

Mifiellanea Curiofa.

CONTAININGA
COLLECTION
Of fome of the Principal
PH 厌NOMENA I N

NATURE,

Accounted for by the Greateft Philofophers of this Age;

BEINGTHE

Moft Valuable Discourses, Read and Delivered to the Royal Society, for the Advancement of Phyfical and Mathematical Knowledge.
As alfo a Collection of Curious Travels, Voyages, Antiquities, and Natural Hiftories of Countries; Prefented to the fame Society.

In Three VOLUMES.
The Second Edition; To which is added, A Difcourfe of the $1 n$ fluence of the Sun and Moon on Humane Bolics, \&c. By R. MEiAD, M.D.F.R.S. And alfo Fontenelle's Preface of the Usefulnefs of Matbematical Learning.

$$
\frac{\text { VO L. I. }}{\text { LONDON: }}
$$

Printed by F. M. for R. Smith, at the Bible under the Piazza of the Royal Exchange in Cornbill. 1708.

$$
\begin{gathered}
\text { सिMAR INET } \\
\frac{833}{c}
\end{gathered}
$$

CO ME of the Principal DifD coveries and Enquiries, both inPbyfical and Mathematical Learning, being regifter'd in the Voluminous Journals of the Royal Society, are amongft a multitude of lefs ufeful Matters, fo Obfcurely hid, that but very few inquifitive Gentlemen ever fo much as heard of them.

The Defign therefore of the enfuing Collection, is to digeft in a convenient Method, all the moft curious Pbilofopbical and Mathematical Difcoveries, as they are to be met with, which may any way tend to the Ulfe of Life orAdvancement of Arts and Sciences.

$$
A=\quad \text { And }
$$

The Preface.

And on this Occafion, it will be convenient to intimate to the Reader;

First, That the Theories and Difcourfes here collected, have already paft the Cenfure of the Learned World: Who have acknowleg'd them the moft fatisfactory Accounts of Nature's Proceedings, wherein fome of her greateft Depths are fathom'd, and a Foundation laid for Pofterity to build an infinite Superftructure.

Secondly, That they are related (Verbatim) juft as they were delivered in, or read before the Royal Society: For it has been the Opinion of the moft Judicious among thofe Honourable Members, that it is impoffible fo to abridge them, (which are but Abridgments themfelves) as not to render them obfcure and unintelligible.

A

 TABLE

 TABLE}

OF THE

Difcourfes contain'd in this Volume.

AN Eftimate of the Quantity of Vapours raifed out of the Sea, as derived from Experiment: Together with an Account of the Circulation of the wat'ry Vapours of the Sea, and of the Caufe of Springs. Prefented to the Royal Society by Mr. E. Halley, F. R. S. Pag. I. The True Theory of the Tides, extrafted from that admired Treatife of Mr. Ifaac Newton, Intituled philofophix Naturalis Principia Mathematica; being a Difcourfe prefented with that Book to the late $K^{i n g}$ James, by Mr. E. Halley.
A Theory of the Variation of the Magnetical Compafs, by Mr. E. Halley.
An Account of the Caufe of the Cbange of the Variation of the Magnetical Needle. with an Hypothefis of the Structure of the Internal

The T A BLE.

Parts of the Earth; as it was prefented to the Royal Society in one of their late Meetings, by Mr. E. Halley.
p. 43

An Hiforical Account of the Trade-Winds and Monfoons, obfervable in the Seas between and near the Tropicks'; with an Attempt to affign the Pbyfical Caufe of the Said Winds, by Mr.t E. Halley.

A Dijcourle of the Rule of the Decreafe of the Heighth of the Mercury in the Barometer, according as Places are elevated above the Strface of the Earth; with an Attempt to difcover the true Reafon of the rijing and falling of the Mercury, upon Cbange of Weather, by Mr. E. Halley.
A Letter from Mr. Ifaac Newton, while Profeffor of the Mathematicks in the Univerfity of Cambridge; containing bis new Theory about Light and Colours: Sent from Cambridge, Feb. 6. $16 \frac{7}{7} \frac{1}{2}$, in order to be communicated to the Royal Society. 97
A farther Explanation of the fame Theory 115 A Demanfration concerning the Mocion of Light, communicated from Paris.

118
An Introductory Efay to the Doctrine of Sounds, containing Jome Propofals for the Improvement of Acoufticks; as it was prefented to the Dublin Society, by the Right Reverend Father in God Narciffus, Lord Bibop of Ferns and Leighlin.

121
A Difcourfe concerning the Modern Theory of Generation, by Dr. Geo. Garden, of Aberdeen, being part of a Letter to Dr. William Mufgrave, L. L. D. Reg. Soc. S. and by bim c:mminicated to the Rayal Society.

The TABLE,

A Buort Difourfe concerning Concoction Read at a Meeting of the Royal Society, by Clopeton Havers, M. D: Fellow of the Royal Society.

Page 155
A Difourfe concerning fome Influence of Refpiration on the Motion of the Heart bitherto unobferved. By J. Drake, M. D. F. R. S. 173
Some Thoughts and Experiments concerning Vegetation. By John Woodward, M. D. of the College of Pbyficians and Royal Society, and Profeffor of Pbyick in Grefham-College. 205 An Account of the Mcafure of Gold upon Gilt Wire; together with a Demonftration of the exceeding Minutenefs of the Atoms, or conftituent Parts of Gold; as it was read before the Royal Society, by Mr. E. Halley.

245
'An Account of Dr. Robert Hook's Invention of the Marine Barometer, with it's. Defcription and Uses. Publifbed by Order of the Roval Soeiety by Mr. E. Halley. 252 'A Difcourfe concerning the Proportional Heat of the Sun in all Latitudes; with the Method of collecting the fame, as it was read before the Royal Society in one of their late Meetings, by Mr. E. Halley. 258 Concerning the Diftance of the Fixed Stars, by the Honourable Fran. Roberts, E/q; F. R. S. An Eftimate of the Degrees of the Mortality of Mankind, drawn from Curious Tables of Bitths and Funerals at the City of Breflaw; with an Attempt to afcertain the Price of Annuities upon Lives, by Mr. E. Halley: 282

The TABLE.

${ }^{7}$ A Difcourle concerning Gravity, and its Proper= ties, wherein the Defcent of Heavy Bodies, and the Motion of Projects is briefly, but fully handled : Together with the Solution of a Problem of great USe in Gunnery, by Mr. E. Halley.

Pag. 304
A Propofition of General Vfe in the Art of Gunnery, fbewing the Rule of laying a Mortar to pals, in order to ftrike any Objelt above or below the Horizon, by Mr. E. Halley.

326
'A Difcourfe concerning the Meafure of the Air's Refiftance to Bodies moved in it. By the Learned John Wallis, S. T. D. and F.R.S. bra, in the Refolution of the Problem of finding the Foci of Optick Glaffes univerfally. By Mr. E. Halley, S. R.S.

APPENDIX.

An Analytical Refolution of certain Equations of the 3 d, 5 th, 7 th, 9 th Powers, and f_{0} on ad Infinitum, in finite Terms, after the manner of Cardan's Rules for Cubicks. By Mr: A. Moivre, F. R. S. 365
A Difcourfe concerning the AEtion of the Sun and Moon on Animal Bodies; and the Influence which this may bave in many Difeafes. By Richard Mead, M. D. F. R. S.

A Tranflation of Part of Mon-

 fieur Fontenelle's Preface to the Memoirs of the Royal Academy at Paris, in the Year 1699. treating of the Vefefulnefs of Mathematical Learning.BU T to what purpofe fhould People become fond of the Mathematicks and Natural Philofophy. Of what ufe are the Tranfactions of the Academy? Thefe are common Queftion, which moft do not barely propofe as Queftions; and ir will nor be improper to clear them.

People very readily call ufelef, what they do not underftand. It is a fort of Revenge ; and as the Mathematicks and Natural Philofophy are known but by few, they are generally look'd upon as ufelefs. The reafon of this is ; becaufe they are crabbed and not eafily learnt.

We have a Moon to light us in the Night; What is it to us, fay they, wherher Fupiter hath four? Why fo many laborious Obfervations, fo many tedious Calculations to know exactly their Courfe ? They'll not afford us the more Light for it ; and Nature, which hath plac'd thefe little Planets without the reach of our Eyes, doth not feem to have made them for us. According to this plaufible Argument they ought not to have been

Fontenelle, of the Vefulnés

been obferv'd with a Telefcope, nor ftudy'd. But it is certain, that we had been confiderable Loofers by it : For thofe who have fome infight into the Principles of Geography and Navigation knöw, that fince thefe four Moons about 7 upiter have been difcover'd, they have been more ufful to thofe Sciences than our own Moon ; and that they ferve, and fhall more and more ferve to make new Sea-Charts, infinitely more exact than the Old ; and are likely to fave the Lives of a vaft many Seamen. Did we reap no other advantage from Aftronomy than this from thefe. Satellites of Fupiter, that wou'd be fufficient to juftifie thofe prodigious Calculations, thofe affiduous and nice Obfervations, this great number of elaborate Infruments, and this Noble Edifice built only for this Science. However the greateft part of Mankind know nothing of thefe Satellites of Fupiter, unlefs perhaps by hear-fay, and that too confufedly ; or elfe they are ignorant of what Affinity they have with Navigation, or of the great Improvements which have been lately made in it.
'This is the Fate of Sciences, which are ftudy'd and improv'd by few. Moft People are not fenfible of their Progrefs, and efpecially when made in fome mean Callings. But what doth it fignifie, that we can now more eafily direct the Courfe of Rivers, cut out Canals, and fettle new Navigations; becaufe our Method of taking the Level and making Sluces is infinitely better than heretofore ? Some Mafons and Seamen have thereby found their Bufinefs eafier, but they themelves were not fenfible of the Skill of the Geometrician who directed them. They were mov'd, as the Body by a Soul, it doth not know. Others are

of Mathematical Learning.

yet lefs fenfible of the Genius that prefided over the Undertaking; and the World is the better for its fucceeding well, but not altogether free from Ingratitude.

Anatomy, which is fome time fince fo carefully ftudy'd, can't become more exact, but Chyruigical Operations mult alfo be more fure. Surgeons know this; but thofe who receive the Benefit of their Art know nothing of it. And indeed how fhould they? They would be oblig'd to compare Old with Modern Surgery ; and this wou'd take too much Time, and go againft the Grain : So that fince the Operation hath fucceeded well, they do not think it material to know whether it had fucceeded as well in another Century.

It is ftrange that fo many things are before our Eyes, and that we do not fee them. Your Handycraft Shops are full of ingenious Works ; but yet we hardly mind them: And very ufful and well contriv'd Inftruments and Experiments want Spectators, who wou'd be wonderfully pleas'd, wou'd they take the pains to admire them.

If a Learned Sóciety have made fome Improvements in Geometry, Anatomy, Mechanicks, or any other ufeful Science, it muft not be expected, that the World will go back to fo remote a Spring to thank and applaud them for the Ufefulnefs of their Productions: For it will be more eafie to enjoy the Benefit of their Difcoveries and Improvements than to know them. The Determination of Longitude by the Satellites, the Difcovery of the Ductus Thoracicus, a more convenient, and more exact Level, are not Novelties fo fit to make a noife as a pleafant Poem, or a handfome Piece of Oratory.

Fontenelle, of the Veefulnefs

Altho' the Ufefulnefs of Mathematicks and $\mathrm{Na}-$ tural Philofophy is obfcure, yet it is real. To confider Mankind in their Natural State, nothing is more ufeful to them, than what may preferve their Lives, and produce thofe Arts, which are both great Helps and Ornaments to Publick Societics.

As for what concerns the Prefervation of Life, it peculiarly belongs to Phyfick; which for that reafon is divided in the Academy into three Branches, which make three different forts of Members of this Society, Anatomy, Chymiltry, and Botanicks. Every Body knows of what Importance it is to have an exact Knowledge of Human Body, and of what Medicines may be extracted from Minerals and Plants. .

As for Arts, too tedious to be reckon'd, they depend fome upon Natural Philofophy, others upon Mathematicks.

One wou'd think at firft, that if the Mathematicks were to be confin'd to what is ufeful in them, they ought only to be improv'd in thofe things, which have an immediate and fenfible affinity with Arts, and the reft ought to be neglected as a Vain Theory. But this wou'd be a very wrong Notion. As for Inftance, the Art of Navigation hath a neceffary Connexion with Aftronomy, and Aftronomy can never be too much improv'd for the Benefit of Navigation. Aftronomy cannot be without Opticks by reafon of Perfpective Glaffes ; and both, as all other Parts of Mathematicks, are grounded upon Geometry, and to go as far as you can, even upon Algebra.

Geometry

of Mathematical Learning.

Geometry, and efpecially Algebra, are the Keys of all the Inquiries, that can be made concerning Magnitude. Thefe Sciences which are only converfant about abftrufe Relations, and fimple Ideas, may feem dry and barrén, whillt they keep within the Verge of the Intellectual World ; but mixt Mathematicks, which foop to Matter, and confider the Motion of the Stars, the Augmentation of moving Forces, the diffe. rent Paffages of the Rays of Light through different Mediums ; the different Effects of Sound by the Vibration of Things; to conclude all thofe Sciences, which difcover the particular Relations of Senfible Magnitudes go on farther and more fecurely, when the Art of difcovering Relations in General is more perfect. The Univerfal Inftrument cannot be too extenfive, too handy, or too eafily apply'd : It is ufeful to all the Sciences, and they cannot be without it : And therefore among the Mathematicians of the Academy, who are defign'd to be ufeful to the Publick, the Geometricians and Algebrifts make a Clafs, as well as the Aftronomers and Mechanicks.

However, it is certain, that Speculationspurely of Geometry, or of Algebra, are not about ufeful things: But ic is certain too, tha: thofe that are not, either lead or belong to thofe that are. It is in it felf a very barren thing to know, that in a Parabola a Subtengant is double the correfponding Ab ciffre; but yet it is a Degree of Knowledge neceflary to the Art of throwing Bombs, fo exactly as they can do now. There are not by far fo many evident Ufes as Propofitions or Truths in the Mathematicks: Yet it is enough if the Concourfe of feveral Truths is generally of fome ufe.

Fontenelle, of the Vefulness

Farther, a Geometrical Speculation, which was not at firft applicable to any ufe, becomes fo afterwards. When the greateft Geometricians in the Seventeenth Century fet about to ftudy a new Curve, which they call'd a Gycloide, they only engag'd themfelves in a meer Speculation out of Vanity, friving to outdo one another by the Difcovery of difficult Theorems. They did not even pretend that this was for the Publick Good; however by diving into the Nature of the Cycloide it was found, that it was deftin'd to make Pendulums as perfect as may be, and carry the Meafure of Time as far as it can go.

It is the fame thing with Natural Philofophy as with Geometry. The Anatomy of Animals feems infignificant ; and it only concerns us to know that of Human Body. But yet fome Parts of it, which are of fo nice, or fo confus'd a Make, that they are invifible, are fenfible and manifeft in the Body of an Animal. Hence it is, that Monfters themfelves are not to be neglected. The Mechanifm conceal'd in a particular Kind or in a common Make, is unfolded in another kind, or in an extraordinary Make; and one wou'd be almoft apt to fay, that Nature by multiplying and varying fo much her Works, can't oometimes forbear betraying her Secrets. All that the Antients knew of the Load-ftone, was, that it attracts Iron. But whether they did not value a Curiofity, which promis'd them nothing ; or that their Genius did not lead them to make Experiments, they have not examin'd this Stone as carefully as they might. One Experiment taught them, that it turns of its felf towards the Poles of the World, and did put into their Hands the ineftimable Treafure of the Mariners Compafs. They might eafily have made

of Mathematical Learning.

made this Difcovery important, and yet they did not do it; and if they had fent a little more time upon a Curiofity which feem'd ufelefs to them, the Latent ufe of it had foon appear'd.

Let us always make a Collection of Mathematical and Phyfical Truths; happen what it will we can't hazard much by it. It is certain, that they fhall be drawn from Springs, whence a great many ufful ones have already been drawn. We have reafon to prefume, that we fhall draw from thence, fome that fhall fhine as foon as they are difcover'd, and convince us of their Ufefulnefs. Other Truths fhall ftay fomê time till a piercing Meditation, or fome happy Accident difcovers their Ure. Some Truths being confider'd by themfelves fhall be barren, till they are confider'd with reference to one another.Lattly, let the worfe come to the worfe, fome fhall be eternally ufelefs.

I mean ufelefs with reference to fenfible and grofs ufes; for otherwife they fhall not be fo. An Object upon which alone you caft your Eyes is the clearer and brighter, when the neighbouring Objects, which however you do not look upon, are alfo enlighten'd ; becaufe it hath the Benefit of the Rays, which are reflected from them. Thus thofe Difcoveries, which are palpably ufeful, and deferve our chiefeft Attention, are in fome meafure enlighten'd by thofe, which may be call'd ufelefs. For all Truths make one another more lucid.

It is always ufeful to have right Notions, even of ufelefs Subjects. And tho' we cou'd reap no benefit by the Knowledge of Numbers and Sines, yet it wou'd ftill be the only certain Knowledge granted to our Natural Light, and they wou'd ferveto give ourReafon the firt Habit of and Inclis

Fontenelle, of the $V_{\text {effulnefs }}$

$n_{a t i o n ~ t o ~ T r u t h . ~ T h e y ~ w o u ' d ~ t e a c h ~ u s ~ t o ~ o-~}^{0}$ Perate upon Truths; to take the Thread of them, which is generally very fine and almoft imperpeceptible; and to follow it as far as it reaches: In a word, they wou'd make Truth fo familiar, that we might on other Occafions know it at firt fight, and almoft by Inttinct.

A Geometrical Genius is not fo confin'd to Geometry, but that it may be capable of learning other Sciences. A Tract of Morality, Politicks, or Criticifm, and even a Piece of Oratory, fuppofing the Author qualify'd otherwife for thofe Performances, fhall be the better for being compos'd by a Geometrician. That Order, Perfpicuity, Precifion and Exactnefs, which fome time fince are found in good Books, may originally proceed from that Geometrical Genius, which is now more common than ever, and in fome manner is communicated by one Relation to another, nay even to thofe that do not underftand Geometry. Sometimes a Great Man draws all his Cotemporaries after him; and he who hath the jufteft Claim to to the Glory of having fettled a new Art of Arguing, was an Excellent Geometrician.

Laftly, whatever raifes us to Great and Noble Reflexions, tho' they be purely Speculative, afford a Spiritual and Philofophical $V_{t i l i t y}$. The Wants of the Mind are perhaps as many as thofe of the Body. She defires to extend her Knowledge : All that can be known, is neceffary to her, and there can be no better Proof than this, that fhe is defign'd for Truth. Nothing perhaps can redound more to her Glory, than the Plean fure that is felt fometimes, in foight of ones feif,

of Mathematical Learning.

 flif, in the dry and crabbed Queftions of Algebra.But without running counter to the common Notions, and recurring to Advantages which may feem too far fetch'd and refin'd, it may fairly be own'd, that the Mathenaticks and Natural Philofophy have fome things which are only fubfervienc to Curiofity; and fo have thofe Sciences which are moft generally acknowledg'd to be ufeful, as Hiftory, ξ°.

Hiftory doth not in every Part of it fupply us wihh Examples of Vertue and Rules for our Behaviour. For befides thefe, therein you have a View of the perpetual Revolutions of Human Affairs, of the Beginning and Fall of Empires, of Manners, Cuftoms, and Opinions which continually fucceed one another; and in a word, of all that rapid, tho' infenfible, Motion that carries all before it, and inceffantly alters the Face of the Earth.
Had we a mind to oppofe Curiofity to Curiofity, we fhou'd find that inftead of the Motion, which agitates Nations, and gives birth to, and deftroys States ; Natural Philofophy confiders that Great and Univerfal Motion, whict hath put the whole Frame of Nature in Order, and fufpended the Coeleftial Bodies in feveral Spheres, and which illuminates and extinguifhes fome Stars; and by following always unalterable Laws, diverfifies its effects ad infinitum. If the furprifing difference of Manners and Opinions of Mankind is fo entertaining; there is too a great deal of Pleafure to ftudy the prodigious diverfity of the Structure of the different Species of Animals, with reference to their different Functions, to the Elements they live in, to the Climates they inhabit,

Fontenelle, of the Vefulnefs

 and the Aliments they are to take, छc. The moft curious ftrokes of Hittory fhall hardly be more-curious than the Pbofphorus, the cold Liquors which being mixt together, break out into a flame; Silver Trees, the almoft Magical Operations of the Load-Stone, and a valt number of Secrets, which Art hath difcover'd by a near and diligent Scrutiny of Nature.Laftly, Natural Philofophy doth as much as it is poffible unravel the Footfteps of that Infinite Intellect and Wifdom, who hath made all things: Whereas the Object of Hiftory are the diforderly Effects of the Paffion, and of Humane Caprices; and fo odd a Series of Events, that fome formerly fancy'd that 2 Blind and Senfelefs Deity had the Direction of them.

We muft not look upon the Sublime Reflexions which Natural Philofophy leads us to make concerning the Author of the Univerfe, as meer Curiofities. For this ftupendous Work, which appears always more wonderful the more we know it, gives us fuch exalted Notions of its Maker, that they fill our Minds with Admiration and Refpect. But above all, Aftronomy and Anatomy are the two Sciences which more palpably lay before us two grand Attributes of our Creator; one his Immenfity by the diftance, Magnitude and Number of Coeleftial Bodies; the other his Infinite Knowledge by the Mechanifm of Animals. True Natural Philofophy is a kind of Theology.

of Matbematical Learning.

The different views of Humane Underftanding are almoft infinite; and Nature is really fo. So that we may every day expect fome Difcoveries, either in Mathematicks or Natural Philofophy, which fhall be of a new fort of Utility or Curiofity. Make a Collection of all the different Advantages which the Mathematicks afforded a Hundred Years ago, and you'll find nothing to be compar'd to the Perfpective Glaffes they have furnifh'd fince that time, and which are a new Organ to the Sight, and cou'd not be expected from Art. How furpriz'd had the Ancients been, if they bad been told that their Pofterity, by the help of fome Inftruments, fhou'd one day fee a vaft number of Objects which they did not fee; a Heaven that was unknown to them; and Plants and Animals they did not even fufpect it was poffible to exif. Naturalifts had already a grear many curiousExperiments; but within about half a Century, the Air-Pump hath produced a prodigious quantity of them wholly new, and which by fhewing Bodies in a Space void of Air, fhews them as tranfported in a World different from ours, where they undergo Alterations whereof we had no Notion. The Excellency of Geometrical Methods, which are every day invented and improv'd, may perhaps at laft exhauft Geometry ; that is, The Art of making Geometrical Difcoveries, and that is all: Whereas Natural Philofophy, which contemplates an Object of an unlimited Variety, and Fecundity, fhall always find room for new Obfervations, and opportunities to increafe its vaft Stock, and fhall have the Advantage of never being a compleat Science.

Fontenelle, of the UJefulnefs

There are fo many things to be difcover'd, whereof a great part, in all likelyhood fhall never be known ; that they give an opportunity to thofe who will not encounter with the Thorns and Difficulties of Natural Philofophy, to affect a fort of Difoouragement. A great many to vilify this Natural Science, pretend a mighty veneration for the works of Nature, and that they are abfolutely incomprehenfible. However, Nature is never fo admirable, nor fo admir'd as when known. True it is, that what is known is inconfiderable in comparifon of what is not yet known. Nay, Sometimes what is not known, is exactly what feems fhou'd be the fooneft known. As for inflance, it is not at leaft certainly known, why a Stone thrown up into the Air falls down again; but we certainly know the caufe of the Rainbow, why it doth not exceed a certain height; why its breadth is always the fame; why when there are two Rainbews at the fame time, the Colours of the one are overfet with reference to the Colours of the other; and yet the fall of a Stone in the Air appears a more fimple Phænomenon, than the Rainbow. But in a word, altho' we do not know every thing, we are not neither ignorant of every thing. And altho' we are ignorant of the moft fimple Events, yet we have a knowledge of what feems the moft Complex. So that if we have on the one hand reafon to fear, left our Vanity fhou'd flatter uà with the hopes of attaining to the knowledge of things above our reach; on the other we ought to dread, left our Slothfulnefs fhould alfo flatter us that we are condemn'd to a greater degree of Ignorance than really we are.

of Mathematical Learning,

People may think that the Sciences do not begin to exert themfelves, either becaufe they cou'd be but imperfect among the Ancients; or becaufe we have almoft loft the Footteps of them during the gloomy Darknefs of Barbarity; or be. caufe a better method hath been taken about 100 Years ago. Was the Progrefs Hiftorically examin'd, they have already made in fo fhort a time, notwithftanding the ftrong, but falfe Prejudices they had long to encounter with, even fometimes the foreign Obftacles they have met with from Authority and Power; the want of Zeal for Sciences fo remote from common ufe, thofe few who apply'd themelves to this Work, and the weak Motives which engag'd them in it; a Man would wonder at the Greatnefs and Rapidity of the Progrefs of the Sciences, and even we might obferve fome new ones to ftart out of nothing, and perhaps be tempted to have too great hopes of future Impiovements.

The greater reafon we have of future Succefs, the greater we have to look upon the Sciences as in their Cradles, at leaft Natural Philofophy. And therefore the Academy is only now employ'd to make an ample Provifion of Obfervations, and Facts well attefted, which may one day be the foundation of a Syftem. For before the Syiftematical Natural Philofophy can raife folid Edifices; Experimental Natural Philofophy muft be in a condition to fupply it with good Materials.

None

Fontenelle, of the Ufefulnefs

None but Societies, of thofe too countenanc'd and encourag'd by the Prince, can fucceffeully make and prepare this Collection of Materials. All the Learning, Care, Life and Wealth of one Private Man can never anfwer this Defign. There are too many different Experiments to be made, which are to be too much vary'd, and a long time profecuted with the fame Temper and Mind. The Caufe of the leaft Effect is fo wrap'd up, that unlefs you very carefully open all the various Foldings, you cannot come at it.

Hitherto the Academy of Sciences hath confider'd Nature but by parcels: They have fix'd upon no general Syftem, for fear of falling into the inconveniency of hafty Syftems, which are very grateful to the impatience of Humane Underttanding; and being once fettled, are Obftacles to what Truths are afterwards difcover'd. This day we are fure of a Fact, to morrow we fhall be fure of another that bath no relation with the former. However fome Conjectures are ventur'd at upon Caufes; but they are only Conjectures. So that this Collection, which the Academy gives to the Publick, is compos'd of feparate Fragments, independant of one ano ther; whereof every one who is the Author, warrants the Facts and Experiments; and whofe Arguments are approv'd by the Academy, but with Reftrictions becoming Wife and Wary Scepticks.

Time perhaps will come, when thefe fcatter'd Fragments fhall be united into one regular Body; and if they be fuch as they are wih'd, they may of themfelves Unite. A great many Truths, when their Numbers is confide-

of Matbematical Learning.

rable, Shew fo near a Relation to, and fo mutifal a Dependance upon one another, that it feems, that notwithftanding their violent Se paration, they have a natural Tendency to be re-united.

Miccellanea

Miscellanea Curiosa.

An Eftimate of the Quantity of the Vapours raifed out of the Sea derived from Experiment: Together with an Account of the Circulation of the watry Vapours of the Sea, and of the Cause of Springs, prefented to the Royal Society.

By Mr. E. Halley, F. R. S.

THAT the Quantity of Aqueous Vapours contain'd in the Medium of the Air, is very confiderable, feems moft evident from the great Rains and Snows which are fometimes obferv'd to fall, to that degree, that the Water thus difcharg'd out of the Interftices of the Particles of Air, is in weight a very fenfible part of the incumbent Atmofphere: But in what proportion thefe Vapours rife, which aye the Sources not only of Rains, but alfo of Springs or Fountains (as I defign to prove) has not, that 1 know of, been any where well examin'd, tho' it feem ta be one of the moft neceffary Ingredients of a B Rea!

2
 Mifcellanea Curiofa.

Real and Philofophical Meteorolcgy, and, as fuch; to deferve the Confideration of this Honourable Society. I thought it might not be unacceptable to attempt by Experiment to determine the Quantity of the Evaporations of Water, as far as they arife from Heat, which upon Trial fucceeded as follows.

We took a Pan of Water, adout 4 Inches deep, and 7 Inches io Daneter, in which we placed a Thermometer, and by means of a Pan of Coals, we brought the Water to the fame degree of Heat, which is obferved to be that of the Air in our hotteft Summer; the Thermometer nicely fhewing it : This done, we affixed the Pan of Water, with the Thermometer in it, to one end of the Beam of a Pair of Scales, and exactly counterpois'd it with weights in the other Scale ; and by the application or removal of the Pan of Coals, we found it very eafie to maintain the Water in the fame degree of Heat precifely. Doing thus we found the weight of the Water fenfibly to decreafe; and at the end of two hours we obferved that there wanted half an Ounce Troy, all but 7 grains, or 233 grains of Water, which in that time had gone of in Vapour; tho' one could hardly perceive ir fmoke, and the Water were not fenfibly warm. This Quancity in fo fhort a time feem'd very confiderable, being little lefs than 6 ounces in 24 hours, from fo fmall a Surface as a Circle of 8 Inches Diameter. To reduce this Experiment to an exact Calculus, and determine the thicknefs of the Skin of Water that had fo evaporated, I affume the Experiment alledg'd by Dr. Edward Bernard to have been made in the Oxford Society, viz. That the Cube-foot Englifr. of Water weighs exactly 76

Mi)cellanea Curiofa.

Pounds Troy ; this divided by 1728 , the number of Inches in a Foot, will give $253^{\frac{1}{3}}$ grains, or $\frac{i}{2}$ ounce $13^{\frac{\pi}{3}}$ grains for the weight of a Cube-inch of Water; wherefore the weight of 233 grains is $\frac{233}{2} \frac{3}{3}$ or 35 Parts of 38 of a Cube-inch of Water. Now the Area of the Circle whofe Diameter is 7 ? ${ }^{\circ}$ Inches, is 49 fquare Inches: by which di* viding the Quantity of Water evaporated, vizo $\frac{35}{35}$ of an Inch, the Quote $\frac{35}{18} \overline{6} \overline{2}$ or $\frac{1}{5 \frac{1}{3}}$ fhews that the thicknefs of the Water evaporated was the 53 d part of an Inch; but we will fuppofe it only. the 6oth part, for the Facility of Calculation. If therefore Water as warm as the Air in Summer, exhales the thicknefs of a 6cth part of an lnch in two hours from its whole Surface, in r 2 hours it will exhale the $\frac{1}{T o}$ of an Irch; which Quantity will be found abundantly fufficient to ferve for all the Rains, Springs, and Dews; and account for the Cafpian Sea, being always at a ftand, neither wafting nor overflowing; as likewife for the Current faid to fet always in at the Streights of Gibralter, tho' thofe Meditterranean Seas re ceive fo many and fo confiderable Rivers.

To eftimate the Quantity of Water arifing in Vapours out of the Sea, I think I ought to confider it only for the time the Sun is up, for that the Dews return in the Night, as much if not more Vapours than are then emitted; and in Summer the Days being no longer than 12 hours, this Excefs is ballanced by the weaker Action of the Sun, efpecially when rifing before the Water be warmed: So that if I allow $\frac{i}{10}$ af anr Inch of the Surface of the Sea, to be raifed per diem in $V a$ pours; it may not be an improbable Conjecture.

4 Mijcellanea Curiofa.

Upon this Suppofition, every io fquare Inches of the Surface of the Water, gields in Vapour per diem a Cube-inch of Water; and each fquare Foot half a Wine-pint ; every Space of 4 Foot fquare, a Gailon; a Mile fquare, 6914 Tons; a fquare Degree fuppofe of 69 Englifh Miles, will evaporate 33 Millions of Tons: And if the Mediterranean be eftimated at forty degrees long and four broad, allowances being made for the Places where it is broader, by thote where it is narrower (and I am fure I guefs at the leaft) there will be 1 to Square degrees of Sea; and confequently, the whoie Mediterranean muft lofe in Vapour, in a Summer's day, at leaft 5280 Millons of Tons. And this Quantity of Vapour, tho' very great, is as little as can be concluded from the Experiment prodaced: And yet there remains another Caufe, which cannot be reduced to Rule, I mean the Winds, whereby the Surface of the Whater is licked up fome times fafter than it 'exhales by the heat of the Sun; as is well known to thofe that have confiderd thofe drying Winds which blow fometimes.

To eftimate the Quantity of Water, the Mediterranean Sea receives from the Rivers that fall into it, is a very hard Task, unle's one had the Opportunity to meafure their Chanels and Velocity; and therefore we can only do it by allowing more than enough; that is, by affuming thefe Rivers greater than in ail probability they be, and theri comparing the Quantity of Water voidded by the Thames, with that of thofe Rivers, whofe W aters we defire to compute.

The Mediterranean receives thefe confiderable Rivers; the Iberus, the Rbone, the Tiber, the Po, the Danube, the Neifer, the Boryfones,

Mijcellanea Curiofa.

the Tanais, and the Nile; all the reft being of no great Note, and their Quantity of Water inconfiderable: Thefe nine Rivers, we will fuppofe each of them to bring down ten times as much Water as the River Thames; not that any of them is great in reality, but to comprehend with them all the fmall Rivulets that fall into the Sea, which otherwife I know not how to allow for.

To calculate the Water of the Thames, I af. fume that at Kingfon Bridge where the Flood never reaches, and the W ater always runs down, the breadth of the Chanel is 100 Yards, and its Depth 3, it being reduced to an Equality (in both which Suppolitions I am fure I take with the moft) hence the Profil of the Water in this Place is 300 fquare Yards: This multitplied by 48 Miles (which I allow the Water to run in 24 hours, at 2 Miles an hour) or 84480 Yards, gives 25344000 Cubick-yards of Water to be evacuated every Day; that is, 20300000 Tons per diem; and I doubt not, but in the excels of of my Meafures of the Chanel of the River, I have made more than fufficient allowance for the Waters of the Brent, the Wandel, the Lea, and Darwent, which are all worth notice, that fall into the Thames below Kingfon.

Now if each of the aforefaid 9 Rivers yield 10 times as much Water as the Thames doth, 'twill follow that each of them yields but 203 Millions of Ton per diem, and the whole 9, but 1827 Millions of Tons in a day; which is but little more than $\frac{x}{3}$ of what is proved to be raifed in vapour out of the Mediterranean in 12 hours time. Now what becomes of this Vapour when rais'd, and how it comes to pafs B 3 that

6 Mifcellanea Curiofa.

 that the Current always fets in at the Mouth, of the Streights of Gibralter, fhall immediately be fhew'd: But firft it is neceffary to advertife the Reader, that in making the Experiment herein mention'd, the Water ufed had been falted to the fame degree as is the common Sea-water, by the Solution of about a 4oth part of Salt.HAving thus Shew'd by Expetiment the Quantity of W ater raifed in Vapour from the Surface of the Sea in a Days time, which was fo far approv'd of by fome Honourable Members of this Society, that I receiv'd their Commands to profecute thefe Enquiries; and particularly, in relation to the Method ufed by Nature, to revurn the faid Vapours again into the Sea; which is fo juftly perform'd, that in many hundred of Years we are fufficiently affured that the Sea has not fenfibly decreafed by the lofs in Vapour; nor yet abounded by the immenfe Quantity of frefh it receives continually from the Rivers. To demonftrate this Equilibre of Receipt and Expence in the whole Sea, is a Task too hard for me to undertake, yet in obedience to thofe whom I have the Honour to ferve, I fhall here offer, what to me has hirberto feem'd the moft fatisfactory Account of this grand Pbenomenon: I have in another place attempted to explain the manner of the rifing of Vapour by Warmth, by fhewing, that if an Atom of Water were expanded into a Shell or Bubble, fo as to be ten times as big in Diameter as when it was Water; fuch an Atom would become feecifically lighter than Air, and rife fo long as that Flatus or warm Spirit that firft feparated it from the Mafs of Water, fhall continue to diftend it to the fame

Mifcellanea Curiofa.

Degree; and that Warmth declining, and the Air growing cooler and alfo fpecifically lighter, the Vapours confequently fhall ftop at a certain Region of the Air, or elfe defcend, which may happen upon feveral accounts, as I fhall by and by endeavour to make out; yet I undertake not that this is the only principal of the rife of Vapours, and that there may not be a certain fort of Matter, whofe Conatus may be contrary to that of Gravity; as is evident in Vegitation, where in the Tendency of the Sprouts is directly upwards, or againft the Perpendicular. But what ever is the true Caufe, it is in Fact certain, that warmth does feparate the Particles of Water, and emit them with a greater and greater Velocity, as the heat is more and more intenfe; as is evident in the Steam of a boiling Cauldron, wherein likewife the Velocity of the afcent of the Vapours does vifibly decreafe till they difappear, being difperfed into and allimulated with the Ambient Air. Vapours being thus raifed by warmth, let us for a firf Suppofition put, that the whole Surface of the Globe were all Water very deep, or rather that the whole Body of the Earth were Water, and that the Sun had irs diurnal courfe about it: I take it, that it would follow, that the Air of it felf would imbibe a cercain Quantity of aqueous Vapours, and retain them like Salts dif. folved in Water; that the Sun warming the Air, and raifing a more plentiful Vapour from the Water in the day-time, the Air would fuftain a greater proportion of Vapour, as warm Water will hold more diffolved Salts, which upon the abfence of the Sun in the Nights would be all again difcharged in Dews, analogous to the Precipitation of Salts on the cooling of the Liquors ; nor

$$
B_{4}
$$

is it to be believed that in fuch Cafe there would be any diverfity of Weather, other than periodically, every Year alike; the mixture of all terreftrious, faline, heterogenious Vapours being taken away, which as they are varioufly compounded and brought by the Winds, feem to be the Caufes of thofe various Seafons which we now find. In this cafe the Aiery Regions every where, at the fame height, would be equally replenifhed with the Pruportion of Water it could contain, regard being only to be had to the different degree of warmth, from the nearnefs or diftance of the Sun ; and an eternal Eaft-wind would blow all round the Globe, inclining only to the fame fide of the Eaft, as the Latitude doth from the Equator; as is obferved in the Ocean between the Tropicks.

Next let us fuppofe this Ocean interfperfed with wide and fpacious Tracts of Land, with high Ridges of Mountains, fuch as the Pyrenean, the Alps, the Apennine, the Carpatbian in Europe, Taurus, Caucafus, Imaus, and feveral others in ${ }^{1}$ Afia; Atlas and the Montes Luna, with other unknown Ridges in Africa, whence came the Nile, the Nigre, and the Zaire: And in America, the Andes and the Apalatean Mountains; each of which far furpafs the ufual height to which the Aqueous Vapours of themfelves afcend, and on the tops of which the Air is fo cold and rarified, as to retain but a fmall part of thofe Vapours, that fhall be brought thither by Winds. Thofe Vapours thercfore that are raifed copioully in the Sea, and by the Wind, are carried over the low Land to thofe Ridges of Mountains, are there compelled by the Stream of the Air to mount up with it to the tops of the Mountains, where the Water prefently precipitates, gleeting

Mifcellanea Curiofa.

gleeting down by the Crannies of the Stone ; and part of the Vapour entering into the Caverns of the Hills, the Water thereof gathers as in an Alembick into the Bafons of Stone it finds; which being once fill'd, all the overplus of Water that comes thither runs over by the loweft place, and breaking out by the fides of the Hills, forms fingle Springs. Many of thefe running down by the Valleys or Guts between the Ridges of the Hills, and coming to unite, form little Rivulets, or Brooks : Many of thefe again, meeting in one common Valley and gaining the plain Ground, being grown lefs rapid, become a River ; and many of thefe being united in one common Channel, make fuch Streams as the Rhine, the Rbone, the Danube; which latter, one would hardly think the Collection of Water condenfed out of Vapour, unlefs we confider how vaft a Tract of Ground that River drains, and that it is the Sum of all thofe Springs which break out on the South fide of the Carpatbian Mountains, and on the North fide of the immenfe Ridge of the Alps, which is one continued Chain of Mountains from Switzerland, to the Black-Sea. And it may almoft pafs for a Rule, that the magnitude of a River, or the quantity of Water it evacuates, is proportionable to the length and height of the Ridges from whence its Fountains arife. Now this Theory of Springs is not a bare Hypothefis, but founded on Experience, which it was my luck to gain in my abode at St. Helena, where in the Nighttime, on the tops of the Hills, about 800 Yards above the Sea, there was fo ftrange a condenfation, or rather precipitation of the Vapours, that it was a great Impediment to my Cocleftial Obfervations; for in the clear Sky, the Dew would

10
 Mifcellanea Curiofa.

would fall fo faft, as to cover, each half quarter of an Hour, my Glaffes with little drops; fo that I was neceffitated to wipe them fo often, and my Paper on which I wrote my Obfervations would immediately be fo wet with Dew, that it would not bear Ink: By which it may be fuppos'd how faft the Water gathers in thofe mighty high Ridges I but now nam'd.

Thus is one part of the Vapours blown upon the Land return'd by the Rivers into the Sea, from whence they came; another part by the cool of the Night falls in Dews, or elfe in Rains, again into the Sea before it reaches the Land, which is by much the greateft part of the whole Vapours, becaufe of the great extent of the O cean, which the motion of the Wind does not traverfe in a very long fpace of Time; and this is the Reafon why the Rivers do not return fo much into the Mediterranean, as is extracted into Vapour. A third part falls on the LowLands, and is the Pabulum of Plants, where yet it does not reft, but is again exhaled in Vapour by the action of the Sun, and is either carried by the Winds to the Sea to fall in Rain or Dew there, or elfe to the Mountains to be there turn'd into Springs; and tho' this does not immediately come to pafs, yet after feveral Viciffirudes of rifing in Vapour, and falling in Rain or Dews, each Particle of the Water is at length return'd to the Sea from whence it came. Add to this, that the Raiu-waters after the Earth is fully fated with moifture, does, by the Vallies or lower parts of the Earth, find its way into the Rivers, and fo is compendioufly fent back to the Sea, After this manner is the Circulation perform'd, and I doubt not but this Hypo-

Mijfellanea Curiofa.

thefis is more reafonable than that of thofe who derive all Springs from the Rain-waters, which yet are perpetual and without diminution, even when no Rain falls for a long face of time; or that derive them from a Filtration or Percola tion of the Sea-waters, thro' certain imaginary Tubes or Paffages within the Earth wherein they lofe their Saltnefs. This, befides many others, labouring under this principal Abfurdity, that the greateft Rivers have their moft copious Fountains fartheft from the Sea, and whether fo great quantities of frefh Water cannot reafonably be deriv'd any other way than in Vapour. This, if we may allow final Caufes, feems to be the defign of the Hills, that their Ridges being plac'd thro' the midft of the Continents, might ferve, as it were, for Alembicks to diftil frefh Water for the ufe of Man and Beaf, and their heights to give a defcent to thofe Streams to run gently, like fo many Veins, of the Macrocofin to be the more beneficial to the Creation. If the difference between Rain and Dew, and the caufe why fometimes 'tis Cloudy, at other times Serene, be inquir'd, I can offer nothing like a proper Solution thereof, only with fubmiffion to propofe Conjectures, which are the beft I can find, viz. That the Air being heaped up by the meeting of two contrary Winds, when the Mercury is high, the Vapours are the better fuftain'd and kept from Co-agulating or Condenfing into Drops, whereby Clouds are not fo eafily generated, and the Night the Vapours fall down fingle, as they rofe in imperceptible Atoms of Water : Whereas, when the Mercury is low, and the Air rarified by the Exhauftion there-

12 Mifcellanea Curiofa.

of, by two contrary Winds blowing from the place; the Atoms of Air keep the Vapours not fo well feparated, and they coalefce into vifible Drops in the Clouds, and from thence are eafily drawn into greater Drops of Rain; to which 'tis poffible and not improbable, that fome fort of $\mathrm{Sa}-$ line or Angular Particles of Terreftrial Vapour being immix'd with the Aqueous, which I take to be Bubbles, may cut or break their Sikins or Coats, and fo contribute to their more fpeedy Condenfation into Rain.

The True Theory of the Tides, extracted from that admired Treatife of Mr. Iface Newton, Intitled, Philofophiæ Naturalis Principia Mathematica; Being a Difcourfe prefented with that Book to the late King James, by Mr. Edmund Halley.

IT may, perbaps, feem frange, that this Paper; being no other than a particular Account of a Book long fince publijbed, foould now appear bere; but the Defires of feveral bonourable Perfons, which could not be withfoad, bave obliged us to infert it here, for the Sake of Juch, who being lefs knowing in Mathematical Matters, and therefore not daring to adventure on the Author bimfelf, are notwithflanding, very curious to be inform'd of the Caufes of Things; particularly of fo general and extraordinary Phænomena, as are thofe of the Tides. Now this Paper baving been drawn up for the late King James's Ufe, (in whofe Reign the Book was publi/b'd) and having given good Satisfation to those that got Copies of it ; it is hop= ed the Savans of the higher Form will indulge us this Liberty we take to gratifie their Inferiours in point of Science; and not be offended, that we bere infift more largely upon Mr. Newton's Theory of the Tides, which, how plain and eafie foever we find, is very little underfood by the common Reat der.

14 Mifcellanea Curiofa.

THE fole Principle upon which this Author proceeds to explain moft of the great and furprizing Appearances of Nature, is no other than that of Gravity, whereby in the Earth all Bodies have a tendency towards its Centre; as is moft evident: And from undoubted Arguments it's proved, that there is fuch a Gravitation towards the Centre of the Sun, Moon, and all the Planets.

From this Principle, as a neceflary Confequence, follows the Sphrerical Figure of the Earth and Sea, and of all the ocher Coeleftial Bodies: And tho' the tenacity and firmnefs of the Solid Parts, fupport the Inequaliries of the Land above the Level; yet the Fluids, prefling equally and eafily yielding to each other, foon reftore the Æquilibrium, if difturbed, and maintain the exact Figure of the Globe.

Now this force of Defcent of Bodies towards the Centre, is not in all places alike, but is ftill lefs and lets, as the diftance from the Center encreafes: And in this Book it is demonftrated, that this Force decreafes as the Square of the diftance increafes; that is, the weight of Bodies, and the Force of their Fall is lefs, in parts more removed from the Center, in the propor: tion of the Squares of the Diftance. So as for Example, a Ton weight on the Surface of the Earth, if it were railed to the height of 4000 Miles, which I fuppofe the Semidiameter of the Earth, would weigh but $\frac{1}{4}$ of a Ton, or 5 Hundred weight : If to 12000 Miles, or 3 Semidiameters from the Surface, that is 4 from the Center, it would weigh but $\frac{1}{15}$ part of the Weight on the Surface, or a Hundred and Quarter : So that it would be as eafie for the Strength

Mifcellanea Curiofa.

Strength of a Man at that height to carry a Ton weight, as here on the Surface a $100 \frac{1}{4}$. And in the fame Proportion does the Velocities of the fall of Bodies decreafe: For whereas on the Surface of the Earth all things fall 16 Foot in a fecond; at one Semidiameter above, this fall is but four Foot; and at three Semidiameters, or four from the Centre, it is but $\frac{1}{1}$ a of the Fall at the Surface, or but one Foot in a fecond: And at greater Diftances both Weight and Fall become very fmall, but yet at all given Diftances is ftill fome thing, tho' the Effect become infenfibie. At the diftance of the Moon (which I will fuppofe 60 Semidiameters of the Earth) 3600 Pounds weigh but one Pound, and the fall of Bodies is but $\frac{1}{3600}$ of a Foot in a fecond, or 16 Foot in a Minute; that is, a Body fo far off defcends in a Minute no more than the fame at the Surface of the Earth would do in 2 Second of Time.

As was faid before, the fame force decreafing after the fame manner is evidently found in the Sun, Moon, and all the Planets; but more eSpecially in the Sun, whofe Force is prodigious; becoming fenfible even in the immenfe diftance of Saturn: This gives room to fufpect, that the force of Gravity is in the Coeleftial Globes proportional to the quantity of Matter in each of them : And the Sun being at leaft ten Thoufand times as big as the Earth, its Gravitation or attracting Force, is found to be at leaft ten Thoufand times as much as that of the Earth, acting on Bodies at the fame diftance.

This Law of the decreafe of Gravity being demonftratively proved, and put paft contradiction; the Author with great Sagacity, inquires into the neceflary Confequences of this

16 Mifcellanea Curiofa.

Suppofition; whereby he finds the genuine Caufe of the feveral Appearances in the Theory of the Moon and Planets, and difoovers the hitherto unknown Laws of the Motion of Co mets, and of the Ebbing and flowing of the Sea. Each of which are Subjects that have hirherto taken up much larger Volumes; but Truth being uniform, and always the fame, it is admirable to obferve how eafily we are enabled to make out very abftrufe and difficult Matters, when once true and genuine Principles are obtain'd: And on the other hand it may be wondred, that, notwithftanding the great facility of truth, and the perplexity and nonconfequences that always attend erroneous Suppofitions, thefe great Difcoveries fhould have efcaped the acute Difquifitions of the beft Philofophical Heads of all paft Ages, and be referv'd to thefe our Times. But that wonder will foon ceafe, if it be confider'd how great improvements Geometry has receiv'd in our Memory, and particularly from the profound Difcoveries of our incomparable Author.

The Theory of the Motion of the primary Planets is here fhewn to be nothing elfe, but the contemplation of the Curve Lines which Bodies caft with a given Velocity, in a given Direction, and at the fame time drawn towards the Sun by its gravitating Power, would defcribe. Or, which is all one, that the Orbs of the Planets are fuch Curve Lines as a Shot from a Gun defcribes in the Air, being caft according to the direction of the Piece, but bent in a crooked Line by the fupervening Tendency towards the Earths Centre : And the Planets being fuppofed to be projected with a given Force, and attracted towards the Sun, after the aforefaid

Mifcellanea Curiofa.

manner, are here proved to defcribe fuch Figures, as anfwer punctually to all that the Induftry of this and the laft Age has obferved in the Paetary Motions. So that it appears, that there is no need of folid Orbs and Inteligences, as the Antients imagin'd, nor yet of Vortices or Whirlpools of the Cocleftial Matter, as Des Cartes fuppofes; but the whole Affair is fimply and mechanically performed, upon the fole Suppofition of a Gravitation towards the Sun ; which cannot be denied.

The Motion of Comets is here fhewn to be compounded of the fame Elements, and not to differ from Planets, but in their greater fwifnefs, whereby overpowering the Gravity that fhould hold them to the Sun, as it doth the Planets, they flie off again, and diftance themfelves from the Sun and Earth, fo that they foon are out of our fight. : And the imperfect Accounts and Cbfervations Antiquity has left us, are not fufficient to determine whether the fame Comer ever return again. But this Author has fhewn how Geometrically to determine the Orb of a Comer from Obfervations, and to fird his Diftance from the Earth and Sun, which was never befor done.

The third thing here done is the Theory of the Moon, all the Inequalities of whofe Motion are proved to arife from the fame Principles, only here the effect of two Centers operating on, or attracting a projected Body, comes to be confidered ; for the Moon, though principally at. tracted by the Earth, and moving round it, does together with the Earth, move round the Sun once a Year, and is, according as the is nearer or farther from the Sun, drawn by him more or lefs than the Center of the Earth, about

18

Mifcellanea Curiofa.

which the moves; whence arife feveral Irregularities in her Motion, of all which, the Author in this Book, with no lefs Subtility than Induftry, has given a full account. And though by reafon of the great Complication of the Problem, he has not yet been able to make it purely Geomerrical, 'tis to be hoped, that in fome farther Effay he may furmount the difficulty: And having perfected the Theory of the Moon, the long defir'd Difoovery of the Longirude (which at Sea is only practicable this way) may at length be brought to light, to the great Ho nour of your Majefty, and Advantage of your Subjects.

All the furprifing Phænomena of the Flux and Reflux of the Sea, are in like manner fhewn to proceed from the fame Principle ; which I defign more largely to infilt on, fince the Matter of Fact is in this Cafe much better known to your Majefly than in the foregoing.

If the Earth were alone, that is to fay, not affected by the Actions of the Sun and Moon, it is not to be doubted, but the Ocean, being equally prefs'd by the force of Gravity towards the Center, would continue in a perfect Stagnation, always at the fame height, without either Ebbing or Flowing; but it being here demonftrated, that the Sun and Moon have a like Principle of Gravitation towards their Centers, and that the Earth is within the Activity of their Attractions, it will plainly follow, that the Equality of the preffure of Gravity towards the Center will thereby be difturb'd; and though the fmalinefs of thefe Forces, in refpect of the Gravitation towards the Earth's Center, renders them altogether imperceptible by any Experiments we

Mifcellanea Curiofa.

can devife, yet the Ocean being fluid and yielding to the leaft force, by its rifing fhews where it is lefs prefs'd, and where it is more prefs'd by its finking.

Now if we fuppofe the force of the Moon's Attaction to decreafe as the Square of the Difance from its Center increafes (as in the Earth and other Coeleftial Bodies) we fhall find, that where the Moon is perpendiculanly either above or below the Horizon, either in Zenith or Nadir, there the force of Gravity is moft of all diminifhed, and confequently that there the Ocean mult neceffarily fwell by the coming in of the Water from thofe parts where the Preffure is greateft, riz. in thofe places where the Moon is near the Horizon: But that this may be the better underfood, I thought it needful to add the following Figure, (Vide Fig. I. Plate I.) where M is the Moon, E the Errth, C its Center, and Z the place where the Moon is in the Zenith, N where in the Nadir.

Now by the Hypothefis it is evident, that the Water in z, being nearer, is more drawn by the Moon, than the Center of the Earth C, and that again more than the Water in N; wherefore the Water in Z hath a tendency towards the Moon, contrary to that of Gravity, being equal to the excefs of the Graviration in z, above that in C:And in the other cafe, the Water in N, tending lefs towards the Moon than the Center C, will be lefs preffed, by as much as is the difference of the ravitation towards the Moon in C and N. This rightly underftocd, it follows plainly, that the Sea, which otherwife would be Spherical, upon the Preffure of the Moon, mult form it felf into a Spheroidal or Oval Figure, whofe longeft Diameter is where C 2 the
the Moon is vertical, and fhorieft where fhe i^{5} in the Horizon ; and that the Moon fhifting her Pofition as the turns round the Earth once a Day, this Cval of Water fhifs with her, occafioning thereby the two Floods and Ebbs obfervable in each 25 Hours.

And this may fuffice, as to the general Caufe of the Tides; it remains now to flew how naturally this Motion accounts for all the Particulars that have been obferv'd about them; fo that there can be no room left to doubt, but that this is the true caufe thereof.

The Spring Tides upon the New and Full Moons, and Neap Tides on the Quarters, are occafion'd by the attractive Force of the Sun in the New and Full, confpiring with the Attraction of the Moon, and producing a Tide by their united Forces: Whereas in the Quarters, the Sun raifes the Water where the Moon depreffes it, and the conttary; fo as the Tides are made only by the difference of their Attractions. That the force of the Sun is no greater in this Ca e, proceeds from the very fmall Proportion the Semidiameter of the Earth bears to the valt diftance of the Sun.

It is allo obferv'd, that cateris paribus, the Equinoctial Spring Tides in March and September, or near them, are the Higheft, and the Neap Tides the loweft; which proceeds from the greater Agitations of the Waters, when the fluid Spheroid revolves about a great Circle of the Earth, than when it turns about in a leffer Circle; it being plain, that if the Moon were conftituted in the Pole, and there flocd, that the Sphercid would have a fix'd Pofition, and that it would be always high Water under the Poles, and low Water every where under the Equinoctial :
noctial: And therefore the nearer the Moon approaches the Poles, the lefs is the agitation of the Ocean, which is of all the greatelt, when the Moon is in the Equinoctial, or fartheft diftant from the Poles. Whence the Sun and Moon, being either conjoined or oppofire in the Æquinoctial, produce the greateft Spring Tides; and the fubfequent Neap Tides, being produc'd by the Tropical Moon in the Quarters, are always the leaft Tides; whereas in func and December, the Spring Tides are made by the Tropical Sun and Moon, and therefore lefs vigorous; and the Neap Tides by the Æquinoctial Moon, which therefore are the ftronger: Hence it happens, that the difference between the Spring and Neap Tides in thefe Months, is much le'fs confiderable than in March and September. And the reafon why the very higheft Spring Tides are found to be rather before the Vernal and after the Autum. nal Equinox, viz. in Fobruaty and ociober, than precifely upon them, is, becaufe the Sun is nearer the Earth in the Winter Months, and fo comes to have a greater effect in producing the Tides.

Hitherto we have confider'd fuch Affections of the Tides as are Univerfal, without relation to particular Cafes; what follows from the differing Latitudes of places, will be eafily undertood by the following Fig. (Vide Fig. 2. Plate I.)

Let APEP be the Earth coverd over with very deep Waters, C its Center, P, p, its Poles, $A E$ the Æquinoctial, F, f, the parallel of Latitude of a Place, D, d, abother parallel at equal diftance on the other fide of the 座quinoctial, H, b, the two Points where the Moon is vertical , and let K, k, be the great Circle, whercin the Moon appears Horizontal. It is evident, that a Spheroid defcrib'd upon $H h$, and $K k_{a}$
fhall nearly reprefent the Figure of the Sea, and $C f, C D, C_{5} F, C d$, fhall be the heighths of the Sea in the places f, D, F, d, in all which it is High-water: And leeing that in twelve Hours time, by the diurnal Rotation of the Earth, the Pont F is transferr'd to f, and d to D : The height of the Sea CF will be that of the Highwater when the Moon is prefent, and $c f$ that of the other High-water, when the Moon is under the Earth: Which in the cafe of this Figure is lefs than the former C F. And in the oppofite Parallel $D d$, the contrary happens. The Rifing of the Water being always alternately greater and lefs in each place, when it is produc'd by the Moon declining fenfibly from the Æquinoctial ; that being the greateft of the two High-waters in each diurnal Revolution of the Moon, wherein the approaches neareft either to the Zenith or Nadir of the place: Whence it is, that the Moon in the Northern Signs, in this part of the World, makes the greatelt Tides when above the Earch, and in Southern Signs, when under the Earth; the Effect being always the greateft where the Moon is fartheft from the Horizon, either above or below it. And this alternate Increafe and Decreafe of the Tides has been obferv'd to hold true on the Coaft of England, at Brifol by Captain Sturmy, and at Ply= mouth by Mr. Colepreffe.

But the Motions hitherto mentioned are fomewhat alter'd by the Libration of the Water, whereby, though the Action of the Luminaries fhould ceafe, the Flux and Reflux of the Sea would for fome time continue: This Confervation of the imprefs'd Motion diminifhes the differences that otherwife would be between two confequent Tides, and is the reafon why the higheft

Mifcellanea Curiofa.

higheft Spring-Tides are not precifely on the New and Full Moons; nor the Neaps on the Quarters; but generaliy they are the third Tides af. ter them, and fometimes later.

All thefe things would regularly come to pafs, if the whole Eath were cover'd with Sea very deep; but by reafon of the fhoalnefs of fome places, and the narrownefs of the Streights, by which the Tides are in many cates propagated, there arifes a great diverfiry in the Effect, and not to be accounted for, without an exact Knowledge of all the Circumftances of the Places, as of the Pofition of the Land, and the Breadth and Depth of the Channels by which the Tide flows; for a very flow and imperceptible Motion of the whole Body of the Water, where it is (for Example) 2 Miles deep, will fuffice to raife its Surface io or I2 Feet in a Tides time; whereas, if the fame quantity of Water were to be convey'd up a Channel of 40 Fathoms deep, it would require a very great Stream to effect ir, in fo large Inlets as are the Channel of England, and the German Ocean; whence the Tide is found to fet flrongeft in thofe places where the Sea grows narroweft ; the fame quantity of Water being to pals through a fmaller Paffage: This is moft evident in the Streights, between Portland and Cape de Hague in Normandy, where the Tide runs like a sluce ; and would be yet more between Dover and Calais, if the Tide coming about the Ifland from the North did not check it. And this force being once inopref's'd upon the Water, continues to carry it above the level of the ordinary height in the Ocean, particularly where the Water meets a direct Obftacle, as it is at St. Malo's; and where it enters into a long Channel, which running far into C_{4} the

24 Mifcellanea Curiofa.

the Land, grows very ftreight at its Extremity; as it is in the Severr-Sea at Chepfoom and Briftol.

This fhoalnefs of the Sea, and the intercurrent Continents are the reafon, that in the open Ocean the time of High water is not at the Moons appulfe to the Meridian, but always fonie Hours after it; as it is obferv'd upon all the Weft Coaft of Europe and Africa, from Ireland to the Cape of Good-Hope: In all which a S. W. Moon makes High-water, and the fame is reported to be on the. Weft fide of America. But it would be enditefs to account all the particular Solutions, which are eafie Corollaries of this Hypothefis; as why the Lakes, fuch as the Cafpian Sea, and Mediternanean Seas, fuch as the Black Sea, the Streighes and Baltick, have no fenfible Tides: For Lakes having no Communications with the Ocean, can neither increafe nor diminith their Water, whereby to rife and fall; and Seas that comnunicate by fuch narrow Inlets, and are of fo immenfe an Extent, cannot in a few Hours time receive or empty Water enough to raife or fink their Surface any thing fenfibly.

Laftly, to demonftrate the Excellency of this Doctrine, the Example of the Tides in the Port of Tunking in Cbina, which are fo extraordinary, and differing from all others we have yet heard of, may fuffice. In this Port there is but one Flood and Ebb in 24 Hours; and twice in each Month, viz. when the Moon is near the Equinoctial there is no Tide at all, but the Water is ftagnant; but with the Moons Declination there begins a Tide, which is greatelt when the is in the Tropical Signs: Only: with this difference, that when the Moon is to the Northward of the Æquinoctial, it. Flows when the is above

Mifcellanea Curiofa.

the Earth, and Ebbs when fhe is under, fo as to make High-water at Moons-fetting, and Lawwater at: Moons-rifing: But on the contrary, the Moon being to the Southward, makes Highwater at rifing, and Low-water at ferting ; it Ebbing all the time fhe is above the Horizon. As may be feen more at large in the Plitofophical Tranfactions, Numb. 162.

The Caufe of this odd Appearance is propos'd by Mr. Newton, to be from the concurrence of two Tides; the one propagated in fix Hours out of the great South-Sea along the Coaft of Cbina; the other out of the Indian-Sea, from between the Iflands in twelve Hours, along the Coaft of Malacca and Cambodia. The one of thefe Tides, being produc'd in North Latitude, is, as has been faid, greater, when the Moon being to the North of the Equator is above the Earth, and lefs when fhe is under the Earth. The other of them ${ }_{2}$ which is propagated from the Indian Sea, being raifed in South-Latitude, is greater when the Moon declining to the South, is above the Earth, and lefs when the is under the Earth: So that of thefe Tides alternately greater and leffer, there comes always fucceffively two of the greater and two of the leffer together every Day; and the High-water falls always between the times of the arrival of the two greater Floods; and the Low-water between the arrival of the two leffer Floods. And the Moon coming to the Equinoctial, and the alternate Floods becoming equal, the Tide ceafes, and the Water ftagnates: But when fhe has pafs'd to the other fide of the Equator, thofe Floods which in the former Order were the leaft, now becoming the greateft, that That before was the time of High-water, now becomes the Low-water, and

16 Mifcellanea Curiofa.
the Converfe. So that the whole appearance of thefe ftrange Tides, is without any forcing naturally deduc'd from thefe Principles, and is a great Argument of the Certainty of the whole Theory.

A Theory of the Variation of the Magnetical Compafs. By Mr. Ed. Halley, Fellow of the Royal Society.

THE Variation of the Compafs (by which I mean the Deflection of the Magnetical Needle from the true Meridian) is of that great Concernment in the Art of Navigation, that the neglect thereof, does little lefs than render ufelefs one of the nobleft Inventions Mankind ever yet attained to. And for this caufe all Ships of Confequence (efpecially thofe bound beyond the Equator) carry with them Inftruments on purpofe to oblerve this Variation: That fo the Courie fteer'd by the Compafs, may be reduc'd to the true Courfe in refpect of the Meridian.

Now alchough the great utility that a perfect Knowledge of the Theory of the Magnetical Direction would afford to Mankind in general, and efpecially to thote concern'd in Sea Affairs, feems as fufficient inciement to all Philofophical and Mathematical Heads, to take under ferious Confideration the feveral Pbenomena, and to endeavour to reconcile them by fome general Rule: Yet fo it is; that almoft all the Authors, from whom a Difcourfe of this kind ought to have been expected, pafs by in filence the Difficuliies they here Encounter. And thofe that mention this Variation: By affirming it to proceed from Caufes altogether uncertain (as are the cafual lying

28 Mifcellanea Curiofa.

ing of Iron Mines and Loadftones in the Earth) put a ftop to all further Contemplation; and give difcouragement to thofe that would otherwife undertake this Enquiry. 'Tis true, that not long fince one Mr. Bond, an old Teacher of Navigation, put forth a fmall Treatife, wherein he pretends to calculate the Variation : But he limits his Hypothefis to the City of London, affirming himfelf (as he had a great deal of reafon) that the fame Calculus is not fufficient for other Places; whereby it appears that this Rule is far fhort of the fo much defir'd general one.

Now although (through want of fufficient Ob fervations, and fome other Difficulties, which I fhall anon fhew) I cannot pretend perfectly to eftablifh the Numbers and Rules of a Calculus, which fhall precifely anfwer to the Variations of all parts of the World: Yet I fuppofe it will not be unacceptable to the Curious to propofe fomething of a Light into this abftrufe Myftery; which, if no other, may have this good Effect, to ftir up the Philofophical Genii of the Age to apply themfelves more attentively to this ufeful Speculation. But before I proceed, 'twill be neceffary to lay down the Grounds upon which I raife my Conclufions; and at once to give a Synopfis of thofe Variations, which I have reafon to look upon as fure, being moftly the Obfervations of Perfons of good Skill and Integrity.

Mifcellanea Curiofa.

A
 TABLE
 O F

VARIATIONS.

Eombay	7230 E 19	1200 W
At Cape Comorin	$7600 \mathrm{E} 815 \mathrm{~N} 168=$	848 W
At Ballafore	8700 EL 2130 N 168 c	820 W
At Fort St. George	8000 E 1315 N 168 c	810 W
At theW. Point of \mathfrak{f}	0400 El 640 \167e\|	310

Mifcellanea Curiofa.

Names of Places. Longitude. Latitude. Anno|Variation.

ongitude. d m	$d m$	Annol	Variation
5800 E	$39 \sim 5$	1677	2730 W
$72 \bigcirc \mathrm{E}$	38 - S	167%	2330 W
$142 \bigcirc \mathrm{E}$	4225 S	1642	0
170 OE	4050	S1642	9 ○ E
16930	3435	642	840 E

At the Ifle Rotterdam?

in the South Sea
On the Coaft of N:Guin. 14900 E 430 S 1643.845 E At the W.P. of N.Guin. $12600 \mathrm{E} / \circ 26$ Slı 1643530 E

Tho' I could wifh we could obtain from the Spaniards what Variations they find in their Voyages from the Manilhas towards Acapulco, thorough the North part of the South Sea; as likewife what it is at $\ddagger a p a n$ from the Dutch: Yet (confidering the number of thefe Obfervations I have collected, and that they are made in parts of the World to remote from Europe, and from one another) I fuppofe that the Theory that anfwers thefe will fcarce fail in thofe Regions from whence we have as yet no account. But firlt we mult make fome Remarks upon the foregoing Table : And, Firft,

That in all Europe the Variation at this time is Weft, and more in the Eaftern Parts thereof than the Weftern: As likewife, that it feems throughout to be upon the increafe that way.

Secondly, That on the Coalt of America, about Virginia, New-England and New-Foundland, the Variation is likewife Wefterly ; and that it increafes all the way as you go Northerly along the Coaft, fo as to be above 20 Deyrees at New-Found-Land, nearly 30 gr. in Hudjon's Straights, and not lefs than 57 Degrees in Baffin's Bay; alfo, that as you Sail Eaftward

32 Mifcellanea Curiofa.

ward from this Coaft, the Variation diminifhes. From thefe two it is a Legitimate Corollary: That Somewhere between Europe, and the North part of America, there ought to be an Eafterly Variation, or at leaft no Wefterly. And fo I conjecture it is about the Eaftermoit of the Tercera IIfands.

Thirdly, That on the Coaft of Brafile there is Eaft Variation, which increafes very notably as you go to the Southward, fo as to be 12 Degrees at Cape Frio, and over againt the River of Plate $20 \frac{1}{2}$ Degrees: And from thence Sailing Southwefterly to the Straits of Magellan it decreafes 17 Degrees, and at the Weft Entrance but 14 Degrees.

Fourthly, That at the Eattward of Brafile, properly fo call'd, this Eafterly Variation decreafes, fo as to be very little at St. Helena and A/cenfion, and to be quite gone, and the Compals Point true about 18 Degrees of Longitude Weft from the Cape of Good-bope.

Fifthly, That to the Eaftward of the aforefaid Places a Weftward Variation begins, which Reigns in the whole Indian Sea, and arifes to no lefs than Eighteen Degrees under the Equator it felf, about the Meridian of the Northern part of Madagafcar; and near the fame Meridian, but in 39 Degrees South Latitude it is found full $27 \frac{1}{2}$ Degrees: From thence Eafterly. the Weft Variation decreafes, fo as to be little more than eight Degrees at Cape Comorin, and than three Degrees upon the Coaft of $\mathfrak{F a}$ va; and to be quite extinct about the Mrlucca Iflands, as alfo a little to the Weltwards of Van

Mifcellanea Curiofa.

Diemens Land found out by the Dutch in 1642.
Sixthly, That to the Eaftward of the Molucca's and Van Diemens Land in South Latitude there arifes another Eafterly Variation, which feems not fo great as the former, nor of fo large Extent; for that at the Ifland Rotterdam it is fenfibly lefs than upon the Eaft Coaft of New Guinea; and, at the rate it decreafes, it may well be fuppos'd, that about 20 Degrees farther Eaft, or 225 Degrees Ealt Longitude from London, in the Latitude of 20 DegreesSouth, a Wefterly Variation begins.

Seventhly, That the Variations oblerv'd by the Honourable Sir fobn Norborough at Baldivia, and at the \mathbf{W} eft Entrance of the Straights of Magellan do plainly thew, that That Ealt Variation, nored in our third Remark, is decreafing apace; and that it cannot reafonably extend many De_{j} grees into the South Sea from the Coaft of Peru and Cbili, leaving room for a fmall Wefterly Variation, in that Tract of the unknown World that lies in the mid-way between Cbili and New-Zealand, and between Hounds-I/and and Peru.

Eighthly, That in Sailing North-Weft from St. Helena by Afcenfion, as far as the Equator, the Variation continues very frall Eaft, and as it were conftantly the fame: So that in this part of the World the Courfe, wherein there is no Variation, is evidently no Meridian, but rather North-Weft.

Ninthly, That the Entrance of Hudfon's Straights, and the Mouth of the River of Plate, being nearly under the fame Meridian, at the

34 Mifcellanea Curiofa.

one place the Needle varies $29^{\frac{1}{2}}$ Degrees to the Weft; at the other $20 \frac{1}{2}$ Degrees to the Eaft. This plainly demonftrates the impoffibility of. reconciling thefe Variations by the Theory of Bond; which is by two Magnetical Poles and an Axis, inclin'd to the Axis of the Earth; from whence it would follow, That under the Same Meridian the Variation Joould be in all places the fame way.

Thefe things being premifed may ferve as a fure Foundation to raife the Superffructure of a Theory upon. But firf it would not be amifs to fhew hereby the miftake of Gilbert and Des Cartes: The firft whereof fuppofes; that the Eartb it Self being in all its parts Magnetical, and the Water not; wherefoever the Land is, thither alfo ßould the Needle turn, as to the greater quantity of Magnetical Matter. But this in many Inftances is not true ; but moft remarkably upon the Coaft of Brazile, where the Needle is fo far from being attracted by the Land, that it turns the quite contrary way, leaving the Meridian to lye Nb E, which is juft along the Coaft. As to the Pofition of Des Cartes, that the Iron and Loadfones bid in tbe Bowels of the Earth and the Bottom of the Sea, may be the Caufes that the Needle varies; if we confider for how great a part of the Earths Surface, ex gr. in the whole Indian Sea, the Needle declines the fame way, and that regularly, 'twill follow that the attracting Subftance that occafions it, muft be very far diftant. Now by Experience we find the little force that Iron Guns have upon the Compafs in Ships (their Vertue, though they be Demiculverin, or greater Cannon, being not perceptible at four or five Yards diftance) and
the Experiments now before the Royal Society do plainly fhew, how little a Magnetifm there is in moft crude Iron Oars: What quantity thereof muft be then fuppos'd to make fo powerful a Diverfion at two or three Thoufand Miles diftance? Yet I cannot deny that in fome places near the Shoar, or in Shoal-Water, the Needle may be irregularly directed from the aforefaid Caufes, and that not a little, as Gaffendus gives a motable inflance of the Illand Elba in the Mediterranean Sea: But thefe differences from the general Direction are always figns of the nearnefs of thofe Magnetical Subftances, for the Production whereof that Illand Elba bas been famous from all Antiquity. Befides, againft both Des Cartes and Gilbert, the change of the Variation, which has been within thefe Hundred Years laft paft more than 15 gr. at London, is an entire Demonftration; tho' Des Cartes does not flick to fay, that the tranfortation of Iron from place to place, and the growth of new Iron within the Earth, where there was none before, may be the caufe thereof. The fame holds likewife againt the Hypothefis of Magnetical Fibres, which Kircher maintains.

Now to propofe fomething that may anfwer the Ceveral appearances, and introduce nothing ftrange in Philofophy, after a great many clofe Thoughts, I can come to no other Conclufion than that, The whole Globe of the Earth is one great Magnet, baving four Magnetical Poles, or Points of Attraction, near each Pole of the Equator Two; and that, in thofeparts of the World which lie near adjacent to any one of thofe Magnetical Poles, the Needle is govern'd thereby, the neareft Pole being always predominant over the more remote. The parts of the Earth wherein thefe

$$
\mathrm{D}_{2} \ldots \mathrm{Mag}
$$

36 Mifcellanea Curiofa.

Magnetical Poles. lie, cannot as yet be exactly determin'd for want of fufficient Data to proceed Geometrically; but, as near as Conjecture can reach, I reckon that the Pole, which is at piefent neareft to us, lies in or near the Meridian of the Landseend of England, and not above feven Degrees from the Pole Arctick; by this Pole the Variations in all Europe and Tartary, and the North Sea are principally govern'd, though with regard to the other Nothern Pole, whole fituation is in a Meridian paffing about. the middie of California, and about 15 gr . from the North Pole of the World; to this the Needle has chiefly refpect in all the North A merica, and in the two Oceans on either fide thereof, from the Azores Weftward to Fapan, and farther. The two Southern Poles are rather farther diftant from the South Pole of the World: The one about fixteen Degrees therefrom, is in a Meridian, fome twenty Degrees to the Weftward of Magellan Straights, or ninety five Degrees Weft from London: This commands the Needle in all the Soutb-America, in the Pacifick Sea, and the greateft part of the Etbiopick Ocean. The Fourth and laft Pole feems to have the greateft Power, and largeft Dominions of all, as it is the moft remote from the Pole of the World, being little lefs than 20 Degrees diftant therefrom in the Meridian, which paffes through Hollandia Nova, and the Illand Celcbes about one hundred and twenty Degrees Eaft from London; this Pole is predomi* nant in the South part of Africa, in Arabia and the Red Sea, in Perfia, India, and its Iflands, and all over the Indian. Sea, from the Cape of Good-Hope Eaftwards to the middle of the great South Sea, that divides Aftr from Americk. This

Mifcellanea Curiofa.

feems to be the prefent Difpofition of the Magnetical Vertue throughout the whole Globe of the Earth; it remains to fhew how this Hypothefis makes out all the Variations that have been oblerv'd of late; and how it anfwers to our feveral Remarks drawn from the Table. And firft it is plain, that (our European North Pole being in the Meridian of the Lands-end of England) all places more Eafterly than that will have it on the Weft fide of their Meridian, and confequently the Needle, refpecting it with its Northern Point, will have a Wefterly Variation, which will ftill be greater as you go to the Eaftwards, till you come to fome Meridian of Rufia, where 'twill be greatelt, and from thence decreafe again. Thus at Breft the Variation is but $1 \frac{3}{4}$ Degrees, at London $4 \frac{1}{2}$ Degrees; but at Dantzick feven Degrees Wef. To the Weftward of the Meridian of the Lands-end, the Needle ought to have an Eafterly Variation; were it not that (by approaching the Americans Norihern Pole, which lies on the Weft fide of the Meridian, and feems to be of greater force than this other) the Needle is drawn thereby Weftwards, fo as to counterbillance the D:riection given by the European Pole, and to make a fmall Weft Variation in the Meridian of the Landsend ir felf. Yet I fuppofe that about the Meridian of the Ifle Tercera, our neareft Pole may fo far prevail as to give the Needle a little turn to the Eaft, though but for a very fmall fpace: The Counterballance of thofe two $\boldsymbol{p}_{0} l$'s permitting no confiderable Variation in all the Eaftern Parts of the Atlantick Ocean; nor upon the Weft Coafts of England and Ireland, France, Spain and Barbary. But to the Weftwards of the Azores the Power of the American

3^{8} Mifellanea Curiofa.

Pole overcoming that of the European, the Needle has chiefly refpect thereto, and turns ftill more and more towards it as you approach it. Whence it comes to pafs, that on the Coaft of Virginia, New-England, New-found-Land, and in HudJon'sStraights the Variation is Weftward ; that it decreafes as you go from thence towards Europe, and that it is lefs in Virginia and New-England, than in New-found-Land, and HudJon's-Straights. This Wefterly Variation again decreafes, as you pafs over the North America; and about the Meridian of the middle of California the Needle again points due North; and from thence Weftward to $Y_{e d z o}$ and Fapan, I make no doubt but the Variation is Eafterly, and half the Sea over no lefs than fifteen Degrees, if there be any truth in this Hypothefis of mine. Therefore I propofe this as a Trial, that the whole may be fcann'd thereby; and I conceive it will not be hard to know of the Spaniards how it is, who fo frequently fail through that Ocean, in their return from the Manilba Ifles. This Eaft Variation extends over Fapan, Yedzo, Eaft-Tartary, and part of China, till it meet with the Wefterly, which is govern'd by the European North Pole, and which I faid was greateft fome where in Rufia.

Towards the Southern Pole the effect is much the fame, only that here the South Point of the Needle is attracted. Hence it will follow, that the Variation on the Coaft of Brazile, at the River of Plate, and fo on to the Straights of Magellan, fhould be Eafterly (as in our third Remark) ; if we fuppofe a Magneticul Pole fituate about twenty Degrees more Wefterly than the Straights of Magellan. And this Eafterly Variation doth extend Eaftward over the greateft

Mijcellanea Curiofa.

part of the Ethiopick Sea, till it be counterpoifed by the Vertue of the other Southern Pole; as it is about mid-way between the Cape of GoodHope, and the Ifles of Tritan d' Acuntia. From thence Eaftwards, the Afian South Pole (as I muft take the liberty to call it) becoming prevalent, and the South point of the Needle being attracted thereby, there arifes a Weft Variation, very great in quantity and extent, becaufe of the great diftance of this Magnetical Pole of the World. Hence it is, that in all the Indian Sea as far as Hollandia Nova, and farther, there is conftantly Weft Variation; at that under the Equator it felf it arifes to no lefs than eighteen Degrees, where 'tis moft. About the Meridian of the Ifland Celebes, being likewife that of this Pole, this Wefterly Variation ceafes, and an Eafterly begins; which reaches, according to my Hypothefis, to the middle of the South-Sea, between Zelandia Nova, and Chili, leaving room for a fmall Weft Variation govern'd by the American South Pole, which I fhew'd to be in the Pacifick Sea, in the fixth and feventh Remark.

What I have now faid, does plainly fhew the fufficiency of this Hypothefis for folving the $V a$ riations that are at this time obferv'd in the temperate and frigid Zones, where the Direction of the Needle chiefly depends upon the Counterpoife of the forces of two Magnetical Poles of the fame Nature; and I fuppofe I have fhewn how it comes to pafs, that under the fame Meridian the Variation fhould be in one place $29 \frac{1}{2}$ Weft, and another $20 \frac{1}{2}$ Eaft ; as I have noted in my ninth Remark.

In the Torrid Zone, and particularly under the Equinoctial, refpect muft be had to all four

$$
\text { D } 4 \quad \text { Poles, }
$$

Poles, and their Pofitions well confider'd, otherwife it will not be eafie to determine what the Variations fhall be ; the nearelt Pole being always the ftrongeft; yet not fo, as not to be counterballanc'd fometimes by the united forces of two more remote; a notable Inftance whereof is in our eighth Remark, where I took notice, that in failing from St: Helena by the Ille of Afcenfion, to the Equator, on a N. W. Courfe, the Variation is very little Eafterly, and in that whole Tract unalterable; for which I give this Reafon, That the South American Pole (which is confiderably the neareft in the aforefaid Places) requiring a great Eafterly Variation, is counterpoifed by the contrary Attraction of the Nortb-American and the Afian-Soutb-Pole; each whereof fingly are in thefe Parts, weaker than the American-Soutb-Pole; and upon the North Weft Courfe, the Diftance from this latter is very little varied; and as you recede from the Afian-South-Pole, the Ballance is ftill preferv'd by the accefs towards the North-American-Pole. I mention not in this Cafe the European-Nortb-Pole, its Meridian being little remov'd from thofe of thefe places; and of it felf requiring the fame Variations we here find. After the fane manner we might proceed to conclude the Variations in other places under and near the Equator; but I purpofely leave it for an Exercife to the Thoughts of the ferious Reader, who is defir'd to help his Imagination, by having before him a Map or Globe of the Earth: And to mark thereon the Magnetical Poles in the Lougitudes and Latitudes I affign phẹm (Vide Plate 2.)

Mifcellanea Curiofa.

Thus, I hope, I have not loft my Pains and Study in this difficult Subject; believing that I have put it paft doubt, That there are in the Earth four fuch Magnetical Points ar Poles, which occafion the great variety and feeming irregito larity which is obferv'd in the Variations of the compass. But to calculate exactly what it is, in any place affign'd, is what I dare not yet pretend to, though I could wifh it were my happinefs to be able to oblige the World with fo ufeful a piece of Knowledge ; there are Difficulties that occur, that render the thing as yet not feafible; for firft there are a great many Obfervations requifite, which ought to be made at the fame time ; not at Sea, but afhore, with greater Care and Attention than the generality of Sailors apply. And befides, it remains undetermin'd in what proportion the attractive Power decreafes, as you remove from the Pole of a Magnet, without which it were a vain attempt to go about to calculate. There is yet a furthier Difficulty, which is the Change of the Variation, one of the Difcoveries of this laft Century; which fhews, that it will require fome hundreds of Years to eftablifh a compleat DaArine of the Magnetical Syftem. From the foregoing Table ic fhould feem, that all the Magnetical Poles had a motion Weftward : But if it be fo , 'tis evident, that it is not a Rotation about the Axis of the Earth; for then the Variations would continue the fame, in the fame parallel of Latitude (the Longitude only chang'd) as much as is the motion of the Magnetical Poles, but the contrary is found by Experience; for there is no where in the Latitude of $15 \frac{1}{2}$ North between England and America, a Variation of eleven Degrees Eaft at this time ;

4^{2}
 Mifcellanea Curiofa.

as it was once here at London; it feems therefore, that our European Pole is grown nearer the Pole Arctick than it was heretofore, or elfe that it has loft part of its Vertue. But whether thefe Magnetical Poles move altogether with one motion, or with feveral; whether equally or unequally; whether Circular or Libratory: If Circular, about what Center; if Libratory, after what manner; are Secrets as yet utterly unknown to Mankind, and are referv'd for the Induftry of future Ages.

An Account of the Caufe of the Cbange

 of the Variation of the Magnetical Needle, witb an Hypotbefs of the Structure of the Internal Parts of the Earth; as it was propofed to the Royal Society in one of their late Meetings. By Mr. Edmund Halley.HAving in the precedent Difcourfe delivered a Theory of the Variation of the Magnetical Compafs, wherein I did collect as many Obfervations as at that time I could procure, and having carefully compar'd them together, I came at length to this general conclufion; That the Globe of the Earth might be Suppofed to be one great Magnet, baving four Magnetical Poles or Points of Attraction, near each Pole of the Equator two ; and that in thofe parts of the World which lie near adjacent to any one of thofe Magnetical Poles, the Neealle is chiefly govern'd thereby; the neareft Pole being always predominant over the more remote. And I there have endeavour'd to ftate and limit the prefent Pofition of thofe Poles in the Surface of our Globle, which the Reader pleafing to confult, will fave us the pains of repeating. But after all, tho' that Difcourfe was favourably receiv'd both at home and abroad, as feening to render a tolerable account of the obferv'd

Variations

44 Mifcellanea Curiofa.

Variations, yet I found two Difficulties not eafie to furmount; the one was, that no Magnet 1 had ever feen or heard of, had more than two oppofite Poles, whereas the Earth had vifibly four, and perhaps more. And fecondly; it was plain that thefe Poles were not, at leaft all of them, fixt in the Earth, but fhifted from place to place, as appear'd by the great Changes in the Needles Direction within this laft Century of Years, not only at London, (where this great Difcovery was firt made) but almoft all over the Globe of Earth; whereas it is not known or obferv'd that the Poles of a Load-flone ever Thifted their place in the Stone, nor (confidering the compact hardnefs of that Subftance) can it eafily be fuppos'd ; though the Matter of Fact be too notorious and univerfal, not to be accounted for.

Thefe Difficulties had wholly made me defpond, and I had long fince given over an Inquiry I had fo little hopes of, when in accidental Difcourfe, and leaft expecting it, I fumbl'd on the following Hypothefis; in delivering whereof, if I fhall feem to advance any thing that looks like Extravagant or Romantick, the Reader is defir'd to fuffend his Cenfure, till he have confider'd the force and number of the many Arguments which concur to make good fo new and fo bold a Suppofition.
Though it be fufficiently known and allow'd, that the Needles Variation changes, it will be neceffary however to give a few Inflances, whereby it may appear that this Change is $\mathrm{gra}^{2}-$ dual and univerfal, and the effect of a great and permanent motion : For which take the following Examples.

Mijcellanea Curiofa.

At London, in the Year 1580, the Variation was obferv'd by Mr. Burrows to be $11^{\circ} 15^{\prime}$ Eaft. In Anno 1622, the fame was found by Mr, Gunter to be but $6^{\circ} 0^{\prime}$ Eaft, In the Year $1634, \mathrm{Mr}$. Gellibrand found it $4^{\circ} 5^{\prime}$ Eaft. In 1657 , Mr. Bond obferv'd that there was no Variation at London. Anno 1672, my felf obferv'd it $2^{\circ} 30^{\prime}$ to the Weft; and in the Year 1692, I again found it $6^{\circ} 00^{\prime}$ Weft. So that in 112 Years the Direction of the Needle has chang'd no lefs than feventeen Degrees,

At Parí, Orontius Fineus about the Year 1550 , did account it about eight or nine Degrees Eaft Variation. . Anno 1640 , it was found three Degrees Eaft. Anno 1660, there was no Variatithere, and Anno 1681, I found it to be $2^{\circ} 30^{\circ}$ to the Weft.

At Cape d' Agulbas, the mof Southerly Promontary of Africa, about the Year 1600, the Needle pointed due North and South without Variation, whence the Portugueze gave its name. Anno 1622, there was two Degrees Weft Variation. Anno 1675, it was $8^{\circ} 5^{\prime}$ Weft; and in the Year 1691, it was curioufly obferv'd not lefs than eleven Degrees Weft.

At St. Helena, about the Year 1600, the Needle declin'd eight Degrees to the Eaft. Anno 1623, it was but $6^{\circ} 0^{\prime}$ Eaft. Anno 1677, when I was there, I obferv'd it accurately on Shoar to be $0^{\circ} .40^{\prime}$ Eaft; and in 1692 it was found about 1° to the Weftward of the North.

At Cape Comorine in India, in the Year 1620 , there was $14^{\circ} 20^{\prime}$ Weft Variation. In the Year 1680, there was $8^{\circ} 4^{\prime}$, but now lately in the Year 1688 , it was no more than $7^{\circ} 30^{\prime}$, fo that kere the Needle has return'd to the Eaft about feven Degrees in feventy Years.

46 Mifellanea Curiofa.

In all the other Examples the Needle has gra~ dually mov'd towards the Weft, and the places are too far afunder to be influenc'd by the red moval of any Maynetical Matter, which may by accident be tranfflac'd within the Bowels, or on the Surface of the Earth. If more Examples are defir'd, the Reader may be furnifh'd with them in the Portugueze Routier of Aleixixo de Motta (written about the Year 1600) and in the Voyage of Bcaulieu, both publifh'd in Mr. Tbevenot's frift Collection of curious Voyages, Printed at Paris, Anno 160_{3}; which he is to compare with the Journals of our late Eaft India Voyagers, and I am affur'd, that it will be thereby evident, that the Direction of the Needle is in no place fix'd and conftant, tho' in fome it change fafter than in others: And where for a long time it has continu'd as it were unalter'd, it is there to be underftood, that the Needle has its greateft Deffection, and is become Stationary in order to return, like the Sun, in the Tropick. This, at prefent, is in the Indian-Sea, about the Illand Mauritius, where is the highef Weft Variation, and in a Tract tending from thence into the N. N. W. towards the Red-Sea and Egypt. And in all Places to the Weftward of this Traet, all over Africa and the Seas adjoining, the Weft Variation will be found to have encreas'd ; and to the Eaftwards thereof, as in the Example of Cape Comorine, to have decreafed, $v_{i}{ }_{2}$ all over the $E_{a} /$-Indies, and the Iflands near it.

After the like manner in that Space of Eatt Variation, which, beginning near St. Helena, is found all over the South America, and which at prefent is higheft about the Mouth of Rio de la Plata, it has been obferv'd, that in the Eaftern

Mijcellanea Curiofa.

Parts thereof, the Variation of the Needle gradually decreafes; but whether on the contrary it increafes in thofe places which lie more Wefterly than that Tract wherein the higheft Eaft Variation is found ; or how it may be in the vaft Pacifick Sea, we have not Experience enough to afcertain, only we may by Analogy infer, that both the Eait and Weft Variations therein do gradually increafe and decreafe after the fame Rule.

Thefe Pbenomena being well underfood and duly confider'd, do fufficiently evince, That the whole Magnetical Syftem is by one, or perbaps more motions tranflated, whether Eaftwards or Weftwards, I fhall anon difculs; that this moving thing is very great, as extending its effects from Pole to Pole, and that the motion thereos is not per Saltum, but a gradual and regular motion.

Now confidering the Structure of our Terinqueous Globe, it cannot be well fuppos'd that a very great part thereof can move within it, without notably changing its Center of Gravity and the Equilibre of its Parts, which would produce very wonderful Effects in changing the Axis of diurnal Rotation, and occafion ftrange alteration in the Seas Surface, by Inundations and Receffes thereof, fuch as Hiftory never yet mention'd. Befides, the folid parts of the Earth are not to be granted permeably by any other than fluid Subftances, of which we know none that are any ways Magnetical. So that the only way to render this motion intelligible and poffible, is to fuppofe it to turn about the Center of the Globe, having its Center of Gravity fix'd and immoveable in the fame common Center of the Earth: And there is yet requir'd,

4^{8} Mijceillanea Curiofa.

that this moving internal Subftance be loofe and detached from the external Parts of the Earth whereon we live ; for otherwife, were it affix'd thereto, the whole muft neceffarily move together.

So then the External Parts of the Globe may well be reckon'd as the Shell, and the Internal as a Nucleus or inner Globe, included within ours, with aifluid Medium between, which having the fame Common Center and Axis of diurnal Rotation, may turn about with our Earth each twenty four Hours; only this outer Sphere having its turbirating motion fome fmall matter either fwifter or flower than the internal Ball: And a very minute Difference in length of time, by many Repetitions becoming fenfible, the Internal Parts will by degrees recede from the External, and not keeping pace with one another, will appear gradually to move either Eaftwards or Weftwards by the difference of their motions.

Now fuppofing fuch an Internal Sphere ha: ving fuch a motion, we fhall folve the two great Difficulties we encounterd in my former Hythefis: For if this exteriour Shell of Earth be a Magnet, having its Poles at a diftance from the Poles of diurnal Rotation; and if the Internal Nucleus be likewife a Magnet, having its Poles in two other places, diftant alfo from the Axis; and thefe latter by a gradual and flow motion change their place in refpect of the External ; we may then give a reafonable account of the four Magnetical Poles I prefume to have demonItrated before ; as likewife, of the Changes of the Needles Variations, which till now hath been un. attempted,

The Period of this Motion being wonderful great, and there being hardly an hundred Years fince thefe Variations have been duly obferv'd, it will be very hard to bring this Hypothefis to a Calculus, efpecially fince, though the Variations do increafe and decreafe regularly in the fame place, yer in differing places, at no great diftance, there are found fuch cafual Changes thereof as can no ways be accounted for by a regular Hypothefis; as depending upon the unequal and irregular diftribution of the Magnerical Matter within the Subftance of the External Shell or Coat of the Earth, which deflect the Needle from the Poftrion it would acquire from the effect of the general Magnetifm of the whole. Of this the Variations at London and Paris give a notable Inftance, for the Needle bas been conftantly about $I^{\circ 1} \frac{1}{2}$ more Eafterly at Paris than at London; though it be certain that according to the general effect, the Difference ought to be the contrary way: Notwithftanding which, the Variations in bath places do change alike.

Hence, and from fome other of like Nature, 1 conclude, That the two Poles of the External Globe are fixt in the Earth, and that if the Needle were wholly govern'd by them, the Variations thereof would be always the fame, with fome little Irregularities upon the account I but juft now mention'd: But the Internal Sphere having fuch a gradual tranflation of its Poles, does influence the Needle, and direct it varioufly, according to the refult of the attractive or directive Power of each Pole ; and confequently there muft be a Period of the Revolution of this Internal Ball, after which the Variations will return again as before. But if it E Ghall

50 Mifcellanea Curiofa.

fhall in future Ages be obferv'd otherwife, we mult then conclude that there are more of thefe Internal Spheres, and more Magnetical Poles than Four, which at prefent we have not a fufficient number of Obfervations to determine, and particularly in that vaft Mar del zur, which occupies fo great a part of the whole Surface of the Earth.

If then two of the Poles be fixt and two moveable, it remains to afcertain which they are that keep their place; and though I could wifh we had the Experience of another Century of Years to found our Conclufions upon, yet I think we may fafely determine, That our European North Pole (which in the precedent Difcourfe I fuppos'd near the Meridian of the Lands-end of England, and about feven Degrees therefrom) is that That is moveable of the two Northern Poles, and that That has chiefly influenc'd the Variations in thefe parts of the World: For in Hudfon's Bay, which is under the Direction of the American Pole, the Change is not obferv'd to be near fo faft as in thefe parts of Europe, though that Pole be much farther remov'd from the Axis.

As to the South Poles, I take the Afian Pole, which I place about the Meridian of the Ifland Cclobes to be the fixt, and confequently the American Pole to move; from the like Obfervation of the flow Decreafe of the Variation on the Coaft of $\mathfrak{F a v a}$, and near the Meridian of the Afian Pole; though I mult confefs to have no account of the effects of the other beyond Magellan's Streights.

If this be allow'd me, 'tis plain that the fixt Poles are the Poles of this External Shell or Cortes of the Earth, and the other two the Pules of a Magnetical Nuclens included and moveable

Mijcellanea Curiofa.

 that this Motion is Weftwards, and by confequence that the aforefaid Nucleus has not precifely attained the fame degree of Velocity with the extertour Parts in their diurnal Revolution ; but fovery nearly equals it, that in 365 Revolves the the difference is icarce fenfible. This I conceive to arife from the Impufe whereby this diurnal Motion was impreft on the Earth, being given to the External Parts, and from thence in time communicated to the Internal ; but not fo as perfectly to equal the Velocity of the firft Motion imprefs'd on, and ftill conferv'd by the fuperficial Parts of the Globe.As to the quantity of this Motion it is almoft impoffible to define it, both from the Na ture of this kind of Obfervation, which cannot be very accurately perform'd, as alfo from the fmall time thefe Variations have been obferv'd, and their Change difcover'd. It appears by all Circumftances, that its Period is of many Centuries of Years, and as far as may be collected from the Change of the Place, where there was no Variation, by reafon of the Equilibre of the two Southern Magnetical Poles, viz. from Cape d' Agulbas to the Meridian of St. Hele$n a$ (which is about 23 degr. in about ninety Years) and of the place where the Wefterly Variation is in its áxuj or greateft Deflection, being about half fo much, viz. from the Ifle of Diego Roiz to the South Weft Parts of Madagafoar. We may with fome Reafon conjecture, that the American Pole has mov'd Weftwards forty fix Degrees in that time, and that the whole Period thereof is perform'd in feven hundred Years, or thereabouts; fo that the nice Determination of this, and of feveral other Particulars in the

$$
\text { E } 2 \quad \text { Magnetick }
$$

52
 Mifcellanea Curiofa.

Magnetick Syftem is referv'd for remote Pofterity ; all that we can hope to do, is to leave behind us Obfervations that may be confided in, and to propofe an Hypothefis which after Ages may examine, amend or refute. Only here I mult take leave to recommerd to all Mafters of Ships, and all others, Lovers of Natural Truths, that they ufe their utmof Diligence to make, or procure to be made, Obfervations of thefe Variations in all parts of the World, as well in the North as South Latitude (after the laudable Cufom of our Eaft India Commanders) and that they pleafe to communicate them to the Royal Society, in order to leave as compleat a Hiftory as may be to thofe that are hereafter to compare all together, and to compleat and perfect this abftrufe Theory.

And by the way it will not be amifs to amend a receiv'd Error in the Practice of obferving the Variation, which is, to take it by the Amplitude of the Riling and Setting Sun, when his Center appears in the vifible Horizon; whereas he ought to be obferv'd when his under Limb is ftill above the Horizon about $\frac{2}{3}$ of his Diameter, or twenty Minutes, upon the foore of the Refraction, and the height of the Eye of the Obferver above the Surface of the Sea: Or elfe they are to work the Amplitudes as they do the Azimuth, reckoning the Suns Diftance from the Zenith 90° $3^{6^{\prime}}$: This, though it be of little confequence near the Equinoctial, will make a great Error in high Latilules, where the Sun rifes and fets obliquely.

But to rcturn to our Hypothe Gis, In order to explain the Change of the Variations, we have adventu'd to make the Earth hollow, and to

Mifcellanea Curiofa.

place another Globe within it; and I doubt no ${ }^{t}$ but this will find Oppofers enough. I know 'twill be Objected, That there is no Inftance in Nature of the like thing; that if there was fuch a middle Globe it would not keep its place in the Center, but be apt to deviate therefrom, and might poffibly chock againit the Concave Shell, to the ruin, or at leaft endammaging thereof ; That the Water of the Sea would perpetually leak through, unlefs we fuppofe the Cavity full of Water; That were it pofible, yet it does not appear of what ufe fuch an inward Sphere can be of, being fhut up in Eternal Darknefs, and therefore unfit for the Production of Animals or Plants; with many more Objections, according to the Fate of all fuch new Propofitions.

To thefe, and all other that I can forefee, I briefly Anfwer, That the Ring environing the Globe of Saturn is a notable Inftance of this kind, as having the fame common Center, and moving along with the Planet, without fenfibly approaching him on one fide more than the other. And if this Ring were turn'd on one of its Diameters, it would then defcribe fuch a Concave Sphere as I fuppofe our External one to be. And fince the Ring, in any Pofition given, would, in the fame manner, keep the Centre of Saturn in its own, it follows, that fuch a Concave Sphere may move with another included in it, having the fame common Centre. Nor can it well be fuppos'd otherwife, confidering the Nature of Gravity ; for fhould there Globes be adjufted once to the fame common Centre, the Gravity of the parts of the Concave would prefs equally towards the Ceritre of the inner Ball, which equality mult necef-

$$
\mathrm{E}_{3} \text { farily }
$$

54 Mifcellanea Curiofa.

farily continue till fome External Force difturb it, which is not eafie to imagine in our Cafe. This perhaps I might more intelligibly exprefs, by faying that the inner Globe being pofited in the Centre of the Exteriour, muft neceffarily afcend which way foever it move; that is, it muft overcome the force of Gravity preffing towards the common Centre, by an impulfe it muft receive from fome outward Agent; but all outward Efforts being fufficiently fenc'd againft by the Shell that furrounds it, it follows, that this Nu cleus being once fixt in the common Centre, mult always there remain.

As to the leaking of the W ater through this Shell, when once a paffage fhall be found for it to run through, I mult confefs it is an Objection feemingly of weight; but when we confider how tightly great Beds of Chalk or Clay, and much more Stone do hold Water, and even Caves arch'd with Sand; no Man can doubt but the Wifdom of the Creator has provided for the Macrocofm by many more ways than I can either imagine or exprefs, efpecially fince we fee the admiable and innumerable Contrivances wherewith each worthlefs Individual is furnifh'd both to defend it felf, and propagate its Species. What Curiofity in the Structure, what Accuracy in the Mixture and Compofition of the parts, ought not we to expect in the Fabrick of this Globe, made to be the lafting Habitation of fo many various Species of Animals, in each of which there want not many Inftances that maniffet the boundlefs Power and Goodnefs of their Divine Author; and can we then think it a hard Suppofition, that the Internal Parts of this Bubble of Earth fhould be replete with fuch Saline and Vitriolick Particles as may contribute
tribute to Petrefaction, and difpofe the tranfuding Water to thoot and coagulate into Stone, fo as continually to fortifie, and, if need were, to confolidate any breach or flaw in the Concave Surface of the Shell:

And this pernaps may not without Reafon be fuppos'd to be the final Caufe of the admixture of the Magnetical Matter in the Mafs of the Terreftrial parts of our Globe, viz. To make good and maintain the Concave Arch of this Shell: For by what the Excellent Mr. Nepton has fhewn in his Principia Pbilofopbia, it will follow, that according to the general Principle of Gravity, vifible throughout the whole Univerfe, all thofe Particles that by length of time, or otherwife, fhall moulder away, or become loofe on the Concave Surface of the External Sphere, would fall in, and with great force defcend on the Internal, unlefs thofe Particles were of another fort of Matter capable by their ftronger tendency to each other, to fufpend the force of Gravity ; but we know no other Subftances capable of fupporting each other by their mutual Attraction but the Magnetical, and thefe we fee miraculoufly to perform that Office, even where the Power of Gavity has its full effect, much more within the Globe where it is weaker. Why then may we not fuppofe thefe faid Arches to be lin'd throughout with a Magnetical Matter, or rather to be one great Concave Magnet, whofe two Poles are the Poles we have before obferv'd to be fixt in the Surface of our Globe.

Another Argument, favouring this Hypothefis, is drawn from a Propofition of the fame Mr . Newton, where he determines the force wherewith the Moon moves the Sea in produE. 4

56 Mifcelldnea Curiofa.

ing the Tides: His Words are, Denfitas Lane eft ad denfitatem Terra ut 680 ad 387 Seul 9 ad 5 quamproximé. Eft igitur corpus Lune denfius ac magis terreftre quam Terra nofira, p. 466. Now if the Mcon be more folid than the Earth, as 9 to 5, why may we not reafonably fuppofe the Moon, being a fmall Body, and a lecondary Planet, to be folid Earth, Water, Stone, and this Globe to confift of the fame Materials, only four Ninths thereof to be Cavity, within and between the Internal Spheres; which I would render not improbable.

To thofe that fhall enquire of what ufe thefe included Globes can be, it muft be allow'd, that they can be of very little fervice to the Inhabitants of this outward World, nor can the Sun be ferviceable to them, either with his Light or Heat. But fince it is now taken for granted, that the Earth is one of the Planets, and they all are with Reafon fuppos'd Habitable, though we are not able to define by what fort of Animals; and fince we fee all the parts of the Creation abound with Animate Beings, as the Air with Birds and Flies, the Water with the numerous varieties of Fifh, and the very Earth with Reptiles of fo many forts; all whofe ways of Living would be to us incredible did not daily Experience teach us. Why then fhould we think it ftrange that the prodigious Mats of Matter, whereof this Globe does confift, fhould be capable of fome other improvement than barely to ferve to fupport its Surface? Why may not we rather fuppofe that the exceeding fmall quantity of folid Matter, in respect of the fluid 不her, is fo difpos'd by the Almighty Wifdom, as to yield as great a Surface for the ufe of living Creatures, as can confift

Mifcellanea Curiofa.

fift with the conveniency and fecurity of the whole? We our felves, in Cities where we are preffed for Room, commonly build many Stories one over the other," and thereby accommodate a much greater multitude of Inhabitants.

But ftill it will be faid, That without Light there can be no no living, and therefore all this apparatus of our inward Globes muft be ufelefs : To this I Anfwer, That there are many ways of producing Light which we are wholly ignorant of; the Medium it feif may be always luminous after the manner of our Ignes fatui. The Concave Arches may in feveral places fhine with fuch a Subftance as invefts the Surface of the Sun ; nor can we, without a boldnefs unbecoming a Philofopher, adventure to affert the impoffibility of peculiar Luminaries below, of which we have no fort of Idea. I I am fure the Poets Virgil and Claudian have gone before me in this Thought, inlightning their Elyfian Fields with Sun and Stars proper to thofe infernal, or rather internal Regions. Virg Aneid. σ.

> Largior bic compos Ather छ lumine vefit ${ }^{\text {? }}$
> Purpurco; Solemque fuum fua Sidera norunt.

And Claudian lib 2. De Raptu Proferpina.

> Amifum ne crede diem, funt altera nobis
> Sidera, funt orbes alii, luménque videbis
> Purius, Elyjumque magis mirabere Solem.

And though this be not to be efteem'd as an Argument, yet I may take the liberty I fee others do, to quote the Poets when it makes for my purpufe.

Laftly,

58 Mifcellanea Curiofa.

Laftly, To explain yet farther what I mean, I have adventur'd to adjoin the following Scheme, (Tab. 1. Fig. 3) wherein the Earth is reprefented by the outward Circle, and the three, inward Circles are made nearly proportionable to the Magnitudes of the Planets Venus, Mars and Mercury, all which may be included within the Globe of Earth, and all the Arches more than fufficiently ftrong to bear their weight. The Concave of each Arch, which is fhaded differently from the reft, I fuppofe to be made up of Magneetical Matter ; and the whole to turn about the fame common Axis p, p, only with this difference, that the Outer Sphere fill moves fomewhat fafter than the Inner. Thus the Diameter of the Earth being about eight thouland Englifo Miles, 1 allow five hundred Miles. for the thicknefs of its Shell, and another face of five hundred Miles for a Medium between, capable of an immenfe Atmolphere for the ufe of the Glabe of Vents: Vermus again I give a Shell of the fame thicknefs, and leave as great a fpace between her Concave and Mars ; follikewife from Mars to Mercury, which latter Ball we will fuppofe folid, and about two thoufand Miles Diameter. Thus I have fhew'd a poffibility of a much more ample Creation, than has hitherto been imagin'd; and if this feem ftrange to thofe that are unacquainted with the Magnetical Syftem, it is hop'd that all fuch will endeavour, firt, to inform themfelves of the Matter of Fact, and then try if they can find out a more fimple Hypothefis, at leaft a lefs abfurd, even in their own Opinions. And whereas I bave adventur'd to make thefe Subterraneous Orbs capable of being Inhabited, 'twas done defignedly for the fake of thofe who will be apt

Mifcellanea Curiofa.

to ask cui bono, and with whom Arguments drawn from Final Caufes prevail much. If this fhort Effay fhall find a kind Acceptance, I fhall be encourag'd to enquire farther, and to Polifh this rough Draft of a Notion till hitherto not fo much as ftarted in the World, and of which we could have no Intimation from any other of the Phanomena of Nature.

Since this was written, a Difcovery I have made in the Coleftial Motions, feems to render a farther Account of the Ufe of the Cavity of the Earth, viz. To diminifh the Specifick Gravity thereof, in refpect of the Moon; for I think I can demonitrate that the Oppofition of the 厌ther to the Motions of the Planets in long time becomes fenfible; and confequently the greater Body muft receive a lefs Oppofition than the fmaller, unlefs the Specifick Gravity of the fmaller do proportionably exceed that of the greater, in which cafe only they can move together ; fo that the Cavity I affign in the Earth, may well ferve to adjuft its weight to that of the Moon, for otherwife the Earch would leave the Moon behind it, and fhe become another Primary Planet.

Miffellanea Curiofa. 61

An Hiftorical Account of the Trade Winds and Monfoons, obfervable in the Seas betzeeen and near the Tropicks, with an attempt to aflign the Pbyjical Caufe of the Said Winds, by Mr. Ed. Halley.

AN exact Relation of the conftant and periodical Winds, obfervable in feveral Tracts of the Ocean, is a part of Natural Hiftory not lefs defireable and ufeful, than it is difficult to obtain, and its Pbenomena hard to explicate: I am not ignorant that Reveral Writers have undertaken this Subject, and although Varenius (Lib. 1. Cbap. 2 I. Geo. Gen.) feems to have endeavour'd after the beft information from Voyagers, yet cannot his Accounts be admitted for accurate, by thofe that fhall attentively confider and compare them together, and fome of them are moft evident Miftakes; which, as near as I can, I fhall attempt to rectify, having had the opportunity of converfing with Navigators, acquainted with all parts of I_{n} dia, and having liv'd a confiderable time between the Tropicks, and there made my own Remarks.

The Subftance of what I have collected is briefly as follows.

The Univerfal Ocean may moft properly be divided into three Parts, viz. i. The Atlantick and Atkiepick-Sea. 2. The Indian Ocean. 3. The

62 Mifcellantea Curiofa.

3. The Great Soutb Sea, or the Pacifick Ocean ; and though thefe Seas do all communicate by the South, yet as to our prefent purpofe of the Trade Winds, they are fufficiently feparated by the interpofition of great Tracts of Land; the firt lying between Africa and America, the fecorid between Africa and the Indian Ifands, and Hollandia Nova; and the laft between the Pbillipine Ifes, Cbina, Fapan and Hollandia Nova on the Weft, and the Coaft of America on the Eaft. Now following this natural divifion of the Seas, fo will we divide our Hiftory into three parts in the fame order.
I. In the Atlantick and Etbiopick Seas between the Tropicks, there is a general Eafterly Wind all the Year long, without any confiderable Variation, excepting that it is fubject to be deflected therefrom, fome few Points of the Compafs towards the North or South, according to the Pofition of the place. The Obfervations which have been made of thefe Deflections, are the following.
4. That near the Coaft of Africa, as foon as you have pafs'd the Canary Ifes, you are fure to meet a frefh Gale of Nortb Eaft Wind, about the Latitude of 28 Degrees North, which feldom comes to the Eaftwards of the Eaft Nortb-Eaf; or paffes the North North-Eaff. This Wind accompanies thofe bound to the Southward, to the Latitude of ten North, and about a hundred Leagues from the Guinea Coaft, where, till the fourth Degree of North Latitude, they fall into the Calms and Tornadoes; of which more hereafter.

Mijcellanea Curiofa.

2. That thofe bound to the Caribbee Ifles, find, as they approach the American fide, that the aforefaid North-Eaft Wind becomes ftill more and more Eafterly, fo as fometimes to be Eaff, Cometimes Eaft by South, but yet moft commonly to the Northward of the Eaft a Point or two, feldom more. 'Tis likewife obferv'd, that the ftrength of thefe Winds does gradually decreafe, as you fail to the We\&wards.
3. That the limits of the Trade and variable Winds, in this Ocean, are farther extended on the American fide than the African; for whereas you meet not with this certain Wind till after you have pafs'd the Latitude of twenty eight Degrees on this fide ; on the American fide it commonly holds to thirty, thirty one, or thirty two Degrees of Latitude; and this is verified likewife to the Southwards of the 厓quinoctial, for near the Cape of Good-Hope the limits of the Trade Winds, are three or four Degrees nearer the Line, than on the Coaft of Brazile.
4. That from the Latitude of four Degrees North, to the aforefaid Limits on the South of the-Aquator, the Winds are generally and perpetually between the South and Eaft, and moft commonly between the Soutb-Eaft and Eaf, obferving always this Rule, That on the African fide they are more Soutberly, on the Brazilian more Eafterly, fo as to become almoft due Eaf, the little deflection they have being Atill to the Southwards. In this part of the Ocean it has been my fortune to pafs a full Year, in an Employment that oblig'd me to regard more than ordinary the Weather, and I found the Winds conftantly about the SouthEafo the moft ufual Point $S E b E$; when it

64 Mifcellanea Curiofa.

 was Eafterly, it generally blew hard, and was gloomy, dark, and fometimes rainy Weather; if it came to the Southwards it was generally Serene, and a fmall Gale next to a Calm, but this not very common. But 1 never faw it to the Weftwards of the South, or Northwards of the Eaft.5. That the Seafon of the Year has fome fmall effect on thefe Trade Winds, for that when the Sun is confiderable to the Northwards of the Æquator, the South-Eaft Winds, efpecially in the Straight of this Ocean (if I may fo call it) between Brazile and the Coaft of Guinea, do vary a Point or two to the Southwards, and the North-Eaft become more Eafterly ; and on the contrary, when the Sun is towards the Tropick of Capricorn the South-Eafterly Winds become more Eafterly, and the North-Eafterly Winds on this fide the Line veere more to the Norihwards.
6. That as there is no general Rule that admits not of fome Exception, fo there is in this Oceàn a Tract of Sea wherein the Southerly and South-Weft Winds are perpetual, viz. all along the Coaft of Guinea, for above five hundred Leagues together, from Sierra Leona to the Ifle of St. Thomas; for the South Eaft Trade Wind having pafs'd the Line, and approaching the Coaft of Guinea within eighty or 100 Leagues, inclines towards the Shore, and becomes S. S. E. and by Degrees, as you come nearer, it veeres about to South, S. S. W. and in with the Land South-Weft, and fometimes Weft South-Weft; which Variation is better exprefs'd in the Mapp hereto annexed, (Vide Plate 2) than it can well be in Words. .Thefe are the Winds which are obferv'd on this Coaft when it

Mijcellanea Curiofa.
 65

blows true, but there are frequent Calms, violent fudden Gults calld Tornado's, from all Points of the Compafs, and fometimes unwholfome foggy Eafterly Winds, call'd Hermitaa by the Natives, which too often infeft the Navigation of thefe parts.
7. That to the Northwards of the Line, between four and ten Degrees of Latitude, and between the Meridians of Cape Virde, and of the Eaftermof Ifiands that bear that Name, there is a Tract of Sea wherein it were improper to fay there is any Trade Wind, or yet a Variable; for it feems condemn'd to perperual Calms, atrended with terrible Thunder and Lightning, and Rains fo frequent, that our Navigators from thence call this part of the Sea the Rains; the little Winds that are, be only fome fudden uncertain Gufts; of very little Continuance and lefs Extent; fo that fometimes each Hour you fhall have a different Gale, which dies away into a Calm before another fucceed, and in a Fleet of Ships in fight of one another, each fhall have the Wind from a feveral Point of the Compafs; with thefe weak Breezes Ships are oblig'd to make the beft of their way to the Southward through the aforefaid fix Degrees, wherein 'is repcrted fome have been detain'd whole Months for want of Wind.

From the three laft Obfervables is thewn the Reafon of two notable Occurents in the EaftIndia and Guinea Navigations: The one is, why, notwithftanding the narroweft part of the Sea between Guinea and Brazile be aboot five hundred Leagues over, yet Ships bound to the Southward, fometimes, efpecially in the Months of Fuly and Auguft, find a great difficulty to pals it. This happens becaule of the Sourt-

66 Micellanea Curiofa.

Eaft Winds, at that time of the Year commonly extending fome Degrees beyond the ordinary limit of four Degrees North Latitude, and withal they come fo much Southerly, as to be fometimes South, fometimes a Point or two to the Weft ; there remains then only to ply to Windward, and if on the one fide they ftand away W.S. W. they gain the Wind ftill more and more Eafterly ; but there is danger of not weathering the Brazilian Shoar, or at leaft the Shoals upon that Coaft. But if upon the other Tack they go away E. S. E. they fall into the Neighbourhood of the Coaft of Guinea, from which there is no departing without running Eafterly, as far as the Ifle of St. Thomas, which is the conftant practice of all the Guinea Ships, and which may feem very ftrange, without the confideration of the fixth Remark, which fhews the Reafon of it: For being in with the Coaft, the Wind blows generally at S. W. and W. S. W. with which Winds they cannot go to the Northward for the Land; and on the other Tack they can lie no nearer the Wind than S. S. E. or South; with thefe Courfes they run off the Shoar, but in to doing they always find the Winds more and more contrary; fo that when near the Shoar they could lie South, at a greater diftance they can make their way no better than S. E. and afterwards E. S. E. with which Courfes they fetch commonly the llle of St. Thomas and Cape Lopez, where finding the Winds to the Eaftward of the South, they keep them favourable, by running away to the Weftward in the South Latitude, of three or four Degrees, where the S. E, Winds are perpetual.

For the Take of thefe general Winds, all thofe that ufe the Wef-Indian Trade, even thofe
bound to Virginit, count it their, beft Courfe to get as foon as they can to the Southwards, that fo they may be certain of a fair and frefh Gale to run before it to the Weftwards; and for the fame Reafon thofe homewards bound from America, endeavour to gain the Latitude of thirty Degrees, as foon as poffible, where they firft find the Winds begin to be variable; tho' the moft ordinary Winds in the Northern part of the Atlantick Ocean come from between the South and Weft.

As to thofe furious Storms call'd Hurricanesj which are, as it were, peculiar to the Caribbee Illes; and which fo dreadfully afflict them in the Month of Auguft, or not much before or after, they do not fo properly belong to this place, both by Reafon of their fmall continuance and extent, as likewife becaufe they are not Anniverfary, fome Years having more than one, and fometimes for feveral Years together there being none at all. But their Violence is fo unconceivable, and their other Pbonomena fo furprifing, that they merit well to be confider'd apart.

What is here faid, is to be underftood of the Sea Winds at fome diftance from the Land; for upon and near the Shoars, the Land and Sea Breezes are almoft every where fenfible; and the great Variety which happens in their Periods, Force and Direction, from the fituation of the Mountains, Vallies and Woods, and from the various Texture of the Soil, more or lefs capable of retaining and reflecting Heat, and of exo. haling or condenfing Vapours, is fuch, that it were an endlefs task, to endeavour to account for them.

68 Mifcellanea Curiofa.

II. In the Indian Ocean, the Winds are partly general, as in the etthiopick Ocean, partly Periodical ; that is, half the Year they blow one way, and the other half near upon the oppofite Points; and thefe Points and Times of fhifting are different in different parts of this Ocean ; the timits of each Tract of Sea, fubject to the fame Change or Monfoon, are certainly very hard to determine, but the diligence I have ufed to be rightly inform'd, and the care I have taken therein, has, in a great meafure, furmounted that Difficulty; ard I am perfwaded that the following Particulars may be relied upon.

1. That between the Latitudes of ten De grees and thirry Degrees South, between Madagafcar and Hollandia Nova, the general Trade Wind atout the S. E. by E. is found to blow all the Year long, to all Intents and Purpoles after the fame manner as in the fame Latitudes in the Ethiopick Ocean, as it is defrrib'd in the fourth Remark aforegoing.
2. That the aforefaid S. E. Winds extend to within two Degrees of the Æquator, during the Months of fune, Fuly, Auguf, \&cc. to November, at which time between the South Latitudes of three and ten Degrees, being near the Meridian of the North end of Madagafcar, and between two and twelve South Latitude, being near Sumatra and Fava, the contrary Winds from the N. W. or between the North and. Weft, fet in and blow for half the Year, viz. from the beginning of December till May ; and this Monfoon is obferv'd as far as the Molucca Illes, of which more anon.
3. That to the Northward of three Degrees South Latitude, over the whole Arabian or Indian-Sea and Gulph of Bengall, from Sumatra to the Coalt of Africa, there is another MonJoon, blowing from OEober to April upon the North Eaft Points; but in the other half Year, from April to October, upon the oppolite Points of S. W. and W.S. W. and that with rather more force than the other, accompanied with dark rainy Weather, whereas the N. E. blows clear ; 'tis likewife to be noted, that the Winds are not fo conftant, either in frength or point in the Gulph of Bengall, as they are in the In-dian-Sea, where a certain and fteady Gale fearce ever fails. 'Tis alfo remarkable, that the S.W. Winds in thefe Seas are generally more Southerly on the African fide, more Wellerly on the Indian.
4. That as an Appendix to the laft defcrib'd Monfoon, there is a Tract of Sea to the Southwards of the Æquator, fubject to the fame Changes of the Winds, viz near the AfricanCoaft, between it and the Ifland Madagafcar or St. Lawrence, and from thence Noribwards as far as the Line; wherein from April to Oct ber there is found a conftant frefh S.S. W. Wind, which, as you go more Northerly, becomes ftill more and more Wefterly, fo as to fall in with the W.S. W. Winds, mention'd before, in thofe Months of the Year to be certain to the Northward of the Æiquator: What Winds blow in thefe Seas, for the other half Year, from October to April, I have not yet béea able to obtain to my full fatisfaction, for that our Navigators always return from India withour Madagafoar, and fo are little acquainted in this Matter ; the Account that has teen given me is

70
 Mifcellanea Curiofa.

only this, that the Winds are much Eafterly here: abouts, and as often to the North of the true Eaft as to the Southwards thereof.
5. That to the Eaftward of Sumatra and Malacca, to the Northwards of the Line, and along the Coaft of Camboia and Cbina, the Monfoons blow North and South, that is to fay, the N. E. Winds are much Northerly, and the S. W. much Southerly: This Conftitution reaches to the Eantwards of the Pbilippine Ifles, and as far Northerly as Fapan. The Northern Monfoon fetting in, in thefe Seas, in October or November, and the Southern in May, blowing all the Summer Months: Here it is to be noted, That the Points of the Compafs, from whence the Wind comes in thefe Parts of the World, are not fo fixt as in thofe lately defrrib'd ; for the Southerly will frequently pafs a Point or two to the Eaftwards of the South, and the Northerly as much to the Weftwards of the North, which feems occafion'd by the great quantity of Land, which is interfpers'd in thefe Seas.
6. That in the fame Meridians, but to the Southwards of the 庣quator, being that Tract lying between Sumatra and Fava to the Weft, and New Guinea to the Eaft, the fame Northerly Monfoons are obferv'd, but with this difference, that the inclination of the Northerly is towards the N. Weft. and of the Southerly towards the S. E. but the plage venti are not more conftant here than in the former, viz. variable five or fix Points; befides the times of the Change of thefe Winds, are not the fame as in the Chinefe Seas, but about a Month or fix Weeks dater.
7. That

Mifcellanea Curiofa.

7. That thefe contrary Winds do not Mhift all at once, but in fome places the time of the Change is attended with Calms, in others with variable Winds; and it is particularly remarkable, that the end of the Wefterly Monfoon on the Coaft of Coromandel, and the two laft Months of the Southerly Monfoon in the Seas of Cbina, are very fubject to be tempeftuous: The violence of thefe Storms is fuch, that they feem to be of the $\mathrm{Na}-$ ture of the Wef-India Hurricanes, and render the Navigation of thefe parts very unfafe about that time of the Year. Thefe Tempefts are by our Seamen ufually term'd, The breaking up of the Monfoons.

By reafon of the fhifring of thefe Winds, all thofe that fail in thefe Seas, are oblig'd to obferve the Seafons proper for their Voyages, and fo doing they fail not of a fair Wind and fpeedy Paffage ; but if fo be they chance to out-ftay their time, till the contrary Monfoon fets in, as it frequently happens, they are forc'd to give over the hopes of accomplifhing their intended Voyages, and either return to the Port from whence they came, or elfe put in toifome other Habour, there to fend the time tifl the Winds fhall come favourable.
III. The third Ocean call'd Mare Pacificum, whofe Extent is equal to that of the other two (it being from the Weft Coaft of America to the Pbilippine Inlands, not lefs than 150 Degrees of Longitude) is that which is leaft known to our own or the Neighbour Nations; that Naviga: tion that there is on it, is by the Spaniards, who go Yearly from the Coaft of New Spain to the Manilha's. but that but by one beaten track; fo that I cannot be fo particular here as in the

$$
\mathrm{F}_{4} \quad \text { other }
$$

72 Mifcellanea Curiofa.

other two. What the Spaniff Authors fay of the Winds they find in their Courfes, and what is confirm'd by the old Accounts of Drake and Candifos and frace by Schooten, who fail'd the whole breadth of. this Sea in the Southern Latitude of fifteen or fixteen Degrees, is, that there is a great conformity between the Winds of this Sea, and thofe of the Atlantick and Attiopick; that is to Say, that to the Northwards of the Equator, the predominant Wind is between the Eaft and North-Eaft, and to the Southwards thereof there is a conftant fteady Gale between the Eaft and South-Eaft, and that on both fides the Line wih fo much conftancy, that they farce ever need to attend the Sails, and Strength, that it is rare to fail of crofling this vaft Ocean in ten Weeks time, which is abour 130 Miles per diem ; befides, 'tis faid that Storms and Tempefts are never known in thefe parts: So that here is the very beft of Sailing; no want of a frefh fair Wind, and yet no danger of having too much : Wherefore fome have thought it might be as fhort a Voyage to Fapan and Cbi$n a$, to go by the Streights of Magellan, as by the Cape of Good Hopi.

The Limits of thefe general Winds are alfo much the fame as in the Atlantick Sea, viz. about the thirtieth Degree of Latitude on both fides; for the Spaniards homewards bound from the Manilhä's, always take the advantage of the Southerly Monfocn, blowing there in the Summer Months, and run up to the Northwards of that Latitude, as high as Fapan, before they meet with variable Winds, to fhape their Courfe to the Eaftwards. And Schooten and others that have gone about by the Magellan Streights, have found the Limits of S. E. Winds,

Mifcellanea Curiofa.

Winds, much about the fame Latitude to the Southwards; befides a farther Analogy between the Winds of this Ocean, and the Etbiopick, appears in that, upon the Coaft of Peru, they are always much Southerly, like as they are found near the Shoars of Angola.

Thus far Matter of Fact, wherein if the information I have receiv'd be not in all parts Accurate, it has not been for want of inquiry from thofe I conceiv'd beft able to inftruct me; and I hhall take it for a very great Kindnefs if any Mafter of a Ship, or other Perfon, well inform'd of the Nature of the Winds, in any of the aforemention'd parts of the World, fhall pleafe to communicate their Obfervations thereupon; fo that what I have here Collected may be either confirm'd or amended, or by the addition of fome material Circumftances enlarg'd. It is not the work of one, nor of few, but of a multitude of Obfervers, to bring together the Experience requifite to compofe a perfect and compleat Hiftory of thefe Winds; however I am not much doubfful that I have err'd in, or omitted any of the principal Obfervables, whatever leffer Particulars may have efcaped my Knowledge.

To help the Conception of the Reader in a manner of fo much difficulty, I believ'd it neceffary to adjoin a Scheme, (Plate 2.) Chewing at one view all the various Tracts and Courfes of thefe Winds; whereby 'tis poffible the thing may be better underftood, than by any verbal Defcription whatfoever.

The Limits of thefe feveral Tracts are defign'd every where by prickt Lines, as well in the Atlantick and Attbiopick, where they are the boundaries of the Trade and variable Winds,

74 Mifcellanea Curiofa.

as in the Indian Ocean, where they alfo fhew the Extent of the Reveral Monfoons. I could think of no better way to defign the Courfe of the Winds on the Map, than by drawing rows of ftroaks in the fame Line that a Ship would move going always before it ; the fharp end of each little ftroak pointing out that part of the Horizon, from whence the Wind continually comes; and where there are Monfoons, the rows of the ftroaks run alternately backwards and forwards, by which means they are thicker there than elfewhere. As to the great South Sea, confidering its vaft Extent, and the little Variety there is in its Winds, and the great Analogy between them, and thofe of the Atlantick and ettbiopick Oceans; befides, that the greateft part thereof is wholly unknown to us; I thought it unneceffary to lengthen the Map therewith.

In the foregoing Hifory are contained feveral Problems, that merit well the Confideration of our acuteft Naturalifts, both by reafon of the conftancy of the Effect, and of the immenfe Extent thereof; near half the Surface of the Globe being concerned. The chief of thefe Problems are, I. Why thefe Winds are perpetually from the Eaft in the Atlantick and Atbiopick, as likewife in the Pacifick Ocean, between the Latitudes of 30 North and South? 2. Why the faid Winds extend no farther with conftancy than to the Latitude of 30 Degrees? 3. Why there fhould be a conftant South-wefterly Wind upon and near the Coaft of Guinea? 4. Why in the North part of the Indian Ocean, the Winds, which for one half Year do agree with thofe of the other two Oceans, fhould change in the other half Year, and blow from the oppofie Points;

Mifcellanea Curiofa.

Points ; whillt the Southern part of that Ocean follows the General Rule, and has perpetual Winds about S, E ? 5. Why in thele General TradeWinds it fhould be always true, that to the Northward of the Equator it is inclin'd to the Northwards of the Eaft ; and in South Latitudes, to the Southward théreof? 6. Why in thefe Seas of Cbina there fhould be fo great an Inclination from the Eaft to the North, more than elfewhere? with many more, which it would be much eafier to propofe than anfwer.

But left I fhould feem to propofe to others, Difficultes which I have not thought worth my own Time and Pains, take here the refult of an earneft Endeavour after the true reafon of the aforefaid Phenomena; wherein if I am not able to account for all Particulars, yet 'tis hoped the Thoughts I have fpent thereon, will not be judged wholly loft, by the Curious in Natural Enquiries,

Wind is moft properly defined to be the Stream or Current of the Air, and where fuch a Current is perpetual and fixt in its Courfe, 'tis neceffary that it proceed from a permanent unintermitting Caufe. Wherefore fome have been inclin'd to propofe the diurnal Rotation of the Earth upon its Axis, by which, as the Globe turns Eaftwards, the loofe and fuid Particles of the Air, being fo exceeding light as they be, are left behind, fo that in refpect of the Earths Surface they move Weftwards; and become a conftant Eafterly Wind. This Opinion feems confirm'd, for that thefe Winds are found only near the Equinoctial, in thofe Parallels of Latitude where the diurnal Motion is fwiftelt ; and I Chould readily affent to it, if the conftant Calms in the Atlantick Sea, near the Æquator,

76
 Mifcellanea Curiofa.

the Wefterly Winds near the Coalt of Guinea; and the Periodical Wefterly Monfoons under the Aquator in the Indian Seas, did not declare the infuffiency of that Hypotbefis. Befides the Air being kept to the Earth by the Principle of Gravity, would acquire the fame degree of Velocity that the Earths Surface moves with, as well in refpect of the diurnal Rotation, as of the Annual about the Sun, which is about thirty times fwifter.

It remains the efore to fubftitute fome other Caufe, capable of producing a like conttant Effect, not liable to the fame Objections, but agreeable to the known Properties of the Elements of Air and Water, and the Laws of the Motion of fluid Bodies. Such an one is, I conceive, the Action of the Sun Beams upon the Air and Water, as he paffes every Day over the Oceans, confider'd together with the Nature of the Soil, and Situation of the adjoining Continents : I fay therefore, firt, that according to the Laws of Staticks, the Air which is lefs rarified or expanded by heat, and confequently more ponderous, mult have a Motion towards thofe parts thereof, which are more rarified, and lefs ponderous, to bring it to an Aquilibrium ; and fecondly, That the Prefence of the Sun continually fhifting to the Weftwards, that part towards which the Air tends, by reafon of the Rarifaction made by his greateft Meridian Heat, is with him carried Weftward, and confequently the tendency of the whole Body of the lawer Air is that way.

Thus a general Eafterly Wind is formed, which being impreffed upon all the Air of a vaft Ocean, the Parts impel one the other, and fo keep moving till the next return of the Sun, whereby

Mifcellanea Curiofa.

77
whereby fo much of the Motion as was loft, is again reftored, and thus the Wefterly Wind is made perpetual.

From the fame Principle it follows, that this Eafterly Wind fhould on the North fide of the Aquator, be to the Northwards of the Eaft, and in South Latitudes to the Southwards thereof; for near the Line, the Air is much more rarified, than at a greater diftance from it ; becaufe of the Sun twice in a Year Vertical, and at no time diftant above ${ }_{23}$ Degr. and a half; at which diftance the Heat, being as the Sine of the Angle of Incidence, is but little fhort of that of the perpendicular Ray. VVhereas under the Tropicks, though the Sun ftay long Vertical, yet he is as long 47 Degr. off; which is a kind of Winter, wherein the Air fo cools, as that the Summer-heat cannot warm it to the fame degree with that under the Aiquator. Wherefore the Air to the Northwards and Southwards, being lefs rarified than that in the middle, it follows, that from both fides it ought to tend towards the Æquator: This Motion compounded with the former Eafterly Wind, anfwers all the Pbannmena of the general Trade-winds; which, if the whole Surface of the Globe were Sea, would unduubtedly blow all round the World, as they are found to do in the Atlantick and Ethiopick Oceans.

But feeing that fo great Continents do interpofe, and break the continuity of the Oceans, regard muft be had to the Nature of the Soil, and the Pofition of the high Mountains, which I fuppofe the two principal Caules of the Reveral Variations of the Winds, from the former general Rule : For if a Country lying near the Sun, prove to be flat, fandy, low Land, fuch

78 Mifcellanea Curiofa.

 as the Defarts of Lybia are ufually reported to be, the Heat occafion'd by the Reflection of the Suns Beams, and the retention thereof in the Sand, is incredible to thofe that have not felt it; whereby the Air being exceedingly rarified, it is neceffary that the cooler and more denfe Air fhoud run thitherwards to reftore the equilibrium: This I take to be the caufe, why near the Coaft of Guinea the Wind always fets in upon the Land, blowing Wefterly inftead of Eafterly, there being fufficient Reafon to believe, that the Inland Parts of Africa are prodigioully hot, fince the Northern Borders thereof were fo intemperate, as to give the Ancients caufe to conclude, that all beyond the Tropick was made uninhabitable by excels of Heat : From the fame Caufe it happens, that there are fo conftant Calms in that part of the Ocean, called the Rains, (defcribed in the 7 th Remark on the Atlantick Sea) for this Tract being placed in the middle, between the Wefterly Winds blowing on thee'Coaft of Guinea, and the Eafterly Tradewinds, blowing to the Weftwards thereof, the tendency of the Air here, is indifferent to either, and fo ftands in Equilibrio between both; and the weight of the incumbent Atmofphere being diminifhed by the continual contrary Winds blowing from hence, is the reafon that the Air here holds not the copious Vapour it receives, but lets it fall into frequent Rains.But as the cool and denfe Air, by reafon of its greater Gravity, preffes upon the hot and rarified, 'tis demonftrative that this latter muft afcend in a continued Stream as faft it rarifies; and that being afcended, it muit difperfe it felf to preferve
 the upper Air mult move from thofe Parts where the greateft Heat is: So by a kind of Circulation,

Mifcellanea Curiofa.

 tended with a South-Wefterly above, and the South-Eafterly with a North-Weft Wind above; that this is more than a bare Conjecture, the almoft inftantaneous Change of the Wind to the oppofite Point, which is frequently found in paffing the limits of the Trade-winds, feems to affure us; but that which above all confirms this Hypothefis is the Pbanomenon of the Monfoons, by this means moft eafily folved, and without it hardly explicable.Suppofing therefore fuch a Circulation, as above, 'tis to be confidered that to the Northward of the Indian Ocean there is every where Land within the ufual limit of the Latitude of 30 , viz. Arabia, Perfia, India, EJc. which for the fame reafon as the Mediterranean Parts of Africa, are fubject to unfufferable Heats when the Sun is to the North; paffing nearly Vertical; but yet are temperate enough when the Sun is removed towards the other Tropick; becaufe of a ridge of Mountains at fome diftance within the Land, faid to be frequently in Winter cover'd with Snow, over which the Air, as it paffes, mult needs be much chill'd. Hence it comes to pafs, that the Air coming according to the general Rule, out of the N. E. in the Indian Seas, is fometimes hotter, fometimes colder, than that which by this Circulation is return'd out of the S. W. and by confequence, fometimes the under Current or Wind, is from the N. E. Cometimes from the S. W.

That this has no other Caufe, is clear from the times wherein thefe Winds fet in, viz. in April, when the Sun begins to warm thofe Countries to the North, the S. W. Monfoon begins, and blows during the Heats till O gober; when the

8o Mifcellanea Curiofa.

Sun being retird, and all things growing cooler Northward, and the Heat increafing to the South, the North-Eaft Winds enter and blow all the Winter till April again. And it is undoubtedly from the fame Principle that to the Southwards of the Æquator, in part of the Indian Ocean, the North-Weft Winds fucceed to the South-Eaft, when the Sun draws near the Tropick of Capricorn; but I muft confefs, that in this latter occurs a difficulty, not well to be accounted for, which is, why this Change of the Monfoons fhould be any more in this Ocean, than ip the fame Latitudes in the Athopick, where there is nothing more certain than a S. E. Wind all the Year.
'Tis likewife very hard to conceive why the limits of the Trade-wind fhould be fixt, about the thirtieth Degree of Latitude all round the Globe ; and that they fhould fo feldom tranfgrefs or fall fhort of thofe bounds; as alfo that in the Indian Sea, only the Northern Part fhould be fubject to the changeable Monfoons, and in the Southern there be a conftant S. E.

Thefe are Particulars that merit to be confider'd more at large, and furnifh a fufficient Subject for a juft Volume, which will be a very commendable Task for fuch, who being us'd to Philofophick Contemplation, fhall have leifure to apply their ferious Thoughts about it.

A Difcourfe of the Rule of the De: creafe of the beight of the Mercury in the Barometer, according as Places are elevated above the Surface of the Eartb; witb an Attempt to difcover the true ReaSon of the Rijing and Falling of the Mercury, upon Change of Weather. By Edm. Halley.

THE Elaftick Property of the Air has been long fince made out, by Experiments before the Royal Society, and elfewhere ; and the Refiftance of its Spring is found to be near ly equal to the Weight or Force that compreffes it ; as alfo, that the Spaces the fame Air occupies, under differing Preffures, are reciprocally as thofe Preffures: It has been fhewn likewife by undoubted Experiment, that the fpecifick Gravity of the Air, near the Earth's Suragain as 1 to 852 ; and a third time, in a very large Veffel holding 10 Gallons, as i to 860 ; all which, confidering the Difficulty of the Experiment, agree well enough, the Mercury ftanding at all thofe times about 29 Inches $\frac{3}{4}$: But by Reafon 'twas Summer-weather, and confe-

82 Mifellanea Curiofa.

 quently the Air rarified, when all thefe were tried, we may without fenfible Error fay in round numbers, that the Barometer ftanding at 30 Inches, and in a mean State of Heat and Cold, the Specifick Gravity of the Air to Water, is as I to 800 . By the like Trials the weight of Mercury to Water, is as $13 \frac{1}{2}$ to 1 , or very near it; fo that the weight of Mercury to Air, is as 10800 to I ; and a Cylinder of Air of 10800 Inches or 900 Feet, is equal to an Inch of Mercury; and were the Air of an equal denfity like Water, the whole Atmofphere would be no more than 5 , I Miles high, and in the Afcent of every 900 Fcet the Barometer would fink an Inch. But the Expanfion of the Air in:creafing in the fame proportion as the incumbent weight of the Atmofphere decreafes ; that is, as the Mercury in the Barometer finks; the upper Parts of the Air are much more rarified than the lower, and each Space anfwering to an Inch of Quickfilver, grows greater and greater ; fo that the Atmofphere mult be extended to a much greater height. Now, upon thefe Principles, to determine the height of the Mercury at any affigned height in the Air; and econtra, having the height of the Mercury given, to find the height of the Place where the Barometer ftands, are Problems not more difficult than curious; and which I thus refolve.The Expanfions of the Air being reciprocally as the heights of the Mercury, it is evident, that by the help of the Curve of the Hyperbola and its Alymptotes, the faid Expanfions may be expounded to any given height of the Mercury: For by the 65th Prop. lib. 2. Conic. Mydorgii, the Requangles, $A B C E, A K G E, A L D E, \Xi_{c}$. (in Plate 1. Fig. 4.) are always equal, and confequent-

Mifcellanea Curiofa.

ly the fides, $C B, G K, L D, \& C$. are reciprocally as the fides $A B, A K, A L, \& c$. If then the Lines $A B, A K, A L$, be fuppofed equal to the beights of the Mercury, or the preffures of the Atmofphere, the Lines C B, G K, LD, anfwering thereto, will be as the Expanfions of the Air under thofe Preffures, or the Bulks that the fame quantity of Air will occupy; which Expanfions being taken infinitely many, and infinitely little, (according to the Method of Indivifibles) their Summ will give the Spaces of Air between the feveral heights of the Barometer; that is to fay, the Summ of all the Lines between $C B$ and $K G$, or the Area $C B K G$, will be proportioned to the Diftance or Space intercepted between the Levels of two Places in the Air, where the Mercury would ftand at the heights reprefented by the Lines $A B, A K$; fo then the Spaces of Air anfwering to equal Parts of Mercury in the Barometer, are as the Area's CBKG, GKLD, DLFM, \&c. Thefe Area's again are, by the Demonftration of Gregory of St. Vincent, proportionate to the Logarithms of the Numbers expreffing the Rationes of $A K$ to $A B$, of $A L$ to $A K$, of $A M$ to $A L, \& C$. So then by the common Table of Logarithms, the height of any Place in the Atmofphere, having any affign'd height of the Mercury, may moft eafily be found: For the Line CB in the Hyperbola, whereof the Area's defign the Tabular Logaxithms, being 0,0144765 ; 'twill be, as 0 , 0144765 , to the difference of the Logarithms of 30 , or any other leffer Number, for 900 Feet, or the Space anfwering to an Inch of Mercury, if the Air were equally preft with 30 Inches of Mercury, and every where alike, to the height of the Barometer in the Air, where it

84 Miscellanea Curiofa.

will ftand at that leffer number of Inches: And by the Converfe of this Proportion may the height of the Mercury be found, having the Altitude of the Place given. From there Rules I derived the following Tables.

A Table forewing the A Table Shewing Altitude, to given the heights of the heights of the Mar- Mercury, at gicary. ven Altitudes.

Upon

Mifcellanea Curiofa.

uPON thefe Suppofitions it appears, that at the height of 41 Miles the Air is fo rarified, as to take up 3000 times the Space it occupies here, and at 53 Miles high it would be expanded above 3.0000 times; but it's probable that the utmoft Power of its Spring cannot exert it felf, to fo great an Extenfion, and that no part of the Atmofphere reaches above 45 Miles from the Surface of the Earth.

This feems confirm'd from the Obfervations of the Crepufculum, which is obterv'd commonly to begin and end when the Sun is about 18 Degrees below the Herizon; for fuppoing the Air to reflect light from its moft rarified Parts, and that as long as the Sun iluminates any of its Atoms, they are vifible to an Eye not intercepted by the Curvity of the Earth, it will follow from Fig. 5. Plate I. that the proportion of the height of the whole Air, to the Semi-diameter of the Earth, is much about, as ito 90 , or as the excefs of the Secant of about $8 \frac{1}{2}$ Degrees to the Radius. For if E be the Eye of the Obferver, s a Place where the Sun fers at the end (f) Twilight in E, and the Arch ECS, or TC A, be found 18 Degrees, the exce's of the Secant of half thereof $E \subset \mathrm{H}$, would be the height of the Air, viz. GH: But the Beam of the Sun AS H, and the Vifual Ray E H, do each of them fuffer a Refraction of about 32 or 33 Mi nutes, whereby being bent inwards from H towards G, the height of the Air need not be fo great as if they went flreight; and having from the Angle ECS taken the double RefraEtion of the Horizontal Ray, the half of the Remainder will be $8 \frac{1}{2}$. Degrees circiter, whofe Secant being 10, 111 , it follows, that as 10000

86

 Mifeellanea Curiofa.to II I, fo the Semi-diamter of the Earth fuppofed 4000 Miles, to 44,4 Miles; which will be the height of the whole Air, if the Places E, S, whofe vifible Portions of the Atmofphere ERZH, and $S H K B$, juft touch ane the other, be 18 Degrees afander.

At this height the Air is expanded into above 3000 times the face it occupies here, and we have feen the Experience of condenfing it into the 6oth part of the fame Space ; fo that it fhould feem, that the Air is a Subftance capable of being compreffed into the 180000 th part of the Space it would naturally take up, when free from preffure. Now what Texture or Compofition of Parts fhall be capable of this great Expanfion and Contraction, feems a veryhard Queftion; and which, I fuppofe, is fcarce fufficiently accounted for, by comparing it to Wool, Cotten, and the like fpringy Bodies.

Hitherto 1 have only confider'd the Air and 'Atmopphere, as one unalter'd Body, as having conftantly at the Earth's Surface the 8ooth part of the weight of Water, and being capable of Rarifaction and Condenfation in infinitum; neither of which Hypotbefes are rigidly true: For here in England it is notorioully known, that the weight of the whole Atmo/phere is various, being counterpoifed fometimes by $28 \frac{1}{2}$ Inches of Mercury, and at other times by no lefs than $30 \frac{1}{2}$; fo that the under parts being preffed by about a 15 th part, lefs weight, the Specifick Gravity of the Air upon that fore will fometimes be a 15 th part lighter than another; befides Heat and Cold, does very confiderably dilate and contract the Air, and confequently alter its Gravity; to which add the mixture of Effuvia, or fteams arifing from almoft all Bodies,

Mifcellanea Curiofa.

dies, which afimulating into the Form of Air, are kept fufpended therein, as Salts diffolv'd in Liquors, or (Metals in corroding Menftrua; which Bodies being all of them very much heavier than Air, their Particles by their Admixture mult needs encreafe the weight of that Air they lie incorporated withal, after the fame manner as melted Salts do augment the feecifick Gravity of Water. The other Confideration is, that the Rarifaction and Condenfation of the Air is not precifely according to the proportion here laid down; for the Experiment very nearly agrees thereto, as may be feen in the 58th Chapter of Mr. Hook's Micrography ; yet are the Condenfations not poffible beyond certain degrees: For being compreffed into an 8ooth part of the Space it takes up here, its confiftence would be equally denfe with that of Water ; which yields not to any force whatfoever, as hath been found by feveral Experiments tried here, and at Florence, by the Acaidemia del Cimento. Nor can the Rarifaction proceed in infinitum; for fuppofing the Spring whereby it dilates it felf, occalion'd by what Texture of Parts you pleafe, yet mult there be a determinate Magnitude of the natural State of each Particle, as we fee it is in Wool, and the like, whofe Bodies being compreffable into a very fmall Space, have yet a determinate bulk which they cannot exceed; when free'd from all manner of Preffure.

Thefe Objections being true, do difturb the Geometrical Accuracy of thefe Conclufions, drawn from the fecifick Gravity of the Air obferv'd at any time; but the Method here Thewn will compute by a like Calculation, the heights of the Quick-filver, and the Rarifactions
of the Air from any affign'd height of the Barometer at the Earth's Surface, and any fpecifick Gravity given. As to the Condenfation and Rarifaction by Heat and Cold, and the various mixture of Aqueous and other Vapours, thefe two Objections feem generally to compenfate each other; for when the Air is rarified by Heat, they are raifed moft copioufly; fo that though the Air properly fo call'd, be expanded, and confequently lighter, yet the Interffices thereof being crouded full of Vapours of much beavier Matters, bulk for bulk, the weight of the Compofitum may continue much the fame; at leaft a moft curious Experiment made by the Ingenious Mr. Fobn Cafwell, of Oxford, upon the top of Snowdon Hill, in Carnaroanßire, feems to prove, that the firft Inches of Mercury have their Portions of Air near enough to what I now determine : For the height of the Hill being 1240 Yards, or very near it, he found the Mercury to have fubfided to 25,6 Inches, or 4 Inches below the mean Altitude thereof at the Level of the Sea, (which is a greater difference than has been found in any of our former Experiments, and the Space anfwering to 4 Inches, by my Calculation, fhould be 1288 Yards; and it agrees as well with the Obfervations in the Appendix to Mr. Pafcall's Book, del Equilibre des Liquërrs, made on the high Hill in Auvergne, calld le puy de Domme. So that the Rarifaction and Vapours feem not to have alter'd confiderably, the Gravity of the under Parts of the Air ; and much above the height where thefe Experiments were made, do few Vapours aft cend, and the Cold is fuch that the Snow lies continually, fo that for the more elevated Parts of the Sphere of Air, there is much lefs Reafon to doubt.

But

Mifcellanea Curiofa.

But now we have had occafion to mention the difference there is between the height of the Mercury at one time, from the height thereof at another, it may not be unacceptable to offer at fome Reafons for the faid difference; which, at leaft to my felf, feem to have fome appearance of Truth. Firf, Then it's undoubtedly demonftrable, that the height of the Cylinder of Mercury is equal to the weight of the whole incumbent Air, and confequently that that whole is fometimes a fifteenth more than at other times ; which cannot otherwife be, but by the accefs of new Matter when 'tis heavy, and its diminution when'tis light; that Hypothefis therefore that fhews how the Air fhall be encreafed or diminifhed, in any particular place, will give a Reafon for the greater and leffer height of the Mercury in the Barofoope: But to direct us in the choice of the feveral Caufes, which may be affign'd for the Increafe and Decreafe of the Air, 'twill not be unneceffary to enumerate fome of the principal Obfervations made upon the Barometer, moft whereof are fufficiently known already to all thofe that are curious in thefe Matters.

- The Firft is, That in calm Weather, when the Air is inclin'd to Rain, the Mercury is commonly low.

2. That in ferene good fettled Weather, the Mercury is generally high.
3. That upon very great Winds, though they be not accompanied with Rain, the Mercury finks loweft of ald, with relation to the Point of the Compafs the Wind blows uporn.
4. That
5. That cateris paribus the greateft heights of the Mercury are found upon Eafterly and NorthEafterly Winds.
6. That in calm frofty Weather the Mercury generally ftands high.
7. That after very great Storms of Wind, when the Ruickfilver has been low, it generally rifes again very faft.
8. That the more Northerly places have greater Alterations of the Barofoope, than the more Southerly.
9. That within the Tropicks and near them, thofe Accounts I have had from otherss, and my own Obfervation at St. Helena, make very little or no Variation of the height of the Mercury in all Weathers. Now that Theory that can well account for all thefe appearances, will, in all probability, approach nearer the true caufe of the Barometers Variations, than any thing hitherto afforded; and fuch an one I am bound to believe, is that which I here lay down with fubmiffion to better Judgments.

I conceive that the principal Caufe of the rife and fall of the Mercury, is from the variable Winds, which are found in the Temperate Zones, and whofe great unconftancy here in England is moft notorious. I fhall not at prefent inquire into the Caufe of its uncertainty, but the Matter of Fact being moft undoubted, the Legitimate Confequences thereof muft be allow'd me, let it proceed from what it will.

A fecond Caufe is the uncertain Exhalation and Precipitation of the Vapours lodging in the Air, whereby it conres to be at one time much more crowded than at another, and confequently heavier; but this latter in a great meafure depends upon the former. Now from thefe Principles I fhall endeavour to explicate the feveral Phanomena of the Barometer, taking them in the fame order I laid them down.

1. Why in calm Weather the Air being inclin'd to Rain, the Mercury is commonly low? I Anfwer, That the Mercury's being low, inclines it to Rain; for the Air being light, the Vapours are no longer fupported thereby, being become fpecifically heavier than the Mediam wherein they floated; fo that they defcend towards the Earth, and in their fall meeting with other aqueous Particles, they incorporate together, and form little drops of Rain ; but the Mercury's being at one time lower than another, is the effect of two contrary Winds blowing from the place whence the Barometer ftands; whereby the Air of that place is carried both ways from it, and confequently the incumbent Cylinder of Air is diminifhed, and accordingly the Mercury finks; as for Inftance, if in the German Ocean it fhould blow a Gale of Wefterly Wind, and at the fame time an Eafterly Wind in the Irif Sea; or if in France it fhould blow a Southerly Wind, and in Scotland a Northern; it mult be granted me, that That part of the Atmof phere impendent over England, would thereby be exhaufted and attenuared, and the Mercury would fubfide, and the Vapours which before floated in thofe parts of the Air of equal Gravity with themfelves, would fink to the Earth.

92 Mifcellanea Curiofa.

2. Why in Serene grod fettled weather the Mercury is generally high? To this I Anfwer, That the greater height of the Barometer, is occafion'd by two contrary Winds blowing towards the place of Obfervation, whereby the Air of other places is brought thither and accumulated; fo that the incumbent Cylinder of Air being encreas'd both in height and weight, the Mercury prefs'd thereby muit needs rife and ftand high, as long as the Winds continue fo to blow; and then the Air being fecifically heavier, the V apours are better kept fufpended, fo that they have no inclination to Precipitate and fall down in Drops, which is the reafon of the ferene good Weather, which attends the greater beights of the Mercury.
3. Why upon very great Winds or Storms, tho? accompanied with no Rain, the Mercury finks lowe eft of all, with relation to the Pnint of the Compafs upon which the Wind blows: This is caus'd by the very rapid Motion of the Air in thefe Storms; for the Tract or Region of the Earths Surface, wherein thefe Winds rage, not extending all round the Globe, that ftagnant Air which is left behind, as likewife that on the fides, cannot come in fo faft as to fupply the Evacuation made by fo fwift a Current ; fo that the Air muft neceffarily be attenuated, when and where the faid Winds continue to blow, and that more or lefs, according to their Violence; add to which, that the Herizontal Motion of the Air being fo quick as it is, may in all probability take off fome part of the perpendicular preffure thereof; and the great Agitation of its Particles, is the Reafon why the Vapours are diffipated, and do not condenfe into Drops,

Mifcellanea Curiofa.

fo as to form Rain, otherwife the natural Confequence of the Airs Rarifaction.
4. Why cateris paribus the Mercury fands bigbeft upon an Eafterly or North-Bafterly Wind? This happens becaufe that in the great Atlantick Ocean, on this fide the thirty fifth Degree of North Latitude, the Wefterly and South-Wefterly Trade-Winds blow almoft always; fo that whenever here the Wind comes up ar Eaft and NorthEaft, 'tis fure to be checked by a contrary Gale, as foon as it reaches the Ocean; wherefore, according to what is made out in our fecond Remark, the Air mult needs be heaped over this lifland ; and confequently the Mercury muft ftand high, as often as thefe Winds blow. This holds true in this Country, but is not a general Rule for others, where the Winds are under different Circumftances ; and I have fometimes feen the Mercury here as low as twenty nine Inches, upon an Ealterly Wind, but then is blows exceeding hard, and fo comes to be accounted for by what was obferv'd upon the third Remark.
5. Why in calm Weather the Mercury genenerally fands bigh? The caufe hereof is, as I conceive, that it feldom freezes but when the Winds come out of the Northern and NorthEaftern Quarters, or at leaft unlefs thofe Winds blow at no great diftance off; for the Northern Parts of Germany, Denmark, Swoden, Norway, and all that Tract from whence NorthEaftern Winds come, are fubject to almort continual Froft all the Winter; and thereby the lower Air is very much condens'd, and in that. State is brought hitherwards by thefe Winds,

94
 Mifcellanea Curiofa.

and being accumulated by the oppofition of the Wefterly Wind blowing in the Ocean, the Mercury muft needs be preft to a more than ordinary height, and as a concurring Caufe, the fhrinking of the lower parts of the Air into leffer room by cold, muft needs caufe a defcent of the upper parts of the Atmofphere, to reduce the Cavity made by this contraction to an Eqquilibrium.
6. Why after very great Storms of Wind, when the Mercury bas been very low, it generally rifes again very faft? This I have frequently oblerved, and once found it rifen an Inch and a half in lefs than fix Hours, after a long continu'd Storm of South-Weft Wind. This feems to be occafion'd by the fudden Acceffion of new Air to fupply the great Evacuation which fuch continu'd Storms make thereof, in thofe places whence they happen (as in the third Remark) and by the Recoile of the Air, after the force ceafes that impeil'd it; and the Reafon why the Mercury rifes fo faft, is becaufe the Air being very much rarify'd beyond its mean denfity, the Neighbouring Air runs in the more fwiftly to bring it to an Aquilibration, as we fee Warer runs the fafter for having a great declivity.

7: Why in more Northerly places the Variations of the Barofcope are greater than in the Soutberly? The truth of the Matter of Fact is prov'd from Obfervations made at Clermont and Paris, compar'd with others, made at Stockbolm, as may be feen in the Appendix to Mr. Pafcal's Book before-cited. The Reafon I conjecture to be, that the more Northerly Parts have ufually greater Storms of Wind than the more Southerly, whereby the Mercury fhould

Mifcellanea Curiofa.

fhould fink lower in that Extream; and then the Northerly Winds bringing the condens'd and ponderous Air from the Neighbourhood of the Pole, and that again being check'd by a Southerly Wind, at no great diftance, and fo heaped, muft of neceffity make the Mercury in fuch cale ftand higher in the other Extream.
. 8 And Lafly, Why near the Æquinoctial, as at Barbadoes and St. Helena, there is very little or no Variation of the beight of the Barometer? This Remark, above all others, confirms the Hypothefis of the variable Winds, being the caufe of thefe Variations of the height of the Mercury; for in the Places above-named, there is always an eafie Gale of Wind blowing nearly upon the fame Point, viz. E. N.E at Barbadoos, and E. S. E. at St. Helena ; fo that there being no contrary Currents of the Air, to exhauft or accumulate it, the Atmofphere continues much in the fame State : However, upon Hurricanes, the moft violent of Storms, the 'Mercury has been obferv'd very low, but this is but for once in two or three Years, and it foon recovers its fettled ftate of about $29 \frac{1}{2}$ Inches. I doubt not but the fame thing is in the Eaft Coaft of Africa, and in India, where the Monfoons or Trade-Winds are for half the Year one way, and half the Year another; only it's probable, that there may fomething worth noting happen, about the times of the change or fhifting of the Winds, which might be obrain'd, if any Body had the Curiofity to keep the Barometer at our Factories in India.

I doubt not but this Doctrine will find fome Oppofers, and that one principal Objection will be, that I fuppofe the Air fometimes to move from thofe Parts where it is already evacuated below

96 Mifceilanea Curiofa.

below the 生quilibrium, and fometimes again towardsthofe parts, where it is condens'd and crouded above the mean State, which may be thought contradictory to the Laws of Staticks and the Rules of the Equilibrium of Fluids. But thofe that fhall confider how, when once an impetus is given to a Fluid Body, it is capable of mounting above its Level, and checking others that have a contrary tendency to defcent by their own Gravity, will no longer regard this as a material Obftacle, but will rather conclude, that. the great Analogy there is between the rifing and falling of the Water upon the Flux and Reflux of the Sea, and this of the accumulating and extenuating the Air, is a great Argument for the Truth of this Hypothefis: For as the Sea over againft the Coaft of $E \int e x$, rifes and fwells by the meeting of the two contrary Tides of Flood, (whereof the one comes from the S. W. along the Channel of England, and the other from the North) ; and on the contrary finks below its Level upon the retreat of the Water both ways in the Tide of Ebb; fo it is very probable that the Air may Ebb and Flow, after the fame manner ; but by reafon of the diverfity of Caufes, whereby the Air may be fet in moving, the times of thefe Fluxes and Refluxes thereof, are purely Cafual, and not reducible to any Rule, as are the Motions of the Sea, depending wholly upon the regular Courfe of the Moon.
(

Plate 1. pag97

Mifcellanea Curiofa. 97

A Letter of Mr. Ifaac Newton, Profeflor of the Matbematicks in the Univerjity of Cambridge; containing bis Nere Theory about Light and Colours: Sent by the Author to the Publifher from Cambridge, Feb. 6. $167 \frac{1}{\frac{1}{2}}$; in order to be communicated to the Royal Society.

$S 1$ R,

7 O perform my late promife to you, I hall wirhout further Ceremony acquaint you, That in the beginning of the Year 1666 (at which time 1 apply'd my felf to the grinding of Optick-glaffes of other Figures than Spherical, I procur'd me a Triangular Glafs-Prifm, to try therewith the relebrated Pbanomena of Colours. And in order thereto, having darken'd my Chamber, and made a fmall hole in my Win-dow-fhuts, to let in a convenient quantity of the Sun's Light, I plac'd my Prifm at his entrance, that it might be thereby refracted to the oppofite Wall. It was at firt a very pleafing Divertifement, to view the vivid and intenfe Colours produced thereby; but after a while applying my felf to confider them more circumípectly, I became furpriz'd to fee them in an oblong Form; which, according to the reccived Laws of Rarefraction, I expected fhould have been circular.

98 Mifcellanea Curiofa.

They were terminated at the fides with ftreight Lines, but at the ends, the decay of Light was fo gradual, that it was difficult to determine juftly, what was their Figure ; yet they feem'd S_{e} * micircular.

Comparing the length of this colour'd SpeEtrum with its breadth, I found it aboụt five times greater ; a difproportion fo extravagatit, that it excited me to a more than ordinary Curiofity of examining, from whence it might proceed. could farce think, that the various thicknels of the Glafs, or the termination with fhadow or darknefs, could have any lufluence on Light to produce fuch an effect; yet I thought it not amifs, firft to examine thofe Circumftances, and fo try'd what wrould happen by tranfmitting Light through parts of the Glafs of divers thickneffes, or through holes in the Window of divers bigneffes, or by fetting the Prifm without, fo that the Liglit might pals through it, and be refracted before it was terminated by the hole: But I found none of thofe Circumftances material. The fafhion of the Colours was, in all thefe Cafes, the fame.

Then I fufpected, whether by any unevennefs in the Glafs, or other contingent Irregularity, thefe Colours might be thus dilated. And to try this, I took another Prifm like the former, and fo plac'd it, that the Light paffing through them both, might be refracted contrary ways, and fo by the latter return'd into that Courfe, from which the former had diverted it. For, by this means, I thought the regular effects of the firf Prifm would be deftroy'd by the fecond Prifm, but the irregular ones more augmented by the multiplicity of Refractions. The Event was; that the Light, which by the firft Prifm

Mifcellanea Curiofa.

was diffufed into an oblong Form, was, by the fecond, reduc'd into an orbicular one, with as much regularity, as when it did not at all pafs through them. So that whatever was the caufe of that length, 'twas not any contingent Irregularity:

I then proceeded to examine more critically, what might be effected by the difference of the incidence of Rays coming from divers parts of the Sun; and to that end, meafur'd the feveral Lines and Angles belonging to the Image. Its diftance from the Hole or Prifm was twenty two Foot; its utmof length $13 \frac{3}{4}$ Inches; its brcadth $2 \frac{5}{8}$; the Diameter of the Hole $\frac{1}{4}$ of an Inch; the Angle, with the Rays, tending towards the middle of the Image, made with thofe Lines, in which they would have proceeded without Refraction, was $44^{\circ} 5^{\prime \prime}$. And the Vertical Angle of the Prilm, $63^{\circ} 12 \prime$. Alfo the Refractions on both fides the Prifm, that is, of the Incident, and Emergent Rays, were as near, as I could make them, equal, and confequently about $54^{\circ} 4^{\prime}$. And the Rays fell perpendicularly upon the Wall. Now fubducting the Diameter of the Hole from the length and breadth of the Image, there remains 13 Inches the length, and $2 \frac{3}{8}$ the breadth, comprehended by thofe Rays, which paffed thro' the Center of the faid Hole, and conequently the Angle of the Hole, which that breadth fubtended, was about $3{ }^{1}$, anfwerable to the Sun's Diameter; but the Angle, which its length fubtended, was more than five fuch Diamerers, namely $2^{\circ} 49^{\prime}$.

Having made thefe Obfervations, I firf computed from them the refractive Power of that Glafs, and found it meafur'd by the ratio of the Sines, twenty to thirty one. And then, by that ratio, I computed the Refractions of two Rays

100 Mifcellanea Curiofa.

flowing from oppofite parts of the Sun's dijcurs, fo as to differ 3^{\prime} in their obliquity of Incidence, and found that the emergent Rays fhould have comprehended an Angle of about 3^{1} ', as they did, before they were incident.
But becaufe this Computation was founded on the Hypochefis of the propotionality of the Sines of Incidence and Refraction, which, tho' by my own Experience I could not imagine to be fo erroneous as to make that Angle but $3{ }^{1}$, which in reality was $2^{\circ} 49^{\prime}$; yet my Curiofity caus'd me again to take my Priim. And having plac'd it at my Window, as, before, I obferv'd, that by turning it a little about its $A x$ xis to and fro, fo as to vary its obliguity to the light, more than an Angle of four or five Degrees, the Colours were not thereby fenfibly tranflated from their place on the Wall, and confequently by that Variation of Incidence, the quantity of Refraction was not fenfibly varied. By this Experiment therefore, as well as by the former Computation, it was evident, that the difference of the Incidence of Rays, flowing from divers parts of the Sun could not make them, after decuiffation, diverge at a fenfiblygreater Angle, than that at which they before converged; which being, at moft, but about thirty one or thirty two Minutes, there ftill remain'd fome other caufe to be found out, from whence it could be two Deg. 49 Min.

Then I began to fufpect, whether the Rays, after their Trajection through the Prifim, did not move in curve Lines, and according to their more or lefs Curvity, tend to divers parts of the Wall. And it increas'd my furpicion, when \mathbf{I} remember'd that I had often feen a Tennis-Ball, ffruck with an oblique Racket, defrribe fuch $\mathbf{2}$ curve Line. For a Circular as well as a Pro- that ftroak, its paris on that fide, where the Motions confpire, muft prefs and beat the contiguous Air more violently than on the other, and there excite a Reluctancy and Reaction of the Air proportionably greater. And for the fame Reafon, if the Rays of Light fhould pollibly be globular Bodies, and by their oblique Paffage out of one Medium into another, acquire a circulating Motion, they ought to feel the greater refiftance from the ambient 跋ther, on that fide, where this Motion confpires, and thence be continually bowed to the other. But notwithftanding this plaufible ground of fufpicion, when I came to examine it, I could obferve no fuch Curvity in them. And befides (which was enough for my purpofe) I obferv'd, that the difference 'twixt the length of the Image, and Diameter of the Hole, through which the Light was tranfmitted, was proportionable to their diftance.

The gradual removal of thefe fufpicions, at length led me to the Experimentum Crucis, which was this; I took two Boards, and plac'd one of them clofe behind the Prifm at the Window, fo that the light might pafs through a fmall hole, made in it for the purpofe, and fall on the other Board, which I plac'd at about twelve. Feet diftance, having firft made a fmall hole in it alfo, for fome of that incident Light to pafs through. Then I plac'd another Prifm behind this fecond Board, fo that the Light, tra-, jected through both the Boards, might pafs thro that alfo, and be again refracted before it arrived at the Wall. This done, I took the firlt Prifm in my Hand, and turn'd it to and fro flowly about its Axis, fo much as to make the reveral parts of the Image, caft on the fecond Board,

102 Mifcellanea Curiofa.

fucceffively pafs through the hole in it, that I might obferve to what places on the W all the fecond Prifm would refract them. And 1 faw by the Variation of thofe places, that the Light, tending to that end of the Image, towards which the Refraction of the firlt Prilm was made, did, in the fecond Prifm, fuffer a Refraction confiderably greater than the Light tending to the other end. And fo the true caufe of the length of that Image was detected to be no other, than that Light confilts of Rays differently refrangible, which, without any refpect to a difference in their. incidence, were, according to their degrees of Refratigibility, tranfmitted towards divers parts of the Wall.

When I undertood this, I left off my aforefaid Glafs Works; for I faw, that the perfection of Telefcopes was hitherto limited, not fo much for want of Glaffes truly figur'd, according to the prefriptions of Optick Authors (which all Men have hitherto imagin'd), as becaufe that Light it felf is a Heterogencous mixture of differently refrangible Rays. So that, were a Glafs fo exactly figurd, fo as to collect any one fort of Rays into one Point, it could not collect thofe alfo into the fame Point, which having the fame Incidence upon the fame Medium, are apt to fuffer a different Refraction. Nay, I wonder'd, that feeing. the difference of Refrangibility was fo great, as I found it, Telefcopes fhould arrive to that perfection they are now at. For, meafuring the Refractions in one of my Prifms, I found, that, fuppofing the common Sine of Incidence upon one of its plains, was forty four-Parts, the Sine of Refraction of the utmof Rays on the red end of the Colours, made out of the Glaf into the Air, would be fixty eight parts; and the Sine of Refraction

Mifcellanea Curiofa.

Refraction of the utmol Rays on the other end, fixty nine parts; fo that the difference is absut a twenty fourth or twenty fifth part of the whole Refraction. And contequently the Object glafs of any Telefcope cannot collect all the Ray, which come from one point of an Object, fo as to make them convene at is Frous in lefs room than in a Gircular fpace, whofe Diameter is the fifrieth part of the Diameter of its Aperture; which is an irregularity, fome hundred of times greater, than a circularly figurd Lens, of fo fmall a fection as the Object-glaffes of long Telefcopes are, would caufe by the unfinefs of its Figure, were Light uniform.

This made me take Reffccions into Confideration, and finding them regular, to that the Angle of Reflection of all forts of Rays was equal to their Angle of lncidence ; I underftood, that by their mediation, Optick Inftuments might be brought to any degree of Perfection imaginable, provided a Reflcting Subftance could be found, which would polifh as finely as Glafs, and reflect as much Light as Glafs tranfmits, and the art of communicating to it a Parabolick Fi. gure be alfo attain'd. But there feem'd very great Difficulcities, and I bave almoft thought them infuperable, when I further confider'd, that every Irregularity in a reflecting Superficies makes the Rays ftray five or fix times more out of their due courfe, than the like Irregularities in a refracting one ; So that a muck greater Curiofiry would be here requifite, than in Figuring Glaffes for Refraction.

Amidtt thefe, Thoughts I was furc'd from Camlaridge by the Intervening Plague, and ir was more than two Yeari before proceeded further. But then baying thonght on a tender way of po-

104 Mifcellanea Curiofa.

lifhing, proper for Metal; whereby, as I imagind, the Figure alfo would be corrected to the laft; I began to try what might be effected in this kind, and by degrees fo far perfected an Inftrument (in the effential parts of it like that I fent to London,) by which I could difern Fupiter's four Concomitants, and fhew'd them divers times to two others of my Acquaintance. I could alfo difcern the Moon-like Phafe of V enus, but not very diftinctly, nor without fome nicenefs in difoofing the Inftrument.

From that time I was interrupted, till this laft Autumn, when I made the other. And as that was fenfibly better than the firt (efpecially for Day-Objects, fo I doubt not but they will be ftill brought to a much greater perfection by their Endeavours, who, as you inform me, are taking care about it at London.

I have fometimes thought to make a Microfoope, which in like manner fhould have, inftead of an Object-glats, a reflecting piece of Metal. And this I hope they will alfo take into Confideration : For thofe Inftruments feem as capable of improvement as Telefcopes, and perhaps more, becaufe but one reflective piece of Metal is requifite in them, as you may perceive in Plate 3. Fig. I. where $A B$ reprefenteth the Object Me l, C D the Eye-glafs, F their common Focus, and 0 the other Focus of the Metal, in which the Object is placed.

But to return from this digreffion, I told you, that Light is not fimilar, or homogeneal, but confifts of difform Rays, fome of which are more refrangible than others: So that of thofe, which are alike incident on the fame Medium, fome fhall be more refracted than others, and that not by any virtue of the Glafs, or other external

MiFellanea Curiofa. 105

external Caufe, but from a predifpofition, which every particular Ray hath to fuffer a particular degree of Refraction.

I fhall now proceed to acquaint you with ancther more notable deformity in its Rays, wherein the Origin of Colours is unfolded: Concerning which I fhall lay down the Dodrine firft, and then, for its Examination, give you an Inftance ar two of the Experiments, as a Specimen of the reft.

The Doctrine you will find comprehended and illuftrated in the following Propofitions.
I. As the Rays of Light differ in degrees of Refrangibility, fo they alfo differ in their difpofition to exhibit this or that particular Colour. Colours are not Qualifications of Light, derived from Refractions, or Reflections of natural Bodies, (as'tis generally believed) but Original and connate Properties, which in divers Rays are divers. Some Rays are difoofed to exhibit a red Colour and no other ; fome a yellow and no other, fome a green and no other, and fo of the reft. Nor are there only Rays proper and particular to the more eminent Colours, but even to all their intermediate Gradations.
2. To the fame degree of Refrangibility ever belongs the fame Colour, and to the fame Colour ever belongs the fame degree of Refrangibility. The leaft Refrangible Rays are all difpofed to exhibit a Red Colour, and contrarily thofe Rays, which are difpofed to exhibit a Red Colour, are all the leaft Refrangible : So the mof Refrangible Rays are all difpofect to exhibit a deep Violet Colour, and contrarily thofe which are apt to exhibit fuch a Violet Colour, are all the mort Refrangible. And fo to all the intermediate Colours in a continued Series belong intermediate degrees of Refrangibility. And

106 Mifcellanea Curiofa.

this Analogy 'twixt Colours, and Refrangibility; is very precife and ftriet; the Rays always either exactly agreeing in both, or proportionally difagreeing in both.
3. The Species of Colour, and Degree of Refrangibility proper to any particular fort of Rays, is not mutable by Refraction, nor by Reflection from Natural Bodies, nor by any other Caufe, that I could yet obferve. When any one fort of Rays hath been well parted from thofe of other kinds, it hath afterwards obftinately retain'd its Colour, notwithftanding my utmoft Endeavours to change it. I have refracted it with Prifms, and reflected it with Bodies, which in Day-light were of other Colours; I have intercepted it with the colour'd Film of Air interceding two compreffed Plates of Glafs ; tranfmitted it through colour'd Mediums, and through Mediums irradiated with other forts of Rays, and diverfly terminated it, and yet could never produce any new Colour out of it. It would by eontracting and dilating become more brisk, or faint, and by the lofs of many Rays in fome Cafes very obfcure and dark; but 1 could never fee it chang'd in fpecie.
4. Yet feeming Tranfmutations of Colours may be made, where there is any mixture of divers forts of Rays. For in fuch mixtures, the component Colours appear not, but by their mutual allaying each other, conftitute a midhing Colour. And therefore, if by Refraction, or any othertof the aforefaid Caufes, the difform Rays, latent in fuch a mixture, be feparated, there fhall emerge Cotours different from the colour of the Compofition. Which Colours are not new generated, but only made apparent by being parted; for if they be again intirely

Mifcellanea Curiofa.

mix'd and blended together, they will again compofe that Colour, which they did before feparation. And for the fame reafon, Tranfmutations made by the convening of divers Colours are not real ; for when the difform Rays are again fevered, they will exhibit the very fame Colours, which they did before they entered the Compofition; as you fee, Blue and Yellow Powders, when finely mixed, appear to the naked Eye Green, and yet the Colours of the component Corpufcles are not thereby really tranfmuted, but only blended. For, when viewed with a good Microfcope, they ftill appear Blue and rellow interfperfedly.
5. There are therefore two forts of Colours. The one Original and Simple, the other compounded of thefe. The Original or Primary Colours are, Red, Yellow, Green, Bluc, and a Violet-purple, together with Orange, Indico, and an indefinite variety of intermediate Gradations.
6. The fame Colours in Specie with thefe primary Ones, may be alfo produced by Compolition: For, a mixture of Cellow and Blue makes Green; of Red and Yellow, makes Orange; of Orange and Tellowifs Green, makes Yellow. And in general, if any two Colours be mix'd, which in the Series of thofe, generated by the Prifm, are not too far diftant one from another, they by their mutual Alloy compound that Colour, which in the faid Series appeareth in the mid-way between them. But thofe, which are fituared at too great a diftance, do not fo. Orange and I_{n} dico produce not the intermediate Green, nor $S_{\text {car- }}$ let and Green the intermediate Yellow.
7. But the moft furprizing and wonderful Compofition was that of Whitenefs. There is no ove fort of Rays which alone can exhibit this.

108 Mifcellanea Curiofa.

'Tis ever compounded, and to its Compofition are requifite all the aforefaid primary Colours, mix'd in a due proportion. I have often with admiration beheld, that all the Colours of the Prifm being made to converge, and thereby to be again mixed as they were in the light before it was incident upon the Prifm, reproduced light, intirely and perfectly white, and not at all fenfibly differing from a direat light of the Sun, unlefs when the Glaffes, I ufed, were not fufficiently clear; for then they would a little incline it to their Colour.
8. Hence therefore it comes to pafs, that Whitenefs is the ufual Colour of Light; for L.ight is a confufed aggregate of Rays, indued with all Corts of Colours, as they are promiccuoufly darted from the various parts of lumitous Bodies. And of fuch a confufed aggregate, as I Gid, is generated Whitenefs, if there be a due proportion of the Ingredients; but if any one predominate, the Light muft incline to that Colour ; as it happens in the blue Flame of Brimftone, the yellow Flame of a Candle, and the variours Colours of the fixed Stars.
9. Thefe things confider'd, the manner, how Colours are produced by the Prifm, is evident. For, of the Rays, conftituting the incident Light, fince thofe which differ in Colour proportionally differ in Refrangibility, they by their unequal Refractions muft be fevered and difperfed into an oblong Form, in an orderly fucceffion, from the leaft refracted Scarlet to the moft refracted Violet. And for the fame realon it is, that Objects, when look'd upon through a Prifm, appear coloured. For the difform Rays, by their unequal Refractions, are made to diverge towards feveral parts of the Retina, and there ex-

Mifcellanea Curiofa.

prefs the Images of things coloured, as in the former cafe they did the Sun's Image upon a Wall. And by this inequality of Refractions, they become not only coluured, but alfo very confufed and indiftinct.
10. Why the Colours of the Rainbow appear in falling drops of Rain, is alfo from hence evident. For thofe drops, which refract the Rays, difpofed to appear Purple, in greateft quantity to the Spectators Eye, refract the Rays of othes forts fo much lefs, as to make them pafs befide it ; and fuch are the drops on the infide of the Primary Bow, and on the outfide of the Secondary or Exteriour one. So thofe drops, which refract in greatelt plenty the Rays, apt to appear red, toward the Spectator's Eye, refract thofe of other forts fo much more, as to make them pafs befide it; and fuch are the drops on the Exteriour part of the Primary, and Interiour part of the Secondary Bow.
11. The odd Phenomena of an infufion of Lignum Nephriticum, Leaf-gold, Fragments of colour'd Glafs, and fome other tranfparently coloured Bodies, appearing in one Pofition of one Colour, and of another in another, are on thefe grounds no longer Riddles. For thole are Subftances apt to reflect one fort of Light, and tranfmit another; as may be feen in a dark Room, by illuminating them with fimilar or uncompounded Light. For then they appear of that Colour only, with which they are illuminated; but yet in one Pofition more vivid and luminous than in another, accordingly as they are difpofed more or lefs to reflect or tranfmit the incident Colour.
12. From hence alfo is manifett the reafon of an unexpected Experiment, which Mr. Hooks fomewhere in his Micrography, relates to bave made

110
 Mifcellanea Curiofa.

made with two wedge-like tranfparent Veffels filld, the one with a red, the other with a blue Liquor ; namely, that though they were feverally tranfparent enough, yet both together became opake : For, if one tranfmitted only red, and the other only blue, no Rays could pafs through both.
13. I might add more Inftances of this Na ture; but 1 fhall conclude with this general one, that the Colours of all natural Bodies have no other Origin than this, that they are varioufly qualified to reflect one fort of Light in greater plenty than another. And this I have experimented in a dark Room, by illuminating thofe Bodies with uncompounded Light of divers Colours, For by that means any body may be made to appear of any Colour. They have there no appropriate Colour, but ever appear of the Colour of the Light caft upon them; but yet with this difference, that they are moft brisk and vivid in the Light of their own day-light-colour. Minium appeareth there of any Colour indifferently, with which 'tis illuffrated, but yet moft luminous in red ; and fo Bife appearech indifferently of any Colour wish which 'tis illuftrated, but yet moft luminous in blue. And therefore Minium reflecterh Rays of any Colóur, but mooft copioufly thofe endu'd with red, and confequently when illuftrated with day-light, that is, with all forts of Rays promifcuoufly blended, thofe qualified with red, fhall abound molt in the reflected Light, and by their prevalence caufe it to appear of that Colour. And for the fame reaton Bife, reflecting blue moft copioully, fhall appear blue by the excefs of thofe Rays in its reflected Light; and the like of other Bodies. And that this is the intire

Mijcellanea Curiofa. in

intire and adequate caufe of their Colours, is manifeft, becaufe they have no power to change or alter the Colours of any fort of Rays incident apart, but put on all Colours indifferently, with which they are enlightned.

Thefe things being fo, it can be no longer difputed, whether there be Colours in the dark, nor whether they be the Qualities of the $\mathrm{Ob}=$ jects we fee, no nor perhaps, whether Light be a Body. For, fince Colours are the Qualities of Light, having its Rays for their intire and immediate Subject, how can we think thofe Rays Qualities alfo, unlefs one Quality may be the Subject of and fuftain another; which in effect is to call it Subfance? We fhould not know Bodies for Subftances, were it not for their fenfible Qualities; and the principal of thofe being now found due to fomething elfe, we have as good reafon to believe that to be a Subftance alfo.

Befides, whoever thought any Quality to be a beterogeneous Aggregate, fuch as Light is difcovered to be? But to determine more abfo. lutely, what Light is, after what manner refracted, and by what Modes or Actions it produceth in our Minds the Phantafms of Colours, is not: fo eafie. And I fhall not mingle Conjectures with Certainties.

Reviewing what I have written, I fee the Difcourfe ir felf will lead to divers Experiments fufficient for its Examination ; and therefore I fiall not trouble you farther, than to defcribe one of thole, which I have already infinuated.

In a darkned Room, make a hole in the fhut of a Window, whofe Diameter may conveniently be about a third part of an Inch, to admit a convenient quantity of the Sun's Light : And there place a clear and colourlefs Prilm, to refract

112 Mifeillanea Curiofa.

fract the entring Light towards the farther part of the Room; which, as I faid, will thereby be diffuled into an oblong coloured Image. Then place a Lens of about three Foot Radius (fuppofe a broad Object-glafs of a three Foot Telefcope,) at the diftance of abour four or five Foot from thence, through which all thofe Colours may at once be tranfmitted, and made by its Refraction to convene at a farther diftance of about ten or twelve Feet. If at that diftance you intercept this Light with a Sheet of white Paper, you will fee the Colours converted into whitenefs again by being mingled. But it is requifite, that the Prijm and Lens be placed fleady, and that the Paper, on which the Colours are cait, be moved to and fro; for, by fuch motion, you will not only find at what diftance the whitenefs is moft perfect, but alfo fee how the Colours gradually convene, and vanifh into whiteners; and afterwards, having croffed one another in that place where they compound whitenefs, are again diflipated and fevered, and in an inverted order retain the fame Colours, which they had before they entred the Compofition. Yqu may alfo fee, that, if any of the Colours at the Lens be intercepted, the whitenefs will be changed into the other Colours. And therefore, that the Compofition of whitenefs be perfect, care mult be taken that none of the Colours fall befides the Lens.

In the annexed Defign, Tab. 3. Fig. 2. of this Experiment, A B C expreffert the Prifm fet endwife to fight, clofe by the hole F of the Window EG. Its vertical Angle $A B C$ may conveniently be about 60 Degrees: M N defigneth the Lens. Its breadth $2 \frac{1}{2}$ or 3 Inches. $S F$ one of the ftreight Lines, in which difform Rays may
be conceived to flow fucceffively from the Sun. F P, and $F R$ two of thofe Rays unequally refracted, which the Lens makes to converge towards Q, and after decuffation to diverge again. And HI the Daper, at divers diftances, on which the Colours are projected, which in 2 conftitute Whitenefs, but are Red and Yellow in R, r, and ρ, and Biue and Purple in P, p, and π.

If you pruceed further to try the impoff bility of changing any uncompounded Colour (which I have afferted in the third and thirteenth Propofitions,) 'tis requifite that the Room may be very dark, left any fcattering light, mixing with the Colour, difturb and allay it, and render it compound, contrary to the defign of the Experiment. ' T is alfo requifite, that there be a perfecter feparation of the Colours, than, after the manner above defcribed, can be made by the Refraction of one fingle Prifm; and how to make fuch farther feparations, will fcarce be difficult to them, that confider the difcovered Laws of Refractions. Bat if trial fhall be made with Colours not throughly feparated, there muft be allowed changes proportionable to the mixture. Thus if compound Yellow Light fall upon blue Bife, the Bile will not appear perfectly yellow, but rather green, becaufe there are in the yellow mixture many Rays indued with green, and green being lefs remote from the ufual blue Colour of Bife than yellow, is the more copioufly reflected by it.

In like manner, if any one of the Prifmatick Colours, fuppofe red, be intercepted, on defign to try the afferted impoffibility of reproducing that Colour out of the arhers which are pretermitted; "tis neceffary, either that the Colours be yery well parted before the red be intercep-

114 Mifcellanea Curiofa.

ted ; or that, together with the red, the neighbouring Colours, into which any red is fecretly difperfed, (that is, the yellow, and perhaps green too) be intercepted; or elfe, that allowance be made for the emerging of fo much red out of the yellow green, as may poffibly have been diffufed, and fcatteringly blended in thofe Colours. And if thefe things be obferved, the new Produr ction of red, or any intercepted Colour, will be - Found impofilible.

This, I conceive, is ennugh for an Introduct:on to Experiments of this kind; which if any of the Roval Society fhall be fo curious as to profecute, I fhould be very glad to be infurmed with what fuccefs: That, if any thing feem to be defective, or to thwart this Relation, I may have an opportunity of giving farther Direction about it, or of acknowledging my Errors, if I have committed any.

Since the Publication of this Theory, fome Mifunderfandings bappening between a French Pbilofopher at Paris and Mr. Newton, be has endeavour'd to explain himfelf a little furtber in thefe Things, according to the following Metkod.
DEFINITIONS.

1. I call that Light Homogeneal, Similar, or Uniform, whofe Rays are equally refrangible.
2. And that Heterogeneal, whofe Rays are unequally refrangible.

Note, There are but three Affections of Light in which I have obferv'd its Rays to differ ; vir. Refrangibility, Reflexibility, and Colour; and thofe Rays which agree in Refrangibility, agree alfo

Mifcellanea Curiofa.

in the other two, and therefore may well be defined Homogeneal ; efpecially fince Men ufually call thofe things Homogeneal, which are fo in all Qualities that come under their Knowledge, tho' in other Qualities, that their Knowledge extends not to, there may pollibly be fome Heterogeneity.
3. Thofe Colours I call Simple or Homogeneal, which are exhibited by Homogeneal Light.
4. And thofe Compound or Heterogeneal, which are exhibited by Heterogeneal Light.
5. Different Colours, I call, not only the more eminent Species, Red, Yellow, Green, Blue, Purple, but all other the minuteft Gradations; much after the fame manner, that not only the more eminent Degrees in Mufick, but all the leaft Gradations, are efteem'd different Sounds.
PROPOSITIONS.

1. The Sun's Light confifts of Rays differing by indefinite Degrees of Refrangibility.
2. Rays which differ in Refrangibility, when parted from one another, do proportionally differ in the Colours which they exhibit. Thefe Two Propofitions are Matter of Fact.
3. There are as many Simple or Homogenea! Colours, as Degrees of Refrangibility. For to every Degree of Refrangibility belongs a different Colour, by Prop. 2. and that Colour is Simple, by D ef. 1 , and 3.
4. Whitenefs, in all refpects like that of the Sun's immediate Light, and of all the ufual Ob jects of our Senfes, cannot be compounded of two Simple Colours alone. For fuch a Compofition 12 mult

116 Mifcellanea Curiofa.

mult be made by Rays that have only two Degrees of Refrangibility, by Def. I and 3. and therefore it cannot be like that of the Sun's Light. by Prop. I. nor, for the fame Reafon, like that of ordinary white Objects.
5. Whitenefs, in all refpects, like that of the Sun's immediate Light, cannot be compounded of Simple Colours without an indefinite Variety of them. For to fuch a Compofition, there are requifite Rays endu'd with all the indefinite Degrees of Refrangibility, by Prop. I. And thofe infer as many Simple Colours, by Def. 1 and 3. and Prop. 2 and 3.

To make thefe a little plainer, I have added alfo the Propofitions that follow.
6. The Rays of Light do not act on one another, in paffing through the fame Medium.
7. The Rays of Light fuffer not any change of their Qualities from Refraction.
8. Nor afterwards from the adjacent quiet Medium : Thefe two Propofitions are manifett de Facto in Homogeneal Light, whofe Colour and Refrangibility is not at all changeable, either by Refraction, or by the Contermination of a quiet Medium. And as for Heterogeneal Light, it is but an Aggregate of feveral forts of Homogeneal Light, no one fort of which fuffers any more alteration than if it were alone ; becaufe the Rays act not on one another, by Prop. 6. and therefore the Aggregate can fuffer none. Thefe two Propofitions allo might be further proved apart, by Experiments too long to be here defcribed.
9. There can no Homogeneal Colours be reduced out of Light by Refraction, which were not commixt in it before: Becaufe by Prop, 7 . and 8. Refraction changeth not the Qualities of the Rays, but only feparates thofe which have

Mijcellanea Curiofa. 117

divers Qualities, by means of their different Refrangibility.
10. The Sun's Light is an Aggregate of an indefinite , variety of Homogeneal Colours, by Prop. I, 3, and 9. And hence it is, that I call Homogeneal Colours alfo Primitive or Original. And thus much concerning Colours.

For a further Illuftration of this Doctrine, Mr. Newton, in bis Book of Opticks lately pullibod, bas by undeniable Experiments explained mof of the Principal Phanomena of Light and Colours: To which we refer the Reader.

118 Mifcellanea Curiofa.

A Demonftration concerning the Motion of Light, communicated from Paris.

PHilofophers have been labouring for many Years to decide by fome Experiment, whether the Action of Light be conveyed in an inftant to diftant Places, or whether it requireth time. M. Romer, of the Royal Academy of Sciences, hath devifed a way taken from the Obfervations of the firlt Satellit of $\mathfrak{F u p i t e r}$, by which he demonfitrates, that for the diftance of about 3000 Leagues, fuch as is very near the bignefs of the Diameter of the Earth, Light needs not one Second of Time.

Let (in Fig. 3. Plate 3.) A be the Sun, $B \mathcal{F} u$ piter, C the firf Satellit of $7 u$ iter, which enters into the fhadow of $\mathcal{F u p i t e r , ~ t o ~ c o m e ~ o u t ~ a t ~} D$, and let EFGHKL be the Earth, placed at divers diftances from $\mathcal{F u p i t e r}$.

Now fuppofe the Earth, being in L, towards the fecond Quadrature of fupiter, hath feen the firl Satellit, at the time of its emerfion, or iffuing out of the fhadow at D, and that about $42 \frac{1}{2}$ Hours after (viz. after one Revolution of this Satellit) the Earth being in K, do fee it return'd in D : It is manifeft, that if the Light require time to traverfe the Interval $\boldsymbol{L} K$, the Satellit will be feen return'd later in D, than it would have been if the Eartb had remained in L. So tha the Revolution of the Satellit being shus obferv'd by the Emerfions, will be retar-
ded by fo much time, as the Light fhall have taken in paffing from L to K; and that on the contrary, in the other Quadrature $F G$, where the Earth by approaching goes to meet the Light, the Revolutions of the Emerfions will appear to be fiortned, by fo much ai thofe of the Emerfions had appear'd to be lengthned. And becaufe $42 \frac{1}{2}$ Hours, which this Satellit very near takes to make one Revolution, the diffance between the Earth and Fupiter, in both the Quadratures, varies at leaft 210 Diameters of the Earth: It follows, that if for the Account of every Diameter of the Eirth ihere were required a Second of Tine, the Light wou'd take $3 \frac{1}{2}$ Minutes for each of the Intervals $G F, K L$; which would caufe near half a quarter of an Hour between two Revolutions of the firf Satellit, one obferv'd in $F G$, and the other in $K L$, whereas there is not obferved any fenfible difference.

Yet doth it not follow hence, that Light demands no time. For afrer M. Romer had examin'd the thing more nearly, he found that what was not fenfible in two Revolutions, became very confiderable in many being taken together; and that, for Example, forty Revolutions obferved on the fide F, might be fenfibly fhorter, than forty others obferv'd in any place of the zodiack where Fupiter may be met with; and that in proportion of Twenty two for the whole Interval of $\boldsymbol{H E}$, which is the double of the Interval that is from hence to the Sun.

The neceffity of this new Equation of the Retardment of Light, is eftablifh'd by all the Obfervations that have been made in the Royal Academy, and in the Obfervatory, for the face of eight Years ; and it hath been lately confir-

120 Mifcellanea Curiofa.

med by the Emerfion of the firft Satellit obferv'd at Paris, the $9^{\text {th }}$ of November laft, at 5 a-clock $35^{\prime} 45^{\prime \prime}$ at Night, 10 Minutes later than it was to be expected, by deducting it from thofe that had been obferv'd in the Month of Auguff, when the Earth was much nearer to Fupiter; which M. Romer had predicted to the faid Academy from the beginning of September.

But to remove all doubt, that this Inequality is caufed by the Retardment of the Light, he demonftrates, that it cannot come from any Excentricity, or other Caufe of thofe that are commonly alledged to explicate the Irregularities of the Moon, and the other Planets; though he be well aware, that the firf Satellit of $\mathfrak{f u p i t e r}$ was Excentrick; and that, befides his Revolutions. were advanced or retarded, according as 7 upiter did approach to or recede from the Sun; as alfo, that the Revolutions of the Primum Mobile were unequal: Yet, faith he, thefe three laft Caufes of Inequality do not hinder the firft from being manifeft.

Mifcellanea Curiofa.

An introductory Effay to the Do-

 Etrine of Sounds, containing fome Propofals for the improvement of Acoufticks; As it was prefented to the Dublin Society, Nov. 12. 1683, by the Right Reverend Father in God Narciffus Lord Bi/hop of Ferns and Leighlin.BEing to treat of the Doctrine of Sounds, I hold it convenient to premife fomething in the general, concerning this Theory; which may ferve at once to ingage your Attention, and excufe my Pains, when I thall have recommended them, as beftow'd on a Subject not altogether ufelefs and unfruitful.

And for this purpofe I fhall omit to fpeak any thing of the Excellency of the Matter in Hand ; though it might be celebrated by Arguments drawn from feveral Topicks, and particularly from this, that new Difcoveries and Improvements may be made, both as to the Generation, Propagation and Reception of Sounds into the Senfe; which, in a peculiar manner agrees to this, above the Object of any other Senfe whatfoever. I fhall, I fay, omit thefe things, and apply my felf wholly to the Vefulnefs of the Theory, that we are now falling upon, which I think cannot better be difcovered, than by making a comparifon 'twixt the Senfẹ

122 Mifceillanea Curiofa.

Senfes of Seieing and Hearing, as to their Improvements. I mean, by fhewing, that this latter of Hearing is capable of all thofe improvements which the Senfe of Secing has receiv'd from Art, befides many more advantages that the Ear may enjoy, by the help of our Doctrine, above the Eye; all which moreover will be of as great benefit to Mankind, as any thing that opticks have yet difcover'd, if not of greater; which, with fome other pre-eminencies that it has upon another Score, will happily render Acoufticks the nobler Science of the two.

In order to the making good what I but now premifed of the Comparifon of thefe two Faculties of Seeing and Hearing, as to their Improvements, I obferve;

That Vifion is threefold, Direct, Refraited, and Reflex'd; anfwerable whereunto we have Optick: Dioptricks, and Catoptricks.

In like manner Hearing may be divided inta Dirett, Refracted and Reflex'd; whereto anfwer three parts of our Doctrine of Acoufticks, which are yet namelefs, unlefs we call them Acoufticks, Diacoufticks, and Catacouficks, or (in another Senfe, but to as good Purpofe) Phonicks, Diapho: nicks, and Cataphonicks.
I. Direct Vifion has been improv'd two ways, ex parte Objecti, and ex parte Organi vel Medii.

1. Ex parti Objecti, Direct Vifion has receiv'd advantages by the Arts of Producing, Conferving and Imitating Light and Colours, which are the Objects of Vifion.
2. For the Art of Producing Light, we have the Frication of all hard Bodies that beget Fire; efpecially of the Flint and Steel ; and inftead

Mifcellanea Curiofa.

inftead of the Flint, moft hard Stones (as well as the Cane) may be us'd to the fame effect, as upon trial I have found. Add hereto the lately invented Pbofphorus, which is a new and admirable way of producing a Lucid Subtance by Art, out of a Body in itfelf not Lucid; and therefore may not unfitly be term'd an Artificial production of Light.

And then of the Art of Conferring Light, the Lapis Bononienfis is a notable Inftance; and fo happily were the Sepulcbral Lamps of the Ancients.
2. As to Colours, 'tis the greateft part of the Art of Dying to be able to make and fix sthat is preferye) them; and the Painters and Limners will own it to be no fmall part of their Skill to be able well to Mix (that is, in effect, to Generate) Colours.
3. For Imitation of Light and Colours, 'ris well known how far Perfpetive with the Art of Limning and Shadowing have gone therein, which all tend fome way to the Advance or Improvement of Direé Vifion.

Add to all thefe, That a due Application of Light to the Object renders it Vifible, if it were not fo before; as appears from a dark Room illuminated; or elfe makes it better and more truly difcernable by the Senfe of Seeing, if befure it might have been difcern'd.

Hence the fame Colour, in a diverfe Light, will appear different, and no Picture can well be difcern'd or judg'd of but by its true Light. Befides, the Limner will affure you, that he can hardly make true Work, or hit the Air of a Face exactly, unlefs he draw by a Nortb-Light, by reafon of the fteadinfs of that, and the uncertainty of all other Lights whatfoever. Which

124 MiCcellanea Curiofa.

Which things fhew, that the Art of duly applying Light to the Object does very much help and improve Vifion. So alfo does the due placing of the object, as to Height and Difance. But to enumerate all things that help Direct Vifion, would be infinite.
2. Ex parte Organi vel Medii, Direct Vifion has been improv'd by making ufe of a Tube, without Glaffes, or a Man's clos'd Hand, to look thro'; which admitting into the Eyc only the principal Rays, that come directly from the Object, do very much ftrengthen and clear the Sighr, by excluding all the Collateral Rays, that crouding into the Eye, together with the direct ones, would confound and difturb it, partly by mixing and interfering with the direct Rays, and partly (or rather chiefly) by too much enlightning the fund of the Eye, wherein Vifion is truly (tho' then imperfectly) made.

On this is founded the Art of making Speetacles without Glaffes; (as well as Tubes) which is done by putting into the Glafs-holes (inftead of Glaffes) two fhort Tutes of between three and four Inches long (for their length is to be vary'd according to the Age or Eye of the Beholder, and fo alfo is the Diameter of the extream ends) which Tubes being made of Spanifb Leather (or Paft-board, or fome fuch like Matter) and black'd on the infide, are to to be placed, as that the vifual Rays, receiv'd thro them, may meet in one point (or rather iffue out from one Point) of the Object ftanding at fuch a due diftance, as the Perfon may clearly and diftinctly fee it, or according to his length of Sight (as ABC, in the 4th Fig. Tab. 3.)

And thefe speeitacles may be fuppos'd better for preferving the Sight, than the ordinary ones with Glaffes, becaufe they reprefent the Object more naturally, and withal more clearly and diftinctly to the Eye, than the other, whofe refracted Rays being collected together with the right ones in the Glaffes, do fomewhat confound good Vifion, as before: Efpecially if the vifive Power be ftrong enough to be fufficiently determin'd by the righr Rays alone.

For I feak now of preferving a good Eye by thefe Spectacles, which holds in proportion true aifo of a bad one. Becaufe thofe Rays (both right and refracted) being collected and brought to near the Eye (whether good or bad) as the Spectacles are ufually plac'd, do too much affect it, both by their own brightnefs, and alfo by the brightnefs of the Colours of the Object (when they are bright) which is brought very near alfo ; whereby the Eye is dazl'd and confounded, unlefs there be a ftrong attention and conatus of the Spirits, whereto the bright Rays do certainly engage them, which of neceffity weakens Vifion, efpecially if thefe Glafs-fpectacles be much us'd.

Wherefore the now defcrib'd new Tube-fpectacles, contributing fo much to the help and prefervation of Sight, may well be counted an improvement of Direct Vifion, becaufe they convey the Rays to the Eye without any kind of Refraction whatfoever. Seeing the fame Object allo through various holes, plac'd at certain diftances, does fomewhat alter Vifion; but of this perhaps more hereafter.

- Now as Direct Vifion has thus been improved, fo likewife Direat Hearing partly has already receiv'd, and partly may (by the Doctrine whereof

126 Mifcellanea Curiofa.

whereof we are treating, (if well cultivated) farther receive as great and notable Improvements, both ex parte Objecti, and ex parte Organi vel Medii.

1. As to the Object of Hearing, which is Sound, improvement has been and may be made, both as to the Beyctting, and as to the Conveying and Propagating (which is a kind of Conferving) of Sounds.
2. As to the Begetting of Sounds. The Art of imitating any Sound, whether by Speaking' (that is pronouncing) any kind of Language, (which really is an Art, and the Art of Speaking, perbaps one of the greateft) or by Whifling, or by Singing (which are allow'd Arts) or by Hollowing or Luring (which the Huntfman or Faulkner would have to be an Art alfo) or by imitating with the Mouth (or otherwife) the Voice of any Animal, as of quails, Cats, and the like; or by reprefenting any Sound begotten by the Collifion of Solid Bodies, or after any other manner ; thefe are all Improvements of Direct Hearing, and may be improv'd.

Moreover the Skill to make all forts of Mu^{-} fical Infruments, both Ancient and Modern, whether Wind Inftruments or String'd, or of any other fort, whereof there are very many (as Drums, Bells, the Syftrum of the Egyptians, and the like) that beget (and not only propagate) Sounds; the Skill of making thefe, I fay, is an Art, that has as much improv'd Direat Hearing, as an Harmonious Sound exceeds a fingle and rude one, that is, an immufical Tone; which Art is yet capable of farther improvement. And I do hope, that by the Rules, which may happily be laid down concerning the Nature, Propagation and Proportion, or A- to improve Mufical Inftruments already in ufe, and to invent new ones, that fhall be more fweet and lufcious, than any yet known. Befides that, by the fame means Inftruments may be made, that fhall imitate any Sound in Nature, that is not Articulate, be it of Bird, Bealt, or what thing elfe foever.
2. The Convering and Propagating (which is a kind of Conferving) of Sounds, is much help'd by duly placing the Sonorous Body, and alfo by the Medium.

For if the Medium be Tbin and Quiefcent, and the Sounding Body plac'd conveniently, the Sound will be eafily and regularly propagated, and mightily conferv'd. I fay,

1. If the Medium be Tbin and Quiefcent, becaule it otherwife caufes a Refrated Sound, of which afterwards. Hence in a fill. Evening, or the dead of the Night (when the Wind ceafes) a Sound is better fent out, and to a greater diftance than otherwife, tho' much of this may be afcrib'd to its Refraction alfo.
2. I fay, that the Sonorous Body muft be plac'd conveniently, near a Smooth Wall, near Water, or a Plain, whofe Surface is even.
I. Near a Smooth Wall, either Plain or Arch'd (Cycloidically or Elliptically, rather than otherwife, tho' a Circular or any Arch will do, but not fo well.)

Hence in a Church, the nearer the Preacher fands to the Wall (and certainly 'tis much the beft way to place Pulpits near the Wall) the better is he heard, efpecially by thofe who ftand near the Wall allo, though at a greater diflance from the Pulpit; thofe at the remoteft end of the Church, by laying their Ears fome: what

128 Mifcellanea Curiofa.

what clofe to the Wall, may hear him eafier than thofe in the middle.

Hence alfo do arife Whifpering Places. Fcr the Voice being apply'd to one end of an Arch, eafily rowls to the other. And indeed were the Motion and Propagation of Sounds but rightly underftood, 'twould be no hard matter to contrive Whippering Places of infinite variety and ufe. And perhaps there could be no better or more pleafant hearing a Confort of Mufick than at fuch a place as this, where the Sounds rowling along together, before they come to the Ear, mult needs confolidate and imbody into one; which becomes a true compofition of Sounds, and is the very Life and Soul of Confort.
2. If the Sonorous Body be plac'd near Water, the Sound will eafily be convey'd, yet mollified ; as Experience teacheth us from a Ring of Bells near a River, and a great Gun thot off at Sea, which yet differ much in the ftrength, and foftefs and continuance, or propagation of their Sounds, from the fame at Land, where the Sound is more harth and more perifhing, or much fooner decays.
3. In a Plain a Voice may be heard at a far greater diftance than in uneven Ground.

The Reafon of all which laft nam'd Phanome$n a$ is the fame ; becaufe the Sonorous Air meeting with little or no refiftance upon a Plane (much lefs upon an Arch'd) fmooth Superficies, eafily rowls along it, without being let or hinder'd in its Motion, and confequently without having its parts disfigured, and put into another kind of Revolution, than what they had at the firft begetring of the Sound. Which is the true caufe of its Prefervation or Prngrefion, and fails much when the Air paffes over an un-

Mifcellanea Curiofa.

even Surface, according to the degrees of its inequality, and fomewhat alfo, when it paffes over the plain Superficies of a Body that is hard and refifting.

Wherefore the fmooth Top of the Water (by reafon of its yielding to the Arch'd Air, and gently arifing again with a kind of Refurge, like to Elafticity, tho' it be not fo, by which Refurge it quickens and haftens the motion of the Air rowling over it, and by its yielding preferves it in its Arch'd Cycloidical or Elliptical Figure) the fmooth Top of the Water, Lfay, for thefe Reafons, and by thefe Means, conveys a Sound more entire, and to a greaier diftance than the plain Surface of a piece of Ground, a Wall, or any other Solid Body whatever, can do.

As for the Speaking Trumpet, by which a Voice may be convey'd to a confiderable diftance, I refer its confideration to that of Refracted Sounds, or Refracted Audition.

Thus much of the Improvements of Hearing; that refpect its Object, which is Sound.
2. The Organ and Medium are to be canfider'd. And, 1. The Organ, which is the Ear, is helpt much by placing it near a Wall (efpecially at one end of an Arch, the Sound being begotten at the other) or near the Surface of Water, or of the Earth, along which the Sounds are moft eafily and naturally convey'd, as was before declar'd. And 'tis incredible how far a Sound made upon the Earth (by the trampling of a Troop of of Horfes, for Example) may be heard in a ftill Night, if a Man lays his Ear clofe to the Ground in a large Plain.

130 Mifcellanea Curiofa.

Otacoufticks here come in for helping the Ear ; which may be fo contriv'd (by a right underftanding the Progreffion of Sounds, which is the principal thing to be known for the due regulating all fuch kinds of Inftruments) as that the Sound might enter the Ear without any Refraction, but as now they are generally made I refer them to Refracted Audition.
2. As to the Medium, I know not how that, by any contrivance of Art, can advantage Direat Hearing, otherwife than I have declar'd already in the propagation or conveyance of Sounds, though to the Refracting or Reflecting of them it may very much conduce; of which prefently.

And fo 1 have done with the firlt part of my prefent undertaking, which is the Comparifon of Direat Vifion and Audition, as to their Improvements from Art. The reft follow: Where: fore,
II. Concerning Refraited Vifion and its Comparifon, I obferve, That RefraEted Vifion is always made Ex parte Medii, as Refleted is ex parte Objegti. And therefore, though Diret Vifion may be help'd ex parte Objecti, Medii vel Organi, yet Refracted can be improv'd only ex parte Medii, and Reffected ex parte Corporis oppofiti alone. Unlefs it be in a mixt or compound Vifion, that is Refracto-Reflext, when the reflext Rays pals to the Eye through a refracting Medium, fuch as the Medium Internum, contain'd in the Body of the Eye, always is. So that in truth, all Vifion is Refracted by an internal Refraction made in ipso Oculo.

And all that I have fpoken of V_{i} ion holds true of Hearing alfo, both Refracted and Reflext, and therefore need not be repeated.

Refracted Vifion arifes from the different $D_{e n=}$ fity, Figure, and Magnitude of the Medium, which is fomewhat alter'd alfo by the diverfe in. cidence of the vifible Rays. And fo it is in Refratted Hearing, all thefe Caufes concur to its Production, and fome others to be hereafter confider'd.

Now as any Object (a Man for example) feen through a thicken'd Air, by Refraction appears greater than really he is: So iikewife a Sound, heard through the fame thicken'd part of the Atmofphere, will be confiderably vary'd from what it would feem to be, if heard through a thinner Medium.

And this I call a Refracted Sound: But what this Refraction of Sound is, and how caus'd, may hereafter be difcufs'd, when the Nature, and Motion, or Progreflion of Sounds are well ftated.

For the Improvement of Refracted V ifion ar: tificial Inftruments have been made, by grinding or blowing Glaffes, into a cerrain Figure, and placing them at due diftances, whereby the Ob ject may be (as 'twere) enabled to fend forth its Rays more vigoroully, and the Vifive Faculty impowerd the better to receive them. And thus alfo Inftruments may be contriv'd for the affifting both the Sonorous Body, to fend forch its Sound more ftrongly, and the Acoufick Faculty, to receive and difcern it more eafily and clearly. For,

1. As a fine Glafs Bubble, filld with clear W_{2} :ter, and placed before a burning Candle or Lamp, does help it to dart forch its Rays to a K 2
prodigious

13^{2} Mifcellanea Curiofa.

prodigious Length and Brightnefs : So an $I n$ " ferument may be invented, that apply'd to the Mouth (or any Sonorous Body) fhall fend forth the Voice diftinctly to as prodigious a Diftance and Loudnefs.
For if the Stentoro--phonecon (which is but a rude and unartificial Inftrument) does fuch great feats, what might be done with one compos'd according to the Rules of Art ? whofe make fhould comply with the Laws of Sonorouts Motion (which that does not). and therefore not fo much Refract, as to alter and confound the. Tone of the Voice and Words (as that fomewhat does.)

Now of what ufe fuch an Inftrument might be for feaking clearly and articulately at a diftance (and that without altering the Tone of the Voice) wherher it be at Sea or at Land (but efpecially at Sea in tempeftuous Weather and in the Night) is obvious to any Man to conceive.
2. As Inftruments have been invented to help the Eye, So likewife are there fome, and more fuch there may be, for the Ear.
For,
I. As Spectacles and other Glafles are made to help the Purblind and weak Eyes, to fee at any comperent diffance : So there are Otacoufficks (and better may be made) to help weak Ears to hear at a reafonable diftance alfo. Which would be as great a help to the infirmity of Old Age, as the other invention of Spectacles is, and perhaps greater; forafmuch as the Hearing what's fpoken is of more daily ufe and concern to fuch Men, then to be able to read Books or to viem PiEtures.

Mifcellanea Curiofa.

2. As Perfpective-Glafjes and Telefcopes help the Eye to fee Objects at a very great diftance, which otherwife would not be diicernable; in like manner may a fort of Otacoufticks be fo contriv'd, as that they fhall receive in Sounds made at a very great diftance alfo, but with fo much advantage, that the Ear fhall be able to hear them, which otherwife would have been inaudible.

And thefe Otacoufticks in fome refpects would be of greater ufe than Perfpeetives. For whereas at Land Peifpeetives are many times render'd almoft ufelefs, by the interpufition of Woods and Mountains, which hinder the Sight from reaching very far: Our Otacoufticks would, notwithftanding thefe Obftacles, take in a Sound made fome Leagues off. Which might be of notable ufe in the time of War, for difcovering the Enemy at a good diftrince, when be marches or lyes incamp'd behind a Mountain or Wood, or any fuch place of fhelrer.

Yea, even at Sea alfo, where Perfpectives are of moft ufe, by reafon of the plainefs of the Surface of the Water; yet fometimes there Otacouficks may be of more benefit, when in dark hazy Weather the Air is too thick, or in Stormy Tempeftuous Weather the Waves arife too high for the Perff_{f} ettive to be made ufe of.

But, whether at Sea or Land, Perfpectives become altogether infignificant in the Night-time (unlefs it be for viewing the Stars) which is the chief time for ufing Otacoufticks; as it is generally, for Soldiers to take their March, when they would furprife their Enemies.

And therefore this fort of Otacoufticks bave then their chief ufe, when Perfpectives are of no

134 Mifcellanea Curiofa.

ufe at all; befides that they may be imploy'd in the Day-time, as well as Perfpettives, whence they may (not unfitly) be term'd the mof ufeful Infrument of the two.
3. As Microfcopes or Magnifying-Glaffes help the Eye to fee near Objetts, that by reafon of their fmallnefs were Invijgble before; which Objects they Magnify to a ftrange greainefs : So Microphones or Micracoufticks, that is Magnifying Ear Inftruments, may be contriv'd after that manner, that they fhall render the moft minute Sound in nature diftinctly audible, by Magnifying it to an unconceivable loudnefs.

By the help hereof we may hear the different Gries and Tones, as well as by Microfcopes fee the divers Shapes and Figures of the fmalleft Animals.
4. As by Polyfopes or Multiplying-Glafjes, one thing is reprefented to the Eye as many, whether in the fame or different Shapes (for fo Multiplying-Glaffes may be contriv'd:) So by a Polyphone or Polyacouftick well order'd, one Sound may be heard as many, either of the fame or a different Note. Infomuch, that who ufes this Inftrument, he fhall, at the Sound of a fingle Viol, feem to hear a whole Confort and all true Harmony. By which means this Inftrument has much the advantage of the PolyScope.

And thus much may fuffice for comparing the Improvements made upon Refracted Seeing and Hearing; I call it Refratted Hearing, becaufe made through a Medium, viz. thick Air, or an Inftrument, through which the Sound paffing is broken or refracted.

III: Reflected

III. Reflected Vifion has been improv'd by the Invention of Looking-glaffes and Polifh'd Metals, whether Plane, Concave, or Convex ; and thele two laft, either Spherical, Oval, Cylindrical, Conical, Hyperbolical, or of feveral other fhapes; all which caufe a different Reflection, and vaty the Phanomena.

Thus alfo Reflext Audition, made by Ecchoes, may be improv'd, by contriving feveral forts of Artificial Ecchoes; as 'tis no hard matter to do in almoft any place.

For (fpeaking in the general) Any Sound, falling directly or obliquely upon any denfe Body, of a Smooth (whetber Plane or Arch'd) Superficies, is beat back again and reffected, or does eccho more or lefs.

I fay (土.) falling directly or obliguely; becaufe, if the Sound be fent out and propagated parallel to the Surface of the Denfe Body, or be made fo far off and fo weak, that it cannot reach it, there will be no Reflection of Sound,no Eccho.

I fay (2.) upon a Body of a Smoo'b Superficies ; becaule if the Surface of the Corpus obfans be uneven, the Air by reverberation will be put out of its regular Motion, and the Sound thereby broken and extinguifh'd : So that tho' in this cafe alfo the Air be beaten back again, yet Sound is not reflected, nor is there any Eccho.

I fay (3.) it does eccho more or lefs, to fhew, that when all things are, as is before defcrib'd, there is ftill an Ecchoing, though it be not always heard; either becaufe the direct Sound is too weak to be beaten quite back again to him that made it ; or that it does return home to him, but fo weak, that without the help of a good otacouftick it cannot be difcern'd; or that

136 Mifcellanea Curiofa.

he ftands in a wrong place, to receive the refle: cted Sound, which paffes over his head, under his Feet, or to one fide of him ; which therefore may be heard by a Man ftanding in that place, where the reffected Sound will come, provided no interpos'd Body does intercept it ; but not by hin, that firft made it.

I fhall further make out the comparifon 'twixt Reflex'd Vifion and Audition, by thefe following Propofitions.

1. As a Plain Speculum reflects the object in its due Dimenfions and Colours; allowing for their difference of appearance, according to their diftance: So a Plane Corpus Obfans reflects the Sound back in its due Tone and Loudness ; if allowance be likewife made for the proportionable decreafe of the Sound, according to its diAtance.
2. As a Convex Speculum reflects the Object lefs, but fomewhat brighter or clearer: So a Convex Corpus obfans repels the Sound (infenfibly) fmaller; but fomewhat quicker (though weaker) than otherwife it would be.
3. As a Concave Speculum reflects the Object bigger, more obfcure and Inverted: So a Concave Corpus Obfans ecchoes back the Sound (infenfibly) bigger, flower (though Aronger) and alfo inverted; but never according to the order of Words. Nor do I think it poflible for the Art of Man to contrive a Single Eccho, that fhall invert the Sound, and repeat backwards ; becaufe then the Words laft poken, that is, which do laft occur to the Corpus Obfans; muft firt be repell'd ; which cannot be \because For where, in the mean time, fhould the firt Words hang, and be conceal'd, or lie dormant? Or how, after fuch a paưfe, be reviv'd and animated again

Mifcellanea Curiofa. 137

into Motion? Yet in complicated or Compound Ecchoes, where many receive from one another, I know not whether fomething that way may nos be done.

From the determinate Concavity or Archednefs of thefe reflecting Bodies, it comes to pafo, that fome of them, from a certain diftance or poffture, will eccho back but one determinate Note, and from no other place will they reverberate any; becaufe of the undue Pofition of the founding Body. Such an one (as I remember) is the Vault in Merton College in Oxford.
4. As a Syeculum takes in and reflects more of its Object, when plac'd at a great diffance from it, than when nearer ; becaule it reflects according to the apparent Magnitude of the Body at fuch a diftance, which is lefs: So alfo the Ecchoing Body, being remov'd farther off, reflects more of the Sound, than when nearer. And this is the reafon, why fome Ecchoes repeat but one Syllable, fome one Word, and fome many.
5. As specula's may be fo plac'd, that reflecting one upon or into the other, either directly or obliquely, one Object fhall appear many ; as in Sir Samuel Moreland's Glafs-room : After the fame manner Ecchoing Bodies may be fo contriv'd and plac'd, as that reflecting the Sound from one to the other, either directly and mutually, or obliquely and by Succeffion, out of one Sound fhall many Ecchoes be begotten; which in the firt cafe will be all together, and fomewhat involv'd or fwallow'd up of each other, and thereby confus'd (as a Face in Looking-glaffes obverted) in the other they will be diftinct, feparate, and fucceeding one another ; as moft multiple Ecchoes do.

13^{8} Miferlanea Guriofa.

Moreover a Multiple Eccho may be made, by fo placing the Ecchoing Bodies, at unequal diftances, that they reflect all one way, and not one on the other ; by which means a manifold fucceffive Sound will be heard (not without eftonifhment) one Clap of the hands like many, one Ha, like a laughter, one fingle Word like many of the fame Tone and Accent, and fo one Viol like many of the fame kind imitating each other.

Furthermore, as Specula's may be fo order'd, that by Reflection they fhall make one fingle thing appear many different things; as one fingle Man to feem many Men, differing as to Shape and Complexion (or a company of Men) which I think Sir Samuel Moreland's Contrivance does not : So may Ecchoing Bodies alfo be order'd, that from any one Sound given, they fhall produce many Ecchoes, different both as to their Tone and Intenfion. (The ground whereof has elfewhere been laid down in a Treatife concerning the Sympathy of Lute-jfrings.)

By this means a Mufical Room may be fo contriv'd, that not only one Inftrument, play'd on in it fhall feem many of the fame fort and fize; but even a Confort of (fomewhat) different ones; only by placing certain Ecchoing Bodies fo, as that any Note (play'd) fhall be return'd by the m in $z^{d s}, 5 t b s$, and 8 ths, which is poffible to be done otherwife than was mention'd before in Refracted Audition.

I have now done with my Comparifon of the two Nobleft Senfes, and Seiences, as to their Improvements; wherein I have been thus large, that I might give you a little profpect into the Excellency and Ulefulnefs of Acoufticks; and that thereby I might excite all that hear me, to bend their

Mijfellanea Curiofa.

their Thoughts towards the making of Experiments for the compleating this (yet very imperfect, tho noble) Science ; a Specimen whereof I will give you in three Problems, and then prefent you with the Semiplane of an Acouftick or Phonical Sphere, as an Attempt to explicate the great Principle in this Science, which is The Progrefion of Sounds.

The Problems are thefe:

1: Sonum intendere quoufque velis; or, Datiom fonum ad datum gradum intendere.
2. Sonum extendere quoufque velis; or, Datum fonum ad datum difantiam extendere feu propagare.
3. Sonum tranfire ab extremo ad extremum © non per Medium.

1. The firt is, To make the leaft Sound (by the help of Inftruments) as loud as the greateft; a whifper to become as loud as the fhot of a Cannon.

By the help of this Probtem, the moft minute Sounds in Nature may be clearly and diftinctly heard.
2. The fecond is, To propagate any (the leaft) Sound to the greateft diftance.

By the help hereof any Sound may be conyey'd to any, and therefore heard at any diftance, (I mult add, within a certain, tho' very large Sphere.)

Moreover, by this means, a Weatber-cock may be fo contriv'd, as that with an ordinary blaft of Wind it fhall cry (or whifte) loud enough to be heard many Leagues: Which happily may be found of fome ufe, not only for P_{i-}

140 Mifcellanea Curiofa.

lots in mighty tempeftuous Weather, when light Houfes are render'd almoft ufelefs; but alfo for the meafuring the ftrength of Winds, if allowance be made for their different moifture. For 1 conceive, that the more dry any Wind is, the louder it will whifle cateris paribus; I fay, cateris paribus, becaufe, befide the ftrength and drynefs of Winds or Breat , there are a great many other things (hereafter to be confidered) that concur to the increafe or magnifying of Sounds, begotten by them in an Inftrument expofed to their Violence, or blown into.
3. The third Problem, is, That a Sound may be convey'd from one extreme to the other (or from one diftant place to another) So as not to be heard in the middle.

By the help of this Problem a Man may talk to his Friend at a very confiderable diftance, fo that thofe in the middle fpace fhall hear nothing of what paffed betwixt them.

FIG. V. TAB. III.

Semiplanum Sphere Phonice Seu Acouftica.

You are to conceive that (rude) Semiplane, as parallel to the Horizon : For if it be perpendicular thereunto, I fuppofe the upper extremity will be no longer Circular, but Hyperbolical, and the lower part of it fuited to a greater Circle of the Earth. So that the whole Phonical Sphere (if I may fo call it) will be a folid Hyperbola, ftanding upon a Concave spherical Bafe. I fpeak this concerning Sounds made (as ufually they are) nigh the Earth,

Mifcellanea Curiofa. 141

Earth, and whofe Sonorous Medium has a free paffage every way. For if they are generated high in the Air, or directed one way, the cafe will be different; which is partly defign'd in the inequality of that Draught.

A Difcourfe concerning the Modern

 Theory of Generation, by Dr. George Garden of Aberdeen, being part of a Letter to Dr. William Mufgrave, L. L. D. Reg. Soc. S. and by bin communicated the Royal Society.TH E Subject I pitch upon, is that of the Formation of Animals, You know how wide and unfatisfying Men's Conjectures were upon this Head, until this Age, in which firt the defervedly Famous Dr. Harvey difovered the proper place of the Formation of the Chick in the Cicatricula of the Egg, and the Formation of the Parts fo far as was difcernable by the naked Eye; and after him Malpigbius, by the help of exact Glaffes, obferv'd the firt Rudiments of it there, both before and after Incubation : And R. de Graef, and others, having upon many Obfervations concluded, that the Tefecs Faminei were the Ovaries of Females, and confequently that all Animals were ex.0vo; they began from hence to infer, that the Rudiments of each Animal were originally in the refpective Females, and that the Male contributed only to give a new Ferment to the Mafs of the Blood and Spirits, by which means a Cpirituous Li quor (which the Blood in its ordinary Ferment could not produce) did infinuate it felf into

Mifcellanea Curiofa.

the fame Ducts and Pores of the Rudiments of thofe Animals, which were in greateft forwardnefs in the Ovary, and fo extend and enlarge all their Parts, and at laft bring them to perfection, as Mr. Perrault does ingenioufly difcourfe in the third Part of his Efais de Pbyfique; till now at laft Leomenboek has difcover'd an infinite number of Animalcula in femine marium of all kinds, which has made him condemn the former Opinions about the Propagation of all Animals ex Ovo.

Now upon comparing the Obfervations and Difcoveries which have been made with one another, thefe three things feem to me very probable. 1. That Animals are ex Animalculo. 2. That thefe Animalcles are originally in femine Marium © non in Faminis. 3. That they can never come forward, nor be formed into Animals of the refpective kind, without the Ova in Faminis.

The firft of thefe feems probable from thefe three Obfervations. I. That fome fuch thing has been fo often obferv'd by Malpighius, in the Cicatricula of an Egg before Incubation, as the Rudiments of an Animal in the fhape of a Tadpole, as may be feen in his firft, and in his repeated Obfervations de formatione Pulli in Ovo. 2. The fudden appearance and diflaying of all the Parts after Incubation, makes it probable, that they are not then actually formed out of a fluid, but that the Stamina of them have been formerly there exiftent, and are now expanded. The firf Part of the Chick which is difcovered with the naked Eye, is, you know, the Punctum Saliens, and that not till three days and nights of Incubation be paft ; and then, on the

144 Mifcellanea Curiofa.

the fifth day, the Rudiments of the Head and Body do appear. This made Dr. Harvey conclude, that the-Blood had a being before any other Part of the Body ; and that from it, all the Organs of the Fatus were both form'd and nourifhed : But by Malpighius's Obfervations we find that the Parts are then only fo far extended, as to be made vifible to the naked Eye, and that they were actually exiftent before, and difcernable by Glaffes. After an Incubation of thirty hours, are to be feen the Head, the Eyes, and the Carina with the Vertebre, diftinct, and the Heart. After forty hours its Pulfe is vifible, and all the other Parts more dittinct, which cannot be difcerned by the naked Eye before the beginning of the fifth day; from whence it feems probable, that even the fo early difcovery of thofe Parts of the Fatus by the Microfcope, is not the difcerning of Parts newly formed, but only more dilated and extended by receiving of Nutriment from the Colliquamentum; fo that they feem all to have been actually exiftent before the Incubation of the Hen. And what $S_{\text {wammerdam }}$ has difcovered in the tranfformation of Infects, gives no fmall light to this; whilit he makes appear in the Explanation of the $13^{\text {th }}$ Table of the General Hiftory of Infects, that in thofe large Eruca's which feed upon Cabbage, if they be taken about the time they retire to be transformed into Aurelia's, and plung'd often in warm Water to make a Rupture of the outer Skin, you will difcern through the tranfparency of their fecond Membrane, all the Parts of the Butterfly, the Trunk, Wings, Feelers, छc. folded up. But that after the Eruca is chang'd into an Aurelia, none of thefe Parts can be difcern'd, they are fo drencht

Mifcellanea Curiofa.

drencht with moifture, tho' they be there actually form'd. Another Confideration is from the Analogy, which we may fuppofe between Plants. and Animals. All Vegetables we do fee proceed ex Plantula, the Seeds of Vegetables being nothing elfe but little Plants of the fame kind folded up in Coats and Membranes ; and from hence we may probably conjecture, that fo curioufly an organized Creature as an Animal, is not the fudden Product of a Fluid or Colliquamentum, but does much rather proceed from an Animalcle of the fame kind, and has all its little Members folded up according to their feveral Joints and Plicatures, which are afterwards enlarged and diftended, as we fee in Plants. Now tho' this Confideration alone may feem not to bear much weight; yet being join'd to the two former, they do mutually ftrengthen each other. And indeed all the Laws of Mon tion, which are as yet difcovered, can give bu a very lame account of the forming of a Plant or Animal. We fee how wretchedly Des Cartes came off when he began to apply them to this Subject ; they are formed by Laws yet unknown to Mankind; and it feems molt probable, that the Stamina of all the Plants and Animals that have been, or ever thall be in the World, have been form'd, ab Origine Mundi, by the Almighty Greator within the firft of each relpective kind. And he who confiders the Nature of Vifion, that it does not give us the true magnitude, but the proportion of things; and that what feems to our naked Eye but a Point, may truly be made up of as many Parts as feem to us to be in the whole vifible World, will not think this an abfurd or impoffible thing.

146 Mifcellanea Curiofa.

But the fecond thing which later Difcoveries have made probable, is, that thefe Animalcles are originally in Semine Marium EJ non in Fominis. And this I collect from thefe Confiderations: 1. That there are innumerable Animalcula difcover'd in Semine Mafculo omnium Animalium. Mr. Leemenhoock has made this fo evident by fo many Obfervations, that I do not in the leaft queftion the truth of the thing. The reaton of their Multitude, and fome of the Difficulties which arife thereupon, he has cleared to very good Purpofe, fo that I fhall not repeat them. 2. The obferving the Rudiments of the Fatus in Eggs, which have been fecundated by the Male, and the feeing no fuch thing in thofe which are not fecundated, as appears from Malpighius his Obfervations, make it very probable that thefe Rudiments proceed originally from the Male, and not from the Female. 3. The refemblance between the Rudiments of the Fatus in Ovo, both before and after Incubation, and the Animalcle, makes it very probable, that they are one and the fame. The fame Shape and Figure which Mr. Leewenboeck. gives us of the Animalcle, Malpighius likewife gives of the Rudiments : of the Fetus, both before and after Incubation; yea, and even the Fexus's, of Animals do appear fo at firft to the naded Eye, fo that Dr. Harvey does acknowfedge that all Animals, even the moft perfect, are begotten of a Worm, De Gen. Anim. Ex. 18. 4. This gives a rational account of many Fatus's at one Birth, efpecially that of the Countefs of Holland, and how at leaft a whole Clufter of Eggs. in a Hen are fecundated by one Coirion of the Male. 5. This gives a new light, as it were, to the firft Prophecy concerning the

Mifcellanea Curiofa.

Meffiab, that the Seed of the Woman fhall bruife the Head of the Serpent, all the reft of Mankind being thus moft properly and truly the Seed of the Man. 6. The Analogy I have already mentioned, which we may rationally fuppofe between the manner of the propagation of Plants and Animals, does likewife make this probable. Every Herb and Tree bears its Seed after its kind; which Seed is nothing elfe but a little Plant of the fame kind, which being thrown into the Earch, as into its Vterus, fpreads forth its Roots, and receives its Nourifhment, but has its form within its felf, and we may rationally conjecture fomce fuch Analogy in the Propagation of Animals.

- The third Particular which later Difcoveries make probable, is, that Animals cannot be formed of thefe Animalcula without the Ova in fominis, which are neceffary for fupplying of them with proper Nutriment: And this thefe Confiderations feem to evince. I. It is probable that an Animalcle cannot come forward, if it do not fall into a proper Nidus. This we fee is the Cicatricula in Eggs; and tho' a Million of them fhould fall into an Egg, none of them would come forward, but what were in the Center of the Cicatricula; and perbaps the Ni dus neceffary for their formation is fo proportion'd to their bulk, that it can hardly contain more than one Animalcle; and this may be the reafon why there are fo few Monfters. This we fee is abfolutely neceffary in Oviparis; and the only difference which feems to be between them and the Vivipara, in this matter, is in this, that in the latter the Ova are properly nothing more but the Cicatricula, with its Colliquamentum, fo that the Fatus muft fpread forth

14^{8} Mifcellanea Curiafa.

its Roots into the vterus to receive its nourihn-: ment; but the Eggs in Oviparis may be properly ternid an Vterus, in relation to the Fetus; for they contain not only the Cicatricula, with its Amnion and the Colliquamentum, which is the immediate nourifhment of the Fextus, but alfo the materials which are to be converted into that Colliquamentum ; fo that the Fextus fpreads forth its Roots no farther than into the Whice and Yolk of the Egg, from whence it derives all its nourifhment. Now that an Animalcle cannot come forward without fome fuch proper Nidus, Mr. Leewenhoock will not readily deny; for if there were nothing needful, but their bcing thrown into the $V_{\text {terus }}^{b}$, I do not fee why many hundreds of them fhould not come forward at once ; for as to what Mr. Leewerbbock fays, that one of them would be-dwarf and choak the reft ; this might fall out in procefs of time: But at firt I do not fee why many of them fhould not grow together, whilff fcatter'd in fo large a Field (and yet no fuch thing is obferved) if there were not an abfalute neceffity of a Cicatricula for their growh and thriving. Now, 2. That this Cicatricula is not originally in v tero, feems evident from the frequent Conceptions which have been found extra Uterum : Such as the Child which continued Twenty fix Years in the Woman of Thalouffe's Belly, mention'd Numb. 139. of the Pbilof. Tranf. And the little Fatus found in the Abdomen de St. Mere, together with the Tefticle torn and full of cloted Blood, recorded Numb. 150. both taken out of the Journals des Savans: Such alfo feem to be the Fatus in the Abdomen of the Woman of Copenbagen, mention'd in the Nouvelles des Lettres, for Septo 85. pag. 996. all
the Members of which were eafily to be felt through the Skin of the Belly, and which fhe had carried in her Belly for four Years ; and the feven Years Gravidation, related by Dr. Cole, Numb. I72. of the Tranfact. That thefe two were undoubtedly extra Vterum, is uncertain, becaufe the laft was not open'd after her death, and the former may be yet ftill alive. Now granting once the necellity of a proper Nidus, for the formation of an Animalcle into the Anir mal of its refpective kind ; thefe Obfervations make it probable, that the Teffes are the Ovaria appropriated for this ufe; for tho' the Animalcles coming thither in fuch Cafes may feem to be extraordinary, and that ufually the Impregnation is in Vtero ; yet it may be collected from hence, that the Cicatriculce or Ova to be impregnated, are in Teftibus fomineis; for if it were not fo, the accidental coming of Animalcles thither could not make them come forward more than in any other part of the Body, fince they cannot be formed and nourifhed without a proper Nidus. But 3. It is acknowledg'd by all, that the Fatus in Vecro, for fome confrderable time after Conception, has no connexion with the Womb, that it fits wholly loofe to it, and is perfectly a little round Egg with the Fatus in the midft, which fends forth its Umbilical Veffels by degrees, and at laft lays hold on the Uterus. Now from hence it feems evident, that the Cicatricula, which is the Fountain of the Animaleles nourihment, does not fprout from the $v_{t e r u s,}$ but has its Origin elfewhere, and falls in thither as into a fit Soil, from whence it may draw Natriment for the growth of the Fextus, elfe it cannot be eafily imagin'd, how it fhould not have an immediate

Connexion

150 Mifcellanea Curiofa.

Connexion with the $v_{\text {terus }}$ from the time of Conception. If you join all thefe three Conf1derations together, viz. that an Animalcle cannot come forward without a proper Nidus or Cicatricula; that there have been frequent Fetus's extra Uterum; and that they have no Adbefion to the $V_{\text {terus, }}$ for a confiderable time after Conception, they feem to make it evident, that Animals cannot be form'd ex Animalculis without the Ova in Faminis. To all thefe I fhall fubjoin the Propofal of an Experimentum Crucis, which may feem to determine, whether the Teffes Fcominea be truly the Ovaria, viz. Open the $A b$ domen of the Females of fome kinds, and cut out thefe Tefticles, and this will determine, whether they be abfolutely neceffary for the formation of Animals.

There are fome Difficulties propofed againft this Conjecture, which I think may be eafily refolved. Some object the diftance between the Tube or Cornua Vteri, and the Tefticles; but to this is oppofed by Swammerdam, and others, the like diftance between the Infundibulum, in Hens and Frogs, and the Ovary; and yet it cannot be denied that the Eggs are tranfmitted thro' this into the Uterus: And befides R. de Graef, and others, have by repeated Obfervations found that the Cornua $V_{t e r i}$ do at certain times after Conception, embrace the Teffes on both fides the v. terus. They object in the fecond place the great difproportion between the pretended Eggs in the Ovary; and the Aperture of the Tuba or Cornua vteri, the former being a great deal bigger than the latter : But both Rede Graef and Malpighius have clear'd that Matter, by making appear, that thefe Bladders in the Ovary are not the Ova, but ferve to form the Glandules within

Mifcellanea Curiofa.

within which the Ova are formed, which break through a fmall Papilla opening in the Glandule, which bears a proportion to the Aperture of the Tube. They object 3, The difficulty to conceive how thefe Eggs fhould be impregnated per femen Maris, both becaufe there is no Connexion between the Tube and the Ovaiy for its. tranfmiffion, and for that Dr. Harvey could never difcover any thing of it in Vtero. As to the laft, Mr. Lecmenhoeck has cleared that difficulty, by the difcovery of innumerable Animalcula Seminis Maris in Cornubus Vteri, and thofe living a confiderable time after Coition. Numb. 174. of the Tianfact. And as to the former, we may either fuppofe that there is fuch an Inflation of the Tubie or Cornua Vteri tempore Coitionss, as makes them enbrace the Ovaria, and fuch an approach of the Uterus and its Cornua, as that I may eafily tranfmit the Seed into the Ovary; or elfe, that the Ova are impregnated by the Animalcles after they defcend into the Uterus, and not in the Ovary; the former leems probable for this Reafon, that at leaft a whole Clufter of Eggs in a Hen will be fecundated by one Tread of the Cock: Now this Fecundation Ceems to be in the Vitellary, and not in the Uterus, as the Eggs pafs along frum day to day; for it can hardly be fuppofed that the Animalcles fhould fubfili fo long, being fcattered loofely in the Vterus, as to wait there for many days for the Fecundation of the Eggs as they pafs along. The latter Conjecture has this to Atrengthen it, that the Animalcles are found to live a confiderable time in the Tterus; and that if they fhould impregnate the $0 v a$ in the Ovary it felf, the Fatus would increafe fo faft, that the O va could not pafs through the Tubia U teri,

$$
\text { L. } 4
$$

152 Mifcellanea Curiofa.

but would either burft the Ovary, or fall down into the Abdomen from the Crifices of the Tube; and that from hence proceed thofe extraordinary Conceptions in Abdomine extra $V_{\text {terum. }}$ But, 4. Mr. Leeweboeck, Numb. 147. of the Tranfat. to weaken the third Confideration about the Conceptions, being like unto an Ovum in the Womb, propofes a Parallel between thefe Animalcules and Infects; and infinuates, that as the latter caft their Skins, and appear of another Shape, fo the other which at firft feem like Tadpoles, may caft their outer Skin, and then be round; and that this may be the occafion of the round Figure of the Conception in the Womb. To this it may be replied, that according to Mr. Leewenboeck's own Sentiment, the Animalcles cannot come forward, if they do not find the Punitum or proper place for their Nourifhment, to which it feems they muft have fome Adbafion. Now the Conception in Viviparis is not faftned unto the Womb for many days, nor does adhere to any point of it ; 10 that it feems this roundifh Body is not the Animalcle thus chang'd after having caft an outer Skin, but is rather the Cicatricula or little Egg, into which the Animalcle has entred as its Pun¿九um or place or nourifhment; elfe I do not fee why they fhould not be adhering to the Womb from the firft Conception, or why (as I have faid) many hundreds of them are not conceiv'd and formed together, छ๘c.

Mifcellanea Curiofa.

A Sourt Difcourfe concerning Con-

 coction: Read at a Meeting of the Royal Society, May ... 1699, by Clopton Havers, M. D. Fellow of the Royal Society.THE manner in which the Digeltion of the Aliment is performed, is a thing not very eafie to be undertood and explained. However, it has not efcap'd the Conjectures of fome Philofophical Men, who having curioufly obferv'd the Phenomena of Nature, and enquired into their Caufes, have, amongit other things, endeavour'd to account for this. But their Sentiments about it have been various, and the Hypothefis, by which they have ftudied to explain it, very different. Some have thought the Concoction of the Food to be a kind of Elixation ; and that the groffer and more folid Parts being, as it were, boil'd in the Liquid by the Hear of the Stomach, and the Parts adjacent to it, as the Liver, Spleen, and Omentum, are by a long and continued Elixation, firt render'd more tender, and then colliquated, and diffolved into minuter Particles, fo as to mix more equally with the Fluid, and with that to make one Pulpament, or chylous Mafs. And Hippocrates, tho he does not plainly call it an Elixation, yet feems to attribute the Concoction of the Food to the Heat of the Stomach, ys the Caufe of it, Sect. 4. Libro de falubri vitus.

154 Mifcellanea Curiofa.

ratione. So where he takes notice of the voiding of fuch Freces, as appear to be like the Food that has been eaten; he adds, Confat enim, fane ventriculum, cibcrum copiam, ut concoquat, calefacere non poffe. And there are other Paffages in the fame Book, from which we may conclude, that he fuppos'd the Heat of the Stomach to be the great Caufe of the Digeftion of the Food.

There are others that make the Stomach it= felf to be the great Inftrument of Digeftion, but in a different manneer: And they fuppofe it to be perform'd by an Attrition, as if the Stomach, by thofe repeated Motions, which are the neceffary Effects of Refpiration, when it is diftended by the Aliment, did both rub or grind off fome minuter. Particles from the groffer Parts; and by continually agitating the Mafs of Food, make thofe Parts, which are not contiguous to the Stomach, ftrike one againt another, and break one another in pieces, until they are all attenuated. It is evident enough, that the fides of the Stomach do in Expiration prefs upon the Contenta, fo as to oblige, at lealt fome Parts of them, every time the Mufcles of the Abdomen are contracted, to move and Thift their places. So in Infpiration, when the Diaphragm and Liver prefs upon the upper part of the Stomach, the Aliment muft be moved again. So that by thefe reciprocal Motions, thats part of the Food which is contiguous to the Stomach, and moves in a Line parallel to it, muft rub againft it ; and all the other Parts being moved by fuch a Compreffion, as gives them a different Tendency, it is certain they muft be continually friking one againft another. And for Bread, and fuch things as are made of Flower,
that will be foftned and diffolv'd with any. common Liquid, that Agitation of the Stomach which moves them in Refpiration, might feemfufficient to break and diffolve them, when they are fufficiently moiften'd with a Fluid. Yet this cannot be thought enough to break and digeft Flefh-meat, Fruits, or any other thing that will not be foftned and diffolv'd in Water, or fome fuch Liquid. But although this Motion of the Aliment, caufed by Refpiration, does not actually digef it, yet it has a great and neceffary ufe in Concoction, and makes all the groffer Parts, as they are attenuated, mix equally with the Fluid.

Some think that the Bilious Juice; others, that the Spirits are chiefly concern'd in this Affair. Galen, in his Book de Neutralibus Facultatibus, makes it to be the Effect, not of one, but of feveral Caufes; as a pituitous Juice in the Stomach, the Bile, Ecc. which appears from what he has faid, and the Tranflator thus render'd: 'Verum ' quanto ii (cibi) qui manfi funt, isis, qui inbafe-- runt, magis Junt alterati; tanto etiam bis magis ' ii, gui devorati Junt. Siquidem incomparabilis © erit horum alterationis exceffus, f_{i} E̛ que in ven! tre ef Pituita © Bilis, © Spiritus, छ Calor, छ © tota Ventris Jubfantia, afimentur.

Some there are that will have the Food to be diffolv'd by a Menftruum, which is fupply'd from the Glands of the Stomach, or fome other way: But thofe that do fo far agree in the Ge neral, as to think Concoction is perform'd by a Diffolvent, do differ in their Notions of the Nature of the Menfruum : For there are fome that fuppofe it to be an Acid, which does erode the groffer parts of the Food, and diffolves them in the fame manner as Vinegar, Spirit of Vi triol,

i 56 Mifeellanea Curiofa.

triol, or any fuch-like Acid, will diffolve even fo folid a Body as Iron. And it cannot be deny'd, but that Oil of Vitriol will diffolve Flefhmeat, and reduce it to a Pulp; but it is not to be fuppos'd, that the Fibres of the Stomach can admit any fuch ftrong and corroding Acid, without fomething to correct it, but it muft be injur'd in its Tone, and labour under great and extraordinary Pains. Neither does fuch a Menftruum, tho' it will digeft fome things, feem capable of diffolving fo great a Variety of Things as we eat, efpecially when a great many of them are of a contrary Nature. Some will have the Menftruum to be a nitro-aerius Spirit, that is, quick, and very penetrating, and included in its proper Vehicle; which, being in its own Nature apt to penetrate the Mafs of the Aliment, does diffure it felf through the Whole, and breaking the Vinculum of the more folid Parts, does diffluve their Compages. By others, it is thought to be fome faline Juice in the Stomach, by which the Parts of the Aliment are divided and diffolved, and thofe which are fit for Nourifhment, are volatiliz'd.

Lafly, There are fome others who reject the Opinions I have already mention'd, and fuppofe the Digeftion of the Food to be perform'd by the Benefit of a Ferment ; which, when it is mixed with the Aliment, excites in the Mafs an inteftine motion ; and the different and conqrary motions and tendency of the Parts, making fome kind of Collifion, gradually break off Particles from the groffer, and more folid Parts, till they are fo attenuared as to be apt to mix more equally with the Fluid, and with them to make one foft or chylous Subftance. But yet there is not amongit them an univerfal Con-

Mifcellanea Guriofa.

fent, either about the Nature of this Ferment, or the manner how it is fupply'd. For firf, fome think it to be the Remains of the Food that was lait digefted; which having lain fome time in the Stomach, after the reft is carried down into the Inteftines, contracts an Acid, or fome other Quality, and is fo alter'd, as to partake of the Nature of a Leaven. And this Leaven being a part of the Food, which has been already digefted, is fo foft and liquid as to be capable of mixing with the Aliment; which is next taken into the Stomach; and being agitated with it by the repeated Preffures of the Diaphragm, Liver, and Abdominal Mufcles upon the Stomach in Refpiration, does diffufe it felf through the whole Mafs ; and being mixed with it, like Leaven, or Yeft added to new Wort, छc. puts it into a State of Fermentation; and by this Fermentation, or the Expanfion of the Ferment, and the more tenuious Parts, which are firft put into motion by it, thofe which are more folid, and with which they are intermixed, are rent, and divided, and fo attenuated, as to become a foft and pulpous matter. And altho the greatelt part of the Food, that is thus broken and concocted, is by the Contraction of the Fibres of the Stomach prefs'd into the Duodenum ; yet they do not contract themfelves fo as to force out all the Aliment, but leave between the Ruge or Folds, on the inflide of the Stomach, a fufficient Quantity to be a Leaven to the next Meal; and fo from time to time.

Some have a Notion, That this Ferment, or Principle of Fermentation, is in the Aliment is felf; which being a Congeries of Matter, confifting of various Parts of a different Nature,

158 Mifcellanea Curiofa.

is no fooner enclofed in the Stomach, and digefted in the Heat of that, and the adjacent Parts, but the more firituous and fubtil Particles are put into motion both from that Warmth, and the difference of their Natures, and enter upon a Fermentation. And fo by their inteftine Commotion, and the Violence they offer to thofe Parts which oppofe the tendency of any of them, they break and diffolve what is more folid.

Again :- Some fuppofe, that this Ferment is fupply'd from the Glands of the Stomach.

And Laftly, Others, and perhaps with much better Reafon, contend for the Saliva, and make that to be the Ferment, which ferves principally for the Digeftion of the Food ; which in Maftication being mix'd with our Aliment, is with that carried down into the Stomach, where the Parts of it being put into motion by a kindly and agreeable Heat, they do ferment with, and exagitate firft thofe Parts of the Food which are moft apt to ferment with it, and then both confpire to break and diffolve the groffer and more ftubborn Parts. And Galen, in the Book I have before-mention'd, plainly allows that the Saliva is concern'd in the bufinefs of Concoction, tho' he fuppofes the Alteration, which is produc'd by this Juice, to be made in the Mouth, as appears from thefe Words: Que (alteratio) in ore agitur mutat quidem id (nutrimentum) in alteram /peciem manifefle, non tamen ad perfectionem tranfmutat Qui manfi funt cibi primum quidem bac Pituita (oris) imbuunter, छ' cum ea mifcentur Itaque majorem mutationem confecuti funt, quam ii, qui in vacuis dentium intervallis fuere impaiti.

Now

Mijcellanea Curiofa.

Now I have given this fhort Account of the various Opinions of fome Ingenious Men, concerning the manner how Concoction is perform'd; I come now to propofe my own Hypothefis, by which 1 fhall endeavour to explain it.

In order to the more eafie and effectual Di_{i} geftion of the Food, Nature has appointed fome Parts for the breaking our Aliment, and reducing whatever is grofs into fmaller Parts, before it is put upon Digettion: Others to fupply the Ferment, by which it is to be diffolv'd and concocted, and which, before it comes to be included in the Stomach, does moitten, and make it more foft, that it may more eafily be penetrated, and broken by thofe Parts which ferve to divide every Morfel into fmaller Pieces, and prevents the Inconvenience and Trouble which would arife from the Nourifhment fticking about or between them, when it is dry or vifcous.

For the breaking of that part of our Food, which is not liquid, Nature has furnifh'd us with Teeth, and thofe of two forts: For fome are ordain'd to divide and break off fmaller Morfels from a larger Mafs; others are made for the grinding thofe Morfels into much fmaller parts. The Teeth, which ferve to break of Pieces of a convenient Magnitude from a larger Mafs, are of two forts, accommodated to the Nature of the Subftarice which we eat. Thele are the Incifores, and the Dentes Canini. If the Subftance, which we have to eat, be not hard, but more eafily penetrated and divided, then the Incijores are capable of making an Impreffion upon it, and fix'd firmly enough in the accit

160 Mifcellanea Curiofa.

Jaws to break off that part which they take hold of. But if it be more folid, and not eaf1ly penetrated, nor any Piece without difficulty to be feparated from that Body, whereof it is a part ; then we apply the Dentes Canini, or EyeTeeth, to it, which are not fpread, nor have fuch an edge as the Incifores, but are fharp and pointed like an Awl, and fo do more readily penetrate a Subftance that is hard, and which the Incifores can fcarcely make any Impreffion upon. And as the Farts of a more folid Body are commonly with more difficulty feparated, and there mult be a greater ftrefs put upon thofe Teeth which pull it into pieces ; fo thefe Teeth are much more firmly fixed in the Jaws than the Incifores, tho' they bave but one fingle Root. Befides, the Pofition of all thefe Teeth is accommodated to their ufe, as being planted oppofite to the Apperture of the Mouth; To that they may be conveniently apply'd to the Subftance which we have to eat, before it is broken, and when it is too large to be admitted within the Mouth.

The Teeth which do by a Compreffion and Attritition reduce the little Moreels to fmaller Parts, are from the manner in which they break the Aliment, called Dentes Molares, becaufe they do, like fo many Mill-ftones, grind the Food between them. And that they might be render'd fit for this purpofe, they are made broad at that Extremity, which tands out of the Gums, by which means they retain fome Quantity of the Food between them every time the lower Jaw is pulled up and forc'd againf the Maxilla fuperior. And as they are broad, fo they are formed with Inequalities and Protuberances ; and by the motion of the lower Jaw,

Mifcellanea Curiofa.

from one fide towards the other, they grind what they have between them into pieces. The Pofition of thefe Teeth too is as conveninent as that-of the Incifores, and the Dentes Canini: For being defign'd to break thofe pieces of our folid Food, which are taken into the Mouth, and thefe pieces, when they are comprefs'd, and mov'd by the Dentes Mo: lares, being apt to fly out of the Mouth, if there were no Contrivance to prevent it, they are placed beyond the Aperture of the Mouth, and oppofite to the Cheeks, which keep the Food within that Cavity, and not only fa, but prefs it in between the Dentes Molares on one fide, as the Tongue does on the other, until they have fufficiently broken and divided it.

At the fame time, whillt the Dentes Molares are breaking the Food, there flows into the Mouth a Salival Juice, which mixes with it, and not only ferves to moiften it, and to render it more apt and eafie to be divided, but feems to be the Ferment, by the Benefit of which the Food is diffolved and digefted. And therefore it is intimately mixed with it, by the Teeth agitating or ftirring them together in Maftication.

This Liquor, which we commonly call the Saliva, or Spittle, feems to be a Compofition made of two feveral Juices, very different in their Nature : And therefore the feveral Parts of it are féparated by their proper Glands, and Nature has planted no fewer than four Pair about the Mouth, which fupply the Juices that make the Saliva; to wit, the Parotides, and the Glandula Nuckiana, the M

Glandule

162 Mifcellanea Curiofa:

Glandule Maxillares interna, and Sublinguales. Whereas if the Saliva were but one more fimple Liquar, a lefs number of Glands might have been fufficient. At leaft there appears no Reafon why one of every Pair fhould difembogue itfelf into the Mouth fo very near to the Orifice, by which a Gland of fome other Pair throws in its Juice ; and they are not rather all planted at more equal diftances from one another, fo to flow in upon every part of the Aliment at the fame time.

Not that I fuppofe, as there are four Pair of falivatory Glands, fo there are four forts of Juices fupply'd from them, to make the Saliva; but, as I hinted before, that there are only two different Juices that conftitute it. And thefe are not only fufficient, but more proper to excite and fecure that Fermentation, which is neceffary to Concoction. For we find that moft of thofe Fermentations, which arife upon Mixtures made for Experiments, are produced from the mixture of two things; and it is not fo eafie to find out three or four fuch Liquors of a differenc Nature, as will, upon the mixtion of them all, produce a Fermentation, and from the omiflion of any one of them difcover no Difcord or Difpofition to ferment : Befjdes, it is certain that two do better fecure the End, which Nature defigns. For, it there were three or fout different Juices, of which the Saliva naturally confifts, thefe mult all have their proper Qualities preferved to them. or elfe the Fermentation, which fhould arife between them, will not neceffarily follow upon their mixture; and it is certain, that there would be more Danger,

Mifcellanea Curiofa.

Danger, that one of three or four fhould be deprived of its Natural Quality, than one of two

What Nature thefe two Juices are of, I do not pretend pofitively to determine ; but to far as I have been able to make my ConjeCtures about it from Experiments, I' do think one of them to be an acid Juice; the other an oleaginous Liquor, fomething like Oil of Turpentine. For amongft the many Experiments I have made, there was no one that gave me fo much Satisfaction, as that which I made with Oil of Turpentine, and Oil of Vitriol, though I try'd feveral other things, that will produce a Fermentation upon their Mixture. And it was for this Reafor, that I made the Experiment with Oil of Turpentine and the other Oil.

1 took a piece of raw Flefh, and having cut it into pieces, but much larger than what our more folid Food is reduc'd to by due Maftication, I mix'd fome Crums of Bread with it, then I pour'd in the Oil of Turpentine to them, and upon that the Oil of Vitriol ; and having fhak'd them together, I digefted them about four Hours in Balneo Maria, and then fhaking them again in the Glafs, I found the Meat diffolv'd, and they all became a thickifh Pulp. I could not but take notice, that Oil of Camphire (though it does not otherwife feem much different in its Nature from Oil of Turpentine) and Oil of Vitriol, which upon mixture will produce an Effervefcence as well as the Oil of Turpentine and Oil of Vitriol, yet did not touch the Mear, upon which I poured them, fo as in the leaft to diffolve them. I

164 Mifcellanea Curiofa.

cannot deny but that an Acid, and a Solution of Salt of Tartar, did diffolve fome part of the Flefh-meat, which I mix'd them with, but yet neither fo foon, nor fo perfectly as the two forementioned Oils. And I do the rather think one of thofe Juices, which conftitute the Saliva, to be of the Nature of Oil of Turpentine, than of a fix'd Salt, becaufe it will correct and temper even Oil of Vitriol, - fo as to render it more tolerable to the Fibres of the Stomach. Not that I fuppofe the acid part of the Saliva to come near to the Acidity of Oil of Virriol. For though, when they are mixd, they will make a Liquor that may not be injurious to the Stomach ; yet the acid Juice, if it were fo corrofive as Oil of Vitriol, would certainly be injurious and 'painful to the Salivatory Ducts, which convey it to the Mouth before it is mix'd with the oleaginous Liquor. But I only fay it is an Acid, and in fome degree approaches to the Nature of that Oil. And Nature, which can much better adapt. feveral Caufes for the Production of fuch an Effect than Art, may attain her End by a more temperate Acid ; though, at the fame time, we may be able to make fome probable and true Conjectures about the Nature of thofe Caufes from Experiments.

It being moft reafonable to fuppofe, that there are but two forts of Juices, of a different Quality, that make the Saliva, I do conceive, that four of the eight Salivatory Glands, or two Pair of the four, do fupply one of thefe Juices, and the other four Glands the other. And this feems to be a very good Reafon, why they are fo planted, and the Orifice of their Ducts

Mícellanea Curiofa. 165

Ducts io order'd, that the Juice, which is fupply'd by one Gland, is difcharg'd into the Mouth, very near to the Orifice, by which the Juice of a different Nature is tranfmitred from another, fo that they mult neceffarily meet and mix together. Thus the Glandulae Nuckianis, and Parotides, throw in two different Juices by Orifices, which open into the Mouth: very near to one another; and the Glandula Maxillares interna, and Sublinguales, do 'below fupply the fame kind of Juices by Orifices, that open fo near to one another as to fecure the mixture of the two different Juices.

There Glands, I fay, do between them afford two divers furts of Liguors, of fuch a Nature as are apt to ferment upon their firft Mixture, but perhaps more confiderably when they come to be digefted by the Heat of the Stomach. So that the Colluctation, or Fermentation, which attenuates and concocts the Food in the Stomach, does not ordinarily arife between the Aliment and the Saliva, but between the feveral Parts of the Saliva it felf. And indeed, if the Saliva did not confift of two Juices, whofe Nature is in fuch a manner different, as to render them apt to ferment upon their mixture, it would be very hard to conceive how it fhould fo readily and indifferently ferve for the Digeftion of all Eatables; how it fhould ferment with, and diffolve fo great a variety of Things, not only of a different; but of a contrary Nature; how it fhould ferment with Acids as well as Alkalies, digeft things that are cold, as well as hot or temperate gi fome things that are falt, others that

166 Mifcellanea Curiofa.

are infipid, bitter and fweet, mucilaginous, oily, Ec. But if we fuppofe, that the Fermentation, which ferves for the Digeftion of the Food, arifes from a peculiar difference in the Nature of two Juices, which conftitute the Saliva, it will be eafie to give a rational Account of our Concoction of innumerable things of a different Nature. And this feems to be as effectual, and a more certain way to attenuate and diffolve the goffer Parts of our Food, than if the Fermentation were made only between the Saliva and the Aliment: Befides, the Saliva feems to difcover a Fermentation upon the mixture of its conflituent Juices, even at thofe times when we do not actually eat ; for it is always attended with Bubbles, and a Froth, when it has not been at all agitated in the Mouth, and many of thofe Bubbles will remain for fome confiderable time after we have fpit it out.

Nature therefore having appointed the Sa liva for the digettion of the Food, has taken care that it fhall be thrown in upon the Aliment on every fide. Thus the Glandula Nuckiana, and the Parotides, fupply their Juices to that part of the Food, which lies on the outfide of the Gums, between the Cheeks and the Teeth, and the Glandula Maxillares interne, and Sublinguales, do beftow their Liquor upon the Meat, which is within the Teeth and Gums. Neither has fhe had a Regard only to that Supply, which is due to all the parts of our Food, but likewife to the mix-: ture of the two different Juices of the Saliva, which is neceffary to its Fermentation. And therefore, as I have already oblerv'd, the O rifices

Mifcellanea Curiofa. 167

rifices of the Ducts, which belong to one fort of Glands, are pliced near the Aperture of a Dua, which conveys a Juice from one of the other Glands. So the Ducts of the Glandule Nuckiana, and the Ductus Stenoniani; do on each fide open into the Mouth, near one, another ; and the falivatory Duits of the Glandula Subline guales, and the Maxillares interne, though they have diftinct Orifices; empry themfelves under the fame Papills; and the Juices, which are fupply'd by them, mees there, and flow into the Mouth together.

The leveral Parts of the Saliva being difcharg'd into the Mouth in fuch a manner as to meet and begin a Fermentation, the Saliva does, partly as it is agitated, with the Food by the Teeth, and fome other parts of the Mouth ; partly by its own Fluidity, infinuate it felf into, and mixes with the Food, and not only moitens and fofrens it, but excites the Fermentation, which is to diffolve it. And when the Aliment is thus mix'd with the Saliva, which ferves to ferment the whole Mals, it is then to be convey'd into the Stomach, that great digeftive Veffel of the Body, where the Fermentation is not only continued, but improved.

The Nourifhment being convey'd into the Cavity of the Stomach, is there kept for fome time in a digeftive Heat, all which time it is under a Fermentation, produc'd by the different Parts or Juices of the Saliva, which are mix'd with it ; which Fermentation dues fift agitate the more tenuious or fubtil parts of the Foad, and puts then into mution, and la with the Fermentation of its own, and thofe

168 Mifcellanea Curiofa.

Alimentatry Parts; which it firf communicates a Motion to, improved by the Heat of the Stomach, the Saliva muft neceffarily act upon the groffer Parts. For the inteftine Motion, which is excited in the Mafs, does not give the Particles, which are fermented, the fame Tendency, but what is fo various and confus'd, that they muft inevitably ftrike not only one againft another, but againft thofe which are more grofs, fo as to attenuate them, fometimes by a Collifion, which ftrikes off fmaller Particles from the larger Parts; fometimes by a Compreffion, when the Particles which are in Motion, happen to ftrike directly againf any groffer Part, on every fide of it, fometimes by a kind of Explofion. For without doubt the Saliva, which is fluid, infinuates it felf in: to the Intertices of the more crafs Parts of. the Aliment, and whatever is agitated and expanded in thofe Interftices, requiring a larger space for the Freedom of its Motion, and offering a Violence to every thing that oppofes its Tendency, will, like Gun-powder included in a Shell, force its way out, and tear to pieces that Matter, which does endeavour to confine it.

Thus the groffer Parts are broken and divided, until they are at laft fo far attenuated as to mix more equally with the Fluid, and with them to make one Pulp or Chylous Mafs. And although I do not apprehend how the Stomach fhould by its reciprocal Motions in Infpiration and Expiration, be able to break and attenuate any Matter, that will not be Cofned and diffolved by Agitation in a Liquid; yet it is certain that thefe Motions, caufed by

Mifeellanea Curiofa. 169

the Diaphragm and Abdominal Mufcles in Refpiration, do make thofe Parts, which are broken off, as they are diffolv'd, mix intimately with the more Liquid; as the Meat which I digefted with Oil of Turpentine, and Oil of Vitriol, did by Agitation mix more equally with the Oils, and became a Pulpament.

As the Juices, which conftitute the Saliva, do ferment upon their mixture, fo it is probable, that from their Mixture and Fermentation there refults fuch a Tertium quid, as is apt to ferment with the Bile. And therefore, when the Aliment has been under the Fermentation, excited by the Saliva, a fufficient time, it is then thrown into the Duodenum, where it-meets with the bilious Juice, which flows into that Inteftine from the Liver, from which a new Fermentation feems to begin; and the Commotion of the Parts of the Aliment being ftill continued, does carry on the Bufinefs of Digeftion until the Food is perfectly concocted : Though it is probable, that this new Fermentation ferves not only for the more perfect Digeftion of the Food, but likewife for the Separation of the Chyle from the féculent Parts.

Neither do I by a random Guefs, and an ungrounded Conjecture, fuppofe that from the Mixture and Fermentation of the two Juices, which conftitute the Saliva, there refults a Matter, which is apt to ferment with the Bible. But to me the Notion feem'd to be confirmed by an Experiment that I made. For confidering with my felf, that the Bile is generally allow'd to have much of a faponary Nature, I made a Solution of Soap in fair Water, and mix'd it with the Oils of Turpentine

1 17o Micellanea Curiofa.
and Virriol firtt put together, and from their Mixture I obferv'd a very eafie and gentle Fermentation, which continued for 2 confiderable time.

A

A Difcourfe concerning fome Influence of Refpiration on the Motion of the Heart, bitberto unobferved. By J. Drake, M. D. F. R. S.

THO' divers accurate Treatifes of the Heart, and its Action, have been writren by Learned Men of feveral Nations, efper' cially by two of our own Country; the Great Dr. Harvey, to whofe happy Sagacity this Nation owes the Glory of the Invention of the Circulation of the Blood; and the incomparable Dr. Lower, to whom we are beholden fora compleat Difplay of the Mechanical Strueature of the Heart, and a moft ingenious Rationale of its. Action. Yet there remain feveral Doubts and Difficulties about it (in my Opinion) not fufficiently accounted for ; towards the refolving fome of which, I thall offer what my own Thoughts have fuggefted to me, and leave it to the Confideration of the Reader.

The Learned Dr. Lower (whofe accurate Piece on this Argument will infure his Reputation fo long as Phyfical Knowledge fhall laft in efteem) has fo well accounted for the $s y$ foles or Contraction of the Heart, from the Mechanical Structure of it, that he feems almoft to have exbaufted the Subject ; and had

172 Mifcellanea Curiofa.

be been as happy in difcovering the true caufe of the Diaftole, he had left little room for the Indultry and Sagacity of others about this V_{i} cus.

But having judicioufly and rolidly explain'd the S yfole, he contents himfelf to alcribe the Diaffole to a motion of Refitution, which account gives me no Satisfaction: Becaule the Syjfote being the proper, and (as himfelf confeffes) the only motion of the Heart, a State of Contraction feems to be the natural State, and confequently without External Violence, it Ghou'd have na Diafole at all.

This will appear more plain, if we confider the Circumftances of it, and its Motion, as a Mufcle, with refpect to other Mufcles. That Contraction is the proper Action, and State of all Mufcles, is evident from Experience of Fact, as well as Reafon. For, if any Mufcle be freed from the power of its Antagonift, it is immediately contraCted, and is not by any Action of the Will, or Spirits, to be reduced to a State of Dilatation. Thus, if the Mufculi Flexores of any Joint be divided, the Extenfores of that Joint being by that means free'd from the contrary Action of their Antagonits, that Joint is immediately extended withour any confent of the Will, and in that State it remains; and fo Vice verfa, if the Extenjores be divided. From whence it is plain, that the Mufcles have no reftitutive Motion, but what they derive from the Action of their Antagonifts, by which they are balanc'd. Thus likewife the Sphincters of the Gula, Anus and Vefica, having no proper Antagonifts, are always in a State of Contraction, and fuffer nothing to pais

Mijcellanea Curiofa.

them, but what is forced through them by the contrary Action of fome ftronger Mulcles, which, though not properly to be call'd Antagonifts, yet on all neceffary Occafions perform the Office of fuch.

That the Heart is a Mufcle, furnifh'd and inftructed for Motion like other Mufcles, is (in my Opinion at leaft) demontrated beyond Contradiction by Dr. Lower and others. And, as it is a Solitary Mufcle without any proper Antagonift, and not directly under the power of the Will, nor exercifing Voluntary Motion, it approaches nearelt to the Sphincter kind, which only bas thefe Conditions in common with it. But in conftant and regular Alternations of Contraction and Dilatation, it differs exceedingly from all the Mufcles of the Body.

This reciprocal Aftus of the Heart has gi 4 ven the Learned abundance of trouble; who, finding nothing peculiar in the Structure, which Thou'd neceffarily occafion it, nor any Antagonif, whofe re-action fhould produce it, have been extreamly perplex'd to find out the caufe of it.

But paffing over the various Opinions of Authors, to avoid being tedious, I fhall take notice here only of the very Learned Dr. Lower's, in whofe Account of the Syfole, however folid and ingenious, 1 obferve fomething deficient, and whofe Hypothefis of the Diaffole I think to be precarious and falfe.

This Excellent Author, having by found Arguments drawn from the Structure and Mechanifm of the Heart, eftablifh'd the Certainty of its Mufoular Motion, refts fatisfied, with-

174 Mifcellanea Curiofa.

out taking notice of any Affiftance, that the Heart receives from any other Part, except from the Brain, by the means of the eight pair of Nerves.
part 2d. The Accurate Borellus, in his Occoprop. 67. Prop. 73. nomia Animalis, computes the Mo: tive Power of the Macbine of the Heart to be equal to, or to furmount that of a Weight of 3000 l . The Obfacles to the Mution of the Blood thro' the Arteries he efteems equivalent to 180,0001 . which is 60 Jimes as much as he rates the Force of the Heart at. Then deducting $45,000 \%$. for the adventitious Help of the Mufcular Elaftick Coat of the Arteries, he leaves the Heart with a Force of $3,000 \mathrm{l}$. to overcome a reliftance Prop. 76. of $135,000 \mathrm{l}$. that is, with I , to remove 45 .
This ftupendous Effect he contents himfelf to alcribe to the Energy of Percuffion. But, had he proceeded in his Calculatin to the Veins, which he allows to contain conftantly a quantity of Blood, quadruple to the Contents of the Arteries, and to which this Energy of Percuffion does either not reach at all, or but very languidly, he might probably have feen a neceflity for fome other Expedient to remove fo infuperable a Difficulty.

But not to infift rigoroully on the Exadnefs of this Calculation, (though the great Abilities of the Author in this way, and his Ingenuity and Modefty, are a fufficient Warrant for the Accuracy of his Computations, and the Fidelity of his Accounts) we may allow a much greater Deduction, than would be juftifiable, without leffening the Difficulty. But this Account

Mifcellanea Curiofa.

count I have taken notice of purely for the fake of the Calculation, which may be of ufe in the Seguel; the account it felf being in other refpects more defective than Dr. Lower's, to which we will return.
The Doctor, notwithftanding his great Sagad city, appears (to me) to have overlook'd fomething of very great moment, and importance in the explication of the Action of the Heart. For, tho' it fhould be granted, that the Mu/cuhar Fibres of the Heart acted by the Nerves, are the immediate Inftruments of its Corffrizi in or sypfole; yet it muft not be denied, that the I_{n} tercoffal Mufles and Diaphragm are of great fervice to aid and facilitate this Contraction, by opening a Paffage for the Blood through the Lungs, which denied would be an invincible Obfacle.

Neither do they promote it that way only. The manner how they farther afift the Heart in its Contraction, will appear manifeftly, if we confider the different Poflure, Situation, and Capacity of the Blood-Veffels of the Lungs in the feveral times of Elevation and Deprefion of the Cofta.

The Pulmonary Artery rifes from the right Ventricle of the Heart, and runs in one Trunk, till it comes to the A/pera Arteria, where it is divided, and fends a Branch along with each Divifion of the Afpera Arteria, according to all the minuteft Subdivifions, of which it is likewife fubdivided, accompanying all the Bronchi, in their whole progrefs through the
Lungs.
The Pulmonary Vein, which empties it relf into the Left Ventricle of the Heart, foreads

176 Mifcellanea Curiofa.

it felf on the A/pera Arteria and Bronchi, in the fame manner that the Artery does.

The neceffary confequerice of this Difpofition is, that this Artery and Vein being co-extended with, and faften'd to the Broncbi, muft needs fuffer fuch alteration of Suterficial Dimenfions, as the Bronchi do in the Elevation or Depreffion of the Coftic.

While the Ribs are in a State of Deprefion (whether before Commerce with the External Air or af(er) the Annular Cartilages of the Broncbi Ihrink one into another, and by that means their Dimenfions are exceedingly contracted. In conformity to this condition of the Bronchi, the Pulmonary Artery and Vein muft likewife, either by means of their Mufcular Coats, contract themfelves to the fame Dimenfions, or lye in Folds or Corrugations, which is lefs probable.

On the other hand, when the Ribs are elevated, and the Diaphragm bears downwaid, the Air rufhing into the Lunge, fhoots out the Cartilaginous Rings, and divaricates the Branches of the Trachea, and by them extends and divaricates the feveral Divifions of the Pulmonary Artery and Veins, and thereby lengthens and enlarges their Cavities.

This enlargement of their Cavities is very confiderable, not only upon the fcore of the addition, which they receive in length thereby, but alfo upon the account of their Divarication. For whereas, when the Ribs are depreff'd, and the Lungs fubfide, the Blood-Vefrels are not only contracted, (as I have already obferv'd) but their Branches, which are exceeding numerous, approach one another;

Mijcellanea Curiofa.

and lie in juxta-pofition, by which their Cavities are very much comprels'd and ftreighten'd:When the Ribs are elevated, and the Lungs turgid with Air, not only the Fibres, by which their Coats in the oppofite ftate were contracted, are extended ; but thofe innumerable Veffels, which lying before in lines almoft parallel upon one another, comprefs'd one onother, making an acute Angle at their Junctures, are divaricated and feparated from each other, and make an obtufe, whereby their Channels are widened.

Thus a paffage is open'd to the Blood, from the Right Ventricle of the Heart to the Left, through the Lungs, to which it could not otherwife pafs ; and the ofpofition, which the Blood contain'd in that Ventricle, muft otherwife neceffarily have made to its Conftriction, is taken off, and the Sytnle thereby facilitared.

Nor is that all. For the Diafole being caus'd (as I hall in the Sequel fhew) by the force of the Blood rufhing into the Ventricles, this Ampliation and Extenfion of the Pulmonary Artery is a fort of Cbeck or Counterpoife to it, and prevents an endeavour towards two contrary Actions at once, which muft neceffarily fruftrate both. For the Heart being a Springy, Compreffible Body, whofe proper Action, which is Contraction, depends on the influx of certain Fluids into its Fibers, or Subftance; and containing befides a Fluid in its Ventriscles, or great Cavities, in one of which is the Mouth of this Artery, the action of this Veffel muft in great meafure refemble that of a Syringe, whofe extremity is immers'd in Wa*

178 Mifcellanea Curiofa.

ter, the Enlargement or Expanfion of the Cha:nels of the Artery anfwering the drawing of the Embolum, as the conftrictive motion of the Mufcle of the Heart does the preffure of the Atmofphere upon the Surface of the Water, the one making way for the fluid, and the orher forcing it to follow, where the refiftance is leaft. In this Senfe we may allow a fort of Attraction to the Pulmonary-Artery, depending wholly upon the Action of the Intercoffal Mufcles and Diaphragm, which we mult therefore confefs to be very ferviceable and inftrumental in promoting the Syfole of the Heart.

But if the Learned Author be deficient in his Account of the Syffole; that is, if he has not obferv'd all the Mechanifm and Contrivance of Nature for the Contraction of the Heart ; much lefs fufficiently has he accounted for the Diafole, or Dilatation of it , which he afcribes to a motion of Refitution of the over-Atrain'd Fibres, which yet he confeffes are made for Conftriction only. 'Tis true, he immediately after joins the Influx of the Blood as a concurrent Caufe ; but from the flight notice that he takes of it, 'tis plain, that he did not fo much as dream of any great fhare it had in that Action. His Words are thefe :

Quin E (ut obiter boc moneam) De Corde, Pag. omnis motus contractione perficiatur, 75. छ' Cordis Fibra ad confrittionem folum facte fint, apparet quoque Cordis motum totum in Syfole pofitum effe; cumque Fibre ultra tonum fuum in omni conftrittione ejus tendantur, idcirco ubinixus ifte abfolvitur, motu quafi reftitutionis Cor iterum relaxatur, © San-

Mifcellanea Curiofa.

guine à Venis influente rurfus diftenditur; ì nullo enim cordis motu, nili tenfionem fuam remittente, $\delta^{3} a b$ irruente Sanguine Diaftole ejus libratis adeo viribus fuccedit.

I have trancrib'd the intire Paragraph, becaufe it contains his whole Hypothefis of the Diafole, and all the notice that he takes of it through his whole Work. But how flender foever this may prove, it is the moft fubftantial that I have any where met with, except a late one of Mr. Cowper, which is properly an Improvement of this, and fhall be confider'd in the Sequel.

But if Contraction be the fole Action of thefe Fibres (as this Great Man confeffes it to be) and as indeed it is of all Muscular Fibres, I wonder how fo judicious a Writer came to flip into fuch an Abfurdity, as to call their Diftention (vulgarly but improperly call'd Relaxation) a Motion of Refitution. For from the Nature of thofe Fibres, and their difpofition in the Structure of the Heart, the natural State of the Heart appears manifeftly to be Tonical, and its Dilatation a State of Violence ; and confequently, the Conftriction is the true motion of Reftitution, and the State to which i_{i} will Spontaneoully return, when the Force is taken off, which is the work of the Intercoftal Mulcles and Dia: phragm.

Thus we are left ftill to feek for the true Caufe of the Diaftole, which feems to me to be the main and moft difficult Pbanomenon, relating to the Heart and the Circulation of the Blood. But in Mr. Coxoper's ingenious Introduction to his Anatomy of Humane Bodies, I N_{2}

180 Mifcellanea Curiofa.

find the Share which Dr. Lomer hints the Blood to have in that Action, further profecuted, and improved into the main Inftrument of the Dilatation of the Heart, wherein I agree intirely with him. But as to the manner, and reafons of its being fo very inftrumental, I can't be fo perfectly of his mind.

The Heart (fays this accurate Anatomit) of an Animal bears a great Analogy to the Pendulums of thofe Artificial Automata, Clocks and Watches, whilft its motion is performed like that of other MuScles, the Blood doing the Office of a Pondus.

This Explication, being but a Simile without a diftinct application to Particulars, is befide fo very fhort, that I can at beft but give a conjecture at the meaning; which if I miftake, I fhall deferve to be excufed, and expect to be better inform'd.

By the Bloods doing the Office of a Pondus, I fuppofe he means, that the Blood contributes in the fame manner to the motion of the Heart, as the Weights do to that of the Pendulum of a Clock. If fo, the Blood, according to him, muft be the Inftrument of Conftrition; and Dilatation muft be the Natural State, or Spontaneots Motion, to which it wou'd, when under no violence, return ; the contrary of which, I prefume, will appear e're I have done.

But if he means, that the Blood in its reflux, by gravitating on the Auricles and Ventricles, dilates and expands 'em, acting therein as a Counterpoife to its contractions as a Mufcle, I cou'd wifh his Defign had not bound him up
to fo narrow a compafs, and that he had given us an explication at large of fo abttrufe and fo important 2 Pbsenomenon: Bccaufe the Specifick Gravity of the Blood feems to me a caufe by no means alone adequate to the effect, which it is here fuppos'd to produce.

For, if the Blood acts only as a weight by meer gravitation, then that part of it only which defcends from the Parts above the Heart can be employ'd in that Action. This at the largelt computation can't amount to Five pound weight, and muft, according to the computation of Borellus, force a Machine, that is able to overcome a refiftance of $\mathbf{1 3 5}$, 000 l . I leave every Man to deduct what he fhall upon examination find reafonably to be deducted, and yet fhall reft fecure, that it is not to be effected in the leaft wirh fo fmall 2 Weight.

But neither does the Refluent Blood gravitate in any fuch proportion, as I have here affign'd. For to make a true eftimate of its Gravitation, we muft confider the Circumftances of the Liquor fuppos'd to gravitate; in which it very much refembles Water inclos'd in a recurve Tube, of which, if the length of the two Legs be equal, it may be fufpended in the Air full of Water, with the Extremities downwards, without lofing a drop, alo though the Diameter of thofe Legs fhould be ve-ry unequal. The Cafe of the Arteries and Veins is pretty near a parallel to a Tube, fo fill'd and inverted. For, if the Arteries and Veins be continued Tubes, (as by the Microfoope they are made to appear) then fuppofing their contents to have no other determi-

182 Mifcellanea Curiofa.

mination of motion, than their own weight wou'd give them, the contain'd Fluids muft be Counterpoifes to each other. For the Veins and Arteries being join'd at the fmaller Extremities, and the larger of both terminating in the fame parallel Line, it is impoffible, according to the Laws of Hydrofaticks, that the contents of either fhou'd overbalance t'other. How far then muft it fall fhort of forcing the natural Power and Refiftance of fo ftrong a Mufcle as the Heart, by meer Gravitation ?

The Blood indeed has a Progrefive Motion through its Veffels, wherein it differs from Water, in a recurve Tube, in the Experiment a-bove-ftated. But, if the natural Gravitation of the Blood contributes nothing to the Dilatation of the Heart, this progreflive Motion will not not be found much more fufficient. For, as this Motion is deriv'd intirely from the Heart's Conffriction (as all Accounts hitherto derive it) cou'd the Blood be fuppos'd to re-act upon it by the Heart, with all the force firt imprefs'd upon it by the Heart, it would be infufficient, unlef we will fuppofe the Force communiched to be fuperiour to the Power Communicant, which is abfurd.

But when the juft and neceffary Deductions for the Impediments, which the Blood meets with in its Progrefs through the Veffels, fhall be made, the remaining Force will be found fo exceeding weak, that to prop the Blood through the Veins may be a task alone too great for fo fmall a Power, without charging it with the additional difficulty of forcing the Mufcle of the Heart.

Mifcellanea Curiofa. 183

Alphonfus Borellus, after a great deal of folemn pains taken to fhew his Care and Exactnefs, and to poffefs his Reader of the Truth of his Calculations, cafts up the force of the Heart, and the Mufcular Coat of the Arteries, to be together equal to a weight of $3,750 \%$ and allots them a Refiftance equal to 180,000 . to overcome which is 45 to I. To make up for a difproportion, by his own confeffion, incredible to thofe who have not confider'd the Matter as he had done, he flings into the Scale the additional Force of Percufion, which he leaves indefinite, and thinks fufficient to force any quiefsent finite Refiftance what f_{0} ever.

But as this Account and Hypothefis are part of a Pofthumous Work (if a liberty of Conjecture may be allow'd in fo uncertain a Matter,) I fhou'd fufpect, that thefe Papers were left unfinifh'd by Borellus; or at leaft, that in many places the laft Hand was never put to them. For neither in this Place, nor any other of this Work, does he account for any more than the Syfole of the Heart, and the refiftance which is made to the progreffive motion of the Blood in the Arteries only. This alone he found to exceed the Power of the Heart fo prodigioufly, that he feems to Chuffle it off his Hands with a general and precarious Solution, as a difficulty that he was defirous to be rid of. For, having afcrib'd this fupendous (as he himfelf calls it) effect to the Energy of Percuffion, he takes no care to fatisfie his Reader any farther about it, or to refer him, or give him the expectation of Satisfaction any where elfe ; although he has an exprefs Treatife on the Force of Percuffion, which was written N_{4} prepara-

184 Mifellinea Curiofa.

preparatory to this, and to which he frequently refers in other Places of this Work. But what confirms my fufpicion, that this part was intended for a farther Revife by the Author, is, that he has left the Progrefs of the Blood through the Veins, and the Diafole of the Heart, abfolutely untouch'd, tho' they are Difficulties of a much greater magnitude than this, which he has attempted to account fo flightly for: For, in théfe he is excluded the benefit of Percufion, and has yet a greater refiftance to overcome without it. Omifions of this kind are fo unufual with this Author, where-ever he knows himfelf to go upon fure grounds, that it is to me an Argument, that he doubted the fufficience of his Per? cufion, and referv'd thefe important Pbanomena for farther Confideration, without plunging himfelf into fuch an Abfurdity, as to afcribe to Percuffion any fuch Energy as to be able (fo broken as it returns to the Heart) by its re action to force that Power, from whence only it was at firt deriv'd.

Dr. Lower, and Mr. Cowper, deliver their Opinions of the Caufe of the Dilatation of the Heart fo very fhort, and without any Arguments to fupport them, that by expofing them naked, they feem rather to difcourfe of it tranfiently, as Men oblig'd by the Nature of their Subjects to fay fomething of it, than folicitous to give any full or fatisfactory Account; and therefore I thall proceed no farther upon them here.

But though the Hypotbefis or Borellus may, in this Cafe, be found precarious or infufficient

Mifcellanea Curiofa.

(a Misfortune that has befallen him in divers other Particulars) his Theory holds ftill good. At leaft it ought to be allow'd, in juftice to his great Abilities and Exactnefs, till fome Body convicts him of fome material Error in his Calculations, which has not as yet been done by any Body, that I know of.

Suppofing then the force of the Heart, and of the Mufcular Coat of the Arteries, as likewife of the refiftance, which they muft overcome, to be compured with any degree of accuracy, there remains yet fuch a prodigious difproportion to be accounted for, as requires fome more powerful Agent, than any yet affign'd, to make up the deficiency.

What afliftance the Heart receives from the action of the Thorax towards the facilitating its Contraction, without which affiftance there cou'd have been no Syfole, has been already fhewn. But neither the Intercoftal Mufcles, or Diaphragm, which are fo inftrumental in that part of its action, can contribute any thing to the Diafole; becaufe they ferve only to enlarge the Cavity of the Tborax, and thereby to open a paffage to the Blood from the Heart, and promote its ConAtriction.

Whatever therefore the force is, that dilates the Heart, and is the caufe of the Diafole, it mult be equal to that of the Heart, the Intercoffal Mufcles and Diaphragm; to all which it acts as an Antagonift. I take no notice of the Serratus Major Anticus; and other Mufcles; which have an obfcure Thare in the Elevation of the Cofta, becaufe as much may reafonably be deducted upon the account of the Obliquus externus Abdominis, and other Mufcles; which having their Infertions on Come of the lower Rils, are as inftrumental towards

186 Mifcellatea Curiofa.

rowards the Depreffion of them, and fo balance the Account. But the chief ufe of thefe is in violent Refpiration : In ordinary Refpiration their fhare is fmall.

Such a real Power (which may in the leaft be fufpected of any fhare in this Action) is hard, perhaps impoffible to be found in the Machine of any Animal Body; and yet without fome fuch Antagonit, it is as impoffible the Circulation of the Blood fhould be maintain'd. All the Engines yet difcoverd within the Body, confpire towards the Conftrition of the Heart, which is the State of Quiefcence, to which it naturally tends. Yet we find it alternately in a State of Violence, that is, of Dilatation; and this upon neceffity, becaufe upon this Alternation depends all Animal Life.

Some fufficient Caufe External muft therefore be found, to produce this great Pbanomenon; which Caufe mult be either in the Air, or Atmo/phere, becaule we have no conftant and immediate Commerce with any other Medizims.

Some great Phyficians obferving this, and that depriv'd by whatfoever means of Communication with the external Air, we became inftantly extinct, have imagin'd, that in the Act of Infpiration certain purer parts of the Air, mixed with the Blood in the Lungs, and was convey'd with it to the Heart, where it nourifh'd a fort of Vital Flame, which was the Caufe of this reciprocal effus of the Heart. Others not guite fo grofs, rejecting an Atual Flame, have fancied, that thefe fine Parts of Air mixing with the Blood in the Ventricles of the Heart, produc'd an Effervefcence which dilated it: But thele Faficies have been long

Mifcellanea Curiofa. 187

fince exploded and condemn'd upon ample Conviction ; and 'tis a Point yet undetermin'd, whether any Air does mix with the Blood at all in the Lungs, or not.

But fuppofing, that fome Air may infinuate it felf into the Pulmonary Vein, it can no other way dilate the Heart than by an Effervefcence in the Left Ventricle, which wou'd not dilate the Right. But this Opinion is contradicted by Autopfie, and too laborioufly confuted by others, to be brought upon the Stage again here.

There remains therefore only the grofs Body of the Atmofphere to be confidered, whis is undoubtedly the true Antagonift to all thofe Mufcles, which ferve for ordinary Infpiration, and the Conftriction of the Heart. This will appear more evidently, if we confider not only the Power, but the Neceffity of its Action upon Animal Bodies, as well as the want of other fufficient Agents.

The Heart is a Solitary Mufcle of very great ftrength, and the Intercoftal Mufcles and Diaphragm, which likewife have no Antagonifts, are a vaft additional Force, which muft be balanc'd by the contrary Action of fome equivalent Power or other. For, tho' the Action of the Intercoffal Mufcles be voluntary, that does not exempt them from the condition of all other Mufcles ferving for voluntary motion, which wou'd be in a State of perpetual Contraction, notwithftanding any Influence of the Will, were it not for the Librao tion of Antagonift Mufcles. This Libration betiween other Mufcles, is anfwer'd by the Weigbt of the incumbent A tmofphere, which preffes upon the Thorax and other parts of the Body. And,

188 Mifcellanea Curiofa.

as in all other voluntary Motions the influence of the Will only gives a prevalence to one of its two Powers before equilibrated, fo here it ferves to enable thofe Mufcles to lift up a weight too ponderous for their ftrength not fo affifted; and therefore as foon as that affittance is with-: drawn, the Cofta are again deprefs'd by the meer Gravitation of the Atmoffipere, which wou'd otherwife remain elevated through the natural Tendency of thofe Mufcles to Contraction.

This is evidently prov'd from the Torricellian Experiments, and thofe made upon Animals in Mr. Boyle's Engine; where, as foon as the Air is withdrawn, and the preffure thereby taken off, the Intercoftal Mufcles and Diaphragm are contracted, and the Ribs elevated in an inftant, and can't by any Power of the Will be made to fubfide, till the Air is again let in to bear them forcibly down.

It were fcarce worth while to take notice here of a Miftake of the Learned Dr. Willis, were it not for the great Authority of the Man, which is almoft fufficient to keep Error in countenance. The Doctor having obferv'd, that the Fibres of the Externals and Internal Intercoftal Mufcles

> De Refpirationis Organis ©゙ Uu. ran in a contrary order, as it were, decuffating each other, takes occafion from thence to fanfie, that there was an oppofition in their Office ; and that as the External ferv'd to raife up the Ribs, the Internal drew them down again, forgetting at that time, That, when a contractile Body is faften'd at the feveral ends to Points unequally moveable, let the Contraction happen in what, part or manner foever, the more moveable Point muft

Mifcellanea Curiofa.

muft be drawn towards the lefs moveable: By which Rule, whether External or Internal Intercoffals be contracted, the lower Ribs will be forc'd to approach the upper, that is, be rais'd up.

As in the Elevation of the Cofta, the Blood, by the paffage that is open'd for it, is in a manner folicited into the Lungs; fo in the Depreffion of them, by the fubfidence of the Lungs, and the Contraction of the Blood-Veffels, both which are confequent thereof, the Blood is forcibly driven, as it were with an Embolum, through the Pulmonary Vein into the Left Ventricle of the Heart. And this, together with the general Compreffion of the Boly by the weight of the Aimoofpere, which furrounds and preffes upon the whole Surface of it, is that Power which caufes the Blood to mount in the Veins, after the force imprefs'd upon it by the Heart is broken and fpent, and which is fufficient to force the Heart from its natural State to Dilatation.

He that is able to compute the weight of a Column of Air, equal to the Surface of the whole Body, will readily grant it a power fufficient for the Effects, which are here afcrib'd to it. And when he confiders, that the Bodies of Animals are compreffible Machines, he will find that it muft of neceffity affect them in the manner here laid down. But though our Bodies be entirely compos'd of Tubuli, or Veffels filld with Fluids; yet this preffure, how great foever, being equal, cou'd have no effect upon them, if the fuperficial Dimenfions were not eafily variable; becaufe being compref'd on all parts with the fame degree of Force, the contain'd Fluids cou'd not any where

190
 Mifcellanea Curiofa.

where begin to recede, and make way for the reft to follow, but wou'd remain as fix'd and immoveable as if they were adually folid. But by the Dilatation of the Thorax, room is made for the Fluids to move, and by the Coarctation of it, frefh motion is impreft, which is the main Spring whereby the Circulation is fet and kept going.

This reciprocal Dilatation and Contraction of the fuperficial Dimenfions of the Body, feems to neceffary to Animal Life, that there is not any Animal fo imperfect as to want it, at leaft none to the inward Structure, of which our Anatomical Difcoveries have yet reach'd. For, tho' moft kinds of Fißh and Infects, want both moveable Ribs and Lungs, and confequently have no dilatable Thorax, yet that want is made up to 'em by an Analogous Mechanifm, anfwering fufficiently the Neceflities of their Life.

Thofe Fifhes which have no Lungs, have Gills, which do the Office of Lungs, receiving and expelling alternately the Water, whereby the BloodVeffels fuffer the fame alteration of Dimenfions, that they do in the Lungs of more perfect Animals.

The Lungs or Air-Vefels of Infects, are yet exceedingly more different in Structure, Diftr:bution, and Situation from thofe of perfect Animals, than thofe of Fifhes are, and yet in their Ufe and Action agree perfectly with both; that is, receiving and expelling the Air, and varying the Dimenfions and Capacities of the Blood-Vefels. Thefe having no Thorax, or feparate Cavity for the Heart and Air-Veffels, have the latter diftributed through the whole Trunk of their Bodies, by which they commu-

Mifcellanea Curiofa.

nicate with the External Air through Ceveral Spiracula or Vent-boles, to which are faften'd fo many little Trachee, or Wind-pipes, which thence fend their Branches to all the Mufcles and V_{i-} feera, and feem to accompany the Blood-Veffels all over the Body, as they do in the Lungs, only of perfect Animals. By this difpofition in every Infpiration, the whole Body of thefe little Animals is inflated, and in every Expiration comprefs'd ; and confequently the Blood-Veffels muft fuffer a Vicijfitude of Extenfion and Contraction, and a greater motion muft thereby be imprefs'd upon the Fluids contain'd in them, than the Heart, which does not in thofe Creatures appear to be Mufcular, feems capable of giving.

The only Animal that is exempted from this neceffary condition of Breathing, or receiving and expelling alternately fome Fluid into and out of the Body, is a Fatus. But this, while included in the Womb, has little more than a vegetative Life, and ought fcarce to be reckon'd among the number of Animals. For, were it not for that fmall fhare of Mu/cular Motion, which it exercifes in the Womb, it might without abfurdity be accounted for as a Graft upon, or Branch of the Mother.

Concerning the immediate Matter, and Means of Life, and Nutrition, Authors are not agreed, nor is it the bulinefs of this place to reconcile, or decide their Differences, but to account for the Motion of the Blood through the Veffels only. In order to this, it will be neceffary to obferve, that the Pulfation of the Heart in a Fatus is fo very weak and obfcure, and the Motion of the Blood fo extream flow and

192 Miccellanea Curiofa.

and languid, as to be fcarce, if at all perceivable, as has been experienced in the Diffection of Puppies before Refpiration had. To

Boyle of the Elafticity of Air.

Pechlinus de A erts © Alimenti defectu. produce fuch a feeble Palpitation, and creeping Motion, no greater force feems to be required, than may be deriv'd from the Communication between the Veffels of the Mother and Factus in the Placenta. I am not ig, norant, that divers very Learned Anatomilts (whom the Crowd have implicitly follow'd) have abfolutely rejected all Communication between thefe Veffels. But, with fubmiffion to Great Authorities, I think they have acted arbitrarily, and without fufficient Warrant from Reafon or Experiment: For neither are the Arguments which they bring againft it conclufive, nor the Office which they affign to the Umbilical Veffels in lieu of it, proper, or natural to thofe Veffels, or the reality of the Fact made out by any fubftantial Reafons. Thofe that reject this Communication ufually do it in favour of one or both of thefe Opinions, that the Arteries of the $V_{\text {terus }}$ do depofite a Nutritive Juice, or a Juice impregnate with. Air in the Placenta, which is fuck'd in by the vmbilical Vein, and convey'd to the Fatus, for the neceffary Ufes of Nutrition and Life. Now thofe that patronize either of thefe Opinions, lead Nature an unneceffary Dance. For if the Maternal Blood does really contain any fuch Nutritious, or any fuch neceffary Aerial Particles, why fhou'd they be feparared and extravafated, to be with difficulty receiv'd into the Umbilical Vein, and a-
again mixt with the Blood, when they might more eafily have been imparted by the plain fimple way of Transfufion from the Arteries of the Motber to the Veins of the Fotus. And, that this is the courfe which Nature takes in this Cafe, I am perfwaded from the eafinefs and fimplicity of the Method, which readily performs what might be perhaps in vain expected from the other, and wou'd over and above find them, what they feem to grope fo blindly about for, a firt Mover of the Blood in a Fetus.

Thofe that contend for the conveyance of the Nutricious Juice, through the $V_{m b i l i c a l ~ V e i n ~ f r o m ~}^{\text {and }}$ the Placenta, are forc'd upon two Difficulties next to Abfurdities. For firlt they are oblig'd to make this Vein, which, as all other Veins, feems dedicated to the Re-conveyance of Blood only, the proper and immediate Chanel, thro' which a very different Liquour is to be carried; and next, to give a Power of Attraction or Suction to it ; becaule the Nutricious Juice, which it is thus deftin'd to carry, is both vifcous and ftagnant, and has neither force to drive, nor fubrilty to penetrate, or infinuate it felf into the Capillary Vcins ; and therefore muft be drawn or fuck'd as Milk is from the Breaff, to which the Placenta and iss Nutricious Juice are by the Favourers of them exprefly compar'd. But if this were the fole ufe of the Placenta, and v_{m} bilical Veffels, why were the Umbilical Arteries fent along with the Vein? Their bufinefs is not to bring any thing back to the Fatus, nor can they contribute any thing to the benefit of the Mother ; for the Vterine Arteries bring all to the Placenta, the Umbilical Vein carries if to the $F_{a t u s}$, and the $v_{\text {terine }}$ Veins con-

194 Mifcellanea Curiofa:

vey back again the Surcharge of the Motber's Blood; the Umbilical Arteries only, have nothing to do, and are fuperfluous and impertinent, which is contrary to the conftant Practice of Nature. Yet if Autopfie did in the leaft countenance this Hypothefis, fome Defence might ftill be made; but we find in the Umbilical Vein of a Fatus nothing but Florid Blood, fuch as in all probability it received immediately from the Arteries of the Mother without any mixture. And therefore I can't help concluding, that this Opinion engages its Favourers in Come Abfurdity, without Neceffity and without Proof.

They that from the Placenta fupply the Body of the Fetus with Air, are as much diftrefs'd as t'other ; for they are forc'd to beg the Queftion twice, which, even when granted, will not anfwer their Ends. Firft, they fuppofe, that an intimate mixture or confufion of Air with the Blood, is neceffary for the fupport of Animal Life, a Poftulatum, which perhaps the former part of this Difcourfe may have render'd unneceffary; and next, that the Fatus is fupply'd with Air from, and its Blood mix'd with it in the Placenta.

But here again they fetch a Compals without necefity or proof. For if a mixture of Air were neceffary to a Fatus, why fhould it be feparated from the Mother's Blood, and not rather both communicated together, fince it is fo much more eafie and commodious? But neither does the Placenta feem to be inftructed and provided for the feparation of Air, but of a much groffer Fluid, deftin'd to fome other ufe, which Autopfie confirms: Xet, were both thefe Opi- the Circular Motion of the Blood unprovided for.

By the way of Transfufion, this great Phenomenon is naturally accounted for, and the Ends, for which the other two Hypothefes were devis'd, might both be anfwer'd with more cafe. For the Hyfterick Arteries tranfmitting their Blood immediately to the Umbilical Vein, may very eafily tranfnit fuch Nutricious Juices or Aerial Particles, as are contain'd in the Blood, along with it, without depofiting them by the way. By this means fo much of the Impulfe of the Mother's Blood is preferv'd, as fuffices to maintain that languid Circulation which a Fatus enjoys. For the Blood being driven through the Arteries of the Vterus into the Timbilical Vein, is convey'd directly to the S_{i} nus of the Porta, and thence by a fhort and direct Paffage through the Cava to the Heart; where paffing through the Foramen Ovale to the Left Ventricle, and through the Canalis Arteriofus from the Rigbt and Pulmonary Artery, it is all deliver'd without coming at the Lungs to the Aorta, and from thence again by the Timbilical Arteries to the Veins of the $V_{\text {terus, }}$ making a fort of Epicycle to the main Circulation in the $\mathrm{Mo}-$ ther.

As this Opinion is favour'd by the Structure and Difpofition of the Blood-Veffels on both Parts, fo there is nothing in it difficult to be conceiv'd, or repugnant to Experience. Late Difcoveries have made it appear, that the Arteries and Veins are continu'd Tubes, and that the latter contain nothing but what they receive from the former, and no Reafon appears why

196 Mifcellanea Curiofa.

we fhou'd think this Method to be varied in the Placenta. On the other hand, if the Arteries of the $\mathcal{V}_{\text {terus }}$ were continued to the Veins of the Same part, and thofe of the Fatus in like manner, without communicating with each other, their Confluence in the Placenta feems to be altogether impertinent, and of no ufe, and the. Vmbilical Arteries and Vein fram'd for no other Service or Purpofe, than to give the Blood room for an idle Sally.

Thus the Reafonablenefs of this old Opinion may be vindicated, but the Certainty of it refts upon ftronger Proof. Mr. Coopper, to whofe happy Induftry we owe the Confimation of many ancient Difcoveries, and the Benefit of fome new ones, has the Honour to re-eftablifh this old, but long exploded Truth. For by pouring Mercury into a Branch of the $V_{\text {terine }}$ Arterie of a Com , that went into one of the Cotyledones of the Vterus, he fill'd thofe Branches of the V_{m} bilical Veins, which went from that Cotyledon to the Navel of the Fatus; which, with a part of the $V_{t e r u s, ~ h e ~ k e e p s ~ p r e p a r e d ~ b y ~ h i m . ~}^{\text {a }}$

It would be a weak Objection, to alledge, That the Obfervation and Experiment being made on the $V_{t e r u s ~ o f ~ a ~ C o n, ~ t h e ~ I n f e r e n c e ~}^{\text {a }}$ would not hold from thence to a Woman, the one being Glanduliferous, and the other Placentiferous; fince every one of thefe Cotyledones, or Uterine Glandules, is in all refpects a little Placenta, and all the difference between them is in number, name, and magnitude. Why Ruminants differ in this Particular from other Viviparous Animals, is befide the Subject of our prefent Enquiry. But the great Flux of Blood, which conitantly follows upon drawing the Pla-

Mifcellanea Curiofa. - 197

centa from Women (which is frequently fo great as to coft them their Lives) is as plain a demonftration to Reafon of the Continuity of the Veffels, as Mr. Cooper's Experimens is to the Eye.

I have heard it objected by very Learned Men, that if there were fuch a Continuity of Veffels, and fuch Transfufion of Blood, the Fetus muft neceffarily perifh through lofs of Blood, upon the feparation of the Placenta from the Vterus; but that, on the contrary, no vifible Flux of Blood does follow while the Fatus continues wrapt in the Membrane, in which Condition it may be kept alive fome Hours. To this it may be anfwer'd, that the Circulation in the Fatus, being deriv'd from the Mother, may be fuppos'd wholly to ceafe upon the cutting off the Communication between them, till it is again renew'd more forcibly by Refpiration. But if we allow the motion already imprefs'd upon the Blood to be fufficient to keep it going a little while ; yet it mult needs be fo exceeding languid, that the meer refiftance of the External Air muft be more than enough to hinder any Efflux of Blood from a Fatus before Refiration. How long Life may be preferv'd without an actual Circulation of the Blood, is a Queftion not of this place. But we have been convinc'd by many and notorious Obfervations and Experiments, that Life has been recover'd a long time after all tokens of Refpiration, Circulation, or even Life it felf, have difappear'd; fo that we can't think the firf Solution either impoffible or improbable.

198 Mifcellanea Curiofa.

1 expect to be told, that in the early Days of Geftation in Viviparous 3 Animals, there is no Plarenta, or any Adhefion of the Umbilical Veffels to any part of the Mother, and confequently no fuch Transfufion; and that in Oviparous there is no continuity, or communication of Veffels of any kind, during the whole time of $I n=$ cubation.

But thefe Objections carry neither the Weight nor Difficulty along with them, that they may be fuppos'd to do ; for in thofe Days there is neither Blood or Blood-Veffels, and confequently there can be no Circulation of the Blood; and the Embryo, of what Species foever, is no more than a Vegetable at that time ; nor does the Fatus of any Viviparous Creature enjoy any Circulation, or fhew any figns of Animal Life, till after thofe Veffels, as well as others requifite to the Circulation, are com-- pleated.

It muft be confefs'd, that Oriparous Animals arre denied the benefit of this Communication; but that want is fufficiently compenfated by a peculiar Mechanifm, which directly anfwers the ends of Refpiration, and the preffure of the Atmo/pere upon the Fetus. There is at the obe tufe end of an Egg a fmall Cavity fill'd with Air, which is the fuccedaneous Inftrument to the Refpiratory Organs. For as foon as the Contents begin to be warm'd by the Incubation of the Hen, or any analogous Heat of Furnace or Dunghit, the feveral Humours of the Egg require a fermentative motion, and the Air contain'd in the Cavity or Veficle, at the obrufe end of the Egg, is rarefied, and the Veficle extended and enlarg' d , and confequently the other Con-

Mijcellanea Curiofa. 199

tents are compreft ; to which the fermentative motion naturally refifts. But both Bodies being as well comprefible as dilatable, and both having an expanfive motion impreft upon them by Incubation, the Comprefion and Renitency will be mutual, but varied in degree, according as either, through the variation of Circumftances, fhall prevail. By this means, an Alternation of Compreffion and Dilatation will be produc'd in both, anfwering the refpiratory motion, by which a motion will be communicated, which, as foon as the Organs by which it fhould be regulated are compleated, will in the Body of the Pullus be regular and circulatory.

Fabritius ab Aquapendente, and after him, our Great Dr. Harvey, have affign'd divers Ules to this Cavity or Air Veficle, the Extravagance of which have perhaps deterr'd others from enquiring to much into the Ufe, as the Importance of it requir'd. But though I can't agree to that Perfpiration, Refrigeration, and Refpiration, which they make it the Inftrument of; yet perhaps the Air, that was inclos'd in that Cavity, may through the Augmentation of the Body of the Pullus, and its own Rarefaction (which is at laft fo great as to occupy half the Shellj break the Membrane, which feparated it from the Pullus, and thereby give to much Refpiration as to form the chirping Voice, which is ofren heard before the breaking of the Shell, and with it give an addition of Strength to enable it to break the Shell. But how it fhould refpire fooner, is to me inconceivable.

200 Mifcellanea Curiofa.

There are many Problems of great feeming Difficulty, the Solutions of which flow naturally from what has been laid down here : But intending to profecute this Subject farther, and to treat of the Impediments of Refpiration, and the Confequences of Refpiration obftructed or intermitted, I fhall referve them for that Opportunity, and content my felf here to attempt the Harveyan Problem only, which has given abundance of Authors fo much perplexity:

That incomparable Philofopher enquires, Why a Foetus, taken out of the Uterus with the Membranes intire, ball live in Water Some Hours without communication with the External Air ; whereas if it be taken out and fuffer'd once to breath, it can't aftervards furvive a Moment without the benefit of Refpiration.

Granting the Fact to be as he has deliver'd it, which yet is not fo in all Cafes, the main Difflculty is grounded on a Miftake, which from the ftating of the Queftion I find this Great Man to have flipt into. For he thinks, that a Fatus is fooner fuffocated after having once breath'd, than if it had not breath'd at all, and that by breathing it had contracted fomething which render'd it more perifhable. Idem tamen fecundis exutus, (fays he) j femel aerem intra Pulmones attraxerit, poftea ne momentum quidem temporis ablque eo durare pofit, fed confeffim moriatur. 'And prefently after, siquidem conftat, forum, poftquam eum femel bauferit, citius fuffocari; quam cum ab illo prorfus accobatur. The Doctor obferving a Foctus to live longer without Refpiration, and to difpence better with the want of Air while included in the Membranes intire, than it cou'd afterwards ; infers thence, that the Air does in

Mifcellanea Curiofa. 201

the firf 'Act of Infpiration imprefs upon the Lungs fome quality, which renders it ever after more indifpenfably neceffary. But allowing his Obfervation, I muft yet deny his Inference to be good : For deprive a Fatus of means of refiring, and then take it out of the Membranes, and it fhall be as foon fuffocated, as if it had refpired before. This proves, that this neceffity of intercourfe with the Air, by way of the Lungs, is not the Offspring, but the Parent of Refpiration, and that, that Learned Man was drawn into a Fallacy of Non caufa pro caufa.

The Reafon of this Neceffity is the preffure of the External Air upon the Surface of the Body, from which it was defended by the Interpofition of the Membranes, and the Humours contain'd, which are not fo compreffible as the Body of the Fatus it felf. So foon therefore as the Fatus is excluded, and expos'd to the immediate contact of the ambient Atmofphere, the Veffels and all the Cavities of the Body mult neceffarily be fo comprefs'd, that the Fluids can't have room for motion, and confequently the Fatus could have no Life, if Nature had not contriv'd by the motion of the Thorax to remove and admit that preffure alternately, and thereby to imprefs a motion on the Fluids, which is the Spring of Life. But this motion of the Thorax being any way fupprefs'd, the equal preflure of the Atmofphere on all parts, occafions a total Ceffation of motion, which is Death.

I fhall profecute this Subject no farther now, nor trouble the Reader with any Apology, for diffenting from thofe Great Men herein named; becaufe, and all the Refpect due to fo great Authorities, and have affign'd nothing which is not Matter of Fact uncontroverted, or deduc'd from it by plain Mechanical Neceffity.

Mificellanea Curiofa.

Some Thoughts and Experiments

 concerning Vegetation. By John Woodward, M. D. of the College of Pbyficians, and R. S. and Profeffor of Pbyfick in Grefham College.THE Ancients generally intitled the Eartb. to the Production of the Animals, Vege:tables, and other Bodies upon and about it ; and that for that Reafon 'twas, that they gave it fo freguently the Epithets of Parent and Mother**. They were of *Terra Parens. opinion, that it furnifhed forth rĭ мйтigntinav. the Matter whereof tbole Bo- Terra Matter. dies confift ; and receiv'd it all back again at their Diffolution for the Gompofure of others. Even thofe who afferted four Elements, fuppofed that the Eartb was the Matter that conDlituted thofe Bodies ; and that Water and the reff, ferv'd only for the Conveyance and Diftribution of that Matter, in order to the forming and compofition of them. 'Tis true, Thales, a Philofopher of the firt Rank in thofe early Ages, has been thought to have Sentiments very different from thefe; but that without juf Grounds, as I think I have fufficiently prov'd in another Pa per, which I am ready to produce,

204 Mifcellanea Curiofa.

But though Antiquity thus gave its Vote for Terrefrial Matter, feveral of the Moderns, and fome of very great Name too, both bere and abroad, have gons quite counter, and given theirs in behalf of Water. The Dignity of the Perfons that have efpoufed it, as well as their Numbers, renders this Doctrine very confiderable, and well worth our enquiring into. The great Reftorer of Pbilofophy in this laft Age, my Lord Bacon, is of Opinion, That for Nouribment of Vegetables, the Water is almoft all in all; and that the Earth doth but keep the Plant upripht, and Save it from
\dagger Nat. Hiftory, over-beat, and over-cold \dagger. OCent. 5. S.4II. thers there are who are ftill more exprefs ; and affert Water to be the only Principle or Ingredient of all Natural Things. They fuppofe that, I cannot tell by what Procefs of Nature, Water is tran/muted into Stones, into Plants, and in brief,
> * Complexionиm atque Miftion. Element. Figm. all other Subftances whatever. Helmont, * particularly, and his Followers, are very pofitive in this; and offer fome E_{x} periments to render it credible. Nay, a very Extraordinary Perfon of our
\dagger Mr. Boyle, Scept. own Nation \dagger tries thofe E_{x} Chym. par. 2. periments over again; and difcovers a great Propenfity to the fame Thoughts and Opinion they had; declaring for this Tranfmutation of Water into Plants and otber Bodies, though with great Modefty and Deference, which was his ufual manner.

The Experiments they infft upon are chiefly twoo; the fir t is, that Mint, and feveral other

Mifcellanea Curiofa. 205

Plants profper and thrive very greatly in Water. The other is this; they take a certain quantity of Earth, and bake it in an Oven; then they weigh it, and put it into an Earthen Pot. Having well water'd "this Earth, they make choice of fome fit Plant, which, being firt carefully moeigh'd, they fet in it. There they let it grow, continuing to water it for fome time, till 'tis much advanced in bignefs: Then they take it up; and though the Bulk and Weight of the Plant be much greater than when firft fet, yet upon' baking the Earth, and weighing it, as at firt, they find it little or not at all diminifhed in weight ; and therefore conclude, 'tis not the Earth but Water, that nourifhes and is turn'd into the Subflance of the Plant.

I muft confefs I cannot fee how this Experiment can ever be made with the nicety and juftne/s that is requifite, in order to build upon it fo much as thefe Gentlemen do. 'Tis hard to weigh Earth in that quantity, or Plants of the fize of thofe they mention, with any great exactne/s; or to bake the Earth with that accuracy, as to reduce it twice to juft the Same Drine S. But I may wave all this; for though the Experiment be never fo eafily practicable, and all the Accidents of it exactly as they fet forth, yet nothing like what they infer can poffibly be concluded from it ; unlefs Water, which they fo plentifully beftow upon the Plant in this Experiment, be pure, bomogeneous, and not charged with any terreftrial Mixture; for if it be, the Plant after all may owe its Growth and Encreafe intirely to that.

206 Mifcellanea Curiofa.

Some Waters are indeed fo very clear and tranjparent, that one would not eafily fufpect any terreftrial Matter were latent in them; but they may be bighly faturated with fuch Matter, though the Eye be not prefently able to decfry or difcern it. 'Tis true, Earth is an Opake Body; but it may be fo far diffolved, reduced to fo extreme fmall Particles, and thefe fo diffufed through the watry Mafs, as not fenfibly to impede Vifion, or render the Water much the lefs diaphanous. Siver is an Opake, and indeed a very denfe Body; and yet, if perfectly diffolved in Spirit of Nitre, or Aqua Fortis, that is retififed and thorowly fine, it does not darken the

* Provided tbe Silver be pure and absolutely refin'd : For the leaft admixture of Copper will producea blueTinGure in the Menftruum; as that of Jome other Bodies, one dif: ferent. Menfruum, or render it lefs pellucid than before*. And other Inftances there are, that oftentimes great quantities of Opake Matter are fuftain'd in Fluids, without confiderably ftriking the $E y e$, or being perceiv'diby it. So that were there Water any where found fo pure, that the quickeft Eye could difcover in it no terreftrial Intermixture; that would be far Thort of a Proof, that in reality there was none.

But after all, even the cleareff Water is very far from being pure and wholly defecate, in any part of the World that I can learn. For ours here, I have had an Opportunity of examining it over a good part of England; and cannot fay I ever met with any, that, however frefh and newly taken out of the Spring, did not exhibit, even to the naked Eye, great num-

Mifcellanea Curiofa. 207

 numbers of exceeding fmall terreftrial Particles diffeminated through all parts of it. Thicker and craffer Water exhibits them in ftill greater Plenty.Thefe are of two general kinds. The one a vegetable terreftrial Matter, confifting of very different Corpufcles; fome whereof are proper for the formation and increment of one fort of Plant, and fome of another; as alfo fome for the Nourifhment of one part of the fame Plant, and fome of another. The other kind of Particles fuftain'd in Water are of a Mineral Nature. Thefe likewife are of different forts. In fome Springs we find common Salt, in others Vitriol, in others Alum, Nitre, Sparr, Ochre, \&c. nay, frequently feveral of thefe, or other Minerals, all in the fame Spring; the Water as it drains and paffes thorough the Strata of Stone, Earth, and the like, taking up and bearing along fuch loofe Minea ral Corpufcles, as it meets with in the Pores and Interftices of thofe Strata, and bringing them on with it quite to the Spring. All Water whatever is much charg'd with the Vegetable Matter, this being fine, light, and eafily moveable. For the Mineral, the Water of Springs contains more of it than that of Rivers, efpecially when at diftance from their Sources; and that of Rivers more than the Water that falls in Rain. This I have learn'd from feveral Trials, which I muft not give Account of here; my Drift in this place being only to evince the Exiftence of Terreftrial Matter in Water.

208 Mifcellanea Curiofa.

Any one who defires farther Satisfaction in this, may eafily obtain it, if he only put. Water into a clear Glafs Viol, ftopping it clofe, to keep Duft and other exterior Matter out, and letting it ftand, without ftirling it for fome Days: He will then find a confiderable Quantity of terreftrial Matter in the Water, however pure and free it might appear when firt put into the Viol. He will in a very fhort time obferve, as I have frequently done, the Corpucles that were at firft, while the Water was agitated and kept in motion, feparate, and hardly vifible *,
\mp To fay nothing by degrees, as the Water of thofe that were permits, by its becomingmore not difernible. ftill and at reft, affembling and combining together; by that means forming fomewhat larger and more conficicuous Moleculc. Afrerwards he may behold thefe joining and fixing each to other, by that means forming large thin Maffes, appearing like Nubecule, or Clouds in the Water; which grow more thick and opake, by the continual appulfe and accretion of frefh Matter. If the faid Matter be chiefly of the Vegetable kind, it will be fuftain'd in the Water ; and difcover at length a green Colour, beconing ftill more and more of that Colour, I mean an higher and more faturate Green, as the Matter thickens and encreafes. That this Matter inclines fo much to that $\mathrm{C}_{0}-$ lour, is the lefs ftrange, fince we fee fo large a fhare of it, when conftituting Vegetables wearing the fame Colour in them. But if there be any confiderable quantity of meer Mineral Matter in the Water, this, being

Mifcellanea Curiofa.

of a greater fpecifick Gravity than the Vegetable, as the Particles of it unite and combine in fuch Number, till they form a Molecula, the Impetus of whofe Gravity furpaffes that of the Refiftance of the Water, fubfides a great deal of it to the bottom. Nor does it only fall down it felf, but frequently entangling with the Vegetable Nubecule, forces them down along with it.

The Reafon why Bodies, when diffolved and reduced to extreme fmall Parts, are fuftain'd in Liquors that are of lefs fpecifick Gravity than thofe Bodies are, hath been pointed at by a late ingenious Member of this Society ${ }^{*}$. He is indeed far ${ }^{*}$ Mr.W. Molifrom having adjufted all the neux, PbilofophiMomenta of this Affair ; how- cal Tranf. No. 18 s . ever it mult be admitted, that,
in the dividing or Solution of Bodies, their Surfaces do not decreafe in the fame Proportion that their Bulk does. Now the Gravity of a Body, which is the Caufe of its finking or ten. dency downwards, is commenfurate to its Bulk; but the refiftance that the Liquor makes, is proportion'd, not to the Bulk, but to the Extent of the Surface of the Body immerfed in it. Whence 'tis plain, a Body may be ío far divided, that its Parts may be fuftain'd in a Fluid, whofe fpecifick Gravity is lefs than that of the faid Body. Nay, 'tis Matter of Fact, that they frequently are fo; and we daily fee Menftrua fupporting the Parts of Metals, and other Bodies, that are of fix, ten, nay, almort twenty times the feecifick Gravity of thofe Menfrua. And as the Parts of Bodies when divided, are thus fupported in a Fluid; fo when

2 Io Mifcellanea Curiofa.

when they occur and unite again, they mult fink of courfe, and fall to the Bottom.

Upon the whole, 'tis palpable and beyond reafonable Conteft, that Water contains in it a very confiderable Quantity of terreltrial Matter. Now the Queftion is, to which of thefe, the Water, or the Earthly Matter fuftain'd in it, Vegetables owe their Growth and Augment:- For deciding of which, I conceive the following Experiments may afford fome Light; and I can fafely fay, they were made with due Care and Exactnefs.

Anno 1691.

I chofe feveral Glafs Vials, that were all, as near as pofinble, of the fame fhape and bignefs. After I had put what Water I thought fit into every one of them, and taken an Account of the weight of it, I ftrain'd and ty'd over the Orifice of each Vial, a Piece of Parchment, having an hole in the middle of it, large enough to admit the Stem of the Plant I defign'd to fet in the Vial, without confining or freightning it, fo as to impede its Growth. My Intention in this, was to prevent the inclofed Water from evaporating, or afcending any other way than only through the Plant to be fet therein. Then I made choice of feveral Sprigs of Mint, and other Plants, that were, as near as I could poffibly judge, alike frefh, found, and lively. Having taken the weight of each, I placed it in a Vial, order'd as above; and as the Plant imbib'd and drew off the Water, I took care to add more of the fame

Mifcellanen Curiofa:

fame from time to time, keeping an Account of the weight of all I added. Each of the Glaffes were, for better diftinction, and the more eafie keeping a Regifter of all Circumflances, noted with a different Mark or Letter, A, B, C, \mathcal{O}_{c}. and all fet in a Row in the fame Window, in fuch manner that all might partake alike of Air, Light, and Sun. Thus they continued from Fuly the Twentieth, to October the Fifth, which was jult Seventy Seven Days. Then I took them out, weigh'd the Water in each Vial, and the Plant likewife, adding to its weight that of all the Leaves that had fallen off during the time it ftood thus. And Laftly, I computed how much each Plant had gain'd; and how much Water was fent upon it. The Particulars are as follow.
-(A.) Common Spear-Mint, fet in Spring-Wa--ter. The Planted weighed when put in, Fuly ' 20. juft 27 Grains; when taken forth, october 6.5. 42 Grains : So that in this fpace of 77

- Days, it had gained in weight 15 Grains.
- The whale Quantity of Water expended, du-- ring thefe 77 Days, amounted to 2558 Grains. - Confequently the weight of the Water taken - up, was $170 \frac{8}{15}$ times as much as the Plant had - got in weight.
-(B.) Common Spear-Mint, Rain-LUater. The
' Mint weigh'd, when put in, Gr. 28年; when
' taken out Gr. $45 \frac{3}{4}$, having gain'd in 77 Days - Gr. $17^{\frac{1}{2}}$.

$$
P_{2}
$$

The

- The Difpendium of the Water Gr. 3004, which was $17 \frac{22}{35}$ times as much as the Plant - had received in weight.
(C.) Common Spear-mint, Thames-water. The - Plant when put in, Gr. 28, when taken forth, Gr. 54. So that in 77 Days it had gained - Gr. 26.
- The Water expended, amounted to Gr. 2493. which was $95^{\frac{23}{2} 6}$ times as much as the \leq additional weight of the Mint.
(D.) Comm on Solanum, or Night-ßbade : Spring:' water. The Plant weigh'd, when put in, Gr.
' 49; when'taken out, 106; having gain'd in 77
' Days 57 Gr.
- The Water expended during the faid time,

6 was 3708 Gr. which was $6{ }_{53}^{3}$ times as much ' as the Augment of the Plant. 5

- This Specinex had feveral Buds upon it, when - firft fet in the Water. Thefe in fome Days be-
came fair Flowers, which were at length fucceed-
${ }^{6}$ ced by Berries.
-(E.) Latbyris Seu Cataputia Gerb. Spring'Water It weigh'd, when put in, Gr. 98. 6 when taken forth, Gr. $101 \frac{1}{2}$. The additional
- weight for the whole 77 Days, being but
- Gr. $3^{\frac{1}{2}}$.
- The Quantity of Water fpent upon it during ${ }^{6}$ that time, Gr .2501 . which is $714 \frac{4}{7}$ times as
- much as the Plant was augmented.

Several other Plants were try'd, that did not thrive in Water, or fucceed any better than the Cataputin foregoing:

But' 'tis befides my purpofe to give a parcular Account of them bere.

(F, G.) Thefe Two Vials were fill'd, the former (F) with Rain, the other with Spring-water, at the fame time as thofe above-mention'd were; and ftood as long as they did. But they had neither of them any Plant; my Defign in thefe being only to inform my felf, whether any Water exhaled out of the Glaffes, otherwife than thorow the Bodies of the Plants. The Orifices of thefe two Glaffes were cover'd with Parchment; each piece of it being perforated with an hole of the fame bignefs with thofe of the Vials above. In this 1 fufpended a bit of Stick, about the thicknefs of the Stem of one of the aforefaid Plants, but not reaching down to the Surface of the included Water. I put them in thus, that the Water in thefe might not have more Scope to evaporate than that in the other Vials. Thus they ftood the whole 77 Days in the fame Window with the reft; when, upon Examination, I found none of the Water in thefe watted or gune off. Tho' 1 obferved both in thefe, and the reft, efpecially after hot Weather, fmall Drops of Water, not unlike Dew, adhering to the Infides of the Glaffes, that Part of them, I mean, that was above the Surface of the enclofed Water.

The Water in thefe two Glaffes that had no Plants in them, at the end of the Experiment, exhibited a larger Quantity of Terreftrial Matter than that in any of thofe that had the Plants in them did. The Sediment at the bottom of the Vials was greater; and the

214 Mifcellanea Guriofa,

Nubecula, diffus'd through the Body of the Water, thicker. And of that which was in the others, fome of it proceeded from certain fmall Leaves that had fallen from that part of the Stems of the Plants that was within the Water; wherein they rotted and diffolved. The Terreftrial Matter in the Rain-water was finer than that in the Spring-water.

- Anno 1692.

The Glaffes made ufe of in this, were of the fame fort with thofe in the former Experiment; and cover'd over with Parchment in like manner. The Plants here were all Spearmint; the moft kindly, frefh, fprightly Shoors I could chufe. The Water, and the Plants were weigh'd as above; and the Vials $\mathrm{Fet}^{\text {in a }}$ Line, in a South Window: where they ftood from Fune the 2 z to $\mathfrak{F u l y}$ 28. which was juft 56 Days.
(H.) Hyde-Park Conduit Water, alone The ${ }^{6}$ Mint weighed; when put in, $12 \not \mathrm{Gr}$ when 'taken out, 255 Gr . The whole Quantity of

- Water expended upon this Plant, amounted
' to 14 r 90 Gr .
- This was all along' a very kindly Plant; ' and had run up to above two Foot in height:. - It had fhot but one confiderable collateral - Branch; but had fent forth many land long
${ }^{6}$ Roots, from which fprung very numerous, 'though fmall and fhort, leffer Fibres. There
${ }^{6}$ leffer Roots came out of the larger on two op-
- pofite fides, for the mof part; fo thatr each
© Root,

Mifcellanea Curiofa.

- Root, with its Fibrilla, appear'd nat unlike ' a fmall Feather. To thefe Fibrills adher'd - pretty mult Terreftrial Matter. In the Wa${ }^{6}$ ter, which was at laft thick and turbid, was a - green Subftance, refémbling a fine thin Con-- Serva.
' (I.) The fame Wäter, alone. The Mint ' weigh'd, when put ill, IIO Gr. when taken ' out, 249. Water expended, 13140 Gr .

6 This Plant was as kindly as the former, but - had fhat no collateral Branches. Its Roots, 'the Water, and the green Subitarice, all much ' as in the former.
((K.) Hyde-Park Conduit-ipater, in which was - diffolved an Ounce and half of Common Garden'earth. The Mint weigh'd, when put in, 76 - Gr. when taken out, 244 Gr. Water expend${ }^{6}$ ed; Gr. 10731.
' This Plant, though it had the Misfortune to - be annoy'd with many fmall Infects that hapn'd ' to fix upon it; yer had fhot very confiderable ' collateral Branches; and at leaft as many

- Roots as either that in H or I ; which had a
- much greater Quantity of Terreftrial Matter ' adhering to the Extremities of them. The
- fame green Subftance here, that was in the two (preceding.
-(L) Hyde-Park Water, wilh the fame Quan'ty of Garden-mould as in the former. The - Mint weigh'd, when put in, 92 Gr. when ta${ }^{6}$ ken out, 376 Gr. The Water expended 4. 4959 Gr .

216 Mifcellanea Curiofa.

${ }^{6}$ This Plant was far more flourifhing than any ${ }^{6}$ of the precedent; had feveral very confiderable ${ }^{6}$ collateral Branches, and very numerous Roots, - to which Terreftrial Matter adhered very co${ }^{6}$ pioufly.

- The Earth in both thefe Glaffes was very ${ }^{6}$ fenfibly and confiderably wafted, and lefs than ${ }^{6}$ when firft put in. The fame fort of green ${ }_{5}^{5}$ Subftance here as in thofe above.
'(M) Hyde-Park Water, diftilled off with a ${ }^{G}$ gentle Still. The Mint weigh'd, when put in, ${ }^{6} 114 \mathrm{Gr}$. when taken out 155. The Water ex${ }^{6}$ pended, $880_{3} \mathrm{Gr}$.
${ }^{6}$ This Plant was pretty kindly ; had two fmall © collateral Branches, and feveral Roots, though - not fo many as that in H or I, but as much - Terreftrial Matter adhering to them as thofe ${ }^{6}$ had. The Water was pretty thick; having ${ }^{6}$ very numerous fmall Terreftrial Particles fwim${ }^{5}$ ming in it, and fome Sediment at the bottom ' of the Glafs. This Glafs had none of the green 6 Matter above mentioned, in it.
${ }^{\text {c }}(\mathrm{N})$ The Refidue of the Water, which re' main'd in the Still after that in M, was diftill'd © off. It was very turbid, and as high-colour'd ' (reddifh) as ordinary Beer. The Mint weigh'd, ${ }^{6}$ when put in, 8r Gr. when taken out, 175 © Gr. Water expended, 4344 Gr . This Plant - was very lively; and had fent out fix collate© ral Branches, and feveral Roots.
(O.) Hyds-Park Conduit-water, in which was diffolved a Drachm of Nitre. The Mint fet in this fuddenly began to wither and decay; and Glaffes I diffolved feveral other forts of Earths, Clays, Marles, and variety of Manures, EJc. I fet Mint in diftill'd Mint-water; and other Experiments I made, of feveral kinds, in order to get Light and Information, what haftened or retarded, promoted or impeded Vegetation; but thefe do not belong to the Head I am now upon.
(P.) Hyde-Park Conduit-water. In this I fix'd 2 Glafs-Tube about ten Inches long, the Bore about one fixth of an Inch in Diameter, fill'd with very fine and white Sand, which I kept from falling down out of the Tube into the Vial, by tying a thin piece of Silk over that end of the Tube that was downwards. Upon Immerfion of the lower end of it into the Water, this by little and little afcended quite to the upper Orifice of the Tube. And yet, in all the fifty fix Days which it ftood thus, a yery inconfiderable Quantity of Water, had gone off, viz. fcarce twenty Grains; though the Sand continued moilt up to the top till the very laft. The Water had imparted a green Tincture to the Sand, quite to the very top of the Tube. And, in the Vial, it had precipitated a greenifh Sediment, mix'd with black. To the bottom and fides of the Tube, as far as 'twas immer'd in the Water, ad-

218 Mifcellanea Curiofa.

her'd pretty much of the green Subifance defrib'd above. Other like Tubes I fill'd with Cotton, Lint, Pith of Elder, and feveral other porous Vegetable Subftances; fetting fome of them in clear Water; others in Water tinged with Saffron, Cochinele, छुc. And feveral other. Trials were made, in order to give a mechanical Reprefentation of the motion and diftribution of the Juices in Plants ; and of fome other Pbenomena obfervable in Vegetation, which I fhall not give the Particulars of here, as being not of ufe ta my prefent defign.
($\mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{\delta}_{\mathrm{c}}$) Several Plants fet in Vials; ordered in like manner as thofe above, in Oftoker, and the following colder Months.' Thefe throve not near fo much; nor did the Water afcend in nigh the quantity it did in the better Seafons, in which the before recited Trials were made.

Same Reflections upon the foregoing Ex? periments.

1. In Plants of the fame kind, the tefs they are in Bulk, the fmaller the Quantity of the fluid Mafs, in mbich they are fet, is drawn off; the Difpendium of it, wobere the Mals is of equal thickness, being pretty nearly proportion'd to the Butk of the Plant Thus that in the Glas mark'd A, which weigh'd only 27 Grains, drew off but 2558 Grains of the Fluid; and that in B, which weigh'd only $28 \frac{1}{4}$, took up but 3004 Grains; whereas that ${ }^{i}$ In $^{2} \mathrm{H}$, which weigh'd

Mifcellanea Curiofa.

The Water feems to afcend up the Veffels of Plants, in much the fame manner as up a Filtre; and 'tis no great wonder that a larger Filtre fhould draw off more Water than a leffer; or that a Plant that has more and larger Veffels, fhould take up a greater fhare of the Fluid in which it is fer, than one that has fewer and fmaller ones can. , Nor do I note this as a thing very confiderable in it felf, but chiefly in regard to what I am about to offer beneath; and that it may be feen that, in my other Collations of Things, I made due Allowance for this Difference.
2. The much greateft part of the fluid Mafs, that in :bus drawn off and convey'd into the Plants, does: 'not Seatele on abide there; but pafles through the pores of them, and exibales up into the AtmoSpbere. That the Water in thefe Experiments afcended only through the Veffels of the Plants, is certain. The Glaffes F and G, that had no Plants in them, though difpofed of in like manner as the refl, remain'd at the End of the Experiment, as at firft ; and none of the Water was gone off. And that the greateft part of it flies off from the Plant into the Atmofphere, is as certain. The leaft Proportion of the W ater expended, was to the Augment of the Plant, as 46 or 50 to in., And in fome the weight of the Water drawn off, was 100, 200, nay, in one above 700 times as much as the Plant had received of Addition.

220 Mifcellanea Curiofa.

This fo continual an Emiffion and Detāchment of Water, in fo great Plenty from the Parts of Plants, affords us a manifeft Reafon why Countries that abound with Trees, and the larger Vegetables efpecially, fhould be very obnoxious to Damps, great Humidity in the Air, and more frequent Rains, than others that are more open and free. The great Moifture in the Air, was a mighty inconvenience and annoyance to thofe who firt fettled in America; which at that time was much overgrown with Woods and Groves, But as thefe were burnt and deftroy'd, to make way for Habitation and Culture of the Earth, the Air mended and clear'd up apace, changing into a Temper much more dry and ferene than before.

Nor does this Humidity go off pure and alone ; but ufually bears forth with it many Parts of the fame Nature with thofe whereof the Plant, through which it paffes, confifts. The Craffer indeed are not fo eafily born up into the Atmofphere ; but are ufually depofited on the Surface of the Flowers, Leaves, and other Parts of the Plants: Hence comes our Manna's, our Honeys, and other Gummous Exfudations of Ve getables. But the finer and lighter Parts are with greater eafe fent up into the Atmofphere. Thence they are conveyed to our Organs of Smell, by the Ais we draw in Refpiration; and are pleafant or offenfive, beneficent or injurious to us, according to the Nature of the Plants from whence they arife, \cdots And fince thefe owe their Rife to the Water, that afcends out of the Earth through the Bodies of Plants, we cannot be far to feelk for the Caufe why they are more numerous

Mifcellanea Curiofa.

 numerous in the Air, and we find a greater quantity of Odors exhaling from Vegetables, in warm, humid Seafons, than in any other whatever.3. A great part of the Terreftrial Matter that is mix'd with the Water, afcends up into the Plant as mell as the Water. There was much more Terreftrial Matter at the end of the Experiment, in the Water of the Glaffes F and G, that had no Plants in them, than in thofe that had Plants. The Garden-mould diffolved in the Glaffes K and L, was confiderably diminifhed, and carried off. Nay, the Terreftrial and Vegetable Matter was born up in the Tubes fill'd with Sand, Cotton, G_{c} c. in that Quantity, as to be evident even to Senfe. And the Bodies in the Cavities of the other Tubes, that had their lower Ends immers'd in Water, wherein Saffron Cochinele, छ'c. had been infufed, were tinged with Yellow, Purple, $\underbrace{3} c$.

If I may be permitted to look abroad a while, towards our Shores and Parts within the Verge of the Sea, thefe will prefent us with a large Scene of Plants, that, along with the Vegetabie, take up into them meer mineral Matter alfo in great abundance. Such are our Sea-Purllains, the feveral forts of Alga's, of Sampires, and other marine Plants. Thefe contain common Sea-falt, which is all one with the Foffil, in fuch plenty, as not only to be plainly diftinguifh'd on the Palate, but may be drawn forth of them in confiderable Quantity. Nay, there want not thofe who affirm, there are Plants found that will yield Nitre,

222 Mifcellanea Curiofa.

and other mineral Salts; of which indeed I am not fo far fatisfied, that I can depend on the Thing, and therefore give this only as an bint for Enquiry.

To go on with the Vegetable Matter, how apt and how much difpefed this, being fo very fine end light, is to attend Water in all its Motions, and follow it into each of its Receffes, is manifeft, not only from the Inftances above alledg'd, but many others. Percolate it withal the Care imagirable: Filter it with never fo many Filtrations, yet fome Terreftrial Matter will remain. "Tis true, the Fluid will be thinner every time than other, and more difingaged of the faid Matter ; but never wholly free and clear. I have filtred Water thorough feveral wholly free and clear Sheets of thick Paper; and, after that, through very clofe fine Cloth twelve times doubled. Nay, I have done this over and over; and yet a confiderable quantity of this Matter difcover'd it felf in the Water after all. Now if it thus pafs Interfices, that are fo very fmall and fine along with the Water, 'tis the lefs ftrange it thould attend it' in its paffage through the Ducts and Veffels of Plants. 'Tis true, filtering and diftilling of Water intercepts and makes it quit fome of the Earthy Matter it was before impregnated withal : But then that which continues with the Water after this, is fine and light; and fuch confequently, as is in a peculiar manner fit for the Growth and Nourifhment of Vegetables. And this is the Cafe of Rainwater. The Quantity of Terreftrial Matter it bears up into the Atmofphere, is not great.

Mifcellanea Curiofa.

But that which it does bear up, is mainly of that light kind of Vegetable Matter ; and that too perfectly diffolved, and reduced to fingle Corpufcles, all fit to enter the Tubules and Veffels of Plants: On which Account 'tis, that this Water is fo very fertile and prolifick.

The Reafon, why in this Propofition, I fay, only a great part of the Terreftrial Matter that is mix'd with the Water, afcends up with it into the Flant, is, becaufe all of it cannot. The Mineral Matter is a great deal of it, not only grofs and ponderous, but fcabrous and inflexible; and fo not difpofed to enter the Pores of the Rosts. And a great many of the fimple Vegetable Particles by degrees unite, and form fome of them fmall Clods or Molecula; fuch as thofe mention'd in H, K, and L, fticking to the Extremities of the Roots of thofe Plants. Others of them intangle in a loofer manner; and form the Nubecula, and green Bodies, fo commonly obferv'd in flagnant Water. Thefe, when thus conjoin'd, are too big to enter the Pores, or afcend up the Veffels of Plants, which fingly they might have done. They who are converfant in Agriculture, will eafily fubfcribe to this. They are well aware that, be their Earth never fo rich, fo good, and fo fir for the production of Corn or other Vegetables, little will conse of ii, unlefs the Parts of it be feparated and loofe. 'Tis on this Account they beftow the Pains they do in Culture of it, in Digging, Plowing, Harrowing, and Breaking of the Clodded Lumps of Earth. 'T Tis the fame way that Sea-falt, Nitre, and other

224 Mifcellanea Curiofa.

other Salts, promote Vegetation. I am forry I cannot fubfribe to the Opinion of thofe Learned Gentlemen, who imagine Nitre to be effential to Plants; and that norhing in the Vegetable Kingdom is tranfacted without it. By all the Trials I have been able to make, the thing is quite otherwife; and when contiguous to the Plant, it rather defleys than nourifhes it. But this Nitre and other Salts certainly do ; they loofen the Earth, and feparate the concreted Parts of it ; by that means fitting and difpofing them to be affumed by the Water, and carried up into the Seed or Plant, for its Formation and Augment. There's no Man but mult obferve, how apt all forts of Salts are to be wrought upon by Moifture; how eafily they liquate and run with it ; and when thefe are drawn off, and have deferted the Lumps wherewith they were incorporated, thofe muit moulder immediately, and fall afunder of Courfe. The hardeft Stone we meet with, if it happen, as frequently it does, to have any fort of Salt intermix'd with the Sand, of which it confifts, upon being expos'd to an humid Air, in a fhort time diffolves and crumbles all to pieces; and much more will clodded Earth or Clay, which is not of near fo compact and folid a Conftitution as Stone is. The fame way likewife is Lime ferviceable in this Affair. The Husbandmen fay of it, that it does not fatten, but only mellows the Ground: By which they mean, that it does not contain any thing in it felf that is of the fame Nature with the Vegetable Mould; or afford any Matter fit for the Formation of Plants; but

Mifcellanea Curiofa.

meerly foftens and relaxes the Earth; by that means rendering it more capable of entering the Seeds and Vegetables fet in it, in order to their Nourifhment, than otherwife it would have been. The Properties of Lime are well known; and how apt 'tis to be put into Ferment and Commotion by Water. Nor can fuch Commotio ever happen when Lime is mix'd with Earth, however hard and clodded that may be, without opening and loofening of it.
4. The Plant is more or lefs nourib'd and aug:mented, $_{3}$ in Proportion as the Water, in which it fands, contains a greater or fmaller Quantity of proper terreftial Matter in it. The Truth of this Propolition is fo eminently difcernable through the whole Procefs of thefe Trials, that I think no doubt can be made of it. The Mint in the Glafs C , was of much the fame Bulk and Weight with thofe in A and B. But the Water, in which that was, being River-water, which was apparently ftored more copioufly with terreftrial Matter, than the Spring or Rain-water, wherein they ftood, were ; it had thriven to almoft double the Bulk that either of them had, and with a lefs Expence of Water too. So likewife the Mint in L, in whofe Water was diffolved a fmall quantity of good Garden-mould, though it had the difadvantage * to be lefs, when firft fet, than either of * Confer. Prop. the Mints in H or I, whofe I. fupra. Water was the very fame with this in L, but had none of that Earth mix'd with it ; yet, in a fhort time the Plant not only overtook, but much out-itrip'd thofe and at the end of the Experiment was very

226 Mifcellanea Curiofa.

confiderably bigger and heavier than either of them. In like manner the Mint in N , though lefs at the beginning than that in M , being fet in that thick, turbid, feculent Water, that remained behind, after that wherein M was placed, was ftill'd off, had in fine more than double its original weight and bulk ; and receiv'd above twice the additional Encreafe, than that in M, which frood in the thinner ditill'd Water, bad done. And, which is not lefs confiderable, bad not drawn off half the Quantity of Water that that had.

Why, in the beginning of this Article, I limit the Proportion of the Augment of the Plant to the Quantity of proper Terreftrial Matter in the Water, is, becaufe all, even the Vegetable Matter, to fay nothing of the Mineral, is not proper for the Nourifhment of every Plant. There may be, and doubtlefs are, fome Parts in different Species of Plants, that may be much alike, and fo owe their Supply to the fame common Matter; but 'tis plain all cannot. And there are other Parts fo differing, that 'tis no ways credible they fhould be form all out of the fame fort of Corpufcles. So far from it, that there want not good Indications, as we fhall fee by and by, that every kind of Vegetable requires a peculiar and fpecifick Matter for its Formation and Nourifhment. Yea, each Part of the fame Vegetable does fo; and there are very many and different Ingredients go to the Compofition of the fame individual Plant. If therefore the Soil, wherein any Vegetable or Seed is planted, contains all or moft of thele Ingredients, and thofe in due quantity, it will grow and thrive there; otherwife 'twill not

If there be not as many forts of Corpufcles as are requifite for the Conftitution of the main and more effential Parts of the Plant, 'twil? not profper at all. If there be thefe, and not in fufficient Plenty, 'twill ftarve, and never arrive to its natural Stature: Or if there be any the lefs neceffary and effential Corpufcles wano ting, there will be fome failure in the Platt; 'twill be defective in Tafte, in Smell, in Colour, or fome other way.. But though a Tract of Land may happen not to contain Marrar proper for the Conftitution of fome one pecuiar kind of Plant; yet it may for feveral others, and thofe much differing among themfives. The Vegetative Particles are commix'd and blended in the Earth, with all the diverfity and variety, as well as all the uncertainty, corceivable. I have given fome Intimations of this elfewhere ${ }^{\text {* }}$, and fhall not repeat them here, but hope in due time

* Nat. Hilf. Eartb, p. 228. \& feq. to put them into a much better Light than that they there ftand in.

It is not polible to imagine, how one uniform, homogeneous Matter, having its Principles or Original Parts all of the fame Subftance, Conftitution, Magnitude, Figure, and Gravity, fhould ever comftinute Bodies to egregioufly unlike, in all thofe refpects, as Vegerables of different kinds are; nay, even as the different Parts of the fame Vegetable. That one fhould carry a refinous, another a milky, a third a yellow, a fourth a red Juice, in its Veins; one afford a fragrant, another an offenfive Smeil; one be fweet to the Tafte, another bitter, acid, acerbe, auftere, छic. that one fhould be nourifhing, another poifonous, one purging another aftringent : In

$$
Q_{2} \quad \text { brief, }
$$

228 Mifcellanea Curiofa.

brief, that there fhould be that vaft difference in them, in their feveral Conftitutions, Makes, Pr. perties, and Effects, and yet all arife from the very fame fort of Matter, would be very ftrange. And, to note by the by, this Argument makes equally ftrong againft thofe, who fuppofe meer Water the Matter, out of which all Budies are form'd.

The Cataputia in the Glafs E, received but very little Encreafe, only three Grains and an half all the while it ftood, though 2501 Grains of Water were fent upon it. I will not fay the Reafon was, becaufe that Water did not contain in it Matter fir and proper for the Nourifhment of that peculiar and remarkable Plant. No, it may be the Water was not a proper Medium for it to grow in; and we know there are very many Plants that will not thrive in it. Too much of that Liquor, in fome Plants, may probably hurry the Terreftrial Matter thorough their Veffels too falt for them to arreft and lay hold of ir. Be that as it will, 'tis moft certain there are peculiar Soils that fuit particular Plants. In England, Cherries are obferv'd to fucceed beft in Kent; Apples in Herefordbire; Saffron in Cambridgefire; Wood in two or three of our Midland Counties; and Teazles in Somerfetfbire. This is an Obfervation that hath held in all Parts, and indeed in all Ages of the World. The moft ancient Writers of
\ddagger Vid. Varronem, Columellam, § reliquos Rei Ruftica Scriptores. Husbandry \dagger took notice of it; and are not wanting in their Rules for making choice of Soils fuited to the Nature of each kind of Vegetable they thought valuable, or worth propagating.

Mifcellanea Curiofa. $\quad 2=9$

But, which is a further Proof of what I am here endeavouring to advance, that Soil that is once proper and fit for the Production of fome one fort of Vegetable, does not ever continue to be fo. No, in Tract of time it lofes that Property ; but fooner in fome Lands, and later in others: This is what all who are converfant in thefe things know very well. If Wheat, for Example, be fown upon a Tract of Land that is proper for that Grain, the firt Crop will fucceed very well ; and perhaps the fecond, and the third, as long as the Ground is in Heart, as the Farmers feak; but in a few Years'rwil! produce no more, if fowed with that Corn: Some other Grain indeed it may, as Birley. And after this has been fown fo offen, that the Land can bring forth no more of the fame, ir may afterwards yield good Oats ; and, peihaps, Peafe after them. At length 'twill become barren ; the Vegetative Matter, that at firt it abounded withal, being educed forth of it by thofe fucceflive Crops, and moft of it born off. Each fort of Grain takes forth that -peculiar Matter that is proper for its own Nourifhment. Firf, the Wheat draws off thofe Particles that fuit the Body of that Plant; the reft lying all quiet and undifturbed the while. And when the Earth has yielded up all them, thofe that are proper for Barley, a different Grain, remain ftill behind, till the fucceflive Crops of that Corn fetch them furth too. And fo the Oats and Peafe, in their Turn; till in fine all is carried off, and the Earth in great meafure drain'd of that fort of Matter.

230 Mifcellanea Curiofa.

After all which, that very Tract of Land may be brought to produce another Series of the fame Vegetables; but never till 'tis fupplied with a new Fund of Matter, of fike fort with that it at firt contain'd. This Supply is made feveral ways: By the Grounds lying fallow for fome time, till the Rain has pour'd down a frefh Stock upon it: Or, by the Tiller's Care in manuring of it. And for farther Evidence that this Supply is in reality of like fort, we need only reflect a while upon thofe Manures that are found by conftant Experience beft to promote Vegetation, and the Fruiffulnefs of the Earth. Thefe are chiefly either parts of Vegetablez, or of Animals; which indeed either derive their own Nourifhment immediately from Vegetable Bodies, or from other Animals that do fo. In particular, the Blood, Urine, and Excrements of Animals; Shavings of Horns, and of Hoofs ; Hair, Wool, Feathers ; calcin'd Sheils; Lees of Wine, and of Beer ; Afthes of all forts of Vegetable Bodies; Leaves, Siraw, Roots, and Stubble, zurn'd into the Earth by Plowing or otherwife, to rot and diffolve there: Thefe, I fay, are our beft Manures; and, being Vegetable Subftances, when refunded back again into the Earth, ferve for the Formation of other like Bodies.

Not wholly to confine our Thoughts to the Fields, let us luok a while into our Gardens; where we fhall meet with fill further Confirmations of the fame thing. The Trees, Shrubs, and Herbs cultivated in thefe, after they have continued in one Station, till they have derived thence the greater part of the Matter fit for their Augment, will decay and degenerate, unlefs

Mijcellanea Curiofa.

unlefs either frefh Earth, or fome fit Manure, be applied unto them. 'Tis true, they may maintain themfelves there for fome time, by fending forth Roots further and further to a great Extent all round, to fetch in more remote Provifion; but at laft all will fail; and they muft either have a frefh Supply brought to them, or they themfelves be removed and tranfplanted to fome Place better furnifhed with Matter for their Subfiftence. And accordingly Gardiners obferve, that Plants that have ftood a great while in a Place, have longer Roots than ufual; part of which they cut off, when they tranfplant them to a frefh Soil, as now not of any further ufe to them. All thefe Inftances, to pals over a.great many others that might be alledg'd, point forth a particular Terreftrial Matter, and not Water, for the Subject to which Plants owe their Increale. Were it Water only , there would he no need of Manures ; or of tranflanting them from place to place. The Rain falls in all Places alike ; in this Field and in that indifferently; in one fide of an Orchard or Garden, as well as another. Nor could there be any Reafon, why' a Tract of Land thould yield Wheat one Year, and not the next ; fince the Rain fhowers down alike in each. But I am fenfible I have carried on this Article to too great a length; which yet on fo ample and extenfive a Subject, 'twas not eafie to avoid.
5. Vegetables are not form'd of W'ater; but of a certain peculiar Terreftrial Matter. It hath been hhewn, that there is a confiderable Quantity of this Matter contain'd both in Rain, Q4 Spring,

232 Mifcellanea Curiofa.

Spring, and River-water: That the much greateft part of the fluid Mafs that afcends up into Plants, does not fettle or abide there, but paffes through the Pores of them, and exhales up into the Atmofphere: That a great part of the Terreftrial Matter, mix'd with the Water, paffes up into the Plant along with it; and that the Plant is more or lefs augmented in proportion, as the Water contains a greater or frmaller Quantity of that Matter. From all which we may very reafonably infer, that Eartb; and not Water, is the Matter that confitutes Vegetables. The Plant in E, drew up into it 2501 Grains of the fluid Mafs; and yet had received but Grains 3 and a half of Increafe from all that. The Mint in L, though it had ar firt the difadvantage to be much lef's than that in I; yet being fet in Water wherewich Earth was plentifully mix'd, and that in I, only in Water without any fuch additional Earth, it had vaftly outgrown the other, weighing at laft 145 Grains more than that did, and fo having gain'd about twice as much as that had. In like manner that in K , though 'twas a great deal lefs, when put in than that in I, and allo was impair'd and offended by Infects; yet being planted in Water wherein Earth was diffolved, whereas the Water in which if ftood had none, it not only over-took, but confiderably furpafid the other; weghing at laft 29 Grains more than that in I, and yet had not expended fo much Water as that, by above 2400 Grains. The Plant in N , tho' at firt a great deal lefs than that in M ; yet being fet in the foul crafs Water that was left in the Silll, after that, in which M was fet, was drawn off, in Conclufion had gain'd in weight above

Mijfellanea Curiofa.

above double what that in the finer and thinner Water had. The Proportion of the Augment of that Plant that throve moft was, to the fluid Mals fpent upon it, but as I to 46 . In others, 'twas but as 1 to $60,100,200$; nay, in the Cataputia, 'twas but as 1 to 714. The Mint in B took up 39 Grains of Water aday, one day with another; which was much more than the whole weight of the Plant originally; and yet, with all this, it gain'd nos one fourth of a Grain a-day in weight. Nay, that in H took up 253 Grains a day of the Fluid : Which was near twice as much as its original weight, it weighing, when firf fet in the Water, but 12.7 Grains. And, after all, the daily Enreafe of the Plant was no more than Grains $2 \frac{15}{55} 6^{\circ}$
6. Spring, and Rain-water, contain pretty near an equal Cbarge of Vegetable Matter; River-water more than either of them. The Plants in the Glaffes A, B, and C, were at firft of much the fame fize and weight. At the End of the Experiment, the Mint in A had gain'd 15 Grains out of 2558 Grains of Spring-water; that in B, Grains 17 and an half, out of 3004 Grains of Rain-water ; but that in C had got 26 Grains out of only 2493 Grains of River-water. , I do not found this Propofition folely upon thefe Trials; having made fome more, which I do not relate here, that agree well enough with thefe. So that the Proportions here deliver'd, will hold for the main; but a ftrict and juft Comparion is hardly to be expected. So far from it, that I make no doubt, but the Water that falls in Rain, at fome times, contains a greater fhare of Terreftrial Matter than that which falls at others.

234 Mifellanea Curiofa.

A more powerful and intenfe Heat muft need ${ }^{\text {s }}$ hurry up a larger quantity of that Matter along with the humid Vapours that form Rain, than one more feeble and remifs ever poffibly can. The Water of one Spring may flow forth with an higher Charge of this Matter, than that of another; this depending partly upon the quicknefs of the Ebullition of the Water, and partly upon the Quantity of that Matter latent in the Strata, through which the Fluid paffes, and the greater or lefs laxity of thofe Strata. For the fame Reafon, the Water of one River may abound with it more than that of another. Nay, the fame River, when much agitated, and in commotion, muft bear up more of it, than when it moves with lefs ${ }^{\text {a }}$ rapidity and violence. That there is a great Quantity of this Matter in Rivers; and that it contributes vaftly to the ordinary Fertility of the Earth, we have an illuftrious Inftance in the Nile, the Ganges, and other Rivers that yearly overflow the neightbouring Plains. Their Banks fhew the faireft and largeft Crops of any in the whole World. They are even loaded with the multitude of their Productions; and thofe who have not feen them, will hardly be induced to believe the mighty Returns thofe Tracts make in comparifon of others, that have not the Benefit of like Inundations.
7. Water ferves only for a Vebicle to the Terreftrial Matter, which forms Vegetables; and does not it Self make any addition unto them. Where the proper Terreftrial Matter is wanting, the Plant is not augmented, though never fo much Water afcend into it. The Cataputia in E, took

Mifcellanea Curiofa.

up more Water than the Mint in C , and yet had grown but very little, having received only three Grains and an half of additional weight; whereas the other had received no lefs than twenty fix Grains. The Mint in I, was planted in the fame fort of Water as that in K , was; only the latter had Earth diffolved in the Water; and yet that drew off 13140 Grains of the Water, gaining it felf no more than 139 Grains in weight; whereas the other tuok up but 1073I Grains of the Water, and was augmented 168 Grains in weight. Confequently that fpent 2409 Grains more of the Water than this in K, did, and yet was not fo much encreafed in weight as this by 29 Grains. The Mint in M, food in the very fame kind of Water as that in N, did. But the Water in M, having much lefs Terreftrial Matter in it than that in N had, the Plant bore up 880_{3} Grains of it, gaining it felf only 4 I Grains the while; whereas that in N drew off no more than 4344 Grains, and yet was augmented 94 Grains. So that it feent 4459 Grains of Water more than that did; and yer was not it felf fo much increafed in weight, as that was, by 53 Grains. This is both a very fair, and a very conclufive Inftance; on which Account 'tis that 1 make oftner ufe of it. Indeed they are all fo; and to add any thing further on this Head, will not be needful.
'Tis evident therefore Water is not the Matter that compofes Vegetable Bodies. 'Tis only the Agent that conveys that Matter to them ; that introduces and diftributes it to their feveral Parts for their Nourifhment. That Matter is fluggifh and unactive, and would lie eternally confin'd

236 Mifceilanea Curiofa,

confin'd to its Beds of Earth, without ever advancing up into Plants, did not Water, or fome like Inffrument, fetch it forth and carry it unto them. That therefore there is that plentitiful Provifion, and vaft Abundance of it fupplied to all Parts of the Earth, is a mark of a natural Providence fuperintending over the Globe we inhabit; and ordaining a due Difpenfation of that Fluid, without the Miniftry of which the Noble Succeffion of Bodies we behold, Animals, Vegetables, and Mine-
 pothefis, is abfolutely neceffary in the Affair of Vegetation; and it will not fucceed without it : Which indeed gave occafion to the Opinion, that Water it felf nourifhed, and was changed into Vegetable Bodies. They faw, though thefe were planted in a Soil never fo rich, fo happy, fo advantageous, nothing cameof it unlefs there was Water too in a confiderable quantity. And it muft be allow'd Vegetables will not come on or profper where that is wanting : But yet what thofe Gentlemen inferr'd thence, was not, we fee, well grounded.

This Fluid is capacitated for the Office here affign'd it feveral ways: By the Figure of its Parts; which, as appears from many Experiments, is exactly and mathematically Spherical; their Surfaces being perfectly polite, and without any the leaft Inequalities. 'Tis evident, Corpufcles of fuch a Figure are eafily fufceptible of Motion, yea, far above any others what-

Mifcellanea Curiofa.

 moving and conveying other Matter, that is not fo active and voluble. Then the Intervals of Bodies of that Figure are, with refpect to their Bulk, of all others the largeit; and to the moft fitted to receive and entertain foreign Matter in them. Befides, as far as the Trials hitherto made inform us, the conitituent Corpufcles of Water are, each fingly confider'd, abfolutely folid; and do not yield to the greateft External Force. This fecures their Figure againt any Alteration; and the Intervals of the Corpufcles mult be always alike. By the latter, 'twill be ever difpofed to receive Matter into it; and by the former, when once received, to bear it on along with it. Water is further capacitated to be a Vehicle to this Matter, by the tenuity and finenefs of the Corpufcles of which it con: fifts. We hardly know any Fluid in all Nature, except Fire, whofe conftituent Parts are To exceeding fubtle and fmall as thofe of Water are. They'll pafs Pores and Interfices, that neither Air nor any orher Fluid will. This enables them to enter the fineft Tubes and Veffels of Plants, and to introduce the Terreftrial Matter, conveying it to all Parts of them; whillt each, by means of Organs 'tis endqwed with for the Purpofe, intercepts and affumes into it felf fuch Particles as are fuitable to its own Natare, letting the reft pafs on through the common Ducts. Nay, we have almoft every where Mechanical Infances of much the fame Tenor. 'Tis obvious to every one, how eafily and fuddenly Humidity, or the Corpufcles of Water fuftained in the Air, pervade and in-
23^{8} Mifcellanea Curiofa.

finuate themfelves into Cords, however tightly twifted, into Leather, Parchment, Vegetable Bodies, Wood, and the like. This it is that fits them for H,grometers; and to meafure and determine the different quantities of Moifture in the Air, in different Places and Seafons. How freely Water paffes and carries with it Terreftrial Matter, through Filtres, Colatures, Diftillations, © ${ }^{\circ}$. hath been intimated already.
8. Water is not capable of performing this Office to Plants, unlefs affifed by a due Quantity of Heat ; and this muft concur, or Vegetation will not fucceed. The Plants that were fet in the Glaffes $\mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{E}_{\mathrm{c}} \mathrm{c}$ in October, and the following colder Months, had not near the quantity of Water fent up into them, or fo great an additional Encreafe by much, as thofe that were fet in $\mathcal{F u n e}, \mathcal{F u l y}$, and the hotter. 'Tis plain Water has no power of moving it felf; or rifing to the vaft height it does in the more tall and lofty Plants. So far from this, that it does not appear from any Difcotery yet made, that even its own Fluidity confifts in the inteftine Motion of its Parts; whatever fome, otherwife very learned and knowing, Perfons may have thought. There is no need of any thing more, for folving all the Pbanomena of Fluidity, than fuch a Figure and Difpofition of the Parts, as Water has. Corpufcles of that make, and that are all abfolutely Spherical, muft ftand fo very tickle and nicely upon each other, as to be fuiceptible of every Impreffion; and though not perpetually in Motion, yet muft be ever ready and liable to be put

Mifcellanea Curiofa.

 into it, by any the flightef Force imaginable. It is true, the Parts of Fire or Heat are nof capable of moving themfelves any more than thofe of Water; but they are more fubtil, light, and active, than thofe are, and fo more eafily put into Motion. In fine, 'tis evident and matter of Fact, that Heat does operate upon, and move the Water, in order to its carrying on the Work of Vegetation : But how 'tis agitated it felf, and where the Motion firft begins, this is no fic Place to enquire.That the Concourfe of Heat is this Work is really neceffary, appears, not colly from the Experiments before us, but from all Nature; from our Fields and Forefts, our Gardens and our Orchards. We fee in Auturn, as the Sun's Power grows gradually lefs and leff, fo its Effects on Plants is remitted, and their Vegetation flackens by little and little. Its Failure is firft difcernible in Trees. Thefe are raifed higheft above the Earth; and require a more intenfe Heat to elevate the Water, charged with their Nourifhment, to the Tops and Extremeties of them. So that for want of frefh Support and Nutriment, they fhed their Leaves, unlefs fecur'd by a very firm and hardy Conftiturion indeed, as our ever-Greens are. Next the Sbrubs part with theirs; and then the Herbs and lower Tribes; the Heat being at length not fufficient to fupply even thefe, though fo near the Earth, the Fund of their Nourifhment. As the Heat returns the fucceeding Spring, they all recruit again; and are furnifh'd with frefh Supplies and Verdure: But firt, thofe which are loweft and neareft the Earth, Herbs, and they that require a leffer degree

240 Mifcellanea Curiofa.

degree of Heat to raife the Water with its Earthy Charge into them : Then the Shrubs and higher Vegetables in their Turns; and laftly, the Trees. As the Heat increafes, it grows too powerful, and hurries the Matter with too great Rapidity thorough the finer and more tender Plants: Thefe therefore go off, and decay; and others that are more hardy and vigorous, and require a greater fhare of Heat, fucceed in their Order. By which Mechanilm, provident Nature furnifhes us with a very various and differing Entertainment; and what is beft fuited to each Seafon, all the Year round.

- As the Heat of the feveral Seafons affords us a different Face of Things; fo the feveral diflant Climates fhew different Scenes of $\mathrm{Na}-$ ture, and Productions of the
* Conf. Nat. Earth *. The Hotter CounHift. Earth, Pag. 267. \& feq. tries yield ordinarily the largeft and talleft Trees; and thofe in too much greater variety than the colder ever do. Even thofe Plants which are common to both, attain to a much greater Bulk in the Southern than in the Northern Climes. Nay, there are fome Regions fo bleak and chill, that they raife no Vegetables at all to any confiderable Size. This we learn from Greenland, from Ifeland, and other Places of like cold Site and Condition. In thefe no Tree ever appears; and the very Shubs they afford, are few, little, and low.

Again, in the warmer Climates, and fuch as do furnifh forth Trees and the larger Vegetables, if there happen a remiffion or diminution of the ufual Heat, their Productions will be impeded and diminfhed in proportion. Our late Colder Summers

Mifcellanea Curiofa.

Summers have given us proof enough of this For though the Heat we have had, was fufficient to raife the Vegetative Matter into the lower Plants, into our Corns, our Wheat, Barley, Peafe and the like ; and we have had plenty of Straw-berries, Ras-berries, Currans, Goosberries, and the Fruits of fuch orher Vegetables as are low and near the Earh : Yed, and a moderate Attore of Cherries, Mulberries, Plumbs, Filberts, and fome others that grow fomewhat at a greater Height ; yet our Apples, our Pears, Walnuts, and the Productions of the taller * Trees have been fewer, and thofe not fo kindly, fo thoroughly ripen'd, and brought to that Perfection they were in the former more benign and their warm Seafons.Nay, even the lower Fruits and Grains have had fome fhare in the com-
> * Ibe Dwarf-Apple and Pear-trees bave fucceeded better. And indeed in Trees of the fame kind, thofe tbat keep clofeft to the Eartb always produce the moft and beft Fruit. For wobich Reafon'tis th.tt the Gardiners ckeck and reftrain the Growth of better Pruittrees, and prevent their running up to too great a Heigbt. mon Calamity ; and fallen fhort both in Number and Goodnefs of what the hotter and kinder Seafons were won't to fhew us. As to our Grapes, Abricots, Peaches, Nectarens, and Figs, being tranfplanted hicher out of hotte! Climes, 'tis the lefs wonder we have of late had fo general a Failure of them.

Nor is it the Sun, or the ordinary emiffion of the Subterranean Heat only, that promotes Vegetation; but any other indifferently, according to its Power and Degree : This we are taught by our Stoves, hot Beds, and the like. All R Heat

242 Mifcellanea Curiofa.

Heat is of like kind; and where-ever is the fame Caufe, there will be conftantly the fame Effect. There's a Procedure in every part of Nature, that is perfectly regular and geometrical, if we can but find it out; and the further our Searches capry us, the more fhall we have occafion to admire this, and the better 'twill compenfate our Induftry.

Mif fellanea Curiofa. 243

An Account of the Meafure of the thicknefs of Gold upon Gilt Wire; together with Demonfration of the exceeding Minutenefs of the Atoms or conftittent Particles of Gold; as it was read before the Royal Society, by E. Halley.

wH. T are the eonftituent Parts of Matter, and how there comes to be fo great 2 diverfiy in the weight of Bodies, to all appearance equally folid and denfe, fuch as are Gold and Glafs, (whofe fecifick Gravities are nearly as 7 to I) feems a very hard Queltion to thofe that fhall rightly confider it : For from undoubted Experiment, Gravity is in all Bodies proportionable to the Quantity of Matter in each; und there is no fuch thing as a Propenfion of fome more, others lefs, towards the Earth's Center; fince the Impediment of the Air being removed, all Bodies defcend, be they never fo loofe or compact in Texture, wih equal Velocity. It follows therefore, That there is 7 times as much Matter in Gold, as in a piece of Glats of the fame Magnitude; and confequently, that at leaft fix parts of feven in the Bulk of Glafs, mult be Pore or Vacuity: This fome Favourcrs of the Atomical Philofophy have endeavoured to folve, by fuppofing the primary

$$
\mathrm{R}_{2}
$$

244 Mifcellanea Curiofa.

or conflituent Atoms of Gold to be much larger than thofe of other Bodies, and confequently the. Pores fewer ; whereas in other Bodies, the great mulkitude of the interfperfed Vacuilies does diminifh their Weights.

Being defirous to examine this Notion of the Magnitude of Atoms of Gold, I bethought my feif of the extreme Ductility of that Metal, which is feen in the beating of it into Leaf, and above all in the drawing fine Gilt-wire, by means whereof, I believed I might moft exaolly obtain the true thicknefs of the Coat bf Gold, that appears, even with the Microfoope, fo welt to reprefent Gold it felf, that not the leart point of Silver appears through it. In order to this, I inform'd my felf among the Wire-drawers, what Gold they us'd to their' Silver'; and they told me, That the very beft double Gilt Wire was made out of Cylindrick Ingots, 4 Inches in Cirg cumference, and 28 Inches long, which weigh 16 PoundsTroy; on theferthey beftow 4 Ounces of Gold, that is, to every 48 Ounces of Silver one of Gold ; and that two Yards of the fuper2 fine Wire weighs a Grain." Hence at firft fight if appear'd, that the length of 98 Yards is in weight 49 Grains, and that a fingle Grain of Gold covers the faid 98 Yards, and that the 10000th part of a Grain is above $\frac{1}{3}$ of an Inch long; which yet may be actually divided into 10, and fo the rooocoth part of a Grain of Gold be vifible without a Mictrofores. But being defirous to compute the thicknefs of the Skin of Gold, by means of the feecifick Gravities of the Metals, viz. Silver $10 \frac{1}{3}$, and Gold $18 \frac{2}{3}, 1$ found the Diameter of fuch Wire the $\frac{1}{8 B 6}$ part of 2n Inch, and its Circumference the $\frac{1}{\text { 立 }}$ part ; but the

Mifcellanea Curiofa. 245

the Gold in thicknefs not to exceed the $\frac{1}{134500}$ part of an Inch; whence it may be concluded, that the Cube of the hundredth part of an Inch would contain above 2433000000 , (or the Cu_{i} be of 1345) of fuch Atoms. And it may likew fe be marvelled at, that Gold being ftretcht to fo great a degree, as is here demonftrated, fhould yet thew it felf of fo even and united a Texture, as not to let the white Colour of the Silver under it appear through any the leaft Pores; which argues, that even in this exceeding thinnefs very many of thofe Atoms may ftill lie one over the other : Which is a Confideration may merit the Thoughts of this Honourable Society, as tending to examine that renowned Atomical Doctrine, which has of late much obtain'd among the Learned.

246 Mifcellanea Curiofa.

An Account of the feveral Species of Infinite Quantity, and of the Proportions they bear one to the other ; as it was read before the Royal Society, by E. Halley.

TH A T all Magnitudes infinitely great, or fuch as exceed any affignable Quantity, are equal among themfelves, though it be vulgarly received for a Maxim, is not yet fo common as it is erroneous; and the Reafon of the miftake feems to be, That the Mind of Man, coming to contemplate the Extenfions of what exceeds the bounds of its Capacity, and of which the very Idea does include a Negation of Limits ; it comes to pafs that we we acquiefce generally, and it fuffices to fay fuch a Quantity is infinite.

But if we come more nearly to examine this Notion, we fhall find, that there are really befides infinite Length and infinite Area, no lefs than three feveral forts of infinite Solidity; all of which are Quantitates fui generis, having no more relation or proportion the one to the other, than a Line to a Plane, or a Plane to a Solid, or a Finite to an Infinite : But that among themfelves, each of thofe Species of Infinites are in given Proportions, is what I now intend to make plain, if poffible.

Mijcellanea Curiofa.

Bat firf, infinite Length, or a Line infinitely long, is to be confidered either as beginning at a Point, and to infinitely extended one way, or elfe both ways from the fame Point; in which cafe the one, which is a beginning Infinity, is the one half of the whole, which is the Summ of the beginning and ceafing Infinity; or, as I may fay, of Infinity, à parte ante, and à parte poft: Which is analogus to Eternity in Time or Duration, in which there is always as much to follow as is paft, from any point or moment of Time : Nor doth the Addition or Subduction of finite Length or Space of time alter the cafe either in Infinity or Eternity, fince both the one or the other cannot be any part of the whole.

As to infinite Surface or Area, any right Line, infinitely extended both ways on aninfinite Plane, does divide that infinite Plane into equal Parts; the one to the right, and the other to the left of the faid Line : But if from any Point in fuch a Plane, two right Lines be infinitely extended; fo as to make an Angle, the infinite Area, intercepted between thofe infinite right Lines, is to the whole infinite Plane, as the Arch of a Circle, on the Point of Concourfe of thofe Lines, as a Centre, intereepted between the faid Lines, is to the Circumference of the Circle; or as the Degrees of the Angle to the 360 Degrees of a Circle. For Example, two right Lines meeting at a right Angle do include, on an infinite Plane, a quarter part of the whole infinite Area of fuch a Plane.

But if fo be, two parallel infinite Lines be fuppofed drawn on fuch an infinite Plane, the Area intercepted between them will be likewife infinite ; but at the fame time will be infinitely lefs, R 4
than

248 Mifcellanea Curiofa.

than that Space which is intercepted between two infinite Lines that are inclined, though with never fo fmall an Angle; for that in the one Cafe, the given finite diftance of the parallel Lines diminifhes the \ln finity in one Degree of Dimenfion; whereas in a Sector, there is Infinity in both Dimenfions; and confequently, the Quantities are the one infinitely greater than the other, and there is no proportion between them.

From the fame Confideration arife the Three feveral Species of infinite Space or Solidity, as has been faid, for a Parallelepepide, or a Cylinder, infinitely long, is greater than any finite Magnitude how great fuever; and all fuch Solids, fuppofed to te formed on given Bafes, are as thofe Bafes, in proportion to one another. But if two of thefe three Dimenfions are wanting, as in the Space intercepted between two pirailel Planes infinitely extended, and at a finite diftance; or with infinite Length and Breadth, with a finite Thicknefs; All fuch Solids fhall be as the given finite diffances one to another: But thefe Quantities, though infiritely greater than the other, are yet infinitely lefs than any of thofe, wherein all the three Dimenfions are infinite. Such are the Spaces intercepted between t wo inclined Planes infinitely extended; the Space intercepted by the Surface of a Cone, or the fides of a Pyramid likewife infinitely continued, E c : of all which notwithftanding, the Proportions one to anorher, and to the co $\pi \tilde{u} v$, or vaft Abyls of infinite Space (wherein is the Locus of all things that are or can be; or to the Solid of infinite Length, Breadth, and Thicknefs, taken all manner of ways) are eafily affignable. For the Space between two Planes, is to the whole, as the

Mifcellanea Curiofa. 249

the Angle of thofe Planes to the 360 Degrees of the Circle. As for Cones and Pyramids, they are as the Spherical Surface, intercepted by then, is to the Surface of the Sphere; and therefore Cones are as the verfed Sines of half their Angles, to the Diameter of the Circle : There three forts of infinite Quantity are analogous to a Line, Surface and Solid, and after the fame manner cannot be compared, or have any proportion the one to the other.

Befides thefe, there are feveral other Species of infinite Quantity, arifing from the Contemplation of Curves, and their Alymptotes; which, by reafon of the difficulty of the Subject, cannot be made fo plain to moft Readers : But what has been already faid, may be fufficient to evince what we undertook to explain.

=50 Mifcellanea Curiofa.

An Account of Dr. Robert Hook's Invention of the Marine Barometer, wiib its $D_{e f c r i p t i o n ~ a n d ~}^{\text {a }}$ Vfes; publi/hed by order of the Royal Society, by E. Halley, R. S. S.

sInce it was found that the Torricellian Tube, commonly call'd the Mercurial Barometer, by the rifing and falling of the Quick-filver therein, doth prefage the Changes of the Air, in relation to fair and foul Weather ; upon feveral Years Obfervation of it, it has been proved and adjufted for that purpofe by Dr. Robert Hook; and there have been by him many attempts to improve the Inftrument, and render the Minute Divifions on the Scale thereof more fenfible. He alfo judging that it might be of great ufe at Sea, contrived feveral ways to make it ferviceable on Board of Ship ; pne of which he explain'd to the Royal Society at their Weekly Meeting in Greßam College, Fanuary 2. 166 $\frac{7}{8}$. Since which time he hath further cultivated the Invention, and fome Years ago produced before the faid Society, the Inftrument I am now to defcribe, which for its lubtilty and ufefulners, feemeth
to furpafs all other performances of the like Na ture.
'Till fuch time as the Author's prefent IndiSpofition will give him leave to beftow freely his Thoughts on this Subject upon the Publick, it is the Opinion of the Society, that fuch an Account be given of this Contrivance, as may render it known, and recommend ir to the Mariners ufe, for which it was principally intended.

The Mercurial Barometer requiring a perpendicular Pofture, and the Quick-filver vibrating therein with great Violence upon any Agitation, is therefore uncapable of being ufed at Sea (tho' it hath lately been contrived to be made portable, fo it remain'd to find out fome other Principle, wherein the Pofition of the Inftrument was not fo indifpenfably neceffary: For this, all thofe that ufe the Sea are obliged to the great facility Dr. Hook has always fhewn, in applying Philofophical Experiments to their proper ufes:

It is about forty Years fince, that the Thermometers of Robert de Fluctibus, depending on the Dilatation and Contraction of included Air by Heat and Cold, have been difufed, upon difcovery that the Airs preffure is unequal ; that inequality mixing it felf with the Effects of the warmth of the Air in that Inftrument. And inftead thereof was fubftituted the feal'd Thermometer, including Spirit of Wine (firft brought into England, out of Itaty, by Sir Robert Southwell) as a proper Standard of the temper of the Air, in relation to Heat and Cold; that 不therial Spirit being of all the fnown Liquors the moft fufceptible of Dilata-

252 Mifceillanea Curiofa.

tion and Contraction, efpecially with a moderate degree of either Heat or Cold. Now this being allow'd as a Standard, and the other Thermometer that includes Air, being graduated with the fame Divifions, fo as at the time when the Air was included, to agree with the Spirit-Tbermometer in all the degrees of Heat and Cold, noting at the fame time the precife height of the Mercury in the common Barometers: It will readily be underfood, that whenfoever thefe two Thermometers fhall agree, the preffure of the Air is the fame it was, when the Air was included, and the Inftrument graduated : That if in the Air-Thermometer the Liquor ftand higher than the Divifion marked thereon, correfponding with that on the Spi-rit-glafs, it is an indication that there is a greater preffure of the Air at that time, than when the Inftrument was graduated. And the contrary is to be concluded, when the Air-glafs ftands lower than the Spirit, viz. that then the Air is fo much lighter, and the Quick filver, in the ordinary Barometer lower than at the faid time of Graduation.

And the Spaces anfwering to an Inch of Mercury, will be more or lefs, according to the quantity of Air fo included, and the fmallnefs of the Glafs Cane, in which the Liquor rifes and falls, and may be augmented almolt in any proportion, under that of the Specifick: Gravity of the Liquor of the Thermometer to Mercury. So as to have a Foot or more for an Inch of Mercury, which is another great convenience,

Mifcellanea Curiofa. 253

It has been obferved by fome, that in long keeping this Inftrument, the Air included either finds a means to efcape, or depofites fome Va pours mixt with it, or elfe for fome other caufe becomes lefs Elaftick, whereby, in procefs of time, it gives the height of the Mercury fomewhat greater than it ought ; but this, if it fhould happen in fome of them, hinders not the ufefulnefs thereof, for that it may at any time very eafily be corrected by Experiment, and the rifing and falling thereof are the things chiefly remarkable in it, the juft height being barely a Curiofity.

In thefe Parts of the World, long Experience has told us, that the rifing of the Mercury forebodes fair Weather after foul, and an Eafterly or Northerly Wind; and that the falling thereof, on the contrary, fignifies Southerly or Wefterly Winds, with Rain, or ftormy Winds, or both; which latter it is of much more confequence to provide againft at Sea than at Land ; and in a Storm, the Mercury beginning to rife is a fure fign that it begins to abate, as has been experienced in high Latitudes, both to the Northwards and Southwards of the 压quator.

The Form of this Inftrument is fhown in the Cut, by Tab. 4. Fig. I. wherein,

A B reprefents the Spirit-Thermometer, graduated from o, or the freezing Point, through all the poffible degrees of the Heat or Cold of the Air, at leaft in thefe Climates.
$C D$, is the Air-Thermometer, graduated after the fame manner with the like Degrees.

EF, is a Plate applied to the fide of the Thermometer CD, graduated into Spaces anfwering to Inches and parts of an Inch of Mercury, in the common Barometers.

G, a Hand ftanding on the Plate at the height of the Mercury thereon, as it was when the Inftrument was graduated, as fuppofe here at $29 \frac{1}{2}$ Inches.

LM, a Wire on which the Plate EF, flips up and down, parallel to the Cane of the Thermometer CD.

K , any Point at which the Spirit ftands at the time of Obfervation; fuppofe at 3^{8} on the Spirit-Thermometer ; Slide the Plate EF till the Hand G ftand at 38 on the Air-Thermometer, and if the Liquor therein ftand at, 38 likewife, then is the preffure of the Airy the fame as at the time of Graduation, vizil 29,5 ; but if it ftand higher, as at 30, at 1 ; then is the preffure of the Air greater; and the divifion on the fliding Plate againlt the Liquor, Shews the prefent height of the Mercury to be twenty nine Inches feven Tenthse And this may fuffice as to the manner of ufing it.

I had one of thefe Barometers with me in my late Southern Voyage, and it never failed to prognoftick and give early notice of all the bad Weather we had, fo that I depended thereon, and made provifion accordingly; and from my own Experience I conclude that a more ufeful Contrivance hath not for thia long time been offer for the benefit of Na vigation.

Mijcellanea Guriofa.

Thefe Inftruments are made according to the Direction of Dr. Hook, by Mr. Henry Hunt, Operator to the Royal Society, who will furnif any Gentlemert with them, and give them Directions how to ufe them.

A Difourfe concerning the Proportional Heat of the Sun in all Latitudes, with the Metbod of collecting the fame; as it was read before the Royal Society, in one of their late Meetings. ByE, Halley.

T
Here having lately arifen fome Difcourfe about that part of the Heat of Weather, fimply produced by the Action of the Sun; and I having affirmed, that if. that were confidered, as the only Caufe of the Heat of the Weather, I faw no Reafon, but that under the Pole the folftitical Day ought to be as hot as it is under the Æquinoctial, when the Sun comes vertical, or over the Zenith : For this Reafon, that for all the 24 Hours of that Day under the Pole, the Sun's Beams are inclined to the Horizon, with an Angle of $23^{\frac{1}{2}}$ Degrees; and under the 府quinoctial, though he come vertical, yet he fhines no more than 12 Hours, and is again 12 Hours ablent ; and that for 3 Hours 8 Minutes of that 12 Hours, he is not fo much elevated as under the Pole; fo that he is not 9 of the whole 24 , higher than 'tis there, and is 15 Hours lower. Now the fimple Action of the Sun is, as all other Impulfes or Stroaks, more

Mifcellanea Curiofa.

or lefs forceable, according to the sinus of the Angle of Incidence, or to the Perpendicular let fall on the Plain, whence the vertical Ray (be: ing that of the greateft Heat,) being put Radius, the force of the Sun on the Horizontal Surface of the Earth will be to that, as the Sinus of the Sun's Altitude at any other time. This being allow'd for true, it will then follow, that the time of the continuance of the Sun's fhining being taken for a Bafis, and the Sines of the Sun's Altitudes erected thereon as Perpendiculars, and a Curve drawn through the Extremities of thofe Perpendiculars, the Area comprehended fhall be proportionate to the Collection of the Heat of all the Beams of the Sun in that fpace of time. Hence it will follow, that under the Po'e the Collection of all the Heat of a tropical Day, is proportionate to a Rectangle of the Sine of $23 \frac{1}{2} \mathrm{gr}$. into 24 Hours, or the Cir cumference of a Circle; that is, the Sine of $23^{\frac{x}{2}}$ gr . being nearly 4 Tenths of Radius; as $\frac{3}{\mathrm{r}_{0}}$ into 12 Hours. On the Polar Heat is equal to that of the Sun containing 12 Hours above the Horizon, at 53 gr . height, than which the Sun is not 5 Hours more elevated under the Equinoctial.

But that this Matter may the better be underfood, I have exemplified it by a Scheme, (Tab. 4. Fig. 2.) wherein the Area ZGHH, is equal to the Aren of all the Sines of the Sun's Altitude under the Æquinoctial, erected on the refpective Hours from Sun-rife to the Zenith; and the Area 8 HH 號 in the fame proportion to the Heat of the fame 6 Hours under the Pole on the Topical Day; and © $\mathcal{H} \mathrm{L}$, is proportional to the collected Heat of 12

558 Mifcellanea Curiofa.

Hours, or half a Day under the Pole, which ipace $\odot H H 2$, is vifibly greater than the other Area $H Z G H$, by as much as the Area $H G Q$ is greater than the Area $\mathcal{Z} \mathcal{O} ;$ which, that it is fo, is vifible to fight, by a great excefs ; and: fo much in proportion does the Heat of the 24 Hours Sun-fhine under the Pole, exceed that of the 12 -Hours under the Æquinoctial: Whence, Ceteris paribus, it is reafonable to conclude, that were the Sun perpetually under the Tropick, the Pole would be at leaft as watm, as it is now. under the Line it felf.

But whereas the Nature of Heat is to remain in the Subject, after the Caufe that heated is removed, and particularly in the Air; under the Æquinoctial, the 12 Hours abfence of the Sun does very little ftill the Motion impreffed by the paft Action of his Rays, wherein Heat confifts, before he arife again : But under the Pole the long abfence of the Sun for 6 Months, wherein the extremity of Cold does obtain, has fo chill'd the Air, that it is as it were frozen, and cannot, before the Sun has got far towards it, be any way fenfible of his prefence, his Beams being obftructed by thick Clouds, and perpetual Fogs and Milts, and by that Atmof phere of Cold, as the late Honourable Mr. Boyle was pleafed to term it, proceeding from the everlafting Ice, which in immenfe Quantities does chill the Neighbouring Air, and which the too foon retreat of the Sun leaves unthawed, to encreafe again, during the long Wintet that follows this fhort interval of Summer. But the differing Degrees of Heat and Cold, in differing Places, depend in great meafure upon the Accidents of the Neighbourhood of high Moun-
tains, whofe height exceedingly chills the Air brought by the Winds over them; and of the Nature of the Soil, which varioully retains the Heat, particularly the Sandy, which in Africa, Arabia, and generally where fuch Sandy Defarts are found, do make the Heat of the Summer incredible to thofe that have not felt it.

In the profecution of this firft Thought, I have folved the Problem generally, viz. to give the proportional Degree of Hear, or the Suth of all the Sines of the Sun's Altitude, while he is above the Horizon in any oblique Sphere, by reducing it to the finding of the Curve Sutface of a Cylindrick Hoof, or of a given part thereof.

Now this Problem is not of that difficulty as appears at firft fight, for in Tab. 4. Fig. 3. let the Cylinder $A B C D$ be cut obliquely with the Ellipfe BKDI, and by the Center thereof H , defribe the Circle IKLM; I fay, the Curve Surface IKL.B is equal to the Rectangle of IK and BL , or of HK and 2 BL or BC : And if there be fuppofed another Circle, as NQPO, curting the faid Ellipfe in the Points P, Q; draw PS, $Q R$, parallel to the Cylinders Axe, till they meet with the aforefaid Circle IKLM in the Points R, S, and draw the Lines RTS, QVP bifected in \mathbf{T} and V. I fay again, that the Curve Surface RMSQDP is equal to the Rectangle of $B L$ or $M D$ and RS, or of $2 B C$ or AD and ST or VP; and the Curve Surface QNPD is equal to RS $x \mathrm{MD}$ - he Arch RMS x SP, or the Arch MS $x_{2} \mathrm{SP}$: Or it is equal to the Surface RMSQDP, fubftracting the Surface RMSQNP. So likewife the Curve Surface QBPO is equal to the Sum of the Sur-

$$
\mathrm{S}_{2} \quad \mathrm{f}_{\mathrm{d}} \mathrm{ce}
$$

260 Mifcellanea Curiofa.

face RMSQDP, or RS x MD, and of the Surface RLSQOP, or the Arch LS $x \cdot 2$ SP.

This is the moft eafily demonftrated from the Confideration, That the Cylindrick Surface IKLB is to the infrib'd Spherical Surface IKLE, either in the whole, or in its Analogous Parts, as the tangent BL is to the Arch EL, and from the Demonftrations of archimedes de Sphara \mathcal{G} Cylindro, Lib. I. Prop. xxx , and $\mathrm{xxxv1}$, xxx 1 Ix . which I fhall not repeat here, but leave the Reader the pleafure of examining it himfelf; nor will it be amifs to confult Dr. Barrow's Learned Lectures on that Book, Publifh'd at London, Anno 1684, viz. Probl. ix. and the Corollaries thereof.
Now to reduce our Cafe of the Sum of all the Sines of the Sun's Altitude in a given Declination and Latitude to the aforefiid Problem, let us confider (Tab. 4. Fig. '4.) which is the Ana* Iemma projected on the Plain of the Meridian, Z the Zenith, P the Pole, HH the Horizon, $\boldsymbol{x} \boldsymbol{x}$ the 生quinoctial, $\mathcal{S} \delta, \psi_{0} w$ the two Tropicks, I the Sine of the Meridian Altitude $^{\text {a }}$ in Φ; and equal thereto, but perpendicular to the Tropick, erect of 1 , and draw the Line $\mathrm{T} \boldsymbol{1}$ interfecting the Horizon in T , and the Hour Circle of 6 , in the Point 4, and 64 fhall be equal to 6R, or to the Sine of the Altitude at 6 : And the like for any other Point in the Tropick, erecting a Perpendicular thereat, terminated by the Line T 1 : Through the Point 4 draw the Line 4,5,7 parallel to the Tropick, and reprefenting ${ }_{a}$ Circle equal thereto; then fhall the Tropick so so in Fig. 4. anfwer to the Circle NOPQ, in Fig. 3 . the Circle 4, 5,7 , fhall anfwer the Circle IKLM, T_{4} I fhall anfwer to the Elliptick Segment QIBKP, 6R or 64 fhall anfwer to SP,

Mijcellanea Curiofa.

SP , and 5 I to BL , and the Arch 5 T , to the Arch LS, being the femidiurnal Arch in that Laritude and Declination; the Sine whereof, tho: not expreffible in Fig. 4. mutt be conceived as Analogous to the Line TS or UP in Fig. 3.

The Relation between thefe two Figures being well underitood, it will follow from what precedes, That, the fum of the Sines of the Meridian Altitudes of the Sun in the two Tropicks, (and the like for any two oppofite Parallels) being multiplied by the Sine of the femidiurnal Arch, will: give an Area Analogous to the Curve Surface R§MSQDP; and thereto adding in Summer, or: fubfracting in Winter, the Product of the length of the Semidiurnal Arch, (taken according to VanCeulen's Numbers) into the difference of the abovefaid Sines of the Meridian Altitude: The Jum in one cafe, and difference in another, foall be as the Aggregate of all :the Sines of the Sun's Altitude, during his appearance above the Horizon; and conSequently of all bis Heat and Attion on the Plain of the Horizon in the propofed Day. And this may alfo be extended to the parts of the fame Day; for if the aforefaid Sum of the Sines of the Meridian Altitudes, be multiplied by half the Sum of the Sines of the Sun's Horary diftance from Noon, when the Times are before and after Noon; or by half their difference, when both are on the fame fide of the Meridian; and thereto in Summer, or therefrom in Winter, be added or fubftracted the Product of balf the Arch anfwerable to the propofed interval of Time, into the difference of the Sines of Meridian Altitudes, the Sum in one cafe and Difference in the other, fhall be proportional to all the Action of the Sun during that fpace of time.

262 Mifcellanea Curiofa.

I fore-fee it will be Objected, that I take the Radius of my Circle on which I erect my Perpendiculars always the fame, whereas the Parallels of Declination are unequal ; but to this I anfwer, That our faid Circular Bafes ought not to be Analogous to the Parallels, but to the Times of Revolution, which are equal in all of them.

It may perhaps be ufeful to give an Example of the Computation of this Rule, which may feem difficult to fome. Let the Sollticical Heat in σ_{0} and ψ_{s} be required at London, Lat. 51° $3^{2 \prime}$.

380.2	Co-Lat.	1.
$23-30$	Decl. ${ }^{(1)}$	Arch. Semid. aftiv.123-11.
61-58	Sinus $=, 8826$	Ar.Sem. hyb. $56=49.5 .638923$
14.58	Sinus $=, 258257$	Arch.offiv.menfura, 149955
	Summa 1,14093	Arc. byb. menfura 991683

Then I , 140931 in $, 836923,+624417$ in 2 ,149955=2,29734. And 1,14093 in 836929.
,- 624417 in, $991638=33895$.
So that 2,29734 will be as the Tropical Summers Day Heat, and 0,33895 as the Action of the Sun in the Day of the Winter Solltice.

After this manner I computed the following Table for every tenth Degree of Latitude, to the Equinoctial and Tropical Sun, by which an Eftimate may be made of the intermediate Degrees.

La	Sun in		$\mathrm{Sun}_{49}{ }^{\text {in }}$
0	20000	18341	18341
10	19696	20290	15834
20	18794	21737	13166
30	17321	22651	10124
40	15321	23048	6944
50	12855	22991	3798
60	10000	22773	1075
70.	68.40	23543	000
80	3473	24673	000
90	0000	25055	000

Thofe that defire more of the Nature of this Problem, as to the Geometry thereof, would do well to compare the XIII. Prop. Cap. V. of the Learned Treatife, De Calculo Centri Gravitatis, by the Reverend Dr. Wallis, Publifhed Anno 1670.

From this Rule there follow feveral Corollaries worth Note: As I. That the Æquinoctial Heat, when the Sun comes Vertical, is as twice the Square of Radius, which may be propofed as a Standard to compare with, in all other Cafes. II. That under the Equinoctial, the Heat is as the Sine of the Sun's Declination. HI. That in the Frigid Zones when the Sun fers not, the Heat is as the Circumference of a Circle into the Sine of the Altitude at 6. And confequently, that in the fame Latitude thefe Aggregates of Warmth, are as the Sines of the Sun's Declinations; and in the fame Declination of Sol, they

264 Mifallanea Curiofa.

are as the Sines of the Latitude, and generally they are as the Sines of the Latitude into the Sines of Declination. IV. That the Equinoctial Days Heat is every where as the Co-fine of the Latitude. V. In all places where the Sun fets, the difference between the Summer and Winter Heats, when the Declinations are contrary, is equal to a Circle into the - Sine of the Altitude at fix in the Summer Parallel, and confequently thofe differences are as the Sines of Latitude into, or multiplied by the Sines of Declination. VI. From the Table I have added, it appears, that the Tropical Sun under the Æquinoctial, has, of all others, the leaft Force. Under the Pole it is greater than any other Days Heat whatfoever, being to that of the . Æquinoctial as 5 to 4 .

From the Table and thefe Corollaries may a general Idea be conceived of the Sum of all the Actions of the Sun in the whole Year, and that part of the Heat that arifes fimply from the Prefence of the Sun be brought to a Geometrical Certainty: And if the like could be performed for Cold ; which is fomething elfe than the bare Abfence of the Sun, as appears by many Inftances, we might hope to bring what relates to this part of Meteorology to a perfect Theory.

Mifeillanea Curiofa. 96s

Concerning the Diftance of the Fix'd Stars. By the Honourable Francis Roberts, E/q; S. R.S.

THE Ancient Aftronomers, who had no other way of computing the Diftances of the Heavenly Bodies, but by their Parallax to the Semi-diameter of the Earth; and being never able to difcover any in the fix'd Stars, did from thence rightly enough infer, that their Diftance was very great, and much exceeding that of the Planets, but could go no farther otherwife than by uncertain guefs.

Since the Pytbagorean Syftem of the World has been reviv'd by Copernicus, (and now by all Mathematicians accepted for the true one) there feem'd Ground to imagine that the Diameter of the Earch's Annual Courfe (which, according to our beft Aftronomers, is at leaft 40000 times bigger than the Semi-diameter of the Earth) might give a fenfible Parallax to the fix'd Stars, though the other could not, and thereby determine their Diftance more precifely.

But though we have a Foundation to build on fo vaftly exceeding that of the Ancients, there are fome Confiderations may make us fufpect that even this is not large enough for our purpofe.

Monfieur

266 Mifcellanea Curiofa.

Monfieur Hugens (who is very exact in is Aftronomical Obfervations) tells us, he could never difcover any vifible Magnitude in the fix'd Stars, though he ufed Glaffes which magnified the apparent Diameter above ico tintes.
Now, fince in all litetyhood the fixdd Stars are Suns, (perhaps of different Magnitude) we may as a reafonable Medium prefume they are generally about the bignefs of the Sun.

Let us then (for Example) fuppofe the DogStar to be fo. The Diftance from us to the Sun being about 100 times the Sun's Dizmeter. (as is demonftrable from the Sun's Diameter being 32 Minutes) it is evident, that the Angle under which the Dog-Star is feen in Mr. Hugens's Telefcope, mult be near the fame with the Angle of its Parallax to the Sun's Diftance, or Semi-diameter of the Earth's Annual Courfe; to that the Parallax to the whole Diameter, can be but double fuch a quantity, as even to Mr. Hugens's nice Obfervation is altogether infenfible.

The Diftance therefore of the fix'd Stars feems hardly within the reach of any of our Methods to determine; but from what has been laid down, we may draw fome Conclufions that will much illuftrate the prodigious vaftnefs of it,
i. That the Diameter of the Earth's Annual Orb (which contains at leaft 160 Millions of Miles) is but as a Point in comparifon of it; at leaft it mult be above 6000 times the Diftance of the Sun: For if a Star fhould appear thro' the aforefaid Telefcope half a Minate broad (which is a pretty fenfible Magnitude) the true apparent Diameter would not exceed 183 d Mi nutes, which is lefs than the 6000th part of the apparent Diameter of the Sun, and confequently

Mifcellanea Guriofa. 367

 the Sun's Diftance not the 6000th part of the Diftance of the Star.2. That could we advance towards the Stars 99 Parts of the whole Diftance, and have only To Part remaining, the Stars would appear little bigger to us than they do bere; for they would fhew no otherwife than they do throngh a Telefcope, which magnifies an Hundred-fold.
3. That at leaft Nine Parts in Ten of the Space between us and the fix'd Stars, can receive no greater Light from the Sun, or any of the Srars, than what we have from the Stars in a clear Night.
4. That Light takes up more time in travel. ling from the Stars to us, than we in making a Weft-India Voyage (which is ordinarily perform'd in fix Weeks.) That a Sound would not arrive to us from thence in 50000 Years, nor a Cannon-bullet in a much longer time. This is eafily computed, by allowing (according to Mr. Newton) Ten Minutes for the Journey of Light from the Sun hither, and that a Sound moves about 1300 Foot in a Second.

268 Mifceilanea Curiofa.

The Famous Mr. Ifaac Newton's Theory of the Moon.

THIS Theory which hath been long expect:ed by all the true Lovers of Aftronomy, was communicated from Mr. Nertont to Dr. Gregory, Aftronomy Profeffor at O zford, and by him publifhed in his Aftron. Elem. Pbilof. and Geomet. p. 336. From whence, as it was lately tranflated into Englifh, I thought fit to infert it here.

By this Theory, what by all Aftronomers was thought moft difficult and almoft impoffible to de done, the Excellent Mr. Nemton hath now effected; viz. to determine the Moon's Place even in her Quadratures, and all other Parts of her Orbit, befides the Syzygys, fo accurately by Calculation, that the Difference between that and her true Place in the Heavens, fhall fcarce bè above two minutes in her Syzygys, or above three in her Quadratures, and is ufually fo fmall, that it may well enough be reckon'd only as a Defect in the Oblervation. 'And this Mr. Newton experienced, by comparing it with very many Places of the Moon, obferv'd by Mr. Flamfleed, and communicated to him.

The Royal Obfervatory at Greenwich, is to the Weft of the Meridian of Paris, 2 degrees, 19 minutes. Of Uraniburgh, 12 degrees, 51 minutes, 30 feconds. And of Gedanum, 18 degees, 48 minutes.

Mifcellanea Curiofa. $\quad 269$

The mean Motions of the Sun and Moon, accounted from the Vernal Æquinox at the Meridian of Greenwich, I make to be as followeth.

The laft Day of December 1680, at Noon (old Stile) the mean Motion of the Sun was 9 Signs, 20 degrees, 34 minutes, 46 feconds. Of the Sun's Apogrum, was 3 S .7 deg .23 min .30 feconds.

That the mean Motion of the Moon at that time, was 6 S . I degree, 45 minutes, 45 feconds. And of her Apogee, 8 S. 4 degrees, 28 minutes, 5 feconds. Of the afcending Node of the Moon's Orbit, 5 S. 24 deg. 14 min. 35 feconds, छ̌c. And on the laft Day of Decer.ber, 1700. at Noon, the mean Motion of the Sun was 9 S . 20 degrees, 43 minutes, 50 feconds. Of the Sun's Apogee, 3 S. 7 degiees, 44 minutes, 30 feconds. The mean Motion of the Moon was 10 S . 15 degrees, 19 minutes, 50 feconds. Of the Moon's Apogee, 11 S. 8 degrees, 18 minutes, 20 feconds. And of her alcending Node, 4 S. 27 degrees, 24 minutes, 20 feconds For in 20 Fulian Years, or 7305 Days, the Sun's Motion is 20 Revol: o S. O degrees, 9 minutes, 4 feconds. And the Motion of the Sun's Apogee, 21 minutes, ofeconds.

The Motion of the Moon in the fame time, is 267 Revol. 4 S. 13 degrees, 34 minutes, 5 feconds. And the Motion of the Lunar Apogee, is 2 Revol. 3 S. 3 degrees, 50 minutes, 15 feconds. And the Motion of her Node, I Revol. $\circ S$. 26 degrees, 50 minutes, 15 feconds.

All which Motions are accounted from the Vernal Æquinox: Wherefore if from them there be fubtracted the Receffion or Motion of the Equinoctial Point, in Antecedentia, during that face, which is 16 minutes, 40 feconds, there

270 Mifcellanea Curiofa.
will remain the Motions in reference to the fix'd Stars in 20 Julian Years; riz. the Sun's 19 Revol. 11 S. 29 degrees, 52 minutes, 24 feconds. Of his Apogee, 4 minutes, 20 feconds. And the Moon's 267 Revol. 4 S. 13 degrees, 17 minutes, 25 feconds. Of her Apogee, 2 Revol. 3 S. 3 degrees, 33 minutes, 35 feconds. And of the Node of the Moon, I Revol. o S. 27 degrees, 6 minutes, 55 feconds.

According to this Computation, the Tropical rear is 365 Days, 5 Hours, 48 Minutes, $57 \mathrm{Se}-$ conds. And the Sydereal Year is 365 Days, 6 Hours, 9 Minutes, 14 Seconds.

Thefe mean Motions of the Luminaries are affected with various Inequalities : Of which,
I. There are the Annual Equations of the aforefaid mean Motions of the Sun and Moon, and of the Apogee and Node of the Moon.

The Annual Equation of the mean Motion of the Sun, depends on the Eiccentricity of the Earth's Orbit round the Sun, which is $16 \frac{11}{2}$ of fuch Parts, as that the Earth's mean Diftance from the Sun fhall be 1000 : Whence 'tis call'd the Equation of the Centre; and is, when greatelt, 1 degree, 56 minutes, 20 feconds.

The greatef Annual Equation of the Moon's mean Motion, is 11 degrees, 49 feconds; of her Apogee, 20 minutes, and of her Nodes 9 minures, 30 feconds.

And thefe four Annual Equations are always mutually proportional one to another : Wherefore when any of them is at the greatef, the other three will alfo be greatelt ; and when any one leffens, the other

Mijcellanea Curiofa.

ther three will alfo be diminifhed in the fame

 Ratio.The Annual Equation of the Sun's Centre being given, the three other correfponding Annual Equations will be alfo given; and therefore a Table of that will ferve for all. For if the Annual Equation of the Sun's Centre be taken from thence, for any Time, and be calld P, and $\operatorname{let} \frac{1}{10} P=Q, Q+\frac{1}{60} Q=R$, $\frac{1}{6} P=$ $\mathrm{D}, \mathrm{D}+\frac{1}{30} \mathrm{D}=\mathrm{E}$, and $\mathrm{D}-\frac{1}{50} \mathrm{D}=2 \mathrm{~F}$; then fhall the Annual Equation of the Moon's mean Motion for that time be R, that of the Apogee of the Moon will be E_{2}, and that of the Node F.

Only obferve here, That if the Equation of the Sun's Centre be required to be added; then the Equation of the Moon's mean Motion mult be fubtracted, that of her Apogee muft be added, and that of the Node fubducted, And on the contrary, if the Equation of the Sun's Centre were to be fubducted, the Moon's Equation mult be added, the: Equation of her Apogee fubducted, and that of her Node added.

There is alfo an Equation of the Moon's mean Motion, depending on the fituation of her Apogee, in refpect of the Sun; which is greateft when the Moon's Apogee is in an Octant with the Sun, and is nothing at all when it is in the Quadratures or Syzygys, This Equation, when greateft, and the Sun in Perigico, is 3 Minutes, 56 Seconds. But if the Sun be in Apogao, it will never be above 3 Minutes- 34 Secounds. At other Diftances of the Sun from the Earth, this Equation, when greatef, is reciprocally as the Cube of fuch Diftance. But when

272 Mifellanea Curiofa.

when the Moon's Apogee is any where but in the octants, this Equation grows leff, and is moftly at the fame diftance between the Earrh and Sun, as the Sine of the double Diftance of the Moon's Apogee, from the next Quadrature or Syzygy, to the Radius.

This is to be added to the Moon's Motion, while her Apogee paffes from a Quadrature with the Sun to a Syzygy; but this is to be fubtracted from it, while the Apogee moves from the Syzygy to the Quadrature. ${ }^{\text {s }}$

There is moreover another Equation of the Moon's Motion, which depends on the Afpect of the Nodes of the Moon's Orbit with the Sun : And this is greateft, when her Nodes are in Octants to the Sun, and vanifhes quite, when they come to their Quadratures or Syzygys. This Equation is proportional to the Sine of the double Diftance of the Node from the next Syzygy, or Quadrature ; and at greateft, is but 47 feconds. This muft be added to the Moon's mean Motion, while the Nodes are paffing from their Syzygys with the Sun, to their Quadratures with him ; but fubtracted while they pafs from the Quadratures to the Syzygys.

From the Sun's true Place, take the equated mean Motion of the Lunar Apogee, as was above fhew'd, the Remainder will be the Annual Argument of the faid Apogee: From whence the Eccentricity of the Moon, and the Jecond Equation of her Apogee may be computed after the manner of the following (which takes place aldo in the Computation of any other inter mediate Equations.

Mifcellanea Curiofa.

Tab. 3. Fig. 6. Let T reprefent the Earth TS, a Right Line joining the Earth and Sun, TACB, a Right Line drawn from the Earth to the middle or mean Place of the Moon's Apogee, equated, as above: Let the Angle STA be the Annual Argument of the afurefaid Apogee, T. A the leaft Eccentricity of the Moon's Orbit, TB the greateft. Biffect AB in G; and on the Centre C, with the Diftance AC defcribe a Circle AF B, and make the Angle BCF $=$ to the doulle of the Ar nual Argument. Draw the Right Line T F, that fhall be the Eccentricity of the Moon's Orbit; and the Angle BTF, is the fecond Equation of the Moon's Apogee required.

In order to whofe Determination, let the mean Diftance of the Earth from the Moon, or the Semi-diameter of the Moon's Orbit, be 100000 ; then fhall its greateft Eccentricity T B be 66782 fuch Parts; and the leaft T A, 43319. So that the greateft Equation of the Orbit, viz. when the Apogee is in the Syzygys, will be 7 degrees, 39 minutes, 30 feconds, or perhaps 7 degrees, 40 minutes, (for I fufpect there will be fome Alteration, according to the Pofytion of the Apogee in Cancer and Capricorn.) But when it is Quadrate to the Sun, the greateft Equation as forefaid will be 4 degrees, 57 minutes, 56 fe conds; and the greatelt Equation of the Apogee, 12 degrees, 1.5 minutes, 4 feconds:

Having from thefe Principles made a Table of the Equation of the Moon's: Apogee ${ }_{3}$ and of the Eccentricities of her Orbit to each degree of the Annual Argument, from whence the Eccentricity T F, and the Angle B T F (viz. the fecond and the principal Equation of

274 Mifcellanea Curiofa.

the Apogee) may eafily be had for any Time required; let the Equation thus found be added to the firft Equated Place of the Moon's Apogee, if the Annual Argument be lefs than 90 degrees, or greater than 180 degrees, and lefs than 270 ; otherwife it mult be fubducted from it ; and the Sum or Difference fhall be the Place of the Lunar Apogee fecondarily equated; which being taken from the Moon's Place equated a third time, fhall leave the mean Anomaly of the Moon correfponding to any given Time. Moreover, from this mean Anomaly of the Moon, and the beforefound Eccentricity of her Orbit, may be found (by means of a Table of Equations of the Moon's Centre made to every degree of the mean Anomaly, and fome Eccentricities, (viz. $45000,50000,55000,60000$, and 65000) the Proftapherefis, or Equation of the Moon's Centre, as in the common way : And this being taken from the former Semi-circle of the middle Anomaly, and added in the latter to the Moon's Place thus thrice equated, will produce the Place of the Moon a fourth time equated.

The greatelt Variation of the Moon (viz. that which happens when the Moon is in an OCtant with the Sun) is nearly, reciprocally as the Cube of the Ditance of the Sun from the Earth. Let that be taken 37 minutes, 25 feconds, when the Sun is in Perigeo, and 33 minutes, 40 feconds, when he is in Apogeo: And let the Differences of this Variation in the Octants be made reciprocally, as the Cubes of the Diftances of the Sun from the Earth; and fo let a Table be made of the aforefaid Varia-
tion of the Moon in her Qctants (or its Logarithms) to every Tenth, Sixth, or Fifih Degree of the mean Anomaly: And for the Variation out of the Octants, make, as Radius to the Sine of the double Diftance of the Moon from the next Syzygy, or Quadrature $::$ fo let the afore-found Variation in the Octant be to the Variation congruous to any other A fpect; and this added to the Moon's Place before found in the firlt and third Qua= drant (accounting from the Sun) or fubducted from it in the fecond and fourth, will give the Moon's Place equated a fifth time.

Again, as Radius to the Sine of the Summ of the Diftances of the Moon from the Sun, and of her Apogee from the Sun's Apogee (or the Sine of the Excefs of that Summ above 360 degrees, $):$: fo is 2 minutes, 10 feconds, to a fixth Equation of the Moon's Place, which muft be fubtracted, if the aforefaid Summ or Excefs be lefs than a Semi-circle ; but added, if it be greater. Let it be made alfo, as Radius to the Sine of the Moon's diftance from the Sun: : fo 2 degrees, 20 fecants, to a feventh Equation; which when the Moon's Light is increafing, add; but when decreafing, fubtract; and the Moon's Place will be equated a feventh time, and this is her Place in ber proper Orbit.

Note here, the Equation thus produced by the mean Quantity 2 degrees, 20 feconds, is not always of the fame magnitude; but is increafed and diminifhed, according to the Pofition of the Lunar Apogee. For if the Moon's Apogee be in Conjunction with the

276 Mifcellanea Curiofa.

Sun's, the aforefaid Equation is about 54 fe conds greater: But when the Apogees are in Oppofition, 'tis about as much lefs; and it librates between its greateft Quantity 3 minutes, 14 feconds, and its leaft, 1 minute, 26 feconds. And this is, when the Lunar Apogee is in Conjunction, or Oppefition with the Sun's : But in the Quadratures, the aforefaid Equation is to be leffen'd about $5 \circ$ feconds, or I minute, when the Apogees of the Sun and Moon are in Conjunction; but if they are in Oppofition, for want of a fufficient number of Obfervations, I cannot determine, whether it is to be leffen'd or increas'd. And even as to the Argurcent or Decrement of the Equation, 2 minutes, $20 \mathrm{fe}-$ conds, above mentioned, I dare determine nothing certain, for the fame Reafon, vizo the want of Obfervations accurately made.

If the fixth and feventh Equations are aug: mented or diminifhed in a reciprocal Ratio of the diftance of the Moon from the Earth ; i. c. in a direct Ratio of the Moon's Horizontal Parallax, they will become more accurate: And this may be readily done, if Tables are firt made to each minute of the faid Parallax, and to every fixth or fifth degree of the Argument of the fixth Equation for the Sixth, as of the diffance of the Moon from the Sun, for the Seventh Equa] tion.

From the Sun's Place, take the mean motion of the Moon's afcending Node, equated as above ; the Remainder fhall be the Annual Argument of the Node, whence its fecond Equation may be computed after the following manner in the preceding Figure.

Mijcellanea Curiofa.

Let T, as before, reprefent the Earh; T S a Right Line, conjoining the Earth and Sun : Let alfo the Line TACB, be drawn to the Place of the afcending Node of the Moon, as above equated; and let ST'A be the Annual Argument of the Node. Take TA from a Scale, and let it be to A B : : as 56 to 3 , or as II $\frac{2}{3}$ to I . Then biffect BA in C , and on C. as a Centre, with the Diftance C A, defrribe a Circle, as A F B, and make the Angle BC F, equal to double the Annsal Argument of the Node before-found: So thall the Angle B TF, be the fecond Equation of the afcending Node; which muft be added, when the Node is paffing from the Quadrature to a Syzygy with the Sun; and fubducted, when the Node moves from a Syzygy towards a Quadrature. By which means, the true Place of the Node of the Lunar Orbit will be gained: Whence from Tables made after the common way, the Moon's Latstude, and the Reduction of her Orbit to the Ecliptick, may be computed, fuppofing the Inclination of the Moon's Orbit to the Ecliprick, to be 4 degrees, 59 minutes, 35 feconds, when the Nodes are in Quadrature with the Sun ; and 5 degrees, 17 minutes, 20 feconds, when they are in the Syzygys,

And from the Longitude and Latitude thus found, and the given Obliquiry of the Ecliptick, 23 degrees, 29 minutes, the Right Afcenfion and Declination of the Moon will be found.

The Horizontal Parallax of the Moon, when fhe is in the Syzygys, at a mean diftance from the Earth, I make to be 57 minutes, 30 feconds; and her Horary Motion, 33 minutes 3^{2} T 3 feconds,

278 Mifcellanea Curiofa.

feconds, 32 thirds; and her apparent Diameter 31 minutes, 30 feconds. But in her Quadratures at a mean Diftance from the Earth, 1 make the Horizontal Parallax of the Moon to be 59 minutes, 40 feconds, her Horary Motion 32 minutes, 12 feconds, 2 thirds, and her apparent Diameter, 31 minutes, 3 feconds. The Moon in an OCtant to the Sun, and at a mean diftance, hath her Centre diftant from the Centre of the Earth about $60 \frac{2}{3}$ of the Earth's Semidiameters.
The Sun's Horizontal Parallax I make to be yo feconds, and its apparent Diameter at a mean diftance from the Earth, I make 32 minutes, 15 feconds.
The Atmofphere of the Earh, by difperfing and refracting the Sun's Light, cafts a Shadow, as if it were an Opake Body, at leaft to the height of 40 or 50 Geographical Miles (by a Geographical Mile, I mean the fixtieth part of a Degree of a great Circle, on the Earth's Surface.) This Shadow falling upon the Moon in a Lunar Eclipie, makes the Earth's Shadow be the larger or broader. And to each Miie of the Earth's Atmofphere, is correfpondent a Second in the Moon's Disk, fo that the Semi-diameter of the Earth's fhadow projected upon the Disk of the Moon, is to be increafed about 50 feconds: Or, which is all one, in a Lunar Ecliple, the Horizontal Parallax of the Moon is to be increafed in the Ratio of about 70 to 69 .

Thus far the Theory of this Incomparable Mathematician. And if we had many Places of the Moon accurately obferv'd, efpecially about her Quadratures, and thefe well compar'd

Mijcellanea Curiofa.

 par'd with her Places, at the fame time calculated according to this Theory; it would then appear, whether there yet remain any other fenfible Equations ; which when accounted for, might ferve to improve and enlarge this Theory.
T 4

A

An Effimate of the Degrees of the Mortality of Mankind, drawn from curious Tables of the Births and Funerals at the City of Breflaw ; with an Attempt to afcertain the Price of Annuities upon Lives. By Mr. E. Halley', R.S.S.

THE Contemplation of the Mortality of Mankind, has befides the Moral, its Pbyfical and Political Ufes, both which have been fome Years fince moft judicioully confider'd by the Curious Sir W'illiam Petty, in his Natural and Political Obfervations on the Bills of Mortality of London, own'd by Captain Fohn Graunt: And fince in a like Treatife on the Bills of Mor tality of Dublin. But the Deduction fron thofe Bills of Mortality feemed even to their Authors to be defective: Firft, In that the Number of the People was wanting. Secondly, That the Ages of the People dying was not to be had. And Laftly, That both Lonion and Dublin, by reafon of the great and cafual Acceffion of Stran:gers who die therein, (as appeared in both, by the great Excefs of the Funerals above the Birtbs) rendred them incapable of being Standards for this purpofe; which requires, if it were poffible, that the People we treat of, fhould not at all

Fig. 4

$\theta \prime$

Plate 3. pag. 280.

$F_{i g} 5$

Mifeellanea Curiofa. 28 I

be changed, but die where they were born, without any adventitious Increafe from Abroad, or Decay by Migration elfewhere.

This Defeet feems in a great meafure to be fatisfied by the late curious Tables of the Bills of Mortality at the City of Breflam, lately communicated to this Honourable Society by Mr. Fuftll, wherein both the Ages and Sexes of all that die, are Monthly delivered, and compared with the number of the Birtbs, for Five Years laft paft, vi $\chi_{2} 1687,88,89,90$, 91, feeming to be done with all the Exactnefs and Sincerity poffible.

This City of Breflaw is the Capital City of the Province of Silefia ; or, as the Germans call it, Schlefia, and is fituated on the Weftern Bank of the River Oder anciently call'd Viadrus, near the Confines of Germany and Poland, and very nigh the Latitude of London. It is very far from the Sea, and as much a Mediterranean Place as can be defired, whence the Confluence of Strangers is but fmall, and the Manufacture of Linnen employs chiefly the puor People of the Place, as well as of the Country round about; whence comes that fort of Linnen we ufually call your Sclefie Linnen; which is the chief, if not the only Merchandize of the Place. For thefe Reafons, the People of this City feem moft proper for a Standard; and the rather, for that the Birtbs do a fmall matter exceed the Funerals. The only thing wanting, is the Number of the whole People, which in fome meafure I have endeavour'd to fupply, by the comparifon of the Mortality of the People of all Ages, which I fhall from the faid Bills trace out with all the Accuracy poffible.

282 Mifcellanea Curiofa.

It appears that in the Five Years mentioned, viz. from 87 to 91 inclufive, there were born 6193 Perfons, and buried 5869 ; that is, born per Annum 1238, and buried 1174; whence an Increafe of the People may be argued of 64 per Annus, or of about a 20 th part, which may perhaps be balanc'd by the Levies for the Emperor's Service in his Wars. But this being contingent, and the Births certain, I will fuppofe the People of Breflaw to be increafed by 1238 Birtbs annually. Of thefe it appears by the fame Tables, that 348 do die yearly in the firt Year of their Age, and that but 890 do arrive at a full Year's Age; and likewife, that 198 do die in the Five Years between 1 and 6 compleat, taken at a Medium; fo that but 692 of the Perfons born do furvive Six whole Years. From this Age the Infants being arrived at fome degree of Firmnefs, grow lefs and lefs Mortal; and it appears, that of the whole People of Breflaw there die yearly, as in the following Table, wherein the upper Line fhews the Age, and the next under it; the Number of Perfons of that Age dying yearly.

Mifcellanea Curiofa.

7. 8 9. 14 • 18 - $21 \cdot 27 \cdot 28 \cdot .35$. 11. 11.6. $5^{\frac{2}{2} \cdot 2 .} 3^{\frac{1}{2}} 564^{\frac{1}{2}} 6 \frac{1}{2} 9 \cdot 8 \cdot 7 \cdot 7$
8. 42: $45 \quad 3954 \cdot 55 \cdot 56 \quad .63$
9. $9 \frac{1}{2}$ 8. 9. 7. 7. 1011 . 9 - 910.12
$7071: 72 \quad 77 \quad 81 \quad 84 \cdot 9091$.
$9 \frac{1}{2} 149 \cdot 119 \frac{1}{2} 6 \cdot 7 \cdot 3 \cdot 4 \cdot 2 \cdot 1.1$. 1.
$98 \cdot 99 \cdot 100$.
$0 \cdot \frac{2}{5} \cdot \frac{3}{5}$
And where no Figure is placed over, it is to be underttood of thofe that die between the Ages of the precedent and confequent Column.

From this Table it is evident, that from the Age of 9 to about 25, there does not die above 6 per Annum of each Age, which is much about I per Cent. of thofe that are of thofe Ages : And whereas in the $14,15,16,17$ Years, there appear to die much fewer, as. 2 and $3 \frac{1}{2}$; yet that feems rather to be attributed to Chance, as are the other Irregularities in the Series of Ages, which would rectifie themfelves, were the number of Years much more confiderable, as 20 inftead of 5. And by our own Experience in Cbrift-Cburch Hofpital, I am inform'd there die of the Young Lads, much about 1 per Cent. per Annum, they being of the aforefaid Ages. From 25 to 50 , there feem to die from 7 to 8 and 9 per Annum of each Age; and after that to 70 , they growing more crafie, though the number be much diminifhed, yet the Mortality increafes, and there are found to die 10 or 11 of each Age per $A n$ num : From thence the number of the Living being

284 Mifcellanea Curiofa.

ing grown very fmall, they gradually decline till there be none left to die; as may be feen, at one View in the Table.

From thefe Confiderations I have form'd the adjoined Table, whofe Ufes are manifold, and give a more juft Idea of the State and Condition of Mankind, than any thing yet extant that I know of. It exhibits the Number of People in the City of Brefan of all Ages, from the Birth to extreme old Age, and thereby fhews the Chances of Mortality at all Ages, and likewife how to make a certain Eftimate of the Value of Annuitics for Lives, which hitherto has been only done by an imaginary Valuation: Alfo the Cbances that there are that a Perfon of any Age propofed does live to any other Age given; with many more, as I fhall hereafter fhew. This Table does fhew the Number of Perfons that are living in the Age current annexed thereto, as follows :

Mifcellanea Curiofa．$\quad 285$

＋f		¢	vavicwn	¢09
u $\omega \omega \omega \omega$ y ay ory y				\％ 9
亿uvuw		Os	HW゙んH゙NO	
Non w úw w woop		$\left\lvert\, \begin{array}{ll} 0 & 0 \\ 9 & 6 \\ 0 & 7 \end{array}\right.$		¢
	のペのダuny	$\left\lvert\, \begin{gathered} 08 \\ 0 \\ 0 \end{gathered}\right.$	$\left\|\begin{array}{ccccc} N & N & \sim \\ \sim & \infty \\ \end{array}\right\|$	吅枵
				－ 0
\|o gagnga				
HN゙NHENON		\％		¢
フイuvuNさ		号号	｜unw w w w N N $\cdots+\omega n=0 N$	¢
のンが○ N N $\infty \infty \infty \infty$ 0．－		$\begin{array}{lll} 5 & 9 \\ 0 & 9 \end{array}$	fitununu 	颜
		$\begin{aligned} & \text { OD } \\ & \text { En } \end{aligned}$	$A \stackrel{A}{N} \hat{D}_{0} w_{0} w_{0} w_{a}$	$\left\|\begin{array}{c} \Omega 8 \\ \frac{5}{7} \infty \\ \hline 8 \end{array}\right\|$
－			A A A A O nigutinn	$\left\|\begin{array}{ll} 9 & 2 \\ 0 & 7 \end{array}\right\|$
n		0	合合	$\begin{gathered} 50 \\ 0 \\ 0 \end{gathered}$
				\％

286 Mifcellanea Curiofa.

Thus it appears, that the whole People of Breflaw does confift of 34000 Souls; being the Sum Total of the Perfons of all Ages in the Table : The firtt ufe hereof is to Thew the Proportion of Mes able to bear Arms in any Multizude, which are thofe between 18 and 56, rather than 16 and 60 ; the one being generally too weak to bear the Fatigues of War, and the Weight of Arms ; and the other too crafie and infirm from Age, notwithftanding particular Inftances to the contrary. Under 18 from the Table, are found in this City 11997 Perfons, 3950 above 56 , which together make 15947. Io that the Refidue to 34000 being 18053, are Perfons between thofe Ages. At lealt one half thereof are Males, or 9027 : So that the whole Force this City can raife of Fencible Men, as the Scotch call them, is about 9000, or $\frac{9}{34}$, or fomewhat more than a quarter of the Number of Souls; which may parhaps pafs for a Rule for all other places.

The Second T) \int_{e} of this Table, is, to fhew the differing degrees of Mortality, or rather Vitali$t y$, in all Ages ; for if the Number of Perfons of any Age remaining after one Year, be divided by the difference between that and the number of the Age propofed, it fhews the Odds that there is, that a Perfon of that Age does not die in a rear. As for Inftance, a Perfon of 25 Years of Age has the Odds of 560 to 7 , or 80 to 1 , that he does not die in a $r_{e a r}$: Becaufe that of 567, living of 25 Tears of Age, there do die no more than 7 in a Year, leaving 560 of 26 Years old.

Mifcellanea Curiofa. 287

So likewife for the Odds, that any Perfon does not die before he attain any propofed Age: Take the number of the remaining Perfons of the Age propoied, and divide it by the difference between it and the number of thofe of the Age of the Party propofed; and that fhews the Odds there is between the Chances of the Party's living or dying. As for Inftance; What is the Odds that a Man of 40 lives 7 Years: Take the number of Perfons of 47 Years, which in the Table is 377, and fubtract it from the number of Perfons of 40 Years, which is 445, and the difference is 68 : Which Hews that the Perfons dying in that 7 Years, are 68, and that it is 377 to 68 , or $5^{\frac{1}{2}}$ to 1 , that a Man of 40 does live 7 Years. And the like for any other nnmber of Years.

Vse III. But if it be enquired at what number of Years, it is an even Lay that a Perfon of any Age fhall die, this Table readily performs it: For if the number of Perfons living of the Age propoled, be balfed, it will be found by the Table at what Year the faid Number is reduced to half by Mortality ; and that is the Aye, to which it is an even Wager, that a Perfon of the Age propofed fhall arrive before he die. As for Inftance; A Perfon of 30 Years of Age is propofed, the number of that Age is 531 , the balf thereof is 265 , which number I find to be between 57 and 58 Years; fo that a Man of 30 may reafonably expect to live between 27 and 28 Years.

Vfe IV. By what has been faid, the Prict of Infurance upon Lives ought to be regulated, and the difference is difovered between the Price

288. Mifcellanea Curiofa.

Price of infuring the Life of a Man of 20 and 50. For Example ; It being 100 to 1 , that a Man of 20 dies not in a Year, and but 38 to 1 , for a Man of 50 Years of Age.

Use V. On this depends the Valuation of Annuities upon Lives; for it is plain, that the Purcbafer ought to pay for only fuch a part of the Value of the Annuity, as he has Chances that he is living ; and this ought to be com:puted yearly, and the Sum of all thofe yearly Values being added together, will amount to the Value of the Annuity for the Life of the Perfon propofed. Now the prefent Value of Money payable after a Term of Years, at any given Rate of Intereit, either may be had from Tables already computed; or almoft as compendioufly, by the Table of Logarithms : For the Arithmetical Complement of the Logarithm of Unity, and its yearly Intereft, (that is, of 1,06 for Six per Cent. being 9, 974694.) being multiplied by the number of Years propofed, gives the prefent Value of One Pound payable after the end of to many Years. Then by the foregoing Propofition, it will be as the number of Perfons living after that Term of Years, to the number dead ; fo are the Odds that any. one Perfon is alive or dead. And by confequence, as the Sum of both, or the number of Perfons living of the Age firf propofed, to the number remaining after fo many Years, (both given by the Ta ble) To the prefent Value of the yearly Sum payable after the Term propofed, to the Sum which ought to be paid for the Chance the Perfon has to enjoy fuch an Annuity after fo many Years. And this being repeated for every

Mifcellanea Curiofa. 289

every Year of the Perfon's Life, the Sum of all the prefent Values of thofe Chances is the true Value of the Annuity. This will without doubt appear to be a moft laborious Calculation; but it being one of the principal Ufes of this Speculation, and having found fome Compendia for the Work, I took the pains to compute the following Table, being the fhort Refult of a not ordinary number of Arithmetical Operations: It fhews the Value of Annuities for every Fifth Year of Age, to the Seventieth, as follows.

Age.	Years Pur.	1g	Years Pur.	g	Years Pur
1	10,28	25	12,27	50	9,2I
5	13,40	30	I 1,72	55	8,51
1 C	1 3,44	35	11,12	6	7,60
15	13,33	40	10,57	65	6,54
2 C	12,78	45	9,91	7 c	5,32

This fhews the great Advantage of putting Money into the prefent Fund lately granted to Their Majefties, giving 14 per Cent. per Annum, or at the Rate of 7 Years Purchafe for a Life; when young Lives, at the ufual Rate of Intereft, are worth above 13 Years Purchafe. It hhews likewife the Advantage of young Lives over thofe in Years; a Life of Ten Years being almoft worth $13^{\frac{1}{2}}$ Years Purchafe, whereas one of 3^{6} is worth but 1 I .

Use V. Two Lives are likewife valuable by the fame Rule; for the number of Chances of each fingle Life, found in the Table, be? ing multiplied together, become the Chances of the Two Lives. And after any certain u \quad Term

290 Mifcellanea Curiofa.

Term of Years, the Product of the two remaining Sums is the Chances that both the Perfons are living. The Product of the two Differences, being the numbers of the Dead of both Ages, are the Chances that both the Perfons are dead. And the two Products of the remaining Sums of the one Age multiplied by thofe dead of the other, fhew the Chances that there are, that each Party furvives the other: Whence is derived the Rule to eftimate the Value of the Remainder of one Life after another. Now as the Product of the Two Numbers in the Table for the Two Ages propofed, is to the difference between that Product, and the Product of the two numbers of Perfons deceafed in any face of time; fo is the Value of a Sum of Money to be paid after fo much time, to the Value thereof under the Contingency of Mortality. And as the aforefaid Product of the two Numbers anfwering to the Ages propofed, to the Product of the Deceafed of one Age multiplied by thofe remaining alive of the other; fo the Value of a Sum of Money to be paid after any time propofed, to the Value of the Chances, that the one Party has that he furvives the other, whofe number of Deceafed you made ufe of, in the fecond Term of the Proportion. This perhaps may be better underflood, by putting N for the number of the younger Age, and n for that of the Elder; r, y the Deceafed of both Ages refpectively, and R, r for the Remainders; and $R+r$ $=N$, and $r+y=n$. Then fhall $N n$ be the whole Number of Chances; $\mathbf{N} n-r_{y}$ be the Chances that one of the two Perfons is

Mifcellanea Curiofa.

living, $\boldsymbol{x} y$ the Chances that they are both dead; $R y$ the Chances that the elder Perfon is dead, and the younger living; and $r \Upsilon$ the Chance, that the elder is living, and the younger dead. Thus two Perfons of 18 and 35 are propofed, and after 8 Years thefe Chances are required. The Numbers for 18 and 35 , are 610 and 490 ; and there are 50 of the Firlt Age dead in 8 Years, and 73 of the Elder Age. There are in all 610×4.90, or 298900 Chances; of thefe there are 50 $\times 73$, o: 3650 , that they are both dead. And as 298900 , to $298900-3650$, or 295250 : So is the prefent Value of a Sum of Money to be paid after 8 Years, to the prefent Value of a-Sum to be paid, if either of the two live. And as 560×73, fo are the Chances that the Elder is dead, leaving the Younger; and as $417 \times 5 \rho$, fo are the Chances that the Younger is dead, leaving the Elder. Wherefore as 6 ro $\times 490$ to 560×73, fo is the prefent Value of a Sum to be paid at 8 Years end, to the Sum to be paid for the Chance of the Younger's Survivance; and as 610×490 to $4.17 \times$ 50 , fo is the fame prefent Value to the Sum to be paid for the Chance of the Elder's Survivance.

This poffibly may be yet better explained, by expounding thefe Products by Rectangular Parallelograms, as in Fig. 7. wherein $A B$ or C D reprefents the number of Perions of the younger Age, and $D E, B H$ thufe remaining alive after a certain Term of Years; whence $\boldsymbol{C} \boldsymbol{E}$ will anfwer the number of thafe dead in that time: So $A C, B D$ may reprefent the number of the elder Age; $A F, B I$ the Survi-

292 Mifcellanea Curiofa.

vors afier the fame Term; and CF, DI, thofe of that Age that are dead at that time. Then fhall the whole Parallelogram $A B C D$ be $N n$, or the Product of the two Numbers of Perfons, reprefenting fuch a number of Perfons of the two Ages given; and by what was faid before, after the Term propofed, the Rectangle $H D$ fhall be as the number of Perfons of the younger Age that furvive, and the Rectangle $A E$ as the number of thofe that die. So likewife the Rectangles $A I, F D$ fhall be as the Numbers, living and dead, of the other Age. Hence the Rectangle $H \boldsymbol{I}$ fhall be as an equal number of both Ages furviving. The Rectangle $F E$ being the Product of the Deceafed, or $r y$, an equal number of both dead. The Rectangle GD or $R y$, a number living of the younger Age, and dead of the elder : And the Rectangle $A G$ or $r x$ a number living of the elder Age, but dead of the younger. This being underfood, it is obvious, that as the whole Rectangle $A D$ or $\mathrm{N} n$ is to the Gnomon FABDEG or $\mathrm{N} n-\mathrm{Y} y_{\%}$ fo is the whole number of Perfons or Chances, to the number of Chances that one of the two Perfons is living: And as $A D$ or $N n$ is to FE or γ, , fo are all the Chances, to the Chances that both are dead; whereby may be computed the Value of the Reverfion after both Lives. And as $A D$ to $G D$ or $R y$, fo the whole number of Chances, to the Chances that the younger is living, and the other dead ; whereby may be caft up what Value ought to be paid for the Reverfion of one Life after another, as in the Cale of providing for Clergy-men's Widows, and others, by fuch Reverfions.

Mifcellanea Curiofa.

Reverfions. And as $A D$ to $A G$, or $r Y$, fo are all the Chances, to thofe that the elder furvives the younger. I have been the more particular, and perhaps tedious, in this Matter, becaufe it is the Key to the Cafe of Three Lives, which of it felf would not bave been fo eafie to comprehend.
VII. If Three Lives are propofed, to find the Value of an Annuity during the continuance of any of thofe three Lives; the Rule is, As the Product of the continual Multiplication of the Three Numbers, in the Table, anfwering to the Ages propofed, is to the difference of that Product, and of the Product of the Three Numbers of the Deceafed of thofe Ages, in any given Term of Years: So is the prefent Value of a Sum of Money, to be paid certainly after fo many Years, to the prefent Value of the Same Sum to le paid, provided one of thofe Three Perfons be living at the Expiration of that Term. Which Proportion being yearly repeated, the Sum of all thofe prefent Values will be the Value of an Annuity granted for three fuch Lives. But to explain this, together with all the Cafes of Survivance in Three Lives: Let N be the Number in the Table for the younger Age, n for the fecond, and v for the elder Age; let r be thofe dead of the younger Age in the Term propoted, y thofe dead of the fecond Age, and u thofe of the elder Age ; and let R be the Remainder of the younger Age, r that of the middle Age, and ρ the Remainder of the elder Age. Then thall $R+r$ be equal to $N, r+y$ to n, and $\rho+u$ to r, and the continual Product of the three Numbers N, n, v, fhall be equal to the continual Produst of $\mathbf{u}_{3} \quad R$

294 Mifcellanea Curiofa.

$R+r \times r+y \times s+\nu$, which being the whole Number of Chances for three Lives, is compounded of the eight Products following. (1) $R r_{\rho}$, which is the Number of Chances that all three of the Perfons are living. (2) $r \rho \Upsilon$, which is the Number of Chances that the two elder Perfons are living, and the younger dead. (3) $R \rho y$ the Number of Chances that the middle Age is dead, and the younger and elder living. (4) $R r u$ being the Chances that the two younger are living, and the elder dead. (ς) ρX_{y} the Chances that the two younger are dead, and the elder living. (6) $r \mathcal{Y} \cup$ the Chances that the younger and elder are dead, and the middle Age living. (7) Ryv, which are the Chances that the younger is living, and the two other dead. And Laftly and Eighthly, r_{y} v, which are the Chances that all three are dead. Which latter fubtracted from the whole Number of Chances $N n \nu$, Jeaves $N n \nu-\Upsilon_{y} \cup$ the Sum of all the other Reven Products; in all of which one or more of the three Perfons are furviving.

To make this yet more evident, I have added Fig. 8. wherein thefe eight feveral Products are at one view exhibited. Let the rectangled Parallelepipedon BCDEFGH be conftituted of the fides $A B, G H, \mathcal{O}^{c}$. proportional to N the Number of the younger Age ; $A C, B D, \mho^{3}$. proportional to n; and $A G, C E, \mho^{3} c$. proportional to the Number of the elder, or ν_{0}. And the whole Parallelepipedon fhall be as the Product $\mathrm{N} n y$, or our whole Number of Chances. Let BP be as R, and $A P$ as Υ; let $C L$ be as r, and $L n$

Mifcellanea Curiofa. 295

as γ; and $G N$ as ρ, and $N A$ as v; and let the Plain PRea be made parallel to the Plain $A C G E$; the Plain NVbr parallel to $A B C D$; and the Plain $L X T Q$ parallel to the Plain ABGH. And our firft Product $R r \rho$ hall be as the Solid SIWIFZeb. The Second, or $r_{5} r$ will be, as the Solid ErZe QSMI. The Third, $R \rho y$, as the Solid RHOVWIS T. And the Fourth, Rrv, as the Sold zabDWXIK. Fifthly, ρr_{y}, as the Solid GQRSIMNO. Sixthly, $r \Upsilon v$, as IKLMGYZA. Seventhly, $R \nu i$, as the Solid $I K P O B X V W$. And Laftly, A IKLMNOP will be as the Product of the 3 Numbers of Perfons dead, or ryu. I fhall not apply this in all the Cafes thereof,' for brevity fake; only to fhew in one how all the reft may be performed, let it be demanded what is the Value of the Reverfion of the younger Life after the two elder propofed, The proportion is as the whole Number of Chances, or $N n v$ to the Product $R y u$; fo is the certain prefent Value of the Sum payable after any Term propofed, to the Value due to fuch Chances as the younger Perfon has to bury both the elder, by the Term propofed; which therefore he is to pay for. Here it is to be noted, that the firft Term of all thefe Proportions is the fame throughout, viz. $N n v$. The fecond changing yearly according to the Decreafe of R, r, ρ, and Increafe of r, y, u. And the third are fucceffivelo the prefent Va lues of Money payable afrer one, two, three, Oc. years, according to the Rate of Intertft agreed on. Thefe Numbers, which are in all Cafes of Annuities of neceffary Ufe, I have put into the following Table, they being Decimal u_{4}

Values

296 Mifcellanea Curiofa.

Values of one Pound payable after the Number of Years in the Margent, at the Rate of 6 per Cent.

Years.	$\left\|\begin{array}{ll} \text { Prel. } \\ \text { lue of } \mathrm{I} \\ \text { lid } \end{array}\right\|$	Years.	$\left\|\begin{array}{ll} \text { Pref. } & \mathrm{Va-} \\ \text { lue of } & 1 \end{array}\right\|$	Years.	$\left\|\begin{array}{l} \text { Pref.va- } \\ \text { lue of il } \end{array}\right\|$
1	0,9+34	19	0,3305	37	0,1158
2	0,8900	20	0,3118	38	0,1092
3	0,8396	21	0,2941	39	0,1031
4	0,792 I	22	0,2775	40	0,0972
5	0.7473	23	0,2618	45	0,0726
6	0,7050	24	2,2470	50	0,0543
7	0,6650	25	0,2330	55	0,0406
8	0,6274	26	0,2198	60	0,0303
9	0,5919	27	0,2074	65	0,0227
10	0,5584	28	0,1956	70	0,0169
II	0,5268	29	0,1845	75	0,0126
12	0,4970	30	0,1741	80	0,0094
13	0,4688	31	0,1643	85	0,2071
14	0,4423	32	0,1550	90	0,0053
15	0,4173	33	0,1462	95	0,0039
16	0,3936	34	c, 1379	100	0,0029
17	0,3714	35	0,1301		
18	0,2503	36	3,1227		

Ir were needlefs to advertife, that the great trouble of working to many Proportions will be very much alleviated by ufing Logarithms; and that inftead of ufing $N n v-r_{y} \cup$ for the fecond Term of the Proportion in finding the Value of Three Lives, it may fuffice to ufe only r y ν, and then deducting the fourth Term fo found out of the third, the Remainder thall be the prefent Value fought; or all thefe

Mifcellanea Curiofa. 297

thefe fourth Terms being added together, and deducted out of the Value of the cerrain Annuity for fo may Years, will leave the Value of the contingent Annuity upon the Chance of Mortality of all thofe Three Lives. For Example; Let there be Three Lives of 10,30 , and 40 Years of Age propofed, and the Proportions will be thus;

As 661 in 531 in 445 or 156190995 , or $N n v$ to 8 in 8 in 9 , or 576 , or $r y \cup$ for the firlt Year, fo 0,9434 . to 0,00000348 .
To 15 in 16 in 18 , or 4320 , for the fecond
Year, fo 0,8900. to 0,00002462.
To 21 in 24 in 28, or 14112 for the third Year, fo 0,8396 . to 0,00008128 .
To 27 in 32 in 38, for the fourth Year, fo 0,792 I. to $0,00016650$.
To 33 in 41 in 48 , for the fifth Year, fo 0,7473 . to 0,00031071.
To 39 in 50 in 58 , for the fixth Year, fo 0,7050 . to 0,00051051 .

And fo forth to the 60th Year, when we fuppofe the elder Life of Forty certainly to be expired; from whence till Seventy we mult compute for the Firft and Second only, and from thence to Ninety for the fingle youngeft Life. Then the Sum Total of all thefe Fourth Proportionals being taken out of the Value of a certain Annuity for 90 Years, being 16,58 Years Purchafe, fhall leave the juft Value to be paid for an Annuity during the whole Term of the Lives of Three Perfons of the Ages propofed. And note, that it

298 Mifcellanea Curiofa.

 will not be neceffary to compute for every Year fingly; but that in moft Cafes every $4^{\text {th }}$ or 5 th Year may fuffice, interpoling for the intermediate Years Seeundum artem.It may be objected, that the different Salubrity. of Places does hinder this Propofal from being univerfal; nor can it be denied. But by the Number that die, being ${ }^{11} 74 \cdot$ per Aninum in 34000, it does appear that about a 30th part die yearly, as Sir slliam Petty has computed for London; and the Number that die in Infancy, is a good Argument that the Air is but indifferently falubrious. So that by what I can learn, there cannot perhaps be one better Place propofed for a Standard. At leaft 'tis defired, that in Imitation hereof the Curious in other Cities would attempt fomething of the fame Na ture, than which nothing perhaps can be more ufful.

Were this Calculus founded on the Experience of a very great number of Years, it would be very well worth the while to think of Merhods for facilitating the Computation of the Value of two, three, or more Lives; which, as propofed in my former, feems (as I am inform'd) a Work of too much Difficulty for the ordinary Arithmetiçian to undertake.

I have fought, If it were poffible, to find a Theorem that might be more concife than the Rules there laid down, but in vain; for all that can be done to expedite it, is, by Tables of Logarithms ready computed, to exhibr the Rationes of N to r in each fingle Life, for every third, fourth, or fift Year of Age, as occafion fhall require; and thefe Logarithms being added to the Logarithms of the prefent

Mifcellanea Curiofa.

prefent Value of Money payable after fo many Years, will give a Series of Numbers, the Sum of which will fhew the Value of the Annuiry fought. However, for each Number of this Series, two Logarithms for a fingle Life, three for two Lives, and four for three Lives, muft neceffarily be added together. If you think the Matter, under the Uncertainties I have men* tioned, to deferve it, I fhall fhortly give you fuch a Tab'e of Logarithms, as I fpeak of, and an Example or two of the ufe thereof: But by Vulgar Arithmetick, the Labour of thefe Numbers were immenfe; and nothing will more recommend the uffeful Invention of Logarithms to all Lovers of Numbers, than the advantage of Difpatch in this and fuch like Computations.

Befides the ufes mentioned, it may perhaps not be an unacceptable thing to infer from the fame Tables, how unjuttly we repine at the fhortnefs of our Lives, and think our felves wronged if we attain not old Age; whereas it appears hereby, that the one half of thofe that are born are dead in Seventeen Years time, 1238 being in that time reduced to $6_{1} \sigma_{\text {. So }}$ that inftead of murmuring at what we call an untimely Death, we ought with Patience and Unconcern to fubmit to that Diffolution which is the neceffary Condition of our perifhable Materials. and of our nice and frail Structure and Compofition : And to account it as a Bleffing that we have furvived, perhaps by many Years, that Period of Life, whereat the one half of the whole Race of Mankind does not arrive.

300 Mifcellanea Curiofa.

A fecond Obfervation I make upon the faid Table, is that the Growth and Increale of Mankind is not fo much ftinted by any thing in the Nature of the Species, as it is from the cautious difficulty moft People make to adventure on the State of Marriage, from the Profpect of the Trouble and Charge of providing for a Family. Nor are the poorer fort of People herein to be blamed, fince their difficulty of fubfifting is occafion'd by the unequal Diftribution of Poffeffions, all being neceffarily fed from the Earth, of which yet fo few are Maiters. So that befides themfelves and Families, they are yet to work for thofe who own the Ground that feeds them: And of fuch does by very much the greater part of Mankind confift ; otherwife it is plain, that there might well be four times as many Births as we now find. For by Computation from the Table, I find that there are nearly 15000 Perfons above 16 , and under 45 , of which at leaft 7000 are Women capable to bear Children. Of thefe notwithłtanding there are but 1238 born yearly, which is but little more than a fixth part: So that about one in fix of thefe Women do breed yearly; whereas were they all married, it would not appear ftrange or unlikely, that four of fix fhould bring a Child every Year. The Political Confequences hereof I fhall not infift on; only the Strength and Glory of a King being in the multitude of his Subjects, I fhall only hirt, that above all things, Celibacy ought to be difcouraged, as, by extraordinary Taxing and Military Service: And thofe who have numerous Families of Children to be countenanced and encouraged by fuch Laws as the fus trium Liberorum among the Ro-

Mifcellanea Curiofa. 301

 mans. But efpecially, by an effectual Care to provide for the Subfiftence of the Poor, by finding them Employments, whereby they may earn their Bread, without being chargeable to the Publick.
302
 Mifcellanea Curiofa.

A Difcourfe concerning Gravity, and its Properties, wherein the Defent of Heavy Bodies, and the Motion of Projects is briefly, but fully bandled: Togetber with the Solution of a Problem of great Use in Gunnery. By E. Halley.

NATURE, amidt the great Variety of Problems, wherewith She exercifes the Wits of Philofophical Men, fcarce affords any one wherein the Effect is more vifible, and the Caufe more concealed, than in thofe of the Phenomena of Gravity. Before we can go alone, we muft learn to defend our felves from the Violence of its Impulfe, by not trufting the Center of Gravity of our Bodies beyond our reach; and yet the acuteft Philofophers, and the fubtileft Enquirers into the Original of this Motion, have been fo far from fatisfying their Readers, that they themfelves feem little to have underfood the Confequences of their own Hypothefes.

Des Cartes his Notion, I muft needs confefs to be to me incomprehenfible, while he will have the Particles of his Caleftial Matter, by being reflected on the Surface of the Earth, and fo afcending therefrom, to drive down into their Places thofe Terreftrial Bodies they find above

Mifcellanea Curiofa. 303

above them: This is, as near as I can gather, the Scope of the 20, 21, 22, and 23 Sections of the laft Book of his Principia Philofophice; yet neither he, nor any of his Followers, can Thew how a Body fufpended in Libero etthere, fhall be carried downwards by a continual Impulfe tending upwards, and acting upon all its Parts equally: And befides the Obfcurity wherewith he expreffes himfelf, particularly, Sect. 23. does fufficiently argue according to his own Rules, the confufed Itiea he had of the thing he wrote.

Orhers, and among them Dr. Voffius, affert the Caufe of the Defcent of beavy Bodies, to be the Diurnal Rotation of the Earth upon its Axis, without confidering, that according to the Doctrine of Motion fortified with Demonftration, all Bodies moved in Circulo, would recede from the Center of their Motion; whereby the contrary to Gravity would follow, and all loofe Bodies would be caft into the Air in a Tangent to the Parallel of Latitude, without the intervention of fome other Principle to keep them faft, fuch as is that of Gravity. Befides, the Effect of this Principle is throughout the whole Surface of the Globe found nearly equal; and certain Experiments have proved it rather lefs near the fequinotial, than towards the Poles; which could, not be by any means,' if the Diurnal Rotation of the Earth upon its Axis were the Caufe of Gravity; for where the Motion was fwifteft, the Effect would be moft confiderable.

Others affign the Preffure of the Acmo/phere, to be the Caufe of this Tendency towards the Center of the Earth; but unhappily they have miftaken

304 Mifcellanea Curiofa.

mintaken the Caufe for the Effect ; it being from undoubted Principles plain, that the Atmoofphere has no other Preffure but what it derives from its Gravity; and that the. Weight of the upper Parts of the Air, prefling on the lower Parts thereof, do fo far bend the Springs of that Elaftick Body, as to give it a Furce equal to the Weight that comprefs'd it, having of it felf no force at all: And fuppofing it had, it will be very hard to explain the Modus, how that Preffure fhould occafion the Defcent of a Body circumfcribed by it, and preffed equally above and below, without fome other Force to draw, or thruft it downwards. But to demonftrate the contrary of this Opinion, an Experiment was long fince fhewn before the Royal Society, whereby it appeared, that the Atmofphere was fo far from being the Caufe of Gravity, that the Effects thereof were much more vigorous, where the Preffure of the Atmofphore was taken off; for a long Glafs-Receiver having a light Down-feather included, being evacuated of Air, the Feather, which in the Air would hardly fink, did in vacuo defcend with nearly the fame Velocity, as if it had been a Stone.

Some think to illuftrate this Defcent of Heavy Bodies, by comparing it with the Vertue of the Loadflone; but fetting afide the difference there is in the manner of their Attractions, the Loadfone drawing only in and about its Poles, and the Earth near equally in all Parts of its Surface, this Comparion avails no more than to explain ignotum per aque ignotum.

Mifcellanea Curiofa.

Others affign a certain Sympetbetical Attraction between the Earth and its Parts, whereby they have, as it were, a defire to be united, to be the Caule we enquire after: But this is fo far from explaining the Modus, that it is litthe more, than to tell us in other Terms, that Heavy Budies defcend, becaufe they defcend.

This, I fay, not that I can pretend to fub: ftitute any Solution of this Important Philofophical Problem, that fhall more happily explicate the Appearances of Gravity ; only ir may be ferviceable to thofe with whom the Credit of great Authors fways much, and who too readily affent in Verba Magiftri, to let them fee that their Books are not always infallible: Befides, the detection of Errors is the firf and fureft Step towards the difcovery of Truth.

Though the efficient Caufe of Gravity be fo nbfcure, yet the final Caufe thereof is clear enough; for it is by this fingle Principle, that the Earth and all the Cceleftial Bodies are kept from Diffolution; the leaft of their Particles not being fuffer'd to recede far from their Surfaces; without being immediately brought down again by Virtue of this Natural Tendency; which, for their Prefervation, the Infinite Wifdom of their Creator has ordained to be towards each of their Centers; nor can the Globes of the Sun and Planets orherwife be deftroy'd, but by taking from them this Power of keeping their Parts united.

The Affections or Properties of Gravity, and its manner of acting upon Bodies falling, have been in a great meafure difcovered, and moft of them made out by Mathomatical Demonftra-

306 Mifcellanea Curiofa.

${ }^{\text {tion }}$ in this our Century, by the accurate diligence of Galilaus, Torricellius, Hugenius, and others, and now lately by our worthy Countrymanh, Mr:Ifaac Nenton, which Properties it may be very material here to enumerate, that they may ferve for a Foundation to all thofe that fhall be willing to fpend their Thoughts in fearch of the true Caufe of this Dejcent of Bodies.

The firt Property is, That by this Principle of Gravitation, all Bodies do defcend towards a Point, which either is, or elfe is very near to the Center of Magnitude of the Earth and Sea, abour which the Sea forms it felf exactly into a Spherical Surface, and the Prominences of the Land, confidering the Bulk of the whole, differ but infenfibly therefrom.

Scoondly, That this Point or Center of Graviantion, is :fix'd within the Earth, or at leaft has been fo, ever fince we have any Authentick Hiflory: For a Confequence of its Change, though never fo little, would be the over-flowing of the low Lands on that fide of the Globe towards which it approached, and the leaving new Illands bare on the oppofite fide, from which it receded; but for this Two Thoufand Years it appears, that the low llands of the Mediterranean $\$_{c a}$ (near to which the ancienteft Writers liv'd) have continued much at the fame height above the Water, as they now are found ; and no I_{n} unidations or Receffes of the Sea arguing any fuch Chinge, are recorded in Hiftory; excepting the viniverffit Defluge, which can no better way be

Miscellanea Curiosa.

accounted for, than by fuppofing this Center of Gravitation removed for a time, towards the middle of the then inhabited Parts of the World; and a change of its Place, but the 'Two Thoufandth Part of the Radius of this Globe, were furficient to bury the Tops of the higheft Hills under Water.

Thirdly, That in all Parts of the Surface of the Earth, or rather in all Points equidiftant from its Center, the Force of Gravity is nearly equal ; fo that the length of the Pendulum vibrating Seconds of Time, is found in all Parts of the World to be very near the fame. 'Wis true at Sr. Helena, in the Latitude of 16 Degrees South, I found that the Pendulum of my Clock, which vibrated Seconds, needed to be made fhorter than it had been in England, by a very fenfible Space (but which at that time I neglected to obferve accurately) before it would keep time ; and fince the like Obfervations have been made by the French Obfervers, near the Equinoctial: Yet I dare not affirm, that in mine it proceeded from any other Caufe, than the great Height of my Place of Observation above the Surface of the Sea, whereby the Gravity being diminifhed, the length of the Pendulum vibrating Seconds, is proportionably fhort'ned.

Fourthly, That Gravity does equally affect all Bodies, without regard either to their Matter, Bulk, or Figure; fo that the Impediment of the Medium being removed, the molt compact and moot toofe, the greateft and fmalleft Bodies would defend the fame spaces in equal

308 Mifcellanea Curiofa.

Times; the Truth thereof will appear from the Experiment I before-cited. In thefe two latt Particulars, is fhewn the great difference between Gravity and Magnetifm, the one affecting only Iron, and that towards its Poles, the other all Bodies alike in every part. As a Corollary, from hence it will follow, that there is no fuch thing as pofitive Levity, thofe things that appear light, being only comparatively fo ; and whereas feveral things rile and fwim in Fluids, 'tis becaufe, Bulk for Bulk, they are not fo heavy as thofe Fluids; nor is there any Reafon why Cork, for Inftance, fhould be faid to be light, becaufe it fwims on Water, any more than Iron, becaufe it fwims on Mercury.

Fifthly, That this Power incieafes as you defcend, and decreafes as you afcend from the Center, and that in the Proportion of the Squares of the Difances therefrom reciprocally, fo as at a double Diftance to have but a quarter of the Force; this Property is the Principle on which Mr . Newton has made out all the Phonomena of the Caleftial Motions, fo eafily and naturally, that its Truth is paft Difpute. Befides that, it is highly rational, that the attractive or gravitating Power thould exert it felf more vigoroufly in a frall Sphere, and weaker in a greater, in proportion as it is contracted or expanded; and if fo, feeing that the surfaces of spberes are as the Squares of their Radii, this Power, at feveral Dittances, will be as the Squares of thofe Diftances reciprocally; and then its whole Action upan each Spherical Surface, be it great or fmall, will be always equal. And this is evidently the Rule of Gravitation towards

Mijcellanea Curiofa.

towards the Contors of the Sum, Fupiter, Saturn and the Earth, and thence is reafonably isiferred, to be -the general Principle obferved by Nature, in all the reft of the Coieftial Bodies.

Thefe are the principal Affections of Gravity, from which the Rules of the Fall of Bodios, and the Motion of Projects are Mathematically deducible. Mr. Ifaac Newten has fhew'd how to define the Spaces of the $D \cdot f$ cent of a Body, let fall from any given height, down to the Center, fuppofing the Gravitation to increate, as in the fifth Property; but confidering the fmallnels of heighth, to which any Project can be made afcend, and over how little an Arcb of the Globe it can be caft by any of our Engines, we may well enough fuppofe the Gravity equal throughout, and the Defcents of Projects in parallel Lines, which in Truth are towards the Center, the difference being fo fmall as by no means to be difcovered in Practice. The Oppofition of the Air, 'tis true, is confiderable againft all light Bodies moving through it , as likewife againft fmall ones (of which more hereafter) but in great and ponderous Shot, this Impediment is found by Experience but very fmall, and may fafely be neglected.

Propofitions concerning the Defcent of Heavy Bodies, and the Motion of Projects.

Prop. I. The Velocities of Falling Bodies, are proportionate to the Times from the beginning of their Falls.

3 Io Mifcellanea Curiofa.

This follows, for that the Action of Gravity being continual, in every Space of Time, the falling Body receives a new Impulfe, equal to what it had before, in the fame Space of Time, received from the fame Power: For Inftance, in the firlt Second of Time, the falling Body has acquired a Velocity, which in that time would carsy it to a certain Diftance, fuppofe 32 Foot, and were there no new Force, would defcend at that rate with an equable Motion: But in the next Second of Time, the fame Power of Gravity continually acting thereon, fuperadds a new Velocity equal to the former; fo that at the end of two Seconds, the Velocity is double to what it was at the end of the firft, and after the fame manner may it be proved to be triple, at the end of the third Second, and fo on. Wherefore the Velocitics of falling Bodies, are proportionate to the Time of their Falls, \&. E. D.

Prop. II. The Spaces defcribed by the Fall of a Body, are as the squares of the Times, from the beginning of the Fall.

Demonftration. Let A B (Fig. 9. Tab. 4.) reprefent the Time of the Fall of a Budy, B C perpendicular to AB, the Velocity acquired at the end of the Fall, and draw the Line AC; then divide the Line A B reprefenting the Time, into as many equa! Parts as you pleafe, as b, b, $b, b, \Xi^{2} c$. and through thefe Points draw the Lines $b c, b c, b c, b c, E^{\circ} c$. parallel to $B C$, 'tis manifeft that the feveral Lines, $b c$, reprefent the feveral Velocities of the falling Body, in fuch Parts of the Time as A b is of A B, by the former Propofition. It is evident likewife, that the

Plate 4 - pag 3 zo

Mifcellanea Curiofa.

Area ABC is the Sum of all the Line be being taken, according to the Methed of Intiviflles, infinitely many; fo that the Area A BC reprefents the Sum of atl the Velocities, between none and BC fuppofed infinitely many; which Sum is as the Space defcended in the Time reprefented by A B. And by the fame Reifon the Areas Abc, will reprefent the Spaces defcended in the Times Ab ; fo then the Spaces deffended in the Times AB,Ab, are as the Areas of the Triangles A BC, A bc, which by the 20 th of the 6 of Euclid, are as the Squares of their Homologous sides A B, A.b, that is to fay, of the Times: Wherefore the Defcents of falling Bodits, are as the Squares of the Times of their Fall, Q. E. D.

Prop. III. The Velocity which a falling Body acquires in any Space of time, is double to that, wherewith it would have moved the Space, defoended by an equable Motion, in the fame time.

Domonftration. Draw the Line E C parallel to $A B$, and $A E$ parallel to $B C$ in the fame Fig. 9. and compleat the Parallelogram A B C E, it is evident that the Area thereof may reprefent the Space, a Body moved equably with the $V_{c}{ }^{-}$ locity B C would defcribe in the Time A B, and the Triangle A B C reprefents the Space defcrio'd by the Fall of a Borly, in the fame Time A P, by the fecond Propofition. Now the Triangle ABC is half of the Parallelogram A BC E; and confequently the Space defcribed by the Fall, is half what would have been defribed by an equable Motion with the Velocity B C, in the

312 Mifcellanea Curiofa.

fame Time; wherefore the Velocity. BC at the end of the Fall, is double to that Velocity, which in the Time A B, would have defcribed the Space fallen, reprefented by the Triangle ABC with an equable Motion, RE.D.

Prop. IV. All Bodies on or near the Surface of the Earth, in their Fall, defcend fo, as at the end of the firft Second of Time, they have defcribed 16 Feet, 1 Inch, London Meafure, and acquired the Velocity of 32 Feet, 2 Inches, in a Second.

This is made out from the 25 th Propofition of the fecond Part of that excellent Treatife of Mr. Hugenius de Horologio Ofcillatorio; wherein he demonftrates the time of the leaft Vibrations of a Pendulum, to be to the Time of the Fall of a Body, from the heigth of balf the length of the Peudulum, as the Circumference of a Circle to its Diameter; whence, as a Corollary, it follows, That as the Square of the Diameter to the Square of the Circumference, fo half the length of the Pendulum vibrating. Seconds, to the Space defribed by the Fall of a Body in a Second of Time: And the Length of the Pendulum vibrating Seconds, being found 39,125 , or $\frac{1}{8}$ Inches, the Defeent in a Second will be found by the aforefaid Analogy 16 Foot and 1 Inch ; and, by the third Propofition, the Velocity will be double thereto; and near to this it hath been found by feveral Experiments, which by reafon of the \int wiftnefs of the Fall, cannot fo exactly determine its Quantity. The Demonftration of Hugenius being the Conclufion of a long Train of Confequences, 1 hhall for brevity fake omit ; and refer you to his Book, where there things are more amply treated of.

From

Mifcèllanea Curiofa.

From thefe Four Propofitsons, all Queftions concerning the Perpendicular Fall of Bodies, are eafily Jolved, and either Time, Height, or Velocity being affign'd, one may readily find the other two. From them likewife is the Doctrine of Projetts deducible, affuming the two following Axioms ; viz. That a Body fet a moving, will move on continually in a right Line with an equable Motion, unlefs fome other Force or Impediment intervene, whereby it is accelerated, or retarded, or deflected.

Secondly, That a Body being agitated by two Motions at a time, does by their compounded Farces pals through the fame Points, as it would do, were the two Motions divided and acted fucceffively. As for Inftance, Suppofe a Body moved in the Line G F, (Fig. I. Tab. 5.) from G to R, and there ftopping, by another Impulfe, fuppofe it moved in a Space of Time equal to the former, from R towards K, to V. I fay, the Body fhall pafs through the Point to V, though thefe two feveral Forces acted both in the fame time.

Prop. V. The Motion of all Projects is in the Curve of a Parabola: Let the Line GRF (in Fig. I.) be the Line in which the Project is directed, and in which by the firt Axiom it would move equal spaces in equal Times, were it nor deflected downwards by the Force of Gravity. Let G B be the Horizontal Line, and GC a Perpendicular thereto. Then the Lixe G RF being divided into equal Parts, anfwering to equal Spaces of Time, let the Defcents of the Project be laid down in Lines parallel to G C, proportioned as the Squares of the Lines GS , G R, G L, G F, or as the Squares of the Times; from

314 Mifceilanea Curiofa.

from S to T, from R to V, from L to X, and from F to B , and draw the Lines TH, V D, XY, BC parallel to GF; I fay, the Points T, V, X, B, are Points in the Curve delcribed by the Project, and that that Curve is a Parabola. By the fecond Axiom, they are Points in the Curve ; and the Parts of the Defcent G H, G D, GY, GC, = to ST, R V, LX, FB, being as the Squares of the Times (by the Seconid Propofition) that is, as the Squares of the Ordinates, HT, D U, Y X, BC, equal to G S, GR, GL, G F, the spaces meafured in thofe Times; and there being no other Curve but the Parabola, whofe Parts of the Diameter are as the Squares of the Ordinates, it follows that the Curve defrrib'd by a Project, can be no other than a Parabola : And faying, as RU the $\mathrm{D}_{e} /$ cent in any time, to GR or UD the direct Motion in the fame time, fo is UD to a third proportional ; that third will be the Line call'd by all Writers of Conicks, the Parameter of the Parabola to the Diameter GC, which is always the fame in Projetts caft with the fame Velocity: And the Vclocity being defined by the Number of Feet moved in a Second of Time, the Parameter will be found by dividing the Square of the Velocity, by 16 Feet, I Inch, the Fall of a Body in the fame Time.

Lemma.

The Sine of the double of any Arch, is equal to twice the Sine of that Arch into its Co-fine, divided by Radius; and the verfed Sine of the double of any Areb is equal to twise the Square of the Sine thereof divided by Radius.

Let

Micellanea Curiofa.

Let the Arch B C (in Fig. 2. Tab. 5.) be double the Arch BF, and A the Center; draw the Radii $\mathrm{AB}, \mathrm{AF}, \mathrm{AC}$, and the Chord BDC , and let fall $B E$ perpendicular to $A C$, and the $A n$ gle EBC, will be equal to the Angle ABD, and the Triangle BCE, will be like to the Triangle B D A; wherefore it will be as A B to $A D$, fo BC or twice BD, to BE; that is, as Radius to Co-fine, fo twice Sine to Sine of the double Arcl. And as A B to BD, fo twice B D or BC to E C, that is, as Radius to Sine, To twice that Sine, to the Verfed Sine of the double Arch; which two Analogies refolved into Equations, are the Propofitions contained in the Lemma to be proved.

Prop. VI. The Horizontal Diftances of Projections made with the fame Velocity, at feveral Elevations of the Line of Direction, are as the Sines of the doubled Angles of Elevation.

Let G B (Fig. I) the Horizontal Diftance be $=z$, the Sine of the Angle of Elevation, F GB, be $=s$, its Co \cdot fine $=c$, Radius $=r$, and the Parameter $=p$. It will be as c to $s ; f o z$ to $\frac{s i}{c}=\mathrm{FB}=\mathrm{GC}$, and by reafon of the Parabola $\frac{p s q}{c}=$ to the Square of CB, or GF; Now as c to r, fo is $\%$ to $\frac{\eta r}{c}=G F$, and its $S_{q u a r e} \frac{\sum z r r}{c c}$ will be therefore $=$ to $\frac{p s z}{c}$. Which Equation reduced will be $\frac{p s c}{r r}=$ \%. But by the former Lemma $\frac{2 s c}{r}$ is equal to the sine of the double

3^{16} Mifcellanea Curiofa.

ble Angle, whereofs is the sine: Wherefore 'twill be as Radius to Sine of double the Angle F GB, fo is half the Parameter, to the Horizontal Range or Diftance fought; and at the feveral Elevations, the Ranges are as the Sines of the double Angles of Elevation, C. E. D.

Corollary.

Hence it follows, that half the Parameter is the greateft Randon, and that that happens at the Elevation of 45 Degrees, the Sine of whofe double is Radius. Likewife that the Ranges equally diftant above and below 45 are equal, as are the Sines of all double Arches, to the Sines of their doubled Complements.

Prop. VII. The Altitudes of Projections made with the fame Velocity, at feveral Elevations, are as the verfed Sines of the doubled Angles of Elevation: As c is to s; fo is $\frac{p s c}{r r}=\mathrm{GB}$ to $\frac{p s s}{r r}=B F:$ and $U K=R U=\frac{B F}{4}$ the $A l$ titude of the Projection $=\frac{p s c}{4^{r} r}$. Now by the foregoing Lemma $\frac{2 s s}{r}=$ to the verfed Sine of the double Angle, and therefore it will be as Radius, to verfed Sine of double the Angle FGB, fo an 8th of the Parameter to the height of the Projection VK; and fo thefe heights at feveral Elevations, are as the faid verfed Sines, Q. E. D.

Corollary.

Miccellanea Curiofa.

Corollary.

From hence it is plain, that the greateft Altitude of the perpendicular Projection is a $4^{\text {th }}$ of P_{a} rameter, or half the greateft Horizontal Range; the verfed Sine of 180 Degrees being $=2 r$.

Prop. VIII. The Lines G F, or Times of the Flight of a Projet caft with the fame Degree of Velocity at different Elevations, are as the Sines of the Elevations.

As c is to r; fo is $\frac{p s c}{r r}=G B$ by the 6 Prop. to $\frac{p s}{r} G F$; that is, as Radius to Sine of Elevation, fo the Parameter to the Line GF; fo the Lines GF are as the Sines of Elevation, and the Times are proportional to thofe Lines; wherefure the Times are as the Sines of Elevation: Ergo confat proppfitio.

Prop. IX. Problem. A Projection being made as you pleafe, having the Ditance and Altitude, or Defcent, of an Object, through which the Project paffes, together with the Angle of Elevation of the Line of Direction; to find the Parameter and Velocity, that is (in Fig. I.) having the Angle F G B, G M, and M X.

Solution. As Radius to Secant of FGB, fo G M the Diftance given to $G L$; and as Radius to Tangent of FGB, fo GM to LM. Then LM -MX in Heights, or +MX in Defcents; or elfe MX - ML, if the Direction be below the Horizontal Line, is the Fall in the Time that the direct Impulfe given in G would have carried

318 Miscellanea Curiofa.

the Project from G to $\mathrm{L}=\mathrm{LX}=\mathrm{GY}$; then by Reason of the Parabola, as LX or GY , is to GL or YX, fo is GL to the Parameter fought. To find the Velocity of the Impulse: by Prop. 2, and 4 , find the Time in Seconds that a Body would fall the Space L. X; and by that dividing the Line GL, the Quote will be the Velocity, or Space moved in a Second fought, which is always a mean Proportional between the Parameter, and 16 Feet, I Inch.

Prop. X. Problem 2. Having the Parameter, Horizontal Diftance, and Height or Defcent of an Objet, to find the Elevations of the Line of Direction neceffary to hit the given Object; that is, having GM, M X, and the greateft Random equal to half the Parameter; to find the Angles FG B.

Let the Tangent of the angle fought be $=t$, the Horizontal Diftance $G M=b$, the Altitude of the Object MX $=h$, the Parameter $=p$, and Radius $=r$, and it will be,
As r to t, fo b to $\frac{t b}{r}=M L$ and $\frac{t b}{r} \mp^{b}$
$\left\{\begin{array}{l}\text { in afcents } \\ \text { in defcents }\end{array}\right\}=L . X$, and
$\frac{p t b}{r} \mp p b=G \mathrm{~L}$ quad. $=\mathrm{XY}$ quad. rations Parabola; but
$b b \mp^{t t b b} \frac{G L}{r r}$ quad 47. 1. Euclid. Wherefore
$\frac{p t b}{r} \mp p b=b l \mp \frac{t b b}{r r}$ which Equation tranfooled, is
$\frac{\Delta+b b}{r r}=\frac{p t b}{r} \mp p b-b b$, divided by $b b$ is

Mifoellanea Curiofa.

$\frac{t t}{r r}=\frac{p t}{b r} \mp \frac{p b}{b b}-1$. this Equation fhews the Queftion to have 2 Anfwers, and the Roots there-

$$
\text { of are } \frac{t}{r}=\frac{p}{2 b} \mp \frac{\sqrt{p p \mp 4 p b}}{46 b}-1 \text {; }
$$

from which I derive the following Rule.
Divide half the Parameter by the Horizontal diftance, and keep the Quote; riz. $\frac{p}{2 b}$ then ray, as Square of the diftance given to the half. Parameter, fo half Parameter \mp double height
height
deicent to the Square of a Secant $=\frac{p p \mp 4 p b .}{4 b b}$ The Tangent anfwering to that Secant, will be
$\frac{\sqrt{p p \mp 4 p b}}{4 b b}-1$ or Square of Radius,
fo then the fum and difference of the aforefound Quote, and this Tangent will be the Roots of the Equation, and the Tangents of the Elevations fought.

Note here, that in Defcents, if the Tangent exceed the Quote, as it does when $p b$ is more than $b b$, the direction of the lower Elevation will be below the Horizon, and if $p b=b b$, it muft be directed Horizontal, and the Tangent of the upper Elevation will be $\frac{p r}{b}$: Note likewife, that if $4 b b+4 p b$ in Afcents, or $4, b b-$ $4 p b$ in Defcents, be equal to $p p$, there is but one Elevation that can hit the Object, and its Tangent is $\frac{p r}{2 \%}$ Andif $4, b b+4 p b$ in Afcents;

320 Mifcellanea Curiofa.

 jeet is without the reach of a Projeg caft. with that Velocity, and fo the thing impotible.

From this Equation $4 b 6$ 干 $4 p b=p p$ are determined the utmoft limits of the reach of any $\boldsymbol{P}_{\text {rojcit, }}$ and the Figure affigned, wherein are all the beights upon each Horizontal diftance beyond which it cannot pafs; for by reduction of that Equation, b will be found $=\frac{1}{4} p$ $\frac{b b}{p}$ in beights, and $\frac{b b}{p}-\frac{1}{4} p$ in defcents; from whence it follows, that all the Points b are in the Curve of the Parabola, whofe Focus is the Point from whence the Project is caft, and whofe Latus rectum, or Parameter ad Axem is $=p$. Likewife from the fame Equation may the leaft Parameter or Velocity be found capable to reach the $O b j$ jet propofed; for $b b=\frac{1}{4}$ $p p \mp p b$ being reduced, $\frac{1}{2} p$ will be $=$ $\sqrt{b b+b b} \pm b\left\{\begin{array}{l}\text { in afcents } \\ \text { in defcents }\end{array}\right\}$ which is the Hozontal Range at 45 degrees, of a Project caft with the leaft Velocity that would juft reach the $O b$ ject, and the Elcvation requifite will be eafily bad; for dividing the fo found Semi-parameter by the Horizontal diftance given b, the Quote into Radius will be the Tangent of the Elcvation fought. This Rule may be of grod ufe to all Bombardiers and Cunners, not only that they may ufe no more Powder than is neceffary, to caft their Bombs into the place affigned, but that they may fhoor with much more certainty, for that a fmall Error committed in the Elevation of the Piece, will produce no fenfible Difference in the fall of the Shot:

Mijcellanea Curiofa.

Shot: For which Reafons the French Engineers in their late Sieges have ufed Mortar-pieces inclin'd conftantly to the Elevation of 45 , proportioning their Charge of Pouder according to the diftance of the object they intend to frike on the Horizon.

And this is all that need to be faid con: cerning this Problem of fhooting upon Heights and Defcents. But if a Geometrical Conftruct:on thereof be required; I think 1 bave one that is as eafy as can be expected, which I deduce from the foregoing Analytical Solution, vix $\frac{t}{r}=\frac{p}{2 b} \pm \frac{\sqrt{\frac{1}{4} p p} \frac{ \pm p h}{b b}=\frac{b 6}{}}{}$, and 'tis this, having made the right Angle GDF, (Tab. 5° Fig. 3.) make DF $=\frac{t}{2} p$, or greateft Range, and $G D=b$ the Horizontal Diftance, and D B $=h$ the perpendicular heighth of the Object ; to be laid upwards from D , if the Object be above the Horizon, or downwards if below it. Parallet to GD draw FA, and make it equal to G B the Hypothenufal Dittance of the Object; and with the Center A and Radius F B $=\frac{1}{2} p$ $\pm b$, fweep an Arch, which fhall if the thing be poffible, interfect the indeterminate Perpendicular DF in two Points K and L, to which draw she Lines, G L, GK; I fay, the Angles D G K, DG L, are the Elevations requifte to ftrike the Object B.

Demonftration. The Square of FK or FL, is equal to $\mathrm{FB} q-\mathrm{GB} q$: or $\overline{\frac{1}{2} p \pm\left. b\right|^{2}}-b b-b b$ or $\frac{1}{4} p p \pm p h-b b$, and therefore $\sqrt{\frac{1}{4} p p \pm p b-b b}$ $i=\overline{\mathbf{F K}}=\mathbf{F L}$, and by Confequence DK, \boldsymbol{Y} DL

322 Mifcellanea Curioja.

DL $=\frac{1}{2} p \pm \sqrt{\frac{1}{1} p p \pm p b-b 6}$. And as DG: $D K$ and $\overline{D L}::$ Radius : Tangents fought, which coincides with our Algebraical Expreffion thereof.

Prop. XI. To determine the Force or Velocity of a Proje ह, in every Point of the Cyrve it deferibes.

To do this we need no other Pracognita, but only the third Propofition, vir. That the Velotiity of fulling Bodies, is double to that which in the fame time, would have defcribed the Space fallen by an equable Motion: For the Velocity of a Proje θ, is compounded of the contant equal Velocity of the impreffed Motion, and the Velocity of the Fall, under a given Angle, viz. the Comp plement of the Elevation: For Intance, in Eig. 2. in the time wherein a Project would move from G to L, it defcends from L to X, and by the third Propofition has aequired a Velocity, which in that time would have carried it by an equable Motion from L to Z, or twice the Defcent $L \mathbf{X}$; and drawing the Line GZ, I fay, the Velocity in the Point X, compounded of the Velocities GL and LZ under the Angle GLZ; is to the Velocity imprefl'd in the Point G, as GZ is to GL; this follows from our fecond Axiom, and by the 20 and 21 Prop. lib. I. conic. Midorgit, XO parallel and equal to GZ fhall touch the Parabola in the Point X. So that the Velocities in the feveral Points, are as the lengths of the Tangents to the Parabola in thofe Points, intercepted between any two Diameters E Aad thefe again are as the Secants of the Angles, which thofe Tingents continued make with the Horizon$0 l$ Line GB. From what is here laid down,

Mifcellanea Curiofa.

may the comparative Force of a Shot in any two Points of the Curve, be either Geomemeically or arithmetically difcover'd.

Corallary.

From hence it follows, that the force of a Shot is always lealt at U , or the $V_{\text {ertex }}$ of the Para bola, and that at equal diftances therefrom, as at T and X, G and B its force is always equal, and that the leaft force in U is to that in G and B, as Raduus to the Secant of the Angle of Elevation FGB.

Thefe $P_{\text {ropofitions confidered, }}$ there is no queftion relating to Projects, which, by the help of them, may nor eafily be Solved; and tho' it be true that moft of them are to be met withal, in Galileut, Torricellius and others, who have taken them from thofe Authors, yet their Books being Foreign, and not eafy to come by, and their D_{8} mon/trations long and difficult, I thought it not amifs to give the whole Datrine here in Englifh, with fuch fhort Analytical Proof of my own, as might be fufficient to evince their Truth.

The Tenth Propafition contains a Problem, untouch'd by Torricollius, which is of the greateft ufe in Gunnerys, and for the fake of which this Difoourfe was principally intended: It was firlt Solved by Mr. Anderfon, in his Book of the Genuine U/C and Effects of the Gun, Printed in the Year 1674; but his Solution required fo much Calculation, that it put me upon fearch, whether it: might not be done more eafily, and thereupon in the Year 1678 I found out the Rule I now Dublifh, and fromit the Geometrical Conffruction: Since which time there has a large Treatife of this

$$
Y_{2} \quad \text { Subjea }
$$

324 Mifcellanea Curiofa.

Subject, Intituled, L'Art dejetter les Bombes, been Publifhed by Monficur Blondel, whercin he gives the Solutions of this Problem by Meffeurs Buot, Romer and de la Hire: But none of them being the fame with Mine, or, in my Opinion, more eafy, and moft of them more Operofe, and befides mine finding the Tangent, which generally determines the Angle better than its Sine, I thought my fe F obliged to Print it for the ufe of all fuch, as defire to be infornied in the Mathematical part of the Agt of Gimmery.

Now rhefe Rules were rigidly true, were it nor, as I faid before, for the Oppofition of the Medium, whereby not only the direct impreft Motion is continually retarded, but likewife the incteate of the Velocity of the Fall, fo that the Spaces defcribed thereby, are not exactly as the Squares of the Times: But what this Oppofition of the Air is, againt feveral Velocities, Bulks, and Weights. is not fo eafie to determine. 'T is certain that the weight of Air to that of Water, is nearly as I to 800 , whence the weight thereof, to that of any Project is given'; 'tis very likely, that to the fame Velocity and Magnitude, but of different Matter, the Oppofition fhould be recipro. cally as the weights of the Shot; as likewife that to Shot of the lame Velocity and Matter, but of different Sizes, it fhould be as the Diamters reciprocally: Whence generally the Oppofition to Shot with the fame Velocity, but of differing Diameters, and Materials, fhould be as their Specifick Gravities into their Diameters reciprocally; but whether the oppofition, to differing Velocities of the fame Shot, be as the Squares of thofe: Velocities, or as the Velocities themeelves, or otherwife, is yet a harder Queftion. However it be, 'tis certain,

Micellanea Curiofa. 325

tain, that in large Shot of Metal, whofe weight many Thoufand times furpaffes that of the Air, and whofe force is very great, in proportion to the Surface wherewith they prefs thereon; this Oppofition is fcarce difcernable; For by feveral Experiments made with all Care and Circumpection with a Mortarpiece, Extraordinary well fix'd to the Earth on purpofe, which carried a folid Brafs Shot of four Inches and a half Diameter, and of abour fourreen. Pound Weight, the Ranges above and below forcy five Degrees were found nearly equal; if there were any difierence, the under Ranges went rather the fartheft, but thofe differences were ufually iefs than the Errors committed in ordinary Practice, by the unequal Goodnefs and Dryne's of the fame fort of Powder, by the Unfinnefs of the Shot to the Bore, and by the Loofnets of the Carriage.

In a fmaller Brals-Shot of about an Inch and half Diameter, calt by a Crofs-Bow which ranged it, at moft about four Hundred Foot, the Force being much more equal than in the Morterpiece, this difference was found more Curioufly : and Conftantly and molt Evidently, the under Ranges out-went the upper. From which Trials I conclude, that although in fmall and light Shot, the Oppofition of the Air, ought and muft be accounted for; yet in Shooting of great and weighty Bombs, there need be very little or no allowance made; and fo thefe Rules may be put in practice to all Intents and Purpofes, as if this Impediment were abfolutely remor'd.

326 Mifeellanea Curiofa.

A Propofition of general Ufe in the Art of Gunnery, Bewing the Rule of Iaying a Mortar to pafs, in order to prike an Object abose or below the Horizon.

It was formerly the Opinion of thofe concerned in Artillery, that there was a certain requifite of Powder for each Gun, and that in Mortars, where the diftance was to be varied, it muft be done by giving a greater or leffer Elevation to the Piece. But now our later Experience has taught us that the fame thing may be more certainly and readily performed by increafing and diminifhing the quantity of Powder, whether regard be bad to the Execution to be done, or to the Charge of doing it. For when Bombs are difcharged with great Elevations of the Mortar, they fall too Perpendicular, and bury themfelves too deep in the Ground, to do all that damage they might, if they came more Oblique, and broke upon or near the Surface of the Earth; which is a thing acknowledg'd by the Befieged in all Towns, who unpave their Streets, to let the Bombs bury themelves, and thereby fliffle the farce of their Splinters. A Second Convenience is, that at the extream Elevation, the Gumner is not obliged to be fo curions in the direction of his Piece, but it will fuffice to be within 2 Degree or two of the Truth; whereas in the other Method of Shooting he ought to be very eurious. But a Third, and no tef's confiderable Advantage is, in the faving the Prince's Powder, which in fo great and fo numerous Difcharges, as we have lately feen, muft needs amount to a confiderable Value. And for Sea-Mortars, it is
fcarce
fearce practicable otherwife to ufe them, where the agitation of the Sea continually changes the Direction of the Mortar, and would render the Shot very uncertain, were it not that they are phaced about 45 Degrees Elevation, where fereral Degrees above or under, make very little difference in the Effect.

In the precedent Difcourfe, I confidered all the Propofitions relating to the Motion of Projeetiles, and gave a Solution to this Problem; vit. To bit an Objeat above or below the Horizontal Line with the greateft Certainty and leaft Force. That is, that the Horizuntal diftance of the Object being put $=b$, and the Perpendicular Heighth $=b$, the Charge requifite to ftrike the Object with the greatel Advantage, was that which with an Elevation of 45° would caft the Shot on the Horizontal Line, to the diftance of $\sqrt{b b+b b}$, when the Object was above the Horizon; or if it were below it, the Charge mult be leffer, fo as to reach on the Horizon, at 45° Elevation, no greater a Diftance than $\sqrt{w b+b b}-b$; that is ${ }^{5}$ in the one Cafe, the Sum of the Hppothenufal Diftance of the Object from the Gun, and the Perpendicular Heighth thereof above the Gun; and in the other Cafe, when the Object is below the Horizon, the difference of the fame per 47. 1 Eucl. And I then Ghew'd how to find the Elevation proper for the Gun fo charged, vit. As the Horizontal Diftance of the Objeat, to the Sum or Difference of the Hypothenufal Diftance and Perpendicular Height : So Radius to the Tangent of the Elevation fought. But I was hot at that time aware that the aforefaid Elevation

328 Mifcellanea Curiofa.

did conftantly bifect the Angle between the Perpendicular and the Object, as is demonftrated from the Difference and Sum of the Tangent and Secant of any Arch being always equal to the Tangent and Cotangent of the half Complement thereof to a Quadrant. Having difcovered this, I think nothing can be more compendious, or bids fairer to compleat the Art of Gunnery, it being as eafie to fhoot with a Mortar at any Object on demand, as if it were on the Level; neither is there need of any Computation, but only fimply laying the Gun to pafs, in the middle Line beo tween the Zenith and the Object, and giving it its due Charge. Nor is there any great need of Inftruments for this purpofe: For if the Muzzle of the Mortar be turned truly Square to the Bore of the Piece, as it ufually is or ought to be, a piece of Looking-glafs Plate applied parallel to the Muzzle, will by its Reflection give the true Pofition of the Piece, the Bombardeer having no more to do, but to look perpendicularly down on the Looking-glafs, along a fmall Thread with a Plumbet, and to raife or deprefs the Elevation of the Piece, till the Object appear reflected on the fame Point of the Speculum, on which the Plumbet falls; for the Angle of Incidence and Reflection being equal, in this Cafe a Line at Right Angles to the Speculum, as is the Axis of the Cbafe of the Piece, will bifect the Angle between the Perpendicular and the Ob ject, according as our Propofition requires. So that it only remains by good and valid Experiments to be affured of the Force of Gunpowder, bow to make and conferve it equal, and to know the Effect thereof in each Piece; that is, how far differing Charges will caft the fame Shot out

Mifcellanea Curiofa.

of it; which may moft conveniently be engraven on the outfide thereof, as a flanding Direction to all Gunners, who fhall from thence forward have occafion to ufe that Piece: And were this Marter well afcertained, it might be worth the while to make all Mortars of the like Diameter as near as may be, alike in length of Chare, Weight, Chamber, and all other Circumftances.

This Difovery that the utmoft Range on an inclined Plane, is, when the Axis of the Piece makes equal Angles with the Perpendicular and the Object; compared with what I have demonAtrated of the fame Problem in the aforefaid Difcourfe does lead to and difcover two very ready Theorems; the one, to find the greateft Horizontal Range at 45° Elevation, by any Shot made upon any inclined Plane, with any Elevation of the Piece whatfoever: And the other to find the Elevations proper to frike a given Object, with any Force greater than what fuffices to reach it with the aforefaid middle Elevation. Both which being performed by one fingle Proportion, may be very ferviceable to fuch as are concerned in the Practice of Gunnery, but are unwilling to trouble themfelves with tedious and difficult Rules. The two Propofitions are thefe.

$$
P R O P . I .
$$

A Shot being made on an inclined Plane, having the Horizontal Diftance of the Object it Atrikes, with the Elevation of the Piece, and the Angle at the Gun between the Object and the Perpendicular; to find the greateft Horizontal Range of that Piece, laden with the fame Charge;

33° Mifcellanea Curiofa.

that is, half the Latus rectum of all the Parabole made with the fame Impetus.

$$
R \cup L E .
$$

Take half the Diftance of the Objeat from the Nadir, and take the Difference of the given Elevation from that half ; the Verfed Sine of twice that Difference fubtract from the Verfed Sine of the Diftance of the Object from the Zenith: Then fhall the Difference of thofe Verfed Sines be to the Sine of the Diftance of the Object from the zenith, as the Horizontal Ditance of the Object frook, to the greateft Horizontal Range at 45°.
PROP. II.

Having the greatef Horizontal Range of a Gun, the Horizontal Diftance and Angle of Inclination of an Object to the Perpendicular, to find the two Elevations neceffary to ftrike that Object.

$$
R \cup L E .
$$

Halve the Diftance of the Object from the Nadir ; this half is always equal to the half Sum of the two Elevations we feek. Then fay, As the greateft Horizontal Range is to the Horizontal Diftance of the ObjeEt: So is the Sine of the Angle of Inclination or Diftance of the Objeit from the Perpendicular, to a fourth Proportional; whicb fourtb being fubtracted from the Verfed Sine of the Diffance of the ObjeCt from the Zenith, leaves the Verfod sine of the Difference of the Elevations

Mifeellanea Cwriofa. 331

fouight ; which Elevations are therefore had by adding and fubtrating the batf Difference to and from the aforefaid half Sum.

I thall not need to fpeak of the Facility of thefe Solutions, I thall only obferve that they are both General, without Exception or Caution, and derived from the Knowledge that thefe two Elevations are equidiftant above and below the Line, bifecting the Angle between the Object and the Zenith.

33^{2}
 Mifcellanea Curiofa.

A Difcourfe concerning the Meafure of the Airs Refiftance to Bodies moved in it. By the Learned John Wallis, S.T. D. and R.S.S.

1. THAT the Air (and the like of any other Medium) doth confiderably give Refiftance to Bodies moved in it ; and doth thereby abate their Celerity and Force;) is generally admitted. And Experience doth atteft it: For otherwife, a Cannon Bullet projected Horizontally, fhould (fuppofing the Celerity and Force undiminifhed) frrike as hard againft a Perpendicular Wall, erected at a great diftance, as near at hand; which we find it doth not.
2. But at what Rate, or in what Proportion, fuch Refiftance is; and (confequently, at what Rate the Celerity and Force is continually diminifhed) feems not to have been fo well examined. Whence it is, that the Motion of a Project (fecluding this Confideration) is commonly reputed to defcribe a Parabolick Line; as arifing from an Uniform or equal Celerity in the Line of Projection, and a Celerity uniformly accelerated in the Line of Defcent; which two fo compounded, do create a Parabola.

Mifcellanea Curiofa.

3. In order to the Computation hereof, I firt premile this Lemma, (as the moft rational that doth occur for my firt footing, That (fuppofing other things equal) the Refiftance is proportional to the Celerity. For in a double Celerity, there is to be removed (in the fame time) twice as much Air, (which is a double Impediment) in a treble, thrice as much; and fo in other Proportiuns.
4. Suppofe we then the Force impreffed (and confequently the Celerity, if there were no Refiftance) as 1 ; the Refiftance as r. (which muft be lefs than the Force, or elfe the Force would not prevail over the Impediment, to create a Motion.) And therefore the effective Force at a firt Moment, is to be reputed as $1-r$: That is, fo much as the Force impreffed, is more than the Impediment or Refiftance.
5. Be it as $\mathbf{I}-r$ to I ; fo one to m. (which m is therefore greater than I .)
6. And therefore the effective Force (and confequently the Celerity) as to a firt Moment, is to be $\frac{1}{m}$ of what it would be, had there been no Refiftance.
7. This $\frac{1}{m}$ is alfo the remaining Force after fuch firt Moment ; and this remaining Force is (for the fame Reafon) to be proportionally rabated as to a fecond Moment; that is, we are to take $\frac{1}{m}$ thereof, that is $\frac{1}{m m}$ of the impreffed Force. And for a third Moment (at equal diftance of time) $\frac{1}{m m m}$; for a fourch $\frac{1}{m^{4}}$; and fo onward infinitely.

334 Mifcellamea Curiofa.

8. Becaufe the length difpatched (in equal times) is proportional to the Celerities ; the Limes of Motion (anfwering to thofe equal Times) are to be as $\frac{1}{\mathrm{~m}}, \frac{\mathrm{I}}{\mathrm{m}^{2}}, \frac{1}{\mathrm{~m}^{3}}, \frac{1}{\mathrm{~m}^{4}}$, G. 2. of what they would have been, in the fame Times, bad there been no Refiftance.
9. This therefare is a Geometrical Progreffion ; and (becaue of m greater than 1) cotinually decreafing.
10. This decreafing Progreffion infinitely continued (determining in the fame Point of Reft, where the Motion is fuppofed to expire) is yet of a finite Magnitude; and equal to $\frac{1}{m-1}$, of what it would have been in $f 0$ much Time, if there had been no Refiftance. As is demonfteated in my Algebra, Cbap. 95. Prop. 8. For (as I have elfewhere demonftrared) the Sum or Aggregate of a Geometrical Progreflion is $\frac{V R-A}{R-1}$ (fuppofing V the greateft Term, A the leaft, and R the common Multiplier.). That is $\frac{V R}{R-1}-\frac{A}{R-1}$ Now in the prefent Cafe, (fuppofing the Progreffion infinitely continued) the leaft Term A_{3}. becomes infinitely fmall, or $=0$. And confequently $\frac{A}{R-I}$ doth alfo vanith, and there: Dy the Aggregate becomes $=\frac{V R}{R-1} . \quad$ That is

Mifeellanea Curiofa.

 f fuppofing the Progrefion to begin at $V=1$.) That is (dividing all by R that f_{0}
the Progrefion may begin (dividing all by R that fo
the Progreffion may begin at $\left.\frac{V}{R}=\frac{1}{m}\right) \frac{V}{R-1}=\frac{V}{R}+\frac{V}{R R}$ $+\frac{V}{R^{2}}+\mho_{c}$, That is, in our prefent Cafe (becaure of $V=I, \& R=m:) \frac{1}{m}+\frac{1}{m m}+\frac{1}{m^{3}}$ $\& c=\frac{1}{m-1}$. That is, $($ putting $n=m-1) \frac{1}{n}$ of what it would have been if there had been no Refiftance.
II. This infinite Progreffion is fitly expreffed by an Ordinate in the Exterior Hyperbola, parallel to one of the Afymptotes; and the feveral Members of that, by the feveral Members of this, cut in continual Proportion. As is there demonftrated at Prop. 15. For let $S H_{0}$ (vid. Fig. 4. Tab. 5.) be an Hyperbola between the Afymptotes $A B, A F$: And let the Ordinate DH (in the Exterior Hyperbola, parallel to $A F_{3}$) reprefent the impreffed Force undiminifhed; or the Line to be defcribed in fuch time, by a Celerity anfwerable to fuch undiminifhed Force. And let BS (a like Ordinate be $\frac{1}{m}$ thereof; which therefore, being lefs than $D H$ (as being equal to 2 Part of it) will be farthes shat

33^{6} Mifcellanea Curiofa.

than it from $A F$. In $A B$ (which I put $=1$) let $\boldsymbol{B} d$ be fuch a Part thereof, as is $B S$ of $D H$. Now becaufe (as is, well known) all the infcribed Parallelograms, in the Exterior Hyperbola, $A S, A H$, छ'c. are equal ; and therefore their fides reciprocal: Therefore as $A d=1-\frac{1}{m}$ (fuppofing $B d$ to be taken, from B towards A,) to $A B=1$, (or as $m-1$ to m : fo is $B S$ $=\frac{1}{m} D H$, to $\left.m-i\right)\left(\frac{1}{m}+\frac{1}{m m}+\frac{1}{m^{3}}+\& C\right.$. $d b$, which is therefore equal

$$
\mathbf{I}-\frac{\mathbf{I}}{m}
$$

to $\frac{1}{m-I}$ of $D H$;
that is (as will
ding 1 , by m

$$
\begin{aligned}
& +\frac{1}{m} \\
& +\frac{1}{m}-\frac{1}{m m}
\end{aligned}
$$

-1 ,) to $\frac{1}{m}+$
$\frac{1}{m m_{D}}+\frac{1}{m^{3}}$, Br 2.
of $\mathrm{D} H$.
Or if $B d$ be taken beyond B; then as $A d=$
$1+\frac{1}{m}$ to $A B$

$+\frac{1}{m m m}$
$=1$, or as $m+1$ to $m, f o$ is $\frac{1}{m} D H$ to $d b$
which is therefore equal to $\frac{1}{m+I} D H$; that is (as will appear by like dividing of I by $m+1$;) $=$ to $\frac{1}{m}-\frac{1}{m m}+\frac{1}{m^{3}}=$ Enc of $D H$.

Mifcellanea Curiofa.

12. Let fuch ordinate $d h$, or (equal to it in the Afymptote) $A F$, be fo divided in L, M, N, छjc. (by Perpendiculars cutting the Hy perbola in l, m, n, ©́c.) as that $F L, L M, M N$, be as $\frac{1}{m}, \frac{1}{m m}, \frac{1}{m^{3}}, \Xi_{c}$. That is, fo continually $\mathrm{d} \varepsilon$ creafing as that each Antecedent be to its Confequent, as ito $\frac{1}{m}$, or as m to t. See Fig. 5. Tab. 5.
13. This is done by taking $A F, A L, A N, \Xi^{C}$. in fuch proportion. For, of continual Proportionals, the Differences are alifo continually proportional, and in the fame proportion. For let $A, B, C, D, \notin c$. be fuch Proportionals, and their Differences a, b, c, \mathcal{J}_{c}. That is, $A-B=a$, $B-C=b, C-D,=c$, ® $^{\prime} c$.

Then, becaufe $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathcal{J}^{2}$. are in cantinual proportion,
That is, A. B :: B. C :: C. D : : छc.
And dividing $A-B . B:: B-C . C:: C-D$ D :: § ${ }^{\circ}$.

That is,

a. B :: b. C:: d. D :: E c_{c}.
a. b.c. گ̌c. :: B. C. D. ઉुc. : : A. B. C. छंc.

That is, in continual proportion as A to B, or as m to 1 .
14. This being done; the Hyperbolick Spaces $F l, L m, M n, \& c$. are equal. As is demonftrated by Gregory San-Vincont; and as fuch is commonly admitted.
15. So that $F l, L m, M n, \mathcal{J}^{3}$. may fitly reprefent equal Times, in which are difpatched unequal Lengths, reprefented by $F L, L M, M N$, \mathfrak{J}°.

Z 16. And

33^{8} Mijcellanea Curiofa.

16. And becaufe they are in Number infinite (though equal to a finite Magnitude) the Duration is infinite : And confequently the impreffed Force, and Motion thence arifing, never to be wholly extinguifhed (without fome further Impediment) but perpetually approaching to A, in the Nature of Afymptotes.
17. The Spaces $F l, F m, F n$, \& c. are therefore as Logarithms (in Arithmetical Progreflion Increafing) anfwering to the Lines $A F, A L$, $A M, \& c$. or to $F L, L M, M N$, \&c. in Geometrical Progreffion decreafing.
18. Becaufe $F L, L M, M N$, \&c. are as $\frac{1}{m}, \frac{1}{m m}, \frac{1}{m^{3}}, \& \mathrm{c}$. (infinitely) terminated at A; therefore (by g 10) their Aggregate $F A$ or $d h$, is to $D H$, (fo much Length as would have been difpatched, in the fame time, by fuch impreffed Force undiminifhed) as $\mathbf{1}$ to $m-1=n$.
19. If therefore we take, as I to n, fo AF to $D H$; this will reprefent the Length to be difpatched, in the fame time, by fuch undimifhed Force.
20. And if fuch $D H$ be fuppofed to be divided into equal Parts innumerable (and therefore infinitely fmall;) thefe anfwer to thofe (as many) Parts unequal in $F A$, or $b d$.
21. But, what is the Proportion of r to 1 , or (which depends on it) of $1-r$ to 1 , or 1 to m; remains to be inquired by Experiment ?
22. If the Progrefficn be not infinitely continued ; but end (fuppofe) at N, and its leaft Term be $A=M N$; then, out of $\frac{V}{R-1}=\frac{1}{m}+\frac{1}{m m}+\frac{1}{m^{3}}$, 6r. is to be fubducted $\frac{A}{R-1}$ (as at g IO.) that is

Mifcellanea Curiofa.

(as by Divifion will appear) $\frac{A}{R}+\frac{A}{R^{2}}+\frac{A}{R^{3}} 8 c$,
That is (in our prefent Cafe) $\frac{a}{m}+\frac{a}{m m}+\frac{a}{m^{3}}$
\&c. And fo the Aggregate will be $\frac{1-a}{m}+\frac{1-a}{m m}$
$+\frac{1-\frac{a}{3}}{m^{3}} \& \varepsilon=\frac{1-a}{n}$.
And thus as to the Line of Projection, in which (fecluding the Refiftance, the Motion is reputed uniform ; difpatching equal Lengths in equal Times. Confider we next the Line of Defcent.
23. In the Defcent of Heavy Bodies, it is fuppofed that to each Moment of Time, there is fuperadded a new Impulfe of Graviry to what was before: And each of thefe, fecluding the Confideration of the Air's Refiftance, to proceed equally (from their feveral beginnings) through the fucceeding Moments. As (in the erect Lines)
 1, छc. and fo continually, as in the Line of Projection.
24. Hence arifeth (in the tranf11 verfe Lines) for the firf Moment 111 1 , for the fecond $1+x$, for the $\mathcal{E}_{c} \mathbf{I I}$. third $1+1+1$, and fo forth, in Arithmetical Progreffion: As are the Ordinates in a Triangle, at equal diftance.
25. And fuch are the continual Increments of the Diameter, or of the Ordinates in the exterior Parabola, anfwering to the interior Ordinates, or Segments of the Tangent, equally increafing; as is known, and commonly admitted.

340 Mifcellanea Curiofa.

26. If we take in the Confideration of the Air's Refiftance; we are then, for each of thefe equal Progreffions, to fubttitutea decreafing Progrefion Geometrical ; in like manner (and for the fame Reafons) as in the Line of Projection.
27. Hence arifeth, for the
firlt Moment $\frac{1}{m}$; for the fe- $\frac{I}{m}$
cond $\frac{1}{m}+\frac{1}{m^{2}}$; for the third $\frac{1}{m^{2}} \frac{1}{m}$
$\frac{1}{m}+\frac{1}{m^{2}}+\frac{1}{m^{3}}$, Oc. And $\frac{1}{m^{3}} \frac{1}{m^{2}} \frac{1}{m}$
$\begin{aligned} & \text { fuch is therefore the Defcent } \\ & \text { of a heavy Body falling by its }\end{aligned} \frac{1}{m^{4}} \frac{1}{m^{3}}-\frac{1}{m^{2}}-\frac{1}{m}$ own weight. The feveral Impulfes of Gravity being fuppofed equal.
28. That is (in the Figure of g 12) as $F L$, $F M, F N$, \& C . in the Line of Defcent, anfwering to $F L, L M, M N$, \&c. in the Line of Projection.
29. But though the Progreffions for the Line of Projection, are like to each of thofe many in the Line of Defcent; it is not to be thence inferred, that therefore $\frac{1}{m}$ in the one, is equal to $\frac{1}{m}$ in the other : But in the Line of Projection (fuppofe) $\frac{1}{m} f$ (fuch a Part of the Force impreffed, and a Celerity anfwerable:) in the Line of Defeent, $\frac{\mathrm{I}}{\mathrm{m}} \mathrm{g}$ fuch a Part of the Impulfe of Gravity.
30. Thofe for the Line of Defcent (of the rame Body) are all equal, each to other : Becaufe g (the

Mifcellanea Curiofa.

g (the new Impulfe of Gravity) in each Moment is fuppofed to be the fame.

3 I. But what is the Proportion of f to g (that of the Force impreffed, to the Impulfe of Gravity in each Body) remains to be inquired by Experiment.
32. This Proportion being found as to one known Force; the fame is thence known as to any other Force (whofe Proportion to this is given) in the fame uniform Medium.
33. And this being known, as to one Medium; the fame is thence known as to any other Medi$u m$, the Proportion of whofe Refiftance to that of this is known.
34. If a heavy Body be projected downward in a perpendicular Line; it defcends therefore at the Rate $\frac{1}{m}, \frac{1}{m m}, \frac{1}{m^{3}}, ~ ઉ c$. of f (the impreffed Force) increafed by $\frac{1}{m}, \frac{1}{m}+\frac{1}{m^{2}}, \frac{1}{m}+$ $\frac{1}{m^{2}}+\frac{\mathbf{I}}{m^{3}}, \mho_{c}$. of g the Impulfe of Gravity, (by 97, and 27) Becaufe both Forces are here united.
35. If in a perpendicular Projection upwards; it afcends in the rate of the former, abated by that of the latter. Becaufe here the Impulfe of Gravity is contrary to the Force impreffed.
36. When therefore this latter (continually increafing) becomes equal to that former (continually decreafing) it then ceaferh to afcend; and doth thenceforth defcend at the rate wherein the latter continually exceeds the former.
37. In an Horizontal, or Oblique Projection : If to a Tangent, whofe Increments are as $F L$,

342 Mifcellanea Curiofa.

$L M, M N, \& c$. that is as $\frac{I}{m} f, \& c$. be fitted Ordinates (at a given Angle) whofe Increments are as $F L, F M, F N$, \&cc. that is, as $\frac{\mathrm{I}}{\mathrm{m}} \mathrm{g}$, \&cc. The Curve anfwering to the Compound of thefe Motions, is that wherein the Project is to move.
38. This Curve (being hitherto without a Name) may becall'd Linea Projectorum; the Line of Proje:ts, or things projected; which refembles a Parabola deform'd.
39. The Celerity and Tendency, as to each Point of his Line, is determined by a Tangent at that Point.
40. And that againft which it makes the greateft Stroke or Percuiiion, is that which (at that Point) is at right Angles to that Tangent.
41. If the Projection (at $\mathbf{2 7}^{7}$) be not infinitely continued, but terminate (fuppofe) at N , fo that the laft Term in the firft Column or Series erect be a; and confequently in the fecond, $m a$; in the third, $m m a$, \&c. (each Series having one Term fewer than that before it:) Then (for the fame Reafons, as at I_{2}.) the Aggregates of the feveral Columns (or erect Series) will be $\frac{1-a}{n}, \frac{1-m a}{n}, \frac{1-m m a}{n}$, and fo forth, till (the Multiple of a becoming $=1$) the Proa greflion expire:

42 Now all the Abatements here, a, ma, mma, \&c. are the fame with the Terms of the firf Column taken backward. For a is the laft, $m a$ the next before it; and fo of the reft.

Mifcellanea Curiofa.

43. And the Aggregate of all the Numerators is fo many times I, as is the Number of Terms (fuppofe t, wanting the firf Column; that is $t-\frac{1-a}{n}$, or $\frac{n t-1+a}{n}$; and this again divided by the common Denominator n, becomes $\frac{n t-1+a}{n n}$. And therefore $\frac{n t-1+a}{n n} g$,
is the Line of Defcent by its own Graviry.
44. If therefore this be added to a projecting Force downward in a Perpendicular; or fubducted from fuch projecting Force upward; that is, to or from $\frac{\mathbf{I}-a}{n} f$: The $D:-$ fcent in the firf Cafe will be $\frac{1-a}{n} f+$ $\frac{n t-1+a}{n n} g$; and the Afcent in the other Cafe $n n$
$\frac{1-a}{n} f-\frac{n t-1+a}{n n} g$. And in this latter
Cale, when the ablative Part becomes equal to the pofitive Part, the Afcent is at the higheft; and thenceforth (the ablative Part exceeding the pofitive) will defcend.
45. In an Horizontal or Oblique Projection, having taken $\frac{\mathbf{I}-a}{n} f$, in the Line of Projection, and thence (at the Angle given) $\frac{n t-1+a}{n n} g$, in the Line of Defcent; the Point in the Curve anfwering to thefe, is the Place of the Project anfwering to that Moment.

344 Mifcellanea Curiofa.

46. I am aware of fome Objections to be made, whether to fome Points of the Procefs, or to fome of the Suppofitions. But I faw not well how to wave it, without making the Computation macin more perpex'd. And in a Matter fo nice, and which muft depend upon Phyfical Obfervations, 'twill be hard to attain fuch Accuracy, as nor to ftand in need of fome Allowances.
47. Sonewhat might have been farther added to direct the Experiments fuggeited at \mathbf{I}_{21}, and 31. But that may be done at leifure, after deliberation had, which way to attempt the Experiment.
48. The like is to be fid of the different refiftance which different Bodies may meet with in the lame M dium, according to their different Gravities (extenfively or intenfively confider'd) and their different Figures and Pofitions in Motion. Whereof we have hitherto taken no account; but fuppofed them, as to all thefe, to be alike and equal.
POSTSCRIPT.
49. The Computation in S $41,42,43$, may (if that be allo defired) be thus reprefented by Lines and Spaces. The Ablatives $a, m a$, $m m a, \& c$. (being the fame with the firlt Column taken backward) are fitly reprefented by the Segments of $N F$ (beginning at. N) in Figure 5 and 6 , and therefore by Parallelograms on thefe Bares, affuming the common height of $F h$, or $N Q$; the Aggregate of which is $N h$, or F 见. And, fo many times I, by fo many equal Spaces, on the fame Bafes, between the fame Parallels, terminated

Mifcellanea Curiofa.

 terminated at the Hyperbola: The Aggregate of which is $b F_{N} Q_{n}$. From whence if we fubduct the Aggregate of Ablatives $F \boldsymbol{r}$; the remaining Trilinear $b Q n$, reprefents the Defcent.50. If to this of Gravity, be joined a projecting Force; which is to the Impulfe of Gravity as as $h K$ to $b F$ (be it greater, leff, or equall' taken in the fame Line; the fame Parallels determine proportional Parallelograms, whofe Aggregate is K.
5r. And therefore if this be a perpendicular Projection downwards; then $b K k n$ (the Sum of this with the former) reprefents the Defcent.
51. If it be a Perpendicular upwards; then the difference of thefe two reprefents the Motion ; which fo long as $K \mathrm{Q}$ is the greater, is Aicendent; but Defcendent, when b Q n becomes greater; and it is then at the higheft when they be equal.
52. If the Projection be not in the fame Perpendicular, (but Horizontal, or Oblique) then $K \ell$ reprefents the Tangent of the Curve; and $b Q_{n}$ the Ordinates to that Tangent, at the given Angle.
53. But the Computation before given, Itake to be of better ufe than this Reprefentation in Figure. Becaure in fuch Mathematical Enquiries, I choofe to feparate (as much as may be) what purely concerns Proportions; and confider it abftractly from Lines, or other Matter wherewith it is incumbred.

As to the Queftion propofed ; whether the refiftance of the Medium do not always take off fuch a proportional part of the Force moving through it, as is the fecifick Gravity of the Medium to that of the Body moved in it : (For, if

346 Mifcellanea Curiofa.

fo, it will fave us the trouble of Obferva? tion.)
I think this can by no means be admitted. For there be many other things of Confideration herein, befide the intenfive Graviry (or, as fome call it, the feecifick Gravity) of the Medium.

A vicous Medium fhall more refift, than one more fluid, though of like intenfive Gravity.
And a fharp Arrow fhall bore his way more eafily through the Medium, than a blunt-headed Bolt, though of equal Weight, and like intenfive Gravity.
And the fame Pyramid with the Point, than with the Bafe forward.
And many other like Varieties, intended in my ${ }^{4} \mathrm{~S}^{8}$.
But this I think may be admitted, namely, That different Mediums, equally liquid, (and ather Circumftances alike,) do in fuch proportion refift, as is their intenfive Gravity. Becaufe there is, in fuch proportion, a heavier Object to be removed, by the fame Force. Which is one of the things to which 93 refers.
And again: The heavier Project once in Motion, (being equally fwift, and all other Circumitances alike) - moves through the fame Mediu u in fuch proportion more ftrongly, as is is in intenfive Gravity. For now the Force is in fuch proportion greater, for the removal of the fame refiftance. And this Part of what my 32 infinuates.

Mifcellanea Curiofa. $\quad 347$

But where there is a Complication of thefe Confiderations one with another, and with many other Circumftances, whereof each is feverally to be confidered; there mult be refpect had to all of them.

A

34^{8} Mijcellañea Curiofa.

An Inftance of the Excellence of the Modern Algebra, in the Refolution of the Problem of finding the Foci of Optick Glafles Univerfally. By E. Halley, S. R.S.

TH E Excellence of the Modern Geometry is in nothing more evident, than in thofe full and adequate Solutions it gives to Problems; reprefenting all the poffible Cafes at one, view, and in one general Theorem, many times comprehending whole Sciences; which deduced at length into Propofitions, and demonftrated after the manner of the Ancients, might well become the Subjects of large Treatiles: For whatfoever Theorem folves the moft complicated Problem of the kind, does with a due Reduction reach all the fubordinate Cafes. Of this I now defign to give a notable Inftance in the Doctrine of Dioptricks.

This Dioptrick Problem is, that of finding the Focus of any fort of Lens, expofed either to converging, diverging, or parallel Rays of Light, procceding from, or tending to a given Point in the Axis of the Lens, be the Ratio of Refration what it will, according to the Nature of the tranfparent Material whereof the Lens is formed, and alfo with allowance for the thicknefs of the Lens between the Ver-

Mifcellanea Curiofa.

tices of the two Spherical Segments. This Problem being folved in one Cafe, mutatis mutano dis, will exhibit Theorems for all the poflible Cafes, whether the Lens be Double-Convex or Double-Concave, Plano-Convex, or Plano.Concave, or Convexo-Concave, which fort are ufually call'd Menifsi. But this only to be underfood of thofe Beams which are neareft to the Axis of the $\mathcal{L}_{\text {ens }}$ fo as to occafion no renfible difference by their Inclination thereto; and the Fccus here formed, is by Dioptrick Writers commonly call'd the principal Focus, being that of ufe in Telefcopes and Microfcopes.

Let then (in Fig. 7. Tab. 5.) BEB be a double Convex Lens, C the Center of the Segment $E B$, and K the Center of the Segment $E \beta, B \beta$ the thicknels of the Lens, D a Point in the Axis of the Lens; and it is required to find the Point F, at which the Beams proceeding from the Point D, are collected therein, the Ratio of Refraction being as m to n. Let the diftance of the Object $\mathrm{DB}=\mathrm{DA}=d$ (the Point A being fuppofed the fame with \mathbf{B}, but taken at a diftance therefrom, to prevent the coincidence of fo many Lines) the Radius of the Segment towards the Object CB or C $A=r$, and the Radius of the Segment from the Object $K \beta$ or $K=\rho$; and let $B \beta$ the thickners of the Lens be $=t$, and then let the Sine of the Angle of Ineidence D A G be to the Sine of the refracted Angle HAG or CAp as m to x : And in very fmall Angles, the Angles themfelves will be in the fame proportion ; whence it will follow that,

35° Mifcellanea Curiofa.

As d to r, fo the Angle at C to the Angle at D , and $d+r$ will be as the Angle of Incidence GAD; and again as m to n, fo $d+r$ to $\frac{d n+r n}{m}$, which will be as the Angle GAH= m
CAP; This being taken from ACD which is as d, will leave $\frac{m-n d-n r}{m}$ analogous to the Angle $A \varphi D$; and the Sides being in this Cafe proportional to the Angles they fubtend, it will follow, that as the Angle A \square D is to the Angle $\mathrm{AD} \rho$, fo is the Side AD or BD to $\mathrm{A} p$ or $\mathrm{B} \varphi$: That is $\mathrm{B} \varphi$ will be $=\frac{m d r}{m}$ which fhews in what Point the Beams proceeding from D, would be collected by means of the firf Refraction; but if $n r$ cannot be fubltracted from m — $n d$, it follows that the Beams after Refraction do ftill pafs on diverging, and the Point is on the fame fide of the Lens beyond D. But if $n r$ be equal to $m-n d$, then they praceed parallel to the $A x i s$, and the Point q is infinitely diftant.

The Point \quad being found as before, and $\mathrm{B} \varphi-\mathrm{B} \boldsymbol{6}$ being given, which we will call δ, it follows by a Procefs like the former, that βF, or the focal Diftance fought, is equal to $\frac{\delta \rho n}{m-\delta+m \rho}=f$. And in the room of δ fubftituting $\mathrm{B} \oplus-\mathrm{B} \beta=\frac{m d r}{m-n d-n r}-t$, putting p for $\frac{n}{m-n}$, after due Reduction this fol:lowing

Mifcellanea Curiofa. 35^{1}

lowing Equation will arife,

$$
m p d r \rho-n d \rho t+n p r \rho t
$$

$m d r+m d \rho-m p r \rho-m-n d t+n r t=f$. Which Theorem, however it may feem operofe, is not fo, confidering the great Number of Date that enter the Queftion; and that one half of the Terms arife from our taking in the thicknefs of the Lens, which in moft Cafes can produce no great Effect ; however it was neceffary to confider it, to make our Rule perfect. If therefore the Lens confilt of Glafs, whofe Refraction is as 3 to 2 ${ }^{\text {'twill be }} \frac{6 d r \rho-2 d \rho t+4 r \rho t}{3 d r+3 d \rho-6 r \rho-d t+2 r t}=f$. If of Water, whofe Refraction is as 4 to 3 , the Theorem will ftand thus $\frac{12 d r \rho-3 d \rho t}{4 d r+4 d \rho-12 r \rho-9 r \rho t} d t+3 r t$ $=f$. If it could be made of Diamant, whofe Refraction is as 5 to 2 , it would be $\frac{\frac{10}{3} d r \rho-2 d \rho_{t}+\frac{4}{3} r \rho t}{5 d r+5 d \rho-\frac{10}{3} r \rho-3 d t+2 r t}=f$. And this is the univerfal Rule for the Foci of double Convex Glaffes expofed to diverging Rays. But if the thicknefs of the Lens be rejected, as not fenfible, the Rule will be much fhorter, viz. $\frac{p d r \rho}{d r+d \rho-p r t}=f_{3}$ or in Glafs $\frac{2 d r \rho}{d r-1 \rho-2 r \rho}$ $=f$, all the Terms wherein t is found being omitted, as equal to nothing. In this Cafe, if d be fo fmall, as that $2 r \rho$ exceed $d r+d \rho$, then will it be - f, or the Focus will be Negative, which fhews that the Beams after both Refractions ftill proceed diverging.

To bring this to the other Cafes, as of converging Beams, or of Concave Glaffes, the Rule is ever compofed of the fame Terms, only changing the Signs of + and - ; fur the diftance of the Point of Concourfe of converging Beams, from-the Point B, or the firft Surface of the Lens, I call a negative Diftance or - d; and the Radius of a Concave Lens I call a negative Radius, or $-r$ if it bethe firt Surface, and $-\rho$, if it be the fecond Surface. Let then converging Beams fall on a double Convex of Glafs, and the Theorem will fland thus $\frac{-2 d r \rho}{-d r-d \rho-2 r t}=+f$, which fhews that in this Cafe the Focus is always affirmative.

If the Lens were a Menifous of Glafs, expofed to diverging Beams, the Rule is $\frac{-2 d r \rho}{-d r+d \rho+2 r \rho}=f$, which is affirmative when $2 r \rho$ is lefs than $d r-d \rho$, orherwife negative: But in the Cafe of converging Beams falling on the fame Menifous, 'twill be $\frac{+2 d r \rho}{+d r-d \rho+2 r p}$ $=f$, and it will be $+f$, whilft $d \rho-d r$ is lefs than $2 r \rho$; but if it be greater than $2 r \rho$, it will always be found negative or-f. If the Lens be doubleConcave, the Focus of converging Beams is negative, where it was affirmative in the the Cafe of diverging Beams on a double Convex, viz. $\frac{-2 d r \rho}{+d r+d \rho-2 r \rho}$ $=f$, which is affirmative only when $2 r \rho$ exceeds $d r+d \rho$: But diverging Beams paffing a double Concave, have always a negative Focus, viz. $\frac{-2 d r \rho}{+d r+d \rho+2 r \rho}=-f$.

The

Miscellanea Curiofa.

The Theorems for converging Beams, ar ${ }^{\text {e }}$ principally of ufe to determine the Focus refuting from any fort of Lens placed in a Telefcope, between the Focus of the Object-Glafs and the Glafs it fell ; the diftance between the fid Focus of the Object-Glafs, and the interpofed Lens being made $=-d$.

I here fuppofe my Reader acquainted with the Rules of Analytical Multiplication and Difirn, as that + multiplied by + makes the Product,++ by - makes - , and - by - makes + ; fo dividing + by + makes the Quote +, + by - makes -, and - by - makes + ; which will be necefflary to be underftood in the preceding Examples.

In cafe the Beams are parallel, as coming from an infinite diftance, (which is fuppofed in the Cafe of Telefcopes) then will d be fuppofed Infinite, and in the Theorem $\frac{p d \rho r}{d r+d \rho-p r \rho}$ the Term $p r \rho$ vanifhes, as being finite, which is no part of the other infinite Terms; and dividing the Remainder by the infinite Part d, the Theorem will ftand thus $\frac{p \rho r}{r+\rho}=f$, or in Glass, $\frac{2 r \rho}{r+\rho}=f$.

In cafe the Lens were Plano-Convex expofed to diverging Beams, inftead of $\frac{p d \rho r}{d r+d \rho-p r \rho}$, r being infinite, it will be $\frac{p d \rho}{d-p_{j}}=f_{2}$ or
$\frac{2 d \rho}{d-2 \rho}$ if the Lens be Glads.
If the Lens be Double-Convex, and r be equal to ρ as being formed of Segments of

A a
equal!

356 Mifcellanea Curiofa.

 equal Spheres, then will $\frac{p d \rho r}{d r+d \rho-p r \rho}$ be reduced to $\frac{p d r}{2 d-p r} f$; and in cafe d be infinite, then it will yet be farther contracted ton
$\frac{r}{2} p r$, and p being $=\frac{-n \text {, }}{m \text {, fucal diftance }}$ in Glafs will be $=r$, in Water $1 \frac{i}{2} r$, but in Diamant $\frac{1}{3} r$.

I am fenfible that thefe Examples are too much for the compleat Analylt, though I fear too little for the lefs Skilful ; it being very hard, if poffible, in fuch Matters, fo to write, as to give fatisfaction to both; or to pleafe the one, and inffruct the other. But this may fuffice to fhew the extent of our Theorem, and how eafie a Reduction adapts any one cafe to all the reft.

Nor is this only ufeful to difcover the Focurs from the other propofed data, but from the Focus given, we may thereby determine the diftance of the Object ; or from the Focus and Diftance given, we may find of what Sphere it is requifite to take another Segment, to make any given Segment of another Sphere caft the Beams from the diftance d to the Focus f. As likewife from the Lens, Focus, and Diftance given, to find the Ratio of Refraction, or of m to n, requifite to anfwer thofe Data, All which it is obvious, are fully determined from the Equation we have hitherto ufed, vit. $p d \rho r=d r f+d \rho f-p r \rho f$, for to find d pref
The Theorem is $\frac{\rho f+\rho f-p \rho r}{r f}=d$, the diftance of the Object.

Mifcellanea Curiofa.

For ρ the Rule is $\frac{d r f}{p d r+d f+p r f}=\rho$.
Butfor p will be $\frac{d r f+d \rho f}{d \rho r+\frac{d}{f} r}=p$, which
latter determines the Ratio of Refraction, m being to n, as $\mathrm{I}+p$ to p :

I fhall not expatiate on thefe Particulars, but leave them for the Exercife of thofe that are defirous to be informed in Optical Matters, which I am bold to fay are comprehended in thefe three Rules, as fully as the moft Inquifitive scan defire them, and in all poffible Cafes; regard being had to the Signs + and - , as in the former Cafes of finding the Focus. I fhall only fhew two confiderable Ufes of them ; the one to find the diftance whereat an Object being plac'd, thall by a given Lens be reprefented in a Species as large as the Object it felf, which may be of fingular Ufe in drawing Faces and other things in their true Magnitude, by tranfmitting the Species by a Glafs into a dark Room, which will not only give the true Figure and Shades, but even the Colours themfelves, almoft as vivid as the Life. In this Cafe d is equal to f, and fubftituting d for f in the Equation, we fhall have $p d r \rho=d d r+d d \rho-d p \rho r$, and dividing all by $d \operatorname{pr\rho }=d r+d \rho-\operatorname{pr\rho }$, that is,
$\frac{2 p r \rho}{r+\rho}=d$; but if the trot Convexities be of the fame Sphere fo as $r=\rho$, then will the diftance be $=p r$; that is, if the Lens be Glafs $=2 r$, fo that if an Object be placed at the Diameter of the Sphere diftant, in this Cafe thee Focus will be as far within as the Object is A. 2 With

35^{8} Mifcellanea Curiofa.

without, and the Species reprefented thereby will be as big as the Life; but if it were a Plano-Convex, the fame diftance will be $=2 p r$, or in Glafs to four times the Radius of the Convexity; but of this Method I may entertain the Curious at fome other Time, and fhew how to magnifie or diminifh an Object in any proportion affign'd, (which yet will be obvious enough from what is here deliver'd as likewife how to erect the Object which in this Method is repreprefented inverted.

A fecond Ule is to find what Convexity or Concavity is required, to make a vaftly di-e ftant Object be reprefented at a given Focus, after the one Surface of the Lens is formed; which is but a Corollary of our Theorem for finding ρ, having p, d, r and f given; for d being infinite, that Rule becomes $\frac{r f}{p r-f}=\rho$, that is in Glafs $\frac{r f}{2 r-f}=\rho$, whence if f be greater than $2 r, \rho$ becomes Negative, and $\frac{r f}{f-2 r}$ is the Radius of the Concave fought.

Thofe that are wholly to begin with this Dioptrical Science, cannot do better than to read with Attention a late Treatife of Dioptricks, publifhed by W. Molineux, Efq, R.S.S. who has at large Shewn the Nature of Optick Glaffes, and the Conftruction and Ufe of Microfcopes and Teleícopes; and though fome nicely Critical have endeavour'd to fpy Fault, and to traduce the Book; yet having long fince examin'd it with Care, I affirm, that if 1 can judge, it hath but two things that with

Fig 7

Mifeellanea Curiofa.

any Colour may be call'd Faults; the one, an over-careful acknowledgment of every 'Trifle the Author had receiv'd from others ; and the other that he labours to make eafie this curious Subject, fo little undertood by moft, in a manner perhaps too familiar for the Learned Critick, and which demonftrates that it was writ cum animo docendi, both which require but very little Frienfhip or good Nature in the Reader, to pafs for Vertues in an Author.

But to return to our firft Theorem, which accounting for the thicknefs of the Lens, we will here again refume, viz.
$\frac{m p d r \rho-n d \rho t+n p r \rho t}{m d r+m d \rho-m p r \rho-m-n d t+n r t}=f_{0}$.
And let it be required to find the Focus where a whole Sphere will collect the Beams proceeding from an Object at the diftance d : Here t is equal to $2 r$, and r equal to ρ. And after due Reduction, the Theorem will ftand thus, $\frac{m p d r-2 n d r+2 n p r r}{2 n d+2 n r-m p r}=f$; but if d be
Infinite, it is contracted to $\frac{m p r}{2 n}-r=$ $\frac{2 n-m}{2 m-2 n} r=f$, wherefore a Sphere of Glafs collects the Sun-Beams at half the Semi-diameter of the Sphere without it, and a Sphere of Wa ter at a whole Semi-diameter. But if the Ratio of Refraction m to n be as 2 to 1 , the Focus falls on the oppofite Surface of the Sphere; but if it be of greater Inequality it falls within.

A a $3 \quad$ Another

360 Mifcellanea Curiofa.

Another Example fhall be when a Hemifphere is expofed to parallel Rays, that is, d and ρ being infinite, and $t=r$, and after due
Reduction the Theorem refults $\frac{n n}{m m-m n} r=f$.
That is, in Glafs it is at $\frac{4}{3} r$, in Water at $\frac{2}{4} r$; but if the Hemilphere were Diamant, it would collect the Beams at $I_{15} \frac{4}{5}$ of the Radius beyond the Center.

Laftly, As to the Effect of turning the two fides of a Lens towards an Object ; it is evident, that if the thicknefs of the Lens be very fmall,fo as that you neglect it, or account $t=0$; then in all Cafes the Focus of the fame Lens, to whatfoever Beams, will be the fame, without any difference upon the turning the Lens : But if you are fo curious as to confider the thicknefs, (which is feldom worth accounting for) in the Cafe of parallel Rays falling on a Plano-Convex of Glafs, if the plain fide be towards the Object, t does occafion no difference, but the focal diftance $f=2 r$. But when the Convex-fide is towards the Object, it is contracted to $2 r-\frac{2}{3} t$, fo that the Focus is nearer by $\frac{\frac{\pi}{3}}{3} t$. If the Lens be double Convex, the difference is lefs ; if a Meniscur, greater. If the Convexity on both fides be equal, the focal length is about $\frac{1}{6} t$ fhorter than when $t=0$. In a Meni cus the Concave-fide towards the Cbject increafes the focal Length, but the Convex towards the Object diminifhes it. A General Rule for the difference arifing on turning the Lens, where the Focus is Affirmative, is this $\frac{2 r t-2 \rho t}{3 r+3 s-t}$, for double Convexes of differing Spheres. But for Me:

Mifcellanea Curiofa. 361

Menifci the fame difference becomes
$\frac{2 r t+2 \rho t}{3 r-3} \frac{2 \rho+t}{\rho+}$; of which I need give no other Demonftration, but that by a due Reduction it will fo follow from what is premifed, as will the Theorems for all forts of Problems relating to the Foci of Optick-Glaffes

A ${ }^{4} 4$
$A P$.

APPENDIX.

(365)

An Analytical Refolution of certain Equations of the Third, Fifth, Seventh, Ninth Powers, and 90 on ad Infinitum, in finite Terms, after the manner of Cardan's Rules for Cubicks. By Mr. A. Moivre, Tranfact. No. 309.

LET (n) be any Number, (y) an unknown Quantity, or Root of the Equation, (a) a Quantity altogether known, or what they call Homogeneum Comparationis: And let the Relation of thefe Quantities to each other be expreft by the Equation.

$$
n y+\frac{n n-1}{2 \times 3} n y^{3}+\frac{n n-1}{2 \times 3} \times \frac{n n-9}{4 \times 5} n y^{5}+
$$

$\frac{n n-1}{2 \times 3} \times \frac{n n-9}{4 \times 5} \times \frac{n n-25}{6 \times 7} n y^{7}$, छc. $=a_{0}$
Its plain from the Nature of this Series, that if n be any odd Number (that is an Integer, it matters not whether Affirmative or Negative) then the Series will Terminate, and the Equation arifing will be one of the above defin'd, whofe Root is

$$
(1) y=
$$

366 Mifcellanea Curiofa.
$(\mathrm{I})=\frac{x}{2} \sqrt[n]{\sqrt{1+a a}+a}-\frac{\frac{1}{2}}{\sqrt[n]{\sqrt{1+a a}+a}}$ or,
(2) $y=\frac{x}{2} \sqrt[n]{\sqrt{1+a a}+a}-\frac{x}{2} \sqrt[n]{\sqrt{1+a a-a}}$ or,
(3) $y=\sqrt{\sqrt[n]{\sqrt{1+a}-a}}-\frac{\frac{1}{2}}{\frac{1}{2}} \sqrt{\sqrt{1+a a-a}}$ or,
(4) $y=\frac{\frac{x}{2}}{\sqrt[n]{\sqrt{1+a a}-a}}-\frac{\frac{x}{2}}{\sqrt[a]{\sqrt{V_{1}+a a+a}}}$

For Example, Let the Root of this Equation of the Fifth Power be required $5 y+20 y^{3}+$ $16 y^{5}=4$ in which cafe n is $=5$, and $a=4$, and the Root, according to the firf Form, is
$y=\frac{1}{2} \sqrt[5]{\sqrt{17+4}}-\frac{\frac{1}{2}}{\sqrt[5]{\sqrt{17+4}}}$ which is Ex-
peditioufly refolved into Numbers after this manner.
$\sqrt{17}+4$ is equal to 8.1231 , whofe Loga:rithm is 0,9097164 , and the ffth part of it is is 0,1819433 , the Number anfwering it $1.5203=\sqrt[5]{\sqrt{17}+4} \quad$ But the Arithmetical Complement of 0.6577 is 9.8180567 , the
Number anfwering is $0.1819433=$ $\sqrt{\sqrt[5]{\sqrt{17}+4}}$ and the half difference of thefe Numbers is $0,4313=y$.

MiScellanea Guriofa.

Here we may obferve, that in the Room of the general Root, we may advantageously take $y=\frac{x}{2} \sqrt{2 a}-\frac{\frac{x}{2}}{\sqrt[n]{2 a}}$ if the quantity a be pretty
large in refpect of Unity. As if the Equation were $5 y+20 y^{3}+16 y^{5}=682$, the Logarithm of $2 a=3.1348 \mathrm{r} 43$ whore Fifth part is 0.6269628 , the Number anfwering is 4.236 , and the Number anfwering the Arithmetical Complement 9.3730372 is 0.236 , the half difference of there Numbers is $2=y$.

But if in the aforegoing Equation the Signsare alternately Affirmative and Negative; or which is the fame thing if the Series be after this manner,

$$
\begin{aligned}
& n y+\frac{1-n n}{2 \times 3} n y^{3}+\frac{1-n n}{2 \times 3} \times \frac{9-n n}{4 \times 5} n y^{5}+ \\
& \frac{1-n n}{2 \times 3} \times \frac{9-n n}{4 \times 5} \times \frac{25-n n}{6 \times 7} n y^{7}+\sigma c .= \\
& \text { The Root of it will be equal to }
\end{aligned}
$$

(I) $y=\frac{1}{2} \sqrt[n]{a+\sqrt{a a-1}}+\frac{\frac{1}{2}}{\sqrt[n]{a+\sqrt{ } a a-1}}$, or
(2) $y=\frac{x}{2} \sqrt[n]{a+\sqrt{a a-1}}+\frac{x}{2} \sqrt[n]{a-\sqrt{a a-1}}$, or
(3) $y=\frac{\frac{x}{2}}{\sqrt[n]{a-\sqrt{a a-1}}}+\frac{n}{2} \sqrt[n]{a-\sqrt{a a-1}}$, or
$(4)=\frac{\frac{1}{2}}{\sqrt[n]{a-\sqrt{a a-1}}}+\frac{\frac{5}{2}}{\sqrt[n]{a+\sqrt{a a-1}}}$
Here

368 Mij/cellanea Curiofa.
Here it is to be noted, that if $\frac{n-1}{2}$ be an odd Number, the Sign of the Root found muft be contrary to it.

Let an Equation be propos'd 5 y - 20 y $3+$ $16 y^{5}=6$, whence $n=5$, and $a=6$, and the Root will be $=\frac{1}{2} \sqrt[5]{6+\sqrt{35}}+\frac{\frac{1}{2}}{\sqrt[5]{6+\sqrt{35}}}$ or
becaufe $6+\sqrt{35}=11.916$ whofe Logarithm is 1.0761304 , and its Fifth part is 0.2152561 , whofe Arithmetical Complement is 9.7847439 . The Numbers belonging to thefe Logarithms are 3.6415 and 0.6091 , whofe half Sum is 1.1253 $=\gamma$.

But if it happen that a is lefs than Unity then the Second Form, as being more convenient, ought to be pitch'd on. So if the Equation had been $5 y-20 y^{3}+16 y^{5}=\frac{6 x}{64}$, then y will
$b e=\frac{i}{2} \sqrt[5]{\frac{61}{64}+\sqrt{-375}}+\sqrt[5]{\frac{61}{2}-\frac{V-375}{64}}$ and if the Root of the Fifth Power can by any means be Extracted the true and poffible Root of the Equation, will thence Emerge, tho' the Expreffion feems to infinuate an Impofibility. But the Root of the Fifth Power of the Binomial
$\frac{61}{64}+\sqrt{\frac{-375}{4096}}$ is $\frac{1}{4}+\frac{1}{4} \sqrt{-15}$ and fo the
fame Root of the Binomial.
$\frac{61}{64}+\sqrt{\frac{-375}{4096}}$ is $\frac{1}{4}-\frac{x}{4} \sqrt{-15}$ the half
Sum of which Roots is $=\frac{x}{4}=y$.
But

Mifcellanea Curiofa. 369

But if that Extraction can not be perform'd, or may feem too difficult, the thing may be folv'd by the help of a Table of Natural Sines, after the following manner ;
To the Radius i let $a=\frac{61}{64}=0,95112$ the Sine of fome Arch which is therefore $72^{\circ} 23^{\prime}$, whofe Fifth part (becaufe n is equal to 5) is 14° 281 the Sine of it is $0.2498 \mathrm{I}=\frac{1}{4}$ nearly.

The fame is the Method of proceeding in Equations of higher Dimenfions.

(371)

A Difcoure concerning the Action of the Sun and Moon on Animal Bodies; and the Infuence which This may bave in many Difeafes. By Richard Mead, M. D. F. R. S.

PARTI.

THAT fome Difeafes are properly the Effects of the Influence of the Heavenly Bodies, and thai others do vary their Periods and Symptoms according to the different Poffitions of one or other of thofe Luminous Globes, is a very ancient and certain Obfervation. Upon this fcore Hippocrates (a) advifes his Son Theefalus to the ftudy of Geometry and Numbers, becaufe the Knowledge of the Stars is of very great ufe in Phyfick (b). And the earlieft Hiftories of Epidemic Diftempers, particularly do all turn upon the alterations made in our Bodies by the Heavens.

But when in later Times Medicine came to be accommodated to the Reafonings of Philofophers; no body being able to account for the manner of this Celeftial Action, It was allowed no farther fhare in affecting our Health, than what might be imputed to the changes in the manifert Conftitution of the Air, excepting perhaps fomeB b
thing
(a) Epift. ad Theffalum Filium.
 s's IItgoкivo De Aere Aquis \& Locis.

372 Mifcellanea Curiofa.

thing of Truth which ftill remains difguifed and blended with the Jargon of Judiciary Aftrology.

In order therefore to fet this Matter in a litthe clearer light, I fhall in the firft place fhew, That the Sun and Moon regarding their Nearnefs and Direction to the Earth only, befides the Effects of Heat, Moifture, $\Xi^{c} c$. thereby caufed in our Atmofphere, mult at certain times make fome Alterations in all Animal Bodies ; then enumerate fome Hiftories and Obfervations of fuch Changes, and enquire of what Ufe fuch Thoughts as thefe may be in the Practice of Phyfick.

It is a conftant Obfervation of thofe who write the Hiftory of the Winds, That the moft Windy Seafons of the Year, are the Time about the Vernal and Autumnal Equinox; for be the Air never fo calm before or after, we never fail of having Winds at that Juncture. Every body likewife knows, that in the moft quiet Weather we are fure of fome Breeze at Middday and Midnight, as alfo at Full Sea, i. e. always about the time the Sun or Moon arrive at the Meridian. Seamen and Country People reckon upon This, and order their Affairs accordingly. And the changes of the Weather as to Winds or Calms efpecially about the New and Full Moon, are too well known to require any Authority to confirm fuch Remarks. Thofe who defire a fuller account of thefe Obfervations, may fee it in D_{e} Cbales's Navigation, Gafendu's Natural Philofophy, and F. Goad, his Aftro-Meteoro-Logica.

Thefe things being Matters of Fact, and in a manner Regular and Univerfal, it may very well feem ftrange that Philofophers have not been more accurate in their Enquiries into the Reafon of fuch Appearances. True indeed it is, that the Origin of Winds is various and uncertain, but however

Mifcellanea Curiofa.

however, fo conftant and uniform an Effect muft undoubtedly be owing to one neceffary Caufe.

It has bin, now a confiderable time fince, fufficiently made out, that our Atmofphere is a thin Elaftic Fluid, one part of which gravitates upon another, and whofe Preffure is communicated every way in a Sphere to any given Part thereof. From hence it follows, That if by any external Caufe the Gravity of any one part fhou'd be taken off or diminihhed, that from all fides around this part, the more heavy Air would rufh in to reftore the Equilibrium which muft of neceffity be preferved in all Fluids. Now this violent running in of the heavier Air would certainly produce a W ind, which is no more than a ftrong Motion of the Air in fome determined Direction. If therefore we can find any outward Caufe that would at thefe ftated Seafons we have mentioned, diminith the Weight or Preffure of the Atmofphere ; we fhall have the genuine Reafon of thefe Periodical Winds, and the neceffary Confequences thereof.

The Flux and Reflux of the Sea was a Phrnomenon too vifible, and too much conducing to the Subfiftance of Mankind, and allother Animals, to be neglected by thofe who applyed themfelves to the Study of Nature; however all their Attempts to explain this Admirable Contrivarce of infinite Wifdom were unfuccefsfull, till Sir 1 Jaac Newton reveal'd to theW orld juiter Principles, and by a truer Philofophy than was formerly known, fhew'd us how by the United or Divided Forces of the Sun and Moon, which are encreafed and leffened by feveral Circumittances, all the Varieties of the Tides are to be accounted for. And fince al the Changes we have enumerated in the Atmofphere do fall out at the fame times В b 2
when

374 Mijcellanea Curiofa.

 when thofe happen in the Ocean; and likewife whereas both the Waters of the Sea and the Air of our Earth, are Fluids fubject, in a great Meafure, to the fame Laws of Motion; it is plain, that the Rule of our great Philofopher takes place here, viz. That Natural Effects of the Same kind are owing to the Same Caufes. (a)What difference that known Property of the Air, which is not in Water, makes in the Cale, 1 fhall fhew anon; fetting afide the Confideration of that for the prefent; It is certain, That as the Sea is, fo mult our Air, twice every 25 Hours, be rais'd upwards to a confiderable height, by the Attraction of the Monn coming to the Meridian; fo that inftead of a Spherical, it muft form it felf into a Spheroidal, or Oval Figure, whofe longeft Diameter being produced, would pafs thro' the Moon. That the like Raifing muft follow as ofren as the Sun is in the Meridian of any Place, either above or below the Horizon. Moreover, That this Elevation is greateft upon the New and Full Moons, becaufe both Sun and Moon do then confpire in their Attraction ; leaft on the Quarters, in that they then drawing different ways, 'tis only the Difference of their Actions produces the Effect. Laftly, That this Intumefcence will be of a middle degree, at the time between the Quarters, and New and Full Moon.

From the fame Principles, The Motion upwards of the Air will be ftrongeft of all about the Equinoxes; the Equinoctial Line being over that Circle of the Globe, which has the greateft Diameter, either of the Luminaries when in that

Mifcellanea Curiofa.

a re nearer, and the Agitation of the Fluid Spheroid revolving about a greater Circle, is greater; befides, the Centrifugal Force (arifing from the Diurnal Rotation) is there greateft of all. This will ftill be more confiderable about the New and Full Moons happening at thefe times, for the Reafons juft now mentioned. And the leaft Attraction will be about the Quadratures of thefe Lunar Months, becaufe the Declination of the Moon from the Equator is then greateft. "The different diftances of the Moon in her Perigæum and Apogæum, are the Reafon that thefe full changes fall out a little before the Vernal, and after the Autumnal Equinox. Now the Inverfe of all this happens when the Luminaries are in the Solftitial Circles. Laftly, In the fame Parallel, when the Moon's Declination is towards the Elevated Pole, the Attraction is ftrongeft when the Moon is in that Places Meridian, and weakeft when fhe is in the Oppofite Places Meridian: The contrary happens in the Oppofite Parallel; by reafon of the Spheroidal Figure of the Earth and its Atmofphere.

Whatever has been faid on this Head, is no more that applying what Sir Ifaac Newton has Demonftrated of the Sea to cur Atmofphere; and it is needlefs to fhew how neceffarily thofe Appearances, juft now mentioned, of Winds, at the Stated Times, Ėc. muft happen hereupon. It will be of more ufe to confider the Proportion of the Forces of the two Luminaries upon the Air, to that which they have upon the Wao ter of our Globe ; that it may the more plainly appear what Influence the Alterations hereby made, mult have upon the Animal Body.

376 Mifcellanea Curiofa.
Sir Ifanc Newton has demonftrated (a) That the Force of the Sun to move the Sea, is to the Frrce of Gravity, as I to $\mathbf{1 2 8 6 8 2 0 0}$. Let that be

$$
\text { S. G:: 1. } n . \text { Hence, } S=\frac{G}{n} \text {. }
$$

And that the Force of the Moon to raife the Sea is to Gravity, as I to 2031821. Let this be

$$
\text { L. } \mathbf{G}:: \text { I. s. Hence, } L=\frac{G}{s} \text {. }
$$

And fince the Centrifugal force of the Parts of the Earth arifing from its Diurnal Mution is to Gravity, as J to 291. Let this be
C. $G:$: I. C. Then $C=\frac{G}{e}$. Hence,
$S+L \cdot C:: \frac{G}{n}+\frac{G}{s} \cdot \frac{G}{e}:: \frac{1}{n}+\frac{1}{s} \cdot \frac{1}{e}::$

1. $\frac{s n}{s+n \times e}$:: 1. 603 I .

The fame Philofopher has taught us (b) that the Centrifugal force raifes the Watce at the Equator above the Water at the Poles, to the height of 85200 Feet. Wherefore if that Force which is as 603 I , raife the Ocean to 85200 Feet, the United forces of the Sun and Moon, which are as 1. will raife the fame to 14 Feet, for $\frac{85200}{6031}=14$. Proximé.

Now
(a) Princip. Lib. 3. Prop. 3^{60}
(b) Ibid. Lib. 3. Prop. 37.

Mifcellanea Curiofa.

Now we know that the more eafily the Was ters can obey the Attraction, with the more Force are the Tides moved; but fince, as Mr. Halley has determin'd it , (a) our Atmofphere is extended to 45 Miles, whereas the middle depth of the Ocean is but about half a Mile ; it is plain, that the Air revolving in a Sphere about 100 times larger than that of the Ocean, will have a proportionably greater Agitation.

Befides, Rocks, Shelves, and the inequality of Shoars are a great ftop to the Accefs and Recefs of the Sea : But nothing repels the rifing Air, which is alfo of fuch thinnefs and fluidity, that it is eafily driven, and runs every way.

Nor ought we to omit, that it is the univerfal Law of Bodies Attracted, that the Force of Attraction is reciprocally as the Squares of their Diftances; fo that the Action of the Sun and Moon will be greater upon the Air than upon the Water, upon the Account of its Nearnefs.

But the Confideration of the Elafticiry is ftill of greater Moment here, of which this is the nature, that it is reciprocally as the Preffure, fo that the incumbent Weight being diminifhed by the Attraction, the Air underneath will upon this fcore be mightily exparded.

Thefe and fuch like Caufes will make the Tides in the Air to be much greater that thofe of the Ocean; nor is it neceffary to our purpofe to determine, by nice Calculations, their particular Forces; it is fufficient to have proved that thefe Motions muft both be Univerfal, and alfo return at certain Intervals.

B b 4
Now

[^0]
378 Mifcellanea Curiofa.

Now fince the raifing of the Water of the O^{-} cean 14 Feet, produces Torrents of fuch a prodigious Force, we may eafily conceive what Tempelts of Winds (if not otherwife check'd) the Elevation of the Air much higher (perhaps above a Mile) will neceffarily caufe. And there is no doubt to be made, but that the fame infinitely Wife Being, who contrived the Flux and Reflux of the Sea, to fecure that vaft Collection of Waters from Stagnation and Corruption (which would inevitably deftroy all the Animals and Vegetables on this Globe) has ordered this Ebb and Flood of the Air of our Atmofphere, with the like good defign, that is to preferve \{in Cafe all other Caufes fhould fail, as they may, andat times do in fome Countries) the fweet Frefhnefs, and brisk Temper of this Fluid, fo neceffary to Life, and keep it, by a kind of continual Circulation, from Deadnefs and Stinking.

This Reafoning is liable to only one Objection that I know of, and that is this: That the Appearances we have mention'd cannot be owing to the Caufes now affigned ; fince by Calculation from them, the Mercury mult at New and Full Moon fubfide in the Barometer to a eertain degree, which yet we do not obferve to happen.
In anfwer to which, (befides that there have been fome Obfervations made of the finking of the Mercury at thofe times; and it may perhaps be the fault of the Obfervers that thefe have not been reduced to any Rule) We are to Confider, That altho' Winds and Alterations in the Preffure of the Atmofphere, are the neceffary confequents of the Lunar Attraction, and true Cafes of the different Rife of the Mercury in the Barometer; yer thefe may be produced many others ways too,

Mifcellanea Curiofa.

and therefore tho' regulanly the Mercury would always fall at the New and Full Moon, thofe other Caufes may be ftrong enough, even to raife it at thofe Seafons; in as much as two contrary Winds, for inftance, blowing towards the Place of Obfervation, may accumulate the Air there, fo as to increafe both the height and weight of the incumbent Cylinder; in like manner, the Direction of twoWinds may be fuch, as meeting at certain Angle they may keep the Gravity of the Air in the middle place unaltered; and a Thoufand fuch Varieries there may be, by which the Regularity of Appearances of this nature may be hindered. Now the other Springs, from which fuch Changes in the Air may arife, are thefe.

1. Elaftic Vapours forc'd from the Bowels of the Earth, by Subterraneous Heats, and condenfed by whatever caufe in the Atmofphere.
2. A mixture of Effluvia of different qualities in the Air, may by Rarefactions, Fermentations, छr. produce Winds and other Effects like thofe refulting from the Combination of fome Chymical Liquors; and that fuch things happen, we are affured from the Nature of Thunder, Lightning, and Meteors.
3.From the Eruptions of Vulcanoes and Earthquakes in diftant Places, Winds may be propagated to remoter Countries.
3. The divided or United Forces of the other Planets and of Comets, may varioufly difturb the influence of the Sun and Moon, E厅c. We know that there happen violent Tempefts in the upper Regions of the Air, while we below enjoy a Calm ; and how many Ridges of Mountains there are on our Globe, which interrupt and check the Propagation of the Winds; fo that it is no won-

380 Mifcellanea Curiofa.

der that the Phænomena we have afcribed to the Action of the Sun and Moon, are not always conftant and uniform, and that every Effect does not hereupon follow; which, were there no other Powers in Nature able to alter the influence of this, might in a very regular and uniform manner be expected from it.

Thefe things being premifed, it will not be difficult to fhew (as was propofed in the firft Place) that thefe Changes in our Atmofphere at High Water, New and Full Moon, the Æquinoxes, E ${ }^{\circ}$. muft occafion fome Alterations in all Animal Bodies; and that from the following Confiderations.

1. All living Creatures require Air of a determined Gravity to perform Refpiration eafily, and with Advantage ; for it is by its weight that this Fluid infinuates it felf into the Cavity of the Breaft and Lungs. Now the Gravity, as we have proved, being leffened at thefe Seafons, a fmaller quantity only will infinuate it felf, and this muft be of fmaller force to comminute the Blood, and forward its Paffage into the left Ventricle of the Heart, whence a flower Circulation infues, and the Secretion of Spirits is diminifhed.
2. This Effect will be the more fure, in that the Elafticity of the Atmofphere is likewife diminifhed. Animals want Air as heavy fo Elaftic to a certain degree; For as this is by its weight forced into the Cavity of the Thorax in Infpiration, fo the Mufcles of the Abdomen prefs it into the Bronchi in Expiration, where the bending force being fomewhat taken off, and Springy Bodies when unbended, exerting their Power e-

Mifcellanea Curiofa. 3^{81}

very way, in Proportion to their Preffures, the Parts of the Air pulh againft all the fides of the Veficule, and promote the Paffage of the Blood-

We have a convincing Inftance of all this, in thofe who go to the top of high Mountains, for the Air is there fo pure (as they call it) that is, wants fo much of its Gravity and Elafticity, that they Breath with very great difficulty.
3. All the Fluids in Animals have in them a mixture of Elaftic Aura, which when fet at liberty, fhews its Energy, and caufes thofe Fermentations we obferve in the Blood and Spirits: Now when the Preffure of the Atmofphere, upon the Surface of our Body is diminifhed, the' inward Air in the Veffels muft neceffarity be inabled to exert its Force, in Proportion to the leffening the Gravity and Elafticity of the outward; hereupon the Juices begin to ferment, change the Union and Cohæfion of their Parts, break their Canals, of c.

This is very plain in living Creatures put into the Receiver, exhaufted by the Air-Pump, which always fwell as the Air is more and more drawn out; their Lungs at the fame time contracting themfelves, and falling fo together as to be hardly difeernible. (a)

E're we proceed to Matters of Fact, it may be worth the while to take Notice, That Effects depending on fuch Caufes as thefe, muft of neceffity be moft vifible in Weak Bodies and Morbid Conftirutions, when other Circumftances concur to their taking Place. For this reafon, whatever Mifchiefs do hence follow, cannot in the leaft
(a) Efperienze dell'Academia del Cimento, p. m. 113.
leaft difparage the Wire Contrivance of Infinite Power in ordering thefe Tides of our Atmof phere. The Author of Nature, we know, has made all things to the greateft Advantage that could be, for the whole Syftem of Animals on our Globe, but it was impoffible that fuch a difpofition fhou'd not in fome Cafes be prejudicial to a Few. The Pofition and Ditance of the Sun are fo adjufted, as to give in the mot beneficial manner poffible, Heat and Light to the Earth; yet this notwithftanding, fome Places may be too hot for fome weakly Bodies ; fome Autumns too fultry to agree with fome Animals, and fome Winters too cold to be endured by fome tender Creatures: The whole however we mult own, is moft carefully provided for. Befides, as moft of thefe laft mentioned Inconveniencies are by eafy fhifts to be avoided ; fo there are fuch Powerful Checks put to this Aereal Flux and Reflux, fo many ways of abating the Damages accruing from it now and then ; that thefe are of no account in comparion of the mighty Benefits hence arifing, in which the Race of Mankind does univerfally fhare.

(383)

PART II.

${ }^{1}$ HERE are no Hiftorys in Phyfick which we may more fafely take upon the Credit of the Authors who relate ' em , than fuch as we are now going to mention. In fome Cafes a Point may perhaps be ftrained to ferve a darling Hypothefis which the Writer has taken up, but here we are much more likely to have pure Matter of Fact, becaufe hitherto no one has pretended the Appearances of this kind to be within the Reach of any Scheme of Philofophy.

Epileptical Difeafes befides the other Difficultys with which they are attended, have this alfo furprizing, that in fome the Fits do conftantly return every New and Full Moon; the Moon (fays Galen (a) governs the Periods of Epileptic Cafes. Upon this fcore, They who were thus affected were called $\Sigma \Sigma \lambda$ nvicuroi (b) and in the
 fome of the Latins afterwards, Lunatici (d). Bartbolin (e) tells a Story of one Epileptic who had apparent Spots in her Face, which according to the Time of the Moon, varyed both their Colour and Magnitude.

But
 Critic. lib. 3.
(b) Alexavd. Trallian. lib. I. c. 15.
(c) Matth. C. 17. V. 15.
(d) Apuleius de Virtutib. Herbar. cap. 6. ©5 250
(e) Anatom. Centur. 2, H. 72.

3^{84} Mifcellanea Curiofa.

But no greater Confent in fuch Cafes was perhaps ever Obferved than what I faw fome time fince in a Child about 5 years old, in which the Convulfions were fo ftrong and frequent, that life was almoft defpaird of, and by Evacuations and other Medicines very difficultly faved. The Girl, who was of a lufty full habit of Body, continued well for a few days, but was at Full Moon again feized with a moft violent Fit, after which, the Difeafe kept its Periods conftant and regular with the Tides; She lay alwaysSpeechlef3 during the whole time of Flood, and Recovered upon the Ebb. The Father who lives by the Thames fide, and does bufinefs upon the River, obferved thefe Returns to be foc punctual, that not only coming home He knew how the Child was before he faw it, but in the night has rifen to his Employ, being warned by Cries when coming out of her Fit, of the turning of the Water. This continued I4 days, that is, to the next great Change of the Moon, and then a dry Scab on the Crown of the Head, (the effect of an Epipaftic Plaitter, with which 1 had covered the whole Occiput in the beginning of the Illnefs) broke, and from the Sore, tho' there had been no fenfible Difcharge this way for above a Fortnight, ran a confiderable quantity of limpid Serum ; upon which, the Fits returning no more, I took great care to promote this new Evacuation by proper Applications, with defired Succefs, for fome time ; and when it ceafed, befides two or three Purges withMercurius Dulcis, \&\&c. ordered an Iffue in the Neck, which being thought troublefome, was made in the Arm; the Patient however has never fince felt any Attacks of thofe frightful Symptoms.

Mifceilanea Curiofa. 385

Whether or no it be th ro want of due Heed and Enquiry that we have not in all the Collections of Hiftories and Cafes, any Inftance of the like Nature fo particular as this is, I know not ; this is certain, that as the Vertigo is a Difeafe nearly related to the Epilepfy, and the Hyferical Symptoms do partake of the fame Nature; fo both one and the other are frequently obferved to obey the Lunar Influence. In like manner, the raving Fits of Mad People, which keep Lunar Periods, are generally in fome degree Epileptic too,

Tulpius (a) and $P_{i} j_{0}$ (b) afford us remarkable Inftances of Periodical Palfeys.

Every one knows how great a fhare the Moon has in forwarding thofe Evacuations of the weaker Sex, which have their Name from the conftant Regularity they keep in their Returns; and there is no queftion to be made, but the Correfpondency we here obferve, would be greater ftill, and even Univerfal, did not many Accidents, and the infinite Varieties in particular Conftitutions one way or other concur to make a difference. It is very obfervable that in Countries neareft to the Æquator, where we have proved the Lunar Action to be ftrongelt ; thefe Monthly Secretions are in much greater quantity than in thofe near the Poles, where this force is weakeft. This Hippocrates (c) takes notice of, and gives it as one Reafon why the Women in Scythia are not very fruifful.
The Cafe being thus with Females, it is no wonder if we fometimes meet with Periodical Hæmorrhages anfwering
(a) Obferv. OMed. lib. I. cap. 12.
(b) De Morb. à ferofâ Colluvie, Obf. 28,
(c) De Aere Aquis S' Locis.

3^{86}
 Mifcellanea Curiofa.

anfwering to the times of the Moon in Males alfo. For as a greater quantity of Blood in proportion to the bulk in one Sex, is the reafon of its difcharging it felf thro' proper Ducts, at certain Intervals, when the preffure of the external Air being diminifh'd, the internal Aura can exert its Elafticity; fo in the other, if at any time there happens to be a Superabundancy of the fame Fluid, together with a weak Tone of the Fibres; it is plain that the Veffels will be moft eafily burft, when the Refiftance of the Atmofphere is leaft. And this more efpecially, if any accidental hurt, or rarefying Force has firft given occafion to the other Caules to take effect.

I know a Gentleman of a tender frame of Body, who having once, by over reaching, ftrained the parts about the Breaft; fell thereupon into a fpitting of Blood, which for a Year and half conftantly return'd every New Moon, and decreafing gradually, continued aiways 4 or 5 days, The Fits being more or lefs conliderable, according as his management about that time, contributed to a greater or leffer fullnefs of the Veffels.

We have two notable Infrances of the like nature in our Philofophical Tranfactions; the one (a) of a Perfon, who from his Infancy to the $24^{\text {th }}$ Year of his Age, had every full Moon an Eruption of Blood on the right fide of the Nail of his left Thumb, at firft to 3 or 4 Ounces, and after his fixteenth Year, to half a Pound each time; which when by fearing the part with a hot Iron, he ftopp'd, he fell into a Sputum Sanguinis, and by frequent Bleeding, छc. was very difficultly

Mifcellanea Curiofa.

difficultly faved from a Confumption. The other (b) is a Story of an Inn-Keeper in Ireland, who from the 43 Year of his Life, to the 55 th (in which it killed him) fuffered a Periodical Evacuation at the point of the Fore-Finger of his Right-hand; and altho the Fits here kept not their returns fo certain as in the forementioned Caie, (it may be either from the irregular way of living of the Patient, or the mighty change every Effufion made in his habit of Body, the quantity feldom amounting to lefs than four Pounds at a time) yet there is this remarkable Circumftance in the Relation, that the firft beginning of this Hemorrhage was at Eafter, that is, the next Full Moon after the Vernal Equinox, which is one of the two Seafons of the Year, at which we have proved the attraction of the Air, or leffening of its Preffure, to be greater than at any other time whatfoever.

But we are befides this to confider, That the Static Chair, and nice Obfervation taught Sanctorius, (b) That Men do increafe a Pound or two in their weight cvery Month, which overplus is difcharged at the Months end, by a Crifis of copious,or thick turbidUrine.

It is not therefore at all ftrange that we fhou'd once a Month be liable to the returns of fuch Diftempers as depend upon a Fullnefs of the Veffels, that thefe fhould take place at thofe times efpecially, when the ambient Air is leaft able to reprefs the Turgency; and that tho' New and Full Moon are both of equal Force, yet that fometimes one, and fomerimes the other only fhould Influence the Periods, accord-

$$
\mathbf{C} \text { c ing }
$$

(a) Pbilof. Tranf. $\mathrm{N}^{\circ} 17 \mathrm{r}$.
(b) Medicin. Static. Seद्न. I. Aph. 65

388 Mijcellanea Curiofa.

ing as this or that happens to fall in with the inward Repletion.

The Aflux of Humours to Ulcers is fometimes manifeflly altered by this Power; (a) Baglivi was acquainted with a Learned Young Man at Rome, who labour'd under a Fijtula in the Abdomen, penetrating to the Colon, which difcharged fo plentifully in the Increafe, and fo fparingly in the Decreafe of the Moon, that he could make a very true judgment of the Periods and Quadratures of the Planet, from the different quantity of the Matter that came from Him.

Nephritic Paroxyfms have frequently been obferved to obey the Lunar Attraction: Tulpius (b) relates the Cafe of Mr. Ainfworth, an Englif Minifter at Amferdam, who had a Fit of the Gravel and fuppreffion of Urine every Full Moon, of which he found no relief till the Moon decreafed, unlefs by Bleeding at the Arm. After his death two large Stones were taken out of his Bladder, and the Pelvis of the left Kidney was enlarged to that degree by the quantity of Urine fo often ftopt there, as to contain almuft as much as the Bladder it felf.

I was prefent, not long fince, at the Diffection of a Child about 5 or 6 Year old, who dyed of the frequent returns of Nephritic Fits, attended with Vomitings and a Diarrbea. - The Kidneys and Ureters were quite ftuffed with a flimy calculous Matter, and it was very inftructive to fee the different degrees of Concretion in the feveral parts of it, from a clear limpid Water, to a hard friable Subltance. Dr. Groenvelt, who had tend:
(a) De Experiment. circa Sanguin. pe me 34 I .
(b) Obfervat. Lib. 2. c. 43. vid. etiam Obferv. s2:

Mifcellanea Curiofa.

ed the Boy in his Lilnefs, oblerved him to be feized with his Pains at every Full Moon for feveral Months together, which generally ended with the voiding of a Stone.

What Influence the Moon has in Aftha's, (a) van Helmont takes Notice, Exacerbatur Paroxy ${ }^{\text {mius }}$ (fays he) Lunce Stationibus, © avi tempefatibus guas ideo prafentit छ prafagit (b) And Sir Fohn Floyer, who has given us a more particular Hiftory of this Difeafe than any Author, obierves, that The Fits ufually return once in a Fortnight, and frequently bappen near the Change of the Moon.
'Tis a more uncommon Effect of this AttraCtive Power that is related by the Learned Kerckringius. (c) He knew a Young Gentlewoman, whofe Beaury depended upon the Lunar Force, infomuch that at Full Moon the was Plump and very Handfome, but in the decreafe of the Planet fo Wan and ill Favoured, that the was afham'd to go abroad till the return of the New Moon gave Fullnefs to her Face, and Attraition to her Charms.

Tho' this is indeed no more than an Influence of the fame kind, with that the Moon has always been obferved to have upon Shell-Fifh, and fome other living Creatures. For as the old Latin Poet Lucilius fays, (d)

Luna alit Oftrea Ef implet Echinos, Muribu'fibras
Et Pecui addit
Cce 2
And
(a) Afbma © Tulf. $\$ 22$.
(b) Treatife of the Afthma, P. 17.
(c) Obfervat. Anatomic. 92.
(d) Apud A. Gellium, lib. 20. c. 8.

390
 Mijcellanea Curiofa.

And after him Manilius (a)

Sic fubmerfa fretris concharum © Carcere claufa, Ad Lune motum variant animalia corpus.

It is very well worth the pains to enquire what fhare fuch an Alteration in the Weight and Preffure of the Atmofphere may have in the Crijes or Changes of Acute Difeafes. The Ancients made great Account of Critical Days, and regulated their Practice according to the Expectation they had from them; This Part of Phyfick is grown now into difufe, quite flighted, and even ridiculed; and that I fuppofe chiefly for thefe two reafons. In the firft place, becaufe the earlieft $\mathrm{Ob}-$ fervations of this kind, which were drawn into Rules being made in Eafern Countries, when there came to be applied to the Diftempers of Nortbern Regions, without allowance given for the difference of the Climate, they were oftentimes found not to anfwer. And fecondly, Fe vers of old were treated with few or no Medicines, the Motions of Nature were carefully watched, and no Violence offer'd to interrupt her Work. The Hiftories therefore of Crifes, tho' of great Ufe, and certainty under fuch Management as this, were at length unavoidably fet afide and loft; when Acute Cafes came to be Cured, according to this or that Hypothefis, not only by Evacuations, but hot or cold Alteratives too ; there being no longer any room for thofe Laws of Practice which fuppofed a regular and uniform Progrefs of the Diftemper.

Where-

(a) Afronomic, lib. 2.

Mijcellanea Curiofa.

Wherefore, in order to undertand a litcle both what might Induce the firft Mafters of our Profeffion to fo nice and Itrict an Obiervance in this point; and what grounds there may be now, for a more due regard to their Precepts, even upon the fcore of the Lunar Attraction only, I propofe the following Remarks.

1. All Epidemic Difeafes do in their regular courfe require a ftated time, in which they come to their height, decline, and leave the Body free.

This is fo conftant and certain, that when a Fever of any confitution which is continual in one Subject, happens from fome other caufe, in another to be intermitting, the Paroxyims do always return fo often as all together to make up juft as many days of Illnefs as he fuffers, whofe Diftemper goes on from beginning to end, without any abatement.

Dr. Sydenbam, a fworn Enemy to all Theories, learn'd thus much from downright Obfervation; and gives this reafon why Autumnal Quartans hold fix Months, becaufe by computation the Fits of fo long a time amount to 33^{6} hours, or I4 days, the periud of a continual Fever of the fame Seafon. (a)

So Galen takes notice that when an Exquifite Tertian st terminated in feven Paroxyfms, a true Continual at the fame time has its Crifis in feven days; that is, the Fever lafts as long in one as in the other, in as much (fays he) as a Fit in an Intermitting Feaver anfwers to a day in a Continual (b). Now this fo comes to pafs, becaufe

$$
\mathrm{C}_{3} \quad 2, \mathrm{In}
$$

(a) De Feber. Intermit. Ann. 166r. pag. m. 650

2. In thefe Cafes there is always a Fermenta: tion in the Blood, which goes not off till the active Particles are thrown out by thofe Organs of Secretion, which, according to the Laws of Motion, are moft fitted to feparate 'em. And

3 As different Liquors put upon a Ferment, ar? cepurated in different times, fo the Arterial Fluid akes up a determined Period, of which it is ditcharged of an induced Effervefcence.
4. The Symptons, during this Ebullition, do not proceed all along in the fame Tenour ; but on fome days particularly, they give fuch evident Narks of their good or bad Quality, that the na ure of the enfuing Solution may very well be guefs'd at, and forerold by 'em.

Things being thus, Thofe days on which the Difeale was fo evidently terminated one way or orher, might very juftly be call'd the days of Crifis; and thofe upon which the tendency of Illnefs was difcovered by moft vifible Tokens, the Indices of the Critical Days.

And thus far the Foundation was good, but when a falfe Theary happen'd unluckily to be joined to true Obfervations, this did a little puzzle the Caufe. Hippocrates, it is plain, knew not to what to afcribe that remarkable regularity with which he faw the Periods of Fl avers were ended on the Seventh, Fourteenth, One and Twentieth day, EJc. Pytbagoras his Philofophy was in thofe Ages very. Famous, of which Harmony and the Myfteries of Numbers made a confiderable part, Odd were more Powerful than Even, and Seven was the moft perfect of all. Our great Phyfician efpoufed theie Notions, (a) and confined the Stages
(a) Epidem. lib. n. Seâ. 3.

Mifcellanea Curiofa.

Stages of acute Diftempers to a Septenary Progreffion (a), upon which this Inconvenience follow'd, that when a Crifis fell out a day fooner or later than this Computation required, his Meafures were quite broken; and that this muft neceffarily oftentimes happen, will appear by and by.

Upon this fcore Afclepiades rejected this whole Doctrine as vain, (b) and Celfus finding it to be too nice and fcrupulous, obferves that the P_{y} thagorean Number's led the Ancients into the Error. (c)

Galen being aware of this, fucceeded much better in his reafoning updn the Matter, and very happily imputed the Critical Changes not to the Power of Numbers, but to the Influence of the Moon; which he obferves, has a mighty AEtion upon our Earth, exceeding the other Planets, not in Energy, but in Nearnefs (d) So that according to him, the Septenary Periods in Difeafes are owing to the Chuarterly Lunar-Phafes, which are the times of the greateft Force, and which return in about feven days. (e)

Thie refult of the whole Affair, in fhort is this, A Crifis is no more than the Expulfion of the Morbific Matter out of the Body, thro' fome or other of the Secretory Organs; in order to which, it is neceffary that this fhould be prepar'd

$$
\mathrm{Cc}_{4} \quad \text { and }
$$

 Partu.
(b) Vid. Cellum lib. 3. c. $4 \cdot$
(c) 1 bid .
(d) De ditbus Decretor. lib. go
(e) 1 bid .

394 Mifcellanea Curiofa.

and comminuted to fuch a degree, as is required to make it pafs into the Orifices of the relpeCtive Glands; and therefore as the mot perfect Crifis is by Sweat, (both by reafon that the Subcutaneous Glands do naturally difcharge more than all the other put together, and alfo that their Ducts being the fmalleft of any, whatfoever comes this way is certainly wery well divided and broken) f_{0} the moft imperfect is an Hamorrhage, becaufe This is an Argument that what Offends is not fit to be caft off in any Part, and confequently breaks the Veffels by the Effervefrence of the Blood: An Abfees in thofe Organs which feparate thick, flimy Juices is of a middle nature betwixt thefe two.
Now it is very plain, That if the time, in which either the Peccant Humour is prepar'd for Secretion, or the Fermentation of the Blood is come to iss height, falls in with thofe Changes in the Atmofphere which dimininh its preflure; the Crifis will then be more compleat and large. And allo, that this Work may be forwarded or delay'da day, upon the account of fuch an Alteration in the Air; the Diftention of the Veffels upon which it depends, being hereby made more eafie, and a weak Habit of Body in fome Cafes ftanding in need of this outward Affiftance. Thus a Fever which requires about a Week to its Pe riod, may fometimes, as Hippocrates obferved, have a good Crifis on the fixth, and fometimes not till the eighth day.

In Order therefore to make true Obfervations of this kind, the time of Invafion is to be confidered, The genuine courfe of the Diftemper muft firft be watched, which is not to be interrupted by any violent Methods: The fltength of Nature in the Patient is to be confidered, and by what

Mifcellanea Curiofa.

what Secretions the Crifis is molt iikely to be performed ; and it will then be found, that not only the New and Full Moons, but even the Southings, whether vifible or latent, of the Planet, are here of confiderable Moment.

For Confirmation of which, we need only to reflect on what Mr. Pafchal has remark'd, concerning the Motions of Difeafes and Births and Deaths (a). Dividing the Nu χ tinuesor into Four Senaries of Hours, the firft confifts of three hours before the Southing of the Moon, and three af: ter ; the fecond of the fix hours following, and the third and fourth of the remaining Quarters of the natural day; He takes notice that none are born, or die a natural Death in the firft and third Senaries, which he calls firft and fecond Tides, but all either inthe fecond or fourth Senaries, which he calls firft and fecond Ebbs. In like manner, that in Agues, the tumult of the Fits generally lafts all the Tiding time, and then goes off in kindly Sweats in the Ebbs. From whence he very rationally concludes, that Motion, Vigour, Action, Strength, छ̌c. appear moft, and do beft in the Tiding Senaries; and that Reft, Relaxation, Decay, Diffolution, Ec. belong to the Ebbing Senaries.
(a) Pbilof. Tranfat. $\mathbf{N}^{\circ} 202$.

(397)

A.

COROLLARY.

IT having bin explained in the Beginning of this Difcourfe, how thofe Influences of the Heavens, which favour the Returns of Difeafes, may likewife raife W inds at the fame times; and that We feel the different Effects of Tbefe according as other Caufes do concurr to the Motion of the Air; it will not be amifs, to fhew in one Inftance or two, how much Natural Hiftory confirms this Reafoning.

There happened on the 26 th of November, 1703 , a little before Midnight, a moft terrible Storm of Wind, the Fury of it is ftill frefh in every ones Mind, which lafted above fix Hours.

It is not to the prefent purpofe to relate its Hiftory and Caufes; What we obferve is, That the Moon was at that time in Perigao, and juft upon the change to $N_{e} w$. Upon both which accounts its Action in raifing the Atmofphere muft be great; And hence indeed the Tides which followed were alfo very

398 Mifcellanea Curiofa.

 great, and the Mercury in the Barometer, at leaft, in moft places, fell very low.This Influence was, without all doubt, affifted by fome fuch other Caufes of Winds, as we have mentioned; Thefe we can't know, but may however take notice how much the manifeft State of the Air contributed to this Calamity.

After a greater quantity of Rains than ordinary had fallen in the Summer and Autumn, in thofe places where the Storm was felt, the Winter came on much warmer than ufual ; fo that the Liquor in a Thermometer, of which the 84th Degree notes Froft, never fell below the rooth. (a)

Hence we may very well believe, that the Atmofphere was at that time fill'd with Atoms of Salts and Sulpbur, out of the Vapours raifed by the Heat from the moift Earth, which being varioufly combined and agitated, gave that deadly force to the Motion of the Air.

A Proof of this we have not only from the frequent Flabbes of Ligbtning, obferved a little before the Storm, but alfo from what the Country People took notice of the next day, that the Grafs and
(a) Vid. Philof, Tranfact. N 289.

Mifeellanea Curiofa. 399

and Twiggs of the Trees, in Fields remote from the Sea, tafted very falt, fo that the Cattle wou'd not feed on them.

Our Hiftories mention another Storm, which if not equal to this laft in Violence, is however thought the greateft that had then ever been known and memorable from the time at which it happened, viz. on the 3 d of September, 1658. the day on which the Ufurper O. Cromrvel died.

No Ephemerides that I know of relate the Condition of the Air that Year, but it is fufficient to remark, That whatever other Caufes concurr'd, their force was accompanied with a Full Moon, juft before the time of the Atumnal Equi$n o x$.

Upon the fame fcore it comes to pafs, That in thofe Countries which are Subject to frequent Inundations, thefe Calamities are obferved to happen at the times of the Moon's greateft Influence, fo that the Learned Baccius (a) has rightly enough laid the Caufe of fuch Mifchiefs upon immoderate Trdes of the Ocean, being unhappily accompanied with
(a) Del Tevere, lib: 3. p. 228.

400 Mijcellanea Gurioja.

with the attractive Force of fome or other Stars.

Dr. Cbildrey in his Britannia Baconica (a) has from feveral Inftances fhewn the Lunar Action in Damages of this kind.

Such and the like Natural Caufes have Stormis and Tempefts; for as to the Queftion of Divine Power, whether or no Calamities of this kind do not fometimes, by the Anger of Heaven, happen out of the Courfe of Na ture, it is not my Bufinefs to Difpute, nor would I by any means indeavour to abfolve Mens Minds from the Bands of Religion. For although we muft allow all the Parts of the Machine of this World to be framed and moved by Eftablifhed Laws, and that the fame Difpofition of its Fabrick, which is moft beneficial to the Whole, muft of neceflity, in fome few Places now and then occafion Hürts and Mifchiefs; it is however moft highly reafonable, that we fhould yield to the Supreme Creator an abfolute Pówer over all his Works; Concluding withal, that it was perhaps agreeable to Di vine Wifdom, to order the Make
(a) Pag. $97 \cdot$

Mifcellanea Curiofa.

 of the World after fuch a manner as might fometimes bring Mifchiefs and Calamities upon Mankind, whom it was neceffary by the Frights of Storms, Tbunder and Ligbtning to keep in a continual Sence of their Duty.
The End.

[^0]: (a) Pbilof. Tranf. $N^{\circ} 18 \mathrm{I}$.

