AMERICAN JOURNAL OR SCIENCE

- AND ARTS

$$
\text { VOL. } 46 \text { (1844) }
$$

Part I - pp. 81-104
Part II- complete
Wanting: p.l-80,105-216
pp. 81-104 are the only botanical articles in part 1. Braun, Engelmann, Geyer.

1 Ane. XI-A Monography of the North American species of the genus Equisetum, by Prof. Alexander Braún, of Caflsruhe, Germany ; translated from the author's manuscript, and woith some additions, by George Engelmann, M.-D., of-St. Loutis, Missomi.
Amer. Journae of C Co, 1848, XLVI, 81- 91.
My early friend and indefatigable correspondent, Prof. Alex. Braun, having placed in my hands a manuscript monography of the genus Equisetum, full of original views, and offering a very lucid exposition of this interesting genus, I believe I am rendering a service to the lovers of botany in this country by translating and publishing this paper; to which I add a few remarks of my own, chiefly relating to the two new species of the Western United States.

Before we come to the description of the different species, it will be necessary to explain the structure of the stems of the Equiseta, which afford much more characteristic distinctions than their fructification.

The Equiseta have simple or verticillately branched stems, which are all grooved (amongst the American species only E. eburneum makes an exception, as far as regards the stem, but not the branches); they have vertioillate leaves, which are connected in sheaths; their points only being free, and forming what is? ed the teeth of the sheaths. The carinæ, or ridges of the stem, which separate the grooves (valleculte) are either smooth, (\boldsymbol{E}. limosum, \boldsymbol{E}. lavigatum, etc.) or rough from siliceous tubercles, \boldsymbol{i} (\boldsymbol{E}. robustum, \boldsymbol{E}. hyemale, etc.) : they are simple, (E. limosum, E. robustum,) or divided by a furrow (suleus) along their back, so as to form two more or less distinet ridges (E. hyemate, E. variegatum, branches of E. eburneum). In one species (E. scirpoides,) the furrows dividing the carinæ become as large and deep as the grooves themselves, so that the apparent number of the carinæ is double that of the leaves.

In all the Equiseta with green stems, (but not in the discolored fertile ones of \boldsymbol{E}. arvense and \boldsymbol{E}. eburneum, or the white sterile ones of the latter,) the epidermis of the grooves or vallecule is perforated by stomata. In the first division, these stomata are irregularly distributed over the surface of the grooves (therefore

Vol. xlvi, No. 1.-Oet.-Dee. 1843.

82 - Braun and Engelmann's North American Equiseta.

Equiseta sperropora) ; in the second division they are disposed regularly in two ranges on the sides of the grooves (E. stichopora). These ranges consist either of one series or row of stomata each (as in all the northern species), or of two or more rows (as in many tropical ones). The stomata are only found in the grooves, never in the secondary furrows, even when these are of equal size and depth with the former.
The sheaths consist of united verticillate leaves, free only on the points, which constitute the teeth; and these teeth correspond " in number and position with the carinæ of the stem; they are either persistent or deciduous. The leaves have either a single medial carina, or this carina is divided by a furrow, so as to appear double; or sometimes the margins of the leaves are elevated and form two lateral carinæ; thus the leaves may present from one to four carinæ. The furrow which sometimes divides the principal carina is the carinal furrow; and another which is fre--quently formd on the connecting line or the commissure of two leaves is the commissural furrow.

The section of the stem exhibits the following structure. In the centre is a larger or smaller air-cavity or hollow space, lacuna, (wanting only in E. scirpoides); and around this a circle of generally mueh smaller air-cavities which correspond with the grooves or valleeule, and which we therefore call vallecular air cavities. These are wanting in only one species, viz. E. limostum. Exterior to these again is a circle of alternating and still smaller air-cavities just under, or corresponding with the carinæ, (carinal air-cavities,) but they are sometimes very minute or nearly obliterated.

In some Equiseta there is no distinction of fertile and sterile stems: such are E. homophyadica. Some of these have annual stems, (E. estivalia, Summer-Equiseta,) such as E. palustre, and E. limosum: others have perennial stems, not perishing in winter, (E. hyemalia, Winter-Equiseta,) such as E. hyemale, \boldsymbol{E}. scirpoides, etc. In a second division, the fertile stems are different from the sterile ones; the latter only being herbaceous, branching and persistent through the season, while the fertile are discolored and simple: such are E. heterophyadica. In some of these the fertile stems are deciduous after fructification (E. vernalia, Vernal Equiseta,) as in E. arvense and E. eburneum: others, after fructification, produce verticillate herbaceous branch-
es, and become similar to the sterile ones and persistent through the season, (E. subvernalia, Subvernal Equiseta,) as is the case in E. sylvaticum and E. pratense.

EQUISETUM, Linn.

§1. Equiseta speiropora: stomata irregularly dispersed over the whole surface of the grooves.
> * Heterophyadica: fertile stems different from the sterile ones; the former early and discolored; the latter later and herbaceous.
> \dagger Ametabola (Vernal Equiseta): fertile stems simple, never herbaceous, deciduous before the full development of the sterile stems.

1. E. arvense, Linn.-Sterile stems grooved, smoothish; sheaths consisting of about eleven 1 -carinate leaves; carinæ with a very slight furrow on the back; the commissural furrows between them slight ; carinæ of the simple branches compressed, rough ; sheaths consisting of four 1-carinate leaves, with herbaceous ovate-acuminate subsquarrose teeth. Fertile stems simple; the sheaths consisting of 2-carinate leaves, which, at first connate up to the apex, finally separate into short teeth.

The sheaths of the fertile and sterile stems are composed (according to the size of the specimens) of from 7 to 15 , but generally 10 to 13 leaves; the sheaths of the branches are mostly 4 -, seldom 3- or 5 -toothed. The summit of the sterile stem is attenuated, and like one of the branches.-We distinguish the following varieties.
β. nemorosum, A. Braun. Large, 12 to 20 inches high; the branches with a few branchlets.-E. pratense, Roth and others, not Ehrh. In specimens from Missouri, the sheaths have 12 to 15 teeth; the fertile stems are 12 to 15 , and the sterile ones 15 to 20 inches high : branches frequently 6 or 7 inches long.
γ. decumbens, Meyer, Chl. Hanov. Sterile stems branching from the base, procumbent. In Missouri, sheaths with 7 to 8 teeth : stems 4 to 6 inches high; the lowest branches with a few branchlets.

ס. serotinum, Meyer, Chl. Hanov. The usually sterile herbaceous stems also with fructification.-E. campestre, Schultz, prodr. f. Starg.

Hab. Europe, Northern Asia, North America, from Greenland to the Northern States and Virginia, (Pursh,) to Kentucky, (Short,) Missouri, (Engelmann, Riehl,) the Rocky Mountains, ny, Kentucky, (Short,) Missouri, in fertile woods. γ. Germany, Missouri, in dry pastures, road sides. δ. Very rare, in Germany.
2. E. eburneum, Schreb.-Sterile stems very smooth, ivory white ; sheaths consisting of about thirty bicarinate leaves, separated by deep commissural furrows ; carinæ of the simple branches again deeply furrowed, scabrous; their sheaths consisting of four (sometimes five) bicarinate leaves, with herbaceous erect subulate fragile teeth. Fertile stems simple, sheaths consisting of obsoletely 3 -carinate leaves, with lanceolate subulate teeth.E. Telmateja, Ehrh. E. fuviatile, Smith, Willd., Vaucher, not Hoffm. E. decumanum, Pallas, (Siberia,) E. macrostachyon, Poir. (Barbary.)
β. frondescens. Fertile stems persistent, producing herbaceous branchlets.
γ. serotinem. The usually sterile stems with late fructification.

Hab. Europe, Asia, North Africa and North America, (on Lakes Erie and Superior, Torrey, according to Beck's Botany.)

The sheaths of the fertile and sterile stems are formed by from 20 to 40 leaves, generally 24 to 36 . Sterile stems from 2 to 5 feet high.

Ht Metabola, (Subvernal Equiseta): fertile stems persistent and producing herbaceous branches after fructification.
3. E. sxlvaticum, Linn.-Sterile fand finally also the fertile) stems doubly branched, the branchlets curved downwards; stems grooved, fertile ones nearly smooth ; carinæ of the sterile ones scabrous, in two rows; sheaths consisting of about twelve 1-carinate leaves with shallow commissural furrows between them; their searious elongated points partly connate, so that the sheaths appear to be 3 - or 4-lobed ; carinæ of the branches slightly furrowed, somewhat scabrous; carinæ of the branchlets compressed, smooth, their sheaths funnel-shaped, consisting of 4 or 5 (on the branches) and 3 (on the branchlets,) 1-carinate leaves with lanceolate-acuminate divergent teeth.

Hab. Europe, Asia, North America, from Labrador (Unger,) to Massachusetts, (Oakes,) Pennsylvania, (Muhlenberg, Virginia, (Pursh,) and Ohio, (Riehl.)

The sheaths of the stem are formed by 8 to 17 (generally 10 to 14) leaves whose points are connected in 2 to 4 or more lobes,

Braun and Engelmann's North American Equiseta. 85

which, before the development of branches, distinguish the fertile stem from E. arvense. E. sylvaticum as well as E. arvense have tubers on the creeping rhizoma, which Prof. Braun could not find in E. eburneum ; the other species have certainly none.
4. E. pratense, Ehrh.-Sterile (and finally also the fertile) stems with simple straight branches, both grooved; carinæ scabrous, in one row ; sheaths consisting of about 11 leaves, with very shallow carinal and deeper commissural furrows, teeth scarious, ovate-lanceolate, and all free; carinæ of the branches slightly scabrous, much compressed ; urceolate sheaths consisting of three 1 -carinate leaves with herbaceous erect very short and somewhat obtuse teeth.-E. umbrosum, Meyer, in Willd. E. Ehrharti, Meyer, Chl. Hanov. E. amphibolum, Retz. E.triquetrum, Bory. E. Drummondii, Hook.

Hab. This species appears to inhabit extensively the northern countries of Europe and Asia; it is rare in Scotland, common in Scandinavia, in the North of Germany, in Russia and Siberia; also in the Alps and Pyrenees; in Arctic America and Greenland according to Sprengel. It is easily distinguished from the foregoing, much more common, species by the shorter, never connate teeth of the sheaths of the stem, the 3 -teethed sheaths of the branches, and the absence of branchlets.
> ** Homophyadica, (Summer Equiseta) : fertile and sterile stems similar, both herbaceous and contemporaneons; or all the stems fertile. (All the known species belonging to this section have annual stems, not persistent in winter.)
5. E. palustre, Linn.-Stems generally with simple verticillate branches, deeply grooved, somewhat scabrous; vallecular air cavities large, the carinal ones very small; sheaths loose, consisting of about 8 leaves separated by shallow commissural furrows and above with carinal ones; teeth lanceolate, acute, dark ferruginous, with broad membranaceous margins; branches smilar to the stem, with acuminate adpressed somewhat sphacelate teeth of the mostly 5 -leaved sheaths. E. pratense, Reichenb., not Ehrh. nor Roth.
β. simplicissimum. Stems without branches.
γ. polystachyem. Branches elongated, bearing heads.
Hab. Europe, North America, Arctic America to Virginia, (Becl's Botany.) -Sheaths of the stem with 6 to 10, mostly 7 to 9 teeth. A very polymorphous species. Nearly related to this
species is E. Bogotense, Humb., Bonpl. and Kunth. (Syn. E. stipulaceum, Vaucher, and E. flagelliferum, Kunze.)
6. E. Limosum, Linn.-Stems tall, erect, generally above with simple branches, the sterile ones much elongated ; grooved, nearly smooth; vallecular air-cavities none, the carinal ones small, the central cavity very large ; sheaths adpressed, consisting of about eighteen 1-carinate not furrowed leaves, with linear acute blackish teeth nearly destitute of a membranaceous margin; branches somewhat scabrous; sheaths herbaceous, consisting of about six leaves with linear-setaceous points.-E. limosum and E. fluviatile, Hoffm. and other authors. E. Heleocharis, Ehrh.
β. minus, A. Braun. Stems simple, some what scabrons, sheaths consisting of about eleven leaves.-E. uliginosum, Muhlenb., Willd.
γ. polystachyum. With numerous short verticillate, floriferous branches.

Hab. In ditches and swamps in Europe. In the United States in Pennsylvania, (Wolle,) New York, (H. Eaton,) and Wisconsin, (Lapham in herb. Short.) β. in North America, Newfoundland, (La Pylaie,) Northern States, (Beck's Botany,) Pennsylvania, (Muhlenberg,) Virginia, (Pursh.) Also in Germany in peat morasses, (A. Braun.) Easily distinguished from E. palustre, by the structure of the stem and by the teeth; though at first sight var. β. considerably resembles some forms of the former. The sheaths are composed of 10 to 22 leaves, commonly 17 to 20 , in the American specimens examined by me of 15 to 21, in β. of 10 to 12 leaves. Rhizoma never tuberous. The branches are generally developed after fructification.
§2. Equiseta stichopora, (Winter-Equiseta): Stomata disposed in two distinct ranges on each side of the groove ; each range formed by one or more rows of stomata. (All the known species of this division, have hardy evergreen stems.)
Most of the tropical Equiseta, as well also as some of the most northern species, (\boldsymbol{E}. scirpoides and E. boreale,) belong to this large and very difficult division. They all contain more silex beneath the cuticle than the E. speiropora, which accounts for their hardness and durability. Their distinguishing characteristic is the disposition of the stomata in two ranges, separated by a free interstice. In the European and North American species,
these ranges consist of a single row of stomata; in many tropical species each range has two or more rows. The spikes are mostly acute.

* Heterophyadica. (It is questionable whether any species exists belonging to this section. E. myriochacton, Schlecht. and Cham. from Mexico, so far known only from sterile specimens, might possibly prove to have different and earlier fertile stems.)
** Homophyadica.
+ Ranges of stomata consisting each of one row.

7. E. levigatum, A. Braun.-Stems tall, erect, simple or somewhat branching; carinæ convex, obtuse, smooth; grooves shallow on each side, with a single series of stomata; vallecular aircavities small, the carinal ones very minute ; central cavity large; sheaths elongated, adpressed, with a black limb, consisting of about twenty two leaves with one carina at base and (by the elevation of the margins and depressions of the middle) two towards the point ; points linear-subulate, sphacelate, caducous, leaving a truncate-dentate margin to the sheath; branches somewhat rough; sheaths with about eight indistinctly 3 -carinate leaves; points persistent, subulate, sphacelate with a narrow membranaceous margin.

阝. scabrellium, Engelm.-Carinæ more elevated, somewhat rough with small tubercles; leaves above with two rather rough lateral carinæ, convex in the middle; teeth subulate, black at the base, membranaceous on the margin and towards the point, mostly persistent.
\%. elatum, Engelm.-Very tall; sheaths with about thirty leaves, the points linear-lanceolate, membranaceous, irregularly deciduous, leaving a ragged truncate-dentate black margin.

Hab. On poor clayey soil, with Andropogon and other coarse grasses, at the foot of the rocky Mississippi hills, on the banks of the river, below St. Louis, (N. Riehl,) who discovered it 1840, (G. Engelmann) α. and β. γ. Near Newbern, North Carolina, (Loomis \&- Croom in herb. Short.) Mr. Curtis informs me that this is probably the only species in that section.

In size and manner of growth this new species is closely allied to E. hyemale, and the larger variety to E. robustum ; but it is easily distinguished by its smoothness, its long green sheaths, with a narrow black limb, and its darker green color; in some of these respects it approaches to E. limosum, but differs by the deciduous teeth, the regularly disposed stomata, the structure of the stem, etc. It is generally one and a half to two, and even three feet
high; but var. γ. attains, according to the label in Prof. Short's herbarium, a height of four feet and a half. The stems are simple, or occasionally branched, with 20 to 24 carinæ, but I have collected specimens with from 18 to 27 carinæ. Generally they are perfectly smooth, but younger specimens and sometimes older ones also are somewhat rough, with rather persistent teeth, approaching the small variety of the next species, but they can always be distinguished from that by the sheaths being nearly twice as long, rarely with a black girdle at the base, more green, and by the medial carinæ of the leaves not extending to the point. (In the small variety of E. robustum, it is strongly marked and very rough.) The young sterile shoots with about 15 to 17 carinæ are also more rough than the fertile stems, and resemble in that respect the branches, which have 7 to 10 leaves with persistent points. The sheaths, as has been stated, have generally only a narrow black limb, but some specimens have also, especially on the lower sheaths, a black girdle at base; in one specimen I have seen the whole sheath black. The spikes are generally more obtuse than in E. hyemale. The var. γ. has much the appearance of \boldsymbol{E}. robustum, and it is equally large and stout, but is very distinct in all other respects. From the very fragmentary specimens seen by me, it seems impossible to distinguish it specifically from the Missouri plant.
8. E. nobustum, A. Braun.-Stems very tall and stout, erect, simple or slightly branching above; carinæ narrow, rough with one line of tubercles; grooves shallow, on each side with a single series of stomata; vallecular air-cavities large, the carinal ones nearly none ; central cavity very large ; sheaths short, adpressed, with a black girdle above the base, rarely with a black limb, consisting of about forty (in the branches eleven) leaves, 3 -carinate from the black girdle to the limb; the points ovate-subulate, sphacelate, deciduous, leaving an exactly truncate margin. E. procerum, Bory ined., non Pollini. E. praaltum, Raf.?
ß. minus, Engelm. Fertile stems with 28 to 31 carinæ, 2 to 3 feet high; points of the leaves more persistent.
γ. affine, Engelm. Fertile stems simple, with 20 to 25 carinæ, 1 to 2 feet high; teeth subulate-aristate, mostly persistent, black, rough, finally becoming white.

Hab. Islands of the Mississippi in Louisiana, (Bory de St. Vincent.) Banks of Red River, (Dr. Hale, in herb. Short.) Banks
of the Wabash and Ohio, and the Mississippi near St. Louis, also on lakes and smaller streams in that region, (\boldsymbol{G}. Engelmann.) Banks of the Missouri up to Eau-qui-coule River, (Geyer in Nicollet's Expedition.) Also in the East Indies; Lahore, (Jacquemont,) Pondicherry, (Belanger.) Varieties β. and γ. near St. Louis, the first with the common form, the other with E. lavigatum, on poorer soil.

This stately species appears to take the place of E. hyemale in the Mississippi valley, at least in its middle and southern parts. It reaches a size of from three or four to even six feet, (Geyer.) The largest specimens from Louisiana, have 44 to 48 , those from the Ohio and from St. Louis, have all from 37 to 41 carinæ, and consequently leaves. The species is distinguished from E. hyemale by its size, by the strictly simple row of tubercles on the ridges, and by the 3 -carinate (not 4 -carinate) leaves. It is a remarkable peculiarity that in old specimens, not only the teeth or points are deciduous, but also the upper part of the sheath itself down to the black girdle, giving the stems the appearance of the fossil Calamites, with reduced dimensions. The branches of flowering stems have usually 11 carinæ, but branches of old decaying stems, and young sterile shoots have 17 to $\mathbf{2 5}$ and more carinæ.

Var. β. offers no difficulties; but γ. approaches very closely, rather too much so, to the next species, whence the name. It has the same size and growth, but the sheaths appear to be shorter, their leaves never 4 -carinate, and the tubercles on the carinæ of the stem constantly in one row. This variety corresponds with var. γ. of the next species, both being much smaller than the common forms, and much rougher also; the roughness extending to the points of the leaves and rendering them more persistent.
9. E. hyemale, Linn.-Stems tall, erect, simple, rarely with a few branches ; carinæ rough with two more or less distinct rows of tubercles; grooves on each side with a single series of stomata ; vallecular air-cavities large, the carinal ones minute ; central cavity large ; sheaths elongated, closely adpressed, with a black girdle above the base, and a black limb, consisting of about 20 (in the branches 9) narrowly linear, at base 1 -carinate, above obsoletely 4 -carinate leaves, with linear-subulate deciduous points, which leave a bluntly crenate margin.
B. paleaceum, A. Braun.-Stems smaller, sheaths with a black limb, but mostly without a black girdle, consisting of 10 to 12

Vol. xlvi, No. 1.-Oct.-Dec. 1843.
evidently 4 -carinate leaves; their points less deciduous, sphacelate, nearly smooth.-E. paleaceum, Schleicher.
γ. trachyodon, A. Braun.-Stem smaller ; carinæ more plainly with two rows of tubercles, which are separated by a furrow; sheaths with a black limb, consisting of about ten evidently 4 -carinate leaves, their points less deciduous, whitish or sphacelate, rough on the back.

Hab. Europe, with all the varieties; in North America, only the common form has yet been remarked: Pennsylvania, (Muhlenberg, Schweinitz,) Canada and Northern States, (Beck's Botany, \&c.,) Michigan, (Engelmann,) to Kentucky, (Short.) Both varieties will doubtless be found in this country.

Specimens from the sandy shores of Manitou Island, Lake Michigan, have in the fertile stems 24 to 26 carinæ, (in the smaller sterile ones 17,) with nearly one row of tubercles; the black limb of the sheath is somewhat indistinct ; leaves with 4 or sometimes (by obliteration of the carinal furrow) only 3 carinæ; teeth white, less deciduous, leaving a more exactly truncate margin. Specimens from Kentucky have 20 to 28 carinæ; tubercles nearly in one row ; leaves with 4 or only $\mathbf{3}$ carinæ; very near E. robustum, γ. affine! Var. \%. is by far the roughest form ; by its smaller size, and plainly 2 -rowed tubercles on the carinæ, it approaches to \boldsymbol{E}. variegatum. E. hyemale is a northern plant, being replaced towards the south in North America, by the larger E. robustum, and in Europe by a smaller species, the much-confounded E. elongatum, Willd., (E. ramosum, Schleich., E. pannonicum, Kit., E. Illyricum, Hoppe, etc.,) which extends from Southern Germany, through the whole of Southern Europe to Northern Africa, Arabia, and middle Asia, and a variety of which occurs again at the Cape of Good Hope, Isle of Bourbon, and Isle of France: but it has not yet been met with in America.

10? E. boreale, Bongard.-Found in Sitcha on the Northwest coast by Dr. Mertens, is unknown to me; perhaps a variety of \boldsymbol{E}. hyemale? (A. Braun.)
11. E. variegatum, Schleicher.-Cæspitose; stems low, simple; carinæ rough with two rows of tubercles, separated by a furrow; the grooves larger and deeper than the furrows, on each side with a single series of stomata; vallecular air-cavities of the same width as the central cavity, the earinal ones very small; sheaths somewhat campanulate, variegated with black, consisting of about
seven 4 -carinate leaves the points persistelt, ovate mêmbranceous, with fragile awns.
β. reptans, A. Braun.-Stems small, procumbent at base, sheaths consisting of about four leaves. $-E$. reptans, Wahlenb. in part. Wahlenberg comprises this variety and the following species in his E. reptans.

Hab. Northern Europe; also on the Alps in Central Europe, and along the rivers rising in them. Also in North America, Niagara, (Dr. Kinnicutt, according to Torrey;) Vermont, (J. Carey, according to Oakes.) In Prof. Short's herbarium, I have seen a specimen from New York, which I cannot but refer here, though the central cavity is much larger than the vallecular ones, and the 8 carinæ of the stems are nearly simple. In German specimens the sheaths have 6 to 8 , rarely 9 to 10 leaves; var. β. growing only in higher latitudes, has four or five, very rarely only three teeth.
12. E. scirpoides, Michx.-Cæspitose; stems low, filiform, somewhat flexuous, simple; rough on the angles which are formed by the equally wide grooves between, and furrows on the carinæ ; on each side of the grooves a single series of stomata; vallecular air-cavities large, no carinal ones, no central cavity ; sheaths somewhat turbinate, variegated with black, consisting of three, ravely four, 4 -carinate leaves; the points persistent, ovate, cuspidate, membranaceous, whitish.
Hab. Arctic America, (Beck's Botany,) Newfoundland, (Herb. Willd.,) Canada, (Michx.,) Northern States, (Carey, Oakes, and others.) Lately discovered also in Arctic Europe.

This is the smallest of all the known species, with very rarely more than three teeth in the sheaths, but always donble the number of angles on the stem. Three of the grooves between these angles correspond with the leaves and are without stomata; the three alternating ones correspond with the commissure of the leaves, and have each two ranges of stomata.
t) Ranges of stomata consisting each of two or more rows.
E. giganteum, Linn. and others, of South America, belongs here. Several species undoubtedly have been confounded under this name, which are all nearly related to E. robustum, but are well distinguished by having two or three rows of stomata in each range. No North American or European species, so far as known, belongs to this section.

92 Prof. Braun's Notice of the Chare e of North America.

Amanhe: - Brief Notice of the Chare of North America; by Prof. Alexander Braun,-communicated by Dr. Engelmann. $3 \cdot 21$ to other families of Cryptogamous plants, such as the Rhizocar pea; of which he has lately published two new North American species of Marsilea: viz. M. uncinate, found in 1835 by the wiiter of this note in Arkansas; and M. mucronata, discovered in the year 1839 by Mr. Geyer, in Nicollet's Northwestern Expedition, along the saline prairies near Devil's Lake. Both are nearly related to M. vestita, Hook. \& Arm. of Oregon, but very different from the European M. quadrifolia. But Prof. Braun's especial favorites are the Chare, which he has very thoroughly investigated, and intends soon to describe monographically. As these obscure plants are seldom collected by our botanists, he has not enjoyed so good opportunities of studying American specimens as could be wished. He therefore urgently requests American betanists to aid him by the communication of their collections in this genus, (either in the way of loan or exchange,) in order that the species of this country may be more satisfactorily elucidated. The subjoined list comprises eleven North American species, which have fallen under his notice in various European herbaria. Five of these are identical with European species; four are dis tinct, but nearly related forms; while two belong to a section which has no known representative in Europe.
G. E.

Chare of North America.

A. Chare epigyne, A. Braun. (Nitella, Agardh, partly.)

1. Ch. flexilis, Linn. (vera?)-Sterile specimens, Pennsylvania? Schweinitz in herb. Zeyher. In the Merrimac, Nasachusetts, Greene.
2. Ch. glomerdlffolia, A. Braun.-(Subspecies of C. Alailis.) In the Merrimac, Greene.
3. Ch. mucronate, A. Braun.-(C. flexilis of authors, partly) vat. Americana? A. Braun. In the Merrimac, Greene.

* Dr. Engelmann of Yt Yous, and also Prof. G lay of Harvard University, will cheerfully take charge offungels or communication, addressed to Prof. Braun.

4. Ch. capitellata, Elliott.-Georgia, Le Conte, in different herbaria. Called C. tenella by Bran, before he was aware of Elliott's name. Where has Elliott described it?
5. Ch. тenuissima, Desv.-Not to be distinguished from European specimens. Boston, Greene, in herb. Decaisne.

B. Chare hypogyne, A. Braun.

6. Ch. Schweinitzir, A. Braun.-Subspecies of Ch. coronata, and very near Ch. Braunii.
α_{0} Longibracteata. = Ch. foliolosa, Schwein. (non Muhlenb.)
β. brevibracteata, condensata. $=$ Ch. foliolosa, Un. Itin.
γ brevibracteata, Lama. =Ch. opaca, Schwein. (non Agardh.)
Pennsylvania and Georgia, in many herbaria. This species appears to be generally mistaken in the United States for Ch. $f 0$ liolosa, Mull. ; but in Willdenow's herbarium an entirely different plant, sent by Muhlenberg; is preserved under this name.
7. Ch. vulgaris, Auct.-Pennsylvania, Georgia, etc. in differant varieties.
8. Ch. aspers, Willd.-Newfoundland, La Pylaie.
9. Ch. fragilis, Desv.-Newfoundland, La Pylaie; Pennsylvania? (Schweinitz, under his Ch. opaca; Georgia? (Le Conte in herb. Zeyher, mixed with Clara vulgaris, Rajas fexilis, and the undescribed Zanichellia cochlospermum, A. Braun.
10. Ch. foliolosa, Muhlenb. in Wild., can hardly be distinguished from the East Indian Ch. Zeylanica, belonging to the quite distinct group of Gymnopodet, A. Braun.
11. Ch. Michauxif, A. Braun.-Ohio, Mich. and Dr. Frank. This belongs to the same group as the foregoing, and must be ranged together with it as subspecies, under the principal species Ch. polyphylla, A. Braun.

 and Missouri, by Charles A. Geyer; with critical remarks, \&c. by Grebcir Encrlanans, M.D, of St Lowis.

Mr. Geyer, who is an excellent collector, is now absent on an expedition to the Rocky Mountains and Oregon, as announced in the last volume of this Journal, (p. 226.) Being unwilling to adopt the common plan of selling his collections to subscribers before they are actually made, he prefers to seek some needful aid in the prosecution of his arduous undertaking, by offering to the botanical public sets of the following plants, collected in 1842 near St. Louis, Missouri, and around Beardstown on the $1 l l i n o i s$ River. This collection (which is duly mentioned on p. 227 of Vol. xlv,) consists of the following species.

1. Ranunculus micranthus, Nutt. Apparently common in the grassy river bottoms, and on fertile grassy hills in Missouri and Illinois. It is very near \boldsymbol{R}. abortivus, but apparently well distinguished by its pubescence, and the more orbicular, very seldom cordate or reniform lowest leaves.)
2. Ranunculus fascicularis, Muhl.
3. Myosurus minimus, Linn. Certainly a native plant:*
[^0]
4. Isopyrum biternatum, Torr. \& Gr

5. Delphinium tricorne, Michx.
6. Trautvetteria palmata, Fisch and Mey.; an entirely new locality for this rare plant, which has heretofore only been found in the Alleghany and Rocky Mountains. $>$
7. Thalictrum anemonoides, Michx.
8. Brasenia peltata, Pursh.
9. Corydalis aurea, Willd.; the smaller, glaucous variety of the banks of the western rivers.
10. Cardamine Ludoviciana, 14. Draba Caroliniana, Walt.

Hook. 15. Lepidium Virginicum, Linn.
11. Cardamine hirsuta, Linn. 16. Polygala purpurea, Nutt.

ס. Virginica. 17. Polygala incarnata, Linn.
12. Sisymbrium canescens, i8. Polygala verticiliata, Linn.

Nutt 19. Viola pedata, Linn.
13. Draba brachycarpa, Nutt.
20. Viela delphinifolia, Nutt. ; common in rich prairie soil in Milinois and Missouri, where it does not take the place of V. pedata, as Nuttall intimates, but grows in the same region, though never on such poor clayey or gravelly soil as V. pedata.
21. Viela palmata, Linn., and
22. Viola sororia, Willd, are certainly nothing but varieties of V. cucullata, Ais-
23. Viola sagittata, Ait. 26. Hypericum sphærocarpum,
24. Viela striata, Ait.
25. Parnassia Caroliniana,

Michx.
27. Hyperieum Sarothra, Michx. Michx. 28. Anychia capillacea, Nutt. ; well distinguished from A. dichotoma, Michx. by the smooth stem, the ovate or oblanceolate obtuse leaves of the branches, the pedunculate flowers, 1 -nerved obtuse sepals, and twice as large seeds.

[^1]29. Linum rigidum, Pursh.
30. Malva Houghtonii, Torr. \& Gr. Intermediate between Mal va and Spheralcea; the carpels being 1 -seeded as in Malva, but 2 -valved as in Sphæralcea. The carpels separate mostly from the receptacle and from one another before opening.
31. Psoralea floribunda, Nut.
32. Amorpha canescens, Nutt.
33. Petalostemon violaceum, Michx.
34. Astragalus trichocalyx, Nutt.? Probably a different spe cies, but as I am unable to compare original specimens of Nuttall's plant, I am at present unable to decide. This species grows from a very strong fusiform ligneous root, in many cespitose stems; in the rich prairies and on grassy hills near St. Louis, (in Illinois,) and through the whole state of Missouri. It flowers in April and in beginning of May. The corolla is ochroleucous, with a bluish tip to the carina; the unripe legumes are succulent and edible, and when boiled resembling young beans in taste.
35. Desmodium sessilifolium, Torr. \& Gr ?
36. Lespedeza capitata, Michx.
37. Crotalaria sagittalis, Linn.
38. Spiræa lobata, Murr., and
39. Sanguisorba Canadensis, Linn. New localities for these plants, and probably the southern limit for them in the Mississippi valley. .-.
40. Cratægus coccinea, Linn. var.? mollis, Torr. \& Gr.
-41. Cratrgus tomentosa, Linn.
42. Rhexia Virginica, Linn.
43. Callitriche vernalis, Kützing, (in Linnæa, VII, 178.) One of the species of this genus common to America and Europe, and by most authors confounded with several others under the name of C. verna, Linn. It is well distinguished by the four angles of the small fruit being carinate ; most other species having broadly winged angles and larger fruits.
T1 44. Cicuta maculata, Linn.- 50. Hedyet purpurea, var (
46. Galium pilosum, Ait. 52. Liatris pyenostachya, Michx.
47. Spermacoce glabra, Michx. 53. Aster sericeus, Vent.
48. Diodia teres, Walt. 54. Aster turbinellus, Lindl. 3
49. Hedyotis minima, \quad 55. Ater azureus, Lindl.
-Torr. \& Gr. 56. Aster sagittifolius, Willd.
57. Aster multiflorus, Ait 66. Solidago speciosa, Nut.
58. Aster dumosus, Limn. 3
59. Aster miser, Linn.)
γ diffusus Torr. \& Gr.
60. Aster simplex, Willd.
61. Astar carneus, Nees.
62. Aster puniceus, Linn. B. firmus, Nees.
63. Aster oblongifolius, Nutt
64. Diplopappus linariifolius,
67. Chrysopsis villosa, Nutt.
68. Silphium integrifolium, Michx.
69. Echinacea angustifolia, DC.
70. Helianthus occidentalis, - Ridd.,
71. Helianthus doronicoides, Lam,
72. Helianthus hirsutus, Raf. 73. Artemisia caudata, Michx.
65. Diplopappus umbellatus
Torr. \& Gr.
73. b. Matricaria discoidea, DC. I have no doubt of this plant being a native here, and not introduced from Oregon or California, as Torrey and Gray (Flora, II, 413) suggest. It grows not only on wastes and roadsides near and even in St. Louis-(here it is found with Maruta Cotula, but flowers before this is six inches above ground)-but also four or five miles from the town, on grassy spots in the woods.
74. Hieracium Gronovii, Linn.|78. Asclepias verticillata, Linn -
75. Lobelia leptostachya, 779. Asolepies incarnata, Linn.

> A. DC. 50. Gentiana rmbricallis, Keat
76. Campanula aparinoides, S1. Gentiana ochroleuca, Filld. Pursh 82. Phlox glaberrima, Link.
77. Specularia perfoliata,
A. DC.
83. Cuscuta vulgivaga, Engelm. in Sill. Journ. xlin, 338. C. Gronovii, Choisy. C. Americana, Auctor,
84. Cuta Cephalanthi, Engelm. Well distinguished by its small cylindric flowers, and by the corolla remaining on top of the capsule. It is found more on Vernonia fasciculata than on Cephalanthus. So far only found near St. Louis.
85. Lepidanche Compositarum, Engelm. So far only found in the prairies of Indiana, Mlinois and Missouri. Cuscuta glomerata, Choisy.
86. Myosotis verna, Nutt. ? If the description of Myosotis ver$n a$ given th some American floras is correct, our plant cannot be the true verna. But as I have neither seen Nuttall's character, nor original specimens, nor eastern specimens aftll, I must leave

this undecided. If our plant should prove distinct, I would sug. gest the name M. inflexa, adopted by me long since. I add the distinguishing characters of the European, the Western, and a nearly related Texan species.
-Myasatis stricta. (Link): calycibus profunde 5-fidis, laciniis subǣqualibus linearibus obtusiusculis; calyce fructifero clauso; racemis basi foliatis; pedicellis fructiferis calyce brevioribus; tubo corollæ incluso; nucibus minimis.-M. arvensis, Reichenb., non Link, Lehm., Ehrh.
Europe.-Nuts grayish olive, very small, equal in size to the black nuts of \boldsymbol{M}. versicolor.
M. inflexa, (n. sp.): calycibus 5-fidis, laciniis calycis fructiferi erecto-conniventibus inæqualibus 2 inferioribus longioribus omnibus lanceolatis acutis albo-hispidis; racemis basi foliatis; pedicellis fructiferis calyce subbrevioribus basi erectis adpressis medio inflexis horizontalibus; tubo corollæ incluso ; nucibus mediis M. verna, Nutt.?

Missouri and Illinois, dry prairies, open woods. April and May.Annual or bienuial? Calyx bilabiate; nuts twice as large as in the foregoing, of same color, equal in size to the black nuts of M. in= termedia, Link.
M. macrosperma (n.sp.): calycibus 5 -fidis, laciniis calycis fructiferi ovatis triangularibus acutis 2 inferioribus 3 superiores duplo superantibus, omnibus erecto-conniventibus flavo-s. ferrugi-nen-hispidissimis; racemis basi subfoliatis; pedicellis fructiferis calyce brevioribus basi adpressis; calycibus horizontalibus; tubo corollæ denique calyce longiore; nucibus maximis.
Texas, prairies, April. F. Lindheimer.-Nuts of same color as both others, but twice as large as those of the last, and larget than those of any European species examined by me; uncinate hairs of the calyx very long, stiff, spreading in all directions; floyers not so crowded as in both the foregoing species.
87. Phacelia Purshii, Buckley, in Sill. Journ. xlv, 171.
88. Pliysalis Pennsylvanica, Linn. Some of the specimens have smooth, and others pubescent or hairy calyces; these last ones constitute the \boldsymbol{P}. lanceolata, Michx.
89. Pentstemon pubescens, 92. Hedeoma pulegioides ${ }_{2}$ Pers Ling, 93. Hedeoma hispida, Pursh.
90. Collinsia verna, Nutt. 94. Pycnanthemum pilosum.
91. Gratiola ? - Nutw
95. Monarda punctata, Linn.g
96. Dracocephalon Virginianum, Linn.
97. Scutellaria galericulata, Linn.
98. Verbena paniculata, Lam. With undivided leaves, the true V. paniculata; and with the lower leaves divided, lobed or hastate, V. hastata, Linn., which can hardly be called even a variety. As Lamarck's name is equally applicable to both forms, it probably onght to be preferred to the Linnæan name.

99 to 102. Four hybrids of different species of Verbena, which together with several others that abound in this neighborhood, Mr. Geyer appears to have found equally abundant on the sandy wastes near Beardstown, and on the sandy islands of the lllinois River.

The names, chosen according to Schiede's proposition, indicate the parent plants; but it is often difficult enough to detect the parentage; indeed to ascertain which is the male and which the female parent is probably quite impossible if actual experiments be not instituted. Generally both parents grow near the hybrid, but as these Verbenæ are perennial, the hybrids, being unable to produce seed, propagate the more readily by stolons, and spread in some localities so as even to exceed one or the other of the parents in number. In such cases we have to rely entirely on the resemblance of the offspring to some true species in the vicinity. All these hybrids, however, are known to be such by their luxuriant growth exceeding that of their parents, by their sterility, and mostly by their local appearance in places where their parents are common. We find, as is naturally to be expected, many hybrids which resemble one of their parents more than the other ; and hence many intermediate hybrid furms may be observed, so as to furnish all the connecting links between two very distinct species; this of course not proving the identity of such species, but rather the reverse. No hybrids are more common here than those between V. stricta, Vent. and V. urticafolia, Linn., and I possess specimens not only of V. urticafolio-stricta, (near V. stricta,) and of V. stricto-urticaefolia, (near V. urticafo$l i a$,) but of several intermediate forms; the extremes of which might be taken for mere varieties of V. stricta and of V. urticicfolia; or they may be produced by seeds from these plants, adulterated by some pollen from the other species. The difficulty is increased by the fact that these doubtful hybrids prodnce more
seeds than the nearly intermediate hybrids, though far less than the true species. In the course of time, if they propagate at all, they may revert again to their parental species, especially if the very probable supposition be true, that, when the ovary of these hybrids is fertile, the pollen is inert.*
99. Vechone paniculato-stricta: more hirsute than V. panicu lata, but not canescent like V. stricta; leaves much narrower than in V. stricta, subsessile or decurrent in a short petiole, simply or doubly or incisely serrate ; spikes more crowded than in V. paniculata, more fascicled, not paniculate; calyces hairy, somewhat gray, longer than in V. paniculata; corolla intermediate int size and color, much paler than in V. paniculata; style persistr ent for some time on the ripening fruit, as in V. paniculata.
Grows in abundance on the sandy, sometimes overflowed, banks of the Mississippi, opposite St. Louis, with other hybrid forms, and with V. stricta, V. urticafolia, and V. bracteosa. V. panicur lata is very rare there, perhaps destroyed by the growing bushe which now cover the formerly grassy spots. Nevertheless, the narrow leaves, deeper colored flowers, and persistent style, prove sufficiently that V. paniculata is one of its parents. Flowers in July and August.
100. Verbenaurticæfolio-bracteosa: decumbent like V. brae teosa, but large, spreading sometimes two or three feet ; leaves small, like V. bracteosa, laciniate ; spikes fascicled, filiform ; flow ers distinct, as in V.urticafolia; bracts longer than the calyx, but not more than half as large as in V. bracteosa; corolla larger than in V. urticafolia, with a longer tube, very pale purple. The parents of this hybrid cannot be mistaken; the growth, the leaves, the bracts of one, and the spikes, and the smaller size and paler color of the corolla of the other.
On sand-bars and sandy islands in the Mississippi (St. Lonis) and Illinois rivers, (Beardstown.) Flowers July to September
101. Vouhanastricto-urticæfolia: an interesting hybuid between two very distinct species. The plant is more canescent than V, urticeffolia; the leaves shorter petioled, sometimes nearly sessile, of firmer texture, and not simply serrate, but generally doubly or even incisely serrate ; sometimes even so much incised or lobed that I would have been inclined to look to V. hastata or V. bractensa for an explanation, but we cannot admit the action of three species in the formation of hybrids. The spikes are filiform, the
flowers compacter than in V. urticerfolia, but not as densely imbricated as in V. stricta or V. paniculata; the calyx much longer than in V. urticafolia, canescently hairy ; corolla large, intermediate in size between both parents, and pale purple

- This is the most abundant hybrid here, and both parents are amongst the most common weeds about St. Louis. Flowers in July and Angust.

102. Vemorticæfolio-paniculata: leaves petioled, lanceolate, with simple, double, or sometimes incised serratures, generally elongated; spikes thin, more properly filiform than in any of our species; calyx and corolla intermediate in shape, size, and color, between both parents. It resembles some varieties of the true V. paniculata, but the dark purple flowers, and the thick oylindric fruiting spikes, at once distinguish it. >
St. Lonis and Beardstown; grassy places and open woods. July and August.

Besides these four hybrids, I have found here the corresponding ones more nearly resembling the other parent, which I designate by the same names, reversing the order, viz.

Verbes stricto-paniculata: greener, narrower, more petioled leaves, darker flowers, than V. paniculato-stricta.
V. bracteoso-urticafolia: adscendent, with large lobed leaves, and thinner spikes.
V. urticafolio-stricta : canescent, with sessile leaves, and thin filiform spikes.
V. paniculato-urticafolia: with broader leaves, thinner spikes, paler and smaller flowers.

Then there is the V. angustifolio-stricta and V. stricto-angustifolia. Hybrids of V. angustifolia with any but V. stricta, and of \boldsymbol{V}. bracteosa with any but \boldsymbol{V}. urticafolia, or of \boldsymbol{V}. Aubletia, the only remaining species in this region, I have not yet found. The only other hybrid found by me in this country, is Rumex obtusifolio-crispus. Whether these introduced plants hybridize in their native country is unknown to me.
103. Androsace occidentalis, 107. Polygonam sagittatum; Linn.

> | 104. Lysimachia revoluta, | Nu8. Croton glandulosus, Linn. |
| :---: | :---: |
| Nutt 109. Borya ligustrina, Willd. | |

105. Plantago cordata, Lam n10. Quercus nigra, Willd.
106. Polygonum tenue, H11. Quercur alba, Linn.

Michx:112. Quereus castanea, Muhl.
113. Salix Muhlenbergiana, 115. Salix longifolia, Muhl. Willd 116. Salix rigida, Mubl.?
114. Saliz nigra, Marsh'
117. Potamogeton diversifolius, Barton, β. spicatus. This form appears at fifst view to be a distinct species, characterized by the narrower, only 5 -nerved upper leaves, and petioled oval or cylindric spikes. P. diversifolius, α. capitatus, the common form, has more oval 7 -nerved upper leaves, and nearly sessile few-flowered heads. But sometimes the lower heads of our variety are also capitate and nearly sessile, and the fruit is generally alike. The fruit, or nut, is always compressed, winged on the back, with two lateral carinæ, which are generally denticulate, the nut appearing muricate ; and in β. they are often nearly or entirely undivided, but by no means generally so. The embryo describes $1 \frac{1}{2}$ of a spiral circumvolution; the embryo of most other species forms only $\frac{3}{4}, 1$ or 14 circumvolution. I know but one species, P. densus, which exhibits $2 \frac{1}{2}$ circumvolutions.

It may not be amiss here to remind botanists in this country, that the ripe fruit furnishes the best characteristic marks to distinguish the different species of Potamogeton. The fruit, for example, proves that P. marinus, Linn. is entirely distinct from P. pectinatus, Linn., with which most anthors confound it ; P. marinus occars not only on the sea-coast, but also in the salt-ponds of the Upper Missouri, (Geyer, in Nicollet's expedition.) Specimens of Potamogeton should always be collected with ripe fruit.
118. Phalangium esculentum, Nutt.
119. Trillium recurvatum, Beck.
120. Junéus marginatus, Rostk.
121. Dulichium spathaceum, Pers.
122. Cyperus kyllingæoides, Vahl
123. Isolepis capillaris, Roem. \& Schult.
124. Heleocharís tenuis, Schuft.
125. Eriophorum gracile, Koch, in Roth. catalect. 2. p. 259. A species which has frequently been found in the United States; it appears to have been taken for \boldsymbol{E}. anguslifolium-my specimens at least, received from Pennsylvania and from Ohio, were so labelled-but is easily distinguished by its triquetrons, subulate leaves, and the linear yellowish seeds. The true \boldsymbol{E}. angustifolium, Roth, is the largest of all the species, with the longest ($1 \frac{1}{2}$ inch) wool; leaves 1 or $1 \frac{1}{2}$ lines broad, channeled; pedun-
cles smooth. E. latifolium, Hoppe, (E. polystachyum, Auct.) has flat leaves and scabrous peduncles ; and both have obovate, dark or light brown seeds.

I propose the following disposition of these species, acknowledging however that I have studied the American varieties from dried specimens only, never having observed any living ones.
E. latifolium (Hoppe): culmo trigono, foliis planis apice triquetris, spiculis plurimis, pedunculis scabris, nucibus obovatis. \boldsymbol{E}. polystachyum, β. Lion.
a. nigro-carinatum: squamis floriferis plumbeis, carina nigricante, nucibus acutiusculis brunneis. Germany; probably throughout Europe.
B. viridi-carinatum: squamis floriferis obscuris, carina virescente, nucibus obtusis, lutescentibus. Massachusetts, Ohio.
E. angustifolium (Roth): culmo teretiusculo, foliis canaliculatis apice triquetris, spiculis pluribus, pedunculis lævibus, nucibus oblanceolatis acutis. E. polystachyum, a. Linn. -

Squamæ floriferæ nigro-carinatæ, albo-marginatæ. Europe. I have not seen any American specimens.
E. gracile (Koch): culmo obsolete trigono, foliis triquetris, spiculis pluribus, pedunculis scabris, nucibus linearibus (flavicantibus). E. polystachyum, γ Linn. E. triquetrum, Норре.
[.. plurinervium: pedunculis tomentoso-scabris, squamis floriferis pallidis, nervis pluribus pallidioribus striatis, nucibus obtusiusculis. Germany.

乃. paucinervium: pedunculis scabris, squamis floriferis pallidis, nervis paucis (3) pallidioribus notatis, nucibus acutis. Illinois, Ohio, Pennsylvania.
126. Carex rosea, Schk. 136. Panicum virgatum, Linn.
127. Carex multiflora, Muhl. 137. Panicum pubescens, Lam,
128. Carex arida,
138. Panioum scoparium, Lam.

Torr. \& Schw.139. Panieum clandestinum,
129. Carex cristata, Linn.

Torr. \& Schw. 140. Digitaria filiformis, Ell.,
130. Carox Willdenovii, Schk.

132. Casex Shortii, Torr. 142. Melica speciosa, Muhl.?
133. Carex laxiffora, Lam.? 143. Festuca nutans, Willd.
133. Carex Meadii, Dew. in 144. Diarrhena Americana,

Sill. Journ. Vol. xliri, p. 90 Pal. de Beauv.
135. Carex umbellata, Schk.
145. Atheropogon aphudoides, Muhl.
146. Atheropogon papillosus (n. sp.): culmis cæspitosis basi foliatis; foliis lanceolato-linearibus planis margine et ad nervum medianum infra supraque ex papillis serrato-ciliatis; spicis 1-3 subterminalibus biserialibus unilateralibus multiforis; glumis papilloso-hispidis ; valva corollæ perfectæ exteriore trifida, valva corollæ neutrius brevissima hyalina ex basi triaristata.

Sandy soil, Beardstown, Ill.-Very near A. oligostachyus, Nutt., and resembling it closely, but distinct by the broader and hispid (not setaceous and smooth) leaves, the hispid (not pubesceut) glumes, and the hyaline glume of the abortive floret (not half as large as in A. oligostachyus.)
147. Andropogon scoparius, Michx.
148. Poa firsuta, Michx.
149. Poo pectinacea, Michx ?

149, b. Hordeum pusillum, Nutt.
150. Woodsia Perriniana, Hook.

Art. XIV.-On the Mode of Formation of the Tails of Comets; by William A. Norton, Professor of Mathematics and Natural Philosophy in Delaware College.

It is not my design, in the present article, to furnish a completo theory of the process by which the tails of comets are formed from their heads. This cannot be attempted, it is presumed; with any reasonable hope of success, until more facts relative to the structure and phenomena of comets have been accumulated: But little more will now be undertaken, than to disprove the commonly received notion that the tail and head of a comet form one connected mass, revolving as one body, and to establish the apposing doctrine, that the tail is made up of particles of matter continually in the act of flowing away from the head. To do this intelligibly and effectually, however, it will first be necessary to treat briefly of the

Physical Constitution of Comets.

What I have to offer upon this preliminary topic, may be conveniently arranged under the following heads; viz. 1 . The na-

THE

AMERICAN JOURNAL

$$
O F
$$

SCIENCE AND ARTS.

conducted By
PROFESSOR SILLIMAN
-m.

inn
BENJAMIN SILLIMAN, J』.

VOL. XLVI.-No. 2.-APRIL, 1844. FOR JANUARY, FEBRUAKY, AND MARCT, 184.

NEW HAVEN:

Sold by B. NOYES-Bostom, IITTLLE \& BROWN and W. H. S. JORDAN:New Fork, WILEY \& PUTNAM, C. S. FRANCIS \& Co., and G. S. SILLI-MAN-Philadelphis, CAREX \& HART and J. S. LTTTELE-Baltivore, Md., N. HCKMAN-Equdom, WLLEX EUTNAM.-Paris, LECTOR BOSSANGE a Co-Hanlorgh, Mesrs. NESTLEM \& MELLE.

[^2]
TO CORRESPONDENTS.

Authors' Copies of Communications.-We wish it understood that twelve copie of every original communication, published in this Journal, are at the disposal 4 the author, on making known his desire to have them. If authors wish a larger number of copies than this, they will be furnished for the trifing cost of paper and presswork, or binding, if bound. Extra enpies in no ease, furnished before the puli lication of the number containing the article.

Authors should always specify at the head of their MSS. the number of exth copies of their communications which they may wish to have printed.

Our British correspondents are requested to forward all communications and pasi cele to Mesars. Wiley \& Putnam, booksellers, 35 Paternoster Row, London.
The titles of communications and of their authors, must be fully given.
Return proof, not to be sealed, or lascribed with any thing except corrections.
Nolice alveys to be given when communications sent to this Journal, have been or are to he, published also in other Journals.

We request our friends, who desire to have their communications inserted in : particular number, to give us timely notice of the fact, as it sometimes happens that the space is all pre-engaged one number in advance. Attention to this request may perhaps prevent disappointment on the part of authors.

MAIL SUBSCRIBERS

Hereafter our mail subseribers will receive this Journal at five dollars per all num, they paying their own postage. The subscription price is still six dollary th those who receive it without expense to themselves. Those mail subscribers whin have made advances on the coming year, with a view to take advantage of the free postage, heretofore preferred, but now discontinued, will have their accounts satisfaetorily adjusted. For further particulars, see the 4th page.

NOTICES.

The public are cautioned not to make payment for subscriptions to this Journal except to such persons as are authorized by us to receive it.

Messrs. C. W. and J. E. James are now collecting for this Jouraal, and are fully authorized to reccive all duäs from our subscribers.

B. \&B. S.

TO OUR SUBSCRIBERS.

We are under the necessity of urging our friends generally to exert themselves fin behall of our subscription list, which, from the pressure of the times and fom the failure of agents, has so far diminished as to place the work in a precarious situation. We hepe that every subscriber can obtain one more to add to our list.
Any one who sends us the subscription money of one year for four subscribont thall receive a capy of the work gratis for that year.

Just published, with 80 new figures and 150 pages additional matter, price $\$ 350$.

DANA'S MINERALOGY, 8vo. pp. 640,

or A

SYSTEM OF MINERALOGY,

 woum Copren-plater

By JAMES D.DANA, A. M. second spition.

THis Standard Work, which has already been adopted as a text-book in many of our Literary Institutions, has undergone various improvements and received large additions in the preparation of the present Edition.

It contains about 150 pages of new matter, embracing some entire Chapters, and 80 additional figures of crystals, to a great extent, of American Minerals.

The notices of American Localities, have been rewritten and filled out with great completeness, by a very thorough collating from the various Geological Reports of the State surveys: and a Geographical table of Localities, on the plan of Robinson's, is introduced, containing only those localities which furnish good Cabinet specimens.

An important chapter on Rocks, considered as aggregates of Simple Minerals, has been appended, containing many recent analyses of those rocks most useful to Agriculture and the Arts, and presenting a clear and condensed view of the great rock masses of the Globe. This has been considered a great desideratum by many persons, and is vainly looked for in our treatises by the mass of readers.

A full Table of Chemical Symbols for expressing the composition of Minerals, will be found towards the close of the volume. All the formulas have been collated from the most recent German works, particularly Rammelsberg's, and are printed in a clearer and more expressive style than any similar formulas, in the English language. Indeed no where else can so correct and comprehensive a summary of Chemical formulas of Minerals be found. It cannot fail of being highly appreciated by Mineralogists.

The Tables for determination of Minerals have been much improved; large numbers of new species have been added, and numerous difficulties and obscure points in the science cleared up.

In fullness, condensation and perspicuity, it is believed to be surpasayed ly no other treatise on the subject.

Apmil, teat

> WHEX \& PUTNAM, London and Now York.

GEOLOGY, MINENALUGY; METALLERGY.

Geologie appliquée, ou Traité de la recherche et de l'Expoitation des Minéraux Utiles. Par A. Burat. 1 vol. 8 vo , with fine engravings,
Métallurgie Pratique du Fer, ou Description méthodique des Procédé de Fabrication de la fonte et du fer. Par W. de St. Ange. 1 vol. 4to, with a large atlas of plates in folio, Price, Marmelde Métallurgie Générale. Par G. A. Lampadius. Traduit, avec des notes, par G. A. Arrault. 2 vols. 8vo, - 325
Cours Elémentaire de Géologie. Par F. S. Beudant. 12mo, 75
Geology : introductory, descriptive, and practical. With numerous illustrations, comprising diagrams, fossils, and geological localities. By Prof. Ansted. Nos. 1 and 2, in 8vo, each
A History of British Fossil Mammalia and Birds. With numerous illustrative engravings. By Prof. Owen. Nos. 1 and 2, in 8 vo , each

NATURAL PELEOSOPHY.

Sources of Physical Science, being an introduction to the study of Physiology through Physics. By A. Smee. 1 vol. 8 vo , Magnetical Investigations. Part 2. By W. Scoresby. 1 vol. 8 vo ,
Lectures on Polarized Light. By J. Pereira. 1 vol. 8 vo ,
The Invisible Universe Disclosed : or the Real Plan and Gorernment of the Universe Disclosed. By H. C. Johnson. 1 vol. 12mo,
Observations on days of unusual Magnetic Disturbance, made at the British colonial magnetic observatory. By Linut ColE. Sabine. 1 vol. 4 to,

Thoughts on the causes of Compass Variation, and the motions of planets, comets, whirlwinds, hurricanes, and earthquakes. By P. Cunningham. 8vo,
Carr's Synopsis of Natural Philosophy. Alphabetieally arranged. 1 vol. 18 mo , bound,

Essay on the Physiognomy of Serpents. Translated by Prof. T. S. Traill, M. D., \&cc. 1 rol. 12 mo, with map, .

Experiments, and Discovery, in Phrenology, Magnetism, scc. Edited by S. T. Hall. I vol. 12mo,

AMERICAN JOURNALOF SCIENCE.

PHILOSOPHICAL APPARATUS.

JOSEPH M. WIGHTMAN, No. 33, Cornhill, Boston, Manufacturer of Philosophical, Mechanical, and Chemical Apparatus.

Among which, are Apparatus for illustrating Inertia, Attraction, and other Laws of Matter.

Motion.-Laws of Falling Bodies, Compound Motion Sets, for Centre of Gravity, Models of Cycloidal Pendulums, Brachystochrone, or line of swiftest descent, Law of Central Forces, showing that bodies in rapid rotation always select the shorter axis, Irory and Boxwood Balls for collision.

Mechanicals.-Complete sets of various sizes, from \$25 to \$100:

Hydrostatic and Hydraulic Apparatus, in great variety.
Pneumatic.-Lever Air-Pumps, on Leslie's construction improved. Barrel 4 inches and plate 13 inches diameter; patent Single Barrel Lever Air-Pumps, on table stand, and also of portable size for Academies; Common Air-Pumps, and Condensing Syringes; with a great variety of Apparatus adapted to the different sizes.

Electrical Plate Machines.-Improved construction of all sizes. Cylinder do. 6 to 10 inches diameter, Batteries, Jointed and Universal Dischargers, Balance, Gold Leaf, and other Electrometers, Thunder Houses, Cannòns, \&c. \&cc. \&cc.

Chemical-Compound Blowpipes, Parabolic Reflectors silver plated, in cases with Apparatus, Gas-holders, Cast Iron Mercury Cistern with Gas-holder, improved from the best English, Lamp Stands with improved Shiffing Rings, Spirit Lamps with Glass Caps, Furnaces of various sizes, Oxygen Retorts of Iron with tubes, tight joints without luting, Pyrometers, Porcelain Mortars, and Evaporating Dishes, Nooth's Apparatus, Bell Glasses, Alembics, tubulated and plain Retorts, Glass Tubes, \&c. \&c.

Optical-Lenses, Mirrors, Prisms, Models of the buman Eye, Single and Compound Microscopes, Telescopic Kaleidoscope, Phantasmagoria Lanterns, imported by J. M. W. and warranted superior to any other, with great variety of sliders on Astronomy, Natural History, Ancient and Modern Costume, Views, \&cc. \&c.

Astronomy, Geology, and Meteorology.-Orreries, Tellurians, Globes 1S, 12, 10, and 6 inches diameter, Clinometers for taking the inclination and direction of strata, Reflecting Goniometer, Rain Gauges, Barometers and Thermometers.

Electro-Magnetism.-A very great variety of Apparatus and Machines for Motion, Shocks, and Sparks, for illustrating this interesting branch of science.

Galvanism.-Batteries, improved construction of different sizes.
J. M. W. would refer to his Catalogue for further information, copies of which will be sent per mail on application. All letters post paid.

[^3]
Dr. J. R. CHILTON, PRACTICAL CHEMIST, \&c.,

$$
\text { No. } 263 \text { Broadwat, New York, }
$$

Keeps constantly for sale at his establishment, a general assortment of Philosophical and Chemical Apparatus, Chemical Preparations, and every thing necessary for the study of Chemistry and other branches of Natural Philosophy-among which are the following:

Pixii's French Air-pumps, with glass barrels; other airpumps with brass barrels, single and double, of various sizes, together with the various apparatus used with them.

Large and small Plate Electrical Machines, Cplinder Electrical Machines, and a variety of Electrical Apparatcs.

Electro-Magnets, mounted on frames, of various sizes, capable of supporting from 20 to 3000 lbs .

Page's Compound Magnet and Electrotome, for producing brilliant sparks and powerful shocks. The same instrument, with a contrivance attached by which the intensity of the shocks can be modified at pleasure, which renders it one of the most convenient instruments for the application of electricity as a remedial agent in the cure of disease, and for physiological experiments.

Small working models of Electro-Magnetic Machines, of different kinds, and a great variety of Electro-Magnetic Instruments for the purpose of illustrating the theory of Electro-Magnetism.

Galvanic Batteries on Prof. Faraday's plan, and others, for deflagration, \&c. Calorimotors of different sizes.

Gas-holders-Compound Blowpipes-Portable Pneumatic Troughs-Mercurial Troughs-White and Green glass Retorts and Receivers, Flasks, Tubes, and Evaporating Dishes-Porcelain Retorts, Tubes, and Evaporating Dishes, Funnels, Mortars, \&c.-Iron Retorts, of different sizesBell Glasses, plain and stoppered, Graduated Bell Glasses, Tubes, \&c.-Woulf's Apparatus, Glass Alembics, Stoppered Funnels, Precipitating Jars.

Nooth's Apparatis for impregnating water with carbonic acid.
Apparatus for solidifying carbonic acid.
Glass Condensing Syringes or Fire Pumps-Magic Lanterns, with Astronomical and other Slides-Agate and Steel Mortars.

Porcelain, Wedginood, Hessian, and Black Lead Cruci-bles-Muffles and Cuppels.

Berzelius's Spirit Lamps, with Stands and Rings, Glass Spirit Lamps-Models of Crystals in wood, in boxes containing one hundred different forms-Daguerreotype Apparatus complete.

An assortment of Platina vessels, such as Crucibles, Cafsules, Spoons, Forceps, \&c.-Platina Wire, Foil, \&c.-Sets of Blowpipe Apparatus neatly fitted up.

A large collection of Minerals, for sale by the single specimen or in sets.

05 Particular attention paid to the analysis of ores, minerals, mineral waters, \&c.
New York, June 19, 1841.

G̛eological Dravings and Illustrations.

Mr. ROBERT BAKEWELL,

Would inform Professors of Colleges, Principals of Academies, Lyceums, and other Literary Institutions, that he keeps on hand Drawings and Diagrams on paper and on canvass, (in distemper,) illustrative of the science of Geology, comprising Stratification; Metallic Veins, Organic Remains, Active and Extinct Volcanoes, \&cc.

The drawings (if preferred) are fixed on rollers, adapted for Lectures. Letters addressed to R. Bakewell, Instructor of Drawing and Perspective in Yale College, at Mr. Ebenezer Johnson's, Chapel street, New Haven, will be duly attended to.

Mr. Bakewell's drawings are excellent.-Eds. Am. Jour. Sci. Drawings and Plans of every description copied with dispatch.
New Haven, Jan., 1844.

Pripate Instruction in Chemical Analysis and in Mineralogy and Geology.

The subscriber receives Pupils in the above departments of Scientific Knowledge, and is prepared to carry them through such courses of Study and Physical Research, as may suit the wants and objects of each. Gentlemen studying under his care will have access to a well furnished Private Laboratory, where they will be provided with every facility in the way of lnstruments, Reagents, and Books. Daily and accurate recitations are held in the most approved Authors, by which, in connection with constant practice in Operative Chemistry, the Pupil rapidly acquires a knowledge of the branches taught. No time or labor is spared to make the advantages offered truly valuable.

The public Lectures in Chemistry, Mineralogy, and Geology, by Prof. Silliman, and those on Natural Philosophy, Mechanics, and Astronomy, by Prof. Olmsted, are accessible to the Pupil, while a private course of instruction in Mineralogy and Analytical Chemistry is now provided for during the year, aided by the most extensive and valuable Cabinets in Mineralogy and Geology, and also of Chemical Preparations, besides large Libraries rich in rare Scientific Works, especially Journals of Science in various languages.

Those who wish to perfect themselves, chiefly, in the arts of Chemical Manipulation, with a view to Public Instruction and Lectures, will here enjoy the best advantages.

New Haven being the centre of learning in southern New England, offers therefore many attractions to the Student, in addition to its fine climate, its cheap living, and abundant means of quick communication to every part of the country.

In the courses of private instruction, particular attention will be given to the examination of Soils and Manures, and the Analysis of Rocks and Ores, and other means of wealth.

A knowledge of Chemistry is now deemed indispensable both to the Agriculturist and the Artist.

Chemical inquiries connected with Agriculture and the Arts and Manufactures, will therefore receive particular attention.

For more detailed information, application may be made to
B. Silliman, Jr.

Of the Departments of Chemistry, Mineralogy, and Geology in Yale College.

Yale College Laboratory, Jan. 1, 1844.

THE

AMERICAN

JOURNAL OF SCIENCE, \&c.

Art. I.-Description of the Tithonometer, an instrument for measuring the Chemical Force of the Indigo-tithonic Rays; by John W. Draper, M. D., Professor of Chemistry in the University of New York.*

I have invented an instrument for measuring the chemical force of the tithonic rays which are found at a maximum in the indigo space, and which from that point gradually fade away to each end of the spectrum. The sensitiveness, speed of action and exactitude of this instrument, will bring it to rank as a means of physical research with the thermo-multiplier of M. Melloni.

The means which have hitherto been found available in optics for measuring intensities of light, by a relative illumination of spaces or contrast of shadows, are admitted to be inexact. The great desideratum in that science is a photometer which can mark down effects by movements over a graduated scale. With those optical contrivances may be classed the methods hitherto adopted for determining the force of the tithonic rays by stains on Daguerreotype plates or the darkening of sensitive papers. As deductions, drawn in this way, depend on the opinion of the observer, they can never be perfectly satisfactory, nor bear any comparison with thermometric results.

Impressed with the importance of possessing for the study of the properties of the tithonic rays some means of accurate meas-

[^4]urement, I have resorted in vain to many contrivances; and, after much labor, have obtained at last the instrument which it is the object of this paper to describe.

The tithonometer consists essentially of a mixture of equal measures of chlorine and hydrogen gases, evolved from and confined by a fluid which absorbs neither. This mixture is kept in a graduated tube, so arranged that the gaseous surface exposed to the rays never varies in extent, notwithstanding the contraction which may be going on in its volume, and the muriatic acid resulting from its union is removed by rapid absorption.

The theoretical conditions of the instrument are therefore sufficiently simple ; but, when we come to put them into practice, obstacles which appear at first sight insurmountable are met with. The means of obtaining chlorine are all troublesome; no liquid is known which will perfectly confine it ; it is a matter of great difficulty to mix it in the true proportion with hydrogen, and have no excess of either. Nor is it at all an easy affair to obtain pure hydrogen speedily, and both these gases diffuse with rapidity through water into air.

Without dwelling further on the long catalogue of difficulties which is thus to be encountered, I shall first give an account of the capabilities of the instrument in the form now described, which will show to what an extent all those difficulties are already overcome. In a course of experiments on the union of chlorine and hydrogen, some of which were read at the last meeting of the British Association, \mathbf{l} found that the sensitiveness of that mixture had been greatly underrated. The statement made in the books of chemistry, that artificial light will not affect it, is wholly erroneous. The feeblest gleams of a taper produce a change. No further proof of this is required than the tables given in this communication, in which the radiant source was an oil lamp. For speed of action no tithonographic compound can approach it; a light, which perhaps does not endure the millionth part of a second, affects it energetically, as will be hereafter shown.

Proofs of the sensitiveness of the Tithonometer.-The following illustrations will show that the tithonometer is promptly affected by rays of the feeblest intensity, and of the briefest duration.

When, on the sentient tube of the tithonometer, the image of a lamp formed by a convex lens is cansed to fall, the liquid instantly begins to move over the scale, and continues its motion as loug as the exposure is continued. It does not answer to expose the tube to the direct emanations of the lamp without first absorbing the radiant heat, or the calorific effect will mask the true result. By the interposition of a lens this heat is absorbed, and the tithonic rays alone act.

If a tithonometer is exposed to daylight coming through a window, and the hand or a shade of any kind is passed in front of it, its movement is in an instant arrested; nor can the shade be passed so rapidly that the instrument will fail to give the proper indication.

The experimenter may further assure himself of the extreme sensitiveness of this mixture by placing the instrument before a window, and endeavoring to remove and replace its screen so quickly that it shall fail to give any indication; he will find that it cannot be done.

Charge a Leyden phial, and place the tithonometer at a little distance from it, keeping the eye steadily fixed on the scale; discharge the jar, and the rays from the spark will be seen to exert a very powerful effect, the movement taking place and ceasing in an instant.

This remarkable experiment not only serves to prove the sensitiveness of the tithonometer, but also brings before us new views of the powers of that extraordinary agent, electricity. That energetic chemical effects can thus be produced at a distance by an electric spark in its momentary passage, effects which are of a totally different kind from the common manifestations of electricity, is thus proved; these phenomena being distinct from those of induction or molecular movements taking place in the line of discharge, they are of a radiant character, and due to the emission of tithonicity; and we are led at once to infer that the well known changes brought about by passing an electric spark through gaseous mixtures, as when oxygen and hydrogen are combined into water, or chlorine and hydrogen into muriatic acid, arise from a very different cause than those condensations and percussions by which they are often explained, a cause far more purely chemical in its kind. If chlorine and hydrogen can be made to unite silently by an electric spark passing outside the vessel which con-
tains them, at a distance of several inches, there is no difficulty in understanding why a similar effect should take place with a violent explosion when the discharge is made through their midst; nor how a great many mixtures may be made to unite under the same treatment. A flash of lightning cannot take place, nor an electric spark be discharged, without chemical charges being brought about by the radiant matter emitted.*

Proofs of the exactness of the indications of the Tithonome-ter.-The foregoing examples may serve to illustrate the extreme sensitiveness of the tithonometer ; I shall next furnish proofs that its indications are exactly proportional to the quantities of light incident on it.

As it is necessary, owing to the variable force of daylight, to resort to artificial means of illumination, it will be found advantageous to employ the following method of obtaining a flame of suitable intensity.

Let A B, fig. 4, be an Argand oil-lamp, of which the wick is C. Over the wick, at a distance of half an inch or thereabouts, place a plate of thin sheet copper, three inches in diameter, perforated in its centre with a circular hole of the same diameter as the wick, and concentric therewith. This piece of copper is represented at $\boldsymbol{d} \boldsymbol{d}$; it should have some contrivance for raising or depressing it through a small space, the proper height being determined by trial. On this plate, the glass cylinder e, an inch and three quarters in diameter and eight or ten inches long, rests.

When the lamp is lighted, provided the distance between the plate $d d$ and the top of the wick is properly adjusted, on putting on the glass cylinder the flame instantly assumes an intense whiteness; by raising the wick it may be elongated to six inches or more, and becomes exceedingly brilliant. Lamps constructed on these principles may be purchased in the shops. I have, however, contented myself with using a common Argand study-lamp, supporting the perforated plate $d \boldsymbol{d}$ at a proper altitude by a retort

[^5]stand. It will be easily understood that the great increase of light arises from the circumstance that the flame is drawn violently through the aperture in the plate by the current established in the cylinder.

As much radiant heat is emitted by this flame, in order to diminish its action, and also to increase the tithonic effect, I adopt the following arrangement. Let A B, fig. 4, be the lamp; the rays emitted by it are received on a convex lens D , four inches and three quarters in diameter, that which I use being the large lens of a lucernal microscope. This, placed at a distance of twenty one inches from the lamp, gives an image of the flame at a distance of thirteen inches, which is received on the sentient tube of the tithonometcr F ; between the tithonometer and the lens there is a screen E.

Things being thus arranged, and the lamp lighted so as to give a flame about three inches and a half long, we may proceed with the experiments. It is convenient always to work with the flame at a constant height, which may be determined by a mark on the glass cylinder. At a given instant, by a seconds watch, the screen E is removed, and immediately the tithonometer begins to descend. When the first minute is elapsed the position on the scale is read off and registered; at the close of the second minute the same is done, and so on with the third, \&c. And now, if those numbers be compared, casting aside the first, they will be found equal to one another, as the following table of experiments, made at different times and with different instruments, shows:-
Table I.-Shoving that when the radiant source is constant, the amount of movement in the tithonometer is directly proportional to the times of exposure.

Time.	Experiments.				
	1.	2.		4.	
$30^{\prime \prime}$	$7 \cdot 0$	7.00	1025		5.5
60	8.00	7.75	11.50	11.75	6.50
90	$7 \cdot 50$	$8 \cdot 0$	11.50		6.25
12*	7.75	7.75	11.50	13.00	600
150	$7 \cdot 75$	7.25	- .		6.00
180	. .			1200	6.00 6.00
210					6.00
Mean	$7 \cdot 60$	7.55	$11 \cdot 19$	12\%25	6.00

From this it will be perceived that, taking the first experiment as an example, if at the end of $30^{\prime \prime}$ the tithonometer has moved $7 \cdot 00$, at the end of $60^{\prime \prime}$ it has moved 8.00 more, at the end of $90^{\prime \prime}, 7 \cdot 50$ more, at the end of $120^{\prime \prime}, 7 \cdot 75$ more; the numbers set down in vertical column representing the amount of motion for each thirty seconds. And, when it is recollected that the readings are all made with the instrument in motion, the differences between the numbers do not greatly exceed the possible errors of observation. It may be remarked that the third and fourth experiments were made with a different lamp.

Though a certain amount of radiant heat from a source so highly fincandescent as that here used will pass the lens, its effects can never be mistaken for those of the tithonic rays. This is easily understood, when we remember that the effect of such transmitted heat would be to expand the gaseous mixture, but the tithonic effect is to contract it.

Next, I shall proceed to show that the indications of the tithonometer are strictly proportional to the quantity of rays that have impinged upon it; a double quantity producing a double effect, a triple quantity a threefold effect, \&c.

A slight modification in the arrangement (fig. 4) enables us to prove this in a satisfactory way. The lens D, being mounted in a square wooden frame, can easily be converted into an instrument for delivering at its focal point, where the sentient tube is placed, measured quantities of the tithonic rays, and thus becomes an invaluable auxiliary in those researches which require known and predetermined quantities of tithonicity to be measured out. The principle of the modification is easily apprehended. If half the surface of the lens be screened by an opake body, as a piece of blackened card-board, of course only half the quantity of rays will pass which would have passed had the screen not been interposed. If one fourth of the lens be left uncovered, only one fourth of the quantity will pass; but in all these instances the focal image remains the same as before. By adjusting, therefore, upon the wooden frame of the lens, two screens, the edges of which pass through its centre, and are capable of rotation upon that centre, we shall cut off all light when the screens are applied edge to edge, we shall have 90° when they are rotated so as to be at right angles, and 180° when they are superposed with their edges parallel. Thas by setting them in different angular posi-
tions, we can gain all quantities from 0° up to 180°, and by removing them entirely away reach 360°.

It will be understood that the effect of the instrument is to give an image of a visible object, of which the intensity can be made to vary at pleasure in a known proportion.

In order therefore to prove that the indications of the tithonometer are proportional to the quantity of impinging rays, place this measuring lens in the position \mathbf{D}, setting its screens at an angle of 90°. Remove the screen E, and determine the effect on the tithonometer for one minute. At the close of the minute, and without loss of time, turn one of the screens so as to give an angle of 180°, and now the effect will be found double what it was before, as in the following table.

Table II.-Shouing that the indications of the tithonometer are proportional to the quantity of incident rays.

Quantities.	Experiment I.		Experiment II.	
	Observer.	Calculated	Observed.	Calculated.
90°	$2 \cdot 18$	$2 \cdot 22$	$2 \cdot 69$	2.75
180	4.27	$4 \cdot 45$	575	$5 \cdot 50$
270	6.70	6.67	8.25	$8 \cdot 25$
360	8.90	$8 \cdot 90$	11.00	11.00

I have stated in the commencement of this paper, that the action upon the tithonometer is limited to a ray which corresponds in refrangibility to the indigo, or rather, that in the indigo space its maximum action is found. The following table serves at once to prove this fact, and also to illustrate the chemical force of the different regions of the spectrum.
Table III.-Showing that the maximum for the tithonometer is in the indigo space of the spectrum.

,	Ray.	Farce.	spa	Ray.	Frrce.
0	Extreme red,	$\cdot 33$	8	Blue indigo,	204.00
1	Red,	$\cdot 50$	9	Indigo,	240.00
2	Orange	75	10	Violet,	121.00
3	Yellow	2.75	11	Violet,	72.00
4	Green,	10.00	12	Violet,	48.00
5	Green-blue,	54.00	13	Violet,	24.0
6	Blue,	108.00	14	Extra spectral,	12.0
7	Blue,	144.00			

In this table the spaces are equal ; the centre of the red, as insulated by cobalt blue glass, is marked as unity; the centre of
the yellow, insulated by the same, being marked 3; the intervening region being divided into two equal spaces, and divisions of the same value carried on to each end of the spectrum.

As instruments will no doubt be hereafter invented for measuring the phenomena of different classes of rays, it may prove convenient to designate the precise ray to which they apply. Perhaps the most simple mode is to affix the name of the ray itself. Under that nomenclature the instrument described in this paper would take the name of Indigo-tithonometer.

There is no difficulty in adapting this instrument to the determination of questions relating to absorption, reflection, and transmission Thus I found that a piece of colorless French plateglass transmitted 866 rays out of 1000 .

Description of the Instrument. First, of the glass part.The tithonometer consists of a glass tube bent into the form of a siphon, in which chlorine and hydrogen can be evolved from muriatic acid, containing chlorine in solution, by the agency of a voltaic current. It is represented by fig. 1 , where $a b c$ is a clear and thin tube four tenths of an inch external diameter, closed at the end a. At d a circular piece of metal, an inch in diameter, which may be called the stage, is fastened on the tube, the distance from d to a being 2.9 inches. At the point x, which is two inches and a quarter from d, two platina wires, x and y, are fused into the glass, and entering into the interior of the tube, are destined to furnish the supply of chlorine and hydrogen; from the stage d to the point b, the inner bend of the tube, is 2.6 inches, and from that point to the top of the siphon c, the distance is three inches and a half. Through the glass at z, three quarters of an inch from c, a third platina wire is passed ; this wire terminates in the little mercury cup r, and x and y in the cups p and q respectively.

Things being thus arranged, the instrument is filled with its fluid prepared, as will presently be described; and as the legs $a b$, $\boldsymbol{b} \boldsymbol{c}$, are not parallel to each other, but include an angle of a few degrees, in the same way that Ure's eudiometer is arranged, there is no difficulty in transferring the liquid to the sealed leg. Enough is admitted to fill the sealed leg and the open one partially, leaving an empty space to the top of the tube at c of two and three quarter inches.

Vol. xlvi, No. 2-Jan.-March, 1844.

A stout tube, six inches long and one tenth of an inch interior diameter, ef, is now fused on at c. Its lower end opens into the main siphon tube; its upper end is turned over at f, and is narrowed to a fine termination, so as barely to admit a pin, but is not closed. This serves to keep out dust, and in case of a little acid passing out, it does not flow over the scale and deface the divisions. At the back of this tube a scale is placed, divided into tenths of an inch, being numbered from above downwards. Fifty of these divisions are as many as will be required. Fig. 2 shows the termination of the narrow tube bent over the scale.

From a point one fourth of an inch above the stage d, downwards beyond the bend, and to within half an inch of the wire \boldsymbol{z}, the whole tube is carefully painted with India ink so as to allow no light to pass; but all the space from a fourth of an inch above the stage d to the top of the tube a, is kept as clear and transparent as possible. This portion constitutes the sentient part of the instrument. A light metallic or pasteboard cap, AD, fig. 3 , closed at the top and open at the bottom, three inches long and six tenths of an inch in diameter, blackened on its interior, may be dropped over this sentient tube; it being the office of the stage d to receive the lower end of the cap when it is dropped on the tube so as to shut out the light.

The foot of the instrument $k l$ is of brass ; it screws into the hemispherical block m, which may be made of hard wood or ivory; in this three holes, $p q r$, are made to serve as mercury cups; they should be deep and of small diameter, that the metal may not flow out when it inclines for the purpose of transferring. A brass cylindrical cover, L M, L M, may be put over the whole; when it is desirable to preserve it in total darkness, it should be blackened without.

Secondly, of the fluid part.-The fluid from which the mixture of chlorine and hydrogen is evolved, and by which it is confined, is yellow commercial mutiatic acid, holding such a quantity of chlorine in solution that it exerts no action on the mixed gases as they are produced. From the mode of its preparation inalways contains a certain quantity of chloride of platina, which gives it a deep golden color, a condition of considerable incidental importance.

When muriatic acid is decomposed by voltaic electricity, its chlorine is not evolved, but is taken up in very large quantity and
held in solution; perhaps a bichloride of hydrogen results. If through such a solution hydrogen gas is passed in minute bubbles, it removes with it a certain proportion of the chlorine. From this therefore it is plain, that muriatic acid thus decomposed will not yield equal measures of chlorine and hydrogen, unless it has been previously impregnated with a certain volume of the former gas. Nor is it possible to obtain that degree of saturation by voltaic action, no matter how long the electrolysis is continued, if the hydrogen is allowed to pass through the liquid.

Practically, therefore, to obtain the tithonometric liquid, we are obliged to decompose commercial muriatic acid in a glass vessel, the positive electrodes being at the bottom of the vessel, and the negative at the surface of the liquid. Under these circumstances, the chlorine as it is disengaged is rapidly taken up, and the hydrogen being set free without its bubbles passing through the mass, the impregnation is carried to the point required.

Although this chlorinated muriatic acid cannot of course be kept in contact with the platina wires without acting on them, the action is much slower than might have been anticipated. I have examined the wires of tithonometers that had been in active use for four months, and could not perceive the platina sensibly destroyed. It is well however to put a piece of platina foil in the bottle in which the supply of chlorinated muriatic acid is kept; it communicates to it slowly the proper golden tint.

The liquid, being impregnated with chlorine in this manner until it exhales the odor of that gas, is to be transferred to the siphon $a b c$ of the tithonometer, and its constitution finally adjusted as hereafter shown.

Thirdly, of the Voltaic Battery.-The battery, which will be found most applicable for these purposes, consists of two Grove's cells, the zinc surrounding the platina.

The following are the dimensions of the pairs which I use. The platina plate is half an inch wide and two inches long; it dips into a cylinder of porous biscuit-ware of the same dimensions, which contains nitric acid. Outside this porous vessel is the zine, which is a cylinder one inch diameter, two inches long, and two tenths thick; it is amalgamated. The whole is contained in a cup two inches in diameter, and two deep, which also receives the dilute sulphuric acid.

The force of this battery is abundantly sufficient both for preparing the fluid originally, and for carrying on the tithonometric operations; it can decompose muriatic acid with rapidity, and will last with ordinary care for a long time.

Before passing to the mode of using the tithonometer, it is absolutely necessary to understand certain theoretical conditions of its equilibrium; to these in the next place I shall revert.

Theoretical Conditions of Equilibrium.-The tithonometer depends for its sensitiveness on the exact proportion of the mixed gases. If either one or the other is in excess, a great diminution of delicacy is the result. The comparison of its indications at different times depends on the certainty of evolving the gases in exact, or at all events, known proportions.

Whatever, therefore, affects the constitution of the sentient gases, alters at the same time their indications. Between those gases and the fluid which confines them certain relations subsist, the nature of which can be easily traced. Thus, if we had equal measures of chlorine and hydrogen, and the liquid not saturated with the former, it would be impossible to keep them without change, for by degrees a portion of chlorine would be dissolved, and an excess of hydrogen remain; or, if the liquid was overcharged with chlorine, an excess of that gas would accumulate in the sentient tube.

It is absolutely necessary, therefore, that there should be an equilibrium between the gaseous mixture and the confiving fluid.

As has been said, when muriatic acid is decomposed by a voltaic current, all the chlorine is absorbed by the liquid and accumulates therein; the hydrogen bubbles however as they rise withdraw a certain proportion, and hence pure hydrogen passed up through the tithonometric fluid becomes exceedingly sensitive to the light.

There are certain circumstances connected with the constitution and use of the tithonometer which continually tend to change the nature of its liquid. The platina wires immersed in it by slow degrees give rise to a chloride of platina. It is true that this takes place very gradually, and by far the most formidable difficulty arises from a direct exhalation of chlorine from the narrow tube ef; for each time that the liquid descends, a volume of air is introduced, which receives a certain amount of chlorine,
which with it is expelled the next time the battery raises the column to zero; and this, going on time after time, finally impresses a marked change on the liquid. I have tried to correct this in various ways, as by terminating the end f with a bulb; but this entails great inconvenience, as may be discovered by any one who will reflect on its operation.

When by the battery we have raised the index to its zero point, if the gas and liquid are not in equilibrio, that zero is liable to a slight change. If there be hydrogen in excess the zero will rise,-if chlorine, the zero will fall.

In making what will be termed "interrupted experiments," we must not too hastily determine the position of the index on the scale at the end of a trial. It is to be remembered that the cause of movement over the scale arises from a condensation of muriatic acid, but that condensation, though very rapid, is not instantaneous. Where time is valuable, and the instrument in perfect equilibrium, this condensation may be instantaneously effected, by simply inclining the instrument so that its liquid may pass down to the closed end a, but not so much as to allow gas to escape into the other leg; the inclination of the two legs to each other makes this a very easy manipulation, and the gas thus brought into contact with an extensive liquid surface yields up its muriatic acid in a moment.

Directions for using the Tithonometer. Preliminary adjust-ment.-Having transferred the liquid to the sealed end of the siphon, and placed the cap on the sentient extremity, the voltaic battery being prepared, the operator dips its polar wires into the cups $p q$, which are in connexion with the wires $x y$. Decomposition immediately takes place, chlorine and hydrogen rising through the liquid, and gradually depressing it, whilst of course a corresponding elevation takes place in the other limb; this operation is continued until the liquid has risen to the zero. It takes but a few seconds for this to be accomplished.

The polar wires having been disengaged, the tithonometer is removed opposite a window, care being taken that the light is not too strong. The cap is now lifted off the sentient extremity $\boldsymbol{a} \boldsymbol{d}$, and immediately the liquid descends. This exposure is allowed to continue, and the liquid suffered to rise as much as it will to the end a. And now, if the gases have been properly
adjusted, an entire condensation will take place, the sentient tube $a d$ filling completely. In practice this precision is not however obtained, and if a bubble as large as a peppercorn be left, the operator will be abundantly satisfied with the sensitiveness of his instrument. Commonly, at first, a large residue of hydrogen gas, occupying perhaps an inch or more, will be left. It is to be understood that even this large surplus will disappear in a few hours by absorbing chlorine. But this is not to be waited for; as soon as no further rise takes place in a minute or two, the siphon is to be inclined on one side, and the residue turned out into the open leg.

Now, recurring to what has been said on the equilibrium, it is plain that this excess of hydrogen arises from a want of chlorine in the tithonometric liquid. A proper quantity must therefore be furnished by proceeding as follows.

The sentient tube being filled with the liquid by inclination, connect the polar wires with $p q$, as before. These may be called generating wires. Allow the liquid to rise in $b c$, until the third platina wire z, which may be called the adjusting wire, is covered an eighth of an inch deep. Then remove the negative wire from the cup p into the cup r, and now the conditions for saturating the liquid are complete; hydrogen escaping away from the surface of the liquid at z, and chlorine continually accumulating and dissolving between x and d. This having been carried on for a short time, the gas in $a d$ is to be turned out by inclination and the instrument recharged. That a proper quantity is evolved, is easily ascertained by allowing total condensation to take place, and observing that only a small bubble is left at a.

It will occasionally happen in this preliminary adjustment, that an excess of chlorine may arise from continuing the process too long. This is easily discovered by its greenish-yellow tint, and is to be removed by inclining the instrument and turning it out.

Thus adjusted, every thing is ready to obtain measures of any effect, there being two different methods by which this can be done,-1st, by continuous observation; 2d, by interrupted observation.

Of the method of continuous olservation.-This is best described by resorting to an example. Suppose, therefore, it is required to verify table I, or, in other words, to prove that the effect on the tithonometer is proportional to its time of exposure.

Put on the cap of the sentient tube $a d$, connect the polar wires with $p q$, and raise the liquid to zero.

Place the tithonometer so that its sentient tube will receive the rays properly.

At a given instant, marked by a seconds watch, remove the cap A D, and the liquid at once begins to descend. At the end of the first minute, read off the division over which it is passing. Suppose it is 7. At the end of the second do the same, it should be 14 ; at the end of the third 21, \&c. This may be done until the fiftieth division is reached, which is the terminus of the scale.

Recharge the tube by a momentary application of the polar wires: but it is convenient first to remove any excess of muriatic acid gas in the sentient tube by allowing it time for condensation; or if that be inadmissible, by inclining a little on one side, so as to give an extensive liquid contact.

Of the method of interrupted observation.-It frequently happens that observations cannot be had during a continuous descent, as when changes have to be made in parts of apparatus or arrangements. We have then to resort to interrupted observations.

This method requires that the gas and liquid should be well adjusted, so that no change can arise in volume when extensive contact is made by inclination.

The tithonometer being charged, place it in a proper position. At a given instant remove its cap, and the liquid descends. When the time marked by a seconds watch has elapsed, drop the cap on the sentient tube. The liquid simultaneously pauses in its descent, but does not entirely stop, for a little uncondensed muriatic acid still exists, which is slowly disappearing in the sentient tube. Now incline the instrument for a moment on one side, so that the liquid may run up to the cord a, but not so much as to let any gas escape. Restore it to its position and read off on the scale. It is then ready for a second trial.

The difference between continuous and interrupted observation is this, that in the latter we pause to wash out the muriatic acid, and though this is effected by the simplest of all possible methods, continuous observations are always to be preferred when they can be obtained.

I have extended this paper to so great a length, that many points on which remarks might have been made must be passed
over. It is scarcely necessary to say that the sentient tube must be uniformly and perfectly clean. As a general rule also, the first observation may be cast aside, for reasons which I will give hereafter. Further, it is to be remarked, as it is an essential principle that during the different changes of volume of the gas its exposed surface must never vary in extent, the liquid is not to be suffered to rise above the blackened portion at d. If the measures of the different parts be such as have been here given, this cannot take place, for the liquid will fall below the fiftieth division before its other extremity rises above d.

The same original volume of gas in $a d$ will last for a long time, as we keep replenishing it as often as the fiftieth division is reached.

The experimenter cannot help remarking, that on suddenly exposing the sentient tube to a bright light, the liquid for an instant rises on the scale, and on dropping the cap in an instant falls. This important phenomenon, which is strikingly seen under the action of an electric spark, I shall consider hereafter.

In conclusion, as to comparing the tithonometric indication at different times, if the gases have the same constitution, the observations will compare; and if they have not, the value can from time to time be ascertained by exposure to a lamp of constant intensity. To this method I commonly resort.

From the space occupied in this description the reader might be disposed to infer that the tithonometer is a very complicated instrument and difficult to use. He would form, however, an erroneous opinion. The preliminary adjustment can be made in five minutes, and with it an extensive series of measures obtained. These long details have been entered into that the theory of the instrument may be known, and optical artists construct it without difficulty. Though surprisingly sensitive to the action of the indigo ray, it is as manageable by a careful experimenter as a common differential thermometer.

University of New York, Sept. 26, 1843.

Art. II.-Beaumontite and Lincolnite identical with Heulandite; by Francis Alger, Member of the American Academy, of the Boston Society of Natural History, \&c.

Read before the Boston Society of Natural History, Oct. 5, 1843, and published in their Journal.

There is a too prevalent disposition among mineralogists, as well as among the cultivators of other departments of natural science, to add something new to the catalogue of species. They make specific differences in many cases where by a fuller investigation, or a nicer comparison of the object with that which most nearly resembles it, an identity might be at once established between them, and the science not be burthened with so many new names. The truth of what I now say, has been shown by the recent examination of several minerals, accredited as new, which have been found by some of the German and Swedish chemists, to be varieties of other species, or in some cases, mere mechanical mixtures. A very frequent source of these mistakes, so far as mineralogy is concerned, is owing to a scrupulous regard not being paid to the chemical composition of the substance ; this being the essential basis of mineralogy as a true science. Another cause may be traced to the different appearances, which the same mineral, from different localities, assumes in some of its external characters; appearing, perhaps, under some new modification of its primary form.
A remarkable instance of the latter, has recently been presented in the case of the mineral examined by M. Levy, and named Beaumontite.* This substance has long been familiar to our American mineralogists, as the associate of the Haydenite found near Baltimore. It has now become exceedingly valuable, principally through the investigations of M. Levy, who supposed it to be a new substance. It is a very beautiful mineral, and being extremely scarce, it will continue to be highly prized by mineralogists, both here and abroad, even if it should prove to be no new species, but only a rare modification of a well known one. I believe it has not been described in any of our late trea-

[^6]Vol. xiv1, No. 2.-Jan.-March, 1844.
tises on mineralogy, nor am I aware that any notice has been taken of it in the American Journal of Science.

On comparing the crystals of this substance, with several of those of the Heulandite of Nova Scotia, which presented a modification rather uncommon, I was satisfied that they were both derived from the similar replacement of the acute lateral edges, and obtuse solid angles, of the same primary right oblique angled prism; the planes f, which in most instances are small, being now so extended as to reduce the length of the figure to nearly the same dimensions with its breadth; thus giving rise to what might, at first sight, appear to be a square prism, terminated by two obtuse four sided pyramids, resting upon the opposite lateral faces of the crystal, as I have endeavored to represent by the subjoined figure 2. The planes $a a^{\prime}$, being carried to the extreme,

Fig. 2.

so as to entirely obliterate the edge formed by the planes M and T , of the right oblique prism, fig. 1,-the pyramids thus resulting, are very beautiful in both minerals, particularly in the Beaumontite, and they present the same characteristic vitreous lustre, contrasted with the soft, pearly white reflection of the planes P, which we always observe in the crystals of this mineral from other localities. Both minerals, however, present shades of brown and yellow. On further comparing their hardness and pyrognostic characters, and failing also to obtain any other cleavage in the Baltimore specimens, than that well known in Heulandite, I could have but little doubt that M. Levy, (unles§ he had described some other very analogous mineral from this locality, which I have not seen,) had been misled by its unusual crystalline form, and, instead of making known a new species, had only given us the wrong characters of an old one. I am sure that he would not have been led into a mistake of this kind, had the crystals examined by him presented those gradual changes which have ultimately given rise to the figure supposed by him to be the primary right square prism of the Beaumontite, and which we so readily observe in the crystals from Nova Scotia.

This is the only respect in which the Heulandite from Nova Scotia, and M. Levy's mineral, differ from each other; and it is in reference to this single peculiarity in the approximation of the crystals of the Nova Scotia mineral to a right square prism, that it has hitherto commanded an especial interest among our mineralogists. I had never seen the decrement carried so completely out in the crystals from any other locality, until these beautiful specimens met my eye from Baltimore. The smaller replacements $b b^{\prime}$, which are often seen in the crystals of this mineral from Faroe, I have never observed among the specimens from either of the localities here referred to, nor from any locality in the United States.*

To remove all doubt as to the identity of the two minerals, I requested Mr. J. E. Teschemacher to separate some of the best crystals from my Baltimore specimens, and subject them to measurement by the reflecting goniometer, as I well knew the public would have the fullest confidence in his use of that instrument. He has informed me that \mathbf{P} on \mathbf{P} gives $90^{\circ}, \mathbf{M}$ on T $130^{\circ}, \mathrm{M}$ on a $143^{\circ} 17^{\prime}, \mathrm{P}$ on a $111^{\circ} 58^{\prime}$, and adds that he has no doubt the mineral is Heulandite. The variation in the third measurement was owing to the imperfection of the surface. We have, therefore, every reason for believing that the specific nature of the Beaumontite of M. Levy, can no longer be maintained. It is proper to add, that the same name, in honor of a distinguished French naturalist, Elie de Beaumont, had already been applied to another mineral from Chessy in France, described and analyzed by my friend Dr. Charles T. Jackson. \dagger

Lincolnite.-Prof. Hitchcock in his Final Report on the Geological Survey of Massachusetts, (p. 662,) has given the description of a mineral found in the vicinity of Deerfield, which he has named in honor of the late governor of that state. Unfortunately, it must share the same fate with Beaumontite, though it seems less entitled to the distinction of a new species; for in every respect but one, viz. its not being replaced on the obtuse solid angles by the planes a, as shown in fig. $\mathbf{1}$, it is impossible to discover any dissimilarity between this mineral and Heulandite ; both exhibiting the same characters before the blowpipe, the same color, lustre, hardness, \&c. The crystals of Lincolnite are very small,

[^7]usually requiring a microscope in their examination, and they have their acute lateral edges replaced by very narrow planes f, corresponding in their measurement with Heulandite. But, according to Prof. Hitchcock, they differ from Heulandite in the proximate measurement of planes M on T about 10° (or 120° instead of 130°) as determined by the measurement of three different crystals with the common goniometer. It must be confessed, that the comparison of one set of characters alone, without some other corroborative evidence,-especially when, as in the present instance, the crystals are too small to admit of the accurate use of the common goniometer, does not authorize the making of a new species. Having received a few crystals of this mineral from Prof. Hitchcock, I also requested Mr. Teschemacher to measure them. The results showed the same agreement with the recorded measurements of W. Phillips, and has therefore established the true nature of this mineral beyond any doubt.

I would remark that crystals, precisely like those described by Prof. Hitchcock, have lately been found in gneiss on New York island ; and apparently in the same rock associated with phosphate of lime at Suckasunny, New Jersey.* There can be no doubt, I think, that the radiated or fasciculated mineral accompanying these crystals is stilbite, and not a variety of Lincoluite or Heulandite, as Prof. Hitchcock supposes.

Art. III.-Scraps in Natural History, (Quadrupeds;) by Dr. John T. Plummer.

Ar the same time that Dr. Johnson attacked the "collector of shells and stones," and other objects of natural history, with his raillery and wit, he was compelled to acknowledge that there was " nothing more worthy of admiration to the philosophical eye, than the structure of animals, by which they are qualified to support life in the elements or climates to which they are appropriated." And, indeed, the most gifted minds have contemplated

[^8]the structure and the habits of animals with profit and satisfaction. Goldsmith has detailed the conduct of a spider; Addison watched the interesting motions of an ant, and could represent himself as highly entertained with his friend Roger de Coverly's hen and chickens; and omitting the citation of many more notable instances, the gentle Cowper could say of his hare-

> "I kept hin for his humor's sake, For he would oft beguile
> My heart of thoughts that made it ache, And force me to a smile."

During some examinations into the natural history of this section of the country,* I have several times confined to my study some of the smaller animals captured in the fields and woods, for the purpose of witnessing their artifices and stratagems, the impulses of their nature. The results of some of my observations during the attempts at domestication of a few minor quadrupeds, are given below: whether what is there communicated is new to the naturalist, or being new is sufficiently interesting to be worthy of being presented to any of your readers, you have a better opportunity of knowing than I bave.

Sorex brevicaudatus, or Short-tailed Shrew.-This nimble little creature, placed in an empty box, was observed to be very adroit in catching flies thrown in to him; but he never ran across the box to seize them, nor on any occasion did I ever discover that he left the sides and corners of it. Some cooked meat was given him the evening he was caught, and soon after eating it he died, but whether in consequence of being poisoned by the condiments upon the meat, or of the injuries inflicted while capturing him, I cannot tell.

In the spring of 1842 I caught another shrew, under a very rotten \log, which it had converted into a perfect labyrinth; and in the largest excavation it had constructed a bed of dry leaves. Having nothing better at hand, I picked up a vertebra of a horse, and fastening the little animal in the spinal canal, I brought him safely home. Turning him out into a glass vessel five inches deep, with perpendicular sides, I covered it with a book, upon which I laid the vertebra, and supposed my little captive was perfectly secure. In a short time after leaving it, however, he

[^9]succeeded in pushing the covering to one side, and escaped. The book and the bone together weighed on trial upwards of a pound; and, considering the mechanical disadvantages of a smooth, glassy surface, and of the rampant position of the shrew while effecting his liberation, this achievement indicated a degree of strength that surpassed my expectations. Having retaken the little prisoner, I confined him to a box, well provided with masses of rotten wood, paper and other materials. As soon as I turned him into his new habitation, he hastened to the bottom of the box, and commenced making a new, and to him more satisfactory, arrangement of the smaller pieces of wood and other fragments scattered below; his object appearing more particularly to be, to block up the larger openings around him. This task he accomplished with much skill, first dragging and fitting the larger pieces to the apertures, and then filling up the interstices with fragments of smaller size; after this he crumbled with his teeth the projecting and more accessible parts, and the powder falling into the remaining spaces completed a hiding place. Having thus barricaded his retreat, and otherwise strengthened his frontier, he spent some time in reconnoitering the more central parts, and appeared to run with great delight, in the most lively manner, through all the windings and irregularities of his new abode, peeping out in rapid succession, and snuffing the air, at the various holes he had left for egress and ingress. It was quite entertaining, during these incessant motions, to listen to his seemingly gleeful rushes through his tortuous apartments, and to watch with pleasing uncertainty the various orifices, to see at which he would next thrust out his nose. After having thus familiarized himself to the different routes by which he might retreat in case of danger, he began to snatch and jerk into the interior such portions of paper and rags as were nearest at hand; these I afterward found he cut into small pieces, and formed into a neat little bed.

These preparatory employments being over, he began to protrude his body with great caution from a hole which appeared to be a favorite outlet, but started back with the utmost precipitation upon the slightest noise, and in a moment after he would slily peep out at some other opening. At length, having ventured entirely out, he seized a large earth-worm which I had thrown into the box, the very instant it was perceived, and in spite
of its violent contortions the shrew ate it with avidity, sometimes confining the motions of the worm by pressing it down with its fore feet. By proper attention, he became in a few days unconcerned at my presence, and when I threw in additional blocks of wood, \&c. he came out into full view to adjust them, dragging large pieces a considerable distance with apparent ease. For days and weeks he received corn, insects and worms from my hand, but always with that sudden snatch that characterized it at the beginning. If I held fast to the worm, he would tug at the other end, and jerk at it, till I let go, or the worm was lacerated by his efforts. At such times I have often raised him into the air by means of the worm. When a number of worms were thrown in together, I never knew him to take one from the mass, unless he could seize an end which projected from the heap. Flesh of all kinds, fresh fish, coleopterous as well as other insects, slugs, millepeds, corn, oats, and every kind of grain which was tried, appeared to be acceptable food. The corcle of the grains of maize was always eaten out, as it is by rats and mice.

When this little quadruped was satiated with food, it never ceased to store away the surplus provisions it might be supplied with, till its granaries and other repositories were filled. I say granaries and other repositories, for on carefully opening into his various recesses, I ascertained that he had separate storehouses: one for corn, which was neatly packed away, grain upon grain, flatwise ; another for his oats; and a third for worms and insects. One day I discovered that he had brought out a number of grains of corn which had sprouted; and the granary having been dampened by water, accidentally spilled in the box, I afterward found the shrew had garbled his grain and conveyed the sound corn to a drier repository. When water was put into the box, he wet his tongue two or three times and went away; but when worms Were dropped into the cup, he returned, waded about in the water, snatched up his victim, maimed it, stored it away, and returned repeatedly for more, till all were secured.

By gentle attentions, I had by this time so far subdued his timidity, and instructed him in my language, that by night or by day, and at all times, whether in his hiding places in the box, or running at large in the room, or safely ensconced in secret and inaccessible fissures, he was ready to come at my call, and receive from my hand his accustomed meal. It was curious to ob-
serve, that unless he was called into the area of the room, he never approached his box or any other point, except by a circuitous route against the wall. To his box he would always retire to repose during the hot noons of summer, and it was evident that at this period he did not like to be disturbed; nevertheless at the well known call he always came, but never at these seasons with his usual alacrity. The buzz of a fly would usually attract him to the surface; but in his dozing hours, if he heard at all, he always heard it with unconcern.

A full grown and living mouse being one day put into his box, very naturally secreted itself among the pieces of wood; but it had scarcely had time to reach the chambers below, before it suddenly appeared at the surface again, fiercely pursued by the shrew : down it went, and up it came, around and through all the meanderings of the box it flew, with erect ears and wildly staring eyes, and every token of astonishment and fear, the eager shrew being at its heels, till by fair chasing it was overtaken by the proper tenant of the box. I think I never witnessed more lively demonstrations of terror, than were exhibited by this poor mouse during the pursuit. While in the grasp of the shrew it made no resistance and uttered no cry, and so resolute and bloodthirsty did the shrew appear, that no noises or jarrings of the box frightened it ; and it was not until I repeatedly punched it with a rule, that I induced it to relinquish its hold. But the mouse was dead; its feet, tail, snout, neck and cheeks being much lacerated. Another mouse met with the same fate, and nearly in the same manner.

While thus experimenting with this shrew, a person stepping into the office, said he had brought me a novel kind of mouse; but on examining his pocket, he found it had escaped. He left me, spent the greater part of the day in engagements about town, and in the evening returned to tell me that the "mouse," which proved to be a shrew, was under the back of his coat. Thither the little creature had crept, as to a place more congenial to its feelings of security. It was younger than the one already in my possession. Carefully securing it, I put it into the box with the other shrew : it went below, and remained there much of the time, but was frequently chased by the older one, without being often overtaken. Sometimes in their wanderings about the box, they would unexpectedly meet upon the surface, when a vigor-
ous combat would ensue. Once the younger one perceived the other close in its rear; it sent forth a shrill chirp, wheeled about suddenly and came to close quarters with the rightful resident of the box, to whose superior strength, however, it ultimately fell a prey. The dead body was dragged below and deposited in the soft bed of the shrew, which now, for what reason I do not know, began to construct a new nest.
The voice of this animal in retreating to its harboring places, is almost precisely that of the ground-squirrel, being a rapidly uttered chip-chip-chip. Its propensity to gnaw is considerable, but perhaps not so great as that of the mouse. Repeated experiments have convinced me, that (unless peculiar odors are an exception) its sight and smell cannot extend beyond the distance of half an inch; but its sense of hearing is extremely acute.
Dr. Godman says of shrews: "These animals rarely come out in the day-time, and are so small as to require very close attention to observe their modes of living." My captive ventured out of his own accord, equally in the day as in the night; and I never experienced any difficulty in observing its "modes of living." The same author states, that though insects are their principal subsistence, they seem no less fond of "putrid flesh, and filth of various sorts." Such a character by no means befits the short-tailed shrew; for the one in my possession was as cleanly, tidy, and choice in the quality of his food, as any little quadruped I ever knew; always bringing out the putrid worms and decaying grains from his cell, and always preferring the living to the dead: his habitation was as clean as possible, egestion being performed in a concealed corner. I can also say on behalf of my prisoner, that during the two spring months of his dependence upon me for subsistence, I never perceived any annoying smell, much less that disgusting odor with which, like the polecat, shrews are said to stand charged.
Could this little animal be domesticated, so as to be serviceable in exterminating mice from our dwellings?

Mustela pusilla, or Weasel.-I purchased one of half a dozen weasels which were found near town in the same nest, and put it into a box; in a short time it coiled itself up and slept. Not being easily roused from its slumbers, I have repeatedly been able to "catch a weasel asleep." It frequently cried, but appaVol. xivi, No. 2.-Jan.-March, 1844.
rently only when hungry, and it allowed itself to be handled with freedom. Shortly after, perhaps a week, one of the others was purchased and placed in the same room, about which they now ran in perfect amity, gamboling and playing together like kittens. I fed them with meat, Unios and Helices, which they ate either raw or cooked. They would often, as I entered the apartment, run toward me, and frisk about my feet; and always obeyed my call. Living mice were seized by them, and hugged with all their feet and legs, while with the mouth they bit fiercely all along the spine in rapid succession, and then they attacked the head and other parts of the body, the whole process being the work of a moment.

When they were about a month old, I enfeebled a large and veteran brown rat by almost suffocating him under water, and placed him in their view ; they immediately scampered off in evident affright. Maiming the rat by sundry blows upon his head, he was fastened in an empty box with the weasels; these, dashing furiously but vainly against the glass lid to effect their escape, at last huddled together in a remote corner, while the rat, with seeming gravity and unconcern, sat motionless at the other side of the box, the weasels still manifesting great trepidation. I then shook them together, when the rat bit one of the weasels on the back so as totally to paralyze its hind legs; and the othet weasel, escaping immediately from the box without a wound, was thrown into violent but transient convulsions. For these spasmodic attacks, renewed at short intervals for perhaps twenty minutes, I can assign no other cause than extreme terror. The bitten weasel refused to eat, became rapidly emaciated, and soon died. The other, not feeling himself safe even in the wide room,' with such a mortal enemy, jumped out of a second story window, and ran away.

Rats and Mice.-A correspondent of the Penny Magazine, Part XI, attempts to prove that mice have no instinctive fear of the cat, by the fact, that having caught a mouse in a secluded part of one of the coal mines of England,-a mine into which a cat had never been introduced,--he placed it in a glass lantern, and after several days admitted a cat into the room; the cat rushed toward the imprisoned mouse with "dire intent," but the mouse, perfectly indifferent to its fury, proceeded with its ablutions.

Now this imperturbable disposition is daily manifested in the rats and mice caught about our habitations, where doubtless many of our victims, peering securely at puss, have seen her watching the mouse-hole from which they have put out their heads, with a face of sancy gravity that seemed to ask her, whether she was "looking for any one in particular." Often have I seen such, in open wire traps and in glass vessels, eat corn and wash themselves, with the most perfect composure, in despite of the presence of dog, cat or man.
By this statement I do not of course wish to imply that there is a natural dread of the cat inherent in the mouse, but only that the experiment with the mouse from the coal pit is inconclusive. A sense of security from feline attacks, while thas shut up, may be sufficient to allay any innate fears of danger from that quarter. It appears, at least, that there was nothing peculiar in the conduct of the mouse from the mine.

The Horse.-Some years ago the citizens of a neighboring town "(Centerville) were often amused by the conduct of a horse, when, with others, he was turned into the barn-yard to be watered. One day, approaching the trough and finding it empty, he seized the pump handle, to the surprise of the witnesses, between his teeth, and pumped water sufficient for himself and the other horses. Having thus begun, he was allowed, when so inclined, to wait upon himself and companions afterward. But it was observed, that he always drove the other horses away until he quenched his own thirst, after which he pumped for the rest.

Cow and Pig.-Riding by some cattle which were resting at the roadside, I observed a cow lying down, and a stout pig with his snout upon her bag. Stopping my horse to determine whether the conjecture thus excited in my mind was correct, I found the pig was actually engaged in drawing nourishment from the cow's teats. The cow appeared to be perfectly at ease, and the pig to be master of the sugescent art, though exercised under this novel relationship.

Dogs.-My father had two dogs. A bone being thrown out, the larger one seized it, and while gnawing it the small dog sat down near him and contemplated the scene with a wistful countenance, not daring to contend for the prize. He soon rose, walked around the corner of the house, returned, resumed his former position ; and shortly after again retired around the house. Repeat-
ing this maneuver the third time without success, he seated himself as before, then suddenly raised his head, looked down the lane with an air of great excitement, and starting up, ran full speed toward the pretended object of his attack. The larger dog, effectually deceived by this stratagem, left the bone, quickly followed, outstripped the other and soon reached the gate, but only to find that he had nothing to bark at. The little dog in the mean while had slily hastened back, and carried off the bone. Under the head of "Genius among Animals," Spurzheim relates two similar instances of canine sagacity: one little dog, by such an artifice, was accustomed to "securé his portion;" and a pointer, by the same means, obtained a comfortable place near the fire from which he was excluded by other dogs in the family.

Squirrels: larve of Estrus in them.-Westwood states, in his "Modern Classification of Insects," that "each species of Estrus is parasitic upon a peculiar species of mammiferous herbivorous animal ;" and that "the ox, horse, ass, reindeer, stag, antelope, camel, sheep, hare and rhinoceros, [in a note, he adds the badger and monkey,] are the only quadrupeds hitherto observed to be subject to the attacks of these insects." To this catalogue must be added the squirrel; for I have in my possession an estrous larva about three fourths of an inch long, two or three lines broad, and perfectly black, which was taken from the back of a Sciurus leucotis, (Bachman,) or northern gray squirrel.

Quadrupeds about Richmond, Wayne County, Indiana.

[^10]This remark of Dr. Richardson, though made in reference to the feathered tribes, is perhaps equally applicable to other objects of natural history. Under this impression, I offer you the following catalogue of mammals found in this vicinity before and since its settlement by white men.

Preliminary statements respecting the physical character, and the progress of civilized population, are not, I presume, inappropriate to zoological catalogues. For it is well known that some animals follow the path of civilization, while others flee before it ; some seek the streams, and some the hills; others select the plains, the open forests, or the tangled wood. There is also a certain relation between the kind of trees and the wild tenants
of the forest. Whether these relations between animals and their residence are fixed and universal, so that knowing the one we shall be able to infer the other, is an interesting question yet to be determined.

White emigrants established themselves here as early as 1805 . The county covers an area of about four hundred square miles; the land is level, but has various deep drains, is rich, well wooded, without underbrush ; copiously watered, but not by large streams. The increase of population has been such, that the number of inhabitants in 1840 was about twenty three thousand, and Richmond, which was laid out in 1816, contains three thousand of these. The latitude of the town is $39^{\circ} 51^{\prime} \mathrm{N}$. Fagus sylvatica, Acer saccharinum, various species of Quercus, of Carya, and of Juglans, and Liriodendron tulipifera, are the prevailing kinds of timber.

As this section of country is comparatively new, it is presumable that a change will take place in its zoological character; such a change has indeed already commenced, and its progress up to the present time, will be indicated in the notes to the catalogue.

I cannot venture to say, that the subjoined enumeration embraces all the mammalia of this county; but it is as nearly complete as persevering research for several years has been able to make it. Besides my own observations, I have availed myself of the opportunity of gaining information from the first white settlers of this district; an advantage which will soon be beyond the reach of the future naturalist. If I have omitted any animals now existing here, I can only say, I have had no assistance in detecting them; and if the catalogue is not lengthened to the utmost, I hope it will be found accurate as far as it extends.

Carnivora.

Vespertilionida.

1. Vespertilio Noveboracensis, Linn., New York or Red Bat.
2. V. pruinosus, Say, Hoary Bat.
3. V. subulatus, Say, Subulate-eared Bat.
[^11]Soricide.
4. Sorex brevicaudis, Say, Short-tailed Shrew.

Talpida.
5. Scalops Canadensis, Cuv., Shrew Mole.

> Ursida.
6. Ursus Americanus, Pallas, Black Bear.
7. Procyon lotor, Cuv., Raccoon.

Canida.
8. Canis familiaris, Linn., Dog.
9. C. lupus, Linn., Wolf.
10. C. cinereo-argentatus, Gmel., Grey Fox.

Felida.
11. Felis maniculata, Linn., Domestic Cat.
12. Lyncus rufus, Harlan, Wild Cat.

Mustelida.

13. Mustela pennanti, Erxl., Fisher.
14. M. pusilla, Dekay, Weasel.
15. Lutra Canadensis, Rich., Otter.
16. Putorius vison, Emmons, Mink.
17. Mephitis Americana, Desm., Skunk.
18. S.brevicaudis. This shrew, which is quite common, is the only species which I have been able to detect.
19. Shrew moles are very numerous. Do they seek mellow soils?
20. The black bear was killed in the immediate neighborhood of Richmond as late as the year 1824, when some cubs were also taken within a mile of town.
21. Raccoons are common, and are often hunted for amusement.
22. Wolves were numerous for several years after the settlement of the country, but none have been seen for fifleen years past.
23. The gray fox is still found in the mpre wooded parts of the county. During earthquakes felt here in 1811 and 1812, it is said great numbers of fores were started out of their retreats.
24. This wild cat, once common, has seldom been seen since 1823.
25. I cannot find that the fisher has been seen since 1820; at an earlier period it was not uncommon.
26. This small voeasel is frequently brought into town to be sold, being generally taken while young.
27. Otters still linger in the county, but they are quite rare.
28. Mirks are quite an annoyance to our husbandmen.
29. This disgusting animal, though recently killed here, is not common.

Didelphidic.

18. Didelphis Virginiana, Opossum.

Rodentia.

Castorides.

19. Castor fiber, Harlan, Beaver.
20. Fiber zibethicus, Desm., Muskrat.

Leporida.
21. Lepus Americanus, Lab., Hare.

Murids.

22. Arvicola xanthognata, Leach, Meadow Mouse.
23. A. riparius, Ord. in Godman, Marsh Mouse.
24. The opossum is rare; his favorite food, the persimmon, is not found in the county.
25. Beaver dams are still found in a dilapidated condition along our streams, but the animal has not been seen by any of the white settlers.
26. Muskrats are not numerous, but it is thought they have increased in number since the settlement of the county in 1805.
27. The hare is common, and does considerable mischief to our nurseries and young orchards, by gnawing the bark off the trees during winter.
28. One of these little animals was found in its large nest lined with rabbit's fur, on the outside of the wall of a well thirty feet below the surface of the earth!
29. The animal which 1 have designated Arvicola riparius, may be a different species, perhaps a new one. It varies from the description given by Godman as follows: the tail is not "nearly the length of the body," and is covered with short brown hairs, except a few elongated ones at the tip, and these converge to a point; on the closest inspection, but four teats were found, and these were situated between the hind legs, and were conspicuously large. Three young ones only were obtained with the female which was brought to me. Its toes are fringed with hairs which project over the nails. In other respects it accurately accords with the characters of \boldsymbol{A}. riparius. My specimens are about four inches long, from the tip of the snout to the end of the tail ; the tail is eight tenths of an inch long. Its minute eyes, short tail, and concealed ears, give this little animal a striking resemblance to the shrew. It is sometimes found in the woods, and sometimes under stacks of corn left in the field. Two specimens, which I attempted to keep in a box at different times, gnawed wood like a mouse, ate corn, refused meat and Worms, were rather sluggish in their movements, and in a few days, without any apparent cause, they died. They had received no injury in capturing them. One was a male, the other a female.
Godman says the upper molar teeth of the rat (Mus) "are very remarkable for being inclined from before backwards." On looking over a considerable number of skulls in my cabinet, I find the molar teeth of the above animal, and of the Lepus Americanus, \&c. quite as conspicuously inclined backwards as those of the rat.
30. Mus musculus, Linn., Domestic Mouse.
31. M. agrarius, Gmel., Rustic Mouse.
32. M. rattus, Linn., Black Rat.
33. M. decumanus, Pal., Brown Rat.
34. Arctomys monax, Gmel., Wood Chuk, (Webster.)
35. Sciurus Carolinensis, Gmel. (leucotis, Bach.,) Grey Squirrel.
36. S. niger, Linn., Black Squirrel.
37. S. striatus, Klein, Ground Squirrel.
38. Pteromys volucella, Linn., Flying Squirrel.
39. Gerbillus Canadensis, Desm., Jumping Mouse.

Hystricida.

34. Hystrix dorsata, Linn., Porcupine.

Pachydermata.

Equida.
35. Equus cabellus, Linn., Horse.
36. E. asinus, Lirn., Ass.

Suida.
37. Sus scrofa, Linn., Hog.

[^12]
Ruminantia.
 Bovida, \&c.

38. Bos taurus, Linn., Ox.
39. B. Americanus, Gmel., Bison.
40. Ovis aries, Linn., Sheep.
41. Capra hircus, Linn., Goat.

Cervida.

42. Cervus Virginianus, Gmel., Deer.
43. C. Canadensis, Briss., Elk.

Art. IV.-Analysis of Wines from Palestine, Syria, and Asia Minor, and of specimens of American Cider ; by Prof. Edward Hitchcock, LL. D. of Amherst College.

It is well known that in the discussions which have arisen in this country and England on the subject of temperance, much has been said respecting the character of the wines described in the Bible and other ancient writings. By some it was maintained, "that few if any of the wines of antiquity were alcoholic;" "that the strongest grape-wines of the ancients had in them a less quantity of alcohol than our common table beer;" "that of one hundred and ninety five kinds of wine used by the Romans in Pliny's time, only one was alcoholic;" "that amongst the Jews in Judea, there was a real difficulty, from chemical and natural causes, in the making and preserving any wines except the unfermented "" "that the wines of Palestine were not alcoholic," \&c. (Anti-Bacchus.) A vast amount of curious learning

[^13]was put in requisition in the discussion of this subject. But it has seemed to me that a few analyses of wines from some of the most famous localities of western Asia, whence the wines of Scripture were obtained, would do much more towards settling the question as to their alcoholic character, than the most ingenious philological criticisms. And I confess I was surprised to find that no such analysis had been made. I wrote, therefore, to my friend, Rev. Henry J. Van Lennep, American missionary at Smyrna, requesting him to send me specimens of the common wines of Palestine, Syria, and Asia Minor. As Mr. Van Lennep was a native of Smyrna, I thought he would be better acquainted with the proper localities than a foreigner, and be more sure of obtaining specimens in an unenforced and unadulterated state; while the fact that he was educated in this country, would make him fully acquainted with the precise object I had in view. I was particular to request him to send no specimen but the pure juice of the grape, to which no ardent spirit had been added. To my request he kindly attended, though with no small trouble. In a letter dated at Smyrna, Sept. 23, 1842, he says: "I have been a great while in fulfilling your commission for specimens of wine from the Levant. I have met with a good deal of difficulty in obtaining specimens from Syria and Palestine, or rather in getting them transported from thence. For what with quarantine regulations, delays of vessels, \&c. it is now more than a year, I think, since I wrote to some of the missionary brethren at Beyroot and Jerusalem on the subject. I now forward to Boston, to your address, a box containing the following : one bottle of wine from Mount Lebanon, one year old, and another from the same place, six years old; two bottles from Hebron, age unknown; one bottle from Corfu, age unknown; one bottle from Syria, place and age unknown; one bottle from Cyprus, not old; one bottle from Samos, not old; one bottle from Rhodes, one year old ; one bottle from Smyrna, new, that is, about a year old. 1 hope the custom-house officers will not open the box, and shall therefore write the contents on the outside. But with all the precautions I have taken, I should not be surprised should they all, or many of them, reach you soured. Then, instead of your laboratory, they will take their place in your store-room, and whenever you have salad on your table, you will please pour on the vinegar to my health-a sour health to be sure!"

Fortunately, this anticipation of Mr. Van Lennep was not realized, except that one of the bottles from Hebron contained considerable acetic acid, probably because in passing through so many custom-houses it had been tested till nearly half of it was gone; yet even this, as we shall see, contained no small share of alcohol. All the other bottles, on breaking their seals, were found in a healthy state. And I may add, that in none of them could I discover any carbonic acid; so that probably the process of fermentation had been completed.

The mode of analysis was essentially that of Mr. Brande. The specific gravities were determined by ascertaining the weight of a tube full of the liquor and comparing it with the same tube full of distilled water, in all cases at a temperature of 60° Fah. The tube which I employed, held 736.4 grains of distilled water, and was suspended from one of the arms of Chemin's delicate balances. The weight of the tube and liquid was indeed rather too great for a balance of this description, and I do not think I could be sure of the weight nearer than the one tenth of a grain, although with small quantities the one hundredth of a grain was perceptible. After weighing the tube full of wine, in order to obtain its specific gravity, it was distilled nearly to dryness, from a small retort into a receiver surrounded by suow, and afterwards, to make up for the deficiency, another small portion of the wine was distilled also nearly to dryness. Enough was thus obtained of the distilled liquor to fill the tube, which was then weighed and the specific gravity thence deduced. In deducing from thence the per centum of alcohol, I used the new tables of Tralles, founded upon the principles of those by Gilpin, and given by Dr. Ure in his Dictionary of the Arts, Manufactures and Mines. These tables assume thatwater at the temperature of 60°, has a specific gravity of 0.9991 ; and they give the per centum of anhydrous alcohol by measure. Hence they show a smaller amount of alcohol than those of Gilpin, used by Professors Brande and Beck, whose standard is alcohol of the specific gravity of $0 \cdot 825$. But as Gilpin's tables have been so cominonly used, I have added a column of the amount of alcohol by measure, as obtained by those tables in Brande's Chemistry. The tables of Lowitz of St. Petersburgh are also preferred by some. He assumes as his standard, alcohol of the specific gravity $\cdot 796$ at $60^{\circ} \mathrm{Fah}$., and gives the per centum by weight. I have given
a column deduced from his tables, also, as contained in the second supplement to the seventh London edition of Turner's Chemistry, by Prof. Gregory. From the specific gravity of the wine before and after distillation, I have deduced the amount of solid matter, and given the per centum by weight. Finally, I have added a column of the per centum by measure of brandy, on the supposition that brandy contains $49 \cdot 44$ per cent. of pure alcohol.

As others like myself, who may desire to analyze fermented liquors, may not be able to procure Gay Lussac's apparatus for that purpose, I will observe, that I used two methods of connecting the retort and receiver, which I consider much better than to lute them together. One was, to make the junction by a strong India rubber tube, tied firmly to both vessels by a waxed thread. The other, and still better method, was, to find a receiver whose neck would just admit the neck of the retort with a piece of firm paper wound carefully around it and slightly pasted to it. By giving the retort a screwing motion, it was easily made to fit into the receiver so firmly that there was no danger of leakage.
Results of the Analysis of Wines from Palestine, Syria and the Levant.

I was surprised to find so much alcohol as the above table exhibits in No. 1, which would pass for tolerably good vinegar.

No. 2, from the same locality, shows us probably how much alcohol it contained before the acetic fermentation commenced. These specimens were from grapes grown probably not far from the "valley of Eschol," whence the famous cluster was borne away by the Jewish spies in the time of Moses: for that valley must have been in the southeasterly part of Palestine. No 2 has the taste of strong Madeira wine. Nos. 3 and 4 are from Mount Lebanon, one of the most famous localities of the wines of Scripture. No. 3 is astringent and somewhat sweet, yet it appears to be fully wrought. No. 4 has a similar taste, but it is quite thick, as its high specific gravity shows; and I strongly suspect that the grape juice was partially boiled down before it was allowed to ferment, as we know was formerly practiced, and is still done on Mount Lebanon according to Mr. Buckingham. It has the appearance of the other wines after they have been heated to the boiling point in the retort; that is, a redder color than is natural. No. 5 is perfect Port wine in color, taste, and the amount of sediment deposited in the bottle. No. 6 is from Cyprus, which is one of the most famous localities of the ancient Greek wines. It is sweet and astringent, but not thick, and has no appearance of having been boiled before fermentation, as Mr. Buckingham says is usually done on that island. It will be seen that it is a very strong wine. The age of these wines mentioned in the table, are their ages when obtained by Mr. Van Lennep. A year more at least should be added, except perhaps in one or two cases, as having elapsed before they were analyzed. No. 7, from Rhodes, is a very clear strong wine, the strongest which I analyzed, and slightly astringent ; resembling some varieties of Madeira. No. 8, from Corfu, whose age is unknown, considerably resembles it in appearance and taste, and, as the analysis shows, in alcoholic power. No. 9, from Samos, is less clear, more astringent, and less strong. No. 10, from Smyrna, has the color of Port wiue, and is sour, astringent, and unpleasant, tasting strongly of the skin of the grape. The sourness appears to have been derived chiefly at least from the grape, and not from fermentation. It was about eighteen months old when analyzed; called, however, by Mr. Van Lennep, a new wine. In short, these specimens exhibit a good deal of variety of character, and are, therefore, favorable for the object in view.

It will be seen that in all cases except the first, which I conceived to be of little importance, I performed two analyses of each specimen; and I have given both results, that chemists might judge how much dependence is to be placed upon my researches. In No. 2 the difference in the amount of alcohol by the two processes amounts to 12 per cent. In the other cases, the difference is less; and it seems to me we are warranted in concluding, that my mean results do not vary more than one per cent. from the truth in any case. And this is near enough for all the purposes for which the analysis was undertaken.

It appears that in all cases except Nos. 7 and 8, the specific gravity of the wines before distillation was greater than that of water. No. 4, from Lebanon, was much heavier; in part probably because the juice was concentrated before fermentation, and in part because it is so old. It yields, of course, a large per cent. of solid matter.

The difference in the results, according to the tables used, is just what we might expect from the different standards assumed by Tralles, Gilpin, and Lowitz, and from the fact that the table of the latter gives the per cent. by weight, whereas all the others give it by measure. Gilpin's tables have been most commonly made the standard, but they convey erroneous conclusions; that is, as the subject is usually understood, they indicate more alcohol in fermented liquors than they contain.

The results which I have now given, justify, it seems to me, the following conclusions.

In the first place, the grapes of Palestine, Syria, and the Levant generally, produce wines as strongly alcoholic as those of any country whose soil and climate are congenial to the vine.

It has been thought that the great quantity of sugar which must exist in the grapes of those countries, and the heat of the climate, are so unfavorable to fermentation that little or no alcohol can be produced from them. But here we have ten specimens of the common wines of those countries, all of which belong to the class of the strong wines. It may be thought that the strongest wines were selected by Mr. Van Lennep. But I particularly requested him not to do it, desiring him to send me rather the common wines. And the apprehension which he expressed that they would all be soured before reaching this
country, shows that he supposed them to be quite weak. I incline to believe that their strength is not above the average in those countries ; and yet by consulting the analyses of Brande, Beck, Fontenelle, \&c. we shall see that they rank among the stronger wines. And indeed this is just what the chemist would expect. For if those countries furnish the finest grapes, they doubtless contain a large amount of the sugar and ferment requisite for the production of alcohol.*

In the second place, we have every reason to believe that the ancient wines of the countries under consideration possessed essentially the same character as the modern wines made there.

There has been no important change in the climate, and of course the grapes now produced there, are the same essentially as in ancient times. If the wines are different, then, it must be the result of different modes of making them. And I am not aware of any important difference in this respect, unless it be in those cases (and whether there be any such cases I know not) in which the wines are enforced by the addition of distilled liquor: but such a case affects not my present argument, because I have analyzed only those which are derived from the pure juice of the grape. Much indeed has been said about the practice of the ancients of boiling down the juice of the grape more or less, before allowing it to ferment. But the same practice exists now, nor is there any reason to believe that it was ever general, but resorted to only to furnish an agreeable variety. And it so happens, fortunately, that one of the specimens analyzed, viz. from Mount Lebanon, is a wine thus prepared ; and it may stand as a representative of that class of wines. It is, indeed, the weakest wine of the number; and we learn from this fact that this process does affect the amount of alcohol. And yet this specimen contains about eleven per cent. of pure alcohol, and twenty two per cent.

[^14]of brandy,-enough certainly to make the wine quite intoxicating. Yet it is quite sweet, and therefore sweetness does not prove that a wine is unintoxicating. When the juice of the grape is boiled down, so as to become thick like honey, or even solid, then, indeed, it cannot ferment, and may be kept an indefinite length of time without containing alcohol. Such was sometimes the case among the ancients; but whether the wine which they called defrutum, in which the juice was boiled away only one half, was of this character, that is, thick enough to prevent all fermentation, I much doubt. This inspissated juice of the grape was rather regarded as honey, and so it is called in the Bible, and at the present day in the eastern world it is a very common article; but so far as I can learn, by inquiring of several missionaries, it is not called wine, but is rather a substitute for our honey or molasses. Admitting however that this article was sometimes called wine by the ancients, (and I have no doubt of the fact,) its use as a beverage must necessarily have been quite limited, and therefore this fact does not invalidate my general conclusion, that the character of the ancient and modern wines in eastern countries was essentially the same. This conclusion, at which Prof. Beck arrived by chemical considerations, in his valuable paper on the analysis of wines in this Journal, (Vol. xxviit,) seems now to be still farther confirmed by experiment.

I trust that in arriving at such conclusions, it will not be imagined that I wish to take away any support, or do in fact take away any support, from the noble cause of temperance, which I have endeavored for so many years to sustain both theoretically and practically. True, some able friends of this cause have supposed the ancient wines to be mostly unintoxicating. But I rest and always have rested its support on very different grounds than the per cent. of alcohol in the wines of Syria and Palestine. But this is a point irrelevant to the present paper, and therefore I waive it. To find out the exact truth should be the object of every scientific investigation, however it may affect opposing opinions.

In the paper of Prof. Beck just spoken of, he has given the analysis of a few samples of American cider; and he found in them only the average per cent. of 4.68 ; whereas Prof. Brande gives the average of 7.54 per cent. as the amount in English cider. I
have never been able to see the reason of so much difference between English and American cider, any more than I could see the reason why the wines of Palestine and Syria should not be as strong as those of any other wine country; and I have suspected that the specimens analyzed by Prof. Beck must have been the very weakest of our cider. While engaged upon the wines of western Asia, therefore, I made some effort to obtain and analyze samples of cider. And although I have not operated upon as many varieties as would be desirable, and they were not obtained from so wide a range as I could wish, yet I give the results of the analyses which I have made. The specimens were all procured from the farmers of Amherst or its vicinity, and in all cases the cider had been kept in casks; nor had any special care been taken in its preparation. Nos. 1, 2, and 4, also abounded in carbonic acid when first analyzed, and were less than six months old, and could not therefore have reached their maximum of alcoholic strength, so that I repeated the process several months afterwards in August. And upon the whole, I feel confident that the results do not exceed the average amount of alcohol in New England cider.

Results of the Analysis of New England Cider.

LOCality.							
No. 1. Amherst, 5 months old,	1.6207	0.9915	286	$5 \cdot 3$	5.73	$5 \cdot 6$	$10 \cdot 72$
No 2 d trial, August 2d,		0.9888		$7 \cdot 4$	8.00	7.8	14.97
No. 2. Amherst, 5 months old,	1.0114	0.9915	1.96	$5 \cdot 3$	5.65	$5 \cdot 5$	10.72
No. 3 2d trial, August 2d,		0.9899		6.5	6.93	6.7	$13 \cdot 40$
No. 3. Amherst, 5 months old,	1.0002	0.9904	0.98	6.2	6.65	6.7	12.54
No. 4. Amherst, 5 m'ths old, sweet apples,	1.0087	0.9897	1.88	$6 \cdot 7$	7.24	7.4	$13 \cdot 55$
No.5. Ad trial, August 2d,		09888		7.4	800	$8 \cdot 2$	14.99
No. 6. Amh. 5 m'ths old, mostly sweet app.	1.0021	0.9882	1.39	$7 \cdot 9$	8.54	8.9	1598
No. 7. Amherst, 5 m y y ears old,	0.9986	0.9897	0.89	6.7	7.24 8.02	7.4	13.55
No. 8. Currant wine, at least 5 years old,	1.0068 1.1099	0.9888 0.9887	10.92	7.5	8.02 8.11	88	14.97 15.17

Nos. 3, 5, and 7, although but five months old, and those winter months, appeared nevertheless to have nearly completed their fermentation. No. 5 was from near the bottom of the cask, most of it having been drank; but it was not sour. No. 6 was from Vol. xlvi, No. 2.-Jan.-March, 1844.
a cask almost emptied, which had been kept entirely closed for two and a half years, so that it had not changed at all to vinegar. The apples produced on the rich alluvion of Deerfield, from which this specimen was made, are usually of a rather inferior quality. I have added the analysis of a single specimen of currant wine, partly to show the enormous quantity of solid matter. This wine, although sweet and pleasant, was not clear, and does not contain half as much alcohol as the specimen analyzed by Brande. Probably it had lost some of its alcohol by long keeping, or it was not skillfully prepared.

Prof. Brande gives two averages of the strength of cider; the highest, 9.87 per cent. of alcohol, and the lowest, $5 \cdot 21$ per cent.; the mean of which, as already stated, is 7.54 per cent. The mean of the above seven analyses of New England cider, by Gilpin's tables, which were employed by Brande, is 7.62 . From this result, I think we may safely infer that the cider of New and Old England possesses about the same alcoholic strength.

It has been strongly maintained of late, "that sweet apples will not yield strong cider," (Anti-Bacchus, p. 166,) nay, that "it is impossible to obtain strong alcoholic cider out of very sweet apples." (Ibid. p. 203.) I find, however, that the contrary of this is maintained by all the farmers and distillers with whom I have conversed; and the strongest specimens given in my analyses were from sweet apples. This view appears to me also to be most consonant to the principles of chemistry, provided only that sweet apples contain a quantity of ferment corresponding to that of the sugar.

Art. V.-Statement of Elevations in Wisconsin; by I. A. Lapham, of Milwaukee, Wis.

In a late number of this Journal is an article by Charles Whittlesey, Esqr., giving the elevation of various places in New York, Pennsylvania, Ohio and Michigan ; and as it appears to be desirable to publish additional observations of this kind, the following are furnished for the purpose of extending the series through this territory. Most of the following heights were ascertained by the writer, in the explorations relative to the Milwaukee and

Rock River canal ; some are estimated by levels taken at the various rapids along the rivers and adding for the distances between, what is ascertained, in other cases, to be about the average descent of rivers of similar character. These are marked by an interrogation. ? These elevations were taken with reference to the surface of Lake Michigan as a zero, which is thirteen feet above Lake Erie, and consequently five hundred and seventy eight feet above the ocean.* In the following table, this number has been added, so as to give the elevation above the ocean in each case.
Rock river at its source near Lake Winnebago, Fet. 894 ?
" " at a point opposite La Belle Lake,
835" " Jefferson or "the Forks,"
764
" " Lake Koshkonong, (an expansion of Rock river, 753
" " at Beloit, (south line of the Territory,) 706
" " at its mouth, (191 feet descent from state line, Capt. Cram,) 515
Pishtaka \dagger river at head marsh, 825
" " at junction of Pewankee outlet, 808
" " at foot of rapids at Prairieville, 789
" " at Elgin, (30 miles below Territorialline, William Gooding's report,) 693
Pewaukee Lake, a source of Pishtaka, 831
Bark river near Pewaukee summit, 904
Pewaukee summit, (M. and R. R. Canal,) 894
Nagowicka Lake, (an expansion of Bark river,) 882
Nemahbin Lake, 867
Silver Lake, (in the town of Summit, Milwaukee Co.) 857
Oconomewoc Lake, 860
Labelle Lake, 851
High ground between Labelle Lake and Rock river, 835
" " west of Pewaukee Lake, 971
Surface of Milwankee river four miles above the city at head of rapids, (37 feet above Lake Michigan,) 615
Hills surrounding Milwaukee, (50 to 110 feet,) 688
Lake Winnebago, 738?

[^15]
Abstract

Fect. Portage between Wisconsin and Neenah* rivers, 801 ? \dagger Wisconsin river at Helena, 748? Top of Blue Mound, (1000 feet above Wisconsin at Helena, Locke,) 1748? Mississippi River, at mouth of Wisconsin, 686 ? Surface of Lake Superior, 596

The geological character of this portion of the Territory is very simple. The whole space from Lake Michigan to the "mineral district," west of Rock river, and from the southern extreme of Lake Michigan northward, nearly to the south line of the "upper peninsula" of Michigan, is occupied (so far as is at present known,) by one vast bed of limestone, disposed in nearly horizontal layers, of a light color, and nearly destitute of organic remains. It is referable, probably, to the "cliff limestone" of Dr. Locke. It is not certain however, but that the "blue limestone" may be found within this district, and also the "Archimedes limestone" of Mr. Owen, but the limited knowledge we have of this great calcareous deposite, does not allow of a decision on these points.

[^16]
Art. VI.-List of Birds found in the vicinity of Carlisle, Cumberland County, Penn., about Lat. $40^{\circ} 12^{\prime} N$., Lon. $77^{\circ} 11^{\prime}$ \boldsymbol{W}.; by William M. and Spencer F. Baird.*

The following list embraces the species of birds procured by us in Cumberland County, and with a few exceptions within five miles of the town of Carlisle, during a period of four years. These were obtained by our own personal exertions, and observed whilst living in our fields, woods and mountains, by our running streams and marshes, and in no instance are any placed in the list upon the authority of other persons. Probably but few remain to be found in the county, as every part of it has been searched, and if any have escaped observation, it is likely they are species belonging to the Sylvicolidæ or Fringillidæ, which from their habits, small size, and generic features of resemblance, may have been confounded with others which are well known.

Our object in giving this list is to show at one view the season of migration, the comparative variety or abundance, \&c. of the birds found in the interior of Pennsylvania. As might readily be imagined, land-birds largely predominate, there being no large rivers in Cumberland County, if we except the Susquehanna, which forms the eastern boundary, and which at this place flows rapidly over a rocky bed, serving only as a resting place for a few aquatic species when forced to alight whilst migrating, from bad weather or other causes, and affording no mud-flats or sand-bars, favorite resorts of the waders. Residing, as we do, eighteen miles from the Susquehanna, possibly some species pursue that river's course in travelling north or south which may have escaped our observation, and would have been noticed had we been living on its banks.
Much has been done towards elucidating the habits of our birds by Wilson, Audubon, and our other writers on the subject, and when the vastness of their field of observation is taken into consideration, no one will be inclined to deny that their success has been very great. But the greatness of their undertaking, the whole of the United States and parts of Texas having been explored by them, has prevented minute attention to the ornithology

[^17]of particular sections. They too were almost constantly travelling, and of course could not ascertain as much respecting the periods of migration at particular places as can be done by more humble ornithologists who are obliged to glean in the field of knowledge where their predecessors have reaped so rich a harvest. These writers have given us the outlines (if we may so speak) of the ornithology of that part of America north of the Gulf of Mexico, but many blanks remain to be filled up; much still depends upon local observation, and many facts must be gathered by observers of small districts-men who have the objects of their attention and inquiry constantly before their eyes, before this branch of science can be as perfectly understood as it is in Great Britain. On the importance of this mode of observation, Swainson and Richardson, in their admirable work on the zoology of British America, remark:
"The discovery of the laws which regulate the distribution of species on the face of the globe being one of the most important ends of the publication of local faunæ, the scanty contributions of facts that we have been enabled to make are thrown for the greater facility of reference into a tabular form. The new world is peculiarly adapted for researches of this kind ; its two extremities, and almost every intermediate zone are accessible, and it is to be hoped will hereafter be minutely investigated for the purpose of natural science. When accurate lists of the resident birds in each region, and of the summer and winter visitors are obtained, many highly interesting and unexpected deductions will doubtless be made, and much theoretical reasoning exploded. The Prince of Musignano has performed a great service to science by furnishing such a list for the neighborhood of Philadelphia." Fauna Boreali Americana, Introduction, p. 17.

Much too may be done in the way of correcting mistakes into which our ornithologists have fallen for reasons above stated. Many birds spoken of by Audubon, our latest writer, as "extremely rare" in the United States, have been found to be very common with us, and others supposed not to visit Pennsylvania, are frequently met with. We might cite instances, but the list will show facts of this nature. Nor need any young observer despair of finding what is even new, as the writers of this paper have procured two species within the narrow limits of their field which were previously unknown to science, and descriptions of
which are subjoined. Many species are very local in their habits, and may frequently be found in a particular spot, and scarcely at all in any other, influenced perhaps by the abundance of food in that place, security from molestation, \&c. ; to which place chance may direct the student of nature, and he be rewarded by finding what is entirely new to naturalists. But our remarks are already far too much extended, and we give the list.

The addition of an obelisk (\dagger) indicates that the species breeds with us; and the dates, the time of appearance.

1. Cathartes aura, Ill.,t Turkey Buzzard. Rather rare; not often seen in winter.
2. Haliætos leucocephalus, Linn., Bald Eagle. Resident.
3. Pandion Carolinensis, Gm., Fish Hawk. 1841, April 10; 1842, April 6 ; 1843, April 15. Common in spring ; migratory.
4. Butætes Sancti-Johannis, Bon., Rough-legged Hawk. But one individual seen.
5. Buteo borealis, Gm.,† Red-tailed Hawk. Resident; common.
6. Buteo lineatus, Gm., t? Red-breasted Hawk. Probably resident ; common in winter.
7. Buteo Pennsylvanicus, Wils., Broad-winged Hawk. Rare.
8. Falco Columbarius, Linn., Pigeon Hawk. Rare.
9. Cerchneis sparverius, Linn., + Sparrow Hawk. Abundant; resident.
10. Accipiter fuscus, Gm., \dagger Slate-colored Hawk. Resident ; most abundant of all our species.
11. Accipiter Mexicanus, Sw. ?t Five specimens procured ; resident?
12. Astur Cooperi, Bon., \dagger Cooper's Hawk. Resident ; rather common.
13. Strigiceps uliginosus, Bon., Marsh Hawk. Rare ; in spring and fall.
14. Nyctea candida, Bon., Snowy Owl. Rare; in cold winters.
15. Scops Asio, Gm., \dagger Screech Owl. Abundant; resident.
16. Bubo Virginianus, Gm., \dagger Great-horned Owl. Abundant ; resident.
17. Otus Americanus, Bon., t Long-eared Owl. Rare ; resident.
18. Brachyotus palustris, Gould, Short-eared Owl. Abundant; not seen in summer.
19. Ulula nebulosa, Linn., \dagger Barred Owl. Abundant; resident.
20. Nyctale Acadica, Gm., Acadian Owl. Rare; two individuals seen.
21. Antrostomus vociferus, Vieill, Whippoorwill. Abundant in the mountains and in hilly situations; migratory.

264 List of Birds found in Cumberland County, Penn.

22. Chordeiles Virginianus, Briss.,t Night Hawk. 1840, May 2; 1841, May 1; 1842, April 29 ; 1843, May 4. Very abundant ; migratory.
23. Chætura Pelasgia, Linn., † Swift, Chimney Swallow. 1840, April 17; 1841, April 17; 1842, April 18; 1843, April 20. Very abundant ; migratory.
24. Progne purpurea, Linn.,, Purple Martin. 1840, April 3; 1841, April 3; 1842, March 28; 1843, April 11, Abundant; migratory.
25. Chelidon bicolor, Vieill.,† White-bellied Swallow. 1840, March 16; 1841, April 3; 1842, April 12. Rather common ; migratory.
26. Cotyle riparia, Linn., Bank Swallow. Rare in spring, abundant in fall; migratory.
27. Hirundo serripennis, Aud.,t Rough-winged Swallow. 1841, April 3 ; 1842, April 2; 1843, April 20. Very abundant; migratory; replaces Bank Swallow in summer.
28. Hirundo fulva, Vieill.,† Cliff Swallow. 1840, very rare; 1841, rare; 1842 , rather common; 1843, common. Increasing in numbers every year ; migratory.
29. Hirundo rufa, Bon.,t Barn Swallow. 1840, April 10; 1841, April 17; 1842, April 9; 1843, April 20. Abundant; migratory.
30. Bombycilla Carolinensis, Briss., + Cedar Bird. 1840, late in May; 1841, late in May; 1842, late in May; 1843, late in May. Large flocks in winter of 1842-43, but generally rare in winter; resident.
31. Ceryle Alcyon, Linn,, \dagger King Fisher. Abundant; rather rare in winter; resident.
32. Trochilus colubris, Linn. \dagger Ruby-throated Humming Bird. 1841, May 11; 1842, May $16 ; 1843$, May 5. Very abundant ; migratory.
33. Sitta Carolinensis, Linn., \uparrow White-bellied Nuthatch. Abundant; resident.
34. Sitta Canadensis, Linn., Red-bellied Nuthatch. Very rare; in winter only.
35. Certhia Americana, Bon., Brown Creeper. Abundant; migratory.
36. Mniotilta varia, Vieill., \dagger Black and White Creeper. 1840, April 18; 1841, April 20; 1842, April 25; 1843, April 28. Abundant; migratory.
37. Thryothorus palustris, Wils., \dagger Marsh Wren. Rare; migratory.
38. Thryothorus Bewickii, Aud., \uparrow Bewick's Wren. 1840, not seen; 1841, May 18, rare; 1842, May 13, rare; 1843, May 1, abundant. Migratory ; increasing in numbers.
39. Troglodytes Ædon, Vieill.,t House Wren. 1841, April 28; 1842, April 25; 1843, April 29. Migratory; abundant.
40. Troglodytes hyemalis, Vieill., Winter Wren. Winter visitor; abundant.
41. Sialia Wilsonii, Sw., \dagger Blue Bird. 1840, Feb. 20; 1841, March 1; 1842, Feb. 12; 1843, Feb. 25. Abundant; migratory.
42. Turdus migratorius, Linin., Robin. 1840, Feb. 20; 1841, March 1; 1842, Feb. 28; 1843, Feb. 25. Abundant ; a few individuals seen in winter.
43. Turdus Mustelinus, Gm., ${ }^{\text {, }}$ Wood Thrush. 1842, May 6. Rather common; migratory.
44. Turdus solitarius, Wils., Hermit Thrush. 1840, April 18; 1841, April 13; 1842, April 12; 1843, March 21. Rather common, spring and fall ; migratory.
45. Turdus Wilsonii, Sw., Wilson's Thrush. 1840, April 10; 1841, May 6 ; 1842, May $6 ; 1843$, May 16. Rather common ; migratory.
46. Turdus minor, Gm., Lesser Thrush. 1842, May 13; 1843, May 9. Common; migratory.
47. Mimus polyglottus, Linn., + Mocking Bird. Very rare.
48. Mimus rufus, Linn.,t Brown Thrush. 1840, April 4; 1841, April 26 ; 1843, March 22. Abundant ; migratory.
49. Mimus felivox, Vieill.,t Cat-Bird. 1840, April 25 ; 1841, May $6 ; 1842$, April $29 ; 1843$, May 2. Abundant ; migratory.
50. Anthus Ludovicianus, Licht., Brown Titlark. 1841, May 3 ; 1842, April 30; 1843, April 11. Abundant; migratory ; large flocks in spring and fall.
51. Regulus satrapa, Licht., Golden-crowned Wren. 1840, March 18; 1841, March 24; 1842, Feb. 21. Abundant in spring, fall, and winter.
52. Regulus calendula, Licht, Ruby-crowned Wren. 1840, April 4; 1841, April 15; 1842, April 2; 1843, April 20. Abundant, spring and fall.
53. Parus atricapillus, Linn., \dagger Black Cap Tit. Abundant; resident.
54. Parus bicolor, Linn., \dagger Tufted Tit. Abundant; resident.
55. Parula Americana, Lath., + Blue Yellow-backed Warbler, 1840, April 25; 1841, April 20; 1842, April 25; 1843, April 28. Very abundant; migratory.
56. Trichas Marilandica, Linn.,t Maryland Yellow-Throat. 1840, May 2; 1841, May 12; 1842, April 30; 1843, May 2. Abundant; migratory.
57. Trichas Philadelphia, Wils., Mourning Warbler. 1840, May 23; 1841, May 12; 1842, May 19; 1843, May 20. Fifteen specimens obtained ; migratory.
58. Vermivora Pennsylvanica, Sw.,t Worm-eating Warbler. 1840, May 12, rather common; 1841, rare; 1842, May 6, common; 1843, very, rare. Migratory ; rare.
Vol, xLvi, No. 2.-Jan.-March, 1844.
59. Vermivora solitaria, Wils,,t Blue-winged Yellow Warbler. 1841, May 20. Very rare; migratory.
60. Vermivora peregrina, Wils., Tennessee Warbler. 1840, not seen; 1841, one seen; 1842, very abundant in autumn; 1843, not seen. Migratory.
61. Vermivora rubricapilla, Wils., , Nashville Warbler. 1840, rare; 1841, May 1, rare ; 1842, April 29, common; 1843, May 6, abundant. Migratory.
62. Seiurus aurocapillus, Sw., \uparrow Golden-crowned Thrush. 1840, April $30 ; 1841$, May $3 ; 1842$, May 4. Abundant ; migratory.
63. Seiurus Noveboracensis, Gm., Water Thrush. 1841, April 26 ; 1842, April 25; 1843, April 22. Abundant; migratory.
64. Sylvicola coronata, Lath., Yellow-rumped Warbler. 1840, April 18; 1841, April 20; 1842, April 22; 1843, April 20. Exceedingly common; seen very rarely in winter.
65. Sylvicola petechia, Lath., Yellow Red-Poll Warbler. 1840, April 27; 1841, April 28; 1842, April 30. Common ; migratory.
66. Sylvicola maculosa, Lath., Black and Yellow Warbler. 1840, May $16 ; 1841$, May $13 ; 1842$, May $6 ; 1843$, May 9 . Abundant; migratory.
67. Sylvicola maritima, Wils., Cape May Warbler. 1840, April $30 ; 1841$, May 11; 1842, May 17; 1843, May 9. Rare; twelve specimens obtained; migratory.
68. Sylvicola pardalina, Bon., \dagger Canada Fly-catcher. 1840, April $25 ; 1841$, May $11 ; 1842$, May $11 ; 1843$, May 6. Abundant; migratory.
69. Sylvicola virens, Lath., \uparrow Black-throated Green Warbler. 1840, May 13; 1841, May 4; 1842, May $6 ; 1843$, May 5. Common; migratory.
70. Sylvicola Blackburnia, Lath.,t Blackburnian Warbler. 1840, May 6, rare; 1841, May 5, abundant; 1842, May 9, abundant; 1843, May 5, abundant. Exceedingly common some seasons ; migratory.
71. Sylvicola icterocephala, Lath., Chestnut-sided Warbler. 1840, May 6, rare ; 1841, May 13, abundant ; 1842, not seen; 1843, May 6, common. Exceedingly common in 1841 ; migratory.
72. Sylvicola castanea, Wils., Bay-breasted Warbler. 1840, May $16 ; 1841$, May $13 ; 1842$, May $17 ; 1843$, May 8. Common ; migratory.
73. Sylvicola striata, Lath., Black-Poll Warbler. 1841, May 22 ; 1842, May $16 ; 1843$, May 17. Abundant ; migratory.
74. Sylvicola Pinus, Lath.,t Pine-Creeping Warbler. 1841, April $24 ; 1842$, April $29 ; 1843$, April 22. Rare in spring, abundant in fall ; migratory.
75. Sylvicola parus, Wils.? Hémlock Warbler. Seen only in autumn; migratory.
76. Sylvicola æstiva, Lath., Yellow-Poll Warbler. 1840, April 25 ; 1841, April 21; 1842, April 28; 1843, April 22. Abundant ; migratory.
77. Sylvicola Canadensis, Lath.,t Black-throated Blue Warbler, 1840, April 25 ; 1841, May 4; 1842, May 4; 1843, April 28. Abundant ; migratory.
78. Sylvicola cærulea, Wils., Cærulean Warbler. 1842, May 9, one seen. Exceedingly rare ; migratory.
79. Wilsonia mitrata, Lath., \dagger Hooded Warbler. 1843, May 9. Very rape ; migratory.
80. Wilsonia pusilla, Wils., Green Black-cap Fly-catcher. 1840, May 6; 1841, May 17; 1842, May 9 ; 1843, May 18. Abundant; migratory.
81. Setophaga ruticilla, Linn.,† American Redstart. 1840, April $25 ; 1841$, May $8 ; 1842$, May $4 ; 1843$, May 8. Abundant; migratory.
82. Tyrannula flaviventris, Baird, Yellow-bellied Fly-catcher. 1840, late in May; 1841, late in May; 1842, late in May; 1843, May 9. Abundant; migratory.
83. Tyrannula minima, Baird, \dagger Least Fly-catcher. 1841, May 4 ; 1842, April 29 ; 1843, May 2. Abundant; migratory.
84. Tyrannula Trailli, Aud., Traill's Fly-catcher. 1841, May 22; 1842, May 17; 1843, May 20. Rather common ; migratory.
85. Tyrannula virens, Linn., \dagger Wood Pewee. 1840, May 18; 1841, May $10 ; 1842$, May $9 ; 1843$, May 8. Abundant; migratory.
86. Tyrannula fusca, Gm.,t Pewee. 1840, April 2; 1841, March 4; 1842, March 10 ; 1843, April 1. Abundant; migratory.
87. Tyrannus Cooperi, Bon., Cooper's Fly-catcher. 1843, May 6. Very rare; migratory.
88. Tyrannus intrepidus, Vieill., \uparrow King-Bird. 1841, May 1; 1842, April 28; 1843, April 22. Abundant; migratory.
89. Tyrannus crinitus, Linn., \dagger Great-crested Fly-catcher. 1840, April 25; 1841, May 1; 1842, April 25; 1843, April 28. Abundant; migratory.
90. Icteria viridis, Gm.,† Yellow-breasted Chat. 1841, May 18; 1842, May 19. Rare; migratory.
91. Vireo flavifrons, Vieill., + Yellow-throated Vireo. 1840, May 13; 1841, May 12; 1843, May 6. Common; migratory.
92. Vireo solitarius, Vieill., + Solitary Vireo. 1841, April 21; 1842, April 21; 1843, April 28. Abundant ; migratory.
93. Vireo gilvus, Vieill.,t Warbling Vireo. 1840, April 24; 1841, April $28 ; 1842$, April $30 ; 1843$, April 28. Very common; migratory.
94. Vireosylva olivacea, Linn., \dagger Red-eyed Vireo. 1840, May 13; 1841, May $12 ; 1842$, May $9 ; 1843$, May 6. Abundant ; migratory.
95. Lanius septentrionalis, Gm., Great Northern Shrike. Rather common in winter ; migratory.
96. Cyanocorax cristatus, Linn., , Blue Jay. Abundant; resident.
97. Corvus Americanus, Aud.,t American Crow. Very abundant; resident.
98. Corvus Catototl, Wagler, Raven. Very rare ; in winter.
99. Quiscalus versicolor, Vieill.,t Purple Grakle. 1842, March 3. Very common; migratory.
100. Scolecophagus ferrugineus, Lath., Rusty Grakle. 1841, March 4; 1842, March 3; 1843, March 22. Abundant, spring and fall; migratory.
101. Sturnella Ludoviciana, Linn., ${ }^{\text {, Meadow Lark. Abundant ; res- }}$ ident.
102. Icterus Baltimore, Daud., \dagger Baltimore Oriole. 1840, April 24; 1841, May 3; 1842, April 25; 1843, April 28. Abundant; migratory.
103. Icterus spurius, Gm., , Orchard Oriole. 1840, April 25 ; 1842, April 29; 1843, April 28. Abundant; migratory.
104. Agelaius Phæniceus, Vieill., ${ }^{*}$ Red-winged Blackbird. 1840, Feb. 20; 1841, March 1; 1842, Feb. 28; 1843, March 12. Very abundant; migratory.
105. Molothrus pecoris, Gm., t Cow Bunting. 1841, April 6; 1842, March. Abundant; one seen in winter.
106. Dolichonyx Oryzivorus, Linn., Reed Bird. 1840, May 22 ; 1841, May $8 ; 1842$, May $4 ; 1843$, May 16. Very abundant in autumn; migratory.
107. Guiraca cærulea, Linn.,t Blue Grosbeak. 1841, May 18; 1842, May 12; 1843, May 16. A few seen each year in same place; migratory.
108. Guiraca Ludoviciana, Linn., \dagger Rose-breasted Grosbeak. 1840, May 2; 1841, May $6 ; 1842$, May $9 ; 1843$, May 8. Rare ; migratory. 109. Struthus hyemalis, Linn., Snow Bird. A winter visitant; very common.
109. Passerella iliaca, Merrem, Fox-colored Sparrow. 1841, April 17; 1842, March 25; 1843, April 6. Abundant; migratory.
110. Zonotrichia melodia, Wils,,t Song Sparrow. Abundant; resident.
111. Zonotrichia graminea, Gm., \dagger Grass Finch. 1841, March 30; 1842, March 25 ; 1843, April 11. Abundant ; migratory.
112. Zonotrichia Pennsylvanica, Lath, White-throated Sparrow. 1840, April 11; 1841, April 17; 1842, March 25 ; 1843, April 22. Abundant ; migratory.
113. Zonotrichia leucophrys, Wils., White-crowned Sparrow. 1840, May 13, rare; 1841, very abundant; 1842, May $9 ; 1843$, none seen. Migratory.

List of Birds found in Cumberland County, Penn.

115. Euspiza Americana, Gm.,t Black-throated Bunting. 1840, May 15 ; 1841, May 15 ; 1842, May 11; 1843, May 2. Abundant ; migratory.
116. Coturniculus Passerinus, Wils., \uparrow Yellow-winged Sparrow. 1842, April 30. Abundant ; migratory.
117. Passerculus Savana, Wils., Savannah Finch. 1842, abundant; 1843, May 6. Rather common; migratory.
118. Passerculus palustris, Wils., \dagger Swamp Sparrow. 1842, April 16. Abundant ; migratory.
119. Passerculus Lincolnii, Aud., Lincoln's Finch. 1841, May 15, rare ; 1842, rare; 1843, May 4, common. Increasing; migratory.
120. Spizella Canadensis, Lath., Tree Sparrow. Abundant in winter.
121. Spizella socialis, Wils., t Chipping Sparrow. 1840, March 28 ; 1841, March 26 ; 1842, April 2; 1843, April 11. Abundant; migratory.
122. Spizella pusilla, Wils., t Field Sparrow. 1841, April 13 ; 1842, April 17; 1843, April 11. Abundant; migratory.
123. Chrysomitris tristis, Linn., \dagger American Goldfinch. Abundant; rarer in winter; resident.
124. Chrysomitris Pinus, Wils., Pine Finch. 1841, seen May 30. Rare; in winter.
125. Linota linaria, Bon., Lesser Redpoll. Some flocks in winter of 1843 .
126. Erythrospiza purpurea, Gm., Purple Finch. 1841, April 26 ; 1842, April 1; 1843, April 20. Abundant ; migratory.
127. Cardinalis Virginianus, Bon., \dagger Cardinal Grosbeak. Very rare,
128. Pipilo erythropthalmus, Linn., t Towhe Bunting. 1841, April $20 ; 1842$, April 25. Abundant; migratory.
129. Spiza cyanea, Linn., Indigo Bird. 1840, April 27 ; 1841, May 12; 1842, April $30 ; 1843$, May 6. Abundant ; one seen in winter. Migratory.
130. Pyranga rubra, Vieill.,t Scarlet Tanager. 1840, April 27 ; 1842, May 4 ; 1843, May 6. Abundant ; migratory.
131. Phileremos cornutus, Sw., Shore Lark. Abundant; autumn and winter ; migratory.
132. Dryotomus pileatus, Linn., \dagger Pileated Woodpecker. Rather common; resident.
133. Picus villosus, Linn.,† Hairy Woodpecker. Abundant; resident.
134. Picus Auduboni, Trudeau, + Audubon's Woodpecker. One specimen obtained.
135. Picus -. One specimen oblained.
136. Picus pubescens, Linn.,t Downy Woodpecker. Abundant; resident.

270
 List of Birds found in Cumberland County, Penn.

137. Picus varius, Linn., \dagger Yellow-bellied Woodpecker. 1840, April $2 ; 1841$, April 15; 1842, April 1; 1843, April 11. Rather common; migratory.
138. Melanerpes erythrocephalus, Linn., \uparrow Red-headed Woodpecker. Abundant; rarer in winter; resident.
139. Centurus Carolinensis, Linn., Red-bellied Woodpecker. Abundant ; most so in winter ; resident.
140. Colaptes auratus, Linn., + Flicker. Abundant; resident.
141. Erythrophrys erythropthalmus, Wils., Black-bilted Cuckoo. 1841, May 17. Common; migratory.
142. Erythrophrys Americanus, Linn.,t Yellow-bellied Cuckoo. 1841, May $18 ; 1842$, May 10 ; 1843, May 8. Common; migratory.
143. Ectopistes migratoria, Linn., + Passenger Pigeon. 1841, March 31 ; 1842, Feb. 4; 1843, April 6. In immense flocks at times; resio dent; but rare in winter.
144. Ectopistes Carolinensis, Linn., \uparrow Carolina Dove. 1841, March $4 ; 1842$, March 3; 1843, April 8. Very abundant; rare in winter; resident.
145. Meleagris Gallipavo, Linn., \dagger Wild Turkey. Not common; resident.
146. Ortyx Virginianus, Linn., t Virginia Quail. Not abundant at present; resident.
147. Bonasia umbellus, Linn., \dagger Ruffed Grouse. Common; resident.
148. Egialites vociferus, Linn.,† Killdeer Plover. 1841, March 20; 1842, March 12. Abundant ; occasionally in winter.
149. Charadrius Virginiacus, Borkh., American Golden Plover. Exceedingly abundant at times; in autumn only ; migratory.
150. Ardea Herodias, Linn., \uparrow Great Blue Heron. 1840, April 4; 1841, April 1; 1842, April 1; 1843, April 11. Rather common; migratory.
151. Egretta leuce, Bon., Great White Egret. Rare; migratory.
152. Herodias virescens, Linn., \uparrow Green Heron. 1840, May 2 ; 1841, April 8; 1842, April $16 ; 1843$, April 20. Abundant ; migratory.
153. Botaurus lentiginosus, Sw., American Bittern. 1840, April 25 ; 1841, April 20; 1842, April 16; 1843, April 28. Rather rare; migratory.
154. Nycticorax Americana, Bon., Night Heron. Young only; in autumn; migratory.
155. Heteropoda semipalmata, Wils., Semipalmated Sandpiper. Rare ; in autumn ; migratory.
156. Pelidna pectoralis, Say, Pectoral Sandpiper. 1841, April 16 ; 1842, April 22. Common; migratory.
157. Pelidna pusilla, Wils., Least Sandpiper. 1840, May 16; 1842, May 5. Rare ; migratory.
158. Actitis macularius, Wils., + Spotted Sandpiper. 1840, April 11; 1841, March 30 ; 1842, March 28; 1843, April 11. Abundant; migratory.
159. Actiturus Bartramius, Wils.,t Bartram's Sandpiper. 1840, April 30; 1841, April 17; 1842, April 12; 1843, April 11. Abundant; migratory.
160. Totanus flavipes, Vieill., Little Yellow-leg. 1841, April 21 ; 1842, May 4. Common sometimes; migratory.
161. Totanus chloropygius, Vieill., \dagger Solitary Sandpiper. 1842, April 25. Common ; migratory.
162. Totanus melanoleucus, Vieill., Great Yellow-leg. 1840, April 21 ; 1842, May 5. Rare ; migratory.
163. Gallinago Wilsonii, Bon., Wilson's Snipe. 1840, March 18 ; 1841, March $21 ; 1842$, March 26. Very abundant ; spring and autumn; rare in winter.
164. Rusticola minor, Vieill.,t American Woodcock. 1840, Feb. 27 ; 1842, April 1. Very abundant ; very rare in winter.
165. Rallus Virginianus, Linn., \dagger Virginia Rail. 1841, April 28. Abundant; migratory.
166. Ortygometra Carolina, Linn.,t Carolina Rail. 1841, May 5. Abundant; migratory.
167. Gallinula galeata, Licht., Green-legged Gallinule. 1840, May 14. Rare ; migratory.
168. Fulica Americana, Gm., American Coot. 1840, March 28 ; 1841, April 17. Rare; migratory.
169. Lobipes hyperboreus, Lath., Hyperborean Phalarope. One seen Sept. 1842.
170. Anser Canadensis, Linn., Canada Goose. Rare on our streams; migratory.
171. Anas Boschas, Linn., Mallard. 1842, March 3. Abundant ; rare in winter and summer ; resident.
172. Anas obscura, Gm., Black Duck. Abundant, except in summer.
173. Mareca Americana, Steph., Baldpate. 1841, April 8; 1843, April 6. Common ; migratory.
174. Chaulelasmus streperus, Linn., Gadwall. Very rare; migratory.
175. Dafila acuta, Linn., Sprigtail. 1842, March 10 ; 1843, March 11. Abundant ; migratory.
176. Rhynchaspes clypeata, Linn., Shoveller Duck. 1841, May 8; 1843, April 20. Rare; migratory.
177. Cyanopterus discors, Linn., Blue-winged Teal. 1840, April 17; 1842, April $16 ; 1843$, April 20. Rather common; migratory.
178. Querquedula Carolinensis, Steph., Green-winged Teal. 1840, Feb. 26; 1841, April 8; 1842, Feb. 28; 1843, April 6. Abundant ; migratory.
179. Aix sponsa, Linn.,t Summer Duck. 1840, March 4; 1841, March $30 ; 1842$, March 17 ; 1843, April 6. Very common; rare in winter.
180. Aythya erythrocephala, Bon., Red-headed Duck. Very rare; migratory.
181. Fuligula marila, Linn., (small var.,) Black-headed Duck. 1841, April $19 ; 1842$, March $17 ; 1843$, April 11. Abundant; migratory.
182. Fuligula refitorques, Bon., Ring-necked Duck. 1843, March 23. Not common; migratory.
183. Clangula Americana, Bon., Golden-eyed Duck. Abundant in winter; migratory.
184. Clangula albeola, Linn., Baffel-headed Duck. Abundant in spring and autumn. Rarer in winter.
185. Harelda glacialis, Linn., South Southerly. Very rare; migratory.
186. Erismatura rubida, Wils., Ruddy Duck. 1841, April 17. Rather rare; migratory.
187. Merganser Castor, Linn., Goosander. Abundant ; breeds in the adjoining county of Perry.
188. Merganser serrator, Linn., Red-breasted Merganser. Very rare ; migratory.
189. Merganser cucullatus, Linn., Hooded Merganser. 1840, April 15; 1842, April 27; 1843, April 11. Abundant; breeds in Perry County.
190. Hydrochelidon nigrum, Linn., Black Tern. Seen once in autumn ; migratory.
191. Xema Bonapartii, Rich., Bonaparte's Gull. Rare; migratory.
192. Sylbeocyclus Carolinensis, Lath., \dagger Carolina Grebe. 1840, April 2; 1841, April 1; 1842, March 28; 1843, April 11. Abundant ; migratory.
193. Podiceps cornutus, Lath., Horned Grebe. Rare; migratory.
194. Colymbus glacialis, Linn., Loon. 1841, April 13 ; 1842, May 23. Common; migratory.

Besides the above, found in the immediate vicinity of Carlisle, the following have been seen in the eastern border of Cumberland County, on the Susquehanna River.
195. Squatarola Helvetica, Linn.
196. Limosa fedoa, Vieill.
197. Cygnus Americanus, Sharp.
198. Oidemia fusca, Linn.
199. Aythya Vallisneria, Wils.
200. Falco peregrinus, Linn.
201. Larus, (a large species.)

Summary.

Species spending the summer,	.	.		112
Species resident all the year,	.	.	.	38
Winter visitors,				

Besides the birds given in the list, we have ascertained from report that some other species visit us occasionally. Barton, in a work entitled "Fragments of the Natural History of Pennsylvania," states that about the year 1760 large flocks of the Carolina Parakeet, (Conurus Carolinensis, Linn.,) were seen in Sherman's Valley, some twelve miles north of Carlisle. So unusual a circumstance caused great terror in the minds of the ignorant settlers, just as the appearance of the Bohemia Chatterer, (Bombycilla garrula,) in various parts of the north of Europe, occasions the dread of some evil, which a visit from these birds is supposed to portend. A small Rail, probably Ortygometra Jamaicensis, Briss., has sometimes been killed in our vicinity, though not of late years. The Common Crossbill, (Loxia curvirostra, Linn.,) is reported by persons living near the mountains, to be frequently seen in winter. A small Ring Plover has also been killed in our neighborhood.

Descriptions of two species, supposed to be new, of the genus Tyrannula, (Swainson,) found in Cumberland County, Penn. By Wm. M. and S. F. Baird, of Carlisle, Penn.*

For the first of the species hereafter described, we propose the name of Tyrannula flaviventris, the bright yellow color of the lower parts constituting a striking feature. The other we have named Tyrannula minima, it being the least of all our North American Tyrannulæ.

The similarity in color and size between a number of our small tyrant fly-catchers being very great, we have deemed it best to send with the specimens of the two described, skins of T. Acadica and T. Traillii, species which most nearly resemble them. By a comparison of the four, the distinctive features of each will at once be perceived.

[^18]
274 Descriptions of two New Bivds, of the genus Tyrannula.

Tyrannula flativentris, (nob.)

Specific characters.-Above deep greenish olive, beneath bright sulphur yellow, sides and fore part of breast olivaceous. Tait emarginate. Third and fourth primaries longest. Bill brownish yellow beneath.

Description of a Male.

Form, \&.c.-Body rather stout. Bill broad and the sides convex. Tarsus longer than the middle toe. Wings rounded; third primary longest, fourth slightly shorter, second one line shorter than third, and two lines longer than fifth, first shorter than fifth, but longer than sixth. Tail emarginate and slightly rounded.

Color.-Bill above dark blackish brown, beneath light yellowish brown. Feet brownish black. Plumage of the upper parts deep greenish olive, crown of the head rather darker, the feathers having their centres dark brown. A narrow ring round the eye pale yellow. Lower tail coverts, abdomen, and linings of the wings, bright sulphur yellow, deepest on the abdomen. Sides of the body, fore part of the breast, and sides of the neck, olive, lighter than the back, and inclining to yellowish on the throat. Primaries and tail feathers dark brown, the former bordered with grayish, and the latter with olive like the back. The lower row of lesser wing coverts and the secondary coverts darker, tipped with pale yellow, that color forming two bands across the wing. Secondaries darker than the primaries, and edged with pale yellow.

Length 5 inches 4 lines; extent 8 inches 8 lines; folded wing 2 inches 9 lines.

The sexes are similar in color, but the female is generally rather smaller.

Observations.-This strongly marked species will at once be distinguished from every other by the deep yellow of its under parts. It resembles T. Acadica of Gmelin (querula of Wilson) somewhat in form, but Acadica by comparison will be found to be a larger bird, lighter olive above, and very pale yellow beneath. The tail of Acadica is even or slightly rounded, in this species emarginate.

We have no specimen of T'. pusilla, of Swainson, but upon comparison with the description in Swainson and Richardson's Zoology of North America, (so favorably known for accuracy,)
it appears to differ in the color of the upper parts, pusilla being "intermediate between hair brown and oil green ;" our species is of a decided olive green; the front of pusilla is "hoary;" in our species dark brownish olive: the bands on the wing grayish white ; in our species pale yellow: "throat and breast" of T. pusilla "pale ash gray ;" in this species the throat is yellow, and the breast olive tinged with yellow.
This species was first observed in the spring of 1840 , near Carlisle, Penn. During every succeeding spring since, it has been seen in greater or less numbers, and several specimens procured each year. Its habits are much like those of the other species of this genus; it frequents low thickets near small streams, is seldom found in large woods like T. Acadica or T. virens, and is a very unsuspicious bird, allowing persons to approach within a short distance. It probably goes further north than Pennsylvania to breed, having never been observed after the latter part of May or beginning of June.

Tyrannula minima, (nob.)

Specific characters.-Above dark grayish olive, breast light ash gray, abdomen and lower tail coverts yellowish white. Tail emarginate. Second and third primaries longest, first longer than sixth. Bill horn color beneath.

Description of a Male.

Form, \&c.-Body rather slender. Bill smaller than the other species of the genus. Tarsus slightly longer than the middle toe. Second primary longest, third nearly equal, and rather longer than fourth, fifth one line shorter than fourth, first intermediate between fifth and sixth. Tail emarginate and slightly rounded.

Color.-Bill dark blackish brown above, pale horn color beneath. Feet black. Plumage of the upper parts dark grayish olive, crown somewhat darker, rump lighter and inclining to grayish. A narrow ring round the eye grayish white. Fore part of breast, sides, and sides of the neck light ash gray, middle of throat white, rest of the lower parts very pale yellow or yellowish white. Primaries and tail feathers wood brown, the former narrowly, and latter broadly edged with olive. Lower row of lesser wing coverts and the secondary coverts darker, tipped with dirty white, that color forming two bands across the wings. Secondaries also
dark, like the greater wing coverts, and broadly edged with yellowish white.

Length 5 inches 2 lines. Extent 8 inches 3 lines. Folded wing $2 \frac{1}{2}$ inches.

No perceptible difference as to color or size between the sexes.
Observations.-This species will be recognized by its size, its slender form making it the smallest of our North American Tyrannulæ. In color it most resembles T. Traillii, of Audubon, but it is a much smaller bird, being nearly three-fourths of an inch shorter. T. Traillii has the breast and sides of the neck olivaceous; in this species light ash gray; the tail also of T. Trait$l i i$ is even.

It differs from T. pusilla (comparing with the description of Swainson and Richardson as before) in having the wings more pointed, the second and third primaries being longest, and the first longer than the sixth; while in pusilla the third and fourth are longest, and the first shorter than the sixth. The upper tail coverts of pusilla are uniform in color with the back; in our species lighter: pusilla has the front "hoary;" in this species dark. The lower parts of pusilla are pale sulphur yellow, "approaching to siskin-green;" in our species yellowish white: the under mandible of pusilla is yellowish brown; of this species horn color. From the figure in the Fauna Boreali-Americana, pusilla appears to be a stouter bird, much deeper in color beneath and having a broader bill. Its smaller size and darker color above, will distinguish it from T. Acadica, (being two-thirds of an inch shorter,) which species has also longer and more pointed wings, a much larger bill which is light brown beneath, and an even tail.

This species was first observed and procured in May, 1839, near Carlisle, Penn. Since then numbers have been observed and shot on every succeeding spring. Like the preceding, (T. flaviventris,) this bird does not frequent deep forests, but is found among the scattering trees which border our streams. It is rather shyer than T. flaviventris, and does not, like that species, seek dense thickets. It also, most probably, goes further north to breed, as after the last of May it is no longer to be seen. It visits us from the south in the latter part of April, generally making its appearance about a week before T. flaviventris.

Art. VII.—Abstract of a Meteorological Journal, for the year 1843, kept at Marietta, Qhio, Lat. $39^{\circ} 25^{\prime}$ N., Long. $4^{\circ} 28^{\prime}$ W. of Washington City; by S. P. Hildreth, M. D.

Remarks on the year 1843.-Although there cannot, according to the present arrangement of the seasons, be any very great difference in the mean temperature of different years, the laws of climate forbidding any wide departure from this rule; yet from various causes there is in many years a striking difference in the temperature, especially as applied to the seasons. This variety most generally arises from the course of the winds, and from the greater or less amount of rain; but much more from the winds than from any other source. Next to the winds, the amount of cloudy weather has considerable influence, by the obstruction this state of the atmosphere opposes to the rays of light and heat from the sun. The past year has been attended with a larger amount of westerly and northerly winds than usual, and also with a greater number of cloudy days. From both these sources we may perhaps account for the low mean annual temperature of this year, being more than two degrees less than the usual amount for this climate, that of 1843 being only $50^{\circ} \cdot 77$; the years 1835 , 1836 and 1838 were also remarkable for their low temperature.

The mean for the winter months is $32^{\circ} \cdot 33$, which is four degrees less than that of the year 1842. The winter of 1843 set in
very early, so that the Ohio River was frozen over by the twenty eighth day of November, both above and below Marietta, but continued closed only about a week, when a fall of rain, with a more elevated temperature, set it free. The weather at no time during the winter was very cold; but it continued for a long time, not less than four and a half months, the coldest morning being on the 24th of March, when the mercury sunk to zero, being the lowest during the winter. The mean temperature for February was eleven degrees less than for the same month in 1842. There was but little snow, or rain, the whole amount of both being but seven inches, for the winter months. The winds were chiefly from the west and northwest, which always come to us bearing a small amount of caloric, being deprived of that life-giving property in their passage over the elevated regions of "the far west."

The mean temperature of the spring months was $46^{\circ} \cdot 77$, be ing about ten and a half degrees less than the spring of 1842 which was $57^{\circ} \cdot 11$. The most marked difference in the spring months of these two years, was in March and April, the former being 23.75, and April 8° less than the corresponding months in the year 1842. There was also a remarkable change in the progress of vegetation, the low grade of temperature retarding, as much as the unusual heat of the former year had accelerated its growth; even to the last of March there was but little more appearance of spring than in February. In March my floral jour nal does not contain the record of the blooming of a single flower, but all were still wrapped in the deep sleep of winter; while in the past year it commenced with the opening of the month. With many plants there was more than a month's difference in the appearance of their blossoms. The contrast is very striking and curious, to a lover of floral horticulture, or an observer of the progress of vegetation in different years. The following dates of the blooming of plants, will contrast curiously with that published for 1842.

April 1st, crocus in bloom; 2d, crown imperial two inches high; 3d, snow fell two inches deep; 4th, blackbird and martin appear ; 8th, snowdrop in bloom; 14th, Hepatica triloba; 19th early hyacinth; 20th, Aronia botryapium, or Juneberry; 21st, crown imperial; 22d, Sanguinaria Canadensis; 23d, hyacinth; 24th, peach tree begins to open its flowers on the sunny side of
hills, but not in low grounds; 25th, wood anemone ; 26th, fumitory and birthwort ; 27th, peach in bloom generally-last year it opened on the 19th of March, a difference of thirty eight days; 29th, plum in bloom. On the morning of the 25th there was a frost, but not so hard as to injure the blossoms of the peach. It is a curious fact, that on the borders of the Ohio River, we rarely fail in having one frost, or more, when the peach is in blossom. This I have noticed for more than thirty years.
May 1st, pear and cherry in bloom; 5th, apple in blossomlast year it was open on the 2 d of April, a difference of thirty three days; a few tulips of the early varieties open; 6th, red-bud in bloom-this fine flowering tree usually opens at the same time with the apple ; 7th, Cornus florida; 8th, white oak putting out its leaves-the old Indian rule for planting their corn, and was probably founded on ancient observation, that before that period the earth was not sufficiently warmed for the corn to vegetate in a healthy manner ; 9th, apple shedding its blossoms; 13th, quince tree in bloom; 16th, purple mulberry; 17th, Calceolaria lutea; 18th, hickory; 19 h , black walnut shedding its aments; 22d, Ribes villosus; 24th, Acacia robinia-this is a very cautious tree, and never puts out its bloom till all danger from late frosts is past; 25th, Prunus Virginianus; 27th, rose Acacia, in gardens; 30th, white Chinese peony.
The mean temperature for the summer months was $71^{\circ} \cdot \mathbf{1 5}$, which is $3 \circ .71$ above the summer of 1842 . The amount of rain in these months was only $7 \cdot 45$ inches, while in the former year it was 15.75 inches. This small amount of rain, less than half that of 1842 , will no doubt in part account for the increase of heat, there being less of clouds and more sunshine. June 2d, there was a smart frost in the morning, but not so hard as to destroy the young and tender fruit of pears, apples, \&c., it being protected by the shelter, and by the radiation of caloric from the leaves. 7th, Osage orange in bloom ; 8th, peas fit for the table-in ordinary years they are ready by the 20th of May. 9th, strawberries ripe ; 11th, various hardy roses in bloom; 18th, Franklinia; 23 d , cucumbers ready for eating-grown in the open air, but protected when small by a box, like a hand glass; 26th, Sambucus in bloom; 27 th, purple mulberry ripe ; 29th, red Antwerp raspberry and currant; July 1st, Catalpa in bloom. The ripening of the early summer fruits is not so much retarded by the action of a
cold spring, as the blooming of flowers. The hot weather of early summer brings them forward rapidly, as it accelerates the progress of vegetation in a high northern latitude, where corn is ripened in six weeks from the time of the melting of the last of the snow. July and August were very dry months; there falling but a little more than three inches of rain. The excessive drought and scorching heat of the sun, at a time when the Indian corn is setting its ears and perfecting the seed, nearly ruined the crop in all the hilly region of this portion of the state. Potatoes also suffered in the same manner; the product being very small in amount and very poor in quality. The sweet potatoe, which in common years is very productive and finely flavored, was a complete failure, many fields producing but little more than the amount of seed planted. Wheat, the staple crop of the uplands, was very poor. The open character of the winter, with the alternate state of freezing and thawing the ground, detached many of the roots from the soil, and the plants perished. Much that survived the winter, was blighted by rust and mildew, or destroyed by the fly. A steady cold winter, with a good depth of snow, agrees the best with this valuable grain. The crop of peaches was very fine and abundant ; the hot dry weather of August ripening this delicious fruit in great perfection. Apples were abundant and of an excellent quality. Melons and grapes both ripened well, and could not complain of a lack of summer heat.

The mean temperature of the autumnal months was $41^{\circ} \cdot 08$, being just ten degrees below that of the preceding year. This difference may be explained by the unusual amount of rain, and the prevalence of northerly and westerly winds. For eight or ten weeks the sun did not shine more than a fourth part of the time. The amount of rain in autumn was 16.31 inches; of this quantity there fell in September 9.25 inches. The excessive wet condition of the earth made it very difficult for the farmers to dig their potatoes, gather their corn, or plow their land for the seeding of wheat. Much Indian corn was lost by mould and dampness, there not being sufficient sunshine to dry it. In addition to the other calamities which befell us, especially the smaller farmers, the gray squirrels commenced their depredations on the corn as soon as it was fairly in the milk, and continued them till it was gathered. They were most numerous in September and October, migrating from the woods in the interior in countless hosts;
one man could kill a hundred and more in a day. Fields of five to eight acres were entirely festroyed; in many instances not leaving a bushel of sound corn to the cultivator. The forests produced no nuts or acorns, and the poor squirrels were forced to travel in quest of food or perish. Thousands of them swam across the Ohio River. The years 1807, 1822 and 1843, will long be famous in the annals of Ohio, for the migration and depredations of the squirrel. In December there was a fall of eleven inches of snow, which remained for a few days. The Ohio River has not yet been closed with ice, and steamboats still continue to navigate its waters.

Marietta, January 10, 1844.

Art. VIII.-A Week among the Glaciers; by Dr. H. Allen
We arrived at Chamonix \dagger on Friday evening, July 12th, 1839, and strolled about this small but remarkably situated village. Chamonix is at the base of the monarch of the Alps, and completely surrounded by these stupendons barriers, which Nature has formed, as if to seclude the inhabitants of its peaceful vale from intercourse with, and consequent contamination from the adjoining nations.
Here in the space of a few square miles, has Nature congregated her most gigantic piles, and displayed with wasteful prodigality the immensity of her power. On every side the lofty peaks of the Alpine chain present themselves to the eye, and bound abruptly the limited horizon. While every mountain presents us own peculiar attractions, each possessing advantages denied to all the rest, they stand as opposing rivals, conscious of their own matchless attractions. On the east rises the Montagne Vert, celebrated for its Mer de Glace and garden; this is a spot that nearly every traveller visits, and is accessible with no great fatigue and little danger. To the south rises in fearful and majestic height the mighty monarch of the Alps, (Mont Blanc,) flanked on either side by the Dome de.Gouté and the Aiguille de Midi, which' stand as sentinels to guard the icy pass to the throne of the Alpine king. Nearly all are at first disappointed in the height

[^19]which Mont Blanc presents, and this is doubtless from the description either of friends who have visited this spot, or the accounts given in the "hand-books of Chamonix," which describe this mountain as the "dark frowning monarch," \&c.

Mont Blanc possesses a character to which such appellations will not apply. It rises far above the surrounding mountains; and as its lofty summit towers above the rest, it impresses the beholder, not with the awful sublimity that does our own impetuous Niagara, but by its grand and majestic serenity the turbulent passions which agitate our bosoms are quelled to silence in contemplating the stillness that rests on its eternal snow-capped heights.

In the valley of Chamonix runs the river Arve, and has for a tributary the Arveron, which issues from beneath the Glacier du Bois, and is visited by all to see the icy arch, which has been formed by the waters of the river, in conjunction with the rays of the sun. Its height varies much in different seasons, and even during the same year; it may be named from thirty to one hundred feet.

The ascension of Mont Blanc is attempted by few. The first successful one was made by Prof. De Saussure, whose valuable researches, and the praiseworthy object he had in view, (the advancement of science,) are sufficient excuse for hazarding the lives of his guides, who are tempted by money to brave the inevitable danger of the journey. Since his ascension it has been attempted by a few adventurers with varied success, and generally with no other motive than mere curiosity or a spirit of bravado. Recently a Dr. Barry of England made a successful ascent, and has published an account of it, with his observations; but owing to the inaccuracy of his instruments, his experiments cannot be relied upon, which we much regret.

By the present arrangement of the government, the ascent of Mont Blanc is very expensive, in cousequence of the great number of guides requisite to be taken; and it is also annoying by the forms and ceremonies attendant on such an expedition. When a party intend making the ascent, mass is previously said in the village church, for the safety of the guides and travellers; and the guides, for whom more especially it is said, are obliged to attend. On the whole it is rather an imposing sight, to see these sturdy mountaineers attending this religious ceremony, before attempting to brave the dangers of an ascent.

The attempt to ascend Mont Blanc was to me quite unexpected, for I did not wish to risk for myself the dangers of an ascent, and much less the lives of the guides necessary to such an excursion. But being in company with two English gentlemen, who determined to attempt it, I was persuaded to make it with them.

Having made known our intentions to the hotelier, he immediately sent for Couttet, who selected from the most trustworthy of the guides, eighteen for us; and six more, after seeing the preparation of eatables and drinkables the landlord had prepared for our journey, volunteered to accompany us, for the privilege of free access to our haversacks. Every thing being arranged the night previous, we breakfasted the following morning, July 15th, at 4 o'clock. The hotel presented at this early hour a lively scene, while the guides were depositing in the different haversacks the provisions which had been prepared, and which were truly in amount enormous for the time we anticipated being absent.

One hour later and we were already skirting the base of the mountain, myself and two friends on mules; and in this way we proceeded, till we entered the thick growth of pines that clothes the mountain side, throngh which we wound our way, until the broken fragments of rocks and the trunks of fallen trees prevented the further progress of the mules, when we dismounted and sent them back, while we proceeded on foot through the pines, which now becoming less and less thrifty, soon ceased altogether, and nothing but the barren rocks, with only here and there a scraggy shrub, till about 9 o'clock we arrived at the point of perpetual snow, where we halted to take a second dejeuner a la fourchette, (breakfast.)

It was at this point we determined to enter upon the Glacier des Bossons, and crossing it, to ascend the mount on the opposite side, which would, we conceived, be easier and less dangerous than continuing our course up the glacier to the Grandes Mulets, which was the point we wished to gain as a resting place for the night.
Here I made an experiment to test the diurnal advance of the glacier. I took three large blocks of stone, with the smoothest faces I could find, and having placed them in a straight line about ten feet distant from each other, I sighted (in the usual
manner of farmers in setting a post and rail fence) along the smooth faces of the stones which were turned towards the summit of the mountain. I then had three other stones carried on the glacier at the distance of fifty to sixty feet from each other, and placed in a straight line with the three former stones, and left them to mark the change which should take place in their relative positions, on my return.

A similar experiment I made in the evening on my arrival at the Grand Mulets, and on my return to the Grand Mulets the next day at 1 o'clock, P. M., and at the point where I had made the first experiment at 40 'clock, P. M., which made nineteen hours for the former, and thirty one for the latter. The stones on the glacier had descended during this time, from a line drawn from the upper surface of the stones on the mountain to the upper surface of the stones on the glacier, between twelve and thirteen inches for the former, and about twenty one inches for the latter, which is about sixteen inches for the twenty four hours.

The number of pulsations and respirations per minute, of the whole party, I had taken at Chamonix, previous to leaving, and found that the average was seventy six of the former and sixteen and a half of the latter. At this point, the perpetual snow line, there was a slight acceleration, the respirations being eighteen and the pulsations eighty two per minute, after resting fifteen minutes, and of course previous to eating, as the pulsations are augmented during the process of digestion.

At 10 o'clock, A. M. we entered upon the glacier; the travelling was at first neither difficult nor fatiguing, for we had each a well tried Alpenstock, which was equal to a third foot in case of need, and our shoes, made for the occasion, were well armed with square-headed nails throughout the whole extent of heel and sole.

The extreme purity of this glacier is remarked by all as greater than that of either of the other glaciers in the valley of Chamonix, and its crevasses present most perfectly the bluish green, and from that to the deep blue of the gulf water. The crevasses in this glacier are much deeper, wider, and more extensive, than either of the others in this valley; and this is owing probably to its great extent, and to its being one of the most precipitous of the Alps. They vary in width from a ferv feet to many hundred, and taking their length, including their windings, from a few rods to one or two miles. Their depth has been estimated
by De Saussure, for the deepest, at six hundred feet, which has been considered as exaggerated-arr opinion in which I should agree, if this depth is given as common; but that there is one, and indeed that there are several, of this depth, below the Grand Plateau, I confidently affirm. One in particular, which I measured with a rude instrument constructed on the spot for the purpose, proved to be between eight and nine hundred feet deep; it was but a short distance from the Grand Mulets. This crevasse, as I should judge, was about one fourth of a mile in width, and seemed to have been formed by the inferior side sliding down to the distance mentioned above as the width of the crevasse, while its superior portion, remaiming apparently stationary, (I say apparently, because the whole mass is perpetually moving onward,) had increased in height, by the additions made to it from the falling avalanches, so that the upper side rose more than two hundred feet above the inferior border of the crevasse; consequently, measuring its depth from the highest point of its upper edge, it measured near nine hundred feet, while from the highest point of its inferior border, my instrument marked something less than six hundred feet. This I give as the maximum of depth of any crevasse which we observed in this ascent. The crevasses are however, generally, from a few feet to fifty or sixty deep. Many have their sides nearly perpendicular, but in the deeper ones they are always zigzag, and many of the deepest, when they are very wide, may be descended with but little risk by means of ropes and hatchets, which are a necessary accompaniment to these expeditions. The crevasses which are the most difficult and dangerous to cross, are those whose width is about sixty or eighty feet, and eighty or one hundred deep. These frequently extend to a great length, and to avoid the fatigue attendant on following them parallel to their length, an attempt is sometimes made to pass on the bridges, which have been formed by avalanches falling across them, and thus wedging in immense blocks, forming in many places a rude but substantial arch, which rises some ten or twenty feet above their borders, and as many wide, making a very safe and convenient passage, while others at their base are sufficiently wide to tread on with perfect ease and safety. At the apex of the arch, they become so narrow, by melting, that it is quite impossible to stand erect upon their summit ; it being only a few inches wide, and sloped on either side like a saddle, one is obliged for a few
feet to sit astride of them as on horseback, and trust to the steadiness of his nerves and the firm grasp of his knees, to accomplish a safe transit. The ascent of these bridges is much easier and less hazardous than the descent, in consequence of being compelled, while descending, to look continually into the gap of the depth below, exhibiting the precariousness of the position.

We traversed these seas of ice and snow from about $10 o^{\prime}$ clock, A. M. till between 5 and 6 o'clock, P. M. when we arrived at the Grand Mulets, which we should have reached at least two hours sooner, had it not been for a newly formed crevasse of very great extent; (I say newly formed, because my guides said that the year previous when they made the ascent to the Grand Mulets it did not exist.) It was of various width thronghout its length, from fifty feet to one fourth of a mile; and in following along its side we were obliged to ascend about one thousand feet above the Grand Mulets before we could find a place to cross it, being about two thirds up the length of the crevasse, where turning abruptly, at nearly a right angle, it was filled for the distance of t wo hundred feet or more by avalanches, which had fallen from the Grand Plateau, or summit of the mount, and illustrated in the grandest and most impressive manuer, the way in which gravity hurls down and piles up these immense masses of snow and ice to the height of hundreds of feet, and so equally poised upon pedestals of ice, that have been wasted by the heat of the sun, till it seems impossible that they could bear the enormous superimposed weight. In crossing the chasm at this point, we passed under these shelving masses, some of which projected one hundred feet over our path. The scene was one of wild magnificence ; and it was at this point that our guides enjoined the strictest silence, and to tread with the utmost lightness and precaution, which injunction I regarded at the tirne as being merely an attempt ad captandum, in order to enhance in our estimation the value of their services. Being excessively fatigued, and being here screened from the wind and dazzling rays of the sun, I proposed to halt and rest, to which my guide in the most peremptory and positive manner objected, saying if I attempted to stop at this point, he should be obliged to take me up and carry me from underneath this shelving ice, while at the same time, pointing to the water which was dripping slowly from its summit, and trickling down its side and base, he said it would not stand another
day's sun, and any cause which should produce a slight vibration of the air, would dislodge other masses above it, which were less firmly fixed than even this one, and they would set the whole mass to tumbling headlong down. This being spoken with so much earnestness, and in a mere whisper, I proceeded. Our valet de place, whom we had taken with us, was immediately before me, and being rather awkward, moved very slowly, and had already made one or two false steps, which my guide seeing, advanced at once and stopped him, then told me to pass him, as a few more such steps might set some of the smaller blocks in motion, and as we were behind, we should lose our lives, by his stupidity. I passed him, and a few minutes' walk carried us to the opposite side of this dangerous pass, where we sat down to rest and viewed from a point of safety the danger which we had almost unconsciously braved. It was now frightful to see other promontories of ice, which while we were crossing had been hidden from our view, resting upon mere feathery edges, with sheets of snow dropping over their edges in festoons, appearing scarcely thick enough to support their own weight.

Our guides told us we could now prove, or rather test, the truth of their assertions respecting the powerful effect of the vibration of the air at this height, which hint we at once availed ourselves of, by ordering the whole company to give three shouts at the height of their voices, which they did, and the effect of which was quickly visible. The first shout produced no sensible movement, but with the second, though the sound produced none of that sharp echo, which we often hear in the gorges of the mountain valleys, yet its effect was manifest, first upon those festonned edges of snow which I have mentioned above, and which with another loud shout began to detach themselves in quick succession, falling in considerable sheets, till one of no great size fell some eighty feet, upon one of those huge rocks of ice, which was poised so equally that it required but the slightest force to turn the balance, when this slid from its resting place, with but little velocity, not as fast apparently as a man would walk; but the momentum of so large a mass must have been enormous. I should judge its slide was not more than twelve or fifteen feet (thongh it may have been many more) when being suddenly checked, by its base coming in contact with another mass, the momentum it had acquired in its slide threw its sum-
mit beyond the centre of gravity, and it pitched headlong down the broken plane of the crevice, which was followed by an active scene of wild and terrific confusion. Avalanche succeeded avalanche of enormous size, as the fall of one detached others larger than itself.

At first their motion was slow and regular, as they merely slid from their resting places, till arrested by another mass, when they came tumbling, rolling, and bounding down as their velocity increased, till no barrier could check their impetuous course.

At their onset, each could be distinctly seen, and marked amid the rest, till by their increased velocity, according to the obstacles they encountered as they rolled onward in their descent, bounding from crag to crag with resistless force, they would rend and shiver themselves and opposing obstacles into immense masses. They seemed to gain additional power from each opposing barrier, till opposer and opposed, rent into tep thousand fragments, rushed headlong, tearing, crashing, thundering down, as if possessing within themselves the elements of life; then deviating from side to side, as any solid angular inclination turned them from their forward course, till ground and broken into myriads of pieces, their forms became too indistinct to be any longer discerned. They then assumed the confused appearance of a circumscribed storm of thick hail and snow, driven madly onward by a furious tempest, until it reached its final resting place, far down in the rough and jagged bosom of the glacier, of which it now forms a part, to be carried slowly yet surely to the valley, and there being liquefied by the rays of a summer sun, to aid in swelling the torrent of the Arve. This mountain river, as if exulting in being loosed from its icy bondage, then leaps joyously along, till it mingles its waters with the deep blue sea-although mingled, yet it is not lost, for it may again assume another and a lighter form, as in vapor it rises from the tranquil bosom of the Mediterranean, a part to be wafted by the soft zephyrs of Italy to irrigate her fertile plains, while the rest may be again transported to clothe anew the lofty summit of some snow-capped Alp.

Those travellers who from the valley of Chamonix have seen these masses of ice falling from the summit of Mont Blauc, on the Grand Plateau, in consequence of their distance and great height, can form no idea of their size. These blocks of ice,
which from the valley appear, as they are displaced, not larger than fifteen or twenty feet square, are, to those who are in their immediate vicinity, from one hundred to two hundred feet. This kind of avalanche differs from the Stanb-laminen, (dust avalarche,) as they are called by the natives of the Alps, which being formed by the loose fresh-fallen snow of winter, before it has been melted and made compact, is piled up by the whirlwinds which are common in the Alps; such avalanches increase as they descend, till they acquire an enormous size, covering acres, I may say miles, in their descent ; overwhelming and laying prostrate whole forests of pines or villages which lie in their course. Another kind, the Grund-laminen, fall chiefly during the early months of spring and summer, as in May and June, when the rays of the sun being very powerful, the snow becomes more compact. They are composed of soggy snow and ice, and are also very destructive.
They were avalanches of this kind, that in 1720, in Ober Gestelen, (Vallais,) and in 1749 in the Tavetsch, produced such devastation. The records of the valleys of the Alps abound with mournful exemplification of the destructive power of these avalanches, and of many others of this class. The wind of the avalanche, whose violent effects have been described by writers, probably acts only by its vibratory power, and the concussion consequent upon the movement of the avalanche, thus filling up the momentary vacuum produced by its rapid motion through the air. This idea of the wind of avalanches is common among the inhabitants of the Alps, as is a similar one among many of us, concerning the wind of a cannon ball, killing without touching.*

In support of their opinions of the wind of avalanches, they cite the fact of large and sturdy pines being cut smoothly off, without the bark or branches being chafed, but I saw nothing of this kind, which could not be accounted for by the rush of wind to fill the vacuum. It was in this way that the village of Ronda in the Visp-Thol, had many of its houses prostrated and scattered in fragments in 1720, and also one of the spires of the convent of Dissentis fell by the vibratory action of the air, produced by an avalanche which fell about one fourth of a mile distant from it. This concussion of the air is familiar to all by the effects produced

[^20]in the discharge of ordnance, near our dwellings. It may be more perfectly exemplified, by taking a bottle and corking it tightly, and discharging at a short distance, twenty or thirty feet; a musket or a rifle, so that the ball shall pass about one inch over the cork; the velocity of the projected bullet produces a vacuum, and the cork leaps from its place of confinement, in consequence of the atmospheric pressure being thus suddenly removed, and by the expansion of the air within the bottle.

The Grand Mulets are two rocks which project from the Glacier des Bossons, whose summits are so pointed, and their sides so perpendicular, that the snow does not rest upon them. Here we halted for the night.

They had loaded a cannon in the valley previous to our departure, and were to discharge it when they saw us (through their telescope) arrive at this point, (Grand Mulets,) which they did, but neither myself nor the guides heard the report, although some of our guides said they saw the smoke.

I had taken up with me six old pigeons, the strongest and shyest I could find in the pigeon-house of the hotel, and now de termined to let two of them off from the rock; the time being marked on a small piece of parchment, and attached by a string to one leg. I had desired the landlord to note the time when the pigeons made their appearance at Chamonix. I then tossed one of them a few feet in the air, that he might see to take his direction, when to my surprise, he fluttered a little, and came down nearly as rapidly as I had thrown him up. When we then attempted to catch him, he endeavored to fly, but being unable to rise, he fluttered about, ran with his wings extended a few yards, and was easily taken. I presumed he might have been injured by the confinement in the basket, and so I made the same experiment with three others, the result being the same; proving that the rarity of the air was too great to admit of their supporting themselves. But the next day in descending we let them off about half way down between the Grand Mulets and the upper point of vegetation, and they took their courses directly for Chat monix, and were doubtless safely at home long before we reached the perpetual snow line.

After resting here twenty minutes, and previous to eating, the average pulsations and respirations of the whole party stood at one hundred and twenty eight of the former and thirty of the
latter per minute. ${ }^{\text {. Notwithstanding the increase in the frequency }}$ of the respiratory action was much greater than natural, and increases as you ascend to the higher points of the mountain, I found none of those urgent symptoms mentioned by tourists, of difficult and laborious respiration, that is, during rest or repose, but even at this point, I found that the muscles became rapidly fatigued, and while in motion the respiration was accelerated, and consequently more or less difficult, but ceased to be oppressive after a few moments of rest, proving that the effect was due not to the rarity of the air, but the exercise in this rare atmosphere. The higher you ascend, the greater and greater is the inclination to rest and lassitude, and the power of muscular endurance is diminished almost to zero. The moment however, you place yourself in the horizontal position, by lying on the snow, the muscles being at rest, you feel merely lassitude, but no fatigue, which returns almost immediately, on the muscles being again called into action. The most troublesome and annoying circumstance was the intense thirst, produced in part by the cutaneous transpiration, which was very abundant, in consequence of the fatigue produced by motion, and also by the peculiar condition of the atmosphere. As this thirst increases, the desire for food diminishes, until it becomes actually a loathing. This was experienced not only by myself, but to a great degree even by the guides, who at the Grand Mulets devoured the fattest kind of roasted and boiled meats with the greatest goût, but at the Grand Plateau cared for nothing more than the wing of a chicken, refusing positively the hearty meats, but swallowed with infinite satisfaction the Bordeaux wine which I had carried for my own use. The only beverage that had an agreeable taste to me, and which alleviated my thirst, was the lemonade gazeuse. Taking a small quantity of snow in my hand, I would saturate it with this liquid, and then allow it to dissolve in my mouth.
My two friends and myself chose the highest point of the Grand Mulets as our resting place for the night; but owing to its steepness, fearing lest we might, during sound sleep subsequent to the fatigue of the day, roll or slide down its side, we constructed with the loose stones from the crevices of the rock, a wall about ten feet long, and about two feet high in the centre, and descending to one foot at its extremities, of a semilunar form, against which we were to place our feet. The larger stones were now removed,
to make the foundations of our beds as smooth as the circumstances of the place would permit; we selected each one his place, and spread upon it his sheepskin, while a knapsack served the purpose of a pillow. I had just wrapped my blanket around me , as the sun was sinking below the horizon, throwing its lurid glare upon the snow-capped summits, which now above, below, and on either side, rose in close proximity, presenting a scene in which were mingled the beautiful, and sublime, and more than repaying any lover of nature for the fatigues endured in obtaining the sight. I now prepared for sleep, but the novelty of the position, the deathlike stillness, and the events of the day crowding before my imagination precluded sleep, while the vast expanse of the blue arch of heaven, which was my canopy, studded with its myriads of scintillating lights, invited contemplation rather than repose.

I was not allowed long to enjoy this scene of tranquillity and silence, for the day had been one of excessive heat, and its effects began to be manifested by the fall of avalanches. Situated as the Grand Mulets are, about ten thousand feet above the level of the sea, below the Grand Platean, at two thirds of the height of Mont Blanc, within two thousand five hundred feet of the summit of the Aignille de Midi, and projecting from the middle of the glacier, they stand as opponents to very many of the avalanches that fall from either of these elevated points. I had not lain more than twenty minutes, when I was aroused by a tremendons crash, while the entire rock still vibrated from the concussion of the ponderous mass : as I sprang to my feet, and looked over the mountain side, by the light of the moon, which had just risen, making every object, though enlarged and softened, almost as distinct as noonday, this mass of snow and ice could be seen hurrying and rushing headlong in its course, till ground and broken by its own violence it settled down still and tranquil, thousands of feet below, amid the ever moving glacier. 'They continued to fall for about one hour; at first the interval between was some ten minutes, then more frequently, till becoming less frequent, they ceased altogether, and universal stillness reigned once more, broken only now and then, by what is termed the groanings of the Alps, which is the cracking of the ice among the glaciers.

The fall of the avalanches at this hour is caused by the effect of the sun, (melting the ice, and at this high point it requires
the whole force of the sun's rays during the entire day; the water thus produced runs down and forms pools about their base, which continues to melt there for some time after the sun has set, when one avalanche after another is dislodged, and beginning to fall, they continue till the water again congeals, which prevents any further descent until the following evening, when the same effect being again produced during the day by the same cause, their fall is again renewed. I once more prepared myself for sleep, but feeling no inclination that way, I amused myself in watching the constellations, which being immediately over me, were shining with peculiar brightness, and during the course of an hour or more that I was thus engaged, I observed slight flashes of light passing before my eyes, not unlike aurora borealis; and supposed it an optical illusion, probably caused by the glare from the sun and snow to which my eyes had been exposed during the day; but as they became more frequent, I satisfied myself that they were real. Rising and looking down in the direction of Chamonix, I discovered at once the cause, which was a thunder shower in the valley. The sillons [streaks] of electricity presented a beautiful sight, as they sported amid the dense clouds that overhung the village. There was none of that dazzling brightness presented by the lightning seen when below the cloud, but merely the red zigzag or forked lines, owing doubtless to the cloud being between us and the electric fluid. Although the lightning could be distinctly seen, we could not detect the slightest sound of thunder; whether this was cansed by any peculiar condition of the atmosphere at the time, or by the rareness of the air, or our distance, or whether it is a constant phenomenon here, I am unable to say. There was however, much thunder in the valley, and some very heavy explosions too, I was informed by the landlord on my return the next day.

We left the Grand Mulets between 2 and 3 o'clock, A. M., and and arrived at the Grand Platean bet ween 8 and 9 o'clock. The view from this elevated point is almost boundless, and the whole extent of country for miles on every side (except that portion where the prospect is interrupted by the summit of Mont Blanc) extended itself far and wide, presenting its plains, mountains and lakes, as distinctly as if spread out upon a map before the eye. The Plateau is an almost level plain, with an area I should judge, of ten acres. The Roches Rouges are between this point and
the summit. The clouds began very soon to rise from different points, and often obstructed view after view, so that to continue the ascent to the very summit, we deemed would be useless, as far as the prospect was concerned. This was now nearly or completely limited by the moving masses of cloud and vapor, as they rose from the valleys or hung pendulous on the mountain side; for a moment they were stationary, and then rising in undulating broken lines, they assumed a deeper and denser form, as expanding and spreading themselves through and beyond the various mountain passes, they extended as far as the eye could discern. They formed one great tumultuous ocean of clouds, whose ever restless waves were driven impetuously along, lashing the mountain tops that still peered above their ragged surfaces, and which soon sank in the bosom of the rising vapor, till this vast, restless, rolling cloud, seemed to fill immensity.

We now hastened our descent, which was quickly and easily achieved in comparison with the toil of the ascent; as, in a few minutes, we slid down the snowy plains, which had taken hours of indefatigable effort to surmount. This was done by sitting on the summit of the plane to be descended, with the legs extended in front ; then thrusting the Alpenstock in the snow a couple of feet, we depended upon a firm pressure on it to govern the velocity of the descent. Thus, continually repeating this novel kind of locomotion among the inclined snow plains, walking and leaping among the glaciers, jumping and scrambling among the rocks and pines, we arrived again safely at the hotel in Chamonix at about 8 o'clock in the evening, having been absent about forty hours.

Art. IX.-Notice of Remains of Megatherium, Mastodon and Silurian Fossils; in a letter to the Senior Editor, from Rupus Havmond, M. D., dated Brookville, Indiana, Sept. 16, 1843.

Dear Sir-Facts, which in themselves seem trifling, and but little likely to benefit science, separately considered, often become of much importance when viewed collectively and in reference to each other. This consideration has induced me to give you some account of a single molar tooth, probably of the Megatherium, now in my possession, and which was found in this (Franklin)
county, about fifteen miles west of this village, in latitude about* $39^{\circ} 27^{\prime} \mathrm{N}$. and longitude from Washington about $8^{\circ} \mathrm{W}$.
I am not aware, that any remains of the Megatherium have before been discovered in this country north of Georgia and Virginia. \dagger The tooth was found in the gravelly bank of Salt Creek, a tributary of Whitewater River, which flows into the Great Miami River near its junction with the Ohio. It was uncovered by a freshet, which had washed away the alluvial bank so as to expose the tooth to view.

Dimensions.-Length, 13 inches; greatest depth, 6 inches; width of grinding surface, $3 \frac{1}{8}$ inches; length of grinding surface, 6 inches; width at the bottom of socket, 3 inches.
Its weight is now eleven pounds and four ounces; when first found, and previous to being dried, it weighed fourteen pounds. Seven inches of the face or crown of the tooth, had not grown or protruded beyond the gum or jaw, so that but six inches had, at the death of the animal, ever been used in mastication. Whether the remaining seven inches would have grown longer, or whether this tooth belonged to the front or the back part of the jaw and was naturally imperfect in this respect, I am unable to determine. From front to rear, it has considerable lateral curvature, diverging at the centre, one inch from a right line.

The "crusta petrosa" still possesses considerable hardness, but in many places has scaled off. Those "wedges" as Dr. Buckland calls them, which had not appeared above the jaw, upon the outside of the tooth, have much the appearance of ribs in a skeleton, not being so thickly covered with the "crusta" as the rest of the tooth. The lower ends of the "wedges" or fangs stand separate from each other about half an inch, and form transverse rows of rounded flattish points or partitions finished off with ivory, and exceedingly smooth and highly polished, except those which have not grown beyond the jaw, these being hollow at the ends and bringing to view the enamel of the "wedge." The tooth is not so deep at the ends as in the middle, the ends of the roots forming nearly a segment of a circle. The parts of those "wedges" which had not finished their growth, present nearly sharp points of enamel, each wedge branching and forming three sev-

[^21]eral points, which after having been used some time, wear off below the branches and leave but a single transverse cutting edge. This tooth is four inches longer than those described by Dr. Buckland.* This and a part of a tusk, the fragment of a molar tooth, with a few pieces of bones, referable to the Mastodon, are all the fossils of this kind, which to my knowledge, have been found in this part of the country.

It may not be amiss to say a few words in relation to our position in a geological point of view. This and several of the adjoining counties, and indeed a considerable portion of the eastern side of this state, and the western part of the state of Ohio, belong to that formation or group, called by some geologists the Silurian. From the nature of the country, which in its general features is almost a level plain, it is impossible to examine the rocks to a greater depth than four hundred and fifty or five hundred feet. The valleys and ravines seem to have been wholly formed by the streams which pass through them, for the various strata upon either side of all of them, are opposite to each other and nearly horizontal, showing that they were deposited in the situation which they now occupy in seas or oceans comparatively calm, and that they have never been disturbed, except by the gradual wearing of these streams, since their deposition upon each other. The sides of the hills, or more properly the sides of the valleys, are composed of thin strata of limestone varying from half an inch to two feet, and in some rare instances, many feet in thickness, alternating with clay and clay slates of various thickness, and each of these strata throughout the whole group abound, indiscriminately, with.innumerable organic remains. Amongst the most numerous may be reckoned the Terebratula, Producta, Cyathophyllum, Orthoceratite, Paradoxoides Tessini, Spirifer, trilobites, (rare,) corals and corallines without number, moniliform encrinites, peutacrinites, \&c. \&c., and a single species of spiral univalve shell, but so imperfect that I have not been able to determine its name or place.

Spread all over the country, we have erratic blocks or boulders, consisting of almost every species of primary rocks, but principally granite and granitic gneiss. These are the principal evidences of drift which we have in this neighborhood, having discovered no moraines which are so common in your section of the Union, according to Dr. Hitchcock.

[^22]
-Art. X.-Notice of a Memoir by C. G. Ehrenberg, "On the Extent and Influence of Microscopic Life in North and South America."*

This important memoir by the illustrions Ehrenberg, is characterized like all the preceding works of this author, not only by marks of the most accurate research and indefatigable industry, but by the still higher merit of far-reaching philosophical views, and a just appreciation of the important bearings and applications of the facts which he has brought to light.
Believing that this memoir is one of peculiar interest to American science, we have endeavored to give in the following pages as correct a view of its contents as is in our power.

The work is divided into the following seven parts, which we intend to notice in order. 1. Introduction. 2. Review of the materials. 3. Enumeration of the American forms, according to the dates of observation. 4. Alphabetical review of all the observed and peculiar forms. 5. Characteristics of the new genera and species. 6. General results of these observations. 7. Explanation of the plates.
I. Introduction.-In the commencement, Ehrenberg remarks that microscopic life no longer belongs to the domain of systematic zoology alone, but that its decided influence upon the inanimate nature which every where surrounds and influences us, and upon the fundamental notions of life itself, have of late been recognized, so that the subject is no longer considered merely with regard to its organic and physiological bearings, but for its relations to the inorganic masses of the earth. There are many, however, who still wish to banish these investigations from the circle of strict science, and who wonder that any one should devote so much labor to the strict examination of such inaccessible and remote objects. These prejudices are compared to those Which prevented the importance of the first noticed electric and magnetic phenomena from being appreciated, and which long

[^23]left them as mere subjects of amusement, although at present regular professors of electricity and magnetism are established at all the universities of the civilized world.

The author hopes that the continuation of his labors will show, that however much that is untenable may have been presented in science of late, the objects and results of microscopic research are by no means such as to prevent the strictest critical examination, and that they can even be subjected to the best of all tests, ocular demonstration.

He then alludes to his discoveries with regard to the important influence which animalcules have had in filling up streams and harbors, and in the formation of deltas, and states that observations have now rendered it more obvious how rock-masses which are wholly or partially crystalline, may have resulted from the solution and change of minute siliceous and calcareous organisms.
II. Review of the materials. - The author in consequence of the various relations of microscopic life to the great field of nature, felt induced to compare the facts observed in Europe with the conditions of other parts of the world, and, accidentally, the American forms were the first examined. Among the materials for this study of the American forms, were specimens of edible clay from the banks of the Amazon, furnished by Von Martius; species collected in a living state in Mexico by the author's brother, Carl von Ehrenberg; earth attached to plants in herbaria; and "a whole box full" of fossil animalcules sent from the United States by Mr. B. Silliman, junior ; by Professors Silliman, Hitchcock and Bailey; and a number of the living species of West Point were received directly from Prof. Bailey in the year 1842.

From the results of the investigation of these materials, Ehrenberg is enabled to present a view of the minutest forms of animal life, extending from the Falkland Islands on the south, to Labrador, Kotzebue's Sound, Iceland and Spitzbergen on the north.
III. Enumeration of the American forms, according to the date of observation. -This detailed enumeration of species from different localities is full of interest, but our limits compel us to give but brief notices of many of the localities, and to confine our attention chiefly to the most important observations concerning the localities in the United States. We remark however that among the species detected with sea Confervæfrom the Falkland

Islands are several species which have also been found recently in mud from Boston harbor; among the most remarkable of these are Stauroptera aspera, Navicula Lyra, Pinnularia peregrina, \&c.

The forms from Peru were obtained from Algæ sent to Ehrenberg by the distinguished algologist, Dr. Montagne, and from swamp earth, adhering to a plant in Kunth's herbarium, which was collected in the year 1777. All the genera but one (Podosira) are European, and this one has lately been found in Iceland.

In describing the Brazilian forms, the author states that in the edible clay of the Amazon, he has detected four species of decidedly fluviatile siliceous infusoria, and seven species of siliceous parts of plants; among the latter is Amphidiscus rotula, which also occurs at West Point, N. Y. According to the accounts of trustworthy travellers, the edible infusorial clay of the Amazon, exists as an elevated and wooded plain, forming an extensive stratum, in no way resulting from the present action of the Amazon. It is neither the sediment of a swamp, nor a product of the overflowings of the river, but an older deposit, whose age however cannot yet be decided.

In the volcanic mud, called Moya, brought from Quito by Humboldt, which is so rich in carbon that it has been used as fuel, Ehrenberg detected ten different species or fragments of organic forms, and proved by microscopic observation that charred parts of plants form a large part of this substance, mingled however with fluviatile siliceous infusoria.
Among the numerous species from Cuba we notice Biddulphia pulchella, a truly elegant form, which will probably be found at many places on our sea-coast, as it has been detected near the Pavilion at Rockaway, Long Island.*
The materials from Mexico, furnished by Carl von Ehrenberg, were collected at different elevations, from eight thousand five hundred and fifty six feet above the sea, down to the sea itself. Numerous interesting species, not only of siliceous animalcules and parts of plants, but also of soft-shelled infusoria, were found. The most remarkable siliceous infusorial form is the fresh-water species Terpsinoë musica, which presents the appearance of a double row of musical notes in a glass casket.

[^24]No less than one hundred and twenty forms of siliceous and calcareous animalcules and siliceous parts of plants were detected by Ehrenberg among marine Algæ brought from Vera Cruz by his brother. Among the figures of these forms, we notice fig. 43, plate 3, (Planularia? Pelagi, as strikingly like a fossil Polythalamian shell, abundant in meiocene tertiary of Petersburg, Va.

We pass now to the notice given by Ehrenberg of the localities of the United States, and we regret that our limits will not allow us to insert his account without abridgment.
" The first specimen of the infusoria of the United States which I received, consisted of a portion of the fossil infusoria from West Point, a specimen of which was sent over by Dr. Torrey, and received in 1839. Since that time the richest American materials have been obtained from the United States, where the distinguished native men of science have devoted themselves to the examination of these relations with great zeal and success.
"Richmond, Va.-A rich booty, consisting of the fossil forms alone of Virginia, has been discovered by the exertions of Prof. W. B. Rogers, the geologist of Virginia. Some of the species have been represented in Prof. Bailey's sketch of American Bacillaria, and he alludes to the apparent resemblance of this geological formation to that of Oran. The strict comparison of these relations possesses now a peculiar geological interest. I have taken the following list of 11 Virginian fossil forms from Prof. Bailey's memoir.

Bailey. Ehrenberg.

1. Pyxidicula, fig. 2,
= Pyxidicula cruciata.
2. Gallionella sulcata, fig. 7, = Gallionella sulcata.
3. Actinocyclus sulcata, fig. $10,=$ Actinoptychus octonarius.*
4. " " fig. 11, = " senarius.
5. Coscinodiscus lineatus, fig. 12, $=$ Coscinodiscus lineatus.
6. " patina, fig. $13,=$ " minor.
7. " radiatus, fig. 14, = " gigas.
8. " argus, $=$ " argus.
9. " oculus iridis, $=$ " oculus iridis.
"In the specimens of the tertiary 'infusorial stratum' of Richmond, kindly sent to me through Prof. Bailey from Prof. Rogers, I have, up to this time, observed the following fifty forms, and have compared them directly with the European forms, and also with those from Oran in Africa.
[^25]
A. Siliceous Infusoria.

1.	Actinocyclus quinarius.	
2.	""	denarius.
3.	"	undenarius.
4.	"	duodenarius.
5.	"	bioctonarius.

6. Actinoptychus senarius.

7.	"	octonarius.
8.	$"$	duodenarius.
9.	$"$	sedenarius.
10.	$"$	denarius.
11.	$"$	vicenarius.
12.	"	Jupiter.

13. Amphora libyca.
14. Biddulphia tridentata.
15. Cocconeïs amphiceros.
16. " leptoceros.
17. Coscinodiscus argus.

18.	$"$	concavus.
19.	"	limbatus.
20.	"	lineatus.
21.	"	marginatus.
22.	"	gigas.
23.	"	minor.

B. Siliceous parts of Plants.

47. Spongiolithis acicularis.
48. " caput serpentis.
49.
50. Spongiolithis clavus.
51. " fistulosa.
52. " fustis.
"Among these fifty two forms are forty six infusoria, belonging to twenty genera, which genera are all European with the exception of two, Goniothecium and Rhizosolenia,* which have not been observed

[^26]at any other locality. Of the species, ten, or almost one fifth, are new and peculiar.
"Many of the forms occurring in the deposit are, as Prof. Bailey quite correctly concluded from his smaller number of observations, similar to those of Oran, but many of these forms also do not occur at Oran. According to the materials now furnished for comparison, the true relations are such, that of the eleven species of the genus Coscinodiscus, five occur at Oran which are also found at Richmond, five are found at Richmond alone, and one at Oran alone. Of thirteen species of Actinocyclus, three agree at both localities, eight occur only at Oran, and two only at Richmond. Of eight species of Actinoptychus, three occur at both places, four in Richmond and one in Oran alone, \&c.
"As a considerable number of the species of animals belonging to the chalk formation of Sicily still exist, and consequently cannot be wanting in the tertiary formations, it is evident that no conclusion as to the geological age of these formations can be drawn from the similaro ity or dissimilarity of these forms.
"This group of American forms is of peculiar interest and scientific importance, because the strata at Richmond are decidedly of marine origin, and consequently give at once a general view of the marine microscopic animals of the North American ocean; for probably the greater number of species are still living there, as they have already been found abundantly on the German coast of the North Sea.* The geological position of the strata must be determined by the order of superposition, the larger included organic remains, \&c. as it cannot be decided by means of the infusoria.
"West Point, N. Y.-The discovery of a bed of fossil infusoria at West Point, N. Y. was announced by Prof. Bailey in the American Journal of Science, Vol. xxxiv, July, 1838 ; in the year 1839 I received through Humboldt a specimen of this deposit from Dr. 'Tor rey, and in February of the same year I made a report concerning.it to the Academy at Berlin. To the fifteen organic forms then mentioned many others have been added by further examination."

Ehrenberg then gives a list of sixty two organic forms detected by him in the fossil specimens from West Point, among which are forty seven independent organisms, (animalcules,) of which only one, Amphiprora, belongs to a new genus; all the rest belong to twelve European genera. Only seven species, or about one seventh of the whole, can be considered as peculiar. By far

[^27]the greater number appear to agree with European forms. He then continues, thus-
"Besides these fossils, which occur directly under the surface of a peat-bog, and which consequently belong most probably to recent species, I have also had an opportunity to examine a great number of not only recent but still living forms from West Point. Prof. Bailey sent me in the year 1842 some phials full of turf-water from West Point, containing many living species of Bacillaria. These were filled with water at West Point on the 2d of April, 1842, and on the 16th of June I was able to show many of them in a living state at Berlin. I have endeavored to compare all these living or decidedly recent American species with the European, and have consequently drawn figures of all of them. At the same time Prof. Bailey sent me a printed memoir, in which he describes some of the fossil infusoria of Virginia, and a considerable number of recent species from various places in the United States, and particularly from West Point. The following is a list of the species found at West Point, which Prof. Bailey has observed and figured in Parts I and II of his memoir on American Bacillaria."*

As this list furnishes the authentic names of the species figured in this memoir, we give it entire, believing that it will be valuable for reference.
I. Desmidiacea. (See Part I of Bailey's Bacillaria.)

Fig. 1.	Desmidium Swartzii ?	= Desmidium Swartzii.
2,3.	Euastrum?	" tridens.
4,5.	" ?	= " ${ }^{\text {a }}$
6.	var.	= " ${ }^{\text {c }}$
7.	" var.	$=$ Pentasterias radiata?
8.	margaritiferum,	= Euastrum margaritiferum.
9.	al. sp.	= Desmidium aculeatum.
10.	al. sp.	= Xanthidium fasciculatum.
11.	al. sp.	$=$ Arthrodesmus convergens.
12.	al. sp.	$=\quad$ \% quadricaudatus, p.
13.	al. sp.	= Xanthidium bisenarium.
14.	" al. sp.	$=$ Desmidium glabrum.
15.	Xanthidium al. sp.	$={ }^{*}$ Xanthidium arctiscon.
16.	" al. sp.	=* coronatum.
17.	Arthrodesmus quadricauda	,$=$ Arthrodesmus quadricaudatus.
	Micrasterias Tetras,	$=$ Micrasterias Tetras.

[^28]
304 Notice of Ehrenberg's Memoir on Microscopic Life.

Fig. 20. Micrasterias Boryana, 21. " al. sp.
22. Euastrum Rota,
23. "، Crux Melitensis, 24. " Rota juvenile,
$=$ Micrasterias Boryana.
= " elliptica.
$={ }^{*}$ Euastrum Sol.
$=$ " Crux Melitensis.
$=$ " Rota juvenile.
=* " Americanum.
$=$ " Pecten.
$=$ " ansatum.
=* "carinatum.
$=$ " Crux Melitensis jur?
$=$ Closterium lunula? turgidum?
$=$ " moniliferum.
= " cremlatum.
$=($ Polysolenia Closterium ? $)$
$=$ Closterium turgidum.

$=$	$"$	"
$=$	$"$	setaceum.
$=$	$"$	tenue?
$=$	$"$	(Trabecula!)

II. Naviculacea. (See Part II of Bailey's Bacillaria.)

Fig. 3. Gallionella moniliformis, =Gallionella moniliformis.
4. " aurichalcea, = " aurichalcea.
5. " distans, $=$ " distans.
6. " varians, $=$ " varians.
7. " sulcata, $=$ " sulcata.
8. " ? al. sp.
17. Navicula virids,
20. " al.sp.
21. i striatula,
23. Navicula al. sp.
26. Eunotia Arcus,
28. " monodon,
29. " diodon,
30. " triodon,
31. " tetraodon,
32. " pentodon,
33. " serra,
35. Bacillaria paradoxa,
$={ }^{*}$ Biddulphia? lævis.
$=$ Pinnularia viridis.
$=$ " Suecica?
$=$ Surirella splendida.
$=$ *Stauroneis Baileyi。
$=$ Eunotia Westermanni.
$=$ " monodon.
$=$ " diodon.
$="$ triodon.
$=$ " tetraodon.
$=$ " quinaria.
$=$ " decaodon.
$=$ Bacillaria paradoxa.
$\left.\begin{array}{ll}36 . & \text { " tabellaris, } \\ \text { 37. } \\ \text { tabellaris adultior, }\end{array}\right\}=$ Tabellaria trinodis.
40. Fragillaria pectinalis,
$=$ Himantidium Arcus.
41. " bipunctata, = Fragillaria rhabdosoma.
42. Meridion vernale, $=$ Meridion vernale.

Many of the species for which Ehrenberg has here furnished the names are new. We take this opportunity to mention that Ehrenberg has been misled by the outline figure 28 , and has supposed it to represent a carinated Euastrum, which he has consequently named Euastrum carinatum. It is not carinated. The species fig. 8, PI. II, which he donbtfully refers to Biddulphia? lavis, does not appear to us to belong to Biddnlphia. Its cylindrical form and various other characters assimilate it more closely to Gallionella. It also appears allied to Actinocyclus. The species referred to Pinnularia have been separated from the old genus Navicula. We do not think that fig. 29 is a young state of Euastrum Crux Melitensis, as we have seen adult specimens still retaining the usual form. In continuation Ehrenberg remarks:
"Among these fifty three species of infusoria, seven are peculiar, and are indicated by stars. Prof. Bailey's observation of the living dentate species of Eunotia is of particular interest, as they have not as yet been detected in Europe in the living state, although the shells are numerous in the Bergmehl from Sweden and Finland. As I have reason to suspect that some of these forms while living form bands like Fragillaria, and consequently belong to the genus Himantidium, it is particularly desirable that attention should be directed towards them. It is possible that such bands have been confounded with Fragillaria pectinalis."

Ehrenberg then presents a list of sixty nine recent organic forms from West Point, observed by him in a living state at Berlin, and illustrates them by forty five beautiful colored figures. The whole number of independent microscopic organisms known to Ehrenberg as existing at West Point is one hundred and thirty three, belonging to thirty six genera, of which only one (Amphiprora) is extra-European.

Connecticut.-In mentioning specimens of fossil infusoria from Connecticut Ehrenberg states, that though sent by B. Silliman, Jr_{r} in 1838, he did not receive them in Berlin until October, 1840, owing to accidental delay in England. He then gives full lists of all the species noticed by him from Andover, New Haven, and Siratford, and erroneously attributes to Prof. Bailey the discovery of these localities.* The most interesting remarks concerning these lists are the following:

[^29]
306 Notice of Ehrenberg's Memoir on Microscopic Life.

"The deposit at Andover is extremely rich in forms belonging to the genus Trachelomonas, and it may consequently be stated that it is to a considerable extent formed of loricated monads.
"The deposit at New Haven is remarkable for the abundance of that exceedingly minute species, the Staurosira construens, whose numbers bear a larger proportion to the mass, than that of the Gallionella distans does in the polishing slate of Bilin."

Rhode Island.-Lists of marine species from Providence Cove, and fossil species from the extensive fluviatile deposit discovered by Owen Mason, Esq. in 1838, are given by Ehrenberg, but they include only three new forms.

Massachusetts.-Ehrenberg states that the knowledge of the microscopic organisms of Massachusetts has been greatly extended by Prof. Hitchcock, who discovered many deposits of these fossils during his geological survey of that state in the year 1838. Specimens from Andover, Boston, Bridgewater, Pelham, Spencer, and Wrentham, received from Profs. Hitchcock, Silliman, and Bailey, have been examined by Ehrenberg, who gives long lists of the species noticed from each locality, with remarks upon each, from which we select the following.
"From Spencer, in Massachusetts, I received through Prof. Hitchcock large pieces of a very white siliceous marl (Kieselguhr) having the coherence and color of chalk, but much less dense. I am in doubt whether this color is natural or produced by ignition. *** I might conclude that it resulted from ignition, as this matter has been submitted to chemical analysis by Prof. Hitchcock, but on the other hand it may have been analyzed precisely on account of its whiteness and purity."

The species included in the list for this locality, are all fluviatile except the Polythalamian Rotalia globulosa, which being a decidedly marine species, Ehrenberg concludes that the deposit must either be sitnated near a chalk formation, or else near the sea. We have already stated (in this Journal, Vol. xlim, p. 394) our belief that some chalk must accidentally have been mingled with Ehrenberg's specimens, as neither the geological nor geographical situation of Spencer is such as Ehrenberg suggests. Neither can we detect any Rotalia in our specimens.

Ehrenberg mentions three kinds of iron ochre, sent by Prof. Hitchicock from Newbury, Bradford, and Marlborough, but he was unable to detect in them Gallionella ferruginea, or any other organic forms. If they ever existed in these specimens,
he thinks they must have changed into the fine siliceous sand, which is present in these ochres.

Maine.-Lists of the fossil infusoria from two different deposits discovered in 1838, near Blue-Hill Pond, in Maine, by Dr. Charles 'I'. Jackson, are given. Both specimens were of a chalky whiteness, and all the forms, with the exception of various Spongiolites, (which are particularly abundant in one sample,) are decidedly fluviatile. Ehrenberg remarks on the difficulty of decision caused by the presence of these apparently marine spiculæ of sponges, and says :
"We may ask, if the formation is marine, why are no Coscinodisci, Actinocycli, \&c. to be found? Perhaps it is a deposit from brackish water which in the neighborhood of the sea still contains some species of sponges."
As these Spongiolites suggest similar remarks by Ehrenberg with regard to various localities, we would state, that there can be no doubt that they are certainly of fresh-water origin, although some of them have much resemblance to some marine forms. The circumstances under which they occur in numerous localities, hundreds of miles from the sea, and in the most recent deposits of bogs and streams, leave no doubt of their fluviatile origin.

The notice of the species observed from Newfoundland, Labrador, Kotzebue's Sound, Iceland, and Spitzbergen, we are obliged to omit.
In concluding this enumeration of American localities, Ehrenberg remarks:
"That the extent and influence of the minuter American forms of animal life now known to him does not terminate here. At the above mentioned localities, the forms are chiefly siliceous, but microscopic calcareous organisms have also a most important development in America."
Allusion is then made by the author to the vast extent of the cretaceous formations on the American continent, as shown by Dr. Morton's Syuopsis of the Cretaceous Group, and Von Buch's splendid Memoir on the Petrifactions collected by Humboldt in America. Ehrenberg then observes:
"Since the Academy was informed in 1838 that by a peculiar method of observation, it is possible to prove that all writing chalk and many compact calcareous rocks, result from the agglomeration of invisible Polythalamia, this method was applied in 1841 by Prof. Bailey to the cretaceous rocks of North America, and the same results obtained.*

[^30]The specimens from Missouri, Mississippi, and New Jersey, sent to me by Prof. Bailey in 1842, for further examination and determination of the forms, have removed all doubts concerning this exceedingly great influence of minute life, which must now be looked upon as a well established scientific fact, and must be attended to in considering the geognostic relations of the earth, and partiglarly the development of the surface of the earth in all central North America. It would lead too far, to give all the particulars of the rich results lately obtained from these examinations, and as I shall have occasion, in a larger work which is now nearly completed, to present all these details with drawings, comparing all the chalk formations of America, Europe, Asia and Af. rica, I limit myself to this general notice. But be it remarked, that many of the species of European chalk Polythalamia also occur in Asia, Africa, and America,* while some are wholly local. To the latter belong the Textilaria Americana,, whose first and lowest cells are round, while the upper largest cells are always wart-like, longer, and sharper, and at last terminate in a point. This species forms the principal mass of the chalk of the Upper Missouri. Whether flint, or its equivalent, chalk marl with marine infusoria, occurs there, is still unknown, and is very desirable to determine."

Part IV, contains an alphabetical list of all the microscopic American infusoria mentioned in this work, with the localities at which each has been found.

Part V, gives the characteristics of the new genera and species. Part VI, includes the general results of the examination, viz.

1. There is here presented the first general view of the hitherto unknown character of the surface of the earth, for all zones of the whole continent of America.
2. It proves that not only in situations rich in humus, but also in sandy places of the surface of America, from near the south to near the north pole, there exists an organic life generally invisible to the eye, and that the bottom of the sea is filled with such organic forms.

[^31]3. The whole number of microscopic forms included in this review amounts to six hundred and three, of which four hundred and fifty are Polygastrica, six Rotatoria, eight fragments of plants, (chiefly Phytolitharia,) fifty six Polythalamia, and two other bodies.
4. All of these six hundred and three minute American organisms are included in one hund and three genera, of which twenty five, or almost one fourth, are new, but seventy nine, or about three fourths, were already known and established. Of these one hundred and three genera, sixty four (including six which are peculiar) belong to the four hundred and fifty Polygastrica. The six Rotatoria belong to five known genera. The small forms, consisting of parts or fragments of organic bodies, are assembled in eleven genera. The Polythalamia belong to twenty genera, of which five are new and fifteen already known.
Of the four hundred and fifty species of Polygastrica, two hundred and fifty nine, or thirty four more than one half, were hitherto unknown, and about one third are peculiar to America, but two thirds are European. Many of the forms here first named have recently been found in Europe.
In America as in Europe, the genera richest in forms are, Eunotia with forty six species, Navicula and Pinnularia each with forty five species. Then follow in the order of the number of species, the genera Gomphonema twenty one, Cocconeïs nineteen, Stauroneïs eighteen, Fragillaria, Surirella, seventeen.
It is remarkable that all the genera distinguished as peculiar, have presented but few and generally single species.
5. Drawings of three hundred and twenty five American invisible organisms are given, and three hundred and ten are first introduced into the systematic list by short characteristics.
6. These examinations have led to the establishment and systematic review of two hitherto unconsidered great groups or families of microscopic bodies, which indeed are not independent organisms, but have nevertheless the same worth for geological researches, viz. the uncrystalline siliceous bodies arranged under the family name Phytolitharia,* and the organized calcareous fragments referred to the family Zoolitharia. Like all other species of fossils, these are suited to form a good basis for geological conclusions.
7. The eleven species whose names are given in the following list, distinguish themselves from all others by their distribution, and consequently their influence. They may be considered as cosmopolites, (Weltbürger,) as they are found agreeing in character from the most

[^32]southern end of South America to the polar extremity of North America, or through a range of more than 50° south to 60° north latitude.
*Cocconeïs placentula.

* " Scutellum.
*Eunotia amphyoxys.
" biceps.
" Faba.
*Fragillaria rhabdosoma.
Those distinguished with a* are found agreeing in characters in Central America and in Europe.

8. Six species are distinguished from all the others by the peculiarity of their forms, and are placed under the genera Climacosphenia, Go. niothecium, Podosira, Rhizosolenia, Sphenosira and Terpsinoë.

The music animalcule, Terpsinoë musica, which resembles a printed sheet of music with twelve notes, standing by sixes in two rows, is remarkably distinct from any European form.
9. In America as in Europe, there occur not merely untraceable, transient, momentary appearances of the minutest forms of life, but also wide-spread fossil strata of their easily recognizable remains, which form earthy and even rocky masses.
10. The only American microscopic organisms which form earth and rocks, are, as in Europe, the siliceous infusoria or the calcareous Polythalamia.
11. There occur in North America (Andover, Wrentham, Mass.) fossil beds of siliceous earth, which are to a considerable extent composed of loricated monads, (Trachelomonas,) and not formed as usual merely of Bacillaria and Phytolitharia. Iron ochre occurs also in Massachusetts, which is very similar to the Gallionella deposits.
12. Beds of minute fossil siliceous organisms have been observed of the thickness of fifteen feet at Andover, and twenty eight feet at Richmond. Similar beds occur by the Amazon in South America, and in great extent from Virginia to Labrador.
13. The relations of the invisible, calcareous Polythalamia are also the same in America as in Europe; indeed, the first short examination alone has proved their gigantic development. They may be distinctly recognized as forming the firm earth and the rocks of central North America, as a cretaceous formation from New Jersey to the sources of the Mississippi near the Rocky Mountains.* Even the Andes of the

[^33]equatorial regions belong to the same chalk formation, and they may consequently be a purely organic product, in a changed condition, produced by the sudden or gradual operation of great volcanic action.
14. There exists in America, (Quito, Massachusetts, Iceland,) as in Europe, combustible earth, serviceable as a kind of peat, which is composed in a great part, even to one third of the mass, of (dead ?) microscopic anlmalcules, besides the remains of plants.
15. In America (Maine) as in Europe, and still earlier in Asia Minor, a technical application of the infusoria has been made for the purposes of building stone, [bricks,] and for polishing-powder.
16. If, besides considering minute life with regard to its distribution over the surface, we attend also to its extent in depth, or in the mass of the earth, we find it established by careful examinations made by eminent American geologists, that some of the fossil beds of minute siliceous shells belong to the tertiary formation, (Richmond.)

With regard to the forms with microscopic calcareous shells, the researches of the most experienced and careful geologists prove that the ofien noticed far-extended North American [Polythalamian] limestones, belong to the chalk or secondary formations.*
17. The formation of humus is, in America as in Europe, so dependent upon or accompanied by, invisible independent organic life, that most of those lumps of earth which are overlooked, and which remain adhering to plants when they are cleaned for herbaria, contain preserved whole groups of such organisms.
18. The method of examining the portions of humus from distant parts of the world proves, as the result here presented shows, that one observer, with one and the same instrument, can in a short time make a scientific review and comparison of the invisible minute life of all parts of the earth, and under circumstances the most favorable for scientific examination.
As it is possible to obtain from the plants in herbaria, the smallest materials used in the structure of the earth in all zones, so it is likewise possible, without change of place, to obtain similar results from all parts of the ocean, by examining the matter which adheres to anchors and sounding leads, and the food consumed by various sea animals. The Medusæ and Ascidia in particular are often filled with these forms.
Perhaps there may yet be found in the Coprolites of the transition rocks (Uebergangstein) what has been destroyed during the metamor-

[^34]
312 Notice of Ehrenberg's Memoir on Microscopic Life.

phosis of the older rocks, as the minutest forms must most easily be destroyed.
19. The opinion of some modern naturalists, that the species of animal organisms by increasing weakness gradually lose the organic constitution, (durch wachsende Schwäche der organischen Constitution aufzehren,) is not confirmed by the smallest forms, either in Europe or America, but on the contrary there occur also in America certain forms which, since a period long anterior to the historic epoch, and in all climates, have perfectly preserved the same characters.
20. The sport of plastic nature, with pleasing changes of form, (mit beliebigem Formen-Wechsel,) does not occur, even with the minutest forms, any where on the western continent, whether at the equator or the poles; but it has been proved that on both hemispheres and from pole to pole, there exists a group of forms which, with characters unchanged from the chalk formation to the present time, have played a great part as similar building-stones in the structure of the surface of the earth.
21. From the rapid and great increase of this knowledge of an independent deep-working life in the smallest space, it follows that this field of research cannot be unworthy of the best efforts; and if it is not always equally and quickly productive, or if it may be more agreeable with easier speculation, and rather in poetic sport, than seriously to penetrate into the Remote, yet the only scientific and remunerating method is by slow and sure steps, and under the check of careful and therefore laborious research, to approach the goal which excites the mind of all thinking men of all generations, and will interest all generations yet to come.

Part VII, contains the explanation of the Plates, which are four in number. These are large and beautifully executed, and contain seven hundred figures, including three hundred and twenty five of the recent minute organisms from all zones of America The fossil species are omitted on account of their number, but Ehrenberg states that they are already engraved for a larger work, which will soon be published. He also states, that nearly all the figures are drawn from prepared specimens which he still retains as a durable collection which can be employed for unlimited comparisons in future.

In concluding our notice of this valuable paper, we cannot but remark, that although the results already obtained are certainly most important, and although Ehrenberg has made the best possible use of the materials in his possession, yet much remains to be done, (as no one knows better than Ehrenberg himself,) before
the whole extent and influence of microscopic life in America can be fully understood and appreciated. Hundreds of species of marine and flaviatile siliceous infusoria, not mentioned in Ehrenberg's list, are known to us, and myriads of the more perishable forms occur in all our waters. The soft and gelatinous forms of these must prevent their being sent across the Atlantic, and it remains for our naturalists to compare them with the European species represented in Ehrenberg's magnificent volume on infusoria. Important information with regard to the infusoria of the United States has already been accumulated by several of our naturalists, among whom we may mention the names of Thomas Cole, Esq. of Salem, and Dr. P. B. Goddard, of Philadelphia, both of whom are accurate and zealous observers.
With regard to our Polythalamian forms, we can state, that they exist at various localities not yet known to Ehrenberg. Besides the numerous living species of our coast, our tertiary formations are filled with characteristic and beautiful forms which we have detected in specimens from various localities, as Petersburg, Va., Wilmington, N. C. We have also found them in marl from near Astoria, Oregon Territory, brought by Mr. James D. Dana, and in carboniferous limestone from Indiana, furnished us by Dr. David Dale Owen. We have gradually accumulated many figures of these forms which we intended for publication, but as Ehrenberg has now undertaken the subject of American Polythalamia, we believe that we cannot do better than to place all our materials in his hands; and as it is desirable to supply him with specimens from as many localities as possible, we take this occasion to iuvite the friends of science, who may be so situated as to be able to comply with the request, to forward to us specimens of the cretacenus and tertiary deposits of the United States. Specimens from the "rotten limestone" of Florida and Alabama, and from the cretaceous beds of Tennessee, \&c. are highly desirable. Even the minute portion which can be sent in a letter will often give most important and valuable results. Specimens of the sediment of our rivers and harbors, particularly from those of the southern regions of the United States, will also be very acceptable.*

[^35]Art. XI.-On the Ridges, Elevated Beaches, Inland Cliffs and Boulder Formations of the Canadian Lakes and Valley of St. Lawrence; by Chables Lyele, Esq., F. G. S., F. R.S., \&c.*

After adverting to a former paper on the recession of the Falls of Niagara, and the observations which he made jointly with Mr. Hall in the autumn of 1841, (see Proceed. Geol. Soc. Vol. III, p. 595,) Mr. Lyell gives an account of additional investigations made by him in June, 1842 ; in the course of which he found a fluviatile deposit similar to that of Goat Island, on the right bank of the Niagara, nearly four miles lower down than the great Falls. The fresh-water strata of sand and gravel here alluded to occur at the Whirlpool. They are horizontal, about forty feet thick, plentifully charged with shells of recent species, and are placed on the verge of the precipice overhanging the river. They are bounded on their inland side by a steep bank of boulder clay, which runs parallel to the course of the Niagara, marking the limit of the original channel of the river before the excavation of the great ravine. Another patch of sand, with fresh-water shells, was detected on the opposite or western side of the river, where the Muddy Run flows in, about one mile and a half above the Whirlpool. From the position of these strata it is inferred that the ancient bed of the river, somewhere below the Whirlpool, must have been three hundred feet higher than the present bed, so as to form a barrier to that body of fresh water, in which the various beds of fluviatile sand and gravel above-mentioned were accumulated. This barrier was removed when the cataract cut its way back to a point further south. The author also remarks, that the manner in which the fresh-water beds of the Whirlpool and Goat Island come into immediate contact with the subjacent Silurian limestone, no drift intervening, shows that the original valley of the Niagara was shaped out of limestone as well as drift. Hence he concludes that the rocks in the rapids above the present Falls had suffered "great denudation while yet the Falls were at or below the Whirlpool.
Mr. Lyell thinks that the form of the ledge of rocks at the Devil's Hole, and of the precipice which there projects and faces down the river, proves the Falls to have been once at that point. An ancient gorge, filled with stratified drift, which breaks the continuity of the limestone on the left bank of the Niagara at the Whirlpool, was examined in detail by the author, and found to be connected with the val-

[^36]ley of St. David's, about three miles to the northwest. This ancient valley appears to have been about two miles broad at one extremity, where it reaches the great escarpment at St. David's, and between two and three hundred yards wide at the other end, or at the Whirlpool. Its steep sides did not consist of single precipices, as in the ravine of Niagara, but of successive cliffs and ledges. After its denudation the valley appears to have been submerged and filled up with sand, gravel, and boulder clay, three hundred feet thick.
A description is next given of certain modern deposits, containing fresh-water shells, on the western borders of the Niagara, above the Falls, and in Grand Island, in order to show that the future recession of the Falls may expose patches of fluviatile sediment similar to those in and below Goat Island.
The author then passes to the general consideration of the boulder formation on the borders of Lakes Erie and Ontario, and in the valley of the St. Lawrence, as far down as Quebec. Marine shells were observed in this drift at Beauport, below Quebec, as first pointed out by Captain Bayfield, and also near the mouth of the Jacques Cartier river, and at Port Neuf and other places; also at Montreal, where they reach a height probably exceeding five hundred feet above the sea, the summit of Montreal mountain being seven hundred and sixty feet high, according to Bayfield's trigonometrical measurement, and the shells being supposed to be two hundred and forty feet below the summit. These shells, therefore, being more than three hundred feet above Lake Ontario, we may presume that the sea in which the drift was formed extended far over the territery bordering on that lake. The most southern point at which the author saw fossil shells belonging to the same group as those of Quebec was on the western and eastern shores of Lake Champlain, viz. at Port Kent and Burlington, in about lat. 44° 30 . Here, and wherever elsewhere the contact of the drift is seen with hard subjacent rocks, these rocks are smoothed, and furrowed on the surface, in the same manner as beneath the drift in northern Europe. The species of shells occurring in the drift, to which Mr. Lyell has made some additions, are not numerous, and are all, save one, known to exist, but are inhabitants, for the most part, of seas in higher latitudes. Many of them are the same as those occurring fossil at Uddevalla and other places in Scandinavia, and they imply the former prevalence of a colder climate when the dritt originated. At Beauport there are large and far-transported boulders, both in beds which overlie and underlie these marine shells.

The author next describes the ridges of sand and gravel surrounding the great lakes, which are regarded by many as upraised beaches. He
examined, in company with Mr. Hall, the "Lake ridge," as it is called, on the southern shore of Lake Ontario, and other similar ridges north of Toronto, which were formerly explored by Mr. Roy, (see Proceed. Geol. Soc. Vol. II, p. 537,) and which preserve a general parallelism to each other and to the neighboring coast. Some of these have been traced for more than one hundred miles continuously. They vary in height from ten to seventy feet, are often very narrow at their summit, and from fifty to two hundred yards broad at their base. Cross stratification is very commonly visible in the sand ; they usually rest on clay of the boulder formation, and blocks of granite and other rocks from the north are occasionally lodged upon them. They are steeper on the side towards the lakes, and they usually have swamps and ponds on their inland side; they are higher for the most part and of larger dimensions than modern beaches. Several ridges, east and west of Cleveland in Ohio, on the southern shore of Lake Erie, were ascertained to have precisely the same characters. Mr. Lyell compares them all to the osars in Sweden, and conceives that, like them, they are not simply beaches which have been entirely thrown up by the waves above water, but that many of them have had their foundation in banks or bars of sand, such as those observed by Capt. Grey running parallel to the west coast of Australia, lat. 24° S., and by Mr. Darwin off Bahia Blanca and Pernambuco in Brazit, and by Mr. Whittlesey near Cleveland in Lake Erie. They are supposed to have been formed and upraised in succession, and to have become beaches as they emerged, and sometimes cliffi undermined by the waves. The transverse and oblique ramifications of some ridges are referred to the meeting of different currents and do not resemble simple beaches.

The base-lines of the ridges east and west of Cleveland, are not strictly horizontal according to Mr. Whittlesey, but incline five feet and sometimes more in a mile. Those near Toronto are said by Mr. Roy to preserve the same exact level for great distances, but Mr. Lyell does not conceive that our data are as yet sufficiently precise to enable us to determine the levels within a few feet at points distant several hundred miles from each other. No fossil shells have been obtained from these ridges, and the author concludes that most of them were formed beneath the sea or on the margin of marine sounds. Some of the less elevated ridges, however, may be of lacustrine origin, and due to oscillations in the level of the land since the great lakes existed, for unequal movements, analogous to those observed in Scandinavia, may have uplifted fresh-water strata above the barriers which divide Lake Michigan from the basin of the Mississippi, or Lake Erie from Ontario, or the waters of Ontario from the ocean. Considerable differences of level
may have been produced in the ancient beds of these vast inland bodies of fresh water, while the modern deposit and the subjacent Silurian strata may to the eye appear perfectly horizontal.

The author then endeavors to trace the series of changes which have taken place in the region of Lakes Erie and Ontario, referring first to a period of emergence when lines of escarpment like that of Queenston, and when valleys like that of St. David's were excavated; secondly, to a period of submergence when those valleys and when the cavities of the present lake-basins were wholly or partially filled up with the marine boulder formation ; and lastly, to the re-emergence of the land, during which rise the ridges before alluded to were produced, and the boulder formation partially denuded. He also endeavors to show, how during this last upheaval the different lakes may have been formed in succession, and that a channel of the sea must first have occupied the original valley of the Niagara, which was gradually converted into an estuary and then a river. The great Falls, when they first displayed themselves near Queenston, must have been of moderate height, and receded rapidly, because the limestone overlying the Niagara shale was of slight thickness at its northern termination. On the further retreat of the sea a second fall would be established over lower beds of hard limestone and sandstone previously protected by the water; and finally, a third fall would be caused over the ledge of hard quartzose sandstone which rests on the soft red marl, seen at the base of the river-cliff at Lewiston. These several falls would each recede further back than the other in proportion to the greater lapse of time during which the higher rocks were exposed before the successive emergence of the lower ones. Three falls of this kind are now seen descending, a continuation of the same rocks on the Genesee River at Rochester. Their union, in the case of the Niagara into a single fall, may have been brought about in the manner suggested by Mr. Hall, (Boston Journ. Nat. Hist., 1841,) by the increasing retardation of the highest cataract in proportion as the uppermost limestone thickened in its prolongation southwards, the lower falls meanwhile continuing to recede at an undiminished pace, having the same resistance to overcome as at first.
Mr. Lyell considers the time occupied by the recession of the Falls from the Whirlpool to be quite conjectural, but assigns a foot rather than a yard a year as a more probable estimate; thus he shows the Mastodon, found on the right bank near Goat Island, though associated with shells of recent species, to have claim to a very high antiquity, since it was buried in fluviatile sediment before the Falls had receded above the Whirlpool.

Art. XII.—On the Tertiary Strata of the Island of Martha's Vineyard in Massachusetts; by Charles Lyell, Esq., 'V. P. G. S., \&c.*

The most northern limit to which the tertiary strata bordering the Atlantic have been traced in the United States, is in Massachusetts, in Martha's Vineyard, lat. $41^{\circ} 20^{\prime}$ north, an island about twenty miles in length from east to west, and about ten from north to south, and rising to the height of between two and three hundred feet above the sea. The tertiary strata of this island are, for the most part, deeply buried beneath a mass of drift, in which lie huge erratic blocks of granite and other rocks, which appear to have come from the north, probably from the mountains of New Hampshire. The tertiary strata consist of white and green sands, a conglomerate, white, blue, yellow, and bloodred . clays, and black layers of lignite, all inclined at a high angle to the northeast, and in some of their curves quite vertical. They are finely exposed near Chilmark on the southwest side of the island, and in the promontory of Gay Head at its southwestern extremity, where there is a vertical section of more than two hundred feet in height.

Attention was first called to this formation by Prof. Hitchcock in 1823, who appears to be the only American geologist who has examined them personally. He compared the beds at Gay Head to the plastic and London clays of Alum Bay in the Isle of Wight, to which, lithologically, they bear a striking resemblance, consisting in both cases of variously and brightly colored clays and sands with lignite, all incoherent and highly inclined. Various opinions, however, have been put forth as to the relative age of the Martha's Vineyard strata, which were assigned by Prof. Hitchcock, at a time when the tertiary formations of the United States were less known, to the eocene period, while Dr. Morton supposed them to be in part only tertiary, and that they rested on greensand of the cretaceous period.

The section at Gay Head is continuous for four fifths of a mile; the beds dip to the northeast generally at an angle of from thirty five to fifty degrees, though in some places at seventy degrees. The clays predominate over the sands. In one place Mr. Lyell found a great fold in the beds, in which the same osseous conglomerate and associated beds of white sand, on the whole fifty feet thick, were so bent as to have twice a northeasterly, and once a southwesterly dip. In the yellowish and dark brown clay near the uppermost part of the section at Gay Head, and in the green-sand immediately resting upon it,t Mr Lyell

[^37]found the teeth of a shark, that of a seal, vertebre of Cetacea, crustacean remains, and casts of Tellina and Mya. These prevail at intervals through a thickness of nearly one hundred feet, and are followed by beds of sand and clay with lignite. Mr. Lyell found no remains in the red clays. Many rolled bones were found in the osseous conglomerate.

In the section at Chilmark similar strata to those at Gay Head occur, but the general dip is southwest. Some of the folds, however, give anticlinal dips to the northeast as well as the southwest, and there are many irregularities, the beds being sometimes vertical and twisted in every direction. Several faults are seen, and veins of iron-sand, which intersect the strata like narrow dykes, as if there had been cracks filled from above. One bed of osseous conglomerate at Chilmark, four yards in thickness, is vertical, and its strike is well seen to be north 25° east, so that the disturbances have evidently been so great that it would be difficult without more sections to determine positively the prevailing strike of these beds. The incumbent drift is very variable in thickness, and large erratics, from twenty to thirty feet in diameter, are seen resting on quartzose sand. The author saw no grounds for concluding that any cretaceous strata occur any where in the island, nor could he find any fossils which appeared to have been washed out of a cretaceous formation into the tertiary strata, as some have suggested.

Mr. Lyell proceeds to the consideration of the organic remains collected by himself in Martha's Vineyard.

Mammalia.-1. A tooth, identified by Prof. Owen as the canine tooth of a seal, of which the crown is fractured. It seems nearly allied to the modern Cystophora proboscidea.
2. A skull of a walrus, differing from the skulls of the existing species (Trichecus rosmarus, Linn.), with which it was compared by Prof. Owen, in having only six molars and two tusks, whereas those of the recent have four molars on each side, besides occasionally a rudimentary one. The front tusk is rounder than that of the recent walrus.
3. Vertebræ of Cetacea, some of which are referred by Prof. Owen to the Whalebone whales, and others to the Bottle-nosed (Hyperoodon).
Pisces.-Teeth of sharks resembling species from the Faluns of Touraine, viz. Carcharias megaladon, Oxyrhina xiphodon, O. hastulis, and Lamna cuspidata. With these were large teeth of two species of Carcharias, one resembling C. productus, a Maltese fossil. With the exception of the two last, Mr. Lyell found the same species in meiocene strata near Evergreen, on the right bank of James River in Virginia.

Crustacea.-A species considered by Mr. Adam White as probably belonging to the genus Cyclograpsus, or the closely allied Sesarma of Say, and another, decidedly a Gegarcimus.

Mollusca.-1. Casts of a Tellina allied to T. biplicata, a meiocene fossil, and of another near T. lusoria. 2. Cast of a Cytherea resembling C. Sayana, Conrad. 3. Three casts of a Mya, one of which bears close resemblance to Mya truncata.

Mr. Lyell concludes, from the various evidence here given, that the strata of Martha's Vineyard are meiocene. The numerous remains of Cetacea of the genera Balana and Hyperoodon are adverse to the sup. position of their being eocene, while such fossils abound in the meiocone beds of America. The other fossils all point to a similar conclusion.

Art. XIII.-On the Geological Position of the Mastodon giganteum and associated Fossil Remains at Bigbone Lick, Kentucky, and other localities in the United States and Canada; by Charles Lyell, Esq. V. P. G. S. \&cc.*

With a view to ascertain the relations of the soil in which the bones of the Mastodon are found, to the drift or boulder formation, whether any important geographical or geological changes had taken place since they were imbedded, and what species of shells are associated with them, Mr. Lyell visited a number of places where they had been obtained, In this paper he gives the result of his researches.

The most celebrated locality visited was Bigbone Lick, in the northern part of Kentucky, distant about twenty five miles to the southwest of Cincinnati, situated on a small tributary of the river Ohio called Bigbone Creek, which winds for about seven miles below the Lick before joining the Ohio. A "lick" is a place where saline springs break out, generally among marshes and bogs, to which deer, buffaloes, and other wild animals resort to drink the brackish water and lick the salt in summer. The country around Bigbone Lick, and for a considerable distance on both banks of the Ohio, above and below it, is composed of blue argillaceous limestone and marl, constituting one of the oldest members of the transition or Silurian system. The strata are nearly horizontal and form flat table-lands intersected by numerous valleys in which alluvial gravel and silt occur; but there is no covering of drift in this region. The drift is abundant in the northern parts of Ohio and Indiana, but disappears almost entirely before we reach the Ohio.

Until lately herds of buffaloes were in the habit of frequenting the springs, and the paths made by them are still to be seen. Numbers of these animals have been mired in the bogs, and horses and cows have perished in like manner. Along with their remains are found innumer-

[^38]able bones of Mastodon, elephant, and other extinct quadrupeds, which must have visited these springs when the valley was in its present geographical conditon in almost every particular, and which must have been mired in them as existing quadrupeds are at present. The Mastodon remains are most numerous and belong to individuals of all ages. The mud is very deep, black, and soft. In places it is seen to rest upon the limestone, and at some points it swells up to the height of several feet above the general level of the plain and of the river. It is occasionally covered by a deposit of yellow clay or loam, resembling the silt of the Ohio, which is from ten to twenty feet thick, rising to that height above the creek and often terminating abruptly at its edges. This loam has all the appearance of having been deposited tranquilly on the surface of the morass and of having afterwards suffered denudation. The Mastodon and other quadrupeds have been mired before the deposition of the incumbent silt, for a considerable number of fossil bones have been found by digging through it. Accompanying the bones are fresh-water and land shells, most of which have been identified by Mr. Anthony with species now existing in the same region.

Mr. Lyell observes that the surface of the bog is extremely uneven, and accounts for it partly by the unequal distribution of the incumbent alluvium, which presses with a heavy weight on certain parts of the morass, from which other portions of the surface are entirely free. He also attributes it in part to the swelling of the bog where it is fully saturated with water near the springs.

The author is of opinion that the fossil remains of Bigbone Lick are much more modern than the deposition of the drift, which is not present in this district. But although the date of the imbedding of these mammalian fossil remains is so extremely modern, considered geologically, it is impossible to say how many thousand years may not have elapsed since the Mastodon and other lost species became extinct. They have been found at the depth of several feet from the surface, but we have no data for estimating the rate at which the boggy ground has increased in height, nor do we know how often during floods its upper portion has been swept away.

Ohio.-The Ohio River immediately above and below Cincinnati is bounded on its right bank by two terraces consisting of sand, gravel and loam, the lower terrace consisting of beds supposed to be much newer than those of the upper. In the gravelly beds of the higher terrace, teeth both of the Mastodon and elephant have been met with. Mr. Lyell was assured that a boulder of gneiss, twelve feet in diameter, was found resting on the upper terrace, about four miles north of Cincinnati, and that some fragments of granite had been found in a similar situation at

Cincinnati itself. These facts show that some large erratics have taken up their present position since the older alluvium of the Ohio valley was deposited. In travelling northwards from Cincinnati towards Cleveland, Mr. Lyell found the northern drift commence in partial patches twenty five miles from the former city and about five miles northeast of Lebanon, after which it continually increased in thickness as he proceeded towards Lake Erie.

New York: Niagara Falls.-In a former paper Mr. Lyell alluded to the position of the remains of Mastodon, twelve feet deep, in a freshwater formation on the right bank of the river Niagara at the Falls. He remarks that if we had not been able to prove that the cataract had receded nearly four miles since the origin of the fluviatile strata in question, we should have been unable to assign any considerable duration of time as having intervened between the inhumation of the Mastodon in marl full of existing shells and the present period. The general covering of drift between Lakes Erie and Ontario is considered to be of much higher antiquity than the gravel containing the bones of the Mastodon at the Falls.

Rochester.-In the suburbs of this city remains of the Mastodon giganteum were found associated with existing species of Mollusca in gravel and marl below peat.

Genesee.-Here remains of the Mastodon giganteum were found with existing shells in a small swamp, in a cavity of the boulder formation, so that the animal must have sunk after the period of the drift, when a shallow pond fed by springs was inhabited by the same species of freshwater Mollusca as now live on the spot.

Albany and Greene Counties.-Mr. Lyell examined, in company with Mr. Hall, two swamps west of the Hudson River, where the remains of Mastodon occurred in both places at a depth of four or five feet, precisely in such situation as would yield shell marl, and peat, with remains of existing animals in Scotland. Cattle have recently been mired in these swamps.

According to Mr. Hall the greatest elevation at which Mastodon bones have been found in the United States is at the town of Hinsdale, situated on a tributary of the river Alleghany in Cattaraugus County in the State of New York, where they occur at an elevation of fifteen hundred feet above the level of the sea.

Maryland.-In the museum at Baltimore, Mr. Lyell was shown the grinder of a Mastodon, distinct from M. giganteum, and which had been recognized and labelled by Mr. Charlesworth as M. longirostris, Kaup. It was found at the depth of fifteen feet from the surface in a bed of marl near Greensburg, in Caroline County, Maryland, and is considered by Mr. Lyell as a meiocene fossil.

Atlantic border.-Between the Appalachian Mountains and the Atlantic there is a wide extent of nearly horizontal tertiary strata, which at the base of the mountains are five hundred feet and upwards in height, but decline in level nearer the ocean, and at length give place to sandy plains and low islands skirting the coast, in which strata containing marine shells of recent species are met with, slightly elevated above the sea. Occasionally deposits formed in fresh-water swamps occur, below the mean level of the Atlantic or overflowed at high tide. In this district Mr. Nuttall discovered, on the Neuse fifteen miles below Newbern, in North Carolina, a large assemblage of mammalian bones, including those of the Mastodon giganteum, resting on a deposit containing marine shells of recent species. Mr. Conrad presented Mr. Lyell with the tooth of a horse covered with barnacles, from this locality. Professor Owen has examined it and could find no corresponding tooth of a recent species, but considers it as agreeing with the horse-tooth brought by Mr. Darwin from the north side of the Plata in Entre Rios, in South America.

South Carolina.-Remains of the Mastodon were found in digging the Santee Canal, in a spot where large quadrupeds might now sink into the soft boggy ground.

Georgia.-Bones of the Mastodon and Megatherium occur in this district in swamps formed upon a marine sand containing shells of species now inhabiting the neighboring sea.

Mr. Lyell in conclusion offers the following observations :-

1. That the extinct animals of Bigbone Lick and those of the Atlantic border in the Carolinas and in Georgia belong to the same group, the identical species of Mastodon and elephant being in both cases associated with the horse, and while we have the Mylodon and Megatherium in Georgia, the Megalonyx is stated by several authors to have been found at Bigbone Lick.
2. On both sides of the Appalachian chain, the fossil shells, whether land or fresh-water, accompanying the bones of Mastodons, agree with species of Mollusca now inhabiting the same regions.
3. Under similar circumstances Mr. Darwin found the Mastodon and horse in Entre Rios, near the Plata, and the Megatherium, Megalonyx and Mylodon, together with the horse, in Bahia Blanca in Patagonia; these South American remains being shown by their geological position to be of later date than certain marine newer pliocene, and post-pliocene strata. Mr. Darwin also ascertained that some extinct animals of the same group are more modern in Patagonia than the drift with erratics.
4. The extinct quadrupeds before alluded to in the United States lived after the deposition of the northern drift, and consequently the coldness of climate which probably coincided in date with the transportation of the drift, was not as some pretend the cause of their extinction.

Art. XIV.-On the Parallelogram of Forces; by Alexander C. Twining, Professor of Mathematics, Natural Philosophy and Civil Engineering in Middlebury College.

I propose to treat of the subject in two methods.

Method first.

'To investigate the intensity and direction of the resultant of any two given forces.

Let BA, BE (fig. 1) represent two equal forces, each of which call unity. Apply two new forces, BD, BC,-each being 1 ,-in such a manner that ABE , and its equal DBC , may each be a multiple, by m, of CBE. Put x for the resultant of BC, BE, at the unit angle CBE, which call \mathbf{A}. Let R, R^{\prime} represent the equal resultants of BA, BE and of BD, BC, which will be, respectively, in the lines BF, BG, bisecting the angles ABE, DBC. Then the four forces $\mathrm{BA}, \mathrm{BD}, \mathrm{BE}, \mathrm{BC}$ have the same resultant with the two, \mathbf{R} and \mathbf{R}^{\prime},-which, since $\mathbf{F B G}=\mathbf{E B C}$, will be $\mathbf{R} \chi$. Then $\mathbf{R}_{\chi}=$ Res. $(\mathbf{B A}, \mathrm{BC})^{*}+$ Res. (BD, $\mathrm{BE})$. But BA, BC act at the angle $\overline{m+1} \mathrm{~A}$, and BD, BE act at $\overline{m-1} \mathrm{~A}$. Therefore to find the resultant, at
 the angle $\overline{m+1} A$, of two equal forces, we multiply the resultant at $m \mathrm{~A}$ by ψ, and deduct the resultant at $\overline{m-1} \mathrm{~A}$. By assuming the value of m, successively, $1,2,3, \& c$. we may find an expression for the resultant of the two equal forces, acting at any multiple of A we choose, in terms of x and the values of m.

Having thus shown the law of formation of the expression for the resultants of unit forces acting at multiples of the unit angle, I shall next exhibit the law of formation of the diagonals of parallelograms under analogous circumstances.

I resume the figure already used. But, instead of representatives of forces, let BA, BE be two sides of a parallelogram, each equal to 1 , and having its diagonal BF , which I call D . Let BD, BC, in like manner, have the diagonal $\mathrm{BG}=\mathrm{D}$; and let the

[^39]included angles ABE, DBC, be, each, a multiple by m of the angle EBC, which I call A^{\prime}, and which I will suppose to be such as to have the diagonal of EBC, when completed, equal to x, (m and x having the same numerical values as in the former paragraph.) Join FG, DE and AC, which are evidently parallel ; and intersect these parallels by BH, which bisects FBG. Since EF and DG equal BA and BC, and intersect at the same angle, it is plain that the part of BH intercepted between the parallels FG and DE equals the part between AC and the point B . But this last is half the diagonal of AB, BC, if completed; and the part of BH between DE and B is half the diagonal of DB, BE, if completed, Doubling, we deduce, therefore, $2 \mathrm{BH}=$ diag. $(\mathrm{AB}, \mathrm{BC})+$ diag. (DB, BE). But, since $\mathrm{FBG}=\mathrm{EBC}, 2 \mathrm{BH}=\mathrm{D} x$; also AB, BC include the angle $\overline{m+1} \mathrm{~A}^{\prime}$, and DB, BE include $\overline{m-1} \mathrm{~A}^{\prime}$. We have, therefore, the diagonal pertaining to the sides with the included angle $\overline{m+1} A^{\prime}$ equal to that with the included angle $m A^{\prime}$, augmented in the ratio of 1 to x, diminished by that with the included angle $\overline{m-1} \mathrm{~A}^{\prime}$.

The law of formation is the same, therefore, both for resultants and diagonals; so that, if both the forces and the sides of the parallelograms are represented by unity, and the former, acting at the angle A, have a resultant represented in intensity by the diagonal pertaining to the latter, when their included angle is A^{\prime}, then, also, would the resultant of the same forces, acting at the angle $m \mathrm{~A}$, be represented by the diagonal pertaining to the sides with the included angle $m A^{\prime}$. And the converse is evidently true. Bút whether $A=A^{\prime}$ remains to be shown.

For this purpose, I again resume the figure first used. Let the forces BA, BC-each equal to unity-acting at the given angle $A B C$, have a resultant represented in value by the diagonal of a parallelogram, whose two adjacent sides DB, BE-each equal to 1-include the unknown angle DBE, less or greater than ABC. Take of ABC an undetermined exact part or measure z; also of DBE a like proportional part z^{\prime}. Then, by the converse of the proof already given, it is evident that the two given forces, acting at the angle z, would have a resultant represented by the diagonal pertaining to the given sides DB, BE, having the included angle z^{\prime}. Take $n z, n z^{\prime}$, such entire multiples of z and z^{\prime} that one multiple shall exceed, while the other shall not equal two right angles; which, on the supposition that z and z^{\prime} have
a difference, may evidently be done. Now, by what has been shown, the resultant of the equal forces, acting at the angle $n z$, is represented by the diagonal pertaining to the sides with the included angle $n z^{\prime}$; and thus-since one of these multiples has a ratio to two right angles of greater inequality, and the other of less-a case is constituted in which it appears that the resultant of two equal forces bisects, not their interior, but their exterior angle ; which is absurd. Therefore ABC and DBE cannot differ; and it is made evident that the resultant of any two equal forces is represented, in direction and intensity, by the diagonal of a parallelogram whose sides which include the bisected angle represent, in direction and intensity, the forces.

Let then BA, BE have their resultant BF. Let N represent the entire effect of each, resolved in the direction BF. The only residual effects must be normal to BF , and must destroy each other. Therefore $N+N=D F$, or $N=\frac{D F}{2}=\cos . A B F$, to the radius BA. By the same conclusion the residual effect must equal the cosine of the complement, that is to say, the sine of the same angle. Therefore a force represented, in direction and intensity, by the hypothenuse of a right angled triangle is the resultant of the forces represented, in the same respects, by the other two sides. And from this the law that regulates the resultant of forces acting at any angle whatever is a deduction so obvious that it need not, here, be considered.

Remark.-The foregoing method of deriving the diagonal pertaining to multiple angles, from the diagonal at the unit angle, leads, demonstrably, to the equation $2 \cos . m A=x^{m}-m x^{m-3}+$ $m . \frac{m-3}{2} x^{m-4}, \& c$. in which A is any given angle, m any given entire number, and χ twice the cosine of A,-the series being supposed to end with the term in which the exponent of x becomes 1 , or 0 ; or, otherwise, to the equation $2 \cos . m A=\varphi(m, x)$ $+\varphi(-m, \chi)$, in which $\varphi(m, \chi)$ designates the entire series above given, without limit, and m is unlimited in value,-which equations, it is well known, are of signal use in the discussion and treatment of certain circular functions. Another application of the same principle of investigation, not necessary to my subject, but collateral with it, and worthy, it may be, of notice, I subjoin.

Problem. Knowing, in intensity, the resultant of two equal forces, to investigate that of any two forces.

Let $\mathrm{BA}=1$, (fig. 2,) be a force, and $\mathrm{BC}=a$, another, applied at the angle $\mathrm{ABC}=\mathrm{A}$, with the first. Apply two new forces at the equal angle CBE ,namely, BE, BD; and let $\mathrm{BE}=\mathrm{BA}$; also let $\mathrm{BC}: \mathrm{BA}:: \mathrm{BE}=\mathrm{BA}: \mathrm{BD}=\frac{1}{a}$ Call the resultant of BA, BC y, and that of BE, BD y^{\prime}. Then we have Res. $(\mathbf{B A}, \mathrm{BE})+\operatorname{Res} .(\mathrm{BC}, \mathrm{BD})=$ Res. $\left(y, y^{\prime}\right)$. But, since $y: y^{\prime}$ $:: a: 1$, the resultant of y and y^{\prime} is $\frac{y^{2}}{a}$; and it must lie in the line BD , because it must make the same angle with the force y^{\prime} that the resultant y^{\prime} makes with the force BD. We have, then, Res. $(\mathrm{BA}, \mathrm{BE})+\left(\frac{1}{a}+a\right)=\frac{y^{2}}{a} . \quad$ But Res. $(\mathrm{BA}, \mathrm{BE})=2 \cos . \mathrm{A}$. Whence $y=\left(1+2 a \cos . \mathrm{A}+a^{2}\right)^{\frac{1}{2}}$, which, by trigonometry, equals the third side of a triangle having two sides $A B$ and $B C$, and their included angle the supplement of \mathbf{A}. If we suppose \mathbf{A} to be a right angle, our expression reduces to $y=\left(1+a^{2}\right)^{\frac{1}{2}}$, and becomes an independent demonstration of the law that regulates the intensity of a resultant compared with that of its rectangular components.

The necessity of the reference to trigonometry, made above, may be obviated by an application, purely geometrical, of the same principle of reasoning, in the following problem.

Prob. To find one side of a triangle from the other two sides which include a given angle.
Let BA, AC (fig. 3) be two given sides which include a given angle BAC. Draw BI parallel to AC ; also BE equal to BA , at the angle EBI equal to ABI .
 Take BG in BI, having to BE the ratio of BA to AC. Complete EBGJ and join BJ. Complete CBJI,* and draw JH and EF parallel to AB.

[^40]Then $A C: B C:: I J=B C: B I=\frac{B C^{2}}{A C} . \quad B u t B I=B G+G H+H I$. Therefore $\frac{\mathrm{BC}^{2}}{\mathrm{AC}}=\frac{\mathrm{AB}^{2}}{\mathrm{AC}}+\mathrm{BF}+\mathrm{AC}$. Then $\mathrm{BC}^{2}=\mathrm{AB}^{2}+\mathrm{AC} . \mathrm{BF}$ $+\mathrm{AC}^{3}$, which gives the relation sought. This result includes the relation of the sides of a right angled triangle; for, if BAC be supposed a right angle, $B F$ disappears, and we have $\mathrm{BC}^{2}=$ $\mathrm{AB}^{2}+\mathrm{AC}^{2}$. Or if, in the result we substitute the values supposed, in the mechanical problem just considered, we shall deduce $y=\left(1+2 a \cos . \mathrm{A} \dot{+} a^{2}\right)^{\frac{1}{2}}$, as was proposed.-I now return to the last of the two methods mentioned, in the outset, for investigating the resultant of any two forces.

Method second.

Let $\mathrm{AB}=1$, (Fig. 4,) represent a force, in direction and intensity. Suppose the entire effect of the force, in the direction $A C$ to be m. Its only residual effect, if but one, is at right angles to AB , and may be called n. Now the effect of m, in the direction AB is m^{2}, and that of n in AB is n^{2}. Wherefore $m^{3}+n^{2}$

Fig. 4.
 $=1$, which determines the intensity of the resultant of two forces, m and n, acting at right angles to each other.

It remains to determine the direction of a resultant in relation to that of its resolved or component forces. For this purpose let $\mathrm{ABE}, \mathrm{ABE}^{\prime}, \mathrm{ABE}^{\prime \prime}, \& \mathrm{c}$. (Fig. 5,) be right angled triangles having a common hypothenuse AB ; and let BAE be a unit angle, whereof $\mathrm{BAE}^{\prime}, \mathrm{BAE}^{\prime \prime}$, \&c. are the double, the triple, \&c. Drop $\mathbf{E} b$ normal to $\mathbf{A} b, \mathbf{E}^{\prime} b^{\prime}$ to $\mathbf{A} b^{\prime}, \& \mathbf{c}$. ; also E c normal to $\mathrm{BE}^{\prime}, \mathrm{E}^{\prime} c^{\prime}$ to $\mathrm{BE}^{\prime \prime}, \& c$. As these lines are to be made the representatives of forces, let it be observed that they are so only in respect of intensity, and not of direction. Yet, when a force AE, Eb, \&c. is spoken of, the term includes not intensity alone, but that specific direction which the force, thus symbolized, shall have been previously defined to have.

This understood,-the pairs of lines $\mathbf{A E}, \mathbf{E} b, \mathbf{A E}^{\prime}, \mathbf{E}^{\prime} \mathbf{B}, \mathbf{A E}^{\prime \prime}$, $\mathbf{E}^{\prime \prime} \mathbf{B}$, \&c. may, by what was before shown, represent the intens* ity of forces normal to each other, whose resultant is $\mathbf{A B}$; and, if those forces would not have the direction, also, of the lines AE, $E B$, \&cc., let the direction in which the effect of $A B$ shall be $A E$ lie in the line AO. Then the residual effect will be $\mathbf{E B}$, normal
to $A O$. Make OAO^{\prime} equal to BAO ; and, by what is already supposed, the effect of the force $\mathbf{A E}$, in the direction $\mathbf{A O}^{\prime}$ will be $\mathbf{A b}$, and its residual force will be $b \mathrm{E}$ normal to AO^{\prime}. Then AB is the resultant of the three forces $\mathrm{A} b, \mathrm{EE}, \mathrm{EB}$. But, since the force EB is normal to AO , its effect normal to AO^{\prime}, by what is supposed, must be $c \mathbf{B}$; also in the direction $\mathbf{A O}^{\prime}$, it must be $\mathbf{E c}$ or $b \mathrm{E}^{\prime}$. The first, combined with the force $b \mathrm{E}$, constitutes the force $\mathbf{E} \mathbf{B}$, normal to $\mathbf{A O}^{\prime}$, and the last, combined with the force $A b$, constitutes the force AE^{\prime}; which therefore is the effect of AB in the direction AO^{\prime}, and its residual effect normal to AO^{\prime}, is E/B. In like manner may it be seen that, if $\mathrm{O}^{\prime} \mathrm{AO}^{\prime \prime}$ be taken equal to BAO ,
 the effect of AB in the direction $\mathrm{AO}^{\prime \prime}$ is $\mathrm{AE}^{\prime \prime}$, and its residual effect, normal to $\mathrm{AO}^{\prime \prime}, \mathrm{E}^{\prime \prime} \mathrm{B}$; and, in general, that the effect of AB , at any multiple of BAO, would be represented, in intensity, by the cosine, to radius AB , of the same multiple of BAE, and, of course, its residual effect by the sine of the same. Conversely, also, it is evident, that if the effect of AB at any angle $\mathrm{O}^{\prime \prime} \mathrm{AB}$ is represented by the cosine of another angle $\mathbf{E}^{\prime \prime} \mathbf{A B}$, then will the effect of AB , at any exact part, or measure of the first, be represented by the cosine of the same part of the second; and, of course, the same, mutatis mutandis, of the residual forces and sines.
To apply this to the point in hand,-let CAB (fig. 4) be supposed to vary from the corresponding angle of the diagonal of the parallelogram CAD, if completed; that is, from the angle which that diagonal would make with AC. Take z any part or measure of the resultant angle, and z^{\prime} the same part of the corresponding diagonal angle. Take $n z, n z^{\prime}$ multiples of these by an integral number. 'Then, by what has been proved, it appears that the effect of AB , at the angle $n z$ with its own direction, would be represented, in intensity, by the cosine of $n z^{\prime}$. If, then, DAB and CAB are commensurable, the former may have $n z$ for its equal, and therefore $n z$, or DAB , must vary the same way, in respect to excess or defect, from the corresponding diagonal angle, as DAB from its corresponding diagonal angle; so that, in this case, the two together would constitute DAC less or
greater than a right angle, which is impossible. But, if the two are not commensurable, there may be taken two multiples, $n \boldsymbol{z}$ and $\overline{n+1} z$, between which DAB shall be intermediate. Therefore the effect of $A B$, at that angle, must be intermediate to its effects at $n z$ and $\overline{n+1} z$; so that the angle whose cosine represents the effect of AB , at DAB , must be intermediate to $n z^{\prime}$ and $\overline{n+1} z^{\prime}$; and, as z and z^{\prime} may be taken to any required degree of minuteness, it is evident that, in every case, DAB must vary from its corresponding diagonal angle, in the way of excess or defect, as DAB varies from its corresponding diagonal angle, and therefore the two cannot constitute a right angle. But DAC is a right angle,-therefore $A B$ canuot lie out of the direction of the diagonal of the parallelogram whose sides represent its component forces acting at right angles to each other. And if two forces are represented by two sides of a parallelogram which include any angle whatever, let the diagonal of the parallelogram which divides that angle be drawn, and let the effects of the two forces be taken, in that diagonal and normal to it, what we have already proved will show that the latter two are equal and opposite forces, and that the sum of the former is represented by the diagonal of the parallelogram,-which completes the point desired.

Respecting the two methods of proof that compose the body of this article I may be indulged in remarking, that I conceive them to be new, and to make the rationale of the problem of component and resultant forces easy of comprehension, to a perhaps unusual degree. They are dependent upon no ideas whose clear establishment in the mind, presupposes any considerable amount of mathematical study,-upon differentials and integrals, functions, infinitesimal considerations, or even trigonometrical formulas. But the conclusions are derived from the mechanical axioms by the aid, only, of the most elementary ideas of geometry or common algebra. Before closing I would drop the remark, that an inspection of fig. 5 , in the last method of proof, coupled with the reasonings respecting its constituent lines, employed as symbols of force, may suggest a very simple and expeditious process for deriving the formulas for the cosines of multiple angles from the cosine of the unit angle.

Art. XV.—Notice of an Ice Mountain in Wallingford, Rutland County, Vermont; by S. Pearl Lathrop, M. D.

Messrs. Silliman-Having read, in a late number of your Journal, an interesting account of the "Ice Mountain" in Virginia, I have thought that an account of a similar mountain in Wallingford, Rutland County, Vt. would not be uninteresting to your readers.
The "Ice Bed," as it is usually called by the inhabitants of the town, is on the west side of the Green Mountains, about two miles west of Otter Creek, and half a mile south of the road leading from Wallingford to Mount Holly. The mountain at this place rises to the elevation of one thousand five hundred feet from its base, and about two thousand above the level of Otter Creek, presenting to the west an almost perpendicular mural front of light gray quartz rock, which may be seen at the distance of several miles, and called, from its color, "White Rock." From this high and hoary cliff have been precipitated to the foot of the mountain below, large masses of rock, varying in form and size, and weighing from a few to many hundred tons. An area from thirty to fifty acres has been covered by these masses, confusedly piled upon one another. In a deep and narrow ravine, opening to the southwest, and into which many of these rocks have been thrown, the ice is usually found. It is to this part, particularly, that the significant appellation of Ice Bed is given, as it is among the huge folds of this vast rocky drapery, that a large amount of ice coolly and calmly.sleeps, during the hot months of summer, while its kindred element, in other places, melts with fervent heat. The ice is here formed every year, during the melting of the snow in the months of February, March and April, and disappears, in different seasons, from the last days of June to the first of September, varying in time according to the quality of the ice deposited and the heat of the spring and summer. From this bed large quantities of ice may be obtained, sufficient to supply the inhabitants of the adjacent towns. It is often visited for the purpose of getting ice, and by those who are invited thither by the refreshing atmosphere of the mountain, and the truly sublime picture the place affords. I know not the usual temperature of the atmosphere among the rocks, as indicated by the thermometer, but full well do I know that after being nearly melted by
the burning rays of a summer's sun, and the exercise of ascending and descending the White Rocks, two thick coats were hardly sufficient to render me comfortable, as I sat upon a rock just above the spot where the ice is found, and received the cold air as it came up from the icy caverns beneath.
Various attempts have been made by ingenious philosophers to account for the formation and preservation of such a vast amount of ice, and in such a place. But no reasoning appears more satisfactory and conclusive than that offered in the account of the "Ice Mountain" in Virginia. That it is owing mainly to the fact, that rocks are poor conductors of caloric, must be evident to every one at all familiar with the well established laws of heat, and the many striking instances, which science has brought to light, 'of the non-conduction of heat by various substances.

The Ice Bed and the White Rocks are well worthy of being visited by the lovers of science, and those who are pleased with the grand and wonderful in the operations of nature. In a letter just received from Dr. Ives, who has long resided in Wallingford, and often visited the Ice Bed and White Rocks, he says:
"Standing in the ravine near the Ice Bed, those who have a taste for the sublime scenes of nature, cannot fail to be gratified in contemplating one of the most wild and awfully grand views that are to be found in the whole range of the Green Mountains. If surpassed by any scene in the Union, I have failed to notice it; and I have crossed this range at various points, and examined it with some attention, from the northern part of this State to its termination at West Rock, near New Haven, Conn. My eye has rested upon a large portion of the Alleghany and Cumberland mountains, and surveyed with thrilling interest the Highlands above New York, East and West Rock near New Haven, and the far-famed elevations of the Blue Ridge at Harper's Ferry, Virginia. But these justly celebrated scenes, though highly interesting, failed to impress me with that deep sense of the sublime, that I have never failed to experience while wandering among the vast moss-covered fragments of rock that are confusedly piled over the large space between the head of the glen and the foot of the riven cliffs."

At the bottom of the ravine described above, a small stream of water is formed, which varies but little during the year, and the temperature of which is very low.

Middlebury, Vt., Nov. 25, 1843.

Art. XVI.—Views concerning Igneous Action, chiefly as deduced from the Phenomena presented by some of the Minerals and Rocks of the State of New York; by Lewis C. Beck, M. D., Professor of Chemistry in Rutgers College, New Jersey.*
[Read before the Association of American Geologists and Naturalists, April, 1843.]
1 At the last meeting of the Association, I had the honor to submit some observations on the pseudomorphous minerals of New York, and in attempting to refer the changes there described to a general cause, I fixed upon igneous action as the one which was most consistent with all the phenomena.

The study of these and similar changes thus produced, and the examination of certain minerals which are confessedly of igneous origin, have led to some general views, which I now propose to lay before this meeting, with the facts from which they have been deduced.

Of the rocks usually termed metamorphic, or those which are supposed to have been changed by heat, there are numerous localities in the state of New York. Among these are white limestone, dolomite, gneiss, and perhaps mica slate. In regard to the white limestones, especially of St. Lawrence County, Dr. Emmons has so clearly established their igneous origin, that I shall offer nothing upon the general subject which he has elucidated. I must, however, advert to the appearances which both here and elsewhere some of the imbedded minerals exhibit.

At the noted locality in the town of Hammond, St. Lawrence County, the crystals of apatite, feldspar and pyroxene are often variously bent, and have their angles smooth and rounded as if by fusion, while crystals of zircon have been broken and their terminations moved from their original position. In the same county also, quartz crystals frequently occur with their terminations rounded even in a more striking manner than in the preceding minerals.

A similar appearance is presented by the crystals of scapolite, (Nuttallite,) which are found in great abundance in the white limestone, in the town of Diana, Lewis County. Among hundreds of specimens, there are very few which have their forms

[^41]well defined. They usually have a slaggy aspect, their angles being obliterated, and their surfaces covered with a kind of glaze; while not unfrequently groups of crystals have coalesced into one mass or united together like the glass beads found among the ruins of the great fire in the city of New York, (1835.) These remarks will apply also to some of the other minerals associated with the scapolite, but the change is rarely so marked.

Facts similar to the above have been observed in Orange County, where the white limestone is frequently in beds in granite and gneiss. In the vicinity of Edenville the apatite found in this rock, often has the bent form and glazed appearance so characteristic of this mineral in St. Lawrence County; and at Amity the so called idocrase, has sometimes two or three perfect faces, while other parts of the crystal look as if they had been softened by heat, and in this softened state had accommodated themselves to the little cavities and fissures of the limestone.

It may here be remarked, that I have not hitherto observed any appearances like those above described in the dolomitic limestones of the southern part of New York. It is true the pseudomorphic forms of hornblende and pyroxene which I noticed in a former paper are very abundant; and these it will be observed, I have proposed to refer to an agency similar to that which seems to have produced the peculiarities exhibited in the minerals of the white limestones. It should be borne in mind, however, that for some reason or other, there is a greater poverty of minerals in the dolomites than in the latter rocks. In the former, the different varieties of hornblende and pyroxene are almost the only species, if we except those found in a few metallic veins, some scales of mica, and thin layers of jasper or hornstone. On the other hand, the white limestones abound in spinelle, chondrodite, crystallized mica, feldspar, tourmaline, apatite, scapolite, sphene, graphite, hornblende, pyroxene, and several others which it is not necessary to enumerate.

I proceed now to notice some peculiarities of the minerals found in gneiss and mica slate. The occurrence of crystallized garnets in these rocks has been adverted to by Mr. J. Phillips, as an evidence that the whole mass has been subjected to a pervading high temperature. "The occurrence of garnets," he adds, "in mica schist and gneiss is entirely unconnected with any local effect of heat, derived from particular masses of granite, green-
stone, \&c.; nor can their occurrence be often accounted for by any supposition of their having formed part of more ancient rocks, which by disintegration yielded them to the watery currents concerned in accumulating the primary strata; for they are in general, perfectly crystallized among fragmentary scales of mica, and worn and broken feldspar and quartz, or granular aggregates of those substances, scarcely differing in arrangement or aspect of the parts from particular sandstones and coarse argillaceous slates."*

In the gneiss of New York and Westchester counties, which often abuts the dolomitic beds, garnets frequently occur, but they are seldom perfectly crystallized, being more or less rounded, either by attrition or fusion. This is strikingly exhibited in the vicinity of Yonkers, in Westchester, where these rounded garnets are very abundant in the gneiss, and are from one fourth to three fourths of an inch in diameter. Here too, large masses of garnet have been found ; in one instance nearly a foot in diameter, and firmly attached to the rock on all sides. In the more crystalline parts of this formation, as at West Farms and New Rochelle, the garnets, much less abundant, however, do not exhibit this peculiarity in so decided a manner, but they are seldom well crystallized.

In the vein of coarse granite in the town of Greenfield, Saratoga County, celebrated for the occurrence of chrysoberyl and other minerals, the garnets have a trapezoidal form, but perfect crystals are almost unknown. And the same remark will apply to the small pink garnets found in the gneiss of the Noses, in Montgomery County. Indeed, although I have seen a great number of specimens from all the preceding localities, I do not recollect ever to have met with a perfect crystal.

Garnet, in almost every variety of color, is abundant at several localities in Essex County; as Rogers' Rock, Lewis and Willsborough. But crystalline forms are exceedingly rare, and are found only in the rifts and fissures of the rock.

I think myself warranted in the assertion, that throughout the state of New York, when garnets occur in gneiss or in granitic veins, they are imperfectly crystallized; and in many, if not most cases, they present the appearance of having undergone some change through the influence of heat or otherwise, subsequently to their original crystallization.

[^42]On the contrary, when found in the mica slate this mineral almost invariably exhibits a perfect form and a fine finish. Such are the crystals from Dover, Dutchess County, and I might add those in the mica slate in Monroe, (Conn.) Delaware County, (Penn.) \&c.

From the facts which have now been presented, the conclusion seems to me almost irresistible, that whatever may have been the agency by which these minerals were originally segregated, the rocks in which they are found were subsequently subjected to a high temperature ;-sufficiently high at least, to soften many of the minerals imbedded in them. Thus we can account for the bent and rounded crystals of feldspar, apatite, quartz, scapolite, \&c., so abundant in many parts of the state, and for the similar appearances presented by the garnet in gneiss. The mica slate having been farther removed from the supposed source of heat, has its imbedded crystals more perfectly developed.

In many of these cases, the crystals were undoubtedly formed at first in obedience to the laws of crystallization. But we have no reason to believe that these laws were exerted so as to give rise to those irregularities of surface and structure, those contortions and fractures and glazings which they now exhibit. On the contrary, these appearances are entirely similar to those which we know to be produced, by subjecting perfect crystals enclosed in a sufficient quantity of sand or rock, to a high degree of heat.

It has been thought by some geologists to be a necessary condition, that during the time these changes were effected the limestone must have been covered with water to have prevented the rock from undergoing calcination. It is well known, however, that even in an ordinary kiln, it requires a very high heat to calcine small masses of limestone, and unless some moisture is present, and layers of combustible matter interposed between those of the limestone, the evolution of carbonic acid is exceed ${ }^{\downarrow}$ ingly sluggish.

The pillars of the old Exchange in the city of New York, constructed of white dolomitic marble, suffered little alteration by the intense heat of the great fire of 1835, which raged for twentyfour hours, and destroyed more than six hundred houses. They were somewhat disintegrated on the outside, and perhaps throughout became a little more granular, but there was no appreciable loss of carbonic acid. It seems to me, therefore, not unreasonable to
suppose, that a large bed of limestone may have been subjected to a degree of heat sufficient to soften or fuse sundry imbedded minerals, without causing any marked alteration in the chemical composition of the rock. Nor is it difficult to understand how those rocks in the immediate vicinity of the source of heat, or of the heating mass, should exhibit appearances quite different from those more remote. Thus we may account for the fusion of certain minerals in the white limestone and the gneiss, while in those found in the mica slate there is no apparent change. Thus also, there is an explanation of the fact that one part of a limestone bed may be dolomitized, while another remains in its supposed original condition.

In proceeding to the consideration of other evidences of igneous action, I may observe that there is one circumstance applicable to all the minerals found in the primary masses, with the exception of serpentine, too striking not to deserve particular attention. I refer to the absence of water, at least in any thing like atomic proportions, as one of their constituents. When it is recollected that this substance is a common ingredient of those minerals which are found in fissures of trap and greenstone, and in the lavas which have been ejected from volcanoes, we may perhaps infer with safety, that water was not evolved from the central nucleus during the earlier geological eras.

I have said that serpentine is an exception to the statement just made, in regard to the absence of water in the minerals of the primary masses. Now serpentine, which is oftentimes very abundant in white limestone, and exists even in extensive beds, constantly contains from ten to twenty per cent. of water.

Several foreign localities are described which exhibit the change of trap into serpentine, and others in which dykes and masses of serpentine occur under circumstances similar to those of trap rock. Facts of a similar kind, are observed in the state of New York. Thus on Staten Island, serpentine forms the main ridge of hills, and extends nearly eight miles in a direction N. 20° E. and S. $20^{\circ} \mathrm{W}$. It assumes a variety of aspects, and contains hydrate and carbonate of magnesia, asbestus, \&c. The prolongation of the line of direction strikes the serpentine hills of Hoboken, which are similarly characterized, and hand specimens of which can scarcely be distinguished from those obtained on Staten Island. On the west of this range is the trap rock, which is exposed for
Vol. xuvi, No. 2.-Jan.-March, 1844.
two or three hundred yards near Port Richmond, and which again appears at Bergen, New Jersey, and onward forms the Palisadoes of the Hudson. The connexion between this range and the serpentine is too obvious to need farther notice.

Serpentine has been found on the island of New York, but not in large masses. On the peninsula east of New Rochelle in Westchester County, it is abundant, and has the appearance of a distinct dyke. Its structure is somewhat columnar, and it is every where traversed by seams of softer magnesian minerals, asbestus, \&c. On the west, it is said to be bounded by hornblende rocks, while on the east is a limestone more or less mixed with serpentine.

Similar in their characters, are several deposits of serpentine in the counties of Dutchess and Putnam. At Brown's quarry in the latter county, this columnar or basaltic appearance is well exhibited. The serpentine is here very dark colored, and varies in its structure from compact to coarse crystalline, like some hornblendic rocks; to which, indeed, in hand specimens, it not unfrequently bears a close resemblance. The fissures contain crystals of homblende, plates of Schiller spar, and dark colored tremolite.

There is a fine illustration of the intimate connexion between trap and serpentine, although upon a small scale, on Stony Point in the county of Rockland. Trap dykes pass up the northwestern face of this hill, which are well marked in consequence of the decomposition of the hornblende rock. Now these dykes are every where traversed by a soft greenish substance belonging to the serpentine family. They contain also asbestus in very delicate silky fibres.

In Lewis County, near Natural Bridge, where trap dykes and trappean aggregates are not unfrequent, there are mural precipices made up chiefly of the substance called Rensselaerite by Dr. Emmons, but which I suppose to be a mixture of steatite or serpentine with pyroxene. The same mineral occurs in unbroken ledges in the vicinity of Ox Bow, Jefferson County, a region in which well characterized trap dykes are common.

So also in St. Lawrence and Essex counties, whenever serpentine is found in any abundance, dykes of trappean rocks are to be seen in the immediate vicinity.

We have strong grounds, therefore, for adopting the theory of the igneous origin of serpentine, were we furnished only with the
proofs which are here exhibited. But if this is the correct view, bow happens it that while all the minerals of the granite, gneiss and limestone, are destitute of water, the serpentines are almost always loaded with that substance? Is it because the strata were covered with water during the period of the extrusion of serpentine, a condition which did not exist when the other minerals were first crystallized, or when they received the broken, bent, rounded and slaggy forms and appearances which they every where present? Or is it because in later geological periods, water was a more constant accompaniment of the erupted matter? These are questions upon which, perhaps some light may be shed by a reference to the composition of the minerals found in certain trappean rocks, as compared with those which are known to be the products of true volcanoes.

In the 17 th volume of the London, Edinburgh and Dublin Philosophical Magazine, Dr. Thomas Thomson has given a detailed account of the minerals occurring in the Kilpatrick hills, which bound the valley of the Clyde from the Stokey Muir to Dumbarton. These hills are composed of various trap rocks, among which amygdaloid is pretty common. The cavities of this variety are usually filled up by crystallized minerals, many of which, though not the whole, belong to the zeolite family. Dr. Thomson divides the minerals found in these hills into two sets. 1st. The zeolites, so called, because they froth before the blowpipe, and they owe this frothing property to the great quantity of water which they contain, and which is easily driven off by heat. 2d. Minerals nearly destitute of water, which in general, although not in all cases, exist in greater quantities than the zeolites, and may be often considered as constituting an integrant portion of the substance of the mountain in which they occur.

Thirteen of these zeolites are enumerated, viz. stellite, Thomsonite, natrolite, scolezite, glottalite, laumonite, chabazite, analcime, Cluthalite, stilbite, Heulandite, harmatome and Phillipsite. These are chiefly silicates of alumine and lime, and they contain from two to six atoms of water. To these may be added, prehnite, datholite, apophyllite and Morvenite, which also contain water as one of their constituents.

We have only to examine a list of the minerals found at Bergen Hill, Paterson, and Bound Brook in New Jersey, at Piermont in New York, and in the trap rocks of Massachusetts and Connecti-
cut, to satisfy ourselves that these hydrous forms are by no means confined to one region or district, but seem at least in general to characterize the less ancient exhibitions of igneous action.

If the question be now asked, whether the occurrence of these minerals, from which the water can be expelled by moderate degrees of heat, is not inconsistent with the idea that the whole rocks were ejected in a molten state, I refer the inquirer to the products of volcanoes. Nearly one hundred species of minerals are enumerated as occurring among the lavas of Vesuvius, and a considerable number of these are characterized by their containing water as one of their atomic constituents. I may here refer to Gehlenite, Davyne, mesotype, Comptonite, sulphate of ammonia, potash and soda-alum, \&c. Nor need we be long in doubt as to the source of this water, when we see steam frequently ejected from voleanoes, and various compounds of hydrogen among their products.

I have thus noticed the difference in the effects of heat as exhibited in the minerals found in the older rocks and in those of more modern eras, and have offered some suggestions in regard to the cause of this difference, drawn chiefly from the total absence of water in the one class, and its frequent presence in the other. Let us now see what use can be made of the facts here brought forward, in determining the nature of those rocks which are commonly supposed to be the "floor" upon which the strata are deposited.

All geologists agree that the unstratified rocks "are generally of the nature of granite, that is to say, largely crystallized aggregates of feldspar, with variable admixtures of mica and quartz, or more rarely quartz and hornblende,-or quartz and hypersthene." Granite is now considered, in whatever variety it may present itself, "as an older rock than any of the strata which rest upon it." It is not, however, as was formerly supposed when granite was thought to be of aqueous origin, necessarily the product of an anterior epoch. There seems now to be no doubt, "that in very many cases the granite has been in a state of fusion since the deposition of several of the older formations, so that it has actually been injected into the fissures and cracks of theso strata, or been raised up in a fluid mass among them." In the language of Mr. Phillips, whom I have already quoted-"We may, therefore, consistently admit granite as well as other igneous
rocks, to be of any, that is, of all ages; some of that which is visible in the crust of the globe may have been solidified from fusion before the production of any of the strata; other granite has been melted or remelted at various later periods; granite may yet be forming in the deeper parts of the earth, round the centres of volcanic fires; but in general we must look on this rock as characteristic of particular circumstances accompanying igneous action, not as belonging to particular periods of geological history."*
Granite of the ordinary kind is composed of quartz, feldspar and mica, and it is somewhat remarkable, that although there may be considerable variations in the proportions of these substances, they would give rise to only slight differences in chemical composition. These constituents, according to De la Beche and Phillips, are

together with small proportions of other bodies, as magnesia, lime, oxide of iron, oxide of manganese, and fluoric acid.

Moreover, there does not appear to be a very remarkable difference in chemical composition between common granite and those rocks which are confessedly of igneous origin, except perhaps that arising from the fact that in the latter, the mica is generally less abundant, and the quantity of hornblende is greatly increased.
If now it should be asked, whether these igneous products owe their origin to the fusion of ordinary granite, were we to attend exclusively to the composition of the rocks, the answer would probably be an affirmative one. Such indeed seems to be that implied in the statements of De la Beche, Phillips, and other geologists. \dagger But if we look to the imbedded minerals, it will be found extremely difficult to reconcile their chemical composition and mode of formation with this view. Although it may be freely admitted that the different varieties of granite, when subjected to intense heat, might produce rocks not unlike those

[^43]
342 Prof. Beek on Igneous Action, as exhibited in New York.

which now constitute the traps and the various kinds of lava, it is difficult to understand, upon this hypothesis, why the fissures and cavities of the latter, should contain minerals differing entirely in crystalline forms, and in many instances yielding substances not known to exist in the rock from which they are said to be derived.* Even granting that the constituents of these minerals actually exist in the granite, the chemical mineralogist will be slow to believe that, at such distant localities and in such widely separated epochs, the very same, as it were, accidental segregation of certain substances should take place. He would be more likely to infer that these minerals had previously existed, at least in their anhydrous state,-that they had been liquefied by heat, and that in their subsequent crystallization they were merely obeying the laws of molecular attraction which regulate this process.
It may be here observed, that the reference of these igneous products to ordinary granite is based upon the assumption, that this latter rock not only constitutes the floor of all the strata which have been observed, but that it forms the nucleus of the globe. But after all, do not the trappean rocks and minerals show a difference in composition, as well as in the arrangement of their constituents? Are not these, as well as our modern lavas, the representatives of series of rocks or of materials, whether solid or liquid, differing considerably from granite? If they are so, then with the knowledge which we possess in regard to the deep seated source of volcanic action, we may conclude that the lavas ejected by volcanoes, and the trappean rocks which resemble them, although found in the cracks and fissures of the most recent strata, in fact belong to a series lower than any which we see upon the surface of the earth. And perhaps by a close examination of the chemical theory of volcanic eruptions, we shall be enabled to comprehend the differences to which we have referred, especially if we are willing to admit that the conditions of these modern eruptions were different from those which characterized the older ones.

[^44]In reviewing the facts set forth in this paper, we arrive at the following conclusions, viz.
1st. That if it is admitted that the original protrusion of granite was due to igneous action, and if to this is to be ascribed the crystalization of the minerals found in the primary beds and strata, these must in many cases have been a second time subjected to a high temperature,-high enough at least to cause the partial fusion of these minerals.
2d. That at later geological periods the presence of water became another, and perhaps new condition, of the great igneous agency, and that hence serpentine with its large proportion of water was one of the results.
3d. That the presence of water, known to be an almost invariable condition of modern volcanic action, is proved to have been no less so during the periods when the eruptions of the trappean rocks took place.
Finally, I have endeavored to show that as we proceed to the interior of the earth there are arrangements of mineral forms quite different from those which characterize the lowest of the primary rocks as they appear on the surface. Now I think it conceivable that the character of the igneous eruptions may have been connected with circumstances attending the different depths to which the refrigeration, and consequently the solidification of the crust may have extended. When the granitic deposits had been but partially solidified, fissures and cracks in the crust would be followed by injections of the same mineral ingredients, in some instances perhaps sparingly mixed with those below. Hence the formation of true granitic veins with their accompanying minerals, during such a state of things, might be easily accounted for. But as the solidification extended towards the interior, the erupted matter would exhibit a different aspect, owing perhaps in part to the new agencies which were brought into action, but chiefly to a real difference in the mineral matter or composition, which we have reason to believe exists in different parts of the central nucleus, or at different distances from the surface.

- Art. XVII.—On the possible Variation in the Length of the Day, or of the Times of Rotation of the Earth upon its Axis; by W. W. Mather, Professor of Natural History in Ohio University.

Messrs. Editors-Will you permit me through your columns, to correct an error and oversight in that volume of the Natural History of New York, that treats of the geology of the first district of New York.* It is too late to correct the errors in the work itself, as it is published. A hasty preparation of the article while the printers were waiting for copy caused one of the errors, which any mathematical reader would detect at a glance.

On the 638th page, a formula is given to show approximatively the change in the length of the day, or of the period of a revolution of the earth on its axis, upon the hypothesis of a variable diameter of the globe at different periods of time.

The proportion there stated, from which the formula is deduced, is erroneous in two particulars, and the calculation based upon it is necessarily wrong. The proportion alluded to is as follows: " $\frac{1}{r^{4}}: \frac{1}{r^{\prime 4}}:: v: v^{\prime}:: t: t^{\prime}$ " The two last terms of this proportion should have been $t^{\prime}: t$, whence $t^{\prime}=\frac{\operatorname{tr}^{\prime 4}}{r^{4}}=24 \frac{\left.{ }^{\text {miles }}\right)^{4}}{(39556)^{4}}=$ $23^{\mathrm{h}} 58^{\prime} 32^{\prime \prime} 29^{\prime \prime \prime}$ 。

The time of a rotation of the earth on its axis, when considered as a sphere, with a radius one mile less than the present mean radius, would be $23^{\mathrm{h}} 58^{\prime} 32^{\prime \prime} 29^{\prime \prime \prime}$ or $1^{\prime} 27^{\prime \prime} 31^{\prime \prime \prime}$ less than our day, on the assumption that the times of rotation are proportional to the fourth power of the radii. It is believed that the

[^45]fourth power of the radius in the above formula, does not express the true relation.

The angular velocity of a revolving body is represented by the well known formula $\omega=\frac{\mathbf{M R} v}{\Sigma\left(m r^{3}\right)}=\frac{\mathbf{M R v}}{m^{\prime} k^{2}}=$ in the sphere $\frac{M R v}{m^{\prime} \frac{1}{5} r^{2}}$; hence, since M and m^{\prime} in the same mass are identical, and since \mathbf{R} and v and $\frac{3}{5}$ are constants, $\omega \propto \frac{1}{r^{2}}$ and $\omega: \omega^{\prime}:: \frac{1}{r^{2}}: \frac{1}{r^{\prime 2}}$. Therefore, the angular velocities of a sphere of the same constant mass, but variable in volume, impelled by the same force, are inversely proportional to the squares of the radii, instead of the fourth powers, as given in the formula.

Since the angular velocities are also inversely proportional to the times of rotation, the squares of the radii are proportional to the times of rotation, or $r^{2}: r^{\prime 2}:: t: t^{\prime}$ and $t^{\prime}=\frac{t r^{\prime 2}}{r^{2}}$. This is the formula that should have been used in the calculation on the 638th page of the Geology of the 1st District of New York, as affording an approximation to the time of a revolution of the earth on its axis under the assumed condition of varying in diameter.

If we apply this formula, supposing the radius of the earth to be one mile less than its present mean radius, the time of a revolution on its axis would be $23^{\mathrm{h}} 59^{\prime} 16^{\prime \prime}$, or the day would be shortened about 44 seconds.*

A diminution in the length of the day of one second would correspond to a diminished radius of about 40 yards. $\dagger \mathrm{M} . \mathrm{La}$ Place has shown that the sidereal day, or true time of rotation of the earth, has not varied $\frac{1}{3} \frac{1}{\sigma}$ part of a centesimal second during 2000 years. To find what diminution of the mean radius corresponds to this minute fraction of time, we have from the above formula $r^{\prime 2}=\frac{r^{2} t^{\prime}}{t}=\frac{(3956)^{3} \text { miles. }}{} \times\left(2^{h} 4-{ }_{\left.-\frac{1}{3} \frac{1}{0} \sigma^{\prime \prime}\right)}^{24^{h}}\right.$. Whence $r-r^{\prime}$ is equal
\dagger Prof. A. Ryors of the Ohio University, made this calculation about a year ago from the same formula here used, but deduced in a different way. Vide his lecture on Gravitation before the Chillicothe Lyceum.-Since this article was in type I have learned that the same formula is given in Poisson's Mechanics, 2d edition, Tome II, p. 460.

Vol. xlvi, No. 2.-Jan.-March, 1844.
to the diminution $=1 \frac{6}{\frac{6}{10}}$ inches; or for the sexagesimal second, $=0.000077$ mile $=4 \frac{{ }^{8} \frac{87}{10}}{}$ inches.

These minute quantities are insufficient to account for the geological evidences of the diminished diameter of the globe, inferred from facts stated in the work alluded to, unless the period of time be regarded as almost infinite, but it is believed that a clue is perceived, by which compensating forces would maintain the time of rotation nearly uniform, and the day of nearly an invariable length, even if the earth be either gradually or paroxysmally undergoing a slight change in its dimensions.

Ohio University, Athens, Dec. 9 hh, 1843.

Art. XVIII.-An Account of some new Instruments and Processes for the Analysis of the Carbonates; by Profs. Whliam B. Rogers and Robert E. Rogers, of the Univ. of Virginia

The importance of some ready means of determining the composition of the calcareous and other carbonates, so extensively used in agriculture and the chemical arts, and the frequent necessity of such analyses in the course of chemical research, have suggested various forms of apparatus and modes of proceeding adapted to this purpose. Of these the most generally used arefirst, that of Rose, as described in his Chemlcal Analysis, in which the quantity of carbonate present is determined from the weight of the carbonic acid expelled; secondly, that of mingling the carbonate and hydrochloric acid in a graduated tube over mercury, and estimating the amount of the pure carbonate from the volume of carbonic acid which collects in the tube; and thirdly, that of adding to the carbonate an acid of known strength, until neutralization is effected, and computing the amount of carbonate from the quantity of acid used. To these may be added, the modifications of Rose's apparatus employed by Fritche, and by Erdman and Marchand ; the very neat process of Dr. J. L. Smith, described in this Journal, Vol. xlv, p. 262, which is an application of the last of the three methods above mentioned ; and the ingenious but cumbrous, and we think inexact, instrument recently proposed by Drs. Will and Fresenius.*

[^46]The instruments ând processes which we are about to describe, are the suggestions of a long course of experience in the labora-tory-have been submitted to numerous and varied trials, and have been carefully compared with the modes in general use ; so that we feel some confidence in offering them, through the pages of this Journal, to the criticism of practical chemists.
I. Apparatus and process for the approximate analysis of the carbonates.

The apparatus first to be noticed is a modification of that described by one of us (W. B. R.) in the Journal many years ago.* Even in its early and ruder form, this instrument was found to furnish useful approximate results, with so much more ease and expedition than the methods commonly employed, that of Rose included, as to prove of great value in the numerous economical analyses of calcareous marls and other materials in which we were then engaging. In its improved shape, combining greatly superior accuracy with increased facility of manipulation, we have used it very satisfactorily for the last eight years, in many hundred of the ordinary analyses connected with the geological surveys of Virginia, Pennsylvania and New Jersey.

The instrument, as thas modified, is represented in fig. 1. It consists of a light flask or bottle, measuring about two cubic inches, a globular pipette drawn out to a very slender tapering tube below, a gum-elastic bag secured air-tight to the top of the pipette, and a drying tube, filled for the middle two thirds of its length with chloride of calcium, and near the ends with loosely packed cotton. The pipette and drying tube are passed through a smoothly drilled cork, so as to fit air-tight, the former projecting three fourths of an inch into the flask. The cork is so adjusted as to be withdrawn along with the pipette, and the pipette is charged without separating it from the cork. This gives room for the introduction of the carbonate into the flask; and obviates the danger, after the pipette has been charged with acid, of touching its moistened beak to the cork. Lastly, the surfaces of the

[^47]cork, flask, pipette and drying tube are coated with a varnish of * shell-lac, to protect the cork from infiltration, and to diminish the hygrometric action of the surface generally.

In using the instrument, a weighed quantity, say 40 grains, of the carbonate is placed in the flask, and if it be in powder, enough water is added to moisten it throughout. The pipette is then charged with hydrochloric or sulphuric acid, by placing its open end in a capsule containing this liquid, compressing the gum-elastic bag, and then allowing its elastic expansion to pump the acid into the bulb. Sometimes the pipette thus charged, when held upright, permits the liquid slowly to accumulate in a drop, at its beak, thus endangering a premature descent of the acid upon the carbonate, which would vitiate the experiment. This is effectually prevented by lightly pressing the bag and allowing it to recoil so as to draw a short column of air into the tube, near the end. The cork bearing the pipette and drying tube, being then secured in the flask, the acid will remain supported without any tendency to ooze out, and the instrument is in a condition to be placed in the balance to be counterpoised. This done it must be removed and placed upon a clean dry surface, near the balance, where, gently pressing the bag, the acid is to be projected in a fine stream on the carbonate, the action being regulated so as to maintain a steady but not too violent effervescence. When all the carbonate has been decomposed, which in the case of a marl or limestone occupies but a few minutes, the acid still in the bulb must be expelled into the flask.

To remove the carbonic acid remaining in the instrument after the completion of the reaction, a large drying tube must be annexed to the end of that belonging to the apparatus, and the gumelastic bag must then be made to operate as a pump, by alternate compression and dilation. Continuing this action for some time, the gas is in great part if not wholly expelled, while the air entering from without at each alternation of the movement, deposits its moisture in the large drying tube, instead of adding it to the weight of the apparatus, as it would were this appendage omitted.* The second weighing is now performed, and the loss of

[^48]weight gives, by the usual procedure, the amount of the carbonate in the known quantity of material used.

Long experience with this instrument, especially as applied to the alkaline and earthy carbonates, solid and in solution, has satisfied us, that with the precautions above described, it yields more uniform results than either of the methods commonly employed, while it possesses the important advantage of facility and promptness in the manipulation. By comparing it with more perfect arrangements, hereafter to be described, we have found that with proper care, it enables us to ascertain the amount of carbonate present, to within one tenth of a per cent., a degree of accuracy, which, without the utmost precaution, is we believe, rarely attained with Rose's apparatus, and which greatly exceeds that of the operation with the graduated tube over mercury.
The errors to which it is exposed, arise from two causes; first, the difficulty of removing the last traces of carbonic acid from the air of the flask and pipette, by the pumping operation above described, and secondly, the union of a portion of the carbonic acid with the liquid in the flask. To these may perhaps be added a slight endosmose through the gum-elastic bag, though of this we have no certain evidence. Without therefore claiming for it all the accuracy required in an instrument for refined research, we offer it to the attention of practical chemists as a valuable help in the important class of chemical enquiries relating to the composition of marls, calcareous soils and certain manufactured products, where despatch is of more importance than the highest degree of precision in the result.

Of the sources of error above mentioned, that of the retention of part of the carbonic acid by the liquid in the flask, is by far the most important, and as will be shown hereafter, in the case of Rose's process and its modifications by Fritche, and by Erdman and Marchand, is of such magnitude, even when sulphuric acid is employed, as greatly to impair the value of the results for the purposes of nice investigation.

Besides this source of inaccuracy, common to Rose's and our own process, we have detected another peculiar to the former, and which operates whenever hydrochloric acid is employed in his apparatus. This is the evolution of carbonic acid from the surface of the carbonate, caused by the action of the acid vapor, during the time of the first weighing, and which occasions, as we
have repeatedly witnessed, a sensible diminution of the weight of the apparatus while resting on the balance. So considerable is the amount of this action with some substances, where as in cases of nice research, much time is occupied in the counterpoising, that we believe the results thus obtained can not fail of being seriously erroneous.
II. Apparatus and processes for the more exact analysis of the carbonates.

Incited by the recent researches and impressive suggestions of Dumas, in relation to the equivalents of oxygen, carbon and calcium, we several months ago entered upon a series of investigations, to test for ourselves the accuracy of the received atomic weights of lime, magnesia, baryta, strontia, soda and potassa, proposing as the simplest means of effecting this object, to determine the amount of carbonic acid, evolved from the pure carbonates, by some process similar in principle to that above described. Repeated trials, however, convinced us that the imperfections already mentioned as incident to Rose's process and our own, though of but little moment in ordinary analysis, unfitted them for the higher description of research, on which we were desirous of entering. A more critical examination of the sources of irregularity and error, in these and the other methods of analysis, at length led us to the forms of apparatus, and modes of procedure, which we have since employed with very satisfactory results.

These instruments and manipulations, we will now proceed to sketch, accompanying the description, with a reference to some of the experiments used as tests of the accuracy of our process, or as proofs of the errors not hitherto adverted to in the methods commonly in use. Of the results of our enquiries thus far, as regards chemical equivalents, some notice will be given under a distinct head in a future number of this Journal.

The main apparatus, that in which the decomposition is effected, and which is weighed at the beginning and close of the process, is of two distinct forms, adapted to the different characters of the carbonates under examination. Of these, one is seen forming the middle portion of fig. 2 , the other is delineated in fig. 3.

The body of the instrument in both cases, consists of a light, wide-mouthed bottle, having a capacity of about three cubic inches, closed by a cork three fourths of an inch in thickness. In the first form, the cork receives the tapering ends of two drying
tubes, the one horizontal, the other vertical, both projecting a short distance into the bottle. It is also penetrated centrally by a stout platinum wire about four inches long, hooked at the lower and bent twice at the upper end. A thin glass bucket for containing the solid carbonate, is represented in the figure as hanging within the bottle. This is perforated at bottom, and furnished with a handle of platinum wire, to allow of its suspension from the upper and from the lower hook, in the successive stages of manipulation. Such is the arrangement we employ in experiments with carbonates of lime, baryta and soda, and the other carbonates which admit of accurate weighing while exposed.
Tig. 2.
Fig. 1.

In the second form, the platinum wire and glass bucket are omitted; the carbonate enclosed in a thin, sealed tube, is placed at the bottom of the bottle, and the hydrochloric acid retained until needed in the globular pipette, above. The latter appendage, drawn out to a delicate and even tube below, is inserted through the centre of the cork, and projects into the bottle about three fourths of an inch. As in this arrangement, which is free from the errors incident to the use of the gum-elastic bag, the column of acid is exposed to an undiminished atmospheric pressure at top, some care is necessary in forming the tapering stem of the pipette, otherwise the liquid will escape in drops during the first weighing. This is obviated by a very gentle convergence of the tube, and by drawing in a column of air, so as to fill the lower half, or two
thirds of its length. With these precautions, we have found the acid to be retained in the bulb, without the slightest tendency to drop. The drying tubes belonging to this form, are both bent horizontally, and inserted, the one through the cork of the bottle, the other through that of the pipette. This form of the instrument we use for such carbonates as are very hygrometric, and could not therefore be weighed in the bucket, and also for such as are very bulky, as those of magnesia and zinc. We have moreover found it more convenient than the other, where the compound formed by the reaction is insoluble, and forms a pasty mass, as when sulphuric acid is employed to decompose carbonate of lime.

In both forms of the apparatus, the outside of the bottle, pipette and drying tubes, should be well coated with a smooth varnish of shell-lac, and the corks, and especially that of the bottle, should be repeatedly coated and dried, so as to be well imbued with the varnish for some depth. This is so important a precaution, that unless the large cork happen to be uncommonly close in texture, the permeation through it, in experiments of long continuance, is capable of producing very serious errors.

To the parts here described, which in both forms compose the apparatus proper, certain appendages are added in the course of the experiment. These, as shown in fig. 2, to the left and right of the decomposing bottle, are as follows.

First.-A large drying tube ten inches long, occupied for an inch at each end with dry cotton, and throughout the intervening eight inches, with chloride of calcium properly desiccated. This, supported in a horizontal position, is connected by a gum-elastic tube with the little supplemental bent portion of the upright drying tube. It is made thus long to ensure the absence of moisture in the air drawn into the apparatus, in the process of aspiration.

Second.-An arrangement for aspiration, consisting of a three necked Wolfe's bottle, holding about fifty cubic inches, to which are adapted a long glass syphon on the one side, a bent connecting tube on the other, and a ground stopper in the middle aperture. The bottle being filled with water, the syphon is made to operate by applying the lips below, and a stream of dry air is drawn into and through the apparatus, as long as the water continues to flow. A short tube drawn to a small orifice and made to fit over the end of the syphon, or what is better a small stop-cock, may be used to regulate the stream.

Third.-A test bottle, containing a solution of nitrate of silver, placed between the decomposing vessel and the instrument for aspiration. This appendage is introduced in the figure and referred to here, not because we deem it essential, when the operation is conducted with even common care, but as necessary to complete the picture of the apparatus of research, as used by us in our experiments. It will bghown hereafter, contrary to the intimation of Erdman and Marchand, that hydrochloric acid does not pass through the drying tubes, either in company with the stream of evolved carbonic acid, or during the aspiration with the air. As however an extreme violence in the effervescence, accidentally occasioned, might cause some of it to escape, a fact not yet witnessed in any of our experiments, we continue to use this appendage as a sentinel to give us notice of the error.

In adjusting the apparatus for use, great care should be taken to make all the connections, from the remote end of the large drying tube, to the short tube of the test bottle inclusive, perfectly air tight. To be sure of this, after putting the parts together, the end of the drying tube should be closed by a little fragment of soft cement, then setting the syphon in operation, if the junctions referred to are perfectly close, the stream of bubbles rising through the solution of nitrate, will soon entirely cease. The importance of this air-tight connection, will at once appear from considering that during the aspiration, the smallest opening in the corks or gum-elastic tubes of the decomposing bottle and its drying tubes, by giving admission to air from without, must increase the weight of the instrument, by the amount of moisture it brings with it, an increase which even in a seemingly tight condition of the apparatus, when the above precaution was not used, has in some of our experiments amounted to two one-hundreths of a grain.

To facilitate the removal of the apparatus, proper for its connection, previous to the second weighing, the binding string should be fastened by loop knots with long ends. This caution, however insignificant it may appear, is necessary to prevent the handling of the instrument, and to avoid any loosening of the corks. It may also be added, that in moving the instrument to or from the scale, it should be held by the horizontal tube, between the folds of a piece of clean buckskin. For accurate research, the experiments should be made in a dry atmosphere, of Vol. xlvi, No. 2.-Jan.-March, 1844.
very uniform temperature, so as to dispense with any rubbing of the apparatus before weighing, a proceeding which though commonly practiced, frequently leads, according to our observations, to much uncertainty in the subsequent counterpoising. This result is in part due to the deposition of moisture on the apparatus, in the act of weighing, which even in a uniform condition of the air as to humidity, must be unequal in the first and last weighings, unless the temperature of the vessel, and the time consumed in the process, be the same in both cases. But a still larger share of the effect is chargeable, according to our experiments, to the electrical excitement produced in the glass by the friction, which, communicated to the scale pan, affeets the apparent weight.

Wुe will now briefly sketch our mode of using the apparatus in exact research, and describe a further process, which we have found necessary for expelling the carbonic acid from the liquid.

When the bucket is used, a small bit of tissue paper is pressed down upon its bottom, so as completely to close the hole, and then the weighed carbonate, usually one hundred grains, carefully transferred into it. Having charged the bottle with moderately dilute hydrochloric or sulphuric acid, in quantity a good deal more than is required to neutralize the carbonate, and having properly adjusted the cork, we hang the bucket with its contents upon the upper hook of the platinum wire, and lifting the apparatus into the scale by the buckskin holder, we counterpoise it with great care. Then withdrawing it from the scale, we lift off the bucket, remove the cork, attach the bucket to the lover hook, previously drawn up so as nearly to touch the lower side of the cork, and again secure the cork in its place. As it now hangs the bucket is from one half to three fourths of an inch above the level of the liquid. Depressing the wire, we plunge the bucket into the fluid, which enters by the aperture below, and varying the depth of immersion from time to time, we regulate the effervescence, so as to be uniformly brisk, but withont great violence.
The effervescence having ended, as shown by the absence of any crepitation when the ear is held close to the flask, the liquid is briskly agitated to favor the escape of adhering bubbles, and the instrument is now connected with the appendages above described, in the manner indicated in fig. 2. The syphon being set in action, and the closeness of the connection ascertained, as before directed, the aspiration is commenced. During this pro-
cess, which occupies from fifteen to twenty minutes, drawing through the apparatus fifty cubic inches of dry air, the bottle is several times gently shaken from side to side, to promote the escape of the combined carbonic acid from the liquid. The instrument is now withdrawn from the appendages, and again placed on the scale to be weighed. In this second weighing, it will sometimes happen, that the apparatus loses while on the scale, a small amount of weight, rarely however exceeding a few thousandths of a grain, arising as we have clearly proved, from the gradual escape of more of the combined carbonic acid from the liquid. In such cases we repeat the process of aspiration, after which the weight remains without sensible diminution during the weighing.

In using the pipette form of apparatus, for the deliquescent carbonates, the substance to be examined is placed in a thin glass tube, previously weighed. The tube is then drawn out nearly to a point by the use of a weighed fragment of a glass rod over an alcohol lamp. Sufficient heat being applied thoroughly to dry the carbonate, the fine end of the tube is closed, and the whole suffered to cool down to the surrounding temperature. The point of the tube is then removed with a sharp file, to allow air to enter, after which it is closed by the application of a small stopper of wax cement of known weight. In this condition the tube, together with the little piece removed from its point, and the fragment of rod, are placed in the scale and counterpoised. The entire weight, thus obtained, diminished by the sum of the weights of the tube, rod and stopper, gives the weight of the dry carbonate in the tube.

The pipette being charged with acid and adjusted so as not to produce drops, the tube is allowed to fall into the bottle with such force as to be broken, and the cork is instantly secured in its place. To inject the acid into the bottle, we attach the large drying tube to the upper drying tube of the instrument, and then operate either by suction with the mouth applied to a little mouthpiece at the other end of the apparatus, or by connecting it with the appendage for aspiration. In all the other steps the process is the same as where the bucket is employed.

The weight of the carbonic acid employed, being then accurately determined, the process has reached the stage at which it has heretofore been regarded as terminated, but numerous obser-
vations have proved to us that, even after two protracted aspirations, the amount of carbonic acid retained by the liquid, is far too considerable to be overlooked, and that to effect its complete separation, it is necessary to boil the liquid.
To separate and measure this portion of the carbonic acid, we employ a tube of thin glass, about twenty four inches long and one fourth of an inch in calibre, closed at one end, and graduated at this extremity to fiftieths of a cubic inch. Pouring mercury into this, until the vacant space above is not much more than sufficient to contain all the liquid in the bottle, we pour the liquid upon the mercury, holding the tube in an inclined position, so as to produce as little agitation as possible, and then add mercury until the tube is completely filled. Inverting the instrument in a bowl of mercury and supporting it in an inclined position, we apply the flame of a spirit lamp to the part containing the acid solution. But little carbonic acid is evolved, until near the boiling point. The bubbles then rapidly ascend and the gas continues to be disengaged even after the commencement of ebullition, so that to ensure its entire separation, this temperature should be maintained for two or three minutes. The tube, placed in an erect position, may now be brought to the temperature of the apartment by a moist cloth.

A saturated solution of common salt being poured upon the mercury in the bowl, the tube is to be raised a little, so as to permit this liquid to ascend and take the place of the mercury in the tube, after which the instrument is transferred to a deep, narrow jar, filled also with the saturated solution, and is depressed to the proper level for measuring the volume of the included gas. As this volume always includes a minute quantity of common air, disengaged from the liquid by boiling, the tube must now be transferred to a large cistern of water, when by continued agitation for a minute or two, all the carbonic acid will be absorbed, and thus its volume made known by subtraction. These processes being conducted at or near the temperature of the room, or the volume being corrected for expansion, should the temperature be much higher, the height of the residuary carbonic acid is given with sufficient accuracy, by estimating each tenth of a cubic inch as equivalent to 0.047 grain.
This supplemental process, though seemingly tedious and troublesome, is readily completed in from fifteen to twenty min-
utes, and ought never to be omitted, when great accuracy is in view. As proving its importance, we may state that in the great number of experiments, which we have made within the last few months, by the method above described, we have found the amount of absorbed carbonic acid, to be rarely less than one twentieth, and sometimes as much as one fifteenth of a cubic inch; varying thus from one twentieth of a per cent. to one fifth of a per cent. of the whole weight of that substance contained in the carbonate employed.

That the carbonic acid thus united with the liquid, cannot be expelled by Rose's method, is apparent from the fact that its removal can only be effected by an actual boiling of the liquid, and this if attempted in the flask, would lead to far more serious errors, than that proposed to be corrected. In proof of the latter statement, we would refer to the following experiments.

1st. Having prepared a solution with carbonate of lime, and the usual charge of dilute hydrochloric acid, and boiled it to expel the dissolved carbonic acid, we introduced it into a small bottle furnished with an ample drying tube, the junctions being all secured air tight. After careful counterpoising at 64°, we heated it gradually over a small lamp, until it began briskly to boil. On withdrawing it from the lamp, the chloride of calcium was found to have been moistened by the condensed steam, for about half the length of the tube. The original temperature restored, the instrument was placed in the scale. It had lost five tenths of a grain.
2d. Supposing that this loss might be due to the escape of hydrochloric acid, we made a similar trial with sulphuric acid, and found the reduction of weight to be about six tenths of a grain.
3d. Still further to assure ourselves that the hydrochloric acid had not escaped in the former experiment, we renewed the charge, and while heating the liquid, passed the vapor and air, as they escaped from the drying tube, through a solution of nitrate of silver in a test glass. No impression was made upon the test solution, up to the period at which the former experiment was discontinued. But as soon as the whole length of the drying tube was moistened by condensed vapor, the escape of hydrochloric acid was indicated by dense curds of the precipitated chloride. A like trial with the sulphuric solution gave, even earlier, the same result, the sulphuric acid carried over with the steam,
decomposing the chloride of calcium and liberating hydrochloric acid.

It is evident therefore that the application to Rose's apparatus of a heat sufficient to expel the carbonic acid from the solution, is entirely inadmissible, whichever solvent we employ. It is scarcely necessary to add that this remark is also applicable to the apparatus of Fritche, that of Will and Fresenius, and that of Erdman and Marchand.

As in a recent memoir of the two chemists last named, they express a preference for sulphuric acid in experiments of this kind, it becomes important to our enquiries to ascertain whether the sulphuric solution produced in such case, would retain enough carbonic acid to make the boiling process necessary. We therefore introduced into the bottle one hundred grains of carbonate of lime, and poured upon it a sufficient amount of sulphuric acid, diluted with an equal bulk of water, to prevent the formation of a thick magma. Notwithstanding the large excess of acid, and frequent agitations of the liquid, the action towards its close was extremely slow, so that at the end of four hours, a slight crepitation could be heard on stirring the mixture. When this had entirely ceased, the liquid was heated in the graduated tube as above described. As the temperature approached boiling, carbonic acid was evolved, and at the close of the process, the volume of this gas collected was upwards of four tenths of a cubic inch. A similar result was obtained with several other carbonates and sulphuric acid.

We are therefore justified in affirming, that the solution or mixture formed in this process, whether sulphuric or hydrochloric acid be used, always contains an amount of carbonic acid too great to be overlooked in accurate research; that this carbonic acid cannot be expelled by a heat below boiling, and that such a temperature cannot be applied to the liquid while in the apparatus, without entirely vitiating the result. We therefore attach much importance, in cases of nice research, to the separate heating of the liquid, and we believe that with proper care the process for that purpose above described, will give the amount of residuary carbonic acid with all needful exactness.

The critical nature of the researches in which we proposed to employ the above mentioned instruments and processes, made it necessary, before entering on the main objects of investigation, to
submit every step of the operation to the severest scrutiny. Most of the results of this test examination have already been stated, and we will merely add that the important fact of the non-escape of any of the hydrochloric acid, either during the effervescence, or in the process of aspiration, of which we early satisfied ourselves by direct experiments, has been still more conclusively proved by the constant use of the test bottle in the numerous analyses we have since performed. As an index of how entirely the acid is retained within the instrument proper, we would call attention to the fact that a solution of nitrate of silver, which has been used by us in the test bottle during the last ten or more operations, and through which more than eight hundred cubic inches of air, after passing over the acid liquid, has been slowly transmitted, is as unclouded now as when first placed in the vessel. The chief agency in thus arresting the hydrochloric acid, is due to the moisture deposited by the carbonic acid, during the effervescence, in the cotton packing, at the inner ends of the drying tubes, and we have found that when the cotton is quite dry and the aspiration is made from a bottle containing only hydrochloric acid, traces of this soon show themselves in the test tube. Cotton fibre even when dry is capable, according to our experiments, of absorbing twice its weight of the acid vapor, but when moistened, even no more than by exposure to the damp breath, its absorbent power is very greatly increased. It appears therefore, that no fears need be entertained of the escape of hydrochloric acid vapor, where the test tubes are charged as above described ; and we are therefore at liberty to use this acid in the numerous instances where its employment would in all other respects be preferred.

In conclusion we would beg to say, that we have been led to enter thus minutely into many of the details of the processes here described, because we believe that by them we shall be enabled to investigate with unlooked for accuracy, the equivalents of a large number of substances, and because we desire that all the particulars of the methods we adopt, should be submitted to the criticism of experienced chemists.

Art. XIX.-Description and Analysis of Pickeringite, a native Magnesian Alum; by Augustus A. Hayes.

This mineral occurs in masses, which are composed of long parallel fibres, easily divisible, and generally affords rhombic prismatic forms. There are numerous cross-fissures, and the fracture at these is even. Transparent to translucent, having the satinlike lustre of the finest specimens of satin spar, which it much resembles. Color white, but when viewed in the direction of the fibres, pale rose red, or a delicate green. Taste, like that of alum. Sp. gr. 1.78 to 180 . In dry air it effloresces, in moist air it attracts water, and the fibres become flexible. It is soluble in cold water, without residue, and the solution has an acid action.

By chemical analysis, it affords
Water of crystallization, $45 \cdot 450$
Sulpburic acid, 36.322
Alumina, $12 \cdot 130$
Magnesia, 4.682
Protoxides of manganese and iron, . . 0.430
Lime, 0.126
Hydrochloric acid, 0.604
Loss, 0.256
$100 \cdot 000$
Neglecting the substances, evidently existing in the state of mixture with the double salt of alumina, its chemical formula is

$$
\dot{M g} \ddot{\mathbf{S}}+\ddot{\mathbf{A}} \stackrel{\mathrm{S}}{ }^{3}+22 \dot{\mathbf{H}} .^{*}
$$

In the analysis, bicarbonate of ammonia was used for precipitating the alumina and retaining the larger part of the magnesia, in solution with the sulphuric and hydrochloric acids. The precipitate was ignited, so long as it lost weight ; it was then redissolved in strong nitric acid, and its solution was decomposed by a large excess of potash solution. The hydrates, insoluble in a

[^49]boiling solution of caustic potash, were redissolved in hydrochloric acid; the lime was combined with oxalic acid and separated. A solution of chlorine in carbonate of soda removed manganese and alumina, leaving only magnesia in solution. The small quantity of magnesia was estimated as an ammonia phosphate.

The solution containing an excess of bicarbonate of ammonia was boiled, and thus rendered slightly acid. Nitrate of silver removed the chlorine of the hydrochloric acid, as chloride of silver; neither iodine or bromine could be detected. On rendering the fluid acid, by hydrochloric acid, the silver was separated, and hydrochlorate of baryta separated the sulphuric acid, as a pure sulphate of baryta. By an excess of sulphuric acid and evaporation, the baryta was precipitated, and the clear solution of saline matter was slowly reduced to a dry mass. By heating with the usual precautions, a light gray anhydrous sulphate of magnesia was obtained, from the weight of which, the weight of the magnesia was calculated and added to that precipitated with the alumina. By warm water, some flocks of ferruginous oxide of manganese had been separated from the dry saline matter; these were added to those from the alumina, and all converted by heat into the red oxide, from which the weights of protoxides were calculated. For determining the quantity of water contained in the mineral, a part of the fragments used in the above analysis, and weighed from the same state of dryness in air at $84^{\circ} \mathrm{F}$., was chosen. Fifty parts contained in a tube retort, connected with a vessel of ammoniacal solution, were heated slowly and uniformly. The porous mass lost 22.625 parts, and the ammonia had received 0.268 of hydrochloric acid. On heating the mass till vapors of sulphuric acid were disengaged, the loss was $23 \cdot 310$. The sulphuric acid weighed, in the state of sulphate of baryta, 0.287 parts, which, with 0.268 of hydrochloric acid, give $\cdot 585$ of acids, which were deducted from the total loss of weight due to heating. This mineral generally contains phosphoric acid, which in part replaces the sulphuric acid. It precipitates in union with the alumina, and appears to be an accidental impregnation. I found the most ready mode of detecting its presence in the alumina, to be that of forming ammonia alum, by adding a great excess of muriate of ammonia to a sulphuric solution while warm. On cooling, not only alum, but crystals of muriate of ammonia should form. By washing these crystals in a solution of muriate of am-

[^50]monia, all the phosphoric acid which was combined with the alumina remains in the fluid.

This mineral occurs in large quantity, in South Peru, near the port of Iquique. It invests the well known flesh-colored trachyte, and is mixed with masses of sulphates of ammonia, soda and magnesia, and salts of iron. The careful examinations of these saline deposits of Peru, by Mr. John H. Blake, led to the discovery of this mineral, and I John Pickering, Esq., the learned and distinguished President of the American Academy of Sciences.

Roxbury Laboratory, March 8, 1844.

Art. XX.-System of Mineralogy, including the most Recent Discoveries, Forcign and American; 640 pp. large 8vo, with 320 Wood Cuts, and four Copper Plates, containing 150 additional Figures. By James D. Dana, A. M. London and New York: Wiley \& Putnam. 1844.

Ir is seven years since we had the pleasure of announcing the first edition of this valuable work. (Vol. xxxir, p. 387.) The sale of a large edition of a book so purely scientific in this space of time gives good evidence alike of the growing interest in the subject in America, and of the high place which Mr. Dana's system holds in the estimation of mineralogists. During the period which has passed since the appearance of the first edition, the science of mineralogy has made rapid advances both in Europe and in this country. Abroad, many eminent chemists have been working up the obscure parts of the subject, and throwing new light on those better known. "The progress in analysis is especially apparent in the growing interest excited for the natural method of classification, and the opening prospect that, before long, the chemical and natural systems will be identical. There formerly seemed to be no bond of union between the species, hornblende, augite, tabular spar, acmite, and manganese spar, and in chemical methods we have found one with the ores of manganese, another with those of iron, another with salts of lime, and so on; but even Chemistry now suggests the natural system of arrangement, and demands their union in a single family, as given in some of the latest chemical treatises. Numerous other
instances, given in our remarks on Classification, illustrate the fact that the natural system is founded actually on chemical prin-ciples."-Preface. On this side the water, the numerous geological and mineralogical surveys which have been commenced or brought to a close, have done much to diffuse a taste for such studies among the mass of the people, and to awaken a spirit of inquiry, which, under the direction of the eminent gentlemen charged with the several parts of the work, has developed to a good degree our mineralogical resources. "Sources of information have thus been laid open for making a thorough American work on Mineralogy ; and it has been the endeavor of the author to avail himself fully of these various aids, to render, if possible, the present treatise deserving of this title." Many new species have been added to our former lists, and doubtless many proposed which are not new. Many old ones have been made to coalesce with others previously established,* while old names that had been discarded are again brought into use. \dagger

The following catalogue contains the more interesting of the new foreign species added to this edition of Mr. Dana's treatise.

Apatelite.	Beaumontite, (crenate	Greenovite. of copper.)
Potash copperas.	Perskite.	
Soda copperas.	Bromic silver.	Erstedite.
Oxalate of lime.	Iodic mercury.	Mosandrite.
Pissophane.	Rosite.	Wöhlerite.
Leucophane.	Hydrargillite.	Euxenite.
Magnesian pharmaco-	Gigantolite.	Uranotantalite.
lite.	Villarsite.	Heteroclin.
Bromlite.	Lepidomelane.	Anthosiderite.
Romeine.	Hydrous mica.	Wehrlite.
Antimonophyllite.	Ryacolite.	Irite.
Nussierite.	Andesine.	Placodine.
Selenate of lead.	Oligoclase.	Xanthokon.
Volborthite.	Periclase.	Zinkenite.
Delevauxene.	Rhodizite.	Geocronite.

[^51]Plagionite.
Voltzite.
Greenockite.
Faujasite.
Malthacite.
Ottrelite.
Pelokonite.

Pyrosclerite.
Thrombolite.
Variscite.
Krisuvigite.
Kammererite.
Fossil copal.
Middletonite.

Fichtelite.
Könlite.
Hartite.
Ixolyte.
Guyaquillite.
Berengelite.
Pigotite.

Praseolite.
It is surprising, considering the correctness of this treatise on its first appearance, to find how numerous and important are the changes which have been made in the present edition.

In the volume already quoted, we have given a full outline of the plan and general arrangement of Mr. Dana's work, which it is the less necessary to repeat at present, since the first edition is in the hands of so many of our readers. The mathematical appendix of the first edition is omitted in most of the present one; only a few are bound up with it for the satisfaction of those who wish to pursue that portion of the subject. Notwithstanding this omission, the present edition is considerably larger than the former-the whole amount of new matter being little short of one hundred and fifty pages. It is in fact to all intents and purposes a new book, modelled on the general plan of the former, but altered in many important points to suit it to the present advanced state of the science. Without farther preface, therefore, we proceed to give in as condensed a form as possible some of the novel features of greatest interest which strike our eye in the work, following the order of the contents.

Irregularities of Crystals.-Under this head, (which constitutes the 3d chapter, we have an important addition, and an able exposition of a subject which is the cause of much perplexity to the student, and, when rightly understood, unfolds many difficulties and apparent anomalies, both in the form and composition of minerals. The irregularities of crystals are treated of under four heads. 1. Imperfections of surface; 2. Variations of form and dimensions; 3. Internal imperfections and impurities; 4. Pseudomorphous crystallizations. Under the first head we have-

1. Striated Surfaces.-"These are produced by minute planes corering the surfaces striated, and usually inclosed parallel to the seconda-
ry or primary planes of the crystals, and we may suppose these ridges to have been formed by a continued oscillation in the operation of the causes that give rise, when acting uninterruptedly, to enlarged planes. By this means the surfaces of a crystal are marked in parallel lines meeting at an angle, and constituting the ridges referred to. This combination of different planes in the formation of a surface has been termed the oscillatory combination. The horizontal striæ on prismatic crystals of quartz, (Fig. 1,) are examples of this combination, in which the oscillation has taken place between the prismatic and pyramidal planes. As the crystals lengthened, there was apparently a continual effort to assume the
 terminal pyramidal planes, which effort was interruptedly overcome by a strong tendency to an increase in the length of the prism. In this manner, crystals of quartz are often tapered to a point, without the usual pyramidal terminations."
"Diagonal striæ sometimes occur on the faces of a cube showing an oscillatory combination between the cube and octahedron. The rhombic dodecahedron is often striated parallel either with the longer or the shorter diagonal of its faces; the former resulting from an oscillatory combination of the dodecahedron with the regular octahedron, and the latter, with the cube or planes bevelling the edges of the cube, as in Aplome. The accompanying figure represents a distorted crystal of magnetic iron from Haddam, Ct., illustrating the oscillation between the octahedron and dodecahedron. The faces of trapezohedral gar-
 nets are often striated parallel with the symmetrical diagonal, showing an oscillation with the dodecahedron."
2. Variations in the forms and dimensions of Crystals.-"The simplest modification of form in crystals, consists in a simple variation in length or breadth, without a disparity in similar secondary planes. The distortion, however, extends very generally to the secondary planes, especially when the elongation of a crystal takes place in the direction of a diagonal, instead of the crystallographic axes. In many instances, one or more secondary planes are obliterated by the enlargement of others, proving a source of much perplexity to the young student. The interfacial angles remain constant, unaffected by any of these variations in form.
"As most of the difficulties in the study of crystals arise from these distortions, this subject is one of great importance to the student."

Following the order of his crystallographic system, Mr. Dana unfolds this intricate subject by a beautiful series of figures, of which we can notice only the following :-
"Figure 3 represents a crystal of Galena from Rossie. It is a shortened cube; the lateral faces are very irregularly curved, and consist of the primary faces of the cube and the planes truncating the lateral edges. Some of the terminal edges are also truncated. The crystal is surrounded by a low pyramid, consisting of four planes on each of the angles and edges, which, owing to the distortion,

Fig. 3.
 do not occur elsewhere on the crystal. The cleavages of the crystal easily explain the relations of the several planes to the primary."
"Figure 5 of apatite is the same form that is represented in figure 4, but greatly distorted. The planes $e^{\prime}, e, e^{\prime \prime}$, between P and the right M,

Fig. 4.

Fig. 5.

are enlarged, while the corresponding planes below are in part obliterated. By observing that similar planes are lettered alike, the two figures may be compared throughout."

Fig. 7.
Fig. 6.

"Curved Crystals.-Curves in imbedded crystals are of frequent occurrence; and in implanted crystals they are not very uncommon. The annexed figure of quartz, (fig. 6,) illustrates this kind of distortion; the
same is described by Beck as occurring in the apatite of St. Lawrence Co., N. Y. Six-sided prisms of calc spar are occasionally curved in the same manner.
"In many species the crystals appear as if they had been broken transversely into many pieces, a slight displacement of which has given a curved form to the prism. This is common in tourmaline and beryl. The beryl from Monroe, Ct., often presents these interrupted curvatures as represented in figure 7."

In Vol. xlir, p. 206, of this Journal, Dr. John Locke described some very curious instances of curved crystallizations of gypsum, from Mammoth Cave, in Kentucky. Mr. Dana has given two excellent figures of this species of distortion, drawn from specimens in the collections of the National Institute at W ashington. Sir John Herschel has also described similar forms in ice on the stalks of plants, (Phil. Mag. 1833, II, 110,) and we had the pleasure of observing the same phenomenon recently on the stalks of the Helianthemum corymbosum and \mathbf{H}. Canadense.
"Variations in the Angles of Crystals.-Variations in the angles arising from curvatures and imperfections of surface have been alluded to. Other variations are owing to impurities in the crystal. Calcareous spar is one of the most noted instances of this variation; it varies from 105° to $105^{\circ} 1 \%^{\prime}$. Pure crystals have the constant angle $105^{\circ} 5^{\prime}$. These variations are in general so small as seldom to cause any difficulty in practice. Secondary planes, lustre, cleavage, and other peculiarities, will always distinguish a cube from a square prism, although the angles differ but $\mathbf{1}^{\prime \prime}$ from one another.
"From the investigations of Mitscherlich it is ascertained that the angles of crystals vary with the temperature. In passing from 32° to $212^{\circ} \mathrm{F}$, the angle of calc spar was diminished 81^{\prime}, thus approaching the form of a cube as the temperature increased. Dolomite, in the same range of temperature, diminished $4^{\prime} 6^{\prime \prime}$. The angle of the prism of arragonite was increased $2^{\prime} 46^{\prime \prime}$ while passing from 63° to $212^{\circ} \mathrm{F}$."
3. Internal imperfections and impurities.-This is a head capable of much expansion. The controlling influence exerted by the menstruum or medium, while minerals are taking on their forms, particularly as regards the chemical constitution of species, has not hitherto received sufficient attention. We have no doubt that when this subject has been thoroughly investigated, much of the present complexity of the formulas given for many species will vanish, and the small per cent. of many matters discovered by chemical analysis and not essential to
the existence of the mineral as a normal chemical salt, will prove to be only mechanical mixture. Indeed, already we discover with pleasure a disposition in foreign chemists of eminence, to simplify as far as possible their formulas. Mr. Dana has in his preface the following judicious remarks on this subject.
"Notwithstanding the well-known principle that crystallizing substances may include, mechanically, the impurities present in a solution, a fact often discoverable with the naked eye, chemists very generally include in the formula every ingredient obtained by analysis, however small the proportion. In some species, as quartz, lime, heavy spar, celestine, macles of andalusite, auriferous pyrites, and a few others, mechanical mixtures are allowed; but in most cases, especially if the mineral be a complex one, mechanical impurity seems hardly to be thought of as a possibility: while, in truth, the detection of an ingredient, in small quantity, in an opaque crystallized mineral, is neither proof of its mechanical, nor of its chemical combination; and some farther evidence should be required before coming to any conclusion on this point. Had the possibility of mechanical mixtures been more considered, and a doubt indulged when chemistry seemed to clash with crystallography, the science would have been encumbered with fewer synonyms. As an example:-the Peristerite of a British chemist would have been left in undisturbed union with feldspar: it requires but a common mag. nifier to detect the impurities (minute spangles, apparently of mica) in the red stripes of this red-and-white iridescent feldspar from Upper Canada; and it is very probable that quartz may be segregated, on known principles, in the white stripes, like the mica in the red. These facts explain the peculiar composition of this mineral, the analysis of which Rammelsberg quotes with expressions of distrust ; and if their bearing on the composition of other minerals were admitted, we should find the chemist less hasty in urging forward new species on chemical grounds alone."

The impurities often take a symmetrical arrangement, generally collecting most abundantly about the centre and along the diagonal, and also in planes between the centre and edges of the crystal. In chiastolite the foreign matter is arranged about the central axis, and in planes running from this axis to the edges, and also about the lateral edges and exterior surfaces of the crystal. The accom-
 panying figure, illustrating these principles, represents a macle of Staurotide, discovered by Dr. C. T. Jackson, resembling those of

Andalusite. The mica from Jones' Creek, near Baltimore, contains opaque lines or bands in concentric hexagonal figures which arise from the same cause. p. 54.
Section 11. Crystallogeny.-This section is divided into two parts.

1. The theoretical part, containing the various theories which have been adduced to account for the structure of crystals, and a particular illustration of that which appears to be most consistent with facts.
2. The practical part, including the different processes of crystallization and the attendant circumstances.

The original and profound views of the author on the following questions-"What are the laws by which molecules are superimposed on molecules in perfect order, and these tiny yet wonderful specimens of architecture constructed? What is this crystallogenic attraction? What the nature of the ultimate particles of matter?"-are unfolded in the early part of this section. He gives in the first place, a succinct account of the history of the subject, which is one that has exercised the ingenuity of the most profound philosophers. It has been before said in this Journal, (Vol. xxxin, p. 388,) that "after much examination of this matter, we do not hesitate to declare our opinion, that this mysterious problem, which since the days of Epicurus has been so often unsuccessfully attacked, is at length here solved.")* It is a satisfactory circumstance that this somewhat bold conclusion has been borne out by the evidence of so great an authority as M. Necker, who has fully recognized the correctness of Mr. Dana's views. (Bibliothèque Universelle.)

Under the heads of isomorphism and dimorphism, the recent views of Dr. H. Kopp are introduced, (p. 88,) as well as those of Mitscherlich and Rose.
"Isomorphism.-The isomorphism of certain substances must be attributed to some similarity in the nature of the molecules, in consequence of which they produce, in their combinations, compound molecules of similar ellipsoidal form and similar axes. Lime and protoxyd of iron are thus allied, and the qualities of their molecules are so alike, that, on uniting with the same substance in like proportions, the compound molecule has nearly or quite the same form, and similarly ar-

[^52]ranged axes. Dr. H. Kopp has lately shown that isomorphic bodies have equal atomic volumes, and draws the conclusion that isomorphism is owing to an equality in the volume of the atoms, or plesiomorphism to an approach to equality. Those bodies that replace one another without changing the crystalline form, have atoms of equal volumes, and their isomorphous compounds are also equal in atomic volume. He obtains the atomic volume by dividing the atomic weight by the specific gravity, and thus shows for a great number of the acknowledged - isomorphous or rather plesiomorphous minerals, a close approach to one another, in the volumes of their atoms. For example, for the carbonates of zinc and magnesia, mesitine, carbonates of iron and manganese, dolomite, and calc spar, he found the atomic volume as given in the following table:

	Atomic volume. Carbonate of Zinc, 175.33	Axis a. 0.807	$107^{\circ} 40^{\prime}$	
Carbonate of Magnesia,	181.25	0.812	107	25
Mesitine,	186.26	0.815	107	14
Carbonate of Iron,	188.50	0.819	107	0
Carbonate of Manganese,	$202 \cdot 29$	0.822	106	51
Dolomite,	202.36	0.833	106	15
Calc Spar,	231.20	0.854	105	15

"The above table, which contains also the axis a, and the angle of the rhombohedron, of each of these minerals, illustrates the interesting fact, which he next deduces, that the axis increases, or the angle diminishes, as the atomic volume increases. He also derives a formula for calculating the volume from the length of the axis, and finds it to give results coinciding very nearly with the above. These principles are illustrated by numerous examples, for which reference may be had to Brewster's Philosophical Magazine for April, 1841, p. 255.
"Since an increase of atomic volume is connected in the above minerals with an increase of the axis a, and heat, by diminishing the density, necessarily increases the volume of the atom, therefore the axis a must be lengthened by heat, as is actually the case. Mitscherlich found the specific gravity of calc spar diminished by a heat of $180^{\circ} \mathrm{F}$. in the proportion $1:{ }_{1 \cdot \sigma \nabla \frac{1}{1961}}$, and Dr. Kopp, by calculation determines that for $180^{\circ} \mathrm{F}$. the angle of the crystal should be changed $7^{7 / 37^{\prime \prime}}$, which is but $57^{\prime \prime}$ less than Mitscherlich's observations-a near coincidence, when we consider the difficulties which necessarily accompany the direct measurement of the dilatation and change of angles.
"These principles proceed on the hypothesis of simple spherical or spheroidal atoms for compound bodies, and the theory of atoms proposed by the author receives from them strong confirmation.
"Dimorphism.-Dimorphism has been shown by Mitscherlich, Rose and others, to result in many instances from the different temperatures
attending crystallization. When a right rhombic prism of sulphate of zinc is heated to $126^{\circ} \mathrm{F}$., certain points in its surface become opaque, and from these points bunches of crystals shoot forth, in the interior of the specimen ; and in a short time, the whole is converted into an aggregate of these crystals diverging from several centres on the surface of the original crystal. These small crystals thus formed at $126^{\circ} \mathrm{F}$., are oblique rhombic prisms; and the same form may be obtained by evaporating a solution, at this temperature, or above it. Sulphur crystallizes from fusion in oblique rhombic prisms, while the common form obtained by evaporation is a rhombic octahedron. Rose has obtained crystals of arragonite by evaporating a solution of carbonate of lime to dryness by means of a water bath, and crystals of calc spar by permitting the solution to evaporate in an open vessel at the ordinary temperature. The crystals of arragonite were minute six-sided prisms and double six-sided pyramids. They change to rhombohedrons of calc spar if left moist; but if washed and dried at once, they remain permanent. By exposing arragonite to a low temperature, the crystal falls to pieces, in consequence of the change to calc spar which takes place; or if the prisms hold together, they consist, after the change, of an aggregate of minute particles of calc spar.* Artificial arragonite has been observed in the interior of a copper boiler used to supply hot water for household purposes at Port Eliot Cornwall. The crystals were minute six-sided prisms, and were attached at base to the surface supporting them.t Breithaupt has described a carbonate of lime from a greenstone rock near Zwickau, which consists of alternations of layers of arragonite and calc spar; and he suggests that the one may be a winter and the other a summer deposit. \ddagger
"Dimorphism appears therefore to be owing to the different circumstances attending crystallization. Temperature appears to be the main cause ; but it is possible that the nature of the solvent, or the presence of some accidental ingredient in the solution, or the electrical state of the support, may have some effect in changing the molecules; but in general the only effect of these causes is to produce secondary planes. Rose did not succeed in obtaining arragonite crystals by mixing a strontian salt with the solution of lime, and supposes that the strontia in arragonite has nothing to do with producing the rhombic form."
The foregoing views are worthy of the most careful attention, particularly in some cases, where their application has not heretofore been looked for. We might cite for instance the species

[^53]Sillimanite, Kyanite and Andalusite, minerals chemically identical, but mineralogically considered, distinct.

Chapter IV, is on the determination of primary forms; we find under it the following figure and description of an ingenious and useful improvement in the reflecting goniometer of Wollaston, for adjusting the crystals; it is drawn from a German instrument.

The contrivance acd is also an important addition. It contains a slit at d for sighting the crystals, by using which, one of the lines may be dispensed with. It slides up and down in the part $a b$,
 and also moves back and forth, parallel with the plane of the graduated circle, on the pivot by which it is attached to the stand of the goniometer.

The chapter on practical crystallogeny is an interesting one, and largely illustrated by facts drawn from American sources. Crystallized minerals, especially when the individuals are large, are so rarely homogeneous in structure, that the attention of chemists (as before suggested, p. 367,) ought to be directed specially to a consideration of the circumstances under which the crystal was produced, before deciding definitely as to the essential nature of minute quantities of accidental ingredients, particularly if the mineral owes its origin to crystallization from solution. It seems probable from the observations of Beudant, that symmetrical crystals are seldom produced in clear or homogeneous solutions. Quartz, if pellucid and pure, is almost never regular or normal in the relation of its several secondary planes, while the highly ferruginous quartz, from Expailly, is always in regular bipyramidal prisms, although the quantity of foreign matter mechanically disseminated through the crystals, is such as to make them quite opaque. We see then the risk incurred in assuming that regularly crystallized opaque minerals are of course free from accidental impurities.

We might extract largely from this portion of the work with profit to our readers, but our space confines us, and we must refer for fuller details to the volume, now easily accessible to all. Under crystallization by heat, we find the following new and important observations, drawn from a practical source of the highest authority, and showing the importance of a close reunion between the theoretical and practical arts.
"It has been supposed that complete fusion is necessary for the formation of crystals, or the crystallization of a mineral mass. But late observations have shown, that a high temperature without fusion, or even long-continued friction or vibration, will produce the same result. The tempering of steel is a familiar example. The coarseness or fineness of the grain, or, in other words, the size of the crystallizations, may be varied by the temperature, or the mode of tempering, and a bar that is almost impalpably fine, may in this way be changed to one consisting of crystalline plates an eighth of an inch in breadth. In these instances, the particles must have been free to move, as they are entirely rearranged into large crystals. Mr. N. P. Ames, of Springfield, Mass., who has observed numerous interesting facts bearing upon this subject, informs the author that if a bar of tempered steel, bent in the form of a semicircle, be heated on the inner side, when the heat has reached a certain point, the bar may easily be bent around, and made to curve in the opposite direction. He states that, until the moment when the requisite temperature is acquired, the bar does not yield; but at this moment a change takes place, which is distinctly felt in the hands, and the bar at once bends. He carefully measured the inner and outer curves of the bar, after thus bending it, and found them of the same length as before. This shows that there had been no compression of the particles on the inner side, which would have shortened that side, and therefore, also, that there was actually a removal of particles from the inner to the outer side. He observes, moreover, that the elasticity of the inner and outer sides was the same, which would not have been the case, were the former compressed. By the old method of restoring a warped sword-blade, it was rendered unequally elastic, and would spring more easily on one side than the other; but by the means here explained, the elasticity is perfectly equal on both sides. Here, then, there is a change in the position of the particles throughout the bar, produced by a temperature very far short of fusion. The same experiment was often repeated, and he found that, at every time he bent the steel, the temperature required was a little above that at which it bent the preceding time. ${ }^{\text {a }}$
"The change which takes place by friction or long-repeated concussion, is probably owing to the combined action of the heat thus excited,
and the vibration that takes place. Mr. Ames states instances in which a large bar of iron, used as an axle through a heavy wheel of cast iron, broke square off in the middle, after use for a few months; and in one instance, there were two other fractures on either sile of the centre. In these instances, the bar was rendered coarsely crystalline, and was wholly unlike the original iron. The accident which took place in 1842, on the Versailles railroad, was owing to the breaking of an axle, which was rendered brittle by the same cause."

The chapter on "blowpipe characters," contains in a tabular form the most important reactions of the principle oxides and earths with borax, salt of phosphorus and soda, being reduced from the works of Berzelius, Plattner, and others.

The much vexed question of classification, occupies the fourth part of the second section of the volume, and we extract the following judicious remarks on the subject, (p.128.)
"The arrangement of objects according to any assumed system, is styled a classification. By using different classes of characters to mark the grand divisions, various modes of arrangement may be made out. Of these there is one natural system; the rest are artificial classifications.
"Artificial classifications may sometimes be used to advantage for the convenience of comparison in identifying species; but farther than this, they only lead to error, by suggesting false affinities and unnatural as. sociations of species. An arrangement of this kind is adopted in this treatise, founded on the crystalline forms. Excepting the purpose for which it is instituted-the determination of the names of minerals-it subserves no important end to the mineralogist; on the contrary, it brings together species the most unlike, and separates those most closely allied.
"The natural system is a transcript of nature, and consists of those family groupings into which the species naturally fall. In making out such a classification, instead of conforming the whole to certain assumed principles, the various affinities of the species are first ascertained, by studying out all their peculiarities and resemblances, and from these the principles of the system are deduced. There should be no forced unions to suit preconceived ideas, but only such associations as nature herself suggests.
"Unlike the other branches of natural science, mineralogy admits also of a chemical classification, or one founded on the chemical constitution of the species; and as minerals proceed from chemical instead of vital action, there is some reason for the adoption of chemical characters into the natural system. When the chemical relations of the elements are
well understood, it is not too much to assert, that the chemical and natural systems will be identical.
"In the received chemical systems, analogies and affinities are very generally violated. Some authors arrange minerals according to the elec-tro-positive element (the base) in their composition; and others follow the electro-negative element, (the acid:) and in both cases numerous difficulties obtain. The true system should conform to the one or the other, according to which is the characterizing ingredient; and on this plan, keeping in view also the principles of isomorphism, the chemical classification would not differ from the natural system.
"Carbonate of lime, carbonate of magnesia, carbonate of iron, and carbonate of manganese, are allied chemically-for their bases, lime, magnesia, oxyd of iron, and manganese, are isomorphous-and in physical and crystallographic characters they are also very similar. The group is therefore a natural one. The sulphates of several of the metals constitute a family of vitriols which are always associated in common language, and with equal propriety in science. But most chemical arrangements break up these natural groups, and place sulphate of iron (green vitriol) and carbonate of iron together under iron, sulphate of copper (blue vitriol) under copper, and so on. There is a natural group of alums, a potash-alum, soda-alum, magnesia-alum, \&c., which is almost invariably broken up in the chemical systems, one placed with the salts of potash, another with the salts of soda, \&c. A single species in mineralogy, pyroxene, is sometimes subdivided and distributed in various parts of the system. This species includes several distinct chemical compounds, as will be seen by referring to Pyroxene, in the descriptive part of the treatise ; but they are so closely related physically, and, if we consider the isomorphism of the bases, we may say chemically also, that many chemists rank them in the same family. The micas evidently form a natural group, yet a chemist separates the rose mica from the others, and places it with other lithia minerals, because it contains a few per cent. of lithia. The natural family of the feldspars and the zeolites are usually broken up in the same manner. A few per cent. of the base will often lead to a dissevering of the closest affinities. The sulphurets of iron, copper, \&c. form evidently a natural group chemically as well as mineralogically, yet, without reference to their relations, they are usually distributed under the different metals, although sulphur is here the characterizing ingredient. All the compounds of the metals are generally thrown together; whereas even chemistry, if its principles are well considered, would suggest that the salts of the various metals are in general more nearly allied than the salts and oxyds of the same metal. There can be no more unnatural association of species than the sulphate of iron, (green vitriol,) carbonate of iron, phosphate
of iron, and specular iron. Titanate of iron and specular iron are iso: morphous and similar physically, yet chemical systems would separate the two, and place the former along side of other salts of iron.
"Besides, various chemical compounds pass into one another by the gradual substitution of one isomorphous base for another, and although the extremes might be easily arranged in a chemical system, yet the transitions are disposed of with much difficulty. The augite family is a striking example.
"A true chemical system should take into consideration the isomorphous relations of the elements or bases, and not be subservient to any one set of characters. That element in the compound should be assumed for the ground of distinction, which fixes the peculiar features of the species-the acid in some species, the bases in others. In the vitriols, the acid (sulphuric) is the characterizing ingredient; in the alums, sulphuric acid and alumina; and so on. No chemical system can satisfy the demands of the science which does not follow nature's own windings. We would not say that the system of Mohs, adopted in this treatise as the natural system, is perfect; yet, whether we consider it chemically or mineralogically, it will be found to approach more nearly to such a system than any other that has been proposed."

The tables for determination of species are full, and original with the author. We find in the present edition a valuable addition to them-the degree of fusibility expressed in numbers after the manner of expressing hardness, and also a separate arrangement of the species without metallic lustre-according to their blowpipe characters. The minerals constituting the scale are, 1. Gray antimony,-2. Natrolite,-3. Cinnamon stone, (variety of garnet,)-4. Hornblende, (greenish-black variety,)5. Feldspar,-6. Chondrodite. The last fuses with difficulty on the edges. Infusibility is expressed by 7 .

Descriptive mineralogy, (Part VI,) constitutes of course much the most bulky portion of the book. From what we have said of the elevated character of the introductory chapters of this work, the reader may infer that the descriptive part might have suffered in the hands of an author who valued so highly speculative and theoretical points. It will however be found, that great care and labor has been spent on this portion of the volume. No stone has been left unturned. The foreign journals and treatises have been ably collated; the species have generally been traced to their original authority and all the references authenticated, and those only who have wandered in the mazes of foreign au-
thorities and foreign languages for the purpose in question, can fully appreciate the thankless nature of the labor. The number of species retained is about four hundred and eighty. By careful comparison of analyses, and by researches undertaken expressly for the work, some of the dark points of American mineralogy have been cleared up, and many species turned over to our table of synonyms on a following page.

This part of the work is well illustrated by figures, about seventy of which are new in this edition. The author has added many original figures of American species. We have space only to extract a few notices where the matter is new, and particularly interesting to American readers. We follow the order of the treatise.
"Borate of Lime. Borocalcius obliquus.
(A. A. Hayes, private communication to the author.)
" Primary form, an obtuse oblique rhombic prism; $\mathrm{M}: \mathrm{M}=97^{\circ} 30^{\prime}$ and $82^{\circ} 30^{\prime}-82^{\circ} 36^{\prime}$, (Teschemacher.) Secondary form, the annexed figure; M:ĕ $=147^{\circ} 30^{\prime}$, (Teschemacher.) Also in masses having a globular form, consisting of interwoven fibres.
"Crystals colorless and transparent. Fibrous masses opaque, snow-white, silky, and have a peculiar odor.
"Composition, according to Mr. A. A. Hayes, a Hydrous borate of lime; the exact constitution has not yet been determined. In warm water the fibrous masses expand and form a consistent paste with more than eight times their volume. Mr. Hayes states that

Fig. 10.
 this variety contains more water than the crystals.
"Obs. This salt occurs quite abundantly on the dry plains near Iquique, S. A., associated with magnesian alum, (Pickeringite of Hayes,) where it was obtained by Mr. J. H. Blake. The crystals are sometimes a quarter of an inch long." (p. 243.)

"Chlorophyllite. Stylus foliaceus.

(" Esmarkite, Erdmann, Jahresb. 1841, p. 174. Chlorophyllite, Jackson, 1st An. Geol. Rep. of New Hampshire, p. 152. Pinite.)
"Occurs in six and twelve-sided prisms. Highly foliated parallel to the base of the prism ; sometimes also a prismatic cleavage more or less distinct.
"H. of basal plane $1.5-2$; the lateral edges will scratch apatite. G. $=2 \cdot 705$, Jackson; 2.709, Erdmann. Lustre of basal plane, pearly ; Vol. xlvi, No. 2.-Jan.-March, 1844.
of lateral, pearly or greasy to imperfectly vitreous. Color green or greenish, greenish-brown-dark olive-green. Translucent to subtranslucent. Folia neither flexible nor elastic ; brittle.
"Composition, according to Jackson, (communicated to the author,) and Erdmann, (Jahresb. 1841, 174,)

	Chlorophyllite.	Esmarkite, Brevig
Silica,	45.20	45.97
Alumina,	27.60	32.08
Magnesia,	$9 \cdot 60$	$10 \cdot 32$
Protoxyd of iron,*	$8 \cdot 24$	$3 \cdot 83$
Protoxyd of manganese,	, 4.08	$0 \cdot 41$
Water,	$3 \cdot 60=$	J. $5 \cdot 49=98$

"Traces of phosphoric acid were detected in the chlorophyllite.
"This mineral is closely allied to the hydrous iolite of Bonsdorff, but contains less water. Like that, it is found associated with iolite. Yields water before the blowpipe, and becomes bluish-gray, but fuses only on the edges. With carbonate of soda, effervescence takes place, and an opaque greenish enamel is formed, which becomes darker green in the reducing flame.
"Obs. Chlorophyllite is usually associated with iolite in granite, and appears to proceed from the alteration of iolite. It often forms thin folia interlaminated with plates of iolite in the hexagonal prisms of this mineral.
"The chlorophyllite of Jackson occurs abundantly in large prismatic and tabular crystals at Neal's mine in Unity, Maine, associated with hornblende rocks containing iron and copper pyrites. The same mineral occurs with iolite at Haddam, Connecticut, and has been called Pinite. The Esmarkite of Erdmann is found in granite near Brevig in Norway.
"The name Chlorophyllite, given this species by Dr. Jackson, is derived from χ hupos, green, and quidov, leaf, and alludes to its structure and color. The name Esmarkite was previously appropriated to a variety of Datholite.
"It is probable that both the hydrous iolite of Bonsdorff and chlorophyllite have proceeded from the alteration of iolite, and the hexagonal forins the crystals present may have been derived from the original iolite, instead of being the actual crystallization of the hydrous mineral. Gigantolite, Pinite, and Fahlunite, may also be altered forms of other minerals, and probably of iolite." (pp. 306, 307.)

[^54]Stellite.-This mineral has been described by Dr. Thomson,* and a mineral was mentioned by Dr. Beck in an article in this Journal, (Vol. xliv, p. 54,) as identical with it, which has been found at Bergen Hill, and widely circulated under the name of Thomsonite. This mineral yielded to Dr. Beck's analysis, silica $54 \cdot 60$, lime $33 \cdot 65$, magnesia 6.80 , oxyd of iron with a little alumina $0 \cdot 50$, water and carbonic acid $3 \cdot 20$.
"Mr. A. A. Hayes has analyzed the same mineral with quite a different result, as follows:-Silica $55 \cdot 96$, lime $35 \cdot 12$, soda $6^{\circ} 75$, potash 0.60 , alumina and magnesia 0.08 , protoxyd of manganese 0.64 , water (hygrometric) $0 \cdot 16=99 \cdot 31$. The large per centage of soda and the proportion of silica and lime, would seem to ally the species to Pectolite, from which, however, it appears to be removed by containing no water."
"The author has compared specimens of the stellite of Bergen Hill with the foreign pectolite in Mr. J. A. Clay's cabinet at Philadelphia, and finds them closely similar in external character ; moreover, Frankenheim, in a late article, makes pectolite an anhydrous mineral, stating that the water varies, and is not an essential ingredient." (p. 336.)

Haydenite. Chabazius monoclinatus.-This interesting species is found in company with a rare and curious modification of Heulandite, which M. Levy has endeavored to establish as a distinct species under the name of Beaumontite, but which Mr . Alger has shown (this Vol. p. 233) to be Heulandite. The Haydenite was also reëstablished by Levy on crystallographic groupds, but as it is still doubtful whether its primary may not be a rhombohedron, like chabazite, instead of a rhombic prism, a chemical analysis was undertaken by B. Silliman, Jr., to settle the question. We copy the figure given by Mr. Dana, and from the appendix the chemical examination.
"Primary form, an oblique rhombic prism, (Levy.) $\mathrm{M}: \mathrm{M}=98^{\circ} 22^{\prime}, \mathrm{P}: \mathrm{M}=96^{\circ} 5^{\prime}$. Cleavage: lateral and basal, perfect; the latter little the most so. Twin crystals compounded parallel with \mathbf{P}, as in the annexed figure.
" $\mathrm{H} .=3$. $\mathrm{G}=2 \cdot 136-2 \cdot 265$, (Silliman.) Lus-
 tre vitreous; bright. Color brownish-, greenish-, or wine-yellow. Translucent-transparent. Brittle.
"Dissolves partially without gelatinizing in sulphuric acid, and on cooling deposits crystals of alum. Fuses with difficulty before the blow-pipe-tinges the outer flame violet. Heated in a glass tube alone, it gives off a slight empyreumatic odor, and deposits water.-(Silliman.)

"Composition,								
Silica,	-	-	-	-	-	-	-	56.831
Alumina,	-	-	-	-	-	-	12.345	
Protoxyd of Iron,	-	-	-	-	-	-	8.035	
Lime,	-	-	-	-	-	-	-	8.419
Magnesia,	-	-	-	-	-	-	-	3.960
Potash,	-	-	-	-	-	-	-	2.388
Water, -	-	-	-	-	-	-	-	8.905
100.883								

"Obs.-Haydenite was first described and named by Cleaveland. It has since been considered chabazite, and was lately restored to its place as a species by Levy. It occurs coating hornblendic gneiss in fissures at Jones's Falls, a mile and a half from Baltimore. The crystals seldom exceed a line in length, and are nearly rhombs in shape. They are usually coated with a brownish-green hydrate of iron, which is easily separated, and leaves the surface smooth and bright. Occasionally crystals are met with, consisting wholly of this hydrate of iron. The Haydenite is associated with Heulandite in minute crystals." (pp. 342, 526.)

This species seems to deserve a distinct consideration, notwithstanding its resemblance in some respects to chabazite.

The iron was estimated as protoxyd from the excess found in the analysis, $(103.355$.) But there is reason to believe that the lime might have been in excess ; allowing for this, and taking the iron as peroxyd, the formula will be

$$
(\dot{\mathrm{Ca}}, \dot{\mathrm{M}} \mathrm{~g}, \dot{\mathrm{~K}}) \ddot{\mathrm{S}} \mathrm{i}+(\ddot{\mathbf{A}}, \underline{\mathbf{F}} \mathrm{e}) \ddot{\mathrm{S}}^{2}+3 \dot{\mathbf{H}}
$$

which is the formula given for some chabazites, (from Parsborough, see Dana's Mineralogy, p. 559,) excepting half the proportion of water. The analysis as it stands leads to the less probable formula-

$$
6(\dot{\mathrm{C}}, \dot{\mathrm{Mg}}, \dot{\mathrm{~K}}, \dot{\mathrm{~F}} \mathrm{e}) \ddot{\mathrm{S} i}+2 \ddot{\mathrm{~A}}) \ddot{\mathrm{Si}^{2}}+9 \dot{\mathbf{Y}}
$$

Fig. 12.
Under Datholite we have the accompanying figure of a rare and interesting form of this mineral from the new locality of Roaring Brook, Cheshire, Conn. (p. 342.)

Epidote.-Haddam, Conn., furnishes crystals of this species having the form

shown in fig. 13. Some of the individuals from this locality are six to eight inches in length, and always macles.

Idocrase.-Amherst, in New Hampshire, furnishes the form represented in fig. 14.

Andalusite.-A crystal of Andalusite from Westford, Mass., shown in fig. 15, was measured by Mr. Teschemacher, P : a 144.50.

Fig. 13.

Fig. 14.

Fig. 15.

Chondrodite.-We have at last a figure and the angles of this rarely crystallized species as follows, (Fig. 16.)
"Primary form, an oblique rhombic prism; $\mathrm{M}: \mathrm{M}=112^{\circ} 12$? Haüy. Secondary form: M : M=112 and $68^{\circ}, \mathrm{M}: \mathrm{e}=136^{\circ}, \mathrm{M}: \overline{\mathrm{e}}=$ 157°, е̌ : ě (adjacent) $=80^{\circ}, a: a$ (over the summit) $=85^{\circ}, \overline{\mathrm{e}}: \overline{\mathrm{e}}=89^{\circ}$, $\breve{\mathrm{e}}: \overline{\mathrm{e}}$ (over a) $=127^{\circ}$, $̆$ a on the edge $\breve{\mathrm{e}}: \breve{\mathrm{e}}=167$. The figure is drawn from a specimen in the collection of J. A. Clay, Esq. of Philadelphia. The angles were taken with the common goniometer." (p. 388.)

Fig. 16.

Fig. 17.

Beryl.-The beautiful and almost unique beryls from Haddam, described by Prof. Johnston (in this Journal, Vol. xu, p. 401) are rarely modified by secondary planes. Fig. 17 shows one with the planes $a^{\prime} a^{\prime \prime}$ and e. 'The dotted line marks the boundary between the pellucid and milky portions.

Sillimanite. Epimecius Sillimanianus.
This interesting mineral has been the subject of much speculation. The following figure and angles are taken from a specimen in the cabinet of B. Silliman, Jr. and found at Norwich, Ct.
"Primary form, an oblique rhombic or rhomboidal prism; $\mathrm{M}: \mathrm{T}=$ 110° to 98°, crystals having the fates M smooth and plain, give the latter, which therefore appears to be the correct angle of the prism. Seeondary form, the annexed figure ; $\mathrm{P}: \mathrm{M}=105^{\circ}, \mathrm{P}: \mathrm{e}=133^{\circ} 30^{\prime}, \mathrm{M}: \mathrm{e}=120^{\circ}$ $30^{\prime}, \mathrm{P}: a=132^{\circ}$, (D.) The terminal planes dull and hardly smooth. Cleavage highly perfect, parallel to the longer diagonal, and producing brilliant surfaces ; parallel to M indistinct. Crystals usually long and slender. Occurs also long fibrous, parallel, or slightly divergent.
"H. $=7-7 \cdot 5$. G. $=3 \cdot 2-3 \cdot 238$, D.; 3•259, Norton. (Yorktown.) Lustre vitreous, inclining to pearly ; hardly shining on M, but splendent on the face of perfect cleavage ; parallel to P , vitreous, inclining to resinous. Streak white. Color hair-brown-grayish-brown. Translucent. Fracture uneven, parallel to P. Brittle. The long crystals are detached from the rock entire, with great difficulty, on account of their frangibility.
"Composition, according to Bowen, (Sill. Jour. viir, 113,) Muir, (Thom. Min. I, 424,) Connell, (Jameson's Jour. xxxi, 232,) and Norton, performed for this work, in the laboratory of B. Silliman, Jr.

Silica,	Chester, Conn.*	Chester.	Chester.	Yorktown, N. \mathbf{Y}.
	$42 \cdot 666$	$38 \cdot 670$	36.75	37.700
Alumina,	$54 \cdot 111$	35•106	58.94	$62 \cdot 750$
Zirconia,		$18 \cdot 510$		
Oxyd of iron,	n, 1.999	$7 \cdot 216$	0.99	2.287
Water,	0.510			
	99.286, B.	99.502,	96.68,	102.739, N

"The analyses by Connell and Norton show that this mineral contains no Zirconia.
"Before the blowpipe, both per se and with borax it is infusible.
"Obs. The crystal here figured appears to have dissimilar lustre on M and T , and this, as well as the secondary planes, indicates that the primary is probably a rhomboidal prism. In composition, Sillimanite is very close to Kyanite, if they are not identical ; yet its bright and easy cleavage shows that it is mineralogically distinct from that species." (pp. 377, 378,)

Connell proposed (Jameson's Jour., Vol. xxxi, p. 232) the union of Sillimanite with Kyanite, and Berzelius \dagger in his report for this

[^55]year, suggests the union of Sillimanite, Kyanite,* and Andalusite, under the general formula $\hat{\mathrm{A}}{ }^{3}{ }^{3} \mathrm{Si}^{2}$. There are strong reasons for believing that silicate of alumina is a dimorphous substance, and on this supposition we may consider Sillimanite one of its forms. Mineralogically Sillimanite is certainly distinct.

Iolite. -We have the following analyses of Iolite from Haddam, Ct. and Unity, in New Hampshire, by Dr. Jackson. (p. 406.)

Silica,	- .	Haddam. $48 \cdot 35$	$\begin{aligned} & \text { Unity, N. H. } \\ & 48.15 \end{aligned}$
Alumina,	. .	32.50	$32 \cdot 50$
Magnesia,	- .	10.00	$10 \cdot 14$
Protosyd of iron,	- -	6.00	$7 \cdot 92$
Prot. manganese,	. .	$0 \cdot 10$	$0 \cdot 28$
Water,	- .	3•10	$0 \cdot 50$
-		100.05	$99 \cdot 49$

Ilmenite.-" The Washingtonite of Shepard, a variety of Ilmenite, has been analyzed by J. S. Kendall in Dr. C. T. Jackson's laboratory, and found to contain titanic acid $25 \% 28$, peroxyd of iron 51.84 , protoxyd of iron $22 \cdot 86=99 \cdot 98$. It appears therefore to be nearly identical in composition with the hystatic iron ore of Breithaupt, or the Hys. tatite variety of this species." (p. 527.)

If we were to form our estimate of the progress of American mineralogy by taking into view the number of exploded species of American minerals only, we should be forced to conclude that such progress was of rather an equivocal nature. But we must bear in mind that the science is burthened with hundreds of synonyms of European minerals which still hold a place in the index of the present work, while too many of the bad American species have been proposed by foreign authors. There can be no objection to giving the following alphabetical list of American species which have been proposed and subsequently abandoned. The list is made out from our own opinions, and it is too much to expect that it will meet in all cases the views of authors.

[^56]| Names propesed. | Authors. | Identical with. |
| :---: | :---: | :---: |
| Acadiolite, | Thomson, | Chabazite. |
| Baltimorite, | Thomson, | Picrolite, or fibrous serpentine. |
| Beaumontite, | Levy, | Heulandite. |
| Brucite, | | Chondrodite. |
| Bytownite, | Thomson, | Scapolite? [ite, and heavy spar. |
| Calstronbaryte, | Shepard, | Mechanical mixture of calc spar, strontian- |
| Catlinite, | Jackson, | A clayey rock, and not a mineral. |
| Chiltonite, | Emmons, | Prehnite. |
| Cleavelandite, | Brooke, | Albite. |
| Danaite, | Hayes, | Mispickel.* |
| Deweylite, | Emmons, | Serpentine. |
| Danburite, | Shepard, | Mechanical mixture of silicate of lime and |
| Edwardsite, | Shepard, | Monazite. [quartz. |
| Emmonsite, | Thomson, | Impure strontianite. |
| Eremite, | Shepard, | Monazite. |
| Eupyrchroite, | Emmons, | Mammillary apatite. * |
| Fowlerite, | | Manganese spar. |
| Gymnite, | Thomson, | Impure serpentine. |
| Hudsonite, | Beck, | Variety of pyroxene. |
| Jeffersonite, | Keating, | Pyroxene. |
| Ledererite, | Jackson, | Gmelinite, var. Chabazite. |
| Lederite, | Shepard, | Sphene. |
| Lincolnite, | Hitchcock, | Heulandite. |
| Marmolite, | Nuttall, | Serpentine. |
| Maclurite, | | Chondrodite. |
| Masonite ? | Jackson, | Foliated hornblende? chloritoid? |
| Microlite, | Shepard, | Pyrochlore? |
| Mullicite, | Thomson, | Vivianite. |
| Nuttallite, | | Scapolite. |
| Peristerite, | Thomson, | Feldspar. |
| Perthite, | 'Thomson, | Feldspar. |

\footnotetext{

* Mr. Teschemacher (in Dr. Jackson's Report on the Geology of New Hampshire, p. 167) has given a figure of "Danaite" with the following angles; $M: M=112^{\circ}$; $a: a=121^{\circ}$ $30^{\prime}, a^{\prime \prime}: a^{\prime \prime}=100^{\circ} 15$, (see the annexed figure, which is Teschemacher's figure inverted in position so as to correspond with the usual figures of Mispickel.) Scheerer has described a similar cobaltic variety from Skutterud, which gave the angles $M: M=111^{\circ} 40^{\prime}-112^{\circ} 2$, $a: a=121^{\circ} 30^{\prime}$. The angles do not differ essentially from those of Mispickel. Rammelsberg considers iron and co-
 balt isomorphous, and gives for the formula of the species Mispickel, (Fe, Co) (S3, As2). (See pages 475, 476 and 568 of Dana's Mineralogy.)

Names proposed.	Authors.	Identical with.
Pickeringite,	Hayes,	Magnesian alum.
Polyadelphite,	Thomson, Brown garnet.	
Raphite,	Thomson, Hornblende?	

Rensselaerite, Emmons, Steatitic pyroxene or pseudomorphous stea-
Retinalite, Thomson, A doubtful serpentine compound.
Scoharite, Macneven, Heavy spar, with 6 to 9 per cent. of silica Stellite, (of Bergen hill,) Pectolite. [mechanically mixed.
Terenite, Emmons, Doubtful-altered scapolite or augite.
Tephroite, Breithaupt, Troostite.
Torrelite, Thomson, Columbite from Middletown, Ct.
Torrelite, Renwick, An impure red jasper.
Washingtonite, Shepard, Ilmenite.
Xanthite, Mather, Idocrase.
Catalogue of American localities and minerals.-This is one of the many novel features of the present edition. Besides full and minute specifications of American localities under the several species, we have them here arranged geographically, beginning with Maine and following the coast. This list is designed to aid the mineralogical tourist in selecting his routes and arranging the plan of his journey.

[^57]tant variations from a strict chemical method. It has been shown that owing to the isomorphism of bases, the old modes of chemical classification are wholly unsatisfactory; and the difficulties have of late become so great that some authors have fallen into an alphabetical arrangement, rather than be bound down to the usual chemical rules. Moreover, it has been remarked, that the union of the salts of metals into a family is more correct on chemical principles than a distribution of them under the several metals : and that as the salts of lime, magnesia, alumina, are also salts of metals, the former fall naturally and chemically into close associations with the latter, as in the system adopted.
"Yet it is convenient to the chemist and to the metallurgist, to view the ores of the several metals by themselves, and in general to be able to survey at a giance the compounds of each element. For this purpose, the following classification has been made out. Except in the metallic ores, the mineral species have been kept together, as much as possible, in natural families, by taking into consideration the isomorphous relations of the elements; and it is believed that the classification here proposed will be found to combine many of the more important advantages of both systems. Chemists treat of the alums as a family, of the various feldspars as another, and the varieties of hornblende and augite another, and so on; and instead of scattering them in the different parts of a system, as was formerly done, arrange them together and treat of them as distinct groups, although differing so much in chemical constitution. These natural families are still retained in the method of ar-, rangement here brought forward."

To this table are added the chemical formulas for composition, derived from the most recent anthorities.* The chemical symbols, inasmuch as they speak more directly to the eye, have been adopted in preference to the mineralogical, although printed with more difficulty.

The author has ingeniously substituted the black type (\mathbf{H}, for example) in place of the crossed letters used by Berzelius for double atoms.

An example of these new symbols for expressing a double dose of base, is given in the formula for Haydenite in the present article. It has the great advantage of being easily followed and imitated, while the type introduced by Berzelius can only be had at the expense of punches and matrices expressly made for the

[^58]purpose. We have found it impossible to procure the type of Berzelius even in London, ready made. Probably it is owing to this difficulty that these useful symbols have been so slowly introduced out of continental Europe. The double type gives instant notice of the double base, and we shall hereafter employ them in this Journal.

We may add that the mineralogical cabinet of Yale College has been recently arranged, nearly, on this plan. The tabular arrangement of these formulas secures many advantages not attained when they are distributed through the volume each under its species.

Rocks and mineral aggregates.-Part VIII. of this volume is devoted to a description of the various mineral aggregates which form the rock masses of our planet. It is not usual to include these in a mineralogical treatise, nor are they treated here in any other than a mineralogical way. There is an expectation on the part of most general readers of finding, when they take up a mineralogical book, an account of the principal rocks, and when they search the index in vain for such words as porphyry, granite, basalt, and the like, they very naturally feel a degree of disappointment. This chapter is intended to meet that expectation. Its arrangement presents at every step the same admirable power of generalization and order which so eminently distinguish all the author's works.

The work is brought to a close by a mineralogical bibliography posted up to the present time: in it are registered all the important publications on the subject, from Theophrastus down, and in the American portion, every paper on the subject, which has been published, even in a transient magazine, is recorded. The student in his researches will duly appreciate the value of this unpretending catalogue. Nor must we fail to mention the index, the key to technical knowledge, and which is in the present case most satisfactorily full and comprehensive; every known name and synonym ever used in the science is introduced.

But we must abruptly close this notice, already too long, with the remark, that it "gives us pleasure to believe that it requires but few works like the present, to give American science a name, which will merit, if it does not receive, the respect of the scientific world.
B. S., Jr.

Art. XXI.-Abstract of the Proceedings of the Thirteenth Meeting of the British Association for the Advancement of Science.*

The thirteenth meeting of this noble institution was held at Cork, Ireland, commencing on the 16 th of August last, and continuing its sessions until the 23d. The British Association was instituted in September, 1831, and reports of its proceedings, more or less in detail, have been regularly given in this Journal. The present abstract of the transactions of the last meeting should have accompanied our preceding No. but was excluded by the pressure of important communications, the insertion of which had been previously promised; and the crowded state of our pages compels us now to omit many valuable and interesting papers, and to confine ourselves to abridged reports of some of those subjects which fall more appropriately within the scope of this Journal.

The general meeting was on Thursday evening, August 17th, when the annual address, on the objects and results of the Association, was delivered by the President, the Earl of Rosse.

From the Report of the Treasurer it appeared, that the receipts from June 23d, 1842, to August 14th, 1843, amounted to $£ 32714 \mathrm{~s}$. 4 d ., including a balance on hand from the previous year of $£ 53814 s$. $6 d$. The expenditures amounted to £2775 $3 d$.

At the meeting of the General Committee, Col. Sabine read the Report of the proceedings of the Council during the past year, from which we take only the interesting item, that application had been made to Government to undertake the publication of the Catalogue of Stars in the Histoire Céleste of Lalande, and of Lacaille's Catalogue of the Stars in the Southern hemisphere, which has been reduced and prepared for publication at the expense of the British Association; and that Her Majesty's government had given the necessary directions for issuing $£ 1000$ for the completion of the work in question.

Grants of money for the prosecution of the objects of the Association, were recommended by the General Committee, to the amount of £ 1877 -of which $£ 1007$ were appropriated to the Physical Section, and $\mathfrak{£} 650$ of this latter sum to Mr. Baily, for the publication of the British Association Catalogue of Stars. Among the recommendations not involving pecuniary grants, we notice, that Prof. Bache be requested to proceed with his report on American meteorology.

It was unanimously resolved, that the next meeting of the Association should be held at York, in the course of September, 1844,-the

[^59]particular day to be designated by the London Council. The Rev. J. Peacock, Dean of Ely, was elected President of the next meeting.

Section A. Mathematical and Physical Science.

Rev. Dr. Robinson presented a Report, by Mr. Baily, from the Committee appointed to prepare the British Association Catalogue of Stars, from which it appeared that the reduction was complete. He proceeded to explain the value of this catalogue by stating, that among the heavenly bodies the stars are generally considered as motionless, and were used as points of comparison for their more erratic companions. In this respect, an accurate determination of their places is of high importance ; but it becomes still more interesting from the fact, that we know many of them to be in motion, so that it is difficult to find one absolutely fixed, and the research of their proper motions becomes matter of great interest. This is effected by comparing their places observed now, with those accurately' determined at a former epoch. To do this, is not so simple as might at first sight appear. In the first place, we do not see the star in its true place; the motion of light makes it to be observed in advance of that, as the earth moves. Secondly, it is referred to the pole or equinox: these points are not fixed in space; the one is influenced by the action of the sun and moon-the other moves with irregular precessions by the same force, and that of some of the planets. The observed place must therefore be corrected for aberration, mutations, \&c. before it is of any use, and the mean of several such mean places, gives the desired result. This is very troublesome, and was often loosely performed, till Mr. Baily published the Catalogue called by the name of the Astronomical Society, containing about 2800 stars, and which changed the history of Stellar Astronomy. Formerly from 30 to 40 stars, called standard, were observed, and the rest overlooked; so that in an emergency of a comet, or an occultation, there was often no reference possible, and direct observations of the individual object were requisite. Its great advantage is-the system of logarithms computed for each star gives, with extreme facility, the corrections above described. But their numbers change with the changes of the stars' places, so that already they require an alteration. The advantages of this work were such, that the Association thought no greater service could be rendered to astronomy than the extension of Mr. Baily's catalogue. It now contains nearly $\mathbf{1 0 , 0 0 0}$ stars, and the secular changes of the constants are given with them. Besides, in the places of the stars there is an important improvement; the places in the former catalogue were derived from a comparison of those given by Bradley for 1745, and Piazzi for 1800: whatever error was in either of these, was multiplied by the mode of computation when brought up to 1830 ; but this fault was, in the present instance, corrected.
"On Elliptic Polarization of Light reflected from various substances," by Prof. Powell. The author had previously stated, that among other results connected with this subject, he had observed the phenomena of elliptic polarization in polarized light reflected from several mineral substances, in which it had not been (as far as he was aware) hitherto noticed. This inquiry bears upon the general question-to what substances is the property of converting plane into elliptic vibrations, in the reflected light, confined? As far as observation has yet gone, it seems restricted, in general, to metallic substances, whether pure or compound; but to this there seem to be some exceptions, and it remains to be determined, what proportion of metal, in a compound, is necessary to produce the result.

Prof. Kane read a paper, by Prof. Draper of New York, "on a, Change produced by Exposure to the Beams of the Sun, in the Properties of an Elementary Substance." Chlorine gas, which has been exposed to the daylight or to sunshine, possesses qualities which are not possessed by chlorine made and kept in the dark. It acquires from that exposure, the property of speedily uniting with hydrogen gas. This new property of the chlorine arises from its having absorbed tithonic rays, corresponding in refrangibility to the indigo. The property thus acquired is not transient, like heat, but permanent. A certain portion of the tithonic rays is absorbed, and becomes latent, before any visible effect ensues. Light, in producing a chemical effect, undergoes a change, as well as the substance on which it acts: it becomes detithonized. The chemical force of the indigo ray is to that of the red, as 66.6 to 1 . Our acquaintance with the constitution of elementary bodies is still imperfect; inasmuch as, in general, only those properties are known which they possess after having been subjected to the influence of light.-Dr. Robinson stated, what seemed to him confirmatory of Prof. Draper's views as to the distinction between the tithonic and luminous rays, that he had been induced to think the Daguerreotype might give very exact representations of the inequalities of the lunar surface. Having procured the apparatus, a plate prepared by Claudet's process was exposed, in the place of the image of a Cassegrainian reflector, of $\mathbf{1 5}$ inches aperture. The intensity of the light was such, that when the image of the crater Copernicus, one of the brightest in the moon, came into the field of view, it dazzled the eye; but though the telescope was carried by a clock-movement of extreme precision, after an exposure of half an hour there was shown, after mercurializing, but a faint and indistinct image, or rather trace. Another plate, similarly prepared, gave, in half a minute, on a cloudy day, a most perfect picture of his house, in which minute details were shown by the microscope. Dr. R. inferred, that as the heat accompanying the solar rays was not found in the light of the moon, being probably absorbed there,
so these other rays were also absorbed, though possibly in a less degree. The apparent complementary relation between the color of chlorine and that of the ray which seemed to have the highest power, was curious, and excited a wish to know if any thing similar occurred in respect of the vapor of iodine, or if this power was confined to the blue end of the spectrum.
"On the Regular Variations of the Direction and Intensity of the Earth's Magnetic Force," by Prof. Lloyd. The observations (made at the Dublin Magnetical Observatory) were commenced early in the year 1839, and have been continued, almost without interruption. Since the beginning of the year 1840 , they have been taken every two hours, day and night. The elements directly observed are the declination and the two components (horizontal and vertical) of the intensity, and from the variations of the latter, those of the total intensity and inclination are readily deduced. The variations were projected in curves, which represented the course of the mean daily changes for the entire year, for the summer and winter half years, and for each month separately.
Declination.-The mean daily curve of the changes of declination for the entire year exhibits a small easterly movement of the north end of the magnet during the morning hours, which reaches its maximum about $7 \mathrm{~A} . \mathrm{M}$. After that hour, the north end moves rapidly westward, and reaches its extreme westerly position at 1 h .10 m . Р. M. It then returns to the eastward, but less rapidly, the easterly deviation becoming a maximum about 10 r. м. The mean daily range $=9 \cdot 3$ minutes. During the summer months the morning maximum at $7 \mathrm{~A} . \mathrm{M}$. is more marked ; the evening maximum, on the contrary, disappears, there being a slow and regular movement of the north end to the eastward from 7 P. m. until $7 \mathrm{~A} . \mathrm{m}$. In winter, on the other hand, the evening maximum is well defined, and the morning maximum disappears, there being a slow and regular westerly movement until 9 A.m., after which the movement becomes more rapid in the same direction. The epoch of the extreme westerly position of the magnet is nearly the same throughout the year. The greatest daily range, in summer, is about 13.7 minutes; the least range, in winter, about $\mathbf{7 / 2}$ minutes.

Horizontal intensity:-The mean daily course of the horizontal force, for the entire year, has two maxima and two minima. The first minimum occurs between 1 A. m. and 3 A. M., which is followed by a maximum about 5 A . м., or a little after. These fluctuations are small. A second and principal minimum takes place at 10 h .10 m . A. M.; and a second, or principal maximum, about 6 p.M. The mean daily range $=0024$ of the whole intensity. In the summer months the smaller maximum and minimum disappear, the intensity decreasing continually throughout the night, but slowly, until 5 or $6 \mathrm{~A} . \mathrm{m}$., after which the decrease becomes rapid. There are, consequently, but one maximum
and one minimum in the mean daily curve, which corresponds nearly in epoch with the principal maximum and minimum of the curve for the entire year. In the winter months, on the other hand, there are three maxima and three minima, the evening maxima appearing to break into two. The epoch of the morning maximum moves forward as the time approaches the winter solstice, appearing to depend upon the hour of sunrise, which it precedes by a short interval. The epoch of the principal minimum is nearly constant throughout the year. The daily range is greatest in the month of July, when it is about 0045 of the whole intensity; it is least in the month of January, being then about 0008 of the whole.

Total intensity and inclination.-The total intensity appears to vary very little throughout the day. It seems to be least about 9 A. m., and then to increase, attaining a double maximum in the afternoon. The total range, however, being very small, the variations of the two components of the intensity are dependent chiefly upon the changes of the inclination. The inclination is greatest between 10 h . and $10 \mathrm{~h} .30 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. and least about 6 P. м., the epochs corresponding with those of the least and greatest values of the horizontal intensity. The daily range is about two minutes in the early part of the year, and increases to more than double of that amount in summer. If we combine the changes of declination and inclination, the former being multiplied by the cosine of the absolute inclination, we obtain the whole movement of the north end of the magnet in free space, or the curve formed by the intersection of the magnetic axis with the sphere whose radius is equal to unity. The whole movement during the first six hours of the day is inconsiderable. It appears, on a review of these facts, that the diurnal changes in the direction of the magnetic force are (as might be expected) connected with the diurnal movement of the sun, and its times of rising and setting. The changes of the intensity appear to be influenced in addition by some other cause, or by the same cause operating less directly.

Prof. Wheatstone made a Report on the Electro-Magnetic Meteorological Register, constructed for the observatory of the British Association, which was represented as nearly complete. It records the indications of the barometer, the thermometer, and the psychrometer, every half hour during day and night, and prints the results, in duplicate, on a sheet of paper in figures. It requires no attention for a week, du ring which time it registers 1,008 observations. Five minutes are sufficient to prepare the machine for another week's work; that is, to wind up the clock, to furnish the cylinders with fresh sheets of paper, and to recharge the small voltaic apparatus. The range of each instrument is divided into 150 parts; that of the barometer comprises three inches, that of the thermometer includes all degrees of temperature between -5° and $+95^{\circ}$, and the psychrometer has an equal range.
"On a remarkable Photographic Process, by which dormant pictures are produced capable of development by the breath or by keeping in a moist atmosphere," by Sir J. F. W. Herschel. If nitrate of silver of specific gravity $1 \cdot 200$, be added to ferro-tartaric acid of specific gravity 1.023 , a precipitate falls, which is in a great measure redissolved by a gentle heat, leaving a black sediment, which being cleared by subsidence, a liquid of a pale yellow color is obtained, in which a further addition of the nitrate causes no turbidness. When the total quantity of the nitrate solution added, amounts to about half the bulk of the ferro-tartaric acid, it is enough. The liquid so prepared does not alter by keeping in the dark. Spread on paper and exposed wet to the sunshine (partly shaded) for a few seconds, no impression seems to have been made, but by degrees, although withdrawn from the action of the light, it develops itself spontaneously, and at length becomes very intense. But if the paper be thoroughly dried in the dark, (in which state it is of a very pale greenish yellow color,) it possesses the singular property of receiving a dormant, or invisible picture; to produce which (if it be, for instance, an engraving that is to be copied) from thirty seconds to a minute's exposure in the sunshine is requisite. It should not be continued too long, as not only is the ultimate effect less striking, but a picture begins to be visibly produced, which darkens spontaneously after it is withdrawn. But if the exposure be discontinued before the effect comes on, an invisible impression is the result, to develope which all that is necessary is, to breathe upon it, when it im. mediately appears, and very speedily acquires an extraordinary intensity and sharpness, as if by magic. Instead of the breath, it may be subject to the regulated action of aqueous vapor, by laying it in a blottingpaper book, of which some of the outer leaves on both sides have been dampened, or by holding it over warm water. Many preparations, both of silver and gold, possess a similar property in an inferior degree, but none to the extent of that above described.
Dr. Robinson read a paper, "on the Barometric Compensation of the Pendulum." At the Manchester meeting of the Association, (1842,) Prof. Bessel made a communication on the improvement of the Astronomical Clock, which, with other valuable matter, contained a proposal to compensate for the changes of rate produced by the varying density of the atmosphere. Dr. R. would not have adverted to the subject, did he not think that a method proposed and applied by him twelve years ago, possessed certain advantages over that of the illustrious astronomer of Königsberg, which entitle it to the preference in practice. As early as 1825, he had ascertained the fact, that the received buoyancy correction was too small, by comparing the rates of a transit clock with the barometric indications; and Col . Sabine gave the final proof of it Vol. xlvi, No. 2.-Jan.-March, 1844.
by swinging the pendulum in a vacuum apparatus, in 1829. The amount of it is far from inconsiderable; even with the mercurial pendulum of a transit clock, weighing 21 pounds, and presenting a very small surface, it is $0^{3} \cdot 36$ for an inch change of the barometer. The remedy is obvious: by attaching a barometer to the peudulum, its fall transfers a cylinder of mercury from a point near the axis of motion to a greater distance from it; the time of vibration may thus be made to increase by the same amount that it decreases in consequence of the diminished density of the air. By placing the clock in vacuo as Bessel proposes, (and as Sir James South has actually done for several years past,) the effect of resistance can be determined exactly, and the diameter of tube selected, which will nearly correct it. The diameter selected by Dr. R. ($0 \cdot 1 \mathrm{inch}$) is not far from the truth. In the autumn of last year, when the temperature was nearly stationary, a fall of 1.6 inch produced no appreciable change of arc.
"On Contoured Maps," by Captain Larcom. It is important that governmental maps should exhibit the levels of the country in the most intelligible manner; showing heights not merely on the tops of hills, but around their sides, and through the valleys which traverse them. Such a system is offered by these contours. They are a series of horizontal lines, at a certain distance asunder, and at a certain height above a fixed datum. The datum most commonly used is the level of the sea, doubtless from the shore line being the limit of the land, and the point at which roads must cease, as well as from an impression that it is itself a level line; and therefore, as the first contour, the most appropriate and natural zero, from which to reckon the others. It has been a point much discussed, whether the high water, the low water, or the mean state of the tide, offers the most level line. Capt. L. stated that, in order to determine it, as far as Ireland is concerned, a series of lines has been very accurately levelled across the island in various directions, and permanent marks are left in all the towns, and on numerous public buildings; and at the end of each of these lines on the coast, tidal observations have been made every five minutes during two complete lunations. These observations, and the connecting lines of level are now in process of reduction-the degree of accuracy attained is such, that a discrepancy of 2 of an inch is immediately apparent-and from them we may expect many points of interest. The steeper the natural slope of the ground is, the closer together, of course, the contours will be, and the more oblique the road; where, on the contrary, the ground slopes very gently, the contours are farther asunder, and the road may be proportionally more direct.

The Rev. Prof. Lloyd read a paper, by Rev. T. Knox, "on the Quantity of Rain which falls in the S. W. of Ireland, and in Suffolk, Engo
land, with the wind at the several points of the compass." The instrument employed in these observations, (made at Toomavara in the county of Tipperary, and at Monk's Eleigh in Suffolk, by Rev. T. Knox and Rev. H. Knox,) was contrived by the Rev. T. Knox, for the purpose of registering the amount of rain which falls at a given place with the wind in different points of the compass. The observations embrace a period of one year, and the results, expressed in inches, are given in the following table.

It appears, that while the total amount of rain which falls in Tipperary is nearly double of that which falls in Suffolk, there is likewise a wide difference between the two stations as to the quantity which falls with different winds. In fact, nearly one third of the whole amount falls at the Irish station during the prevalence of southwesterly winds; while, at the English station, there is a much nearer approach to equality in the amount of rain borne by different winds. This prevalence of rain with the southwesterly wind, is distinctly marked in every season of the year at the Irish station; while in Suffolk each season is characterized by an excess of rain from a different point of the compass, producing a near approach to uniformity in the results of the entire year. These results, it is to be observed, are integral effects; and a comparison of them with the times of 'continuance of the respective winds, gives the raininess (if it may be so called) of the several winds.
"An Account of an extraordinary Tide at Arbroath," by Mr. Brown. The ordinary neap tide at Arbroath rises from eight to nine feet, but on July 5th, 1843, an extraordinary phenomenon occurred. The moon was in perihelion at 2 o'clock, and the evening tide was suddedly raised, at the time of high water, to nine and a half or eleven feet-again sunk for about ten minutes, and was raised again, there being a series of fluxes and refluxes. It was not known whether the phenomenon commenced with a rising or a depression, or with the horizontal length of the wave. The sea was perfectly calm, but vessels which were entering the port perceived a current stronger than usual. In the evening there was a violent thunder storm. Persons who had observed the appearance before, accounted for it on the supposition of a storm in the Atlantic from the southwest.-Mr. Scott Russell thought the phenomenon at Arbroath was not tidal at all. Similar phenomena had been observed elsewhere, on the coast of Scotland, and are described in the same manner. It is supposed by some that they are the consequences of the subsidence or elevation of the coast ; others think that they arise from submarine volcanic explosions, and the undulations of the atmon-
phere which were observed immediately after, would seem to strengthen this opinion.

Mr. Hunt called attention to a peculiar condition of the tide on the 5th of July, at Mount's Bay, Cornwall. The tide had receded for about half an hour, when it was observed to flow again, and continued to do so for about ten minutes, when it again receded. This was three times repeated. It was observed that this took place over an extensive line of coast, from Land's End to Port Leaven.

Section B. Chemistry and Mineralogy.

"Chromatype, a new Photographic Process," by Mr. R. Hunt. While pursuing an extensive series of researches on the influence of the solar rays on the salts of different metals, Mr. H. was led to the discovery of a process by which positive photographs are very easily produced. Several of the chromates may be used in this process; but those of mercury or copper are preferable-the most certain effects being produced by the chromate of copper, and, indeed, in a much shorter time than with any of the other chromates. The papers are thus prepared: good writing paper is washed over with a solution of the sulphate of copper and partially dried; it is then washed with a solution of the bichromate of potash and dried at a little distance from the fire. Papers thus prepared may be kept for any length of time, and are always ready for use. They are not sufficiently sensitive for use in the camera obscura, but they are available for every other purpose. An engraving-botanical specimens and the like-being placed upon the paper in a proper photographic copying frame, it is exposed to sunshine for a time, varying with the intensity of light from five to fifteen or twenty minutes. The result is generally a negative picture, which, being washed over with a solution of nitrate of silver, a very beautiful deep orange picture upon a light dun color, or sometimes perfectly white ground, is immediately produced. This picture is quickly fixed, by being washed in pure water and dried. If saturated solutions are used, a negative picture is produced; but if the solutions are diluted with three or four times their bulk of water, the first action of the sun's rays is to darken the paper, and immediately a very rapid bleaching action follows, giving an exceedingly faint positive picture, which is brought out in great delicacy by the nitrate of silver. It is necessary that pure water should be used for the fixing, as the presence of any muriate damages the picture, and hence arises another pleasing variation of the chromatype. If the positive picture be placed in a very weak solution of common salt, the images slowly fade out, leaving a very faint negative outline. If it be taken from the solution of salt and dried, a positive picture of a lilac color may be produced by a few minutes' exposure to sunshine. Prismatic analysis has
shown that the changes are produced by a class of rays which lie between the least refrangible blue, and the extreme limits of the violet rays of the visible prismatic spectrum-the maximum darkening effect being produced by the mean blue ray, whilst the blackening effect appears to be produced with the greatest energy by the least refrangible violet rays.

Mr. Hunt also made a communication "on the Influence of Light on the Growth of Plants." The peculiar influence exerted upon the germination of seeds and the growth of the young plants by colored light, has been for some years the subject of the author's investigations. The results show the surprising powers exerted by the more luminous rays in preventing germination, and in destroying the healthful vigor of the young plant. Plants, when made to grow under the influence of the red rays, bend from the light as something to be avoided; while the blue or chemical rays are efficacious in quickening their growth. It has however been found that although blue light accelerates germination, and gives a healthful vigor to the young plant, its stimulating influences are too great to ensure a perfect growth. The strength of the plant appears to be expended in producing a beautiful deep green foliage; and it is only by checking this tendency, by the substitution of a yellow for a blue light, that the plant can be brought into its flowering and seeding state. The etiolating influence of the green rays was noticed, as well as the power which plants possess of sending out shoots of a great length in search of that light which is essential to their vigor.

Dr. Andrews in a paper " on the Heat of Combination," announced the general principle: "When one base displaces another from any of its neutral combinations, the heat evolved or abstracted is always the same when the base is the same; or, in other words, the change of temperature which occurs during the substitution of one base for another in any neutral compound, depends wholly on the bases, and it is in no respect influenced by the acid element of the combination." To test the accuracy of this principle by direct experiment, equivalent solutions of various neutral salts were decomposed by the addition of a dilute solution of the hydrate of potash. When the strength of the solutions and their temperatures were properly adjusted, the same variation of temperature always occurred during the decomposition of salts of the same base. If the base (in the state of a hydrate) developed, when alone, less heat than the hydrate of potash in combining with the acids, an elevation of temperature occurred during the decomposition of its salts by the latter; if the reverse were the case, the decomposition of the salts was attended by a diminution of temperature. Thus the decomposition of equivalent solutions of the salts of the oxide of copper, was attended by the evolution of the same amount of heat, as was also
the decomposition of the salts of the oxide of zinc ; but the heat extracted by the former was about twice as great as that extracted by the latter, because the oxide of copper produces less heat in combining with the acids than the oxide of zinc. The salts of lime furnish an example of an absorp. tion of heat when their solutions are decomposed by potash,-a circum. stance easily explained by the fact before established, that the hydrate of lime, when combining with the acids, develops more heat than the hydrate of potash. But, in accordance with the principle above stated, the diminution of temperature is the same with equivalents of all the salts of lime. In an inquiry of this kind many precautions are requisite, in order to obtain accurate results. Among the most important may be mentioned, the exact neutrality of the salt to be decomposed, a perfect equality of temperature in the solution before mixture, and the precipitation of the oxide in the state of a pure hydrate, and not of a subsalt.- Prof. Kane thought it highly probable that the law propounded by Dr. Andrews will eventually be judged by chemists to be the most important communication made to this Section. He also observed, that if we mix an atom of oil of vitriol with an atom of water, a considerable degree of heat is developed. Now, the concentrating of this dilute acid was not simply a case of evaporation, but one of decomposition; and it would appear that the same quantity of heat was necessary to effect that decomposition as was developed during the combination.

Mr. West read a paper "on a remarkable case of Corrosion of Lead by Spring Water, after passing through an Iron Pipe." The water of a spring, which had flowed into and from a leaden reservoir for sixty years without injury to either, and which passed through leaden pipes without metallic impregnation, when further conveyed a long distance, through iron pipes, contained lead in solution, and was so destructive to the bottoms of the leaden cisterns, into which it next flowed, that some of them had to be renewed in five or six years. Mr. West stated the analyses of the water in question, which, except as to the lead, were the same when taken from all the three situations: he imputes the mischief to contact with oxides of iron from the pipes, and considers that the remedy must be mechanical, by coating the iron pipes or the leaden cisterns with some other substance, so as to preserve the lead itself from contact with peroxide of iron.
"On the Decomposition of Carbonic Acid Gas, and the Alkaline Car* bonates, by the Light of the Sun," by Prof. Draper of New York. The decomposition of carbonic acid gas, by the leaves of plants under the influence of the light of the sun, is one of the most remarkable facta in chemistry. Dr. Daubeny, in a very able paper in the Transactions of the Royal Society for 1836 , came to the conclusion, that the decomposition in question was due to the rays of light, a result obtained by
the agency of colored glasses, but which does not appear to have been accepted by later authors, who have attributed it to the chemical rays. There is but one way by which the question can be finally settled, and that is by conducting the experiment in the prismatic spectrum itself. When we consider the feebleness of effect which takes place, by reason of the dispersion of the incident beam through the action of the prism, and the great loss of light through reflection from its surface, it would appear a difficult operation to effect the determination in this way. Encouraged however by the purity of the skies in America, Dr. Draper made the trial, and met with complete success. The process was as follows:-a series of tubes, half an inch in diameter and six inches long, were arranged so that the colored spaces of the spectrum fell on them. In these tubes, water, impregnated with carbonic acid gas, and containing a few green leaves, (Poa annua,) was placed. It was expected, that if the decomposition be due to the radiant heat, the tube occupying the red space, or even the one in the extra-spectral red space, would, at the close of the experiment, contain most gas. If it were the "chemical rays," in the common acceptation of the term, we might look for the effect in the blue, violet, or indigo spaces; but if it were the light, the gas should make its appearance in the yellow, with some in the green, and some in the orange. I made the trial several times, (says Dr. D.) and found it much more easy to accomplish than I had expected. The results were briefly as follows:-In the tube that was in the red space a minute bubble was sometimes found, but sometimes none at all. That in the orange contained a more considerable quantity ; in the yellow ray a very large amount, comparatively speaking; in the green, a much smaller quantity; in the blue, the indigo, the violet, and the extra-spectral space at the end, not a solitary bubble. From these facts, in connection with some results obtained by the use of bichromate of potash, as an absorptive medium, I conclude that it is the rays of light which effect the decomposition, and that the rays of heat and the tithonic rays have nothing to do with the phenomenon. The alkaline bicarbonates are easily decomposed by elevation of temperature, yielding a portion of their acid at the boiling point of water. Instead of using a solution of carbonic acid I endeavored to effect the decomposition of these salts by leaves in the sunlight, and found that it took place with facility. Nor is the effect limited to the removal and decomposition of the second atom of the acid. It passed on to the first ; the neutral carbonate of soda itself decomposing and yielding oxygen gas. In like manver, the sesquicarbonate of ammonia may be made to yield a very pure oxygen gas. Dr. Draper, in conclusion, alluded to his method of multiplying the Daguerreotype pictures, as published in the Philosophical Magazine, and mentioned a process of precipitating copper, after the picture has been
fixed by gold, by the electrotype process, on the plate, which gives a very perfect copy. "It would be difficult," he says, "to describe in words the beauty and perfection of these 'copper-tithonotypes.' The problem of multiplying the Daguerreotype may be now regarded as completely solved."-Prof. Apjohn made a few remarks on this communication, which announced results so different from our received ideas on this subject, it being generally agreed that the chemical rays were the most active in producing the decomposition of the carbonic acid absorbed by the plant.-Mr. Hunt said, that he had listened with greatsurprise to Dr. Draper's paper, as, from his own experiments with colored glasses and transparent media, carefully analyzed so as to determine what rays were absorbed, and what rays passed through them, he had arrived at conclusions diametrically opposed to those now put forth. He acknowledged that he had never tried the experiment with the pure rays of the prismatic spectrum, but he should certainly lose no time in doing so, on his return to England.

Dr. Tamnau, of Berlin, exhibited some rare mineralogical specimens: 1. A group of Datholite from the neighborhood of Andreasberg, in the Hartz. 2. Two specimens of rose-colored Harmotome from Andreasberg. The color in these specimens was attributed to the presence of a small quantity of cobalt. They were remarkable for the great size of their crystals, which exhibited not only the usual twins, but also curious and complicated arrangements of three and four, combined according to laws not yet sufficiently understood to allow of their being clearly described. 3. Two very large isolated crystals of Beryl, from Royalston, Mass. These were of a beautiful sea-green color, one of them of the usual form, a regular six-sided prism, with the direct terminal face. The other exhibited the faces of the second six-sided prism, of a twelvesided prism, and of a twelve-sided irregular pyramid.
"On the Production and Prevention of Smoke," by Mr. Henry Dircks. Mr. D. thought it important to distinguish between open fires and close fires and furnaces. Open fires would always allow an escape of absolute coal gas, and admit atmospheric air to the chimney; whereas the contrary would be the result with the close fires of the engineboiler furnaces. He said that the leading fact of consequence, in reference to the smoke, was, that it differed materially from the impure gas evolved from the coal in the furnace. The plans hitherto adopted by manufacturers were chiefly intended to burn smoke, and the great principle of all such plans was to burn the largest quantity of fuel with the least quantity of air. The error of this method must appear to every one conversant with chemistry. Smoke may be considered as mere carbonaceous matter floating in an atmosphere of the ordinary incombus. tible products of combustion ; the admission of air to this smoke is of n 0
value, as it will only cool it, and make it more readily deposit its sooty particles. The impure gas of the coal, on the contrary, may be infla. med by a due admixture of air. In conclusion, Mr. Dircks stated a general principle, that on the large scale of the furnace, air should be applied to the impure gaseous products of the fuel by a source independent of that supplying air by the ash-pit to the solid fuel.

It was recommended by the General Committee, that the future title of this Section be "Chemistry and Mineralogy, with their application to Agriculture and the Arts."
[The remainder of our Abstract we are reluctantly compelled to defer until the July No.]

MISCELLANIES.

1. Analysis of Meteoric Iron from Burlington, Otsego Co., N. Y.Dr. L. C. Beek, in his report on the mineralogical survey of New York, p. 383, makes mention of a mass of malleable iron, said to be native, which he saw in the cabinet of the Albany Institute. It does not appear that any chemical examination was made of the mass.

Last November, Mr. E. C. Herrick, being in Geneva, N. Y., received from the hands of Prof. James Hadley of that place, a mass of metallic iron, which Prof. H. assured him was a portion of the same specimen mentioned by Dr. Beck in his Report above quoted, and that both belonged to a larger mass, which when found was supposed to weigh from one hundred to two hundred pounds avoirdupois. Mr. Herrick also learned, that Dr. Eli Pierce of Athens, N. Y. was the gentleman who originally communicated the specimens and information to Dr. Hadley.
On Mr. Herrick's return to this place, the mass was placed in my hands for examination. Its strong resemblance to the iron found in North Carolina, by Prof. Olmsted, (this Journal, Vol. xviI, p. 140,) and examined subsequently by Prof. Shepard, (Vol. xL, p. 369,) immediately struck me; it was divided by broad lamina, crossing each other at angles of 60° and 120°, cutting up the surfaces into triangular and rhombohedral figures. It broke with a hackly fracture and only with the greatest difficulty, on the thinnest edges.
Two deep and broad sutures marked its two most regular and opposite faces, made by the wedge or chisel by which the blacksmith (into whose hands the larger mass unfortunately came) severed it from the adjoining portion. It bore the marks of having been intensely heated in the smith's forge, and numerous microscopic crystals, of a black color and brilliant lustre, covered some parts of its surface. They

Vol. xivi, No. 2-Jan.-March, 1844.
resembled phosphate of iron, but were too small to be detached. I had no doubt on first seeing the mass, of its extra-terrestrial origin, which opinion was confirmed by the following analysis performed in my laboratory by Mr. C. H. Rockwell, one of my pupils.

It dissolved quickly and completely in pure nitric acid, with the application of a gentle heat. The solution tested with nitrate of silver gave no cloudiness, showing the absence of chlorine. Still farther to settle the question, of the presence of chlorine, the mass was put in a clean capsule and placed over a water bath, covered on the plate of an air pump by an air-tight jar. After exposure to this humid atmosphere for a week, it was taken out and washed with pure water into the capsule, which contained also water of condensation from the mass. These washings, tested with nitrate of silver, remained quite unclouded. After the heat to which the mass had been subjected in the smith's forge, it could hardly be expected that we should find any traces of chlorine, if it ever existed. The solution of the iron in nitric acid yielded, with - the usual process for separating iron from nickel,

Metallic iron,
Do. nickel,
---:
8.146

No traces of other substances could be detected in the iron. Specific gravity 7.501 .

With a view to obtain all the information possible in relation to this interesting meteoric iron, Mr. Herrick addressed a letter of inquiry to Dr. Pierce, which brought the following particulars. He says: "In the year 1819, I procured some two or three masses of native iron (as it appeared to be) from the farmer who first turned it over with his plow, in a field near the north line of the town of Burlington, Otsego Co., N. Y. These consisted of remnants of an entire mass originally supposed to weigh between one and two hundred pounds, and found several years before. Before I had any knowledge of its existence, it had been in the forge of a country blacksmith, and the whole heated in order to enable him to cut off portions for the manufacture of such articles as the farmer most needed. The smith assured me that he never worked stronger, tougher, or purer iron; that it made the best horse-shoe nails. All the fragments that remained I immediately secured, and presented them to Prof. Hadley, whose lectures I was then attending. These were in two or three irregular masses, in all some eight to twelve pounds, with the marks of the chisel used in cutting while in a heated state. In conversation with the farmer who found the original mass, I could only learn that in plowing the field he found a stone very heavy, rusty on the top, which lay abore
the surface. From its great specific gravity, he was induced to examine more particularly, and thinking it might be iron he carried it to his blacksmith, who, finding it iron, had worked up the most of it into horse-shoes, nails, \&c., as the farmer needed. The latter told me that he had seen several small specimens of what appeared to be similar, whilst plowing the same field, but a diligent search made by me at the time proved fruitless in discovering any other specimens, the field being at that time in meadow.
"It was the opinion of Prof. Hadley, on the first examination, that it was of meteoric origin. Why it was not completely buried in falling, may be accounted for by the fact, that the ground on which it was found was hard and strong. Yours, \&c.
E. Pierce."

Measures have been taken to secure as much of this interesting mass as can now be obtained, for the mineralogical collection in Yale College.
B. Silliman, Jr.

Yale College Laboratory, March 20, 1844.
2. Improvements in Cambridge, England.-We are permitted to mention the following facts, in the language of Prof. Adam Sedgwick, contained in a letter, dated May 2,1843, and addressed to Prof. Romeo Elton, late of Brown University, Rhode Island.
"The Cambridge Philosophical Society continues to flourish, although with perhaps less vigor, since Prof. Airy, now Astronomer Royal, ceased to live amongst us. It has published seven volumes, which (without vanity) I may be allowed to praise; as of late years I have not been a contributor to them. We rejoice to be in communication with men and societies of pursuits similar to our own. Seventeen years have made a great change, at least in our external appearance; and should we again have the pleasure of seeing you in Cambridge, we could I trust show you much that is both new and interesting. We have now a noble museum of comparative anatomy, and a geological museum worthy of the University, at the growth of which I do greatly rejoice, as I regard it as my own child and offspring. The Fitzwilliam museum, chiefly devoted to the fine arts, painting, sculpture, antiquities and works of literary luxury, is now nearly finished and is externally a noble work of architecture. Time has made sad inroads on my health and strength; I have some works on hand which I now almost despair of finishing, and I give up all hopes of a tour in North America, with which I long delighted to indulge my fancy."
May heaven grant to this noble explorer of nature, and eloquent commentator 'on her works, restored health, long protracted usefulness and honor; and the power as well as the disposition to cross the Atlantic ; for, no foreign philosopher would be greêted with a more cordial welcome, and with more zealous and efficient aid in his scientific explorations.
3. Association of American Geologists and Naturalists.-This body holds its sixth annual session in the city of Washington, commencing on Wednesday the 8 th* of May, at $10 \mathrm{~A} . \mathrm{M}$. The central position of the place of meeting, with the growing importance of the Association, it is believed will secure a full and interesting meeting; while the efforts made by the standing committee will conspire to the same end.

Our miscellany and notices of new books are necessarily abridged in the present number, owing to the pressure of original and longer communications.

We are sensible that a fuller review of foreign science is expected at our hands, and that the majority of our readers prefer more condensed abstracts of foreign matter and miscellaneous communications, and it will be our endeavor hereafter, to give more fullness to this department of the Journal.

Among the new books which we have received, and of which notices are deferred to a future number, are

Memoirs of William Smith, LL. D., author of "the map of the strata of England and Wales." By his nephew and pupil, John Phillips, F. R. S., F. G. S. London, John Murray, 1844. 8vo. pp. 150.

Geology, Introductory, Descriptive, and Practical. By David Thomas Ansted, M. A., F. R. S., G. S., \&c. \&c. London, February, 1844. J. Van Voorst. 8vo. Part I, pp. 128. To be completed in eight monthly parts, uniform with the zoological works of Messrs. Bell, Forbes, and Yarrell, and the British Fossil Mammalia of Prof. Owen.

A History of British Fossil Mammalia and Birds. By Richard Owen, F. R.S., F. G. S., \&c. \&c. Part I, 8vo. 5s. sterling each. The work will be completed in eight or ten monthly parts. Van Voorst, London.

Experimental Researches, Chemical and Agricultural, showing Carbon to be a compound body, made by plants and decomposed by plo trefaction; by Robert Rigg, F.R.S. London, Smith, Elder \& Co., 65 Cornhill, 1844. $12 \mathrm{mo}, \mathrm{pp} .364$.

Appendice a Tous les Traités d'Analyse Chimique, \&c. \&c. Par C. Barreswil et A. Sobrero. Paris, Avril, 1843. Fortin, Masson et Cic. 8vo. pp. 547. \$1.75. A most valuable book.

[^60]
INDEX TO VOLUMEXLVI.

A.

Alger, \mathbf{F}., on the identity of Beaumontite and Lincolnite with Heulandite, 233.
edition of Phillips' Mineralogy, 203
Allen, \mathbf{Z}. on the volume of Niagara River, 67.
Alps, Prof. Forbes' Travels in, reviewed, 172.

Dr. Grant's excursion in, 281.
American Geologists and Naturalists, Association of, sisth meeting, 404.
American Philosophical Society, Proceedings of, 204.
Amplide salts, existence of compound radicals in, 57 .
Analytical E'ngine, Babbage's, 205.
Andrews, Dr., on the heat of combination, 397.
Arbroath, extraordinary tide at, 395 .

B.

Babbage's Analytical Engine, 205.
Babington's Manual of British Botany, 198.

Bailey, J. W., on new fossil infusoria, 137.
notice of Ehrenberg's memoir on microscopic life, 207.
Baird, W. M. and S. F., catalogue of birds found near Carlisle, Penn., 261.
description of two new birds of the genus Tyrunnula, 273 .
Baldwinianæ, Darlington's Reliquiæ, 192
Bakerian lecture, Prof. Forbes's, 200.
Barometric compensation of the pendulum, 393.
Beaumontite identical with Heulandite, 233.

Beck, L. C., Mineralogy of New York reviewed, 25.
analysis of hydraulic limestones, 30.
on igneous action as exhibited in New York, 333.
Birds, catalogue of in the vicinity of Carlisle, Penn., 261.
two new, of the genus Tyrannula, 273.

Bischoff's Lehrbuch der Botanik, 196.
Bonaparte, L. L., on separating the oxides of carium and didymium, 206.
Booth and Boyè's Encyclopedia of Cbemistry, 20%.
Borate of lime described, 377.
Boston Society of Natural Hiatory, Proceedings of, 203.

Botanische Zeitung, 200.
Braun, A., on North American Equiseta, 81.
on the Charx of North America, 92.
British Association, proceedings of the thirteenth meeting, 388.
catalogue of slars, 389.

Brown, Mr., on an extraordinary tide at Arbroath, 395.
Buek's Index to De Candolle's Prodromus, 197.
C.

Calc spar of Rossie, N. Y., 33.
Cambridge, England, improvements in, 403.

Canal to connect Lakes Superior and Huron, 213.
Carbonates, Messrs. Rogers on the analysis of, 346 .
Carbonic acid, solid, heat from, 215.
Carbonic acid gas and alkaline carbonates, decomposition of by the light of the sun, 398.
Carices, Kunze's Supplement of, 199.
Cerium and didymium, separation of their oxides, 206.
Chare of North America, 92.
Chauvenet, W., solution to a case in sailing, 79.
Chemical Society of London, Memoirs of, 201.
Chemistry, Encyclopedia of, 202.
Chloroplyy, production of by yellow light, 1.
Chlorophyllite, description and analysis of, 377.
Chondrodite, its crystallographic characters, 381.
Chromatype, a new photographic process, 396.
Cider, American, analysis of, 256.
Columbic acid, Mr. Hayes on the A state of, 166.
Combination, heat of, 397.
Comet, third, of 1843, 210.
Comets, physical constitution of, 104. formation of the tails of, 108.
Contoured maps, 394.
Couthouy, J. P., reply of Mr. Dana to his "vindication" against the charge of plagiarism, 129.
review of Mr. Dana's "reply," p. 1, appendix.
second reply of Mr. Dana, p. 10, appendix.

D.

Dana, J. D., review of Beck's Mineralogy of New York, 25.
his System of Mineralogy reviewed, 362.
reply to Mr. Couthouy's vin-
dication against the charge of plagiarism, 129.

Mr. Couthouy's review of his "reply," p. 1, appendix.
second reply to Mr. Couthouy, p. 10, appendix.
Danaite, figure and angles of, 384.
Darlington's Reliquix Baldwinianæ, 192.
Day, variation in the length of, 344 .
Deane, J., on the fossil footmarks of Turner's Falls, 73.
DeCandolle prize for botanical monographs, 214.

Prodromus, Buek's Index to, 197.
Didymium and cerium, separation of their oxides, 206.
Dip and variation of the magnetic needle at Nantucket, 157.
Dircks, H., on the production and prevention of smoke, 400.
Dobson, \mathbf{P}., on the iceberg theory of drift, 169.

Draper, J. W., description of the Tithonometer, 217.
action of the sun's light upon elementary substances, 390 . on decomposition of carbonic acid gas and the alkaline carbonates by the light of the sun, 398.
Drift, iceberg theory of, 169.

$$
\mathbf{E} .
$$

Ebrenberg, C. G., memoir on microscopic life in North and South Araerica, noticed, 297.
Electricity, effect of, 215.
Electro-magnetic meteorological register, 392.

Elevations in Wisconsin, 258.
Endlicher and Unger's Grandzuge der Botanik, 196.
Engelmann, G., on North American Equiseta, 81 .
on plants of Illinois and Missouri, 94.
Equiseta, North American, 81.
Estrus, larve of in squirrels, 244.

F。

Footmarks, fossil, of Turner's Falls, 73.
Forbes, J. D., Bakerian lecture noticed, 200.
voy, 172.
Travels in the Alps of Sa-
Forcps, parallelogram of, 324.
Fossil footmarks of Turner's Falls, 73. infusoria, new, 137.

Fossil remains in Indiana, 294.
geological position of, 320.
Fresenius' Gundriss der Botanik, 197.
Fulgurite, remarkable, 210.
G.

Gallic acid, new process for, 78.
Gardner, D. P., on the action of yellow light in producing the green color, and indigo light the movements of plants, 1 .
Geological Reports of New York reviewed, 143.
Geyer, C. A., on plants of Illinois and Missouri, 94.
Gibbs, W., on the theory of compound salt radicals, 52.
Glaciers of the Alps, Dr. Grant's excursion among, 281.
phenomena of, 173-190.
Gold, large mass of, found in the Ural, 211.

Goniometer, reflecting, improvement in, 372.

Grant, H. A., excursion among the glaciers of the Alps, 281.
Gray, A., bibliographical notices, 192.
Guano, a valuable manure in Peru, 203.

H.

Haldeman, S. S., on zoological nomenclature, 18. electrical phenomenon, 215.

Harlan, Dr. Richard, death of, 216.
Haydenite, description and analysis of, 379.

Hayes, A. A., reěxamination of microlite and pyrochlore, 158.
on the \mathbf{A} state of columbic acid, 166.
description and analysis of Pickeringite, 360 . on borate of lime, 377 .
Haymond, R., on fossil remains in Indiana, 294.
Heat from solid carbonic acid, 215.
crystallization by, 373.
of coñbination, 397.
Herschel, J. F. W., on a remarkable photographic process, 393.
Heulandite identical with Beaumontite and Lincolnite, 233.
Hildreth, S. P., meteorological journal at Marietta, Ohio, for $1843,277$.
Hitchcock, E., letter of Mr. Dobson to, 170.
analysis of oriental wines and American cider, 249.
Horse, anecdote of, 243.
Hudsonite, a new mineralogical species, 32.

Hunt, R., on chromatype, a new photographic process, 396.
influence of light on the growth of plants, 397.

Hydraulic limestones in New York, 29. analysis of, 30 .
I.

Iceberg theory of drift, 169.
Ice mountain in Wallingford, Vt., 331.
Igneous action, as exhibited in New York, 333.
Infusoria, new fossil, 137.
Iolite, analysis of, 383.
Iron, ores and manufacture of in New York, 25.
meteoric, from Otsego County, N. Y., 401.

J.

Jackson, C. T., analysis of Chlorophyllite, 378.
of Iolite, 383.
Jussieu's Cours Elémentaire de Botanique, 195.

K.

Kane, on the existence of compound radicals in the amphide salts, 5%.
Kent, E. N., new process for gallic acid, 78.

Knox, T., on the quantities of rain in the S. W. of Ireland and in Suffolk, England, 394.
Kunze's Supplemente der Reidgráser, 199.

Kyanite, analysis of, 383.
L.

Lapham, I. A., on elevations in Wisconsin, 258.
Larcom, Capt., on contoured maps, 394.
Lathrop, S. P., on an ice mountain in Wallingford, Vt., 331.
Lead ores in New York, 28.
corroded by spring water, 398.
Ledebour's Flora Rossica, 198.
Light, elliptic polarization of, 390. indigo, its agency on the movements of plants, 7.
yellow, action of in producing the green color, 1.
effects of on elementary substances, 390 .
influence of on the growth of plants, 397.
of the sun, decomposition of carbonic acid gas and alkaline carbonates by, 398.
Lime, borate of, described, 377.
Limestones, hydraulic, in New York, 29.
Lincolnite identical with Heulandite, 235.

Linsley, J. H., catalogue of reptiles of Connecticut, 37.
obituary of, 216.
Lloyd, Prof, on the regular variations of the earth's magnetic force, 391.
Lyell, C., on the geology of the valley of the St. Lawrence, 314.

Lyell, C., on the tertiary strata of Martha's Vineyard, 318.
geological position of the Mastodon and other fossil remains, 320.

M.

Magnetic force of the earth, variations of, 391 .
needle, variation and dip of at Nantucket, 157.
Maps, contoured, 394.
Martha's Vineyard, tertiary strata of, 318.
Mastodon, geological position of its remains, 320.
Mather, W. W., on the variation in the length of the day, 344.
Megatherium, remains of in Indiana, 294.
Menabrea's Sketch of Babbage's Analytical Engine, 205.
Meteoric iron from Otsego Co., N.Y., 401.
Meteorological journal at Marietta, Ohio, for $1843,277$.
register, electro-magnetic, 392.
Microlite, analysis of, 159.
Microscopic life, Ehrenberg's memoir on, 297.
Mineralogy of New York, Beck's, reviewed, 25.

Dana's System of, reviewed, 362.
Mitchell, W., on the variation and dip of the magnetic needle at Nantucket, 157. Monazite and Sillimanite, 207.
Mont Blanc, Dr. Grant's ascent of, 283. Mustela pusilla, its habits, 241.

N.

New York, Beck's Mineralogy of, reviewed, 2 .

Geological Reports, review

 of, 143 .Niagara River, volume of, 67.
Nomenclature, geological, 18.
numerical, 215.
Norton, W. A., on the formation of the tails of comets, 104.
Norton, J. P., analysis of Sillimanite, 382.
Numerical nomenclature, 215.

0.

Obituary of Dr. Richard Harlan, 216. of Rev. James H. Linsley, 216. of Col. John Trumbull, 216.
Ornithichnites, tracks of in the sandstone of Turner's Falls, 76.
Owen, D. D., review of New York geoological reports, 143.

P.

Parallelogram of forces, Prof. Twining on, 324.
Pendulum, barometric compensation of, 393.

Percival, J. G., the original observer of the crescent-formed dykes of trap in Connecticut, 205.

Periclase, a new mineral, 212.
Phillips' Mineralogy, Alger's edition of, 203.

Phosphorus, isomeric acids of, 64.
Pholographic process, remarkable, 393.
chromatype, a new, 396
Pickeringite, description and analysis of, 360.

Pierce, E., on meteoric iron from Otsego County, N. Y., 402.
Plants, movements of, influenced by indigo light, 7.
of lllinois and Missouri, 94.
influence of light on their growth, 397.

Plummer, J. T.g scraps in natural history, 236.
Podiscus Rogersi, a new infusorial form, 137.

Polarization of light, elliptic, 390.
Pyroehlore, analyais of, 163.

Q.

Quadrupeds about Richmond, Indiana, 244.
habits and anecdotes of, 237
-243.

R.

Rain, quantities of in S. W. of Ireland and in Suffolk, England, 394.
Rattlesnake, habits of, 44.
Register, electro-magnetic meteorological, 392.
Reliqiuæ Baldwinianæ, 192.
Repliles of Connecticut, catalogue of, 37.
Robinson, Dr., on the barometric compensation of the pendulum, 393 .
Rockwell, C. H., analysis of Kyanite, 383.
analysis of meteoric iron from Otsego County, N. Y., 402.
Rogers, R. E., on some new instruments and processes for the analysis of the carbonates, 346.
Rogers, W. B., on fossil infusoria, 141. on the analysis of the carbonates, 346 .
Rosse, Lord, notice of his large telesсоре, 208.
S.

Sailing, solution to a case in, 79.
Salt radicals, compound, theory of, 52.
Salts, amphide, existence of compound radicals in, 57 .
Sault St. Marie, canal around, 213.
Sedgwick, A., letter to Prof. Elton, 403.
Shrew, short-tailed, habits of, 327.
Silliman, B. Jr., review of Dana's Mineralogy, 362.
analysis of Haydenite, 379. on meteoric iron from Otsego County, N. Y., 401.
Sillimanite and Monazite, 207.

Sillimanite, description and analysis of, 382.

Silurian fossils in Indiana, 296.
Smoke, production and prevention of, 400.

Sorex brevicaudatus, habits of, 237.
Squirrels, larvæ of Estrus in, 244.
Stars, British Association catalogue of, 389.

Stellite, chemical characters of, 379.
St. Lawrence, geology of the valley of, 314.

Sun's light effectual in decomposing carbonic acid gas and the alkaline carbonates, 398.

T.

Taconic system of New York, 145.
Telescope of the Earl of Rosse, 248.
Tertiary strata of Martha's Vineyard,318.
Teschemacher, J. L., on the origin of Guano, 203.
Tide, extraordinary, at Arbroath, 395. peculiar, at Mount's Bay, Cornwall, 396.
Tithonometer, description of, 217 .
Trap, crescent-formed dykes of, in Connecticut. Dr. Percival the original observer, 205.
Triceratium spinosum, a new infusorial form, 139.
Trumbull, Col. John, decease of, 216.
Turner's Falls, fossil footmarks of, 73.
Twining, A. C., on the parallelogram of forces, 324.
Tyrannula flaviventris, a new ornithological species, 274.
minima, a new bird, 275 .

$$
\mathbf{U}
$$

Ural, Jarge mass of gold found in, 211.

V.

Variation and dip of the magnetic needle at Nantucket, 157.
of the earth's magnetic force, 391.
Vegetables, action of light upon, 1 .
Verbena, species of, 99.

W.

Water, spring, corrosion of lead by, 398.
Weasel, habits of, 241.
West, Mr., on corrosion of lead by epring water passed through iron pipes, 398.
Wines of Palestine, Syria and Asia Minor, analysis of, 249.
Wisconsin, elevations in, 258.
Z.

Zircon, specimens of in New York, 36. Zoological nomenclature, Mr. Haldeman on, 18.
Zygoceros Tuomeyi, a new infusorial form, 138.

AMERICAN JOURNAL

0 F
\section*{SCIENCE AND ARTS.}
CONDUCTED BY
PROFESSOR SILLIMAN
and
BENJAMINSILLIMAN, Jr.

VOL. XLVI.-APRIL, 1844.

NEW HAVEN:

Sold by B. NOYES.-Boston, LITTLE \& BROWN and W. H. S. JORDAN.New York, WILEY \& PUTNAM, C. S. FRANCIS \& Co., and G. S. SILLI. MAN.-Philadelphia, CAREY \& HART and J. S. LITTELL.-Baltimore, Md., N. HICKMAN.-London, WILEY \& PUTNAM.-Paris, HECTOR BOSsANGE \& Co.-Hamburgh, Messrs. NESTLER MELLE.

CONTENTS OF VOLUME XLVI.

NUMBER I.

Page.
Arr. I. On the Action of Yellow Light in producing the GreenColor, and Indigo Light the Movements of Plants ; byD. P. Gardner, M. D.1
II. 'Remarks on Zoological Nomenclature; by Prof. S. S. Haldeman, 18
III. Mineralogy of New York-comprising detailed descrip- tions of the Minerals hitherto found in the State of New York, and notices of their uses in the Arts and Agricul- ture; by Prof. Lewis C. Beck, M. D., 25
IV. A Catalogue of the Reptiles of Connecticut, arranged according to their natural families; by Rev. James H. Linsley, A. M., 37
V. Remarks on the Theory of Compound Salt Radicals; by Wolcott Gibbs, 52
VI. An Abstract (from Kane's Elements) of the Arguments in favor of the Existence of Compound Radicals in Am- phide Salts, 57
VII. On the Volume of the Niagara River, as deduced from measurements made in 1841 by Mr. E. R. Blackwell, and calculated by Z. Allen, 67
VIII. On the Fossil Footmarks of Turner's Falls, Massachu- setts; by James Deane, M. D.-(with two plates,) 73
IX. A New Process for preparing Gallic Acid; by Edward
N. Kent, 78
X. Solution to a Case in Sailing ; by W. Chauvenet, A. M., 79
XI. A Monography of the North American species of the ge-nus Equisetum, by Prof. Alexander Braun ; translatedfrom the author's manuscript, and with some additions,by George Etgelmanv, M. D.,81XII. A brief Notice of the Chare of North America; by Prof.
Alexander Braun, 92
XIII. Catalogue of a collection of Plants made in Ihinois andMissouri, by Charles A. Geyer; with critical remarks,\&c. by George Engelmann, M. D.,94
Page.XIV. On the Mode of Formation of the Tails of Comets; byProf. William A. Norton,104
XV. Reply to Mr. Couthouy's Vindication against the charge of Plagiarism; by James D. Dana, 129
XVI. Account of some new Infusorial Forms discovered in the Fossil Infusoria from Petersburg, Va., and Piscataway, Md. ; by Prof. J. W. Bailey,-(with a plate,) 137
XVII. Review of the New York Geological Reports, 143
XVIII. The Variation and Dip of the Magnetic Needle at Nan-. tucket, Mass. ; by William Mitchell, 157
XIX. Re-examination of Microlite and Pyrochlore ; by Augus-tus A. Hayes, - - - . - . . 158
XX. On the A state of Columbic Acid; by Augustus A. Hayes, 166XXI. Hints on the Iceberg Theory of Drift ;-in a letter fromMr. Peter Dobson to Prof. Edward Hitchcock,169
XXII. Notice of Travels in the Alps of Savoy, and other partsof the Pennine Chain, with observations on the phenom-ena of Glaciers; by James D. Forbes, F. R.S., \&c.,172
XXIII. Bibliographical Notices:-Reliquiæ Baldwinianæ: selec-tions from the correspondence of the late Wm . Baldwin,M. D., 192.-Jussieu's Cours élémentaire de Botanique,195.-Endlicher's Grundzuge der Botanik: Bischoff'sLehrbuch der Botanik, 196.-Fresenius's Grundriss derBotanik, zum Gebrauche bei seinen Vorlesungen: Buek'sIndex generalis et specialis ad A. P. De Candolle Prodro-mum Syst. Nat. Reg. Vegetabilis, \&c., 197.-Ledebour'sFlora Rossica: Babington's Manual of British Botany,198.-Kunze's Supplemente der Reidgräser, 199.-Bo-tanische Zeitung: Prof. Forbes's Bakerian Lecture,200.-Memoirs of the Chemical Society of London, 201.-The Encyclopædia of Chemistry, Theoretical andPractical, 202.-Mr. Alger's edition of Allan's Phillips'Mineralogy : Proceedings of the Boston Society of Nat-ural History, 203.-Proceedings of the American Philo-sophical Society, 204.-Sketch of the Analytical Engineinvented by Charles Babbage, Esq., 205.
Miscellanies.-Dr. Percival, the original observer of the crescentformed Dykes of Trap in the New Red Sandstone of Conhecticut, 205.-Method of separating the Oxides of Cerium and Didymium, 206.-Sillimanite and Monazite, 207.-The
great Telescope of the Earl of Rosse, 208.-Third Comet of 1843 : Remarkable Fulgurite, 210.-Upon the deposit of Gold recently discovered in the Ural, 211.-Periclase, a new mineral, 212.-Coast Survey : Canal around the Sault St. Marie to connect Lake Superior with Lake Huron, 213.-Destruction of the Public Conservatory at Boston: The De Candolle prize for Botanical Monographs, 214.-Effect of Electricity : Proposed nomenclature of numbers between ten and twenty: Heat from solid carbonic acid, 215.-Death of Dr. Richard Harlan : Death of Col. Trumbull : Death of the Rev. James H. Linsley, 216.

NUMBER II.

Art. I. Description of the Tithonometer, an instrument for meas- uring the Chemical Force of the Indigo-tithonic Rays; by Prof. John W. Draper, M. D., 217
II. Beaumontite and Lincolnite identical with Heulandite ; by Francis Alger, 233
III. Scraps in Natural History, (Quadrupeds;) by Dr. John T. Plummer, 236
IV. Analysis of Wines from Palestine, Syria, and Asia Mi- nor, and of Specimens of American Cider; by Prof. Edward Hitchcocr, LL. D., 249
V. Statement of Elevations in Wisconsin; by I. A. Lapham, 258
VI. List of Birds found in the vicinity of Carlisle, Cumber- land County, Penn.; by WM. M. and Spencer F. Baird, 261
VII. Abstract of a Meteorological Journal for the year 1843,kept at Marietta, Ohio ; by S. P. Hildreth, M. D.,277
VIII. A Week among the Glaciers; by Dr. H. Allen Grant, 281
IX. Notice of Remains of Megatherium, Mastodon, and Silu- rian Fossils; by Rufus Haymond, M. D., 294X. Notice of a Memoir by C. G. Ehrenberg, "On the Extentand Influence of Microscopic Life in North and SouthAmerica,"297XI. On the Ridges, Elevated Beaches, Inland Cliffs and Boul-der Formations of the Canadian Lakes and Valley of St.Lawrence ; by Chables Lyell, Esq., F. R. S., \&c., - 314XII. On the Tertiary Strata of the Island of Martha's Vineyardin Massachusetts; by Chas. Lyell, Esq., V. P. G. S., \&c., 318
XIII. On the Geological Position of the Mastodon giganteum and associated Fossil Remains at Bigbone Lick, Kentucky, and other localities in the United States and Canada; by Chas. Lyell, Esq., V. P. G. S., \&c., 320
XIV. On the Parallelogram of Forces; by Prof. Alexander C. Twining, 324
XV. Notice of an Ice Mountain in Wallingford, Rutland Coun- ty, Vermont ; by S. Pearl Lathrop, M. D., 331
XVI. Views concerning Igneous Action, chiefly as deduced from the Phenomena presented by some of the Minerals and Rocks of the State of New York ; by Prof. Lewis C. Веск, M. D., 333
XVII. On the possible Variation in the Length of the Day, or of the Times of Rotation of the Earth upon its Axis ; by Prof. W. W. Mather, 344
XVIII. An Account of some new Instruments and Processes forthe Analysis of the Carbonates; by Profs. Wililiam B.Rogers and Robert E. Rogers,346
XIX. Description and Analysis of Pickeringite, a native Mag- nesian Alum; by Augustus A. Hayes, 360
XX. System of Mineralogy, including the most Recent Dis- coveries, Foreign and American; by James D. Dana, 362
XXI. Abstract of the Proceedings of the Thirteenth Meeting of the British Association for the Advancement of Science, 388
Miscellanies.-Analysis of Meteoric Iron from Otsego County,New York, 401.-Improvements in Cambridge, England, 403.-Association of American Geologists and Naturalists: NewWorks received, 404.

Appendix.-Review of and Strictures on Mr. Dana's Reply to Mr. Couthouy's Vindication against his charge of Plagiarism ; by Joseph P. Couthoux, 1.-Reply of J. D. Dana to the foregoing article by Mr. Couthouy, 10.

ERRATUM.

Page 261, line 20 from bottom, for variety read rarity.

Abstract

APPENDIX TO THE AMERICAN JOURNAL OF SCIENCE AND ARTS, VOL. XLVI, NO. II.

EDITORIAL REMARK.

When a controversy turns on the discussion of principles or facts, promoting the advancement of science-or when an author makes reclamation of discoveries original with himself, and either through ignorance or intention appropriated by another-the pages of the American Journal of Science are freely open to a calm and candid exposition of the case. When however, as in the present instance, science is no longer the theme of discussion, and the arguments regard wholly the respective personal characters of the disputants, and their reputation for veracity, we feel that we transgress the bounds of editorial propriety by forcing upon the attention of our readers, matter in no wise interesting beyond the limited circle of acquaintances of the several parties, and in excluding from our pages papers which are the appropriate contents of a Journal of Science. On these grounds we have determined to incur the expense of an appendix, not necessarily a part of the Journal, and which subscribers can at their option retain or reject when the work is bound. We have further, with the knowledge of Mr. Couthouy, submitted a proof of his "Review" to his antagonist, that no excuse might exist for another communication from either, and we take this opportunity publicly to inform the parties interested, that this controversy will not again be permitted, under the covers of this Journal.

Editors of Am. Jour. Science.
March 15, 1844.

Revicw of and Strictures on Mr. Dana's Reply to Mr. Couthouy's Vindication against his charge of Plagiarism; by Joseph P. Couthouy.

At the time when I' submitted to the public through the medium of the American Journal, my reply to the charge of plagiarism preferred against me by Mr. Dana in the number for July, 1843, I presumed that the subject would be permitted to rest until the approaching meeting of the Association of American Geologists and Naturalists, at which I had solemnly pledged myself to substantiate by indisputable testimony the statement contained in that reply.

As Mr. Dana, however, has deemed it advisable to follow up the question during the interval by the publication in the last number, of several pages of comments upon my vindication, and has in these comments not
only misstated actual facts, but most unwarrantably misrepresented the language of my defence, in order as I have just right to infer, to give greater force to his assertions, and has also brought several new issues before the public, besides repeatedly, either by direct charge or by implication, impugning my honor and veracity, I feel constrained by a regard for these, which are as dear to me as Mr. Dana's are to him, reluctantly to intrude again upon your pages in a matter now strictly personal between us.

In doing this I shall be as brief as consistent with a clear presentation of the facts, and avoid any thing like the "vituperative language," which Mr. Dana by insinuation intimates I. have been guilty of.

I will proceed therefore to review Mr. D.'s statements in the order of their appearance, at least such of them as require any notice at this time. On p. 130 he remarks, "The public have cause for regret that Mr. C. did not bring forward at once the abstract of his journal sent home from Sydney, which is said to contain the views in dispute, as many words might possibly have been saved, if the facts are as stated; and it would have borne down with more force than all his dozen pages of argument. But for some reason this was kept behind. A few particulars respecting this abstract might be added here, but are bettêr reserved until some personal accusations are disposed of."

The object of Mr. D. in this plausible sentence is too obvious to require comment, but it is based wholly upon a gratuitous assumption of the nature of the documents in question. There never was any 'abstratt' of my journal sent home from Sydney, nor have I ever intimated that such was the case; consequently, however the public may regret it, no such 'abstract' could have been brought forward. My statement, p. 380, Vol. xly, Jour., is as follows. "I transmitted by sure hand, to some friends in Boston, duplicate minutes of the most important of my observations from the time of our leaving the United States, to our arrival at Upolu, in the Samoan group." Even had these 'minutes' been a connected 'abstract,' it is obvious, from the period through which they extend, that it would be impossible to present them to the public through the pages of any Journal. But the truth is, they are scattered in disjointed fragments through some 1400 pages of MSS, of which nine tenths are records of strictly personal views and feelings, intended only for the eyes of those nearest and dearest to me. Such atstract as could be made, had in fact already been 'brought forward,' in the very article which has given rise to this discussion; and it will be in evidence of its authenticity that I shall sulmit to the Association the documents from which it was compiled. I know not in what way I could have acted more fairly and unreservedly than I have done in this matter.

On same page (130) he continues, "Mr. Couthouy complairts of unfairness in my not addressing him before making the charge public, and dwells upon the intimacy between us at sea, in order to bring out in bolder colors, this " misused confidence.'" I unqualifiedly deny this intention. I have in no part of my reply, charged Mr. D. with having " misused confidence" in the matter at issue. Again, p. 135, "My readers are probably satisfied that I have not 'misused confidence.'" Allow me to repeat the remark on pp. 387-388, Vol. xuv, in my reply, which is thus misapplied. "I may hereafter take occasion to show that he (Mr. D.) has availed himself of them (my notes) in a manner that leaves him, to say the least, equally open with myself to the charge of having misused confi-
dence. My first duty will be to fully vindicate myself from the acousations he has brought against me. When this shall be accomplished, it may then be Mr. D.'s turn to act on the defensive." I apprehend that your readers will be better able to judge in relation to Mr. D.'s having 'misused confidence,' or, in $m y$ language, laid himself open to the charge of having done so, when the charge shall have been made by me, and met by Mr. D.

On p. 131, Mr. D. professes to clear himself from my charge of discourtesy in having attacked me without notice or remonstrance at my presumed injustice towards him, by stating, that after waiting ten months in expectation of receiving a copy of my article on coral formations, or of hearing from me on the subject, and neither of these occurring, he considered himself under no obligation to address me on the subject, choosing to impute my silence to a consciousness of having done him wrong. What that man's friendship is worth, who could place such a construction upon a matter so easily explained in many other less injurious ways, I leave others to say. In the mean time I will state the simple cause of this, to Mr. D.'s mind, suspicious silence on my part. When the Expedition returned to our shores, I was stationed at Washington, where, soon afterward, I rejoiced to meet with Dr. Pickering and Mr. Rich. Almost my first inquiry was for Mr. Dana. They could not inform me where he could be addressed, but presumed that with all the others, he would soon be in the city. Mr. Drayton soon after came on, but he was also ignorant of Mr. Dana's whereabout. To each of these gentlemen I gave a copy of my article. Had Mr. Dana visited Washington as was expected, I should have hastened to place one in his hands also, with a full statement of my reasons for publication. Indeed, a copy must have been marked for him at the time, since I find his name on my list of those to whom it was distributed. I gave myself no further trouble at that time, being told by the judge advocate that Mr. Dana would, with all the other members of the corps, be present at the approaching court-martial in New York; and there I had no doubt of meeting him. In this I was disappointed, as Mr. Dana did not attend the trial. I heard, however, that he had been at New Haven, on a visit to the Editors of this Journal, and presuming that he had there seen the article in question, as I had transmitted them a copy, I thought no more of the matter, still intending to give one to Mr. D. when we met. In the latter part of the ensuing August, or early part of September, while in Boston, engrossed with making arrangements for entering into my present business, I beard, by accident, that Mr. D. had been for several days in the city, but had then left. I felt grieved and angered that he should have done this-especially when I remembered how during a visit to Western New York the year previous, I had put both myself and a friend who was travelling with me to considerable inconvenience, that I might be able to call upon his family, and convey to them the pleasure of receiving tidings of their relative, from one who had parted from him only a few months before. Prior to our sailing, also, I had welcomed Mr. Dana to my house, and shown him every attention in my power. And now he had left the city without even making me a passing call. Without the remotest suspicion that any thing published by me was the cause of this unfriendly procedure, I attributed it in my bitterness to the motives which too often lead men to turn a cold shoulder to those whom they were once glad to call friends. I was in disfavor with
the clique then controlling the collections of the Expedition; I was shut out from any share in the publication; it was best to have no further connection with me, as nothing more was to be gained by it. I can truly say, I rejoice that this was not the true cause of Mr. D.'s conduct, though at the time I could imagine no other, and presume also it will be admitted that I have given a very natural explanation, at all events a true one, of the reasons why Mr. D. did not hear from me touching my publication. Soon after this, the cares and duties of a new business so fully engrossed my time and thoughts, as to leave me neither leisure nor inclination to pursue my original intention of addressing Mr. D. a note of inquiry on the subject, and I dismissed it as I supposed, forever from my mind. A word more on this head and I have done with it. It was I that at the meeting of the Association in Boston, nominated Mr. Dana for admission to membership, prefacing the nomination with remarks expressive of all I then felt toward him, Did this, I would ask, 'betoken a consciousness' of having wronged him?
"What shall we say," exclaims Mr. D., and his coadjutor or familiar, whose claim to a share in the paternity of his reply, appears more than once in its pages in the significant we and $u s$, " "what shall we say of the honorable feelings which * * * * could trespass also on the department of a friend, for he has given to the public numerous geological facts observed abroad, besides those on coral islands? What of the honesty which could find any excuse for transmitting home duplicate minutes of his journal, contrary to express prohibition by the authority under which we sailed ?" To the first of these questions I answer, it is untrue that I have given to the public such numerous geological facts as Mr. D. therein represents me to have done, although as I shall prove, repeatedly urged and even told it was my duty to do it, by men whose high sense of honor and strict justice Mr. D. dare not question. I have never published a line on geological subjects other than what is contained in my article on coral formations, in which there is not a single fact but has a direct bearing on that topic, and the publication of that article was entirely incidental and unpremeditated, expanding under my hands to an extent far beyond my original idea, which was simply to point out an erroneous statement by Mr. Lyell, in regard to the structure of the reefs bordering Tahiti. One remark suggested another, till, unconsciously to myself, the intended note swelled into the essay which has given rise to this unpleasant controversy.

As to the honesty of my 'transmitting home duplicate minutes,' \&c., I will say that I acted under the best advice within reach, and were I' so circumstanced again I would do the same thing. Had not the great mass of what was sent been of a most strictly private and personal character, containing much on which no stranger's eye should rest, I should have forwarded them to the department instead of to my family. I now rejoice more than ever that this was not done. Cut off by circumstances from any control over my MSS. there deposited, I could not suppose that the unblushing violators of the sanctity of a private seal would respect it any the more for being placed on a private journal; and no man living would care to have the pages, in which he had laid bare the inmost recesses and given vent to the deepest emotions of his heart, subjected to the criticisms and heartless sneers of such as would in all probability have access to them.

It was the apprehension of a fate like this befalling those pages, in case of my never leaving Sydney, which caused me to send them home, as before remarked, under an injunction to be kept strictly private,-and I believe there are few men living, who, if situated as I was, would not have done the same. But this is not the point at issue between Mr. D. and myself.

The same remark applies to all his arguments, touching my accuracy or inaccuracy in giving 76° as a flourishing temperature. At a proper time and place I shall notice these, but they are wholly extraneous to the present question. I may be wrong or I may be right in my views, but this has nothing to do with the question whether I have borrowed certain other views from Mr. Dana. There are one or two passages however which must not be passed over in silence. On p. 133 Mr . D., speaking of my article on coral formations says, "He states that through the coral archipelago to the eastward of Tahiti, the surface temperature ranges from 78° to 81°, (Bost. Jour. p. 75.) The fact is that the range is from 77° to 83°, and in the second part of his article, printed at a later period, we find this range given, (p. 100*) evidently a correction of the former, and not a part of his expedition observations."
This is indeed a very suspicious circumstance, if the facts so complacently here set forth by Mr. D. are correct. Unfortunately for his conclusions, and for the inferences he wishes the public to make from them, the second part of my article was not printed as he asserts, at a later period than the first. The entire article was set up and printed simultaneously, as it appeared in the extras printed for my use, which came out at the close of December, 1841, in anticipation of the publication in the Journal. It was divided at the request of the publishing committee, in order to make room for other communications, which had been promised an insertion in the number containing the first part of my paper. Moreaver, the correction alluded to, was made precisely because having between the early and latter part of the article, had my journal returned by a friend to whom it had been loaned, I found on reference to my Expedition observations that my first statement, from memory, did not exactly correspond with them, since at Clermont Tonnerre, the maximum temp. for 24 hours was 78° and the minimum 77°, and the same off Serle I., while off an island near Raraka, to which the name of King's I. was given at the time, its range was from 78° to $83^{\circ} . t$ The only information not derived from my own observations, was that on the temperatures at Callan, Valparaiso, in November, the Gallapagos, Trinidad, C. Verde Is., Martin Vas and Fernando Noronha, which, as stated p. 382 of last volume of this Journal, I derived from the appendix to King and Fitzroy's voyage. $\frac{t}{7}$ I might, if

[^61]space and time permitted, here annex a table of the daily maximum and mininum oceanic temperatures between the entrance of the squadron upon the Paumotu group and its arrival at Tahiti, in support of the views advanced in my article, but it is better perhaps to defer it for the present, as the Association will meet so shortly.

On p. 135, to which, with a view to save time, I refer the reader, Mr. D. specifies what he is pleased to call a very apparent instance of equivocation, a (for me) most unfortunate change in the idea-and adds, "We may reasonably besitate before we give full credit to the statements of one who will so prove false to his own writings."

Now I assert in regard to this, that the equivocation is entirely Mr. D.'s, and utterly deny that I have in any instance proved false to my own writings, or falsified my opponent's. It were well for him could he with equal truth say as much. Where I remark, in my vindication, p. 885, " where that exists is "the field of their most lavish display," "I refer to the temperature of the bottom. This is expressly stated in an antecedent sentence on the same page, 385, and immediately following, is the very passage quoted by Mr. D., from the Boston Journal, "among the Paumotus, the feld of their most lavish display, the temperature varies from 87° to 83°, " and to this is appended a foot-note expressly declaring these temperatures to the those of the surface! I ask the readers of this Journal to reperuse this passage in my vindication, aud decide whether my language has not been pitifully distorted, to fasten on me this charge of equivocation. But this is far from the most glaring instance of Mr. D.'s shameful perversion of my expressions. I will pass over, for the present, the cool manner in which he meets my charge of having accused me of making before the Association statements borrowed from his MSS., by merely saying that he was led into error, but this matters little with the points at issue-merely remarking that it is a very easy mote of avoiding the ac* knowledgment that he has been guilty of making a deliberate statement on hearsay, every word of which is untrue. I proceed to notice another instance of his honorable method of using the language of an opponent. With the view of casting farther doubts on my assertions, he says, pp. 135, 136, "I might dwell upon the admission by Mr. C., that the fact of the absence of corals from the Gallapagos, was not verified by him till the sheets of his article in the Boston Journal were going through the press. This fict was fully stated in my report, the reading of which has been so singularly forgotten, and the whole explained at some length; yet he only verifi d it when, long afterwards, his paper was in the press." This is his statement. Now for my language, on which it is based, or, more correctly, not based.

By furning to p. 382, of last volume, it will be seen, that I declare my knowledge of the absence of corals at the Gallapagos was derived from the commander and surgeon of the vessel in which I took passage from Sydney to Tahiti in the spring of 1840 ,-that not satisfied with the explanations of it given by the captain, I "was led to suspect that it would be found owing to the low temperature of the ocean," and that "this suspicion," (not the fact of the absence of corals there,) "however, I only verified while the sheets of my article were passing through the press." The fact of the absence of corals at the Gallapagos, I have never yet verified, excepting by the testimony of some whalemen whom I met at Tahiti, and I never considered that any other verification was necessary.

In view of his statement touching this pretended admission on my part, and of his former one made upon mere hearsay, which in his opinion is of no moment, I commend to Mr. D.'s consideration the following apposite quotation from a daily paper, alluding to charges affecting the character of another. "The hardibood and guilt of the assertion are equally great, by all codes of ethics, whether a man asserts what he knows to be false, or asserts what he does not know to be true." I apprehend that Mr. D. is very close to both horns of the dilemma.

See also Mr. D.'s foot-note to p. 131. "Mr. C. claims, in his vindicattion, that the whole subject of corals was in his hands, much to my surprise, and no doubt to the surprise of all who know that the structure of coral islands is so far a geological question as to constitute an important chapter in all geological treatises. The point was considered so far settled at sea as never to have been mooted."

Here Mr. D. clearly accuses me of having claimed the structure of coral islands, or the geology of corals, as having been placed in my hands. It is untrue that I ever advanced any such absurd proposition. This is what I said, p. 389 , Vol. xur. "It must be borne in mind, that in the distribution of the various departments of natural history among the naturalists attached to the expedition, the corals were especially assigned to me. Their habits, growth, distribution, and all else connected with their history, were consequenly the subjects of my particular attention." Is it not selfevident that I here allude only to living corals, to corals zoologically considered, and call attention to the fact of their being assigned to me, as offering a reston why I should naturally have been led to observe the influence of temperature upon their growth? At the same time I neglected no opportunity of making observations on the geological structure of reefs and islands for Mr. D.'s information, and it was his knowledge of this which led to the proposition by him to publish on this subject joinly with me. I think, however, this was done just prior to our parting in Sydney, and not as he states at Oahu.

In another foot-note to p. 183, alluding to my statement that I found thirteen fathoms water, with a bottom temperature of 76°, upon a shelf profusely covered with coral, on which we suddenly came in approaching the island of Tutuila, Mr. Dana says,-"By referring to the log-book of the Vincennes, I find that no temperature was taken at any depth on the reef here referred to. The thirtofn fathoms were obtained by a cast alongside of the reef; the reef itself on which the coral is growing, varies in depth from $4 \frac{1}{3}$ to 5 futhoms. (Sce expedition charts now publishing.)" The coolness with which all these particulars are applied to a shelf, not a reef of coral, whose localiny I have only designated in general terms, is perfectly inimitable. But with all due respect for Mr. Dana's penetration and for the 'expedition charts now publishing,' I take leave to say that their reef with $4 \frac{1}{2}$ to 7 fathoms, and 13 fathoms alongside, $\& c$ c. \&c., is not "the reef here referred to" by me, which was a shelf of coral running out from the shore and gradually deepening, apparently from a few inches to thirteen fathoms. On this I sounded repeatedly, and obtained as nearly as I could estimate from the rude manner of my making the trial, 76° as a bottom temperature. The position and character of this shelf I shall specify hereafter. But, says Mr. D., 'by referring to the log-book of the Vincennes, I find that no temperature was taken at any depth.' By ingeniously substituting a positive statement on this head for a negative one,
he changes the whole truth. He may not have found any record of the temperature taken; I should be astonished if there was one; but this is a widely different thing from finding a record that none was taken. Will Mr. D. point out any record in this log-book, of Dr. Pickering and myself measuring the distance from the ocean to the lagoon at Wilson's (or Peacock's) I.? any of my being ordered to ascertain the height of the mountain back of Tutuila, and of my clearing away a space on its summit as a mark of having reached it? or of my having at Upolu, made an excursion of over thirty miles in search of certain plains or savannas supposed to exist somewhere, measuring the altitude of all the peaks on the route, and making all possible observation on the topography of the island-by special order, to the neglect and detriment of my own appropriate duties? any of my illness and detachment at Sydney, of my rejoining at Oahu, of even my final detachment under orders to return home at this latter port? Nay, farther, will Mr. Dana pretend that from the day of our leaving the United States till that of my leaving the squadron in Nov. 1840, there are a dozen instances in which any excursion, duty, or experiment, made by any naturalist on board the Vincennes, is noticed ever so remotely in this log-book, whose silence is so triumphantly brought forward as conclusive testimony that my statements are untrue. It seemed part of a regular system pursued tovards the naturalists, to prestrve as complete a silence in regard to all their actions as though they had formed no part of the expedition. Indeed, I was repeatedly told on this subject, that the log-book was the record of the ship's business, not ours, (the naturalists.) More worthless evidence on any point touching their actions than Mr. D. has here paraded out, could not have been conjured up, and with this remark I dismiss his note.

One other note, p. 130, requires a few words. "Mr. Couthouy was with the squadron only about one year and a half of the four occupied in the cruise." For one who is so ready to accuse another of equivocation where none can be proved, yet who certainly in his last quoted paragraph on the record of the log-book, at least treads on the verge of it himself, this inaccurate statement, whatever may be its motive, comes with a very bad grace. I joined the squadron about the 8th of August, 1838. I continued attached to the expedition until 3 d November, 1840 , when I was ordered home from Oahu.

A few words touching his remarks on my public journals, p. 136, and I have done. That they are found, gives me no surprise whatever. Notwithstanding that they could no where be discovered when called for in evidence against Lieut. Wilkes, all who ever heard me allude to the matter can testify that I always expressed my firm conviction that they would be forthcoming when it was no longer an object to have them missing. I never for a moment credited the idea of their being lost. That they contain no theories or inferences from the facts recorded in their pages subsequently to our departure from Callao, I am very certain, inasmuch as after having had my own views therein contained, gravely quoted to me by another as the result of his reflections; I determined, thenceforth, while recording facts, to keep my deductions to myself till the time arrived for me to publish them. But, if what Mr. D. asserts be true, and there is " not a word on the influence of temperature on the growth of corals, nor any thing bearing the most remotely on this subject," then I unhesitating. ly affirm that they have been mutilated. There is, or was in the first vol-
ume of these journals, a regular series of observations, giving the daily maximum and minimum temperature of the ocean from the time of our entering the Paumotu group till we reached Tahiti. These observations were made for this very purpose, and are, as I firmly believe, in the journal at this moment, although the reason of their being made is not stated. I cannot believe otherwise. But besides these, there were sealed up with the journal, numerous loose leaves and scraps containing memoranda, figures, dates, \&c., thrown together and jotted down in a manner perfectly plain to $m e$, though to any other person they would doubtless appear a congeries of unmeaning figures, without order or connection.

The seals of my field note-books, says Mr. D., were broken for him, and these, too, contained nothing. I ask the special attention of the reader to this statement, for 'thereby hangs a tale.' These journals and note-books, let it be known, were at the time I delivered them up in Oahu, secured each by several seals, bearing the impress of my own private signet as a safeguard against any improper tampering with their contents. These seals have been violated-broken open in my absence-broken open, too, for the benefit of my adversary. Who will dispute my right to repel indignantly any evidence obtained by such felonious means? How am I to know, who is to prove to me, that these seals were those affixed by $m e$, that they had never been broken before, and the inconvenient testimony removed or mislaid? I again affirm, if these note-books indeed contain nothing, it is because every thing has been abstracted. Else, why was I not summoned to attend this opening of the books, this removal of my own private seal? I refer Mr. D. and his honorable coadjutors in the matter, to the common law and that of this state for a legal definition of this act. Were I to apply it, it might be considered 'vituperative.'

With this protest against the pretended evidence thus acquired, and which at best is but negative, I drop the subject, renewing my pledge to submit to the Association at its approaching session, such positive testimony as shall amply sustain all that I advanced in my reply to Mr. Dana's first charges, merely adding that I presume by this time the readers of this Journal are satisfied that "truth and honor," "character and right," each and all demanded of Mr. Dana a somewhat different course from that he has thought proper to pursue towards me.

Since the above was in type, Mr. Couthouy has sent us a list of temperatures taken from the ship's log-book, showing the daily maximum and minimum of the ocean (ranging from 77° to 83°) during the period from August 14 to September 10, 1839. This includes the time from the day of the squadron's arrival in the Paumotus, to that of its anchoring in Tahiti. We have not room for the table itself.-Eidrors.

Reply of J. D. Dana to the foregoing article by Mr. Couthouy.

Mr. Couthouy in his preceding remarks, has made out a somewhat plausible story, yet not to the total concealment of the truth. When an opponent is reduced to such extremities as dwelling upon the use of the pronouns " we" and "us," or quibbling about the phrases "abstract" and "duplicate minutes"-when he finds it necessary for his case, to affirm what he has before denied and deny bis former affirmations, to twist and torture his yielding phrases till they no longer look like themselves, we may well question his conclusions, although "solemnly declared on his faith and honor as a man." But not to deal in assertions alone, we may glance at a few particulars in the above reply.

Perhaps its most striking feature is the subdued tone with which the subject is approached. A second, no less prominent, is the implied admission of many points before forgotten:-for example, the reading of $m y$ report-the agreement to coüperate in our observations, \&c. Not to dwell on these peculiarities, we may pass in rapid review a few of his more cogent arguments and then dismiss the subject.

For a reply to his observations upon "misused confidence," we need only refer to his previous article. The many words on former friendly deeds are quite wasted, as the friendship and confidence between us had already been asserted and admitted on both sides. That his conscience should have slumbered for a while is natural; his own unkindness would not banish at once the remembrance of the past. I may again ask, What is that friendship that could publish at all on the subject of corals after the understanding-now acknowledged-that we should coöperate in our investigations and Report? What the honorable feeling that could violate such obligations-sacred, at least, among professed friends? Suspicions might reasonably be aroused after such a friendly deed.

It pains me thus to deal with one whose friendship once was valued, with whom kind acts were long reciprocated. But, as the case stands, there is little virtue in withholding the truth. I proceed then to notice a .fact which will serve as a key for interpreting the rest of Mr. Couthouy's reply.

In the course of the attack in Vol. xuv of this Journal, Mr. C. alludes more than once to the "duplicate minutes" which contained "the most important of his observations" at sea, and afforded the facts on the temperature of the ocean inserted in his article on corals. In the preceding reply, we learn more definitely that these "duplicate minutes" (which he objects to having called an "abstract") "are scattered in disjointed fragments through some 1400 pages of MSS." (p. 2); and, he adds, "such an abstract as could be made, had already been brought forward in the very article which has given rise to this discussion." Let the reader turn now to the original article, 'which gave rise to this discussion,' page 77 , at bottom," and read: "My observations in MS. on this subject are now in the possession of the Navy Department at Washington; but not being permitted to have access to them, I am compelled in all the statements made in

[^62]this communication to rely upon memory alone." It is not here said, all the statements in a particular paragraph, or on a particular page, or relating to a particular subject, but, 'all, in this communication.' From this, we may judge of the credit due to other statements. As stated, it is a key to this and his former reply. After this exposure, his other charges can scarce require more than a simple denial.

As to geological facts, the reader may refer to the article itself, and read some pages on the elevation of islands in the Pacific, their vallies, \&c.

Respecting the whole subject of corals belonging to him, his own citation, "all else connected with their history," conveys but one idea to the reader of his attack.

On page 7 of this appendix, Mr. Couthouy says, "I neglected no opportunity of making observations on the geological structure of reefs, and it was his (Mr. Dana's) knowledge of this, which led to the proposition by him to publish on this subject jointly with me." Let facts tell the tale. Mr. Couthouy had the zoological branch of the subject, and notwithstanding his 'traversing the same ground with Mr. Dana, possessed of equal facilities for observing the phenomena presented by corals, with the same facts presented to his notice,'* he had not figures of more than a dozen species of corals, on reaching the Sandwich Islands. The contents of my portfolio have already been alluded to; there were colored drawings of the animals of more than a hundred species, and more than a score of written sheets were occupied with my geological observations. I had seen Mr. C.'s drawings, but had never given his geological investigations on corals a thought. His journal to the Samoa group contains almost nothing on this subject. Farther words are unnecessary.
The reef referred to off Tutuila, was often described to me by Mr. Couthouy while at sea, its position pointed out, and the supposed fact of its being covered with coral in thirteen fathoms dwelt upon. The ship obtained a cast of the lead in thirteen fathoms on the edge of the reef, and as it was small, was just leaving it, when the lead was dropped again to the same depth. It was afterwards sounded by the boats and found to be covered with four and a half to six fathoms of water.

The second foot-note to page 5, renders any remarks on the charge to which it refers, quite unnecessary.

The second paragraph on page 6 will be found sufficiently refuted by recurring to the pages he has there referred to.

It is still true that Mr. C. was with the squadron but a year and a half. He left it at Sydney, New South Wales, and went by a private opportunity to the Sandwich Islands, and was not with us daring the summer of 1840, at the Feejee group, the richest coral region met with in the Pacific. Only sixteen months had elapsed since our departure, when we left Samoa, where his "duplicate minutes" ceased. $\dot{\tau}$

As to the mutilation of the journal:-while examining it, I prudently counted leaves and pages: from the Paumotus to Samoa nothing was missing. The seals opened, were broken in the presence of witnesses

[^63]by those who had authority, if there is power in government to break the seals of reports sent in by their employés.-The table of temperatures referred to, which is not given in the regular course of the journat, covers only a few hundred miles of ocean. Did I not know it from actual intercourse with Mr. C., there would still be reason enough to conclude from his suspending it so soon after entering the coral seas, and his mistakes, before exposed, respecting the "flourishing" and "limiting" tempera-tures-that it was not made with any reference to this subject. It embraces a few facts in log-book fashion, which, though taken about the coral islands, contain none of the views in dispute. It is somewhat surprising that Mr. Couthouy refers to these alone, and cites nothing from his "duplicate minutes" bearing more directly upon his claims.
The insinuation in the third paragraph on page 8, excites rather pity than contempt. Mr. Couthouy if charged with it, would probably deny any reference to me; but the reader perceives the bearing and intent of the italicised his.-An allusion to the "peculiar intimacy" dwelt upon by him so warmly, and acknowledged to have continued long after "our departure from Callao"-and not even to have been suspended at the Sandwich Islands, where my Report was read to him, is all the reply 1 make.*

His readers may perhaps appreciate Mr. C.'s regret, that this subject was not permitted to rest till the Geological meeting in May.

[^64]
AMERICAN JOURNAL

or

SCIENCE AND ARTS,

;
CONDUCTED EY
Prof. B. SILLIMAN AND B. SHLLIMAN, Jn.

OF YALECOLLEGE

Abstract

To the Friends of Science, and more particularly to the Subscribers and Patrons of the American Journal of Science and Arts, from the Editors.

We beg leave to present to your consideration the following statement. The American Journal has been sustained during twenty five years; a generation of men has almost passed away, while death and misfortune have nearly cancelled the original subscription, which has however, from time to time, been recruited by many additional names; but the severe pecuniary vicissitudes of the last six yearz, (affecting also, as we regret to learn, our literary cotemporaries,) have again crippled our subscription list, which is now barely sufficient to pay the expenses of the publication of the Journal ; and any considerable additional diminution might place its exisfence in hazard.

In two former periods of exigency, a frank disclosure was made to our subseribers and to the public, and we hestite not to do it again, deeming it no personal lumiliation, but an act of fidelity to the honor and the welfare of our country.

The remedy is at hand, and it has been heretofore applied with success.
We therefore respectfully invite each of our subscribers, and each of the subscribers of our agents, to obtain one additional name; to receive the advance payment ; to retain, if agreeable, one dollar or more for compensation, and to remit the balance and the name to us or to our agents, as may be preferred, under the postmaster's frank. This measure-sinple, definite, practicable, and we hope not onerous-would now prove, as it has done twice before, entirely sufficient, if fully earried out-especially, seconded, as it will be, by our own personal exertions, in other directions and ways; for we cannot admit the idea that our country will relinquish its long accredited Journal of Science, which for so many years, has commanded the respeciful attention of Europe as well as its own; and we therefore look, with hope and coufidence, for the aid which we need, and which we have endeavored to deserve. As the reviving prosperity of the country favors our overture, the above invitation is, of course, extended to our personal friends and to all the friends of science, whether heretofore subscribers ar not.
This Journal embraces in its plan, the entire circle of the Physical Sciences, and their applications to the arts. It was begun in July, 1818 ; the forty sixth volume is now in the press, and we have paid between sixty and seventy thousand dollare for its support. Its limited subscription, the great expense for illustrations, and often expensive technical composition, prevent the editors from reducing the price, any farther than to do justice to their mail subscribers. The work could not be sustained at a lower price.

While it has prompted original American efforts, it has been sustained by them: and being devoled to important national and universal interests, it is in that character known and accredited, boilh at home and abroad. It has elicited many valuable researches and discoveries ; its miscellaneous department has presented a great varety of topies of general interest ; and a large part of the work is not only quito intelligiblo but interesting to the reading public, whether seientific or not.

Avoiding local, personal, and party interests and prejudices, it forgoes the support of popular feeling, and relies sofely upon the fatelligent and the patriotic.

THE AMERICAN JOURNAL, SC.

TERMS.

The American Journalo of Science and Arts is published in Quarterly numbers at New Haven, Connecticut, and in two semi-annual volumes of 400 or more pages each. Each number contains at least 200 pages, closely and handsomelyprinted on good paper, and fully illustrated by engravings. The subscription price is six dollars per year to those who receive it without expense to themselves. But to those who receive it by mail, five dollars per year in advance.

Remittances should be made, if possible, in Eastern money, but if that cannot be obtai 1 , the best bills which can be had, of specie-paying banks, may be substituted.

Suhacribers will remember the regulation of the Post-Office department, by which Pos sters are authorized to remit payments for periodical works free of postage, the letter containing the remittance is subscribed by themsclves.
B. \& B. SILLIMAN, Editors Am. Journ. Seience \& Arts.

New Haven, Jan. 1, 1844.
Complete sets, now 46 vols., are furnished to order.
This No. contains $13 \frac{1}{2}$ sheets; postage, under 100 miles, 20 cents; over 100 miles, 331 cents.

Notice always to be sent of discontinuance, removals and deaths of subscribers.

AGENTS.

Massachusetts.
Sabem, Henry Whipple. New Bexrond, William C. Taber. Amherst, J. S. \& C. Adams. Lowele, Bixby \& Whiting. RHODE ISLAND.
Providence, B. Cranston \& Co. CONNECTICUT.
Har rord, G. Robins. Midenetown, Luke C. Lyman.

NEW YORK.

Albant,
W. C. Little.

Trox. Sterman \& Redfield.
Buefalo, R. W. Haskins.
Messrs. C. W. and T. NEw Onteans,
PENNSYLVANIA.
Pittsherg, W. W. Wilson. Baltimore, N. Hickman. DISTRICT OF COLUMBIA.
Washington, Frank Taylor.
NORTH CAROLINA.
Chapel Hile, Prof. E. Mitchell. SOUTH CAROLINA. Charisiston, Ebenezer Thayer. geOrgia.
SAvannat, Wm. T. Williams.
Avgusta, Th. I. Wray.
LOUISIANA.
New Orleans, S. Woodall \& Co. For other ageneies at home and abroad see the first page.

ADVEHTISING SHEET

OF THE

AMERICAN JOURNAL OF SCIENCE.

Advertisements will be inserted on the covers or Advertising Sheet of this Journal, and its circulation both in Europe and America renders it a favorable vehicle for that purpose to the authors and publishers of both countries.

Publishers' advertising sheets will be stitched up at the usual rates with the numbers if desired.

Advertisements intended for insertion in this Journal, should be forwarded as early as the 20 h of the last month in each quarter. They may be sent direct to the Edi. tors, or to Wiley \&c Putnam, 161 Broadway, N. Y., and as Paternester Row, I ondoh.

[^0]: * We now ought to be careful observers of such plants as are apparently common to both continents: in after years it will be much more difficult to decide which are natives and which introduced. Many European plants, now common weeds east of the Alleghany Mountains, have not yet found their way to the Misvisuippi valley, but undoubtedly will arrive in a short time. Other plants are here already as common as they are in Europe, from whence they were derived, or in middle Asia, perhaps their original home. It behooves us therefore to note the progress of these intruders, and distinguish from them the true natives.

 We are able to distinguish several different classes of such plants:

 1. Nearly allied geographical species, where one takes the place of the other in the other continent; such as Qucreus alba in North Ameriea, and Q. pedunculata in Europe; Carpinus Americana and C. Betulus; Polygonum Persoonii (n. sp. P. mite, Pers.) and P. mite, Schrank ; Androsace occidentalis and A. elongata; Lycon pus sinuatus and L. Europans, and many others.
 2. Gecgraphical varieties; where no specific distinction can be discovered between the natives of both continents, but where the American and European variety can always be distinguished by some points of minor importance. Such are Sium latifolium, Circaa lutetiana, Samolus Vaterandi, (if it does not belong to the first class,) Castanea vesca, Lepidium ruderale, Astragalus hypoglottis, Eviophorwm gracile, Myosurus minimus, etc.
 3. Identical plants, true natives of both continents, especially arctic or at least northern plants; also marine species and cryptogamic planta; o.g. Potentilla an-
[^1]: serina, Campanula rotundifolia, Epilobium spicatum, Cornus Suecica, Phragmites communis, Salicornia herbacea, Glaux maritima, most Equiseta, etc.
 4. Naturalized plants, spreading with the progress of civilization: of these we have in the neighborhood of St. Louis, Taraxacum Dens-Leonis, Marrubium סulgare, Trifolium repens, Bromus secalinus, Verbascum Thapsus and V. Blattaria, (perhaps belonging to the third class,) Nepeta Cutaria, Arctium minus, etc. Cichorium Intybus, Echium vulgare, and others, 1 have not seen in the west.
 It is difficult to decide to which of these classes Datura Stramonium and Portulacce oleracea should be referred. Datura is perhaps introduced in Europe as well. as America, and possibly did not reach this country from Europe. Erigeron Canadense and Ginothera biemis are now as widely naturalized in Europe, as Tarazaswm is in America.

[^2]:

[^3]: π Sets of Apparatus for the various departments of science, are put up for Schools, Academies, Colleges, \&c. at all prices. Respecting the quality of the apparatus manufactured by J. M. W., he has the pleasure of referring to the Editors of the Journal of Science, and also to the following awards from the Fairs of the Mass. Char, Mech. Association held in Boston. Silver Medal, 1837. Gold Medal, 1841. Silver Medal, 1839. Boston, Dec. 1, 1841.

[^4]: *From the London, Edinburgh and Dublin Philusophical Magazine and Juurnal of Science, for December, 1843.
 Vol. Ilvi, No. 2.-Jan.-March, 1844.

[^5]: * Since the above was printed in London, I have found that there is no difficulty in making chlorine and hydrogen explode, by passing the spark from a Leyden jur of the capacity of a quart, outside the sentient tube of the instrument. This result therefore confirms the views here expressed, that combinations ensuing on the passage of an electric spark are not entirely due to any such mechanical agency as condensation or percussion, but to the action of the radiant matter emitted. I believe it will be found, that the explosive union of oxygen and hydrogen by an electric discharge is a phenomenon of the same kind.

[^6]: * M. Levy read his paper before the French Academy of Sciences, (L'Institut, 1839, No. 313, p: 455.) An abstract of his communication may be seen in the London and Edinburgh Phil. Mag. for Feb. 1840.

[^7]: * See fig. 2 in Phillips' Mineralogy, Allan's edition, p. 25.
 \dagger American Journal of Science, Vol. xxxvir, p. 398.

[^8]: * Among some specimens which I have lately received from Copenhagen, through a distinguished friend of science, Compte de Vargas Bedemar, I observed precisely the same modified crystals with those of Lincolnite, but no near approach to the form of Beaumontite. These specimens are from Faroe, a region which the Count has personally examined.

[^9]: " Richmond, Wayne County, Indiana.

[^10]: "Local lists are still wanting, to enable naturalists to trace their geographical limits with precision."-Richardson.

[^11]: 1,2,3. Vespertiliones. These are the only species of bat in my collection, and I believe are all that have been found here. V. subulatus appears at present to be the most common. A V. Noveboracensis and a V. pruinosus, more than four inches long, the former a male and the latter a female, were captured in the fall while flying together in the same room.

[^12]: 24. This little animal still maintains its possession of our dwellings, but its numbers have evidently been diminished since the introduction of the brown rat.
 25. The rustic mouse is common.
 26. In a few years after the incursion of the brown or Norway rat, the black rat became totally unknown.
 27. This universally despised creature made its appearance here in 1835. White varieties of this rat have several times been brought to me as a new species; they have always proved to be albinos.
 28. The wood-chuk, so far as I can learn, is seldom met with.
 29. The grey squirrels, for twelve or fifteen years after the settlement of the country, were exceedingly numerous and injurious to the corn-fields. At present, their numbers are not objectionable, barely furnishing sufficient game for our sportsmen. I have seen several white squirrels (albinos) of this species.
 $30,31,32$. Of these, the black squirrel is the rarest; the pretty ground squirrel often greets the eye, as it skims along the prostrate tree; and the flying squirrel is frequently captured in cutting down hollow trees; five or six of these animals generally being found together.
 30. This year (1843) I surprised one of these little creatures in a thinly-grown wheat field. By four or five leaps it reached its retreat in the ground, where it escaped. It must be comparatively rare, as I have not yet met with any of our farmers who are acquainted with it.
 31. Several porcupines have been killed in the suburbs of Richmond within a few years past. I have a fine specimen in my collection, captured near this town.
[^13]: 39. The evidence I have of the former existence of the bison in this county is, that several skulls, with the nucleus of the horns attached, have been ploughed up in our alluvial fields. They have all been found in an advanced state of decomposition.
 40. The deer is seldom seen in this county at present, except some that are domesticated. It was formerly common game.
 41. An elk was killed not far from Richmond about the year 1811. The horns of the elk have been found in our woods in various states of decay. One in my possession, originally between five and six feet long, was obtained within three miles of Richmond, and was sufficiently sound to induce the former owner to saw off the ends of the branches for knife-handles. Elkhorn, a water-course near Richmond, received its name from the number of these horns found upon its banks.
 Vol. xlvi, No. 2.-Jan.-March, 1844.
[^14]: * Since the above was written, I have had the pleasure of meeting Mr. Van Lennep in this country, and he confirms all the statements made in the test respecting the strength of the wines. He is even of opinion that those from the neighborhood of Smyrna are below the average strength of the wines of that region. Rev. Mr. Sherman, also, who obtained the specimens from the vicinity of Hebron, and whom I have lately seen, thinks that they may be somewhat stronger than the average of wines in that region. The specimens from Mount Lebanon were procured by Rev. Leander Thomson, who is also in this country, but I have not met with him.

[^15]: * Higgins' Michigan Geological Report, 1838-9.
 t Or "Fox river of the Illinois."

[^16]: * Or "Fox river of Green Bay."
 \dagger This estimate is based upon the survey of the Neenah and Wisconsin rivers, by Capt. T. J. Cram of the U. S. Engineers, who accurately leveled the several rapids below Lake Winnebago, and reports them as follows :-

 This note is made to correct an error of Mr. Higgins, (Geological Report of Michigan, 1838-9, pp. 49,50,) where the elevation of this portage is stated at only 121 feet above Lake Michigan, (699 above the ocean,) which error is quoted by Mr. Whittesey in the article referred to. The principal error is in the descent of the Little Chute, which Capt. Cram found to be 31 feet, but Mr. H. states it at 1.5 feet; which must be a typographical or a topographical error.

[^17]: * Communicated by the Authors.

[^18]: *From the Journal of the Proceedings of the Academy of Natural Sciences of Philadelphia, Vol. I, 1843, p. 283.
 Vol. xlvi, No. 2.—Jan.-March, 1844.

[^19]: * Communicated by request of the Editors.

 Vol. xuvi, No. 2.-Jan.-March, 1844.
 \dagger Chamouni of many tourists.

[^20]: * See however an indubitable instance of this effect in Col. Trumbull's Autobiography, p. 21.-Eds.

 Vol. xlvi, No. 2.-Jan.-March, 1844.

[^21]: * Not accurately ascertained, but estimated by the maps and the distance from Cincinnati.
 | The Bridgewater Treatise and Hitchcock's Geology are the only authorities at hand.

[^22]: * Bridgewater Treatise, Vol. I, p. 119.

[^23]: * Verbreitung und Einfluss des Mikroskopischen Lebens in Sud und Nord Aınerika, Ein Vortrag von C. G. Ehrenberg. Gelesen in der Königl. Preuss. Akademie der Wissenschaften zu Berlin, am 25 Marz und 10 Juni, 1841, mit spatern Zusatzen. Nebst 4 coloriten Kupfertabeln. Berlin, 1843.
 Vol. xivi, No. 2.Jan.-March, 1844.

[^24]: * See p. 141 of the present volume of this Journal. We have also recently found it, in company with many other beautiful infusorial and Polythalamian forms, in mud adhering to oysters dredged at Amboy, New Jersey.

[^25]: * Under the new genus Actinoptychus are now placed those species of the old genus Actinocyclus which possess internal partitions or folds, while under the old name are retained those in which the external rays are not connected with internal folds.

[^26]: *"Goniothecium. Genus e familia Bacillariorum, sectione Naviculaceorum. Lorica simplex silicea teres nunquam catenata, strictura media fine utroque subito attenuato, et truncato hinc tanquam anguloso. $=P$ yxidicula media constricta utrinque truncata."
 "G. Rogersii, articulis lævibus hyalinis."
 "Rhizosolenia. Genus e familia Bacillariorum, sectione Naviculaceorum. Characteres Pyxidicule aut Gallionellæ, loricæ tubulose altero fine rotundato elauso, altero attenuato multifido tanquam radiculoso."
 "R. Americana, testulæ tubulis hyalinis lævibus,"
 "A curions and very distinct form, whose systematic position is uncertain; only three specimens were seen, all of which were imperfect."

[^27]: * Many of these species have been known for some time to exist in a living state, not only upon our sea-coast, but up to the limits of brackish water in many of our rivers.

[^28]: *This list includes only the species mentioned in Parts I and II of Bailey's American Bacillaria. Part III, including the Echinellæ, and various Spongiolites, Phytolitharia, and Dictyochæ, had not reached Ehrenberg when this list was made out.

[^29]: * The specimens alluded to were obtained by B. Silliman, Jr. and the late Rev. James H. Linsley.
 Vol. xivi, No. 2.-Jan.-March, 1844.

[^30]: *See this Journal, Vol. xli, p. 213 and p. 400.

[^31]: * The identity of some of the American Polythalamia with those of England, Africa, and Asia, was made known by us in this Journal, Vol. xLi, p. 400, and in the Proceedings of the American Association of Geologists and Naturalists, Vol. I, pp. 356-7.
 + Ehrenberg gives no figare of this species, but it undoubtedly is the same as that represented in outline in the annexed cut, which we have drawn from the species most abundant in our specimens of the Missouri chalk marl. Outlines of some of the other forms will be found in thie Journal, Vol. XLr, p. 400.

[^32]: * Various Phytolitharia are represented in this Journal, Vol. xlim, Pl. 5, figa. 17 to 35, and in Hitchcock's Report on the Geology of Massachusetts, Vol. II, PI. 20 , fig. 29.

[^33]: * Those who are not familiar with American geology should bear in mind that the cretaceous formation only exists as a narrow belt along the Atlantic slope, skirting the older formations which occupy the greater portion of the United Staten, and that it is chiefly in the far west that it has the gigantic development alluded to by Ehrenberg.

[^34]: * No infusorial or Polythalamian forms have yet been detected in our Silurian deposits, but they abound in the tertiary and cretaceous group, and we are indebted to Dr. David Dale Owen, of New Harmony, for well characterized Polythalamin from the oolitic portions of the carboniferous (Pentremite) limestone of Indiana.

[^35]: * Specimens may be sent addressed to J. W. Bailey, West Point, N. Y., care of Dr. J. R. Chilton, 263 Broadway, New York; or to B. Silliman, Jr., New Haven, Conn.
 Vol. 1.vi, No. 2,-Jan.-March, 1844.

[^36]: * Communicated to this Journal by the author, having been previously read before the Geological Society of London, and published in Vol. IV, No. 92, of their Proceedings.

[^37]: * From the Proceedings of the London Geological Society, Vol. IV, No. 92.

 4 Nos. 5 and 6 of Prof. Hitchcock's section.

[^38]: *From the Proceedings of the London Geological Suciety, Vol. IV, No. 92.

[^39]: * By such expressions as Res. (BA, BC), Diag. (BA, BC), I intend the resultant of $\mathbf{B A}$ and $\mathbf{B C}$, or the diagonal pertaining to $\mathbf{B A}, \mathbf{B C}$, as two sides of a parallelogram.

[^40]: * Since $\mathrm{JH}=\mathrm{FE}=\mathbf{A B}$, and HJI, JHI equal $\mathbf{A B C}, \mathbf{B A C} \therefore$ BH passes through I.

[^41]: * Communicated to this Journal by the author.

[^42]: * Treatise on Geology, II, 103.

[^43]: *Treatise on Geology, I, 108-111.
 \dagger It is qualified, however, by the admitted difference between the granitic and trappean rocks, the former being more prevalent at the earliest periods,-a difference which is ascribed to a "modification in the condition of things."

[^44]: * "Admitting this prevalence of granitic compounds at the earliest periods, their production at more recent epochs shows that the conditions necessary for their formation continued up to such epochs, though they may have been infinitely more rare, having in a great measure given place to those under which the more come mon trappean rocks were produced."-De la Beche, 475, Am. ed.

[^45]: * The arrangement of the work on the Natural History of New York, published under the authority and at the expense of the state, as the final report on the "Geological Survey," is as follows, viz.-

 Part I. Zoology of the State, by J. E. Dekay, 6 vols. 4to. Part II. Botany of the State, by J. Torrey, 2 vols. 4to. Part III. Mineralogy of the State, by L. C. Beck, 1 vol. 4to. Part IV. Geology-Part 1st, Geology of 1st District, by Wm. W. Mather, 1 vol. 4to; Part 2d, Geology of 2d District, by E. Emmons, 1 vol. 4to; Part 3d, Geology of 3d District, by L. Vanuxem, 1 vol. 4to; Part 4ih, Geology of 4th District, by J. Hall, 1 vol. 4to. Part V. Palæontology of the State, by J. Hall, 1 vol. 4to. Part VI. Agriculture of the State, by E. Emmons, 1 vol. 4to.

[^46]: * We may also add the method recently proposed by M. Schaffgoetsch, (Poggendorff, Ann. der Phys und Chem. 1842,) which is as follows. In a platina crucible holding about 18 grammes of water, are placed from 2 to 7 grammes of glass of

[^47]: borax, which is fused by a double current spirit lamp. When cold-it should be cooled under a desiccator, over sulphuric acid-it is weighed, and a weighed quantity of the carbonate placed in it; the whole is now again submitted to fusion. When again cooled as before, the loss of weight is carbonic acid. If the substance contains water, it is driven off at the same time with the carbonic acid, and of course its quantity must be estimated in the usual way.-B. S. Jr.
 "Vide Am. Jour. Vol. xxvir, p. 299.

[^48]: * The error here adverted to, must also arise in the use of Rose's apparatus, whenever, as Parnell directs, heat is applied to expel the carbonic acid remaining at the close of the action. For the air entering as the flask grows cool, must increase the normal weight by the amount of moisture it contains.

[^49]: * The water in the above analysis approaches so near 24 atoms, that this is probably the amount contained, in which respect it will then conform to the general formula for the alums, $\dot{\mathbf{R}} \ddot{\mathbf{S}}+\ddot{\mathbf{A}} \mid \ddot{S}^{3}+24 \dot{\mathbf{R}}$. The exact formula would be ($\dot{\mathbf{M} g}, \dot{\mathbf{M} n}, \dot{\mathbf{F}}$) $\dddot{S}+\dddot{A}_{1} \ddot{S}_{3}+24 \dot{\mathbf{H}}$, which, excepting the iron, is identical with that of an African alum analyzed by Stromeyer. (See Rammelsberg's Handwörterbuch, \&cc. Vol. 1, p. 10; also Dana's Mineralogy, 2d edition, 1844, p. 554.)-Eds.

[^50]: Vol. xlvi, No. 2.-Jan.-March, 1844.

[^51]: * "Among the species that have disappeared, the following are the most important : Comptonite, united with Thomsonite; Biotine, with Anorthite; Elæolite, Davyne, Cancrinite, and Gieseckite, with Nepheline; Mellilite, with Humboldtilite; Junkerite, with common Spathic Iron; Levyne, Gmelinite, and Phacolite, with Chabazite; and Gismondine, including Aricite and Zeagonite, with Phillips-ite."-Preface.
 † The celebrated works of Von Kobell and Rammelsberg, and the new edition of Mohs's System, have also been published since 1837.

[^52]: *Mr. Dana's article on the formation of crystals, may be found at length in this Journal, Vol. xxx, p. 275.

 Vol. xivi, No. 2.-Jan.-March, 1844.

[^53]: *Rose, Lond. and Ed. Phil. Mag. 3d ser. XII, 465.
 \dagger Lond. and Ed. Phil. Mag. 3d ser. XII, 330; 1841.
 \$ Pogg. LII, 506; 1840.

[^54]: * If the iron in these analyses was protoxyd, why should the sum of the alumina and iron be equal ? (35.91 and 35.84 , diff. 07.) We would sugget a query if it is not peroxide.-B. ©., Jr.

[^55]: * Chester, Ct. is quoted in Thomson and other foreign authors as Saybrook, Ct.
 † Arsberte Kemi och Min. (Swedish edition,) 1843, p. 202.

[^56]: * The Kyanite from Chesterfield in Massachusetts, has been recently analyzed by one of my pupils, (Mr.C.H. Rockwell of Norwich.) The specimen was finely crystallized, transparent, and azure colored: it yielded

 | Silica, | - | - | - | - | \ddots | 4274 |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | Alumina, | - | - | - | - | - | 57.90 |
 | Iron, | - | - | - | - | - | |
 | | | | | | | |

 This analysis adde farther confirmation to the views expressed in the text.B. 8., Jr.

[^57]: "In making out this catalogue, the names of those minerals which are obtained in good specimens at the several localities, are distinguished by italics. When the specimens are remarkably good, an exclamation mark (!) has been added, or two of these marks (!!) when the specimens are quite unique. If a locality that has afforded peculiarly fine specimens is now exhausted, the exclamation mark has been inverted (i). The more exact position of localities may in most instances be ascertained by reference to the description of the species in the preceding part of the treatise."

 Chemical Classification, Part VII.-We have already extracted (p. 374) the author's views, in which the strictly chemical character of the arrangement adopted in the Treatise is explained. The following additional remarks are cited from the introduction to a second classification by the author, corresponding more nearly with other chemical arrangements. Speaking of the natural system, he says:
 "It takes into view, it is true, the external characters; but as these depend upon the chemical constitution, and proceed from it, they are indications of the composition, and unless followed too implicitly and without a general survey of the whole subject, will not lead to imporVol. xuvi, No. 2.-Jan.-March, 1844.

[^58]: * Particularly from Rammelsberg's Handwörterbuch der Chemischen Theils der Mineralogie; 2 vols. 8vo. pp. 442 and 326 : Berlin, 1841 :-And, Erstes Supplement, (first supplement to the same,) 8 vo. pp. 156 : Berlin, 1843. This supple ment is to be continued biennially.

[^59]: * Condensed from the Report in the London Athenæum.

[^60]: * Erroneously stated in the secretary's circular of invitation to be the 10th.

[^61]: * Page 160 is meant.
 \dagger In reference to these variations, I will cite from my article in Bost. Journ. Vol. IV, p. 155, the following sentence. "At a future day I may be enabled (abandoning the indefinite specifications whose occurrence I am well aware is too frequent in these remarks, but which under the circumstances are unavoidable,) systematically to arrange my observations, and give the details with the minuteness and precision demanded by the importance of the subject."
 \ddagger I perccive that by an oversight in the text, I have said, "from the same work and at the same time were derived all the local temperatures of the Pacific, specified in my article." It should have read, "all the local temperatures of places not visited by me in the Pacific, or not visited at the seasons specified in $m y$ article," as implied by the reference to p. 160 Bost. Journal, in foot-note, p. 382 last volume of this.

[^62]: * Boston Journal, Vol. IV.

[^63]: * See Mr. C.'s reply, p. 379, Vol. xlv, of this Journal.
 + See this Journal, Vol. xLv, p. 380.

[^64]: ${ }^{*}$ See pp. 387, 388, Vol. xlv of this Journal ; page 3 of the appendix.

