WYLAND

Hemorial Factors in Learning among Ants

Psychology
A. B.

1915

THE UNIVERSITY
 OF ILLINOIS
 LIBRARY
 1915
 W99

Digitized by the Internet Archive in 2014

MEMORIAL FACTORS IN LEARNING AMONG ANTS

RAY ORION WYLAND

THESSIS

FOR THE

DEGREE OF BACHELOR OF ARTS

```
COLLEGE OF LIBERAL ARTS AND SCIENCES
    UNIVERSITY OF ILLINOIS



\author{

}

\section*{GyenHT}
```

455%-HNOS

```




UNIVERSITY OF ILLINOIS
May Q ut, war

THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY RAY ORION WYLAND

ENTITLED MEMORIAL FACTORS IN LEARNING AMONG ANTS
\(\qquad\)

IS APPROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF ARTS
\(\qquad\)


HEAD OF DEPARTMENT OF

e

CONTENTS

Page.





TABLE OF AVERAG: TIIE AND MEAN VARIATION- 12.



\section*{FSWRTKOS}
- . 10

 ..... ,
.. \(-\ldots . .\). 7! ? ..... 1. 1
. 8 Em07 aumunon ..... -


.
ENADEVA IAKOT +40 H

\section*{MEMORIAL FACTORS IN IWARNING AMONG ANTS}

\section*{I. THE HISTORY}

Hoperimental studies in the learning of ants have been carried on in almost unbroken succession since the work of Lubbock. Lubbock discovered that, among the species which he studied, smell and vision are the senses principally used by the ant in 'homing' and in general orientation. Bethe, who entered the same field of investigation, decided, upon the basis of experimental evidence, that light is not a guide to ants in finding the way, but that the following of a chemical trace is the only means of orientation. Bethe proposed the theory that the ant in returning to the nest follows a 'polarized chemical trace' in her own foot-prints. Bethe used smoked paper laid before the nest to record the movements of the insects. Flelde described the effects of white and colored light upon the movements of the ant. She concluded that "the eyes of the ant may perceive there [in tre epectrum] only two fundamental colors; one mede up of red and green rays, the other of vialet and ultra-violet rays". She also devised a series of experiments which seem to disprove the theoxy of Bethe pertaining to the polarized chemical trace' of the ants' foot-prints. Turner records the learn-ing-times for paths with varisble intervals betweon the trials. He used incandescent lights in his experiments and, learned that the sensitivity of response to light as well as to sound is more decisive and invariable within the nest than elsewhere. He placed scented 1. Iubbock, J. Ants, Bees and Wasps. N. Y Tojel883.


trails beside new unscented trails; then, when the ants were going down the scented trail, he replaced it with the unscented. The ants continued to go down the old way over the new (unscented) trail, which is further disproof Bethe's theory of a 'polarized trace'. Ernst tried again the use of the smoked paper of Bethe, but gave it up as impracticable.

Extensive studies of the natural environment, habits, and distribution of ants have been published by Wasmann, Turner, Washburn, and Wheeler.

The work of the authors above mentioned has shown conclusiveli at ants profit by individual experience. It has recorded many instandes of more of less rapid modification of performance. In the establishment of a course or path, for example, subsequent journeys are taken with reduction of time and elimination of unnecessary movements. Now while it is of interest to know that the immediate memory of ants, -so far as memory is involved in the learning of a course, -has been established, it remains to be seen whether the modifications in behavior due to previous experience of the ant are retained, and if they are retained, what the term of the modification is. These are questions pertaining to the permanence and the stability of learning. It is to this problem that the present paper is devoted.
\(\overline{4}\).
Ernst,
6.

Tasman, E., Iơi. Lie zumamengcaetaten Roster and genisohtoi Kolonien der Ameisen Munster.
Turner, C. \(\mathrm{I}_{\mathrm{s}}\) The Homing of Ants. Chicago. 1907.
Washburn, M.F. 1908 . The animal mind. IT. Y.
Wheeler, W.M. Ants: their etructure, development and behavior. 1910.

\section*{II. THE METHOD EMPLOYED.}

The method of enquiry into this problem is quite simple. The ant is given a task to perform. The task is repeated a number of times and a record of each period is preserved until a series of fifteen or twenty trials is completed. These successive periods are plotted into a "learning-curve" for the first series. When the first series is completed the subject is given an interval of rest. Various intervals are used, ranging from fifteen minutes to three days. After each interval, the subject is put through another like series and records are preserved of the periods of each trial at the task. The records of the trials and of the time consumed in each form the basis of comparison of initial series with subsequent series, and this comparison gives us information concerning the effects of the first performance upon the subsequent experiences of the ant. The faithfulness with which the reduced time of the later trials of the previous experience persists in the subsequent series indicates more or less exactly the degree of retention the ant possesses and the period through which it persists.

A more detailed account of our method and our materials follows. A large colony of ants with a goodfy supply of egge was secured from a decaying \(\log\) in an adjacent forest. These were traneported to the laboratory and comfortably housed in a modified Fielde-Janet nest. This nest consists of three compartments, \(3 \times 5\) inch es in dimensions, and one-half inch deep, hollowed out of a solid plaster-of-paris block 3 inches deep, swon inches wide, and 20 inches long. Narnow partitions are left between the rooxs which are connected by small openings at one end of the partition. One room is
used as a manger and is kept open to the ligit. The whole nest is covered with plate-glass with a packing of turkish towel under the edge to admit aif. This confines the ants to the nest. Two rooms of the nest are darkened by placing card-board over the glass, At one end of the plaster-oi-naris block a space is left in which a deep well is hollowed out, \(2 \times 5\) inches and 2 inches deep. In this well water is kept to moisten the nest.

A normal, healthy wo rker is captured and confined in a small experimental nest" with twenty or thirty eggs. The experimental nest is a one-inch hollow cube of plaster-of-paris, with one side removable and with a small door on the side just large enough to admit the ant. Stages of heavy white card-board, \(4 x 4\) inches square, are fastened by pins driven through the center into the corks of two low, heary bottles in such a way that the two stages Iie in the same horizontal plane. The bottles are set in a large basin filled with water up to the card-board stages. The adjacent edges of the stages are separated by the space of three inches and the gap is spanned by a bridge of card-board 1 cm . wide and 10 cm . 10ng.

The ant is taken from the nest where she has been confined with eggs long enough to leave her "nest-smell" with the nest, and she is deposited with the eggs upon one of the stages at its center. The experimental nest is placed on the other atage with its door toward the bridge. Ine stage containing the egge is between the stage containing the nest and the window. A card-board bridge connects the stages. This relation is preserved throughout the experiment. The eggs and the ant having been placed on the stage near the end of the bridge, it is now her task to find her way acrosa
\(1\)
the bridge and into the nest. To enter the nest, she must climb up one side to reach the door.

In the first trial, the ant consumes several minutos. The next trial usually marks a shorter time, and there is a gradual decffease in the time of each successive trip until a minimum is reached. Fifteen or twenty trips establiah a fairly constant time-period for the task. When the first series is completed the subject is removed to a Petri dish where she is kept for the desired interval of time; and, meanwhile, the stages and bridges are replaced so as to remove all traces of the former path. Then the subject is again placed on one stage with the eggs, and the neat is placed on the other in the same position as before: the position of the stages relative to each other and to the window is also the same as before. So far as possible, the ant now has all conditions the same as when Bhe began the first series of trials, excepting the modification of her own psychophysical organism by reason of the first experience in finding the neat. A record of the time consuned in each successive trip is taken until a second series is completed. The operation is repeated with various intervals and with numerous subjects.

\section*{III. RESULTS.}

For the initial series, twenty-two subjects were used and from 9 to 25 trips (average 26) were made by each subject. Only one subject made less than twelve. With each subject the first trip of the initial series marks a rather long time-interval. The range is from 95 sec. to 840 sec., with an average of 321 sec. plus
marked decrease in the time interval. The range is from 15 sec . to 270 sec. and the average is 119 sec. Dlus or minus 78 sec. For the third trial the time is still less and the range is from 12 sec . to 242 sec. with an average of 71 sec. plus or minus 40 sec . In the fourth trip, there is a still more marked decrease in the time consumed. The range is from 15 sec. to 120 sec., average is 43 sec., plus or minus 19 sec. The time interval of the fifth trip is increased by the exceptionally long periods of subjects B. and Z., wich consumed 345 sec and 270 sec. respectively. By reason of these, the average is raised to 55 sec., plus or minus 38 sec . From this point forward there is a fairly constant and gradual decrease in the times until the twelfth trip, which shows an average of 20 sec., plus or minus 7 sec. . After the twelfth trip there is a grad1231 rise in the average time and mean variation until the nineteenth trip (average time 25 sec., plus or minua 10 sec.).

A summary of the initial trips was made and the average time and mean variations are given in Table I, below. A graph of the average of the initial series was also plotted. (Graphs I, II, red ink). The rapid falling away from 321 sec. in the firet trip to 119 sec. In the second and 105 sec. in the third and on down to 22 sec. In the tenth trip, indicates the rate of the modification of behavior in the learning of ants of this species and under our conditions. The succeeding trips show a marked degree of constancy in time, indicating that the task has become well automatised.

The first rest- or memory-interval observed was that of fifteen minutes. Nine subjects were used. Great sare was taken to aroid rough treatment that would excite the subjectaland possibly destroy the normal effects of their previous training. The record


112
OF He

for the series after the fifteen-minute interval shows a notable reduction in the time-rate over that of the initial series. Without exception, there is s decided decrease in the time of the first trip as compared with the first trip of the initial series. The average time for all nine subjects is shown in blue on Graph Io It begins at 60 sec, and rises to 70 sec. in the second trip. But this rise is due, most⿲y to the long period ( 330 sec.) of subject \(A\). Apart from this exception, the average drops to 34 sec . In the third irip the average is 32 sec . and then \({ }_{\wedge}^{\text {it }}\) teadily declines to 13 sec. in the thirtoenth trip.

The second rest-interval observed was thirty minutes. Eleven subjects were used for this series. The record shows still a decided reduction in the time over that of the initial series. Both the average and the mean variation are much reduced, as compared with the initial series. Both are greater, however, than in corresponding series taken after the fifteen-minute interval. The weighted average represented in Graph I, (green ink) begins with 168 sec., drops to 58 sec. in the second trip, and then it gradually declines to 21 sec. in the seventh trip.

The third rest-interval observed was variab/e instant and ranged from one to four houre. Z1ght subjects were employed. The results of this series show an improvement over the thirty-minute series. The average begins at 226 sec . (Graph I., violet ink) and then falls to 24 sec . in the second \(t r i p\) and to 12 sec. in the seventh. Nowhere does the violet line of this series touch the green ine of the thirty-minute series. This fact is occasioned/partially by the exceptionally long and ir egular periods of subjects A. and
B., which occur in the thirty-minute series, "neither of which appears in this series. The time-rates of A. and B.are very long in each series in which they appear.

The next interval was extended to cover from one to three days. Only five subjects were used. This series is marked with greater irregularities than appear in any other including the initial, series. The mean variation is greater. The avarage of the first trip as plotted on Graph I (black ink) is 448 sec. It then drops to 86 sec. in the second trip, and to 22 sec . in the third. From this point it rises and falls from 60 sec. to 21 sec., with much irregularity until the eight trip, from which point it remains fairiy constant until the endo

\section*{IV. CONCLUSIONS.}

No very definite conclusions can be drawn from the results of the last series on account of the small number of subjects used. The work of the remaining series, including infeach case no less than 160 trips (where 11 subjects were used, 240 trips), can be taken as the basis for the following conclusions.

Throughout its course, the curve for the initial series (Graphs I, II, red ink) stands higher than the curve which represents all of the subsequent series (Graph II, green ink): that is, series with memory-intervals. Moreover, it appears that the fifteenminute series shows, from the first trip onward, a decided improvement over the initial series. The modification of behavior is marked. (Graph I, red and blue curves). Whether the progreotite obliteration-rentuph a tue memostal obliviocence or upon
 doew not info 1 सा W

As regards the results with the longer interval-times, (one-to-four hre, and one-to-three days), no differential effect certainly
of intervals can bentraced in the results. The differences in the time of the first trips ( 168 sec. \(\pm 122,126\) sec. \(\pm 90\), and 148 sec. \(t 133\) ) are considerably less than the corresponding mean variations. They cannot, then, be held to be of significance; and a similar conclusion is to be drawn from their further courso.

In general, we may say that a memory-interval of fifteen minutes effects a decided saving in the subsequent relearning. And our results offer some support to the belief that longer intervals are also economical, although this effect scems to be somewhat weaker than the effect of the shortest memo sial time of which we made use. Our experiments have made it evident that the psychophysical residues of learning a course do- under the conditions named, persist with modification throug memorial intervals of considerable extent. The qualitative analysis of these residues into conscious and organic factors must be left to subsequent research.


Bnani
If THE


( UNHERSITY OF
```

