Fossil Insects of Australia

BRISBANE 16 AUGUST 2004

MEMOIRS OF THE
Queensland Museum

VOLUME 50
PART 1

MEMOIRS

OF THE

Queensland Museum

Minister:
Director:
Managing Editor: Volume Editor: Editorial Assistant: P. Avern, BSc

Hon. A.M. Bligh, MLA
I. G. Galloway, PhD
P.A. Jell, PhD
A. Cook, PhD
A. Avern, BSc

Queensland Museum
PO Box 3300, South Brisbane 4101, Australia
Phone 61738407555
Fax 61738461226
National Library of Australia eard number ISSN 0079-8835

NOTE

Papers published in this volume and in all previous volumes of the Memoirs of the Queensland Museum may be reproduced for scientific research, individual study or other educational purposes. Properly acknowledged quotations may be made but queries regarding the republication of any papers should be addressed to the Director. Copies of the journal can be purchased from the Queensland Museum Shop.
A Guide to Authors is displayed at the Queensland Museum web site www.qmuscum.qld.gov.au/resources/resourcewelcome.heml.

A Queensland Government Project
Typeset at the Queensland Museum
Printed by Watson Ferguson \& Co,
35 Hamilton Road, Moorooka, Queensland 4105

THE FOSSIL INSECTS OF AUSTRALIA

P.A. JELL

Jell, P.A. 200416 08: The fossil insects of Australia. Memoirs of the Queensland Museum 50(1): 1-124. Brisbanc. ISSN0079-8835.

Abstract

A taxonomic eatalogue of the known fossil inseets of Australia provides illustrations of at least one species of every genus so far identified. Every known species is recorded with the age, rock unit (formation) and location (sedimentary basin). Some synonymies and updated taxonomic placements are included but this has not been an exhaustive review of taxonomy. The principal sourees for fossil inseets are described as the Upper Permian Boolaroo Formation in the Neweastle Coal Measures adjacent to Lake Maequarie, the Hawkesbury Sandstone at Brookvale in Sydney, the Mt Crosby and Blackstone Formations in the Upper Triassic Ipswich Coal Measures of southeastern Queensland and the Lower Cretaccous Koonwarra Fossil Bed in South Gippsland, Vietoria. Other minor sites are discussed and potential for further research is outlined. Austroscarites is introduced to replace the preoceupied Scarites Hamilton not Fabricius. \square Fossil insects, Australia, Permian, Triassic, Cretaceous, catalogue.

Peter A. Jell, Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101, Australia; 1 August 2004.

The living insect fauna of Australia is obviously abundant and diverse to inhabitants and visitors alike. The importance of the insect fauna to our way of life and our cconomy has bcen documented by many people since the first arrival of Europcans. Assuming living diversity is an indication of the insect fauna at any instant of the geological past and in vicw of the known evolution of insects during gcological time we can project an cnormous number of species that must have inhabited this continent since the origin of insects during the early Palaeozoic. However, the majority of these were almost certainly never fossilised and have left no record. Marine faunas have a better fossilization potential than terrestrial oncs. It is estimated that overall less than I\% of living specics at any one instant in time will be fossilized and collectable to enter the palaeontological literature. Thus the known fossil insect record of more than 400 species in approximately 250 gencra is only a small fraction of the insect species that have lived in Australia.

In each cdition of 'The Insects of Australia' a chapter was dcvoted to their fossil history. Riek (1970c) and Kukalova-Peck (1991) gave good overviews of the fossil history of Australia and fitted it into the broader story of insect evolution across the globe. The aim of this publication is to complement those accounts with a comprehensive listing of the fossil insect species described from Australia along with illustration of at least onc species from cach genus.

GEOLOGICAL SETTING OF FOSSIL INSECT SITES

Compared to the number of Australian fossil sites or to the number of insect fossil sites worldwide only a few sites around Australia have yielded fossils of insects (Fig. 1). These sites provide imperfect data for only a very few instants of geological history (Fig. 2).

HELLYER GORGE SITE IN UPPER CARBONIFEROUS WYNYARD TILLITE.

The carliest known insect from Australia comes from the Hellyer Gorge district of northwestern Tasmania where the singlc, almost completc specimen, with 50 mm wing span, was found in a Im fossiliferous band of varve-like sediments within the Wynyard Tillite. Tillites occur in the formation both above and below the finegrained fossilifcrous section. The co-occurring fossil plant, Botrychiopsis plantiana, and Stage I microflora indicate a Late Carboniferous agc and the primitive insect structure suggests carly Late Carboniferous. The sedimentary environment and paucity of associated insects indicate deposition in cold conditions close to glacial ice. Rick (1976) crected the Psychroptilidac and Suborder Ncosecoptera as monotypic taxa for this insect, Psychroptilus burrettae Riek, 1976 within the Order Mcgasccoptcra. He outlined the difficulty of classifying this specics by indicating featurcs it shares with the Megasccoptcra (wing venation cxcept Sc ends abruptly on the costal margin just beyond the midlength of the wing) others it shares with the Palacodictyoptcra (wings

FIG 1. Distribution of main fossil insect sites. I=UCarboniferous Wynyard Tillite at Hellyer Gorge; $2=$ UPermian Neweastle Coal Measures at Belmont just south of Neweastle; $3=$ MTriassic (Anisian) Brookvale Shale in Hawkesbury Sandstone near Manly in suburbs of Sydney; $4=$ MTriassic (Anisian) Ashfield Formation in Wianamatta Group at St Peters near Newtown, suburban Sydncy; 5=UTriassic (Carnian) Mt Crosby Formation in lower Ipswich Coal Measures just north of lpswich; $6=$ UTriassic (Carnian) Blackstone Formation at top of Ipswich Coal Measures on Denmark Hill in suburban Ipswieh; 7=LJurassic Talbragar Fish Bed in the Purlawaugh Formation near Gulgong; $\delta=$ LCretaceous Cockleshell Gully Formation in Hill River area, northern Perth Basin: 9=LCretaceous (Aptian) Koonwarra Fossil Bed on the South Gippsland Highway near Tarwin in the Gippsland Basin; $10=$ LCretaceous Wallumbilla Fm near Richmond, Great Artesian Basin; $I I=U C r e t a c e o u s ~$ Winton Formation near Winton, Great Artesian Basin; 12=Palacocene Redbank Plains Formation east of 1pswich; 13=Late Oligocene/Early Miocene Upper Site in Riversleigh Limestones north of Mount Isa.
broad at the base) and others not previously known in either of those orders. By comparison to the Northern Hemisphere faunas the Carboniferous inseet fauna of Australia is virtually unknown.

BELMONT INSECT FAUNA IN UPPER PERMIAN NEWCASTLE COAL MEASURES. The Upper Permian insects from the Neweastle Coal Measures deseribed mainly by Tillyard eame from an area of $10-20 \mathrm{~km}^{2}$ between the town of Belmont and Warners Bay on the eastern side
of Lake Maequarie some 10 km southwest of Ncwcastle. A sand and eonglomerate fan was probably braiding through coal swamps along the southeastern flank of the Hunter Trough in the Late Permian, sourcing its clastic material primarily from higher land to the north and northwest (Engel, 1966). The widespread and persistent inseet beds, which are finc grained voleanielastic units (tuffs) assoeiated with plenty of plant detritus mainly Glossopteris leaves and Phyllotheca, were apparently deposited during a brief, episodic event and fairly rapidly buried.

The inseets were very likely a wing-float concentration, with the wings remaining buoyant until the waterbody was ehoked with ash, possibly enhaneed by storm aetion during or just after the cruption. Adjacent coal seams, conglomerates and tuff beds indicate a dynamic environment with swamp conditions prevailing when and where short term quiet conditions beeame established. Details of stratigraphie relationships in the Belmont area are provided by Hawley \& Brunton (1995) and Little et aI. (1996). Rare insects have been found in the Lambton Formation adjacent to the Dudley Coal Seam (Permoscarta mitchelli Tillyard, 1918b. Mitchelloneura permiana Tillyard, 192 Ib and Lophioncura ustulata Tillyard, 192Ib) at the base of the Neweastle Coal Measures but the major horizon is within the Boolaroo Formation in the upper half of the coal measures. As with many coal measure stratigraphies there is an extremely fine subdivision to refleet the various coal seams but these units are often of restrieted extent so the listing below refers to the Neweastle Coal Measures as the provenance of the inseets from this area. This fauna is rieh in Homoptera, Psocoptera, Neuroptera, Mecoptera but laeks blattoids or palaeoptera.

MIDDLE TRIASSIC HAWKESBURY SANDSTONE AT BROOKVALE, SYDNEY. The Middle Triassic (Anisian) Hawkesbury Sandstone in the Sydncy Basin envelops a lens of fine mudstone referred to as the Brookvale Shale lens (about 8 m thick) which was best exposed in the Brookvale Quarry on Beacon HilI, Brookvale, near Manly, north of Sydney Harbour where it yielded many fish, many plants (Dicroidium zuberi flora), amphibians, unionid bivalves, crustaccans, insects, trace fossils and some enigmatic fossils. This mudstone lens may be interpreted as a lacustrine interval on a quartz sandstone coastal plain and from the fauna a freshwater environment is most probable. The insect fauna ineludes the large titanopteran, Clatrotitan, a mceopteroid, a protorthopteroid, orthopteroids and a stonefly.

MIDDLE TRIASSIC ASHFIELD FORMATION AT ST PETERS, SYDNEY. The Ashfield Shale ($40-60 \mathrm{~m}$ thick in the Wianamatta Group) overlies the Mittagong Formation (up to 15 m thick) which in turn overlies the Hawkesbury Sandstone in the area immediately west and southwest of Sydncy known as the Cumberland Basin. Outerop of the Ashfield Shale defines the shape of the basin. Siltstone and

FIG. 2. Stratigraphic succession of important known insect sites.
elay from low in the formation was extensively quarried in the St Peters distriet for manufaeture of house bricks. An extensive fauna of bivalves, fish, a shark, labyrinthodonts, an isopod, the inseets and plants has been collected from these quarries and indicates a freshwater environment. Its age is Middle Triassic (late Anisian) based mainly on the floral components of the fauna. The insects are predominantly bectle elytra, a large blattodea and the large titanopteran, Mesotitan,
but nothing has been added to the work of Tillyard (1916). Tillyard (1918b) described another Ashficld inscct fauna from a railway cutting at Glenlec, 6.5 km south of Campbelltown on the main southern line with a very similar assemblage to that from St Pcters i.e. dominated by beetlc elytra, the same blattodean genus and a mecoptcroid rather than the large titanoptcra.

UPPER TRIASSIC MT CROSBY FORMATION, IPSWICH COAL MEASURES AT MT CROSBY, NORTH OF IPSWICH, SOUTHEASTERN QUEENSLAND. The Mount Crosby Formation, the oldest in the Ipswich Coal Measures occupies an area north of lpswich adjacent to the Brisbane River of some $30 \mathrm{~km}^{2}$. It is $20-30 \mathrm{~m}$ thick and consists mainly of polymictic, poorly sorted conglomerate but has 3 shalc units, up to 6 m thiek near the bottom, middle and top of the unit. The upper two shale units are fossiliferous with prolific plant and insect remains. The conglomerates of the formation indicate rapid erosion from an adjacent highland (the Daguilar Block) and littlc transport. The shalc units indicate restricted quiet lacustrine conditions at various times on this piedmont fan. The insect fauna is dominated by Blattodea and Homoptera with Mecoptera, Diptera, Orthoptera, Neuroptera, Coleoptera, Odonata, Plecoptera, and Hymenoptera rcprcsented.

UPPER TRIASSIC BLACKSTONE FORMATION, IPSWICH COAL MEASURES AT DENMARK HILL, IPSWICH, SOUTHEASTERN QUEENSLAND. At Denmark Hill very close to the centre of Ipswich the upper part of the Ipswich Coal Measures underlics an urban park reserve. In 1890 inscets were first found in this locality and much geological interest followed. The richly fossiliferous horizon is a fincly arenaceous siltstone about 15 cm thick assigned to the Blackstone Formation, the youngest formation of the Ipswich Coal Measures. Coal seams arc known above and bclow the fossilifcrous sequence indicating a lacustrine environment. Plant fossils are prolific and among the fauna freshwater bivalves and estherid crustaceans accompany the insects while dinosaur footprints are known in the formation. Dunstan (1916) gave a detailed account of the small quarry in which the insects were collected. The fauna is dominated by bcetlc elytra, Blattodea and Homoptera and includes fewer Orthoptera, Phasmatodea, Neuroptera, and Mecoptera.

LOWER CRETACEOUS (APTIAN) KOONWARRA FOSSIL BED NEAR LEONGATHA, SOUTH GIPPSLAND, VICTORIA. During road widening excavations on the South Gippsland Highway between Koonwarra and Tarwin council workers recognised fossil fish in the spoil. A short succession of varved lake deposits is within a thick fluwiatile succession, the Korumburra Group (=Strzelccki Group). The lacustrine sequence contains some beds with abundant fish (Waldman, 1971) and other beds with numerous inscets, plants and a few other arthropods, somc annelid worms (Jell \& Roberts, 1986) and a few feathers (Talent ct al., 1966), the earliest indications of birds in Australia. The insects include many aquatic larvae and numerous terrestrial adults. By analogy with present day lakes in western Victoria it was possible to identify representatives of the insect fauna that lived in the lake, a fauna of larvae that lived in a fecder stream and insects that lived on the surrounding land and then fell onto the surface of the water (Jell \& Duncan, 1986). Mayfly nymphs from the stream fauna and dipteran and bectle larvae from the lake dominate the aquatie fauna while Hemiptera, Mecoptera, hymenopterans, bcetles, flies and blattodea are common among the winged adults. The beds are dated palynologically (Dcttmann, 1986) as Aptian and a fission track date (Drinnan \& Chambers, 1986) of $116 \pm 5 \mathrm{Ma}$ has bcen obtaincd.

PALEOCENE REDBANK PLAINS FORMATION NEAR IPSWICH, SOUTHEASTERN QUEENSLAND. The Tertiary Booval Basin which overlies the Mcsozoic Ipswich Basin extends over $50 \mathrm{~km}^{2}$ in the 1 pswich -BundambaDinmore area. The Palacocene Redbank Plains Formation consists of about 70 m of mudstonc, elaystonc, shale and fine sandstone which werc deposited in a freshwater lake in structural depressions on the eroding upper surface of the lpswich Basin sediments. The fossil content includes fish, turtles, crocodilcs, ostracodes, cladocerans, insects and plants. Riek (1952a) noted two different faunas: one at Redbank Plains in a hardened band of ferruginous mudstone is dominated by Homoptera and Colcoptera with a few Diptera, Mccoptera, Ncuroptera, Orthoptcra and Hemiptera and the other, at Dinmore in compaet clays and clay shalcs, contains Orthoptera, Isoptera, Megaloptera, Homoptera and possibly Odonata.

POTENTIAL FOR FUTURE FOSSIL INSECT RESEARCH IN AUSTRALIA

CARBONIFEROUS. The nonmarine mostly Upper Carboniferous Joc Joe Formation in the Drummond Basin of eentral Queensland contains finegrained varved siltstones and mudstones in its upper part. In the varved units at a number of localities are arthropod tracks elosely comparable to those which occur with the only known Australian Carboniferous insect in the Wynyard Tillite in Tasmania. Although no evidence of fossil insects in the Joe Joe Formation exists it is elear that the right sorts of environments existed and some further prospecting in the fine lacustrine sediments could be productive.

UPPER TRIASSIC BEDS IN NORTHERN ESK GRABEN. North of the lpswich area in southeastern Queensland extends the Esk Trough, a NNW/SSE trending structurally controlled intermontane basin of mainly Middle Triassic (Anisian) sedimentation. The northern extent of this structure is not obvious and the more widespread sediments of this age in the Murgon- Gayndah area are probably northern deposits in the same large lake of that time. The whole bclt from Wivenhoe to Gayndah had a dynamic environment with aetive degradation of adjacent highlands as indicated by abundant and widcspread conglomerates and conglomerate/ sandstone/shale alternation vertically and laterally. Tuffs throughout and larva flows in the northern areas indicate contemporary volcanism. Through this large area of deposition, plant fossils are common with floras dominated by Dicroidium. A few inseets have been collceted from the Esk Formation in the Wivenhoe/ Bellevue arca (Steinhardtia and a protoelytroptera in the QM collection), an extensive collection of inseets, dominated by blattodeans and beetles from the Mondure Formation in the region north of Murgon to Windera is in the Queensland Museum and insects are known (Lambkin, 1988) in the Gayndah Formation near Gayndah. The insects in these three ocurrences are Middle Triassic and thus older than the Denmark Hill and Mt Crosby faunas and of comparable age to the Brookvale and Ashfield faunas in Sydncy. There is a very signifieant scope for further work in this region with the promise of significant results in piecing together Australian insect faunas of that age.

MESOZOIC INSECTS IN WESTERN AUSTRALIA. Two records of insects in the Mesozoic of Western Australia are in the Lower Jurassic Cockleshell Gully Formation (Riek, 1968e) and the Cretaccous (Santonian) Gingin Chalk (Etheridge, 1913).
Riek (1968e) deseribed the tenebrionid beetle, Mesothoris westraliensis and noted two other indeterminate beetle elytra and a poorly preserved cockroach forewing possibly allied to Austroblatulla. Riek (1968e) speculated that the sediments were Triassic bascd on the ranges of various inseet groups in Australia. However, Balnıe (1964a) determined an Early Jurassic age palynologically and the enclosing sediments are now considered part of the Cattamarra Coal Measures Member of the Cockleshell Gully Formation. The material was collected at 3 different localities in the Hill River region inland from Jurien Bay so the oceurrence is not a restricted one. These insects oceur in nonmarine fincgrained shales and siltstones associated with widespread subsurface coal seams, an environment very conducive to insect fossilization. Rick (1968c) indicated that although they were too poorly preserved for identification, numerous other inseets occurred in the same collection. There is every indication that a more comprehensive insect fauna remains to be found in this rock unit. Since our knowledge of Australian Jurassic faunas is almost non-existant, any futher results from this souree could be extremely signifieant.

Etheridge (1913) illustrated a bectle elytron and indicated a myriapod sclerite in a collection of Cossils sent to him from One Trec Hill, just north of Gingin. The small quarry on top of this hill is in the Upper Cretaceous Gingin Chalk, a white, friablc slightly glauconitic chalk. It is a marine unit with foraminifera, corals, crinoids, bivalves, ammonites and other typical marine fossils. This is an extremely unlikely environment in which to find terrestrial arthropods fossilized and Etheridge's report must be examined cautiously. Apparently, no further inseets or myriapods have been collected from this unit and my cfforts in the same quarry produced no semblance of them so 1 am very skeptical of the 1913 report.

JURASSIC TALBRAGAR FISH BED NEW SOUTH WALES. The eelebrated Talbragar Fish Beds in the Lower Jurassic Purlawaugh Formation between Gulgong and Mudgee in central New South Wales are best known for their

FIG 3. Cicada? lowei Etheridge \& Oliff, 1890; AMF35725; 20 mm long. The only insect so far described from the Talbragar Fish Bed.
prolific fish and plant fossils but it has long been known that they contain a few insects. These fine cherty shales were deposited in a relatively small body of water ncar the southern margin of a very large freshwater lake that extended north into Queensland and west almost to South Australia. In 1889 soon after the fossil site was found Charles Cutlen was sent by the Gcological Survey of New South Wales to make a collection of the fish and plants. Among the very many specimens he procured was a single insect specimen. Etheridge \& Oliff (1890) erected Cicada? lowei for this specimen (Fig. 3). Riek (1970c) noted this specimen as coming from the Jurassic but considered its identification as a cicada to be wrong. However, because he did not show any identified Jurassic occurrences of insects from Australia (Rick, 1970c, tablc 8.1) it may be assumed he considered the specimen unidentifiable. Other rare insects from the Talbragar Fish Beds arc known to be in private collections and a study of this fauna is required as the onty avaitable Australian Jurassic insect fauna.

CRETACEOUS OF WESTERN QUEENSLAND. The marine Lower Cretaceous Walumbilla Formation of the RichmondHughenden arca in the Great Artesian Basin has yiclded scveral dragonfly wings of onc spccies. The first of these was the first fossil insect rccorded from Australia (Woodward, 1884). These are quite rare among a very diverse marine fauna and prospecting for these spccific forms would be an extremely time costly exercise. They are more likely to be found coincidently by people collecting the marine fauna and usually at different times.

During cxcavations to collect sauropod dinosaurs in the Upper Crctaccous, fluviatile, nonmarine Winton Formation ncar Winton, western Queensland, three insect specimens have been collceted. One is a dragonfly wing, the same or similar to that from the marine Walumbilla Formation and the other two are incomplete mecopteroid specimens. The inscets are relatively rare in finc shales with prolific plant fossils. These sediments weather rapidly on exposure and the fossits were only found because fresh sediment was being excavated on a considerable scale to build a dam. Further excavation in these sediments in the same arca is likely to produce more specimens and although the ratc of discovery could be expected to be erratic and not guarantecd its continuation could be highly bencficial as the second Cretaccous site in Australia. The Winton Formation outcrops over wide areas of western Queenstand on top of the marine sequence in the Artesian Basin and since it is now known to contain at lcast one fossil locality, further prospecting, especially of sites with fine lacustrinc scdiments and/or plant fossils should be undertaken.

TERTIARY LIMESTONES AT RIVERS-

 LEIGH, NORTHWESTERN QUEENSLAND. Riversleigh, northwestern Qucensland, has been made a houschold word in vertcbrate palacontology by the extensive etching of Tertiary limestones which has liberated diverse assemblages of bones from numcrous Oligocene to Pleistocenc horizons. Limestone from the Latc Oligocenc/early Miocenc Upper Site yiclded some 3D insect remains mentioned in preliminary lists in Archer ct al. (1989, 1991). Duncan, Briggs \& Archer (1998) studied the mechanism of preservation of these Riverslcigh insects in which the cutiele has been replaced by phosphate and of fcred a preliminary taxonomy of the specimens used in their study. They referred to 4 different species of beetles (including acurculionid, a hydrophyloid and a cupidoid), a trichopteran larva and a juliid millipede and noted that other insects are present in the fauna. Co-occurring taxa are one, possibly two, species of ants, an hemipteran, possibly a cieada, and millipedes The specimen illustrated by Areher et al. (1991) as a millipede represents the same taxon as that deseribed as the tail assembly of a trichopteran larva by Duncan et al. (1998). Discussions with various entomologists have unearthed a varicty of different opinions as to the identification of several of these taxa. The Upper Site which yielded the faunule is interpreted as a shallow lime-rich pool in a rain forest where anaerobic conditions may have intermittently oceurred. Etching of the Riversleigh limestones is continuing and a detailed study of these inseets preserved in such a rarely seen way is neeessary as soon as possible.

FOSSIL INSECT THAT IS A CRUSTACEAN

Austrolestidion duaringae Tillyard, 1916 was erected for two specimens (GSQI20) in a core of Tertiary sediments from the Duaringa Bore in central Queensland that were identified as zygopterid dragonfly larvae. Rozefelds (1985) provided a good photograph of the specimens and suggested that it probably represents a single

FIG. 4. Austrolestidion duaringae Tillyard, 1916, GSQI20; body 20 mm long. A juvenile parastacid erustacean.
juvenile parastacid erustacean. The chelate appendages are confirmation of this identifieation. However. Riek (1970b), Kukalova-Pek (1991) and Carpenter (1992) still maintained it amongst the Zygoptera, apparently not having examined the specimen and unaware of Rozefelds' paper.

INSECT THAT IS A FAKED FOSSIL

Austrodictya Tillyard, 1922c, with type species A. corbouldi Tillyard, 1922c. was based on a wing fragment (distal third) preserved in a crystal of selenite (or gypsum). The specimen came from the Mount Elliott Mine in Precambrian terrane in northwestern Queensland. It was collected 87 m (260 feet) below the surface in the copper lode being worked in the mine. Tillyard went to great pains to impress on his readers that the wing fragment was completely embedded in the crystal and could not possibly have been meehanically inserted. Tillyard considered it an arehaic orthopteran quite unlike anything he had seen in the living or fossil fauna. He even sent a drawing of the venation to Mr A.N. Caudell, well known orthopterist of the day at the US National Muscum, who concurred that it resembled nothing in the living fauna.
The specimen which had been forwarded to the Geological Survey of New South Wales, Sydney in about 1912 by Mr Corbould, Manager of the Mt Elliott Mine, remains in the Mines Department collections to this day (MMF25954). It next attracted attention in 1952. Harry S. Ladd, U.S. National Muscum, Washington DC who was compiling a major work on the variety of types of fossilization of different fossils enquired about it as an unique specimen. Mr H.F. Whitworth, Curator of the Geological \& Mining Museum set out to photograph the specimen for Ladd. He found the face of the erystal somewhat seratehed over time and decided it would be best photographed under water.

To his surprise, Mr Whitworth found that when he immersed it in water, air bubbles formed around the wing. This suggested a cavity. On further investigation he found a slit along the side and coneluded that the wing fragment must have been inserted between the flexible laths of the crystal. Whitworth related how he had carried out the same exereise of spreading the laths with the blade of a penknife and inserting a wing. Indeed I have done the same thing and it is perfectly achicvable.

Whitworth took Tillyard's specimen to Mr A. Musgrave, entomologist at the Australian

Museum, who identified the wing as belonging to Terpandrus horridus, commonly known as the Great Gum-Tree Grasshopper and well known in northern Australia.

Clearly, someone had inserted the wing fragment into the erystal as a joke, but the joke went on too far and thus we have Austrodictya corbouldi as a junior synonym of Terpandrus horridus and one generie name is removed from the catalogue of Australian fossil inseets.

INSECT TRACES

LEAF MINES As they are traces of inseet activity, mention should be made of a series of papers by Andrew Rozefelds (1988a, 1988b; Rozefelds \& Sobbe, 1987) on leaf mines in Triassic to Eocene leaves. Mesozoic examples are rarely recorded and probably not common. Further, the inference that the Late Jurassic to Early Cretaceous Pachypteris leaf mine is the work of a lepidopteran makes it a very early reeord for this order and the only record of a lepidopteran mining a gymnosperm. It has already raised expressions of doubt from the Northern Hemisphere (Zherikhin in Rasnitsyn \& Cooke, 2002:360).

TAXONOMIC PLACEMENT

Taxonomie nomenelature applied to fossil inseets is not yet gencrally agreed between all palacoentomologists. The contents of many groups vary widely among authors (ef. the family elassification of the Mecoptera between Willman (1989b), Carpenter (1992) and Novokshonov in Rasnitsyn \& Quicke (2002)). In the taxonomic compilation herein 1 have worked from the original placement and applied what appear to me to be sensible amendments. In many eases I have inserted notes in [] to indieate some history of the taxon but this is not exhaustive and 1 acknowledge that many of the taxa are relatively poorly known and in need of eareful revision. Part of the aim of this work is to collate the entire known fauna to promote some of the neeessary revisionary work.

In the ease of our earlier paper on the Koonwarra Fossil Bed fauna (Jell \& Dunean, 1986) we made something of the same statement, aeknowledging our shorteomings aeross all the insect orders and hoping that speeialists would be able to improve on these plaeements. 1 am delighted to be able to report here on the work of Ansorge (1996), Borkent (1997), Hamilton
(1992) and Nauman (1993) who have improved our knowledge of various taxa from that fauna.

A couple of areas of taxonomy are worthy of further discussion.

TINDALE'S THEORY OF PRIMITIVE LEPIDOPTERA IN THE TRIASSIC OF QUEENSLAND. Tindale (1945) ereeted Eoses triassica, on a speeimen from the Upper Triassic Mt Crosby Formation, as a member of the Lepidoptera within a new suborder, the Eoneura. This claim had considerable significance as it would be the earliest known lepidopteran by a long way. Riek (1955) discussed this claim at length and coneluded that Eoses triassica is a junior synonym of Mesochorista proavita Tillyard, 1916 from Denınark Hill (Riek (1955) identified numerous specimens of this speeies in material from Mt Crosby) and belongs to the Mecoptera. Tindale (1980) replied by stating further evidence for why he eonsidered Eoses to be a lepidopteran and at the same time erected Eocorona iani as another lepidopteran in the Eoneura from the same Mt Crosby horizon. Sukhaeheva (1982:9) considered Eocorona to be a junior synonym of Prorlyacophila Riek, 1955 within the Triehoptera. Thus there is considerable refutation of the ideas espoused by Tindale and apparently no other worker has supported, in print. Tindale's assertions of Triassic lepidopterans. Carpenter (1992) noted Tindale's work, discussed Riek's point and considered them unlikely to be lepidopterans. On that basis 1 have aecepted the synonymies of these two genera.

MESOTITAN. Mesotitan giganteus Tillyard, 1916, the type speeies by monotypy, is based on a single large speeimen, GSQI22a from brick pits in the Ashfield Formation (previously the Wianamatta Shales) at St Peters, Newtown, Sydney. Clatrotitan MeKeown, 1937 (see below) was also assigned to the Mesotitanidae and several recent accounts (notably Sharov (1968), Carpenter (1992) and Gorochov \& Rasnitsyn in Rasnitsyn \& Quicke (2002)) have considered the two genera synonymous. On the otherhand Riek (1954c) considered that Mesotitan (i.e. M. giganteus) 'is a quite distinet genus [from Clatrotitan] most probably referable to the Homoptera'. The type speeimen of M. giganteus is a diffieult specimen to interpret and has never been adequately deseribed or understood in the published literature. A preliminary examination indieates that an argument ean be mounted to support Riek's elaim of separate generic status

FIG. 5. Mesotitan giganteus Tillyard, 1916, holotype, GSQI22a, 15 cm maximum width. The central axis of the body is more or less up and down the vetrical erack. This is apparently the counterpart and we are looking up at the underside of the wings. If any part of the body is preserved it would be expeeted on the opposing part which has not been located. On the left side, wing at 45° to the axis is the hindwing with the posterior cubital and anal areas still folded together with main veins extremely close together in a bundle just overlapping onto and concealing the proximal parts of the subcostal and costal areas of the forewing. The forewing is the long wing down the axis, probably in the position of rest. On the right side the two wings lie on top of each other at a very small angle as deduced by veins of the underlying forewing being pressed through the hindwing. The outer marginal oreostal area of the forewing has flexed along the subeostal veinand been turned in under the subeostal area. This is why it appears the oblique erossveins of the outer part of the two wings are in two different directions.
for Mesotitan and Clatrotitan but there secms good reason to classify them in the onc family. However, the considcrable explanation and description of the specimen that will be necessary to fully understand this taxon is outside the seope of the present work and will be reserved for another publieation. It is sufficient to say Mesotitan and Clatrotitan belong to the same family, currently classificd under Titanoptera.

PERMOCEPHALUS \& PERMOCAPITUS. Evans (1943a, 1943b) described these two genera as the heads of homopteran bugs. Although Evans (1957) later entertained some doubt about the specimens he continued to describe them as heads of Homoptcra. Riek (1971) showed these speeimens to be thoraeie segments of small insects. Although he provided a detailed discussion of the possible rclationships of these

F1G. 6. Permocephalus knighti; holotype, AMF39865: 5 mm long.
thoracic fragments he did not formally assign them to any group. The elosest comparison he made was with recent Symphyta: Hymenoptera and with Neuroptera. In this state of uncertainty the two genera are not assigned within the following compilation. Permocephalus knighi Evans, 1943a (Fig. 6) based on the holotype AMF39865 and Permocapitus globulus Evans, 1943 b based on holotype AMF40078 both from
the Upper Permian Neweastle Coal Measures at Belmont, near Neweastle in the Sydncy Basin.

CATALOGUE FORMAT AND REPOSITORIES

In the catalogue of Australian fossil insects that follows 1 have attempted to inelude all genera so far described along with most specimens in open nomenclature but the latter may not be entirely comprehensive. They arc organised taxonomieally by Orders and then in families arranged usually alphabetically under the order. There is no particular order to genera within the family headings. 1 have not attempted to diagnose any suprageneric taxa. Each generic entry has the "Name Author, date [type species]" on the first line. The next linc has a diagnosis, usually quoted from the original work, or abbreviated where possible. After the diagnosis comes a list of "specics Author, date; Age; Geologieal Formation (i.e. the rock unit); Sedimentary Basin or ncarest town". Ages are abbreviated thus:- L, M, U for Lower, Middle and Upper, respeetively; Carb=Carbonifcrous, Perm= Permian, Trias=Triassie, Jur=Jurassic, Cret= Cretaccous. Fm = Formation, $\mathrm{FB}=$ Fossil Bed, Sst=Sandstonc, CM=Coal Measures. Sydncy, 1pswich, Gippsland, cte are sedimentary basins.

Abbreviations for repositories are Australian Muscum, Sydney (AMF), Gcological Survey of Queensland, Brisbane (GSQ1), Muscum of Vietoria (NMVP), Melbourne University Gcology Department (MUGD), the Natural History Muscum, London (BMNHIn) Queensland Museum, Brisbane (QMF), University of Queensland (UQF and UQC), University of Sydney, Geology Department (USGD). The Geological Survey of Quecnsland and University of Queensland collcetions have now been transferred to the Qucensland Muscum; the Melbourne University Geology Department collection is now in the Muscum of Victoria; and the Sydncy University collection is in the Australian Museum.

Order EPHEMEROPTERA (mayflies)

Family BAETIDAE Leach, 1815

Cleon Leach, 1815
Larva: small, shrimp-like; head very small; cerci short.
emmavillensis Riek, 1954b; Pliocene; Vegetable Ck, Emmaville, NSW.

Family LEPTOPHLEBIIDAE Banks, 1900 Atalophlebia Eaton, 1881 [Ephemera australis Walker, 1853]
Nymph dorsoventrally depressed, with widely flattened femora; head reetangular; eyes small, posterolateral, protruding slightly at margin, well separated medially; thorax slightly wider than head; insertions of foreleg elose together, of mid and hindlegs well apart; femora 3 times as long as wide; tibiae not strongly flattened, not quite as long as femora; abdominal segments gradually inereasing in length but narrowing, with 9 th segment as long as wide; caudal cerci as long as abdomen. culleni (Etheridge \& Olliff, 1890); Plio; Vegetable Ck; Emmaville, N.S.W.

Family SIPHLONURIDAE Banks, 1900
Promirara Jell \& Duncan, 1986 [cephalota] Nymph only. Similar to living Mirawara but with mouthparts less highly adapted for predation. Abdomen with 7 pairs of subequal gills, first pair not redueed. Cerei with hairs on the lateral as well as the median margin but hairs on lateral margins shorter and not extending to the base of ecreus. cephalota Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.

Australurus Jell \& Duncan, 1986 [plexus] Nymph only. Head elongate; mandibles large; antenna long; face above antennal insertions ridged. Legs long, thin; tibia shorter than tarsus; tarsal claw apparently long. Mesonotum raised, produced caudally; pronotum large. Abdomen with 7 pairs of unmodified lamellar gills; gill strueture imperfectly known but each gill with a strengthened longitudinal ridge at or elose to fore margin, possibly with a fibrillar tuft at base; segments $1-9$ strongly produced posterolaterally into spines. Caudal filaments with dense fringes of finc hairs except on outer margins of each lateral filamen.
plexus Jell \& Dunean, 1986; LCret; Koonwarra FB; Gippsland.

Dulcimanna sculptor: NMVP102507 (above centre) and AMF66758 (above left); x3. Line drawing (above right) of Jell \& Duncan, 1986, fig. 2H

Siphlonuridae gen. et sp. nov., NMVP103210, x6. Line drawing (left) of Jcll \& Duncan, 1986, fig. 2E.

Order MEGASECOPTERA

Family PSYCHROPTILIDAE Rick, 1976 Psychroptilus Riek, 1976 [burrettae] Hindwing slightly broader than forewing; Se ending on costa about $2 / 3$ wing length from basc; Rs 3-branehed; MA, CuA and CuP simple; MP 2-branched;
burrettac Riek, 1976; UCarb; Wynyard Fm; ETas.
[Riek originally assigned this speeies to the Megasecoptera noting that it combined features of that order and the Palaeodietyoptera. Subsequently it has been assigned to the Palaeodietyoptera by Carpenter (1992) and Rasnitsyn \& Quieke (2002) among others.]

Psychroptilus burrettae, UTGD94563, 50mm wing span. Wing venation (left) from Rick, 1976, fig. 1.

Mesomantidion queenslandicum; GSQ11: x1.2. Line drawing from Tillyard, 1916, pl. 5, fig. 2.

Mesophlebia antinodalis; GSQ13; x2. Line drawing from Tillyard, 1916, pl. 4, fig. 2.

Peraphlebia tetrastichia; NMVP103212; $\times 10$.: immature nymph.

Order ODONATA (dragonflies)

Family MESOMANTIDIIDAE Tillyard. 1916
Mesomantidion Tillyard, 1916 [queenslandicum]
Forewing: large, clongate: C weak, reaching margin near base; precostal area narrow, crossed by series of simple crossveins; Se long, simple; R strong, simple;

subcostal area large, with numerous irregular cross veins; M branching strongly; M1, M2 and M3 separating at level of end of C; M1 and M2 branching again distally; Cu2 2-branehed; A1 present: cross veins in single rows.
queenslandicum Tillyard, 1916; UTrias: Blackstonc Fm; lpswich.
[Rick (1956:110) considered this speeimen may not represent an insect but offered no alternative].
Family MESOPIILEBIIDAE Tillyard, 1916
Mesophlebia Tillyard, 1916 [antinodalis] Hindwing: nodus distinet, transverse behind Se , not reaching R ; pterostigma well formed parallelogram with lower side thickened; M1 arehing up elose to pterostigina; M3-branehed; M4 very distant from Cu , separated by single row of long parallel eross veins; cross veins numerous between all veins; M4 distally indistinct, distally a zigzag division between cells.
antinodalis Tillyard. 1916; UTrias; Blackstone Fm: Ipswich.
Triassophlebia Tillyard, 1922b [stigmata] Wing with pterostigma elongate; costal veinlets beyond nodus numerous; MI only slightly eonverging towards R : M1a arising from M2; no oblique vein between M2 and Ms; M4 not arehing downwards.
stigmata Tillyard, 1922b; UTrias; Blackstonc Fm; Ipswich.

Tria.ssophlebia stigmata; AMF29267; x4 (left). Line drawing from Tillyard, 1922b, text-fig. 76.

Peraphlebia Jell \& Duncan, 1986 [tetrastichia] R3 meeting R2 at level of nodal, continuing in smooth curve to costal margin; with wide area between R3 and R4, with brace vein between R1 and R2 oblique and strong.
tetrastichia Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.

Family AESCHNIDIIDAE Handlirsch, 1906 Aeschnidiopsis Tillyard, 1918a [flindersiensis] Triangles with strongly eurved distal side; areulus not connected to CuP.
flindersiensis Woodward, 1884; LCret; Walumbilla Fm: Artesian.

Aeschnidiopsis flindersiensis, UQF3162: 55 mm long. Line drawing (left) of Rick, 1954d, text-fig. 1

Family PERMAESCHNIDAE Martynov, 1931
Polytaxincura Tillyard, 1935b [stanleyi]) Forewing:C and Se areas narrow, towards nodus; C and R areas beyond nodus almost without cross veins; Cu 2 and Al with an anterior convexity about 0.3 of length from base; cubital space with 4 cross veins before the anterior convexity; polygonal network distally and posteriorly.
stanleyi Tillyard, 1935b; UPerm; Newcastle CM; Sydney.

Family PROTOMYRMELEONT IDAE Handlirsch. 1906

Triassagrion Tillyard, 1922b [australiense] Forewing: pterostigma short, twice as long as wide: R1, M1, M1a and M2a finishing elose together near apex; 24 eross veins between C and R1 after Se finished and before pterostigma; M with 7 major branches at margin; Cu simple and zigzag; Al zigzag distally and with only one row of eells behind it: triangular areas between M2a and M2b and between Ms and M3 with irregular polygonal vcins. australiense Tillyard, 1922b; UTrias; Blackstone Fm; Ipswich.

Peraphlebia tetrastichia; NMVP 103204; x2 (far left). Line drawing from Jell \& Duncan, 1986, fig. 9B.

Polytaximura stanleyi; S343; 40mm long. Line drawing (above) of Tillyard, 1935b, text-fig. 1.

Triassagrion australiense; GSQI290a; x3. Line drawing from Tillyard, 1922b, text-fig. 77.

Triassolestes epiphleboides; GSQ1205a; x3. Line drawing (right) from Tillyard, 1918d, text-fig. 11.

Coenagrionid indet.; NMVP102508; x7.

Family TRIASSOLESTIDAE Tillyard, 1918d Triassolestes Tillyard, 1918d [epiophlebioides] Wing: M 4-branched; M4 and Cul slightly divergent; single row of cells between Cu 1 and Cu 2 basally, irregular polygons distally: Cu2 curving back distally to margin; one row of cells between Cu 2 and margin inereasing to 2 distally
epiphleboides Tillyard, 1918d; UTrias; Blackstonc Fni; Ipswich.

Family COENAGRIONIDAE Kirby, 1890
Coenagrionid indct.
Body long, thin, with moderately expanded gills and antenna, with pedieel not markedly lengthened; mask with medial projection; gills with rounded apex coenagrionid indet. Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.

Perrisophlebia multiseriata; GSQI203; x3. Line drawing from Tillyard, 1918d, text-fig. 13.

Family UNCERTAIN

Perissophlebia Tillyard, 1918d [multiseriata]
Wing with an irregular double row of cells between C and R beyond pterostigma; between R and MI at same level an irregular triple row of cells proximally then a more regular double row; 3 eell rows below M1 a strong convex sector. multiseriata Tillyard, 1918d; UTrias; Blackstone Fm; Ipswich.

Samaruura Brauer, Redtenbacher \& Ganglbauer, 1889 [gigantea]
Nymph. long slender abdomen, long thin legs, lamellar gills.
Samarura sp. Rozefelds,1985; UTrias; Aberdare Conglomerate; Ipswich.

Samarura sp.; QMF 12996; 10mm long.

Order PERLARIA (stoneflies)

Family EUSTHENIIDAE Tillyard, 1921
Mesonotoperla Rick, 1954c [simuata] Rs simple (if forked only as terminal twigging); Sc extending almost to apex; Cul 2 -branched; M 2-branehed; m-cul and cul-cu2 well separated; no r-m over basal half.
sinuata Rick, 1954c: MTrias; Hawkesbury Sst; Sydney.

Mesonotoperla sinuata, AMF35877, x3 (upper right). Line drawing from Rick, 1954e, fig. 5.

Stenoperlidium Tillyard, 1935c [permianum] [=Antitaxineura Tillyard, 1935e; type anomala] Forewing: very narrow; Sc short, ending just beyond midlength in short fork conneeting with both C and R1; costal veinlets only moderately developed; Rs with 4 peetinate branches distally; M 2-branched, forking just before midlength; Cul strong, 3-branched distally; cul-m strong; Cu2 simple. permianum Tillyard, 1935c; UPerm; Newcastle CM; Sydney.
triassicum Riek, 1956; UTrias; Blackstonc Fm; Ipswich.
anomala Tillyard, 1935c; UPcrm; Newcastlc CM; Sydney.

Family GRIPOPTERYGIDAE Enderlcin, 1909
Eodinotoperla Jcll \& Duncan, 1986

[duncartae]

Nymph with typical anal gill tufts, long, thin, with sinall tenth abdominal segment, with expanded femora, with long fine cerei. Adult wing with small terminal branch on Rs, with fewer erossveins. duncanae Jell \& Duncan, 1986; LCrct; Koonwarra FB; Gippsland.

Eodinotoperla duncani; adult NMVP32285, x6 (right); nymph NMVP27040, $\times 6$ (far right); line drawing from Jell \& Duncan, 1986, fig. 15A.

Stenoperlidium permianum; B77; 22.5mm long. Line drawing (2nd above) of Tillyard, 1935b, text-fig. 1. Nymph, AMF40701 (3rd above); $x 4$.

Austroidelia perplexa, AMF39179, 17 mm long. Line drawing (above) from Rick, 1954e, fig. 1.

Mesacridites clongata; AMF30970: 55 mm long. Line drawing (above) from Rick, 1954e, fig.2.

Mesorthopteron locustoides; GSQ172; 7 mm long. Line drawings (right) from Tillyard, 1916, pl. 2, figs 5, 6 .

Order PROTORTHOPTERA

Family IDELIIDAE Zalessky, 1929
Austroidelia Riek, 1954c [perplexa]
Forewing: Sc with numerous anterior branehes; Rs arising near base; M forked before origin of Rs; M 3-branched: M3+4 simple; Cu 1 sigmoidally curved near base, with many peetinate branehes posteriorly, of which proximal 3 or 4 do not reach wing margin; Cu2 straight, simple; anals short, straight. perplexa Riek, 1954c; MTrias; Hawkesbury Sst; Sydney.
Mesacridites Rick, 1954c [elongata]
Forewing: Costal area only slightly expanded; Se short, ending well before apex; R1 simple; Rs with numerous peetinate branches.
clongata Rick, 1954c; MTrias; Hawkesbury Sst; Sydney.

Family MESORTHOPTERIDAE Tillyard, 1916
Mesorthopteron Tillyard, 1916 [locustoides] Forewing: narrow, densely veined, weakly thickened. forming weak tegmen; Se strong, straight, sending series of oblique cross veins into costal space; costal space wide; R strong, parallel to Sc, giving off Rs: M weaker, giving off 3 branehes before origin of Rs, with branches running forward from main stem; Cu 2 -branched. Hindwing: not thickened, with less dense venation; Cu unbranehed; A1 and A2 present.
locustoides Tillyard. 1916; UTrias; Blackstone Fm; Ipswich.

Order BLATTARIA (cockroaches)

Family MESOBLATTINIDAE Handlirsch, 1906
Austroblattula Tillyard, 1919c [ipsviciensis] Tegmen; small; Se fused with R basally, straight behind humeral area; R curved basally, straight for most of its length, curving forward distally; anal area very broad; anal veins apparently unforked. ipsviciensis Tillyard, 1919c; UTrias;
Blackstone Fm; Ipswich.

Samaroblatta Tillyard, 1919c |reticulata]
Tegmen: with wide humeral area, as long as clavus; Sc simple, strong, with or without weaker branch onto humeral area; R sigmoidally curved; anal area well defined; forkings of A, if any, as terminal twiggings.
reticulata Tillyard, 1919c; UTrias; Blackstone Fm; Ipswich.
triassica Tillyard, 1919c; UTrias; Blackstonc Fm; Ipswich.
jonesi Tillyard, 1919c: UTrias; Blackstone Fm; Ipswich.
blatteloides Tillyard, 1919c; UTrias; Blackstone Fm; Ipswich.
intercalata Tillyard, 1919c; UTrias;
Blackstone Fin; lpswich.
Triassoblatta Tillyard, 1919c [typica] Tegmen: Se reduced; R strongly developed, sending numerous veinlets across the costal area, almost reaching apex; M dividing diehotomously and often; Cu similarly branched, curved posteriorly; Y -vein on clavus.
typica Tillyard, 1919c; UTrias; Blackstone Fm; Ipswich.
insignita Tillyard, 1919c; UTrias; Blackstonc Fm; Ipswich.
intermedia Tillyard, 1919c; UTrias; Blackstone Fm; Ipswich.
tasmanica Rick, 1962; Trias; New Town Fm; Hobart, Tas.
jonesi Tillyard, 1919c; UTrias; Blackstonc Fm; Ipswich.
denmeadi Tillyard, 1937; MTrias; Mt Crosby Fm; Ipswich.

Austroblattula ipsviciensis; GSQl105; 7.5 mm long. Line drawing (left) of Tillyard, 1919c, text-fig. 39.

Samaroblatta reticulata; GSQ1155; 10.5 mm long. Line drawing (above) of Tillyard, 1919e, text-fig. 34.

Triassoblata typica; GSQ1180; 11.5 mm long. Linc drawing (above) of Tillyard, 1919e, text-fig. 31.

Triassoblatta jonesi: UQC 1861; 7 mm long.

Samaroblatta reticulata; GSQ114: 12 mm long.

Methana? sp., nymph, NMVP 102532 (below left), x6; wings NMVP27045 (above). x5; incomplete adult NMVP10323! (below right), $x 6$.

Family MYLACRIDAE
Austromylacrites Tillyard, 1916 [latus] Forewing: broadly oval; numerous main veins diverging from base; all veins dichotomously branched: no cross veins.
latus Tillyard, 1916; UTrias; Blackstone Fm; Ipswich.

Austromylacrites latus, GSQ18; 11 mm long. Linc drawing (above) from Tillyard, 1916, pl. 2, fig. 1.

Family BLATTIDAE Stephens, 1829
Methana Stãl, 1877
Wing with long costal cell more than half wing length: Sc simple; clavus with markedly curved margin.
Methana? sp. Jell \& Duncan. 1986; LCret; Koonwarra FB; Gippsland.

Family INCERTAE SEDIS

Notoblattites Tillyard, 1916 [subcostalis] Tegmen: large, broad, oval: Se strong and almost to wing tip; costal space broad, with simple or onec-branched cross veins; costal border slightly convex; R very strong, parallel to $\mathrm{Se} ; \mathrm{R}$ with 3 posterior branches. posterior one unbranched, second 3-branehed, anterior one 2-branched; M 4-branched. subcostalis Tillyard, 1916; MTrias; Ashfield Fm; Sydney.
wianamattensis Tillyard, 1918b; MTrias; Ashfield Fim; Sydncy. mitchelli Tillyard, 1918b; MTrias; Ashfield Fm; Sydncy.

Notoblattites wianamattensis;
AMF39324; 28 mm long (right). Line drawing (right above) from Tillyard, 1918b, text-fig. 8.

Notoblattites subcostalis; GSQ124a; 46 mm long. Line drawing (left) of Tillyard, 1916, pl. 6 , fig. 1 [specimen obviously damaged after it had been drawn].

Order ISOPTERA(termites)

Family MASTOTERMITIDAE Desneux, 1904
Blattotermes Rick, 1952b [neoxenus]
Forewing: arehedictyon strongly developed; Se reduced, very short; M parallel to R, forking irregularly only in apical third: Cul with many peetinate branches, the basal one being further branched.
neoxenus Rick, 1952b; Palacocene; Redbank Plains Fm; lpswich.

Blattotermes neoxenus; UQF10431; 24mm long. Lime drawing from Riek, 1952b, fig. 1.

Order PROTELYTROPTERA

Family PROTOCOLEIDAE Tillyard, 1924
Austrelytron Kukalová, 1966 [tillvardi] Forewing: small densely granulose, with isolated pointed tubereles in rows on the veins; costal expansion circular but not prominent: tapering from midlength: Se with 2 or more parallel branches finishing well before apex: R sending several irregular branehes towards Sc; Rs distinet, originating after midlength of wing; CuP long. coneave forward: 3 unbranched anal veins; cross veins few, simple.
tillyardi Kukalová, 1966; UPerm; Newcastle CM; Sydney.
Phyllelytron Kukalová, 1966 [folium] Forewing: tegminous, dark, densely granulose; proximal costal expansion circular, strongly projecting: tubercles distinct in anal area; apex curved back, only slightly prolonged, pointed; main veins not parallel; branehes of R, M and CuA usually indistinet; Se with 2 or more long branehes with numerous veinlets; R with a series of weak irregular anterior branches; CuP long, branched; 4-5 anal veins broad, some direeted anteriorly.
folium Kukalová, 1966; UPerm; Newcastle CM; Sydncy.
petalon Kukalová, 1966; UPerm; Neweastle CM; Sydney.
granulatum Kukalová, 1966; UPerm;
Newcastle CM: Sydney.
melinum Kukalová, 1966; UPerm; Neweastlc CM; Sydney.
Protocoleus Tillyard, 1924 [mitchelli]
Forewing: tegminous, darkly pigmented, eovered by flat regularly arranged tubereles (not on veins) and fine granules; apieal part prolonged and tapering; main veins with almost parallel branches; Se with several parallel branches almost to apex; R with series of long branches towards Sc: Rs similar to other branehes of $\mathrm{R} ; \mathrm{M}$ and Cu with variable numbers of irregular branches; CuP long, branehed; 5 anal veins; cross veins numerous and regular. mitchelli Tillyard, 1924; LPerm; Neweastle CM; Sydncy.

Austroelytron tillyardi; BMIn45525; 11 mm long. Line drawing (above) of Kukalova, 1966, fig.5.

Plyllelvtron folium; BMIn45364; 23mm long. Line drawing (above) of Kukalova, 1966, fig. I

Protocoleus mitchelli; AMF41710;21.5mm long (left). Line drawing of Tillyard, 1924, text-fig. 3.

Dermelytron conservativum; BMNHIn45725;
7.2 mm long. Line drawing (above) of Kukalova, 1966, text-fig. 11.

Elytrathrix hirsuta; BMNHIn45503; 15 mm long. Line drawing (above) of Kukalova, 1966, text-fig. 8.

Chanoselvtron gingiva; BMNHIn45493; 7.5 mm long (left). Line drawing of Kukalova, 1966, text-fig. 14.

Family DERMELYTRIDAE Kukalova, 1966
Chanoselytron Kukalová, 1966 [gingiva] Forewing: convex, thin, narrow; costal expansion large, rounded, extending beyond base of wing proximally: posterior margin slightly concave in anal area: no veins evident.
gingiva Kukalová, 1966; UPerm; Neweastle CM: Sydney.
Dermelytron Kukalová, 1966 [consenvativum]
Forewing: oval, little sclerotised; costal expansion projecting only a little; setac making a pateh in subcostal arca; apex directed posteriorly; CuP and one anal vein sometimes weakly indicated. conservativum Kukalová, 1966; UPerm; Newcastle CM: Sydney.
pigmentatum Kukalová, 1966; UPerm; Neweastle CM; Sydney.
Psychelytron Kukalová, 1966 [progressivum] Forewing: convex, thin, weakly selerotised: apex directed anteriorly; posterior margin concave distally; CuP and A short, simple, not reaching margin.
progressivum Kukalová, 1966; LPerm;
Neweastle CM: Sydney.

Psychelytron progressivum; BMNHIn45900; 8 mm long (above left). Line drawing of Kukalova, 1966, text-fig. 13.

Family PERMOPHILIDAE Tillyard, 1924
Elytrathrix Kukalová, 1966 [hirsuta]
Forewing: densely granulose, with sparse indistinct tuberclesdistinet basally; setae bordering the yard in presence of conspicuous large tubereles in costal area: costal expansion projeeting near base, with large tub- creles; main veins strong in basal $1 / 3$, absent distally.
hirsuta Kukalová, 1966; UPerm; Newcastle CM; Sydncy.

Permophilus Tillyard, 1924 [pincombei]
Forewing: surface densely granulose, with isolated indistinet tubereles; narrowed and prolonged apically; costal expansion projection; main veins strong in basal third but completely lacking in rest. pincombei Tillyard, 1924; UPerm; Neweastle CM; Sydney.
minor Tillyard, 1924; UPerm; Neweastle CM; Sydncy.
hirtus Kukalová, 1966; UPerm; Neweastle CM; Sydncy.
capulus Kukalová, 1966; UPerm; Neweastle CM; Sydncy.
Family PERMOFULGORIDAE Tillyard, 1918b
Permofulgor Tillyard, 1918b [belmontensis] Tegmen: delicate, broadest near base, narrow, elongate; anal veins strongly developed: A1 and A2 both 2-branched from near their bases; Se less than half wing length; R, M and Cu united near base: oblique cross veins between $\mathrm{R}, \mathrm{M}, \mathrm{Cu}$ and A veins; anal Y-vein absent.
belmontensis Tillyard, 1918 b ; UPerm; Newcastle CM; Sydney.
indistinctus Tillyard, 1922a; UPcrm;
Neweastlc CM; Sydney.
Family STENELYTRIDAE Kukalova, 1966
Labidelytron Kukalová-Pek, 1988 [Stenelytron enervatum Kukalová, 1966]
[replacement name for Stenelytron Kukalova]
Forewing: costal expansion subeireular: setae forming pateh in subeostal area: apex direeted anteriorly; Se short not reaching margin; subeostal area broad; Rs originating beyond midlength, simple, weak; CuA short; CuP slightly coneave forward; anal veins broad, $3-5$, simple or forked.
enervatum (Kukalová, 1966); UPerm; Neweastle CM; Sydney.
Xenelytron Kukalová, 1966 [ligula] Forewing: almost flat; costal expansion large, semieircular: R1 directed towards apex; Rs originating late, weak; M elose to Cu , simple or forked; Cu long; 3-5 strong anal veins, simple or forked.
ligula Kukalová, 1966; UPerm; Neweastle CM; Sydney.

Xenelytron ligula; BMN1Hin45526; 11.5mm long (right). Line drawing of Kukalova, 1966, text-fig. 10.

Permophilus pincombei; AMF19779; 21.5 mm long. Line drawing (above) of Tillyard, 1924, text-fig. la.

Permofulgor belmomensis; AMF41758; 9.5 mm long. Line drawing (above) of Tillyard, 1918b, text-fig. 3.

Labidelytron enervatum; BMNHIn45958; 14mm long. Line drawing (above) of Kukalova, 1966. text-fig. 9 .

Elcanopsis sydneiensis; MMF15455; 7mm long. Line drawing of Tillyard, 1918c, text-fig. 1.

Mesogryllacris giganteus; UQC1920; 60 mm long. Line drawing (right) of Rick, 1955, fig. 31.

Proparagryllacris crassifemur; AMF39251, x3. Linc drawing (right) of Riek, 1956, text-fig. 2.

Neohagla sinuata; UQC2216; x2.

Order ORTHOPTERA (grasshoppers, crickets)

Family ELCANIDAE Handlirsch, 1906

Elcanopsis Tillyard, 1918c [sydneiensis] Sc closer to C distally than to R ; wing with brown pigment along costal space; Rs with few branehes wide apart; cross veins not numerous, wide apart. sydneiensis Tillyard, 191 Se ; MTrias; Hawkesbury Sst; Sydney.

Family PROPARAGRYLLACRIDIDAE Riek, 1956
MesogryHacris Rick, 1955 [gigantens]
Forewing: costal margin expanded at base; C strong, 0.25 ing length: costal space with a number of costal veinlets; RI with serics of short branches to wing margin beyond Sc: Rs with series of pectinate branches over apical half; M 2-branched. forking in basal half of wing, not touching Rs; Cu 2 -branched, not fused with posterior branch of $\mathrm{M} ; \mathrm{Cu}$ forking at same level as M.
giganteus Riek, 1955; UTrias; Mt Crosby Fm; Ipswich.
Proparagryllacris Riek, 1956 [crassifemur] Forewing: Sc curving forward distally, 2 anterior branchcs; M arising from R close to base; stem of M fused with upper branch of Cu ; M forking distally after separating from $\mathrm{Cu} ; \mathrm{M}$ and Cu both 2-branched. crassifemur Riek, 1956; UTrias; Blackstone Fm; lpswich.

Family HAGLIDAE Handlirsch, 1906b
Neohagla Rick, 1955 [simuata]
Forcwing: costal spacc expanded over basal half; Sc with oblique veinlets to margin between which are many cross veins: RI almost parallel to Sc , with 2 or 3 obliquc anterior branchcs towing margin; Rs diverging rapidly from $\mathrm{R} 1 ; \mathrm{M} 3+4$ and Cu fusing only after origin of CuA2; rl-rs sinuous.
sinuata Riek, 1955; UTrias; MtCrosby Fm; lpswich.

Prohagla Rick, 1954c [superba]
Forcwing: C with numerous weak branches in expanded base of costal space; Sc extending towards apex with numerous anterior branehes: Rs arising near middle, with a few pectinate branches; M 3-branched, forking early; M3+4 fused to CuA for short distance; M1 not sigmoidally curved; CuAl multibranched; CuP arched away from CuA2. Hindwing: costal space narrower; no distinct costal vein; M 3-branched; m-cu present; Cu and anals branching from basc.
superba Riek, 1954c; MTrias; Hawkesbury Sst; Sydney.
imperfecta Rick, 1955; UTrias; Mt Crosby Fm; Ipswich.

Family LOCUSTOPSEIDAE Handlirsch, 1906
Triassolocusta Tillyard, 1922b [leptoptera] Forewing: very long and narrow; Se less than half costal length, with shorter anterior branch: Rs 4-branched in pectinate series; M 3-branched from about level of origin of Rs; M3+4 forked distally; M5 short, connecting to Cul; rs-m near base of Rs.
Ieptoptera Tillyard, 1922b; UTrias; Blackstone Fm; Ipswich.

Family GRYLLACRIDIDAE Stål, 1874
Xenogryllacris Riek, 1955 [reductus] Forcwing: costal space narrow, very slightly expanded near base; anastomosing n ctwork of cross veins between Sc and margin; Rs and M fused basally; M unbranehed, arising from Rs near its first branching: CuA 2-branehed; CuP straight. reductus Riek, 1955; UTrias; Mt Crosby Fm; Ipswich.

Xenogryllacris reductus; UQC2214; x1.5. Line drawing (above) of Rick, 1955, fig. 32.

Neohagla sinuata. Line drawings of Rick, 1955, figs 26-30.

Prohagla superba; AMF41290 (hindwing); 38mm long. Line drawings (above) of Rick, 1954e, text-figs. 3 \& 4.

Triassolocusta leptoptera; GSQ199; 21 mm long. Line drawing (above left) of Tillyard, 1922b, text-fig. 74.

Gryllacridoid indet., NMVP32281, x3 (left); Tridactylid indet., NMVP103232, x6 (lower right).

Xenopterum crosbyi; UQC2066; 13 mm long. Line drawing (above) of Rick, 1955, fig. 34.

Triassomantis pygmaeus; GSQ186a; 10 mm long. Line drawing (above) of Tillyard, 1922b, text-fig. 73.

Gryllacridoid? indet.
Crumpled adult. Costal area markedly expanded; C, Se and R parallel; C-Se space pigmented; seattered crossveins over most of the wing
Gryllaeridoid? indet. Jcll \& Duncan. 1985; LCret; Koonwarra FB; Gippsland.

Family TRIDACTYLIDAE Brunner, 1882

 Tridactylid indet.Head large, with vaulted upper area; cye rounded, moderately sized; antenna short, inserted elose to anterior margin of head, with most segments longer than wide; pronotum as long as head. Foreleg with tibia not obviously expanded; tarsus with basal artiele shorter than iniddle. Middle leg with tibia not expanded, with tarsus 2 -scgmented, with first segment long. Hind leg with markedly expanded femur; tibia long, slender, with long ventral terminal spurs.
tridactylid indet. ; LCret; Koonwarra FB; Gippsland.

Family TRIASSOMANTEIDAE Tillyard, 1922

Xenopterum Rick, 1955 [crosbyi]

Forewing: eurved sigmoidally almost to apex; M1+2 separating from Rs before Rs gives rise to the anterior pectinate branches; M3+4 simple or branched near margin; CuA 1 and 2 series of close spaced, parallel branches, rarely branched near margin: CuA 3 giving off a series of posterior pectinate branches.
erosbyi Riek, 1955; UTrias; MtCrosby Fm; 1pswich.
Triassomantis Tillyard, 1922b [pygmaeus] Forewing: costal margin straight; C short; all veinlets and cross veins parallel and oblique; Sc and RI both turn sharply forward near their apexes: Rs 4-branched; R3 straight; R2 running forward, parallel to R5; M 4-branched, all simple; Cul straight, with small terminal fork.
pygmaeus Tillyard, 1922b; UTrias; Blackstonc Fm; Ipswich.
Family TETTIGONIIDAE Krauss, 1902
Tettigoides Riek, 1952b [pectinata]
Elytron very narrow; Sc long; RS arising at midwing: M nearly parallel to R .
peetinata Rick, I952b; Palacocene; Rcdbank Plains Fm: Ipswich.

Tettigoides pectinata; UQF 10640; 32 mm long (left). Line drawing of Riek, 1952b, fig. 4

Order TITANOPTERA

Family MESOTITANIDAE Tillyard, 1925
Clatrotitan McKeown, 1937 [andersoni] [=Mesotitan scullyi Tillyard, 1925c] Forewing: broadest at midlength; precostal area apparently absent; stridulatory arca about half wing width; Rs 6-branched; M 2-branched; cubito-median Y-vein well-developed.
scullyi Tillyard, 1925c; MTrias; Hawkesbury Sst; Sydney.
tillyardi McKeown. 1937; MTrias; Hawkesbury Sst: Sydncy.
andersoni McKcown, 1937; MTrias; Hawkesbury Sst; Sydncy.
[Mesotitan is discussed above] [Rick (1954c) considered tillyardi and andersoni to be junior synonyms of scullyi]

Family UNCERTAIN (probably new)
Steinhardtia Jell \& Lambkin, 1993 [maryae] Hindwing: Large ($>40 \mathrm{~mm}$ long); primary R fork well beyond that of M; RA, RP, MA, MP, CuA, CuPI +2 and CuP3+4 all decply dichotomously forked; RA with 4 major branches, RP with 6 , MA with 8 , MP with 2. CuA with $4, \mathrm{CuPl}+2$ with 3 and $\mathrm{CuP3}+4$ with 5 ; strut from CuA to CuPl rather than $\mathrm{CuP1}+2$; cellular network between veins absent or not proserved.
maryac Jell \& Lambkin, 1993; MTrias; Esk Fm; lpswich.

Clatrotitan scully; AMF20270; 86.5 mm long

Clatrotitan scullyi; USGD310; 131 mm long.

Clatrotitan andersoni; AMF36274; 138mm long.Line drawing (above left) of McKeown, 1937, fig. 3.

Order PHASMATODEA (stick-insects)

Family AEROPLANIDAE Tillyard, 1918b
Aeroplana Tillyard, 1918b [mirabilis] Wings very long, narrow; parallel veins strong, elose together: Se weak; R 2-branehed, strong: Rs arising near base by double root; M 7-branehed; R + M fused at base; Cul and Cu 2 arising near base and diverging: Al in front of anal field with irregular veining. Forewing: M forking at same level as first origin of Rs; anterior branch giving 3 branehes diehotomously: posterior branehes into 3 , middle one dividing again. Hindwing: anterior branch of M 2-branehed distally: posterior braneh dividing early then anterior of these dividing into 3 .
mirabilis Tillyard, 1918b; UTrias: Blackstone Fin; lpswich.

Aeroplana mirabilis; GSQ1126; 41.5mm long. Line drawing of Tillyard, 1918b, pl.44, fig. 12.

Order THYSANOPTERA (thrips)

Family LOPIHIONEURIDAE Tillyard, 1921
Austrocypha Tillyard, 1935a [abrupta]
Forewing: clavus well-developed, wedge-shaped; Cu 2 running straight into margin distally: Se absent: costal area wide; RI curved forward distally; Rs, M and CuI arising elose together but independently: Cul and Cn 2 conneeted by a basal piece.
abrupta Tillyard, 1935a; UPerm; Newcastle CM; Sydncy.
baretti Tillyard, 1935a; UPerm; Newcastle CM; Sydncy.
Lophiocypha Tillyard, 1935a [permiana]
Forewing: Cul unbranehed, signooidal: M
2-branehed; elavus well-developed, with A1 present; distinct break in margin at its end on Cu2.
permiana Tillyard, 1935a; UPerm; Neweastle CM; Sydncy.
stanleyi Tillyard, 1935a; UPern; Neweastle CM; Sydncy.
thysanelta Tillyard, 1935a; UPerm; Neweastle CM; Sydncy.
maxima Davis, 1942; UPerm; Neweastle CM; Sydncy.
Lophioneura Tillyard, 1921b [ustulata]
Forewing: small, elongate, oval. 3 times as long as

Austrocypha abrupta; AMF39809: 2.6 mm long. Line drawing (above) of fore and hindwings from Tillyard, 1935a, text-fig. 10. wide; R and Cu l high sharp strong ridges; M and Cul fused with R basally: R1 almost straight; Se and RI parallel; Rs weak, 2-branched; M 2-branched; CuI 2-branched, anterior braneh curved fonvard then back distally.
ustulata Tillyard, 192 1b; UPerm; Neweastle CM; Sydncy.
angusta Tillyard, 1935a; UPerm; Neweastle CM; Sydncy.
conjuncta Tillyard, 1926a; UPerm; Newcastle CM; Sydncy.

\qquad
\qquad

Lophioncura ustulata; AMF39344; 5.7mm long. Line drawing (above) of Tillyard, 1921, text-fig. 3.

Edgariekia una; NMVP103242; body 2 mm long. Wing venation (above right) of Jell \& Duncan, 1986, fig. 18C.

Zoropsocus delicatulus; BMNHln46399; 2.5 mm long (left). Linc drawing (above) of Tillyard, 1935a, text-fig. 6.

Undacypha Vishniakova, 1981 [fumida]
[=Edgarickia Jell \& Duncan, 1986; type una]
R, M and CuA with common stem; Rs and M 2-branched; CuA unforked, reaching posterior margin at marked break in smooth marginal curve but CuP marking off pigmented clavus; A very wcak in clavus.
una Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.

Zoropsocus Tillyard, 1935a [delicatulus] Wings narrow at base; sides straight; apcx rounded; Sc short; R1 simple: Rs 2-branched, finishing before apex; ptcrostigma chitiniscd, covering both R1 and R2+3.
delicatulus Tillyard, 1935a; UPerm; Newcastle CM; Sydney.
stanleyi Davis, 1942; UPerm; Newcastle CM; Sydney.

Order PSOCOPTERA (psocids, booklice)

Family PSOCIDIIDAE Tillyard, 1926
Austropsocidium Tillyard, 1935a [pincombei] Forewing: elongate, oval; C gently curved; apex well rounded; Sc ending on R1; R well removed from C; Rs 2- or 3-branched, branches short; M 4-branched; $\mathrm{r}-\mathrm{m}$ prcsent; Cu arising just below M , with long flat fork not connceted to $\mathrm{M} ; \mathrm{Cu} 2$ straight, weak, bounding small clavus with 2 veins; A1 straight, close to Cu 2 ; A2 slightly sigmoidal.
pincombei Tillyard, 1935a; UPerm; Newcastle CM; Sydney.
stigmaticum Tillyard, 1935a; UPerm; Newcastle CM; Sydney.

Austropsocidium pincombei; AMF40318; 8 mm long (below). Linc drawings (abve) of forc and hind wings of Tillyard, 1935a, text-figs $1 \mathrm{~A}, 1 \mathrm{~B}$.

Megapsocidium Tillyard, 1935a [australe]
Forewing: R1 and Rs connected by cross vein below the fork of RI: Rs forking at this cross vein and again distally on upper branch; M1+2 3-branched; $\mathrm{M} 3+4$ unbranched.
australe Tillyard, 1935a; UPerm; Newcastle CM; Sydney.

Megapsocidium australe; BMNHln46396; 6mm long. Linc drawing (above) of Tillyard, 1935a, text-fig. 3

Stenopsocidium elongatum; BMNHIn46397; 6.5 mm long. Line drawing (below) of Tillyard, 1935a, text-fig. 4.

Zygopsocus permianus; BMNHIn46398; 4.7 mm long (below). Line drawing (above) of Tillyard, 1935a, text-fig. 5.

Stenopsocidium Tillyard, 1935a [elongatum]
Wings narrow, elongate-oval: C nearly straight to end of R1; apex well rounded; Se ending on R1 with branch veinlet to C also; R1 simple; Rs 2-branched; M 5-branched in forewing, 4 in hindwing; Cu with long flat fork, not connected with M at all; Cu 2 faint; Al strong, nearly straight.
elongatum Tillyard, 1935a; UPerm; Newcastle CM; Sydney.
Family ZYGOPSOCIDAE Tillyard, 1935a Zygopsocus Tillyard, 1935a [permianus] Forewing: well rounded; Sc ending on R1 just before midlength: Rs arising near base; i-r beneath end of Se ; Rs forking just below this cross vein, with posterior branch again dividing into 3 ; M arising elose to base; r-m present; M curving back sigmoidally distally, branching; Cu separate from M; Cul ending in strong posterior curve; Cu 2 and Al forming Y -vein finishing at margin near Cul; A2 present; base of wing heavily chitinised; margin broadly chitinised all around.
permianus Tillyard, 1935a; UPerm; Newcastle CM; Sydney.

Order HEMIPTERA (bugs)

Family APHIDIDAE Latreille, 1802
?Triassoaphis Evans, 1956 [cubitus]
Forewing: very strong vein parallel to costal margin ineorporating all veins basally except Se ; Se terminating near midiength; Rs short; M 3-branched; Cul 2-branched; anals ineomplete.
cubitus Evans, 1956; UTrias; Mt Crosby Fm; lpswich.

Triassoaphis cubitus; UQC2235; 6 mm long. Line drawing (above) of Evans, 1956, fig. 26.

Crosaphis Evans, 1971 [anomala]

Wings broad; M basally ineorporated in same vein as R so that MI +2 and $M 3+4$ diverge separately from their common stem with Rs. CuA 2-branehed, meeting R proximally at an aeute angle. Clavus absent; anal veins lacking.
anomala Evans, 1971; UTrias; Mt Crosby Fm; Ipswich.
Family ARCHESCYTINIDAE Tillyard, 1926
Austroscytina Evans, 1943b [imperfecta] Hindwing: costal spaee narrow; R l a meets costal margin just beyond midlength; R1b not reaching apex; M 3-branehed; M and Cu have separate origins.
imperfecta Evans, 1943b; UPcrm; Newcastle CM; Sydncy.

Bekkerscytina Evans, 1958 [primitiva] Forewing: clongate, oval; costal space wide; R not parallel to costal border; Rs arises from R eloser to junction with M rather than with R1: M 3-branched (M1, M2, M3+4): Cula not angulate and longer than straight portion of Cul ; Culb neets margin distal to Cu 2 ; eu-m present; elavus small; 2 anal veins completely separate.
primitiva Evans, 1958; UPcrm; Newcastle CM; Sydncy.

Crosaphis anomala; QMF6508; 3.5 mm long. Line drawing (above) of Evans, 1971, fig. 3A.

Austroscytina imperfecta; AMF40084; 8 mm long. Lime drawing (above) of Evans, 1943b, fig. 3.

Bekkerscytina primitiva; AMF47190; 7.8 mm long. Line drawing (above) of Evans, 1958, fig. 4.

Eopsyllidium delicatulum; AMF39795; 2.8 mm long. Line drawing (right) of Davis, 1942, fig. 5

Eoscytina migdisovae; AMF47185; 9 mm long. Line drawing (above) of Evans, 1958, fig. 1.

Alotrifidus interruptus; UQC 347 ; 5 mm long. Line drawing (right) of Evans, 1956, fig. 16D.

Eopsyllidium Davis, 1942 [delicatulum] Forewing: very small; Se absent; R anteriorly convex before junction with M; Rla mormal to R1b, running aeross base of well-developed ptcrostigma; Rs simple.
delicatulum Davis, 1942; UPerm; Newcastle CM; Sydney.

Eoscytina Evans, 1958 [migdisovae]
Forewing: expands distally; \mathbb{R} parallels costal margin: Rs arises approx. midway between junction with M and R1 fork; Cul steeply bent at its point of apposition to $\mathrm{R}+\mathrm{M}$; Cul a angulate, joined to M by eross vein; Culb meets margin distant from Cu 2 ; clavus small; anal veins orm a Y-vein.
migdisovac Evans, 1958; UPerm; Neweastle CM; Sydney.
incompleta Evans, 1958; UPerm; Neweastle CM; Sydney.

Family CERCOPIDAE Westwood, 1838 Alotrifidus Evans, 1956 [interruptus] Costal margin arehed; eostal space wide; Rs arising from R nearer to the apex of the tegmen than its base; M and Cul a single vein proximally. interruptus Evans, 1956; UTrias; Mt Crosby Fm; Ipswich.

Triassoscarta Tillyard, 1919d [subcostalis] Forewing: R unbranched; long serics of transverse costal veinlets; M and Cu arising together by short stem; A2 finishing as distant from A1 as Cu2. subcostalis Tillyard, 1919d; UTrias; Blackstone Fm; Ipswich.

Triassoscarta subcostalis; GSQI116a; 8mm long. Line drawing (left) of Tillyard, 1919d, text-fig. 8.

Trifidella Evans, 1956 [perfecta]

Forewing: surface rugose; serics of transverse accessory veins between R and C; costal margin nt arched; Rs originating proximal from midlength, obliquc; M and Cul fused basally; M 2-branched, each with apical fork; cross veins $\mathrm{r}, \mathrm{r}-\mathrm{m}$ and $\mathrm{m}-\mathrm{cu}$ present.
perfecta Evans, 1956; UTrias; Mt Crosby Fm; Ipswich.

Trifidella perfecta; UQC945; 7mm long. Linc drawing (left) of Evans, 1956, fig. 16C.

Tychticoloides belmontensis; AMF50110; 7.2 mm long. Line drawing (above) of Evans, 1963, fig. 4.

Chiliocycla scolopoides; GSQI158a; 6.4 mm long. Line drawing (right) of Tillyard, 1919d, text-fig. 2.

Mesoscytina affinis; GSQI235; 6 mm long. Line drawing (above) of Tillyard, 1919d. text-fig. 6

Eurymelidium australe; GSQI248a; 5 mm long. Line drawing (above) of Tillyard, 1919d, text-fig.

Family CHILIOCYCLIDAE Evans, 1956
Chiliocycla Tillyard, 1919d [scolopoides] Forewing: basal 0.6 of wing with strong seulpture of flat circular tubereles; R $4+5$ arising a little before half length; r-m above median cell; M 3-branehed dichotomously; M1+2 joined to M3 by eross vein; Cul strong with distal fork: a eross vein joins Cula to M $3+4$ behind median cell.
scolopoides Tillyard, 1919d; UTrias; Mt Crosby and Blackstone Fm; Ipswich.
Mesoscytina Tillyard, 1919d [australis] Forewing: Se waved; R gives off first branch to costal margin 1/3 length from apex, then divided into 4 short branches; M branched at midlength; 2 crossveins from $R^{4}+5$ and $M 1+2$; cross veins between branches of $\mathrm{M} ; \mathrm{Cu} 1$ branched distally; Cu 2 strong, straight.
australis Tillyard, 1919d; UTrias; Blackstone Fm: Ipswich.
affinis Tillyard, 1919d; UTrias; Blackstone Fm: Ipswich.

Mesoscytina australis; GSQII 12a; wing venation from Tillyard, 1919d, text-fig. 5.

Family CICADELLIDAE Latreille, 1802
Eurymelidium Tillyard, 1919d [australe] Forewing: Se close to costal margin; R, M, Cu basally fused: R giving 1 costal veinlet before $R s$ then 2 more before apex; Rs incorporated with M1+2 in part; M branches about midlength of median eell and becomes stronger beyond the cell; Cul forked distally: A1 wavy; A2 encloses anal angle.
australe Tillyard, 1919d; UTrias; Blackstone Fm, Ipswich.

Mesothymbris Evans, 1956 [perkinsi]
Forewing: small posterior expansion distally; apex not evenly rounded; sides not parallel; R1 4- or more branched; Rs simple; MI +2 straight. parallel to margin; M3+4 curving sharply towards m-cu. perkinsi Evans, 1956; UTrias; MtCrosby Fm; lpswich.
woodwardi Evans, 1956; UTrias; MtCrosby Fm; Ipswich.

Austroscarites gen. nov. [=Scarites Hamilton, 1992 not Fabricius, [femoratus]
Head narrower than pronotum; frons large, inflated, with indications laterally of musele impressions; elypellus short, broad; lora long. upper edge poorly defined but probably not reaching antennal pits. Antennac small, slender, set near frons well removed from eyes. Hind coxae large, transverse, not jointed by a mesal peg. Middle and hind femora of similar length, fore femur distinetly shorter. Hind tibia slender. 50% longer than femur. Abdomen robust; laterotergites wider than long; terminal 3 segments much narrower than basal segments
femoratus Hamilton, 1992; LCret; Koonwarra FB; Gippsland.

Triassocotis Evans, 1956 [australis]
Tegmen: long, narrow; R1 4-branched; Rs simple; M 4 -branched; enelosed eell between M1 +2 and $\mathrm{M} 3+4$. australis Evans, 1956; UTrias; MtCrosby Fm; lpswich.
stricta Evans, 1961; UTrias; MtCrosby Fm; lpswich.
amplicata Evans, 1961; UTrias; MtCrosby Fm; lpswich.

Triassocotis australis; UQC1554; 11 mm long (right). Line drawing of Evans, 1956, fig. 5L.

Mesothymbris perkinsi; UQC889; 7 mm long (left). Line drawing of Evans, 1956, fig. 5 d .

Austroscarites
femoratus;
MUGD3578; 5nm long. Line drawing (right) of Jell \& Duncan, 1986, fig. 28 C .

Austroscarites femoratus; NMVP32283; 5 mm long (right). Line drawing of
 20D.

Homopterulım jelli; NMVP103103; x9. Line drawing (above) of Hamilton, 1992, fig.6.

Ligavena gracilipes; NMVP103350; 11 mm long.

Triassojassus proavitus; GSQI191a; 5.8 mm long (left). Line drawing of Tillyard, 1919d, text-fig. 18.

Triassojassus Tillyard, 1919d [proavitus] Tegmen: costal margin arehed basally; Se absent; Cul leaving $\mathrm{R}+\mathrm{M}$ near base; $\mathrm{R}+\mathrm{M}$ fused for more than 0.25 length; $R 3$-branched; eross vein between $\mathrm{R} 2+3$ and $\mathrm{R} 4+5$ closing radial cell; $\mathrm{r}-\mathrm{m}$ weak; M 3-branched; small median cell enclosed; crossveins between branches of M and Cu forming 4 cells; 3 eross veins m -eu: A1 wavy; A2 enclosing anal angle. proavitus Tillyard, 1919d; UTrias; Blackstone Fm; Ipswich.

Family JASCOPIDAE Hamilton, 1971
Homopterulum Hamilton, 1992 [Cercopidium signoretti Westwood, 1854]
Head narrower than pronotum; frons large, inflated, with indications laterally of musele impressions; elypellus short, broad; lora long. upper edge poorly defined but probably not reaching antennal pits. Antennae small, slender, set near frons well removed from eyes. Hind coxae large, transverse, not jointed by a mesal peg. Middle and lind femora of similar length, fore fenmur distinetly shorter. Hind tibia slender, 50% longer than femur. Abdomen robust; laterotergites wider than long; terminal 3 segments much narrower than basal segments
jelli Hamilton, I992; LCret; Koonwarra FB; Gippsland.
Family LIGAVENIDAE Hamilton, 1992
Ligavena Hamilton, 1992 [gracilipes]
Head much narrower than pronotum; frons with distinet musele impressions; elypellus broad basally; lora not reaching antennal pits. Pronotum with divergent lateral margins. Tegmina with complex, weak, apical venation defining numerous apical cells. Hind wings nearly as long as tegmina. Abdomen large; laterotergites about as broad as long; pregenital sternite medially excavated; ovipositor slender, apex slightly exceding pygofers. gracilipes Hamilton, I992; LCret; Koonwarra FB; Gippsland.
prosboloides Tillyard, 1922b; UTrias;
Blackstonc Fm; Ipswich. dunstani Tillyard, 1922b; UTrias; Blackstone Fm; Ipswich.

Family CIXIIDAE Spinola, 1838

Mesocixiodes Tillyard, 1922b [termioneura] Forewing: R1 unbranched; R2+3 sends a scrics of veinlets to the costa distally; costal area broad; median cell complcte, small, placed distally; Cul with small distal fork.
termioneura Tillyard, 1922b; UTrias;
Blackstone Fm; Ipswich.
orthoclada Tillyard, 1922b; UTrias; Blackstone Fm; Ipswich.
brachyclada Tillyard, 1922b; UTrias; Blackstone Fm; Ipswich.

Mesocixius Tillyard, 1919d [triassicus]
Forewing: widcst ncar base; R divides
dichotomously twice; R1 conneeted to costal margin by 2 veinlets; $R 2+3$ branches into 2 simple veins; M 6 -branehed; M $3+44$-branehed; elosed median eell defined by strong m -cu: Cul forked before midlength; erossveins present between R1-R2, $\mathrm{R} 4+5-\mathrm{Ml}+2, \mathrm{M}-\mathrm{Cula}$.
triassicus Tillyard, 1919d: UTrias; Blackstone Fm; Ipswich.

Triassocixius Tillyard, 1919d [australicus] Forcwing: serics of obliquc eostal veinlcts; first 2 branchings of R close together; $54+5-\mathrm{m}$ and $\mathrm{r} 3-\mathrm{r} 4+5$; M 2-branched; m-cu present.
australicus Tillyard, 1920; UTrias; Blackstone Fm; Ipswich.

Ligavena gracilipes; NMVP103350; line drawings of Hamilton, 1992, figs 9, 10.

Mesocixioides termioneura; GSQ188a; 12.5 mm long. Line drawing (above left) of Tillyard, 1922a, text-fig. 82.

Mesocixits triassicus; GSQ1215; 10 mm long. Line drawing (left) of Tillyard, 1919d, text-fig. 11.

Triassocixius australicus; GSQ1267a; 10.5 mm long. Linc drawing (left) of Tillyard, 1919d, text-fig. 12.

Dunstania pulchra; GSQI2a; 20mm long. Line drawing (right) of Tillyard. 1916, pl. 3, fig. 6.

Dunstaniopsis triassica; GSQ1107a; 31.5mm long. Line drawing (above) of Tillyard, 1918e, text-fig. 18.

Paradunstania affinis; GSQ1147; 17 mm long. Line drawing (right) of Tillyard, 1918e, text-fig. 20.

Family DUNSTANIIDAE Tillyard, 1916 Dunstania Tillyard, 1916 [pulchra]
Forewing: corium pitted all over; distinet break (node) in costal margin; RI weak, 2-branched; R1b ending well before apex; Rs at apex; 2 closed cells just beyond node in wing, one between M1+2 and M $3+4$ the other between 2 branehes of $R 1+2$ which divides then reunites.
pulchra Tillyard, 1916; UTrias; Blackstone Fm; Ipswich.

Dunstaniopsis Tillyard, 1918c [triassica] Hemelytron: smooth corium; membrane lightly pitted: node less prominent than in Dunstania; R1 2-branched, long, parallel; Rs simple; r-m present; M 3-branehed: Cu 1 2-branched.
triassica Tillyard, 1918c; UTrias; Blackstone Fm; lpswich.

Paradunstania Tillyard, 1918e [affinis]
Hemelytron, larger than Dunstania. Crossveins basally between M1 and lowest branch of R absent; erossveins developed not far from dividing line between R1 and R2 and between R3 and R4+5; R4 and $R 5$ unite distally; at same level M reecives a curving branch from above.
affinis Tillyard, 1918e; UTrias; Blackstonc Fm; Ipswich.

Family DYSMORPHOPTILIDAE

Handlirsch, 1906
Dysmorphoptiloides Evans, 1956 [elongata] Forewing: evenly punetate, narrow margin; costal border emarginate near apex of R1; apex narrowly rounded; R parallels costal margin and eonneeted to it by series of parallel veins: R1 3-branehed; Rs may be separate from or incorporated with R1: M 4-branehed apieally, joined basally to Cul: Cul a longer than Culb; cross veins r, r-m, m-eu may be present. elongata Evans, 1956; UTrias; Mt Crosby Fm. lpswich.
parva Evans, 1956;
UTrias; Mt Crosby Fm, lpswich.

Dysmorphoptiloides elongata; UQC686; 16 mm long. Line drawing (above) of Evans, 1956, fig. 17A.

Family EOSCARTERELLIDAE Evans, 1956
Belmontocarta Evans, 1958 [perfecta]
Forewing: rugose, expanding laterally; Se short, eurved, at base of R+M; Rla single; R1b branehed, linked to Rs by oblique eross vein; M 4-branched; Cul basally parallel with $R+M$, joined to base of M by short eross vein; Cul evenly arehed; Culb aligned with margin: $r-m$ and m-eu present. perfecta Evans, 1958; UPerm; Newcastle CM; Sydney.
Eoscarterella Evans, 1956 [media]
Forewing: rugose, expanded distally: R1 with >2 branehes; Rs arises 0.3 of distance from base; R and M fused basally; M 4-branched; Cul not fused basally with M and proximally straight; Cula arehed, longer than Culb.
media Evans, 1956; UTrias; MtCrosby Fm; Ipswich.

Belmontocarta perfecta; AMF47199; 10.5 mm long. Line drawing (above) of Evans, 1958, fig. 5.

Eoscarterella media; UQC1110; 10.5 mm long. Line drawing (left) of Evans, 1956, fig. 18C.

Eoscarteroides bryani; UQC172; 12mm long. Line drawing (above) of Evans, 1956, fig. 18A.

Mesojassus ipsviciensis; GSQ133; 6mm long. Line drawing (right) of Tillyard, 1916, pl. 2, fig. 7.

Eoscartoides Evans, 1956 [bryani]
Forewing: complete marginal border; R and M basally arched; R1 a and R Ib both forked; M 3-branched; M3+4 unbranehed; Cuslightly arehed basally, meeting Culb apically; Cula, Culb of equal length.
bryani Evans, 1956; UTrias; Mt Crosby Fm, Ipswich.

Family EURYMELIDAE Amyot \& Serville, 1843
Mesojassus Tillyard, 19 I6 [ipsviciensis] Forewing: R, M and Cu fused basally; Cul arising strongly; M arising weakly; R without longitudinal branches; 3 costal veinlets; $M I+2$ simple; closed cell formed by eross vein from $\mathrm{M} 1+2$ to $\mathrm{M} 3+4 ; \mathrm{Cu} 1$ forked distally; m-eu present; A1 wavy; A 2 eneloses anal angle.
ipsviciensis Tillyard, 1916; UTrias;Blackstone; lpswich.

Family HYLICELLIDAE Evans, 1956 Eochiliocycla Davis, 1942 [angusta] Forewing: Se weak, parallel to base of R; R1 straight, ending at a reentrant angle on costal marginat half wing length; RIb weak; Rs simple, arising from R1 just before it bifureates; M simple, arising from base of R; $2 \mathrm{rs}-\mathrm{m}$; between these a cross vein (ir) runs to $\mathrm{R} 1 \mathrm{~b} ; \mathrm{Cu}$ arises separately from M and R. forks immediately; m-eu present; Culb sigmoidal; leu erossvein joins Cu 2 to Culb : 3 strong anal veins arise separately from Cu and distally confluent.
angusta Davis, 1942; UPerm; Neweastle CM; Sydney.

Eochiliocycla angusta;
AMF39793: 5.7 mm
long.Line drawing (above left) of Davis, 1942, fig. 3.

Hylicella Evans, 1956 [colorata] [=Hylicellites Becker-Migdisova, 1962 (type Hylicella reducta Evans, 1956)]
Forcwing: M complete or reduced and with M3+4 in part incorporated with Cula; Cul with a stecp basal bend; cross veins rs-m and one between arms of M . colorata Evans, 1956; UTrias; MtCrosby Fm; Ipswich.
reducta Evans, 1956; UTrias; MtCrosby Fm; lpswich.

Family IPSVICIIDAE Tillyard, 1919d
Ipsvicia Tillyard, 1919d [jonesi]
Forcwing: rugose, pitted, narrowing apically; lacking Rs; M and Cu form single vein; Y -vcin in clavus; costal fracturc usually present from fork of $\mathrm{R}+\mathrm{Sc}$ and $\mathrm{M}+\mathrm{Cul}$ to costal margin.
jonesi Tillyard, 1919b; UTrias; Blackstone Fm; Ipswich.
maculata Tillyard, 1919d; UTrias; Blackstone Fm; Ipswich. acutipennis Tillyard, 1919d; UTrias; Blackstonc Fm; Ipswich.

Ipsviciopsis Tillyard, 1922b [elegans] like lpsvicia but with Sc as a sigmoidal vcin separate from R and joincd to it by 3 cross veins.
elegans Tillyard, 1922b; UTrias;
 Blackstonc Fm; lpswich. magna Tillyard, 1922b; UTrias; Blackstonc Fm; Ipswich.

Ipsvicia jonesi; GSQ1122a; 14.2 mm long (above). Linc drawing of Tillyard, 1919d, text-fig. 13.

Ipsviciopsis clegans; GSQ1178a; 12.5 mm long (right). Line drawing(above) of Tillyard, 1922b, text-fig. 85.

Mesogercon superbum; GSQI $169 ; 44.5 \mathrm{~mm}$ long. Line drawing (right) of Tillyard, 1922b, text-fig.

Fletcheriana triassica; forewing AMF39166 (above), 58 mm long; hindwing AMF30971 (right), 40 mm long. Line drawing (above) of Evans, 1956. fig. 21 F .

Family MESOGEREONIDAE Tillyard, 1921 Mesogereon Tillyard, 1916 [neuropunctatum] Forewing: R1 and Rs long, parallel, simple; M 4-branched; long cross vein m -cu joins M4; a closed cell above this cross vein; in the eell are remains of an archedietyon; Cul weak basally, Cula and Culb simple; Cu2 in deep groove, dividing off elavus; A1 and A2 simple: cross veins $\mathrm{c}-\mathrm{m}$ and sometimes cu-a present.
neuropunctatum Tillyard, 1916; UTrias;
Blackstone Fm; Ipswich.
superbum Tillyard, 1922b; UTrias; Blackstone Fm; Ipswich.
compressum Tillyard, 1922b; UTrias;
Blackstone Fm; lpswich.
affine Tillyard, 1922b; UTrias; Blackstone Fm; Ipswich.
shepperdi Tillyard, 1922b; UTrias; Blackstone Fm; lpswich.

Family PALAEONTINIDAE Handlirsch, 1906
Fletcheriana Evans, 1956 [triassica] Forewing: costal space wider proximally, with several oblique veinlets; nodal line thickened between Rs and M; M 4-branched; nodal line crosses M at its first fork; m -cu sinuate; r-m present; Cu 1 sharply flexed basally.
triassica Evans, 1956; UTrias; MtCrosby Fm; lpswich.

Family PARAKNIGHTIIDAE

 Evans, 1950Paraknightia Evans, 1943b [magnifica]
Pronotum with large well-developed pronotal expansions, narrowly produeed anteriorly. Forewing: Cu I proximally parallel to M and R ; C thickened; Sc short, transverse; nodal line from margin to R-M fork; R parallel to C most of way; Al and A2 parallel: rugose except smooth area close to apex.
magnifica Evans. 1943b;
UPerm; Newcastle CM; Sydney.
Family PINCOMBEIDAE
Tillyard, 1922
Pincombea Tillyard, 1922a [mirabilis]
Sc absent; R, M and Cul meeting basally: r-m present; R 2-branched; M 3-branched; Cul 2-branched. mirabilis Tillyard, 1922a;
UPerm; Newcastle CM; Sydney.

Pincombea mirabilis; AMF28464: 3mm long (riglt). Line drawing of Tillyard, 1922a, fig. 2.

Eupincombea Davis, 1942 [postica]

Hindwing: very small; Se short, near costa; R strong for basal quarter then divided into 3 namely R. M and CuI ; RI runs forward to anterior margin; Rs concave forward; $\mathrm{M}+\mathrm{Cu}$ l simple, slightly convex forward; Cu2 and A1 arise together then diverge immediately.
postica Davis, 1942; UPerm: Newcastle CM; Sydney.

Eupincombea postica; AMF39794; 2.6 mm long.
Line drawing (left) of Davis, 1942, fig. 4.

Protopincombea obscura; AMF40075; 4.2 mm long. Linc drawing (above right) of Evans, 1943b, fig. 44.

Anomaloscytina incompleta (hindwing); AMF40009; 10 mm long.

Anomaloscyina metaptery (hindwing); AMF39792; 7.3 mm long. Linc drawing of Davis, 1942, fig. 2.

Austroprosbole maculata; AMF40048; 13 mm long. Line drawing (right) of Evans, 1943b, fig. 2

Protopincombea Evans, 1943b [obscura]

Tcgmen: broad; clavus short, narrow; R parallel to costal margin; 2 cross veins from Rs to M ; m-cu present; M 3-branched; M and Cul arise from same point on R but lack common stem; anals forming Y-vein.
obscura Evans, 1943b; UPcrm; Newcastle CM; Sydney.

Family PROSBOLIDAE Handlirsch, 1906
Anomaloscytina Davis, 1942 [metapteryx] Hindwing: Sc short but distinct; R1 with an articulation at half wing length where Rs originates from it; Rla normal to R1 and weak; Rs simple, with possible crossvein to R1b; M 2-branched, connected to Cula by possible crossvcin; Cul arising from base of $\mathrm{R} ; \mathrm{Cu} 2$ connected by 1 oblique vein to base of Cul and by another to $\mathrm{A} 1 ; \mathrm{Al}+\mathrm{A} 2$ straight.
metapteryx Davis, 1942; UPcrm; Newcastle CM; Sydney.
incompleta Evans, 1943b; UPcrm; Newcastle CM; Sydney.
Austroprosbole Evans, 1943b [maculata] Forewing: long, broad, dclicate; a break in curvaturc of the costal margin occurs at R1a; costal space wide; Rs bent and in close contact with M1; M 4 -branched; clavus broad; A1 and A2 mect distally; anal margin not in alignment with rest of hind margin.
maculata Evans, 1943b; UPerın; Ncwcastle CM; Sydney.

Mesojassula Evans, 1956 [marginata] Forewing: costal margin with marked medial depression; R1a, RIb and Rs present; M unbranched; Cul has 2 equal branches; marginal vein present. marginata Evans, 1956; UTrias; Mt Crosby Fm; Ipswich.
Mitchelloneura Tillyard, 1921b [permiana] Forewing: Sc short, fused with RI, ending halfway along costal margin; R1 strong; Rs branching 0.25 of distance from apex; R3+4 joining R1; 2 cross veins from R4 to $22+3$ and $R 1 ; M$ arising from R near base, 3 -branched; M3+4 unbranehed; Cula 2-branched; r-m and m-cu present.
permiana Tillyard, 1921b; UPerm; Newcastle Fm; Sydney.
Permodiphthera Tillyard, 1926a [robusta]
Forewing: C strongly curved basally, then running fairly straight to Rla; apex well-rounded basal cell very small; Rs curved; nodal line anterior from fork in M ; Cul strongly eurved down to come close to Cu 2 .
robusta Tillyard, 1926a; UPerm; Newcastle CM; Sydney.

Mitchelloneura permiana; AMF39343; 17mm long.Line drawing (lcft) of Tillyard, 192 lb, text-fig. 1

Mesojassula marginata (part and counterpart; UQC1933; 10 mm long. Line drawing (above Ifft) of Evans, 1956, fig. 30.

Permodipthera robusta; AMF28021; 11 mm long. Line drawing (left) of Tillyard, 1926a, text-fig. 20.

Belpsylla reticulata; AMF39992; 3.8 mm long. Line drawing (right) of Evans, 1943b, fig. 42.

Family PROTOPSYLLIDIIDAE Carpenter, 1931
Belpsylla Evans, 1943b [reticulata]
Forewing: long, apically broad; R1a and R1b curve towards costa; 2 cross veins r-m; M r-branched, all straight; Cul narrowly forkcd: clavus with well-developed Y-vein.
reticulata Evans, 1943b; UPerm; Neweastle CM; Sydney.
Clavopsyllidium Davis, 1942 [minntum]
Vcry small. Forewing: Sc absent; R s arising from R at $1 / 3$ wing length; $r-m$ absent: $M+C u l$ arising from midlength of R; M 3-branched; Cula curved back, finishing closer to Culb than in most genera; Cu straight, narrow, independent of $\mathrm{Cul} ; \mathrm{Al}+\mathrm{A} 2$ with common origin, diverging then mecting again beforc margin.
minutum Davis, 1942; UPerm; Newcastle CM; Sydncy.

Clavopsyllidium minutum; AMF39800; 2.4 mm long. Linc drawing (abovc) of Davis, 1942, fig. 9.

Permopsyllidium mitchelli; AMF28020; 3.7 mm long. Line drawing (right) of Tillyard, 1926a, text-fig. 25.

Permopsyllidium Tillyard, 1926a [mitchelli]
Forcwing: Sc absent; $\mathrm{R}+\mathrm{M}$ scarcely arched; R 2-branched; Rs relatively short, curved; M 3-branched; r-m present; m-cu abscnt.
mitchelli Tillyard, 1926a; UPerm; Neweastle CM; Sydney.
affine Tillyard, 1926a; UPerm; Neweastle CM; Sydney.

Permopsyllidops stanleyi; AMF39799; 3mm long (right). Line drawing (above) of Davis, 1942, fig. 9

Permopsyllidops Davis, 1942 [stanleyi] Forcwing: Sc absent; R divides at $1 / 3$ wing length; Rla normal to R1; Rs simple but drawn out medially at $\mathrm{r}-\mathrm{m} ; \mathrm{M}+\mathrm{Cu}$ arising at base of R ; weak vein running from fork of M and Cul to R1 (original $\mathrm{M}+\mathrm{Cul}$); M forked before $\mathrm{m}-\mathrm{cu}$; Cula curved back; Cu2 absent; A1 short, posteriorly dirceted.
stanleyi Davis, 1942; UPerm; Newcastle CM; Sydney.

Permopsylloides Evans, 1943b [insolita] Tegmen: uniform width; costal space widc; R1a meeting eostal margin beyond midlength; Rs eurved forward; clavus wide, long; anal vcins form a Y-vcin.
insolita Evans, 1943b; UPerm; Newcastle CM; Sydney.

Permothea Tillyard, 1926a [latipennis]
Tegmen: pterostigmatie area flatly triangular, strongly chitinised; Rs curved ncar base, then straight; r-m prcsent; m-cu absent; M 3-branehcd; Cul curving forward to touch M near basc, 2-branched.
latipennis Tillyard, 1926a; UPerm; Newcastlc CM; Sydney.

Permothea latipennis; AMF28022; 1.5mm long (right). Linc drawing (above) of Tillyard, 1926a, text-fig. 27.

Permopsylloides insolita; AMF40727; 4mm long (part and counterpart). Line drawing (above) of Evans, 1943b, fig. 46.

Permotheella scytinopteroides; AMF39797; 3.8mm long. Line drawing (above) of Davis, 1942, fig. 7.

Protopsyllidium australe; AMF 19790; 2.8 mm long. Line drawing (right) of Tillyard, 1926a, text-fig. 24.

Protopsyllops minuta; AMF40005; 3.1 mm long. Line drawing (right) of Evans, 1943b, fig. 37.

Permotheella Davis, 1942 [scytinopteroides] Forewing: Se short, faint, parallel to base of R; pterostigma and costal margin well-developed; Rs arising adaxial to midlength, curved forward distally; $\mathrm{M}+\mathrm{Cul}$ arising at 0.16 wing length; M forking into $\mathrm{MI}+2$ which is conneeted to Rs by $\mathrm{r}-\mathrm{m}$, then dividing into $M 1, M 2$ and $M 3+4$, the latter a single sinuous vein. Cula curved; Cu 2 separating a distinct clavus with A1 and A2; A1 and A2 diverging near base, coalescing for half length.
scytinopteroides Davis, 1942; UPerm; Newcastle CM; Sydney.

Protopsyllidium Tillyard, 1926a [australe]

Tegmen: Se absent; $R+M$ arched: R straight to end of R1b; pterostigma 2.5 times as long as the oblique R1a; M and Cul 2-branched; Cu2 straight; no cross veins except a short cu-a basally.
australe Tillyard, 1926a; UPerm; Newcastle CM; Sydney.
sinuatum Davis, 1942; UPerm; Newcastle CM; Sydney.

Protopsyllops Evans, 1943b [minuta]
Tegmen: short, wide; R1 close to costal margin, unbranched; Rs long; first branehing of M close to junction of M and Cu ; M 3-branched; Culb parallel to Cu2.
minuta Evans, 1943b; UPerm; Newcastle CM; Sydney.

Psocopsyllidium Davis, 1942 [media] Forewing: Se absent; Rs from R at wing midlength; $\mathrm{M}+\mathrm{Cul}$ arising from R at 0.25 winglength; M and Cu separate early; M dividing same distance further; M1, M2 and M3+4 present; r-m between Rs and MI; Cu a curved backwards; Cu 2 and Al arising together, diverging initially, then parallel and converging gently distally; eu2-r present; A2 short. media Davis, 1942; UPerm; Newcastle CM; Sydney.

Psocoscytina Davis, 1942 [bifida]

very small. Forewing: Se short, weak, parallel to base of R; R la curving strongly forward; several

Psocopsyllidium media; AMF39796; 4.6 mm long. Line drawing (left) of Davis, 1942, fig. 6.
 obseure veinlets in pterostigmatic area between R1a and R1b; Rs arising just before midlength of wing, branching distally; $\mathrm{M}+\mathrm{Cul}$ arising together near base of R1; r-m strong; M forked just beyond r-m to M1 +2 and $\mathrm{M} 3+4$; CuI 2 -branched; Cu 2 joined to base of R by crossvein.
bifida Davis, 1942;
UPerm; Newcastle CM; Sydncy.

Psyllidella Evans, 1943b [magna]
Tegmen: broad; costal margin thickened, sinuate; R1 straight; Rs leaving R level with first fork of M . magna Evans, 1943b; UPerm; Newcastle CM; Sydney.

Psocoscytina bifida; AMF39790; 3.9mm long. Line drawing (above) of Davis, 1942, fig. 1.

Psyllidella magna; AMF40043; 5mm long. Line drawing (left) of Evans, 1943b, fig. 36.

Psyllidiana davisia; AMF40711, 3mm long. Line drawing (right) of Evans, 1943b, fig. 33.

Psyllidiana Evans, 1943b [davisia]
Tegmen: narrow: R1 and Rs straight; M 3-branched; Cula longer than basal portion of Cul .
davisia Evans, 1943b; UPerm; Neweastle CM; Sydncy.

Triassopsylla plecoides; AMF39331; 4.6mm long. Line drawing (right) of Tillyard, 1918 b , text-fig. 16

Triassopsylla Tillyard, 1918b [plecioides]
Forewing: broad; apex rounded; RI 2-branclied; Rs simple; M 3-branehed; membrane smooth. plecioides Tillyard, 1918b; MTrias; Ashfield Fm; Sydney.

Triassothea Evans, 1956 [analis]
Forewing: Rs arising from R very soon after $\mathrm{M}+\mathrm{Cu}$; M 2-branched distally; Cul 2-branehed; elavus small; single anal vein.
analis Evans, I956; UTrias; Mt Crosby Fm; Ipswich.

Triassothea analis; UQC1590; 2.8 mm long.Line drawing (above) of Evans, 1956, fig. 25F.

Tripsyllidium Evans, 1956 [wadei]
Rla meeting costal margin near midlength; Rs ending at apex: M unbranched; no cross veins; clavus small; one anal vein only.
wadei Evans, 1956; UPerm; Newcastle CM; Sydney.

Family SCYTINOPTERIDAE Handlirsch, 1906
Crosbella Evans, 1956 [elongata]
Forewing: numerous terminal accessory veins and many supplementary cross veins.
elongata Evans, 1956; UTrias; Mt Crosby Fm;

Tripsyllidium wadei; AMF30980; 3mm long. Line drawing (left) of Evans, 1956, fig. 25H.
 Ipswich.
alata Evans, 1956; UTrias; Mt Crosby Fm; Ipswich.

Crosbella elongata; UQC2125; 12 mm long. Linc
Elliptoscarta Tillyard, 1926a [ovalis]
Forewing: broadly oval with wide costal space; R1 evenly branched; Rs arises closer to branch of R1 than to origin of M; M 5-branched; Cul 3-branched; $\mathrm{m}-\mathrm{cu}$ and $\mathrm{r}-\mathrm{m}$ present.
ovalis Tillyard, 1926a; UPerm; Newcastle CM; Sydney.

Ellipsoscarta ovalis; AMF41392; 5.6mm long. Line drawing (left) of Tillyard. 1926a, text-fig. 15.

Homaloscytina plana; AMF 19783; 6.4mm long. Line drawing (right) of Tillyard, 1926a, text-fig. 14.

Mesodipthera grandis; GSQ1213; 12mm long. Line drawing (above) of Tillyard, 1919d, text-fig. 7.

Mesonirvana abrupta; UQC 1652; 9mm long (left). Line drawing (right) of Evans, 1956, fig. SE.

Homaloscytina Tillyard, 1926a [plana]
Forewing: R la almost transverse to mainstem of R1 that continues as R1b in line to margin; Rs arises well beyond midlength; apical margin bluntly rounded; pterostignia moderately long; M 4-branched: Cul 2-branehed, straight from basal eell to fork.
plana Tillyard, 1926a; UPerm; Newcastle CM: Sydney.

Mesodiphthera Tillyard, 1919d [grandis] Forewing: R branches diehotomously just before the branehing of M ; branches of R and M branehed irregularly distally; slightly impressed division of the wing in a line from end of R1 to end of elavus.
grandis Tillyard, 1919d; UTrias; Blackstone Fm; Ipswich.

Mesonirvana Evans, 1956 [abrupta]
Forewing: R1 4-branehed; M1 + M2 of equal length; $\mathrm{M} 3+4$ single vein: Cu a straight line as far as $\mathrm{m}-\mathrm{cu}$; Cula and Culb apically parallel with each other. abrupta Evans, 1956; UTrias; MtCrosby Fm; Ipswich.

Orthoscytina Tillyard, 1926 [mitchelli]
Forewing: expanding distally; apex bluntly rounded; $\mathrm{R}+\mathrm{M}$ arched above basal cell; R strong beyond cell, running forvard to costal margin; R1b with two acessory veins across long pterostigmatic area; M 3to 5 -branched; Cula with series of acessory veins running to margin towards Culb.
mitchelli Tillyard, 1926; UPerm; Neweastle CM; Sydncy.
quinquemcdia Tillyard, 1926; UPerm;
Neweastle CM; Sydney.
indistincta Tillyard, 1926; UPerm; Neweastle CM: Sydney.
subcostalis Tillyard, 1926; UPerm; Neweastle CM; Sydncy.
irregularis Tillyard, 1926; UPerm; Neweastle
CM; Sydney.
belmontensis Tillyard, 1926; UPerm;
Neweastle CM; Sydney.
obliqua Tillyard, 1926; UPerm; Neweastle CM: Sydney.
pincombci Tillyard, 1926; UPerm; Neweastle CM; Sydney.
tctraneura Tillyard, 1926; UPerm; Neweastle CM; Sydncy.

Pcrmobrachus Evans, 1943b [dubia]
Forewing: long, narrow; $\mathrm{R}, \mathrm{Rs}, \mathrm{M}$ and Cul all with subsidiary veins; Cul curved following separation from R and M; costal space extensive. dubia (Tillyard, 1926a); UPerm; Neweastle CM; Sydncy.
magnus Evans, 1943b; UPerm; Neweastle CM; Sydney.

Permoglyphis Tillyard, 1926 [belmontensis] Forewing: C strong, with prominent node; evenly rounded apically; basal tegula swollen; Se short. weak; basal cell long, narrow; faint nodal line to Cu 2 ; no strong R1a; series of pterostignatic veinlets present; Rs arising just before nodal line, distally forked; Cu 1 convex posteriorly, 2-branched; elavus triangular; A1 long, gently sigmoidally curved; A2 short, enelosing anal angle.
belmontensis Tillyard, 1926a; UPerm;
Newcastle CM; Sydncy.

Orthoscytina mitchell; AMF28026; 10mm long. Line drawing (above) of Tillyard, 1926a, text-fig. 4.

Permobrachus magnus; AMF40029; 16 mm long. Line drawing (above left) of Evans, 1943b, fig. 1.

Permoglyphis belmontensis; AMF28023; 9.4mm long. Linc drawing (left) of Tillyard, 1926a, text-fig. 19.

Stenoglyphis kimblensis; AMF41207; 36mm long; Line drawing (above) of Evans, 1947, fig. 1.

Permojassus australis; forewing AMF 19782; 6mm long (left upper): hindwing AMF19781(left lower). Line drawings (above) of Tillyard, 1926a, text-figs 2 and 3.

Permojassus Tillyard, 1926a [australis] Forewing: Se absent; RIb and pterostigmatic area short; M 4-branehed; m-eu present; Cul eurved forward elose to M basally, 2-branehed; Cu 2 straight; A1 wavy; A2 enelosing anal angle. Hindwing: costal space wide; eostal margin eonvexly rounded; M 2-branehed.
australis Tillyard, 1926a; UPerm; Newcastle CM; Sydney.
dubius Tillyard, 1926a; UPerm; Newcastle CM; Sydney.

Stenoglyphis Evans, 1947 [kimblensis]

Tegmen: long, narrow, with eireular basal lobe; M1 4-branehed; M2, M3, M4 undivided; Cul short; Cula bent; retieulate eross veins between several main veins; elavus 0.3 wing length.
kimblensis Evans, 1947; UPerm; Newcastle CM; Sydney.

Stenoscytina australiensis; AMF28027; 7.2 mm long. Line drawing (left below) of Tillyard, 1926a, text-fig. 13.

Stenoscytina Tillyard, 1926a [australiensis] Tegmen: narrow; R eurving forward to end of Rla; eosta evenly eurved from base to apex; Rs arising distally; M 4 -branehed: Cu 1 eurving down from basal cell elose to Cu 2 ; $\mathrm{r}-\mathrm{m}$ and m -eu present.
australiensis Tillyard, 1926a; UPerm;
Newcastle CM; Sydney.

Triassoscelis Evans, 1956 [anomala]
Tegmen: Rs 2-branched; R1 multibranched; M 4-branehed; enelosed cell between Rs and R1b; r-m and m -.cu present.
anomala Evans, 1956; UTrias; Mt Crosby Fm; Ipswich.

Triassoscelis anomala; UQC976; 12 mm long (counterpart - right). Line drawing (above right) of Evans, 1956, fig. 5F.

Triassoscytina incomplete; UQC1559; 10.8mm long (right). Line drawing of Evans, 1956, fig. 2 B .

Triassoscytina Evans, 1956 [incompleta]
Forewing: eomplete venation like Homaloseytina but M dividing at same distanee from wing base as origin of Rs; M dividing at same distance from wing base as origin of Rs.
incompleta Evans, 1956; UTrias; Mt Crosby Fm; Ipswich.

Triassoscytinopsis Evans, 1956 [stemulata]
Forewing: parallel-sided; R1 with 4 or more parallel branehes; Rs simple or 2-branched; M 4-branched; Cul with normal venation, with sharp proximal bend; anal veins separate for full length.
stenulata Evans, 1956; UTrias; Mt Crosby Fm; Ipswich.
aberrans Evans, 1956; UTrias; Mt Crosby Fm; Ipswich.
paranotalis Evans, 1956; MTrias; Hawkcsbury Sst; Sydncy.

Triassoscytinopsis paranotalis; AMF38265; 21 mm long. Line drawing of Evans, 1956, fig. 5A.

Family STENOVICIIDAE Evans, 1956 Apheloscyta Tillyard, 1922b [mesocompta] Forewing: Rs originating close to apex; M with posterior convexity just beyond midlength; M and Cu 2 -branched; m -eu, $\mathrm{r}-\mathrm{m}$ and clavus present; A2 close to basal posterior inargin. running elose to the posterior margin of clavus.
mesocampta Tillyard, 1922b; UTrias; Blackstone Fin; Ipswieh.

Palacovicia Evans, 1943b [incerta] Forewing: broad, narrowing apically; R and R1b parallel costal margin; Rs short, straight; M 3-branehed; M1+2 not branehed; M and Cu fused basally; clavus broad, anals forming Y vein. incerta Evans, 1943b; UPerm; Neweastle CM; Sydney.

Permagra distincta; AMF39866; 7mm long. Line drawing of Evans, 1943a, text-fig. 1.

Palaeovicia incerta; AMF39999; 5.7 mm long (above left). Line drawing of Evans, 1943b, fig. 26.

Permagra Evans, 1943a [distincta]
Forewing: costal margin thickened; Se short and curved to mect R: R2+3 straight to apcx; M 2-branched; Cu with 2 short branches. distincta Evans, 1943a; UPerm; Neweastle CM; Sydney.

Permocentrus Evans, 1956 [Permoscarta trivenulataTillyard, 1926a] Forewing: 2 oblique veins between R1a and R1b; R1 linked to Rs by 3 cross veins; r-m present; M 2-branched; Cul not arched basally, separate from M.
trivenulatus Tillyard, 1926a; UPerm; Newcastle CM; Sydney.

Pernocentrus

 trivenulatus; AMF19787: 6 mm long. Line drawing (above right) of Tillyard, 1926a, text-fig. 17.

Permoscarta

Tillyard, 1918b [mitchelli] Teginen: finely tuberculate; nodal line weak, evident near midlength; series of oblique costal veinlets; M unbranched; $2 \mathrm{~m}-\mathrm{cu} ; \mathrm{M}$ leaving R near base, fused to Cu for short distance then diverging again; Cu straight, simple, parallel to A1. mitchelli Tillyard, 1918b; UPerm: Newcastle CM; Sydney.

Permoscarta mitchelli; AMF39316; 6.4mm long (above right). Line drawing of Tillyard, 1918b, text-fig. 2 a .

Permovicia Evans, 1943b [obscura]
Teginen: short, broad; Se shorl, wide, transverse; R and R1b parallel costal margin; Rs widely curved: M and Cul fused for short distance basally; $\mathrm{r}-\mathrm{m}$ and m-cu present.
obscura Evans, 1943b; UPerm; Newcastle CM; Sydney.

Permovicia obscura; AMF40059; 4.8 mm long. Line drawing (above) of Evans, 1943b, fig. 28.

Stanleyana Evans, 1943b [pulchra]
Tegmen: narrowing apically; R parallel to costal margin; M and Cul fused basally: M 3-branched; CuI 2-branched; m-cu present.
pulchra Evans, 1943b; UPerm; Newcastle CM; Sydney.

Stanleyana pulchra;
AMF40016; 7mm
long. Line drawing (above left) of Evans, 1943b, fig. 25.

Stenovicia Evans, 1943b [angustata]
Tegmen: narrowing apieally; R parallel to costal margin; M and Cul fused close to R; M1 and M2 short: Cula twice length of Culb.
angustata Evans, 1943b; UPerm; Neweastle CM; Sydney.

Stenovicia angustata; AMF40008; 6 mm long. Line drawing (above left) of Evans, 1943b, fig. 27.

Psyllid indet.; NMVP103240; 2.1 mm long. Line drawing (above) of Jell \& Duncan, 1986, fig. 23D.

Family PSYLLIDAE Loew, 1879

Psyllid indet.

Sinall forewing with broadly truneated apex; pterostigma long, slender; R 2-branched, with fork closer eloser to base than apex; M, Cu 2-branched, with main stem joining just before common petiole joins basal vein, with 2 branches of M almost equal but 2 branches of Cu markedly different in length; clavus well developed, with angular change in posterior margin near wing base.
Psyllid indet. Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.

Family
RICANIIDAE Amyot \& Serville, 1843
Scolypopites Tillyard, 1923a [bryani]
Forewing as in Scolypopa but Se shorter, not as strong as R , reaching only to a little beyond midwing: M and R not eompletely fused at base. only 1 series of gradate veins.
bryani Tillyard.
1923a; Palacocene; Redbank Plains Fm; Ipswich.

Scolypopites bryani; UQF7218; 15 mm long. Line drawing (left) of Tillyard, 1923a, text-fig. 1.

venosa Evans, 1956; UTrias; Mt Crosby Fm; Ipswich.

Mesocicadella venosa; UQC844; 12mm long. Line drawing (above) of Evans, 1956, fig. 5I

Knezouria

 unicus: QMF18850; 13 mm long.

Beaconiella fennahi. hindwing; AMF30974; 17 mm long. Line drawing (above) of Evans, 1963, fig. 5b.

Tricrosbia minufa; QMF6520; 3.2 mm long (right). Line drawing (above) of Evans, 1971, fig. 1.

Knezouria Jell, 1993 [unicus]
Nymph: wings rudimentary; rostrum slender, extending beyond posterior margin of abdomen; frons large, diamond-shaped. Abdomen inverted beehive: 8 segments, with median longitudinal ridge, with paired areas of small tubereles on each segment. Terminal segment with anal and genital struetures in midline, well forward of margin. unicus Jell, 1993; UTrias; Blackstone Fm; lpswich.

Order HETEROPTERA

Family FULGORIDAE

Beaconiella Evans, 1963 [fennahi]
Aall prineipal veins multibranched; Se separate from R proximally but joiningwith R soon after; Rs joined to M by crossvein prior to branching of either vein; Rs diverging from R near base of wing; $\mathrm{Rs}, \mathrm{M}, \mathrm{Cu}$ branch initially the same distance from the base of the hindwing; elavus unknown.
fennahi Evans, 1963 MTrias; Hawkesbury Sst; Sydney.
multivenata Evans, 1963; MTrias; Hawkesbury sst; Sydney.

Tricrosbia Evans, 1971 [minuta]

Rs 2-branched, diverging from R slightly proximally to its centre; M1 +2 unbranehed; M3 and M4 apically separate, with a third vein arising from their common stem; an enelosed cell proximal to the initial branching of M , bounded laterally by pair of m -cua; CuAterminating proximally at base of claval suture, not associated with base of M ; elavus with anal veins apieally fused into a single vein.
minuta Evans, 1971; UTrias; MtCrosby Fm; Ipswich.

Family PROGONOCIMICIDAE Handlirsch, 1906

Actinoscytina Tillyard, 1926a [belmontensis]

 Forewing: origins of Rs and RIa coincident and distal of midlength of wing; distal branches of M and Cu straight, slightly diverging; costal very wide and strong from basc to R1a; R1a transverse; M2 running through middle of wing to margin in straight line; CuI concave towards $\mathrm{M} ; \mathrm{M}$ and Cul eaeh with 3 distal branehes meeting margin equidistance apar. belmontensis Tillyard, 1926a; UPerm; Newcastle CM; Sydney.Gelastocorid indet.
Nymph broadly elliptical; head transverse, short, with usual elongate mouthparts extending to rear of thorax; eye large, subrounded, lateral on head; pronotum with convex lateral margins, with several anterior projections adjacent to the eyes, rounded posterolatcrally; mesonotum and metanotum subequal in length and only slightly shorter than pronotum. Abdomen with segments 1 and 2 very short medially, with segments thus ehevron-shaped: anterior femur arising from the expanded coxa distally; 2nd and 3rd femora arising near midline.
Gelastocorid indet. Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.

Heterochterus Evans, 1971 [timmsii] Forewing. Costal fracture well defined, $1 / 3$ of length from base; R multi-branehed, terminating near commencement of the apical appendix: M diverging from common stem with R at angle of costal fracture, with 2 equal branches; M and CuA linked by 3 crossveins; marginal vein meeting claval suture at an acute angle; elavus unknown.
timmsii Evans, 1971; UTrias; Mt Crosby Fm; Ipswich.

Actinoscytina belmontensis; AMF19788, 7mm long. Line drawing (above) of Tillyard, 1926a, text-fig. 16.

Gelastocorid indet., NMVP102519, 4mm long; ventral (above) and line drawing (left).

Heterochterus timmsii; QMF6473; 4.3mm long. Line drawing (left) of Evans, 1971, fig. 1.

Heterojassus membranaceus; QMF3701; 5.1 mm long. Line drawing (above) of Evans, 1961, fig. $5 B$.

Heteronella marksei; QMF $3699 ; 3.8 \mathrm{~mm}$ long. Line drawing (above) of Evans, 1961, fig. 5A.

Heterojassus Evans, 1961 [membranaceus] membranous tegmina; Rs multibranched; M and Cu 1 form single vein basally; elongate enclosed cell between M and Cu and wide appendix; all veins curved towards anterior comer of apex of tegmen. membranaceus Evans, 1961; UTrias; MtCrosby Fm; 1pswich.

Hexascytina transecta; BMNHIn44923; 2 mm long. Line drawing (above) of Wootton, 1963, fig. 1.

Hexascytina Wootton, 1963 [Iransecta] Incomplete tegmen: 6 veins extend distally from the composite, transverse vein; transverse vein almost straight, running from anteriot to posterior margin of remigium.
transecta Wootton, 1963; UTrias; Mt Crosby Fm; lpswich.

Heteronella Evans, 1961 [marksei]
costal fracture in tegmen; venation in basal half only; in distal half indistinet lines curve towards costal margin; R proximally incorporated in same vein as M : apically R seems to be 3-branched and M is single vein; cu-m wide; 2 branehes of Cu elongated. marksei Evans, 1961; UTrias; MtCrosby Fm; lpswich.

Heteroscytina Evans, 1956 [fillyardi]
Forewing: narrow apically; R1 2-branehed or simple; Rs simple; r-m present.
tillyardi Evans, 1956; UTrias; MtCrosby Fm; lpswich.

Heteroscytina tillyardi; UQC691; $4 \mathrm{mın}$ long (left). Line drawing (above) of Evans, 1956, fig. 29F.

Platyscytinella Evans, 1956 [paradoxa] Tegmen: R1a absent; r-m nearer apex than m-cul; anterior branch of M straight to apex.
paradoxa Evans, 1956; UTrias; MtCrosby Fm; Ipswich.

Triassodoecus Evans, 1963 [chinai]
Pronotal paranota and tegmina large, overlapping apically; R widely separated from costal margin; Rs arising from R1b; M basally joined to R, linked to Rs by oblique eross vein; Cul joined to M by eross vein; claval veins forming a Y -vein.
chinai Evans, 1963; MTrias; Hawkesbury Sst; Sydney.

Triassodoecus chinai; AMF46398; 5 mm long.

Triassodoecus chinai; line drawing of holotype, of Evans, 1963, fig. 6 .

Microscytinella Wootton, 1963 [radians] Composite transverse vein straight, just more than half wing length from the forewing base; M continued in straight line distal to transverse vein by common stem of its first two branches. radians Wootton, 1963; M Trias; Mt Crosby Fim; Ipswich.

Triscytina Evans, 1956 [rotundata]
Tegmen: apex evenly rounded; R1a present; Rs +MI fused apically' A 1 adjacent to claval suture; A2 along hind margin; anals forming Y -vein. rotundata Evans, 1956; UTrias; Mt Crosby Fm; Ipswich.

Platyscytinella paradoxa; UQC169; 3.2 mm long. Line drawing (above) of Evans, 1956, fig. 29C.

Microscytinella radians; BMNHIn44920; 2.2mm long. Line drawing (above) of Wootton, 1963, fig. 2.

Triscytina rotundata; UQC2311; 3 mm long. Line drawing (above) of Evans, 1956, fig. 29G.

Anthocorid indet.; NMVP103163; 2.4 mm long. Line drawing(right) of Jell \& Duncan, 1986. fig. 23C.

Veliid indet.; NMVP103235; 3mm long

Duncanovelia extensa Jell \& Duncan, 1986; NMVP103237; 5mm long, with line drawing (above) from Jell \& Duncan, 1986, fig. 24 B and NMVP27044 (right); 5mm long

Family ANTHOCORIDAE Amyot \& Serville, 1843
Anthocorid indet.
Hemelytron with cuncus and embolium, membrane without basal cells, with large clavus and distinet vein close to posterior margin.
Anthocorid indet. Jell \& Dunean, 1986;
LCret; Koonwarra FB; Gippsland.
Family VELIIDAE Dohrn, 1859
Veliid indet.
Dorsoventrally compressed; head triangular, with bulging lateral cyes, anteriorly obtuse; antennae long, thin, of few segments; legs all long, thin, with femora wider than tibiae, with hindleg longest; abdomen tapering, with wide doublure, with short segments anteriorly becoming longer posteriorly; 6th segment more than half as long as wide.
Veliid indet. Jell \& Dunean, 1986; LCret;
Koonwarra FB; Gippsland.
Family MESOVELIIDAE Douglas \& Seott, 1867
Duncanovelia Jell \& Duncan, 1986 [extensa] Head elongate; cyes ncar midlength of head; antenna of 4 long segments; thoracic segments relatively short, sebequal, becoming slightly longer to posterior.
extensa Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.

Family TRIASSOCORIDAE Tillyard, 1922b
Triassocoris Tillyard, 1922b [myersi]
Hemelytron: short, broad, smooth, shiny, dark; venation faint: 3 main veins on corium $-\mathrm{R}, \mathrm{M}, \mathrm{Cu}$ fused basally for a short distanec; R parallel to costal margin, some distance from it ; one veinlet near origin of M then series to C near apex; a costal fracture apparently present.
myersi Tillyard, 1922b; UTrias; Blackstone Fin; Ipswich.
scutulum Tillyard, 1922b; UTrias; Blackstone Fm; Ipswich.
ovalis Tillyard, 1923b; UTrias; Blackstone Fm; Ipswich.
grandis Tillyard, I923b; UTrias; Blackstone Fm; Ipswich.

Triassocoris myersi; GSQI140a; 5.8 mm long. Line drawing of Tillyard, 1922, text-fig. 87.

Triassocoris ovalis; GSQ1129a; 4.8mm long.

Ademosyne australiensis; GSQ112b; 3.4mm long. Line drawing of Dunstan, 1923, pl.1, fig. 3.

Ademosynoidesobrusa; GSQ19b; 2.4 mm long. Line drawing of Dunstan, 1923, pl. 2, fig. 17.

Order COLEOPTERA

Family ADEMOSYNIDAE Ponomarenko, 1968
Ademosyne Handlirsch, 1906 [major] Elytron: punctate-striate, costate; without wide border; 8-11 costae.
major Handlirsch, 1906; UTrias; Blackstone Fm; Ipswich.
australiensis Tillyard, 1916; UTrias;
Blackstone Fm; Ipswich.
olliffi (Handlirsch, 1906); UTrias; Blackstonc Fm; Ipswich.
congener Tillyard, 1916; UTrias; Blackstone Fm; lpswich.
cameroni Tillyard, 1916; UTrias; Blackstonc Fm; lpswich.
punctata Tillyard, 1916; UTrias; Blackstonc Fm; Ipswich.
parva Dunstan, 1923; UTrias; Blackstonc Fm; Ipswich.
intermedia Dunstan, 1923; UTrias; Blackstonc Fm; lpswich.
lata Dunstan, 1923; UTrias; Blackstonc Fm; Ipswich.
brevis Dunstan, 1923; UTrias; Blackstone Fm; Ipswich.
curvata Dunstan, 1923; UTrias; Blackstonc Fm; Ipswich.
ramocostata Dunstan, 1923; UTrias;
Blackstone Fm; lpswich.
rugulosa Dunstan, 1923; UTrias; Blackstonc Fm; Ipswich.
vittamargina Dunstan, 1923; UTrias;
Blackstone Fm; Ipswich.
adunca Dunstan, 1923; UTrias; Blackstone Fm; lpswich.
wianamattensis Tillyard, 1918b; UTrias; Blackstonc Fm; Ipswich.
Ademosynoides Dunstan, 1923 [minor]
Elytron: impunctate-striatc: 8 -10 costac; borders narrow or moderately wide.
minor (Handlirsch, 1906); UTrias; Blackstonc Fm; Ipswich.
obtusa (Tillyard, 1916); UTrias; Blackstone Fm; Ipswich.
angustata Tillyard, 1916; UTrias; Blackstonc Fm; 1pswich.
alternata Dunstan. 1923; UTrias; Blackstonc Fm: Ipswich.
striatella Dunstan, 1923; UTrias; Blackstonc Fm; Ipswich.
abnormis Dunstan, 1923: UTrias; Blackstone Fm: Ipswich.
magnifica Dunstan, 1923; UTrias; Blackstonc Fm; Ipswich.

Grammositus Dunstan, 1923 [bilineatus] Elytron: apex blunt; basal margin long; humerus extended: only 2 rows of striae; elongate granules oriented longitudinally.
bilineatus Dunstan, 1923; UTrias; Blackstonc Fm; Ipswich.

Permosyne Tillyard, 1924 [belmontensis] Elytra with lateral margins not thickened,; sutural margin narrow; both margins eurved; strae plain or punctate, with 2 nd , 3 rd and 4 th ending on 1 st, with 8th ending on 9 th; 9th stria (next to sutural margin)arising basally further from margin than from 8th stria: usually vestige of a short 10 th stria in basal part of interval between 9 th stria and margin.
belmontensis Tillyard, 1924; UPcrm; Newcastle CM; Sydney.
affinis Tillyard, 1924; UPerm: Newcastle CM; Sydncy.
mitchelli Tillyard, 1924; UPerm; Newcastle CM; Sydncy.
pincombeae Tillyard, 1924; UPerm; Newcastle CM; Sydncy.

Grammositus bilineatus; GSQI136a; 2.5 mm

Permosyne belmontensis; AMF19777; 3.1mm long. From Tillyard, 1924, text-fig. 2.

Permosyne pincombei; AMF 19778; 3.3mm long.

Lobites tuberculatus; GSQ1342a; 5.8mm long. Line drawing (above) of Dunstan, 1923, pl. 5, fig. 41.

Mesostigmodera typica; GSQI61a; 15 mm long. Line drawings (right) of Dunstan, 1923, pl.5, fig. 39.

Cantharid indet.; NMVP103331; 7 mm long. Line drawing of Jell \& Duncan, 1986, fig. 39A.

Etheridgea australis; GSQI31; 9 mm long. Line drawing of Dunstan, 1923, pl. 7, fig. 60. [The type specimen is not readily identified in either GSQ or AM

Mesostigmodera Ethcridge \& Olliff, 1890 [typica] Like Lobites but differing in ornamentation, border details and in lacking an ineision on the dise. typica Etheridge \& Olliff, 1890; UTrias; Blackstone Fm; Ipswich.

Family CANTHARIDAE Thomson, 1864

Cantharid indet.

Head narrow; elypcal region produced forward, with convex anterior; mandibles elongate; pronotum much wider than head,, with lateral margin coneave anteriorly : elytra soft, elongate, not covering apical segments of abdomen; middle and forelcgs similar, with small coxae not touching, expanded femur and long thin tibia; abdomen of 8 uniform segments except for 2 longer posterior ones.
Cantharid indet. Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.

Family CERAMBYCIDAE Latreille, 1802
Willcoxia Dunstan, 1923 [magnopunctata] Elytron: 3 longitudinal and 2 oblique double rows of pits; lateral border widc, prounounced. magnopunctata Dunstan, 1923; UTrias; Blackstone Fm; Ipswich.
 GSQ1 261: 10 mm long (lcft). Line drawing of Dunstan, 1923, pl.6, fig. 47.
Family CURCULIONIDAE Latrcille, 1802
Etheridgea Handlirsch, 1906b [australis] Elytron: small, distally pointed; 13 rows of minute tubereles of variable size and distance from one another.
australis Handlirsch, 1906b; UTrias:
Blackstonc Fm; lpswich.
petrica Tillyard, 1916; MTrias; Ashfield Fm; Sydney.

Mesorhynchophora Tillyard, 1916 [dunstani] Elytron: very broad base, tapering to narrow rounded apex; surface convex, with 4 converging striac distally separated by wide flat interstices.
dunstani Tillyard, 1916; MTrias; Ashfield Fm; Sydncy.
Tillyardiopsis Dunstan, 1923 [tuberculata] Elytron: sutural border narrow; lateral and humeral borders wide; surface granulate; short deep incision or line of close deep punetae at middle of lateral half. tuberculata Dunstan, 1923; UTrias; Blackstone Fm; Ipswich.
granulata Dunstan, 1923; UTrias; Blackstone Fm; Ipswich.
variotubercula Dunstan, 1923; UTrias; Blackstone Fm; lpswich.

Tillyardiopsis variotubercula; GSQI66a; 6.5 mm long.
 Dunstan, 1923, pl. 7. fig. 57.

Family DASCILLIDAE Guérin-Méncvillc, 1823
Apheloodes Dunstan, 1923 [obliqua]
Elytron: rugose lines concentric with lateral borders; sometimes with 2 oblique lines; low convexity. obliqua Dunstan, 1923; UTrias; Blackstone Fm; lpswich.
rugosa Dunstan, 1923; UTrias; Blackstone Fm; Ipswich.

Mesorhynchophora dunstani; GSQI27a; 15 mm long. Line drawwing of Dunstan, 1923, pl. I, fig. 7

Tillyardiopsis granulata; GSQI289a; 6.9mm long.

Apheloodes obliqua; GSQ1143a; 2 mm long. Line drawing of Dunstan, 1923, pl. 6, fig. 54.

Leioodes plana; GSQI348; 1.8 mm long. Line drawing (right) of Dunstan, 1923, pl. 6, fig. 53.

Reeveana major: GSQI251a; 5.4 mm long. Line drawing (above) of Dunstan, 1923, pl. 5, fig. 38.

Tryoniopsis punctata; GSQ1250b; 6mm long. Line drawing (right) of Dunstan, 1923, pl. 7, fig. 65.

Leioodes Dunstan, 1923 [plana]

Elytron: very small, highly convex; ornament very faint; lateral margin areuate. plana Dunstan, 1923; UTrias; Blackstonc Fm; Ipswich.
pygmaea Dunstan, I923; UTrias; Blackstone Fin; Ipswich.

Family DERMESTIDAE Latreille, 1807
Reeveana Dunstan, 1923 [minor]
Elytron: distally tapered; widest point near base; subulate or cuncate overall; ornament very weak, coneentric to absent.
major Dunstan, I923; UTrias; Blackstonc Fm; lpswich.
intermedia Dunstan, 1923; UTrias; Blackstone Fm; lpswich.
minor Dunstan, 1923; UTrias; Blackstonc Fm; lpswich.

Tryoniopsis Dunstan, 1923 [punctata] Elytron: explanate, distally attenuate; borders narrow, well defined; costae low; striae shallow; almost flat.
punctata Dunstan, I923; UTrias; Blackstonc Fm; Ipswich.
granulata Dunstan, 1923; UTrias; Blackstonc Fm; Ipswich.

Dytiseid indet. 2; larva laterally compressed (top), NMVP $103330,6.5 \mathrm{~mm}$ long; larva dorsally compressed (lower above), NMVP $103302,4.2 \mathrm{~mm}$ long.

Family DYTISCIDAE Latreille, 1825

Dytiscid indet 1.

Larva with head longer than pronotum; mandibles strongly eurved, opposed, single-tipped; 8th abdominal tergite drawn out into spinc-like projection. Adult and clytron only tentatively assigned, rather indistinet.
Dytiscid. indet. Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.

Dytiscid indet 2.

Larvac:Head subreetangular, with prominent Y -shaped ridge: antennae short, 3-4 segments; pronotum shorter than head, longer than suceeeding segments, with truncated corners; abdomen 8 -segmented, posteriorly pointed. Adult oval; antennae 10 -segmented, becoming beaded; pronotum half body length; coxac large, bearing hairs along outer margin; tibia and tarsus covered with hairs; abdomen of 6 sternites, 1 st longest; elytra with longitudinal ridges.
Dytiscid. indet. Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.

Dytiscid indet 3.

Thorax 2 nd $=3$ rd in length; body widest at rear of thorax; foreleg femur long narrow; mid leg femur heavier, expanding distally; hindleg long, stout, femur \& tibia same length; tibia with strong lateral hairs on apex; tarsus 5 -segmented, tapering distally to sharp tip, with long fine hairs from coneave side and stout prominent lateral hairs from convex side. Dytiscid. indet. Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.

Dytiseid indet. 1; larva, MUGD3749. 9mm long (upper); immature adult (above left) and elytron (above right). NMVP103325, body 5.5 mm long.

Dytiseid indet. 2; adult, NMVP $103169,4 \mathrm{~mm}$ long, whitened with ammonium chloride on right.

Dytiscid indet. 3; NMVP 102527; 10 mm long. Detail of distal part of hindleg at left.

Elaterium punctomarginum; GSQI200b; 7 mm long. Line drawing (right) of Dunstan, 1923, pl.5, fig. 43.

Elateridium angustius; AMF39328; 9mm long.

Elateridium transversum; GSQ1159; 6.5 mm long. Line drawing (right) of Dunstan, 1923, pl. 4, fig.

Helodid larva indet.; NMVP $103308 ; 7 \mathrm{~mm}$ long. Line drawing of Jell \& Dunean, 1986, fig. 37A.

Family ELATERIDAE Leach, 1815
Elaterium Wcstwood, 1854 [pronaeus] Elytron: clongate dise with parallel costac; double lines of punctate striae or minute groups of punctae eentrally on border.
punctomarginum Dunstan, 1923; UTrias; Blackstone Fin; Ipswich.
bipunctatum Dunstan, 1923; UTrias; Blackstone Fm; Ipswich.

Elateridium Tillyard1918b [wianamattense] Elytron: elongate, oval, tapering posteriorly: no seulpture evident except a slight roughness on the surface.
wianamattense (Tillyard, 1916); MTrias; Ashficld Fm; Sydncy. angustius Tillyard, 1918b; MTrias; Ashfield Fm; Sydney.
subulatum (Dunstan, 1923); UTrias; Blackstonc Fm; Ipswich.
transversum (Dunstan, 1923); UTrias; Blackstonc Fm; Ipswich.

Family HELODIDAE Lcconte, 1862

Helodid indet.

Larva comparatively broad: Head small, subquadrate; antennac long, with long Ist segment, of many segments; eyes small, lateral, nearmidlength of head behind insertion of antenna; median groove on rear of head dividing forward, running to lateral margins just forward of eyes; thorax of subequal segments, with rounded lateral margins to segments, with fine raised ridge around entire margin of tergite. legs short, with large tibia, tarsus and tarsal claw; abdomen of 8 segments, 8 th shorter than 7 th. Helodid indct. Jcll \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.

Family HYDROPHILIDAE Latreille, 1802
Platycrossos Dunstan, 1923 [tumidus]
Elytron: punetate-striate; 8-9 costac; lateral border very wide: extended humeral area and border. tumidus (Tillyard, 1916); UTrias; Blackstonc Fm; Ipswich.
ligulatus Dunstan, I923; UTrias: Blackstone Fin; Ipswich. subtumidus Dunstan, 1923; UTrias; Blackstone Fm; Ipswich.

Polysitum Dunstan, 1923 [punctatus] Elytron: broadly ovate, uniformly granulate, otherwise like Ademosyne. punctatus Dunstan, 1923; UTrias; Blackstone Fm; Ipswich. minutus Dunstan, 1923; UTrias; Blackstone Fm; Ipsivich.

Sheperdia Dunstan, 1923 [quadrivittata] Elytron: banded sculpture with fine eross lining; apex aeutely rounded; otherwise like Ademosyne. quadrivittata Dunstan, 1923; UTrias; Blackstone Fm; Ipswich.

Sheperdia quadrivittata; GSQ1130a; 11 mm long. Line drawing (left) of Dunstan, 1923, pl. 4, fig. 32.

Simmondsia cylindrica; GSQI87a; 3mm long. Linc drawing (right) of Dunstan, 1923, pl. 4, fig. 29.

Hydrophilid indet.; NMVP103314; 102522; 102768; x12.

Hydraenid indet.; NMVP 103319; 2.5 mm long.

Gyrinid indet.; NMVP103311;2.5mm long; whitened with ammonium chloride (left) and in normal light (right).

Simmondsia Dunstan, 1923 [subpyriformis] Elytron; number of longitudinal rilges and connecting erossbars; enclosed squares depressed; lateral and sutural borders narrow; scutellary margin long.
subpyriformis Dunstan, 1923; UTrias; Blackstone Fm; lpswich.
cylindrica Dunstan, 1923; UTrias; Blackstone Fm; Ipswich.

Hydrophilid indet.

Small body; head trapezoidal; antennac of 2 long basal segments, shorter broader 3rd segment and 3 shor broad distal to the eupule; cyes tiny, posterolateral; pronotum coarsely pustulose, with large paratergal lobes; elytra with broad longitudinal ridges separated by narrow grooves with elosely spaced pits along entire length; abdomen of 6 sternites.
Hydrophilid indet. Jell \& Duncan. 1986; LCret; Koonwarra FB; Gippsland.
Hydrophilid larva indet.
Large curved mandibles; thoracie segments subequal; abdomen tapering posteriorly Hydrophilid larva indet. Jell \& Dunean, 1986; LCret; Koonwarra FB; Gippsland.

Family HYDRAENIDAE Mulsant, 1844

Hydraenid indet.

Elongate adult: head longer than wide; antennae inserted anterolaterally, of 2 long basal segments and 5 bead-like apical sections; pronotum not expanded;
3 rd thoracie segment very long; elytra long, thin; abdomen with 6 sternites.
Hydraenid indet. Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.
Family GYRINIDAE Latreille, 1810
Gyrinid indet.
Hind leg with greatly expanded coxa: tibia wide, expanding distally; basitarsus wider than long, relatively massive; Ist abdominal sternite with pair of circular central and margined depressions to reeeive posterior tip of hind coxa, much longer than succeeding sternites; 6 th sternite as long as others; elytra with widely separated longitudinal ridges. Gyrinid indet. Jell \& Dunean, 1986; LCret; Koonwarra FB; Gippsland.

Family MALACODERMIDAE

Metrorhynchites Tillyard, 1916 [sydneiensis] Elytron: elongate, oval, with 3 strong longitudinal ribs, one parallel to inner margin and extending to tip, other two roughly parallel with outer margin and meeting first independently near apex.
sydnciensis Tillyard, 1916; MTrias; Ashfield Fm; Sydney.
grandis Tillyard, 1918b; MTrias; Ashfield Fm; Sydney.
Family MORDELLIDAE Latreillc, 1802

Mordellid indet.

Body typically hump-shaped, with small high head tucked down belowconvex pronotum; elytra well selerotised, with well-defined border and longitudinal striations.
Mordellid indet. Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.
Family PSELAPHIDAE Latreille, 1802
Pselaphid indet.
Head small; antenna 11 -segmented, with basal segment twiee as long as wide; becoming beaded distally; pronotum longer than head, convex; legs with forfemur greatly enlarged, club-shaped mid and hind femora; elytra short, over only abdomen anterior; abdomen short; segments short.
Pselaphid indet. Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.
Family STAPIHYLINIDAE Latreille, 1802
Staphylinid indet.
Brachypterous; head subquadrate; antennac 11-sgmented, expanding apically, apical segment larger than penultimate; pronotum with small anterolateral spine; elytra subrectangular, just reaching abdomen; abdomen with segments 2-7 subequal; segment 8 small, with indistinet cerei and terminalia.
Staphylinid indet. Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.
Family TENEBRIONIDAE Latreille, 1802
Adelidium Tillyard, 1918b [cordatum]
Elytron: broad, small, highly convex; seulpture of 9 slightly raised longitudinal striae, separated by wider interstices; striae punctate.
cordatum Tillyard,
1918b; MTrias; Ashficld Fm; Sydncy.

Metrorhynchites grandis; AMF39330; 14.4mm long.

Mordellid indet.; NMVP103158; 3.7 mm long.

Pselaphid indet.: NMVP103321; 2 mm long.

Staphylinid indet.; MUGD3737B; 4mm long. Line drawing (left) of Jell \& Dunean, 1986, fig. 35A

Adelidium cordatum; AMF39329; 4mm long. Line drawing (left) of Tillyard, 1918, text-fig. 14.

Mesothoris westraliensis; AMF52315; 7mm long.

Mesothoris tenuiclathrata; GSQI313a; 6.8 mm long. Line drawing (right) of Dunstan. 1923, pl. 6, fig.

Ulomites willcoxi; GSQ150b; 11 mm long. Line drawing of Dunstan, 1923, pl. 4, fig. 33.

Mesothoris Tillyard, 1916 [clathrata] Elytron: elongate, almosı parallel sided; sculpture areolate, formed by 9 broad flat longitudinal ridges interseeted by transverse ridges; areolac subquadrate. clathrata Tillyard, 1916; UTrias; Blackstone Fm; Ipswich. quadripartita Dunstan, 1923; UTrias; Blackstonc Fm; Ipswich.
tenuiquadrata Dunstan, 1923; UTrias; Blackstone Fm; Ipswich.
grandis Dunstan, 1923; UTrias; Blackstone Fin; Ipswich.
westraliensis Rick, 1968; LJur; Cockleshell Gully Fm; Perth.

Ulomites Tillyard, 1916 [willcoxi]
Elytron: sides subparallel, base rounded, apex pointed; marginal and sutural borders narrow; sculpture of 7 distinct punctate striae; distance between punetures half interstitial width: marginal interstices becoming wider apically; interstices finely granulose.
willcoxi Tillyard, 1916; UTrias; Blackstone Fim; Ipswich.

Undetermined beetles from Koonwarra Fossil Bed (left) and Wianamatta Shale (right)

Order NEUROPTERA (lacewings)

Family ARCHEOSMYLIDAE Rick, 1953

Archeosmylus Rick, 1953 [pectinatus] Forewing: Se and R1 fused; pterostigma long, eurved round towards apex; Rs 8- or 9-branched; Rs and M1 +2 fused for short distance, with proximal portion of M1+2 almost transverse; Cu2 deeply forked; anals simple, with short peetinate branehes near margin. pectinatus Rick, 1953; UPcrm; Newastle CM; Sydney.
stigmatus Riek, 1955; UTrias; MiCrosby Fm; Ipswich.
costalis Riek, 1955; UTrias; MtCrosby Fm; Ipswich.

Family PERMITHONIDAE Tillyard, 1922
Permithone Tillyard, 1922a [belmontensis] $[=$ Permosmy/us Tillyard, 1926b; type P. pincombeae]. Forewing: Sc fused to R1 distally; costal space expanded at base; 6-7 cross veins from R to Rs; Rs with only $4-5$ peetinate branehes; MP forking before Rs; cubito-median Y -vein distinet; CuI branelied; Cu 2 simple or with one distal fork; AI pectinately branehed; A2 and A3 branehed, enelosing an irregularly celled area; cross veins between Cu 1 and Cu 2 simple or irregular. Hindwing: costal space narrow; Cul branehed peetinately; Cu2 simple; Cul touehing or fused to M for short distanee; no cubito-median Y -vein.
belmontensis Tillyard, 1922a; UPerm;
Newcastle CM; Sydncy.
oliarcoides Tillyard, 1926b; UPerm; Neweastle CM; Sydney.
neoxenus Rick, 1953; UPerm; Newcastle CM; Sydney.
pincombeae (Tillyard, 1926b); UPcrm;
Newcastle CM; Sydney.

Permopsychops Tillyard, 1926b
[belmontensis]
Forewing: Se fused to RI distally; costal veinlets simple, rarely branched. without eross veins; 3 r -rs; Rs with numerous pectinate branches; M forking near base before Rs; eubito-median Y -vein distinet; CuI 2-branched; Cu 2 simple; A1 forked near apex; 2 A and 3 A branehed.
belmontensis Tillyard, 1926b; UPerm; Newcastlc CM; Sydney. [=Permithone venosa Davis, 1943; UPerm; Newcastle CM; Sydncy].

Archeosmylus pectinatus; AMF40264; 11 mm long. Line drawing (above) of Riek, 1953, text-fig. 66.

Permithone belmontensis; AMF28465; 9.4mm long. Line drawing (above) of Tillyard, 1922a, text-fig. 6.

Permopsychops belmontensis; AMF39867; 15mm long, holotype of P. venosa.

Permorapisma biserialis; AMF28053; 20mm long. Line drawing (right) of Rick, 1953, text-fig. 48.

Euporismites balli: GSQ134; 22mm long. Line drawing (above) of Tillyard, 1916, pl. 3, fig. 1.

Lithosmylidia lineata; UQC2189 (part and ep): 20 mm long. Line drawing (right) of Riek, 1955, fig.

Permorapisma Tillyard, 1926 [biserialis]
Forewing: costal space enlarged near base; Sc fused with R1 distally; costal veinlets often branehed and connected by numerous irregular eross veins: 10 or more r-rs; Rs with 9 peetinate branches (ineluding MA), with dense end twigging; cubito-median Y-vein distinet; Cul branched towards apex; 3 anal veins branched peetinately; Cu 1 to Cu 2 eross veins reticulate, forming $2-3$ cells; similar reticulate cross veins between anals.
biserialis Tillyard, 1926b; UPerm; Neweastle CM; Sydney.
triserialis als Tillyard, 1926b; UPerm;
Neweastle CM; Sydney.

Family OSMYLIDAE Leach, 1815

Euporismites Tillyard, 1916 [balli]
Bordered by close veins (costal cross veins
anteriorly, many branches of primary veins apically and of Cu and A veins posteriorly); Se and R1 very elose, parallel; Rs parallel to R1 giving off large series of peetinate branches; M widely separated from Rs; Cu and Cu 2 not distinet, zigzag, curving postcriorly very early and then branching.
balli Tillyard, 1916: Palacocene; Redbank
Plains Fm; lpswich.

Lithosmylidia Rick, 1955 [lineata]

Forewing: Sc and R1 fused towards apex; Ml+2 only just touehing Rs, with frec oblique basal stem; limited eross veins near base of Rs; pterostigmatic veinlets often forked; terminal branches of CuA and CuP not transversc.
lineata Rick, 1955; UTrias; Mt Crosby Fm; Ipswich.
parvula Rick, 1955; UTrias; Mt Crosby Fm; lpswich.
baronne Lambkin, 1988; Gayndah Beds; Esk Graben.
sp. A Lambkin, 1988; UTrias; Mt Crosby Fm; Ipswich

Family OSMYLOPSYCHOPIDAE Martynova, 1949
Osmylopsychops Tillyard, 1923b [spillerae] Forewing: Se and R1 fused apically: all veins abundantly branched: CuA many branehed; Sc, R1 and Rs separate almost to base; endtwigging limited; costal veinlets mainly forked and conneeted by seattered eross veins; CuP and anals well branched. spillerae Tillyard, 1923b; UTrias; Blackstone Fm; Ipswich.

Protopsychopsis venosa; GSQ1160a: 9.5 mm long (right). Line drawing (left) of Tillyard, 1917, pl. 8, fig 3.

Protopsychopsis Tillyard, 1917 [venosa] Wing broad, moderately pointed; large number of forked apical veins. Forewing: broad costal margin, with numerous costal cross veins, some forked; Se and R separated by numerous cross veins; distally Se and R approach elose to one another a short distance before the apex; R and Rs further apart, with many cross veins; Rs 12-branched, with delicate cross veins: 2 rows of gradate veins in almost complete transverse lines across wings; another series of stepwise crossveins between the two.
venosa Tillyard, 1917; UTrias; Blackstone Fm; Ipswich.

Petropsychops Rick, 1956 [superba]

 Se fused to R1; no distinet 'ven triplica'; R bent strongly away from Sc at base; Rs arising almost basally; Cu diverging strongly from the $\mathrm{Se}-\mathrm{R}$ veins; M forming pectinate series of many anterior branehes occupying large area of wing. superba Riek, 1956; UTrias; Blackstonc Fm; Ipswich.

Osmylopsychops spillerac; GSQ1314; 14 mm long. Line drawing (left) of Tillyard, 1923b, text-fig. 93.

Petropsychops superba; UQC2136: 28 mm long along R.

Archepsycho ps triassica; GSQ1137; 6.7 mm long.

Triassopsychops superba; GSQ1284a; 29 mm long. Line drawing (above) of Tillyard, 1922b, text-fig. 89.

Proberotha superba; UQC1404; 7 mm long (below). Line drawing (above) of Rick, 1955, fig. 18.

Archepsychops triassica: GSQ137; line drawing of Tillyard, 1919a, text-fig. 27.

Family PSYCHOPSIDAE Handlirsch, 1906
?Archepsychops Tillyard, 1919a [triassica] Forewing: costal space markedly expanded towards base but tapering rapidly towards pterostigma; Se , R1 and Rs probably forming a vena triplica.
triassica Tillyard, 1919a; UTrias; Blackstone, MiCrosby Fms; Ipswich.
Triassopsychops Tillyard, 1922b [superba] Forewing: very broad; apex rounded; Sc, R1, Rs slrong from base to just beyond midlength, joined distally by two strong eross veins; the 3 continuing for shor distance to be joined by cross veins again; Sc and RI continuing a further shor distance to another cross vein then all dividing into terminal veinlets; costal area with recurrent veinlet near base sending a few veinlets to margin; most costal veinlets arising from Se at $45^{\circ} ; \mathrm{M}$ and Cul not fused distally; Rs with about 14 branches from Rs; M 5 -branched; basal r-m shon, strong; cross veins between branches of Rs numerous; Cu simple for long way, distally multibranched; A1 and A2 multi-branehed.
superba Tillyard, 1922b; UTrias; Blackstone Fm; Ipswich.

Family PROBEROTHIDAE Rick, 1955

Proberotha Kruger, 1923 [prisca]
Forewing: costal space markedly expanded over middle portion; margin of wing almost entire; Sc and R1 fuscd ncar apex; normally 3 cross veins between RI and Rs; M and Rs conneeted only by a cross vein. superba Rick, 1955; UTrias; Mi Crosby Fm; lpswich.

Proberothella Rick, 1955 [elongata]

Forewing: costal space markedly expanded over middle portion; margin of wing almost entire; Se and R1 fused near apex; 3 cross veins re-m; A1 deeply forked.

Proberothella elongata; UQC2196; 9 mm long (lcft). Line drawing (above) of Riek, 1955, fig. 19.
clongata Rick, 1955;
UTrias; Mt
Crosby
Fm; Ipswich.

Order GLOSSELYTRODEA

Family JURINIDAE Zalessky, 1929
Polycytella Tillyard, 1922b [riassica]
Tegmen: surface omament of raised polygonal cellules forming meshwork; $\mathrm{Se}, \mathrm{R}, \mathrm{M}$ and Cu unbranched, running straight to margin; R finishing near midlength; M finishing near apex; clavus narrow.
triassica Tillyard, I922b; UTrias; Blackstonc Fm; Ipswich.

Permoberothella Riek, I953 [perplexa]

 Forewing: pterostigma absent: Rs arising near base of wing; M1 +2 fused with Rs proximally, then almost straight to the apex; $\mathrm{M} 3+4$ fused with Cul for short distance then parallel to $\mathrm{M1}+2$: a distinct groove between MA and MP; MP 2-branched, with terminal twigging: Cu1 and Cu 2 simple; 3 simple anals conneeted by irregular eross veins.perplexa Riek, 1953; UPerm; Newcastle CM; Sydney.

Polycytella triassica; GSQI81a: 7.5 mm long.

Permoberothella perplexa; AMF42520; 7mm long. Line drawing (above) of Riek, 1953, text-fig. 53.

Cladochorista belmontensis; AMF28054; 41mm long. Line drawing (right) of Riek. 1953, text-fig. 50.

Cladochoristella bryani; UQC1746; 12 mm long. Line drawing of Riek, 1955, fig. 16.

Prorhyacophila colliveri; UQC1741; 5 mm long.
Line drawing (above) of Riek, 1955, fig. 17 .

Order TRICHOPTERA (caddisflies)

Family CLADOCHORISTIDAE Riek, 1953
Cladochorista Rick, 1953 [belmontensis]
Costal spaee with numerous oblique erossveins; RI branched at apex: R2+3 branching before R4+5; se-r before origin of Rs; M 4-branched; eubito-median Y-vein distinet: Cul branched at or beyond its middle: Cu2 simple, weak; anal veins looped. belmontensis Tillyard, 1926b; UPerm; Neweastle CM; Sydncy.

Cladochoristella Rick, 1955 [bryani]
Forewing: Se ending in series of veinlets; 4 transverse eostal veinlets; RI forked in pterostigma, 3-branched; arms of eubito-median Y -vein unequal; $\mathrm{R} 2+3$ forking before $\mathrm{R} 4+5 ; \mathrm{M} 5$-branched, with extra branch on Ms. Hindwing: Sc forked, ending before R1; Rs forked as in foreving.
bryani Rick, 1955; UTrias; MtCrosby Fm; lpswich.

Prorhyacophila Rick, 1955 [colliveri]
[=Eocorona Tindalc, 1980; type iani] Forewing: Sc forked at apex, with only single cross vein to eostal margin; RI simple: CuA deeply forked; CuP straight; distinet cubito-median Y -vein. colliveri Rick, 1955; UTrias; Mt Crosby Fm; lpswich.
iani Tindale, 1980; UTrias; Mt Crosby Fm; lpswich.

Prorlyacophila iani (holotype of Eocorona iani); UQC2327; 8 mm long.

Family CALAMOCERATIDAE Ulmer, 1905 Calamoceratid pupa indet.
Abdomen with fringe of fine long hairs from segment 2 back, with dorsal hook plates on segments 2-7,
Calamoceratid pupa indet. Jell \& Dunean, 1986; LCret; Koonwarra FB; Gippsland.

Occetis sp.; NMVP103184; 9 mm long.

Family LEPTOCERIDAE Leach, 1815
Occetis sp.
Case of fine sand grains, straight, slightly tapered; apex slightly oblique; sand grains increasing in size towards aperture.
Oecetis sp. Jell \& Dunean, 1986; LCret; Koonwarra FB; Gippsland.

Family STEREOCHORISTIDAE Tillyard, 1919
Stereochorista Tillyard, 1919a [frustrata] Wing small; CuA forked; $\mathrm{R} 2+3$ forking before R4 +5 ; r-m strong
frustrata Tillyard, 1919a; UTrias; Blaekstone Fm; lpswich.
[Tillyard (1919a) assigned the genus to the Mecoptera and detailed some peculiar morphology c.g. the 3-branched IA. Rick (1956, fig. 1) interpreted the wing the other way up from Tillyard and assigned the genus to the Trichoptera. Carpenter (1992) considered it among genera that could not be assigned to Order within the Neoptera].

Calamoceratid pupa indet.; NMVP102632; x8. Line drawing (above right) of Jell \& Duncan,

Stereochorista frustrata; GSQ1218; 7.5mm long. Line drawing (above) of Rick, 1956, fig. I.

Aphryganoneura anomala; AMF29033; 12mm long.

Order MECOPTERA (scorpionflies)

Family INCERTAE SEDIS

Aphryganoneura Tillyard, 1926b [anomala] Forewing: branches of main veins parallel, separated by grooves as in Neuroptcra Plannipennia, unbranched distally.
anomala Tillyard, 1926b; UPerm; Newcastle CM; Sydney.

Family AGETOPANORPIDAE Carpenter,

 1930
Agetochoristella Riek, 1953 [adscita]

Forewing: Sc 3-branched; costal space expanded; Rs 5 -branched, dichotomously, with extra fork on R5; M 5-branched, with extra fork on M2; eubito-median Y-vein distinet; Cu1, Cu2, A1 and A2 all simple.
adscita Riek, 1953; UPerm; Newcastle CM; Sydney.

Agctochoristella adscita; AMF43656; 10 mm long. Line drawing (above left) of Rick, 1953, fig. 28.

Neoageta Riek, 1953 [elongata]

Neopetromantis australis; AMF40211; 5mm long. Linc drawing (right) of Riek, 1953, fig. 27. Forewing: Sc 3-branched; Rs 5-branehed, with extra fork on R5; M 6-branched, extra forks on M2 and M4; Cul, Cu2 and anal veins simple; Cul and M touehing: cubito-median Y-vein absent.
elongata Riek, 1953; UPerm; Newcastle CM; Sydney.

Neoageta elongata; AMF43969; 12 mm long. Line drawing (above left) of Riek, 1953, fig. 26.

Neopetromantis Riek, 1953 [australis]
Forewing: costal space not expanded; Sc 3-branched; Rs 4-branched; M 6-branched, extra forks on M2 and M4; Cu1, Cu2 and A1 simple: cubito-median Y -vein absent. australis Riek, 1953; UPerm; Newcastle CM; Sydney.

Phipoides Rick, 1953 [elegans]

Forewing: costal spacc expanded, Sc 3-branched; Rs 5-branched, cxtra fork on R2; M 6-branched; Rs 5-branched, extra fork on R2; M 6-branched, extra forks on M2 and M4. Hindwing: costal space not expanded; Sc short, simple; RI forked near apex; Rs same as in forewing; M 4- or 5-branched. elegans Riek, 1953; UPerm; Neweastle CM; Sydney.
Family ARCHIPANORPIDAE Tillyard, 1917 Archipanorpa Tillyard, 1917 [magnifica] Forewing: pterostigma short, irregular; R arching up into pterostigma; Se reaching costal margin beyond midwidth; Rs and M branching repeatedly and dichotomously; Cul 2 -branched; Cu 2 simple. magnifica Tillyard, 1917; UTrias; Blackstone Fin; Ipswieh.

Phipoides elegans; AMF40144; 8mm long. Line drawing (above) of Riek, 1953, fig. 25.

Archipanorpa magnifica; GSQ1106; 33 mm long (right). Line drawing (above) of Tillyard, 1917, pl. 8, fig. 5.

Family BELMONTIIDAE Tillyard, 1919b
BeImontia Tillyard, 1919b [mitchelli]
Forcwing: costal space narrow, not expanded near base; Sc forked near its apex, connceted to RI by a cross vein; no distinct pterostigma; RI simple; Rs 6-branehed; M 4-branehed, occasionally 5 -branched; cubito-median Y -vein well-dcveloped; Cul normally forked near apcx; Cu 2 simple; anal veins simple with cross veins. mitchelli Tillyard, 1919b; UPerm; Newcastle CM; Sydney.

Belmontia mitchelli; AMF28469: 16 mm long. Linc drawing (right) of Tillyard, 1919b, text-fig. 1.

Parabelmontia Tillyard, 1922a [permiana] Se forked distally; 2 r 3 -r4; M fused basally with RRs and M each 6 -branched; Cul not forked distally; permiana Tillyard, 1922a; UPerm; Newcastle CM; Sydney.

Parabelmontia permiana (hindwing); AMF28461; 18 mm long. Line drawing (above left) of Riek, 1953, text-fig. 7.

Family CHORISTIDAE Ebsen-Petersen, 1915

Chorista Klug, 1836 [australis] Forewing: costal area narrow, with one simple eross vein; Se reaehing margin at or just beyond midlength; Cul touching or fused with M for short distanee; Rs 4-branched; M 5-branehed, extra fork on M4. sobrina Riek, 1952a; Palaeocene; Redbank Plains Fm: Ipswich.

Cretacochorista parva; NMVP 103248; 7 mm long. Line drawings (below) of Jell \& Duncan, 1986, fig. 41 C ; forewing (right) and hindwing (left).
Chorista sobrina Riek, 1952: UQF10628; x4. Linc drawing (right) from Riek, 1952a, text-fig. 1.

Mesochorista proavita [holotype of Eoses triassica]; UQF7853; 11 mm long.

Cretacochorista Jell \& Duncan, 1986 [parva]
Rs 5 -branched; M 5 -branehed in forewing, 4 -branched in hindwing.
parva Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.

Family PERMOCHORISTIDAE Tillyard, 1918b
Mesochorista Tillyard, 1916 [proavita][=Eoses Tindale,1945; type triassica ($=$ proavita) $]$ [=Permochorista Tillyard, 1918b; type australica]
Forewing: Sc 2-branched; Rs 4-branched; M 6-branchcd, extra forks on M2 and M4; CuA simple; Cu-M Y-vein variable. Hind: Sc simple; Rs as in fore; M 4-branched; CuP and Al fused for part of length. proavita Tillyard, 1916; Trias; Blaekstone, Mt Crosby Fms; Ipswich.
australica (Tillyard, 1918b); UPerm;
Neweastle CM; Sydney.
jucunda (Tillyard, 1926b); UPerm; Neweastle CM; Sydncy.
dubia Rick, 1953; UPerm; Neweastle CM; Sydncy.
phipa Riek, 1953; UPerm; Neweastle CM; Sydney.
Parachorista Tillyard, 1926b [pincombeac] Forewing: R2+3 forming pectinatc series of 4 or 3 branches: R4+5 2-branched; M 6-branched, extra forks on M2 and M4; Cul and anals simple; eubito-median Y -vein distinct. Hindwing: R branched as in forcwing; M 4-branched; Cul fused to M for short distance.
pincombeae Tillyard, 1926b; UPerm;
Newcastle CM; Sydney.
splendida Tillyard, 1926b; UPerm; Neweastle CM; Sydncy.
bairdae (Tillyard, 1922b); UPerm; Neweastle CM; Sydney.
warnerensis Tillyard, 1926b; UPerm;
Neweastle CM; Sydney.

Family MESOPANORPODIDAE Tillyard, 1918b
Mesopanorpodes Tillyard, 1918b [wianamattensis]
Forewing: Sc forked, 2-branched; Rs 4-branched; R2+3 forking bcfore R4+5; M 4-branched; cubito-median Y-vein variablc; Cu1, Cu2, A1, A2 simplc; A3 forked close to its base; forking to Rs abnormal, similar to Trichoptera.
wianamattensis Tillyard, 1918b; MTrias; Ashfield Fm; Sydney.
belmontensis Riek, 1953; UPerm; Neweastle CM; Sydney.
robustus Riek, 1953; UPerm; Neweastle CM; Sydney.

Mesochorista proavita; GSQ132. Line drawing from Tillyard, 1916, pl. 2, fig. 2.[Parfrey (1996) noted the type missing since being loancd to Tillyard in 1936. It is now in AM (Fletcher, 1971)].

Mesochorista australica; AMF40141; 10 mm long.

Parachorista splendida; AMF28048; 15 mm long. Linc drawing (left) of Riek, 1953, fig. 24.

Mesopanorpodes wianamattensis; AMF39326; 7.5 mm long. Line drawing (above) of Tillyard, 1918b, tcxt-fig. 10

Prochoristella leongatha; NMVP102512; x9. Line drawing (abovc) of Jell \& Duncan, 1986, fig. 43C.

Mesopsyche superba; AMF39263: 24mm long.

Mesopsyche clongata: AMF39233; 13 mm long. Linc drawing (right) of Tillyard, 1917, pl. 7, fig. 1.

Prochoristella Riek, 1953 [megaloprepia] Forewing: Sc long, 2-branched; R1 simple, pterostigma well-dcveloped; Rs 4-branched; cubito-median Y-vein variable, arms cqual of CuA and M fused; CuA and CuP simple; A1. A2 simple; A3 apparently simple.
megaloprepia Rick, 1953; UPerm; Neweastle CM: Sydncy.
anagaura Rick, 1953; UPerm; Newcastle CM; Sydney.
exilis Riek, 1953; UPerm; Newcastle CM; Sydney.
pusilla Rick, 1953; UPerm; Neweastle CM; Sydncy.
belli (Tillyard, 1926b); UPerm; Neweastle CM; Sydncy.
concinna Rick, 1953; UPerm; Newcastle CM; Sydney.
lcongatha Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.

Prochoristella megaloprepia; AMF40123; 7mm long (lcft). Line drawing of Rick, 1953, tcxt-fig. 37.

Family MESOPSYCHIDAE Tillyard, 1917
Mesopsyche Tillyard, 1917 [triareolata]
(=Aristopsyche Tillyard, 1919a; = Neuropsyche Tillyard, 1919a; = Triassopsyche Tillyard, 1917a Forewing: normal Mecoptera execpt for scrics of costal veinlcts; Rs and M each normally 4-branched; distinct cubito-median Y-vein. Hindwing: often with small end twigging on branches of Rs; Sc shorter than in forcwing; no cubito-median Y -vein. triareolata Tillyard, 1917; UTrias; Blackstone Fm; Ipswich. dunstani (Tillyard, 1917); UTrias; Blackstone Fm; lpswich.
elongata (Tillyard, 1919a); UTrias; Blackstone Fm; Ipswich.
superba (Tillyard, 1919a); UTrias; Blackstone Fm; lpswich.

Family NANNOCHORISTIDAE Tillyard, 1917
Nannochorista Tillyard, 1917 [dipteroides] Head with heavily selerotised caudal margin; pronotum with selerotised shield having sealloped anterior and convex lateral margins; abdominal segments increasing in length from 1 to 3 ; with middle tergites twiee as long as wide; segments 7-10 deereasing in length and width: anal hooks long, tapering to point, as long as 10 th segment.
Nannochorista sp. Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.

Nannochorista sp; NMVP 103245; 13 mm long.
Nannochoristella Riek, 1953 [reducta]
Forewing: Se forked; Rs 3-branched; M 3-branehed; no cubito-median Y -vein; M and Cu 1 fused for short distance. Hindwing: apex a little more rounded; Rs and M as in forewing.
reducta Rick, 1953; UPerm; Newcastle CM; Sydney.
Neochoristella Riek, 1953 [optata]
Forewing: Se long, probably forked; Rs 3-branched; M 4-branehed; eubito-median Y-vein absent; Cul and M fused for some distance; Cu and Cu 2 simple; A1, A2 simple.
optata Riek, 1953; UPerm; Newcastle CM; Sydney.

Robinjolnia tillyardi; AMF52312; x8. Line drawings of Rick, 1968, fig. 1A, forewing (upper left), 1B, hindwing (lower left), 1C, metanotum and abdomen (right).

Robinjohnia tillyardi; AMF52312; x8.

Choristopanorpa bifasciata; AMF38263; x3.

Choristopanorpa drinnani; NMVP102506; 7.5 mm long. Line drawing (right) of Jell \& Duncan, 1986, fig. 41 A .

Robinjohnia Martynova, 1948 [tillyurdi] Forewing: costal space not expanded; Sc forked, short: R simple, straight, except at base; pterostigma large but not sharply defined: Rs and M 4-branched; R2 +3 forking close to margin; M1 +2 forking after M3+4; discoidal cell closed by cross vein; Cul simple, straight; Cu2 parallel to Cul strongly curved at margin, finishing away from Cul; CuI and M fused near bases; basal stem of Cul transverse, joining M level with humeral cross vein. Hindwing: Sc simple, short; humeral eross vein distinet; R fused with Se as far as humeral cross vein; Cu 1 simple, distinetly curved back at margin; Cul very oblique, just touching M ; Cu 2 well separated from $\mathrm{Cu} 1 ; \mathrm{Cu} 2$ and A1 fused for short distance.
tillyardi Martynova, 1948; UPerm; Newcastle CM; Sydney.

Family NEORTHOPHLEBIIDAE Handlirsch, 1939

Archebittacus Riek, 1955 [exilis]
Forewing: very narrow base; A3 absent or very short; M4 a distinet stem before it branches. exilis Riek, 1955; UTrias; Mı Crosby Fm; lpswich.

Archebittacus exilis; UQC2139; 16 mm long (left). Line drawing of Riek, 1955, fig. 11.

Family ORTHOPIILEBIIDAE Handlirsch, 1906

Choristopanorpa Riek, 1950 [bifasciata] Forewing: Sc long, reaching into pterostigma; Rs 5 -branehed, extra fork on $\mathrm{R} 2 ; \mathrm{R} 2+3$ forking before R4+5; M 5-branched, extra branch on M4; cubito-median Y -vein well-developed; 3 anal veins; A3 forked. Hindwing: Se long, simple; RI forked distally; Rs 5-branched, rarely 6-branched; M 4-branched; cubito-median Y-vein absent; CuP and Al fused for part of its length.
bifasciata Riek, 1950; MTrias; Hawkesbury Sst; Sydney.
drinnani Jell \& Duncan, 1986; LCrct; Koonwarra FB; Gippsland.

Choristopanorpa bifasciata, line drawing of holotype forewing, AMF30959 (above) and a typical hindwing, AMF39195 (below).

Neoparachorista Riek, 1955 [perkinsi] Forewing: Se forked distally; R1 forked in pterostigma; Rs with $5-8$ branehes; without eubito-median Y -vein; CuA almost straight; M 5- or 6 -branehed. Hindwing: same as forewing but M 4-branched; Se shorter and simple; CuP and AI fused for part of their length.
perkinsi Rick, 1955; UTrias; MiCrosby Fm; Ipswich.
splendida Rick, 1955; UTrias; MtCrosby Fm; Ipswich.
semiovena Riek, 1955; UTrias; MtCrosby Fm; Ipswich.
clarkae Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.
Family PANORPIDAE Latreille, 1804
Austropanorpa Riek, 1952a [australis]
Forewing: Se ending elose to or at pterostigma; R2 peetinately branched; R2 4-, 5- or 6-branehed; Cul not fused to M , conneeted to it by eross vein; Al reaching margin beyond origin of Rs.
australis Rick, 1952a; Palaeocene; Redbank Plains Fm; Ipswich.

Austropanorpa australis; UQF10636; x4. Line drawing (above) of Rick, 1952a, fig. 2.

Neoparachorista clarkae; NMVP102529; body 9 mm long. Line drawing (above) of Jell \& Duncan, 1986, fig. 41B.

Neoparachorista perkinsi; UQC1897: 24mm long. Line drawing (left) of Rick, 1955, 斤ig. 6.

Austropanorpa australis; UQF15572;

Permomerope australis; AMF28045; 8.5 mm long. Line drawing (above) of Riek, 1953, fig. 1.

Neopermopanorpa mesembria; UQC643; 7.5mm long. Line drawing (above right) of Riek, 1955, fig. 2.

Xenopanorpa didymovena; UQC1043; 11 mm long. Line drawing (right) of Riek, 1955, fig. 3.

Family PERMOMEROPIDAE Riek, 1953
Permomerope Tillyard, 1926b [australis] Forewing: costal spaee slightly expanded over basal half; Rs with numerous diehotomous branehes; M normally 8 -branehed; CuA forked at least onee near apex. Hindwing: eostal space narrow basally; Se not reaching pterostigma but fused to R 1 ; pterostigma well-dcveloped in apieal fork of R1; Rs with fewer branehes than forewing; M usually with 8 diehotomous branehes; eubito-median Y -vein not elear; CuA forked at least once, gencrally twiee near apex.
australis Tillyard, 1926b; UPerm; Newcastle CM; Sydney.
nanus Riek, 1953; UPerm; Newcastle CM; Sydney.

Family PERMOPANORPIDAE Tillyard, 1926
Neopermopanorpa Riek, 1955 [mesembria] Forewing: similar to Permopanorpa but with 7-branehed M; M4 with strong fork; Se forked near apex: pterostigma well-developed; Rs 7-branehed; CuA simple.
mesembria Riek, 1955; UTrias; MtCrosby Fm; lpswich.
Xenopanorpa Riek, 1955 [didymovena]
Forewing: R2 +3 and R $4+5$ both very short; R2+3 branching just before R4 +5 ; Rs 7 - or 8 -branehed; M 7- or 8-branched, diehotomous divisions; Sc forked ncar apex.
didymovena Riek, 1955; UTrias; MtCrosby Fm; Ipswich.

Family PERMOTANYDERIDAE Riek, 1953
Permotanyderus Rick, 1953 [ableptus]
Forewing: Sc long, simple, closc to costal margin;
pterostigma well-developed; Rs 4-branched; M
4-branched; Cul simple, curved over apical part; 2 anal vcins.
ableptus Rick, 1953; UPerm; Neweastle CM; Sydney.
Choristotanyderus Riek, 1953 [nanus]
Forewing: Sc long, elose to costal margin; pterostigina well-developed, well before apex of wing; Rs 4-branched; M 4-branched, cubito-median Y-vcin present; Cul with slight bend towards apex; e anal veins.
nanus Riek, 1953; UPerm; Newcastle CM; Sydney.

Mesotanyderus Riek, 1955 [jonesi]
Forewing: long, narrow; Se long, simple; Rs arising close to wing base; cubito-median Y -vcin absent; 3 anal veins; A2 and A3 sloort; Sc, R and M fuscd at basc; R strongly angled at base; a few cross vcins over apical half.
jonesi Riek, 1955; UTrias; MtCrosby Fm; lpswich.

Mesotanyderus jonesi; UQC1054; 7mm long (right). Line drawing (above) of Rick, 1955, fig. 15.

Family PERMOTIPULIDAE Tillyard, 1929
Permotipula Tillyard, 1929 [patricia]
Forewing: Se short, only to midlength; pterostigma well-developed: Rs 3 -branched; $\mathrm{R} 2+3$ simplc; M 4-branched, arising close to base; cubito-mcdian Y-vein reduced; only 2 anal veins.
patricia Tillyard, 1929; UPerm; Neweastle CM; Sydney.

Permotanyderus ableptus; AMF40675; 5 mm long. Line drawing (above) of Rick, 1953, text-fig. 48.

Choristotanyderus nanus; AMF39964; 4mm long. Line drawing (lcft) of Riek, 1953, text-fig. 49.

Permotipula patricia; BMNH In45382 (2nd above).
Wing venation from Willman, 1989a, fig. 2B (above left) and Tillyard, 1929 (abovc).

Xenochorista splendida; AMF40157; 11 mm long. Line drawing (above) of Rick. 1953, fig. 33.

Xenochoristella hillae; UQC2115; 10.5 mm long. Linc drawing (above) of Riek, 1955, fig. 13.

Austrochoristella whitehousei; UQC2172; 5.5 mm long. Line drawing of Riek, 1955, fig. 14.

Family XENOCHORISTIDAE Rick, 1953
Xenochorista Riek, 1953 [splendida]
Forewing: costal space moderately expanded; Se forked near midlength, 3-branched; Rs and M eaeh 4 -branehed; cubito-mcdian Y-vcin well-developed; $\mathrm{CuA}, \mathrm{CuP}$ and anals (with possiblc exeeption of A3) simple.
splendida Riek, 1953; UPerm; Neweastle CM; Sydney.
sobrina Riek, 1953; UPerm; Newcastle CM; Sydney.
Xenochoristella Rick, 1955 [hillae]
Forewing: costal space moderately expanded; Se 3-branehed, with distinct eross vein to margin between 1^{10} and $2^{\text {hd }}$ branches; Rs and M each 4-branehed; cubito-median Y-vein with unequal arms; $\mathrm{CuA}, \mathrm{CuP}$ and anals (exeept A3) simple. hillae Riek, 1955; UTrias; MiCrosby Fm; Ipswieh.

Family MESOPANORPODIDAE Tillyard, 1918b
Austrochoristella Willmann, 1989b
[Prochoristella whitehousei Riek, 1955] M and Cul fused for short distance near base. whitehousei (Riek, 1955); UTrias; MtCrosby Fm; lpswich.

Family TRIASSOCHORISTIDAE Willmann, 1989
Triassochorista Willmann, 1989b
[Neoparachorista nana Riek, 1955
Rs 5-branched; M 5-branched; M and Cul fused for short section at base
nana (Riek, 1955); UTrias; MiCrosby Fm; lpswich.

Triassochorista nana; UQC2080; 12 mm long. Line drawing of Rick, 1955, fig. 10.

Order SIPHONAPTERA (fleas)

Family INCERTAE SEDIS

Tarwinia Jell \& Duncan, 1986 [australis] Antennae 18 or 19 -segmented; head not excessively compressed laterally; thoraeic segments relatively long; tergal combs absent; tibiac all with stout bristles; tarsi very long, with long tarsal elaws, with stout bristles under apical tarsal scgment. Abdomen enlarged, with typical male genitalia.
australis Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.
Niwratia Jell \& Duncan, 1986 [elongata] Legs long, slender; body typically siphonapteran. elongata Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.
Family PULICIDAE Stephens, 1829
Pulicid indet.
Wingless, laterally compressed
Pulicid indet. Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.
[Carpenter (1992:395) noted the 2 apterous inseets from the Lower Cretaceous of Australia assigned to the Siphonaptera by Riek (1970a) but on the opinions of "specialists who have examined the fossils" he dismissed them from the order. Rasnitsyn in Rasnitsyn \& Quicke, 2002:242 accepted one of these, Tarwinia australis, as a siphonapteran but dismissed others. Zherikhin in Rasnitsyn \& Quicke, 2002:366 considered Niwratia elongata to be a young dragonfly nymph and the Pulicid indet. to be roach nymphs].

Pulicid indct.; NMVP103056; body 3 mm long.Line drawing (above) of Jell \& Duncan, 1986, fig. 45A.

Tarwinia australis; NMVP26202, body 7 mm long.

Niwratia elongata; NMVP102517; body 3.5 mm long.

Chironomaptera collessi; larva NMVP103262 (left), 5 mm long; pupae NMVP1 03253 (eentre), 4 mm long; NMVP 103139 (right), 5 mm long.

collessi Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.

Family CHIRONOMIDAE Macquert, 1838

Subfamily TANYPODINAE Skuse, 1889

Tanypodine indet.

Head small, with lateral surface almost completely occupied by eyes; antenna long, stout, with short pedicel, longer seape, at least 10 flagellar segments, plumose distally. Thorax large, strongly convex; metanotum heavily selerotised; legs with long thin femora and tibia; basitarsus 0.6 of length of tibia, with rest of tarsus ineluding long claw less than half as long as basitarsus. Abdomen twice as long as thorax, of 8 segments and terminalia, with first 6 segments of equal length, with 7 th and 8 th shorter. Wing with strong R; R4 +5 forward of apex; R1 meeting costal margin beyond midlength of wing; base of $\mathrm{M} 3+4$ distal to $\mathrm{M} 3+4-\mathrm{CuA}$ junetion. Tanypodine indet. Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.

Tanypodine indet.; NMVPI 03282 (left above), body 2.1 mm long; NMVP 103285 (left), 5.5 mm long. Line drawing (above) of Jell \& Duncan, 1986, fig. 55B.

Tanypodine pupae indet.

Two types of pupae of typical form, with 8 abdominal segments plus caudal lobes; each segment with median carina and lateral longitudinal furrows; caudal lobes in onc type broad, flat, with rounded outer margin and straight almost sagittal margins along posteromedia cleft; in other type they are large, flat, with outer margin inverted pear-shaped, with posterior spines, wide posterior embayment and fringe of fine hairs around whole margin.
Tanypodine pupa indct. 1 Jell \& Duncan, 1986; LCrct; Koonwarra FB; Gippsland. Tanypodine pupa indet. 2 Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.

Family DIXIIDAE Braucr, 1880
Dixid indct. Jell \& Duncan, 1986
Head small, rounded. with large latcral eyes; antenna longer than body, with stout scape, with long hairy tapering markedly more slender flagellum. Thorax broad, with sclerotised wing attachment points. Wing: Sc and R parallel , closc from humeral vein; R1 curving distally just inside margin; Rs arising closer to the base of the wing than Sc; Legs extremely long, slender, with long femur, tibia and basitarsus. Abdomen large, with bluntly rounded posterior.
Dixid indet. Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.

Family DITOMYIIDAE

Australosymmerus Freeman, 1954
Sc lacking;
imperfecta Riek, 1954a; Palaeocene; Redbank Plains Fm; Ipswich.
[named by Riek as Centrocnemis? imperfecta but genus preoccupicd; Centrocnemis replaced by Australomyia Freeman, 1951, replaced by Australosymmerus].

Tanypodine pupae indet.; dorsoventrally compressed NMVP103187 (above left), $x 8$; laterally compressed MUGD3733 (above), x7; different species NMVP103134 (left), x6. Linc drawing of Jell \& Duncan, 1986, fig. 58 A (above lcft), 58 B (above).

Dixid indet.; NMVPI 02499; body 4.5 mm long. Line drawing of wing (above) of Jcil \& Duncan, 1986, fig. 50 J.

Australosymmerus imperfecta; UQF14345; 5mm long. Linc drawing (left) of Rick, 1954, fig. 2.

Aneura apicalis; UQF 14361: 2.5 mm long.
Line drawing (right) of Riek, 1954, fig. 5

Protasmanina nana: UQF14347; 4mm long. Line drawing (above) of Riek, 1954, fig. 3.

Mycetophilidae gen. nov.: NMVP103286; 3.2 mm long. Line drawing (right) of Jell \& Dunean, 1986. fig. 50 H .

Family MYCETOPHILIDAE Macquert, 1838
Ancura Marshall, 1896 [boletinoides]
Wing: Se without an apieal erossvein to R1: M1+2 forking towards the wing margin, with stem longer than branehes, with stem longer than $\mathrm{r}-\mathrm{m}$: $\mathrm{r}-\mathrm{m}$ long; only 1 A distinct.
apicalis Riek, 1954a; Palacocene; Redbank Plains Fm; lpswich.
Protasmanina Riek, 1954a [nana]
Wing with Scending in C after origin of Rs, with crossvein to R1; Rs transverse from its origin to $\mathrm{r}-\mathrm{m}$; r-m more or less longitudinal, about equal to stem of $\mathrm{MI}+2$: $\mathrm{M} 3+4$ arising from CuA more basad than forking of $\mathrm{Ml}+2$; CuP long but weak; 1 A ending well before wing margin; 2 A strong, longer than 1 A , reaching nearer wing margin than 1 A .
nana Riek, 1954a; Palacocene; Redbank Plains Fm; lpswich.

Pseudalysiinia Tonnoir, 1929 [mimicans]

Se long, not quite reaching midength of wing;, ending at costal margin: R1 strong, simple; Rs leaving R1 well beyond apex of Se; r-m long; M3+4 branching from CuA elose to wing base; CuP elose to CuA . both strongly curved.
mimicans Jell \& Duncan, 1986; LCret;
Koonwarra FB; Gippsland.
[Blagoderov (1994) considered this species may possibly represent a new genus of Mesoseiophilidae].
Mycetophilidae gen. nov. Jell \& Duncan, 1986
Se short, close to R1, fading out rapidly laterally to eostal margin; R1 curving forward to costal margin; R5 simple, arising from R1 near wing base, just touehing R1 at point where latter turns to costal margin; $\mathrm{r}-\mathrm{m}$ short, before fork of $\mathrm{M} ; \mathrm{M} 1+2$ leaving R near base, forking just basal to touching of R1 and Rs; M3 simple meeting Cu near wing base; Cu simple, strong, eonvex forward; single anal reaching posterior margin.
Myectophilidae gen. nov. Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.

Family RHAGIONIDAE Latreille, 1802
Atherimorpha White, 1915 [vernalis] Stigma from apex of R1 between Sc and R2+3 to transverse line through $\mathrm{r}-\mathrm{m}$, tapering basally; apiees of $\mathrm{Sc}, \mathrm{R1}$ and $\mathrm{R} 2+3$ equally spaced, well apart; r-m meeting discal cell about $1 / 4$ its length from base; MI with short basal portion; wing apex between R4, R5 . festuca Jell \& Duncan, 1986; LCret; Koonwarra FB;
Gippsland.

Family SIMULIIDAE Newman, 1834

Simuliid indet.

Adult: Head small; cye large, oceupying most of lateral view of head. Thorax large, with mesoplcuron markedly produced ventrally; foreleg with coxa longer than wide and trochanter smaller than eoxa. Abdomen longer than head and thorax combined, heavily selerotised only dorsally and at apex. Larva: Head subrectangular, longer than wide, heavily selerotised, with base supporting cephalic fan ray extending from anterolateral corner of head. with fan rays more than half length of head, with prominent anteromedial projectionon head, with 7-8 rays per fan. Abdomen only slightly expanded towards apex around segments 5-7; proleg large, extending well under head, truncated, selerotised at apex; terminal sucker well-developed, with selerotised radial barsabout $1 / 3$ diameter of sucker. Simuliid indet. Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.

Family TIPULIDAE Leach, 1815

Protolimnophila Rick, 1954a [superba]
Wing like Archilimnophila but with diseal eell more truneate basally, with MI and M2 more widely separated, with M more sinuous. m-eu sloping in opposite direction; CuP almost or completely reaching wing margin.
superba Riek, 1954a; Palaeocene; Redbank Plains Fm; lpswich.

Atherimorpha festuca; NMVP 102498; 10 mm long. Line drawing (right) of Jell \& Duncan, 1986, fig. 61B.

Protolimnophila superba; UQF 14344; 10 mm long. Line drawing (above) of Riek, 1954a, fig. 1.

Tipulid indet.; NMVP103289; 3.5 mm long.
 103188; x7.

Tipulid? indet.

Head small, with large eyes dorsolaterally, with elongate frons; antennac geniculate above seape; thorax deep, with greatly expanded mesonotum, with small prosutural portion; Icgs extremely long and slender; hind femur (1.5 mm long) more than half abdominal length; abdomen long., widest near midlength, tapering posteriorly to acute termination. Tipulid? indct. Jcll \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.

Tipulid larva indet.

Head small, sclerotised, well back on body with only half protruding forward of the thorax, with distinct median longitudinal furrow; thorax and abdomen apparently soft; free pleural margins weakly convex; Tipulid larva indet. Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.

Tipulid pupa indet.; NMVP
Tipulid larva indet.; NMVP
103251; x9

Tipulid pupa indet.;
NMVP103254; $x 10$.

Limoniid indet.; NMVP103287; 5 mm long. Line drawing (above) of Jell \& Duncan, 1986, fig. 50A.

Tipulid pupae indct.
These pupae are assigned here by comparison with the pupae of living genera Ischnotoma and Antocha. Tipulid pupa lindet. Jcll \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.
Tipulid pupa 2 indet. Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.

Family LIMONIIDAE Engel, 1915

Limoniid indet

Wing long, narrow; Sc long; R1 long; Rs 4 -branched; r-m from R5 to M ; long distances between forks in general but particularly on RsI Limoniid indct. 1 Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.
Limoniid indct. 2 Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.

Family CERATOPOGONIDAE Skuse, 1890 Leptoconops Skuse, 1890 [stygius]
C poorly defined beyond $\mathrm{R1}$; origin of $\mathrm{R} 4+5$ and M near base of wing; venation generally similar to that of living members of the genus.
Simuliid indet. 2 Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.
[Generic assignment by Borkent (1997)]

Leptoconops sp.; NMVP 103203;1.8mm long.

Leptoconops sp.; NMVP103203. Sketches from Borkent, 1997, fig. 2G,H.

Family TILLYARDIPTERIDAE
Lukashevich \& Sheherbakov, 1998
Tillyardiptera Lukashevich \& Shchcrbakov, 1998 [prima]
C thick along anterior margin (except base), narrow beyond R4 apex: Se terminating distal of R4+5 bifureation, the latter level with that of M $3+4$; free R2 absent; R4 45 fork about 7 times longer than R4 +5 stem; M1 +2 fork as long as d eell; Se apex at 61% : R fork at 29%; Rs fork at 54%; M fork at 45%; CuA apex at 64%; CuP apex at 53% of wing length. prima Lukashevich \& Shcherbakov, 1998; Mt Crosby Fm; UTrias; Ipswich.

Tillyardiptera prima; BMNHIn 44958; 10 mm long. Line drawing (above right) from Lukashevieh \&
Sheherbakov, 1998, fig. 2.

Archexyela crosbyi; UQC2232: 9mm long. Line drawing (above) of Riek, 1955, fig. I.Second specimen mentioned by Riek (1955) UQC2233 (top and middlc at right (part and counterpart), 9 mm long. Archexvela sp. nov., QMF44154(lower at right), 10 mm long.

Eoichneumon duncanae; NMVP103104; 7mm long. Linc drawing (above) of Jell \& Duncan, 1986, fig.

Order HYMENOPTERA Suborder SYMPHYTA Gerstaecker, 1867

Family XYELIDAE Newman, 1835
Archexyela Rick, 1955 [crosbyi]
Forewing: like modem Macroxycla but apical cross vcin from pterostigma to Rs passing to R2+3 not to stem of Rs; Sc frec to base of wing; M curved back towards apex of wing.
croslyyi Riek, 1955; UTrias; MtCrosby Fm; lpswich.

Suborder APOCRITA

Gerstaecker, 1867
Family EOICHNEUMONIDAE Jell \& Duncan, 1986
Eoichneumon Jell \& Duncan, 1986 [duncanae] Forewing with basal $\mathrm{m}-\mathrm{eu}$ joining M just after its separation from Rs; areolct 6 -sided. Mctasoma like Pimplinae (Ichncumonidac), with tergites short and broad; 1st tergite with pair of diverging carinae arising from base, only slightly longer than succeeding segments; ovipositor strongly exserted; basitarsus of hindleg longer than segments 2-5 combincd.
duncanae Jell \& Duncan, 1986; LCrct;
Koonwarra FB; Gippsland.

Family AULACIDAE Shucckard, 1841

Aulacid indet.

Antenna 14-segmented, with short seape and funiele; Mesoscutellum with deep percurrent notaulices; scutellum large, as long as scutum; metanotum half length of scutellum; propodium abruptly deelivous: metasoma iserted high, well above hind coxal insertion. Wings with long radial cell ending before apex, with thickened margin from pterostigma to apex of radial cell; pterostigma narrow.
Aulacid indet. Jell \& Duncan, 1986; LCrct; Koonwarra FB; Gippsland.

Family PROCTOTRUPIDAE Latreille, 1802
Proctotrupid indet.
Propodcum coarsely ornamented: apex produced into slight neek; metanotum vertical at meson; scutellum raised; hindleg with large coxa; trochanter long, thin, more than 0.5 length of coxa; femur long, thin, narrow at base; tibia as long as femur; middle leg shorter than hindleg, with small coxa; metasoma arising from high on inesosoma, consisting mainly of greatly enlarged first segment, with its sternite defined at base ventrally and over very short area dorsally, with tergite produced ventrally to enelose sternite over distal two thirds.
Proctotrupid indet. Jell \& Duncan, 1986;
LCret; Koonwarra FB; Gippsland.

Superfamily BETHYLOIDEA Haliday, 1840 Bethyloid? indet.
Head elongate, flattened; antennae and large lateral eyes present but poorly preserved; thorax as long as abdomen; wings folded back along abdomen, not quite reaching end of body; legs incomplete, coxac and femora markedly expanded, with more slender tibiae and tarsi. Metasoma well segmented, expanded throughout but slightly more enlarged anteriorly.
Bethyloid? indet. Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.

Aulacid indet.; NMVP103168; x10. Line drawing (above) of Jell \& Duncan, 1986, fig. 65E.

Proctotrupid indet.; NMVP103106; x10. Line drawing (above) of Jell \& Duncan, 1986, fig. 65A.

Bethyloid? indet.; NMVP103320; 5mm long. Line drawing (left) of Jell \& Duncan, 1986, fig. 68F.

Pemphredonine indet.; NMVP102740; 5 mm long. Line drawing of Jell \& Duncan, 1986, fig. 68C.

Family SPHECIDAE Leach, 1815

Pemphredonine? indet.

Head with occipital carinac converging forward, not curved around foramen. Propleuron longer than wide; pronotum rounded posterolaterally, with posterolateral spiracle cover lobe sharply differentiated from central extension of pronotum; episternum large, with fore margin elearly defined at meson, with short concave anterolateral margin; prepectus evident; middle coxa small, with elongate trochanter; hind coxa larger, stouter, trochanter not clearly defined, femur only slightly widened, with a narrow dorsal flange defined by a groove or ridge, with tibia narrower than femur. Metasoma longer than mesosoma, with sutures between all 7 segments; first sternite very short, with convex apical margin; 3rd-6th sternites becoming shoner, with caudal margins becoming more concave. posterior with pair of large elaspers over apical segment laterally.
Pemphredonine? indet. Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.
Family FORMICIDAE?? Latreille, 1802
Cretacoformica Jell \& Duncan, 1986 [explicata]
Single petiote segment; abdominal segment IV non-tubulate; pronotum subrectangular, narrower than rest of mesosoma; forcwing with reduced

Cretacoformica explicata; NMVP102501: wingspan 7.5 mm . Linc drawing of wing venation from Jell \& Duncan, 1986, fig. 69C.
venation, with enelosed costal cell, with pterostigma, with $\mathrm{M}+\mathrm{CuA}, \mathrm{M}, \mathrm{CuA}$ and IA not trachcate. Legs similar, various segments longer to posterior; femur expanded medially; tibia expanded distally; basitarsus of uniform width, longer than rest of tarsus combined.
explicata Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.
[Holldobler \& Wilson (1990) doubted the faninily assignment of Cretacoformica and Naumann (1993) gave a very dctailed description and discussion of the taxon. He concluded that it could not be satisfactorily assigned to any family of the Apocrita principally because the nature of the petiole could not be discerncd due to the attitude of preservation -a difficulty cxpressed by Jell \& Duncan (1986).]
Family PRAEAULACIDAE Rasnitsyn, 1972
Westratia Jell \& Duncan, 1986 [nana]
First funicle segment longest. Hindleg short; femur distinctly shorter than metasoma; basitarsus shorter than segments 2-5 combincd. Anterior of mesoscutum apparently not produccd into transverse ridges. Wing with wide costal cell, prominent pterostigma, slightly rteduced forewing venation similar to that of Austronia rubrithorax Riek, 1955. Ovipositor strongly exserted.
nana Jell \& Duncan, 1986; LCret; Koonwarra FB; Gippsland.

Westratia nana; NMVP103105; x18 (below left). Line drawing (above) of Jell \& Duncan, 1986, fig. 65 D .

Westratia nana; NMVP103324; x18. Line drawing (above) of Jell \& Duncan, 1986, fig. 65C.

Order MEGALOPTERA (alderflies)

Family SIALIDAE
Austrosialis Tillyard [ignicollis]
RP3 +4 simple; MA 2-branched: MPI +2 2-branched; MP1 +2 forked at about same level as representative; MP3+4 2-branched; forks of MA, MP and CuA not differing mueh in depth.
sp. Lambkin. 1992; Palaeocene; Redbank
 Plains Fm; Ipswich.

Austrosialis sp.; QMF21638; 11 mm long. Line drawing of Lambkin, 1992, fig. 1.

ACKNOWLEDGEMENTS

1 thank Andrew Ross and Phillip Crabb, Natural History Muscum for providing photographs of specimens in the collection under their care, Bob Jones, Australian Museum for the loan of specimens, Robert Beattie for providing upto date information on the Belmon//Warners Bay fossil insect sites, Paul Avern and Sue Parfrey, Qucensland Museum, for help with photography and Megan Lloyd, Queensland Museum, for hclp in obtaining difficult literature.

LITERATURE CITED

ANSORGE, J. 1996. Insekten aus dem oberen Lias von Grimmen (Vorpommern, Norddeutsehland). Neue Paläontologisehe Abhandlungen 2: 1-132, pls 1-17.
ARCHER, M., GODTHELP, H., HAND, S.J. \& MEGIRIAN, D. 1989. Fossil mammals of Riversleigh, northwestern Queensland: preliminary overview of biostratigraphy, correlation and environmental change. Australian Zoologist 25: 29-65.
ARCHER, M., GODTHELP. H. \& HAND, S.J. 1991. Riversleigh: the story of animals in ancient rainforests of inland Australia. (Reed: Sydney). 264p.
BALME, B.E. 1964. The palynological record of Australian pre-Tertiary floras. Pp. 49-80. In Cranwell, L. (ed.) Ancient Pacific floras. (University of Hawaii Press:Honolulu).
BLAGODEROV, V.A. 1994. Dipterans (Mesoseiophilidac) from the Lower Cretaceous of Transbaykal. Palcontological Journal 27(1A): 123-130.
BORKENT, A. 1997. Upper and Lower Cretaceous biting midges (Ceratopogonidac: Diptera) from Hungarian and Austrian amber and the Koonwarra Fossil Bed of Australia. Stuttgarter Beiträge zur Naturkunde, Seric B (Geologie und Paläontologie) 249: 1-10.
CARROLL, E.J. 1962. Mesozoic fossil insects from Koonwarra, South Gippsland, Victoria. Australian Journal of Seience 25: 264-265.
CARPENTER, F. 1992. Superclass Hexapoda. Pp. 1-655. In Kaesler, R. (ed.) Treatise of Invertebrate Palcontology, Part R. Arthropoda 4. Volumes 3 \& 4. (Geological Society of Ameriea \& University of Kansas: Lawrence, Kansas).
DAVIS, C. 1942. Hemiptera and Copeognatha from the Upper Permian of New South Wales. Proceedings of the Linnean Society of New South Wales 67: 111-112.
1943. A new species of Permithone (Neuroptera Planipennia) from the Upper Permian of New South Wales. Proccedings of the Linnean Society of New South Wales 68: 11-12.
DETTMANN, M.E. 1986. Early Cretaceous palynoflora of subsurface strata correlative with the Koonwarra Fossil Bed, Vietoria. Memoirs of
the Association of Australasian Palaeontologists 3: 79-1 10.
DODDS, B. 1949. Mid-Triassic Blattoidea from the Mount Crosby Inseet Bed. University of Quecnsland Papers, Department of Geology 3: 1-11.
DRINNAN, A.N. \& CHAMBERS, C. 1986. Flora of the Lower Cretaceous Koonwarra Fossil Bed (Korumburra Group), South Gippsland, Vietoria. Memoirs of the Association of Australasian Palacontologists 3: 1-77.
DUNCAN, 1.J., BRIGGS, D.E.G \& ARCHER, M. 1998. Three-dimensionally mineralized insects and millipedes from the Tertiary of Riversleigh, Queensland, Australia. Palaeontology 41 : 835-851.
DUNCAN, I.J. \& BRIGGS, D.E.G 1996. Threedimensionally preserved inseets. Nature 381: 30-31.
DUNSTAN, B. 1916. Mesozoic and Tertiary insects of Queensland and New South Wales. Stratigraphical features.Geological Survey of Qucensland Publication 253: 1-10, pls 8-9.
1923. Mesozoic insects of Queensland. Part 1. Introduction and Coleoptera. Geologieal Survey of Queensland Publication 273: 1-74, pls 1-7.
ENGEL, B.A. 1966. Explanatory notes on the Neweastle 1:250,000 Geological Sheet, SI 56-2. (Geological Survey of New South Wales: Sydney). 63p.
ETHERIDGE, R. Jr 1913, Palacontological contributions to the geology of Western Australia 4. Geological Survey of Western Australia Bulletin 55: 1-34.
ETHERIDGE, R. Jr \& OLLIFF, A.S. 1890. The Mesozoic and Tertiary insects of New South Wales. Memoirs of the Geological Survey of New South Wales, Palacontology 7: 1-18, pls 1-2.
EVANS, J.W. 1943a. Two interesting Upper Permian Homoptera from New South Wales. Transaetions of the Royal Society of South Australia 67: 7-9, pl. 1.

1943b. Upper Permian Homoptera from Ncw South Wales. Records of the Australian Museum 21: 180-198.
1947. A new fossil homopteran from Kimble's Hill, Belmont (Upper Permian). Records of the Australian Museum 21: 431-432.
1950. A re-examination of an Upper Permian inseet, Paraknightia magnifica Ev. Records of the Australian Muscum 22: 246-250.
1956. Palacozoic and Mesozoic Hemiptera (Insecta). Australian Journal of Zoology 4: 165-258.
1957. Some aspeets of the morphology and interrelationships of extinct and recent Homoptera. Transactions of the Royal Entomological Society of London 109: 275-294.
1958. New Upper Permian Homoptera from the Belmont Beds (Homoptera: Inseeta). Reeords of the Australian Muscum 24: 109-114.
1961. Some Upper Triassic Hemiptera from Queensland. Memoirs of the Queensland Museum 14: 13-23.
1963. The systematic position of the lpsvichiidae (Upper Triassie Hemiptera) and some new Upper Permian and Middle Triassic Hemiptera from Australia (Insecta). Joumal of the Entomologiea! Socicty of Queensland 2:17-23, pl. 1.
EVANS, J.W. 1971. Some Upper Triassic Hemiptera from Mount Crosby, Queensland. Memoirs of the Queensland Museum 16: 145-152.
FLECK, G \& NEL, A. 2003. Revision of the Mesozoie family Aechnidiidae (Odonata: Anisoptera). Zoologica 153: 1-172.
FLEMING P.J.G 1966. Notes on Triassic fossils from the Mount Crosby Formation in the Parish of Chuwar. Queensland Government Mining Journal 63: 119-120.
FLETCHER, H.O. 1971. Catalogue of type specimens of fossils in the Australian Museum Sydney. Memoirs of the Australian Museum 13: 1-167.
GILL, E.D. 1955. Fossil insects, centipede and spider. Vietorian Naturalist 72: 87-92.
HAMILTON, K.G.A. 1992. Lower Cretaceous Homoptera from the Koonwarra Fossil Bed in Australia, with a new superfamily and synopsis of Mesozoic Homoptera. Annals of the Entomological Society of America 85: 423-430.
HAWLEY, S.P. \& BRUNTON, J.S. 1995. The Neweastle Coalfield. Notes to accompany rhe 1:100,000 Neweastle Coalfield regional geology map. Department of Mineral Resourecs, Geologieal Survey of New South Wales Report GS1995/256: 1-93.
HILL, D., PLAYFORD, G \& WOODS, J.T. 1965. Triassic fossils of Queensland. (Queensland Palacontographieal Society: Brisbane).
1968. Cretaceous fossils of Queensland. (Queensland Palaeontographical Society: Brisbanc).
1970. Cainozoic fossils of Queensland. (Queensland Palaeontographical Socicty: Brisbane).
HOLLDOBLER, B. \& WILSON, E.O. 1990. The ants. (Belknap Press: Cambridge).
JELL, P.A. 1993. Late Triassic homopterous nymph from Dinmore, 1pswich Basin. Memoirs of the Queensland Museum 33:360.
JELL, P.A. \& DUNCAN, P.M. 1986. Invertebrates, mainly inseets, from the freshwater, Lower Cretaceous, Koonwarra Fossil Bed (Korumburra Group), South Gippsland. Vietoria. Memoirs of the Association of Australasian Palaeontologists 3: 111-205.
JELL, P.A. \& LAMBKIN. K.J. 1993. Middle Triassic orthopteroid (Titanoptera) inseet from the Esk Formation at Lake Wivenhoe. Memoirs of the Queensland Museum 33: 258.
JELL, P.A. \& ROBERTS, J. (eds) 1986. Plants and invertebrates from the Lower Cretaceous, Koonwarra Fossil Bed, South Gippsland,

Vietoria. Memoirs of the Association of Australasian Palacontologists 3: 1-205.
KOVALEV, V.G 1983. New dipteran family from the Triassic of Australia and its presumed descendants (Diptera, Crosaphididac fam.n., Myeetobiidae). Entomology Review 62(4): 130-136.
KUKALOVA, J. 1966. Protelytroptera from the Upper Permian of Australia, with a discussion of the Protocoleoptera and Paracoleoptera. Psyche 73: 89-111, pl. 8.
KUKALOVA-PEK, J. 1988. A substitute name for the extinet genus Stenelytron Kukalová (Protelytroptera). Psyche 94: 339.
1991. Fossil history and the evolution of hexapod struetures. Pp. 141-179. In CSIRO (ed.) The insects of Australia: A textbook for students and researeh workers. 2nd ed. vol. 1(Melbourne University Press: Carlton). 542p.
LAMBK1N, K.J. 1987. A re-examination of Euporismites balli Tillyard from the Palaeocene of Queensland (Neuroptera: Osmylidae: Kempyninae). Neuroptera International 4: 295-300.
1988. A re-examination of Lithosmylidia Rick from the Triassic of Queensland with notes on Mesozoic 'osmylid-like" fossil Neuroptera (1nsecta : Neuroptera). Memoirs of the Queensland Muscum 25: 445-458.
1992a. Re-examination of the venation of Osmylopsychops spillerae Tillyard from the Triassic of Queensland. Memoirs of the Queensland Museum 32: 183-188.
1992b. A record of Austrosialis Tillyard from the Queensland Palacocene (Insecta: Megaloptera: Sialidae). Queensland Naturalist 31: 84-86.
LITTLE, M.P., BOYD, R.L., BRUNTON, J., IVES, M., RIGBY, R. \&TOBIN, C. 1996. The Neweastle Coal Measures: stratigraphy, sedimentology and sequenee stratigraphy. Pp. 77-84. In Proceedings of the 30th Newcastle Symposium on Advances in the study of the Sydney Basin (Neweastle University: University).
LUKASHEVICH, E.D. \& SHCHERBAKOV, D.E. 1998. A new Triassic family of Diptera from Australia. Pp. 81-89. In Proceedings of the First International Palcoentomological Conference. (AMBA projects: Moscow).
MARTYNOVA, O.M. 1948. Data on the evolution of the Mecoptera. Trudy Paleontologicheskogo instituta akademii nauk SSSR 14: 1-76, pls 1-3.
MeKEOWN, K.C. 1937. New fossil insect wings (Protohemiptera, Family Mesotitanidae). Records of the Australian Museum 20: 31-37, pls 4-7.
NAUMANN, 1.D. 1993. The supposed Cretaceous ant Cretacoformica explicata Jell and Duncan (Hymenoptera). Journal of the Australian Entomological Socicty 32: 355-356.
PARFREY, S.M. 1996. Gcologieal Survey of Quecnsland Catalogue of type, figured and cited
fossils. (Queensland Dcpartment of Mines \& Encrgy: Brisbanc). 268p.
RASNITSYN, A.P. 1992. Strashila incredibilis, a ncw enigmatic mccoptcroid inscct with possible siphonapteran affinitics from the Upper Jurassic of Siberia. Psyche 99: 323-333.
RASNITSYN, A.P. \& QU1CKE, L.J. (eds) 2002. History of insects. (Kluwer: Dordrecht, Holland). 517p.
RIEK, E.F. 1950. A fossil mccopteran from the Triassic beds at Brookvalc, N.S.W. Records of the Australian Museum 22: 254-256.
1952a. The fossil insects of the Tertiary Redbank Plains Series. Part 1: an outline of the fossil assemblage with description of the fossil insects of the Orders Mccoptera and Ncuroptera. University of Quecusland Papers, Department of Geology 4: 3-14, pls 1-2.
1952b. Fossil insects from the Tertiary scdiments at Dinmore, Queensland. University of Qucensland Papers, Department of Gcology 4: 17-22, pl. 1.
1953. Fossil mecopteroid insccts from the Upper Pcrmian of New South Walcs. Records of the Australian Muscum 23: 55-87, pls 5-6.
1954a. The fossil Diptera of the Tertiary Redbank Plains series, Qucensland. Proccedings of the Linncan Society of New South Walcs 79: 58-60.
1954b. A re-cxamination of the Upper Tertiary mayflies described by Etheridge and Olliff from the Vegctable Creck tin-ficld. Records of the Australian Muscum 23: 159-160, pl. 10.
1954c. Further Triassic insects from Brookvale, N.S.W. (Orders Orthoptera Saltatoria, Protorthopteri, Perlaria). Records of the Australian Museum 23: 161-168, pl. 11.
1954d. A second specimen of the dragonfly Aeschnidiopsis flindersiensis (Woodward) from the Qucensland Cretaceous. Procecdings of the Linncan Society of New South Walcs 79: 61-62.
1955. Fossil insects from the Triassic beds at Mt Crosby Qucensland. Australian Journal of Zoology 3: 654-691, pls 1-4.
1956. A re-examination of the mecopteroid and orthopteroid fossils (lnsceta) from the Triassic beds at Denmark Hill, Queensland, with descriptions of further specimens. Australian Journal of Zoology 4: 98-110, pls 1-2.
1962. Fossil insects from the Triassic at Hobart, Tasmania. Papers and Proccedings of the Royal Socicty of Tasmania 96: 39-40, pls 1-2.
1967a. Further cvidence of the Panorpidac in the Australian Tertiary (Insecta: Mecoptcra). Journal of the Australian Entomological Society 6: 71-72.
1967b. A fossil cockroach (Blattodea: Poroblattinidac) from Mt. Nicholas Coal Mcasures, Tasmania. Journal of the Australian Entomological Socicty 6: 73.
1968a. Robinjohnia tillyardi Martynova, a mecopteron from the Upper Permian of Belmont,

Ncw South Wales. Rccords of the Australian Museum 27: 299-302, pl. 44.
1968b. Undescribed fossil insects from the Upper Permian of Belmont, New South Walcs (with an appendix listing the described specics). Records of the Australian Museum 27: 303-310, pl. 45.
1968c. On the occurrence of fossil inscets in the Mcsozoic rocks of Western Australia. Rccords of the Australian Museum 27: 311-312, pl. 46.
1970a. Lower Cretaceous fleas. Naturc 227: 746-747.
1970b. Origin of the Australian inscet fauna. Pp. 593-598. In Theron (ed.) Proceedings and Papers of the Second Gondwana Symposium. South Africa, 1970.
1970c. Fossil history. Pp. 168-186. In CSIRO (ed.) The insects of Australia: A textbook for students and research workers. (Melbournc University Press: Carlton). 1029p.
1971. The presumed heads of Homoptera (Insceta) in the Australian Upper Permian. Palacontology 14: 211-221.
1973. A Carboniferous inscet from Tasmania. Nature 244: 455-456.
1976. Neosecoptera. a ncw insect suborder bascd on specimen discovered in the Late Carboniferous of Tasmania. Alcheringa 1: 227-234.
ROZEFELDS, A.C. 1985. A fossil zygoptcran nymph (Insecta: Odonata) from the Latc Triassic Abcrdare Conglomerate, southeast Queensland. Proccedings of the Royal Society of Queensland 96: 25-32.
1988a. Insect leaf mines from the Eocene Anglesca locality, Victoria, Australia. Alchcringa 12: 1-6.
1988b. Lepidoptera mincs in Pachypteris (Corystspermaccac: Ptcridospermo- phyta) from the Upper Jurassic/Lower Cretaccous Battle Camp Formation, north Quecnsland. Proceedings of the Royal Society of Queensland 99: 77-81.
ROZEFELDS, A.C. \& SOBBE, 1. 1987. Problematic insect leaf mines from the Upper Triassic lpswich Coal Mcasures of southcastern Qucensland. Alcheringa 11: 51-57.
SHAROV, A.G 1968. Plylogeny of the Orthopteroidea. Trudy Palcontologicheskogo Instituta Akademiya Nauk SSSR 118: 1-218.
SMITHERS, C.N. 1972. The classification and phylogeny of the Psocoptcra. Mcmoirs of the Australian Muscum 14:
SUKATCHEVA, I.D. 1982. 1storicheskoc razvitic otryada ruchcinikov [Historical development of the caddisflies]. Trudy Palcontologicheskogo Instituta Akademiya Nauk SSSR 197: 1-107.
TALENT, J.A., DUNCAN, P.M. \& HANDBY, P.L. 1966. Early Cretaceous fcathers from Victoria. Emu 66: 81-86, pls 1-3.
TILLYARD, R.J. 1917. Mesozoic inscets of Queensland. No. 1. Planipennia, Trichoptera, and the new order Protomccoptera. Procecdings of the

Linnean Society of New South Walcs 42: 175-200, pls 7-9..
1918a. Mesozoic inseets of Queensland. No. 2. The fossil dragonfly Aeschnidiopsis (Aeschna) flindersiensis Woodward), from the Rolling Downs (Cretaceous) Series. Proceedings of the Linnean Society of Ncw South Walcs 42: 676-692, pls 42-43.
1918b.Permian and Triassic insects from New South Wales, in the collcction of Mr. John Mitchell. Proceedings of the Linnean Society of Ncw South Wales 42: 720-756.
1918c. A fossil insect wing from the roof of the coal-seam in the Sydney Harbour Colliery. Proceedings of the Linnean Society of New South Wales 43: 260-264.
1918d. Mesozoic insects of Queensland. No. 3. Odonata and Protodonata. Proceedings of the Linnean Society of New South Wales 43: 417-436, pls 44-45.
1918e. Mesozoic inseets of Qucensland. No. 4. Hemiptera Heteroptera: thc family Dunstaniidae with a note on the origin of the Heteroptera. Proccedings of the Linnean Society of New South Wales 43: 568-592, pl. 59.
1919a. Mesozoic insects of Quecnsland. No. 5. Mecoptera, the new order Paratrichoptera, and additions to Planipennia. Proceedings of the Linncan Society of New South Wales 44: 194-212, pl. 67.
1919b. A fossil insect wing belonging to the ncw order Paramecoptera, ancestral to the Trichoptera and Lepidoptera, from the upper Coal-Measurcs of Newcastle, N.S.W. Procecdings of the Linnean Society of New South Wales 44: 231-256, pls 12-13.
1919e. Mesozoic insects of Queensland. No. 6. Blattoidca. Proccedings of the Linnean Society of New South Wales 44: 358-382.
1919d. Mesozoic insects of Queensland. No. 7. Hemiptera Homoptera; with a note on the phylogeny of the suborder. Proceedings of the Linnean Socicty of Now South Wales 44: 857-896, pls 7-9.
1921a. Mesozoic insects of Queensland. No. 8. Hemiptera Homoptera (Contd.). Proceedings of the Linnean Society of New South Wales 46: 270-284, pls 16-21.
1921b. Two fossil insect wings in the collection of Mr. John Mitehell, from the Upper Permian of Newcastle, N.S.W., belonging to the Order Hemiptcra. Proceedings of the Linnean Society of New South Wales 46: 413-422, pl. 35.
1922a. Some new Permian inseets from Belmont, N.S.W. in the collection of Mr John Mitehell. Proecedings of the Linnean Socicty of New South Wales 47: 279-292, pls 33-34.
1922b. Mesozoie insects of Qucensland. No. 9. Orthoptera, and additions to the Protorthoptera, Odonata, Hemiptera and Planipennia.

Proceedings of the Linnean Society of New South Wales 47: 447-470, pls 51-53.
1922c. An insect wing in a crystal of sclenite (order Orthoptera). Records of the Geologieal Survey of New South Wales 10: 205-207, pl. 15.
1923a. On a Tcrtiary fossil insect wing from Qucensland (Homoptera Fulgoroidea), with description of a new genus and specics. Proceedings of the Royal Society of Queensland 35: 16-20, pl. 1.
1923b. Mesozoic inseets of Queensland. No. 10. Summary of the Upper Triassic insect fauna of lpswich, Q. (With an appendix deseribing new Hemiptera and Planipennia). Procecdings of the Linnean Society of New South Wales 48: 481-498, pl. 43.
1924. Upper Permian Coleoptera and a new order from the Belmont Beds, New South Wales. Proceedings of the Linnean Society of New South Wales 49: 429-435, pls 45-46.
1925. A new fossil insect wing from Triassic beds near Deewhy, N.S.W.. Proccedings of the Linnean Society of New South Wales 50: 374-377, pl. 36.
1926a. Upper Permian insects of New South Wales 1. Introduction and the Order Hemiptera. Proceedings of the Linnean Society of New South Wales 51: 1-30, pl. 1.
1926b. Upper Permian inscets of New South Walcs. 2. The orders Mecoptera, Paramecoptera and Ncuroptcra. Proceedings of the Linncan Society of Ncw South Wales 51: 265-282, pls 15-16.
1929. Permian Diptera from Warner's Bay, N.S.W. Nature 123: 778-779.
1935a. Upper Permian inseets of Ncw South Walcs. 3. The order Copeognatha. Proceedings of the Linnean Society of New South Walcs 60: 265-279.
1935b. Upper Permian insects of New South Wales. 4. The order Odonata. Proceedings of the Linncan Society of New South Walcs 60: 374-384, pl. 12.
1935c. Upper Permian insects of New South Walcs. 5. The order Perlaria or stoneflies. Proceedings of the Linnean Society of Ncw South Wales 60: 385-391, pl. 12.
1937. A small collcetion of fossil cockroach remains from the Triassic Bcds of Mount Crosby, Queensland. Proceedings of the Royal Society of Queensland 48: 35-40.
1916. Mesozoic and Tertiary insects of Quecnsland and New South Walcs. Description of the fossil insects. Geological Survey of Qucensland Publication 253: 11-60, pls 1-7.
TINDALE, N.B. 1945. Triassic insects of Queensland. 1. Eoses, a probable lepidopterous insect from the Triassic beds of Mt. Crosby, Queensland. Proceedings of the Royal Society of Queensland 56: 37-46, pl. 5.
1980. Origin of the Lepidoptera, with description of a new mid-Triassic species and notes on the
origin of the butterfly stem. Journal of the Lepidopterists' Society 34: 263-285.
VISHNIAKOVA, V.N. 1981. New Palaeozoic and Mesozoic lophioneurids (Thripida, Lophioneuridae). Trudy Palcontologicheskogo instituta, Akad emiya Nauk SSSR 183: 43-63.
WALDMAN, M. 1971. Fish from the freshwater Lower Cretaceous of Vietoria, Australia, with comments on the palaco-environment. Special Papers in Palacontology 9: 1-124, pls 1-18.
WHITWORTH, H.F. 1954. A faked fossil. Museums Journal 53: 319-320.

WILLMAN, R. 1989a. Rediseovered: Permotipula patricia, the oldest known fly. Naturwissensehaften 76: 375-377.
1989b. Evolution und Phylo- genetisches System der Mecoptera (Insecta: Holometabola). Abhandlungen der Sencken- bergisehen Naturforsehenden Gesellsehaft 544: 1-153.
WOODWARD, H. 1884. On the wing of a neuropterous insect from the Cretaceous limestone of Flinders River, north Qucensland, Australia. Geological Magazine, 3rd decade 1:337-339, pl. I.
WOOTON, R.J. 1963. Actinoseytinidae (HemipteraHeteroptera) from the upper Triassic of Queensland. Annals and Magazine of Natural History, series 13, 6: 249-255.

INDEX

Entries for Orders are in upper case and bold face type. Entries for other suprageneric taxa (mainly families) are in upper case. All species entr ies are in lower ease and are followed by the generie assignment. Generic and specifie entries in italies indicate the taxon has gone into synonymy.
aberrans Triassoscytinopsis. 59
ableptus Permotanyderus 97
abnormis Ademosynoides 70
abrupta Austrocypha 31
abrupta Mesonirvana 56
Actinoscytina 65
acutipennis Ipsvicia 45
Adelidium 79
Ademosyne 70
Ademosynoides 70
adscita Agetochoristella 88
adunca Ademosyne 70
Aeroplana. 30
AEROPLANIDAE 30
AESCHNIDIIDAE 15
Aeschnidiopsis 15
affine Mesogereon 46
affine Permopsyllidium 50
affinis Mcsoscytina 38
affinis Paradunstania 42
affinis Permosyne 71
Agetochoristella 88
AGETOPANORPIDAE 88
alata Crosbella 55
Alotrifidus 36
alternata Ademosynoides 70
amplicata Triassocotis 39
analis Triassothea 54
andersoni Clatrotitan 29
Aneura. 102
angaura Prochoristella 92
angusta Eochiliocycla 44angusta Lophioneura
angustata Ademosynoides 7031
angustata Stenovicia 62
angustius Elateridium 76
anomala Aphryganoneura. 88
anomala Crosaphis 35
anomala Stenoperlidium 17
anomala Triassoscelis 59
Anomaloscytina 48
Anthocoridindet.
antinodalis Mesophlebia68
Antitaxinura 1714
Apheloodes
Apheloscyta.73
B0
60 Bekkerscytina 35
APHIDIDAE 35
Aphryganoneura 88
apicalis Ancura 102
APOCRITA 106
Archebittacus 94
ARCHEOSMYLIDAE 81
Archeosmylus 81
Archepsychops 84
ARCHESCYTINIDAE 35
Archexyela 106
Archipanorpa 89
ARCHIPANORPIDAE 89
Aristopsyche 92
Atalophlebia 11
Atherimorpha 103
Aulacid indet. 107
australe Eurymelidium 38
australe Megapsocidium 33
australe Protopsyllidium 52
australica Mesochorista 91
australicus Triassocixius 41
australiensis Ademosyne 70
australiensis Stenoscytina 58
australiensis Triassagrion 15
australis Austropanorpa 95
australis Etheridgea 72
australis Mesoscytina 38
australis Neopetromantis 88
australis Permojassus 58
australis Permomerope 96
austral is Tarwinia 99
australis Triassocotis 39
Australoblattula. 19
Australosymmerus 101
Australurus 11
Austroblatulla 5
Austrochoristella 98
Austrocypha 31
Austrodietya 7
Austroelytron 23
Austroidelia. 18
Austrolestidion. 7
Austromylacrites 20
Austropanorpa 95
Austroprosbole 48
Austropsocidium 33
Austroscarites 39
Austroscytina 35
Austrosialis sp 110
BAETIDAE 11
bairdi Parachorista 91
balli Euporismites 82
baretti Austrocypha 31
baronne Lithosmylidia 82
64
Beaconiella
belli Prochoristella 92
Belmontocartabelmontensis Aetinoscytina.43
belmontensis Cladochorista.65
belmontensis Mesopanorpodes86
belmontensis Orthoscytina91
belmontensis Permithonebelmontensis Permofulgor5781
belmontensis Permoglyphis.25
belmontensis Permopsychops. 8157
belmontensis Permosyne 71
belmontensis Tychticoloides 37
Belmontia. 89
89
BELMONTIIDAE
Belpsylla50Bethyloid indet.107
bifasciata Choristopanorpa 94
bifida Psocoscytina 53
bilineatus Grammositus 71
bipunctatum Elaterium 76
biserialis Permorapisma 82
BLATTARIA 19
BLATTIDAE 20
blatteloides Samaroblatta 19
Blattotermes 22
brachyclada Mesocixioides 41
brevis Ademosyne 70
bryani Cladochoristella 86
bryani Eoscarteroides 44
bryani Scolypopites 63
burrettae Psychroptilus 1.13
Calamoceratid pupa indet. 87
cameroni Ademosyne70
Cantharid indet.72
capulus Permophilus25
Centrocnemis 101
cephalota Promirara 1
CERAMBYCIDAE.7
CERATOPOGONIDAE105
CERCOPIDAE36
Chanoselytron24
CHAOBORIDAE 100
Chiliocycla38
CHILIOCYCLIDAE38
chinai Triassodoceus67
Chironomaptera 100
CHIRONOMIDAE 100
Chorista90
CHORISTIDAE90
Choristopanorpa94
Choristotanyderus97
Cicada?6
CICADELLIDAE38
CIXIIDAE 4
Cladochorista 8
Cladochoristella86
clarkac Neoparachorista 95
clathrata Mesothoris 80
Clatrotitan 3,9,29
Clavopsyllidium 50
Cloon 11
COENAGRIONIDAE 16
Coenagrionid indet 16
colliveri Prorhyacophila 86
COLEOPTERA 70
collessi Chironomaptera 100
colorata Hylicella 45
compressum Mesogereon 46
concinna Prochoristella 92
congener Ademosyne 70
conjuncta Lophioncura 31
conservativum Dermelytron 24
corbouldi Austrodictya 7
cordatum Adelidium 79
costalis Archcosmylus 81
crassifemur Proparagryllacris. 26
Cretacochorista 90
Cretacoformica 108
Crosaphis 35
Crosbclla 55
crosbyi Archexyela 106
crosbyi Xenopterum 28
cubitusTriassoaphis. 35
culleni Atalophlebia 11
CURCULIONIDAE 72
curvata Ademosyne 70
cylindrica Simmondsia 78
DASCILLIDAE 73
davisia Psyllidiana 54
delicatulum Eopsyllidium 36
delicatulus Zoropsocus 32
denmeadi Triassoblatta 19
DERMELYTRIDAE 24
Dermelytron 24
DERMESTIDAE 74
didymovena Xenopanorpa 96
DIPTERA. 100
distineta Permagra 60
DITOMY'IDAE 101
Dixiid indet. 101
drinnani Choristopanorpa. 94
dubia Mesochorista 91
dubia Permobrachus 57
dubius Permojassus 58
Dulcimanna 12
duncanac Eoichneumon 106
duncani Eodinotoperla 17
Duncanovelia 68
dunstani Ligavena. 40
dunstani Mesopsyche 92
dunstani Mesorhynchophora 73
Dunstania 42
DUNSTANIIDAE 42
Dunstaniopsis. 42
duaringae Austrolestidion 7
DYSMORPHOPTILIDAE 43
Dysmorphoptiloides 43
Dytiscid indet 75
Edgariekia 32
ELATERIDAE 76
Elateridium 76
Elaterium 76
ELCANIDAE 26
Elcanopsis 26
elegans Ipsviciopsis. 45
elegans Phipoides 89
Elliptosearta 55
elongata Crosbella 55
elongata Dysmorphoptiloides. 43
elongata Mesaeridites I 8
elongata Mesopsyche 92
elongata Neoageta 88
elongata Niwratia 99
elongata Proberothella 84
elongatum Stenopsocidium 34
Elytrathrix 24
emmavillensis Cleon II
enervatum Labidclytron 25
Eodinotoperla I7
Eochiliocycla 44
Eocorona 8,86
Eoiehncumon I06
EOICHNEUMONIDAE I06
EopsyIIidium 36
Eoscartcrella 43
EOSCARTERELLIDAE 43
Eoscarteroides 44
Eoseytina 36
Eoses 8,9I
EPHEMEROPTERA II
epiphleboides Triassolestes I6
Etheridgea 72
Eupincombea 47
Euporismites 82
EURYMELIDAE 44
Eurymelidium 38
EUSTHENIIDAE I7
exilis Archcbittacus 94
exilis Prochoristella 92
explicata Cretacoformica I08
extensa Duncanovelia. 68
femoratus Austroscarites 39
fennahi Beaconiella 64
festuca Atherimorpha I03
Fletcheriana. 46
flindersiensis Aeschnidiopsis I5
folium Phyllelytron 23
FORMICIDAE?? 108
frustrata Stereochorista 87
FULGORIDAE 64
Gclastocorid indet. 65
giganteus Mesogryllacris 26
giganteus Mesotitan 9
gingiva Chanosclytron 24
globulus Permocapitus I 0
GLOSSELYTRODEA 85
gracilipes Ligavena 40
grandis Mesodiphthera 56
grandis Mesothoris 80
grandis Metrorhynchites 79
grandis Triassocoris 69
granulatum Phyllelytron 23
Grammositus 7I
granulata Lobites 7I
granulata Tillyardiopsis. 73
granulata Tryoniopsis. 74
GR YLLACRIDIDAE 27
Gryllacridoid indet. 28
GRIPOPTERYGIDAE 17
Gyrinid indet 78
haglidaE 26
Helodid indet. 76
HEMIPTERA 35
Heterochterus 65
Heterojassus 66
Heteronella 66
IIETEROPTERA 64
Hcteroseytina 66
Hexascytina. 66
hillae Xenochoristella. 98
hirsuta Elytrathrix 24
hirtus Permophilus 25
Homaloseytina 56
Homopterulum 40
Hydraenid indet. 78
Hydrophyllidindet. 78
HYDROPHYLIDAE 77
HyliceIIa 45
HYLICELLIDAE 44
HYMENOPTERA I06
iani Prorhyacophila 86
IDELIIDAE 18
imperfeeta Australosymmerus. IOI
imperfecta Austroscytina 35
imperfecta Prohagla. 27
incerta Palacovicia 60
incompleta Anomaloscytina 48
incomplcta Eoscytina 36
incompleta Triassoscytina 59
indistineta Orhoseytina 57
indistinctus Permofulgor 25
insignita Triassoblatta. I9
insolita Permopsylloides 5 I
intcrealata Samaroblatta 19
intermedia Ademosyne 70intermedia Reeveana74
intermedia Triassoblatta 19
interruptus Alotrifidus 36
ipsvieiensis Australoblattula 19
ipsviciensis Mesojassus 44
Ipsvicia 45
IPSVICIIDAE 45
Ipsviciopsis 45
irregularis Orthoscytina 57
ISOPTERA 22
JASCOPIDAE 40
jelli Homopterulum40
jonesi lpsvicia.45
jonesi Mesotanyderus97
jonesi Samaroblatta19
jonesi Triassoblatta19
jucunda Mesochorista91
Jurinidae85
kimblensis Stenoglyphis58
Knezouria64
knighti Permocephalus10
Labidelytron25
lata Ademosyne70
latipennis Permothea51
latus Austromylacrites20
Leioodes 74
leongatha Prochoristella92
LEPTOCERIDAE87
Leptoconops105
LEPTOPHLEBIIDAE11
leptoptera Triassolocusta27
Ligavena 4
LIGAVENIDAE40
ligula Xenelytron25
ligulatus Platycrossos77
Limoniid indet.104
lineata Lithosmylidia82
Lithosmylidia82
Lithosmylidiasp. A82
Lobitcs 7
locustoides Mesorthopteron 18
LOCUSTOPSEIDAE 2
Lophiocypha 3
Lophioncura 3,3
LOPHIONEURIDAE 3
lowei Cicada? 6
maculata Austroprosbole48
maculata Ipsvicia4
magna Ipsviciopsis 4
magna Psyllidella 5
magnifica Ademosynoides 70 70
magnifica Archipanorpa 8
magnifica Paraknightia47
magnopunctata Willcoxiamagnus Permobrachus72
57 Microscytinella 67
major Ademosyne 70
major Reeveana 74
MALACODERMIDAE 79
marginata Mesojassula 49
marksei Heteronella. 66
maryac Steinhardtia. 29
MASTOTERMITIDAE 22
maxima Lophiocypha 31
MECOPTERA. 88
media Eoscarterella 43
media Psocopsyllidium 53
megaloprepia Prochoristella 92
MEGALOPTERA 110
Megapsocidium. 33
MEGASECOPTERA 13
melinum Phyllelytron. 23
membranaceus Heterojassus 66
Mesacridites 18
mesembria Neopermopanorpa 96
MESOBLATTINIDAE 19
mesocampta Apheloscyta 60
Mesochorista 91
Mesocicadella 63
Mesocixioides 41
Mesocixius 41
Mesodiphthera 56
Mesogereon 46
MESOGEREONIDAE 46
Mesogryllacris 26
Mesojassula 49
Mesojassus 44
MESOMANTIDIIDAE 14
Mesomantidion 14
Mesonirvana 56
Mesonotoperla 17
Mesopanorpodes 91
MESOPANORPODIDAE 91,98
Mesophlebia 14
MESOPHLEBIIDAE 14
Mesopsyche. 92
MESOPSYCIIIDAE 92
Mesorhynehophora 73
MESORTHOPTERIDAE 18
Mesorthopteron 18
Mesoscytina 38
Mesostigmodera 72
Mesotanyderus 97
Mesothoris 80
Mesothymbris 39
Mesotitan 4, 9, 10
MESOTITANIDAE 29
MESOVELIIDAE 68
metapteryx Anomaloscytina 48
Methana sp. 20
72 Metrorhynchites 79
migdisovae Eoscytina. 36
mimicans Pseudalysiinia 102
minorAdemosynoides 70
minor Permophilus 25
minorReeveana. 74
minuta Protopsyllops 52
minuta Tricrosbia 64
minutum Clavopsyllidium 50
minutus Polysitum 77
mirabilis Aeroplana 30
mirabilis Pincombea 47
mitchelli Belmontia 89
mitchelli Notoblattites 21
mitchelli Orthoscytina 57
mitchelli Permopsyllidium 50
mitchelli Permoscarta. 3,61
mitchelli Permosyne 71
mitchelli Protocoleus 23Mitchelloneura3,49
Mordellid indet. 79
multiseriata Pcrissophlebia 16
multivenata Beaconiella 64
MYCETOPHILIDAE 102
Mycetophilidae gen. et sp. nov. 102
myersi Triassocoris 69
MYLACRIDAE 20
nana Protasmanina. 102
nana Triassochorista 98
nana Westratia 109
Nannochorista sp. 93
Nannochoristella 93
NANNOCHORISTIDAE 93
nanus Permomerope 96
nanus Choristotanyderus 97
Neoageta 88
Neochoristclla 93
Neohagla 26
Neoparachorista 95
Neoparachorista nana 98
Neopermopanorpa 96
Neopctromantis 88
NEORTHOPHLEBIIDAE 94
neoxenus Blattotermes 22
neoxenus Permithone 81
Neuropsyche 92
NEUROPTERA 81
neuropunctatum Mesogereon 46
Niwratia.99
99 Permocapitus 10
Notoblattites 21 Permocentrus 61
obliqua Aphcloodes. 73 Permoccphalus 10
obliqua Orthoscytina 57 PERMOCHORISTIDAE 91
obscura Permovicia 61 Permodiphthera 49
obscura Protopincombea 48 Permofulgor 25
obtusa Ademosynoides 70 25
Oecetis sp.
oliarcoides Permithone 81 Permojassus. 57 5887 Permoglyphis
oliffi Adcmosyne 70
optata Neochoristella 93
orthoclada Mesocixioides. 41
ORTHOPHLEBIIDAE 94
ORTHOPTERA. 26
Orthoscytina 57
OSMYLIDAE 82
OSYMLOPSYCHOPIDAE 83
Osmylopsychops 83
ovalis Elliptoscarta 55
ovalis Triassocoris 69
PALAEONTINIDAE. 46
Palacovicia 60
PANORPIDAE 95
Parabelmontia 90
Parachorista. 91
paradoxa Platyscytinella 67
Paradunstania 42
Paraknightia 47
PARAKNIGHTIIDAE 47
paranotalis Triassoscytinopsis 59
parva Ademosyne 70
parva Cretacochorista. 90
parva Dysmorphoptiloides 43
parvula Lithosmylidia. 82
patricia Permotipulus 97
pectinata Tettigoidcs 28
pectinatus Archcosmylus 81
Pemphredonine indet. 108
Peraphlcbia 15
perfecta Belmontocarta 43
perfectaTrifidella 37
Pcrissophlebia 16
perkinsi Mesothymbris 39
pcrkinsi Neoparachorista 95
PERLARIA 17
PERMAESCHNIDAE 15
Permagra 60
permiana Lophiocypha 31
permiana Mitchelloneura 3,49
permiana Parabelmontia 90
permianum Stenoperlidium 17
permianus Zygopsocus 34
Permithone 81
PERMITHONIDAE 81
Permoberothella 85
57
Permobrachus

Permomerope 96
Prochoristella 92
PERMOMEROPIDAE 96
PERMOPANORPIDAE 96
PERMOPHILIDAE 24
Permophilus 25
Permopsychops 81
Permopsyllidiops 51
Permopsyllidium 50
Permopsylloides 51
Permorapisma 82
Permoscarta 3,61
Permosmylus 81
Permosyne 71
PERMOTANYDERIDAE 97
Permotanyderus. 97
Permothea 51
Permotheella 52
PERMOTIPULIDAE. 97
Pcrmotipulus 97
Permovicia 61
perplexa Austroidelia 18
perplexa Permoberothella 85
petalon Phyllelytron 23
petrica Etheridgca 72
Petropsychops 83
PHASMATODEA 30
phipa Mesochorista 91
Phipoides 89
Phyllelytron. 23
pigmentatum Dcrmelytron 24
Pincombea 47
pincombeac Parachorista 91
pincombeac Permosync 71
pincombeae Permithone 81
pincombei Austropsocidium 33
pincombei Orthoscytina 57
pincombei Permophilus 25
PINCOMBEIIDAE 47
plana Homaloscytina 56
plana Leioodes 74
Platycrossos. 77
Platyscytinclla 67
plecioides Triassopsylla 54
plexus Australurus 11
Polycytella 85
Polysitum 77
Polytaxineura 15
postica Eupincombea. 47
PRAEAULACIDAE 109
prima Tillyardiptera 105
primitiva Bekkerscytina 35
proavita Mesochorista 8,91
proavitus Triassojassus 40
Probcrotha 84
Proberothella 84
PROBEROTHIDAE 84
Prochoristella whitehousei 98
Proctotrupid indet. 107
PROGONOCIMICIDAE 65
progressivum Psychelytron 24
Prohagla 27
Promirara 11
PROPARAGRYLLACRIDIDAE 26
Proparagryllacris 26
Prorhyacophila 8, 86
PROSBOLIDAE 48
prosboloides Ligavena 40
Protasmanina 102
PROTELYTOPTERA 23
PROTOCOLEIDAE 23
Protocoleus 23
Protolimnophila 103
PROTOMYRMELEONTIDAE 15
Protopsychopsis 83
Protopsyllops 52
Protopincombea 48
PROTOPSYLLIDIIDAE 50
Protopsyllidium. 52
PROTORTHOPTERA 18
Pselaphid indet. 79
Pscudalysiinia 102
PSOCIDIIDAE 33
Psocopsyllidium 53
PSOCOPTERA 33
Psocoscytina 53
Psychelytron 24
PSYCHOPSIDAE 84
PSYCHROPTILIDAE 13
Psychroptilus 1,13
Psyllid indet. 62
Psyllidella 53
Psyllidiana 54
pulchra Dunstania. 42
pulchra Stanlcyana 62
Pulicidindet. 99
punctata Ademosyne 70
punctata Mesocicadella 63
punctata Tryoniopsis 74
punctatus Polysitum 77
punctomarginum Elaterium. 76
pusilla Prochoristella 92
pygmaea Lejoodes 74
pygmaeus Triassomantis 28
quadripartita Mesothoris 80
quadrivittata Shepperdia 77
quecnslandicum Mesomantidion 14
quinquemedia 57
radians Microscytinella 67
ramacostata Ademosyne 70
rcducta Hylicella 45
reducta Nannochoristella 93
reductus Xenogryllacris. 27
Reeveana 74
reticulata Belpsylla 50
reticulata Samaroblatta 19
RHAGIONIDAE 103
RINCANIIDAE 63
Robinjohnia 94
robusta Permodiphthera. 49
robustus Mesopanorpodes 91
rotundata Triscytina 67
rugulosa Ademosyne 70
rugosa Apheloodes 73
Samaroblatta 19
Samarura sp. 16
Scarites 39
scolopoides Chiliocycla. 38
Scolypopites 63
scullyi Clatrotitan 29
sculptor Dulcimanna 12
scutulum Triassocoris. 69
SCYTINOPTERIDAE 55
scytinopteroides Permotheella 52
semiovena Neoparachorista. 95
shepperdi Mesogereon 46
Shepperdia 77
SIALIDAE 110
Simmondsia. 78
Simuliid indet 103
Simuliid indet. 2 105
sinuata Mesonotoperla 17
sinuata Neohagla 26
sinuatum Protopsyllidium. 52
SIPHLONURIDAE. 11
Siphlonuridac gen. et sp. nov. 12
SIPHONAPTERA. 99
sobrina Chorista. 90
sobrina Xenochorista 98
SPHECIDAE 108
spilleri Osmylopsychops 83
splendida Neoparachorista 95
splendida Parachorista 91
splendida Xenochorista 98
Stanleyana 62
stanleyi Lophiocypha 31
stanleyi Permopsyllidiops 51
stanleyi Polytaxincura 15
stanleyi Zoropsocus 32
Staphylinid indet 79
Steinhardtia. 5,29
STENELTRIDAE 25
Stenoglyphis 58
Stenoperlidium 17
Stenopsocidium 34
Stenoscytina 58
Stenovicia. 62
Stereochorista. 87
STEREOCHORISTIDAE 87
stigmata Triassophlebia 14
stigmaticum Austropsocidium 33
stigmatus Archeosmylus 81
strenulata Triassoscytinopsis 59
striatella Ademosynoides 70
stricta Triassocotis 39
subcostalis Notoblattites 21
subcostalis Orthoscytina 57
subcostalis Triassoscarta 37
subpyriformis Simmondsia 78
subtumidus Platycrossos 77
subulatum Elateridium 76
superba Mesopsyche 92
superba Petropsychops 83
supcrba Proberotha 84
superba Prohagla 27
supcrba Protolimnophila 103
superba Triassopsychops 84
superbum Mesogereon 46
sydneiensis Elcanopsis 26
sydneiensis Metrorhynchites 79
SYMPHYTA 106
Tanypodine indet. 100
Tanypodine pupa indet. 101
Tarwinia 99
tasmanica Triassoblatta 19
TENEBRIONIDAE 79
tenuiquadrata Mesothoris 80
termioneura Mesocixioides 41
Terpandrus horridus 8
tetraneura Orthoscytina 57
tetrastichia Peraphlebia 15
Tettigoides 28
TETTIGONIDAE 28
thysanella Lophiocypha. 31
THYSANOPTERA 31
tillyardi Austroelytron 23
tillyardi Clatrotitan 29
tillyardi Heteroscytina 66
tillyardi Robinjohnia 94
Tillyardiopsis 73
Tillyardiptera 105
TILLYARDIPTERIDAE 105
timmsii Heterochtems 65
TIPULIDAE 103
Tipulid indet. 104
Tipulid larva indet. 104
Tipulid pupa indet. 104
TITANOPTERA 29
transecta Hexascytina 66
transversum Elateridium 76
triareolata Mesopsyche 92
triassica Archepsychops 84
triassica Dunstaniopsis 42
triassica Fletcheriana 46
triassica Mesochorista 91 71
triassica Polycytella. 85
triassica Samaroblatta
triassica Samaroblatta
triassicum Stenoperlidium
19 tumidus Platycrossos
thassicum Stenoperidium 17 Tychticoloides 77 3773
triassicus Mesocixius 41 typica Mcsostigmodera 72
Triassagrion. 15 typica Triassoblatta 19
Triassoaphis 35 Ulomites 80
Triassoblatta 19 una Undacypha 32
Triassochorista 98 Undacypha 32
TRIASSOCHORISTIDAE 98 unicus Knezouria 64
Triassocixius 41 ustulataLophioneura 3,31Triassocoris69 variotuberculata Tillyardiopsis
73Triassocotis39 Veliidindet.Triassodoecus67 venosa Mesocicadella.68Triassojassus40 venosa Pcrmithone63Triassolcstes16 venosa Protopsychopsis.81TRIASSOLESTIDAE16 vittamargina Ademosyne8370
Triassolocusta 27 wadei Tripsyllidium 55
TRIASSOMANTEIDAE 28 warnerensis Parachorista 91
TRIASSOMANTEIDAE
TRIASSOMANTEIDAE
28 westraliensis Mesothoris Triassomantis 5,80
14 Westratia Triassophlcbia 109
92 whitehousei Austrochoristella Triassopsyche. 98
84 wianamattense Elateridium Triassopsychops 76
54 wianamattensis Ademosyne Triassopsylla 70
37 wianamattensis Mesopanorpodes Triassoscarta 91
59 wianamattensis Notoblattites Triassoscelis 21
59 willcoxi Ulomites Triassoscytina 80
59 Willcoxia Triassoscytinopsis 72
54 woodwardiMesothymbris Triassothea 39
86 Xenclytron TRICHOPTERA 25
64 Xenochorista Tricrosbia. 98
TRIDACTYLIDAE 28 Xenochoristella. 98
Tridactylid indet. 28 XENOCHORISTIDAE 98
Trifidella 37 Xenogryllacris 27
Tripsyllidium 55 Xenopanorpa 96
Triscytina 67 Xenopterum. 28
triserialis Permorapisma 82 XYELIDAE 106
trivenulatus Permocentrus 61 Zoropsocus 32
trivittata Lobites 71 ZYGOPSOCIDAE 34
Tryoniopsis 74 Zygopsocus 34

NOTE ADDED IN PROOF

Since this volume went to press I have become aware that Rasnitsyn \& Aristov (2004) have ereeted Jarmilacladus variabilis gen. et sp. nov. (Hypoperlida: Anthracopeltidae) [holotype BMNHIn45933] and Belmophenopterum pectinatum gen. et sp. nov. (Grylloblattida: Sylvaphlebiidae) [holotype BMNHIn45837] from the Upper Permian Necastle Coal Measures near Belmont, south of Newcastle.

Sue Parfrey has kindly brought to my attention a fossil inseet in a drill core through the Upper Permian Baralaba Coal Measures in the southeastern Bowen Basin, eentral Queensland. It is a stonefly nymph but a more detailed deseription will be provided in another paper. The signifieanee of this speeimen is as the first
insect from the considerable thiekness and extent of the Permian sediments in the Bowen Basin. Further Permian inseets may be expected from the Basin.

Mesochorista australica, the type of Permochorista (page 91), was considered by Riek (I953) to be the senior synonym of 8 other species referred to Permochorista by Tillyard, namely:- mitchelli in 1918b, sinuata and affinis in 1922 a and collinsi, pincombei, angustipennis, osbornei and inaequalis in 1926b.

FURTHER LITERATURE CITED

RASNITSYN. A.P. \& ARISTOV, D.S. 2004. Two new insects from the Upper Pcrmian (Tatarian) of Belmont, New South Wales, Australia (Insecta: Hypoperlida: Anthracopeltidae=Permarraphidae; Grylloblattida: Sylvaphlebiidae). Paleontological Journal 38(supplement) 2): 158-163.
$52-5=$

CONTENTS

JELL, P.A.

\qquad
The fossil insects of Australia 1

