 Ds3\ «] m2

—
itj s2— m .

U3S3 V *'3 *3 / «3*3

V W3S, /

Submitting this to the operation D~ l and transposing we obtain the required expression.

It is easy to see that (9) is of the required form. For when we put
—

t, for 1, that

is, f
-1 for f, the expressions

«!, m2 , 8U s2 ,
i(3 ,

s3 ,
-D-1

,
D respectively

become s2 ,
su u2 , ult —s3 , —u3 ,

— D~ l

, —D;

the first term of (9) is therefore unchanged, while the second term simply changes sign.

Hence the first term is real and the second a pure imaginary.

IV.

It is necessary to examine the four solutions and especially the one last found a

little more closely. Write

«4=«s(-P + i>-1
-Pi).

The expressions (4) show that P and Pu being both real, will be expressible as sums

of cosines of multiples of the angle 2 (re
—

n')t. As P, contains a constant term B, D~l
P^

contains a term of the form iBt (n — n'), and therefore ut is of the form

u3 {iBt (n—n')+ a power series in f
2

).

It is therefore of the same form as u3 , except for the part

iBtu3 (n
—

n').



DIFFERENTIAL EQUATIONS, WHICH OCCUR IN THE LUNAR THEORY. 101

We saw earlier that the equations (2) admit of a first integral

and that this should be derivable from the integral

F=C,

of the non-linear equations when the former are considered as derived from the latter.

The constant C should therefore in this case be zero. It is easy to see that the constant

is zero when we substitute in
(f>

the solutions uu sl or w2> s2 or m3 ,
s3 . For the solution

ut ,
sit the constant takes the value C12 which is not zero. Hence though (w4( s4) belongs

to the linear equations (2) it plays no part in the non-linear equations from which these

were derived.

The solutions u^, sa and w2 ,
s2 are those used in developing the Lunar Theory; they

contain the terms dependent on the first power of the lunar eccentricity. It is necessary

to see why the solutions u3 ,
s3 and ut , s4 are not used in the development.

The particular solution of the original equations of which use was made was

11 = 11$ j S ==
8q ,

m

where u = 2^ f
2i+1 = 2tO< exp. (2i + l)(n- n') (t

- tQ).

If we add a small quantity Bt to t (which is an arbitrary constant of this solution)

the resulting expression will still be a solution. Expand in powers of Bt neglecting squares

and higher powers. The additions to w
> s will be

Bu = ~ Bt = -Du„. Bt
,

Bs = ^St = -
Z>s„ . Bt .

ot ot

These values when substituted for u, s in (2) must satisfy them independently of the

value of S*o- Hence u = kDu, s = JcDs is a solution obtained merely by altering the arbitrary

t„ and is therefore unnecessary for the development of the Lunar Theory.

The other arbitrary constant in u is n, and the coefficients at are functions of n. If

we make a small addition Bn to n and proceed as before we see that

UmA S-k-°
an on

is a solution of the linear equations (2). It is only necessary to identify this with ut ,
st .

The forms for both are evidently the same. For we have

duo

dn
m 2,

j§2
+ (2»+ 1 ) {t

-Q
on\

exp. (2» + 1) (n
-

n') (t
- 1 )

= 2i
dp exp. (2t + 1) (»

-
»') (*

- Q +(t- to) Duo.
on

The terms with t as factor agree (t, was put zero in the expression for ut) when

the proper constant factor is introduced, and the remaining parts are of the same form.

As no linear relation can exist between the first three solutions and either of the forms
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for the fourth solution, these two forms must be the same except as to a constant

factor. Hence

This relation is a somewhat remarkable one. In investigations where the arbitrary

constants are varied—and there are many such—we have a means of obtaining ^— , Jf-

(which are the most troublesome to find) when the numerical value of the ratio n'jn has

been used in finding x, y. A direct proof of this relation is desirable. This and the

theorems which I have given elsewhere* are probably particular cases of some much more

general theorem. Thus, of the four integrals of the linear equations two only are required

for the development of the lunar theory, the other two arising from additions to the

arbitrary constants in the particular solution of the original equations.

V.

. Having obtained the solution of

(D + m)
2w + Mu + Ns = 0,

(D - m)
2s + Ms + Nu = 0,

in the form w = 2Q/?tj, s = XQjSj, j
= l, 2, 3, 4,

the next problem is to find the solution of

/ (D + mfu + Mu + Ns = A,

(D - m)
3s + Ms + Nu = A,

where A, A are functions of the time.

Following the usual method of varying the arbitraries we have

XDui.DQ}
= A, -ZDsj.DQi^A) (lQ

2w,DQ, = 0, 2*,Z>Q,
= 0j

These must be solved in order to find the variable values of the arbitraries. The only

difficulty is to find these values in forms sufficiently simple to be of use.

The expressions at the end of II. show that we can derive st/s3 from uju3 by putting

£
-1 for f and changing the sign. For m„ sa interchange as do w2 , s,, while D changes

sign: u3 becomes — s3 . Since

ut
= u3 (P + Qt,),

we have st = s3 (— P + Qc).

Hence uts3
— st u3

= 2u3s3P
= MoSj

—
11^2 (11)

by the result obtained in III.

* Proc. London Math. Soc. Vol. xxvm. pp. 143—155.
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Again, as the first integral obtained in II. is equally applicable to ut , s4 , we have

C34 =/s4= s4Bu3 + u4Bs3
— u3Bs4

-
SsDiti + 2m (stu3

- w4s3),

which, by inserting the expressions for ut ,
s4 just given, becomes

Cm = - 2 (saDuv
- UsDs3) P - 2m3s3DQ + 2m (s2«j

- w^),

or, using the values of P, Q obtained in III.,

C34 =-(S3 i)M3 -«3^3)
SlM2_Ml52

u3s3

1 — fl

+ (*iw2
—

u,s2)
(
2m + -~-^

-—) + 2m (s2Mi
—
s^),

whence C'M = - C12

We can show as in II. that C14
= 0=(724 .

Solving equations (10) we obtain

.(12).

where
A = Dttj, i)?^, Z)«3 ,

2)m4

jD«i, Bsit Ds3 , Bst

Mi, W2 , U3 ,
W4

Si, s2 ,
s3 ,

s4

Ai =

,
etc.

4, Bu3 ,
Du3 , Bu4

A, Ds2 , Ds3 , Bs4

0, W2 , M3 ,
M4

U, S2 ,
53 , 54

In the determinant A the first minor of Bu^ is

Bs2 {u3st
— s3ut) + Bss (w4s2

- s4 u2) + Bst (w^ — s2 u,),

= siJ34 T S3y 42 + S4/23 ,

Also, the first minor of Ds, is similarly

—
(w2 (7^ + UsCa + «4 Ca).

The other minors of the elements in the first two rows of A are similar, the suffixes

following a cyclical order. We have thus all the minors of the elements A, A in the

determinants A^.

Remembering that C3i
= — Cia and that all the other constants Cy are zero, we obtain

A, = -(s24+«2Z)C12 ,

A2
= (SiA+u^Cu,

A3
=

(stA + u4I) C12 ,

A4
= -

(s3A + u3A) C12 ,

and A = — (s3Bux
— sxBu^ - stBu3 + s3Bu4)

Cu .
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But the effect of putting £
-1 for f in A is only to interchange an even number of

rows and columns and therefore to leave A unaltered. Making this change in the last

equation we find

A = — (—u^Dsz + uiDsl
— utDs3 + stDu3) C12 .

Whence, by addition,

2A = — {fu
- 2m (s2 u,

- u2 Si)
—/M + 2m (stu3

— u ts3)} Cn

in virtue of (7) and (12). Hence A = -012
s
.

n- 11 * n Ai s2A + u2A
Finally, AQ, = -^

=
p^ ,

etc.

and Q 1
=— J)-1 (s2A + w2.4), etc.
C]2

And the particular integral corresponding to the right-hand members, A, A, is

0,
u = 7T

-
{i^D-

1

(s2A + u^A) — u2 Z)
_1 faA + «i-4)

S3

-WaD-1

^.*! + tt4.4) + t^D-1^^ +u3A)} (13),

S = ^ ^D-1
(s2-4 + W2.4)

— S2D_1
(Sj.4 + «i-4)

t/,2

-
SsZ)-

1

(s4J. + vtA) + s,!)-
1

(s,^. + u3A)).

It is easy to see that s is derivable from u (as it should be) by putting f
-1 for

£".
In

fact, the coefficient of wL in the first term is conjugate to that of u^ in the second term,

that of u3 in the third term is a pure imaginary and that of ut in the last term is real.

VI.

In the applications of this result to the Lunar Theory A is always an expression of

the form

2i?i r
<+T + Mi f

i_T
> » =0. +1. ± 2, . . .,

where t, qiy q( are known constants; A is derived from A by putting f
-1 for f. Thus A,

A are conjugate complexes whose real and imaginary parts are respectively sums of cosines

and sines. The corresponding particular integral should in general be of the same form.

Hence a difficulty arises owing to the fact that w4 , st contain t in a non-periodic form. I

shall now show that in general all the non-periodic parts disappear from the particular

integral.

Put

ut
= ut

' + iBu3 t (n
—

n'),

st = st

' + iBs3 t (n
—

n).
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Then ««', «,' are periodic. The sum of the third and fourth terms of (13) becomes
- MsZ)-

1

(st'A + m/Z) + «/£-' (s3A + u3A)
-

[u3D~' {(s3A + u3A) t) + u3 tD~' (s3A + u3A)] iB (n
-

n').

The first line of this expression is in general periodic. The second line becomes, on inte-

grating its first term by parts.

u3BD-*(s3A +u 3A).

The non-periodic part thus disappears.

When we perform the double integration involved in this last expression, we obtain

u3 {C + Cl i(n
—

ri)t + periodic part]

where C
, Ci are arbitraries. The terms containing C

, C, are simply parts of the comple-

mentary function and may be considered as contained in Q3u3 + Qtnt . The particular

integral may therefore be written

u=w [>! i)-
1

(s2A + iuA) - w2D- !

(«,A + u.A) + w/D-1

(ssA + u3A)

-
M..D-

1

\Si'A + iu'A - BD-1

(s3A + u3A)}] (14),

which is its final form.

VII.

In general this particular integral consists only of periodic terms. There are, how-

ever, two cases in which non-periodic terms may arise. If T = an odd integer, that is,

if A is of the form 2g
,

i £'
2,

'

+1
, the integrals multiplied by w4

' and ut might give rise to

terms of the form at where a is a constant.

In this case, s3A + u3A is of the form 2/8,- (f
21 —

f
_2i

) and therefore its integral will

be periodic. The last term of (14) is of the form

— u2D~l

(const. -I- power series in f
2
),

= — u3 (tk + k' + power series in f
2

),

k, kf being constants, the former definite and the latter arbitrary. The terms — u3 (tk + k')

may be written

It f j T> / t\ ') "* fCU$— k u,— ]u3 tBi (n — n) + u.\ «—; it + -tt—, n •' l 3 v ' ' >

Bi(n - n') Bi(n - n)

The first two terms of this may be considered as included in the part Q3 m3 + Qj m4 of the

complementary function
;

the last part is definite and periodic. Hence no non-periodic

part remains.

The second case of non-periodicity occurs when

A=-Ziqi l;*
i+1+° + 2iqi'l?

i+1-c
.

Here the first two terms of (14) may give rise to the non-periodic part

{uji (n
-

n') [s^A + u 3A] — u^U (n
—

ri) [sx
A + u^A],,} + Cu ,

Vol. XVIII. 14



106 Mr BROWN, THE SOLUTION OF A PAIR OF EQUATIONS, etc.

where [^] denotes the constant term in the expansion of
i|r

as a sum of cosines. Now

saA + u2A and s-^A+u^A are conjugate. Hence

[s2A + u2A] =
[si
A + u 1A]

-
[(«, + ss)A] .

Thus the non-periodic part is

(i*i
- m2) [(«i + s2) A\u{n- n')t+ C,2 (15).

In the applications to the Lunar Theory, the part of the complementary function

used is obtained by putting Qa =0 = Qlt and the constants in ult u2 are so adjusted

that we can put Qi=l =Q2 - I shall show that (15) is equivalent to a small addition

8c to c in the index of f in

u, + U, - S««,{*«+« + J**'**-*;

squares and higher powers of 8c being neglected.

Put c + 8c for c in the last expression. It becomes

Remembering that f =exp. i (n
—

n')t and expanding in powers of 8c we obtain

«i + m2 + («i
— m2) 8ct (n

—
n') t.

Comparing with (15) it is evident that we can put

8c = [(s1 +s2)^]„-r C12 .

This is nothing else than the general form of the expression which I obtained in

a paper,
"
Investigations in the Lunar Theory *." For

0» =/i.
= [/J. = 2, (2j + 1 +m + C) ef+ % (2j

- 1 - m + c) e_/
2
,

on substitution of the values (4) in fn . Also s, + s2 is the same as the expression there

denoted by se . The comparison of A with the remainder of the equation of the paper

just referred to will follow from what precedes that equation. The general case is given

in my memoir on "The Theory of the Motion of the Moon, etcj." No useful purpose

will be served by giving further details of the comparison of the two forms for 8c.

The final conclusion is that the non-periodic terms either disappear of their own accord

or belong to a part of the complementary function which is not to be included in the

general development. The last part of this investigation
—

concerning 8c—is of course only

applicable to cases similar to those which occur in the Lunar Theory where we proceed by
continued approximation and where we require to have only periodic terms. In the general

problem the non-periodic terms will remain.

* American Jour. Math. Vol. xvn. p. 336, equation (16). + ilevi. R.A. S. Vol. liii. p. 75.



VI. The Periodogram of Magnetic Declination as obtained from the records

of the Greenwich Observatory during the years 1871—1895. By Arthur
Schuster, F.R.S., Professor of Physics at the Owens College, Manchester.

[Received 1899, Aug. I.]

I. Introduction.

The science of Meteorology deals with variable quantities which are subject to

continuous and apparently irregular changes. Irregularities in the strict sense of the

word do not however exist in nature
;

there is never absence of law, though often an

appearance of lawlessness caused by the effects of several interacting causes. Our efforts

must be directed to disentangle these causes, and to discover for that purpose the

hidden regularities of the phenomena.

If we look for instance at the curve which represents the barometric changes, we

see at once that though irregular, there is a tendency towards an average position,

large deviations from that position being less frequent than small ones. Prof. Karl

Pearson has investigated statistically the laws of deviation from the mean, and obtained

valuable and interesting results. But enquiries of this kind necessarily leave out of

account one of the most essential points in the phenomena they deal with, which is

the regularity which may exist in the succession of events. In taking the average daily

values of barometric pressure and studying their deviations from the mean, the same

importance is attached to an exceptionally high barometer when it follows another day

of high barometer, as when it follows one of low pressure. But a high pressure is more

likely to be followed by a high pressure than by a low one, and the regularity which

this succession implies seems to me to be of greater importance than the laws of

distribution based on the assumption that successive days are quite independent of each

other.

1 intend in this paper to describe a method, applying it to a particular case, which

seems to me to yield some valuable information concerning the hidden regularities of

fluctuating changes, though it does not pretend to give a complete representation of all

that it is important to know.

14—2
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The method has been suggested by the analogy between the variable quantities we

are here concerned with, and the disturbance in the luminous vibrations. If we could

follow the displacements in a ray of light, we should find them to present characteristic

properties not unlike those of meteorological variables. There is the same irregular fluctua-

tion combined with a certain regularity of succession, which becomes revealed to us by

prismatic analysis, and shews itself in the distribution of energy in the spectrum. Absolute

irregularity would shew itself by an energy-curve which is independent of the wave-length,

i.e. a straight line when the energy and wave-length or period are taken as rectangular

coordinates, while the perfect regularity of homogeneous vibrations would shew itself as a

discontinuity in the energy-curve.

Fourier's analysis gives us a means of doing by calculation for any variation what

the spectroscope does experimentally for the luminous vibrations, and if we construct a

curve which represents the relation between the coefficient of Fourier's series for a given

period and that period, we have a simple way of representing the regularities of the

quantities to be investigated. We shall also incidentally gain the great advantage of

separating in a clear and definite way the fluctuations which take place in definite

periods, such as the lunar and solar variations, from the more complex changes on which

they are superposed.

II. The Periodogram.

Let f(t) be any function of t, and consider the quantity R determined by the

equations
.i+nT ,t + nT

inTA =
J

f(t)cosictdt, inTB=J f(t)sm Ktdt (1),

Ri = A' + Bi
(2),

where k = 2w/T and n is an integer. In these equations T represents a certain interval,

and t a time which can be varied. In the class of functions f(t) to which this paper

refers, a change in r with a constant value of n and T will cause R to fluctuate round

some mean value. Let S* be the mean value of R* which, still keeping n constant, will in

general depend on T. With T as abscissa and Si as ordinate, draw a curve, which may be

called the "
Periodograph." I define tbe "

Periodogram
"

as the surface included between

this curve and the axis of T. It will be seen that the "
Periodograph

"
corresponds

exactly to the curve which represents the distribution of energy in the spectrum. The

treatment of a few special cases will render this clear, and lead gradually up to the

complex phenomena which form the chief subject of this investigation.

Case 1. Let f(t) be a simply-periodic function, so that we may put

f(t) = coa(gt + S).
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The integrals A and B are easily calculated and expressed in the form

109

nTA = 2

nTB=2

cos (a + b) cos (a
—

b)

. 9+k g-K

'sin(a + b) sin (a - b)~

. 9 +K g—K

sin \gnT,

sin IgnT,

where

And

Hence

2a= ai + a2 , 26 = £, + &,

a,
= k (t + mT7

), ft = jp (T + nT) + 8.

nTR = - - sin \gnT[2 (g
3 + K-) + 2

(g°-
-

**) cos 26]
4

.

g k

If the average of R2
is formed for different values of t, the term containing cos 26

will disappear, and therefore writing

7 = i (#
~

*) nT = 7tk
q— k

it follows that

flf
_ v/2(ff'+/t

i!

) sin 7

# + "

If n is large, S will only have appreciable values when g and k are very nearly equal,
And in that case we may put with sufficient accuracy

8 =
s
i5-1
7

This is the well-known expression, giving the distribution of amplitude in the

focal plane of the telescope, when a homogeneous vibration is examined by means of

a prism or grating. If we wish to plot down the curve of intensities of vibrations as

analysed by a grating-spectroscope, we may define any direction by the period 2tt/k which

has its principal maximum in that direction. If the incident light has a period 27r/^

the expression for the distribution of amplitude is

sin [irN (g
-

k)/k]
*

ttN (g
-

k)/k

which is identical with S if N, the number of lines on the grating, is equal to n, the

number of periods included in the integration. In obtaining the "
Periodogram," we have

done by calculation precisely what the spectroscope does mechanically. The analogy is

complete, and just as a ray of homogeneous light does not appear homogeneous in a

spectroscope, there being secondary maxima owing to the finite resolving power, so does a

purely periodic function when analysed by Fourier's series shew apparent periodicities

* This expression may be obtained either from the in my paper
" On Interference Phenomena," Phil. Mag.

original papers by Lord Eayleigh on the resolving powers Vol. xxxvn. p. 509 (1894).

of spectroscopes, or more directly from an expression given
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having secondary maxima near the principal one. These secondary maxima I have termed
"
spurious

"
periods.

Their intensity remains the same when the "resolving power" n is increased, but

they approach nearer and nearer to the principal maximum. They are therefore dis-

tinguished from the true periodicity by the fact that their position changes with n.

Case 2. The function to be analysed consists of two overlapping simple periodicities.

The integrals A and B will split up into two parts which we may call A u A
% ,

Bu .B2 respectively. Hence

R^iA. + A.f + iB. + B.y.

The products A^ 2 and B^B„ will vanish in the expression for S1 when the

average is formed for varying values of t. Hence

& = A* + B? + A,* + B? = R? + R?,

or the Periodogram of two simple periodicities may be formed by the superposition of

the separate periodograms *.

Case 3. The function varies uniformly with the time. Putting f{t) = ct, and per-

forming the integrations, it is found that

. 2c . „ 2cA = — sin kt
;

B = cos kt,
K K

Hence the Periodograph is a Parabola.

The consideration of this case, which has no analogy in the analysis of luminous

disturbances, is of importance in the treatment of secular variations, such as that of the

magnetic elements.

Case 4. So far the function f(t) has been taken to be continuous; but cases

arise, where f(t) is given numerically for a number of values of t, which we may for

the sake of simplicity assume to be equidistant. As Fourier's analysis applies also to

discontinuous functions, we may include cases of this kind. Let the different detached

values of f(t) follow the law of errors so that, N being the total number of ordinates, the

number having a value intermediate between /3 and /3 + d/3 is = e~hV" d$. I have

shewn t that in this case

* In my paper "On hidden periodicities" {Terrestrial change to the latter form is apparent from the above.

Magnetism, Vol. in. p. 13) I denned the ordinate of the + On the investigation of hidden periodicities, loc. cit.

Periodogram to be S instead of S2
. The advantage of the
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so that the periodograph is a straight line, parallel to the axis of T, the distance

between the two lines being inversely proportional to the number of ordinates.

Case o. The function is given in the form of an irregular curve which satisfies

the condition that there is a definite law of probability that the quantity R should

lie within assigned limits
;

this probability being independent of the initial time t. If

we consider for instance the curve representing the height of the barometer, excluding
lunar and solar periodicities, the changes in the curve will apparently be quite irregular

but will satisfy the above conditions. Let A 1 and B
l be taken to be components of

a vector defined by the equations

^nTA^I f(t) cos Ktdt, ^nTB^ f(t) sin Ktdt.

't 't

,T+2mT ,T+2mT

Similarly \nTA„,= \ f(t)cosKtdt, \nTB.,= \ f(t) sin Ktdt,
"r+mr > T+mT

{•T+smT rr+mnT

and so on until ^nTA s =j f(t) cos Ktdt, %nTBs
= I f{t) sin Ktdt,

1 t+ {s-\)mT J T+(s-l)mT

with the condition that sm = n, m not being necessarily an integer number.

We may choose mT sufficiently large to secure complete independence of successive

vectors, all directions of the vectors being equally probable. In that case the vector R
which is the resultant of the separate vectors A, B, etc., will, as shewn by Lord Rayleigh*,

have a value such that the expectancy of Rr is proportional to the number S of vectors
;

hence keeping m constant and increasing S, the ordinates of the periodograph will vary

inversely with nT. This is the only general conclusion we can draw in this case.

Case 6. The function f(t) is formed by the superposition of one or more simple

periodicities superposed on the irregular curve of case (5). This includes the important

cases of barometric, thermometric or magnetic changes. The Periodogram may in all these

instances be used to separate the real from the accidental periodicities. For the value of

the ordinates of the Periodogram has been shewn to be independent of the range of time

over which the integration is performed when the periodicities are real (Case 1), but to

vary inversely with the time when they are accidental (Case 5). Hence we may obtain

a conclusive criterion to distinguish between the two cases. The fundamental proposition

on which the separation depends may be stated thus :

rr ...
The value of f(t) cos Ktdt fluctuates for the functions under consideration about

Jo

some value which is proportional to T when f{t) = cos Kt and proportional to jT when

f(t) contains no real periodicity of periodic time 2tt/k.

*
Phil. Mag., Vol. x. p. 73 (1880).
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The separation of regular and irregular oscillations, by an increase of the time

interval, is identical with the spectroscopic separation of bright lines and continuous

spectra {e.g.
in observing the solar chromosphere) by an increase of resolving power.

III. Calculation of the Periodogram ok Magnetic Declination.

I chose as an example of the treatment indicated in the previous pages the record

of magnetic declination at Greenwich. The subject interested me chiefly on account of

an alleged magnetic effect connected with solar rotation, and special attention was

therefore paid to the periods in the neighbourhood of 26 and 27 days. It will appear

that the magnetic declination is not at all a favourable quantity to fix upon for the

discovery of possible outside magnetic effects
;

but as the only real pieces of evidence,

so far produced, in favour of a period approximately coincident with that of solar

rotation, were derived from magnetic declination and the occurrence of thunderstorms, and

as the latter does not lend itself easily to accurate treatment, I had no choice but to

attack in the first instance the records of declination. The publication of the Greenwich

Observatory contains the average daily values of declination to 01 minutes of arc. There

are occasional gaps of a few days duration. The way of dealing with these gaps was

quite immaterial on account of the large quantity of material used, and a rough process

of interpolation was adopted. Thus if there were no records during three days, and if

the values given for the days preceding and following the gap were 17'"1 and lo'"8,

the intermediate values were put down as 16'8, 16'4, 161. In the few instances in

which the records extending over a considerable portion of an adopted period were

missing, the whole period was excluded.

The first object of the calculation was to find the Fourier coefficients corresponding to

a sufficiently large number of periods, so that the curve representing the periodograph

might be drawn continuously through the points obtained. The original series of figures

were for this purpose arranged according to the usual procedure, in rows corresponding

to the selected period. In order to obtain, for instance, the Fourier coefficient for the

24 day period, the first row would begin with the magnetic declination of Jan. 1,

1869, and eud with that of Jan. 24, the second row including the values from Jan. 25

to Feb. 17 being written underneath the first. Subsequent rows were added until a

date was reached as near as possible to Jan. 1, 1870. This meant 15 rows, the last

number being that corresponding to Dec. 26, 1869. The arithmetical sum of the 15 rows

was taken as basis for the treatment of the 24 day period during 1869. A similar

group of rows was written down for 1870, beginning, in order to secure continuity, with

Dec. 27, 1869; but the third group, beginning with Dec. 22, 1869, and ending with

Jan. 9, 1872, included 16 rows. I thus obtained a new set of 25 rows (there being

25 years), each of which consisted of a sum of 15 or 16 of the original rows. The sub-

division into years was chosen so as to divide the whole material into convenient portions.

It will be understood from what has been said that a row corresponding to a particular

year has been obtained by making use of observations, the great bulk of which fell
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within that year, but some of which may have belonged to December of the preceding
or January of the following year.

Table I. gives the figures for the 24 day period, the last three columns indicating

the date of the first and the last observation made use of in the corresponding row

and the number of rows included in the year, 356' 70 meaning the 356th day of 1870.

The unit in the first three Tables is 01 of a minute of arc
;

in the remaining Tables,

unless otherwise stated, it is the minute of arc.

The columns of Table I. and of the corresponding ones for other periods were added

up, and the results, after subtracting a constant for each row, are given in Table II.

Table II. clearly shews the effects of secular variation, and we must consider in

how far it is necessary to take any notice of this variation. If our observations extended

over an indefinite time, Fourier's analysis would itself perform all that is required, and

each period would be totally independent of all others. But our investigations have

been limited to a range of time of 25 years, and the secular variation involves a period

much longer than this. The progressive change of declination will add terms to the

periodic series which it is easy to evaluate with sufficient accuracy. If we take the

change to be uniform and equal to —
ct, Fourier's theorem applied to the interval to

T gives us

CT CT ( . 2-TTt 1 . 4,7Tt 1 . 677-f
1 ,_.-<*—T +—

|am-r +
f
sm

lf +-sm^r+ J
(3).

The effect of such a uniform progressive change would be to leave the cosine

cT
terms unaffected, and to add — to all sine terms of period T.

7T

As it is our object to separate all real from accidental periodicities, we are justified

in eliminating all known effects either totally or partially according to convenience.

The average magnetic declination at Greenwich during the year 1893 was 2°52'7

less than during 1869, giving during 25 years a change of almost exactly 3°. Throughout

this investigation the magnetic declination has therefore been assumed to be made up

of a uniform progressive diminution of 7'
-2 per year added on to more or less irregular

changes, the latter only being subjected to Fourier's analysis. No assumption is made

as to the secular variation being either uniform in character or having exactly the

above magnitude. We have eliminated from our results a large portion of the secular

variation, but it is immaterial whether it is entirely eliminated or not. Should it be found

desirable to return to the uncorrected figures and to calculate the Fourier coefficients,

including the effects of secular variation, it will be easy to do so with the help of

equation (3). As the unit in Table II. is O'l of a minute, the correction is made

by adding to successive columns, successive multiples of 1800/n, where n is the number

of days in the period. For example, in the 24 day period, 75 is added to the second

number, 150 to the third, and so on.

Vol. XVIII. 15
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Table III. gives the figures so corrected, and these were plotted down on a suitable

scale, and curves drawn, joining the ordinates by straight lines. The Fourier coefficients

were obtained by means of Coradi's Harmonic Analyser, belonging to the City Guilds

of London Institute, which Prof. O. Henrici kindly placed at the disposal of his assistant

Mr H. Klugh for the purpose.

Table IV. gives the values of the coefficients of the series

<ti cos id + a2 cos 2>ct +

+ 6j sin Kt + b2 sin 2/rf +

Table IV.

Days in

Period
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that such variations are not more than we should expect. Assuming the ordinates of

the Periodograph to vary uniformly between the periods of 24 and 30 days, we obtain,

by taking the mean of the columns of Table V., the ordinate <S
2 of the Periodograph

corresponding to a period of 27 days. The value of 8, or the amplitude of mean

square, i.e. the square root of the expectancy of R^, is thus found to be 0'
-0317 (see

Table V.). This therefore is the order of magnitude we should expect for the amplitude,

Table V.

Days in Period
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Table VI. 26 Day Period.

Year
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Table VII. 27 Day Period.

Year
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Table VIII.

Year
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The number n of periods included in each row of figures is given in these Tables,

and if S* in accordance with the previous notation represents the expectancy of the square
of amplitude :

1 r3

°
25 ^V

The values of S* found in this way are entered in Table IX., the last column

giving the average of the two values found for the 26 and 27 day periods respectively.

Table IX.

Amplitude of Periodogram for interval of one year.

(The unit is the square of one minute of arc.)

Period in

Days
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and those just deduced for the shorter interval. The latter being the mean of values

obtained for the 26 and 27 day periods should, strictly speaking, be put down as belonging

to a period of 26"5 days, but for our purpose it is sufficient to neglect the difference of

half-a-day. Considering that the value of S2 for the 25 years interval represents the

mean of only seven values, the approximation of the ratio of the numbers given for

the intervals of 25 years and one year respectively to the theoretical number 25 is very

remarkable.

Incidentally this agreement shews that the secular variation has been eliminated

sufficiently to leave no appreciable effect on the Periodogram. The last column of

Table X. gives the ordinates of the P. G. for a uniform progressive change of 7'
-2 per

minute. The original uncorrected figures would have given, according to our previous

deductions (Cases 2 and 3), values for the P. G. made up of the sums of Columns vi. and

it. or in. respectively, and the ratios of these sums would have been widely different from

25. Further consideration of the figures shews that, while possibly a small change in

the assumed value of the secular variation would have brought the numbers of Column iv.

into still nearer agreement with the theoretical number, such a change would amount

to less than a percent., and would be quite uncertain.

The surface of the Periodogram having been determined with sufficient accuracy for

periods varying between 5 and 27 days, it seemed desirable to extend the investigation

lUnit=0'-0001
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the proper factor, give the Fourier coefficients. The average square of amplitude for

the year was found to be -003460 and this has to be divided by 25 to get the

ordinate of the periodograph for the 25 years interval. The number 1384 x 10-6 so

obtained is almost identical with that previously found for the 5'4 day period, which

tends to shew that for short periods the expectancy of a Fourier coefficient is indepen-

dent of the period. Fig. 1 gives the shape of the Periodogram for periods up to 30

days. The vertical ordinates give the heights actually determined, while the curve is

drawn continuously so as to pass nearly through these points.

For longer periods the monthly averages, as published in the Greenwich records,

served as basis of calculation. To obtain the coefficient of the annual period, the

interval of 25 years was divided into 5 groups of 5 years, and the harmonic analysis

was applied to each of these 5 groups. The average square of amplitude then gave the

ordinate of the Periodograph for a range of 5 years, which has to be divided by 5 in

order to reduce it to our normal interval of 25 years.

Periods of 11 and 13 months were treated similarly and the coefficients obtained

for 5 groups of 55 months and 4 groups of 65 months. The average squares of ampli-

tude have in these cases to be divided by 60/11 and 60/13 to reduce to the normal

interval. The results are given in Table XL, and it will be noticed that the Period-

Table XL

Period in Months
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a true periodicity or may be accounted for by purely accidental causes. The principal

results arrived at may be shortly stated here, as far aa they concern the present dis-

cussion.

The average daily value of magnetic declination, leaving the secular variation out of

account, oscillates round some average value. If /9 is the difference between any observed

value and its average, there will be some function / (/S) such that /(/3) dft will represent

the number of cases in which the value lies between y8 and /3 + cfy3; for instance, if the

ordinary law of errors holds, the number of cases in which the deviation from the average

2hN
lies between y8 and fi + d/S will be = e~W dfi, where A is a constant and N the

V7T

total number of days considered. In this case it is found that the probability that the

Fourier coefficient of any particular period lies between p and p + dp is

Nh*e-i™V pdp.

This expression holds on the assumption that the values on successive days are

entirely independent of each other.

The expectancy (E) of the square of Fourier's coefficient is in that case

Jo
p>.Nh?e-Wpdp =^,

and the probability that p
2 should exceed a value kE is simply e~". This latter ex-

pression still holds when the law of distribution is not that of errors, and even if the

successive daily values are not independent of each other, as is e.g. the case when

the causes which produce the deviations from the average persist for several days. In

the last case the expectancy must be obtained by trial, the mean square of the Fourier

coefficients being taken. This expectancy, which according to our definition is the ordi-

nate of the periodograph, should serve as the basis of any attempt to discover real

periodicities, and Table XII. will give at once the probability that a coefficient of the

Fourier series is due to a periodic cause and not to accident. If for instance the

square of a coefficient has been found to be equal to about twice the expectancy, we

obtain by the Table the value of e~K for k = 2 as '188, which means that in one case

out of about seven, accidental circumstances will cause the coefficient to be even greater

than this, and therefore no conclusion can be drawn as to a real periodicity.

When the square of amplitude which for shortness we may call the "
intensity

"

amounts to about 12 times the expectancy, the probability of mere chance is only one

in 200,000 and we may then begin to be fairly certain of a real effect, or if we are

satisfied with a probability of one in 1000, we may begin to count effects as probably

real when the intensity becomes equal to about 7 times the expectancy.

We may follow the theory of probability a little further in another direction; the

expectancy has in most cases to be determined by trial, and for this purpose the mean

of a certain number of calculated intensities is taken. The question arises how many
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such numbers must be combined in order to obtain a sufficiently approximate value for

the expectancy.

Table XII.

K
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so that the probability that the average of n values should lie between kE and

(k + die) E is

(«-l)
Kn

-l e-n"dic.

If n is large, we may simplify the numerical calculation by putting approximately

according to Stirling's theorem

log(n-l)! = (n
-
%)log n - n + % log 2ir,

from which it follows that

(n-l)l V 2tt

In order to illustrate the law according to which a gradually increasing number of

intensities tends to approach the value of the expectancy, I have plotted in Fig. 2

the curve

nn
xn-\ e-nx

Fig. 2.

for the three cases that n equals one, five, or fifty ; fifty being the number on which

our Periodograph in the neighbourhood of the 26 day period rests.
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The line HK gives the position of the expectancy, and the curve -4,-42, which

represents the case n = 1, shews how a single value of a Fourier coefficient generally
does not give us even approximately the value of the expectancy. For n = 5, and still

more for n = 50, the probability-curve approaches the line HK.

In the conclusions which we shall have to draw on the reality of periodicities

much depends on the law of distribution of accidental Fourier coefficients. According
to the theory the probability that the square of any coefficient exceeds k times the

expectancy is e~K
;
and although the theory rests on a sound basis, it is interesting to

obtain an experimental verification.

The material collected for this investigation includes the Fourier coefficients of five

terms for each of 25 years, for the 26 day and the 27 day period. Hence 250 separate

values of amplitude have been obtained. For each of the five terms the average value

of intensity gives the expectancy, and calculating the ratio of the intensity to the

expectancy we find 250 values of k. Table XIII. shews the comparison between the

Table XIII.

Range of k
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V. Calculation of Amplitudes in Special Cases.

The Fourier coefficients having been calculated for the 26 and 27 day periods in each

year, we are able to obtain the amplitudes for periods not differing too much from these

values. To shew the process of calculation to be adopted for this purpose, let A lt Aa ,

etc.
; Bi, -B2 ,

etc. be denned by the equations

r2nT rsnT[til
,-ini -sni

•4i =
/

f(t) coa gtdt, A 2
= f(t) cos gtdt, Am = f(t)cosgtdt,

J J nT J («-1]«T

j-nT
,2nT .enT

Bi =
\

f(t) am gtdt, B2
= f(t) sin gtdt, Bm = f(t) sin gtdt,

J J nT J
(*-l) nT

where g = 2tt/T.

It is required to find

2 f
pI" 2 f

pT
a=

pT')
f^ coaictdt' b=:

^T'j /(O sin«<d<,

where k = 2tt/T'.

If k and g do not differ much from each other we may put approximately

rtnnT ."mT

I f(t)cosKt=j f (t) cos (gt + cm)
= Am cos <xm - Bm sin am (4).

•* (m-l)nT i(ia-ll«T

The greatest approach to equality is assured when the curves cos/rf and cos(gt + am)

are made to coincide as nearly as possible throughout the interval, and hence the phases
should agree in the middle of the interval, so that for t=(m — \)nT, ict = gt + am .

This gives

°m = 2tt
(j,

-
jpj

(m - J) nT.

We may now put

rmT m=« m=«

fit) cos Ktdt = %Am cos <xm -%Bm sin a,„,
» m = l m=l

fsnT m = t m-s
I fit) sin Ktdt = 2 Am sin am + 2 Bm cos a,„.
* m = \ m=l

The coefficients which we suppose to have been calculated are

2 2
ai = nT

A " bl = nT Bl '
etC''

2 C
snT

1

so that —
-„

J fit) cos Ktdt= ~ 2 (am cos am — bm sin am ).
SHJ. J S
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If snT= pT' and p is an integer, the left-hand side would represent the coefficient

of period T' obtained by analysing the record of p successive periods. If p is not an

integer we may still take this to be approximately the case if sn is large, for we

may always put
rSnT rpT' ,-<P+«) r*

I f(t) cos Ktdt = I f(t) cos Ktdt +1 f(t) cos Ktdt (o),
'O ^ •*

pT'

p being the nearest integral to sn, and e a fraction. The second integral will be small

compared to the first, if the first includes a large number of periods.

We have therefore finally for the required coefficients a' and b'

nT m= » nT
a' =

-jr,
2 (am cos am - bm sin am)

=
-^,

2 rm cos (am + <f>m),
)

\ (6),
nT m=s nT I

V = -» 2 (am sin am + 6m cos am)
=
-^,

2rm sin (am + <£m),

where am = rm cos
<}>m , bm = rm sin <£m .

The fraction nT/pT' may generally be taken to be equal to 1/s.

The values of a are those given above, so that

rp rpt rp rpt rp rpi

a1
=
irn—jr,

—
.

a2
= 3-rrn

y , , am = (2m - 1) irn —^
—

(7).

It remains to be shewn what error has been introduced by the assumed equality

(4) and the neglect of the second integral of (5). For this purpose we imagine the

function f(t) to be accurately represented by cos ict, so that

f
mnT

2k . kiiT
Am =

)
cos Kt cos gtdt

= —
a
sin -=— cos k (m — £) nT,

J
(.m-l)nT K'-g- *

and as a,n = (k
-
g) (rn

-
%) nT,

Am=± sin ^/cnr cos a^,
/c (/

where the lower sign is taken when n is odd.

Similarly

2(7
Bm = + „

y
„ sin ^/cjiT sin a,,,.

By substitution it follows that, using equations (6),

2 2
a

' =
~^7f7 j—~i sin ^/cwT 2 (k cos2

ocm + # sin2 am)

pi tf — g
2

2 1-
-p ^j—2

sin J *nT 2 {(* + $p) + (*
-

flr)
cos

2a,,,},

Vol. XVIII. 17
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K — Qrn
or writing 7 = —^~nl,

* —

. 11T sin 7 ( „ k — q
a = -7™ -'

\s + 2 —r# cos 2a,„

Similarly = -=j - 2 a
sin 2a,„.^

pT y K + 9

The factor sin 7/7 only having appreciable values when 7 is small, the value of -
k + g

will be small compared to unity, hence the sum of s terms containing that factor will

be small compared to s. This reduces the coefficients to

, _ nsT sin 7a
-pT'T-

p is defined as the nearest integer to nsT/T', and as ns, the total number of

periods included, was about 350 in the cases to which the above investigation will be

applied, we may with sufficient accuracy write

/ sin 7
a =

.

7

The original function investigated cos ict, having unit amplitude, it is seen that the

approximate method of calculation gives an amplitude which is reduced in the ratio

sin 7/7 or an intensity reduced in the ratio sin2

7/7
2

.

•

A Table of sin2

7/7" is given in Mascart's Optique, Vol. 1., p. 324, from which it

appears that as 7 takes the values 15°, 30°, 45°, 60°, the function becomes 977
; 912;

•811
;

'684. If it is simply desired to decide whether a period is real or accidental,

the intensity need not be accurately known, and we may allow ourselves considerable

latitude therefore in the value of 7. If we fix the extreme value of that angle as 45°

which means a reduction of intensity of about 20°/o , we obtain a relation between T and

T', for in that case

T-T ir

T-T' 1

^r~ <±
Yn-

If T is 26 days, and «=14, there being 14 periods of 26 days in the year, we

find that by the method indicated all amplitudes may be calculated which lie between

25-54 and 26'47 days. If the coefficients of the 26 day and 27 day periods are

known for each year we shall be able to calculate those of all intermediate periods

with sufficient accuracy, for the extreme reduction in amplitude when T—T' = ^ day will

be -

789, and it is only when the intensity comes very near the point at which it is

difficult to distinguish between real and accidental periods that this reduction will make

a material difference.
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VI. Numerical Applications.

Some investigators have come to the conclusion that several meteorological and

magnetic phenomena shew a periodicity having a time not far different from 26 days

and, not uncommonly, this period is supposed to be connected with solar rotation.

I proceed to apply the methods of this paper to test the reality of this period.

Hornstein*, on the strength of the declination records for Prague, assigns to it an am-

plitude of '7 minute of arc or an intensity of -

5. Such an intensity would be equal
to 500 times the expectancy, if an interval of 25 years is submitted to examination

;

and if real and approaching Hornstein's value in magnitude, it should stand out above

the accidental periods to such a degree that every doubt would be removed. Adolph

Schmidtf was led by a discussion of Hornstein's results to a duration of 25*87 days
as being the most probable periodic time, while von Bezold finds a slightly shorter

period for the frequency of thunder-storms.

More recently Professors Eckholm and ArrheniusJ have published a paper in which

a periodicity of 25*929 is put forward as probable or even proved. As opposed to these

investigators Professor Frank H. Bigelow gave a considerably longer time (26'68 days) to

the periodicity and has endeavoured to shew that it exists in many meteorological

phenomena.

To shew whether the Greenwich records confirm or disprove these results, it is

necessary to calculate the intensities for each periodic time, and its corresponding half

period. This I have done, the results being collected in the first section of Table XIV.

Table XIV.

Period
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The column headed k gives the ratio of the intensity (square of amplitude) to the

expectancy ;
and there is a remarkable unanimity in the smallness of this factor, shew-

ing that the amplitudes are even less than the average amplitudes calculated on the

theory of chance. This result must definitely disprove Prof. Eckholm and Arrhenius'

period of 25929, as well as that of Bigelow, as far as the Greenwich records of declin-

ation are concerned.

The interval of 25 years which forms the basis of this investigation is, however,

so long that unless the periodic time is very accurately known beforehand, the exist-

ence of the periodicity may escape attention. Hornstein's investigations, as treated by

Schmidt, do not claim any great accuracy, and a period of say 2584 days might give a

large amplitude. In other words, we can only say that there is no periodicity having

a length between about 25'86 and 25'88 days, but a further investigation is necessary

if the possibility of an error of more than 01 day in Schmidt's value is admitted.

Both Bigelow and Eckholm and Arrhenius claim to have fixed their period to three

places of decimals and our result must be considered as conclusive against them.

In order to be certain that no periodicity of sufficient magnitude has remained

unnoticed the investigation was extended in the following way.

A diagram was prepared (Plate I.) in which the phases of the 26 day period,

as they are given in Table VIII. for each year, are measured off as ordinates in

equidistant vertical lines which represent successive yeai
-

s. If there is a period in the

neighbourhood of 26 days which has a large amplitude, the points representing the

phases should group themselves more or less round a straight line and from the

inclination of the straight lines we may calculate the length of the period giving the

increased amplitude. In order to include possible periods which may differ as much as

5 from 26 days, the diagram must be repeated three or four times so as to admit a

phase variation of several revolutions of a circle. Thus for the first year the phase

was 73° and a point is marked on the diagram, not only on the horizontal line corre-

sponding to 73° but also on that of 433°, 793° and 1153°, all differing by 360°. In

order to be able to give more weight to those years in which the amplitude is great,

the points are marked differently according as the amplitude is great, intermediate or

small. The manner of marking is best seen on the Plate. If the eye is suddenly

moved towards the Plate so as to obtain a general view of the grouping of points, I

think there will be no doubt that these shew a decided tendency to group round a

straight line marked A^A^. To bring the phases of the points which lie along this

line into agreement the phase of the 25th year which is 593° must become equal to

that of the 5th year which is 1333°. This gives a shift of phase of 37° per year.

To obtain the period corrected so as to bring the phases into agreement we may use

equation (7), putting

T-T
ram - am_j = lirn rr,,

= 37.

If 7'= 26 and w=14 the corrected time T is found to be 25'809.
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The amplitude was next calculated for this corrected period and its square entered

into the second section of Table XIV. The intensity now exceeds the expectancy, being
5-86 as great. There appeared also to be a minor tendency of groupings about the lines

B^Bt and C-fii, and to bring the phases along these lines into agreement the corrected

periods were calculated to be 26255 and 26-181. Table XIV. however shews that the

intensities corresponding to these times barely exceed the expectancy.

Plate II. gives similarly the distribution of phases for the 27 day period, the

straight lines along which there seems a possibility of clustering are marked on the

Plate, the corresponding periodic times being 27-061, 26 -

814, 27-327 days. The inten-

sities of the two first of these periods are entered into Table XIV. It will be noticed

that the two periods which shew the greatest amplitudes are those of 26814 and 25-809

days. As regards the latter, reference to Table XII. or independent calculation shews

that it will happen about once in every 350 trials that, owing to accidental circum-

stances, the square of a Fourier coefficient exceeds 5
-86 times the expectancy. It

will of course be noticed that the period which gives the high value for the

amplitude has been selected with that special object in view, and regard must be had

to the fact that it represents the greatest intensity that can be obtained within the

range of periods extending from 25'5 to 27 -

5 days. The question how many independent
trial periods that range may be considered to contain may be answered by our previous

investigation (p. 130) from which it appears that two periods T and T' may be con-

sidered as independent when

T-T
1_

T >
in

'

n being the total number of periods included in T. For T= 27, n was 338, and hence

T — T' is almost exactly -02 day. As our range covered all periods between 25 -

5

and 27 -5 days, we must consider that we have dealt with 100 independent periods and

found the two greatest intensities to be respectively 564 and 5
-86 times the expect-

ancy. What it comes to therefore is this, that 100 trials have given us one intensity

5'86 times the expectancy, while on the average this should only happen once in 350

trials. Or taking the two greatest amplitudes into consideration, it ought according to

chance to happen once in every 150 trials that an intensity of 5 times the expectancy

is found, while in the actual case this happened twice in 100 trials. It is obvious

that no conclusions as to the reality of the periodicity can be drawn from this argu-

ment. There are however two considerations which lead me to pause before finally reject-

ing the 25-809 period ;
the high amplitude is accompanied also by a considerable amplitude

of the half period, and if these half periods are plotted in a manner illustrated in Plates

III. and IV., it is found that a somewhat greater value is obtained if the time were altered

to 25-825 days. This however gives a decidedly smaller value for the main period (see

Table XIV.). The coincidence of two high intensities for a period and its semi-period

much increases of course the probability of its reality, but even if this is taken into

account, the excess of intensity over the expectancy is insufficient to establish the period.

The second consideration lies in the fact that the most definite result so far in the



134 Mr SCHUSTER, THE PEKIODOGRAM OF MAGNETIC DECLINATION

search of periodicities has been that of Prof. v. Bezold whose work had reference to

the frequency of thunder-storms. He gives 2584 days as the length of his period, but

it was really only the semi-period which shewed a large amplitude. The numbers 2584

and 25 -825 lie so near together that it will be wise to keep an open mind as to the

possibility of some real periodic time of that length. But it must be understood that

the record of Greenwich declination extending over 25 years shews nothing beyond a

slight indication of such a period. An intensity of '006 corresponds to an amplitude

of '077 minute of arc, and it can be definitely asserted as the result of this enquiry

that there is no period between 255 and 27*5 days which had a larger amplitude at

Greenwich during the years 1871—1895.

VII. Lunar Periodicities.

One of the principal objects of this investigation was to prove or disprove the

suspected lunar period in the daily average of magnetic declination. The clustering of

phases round the line BB', Plate IV., shews that observation gives a somewhat larger

amplitude than the average for a period of 27327 days which lies very near the length

of the tropical month. The two periods, that of tropic revolution and that of synodic

revolution, were therefore specially treated, the result being exhibited in Table XV. It

Table XV.

Period



FROM RECORDS OF THE GREENWICH OBSERVATORY, 1871-1895. 135

should act simultaneously all over a circle of latitude, for that would imply considerable

currents across the earth's surface. It is more likely that the principal action takes

place along a geographical meridian
;
and if that is the case, the horizontal force should

shew stronger evidence of these lunar periodicities than the declination. There is also the

possibility that what is observed in the daily average of declination is only a remnant of a

variation having the lunar day for its period. In that case the periodicity should dis-

appear when the average position of the needle in a lunar day is subjected to calculation.

If this is the correct explanation it should not be difficult to prove it, for it would

require a much greater amplitude within the lunar day to account for the 0'06 amplitude

found in the daily averages. How much greater may be seen from the following considera-

tion. If from a periodic function cos ict another is formed by taking averages over a

period It we obtain

1 f
t+T 1

=- cos Ktdt = — sin kt cos Kt,
LrJt-r xt

that is a reduction in amplitude of — sin kt. If 2t is one solar day, 2tt/k one lunar

day,
— =

;
hence kt equals 174° and the amplitude of the curve obtained by taking

averages is only about the 29th part of that of the original curve. The comparison of

averages of successive days will therefore produce an apparent period having the lunar

month as periodic time and, if the period found above is due to this cause, the amplitude

of the original lunar variation should be l'"74. Such an amplitude ought to be traceable

without much difficulty.

A thorough enquiry into the nature of lunar periodicities of magnetic records seems

to me to be of special importance, but requires considerable arithmetical labour
; for, to be

conclusive it must be complete. I have been assisted in the numerical calculations which

were necessary in the present investigation by Mr J. R. Ashworth, to whom I desire to

tender my thanks. The expense connected with the numerical work was partially covered

by a small contribution from the Government Grant Fund of the Royal Society.
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PART I.

General Description of the Method.

After a considerable number of experiments on the discharge of Leyden jars, and

a qualitative study of the electric oscillations accompanying such discharge, it seemed

desirable to make an exact determination of the frequency of alternation given by a

standard condenser through a circuit of known self-induction, in order to ascertain

whether the well-known theory of the case was accurate or only an approximation.

The absolute determinations necessary were three, viz. :
—

(1) The capacity of a condenser, which is K times a length;

(2) The self-induction of a coil, which is
/u.

times a length; though it

would be natural to measure it indirectly by comparison with the already carefully

determined standard of electrical resistance
;

(3) The period of one oscillation of the discharge, under circumstances when

the damping influences are not appreciably disturbing.

The resistance of the circuit might possibly enter as a correction into the result,

and many other minor determinations might have to be made, but these three are the

main quantities involved, and the relation between them is

T=2tt</(p11 .K12),

and the formula would be verified if the resulting value for the product of the as yet

entirely unknown constants, /x the permeability and K the inductive capacity of the

medium, agreed at all closely with the already otherwise determined value, viz. the

square of the reciprocal of the velocity of light.

It was hoped indeed that the method might turn out sufficiently accurate to give

a useful re-determination of this important quantity. It was with this idea in mind
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that the following research was undertaken, and much care was accordingly bestowed

upon it.

It may be here noted that Lord Kelvin himself, in one of his popular lectures*,

suggests this method of electric oscillation as just conceivably one of the methods by
which v could be practically determined

;
and he puts the matter in a geometrical way,

which it may be interesting freely to paraphrase thus :

Take a wheel of radius equal to the geometric mean of the following two lengths,

the electrostatic measure of the capacity of a condenser, and the electromagnetic measure

of the self-induction of its discharge circuit
;
make this wheel rotate in the time of

one complete electric oscillation of the said condenser (as if it were being driven by
an electrically oscillating piston and crank), then it will roll itself along a railway with

the velocity v.

And indeed (as Maxwell discovered) ethereal waves excited by the discharge are

actually transmitted through space at this very speed.

General Requirements of the Method.

The first essential is a condenser of capacity directly measurable from its dimen-

sions. Its dielectric must accordingly be air, its plates must be a reasonable distance

apart, and they should be either spherical or have a guard-ring. The necessary small-

ness of capacity of a condenser satisfying these requirements is a difficulty, especially

when a quantity so large as the velocity of light is the subject of measurement. A
difficulty of the same sort is, however, common to all methods, and is what makes "v"

a quantity so much more difficult to determine than for instance " the ohm."

To compensate for the smallness of practicable electrostatic capacity a discharge

circuit of very great inductance must be employed, or else the time-determination will

be difficult from its excessive minuteness.

The inductance must be secured in combination with as much conductance as

possible, or the discharge will fail in being oscillatory. To this end Messrs W. T. Glover

and Co. were requested to supply a regularly wound hank or coil of No. 22 (s. w. g.)

high conductivity copper, very thinly india-rubber covered, of shape such as to give

maximum self-induction, and of size estimated to give between 5 and 6 secohms, i.e., in

magnetic measure, a length of 5 or 6 earth quadrants.

This would be afforded by a coil of 4 inches cross-sectional area and mean diameter

15 inches, with three or four thousand turns of wire. But to guard against the danger

of sparking or leaking between layers it was decided to reduce the dangerous tension to

one-quarter by having the coil in two halves. Accordingly it was made as follows (to

quote Messrs Glover's statement) :

*
Sir W. Thomson's Lectures and Addresses, Vol. i. p. 119. Lecture on Electrical Units to the Inst. C. E.

Vol. XVTII. 18
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"4,330 yards of No. 22 tinned copper wire covered with 2 coats of pure india-

rubber to the diameter of -035 inch. This was the only covering. In two parallel

coils, internal diameter lOf inches, 4 inches deep, and 2 inches wide." See Figure 1.

This pair of coils were then packed carefully and permanently in a round walnut

box or drum, with a thin sheet of glass between them, and the

terminals of each coil were led to the outside and finished off on four

ebonite pillars.

They could, therefore, be connected up in series, or parallel, or

used separately ;
but in practice they were usually joined in simple

series. With this coil many preliminary experiments were made at

Liverpool.

The self-induction of the double coil was estimated as about

5 secohms or
"
quadrants," but no attempt was made to measure it with

any care at this time, because it was better to do it when all the
Fig. l.

apparatus was in position in the basement room set aside for the

experiments described in Part II.

The chief part of the whole business consisted in taking clear images of a spark

on a moving sensitive plate, getting every detail of the oscillation clearly recorded on

the negatives, so that they could be subsequently analysed under a microscope and the

time of an oscillation accordingly determined.

The sparks used were extremely feeble, and each was drawn out by motion into

a band, so that in order to get every detail clear the plates had to be super-sensitive.

For such plates we were indebted to the kindness of Mr J. W. Swan, who sent on

several occasions a special packet of Messrs Mawson and Swan's most highly sensitized

plates, which answered admirably.

The next principal part consisted in the micrometric reading of the records on the

photographic plates. The reading is rather a tedious process as a great many numbers

have to be recorded for each plate, and care is necessary to disentangle the several

sparks, which to economise time and labour at the experimental end were usually taken

during a single spin.

The details of the method of obtaining the record will now be described.

Time of One Oscillation.

The long-established method of observing spark oscillation by means of a revolving

mirror was at first used
;

but this plan, though easy for observation, does not readily

lend itself to precise measurement. It is desirable to obtain a photographic record

which can be studied at leisure, and it seemed therefore best to form an image of

the spark on a plate moving so rapidly that its constituent oscillations were clearly

visible.
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For metrical purposes there are many advantages in thus moving only the sensitive

plate, though for mere display Mr Boys's more recent plan of spinning a succession of

lenses is able to give more striking results.

Accordingly an old packing case was made light-tight, and used as the camera. In

it were contained: first the spark-gap, a pair of adjustable brass knobs about half-an-

inch in diameter, clamped to a glass pillar, one vertically over the other and with a

clear space, on the average about 2 millimetres, between them
; next the lens, an

ordinary camera lens on a special stand
;
and lastly the sensitive plate in its conjugate

focus, arranged so that the image was not very much smaller than the object. The

photographic plate is supported firmly in a revolving wooden carrier or frame fixed to

the horizontal axle of a whirling machine (one of Weinhold's) which was firmly clamped
to a stone pillar outside the camera and was driven by a long carefully spliced whip-

cord belt by means of one of Bailey's
" Thirlmere

"
turbines standing on a distant

sink, and having a large grooved pulley to give the necessary
"
gearing up." One end

of the whirling machine axle passed through into the box in a light-tight manner, and

it was supplied with a self-oiling syphon wick. The ordinary speed at which it was

driven was 64 revolutions per second
; occasionally it rose as high as 85, but the

water pressure was not often enough for this.

The turbine could have been fed from a cistern in the roof, but greater pressure

was attainable in the mains, and though liable to fluctuation this was found at certain

times in the day or evening regular enough for good observation.

Mode of Controlling and Determining the Speed.

Uniformity of rotation was essential, and to secure it the method employed by

Lord Rayleigh in his determination of the ohm was imitated. A small cardboard

stroboscopic disk was painted with several circles of radial markings, or "
teeth," the

ones chiefly used being 3, 4, 5, 6, 8 teeth respectively in a circumference, especially

the pattern 4.

This disk was watched through a pair of slits carried by the prongs of a large

electromagnetically maintained Koenig fork, whose loads were adjusted to give 128 vibra-

tions per second precisely. The slits permitted vision at the middle of each swing,

consequently 256 glimpses a second. Hence whenever the 4 pattern on the stroboscopic

disk was distinct and stationary as seen through the slits, it meant that the sensitive

plate on the same axle was spinning 64 times in a second.

Photographs of sparks were taken only when the pattern was stationary and the

speed thus known to be regular.

To determine the speed absolutely it was necessary to calibrate or specially observe

the period of the fork. To this end two methods were employed : one the ordinary

method devised by Lord Rayleigh, for comparing an electromagnetically maintained fork

18— 2
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with a large free standard fork *
;
the other by means of a simple four-figure mechanical

counter attached to the axle of the stroboscopic disk. This counter recorded mechani-

cally the actual number of revolutions made by the disk, during say five or ten

minutes, and all this time the disk could be watched through the jaws of the electro-

magnetic fork and some definite pattern kept, on the average, absolutely steady.

The control over the speed was obtained, as in Lord Rayleigh's case, by passing

the driving cord through the fingers of the observer as he watched the disk through

the jaws of the fork, thus keeping on the cord a slight frictional pressure, which,

whenever necessary, was increased or relaxed, and thereby regulated the speed. With

practice this method of personal government is susceptible of surprising accuracy. It is

always however much easier to keep a pattern still on the average, that is, to bring

a tooth back if it has slipped forward a little, so as not to allow any unknown escape

of the steady pattern from control, than it is to keep the pattern constantly steady,

as it ought to be when a photograph is being taken. At the same time it may be

noticed that at the customary working speed a retardation or acceleration at the rate

of one tooth interchange every second (which is conspicuously bad) makes an error of

only 1 in 256, or less than one-half per cent.
;
and as it is not a systematic error it

is likely to disappear from an average, even if so great as this. When the water

pressure is regular, and the oiling also regular (a superabundance of paraffin is the

easiest way of securing this latter condition) the regulation of the cord is easy. But

if the water pressure varies much a duster or pad is necessary between the cord and

the fingers, to save them getting burnt, and then some of the delicacy of manipulation has

departed.

It will be observed that in the experiments for determining the rate of the fork

there is no need to run the stroboscopic disk very fast. The 8 or the 12 pattern may
be the one kept still

; corresponding to 32 or 21£ revolutions per second, a moderate

speed which is not liable to heat or otherwise overstrain the counter.

The multiplication necessary to get the speed for any other steady pattern is of

course precise.

The fork was not found to vary on different days; it was set very accurately to

128 vibrations per second (viz. close to the mark 256), and this part of the determi-

nation, viz. the absolute speed of the revolving plate, was entirely easy and satisfactory.

Example of a Rating of the Fork.

The following may serve as an example of one of the observations for calculating

the speed of the fork. There were three observers : one to watch the disk and control

the driving string, so as to keep any selected pattern steady ;
another to watch the

counter and make a tap whenever a figure changed on the 100 dial (the units flew

past invisibly, and the tens were inconveniently quick) ;
and the third to read a

chronometer and record the time of occurrence of every other tap to the nearest half

second.
* See Phil. Tram., 1883, Part 1, p. 316.
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The correctness of absolute time was secured by comparing the chronometer every

day with a standard clock which was rated from the Observatory. The error in the rate

of the chronometer was thus found negligible, being certainly not more than one or two

seconds a day.

Although it was possible to keep the speed constant for ten minutes or so, it was

rather wearying and was really unnecessary, two or three minutes being quite sufficient,

on this method of observing. Table I. gives a set of readings taken on the 23rd July,

1889, the "eight" pattern being kept steady and every other tap, or every 200th revolu-

tion, being timed :

Table I.

h. m. s. h. m. s.

xi 32 3-5
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Meanwhile a small Voss machine, attached to the spark knobs, which formed the

terminal of a circuit containing the condenser and the coil, had been excited with its

knobs in contact. At a signal from the observer watching the disk they were drawn

apart, and one, two, three, or four sparks listened for inside the case. The machine

was then short-circuited again, and the lens slightly shifted a felt amount (which

could be done without opening the "camera") so as to bring the spark image a trifle

nearer the centre, and another ring of sparks was then taken; sometimes with the

conditions varied, sometimes with them just the same. Then a third, a fourth, and some-

times a fifth circle of sparks were also taken. The number of sparks which without

too much fear of unintelligible superposition could be taken in a single circle depended

partly on their strength. With a large condenser a single spark might overlap its own

record
;
with a very small condenser 6 or 8 sparks could be safely taken.

In practice either 4 or 5 was the commonest number, and though chance frequently

caused some overlap it was not usually difficult to disentangle the records when reading

the plate.

It was customary to get about 2 dozen sparks on a single plate, though sometimes

it would have been wiser to try for fewer. But a bad overlap after all is no worse

than if neither record had been attempted.

Lastly, a needle point was held on the still spinning plate near its middle so as

to centre it by a small circular scratch, and then the turbine was stopped, the room

darkened, and the plate removed.

An assistant, Mr Robinson, to whose careful manipulation we are much indebted,

then proceeded to develop the plate, sometimes using an intensifier when the markings

were too faint.

Meanwhile whatever conditions had to be varied were attended to, other measurements,

such as that of the self-induction of the coil, or the timing of fork, were made, and things

were got ready for another spin.

This process went on without interruption for some weeks, and a large number of

negatives were obtained. The plate at first used was the ordinary half-plate size, but in

order to permit larger circles, Mr Swan subsequently sent us square plates, 4 inches

square, and on these the final records were taken.

The spark-trace exhibited the alternate oscillations very distinctly : one end (probably

the cathode) being always brighter than the other, and this brighter end alternated

from side to side with every half-period. The beginning and end of each oscillation

though clear enough to ordinary vision became furry under magnification, and by far

the most definite things to set the crosswire on was a narrow bright radial line or sharp

spit, due evidently to the sparking of the knobs into one another: a phenomenon which

accompanied the main oscillations of the condenser and marked the beginning of each

electrical surge. These spits were so instantaneous that the rotation of the plate had

absolutely no effect on their sharpness. They were narrow lines no wider than the

crosswires.
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Reading of the Record.

The negative when thoroughly finished was subjected to careful micrometric examina-

tion.

To this end the plate was fixed on a horizontal circular graduated plate, part of

a spectrometer, reading with verniers at opposite ends of a diameter, and capable of

rotation with a slow motion tangent screw. Above the plate was clamped a microscope
of moderate power, with crosswires in its eye-piece ;

and below the plate a scrap of

mirror was arranged inclined at 45° to throw the light up.

The centre of the plate was made to coincide with the centre of rotation, and the

microscope was placed over one of the spark rings. The plate was turned until the

beginning of a spark-trace appeared. Some definite feature of it was then brought
under the crosswire, and the verniers were read. Then another feature was sighted,

and the verniers read again, and so on, all along the trace of that spark ;
and similarly

with every spark round that circle. Then the microscope was shifted till over another

circle, and the process repeated.

By far the most distinct features, and the most useful for precise setting, were

the sharp spits or radial lines already referred to and visible in the positives or rough

copies of some of the preliminary plates.

All the readings were done on the negatives, and the best or final series of plates

have had no positive copies taken from them as yet.

PART II.

The Measurement of the Self-Induction of the Coil.

Theory of the Method.

The method adopted for the measurement of the self-induction is that devised by

Maxwell, in his papers on "A Dynamical Theory of the Electromagnetic Field," Collected

Papers, Vol. i. p. 549.

Fio. 2.
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The coil whose coefficient of self-induction L is required forms one of the arms of a

Wheatstone bridge, Fig. 2. Let P be the resistance of the arm. Two of the other, arms

R and 8 are two resistances whose ratio—preferably one of equality
—is known, and a

balance is obtained by adjusting the fourth arm Q. "When this balance is found we

have the relation P/Q = R/S.

If the connections in the battery circuit be now reversed, a current due to self-

induction in the arm P passes through the galvanometer. Let a the first throw of

the galvanometer be observed.

Now alter the resistance Q by an amount BQ. In consequence there will be a deflec-

tion of the galvanometer needle ;
let 8 be this deflection

;
let x, x be the currents in

the arm P before and after the alteration of Q, \ the logarithmic decrement, and

let T be the time of a complete oscillation. Then, remembering that P and Q are

equal, we have (Rayleigh,
" On the Value of the British Association Unit in Absolute

Measure," Phil. Trans. Part H., 1882)

,. -„x T ., . . 2sinia
L = SQ- _(l+x)——§-.x 477- tan

The Resistance Boxes.

In our experiments the coil P, already partly described, was wound in two sections

each with a resistance of about 100 ohms, so that when both sections were in use

P was approximately 200 ohms. The other resistances were taken from two boxes of coils

of platinum silver wire by Messrs Elliott Bros., correct in "Legal Ohms" at 17° C. The

boxes had been calibrated in previous experiments, and the coils agreed closely with

each other. R and S were two coils of 100 ohms from one of these boxes; for the arm

Q an arrangement of two resistances in multiple arc was used. One of these was

205 ohms, the other was a large resistance of about 8000 ohms, and by varying this a fine

adjustment could be easily obtained.

Description of the Galvanometer used.

The galvanometer employed was a ballistic instrument of about 64 ohms resistance.

It has two channels of rectangular section. Each channel contains 20 layers of thin

copper wire and 16 layers of thick, making about 465 and 202 double turns respectively,

so that there are 667 double turns in each channel, and about 2668 single turns on the

galvanometer.

The two thicknesses of wire were employed in order to fill the channels, and at

the same time permit the resistance of the galvanometer to be varied as required. The

ends of the wires are connected to binding screws on the bobbin marked A, B, &c, a, b, &c.
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A to a is one wire, B to b another. In our experiments the coils were connected up in

series, the total resistance being about 64 ohms at a temperature of 13°2 C.

The needle of the galvanometer was suspended from the Weber suspension by three

single cocoon fibres of 60 centims. in length.

The magnet was a small bar of hardened steel I'5 centim: long, -6 centim. broad,

and -12 centim. thick; its weight was -708 grm. The magnet was attached by two

small screws to a brass stirrup to which the mirror was fixed. A piece of brass wire

66 centims. long, with a screw thread cut on it, was fixed to this stirrup at right angles
to the plane of the mirror, projecting equally on either side of the mirror. Two small

brass cylinders could be screwed along this brass wire, and by means of them the moment
of inertia and time of swing of the needle could be adjusted as required. The stirrup

and mirror weighed 6
-

6 grms.

The galvanometer has a solid wooden base of about 18 centims. diameter, and

this base was supported on three levelling screws. A graduated circle is fixed to the

base, and the coils can be turned about a vertical axis, and their position read by
means of a vernier. This was found useful in adjusting the coils parallel to the magnetic
meridian.

The galvanometer rested on a stone bracket built up from the ground. A scale

placed approximately north and south at a distance of about 347 centims. from the

magnet was reflected in the mirror and viewed through a telescope.

The scale rested on a solid stone support on the floor of the room. The mirror,

about lo centim. square, was a specially good one, selected by a fortunate chance from

among a number in the laboratory. The divisions of the scale were in millimetres, and

after practice these could be subdivided by the eye with great accuracy to tenths. The

scale itself was of paper; though this material is unsuitable for many purposes because of

the changes produced in it by the weather, in our experiments these changes are of

small consequence, for we require only the ratio of the throw produced by the induction

current to the steady deflection produced by the permanent current
;
and the time which

elapsed between the measurements was only a few minutes. Any shrinking or altera-

tion of the scale will go on very approximately uniformly throughout its length and

not alter the ratio of two lengths, which were never very unequal, as measured by the

scale. The scale had been carefully compared with the standard metre and the necessary

correction applied to the readings.

The distance between the mirror and the scale only enters our result in the small

correction necessary to reduce the scale readings so as to give the ratio of the sine of

half the throw to the tangent of the deflection. It was unnecessary, therefore, to

measure it with any great accuracy or to take steps to ensure its remaining the same

from day to day ;
so long as it did not change during the half-hour occupied by each

experiment, all the conditions required by us were satisfied.

The scale was carefully set so that the line joining its middle point to the centre

Vol. XVIII. 19
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of the mirror was east and west, while the scale itself ran north and south. By taking,

however, throws and deflections on both sides of the zero which was at the centre of

the scale, the effect of any small error in setting was eliminated from the result.

General Theory of the Method.

In making the observations the double amplitude, i.e., the distance between an

extreme elongation to the right and a corresponding one to the left, was noted. Let

a be this double amplitude in scale divisions for the induction throws, c for the deflection

due to the alteration BQ, and let d be the distance between mirror and the scale.

a c
Then tan 2ot = A -. , tan 20 = A -= ,

and from this we find2 d 3 d

2sin^a _o( llaa -8c8
)

tan 6 ~e\ 128da

j

'

neglecting higher powers of a/d and c/d. The values of (11a
2 — 8c2

)/128d
2 varied for the

different arrangements from "00173 to
-00023.

The value of the ratio x'/x was obtained as follows :

Let E and E' be the values of the potential difference between the points where

the current enters and leaves the bridge, in the two cases when the values of Q are

Q and Q + BQ respectively.

e the E.M.F. of the battery, which we suppose does not alter*.

Let X and X' be the resistances between the points A and D where the current

enters and leaves the bridge in the two cases, and Y the battery resistance.

Then putting P = Q = 200 in the small terms, and R = S=100, we find

E' = x' (Q + BQ + 100 + $BQ),

S -* (Q+100),

. Y
E 1 + X .

also w = m = 1

if a term of the order FSQ/90,000 be neglected. Y is of the order 1 ohm, and BQ of

4 or 5 ohms.

x Q + 100
Hence

x Q + 100 +U BQ

* A combination of large Daniell's cells was used. themselves will afford a test of this. A small change in

Except for the correction now discussed, the results are the e.m.f. would only produce a first order change in the

independent of changes in the battery e.m.f., provided value of the correction, and therefore a second order change
such (if they occur) go on uniformly, and the experiments in the whole result

;
it may therefore be omitted.
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In a second series of observations the approximate value of Q was 100, and in

this case the formula becomes — =
x Q + 100 + f| BQ

-

The actual value of the ratio will vary with the value of BQ in the various

experiments; in most cases it is from one to two per cent, greater than unity: BQ being

negative.

Introducing these the formula for L expressed in terms of quantities which can be

directly observed is

T KQ T nj.*\ Q + lQO aL 11a8 -8c'

[The coefficient of BQ in the denominator is in some of the experiments ||.]

Theory of the Actual Observations.

The above simple theory of the experiment assumes (A) that a perfect resistance

balance can be (1) obtained and (2) maintained during the experiment, and (B) that in

measuring a throw the galvanometer needle can be brought to absolute rest before a

reversal of the current. The coil is made of copper wire
; slight changes of tempera-

ture therefore affect its resistance, the current itself produces a small heating effect in

the wire, and it is practically impossible to maintain an accurate balance. Again to bring

the needle accurately to rest before each throw involves time, while to avoid undue

heating it is necessary to be rapid in observations
;

it is better therefore to make a

correction for any small swing which may exist at the time of making a reversal. Lord

Rayleigh has shewn how actually to make the observations, provided the reversal takes

place as the needle passes its equilibrium position (Phil. Trans., 1882, Pt. n., p. 680).

The following quotation gives his theory and practice of the method of observation.

"In the simple theory of the method the induction throw is supposed to be taken

when the needle is at rest, and when the resistance balance is perfect. Instead of

waiting to reduce the free swing to insignificance, it was much better to observe its

actual amount and to allow for it. The first step is, therefore, to read two successive

elongations, and this should be taken as soon as the needle is fairly quiet. The battery

current is then reversed, to a signal, as the needle passes the position of equilibrium, and

a note made whether the free swing is in the same or in the opposite direction to the

induction throw. We have also to bear in mind that the zero about which the vibra-

tions take place is different after reversal from what it was before reversal, in consequence

of imperfection in the resistance balance. At the moment after reversal we are there-

fore to regard the needle as displaced from its position of equilibrium, and as affected

with a velocity due jointly to the induction impulse and to the free swing previously

existing. If the arc of vibration (i.e. the difference of successive elongations) be a before

reversal, the arc due to induction be a, and if b be the difference of zeros, the subsequent

vibration is expressed by

\ (a + a )
sin nt + b cos nt,

19—2



148 Messrs GLAZEBROOK and LODGE, EXPERIMENTS ON THE OSCILLATORY

in which t is measured from the moment of reversal, and the damping is for the

present neglected. The actually observed arc of vibration is therefore

2 v1± (a ± aoy + b%

or with sufficient approximation

2¥
a±a -\ ,

a

so that

a = observed arc + a„ .

a

" In most cases the correction depending upon b was very small, if not insensible.

The ' observed arc
'

was the difference of the readings at the two elongations immediately

following reversal. As a check against mistakes the two next elongations also were

observed, but were not used further in the reduction. The needle was then brought

nearly to rest, and two elongations observed in the now reversed position of the key,

giving with the former ones the data for determining the imperfection of the resistance

balance. As the needle next passed the position of equilibrium, it was acted upon by
the induction impulse (in the opposite direction to that observed before) and the four

following elongations were read."

To find then the correct double throw a, if aa be the observed throw, a„ the throw

at the time of reversal, and b the difference between the equilibrium positions before

and after reversal, we have

re = a, + « .

The sign to be attached to a depends on the directions of a^ and a .

After two throws right and left respectively have been observed, and the equilibrium

position is taken with the battery key in one position
—denoted by R, say, in the

table—then Q is altered by BQ and the new equilibrium position is found. This was

done by bringing the needle approximately to rest near the new position, by the proper

use of the battery key (Maxwell n.) and an auxiliary damping circuit, and reading
three elongations in the usual way. From these the position of rest was found. The

difference between the two equilibrium positions gives Cj the deflexion to the right ;

the battery key is then reversed and a deflexion to the left found
;

the resistance

BQ is then removed and a second zero reading taken
;

from these two, we find the

deflexion c2 to the left.

The sum of d and c2 gives c the double deflexion required.

The values of Q and Q + 8Q are calculated from the resistances on the multiple
arc in the arms of the bridge.
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Thus, on July 18th, for the balance the resistances were 205 and 7750 ohms, for

a deflexion 205 and 3950 ohms. Hence
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Table II.

Throw
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Time of swing of Needle.

The time of swing was found in the usual way by observing the transits of the

zero reading over the cross-wire of the telescope.

In this case 12 transits were observed and then after waiting for an interval of

16 transits 12 more were taken.

We thus found the mean of sets taken on several occasions, always both before and

after the series of throws and deflexions; T= 10713 mean solar seconds. The time was

taken on the chronometer already mentioned in Part I. of the paper.

The greatest error from the mean in any one of the 12 observations was less than

2 parts in 1000. Thus the time of swing is very accurately known.

The value of X was found by reading a series of 42 deflexions. The average value of

a large number of observations (which lay between •0134 and "0131) was -01324.

From these observations we obtain for the value of L

L = 4 -6488 Legal Quadrants.

The result requires a small correction because &Q was at 17°*5 instead of at 17°

at which the box is right.

Introducing this we find as the value

4"6494 Legal Quadrants.

Four sets of observations were taken on the two coils arranged in series.

Table III. gives the details, from which the results have been calculated. The

mean value of "01324 has been employed throughout for the logarithmic decrement X.

Table III.

Date
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It appears that the greatest difference between two results is -0014 in a total of

4-6500, or less than 1 part in 3000.

It will be noticed also that the agreement is very decidedly improved by the

temperature corrections of the last column. Thus the value of the coefficient of self-

induction has been determined to an accuracy which requires that the temperature of

the various coils used should be known to a fraction of a degree.

The value given, 46493, is in legal quadrants; i.e., the resistance of a column of

mercury 106 cm. long has been taken as 10" C.G.S. units. To reduce it to "Henry's"
or "International Quadrants" it must be multiplied by the ratio 106/1063. We then

find as the value of the coefficient of self-induction of the coil

4-6362 Quadrants,
*

or 46362 x 109
/x centimetres.

Self-induction of each half of the Coil.

Since the coil was wound in two parts and one of the parts occasionally used

alone, it was thought well to find the coefficients for the two parts separately, and to

check the result by observing also the value when they were arranged so that the

mutual induction of the two opposed the self-induction. Let Lu X2 be the two coeffi-

cients of self-induction of the two parts, M the coefficient of mutual induction between

the parts, L' the coefficient of self-induction of the whole with the two parts opposed.

Then L = L, + Z2 + 2M,

L^L. + L,- 1M

= 2(L l + L2)-L.

Thus L = 2 (i, + L 2)
- L'.

The coefficients are all small and the probable errors of the measures are greater

than those in the direct measurement.

The following values, however, were obtained :

Lx
= 1405 Quadrants for semi-coil marked A.

2/2 =l-393 „ „ „ „ B.

L' = 0-963

Whence L = 4633 legal quadrants ; agreeing fairly well with the true result.
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PART III.

Corrections to the Simple Theory of the Experiment.

(i) The Electrostatic Capacity of the Coil.

The chief cause of difficulty in comparing the experimental results with theory
arises from the fact that the coil has considerable capacity, and further that this is

not distributed uniformly along the length of the wire.

The coil consists of two similar portions almost identical.

Each half is wound with about 60 layers of gutta percha covered wire containing
about 30 turns to a layer. The interior diameter is 27 -5 cm. and the exterior

is 48"7 cm., while the axial depth of the coil is about 5'2 cm. The number of turns

of the coil were not counted exactly when it was wound.

After the experiments the case was opened and the coil measured as far as practic-

able. It was found that the number of layers in a radial direction as estimated from those

which could be seen and counted was 64, and they occupied 1035 cm. Thus the average
distance between the centres of consecutive layers is 1 0*35/64 or "164 cm. The inner

layer contained 28 turns, and of these 25 lie in a space of 39 cm. ; thus the distance

between consecutive turns is "156 cm. The thickness of the uncovered wire was found

to be -049 cm.
;

thus the thickness of two coverings is '107 cm.

The two halves are separated by a sheet of glass with a circular hole in its centre
;

the sheet is about "27 cm. in thickness.

The whole coil is enclosed in a wooden box, the ends of the wires being brought
to terminals which are well insulated from the wood.

Now if we consider any turn of the one coil lying near the glass, it is faced on

the opposite side of the glass by a similar turn, which during the experiments will be

at a very different potential. Charges will thus accumulate on these turns and their

capacity must be considered in the theory. If we consider a turn in the centre of

either coil it is surrounded by other turns at nearly the same potential as itself, and

does not therefore become much charged.

The outer layers of the coil will have some capacity, but if the wood case be

treated as an insulator this will be .small, and thus we may consider that the chief

capacity of the coil lies in the faces in contact with the glass.

We may thus represent the two coils in the following diagrammatic manner :

Consider a number (n— 1) of equal condensers, each of capacity 8'
;
each plate of a

condenser represents two adjacent turns of the wire, which lie on the same side of

the glass, and face two corresponding turns, representing the second plate of the condenser,

on the opposite side of the glass.

Vol. XVIII. 20
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In strictness, since the diameters of the turns increase from 27 to 48 cm., the

capacities of the condensers ought not to be taken as equal; but unless this is done the

solution is very complex, and when the correction is small the error introduced cannot be

great.

Let the positive plate of each condenser be connected to the positive plate of the

two adjacent condensers by wires of self-induction L, and likewise for the negative plates.

Each loop of wire represents two adjacent layers in the coil itself.

The one set of condensers and loops represents one coil, the other set the second

coil. Connect the two plates of the condensers at one end of the series by a loop of

wire of inductance 2Z, and connect the plates of the condenser at the other end of

the series by wires of inductance L to the two plates respectively of a condenser of

capacity S.

We have thus a representation of the condenser and coil in which the oscillations

occur. This is shewn diagrammatically in Fig. 3.

Fig. 3.

Case i.

Let a?,, ml be the currents in the wires connecting the positive and negative plates

of the first and second condensers, x2 ,
xa

'

those in the wires connecting the corresponding

plates of the second and third condensers, and so on. Let Qu Q2 ,
... be the charges on the

positive plates.

Then since the rates of increase of the charges on the opposite plates of any one

condenser are equal and opposite,

dQi_ ,

Xl ~~
dt

~ Xl '

dQ2 _ ,

X% X^ — , — X% ^ll

Now let Vu Vit Va be the potentials of the positive plates, P,', V2', etc. those

of the negative plates, R, L the resistance and inductance of the wires joining consecutive

plates,

Lx-l + Rxx =V1
— V2 ,

Lx^ + Rx^=V'-V'.
But x, = &,', x, = x-.',
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V — V — — V—V' — Q?'
1 ' 1

— o> ' 2 ' 2
—

qi >

.-. 2M + 21*. - F,- F»' -.(Ft- F,0 = |
-1 .

Now if Z', iJ' denote the inductance and resistance of the two wires joining the

plates of any two consecutive condensers, then

L' = 2L, R' = 2R.

Then if R is the whole resistance, L the whole inductance,

R = nR', L - nL'.

And the equations to find the period are

xx + JKWt« -x —
g>

,

*! T -tl •*»
—

<j> o/ >

-L/ Xn T XI #?l "^7 ,
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Whence to find the periods we have the determinant

=P 1 ...

1 Q 1 ...

1 Q 1 ...

Q 1

1 P

(to n columns).

Now the determinant

= P Q i ..
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In the first instance neglect the terms depending on the resistances, then

S'KL' - 2 = Q = 2 cos e,

S'\*L' = 2 (1 + cos 0) = 4 cos2

1 .

It

Now if the whole of the capacity Sx were concentrated at one part of the circuit

connected by a wire of inductance L we should have

l i

S,L n (n- 1)577"

In the most important of the cases with which we have to deal a large part of the

inductance is so concentrated in the capacity^ S. We shall suppose therefore in solving
a

the equation that X'S'L' is a small quantity of the order
1/a'-'.

So that 2 cos „ is of the

order 1/a, and 6 is not much different from 77-. Put 6 = m —
j>

: ultimately will be

treated as small, though for the present the solution is general : then

S' \77 = 2 (1 + cos 6)
= 2 (1

- cos 0).

Whence substituting

{S'X'L'
-

1} {(S'X
2L' - 1) sin (a

-
1) + sin (n

-
2) 0}

+ (S'\
2L' - 1) sin (a

-
2) + sin (n

-
3)

S'

Thus

But

-
j {(S'\

2L' - l)sin (a
-

1) + sin (a- 2) 0} - 0.

'2S'\3L' {sin (a
-

2)
- sin («

-
1) 0}

+ sin (a
—

1) + sin (a
—

3)
— 2 sin (a

—
2)

-
-g-

{sin (a
-

2)
- sin (a

-
1) + S'X'L' sin (a

-
1) 0}

+ £'2

A.77<'sin(a-l)0 = O,

.-. 2S'A 2Z' {sin (a
-

2)
- sin (a

-
1) 0}

+ 2 sin (a
-

2) (cos 0-1)

- -~- {sin (a
-

2)
- sin (a

-
1) + S'X>L' sin (a

-
1) 0}

+ S' 2\4L'2 sin (a
-

1) = 0.

2(cos0-l) = -S'\2Z7

.-. X3Z' {sin (a
-

2)
- 2 sin (a

-
1) 0}

-
g {sin (a

-
2)

- sin (a
-

1) + S'X2Z' sin (n - 1) 0}

+ 5V272 sin (a -1)0 =

.(A)

(B).
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On eliminating <J>
from (A) and (B) we obtain an equation for Xs

.

Now we have seen that 4 sin2

<£/2 is of the order S'L'/2.L, where 2 stands for the

whole capacity. In the most important cases S, the external capacity, is large compared
with Si ,

the capacity of the coil
;
and in this case the whole capacity is large compared

with Si. In the general case on substituting in (B) from (A) we find

X>L' {sin (n - 2) <f>

- 2 sin (n
-

1) <f>
+ 2 sin (n - 1) </> (1

- cos
<£)}

= ~ {sin (n
—

2) <f>

— sin (n
—

1) <j>
+ 2 (1

— cos
<f>)

sin (n
—

1) <f>}.

ttti ».»•#» i sin(w— 1) <f>

Whence X2 L'S = 1 + -5-7 _. , \ ^~ ,—sin (?i
—

2) cp
- 2 cos

<p
sin (?i

— 1 ) </>

_ sin (n
— 1 ) cf>

sin n.<£

= 1 — cos
<f>
+ sin <£ cot

n<f>,

.-. X2Z' (£-££') = sin
<£

cot h<£ (C),

or substituting for XlZ/ from (A)

2 tan £ (S -££') = £' cot n0 (C),

the fundamental equation for the periods.

Up to the present no assumption has been made as to the relative values of S

and S'. In our case S' is small compared with Su and then
<f>

is small
;
S may have

any value.

In the more important cases S is large compared with St . In this case n<j>
is of the

order (SJS)*. We may expand cot
n<j>

and cot <f>/2
and use l/SL as an approximate value

for X2 in the small terms.

Now we have 2 (1
- cos

<f>)
= X'L'S'.

Thus P - X2Z'#' (1 + TVX
2Z'S' + ...).

Hence <f
= \*L'S' \l+B. + L+.

where a, b, etc. can be found approximately. Hence expanding in Bernouilli's numbers,

1 S'\ A, a b

2S)[
1 +

n
'

2lB1K
2
<ft

2 2iB2n
4

<f>'

-«KI+ 5+5--)

= n -
i2 -15

f 1 _M _^4

I

i

1
X2 £' -}'

on,Now, as a first approximation,

n*L'S' _ n Sl _8l (i J
1

n
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Hence n'-$
2 is of the order SJS,

n^ is of order I f|y or ^gy,«2 VS

since n = 30 approximately in the experiments.

Again, the value of S is in the final experiments 5853 cm. while $,, when the two

coils {A) and (B) are used, is about 1600 cm. (See Part IV.)

Thus the important terms are those in ?i
2

(/>

2
,
n4

$
4

..., while a term such as one in

ri-<f>

4
is, when 8, has its largest value, of the order (SJSf; and when $ is only 100 cm.

it is of order (8,/S)
4
.

Hence retaining the most important terms,

MM J,
1 Si

} t gjW 2<B2n<cl>*

and Bl
= 2 *AM ft /, 1

Thus

Hence

^i1-!^}- 1 iSJl + i
3 a «

X3Z^ =1 -^{ 1

-2^^1)

I s!
3S4~W=rl

omitting terms of the order 1/n
2 in the coefficient of St/S.

Substituting in the terms in
n*tf>

4 and introducing the value of n in the last term, we

have approximately

\*LS x ax. a2(m-1V
'

45 vs
.(D).

In obtaining the coefficients of (SJS) the terms in
n<fi have been retained when

compared with terms in
<f>.

Hence for SJS = -2733,

VLS = 1 - -0896 + -0066 = -9169.

In some of the preliminary experiments however the value of SJS was greater than

unity and the series method of solution will not apply.

The following graphical method however will apply to all the cases.
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The equations to be solved are

2 (1
- cos 0)X2 =
US'

tan ^ I

-^7
— 1

)

= cot ?i0 ;

S'= 8l
lt w-l = 30, § = -2733,

n — 1 o

for $ = 58*53 metres, *S,= 16 metres.

Hence
ftjL

-
l)
- 218.

Hence 218 x tan ^ = cot 310.

An inspection of the Tables and a trial shews that is nearly 56'.

By plotting on a large scale the values of cot 310 and 218 tan 0/2 at about 56',

we find the curves intersect at 56' 30".

Hence = 56' 30

T O
Hence \*LS = 2 (1

- cos 0)
~

= 2 (1
— cos 0) n (n

—
1) 3-

= -919,

substituting for 0, n and S/S^

Thus practically the same value is found as by the series. If we take ^ = 1 metre,

as in the experiments with coil (A) or (B) singly, then

8/$ -58, 2(n-l) = 60,

and tan
<f>/2 {58 x 60 - 1}

= cot 310.

Thus 3479 x tan
|
= cot 310.

A similar procedure gives for the value 14' 45", and substituting in the equation

for X*LS we obtain

\2ZS=-9924.

The solution by series already obtained was '9943.

The case in which there is no outside condenser is given by putting S = S' in the
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original equation; thus, supposing the coil to consist of n parts, so that nS' = <S,
= 16 metres,

we have

tan
|
= cot

n<f>, ^-j^,

\2
Z<S, = 2ws

(1
- cos

<f>)
=
(2w + 1)

2
77"

71-
:

"4
1- 1)

K [
neglecting l/«

2

= 2-38 if m=31.

The case of a continuous coil of uniform capacity s and inductance I per unit of

length may be treated as follows.

We assume the frequency to be such that the current across each section of the

wire is the same at any given moment.

Let V be the potential at one end, that at the other being zero, a the length of

the wire, v the potential at a distance x from the end at which the potential is zero.

Then v = -

The charge on an element dx at x is

Vx

Energy

q = svdx =

= %qv = \s

s Vxdx

V*<
dx.

The total electrostatic energy of the coil is thus

=— xHx,
2 a- Jo

and thus = J x %V°-sa
= JPtf,,

if Si is the capacity of the whole coil.

Hence the total electrostatic energy of the coil and condenser is

kV^S + iS,).

The electrokinetic energy is \Lu- if u is the current.

I
Hence X2 =LW+W
This agrees with the result already found for a large number n of condensers

connected by wires. (See equation (D), p. 159.)

In some of the earlier experiments described in Part IV. in which the whole coil was

Vol. XVIII. 21
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used and the value of S, therefore was 16 metres, the values of S were approximately

2, 5, 5
-

5 and 10'5 metres. The values of
<f>

and X*LS can be found for these cases in

the same manner and we thus get the following Table.

Table IV.

s



-ft
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Now yjx depends on S'/S, and m 12 ,
etc. are all finite and less than I,;

L> = (k + m* +...)+
(n

~g
)S

'

m,

where m is of the order of the arithmetical mean of m^, m^, etc.,

.-. L' = l1 + rn12 + ... + -l-m.o

Thus in the case of a large number of turns, if SJS is small the equations

already used are correct if L' be 1/mth of the whole self-induction, for we may neglect

the term S-jnjS compared with the sum lx + ra^ + etc.

There is now the correction for resistance to be considered. In the case of a simple

circuit

A being the uncorrected value
;
thus we may put

Now so far as the inductance of the circuit is concerned,

x2

=^(i-n
And in the more important cases both k" and k' are small.

Therefore \2 = ~ (1
- k" - k'\

where k" has the value already found from Table IV.,

In some of the experiments X is about 2tt x 103
,

R = 200 x 109
,
L = 5x 109

,

^ =
1^0 approximately,

and the correction is negligible.

If the period be 1/120 second as in other experiments,

\„ = 2?r x 1-2 x 102 - 7-2 x 102

approximately,

w =
9Q approximately,

and k' =
^

. ^ = j^ ,
which is also negligible.

21—2
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In some of the experiments only half the coil was used.

We may represent this case diagrammatically thus (Fig. 4).

The upper set of plates and loops represents the coil connected to the main

condenser, the lower set represents the insulated coil, the ends of which are insulated.

"2 /mm /nrm

1MM2/ isuim/

Fig. 4.

Case ii.

As the main condenser is discharged the electrostatic action of the upper plates

causes the charges on the lower plates to vary and oscillating currents are produced in

the lower coil.

Let x be the current leaving the .main condenser, y2 , ys , yt the currents between

the lower plates of the coil condensers, then the currents between the upper plates of

the same are x — y2 , x — y3 , etc., and the equations are

L' (x) -Vi-V, i

£'(*-*)- f,-f.

Hence

L' (x
-

yn..,)
= F„_! -Vn \

Lx=vn -v;

L'y2 =V,'-V3

'

f'y _ y —V"

»L'am V,- Fi'+Fy-Ffc*

Q. QnV — V+V—— — V 4- —
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Also

Hence

= 2(F1 -F/)-2ZV-| +
|-"

(ii + DZ'a—|g-&+^=*.

27(tf-2y2)=F2-^'-(F3-F3')

_&_<2_3

i(i-2y„_ I )
=
^7

1

-|
l

.

Z'(*-2y2)
=^^,

4
£' (x

- 2y3)
= y2 + 2y3

-
3/4

S'

L>(x-2yn^)=
- y^ + *yn-\

Now we may shew that y2
= y„_ 1 . For superpose everywhere on the system a

potential v; this will not affect the currents. And now choose v so that the potentials of

the plates of the main condenser are equal and opposite, i.e. so that

^ = i(F1+ F/);

the distribution is a symmetrical one and obviously in this case

2/a
= Vn—1 >

y3
=

2/»-2. etc.

Hence if n = 2m

and we have m— 1 equations

Vm — 2/m—l)
(ft

•
'

L(x — lym)
= —

-g,
,
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put #!=«, x2
= xx

-
2y2 ,

xa
= xl

—
2y3 ,

y2 =^(x1 -x2), y3
= \ (xt

- x3), etc.,

2/s
-

2/2
= £ (#2

-
«s). etc.

;/ i\ r'" * A V^-i "^2/

(m + 1) /,#!=-£#!- jj -g/

Hence

.'. putting x = Xe~M ,

L''x 2
= 1 ^S ^Q "^S

2»S' 2S '

Lt Xm = 50 (#m_! Xm) ,

2S'{(m
+
l)X*i'-g|-

1 X.+ X.-O,

X, + {2S'\
2Z' - 2} X2 + X3

= 0,

Xm_ 1 + !2 (S'VX'-l}Xm = 0.

Solving these equations as previously, putting S'L'X' = 1 — cos
<f>,

we find as the

equation for the periods

S\*L
'

\m + l = :

(
1 — cos

<j>
+ sin

<£
cot my)

•(E).

Expanding as far as
<f>*

and assuming that <$? may be neglected, compared with

m2

$
2

,
we have

m
SX>L' \m +

2SX*mL' 1 +

m2
<£

2

S

m2

^
2

6

= 1,

= 1.

Now

Hence

or neglecting the terms in (SJS)
2

,

2mL' = L, <f>>
= 2S'KL', S1

= (2m-l)S'.

1 +
o(2^I)§

l =

WLS=l-l(
m ^'

6\2m-l) S

= 1
-I2 (

1 + »)* .(F).
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Thus so fax as the term in SJS is concerned the correction is one-fourth of that

to be applied in the first case, and this, when the values of S, and S are 16 and

58'53 respectively, comes to — "022.

If we assume the coefficient of the term in (SJS)* to be also divided by 4 we
have to add to this +001. Thus to about one part in 1000 we have

X2Z£ = l--021 = -978.

If however in the case represented in Fig. 4, we suppose that the lower coil is

uninsulated, the equations can readily be shewn to be those of the first section of this

Part, and the formula for the frequency will be

\3&L = -9169 (G).

There is however another possible arrangement to notice.

D O
r<nrB7rts\—v,,— 1 <tsT3T8^ /^rs^^a 0ZTrtnrzr\ ~Va

~V^ lo£j£2^ V3 \>nr,noo) leajuULo) Yn— l \ll£g23&Q

Fig. 5.

Case iii.

If in Fig. 5, AB, CD represent the two coils, we have supposed above in Fig. 3

that B was connected to C, while A and D are connected to the main condenser. In

some of the experiments however it appears possible that B was connected to D, and

A and C to the external condenser. The distribution of potential would then be as shewn

in the figure, and the solution differs from that of the first case. We can write down

the equations and solve this case, but it can be shewn thus that it reduces to the

second case.

For compare Fig. 5 with Fig. 6, which is obtained by putting the coil DC alongside

AB, and placing above the two a second similar double coil A'B'D'C with its ends

insulated
;

the distance between this and the first coil being the same as for the two

coils in Fig. 5. The distribution of currents is clearly the same. Now if Sx be the

capacity of the two coils AB, DC, or A'B', D'C in Fig. 6, the correcting term is

-BJ128.
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1 o
But S1 =2S1 . Thus the correcting term in this case is -j-.

1

or one half of its value
o o

in the first case.

We shall assume that if the higher powers of SJS are included the correction is still

one half of its value in the first case.

The solution for the case in which there is no condenser attached is best obtained

from the original equation (E), p. 166, by putting S = S', i.e. assuming the last section of

the coil to be the external condenser.

Thus we have

Also

Whence

\*S'L' \n +
1 — cos 9 + sin

<f>
cot

\*S'L' = 1 - cos 9.

nS' = Su 2nL'=L.

»*}
**

n (1
— cos 9) cos

( n<j>
—

|-
1 = cos ^ cos

n<f>.

•jr
i//-Now assume, guided by the solution on p. 161, that n<f>

=
^
— ~ where $ is small

1 <f> yjr it . xi"

Then n(l - cos <£)sin<: ($ + $) = cos
| sin-^

and 9 =
9- approximately; neglecting

—

Thus n<§? 9 + ifr _ / . 9
2
N y]r

"2 2~~V 2/ 2"'

Thus approximately
_ IT 7T-

* ~
16 rc

2 '

7T 1 rl
"9=9 1_ "

16n2

j

Now \2
SiL - 2n*S'L'\- = 2h 2

(1
- cos 9) = «2

9
2 =

-j-
.
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Thus comparing this with the result on p. 161 we see that the frequency is the same

whether the connexions be as in Fig. 3 or in Fig. 5.

In order to solve when $! is not small compared with S we have with the same

notation from the above equations

sin£($ + i/r) j-=
— n (1 —cos

<f>)\
=
sin^ cos-^-.

Now we may suppose $ is small.

Hence cot nq> = tan £ =
_,, .

S~~2~

Now if \*SL = k = 2n\*SL',

since 2MS'Z/ =
<£

2
,

we have k =
»i</>

2
~7 •

.-. cot n<£
=

|c/> -~-,
-

1

Now £' = £§ = i approximately, and when the connexions are as in Fig. 4, k = *25

for S = 2. Hence assuming A; is not very different in the present arrangement

cot30c/>
= f<£(H-T2),

cot 30 =^ <£
=

1-680.

The solution of this gives <j>
= 2° 50' 30" and £ = '2873.

If S = 5, k is '45 in the first arrangement. Thus

cot 30
(j>
=

6<£ approximately,

whence <f>
= 2 30 30

,

and k = "oSS.

For £=5-5, k = -574,

while if S-10-5, A = '784.

If then we write X>LS=k we have the following values for k according as the

connexions are made.
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Table V.

s
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L' (x
- y„_a)

= Vn_x
- Vn ,

L'x=vn -v;,

V - V - SL ?S - « ptn
2 •

fl7* A _2/2 ' etc -'

JlffS - I' (ft + y, + y„_0 = F,
- V; = | .

£' (<»
- y2)

=
g, y2 ,

L' (x
- y^) = *» yn-i,

(S^L'X
2 - 1 ) F2

= (S/Z' X» - 1 ) Y3
= S.'L' X2X, ,

SZX2 = 1- W— S/X2^,

n2 o

Now it appears possible from the investigation in Part IV. p. 174, that S/ may
be as great as 600 cm. so that S'/S = -£$.

Also, taking the two coils, n = 60 and 1 -—
^-
= 1 — ^—r approximately, thus the

correction is negligible, and we might give S' a much larger value without modifying

our final result.

If we have no external condenser then S = £/ and we have X2
(S/i = 1— approxi-

mately. So that in this case the capacity of each layer of the coil on the next may
be the effective factor in determining the period.

(ii) Effect of Resistance and Throttling on the Period.

The critical resistance at which the discharge ceases to be oscillatory is

/ii
VI'

and in our case this is enormous, because of the small capacities. In the principal

case, of the large air condenser, it is

S« X 10. 3*10»
=53000ohlM .

6000 10"

When only one half coil is used the critical resistance is less, being about 30,000 ohms.

22—2
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Now the resistance of our wire circuit is only 200 ohms as ordinarily measured,

but it is well known that under rapid oscillations the resistance of a conductor is

increased by reason of the extra peripheral distribution of the current. The spark gap
has also a certain resistance which it is not easy exactly to estimate.

Some observations were made with a condenser discharging through several known

circuits and the same air gap, in order to study the damping and make an

estimate of what the resistance of the spark was. These indicate that for feeble

discharge a spark resistance is high, while for powerful discharge it may be quite

low. With our feeble spark it is undoubtedly large, and quite eclipses the resistance

of the wire part of the circuit, though it does not amount to anything like the critical

resistance at which the discharge ceases to be oscillatory; but it cannot be considered

as constant, and its complete specification will be difficult.

With regard to the throttling by reason of rapid alternation, it must be observed,

1st, that the alternations were not excessively rapid, always comparable to 1000 per second;

and 2nd, that the wire on the coil was copper and very thin.

The coil had a mean diameter of 38 centims. and consisted of 3493 turns of copper

wire, half a millimetre in diameter. At 1000 alternations per second uniform distribution

of current through such a wire would hardly be departed from, and neither the resist-

ance or the self-induction would be greatly different from their ordinary values.

It is important to note that no correction to self-induction is necessary, for even

with infinite rapidity of oscillation, when all the current flows by the periphery, the

value of the self-induction would not be greatly disturbed; though the throttling resistance

would then be enormous. The reason why the self-induction is not very dependent on

distribution in a thin wire is that it is only the space inside the wire which ceases

to be magnetised by a peripheral distribution, and this is small in comparison with all

the space outside.

(iii) Sei.f-tnduction of Leading Wires.

The self-induction of the leading wires between condenser, coil and spark-gap, was

about 100 metres ;
but as the self-induction of the whole circuit was considerably more

than an earth quadrant this is entirely insignificant.

(iv) Effect of Leakage.

The insulation resistance between the two halves of the coil was measured and

found to be 20 megohms; hence leakage during a discharge was practically non-existent.

(v) Effect of Wave Length.

The electric oscillations have not been assumed quick enough to give waves com-

parable in length with the circuit, else different parts of the circuit would be in different

phases, and some complications would result.
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The length of the circuit is 4 kilometres.

The wave length in the chief cases is either

3 x 10 10 3 x 1010

~W~ °r
"1600

CentimS -

and is always bigger than 100 kilometres, so no complication from different phases will

arise.

PART IV.

Preliminary Experiments.

In the earlier stages of the work a large number of experiments were made with

various condensers
;
some of these had a small capacity. It was thought at the time

that it might be possible to use a guard-ring condenser of which the capacity could be

accurately determined and that thus a good value for
"
v
"

might have been obtained
;

at this stage the importance of the correction for the capacity of the coil was not

fully realized and it was the discrepancy which was observed when the results of these

experiments were compared with a simple theory which led to the fuller consideration

of this correction which has been given in Part III.

The experiments therefore are chiefly of interest as a test of the theory and

as enabling us to see the consequences of the correction.

Several measurements were made with a small air condenser consisting of 7 concentric

brass cylinders each 45'4 cm. high and "75 mm. thick and of internal diameters 13 -

25,

9*90, 8 -

26, 6 -

92, 5'00, 3 -

40, and T60 cms. respectively. The capacity of this condenser

making some allowance for the edges and for connecting wires was calculated at 5 5

metres.

Another condenser consisted of eleven circular discs of brass of total capacity, as

calculated from the dimensions, of 5 metres. A list of these various condensers is given

below. (See p. 175.)

Two other condensers were used, one consisting of tinfoil plates on glass, the other

a paraffin paper condenser. The capacity of the former calculated from its dimensions

is 47 -

5 K metres, K being the specific inductive capacity of glass. Taking K as 5 this

comes to 237 metres. An attempt made however to determine by observation the capacity

of this condenser gave as the value 190 metres, corresponding to the value 4 for K
which is very low.

The capacity of the paraffin paper condenser was £ microfarad or 3000 metres.

The capacities of these condensers were also determined by the ballistic method, but

it must be remembered that with such small capacities accuracy cannot be expected

and the values found are therefore only approximate.
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The correction to be made to the simple theory involves as we have seen in

Part III. the capacity of the two halves of the coil treated as two plates of a condenser.

We may obtain a very rough estimate of this by treating the two sets of opposed

turns as two discs separated by the glass plate and insulated covering of the wire.

Now we have from the dimensions given in Part III. p. 153 the following data: the

thickness of the glass is "27 cm. and of the gutta percha T cm. : taking the inductive

capacity of glass as 7 and of gutta percha as 3, we have for the equivalent air thickness

•27 -1

-s- + s or -072 cm.
7 o ,

Hence since the interior diameter is 27 -o cm. and the exterior 48'7 cm.

a ttx 76-2x21-2 .

1
=

47TX4X-072
= Cm ' aPProximatelv-

But the value of $i can best be found by the ballistic method. The two halves of

the coil were charged like the two coats of a condenser to a potential difference of 60 volts

and discharged through a ballistic galvanometer. A standard condenser of -01 microfarad

was similarly charged, and the kicks compared. As a second experiment the galvano-

meter was shunted with the l/9th shunt and a condenser of capacity 02 microfarad

discharged.

A number of concordant readings were obtained with the result that the capacity

came out as -0018 microfarad or 16"2 metres for rapid charging.

If the time of charging is prolonged the capacity rises apparently and could be

got as high as 22 metres
;

this was due in part to the action of the containing box

which behaves as a conductor for slow charging. We have taken then the value

16 metres as that to be applied in the corrections in the final experiment.

We have seen that we may also require to know the capacity of one layer of the

coil on the next. This it is difficult to determine with any approach to accuracy.

In each layer there are about 30 turns of wire, its thickness being about -05 cm.

The least distance apart of the surfaces of these wires is about -

1 cm. while the

distance between their centres is about -
15.

We may as a very rough approximation treat the two layers as two concentric

cylinders 1*5 cm. (30 x -

05) in height and -12 cm. apart.

The mean diameter of these cylinders is 38 cm. Hence if K be the inductive

capacity of the dielectric the capacity required is

it x 38 x 1-5K

4tt x -12
cm.,

or about 120-&T cm. Assuming K = S for india rubber we get for the capacity of one

layer on the next the value 3'6 metres.
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List of condensers used in the preliminary experiments with their capacities as

directly measured ballistically or estimated from their dimensions.

Capacity.

Cylinder condenser, already described, 55 K metres.

11 plate disc condenser, „ 50 „

5 plate disc condenser, part of the above 20 „

A Leyden jar about 20"5 „

A flat sheet glass and tinfoil condenser about 1900 „

or as found by calculation 237 „

A large paraffin paper condenser by Muirhead,

consisting of six 2 microfarad condensers

arranged in series about 3000 „

After several preliminary photographs at various speeds and modes of connexion we
took on 22nd July a careful series of spins with the fork adjusted exactly at 128 and

with the 4 pattern of the disc extremely steady.

The connections were made as in Figure 8.

L being the self induction coil.

C and C the condensers arranged close together.

S the spark gap in the dark box, and M the electrical machine.

The point E was sometimes earthed.

Fig. 8.

Connexion with the machine was made through wooden penholders w, in order to

avoid the capacity of the machine wires and terminals coming in as a disturbance, and

the two condensers are shewn connected to each other also by penholders. This was not

always done, and it is this circumstance which was specially varied
;

the object being

to test the influence of wooden connexions, for subsequent use; e.g. with a guard-ring

condenser; where wooden connexion might preserve the potential uniform during slow

charge but isolate the guard-ring during sudden discharge.

The following are the circumstances of the chief plates taken this day.
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Plate No. I.

On its first or outer circle several sparks were taken, with cyliuder and disc con-

denser joined by wood w'.

Second circle, several more with the same.

Third circle, with the cylinder condenser alone, the disc condenser being disconnected.

Fourth circle, both condensers in parallel, joined as in Figure 8, but by wire, not wood.

The following is the micrometric analysis of this plate, the numbers being given

rather fully as a specimen. It was the first plate carefully read. We do not quote the

actual circle readings but the successive differences or lengths of the constituent half-

oscillations
;

the last one was usually faint, and some were better marked than others.

It will be seen that there were very few oscillations in each spark, because of the

smallness of the condenser and the resistance of the circuit. It would not indeed have

been surprising if the damping had affected the period perceptibly; but the only obvious

effect is the lengthening out of the last swing by the high resistance of the decaying

spark.

Successive alternation intervals on fourth or inner circle of Plate No. 1 for different

sparks :
—

6° 48', 6° 18', 6° 55', 7° 6'

6° 36', 6° 15', 6° 40', 6° 54'

6° 29', 6° 41', 6° 32', 7° 6' (lower power object glass),

6° 32', 6" 35', 6° 25', 7° 11' (plate recentred),

6° 32', 6° 35', 6° 26', 7° 7' (repetition),

6° 23', 6° 33', 6° 16', 7° 2' (plate recentred),

6° 32', 6° 38', 6° 34', 7° 28' (apparatus reset).

It is clear that the last or decaying half oscillation is unduly lengthened by reason

of the high resistance of the dying spark, so, omitting it, we have as the average of a

half oscillation for this circle 6° 31'.

Similarly omitting the last reading, which in nearly all cases is longer than the others,

the average length of a half oscillation on the third circle is 5° 19'; on the second circle

5' 18'; and on the first or outer circle 5° 19'.

Since the plate was making 64 revolutions per second, this gives as the observed

frequency :

For the cylinder condenser connected by wood to the disc condenser 2170 per second.

For the cylinder condenser alone 2170 „

For the cylinder and disc condenser properly connected . . . 1770 „

These numbers shew that the wooden connectors separating the condensers act as

expected, at least in preventing combined discharges, and thus act effectively in isolating

the machine terminals from the capacity discharged.
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It would be tedious to quote at full length the details of all the preliminary spins,

and indeed all of the records have not yet been read. But such as seemed likely to

be instructive were carefully examined, and a summary of them is given below.

July 25. The 11 -plate disc condenser arranged so that the machine charges it

through a needle point, an inch or two distant, without direct contact. The needle

point replaces the wooden connexion previously used. The following are the lengths of

various half oscillations as recorded on a plate spinning 64 turns a second: 4° 42',

4° 42', 4° 47', 4° 41', 4° 49', 4° 41', 4° 44', 4° 38', 4° 38', 4° 41', 4° 50', 4° 48', 4° 37', 4° 43',

4° 38', 4° 29', 4° 19'. Average of these numbers 4° 40'.

Frequency deduced from the observation, 2470 per second.

Same date. Cylinder condenser, similarly arranged. Frequency 2370.

Same date. 5-plate disc condenser, similarly arranged, average 4° 30'. Frequency 2580.

July 30. Cylinder condenser arranged in a different part of the circuit, viz. each set

of plates connected to one of the terminals of the two halves of the coil as in Figure 11,

p. 181.

Average reading 4° 34'. Frequency 2560.

On other circles of the same plate, condenser detached and middle terminals of coil

left insulated, so that the only capacity was that of the two halves of the coil :

Readings 2° 45', 2° 54', 2° 31', 2° 4', 2° 4', 2° 2'.

Average 2° 30'. Frequency 4630.

July 31. Spins taken at the 12-pattern speed (i.e. 21J revs, per sec.) with the large

Muirhead condenser in simple circuit with the whole coil. The outer circle was taken

with the condenser attached to middle screws, as on July 30; for the others it was con-

nected in the ordinary way. But no correction for coil or other capacity should be needed

with this great condenser.

Average reading 30° 30', the speed not perfectly steady.

Frequency deduced 126 per second.

August 1. Cylinder and disc condenser in parallel.

Average of readings for spark alternations on outer circle

„ for another set ditto .

„ for spark on second circle .

„ for another set ditto .

„ for spark on third circle

„ for another set third circle

„ for spark on fourth circle .

General average for this plate ....
Frequency deduced, 1766.

The speed for the outer circle was steadiest.

Vol. XVIII. 23
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Same date. Cylinder and disc again, with coil connexions reversed, otherwise every-

thing the same.

Average of readings off all alternations on outer circle 6
=
13' 5"

„ „ „ „ second circle 6° 15' 5"

„ „ „ „ third circle 6° 11'

„ „ „ „ fourth circle 6° 17'

Speed for fourth circle was steadiest
; weighted average 6° 15'.

Frequency deduced 1830.

Same date. Leyden jar added to cylinder and disc condensers.

General average of readings 9° 48'.

Frequency deduced 1180.

August 2. Took a spin with the large Muirhead condenser connected not to the

entire coil, but only one portion of it, the portion called B.

Average of readings (one spark on each circle) at 4-pattern speed was 49° 40', but the

speed was not over steady, and with these heavy sparks the setting of the microscope on

a leading feature of each alternation is less definite.

Frequency deduced 232 or 233.

Same date. Same condenser joined to coil A.

Average of readings 50° 10'. .

Or omitting the last or drawn-out alternation, and taking the most probable average

from the steadiest circle :

Estimated reading 49° 42'.

Hence frequency deduced, average 230
;

most probable 232.

Same date. Muirhead condenser joined to complete coil, one spark attempted on each

circle, but one apparently missed fire.

Average of whole set (with 8-pattern speed) 45° 15';

or frequency 128.

Same date. Muirhead with disc and cylinder condenser added.

Speed deduced 127 and 124.

August 3. Sheet glass condenser (glass as dielectric).

Composed of 8 sheets of glass and 9 of tinfoil.

Each tinfoil 38T x 54-2 centim.

Combined thickness of the 8 plates 2
-2 centim.

Plate running at 6-pattern speed.

Average of readings 17° 8'.

Frequency deduced 450.
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Same date. Same condenser through B coil only ; frequency 820.

This is a sufficient account of the preliminary experiments, whose object was partly

to gain experience and partly to find out what sort of condenser was best to use. Decided

that a large simple air condenser was advisable, without complication of guard-ring or

anything, but with edges that could be allowed for by calculation and with plates large

enough to make the correction of relatively small amount.

In order to compare these preliminary results with theory it seemed best to calculate

the theoretical frequencies, using the formula \"LS = k where k has the proper value for

each combination as given in Table V. in Part III.

We thus obtain the following results :

Table VI. Both coils A and B being used.

Date
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Table VII. using only one coil.

Date
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and C as in Fig. 10. A and D being connected together, the frequency rose to 1830;
this result we have not been able to explain as satisfactorily as we could have wished.

Spark

The following may however have been the cause. In the figure A and D are terminals

connected with the outer turns of the coils, B and C those connected with the inner.

Now the capacity of the outer turns is greater than that of the inner, while at the same

time the portions of the coils which are nearest to the condenser, and in which there-

fore the potential difference is the greater, will have most effect on the result. We
have however taken an average value of S', 16/30, in calculating the correction. It may
be that this average is right for Fig. 9, but that for Fig. 10 it ought to be reduced,

for the actual value of S' near
.
C is only 3/5 of that near A. If we assumed

(5?!
= 3 x 16/5 = 10 say, or S' = 10/30, we should obtain as the frequency the value 1860

which agrees closely with that given by experiment.

Again on July 30 the cylinder condenser was connected to the coil as in Fig. 11.

The observed frequency was 2560.

-^ OOOOOVI?0O0000JL2JL£!L2JL
Spark

Fio. 11.

Earth

The calculated frequency for this case, assuming the corrections already given, is

2060, or if we assume the connexions to have been as in Case ii., 2270
;

in either

case the result is much too low.

It will be noticed however that in Fig. 11 the condenser is connected to the

terminals B and C, i.e. to the inner terminals of the coil as in Fig. 10, and we have

just seen that the assumption that the effective capacity of the coil is 10 metres

when this is the case serves to reconcile theory and experiment. It becomes of interest

then to evaluate the frequency, assuming S, equal to 10 and S' to 10/30.
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The resulting value for the frequency is 2470 which is still below that found by

experiment, viz. 2560, but it has already appeared that the capacity assumed for the

cylinder condenser, viz. 5'5 metres, is too high. The assumption that the value was

51 which (p. 180) is required to reconcile with theory the experiments recorded in

Table VI. would also bring the results of this case into greater harmony.

On the same date (July 30) and immediately after the above experiment, the

condenser was removed and oscillations taken with the coil alone. In this case, assuming

the theory developed in Part III., we have

8,1^=- 1 - - = 2-38,
nj

or if we suppose the capacity uniformly distributed along the coil,

On substituting for ^ the value 16 metres, and for L 4 -63 secohms, we find for the

frequency the values 3830 and 4300 respectively; the experimental result is 4630. In this

case theory and experiment would be reconciled by the assumption that the capacity of the

coil was 10 metres instead of 16, and this value fits, as we have seen, the experiments

just discussed in which the condenser was used.

If we adopt the first of the two formula? and take /Sx =10 we find the theoretical

frequency is 4820, while the second formula based on the assumption of a uniform

distribution of capacity leads to the value 5360. The observed value was 4630 which

agrees best with the first of these two theoretical values, being rather below it. It will be

observed however from the record on p. 177 that the experimental results are very variable.

Thus these three sets of experiments in which the condenser was connected to the

terminals B, G of the coil will be reconciled with theory by the assumption that when

the experiment is so conducted that there is a large potential difference between the

inner windings of the coil for each of which the electrostatic capacity is smaller than

for windings near the outer edge, the effective capacity of the coil Sx of the formula

is about 10 metres, possibly rather over 10 metres.

These results are given in Table VII. (a).

Table VII. (a).

Both coils A and B being used, but the coil capacity taken as 10 metres instead of 16.

Date



DISCHARGE OF AN AIR CONDENSER, WITH A DETERMINATION OF "v." 183

The general concordance of the experimental results with theory appears to shew
that the capacity of the coil, layer upon layer, has no marked effect; if it be taken into

1 S '

account a correcting factor of the form 1 -— 2 must be introduced, where £/ may possibly

be 3 or 4 metres. This would reduce the frequency in the case of the 2-metre condenser

by about l/30th, bringing it to 2510.

For S=5 the correction would be 1/75.

A sufficient account has now been given of these preliminary experiments; as a result

we were led to construct an air condenser of considerable capacity which we could calculate

with some degree of accuracy.

PART V.

The Air Condenser.

We proceeded to make an air condenser of eleven flat plate glass slabs very care-

fully covered with tinfoil so as to offer a perfectly smooth metallic plane on both

sides; folding the tinfoil round the edges so that they were practically slabs of metal.

The plates were nearly square, and their size was measured individually, giving as

the average result 59"716 cm. long by 59 -614 cm. broad.

The boxwood scale which had been used was then compared with a brass standard

metre, which we know to be accurate at 0°
;

and 60 centims. on it was found to be

-fa
millimetre longer than 60 centims. of the standard at 18°. The expansion of the

brass would make the length of the standard too long by
-2 millim., so the total

correction is '025 centim. Hence the corrected size of the condenser plates is

5974 x 59'64 square centim.

The thickness of the eleven plates clean and finished and lying close together was

measured in eight different places and found to average 3157 inches, or when clamped

together tightly 3 -116 inches, so the thickness of each plate was "284 inch or -721 centim.

We then cut a number of plate glass distance pieces, measured them carefully, and

arranged them in the 10 spaces between the plates, 5 in each space, like the pips on

a card. Set the plates on end on a pair of ebonite wedges and clamped them in

special wooden frames, making careful contact with each plate by a thin wire lying

along the middle of an edge. Connected alternate plates together and proceeded to

charge. But found that the glass distance pieces leaked in the most surprising manner.

Four of them were sufficient to prevent the machine from charging anything. Tested

them separately and found they leaked like wood, giving a distinct brush discharge

from their corners.
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Hence replaced them by pieces of ebonite all cut out of the same sheet
;

each

piece 7 millimetres square ;
52 pieces end to end, measured in vernier callipers,

occupied 1024 inches.

So the thickness of each distance piece was

•1989 inch or '5001 centim.

With 5 of these between each plate, one at each corner and one in the middle,

the plates were once more clamped up, connexions carefully made, and an experiment

begun.

The plates stood vertically on a pair of sharp-edged ebonite wedges, at a height

of 1 inch above the floor of the frame, which was tinfoiled to make it definite. The

sides and top were at first open, so that the edges of the plates were then free
;
but

afterwards in order to keep the inside air dry for all the best experiments, the box

was panelled in. The distances of the wood panelling from the plates were as follows:

From edge of plates to wall of case 515 centim.

roof „ 8-8

floor „ 2-5

A simple wooden X formed the front and back at a distance from the outer flat

of the plates, 40 on one face and 32 on the other.

Estimate of Capacity of Condenser.

The method of correcting for the edges of a thin plate is given in Maxwell,

vol. I. § 293. A term has to be added to the linear dimensions as if an extra strip

of a certain breadth were put on all round a uniformly charged plate.

This extra breadth, on account of the extra density at terminations of thin parallel

planes, is

£l0ge2,7T

where " b" is the distance between the plates. But the plates are thick and square

edged, and a further correction has to be made for their thickness, Maxwell's further

correction for thickness /3, cos _, , assumes the edges to be rounded and is therefore

inapplicable, but acoustic analogies suggest the addition to the dimensions of each plate

of a quarter of its thickness, to represent the effect of the edges themselves. (Cf. Rayleigh,

Sound, vol. II. §§ 307 and 314.)

The total correction is thus

226 + -25/3 = -11 + -18 = -29 centim.

to be added all round.



DISCHARGE OF AN AIR CONDENSER, WITH A DETERMINATION OF "v." 185

Thus the capacity of the condenser proper is

10(59-74 + -58) x (59"64 + '58)

4tt x -5001

and this reduces to 5779 centimetres.

To this has to be added a term for the proximity of the case to the edges, especially

for the proximity of the floor; the floor correction is

5 x 60 x -72 = 6'9 centims.
4 x 25

The walls and roof together amount to 87, or altogether 156 centims.

Next, the ebonite distance piepes must be allowed for. They are each \ square

centim. in area, and there are 50 of them
;

their specific inductive capacity may be

taken as 3, so the extra capacity due to them is 8 centims.

Adding all these we get for the condenser capacity, 5803 centims.

Then there is a correction for the charged portion of the wires leading from the

condenser and coil to the spark knobs. This was approximately 7 "3 metres long and

one millimetre thick, with a span of \\ metres between it and the walls. Its capacity

730
was therefore = 50 centims.

2 loge 150

Thus the whole electrostatic capacity under charge was

5853 centimetres.

Connexions were as in Figure 12. The machine was usually connected only across

an air space by needle points so as to take no part in the discharge.

Fig. 12.

Vol. XVIII. 24
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PART VI.

Final Experiments.

With the air condenser described in Part V., a number of spark photographs od

Mr Swan's 4-inch square plates were taken with the plate revolving 64 times a second.

From seven to nine circles were attempted on these plates with three or four sparks on

each circle.

Tin plates which are lettered from A to Z were afterwards read with great care

by Mr J. W. Capstick who writes: "The measurements will be found to be within a

very few minutes of the correct reading. In one case I accidentally went over a spark

twice, and though I was then at the end of six hours' almost continuous work at

them, and the spark was an exceptionally indefinite one, the greatest divergence in the

readings was only 3 or 4 minutes.

"The plates are very much better than any I had done previously, and the setting

of the microscope was generally a simple matter. The sparks were in general so

definite and regular that I did not think it necessary to make drawings of them."

[This had been done with some of the earlier plates.]

Mr Capstick remarks—as will be seen from the Tables—that there is some irregu-

larity in the sparks, and that, unless it is desired to study this, greater accuracy of

reading is hardly necessary.

The analysis of this long series of plates has been a work of time
;
we give below

the results of a study of all the plates from to U. In the earlier plates, marked

A to F, the work was in some respects of a preliminary character; there was no plate

marked Q. In the spin for plate P the coils were in multiple arc, and the coefficient

of self-induction for this arrangement was not determined.

We give as an example the actual record for two of the circles on plate U*.

This illustrates the method of dealing with the results.
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Spark (2)

Actual readings.

155° 14'

Spark (3)

or

Second circle.

Spark (1)

Spark (2)

Spark (3)

14° 21'

14 12

14 33 J

14° 22'

14° 11'
\

} 14° 18'

112° 40'

106 4

105 5

97 57

90 48

83 48

76 36

General mean for this outer circle 14° 24'.

14°
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Table VIII.

Plate U. Coil B.

Circle...
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Thus in Table VIII. will be found the actual length in degrees and minutes of all the

oscillations on the plate. The Roman numerals at the head of the columns indicate the

circles on which the sparks are to be found; the record for each spark is shewn separately.

The mean length of oscillation from the 99 sparks here recorded is 14° 23'
;
the range

of the readings is rather over 1°; the means for the various circles are given in the

Table; they range over 17'. It is clear however that the oscillations in any one spark
are not of equal length. As a rule the first oscillation is a long one. This is followed

by one or more of shorter period while, as the spark dies away, the oscillations again

lengthen ;
the cause of this has been discussed in Part IV.

The lengthening of the latter oscillations is more plainly shewn on some of the other

plates. If we omit the longer oscillations, and take only the more regular central swings
on plate U, we get the following series of numbers, in which the 14° is omitted for

brevity.

Table IX.

Circle...
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On the outer circle were taken 4 sparks, speed steady.

second „
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Table X.

Plate S. Summary of Readings.

Coil A.

Circle...
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Four sparks were taken on each circle.

Circle I. speed moderately steady.

II. „ fair.

III. „ quite steady for 3 sparks.

IV. „ steady.

Circle V. speed fair.

VI. „ steady on average.

VII. „ slightly backing.

VIII. „ fair.

To save space only the differences are quoted. All the differences read are included.

Sometimes overlapping prevented any reading being attempted.

The general mean from Table X. is 14° 28', while the central swings give 14° 19'.

These means include all the circles. The range of the mean readings is about the

same as for plate U, and the frequency calculated for the central swings works out

to 1610 oscillations per second.

Table XI.

Plate R. Complete Coil A + B.

Circle...
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As an example of a plate in which the whole coil was used the record for plate R
is given in Table XI. It will be seen that the means for the separate circles differ

by 7' in the case in which all the sparks are considered, and by 9' when only the

central swings are dealt with
;
the difference between the two means is 19'.

If we take as the length of wave 26° 15', the frequency is 64 x 360/26-25 or 878

oscillations per second.

It is not necessary to give the results of the other plates in such full detail.

The following Table summarizes them sufficiently. In each case the central sparks

only are included.

Table XII.

Complete Coil A + B.

Plate
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Coil B.

Plate
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formula LSX2 =k. In the case in which the two coils were used there is no difficulty
in deciding on the value of k. The formula for X is that given on p. 159 (D),

and hence k = -

916.

^- 1
-sl{

1
-i5rr-i))

45 (I)
+

If only one coil is used two cases may arise
;

if the lower coil is completely in-

sulated we have the case dealt with in Figure 4; the corresponding formula as far as

terms in SJS are concerned is (F) on p. 166, viz.:

LSW =l-±(l
n) 8'

and the value of k resulting from this is -978. If on the other hand the lower coil

is not insulated the correction necessary will be that indicated in (G), p. 167, and the

resulting value of k will be the same as that for the two coils, viz. -916.

As far as we know the coil was usually insulated
;

at any rate it was not in-

tentionally connected to earth except for the two plates H and /.

But there is another complication in this case. We assume in this case that the

value of L is that for either half the coil
;
now this assumes that there is no current

in the unused coil
;

but in consequence of the electrostatic induction there is a current

in the unused coil. This current will be of the order x S'/S if
'

a is the current from

the main condenser, and its effect will therefore alter the coefficient of self-induction

L of the upper coil by an amount proportional to MS'/S or about J//120. Now the

value of ij is about l
-

4, and of M about 91. Hence the value of Lx in the experi-

ments with the single coil is uncertain to one part in one hundred and seventy.

Omitting however this correction we get the following Table of values.

Table XIII.

Coil used
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In the fourth and seventh lines of this Table we give the velocity as obtained from

plates H and J. We know that in this case the effective coil and one plate of the

condenser was earthed originally, and we have therefore used the value of k calculated

on the assumption that the free coil was earthed throughout. It will be seen that the

resulting values of "v" and that obtained from the experiments with the full coil are

in close agreement, being respectively 2'98 x 1010
, 299 x 10 10 and 301 x 1010

.

If we take the other observations for coils A and B, excluding plates H and </,

the results are not quite so satisfactory. The assumption that the free coil was insulated

leads to the values 2 -94 x 1010 and 292 x 10 10
, given in lines 2 and 5 of the Table

;
on

the assumption that it was earthed we find from the same series of experiments the values

3 -04 x 1010 and 3'02 x 1010

respectively, given in lines 3 and 6. The truth would appear to

lie between the two.

If we take the experiments with the complete coil A + B in series, we can determine

the corrections with greater accuracy, and we find as the result

v = 3009 x 1010 centimetres per second,

while since the corrections can be calculated with more exactness in this case, we

attach far greater importance to the result.

We do not however look upon the paper as one describing a very exact method

of determining "v," but rather as a study in the oscillatory discharge of a condenser

which incidentally leads to a determination of " d" by a novel method.



VIII. The Geometry of Kepler and Newton. By Dr C. Taylor, Master of

St John's College.

[Received 25 August, 1899.]

This paper consists of two parts (A) and (B), treating respectively of some things
in the geometry of Kepler and some in the geometry of Newton, the finisher, in pure
mathematics as in physics, of so much of his brilliant predecessor's work.

In Fontenelle's Panegyrick of Newton, published in French and English under the

title, The Life of Sir Isaac Newton with an Account of his Writings (London, 1728),

the third paragraph begins thus,
" In studying Mathematicks, he employ'd his Thoughts

very little upon Euclid, as judging him too plain and easy to take up any part of

his time
;
he understood him almost before he had read him, and by only casting his

eye upon the Subject of a Proposition, was able to give the Demonstration. He
launch 'd at once into such books as the Geometry of Des Cartes and the Opticks of

Kepler. So that we may justly apply to him what Lucan has said of the Nile, whose

Springs were unknown to the Antients, That it was not granted to Mankind to see the

Nile in a small Stream."

(A)

KEPLER.

Kepler's new and modern doctrine of the Cone and its sections, which historians of

mathematics have ascribed to a later generation, was propounded in cap. iv. 4 of his

Ad Vitellionem Paralipomena, quibus Astro?wmice Pars Optica traditur, a work published

originally in 1604, a century before Newton's Opticks (1704), and edited with notes

forty years ago by Dr Ch. Friscli in vol. II. of his Joannis Kepleri Astronomi Opera
Omnia in eight volumes. The passage containing the new doctrine is given below line

for line, with the addition of numbers for reference, from the edition of 1604 :
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Page 92. 4- &e Coni feclionibus.

Coni varii funt, rectanguli, acutanguli, obtufanguli : item

Coni recti feu regulares, & Scaleni feu irregulares aut compreffi :

de quibus vide Apollonium & Eutocium in commentariis. O-

mnium promifcue fedtiones in quinq; cadunt fpecies. Etenim

25 linea in fuperficie coni per fectione conftituta aut eft recta, aut

circulus, aut Parabole aut Hyperbole aut Ellipfis. Inter has li-

neas hie eft ordo caufa proprietatis fuae : & analogice magis

quam Geometrice loquendo : quod a linea re6ta per hyperbo-

las infinitas in Parabolen, inde per Ellipfes infinitas in circulum

3o eft tranfitus. Etenim omnium Hyperbolarum obtufiffima eft

linea recta, acutiffima Parabole : fie omnium Ellipfium acutiffi-

ma eft parabole, obtufiffima Circulus. Parabole igitur habet ex

altera parte duas natura infinitas, Hyperbolen & Redtam, ex

altera duas finitas, & in fe redeuntes, Ellipfin & circulum. Ipfa

Page 93. loco medio media natura fe habet. Infinita enim & ipfa eft, fed

finitionem ex altera parte affectat, quo -magis enim producitur,

hoc magis fit fibiipfi parallelos, & brachia, vt ita dicam, non vt

Hyperbole, expandit, fed contrahit ab infiniti complexu, fem-

5 per plus quidem compleftcns, at femper minus appetens : cum

Hyperbole, quo plus aftu inter brachia complectitur, hoc plus

etiam appetat. Sunt igitur oppofiti termini, circulus & recta, illic

pura eft curuitas, hie pura rectitude Hyperbole, Parabole, Elli-

pfis, interiectae, & recto & curuo participant ; parabole ex aequo,

10 Hyperbole plus de rectitudine, Ellipfis plus de curuitate. Pro-

pterea Hyperbole quo longius producitur, hoc magis rectae feu

Afymptoto fuse fit fimilis. Ellipfis quo longius vltra medium

continuatur, hoc magis circularitatem affectat, tandemque coit

iterum fecum ipfa : Parabole loco medio, femper curuior eft Hy-
i 5 perbola, fi aequalibus interftitiis producantur, femperque reftior

Ellipfi. Cumque vt circulus & recta extrema claudunt, fie Para-

bole teneat medium : ita etiam vt rectae omnes fimiles, itemque

& circuli omnes, fie funt & parabolae omnes fimiles
; folaque

quantitate differunt.

20 Sunt autem apud has lineas aliqua puncta praecipuae confide-

rationis, quae definitionem certam habent, nomen nullum, nifi

pro nomine definitionem aut proprietatem aliquam vfurpes.

Ab iis enim punctis rectae eductae ad contingentes fectionem,

punctaq; contactuum, conftituunt aequales angulos iis, qui fiunt
;

»5 fi puncta oppofita cum iisdem punctis contactuum connectan-

tur. Nos lucis causa, & oculis in Mechanicam intentis ea puncta

Focos appellabimus. Centra dixiffemus, quia funt in axibus fe-

ctionum, nifi in Hyperbola & Ellipfi conici authores aliud pun-

ctum centri nomine appellarent. Focus igitur in circulo vnus

30 eft A. isque idem qui & centrum : in Ellipfi foci duo funt BC.

sequaliter a centro figurae remoti & plus in acutiore. In Parabole



Dr TAYLOE, THE GEOMETRY OF KEPLER AND NEWTON.

vnus D eft intra fectionem, alter vel extra vel intra fectionem in

axe fingendus eft infinito interuallo a priore remotus, adeo vt

edu6la HG vel IG ex illo caeco foco in quodcunque punftum
fe&ionis G. fit axi DK parallelos. In Hyperbola focus externus 35

199

Page 94.

F interno E tanto eft propior, quanto eft Hyperbole obtufior.

Et qui externus eft alteri fectionum oppofitarum, is alteri eft in-

ternus & contra.

Sequitur ergo per analogiam, vt in refta linea vterque focus

(ita loquimur de refla, fine vfu, tantum ad analogiam complen- 5

dam) coincidat in ipfam rectam : fitque vnus vt in circulo. In

circulo igitur focus in ipfo centro eft, longiflime recedens a cir-

cumferentia proxima, in Ellipfi iam minus recedit, & in parabo-
le multo minus, tandem in re6ta focus minimum ab ipfa rece-

dit, hoc eft, in ipfam incidit. Sic itaque in terminis, Circulo & re- 10

6la, coeunt foci, illic longifnme diftat, hie plane incidit focus in

lineam. In media Parabole infinito interuallo diftant, in Ellipfi

& Hyperbole lateralib. bini a6lu foci, fpatio dimenfo diftant
;

in

Ellipfi alter etiam intra eft, in Hyperbole alter extra. Vndique Page 95.

funt rationes oppofitae.

Linea MN quae focum in axe metatur, perpendiculariter in

axem infiftens, dicatur nobis chorda, & quae altitudinem often-

dit foci a proxima parte fectionis a vertice, pars nempe axis BR. 5
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vel DK. vel E. S. dicatur Sagitta vel axis. Igitur in circulo fagitta ae-

quat femichorda, in Ellipfi maior eft femichorda BF. q fagitta

BR. maior etiam fagitta BR. quam dimidium BP femichorda;

feu chordae quarta pars. In Parabole, quod Vitellio demonftra-
o uit, fagitta DK praecise aequat quartam chordae MN. hoc eft D
N eft dupla ad DK. In Hyperbole EQ plus eft, quam dupla i-

pfius ES. fc. minor eft fagitta ES.
cj. quarta chordae EQ. & fem-

per minor, atque minor per omnes proportiones, donee eua-

nefcat in re<5ta, vbi foco in lineam ipfam incumbente, altitudo

15 foci feu fagitta euanefcit, & fimul chorda infinita efficit, coinci-

dens fc. cum arcu fuo, abufiue fie difto, cum recta linea fit. Opor-
tet enim nobis feruire voces Geometricas analogiae : plurimum

namque amo analogias, fideliffimos meos magiftros, omnium
naturae arcanorum confeios : in Geometria praecipue fufpicien-

20 dos, dum infinitos cafus interiectos intra fua extrema, medium-

4ue, quantumuis abfurdis locutionibus concludunt, totamque
rei alicuius effentiam Iuculenter ponunt ob oculos.

Quin etiam in defcriptione fe<5tionum analogia plurimum
me iuuit. Etenim ex 51. & 52. tertii Apollonii defcriptio Hyper-

25 /Q boles & Ellipfeos efficitur facilima
; poteftc^ue

vel filo perfici. Pofitis enim focis, & inter eos ver-

tice C. figantur acus in focis A. B. annectatur ad

acum A filum longitudine AC. ad B. filum longi-

tudine BC. Prolongetur vtrumque filum aequali-

bus additionibus, vt fi duplex filum digitis com-

prehendas, iisque a C difcedentibus, bina fila paulatim dimittas,

altera4ue manu fignes iter anguli, quern vtrumque filum facit

apud digitos, ea defignatio erit. hyperbole. Facilius Ellipfis de-

fcribitur. Foci fint AB. vertex C. Fige acus firmas in A.B. vtram-

que filo amplectere, fimplici amplexu, vt inter AB filum non

Page 96. interfit. Fili longitudo fit AC duplicata, & capita fili

nodo fint connexa. Infere iam Graphium D in eun-

dem fili complexum cum AB. & tenfo filo, quantum
id patitur, circa AB circumduc lineam, haec Ellipfis erit.

Cum hxc tarn facilis effet defcriptio, non indigens o-

perofis illis circinis, quibus aliqui cudendis admiratio-

nem hominum venantur
;

diu dolui, non poffe fie et-

iam Parabolen defcribi. Tandem analogia mo-

ftrauit, (& Geometrica comprobat) non multo

operofius & hanc defignare. Proponatur A fo-

cus, C vertex, vt AC fit axis
;

is continuetur in

partes A. in infinitum vfq;, aut quousq; Parabo-

len placuerit defcribere. Placeat vfq; in E. Acus

ergo in A figatur, ab ea fit nexum filu longitudi-

ne AC. CE. Teneas manu altera caput altera fi-

li E. altera graphium, cu filo extende vfq; in C.

Sit etiam ad CE. erefta perpendiculariter EF.
/-
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igitur graphio C & manu altera E difcede aequalibus interuallis

a linea AE. fie vt manus altera & fili caput Temper in EF maneat,

filumque DG femper ipfi AE parallelon ;
via CD. quam Graphio 20

fignaueris, erit Parabole.

Dixi hsec de fe&ionibus conicis tanto libentius, quod non

tantum hie dimenfio refraftionum id requirebat, fed etiam in-

fra in Anatome oculi vfus earum apparebit. Turn etiam inter

problemata obferuatoria mentio earum erit facienda duobus 25

locis. Denique ad prseftantiffima optica machinamenta, ad pen-
filem in aere ftatuendam imaginem, ad imagines proportiona-
liter augendas, ad ignes incendendos, ad infinite comburen- Machmaml-

dum, conlideratio earum plane eft neceffana. Porta.

201

The headlines of the edition quoted are Ioannis Kepleri and Paralipom. in

Vitellionem up to page 221, and afterwards Ioannis Kepleri and Astronomice Pars Optica.

Page 92.

Kepler begins by saying that rays from the centre of a sphere do not become

parallel after reflexion from its inner surface, but converge to the centre. Some other

surface then had to be sought which would reflect all rays from some point into

parallels. Vitellio in lib. ix. 39—44, in part supplying what was lacking in Apollonius,

had shewn that the paraboloid of revolution was of the required form. But the subject

of the Conic Sections presented difficulties because it had not been much studied.

Kepler therefore—pardon a geometer
—

proposed to discourse somewhat "
mechanically,

analogically and popularly
"
about them.

Vitellio or Vitello (Witelo) had proved that at any point of a parabola the tangent

makes equal angles with a parallel to the axis and the line from the point to a

certain fixed point on the axis. Rays of the sun impinging equidistantly from the

axis upon the concavity of a reflecting paraboloid of revolution would therefore all be

reflected through a fixed point on the axis, and fire might so be kindled thereat.

Of cones right or scalene there are five species of sections (line 24), the right

line or line-pair, the circle, parabola, hyperbola and ellipse. From the line-pair we

pass through an infinity of hyperbolas to the parabola, and thence through an infinity

of ellipses to the circle. Of all hyperbolas the most obtuse is the line-pair, the most

acute the parabola. Of all ellipses the most acute is the parabola, the most obtuse

the circle.

Page 93.

The parabola is of the nature partly of the infinite sections and partly of the finite,

to which it is intermediate. As it is produced it does not spread out its arms in

direction like the hyperbola, but contracts them and brings them nearer to parallelism,
"
semper plus quidem complectens at semper minus appetens

"
(line 5). The hyperbola

Vol. XVIII. 26
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being produced tends more and more to the form of its "Asymptote" (line 12). Para-

bolas are all similar and differ only in "quantity" (line 19).

He then goes on to speak of certain remarkable points related to the sections

which had no name (line 21). The lines from them to any point of the section make

equal angles with the tangent. He will call them Foci (line 27). He would have

called them centres if that term had not been already appropriated. The circle has

one focus, at the centre : the ellipse has two, equidistant from the centre, and more

remote as the curve is more acute. In the parabola one is within the curve, while

the other may be regarded as either without or within it, so that a line hg or ig

drawn from that "caecus focus" to any point of the curve is parallel to the axis

(line 35).
Page 94.

In the hyperbola the focus external to either branch is the nearer to its internal

focus as the hyperbola is more obtuse. In the straight line (or line-pair), to speak in

an unusual way merely to complete the analogy, the foci fall upon the line itself.

Thus in the extreme limiting cases of the circle and the line-pair, the foci come together

at a point, which in the one is as far as possible from the nearest point of the cir-

cumference and in the other is on the line itself. In the intermediate case of the parabola

the foci are infinitely distant from one another (line 12) : in the ellipse and the

hyperbola on either side of it they are a finite distance apart.

Page 95.

The line mn through the focus, i.e. the latus rectum, is called the chord, and br

or dk or es the sagitta (line 6). In the next line BF is a misprint for BP. The

lengths of the sagitta and the chord are compared in the five sections, and it is said

that in the line-pair the one vanishes and the other becomes infinite (line 15), whereas,

if e be the eccentricity, they are in the finite ratio 1/2 (1 + e), and vanish together.

Kepler commends the principle of analogy in glowing terms, saying that he dearly loves

analogies, his most trusty teachers and conversant with all the secrets of nature

(line 19). Analogy leads us to comprise in one definition extreme limiting forms, from

the one of which we pass to the other by continuous variation through an infinity of

intermediate cases.

In the next paragraph Kepler shews how to describe an arc of a hyperbola by means

of threads fixed at the foci, the difference of the focal distances of a point on the curve

being constant. An ellipse is described more easily (line 33), with one thread.

Page 96.

In line 1 "AC duplicata" is inaccurate, the length of the thread being ac + cb. He is

shewing how to describe an ellipse by means of a thread fixed at the foci a and b, the

point c being a vertex. Having given his construction for this curve without the

troublesome compasses (line 6), he goes on to the parabola. To his grief he was long

unable to describe this analogously. At length he thought of the construction in the

text, in which adg represents a string of constant length ec + ca fixed at the focus a.
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The horizontal line is a fixed ordinate, c is the vertex and d any point of the locus. His

construction assumes a case of the theorem that the sum or difference of the distances of

a point on the parabola from the focus and a fixed perpendicular to the axis is constant.

In conclusion he refers to later passages for applications of his theory of the conic

sections. See cap. v. De modo visionis, and cap. xi. prob. 22—23 (p. 375 sq.).

The Convergence of Parallels.

Vitellio, as we have seen, had proved that rays of the sun impinging equidistantly

from (i.e. parallel to) the axis upon a concave reflector of the form of a paraboloid of

revolution would all be reflected to a certain point on the axis, whereat consequently
"
ignem est possibile accendi." Hence in different languages the name "

burning point
"

for what Kepler called Focus, in a parabola or other conic.

It would appear that the idea of the meeting of parallels at infinity came from

the observed fact that solar rays received upon a reflector may practically be regarded

as parallel. Moreover it was obvious that the distance, estimated on an infinitely

remote transversal, between "
equidistant

"
lines would subtend a vanishing angle at an

assumed point of observation. Kepler does not say that his doctrine of parallels is

altogether new and strange, when he writes at the end of page 93,
" adeo ut...", so

that lines from the point h (or i) are parallel,
—as if that would be allowed to follow

from its being infinitely distant. But it was perhaps a new and original suggestion

that h and i at infinity were the same point.

Kepler states expressly that he gave the name Foci to certain points related to the

conic sections which had previously "no name." With their new name he associated his

new views about the points themselves, and his doctrines of Continuity (under the name

Analogy) and Parallelism, which would soon have become known, and would after a time

have been taken up by competent mathematicians.

An abstract of the passage now quoted at length from Kepler's Paralipomena ad

Vitellionem was given by the writer in The Ancient and Modern Geometry of Conies*,

published early in 1881, and previously in a note read in 1880 to the Cambridge

Philosophical Society {Proceedings, vol. IV. 14—17, 1883), both of which have been referred

to by Professor Gino Loria in his writings on the history of geometry.

Henry Briggs.

Frisch (n. 405 sq.) quotes a letter of Henry Briggs to Kepler dated, Merton

College, Oxford, "10 Cal. Martiis 1625," which suggests improvements in the Paralipo-

mena ad Vitellionem. In this letter Briggs gives the following construction. Draw a

line CBADC, and suppose an ellipse, a parabola and a hyperbola to have B for focus

and A for their nearer vertex. Let GG be the other foci of the ellipse and the

hyperbola. Make AD equal to AB, and with centres GG and radius in each case equal

to CD describe circles. Then any point of the ellipse is equidistant from B and one

* The Ancient and Modern Geometry of Conies is hereinafter referred to as AMGC.
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circle, and any point of the hyperbola from B and the other circle. When C is at

infinity on either side of D the circle about it becomes rectilinear. Hence any point P
of the parabola is equidistant from B and the perpendicular DF to DA. This is ex-

pressed by Briggs as follows:

"
Si A sit vertex sectionis, et B, C foci, et AB, AD aequales, et centro C, radio

CD describatur peripheria: quodlibet punctum sectionis eandem servabit distantiam a

foco B et dicta peripheria. Eruntque...in Parabola (cui focus alter deest, vel distat

infinite, et idcirco recta DF vicem obtinet peripheriae) PB, FP aequales."

The writer comprehended and accepted Kepler's way of looking at parallels as lines to

or from a point at infinity in one direction or its opposite.

Desargues.

The famous geometer Desargues worked on the lines of Kepler, and is now commonly
credited with the authorship of some of the ideas of his predecessor.

Poncelet in the first edition of his Traite des Proprietes Projectives des Figures

(1822) writes with reference to a letter of Descartes,
" On voit aussi, dans cette lettre,

que Desargues avait coutume de considerer les systemes de droites paralleles comme

concourant a l'infini, et qu'il leur appliquait le meme raisonnement
"

(p. xxxix.). Chasles

on the Porisms of Euclid refers to this remark of Poncelet. In his Apercu Historique

(p. 56, 1875) he writes that Kepler
"
introduisit, le premier, l'usage de l'infini dans la

G^ometrie," but really with reference only
" aux me"thodes inh'nitesimales." The saying

that Kepler introduced the use of the infinite into geometry has been repeated by
other writers unacquainted with his doctrine of the infinitely great.

Dr Moritz Cantor in his Vorlesungen ihber Geschichte der Mathematik writes under

the head of Girard Desargues (1593—1662),
" Wir miissen einige wesentliche Dinge

hervorheben und darunter zunachst die Anwendung des Unendlichen in der Geo-

metrie...Auch Kepler hat 1615, Cavalieri 1635 in Druckwerken, deren Besprechung
uns obliegen wird, wenn wir von den Anfangen der Infinitesimalrechnung reden, den

gleichen Gedanken zu nie geahnten Folgerungen ausgebeutet, aber bei Desargues waren

es ganz andere Unendlichkeitsbetrachtungen als bei diesen Vorgangern
"

(n. 619, 1892). He

goes on to say that Desargues regarded parallels as meeting at infinity, and thus in

effect that Kepler did not so regard them. Cantor (p. 620 n.), referring to Poudra's
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(Euvres de Desargues i. 103, states confidently that Desargues could not have held that
"
es gebe nur einen Unendlichkeitspunkt einer Gerade." "Auch in I. 105...darf man

jenen modernen Sinn nicht hineinlesen." But the oneness of opposite infinities followed

simply and logically from a first principle of Desargues, that every two straight lines,

including parallels, have or are to be regarded as having one common point and one

only. A writer of his insight must have come to this conclusion, even if the paradox
had not been held by Kepler, Briggs, and we know not how many others, before Desargues
wrote.

In Poudra's (Euvres de Desargues, I. 210, under the head TraiU des Coniques, we

read,
"
Nombrils, point brulans, foyers.

—C'est a dire que les deux points comme Q et

P sont les points nommfe nombrils, brulans, ou foyers de la figure, au suiet desquel

il y a beaucoup a dire." Desargues must have learned directly or indirectly from the

work in which Kepler propounded his new theory of these points, first called by him

the Foci {foyers), including the modern doctrine of real points at infinity.

-(B)

NEWTON.

In the fifth section of the first book of the Principia, entitled Inventio orbium ubi

umbilicus neuter datur, the determination of conic orbits from data not including a focus,

Newton proves the property of the Locus ad quatuor tineas of which no geometrical

demonstration was extant, shews how to describe conies by rotating angles and other-

wise, and solves the six cases of the problem to determine a conic of which n points

and 5 — n tangents are given. Two more problems, each with its Lemma prefixed,

complete the section, which ends with the words,
" Hactenus de orbibus inveniendis.

Superest ut niotus corporum in orbibus inventis determinemus."

The following pages contain a summary of the greater part of the section, with

suggestions for the simplification of some of its contents and a few additional con-

structions and propositions. The Lemmas and Propositions of the Principia are quoted

by their Roman numerals.

1.

The Conic through Five Points.

Prop. A. Given five points of a conic to find a sixth.

Let A, B, G, D, P be given points of a conic. Through P draw PTSO parallel

to BA across BD, AG, GD. It is required to find the point K in which it meets the

conic again.
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By a property of conies and by similar triangles, if AB, CD meet in /,

OK. OPjOC. 0D = IA. IB/IC.ID = OS. OT/OC. OD.

Therefore OK. OP = OS. OT,

which determines K when the other points are given.

Inflect PR to OD parallel to AG. Then the point K is found by drawing CK
parallel to RT, and PRT, SCK are similar triangles.

Cor. 1. To determine the conic through five given points A, B, C, D, P. Having found

K, we find H where PR meets the conic again in like manner, namely by drawing BH
parallel to TR. Having two pairs of parallel chords, we can draw their diameters and

find the centre. This with either pair of the parallel chords determines the conic, if

the pair be unequal. If they be equal, we can use the parallel chord through D in

lieu of one of them. Given five points A, B, C, D, E, two pairs of parallel chords

can also be determined as in Prob. lv. of the Arithmetica Universalis. Let AC, BE cross

in H. Inflect PI to AC parallel to BE, and EK to DI parallel to AC. Then, in

order that ID, EK may meet the conic again in F, 0, we must have with Newton's

notation for rectangles and proportions,

AHC.BHE :: AIC.FID :: EKG.FKD.

Cor. 2. To determine the conic touching lines IB, ID at B, D and passing through

P. Supposing AC, BD in the figure to coalesce, find K as in the general case, and
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draw the diameter of PK. Then draw the diameter through /, and find its vertices,

and those of the conjugate diameter.

Cor. 3. Hexagrammum Mysticum. The construction in Cor. 1 for two pairs of

parallel chords gives three pairs, AB and KP, AG and PH, BH and KG Hence
Pascal's theorem for the case of parallels.

Cor. 4. Given parallel chords AB, KP and a fifth point G of a conic, a sixth

point D on the curve can be found as follows. Draw any parallel to GK meeting
PK in T and meeting the parallel through P to AG in R. Then BT, GR meet at

D on the conic.

Cor. 5. In this construction we may say that PR, PT are to be taken in a given

ratio equal to SG/SK. See below on Newton's Lemma xx.

Cor. 6. The locus of the point (BT, GR) in Cor. 4 is a conic through A, K, C, P, B.

Hence the following construction. Take fixed lines PR, PT; fixed points B, C; and

a fixed point Z at infinity. Then as the line ZRT turns about Z the point (BT, GR)
traces a conic through B and G. Obviously it will likewise trace a conic in the general

case ivhen Z is not at infinity.

Cor. 7. In other words, the locus of the vertex D of a varying triangle RDT whose

base slides between fixed lines PR, PT, while its three sides pass through fixed points

B, C, Z respectively, is a conic. This may be shewn independently as follows. Draw CD
in any assumed direction, and find R, and then T, and then D. Thus one point D is

found on the line through G, and it is a single point of the locus. By drawing the

line BC we find that each of the points B, G is a single point of the locus. Thus CD
cuts it in two such points, and the locus is therefore of the second degree.

Cor. 8. The anharmonic point-property of conies. In Cor. 4, as D varies, the parallel

RT to GK divides PR, PT proportionally, so that the cross ratios of R and T in any

four positions are equal to one another. Hence

B{D} = {T}
= {R}=C{D],

or any four points D of the conic are equi-cross with respect to B and G, which may be

any assumed fifth and sixth.

Cor. 9. Hence we can deduce the general case of Cor. 6.

Cor. 10. Locus ad quatuor lineas. By similar triangles, PR/PT and SC/SK are

equal ratios. Compounding with them other equal ratios we get

PR . PQ/PS .PT=SC. SA/SK . SP =f/g,

if /, g be the focal chords parallel to AG, AB. See also below on Newton's Lemma XVII.

Cor. 11. The extension at the end of Cor. 6 follows from a simple transformation

of the figure by which the parallels RT are turned into convergents. In the figure as
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it stands suppose DBw drawn to PQ. Then, the points A, B, C, P being fixed and

D variable,

{0}
=

{R}
=

{T} = {a>}.

But P is the position of 0, and likewise of a>, when RT vanishes. Therefore 0<o

passes through some fixed point F. When D is at A the line 0<o becomes QS, and when

RT passes through B it becomes CH. Thus F is the point {CH, QS), and as Oa turns

about F the point D is found by drawing CO, Ba>.

Cor. 12. By the construction of Cor. 7, as is well known, we can describe the

conic through five given points. For example, in the limiting case in which three

points A, B, C and the tangents at B, G are given, we can take AB, AG for the

fixed lines, and for the fixed points B, C and the intersection Z of the two tangents.

Lemma A. To find the centre of an involution of four points.

To find the centre of the involution in which P, K and S, T are conjugate points,

through P and S (or T) draw parallels, and through T (or S) and K draw parallels

meeting them in R and G respectively. Then RG passes through the centre of the

involution (AMGG, p. 258). The converse has in effect been used in Prop. A, where

the conic and AC, BD cut a parallel to AB in points of an involution having for

centre.

The six joins of any four points cross any transversal in three pairs of points in

involution. In the above construction two of the four points are at infinity.

Locus ad Tres et Quatuor Lineas.

Apollonius of Perga. We shall see that Newton mentions Apollonius of Perga

in connexion with the problem of the quadrilinear locus. What Apollonius says of the

T07ro? eVt rpels xal reo-crapa? ypafj,fi,d<; is translated as follows by Dr T. L. Heath in

his edition of the Conies of Apollonius in modern notation (p. lxx. sq., 1896), "Now
of the eight books the first four form an elementary introduction ;...The third book

contains many remarkable theorems useful for the synthesis of solid loci and determinations

of limits
;

the most and prettiest of these theorems are new, and, when I had dis-

covered them, I observed that Euclid had not worked out the synthesis of the locus

with respect to three and four lines, but only a chance portion of it and that not

successfully ;
for it was not possible that the synthesis could have been completed

without my additional discoveries." This prepares us to find in the third book of the

Conies of Apollonius, if not the synthesis of the locus, the elementary theorems on

which it depends.

Turning to lib. III. 54, 56 we see the property of the locus proved incidentally for

the case of three lines in the proposition thus enunciated by Dr Heath (Prop. 75, p. 120),
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TQ, TQ being two tangents to a conic, and R any other point on it, if Qr, Q'r'

be drawn parallel respectively to TQ', TQ, and if Qr, Q'R meet in r and Q'r', QR
in r', then

Qr . Q'r' : QQ'
2 = (PV- : PT2

) x (TQ . TQ : QV>),

where P is the point of contact of a tangent parallel to QQ
1

.

Dr Heath shews (p. 122 sq.) that this proposition and his next (lib. in. 55), for

tangents to one branch and two branches of a conic respectively, "give the property of

the three-line locus." The constancy of Qr . Qr' being a corollary from the property of

the trilinear locus, we can of course work back from the latter to the former.

But more briefly, leaving out r, r', draw the tangents TQ, TQ crossing any chord

RR' parallel to QQ in K, K'.

Then, because the diameter through T bisects both KK' and RR', the intercepts

KR, K'R' are equal, and likewise KR', K'R.

T l a

Therefore RK.RK' (or KR.KR') varies as KQ\

This is the trilinear theorem as proved by Apollonius.

Inflect RD to QQ parallel to QT.

Then RK . RK' varies as RD2
,
and the theorem may be stated thus,

The distance of any point on a conic from a given chord varies as a mean proportional

to its distances from the tangents at the ends of the chord, each distance being parallel to

any given line.

Apollonius does not enunciate the theorem, but he proves and uses it in the course of

his propositions mentioned above.

Vol. XVIII. 27
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The distances of any point on a conic from the tangents at fixed points A, B,

C, D being denoted by a, b, c, d respectively, its distances from AB, BG, CD, DA vary

as mean proportionals to ab, be, cd, da.

Hence obviously the four-line theorem, AB . CD = k . BC . DA. Apollonius, who claims

to have solved the Locus ad tres et quatuor lineas completely, may very well have deduced

the four-line theorem from the three-line theorem in this way.

The Lemmas and Propositions quoted below by number are Newton's, whose proofs

and diagrams in lib. I. sect. v. of the Principia should be referred to.

Lemma XVII. Case 1. AC, BD being given parallel chords of a conic, through any

point P of the curve draw the chord PK parallel to AC and crossing AB, CD in Q, R ;

and a parallel to AB meeting AC, BD in 8, T. Then PQ .QK/AQ .QB is a constant ratio.

But, the intercepts PR, QK being equal, the rectangle PQ . PR is equal to PQ . QK,

and therefore varies as AQ.QB or PS.PT.

Thus Newton's proof for this case is the same as that of Apollonius for the three-

line theorem, which it includes, since the parallels AG, BD may be supposed to coalesce.

In Case 2, with the help of Case 1, the theorem is shewn to hold when AC, BD
are not parallel. In this general case Newton does not use the point K, which might

have been found by drawing the parallel to RT through B. This construction leads to

the proof of his Lemma xvn. in Prop. A, Cor. 10. The proof in question is given by

Messrs J. J. Milne and R. F. Davis in their Geometrical Conies, followed by a corollary

in which Lemma xx. is deduced from Lemma xvn., as by Newton.

Lemma XVIII. Conversely, the locus of a point P such that PQ. PR/PS. PT is

constant is a conic section.

Corol. The trilinear theorem is deduced as a limiting case.

Scholium. The term conic section includes the line-pair and the circle. For a

trapezium may be substituted a re-entrant quadrilateral ;
and one or two of the points

A, B, C, D may be at infinity.

Lemma XIX. Any line being drawn through A, the point P in which it meets

the locus again is determined.

Corol. 1. The tangent at a given point is drawn.

Corol. 2. It is then shewn how to find a pair of conjugate diameters, and the

different species of conies belonging to the locus are discriminated.

At the end it is said, with tacit allusion to the algebraic proof of the quadri-

linear theorem by Descartes, "Atque ita problematis veterum de quatuor lineis ab Euclide

inccepti & ab Appollonio continuati non calculus, sed compositio geometrica, qualem
veteres quserebant, in hoc corollario exhibetur."
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3.

CURVARUM DESCRIPTIO ORGANICA.

Lemma XX. AB, AC are given chords and P a given point of a conic. Through
P draw parallels to AC, AB forming with them a parallelogram PQAS ;

and across PQ,
PS draw CRD, BDT to any sixth point D of the conic. Then will PRjPT be a con-

stant ratio, and conversely.

Case 1. The constancy of PRjPT is deduced from the four-line theorem proved in

Lemma xvn. Interchanging P, D in this paragraph only, let A, B, C, D in the figure

of Prop. A he fixed and P variable. Through D draw a parallel to AC meeting CP
in r, and a parallel to AB meeting BP in t. Then, CD being given, Dr varies as

PR/RC, and therefore as PR/PS; and, BD being given, Dt varies as PTjTB, and

therefore as PT/PQ. Therefore Dr/Dt is a constant ratio.

In like manner, with P fixed and D variable as in Lemma xx., PRjPT (p. 206) is

a constant ratio.

Hence the line RT is given in direction. See Prop. xxn. and Prop, xxiii., where

Pt/Pr is made equal to PT/PR by drawing tr parallel to TR,
" acta recta, tr ipsi TR

parallela." Hence, K being the position of D found by drawing RT through C (p. 206),

it follows that RT is parallel to CK. Thus Prop. A is in fact Lemma xx.

Lemma XXL Take a triangle BPC, and let angles equal to its angles at B and

C turn about those points as poles, one pair of the lines or bars containing the angles

intersecting at if on a fixed line or director which cuts BC in N. Then the other

pair will cross at a point D lying on a conic through B and C.

27—2
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For inflect PR to CD, making the angle CPR equal to the constant angle CNM.

Then PCR, NCM are similar triangles, and

PR/NM = PC/NC.

Inflect PT to BD, making the angle BPT equal to the constant angle BNM. Then

PBT, NBM are similar triangles, and

PTjNM=PBjNB.
Therefore PR varies as PT, and by Lemma xx., PR and PT being on fixed lines,

the locus of (CR, BT) is a conic through B and G, and conversely.

The lengths PR, PT in the figure, which differs somewhat from Newton's, are as

the perpendiculars from N to PB, PC.

Given four points B, G, D, P, an infinity of conies can thus be drawn through

them, for the given point D determines only one point M of the director. Given a

fifth point of the conic, the director is determined, and one conic only can be described.

To draw the tangent BT at B, make D coincide with B. See Prop, xxn., Corol. 1.

In other words, make the angle NCM equal to the angle PCB, and then the angle

MBT equal to the angle PBC.

To find the directions of the axes. If the arms BM, CM be made constantly parallel,

the intersection D of the others will trace a circle through B and C. This will cut

the conic again at the two points found by making the parallel arms successively

coincident with BC and parallel to the director. Four points common to the circle and

the conic having been found, the axes must be parallel to the bisectors of the angles

between a pair of chords joining them. For Newton's construction see Prop. xxvu.

Scholium (p. 216).

Prop. B. If two angles AOB, Aa>B of given magnitudes turn about poles 0, a>,

and if the intersection A traces a curve of the nth order, the intersection B will in

general trace a curve of the Inth order.

For a given position of the arm OB there are n positions of A and therefore n

of B. When OB is in the position 0a> all the B's coincide with o>, which is therefore

an m-fold point on the locus of B, as is also the point ;
and since any line through

(or w) meets the locus of B in n other points, the locus is of the order 2n.

4.

InVentio Orbium.

Prop. XXII. Prob. XIV. To describe the conic through five points. This is done by
Lemma xx., and again by Lemma xxi.

Prop. XXIII. Prob. XV. To describe a conic through four points and touching a

given line.

Case 1. When one of the points is the point of contact the construction is effected

as in Prop. xxn.
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Case 2. In the general case, HI being the given tangent and BCDP the given

points, draw HAI, ICPG, GBDH, and make the ratio compounded of

HA'/HD.HB; GB .GD/GP .GC ; IC.IP/IA*;

a ratio of equality. Thus HA/IA is determined and the point of contact A is found

within or without HI.

This is Newton's solution briefly stated, and it is identical with the modern solution

by what is called Carnot's theorem. When A is found the two conies can be described

by the methods used in Case 1.

Prop. XXIV. Prob. XVI. To describe a conic through three given points and touch-

ing two given lines.

Given two points and two tangents, Newton proves that the chord of contact must

pass through one of two fixed points. This may be shewn as follows.

Let B, D be the given points and GH, GK the given tangents.

Take H and K in line with BD, and suppose BD and the chord of contact to

cross at R.

Then by the trilinear theorem, all the distances being measured along BD, we have

BR*/DR* =BH . BK/DH . DK.

Divide BD within and without at R in the ratio thus determined, and we have

two points through one of which the chord of contact must pass.

A third given point C taken with B or D determines two points S through one

of which the chord of contact must pass. Thus there are four possible positions of RS,

giving four solutions.

When RS is found the conic can be described as in the first case of Prop. xxm.

Imaginary Points. In the second case of Prop. xxm. and in Prop. xxiv. Newton

uses an auxiliary line which is supposed to cut the conic in points X and Y.

At the end of Prop. xxiv. he remarks that the constructions given will be the

same whether the line XY cuts the trajectory or not. For the sake of brevity he

gives no special proofs for the case in which, as we should say, the points X and Y
are imaginary.

Lemma XXII. Figuras in alias ejusdem generis figuras mutare.

Here Newton gives a method of homographic transformation, in which the loci of

points G, g correspond so that the coordinates X, Y of G and x, y of g are connected

by relations of the form,

x ^ OA.AB . y= OA.y
x ' x
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By this method, it is remarked, convergent lines can be transformed into parallels ;

and when a problem has been solved in the simplified figure, this can be retransformed

into the original figure. In the solution of
"
solid problems

"
one of two conies can be

changed into a circle. In the solution of
"
plane problems

"
a line and a conic can be

made a line and a circle.

Prop. XXV. Prob. XVII. To describe a conic through two given points and touch-

ing three given lines.

Transform the given tangents and the line through the given points into the sides

of a parallelogram.

Let these sides be )vci, idk, kcl, Ibah, where a, 6 correspond to the given points

and c, d, e are the points of contact.

Take m, n mean proportionals to ha, hb and la, lb.

Then hc/m = ic/id
= kejkd

=
le/n,

and each of these ratios is equal to the given ratio of hi + kl, the sum of the

antecedents, to m + n + ki, the sum of the consequents. Thus the points of contact are

determined.

It may be remarked that this case is the reciprocal of Prob. XVI. Given two

points B, D and two tangents OH, OK, the pole of BD must lie on one of two fixed

lines. A third tangent being given, we can thus find four positions of the pole of BD.

Having then five tangents and the points of contact of two of them, we can trace

the four conies in various ways.

Prop. XXVI. Prob. XVIII. To describe a conic through a given point and touching

four given lines.

Newton's solution is in effect as follows. Let P be the given point, and let two

diagonals of the quadrilateral formed by the four tangents meet in 0. Draw OPm to

the third diagonal, and take Q a harmonic conjugate to P with respect to 0, <o.

Then Q is on the conic, and the case is reduced to that of Prop. xxv.

He transforms the given tangents into the sides of a tangent parallelogram ; finds

the centre
;
and finds Q the other end of the diameter PO. In the retransformed

figure Q would therefore be found by the previous construction.

Prop. XXVII. Prob. XIX. To describe the conic touching five given lines.

This is led up to by three Lemmas, one of which, with a transformation as in

Prop. xxv. or Prop, xxvi., would have sufficed for the solution of the problem.

Lemma XXIV. Corol. 2. Using the figure of Lemma xxv., let AMF, BQI be

parallel tangents to a conic
; A, B their points of contact

; FQ, IM any third and

fourth tangents.
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Then AM : AF= BQ : BI, and FI, MQ meet on the diameter AB.

We can now solve the problem as follows.

215

Complete the parallelogram IKLM by drawing the tangent KL parallel to IM.

Then IL, KM cross at the centre of the conic. Conversely, from five given tangents

we can determine the conic.

Case 1. Let four of the tangents be the sides of a parallelogram, as in the figure,

Its diagonals by their intersection give the centre, and FI, MQ also intersect on the

chord of contact AB. The diameter AB being known, the conjugate radius is a mean

proportional to AM, BI.

Case 2. Let the tangents at A, B only be parallel. These with FQ, MI determine

a point (FI, MQ) on the chord of contact AB; and with IM, KL they determine a

point (IL, KM) on AB.

Case 3. When none of the tangents are parallel, the same construction determines

AB; for one pair of them, or two pairs, can be transformed into parallels by Lemma

xxii. All the points of contact cau be found in this way, and the conic can then

be traced by various methods.

Lemma XXV. Corol. 1. If IEM, IQK be fixed tangents to a conic and MK
the diameter parallel to their chord of contact, then, EQ being any third tangent, the

rectangle KQ.ME, or (IK - IQ)(IM— IE) is constant. This leads to a tangential

equation of the form,

a.IE.IQ + b.IE + c.IQ + d = 0.
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Corol. 2. The anharmonic tangent-property of conies.

A sixth tangent eq is drawn, and it is shewn that

KQ:Qq = Me:Ee.

Thus the four tangents LK, EQ, eq, LM determine equal cross ratios on the

tangents IK and IM.

Corol. 3. A tangent quadrilateral being given, the locus of the centre of the conic

is the straight line which bisects its diagonals.

Prop. XXVII. Hence, five tangents being given, two tetrads of them give two

lines through the centre. The parallel tangents can then be drawn, their points of

contact found by Lemma xxiv., and the conic described by Prop. xxn.

Scholium. The preceding problems include cases in which the centre or an asymptote

is given. For an asymptote is a tangent at infinity, and the centre with one point

or tangent determines another point or tangent.

To find the axes and foci of a conic described by Lemma xxi. Set the arms

BP, CP (which by their intersection described the conic) parallel and let them so

rotate. The intersection X of the other arms of the two angles will then describe a

circle through B, C. Draw its diameter KL crossing the director at right angles in

H. When X is at K, then CP is parallel to the major or minor axis according as

KH is less or greater than LH
;

and when X is at L, then CP is parallel to the

other axis. Hence when the centre is given the axes are given, and the foci can be

found.

Newton does not explain his construction for the directions of the axes, which has the

appearance of having been first made for the hyperbola, and then stated for the ellipse

also as having imaginary points at infinity. Le Seur and Jacquier, in their annotated

edition of the Principia, having explained the construction for the case of the hyperbola

by means of its asymptotes, or tangents "ad distantiam infinitam," merely remark in

conclusion that it applies also to the parabola into which the hyperbola is changed when

the intersections of the director with the circle coalesce, and to the ellipse into which

the parabola is turned when the director passes outside the circle*.

The squares of the axes are as KH to LH. Hence a trajectory of given species or

eccentricity can easily be described through four given points. Conversely a trapezium of

given species, "si casus quidam impossibiles excipiantur," can be inscribed in a given conic.

There are also other lemmas by the help of which trajectories of given species

can be described when points and tangents are given. For example, the middle point

of a chord drawn through a fixed point to a conic traces a similar and similarly

situated conic.
" Sed propero ad magis utilia."

* Their words are, "Superior autem constructio non Ellipsi in quam vertitur parabola, dam recta MN extra

solum hyperbola? convenit, sed & parabola? in quam hyper- circulum transit," the points M and m being the inter-

bola mutatur, dum puncta m, M coeunt ; atque etiam sections of the director MN and the circle.
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5.

Perspective and Continuity.

In Lemma xxn. (p. 213) Newton gives a construction made to illustrate his

algebraical transformation of an equation of any degree into another of the same degree.
After the proof that tangents remain tangents, he remarks that his demonstrations might
have been put together "more magis geometrico," but he aims at brevity. With this

Lemma should be read his Enumeratio Linearum Tertii Ordinis, where again he has

something to say about curves in general.

At the end of the preface to his Opticks Newton writes, And I have joined with

it another small Tract concerning the Curvilinear Figures of the Second Kind, which

ivas also written many Years ago, and made known to some Friends, who have solicited

the making it publick. He is referring to the Enumeratio above mentioned, in which

curves of the nth order are called curves of the (n
—

l)th genus or kind, the straight

line in this way of speaking not being counted among curves. In this tract he gives

the theory of Perspective in space under the name Genesis Gurvarum per Umbras, rays

from a luminous point being supposed to cast shadows of geometrical figures on to an

infinite plane. Thus, he says, the " Parabola? quinq ; divergentes
"

generate by their

shadows all other cubic curves, and so from " Curvse qusedam simpliciores
"

of any

genus can be produced all the other curves of that genus.

Such genesis of curves by shadows may have been suggested to Newton by some

of Kepler's problemata obseruatoria (pp. 201, 203), in which he lets the sun shine through
a small aperture into a darkened room, and observes the diurnal course of its projection

on the floor. This varies with the latitude of the place, according to which the apparent

path of the sun itself in any day cuts or touches or does not meet the plane of the

horizon.

Thus Perspective as a modern method may be said to have originated with Kepler.

The idea of it was not altogether unknown to the ancients, but they were scarcely in

a position to put it to effective use, for this could not be done without a more or

less complete doctrine of Continuity, including especially the quasi-concurrence of parallels

at infinity. See AMGC, p. lv., and the writer's note on Perspective in vol. x. of the

Messenger of Mathematics (1881).

Newton's Lemma xxn. may have arisen from his genesis of curves by shadows.

Having seen how to connect varieties of the same order of curve graphically, he would

naturally seek to connect such curves algebraically; and this could obviously be done

by his transformation of coordinates from X, Y to x, y, with Xx and Yx/y constant.

Page 200. 21 quantumuis absurdis locutionibus] Poncelet used "ce qu'il appelle le

principe de continuite," which is Kepler's principle of Analogy under a new name. This

principle Kepler formulated in terms suitable to its later applications. Including normal

Vol. XVIII. 28
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and limiting forms of a figure under one definition, we are led to paradoxical ways of

speaking, "sine vsu, tantum ad analogiam complendam" (p. 199. 5—6); as when we

think of a hyperbola as a sort of ellipse, and postulate imaginary elements in the one

analogous to what we see in the other.

Newton in some of his constructions virtually uses imaginary points (pp. 213, 216),

whether or not, like Boscovich, he thought definitely of geometrical figures as having

imaginary elements. To say that equations in x and y, which represent coordinates, may
have imaginary roots (Opticks, p. 151) is to say in effect that there are what may be

called imaginary points. Newton doubtless used equations for his own satisfaction in

some places where he does not fully explain his geometry. An equation representing

the locus described in Lemma XXI. (p. 211), is given in Prob. liii. of the Arithmetica

Universalis (1707). By the method of Fluxions he discovered things which he gave to

the world proved
" more magis geometrico." Thus he writes :

" At length in the winter between the years 1676 and 1677 I found the Proposition

that by a centrifugal force reciprocally as the square of the distance a Planet must

revolve in an Ellipsis about the center of the force placed in the lower umbilicus of

the Ellipsis and with a radius drawn to that center describe areas proportional to the

times And this is the first instance upon record of any Proposition in the higher

Geometry found out by the method in dispute."

Two imaginary points the FocoiDS (AMGG, p. 281), or
"
Circular Points at Infinity,"

play a great part in modern geometry. Their existence may be proved in geometrical

form as follows.

Draw any circle in a given plane, and let <£
and

<f>'
be the two points in which

it cuts the line Infinity. These will be the same for all circles in the plane.

For take points A, B on the circle subtending any angle a at the circumference
;

and take any other two points a, b in the plane.

Then the angle A<f>B is equal to a, because
<f>

is on the circle; and the lines

$A, (f>a are parallel, and likewise <\>B, <f>b,
because

<f>
is at infinity.

Therefore

z. a<f>b= /. A<f>B
= a,

or any two lines through <p may be regarded as intersecting at any angle.

Hence every circle in the plane passes through <f>,
and similarly through <}>'.

Conversely, a conic through <f>
and

<£' is a circle.

The orthoptic locus of a curve of the nth class is of the degree n(n — 1), since its

intersection with the line Infinity consists of
<f>

and <£' taken \n{n— 1) times.

From the equation
a? + y

2 s (x + iy) {x
—

iy)
=

in rectangular coordinates it seems at first that
<f>

and
<f>'

are indeterminate, because

x (or y) may have any direction. But the angles tan-1 + i are indeterminate.
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The equation tan {6 + a) = tan 6

reduces to tan a (1 + tan2
6) = 0,

and when tan2 = — 1, then 6 is of the form a ± i/3 with /3 infinite.

Page 210 ab Euclide inccepti, etc.] Newton has in mind the words of Descartes

in La Geometrie, "commencee a resoudre par Euclide et poursuivie par Apollonius, sans

avoir e'te' acheve'e par personne." Apollonius has indeed nothing to say about a locus

related to more than four lines, but there is no reason to question his statement that

he had solved the problem of the four-line locus. Its complete working out would have

supplied ample materials for a book on the scale of his lib. v. on Normals*.

Newton assumes Lemma xvn. in Lemma xx., on which his Lemma XXI. depends,

thus making the "
Organic Description

"
of conies seem less simple than it is. Having

proved Prop. A, make A, B, K, P, C fixed points and D variable, and we have at

once RT parallel to the fixed line OK (p. 206) as in Lemma xxi.

Page 216 Sed propero ad magis utilia] The Principia, all but some ten or twelve

propositions composed previously, having been written in less than a year and a half

(Dec. 1684—May 1686), Newton could not have had much time to spare for the two

sections (lib. I. 4—5) on Inventio Orbium. Maclaurin's constructions of a conic by means

of three (p. 207, Cor. 6—7) or more lines through fixed points grew out of a lemma

JS eutonianum, as we learn from the preface to Simson's Sectiones Conical. Newton himself,

with leisure, could have developed the said two sections into a comprehensive and

essentially modern treatise.

* Of this lib. v. Chasles tells us that it treats of "les

questions de maxima ct de minima," and that, "On y

retrouve tout ce que les me'thodes analytiques d'aujourd'hui

nous apprennent sur ce sujet." This astonishing statement

is a too brief summary of the words of Montucla on lib. v.

and lib. vi.,
" lis traitent l'un et l'autre un des sujets les

plus difficiles de la geometrie, savoir les questions de

maximis et minimis, sur les sections coniques. Dans le

cinqui&me Apollonius examine particulierement quelles sont

les plus grandes et les moindres lignes qu'on puisse tirer de

chaque point donne a leur circonference. On y retrouve

tout ce que nos methodes analytiques d'aujourd'hui nous

apprennent sur ce sujet." Chasles goes on to speak of

normals as the subject of lib. v.

28—2



IX. Sur les Groupes Continus. Par H. Poincare.

[Received 25 September, 1899.]

I. Introduction.

La th^orie des groupes continus, ce titre immortel de gloire du regrette
-

Sophus
Lie, repose sur trois the"oremes fondamentaux.

Le premier theoreme de Lie nous apprend comment dans tout groupe continu il

y a des substitutions infinite'simales et comment ce groupe peut dtre forme a l'aide

des op^rateurs

Consid^rons r operateurs de cette forme

(1) *,(/), Z2 (/) ,
Xr (f);

et convenons de poser :

X%Xk — XigXi = (XiXk ).

D'apres le second theoreme de Lie si les symboles (XiXk) sont lies aux ope"rateurs

Xi par des relations lin^aires de la forme:

(2) (XiXk)=XciksXs ,

ou les c sont des constantes, les r operateurs (1) donneront naissance a un groupe.

Les relations lineaires (2) pourront s'appeler relations de structure puisqu'elles

d^finissent la
"
structure

" du groupe qui depend uniquement des constantes c.

C'est le troisieme theoreme de Lie qui attirera surtout notre attention. Quelles
sont les conditions pour qu'on puisse former un groupe de structure donnee, c'est-a-

dire pour trouver r operateurs X,, X2 , ,
Xr satisfaisant a des relations de la

forme (2) dont les coefficients c sont donnas?

On voit tout de suite que les coefficients c ne peuvent etre choisis arbitrairement.

On doit d'abord avoir

(3) Cku = — Cue.



M. H. POINCARE, SUR LES GROUPES CONTINUS. 221

Ensuite d'apres la definition merne du symbole (XiXk) on a identiquement

(4) ((XaXb) Xc) + ((XbXc)Xa) + ((XeXa) Xb )
=

0,

d'ou resultent entre les c certaines relations connues sous le nom d'identites de Jacobi.

Une condition necessaire pour que Ton puisse former un groupe de structure donnee,

c'est done que les coefficients c satisfassent a ces identites de Jacobi auxquelles il

convient d'adjoindre les relations (3).

Le troisieme theoreme de Lie nous enseigne que cette condition est suffisante.

Pour la demonstration de ce theoreme, nous devons distinguer deux families de

groupes.

Les groupes de la l 6re famille sont ceux qui ne contiennent aucune substitution

permutable a toutes les substitutions du groupe.

Les groupes de la 2e
famille sont ceux qui contiennent des substitutions permutables

a toutes les substitutions du groupe.

En ce qui concerne les groupes de la l 6re famille, la demonstration de Lie, fondle

sur la consideration du groupe adjoint, ne laisse rien a d^sirer par sa simplicite.

En ce qui concerne les groupes de la 2e famille, Lie a donne une demonstration

entierement differente, beaucoup moins simple, mais qui permet cependant de former les

operateurs Xi(b) par l'int6gration d'^quations differentielles ordinaires.

Dans une note recemment inseree dans les Comptes-Rendus de I'Acade'mie des

Sciences de Paris, j'ai donne une demonstration nouvelle du 3e theoreme de Lie.

Les rdsultats contenus dans cette note etaient moins nouveaux que je ne le croyais

quand je l'ai publi£e.

D'une part en effet, Schur avait dans les Berichte der k. sdchsischen Gesellschaft

der Wissenschaften 1891 et dans le tome 41 des Mathematische Annalen donn^ du

theoreme en question une de'monstration entierement diffe"rente de celle de Lie.

Cette demonstration pr6sente la plus grande analogie avec celle que je propose ;

mais elle n'a pour ainsi dire pas ete poussee jusqu'au bout. Comme le fait remarquer

Engel, le resultat depend de series que Schur forme et dout il demontre la convergence ;

au contraire Lie ramene le probleme a l'integration d'equations differentielles ordinaires.

Je suis arrive comme Lie lui-m£me a des equations differentielles ordinaires qui

meme sont susceptibles d'etre completement integrees.

D'autre part Campbell a donne sous une autre forme quelques-unes des formules

auxiliaires qui m'ont servi de point de depart {Proceedings of the London Mathematical

Society, tome 28 page 381 et tome 29 page 612).

II m'a sembie neanmoins que cette note contenait encore assez de resultats nouveaux

pour qu'il y eut quelque interet a la developper.
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Je ramene en effet la formation d'un groupe de structure donn^e, a l'int^gration

d'equations diffe'rentielles simples, integration qui peut se faire en termes finis.

Ces Equations sont moins simples que celles que Lie a forme'es pour les groupes
de la 1*™ famille; mais m£me dans ce cas, il peut y avoir interet a les connaitre, car

elles sont d'une forme diffe"rente et me s'en ddduisent pas imme'diatement.

De plus elles sont applicables aux groupes de la 2e famille et dans ce cas elles

nous fournissent une solution du probleme plus simple que celle de Lie.

II. DEFINITION DES Op^RATEURS.

Soit / une fonction quelconque de n variables xlt #2 , ... , xn .

Soit X un operateur qui change f en

ou les (Xi) sont n fonctions donnees des n variables xlt x2 xn , de sorte que:

Soient Y, Z, etc. d'autres operateurs analogues de telle fa9on que :

F(/) = 2(Fi)g; Z(/) =
2(Z«)J£

les (Fj), les (Zi), ... e"tant d'autres fonctions de xlt x2 ,
... , xn .

Dans ces conditions:

X2
(/) = X[X(/)], XF(/) = X[F(/)], XF(/) = X[XF(/)], XYZ(f) = X[YZ(f )],... ,

seront des combinaisons lineaires des de'riv^es partielles des divers ordres de la fonction

/, multipliers par des fonctions donne'es des x^

Ainsi se trouveront d^finis de nouveaux operateurs X2
, XF, X2

F, XYZ,..., qui
sont des combinaisons des operateurs simples X, F, Z, ... . On voit que ces produits

symboliques obeissent a la loi associative mais n'obeissent pas en general a la loi

commutative de sorte que XF ne doit pas etre confondu avec FX.

Ces operateurs sont ainsi symboliquement repr6sente"s par des monomes
; mais on

peut de"finir des operateurs qui seront symboliquement repre"sentes par des polynomes
tels que :

1 + aX, aX + bY, aX2 + 2&XF+cF2
,

en convenant d'ecrire par exemple :

(l+oX)(/)=/+oX(/); (aX + bY)(f) = aX(f) + bY(f)
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On voit que les polynomes operateurs ainsi ddfinis obeissent a la fois a la loi

associative et a la loi distributive
;

de sorte qu'on aura :

(aX + bY) (cX + dY) = acX* + adXY+ bcYX + bdY\
et en particulier :

{X + Y? =X* + XY+YX+ Y\

expression qu'il ne faut pas confondre avec Z2 + 2ZF + F2
.

On peut aussi introduire des operateurs qui seront represented symboliquement par
des series infinies. Je citerai par exemple l'ope"rateur :

f+a(X+Y)(f) + c?(X+Y)*{f) + a°(X+Y?(f)+ ,

que je representerai symboliquement par :

1

_1-«U + F)
ou plus simplement par

1

(/),

1 - a (X + P)
'

et l'operateur:

/+f!

Z(/) +|
2

!

Z2

(/) + gz3(/) +

que je representerai par &-
x
{f) ou simplement par e**.

On peut se demander si l'emploi de ces operateurs representes par des series est

legitime et si la convergence des ope'rations est assuree.

II y a des cas ou cette convergence est certaine. C'est ainsi que Lie a demontre" que

etx (f)-fWu A, .-, x'n )

ou les x\ sont d^finis par les equations differentielles :

et par les conditions initiales :

x\ = Xi pour t = 0.

Les operateurs definis par des series symboliques obeissent e'videmment aux lois

distributive et associative, ce qui permet par exemple d'ecrire des egalites telles que

celle-ci :

{e
r^xez) (e- zebXeT) = eTe^

a+b>xeT.

II y a aussi un cas oh. ils obeissent a. la loi commutative. Soient

4> (X) = tanXn
, yfr (X) = 2bnXn

,

deux series symboliques dependant d'un seul operateur e'le'mentaire X.

On 3j 3ilors

4> (X) [+ (X) (/)]
= f (X) [<j> (Z) (/)].

Les deux produits symboliques <j> (Z) ty (Z) et $ (Z) (Z) sont en effet des sommes

de mon6mes dont tous les facteurs sont egaux a Z. Si tous les facteurs sont
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identiques, il est clair que l'ordre de ces facteurs est indifferent et que les operations

sont commutatives.

Mais cela ne sera plus vrai si les series symboliques dependent de plusieurs

operateurs Elementaires diffdrents
;

il ne faudrait pas par exemple confondre

Vm Vh
eXeY = 1±JL

ml n'

avec
VhVl

ere* = 2*
mini'

ni avec

pi

III. Caloul des Polynomes Symboliques.

Soient X, Y, Z, T, U, ,
n operateurs elEmentaires. Par leurs combinaisons on

pourra former d'autres operateurs reprEsentEs symboliquement par des mon6mes ou des

polynomes.

Deux mon6mes seront dits equipollents lors qu'ils ne differeront que par l'ordre de

leurs facteurs; il en sera de m6me de deux polynomes qui seront des sommes de

mondmes Equipollents chacun a chacun.

Nous appellerous polynome rigulier tout polyndme qui peut etre regarde comme

une somme de puissances de la forme :

{aX + 0Y+yZ +...)?.

II resulte de cette definition :

1°. Que si un polynome rEgulier contient parmi ses termes un certain monome,

tous les monomes equipollents figureront dans ce polyndme avec le meme coefficient.

Cette condition est d'ailleurs suffisante pour que le polynfime soit regulier.

2°. Que parmi les polynomes Equipollents a un polynfime donne" il y a un polyn6me

regulier et un seul.

Le polynome XY-YX

jouit de la meme propriEte que les operateurs Eldmentaires, c'est-a-dire que

(XY-YX){f)
est comme X (/), Y(f) etc. une combinaison lineaire des derivEes du premier ordre

seidement de la fonction / multipliers par des fonctions donnees des X{.

Nous supposerons que les opeYateurs elEmentaires et leurs combinaisons lineaires

sont seuls a jouir de cette propriety. (Si cela n'avait pas lieu, nous introduirions parmi

les operateurs elementaires tous ceux qui en jouiraient.) Nous devrons done avoir des

relations de la forme :

(1) XY-YX = (XY),
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oil {XY) est une combinaison linEaire des operateurs elementaires
;

nous reconnaissons

la la relation de Lie dite relation de structure:

XiXie — XkXi = SCjfcgX,.

Cela pose, deux polyn6mes seront equivalents lorsqu'on pourra les reduire l'un a l'autre

en tenant compte des relations (1).

Par exemple le produit

(2) P[XY-YX-(XY)]Q
(ou le premier et le dernier facteurs P et Q sont deux monomes quelconques) est

equivalent a zero
;

et il en est de meme des produits analogues et de leurs combi-

naisons lineaires. Les produits de la forme (2) sont ce que j'appellerai des produits

trinomes.

La difference de deux monomes qui ne different que par l'ordre de deux facteurs

consecutifs est equivalente a un polynome de degre" moindre.

Soient en effet X et Y ces deux facteurs consecutifs. Nos deux mon6mes s'ecriront

PXYQ, PYXQ,

P et Q Etant deux monomes quelconques, et leur difference

P[XY- YX]Q
sera Equivalente a

P{XY)Q,

dont le degre" est d'une unite" plus petit, puisque {XY) est du l
er

degre, XY — YX
du 2d

degre.

Soient maintenant M et M' deux monomes e"quipolIents quelconques, c'est-a-dire

ne differant que par l'ordre des termes. On pourra trouver une suite de monomes

M, Mlt Mt , ..., Mp , M\

dont le premier et le dernier sont les deux monomes donnes et qui seront tels que

chacun d'eux ne differe du precedent que par l'ordre de deux facteurs consecutifs. La

difference M—M1

qui est la somme des differences M-Mu M1 —Mi ,
... , Mp -M' sera

done encore Equivalente a un polynome de degre" moindre.

Plus ge"ne"ralement, la difference de deux polynomes equipollents est Equivalente a

un polynome de degre" moindre.

Je dis maintenant qu'un polyndme quelconque est toujours equivalent cl un polyndme

rigulier.

Soit en effet Pn un polynome quelconque de degre" n; il sera equipollent a un

polynome regulier P'n ;
on aura alors l'equivalence :

P — P' A-P

ou Pm est un polynome de degre" n — 1 qui sera a son tour equipollent a un polynome

re"gulier Pn-\, d'ou l'equivalence :

* n—1
== * n—i T » n—a.

Vol. XVIII. 29
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et ainsi de suite
;

on finira par arriver a uu polyndme de degre zero, de sorte que
nous pouvons ecrire l'equivalence :

"
n = "

n~r
"

n—\ ~f* -* n—2 "t" ,

dont le second membre est un polynome regulier.

On a done un moyen de require un polynome quelconque a un polynome regulier

en se servant des relations (1). II reste a rechercher si cette reduction ne peut se

faire que d'une seule maniere.

Le probleme peut encore se presenter sous la forme suivante
;
un polynome regulier

peut-il etre Equivalent a zero ? Ou bien encore peut-on trouver une somme de produits

trindmes de la forme

(2) P[XY-YX-(XY)]Q,

qui soit un polynome regulier non identiquement nul ? Toutes les sommes de pareils

produits sont en effet Equivalentes a zero.

Le degre d'un produit triuome sera egal a 2 plus la somme des degres des

polynomes P et Q. Si je considere ensuite une somme S de produits (2), ce que

j'appellerai le degre* de cette somme S, ce sera le plus e'leve' des degre"s des produits

qui y figurent, quand meme les termes du degrE le plus eleve de ces differents

produits se detruiraient mutuellement.

Le produit trinome (2) peut etre considere comme la somme de deux produits, le

produit bin&nie

(2 bis) P[XY-YX]Q,

ou je distinguerai le monome positif PXYQ et le mondme negatif
— PYXQ ; et le

produit
-P(XY)Q,

que j'appellerai le produit compUmentaire.

Soit done S une somme quelconque de produits trinomes de degre p ou de

degrE interieur
; je pourrai ecrire :

S— Sp—Tp + Sj,_1
— Tp- i + + (S2

— Ta ,

ou Sk est une somme de produits binomes de degre k.

(2 ter) P[XY- YX]Q,

tandis que — Tk est la somme des produits compl^mentaires correspondants :

-P{XY)Q.

II s'agit de savoir si la somme S peut etre un polyn6me regulier sans etre

identiquement nulle. J'observe d'abord que si S est un polynome regulier, il doit en

etre de meme de Sp ;
car Sp repre'sente l'ensemble des termes de degre" p dans S;

tandis que (S^ - Tp), (Sp^-T^), ...
, (S2

- Ts),
- T2 repre"sentent respectivement

l'ensemble des termes de degre p — 1, p — 2, ..., 2, 1.
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On voit imme"diatement que Sp est Equipollent a zero
; comme zero est un polyndme

regulier, et que deux polyndmes reguliers ne peuvent 6tre equipollents sans etre identiques,
il faut que Sp soit identiquement nul.

Soit en particulier p = 3,

Ss
= 2 [XT- YX] Z-XZ[X Y- YX],

le signe £ signifie que Ton fait la somme du terme qui est explicitement exprime sous
ce signe et des deux termes qu'on en pent deduire en permutant circulairement les trois

lettres X, Y, Z.

On aura:

T3 =X(XY)Z-2Z(XY),
puis

S, = %[(XT)Z-Z(XT)],

T, = t[(XT)Z],

flf&&- l^+ ft-T.-S [XT- YX- (XT)] Z- %Z[XT- TX - (XT)]

+ £ [(XT)Z-Z(XT) -
((XT)Z)].

II est aise de verifier que St et S.2
- T3 sont identiquement nuls, de sorte que 8

se reduit a — Tt .

Or
T* = [(X Y) Z] + [( YZ) X] + [(ZX) Y]

est un polyn6me du ler

degre, car [(XY)Z] comme (XY) lui-meme est un polyndme
du ler

degre*.

Or dans un polyndme du l er
degrE, chaque terme ne contenant qu'un seul facteur,

on n'a pas a se prEoccuper de l'ordre des facteurs. Tout polynome du l er

degre" est

done un polyndme regulier. Si done le polynome T2 n'est pas identiquement nul, la

somme 8 sera egale a un polynome regulier qui ne sera pas identiquement nul.

Done pour qu'un polyndme puisse etre reduit d'une seule maniere a un polyndme

regulier il faut qu'on ait les identites suivantes:

(3) [(X T)Z] + [( TZ) X] + [(ZX) Y] = 0.

On reconnait la les identity's de Jacobi qui jouent un si grand role dans la theorie

de Lie.

(Si d'ailleurs ces identites n'avaient pas lieu, les operateurs ele'mentaires seraient

life par les Equations (3) qui ne seraient plus des identites; ils ne seraient plus

lineairement indEpendants ;
on pourrait done en reduire le nombre.)

Les identites (3) sont done la condition nEcessaire pour que la reduction d'un

polynome a un polyndme regulier ne puisse se faire que d'une seule maniere.

II me reste a montrer que cette condition est suffisante.

29—2
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Je dirai pour abreger une somme reguliere pour designer une somme de produits

trinomes qui est un polyn6me regulier.

Soit alors

S = Sp — Tp + Op_]
—

ip_i + . . .

une somme de produits trinomes
;

les deux premiers termes Sp — Tp representent la somme

des produits trinomes du degre" le plus eleve, c'est ce que j'appellerai la te*te de la

somme S.

J'ai distingue plus haut dans un produit trinfime trois parties que j'ai appelees le

mon6me positif, le monome negatif et le produit compl^mentaire. Je dirai qu'une somme

de produits trinomes forme une chaine si le monome negatif de chaque produit est

egal et de signe contraire au mon6me positif du produit suivant. Le mondme positif

du premier produit et le mon6me negatif du dernier seront alors les monomes extremes

de la chaine.

II resulte de cette definition que tous les monomes positifs d'une meme chaine ne

different que par l'ordre de leurs facteurs.

Une chaine sera ferme'e si les deux monomes extremes sont egaux et de signe

contraire. Si Sp — Tp est une chaine fermee de produits trinomes (Sp representant la

somme des produits bincimes et — Tp celle des produits comple'mentaires), il est elair

que Sp est identiquement nul puisque les monomes positifs et ne"gatifs se detruisent

deux a deux.

Nous avons vu que si S est une somme reguliere, Sp est identiquement nul, d'ou

il resulte que la t&te d'une somme reguliere S se compose toujours d'une ou plusieurs

chaines fermees.

Si deux chaines ont memes mon6mes extremes, leur difference est une chaine fermee.

Nous nous servirons de cette remarque pour montrer qu'une chaine ferme'e peut

toujours de plusieurs manieres se decomposer en deux ou plusieurs chaines fermees. Une

chaine fermee quelconque peut de plusieurs manieres etre regardee comme la difference

de deux chaines G et C ayant m£mes monomes extremes
;

soit alors G" une troisieme

chaine ayant memes mondmes extremes. La chaine ferme'e G — G' se trouve ainsi

de'composee en deux autres chaines fermees G — G" et G" — G'.

II s'agit de montrer que toute somme regidiere est identiquement nulle et en effet

quand cela aura 6t& demontre, il sera Evident qu'un polynome regulier dont tous les

coefficients ne seront pas nuls ne pourra etre equivalente a ze"ro, puisque tout polynome

regulier equivalent a zero est par definition une somme reguliere.

Supposons que le thdoreme ait ete etabli pour les sommes de degre^ 1, 2, ..., p — 1
;

je me propose de l'£tendre aux sommes de degre p.

Je remarque d'abord que si une somme reguliere de degre p est identiquement

nulle, il en sera de meme de toutes les sommes regulieres de degre" p qui ont meme

tite. La difference de ces deux sommes serait en effet une somme reguliere de degre

p — 1 qui serait identiquement nulle d'apres notre hypothese.
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II me suffira done de former toutes les chatnes fermees de degre p et de montrer

que chacune d'elles peut etre regardee comme la tete d'une somme reguliere identique-
ment nulle.

Toute somme reguliere S d'ordre p a en etfet pour tete une de ces chaines fermees,

par exemple S'
;

si done je montre que l'une des sommes regulieres dont la tete est S'

est identiquement nulle, il en sera de meme de toutes les autres et en particulier de S.

Pour etablir ce point, je vais decomposer la chaine ferme'e envisagee en plusieurs
chaines ferme'es composantes.

II me suffira de demontrer la proposition pour chacune des composantes.

J'appellerai chaine simple de la \ hre sorte toute chaine ou le premier facteur de

tous les mondmes soit positifs soit uegatifs sera partout le meme.

J'appellerai chaine simple de la 2" sorte toute chaine ou le dernier facteur de

tous les monomes sera partout le meme.

Une chaine simple peut d'ailleurs etre ouverte ou fermee.

II est evident que toute chaine fermee peut etre regardee comme la somme d'un

certain nombre de chaines simples, alternativement de la l Sre et de la 2 e
sorte.

Soit done S une chaine fermee, C\, G2 , ..., Gn des chaines simples de la l Cre
sorte,

C\, G\, ...
,
G'n des chaines simples de la 2 e

sorte, on aura:

S=C, + C\ + C,+ G',+ ... + Cn + C'n ,

le monome negatif extreme de chaque chaine etant bien entendu egal et de signe

contraire au monome positif extreme de la chaine suivante, et le monome negatif

extreme de G'n egal et de signe contraire au monome positif extreme de Gj.

Soit X le premier facteur de tous les monSmes de Gx ,
Z le dernier facteur de

tous les mon6mes de G\, Y le premier facteur de tous les mon6mes de G% , T le

dernier facteur de tous les mon6mes de C\ (je n'exclus pas le cas ou deux des

ope'rateurs X, Y, Z, T seraient identiques).

Soit alors G" une chaine simple de la 2" sorte ayant son monome positif extreme

egal et de signe contraire au monome negatif extreme de G\ ;
dont' tous les monomes

ont pour dernier facteur T
;

et dont le monome negatif extreme a pour premier

facteur X.

Soit C" une chaine simple de la l
6re sorte dont tous les mondmes ont pour

premier facteur X et dont les mon6mes extremes sont respectivement egaux et de

signe contraire au mondme negatif extreme de G" et au mondme positif extreme de (7,.

La chaine fermee <S se trouvera ddcomposee en deux chaines ferinees composantes,

a savoir:

8' = (G'" + G,) + C\ + G, + (G\ + G"),

S" = -G"+C3 + G'3 + ...+Gn + C'n - G'".
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S' ne contient que quatre chaines simples ;
car (C" + (7,) et (C\ + C") sont des

chaines simples; S" contient deux chaines. simples de moins que S.

En poursuivant on finira par decomposer S en chaines ferme'es composantes, forme'es

seulement de quatre chaines simples. II nous suffit done d'envisager les chaines ferme'es

formees de quatre chaines simples comme par exemple 8'.

Les mon6mes positifs extremes des quatre chaines simples qui forment S' ont

respectivement pour premier et dernier facteurs :

pour C'" + Cu



M. H. POINCARE, SUR LES GROUPES CONTINUS. 231

peut etre decomposed en cinq chaines fermees composantes, a savoir :

U^C'+C + D'.-E.-D,,

U\ = C\ + D2 -E\-D\,
U2=a + D',-E,-D2 ,

U',= G\ + C" + A- E\- D'„

V=E1 + E\ + E, + E\.

II s'agit done de montrer que chacune de ces cinq chaines ferme"es est la tete

d'une somme reguliere identiquement nulle.

Pour les quatre premieres, qui sont des chaines simples fermees, le theoreme est

evident. On l'a suppose" de"montre\ en effet, pour les chaines fermees d'ordre infdrieur a

p. Or il est clair que Ton a par exemple :

U,= XH,

H e"tant une chaiue ferme'e d'ordre p — 1.

Quant a V, ce sera la tete de la somme reguliere

[XY- YX - (XY)] PZT+ YXP [ZT- TZ - (ZT)]
- [XT- YX - (IF)] PTZ

-XYP [ZT-TZ- (ZT)] +(XY)P[ZT-TZ- {ZT)]
- [X Y- YX - (XY)] P (ZT),

qui est identiquement nulle.

II reste a envisager ce qui se passe quand deux des operateurs X, Y, Z, T sont

identiques, par exemple X = Y, ou X = Z.

Nous devons alors distinguer le cas ou les divers mon6mes positifs ou negatifs de

notre chaine contiennent deux facteurs identiques, l'un jouant le r61e de X et l'autre

le r61e de Y (ou l'un le r61e de X et l'autre celui de Z) ;
il n'y a alors rien a

changer a 1'analyse qui precede.

Et d'autre part le cas ou ces manomes ne contiennent qu'un seul facteur X.

Le premier cas pourra seul se presenter si Ton suppose X = Z, ou X = T, et s'il

y a plus de trois facteurs en tout.

Le second cas pourra au contraire se presenter si Ton suppose par exemple X = Y;

mais on posera alors:

Q^Q'^XPZT; Q\ = Q2
= XPTZ.

La definition des diverses chaines detneurera d'ailleurs la m§me et on constatera

immediatement que la chaine V est identiquement nulle.

Le theoreme est done demontre pour les sommes d'ordre p, s'il Test pour les sommes

d'ordre moindre.

La demonstration pre'ee'dente n'est toutefois pas applicable au cas de p = 3
;

car la
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chaine V n'existe que s'il y a au moins quatre facteurs. Mais la seule chaine ferm^e

du 3" ordre est la chaine S3
— Ts envisagee plus haut et nous avons vu qu'elle est

la tete d'une somme reguliere qui est identiquement nulle si les identites (3) ont lieu.

Le th^oreme est done etabli dans toute sa g^neralite.

Toute somme reguliere est identiquement nulle.

Done un polyn6me regulier qui n'est pas identiquement nul ne peut pas s'annuler

en vertu des relations (1).

Done en resume
-

,

Si les identites (3) ont lieu, les relations (1) permettent d'une maniere, et d'une seule,

de riduire un polyndme quelconque a un polynome rigulier.

IV. Probleme de Campbell.

Soient
Xlt X2 , ..., Xr

r operateurs elementaires ; supposons qu'ils soient lies par les relations

(1) XaXb
— XbXa = (XaXj),

(XaXb) ^tant une combinaison lineaire des X^; supposons de plus qu'on ait les identites

(3) ((XaXb)Xc) + ((X»X.)Xa) + ((XcXa) Xb)
= 0.

D'apres le deuxieme theoreme de Lie, ces operateurs donnent naissance a un "groupe

continu," qui admet r transformations infinite'simales ind^pendantes. Oes transformations

infinitesimales changent / en

f+eXk (f),

e e"tant une constante infiniment petite.

Soit

J. = tiXi + t2X 2 + .. . + trX r ,

une combinaison lineaire de ces operateurs. Les fa sont des coefficients constants quel-

conques. La transformation finie la plus ge"nerale du groupe s'exprimera par le symbole :

eT (f).

Soient maintenant
1 = tiX i + t2X 2 + . . . + trX r ,

V= ViXj + v2X2 + ...+ vrXr ,

deux combinaisons lineaires des X. Comme les transformations eT forment un groupe, le

produit
eveT

devra ^galement faire partie du groupe, de sorte que nous devrons avoir:

(4) ereT=ew,
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ou

W = wlXl + w2X2 + ... + wrXr

est une autre combinaison lineaire des X.

Les coefficients w sont evidemment des fonctions des v et des t.

DeVeloppons le produit :

ymj'n
eveT=^

tl n\

ymjin
Le terme general -=—- est un polyn6me d'ordre m + n. Par les relations (1) on

peut le require a un polyn6me regulier, et cette reduction ne peut se faire que d'une

seule maniere.

Nous pouvons done ecrire :

ymfn—
:
—

: = 2„W (p, m, n),m! re!
v sr '

ou W(p, m, ri) est un polyn6me regulier et homogene d'ordre p(p£m + n); on a done:

ereT = tp . m.nW(p, m, n).

Si nous re'unissons les termes de meme degre" et que nous posions

Wp =2m . nW(p, rn,n),

il viendra :

e reT=2pWp .

Le second th^oreme de Lie, que je viens de rappeler, nous apprend que le second

membre doit &tre de la forme ew
,
et par consequent que :

(5) ^ =
ff-

C'est la une proposition dont la simplicity serait inattendue, si Ton ne connaissait

pas la theorie des groupes.

Si on pouvait la demontrer directement on aurait, comrae l'a remarqud Campbell,

une nouvelle demonstration du second theoreme de Lie.

Mais il y a plus; on aurait aussi une nouvelle demonstration du troisieme the'oreme

de Lie.

Les egalites (1) nous font connaitre des relations entre les ope'rateurs dlementaires

et les combinaisons XY—YX; ce sont ces relations qui constituent la structure du groupe.

Cette structure est done entierement de"finie quand on connait les r3 coefficients c des

r2 fonctions lineaires (XY).

Mais ces r3 constantes c ne sont pas toutes independantes ;
tous les coefficients de

(XX) doivent etre nuls; les coefficients de (YX) sont egaux et de signe contraire a

Vol. XVIII. 30
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cenx de (XY). Enfin les constantes c doivent etre choisies de telle facon que les

identity (3) soient satisfaites. J'adjoins done aux identity's (3) les identity suivantes

qui sont evidentes :

(3 bis) (XX) = 0, (XY) = -(YX).

Le 3e theoreme de Lie nous apprend qu'on pent toujours trouver un groupe de

structure donnee
; pourvu que les coefficients c qui definissent cette structure satisfassent

aux identit^s (3) et (3 bis), e'est-a-dire aux identitds de Jacobi.

Mais supposons inversement qu'on ait de"montre directement l'identite (5) et par

consequent la formule (4). Les coefficients w seront donnas en fonctions de v et de t
;

et je puis ecrire :

(6) Wk=<t>k(vi , U).

Pour former les fonctions
<j)k ,

il suffit de savoir former le polynome Wlt par conse-

quent de savoir former les polynomes W (p, to, n) ;
e'est-a-dire de savoir require un

polynome quelconque en polynome regulier; pour cela il suffit de connaitre les co-

efficients c.

Soit

eveT =e w
\

eweu = ex
;

e'
reu =eY

\

ou

U=XukXk ,
Z=2zkXk ,

Y = 2ykXk .

Le caractere associatif de nos operateurs nous montre que Ton a :

t;
vey = ex .

d'ou les relations suivantes :

wk = 4>k (vit U) ; yk = <(>k (U, Ui).

(7) zk = 4>k (Wi, Ui) = <l>k (vi, yt).

Regardons dans les equations (6) les t comme des constantes
;

ces equations (6)

de'finiront une transformation qui transforme vu va vr en wlt w„ ..., wr . Les relations

(7) nous enseignent que l'ensemble de ces transformations constitue un groupe.

(C'est ce que Lie appelle la Parametergruppe.)

Les substitutions intinitesimales de ce groupe sont :

,XJ) ~~ dvk dW
ou dans

<f>k (vit U) on annule les t apres la differentiation.

Les r substitutions infinitesimales Xi(f) sont lineairement inde"pendantes. Et en

effet, pour qu'elles ne le fussent pas, il faudrait que le determinant fonctionnel des

<pk par rapport aux t fut nul, quels que soient les v quand les t s'annulent. Or cela

n'a pas lieu car ce determinant devient egal a 1 quand les v s'annulent.

Ayant ainsi d^fini les operateurs elementaires X,(/), leurs combinaisons T=2tiX,(f),
eT

,
etc. se trouvent definis eux-m^mes.
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Ces opeYateurs etant associatifs, on aura

eY {f) = eTeV {f)>

c'est-a-dire, en negligeant les quantity's du 3e ordre par rapport aux t et aux u:

TU — UT
z

D'autre part, d'apres la maniere dont ont 6t6 formees les fonctions fa, on verifie que

Y= T + U + \ (TU) = XuXi + 1ukXk + \ 2 (ttut
- tkUi) (X{Xh),

et la comparaison de ces deux identitds donne:

XiXk
— XkXi = (XiXk),

ou les coefficients des fonctions lindaires (XiXk) sont bien les r* coefficients c donnds.

Le groupe ainsi forme
-

a done bien la structure donnee et le troisieme the'oreme

de Lie est d^montf^.

C'est au fond la demonstration de Schur.

Ce que j'appellerai le probleme de Campbell consiste done a demontrer directe-

ment la formule (5), ce qui de'montre a la fois le second et le troisieme the'oreme

de Lie.

V. Le Symbole <j>(6).

Consid^rons r opeYateurs e'le'mentaires

JLj, -A 2 , ..., -A-r>

et une de leurs combinaisons lindaires :

T=t1X1 +tiXi +...+trXr .

Soit ensuite V un autre opeVateur e'le'nientaire qui pourra Stre ou ne pas 6tre

une combinaison lin^aire des opeYateurs X.

Supposons que les ope'rateurs V et X soient lie's par des relations de la forme :

VXi-XiV = h.iX, + bi.,X,+ ••• + h. rXr

(i=l, 2, ..., r),

on aura alors :

VT-TV=-ZukXk ,

ou
uk - %bi. k ti.

Je poserai

VT-TV=0(T).

Done 0(T) est comme T une combinaison lineaire des X
;

et les coefficients de

6(T) se d^duisent de ceux de T par une substitution lineaire.

30—2
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Je poserai

0[0{T)]=0'(T), 0[0
m
(T)] = m+l

(T),

de sorte que 0™ (T) sera comme T une combinaison lineaire des X, lea coefficients de

t)
m
(T) se deduisant de ceux de T en repetant m fois cette meme substitution lineaire.

Si maintenant

<f>(0)
= 2gk 0"

est un polyndme ou une serie ordonne"e suivant les puissances croissantes de 0, j'ecrirai :

*(*)<r)

Considerons liquation, dite caractenstique :

au lieu de

(1)
bay ba ~

0, ...,

b„, brr-6

= 0.

Si cette Equation a toutes ses racines distinctes et si ces racines sont lt 2 , ..., r ,

il existe r combinaisons lineaires des X,, a savoir :

telles que :

Si alors on a

on aura :

(2) ft-feaX*,

VYk -YkV=6kYk .

T=ZtiXi
= Zt'kYk ,

4>(0)(T) = -Z<f>(0k)t'kYk .

Si nous posons :

^,{d)(T)
= VnXi ,

nous voyons d'abord que les coefficients hi sont des fonctions lindaires des t; ce sont

d'autre part des fonctions des b; etudions ces fonctions.

Si
<f> (0) est un polynome entier d'ordre p en 0, les hi seront des polyn6mes

entiers d'ordre p par rapport aux b. Si done
<j> (0) est une s^rie ordonnee suivant

les puissances de 0, les hi se pre"senteront sous la forme de series ordonn^es suivant

les puissances des b. Nous allons voir bientot quelles sont les conditions de conver-

gence de ces series.

Des Equations (2) on tire en effet :

Xi = Z,@ik Yk ,

d'ou:

t'k — zPikU,

<]
i (0)(T)^2^(dk)t'kaikXi,
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d'ou enfin

hi = 1tj<j> (0k) . a* . /%*.

Pour determiner les produits 0^/3^ faisons

1

*(*) =
%-0'

~
r()

(T) = 2hiXi =H,

(f-0)(.ff)-T,

f etant une constante quelconque.

On a alors :

ou

On tire de la

ce qui peut s'ecrire:

%hi
— 2,bkihk =ti.

De ces equations on peut tirer les h en fonctions des t
;
on trouve :

(3)
fc-SJ^,

ou Pij est un polyn6me entier par rapport aux b et a f ; quant a P(^) c'est le

premier membre de liquation (1) ou a ete^ remplace" par f.

Le second membre de l'equation (3) est une fraction rationnelle en f ; decomposons
la en elements simples; il viendra:

ni - z
F'(dk)(t-6ky

ou Pj/ est ce que devient Py quand on y remplace £ par 6k .

On a done :

««*&*
=
p-j^y

d'ou enfin pour une fonction
<f> (0) quelconque :

(4) 4>{6)(T)=^
Pp^ Xi

.

On voit que les hi s'expriment rationnellement en fonctions des b, des 9k et des $(#*).

La formule (4) peut se mettre sous une autre forme
;
nous pouvons ecrire :

l'integrale etant prise dans le plan des £ le long d'un cercle de rayon assez petit pour

que la fonction
<f> (£) soit holomorphe a PinteYieur

;
nous le supposerons de plus assez

grand pour que les points lt 2 , ...
, r soient a l'inteneur du cercle. Cela nous amene
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a supposer en meme temps que le rayon de convergence de la serie
(j> (f) est plus

grand que le plus grand module des quantites 6lt 2 , ..., 8T .

On a alors pour tous les points du contour d'integration :

lfl>l*i|. \S\>\6*\. |£|>IA|,

d'ou il resulte que la fonction rationnelle

Ftf)

est d^veloppable suivant les puissances croissantes des b. II en est done de meme
des h,.

Nous avons dit plus haut que les A< sont de'veloppables en series proce'dant suivant

les puissances des b
;

et d'apres ce qui precede, il suflBt, pour que ces series convergent,

que le rayon de convergence de la seYie
<f> (£) soit plus grand que la plus grande des

quantites

|0.l. \et \, , \0r \.

Si done
<f> (f) est une fonction entiere, les h{ seront des fonctions entieres des 6.

Qu'arrive-t-il maintenant si l'equation caracteristique

F(d) =

a des racines multiples ? II est aise' de s'en rendre compte en partant du cas ge'ne'ral

et en passant a la limite.

Je suppose par exemple que 6l soit une racine triple. Alors F(^) contient le

facteur {%—6^f. Si je decompose le second membre de (3) en elements simples, trois de

ces e"16ments deviendront infinis pour %=6X .

Soient

Ax
*

+ _A^_ ;

^,"''

ces trois Elements simples. Alors il faudra dans la formule (4) remplacer le terme :

(qui n'aurait plus de sens dans le cas d'une racine multiple) par les trois termes

suivants :

2A 1 <t>Xi^(0l)-(i !)24 2
,f,Xif (0,) + (2 l>2ii,»jr^C^)-

On opererait de meme pour les autres racines multiples.

Done les hi, dans le cas des racines multiples, sont des fonctions rationnelles des b,

des 6k , des <f>(8k) et de leurs derives
</>' (0k), <f>" (0k), ;

on pousse jusqua <f>
ip)

(0k) si

8k est une racine multiple d'ordre p+1.

Remarquons que je n'aurais pu faire ce raisonnement par passage a la limite, si

je m'^tais restreint des le debut en supposant que V est une combinaison lineaire des
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X, et que les X sont lie's par les relations (1) et (3) du N° IV. (relations de struc-

ture et identity's de Jacobi).

Alors en effet les cas ou l'e'quation caracteVistique a des racines multiples ne pour-
raient plus etre regardes comme des cas particuliers de ceux ou toutes les racines sont

distinctes. On aurait pu, il est vrai, deraontrer directement la formule (4 bis) et se

servir de cette formule; mais j'ai pieTere ne- pas m'imposer au debut cette hypothese

restrictive, quitte a l'introduire dans la suite du calcul, de facon a avoir le droit de

raisonner par passage a la limite.

Quoi qu'il en soit, le cas le plus inteYessant au point de vue des applications a

la theorie des groupes, c'est celui ou cette hypothese restrictive est satisfaite. Sup-

posons done que V soit une combinaison line"aire des X :

V= VjX) + !)jZ2 +...+ vrXr .

Supposons de plus que les X soient liees par les relations (1) du N° precedent

XiXj — XjXi = ZiCij8
X t ,

et que les constantes c satisfont a des relations telles que les identites (3) du N° pre-

cedent aient lieu.

On aura alors :

6(T) = ^cijll
vitjXg ,

d'ou :

bi, k = Cj.i.frtfi + c2 .i. kv2 + ... + cr .i. kvr .

Les resultats, demontres dans le cas general, seront evidemment encore vrais dans ce

cas particulier ;
si done on pose :

*<*)<r)-2A,Zt,

les hi seront des fonctions line"aires des t, et des fonctions rationnelles des v, des k ,

des (j>(0k) et de quelques unes de leurs deVivees. Les 6k sont les racines d'une equation

algebrique dont le premier membre est un polynome entier homogene de degre r par

rapport aux v et a l'inconnue 0.

De plus les hi ne dependent que lineairement des
<f> (0k) et de leurs derivees.

Si
<f> (£) est une fonction entiere de f, les h,- sont des fonctions entieres des v.

Dans tous les cas, le symbole <j)(0){T) se trouve entierement defini.

Je terminerai par deux remarques :

1°- Si x(%) est ^e Pr°duit des deux fonctions <£ (£) et yfr(^), on aura:

<j> (0) [f (0) (T)]
= + (0) [<j> (6) (T)] = x (6) (T).

2°. Si on a:

4>{0){T)=U,
on aura :

mm ' T-

Cette derniere egalite
-

n'a de sens que si ^(f) ne s'annule pas pour f=0, de telle

facon que -rra\ ao^ deVeloppable suivant les puissances de 0.

<p{0)
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VI. FORMULES FONDAMENTALES.

ConsideYons l'expression

(1) e-' re^e' v
,

V et T ayant meme signification que dans le § precedent, tandis que o et /3 sont

des constantes tres petites. Developpons cette expression en ndgligeant les termes du

3e ordre par rapport a a et a
;

il viendra :

(,-.r
+ *£)(i + ,

Sr +
<!£)(i

+ .r + *P).
OU

l + {3r+^- al3(VT-TV),

ou avec la m&me approximation :

00T-a|3 (VT-TV)

On aura done, toujours avec cette approximation :

(2) e-aV e^ T e"r=^u
,

oil U=T-a0(T),

ou encore avec la meme approximation :

(2 bis) e
-aV

eP
T
e«r =e!)U,

ou U=e-«e
(T).

Je me propose maintenant de de'montrer que la formule (2 bis) est vraie quelque

loin que Ton pousse l'approximation ;
et d'abord qu'elle est vraie quand on neglige le

carre de /3 et qu'on pousse l'approximation par rapport a a aussi loin que Ton veut.

Supposons done qu'on pousse l'approximation jusqu'aux termes en /3 et jusqu'aux

termes en am inclusivement. Dans l'expression (1) nous remplacerons e?T par 1 + $T,

e*F et e~aV par les m + 1 premiers termes de leurs developpements ;
en effectuant le

produit (et negligeant dans ce produit <x
m+1

) nous obtiendrons un polyn6me symbolique

que nous pourrons rendre regulier par les precedes du N° III. Soit

</,(a, j8) = 2iin,

le polyn6me regulier ainsi obtenu
;

II est un monome symbolique, et A son coefficient qui

est un polyn&me entier en a et yS.

Nous avons alors :

(3) £(« + da, j3)
= e-<«+d«> r e^T e ia+^ r = flr*"

v
<f> (a, 0) e**- v.

En effectuant le produit du 3e membre de cette double egalit6, et negligeant le

carre" de la difierentielle da., on obtiendra un polynome regulier de meme forme dont

les coefficients sont eux-memes des polynomes du l er

degr6 par rapport a, da d'une

part, par rapport aux coefficients A d'autre part. Telle est la forme du polynome

<f> (a + da, /S).
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D'autre part on a :

d A
(3 bis) <f> (a + da,ft) -(/>(«, /3)

= daZ~Tl.

Cette egalite, rapprochee de la remarque que nous venons de faire, montre que ^
est une combinaison lineaire des coefficients A.

Done ces coefficients A, considered comme fonctions de a, satisfont a des equations
lineaires a coefficients constants.

De plus pour a = ils doivent se re"duire aux coefficients de efiT. Ces conditions

suffisent pour les determiner.

Or je dis que Ton peut y satisf'aire en faisant (conformement a la formule 2 bis) :

</>(«, ^) = e^; U = e-'e
(T).

En effet cette formule nous donne :

</>(« + da, /3)
= e"°", U' = e-<*+d«>

(T),

et il s'agit de verifier que :

g-da.V gpU grfn.
v =epu'

Or la formule (2 bis) demontre"e quand on neglige d'une part le carre
-

de /?, d'autre

part le carre de a, peut s'appliquer ici puisque nous negligeons le carre" de /9 et celui

de da. Nous avons done

e-da. v gnu eda. r = e?u"
t

u" m e-*«-<>(U),

d'ou:

U" = e-d°- e
[e-*

9
(T)] = e-^*" e

(T)= V.

On a done bien :

<£ (a + da, /S)
= e-*- r e*u e**- v= e" "'.

C. Q. F. D.

La formule (2 bis) satisfait done a nos equations differentielles et comme ces equations

ne comportent qu'une solution, cette formule se trouve venfie'e.

Poussons maintenant l'approximation aussi loin que nous voulons tant par rapport

a /8 que par rapport a a.

Nous avons:

d'ou:

<£(«> £ + d/3) = e-»V0+*> T^v =(«-V*") («-"
re*- TeT),

ou

^(a, + d/3)
=

<l>(a, /3) </>(«- d0).

Comme nous negligeons le carre" de df3, je puis ecrire :

<f>(a, dp) = ^- u
; U=e-*°(T);

Vol. XVIII. 31



242 M. H. POINCA RE, SUR LES GROUPES CONTINUS.

d'ou:

(4) <£(«, p + dp) = <M«, 0)e#- v.

Cette formule (4) reprdsente sous forme condensed des equations diffe'rentielles de

meme forme que les equations (3 bis), auxquelles doivent satisfaire les coefficients A de

<f> (a, P) = XA. n.

C'est ainsi que la formule (4) reprdsentait sous forme condensee les Equations

(3 bis).

On peut satisfaire a ces equations par la formule (2 bis); cette formule donne

en effet :

<t>(a, p + dP) = e^ d® u =ePu <^ u =
<t>(a, p)^- u

.

Les Equations diffe'rentielles ne comportant comme les equations (3 bis) qu'une seule

solution, la formule (2 bis) se trouve verifiee dans tous les cas.

Cette formule (2 bis) n'est d'ailleurs que la traduction symbolique d'une formule

bien connue et, si j'ai developpe" la demonstration, c'est uniquement pour mieux faire

comprendre les symboles employes et pour faire connaitre un mode de raisonnement

applicable a des questions analogues ; je veux parler de celui ou s'introduisent les

equations diffe'rentielles (3 bis) ou les equations analogues.

II importe avant d'aller plus loin de preciser la portee de la demonstration que

nous venons de donner. Pour qu'elle soit valable, il faut que tout polynome puisse etre

r^duit d'une maniere et d'une seule a etre regulier. Or, d'apres le N° III., cela a lieu

dans deux cas.

1°. Si V et T sont des combinaisons lindaires des operateurs X,

v=tviXi, r-ifcX,,

et si ces operateurs sont lids par des relations

XiX/c — XtXi = ZcuuXg,

les constantes c satisfaisant aux identites

(Xa (XbXc)) + (Xb (XeXa)) + (Xe (XaXb))
=

;

si en d'autres termes les operateurs X definissent un groupe de Lie et si eaV, &T sont

deux transformations quelconques de ce groupe :

Dans ce premier cas la formide (2 bis) est toujours vraie.

2°. Elle sera done vraie en particulier si on suppose que

V; Xi, -3l 2 , ..., Xr

sont r + 1 operateurs lids par les relations

(5) FZi -Z<F=S^Z,
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et

(6) XA-M-OL
Ces relations entrainent en effet l'identite

( V (X,X*)) + (Z« (Xk V)) + (Xk ( VXi)) = 0,

en ddsignant suivant la coutume par (VXi) et (X;X4) les seconds membres des relations

(5) et (6). On aura done dans cette hypothese :

(2 bis) e-*r(*T<rr = el
,u

;
U= e

- ae
(T).

On aura de m&me en permutant V et T:

(2 ter) e-»Tearel
,T =eaW

;
W = e-^(V),

e _Pl> dtant un symbole analogue a e_a* et de'fini de la maniere suivante : le symbole

7) est forme avec T comme le symbole 6 avec V; on a done, si Y est un op^rateur

quelconque :

V (Y) = TY-YT.
On aura done:

v (V)=TV-VT = -d(T),

et en vertu des relations (6)

V (X) = 0; rf
i

(V) = 0; v
m
(V) = 0,

e-i»'(V)=V-/3v(V) = V+/30(T).

La formule (2 ter) devient ainsi:

(2 quater) rW^r^r+w
Si Ton suppose maintenant que les relations (5) subsistent, mais que les relations

(6) n'aient plus lieu, les formules (2 bis) et (2 quater) cesseront d'etre vraies quels que
soient a et /9.

Cependant supposons que Ton regarde les ope'rateurs X comme tres petits et qu'on

en neglige les carres
;

a ce degre' d'approximation, les relations (6) dont les premiers

membres sont du 2d ordre par rapport aux X se trouvent satisfaites d'elles-memes.

Les relations (2 bis) et (2 quater) sont done vraies, si Ton neglige les carres des X,

ou, ce qui revient au m&me, si Ton neglige le carre" de T, on encore si on neglige

le carre de /3 (puisque T ne figure qu'affecte" du facteur /S).

Si done V et les X sont r+1 ope'rateurs lids par les relations (5), les relations

(2 bis) et (2* quater) ont lieu aux quantitis pres de Vordre de yS
2
.

Au meme degre
-

d'approximation la formule (2 quater) peut s'ecrire :

ou encore :

e«r+a^(D = eav_ eWev+ e«refiTt

31—2
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ou en vertu de la relation (2 bis) :

&>v+aiu>iT) =&iV_ e*repu+e*ref>T. U=e—B
(T);

ou, toujours en negligeant le carre de /3:

e«v+*>9(T) = gar (i _0(j+ 0T) = <?V&<T- V\

Si nous posons:

+ «6(T)=W; T-U=Y;
il vient :

(7) ^v+pw = ^ve^Y. Y= 1 ~ e
~a"

(W).
OLO

Soit

W = XwiXi

une combinaison lineaire quelconque des Xf ; peut-on determiner les coefficients t de la

combinaison 2
7 = S<iX,- de telle facon que Ton ait

Cela est evidemment toujours possible si le determinant des coefficients b^ n'est pas
nul. Dans ce cas la formule (7) est vraie quel que soit W.

Si maintenant ce determinant est nul, il suffit de partir du cas ou ce determinant

n'est pas nul, de faire varier les coefficients b d'une maniere continue de facon que ce

determinant devienne de plus en plus petit et de passer a la limite, pour demontrer

que la formule (7) est encore vraie quel que soit W.

Si enfin V, au lieu d'etre un opeYateur independant des X, n'est qu'une combinaison

line"aire des X, la formule (7) est evidemment encore vraie, puisqu'elle ne peut cesser

de l'&tre par suite de 1'introduction de nouvelles relations entre nos opeYateurs.

Remarquons que ce raisonnement par passage a la limite n'aurait pas 6t6 possible,

si nous nous etions restreints des le debut en supposant que V et T sont des com-

binaisons des operateurs X, que les X definissent un groupe de Lie, que eaF et epT sont

deux substitutions finies de ce groupe de Lie. Dans ce cas en effet le determinant des

but aurait ete constamment nul.

La formule (7) peut s'etablir directement:

En effet en negligeant le cai-re de /3 on a:

fV+pw = s < "*• P yv > =e*v + i3 -£ /y*r-iW+ Vn-*WV + Vn-3WV2(aF +ffJT)"
n\ nl

+ ... + VWVn-* + WV"-1

).

Or on trouve aisement

F»-iw + Vn~* WV+... + WVn~l = -,"
!

,., P*->W- m ,'
nl

1,, Vn-'0 ( W)
11 (n

—
1)! 2! (re— 2)!

v '

Vn
-*6*(W)- ... + ^-— V8*-*(W) + —-. 0^(W),

3!(n-3)!
v ' ""

-(«-!)! 1!
v /T «I0!



M. H. POINCARE, SUR LES GROUPES CONTINUS. 245

d'ou:

IW = rf + 0X £1 |~2 ,

"'

,
V-p (- 0)*-i ( TT)1 ,n! L (n

—
p)!^>!

v '

J
ou

ou

C. Q. F. D.

VII. Formation des Substitutions Infinitesimales d'un Groupe de Structure

DONN^E.

SoieDt done X1( Xa , ...,Xr r operateurs ele"mentaires lie's par les relations

(1) XiXk
- XkXi = (X;Xk) m 2 Ci]uXs ,

les c e"tant des constantes telles que les identity's de Jacobi du N° III. aient lieu.

Soient

T=ZtiXit 7*2*2* V=lviXi, W = -ZwtXi

diverses combinaisons lineaires de ces opeVateurs.

ConsideYons le produit

effectuons le produit qui sera une serie de polynomes symboliques; reduisons chacun de

ces polynomes a des polyn6mes reguliers en nous servant des relations (1); je me

propose d'dtudier la nouvelle serie ainsi obtenue que j'appelle <f> (a, 0) ;
le raisonnement

sera le meme que dans le N° precedent, mais je le developperai un peu plus.

Tous les termes de cette serie
<f> (a, 0) sont des polynomes reguliers ;

et les co-

efficients de ces polynomes se presentent eux-memes sous la forme de series developpees

suivant les puissances de a et de 0. Je puis ordonner
</> (a, 0) suivant les puissances

croissantes de 0, en groupant tous les termes qui contiennent en facteur une m6me

puissance de 0. J'obtiens ainsi:

£(*£)- £+jBfc + /fcfc+.V;

D'autre part j'ai:

<£ (a, + d0) = e-W>- T=
<f> (a, 0) **• T = (a, 0) (1 + d0 . T),

ou :

(2) §-.*,
ou:

(3) m<j>m = (f>m^.T;

ces conditions joiutes a

(4) *, = «""

suffisent pour determiner
<f>.
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Or on y satisfait de la maniere suivante. Faisons :

</>(«, /3)
= ew, <j>(a,/3 + d/3) = e w+dW

;

4

soit 7] un symbole qui soit a W ce que est a V.

II s'agit de satisfaire a liquation (2) ou ce qui revient au m&me a

4>(a, ft + dft) = <\>(a,ft)^-
T

,

on doit done avoir:

eW+dW _ gWgdp. r

Or en vertu de la formule (7) du N° precedent, on satisfera a cette condition si Ton a :

(5) dfi.T=^^(dW).
V

Cette formule (5) repre'sente symboliquement un systeme d'equations diffe'rentielles

auxquelles doivent satisfaire les coefficients Wj.

En vertu de la formule (4 bis) du N" V., ces equations peuvent s'ecrire :

(5 bis) ^=
2̂ /f^|^.P,

(»-I, 2,...,r).

Si Ton a:

WXi - XiW=2clc.i. l,wkX8 ,

F(%) est le determinant dont l'eiement est (pour la ie ligne et la s" colonne)

-
(Ci.i.«Wi + <k.i.>u>z + ••• + Cr.i!,Wr),

sauf les elements de la diagonale principale (i
= s) qui sont egaux a

—
(ci.t.»Wi + c2 .i. fw2 + ... +cr.i.iWr) + <fc;

les Py sont les mineurs de ce determinant. L'integrale du second membre de (5 bis)

est prise dans le plan des £, le long d'un contour ferme enveloppant toutes les racines

de l'equation F(%) = 0.

La condition (2) sera done satisfaite, si les w satisfont aux equations (5 bis) ;
la

condition (4) le sera egalement si les valeurs initiales des tu pour ft
= sont

i
—

«»•

Les equations (5 bis) admettant toujours une solution telle que pour ft
= on ait

Wi = Vi, et d'autre part les conditions (2) et (4) suffisant pour determiner
<f>,

on aura :

<f>(a, ft)
= ew

,
w = '£wiXi,

les w etant des fonctions de ft definies par les equations (5 bis) et les conditions initiales

Wi = vt .

La serie
<j> (a, ft) n'est done autre chose qu'une exponentielle dont l'exposant est
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une combinaison lin^aire des Xt ;
c'est le th^oreme que j'ai annonce

-

au N° IV.
;

et comme
d'autre part ce theoreme a e^e etabli en s'appuyant simplement sur les relations (1) et

en en faisant des combinaisons purement formelles, le probleme de Campbell est re"solu

et le troisieme the*oreme de Lie, en vertu de la remarque faite dans ce N° IV., se

trouve de'montre'.

II est aise de se rendre compte de la forme relativement simple de ces equations

(5 bis). Soient £,, £2 , , fp les p racines distinctes de l'equation F(^) = 0; ce sont

des fonctions alg^briques des w, puisque F(%) est un polynorne entier par rapport a £

et aux w. Les -t-' seront donnes par des equations lineaires dont les seconds membres

seront des constantes
;
tandis que les coefficients des premiers membres seront des fonctions

rationnelles des w, des £* et des e
-
**

;
ces coefficients ne de'pendront d'ailleurs que line-

airement des exponentielles e~**
;

ce seront des fonctions syme'triques des racines.

R6solvons ces equations par rapport aux -^, nous trouverons :

(6)
--tq

= A 1 jt1 + Azjt2 + + A r jtr ,

les coefficients A e"tant rationnels par rapport aux w, aux ft et aux e~ik .

Le probleme qui se pose a propos du troisieme the"oreme de Lie est ainsi com-

pletement r^solu.

II s'agit de trouver r operateurs

xa/X Xkifh A</),

satisfaisant aux relations (1); on y satisfait en faisant

Les equations (5 bis) peuvent se mettre sous plusieurs autres formes.

Soit

On aura (puisque les P
tj

sont les mineurs dxr determinant F):

pour i*j et

pour i=j.

Nos equations

i-Pu-ZbtoP^F

(5 bis) U& =
j—f= J«-g- ^ -y-



248 M. H. POINCARE, SUR LES GROUPES CONTINUS.

donnent :

d'ou

ifiZttth* = j—^= Jdf
(1
- e •)SU^ -g—^ jdf -|—.

La deuxieme integrate e'tant nulle, nous pouvons e'crire tout simplement :

(5 ter) ^fc-j-I^ j"^(l_
e-0^|^'

(4-1, 2, ..., r).

D'autre part liquation (5) peut s'e'crire :

(7) gE = *> m
d'ou

dwf _ _J_ fJd%_ ZtjPjj

dfi 2ttV^1 Jl-ert F(£)
'

ce qui donne :

<M/J- 2^31 J (1
-

e-t) F{£)
Z

> ,l
dwj

'

Oette derniere integrale doit Stre prise le long d'un contour enveloppant toutes

racines de F(^) = 0, mais n'enveloppant pas les points

f = 2/brV^l (*-±l, ±2, ... ad inf.).

VIII. FORMULES DE VERIFICATION.

Soit
ev+sv m erer

V^ZviXi, SV=-ESviXi , tmtytXt',

on aura en vertu de la formule (7) du N° VI.

1 - r*

(posant :

0(T)=VT-TV
comme dans le N° V.).

Soit maintenant
e-^eTer - eu,

on aura par la formule (2 bis) du N° VI.

U=e-o(T).
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Soit

g-(r*tr) eTev+trmeir
)

on aura:

V = e-<«+^ (T),

ou + 80 est un symbole qui est a V+8V ce que est a V. On aura d'autre part:

ew = e-re-veTerer= e-reuer_

d'ou en negligeant le carre
-

de Y qui est infiniment petit :

ev = eu_ Yeu+euY=eu+ur- ru
.

D'ou

U'-U=UY-YU.
Si je eonviens de poser:

e-<0+s<» _ e-" = S (e-*),

il viendra:

Z7'-^=S(e-»)(r).

Nous arrivons ainsi a la formule symbolique suivante :

(1) 8(e-°)T=[e-°(T)]
1 — p-° 1 - p-o

[e-°m

Pour mieux expliquer le sens de cette formule rappelons que nous avons trouve

plus haut:

(2) 0)(T)-.^=f/^*(f)2Ai^.

ou les hi sont des fonctions rationnelles des t, des w et des f donnees par les Equations:

(3) £A>
- SWit = k ; &m — Ot.t.tVg + Co. k,iV2 + ... + cr . kA vr .

Alors on aura:

Be-9 (T) = ^= jdPe-ilBhtXi,
27TV— 1 -<

ou les 8A; sont les accroissements que subissent les fonctions hi quand les variables vk

subissent les accroissements 8vk .

Si alors les h\ sont ce que deviennent les h { quand on y remplace les tk par les

8vk ,
la formule (1) pourra prendre la forme

(1 bis) 2TrJ~lXXi
JdZe-t8hi

= -Z(XiXk-XkXi)jdt

]

—^ h'^d^K
Dans le l er membre le signe 2 se rapporte aux r valeurs de l'indice i; dans le

2d membre aux r(r
—

1) arrangements des deux indices i et k (l'arrangement i, k etant

regarde" comme different de l'arrangement k, i).

Cette formule nous fait connaitre un certain nombre de relations auxquelles doivent

satisfaire les expressions XiXk
— XkXt ou (XiXk). Ces relations sont curieuses; mais
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la plupart ont deja 6t6 de'montre'es par Killing et il semble que les autres pourraient

se demontrer facilement par les proce'de's de Killing. Je n'y insiste done que comme

sur un precede" de verification.

Les deux membres de cette equation sont d'une forme particuliere.

Le premier membre est lineaire a la fois par rapport aux symboles X;, par rapport

aux U, aux Bvjc, aux exponentielles e~*' (les di dtant les racines de l'equation F=0).
Les coefficients de cette fonction lineaire sont eux-memes des fonctions rationnelles des

v et des d{.

Le second membre est lineaire a la fois par rapport aux symboles (XiXk), par rapport

aux ti, aux Svk ,
aux exponentielles e~ e et e~ e'~ ek

(0i et 6k etant deux racines de F=0).
Les coefficients de cette fonction line'aire sont encore rationnels par rapport aux v et

aux di.

Les 6i etant les racines de l'equation F=Q sont des fonctions alge"briques des v.

Dans les deux membres de l'equation (1 bis) entrent en outre lineairement un certain

nombre de fonctions transcendantes
;

il y a d'abord les exponentielles c
-

'* et il y en a

autant que l'equation F=0 a de racines distinctes. II y a ensuite les exponentielles

e-(6(+9t)
qUi peuvent etre distinctes des prec^dentes, mais qui peuvent egalement ne pas

en etre toutes distinctes si l'une des racines de l'equation F=0 est constamment egale

a la somme de deux autres racines.

Supposons qu'il y ait q exponentielles et soient

ces exponentielles.

Les deux membres de l'equation (1 bis) seront alors des fonctions lineaires des

produits de la forme

(4) tm Bvhe\

ou m et h peuvent prendre les valeurs 1, 2, ..., r, et ou p peut prendre les valeurs

1, 2, ..., q.

Les coefficients de ces produits sont des fonctions alge"briques des v, ne dependant

ni des t, ni des Bv. Pour que l'identite puisse avoir lieu,, il faut que Ton puisse egaler

dans les deux membres de (1 bis) les coefficients d'un meme produit (4).

Nous aurons ainsi un certain nombre de relations lineaires entre les symboles Xt

d'une part, les symboles (XiXk) d'autre part ;
les coefficients de ces relations lineaires

sont des fonctions alge"briques des v. Ces relations lineaires doivent etre identiques aux

relations de structure ou en etre des consequences.

J'examinerai seulement le cas particulier ou F (J)
= a toutes ses racines distinctes.

Je puis alors supposer que les opeYateurs eldmentaires Xi ont ete choisis de telle

sorte que :

vx i -xiv=eix i ,

di etant l'une de ces racines.
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Egalons alors dans liquation (1 bis) les coefficients de tmSvh ;
il vient:

Le premier membre ne depend que des exponentielles e" 9
', mais le second membre

outre l'exponentielle e~ e" contient encore e~**~V

Egalons les coefficients de e"*»" e
". Si 6h + 8m n'est pas egal a une racine de ^=0,

cette exponentielle ne figurera pas dans le 1" membre
;
nous aurons done

(XmXh)
= 0.

On reconnait la l'un des thdoremes de Killing.

Si au contraire h + 6m est racine de F=0, l'exponentielle pourra figurer dans le

l
er membre et (XmXk) pourra ne pas 6tre nul.

Je n'insisterai pas sur les autres verifications, ni sur le cas ou les racines ne sont

pas distinctes et ou on retrouverait les autres theoremes de Killing.

Je me bornerai a f'aire remarquer que la verification de la formule (1 bis) n'est

pas immediate, et qu'il faut pour la faire avoir recours aux identites de Jacobi et aux

theoremes que Killing en a ddduits.

IX. Integration des Equations Differentielles et Formation des Substitutions

FINIES DES GROUPES.

Soit

(1) er+dv = evedA >

oii:

V = IviXi ;
dV = 'ZdVi . Xi ;

dA — ScZoc* . Xt .

On aura en vertu de la formule (7) du N" VI. :

(2) dA = l

-^(dV).

Cette formule, identique sauf les notations a la formule (5) du N° VII., comprend,

sous la forme symbolique, r systemes d'equations differentielles ;
ainsi que je l'ai deja

fait remarquer au N° VII.

Annulons tous les da, sauf d<xk ; egalons ensuite les coefficients de Xlt Xit ..., Xr

dans la formule (2). Nous aurons r Equations differentielles qui de"finiront

dv1 dv2 dvr

dak
'

dotk
' '"'

dak

en fonctions des v. Ce sont la comme nous l'avons vu au N° VII., les equations diffe-

rentielles qui d^finissent une des substitutions infinit^simales du groupe, si Ton prend les

v comme variables independantes.

32—2



252 M. H. POINCARE, SUR LES GROUPES CONTINUS.

En donnant a l'indice k les valeurs 1, 2, ..., r, on obtiendra r systemes d'6quations

differentielles correspondant aux r substitutions infinit^simales du groupe.

Nous devons pr^voir que ces Equations peuvent se ramener, au moins dans le cas

des groupes de la ltn famille (vide supra N° I.), a des Equations lineaires, puisque c'est

la un rdsultat bien connu obtenu par Lie.

Voici le changement de variables qu'il faudrait faire pour retrouver ces Equations ;

soit:

U = %uiXi ;
e- ve^ev = e^; Z = 2Z<Xi;

on aura :

(3) L = e-'(U).

Cette equation symbolique (3) nous apprend que les li sont des fonctions des v

et des u, line'aires par rapport aux u, et nous permet de former ces fonctions. Si alors

on pose :

g
- V-dVe UeV+dV — gL+dL

on aura:

^L+dL _ n- dA qL odA

ou, puisque A est infiniment petit :

(4) dL = LdA -dA.L.

Cette formule (4) represente symboliquement r systemes d'equations differentielles qui

ne sont autre chose que ce que deviennent les r systemes d'equations differentielles

representees symboliquement par la formule (2) quand on prend les l{ pour variables

nouvelles.

Celui de ces systemes que Ton obtieut en annulant tous les da. sauf d<xk s'6crit:

(4 bis) -yr =LXk-Xk L.

Ces Equations sont lineaires et a coefficients constants et s'integrent immediate-

ment; ce sont celles auxquelles Lie arrive par la consideration du groupe adjoint. II

importe de remarquer que la reduction des equations differentielles (2) aux equations (4)

par le changement de variables (3) n'est pas immediate et qu'on ne peut la faire qu'en

tenant compte des identites de Jacobi.

Considerons de plus pres le cas des groupes de la 2e
famille. Nous pourrons alors

choisir les operateurs eiementaires Xi de telle maniere qu'on en puisse distinguer de

deux classes. Ceux de la 2de classe seront permutables k tous les operateurs, ce seront

les X"i\ quant a ceux de la l
6re

classe que j'appellerai les X\, ils seront caracterises

par la propriete suivante : aucune combinaison lineaire des X\ ne sera permutable a tous

les operateurs.

Pour mettre en evidence cette distinction, jecrirai quand il y aura lieu :

SvtXi - Iv'tX'i + ^v"iX"t ;
V = Iv'iX'i ;

V" = S*",*", ;
V= V + V".
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Les v'i seront ainsi les coefficients des X\ et les v"{ ceux des X% Les lettres

u iy u i\ l'i, l"( ; V, U"; L', L"; etc. auront une signification analogue.

II est clair qu'on aura :

d'ou

V'T - TV" = V'T" - T"V =
0,

d(T)= VT-TV= V'T -TV.

J'introduis alors un symbole nouveau
; soit :

V'T-TV = tkiX't + IX-iX'U ;

je poserai :

7<2}-sx*<Z'«i 6"(T) = s\"ix"i ,

et je definis <f>(0') a l'aide de 6' comme j'ai defini $(d) a l'aide de 6. On a alors

0(X",-) = O; 0[0"(T)] = O; <f>{6){T") = Q;

et on trouve aisement :

+(0)(T)-4>($HT')-4>(tf)(r) + 0"
0' \T)j

+ 4>(0)T".

Remarquons que les expressions :

0(T), ff(T), 0"(T),

dependent des v et des t' mais sont independantes des v" et des t"
;

et il en est

de meme de
<f> (6) . (T) si

cj> (0) est nul.

Les If etant line'aires par rapport aux u, je puis ecrire :

Les -j— sont des fonctions des v. Voyons combien de ces fonctions sont indepen-

dantes les unes des autres. Je dis d'abord que ces fonctions ne dependent que des v.

Nous avons en effet (e
z etant une substitution quelconque du groupe):

d*ou

ev+r" = ev ev t e-v-gZeV m gZ

V-VaUaV+V _ P-v„-V „v^v „y" _ *-V»We u e e~ r e~ v e u e r e" =e~" e u e Y

ce qui montre que L ne depend que de V, mais pas de V".

Je dis maintenant que le nombre des fonctions -*- inddpendantes les unes des

autres est precisement celui des variables v'. En d'autres termes, si Ton pose :

eL m e-v eue vt gi, = e-v, eue v,
t
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l'identite L=L X si elle a lieu quel que soit U enfcraine l'identite V = V\ . Si en effet

L = Llt on aura quel que soit U:

e v>e- vever(Tv>=e u,

ce qui montre que eve~r> est permutable a toutes les substitutions du groupe. C'est

done une substitution qui ne de'pend que des X"i de sorte que je puis 6crire :

eve-vl = ew t

W" e^ant une combinaison lintSaire des X"i ;
on en tire :

e r=ew evi = ev,+w t

d'ou

r = r, + W",

V = V\ ;
V" = V'\ + W".

Done V'=V\.

Nous pourrons prendre comme variables les -r et les v", au lieu des v et

C. Q. F. D.

Cit loo it" on
du

des v".

Les
-j-

sont definis par les Equations (4 bis), qui £tant par rapport a ces variables
au

des Equations lineaires a coefficients constants s'inte'grent imm^diatement.

du
Les equations (4 bis) nous font done connaitre les -«- et par consequent les v' en

fonctions de la variable ak .

Pour obtenir les v", revenons aux Equations (2) ;
si nous posons :

1-6-0=0 + 0*^(6),

elles peuvent s'ecrire :

dA' =dW +0'yfr(0")(dV),

dA" = dV" + 0"^{0') (dV).

On a

dA' = 2,da'k .X'k ; dA" =tda"kX"k .

Si on annule tous les da' et tous les da" sauf da"k ,
nos Equations donnent

simplement :

v'i = const.
; v"i = const, (i <k); v"k = a"k + const.

Si on annule tous les da' et tous les da" sauf d/x'k les equations deviennent

X'kda'k = dV +0'f (0')(dV),

O=dV" + 0"^{0')(dV).
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La premiere de ces Equations, equivalente aux equations 4 bis, est susceptible comrae

uous l'avons vu d'etre ramenee a la forme d'un systeme d'equations lineaires a co-

efficients constants, reintegration est immediate et nous donne les v' en fonctions de

la variable a'j.

La seconde Equation est dquivalente a, un systeme d'equations de la forme :

dv"i + dv\F\ + dv\F, + ... + dv'aF'9
= 0,

les F etant des fonctions donne'es des v'. En rempla9ant les v' par leurs valeurs en

fonctions de a'k ,
elle prend la forme :

dv"i + <f>(a'ic)da'k =0

et s'intkgre immediatement par quadrature.



X. Contact Transformations and Optics. By Professor E. 0. Lovett.

[Received 15 September 1899.]

"Ayant vu oombien les idees de Galois se Bont peu a peu montr^es fecondes dans tant de branches de

l'analyse, de la g^om^trie et m6me de la m^canique, il est bien permis d'esp^rer que leur puissance se manifestera

egalement en physique mathematique. Que nous repr^sentent en effet les phenomenes naturels, si ce n'est une

succession de transformations infinitesimales, dont les lois de l'univers sont les invariants?"—Sophus Lie*.

It is the object of this note to elaborate, and in fact in n dimensions, certain

ideas which the lamented Sophus Lie sketched for ordinary space in a short paper •(•

presented to the Leipzig Scientific Society in 1896 and which were more or less developed

for the plane in the first volume of the geometry of contact transformations! which

appeared with the cooperation of Scheffers in the same year.

1. Attending to a few preliminary details, consider a family of oo1 transformations

in n variables xlt x2 , ..., xn :

x-[ = Xi{xlt ..., xn , a), #2

' = X2 (#! , ..., xn , a), ..., xn
' =Xn (x1 , ..., xn , a) (1)

where the functions Xlt ..., Xn are regular analytic functions of xx , ..., xn and an

arbitrary constant a; suppose in particular that the family contains the identical

transformation, that is, that for some value of a, say a = 0, the equations (1) reduce to the

form

Then for a value of a, say St, infinitesimally different from zero, the equations

(1) will yield an infinitely small transformation. With the assumptions made relative

to the functions Xx , ..., Xn the transformation (1) for a = St has the form

.(2).

Xi — Xi + £i (Xt ,
. . .

,
xn ) 61 + . . .

,

x2
= x% ~t" £2 v^i , • • , &11) of ~r . . •

,

Xn = Xn -r £n\3'i> »•• j ^n) Of "T" ....

Under this infinitely small transformation (2) xlt ..., xn receive the infinitesimal

increments

8x1
=

lj1 ht+..., 8x2
=

%.28t+ ..., ..., Sxn = ^n St + (3).

* Le Centenaire de VEcole Normale, p. 489.—Paris, Math.-Phys. Classe, Bd. 48, 1896, pp. 131—133.

Hachette et Cle
,
1895. t Geometrie der Beriihmngstransformationen, dargestellt

+ " Infinitesimale Beriihrungstransformationen der Op- von Sophus Lie und Georg Scheffers, Bd. i, Leipzig,

tik," Ber. ii. d. Verh. d. k. siichs. Ges. d. Wiss. zu Leipzig, Teubner, 1896. See in particular, pp. 97, 100—103.
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Such a transformation is called an infinitesimal transformation. The expression

^g*f-g+- +
«-I m

is adopted as its symbol, since Uf.U is the increment assigned to any function

/(a?i xn) by the infinitesimal transformation.

2. If the transformations of the continuous ensemble (1) are so related that the

successive application of any two of them is equivalent to a transformation belonging
to the same family, (1) is called a continuous group of oo 1 transformations.

Let the family (1) be a continuous group ; suppose further that the group contains

the inverse transformation of every transformation in it : that is, that the resolution

of the equations (1) with regard to xlt ..., xn gives a system of the form

x1
= X1 (x1', ..., xn', b), x2

= X2 (x1 ', ..., x^, b), ..., xn =Xn (xi, ..., xn', b)... (5),

where b is a constant depending only on a.

Under these conditions it is easy to see that the group contains an infinitesimal

transformation
; for, if Ta is the transformation of the group corresponding to the

parameter value a, the inverse Ta
~

l of Ta is also found in the group. Further the

transformation Ta+sa corresponding to the parameter value a + 8a, is the transformation

of the group differing infinitesimally from Ta . The product Ta+Sa TgT
1

which, by the

assumed group property, belongs to the group, differs then infinitesimally from the

transformation Ta Ta
~

l

;
but the latter is the identical transformation

;
thus the group

contains a transformation possessed of the properties attributed to an infinitesimal

transformation in the preceding paragraph.

3. Conversely, every infinitesimal transformation is contained in a determinate

continuous group. This may be made clear in the following manner. The given infini-

tesimal transformation assigns the infinitesimal increments

&«i— £»(*ii •••. %n)&t, .... Bxn = ^n (xu ..., xn)U (G)

to the variables xu ..., xn ,
on neglecting infinitely small quantities of a higher order;

if t be interpreted as the time, x
x

xn as point-coordinates in a space of n dimen-

sions, St as a time increment, and 8xlt ..., Bxn as the corresponding increments of

xit ..., xn ,
then the equations (6) determine a stationary flow in space of n dimensions.

After an interval of time t the point (xlt ..., xn) will have assumed the new position

(«,', ..., x^); the latter position will be obtained by integrating the simultaneous

system

&x{ _ dx2

' dxn
'

j. .,-..

£0/, ..., Xn)
~

f2 (#,', . . .
,
Xn')

~
£„ (Oh, ..., Xn)
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with the initial conditions that «,', ..., xn
'

shall reduce respectively to xu ..., xn for

t = 0. The n integral equations may be taken in the form

Ui \xi > •••> xn )
= "i V.*ii •••> xn)<

^2 1^-1 j •••» &n )
== t/2 (.£]> •••> ^n)>

> (8);

Un—ly^n •••> ®n )
— V n—l \JEi> •••> #n)>

"a (^l >
•••

> ^n )
= Un \xi> ••• >

xn) T S
J ,

the form of these equations shows that when resolved with respect to «%', ..., #„' they

represent a group with the parameter t; accordingly the given infinitesimal transforma-

tion is said to generate a one-parameter continuous group.

4. Consider in particular the case where the preceding transformations are contact

transformations. The equations

Xi=Xi(xlt ...,xn ,z,pu ...,pn), ...,xn'=Xn(x1 , ...,xn ,z,pu ...,pn ), z'=Z(xu ...,xn,z,plt ...,pn )~\

Pi^Pifa, ...,xn ,z,p1 ,...,pn), J

(»-1.2»...;«) (9)

are said to define a contact transformation when they give rise to a differential relation

of the form

dz -Ip-dx- =p(xlt ..., xn , z, plt .... pn) (dz - 1 ptdxi) (10);
y=i t=i

the corresponding geometric characterization is that the property of tangency is an

invariant property under contact transformations. Point transformations are then a

particular category of contact transformations.

The explicit formulation of this notion, contact transformation, is due to Lie
;

implicitly it is to be found in particular form in many directions and may be traced

to Apollonius.

Lie has determined all infinitesimal contact transformations in a space of n + 1

dimensions, in the following manner.

By definition the equations

z' = z + £(xlt ..., xn , z, pi, ..., pn)Bt + ..., xi = x{ + &(*,, ..., xn , z, plt ..., pn)St+ ...,

Pi'
= Pi+-n-i(^i, -, «W. z, Pi pn)St + ..., (t-1, 2, ..., n) (11)

can represent an infinitesimal contact transformation only in the case where the relation

(10) is a consequence of these defining equations (11).

On substituting (11) in (10) we have

dz + d£8t + ... -%{pi + in&t + . . .) (dxi + dfrSt +...) = p (dz -Tpdxx) (12).
t-i t=i
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The left-hand member of this equation is a series of ascending integral positive

powers of St; thus the function p must be an ascending series in integral positive

powers of St; as the term of zero degree in the left-hand series is dz — l,p{dxi, p must

therefore have the form

p = l+aSt+ (13). .

Inserting this value of p and equating the coefficients of corresponding powers of

St we have

d£ — Ipid^i
—

%-n-idxi = a(dz - tpidxi) (14),

or d(%— 2,pi%i) + t&dpi — tiTidxi = a (dz
-

tpidxi) (15).

This linear and homogeneous condition in dz, dxit dpi must be true for all values

of these differentials
; hence, writing

?—2pt|t--0(*, xu ..., xn , p lt .... pH) (16)

for convenience, we have

ilXi + vi
=

api, Q,--<7, nw -& =
(17).

Eliminating a and solving (16) for f we find

fc-fl*. ^ip^-n, Tr^-rx^-^n, (is).

The infinitesimal transformation is therefore completely determined, f, ff) y< being

given by an arbitrary function fi.

5. Let the preceding results be now applied to the infinitesimal contact transfor-

mation defined by the characteristic function

fi = ^l+p1

i

+p-i
1 + ...+pn\

The formulae (18) show that the coordinates of a surface element, by which we

mean the ensemble of a point and a plane through it, receive the infinitesimal increments

Sxj = ,

Pi = St, Sz=
~ 1

-.St, Spi
= (19).

This infinitesimal transformation generates a one-parameter group of contact trans-

formations, namely the group of dilatations, whose finite equations are found by

integrating the simultaneous system

^J±M d^ = ...JJ±Wdx^J-^^dz^=...A (20);
P! pn -10

the integration effects itself, without any difficulty, and yields the integral equations

*t-*i+ - ,-** . . z
' = z -JrTW^' p/ = Pi> (i=1 ' ••" n) (21)

VI + 2p»
2 v l + lj)i

2

where t is an arbitrary constant.

33—2
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These transformations are obviously characterized geometrically by the property of

changing the surface-element (xlt ..., xn , z, plt ..., pn) into the surface-element

(as,', ..., x„, z
1

, pi, ..., pn') in such a manner that the point of the second lies on the

normal to the first and at a constant distance t from its surface. They transform the

surface-elements of a point into those of a sphere, and change parallel surfaces into

such.

6. As Lie has pointed out for ordinary space the theory of wave-motion in an

isotropic elastic medium is intimately related to the one-parameter group of dilatations of

the space filled by the medium.

Consider a wave-motion originating at a center of disturbance P of an isotropic

n + 1-dimensional elastic medium
;

in an interval of time the motion will have advanced

to all points P of a sphere whose center is at P and whose radius is t, say, in

precisely the same manner as the dilatation (21) would change the surface-elements of

the point P into those of the last-named sphere. Every point P of this sphere can

now be regarded as the center of new elementary waves which in a second interval

of time, say tu will have advanced to spheres of equal radii tx about the points P as

centers. These elementary waves have an outer envelope, which by Huygens' principle

is the identical wave that would have been developed from the original center P in

the total time elapsed. But in exactly the same manner the dilatation

#-*+ ,,** M ,
* = *-

/T-Vv *'"*• (i=1 n) (22)

carries every point P of the sphere about P„ into a sphere of radius £, about P as

center, so that the sphere of center P will be changed by the dilatation (22) into

the sphere of center P„ and radius ^ + 1
,

that is into the sphere into which the point

P is changed by the successive application of the dilatations (21) and (22).

Thus the principle of Huygens finds its mathematical expression in the fact that

all dilatations form a one-parameter continuous group.

The importance of this particular group of contact transformations is further

exhibited by observing that reflections and refractions from one isotropic medium to

another are contact transformations which leave the infinitesimal dilatation invariant
;

the reflections have the additional property of being commutative with the latter. To

establish these facts it is only necessary to make the ordinary illustrative constructions

in a space of n + 1 dimensions and apply the principle that all the surfaces of a

complex / that touch a surface
<£ have in general an envelope <t>, and hence the

passage from
<f>

to 4> is a contact transformation.

7. Let the characteristic function be an arbitrary function of plt ..., pn , say

Q-nfo, ..., pn) (23);

the infinitesimal transformation defined by n is represented by the equations

Bxi = Upt St, Bz = 2PiUPi -n, SPi =0, (*'-l, ...,») (24).
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By integrating the simultaneous system

dx^ _ dx» _ dz _dpi__ _dp ti

'

_ ,. ,-.-.

up:

••• up, -%'np,-n~ o ---'o ~ dt {2o) '

we have the corresponding one-parameter group of contact transformations

xi = xt + Il
pi t, z = z+(tpiUm -U)t, pj=pi, (i=l, ..., n) (26).

Let t have for the moment a fixed value
;
the corresponding contact transformation

of the group changes the point (#,, .... xn , z) into a surface whose equation in current

coordinates (#/, ..., xn', z) is obtained by eliminating the p{ from the first n + 1

equations ;
this elimination yields the equation

*
(
xi xi xi xi ®3 ^8 ^n ~ Xn Z —

£\
. _

/aT\
t

'

'

t
' %~ { •••

" —
*

• ~~r)~ (li)-

The form of this equation enables us to find the characteristic property of these

transformations as the following considerations will make evident.

1°. In the first place it is clear that contact transformations in n + 1 -dimensional

space may be determined by a system of r equations

hfe'i •••, «W', z, xu ..., xn)
= 0, a>2 =0, ..., <ur

=
(28),

where r may have all values from 1 to n + 1
;

in the last case the transformations if

existent will be point transformations, since the n + 1 relations will give the n + 1

quantities x{, z', as functions of the n + 1 quantities xit z alone.

In fact the problem of determining all finite contact transformations of a space

of n + 1 dimensions is that of resolving the total differential equation

n n

dz' —Ipi'dx/
—
p(dz

—
'£pi dxi) = 0, (t*l, ..., n) (29)

i i

where the /, x{, pi are functions of the 2n + 1 variables z, xit pt to be determined.

This equation shows that there ought to exist at least one relation between the variables

z', xl, z, Xi containing z and z*. Taking the general case of r different relations ex-

pressed by (28), the equation (29) ought to be a consequence of

dcoj = 0, e&»2
= 0, ..., dwr

= (30);

that is, it ought to be possible to find r coefficients X,, ..., \ such that the identity

n n r

dz' - 1,pidx(
—
p (dz

—
"Lpidxi)

= XXid(ot

i i i

exists. This demands the following equations :

1 OXj

j = l, ... n (31);

1 = *Xi W& =
-fXi

dxJ

P = -^-dz-' m= f Xi
dx-j'

* See Goureat, Lemons sur les gquationt aux (Urivies partielles du premier ordre, Paris, Hermann, 1891, p. 258.



262 Prof. LOVETT, CONTACT TRANSFORMATIONS AND OPTICS.

the 2w+2 + r equations (30) and (31) in general determine the 2n+2 + r functions

z
1

, Xi, pi, \j, p as functions of z, xit pi.

Eliminating p we can write the following n + r+l equations for z
, x(, \

;-,

.(32);

i= l OXj U=\ oz

1AJ57"1, «»i
= 0, ..., wr =0

iml OZ

resolving these for z'
, x{, \j, the remaining functions pj, p are found by substituting

the values of the former in the remaining equations of the system (30) and (31).

2°. In the second place two transformations S and T are commutative when the

symbolic equation
ST=TS

obtains. Consider the contact transformation S and the point transformation T. That

the point P is changed into the point Pi by the transformation T is expressed by the

symbolic equation

(P)T=(P1 ).

In the same manner, that S transforms P into the surface 2 is expressed by the

equation

(P)S=(t).

Then if (P)ST=(P)T8,

we have also (P1)S=(1)T.

That is, if S transforms the point P into the surface 2, and T changes the point

P into the point Pu the latter is changed by S into the surface into which the

surface 2 is changed by T.

3°. In the third place let S be a contact transformation of an n + 1-dimensional

space commutative with all translations T of that space. If 8 changes a definite point

P into the surface 2, the surfaces into which all other points are changed by S may
be determined, for there always exists a translation which carries the point P to any
other arbitrary position P1 ;

then by the second paragraph above, the point Pl is

changed by 8 into the surface 2i into which 2 is changed by the last-named trans-

lation
;

hence all points are changed by S into congruent surfaces similarly situated.

Accordingly the contact transformations that are commutative with all translations of a

space of any number of dimensions are determined by a single function of the form

* \Xi Xi , 0u% X% , . . . ,
Xn Xn ,

Z Z j
= U \oo)\

it is not to our purpose to construct the explicit forms of these transformations here
;

the most general one in the plane has been given by Lie in his geometry of contact

transformations to which reference has been made.
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Thus the equations (27) and (33) show that all the transformations of the one-parameter

group (26) are commutative with all translations.

8. It is evident either from the last-named property or directly from the form of

equations (27), that by varying t and thus operating on a point (xlt ...
,

ocn , z) with all

the transformations of the group (26), the point is changed successively into similar

surfaces and similarly placed. The point P is changed by the transformation whose

parameter is ^ into the surface 2. Operating on all the points P of 2 with the

transformation whose parameter is fc,, these points P will be changed into congruent

surfaces that are similar and similarly placed to 2. These latter surfaces have an outer

envelope, a surface 2] into which the surface 2 is changed by the second transformation.

The successive application or product of the two transformations is equivalent to the

transformation whose parameter is ti + t^; the latter transformation carries the point P
directly into the new surface 2^ and this surface must then be a similar and similarly

placed surface to 2.

The preceding geometrical operations and their results suggest the phenomena of

wave-motion in an elastic n + 1-dimensional medium. If such a space is filled with

such a medium in which motions originating at a point advance in different directions

with velocities depending only on the direction, then a center of disturbance P gives

rise to a series of waves similar and similarly placed with the common center of

similarity P
; accordingly the above geometric operations present a pure mathematical

interpretation of Huygens' principle for a non-isotropic elastic medium, and this principle

finds its equivalent in the fact that the oc
1 contact transformations (26) form a group.

9. The group (26) may be generalized and specialized.

1°. Much more general wave-motions may be designed by using in a similar

manner the most general infinitesimal contact transformation defined by the characteristic

function

11 (#1, ..., Xn , Z, Pi, ...
, pn) >

a simple geometric construction shows that the normal velocity of the wave is given

by the expression

n/Vi + Ipf.

2°. The case applying to the optics of a double refracting crystal is given by

the particular form

n-Jaf+ ta?p?, (**-l, -.., n) (34).

Observing that

n
Pi
= a^n-1

(35),

we have

2piSlPi-n = -at?n-i

(36);
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hence the finite equations of the group of contact transformations generated by the

infinitesimal transformation (34) are

xi = Xi + aipiQr% z( = z-a*VrH, p*'-p» (37);

eliminating t by means of the first n + 1 equations, we have the ellipsoid

(ajf
+

(a,ty
+ -- +

(anty
+

(ajf
~ ^ h

thus the transformations of the one-parameter group (37) change the points of space

of any dimensions into ellipsoids of that space ; any particular point is changed by all

the transformations of the group into similar ellipsoids similarly placed and concentric

with the point as common center.

10. Lie might have included in this order of ideas certain other contact trans-

formations *.

Thus far the finite contact transformations studied in detail have been defined by

a single equation connecting the coordinates of the points of the two spaces. The

following however is an interesting example giving a category of such transformations

which are determined by two equations in the point variables.

Consider the two equations

,*_*• +!(««'»-o-o,

(zz + 2 cc/xif
- A» (z'* + 2 aV

2

) (s
2 + 2 x?) =

i i i

.(39),

where k is a constant.

By means of the formulae developed in § 7, 2°, the finite equations of the

transformations can be determined, and the fact that they form a one-parameter group

established.

If

XJ, AV, .... Xn+J (40)

are the infinitesimal rotations of n -t- 1-dimensional space written in the symbolic form

(4), the expression

Os^/'S&SY (41)

may be taken as the characteristic function of the infinitesimal contact transformation

which generates the one-parameter group of contact transformations determined by the

equations (39).

Observing that two infinitesimal contact transformations are commutative only in

the case when the relation

U(V/)-V(Uf)=0 (42)

*
"Beitrage zur allgemeinen Transform ationstheorie," Leipziger Berichte, pp. 495—498.
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exists between their symbols, we can verify by this principle that the transformations

of the above group are commutative* 1° with all dilatations, 2° with rotations about

the origin, 3° with all spiral transformations starting from the origin, 4° with all pedal

transformations, 5° with all point and contact transformations commutative with all

rotations about the origin, 6° with all transformations of the infinite group whose

characteristic function is

/Z, Z2 X^ *, *a
*' rfi'""' eft ' eh' rh V**;>
(J)

'

(J)'"
-

'

<J>
'

cp
'

<J>

where

*-H+f +-</vhw <«>

The first case of commutation is especially interesting because of reasons given in

§ 6. The second may be shown even more simply by introducing polar coordinates.

The aequationes directrices (39) themselves exhibit certain geometrical properties

of the transformations. For example they show that every point (z, xlt ...
,
xn) is

changed into a circle whose points are at the same distance from the origin as the point

(z, xlt ..., xn) itself. Further the radii vectores of (z, xx> ...
,
xn) and {z, x-[, ..., xn')

make an angle with each other whose cosine is k.

11. The particular transformation of the above group, namely that corresponding

to k = and accordingly defined by the two equations

n

z'*-z*+?,(x{
i -xi

i
)
= 0, zz'+lxix/^O (46),

l

was first studied as a contact transformation by Goursat, in three dimensions 1.

If in equations (46) z
, x{, ..., xn

'

be regarded as constants and z, xlt ..., xn as

current coordinates, these equations define a certain circle C in n + 1-dimensional space,

the locus of (z, xlt ..., xn ).
That is the equations make a circle G correspond to

every point (z', x-[, ...
, #„'), and similarly, since the equations are symmetrical in both

sets of variables, to every point (z, xu ..., xn) there corresponds a circle C in the current

coordinates (/, x-[, ... ,
xn').

When the point (z, xu ...
,
xn) describes a surface 2, the

circles C relative to the several points of 2 form a congruence. The focal surface of

this congruence is the surface 2' into which 2 is transformed. 2' is also the locus of

the points (/, x(, ...
,
xn') such that the corresponding circles C are tangent to S.

The focal surface of the congruence of circles C" is a plane passing through the

radius vector OP and the normal PN to the surface at P. Thus to construct the

point P' corresponding to P it is only necessary to draw, in the plane passing through

OP and the normal PN, the perpendicular OP' to OP, cutting off a distance OP' equal

to OP.

* In the last loc. cit. Lie shows indirectly that the enumerated commutative properties appertain to these

transformations in three dimensions.

t See loc. cit. p. 267.

Vol. XVIII. 34
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The geometric construction shows that we have here the long known construction

by which the apsidal surface of a given surface is derived. Accordingly the above

contact transformation is possessed of the very important property of changing ellipsoids

into Fresnel wave surfaces.

The finite equations of the transformation (46) expressing z , x{, p{ as functions

of z, xit pi may be obtained without difficulty by the method of § 7. If this trans-

formation be combined with those of the one-parameter group (37) we shall have oo 2

contact transformations which change the points of space of any dimensions into the

wave surfaces of that space.

12. This suggests the interesting problem of finding all those contact transformations

which change every wave surface into a wave surface, that is, those contact transfor-

mations which leave the family of all wave surfaces invariant.

Analytically the problem may be approached either by determining the finite

transformations or the infinitesimal transformations which leave the partial differential

equation of the wave surface invariant. From either starting point the difficulties in

the way of integrations to be effected are well-nigh insurmountable. This ought not to

be surprising since all contact transformations of ordinary space changing plane into

plane have not been determined (though Lie has found all those that change surfaces

of constant curvature into surfaces of constant curvature in ordinary space, and lately

the most general contact transformation leaving unaltered the family of developable

surfaces of n+ 1 -dimensional space has been found).

An indirect method for finding contact transformations transforming wave surfaces

into such may be employed by using the results of a beautiful memoir of M. Maurice

Levy,
" Sur les Equations les plus generales de la double refraction compatibles avec la

surface de l'onde de Fresnel," Comptes Rendus, t. 105, pp. 1044—1050.

Without making any assumption whatever relative to the nature of a luminous

vector Levy proposes to find its most general form compatible with the Fresnel wave

surface. His problem narrows itself to determining the most general expressions of the

second derivatives, with regard to the time, of the three components of the luminous

vector as functions of the various second derivatives of these components with regard

to the coordinates of the point of the medium which produces the light, by means of

the condition of reproducing the equation of velocities and hence the wave surface.

The equations to be invariant in this method are more numerous, but simpler in

form than the partial differential equation of the surface of waves.

For reference Levy's system of equations is appended here. Letting u, v, w be

the components of the luminous vector, t the time, x, y, z the coordinates of the

point of the medium which produces the light, a, b, c the reciprocals of the principal

indices of refraction, a, /3, 7 three arbitrary constants, and X, /m,
v three other arbitrary
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constants entering only by their mutual ratios, Levy finds the following 4 . oo 5 solutions of
the proposed problem :

(A)

(B)

(C)

(D)

w = aM + ci

W-
+ b*^ +^- c%^ + ^v-vkr*>

^dt2
°

Idhi

dt2

dt2

d2w
\dt2

3%
dt

2

/
33w

dx-

d"u d2v

d2v

daf
+
^df

+a2 ^ + v,(y- ai)lM

d>w x

dydz fj.

dhu

dxdz

d2u

dydx'

eft),.d
2w 32w d-w X, ,„, d2u a, n

3y
2 3^2 v '

dzdx v
v '

dzdy
dx2

d2u
, .

92w
7 , 32m u 32u i> , , 32w

; + c

37
2
+^ + x^- c^^a-»Wa^2

,a
2y

3*2

32
i;= c

"3^
+
^a5

+ a2
3l /a dydz /j,

v '
3y3a:

a3™ ,
2
3

2w
2
32w 9!»

,

\.
,„, 32w ». , dhi

[dt
2

d2U

dx2

d2u

dz

d2u d2u

dt2
~ a

da?
+ a*

[df
+

dz

d-v

dt*

d2W

d2v
+ ?<0-.^=E + ?<7--')

d*w

dxdz'dxdy
'

X

W= dy
+bi [^ + ^) +^- b

^dydz
+
-^

a
-^dy^'

fd2w dhu\

\da?
+

dy
2
}

32w
dF =ry

dz2+c

3% _ 3% /dhj. d2u

dt2
~ U

dx2+a \df
+
di2

.y+S^fiL+^sfe'
M / t„s 32

i> v .

+
X (a

- 6) 3^ + X^- C
'

) 3^'

K!i+£)+
3^

3l
2

3%

V ^3^
2

3a;
2
/

fi

d2w X
x-g- + -

(£
- a2

) -^- ,

dydz fj, dydx

d*w 32w /32w 32w\ X. „, 32w /x, „.

3^2
V So2

3y
2
/ v 3^3a;

32w
dxdz

dht,

dydx

d2v

dzdy'

However, these half-dozen possibilities or tentatives towards the solution of the

problem of finding contact transformations which leave the family of wave surfaces

invariant have so far yielded no further result than the trivial one formed by the

repetitions of the reciprocal apsidal transformation.

13. Assuming the rectilineal propagation of light the theory of optics becomes a

branch of line-geometry. This familiar view opens up other possibilities in the applica-

tions of contact transformations to optics.

Confining ourselves to ordinary space for convenience of expression these applications

may be made either by means of the contact transformations which change straight

lines into such, or by means of other correspondences set up by contact transformations

between two spaces such that straight lines are changed into the elements of some

other four-dimensional manifoldness.

34—2



268 Prof. LOVETT, CONTACT TRANSFORMATIONS AND OPTICS.

The simplest four-dimensional manifoldnesses in three-dimensional space are that

of all straight lines and that of all spheres. For this reason those contact transformations

between two three-dimensional spaces or which change a three-dimensional space into

itself in such a manner that straight lines are changed into spheres, are the first to

attract attention and have so far been the most fruitful. Lie constructed such a

transformation in his memoir on complexes in the fifth volume of the Mathematische

Annalen which has led him to a generalized form* of the theorem of Malus.

Lately this manner of changing straight lines into spheres by contact transforma-

tions has been found not to be unique ;
in fact infinite groups of infinite numbers of

such line-sphere contact transformations have been constructed.

The above observations increase the demand for the resolution of the problem of

determining all continuous groups in four variables. But such contact transformations

need not necessarily be contact transformations of a three-dimensional point space into

itself; for example, if the four variables be interpreted as line-coordinates or sphere-

coordinates, the corresponding invariant Pfaffians by no means provide that the conditions

for contact transformations of the three-dimensional space into itself be satisfied. It is

precisely because of such a confusion that we find these notions used loosely in a

recent memoirf on the employment of infinitesimal transformations in optics.

*
"Lichtstrahlen, die in Pseudonormalensystem bilden, Pseudonormalensystem auf diePseudokugeldesbetreffenden

gehen bei jeder Beflexion und Eefraction in ein Pseudo- Baumes," Leipziger Berichte, 1896, loc. cit., p. 133.

normalensystem fiber. Sind bei einer solchen Eefraction t Hausdorfl,
" Infinitesimale Abbildungen der Optik,"

die beiden in Betracht kommenden Pseudokugeln (d. h. Leipziger Berichte, 1896, pp. 79—130.

Wellenflachen) wesentlich versehieden, so bezieht sioh jedes



XI. On a Class of Groups of Finite Order. By Professor W. Burnside.

[Received 30 September 1899.]

Among the groups of finite order that earliest present themselves, from some

points of view, to the student are the groups of rotations of the regular solids. An
admirable account of these from the purely geometrical stand-point is given in the

first chapter of Klein's Vorlesungen uber das Icosaeder. Of the six types included in

this set of groups there are three which, though quite unlike in other respects, have

a distinctive property in common. These are (i) the dihedral group of order In (n odd),

(ii) the tetrahedral group of order 12, and (iii) the icosahedral group of order 60.

They are defined abstractly by the relations :
—

(i) A> = \, Bn =
\, {AEf = \, n odd;

(ii) A*=\. B>=\, (ABy=l;

(iii) A*ml, B3 =
l, (ABy = l.

The order of each of these groups is even, while the only operations of even order

which they contain are operations of order two. While they have this property in

common they are otherwise of very distinct types.

The first has an Abelian (cyclical) self-conjugate subgroup, order n, which consists

of the totality of its operations of odd order. The second contains a self-conjugate sub-

group of order four, this being the highest power of two which is a factor of the

order of the group. The third is a simple group containing five subgroups of order

twelve, each of which has a self-conjugate subgroup of order four. It can be repre-

sented as a triply-transitive substitution group of degree five.

I propose here to determine the groups of even order, which contain no operations

of even order other than operations of order two. The determination is exhaustive; and

it will be seen that the groups in question arrange themselves in three quite different

sets of types of which the groups (i), (ii) and (iii), defined above, are representative.

1. Let G be a group of even order N, which contains no operations of even order
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other than those of order two. To deal first with the simplest case that presents

itself*, let

N=2m,

where m is odd. Since no operation of order two is permutable with any operation of

odd order, G must contain m operations of order two which form a single conjugate

set. Let these be

A\, -"-a >
Am .

If A rA„ were an operation of order two, 1, A r , A s , and A rA s ,
would constitute a

subgroup of G of order four. No such subgroup can exist, and therefore A rA, is an

operation of odd order. The m operations

A rA lt A rA 2 ,
A rAm ,

which are necessarily distinct, are therefore the m operations of odd order contained

in G. These m operations may similarly be expressed in the form

A\A r , A^Ar, ,
AmA T ;

and since

A r . A rA, . A r = A $A r ,

A r transforms every operation of G, of odd order, into its inverse. Hence

A rAp . AqA r
= A.qAp = A,jA r . A rAp ;

and this shews that every pair of operations of G, of odd order, are permutable. Hence

the m operations of G of odd order, including identity, constitute an Abelian group,

and this is a self-conjugate subgroup of G. Conversely, if H is any Abelian group of

odd order m, generated by the independent operations 8, T, ..., and if A is an

operation of order two such that

ASA = S~\ ATA = T~\ ....

then A and H generate a group G of order 2m, whose only operations of even order

are those of order two.

When r is given, s can always be taken in just one way so that A rA t is any

given operation of G of odd order. Hence every operation of G of odd order can be

represented in the form A rA, in just m distinct ways. This property will be useful in

the sequel.

The groups thus arrived at are obviously analogous to the group (i) above.

2. Next let N=2n
m,

where m is odd and n is greater than one. The operations of order two contained

in G form one or more conjugate sets. Suppose first that they form more than one

such set; and let

A, A', ...,

and B, B', ...,

* This first case is considered in my Theory of Groups of Finite Order, pp. 143 and 230.
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be two distinct conjugate sets of operations of order two. The operation AB must

either be of order two or of odd order. If it were of odd order, /jl,
the subgroup

generated by A and B would be a dihedral subgroup of order 2fi; and in this sub-

group A and B would be conjugate operations. Since A and B belong to distinct

conjugate sets in G, this is impossible. Hence AB is of order two, or in other words

A and B are permutable. Every operation of one of the two conjugate sets is there-

fore permutable with every operation of the other. The two conjugate sets therefore

generate two self-conjugate subgroups (not necessarily distinct) such that every operation

of the one is permutable with every operation of the other. The order of each of

these is divisible by two, and therefore the order of each must be a power of two
;

as otherwise G would contain operations of order 2r (r odd). The two together will

generate a self-conjugate subgroup H' of order 2 n
'. If n' is less than n, there must

be one or more conjugate sets of operations of order two not contained in H'. Let

C, C, ...,

be such a set. As before every operation of this set must be permutable with

every operation of H'. Hence finally G must contain a self-conjugate subgroup H of

order 2". No operation of G is permutable with any operation of H except the

operations of H itself; and G is therefore a subgroup of the holomorph* of H. It

follows that G can be represented as a transitive group of degree 2". Moreover, since

G contains no operations of even order except those of order two, the substitutions

of this transitive group must displace either all the symbols or all the symbols except

one. Hence m must be a factor of 2" — 1 ; and G contains 2" subgroups of order m
which have no common operations except identity. With the case at present under con-

sideration may be combined that in which G has a self-conjugate subgroup of order

2", the 2" — 1 operations of order two belonging to which form a single conjugate set. In

this case m must be equal to 2"— 1.

We thus arrive at a second set of groups with the required property of order 2nm,

where m is equal to or is a factor of 2" - 1. They have a self-conjugate subgroup of

order 2", and 2" conjugate subgroups of order m; the latter having no common operations

except identity. These are clearly analogous to group (ii) above.

3. Lastly there remains to be considered the case in which the operations of G

of order two form a single conjugate set, while G contains more than one subgroup

of order 2".

If II and H' are two subgroups of G of order 2", and if / is the subgroup

common to H and H' ,
then since H and H' are Abelian (their operations being all

of order two) every operation of / is permutable with every operation of the group

generated by H and H'. This group must have operations of odd order, since it contains

more than one subgroup of order 2". Hence / must consist of the identical operation

only; or in other words, no two subgroups of order 2" have common operations other

*
Theory of Groups, p. 228.
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than identity. It follows from an extension of Sylow's theorem that the number of

subgroups of order 2" contained in G must be of the form 2nk + 1.

If K is the greatest subgroup of G which contains a subgroup H, of order 2",

self-conjugately ;
then K must be a subgroup of the nature of those considered in the

preceding section, and its order must be 2n/t, where fi is equal to or is a factor of

2" — 1. Also no two operations of H can be conjugate in G unless they are conjugate

in K*. The 2" — 1 operations of order two in K therefore form a single conjugate set
;

and hence /x must be equal to 2n — 1. The order of G is therefore given by

N =
(2

nk + 1)2»(2"-1).

That G must be a simple group is almost obvious. A self-conjugate subgroup of even

order must contain all the 2nk + 1 subgroups of order 2", since the operations of order

two form a single set. In such a subgroup the operations of order two must form a

single set, and therefore a subgroup of order 2" must be contained self-conjugately in

one of order 2n (2"
—

1). Hence a self-conjugate subgroup of even order necessarily

coincides with G. If on the other hand G had a self-conjugate subgroup / of odd

order r, I would by the first section be Abelian and every operation of G of order

two would transform every operation of I into its inverse. This is impossible; for if A
and B were two permutable operations of order two in G which satisfy the condition,

then AB is an operation of order two which is permutable with every operation of /,

contrary to supposition. Hence G must be simple.

If A and B are any two non-permutable operations of order two in G, AB must

be an operation of odd order p, and A and B generate a dihedral group of order 2fi.

Hence G contains subgroups of the type considered in the first section. Let 2ml be

the greatest possible order of a subgroup of this type contained in G
;
and let I1 be a sub-

group of G of order 2m1 ,
and J, the Abelian subgroup of order m1 contained in Ix . Every

subgroup K of Jx is contained self-conjugately in /] ; and, for the reason just given in

proving that G is simple, no two permutable operations of order two can transform K
into itself. Hence Ix must be the greatest subgroup that contains K self-conjugately ;

as

otherwise 2mx would not be the greatest possible order for the subgroups of this type

contained in G.

Let p
a be the highest power of a prime p which divides m1 ;

and let K be a subgroup
of Jx of order p*. If p

a
is not the highest power of p which divides N, then K would be

contained self-conjugatelyf in some subgroup of G of order p
a+1

. This has been proved

impossible. Hence mx and Njmx are relatively prime.

Again no two subgroups conjugate to Jx can contain a common operation other than

identity; for if they did Ix would not be the greatest subgroup of its type contained

in G.

If Ir and the subgroups conjugate to it do not exhaust all subgroups of G of order

2/x (fi odd), let 72 of order 2m2 («ij odd) be chosen among the remaining subgroups of G of

*
Theory of Groups, p. 98. + Ibid. p. 65.
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this type so that m2 is as great as possible; and let J, be the Abelian subgroup of I2 of

order m^. Then J2 has no operation other than identity in common with J
:
or with any

subgroup conjugate to Jx ;
also no two subgroups conjugate to J2 have a common operation

other than identity, and m2 and N/m2 are relatively prime. All these statements may be

proved exactly as in the former case.

If the subgroups of G of order 2/a (/x odd) are still not exhausted, a subgroup Is of order

2m 3 containing an Abelian subgroup Js of order ra3 may be chosen in the same way as

before
;
and the process may be continued till all subgroups of G of the type in question

are exhausted. Now Jx is one of Nj2m1 conjugate subgroups and each contains rn^
— 1

operations which enter into no other subgroup conjugate to ,7, or to J2 or J3 Hence

the subgroups conjugate to Jlt J2 ,
J3 , ... contain

distinct operations other than identity. If 73 actually existed, this number would be equal

to or greater than N, which is impossible. Hence there can at most be only two sets of

conjugate subgroups such as /, and I2 .

It was shewn in section 1 that each of the m, — 1 operations of Jx other than identity

can be represented in m^ distinct ways as the product of two operations of order two.

Similarly each of the ?n2
— 1 operations other than identity of J2 ,

if it exists, can be represented

as the product of two operations of order two in m2 distinct ways. Moreover these and

the operations conjugate to them are the only ones which can be represented as the

product of two non-permutable operations of order two. Now G contains

(2»i+ l)(2»-l)

operations of order two, and any one of these is permutable with exactly 2" — 1. Hence

the number of products of the form AB, where A and B are non-permutable operations

of order two and the sequence is essential, is

(2»jfc + 1) (2"
-

1) 2nk (2» -l) = JSric (2"
-

1).

On the other hand as shewn above this number is

-2
(m,-l) + -2(ms -l)

or
j (»*i—l)

according as Z, actually exists or does not.

Hence if I2 does not exist

ml -2fc(2»-l)+ l;

and at the same time m, is a factor of

(2"&+l)(2»-l).

Vol. XVTII. 35
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These conditions are obviously inconsistent. Hence 72 does exist, and

ml +m2
= 2{k(2

n
-l)+l}.

It follows that, wtj and ra2 being positive numbers of which m^ is the greater,

m, > 2nk + 1 - *.

On the other hand, since no two operations of order two contained in /] are permutable,

while G contains only 2"* + 1 subgroups of order 2",

m, < 2n* + 1.

Hence there must be an integer I, less than *, such that

mi = 2nk + 1 - I,

and m2
= 2nk + 1 + I - 2k.

Now m, and m3 are relatively prime factors of

(2"* + l)(2
n
-l).

Hence (2»Jfe + l)
2 - 2* (2

n* + 1) + 2*1 ->< (2
nk + 1) (2»

-
I),

and & fortiori since I is less than *, and 2n* + 1 is positive,

2n* + 1 - 2* < 2" - 1,

i.e. *< .1.

The group Q can therefore only exist if * is unity, and this necessarily involves that

I is zero. Hence

iV=(2
n
+l)2"(2"-l), m1

= 2" + l, m2 =2"-l,

and these are the only values of N, mlt and ma consistent with the existence of a

group having the required property.

Since is simple, it can be represented as a substitution group of degree 2"+l.

The subgroup of degree 2", which leaves one symbol unchanged, has a self-conjugate

Abelian subgroup of order 2", and 2n conjugate Abelian subgroups of order 2" — 1;

the latter having no common substitutions except identity.

Hence the subgroup of G which leaves one symbol unchanged is doubly-transitive

in the remaining 2" symbols ;
and therefore G can be represented as a triply-transitive

group of degree 2" -t- 1.

The Abelian subgroup of order 2" — 1 which transforms a subgroup of degree 2n

is shewn in an appended note to be cyclical. Assuming for the present this result,

the subgroups of G of order 2"(2
n —

1) are doubly-transitive groups of known type.

Now G contains just 2n — 1 operations of order two which transform each operation

of a cyclical subgroup of degree 2" — 1 into its inverse. Since each of these leaves

only one symbol unchanged, each must interchange the two symbols left unaltered
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by the cyclical subgroup of order 2n -l. But there are only just exactly 2"-l
substitutions of order two in the 2" + 1 symbols which satisfy these conditions. Hence
for a given value of n the group, if it exists, is unique.

That such groups exist for all values of n is known*. In fact the system of

congruences

, az+ 8

where a, 8, y, 8 are roots of the congruence

X2"-1 s 1, (mod. 2),

such that aB-8y^0, (mod. 2),

actually define such a group ;
and the permutations of the 2" + 1 symbols

oo, 0, X, X2
, ....X

2"-1

,

where X is a primitive root of

X^'eeI, (mod. 2),

which are effected by the above system of congruences, actually represent it as a triply-

transitive group of degree 2™+l.

The set of groups thus arrived at are the analogues of group (iii) above.

Finally, every group of even order, which does not belong to one of the three sets

thus determined, must contain operations of even order other than operations of order

two.

NOTE.

Let H be an Abelian group of order 2™ whose operations, except identity, are all

of order two; and suppose if possible that H admits two permutable isomorphisms of

prime order p one of which is not a power of the other, such that no operation of

order two is left unchanged by any isomorphism generated by the two. So far as a set

of p
2

operations of H are concerned the two isomorphisms, being permutable, must have

the form

{AnAw ... A
lp) (A 2lAw ... Ay,) (AplAp2 ... APp),

and \A nA^ ... Apl) {A^A^ ... Ap^) ^A 1pA 2p ... App) J

A u >
A xi App,

* Moore : "On a doubly-infinite series of simple groups," Chicago Congress Papers (1893) ; Burnside :

" On

a class of groups defined by congruences," Proc. L. M. S. Vol. xxv. (1894).
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being the p* operations. Moreover any cycle of an isomorphism generated by these two

has the form

\Ar t
g A r+Xi a+y> " r+ (p-D x, s+(p—\)y)>

the suffixes being reduced mod. p.

Since no operation of H except identity is left unchanged by any one of these

isomorphisms, the product of the p operations in any one of the cycles must give the

identical operation.

Hence AnAa APtl =1,

-"11 -"m A
Pi p

=
1,

-"ll-"-23 A
Pl p—1= 1,

Aa Av A
Pt 2 =1;

and therefore on multiplication

or A n = 1.

The supposition made therefore leads to a contradiction. Hence if H admits a

group of isomorphisms of order p
m

,
no one of which leaves any operations of H except

identity unchanged, this group has only a single subgroup of order p. It is therefore cyclical*.

If then p
m is the highest power of p which divides 2" — 1, the subgroup of order p

m

in the Abelian group of order 2" — 1, considered above, is cyclical. Hence the Abelian

group is itself cyclical.

*
Theory of Groups, p. 73.



XII. On Greens Function for a Circular Disc, with applications to Electro-

static Problems. By E. W. Hobson, Sc.D., F.R.S.

[Received 7 October 1899.]

The main object of the present communication is to obtain the Green's function

for the circular disc, and for the spherical bowl. The function for these cases does not

appear to have been given before in an explicit form, although expressions for the

electric density on a conducting disc or bowl under the action of an influencing point

have been obtained by Lord Kelvin by means of a series of inversions. The method

employed is the powerful one devised by Sommerfeld and explained fully by him in

the paper referred to below. The application of this method given in the present paper

may serve as an example of the simplicity which the consideration of multiple spaces

introduces into the treatment of some potential problems which have hitherto only been

attacked by indirect and more ponderous methods.

The System of Peri-Polar Coordinates.

1. The system of coordinates which we shall use is that known as peri-polar co-

ordinates, and was introduced by C. Neumann* for the problem of electric distribution

in an anchor-ring. A fixed circle of radius a being taken as basis of the coordinate

system ;
in order to measure the position of any point P, let a plane PAB be drawn

through P containing the axis of the circle and intersecting the circumference of the

PA
circle in A and B

;
the coordinates of P are then taken to be p = log -jj^ , & which

is the angle APB, and
<f>

the angle made by the plane APB with a fixed plane

through the axis of the circle. In order that all points in space may be represented

uniquely by this system, we agree that shall be restricted to have values between

— 7r and 7T, a discontinuity in the value of arising as we pass through the circle,

so that at points within the circumference of the circle, is equal to 77-, on the upper

side of the circle, and to — ir on the lower side of the circle, the value of being

zero at all points in the plane of the circle which are outside its circumference. As

* Theorie der Elektricitiits- und Wiirme-Vertheilung in einem Binge. Halle, 1864.
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P moves from an infinite distance along a line above the plane of the circle up to

any point inside the circle, and in its plane, 6 is positive and increases from to tt,

whereas as P moves from an infinite distance along a line below the plane of the

Fig. 1.

circle up to a point within the circumference, 8 is negative, and changes from to

— 7r. The coordinate j>
is restricted to have values between and 2-rr, and the co-

ordinate p may have any value from — oo to + oo
,
which correspond to the points A, B

respectively. The system of orthogonal surfaces which correspond to these coordinates

consists of a system of spherical bowls with the fundamental circle as common rim, a

system of anchor-rings with the circle as limiting circle, and a system of planes through

the axis of the circle. If we denote by £ the distance CN of P from the axis of

the circle, and by z the distance PN of P from the plane of the circle, the system

f cos
(/>, f sin

<f>,
z will be a system of rectangular coordinates, which can of course be

expressed in terms of p, 0, <f>.
Let the lengths PA, PB be denoted by r, r' respec-

tively, then r/r'
= log p ;

we have

2rr' cos 6 = r'
2 + r'

2 — 4a2 = 2rr' cosh p
— 4a2

,

hence

Again,

hence

also since

rr = 2a2

cosh p
— cos 6

'

z .2a = rr" sin 6,

asm
cosh p

— cos 6
'

r-2 + r'2 = 2a2 + 2CP\

have OP2 = rr' cos 6 + a2
,
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, n j nn., ,
COsh + COS 6

whence we hnd UP* = a*—~ A ,

cosh p
— cos 6

hence p- ^""^'P .

*
(cosh p

- cos ft)
2 '

thus f, z are expressed in terms of p, 6 by means of the formulae

a sinh
/>

a sin ^

cosh
/>
— cos 6

'

cosh p
— cos

'

2. To express the reciprocal of the distance D between two points (p, ft $) and

(p„, ft, $o). we substitute for £, z and f , 2 in the expression

j- K*" *»)
2 + f

2 + &2 -
8f|, cos (<p

-
&)}-*,

their values in terms of p, and p , ft; we then find

1 1 (cosh p
— cos ft)* (cosh p

— cos ft)*

T>
~
oVl |cosh a - cos {6

-
ft)}*

'

where cosh a denotes the expression cosh p cosh p
— sinh p sinh p, cos

(<f>
—

<p ). If we

suppose the expression {cosh a — cos (0
—

ft)}~* is expanded in cosines of multiples of

2 f n cos 771'ylf

6 — ft, the coefficient of cos m (^ - ^ ) is —
/ .
—

:
—r-r,d-Jr which is equal* to

tr Jo (cosh a — cos
•v/r)»

r ^

2 V2
Qm-i (cosh a) when Q,n-j denotes the zonal harmonic of the second kind, of degree

m — =
;
thus -~ = — (cosh p

— cos ft)* (cosh p
— cos ft)* 2 2Qm_i (cosh a) cos m(6 — ft), where

the factor 2 is omitted in the first term, for which m=0. The series in this expres-

sion for 1/D may be summed, by substituting for Qm^ (cosh a) the expression

J
r • e-mu

ftj. (cosh t,- cosh a)i

du ' {l°C - °* P" 519);

we find

5
=
dvl (cosh p

' c°s^ (c°sh * ~ C°S^ £ (Vosh^sMi i
1 + 22e"""' cos w (* ~ '•»*

and thus we have the formula

^ = -^-= (cosh p
- cos ft)* (cosh p,

- cos ft,)* I
— Sm "

d«,
D ica\2 J a v cosh w — cosh a cosh w — cos (6/

—
ft)

where a is given by

cosh a = cosh p cosh p
— sinh p sinh p cos

(<j>
—

<f> ).

* See page 521 of my memoir "On a type of spherical harmonics of unrestricted degree, order, and argument,"

Phil. Trans. Vol. clxxxvii. (1896) A.
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Green's Function for the Circular Disc.

3. In order to obtain Green's function for an indefinitely thin circular disc, which

we take to coincide with the fundamental circle of our system of coordinates, we shall

apply the idea originated and developed by Sommerfeld*, of extending the method of

images by considering two copies of three-dimensional space to be superimposed and

to be related to one another in a manner analogous to the relation between the sheets

of a Riemann's surface. In our case we must suppose the passage from one space to

the other to be made by a point which passes through the disc
;

the first space is

that already considered, in which 8 lies between — ir and tt; for the second space we

shall suppose that 8 lies between ir and 37r, thus as a point P starting from a point

in the first space passes from the positive side through the disc, it passes from the

first space into the second space, the value of 8 increasing continuously through the value

7r, and becoming greater than ir in the second space. In order that a point P starting

from a position Po(/3 ,
8

, <po)> say on the positive side of the disc, may after passing

through the disc get back to the original position P
,

it will be necessary for it to

pass twice through the disc
;

the first time of passage the point passes from the first

space into the second space, and at the second passage it comes back into the first

space. Corresponding to the point p , 8„, <£„
where 8 is between — tt and ir, is the

point (p , 8„ + 2tt, <f> ) in the second space, whereas the point (p , d^+Anr, <f> ) is regarded

as identical with the point (pa , 8 , <p ). The section of our double space by a plane

which cuts the rim of the disc is a double-sheeted Riemann's surface, with the line of

section as the line of passage from one sheet into the other. Let p ,
8 , <p ,

be the

coordinates of a point P in the first space, on the positive side of the disc, thus

< 8 < ir ; taking the expression for the reciprocal of the distance of a point Q (p, 8, <f>)

from P, given in the last article, we have, since

. , , sinh s u , sinh s u
sinh u 1 2 1 2

' + ;

du

cosh w - cos (0
-

<?„)
2 1 1 2 . I 1 fa a .

'

cosh
<j
u — cos = (8

— 8 ) cosh
^
u + cos

^ (8
— 8 )

ii r i
sinh

2
M

Ph
=
9J9^n (C°Sh ^

- C°S 6>)i (cosh p
- COS 6> )M =

PQ 2V27ra /. Vcosh u - cosh a
cosh

1 _ cos
1

{0
_^

1 r" 1
sinh

^
m

+ o 79^7 (cosh P
- cosW (cosh P«

- cos e$ \ I , =r= 1 1
du

'

2V2?ra J * Vcosh «-cosha cogh
1
M _ cog

l

(0_0o
_

27r)
»

we thus see that l/PQ is expressed as the sum of two functions, the first of which

involves the coordinates p„, 8
, <f>

of P, and the second is the same function of the

* See his paper "Ueber verzweigte Potentiale im Raume," Proc. Lond. Math. Soc. Vol. xxvrn.
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coordinates p , ft + 2tt, <j>
of the point P in the second space, which corresponds to P.

If Q moves up to and ultimately coincides with P, we have cosh a. = 1
;

it will then

be seen that the first function becomes infinite at the lower limit, but that the second

one remains finite at that limit.

Consider then the function W (p„, ft, (/>„) given by

W(p„, ft, <po)
=—

j=
—

(cosh p
- cos 6)1 (cosh p

— cos ft)*
2 v 2wa

/:

sinh = u

a Vcosh u — cosh a „„i 1

~ ~~~
1 ,a a\cosh -a- cos
jr (6'

—
O)

Z it

•du;

the above equation may be written

p£
= W (Po, 0», <t>o) + W (Po, ft + 2tt, <£„)•

It is clear that the function W is uniform in our double space as it is unaltered

by increasing by 4nr
;

it will now be shewn that it is a potential function. We

may express W in the form

W = 1 (cosh p
- cos 0)* (cosh p

- cos o)i [ -=L= jl + 2te~imu cos^(0
-

O)\ du,
2 v 2ira J a vcosh u — cosh a I * )

which may be written in the form

W=
9 (cosh p

— cos #)* (cosh p
— cos ft)*

j
Q_j (cosh a) + 2 2 Qm _ L (cosh a) cos

-^
(0
—

ft)L

since the formula

V2 Qn (cosh a)
-

j^ (coshM _ coshg),
du,

holds for all values of n such that the real part of n + J is positive (loc. cit. p. 519).

Now (cosh p
- cos 0)1 (cosh /?„

- cos ft)* cos s (0
-

ft) Qg_j (cosh a) is a potential form whatever

s may be, and thus If is a potential function, and is expressible in the form

W = n
—

(cosh p
- cos <?)* (cosh p

- cos ft)*
j
$_* (cosh a) + 2Q (cosh a) cos

^(0- ft)

+ 2Qj (cosh a) cos (0
-

ft) + ... \
,

the value of W(p , ft + 27r, <£„) being

~
(cosh p

- cos 0)1 (cosh /»„
- cos ft)*

j
Q_j (cosh a)

- 2Q„ (cosh a) cos
-^(0- ft)

1

+ 2Q_j (cosh a) cos (0
—

ft)
- .. .

the two expressions added together give the expansion of 1/D obtained in Art. 2.

Vol. XVIII. 36
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4. To evaluate the definite integral in the expression for W, write cosh
^
u = a

,

cosh
<r

a. = a, cos
^ (0

-
#o)

=
t, then

/:

sinh -x u

du

Vcoshu-cosha^l
l

(0_0o)

"' ^ Vrf-<r»(*-T)
-VI

f

dx

V2V2 7T, . T\

VV - t2 V2 <TJ

where the inverse circular function has its numerically least value; we thus obtain the

expression

1 (cosh p
— cos #)* (cosh p

- cos 8ay>

7raV2 {cosh a- cos (0- 0,,))*

W = ^ + sin-1
J

cos
^ (0

-
&o) sech ^

a

which may also be written in the form

w=
tq[1

+ 1
sin_i

[

cos
\
{e
- *> sech

I *}.
(1).

This expression W has the following properties:
—it is, together with its differential

coefficients, finite and continuous for all values of p, 0, <j>
in the double space, except

at the point P in the first space, and it satisfies Laplace's equation ;
when Q coincides

with P, the inverse circular function approaches -, and the function becomes infinite

as l/PQ; when however Q approaches the point in the second space which corresponds

to P, the inverse circular function approaches
— ~ ,

and the function does not become

infinite. The expression (1) is then the elementary potential function which plays the

same' part in our double space as the ordinary elementary potential function l/PQ does

in ordinary space.

5. In order to find a potential function which shall vanish over the surface of

the disc, and shall throughout the first space be everywhere finite and continuous

except at a point P (p , O , </><,)
in the first space on the positive side of the disc

(O<0o <7r), we take the function W (p , 0„, <p )-W(p ,
2ir-0o , <p„)

which is the

potential for the double space due to the point P and its image P' (p ,
27r— O , <p ),

which is situated in the second space at the optical image of P in the disc. This

function is equal to

1 (cosh p- cos 0)*(coshpo
- cos 0„)*

[tt J
1
(& _ Q

.
h

I V
rVl {cosh a -cos (0-0.)}*

"

L2
+Sm

j
C0S

2
(^ ^ sech

2
a
}_

1_ (cosh p- cos 0)i (cosh Po + cos O)>

j|
+ gin

_ 1
f_ cog

1

{e + 0;> sech
1
a

"

7ra

ita V2 {cosh a + cos (0 + O )}*
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which is the same thing as

Um
PQ

1 ^ 1
l -i

2
+ ^

Sm cos
i

(0 o)sech -a\
P'Q 2

+ — sin-1
j-eoSn-^-l- o)sech „-al

(2),

where P' is the optical image of P in the disc. On putting in this expression (2), for

U, the values d = ir,
= —

ir, and remembering that over the disc PQ = P'Q, we verify

at once that U vanishes on both surfaces of the disc. If Q coincides with the point

(p , —Oo, <fr>)
the function If remains finite.

The Green's function Gpq which is a function that is finite and continuous throughout

the whole of ordinary (the first) space, everywhere satisfies Laplace's equation, and is

equal to 1/PQ over both surfaces of the disc, is given by GPq =

required value of Gpq is

1

PQ'
U, hence the

GPQ = PQ
l

= sin-1
1
cos = ($— O) sech

-
Z 7T

(
Z 'Z P'Q

1 1 .

2
+ ^

sm -'

j-cos^ +
^sech^aj

COS" cos - (0 -<?„) sech
2
a
\+ pn

COS" cos „ (0 + O) sech ^ a •(3),~
PQtt

the numerically smallest values, as before, of the inverse circular functions being taken.

It will be observed that in interpreting these formulae (2) and (3), the second copy of

space, having served its purpose, may be supposed to be removed.

The Distribution of Electricity on a Conducting Disc under the influence

of a Charged Point.

6. If we suppose a thin conducting disc to be placed in the position of the funda-

mental circle of the coordinate system, to be connected to earth, and influenced by a

charge q at the point P (p , O , <p ) on the positive side, the potential of the system at

any point Q is qll where U is given by (2), and the potential of the charge on the

disc is —q.Gpq. We shall now throw these potentials into a more geometrical form.

We have

sin"1

-jcos s (0
-

O) sech z a\
= tan-1 -

cos
^(0-0o)

w sh 2 i a - cos2

\ (0
-

O)

= tan"

V2 cos
^(0-8t)

(Vcosh a — cos (0
—

o)j

now take an auxiliary point L, of which the coordinates are
p,,, + tt, <f> ,

the upper

or lower sign being taken according as is positive or negative (— ir < < 7r). Thus L

and Q are always on opposite sides of the disc
; using the formulae of Art. 1, we find

2tt2 cos0 . „^. -2a2 cos
CD - a2 = CQ° =

cosh p + cos
' ""* cosh p

— cos
'

PL ( 1 + cos (0
-

dp) {
* (cosh p

- cos 0)4

PQ (cosh a — cos(0
—

O)) (cosh p + cos

36—2
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hence

sin' -

jcos \(0-0
t) sech l^

= ± tan- i q̂^L~^) i

in order to determine the sign on the right-hand side, we observe that the inverse

sine is positive unless lies between —
(tt

—
O) and -

it, that is unless Q lies within the

sphere passing through P and the rim of the disc, and is on the negative side of the

disc; thus the sign on the right-hand side is to be taken positive unless Q lies within

this spherical segment.

Similarly we find

sin-1
j

- cos
^ (0 + #o) sech « a

f

= + tan-1
(p<n

L /a* - oy
•Q V CL'-a2f)

where the negative sign is to be taken unless Q is on the positive side of the disc and

within the sphere which contains the rim and the point P'. We have thus as the

expression for the potential of the system at any point Q (p, 0, <£)

v=A
2PQ

'

1. JPL /o»
-

CQ>\ 9

2P'Q 7T
—<&J&%l-<»

when the ambiguous signs are assigned in accordance with the above rules.

The' auxiliary point L may be found from the following construction:

Draw a spherical bowl through the rim of the disc on the opposite side to that on which

Q lies, and equal to a similar bowl which passes through Q; draw a plane PA'B' through

P and the axis, cutting the rim in A', B ;
this plane intersects the bowl in a circle

;
on

this circle L lies, and is found by taking it so as to satisfy the relation

LA' : LB' = PA' : PR.
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In the case in which the influencing point is on the axis of the disc, we have p = 0,

hence a = p, and the auxiliary point L is on the axis of the disc at the point where this

axis is cut by the sphere through the rim and the point Q, on the opposite side of the

disc to Q; the formulae for the potential then become

PQ

g
2PQ

2+ -sin-'jcoSgC^-^sechgjol
~~

pY) 5 + ^
sin_1

|

cos
2

(fl + flOsech^ pi

2 , , (PL la? - CQ
± ^

t&1x KpqWcd^ ~2P'Ql
1 + — tan

7T

-> (*Jl /'

Kp'QV
CQ

CD aV .(5);

the sign in the first bracket is positive unless Q lies in the segment ApB, and the sign in

the second bracket is negative unless Q lies in the segment Ap'B.

7. To find, in the general case, the induced charge on the disc, it is sufficient to

examine the limiting value of the potential at a point Q, as Q moves off to an infinite

distance from the disc in the direction of the axis. In the expression for -
q . GPQ given

by (3), let = 0, p = 0, then a=p ,
and PQ, P'Q become infinite in a ratio of equality;

the expression for the potential of the induced electrification on the disc has therefore

the limiting value

-pQ
cos"1

(cos
1

O sech
^ p J

,

therefore the whole charge on the disc is

—
q .
— cos-1 ( cos

jj
# sech -p

J
,

which is equivalent to

2 . _. fja— q.— tan 1
>

CD
PL

when L is a point in the plane of the disc which lies on the bisector of the angle APB.

This expression may be interpreted thus:—

Fig. 3.

Let PL be the bisector of the angle APB, draw the chord NLM perpendicular to

AB; the total induced charge is

_a.^™ (6).
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a
When the point P is on the axis of the disc, the induced charge is -

q .
—

, where 6a

is the angle subtended at P by a diameter of the disc.

When P is in the plane of the disc, the angle NPM becomes the angle between the

tangents from P to the circular boundary of the disc.

8. The surface density at any point of the disc is given by the formula

i_dv
P ~

4,-rrdv
'

when dv is an element of normal and is given by

+ adO
dv =

cosh p
— cos 6

'

We thus find for the density p at the point (p, tt, <f>)
on the positive side of the disc,

* - -£ • m i
1 + 1

sin_I
(
sin

l 0t sech Ml

q_
i coshp + i

COV
4w» PQ

y'cosh
2

gO-sin'^

this expression can be put into a more geometrical form by introducing the auxiliary

point L (p , 0—tt, <£„) of Art. 6. The point L is now in the plane of the disc, and external

to the disc
; denoting this position of L by L

,
its coordinates are pa , 0, <p„.

We have

sin-1 sinon
2
6 sech

^j
= tan (^ y/ ^^--j ,

, •
,

•
,

* ifpQ /GLf-a*\
which is equal to

^
- tan

[jy^ ^ ~

â TQQ2 )
'

on reducing the second term in the expression for p, remembering that

a sin O

cosh p
— cos 8

'

we find that it becomes

qz J_ /CLf-a*
2w* P&: PL V a* -CO* '

and thus the expression for the density at any point Q on the positive side of the

disc is given by

q_ PN_j_ PN\PQ rCLf^a? _/PQ_ /CL*=0 \) m
P "
-

2tt
•

PQ3 2tt2
-

PQ3 \PL V a2 - CQ»
tan

\PL V a2 - CO*)]
K >'

where PN is the perpendicular from P to the plane of the disc, and L is a point on AB

produced, such that A Z : BL = AP : BP.
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The value p1 of the density at the point (p, —tt, $) on the negative side of the disc is

found in a similar manner to be

Pi"
q PN (PQ ICLi-a? ..(PQ /CU-<*\) ,„v

Thus the densities at corresponding points on opposite faces of the disc satisfy the relation

q PN
P" ^--fa.- PQ3-

When P is on the axis of the disc, L is at infinity, and the formulae (7), (8) become

p0 2tt' PQ> 2^ PQ° UaqTBQ WJQ^q)]'

.(9).
j^ PN\ PQ _ ( PQ \)

pl
~ w pQ'VaqTbq WaqTbq)}

The expressions (V), (8), (9) agree with those obtained by another method by Lord

Kelvin*.

When P is in the plane of the disc it coincides with L
;

in this case we find

that the density on either side of the disc is given by

q J_ /CP*-a*
'

2t7-
2 PQ2V a2 -CO2CQ2 .(10).

9. If the influencing point P is on the axis at
,
we find from (5) the following

expressions for the potential at points on the axis :
—On the positive side of the disc

fQ ~2^P~Q (e
~ d',) ~2^PF

Q {e + eo)' When d>6°

TQ
+ 2^PQ^- 6o) -2^P'Q (0 + do1 When 6<6°-

On the negative side of the axis

PQ
+

2tTPQ ^
~

*') +
2tt Vq ^ + go) '

When e + 6° is Positive '

PQ
+ 2W>Q^

~ ^ ~
2tt Vq ^ +^ When <? + <?0 is neSative -

If we denote by s the distance of P from the disc, and by z the absolute value of

the distance from the disc of a point Q on the negative side of the disc, the potential

at Q is given by the expression

-1 ^— (cot-
*- + cot-

ZA - —2—
(cot-

Z- - cot-
ZA

i

* See his papers on " Electrostatics and Magnetism," p. 190.
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if z be given as a multiple of a, say z = na, the expression

( rtnt,-1 - -4- nnt,-> « 1 1 ( r>r>t.-i -1

reb-
oot-1 - + cot-1 n J—* ; cot-1 cot

z + na it(z + na) V a J it (na
— z)\ a

might be used to tabulate the values of the potential at points on the negative side

of the axis. When z = 0, z = <x> this expression is zero, and it will have a stationary

negative value z for some value of z which may be approximately determined by plotting

out the value of the function. Corresponding to this value of z there is a point of

equilibrium which is completely screened from the effect of the influencing point P by
means of the disc

;
the lines of induction from P which pass through this point, separate

those lines of induction which end on the disc, from those which go to infinity.

The Electrification induced on a Disc placed in any field of force.

10. The potential of the electricity induced on the disc, which is connected to

earth and placed in a field of constant potential, may be deduced from the expression

(5) by taking the point P on the axis, and letting it move off to an infinite distance,

the strength q of the charge increasing so that the ratio -JLr remains finite, say equal

to — A. We can easily shew that

sin-
(cos \

sech
\p) -J- sin-

(-?£-)
,

where rlt r2 are the greatest and least distances of the point (0, <f>, p) from the circular

rim of the disc. We thus find for the potential of the electricity on the disc, the

2A la
well-known expression

— sin-1
,
which is the potential of an insulated disc elec-

7T Ti + 7"3

trifled freely to potential A.

11. To find the potential due to the charge on the disc when placed in a field

of force of potential /ax, when x is a coordinate measured from the centre of the

disc in a fixed direction in the plane of the disc, suppose charges of strengths q and

-q to be placed at the two points P(p , 0, 0), P' (— p , 0, 0) on the axis of x; the

potential of the charge induced by these on the disc is at any point (p, 0, <f>)

i / cos ^
la 1 A 2

" FQ
Icosh^a'

where cosh a = cosh p cosh p
— sinh p sinh p cos

</>,

cosh a = cosh p cosh p + sinh p sinh p cos
<j> ;
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now let p become very small, as P, P' move away from the origin, the expression

for the potential becomes, when higher powers of p than the first are omitted,

I cos^A cosh^p ^
cos

g
sinh

^ p cos

-
? icp

+ cpj
cos_i —x r* /~rr~

—n '
—

x

cosh^pJ y^
cosh2

^ />- cos2^ cosh2 ~ p

2? /_1_ _»_+
7T VCP CP2

COS"

COS
jr
#

Z

cosh

+ Po

cosh -
p = cos 5 # sinh

^ pcos<f>

1 I
ru

/ T 1 1

2 P / ^ cosh' J p
- cos2

^
* cosh2

2 P

now CP = - —r = — , hence if q be made indefinitely great so that -JL^
=

ft, [

find for the required potential

we

7T
x cos-1 ( cos

g
sech -

p J

— a cos $ .
—^—^—

cos T sinh p
Z

V2 cosh2 = p Vcosh p
— cos

now
2a Vcosh p — cos

,
a sinh p- = r # = cos <f>
—p c—

B ,

^1 + ^2 >— 1
r cosh p

— cos p
V2 cosh = p

hence we find that the potential due to the induced electricity, in a field of force of

potential fix, is

2
f .

,
2a 2a V(n + r2)

2 - 4a2

ax sin"1
-. '-r- ) (11).

12. In order to find an expression for the potential of the induced electricity on

the disc, when it is placed in a given field of force, we apply the well-known theorem

that if a- is the surface density at the element dS of the surface of a conductor when

acted on by a unit charge placed at an external point Q, the potential function at Q
which has values V given at every point of the conductor is JV<rdS, the integration

being taken over the whole surface of the conductor. Suppose V(p, <f>)
to be the given

potential function at the element p, <j>
whose area we denote by dS, on either side of

the disc; the potential function at the point (p , 0„, </> ) external to the disc which

on the disc takes the values V(p, <p) is then, using the expressions found in Art. 8,

(1 + cosh p) cos - 0„
z

27r
2Pa

. XVIII

/ 1 1 ""•#

*/ cosh2

^
i — sin2 = #o

tan"
Vl - COS 0„

Vcosh a + cos O

V(p, 4>)dS,

37
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the value of the required function, R denoting the distance PQ. We now introduce

new coordinates r, 77, <p
instead of p, 0, <£,

these being given by

x = Jr2 + a2 sin 77 cos <fi, y = Jr2 + a2 sin 77 sin <£,
z = r cos 17 ;

to express 77 in terms of p, 0, we have

x2 + tf = (r
3 + a2

) sin2
77
=

(
-±~- + a2

)
sin2 77,J

\cos
2
77 /

GO2— a1 z2

hence cos4

77 ^—
3

cos2 77=— ,
where CQ2=x2 + y

2 + z2
;
hence we have

\fGQ
2-a2

"J(CQ>-a
2
)
2 + 4!a2z2

cos2
77
=

-5-
—s-3—5-' •'

2a 2a2

9«2 r>n«# , 9/7 2

Now CQ2 - a2 = _f?_?^Z_ and it is easily found that \/(CQ
2 - a2

)
2 + 4aV = ,-=- -3 J

cosh p — cos ' ' cosh p — cos

hence we have
— cos

p — cos
'

/ 1 — cos
cos 77

= a /
-—rV coshp — <

and therefore cos
77,,
=
A / cos °

.

v cosh p„
— cos a

Also as P is on the plane of the disc (r = 0), we have CP = a sin 77, hence e^ = = :
—-

^ v ' " 1- sin 77

from which we find 1 + cosh p
= 2 sec2

rj. Remembering that

1 _ 1 Vl + cosh p Vcosh p — cos #

P a V2 Vcosh a + cos O

1 — cos 0„ a cos 77 cos 77„we have / 1 - co

V cosh a + cos O R
and also

liv; •\^vi_ ,o •
. /i 1 „„„u . „„„ /j

V2 ^ 2s(1 + coshp) cos- 0,, Q */ 1 + cosh p cos 3 #

/ ,„1 . 1

~
-B

'

Vcosh p - cos O

~"

S '

cos 77

*

a V2 cos 770

~
aR cos 77 cos 77,

'

A^
cosh 2

J
a - sin-

^ O

then since dS = a? sin r) cos r]dr)d<}>, we have for the potential function at an external

point 7*0, 77„, <f> , which has the value ^(77, <£) at the point 77, <p
of the disc, the

expression

zV=
7T

3 COS 77o

ft 1 . Tr , ,, f, a cos 77 cos 7)
, , fa cos 77 cos ri \) , ,, ,,_.

JJ -^sin 77.7(77,
<£)jl

+ ^
'-
t

taa-*{ ^ '^jU
v dcp (12);

here the coordinates of the external point at which the potential is found are the

elliptic coordinates given by

z = r cos 770 ,
x = vV 2 + a2 sin 770 cos <f> , y = vV 2 + a2 sin 770 sin <j> ,

the coordinate 77,,
alone appearing explicitly in the expression. This formula agrees with

one obtained by Heine by a different and somewhat complicated procedure*.

* See his Kugelfunctionen, Vol. 11. p. 132.
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The distribution of Electricity on a Conducting Bowl under the influence

of an external electrified point.

13. In order to adapt the method of this paper to obtain corresponding results

for the case of a spherical bowl, we must suppose the surface across which the passage
from the first space to the second takes place, to be a spherical bowl with the funda-

mental circle for its rim. If the angle of the bowl is ft, we must suppose that in

the first space 6 has values from ft
-

2ir, on the negative side of the bowl, up to ft

on the positive side, and that as we then pass through the bowl into the second

space, 6 increases from ft up to ft+2-n; when the positive side of the bowl has again
been reached. If the convexity of the bowl is upwards, ft is less than ir; if down-

wards, ft is greater than ir.

The image of a point P (p , O , O) in the first space and above the bowl is the

point -F(po. 2ft
—

0„, <f> ) in the second space, and below the bowl.

.(13)

The expression

U =
PQ 2

+ ~ sin_1
|

COS 2^~^) sech
2
a

[

/ cosh p — cos O 1 [1 1 . , ( 1 ... n __! . 1 V"V cosh Po
- cos (2/3-g ) F-Q [i

+
i
Sm

\
C0S

2 <* + '• " 2^> Sech
i
a
[

corresponds to the expression in (2); it is a potential function which vanishes over

the disc, and of which the only infinity in the first space is at P. where it becomes

infinite as 1/PQ.

The Green's function GPQ is therefore given by the formula

GPQ = -pQ
— cos-1 •! cos „ (0

—
0*) sech ^ a[

.(14).

By introducing an auxiliary point L whose coordinates are p ,
6 + ft, <jS0)

this

expression may be thrown into a geometrical form corresponding to (4), and the

expressions obtained by Lord Kelvin for the density on either side of the disc may be

deduced ; it is however hardly worth while to give the details of the process, as it

is precisely similar to that which has been carried out in the case of the circular

disc.

37—2



XIII. Demonstration of Green's Formula for Electric Density near the Vertex

of a Right Cone. By H. M. Macdonald, M.A., Fellow of Clare College.

[Received 13 October 1899.]

In a footnote in his Essay on Electricity Green makes the following statement* :

" Since this was written, I have obtained formula? serving to express, generally, the law

of the distribution of the electric fluid near the apex of a cone, which forms part

of a conducting surface of revolution having the same axis. From these formulae it

results that, when the apex of the cone is directed inwards, the density of the electric

fluid at any point p, near to it, is proportional to rn
~x

;
r being the distance Op, and

the exponent n very nearly such as would satisfy the simple equation (4?i + 2) /3
= Stt

;

where 2/3 is the angle at the summit of the cone. If 2/3 exceeds it, this summit is

directed outwards, and when the excess is not very considerable, n will be given as

above : but 2/3 still increasing, until it becomes 27r — 27, the angle 2-y at the summit

of the cone which is now directed outwards, being very small, n will be given by
2

2n log
- = 1." The method by which he obtained these results was never published and

the problem was not again attempted^ till 1870 when Mehler£ gave a solution for the

electrical distribution on a right cone under the influence of a point charge ;
but the

expression given by him for Green's function is so complicated as to make it difficult

to obtain results from it, and the form of the expression does not exhibit the fact that it

is discontinuous. In the following analysis a solution for the distribution near the vertex

of a right cone forming part of a surface of revolution freely charged (Green's case) is

obtained
;

also solutions for the distributions on a right cone, and on a surface whose form

is the spindle formed by the revolution of a segment of a circle about its chord, under the

influence of point charges on the axis. Solutions for both these latter problems have also

been given by Mehler§. The cases when the point charge is not on the axis can easily be

deduced, but present no special interest.

The solutions here given are examples of a general method, which depends for its

application on the fact that the writer has recently been able to determine the values of

n in terms of ^ for which the harmonic P^(f*) vanishes.

*
Green, Essay on Electricity and Magnetism, 1828; % I have been unable to obtain Mehler's paper con-

Mathematical Papers, p. 67. taining the results for the cone and have had to rely on

+ Green's statement is quoted and applied by Max- Heine's account of it, Theorie der Kugelfunctionen, Vol. n.

well, Cavendish Papers, 1879, p. 385, with the remark pp. 217—250.

that no proof had ever been given. § Cavendish Papers, loc. tit.
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§ 1. Green's case.

With the usual notation, the expression V — Arn Pn (ft) is a solution of Laplace's

equation in the neighbourhood of the vertex of the cone which is equal to V~ on the

surface of the cone for which Pn (cosa) vanishes, where a is the semivertical angle of

the cone. That it may be the required solution Pn (p) must not vanish for any value of 8

between a and it
;

for if it vanished for a value a', where a' > a, the expression would then

be the solution for the space between the two coaxal conducting cones whose semivertical

angles are a and a, or for some other space not entirely bounded by the cone whose semi-

vertical angle is a. Hence n must be such that Pn (/x) does not vanish for a value of 8

which is greater than a; now the &th zero of Pn (p) considered as a function of n

diminishes as 8 increases*, therefore n must be the least zero of P„(cosa). Therefore

the potential in the neighbourhood of the vertex of a right cone of semivertical angle a,

forming part of a conducting surface which is charged to potential V
,

is V — ArnPn (/i),

where n is the least zero of P„(cosoc) and A is a constant depending on the form and size

of the surface. Hence f the density of the distribution in the neighbourhood of the vertex

of the cone varies as r"_1, where r is the distance from the vertex and n is given by

n = x /a where x is the least zero of Jo (%), when a is small, by (in + 2) a = 37r, when a is

2
nearly w/2, and by 2nlog- = l, when a is nearly v and ir — a = 7. Thus Green's results

are verified.

§ 2. Mehler's cases.

(1) The distribution of electricity on a right cone under the influence of a charge

on its axis.

Let the space to be considered be the space bounded by the two concentric spheres

r = b, r = a and the cone 6 = a, where r, 8, <f>
are polar coordinates, and let there be

a charge q at the point r = r, 6 = 0. The conditions to be satisfied by the potential are

V = 0, when r = a and a > 6 > 0,

V = 0, when r = b and a > 8 > 0,

V = 0, when 8 = a and a > r > b,

9'F 23F 1 d (n ..37)

throughout the space. Put r = ae~\ then the equation to be satisfied by V becomes

*
Macdonald,

" On the zeros of the harmonic Pnm (/i)
considered as a function of /*," Proc. Load. Math. Soc. 1899.

+ hoc. cit.
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A

and, writing V= lie", U has to satisfy the equation

with the same boundary conditions as V. Assume

1T
»

T
„ . rrnr\U=zWm sin —— ,

1 Afl

where \ =
log j-

;
this satisfies the first two boundary conditions and will be the solution

required if Wm can be determined to satisfy the conditions

Wm = 0, when 6 = a and a> r>b,

and also

|{<i-^H^ +
i)r.

to
. mifk

sin — h iirase p = 0,

that is

Assuming
Tfm =S^nmP„(M),

all the conditions are satisfied if this summation extends to all the values of n which

make Pn (cosa) vanish and Anm is determined so that

that is, if

, U IV m2
7r

2

}
f 1 ._

,
..

, 87ra2
Z"
1
f^ _»„ , . . mifk j. ,

where ya
= cos a. Now

therefore

. f/ 1\ 2 m2
TT

2
) 1 - At

2 9P„ 9P„ 8-Tra8 f
1

f
A» - 5-* D , . . mifk ^ ,

Making p vanish except at the point r=r', = 0, where

q = — 27rpa
s
e
_3A

dk'dfi',
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the expression for V becomes

.
, ., /0 . m7r\' . m-rrX D . .

effecting the summation with respect to m, this becomes

V=- 2qe

'+* cosh (n + -
j
(X„

- X + X')
- cosh (n + g I (X,

- X - X')

a
erfntt{» + 5Jx,(l -Mo2

)
3P»3P„
3n. 3/x.

P.ifi),

when X > X', and

*±* cosh
(
n + -

) (X
- X' + X)

- cosh (n + -
) (X

- X - X')

= _2££^ 2
\ ^__ _ \ D^ D P„0»)

sinh (« + 3) X (1
-

/it

2

)

dP„dPn
dn 3/x.

when X < X'. Making X„ = oo the space becomes that bounded by the cone 6 = a and

the sphere r= a; and the potential inside an uninsulated hollow conductor of this form

under the influence of a charge q at the point / = ae~K
'

on the axis is given by

x+v
2fle~^e-<«+»(A-A')_ e-(»+«(*+v;

7 = -
a

2—
^3P,3P.

- P"^

when X > X', and by
A+V

2oe"2
_
- c!»+«W-v) _e-(»+l)(x+*o

F=--^- 2 p a p ?»(/»)

when X < X', that is by

-P.Q*)

when r' > r, and by

(1
-

Mo
2

)
3« 3/i

when r > r'. To obtain the potential in Mehler's case when the cone extends to infinity

put a = oo and then

r- PK Qa)
•2a 2

7*»
' ~

7dFnWn •
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when r > r, and

when r > r', where the summations extend to all the positive values of n which make

P„ (cos a) vanish. When a = 7r/2

dn dfi
'

^d V=2qX~Pn (fJ.),

when r > r, where the summation extends to all the positive odd integers, that is

y g g

vV2 + r'
2 - 2rr' cos Vr* + /' + 2rr

/

cos 6
'

which agrees as it ought to with the expression for the potential due to a charge q
at a point distant r' from an infinite conducting plane at potential zero.

(2) To find the potential at any point due to the spindle formed by the revolution

of a segment of a circle about its chord, when its surface is freely charged.

This is immediately obtained by inversion from the above case. Let f„ be the angle
in the segment of the circle whose revolution describes the spindle, £ the angle in

any other segment of a circle on the same chord, 17
=

log
—

, where rlt r2 (r1 >r2) are

the distances of a point on a segment from the extremities of the chord
;

then putting

q = — V r' and observing that the cone of angle f in the dielectric inverts into the

spindle the generating segment of which contains an angle £„, the potential at any

point due to the spindle when charged to potential V is given by

F=r + 2F V2(cosh^-cosf)2 mt

n\™V ,

(1-/V)
dPndPn
dn dfi

where fi
= cos £„ and the summation extends to all the positive values of n which make

Pn (cos£ ) vanish. The case of the sphere is that when £„
=

7r/2. It may be verified

that the density of the distribution on the spindle near one of the conical points agrees

with that found § 1. For the density at any point on it is given by

Y e-(n+i)1"
2tt7'

^
2 (C°sh v ~ C0S^ S W '
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and near one of the couical points this becomes

Yl "^H 1

2tt' r'»
-

. „dPn
'

smfo-^on

where r' is the length of the axis of the spindle, r the distance of the point on the

surface from the conical point and n is the least zero of P„(cos^). Now when £ , equal

BPn .. 7T

dn
to 7r — 7, is nearly ir,

-

sin mr
and the values of n which occur are k + n

, where

k is any positive integer and 2n log
- = 1 *

;
on substitution and summation, the ex-

V n r'

pression for the density at any point becomes — = ~—^~ ,
where r2 > rlt

*
Loc. cit., Proc. Lond. Math. Soc. 1899.
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XIV. On the Effects of Dilution, Temperature, and other circumstances,

on the Absolution Spectra of Solutions of Didymium and Erbium Salts.

By G. -D. Liveing, M.A., Professor of Chemistry.

[Received 15 October 1899.]

In November 1898 I made a preliminary communication to the Society giving

results of observations on the absorption spectra of aqueous solutions of salts of didy-

mium and erbium in various degrees of dilution. Since then most of the observations

have been repeated with improved apparatus, whereby several anomalies in the photo-

graphs have been removed, and a great many additional observations made, so that it

will probably be best to make this communication quite independent of the preliminary

one, and, at the risk of a little repetition, complete in itself so far as it goes.

Apparatus.

The observations were made in part directly by the eye with an ordinary spectro-

scope, and partly by photography. On the former I rely only for the part of the

spectrum below the indigo, on the latter for the more refrangible part. The spectro-

scope chiefly used for the former had two whole prisms of 60° and two half-prisms,

all of white flint glass, telescopes with achromatic object glasses of 12 inches focal

length, and eye-piece of very low magnifying power. It was useless to employ higher

dispersion or magnification, because the absorption bands, even the sharpest of them

which is that of didymium at about X 427, are all diffuse, and higher dispersion or

magnification renders some details invisible. In comparing by eye the spectra produced

by two solutions, one was thrown in by reflexion in the usual way, and, after making
the comparison, the positions of the solutions were interchanged and the observation

repeated, in order to correct any error arising from a difference of intensity between

the light entering directly and that coming in by reflexion.

For photography the spectrum was formed by one prism of 60° and two half-

prisms, all of calcite, the object glasses of the telescopes were quartz lenses of 18 -

5

inches focal length for the sodium yellow light. The photographic plate was of course
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inclined to the axis of the telescope so that, as far as the doubly refracting character

of the calcite prisms allows, the image might be in tolerably good focus across the whole

width of the plate, two and a half inches.

To concentrate the light, and make it, for the parts of the spectrum not subject to

absorption, nearly uniform whatever the thickness of the absorbent stratum of liquid,

a quartz lens of three inches focal length was fixed at that distance in front of

the slit, and a similar lens fifteen inches further off, and three inches beyond the

second lens was fixed a screen with a circular hole in it about one-eighth of an inch

in diameter, and beyond that was of course the source of light. The centres of the

hole in the screen and of the two lenses were aligned with the axis of the collimator.

The distance between the lenses was fixed so as to allow of the interposition of the

longest trough, used as a water bath for maintaining the temperature of the tubes

containing the solutions. These troughs were of brass fitted with a plate of quartz at

each end, and each had in it two V-shaped septa on which the tube with solution

rested, and thereby took up at once its right position in the course of the pencil of

light between the lenses. The tubes holding the solutions were of glass, fitted at the

ends with quartz plates. These plates were held in position by outer brass plates with

central circular perforations, connected by three wires passing along the outside of the

tube and furnished with screw nuts by which the plates could be firmly pressed against

the ends of the tube. The joint between the quartz plate and the end of the tube

was made water-tight by a washer of thin rubber. The washers all had the same

sized circular opening which determined the cross section of the pencil of rays falling

on the slit. This seemingly complicated arrangement was adopted because it was

necessary to have joints which would not be affected by a temperature of 100°, or by

dilute acids, or by alcohol, and could be easily taken to pieces for cleaning the tube

or plates.

Each tube had a branch on its upper side which was left open for the purpose of

filling the tube, and to allow of expansion of the liquid when it was heated. Tubes

of four lengths in geometrical progression, namely of 38 mm., 76 mm., 152'5 mm., and

305 mm., and a cell with quartz faces having an interval of 67 mm. between them,

were used to hold the solutions
;
and for a few observations a cell of only 5 mm. thickness

was used.

For observations on the effects of temperature, the trough containing the tube with

solution was filled with water and a photograph of the spectrum taken at the tem-

perature of the room
;

the trough was then heated by one or more gas lamps until

the water boiled, the gas lamps were then lowered so as to maintain the bath 3 or 4

degrees below the boiling point, bubbles adhering to the quartz plates swept off with

a feather, and when the whole appeared to be in a steady condition another photograph

was taken. Unless the solution in the tube were a very dilute one there was not much

trouble with bubbles in the solution, but bubbles in the bath were very troublesome,

and had to be removed because they impeded the passage of the light, and thereby

38—2
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affected the photograph. A similar effect is produced by convection currents of unequal

density. These were pretty well avoided within the absorbent liquid, but could not be

completely avoided in the water of the bath. The difference of temperature, and con-

sequent difference of density, of the currents in the water was, however, small, and

the thickness of water between the end of the tube and the quartz window of the

trough also small, so that the currents were not of much consequence. Attempts to

use temperatures below that of the room were abandoned because of the dew which

settled on the quartz windows. Wetting the quartz with glycerol was no remedy, because

the glycerol gravitated, destroyed the plane figure of the window, and dispersed some

of the light. Very fair observations by eye of the effect of heat on a solution, not

too dilute, were made by fixing two similar test tubes containing the solution, one in

front of the slit and the other in front of the reflecting prism, and after adjusting

their positions until the two spectra, seen simultaneously, were identical, heating up one

of the test tubes by placing a lamp under it. For dilute solutions, requiring a greater

thickness to give absorption bands of sufficient intensity, two of the tubes used for the

photographs were employed, one of them being heated up in its water bath.

As a source of light a Welsbach incandescent gas lamp without chimney was chiefly

used. This was placed 5 or 6 inches from the screen so that the network of the

mantle was quite out of focus at the slit. It gave a good light up to a wave-length

of X 370, but beyond this point it would not produce a good photograph without an

exposure too prolonged for the less refrangible part of the spectrum. For the region

above X 360 a lime-light was used.

Inasmuch as the bands observed are all more or less diffuse, and fade away gradually

on either hand, any variations of the intensity of the source of light, of the sensi-

tiveness of the photographic plates, or of the development of the image, tend to mask

the effects of varying the composition, or the temperature, of the solutions; so that

two photographs can be fairly compared, for the sake of determining these effects, only

when they have been taken with the same light, on the same plate, with equal times

of exposure, and have been developed together. This has been attended to throughout.

The photographs to be compared with each other have always been taken in succession

on the same plate, with no other change than the necessary shift of the plate and the

substitution of one tube of liquid and its bath for another. The photographs taken

thus in succession do very well for comparison of the intensities and other characters

of the absorption bands, but cannot be depended on for the detection of a very small

shift in the position of a band. That could be done if the two spectra to be com-

pared were in the field at the same time, one of them reflected in, but I have not

attempted to photograph two spectra in this way, and have been content to detect

alterations of wave-length, in the bands most easily visible, by the eye without

photography.
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The Solutions experimented on.

These have been chiefly those of salts of didymium and erbium. Most coloured salts

have only very wide absorption bands which fade on either hand very gradually, so that it

is extremely difficult, or even impossible, to recognise small changes in them. On the

other hand, didymium and erbium salts have a great many absorption bands, of various

degrees of sharpness and of intensity, and distributed through a wide range of the

spectrum. No other salts seem so well adapted for my purpose. However, I made a

number of observations on uranous chloride, but found it so prone to chemical change
when in solution that I could not with certainty distinguish the effects of dilution, or of

elevation of temperature, from those due to chemical change. The absorption spectra of

salts of cobalt have already been investigated by Dr Russell, though not exactly from my
present point of view, and they are not as good for my purpose as the salts of the two

metals to which I now confine myself.

Both series of salts had been purified as far as possible, by my assistant Mr Purvis,

by a long series of fractional precipitations. The didymium was spectroscopically free from

lanthanum, but it had not been found possible to get it, or the erbium, so free from

yttrium*. No attempt was made to separate the neodymium from the praseodymium, and

there is no method at present known for separating the various metals of which ordinary

erbium is supposed to be a mixture. Indeed for my purpose there would be no

advantage in doing so
; though for a quantitative estimation of the concentration of

absorbent material in the solutions it was important to get rid of an admixture of

unabsorbent salt. In order to obtain solutions of the salts of different acids in equivalent

concentration the metal was precipitated as oxalate, washed, dried, and ignited in air

until it was reduced to oxide. Weighed quantities of this oxide were dissolved in the

several acids, and, in the case of nitric and hydrochloric acids, the solutions evaporated and

excess of acid driven off. The residual salts were then dissolved in measured quantities of

water. The most concentrated solutions of didymium employed contained, respectively, of

the nitrate, 611*1 grams to the litre, and of the chloride the equivalent quantity, namely

4629 grams of anhydrous chloridef. These each contain 1*862 gram-molecuies of the salt

* Lanthanum and yttrium cannot be recognised by

any absorption bands, but when induction sparks are taken

from solutions of their salts, each gives a very character-

istic channelled spectrum, by which it is easily recognised

in a solution containing one per cent., or even less, of the

salt. The yttrium channellings are in the orange, the

brightest of those of lanthanum in the citron and green,

and both fade towards the red. Thalen in his paper (1874)

on the Spectra of Yttrium and Erbium, and of Didymium
and Lanthanum, gives the wave-lengths of the sharp,

more refrangible edges of the yttrium channellings, one

set beginning at \613I and the other at X5970-5. He does

not give those due to lanthanum. These I find to consist

of three sets in the greeu and citron of which the brightest

begin at \5599 and X5380 respectively, and the third at

X 5173. There is another weaker set in the orange beginning
at X5865, and two sets in the indigo beginning at X4419 and

X4370 respectively. My measures were not made with any
large dispersion and the last figure of the measured wave-

length may not be quite correct, but near enough for recog-

nition of the channellings which are easily seen with a

small spectroscope, especially the two first mentioned.

t The (crystalline) didymium chloride in this solution

was dissolved in just about twice its weight of water
; the

equivalent solution of nitrate had still less water.
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per litre, and as the specific gravity of the solution of chloride is 8295, it appears to

contain one molecule of the chloride to between 27 and 28 molecules of water.

Didymium sulphate is rather sparingly soluble in water, so that the most concen-

trated solution of it employed contained only 58'11 grams of it per litre. For comparison
with it, the strongest nitrate, or chloride, had to be diluted to 9'16 times its bulk.

Of erbium the most concentrated solutions used contained, respectively, of the nitrate

935'2 grams to the litre, of the chloride 7266 grams. These each contain 267 gram-
molecules of the salt per litre. The solution of the nitrate was a saturated one at a

temperature of about 15°.

Less concentrated solutions were also prepared and used, containing, respectively,

566 grams of nitrate of erbium, and 440 grams of the chloride to the litre, or about

1"61 molecules in grams to the litre.

The more dilute solutions were obtained from these by taking measured quantities of

them and diluting up to the required volume. In fact the most concentrated of these

solutions were the stock solutions, and may conveniently be described as of strength

No. 1. Half strength will mean such a solution diluted until the bulk was doubled,

one-quarter strength will mean No. 1 diluted until its bulk was quadrupled, and

so on.

Other salts and solvents were employed, and will be described when the experiments

upon them are described. The solutions of nitrate and chloride above mentioned were, as

a rule, the standards of concentration.

The Absorption Bands observed.

The didymium absorption bands of which I have taken notice in this investigation, are

as follows :

A band in the red at about X 679.

A weak band at about \ 623.

A rather weak band at about X 596.

The strong group extending from about X 590 to X 570, consisting of a number of

bands overlapping one another.

A rather weak band at about X 531.

A strong group of about four, more or less overlapping, bands, extending from about

\528 to \520.

A less strong group of two diffuse bands with the centre about X 510.
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A well marked triplet at about X 483, 476 and 469, of which that in the middle is

decidedly weaker than the other two.

A broad weak band, with its centre at about X462, and extending nearly down to the

most refrangible band of the triplet above mentioned.

A very broad band with its centre about \444.

A very weak band „ „ „ X433.

A strong, narrow, sharply-defined band at about X 427.

A very weak diffuse band with its centre about X418.

A still weaker one with its centre about \415.

Another weak diffuse band at about X 406.

A very broad strong band with its centre about X403.

A very weak diffuse band at about X 391.

A diffuse band at about X 380.

Another, wider, at about X375.

A weaker band at about X 364.

Four, nearly equally distributed between X 358 and X 350, which in all but the

weakest solutions run into one broad band extending beyond the above-mentioned limits.

A weak diffuse band at about X338.

And a broad diffuse band wi£h its centre about X 329.

These bands appear all to belong to didymium, or to the metals associated under

that name, for though they may be modified in character, and even in position, by the

solvent and other circumstances, they all disappear in the absence of didymium, and

they retain so much the same general character under all circumstances, that it is

reasonable to infer that they have the same primary cause. A reference to plate No. 19

(at the end of the volume) on which are reproduced photographs of the spectra of

didymium chloride in solution in water, in alcohol, and in alcohol charged with hydro-

chloric acid, will make my meaning evident.

The erbium absorption bands of which I have taken notice in this investigation

are as follows:

A group of four bands in the red, of which the most refrangible but one is much

the strongest and has a wave-length about X653.

A group of four, of which the more refrangible two are much stronger than the

others, lying between X 536 and X 549.
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A weak band at about X527.

A very strong one at about X523.

A weaker one at about \ 520.

A rather broad band, strongest on its more refrangible side and fading towards

the less refrangible, with its strongest part at about X 491.

A strong band at about X.488.

A weaker one at about X486.

A broad but weak band with its centre about X472.

A sharp but weak band at about X 467.

A broad, diffuse band with centre about X 454, reaching almost up to a stronger, and

narrower, band at about \449. These two are merged into one with concentrated

solutions.

A weak band at about X 441.

A narrow one at about X 422.

A weak one at about X418.

A broad band, fading on its less refrangible side, and extending from about X 415

nearly down to the band at X418.

A pair of nearly equal bands, rather strong, at about X 404 and X 407.

A very faint but broad band extending from about X 396 to X 402.

A well-marked, rather narrow band at about X 379,

And a weaker one almost touching it on the more refrangible side, which

becomes merged with it, and with a still weaker diffuse band at about X 377, in solu-

tions a little stronger.

A weak diffuse band with centre about X 367.

A strong band at about X365, accompanied by

One rather less strong at about X 363, which become merged together when the

solution is rather stronger.

A band rather weaker than the last at about X 357, and

A broad weaker band with centre at about X353, which soon merges in the former

when the solution is a little increased in strength.

All these bands more refrangible than X 404, expand rapidly and become very

diffuse at the edges as the solution is more concentrated, so that they may easily be
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confounded with a diffuse continuous absorption which extends from the ultra-violet

down the spectrum as the solution becomes more concentrated; but they are common
to the nitrate and chloride, and may be seen with a solution of the former when with

an equivalent solution of chloride the advancing continuous absorption has obliterated

them. The superposition of this continuous absorption, even when it is very weak and

scarcely otherwise perceptible, strengthens and widens the bands.

Effects of Dilution.

For observing the effects of dilution equal volumes of the stock solutions were

diluted to 2, 4, 8, 45 5, 61 or 91 times their original volumes, and the absorptions

produced by thicknesses of these solutions proportional to their dilutions observed and

photographed.

In the spectra of either didymium or erbium chloride, starting with solutions half

the strongest, or less strong, in thickness of 38 mm., I can find no change with dilution,

when accompanied by proportional increase of thickness, below X 390 : see plate 3, at

the end of the volume. With the strongest solution in a thickness of 38 mm. a

diffuse absorption creeps down from the most refrangible end of the spectrum, as

may be seen in the uppermost spectrum in each of the plates 10 and 11. Above

\ 375, or thereabouts, it seems to cut off all the light, but the diffuse edge extends

with the strongest didymium chloride as low as X415, making the absorption bands

look wider and stronger by its superposition. On comparing with the eye the spectrum

of a thickness of 5 mm. of the strongest solution of didymium chloride, with that of

305 mm. of the same solution diluted to 61 times its volume, both spectra being in

the field of view at the same time, I could detect no difference between them.

Again, photographing the spectrum of a thickness of 67 mm. of the strongest

didymium chloride, and that of 305 mm. of the same solution diluted to 45 -

5 times its

original bulk, I can find no difference between the photographs, which take in a range

from about A. 350 to X 600. Plate 7 is a reproduction of these photographs. This identity

of the spectra extends to the intensities, even of the weakest bands that I can see,

as well as to the positions of the bands, and even to the apparent extinction of the

diffuse absorption which is produced by a greater thickness of the strongest solution at

the ultra-violet end.

Also erbium chloride of half the strongest concentration, in a thickness of 5 mm.,

gives a spectrum which cannot be distinguished by my eye from that given by 305 mm. of

a solution 61 times as dilute. And photographs of the spectrum of the same solution, half

the strongest, in a thickness of 67 mm., are identical with those of 305 mm. of the same

solution diluted to 45*5 times its bulk, below a wave-length of about X380. Plate 9 is a

reproduction of these photographs. The triple band at about X 378 comes out more strongly

with the stronger solution, but I am not sure whether this is not an effect due to the

superposition of the diffuse absorption creeping down from the more refrangible end. In

the region above X355, a thickness of 152 mm. of a very dilute solution of didymium

Vol. XVIII. 39
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chloride transmits a sensible amount of light as high as \ 315 (the highest part of the

spectrum included in my photographs) but with a gradually fading intensity from about

X 348 upwards. And this diffuse absorption creeps further down as the solution is stronger

until with a solution half the strongest, in the same thickness, it reaches \ 360. Didy-

mium bromide produces a similar diffuse absorption which extends lower than in the case

of the chloride
;
and didymium sulphate shews something of the same kind.

This diffuse absorption, which creeps far down the spectrum of the most con-

centrated solutions of the chlorides of both didymium and erbium, seems to belong

to a different category from that to which the other bands belong. For not only

is it diminished by dilution when the thickness of the stratum is proportioned to

the dilution, but it is diminished by diminishing the thickness of the strong solution,

without diluting it, at a greater rate than the other bands are diminished, for some

of the ultra-violet bands which are quite obscured by it when the liquid is 38 mm. thick

are visible in the photographs when the same liquid is only 6'7 mm. thick. The obvious

suggestion is that it is due in some way to the common element, the chlorine. Most

chlorides, however, produce no such absorption. I have tried solutions of calcium, zinc,

and aluminium chloride, respectively, and found them, in a thickness of 305 mm., very

nearly as transparent as water for the range of the spectrum included in my photographs,

namely below \ 355. One chloride I have found, when in a concentrated solution, to

behave like the didymium and erbium chlorides, and that is hydrochloric acid, whether

it be dissolved in water or in alcohol. Plate 12 is a reproduction of a photograph of

the spectra of solutions in alcohol, and in water, of hydrochloric acid, in several thick-

nesses, and in proportional degrees of dilution, along with one of distilled water for

comparison.

The increasing extent of the absorption with increasing concentration of the solu-

tion is manifest
;
and the most probable cause is some action between the molecules of

acid during their encounters, for it seems to depend on the number of molecules of

acid (or salt) and on their concentration, jointly. We cannot ascribe the absorption to

the chlorine ion, because the number of chlorine ions increases with dilution
;

but the

close correspondence of the effects strongly suggests a common cause in all the solutions

which give those effects. It should be observed that the percentage of chlorine in the

concentrated solution of the acid used in these experiments bore to that in the most

concentrated solution of didymium chloride the ratio of about 39 to 14'5. The extent,

down the spectrum, of the absorption now in question, is increased, as might be ex-

pected, by adding hydrochloric acid to the didymium solution, and also by raising the

temperature as described below. In connexion with this it may be remarked that con-

centrated neutral solutions of didymium, and erbium, chloride lose the clean pink tint,

by transmitted light, of their dilute solutions, and take up more of an orange hue,

due of course to the diminution of the rays at the blue end of the spectrum.

As above stated I have been unable to obtain a solution of didymium sulphate so

concentrated as my strongest solution of chloride
;

but using the solution containing
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5811 grams to the litre, and diluting it to twice, four times, and eight times its bulk,

I could find no change in the absorption spectrum produced by it when the thickness

of the absorbent liquid was proportioned to the dilution, either when directly viewed

or when photographed. See plate 4, which however does not include any part of the

spectrum below the green. Nor could I detect any difference between the spectrum of

the sulphate and that of an equivalent solution of the chloride.

Didymium nitrate in four dilutions, beginning with the strongest in thickness of

38 mm., and ending with one-eighth strength in thickness of 305 mm., gave spectra
which could not be distinguished from each other, in the range photographed. See plate

11, where the spectra are those of equivalent solutions of the chloride and nitrate alter-

nately, beginning with 38 mm. of the strongest solution of chloride, next the equivalent

nitrate, then 76 mm. of the solutions of half strength, 152 mm. of one-quarter strength,

and ending with 305 mm. of the two solutions of one-eighth strength. This appearance
of identity is brought about, however, by the diffuseness and strength of the absorptions

by which the details of the groups of bands are obliterated. When the spectra of the

same solutions in much less thickness are examined, it is seen that the bands of the

stronger solutions of nitrate are more diffuse, or wider, than the bands produced by

equivalent solutions of the chloride. The weak bands look washed out, the strong are

wider than the corresponding bands of the chloride, and in the strong groups the

component bands are merged together. By increasing dilution the several bands contract

themselves and become better denned, until, with solutions of ^ strength, I am unable

to see any difference between the bands of the nitrate, chloride, and sulphate in

equivalent solutions. In the stronger solutions the weak bands look weaker as well

as broader with nitrate than with chloride, the strong bands are broader but look no

weaker; but I think that when an absorption is very strong the eye does not perceive,

nor a photographic plate always record, a small difference of intensity. There is no

indication of an increase of intensity of the bands of the nitrate by dilution with cor-

responding increase of thickness. There are, on the other hand, indications of a shift

of the positions of greatest absorption in the bands in the yellow and green, which

remind me of the much greater shift of these bands by the use of alcohol and other

solvents instead of water.

Comparing small thicknesses (5 mm.) of solutions, the big band in the yellow expands

with the nitrate beyond that produced by the equivalent solution of chloride, especially

on the less refrangible side. Of the four strong components of this band the least

refrangible seems, with the nitrate, to be displaced a little towards the red, and a less

strong diffuse band extends still further beyond the corresponding band of the chloride

on the red side. The less refrangible of the two strong groups in the green, which

for the chloride consists of two nearly equal strong bands separated by a narrow chink

of light, and of a fainter very diffuse absorption extending some way down towards

the red, has for the nitrate the less refrangible strong band widened out by diffusion,

some way beyond its limit for the chloride on the red side, and the more refrangible

is weaker with the nitrate. The more refrangible group in the green appears with the

39—2
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nitrate as a single band narrower than the two given by the chloride, and the middle

band of the triplet in the blue is more diffuse with the nitrate.

The apparent shift above mentioned may be an effect of the overlapping of the

diffuse bands, and though a real shift does not seem to me improbable, it is not in

this case sufficiently decided to found an argument upon.

Plate 6 reproduces the spectra of 6'7 mm. of the strongest solution of didymium
nitrate and of 305 mm. of the same solution diluted to 45 -5 times its bulk. The bands

of the strong solution are more diffuse and look somewhat washed out, notably the

narrow band about \427, and the middle band of the triplet in the blue; and the

strong group in the yellow extends further towards the red and has the appearance of

being stronger with the strong solution than with the dilute.

Erbium nitrate behaves quite in the same way as didymium nitrate in regard to

the greater diffuseness of its bands with strong solutions, and their gradual contraction

and growing sharpness as the solution is diluted, until they come to be identical with

those of the chloride. This is better seen in the photographs of the erbium spectra

than in those of the didymium : see plate No. 5.

In plate 8 the spectrum of 67 mm. of solution containing 467 grams of erbium

nitrate to the litre is contrasted with that of 305 mm. of the same solution diluted

to 45 -

5 times its bulk. The greater diffuseness of the bands of the upper spectrum,

which is that of the strong solution, and apparently greater intensity of the ultra-violet

band on the left will be noticed. It may be compared with the corresponding plate No. 9

for the chloride, in which however the lower spectrum is that of the stronger solution.

Plate 10 contrasts the spectra of equivalent solutions of erbium chloride and nitrate, in

four degrees of dilution, the uppermost spectrum being that of the strongest chloride.

The greater diffuseness of the bands of the nitrate can be seen, and the gradual

approximation to identity in the spectra of the two solutions as they become more

dilute. It is the counterpart for erbium of plate 11.

The nitrates, as well as the chlorides of both metals, shew a general absorption

creeping down from the most refrangible end of the spectrum with increased concentration

of the solutions
;
but though similar in the two salts, that given by the nitrates is not

identical with that of the chlorides. Its edge is not so diffuse, but cuts off the spectrum

more sharply than that of the chloride
;
and in the strongest solutions it does not extend

so far down the spectrum as that of the chloride. On the other hand with the weak

solutions of didymium it extends lower than that of the chloride. With a solution

of didymium nitrate of ^ strength in thickness of 152 mm. all light above X333

seems to be absorbed, while with the chloride light gets through beyond \ 315
;

and the strongest solution of the nitrate in a thickness of 38 mm. does not entirely

cut off the light below A. 360, while the equivalent solution of chloride cuts it off much

lower.
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There are here four facts to deal with:

1. The identity of the spectra of the different salts of the same metal in the

dilute condition.

2. The constancy of this spectrum in the case of chloride and sulphate in different

dilutions so long as the thickness of absorbent is proportional to the dilution, a constancy

holding good in the chlorides for a great range of concentration.

3. The modification, for I take it to be only a modification, of this spectrum in

the case of the nitrate, by some cause which has increasing effect with increasing con-

centration.

4. The absorptions at the most refrangible end of the spectrum, which are somewhat

different for different salts of the same metal, and diminish with increased dilution.

The first of these facts is certainly strongly suggestive of the interpretation put on

it by Ostwald, that the spectrum common to all the salts of the same metal is due to

the metallic ions. Against this the second fact militates, for the ionization is supposed to

increase with dilution, and the absorptions by the ions should increase in intensity by
dilution when the total quantity of salt, dissociated and undissociated, through which the

light passes remains the same. The third fact points to some cause, affecting the diffuse-

ness of the bands, which is more effective in concentrated solutions. This cause may be

encounters between the molecules of the salt, or of its products in solution, which would

be more frequent in more concentrated solutions.

Ionization should be increased by heating the solutions, and diminished by the addition

of acid. I proceed to describe what I have observed of the effects of heating and of

acidification on the absorption spectra.

Effects of Temperature on the Spectra.

The rise of temperature which could be employed was, as described above, only from

the temperature of the room, about 20°, to a few degrees below the boiling-point of the

water bath, or to about 97°. This rise of temperature produced the same kind of effect

on all those absorption bands which are common to all the salts of the same metal, whether

it be didymium or erbium, and that effect was to render them more diffuse, to spread

them out, make their limits less definite, and in the case of weak bands make them appear

weaker. The effect of heat was also the same in kind on dilute as on concentrated

solutions. Heat also caused the broad diffuse absorption at the most refrangible end to

extend itself downwards in a marked degree. Plates 13, 14 and 15 are reproductions of

photographs of the spectra of three salts, in various degrees of dilution, cold and hot.

It will be noticed that the absorption bands are not increased in intensity by heat, but

from the greater diffusion they seem weaker, except the very strong bands which are so

intense that they bear diffusion without letting enough light through to affect the plate.

The creeping down with the higher temperature of a diffuse absorption from the most
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refrangible end is seen in all, and with the nitrate and sulphate seems to be independent

of the concentration, while with the chloride it is barely noticeable with any but the most

concentrated solution. In the last exposure with the sulphate the light is a little weaker

throughout. The solution was the weakest and in the longest tube, and therefore most

likely to be troubled with bubbles on the inner faces of the terminal quartz plates which

could not be removed. I have no doubt this general weakening of the light was due to

this cause. A general weakening of the light has the effect of making the absorption

bands appear stronger. This appearance is deceptive ;
for the examination of a great many

photographs, as well as direct observations of the spectra by eye, have led me to the

conclusion that the effect of heat is to diffuse and not to strengthen the absorption bands

which are ascribed to the metals. On the other hand it looks as if the diffuse absorption

at the most refrangible end, which certainly creeps down lower with hot solutions, were

strengthened as well as diffused, for in the region above that included in the plates, the

limit of complete extinction of photographic effect is considerably lower with the hot than

with the cold solutions.

On the whole the effects of heat on the spectrum afford no confirmation to the sup-

position that the absorptions are due to an increase of the number of ions
;
but rather

suggest that they may be due to the increased energy of the motions of translation of the

molecules, causing more frequent encounters.

Effects of Acidifying the Solutions.

The solutions compared with a view to ascertain these effects had in every case equal

quantities of the metallic component per litre, but while one was neutral the other had

twice as much of its acid component as the first; and they were usually compared in

various degrees of dilution and in thicknesses proportional thereto. With didymium salts,

chloride and nitrate, the acid made very little difference in the bands, as will be seen

by examination of plate 18, which gives the spectra of four solutions of the chloride,

two neutral and two acid. The creeping down of the absorption at the most refrangible

end is, however, very evident in the most concentrated solution of acidified chloride
;

and some diffusion of some of the bands of the nitrate by the addition of the

acid is just traceable in photographs of some of the weaker bands of the more con-

centrated solution. The increased diffusion of the bands of the nitrate by the addition

of nitric acid can be easily seen directly by eye, using weak solutions in no great

thickness. The addition of acid also produces a slight shift of the places of greatest

absorption in the strong groups in the yellow and green. Whether this is due only to

the expansion, and consequent overlapping, of the several bands in these groups, or

whether there is a real shift, I have not been able to satisfy myself; but the general

appearance resembles the changes produced in those bands by the use of different solvents

which are described below, and it is very likely that similar causes are at work in the

two cases. Nothing of this kind can be seen on the addition of hydrochloric acid to

the chloride.
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With erbium nitrate the addition of acid produces more marked effects : see plate 17.

All the bands which are more diffuse with the neutral nitrate than with the equivalent

chloride solution, are still more diffuse with the acid nitrate
;

and the effect regularly

diminishes as the solution is made more dilute. There is however no indication that

there is any weakening of the intensity of the bands by the presence of acid, but rather

a strengthening of them.

With the chloride, on the other hand, there seems to be no more difference

between the absorptions of the neutral and acid solutions than there is between the

corresponding solutions of didymium chloride. Comparing the spectra by eye, I can see

no appreciable difference between the acid and neutral solutions of equal thickness and

equal erbium concentration. Plate 16 gives a reproduction of photographs of the

absorptions of two pairs of equivalent neutral and acid solutions of erbium chloride, the

upper pair being those of the strongest solution. The creeping down of the continuous

absorption with the acid solution is visible in both pairs of spectra, but more evident

with the stronger solution, where it sensibly affects the apparent intensity and breadth

of the broad band at about X 451. The second pair of spectra on this plate were

taken with solutions made by diluting those used for the first pair of spectra until their

volumes were three times as great as before, and they were put into tubes four times as

long as those used for the first pair. There is no indication of any weakening of the

absorptions by the addition of acid.

The absence of any diminution of intensity either of the didymium or erbium bands

by the addition of acid, taken in conjunction with the fact that rise of temperature

does not increase their intensity, go a long way to negative the supposition that these

bands are produced by the metallic ions
;
and the facts recorded in the preceding pages

rather suggest that the metallic bands are the outcome of chemical interactions between

molecules of the salt with each other and with those of the solvent, while the general

absorption at the most refrangible end, which is evidently of a different class and

resembles the absorptions of glass and many other substances which absorb the more

rapid vibrations but are transparent to waves of less oscillation-frequency, may perhaps

be due to encounters of molecules without chemical change. The effects on the spectrum

when different solvents are used may throw some light on this question. Accordingly

I made some experiments with didymium salts in various solvents.

Effects of Different Solvents.

Didymium chloride solution evaporated at 100° retains some water, and seems to have

the composition of the crystalline salt. Dried at a higher temperature it may be had

anhydrous, but in that state appears to be quite insoluble in alcohol. Dried at 100°

it dissolves
.
with tolerable facility in absolute ethyl-alcohol, and in glycerol, but will not

dissolve in benzene. The alcoholic solution deposits beautiful pink crystals on evaporation.

The absorption spectrum of this solution shews the same bands as an aqueous solution,

but they are somewhat modified. They are more diffuse so that the weaker bands look

as if they were washed out, and the positions of maximum absorption are all moved
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towards the less refrangible side, and the diffuse absorption at the most refrangible end

extends lower down the spectrum than with an aqueous solution of equal concentration.

The general relation between the spectra of the two solutions will be seen on com-

paring photographs (1) and (2) of plate 19, of which the former is given by the aqueous,

the latter by the alcoholic solution. The shift of the bands towards the red is visible

in the photographs, but as the plate had to be shifted between the exposures, no reliance

can be placed on the appearance of a shift in such photographs, when the amount of

displacement of the bands is small. This defect is, however, met by direct eye-observations,

with the two spectra in the field of view at the same time. In this way it is seen

that all the bands that are visible are shifted towards the red, but are by no means

all equally shifted. At the same time the strong groups of bands in the yellow and

green have, by the action of the alcohol, undergone a modification of their general

appearance which simulates the addition of some new bands
;
but by examining solutions

of different concentrations I have satisfied myself that no new bands make their

appearance, but the simulation of them is due to the widening and unequal shift of

the bands, whereby their overlapping, and the consequent relative positions of the maxima

of absorption, are modified. The modifications are such as we may reasonably ascribe

to the influence of the bulky colloid molecules of the alcohol, amongst which the vibrating

absorbent molecules move and from which they can hardly ever get free, loading them

but loading them unequally, and on the whole degrading the rates of their vibratory

motions.

A very remarkable, and by far the most excessive, modification of the bands that I

have observed, is produced by passing dry hydrochloric acid into the alcoholic solution.

The third photograph of plate 19 shews the effect. The colour of the solution is changed

by the acid from pink to bluish green, and the reason of this is obvious from the

photograph. The molecules seem so loaded as to be nearly incapable of taking up the

more rapid vibrations corresponding to the bands in the indigo and blue, while they

seem to absorb more strongly those of slower rate in the yellow and citron. At the

same time these are more degraded than by alcohol alone, and the group in the yellow

so spread out that some of the components are distinctly separated. Of course the acid

makes the solvent a complicated mixture, including ethyl-chloride and water as well as

the unaltered components.

The modifications of the spectrum by glycerol are of the same character as those

produced by alcohol. The bands are generally shifted towards the red, and are more

diffuse, but otherwise not much modified. Plate 20 shews the spectrum of the glycerol

solution above and below that of an aqueous solution of didymium nitrate of nearly,

but 'not exactly, equal concentration. Observed directly by eye it is seen that the

band in the red at X. 679 is not sensibly affected, the group in the yellow and the

less refrangible of the two groups in the green, are distinctly shifted towards the red,

but otherwise not affected in character
;

while the more refrangible group in the green

is not sensibly shifted, but appears weakened by diffusion. The still more refrangible

bands are all rendered more diffuse by glycerol, and are also degraded with the exception
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of the middle band of the triplet in the blue, which does not appear shifted, but of

this I am not sure for the photographs shew a trace of a washed-out band about mid-

way between the two extreme bands of the triplet in addition to the stronger band which

is more refrangible. With glycerol the continuous diffuse absorption also creeps down the

spectrum as with alcohol.

In order to observe the effect of a crystallizable solvent other than water, some

didymium acetate was prepared and dissolved in glacial acetic acid, and for comparison
with it an aqueous solution of didymium nitrate was made of equal concentration.

Plate 20 shews the photographs of their spectra. Comparing the absorptions directly by

eye, the band in the red appeared stronger in the acetate and sensibly shifted to the

less refrangible side, the feeble band in the orange also was shifted in the same direc-

tion, the strong group in the yellow considerably extended towards the red but its more

refrangible edge not apparently shifted, doubtless because the widening of the bands

compensated the shift which was visible in all the other bands of the acetate though

they otherwise had the same general appearance as those of the nitrate. The shift

and change of character produced by acetic acid was less than was produced by alcohol.

Didymium tartrate is very insoluble in water, but the compound produced by

potassium hydrogen tartrate acting on didymium hydroxide dissolves in a solution of

ammonia. The spectrum given by this solution is contrasted with that of an aqueous

solution (not exactly of the same concentration), of didymium chloride in plate 23.

With the exception of the group in the yellow, the less refrangible of the groups in

the green, and the narrow band in the indigo, the bands seem all a good deal washed

out. All the bands are shifted towards the red, and the apparent shift increases as the

bands become more refrangible, but probably this appearance is the effect of the greater

dispersion of the more refrangible rays.

I had no crystals of didymium salts, sufficiently large to enable me to see how

the diminished freedom of the molecules in the solid would modify the spectrum, but

had a rod of fused borax coloured with didymium. This was made by mixing weighed

quantities of didymium oxide and dried borax, fusing the mixture, and sucking the

fused mass into a hot platinum tube. After cooling the rough ends were cut off and

polished, and I was thus able to compare the spectrum given by a thickness of 25 mm.

of this glass with that of an equivalent solution of didymium chloride. Photographs

of these spectra are shewn in plate 21. They are somewhat marred by dust on

the slit of the spectroscope, but this does not prevent a fair comparison. It will be

seen that the modifications produced by the glass are on the whole similar in character

to those produced by some of the liquid solvents. The strong group in the yellow

is much expanded and the components of the group unequally shifted towards the red,

the less refrangible of the groups in the green is shifted and its appearance modified

for the same reason. The more refrangible bands are much washed out and their shifts

appear very unequal. Nevertheless they appear to be still essentially the same bands

modified as to their rates of vibration by the diminished freedom of the molecules

producing them.

Vol. XVIII. 40
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On a review of the whole series of observations I conclude that the characteristic

absorptions of didymium compounds, namely those which are common to dilute aqueous

solutions, and are only modified by concentration, by heat, and by variations of the

solvent, are due to molecules which are identical in all cases, though their vibrations

are modified by their relations to other molecules surrounding them. The like conclusion

holds for erbium compounds. It appears to me quite incredible that the atoms of

didymium should retain in chemical combination so much individuality and freedom as

to take up their own peculiar vibrations unaffected by the rest of the matter combined

with them, as must be the case if we supposed the combined didymium in the molecules

to give the common spectrum of all the salts in dilute solution. When I speak of

atoms of didymium in the salts, I mean of course masses equal to the atoms of

didymium metal, but having different energy, which means different internal motions,

probably different structure, and different capabilities of vibration. No chemical com-

pounds shew the absorptions which their separate elements exhibit. Sodium vapour,

though monatomic, has a very strong absorbent power which is quite lost when it has

parted with energy in combining with chlorine. Nevertheless the molecule of a chloride

breaks up, in general, into masses equal to those of the atoms of its elements more

easily than in any other way, and there is pretty good evidence that in encountering

a molecule of water this also is sometimes broken up, and ultimately, if not immediately,

new molecules of hydroxide and acid are formed, as well as, by a similar process, new

molecules of the salt. In the interval between the rupture of a molecule and the

recombination of its parts with each other, or with parts of other molecules, the parts

have a certain freedom, and capability of vibrating, which they do not possess in com-

bination. Now if we suppose the number of such parts as have the capability of taking

up vibrations of frequency corresponding to the characteristic absorptions of didymium
to be directly proportional to the concentration of the didymium salt and to the time

of their freedom, the observed facts will be all in agreement with the hypothesis.

Increased concentration, and increased temperature, will mean more frequent encounters

amongst the molecules, and more frequent ruptures, but at the same time more frequent

encounters of the parts and consequent shortening of their times of freedom. These

effects will exactly compensate each other and leave the average number of absorbent

parts of molecules constant under changes either of concentration or of temperature.

The continuous absorption of the more rapid vibrations increasing with concentration

and rise of temperature points to an action depending only on the number of encounters

of the molecules of the salt with one another. It is not every encounter which is

attended with disruption, and the continuous absorption may be due to molecules in

encounter without rupture, but at all events it seems due to the condition of the

molecules during encounter, but not to occur at the encounters of a molecule of salt

with the very much less massive molecules of water. Encounters of a molecule of salt

with a molecule of acid will in all probability cause effects very similar to those of

encounters between two molecules of salt, and this supposition is quite in agreement

with the observed facts.

The time of complete freedom of a vibrating part of a molecule must be very
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short, but probably shorter when the complementary part is more massive, as in the

case of a nitrate, than it is in the case of a chloride. But between complete freedom

and complete incorporation in a chemical compound there is a considerable gradation,

and the capacity of the part to vibrate at particular rates will have a corresponding

gradation, and the part may moreover be frequently under the influence of molecules,

or parts of molecules, with which it does not combine. This influence will probably be

greater as the molecule exerting the influence is greater whether more massive, or, as

in the case of such colloids as alcohol, more voluminous. These considerations reconcile

all the facts as to the spectra I have observed with the hypothesis I have made.

There are, however, other facts to be reconciled with that hypothesis. I mean

the facts of ionization, of osmotic pressure and the correlative facts of the rise of boiling

point, and fall of crystallizing point, of solutions. In regard to all these effects the

freedom of the parts is the primary postulate, far more definitely so than in the case

of vibrations such as my observations relate to. The laws I have tried to investigate

appear to hold good up to the point of saturation of the solutions, which is not the case

with the laws of osmotic pressure and of change of boiling and freezing points, which

have been established for dilute solutions. Further, ionization implies a certain distri-

bution of energy in the field, the ions are charged with electricity. That is not neces-

sary for the absorption of light, which will depend, primarily at least, on the form of

the internal energy of the vibrating mass, that is on its structure. That a redistribu-

tion of energy occurs at every rupture of a molecule seems certain, solution is attended

with thermal effects and so is dilution, and it is only when equilibrium is reached,

and as much change takes place in one direction as in the opposite, that the mani-

festation of such redistribution ceases. How much of the intrinsic energy of the

molecules takes the form of heat and how much is retained in the field at the rupture

of the molecules we do not know. It is however quite conceivable that the circum-

stances under which the rupture takes place may determine whether any, or how much,

energy is retained by the field, that is whether any, or how many, of the ruptured

parts become ions.

The plates, which are all reproductions of photographs, will be found at the end of the

volume.

40—2



XV. The Echelon Spectroscope. By Professor A. A. Michelson, Sc.D.

[Received 19 October 1899.]

The important discovery of Zeeman of the influence of a magnetic field upon the

radiations of an approximately homogeneous source shows more clearly than any other

fact the great advantage of the highest attainable dispersion and resolving power in the

spectroscopes employed in such observations.

If we consider that in the great majority of cases the separation of the component
lines produced by the magnetic field is of the order of a twentieth to a fiftieth of the

distance between the sodium lines, it will be readily admitted that if the structure of the

components themselves is more or less complex, such structure would not be revealed by

the most powerful spectroscopes of the ordinary type.

In the case of the grating spectroscope, besides the difficulty of obtaining sufficient

resolving power, the intensity is so feeble that only the brighter spectral lines can be

observed, and even these must be augmented by using powerful discharges
—which usually

have the effect of masking the structure to be investigated.

Some years ago I published a paper describing a method of analysis of approximately

homogeneous radiations which depends upon the observation of the clearness of interference

fringes produced by these radiations. A curve was drawn showing the change in clearness

with increase in the difference of path of the two interfering pencils of light,
—and it was

shown that there is a fixed relation between such a "
visibility curve

" and the distribution

of light in the corresponding spectrum
—at least in the case of symmetrical lines*.

It is precisely in the examination of such minute variations as are observed in the

Zeeman effect, that the advantages of this method appear,
—for the observations are entirely

free from instrumental errors
;
there is practically no limit to the resolving power ;

and

there is plenty of light.

There is however the rather serious inconvenience that the examination of a single line

requires a considerable time, often several minutes, and during this time the character of

the radiations themselves may be changing.

Besides this, nothing can be determined regarding the nature of these radiations until

* In the case of asymmetrical lines another relation is necessary, and such is furnished by what may be called

the "
phase curve."
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the "
visibility curve

"
is complete, and analyzed either by calculation or by an equivalent

mechanical operation.

Notwithstanding these difficulties, it was possible to obtain a number of rather interest-

ing results, such as the doubling or the tripling of the central line of Zeeman's triplet, and

the resolution of the lateral lines into multiple lines
;

also the resolution of the majority
of the spectral lines examined, into more or less complex groups; the observation of the

effects of temperature and pressure on the width of the lines, etc.

It is none the less evident that the inconveniences of this process are so serious

that a return to the spectroscopic methods would be desirable if it were possible

(1) to increase the resolving power of our gratings; (2) to concentrate all the light in

one spectrum.

It is well known that the resolving power of a grating is measured by the product

wto of the number of lines by the order of the spectrum. Attention has hitherto been

confined almost exclusively to the first of these factors, and in the large six-inch grating

of Prof. Rowland there are about one hundred thousand lines. It is possible that the

limit in this direction has already been reached
;

for it appears that gratings ruled on

the same engine, with but half as many lines, have almost the same resolving power
as the larger ones. This must be due to the errors in spacing of the lines; and if

this error could be overcome the resolving power could be augmented indefinitely.

In the hope of accomplishing something in this direction, together with Mr S. W.

Stratton, I constructed a ruling engine in which I make use of the principle of the

interferometer in order to correct the screw by means of light-waves from a homogeneous
source. This instrument (only a small model of a larger one now under construction)

has already furnished rather good gratings of two inches ruled surface, and it seems

not unreasonable to hope for a twelve-inch grating with almost theoretically accurate

rulings.

As regards the second factor—the order of the spectrum observed, but little use

is made of orders higher than the fourth, chiefly on account of the faintness of the

light. It is true that occasionally a grating is ruled which gives exceptionally bright

spectra of the second or third order, and such gratings are as valuable as they are

rare, for it appears that this quality of throwing an excess of light in a particular

spectrum is due to the character of the ruling diamond which cannot be determined

except by the unsatisfactory process of trial and error.

If it were desirable to proceed otherwise—to attempt to produce rulings which

Fio. l.

should throw the greater part of the incident light in a given spectrum, we should try

to give the rulings the form shown in section in Fig. 1.
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I am aware of the difficulties to be encountered in the attempt to put this idea

into practical shape, and it may well be that they are in fact insurmountable—but in

any case it seems to be well worth the attempt.

Meanwhile the idea suggested itself of avoiding the difficulty in the following way:

Fio. 2.

Plates of glass (Fig. 2), accurately plane-paralleled and of the same thickness, were

placed in contact, as shown in Fig. 2. If the thicknesses were exactly the same,

and were it not for variations in the thickness of the air-films between the plates, the

retardations of the pencils reflected by the successive surfaces would be exactly the

same, and the reflected waves would be in the same conditions as in the case of a

reflecting grating
—

except that the retardation is enormously greater.

The first condition is not very difficult to fulfil
;

but in consequence of dust particles

which invariably deposit on the glass surfaces, in spite of the greatest possible pre-

cautions, it is practically impossible to insure a perfect contact, or even constancy in

the distances between surfaces*.

If now instead of the retardation by reflection we make use of the retardation by

transmission through the glass, the difficulty disappears almost completely. In particular

the air-films are compensated by equivalent thicknesses of air outside, so that it is no

longer necessary that their thickness should be constant. Besides, the accuracy of

parallelism and of thickness of the glass plates necessary to insure good results is now

only one-fourth of that required in the reflection arrangement.

In Fig. 3 let. ab = s, the breadth of each pencil of rays ;
bd = t, the thickness of each

element of the echelon ; 0, the angle of diffraction
; a, the angle adb

; m, the number of

waves of length X corresponding to the common difference of path of the successive

elements. The difference of path is mX = /d
— ac.

Now ac = cos (a + 0),
cos a

* Nevertheless I have succeeded with ten such plates, phenomena such as the Zeeman effect, the broadening of

silvered on their front surfaces, in obtaining spectra which, lines by pressure, etc.—but evidently the limit has been

though somewhat confused, were still pure enough to show nearly reached.
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or, since 8 is always very small,

(
ac = (cos a - 6 sin a)

= t (1
- tan a),cos a

and hence m\ = (fi— l)t + ,

.(I).
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or putting dm = unity,

dd = -
(IV).

s

The quantity d\/X = E corresponding to this is found by substituting this value of

d6 in (II), whence

E=B <v >-

Hence the limit of resolution is the #th part of the distance between the spectra.

This fact is evidently a rather serious objection to this form of spectroscope. Thus in

observing the effect of increasing density on the breadth of the sodium lines, if the

broadening be of the order of \jbt the two contiguous spectra (of the same line) will

overlap. As a particular case, let us take t = 7 mm., E =
^j^kr I* will De impossible

to examine lines whose breadth is greater than the fourteenth part of the distance

between the D lines. It is evidently advantageous to make t as small as possible.

Now the resolving power, which may be denned by -
, is proportional to the product

nt. Consequently, in order to increase it as much as possible it is necessary to use

thick plates, or to increase their number. But in consequence of the losses by the

successive reflections, experience shows that this number is limited to from 20 to 35 plates,

any excess not contributing in any important degree to the efficiency.

I have constructed three echelons, the thickness of the plates being 7 mm., 18 mm. and

30 mm. respectively, each containing the maximum number of elements—that is, 20 to 35,

and whose theoretical resolving powers are therefore of the order of 210,000, 540,000 and

900,000 respectively. In other words, they can resolve lines whose distances apart are the

two-hundredth, the five-hundredth and the nine-hundredth of the distance between the

D lines.

Consequently the smallest of these echelons surpasses the resolving power of the best

gratings, and what is even more important, it concentrates all the light in a single

spectrum.

The law of the distribution of intensities in the successive spectra is readily deduced

from the integral
r»/2

A =
\

cos pxdx,
J -»/2

where p = -=r- 9.

sin2 ir - 6

Hence I = A* =

.le)-
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This expression vanishes for 6 = ±\js which is also the value of ddu the distance

between the spectra.

Hence in general there are two spectra visible as indicated in Fig. 4.

By slightly inclining the echelon one of the spectra is readily brought to the centre

of the field, while the adjacent ones are at the minima, and disappear. The remaining

spectra are practically invisible, except for very bright lines.

As has just been indicated, the proximity of the successive spectra of one and the

same line is a serious objection, and as this proximity depends on the thickness of the plates—which for mechanical reasons cannot well be reduced below 5 or 6 mm.—it is desirable

to look to other means for obviating the difficulty, among which may be mentioned the use

of a liquid instead of air.

In this case formula (II) becomes

dd t 1 / ,x^<>-Mi) = c-

and formula (IV) becomes

d0__2±
dm

yu-jS

'

Repeating the same operations as in the former case, we find

X

net'

and E=-
ct

The limit of resolution is still the nth part of the distance between the spectra,

but both are increased in the ratio b/c.

Suppose for instance the liquid is water. Neglecting dispersion the factor would

be 3-55. Hence the distance between the spectra will be increased in this proportion,

but the limit of resolution will also be multiplied by this factor. But as there is now

a surface water-glass which reflects the light, the loss due to this reflection will be
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very much less, so that it will be possible to employ a greater number of elements,

thus restoring the resolving power. At the same time the degree of accuracy necessary

in working the plates is 3 -55 times less than before.

For many radiations the absorption due to thicknesses of the order of 50 cm. of

glass would be a very serious objection to the employment of the transmission echelon.

I have attempted therefore to carry out the original idea of a reflecting echelon, and

it may be of interest to indicate in a general way how it is hoped the problem may
be solved.

Among the various processes which have suggested themselves for realising a re-

flecting echelon, the following appear the most promising :

In the first a number of plates, 20 to 30, of equal thickness, are fastened together

as in Fig. 5, and the surfaces A and B are ground and polished plane and parallel.

They are then separated and placed on an inclined plane surface, as indicated in Fig. 6.

A

B

Fig. 5.

Fig. 6.

If there are differences in thickness of the air-films the resulting differences in the

height of the plates will be less in the ratio tana. An error of \/n may be admitted

for each plate
—even in the most unfavorable case in which the errors all add

;
and

consequently the admissible errors in the thickness of the air-films may be of the order
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X/na. For instance, for 20 plates the average error may be a whole wave-length if the

inclination a is -^. As there is always a more or less perfect compensation of the

errors, the number of plates, or the inclination, may be correspondingly greater. Accord-

ingly it may be possible to make use of 50 elements and the plane may be inclined

at an angle of 20° to 30°. It would be necessary in this case however to use a rather

large objective. Possibly this may be avoided by cutting the surface A to a spherical

curvature, thus forming a sort of concave echelon.

The second process differs from the first only in that each plate is cut indepen-

dently to the necessary height to give the required retardation. The first approximation

being made, the plates are placed on a plane surface as in Fig. 7 (side view) and Fig. 8

(front view).

Fio. 7.

The projections a and b are then ground and polished until the upper surfaces are

all parallel, and the successive retardations equal. The parallelism as well as the height

is verified by means of the interferometer.

Fio. 8.

These processes are, it is freely conceded, rather delicate, but preliminary experiments

have shown that with patience they may be successful.
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Cambridge.

[Received 10 November 1899.]

1. In a short paper read before the London Mathematical Society on Feb. 9 last,

and since printed in the Proceedings of the Society, Vol. xxx. p. 276, Mr T. J. I'A.

Bromwich has noted an interesting form of the tangential equation of a minimal surface,

by which the determination of such surfaces is made to depend upon a particular type
of solution of Laplace's equation. The idea of thus establishing a connexion betweeu

certain of Laplace's functions and minimal surfaces is one that presented itself to me
several years ago, and led me then (in 1891-92) to consider at some length to what

extent the study of these surfaces given by Darboux in Part I, Book III, of his

Thiorie generate des Surfaces might be modified by this connexion. Although the

familiar treatment of Laplace's equation led me, (in many instances by simpler paths
than Darboux), to a number of the chief known theorems concerning minimal surfaces,

yet I never succeeded in reaching untrodden ground, and for this reason laid aside

my work
;
but the appearance of Mr Bromwich's paper has caused me to look through

my notes, and to consider with some fulness a special family of algebraic minimal

surfaces to which the method is peculiarly applicable.

So thorough a discussion of the history and properties of minimal surfaces is given

by Darboux, in Book III. of his Theorie generate des Surfaces, that it will seldom be

necessary to refer to other sources of information : references to Darboux will be made

simply by the letter D. followed by the number of the paragraph in question ;

—thus

(D. § 175). In all that follows it is supposed that a system of real rectangular

Cartesian axes is employed.

2. The tangential equation of a surface,

<f> (p, I, m, n) = 0,

(where <f>
is a homogeneous function of p, I, m, n, but not necessarily algebraic), ex-

presses the condition that the plane

tx + my + nz =p (1),

should be tangent to the surface. Should
<f>

be rational, integral and homogeneous of

the A'th degree, the surface is algebraic and of the kth class.
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The equation cj> (p, I, m, n) = will always be regarded as defining a dependent
variable p as a function of three independent variables I, m, n

;

—
p = ir(l, m, n) (2);

but the function ty is of necessity homogeneous and of the first degree. The coordi-

nates of the point of contact of the plane (1) with the surface enveloped by it are

*
»' y ~dm>

'
tl

{S)>

so that x, y, z are expressed as homogeneous functions of I, m, n, of degree zero, i.e.

as functions of the ratios l:m:n. It is therefore possible to eliminate I, m, n from

equations (3) and so to obtain a relation in x, y, z, alone, the equation of the surface

in point coordinates. The condition that the surface should be minimal is established

without difficulty, viz.

ap
+

a>»»
+
3»«~ w

Hence:—When p is a function of I, m, n, homogeneous and of the first degree,

which satisfies Laplace's equation, the envelop of the planes (1), or the lowis of the point

(3), is a minimal surface. When the condition (4) is satisfied, I shall say that p has

a minimal value, or is a minimal function of I, m, n.

It is of importance to observe that, in what precedes, the condition

I- + m2 + n2 = 1,

is not imposed : provided only that p is of the first degree in I, m, n (which is

always to be understood in future), it is absolutely immaterial whether the sum of the

squares of these quantities be equal to unity or no. When (4) is satisfied it is easy

to establish the theorem of M. Ossian Bonnet (D. §§ 202, 203), that the horograph of

a minimal surface is a conformable map of the surface.

3. I now consider very briefly to what results the common manipulation of Laplace's

equation leads. Since p satisfies the equation, so also do its three partial differential

coefficients, which, as we have seen, are the coordinates of points of the surface, expressed

in terms of the ratios I : m : n. Now the solutions of Laplace's equation which are of

degree zero in the variables are of the form,

. I + im r + n I
— im r + n

where u = = —
;

ux
= =

,
—

;

r — n I — im r— n I + im

and r = (l
i +m? + n2

)K

These quantities w and ux are thus the same as those of Darboux (cf. D. §§ 193,

195). The formulae of Weierstrass (D. § 188, equation 17) are readily deduced; while

if we take new variables v and vlt the former a function of u and the latter of ult

we reach the solution of Monge (D. §§ 179 and 218).
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Although the integration of Laplace's equation presents no difficulty, it is not easy

to say what is the best form of solution of the first degree in the variables which

we should take as the value of p. The formulae due to Weierstrass (D. § 188, equations

18), may be obtained from the value

p = r[f (») +// Oft)]
-

{I
- im)f(u) -(1+ im)J\ («,) :

but a value which is preferable for the present purpose, in that it is more naturally

attained by integration and leads to simpler results, is

p = r[ux'(u)+u1Xi(u1)]-n[x(u) + Xi(ui)] (5);

and this is the value which will be used in the following applications. From it I derive,

by differentiation with respect to I, m, n, the expressions

* - •£ («) + \
u ( J

-O x" <•) + »' («.) + 1
u> (i

-O x" («.) ;

y - ix (u) + g
»« (1 + w2) X" (u)

-
»»' (w -

2
iWl < x + ">*) »* (w>) ;

'

* = - X O) + M%' (») + U*X" (")
-

%i (M + uiXi («i) + "i^i" («0-

It will be seen that the two forms are in agreement if

f(u) = ux(u); fi{u1 )
= u 1 xdih).

4. As an illustration of the use of these results I consider two methods of solving

the problem of determining a minimal surface which has a given plane as a plane of

symmetry, and cuts that plane at right angles along a given curve
; or, as Darboux

(§ 251) expresses it, has a given plane curve as a geodesic. It is clear that if x = Xi>

(which in the case of a real surface implies that ^ is a real function), the surface

has zOx as a plane of symmetry and cuts it orthogonally: moreover, if we fix directions

by Euler's two angles, 8 the colatitude and
<f>

the longitude, (so that

I : m : n : r :: sin dcos<f) : sin#sin</> : cos 6 : 1,

and u = e"'* . cot
^ 0, u, = e_i* . cot g 6),

the functions x an^ %i are determined by the equation

X
(
cot

2 )
=Xl

(
C0t

2 V
= ~

2
C0SeC &

•JP
d0

'

the quantity p being the length of the perpendicular from the origin on any tangent

of the given plane curve, laid in the plane zOx, and 8 the inclination of that per-

pendicular to Oz.

5. But the following solution is of greater interest, in that it is adapted to cases

when the given plane curve is irregular, being composed of portions of known curves
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or straight lines, united so as to form a closed contour. Let this contour he enveloped

by a straight line which moves round it, turning always in the same direction; let

the plane of the contour be ocOy; let p denote the perpendicular from on the

enveloping line, and
<f>

the inclination of that perpendicular to Ox.

In a complete circuit of the contour, the enveloping line will turn through some

multiple of two right angles, and return to its original position ; p is therefore a

periodic function of
<£ ,

—the period being a multiple of v,—and may be expanded in

a Fourier's series even when p or its differential coefficients have discontinuities: thus

p — 2 (a* sin
k<f> + bk cos &#„).

In the case of an oval curve or a closed convex polygon the period of p is 2ir
;
k

will then receive only integer values. In a cardioid the period is Sir, and 3A; will

always be an even integer, etc., etc.

The minimal surface sought will be represented by the tangential equation

p = 2 \(k
- cos 6) cot*

^
6 + (k + cos 8) tan*

^
d\ (ak sin k<$> + bk cos

k<f>)
-=- 2k.

For this typical term may be obtained from the general formulae (5) by making

X(u) = K(uk -irk
), %i(iO = -K'i(wi*-wr

J;

);

K and Ki being constants suitably chosen; and we may deduce

z =
^
2 (k

— k"1

) ( cot* ^
6 — tan*

^ 6
j
(a* sin k<j> + bk cos

k(j>) ;

so that, when 6 = -tt, z vanishes and p has the correct value.
25

Interesting special cases arise when the given plane curve is an epicycloid or hypo-

cycloid ;
for the series for p then reduces to a single term

p = A cos
k<f>,

and the required surface is obtained by making in (5)

x {u) = B O* - u-"), %1 («j)
= B {u* - urh

).

It is clear however that special surfaces such as this fall under the cases to which

the methods of Darboux are applicable ;
I therefore pass on to a result which I do

not remember to have seen explicitly stated, (although it follows almost immediately

from several theorems of Darboux), and to some considerations suggested by it. Enough
has been said to shew that integration of Laplace's equation leads rapidly to many of

the chief known results concerning minimal surfaces.

6. Since Laplace's differential equation is linear, the sum of any two of its solutions

is itself a solution: if then px and p2 be two minimal functions of I, m, n, pi+p^ is also

a minimal function. Stating this theorem in geometrical language, we enunciate the note-

worthy property :
—
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If any two minimal surfaces be taken, the locus of the middle points of lines which

join the points of contact of parallel tangent planes is also a minimal surface.

But, conversely, the possibility that a given minimal value of p may be resolved into

the sum of two or more simpler values is suggested by the theorem. I propose to carry

through this idea in the case of rational algebraic minimal functions;— to prove that every

rational algebraic minimal function may be expressed as the sum of a finite number of

such functions each belonging to certain standard types, much in the way that every

rational fraction may be broken into partial fractions. In other words, I hope to establish

that by taking a finite number of minimal surfaces of certain normal types, disposed in

space with various orientations, and constructing the locus of the centre of mean position

of the points of contact of parallel tangent planes, we may arrive at any minimal surface

whatever, for which p is a rational algebraic homogeneous function of I, m, n, of the

first degree.

When p is such a function, the surface, whether minimal or not, will have one and

only one tangent plane parallel to any given plane : if the surface be of class k + 1 it will

have the plane infinity as a &-fold tangent plane, and must therefore be reciprocal to

what Cayley called a Monoid surface : (Comptes Rendus, t. 54, 1862, pp. 55, 396, 672). A

paraboloid is the simplest instance of the surfaces we are considering. Now the analogous

curves in plane geometry presented themselves to Clifford's notice in the course of that

wonderful chain of reasoning, the Synthetic Proof of Miquel's Theorem, (Collected Works,

p. 38), and were named by him double, tnple, ...k-fold, parabolas. Following his example,

1 call a surface of class k+1, which has the plane infinity as a A:-fold plane, a k-fold para-

boloid
;

and the family of such surfaces, (the value of k not being specified), Multiple

Paraboloids.

7. The tangential equation of a /:-fold paraboloid will be written as

p = V+U,

U and V being rational integral homogeneous functions of I, m, n, of degree k and k + 1

respectively. If for the moment partial differentiations with regard to I, m, n, be indicated

by suffixes 1, 2, 3, respectively, the condition (4) that the surface should be minimal gives

us the identity

V(Un + Uw + U33)-U(Vn + V22 + V33) + 2(Ul V1 + U,V2 + U3V3)=2V(U^ + U2
2 + U3

2)^U;

and so proves that (CV + U? + U3
2

) -r- U

is a rational integral function of I, m, n :
—a result possible only if U be the product of

factors which are powers either of

I
2 + m" + n2

,

or of linear functions such as al + bm + en,

in which a2 + b2 + c2 = 0.
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But it will appear further that l
2 + m* + n2 cannot be a factor of U; for if in the

above identity we substitute

U= (f + m* + ni

)
sT=riS

T,

and take account of the fact that V and T are homogeneous functions of degree k + 1

and k — 2s respectively, we find that

(2s
2 + 3s)FT2

-=-r2

is identically equal to an integral function of I, m, n : but this is an absurdity and we are

compelled to infer that s = 0.

8. The denominator U of a rational minimal value of p is thus wholly composed
of factors, each an integral power of a linear function of I, m, n,

al + bm + en,

whose coefficients a, b, c, are such that the sum of their squares vanishes. Any one

such factor vanishes for one and only one real system of values of the ratios I : m : n;

and, if the corresponding real direction be taken as the 2-axis in a new coordinate-

system, is reduced to the form

G(l ±im),

the quantity C being a complex constant. Proceeding now to the consideration of minimal

values of p in which the denominator U is a power of a single linear function of

I, m, n, we may without loss of generality suppose the linear function thus reduced, and

confine our attention to values of the form

p = V h- (I + imf.

That such values actually exist is shewn by the formulae (5), in which if we make

x («)
= A (- u)-

k
; Xi («») - A O0* ;

we obtain a value of p of the kind sought, viz.

p = - A [(«
-

kr) (n + r)
k + (n + kr) (n

- r)
k

\ +(Z + imf.

The numerator of this fraction, when the special value

l--2*(/fc-l)

has been assigned to A, will be denoted by ^i(n); thus

2* (k -l)fj,k (n) + (n- kr) (n + r)
k + (n + kr) (n

-
r)

k = 0.

The function /**(») is real and may be expanded in powers of n and r2
; or, by

rearrangement of the terms, in powers of n and (P + m)2
: moreover on account of the

value given to A the coefficient of the highest power of n in the latter form is unity:

we might in fact write

Ht (n)
= nk+l +my- 1

(I
2 + m2

) + m2«*-
8

(I
2 + m2

)
2 + . . .,
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m1; m2 ,
... being real numerical constants. The corresponding minimal value of p is of

the form

p = fik (n) -7- (I + im)
k = nk+1 + (1 + im)

k + W -r- (I + im)
k~ l

,

W denoting some rational integral homogeneous function of I, m, n (with complex numerical

coefficients), of degree k.

It will be seen that of integer values of k the value k = 1 alone fails to give a

function fik{n)-
It may De easily proved, and will be assumed in what is to come,

that no minimal value of p exists whose denominator is I + im and whose numerator

is a rational integral function of the second degree.

9. In order next to determine the most general rational integral function V of

degree k + 1 such that the surface

p = V -7- (I + im)
k

is minimal, it will be convenient to write for a time

y= I + im, g =1 — im,

and to use /, g, n, as independent variables in place of I, m, n. The differential equation

of a minimal surface is now

dn*
+
*dfdg-°'

and is to be satisfied by

Substituting and multiplying by /*, we find that

dV
^
—

'-/+ an integral function = 0,

and deduce that the part of V that does not contain f must consist of a single term,

C.nk+\

C being a constant. It follows that by subtracting a numerical multiple of the fore-

going particular solution we obtain a new minimal function plt viz.

Pl-[F-Cw (»)f+/'i

in which a factor f is common to numerator and denominator, and may be removed.

By repetition of the argument and process we continually diminish the class of the

surface, and finally establish the theorem :
—

The most general rational minimal value of p which has (I + imf for its denominator is

p = al + fim + yn + 2Cs /is (n)
-=-

(I + im)" ; (»
- 2, 3, 4, ... k) ;

the quantities a, /3, 7, (72 ,
C3 ,

... C^ being complex constants.
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10. The same method is applicable to the case when the denominator U contains

other factors besides /: for if we substitute

in the differential equation we find on multiplying by /* that, if $ do not contain /
as a factor,

s dV_ v d8

dff dg

must be divisible by /, and infer that the terms in V that are independent of / must be

equal to those in S multiplied by nh+1 and a constant. If /< be equal to unity we must

therefore have

V= A .n2 .S+ terms divisible by /;

but substitution in the differential equation proves that A must vanish: if on the other

hand h be greater than unity, we may, by subtracting a properly chosen multiple of

obtain a new minimal function whose denominator does not contain so high a power of f
as fh

. It follows that the most general rational minimal function with denominator

(l+imf .8

may be obtained by adding to a value with denominator S the terms

lC,.ps (n) + (l + imY : (s=2, 3, 4, ...h):

C2 , C3 ,
... Ch , being complex constants.

The factors of S may now be subjected to the same treatment
;

that is to say,

first reduced to the form I + im by a real transformation of axes, and then made to

yield a series of fractions of the types already discovered. The most general minimal

value of p which is a rational function of I, m, n, may therefore be resolved into the

sum of a number of terms each separately capable of being reduced by a real trans-

formation of axes to one of the types already quoted.

11. The simplest value of p of the kind we are considering is obtained when

k = 2, viz.

2p (I + imf = 2n3 + 'An (P + m%
and leads to a surface,

2 {x + iyf = 18 O + iy) z + 27 (a-
-

iy),

of class and order three: but, as imaginary surfaces such as this are of minor interest,

we may pass on to the discussion of the case when the surface is real.

In order that the surface should be real, each of the typical complex terms into

which p was broken up must be accompanied by the conjugate complex term, the

numerical constants multiplying each also being conjugate imaginaries : a rotation of the

42—2
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coordinate planes about the 2-axis will bring both these numerical coefficients to the

same real value A. For real values of p the typical real component fractions are

therefore

A . /** (») {(I + imf + (l- imf} +\P + »»»)* ; (4
=

2, 3, 4, . . .).

Every real minimal value of p ivhich is a rational function of I, m, n, may be expressed

as the sum of a finite number of real fractions, each separately reducible by real trans-

formation of axes to one of the forms just quoted. Terms such as

al + /3m + yn

may also be present, but are ignored since a change of origin will remove them.

If we again introduce Euler's angles 6 and
</>,

as in § 4, the surface corresponding

to the above value is

p = A.fih (n).l(l + imf + (l-imf}+(l*+m*f; (k=2, 3, 4, ...)

= B . cos k<j> .Uk- cos 0)
(cot \

d\ -
(k + cos 6) (- tan

\d)\

and may be described as the standard minimal multiple paraboloid of the kth type : the

origin of coordinates is called its centre and the 2-axis its axis. The class of every real

multiple paraboloid that is a minimal surface is necessarily odd
;

thus the above standard

surface is a 2&-fold paraboloid and is of class 2k + 1. The theorem established now admits

of the following statement :
—

By placing a finite number of standard surfaces (defined above) with their centres co-

inciding but with various orientations, and taking the locus of the centre of mean position

of the points of contact of parallel tangent planes, we can obtain every minimal surface

which is a multiple paraboloid.

Corresponding to any selected real direction, a multiple paraboloid has, as was pointed

out, one and only one tangent plane ;
there is therefore no ambiguity in the foregoing

construction : certain of the planes may however be at an infinite distance. If the surface

be minimal, the number of infinitely distant tangent planes must be finite, their directions

being normal to the axes of the standard surfaces from which the given surface may be

derived. Given a minimal multiple paraboloid, the directions of the axes of the component

surfaces are thus plain geometrically.
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§ 1. Introduction.

The theory of the Abelian integrals associated with an algebraic plane curve can

be generalised in two distinct ways when we pass from a plane curve to a surface in

three dimensions, that is when we are dealing with an algebraic function of two indepen-

dent variables. Given an algebraic equation, f(x, y, z) = 0, between three non-homogeneous

variables, we may study either double integrals of the type 1 1 R (x, y, z) dxdy, where

R is rational, or single integrals of total differentials of the type / (Pdx + Qdy), where

P, Q are rational functions of x, y, z, which satisfy in virtue of /=0 the condition of

integrability

dy dx'

Such integrals of total differentials were introduced into mathematical science by
Picard about fifteen years ago*, and have been the subject of several memoirs by

him-f-. They have also been studied to some extent by PoincareJ, Noether§, Cayley|| and

others. The most important results hitherto obtained are given in the " Thdorie des

*
Comptes Rendus, t. 99 (1 Dec. 1884).

t The most important appeared in Liouville, ser. iv.

t. 1 (1885), and ser. iv. t. 5 (1889). There have also been

a series of notes in the Comptes Iiendus.

{ Comptes Rendus, t. 99 (29 Dec. 1884).

§
" Ueber die totalen algebraischen Differentialaus-

driicke," Math. Ann. t. 29 (1887).

||
Note sur le memoire de M. Picard " Sur les integrates

de differentielles totales algebriques de premiere espeee,"

Hull, des Sciences Math. ser. n. t. x. (1886): Coll. Math.

Papers, t. xn. no. 852.
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Fonctions Algdbriques de deux variables inde'pendantes
"

recently (1897) published by

Picard and Simart, a book to which it will in general be convenient to refer.

Integrals of total differentials, like ordinary Abelian integrals, fall into three classes,

of which the first consists of integrals which are always finite. But whereas the

number of linearly independent integrals of the first kind associated with a plane curve

is at once expressible by a simple formula in terms of the singularities of the curve,

and such integrals always exist if the curve has less than its maximum number of

singularities, the corresponding problem for integrals of total differentials is far less

simple and has only been solved for special classes of surfaces. On a cone, an integral

of a total differential is equivalent to an Abelian integral on a plane section of the

cone, so that no new problem arises. Moreover, according to Cayley*, any ruled surface

may be birationally transformed into a cone, the genus (deficiency) of a section of which

is equal to that of a general plane section of the original surface
;
hence the number of

integrals of the first kind on a ruled surface can at once be determined, but I am not

aware that there is any known process whereby the transformation can in general be

effected or the integrals actually constructed. For other classes of surfaces the most

important results so far obtained are negative in character; thus it is evident that no

integrals of the first kind can exist on a rational (unicursal) surface, and the same

proposition has been establishedf for surfaces without any singular points or singular lines.

The determination of surfaces or classes of surfaces which admit integrals of the

first kind of total differentials appears therefore to be a problem of some interest.

Since quadrics and cubic surfaces (other than non-singular cones) are rational, they

can possess no integrals of the first kind. Two non-conical quartics possessing such

integrals were discovered by Poincare'J, and stated to be the only possible ones.

Poincare^s results have been adopted by Picard, who has given a proof in outline§.

The object of this paper is to establish the existence of certain other quartic

surfaces which have the property in question, but have apparently been overlooked by

the two eminent mathematicians just named. The method which I have adopted appears

to shew also that the list given is complete.

§ 2. Analysis of the Fundamental Differential Equation.

It has been shewn by Picard
[j

that if a surface of order n, of which the equation

in homogeneous point coordinates is f{x, y, z, w) = 0, admits of an integral of the first

kind, then / satisfies the partial differential equation

*g+*Jf +*K*«i-« <"'

* " On the deficiency of certain surfaces," Math. Ann. J Comptes Rendus, t. 99 (29 Dec. 1884).

t. in. (1871) : Coll. Math. Papers, t. vm. no. 524. § Picard et Simart, pp. 135, 136.

T Picard et Simart, pp. 113, 119, 120.
|| lb., Chapter V.



OF THE FIRST KIND OF TOTAL DIFFERENTIALS. 335

where U 82 , 'ft, 84 are quantics of order n - 3, which satisfy the equation

aft aft aft aft

dx dy dz dw .(2).

These equations being satisfied, the differential

dx,

x,
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second minor, and so on, and if p—pi = a, p x

— p2 =a, ..., and /3, /3' ...,7, 7' ... are the

numbers corresponding similarly to the other factors, s — b, s — c, ... of A, then

(a -aY, (s-a)*..., (s-bf, (s-bf ...,

are defined as the elementary factors of A.

These factors are shewn by Weierstrass to be invariant for linear transformation of

the variables, and the system of differential equations

dx _ . dy _ . dz _ * dw _ a
Tt~ ffl ' dt~

ff" dl~°" dt~°A '

is shewn to be reducible by linear transformation of the dependent variables to a

standard form, in which there are as many distinct sets of equations as there are

elementary divisors of A, the set corresponding to an elementary divisor (x
—

a)
p
being of

the form

"&'**• dt=
a^ + ^->

-jF
=a*P + xp_1 (5).

Applying this theory to our equation we see that the possible ways in which A
can be resolved into elementary factors are as follows :

(I) All the roots of A = equal : (i) (s
-

a)\

(ii) (s-aY, (s-a),

(iii) (s-af, (s-a)-,

(iv) (s
-

of, (s
-

a), (s
-

a),

(v) (s-a), (s-a), (s-a), (s-a).

(II) Three roots of A = equal : (i) (s
-

a)
3

, (s
-

b),

(ii) (s
-

a)\ (s
-

a), (s
-

b),

(iii) (s
—

a), (s
—

a), (s
—

a), (s
—

b).

(III) Two pairs of roots of A = equal : (i) (5
-

af, (s
-

b)\

(ii) (s-a)\ (s-b), (s-b),

(iii) (s-a), (s-a), (s-b), (s-b).

(IV) One pair of roots of A = equal : (i) (s
—

a)
2
, (s

—
b), (s

—
c),

(ii) (s-a), (s-a), (s-b), (s-c).

(V) All the roots of A = distinct : (s
—

a), (s
—

b), (s
—

c), (s
—

d).

Also the equation (2) shews that the sum of the roots of A = vanishes, so that

we must have in

Case I. a = 0,

Case II. b = — 3a ^ 0, and we may evidently take a = 1, b = — 3,
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Case III. b = — a ± 0, and we may take a = 1, b = — 1,

Case IV. b + c = — 2a,

Case V. a + b + c + d = 0.

It follows at once that the Case I. (v) is impossible.

For the purposes of our problem we do not want the general integral of the

equation (1), but only such integrals as are homogeneous quartics; we may also leave

cones out of account, and we must reject solutions giving degenerate (reducible) quartic

surfaces
;
we find also that in one or two other cases we arrive at surfaces which are

obviously rational and must therefore be rejected.

§ 3. Integration of the Differential Equation, leading to five possible surfaces.

We have in all (after rejecting I. (v)) thirteen cases to consider, which will now

be dealt with seriatim. In each case the transformed variables will still be denoted

by x, y, z, w, and the auxiliary equations will be expressed in the usual Lagrangean

form, the variable t used by Weierstrass being omitted.

I. (i). The auxiliary equations are :

dx dy _dz _ dw
x y z

'

three integrals of which are :

x= const., y
2 — 2zx = const., y

s + 3x"~w — Sxyz = const.,

so that the general integral of the equation (1) is

f=<p(x, y-
—

2zx, y
3 + 3x*w — 3xyz),

where
<f>

is an arbitrary function.

The only quartic of this form is a sum of terms

x\ x*(y
2

-2zx), {y*-2zxf, x (y
s + 3a?w - 3xyz),

so that w occurs linearly or not at all, and the surface is therefore a cone or rational.

I. (ii).
The auxiliary equations are :

dx _dy _dz _ dw
"0~

-
T~7

-
z

'

three integrals of which are :

x = const., y = const., z2 — 2yw = const.,

so that

f=cf>(x, y, z*-2yw).

Vol. XVIII. 43
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The general quartic of this type is

(z*
- lywf + 2 2 -

2yw) (x, yf + (x, y)*
= (6),

where (x, y)
n denotes an arbitrary quantic of order n.

I. (iii). The auxiliary equations are :

dx _ dy _ dz _ dw
~0~~x~~6~ T*

leading to x = const., z = const., yz
— xw = const., and

/=</>(#, z, yz
—

xw).

The general quartic of this type is

(yz
- xw)- + 2 (yz

- xw) (x, zf + (x, z)*=0 (7).

I. (iv). The auxiliary equations are :

dx _dy _dz _ dw
"0"~lc~

-
0"
-

~0"'

leading to the cone

/=<£0, z, w) = 0.

II. (i). The auxiliary equations are :

dx _ dy dz dw
x x + y y + z —3w'

of which one integral only, viz. a?w = const., is algebraic, the other two being logarithmic.

Thus the only possible form of/ is ^(x'w), leading to a set of planes.

II. (ii). The auxiliary equations are :

dx _ dy _dz _ dw
x x + y z — Sw '

three integrals of which are :

y/x
—

log x = const., z/x = const., a?w — const.,

so that the only algebraic form of / is
</> (z/x, afw), and the quartic is the degenerate

surface

(z, x)
3 w = 0.

II. (iii). The auxiliary equations are :

dx _dy _dz _ dw
x y z —3w'

three integrals of which are :

y/x = const., z/x = const., xhu = const..

which lead as before to a degenerate surface

(x, y, z)
a w = 0.
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III. (i). The auxiliary equations are :

dx _ dy dz _ dw
x x + y — z z — w'

three integrals of which are :

yjx
—

log x - const., w/z + log z = const., zx = const.,

so that the only possible quartic is the degenerate surface

zlix2 = 0:

III. (ii). The auxiliary equations are :

dx _ dy _ dz _ dw
x x+y — z — w'

three integrals of which are :

y/x
—

log x = const., zx = const., z/w = const.,

leading to f= <f> (zx, z/w), which gives a cone.

III. (iii). The auxiliary equations are :

dx _dy _ dz _ dw
x y — z — w'

leading to

yjx = const., xz = const., xw = const.,

whence f= </> (xz, xw, y/x), so that the quartic is quadratic in x, y and in z, w, viz.

of the form

(*, y\z, w)=0 (8).

IV. (i). The auxiliary equations are :

dx dy _dz _ dw
ax x+ ay bz cw'

where 2a+b + c=0.

If a j= 0, three integrals are :

ay/x
—

logo;
= const., zP/x*

= const., wa
/x

c = const.,

of which the first is essentially logarithmic, so that we have /= <£(.2<7<c*, vfl/a?), leading

to a cone.

If a = 0, so that c = - b j= 0, three integrals are :

x= const., x log z — by
= const., zw = const.,

so that f=4> (zw, x), leading again to a cone.

43—2
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IV. (ii). The auxiliary equations are :

dx dy dz dw
ax ay bz cw'

where 2a + 6 + c = 0.

We may distinguish at once three sub-eases which may arise, viz.

(a) a = 0, 6 = -c =£0.

(/3) 6 = 0, c = -2a±0.

(7) a^O, 6#0, c=£0.

In sub-case (a), three integrals are:

x = const., y = const., zw = const.,

so that f=<j)(x, y, zw), and the quartic is

zW + zwix, yf + (x, yY = (9).

In sub-case (/3), three integrals are :

s = const., y\x — const., a?w — const.,

so that f= <f> (a?w, yjx, z).

The only possible quartic terms are :

zw(x, y)
1

, z*,

so that the surface degenerates.

In sub-case (7) it is a little simpler to work directly with the corresponding

partial differential equation

(
aX

dx
+ a

ydy
+bz

dz
+ CW

dwF
=0 >

and to consider the possible terms in f.

Since the differential operator only alters the coefficient of any term, each term of

f must separately satisfy the differential equation.

We verify at once that the terms z*, w*, (x, y)* cannot exist.

If a term of the type (x, y)
3 z exists, then 3a + b = 0, whence a = c, contrary to

hypothesis; similarly no term of the type (*, yfw can exist. Similarly no terms of the

types (x, yf z"*, (x, 2/)
2w2 can exist; as their existence would involve 6 = c.

Any term of the type (x, yf zw satisfies the equation.

If a term of the type (x, y) z3
exists, then a + 36 = 0, whence c = 06, so that the

equation is

- 3 (xfx + yfy) + zfz + bwfu,
= 0,
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of which the general integral is

f=<f>(z
3
x, x2

zw, y/x),

leading to

z3 (x, y) + zw {x, y)
a = 0,

a degenerate surface.

Similar reasoning shews that no term of the type (x, y) w3 can exist.

If a term (x, y) z*w, or (x, y) zw
2

exists, then a = b or a = c, contrary to hypothesis ;

and if a term z3w or zw3
exists, then also a = b or a = c.

Thus the only possible terms are of the type (x, yf zw and the surface consequently

degenerates.

V. Since no two of a, b, c, d are equal, one of them at most can vanish. We may
therefore distinguish two sub-cases :

(a) d = 0, a + b + c = 0,

(/8) a±0, 6^0, c^=0, d + 0.

Sub-case (a). Proceeding as in IV. (ii) (7) we see that the terms x*, y
4

,
z* cannot

exist in /, but a term w* may exist.

If a term afy exists, then b = —
3a, c = 2a, so that the differential equation

reduces to

xfx -3yfy + 2zf2 = 0,

whence /=^>(a^y, z\a?, w),

so that the only possible terms are x*y, xyzw, w\ The quartic is therefore rational,

since y only occurs linearly, if at all.

If a term a^y
2

exists, then a + b = 0, and therefore c = 0, contrary to hypo-

thesis.

For the same reasons no terms of the types (y, z)
1
, (z, x)

1
, (x, y)

4 can exist.

If a term x2

yz exists, then 2a + b + c = 0, whence a = 0, contrary to hypo-

thesis.

Thus no term of the type (x, y, z)* can exist, so that f contains w as a factor

and is degenerate.

Sub-case (/3). Under the conditions assumed it is evident that no terms such

as x*, or x?yz can exist
;
and there cannot be more than one term belonging to a

group of the type (x, yf.

Let the term a?y exist, then b = — 3a, c + d = 2a, and no other term involving
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x3 can exist. If oPz* exists also, then a + c = 0, d = 3a. The differential equation

is now
xfx

-
%yfy

-
zfz + Swfw = 0,

whence f=$(x*y % z*w, xz),

so that the most general form of the surface is

(a?y, z*w, afz", yW, xyzwf=0 (10).

Let the terms ot?y,
xz3

co-exist, then b = — 3a, a = — 3c, d = — 7c
;

and the

differential equation is

- 3xfx + %yfy + zft
- 7wfw = 0,

whence f—4> (sty. a:zS
>
#'ws

),

and the only possible quartic terms are o?y, xz3
, xyzw, so that the surface degenerates.

If the terms x*y, xyzw co-exist, then we get the surface (10) again. The cases

thus considered and those obtained by a mere interchange of variables exhaust all

possibilities, if a term such as x*y exists.

If no term cubic in any one variable exists, then the possible terms to be

considered are of the two types #y, xyzw. If only one or no term of the former

type exists the surface degenerates ;
if terms such as x*y

2
,

x^z* co-exist, then b = c
;

if #y, z2w" co-exist we revert to the case of (10).

We have thus considered all possible cases.

§ 4. Tabular Statement of Results.

The preceding analysis shews that if we exclude conical and degenerate surfaces,

there are five and only five types of quartic surfaces, given by equations (6), (7), (8),

(9) and (10), which satisfy Picard's differential equation, and are not prima facie rational

surfaces. Surfaces which can be obtained from one another by linear transformation of

the coordinates are of course not counted as distinct.

After making some slight changes of notation with a view to greater uniformity,

arranging the surfaces in the order (9), (8), (7), (6), (10), and adding for convenience the

corresponding values of 6U 2 , 3 ,
dit we get the following table:
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Surface
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then leads to

x'2w'=(z', w'f (A').

(B) Choosing as a new variable y one of the factors of (x, y)s
2

, we can write the

equation :

*3
(«» y)i + zw (*. yV + v?y («, yY = o.

The quadric transformation:

j . ,./*'x : y : z : w = x z : y z : y w : zw

then leads to

x' : y' : z' : w = xz : yz : yw : zw

y'(x', A* + «'(«'. y'h* + *'*(*', y'Y = o (B').

(C) The coordinates can evidently be chosen so that the point x = y = z = lies on

the surface
;

z is then a factor of (z, wY, which may accordingly be written z (z, wf.

The quadric transformation:

x : y : z : w — z' (x' + y') : y'w' : z'w' : w/'
2

j

x" : y' : z' : iv' — xw — yz : yz : z1 : zw

then leads to

flrV+ fcsV, w')
2 + (/, w')

3 = (C).

(D) Changing the variables as in (C) and employing the quadric transformation:

x : y : z : w = ^ (xz' + y'
2
) : y'w' : z'w' : w'2

}

x' : y : z' : w' = 2xw — y
a

: yz : z* : zw )

we get x'*z' + 2x'(z', w'f + (z', wj =
(D').

(E) The cubo-quartic transformation :

x : y : z : w =
y'-z" : x'w'3 : x'y'z'tv' : x'y'w'-\

x : y : z' : w
' = z'w : xw- : xyz : xyw J

'

converts the surface into

ay'z- + hx'-y' + cx'y'z' + dx'y'
2 + ex'"z = (E').

The five surfaces (A')
—

(E') are cubic cones, which are in general non-singular, so that

each possesses an integral of the first kind. The birational transformation of such an

integral converts it into an integral of the first kind on the corresponding quartic surface.

Moreover, if the coefficients which occur in the equations are left arbitrary, the

five cones are perfectly general cubic cones, though they occupy special positions rela-

tively to the coordinate planes. Hence we see that a quartic of any of the five types

can be birationally transformed—if necessary via a cubic cone—into a quartic belonging
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to any one of the other types. But in order that two such quartics with given co-

efficients should be transformable into one another it would of course be necessary that

there should be a relation between their coefficients equivalent to the condition that

the corresponding cubics should have their absolute invariants equal.

It should be noted moreover that we have supposed our quartic surfaces to be
the most general of their respective types. For special relations between the coefficients

one of the quartics might become a cone—a case that we have excluded—or the cor-

responding cubic cone might become rational or degenerate, in which cases no integrals

of the first kind could exist.

§ 6. Numerical Genus of Surfaces which admit of Integrals of the first kind.

It appears from the preceding analysis that the only quartic surfaces which admit

of integrals of the first kind are cones or birational transformations of cones; conse-

quently the (numerical) genus* is in each case negative; the numbers being —3 for

a non-singular quartic cone,
— 2 for a quartic cone with one double line, and otherwise — 1.

In the course of an investigation dealing with quintic surfaces I have met with

several surfaces which admit of integrals of the first kind, and these surfaces likewise

have negative genus. On the other hand Humbert in his well-known memoir on hyper-

elliptic surfaces f has given some octavic surfaces which admit of integrals of the first

kind but are of positive genus. Whether such integrals can exist on any surface of

order 5, 6, or 7 with positive genus appears to be at present unknown.

§ 7. Geometrical Characteristics of the five Surfaces.

The surface (A) occurs in Kummer's well-known paper on quartic surfaces which

contain families of conies J. The surface touches itself at each of the points, y = z = w = 0,

x = z = w — 0; any plane section through these points consists therefore of a plane quartic

curve touching itself twice, that is of a pair of conies having double contact. The

two points belong to a class of singular points of surfaces which seem to have been

little studied
;
such a point may be defined as a uniplanar double point, which is further

a quadruple point on the section by the tangent plane, and is consequently a tacnode

on a general section through the point. Kummer speaks of a "
Selbstberlihrungspunct

"
;

tacnode or tacnodal point seems a convenient English name§. It can easily be seen

that a tacnode diminishes the order of the reciprocal surface by 12, so that for this

purpose it is equivalent to six ordinary double points. As Picard and Simart point out,

* Genre numerique, deficiency. Cf. Cayley's paper + Liouville, se>. iv. t. 9 (1893).

"On the deficiency of certain surfaces," quoted before; J Crelle, t. 64 (1864).

Picard et Simart, ch. vm. § iv
;
Castelnuovo & Enriques: § According to Picard and Simart this is the name

" Sur quelques recents resultats dans la theorie des surfaces given by 4es geometrea anglais,' but I have not been able

algebriques," Math. Ann. t. xivni. (1897). to find any such authority for it.

Vol. XVIII. 44
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the surface can be transformed by linear substitution (x'
= x + iy, y'

= x — iy) into the

general quartic surface of revolution.

The birational transformation employed in § 5 establishes a one-one correspondence

between points on the conies and points on the generators of the cubic cone.

The surface (B) is the well-known quartic scroll with two non-intersecting double

lines, which is Cayley's first* and Cremona's eleventh f species of quartic scroll.

The surface (C) is Cayley's fourth and Cremona's twelfth species of quartic scroll,

and is the limiting form assumed by the preceding surface, when the two double lines

coincide without cutting one another, thus giving rise to the higher singularity some-

times called a tacnodal line}.

The generators of the surfaces (B) and (C) correspond to the generators of the

cones into which the surfaces can be transformed.

The surface (D) has a double point at y = z = w=0, which is for some purposes

at least equivalent to two tacnodes, as defined above
;

and the surface can be regarded

as a limiting form of the surface (A) when the two tacnodes coincide. A section by
a plane through z = w = breaks up into two conies which have contact of the third

order at the singular point. This singularity can be defined—in a form applicable to

a surface of any order—as a uniplanar double point such that a section by an arbitrary

plane through some fixed tangent line at the point has two branches meeting one

another in four points at the singular point. This property implies that in the case of a

quartic the section breaks up into two conies. As far as I am aware neither this

singularity nor the surface has hitherto received any attention.

As before the conies correspond to the generators of the cubic cone.

It may be observed that though the surfaces (C) and (D) can be regarded, from

a geometrical point of view, as limiting cases of Poincare"s surfaces (A) and (B), they are

not analytically special cases of them, that is, the equations (C) and (D) cannot be

derived from (A) and (B) by giving special values to the coefficients.

The remaining surface (E) does not appear to have been studied hitherto. It has two

precisely similar uniplanar points of a rather complicated character, which can be stated

in a form applicable to a surface of any order somewhat as follows. The section by
the plane tangent at the point has a triple point, there, as always happens with a

uniplanar or biplanar point ;
but in addition the three branches at the triple point

coincide in direction, and if we call their common tangent the singular tangent line,

this line meets the surface not merely in 4 but in 5 coincident points : thus in the

quartic case this tangent line lies wholly on the surface. At an ordinary uniplanar point

a section by a plane through a singular tangent line has a tacnode (equivalent to two

* "A Second Memoir on Skew Surfaces, otherwise t " Sulle superficie gobbe di quarto grado," Mem. di

Scrolls," Phil. Trans., t. 154 (1860): Coll. Math. Papers, Bologna, ser. n. t. vm. (1868).

t. v. no. 340. J Salmon's Geometry of Three Dimensions, § 556.
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ordinary double points), but in this case the singularity of the section is of a higher order,

one of the branches having an inflexion, so that the singularity is equivalent to three

ordinary double points. In the quartic case the section is a cubic and a tangent to it at

an inflexion.

When the surface is birationally transformed into the cone (E') the generators of

the cone correspond to a family of twisted cubics on the quartic. For to the generator

x' = \y', y'
=

fj,z' (where X, /j.
are connected by a cubic equation), corresponds in the

x, y, z, w space the variable part of the curve of intersection of the quadrics z* = \am>,

wa _
pyZ

• but these have in common the fixed straight line z = w = 0, so that their

residual curve of intersection is a twisted cubic.

44—2



XVIII. An Electromagnetic Illustration of the Theory of Selective Absorption

of Light by a Gas. By Professor Horace Lamb, M.A., F.RS.

[Received 13 December 1899.]

The calculations of this paper, so far as they are new, were undertaken with a

view of obtaining a definite mathematical illustration of the theory of selective absorp-

tion of light by a gas. The current theories of selective absorption apply mainly to

the case of molecules in close order, and it has not been found possible to represent

the dissipation of radiant energy except vaguely by means of a frictional coefficient.

It seems therefore worth while to study in detail some case where the dissipation can

be exactly accounted for
;
and to consider in the first instance the impact of a system

of plane waves on an isolated molecule.

If we assume that the molecule has a spherical boundary, then, whether we adopt

the electric or the elastic theory of light, the requisite mathematical machinery is all

ready to hand. It is necessary, however, for our present purpose to devise a molecule

which shall have a free period of vibration, whether mechanical or electrical, of the

proper order of magnitude. The mechanical analogy was in the first instance pursued,

the aether being represented by an incompressible elastic medium. This enables us to

illustrate many special points of interest, but for the purpose of a sustained comparison

with optical phenomena the elastic-solid theory proved in the end to be unsuited from

the present point of view, as well as on other well-known grounds.

As regards the electric theory, the scattering of waves by an insulating sphere has

been treated by various writers*, with however the tacit assumption that the dielectric

constant (K) of the sphere is not very great. In the present paper attention is specially

directed to the case where K is a very large number. On this supposition free

oscillations (of two types) are possible, whose wave-lengths (in the surrounding medium)
are large compared with the periphery of the sphere, and whose rates of decay (owing
to dissipation of energy in the form of divergent waves) are comparatively slow. And

when extraneous waves whose period is coincident, or nearly coincident, with that of

a free oscillation encounter the sphere, the scattered waves attain an abnormal intensity,

and the original wave-system is correspondingly weakened.

* Lord Kayleigh, Phil. Mag., Feb., 1881, and April, 1899; Prof. Love, Proc. Lond. Math. Soc, t. xxx., p. 308;
G. W. Walker, Quart. Journ. Math., June, 1899.
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The conception of a spherical molecule with an enormous specific inductive capacity
is adopted here for purposes of illustration only ;

and is not put forward as a definite

physical hypothesis. In order to comply with current numerical estimates of molecular

magnitudes, it is necessary to assume that for the substance of the sphere K has

some such value as 107
. This assumption may be somewhat startling ;

but it is not

necessarily inconsistent with a very moderate value of the specific inductive capacity
of a dense medium composed of such molecules arranged in fairly close order. And
it may conceivably represent, in a general way, the properties of a molecule, regarded
as containing a cluster of positive and negative

'

electrons.' In any case the author

may perhaps be allowed to state his conviction, that difficulties (such as they are) of

the kind here indicated will prove to be by no means confined to the present theory.

The main result of the investigation may be briefly stated. For every free period

of vibration (with a wave-length sufficiently large in comparison with the diameter of

a molecule), there is a corresponding period (almost exactly, but not quite, coincident

with it) of maximum dissipation for the incident waves. When the incident waves

have precisely this latter period, the rate at which energy is carried outwards by the

scattered waves is, in terms of the energy-flux in the primary waves,

*£* • to

where A is the wave-length, and n is the order of the spherical-harmonic component
of the incident waves which is effective. In the particular case of n=l, this is equal

to "477X2
. Hence in the case of exact synchronism, each molecule of a gas would, if

it acted independently, divert per unit time nearly half as much energy as in the

primary waves crosses a square whose side is equal to the wave-length. Since under

ordinary atmospheric conditions a cube whose side is equal to the wave-length of sodium-

light would contain something like 5 x 106
molecules, it is evident that a gaseous

medium of the constitution here postulated would be practically impenetrable to radia-

tions of the particular wave-length.

It is found, moreover, on examination that the region of abnormal absorption in

the spectrum is very narrowly defined, and that an exceedingly minute change in the

wave-length enormously reduces the scattering.

It may be remarked that the law expressed by the formula (1) is of a very general

character, and is independent of the special nature of the conditions to be satisfied

at the surface of the sphere. It presents itself in the elastic-solid theory; and again

in the much simpler acoustical problem where there is synchronism between plane waves

of sound and a vibrating sphere on which they impinge.

It has unfortunately not seemed possible to render this paper fairly intelligible

without the preliminary recital of a number of formulae which have done duty before,

notably in Prof. Love's paper. The analysis has however been varied and extended in

points of detail, with a view to the requirements of the present topic. In particular,
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the general expression for the dissipation of energy by secondary waves, which is

obtained in § 5, is found to take a very simple form, and may have other applications.

Some notations which are of constant use in the sequel may be set down for

reference. We write

,„ / d\«sin£ 1 f, _£ ,

r
4

1 /2 ,

r»U >
=
[-&& y"l.3...(2« + l)r 2(2n43)

+
2.4(2n + 3)(2n + 5)

"'
j,

K ''

t ,n ( *\**»t 1.8...(2»-l) ft p K* 1 m^*W =
\-Zds) ~K

~~
£m+1 I 2(1 -2n)

+
2.4(1- 2«)(3-2n) "")

v h

These may be taken as the two standard solutions of the differential equation

#F 2(n + l)dF

d? T^3f + ( '

the solution ^„(C) being that which is finite for f=0. In the representation of waves

divergent from the origin we require the combination

/.<0-(-^"*j?-*.<0-*Mn («>

The functions yfr„(^),
Vn (0> /«(£) a^ satisfy formulae of reduction of the types

*.'(«— {ftm(C) ( fi ).

rfw'(o+(i»+i)fb (t)-t-i (o (7).

from which (4) can be verified.

We have also the formula

*b'<0V.(tt**b(3*»'a)-gB9i
(8)t-

1. The equations to be satisfied in a medium whose electric and magnetic per-

meabilities are K and /i may be written, as in Prof. Love's paper,

K ~ _dy d/3 K
y. _ da _ dy K & _d/3 _da ,„.

c dy dz
'

c dz dx' c dx dy

_f^ & = dZ_dY _*Q = dX
L _dZ _/t . _dY_dX

c dy dz
'

c dz dx' c dx dy"

where (X, Y, Z) is the electric force, (a, ft, y) the magnetic force, and c denotes ihe

wave-velocity in the aether. Assuming a time-factor eiat, we find

(V
2 + A2

) X = 0, (V
2 + A2)F=0, (V*+h*)Z = Q (11),

... dX dY dZ .
Wlth * + ^ + *-° (12) '

where h* = Kf<ia
3
/c? (13).

* See Hydrodynamics, §§ 267, 305. t See Lord Rayleigh's Sound, § 327.



OF SELECTIVE ABSORPTION OF LIGHT BY A GAS. 351

When values of X, Y, Z satisfying these equations have been found, the corre-

sponding values of a, ft, 7 are given by (10). Or, we may reverse the procedure,

determining the general values of a, ft, 7 by means of equations similar to (11) and

(12) and thence the values of X, Y, Z by means of (9).

The solutions of (11) and (12) subject to the condition of finiteness at the origin

are of two types. In the first place we may have

X =
{hr yjrn

'

(hr) +(n + lj fn (hr)} ^r
nTn - nhrfn

'

(hr) xr^Tn
X

Y= {hrfn
'

(hr) + (n + l) f. {hr)} j-
rnTn - nhr^ (hr) yr'^Tn , )

Z - {hryjrn
'

(hr) + (n + 1) ifa (hr)}
A r»T„ - nhr^ (hr) zr»-*Tn

where Tn is a spherical surface-harmonic of order n*. These make

iaK
,

.. . I d d \ „_

*—¥+<»(•*-&)"*• y

iaK
7 = - +*<*K*&-*Q'MT*,

.(15).

It follows that

also that

xX + yY+ zZ = n (n + 1) yfrn (hr) rnTn .

xa. + yft + zy =0

d d
yZ-zY^{hr^(hr) + (n+\)^n (hr)}(y Tz

-z 1-)r
nTn , &c, &c (18),

yi -zft =— r^„ (hr) (-£-
rnTn - nxrn~*Tn

)
, &c, &c

d

\dx

.(16),

•(17);

.(19).

In the solutions of the second type we have

a = [hrfn
'

(hr) + (n + 1) fn (hr)} ^ r*Un - nhr^n
'

(hr) xr
n~*Un ,

ft
= {hrfn

'

(hr) + (n + 1) fn (hr)} £-
rnUn

- nhr^ (hr) yr
n~*Un ,

7 = {hryfr,: (hr) + (« + !) fn (hr)} ^r«Un - nhrfn
'

(hr) zr»-*Un

.(20),

* These are equivalent to the forms given in Hydro- formula? relating to spherical solid harmonics, such as

dynamics, § 305 (6), divided by 2n + l. The proof of the _ r" /d<pn ^^ d_ <pn \
^

equivalence requires the use of (6) and (7), together with
9n 2u + l \dx dx j*»+V

'
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where Un is a surface-harmonic. From these we deduce

.(21).

Hence xa + y/3 + zy = n(n+l)fn (hr) rnUn (22),

xX + yY+zZ = (23);

also yy-z/3={hr+n'(hr)+(n + l)+n
(hr)}(y^-z-£Ar

nUn , &c, &c (24),

yZ- ZY=- t

^r^n (hr)(~r
nUn -xrn-'Uny &c, &c (25).

It is known that the most general solution of our equations, consistent with

finiteness at the origin, can be built up from the preceding types, by giving n the values

1, 2, 3

2. Let us now suppose that a sphere of radius a, having the origin as centre, whose

electric and magnetic coefficients are K and /x, is surrounded by an unlimited medium

(the aether) for which K=l and /x
= 1. The disturbance in this medium may be regarded

as made up of two parts. We have, first, the extraneous disturbance due to sources

at a distance
;

this is supposed to be given. Secondly, we have the waves scattered out-

wards by the sphere.

The general expression for the extraneous disturbance is conditioned by the fact that

if the medium were uninterrupted the electric and magnetic forces at the origin would

be finite. It is therefore made up of solutions of the type already given, provided we put

K= 1, /j,= 1, and replace h by k, where

Ic=<t/c (26).

As usual, 2-rrjk is the wave-length of plane waves of the period 27r/o-.

In the corresponding expressions for the divergent waves, we must further replace

t|t,j(A?-) by fn (k7-), where /„ is the function defined by (5). This is necessary in order that

the formulae may represent waves propagated outwards, the complete exponential factor

being then eiklct r̂>
.

It is necessary to have some notation to distinguish the surface-harmonics used to

represent different parts of the disturbance. Those harmonics which occur in the expression

for the imposed extraneous disturbance will be denoted by Tn , U„, simply; those relating

to the scattered waves by Tn\ U^ ',

and those relating to the inside of the sphere by
T " U "
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We have next to consider the conditions to be satisfied at the surface r = a. It

appears at once from (16) and (22) that the solenoidal conditions of electric and magnetic
induction require that

y}rn {ka)Tn +fn (ka)T,;=Kfn (ha)Tn
"

(27),

irn (ka)Un +fn (ka)Un
" = p^ (ha) Un

"
(28).

Again, it is easily seen that the continuity of the tangential components of electric

and magnetic force implies the continuity of the vectors

(yZ-zY, zX-xZ, xY-yX)

and (yy
—

z{3, zi — xy, x(3
—

ya), respectively.

Hence from (18), (19), and (24), (25), we have, in addition

{kayfrn
'

(ka) + (*+ 1) fn (ka)} Tn + {kafn
'

(ka) + (n + l)/n (ka)} Tn
s

-{Ko+n'(ha)+(n + l)+n {ha)}Tn
*

(29),

and [kayfrn
'

(ka) + (n + 1) \jrn (ka)} Un + [kafn (ka) + (n + l)/n (ka)} Un
"

= {ka+n'(ha) + (n+l)ifrn (ha)} Un
"

(30).

Hence

2V K^n (ha) {kayfrn (ka) + (n + 1) -fn (ka)}
-

{hatyn
'

(ha) + (n + 1) yfrn (ha)} y{rn (ka)

Tn
~

K-fn (ha) [kafn (ka) + (n + l)/n (ka)}
-

{hayjrn
'

(ha) + (n + 1) i|r„ (ha)}fn (ka)

(31),

Un _ H-^n (ha) {ka\jrn
'

(ka) + (n + 1) -v/rn (ka)}
—

[hay]rn
'

(ha) + (n + 1) tyn (ha)} \frn (ka)

Un
~

^n(ha) [kafn'(ka) + (n+ l)fn (ka)}
-

{haifr^ (ha) + («+ 1 ) i|r„ (ha)}fn (ka)

(32).

We shall suppose that the wave-length of the disturbance in the aether is large

compared with the circumference of the sphere, so that ka is a small quantity. If we

were further to assume that K and
(jl

are not greatly different from unity, so that ha

is also small, we should obtain at once approximate expressions equivalent to those given

by Prof. Love, viz.

(n + l)(K-l) (ka)^
n nK + (n+l) •{I.8...(2n-1)}»(2»+1)

" { h

n ~

nfi + (n + l) {1.3...(2n-l)Y(2n+l)-
Un ^8*>

It is our present object, however, to examine the case where K is large. For

simplicity we shall suppose that /u=l, so that
,

K = h2

/k
2

. It will be found that the first

factors on the right hand of (33) and (34) must be replaced by

(n + l)(K- 1)fn (*a)-... ....

(nK+n+l)^n (ha)+~::.
K6o) '

Vol. XVIII. 45
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and

hayfrn'(ha)+ ...

*w(Aa) + ...
(3b) '

respectively, where the terms omitted are of the order kW compared with those retained.

It appears that there will be nothing abnormal in the amplitude of the scattered

waves, except when ha is nearly equal either to a root of
yjrn (ha) = 0, or to a root of

ty-n-\ (ha)
= 0, in which cases the preceding approximations cease to be valid.

3. If the extraneous disturbance consists of a system of plane waves, then, assuming

that the direction of propagation is that of ^-negative, and that the electric vibration

is parallel to y, we may write, symbolically,

X =
0, Y=eikx

,
Z =

(37),

a = 0, /3
=

0, y = -eikx
(38).

If this be resolved into a series of disturbances of the types (14) and (20) we

must have, by (13) and (19),

2n(n + l)fn (kr)r
n Tn = ye

ikx
(39),

2n(w+ l)yfrn (kr)r
n Un = -zeikx

(40).

Now if we put

oo = r cos 0, y = r sin cos co, 2 = r sin # sin to (41),

we have

iky^ = 2, (2n+l)(ikr)
n

y}rn (kr) sin 6 cos co Pn
'

(cos 6) (42)*,

where P„ (cos 6) is the ordinary zonal harmonic. We infer, by comparison with (39),

that

Tn = —^U (ik)
n~s sin 6 cos co Pn

'

(cos 0) (43).

Similarly, we find

2ji+ 1Un =
p-

(iky
1-1 sin sin co P„' (cos 0) (44).

In particular

T, =
^sin

cos co =
'^ (45),

tt 3 . . . 3 z
U 1
= --sm0sm °> = -2r (46).

* Proved most easily by differentiating with respect to cos 6 the known identity

e
ikrcos e= S (2»+ 1) (iir]r ^„ (k-r) Pn (cos 0).
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If we substitute the above values of Tn and Un in the formulas (31) and (32) we
obtain the expressions for the scattered waves.

4. We have now to examine the form which the scattered waves assume at a great
distance from the origin. When kr is large we have

/•(*«)-;
-ikr

(kr)
n+1

Hence, in the first type of solution, analogous to (14), we have

(47).

X '

(kr)
n

a—ikr

dx
rnTn-nxrn

-*Tnj,

Y=m» e
~ikrWMT*- nyrn

~* TS
)'

d
)r»rn\

(48),

knrn+1

knvn+1

e-*r [y
_.

dy

z
dx~

x
dl)

rnTr: '

7 =
£nj»n+i t>>j--ifi-)idx

(49).

We notice that X, Y, Z are ultimately of the order 1/r, whilst the radial electric

force (xX + yY + zZ)jr is zero to the present order of approximation. It is really of

the order 1 /r
2

. The radial magnetic force (xa + yfi + zy)/r is accurately zero. If the

contour-lines of the harmonic T„ be traced on a sphere of large radius r, for equal

infinitesimal increments of Tn\ the (alternating) magnetic force is everywhere in the

direction of these contours, and its amplitude is inversely proportional to the distance

between consecutive contours. The electric force is everywhere orthogonal to the contours,

and its amplitude is in a constant ratio to that of the magnetic force*.

For instance, in the case n = 1, if 2V be of the type (45), the lines of electric

and magnetic force have the configuration of meridians and parallels of latitude, the

polar axis being represented by the axis of y.

In the second type, analogous to (20), we have

y.* -
U« e

~ikr

(I
r"u» - nyrn

~2 u*
)

-

^=
(t>-"(£'-^-^"-

2 ^
*

Cf. Proc. Lond. Math. Soe., t. xm., p. 194.

•(50),

45—2
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i
n~l id d\

nTJ y \X --¥^Ay Tz~
Z
dy)

r Un>

Y~ £*{»&-&yv;>\ (*>
fcnrn+l

z
i"- 1 I

d_
d\

nTT A
-~k^+Ax

dy
y dx)

r Un
)

with a similar interpretation. The contour-lines of Un are the lines of electric force,

and the lines of magnetic force are orthogonal to them.

5. The calculation of the energy carried outwards by the scattered waves leads to

some very simple results. By Poynting's theorem*, the rate at which the energy in

any given space is increasing is equal to the integral

c

4^ lf[l(yY-/3Z)
+ m(aZ-yX) + n(0X-aY)}dS (52),

taken over the boundary of the space, I, m, n denoting the direction-cosines of the

normal drawn inwards from the surface-element dS. The ambiguities which are known

to attend a partial use of this theorem will disappear if the space in question be that

included between a sphere of radius r, in the region of the scattered waves, and a

concentric sphere of radius so great that we may imagine it not to have been as yet

reached by the waves. The rate of propagation of energy outwards is therefore given

by the integral

-^jj {
a (ijZ-zY) + /3(zX-xZ)+y(xY-yX)}dS (53),

taken over the sphere of radius r.

Before applying this result, the values of a, 0, y and X, Y, Z must of course be

expressed in real form. To take first a solution of the first type, since T„, as given

by (31), will in general be complex, let us write .

r-ZV -*„+»*, (54).

Restoring the time-factor in (48) and (49), and taking real parts, we find

knrn+i V
y j
— z

~j~) {^n cos (<rt
— kr + e)— <j>n sin {at

— kr + e)\, &c, &c, (55),

and

yZ - zY= n̂
-
(1/^-2^ {*« cosM - kr + e)-<f>n sin (at -kr+ «)}, &c, &c, (56),

where e may be 0, or + \ir, or w, according to the value of n Hence the mean

value of the expression (53), per unit time, is found to be

o [[(/ d<s>n #„y ,

/ d<s>n d&ny,{ d<s>n d<bny
srf^JJ [{y^

-.*
dy ) +{* -te-*-df)

+
[*-a?-y-te)

i dxj>n d<f>nV I d<j>n d<f>ny,f d<j>n d<M 2

lj« (tM\
^VJlTz-

Z
iy)

+
{
Z
lLc-

X
irz)+{

X
-ly-

y
dx-)\

dS (
° 7) '

*
Phil. Trans., 1884, p. 343.
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which may also be written

c
//(/«M»»V /ri<E»y /*&ny _ n2

,

8rf»r*» JJ (U* 7
+
Wy J *\ dz ) r*

*"

(£)($)'+ ($)'-?+}" <58 >-

The expression under the integral signs in (58) is equal to the sum of the squares

of the tangential components of the vectors

(d^njdx, d<£>„/dy, d<$>n/dz) and (d4>n/dx, d<i>njdy, dj>njdz).

Now if Sn be a surface-harmonic of order n, we have

/o7o {(f)
V

(shrf^)}
Sin *«**-•<»+D/^sin^ (59)*.

Hence (58) may be written

"(n + Vg^-^jji^+WdS, or «<» + 'l)gg^//l*.?*» (60),

where |2Yj denotes the modulus of Tn\ and cfe is an elementary solid angle, viz.

dS = r2d-&.

In a similar manner, a solution of the second type gives the result

»(« + !) 8^s//'^«r^ (61).

It appears, further, on examination, that the parts of the expression (53) which

arise from combinations of the two types, or from combinations of the same type with

different values of n, will disappear in virtue of the conjugate property of surface-harmonics

of different orders-f*.

Hence, if 2 be a sign of summation with respect to n, the general expression for

the rate at which energy is dissipated by the scattered waves is

£s !n£1)
/Jwr+nvn*' (62)-

In the case of plane incident waves the harmonics are tesseral, of rank 1. Writing,

for shortness,

Tn = BnTn , Un = GnUn (63),

* Proved easily by partial integration, making use of This involves products of surface-harmonics of orders

the differential equation m-1 and n, and will therefore vanish unless m= n + l.

Id/ dS \ 1 <PS ^u' wri'mg i' m 'ne form

sirTfltW

t The integrals which arise from combinations of the

two types are of the form we Bee that il also vanishes unle8S "= '» + 1 - Hence »
vanishes in any case.

(jo
\ J2c -DUD writing it iu uie lurui

ntegrals which arise from combinations nf the J J

e of the form

/J{fc('*-'*).t™
+
»|*-
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where the values of Bn and Cn are as given by (31), (32), and Tn ,
Un have the forms given

in (43), (44), then since

[({sin6'cos«P„'(cos^))
!! d«- = n(?v+l).

2^ 1

-
(64)*,

the expression (62) reduces to

^ 2 (2n + l) {!£„,'+ iC„|») (65).

The proper standard of comparison here is the energy which is propagated per unit time

across unit area in the primary waves represented symbolically by (37). On the scale

of our formula? this is c/Stt. Hence, if / denote the ratio which the energy scattered per

unit time bears to the energy-flux in the primary waves, we have

/ = ^2(2» + l){j£„|»+|C„:»} (66).

For example, in the case to which the formula; (33), (34), refer, the constants K and

fi for the sphere being not greatly different from unity, we have

and thence

6. We may proceed to examine more particularly the case where K is a large

number, whilst fi is (for simplicity) put = 1. The types of free vibration which can exist

in the absence of extraneous disturbance are found by making T„ = 0, Un = in (31)

and (32). In the first type we have

hayfrn
'

(ha) + (n -f 1) yfrn (ha) _ „ kafn
'

(ka) + (n+ l)fn (ka)

+n(ha)
*

fn (ka) W'

where, it is to be remembered, kjh
= ljK . We are specially concerned to find the

solutions of this equation for which ka is small. On this hypothesis we have

ha^(ha) + (n + l)tyn (ha) = ^ ]{
.

fn(ha)
*

nearly. This is satisfied approximately by ha=z, where z is a root of

*,(*)-6 (71),

and more exactly by

ka
={

l

-nK)
Z

<72 >-

*
Ferrers, Spherical Harmonics, 1877, p. 86.

t This agrees with a result given by Lord Eayleigh, Phil. Mag., April, 1899, p. 379.
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In the case n = 1, the equation (71) takes the form t&n z = z; whence

*/7r
= r4303, 2-4590, 34709, (73)*.

Corresponding to any one of these roots we have a simple-harmonic electric oscillation of

frequency

°~= Z- .-V (74),
2tt tt 2K*a

V '

and wave-length

\ = 2K^a +
Z
-

(75).
IT

To calculate the rate of decay of the oscillations, which is relatively very slow, we should

have to proceed to a higher degree of approximation.

In the second type, we have, from (32), with fi=l,

ha-fn (ha) = kafn
'

(tea)

fn(ha)
"
fn (ka)

l#0*

or ^n-i (ha) _/n-i (ka) 77
+n(ha) Mka)

{U) -

This is satisfied approximately by ha = z, where z is a root of

*«<*)-0 (78),

and more accurately by

ha =
{

l -^h)R\ z <79 >'

When n = 1, (78) takes the form sin z = 0, whence

*/ir-l, 2, 3, (80).

7. When in the problem of § 2 the extraneous disturbance has a period coincident,

or nearly coincident, with that of a free vibration, the approximate formula? (33) and

(34) will no longer apply. If in the accurate formula (31) we make the substitution

fn (ka) = Vn (ka)-i^n (ka) (81),

we find that it takes the form

2V _ g(ha)
Tn

~
G(tia)-ig(ha)

K h

where g(ha) stands for the expression in the numerator f of (31), and G(ha) is derived

from g(ha) by the substitution of ^n (ka) for
yjrn (ka). The modulus of the expression

* The lines of electric force in the sphere are for the in Electricity and Magnetism, p. 317.

most part closed curves in planes through the axis of the + Which may be regarded as a function of ha since the

harmonic T
1

. Their forms are given in Phil. Trans., Pt. n. ratio of k to /< is fixed.

1883, p. 532 ; and in J. J. Thomson's Recent Researches
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on the right hand of (82) never exceeds unity ;
but it becomes equal to unity, and the

intensity of the scattered waves is therefore a maximum, when

G(Aa) = (83),

hafn
'

(ha) + (n + l)fn (ha) „ ka Vn
'

(ka) + (n + 1 ) ¥„ (ka) „ ,.
or

i

—
jr-^r =A (84).

tyn (ha) Vn (ka)

When K is large, the lower roots of this, considered as an equation in ha, are easily

seen to be real and to be very approximately equal to the real parts of the roots of (71).

When the period of the incident waves is such that (83) is satisfied exactly, we have

Tn
K = -iTn (85).

If the incident waves be plane, the dissipation-ratio (68) takes the form

2(2n + l)w _2n+l„7=—¥ *r x (86) -

If we compare this with (68), we find that in the case n = 1 the effect of synchronism

is to increase the dissipation in the ratio

l(ka)~\

The wave-length of maximum scattering is of course very sharply defined. If we

put
ha = (l+e)z (87),

where z is a root of (84), and e is a small fraction, I find

/i -, ^n-Aha) „.. . n. 1 . 3...(2n — 1) ,
.. . ,., ,„,

g<te>-%.i
r
r.(2«-i)

' G{ha)=—wh~ *n-Aha) - Re (88)>

approximately, whence

T v

i

£ = -
B'{1.3...(2»-1)}'

(89>
1 +

(tor+'
e

For example, in the case n = 1 the dissipation sinks to one-half of the maximum when

the wave-length deviates from the critical value by the fraction (ka)
3

jK of itself.

The second type can be treated in a similar manner. Writing (32), with
//,
= 1, in the

form

Un G(ha)-ig(ha)
K '^>-

the equation G (ha) = which determines the wave-lengths of maximum dissipation may
be written

^n-Aha) = W^ka)
fn (ha)

" %t (ka)
^ L) -
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The lower roots (in ha) which satisfy this are very nearly the same as in the case

of (78). When (91) is satisfied exactly we have

U,? = -iUn (92),

leading to the same formula (86), as before, for the dissipation-ratio when the incident

waves are plane.

Also, if we write

ha = (l+e)z (93),

where z is a root of (91), I find

, ^n{ha) n 1.3...(2n-l) .. v
9 (ha) =

j- 3
r

2̂n _ 1)
' ° {ha) =

(fay*-.
*» (ha) - Ke (94)>

approximately. Hence

Un

= ~
il.3...(2»-l)}»

(95) -

1 +—
(kar-'

\m—i

The definition is now less sharp than in the case of (89), in the ratio &a-.

8. It remains to examine what sort of magnitudes must be attributed to the

quantities a and K in order that our results may be comparable with ordinary optical

relations.

Since ka (= 27ra/\) must in any case be small, and since ha must in the case of

synchronism satisfy (71) or (78) approximately, and must therefore be at least comparable

with it, it follows that if our molecules are to produce selective absorption within the

range of the visible spectrum, the dielectric constant K (= h2

jk-) must be a very large

number.

Again, it appears from two distinct lines of argument* that in a gas composed

of spherical dielectric molecules the index of refraction (ft) for rays which are not

specially absorbed is given by the formula

^- 1 =
'2P-K~+2 (96) '

4
where p=N.^ira

3
(97),

N denoting the number of molecules in unit volume. On our present hypothesis this

takes the simpler form

AH-l-l? (98 )-

*
Maxwell, Electricity, § 314; Lord Kayleigh, Phil. Mag., Dec. 1892, and April 1899.

Vol. XVIII. 46
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Hence if ^ = 1-0003, we have p = 2 x 10~4
. This determines the product iVa3

,
for

a gas such as oxygen or nitrogen under ordinary atmospheric conditions, but not if or a

separately. If in accordance with current mechanical estimates we take iV=2xl0 19
,

we find a = 13 x 10-8 cm. Hence if \ = 6x lO-5 cm., we find

ha = 14 x 10-',

so that, if ha = ir, we must ha%'e

K = h2/k'=5 x 10".

In a dense medium composed of the same molecules the formula (98) is replaced by

#iW <99) *-

where the accents refer to the altered circumstances. Comparing, we have

i?.-if<*"-»
<100 >

The fact that the refractive indices of various substances in the liquid and in the

gaseous state have been found to accord fairly well with this formula shews that the

observed moderate values of K' (= /a'
2
) for dense media, taken in the bulk, are not

incompatible with an enormous value of K for the individual molecules.

The formula (86) for the dissipation-ratio in the case of exact synchronism is

independent of any special numerical estimates. It can moreover be arrived at on

widely different hypotheses as to the nature of a molecule and of the surrounding

medium. Its unqualified application to an assemblage of molecules arranged at ordinary

intervals may be doubtful, since with dissipation of such magnitude it may be necessary

to take account of repeated reflections between the molecules. It is clear however that

a gaseous medium of the constitution here imagined would be absolutely impenetrable

to radiations of the critical wave-length.

As regards the falling off of the absorption in the neighbourhood of the maximum,

the formula (95) in the case n = 1 would (on the numerical data given above) make

the absorption sink to one-half of the maximum when the wave-length varies only

by 00,000,000,028 of its value. The formula (89) would give a still more rapid

declension. The range of absorption in a gaseous assemblage must however be far wider

than these results would indicate. So far as it is legitimate to assume that the

molecules act independently, the law of enfeeblement of light traversing such a medium is

E=E e-NI* (101)f.

* This is Lorentz' result. Lord Rayleigh's investigations shew that it will hold approximately even if p' be

not a very small fraction.

t Lord Rayleigh, I. c.
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We may inquire what value of the dissipation -ratio / would make the intensity diminish

in the ratio 1/e in the distance of a wave-length. If we write

I«-^-V (102),
Lit

so that Im denotes the maximum value of the dissipation-ratio for n = 1, the requisite

value is given by

/-
=
f 7r-iV\

:i

(103).

On our previous numerical assumptions this is about 4 x 10~7
. The corresponding value

of e in (95) is about 4 x 10-7 . This is comparable with, although distinctly less than,

the virtual variation of wave-length which takes place, on Doppler's principle, in a gas

with moving molecules, and which is held to be sufficient to explain the actual breadths

of the Fraunhofer lines. Having regard to the very much sharper definition which we

meet with in the vibrations of the first type, and to the increase of sharpness (in each

type) with the index n of the mode considered, it would appear that there is no

prima facie difficulty in accounting, on our present hypothesis, for absorption-lines of such

breadths as occur in the actual spectrum.
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XIX. The Propagation of Waves of Elastic Displacement along a Helical

Wire. By A. E. H. Love, M.A., F.R.S., Sedleian Professor of Natural

Philosophy in the University of Oxford.

[Received 4 December 1899.]

1. It is known that the modes of vibration of an elastic wire or rod which in

the natural state is devoid of twist and has its elastic central line in the form of a

plane curve fall into two classes : in the first class the displacement is in the plane

of the wire and there is no twist
;

in the second class the displacement is at right-

angles to the plane of the wire and is accompanied by twist. In particular for a

naturally circular wire forming a complete circle when the section of the wire is circular

and the material isotropic there are two modes of vibration with n wave-lengths to

the circumference
;

these belong to the first and second of the above classes respectively,

and their frequencies {pjlir) are given by the equations

Pi" -2

and p* =

1 E^n*(n*-iy
4 Poa* 1 + n2

1 Ec* «2 2 -l)2

4 p a* 1 + v + n2
'

where a is the radius of the circle formed by the wire, c the radius of the section, p the

mass per unit of length, E the Young's modulus and rj the Poisson's ratio of the material.

These results may be interpreted as giving the velocities with which two types of waves

travel round the circle.

So far little or nothing appears to be known about the modes of vibration of wires of

which the central line in the natural state forms a curve of double curvature, except that

the vibrations do not obviously fall into two classes related to the osculating plane in the

same way as the two classes for a plane curve are related to the plane of the curve.

The equation connecting the frequency with the wave-length when waves of elastic dis-

placement are propagated along the wire has not been obtained
;

and although this

equation would obviously be quadratic when rotatory inertia is neglected, and so would

give two velocities of propagation for waves of a given length, it is by no means obvious

what would be the distinguishing marks of the two kinds of waves with the same wave-

length.
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It seemed to me that it would be not without interest to seek to answer the

questions thus proposed in the case of a wire which in the natural state has its elastic

central line in the form of a helix. As regards the free vibrations of a terminated portion

of such a wire with free ends, or fixed ends, or under the action of given forces at

the terminals, it would be possible to form the equation for the frequency, but the

equation appears to be so complicated as to be quite uninterpretable; and in fact in

the simpler problem presented by a circular wire with ends, which has been treated

in some detail by Lamb *, it appears that to interpret the results the total curvature

must be taken to be slight, and the results which can then be obtained are such as

might be reached by suitable approximate methods. In the case of a helical wire the

most important of all the problems of vibration is that of a spiral spring supporting
a weight which oscillates up and down

;
and this can be treated adequately by means

of an approximate theory in which the wire is taken to have at any time the form

of the helix corresponding to its axial length and to the position of the load. The

problem of the propagation of waves along an infinite helical wire remains. I have

found that in general for a given wave-length two types of waves are propagated with

different velocities
;

in both types all the kinds of displacement (tangential, normal and

torsional) are involved, and there is no rational relation between the different displacements

which serves to distinguish the types of the two waves, but these types are finally

and completely separated by a circumstance of phase in the different components of

the displacement.

2. The helix which is the natural form of the elastic central line of the wire

may be thought of as traced on a circular cylinder, and then any particle on this line

undergoes a displacement which may be resolved into components u, v, tv along the

principal normal, the binormal and the tangent to the helix. The principal normal

coincides with the radius of the cylinder, and the displacement u is reckoned positive

when it is inwards along this normal
;

the displacement w is reckoned positive when

it is in the sense in which the arc is measured, and then the positive sense of the

displacement v is determined by the convention that the

positive directions of u, v, w are a right-handed system

for a right-handed helix. Further there is an angular

displacement by rotation of the sections, of amount /3,

about the tangent to the helix, and /3 is reckoned positive

when y8 and w form a right-handed rotation and trans-

latory displacement. Now it is found that in general the

two waves of given length that can be propagated are

distinguished according as the displacements v and w are

in the same phase or in opposite phases at all points of

the helix. If \jp and l/o- are the measures of curvature

and tortuosity of the helix, and 2-rrjm is the wave-length, then in the quicker wave v

and w are everywhere in the same phase, and in the slower wave they are in opposite

phases, provided m2 > 1/p
2 -

l/o-
2

,
but if m2 < l/p

2 -
l/o-

2 this relation is reversed.

* Proc. Lond. Math. Soc, xix. 1888.
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The fact that there are two waves with different velocities suggests an analog}-

with the optical theory of rotatory polarization, and leads to the question whether in

any sense the two waves can be regarded as right-handed and left-handed. The most

obvious possibility of this kind would be that /3 and w should be always in the same

phase for one wave and in opposite phases for the other
;

it is found however that

this is not the case
;

another possibility would be that the component displacements

parallel to the axis and to the circular section of the cylinder on which the helix is

traced should be everywhere directed like a right-handed system of axial and circular

translatory displacements for one wave and like a corresponding left-handed system for

the other
;

this also is found not to be the case. It appears that up to the degree

of approximation which is usually included in the theory of elastic wires there is no

rotatory effect involved.

In three particular cases it is found that the equation for the frequency of waves of

given length breaks up into two separate equations. This happens (a) when m2

=l/p
2

+l/o-
2

,

(b) when m2 =
1/p

2 —
1/a

2
, (c) when the helix is very flat or 1/a can be neglected. In

case (a) one of the modes of deformation is equivalent to a rigid body displacement

of the helix at right angles to its axis, and the corresponding speed of course vanishes
;

in case (c) the types correspond to the two already known for a circle
;
in case (b) the two

types are distinguished by the vanishing of the flexural couples in and perpendicular

to the osculating plane ;
this case occurs only if the angle of the helix is less than \tt.

3. The wire is taken to be of uniform circular section (radius c), and of homo-

geneous isotropic material, and in the natural state the line of centres of its sections

forms a circular helix of curvature 1/p and tortuosity 1/a. The displacement of a point

on the central line is specified by components u, v, w along the principal normal, the

binormal and the tangent in the senses already defined, but it is necessary to fix the

meaning of the angular displacement /S. For this purpose we suppose a frame of three

coorthogonal lines to move along the helix so that the three lines always coincide

with the principal normal, the binormal, and the tangent; if the origin of the frame

moves with unit velocity the lines of the frame will rotate with an angular velocity

which has components 1/p about the binormal and 1/a about the tangent. We can

construct a corresponding frame for the strained wire by taking as origin the displaced

position of a point on the strained elastic central line, as one line of reference the

tangent to the strained elastic central line through the point, and as one plane of

reference the plane through this line which contains the tangent to that line of particles

which in the natural state coincided with the principal normal
;
when the displacement

is everywhere very small the lines of this frame very nearly coincide with those of the

frame attached to the unstrained wire, and the plane of reference just defined makes

a very small angle with the osculating plane of the helix at the corresponding point ;
this

angle is /3. The "
twist

"
of the wire is expressed by

19/3 1 fdv u
+ ^+-l5" + -

<r ds p

where ds is the element of arc of the helix.

)
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4. The action of the part of the wire for which s is greater upon the part for

which s is less, across any section, can be reduced to a resultant force at the centre

of the section and a couple. The force may be resolved into components JS\ along the

principal normal, N2 along the binormal, and T along the tangent, in the senses in which

u, v, w are reckoned positive. The couple may be resolved into two flexural couples Gu G2

and a torsional couple H about the same three lines. The couples are expressible in terms

of the displacements by the equations

Gt = A
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in which u and w have been adjusted so as to satisfy the equation (2) of inextensibility.

Further, we shall take the forms of Gx ,
Gs ,

H to be

C?i
= Agx

cos (ms — pt), t
= Ag2 sin (ms — pt).)

> (6),H = (mp)"
1Ag l sin (ms — pt) \

in which G, and H have been adjusted so that the third of the equations of moments (3)

is satisfied identically. We then find by (1)

B / 1 \ Tr i2m-p 1 \ ,„

2mV ,„ / . mp m\
gi
=

<̂r+ W^p^^--),
^ = -cJb + Z+ ^)mp \ pal

of which the first and third give

4l

+cth)-
v
^'-? +^ + wii(m'-?) w'

and the second is

-^ = F — + W{m*--, + -,
mp pa

If m- : does not vanish we can solve for V and W and obtain
p- a-

)

1 1 \ 2

/, A \ 2 1/11
p- a*J \ (Jntfp-J pa mp \ p* a*

The first two of the equations of moments (3) now give us

N~i = — A (— ffi + mg2
J
cos (ms — pt),

N3
= ~a\ (m

-J gx + - gS sin (ms -pt)
\ \ /tip / (J

We eliminate T from the equations of motion (4) and obtain

Is2 W~a ~ds~

=
poC°P

~

( + m ?) (WIP) C0S (mS ~ I*)'

ds a
= —

p (op-Vcos (ms —pt),

or, on substituting for Nx and iV2 ,

A

P(^._-)+BW (
m.__ +^

[*(--Vl
2m

=
Pocop°- (1 + m-p-) W,\

= p Q>p-V

•(7),

.(9).

.(10).

.(11).

.(12).
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6. We may now substitute for g, and ga in terms of V and W and obtain by
elimination of V and W the equation for p*

ffl (>
+
£>(>

+ PoCop' 1 A
my

+
Cray

IVm2-- + -

+H^(mi
~? ]

(
1 + ^)(1 +

(^y)}
m2 -i-iV =

a3J

If m2
; ; does not vanish this equation can be written

p- a-

{!-(! + *„) x\ {!-(!+ *,) x] (1
-

Kl
- K2y - 8k2x {2 + k -k1)

= 0.

by putting
K = A/Cmy, Kj-l/my, «2

= l/mV
a; = A'1

(1
—

*,
—

Ko)~
2

p top
2m-*

.(13).

•(14),

.(15).

Since AjC = 1 + 77, where ?? is the Poisson's ratio of the material,

K(j Ki = 77 /Cj ,

and this is always positive ;
so that, if for x in the left-hand member of the above

equation (14) we substitute the values 00, l/(l+«,), 1/(1 + *„), 0, the expression has

the signs H V, and thus one of the two values of x exceeds 1/(1 +«j) and the

other is less than 1/(1 +' k ),
both values being positive. It follows that there are two

possible velocities for waves of given length, the speed of one exceeding

i

u
A_ my(wa

-l/p
2

-l/g
2
)
3

,to~ 1 + my
and that of the other being less than

A my (m
2 -

1//3
2 -

l/o-
2
)
2

jO GO 1 +
7? + my

these two expressions become the speeds of the corresponding waves round a circular

ring by writing n for mp and omitting 1/cr.

The left-hand member of the equation (14) for x breaks up into factors rational

in k , Klt k2 if

[(2 + « + «o (1
-

*,
- *2)

2 + 8« 2 (2 + Ko
-

tiff
- 4 (1 + <„) (1 + Kl) (1

-
Kl
-

K2y

is the square of a rational function of k
, k,, k2 . This is the case when_2 + k —

fh
= 0,

or when 1 — «;
— k2 = 0, or when *2

= 0, or when 1 — k^ + «2
= 0, for in the last case the

expression becomes

16 (1
-

*,)* [(1
-

*,) (*,
-

*,)
- 2 (*, + «,)?•

Of these cases the first cannot happen since « >«1 , and the third is the limiting

case in which the helix becomes a circle
;

the two remaining cases will be discussed

later.

Vol. XVIII. 47
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7. With the view of determining the character of the motion corresponding to

one value of p" we observe that by the second of (12) combined with the first of (10)

where x is given by (15), and it has been assumed that m2 —
1/p

2 —
l/cr

1 does not vanish.

Hence we find

/ . 1 1\ 1m

x = ~
—

Cm?p

and therefore

t-«(i + *,)-- ^p

/, A
\ ( . * 1 \ Zm (- 1 V

(i^/^-H
= - 1 +

1 W/ ,
1 l\)4m2 L M \ 1

) // ,
1 ly

It follows that in the wave for which x(l + *<>)< 1 we must have

1 W / 1 1 \
l +

2P<rT (m*--
+
-)<0 (18).

Again, by combining the first of (12) with the second of (10) we find

Hence

(
1 -^) + ^ (1 + <o)(1 + ^)

]
+5r2m(

m2
"^

+
i) {1 ~^ (1 + ^)1=0 (19) -

2m/, IN /
.1m l, 1 \ [ . 1 1
i

1

—
0(1 + *,)

i-i- p2 ff?

,2m /
, 1 1

gl (l + Kt)—.-gt

^m*--
+ -

a

and therefore

m' „
—

It follows that in the wave for which x (1 + *,) > 1 we must have

Tf V
U

P' cry cr V p
a

,

The two inequalities (18) and (21) are not mutually exclusive for all values of
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V/W, but in the present case V and W are not independent. The equation connecting
them is obtained by eliminating x from (17) and (20) in the form

2
{
F2 - W* (1 + my)}

(to

2 -\ +
A)

or

wv[ 8 A/c-i (
i iy =

(22),

which gives two values for V/W, having a negative product, and thus showing that

in the two waves the values of V/W have opposite signs. We now substitute for V/W
the values

placing these values in order of decreasing algebraic magnitude. For shortness we write

(23),

-W-?W-?+$7'
and then a according as (to

2 —
l//3

2 + l/cr
2
) 0. There are three cases depending on

the signs of to2 —
\/p" and of to2 —

l/p
2 + l/<7

2
. In any case when we substitute V/W = a,

the left-hand member of (22) becomes

and when we substitute V/W=/3 the left-hand member of (22) becomes

my(my+A/C) / 1 i\. // -i+i^4 W
2my + A/C-1 { p- **) I [ P* o*J

"

Now in the slower wave we have

W
l-ay<0,

which shows that if to2 -
l//>

2 + 1/a-
2 is positive

0>V/W >«,

and if to2 - l//)
2 + l/o-

2
is negative

a>V/W >0.

In the quicker wave we have

(to
2

-l/p
2 + l/<r

2

)(^ -#)>().
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Thus when m2 —
l/p

2 + l/a
2 and m2 —

l/p
2 are both positive we have

F/TT>/3,

when m2 —
l/p

2 + l/a
2

is positive and m2 —
l/p

2
is negative

V/W >/3>0,

when m2 —
l/p

2 + l/o-
2 and m2—

l/p
2 are both negative

0>j3>V/W.

When m2 —
l/p

2 and m2 —
l/p

2 + l/a" are both positive we obtain after substitution

in the left-hand member of (22) the signs shown in the table

V/W = oo a -x
+ - - + +

When m2 —
l/p

2
is negative and m2 —

l/p
2 + l/a

2
is positive we obtain

V/W = oo a -oo

+ - - + +

When to2 —
l/p

2 and m2 —
l/p

2 + l/<r
2 are both negative we obtain

F/Tf = oo a jS -oo
- - + + -

By comparison of these results we see that when m2

—l/p
2 + l/a

2 is positive V/W
is positive in the quicker wave and negative in the slower one, but when m2 —

l/p
2 + l/a

2

is negative the reverse is the case. When V/W is positive the displacements v and w are

in the same phase at all points of the helix, and when V/W is negative these displace-

ments are everywhere in opposite phases.

8. If the helix of angle a is wound on a cylinder of radius a the displacement

parallel to the axis is a sec a (w/a + vjp), and the displacement parallel to the circular

section is a sec a (w/p
—

v/a), and the wave is in a certain sense right-handed or left-

handed according as

(W/p-V/a)+(W/a+V/p)

is positive or negative. We write f for this, and then the values of f in the two waves

satisfy the equation

2 [(l/p
~

EI*?
-

(1 + my) (f/p + l/<7)
2

] (m
2 -

l/p
2 + l/<r

2

)

(1 f\ (I 1\ T8 A/G-l I
,

1 l\'l n

-[p-a){p+a)lp^-P' 2m2

p
2 +A/C-l {

m
--?-a2

)\
= ^

and the two waves will be respectively right-handed and left-handed if the roots have

opposite signs. To show that this is not always the case it is sufficient to take m
very great and substitute for £ in the left hand member the values

—
pja

— oo
;

the signs are — + —
,



OF ELASTIC DISPLACEMENT ALONG A HELICAL WIRE. 373

showing that both values of £ are negative, and both waves are left-handed in this

sense when m is sufficiently great.

A similar method may be applied to show that there are values of m for which

both values of fijw have the same sign, and thus the waves are not respectively right-

handed and left-handed in regard to /S and w.

9. We have already noted that in three special cases the equation (13) for p* can be

solved rationally in terms of m, p, a.

Taking m2 =
l/p

2 + l/o-
2 = or2 cos2

a, it is convenient to put ms=0, and then 6 is the

angle turned through by the radius of the helix about the axis of the cylinder in

passing along the curve from the point from which the arc is measured to the point

at which the arc is s.

In this case equations (12) become

and equations (8) and (9) become

so that mg, + „,/<r
- ?""

{«
+

(J +
C
g^y)| (

V+ W
J)

,

and thus either V+Wp/<r = and p=0, or else

P

£fa +-y>-£ (-
+j^y/ga -*) .

The second kind of motion is an example of the quicker wave, and the speed p
is given by

, _ 8A (p'+o-
2
)
2
(A + G) o-

2 + 2ty
2

1_
P "

/JoO) ^ (4 + C) ff
2 + fy

2
(2<7

2 + p
2

)

'

In the displacement for which p = Q the equation V+ Wp/a = shows that there

is no displacement parallel to the axis of the helix; we also have

W cos a — Fsin o = W (cos a + sin a tan a) = W sec a,
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and thus the displacement along the tangent to the circular section of the cylinder is

W sec a cos
;

the displacement along the radius vector outwards is — a sec2 a a-1 cos a PTsin ms, or

Wsec a sin 0,

and thus the displacement is W sec a at right angles to the plane from which 6 is

measured. The helix is displaced bodily, and there is no deformation.

10. Again, taking m2 =
l//>

2 —
1/a

2
,
where a"1 is supposed > p

2 or a < J^r, we find that

equations (16) and (19) show that either

„ _n «2 - A- w-w-v*? i-™y
y* ' P

p a> l+A/Cmy 1+m.y'

The motion for which g2 =0 is an example of the slower wave, the speed p of this wave

is given by

«..A i p'(g'-p')

and the flexural couple G2 in the osculating plane and the displacement v along the

binormal both vanish at all points of the helix.

The motion for which gl
= is an example of the quicker wave, the speed p of

this wave is given by
A A ftpm
p o> a* a- — p-

and the flexural couple Gt about the principal normal, the torsional couple H, and the

displacements u and w along the principal normal and the tangent all vanish at all

points of the helix.



XX. On the Construction of a Model showing the 27 lines on a Cubic

Surface. By H. M. Taylor, M.A., F.K.S.

[Received 27 January 1900.]

The general equation of a cubic surface contains 19 constants: 9 conditions are

required to make it pass through a given plane section : 6 more are required to make

it pass through a second : 3 more to make it pass through a third. It follows that

a cubic surface would be determined by three plane sections and one point on the

surface.

Any data which determine the surface necessarily determine the straight lines on

the surface. It is known that twenty-seven straight lines lie on the general surface of the

third degree, and that these lie by threes in forty-five planes, the triple tangent planes to

the surface. There are —= =— -= - sets of three triple tangent planes, no two of which

pass through the same line*.

There would be no loss of generality in the form of the cubic surface caused by

choosing arbitrarily one of the 5280 sets of three triple tangent planes instead of three

ordinary plane sections : among these 5280 sets there are 240 sets such that a second set

passes through the same nine lines.

If ABC, A'B'C, A"B"G" be the triangles formed by the three planes of such a set,

the letters may be arranged in such a manner that

BCB'G'B"C", CAC'A'C'A", ABA'B'A"B"

are planes.

In this paper and in the model, of which a representation is given (Plates XXIV.,

XXV.), each of the twenty-seven lines on the surface is denoted by one of the numbers

1 2 3 27

in agreement with a notation adopted in a former paper*. In accordance with this

notation, the lines in these three planes are denoted by Arabic numbers as follows:—
BC, 1 B'C, 6 B"C", 15

CA, 2 CA', 4 C"A", 12

AB, 3 A'E, 5 A"B", 7

For convenience of reference a complete list of all the triple tangent planes of the

surface, showing those in which each line appears, is given in the following table :
—

*
Philosophical Transactions of tlie Royal Society, Series A, Vol. 185 (1894), p. 64.
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Table showing
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In the model the six lines, forming the sides of the triangles ABC, A'B'C, are

drawn on the surface of two brass plates which are carefully hinged together in such

a manner that the straight line XYZ, which passes through the intersections of the

pairs
BC, B'C; GA, C'A'; AB, A'B',

is in the line of the hinges. Each of the remaining twenty-one straight lines is repre-

sented by a stretched string. On each plate the point at which any straight line cuts

the plate is marked by the Arabic number which denotes the line. In the explanation,

where it is necessary to distinguish between the points where any line, say 9, cuts the two

plates, the point where it cuts a side of the triangle ABC, in the left-hand figure, will

be denoted by 9,, and the point where it cuts a side of the triangle A'B'C, in the

right-hand figure, will be denoted by 9r .

It will be observed that the lines 7,12,15,, 7,12,15,, in which the sides of the

triangle formed by the lines 7, 12, 15 cut the sides of the triangles ABC, A'B'C, meet

on the line XYZ,

We have now chosen three plane sections of the cubic surface, and we have one more

condition at our disposal. This is exhausted by the choice of the point 8,, that is, the

point where the line 8, which cuts the three non-intersecting straight lines 2, 6, 7, cuts

the line 2. This determines the line 8, and therefore the point 8,.

As the lines 7, 8, 9 are complanar the straight line 7,8, cuts BC in 9; and cuts

the line XYZ in a point such that the straight line joining it to the point 7, gives the

points 8,, 9,..

In a similar way
4, and 9, give 13,

6* „ 8, „ 10,

1 Q 11

2, „ 8, „ 14,

Since 10, 11, 12, and 13, 14, 15 form triangles,

11, and 12, give 10r

14,. „ lo, „ lo,

10, and 12, give 11,

13; „ 15; „

'

14,

Lines 1 to 15 are now determined.

The remaining lines 16 to 27 form a double six.

Any triple tangent plane which passes through one of these twelve lines passes

through two of them, and also through one of the lines 1 to 15. We must, therefore, adopt

a different method to find one of the lines 16 to 27.

One of them must be found by some quadratic method, and then all the rest can

be found as before. The line 17 was found by a method of trial and error from the facts

that 17; lies on BC and 17, on C'A', and that the pairs of lines 7;17,, 7,17, and 14,17,,

Vol. XVIII. 48
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14r 17r meet on the line XYZ. All the other points were then obtained by drawing

straight lines in the following order, in which the suffixes are omitted because the

description applies equally both to the left-hand and to the right-hand figures.

7, 17 give 22

10,
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Let us consider the section of the surface made by a plane passing through one of

the lines; for instance, the line 1. We shall find five pairs of points, 2, 3; 6, 15; '9, 11;

16, 19
; 17, 18, on this line and the other sixteen points will lie on a conic. In this

case there are 40 straight lines, each of which passes through three of the points.

Through each point on the conic 5 of the lines pass, and through each point on the

line 4 lines pass.

Next, let us consider a section of the surface not passing through a line.

It will be a cubic curve and the points on it where the 27 lines cut the plane

lie by threes on 45 straight lines, five straight lines passing through each point. From

these 45 straight lines a selection of 9 can be made, to pass through all the points. This

selection can be made in 200 ways. There are, also, 360 conies, each of which passes

through six of the points, 80 conies passing through each point. From these 360 conies

a selection of four can be made to pass through all the points except three lying on a

straight line. This selection can be made in 168 ways for each particular set of three

points, that is in 7560 ways altogether.

48—2



XXI. On the Dynamics of a System of Electrons or Ions : and on the Influence

of a Magnetic Field on Optical Phenomena. By J. Larmor, M.A., F.R.S.,

Fellow of St John's College.

[Received 24 January 1900.]

The Dynamics of a System of interacting Electrons or Ions.

1. In the usual electrodynamic units the kinetic and potential energies of a region

of aether are given by

W= 2ttC2

((/" + g* + A2

) dr,

wherein St represents an element of volume, (a, ft, y) is the magnetic force which

specifies the kinetic disturbance, and (/, g, h) is the aethereal '

displacement' which

is of the nature of elastic strain. These two vector quantities cannot of course be

independent of each other : the constitutive relation between them is, with the present

units,

(dy rf/3 da dy dft da\ _ d . .
,

.

\dy~Tz' dz~dx' dx~~&y)~ dt^' 9 ' >'

or say curl (a, /3, 7)
=
4tt^(/, g, h),

which restricts (f, g, h) to be a stream vector satisfying the equation of continuity :

it also confirms the view that (a, /3, 7) is of the nature of a time-fluxion or velocity.

It is assumed that (a, /3, 7) is itself a stream vector, which must be the case if

electric waves are of wholly transverse type. On substituting in these expressions

(£> V> f)> the independent variable or coordinate of position, of which (a, /3, 7) is the

velocity, so that (a, ft, y)
= d/dt(^, i\, f), the dynamical equations of the free aether can

be directly deduced from the Action formula

>f(T-W)
dt = 0.

It is well known that they are identical with MacCullagh's equations for the optical

aether, and represent vibratory disturbance propagated by transverse waves.
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It will now be postulated that the origin of all such aethereal disturbances consists

in the motion of electrons, an electron being denned as a singular point or nucleus

of converging intrinsic strain in the aether, such for example as the regions of intrinsic

strain in unannealed glass whose existence is revealed by polarized light, but differing

in that the electron will be taken to be freely mobile throughout the medium. For

all existing problems it suffices to consider the nucleus of the electron as occupying so

small a space that it may be taken to be a point, having an electric charge e

associated with it whose value is the divergence of (/, g, h), that is, the aggregate

normal displacement l(lf+mg + nh)dS through any surface S enclosing the electron: over

any surface not enclosing electrons this integral of course vanishes, by the stream

character of the vector involved in it. Faraday's laws of electrolysis give a substantial

basis for the view that the value of e is numerically the same for all electrons, but may
be positive or negative.

As our main dynamical problem is not the propagation of disturbances in the

aether, but is the interactions of the electrons which originate these disturbances, it will

be necessary to express the kinetic and potential energies of the aether as far as

possible in terms of the motions and positions of the electrons. The reduction of T

may be effected by introducing the auxiliary variable (F, G, H) defined by

curl (F, G, #)=(«, # y).

m ,o n , fil'dH dG\ (
dF dH\ a (dG dF

\ ) J
Thus 2, = (8-)-

I

J{^- f¥)a
+ U-^)/3+(^-^J7pr

= (Stt)-
1

I {(yG
-

/3tf ) I + (aH- yF) m + (/3F -aG)n) dS

^-t)+°{i-ty<i-th
l,
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function of position ^ : but this part does not affect the value of (a, /8, 7) through

which (F, G, H) has been introduced into the problem, so that the definite particular

solution is all that is required.

Now the motions of the electrons involve discontinuities, or rather singularities, in

this scheme of functions. One mode of dealing with them would involve cutting each

electron out of the region of our analysis by a surface closely surrounding it. But a

more practicable method can be adopted. The movement of an electron e from A to an

adjacent point B is equivalent to the removal of a nucleus of outward radial displace-

ment from A and the establishment of an equal one at B : in other words it involves

a transfer of displacement in the medium by flow out of the point B into the point

A : now this transfer can be equally produced, on account of the stream character of

the displacement, by a constrained transfer of an equal amount e of displacement

directly from A to B. Hence as regards the dynamics of the surrounding aether, the

motion of such a singular point or electron is equivalent to a constrained flow of

aethereal displacement along its path. The advantage of thus replacing it will be great

on other grounds: instead of an uncompleted flow starting from B and ending at A,

there will now be a continuous stream from B through the surrounding aether to A
and back again along the direct line from A to B : in other words the displacement

will be strictly a stream vector, and in passing on later to the theory of a distribution

of electrons considered as a volume density of electricity, the strictly circuital character

of the electric displacement, when thus supplemented by the flow of the electrons, will

be a feature of the analysis.

For greater precision, let us avoid for the moment the limiting idea of a point-

singularity at which the functions become infinite. An electron will now appear as an

extremely small volume in the aether possessing a proportionately great density p of

electric charge. Its motion will at each instant be represented by an electric flux of

intensity p(x, y, z) distributed throughout this volume, which when added to the aethereal

displacement now produces a continuous circuital aggregate. For present purposes for

which the electron is treated as a point and the translatory velocities of its parts are

very great compared with their rotational velocities, this continuous flow may be condensed

into an aggregate flux of intensity e (x, y, z), concentrated at the point (x, y, z).

At each point in the free aether, outside such nuclei of electrons, the original

specification of magnetic force, namely that its curl is equal to 4nrd/dt of the aethereal

displacement, remains strictly valid. It has been seen that the effect of the motion

of any specified electron, as regards the surrounding aether, is identical with the effect

of an impressed change in the stream of aethereal displacement at the place where it is

situated : thus the interactions between this electron and the aether will be correctly

determined by treating its motion as such an impressed change of displacement. This

transformation however considers the nucleus as an aggregate : it will not be available

as regards the interactions between different parts of the nucleus : thus in the energy

function constructed by means of it, all terms involving interaction between the electron

as a whole and the aether which transmits the influence of other electrons will be
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involved
;

but the intrinsic or constitutive energy of the electron itself, that is the

total mutual energy of the constituent parts of the electron exclusive of the energy involved

in its motion as a whole through the aether, will not be included : this latter part is in

fact supposed (on ample grounds) to be unchangeable as regards all the phenomena now

under discussion, the nuclei of the electrons being taken to occupy a volume extremely
small in comparison with that of the surrounding aether*.

This principle leads to an expression for the force acting on each individual moving

electron, which is what is wanted for our present purpose. But the equations of ordinary

electrodynamic theory belong to a dense distribution of ions treated by continuous

analysis, and we have there to employ the averaged equations that will obtain for an

effective element of volume of the aether containing a number of electrons that practically

is indefinitely great.

We derive then the equations of the aether considered as containing electrons from

those of the uniform aether itself by adding to the changing aethereal displacement

(f> 9> ^) *ne Aux °f *ne electrons of type e(x, y, z) wherever electrons occur. In the

transformed expression for T we can, as already explained, treat the part of the surface

integral belonging to the surface cutting an electron out of the region of integration

(as well as any energy inside that surface) as intrinsic energy of the electron, of un-

changing amount (, which is not concerned in the phenomena because it does not involve

the state of any other electron. The contribution from the surface integral over the

infinite sphere we can take to be zero if we assume that all the disturbances of

electrons are in a finite region : the truth of this physical axiom can of course be directly

verified.

We have therefore generally

T=^f(Fu+
Gv + Hw)dr,

wherein

(F, G, H)=j(u, v, i^r-'rfr:

and in these expressions the total electric current (u, v, w) will consist of a continuous

part (f, g, h) which is not electric flow at all, and a discrete electric flux or true current

of amount e (%, y, z) for any electron e. When the electrons are considered as forming

a volume density of electrification, this latter will be considered as continuous true electric

flow constituted as an aggregate of all the different types of conduction current, convection

current, polarization current, etc. that can be recognized in the phenomena, each being

connected by an experimental constitutive relation with the electric force which originates

it. The orbital motions of the electrons in the molecule cannot however be thus included

in an electric flux, but must be averaged separately as magnetization. Neither the

true current nor the aethereal displacement current taken separately need satisfy the

* For a treatment on somewhat different lines cf. Phil. Tram. 1897 A, or 'Aether and Matter,' Ch. vi., Camb.

Univ. Presg, 1900.

t It may be formally verified, after the manner of the formula for T in § 2, that this amount tends to a

definite limit as the surface surrounds the electron more and more closely.
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condition of being a stream, but their sum, the total current of Maxwell, always satisfies

this condition.

2. The present problem being that of the interactions of individual electrons

transmitted through the aether, it will be necessary to retain these electrons as distinct

entities. The value of (F. G, H) at any point is therefore of type

r, /' 1 df , v ex

./ r dt

in which r represents the distance of the point from the element of volume in the

integral and from the electron respectively. Thus

r-
fffifif*

+M* + WO ru_I d^dr.,

+ lex j/2rn
-1 dT2 + Sey jg^r^-

1 dr2 + 2ei I A2 ?-12
_1 dr2

in which each pair of electrons occurs only once in the double summation.

Also W = 2ttC2

((/-
+ g- + fc) dr.

In omitting the intrinsic energy of an electron and only taking into account the

energy terms arising from the interaction of its electric flux with the other electric fluxes

in the field, we have however neglected a definite amount of kinetic energy arising

from the motion of the strain-configuration constituting the electron and proportional to

the square of its velocity : this will be the translational kinetic energy

or we may write

r =lLeH£* + y°- + z>):

T = ±m(£*+f + z%

where m is thus the coefficient of inertia or ' mass' of the electron, which may either

be wholly of electric origin or may contain elements arising from other sources.

This transformation has introduced the positions of the electrons and the aether-

strain (f, g, h) as independent variables. It is necessary, for the dynamical analysis,

thus to take the aether-strain as the independent variable, instead of the coordinate

of which (a, /3, 7) is the velocity, which at first sight appears simpler. For part of

this strain is the intrinsic strain around the electrons
;

and the deformations of the

medium by which it may be considered to have been primordially produced must have

involved the discontinuous processes required to fix the strain in the medium, as other-

wise it could not be permanent or intrinsic. If the latter coordinates were adopted
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the complete specification of the deformation of the medium must include these processes

of primary creation of the electrons, and the medium would have to be dissected in

order to reveal the discontinuities, after the manner of a Riemann surface in function-

theory*.

3. We have now to apply dynamical principles to the specification of the energies
of the medium thus obtained. The question arises as to what are dynamical principles.

It may reasonably be said that an answer for the dynamics of known systems constituted

of ordinary matter is superfluous, as the Laws of Motion formulated by Newton practically

cover the case. Waiving for the present the question whether the foundations of that

subject are so simple as may appear, the present case is one not of ordinary matter

but of a medium unknown to direct observation : and its disturbance is expressed in

terms of vectors as to the kinematic nature of which we have here abstained from

making any hypothesis.

Now the dynamics of material systems was systematized by Lagrange in 1760 into

equations which amount to the single variational formula

8
j(T- W)dt = 0,

in which the variation is to be taken subject to constant time of passage from the

initial to the final configuration, and subject to whatever relations, involved in the con-

stitution of the system, there may be connecting the variables when these are not mutually

independent,
—the only restriction being that these latter relations are really constitutive,

and so do not involve the actual velocities of the motion although they may involve

the time. This equation is known to include the whole of the dynamics of material

systems in the most general and condensed manner that is possible. It will now be

introduced as a hypothesis that the cognate equation is the complete expression of the

dynamics of the t/Zira-material systems here under consideration. Even in the case of

ordinary dynamics it can be held that there is no final resting-place in the effort towards

exact formulation of dynamical phenomena, short of this Action principle : in our present

more general sphere of operations the very meaning of a dynamical principle must be

that it is a deduction from the Action principle. This attitude will not be uncongenial

to the school of physicists which recognizes in dynamical science only the shortest and

most compact specification of the actual course of events.

We have then to apply the Principle of Action to the present case. In the first place

the coordinates in terms of which T and W are expressed are not all independent, for

when the distribution of (/, g, h) is given that of the electrons is involved. The connexion

between them is completely specified by the relation

f/df dg dh\ dr _ le .

){dx
+
dy

+
dz)

dr - Ze -

* More concretely, the relation curl (a, j3, 7)
= 4ir (/, g, h) kind whose velocity is (a, /3, 7), that are required to intro-

involves J((/+ mg + nh)dS=0: now / (lf+ mg + nh) dS is not duce the existing intrinsic strain must involve discontinuous

zero but is equal to 2e : hence the displacements, of the processes. Cf. 'Aether and Matter,' Appendix E.

Vol. XVIII. 49
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provided this is supposed to hold for every domain of integration, great or small, it will

follow that the electrons are the poles of a circuital or stream vector (/, g, h). If then

we write

°-j*fri*a*-**dy

the variational equation will by Lagrange's method assume the form

BJ(T+T
- W+D,)dt =

in which ? is a function of position, initially undetermined but finally to be determined

so as to satisfy the above condition restricting the independence of the coordinates.

We have to vary this equation with respect to the displacement (f, g, h) belonging to

each element of the aether, supposed on our theory to be effectively at rest, and with

respect to the position (x, y, z) of each electron. All these variations being now treated

as independent, the coefficient of each of them must vanish, at all points of the aether and

for all electrons involved in it.

We now proceed to the variation. Bearing in mind that so far as regards aethereal

displacement

tfrdr
involves ^jJMv**^ ^at is J#^-|*K

because each pair of elements appear together twice in the double integral of a product,

but only once in a double summation, we obtain as the terms involving / in the complete

variation

sfdtJF/dr
-
iTrc'fdtjfSfdT+fdtfv^dT,

leading, through the usual integration by parts, to

,

JFB/dr
-

fdt fn/dr
- 47tc 2

fdt jfBfdr
+

jdt jfafdydz
I

-
fdt j^ Bfdr.

The coefficient of Bf must vanish in the volume integral, giving

, ,. dF cW ...

^°S=-dt-d* (1) -

Similar expressions hold for g and h. Again, the terms in the variation involving the

electron e at (x, y, z) are

8
jdte (xF

+ yG + zH) + $m8 jdt (x* + if + z 2

)
- 8 idteV,

yielding as regards variation of the position of this electron

jdte
(F8x + GSy + HZz + xSF+ yZG + zhH) + m

jdt
(xBx + y8y + zU) - jdtehV

in which Bx means the change of the velocity of the electron, so that we have on integration

by parts

Fhx+Ghy+Hhz

+m
-jdte^t

Bx + ^t
Sy + -w Bz)-x(-^Bx

+
Ty

By + Tz Bz)
+
..j

xBx + yBy +zBz —mjdt (xBx + yBy + zBz)
—

jdte
I
-=— Bx + -y— By + -j- Bz )
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where BFjdt must represent the rate of change of F at the electron as it moves,

namely
DF= dF .dF .dF .dF
dt dt dx y

dxj dz'

The vanishing of the coefficient of Zx for each element of volume gives

m£ = e(-M+ d.

dl.+ -dO
i
d̂ _ dT\

\ dt dx
"
dx dx dx)

f . a . dF d¥\-e w _0,-_ __ (11).dt dx)

Similar expressions hold good for my and m'z.

The form of W shows that irrC1
is the coefficient of aethereal elasticity corresponding

to the type of displacement (f,g, h): the right-hand sides of equations (i) are therefore the

expressions for the components of the forcive (P', Q', R') inducing aethereal displacement:
thus this force, which will be called the aethereal force, is given by equations of type

p/ __dF_d^_
dt dx

The form of equation (ii) shows that the right-hand side is the component of the

force e (P, Q, R) inducing movement of an electron e : this force reckoned per unit electric

charge is called the electric force (P, Q, R) and is given by

p . dF dV

or, in terms of physical quantities only, by

P =
ryy

- 0i + 4-TTC'f.

We do not now go into the case of a magnetically polarized material system, for

which in certain connexions* (a, b, c) replaces (a, /3, 7) in this formula.

These expressions for the aethereal force and the electric force, together with a

complete specification of the electric current and the experimentally determined constitutive

relations of the medium, form the foundation of the whole of electrical theory.

Motion in an Impressed Magnetic Field.

When the electrons or ions constituting a molecule describe their orbital motions

in a uniform magnetic field («,, fi„ y ), its influence is represented by an addition to the

vector potential (F, G, H) of the term

(j<>y-@oZ, OoZ-VoX, /3o#-a,#).

*
Cf. loc. cit. ante.
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Thus Tt + T=
1
1m (x* + f + i2

) + 1
Se (Fx + Gjl + Hi)+ 1 [(F/+ G£ + Hi) dr

1_ x y z

x y z
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As regards the electron elt the first of these terms is the same as that due to

an impressed magnetic field given by

(a<>. /3o> 7o)
= —

(<°x, a>y, o>z).
&\

The others give rise to terms in the electric forces which are small compared with

the internal electrodynamic forces of the system itself when the angular velocity is

small : and in our applications these latter will be themselves negligible compared
with the electrostatic forces.

Mutual Forces of Electrons.

When a system of electrons or ions is moving in any manner, with velocities of

an order lower than that of radiation, the surrounding aether-strain may be taken as

at each instant in an equilibrium conformation : thus the positional forces between the

electrons are simply their mutual electrostatic attractions. As regards kinetic effects, the

disturbance in the aether can be considered as determined by the motion of the electrons

at the time considered, so that the kinetic energy can be expressed entirely in terms of

the motions of the electrons
;
and the motional forces between two of them are derived in

the Lagrangian manner from the term in this total kinetic energy

eie2r12
_I

(#1*2 + f$t + *,i«) + \elvleoV2dirnldsidsi ,

where dsu cfo2 are elements of their paths described with velocities vu u2 . The Weberian

theory of moving electric particles involves on the other hand a kinetic energy term

^e&Vif
1

(dr^/clt)
2

: in the field of the electrodynamics of ordinary currents it however

yields equivalent results as regards mechanical force, and the electromotive force induced

round a circuit, though not as regards the electric force at a point.

The Zeeman Effect.

4. On the hypothesis that a molecule is constituted of a system of revolving ions,

a magnetic field H impressed in a direction (I, m, n) adds to the force acting on an

ion of effective mass m and charge e, situated at the point (x, y, z), the term

eH (ny
— mi, li — nx, mx — ly),

so that its dynamical equations are modified by change of x, y, z into

x — ic(ny
—

mz), y — k(Iz— nx), z — k (mx — ly),

where k = eH/m, e being in electromagnetic units.

If the ratio e/m is the same for all the ions concerned in the motion, so is k,

and this alteration of the dynamical equations of the molecule will be, to the first

order of k, the same as would arise from a rotation of the axes of coordinates to

which the system is referred, with angular velocity \k around the axis of the impressed

magnetic field. Hence the alteration produced in the orbital motions is simply equi-

valent to a rotation, equal and opposite to this, imposed on the whole system. Each

line in the spectrum would thus split up into two lines consisting of radiations circularly

polarized around the direction of the magnetic field, and with difference of frequencies

constant all along the spectrum, namely k/2it, together with a third line polarized so that
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its electric vibration is along the same axis while the frequency is unaltered. In fact

each Fourier vibration of an ion, which previously consisted of a component disturbance

of the type of an elliptic harmonic motion, is no longer of harmonic type when the

precessional rotation \k is imposed on it—this precession being imposed additively on

the different constituents of the total motion : but it can be resolved into a rectilinear

vibration parallel to the axis, and two circular ones around it, each of which maintains

its harmonic type after the rotation is impressed and thus corresponds to a spectral line,

and which are differently modified as stated. These three spectral lines would be expected

to be of about equal intensities *.

It is however essential to this simple state of affairs that the charges belonging

to all the ions that are in orbital motion under their mutual influences should be of

the same sign, as otherwise e/m could not be the same for all. It is also essential

that the ions of opposite sign, or the other centres of attraction under which the orbits

are described, should be carried round as well as the orbits with this small angular

velocity $k in so far as they are not symmetrical with regard to its axis.

If we admit the hypothesis that the effective masses of these positive ions, or other

bodies to which the negative ions are attracted, are large compared with those of the

negative ions themselves, this state of superposed uniform rotation of the whole system

may still be expected to practically ensue from the imposition of the magnetic field.

For under the action of the mutual constitutive forces in the molecule, the orbital

motions of the larger masses will take place with smaller velocities. As the additional

forces introduced by the magnetic field are proportional to the velocities, they will thus

also be smaller for the positive ions. Let us then suppose these larger masses to be

constrained to the above exact uniform rotation, with angular velocity o>', along with

the negative ions, and find the order of magnitude of the forces that must be impressed

on them in order to maintain this constraint. The motion of the negative ions will,

as has been seen, be entirely free, the forces due to the magnetic field exactly sufficing

to induce the additional rotational motion. As regards a positive ion of effective mass

m, the radial and transversal forces, in the plane perpendicular to the axis of the

magnetic field, that are required to maintain the motion will be altered from

in (r — rar) and , (ra <o)
r at

to m {r
- r (w + <o')

2

)
and —

-3- {r'(a) + to')}.

Thus, m being small compared with o>, the new forces required will be

— 2mrcoto' and j- (rW) ;

r at

whereas the force arising from the magnetic field acting on an ion moving with velocity

v is 2mva>' at right angles to its path. These two systems of forces are for each ion

of the same order of magnitude: thus the forces required to maintain the imposed

* For more detailed statement, cf. Phil. Mag., Dec. 1897.
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uniform rotation in the case of the massive positive ions are small compared with the

magnetic part of the forces acting on the negative ions. If these maintaining forces

are absent, the system can still be regarded as a molecule in its undisturbed motional

configuration rotating with uniform angular velocity, but subject to disturbing forces equal
and opposite to those required to thus maintain it. Now this undisturbed motional con-

figuration is a stable one: thus the effect of these slight disturbing forces is to modify it,

but to an extent much smaller than the uniform rotation induced by the magnetic field.

Our proposition is thus extended to a molecule consisting of an interacting system,

constituted of equal negative ions together with much more massive positive ions, and also

if so demanded of other massive sources of attraction. It would however be wrong to

consider each negative electron as describing an independent elliptic orbit of its own,

unaffected by the mutual attractions exerted between it and the other moving negative

electrons : for the attractions between ions constitute the main part, if not the whole, of

the forces of chemical affinity. But without requiring any knowledge of the constitution of

the molecular orbital system, the Zeeman triplication of the lines, with equal intervals

of frequencies for each line, will hold good wherever the conditions here stated obtain.

It appears from the observations that the difference of frequencies of the components

magnetically separated is not constant for all lines of the spectrum : so that this simple

state of affairs does not hold in the molecule. The difference of frequencies seems however

to be sensibly constant for those lines of any element which belong to the same series, as

well as for those lines of homologous elements which belong to corresponding series*
;
a result

which cannot fail to be fundamental as regards the dynamical structure of molecules, and

which supports the suggestion that in a general way the lines of the same series arise

from the motions of the same ion or ionic group in the molecule, executed under similar

conditions. The directions of the circular polarizations of the constituent lines were shown

by Zeeman to be in general such as would correspond in this kind of way to the motions

of a system of negative ions in a steady field of force.

It remains to be considered whether we are right in thus taking the stresses

transmitted between the electrons, through the aether, as those arising from the con-

figuration of the electrons alone, and in neglecting altogether the motional forces between

them. The former assumption is equivalent to taking the strain in the surrounding

aether to be at each instant in an equilibrium state : this will be legitimate, because

an aethereal disturbance will travel over about 103 diameters of the molecule in one

of the periods concerned,—the error is in fact of order 10-6. The motional forces between

two electrons are of type, as regards one of them,

\dt dx^ dxj
1

\ ri2 ds^J
'

To obtain a notion of orders of magnitude, let us consider the special case of two electrons

+ e, -e describing circular orbits round each other with radius r. Then miPfyr^o'ei'/r*,

*
Preston, Phil. Mag., Feb. 1899.
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while Zeeman's measurements give e/m=107
: thus v2 = ^c'e-jmr, so that, taking r to be

10~ 8
, e=10-21

,
we obtain v = 10 3

c; thus the orbital period comes out just of the order

of the periods of ordinary light, which is an independent indication that the general

trend of this way of representing the phenomena is legitimate. With these orders of

magnitude, the terms in the motional forces between two electrons are of orders e^x/r,

e-^e^jr- as compared with their statical attraction of order c2e1 e2/r
J! and the forces arising

from the impressed magnetic field H of order exll; the ratios are thus of the order

of 10-6 to 1 to 3.10-9 //. Thus when H exceeds 103
,
the forces of the impressed magnetic

field are more important than the motional forces between the ions
;

and in all cases

the effects arising from these two causes are so small that they can be taken as

independent and simply additive.

The Zeeman Effect of Gyro-static Type.

5. Sensible damping of the vibrations of the molecule owing to radiation cannot

actually come into account, because the sharpness and fixity of position of the spectral lines

show that the vibrations subsist for a large number of periods without sensible change of

type. In fact it has been seen above that the motion of the system of electrons, on the

most general hypothesis, is determined by the principle of Action in the form

&j(T'-W)dt
=

where T = £2m (x
2 + y"> + z-) + ££« x y

x y z

I m n

thus it comes under the same class as the motion of a dynamical system involving latent

constant cyclic momenta, the Lagrangian function for such a system, as modified through

the elimination of the velocities corresponding to these momenta by Routh, Kelvin, and

von Helmholtz, being of this type. The influence of the impressed magnetic field is thus

of the same character as that of gyrostatic quality imposed on a free system : and the

problem comes under the general dynamical theory of the vibrations of cyclic systems*. In

the special case above considered of massive positive ions, we can thus assert that the

motion relative to the moving axes is the same as the actual motion of the system with

its period altered through slight gyrostatic attachments to these positive ions. It is more-

over known from the general theory of cyclic systems that each free period is either wholly

real or else a pure imaginary, whenever the unmodified system is stable so that its

potential energy is essentially positive: thus on no view can a magnetic field do anything

towards extinguishing or shortening the duration of the free vibrations of the molecule,

it only modifies their periods and introduces differences of phase between the various

coordinates into the principal modes of vibration of the system.

In the general case when k is not the same for each ion in an independently vibrating

group in the molecule, the simple solution in terms of a bodily rotation fails, and it might

*
Cf. Thomson and Tait, Nat. Phil, Ed. 2, Part I. pp. 370—416.
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be anticipated that the equation of the free periods would involve the orientation

of the molecule with regard to the magnetic field. But if that were so, these

periods would not be definite, and instead of a sharp magnetic resolution of each

optical line there would be only broadening with the same general features of polar-
ization. To that extent the phenomenon was in fact anticipated from theory, except as

regards its magnitude. The definite resolution of the lines is however an addition to

what would have been predicted on an adequate theory, and thus furnishes a clue

towards molecular structure.

A Possible Origin of Series of Double Lines.

The definiteness and constancy in the mode of decomposition of a molecule into

atoms shows that these atoms remain separate structures when combined under their

mutual inBuence in the molecule, instead of being fused together. Each of them will

therefore preserve its free periods of vibrations, slightly modified however by the

proximity of the other one. For the case of a molecule containing two identical atoms

revolving at a distance large compared with their own dimensions, each of these

identical periods would be doubled*: thus the series of lines belonging to the atom

would become double lines in the spectrum of the molecule. It has been remarked

that the series in the spectra of inactive elements like argon and helium consist of

single Hues, those of univalent elements such as the sodium group where the molecule

consists of two atoms, of double lines, while those of elements of higher valency appear

usually as triple lines.

In other words, a diad molecule consists of the two atoms rotating round each

other with but slight disturbance of the internal constitution of each of them. Their

vibrations relative to a system of axes of reference rotating along with them will thus

be but slightly modified : relative to axes fixed in space there must be compounded
with each vibration the effect of the rotation, which may be either right-handed or

left-handed with respect to the atom : thus on the same principles as above each line

will be doubled. If the lines of a spectral series are assumed to belong to a definite

atom in the molecule, those of a molecule consisting of two such atoms would thus

be a system of double lines with intervals equidistant all along the series, but in this

case without definite polarizations.

But if the constituents of the double lines of a series were thus two modifi-

cations of the same modes of the simpler atomic system, it would follow that they

should be similarly affected by a magnetic field. This is not always the case, so that

* In illustration of the way this can come about, revolution is different, and each single undisturbed period

consider two parallel cylindrical vortex columns of finite becomes two adjacent disturbed periods. Analogous con-

section in. steady rotation round each other. Each by siderations apply to the interaction of the two atoms of the

itself has a system of free periods for crispations running molecule, rotating round each other.

round its section : when one of them is rotating round the According however to Smithells, Dawson, and Wilson,

other, the velocity of the crispations which travel in the Phil. Trans. 1899 A, it is the molecule of sodium that gives

direction of rotation is different from the velocity of those out the yellow light, that of sodium chloride not being

that travel in the opposite direction: thus the period of effective.

Vol. XVIII. 50
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this kind of explanation cannot be of universal application : it would be interesting to

ascertain whether the Zeeman effect is the same for the two sets of constituents of a

double series such that the difference of frequencies is the same all along it. At any

rate, uniformity in the Zeeman effect along a series of lines is evidence that they

are all connected with the same vibrating group : identity of the effect on the two

constituents of a doublet is evidence, as Preston pointed out, that these belong to

modifications of the same type of vibration.

Nature of Magnetization.

6. The proposition above given determines the changes in the periods of the

vibrations of the molecule in the circumstances there denned. But it is not to be inferred

from it that the imposition of the magnetic field merely superposes a slight uniform

precessional motion on the previously existing orbital system. That orbital system will be

itself slightly modified in the transition. For instance, in the ideal case of the magnetic

field being imposed instantaneously, the velocities of all the electrons in the system will

be continuous through that instant : hence the new orbital system on which the precession

is imposed will be the one corresponding to velocities in that configuration which are

equal to the actual velocities diminished by those connected with the precessional motion.

On the usual explanation of paramagnetic induction, the steady orbital motion of each

electron is replaced by the uniform electric current circulating round the orbit which

represents the averaged effect : the circuit of this current is supposed to be rigid so

that the averaged forcive acting on it is a steady torque tending to turn it across the

imposed magnetic field. This mode of representation must however d priori be incom-

plete : for example it would make the coefficient of magnetization per molecule in a gas

increase markedly with length of free molecular path and therefore with fall of density,

because this torque would have the longer time to orientate the molecule before the

next encounter took place. It appears from the above that the true effect of the imposed

magnetic field is not a continued orientation of the orbits but only a slight change in

the orbital system, which is proportional to the field, and in the simple circumstances

above discussed is made up of a precessional effect of paramagnetic type, accompanied

by a modification of the orbital system which is generally of diamagnetic type, both

presumably of the same order of magnitude and thus very small.

The recognition of this mode of action of the magnetic field also avoids another

discrepancy. If the field acted by orientating the molecules it must induce dielectric

polarization as well as magnetic : for each molecule has its own averaged electric moment,

as revealed by piezoelectric phenomena, and regular orientation would accumulate the

effects of these moments which would otherwise be mutually destructive. But there is

nothing either in the disturbance of the free orbital system into a slightly different

free system, or in the precession imposed on that new system
—nor in a more general

kind of action of the same type,
—which can introduce electric polarization.
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The polarization of a dielectric medium by an imposed electric field is effected in a

cognate manner. The electric force slightly modifies the orbital system by exerting

opposite forces on the positive and negative ions. In this case these forces are inde-

pendent of the velocities or masses of the ions. The fact that the polarization is

proportional to the inducing field shows that the influence produced by the field on the

orbital system is always a slight one. Yet the numerical value of the coefficient of

electric polarization is always considerable, in contrast with the very small value of

the magnetic coefficient
;

which arises from the very great intrinsic electric polarity

of the molecule, due to the magnitude of the electric charge e of an ion. Taking the

effective molecular diameter as of the order 10-8 cm., there will be 1024 molecules per

unit volume in a solid or liquid, and the aggregate of their intrinsic electric polarities may
be as high as 1024 .10_8 eo electrostatic units, where ec is 3 . 10 -11

. Now the moment

of polarization per unit volume for an inducing field F is (K — 1) F/8tt ;
thus even for very

strong fields this involves very slight change in the orbital configuration. A similar

remark applies to the polarization induced by mechanical pressure in dielectric crystals. It

would be unreasonable to expect any aggregate rotational effect around an axis, such

as constitutes magnetization, from the polarizing action of an electric field
;

in fact if it

were present, reversal of the direction of the field could not affect its total amount

considered as arising from molecules orientated in all directions.

The possibilities as regards the aggregate intrinsic magnetic polarities of all the

molecules are of the same high order, viz. eAn/r, where A is the area and t the period

of a molecular orbit, which is elnv or 10_B« per cubic centimetre, where v is the velocity

in a molecular orbit whose linear dimension I is 10-8. Thus the superior limit of the

magnetization if the molecules were all completely orientated would be of the order

10-5t>, which is large enough to include even the case of iron if v were as much as one

per cent, of the velocity of radiation.

In the case of iron a marked discrepancy exists between the enormous Faraday

optical effect of a very thin sheet in a magnetic field on the one hand, and the slight

Zeeman effect of the radiating molecule, as also the absence of peculiarity in optical

reflexion from iron, and the absence of special influence on Hertzian waves, on the other:

which must be in relation with the circumstance that at a moderately high temperature

the iron loses its intense magnetic quality and comes into line with other kinds of matter.

This suggests the explanation that the magnetization of iron at ordinary temperatures

depends essentially on retentiveness, owing to facility possessed by groups of molecules for

hanging together when once they are put into a new configuration. This is the well-known

explanation of the phenomena of hysteresis, which can be effectively diminished by

mechanical disturbance of the mass. In soft iron the magnetic cohesion would be less

strong and more plastic, and thus readily shaken down by slight disturbance in the

presence of a demagnetizing field, so that retentiveness would not be prominent. It is

conceivable that the primary effect of an inducing field is to slightly magnetize the

different molecules : that then the molecules thus altered change their condition of

aggregation, and so are retained mutually in new positions independently of the field,

50—2
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the effect persisting if the field is gently removed : that the field can then act afresh on

the molecules thus newly aggregated : and so on by a sort of regenerative process,

the inducing field and the retentiveness mutually reinforcing each other, until large

polarizations are reached before it comes to a limit. For hard iron these accommodations

take place more rapidly than for soft iron, when the field is weak, and thus are of sensibly

elastic character over a wider range: cf. Ewing, Magnetic Induction, 1892, ch. VI.

On the Origin of Magneto-optic Rotation.

7. The Faraday magneto-optic rotation is obviously connected, through the theory

of dispersion, with the different alterations of the free periods of right-handed and

left-handed vibrational modes of the molecules, that are produced by the impressed

magnetic field. The ascertained law {infra) that the mean of the velocities of the

two kinds of wave-trains is equal to that of the unaltered radiation, shows that the

phenomenon in fact arises wholly from this difference, and is not accompanied by

temporary structural change in the molecule such as would involve alteration of the

physical constants of the medium.

The general relation connecting the refractive index fi of a transparent medium

with the frequencies (plt p2 , ...p„)/27r of the principal free vibrations of its molecules,

which are so great that radiation travels over 103 molecular diameters in one period,

is of type
^ ~ x = 2 Ar
f+2 f--pr

*'

in which A r is a constant which is a measure of the importance, as regards dispersion,

of the free principal period 2-rr/pr . The quantity on the right-hand side of this equation,

of form f(p*), is a function of the averaged configuration of the molecule relative to the

aethereal wave-train that is passing over it. Now consider a circular wave-train, say

a right-handed one, passing along the direction of the magnetic field : on the hypothesis

that the spectrum consists of a single series of lines for all of which k is the same,

the influence of this train on the corresponding right-handed vibrations that it excites

in the molecule will be to superadd a rotation of the molecule as a whole with angular

velocity ^k. This will modify the configuration of the vibrating system relative to the

circular wave-train passing over it in the same way as if an equal and opposite angular

velocity were instead imparted to the wave-train. Thus the actual effect of the magnetic

field on the light will be the same as would be that of a change in the frequency

of the light from p^lir to pj2ir + kJ^tt, the latter term arising from this imposed angular

velocity : the value of the magneto-optic effect may therefore in such a case be derived

from inspection of a table of the ordinary dispersion of the medium.

The velocity of propagation of the train of circular waves will, on this hypothesis,

be derived by writing p — \ic or j) + ^« for p according as the train is right-handed

or left-handed, thus giving when k1
is neglected,

£**" 1 = t Ar

/i
2 + 2 p*+ Kp- pr

*
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For the case when there is only a single free period this result coincides with FitzGerald's

formula {Roy. Soc. Proc. 1898), which has been shown by him to give the actual order

of magnitude for a Faraday effect as thus deduced from the Zeeman effect.

If we were to consider that each system of lines in the spectrum arises from an

independently vibrating group of ions in the molecule, as (supra) there may be some

temptation to do, then the value of (/j?
-

1)/(m
2 + 2) in this formula would be obtained

by addition of the effects of these independent groups: thus if the value of the Zeeman

effect were known for each line of the spectrum of any substance, and the law of

dispersion of the substance were known, the Faraday effect could be deduced by cal-

culation. To our order of approximation we should have

p? + i) (p
2 -pr

2Y
'

the circumstance that the mean of the velocities of propagation is unaltered points to the

A coefficients being unaffected by the magnetism, thus suggesting absence of change in

the mean conformation, as already remarked.

For the case in which the free periods that effectively control the dispersion all

belong to the same series of spectral lines, so that k is the same for all of them, the

formula for the dispersion need not come into the argument. The influence of the

impressed magnetic field on the index of refraction of circularly polarized light is then the

same as the change of p to p ± \k according as the polarization is left-handed or right-

handed. Because that influence is equivalent to rotation of the optically vibrating molecule

with angular velocity \k, the molecule will now be related in the same way to a wave-

train with angular velocity p±^K as it was previously to one with angular velocity p.

dV
Thus light corresponding to angular velocity p is now propagated with velocity V±\k -

instead of V. Now if \ be the wave-length in a vacuum and /x the refractive index,

we have V=c//i, p = 2-rrc/\: and the rotation of a plane of polarization for a length

I of the medium, being \p multiplied by the difference of times of transit, is

£(j/F1 -Z/Fa).27rc/\, which is wlc. SV/V'X,

where BV= icdV/dp = ^-d/i^/dX
-1

, so that the result is
^-\ t- .

This expression, \
- X™ , for the coefficient of magnetic rotation as a function of the

wave-length, has been given by H. Becquerel* and shown by him to be in good

agreement with actual values as regards order of magnitude, and also with Verdet's

detailed observations along the spectrum in the cases of carbon disulphide and creosote.

The restriction on which it is here based, namely that the dispersion is controlled by free

periods for all of which the Zeeman constant is the same, can be neglected for the case

of the anomalous dispersion close to an absorption band, because there the dispersion

*
Comptes Rendus, Nov. 1897 : it was based on the assumption that the magnetic field involves rotation of the

aether with velocity Jk.
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is controlled by that band alone * : thus the Faraday effect is there very large and of

anomalous character, in correspondence with the experimental discovery of Macaluso and

Corbino. From another aspect of the same effect, we can conclude that light of any given

period, very near a natural free period of the medium, will travel in it with sensibly

different velocities according as its mode of vibration corresponds to one or other of

two principal types, elliptically (or in a special case circularly) polarized in opposite

directions, and thus will exhibit phenomena of double refraction.

The Influence of Rotational Terms on Optical Propagation.

8. The purely formal, i.e. non-molecular, theory of the magnetic influence on optical

propagation may be developed in a simple and direct manner, by use of the device of

a revolving coordinate-system as above employed. In a non-magnetizable medium the

exact relations connecting the magnetic force (a, /3, 7), the electric force (P, Q, R), and the

electric current (m, v, w), are of types

dy

dy
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so that, transposing,

8
W=f(f'BP

+ g'SQ + h'BR) dr,

in which the independent variable is now (P, Q, R).

On conducting the variation in the usual manner, and reducing from d&P/dt to 8P

by partial integration with respect to time (such as necessarily enters in the reduction

of the fundamental dynamical equation of Action) this leads to a relation of type

r, _ dF2 a3 dQ a? dR
1 ~dP +

4tt02
~dt

~
4^G2 ~di

'

where (a x , a2 > a3)/47rC
2 = (a^

— a32 , a31
— a13 ,

am — a^).

When the system is referred to its principal dielectric axes,

This analysis shows that rotational quality in the relation connecting (/', g', h')

and (P, Q, R) can come in through terms in the energy function that involve the

time-gradients: or, as may be shown in a similar manner, it may enter through terms

involving the space-gradients : but not otherwise. The latter terms introduce rotational

quality of the structural type, with which we are not now concerned. The former terms

lead to the magnetic type of rotation, here related to the vector (alt a2 , a3), which

must be determined by the impressed magnetic field or other exciting cause of vector

character: the existence of such mixed terms, involving (P, Q, R) aud d/dt(P, Q, R),

in fact adds to the polarization a part at right angles to d/dt (P, Q, R) and to this

vector (Oj, a?, a3), and equal to their vector product divided by 47rc2
,
which is in all cases

entirely of rotational character. Terms of the form of a quadratic function of the

gradients of (P, Q, R) by themselves would merely modify the form of the function

P2 so that its coefficients depend in part on the period of the vibration, that is, they

would be merged in optical dispersion of the ordinary type. The question also arises

whether the ordinary dielectric constants, namely the coefficients of the function P2 (P, Q, R),

are sensibly altered by an impressed magnetic field. This point can be settled by aid of

the principle of reversal. When the electric force and the impressed magnetic field and

the time are all reversed, the effect on the induced electric polarity must be simple

reversal: hence a reversal of the magnetic field cannot affect the coefficients in F2 (P, Q, R):

hence these coefficients must depend on the square or other even power of the impressed

magnetic field : but the rotational terms depending on its first power are actually very

small, therefore any terms depending on its second power are wholly negligible. This is in

accord with Mascart's experimental result.

The right-hand sides of the equations of propagation in the material medium, as

above indicated, can thus, for light of period 2tt/p, be expressed in the form

/„ „d
2P dQ dR

Tr d*Q dR dP „ .d*R dP dQK*P W- a
>Hi

+a
>-dt>

K>P W- a
>dt

+a
>dt
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In the case of an isotropic medium for which Ku Kit K3 are each equal to K, these

equations of vibration can be restored to their normal form, when the square of the

magnetic effect is neglected, by employing a coordinate system rotating with angular

velocity \K~l

]f (a1( a2 , as ).
Thus the effect of the impressed magnetic field is that the

vibrations of the electric force, propagated as if that field were absent, are at the same

time carried on by a motion of uniform rotation around its axis : so also, in virtue of

the second of the above circuital relations, are the vibrations of the magnetic force. The

electric force is not exactly on the wave-front because under the magnetic conditions it

is not exactly circuital : the magnetic force is exactly on the wave-front. Thus we have

the direct result that a plane-polarized train of electric vibrations, of wave-length X,

travelling along the direction of the impressed magnetic field H, is rotated around its

direction of propagation through an angle proportional to eH/K\* per unit time, so that

the rotational coefficient per unit distance is proportional to tHjK^X", where e is itself

affected by dispersion and is thus to a slight extent a function of the wave-length. When

the wave-train is not travelling in the direction of the magnetic field, it is the com-

ponent of H along the normal to the wave-front that is effective : the other component

of the rotation, around an axis in the plane of the wave-front, then gradually deflects

the front so as to produce curvature of the rays, but so excessively slight as to be of no

account. The magnetic effect is thus a purely rotational one whatever be the direction of

the wave-train with respect to the field : and the phenomena in an isotropic medium may
be completely described kinematically on that basis.

When the medium is crystalline, its rotational quality is mixed up with its double

refraction: yet in ordinary crystals the differences between Klt Kt , K„ are slight, so that

the phenomena are still approximately represented by each permanent wave-train, polarized

in the manner corresponding to its direction of propagation, rotated around that direction

with velocity proportional to the cosine of the angle it makes with an axis which need not

now be the axis of the impressed magnetic field.

This direct method of exhibiting the nature of the effects may also be applied to the

case of structural rotation, in which by an argument similar to the above, but dealing with

energy-terms involving space-gradients of the electric force, we obtain for the material

medium a constitutive relation of type

toO*(f, 9', h')=[K
lP + a3fz -a2

d

^,
dR dP v D dP dQ\K*Q + aidx- a

*^z'
K>R + a

*dy-
a
>dx)>

when the principal axes of the rotational quality coincide with those of the ordinary

dielectric quality. For a plane wave-train travelling in the direction (I, m, n), for which

2_j.

(P, Q, R) x exp t ,- (Ix + my + nz — Vt),

P = 2ttV/\', V=gK \
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this may be expressed in the form

4ttc2
C r a' h') - - (K r>-°-— +—8 dQ ma* dR

\

so that, when Klt K2 ,
K3 are each equal to K, the equations of propagation are reducible

to the normal form for a non-rotational medium by imparting to the coordinate axes a

velocity of rotation 2ir*cK A.
-2

(/a,, ma2> na3), which implies a coefficient of rotation of a

plane-polarized wave equal per unit distance to 2ir2/r~1
X.
_2

(fo,, ma2 ,
nas) where X is the

wave-length in vacuum. This is the law of rotation for wave-trains travelling in various

directions in a simply refracting medium with aeolotropic rotational quality. This law

also applies approximately to crystals such as quartz, inasmuch as the difference between

the principal refractive indices is not considerable : in quartz the -vector (alt a2 , a3) must

by symmetry coincide with the axis of symmetry of the crystal: thus the coefficient of

the effective component, that normal to the wave-front, of the imposed rotation for a

wave-train that travels in a direction milking an angle 6 with that axis is proportional

to cos2
6, not to cos 6 as in the magnetic case. In this case the rotational effect is

superposed on the double refraction, so that a plane-polarized wave instead of being

simply rotated will acquire varying elliptic polarization : it is however a simple problem
in kinematics* to determine the types and the velocities of the two elliptically polarized

wave-trains that will be propagated without change of form under the two influences,

each supposed slight.

It appears from this discussion that magneto-optic rotation is a phenomenon of

kinetic origin, related to the free periods of the molecules and not at all to their

mean polarization under the action of steady electric force : it is therefore entirely of

dispersional character.

Again the intrinsic optical rotation of isotropic chiral media is represented by a con-

stitutive relation of type

f K_ P , r (dQ_dR\/_ 47rc 2
\dz dy)'

showing that the rotational term is proportional to the time-gradient of the magnetic field :

this effect would therefore be entirely absent in statical circumstances, and only appears

sensibly in vibratory motion of very high frequency. In this case no physical account of the

origin of the term has been forthcoming : we have to be content with the knowledge that

the form here stated is the only one that is admissible in accordance with the principles

of dynamics.

As the rotatory power, of both types, is thus connected with the dispersion as well as

the density of the material, it is not strange that attempts, experimental and theoretical,

to obtain a simple connexion with the density alone, have not led to satisfactory results.

The existence of a definite rotational constant for each active substance has formed the

main experimental resource in the advance of stereochemical theory : but the present

considerations prepare us for the fact that no definite relations connecting rotational power

with constitution have been found to exist,
—that the quality, though definite, is so to

speak a slight and accidental one, or rather one not directly expressible in terms either of

crystalline structure or of the main constitutive relations with which chemistry can deal.

* Cf. Gouy, Journ. de Phys., 1885 ; Lefebvre, loc. cit., 1892 ;
0. Wiener, Wied. Ann., 1888.
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General Vibrating . System in which the Principal Modes are Circular.

9. We are entitled to assert, on the basis of Fourier's theorem, that any orbital

motion which exactly repeats itself with a definite period can be resolved into constituent

simple elliptic oscillations whose periods are equal to its own and submultiples thereof.

Such a motion would therefore correspond to a fundamental spectral line and its system

of harmonics. The ascertained absence of harmonics in actual spectra shows either that the

period corresponding to the steady orbit is outside the optical range, or else that the steady

motion emits very little radiation as in fact its steadiness demands. The radiation would

then arise from the various independent modes of disturbance, each of elliptic type on

account of the absence of harmonics, that are superposed on the steady orbital motion.

To ascertain the nature of the polarization of the vibrations when in a magnetic field,

we have first to decompose each orbital motion into its harmonic constituents, which are

elliptic oscillations : each of the latter can be resolved into a linear oscillation parallel to

the axis of the magnetic field, another at right angles to it, and a circular oscillation

around it
;
and of these the second linear oscillation can be resolved into two equal circular

oscillations in different senses around it. Now when the uniform rotation around the axis

is superposed on the components they all continue to be of the requisite simple harmonic

type, but the periods of the two circular species,
—which as has been seen are of amplitudes

different as regards the various molecules but equal in the aggregate,
—become different:

they are the three Zeeman components.

Nothing short of complete circular polarization of the constituent vibrations of permanent

type in each molecule will account for the complete circular polarization of each of the

flanking Zeeman lines. If these vibrations were only elliptical, but propagated with different

velocities according to the sense in which the orbit is described, each would be equivalent

to a circular vibration together with a linear one : and as the total illumination is the sum

of the contributions from the independent molecules, the circularly polarized light would

then be accompanied by unpolarized light of the same order of intensity. This restriction

of type of vibration suggests the employment in the analysis of variables each of which

corresponds to a circular vibration, as do the £, 77
variables in what follows.

For simplicity let us take the axis of z parallel to the impressed magnetic field, and

let (X, Y, Z) represent the statical forces transmitted by aether-strain from the other ions

in the molecule to a specified one. The equations of motion of that ion are

m (x
—

icy) =X, m (y + kx) = Y, mz = Z.

We now make no assumption with regard to the magnitude of the electric charges and

effective masses of the various ions, which may differ in any manner. In this ion let us

change the variables to

l-
= x + t,y, 7)=x-iy,
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so that 2x = ^ + t], 2iy= %
—

t),

and therefore

the equations become

and therefore 2—- - t <% = + 1

af dx dy d-n ax ay

*»(|+«f)«*Z + «F,

m (if
—

ikt/)
=X —

iY,

m'z =Z.

If therefore X + iY is a function only of the £ coordinates of the electrons, and X — iY
a function only of the 77 coordinates, and Z only of the z coordinates, these groups of

coordinates will be determined from three independent systems of equations.

On our hypothesis of ions moving with velocities of an order below that of radiation,

the mutual forces acting on them are derived from a potential energy function : thus

where k may be supposed to vary from one ion to another, being equal to the electric

charge when the mutual forces are considered to be wholly of electric origin. Then

1 /rA m MdW 1 ,_ „. 2k dW— (A+t,r) = -j— » —(X—iY) = -jr.m m dt) m in a£

The solution of the complete system of equations, three for each ion, will in any case

involve the expression of £, 77,
z for each ion as a sum of harmonic terms of the form eipt

each with a complex numerical coefficient; but when the coefficients of one of them are

assigned those of the others are determined. The vibration for each ion is thus compounded
of a system of elliptic harmonic motions of definite forms and phases. Their components in

the plane £, 77 will be circular vibrations only when the £ and rj
coordinates vary inde-

pendently of each other, that is when dWjd-n is a function of the £ coordinates of the ions

alone and dW/d^ a function of the 77 coordinates alone. This condition can only be satisfied,

W being real, when it is a linear function of z2 and of products of the form gr r)r or
£,.77, :

it may thus be any quadratic function of the coordinates which is invariant in form as

regards rotation of the axes of x, y around the axis of z. Under these circumstances the

free periods for £ coordinates, 77 coordinates, and z coordinates will all be independent, and

either real or pure imaginary*: in an actual molecule they will be real. For example a

permanent vibration of f type will be represented by

%r = %A r e'P'
t+M

',

ar being chosen so that A r is real : thus

xr= 2-4 r cos (pr t + ar), yr
— 1,A r sin (pr t + ar)

representing a series of right-handed circular vibrations, each series having definite phases

and also amplitudes in definite ratios for the various ions. Again for the 77 type we have

*
Eouth, Essay on Stability, 1887, p. 78 ; Dynamics, vol. 11., § 319.

51—2



404 Mr LARMOR, ON THE DYNAMICS OF A SYSTEM OF ELECTRONS OR IONS:

so that xr
= 1Br cos (qrt + /3r), yr

= - ZBr sin (qrt + /3r),

which represents similarly a series of left-handed circular vibrations. The vibrations of z

type will of course be linear in form.

Thus supposing the effective masses and charges of the various ions to be entirely

arbitrary, the effect of an impressed magnetic field will be to triple the periods and

polarize the constituents in the Zeeman manner, provided the potential energy of the

mutual forces of the ions is any quadratic function of the coordinates of the vibrations

which satisfies the condition of being invariant in form with respect to rotation of the

axes of coordinates around the axis of the magnetic field.

The essential difference between the type of this system and that of the one

previously considered will appear when the latter is derived on the lines of the present

procedure. The equations are

: ,
t

, 2kdW
m dn

On writing

they become

v-
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and as by hypothesis the vibrations are all
'

cycloidal
'

or simple harmonic, this function

must be homogeneous and quadratic in these coordinates. The total potential energy
must be determined by the instantaneous configuration of the system, and will therefore

remain of the same form when referred to new axes of coordinates. This confines the

quadratic part representing the energy of the disturbance to the form given above :

the vibration of each ion will then in general consist of a system of elliptic oscillations

of all the various free periods, equal in number to the ions : and the effect of an

impressed magnetic field will be to triple each vibration-period and to polarize the

constituents in the Zeeman manner. The steady or constitutive motion of the system

"must be so adjusted that it does not sensibly radiate: otherwise it would gradually

alter by loss of its energy.

As the axis of the magnetic field may be any axis in the molecule, the function

which represents the potential energy must thus be such that the vibrations resolved

parallel to any axis form an independent system : hence it is confined to the form

w = - $2A„ {(«/
- xsy + {y; - y,y + 0/ - zty\ + 2Bra («,'«,' + yr'ys

' + *V),

= - \lA rs {(£'
-

£,') (Vr
' -

„,') + (zr
' - z8J} + &Bn (&V + £V + 2zr%').

Thus in the absence of a magnetic field the vibrations of the x coordinates, of the

y coordinates, and of the z coordinates of the ions will form independent systems of

precisely similar character. It is in fact only under this condition that it is possible

for the components, parallel to any plane, of the elliptic harmonic vibrational types of

the various ions, to form a system of circular vibrations with common sense of rotation.

If m/k = \ and m«/&=X', the equations of motion are of type

dW dW dW

The periods of the right-handed circular vibrations, of type f x ept, period 2irjp, will be

given by the equation

-\&-\{p-Uw, C„, C13 ,
Cu ,

... Cln =0,

CB ,

- \ 2p
2 -

\t'p
- S4 2r ,

c23 ,

CM ,
C32 ,

- X3p
2 -

X/P - 24 sr

in which Cr8
= A rs + Br, : those of the left-handed circular vibrations by changing the

sign of each X' in this equation : those of the plane-polarized vibrations, which are the

natural periods of the molecule, by making X' null. On account of the great number

of the constants, compared with the number of free periods, simple relations among the

periods can only arise from limitations of the generality of the system.

The duplication or triplication observed in the constituent Zeeman lines would on

this theory arise from the presence of two or three equal roots in the period equation

Cu ,
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for natural vibrations of the system, which would be differently affected and therefore

separated by the impressed magnetic field.

This analysis is wide enough to apply to a system consisting of a continuous

electrical distribution, whose parts are held together in their relative positions either

by statical constraint or by kinetic stability : for then the potential energy still depends

on the relative configurations of the elements of mass of the system.

We have however not arrived at any definite representation of the dynamical

system constituting a molecule, except that it consists of moving electric points either

limited in number or so numerous as to form a practically continuous distribution :

but reasoning from the definiteness and sharpness of the periods in the spectrum, and

the facts of polarization of light, it has been inferred that the vibrations of the

molecule form a '

cycloidal
'

system and therefore arise from a quadratic potential energy

function : the total potential energy function must therefore consist of two independent

parts, that belonging to the steady motion, in which the coordinates of the vibrations

do not occur, and this part belonging to the disturbance which is quadratic in its

coordinates : as a whole it must depend on the configuration of the system and not

on the axes of coordinates, hence this quadratic part is invariant with regard to change

of axes : this confines it to the form given above,—which had been found to be

demanded by the existence of the Zeeman phenomena.

It has thus been seen that the fact that the vibrations belonging to the Zeeman

constituent lines are exactly circular, and not merely elliptic with a definite sense of

rotation, requires that the right-handed and left-handed groups of vibrations shall form

two independent systems : as the magnetic field may be in any direction as regards

the molecule, this requires that its vibrations, when the magnetic field is absent, can

be resolved into three independent systems of parallel linear vibrations directed along

any three mutually rectangular axes. This again involves that an electric force acting

on the molecule will induce a polarization exactly in the direction of the force, and

proportional to it*: that in fact notwithstanding its numerous degrees of freedom the

molecule is isotropic. Thus the source of double refraction in crystals or strained

isotropic substances would reside in the aeolotropic arrangement of the molecules and

not in their orientation : but there can also be an independent intrinsic electric polarity

in the molecule depending on its orientation and not on the electric field, such as is

indicated by piezoelectric effects in crystals.

If the molecules were not thus isotropic as regards induced electric polarity, the

electric vibration induced in the molecules, when a train of radiation passes across a

medium such as air, would not be wholly in the wave-front. In the theory of optical

dispersion the coefficientsf would then be averages taken for a large number of mole-

* Cf. Kerr's striking result, Phil. Mag., 1895, that in velocity of propagation affected,

the double refraction produced in a liquid dielectric by an f e.g. K, clt ca , ... Cj', c2', ... in Phil. Trans. 1897 A,

electric field, it is only the vibration polarized so that its p. 238.

electric vector is parallel to the electric field that has its
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cules orientated in all directions, such as may be considered to exist in an effective

element of volume of the medium : and this averaging would constitute the source of

its isotropy. But there would remain a question as to whether, when a plane-polarized

wave-train is passing, those fortuitous components of the polarization of the molecules

that are not in the direction of the electric vibration of the wave-train would not

send out radiation as independent sources and thus lead to extinction of the light.

The definite features of polarization of the light scattered from a plane-polarized train

by very minute particles or molecular aggregations seems also to suggest in a similar

manner that the individual molecule is isotropic.
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The present paper is primarily a reconsideration of the paper of M. Poincare in

the Acta Mathematica, t. xxn. (1898), p. 89; and depends for its interest on the remark-

able discovery of the expression of an integral function by means of the potential of

the (n
—

2)-fold over which the function vanishes, which is virtually contained in

M. Poincare"s paper in t. n. of the Acta Mathematica (1883), pp. 105, 106. The

following points of novelty may however justify its publication, (i) By means of a

generalisation of the theorems of Green and Stokes, for the transformation of multiple

integrals, the imaginary part of the function of the complex variables is introduced con-

currently with the real part ; (ii) and thereby, as would appear, the coefficients in the

quadratic function used by M. Poincare
-

(Acta Math., t. xxn. p. 174) are shewn to be

zero, (iii) The theory is put in connection with Kronecker's formulae (Werke, Bd. I.

p. 200), whereby it follows that the imaginary part of the logarithm of the integral

function is a generalised solid-angle, just as M. Poincare' has shewn the real part to

be a generalised potential. In general Kronecker's integral, unlike Cauchy's, does not

represent a function of complex variables unless the (n — l)-fold of integration is closed
;

in the present paper there arises a Kronecker integral which is an exception to this

rule (the integral £»-_], §§ 12, 17). (iv) The definite formula here given for the integral

function is not limited to the case of periodic functions
; though on the other hand it has

not that general application which belongs to the theory of M. Poincare"'s earlier paper,

in the Acta Math. t. It In that paper there remains in the resulting formula an integral

function of which the existence is proved, for which however no definite expression is

given; in the present paper, in order to have a definite expression, I have hasarded a

limitation which may be regarded as a generalisation of the notion of the genre of

functions of one variable. This limitation arises by regarding the (n— 2)-fold integral

which enters here as a generalisation of the sum which is obtainable by taking the

logarithm in Weierstrass's general factor formula for an integral function of one variable.

The paper is divided into two parts, of which the former contains a formal proof of a

theorem constantly employed in the theory developed in Part II.
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Part I. Preliminary.

Formal proof of the general Green-Stokes theorem.

1. In Euclidian space of n dimensions we can take near to any point P whose

coordinates are (xlt ..., xn) the n points

Pj with coordinates (x1 +d1x1 , ..., xn + dxxn),

Pn with coordinates
(x-^ + dnX-^, ..., xn + dnxn),

it being supposed that the determinant, M, of ?i rows and columns, whose (r, s)th element

is drxs ,
is not zero. At each of the points Plt ..., Pn we can similarly take n independent

consecutive points, those at Pr being P rl ,
Pn , ...,Prn ;

at each of these points of two

suffixes we can take n others of three suffixes, and so on. Making the convention that

the sth satellite point of Pr , namely Prs ,
is the same as the rth satellite point of Ps ,

or

P„, or in other words that the suffixes shall be commutative, we can associate the deter-

minant M with the '

cell
' which is defined by the 2" points

P P P P P P

whose suffixes consist of all the combinations of not more than n different numbers from

1, 2 n. We may suppose space of n dimensions to be divided into such cells, and

call the absolute value of the determinant M the element of extent of the space, denoting

it by dSn .

Similarly if we have in n dimensions a space of (n
—

r) dimensions, defined suppose by
r equations

f(xlt .... xn) = 0, ...,/,(«„ .... xn)
= 0,

with a certain number of inequalities, we can associate with every point P of this space

(n—r) satellite points, P„ ..., P„-r ,
also lying in this space, the coordinates of these

points being denoted by

Xi + dicXi, ..., Xn + dtXn, &=I, 2, ..., (n
—

r),

and with each of these (n
—

r) others, and so on
;
and so we can suppose the space of

(n—r) dimensions divided into cells, each defined by 2n
~r

points; with each of these cells

we can as before associate an element of extent for this space, which we denote by

dSn_r ;
this is defined as the positive square root of the sum of the squares of all the

determinants of (n
—

r) rows and columns which can be formed from the matrix of

n columns and (n
—

r) rows

\dkXi, dkx2 , ..., dtxn \, k=l, 2, ..., (n
—

r),

or, what is the same thing, as the positive square root of the determinant of (n
—

r) rows

and columns which is formed by multiplying this matrix into itself, row into row, in

the ordinary way.
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2. In what follows we call the aggregate of all the points of a space of (n
—

r)

dimensions, limited or not, an (n
—

r)-fold. We also use (
J quantities, called the direction

cosines of the normal to the (n
—

r)-fold ;
let the (n— l)-folds

/,-<>, ...,fr =

be always supposed taken in the same order, given by the suffixes; let 6, d, e, ..., h, k

be any r of the numbers 1, 2, ..., n, no two of them equal; then the ratio of the

Jacobian

a (/„.. .,/,)

d{xb , ...,xk)

to the positive square root of the sum of the squares of all the possible (
J

such

Jacobians is denoted by Kt^.e h,k, and is one of the direction cosines in question; we

suppose in general the suffixes taken in their natural ascending order
;

from each of the

( j
direction cosines

|r
— 1 others can be formed by permutation of the suffixes, every

interchange of two suffixes causing a change in sign in the direction cosine.

We have then the following theorem :

Suppose that a finite portion of the (non-singular) (n
— r + l)-fold given by

/,-<>, ...,/r-i-O,

is completely bounded by a closed (non-singular) (n
—

r-)-fold given by

and that throughout the limited portion of the (n— r+l)-fold we have fr <0; let P be

any function of xlt ..., xn for which it is supposed that itself and its first differential

coefficients are finite and continuous (and single-valued) throughout the space considered
;

then

//

Op op f)P'

(-ir i

^...M^+(-i)'-
a

^...^^+...+^...,9-
dSn

IKbd^.Tik P • dSn-r,

wherein the second integral is taken over the complete closed (n
—

r)-fold, and the first

integral over the enclosed portion of the (n
— r + l)-fold ;

in the first integrand there are

r terms, the suffix in any one of them consisting of (r— 1) numbers in their natural

ascending order.

If we introduce
( j

functions such as P, and make the rule that an interchange

of two numbers of a suffix shall entail a change in the sign of the function, we can put

the result in a clearer form

I 2*de...M: 2 ^^
—- dSn-r+1 = I '%ICbd...hkPbd...hkdS7i-r>
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where on the left under the integral sign the first summation extends to every combination

of (r— 1) different numbers d, e, ..., h, k from 1, 2, ..., n, and the second summation

extends to the (n
— r+1) different values from 1, 2, ..., n which m can have so as not

to be equal to any one of d, e, ..., h, k; on the right under the integral sign the

summation extends to every combination of r different numbers b, d, e, ..., h, k from

1, 2, ..., n.

3. Of this result it will be sufficient to give a proof for the case r = 3, the general

case being similar.

We suppose then a finite (non-singular) portion iT„_2 of an (n
—

2)-fold, which is given

by the equations

fi(*i, • ••> ®n) = 0, /,(«,, ..., xn)=0,

to be bounded by a closed (non-singular) (n
—

3)-fold Hn_3 given by

/i(*i, •••» «») = 0, fiixj, ..., xn)=0, f3 (xl xn) = 0.

We can imagine i?n_3 divided into cells in a manner before indicated, the satellite points

of P, whose coordinates are («,, ..., xn), being denoted by Ph whose coordinates are

{x^ + dkx1 ,
...

,
xn + dkxn), k=l, 2, ..., (n

—
2).

In general the differentials dkxr are arbitrary, save that the determinants of (n
—

2) rows

and columns formed from their matrix must not all be zero; but we shall ultimately

find it convenient for our purpose to suppose that of the differentials

all but three, say all but dn^.2xb , d„_3 a;e , dn-2xh ,
are zero; the ratios of these three will

then be determined from

a/' j x,+
dAd w +

d
£-d X„ -

axb oxe oxh

•5 dn—zXf, + ;r ttn_2*e T 5 dn—'zXh = "
J

9«6 CWe C#A

it is clear, in fact, that we can draw on Hn_2 through every point P a one-fold (or

curve) along which all the coordinates except Ofe, a;e , x^ are constant
; taking then any

point P and taking (n
—

3) of its satellite points Plt ... , P„_3 arbitrarily, we can draw

such a curve through P and each of P,, ...
, P„_3 ,

and take for the satellite point P„_2

a point near to P along the curve through P
;
we thus arrange the cells into 'strips,'

each strip having (n— 2) curves, such as those through P, P1( ..., P»_3 ,
as edges.

4. A set of (n
—

3) neighbouring points Qlt ..., Qn_3 in which the curves drawn on

Hn_z through P,, ..., P„_3 intersect the (n
—

3)-fold Hn-3 may then be taken as the

satellite points on Hn_3 of the neighbouring point Q in which the curve through P
intersects Hn_3 ;

we have thus a possible basis for the division of Hn_3 into cells, which

it will later be convenient to adopt. We assume that the curve on Hn_s which is drawn
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through P intersects the closed Hn-3 in an even number of points; and to shorten the

proof we shall speak only of two, say Qm and Q {1)
. Then if the differentials dn^xb ,

dn-^xe ,
dn^xh be always taken in the same direction along this curve QmPQw

, the

expression

j . dfx , df3 , 3/3 ,

will have different signs at Qm and Q {1)
,
and in fact, since /8 <0 over H,^, the expression

will be positive at the point, say Q (1)
,
where the curve through P leaves jET„_2 ,

and negative

at the point Qm ,
where the curve enters Hn-2.

5. Considering now any point P of i7„_2 ,
and its satellite points

(xj+dtXi, ..., xn + dkxn), k=l, 2, ..., (n-2),

in regard to which we do not until special mention is made of the fact introduce the con-

vention that all but three of the differentials

are zero, we have

\yn—ixi i
• • •

> dn—iKn)

|£<4«i
+
...+|i<U.-0,

g^1+ ...+£^„=o,

fc-1, 2, ...,(» -2),

and hence easily find

wherein

"12 _ _ "ra

Mu
~ Wr,

say,

/«-
dxr dx,

§£ §£.

dxr
'

dx,

and Mrs denotes a determinant of (n
—

2) rows and columns, obtained by taking the deter-

minant which remains when in the matrix of n columns and (n
—

2) rows

I

dk Xi, .... dkxn
\

,
k = l, 2, ..., (n-2),

the rth and sth columns are omitted, and prefixing to this determinant the sign (— l)
r+*-a

or (— l)
r+l)

according as r < s or r > s.

We require now to make it clear that we can suppose the sign of the ratios en^ to

be the same for all points of the limited Hn_^; for this purpose suppose

P»»-i. with coordinates (a^ + dn_1x1 , ..., «„ + «?„_!*„),

and P„ ,
with coordinates (x1 + dnx1 , ..., xn + dnxn ),
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to be satellite points of P of which P,^ is on/, = but not on/2
= 0, and Pn is not on

either of the two f = 0, f =
;
then we have

e„-
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H„, and the direction cosine *r, of the (n
—

2)-fold fx
= 0, /3

= 0, which by definition is

given by

*r» = "re +
I "^"'n [,

and is therefore equal to

sgn e„_2 . M„ +
1
VSilfV, |,

where sgn e„_2 means +1 or - 1 according as e„_2 is positive or negative, has through-
out Hn_2 the sign of Mn . Thus

*„e*SU = Jf„ sgn (^)
= Jlf„ sgn

(-
*•£*£&& = jf„.

6. Next we consider any point Q of l/^, and its satellite points

From the equations

(«! + dk sc! xn +dkxn),

fAa^ + ... +/1 c4a;n = 0,

/j<4«i + ... +fidkxn = 0,

/jdjfcir, + ... +/34#n = 0,

fc-1, 2, ..., («-3).

*-l, 2, .... (n-3),

we find as before

where

«Aa _ _ "rut

M12S M„t

= e„_3 , say,

Jnt =
dxr

'

dxg

'

dxt

<tA <rf? Of?

dxr
'

dxg
'

dxt

y, £, *£_
dxr

'

dx,
'

dxt

and Mret is the value obtained by omitting the rth, sth and kth columns in the

matrix of n columns and (n
—

3) rows

dtXi, ..., dkxn \,
k = l, 2, .... (n-3),

and prefixing a certain sign to the resulting determinant. This sign is supposed to

be given, as for the two previous cases and as in general, by the following rule
;

consider the determinant of n rows and columns whose first (n
—

3) rows are formed

by the matrix just described, whose (n-2)th row is A x , ..., An ,
whose (n

-
l)th row

is jBj, ..., Bn , whose wth row is Cl , ..., Cn ;
then the expansion of this determinant is

r*s=M

thus when r, s, t are in ascending order the sign to be prefixed to the determinant
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by which Mrgt is formed is (- i)»+r+<H-«-i. Hence, taking the satellite point Q„_2, of Q,

upon fx
= and /2

= 0, but not upon f3
= 0, we have

Mr^ 'Mr,

here the numerator is

lVl rs\(tn—2^1 i . . > *T" JUrgnU'n—i^n

"'n—2/1

dn~2J3

and therefore, since dn-*fi = 0, d„_2/2
= 0, is equal to

the denominator can be seen to be exactly equal to M„; thus we have

dxr
'
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of the suffix, with corresponding change of sign of the function. The determinant, if

r, s, t are in ascending order, is equal to

_ 1 y+8+*(-1)'

On the other hand, supposing as in § 3 that all the differentials dn-2xu •••» <4-2#n

except* d„_2av, dn-^xs> dn-2xt are zero, the determinant is equal to

(-iy+*+tdn^Prst .Mrst .

Hence finally we can evaluate the integral

W dP*tr^ dPrt . dPr,t\j„
)]{

Ket
dx7

+KH Tx; +K"~d^) dSn-i '

,

taken over /f„_2 . Suppose Hn_2 divided into strips as in § 3, and find the contribution

of one of these strips. The integral is

ff (Jr>\ -kit tlPftr . vr oP'rut
, M dPrgt\

II
sgn \WJ l

M
«-dx7

+M«-^ +M"
-d^j

'

which by the identity just found, and because we can suppose sgn (Jrs/Mrg) to be the

same over the whole of Hn_2 ,
is equal to

sgn
(^j~-j Jj

Mrstdn^Prtt ;

as we pass along the strip under consideration the determinant Mrtt is constant
;

thus

the integration along the strip gives

Sgn^JMrtt [P^-P (Zl

where the single integral sign indicates an integration extending to all the strips, and

P^t, P?^ are the values of Prit at the points Q 1

", Qm where the curve of integration

through the point P, along which only the three coordinates xr ,
xs ,

xt vary, respectively

leaves and enters Hn^3 . We have seen that

KntdSns =Mret sgn (-^ <2„_2/3
J

,

and moreover that d„_2/3 is positive at Qm and negative at Qm ;
hence the element

is the sum of the two elements of the integral over Hn-S which is expressed by

I Krst Prtt WOb—j,

which arise corresponding to the cells at Qw and Q (0)
. Thus we have proved that the

* In § 3 the differentials not zero were denoted by <Zn_s Z(,, dn_2
xe , <Jn_2 Xj.
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latter integral, over Hn_s ,
is equal to the integral from which we started which is taken

over jEf„_2 ;
and this is what was desired.

We can then by a summation infer that

I 2 Krst Prst dSn-3
=

J
2 *r , 2 -5— . dSn-z,

Jr,s,i JJr.s t OXt

which is a convenient way in which to state the result. There are („J terms in the left-

hand integral, and (n
—

2) ( „
J
= 3 (

„J
terms in the right-hand integral.

A similar argument will be found to lead to the general result stated in § 2.

8. If we put, in the case for which the proof has been carried out,

have

as n necessary conditions that the integral

taken over a finite portion of an (n
—

2)-fold may be capable of being represented as an

integral over the closed (n— 3)-fold bounding this portion. If these conditions are satisfied,

functions Prst satisfying the equations

„ „ dPrst
A-rs — •* ~^~T~

t oxt

must be found, in order that the expression may be possible ;
but it is necessary that

the functions Prst so found should be finite on the (n
—

3)-fold (cf. § 28).

Xrs
— 2

t
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taken over a closed (n
—

2)-fold, which (see § 9 below) may be interpreted as

\\ fi.ii>
&)(*is + iitu + iicw— km) dSn^,

is equal to the integral

/[<*
+ iK*] (k + *

&) f
~ iK3+ iKt) (&

+ *

id f dSn-!

taken over the (n
—

l)-fold bounded by the (n
—

2)-fold ;
and this vanishes identically on

account of

(s
+<

s)/-«- (£+<£)/-*
It is supposed that the original (n

—
2)-fold of integration is not one given by the vanishing

of a single equation involving the two complex variables, since otherwise (cf. § 9 below)

*u**m, *i4
= —

«23. and therefore

Part II.

The expression of an integral function whose zeros are given.

9. In what follows we consider a space of n dimensions, n being even and equal

to 2p. The points of this space being as before given by the n coordinates xlt ..., xn ,

we define from these p complex variables by means of the equations

& = av_! +ix„, (r
=

1, 2 p).

As it is desirable to take the various points separately we begin by supposing that

we have defined in this space an (n
—

2)-fold, given in sufficiently near neighbourhood

of any point (#1
,0,

) ..., xnm )
of itself by the vanishing of an ordinary power series in the

quantities &— £,<*, •••, P̂ -^Pm ,
where {•*

« *5U+ **»• We proceed to shew that the

(n
—

2)-fold can be given throughout its extent by the vanishing of a single-valued

integral function of £1; ..., £p (§ 15).

Such an (n
—

2)-fold, given by relations involving only complex variables, may be

called a complex (n
—

2)-fold ;
its direction cosines satisfy particular relations, as we now

prove. It is determined in sufficiently near neighbourhood of any point of itself by the

two equations arising, say, from

</>(£> •••> £p) = u + iv = 0,

where u, v are real functions of the n real variables xu ..., xn ,
which satisfy the

equations
du _ dv du dv

dx„_! dxw
'

dx%r d#<»—i

'
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thus if we denote du/dx, and dv/dxs respectively by ug and vt ,
the direction cosines of

the (n
—

2)-fold, denned in § 2 ante, are given by

Kr, i
= (urv, — u8vr)/h,

where h is the positive square root of

2 («, v,
- u,vry = (itf + . . . + un*f - (vi*+ . „ + Vr*)

1
;

now we have

so that

U2r—1^28—1 ^28—1^2r—1
— ^2r^28 I ^28^2r — — ^2r—1^*28 ~f~ ^2r^2s—1>

^2r—1^28 ^2»^2r—i
~ ^2r^28—l ^28—l ^*2r

= ^2r—i 2*28-1 T W^W^)

esr—1, 28—l
—

^sr, 2«
—

and

Ma.Mag_1 Mgr—l
w28

«!* + ... +W„a '

^ar—i W-2*—l "T" Ww^ss

W1
2 +...+Mn>

'

/f]2 + Kj4 + . . . + /Cjj—i,n
— 1-

These relations are of importance to us. They of course require modification at any

singular points of the (n
—

2)-fold ;
the present paper is so far incomplete that the con-

sideration of the effect of the singular points is omitted
;
the final results obtained are

expressed in a form which is believed to be unaffected by the existence of such singular

points.

10. Consider now a limited portion of an (n
—

2)-fold, bounded by a closed (n
—

3)-fold.

Denote by xlt ..., xn the coordinates of a point on the (n
—

2)-fold or on the (n
—

3)-fold,

and by (£,, ... , tn) the coordinates of a finite point of space not on either of these, the

corresponding complex variables being as before given by

Tr
= t^r—j T W2r > r=L, Z, ...

, p.

Let Lt , ..., Ln and Rlt ... ,
Rn be single-valued functions of a?1( ...

,
xn and of tlt ..., tn

which are continuous and finite, with their differential coefficients, so long as (xlt ...
,
xn)

is upon the (n
—

2)-fold or (n
—

3)-fold under consideration, and the point (<,, ..., tn) is

in finite space and not upon the (n
—

2)-fold or (n
—

3)-fold ;
further suppose that these

functions are such that

dLi _ dRi

dta dxs
' (i, s=l, 2, ... , n),

and

Consider the n integrals

dRi dR^ dRn _ q
dx! dx2 dxn

Kr = JOn^i
+ • • • + *mA») d£»-s» (r = 1, 2, . . . , n),

53—2
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taken over the limited portion of the (n
—

2)-fold ;
we have

dta ~dtr ~~)\
Kn

dxa

+ - + Krn
dx.

*81
dxr

-~ Km
'dx~r )

°^"-2 '

and therefore, adding to the right hand the vanishing quantity

f fdRi dR> dRn\ . „

we have

=

i=! Jrir

a»,
+ *"

dea
+ Ksi

dxr )
abn-"

where i does not take the values r, s. Thus by the formula proved in Part I. we

have

dt8 Otr J i = l

where the integral is taken over the (n
—

3)-fold bounding the limited (n
—

2)-fold over

which the integrals £i, ..., £"„ are taken.

11. It follows that if the (n
—

3)-fold integral vanishes, the expression

f,cfti+ ... + £ndtn

is a perfect differential
;
on grounds further considered below (§§ 12, 22) we suppose that

this (n
—

3)-fold integral does vanish
;

we suppose also that L„ = iL^-i and that the

(n
—

2)-fold is a complex (n
—

2)-fold ;
then from the equations

t2T—1,25—l
—

"-2r,2S» ^27—1^2r—1.2S
—

^-27

Jn—2

it follows that

'sir
=

I iK^ir^ T ^2r,2.) **i + •• T (*2r,3r—1) ^w—i + ... + (#2r, n—1 "+" 1ICw,n) L'n—i] aon

=
M{(K2r-l,l +^-1,2)^1+ ••• +(^2r-l,2r)2/i„._i+ ... + (*;„._],„_!+ {/C^-j,,,) Zjnj rf(S„_2 ,

so that

and therefore

(7t2* Uv2r—1 0*2r—l Utyg—i

which gives

Thus, under the hypotheses introduced, all the functions £, f2 , ...,£„ are functions of
the complex variables r,, ... , tp , and there is a function

* =
Jifccfc,

+ f,<fc + . . . + &*<) = fei^n + ?3 <*t2 + . . . + iVxtfr,)
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for which

Br
-«*-"

12. We now give a more special value to the functions Lu ... , Ln . Let

p(x\t)
= -^zr2 [(xi-t1y + ...+(xn -tnyy'

h
2
3

and

Hm = & (x\t)-p(x\0) + {t^)^(x\0)-...+
(

-^^{t^f & (x\0),

m being a finite positive integer or zero, and

(t-) = t — +t —
\ dx) d«i

'" "
dxn

'

When r2
,
= tf + . . . + tn, is sufficiently small in regard to -R2

,
= x^ + . . . + xn°, we have

/—lyw+i / a \m+i /_ 1 \m+2 / J\t»+!

*-fc^('£) •'W +CT^) F« + ... tooo,

=
J^n+m-!

g™+i 0*) +
jfrl+^

g«+l 0*) + — tO X,

where /i denotes (a^^-... + xn tn)/Rr and is numerically less than unity, and K8 (fj,) denotes,

save for a factor independent of fi but depending on n and s,

(/*'-!)""*
J d»

rf/i
s

»-3"

(/*'-l)
,+T

As we can find a real angle = cos 1

/i,
we have

'«*—^-^-R^Vi^
n-2
2 .

by expanding the binomials and considering the explicit expression for the coefficient

of rk+1/R
n+k~1

it is immediately obvious that this coefficient is not greater than if

were zero. Thus when r<R the absolute value of Hm is of the form

rm+i (n -2)(n-l)... (n + m-2) 1

fin+m- |m + l L

where, supposing n, m, r fixed, e is only unity when R = r, but for R>r has zero for

limiting value as R increases indefinitely. It follows that a value R can be chosen

such that for fixed n, m, r and all values of R > R„, we may have

I

""• I
<
Rn+m-i

>

with B a finite constant independent of R.
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It is easily seen that

dti dxi

an equation which holds also for negative m provided Hm be then understood to

mean
g> (x

1 1) ;
and thus

3 2 32 32 \ TT I 82 92
32

/ aa a2 a2 \ „ /a2
a* ?\

Hence if we put

-£>2r
—

^-£>2r—1
— '

/ a^m . a^r,

VCWgr—j (7^2;

p • p /
0-" m—l Q-"m—1\

^7•**•- U^-7 a^J'

where m is to be kept the same throughout the investigation, we have

dLi __ dRi

dt, dx,
'

|
/dRtr-j

|

a^\ .

i
/»fl»-i

[

a2-gCT-A _
r=l W«sr-i 3«2r/ r=l \ a«ir-i 3#2r /

so that the conditions of § 10 are satisfied.

We suppose also the further condition, of § 11, namely that the integrals

[ s i a. i \ fi—™^ „•
<>Hm-\

\ JO
J 4-1 VtWat-i O^at /

taken over the closed (n - 3)-fold, bounding the (n
—

2)-fold under consideration,

are all zero, to be satisfied. This hypothesis arises as follows. We suppose the

(n
—

2)-fold, over a limited portion of which our (n
—

2)-fold integral is taken, to extend

to infinity; when (tlt ...,tn) is in finite space and (xlt ...,«„) is very distant, the function

i/m_! is a small quantity of the order of (x? + . . . 4- #„
2

)~*
(»+m-2)

;
we may therefore

suppose that if the (n
—

3)-fold be taken entirely at sufficiently great distance from the

finite parts of space and m be sufficiently great, the (n
—

3)-fold integral can be made

less in absolute value than any assigned quantity. A particular examination is given

below (§§ 20—24); it can be definitely shewn that the hypothesis is verified, even

for m = 1, for a large class of cases, which includes the case which arises in the

consideration of periodic functions. The application of the present paper is limited to

the cases where some finite value of m is sufficient
;

as will be seen this is a limit-

ation which we may regard as analogous to that, for functions of one complex variable,

to functions of finite genre.

Connected with this hypothesis is a further one
; supposing the (n

—
2)-fold integrals

f„ ..., & to extend over the whole infinite extent of the (n
—

2)-fold, we suppose that

they and their differential coefficients in regard to tlt ..., tn are convergent.
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Then we have the result ; the p functions

r — *•[ % ( _i_„- \(dHm .dHm\
b2r—1

* » I — \*2r—l, 2S-1 T If?,—], in) I -;

— l ^ CtOn_2 ,

extended over the infinite complex (n
—

2)-fold, are functions of the complex variables

Tii ••-, tp ,
and are the partial differential coefficients of a function

<&
-J (?!<*!-, + &<*r, + . . . + k^Tp).

13. We proceed now to put this result into a new form, from which it will

appear that the real part of the function <£ is equivalent with a result given by

Poincare, being a generalised potential function, and that the imaginary part is a

generalised solid angle function.

Putting {^_, = 82r + ?;&„._! ,

we have, clearly,

X - Um d-ffm dHm dHm\ JC,

°2r—l
—

1 1
Kir—1, l

jn
T far—l, 2 ^

T • •• T *2r—1, n ~> I
ttOn_2 >

Oar
— II f2r—1, a - + *2r—1, 1

j,

• • • + K2r—1, n—1 o J
CtOn_2 ;

of these the latter, in virtue of the equations

Kir—1, 2«—1
=

*2r, 2s > *2r—1, 28
=

*2r, 28—1 >

can be written

c- f/ dHm dHm dHm\ , „
<V -

J ^*»,
1

g^
+ «9r. 2

g^
+ • • • + *«r, . ^ ^

a^n-2-

We proceed now to shew that in fact

s - /
m /7t? X — I _ m

f?<?
°2r—1

—
I ~5~ « ,°n—s> o2r — I Q ifJn—21
J daV J C#2j—1

these integrals, like the others, being extended over the whole infinite complex (n
—

2)-

fold, and supposed convergent. Take the first of the two forms given for &%., namely

t dHm Z
[I

dHm,„ dH
rA,iqOw = — I «2r—l, w 5 «o.„_2 f ^ II fat, 2>--i -, T «2r-i, 2fc—l ^ I

u,*->»i—2>

J 0#2r-i *=1 J \ ***-! Oxik I

where k does not assume the value r
;
over a finite portion of the (n

—
2)-fold, bounded

by a closed (ra
—

3)-fold, the integral

[( dHm dHm 9#m\ „

is by the results of Part I. equal to

1*2*—1, 2jt, ar—i iimaon—3 ,
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taken over the closed (n
—

3)-fold ; assuming now, what is a similar assumption to those

already made, that this integral diminishes without limit when the (n
—

3)-fold passes

to infinity, we have

Ow — — K2r_j 2r « (Xon_2 Z, I K^Jc—1

J OX-u—\ k=lJ

which, since

K12 + AC34 + . . . + Kn—1
( „
= I

,

is the result stated, namely that

!l 5 oton_2 ,

( .7.1 1

$"-
= -

J pXT^^^-S'

The corresponding form for S^-j can be proved in a similar way, starting from

jj _[( dHm dHm ^ >«Cm -
j^ , ^ *2r, 1

g^
+ • • • «b. n-1

dxJ a*n_v.

Thus also g = J^, = -/(^ - i^) <Mf^,

and, if we put (Poincare
-

, Acta Math. t. XXII. p. 168)

V = l.fZ m+1 aO rl_2,

"ar — 0. 1 °2r— 1
—

j, >

OC2)—1 ^^2r

so that T, which may be regarded as a generalised potential, of the (n
—

2)-fold of

integration at the point (tlt ..., tn), is the real part of <I>, or differs therefrom by a

constant.

14. Supposing that the integral is taken from the point ti
= = t2

= ... =tn , which

is supposed not to be on the (n
-

2)-fold of integration, We may write

<&= I (^dTj + &dr2 + ... + ^p-idrp),
Jo

=
( (82 <^i

—
^i dt2 + . . . + Svpdty,-!

— o
2p
^1dt2p)

Jo

+ i
j (Sidti + B2dt2 + ... 4 Sty-idtzp-! + S-ipdtvp);
Jo

of this, in virtue of the results of § 13, bearing in mind that Hm+1 , and therefore

also V, vanishes for ^ = 0, ..., tn = 0, the real part is exactly V; the imaginary part is

iQ, where
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n= f (B1 dt1 + ... + Sndtn)
Jo

JoJ r=l (.
\ 0«i

+ "si

9#„

,7. / 3-^m
,

.
dHm\\+ at*,

\k„,
, -g_

+ . .. + *„. B—
jj ,

=
f fdS-n_2 2 «,, , (dtr^ - cft4
JO^ r, « V Ctes 9#,

the summation extending to all pairs of different numbers r, s from 1, 2, ..., n; now

we have seen (§ 5) that if Mrs denote, for r < s, the product of (— l)
r+8-1 and the deter-

minant obtained by erasing the rth and sth columns in the matrix

Clj-Xi, d/c^i, • •, dkxn\ jfc-1, 2, .... (n-2),

then KrsdS,^2/Mrs is independent of r and s, and equal to +1 or — 1
;

denote it here by

e; thus il can be put into the form

"-/./• dh, dt2 , dtn

doci
'

dx2

' '"'
dxn

(m\ vC\ - t*1

J v^i j
• • • , fJj\ *<?7i

This shews that D, may be regarded as a generalised solid angle, namely that subtended

at the point (<1; ..., tn) by the (n.
—

2)-fold of integration. (Compare Gauss's well-known

form given for instance in Maxwell's Electricity and Magnetism (1881), Vol. n. p. 39
;

or

Gauss, Werke, Bd. v. p. 605.) The same will appear anew from a transformation of £1

into an (n
—

l)-fold integral (§ 17). The result is not merely curious; the function D, is

in fact a single-valued function of f,, ..., tp save for integral additive multiples of the

quantity
n

2tt 2
"

r
(l)

(7^1)1
•

which is the complete solid angle in n dimensions, namely the total extent of the

(n - l)-fold

^ + <2
2 +...+<„2 =l.

As the function V is clearly single-valued it follows that the function

e™ = e-

is a single-valued function of (tj, ..., rp).
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15. The interest of the results just obtained arises from the following fact.

Suppose that, in the neighbourhood of any point (£V
01

, ..., %P
m

) of itself, the equation

of the (n-2)-fold of integration is expressed by <£(f,
—

^1
m

, ..., %p
—

gp
m

), the expression

<j> being an ordinary power series of presumably only limited range of convergence ; then,

with a proper signification for the logarithm, the difference

o_
-*(Tl , ..., Tp )

-
log if, (T,-^ T, -£„<•>)

-or

remains finite and continuous as (rlt ..., tp) approaches indefinitely near to the (n
—

2)-fold.

This capital result is taken from the paper of Poincare, already referred to, Acta Math. xxn.

(1898), p. 169. Other proofs, themselves important to us for another purpose, which shew

how the result follows from Kronecker's theory, are given below (§ 16); the most natural

method of verification is however by direct evaluation of <I> in the neighbourhood of

the (n
—

2)-fold of integration (§ 25). The result itself is a direct generalisation of well-

known facts for p = 1.

If for the present it be assumed, it follows, putting

®(T, T,)
= ^* (T ' ^

2»
.. . . e(T„ ••, Tj,) ^*(T)-l0g*(T)
that the ratio T7~\

— = e >

wherein <f>(r)
is written for

<£ (tj
—

£i
(0
>, ..., rp

—
%p
m

), is not infinite or zero in the

neighbourhood of the (n— 2)-fold <f> (t)
= 0. It can be seen however from the form of

the integrals by which ^(/n, ..., rp) is defined that, for finite values of tlt ..., tn ,
this

function can become infinite only when «,, ...,tn) approaches the (n— 2)-fold of integration.

Thus we have the main result of the enquiry.

The equation of the arbitrarily given (n
—

2)-fold of integration is obtained by the

vanishing of the integral function

e(Tl , ..., rp)
= 0,

which is equal to

( 2tt
f

p
[fdHm .dHm\

}

exp \ / Ht, : 1:— )dS„^\,

p{*Tf I drJff^-i^dS^
(,W JO r=\ .

J\ Otv-! dtv J
or ex

16. Denoting as before by <f> any one of the series by the vanishing of which the

(n
—

2)-fold of integration is defined, we have, as already quoted from Poincare", the theorem

that the difference

— (F+iO)-log</>

remains finite and continuous even indefinitely near to the (n
—
2)-fold on which

tj>
vanishes.
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To the proof given by Poincare
-

we may add the two following, both of which make use of

some results in Poincare"'s paper.

(a) Denote the (n
—

2)-fold of integration by I
;

let (xlt ..., xn) be the coordinates of

a varying point on /, so that (xx , ..., xn) are functions of (n
—

2) parameters; then

if (xi, ..., %n) be current coordinates, and e a fixed small quantity, the envelope of

the spheres

(mi
-

x,y +... + (x,:
- xny = e3

is an (n-l)-fold X, surrounding i", of which, when (xlt ..., xn) is not a singular point of /,

the points are given by

Xi =Xi+ y {Ui cos 8 + Vi sin 0), (i
= 1, 2, . . ., n),

where is a variable quantity, so that (xi, ..., xn') are functions of (n
—

1) parameters;
here ttj denotes dujdxi, Vi denotes dvjdxi and h is the positive square root of m,

2 + . . . + w„
2

.

The point (xi, ...,xn') lies on one of the single infinity of normals which can be drawn

to the (n
—

2)-fold / at (xlt ...,xn), and is at a distance e from I. The direction cosines

of the normal to S at (xi, ..., xn') are the quantities (ut cos 6 + Vi sin 8)jh ;
the element

of extent of 2 at (xi, ..., xn')
is dS„-1

= ed0dSn-3 , ultimately, squares of e being neglected,

where dSn^2 is a corresponding element of extent for /. If %r — ^r-\-i-^ir, %r=-®'w-\ + i>%2r,

we have

(&)'
-

(4>py h v
where

(<f>r)'
is the conjugate complex of dcj)/d^r ,

and therefore equal to m2,._!
—

iw»._! ; and,

what is permissible to the first order of small quantities, <f>
is written for

With these results we combine now the following, which is a particular case of

a theorem of Kronecker's. Let /(tI; ..., tp ) be a single-valued function finite and con-

tinuous upon a certain closed (n
—

l)-fold, whereof Klt ..., Kn are the direction cosines;

consider the integral

lff<*» •••.&){<^+^(^"
i
^i'<*!*)

+ -" +<^ +^>^r*&) f>(a,, ')
}
<Kf,M '

where (xlt ..., xn) denotes a varying point upon the (n
—

l)-fold. By Green's theorem

it is immediately clear that this integral is unaltered by any deformation of the

(n
—

l)-fold of integration which does not involve a crossing of the point (tu ..., tn) or

of any point where f(rlt ..., rp) ceases to be finite, continuous and single-valued. For

the condition for this is simply (Part I. of this paper)

namely Q^ +^ +
..^(

x
\ t)

=
.

54—2



428 Mb BAKER, ON THE THEORY OF FUNCTIONS

Hence, if f(ju ..., rp) be single-valued, finite and continuous for the whole interior of

the (re-l)-fold of integration, the integral is zero when (t^,...,tn) is outside, and,

when fa, ...,tn) is inside the (n
—

l)-fold, it is equal to f(rlt ..., rp), as we see by

supposing the (n
—

l)-fold of integration to be deformed to

(x,-t iy+... + (xn -tny = r\

and then taking r to diminish without limit.

Now consider, in the region of convergence of the series
<f>,

a (multiply-connected)

closed region, bounded by (i) part of the (re— l)-fold 2 surrounding the (re
—

2)-fold

<£ = which has already been described, (ii) part of a closed (re— l)-fold S described

in the region of convergence of
</>,

the part being limited by the (closed) (re
—

2)-folds in

which <S is intersected by 2
;
and take

f(r) =
^\og<j>,

where r is one of 1, 2, ..., p. Then when (^ tp) is interior to the (multiply-con-

nected) region above described, we shall have

where the integral is taken over the two partial (re— l)-folds denoted by (i) and (ii).

The part (ii) of this integral is finite for all the positions of (tlt ..., tn) under con-

sideration ;
consider the limiting value of the part (i) as the (re

—
l)-fold 2 is taken

nearer and nearer to the (re
-

2)-fold I, namely by the decrease of the quantity denoted

above by e. By what has been stated above we may ultimately put

*2»-i + **m = — (#*)' r2
~

> /(?) = "T > d&n-i = ed0dSn_2 ;

then, if (<,, ..., tn) have some fixed position at finite, not infinitely small, distance from

the (re
—

2)-fold /, we obtain, for this part of the integral,

now the direction cosines of the (re
—

2)-fold / are (§ 9) such that

M2)—1 "s«—1 w28—1 "sr—l + * (W2r—l ^28 M2* "sr-l)
*2r—i, in—l "•" **2r—1, 2»

— '

—
i 2 \1hr— 1 + IV^r—i) (M2s_i IV^i—i),

=
jjji

4>r (</>«)' ;
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thus this integral becomes

'

I 2 (tf^-!, as-, + ***_», a) U »
^
—

J
p (« 1 t) dSn-v.

429

27rt,"

•or

Therefore it follows that /(t) differs from this integral by a function which is

finite and continuous for all positions of (tu ..., tn) in the region of convergence of
<f>,

except actually upon <£
= 0.

Recalling a previous notation (§ 12) this is equivalent to the fact that

remains finite and continuous as (t„ ..., rp) approaches the (n
—

2)-fold 7", so that also

log <£ (T)
-^ / (&*r, + . . . + Kn-,drp)

remains finite and continuous as (t,, ..., rp) approaches the (n
—

2)-fold ;
as was to be

shewn.

(6) By using Kronecker's integral in a different way we can obtain the same

result otherwise. Consider the region of convergence of one of the series
<f> by which

the (n
—

2)-fold / is defined
;

describe in this region as before a closed (n
—

l)-fold S,

containing in its interior a portion of the (n
—

2)-fold /
;

about / suppose as before

an (n
—

l)-fold 2 satisfying the condition that every point of it is at a small distance

e from some point of /. Then the portion of w-fold space inside $ and outside 2 is

multiply-connected; but it can be rendered simply-connected by supposing an (m
—

1)-

fold diaphragm P to be drawn, bounded partly by the (n
—

l)-fold 2 and partly by
the {n

—
l)-fold S, each of which it intersects in an (n

—
2)-fold.

Within the w-fold simply-connected space so constructed the function log is single-

valued. Hence, if (tj, ..., tp) be a point within this space, we have, as explained above,

log0(T)=lJlog0(f)[(«
1+ ^)(^,-i^)p(^|O

+ -

where the integral consists of three parts:
—

d(Sn_] ,

(i) that over the part of S lying outside the closed (n
—

2)-folds in which S is

intersected by 2, and excluding the (n
—

2)-fold in which the diaphragm intersects S
;

(ii) that over the part of 2 lying within S, excluding the (n
—

2)-fold in which P
intersects 2;

(iii) that over the two sides of the (limited) diaphragm P.

The part (i) remains finite and continuous for all positions of (t,, ..., tp) within

the w-.fold space under consideration. The part (ii) ultimately vanishes when the quantity

e diminishes indefinitely ;
for we have seen that dSn_i = ed0dSn_a ,

and it can be shewn,

as by Poincare
-

(Acta Math, xxn.), that as the point (£/, ..., %p ) on a normal of /, at
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a distance e from I, approaches indefinitely near to /, the limit of e log <f> (£'), when e

and therefore <£(£') vanishes, is zero. The part (iii) of the integral is equal to

2-7TJ

/[<*.+«o(^-»-|-)«>(*io+...
Cti^n—i i

taken over only one side of the (limited) diaphragm P
; for the values of log <f>

at two

near points on opposite sides of P differ by 2iri.

Consider now the real part of this integral, namely

2tt

07 \{4i~4l +
-)

dS^

by the theorem of Part I. of this paper we can replace this by an (n
—

2)-fold integral

taken over the (re
—

2)-fold which forms the boundary of the diaphragm; this (re— 2)-

fold lies partly on S and partly on S
;
the (n

—
2)-fold is

-

f
I Oi2 + KM + ... + *n-i, n) #> (#

|
t) dSn-t,

as is immediately obvious on applying the theorem. If we now suppose that the

diaphragm is so chosen that the bounding (n
—

2)-fold is a complex (n
—

2)-fold (§ 9),

we can infer that, when (tu ..., rp) is within the region considered, log <£ (t) differs

only by a finite and continuous function from a function whose real part is equal to

?>«*> ttO,i_,,

where the integral may be supposed to be taken only over the part of I which lies

within S
;

for we have seen (§ 9) that for a complex (n
—

2)-fold

Ki2 + /C34 + . . . + *n—i,n = *•

The theorem to be proved can then be immediately deduced.

17. Incidentally we have remarked in
§ 16 that if a finite portion of an (n— 1)-

fold be bounded by a closed complex (re
—

2)-fold, then, under certain conditions of

continuity and single-valuedness for the function U, we have

dU dU
/W~ -/(*£;- *5j+~)

dSn

the first integral being taken over the closed (n
—

2)-fold, and the second over the

bounded portion of the (n
—

l)-fold.

We now extend this idea to the (re
—

2)-fold /, given by the aggregate of the

series
<f>.

We imagine this (n
—

2)-fold, which is defined only for finite space, to be

completed into a closed (re
—

2)-fold by means of a complex (re
—

2)-fold at infinity ;

and, as before, we assume tentatively, that the part of the integrals under consideration

which is contributed by the portion of the (re
—

2)-fold of integration lying at infinity

vanishes (see § 22).
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Then, firstly, we may put

431

V~ l-Sm+i dSn_i = I
/(«!

BH,m+i dHm
dx„ dxl ...)

dSn

where the right-hand integral is taken over the infinitely extended (n
—

l)-fold diaphragm
bounded by the complex (n

—
2)-fold.

And, similarly, we have (§ 14)

dil [/
1

dsh
+ ... + Krn ^-^)dSndxn ,

d [[( dHm+1 dHm+1 dHm+1\ ,_

ttO)[_l ,

where we have put

l
m+ +

d>l &Hm
dx* dxn

* dxr
2 '

thus, taking D, to vanish when (tlt ..., tn)
=

(Q, ..., 0), we have

»-JA*t5* +--^
!SpK

Thus, as has been indicated in connexion with the definition of fi as an (n
—

2)-fold

integral, D, is a generalised solid angle. It is not a single-valued function of (tlt ..., tn);

its values at two near points on opposite sides of the (n
—

l)-fold of integration differ

by integral multiples of nr
;

this follows, in a well-known way, from the fact that the

value of the integral taken over the closed (n
—

l)-fold

(x1 -tiy+...+(xn -tnf=r*

is ultimately zr when r diminishes indefinitely.

Thus it is obvious that

®(tu ...,rp)
= ei

-(.V+ttl)

is a single-valued function.

18. We come now to the consideration of the question of the convergence and

vanishing of the infinitely extended integrals used in this paper.

Some guidance may be sought in the comparison of the general case, when p > 1,

with the case of functions of one variable, for which p = l. For this latter case there

is no continuous (n
-

2)-fold of integration ; the corresponding thing is a series of discrete

points, in general of infinite number. We have in this paper found a formula,

e(Tlf p)
= 0,
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to represent the equation of a given complex (n
—

2)-fold extending to infinity; let us

apply this to find the equation of the (n
—

2)-fold constituted when n = 2 by any
enumerable system of discrete points £,, £2 , ..., having infinity as a point of condensa-

tion, in regard to which it is assumed that for some positive integer, m, the series

is absolutely convergent; this condition corresponds to the general one that the integral

\Hm+1 dSn_2 is convergent; for instance the points may be those given by a formula

a + 2km + 2k'a,

where k, k' are integers and m'/a> is not real, in which case, as is well known, it is

sufficient to take m = 1. Taking

f («| t)
= 1

log [o,
-

t,y + (x,
-

tgf],

and, as in the general case (§§ 13, 14),

V = \ilm+i ao„_2
= 2,iim+1

(-i)
m

/. ay1*1

= 2 pO10-e>(#|0) + ... +
((m + 1) ! V dxj

where the summation extends to all the points f = #, + ia;2 , and

V
-) p(*|0)
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in the sense that it is possible to divide n-fold space into period parallelograms, the

interior of any one of these being given by the p equations

Ti = \ + 2o)j >1
\1 + ... + 2a)

irip
\n> , (i= 1, ...,p),

where X is a constant and Xlt . ...X^, are real variables each between and 1, and to

regard the portions of the (n
—

2)-fold lying within these various parallelograms as

repetitions of one of these portions. Then it can be proved, under a certain hypothesis,

that the value m = 1 is sufficient for the convergence of the integrals. The hypothesis

is that the extent of the (n
—

2)-fold contained in any one such parallelogram is finite
;

and the truth of this hypothesis is deducible from the mode in which the (n
—

2)-fold

of integration has been supposed to be defined.

Of this result, which is given by Poincare, the proof is included in the investigation

below (§ 22); it may be remarked at once however that the formula obtained here is

not limited to the case of periodic functions
;

as we may see by taking a simple example.

We apply the formula when n = 4, to form the equation of the complex (n
—

2)-fold

£ = y;

putting 7 = a + ib this is then the two-fold given by x^ = a, x% = b. The matrix

Ittjfl/j

(X\iX/% (*'1'*'3 Cli*4

wg *fc\ C*2*2 2 3 ^2 4

with the help of which the direction cosines may be defined, may be taken to be

dx3

dxt

so that Krs—0 except k12 =1, and dSn_^ = dx3dxi . As the integral

dx3dx4 f
2"

,„ f
R rdr

)](a?

/•2ir fR

9-1.
de

(a* + b* + x3
* + x?Y Jo ™"jR (D + r*y

vanishes when R, R„ are infinite we infer that it is sufficient to take m = 0, and

therefore

Hm = p(x\t)
-

jf»(ar|0),
Hm+1 -p(«|t)-f (x\0) +

[t ^)p(*\0) \

then (§ 12) we obtain, for

„ .[{. fdHm .BHm\

^ =l
j\

l

^[-dx1

- l

'dxJ
+{Kls + tKli)

dHm
dx3

*
dxf

' ^

dHm
dx3 dx.

the respective values

r3 =o
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wherein, in the latter, xt
= a and x2

— b, and the integration in regard to x3 , xt is to be

taken for each of them over the whole range
— oo to + oo . Hence we obtain

r,
= 7r(I__U7 7

which, as the general theory requires, is a function of the complex variables (in fact only

of T! = ^ + iQ. Thence

d> =
j^dr,

+ k<*T2) "**
[^+

log
(l
-
fj

,

and therefore, as w = 2tt2 for n = 4,

- *

8(Ti,t,)-«
w (l--

1

^.
which is precisely right.

20. Transcendental functions of one variable which have no essential singularity in

the finite part of the plane of the variable may be distinguished into two classes according

as, to speak first of all somewhat roughly, their zeros become indefinitely dense or not, as

we pass to the infinite part of the plane. If circles be described in all possible ways, each

to contain a certain definite number, say N, of the zeros of the function, N being at least

two, the areas of these circles may have zero as lower outside value as we pass to the

infinite part of the plane, or may have some quantity greater than zero as lower outside

value. More precisely, in the former case, however small A may be, and however great R
may be, among the circles described to contain If zeros whose centres are at distance at

least R from some definite finite point of the plane taken as origin, one or more can be

found whose area is less than A
;

in the latter case it is possible to assign a quantity A
finitely greater than zero, and a finite R, such that among the circles described to contain

N zeros whose centres are at greater distance than R from the origin, no circle can be

found whose area is less than A. The most obvious example of the latter possibility is

the case of a periodic function
;
here a period parallelogram necessarily contains only a

finite number of zeros
;
and this parallelogram is indefinitely repeated to however great

finite distance we pass. As example of the former possibility we may take the case of an

integral function whose zeros are the real quantities log 2, log 3, log 4, .... The length of

the streak which contains the N zeros beginning with log R is at most

iog (ii! + iv-)-iogii:
=
iog(i+;|),

which diminishes without limit as R increases.

21. Consider now an integral function of one variable of the former of the two kinds,

for which circles containing a specified number If of the zeros of the function are formed

of as small area as we desire, however great be the distance R of their centres from a

finite point of the plane. It is still conceivable that for proper choice of the constant m,

independent of R, and not less than unity, the product

Rm^C,
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where C is the area of such a circle, may be finitely greater than zero for all values of R
greater than a certain assignable R .

We proceed to shew that under this hypothesis the infinite series formed by the

sum of the negative (2 + m)th powers of the zeros of the function is an absolutely

convergent series. The case m = 1 is that of the latter of the two kinds of functions

considered in § 20.

Let concentric circles be described with centre at a finite point of the plane ;
con-

sider the greatest number of zeros of such a function which can lie in the annulus

between two such circles of radii r and r' (r' > r), the circles being supposed to be drawn

so that no zeros lie actually upon them. By the hypothesis, if r be taken great enough

(and finite), the annulus may be divided into regions each containing a finite number,

say M, of zeros, such that if C be the area of every such region

where B is some quantity greater than zero. Let k be the number of these regions,

which is finite so long as r' is finite. Then

w (r
'2 _ r2) f/m-i > k£ .

as there are kM zeros in the annulus, the sum of the moduli of the inverse (2 + m)th

powers of these zeros is less than

kM

which in turn is less than

irM (r
/a -

r») r-'"
1"1

which, if r = r (1 + e), is equal to

£ (1+«r(s+ .,(J-J)

we can suppose the successive circles drawn so that e remains constant; then the sum of

the moduli of the inverse (2 + wi)th powers of all the zeros of the function which lie

beyond the circle of radius r is less than

itM ,. w ,„ .1

-g-(l+6)
m
(2+6)- )

and can be made as small as we please by taking r large enough. This proves the

convergence of the series.

22. Pass now to consider an integral function of p complex variables, and consider

the (n
—

2)-fold over which the function vanishes, this being supposed to extend to

infinity. Imagine closed (n— l)-folds to be described everywhere convex, and as far as

possible, for the sake of definiteness, of spherical form, with the condition that the

extent of the zero (n
—

2)-fold contained in any one of them shall be some definite

55—2
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quantity, say A. In regard to the shape of these closed (n
—

l)-folds the important

point is that the linear dimensions shall be always of the same order of magnitude in

all directions. In regard then to the n-fold extent, V, of these closed (n
—

l)-folds two

things are possible as we pass to the infinite parts of space. Either V may have a

lower outside value B finitely greater than zero, which case arises in considering functions

having 2p sets of simultaneous periods. Or, the zero (n
—

2)-fold may become so bent

and crumpled upon itself that at sufficient (not infinite) distance from the finite parts

of space it may be possible to find an n-fold extent V less than any assigned quantity,

which shall still contain an extent A of the zero (n
—

2)-fold ;
or in other words, that

the volumes V may have zero for lower outside value as we pass off to infinity. When
this latter is the case it is conceivable, denoting by R the average distance of the

points of a closed (n— l)-fold from some finite point, that its n-fold extent V may not

diminish faster than some positive power of R increases, namely that there may be a

quantity in, not less than unity, such that

Rm-lV > B

where B is a finite constant, for all values of R which are not too small.

Under this hypothesis it can be shewn that the integral

fdSn-4

J fin+m >

extended over the whole infinite (n—2)-fold, is convergent, R denoting the distance of a point

of the (n
—

2)-fold from some finite point.

For suppose concentric spherical (n
—

l)-folds to be described, with centre at the

finite point from which R is measured, and consider the extent of the (n
—

2)-fold

lying in an annulus bounded by two of these spheres, of radii r and rx (r1 >r). In

accordance with the hypothesis we can suppose the n-fold content of the annulus divided

into regions each containing a finite extent, say M, of the (n
—

2)-fold, such that if V be

the n-fold extent of any such region

where B is some constant greater than zero. Let k be the number of these regions,

which will be finite when ra is finite. Then

5
(n» _

r") ri
">-i s kB

;

as the total extent of the (n
—

2)-fold lying in the annulus is JcM, the contribution to

the integral

} 1JJn+m

which arises from the annulus is less than

kM
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and therefore less than

•57 M (rj
n -

?») rj™-
1

nit rn+m '

which, if r1
= r(l + e), is equal to

we can suppose the spheres chosen so that e does not become infinite; it is therefore

obvious that the integral is convergent.

It is tacitly assumed in this arrangement that the extent of the (n
—

2)-fold lying in

any finite w-fold extent taken entirely in the finite part of space is finite. This follows

from the method by which the (n
—

2)-fold is supposed to be defined; for it can be

shewn that if <£(t1; ..., rp) be a power series, the extent of the (n— 2)-fold <f>
= which

lies within a closed (n — l)-fold lying within the region of convergence is necessarily

finite*. This generalises the well-known theorem for functions of one variable, that a

power series cannot have an infinite number of zeros lying within a region which is

actually within its circle of convergence, that is, cannot have an infinite number of zeros

with point of condensation actually within the circle of convergence.

23. The investigation of § 22 applies to the integral (§ 13)

V = I ti nn-irfoii-j ;

denote by («,, ..., #„) as before a point of the (n— 2)-fold, and by (tu ..., tn) a finite

point not upon the (n
—

2)-fold of integration; when R* = x* + . . . + xn*
is large, that is,

for the very distant elements of the integral, and r2 =
ti + . . . + tn

2
is finite, we have

•"7n+i
=
^+^ Km+zW + • ,

and it will (§ 12) be Sufficient for the convergence of the integral that for any assigned

small quantity e it be possible to find a finite B such that the integral

/
dSn—2

taken over the part of the (n
—

2)-fold of integration, extending to infinity, for which

E> R
,

shall be less than e. We have in § 22 proved that this is so under the

hypothesis advanced.

24. The method just applied to the integral

l-"m+lUOn—2

!'

avails to justify the assumptions which have been made in regard to the other (n
-

2)-

fold integrals considered in this paper.

* A sketch of a proof is added below, § 27.
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There remain certain assumptions in regard to (n
—

3)-fold integrals, and in regard

to (n
—

l)-fold integrals.

We have assumed that if a finite portion of the (n
—

2)-fold of integration be

bounded by closed (w
—

3)-folds, the corresponding (n — 3)-fold integrals

if] \0«ab-i OX& J

ultimately vanish as these (n
—

3)-folds pass to infinity.

This really follows from what has been demonstrated. The (n
—

3)-fold integral arose

as equal to an (n
—

2)-fold integral. In the course of the proof above it has been

shewn that this (n
—

2)-fold integral is such that if taken over infinitely distant portions

of the (n
—

2)-fold the corresponding contributions ultimately vanish. Thus it is legitimate

to regard the (n
—

2)-fold as closed at infinity, namely by an (n
—

2)-fold for which our

hypothesis (§ 22) remains valid. In which case the (n
—

3)-fold integrals that arise

are mutually destructible.

We have considered also the (n
—

l)-fold integrals

^//("-t
±
'---t±!+ -)^-

taken over the infinite (n
—

l)-fold bounded by the hypothetically closed (n
—

2)-fold

just considered. It is necessary to see that these are convergent. This follows because

the portion of either of these (n — l)-fold integrals taken over the portion of the

(n
—

l)-fold which lies at infinity can be replaced by an (n
—

2)-fold integral taken over

a closed (n
—

2)- fold lying entirely at infinity
—and by the proof given above this

(n
—

2)-fold integral ultimately vanishes.

25. Note to § 15. In the course of this demonstration we have utilised the fact

that as (tu ..., tn) approaches indefinitely near to the (n
—

2)-fold of integration the integral

—
Jj>(*|i)«&SU-«

becomes infinite like log mod.
<f>,

where
<f>
— is the equation of the (n

—
2)-fold in the

neighbourhood. The following direct verification of this fact is of interest.

To a first approximation the points of the element dSn_2 satisfy the following

equations, the origin of reckoning being taken at the point of the (n
—

2)-fold,

u^Xi ~]~ U2X2 1 • • • "1 unxn = u,

Pj*, + v&z + . . . + vnxn = ;
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these give

„ (u3v!>
-u2v3)x3 + ...

_ (ulv3 -u3v1)x3 + ... _

whereby all the coordinates are expressed in terms of the (n
—

2) quantities x3,...,xn .

Thence, using the equation k12 dSn^ =M12 , we have

jo Ml + • • • + Un , ,

«*n-2
=

pi
—

-.
—

a.'Ks ••• (W„.M
l + w2

We can further suppose the axes so chosen that

u3
= . . . = un = v3

=
. . . = vn = 0,

so that, for dSn_2 ,
x1
= and x2

=
;

and dSn-2
= dx3dxt . . . dxn . Also, the origin being

at the point of dS„_2 which is to be considered, x3 , ...,xn are, for dSn-2 , subject to a

condition of the form
X3 -J- • . . "T* xn ^ d

,

where a is small and fixed
;

these coordinates are otherwise unrestricted ;
we can there-

fore put
dSn^ = r"~3 sin"-4

3 sin"-
5

t . . . sin 0„_2 drdd3 ... ddn^ ,

where the limits are

r = to a, S
= to tt, 4

= to ir 0„_2
= to it, #„_, = to 2ir.

The point (tlt ...,<„), as it approaches the (n
—

2)-fold, can be taken subject to

a^ + . . . + xntn = 0, ^ + . . . + £„
2 = e

2
,

where ^ = 0, x, = and (0, 0, #3 , ..., #„) is any point of dSw

Then to the integral

— U>(x\t)dSn_„
cr J

the contribution arising from dSn^2 is

1 27rf
a rn

~3 dr

n — 2 ij-

which is easily seen to be

"Jo (r
2 + e2)*"-

1
'

putting « = 2^, r2 = e
2
^, 2 + 1 = t, this is

ra rn-3 (£r f

J (h + e»)^-i J
sin"-4^ • sin £„_, (W, ... #_,

a rn
~3dr

=-|K(1+ 3 +

(,-)^-^-

i n^Q-i)^
2 A **->

*•

(- i)*"
1

r i
1+

P -2 o2\p-2

1 +
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of which the infinite part, for diminishing e and fixed a, is exactly log e. But as we

approach the (n— 2)-fold in the way here taken we can put <f>
= heeie, (see § 16); so that

the infinite part of \og<j> is also loge. Thus in the limit the difference

o-j.
r—
k>(tf|0dS„_2 -log<£

CT J

remains finite, as stated.

26. In this paper we have hitherto supposed the (n — 2)-fold of integration to be

given a priori, by means of a succession of power series. Some remarks must be made in

regard to the problem in which this conception has arisen.

Suppose that a single-valued function ^(tj, ...
,
tp) is known to exist for all finite

values of t]; ..., rp ,
and to have no essential singularities for any finite values of

t„ ...
,
rp , namely can be represented in the neighbourhood of any finite point (t^

01
, ..., Tp

m
)

in the form

F=+ (t1 -T1 «>\ ..., Tj-VO + ^T.-T.W ..., Tp -Tp <°>),

where
i/r , <£

are ordinary power series (of positive powers) with a presumably limited

common region of convergence. If the series
ijr , <£ have a common vanishing factor

at (tj' ', ...
,
tp

(0)

),
that is, are both divisible by another convergent series which vanishes

at (t!
10

', ... ,
rp
m

), this factor may be supposed divided out (Weierstrass, Werke, n. (1895),

p. 151). There is then a region about (tV
01

, ..., tp
(0)

),
within the common region of

convergence of
yjr

and
(f> ,

but not necessarily coextensive with it, such that, if

(«,.+*« •••> Cp + TpM)

be any point in this region, and the series $•„, <f>
be written as power series with this

point as centre, by putting Tk — i-*""
= Ck+uk , the resulting series in «,, ...

,
up have no

common factor vanishing at «! = (), ...
,
up=0 (Weierstrass, loc. cit., p. 154). This region

we may temporarily call the proper region of (V', ... , rp
m

) for the function F. There

may be points within this region at which
yjr , <f>

both vanish without having a common
factor vanishing there, such points lying upon an (n

—
4)-fold at every point of which

F has no determinate value. If the series
-vjr , <f>

as originally given have no common

factor vanishing at (V', ...
, Tp

m
) there will similarly be a region about this point at

no point of which have they a common vanishing factor. This region also we call the

proper region of (V 1

, ..., rp
m

) for the function F.

By hypothesis there is then a proper region belonging to every finite point. We
assume further, what is not quite obviously a deduction from the former hypothesis,

that the whole of finite space can be divided into regions, each of finite extent, each having

the property of being entirely contained in the proper region of every point of itself.

The function F will then be represented in one of these regions K„ by an expression,

belonging to an interior point t <0)
,

F=^S,
4>o

'
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wherein fv, </>„
have no common factor vanishing at any point of K

;
as we pass to

a contiguous region Kl we need a representation belonging to a point (t,«, ...) interior

to Kx of the form

F =
</>i'

By considering the equality

in the region common to the proper regions of (V ), ..., Tp
m

) and (t^
1

', ..., rp
w

) we
are then able to deduce that all the points for which

i|r
= are also points for which

a/tj
= 0, and conversely.

We thus build up the idea of a zero (w-2)-fold for the function F, and an infinity

(?i-2)-fold. If the former be represented by © = 0, and the latter by <I> = 0, the function

F can be represented in the form

©F=~ eK

where X is an integral function
;

and ©, <t> have no common zero other than points

belonging to an (n
-

4)-fold at every point of which F is indeterminate.

27. Note to § 22. If an w-fold space bounded by a closed (w-l)-fold be taken

actually within the region of convergence of a power series in the complex variables

£i> •••» £p> say $(£i> ••-. %p)> where n = 2p, the extent of the portion of the (n— 2)-fold

given by <f>
= which lies within the (n

—
l)-fold is finite. For consider the points of this

portion for which £2=72, •••. Zp
= r

ip> where
7.,, ..., yp are certain definite values; these

points are given by the equation in f1( cj> (&, y„, ..., yp )
=

0, wherein & is capable only of a

limited range of values determined by the (n
—

l)-fold ;
as this range is included within

the region of convergence of the fj-power series
<f>(i;i, 7>, •••, <yP), there cannot be an

infinite number of values of fx witliin this range for which
<f>(Jzlt 72, •••, 7p)

= 0. Thus on

the portion of the (n
—

2)-fold £(fe, f2 , ..., £P) = lying within the (n— l)-fold there exists

only a finite number of values of ^ corresponding to given definite values of f2 , ..., fp .

Let rf*S'n_2 be an element of the (n
—

2)-fold <j>
=

;
we have

\dSn-2
=

JKi2 clSn^2 + ... +
JKn-i,ndSn^2,

the integrals being taken over the portion of the (11
-

2)-fold which lies within the

(n
-

l)-fold ;
to prove that ldSn_„ is finite it will be sufficient to prove that every one

of the integrals on the right is finite
;
we prove that the first of them is finite. Take

upon the (n
-

2)-fold, <j>
= 0, (n

-
2) independent sets of differentials given by the rows

dj&'i, dx x2 ,
dx3 , , , ,

...

d2 oclt d2*2, ,
dxit , ,

...

d3xlt d3x2 , 0,0, dxs , ,
...

dtxu diX.ly , , , dx6 ,
...

Vol. XVIII. 56
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where, for instance, dw^lx1 , d2r-1x2 are determined in terms of dxw+l by the equation

<f>i (dv-iXi + idv-iXi) + <f>r+l dx.ir+1
=

0,

and d3rx1 ,
d.2rx2 are determined in terms of dxv+i by the equation

$! (dirxl + id.irx2) + icfrr+idxv+z
= 0.

Then K12d8n-2 may (§ 5) be replaced by

since then the range of values for each of x3 ,
xt , ..., xn ,

for points under consideration, is

finite, and, as proved, there is only a finite number of points of the (n
—

2)-fold for which

x3 , ..., xn have a given value, it follows that the integral

jdx3 ... dx„

taken over the whole extent of the (n
—

2)-fold within the region considered can only

be finite.

28. Note to § 8. The following example, relating to the transformation of integrals

considered in Part I. of this paper, seems worth preserving.

For w=4 we have for the transformation from a closed (n.
—

2)-fold to an (n— l)-fold

bounded thereby, the equation

3P31
,
dP*

,

BP3

\\K-X-L 28 + K3\P31 + "la * 12 + Kli"14 + kzi"h + Ku"u) d£Sn—2

= (dSn^ \ «, (^ +—w +
d
-^)

J "'j 'ISu, dx3 dxt I

"

\ dxi dx3 dx4 J V dxt dx2 dxt

+ ftP.
+
dPm

^
dPu\)

J

\dxj dx^ dx3 )\
'

=
J
d<S„_! (k,Q1 + k..Q2 + k3Q3 + k4Q4 ), say ;

thus dPu _ 9^3i _ dPji m q
dx2 jdx3 dxt

dx3 dx
x

dx4

ap8l _aP23_ap43 = Q
3«! dx2 dXi

ap« +
3-P

i2 +
ap

i3 =
dxt dx2 dx3
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..
,

BQi.dQ, ,9Q3 3&
therefore 5 H 5 1-

-,-

—h 5— = 0,
ctei o*2 dx3 ox4

which is a necessary condition for the consistence of the four equations just written. It is

satisfied for instance by

/ being any function of xu xit x3 ,
xt ; corresponding to these values the four equations just

written are satisfied by

Pn = Pu =
0, P13 =/, Pu =if, PKi

=
if, pm =-/

But it does not thence follow that

I (k13 + iKlt + IK03
—

/c^) /. dSn_2

for the first integral vanishes for a complex (n
—

2)-fold, and the second integral does not

necessarily vanish, as we see by taking for instance

. 1 (^-Uf+jx.-t.y
7 2 (ft

-
Tl) (ft

- Tt) {x,
-

ttf + (a*
- Uf + (x3

-W + (xt
-

t<y
'

when we get

2H£"(s"'sii) fWft £ +'£— (sr'£)**ift

whereby the second integral becomes

which is not always zero.

In explanation it may be noticed that on the (n-2)-fold there are points where

f.,
= t2 ;

and for these / is infinite.

25 July 1899.
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Absorption, selective, electromagnetic illustration of,
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Arrhenius, 131
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Becquerel, 397

Bendixson, 36
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Bigelow, 131

Boltzmann and Mache, on Van der Waals' law, 91

Bonnet, Ossian, 325

Borel, 6

Briggs, 203

Bromwich, 324

Brown, on differential equations of the lunar theory, 94

Burnside, on groups of finite order, 269

Campbell, 221

Cantor, 204

Capstick, 186

Cavalieri, 204

Cayley, 328, 333

Chasles, 219

Clifford, 328

Condenser, oscillatory discharge of, 136

Coradi, 116

Corbino, 398

Cornu, la theorie des ondes lumineuses, xvii

Cremona, 346

Cubic surface, model of, 375

Darboux, 9, 324

Dawson, 393

Declination, magnetic, 107

Desargues, 204

Descartes, 197
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tems of, 35
;
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Disc, circular, Green's function for, 277
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Elastic displacement, waves of, on a helical wire, 364

Electric density near vertex of a right cone, 292

Electromagnetic illustration of selective absorption, 348
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to, 277
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Ewing, 396
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Fontenelle, 197

Forsyth, on the integrals of systems of differential

equations, 35

Frisch, 197
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;

of
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Genus, numerical, of a surface, 345

Geometry of Kepler and Newton, 197

Glazebrook, on the discharge of an air condenser, 136
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Goursat, 36

Green's function for a circular disc, 277 ; formula for

electric density near the vertex of a right cone, 292
;
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Groups, Poincare on continuous, 220; of finite order,

Bumside on, 269 ;
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Hadamard, 9

Heine, 292

Helical wire, waves of elastic displacement on, 364

Henrici, 116

Hill, 97

Hobson, on Green's function for a circular disc, 277

Horn, 37

Hornstein, 131

Humbert, 345

Integrals of first kind on quartic surfaces, 333

Ions, dynamics of a system of, 380

Jordan, 37

Kelvin, Lord, 137, 277, 287, 291
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Kerr, 406
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Klugh, 116
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Kronecker, 408

Kummer, 345
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380

Levy, 266
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Lie, 220, 256
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Liveing, on absorption spectra of solutions of didy-
mium and erbium salts, 298

Lodge, on the discharge of an air condenser, 136
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Loria, 203
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along a helical wire, 364

Lovett, on contact transformations and optics, 256

Lunar theory, differential equations of, 94

Macaluso, 398

MacCullagh, 380

Macdonald, on Green's formula for electric density
near vertex of a cone, 292

Mache, see Boltzmann

MacMahon, on Partition analysis, 12

Magnetic declination, periodogram of, 107

Magnetic field, influence of on optical phenomena, 380

Maxwell, 137, 143, 292, 361

Mehler, 292

Meteorology, 107

Michelson, on the echelon spectroscope, 316

Minimal surfaces, Richmond on, 324

Mittag-Leffler, representation of a monogenic func-

tion, 1

Monge, 325

Moore, 275

Newton, geometry of, 197

Noether, 333

Optical phenomena, influence of a magnetic field on, 380

Optics, and contact transformations, 256

Oscillatory discharge of an air condenser, 136

Painleve, 7

Partition analysis, 12

Periodogram of magnetic declination, 107

Picard, 36, 333

Poincare^ on continuous groups, 220

Poincare, 36, 333, 408

Poncelet, 204

Poudra, 205

Preston, 391

Quartic surfaces with integrals of the first kind, 333

Eayleigh, Lord, 109, 139, 147, 348

Rede Lecture, xvii

Richmond, on minimal surfaces, 324

Rotation, magneto-optic, 396

Routh, 403

Runge, 2

Russell, 301

Salmon, 346

Schur, 221

Schuster, on the periodogram of magnetic declination

from records of Greenwich Observatory, 107

Smithells, 393

Sommerfeld, 277

Spectra of solutions of didymium and erbium salts, 298

Spectroscope, the echelon, 316

Stokes, 409

Substitutions, infinitesimal, 245

Surfaces, minimal, 324; quartic, with integrals of the first

kind, 333; cubic, model of twenty-seven lines upon, 375
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Taylor, C, on the geometry of Kepler and Newton, Vitellio, 201

Voigt, 398197

Taylor, H. M., on a model shewing the twenty-seven
lines on a cubic surface, 375

Thalen, 301

Theory of numbers, 12

Thomson and Tait, 392

Thomson, J. J., 359

Van der Waals' law, 91

Velocity of light (v), determined experimentally, 136

Verdet, 397

Waals, van der, his law, 91

Walker, 348

Waves of elastic displacement, on a helical wire, 364

Weierstrass, 325, 335
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Zeeman effect, 316, 389
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Cambridge Philosophical Transactions, Vol. XVI/L, Plate 3.

Plates 3—23 illustrating Professor Liveing's Paper (pp. 298—315), On the

effects of Dilution, Temperature, and other circumstances, on the Absorption Spectra of
solutions of Didymium and Erbium salts.

The.se plates are all reproductions, enlarged to double the size, of photographs of some

of the spectra from which the conclusions in the text have been deduced. In the

processes of enlargement and reproduction some of the fainter details visible in the

original negatives have (perhaps unavoidably) been lost : but they present the salient

features of the changes in the spectra produced by the variations of circumstance.

The references to these plates in the text applied to the original negatives and

were printed before the reproductions were ready. The latter, being positives, are

reversed, and in order that the references may be easily intelligible it has been

necessary to place the red ends of the spectra on the left hand.

The figures at the top of each plate are the approximate wave lengths of the

bands in the spectra beneath them, and sufficiently indicate the range of the spectrum

photographed.

PLATE 3.

Absorptions of solutions of didymium chloride in four degrees of dilution in thicknesses inversely

as the dilutions. The most concentrated solution contained 1407 grams per litre, and the absorbent

thickness of this solution was 38 mm.

C5 COrHOOeO -** (M O

solution 1/8 strength

305 mm. thick

strongest solution

38 mm. thick

solution 1/4 strength

1525 mm. thick

solution 1/2 strength

76 mm. thick

It will be noticed how very nearly identical these four spectra are. The original photograph

shews a number of faint bands which have not come out in the reproduction. They are however as

nearly identical in all four spectra as are the stronger bands here reproduced.





Cambridge Philosophical Transactions, Vol. XVIII., Plates 4, 5.

PLATE 4.

Absorptions of solution of didymium .sulphate in four degrees of dilution.

o CO o» -* t-
i-l CO CO ^* CM
1C ^JH "** ^ ^

© »0
CO t~
CO CO

saturated solution

38 mm. thick

half-strength

76 mm. thick

quarter-strength

152-5 mm. thick

one-eighth strength

305 mm. thick

The diffuse bands at about X 380, 375 and 364, are quite visible in the original photograph, but

have nearly disappeared in the reproduction

PLATE 5.

Absorptions by solution of erbium nitrate in four degrees of dilution, the strongest containing

566 grams of the salt to the litre.

COCO C5^H io-* t-c- »o
(M CO T-1< t—I O X C— COU3-* "<f-* ^*^f COCO CO

one-eighth strength

305 mm. thick

quarter-strength

152-5 mm. thick

half-strength

76 mm. thick

strongest solution

38 mm. thick

The increasing diffuseness of the bands with increased concentration of the solution is seen in this

series
;

the weak band about X441 seeming to be washed out when the solution is concentrated while

that about X449 is much broader and the details within it obliterated.
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PLATE 6.

Absorptions by solutions of didymium nitrate, concentrated, and extremely dilute. The most concen-
trated had 611-1 grams of the salt per litre

; the other was part of the same solution diluted to

45-5 times its bulk.

© »o

co co

stronger solution

6-7 mm. thick

1/45-5 strength

305 mm. thick

There is very little difference between these two spectra except that the band in the yellow is

broader with the stronger solution, and those at X476 and 427 more washed out.

PLATE 7.

Absorptions by solutions of didymium chloride of concentrations equivalent to those of the nitrate

used for plate 6 : the stronger containing 462-9 grams of the chloride per litre.

CD iH © CO © -*f t- CO ©
OS CO t-h GO © -* CM © 00
its 10 «3 "*"<* "*f ** -* CO

stronger solution

6-7 mm. thick

1/45-5 strength

305 mm . thick

There is no definite difference between these two spectra.
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PLATE 8.

Absorptions of a solution of erbium nitrate containing 467-6 grams of the salt per litre, and of a
solution made by diluting the former to 45'5 times its bulk.

CD CO
CO CI

stronger solution

6-7 mm. thick

1/45-5 strength

305 mm. thick

The bands are more diffuse with the stronger solution, that at about X377 being decidedly broader.

The band at abovit X449 is more distinctly seen in the original and is more diffuse with the stronger
solution than with the weaker.

PLATE 9.

Absorptions by solutions of erbium chloride of concentrations equivalent to those of the nitrate used

for plate 8
; the stronger solution containing 363-3 grams of the salt per litre.

CO CO
CO <N
W3 U5

1/45-5 strength

305 mm. thick

stronger solution

6-7 mm. thick

There is hardly any difference between these two spectra except that the band about X377 is rather

stronger with the more concentrated than with the dilute solution, owing probably to the overlapping
of the general diffuse absorption of the concentrated chloride at the more refrangible end. The fainter

bands which are visible in the original photograph can hardly be traced in the reproduction.
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PLATE 10.

Absorptions by solutions of erbium chloride and equivalent solutions of erbium nitrate, alternately :

four degrees of concentration, the strongest having 726-6 grams of the anhydrous chloride to the litre,

and the equivalent nitrate 935 -2 grama to the litre.

7 i

strongest solution of Er CI3

38 mm. thick

strongest solution of

Er (NO
3
)

3

38 mm. thick

half-strength chloride

76 mm. thick

half-strength nitrate

76 mm. thick

quarter-strength chloride

152-5 mm. thick

quarter-strength nitrate

152-5 mm. thick

one-eighth-strength chloride

305 mm. thick

one-eighth-strength nitrate

305 mm. thick

The greater diffuseness of the bands with the more concentrated solutions of the nitrate is evident,

and so is the extension of the general absorption at the more refrangible end of the spectrum with the

most concentrated solution of the chloride.

The difference between the absorptions by the chloride and nitrate diminishes with dilution and has

almost, or quite, disappeared in the case of the weakest solutions.
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PLATE 11.

Absorptions by didymium chloride and nitrate, alternately, in equivalent solutions of four degrees of

•concentration, beginning with the strongest solution containing 46-2'9 grams of the anhydrous chloride to

the litre, followed next with the equivalent solution containing 611-1 grams of nitrate to the litre.

CD
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PLATE 12.

Absorptions by solutions of hydrochloric acid in alcohol, and in water, compared with the absorption
by pure water.

strongest solution of HC1 in

alcohol, 38 mm. thick

half-strength, do.

76 mm. thick

quarter-strength, do.

152-5 mm. thick

pure water

305 mm. thick

strongest solution of HC1 in

water, 38 mm. thick

half-strength, do.

76 mm. thick

quarter-strength, do.

152-5 mm. thick

one-eighth-strength, do.

305 mm. thick

The effect of the hydrochloric acid at the more refrangible end is visible, and the diminution of

the absorption with diminished concentration of the acid is seen in the aqueous solutions Nos. 5, 6, 7,

while diminished concentration has little or no effect in the case of the alcoholic solutions Nos. 1, 2, 8,





Cambridge Philosophical Transactions, Vol. XVIII., Plate 13.

PLATE 13.

Absorptions by solution of erbium chloride, cold and hot alternately, in two degrees of concentration.

i-l o

half-strength solution

76 mm. thick at 23° C.

half-strength solution

76 mm. thick at 97° C.

stronger solution

38 mm. thick at 25J° C.

stronger solution

38 mm. thick at 99° C.

The extension of the general absorption at the more refrangible end of the spectrum by a rise of

temperature is manifest in these photographs, and so is the greater diffuseness of the bands at about X449

and A 488.
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PLATE 14.

Absorptions by solutions of erbium nitrate, cold and hot alternately, in four degrees of dilution, ii

thicknesses inversely as the dilutions. The strongest solution had 566 grams of erbium nitrate per litre.

strongest solution

38 mm. thick at 22° C.

do.

do. at 98° C.

solution 1/4 strength

152-5 mm. thick at 23° C.

do.

do. at 94? C.

solution 1/8 strength

305 mm. thick at 23° C.

do.

do. at 94° C.

solution 1/2 strength

76 mm. thick at 23° C.

do

do. at 97° C.

It will be noticed that the effect of heating the solution is in general to render the absorption

bands more diffuse, and that it is the bands that increase in diffuseness with increasing concentration

of the solution which are most affected by the rise of temperature.

The original photographs shew several fainter bands which have not come out in the reproduction,

and also shew the lighter interspaces between the absorptions in the ultra violet much more distinctly

than the reproduction. Even in the reproduction these lighter interspaces in the ultra violet are more

distinct in the spectra of the cold solutions than in those of the hot solutions.
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PLATE 15.

Absorptions by solution of didymium sulphate, cold and hot, in two degrees of concentration. The

stronger solution was a saturated solution at 20° C.

rHOeoa5-*t~ zn o
CO ^H GO O ** CN O GO
UTj »0 "•*< -**->* "<f t* M

stronger solution of Di2
(
SO4

)

3

38 mm. thick, at 23° C.

same solution and same

thickness, at 90° C.

half-strength solution

76 mm. thick, at 24i°C.

half-strength solution

76 mm. thick, at 92° C.

The extension of the general absorption at the more refrangible end of the spectrum, and the increased

diffuseness of the bands in the blue, by the rise of temperature is plainly seen in these photographs.

PLATE 16.

Absorptions by solution of erbium chloride, neutral and acid, in two degrees of concentration
;
the

stronger neutral solution having 726 -6 grams of the chloride to the litre, and the acid solution having
besides an amount of hydrochloric acid equivalent to the amount of neutral salt.

CO CO GO Cft *C "*f tr-
ee CN CO -<f <H O 00

stronger neutral solution

38 mm. thick

stronger acid solution

38 mm. thick

one-third strength neutral

solution, 152-5 mm. thick

Dne-third strength acid

solution, 1525 mm. thick

The thickness of the absorbent solutions is not proportional to the dilutions, so that the absorptions

of figures 3 and 4 are produced by a quantity of salt one-third greater than that which gave figures

1 and 2, which makes the bands of 3 and 4 stronger.

The effect of the acid is chiefly to extend the general absorption at the more refrangible end of the

spectrum.
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PLATE 17.

Absorptions by solutions of erbium nitrate, neutral and acid, in two degrees of concentration. The
stronger neutral solution had 935-2 grams of the salt per litre, and the acid solution had in it besides
as much nitric acid as was equivalent to the amount of neutral salt.

stronger solution, neutral

38 mm. thick

stronger solution, acid

38 mm. thick

half-strength, neutral

76 mm. thick

half-strength solution, acid

76 mm. thick

The effect of the acid in rendering the bands more diffuse is seen in these photographs, and in the

extension of the general absorption at the more refrangible end of the second figure.

PLATE 18.

Absorptions by solutions of didymium chloride, neutral and acid, in two degrees of concentration : the

acid solutions containing the same amount of didymium per litre as the neutral solutions but with

hydrochloric acid in addition.

co cs o to
GO r-
CO CO

stronger solution of DiCl3
,

neutral, 38 mm. thick

stronger solution, acid

38 mm. thick

half-strength, neutral

76 mm. thick

half-strength, acid

76 mm. thick

The chief effect of the acid is to extend the general absorption at the more refrangible end of the

spectrum.
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PLATE 19.

Absorptions by nearly equivalent solutions of didymium chloride in water, in alcohol, and in alcohol

charged with hydrochloric acid. The acid solution was prepared from the neutral alcoholic solution by
passing hydrochloric acid gas into it and was found to be about nine-tenths of the strength in didymium
of the neutral solution.

neutral aqueous solution

neutral alcoholic solution

acid alcoholic solution

The general absorption at the more refrangible end is extended a little by the alcohol, and still

more by the addition of acid.

The bands are generally rendered more diffuse by alcohol and a little shifted towards the red end of

the spectrum, the shift increasing as the refrangibility decreases.

The acid seems to diffuse away the bands in the blue, the strong pair at about X520 are just

visible in the spectrum of the acid solution considerably shifted towards the red. And the strong group

in the yellow is still more shifted, and so spread out that several of the component bands are separated.

PLATE 20.

Absorptions by equivalent solutions of didymium nitrate in water and in glycerol.

aqueous solution

glycerol solution

No definite shift of the bands by the glycerol appears in the photograph, but there is an extension

of the general absorption at the more refrangible end of the spectrum, and the bands are rendered more

diffuse by the glycerol.
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PLATE 21.

Absorptions by glass of borax coloured with didymium oxide and by a solution in water of didymium
nitrate containing a quantity of didymium equal to that in the glass.

borax glass coloured with

didymium

aqueous solution of

didymium nitrate

These photographs are disfigured with horizontal lines due to dust on the slit of the spectroscope.

It will be seen that the bands are for the most part shifted by the borax but very unequally so ;
also

that the bands are rendered more diffuse by the borax and some almost diffused away.

PLATE 22.

Absorptions by equivalent solutions of didymium acetate in acetic acid and of didymium nitrate in

water.

5D »-H © CO Ci -* t— CO O
Oi CO *-H 00 CO ~* <N © CO
U5 O IQ 9 T 4 ^ "* CO

I
didymium acetate

dissolved iu acetic acid

equivalent aqueous
solution of nitrate

The bands are generally shifted towards the red by the acetic acid, and in the photograph the

shift diminishes as the band is less refrangible; but the dispersion of the spectroscope also diminishes

as the light is less refrangible ;
so the apparent diminution of the shift is not altogether real.

The acetic acid also increases the diffuseness of the bands, as is very manifest in the case of the

band at about X476, and may be traced in others.
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PLATE 23.

Absorptions by solutions of didymium chloride in water, and of didymium tartrate in water charged
with ammonia.

iH O CO Cft ^ t*.
CO .H 00 CO •<* C3

COo

aqueous solution of

didymium chloride

ammoniacal solution of
tartrate

The tartrate has all its bands more diffuse than the chloride, some of them almost diffused away,

and they are shifted towards the red.
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