BULLETIN

OF THE

TORREY BOTANICAL CLUB t

VOL. 51

Founded by William Henry Leggett $187{ }^{\circ}$

EDITORS
HERBERT McKENZIE DENSLOW TRACY ELLIOT HAZE

ASSOCIATE EDITORS

Albert Francis Blakeslee Alexander William Evans Henry Allan Gleason Alfred Gundersen

George Tracy Hastings
Marshall Avery Howe
Michael Levine
Allow Burdette Stout

NEW YORK
1924-25
Published for the Club The Intelligencer Printing Con

Lancaster, Pennsylvania

CONTENTS

Britton, Nathaniel Lord. Studies of West Indian plants-XII I
Rydberg, Per Axel. Notes on Fabaceae-III 13
Johnson, Alice Marie. The mid-styled form of Piaropus paniculatus. 25
Rice, Mabel Agnes. Internal sori of Puccinia Sorghi 37
Arthur, Joseph Charles. New species of Uredineae-XV 51
Berry, Edward Wilber. Fossil fruits from the Eastern Andes of Colombia 61
Blake, Sidney Fay. New Polygalas from Colombia 83
Smith, Charles Piper. Studies in the genus Lupinus-X 91
Schaffner, John Henry. Expression of the sexual state in Sagittaria latifolia 103
Harris, James Arthur. The tissue fluids of Cuscuta 127
Howe, Marshall Avery. Chinese marine algae (plates i, 2) 133
Rydberg, Per Axel. The section Tuberarium of the genus Solanum in Mexico and Central America 145
Rydberg, Per Axel. The section Tuberarium of the genus Solanum in Mexico and Central America: concluding paper 167
Ferguson, William Cashman. Contributions to the flora of Long Island 177
Plitt, Charles Christian, and Pessin, Louis Jerome. A Study on the effect of evaporation and light on the distribution of lichens 203
Dixon, Hugh Neville. New species of mosses from the Malay Penin- sula (plates 3, 4). 225
Goldstein, Bessie. Cytological study of living cells of tobacco plants affected with mosaic disease (plate 5) 261
Shreve, Forrest. Across the Sonoran Desert 283
Munz, Philip Alexander, and Johnston, Ivan Murray. Miscel- laneous notes on plants of Southern California 295
Smith, Charles Piper. Studies in the genus Lupinus-XI. Some new names and combinations 303
Bartram, Edward Bunting. Studies in Tortula as represented in Southern Arizona (plates 6, 7) 335
Seifriz, William Ernest. The gregarious flowering of the talipot palm, Corypha umbraculifera, at Peradeniya, Ceylon (plates 8, 9) 341
Howe, Marshall Avery. Notes on algae of Bermuda and the Bahamas 351
Rydberg, Per Axel. Some senecioid genera-I 369
Small, John Kunkel. Plant novelties from Florida 379
Rydberg, Per Axel. Some senecioid genera-II 409
Blake, Sidney Fay. New South American Verbesinas 421
Gleason, Henry Allan. Studies on the flora of northern South America-I 443
Levine, Michael. Crown gall on Bryophyllum calycinum (plate io) 449
Karling, John Sidney. A preliminary account of the influence of light and temperature on growth and reproduction in Chara fragilis (plates 11-13) 469

Dates of Publication

No. 1, for January
No. 2, for February
No. 3, for March
No. 4, for April
No. 5, for May
No. 6, for June
No. 7 , for July
No. 8, for August
No. 9, for September
No. io, for October
No. 11, for November
No. 12, for December

Pages	1-36	Issued February		$8,1924$.
"	$37-82$	"	March	12, 1924.
"	$83-126$	"	April	$22,1924$.
"	$127-166$	"	May	$17,1924$.
"	$167-224$	"	June	$13,1924$.
"	$225-282$	"	July	$12,1924$.
"	$283-334$	"	July	$24,1924$.
"	$335-368$	"	August	$22,1924$.
"	$369-408$	"	September 18, 1924.	
"	$409-442$	"	October	$24,1924$.
"	$443-468$	"	November $28,1924$.	
"	$469-512$	"	January	$17,1925$.

Nos. 1-9 edited by H. M. Denslow, nos. 10-12 by T. E. Hazen.

Errata

Volume 50 (October, 1923)
Page 328, line 3 and line 6, for "figure 8" read "Fig. 9."

Volume 51

Page 9, line 1 , for "tubucina" read "tubicina."
Page 15, line 12, for "Heffner" read "Heppner."
Page 18, lines 21 and 22, for "alvordiensis" read "alvordensis."
Page 22, line 13, for "Wallovoa" read "Wallowa."
Page 37, center, for "Aveua" read "Avena."
Page 48 , line 22, for "hyphal" read "hyphae."
Page 174, line 5 from bottom, for "S. appendiculata" read "S. appendiculatum."
Page 178 , line 7 from bottom, for "conferred" read "confirmed."
Page 182, lines 8, 12, 21, for "Sporobolis" read "Sporobolus."
Page 182, line 8 from bottom, for " P. dichotum" read " P. dichotomum."
Page 183, line 3 from bottom, for "novae-anglae" read "novae-angliae."
Page 189, line 15, for "Ulmus americanus" read "Ulmus americana."
Page 191, line 4, for "Pleuropteris sachalinense" read "Pleuropterus sachalinensis."
Page 191, line 6, for "Pleuropteris Zuccarini" read "Pleuropterus Zuccarinii."
Page 194, line 8 from bottom, for "Lechia" read "Lechea."
Page 229, lines 4 and 6 from bottom, for "S. bornense" read " S. bornensis."
Page 261, line 3, and p. 272, line 26, for "sculeatissimum" read "aculeatissimum."
Page 371, line 7, for "Liaburn" read "Liabum."
Page 396, line 22, for "Polygales" read "Polygalas."
Page 396, line 25, for "cespedezas" read "Lespedezas."
Page 413, line 14 from bottom, for "cervariaefolium" read "cetvariaefolius."

BULLETIN

OF THE

TORREY BOTANICAL CLUB

JANUARY, 1924

Studies of West Indian plants-XII
 Nathaniel Lord Britten
 68. UNDESCRIBED SPECIES FROM CUBA

Cyperus naguensis Britten, sp. nov.
Culms short, about 8 dm . high, trigonous, smooth. Basal leaves rough-margined, strongly veined, $5-8 \mathrm{~mm}$. wide, shorter than the culm, the apex attenuate, those of the involucre several, similar to the basal ones but shorter; umbel 8-Io-rayed, the rays slender, the longer ones $6-10 \mathrm{~cm}$. long; spikelets strawcolored, compressed, about 8 -flowered, deciduous, $10-12 \mathrm{~mm}$. long, very numerous in dense oval or subglobose, simple or compound spikes $2-3 \mathrm{~cm}$. long; scales oblong-lanceolate, acute, striate, slightly spreading, 3 mm . long; achene linear, 1.5 m . long, about 3 times as long as thick, sharply pointed, narrowed at base.

Moist place between San Felipe and Nagua, Oriente (Elkman 14720). Similar to C. stenolepis Torr., but with shorter scales and achenes.

Reynosia camagueyensis Britton, sp. nov.

Twigs slender, leafy. Leaves oblong-obovate, coriaceous, entire, $12-17 \mathrm{~mm}$. long, glabrous, very finely reticulate-veined, the midvein impressed above and prominent beneath, the base narrowed but obtuse, the apex obtuse, rounded or emarginate, tipped with a nearly straight awn about 0.7 mm . long, the petoles about 1 mm . long; fruit globose, rounded, $12-14 \mathrm{~mm}$. in diameter, its peduncle about 5 mm . long.

Hills, Camaguey (Padre Borrás, 1918). Resembles R. latifolia Griseb., which has strongly reticulate leaves and clipsolid pointed fruits.
[The Bulletin for December (50: 373-414.) was issued Jan. 24, 1924.]

Peperomia Leoclemerocana Trelease, sp. nov.
A rather large assurgent glabrous herb; stem succulent and rather thick ($5^{-8} \mathrm{~mm}$.) ; leaves alternate, broadly elliptic-obovate, somewhat blunt-acuminate and often emarginulate, cuneate, rather large ($2 \times 5-4 \times 6.5 \mathrm{~cm}$.), drying rather coriaceous and dull, pinnately veined from about the middle, the principal ascending branches of the midrib 3 or 4×2; petiole scarcely 1 cm . long, winged; spikes terminal, paired or toward the end of a bracted stalk about 6 cm . long, $2 \times 70-\mathrm{I} 30 \mathrm{~mm}$.; peduncle about 2 cm . long; bracts round-peltate, about .5 mm . in diameter and 10 to the pseudo-whorl; berries separated by somewhat evident ridges, ellipsoid, somewhat glandular, with stout curved beak; stigma anterior.

Cobre range, Sierra Maestra, Oriente (Leon, Clement \& Roca 10436-the type at the New York Botanical Garden).

Clidemia Clementiana Britton, sp nov.
A shrub about 3 m . high, the very slender twigs, the petioles and the under leaf-surfaces puberulent. Leaves narrowly lanceolate, i-nerved, chartaceous, entire, short-petioled, $2-6 \mathrm{~cm}$. long, glabrous above, the apex acuminate, the base narrowed, the lateral venation faint, spreading; inflorescence 1 - 3 -flowered; pedicels filiform, puberulent, $1-2 \mathrm{~cm}$. long; calyx-lobes 4 , linear, $2-3 \mathrm{~mm}$. long; fruit 4 -lobed, about 5 mm . in diameter.

Sierra Maestra, Oriente. Type from Loma del Gato, (Leon, Clement and Roca 9830).

Rondeletia Ekmanii Britton \& Standley, sp. nov.

Branchlets brown, puberulent or scaberulous, finally glabrate; stipules deltoid-cuspidate, $2-3 \mathrm{~mm}$. long, erect, persistent; petioles $2-3 \mathrm{~mm}$. long, glabrous or obscurely puberulent; leaf blades broadly elliptic to elliptic-oval, $2-4 \mathrm{~cm}$. long, $1.2-2.5 \mathrm{~cm}$. wide, rounded or very obtuse at apex, rounded at base, coriaceous, dark green above, glabrous, lustrous, with prominulous-reticulate venation, paler beneath and brownish, glabrous, the costa salient, the lateral nerves few, distant, not conspicuous; inflorescence terminating the main branches and on short leafy lateral twigs, few-flowered, open, the flowers slender-pedicellate; rachis of the inflorescence scaberulous, the pedicels $4-5 \mathrm{~mm}$. long; hypanthium globose, densely white-scaberulous; calyx-lobes linear-subulate, scarcely over 1 mm . long, subobtuse, brownish, scaberulous; corolla-tube 6 mm . long, dilated above, strigillosescaberulous with white hairs, the 5 lobes broadly obovate, rounded at apex, tomentulose on the inner surface.

Type in the U.S. National Herbarium, No. I, i45,29I, collected on banks of the Yara River, Oriente, August 14, 1922 (E. L. Ekman 14852).

Related to R. calophylla Standley,* but evidently distinct in the small and narrow calyx-lobes.

The type of R. calophylla was collected in the Sierra Maestra in July, 1922, by Brother Leon. Dr. Ekman also obtained it in August, 1922, at Arroyo Corojo, Nagua, Oriente (No. 14729).

69. AN UNDESCRIBED SPECIES FROM HISPANIOLA

Kallstroemia incana Rydberg, sp. nov.

Kallstroemia caribaea Urban, Symb. Ant. 8: 319. 1920. Not K. caribaea Rydberg, 1910.

A diffusely branched herb, somewhat woody at the base; stems spreading, 2-3 dm. long, with coarser spreading and finer more appressed hairs, terete; stipules linear-oblong, $2-3 \mathrm{~mm}$. long, tardily deciduous; leaves $\mathbf{I}-\mathbf{I} .5 \mathrm{~cm}$. long; petioles $\mathbf{2}-3 \mathrm{~mm}$. long; leaflets mostly 3 pairs, obliquely ovate, $3-5 \mathrm{~mm}$. long, hoary on both sides, acutish; peduncles $2-3 \mathrm{~mm}$. long; sepals lance-linear, acute, 3 mm . long; petals elliptic-obovate, light yellow, 3 mm . long; fruit grayish-strigose, about 5 mm . broad, the beak 2 mm . long, conic at the base; carpels cross-ridged on the back and reticulate on the faces.

Type collected at Barahona, Santo Domingo, July 1920, Fuertes 418 (herbarium of the New York Botanical Garden); also collected at Rincon, October 191 1, Fuertes 1352.

The two numbers cited were determined by Urban as K. caribaea and included under that name in his Flora Domingensis, but it differs in the hoary pubescence, the small leaflets, the small petals, scarcely half as long as in K. caribaea, the short peduncles and short beak on the small fruit. It approaches more K. curta Rydberg, from Curaçao, with which it has the followingcharacters in common: small leaflets, short peduncles, small petals and fruit, and short beak; but it is more canescent, more branched, with shorterinternodes and smaller leaves, and the beak different, not at all swollen.

[^0]
70. UNDESCRIBED SPECIES FROM TRINIDAD

Anthurium aripoense N. E. Brown, sp. nov.
Glabrous in all parts. Petioles about 75 cm . long and (when dried) 4 mm . thick, sheathing for about 7 cm . at their base, apparently more or less flattened above with obtuse edges; rounded on the back; blades about 34 cm . long, 26 cm . broad across the basal lobes and $181 / 2 \mathrm{~cm}$. broad at the constriction, cordate, with the basal lobes slightly constricted into the front lobe at about 11 cm . above the insertion of the petiole; basal sinus about 4 cm . deep, broadly open, rounded; basal lobes semiorbicular; front lobe ovate, abruptly acute, apiculate; both surfaces green; basal nerves 4 on each side of the midrib, the 3 outer united and denuded at the sinus for about 25 mm ., much curved and all excurrent at the margin below the middle of the leaf; the inner one free, ascending and excurrent at the apex, running subparallel with the margin at about $12-15 \mathrm{~mm}$. from it; primary lateral veins about 7 on each side of the midrib, with others similar but less prominent between them, widely spreading, subparallel, nearly straight. Peduncle about 57 cm . long, 4 mm . thick (dried), apparently terete. Spathe 11 cm . long, 12 mm . broad, strap-shaped or broadly linear, with a subulate point about 25 mm . long. Spadix 15 cm . long, 5 mm . thick at the base, much longer than the spathe, on a stipe 5 mm . long, apparently violaceous or dark purple. Flowers diamond-shaped, 4 mm . in their longer and 3 mm . in their shorter diameter.

Heights of Aripo, (Broadway 9924).

The venation of the leaf of this species is on the same plan as that of A. Guildingii Schott, but in outline the slight constriction above the basal lobes brings it nearer to A. panduraeforme Schott.

Piper maravalanum Trelease, sp. nov.

Stem nodose, glabrous; leaves ovate or elliptic-ovate, acuminate, equilaterally rounded at base, rather large $(6-9 \times 15-17$ cm .), pinnately nerved from below the middle, the nerves about 5×2 and sparingly pubescent beneath; petiole rather short (scarcely 10 mm .), not winged; spikes opposite the leaves, as yet comparatively short and thick ($2 \times 15 \mathrm{~mm}$.), mucronate; peduncle very short (scarce 5 mm .); bracts lunulate-subpeltate, rusty-ciliate; flowers sessile, perfect; stigmas 3, minute, sessile.

Maraval, December 30, 1914, (Broadway 7829 , the TYPE in the New York Botanical Garden).

Scarcely to be placed anywhere except in close connection with P. Schackii and P. ovatum; but pubescent beneath on the veins.

Piper aripoense Trelease, sp. nov.
A shrub, I m. tall; flowering internodes moderately slender and short, zig-zag, hirsute; leaves elliptic or oblanceolate-elliptic, acuminate, more or less unequally cordulate, moderately large ($5 \times 14-9 \times 20 \mathrm{~cm}$.), pinnately nerved from below the upper fourth, the nerves about 9×2, paler and appressed-hirsute on the nerves beneath; petiole short (scant 5-exceptionally 10 mm .), sometimes covered by the longer side of the base, hairy, winged to the blade; spikes opposite the leaves, rather thick and short ($4 \times 25 \mathrm{~mm}$.), blunt; peduncle short (5 mm .), hirsute; bracts concave-incurved, glabrous; flowers sessile, perfect; stigmas 3, sessile; berries subglobose, glabrous.

Heights of Aripo (Britton and Freeman 2353, the type at the New York Botanical Garden).

Prestonia Brittoni N. E. Brown, sp. nov.

Stem twining, 3 mm . thick at the flowering parts, glabrous. Leaves opposite, stipulate; petioles in the specimen seen 15 mm . long, glabrous; blade about 16 cm . long and $71 / 2 \mathrm{~cm}$. broad, oblong-elliptic, shortly acute and apiculate at the apex, rounded at the base, glabrous on both sides, with 8-9 primary veins on each side of the midrib inarching and uniting 5 mm . from the margin; stipules formed of a number of small teeth 1 mm . long between the bases of the petioles. Cymes axillary pedunculate, $6-8 \mathrm{~cm}$. in diameter, quite glabrous in all parts; peduncle 3-4 cm . long, nearly 2 mm . thick. Pedicels $\mathrm{I}_{5}-25 \mathrm{~mm}$. long. Sepals 10 mm . long and $4-5 \mathrm{~mm}$. broad, oblong, obtuse, rather thick; at the base of each sepal, between it and the corolla is a broadly deltoid-ovate obtuse gland about 1 mm . long. Corolla only seen in bud and in that condition the tube is 12 mm . long and 3 mm . in diameter, cylindric, not dilated at any part, surmounted by a truncate-based acute cone 5 mm . long and $61 / 2 \mathrm{~mm}$. in diameter formed by the contorted lobes; mouth of the tube raised within into a distinct rim about 1 mm . high, without processes or other appendages; lobes as unfolded from the bud 5 mm . long and 6 mm . broad, suborbicular, entire. Stamens inserted 5 mm . below the top of the corolla-tube; filaments 1 mm . long; anthers 5 mm . long, not or scarcely exserted. Ovary surrounded by 5 large faintly crenulate or faintly toothed fleshy lobes.

Heights of Aripo (Broadway 10009).

Decastelma trinitense N. E. Brown, sp. nov.

Stem twining, up to 2 mm . thick at the flowering part, with internodes $2-3 \mathrm{~cm}$. long, minutely puberulous, brown. Leaves spreading; petiole $4^{-6} \mathrm{~mm}$. long, minutely puberulous; blade

2-6 cm. long, $15-30 \mathrm{~mm}$. broad, ovate or oblong-lanceolate, acuminate, rounded at the base, glabrous on both sides to the eye, but with a microscopic scattered pubescence above, where the midrib is also minutely puberulous; primary veins 3^{-5} on each side of the midrib, distant, inarching and uniting into a submarginal vein $2-3 \mathrm{~mm}$. from the margin, not prominent on either surface. Flowers in small sessile umbellate clusters at the nodes of leafless branches. Bracts very minute. Pedicels $2-21 / 2 \mathrm{~mm}$. long, and together with the flowering branches minutely puberulous. Calyx 5 -lobed to the base; lobes about $2 / 3 \mathrm{~mm}$. long, ovate, obtuse, thinly and very minutely puberulous. Corolla about 3 mm . in diameter; tube about 0.75 mm . long, glabrous; lobes spreading, about 1 mm . long, ovate, subacute, minutely and densely puberulous within; each sinus with a thickening or slight gibbosity, which seems nearly or quite to touch the staminal column so as to form 5 small pocket-like entrances to the tube at the base of the lobes. Staminal column subsessile, about 0.75 mm . long, somewhat conical, truncate at the apex. Corona of 5 lobes arising from the staminal column at the base of the anthers, minute, about $1 / 4 \mathrm{~mm}$. long, pressed close against the back of the anthers and shorter than the latter, ovate, obtuse; they seem to be connected at the base by a minute tooth under the antherwings, but in the dried flowers this is difficult to determine.

Trinidad (Dannouse 6419, TYPE). Collected in 1898.
The genus Decastelma is very like Metastelma in appearance, but differs by having the staminal column subsessile instead of with a long stipe, and by the corona arising from the staminal column at the base of the anthers instead of at the mouth of the corolla-tube. But the description of the corona of Decastelma as given by Schlechter is entirely wrong, unless the flowers on different specimens vary very much. For in the type of the genus, D. Broadwayi Schltr. (Broadway 474), the flowers that I have examined have a corona consisting of 5 lobes only, which are shorter than the staminal column and pressed close to it; they are broader than long and somewhat truncate at the threetoothed top, the middle tooth being minute.

Probably some species from South America, now placed under the genus Metastelma, really belong to Decastelma.

71. A NEW GENUS OF MELASTOMACEAE FROM TRINIDAD

NECRAMIUM Britton, gen. nov.
An erect shrub with long branches. Leaves opposite, large, membranous, short-petioled, with a strong midrib and three
pairs of veins, the first pair from near the base, the second pair from a short distance above, the third pair from below the middle, the transverse venation widely spreading. Inflorescence of sessile panicles borne on the branches much below the leaves, the panicle-branches filiform; flowers 2 or 3 together, sessile, subtended by subfoliaceous bractlets; calyx subcampanulate with 4 subulate teeth.

Necramium gigantophyllum Britton, sp. nov.

Stems slender, simple or few-branched, quadrangular, 2 m . high or higher, densely scurfy-puberulent above. Leaves oblong to oblong-oblanceolate, $2-4 \mathrm{dm}$. long, 12 cm . wide or less, entire, green on both sides, but paler beneath than above, glabrous above, scurfy-puberulent on the veins beneath, the apex acuminate, the base narrowed, the stout scurfy petioles $1-2 \mathrm{~cm}$. long; panicles densely pubescent, several-flowered, about 4 cm . long; bractlets oblong-lanceolate, concave, acute, pubescent, 3 mm . long; calyx-tube 2 mm . long, its teeth 1 mm . long; petals and stamens unknown.

Forests at high altitudes, northern mountain range; TYPE from Heights of Aripo (Trinidad Herbarium 9798, collected by Broadway, January 10-26, 1922); Mount Tocuche (Britton, Hazen \& Mendelson 1334), April 3-5, 1920.

72. THE GENUS DORSTENIA IN THE WEST INDIES

Leaves large, deeply lobed or undulate; receptacle quadrate.
Leaves small, dentate, crenate or entire; receptacle suborbicular, discoid or cyathiform.
Leaves not peltate.
Leaves orbicular, deeply cordate.
Leaves crenate; receptacle cyathiform.
Leaves entire or obsoletely repand.
Receptacle pubescent, discoid.
Receptacle puberulent, about as long as broad
Leaves ovate to oblong or elliptic.
Leaves ovate, deeply cordate.
Leaves oblong to elliptic, cordate or subcordate, crenulate.
Leaves peltate.
Leaves ovate-oblong, peltate very near the base
Leaves ovate to orbicular, peltate at the middle or somewhat below.
Leaves orbicular, pubescent on both sides.
Leaves suborbicular to ovate, more or less longer than broad.
I. D. Contrajerva.
2. D. crenulata.
3. D. tuberosa.
4. D. Rocana.
5. D. cordifolia.
6. D. tubicina.
7. D. petraea.
8. D. peltata.

> Glabrous throughout; leaves rounded at both ends or the apex very obtuse.
> 9. D. crassipes.
> Pubescent or puberulent; leaves acute or bluntly pointed.
> Leaves suborbicular, very bluntly pointed.
> 10. D. erythrandra. Leaves ovate.
> Peduncles and petioles puberulent; leaves $6-8 \mathrm{~cm}$. long.
> 11. D. Roigii.
> Peduncles and petioles tomentulose or pubescent; leaves $3-5 \mathrm{~cm}$. long.
> Receptacle tomentulose, ciliate; peduncle about as long as the petioles.
> Receptacle puberulent; peduncle much shorter than the petioles.
> 12. D. confusa.
> 13. D. jamaicensis.

$$
\text { i. Dorstenia Contrayerva L. Sp. Pl. 121. } 1753
$$

Porto Rico;St. Martin;Guadeloupe; Martinique;St. Vincent; Trinidad; Mexico to Colombia and Peru.
2. Dorstenia crenulata C. Wright; Griseb. Mem. Ann. Acad.

$$
\text { II. 8: } 173 . \quad 1860
$$

Banks of rivulets, Monte Verde, Cuba, (Wright 1447).
3. Dorstenia tuberosa C. Wright; Griseb. Mem. Ann. Acad. 11.8:173. 1860

Mountains of northern Oriente, Cuba.

4. Dorstenia Rocana Britton, sp. nov.

Rootstock short. Petioles very slender, tomentulose, 5 cm . long or less; leaf-blades orbicular, membranous, deeply cordate, rounded, entire, or some of them obscurely repand, puberulent on the veins beneath, otherwise glabrate, $10-23 \mathrm{~mm}$. in diameter; peduncle filiform, puberulent, about as long as the petioles; receptacle cyathiform, about 5 mm . long and 4 mm . in diameter, puberulent, narrowed below, purple-margined above.

Shaded rocks on banks of Cupeyales, Banao Mountains, Santa Clara, Cuba (Brother Leon \&o Father Roca, 8og2, August 5 , 1918).

5. Dorstenia cordifolia Sw. Prodr. 31. 1788

Central and western Jamaica. Recorded from Haiti.
6. Dorstenia tubecina R. \& P. F1. Per. 1:65

Arima Savanna, Trinidad, collected by Purdie, according to Grisebach.
7. Dorstenia petraea Griseb. Cat. Pl. Cub. 58. 1866

Mountains of southern Oriente, Cuba.
8. Dorstenia peltata Spreng. Neue Entd. 3:22. 1822

Santo Domingo, near Samana Bay.
9. Dorstenia crassipes C. Wright; Griseb. Cat. PI. Cub.

$$
\text { 58. } 1866
$$

Near La Catalina, Oriente, Cuba (Wright 2224).
10. Dorstenia erythrandra C. Wright ; Griseb. Cat. Pl. Cub. 58. 1866

Rocks by the sea, Baracoa, Oriente, Cuba (Wright 2225).

11. Dorstenia Roigii Britton, sp. nov.

Rootstock stout, $8-10 \mathrm{~cm}$. long, $5^{-6} \mathrm{~mm}$. thick. Petioles rather stout, densely puberulent, 15 cm . long or less; leaf-blades ovate, peltate below the middle, chartaceous when dry, coarsely undulate-dentate all around, strongly veined, $6-8 \mathrm{~cm}$. long, dark green and scabrous above, paler and densely puberulent beneath, the apex obtuse or acute, the base rounded; peduncle puberulent, $5^{-7} \mathrm{~cm}$. long; receptacle orbicular, nearly flat, peltate, about 10 mm . in diameter.

On rocks at the foot of Mogote de la Jagua, Consolacion del Norte, Pinar del Rio, Cuba, June 17, 1923 (Roig 2547).

12. Dorstenia confusa Britton, sp. nov.

Rootstock slender, tuberiferous. Petioles slender, tomentulose, $4^{-6} \mathrm{~cm}$. long; leaf-blades broadly ovate, membranous, $2.5-3 \mathrm{~cm}$. long, peltate somewhat below the middle, finely pubescent beneath, especially on the veins, repand-crenate, the apex blunt, the base rounded; peduncle tomentulose, about 4 cm . long; receptacle orbicular, nearly discoid, 6 mm . in diameter, tomentulose, ciliate.

Monte Verde, Oriente, Cuba (Wright 2226, in Gray Herbarium).
13. Dorstenia Jamaicensis Britton, Bull. Torrey Club 35:

$$
567 . \quad 1908
$$

Limestone cliffs, Manchester, Jamaica.

73. UNDESCRIBED SPECIES FROM PORTO RICO

Maytenus ponceana Britton, sp. nov.

A tree about 12 m . high, with slender, somewhat tortuous, glabrous twigs. Leaves oblong, or oblong-obovate, coriaceous, 9 cm . long or less, indistinctly few-veined with the midrib rather prominent on both sides, shining above, dull beneath, the apex bluntly short-acuminate or obtuse, the base subcuneate, the rather slender petioles $6-8 \mathrm{~mm}$. long; fruiting pedicels $3-5 \mathrm{~mm}$. long, solitary or 2 together in the axils; fruit globose, whitish, $6-8 \mathrm{~mm}$. in diameter.

Hillside, Rio Portugues, north of Ponce (Britton 7818). In fruit Feb. 12, 1923.

Eugenia Underwoodii Britton, sp. nov.
A shrub, 2.5-3 m. high, much branched, the very slender gray terete twigs puberulent when young, the inflorescence pubescent. Leaves elliptic or elliptic-lanceolate, chartaceous, $2-5 \mathrm{~cm}$. long, slightly paler green beneath than above, somewhat shining, delicately veined and scarcely reticulated, rather coarsely punctate, flat, the apex acuminate, the base narrowed, the puberulent petioles $1.5-2.5 \mathrm{~mm}$. long; flowers in small shortpeduncled racemes near the ends of the twigs; pedicels $2-3 \mathrm{~mm}$. long; bracts about 1 mm . long; calyx-tube campanulate, glabrate, about 1.5 mm . long, the lobes a little shorter, puberulent, ciliate, obtuse; petals nearly 2 mm . long; fruit unknown.

Collected at Yauco. (L. M. Underwood \& R. F. Griggs, 639.)

Eugenia boqueronensis Britton, sp. nov.

A tree about 8 m . high, the slender short twigs gray, densely tomentose when young. Leaves ovate or elliptic-ovate, coriaceous, $2-3.5 \mathrm{~cm}$. long, shining, nearly equally green on both sides, coarsely blackish-punctate, finely pinnately veined and scarcely reticulated, pubescent on the midvein beneath when young, glabrous or very nearly so when mature, the apex abruptly and bluntly acuminate, the base narrowed, the stout pubescent petioles $2-3 \mathrm{~mm}$. long; racemes few-flowered, about 1 cm . long, borne in the uppermost axils, densely tomentose; pedicels about 3 mm . long; bracts oblong, shorter than the pedicels; calyx-lobes broad, rounded or obtuse, about 1.5 mm . long; petals rounded, not longer than the calyx-lobes; fruit unknown.

Base of limestone hill, Salinas de Boqueron, (Britton, Cowell \& Brown, 4627).

Eugenia Stewardsonii Britton, sp. nov.
A tree, 5-10 m. high, glabrous throughout, the slender twigs gray. Leaves ovate, subchartaceous, very nearly sessile, 4-6 cm . long, bright green and shining on both sides, the venation rather prominent, coarsely reticulated, the apex obtuse or rounded, the base rounded or subcordate, the stout petioles about I mm. long; flowers sessile, in lateral clusters below the leaves; larger calyx-lobes obtuse, about 2 mm . long; fruit subglobose or depressed-globose, $5^{-7} \mathrm{~mm}$. in diameter.

Mountain forests and summits. Central Cordillera of Porto Rico. Type from the summit of Monte Torrecillo (Britton, Cowell \& Stewardson Brown, 5603). Included by Urban in Eugenia cordata (Sw.) DC.

Eugenia (?) corozalensis Britton, sp. nov.
A. tree about 6 m . high, the rather slender subterete glabrous forking twigs slightly enlarged below the internodes. Leaves oval-orbicular, chartaceous, glabrous, sessile, 4-7 cm. long, green on both sides, densely punctate, the apex rounded, the base cordate, the venation slender, loosely reticulated; flowers and fruit unknown.

Limestone hill, Corozal (Britton 7832).
Eugenia (?) xerophytica Britton, sp. nov.
A shrub, or a small tree up to about 4 m . high, much branched, the slender terete twigs and the leaves glabrous. Leaves suborbicular or some of them a little broader than long, coriaceous, glabrous, shining above, yellow-green and reticulate-veined on both sides, $1.5^{-5} \mathrm{~cm}$. long, the apex obtuse, rounded or shorttipped, the base subcordate or rounded, the stout petioles 2-4 mm . long; flowers and fruit unknown.

Limestone rocks, Cayo Muertos, Porto Rico, (Britton, Cowell \& Brown, 4982, TYPE) ; limestone hill, El Tuque, west of Ponce (Britton 7915).

Calyptranthes portoricensis Britton, sp. nov.
A tree or shrub, the twigs and inflorescence densely brownpubescent. Leaves elliptic or ovate-elliptic, coriaceous, glabrous above, pubescent beneath when young, $3-7 \mathrm{~cm}$. long, very obscurely punctate, the apex rounded or acutish, the base obtuse, the midvein prominent beneath, the lateral venation obscure;
peduncles rather stout, 7 cm . long or shorter; panicles severalflowered, the flowers subglomerate, nearly sessile; calyx densely brown-pubescent, about 2 mm . long, obovoid, rounded; fruit finely pubescent, globose, about 5 mm . in diameter.

Vicinity of Maricao. Type from Monte Alegrillo (Stevens 47I8).

Notes on Fabaceae-III

Per Axel Rydberg

I. HOMALOBUS (cont.)

F. Collini

Pod not with prominent coriaceous sutures.
Pod straight or nearly so.
Body of the pod $2-2.5 \mathrm{~cm}$. long, not mottled, shortvillous.
Body of the pod $2.5^{-3} \mathrm{~cm}$. long, usually mottled, strigose.
Pod distinctly curved.
Pod curved in less than a circle.
Pod erect; leaflets linear.
Pod pendulous.
Body of the pod $\mathbf{x}-\mathbf{1} .5 \mathrm{~cm}$. long; leaflets oblong.
Body of the pod $2-3 \mathrm{~cm}$. long; leaflets obovate or obcordate.
Stem and leaves decidedly pubescent.
Stem and leaves long-villous, body of pod curved usually in less than a semicircle.
Pod about 4 mm . wide.
Pod about 6 mm . wide.
Stem and leaves short-hairy with incurved hairs.
Body of the fruit 6-7 mm. wide, curved about one-third of a circle, sinuate on the lower suture.
Body of the fruit 4-5 mm. wide, curved in about a semicircle, not sinuate on the lower suture.
Stem glabrous; leaves glabrous above, sparingly short hairy beneath, often only on the margin and ribs.
Pod spirally curved, the body forming one and a half to two circles; leaflets linear or oblong. Corolla more than 1 cm . long; pod $4-4.5 \mathrm{~mm}$. broad, strongly reticulate.
Corolla 5-6 mm. long ; pod $3-3.5 \mathrm{~mm}$. broad.
Pod with thick coriaceous sutures; leaflets linear.
Stipe of the pod nearly as long as the flat body.
55. H. speirocarpus.
56. H. alvordensis.
57. H. podocarpus.

Stipe of the pod about half as long as the more turgid body.
50. H. Gibbsii.
51. H. Plummerae.
52. H. sinuatus.
53. H. Whitedii.
54. H. subglaber.
58. H. bicristatus.

46. Homalobus collinus (Doug 1.) Rydb.

Phaca collina Hook., was described from specimens collected by Douglas in the Blue Mountains, Oregon. Hooker described the corolla as having a purple spot and G. Don gives it as purple. As far as I know the corolla in all the species of the group is ochroleucous or straw-colored without any purple. In herbarium specimens the corolla often shows a darker spot, but this is probably due to stain from the pistil. In any case this darker spot contains no purple or blue. Otherwise, Hooker's description is full and agrees with our plant so closely that there seems to be no doubt about the correctness of our interpretation. The range of the species includes Washington and Oregon, southern British Columbia, and western Idaho Astragalus cyrtoides A. Gray, is evidently a synonym of this. See under A. Gibbsii.
47. Homalobus californicus (A. Gray) Heller. This is closely related to the preceding and is distinguished mainly by its longer and mottled pod*.

Northern California:Hornbrook, T. Howell I35I; between Iguna and Weed, Heller 8082; Pit River Ferry, H. E. Brown 284; Mount Shasta, 464; Weed, L. E. Smith 197; Yreka, Greene, in 1876.
48. Homalobus Tweedyi (Canby) Rydb. comb. nov.

Astragalus ${ }^{-}$Tweedyi Canby, Bot. Gaz. 15: 150. 1890.
This is related on the one hand to H. collinus and on the other to H. Gibbsii, but it differs from both in the ascending stipe and nearly erect body of the fruit. In general habit and in the narrow leaflets it resembles H. collinus, but the pod is curved as in H. Gibbsii.

Washington: Yakima County, Brandegee 731.
Oregon: "Eastern Oregon," T. Howell, in 1880; Fifteen Mile Creek, Lloyd, in 1894.

[^1]
49. Homalobus Laurentii Rydb. sp. nov.

A perennial, with a cespitose caudex; stems $3-4 \mathrm{dm}$. high, striate, short-pubescent with incurved hairs; stipules triangular, $3^{-5} \mathrm{~mm}$. long; leaves $3-7 \mathrm{~cm}$. long; leaflets seven to seventeen, oblong, $8-13 \mathrm{~mm}$. long, short-villous on both sides; racemes $\mathbf{I}-2$ dm. long; bracts lanceolate, $2-3 \mathrm{~mm}$. long; calyx short-villous, the tube 8 mm . long, gibbous on the upper side, the two upper teeth triangular, the three lower lanceolate, 2 mm . long; corolla achroleucous; pod villous, stipitate, the stipe $5^{-7} \mathrm{~mm}$. long, the body slightly curved, $10-15 \mathrm{~mm}$. long, 4 mm . wide; seed obliquely reniform, 3 mm . long, 2 mm . wide.

Type collected east of Heffner, Oregon, W. E. Lawrence 744 (herbarium of the New York Botanical Garden); also at the same locality, 745 .
50. Homalobus Gibbsii (Kellogg) Rydb. comb. nov.

Astragalus Gibbsii Kellogg, Proc. Calif. Acad. 2: 161. 1862.
Astragalus Gibbsii was described from the headwaters of the Carson River. Since Kellogg's description is not complete and since his figure does not show any fruit it is a little doubtful if his plant was the same as the plant usually regarded as this species. This plant was collected by Anderson at Carson City and described by Gray* who included it under A. cyrtoides. It is, however, not the original A. cyrtoides A. Gray, \dagger for this is described as having linear-oblong leaflets glabrous above, which fits only H. collinus and H. californicus among the species of this group. As, however, the fruit of A.cyrtoides was unknown, the identification has remained doubtful; but the type resembles H. collinus so closely that I do not hesitate to refer it to that species.

Nevada: about Washoe Lake, C. F. Baker 1072; King's Cañon, io35; Carson City, Anderson, in 1863 and 1864; Eagle Valley, Stretch 38; Carson City, M. E. Jones, in 1883.

California: Plumas County, Heller \& Kennedy 8868; Modoc County, Austin \& Bruce 2212; Sierra County, Lemmon 977.

[^2]51. Homalobus Plummerae Rydberg, sp. nov.

Astragalus cyrtoides M. E. Jones, Zoe, 4:31. 1893. Not A. cyrtoides A. Gray, 1864.
A perennial, with a cespitose woody caudex; stems terete, striate, and villous with spreading hairs, 2-3 dm. high, stipules triangular, striate, distinct, $2-3 \mathrm{~mm}$. long; leaves $4-7 \mathrm{~cm}$. long; leaflets seven to thirteen, obcordate, $8-15 \mathrm{~mm}$. long, $5-10 \mathrm{~mm}$. wide, villous on both sides; peduncles $5-8 \mathrm{~cm}$. long; raceme short and dense, in flowers $2-3 \mathrm{~cm}$. long, in fruit $5-7 \mathrm{~cm}$. long; bracts lanceolate, $2-3 \mathrm{~cm}$. long, longer than the pedicels; calyx pilose-villous, the tube 8 mm . long, gibbous below on the upper side, the upper two teeth triangular, the lower three lanceolate, I mm. long; corolla ochroleucous, about 14 mm . long, similar to that of H. Gibbsii; pod short-villous, stipitate, the stipe about 8 mm . long, the body lunate, gradually tapering at each end, $2-2.5 \mathrm{~cm}$. long, $7-8 \mathrm{~mm}$. wide, reticulate; seeds reniform, 2.5 mm . long.

Type collected in Sierra County, California, in 1875, J. G. Lemmon 622 (herbarium of Columbia University). The species is dedicated to Mrs. Lemmon, whose maiden name was Plummer. It is related to H. Gibbsii, differing in the broader fruit. Lemmon 78 , without locality, also belongs here.
52. Homalobus sinuatus (Piper) Rydb. comb. nov. Astragalus sinuatus Piper, Bull. Torrey Club 28: 40. 1901. Phaca sinuata Piper, Contr. U. S. Nat. Herb. 11: 370. 1906.

This is related to the preceding and the next following species, differing from the former in the short pubescence, from the latter in the much broader pod, and from both in the sinuate lower suture of the pod.
53. Homalobus Whitedii (Piper) Rydb. comb. nov.

Astragalus speirocarpus falciformis A. Gray, Bot. Calif. 1: 152. 1876. Not A. falciformis Desf. 1802.

Astragalus speirocarpus curvicarpus Sheldon, Minn. Bot. Stud. 1: 125. 1894.
Astragalus Gibbsii falciformis M. E. Jones, Contr. West. Bot. 8: 23. 1898.
Astragalus Gibbsii curvicarpus M. E. Jones, Contr. West. Bot. 10: 62. 1902.

Astragalus Whitedii Piper, Bull. Torrey Club 29:224. 1902. Homalobus curvicarpus Heller, Muhlenbergia 2: 86. 1905. Astragalus curvicarpus Macbr. Contr. Gray Herb. 11. 65: 38. 1922.

This is a fairly well known plant but has usually been considered a variety under different species. Heller raised it to specific rank, not knowing that it was the same as A. Whitedii Piper.

Oregon: Malheur County, Leiberg 2187, 2332; Stein's Mountain, T. Howell, in 1885; Rock Creek, Leiberg 66.

Idaно: Nampa and Boise, Mulford, in 1892 ; Shoshone Falls, Nelson \& Macbride 1839; Plymouth, Macbride 75; Big Butte, Palmer 232.

Nevada: Pah-Ute Mountains, S. Watson 282; Reno, Kennedy, in 1901; Curran, in 1885.

California: Goose Lake, Mrs. Austin, in 1885; Eagle Lake, Mrs. Austin, in 1879; Brandegee, in 1887; Grenada Station, Siskiyou County, Heller 8066; without locality, Lemmon, 77; Fall River, Shasta County, Hall \& Babcock 4252; Sierra County, Lemmon 621.
54. Homalobus subglaber (A. Gray) Rydb. sp. nov. Astragalus collinus subglaber A. Gray, in herb.

A perennial, with a cespitose caudex; stems $2-3 \mathrm{dm}$. high, striate, glabrous or nearly so; stipules deltoid, distinct, 2 mm . long; leaves $4^{-8} \mathrm{~cm}$. long; leaflets $1 \mathbf{1 - 2 5}$, oblong, obovate or oblanceolate, $5^{-10} \mathrm{~mm}$. longr $2-5 \mathrm{~mm}$. wide, glabrous above, sparingly short-hairy beneath, often only on the margins and midrib, truncate or retuse at the apex, acute at the base; peduncles $5-10 \mathrm{~cm}$. long; raceme $3-5 \mathrm{~cm}$. long; bracts lanceolate, 2 mm . long; calyx villous, the tube 8 mm . long, gibbous on the upper side, the upper two teeth broadly triangular, the lower three lanceolate, 0.5 mm . long; corolla ochroleucous, 14 mm . long, similar to that of H. collinus; pod sparingly short-pubescent, stipitate, the stipe $8-10 \mathrm{~mm}$. long, the body arcuate, $12-18 \mathrm{~mm}$. long, 3 mm . wide.

Type collected on John Day River, Oregon, May 11, 1882, Thomas I. Howell (herbarium of the New York Botanical Garden).

This was distributed by Howell under the name Astragalus collinus subglaber A. Gray, but it is evidently more closely related to H. Gibbsii, lacking the long dense pubescence of the latter
species. The little pubescence on the lower surface of the leaves and the calyx and pod is similar to that of H. curvicarpus but sparser. The pod, however, is more like that of H. Gibbsii. Besides the type the following specimens belong here:

Oregon: locality doubtful, Lloyd, in 1898; Moro, N. Morrison, in 1894; Eastern Oregon, Cusick 1878.
55. Homalobus speirocarpus (A. Gray) Rydb. comb. nov. Astragalus speirocarpus A. Gray, Proc. Am. Acad. 6: 225. 1866.

Gray formed a section from this and H. podocarpus on account of the thick sutures, which according to him separate from the valves of the pod, a character which is not manifest in the herbarium specimens seen. The flower of this as well as of H. podocarpus is the same as that of H. collinus and H. Gibbsii, and the pod of H. speirocarpus is practically the same as in the latter species except that it is longer, more reticulate and more curved often forming two almost complete circles.

Washington: Columbia River, opposite Alkali, Howell, in 1882; North Yakima, Griffiths \& Cotton 45; Natchey Valley, Piper 2758; Wenash, Lyall; Yakima County, Henderson 2351; Brandegee 32, 728; Morgans Ferry, Suksdorf 277.
56. Homalobus alvordiensis (M. E. Jones) Rydb. comb. nov. Astragalus alvordiensis M. E. Jones, Contr. West. Bot. 10: 67. 1902.

Notwithstanding the fact that the author placed this species in another part of the genus Astragalus*, the species is evidently closely related to the preceding, differing in the small flowers and fruit. The latter is similar, less spiral and more turgid. It is known only from the type locality.
57. Homalobus podocarpus (Hook.) Rydb. comb. nov.

Phaca podocarpa Hook. Fl. Bor. Am. 1: 142. 1831. Not Astragalus podocarpus Meyer, 1831.
Astragalus sclerocarpus A. Gray, Proc. Am. Acad. 6: 225. 1866.
Though the specific name podocarpus is not available in Astragalus, it is in Homalobus. The pod is quite different in

[^3]structure from all the preceding species of this group. It approaches that of H. Plummerae but is distinguished by the thick sutures. The habit of the plant is more like that of H. collinus.

Washington: Columbus, Klickitat County, Suksdorf, in 1909; same locality, Suksdorf 852, in 1886; Douglas County, Sandberg \& Leiberg 312; Egbert Springs, Sandberg \& Leiberg, in 1893; North Yakima, Henderson 2352; Yakima County, Brandegee 727; Suksdorf 279, 280; Pasco, Piper 2955; Walla Walla, Colton 1043.

Oregon: Alkali, T. Howell, in 1882.
58. Homalobus bicristatus (A. Gray) Rydb. comb. nov. Astragalus bicristatus A. Gray, Proc. Am. Acad. 19: 75. 1883.

This species is evidently related to the preceding, the flowers being practically those of this group of Homalobus, but on account of its more turgid, leathery fruit it is somewhat anomalous in the genus.

California: San Bernardino Mountains, Parish 3000, 1277, 1277a, 3743; San Antonio Mountains, H. M. Hall 1247; San Gabriel Mountains, Abrams \& McGregor 646; Parry \& Lemmon 92.

> G. Porrecti
59. Homalobus porrectus (S. Wats.) Rydb. comb. nov. Astragalus porrectus S. Wats. Bot. Kings Rep. 75. 187 I. Tragacantha porrecta Kuntze, Rev. Gen. Pl. 947. 189 I.

This species is rather unique in the genus Homalobus. It the pod is taken into consideration, it might have been placed among the Collini as it is somewhat similar to that of H. Tweedyi, the stipe being ascending and the body erect; but the flower is not that of this group, for the calyx-tube is short-campanulate and the calyx-lobes elongate and of the same length, while the banner is narrow, retuse at the apex, and much longer than the other petals. It is therefore best to regard this species as constituting a section by itself.

Nevada: Trinity Mountains, S. Watson 284; Reno, Stokes, in 1900.

The rest of the groups included by me in Homalobus, I rather think, should be removed from the genus. Astragalus loncho-
carpus A. Gray evidently does not belong there. A. Hallii A. Gray is just as good a species of Phaca as of Homalobus. The disposition of A. flexuosus and its allies is harder to settle. In general habit it resembles some of the species of Homalobus but the pod is terete, and it would be better to limit that genus to the flat-podded species.

KENTROPHYTA Nutt.

The genus Kentrophyta was established in 1838 , in Torrey \& Gray's Flora of North America. It was based on two species, K. montana and K. viridis, with an unnamed variety of the former. Gray merged the genus into Astragalus and united the species under the name A. Kentrophyta A. Gray. Thirty-three years later Watson described a species under the name A. tegetarius and a variety under the name A. Kentrophyta elatus, but failed to see the close relationship of the former to A. Kentrophyta, placing it in a far remote section of Astragalus. In 1899 A. Nelson added a fourth species, A. aculeatus, to the group. The remaining species have been described by the present author.

The species are very closely related and some botanists are inclined to regard them as a single variable species. If so this would have at least eight marked varieties.

1. Kentrophyta montana Nutt. This species, the type of the genus, is characterized by the scarious stipules, united high up, long-acuminate or cuspidate. but scarcely spinulose, by the subulate leaves, scarcely narrowed at the base and by the very compressed pod. It is the most eastern and northern and the best known of the species, ranging from Saskatchewan and Alberta to Colorado and western Nebraska. Sheldon changed the name to Astragalus viridis, mistaking it for Kentrophyta viridis.

Saskatchewan: Gull Lake, J. Macoun; Cypress Hills, 27; Milk River, 1019 I.

Montana: Yellowstone, Hayden.
South Dakota: White River, Wallace; Smithville, T. A. Williams.

Wyoming: Bitter Creek, Britton; "Rocky Mountains," Nuttall; Pine Bluffs, A. Nelson 362I; Badger, 2751; Upper Platte, Geyer 123.

Nebraska: Scotts Bluffs, Rydberg 79; Belmont, Webber; Court House Rock, Rydberg 79a.

New Mexico: Upper San Juan, McComb's Expedition; Inscription Rock, Bigelow (Whipple Expedition).
2. Kentrophyta viridis Nutt. This has been ignored by all later authors, except myself, though Nuttall pointed out that the green stipules were different in being distinct nearly to the base, more attenuate and sometimes spinulose-tipped. It seems to be a rare species, as I have seen only one collection besides the type.

Wyoming: Platte Plains, Nuttall.
Colorado: Palisades, Crandall, in 1898.
3. Kentrophyta impensa (Sheld.) Rydb. This was first described as A. Kentrophyta elatus, which name Sheldon changed to A. viridis impensus. It differs from K. montana in the elongated stems and in the long, almost distinct and decidedly spinulose stipules; from K. viridis in the stiff, spiny leaflets and in the lanceolate pod, 6-7 mm. long. Evidently M. E. Jones* mistook this species for K. montana.

Colorado: Grand River Cañon, Eastwood.
Utah: Maple Cañon, Garrett 2647; Fish Creek Cañon, 2512; Lost Creek, Jones 5833; Southern Utah, Parry 54; Beaver Valley, Palmer 122.

New Mexico: Shiprock Agency, Standley 7850; Fort Wingate, Dr. Matthews, in 1883.

Arizona: Navaho Reservation, University of Arizona.
Nevada: Holmes Creek Valley, Watson 291; BennettSprings, Purpus 6275.
4. Kentrophyta tegetaria (S. Wats.) Rydb. Watson placed A. tegetarius between A. pauciflorus (Homalobus vexiliflexus) and A. miser, but it is really a very close relative of K. montana, differing in the smaller flowers in more elongate racemes and in the shorter leaflets, distinctly tapering to the base as well as to the apex. This species seems to be confined to the East Humboldt or Ruby Mountains of Nevada.

Nevada: East Humboldt Mountains, S. Watson 286; Death, Heller 9223.

[^4]5. Kentrophyta aculeata (A. Nels.) Rydb. This was first collected by Nuttall and first described as K. montana β in Torrey \& Gray's Flora. It was again described as A. tegetarius implexus Canby. M. E. Jones* makes thestatement that it "does not seem to be worthy of varietal rank, as it is only a condensed form." Evidently Jones had misinterpreted A. tegetarius S. Wats., for H. aculeatus has much larger flowers, $5^{-7} \mathrm{~mm}$. long, on very short peduncles, while in A. tegetarius they are only $3-5$ mm . long and in racemes equalling or exceeding the leaves. Jones also in two places \dagger states, first that A. aculeatus is "a form of A. Kentrophyta," and later that it is "A. tegetarius." Neither is true, though it is related to both.

Oregon: Wallovoa Mountains, Cusick 2350, 1364.
Montana: Cedar Mountain, Rydberg \& Bessey 4487.
Wyoming: Dome Lake, A. Nelson 2445; Union Pass, IO77; Nez Perces Creek, 6205; Sheep Mountain, Tweedy 256; between Sheridan and Buffalo, Tweedy 3189; Big Horn Mountains, Tweedy, in 1898; Yellowstone Park, R. S. Williams, in 1888; Rydberg \& Bessey 4488; Kelsey, in 1890; Headwaters of Cliff Creek and Upper Buffalo Fork, C. C. Curtis; Doyle Creek, Goodding 372; Big Horn Mountains, Jack 8, 16; West Yellowstone, Payson 1913.

Colorado: Georgetown, Jones 679^{*}; Chambers Lake, Baker, in 1896.

Utah: Big Cottonwood Cañon, Garrett 1543; Fish Lake, Jones 5810; Alta, Jones 1127 \ddagger; Leonard 181 .

Idaho: Clyde, Macbride \& Payson 3127; Mackay, Nelson \& Macbride 1474.
6. Kentrophyta Wolfir Rydb. First described as Homalobus Wolfi Rydb. It is known only from the type collection, Wolf 243, from South Park, Colorado. It is related to K. aculea$t a$, but differs in the small flowers, short leaflets and the grayish loose pubescence.
7. Kentrophyta minima Rydb. Closely related to the preceding but differing in the short pubescence, the long stipules. and short pod.

[^5]Wyoming: Yellowstone Park, Tweedy 83; Rose 149.
8. Kentrophyta ungulata (M. E. Jones) Rydb. sp. nov. Astragalus Kentrophyta ungulata M. E. Jones, Proc. Calif. Acad. II. 5: 650. 1895.

This is related to the two preceding but differs in the almost white strigose pubescence and in the more tinged pod.

Nevada: Monitor Valley, Watson 290; Sprucemont, Jones.
Utah: George Fork, Terron Creek, Tidestrom 1366.
9. Kentrophyta rotunda (M. E. Jones) Rydb. sp. nov. Astragalus tegetarius rotundus M. E. Jones, Proc. Calif. Acad. II. 5: 650. 1895. Astragalus Kentrophyıa rotundus M. E. Jones, Contr. West. Bot. 10: 63. 1902.
The synonyms show that this was first regarded as a variety of K. tegetaria and later as one of K. montana. It is closely related to the former but still more closely to K. ungulata. It is a greener plant, the leaves being glabrate above.

Utah: Panguitch Lake, Jones 6002; Loa, 56496; American Fork Cañon, Leonard 167.

Mr. Jones has described another variety, Astragalus Kentrophyta coloradensis, from Lee's Ferry, Arizona. This I have not seen, but from the description it seems that it might belong to K. impensa.

New York Botanical Garden

The mid-styled form of Piaropus paniculatus

Alice M. Johnson
(WITH TWO TEXT FIGURES)

Certain species of the Pickerel Weed Family (Pontederia cordata and rotundifolia) are completely trimorphic, while other species are, as far as is known, incompletely trimorphic. Thus, for Piaropus azureus (Sw.) Raf., only the short-styled and longstyled forms are known, for P. crassipes (Mart.) Britton only the long-styled and mid-styled forms have been reported, and for P. paniculatus (Spreng.) Small only the mid-styled form has been observed to date (see Fig. i).

At least for P. paniculatus seed production is not uncommon. In the spring of 1920 Professor Tracy E. Hazen gathered seed from the single form of this species growing in the Royal Botanical Garden in Trinidad. Plants from this seed grown at the New York Botanical Garden also produced seed. The natural production of seed in this one form raises the question whether there are here any limitations to fertility and seed production such as have been considered characteristic of trimorphic species (see

FIG. I. Drawing of corolla of flower of P. paniculatus opened out to show relative lengths and positions of the pistil and the two sets of stamens ($\times 3$). especially Darwin, 1865 and 1877, for Lythrum Salicaria). It is obvious that in the production of seed by plants of only the mid-styled form, as in P. paniculatus, there is no opportunity for legitimate pollinations, such as exist when two or three different forms are growing together. There is, however, opportunity for discriminative fertilizations involving the two sets of stamens either in selfing or in crossing and also for variation among plants either in self-compatitility or in cross-compatibility. It was to determine these points that the investigation here reported was undertaken.

Material

From seed of P. paniculatus brought from Trinidad by Professor Hazen in the spring of 1920 , several plants were grown in theNew York Botanical Garden.

Fig. 2. Stalk of Piaropus paniculatus with seventeen fine capsules all frcm illigitimate self-pollination. From the seed of one of these a progeny of 17 plants was grown and from the seed of one of these another generation of 20 plants was grown. All these plants were definitely to be classed as mid-styled.

Results of self-pollinations
The 37 plants of the two generations were all tested for seed production to controlled selfpollinations, using pollen from both sets of stamens. A total of 186 pollinations were made with pollen of long stamens, the number ranging from 1 to 18 flowers per plant. Of these 157 were successful, yielding from 8 to 70 seeds per capsule and with an average of 31 .

A total of 118 self-pollinations were made with the pollen from short stamens. Of these therewere 24 failures and 94 successes that yielded pods, containing from 6 to 63 seeds per pod with the average at 36 .

One stalk of a highly selfcompatible plant produced 13 long-selfed pods and 4 shortselfed pods (see Fig. 2). The counts of seeds in the former were as follows: $32,39,41,44$, $47,51,54,56,57,58,59$, with an average of 50 , while the counts for 3 of the short-selfed pods (seed lost from one of the four) were $35,43,61$, with an average of 49 .

For another highly self-compatible plant there were 14 fine pords out of 15 long-self-pollinations and 4 fine pods to 4 shortselfings.

There were a few plants that gave a high proportion of failures and a low number of seed per pod. These failures may have been due to low grades of self-compatibility or to experimental errors in that pollen may not have been applied when the pistils were most receptive or the pollen in the best condition. But every plant produced some pods with viable seeds to both short- and long-pollen.

Results of cross-pollinations

A total of 33 plants were involved in the cross-pollinations that were made. Of 100 crosses with pollen of long stamens, 62 produced pods with seeds per pod ranging from 2 to 58 and an average of 24 . The 73 crosses involving short-pollen gave 50 pods with seed per pod ranging from 4 to 59 and with an average of 30 . Among the crosses there were five reciprocals which yielded pods and seeds in each of the four pollinations possible between them.

In all but 5 of the crosses that failed only one flower was used so that no definite evidence exists of the presence of cross-incompatibility in these plants. The results indicate a very general cross-compatibility.

Measurements of pollen

H. Müller (1873) reports decided differences in the size of pollen from the different lengths of stamens in the three forms of Lythrum Salicaria (see also Darwin, 1877). Darwin (1877) reports such differences based on average measurements for pollen in a species of Pontederia. Such differences are reported for Pontederia cordata by Halsted (1889) and by Hazen (1918). In these cases the pollen of long stamens is found to be larger than pollen of short stamens while the pollen of mid-stamens is intermediate in size.

In making the measurements here reported pollen grains from several anthers and from several flowers of each plant were mounted in water and numerous measurements made to determine the ranges in size. The pollen of long stamens measured $38-88 \mu$ in length and from $32-70 \mu$ in short diameter. Only
one grain was found 88μ long, only one 76μ, and only one 74 μ. For the greatest number of grains the long diameters were from 38μ to 70μ, inclusive. The pollen from short stamens measured $34^{-62} \mu$ in long diameter and 2654μ in short diameter.

The amount of overlapping in size of pollen of the two sets of stamens for individual plants was from o to 20μ. For only two plants was there no overlapping. For 21 plants the overlapping was more than 6μ and for some of these it was as much as 12μ. This means that for a large number of plants many of the pollen grains in the two sets of stamens were identical in size.

Conclusions

As far as now known Piaropus paniculatus exists as an incompletely trimorphic species or as a homomorphic species with two sets of stamens differentiated as in the mid-styled form of a trimorphic species.

Each of the 37 plants tested with its own pollen either from long or from short stamens produced pods with viable seeds, thus reproducing in some cases abundantly to what constitutes illegitimate fertilization.

There was no evidence of real and inherent differences in the degrees of self-compatibility or of cross-incompatibility. The differences observed may well have involved errors in manipulation.

The mid-styled form of P. paniculatus appears to reproduce true to form through seed progenies.

New York Botanical Garden.

Bibliography

Darwin, Charles. On the sexual relations of the three forms of Lythrum Salicaria. Jour. Linn. Soc. Bot. 8: 169-196. 1865.

The different forms of flowers on plants of the same species. London. 1877.
Halsted, B. D. Pickerel weed pollen. Bot. Gaz. 14: 255-257. 1899.

Hazen, Tracy E. The trimorphism and insect visitors of Pontederia. Mem. Torrey Club 17:259-484. pl. 14, 15. 1918.
Müller, Hermann. Die Befruchtung der Blumen durch Insekten. Leipsig. 1873.

INDEX TO AMERICAN BOTANICAL LITERATURE

1923
The aim of this Index is to include all current botanical literature written by Americans, published in America, or based upon American material; the word America being used in the broadest sense.

Reviews, and papers that relate exclusively to forestry, agriculture, horticulture, manufactured products of vegetable origin, or laboratory methods are not included, and no attempt is made to index the literature of bacteriology. An occasional exception is made in favor of some paper appearing in an American periodical which is devoted wholly to botany. Reprints are not mentioned unless they differ from the original in some important particular. If users of the Index will call the attention of the editor to errors or omissions, their kindness will be appreciated.

This Index is reprinted monthly on cards, and furnished in this form to subscribers at the rate of three cents 'or each card. Selections of cards are not permitted; each subscriber must take all cards published during the term of his subscription. Correspondence relating to the card issue should be addressed to the Treasurer of the Torrey Botanical Club.

Allen, W. E. Some tide-water collections of marine diatoms taken at half-hour intervals near San Diego, California. Univ. Calif. Publ. Zool. 22: 413-4I6.f. I. Je 1923.

Andrews, A. L. Natural versus artificial classification of the Bryophytes. Bryologist 26: 25-29. 16 Je 1923.

Baker, E. G. Heliocarpus americanus L. Jour. Bot. 61: 177. Je 1923.

Barnette, R. M., \& Shive, J. W. The influence of solution volume upon plant growth in relation to reaction change and iron availability in culture solutions. Soil Sci. 15: 413-425.f. 1-3. My 1923.
Bartholomew, L. K., \& Jones, E. S. Relation of certain soil factors to the infection of oats by loose smut. Jour. Agr. Research 24: 569-576. f. 1, 2. 19 Мy 1923.

Baxter, D. V. White pine blister rust in Michigan. Phytopatho\log. 13: 285, 286.7 Je 1923.
Benedict, R. C. The mosquito fern (Azolla). Am. Fern Jour. 13: 48-52. pl. 2. 11 My 1923.

Hopkins, E. F. The Sphaerulina leaf spot of clover. Phytopathology 13: 117-126. pl. 8, $q+f .1$-3. 13 Mr 1923.
Horn, T. Das gegenseitige Mengenverhältnis der Kohlenhydrate im Laubblatt in seiner Abhängigkeit vom Wassergehalt. Bot. Archiv 3: 137-173. 15 Mr 1923.
Howe, J. M. George Rogers Hall, lover of plants. Jour. Arnold Arb. 4: 91-98. 8 My 1923.
Hunnewell, F. W. Salix serissima on Long's Peak [Colorado]. Rhodora 25: 67, 68. 9 Ap 1923.
Jenks, C. W. Lepachys columnaris in eastern Massachusetts. Rhodora 25: 68. 9 Ap 1923.
Kakizaki, Y. Linked inheritance of certain characters in the Adzuki bean. Genetics 8: 168-177. Mr 1923.
Kakizaki, Y. Self-sterility in Chinese cabbage. Jour. Hered. 13: 374-376. f. 20. 25 Ap 1923.
Kelly, J. P. Astylis Phlcx. Jour. Hered. 13: 339-342. f. 1-4 + frontispiece. 25 Ap 1923.
"The relation of this variation of Phlox Drummondii to the large-eyed flower."

Kitson, L. C. The piñon. Am. For. 29: 158, 159. Mr 1923. [Illust.]

Krantz, F. A. Permanence of variety in the potato. Jour. Agr. Research 23: 947-962. pl. I. 24 Mr 1923.
Kränzlin, F. Orchidaceae, Monandrae, Oncidiinae, Odontoglosseae II. Pflanzenreich IV $50:$ 1-344. f. 1-29. 14 Mr 1923.

Includes new American species in Cyrtochilum (9), Cncidium (55), Leochilus (2), Sigmatostalix (9), and Cryptarrhena (1).
Krieger, L. C. C. Preliminary note on the position of the hymenium in Physalacria inflata (Schw.) Peck. Maryland Acad. Sci. Bull. ${ }^{11}$: 7, 8. Ja 1923.
Kryshtofovich, A. Pleuromeia and Hausmannia in eastern Siberia, with a summary of the paleobotany of the region. Am. Jour. Sci. 205: 200-208. Mr 1923.

Larsen, J. A. Association of trees, shrubs, and other vegetation in the northern Idaho forests. Ecology 4: 63-67. 2I F 1923.

León, Brother. A trip to Pico Turquino [Cuba]. Jour. New York Bot. Gard. 24: 49-62. Mr 1923.

Levine, M. Studies on plant cancers. V. Leafy crown galls on tobacco plants resulting from Bacterium tumefaciens inoculations. Phytopathology 13: 107-116. pl. 5-7. 13 Mr 1923.

Lichtenwalner, D. C., Flenner, A. L., \& Gordon, N. E. Adsorption and replacement of plant food in colloidal oxides of iron and aluminum. Soil Sci. 15: 157-165. Mr 1923.
Lloyd, F. E. The cytology of vegetable crystals. Science II. 57: 273, 274. 2 Mr 1923.

Lorenz, A. Some Hepaticae from Grand Manan, N[ew] B[runswick]. Bryologist 26: 5. I5 Mr 1923.
Lownes, A. E. Habenaria hyperborea in Rhode Island. Rhodora 25: 44, 45. 6 Mr 1923.
Lutz, F. E. Flowers and their insect visitors. Nat. Hist. 23: 125-I34. Ap 1923. [Illust.]
Mangelsdorf, P. C. Heritable characters of maize. XII. Mealy endosperm. Jour. Hered. 13: 359-365.f. 12-15. 25 Ap 1923.

Marshall, M. A. Proliferous ebony spleenwort. Am. Fern Jour. 13: 7-13. pl. I. 13 Mr 1923.
Martin, G. W. Food of the oyster. Bot. Gaz. 75: 143-169. f. I-Q. 20 Ap 1923.

Mattoon, W. R. Growth of shortleaf pine (Pinus echinata Mill.) planted in District of Columbia and New Jersey. Jour. For. 21: 284, 285. Mr 1923.
Maxon, W. R. A new Dryopteris from Dominica. Proc. Biol. Soc. Washington 36: 49, 50. 28 Mr 1923. Dryopteris mollicella, sp. nov.

McClintock, J. A. Peach rosette, an infectious mosaic. Jour. Agr. Research 24: 307-316. pl. 1-10. 28 Ap 1923.

McKinney, H. H. Investigations of the rosette disease of wheat and its control. Jour. Agr. Research 23: 771-800. pl. I-8 $+f .1$, 2. 10 Mr 1923.
Milbrath, D. G. Downy mildew on lettuce in California. Jour. Agr. Research 23: 989-994. pl. 1-3. 24 Mr 1923.

Miller, R. B. First report on a forestry survey of Illinois. Il inois Nat. Hist. Surv. 14: 29I-378. pl. 7I-IOo. Mr 1923. [With map.]

Morris, H. E., \& Nutting, G. B. Identification of certain species of Fusarium isolated from potato tubers in Montana. Jour. Agr. Research 24: 339-364. pl. I-3. 28 Ap 1923.

Munz, P. A. Southern California plant notes-I. Bull. S. California Acad. Sci. 22: 7-11. Mr 1923.

Newton, J. D. A comparison of the absorption of inorganic elements, and of the buffer systems of legumes and nonlegumes, and its bearing upon existing theories. Soil Sci. 15: 181-204. Mr 1923.
Noble, R. J. Studies on Urocystis Tritici Koern, the organism causing flag smut of wheat. Phytopatho'ogy 13: 127139. pl. $10+f .1$, 2. 13 Mr 1923.

Nye, H. A. A new station for Daphne. Rhodora 25: 45, 46. 6 Mr 1923.

O'Neal, C. E. A study of the embryo sac development in Oenothera rubrinervis. Bull. Torrey Club 50: 133^{-145}. pl. 5, $6+f .1$, 2. 7 Ap 1923.
Palmer, E. L. The flowers that bloom in the spring. Cornell Rural School Leafl. 16^{4} : $1-58$. Mr 1923. [Illust.]
Parish, S. S. Cleomella obtusifolia Torr. \& Frem. Bull. S. California Acad. Sci. 22: 12-14. Mr 1923.
Pemberton, C. C. Natural root graft and the overgrowth of stumps of conifers. Nat. Hist. 23: 182-191. Ap 1923. [Illust.]

Pennell, F. W. Scrophulariaceae of Cuba. Proc. Acad. Nat. Sci. Philadelphia 75: i-21. 24 Ap 1923.

Plitt, C. C. A new species of Crocynia. Bryologist 26: 16-19. f. 1, 2. 16 Ap 1923.

Crocynia Moxleyi, sp. nov., from California.
Record, S. J. The Parana pine of Brazil. Am. For. 29: 215 . Ap 1923. [Illust.]

Reed, E. Hypothesis of formative stuffs as applied to Bryophyllum calycinum. Bot. Gaz. 75: II3-142. f. 1 -Io. 20 Ap 1923.

Rendle, A. B. George Clifford's herbarium and the "Hortus Cliffortianus." Jour. Bot. 61: II4-iI6. Ap 1923. Includes discussion of the names Grislea L. and Combretum L.

Rhodes, G. H. Perpetuating the redwoods. Am. For. 29: 147-I52. Mr 1923. [Illust.]

Richards, B. L. Further studies on the pathogenicity of Corticium vagum on the potato as affected by soil temperature. Jour. Agr. Research 23: 761-770. pl. I +f. I. 3 Mr 1923.

Riddle, L. W. The lichens of the Isle of Pines. Mycologia 15: 68-88. 30 Mr 1923.
Includes Monoblastia, gen. nov., and 14 new species.
Robbins, C. A. Cladonia Beaumontii in Massachusetts. Rhodora 25: 46, 47. 6 Mr 1923.

Robinson, B. L. The need of monographic activity in American botanical taxonomy. Science II 57: 307-311. 16 Mr 1923.

Rogers, L. M. Development of the prothallium of Lygodium palmatum. Bot. Gaz. 75: 75-85. pl. 4-6. 23 Mr 1923.

Rosa, J. T. Note on an indirect effect of spraying potatoes with Bordeaux mixture. Am. Jour. Bot. 10: 113-116. f. 1, 2. 30 Mr 1923.

Safford, W. E. Discovery of the ancestral form of Dahlia Jaurezii. Jour. Hered. 13: 377-381. f. 21-23. 25 Ap 1923.

Santos, J. K. Differentiation among chromosomes in Elodea. Bot. Gaz. 75: 42-59. pl. 3. 23 Mr 1923.
Sargent, F. H. Euphrasia canadensis in Vermont. Rhodora 25: 84. 24 Ap 1923.

Sargent, F. L. Trees that feed upon themselves. Nat. Mag. 1: 55, 56. Mr 1923.

Schaffner, J. H. Additions to the catalog of Ohio vascular plants for 1922. Ohio Jour. Sci. 23: 107-114. Ap 1923.

Seifriz, W. Observations on the cause of gregarious flowering in plants. Am. Jour. Bot. 10: 93-112. pl. 12. 2 Mr 1923.

Setchell, W. A. Dumontia filiformis on the New England coast. Rhodora 25: 33-37. 6 Mr 1923.

Sewell, M. C. Effect of Andropogon Sorghum on succeeding crops of Triticum sativum. Bot. Gaz. 75: 1-26.f. I-II. 23 Mr 1923.

Sherman. J. M., \& Albus, W. R. Physiological youth in bacteria. Jour. Bact. 8: 127-140. Mr 1923.

Showalter, A. M. The chromosomes of Riccardia pinguis. Am. Jour. Bot. 10: 170-172. pl. 20. 18 Ap 1923.

Showalter, A. M. Studies in the morphology of Riccardia pinguis. Am. Jour. Bot. 10: 148-166. pl. 16-19 + f. 1-3. 30 Mr 1923.

Shull, G. H. Further evidence of linkage with crossing over in Oenothera. Genetics 8: $154-167 . \mathrm{Mr} 1923$.
Siegler, E. A., \& Jenkins, A. E. Sclerotinia carunculoides, the cause of a serious disease of the mulberry (Morus alba). Jour. Agr. Research 23: 833-836. pl. 1, 2. Io Mr 1923.

Small, J. K. The Austrian field-cress again. Torreya 23: 2325. Ap 1923. Radicula austriaca (Crantz) Small.

Snethlage, E. H. Neue Arten der Gattung Cecropia netst Beiträgen zu ihrer Synonymik. Notizbl. Bot. Gart. u. Mus. Berlin-Dahlem 8: 357-369. 15 Ap 1923. Includes 13 new species from Tropical America.

Stout, A. B. Sterility in lilacs. Jour. Hered. 13:369-373. f. 17-19. 25 Ap 1923.

Sudworth, G. B. The technical nomenclature of North American trees. Jour. For. 21: 391-396. Ap 1923.
Suessenguth, K. Über den tagesperiodischen Farbwechsel von Selaginella serpens Spring. Biol. Zentralbl. 43: 123-129.f. I-7. 3I Mr 1923.

Tisdale, W. B. Influence of soil temperature upon the Fusarium disease in cabbage seedlings. Jour. Agr. Research 24: 55-86. pl. 1, 2 +f. 1-1o. 7 Ap 1923.

Tisdale, W. H., Taylor, J. W., \& Griffiths, M. A. Experiments with hot water, formaldehyde, copper carbonate, and chlorophol for the control of barley smuts. Phytopathology 13: 153-160. 4 Ap 1923.

Torrey, R. E. The comparative anatomy and phylogeny of the Coniferales.-III. Mesozoic and Tertiary coniferous woods. Mem. Boston Soc. Nat. Hist. 6: 41-106. pl. 8-15. Ap 1923.

Tottingham, W. E., \& Rankin, E. J. The availability of iron in nutrient solutions for wheat. Am. Jour. Bot. 10: 203-210. f. I-4. i8 Ap 1923.

Toumey, J. W., \& Durland, W. D. The effect of soaking certain tree seeds in water at greenhouse temperatures on viability and the time required for germination. Jour. For. 21: 369-375. Ap 1923.

Uphof, J. C. T. An historic spot for students of genetics. Jour. Hered. 13: 343-345.f.5-7. 25 Ap 1923. Recounts a visit to Spanderwoud, Holland.
Vainio, E. A. Lichenes in Insula Trinidad a Professore R. Thaxter collecti. Proc. Am. Acad. Arts \& Sci. 58: 13I-I48. Ja 1923.
Includes 17 new species.
Valleau, W. D. An important period in the life history of two bacterial organisms causing leaf-spots on tobacco. Phytopathology 13: 140-144.f. I. 13 Mr 1923.

Watson, E. E. The genus Heliocarpus. Bul. Torrey Club 50: 109-128. 16 Mr 1923.
Includes 3 new species from Tropical Amərica.
Weimer, J. L., \& Harter, L. L. Influence of temperature on the pectinase production of different species of Rhizopus. Am. Jour. Bot. 10: 127-132. 30 Mr 1923.
We:mer, J. L., \& Harter, L. L. Pectinase in the spores of Rhizopus. Am. Jour. Bot. 10: 167-169. 18 Ap 1923.

Weir, J. R. The genus Polystictus and decay of living trees. Phytopathology 13: 184-186. 4 Ap 1923.
Weir, J. R. Poria papyracea (Schw.) Cke. Phytopathology 13: 187. 4 Ap 1923.

Weston, W. H. A method of treating maize seed to destroy adherent spores of downy mildew. Jour. Agr. Research 24 : 853-860. 9 Je 1923.
Wherry, E. T. Wall ferns in Wilmington, North Carolina. Am. Fern Jour. 13: 17, 18. 13 Mr 1923. [Il ust.]
Wieland, G. R. A mid-Devonian Callixylon. Torreya 23: 32, 33. Ap 1923.

Williams, R.S. Brachymenium condensatum, sp. nov. Bryologist 26: 2, 3. pl. 1. 15 Mr 1923.

Willis, L. G., \& Carrero, J. O. Influence of some nitrogenous fertilizers on the development of chlorosis in rice. Jour. Agr. Research 24: 621-640. I9 My 1923.
Wilson, E. H. Northern trees in southern lands. Jour. Arnold Arb. 4: 61-90. 8 My 1923.

Wilson, R. W. Life history of Cedrus atlantica. Bot. Gaz. 75: 203-208. pl. tit. 20 Ap 1923.

Winkler, A. J. A study of the internal browning of the yellow Newton apple. Jour. Agr. Research 24: 165-184. pl. I $+f .1$, 2. 14 Ap 1923.

Wylie, R. B. Sperms of Vallisneria spiralis. Bot. Gaz. 75: 191-202. pl. 8-10. 20 Ap 1923.

BULLETIN

OF THE

TORREY BOTANICAL CLUB

FEBRUARY, 1924

Internal sori of Puccinia Sorghi

Mabel A. Rice
(WITH FOUR TEXT FIGURES)

During a series of cytological studies made upon Puccinia Sorghi on corn I found several cases of internal sori both of uredo and of teleutospores. Such phenomena have already been reported from a variety of sources, and for the whole series of rust spores: spermatia, aecidiospores, uredospores, and teleutospores. The cases which I have found reported are listed below.

Occurrence of Internal Rust Sori

Date	Author	Parasite	Spore Stage	Host	Location
1885	Smith, W. G. (19)	Puccinia graminis Pers.	III	Aveua sp.	Between gluten and starch layers of seed.
1886	Smith, W: G. (20)	Puccinia graminis Pers.	I	Berberis vulgaris	In cotyledons of seeds within barberry fruit.
1896	Eriksson, J Henning, E	Puccinia glumarum (Schmidt) E. \& H.	$\begin{gathered} \text { II } \\ \text { III } \end{gathered}$	Cereal Grains	In pericarp
1898	Bolley, H. S. \& Pritchard, F . J. (4)	Puccinia graministritici E. \& H.	$\begin{gathered} \text { II } \\ \text { III } \end{gathered}$	Triticum sp.	Beneath bran laye and about embryoof seed.
1899	Klebahn H. (12)	Puccinia caribistortae	I	Carum Carvi	In parenchyma of stem within fibrovascular bundles.

[The Bulletin for January (51: 1-36) was issued Feb. 8, 1924.]

1907	Marryat, D. (12a)	Puccinia glumarum\|	II	Triticum monococcum vulgare	In leaf
1908	$\begin{aligned} & \text { Clinton, G. } \\ & \text { P. (5) } \end{aligned}$	Gymnosporangium macropus Lk.	I	Pirus Malus Pirus Malus	Within the fruit tissue. In the seed cavities.
1909	Stämfli, Ruth (21)	Uromyces Pisi	o	Euphorbia cyparissias	At insertion of abortive seeds.
1911	Pritchard, F. J. (15)	Puccinia graministritici E. \& H.	III	Triticum sp.	In seed near hilum.
1911	Pritchard F. J. (16)	Puccinia graministritici E. \& H.	III	Triticum sp.	In pericarp of wheatseed.
1912	Reynolds, E.S. (17)	Puccinia Xanthii	III	Xanthium canadense	In mesophyll of leaf.
1913	Beauverie, M. J. (2)	Puccinia glumarum	III	Several Gramineae	On glumes and pericarps.
1913	Wolf, F. A. (23)	Puccinia angustata	II	Lycopus virginicus	In parenchyma of petioles and stems.
1913	Atkinson, G. F., Edgerton, C.W. Reddick, D. (23)	Nigredo Caladii (Schw.) (Uromyces Caladii Farlow)	I	Peltandra virginica	? -
1913	Reddick, D. (23)	Puccinia graminis Pers.	I	$\begin{array}{\|l} \text { Berberis } \\ \text { oulgaris } \end{array}$	In fruit.
${ }_{6} 913$	$\begin{array}{r} \text { Reddick, } \\ \text { D. (23) } \end{array}$	Dicaeoma poculiforme (Jacq.) Kuntze = (Puccinia graminis Pers.)	II	Secale sp.	In stem.
1914	$\begin{gathered} \text { Fromme, F. } \\ \text { D. (10) } \end{gathered}$	Puccinia Claytoniata Peck	0	Claytonia virginica	Deep in parenchyma of stem.
1916	$\begin{gathered} \text { Adams, J. } \\ \text { F. (1) } \end{gathered}$	Nigredo caryophyllina (Schrank) Arthur (Uromyces caryophyllinus (Schroeter)	II	Dianthus Caryophyllus	In leaves.

1917	Colley, R. H (7)	Cronartium ribicola	III	Ribes sp.	In pith and pericycle of petioles.
1917	Colley, R. H. (8)	Cronartium ribicola	II	Ribes hirtellum Michx.	In cortex of stems.
1917	Colley, R. H. (8)	Cronartium ribicola	I	Pinus Strobus	In resin ducts of stem.
1920	Taylor, Minnie (22)	Puccinia albiperidia Arthur		Ribes glandulosum	In fruit and seeds.
1920	Hungerford, C. W. (11)	Puccinia graministritici	$\begin{gathered} \text { II } \\ \text { III } \end{gathered}$	Triticum sp.	In pericarp of hilar end of seed.
1923	Dodge, B. O. (8a)	Pucciniastrum americanum (Farl.)	II	Rubus strigosus	In cortex of stem.

Such a list of cases of internal sori indicates that they are by no means rare. They are of interest in connection with the whole problem of the interrelations of host and parasite, as well as in connection with the problem of the causes underlying the production of the different spore forms of the rusts. In a number of cases mentioned above the occurrences were reported by the authors as having a possible bearing upon the overwintering of the rust (Smith, 19, 20; Eriksson \& Henning, 9; Bolely, 4; Pritchard, 4, 15, 16; Beauverie, 2; Hungerford, 11). Others report merely brief notices of an abnormality (Klebahn, 12; Marryat, 12a; Clinton, 5; Stämfli, 21; Reynolds, 17; Atkinson, 23; Edgerton, 23; Reddick 23; Fromme, 10; Taylor, 22; Dodge, 8a). Wolf (23), Adams (1), and Colley $(7,8)$ have given more attention to the cases. They agree in considering internal spore-formation as a non-adaptive, abnormal development of the parasite. Wolf (23) lays to chance the more deep-seated position of some sori, which causes them to push inward and open toward the center as the line of less resistance. He believes the causes must be the same as those which bring about production of spores in general. Adams (1) considers the development of the internal uredosori favored by an abundant mycelium and by the texture of the Dianthus leaf, which "allows wide ramifications of the rust
mycelium." Colley (7) thinks internal sori are to be expected, in spite of unfavorable position, whenever the point at which the sorus begins to form is located beneath a layer of tissue which offers a greater resistance than the developing sorus can overcome. In the many cases where internal sori are obviously formed under conditions which afford ample space it may still be that the line of least resistance is inward. The point of interest in both these cases is why the fungus should form spores under either of these conditions. Miss Marryat (12a) reports a very interesting case in the formation of abortive sori in immune Einkorn wheat. They lay beneath the epidermis and deep down in the leaf tissue. The spores however were small, ill-shaped,

Fig. 1. Uredospores in a pocket at the base of an external sorus on a corn leaf. Stalks of the uredospores are represented diagrammatically and incomplete as they were shrunken in the preparation. Drawing made with camera lucida, $\times 160$.
and scarcely recognizable as such. This would seem to be a case in which the general impoverished condition of the fungus had led to widespread abortive attempts at spore formation in the mycelium.

I found internal sori of Puccinia Sorghi on corn grown in the plant house of Columbia University during 1921 and 1922. The material was fixed in Fleming's medium solution, cut 7.5μ thick, and stained with triple stain. Two instances of uredosori were observed: one in a leaf, the other in a leaf sheath. Several instances of teleutosori were found: in the leaf, in the leaf sheath, in the stem, and in the soft tissue of an abnormally branched ear.

The first instance was one of uredospores found in April 1921, in sections made through an erumpent sorus upon a mature
leaf. The mesophyll is heavily infected with crowded intercellular hyphae from which the sorus arises, and at its base there is a space in the midst of the hyphal mass enclosing a few uredospores (Fig. i). This pocket extends through a series of about one hundred sections, 7.5μ thick, and from one to three spores lie in the pocket in each section. In the few cases where the point of origin of the spores is indicated, the attachment of the uredospores is on the side of the sorus above.

The second instance of internal uredospores was found in 1922 in a leaf sheath which, as the result of inoculation from spores placed between stem and sheath, showed a heavy infection. A succession of erumpent sori occurs between the veins on the inner surface of the sheath. These sori themselves are internal in so far as the chance for dissemination of spores is concerned but, in addition, intercellular strands of hyphae connect with young sori developing on the outer surface of the sheath, and in the midst of these intercellular hyphae there is an internal sorus appearing as a mass of close-packed angular uredospores. The mesophyll cells near the internal sorus show small haustoria and the cells are many of them hypertrophied, a condition not usually apparent in infected corn leaves. The pocket seems to have been formed by the breaking down of a host cell. This pocket formation suggests the hyphal arrangement described by Richards (18) for Uromyces Caladii, and by Nemec (14) for Uromyces Betae although there is in these cases no internal spore formation. Richards describes hyphae which, starting in large intercellular cavities, push out and surround neighboring cells, cutting them off from their fellows. Such isolated cells, he says, are usually completely broken down and absorbed. Nemec describes intercellular hyphae of Uromyces Betae which fill not only the original intercellular spaces but also spaces made by dissolving the middle lamella until many host cells appear completely enclosed by a hyphal felt. It is also of interest to compare the internal cysts of the corn rust with the close-packed masses of intercellular hyphae which Clinton (6) figures for Cronartium ribicola in needles of Pinus Strobus. These sclerotia, as he names them, are a tangle of hyphal threads, which swell the intercellular space to abnormal proportions. Such host cells as are enclosed in them are finally disintegrated. There is no hollow center in these masses, as in the case of the internal sori
in the corn. The production of spermatia and aecidia comes later in the pine stem, and Clinton believes that these sclerotia function as "storehouses to insure the penetration of the fungus through the vascular system of the leaf into the stem."

I first found internal teleutospores in a mature leaf on the under side of which a confluent line of teleutosori had broken the epidermis for a distance of approximately 2 cm . This strip of leaf was cut into pieces 3 mm . long and prepared for sectioning.

FIG. 2. Internal teleutosorus in a storage cell of the midrib tissue of a corn leaf underlying an external sorus. Drawing made with camera lucida, $\times 400$.

The sections disclosed a succession of internal teleutosori, which apparently ran parallel with the external line of spores. In this midrib region of the mature leaf the bundles lie in the chlorenchyma close to the lower epidermis, while above them large thin-walled storage cells extend to the upper epidermis, giving the characteristic thickened central region of the corn leaf. The external sorus extends between two primary veins over two secondary veins. The close-set hyphal mass from which the teleutospores arise is of very limited depth above the bundles. Scarcely more than the epidermis seems to be destroyed. There
is little distortion of the cells below. The intercellular spaces are packed with hyphae, from which many small haustoria enter the cells. In the large-celled tissue also, although the intercellular spaces are filled with hyphae, there has been little crowding apart of the cells. Therefore the group of internal sori stands out sharply in the parenchyma region between the two primary bundles already mentioned as the limits of the external sorus. Each sorus is intracellular and the host cell is not only isolated by intercellular hyphae but is lined with a hyphal felt, thus giving to each sorus the appearance of a more or less complete hollow cyst. All stages of development of these cysts are present. Many cells show simply the small haustoria which penetrate from the intercellular hyphae while the host nucleus when present shows a delicate chromatin net-work and a densely stained nucleolus. Other cells contain long hyphae running parallel to the wall. These seem to enter by a break in the wall close toanintercellular space. In certain cells there is a pseudoparenchymatous wall consisting of a close woven felt of hyphae lining the inside of the cell wall, adnate to it, and clearly distinct from the hyphae which fill the intercellular spaces around the cell. Such so-called cysts may occur singly, or as aggregates of several cells whose boundaries persist. In some cases the central space of such a cyst is filled by teleutospores of irregular shape due to crowding. Again normal teleutospores, complete even to their specially thick end-walls, are borne in a tuft projecting into the cell lumen from one corner of the cell (Fig. 2). The conditions agree with those described, in the following words, by Reynolds (17) for the infected Xanthium leaf, except that he does not mention the intracellular position of the cysts.

Within the mixture of parenchyma cells and mycelium which replaces the normal tissue there are cyst-like bodies which are composed of masses of mycelium. These are hollow spheres and from the inner surface arise telial spores exactly similar to those borne in the normal way upon the exterior of the leaf.

There is in the corn no trace of host cell contents in the cysts, although in some nearby cells encroached upon by intercellular hyphae a granular disintegrated mass remains.

A second instance of internal teleutospores was found in a leaf sheath which was heavily encrusted on both surfaces with teleutosori (Fig. 3). In this case, in the interior of the leaf be-
tween two bundles an enlarged mesophyll cell is lined by a close felt of hyphae from which branches extend toward the center

Fig. 3. Interǹal teleutosorus in mesophyll of a leaf sheath which was heavily encrusted on both surfaces with teleutosori. Drawing made with camera lucida, $\times 16$.

Fig. 4. Internal sorus of Fig. 3, showing intracellular encystment. Drawing made with camera lucida, $\times 400$.
bearing spores of all sizes and shapes (Figs. 3, 4). The surrounding cells are distorted by the hypertrophy of the enclosed cell and by the abundant intercellular mycelium but many of them still show nuclei. Often the large nuclei are indented by haustoria.

A third case was in a stem-one of the upper internodeswhich developed infection from a surface inoculation between sheath and stem. The sections showed a heavy infection in the cortex underlying a mature teleutosorus bordered by two young sori just breaking the epidermis. At the depth of the second vascular-bundle-circle an internal sorus lies in the parenchyma between two bundles. The cells are in some cases fairly complete and show triangular, intercellular spaces but they are encroached upon and broken by hyphae from the intercellular spaces. The largest pocket had been formed by the breaking down of several cells as shown by incomplete remaining partitions. The central space is crowded with angular abnormal spores so incompletely developed by reason of pressure that their identification as teleutospores is doubtful.

Internal teleutosori were found also, as noted, in the tissue of an abnormal branching ear which had been artificially infected. Cuts from the succulent tissue showed to the naked eye brown spots in the white tissue. The sections showed a thin-walled parenchyma tissue with a mesh of slender hyphae in all the intercellular spaces, and the characteristic two-lobed haustoria extending into the cells to the vicinity of the nuclei. Under the external teleutosorus, just within the circle of bundles, pockets occur formed of enlarged broken cells and meshes of hyphae. The hyphae generally enter from the corners of the cells and form tufts of branches bearing irregular, unevenly developed teleutospores.

In the teleutospore cysts, particularly in those of the first case described, one is impressed by the many parallel hyphal strands both within and without the host cell walls which thus form a pseudo-parenchymatous capsule for the spores. Such encystment within the cells has not been described by others. There is evidence, I believe, of the same tendencies which lead to the formation of a mass of hyphae at the base of a normal sorus rather than of adaptation such as is seen by Bolley in the case of subepidermal rusts. The phenomenon of subepidermal
sori Bolley ascribes to a fusion of host cells and fungal hyphae which imprisons the spores before they have become strong enough to rupture and throw off the epidermis. He makes the following suggestion that the subepidermal sori exemplify a further specialization in the interrelation of host and parasite.

It is in completion of the sorus under the uninjured epidermis that the fungus displays a high degree of parasitism in that, when mature, the mat of fungal tissue which surrounds the spores becomes essentially a part of the host.

In the corn, on the contrary, single host cells come to enclose the abnormally placed sori.

In the several cases of internal spores described for the corn rust there are certain points of agreement which need to be considered in any discussion of the significance of the phenomena. First, the cases all developed in the latter part of the winter or in the spring: a period in which the greenhouse begins to afford better growing conditions for corn. It is a matter of repeated observation with greenhouse cultures that from fall through the early winter it is difficult to grow corn and hard to maintain rust cultures on it.

Again it has happened so far that the internal sori all occurred in mature, although still more or less succulent tissue, on plants where many leaves were yellowing, but it is doubtful whether in the case of the corn, ageing of the tissue has anything to do with the production of internal sori. Other authors reporting internal sori have given no evidence upon this point. I am inclined to think that in general in corn as in many hosts of rusts the conditions of teleutospore formation support Morgenthaler's (13) conclusion from experiments with Uromyces Verairi upon Veratrum album that the nutritive supply of the host is an all important factor, and that greater age in the host is one of the conditions which by disturbing the nutritional functions checks uredo, and stimulates teleuto formation. But in the matter of the production of internal sori in the corn the occurrence of internal as contrasted with external teleutosori seems merely an example of excessive reproductive activity. In the first case which I described in the corn the long confluent external sorus on the leaf repeats itself in a succession of cysts just within in the soft parenchyma. The second instance shows internal sori in a leaf already heavily encrusted on both surfaces by sori. In the
rather unusual infection induced in the succulent parenchyma of stem and ear the host conditions have seemed to stimulate the parasite to both vegetative and reproductive excesses, as evidenced by the abundant mycelium emeshing the internal sori. Although Hungerford (11) does not make the point, it seems to me his description of internal teleutosori in the wheat seed involves also good evidence of excessive reproductive activity. He believes these sori in the wheat seed have "no special significance but the infection spreads to these tissues (from the rachis or rachilla) just as it does from an infection point in any of the vegetative parts of the plant."

A third point of agreement is that the internal sori in the corn all occurred when the parasite was mature as shown by the abundant intercellular mycelium and the heavy external spore formation. So far as I can judge this was true in the cases described by others.

Fourth, in the cases described in the corn the sori occur, with one exception, in thin-walled parenchyma tissue: along the midrib of the leaf, in mesophyll between the bundles, in the deeper stem parenchyma, in soft tissue of the ear. The freedom of development which such tissue allows to the fungus is striking. In more resistant tissue this very freedom of development resolves, it seems to me, into development along the line of least resistance. This is the explanation which Colley (8) offers for reversed polarity in some aecidial sori of Cronartium ribicola where he states the aecidial chains grow toward the center of the tree, usually into a resin-duct. Dodge (8a) describes deepseated uredosori of Pucciniastrum americanum in the stem of Rubus strigosus. Some lie deep in the cortex with the peridium on the inner side, just outside the cork cambium and Dodge suggests that such inversion may "facilitate spore discharge the following spring as the cortical parenchyma peels off." Other sori which lie only two or three cells deep beneath the epidermis are erect. In both these cases there is apparently development along the line of least resistance. It seems well illustrated also by Clinton's (5) case of aecidia of Gymnospcrangium in the seed cavities of the apple fruit and by Miss Stämfli's (21) figure of spermagonia of Uromyces Pisi at the insertion of abortive seeds in Eupherbia capsules. Thus the same cause may underlie the development of internal sori in widely differing
environments. The tendency of the mycelium to get to an open surface for fruiting may in one case cause inversion of sori and in another, as in the nests which I have figured, cause a concentric radially oriented structure where the open surface is the center of the cell.

The notable point of agreement in these occurrences of internal sori in the corn is that the sori all lie under external sori. In such connection, it seems to me we must view the internal sori as merely the expression of an excess of reproductive activity arising under favorable conditions of nutrition and maturity of the fungus. The first example described where the internal uredo pocket is really enclosed in the stroma just beneath an external sorus is good evidence of such an expression even under unfavorable circumstances. Here the hyphae forming the fruit cluster have developed uredospores not merely on the upper side but in their crowded meshes below. The second instance of internal uredospores described above is also striking as an expression of excess reproductive activity in cramped conditions. Here both sides of the leaf sheath had external sori. The older were on the inner surface where inoculation occurred. The internal sorus is in a central mesophyll cell and from the enclosing hyphal strands connect with two young sori on the outer surface as though the mycelium in its progressive development through the leaf had fruited, from a tendency toward reproduction, indiscriminately within, as well as on the outer surface. The cases described by Reynolds (17) of internal teleutospore sori in the heavily infected Xanthium leaf, and by Colley (7) in the petioles of dead Ribes leaves seem similar instances of reproductive excess under crowded conditions. Colley's (8) description of internal uredospores in the stems of Ribes hirtellum indicate almost conditions of proliferation. Although at first sight such cramped conditions seem to give the most striking evidence of excess reproductive activity, the many instances of internal sori developed in soft tissues and along lines of least resistance should, I think, be similarly interpreted. I see excess reproductive activity, for example, in the abundant growth of mycelium and formation of teleutosori found in the young succulent ear of corn, and again in the parenchyma of a corn stem. The internal sori of Uromyces in the carnation leaf (Adams, 1) and Cronartium ribicola in the pine stem (Colley, 8) although under
such different conditions are also linked by reference to the activities of reproductive maturity.

It is by no means sufficiently clear just what is involved in our conception of reproductive maturity but these cases of spore formation in abnormal and non-adaptive positions certainly emphasize its importance in determining both structural and functional modifications.

It is a pleasure to acknowledge the assistance of Dr. Robert A. Harper of Columbia University in work upon this problem

Literature cited

I. Adams, J. F. Internal uredinia. Mycologia 8: 181-182. 1919.
2. Beauverie, M. J. Frequence des germes de rouille dans l'interieur des semences de gramininées. Compt. Rend. Acad. Sci. Paris 157: 787-790. 1913.
3. Bolley, H. L. Sub-epidermal rusts. Bot. Gaz. 14: 139145. 1889.

4 Bolley, H. L., \& Pritchard, F. J. Rust problems. North Dakota Agr. Exp. Sta. Bull. 68: 607-672. 1906.
5. Clinton, G. P. Notes on fungous diseases. Rept. Connecticut Agr. Exp. Sta. Part 12: 853. 1908.
6. Clinton, G. P. Infection experiments of Pinus strobus with Cronartium ribicola. Connecticut Agr. Exp. Sta. Bull. 214: 428-459. 1916-1918.
7. Colley, R. H. Internal Telia. Jour. Agr. Research 8: 329332. 1917.
8. Parasitism, morphology and cytology of Cronartium ribicola. Jour. Agr. Research 15: 619-659. 1918.

8a. Dodge, B. Morphology and host relations of Pucciniastrum americanum. Jour. Agri. Research 24: 885-893. 1923.
9. Eriksson, J., \& Henning, E. Die Getreideroste. Stockholm. 1896.
10. Fromme, F. D. The aecidium cup. Bot. Gaz. 58: 1-35. 1914.
11. Hungerford, C. W. Rust in seed wheat and its relation to seedling infection. Jour. Agr. Research 19:257-277. 1920.
12. Klebahn, H. Puccinia cari-bistortae. Zeitschr. Pflanzenkrank. 9: 159. 1899.
12a. Marryat, D. C. E. Notes on the infection and histology of two wheats immune to the attacks of Puccinia glumarum, yellow rust. Jour. Agri. Sci. 2, pt. 2: 129-138. 1907.
13. Morgenthaler, \mathbf{O}. Uber die Bedinungen der Teleutosporenbildunge bei den Uredineen. Centralbl. für Bakt. 27²: 73-93. 1910.
14. Nemec, B. Zur Kenntnis der niederen Pilze. II. Die Haustorien von Uromyces Betae Pers. Bull. Internat. Acad. Sci. Bohême. I91I.
15. Pritchard, F. J. The wintering of Puccinia graministritici E. \& H. and the infection of wheat through the seed. Phytopathology 1: 150-154. 1911.
16. -. A preliminary report on the yearly origin and dissemination of Puccinia graminis. Bot. Gaz. 52:169192. pls. 4. 1911.
17. Reynolds, E. S. Relation of parasitic fungi to their host plants. I. Studies of parasitized leaf tissue. Bot. Gaz. 53: 365-395. f. I-Q. 1912.
18. Richards, H. M. On some points in the development of aecidia. Proc. Am. Acad. 31 : 255-269. 1895.
19. Smith, W. G. Corn mildew. Gard. Chron. 24: 245. 1885.
20. Corn mildew and barberry blight. Gard. Chron. n. s. 25: 309-310. 1886.
21. Stämfli, R. Untersuchungen über die Deformationen welche bei einigen Pflanzen durch Uredineen hervorgerufen werden. Bern. 1909.
22. Taylor, M. W. Internal aecia of Puccinia albiperidia (Arthur). Phytopathology 11: 343-344. 1921.
23. Wolf, F. A. Internal aecia. Mycologia 5: 303-304. 1913.

New species of Uredineae-XV*

Joseph Charles Arthur

The following new species and new combinations are the result of studies carried on since the publication of the fourteenth article in this series, somewhat more than a year ago. They include some unusually interesting forms of the Uredinales.

Coleosporium Spigeliae sp. nov.
O and I. Pycnia and aecia unknown.
II. Uredinia hypophyllous, in groups $2-6 \mathrm{~mm}$. across, on slightly discolored areas, the sori $0.3-0.5 \mathrm{~mm}$. apart or somewhat confluent, roundish, $0.3-0.8 \mathrm{~mm}$. in diameter, soon naked, yellowish or nearly colorless, pulverulent, ruptured epidermis inconspicuous; urediniospores irregularly globoid or ellipsoid, 13-18 by 15-23 μ; wall colorless, thin, about 0.5μ, closely and evenly verrucose.
III. Telia unknown.

On Spigelia Humboldtiana Cham. \& Schlecht. (Loganiaceae), Sierra de Apaneca, in the region of Finca Colima, Department of Ahuachapan, Salvador, January 17-19, 1922, 20170; near Ahuachapan, Salvador, altitude 800-1000 meters, January 9-27, 1922, 20278 (type); near Quirigua, Department of Izabal, Guatemala, altitude 75-225 meters, May 15-31, 1922, 23933; all collected by Paul C. Standley.

The sori of this species are subepidermal, and have the gross appearance of other uredinia in the genus Coleosporium. The absence of a peridium and the catenulate, verrucose spores also agree with characters of Coleosporium. But all these characters could also belong to a species of Melampsoropsis. Moreover, the spores are small, the largest scarcely equaling the smallest of any other known species of Coleosporium. These considerations throw some doubt on the present assignment of the species.

Another source of some uncertainty is the presence on the same leaves, and often among and close to the uredinial sori, of telia-like spores, much resembling a rust. These spores are in

[^6]small, subepidermal groups, forming a single restricted layer. They are small, about 15 by 25μ, smooth, with walls evenly thin, about $I \mu$. The writer can not place this fungus, but because of a blackish color, spreading into the surrounding tissues, the small size of the spores, and because, if it be assumed that they belong with the uredinia, it does not agree with any known genus of rusts, it is believed not to belong to the Uredinales.

Coleosporium aridum H. S. Jackson, sp. nov.
O and I. Pycnia and aecia unknown.
II. Uredinia hypophyllous, scattered or gregarious, small, roundish, $0.2-0.3 \mathrm{~mm}$. across, orange-yellow fading to paleyellow, early naked, ruptured epidermis noticeable; urediniospores globoid or ellipsoid, $16-20$ by $20-28 \mu$; wall colorless, I-I. 5μ thick, closely, finely and uniformly verrucose.
III. Telia unknown.

On Coleosanthus californicus (T. \& G.) Kuntze (Brickellia californica A. Gray) (Carduaceae), Andreas Cañon in the Mojave desert, Riverside County, California, March 12, 1922, P. A. Munz 4720. The specimen was communicated by Professor W. C. Blasdale. The material in hand is meager, but indicates a strong and characteristic development of the rust.

Milesia Scolopendrii (Fuckel) comb. nov.
Ascospora Scolopendrii Fuckel, Jahrb. Nass. Ver. Nat. 27-28: 19. 1873.
Uredo Scolopendrii Schroet. Krypt. Fl. Schles. 3: 374. 1887.
Uredinopsis Scolopendrii Rostr. Bot. Tidsskr. 21: 42 . 1897.
Melampsorella Blechni Syd. Ann. Myc. 1: 537. 1903.
Milesina Blechni Syd. Mycoth. Germ. 877. 1910.
Milesina Scolopendrii Jaap, Fungi Sec. Exsicc. 57I. 1912.
Milesia Blechni Arth. Bot. Gaz. 73: 61. 1922.
Two forms of a common European rust on certain ferns are here united as the result of a careful study of a large number of collections. The morphological characters of the two are the same. The opinion of the writer regarding their identity is also held by Klebahn (Krypt.-fl. Brand Pilze 3: 853), and possibly by others.

The highly absurd claim that the genus Milesia is "obsolete" cf. Jour. Bot. 59: 109. 1921), because, as W. B. Grove says) (Brit. Rust Fungi, p. 377), "it was founded on an imperfect
state which might belong to any one of several genera," may be dismissed as untrue, for he himself points out further along on the same page, that "the markings on the spores [urediniospores] of this and the allied species are more often of the nature of mere roughnesses than like the neat and regular higher types (Puccinia, etc.)." He described and figures three British species of the genus, and has since added two more, without a word describing teliospores, which in fact are scarcely known and wholly negligible taxonomically, the urediniospores being sufficient to separate the species, and the genus as well.

Milesia australis nom. nov.

Uredo Blechni Diet. \& Neg. Bot. Jahrb. 22: 358. 1896. Not Milesia Blechni Arth. 1922.
The urediniospores are much smaller and thinner-walled than in Milesia Scolopendrii of Europe. The original collection of Uredo Blechni Diet. \& Neg. was made near Concepcion, Peru, in May, 1896, on Blechnum hastatum. The same fungus on Lygodium polymorphum from Trinidad, Thaxter 45, was erroneously listed by the writer (Bot. Gaz. 73: 61. 1922) under the name Milesia Blechni, a synonym of M. Scolopendrii, and a name belonging to a European species, not yet found on the Western Hemisphere.

Chrysopsora Cestri (Diet. \& Henn.) comb. nov.
Puccinia Cestri Diet. \& Henn.; P. Henn. Hedwigia 41: 295. 1902.

This characteristic species has been known for more than a couple of decades, the type collection being from Brazil, but without being recognized as belonging to the genus Chrysopsora. The spores are much smaller than in C. Gynoxidis Lagerh., the only species heretofore assigned to the genus, but the germination shows the same peculiar Coleosporiaceous character. The species has now been found in Central America, having been collected in Dept. Bocas del Tora, Panama, on C. aurantiacum Lindl., September 1920, by M. A. Carleton, no. 35, and in same region, June 1921, by John R. Johnston, no. 2555. It was also collected on Cestrum sp. at Estrella, Costa Rica, in 1920, by John R. Johnston, no. I20I.

Chrysopsora Mikaniae sp. nov.

O. Pycnia chiefly epiphyllous, few in groups on discolored spots $2-4 \mathrm{~mm}$. across, prominent, dark brown, immersed, globoid, $112-125 \mu$ in diameter; ostiolar filaments short or wanting.
III. Telia hypophyllous, in annular groups i.5-4 mm.across, roundish or oblong, $0.3^{-1} \mathrm{~mm}$. long, soon naked, at first waxy and reddish or golden yellow, becoming somewhat pulverulent and dirty white, ruptured epidermis usually conspicuous; teliospores cylindric, $13-16$ by $54-63 \mu$, rounded at both ends, not constricted at septum; wall colorless, uniformly thin, 1μ, smooth; pedicel colorless, fragile, about as thick and long as the spore.

On Mikania buddleiaefolia DC., Theresopolis, Estado do Rio, Brazil, September 28, 1921, E. W. D. \& Mary M. Holway 1150 (type); Mikania sp., San Felipe, South Yungas, Bolivia, May 21, 1920, E. W. D. \& Mary M. Holway 637 (Carduaceae). The teliospores of this species have considerable resemblance to those of Puccinia Spegazzinii De-Toni, also occurring on Mikania, but differ greatly in their mode of germination. The presence of conspicuous pycnia and very dissimilar telia make the two species readily separable under a hand lens.

Diorchidium brasiliensis sp. nov.

O. Pycnia epiphyllous and petiolicolous, punctiform, brownish, not conspicuous, subcuticular, flattened-conoidal, $32-40 \mu$ high by $90-110 \mu$ broad; ostiolar filaments short or wanting.
III. Telia hypophyllous and petiolicolous, scattered, of ten confluent, roundish, $0.3-0.5 \mathrm{~mm}$. across, subepidermal, soon naked, chestnut-brown, pulverulent, ruptured epidermis noticeable; teliospores broadly ellipsoid or obovoid, the septa vertical, the cells binate, each one being obovoid or ellipsoid, $13-16$ by $20-25 \mu$, rounded above, narrowed or rounded below; wall pale chestnut-brown, uniformly thin, i-I. 5μ, coarsely verrucose above, smooth or somewhat verrucose below, the pore apical or nearly so; pedicel colorless, simple, short, fragile, almost wholly disappearing from the spore.

On Cassia sp. (Caesalpiniaceae), Rio de Janeiro, Brazil, August 9, 1921, E. W. D. \& Mary M. Holway 1009. The genus Diorchidium was established by Kalchbrenner in 1882 (Grevillea 11:26), for a South African rust on Millettia caffra Meissn., a leguminous host. The genus was characterized as having teliospores with didymous cells separated by a vertical septum.

Many species having teliospores with more or less vertical septa have since been placed under the genus, but more recently all of these, including the original species, have usually been referred to the genus Puccinia. With the discovery of the subcuticular pycnia, and the consequent certainty that only pyenia and telia occur in the life cycle, all doubt of the validity of the genus is removed. In addition to the type species and the present one the following appear to me to be genuine members of the genus: D. Piptadeniae Dietel. on Piptadenia latifolia, D. Puiggarii Speg., on Cassia sp., and D. australe Speg., on Mimosa Roca, all three from South America.

Puccinia Lygodii (Hariot) comb. nov.
Uredo Lygodii Hariot, Jour. de Bot. 14: 117. 1900.
O and I. Pycnia and aecia unknown.
II. Uredineae hypophyllous, scattered or somewhat gregarious, round, $0.3-0.5 \mathrm{~mm}$. in diameter, at first bullate, becoming naked, pulvinate, moderately pulverulent, cinnamon-brown, prominent, ruptured epidermis inconspicuous; urediniospores ellipsoid or obovoid, $18-23$ by $26-29 \mu$; wall pale cinnamonbrown, thin, $\mathrm{I} .5 \mu$, moderately and evenly echinulate, the pores indistinct, probably 2 or 3 , equatorial.
III. Telia hypophyllous, scattered, round or oblong, o.5-1 mm . long, soon naked, pulvinate, cinnamon-brown, ruptured epidermis inconspicuous; teliospores globoid, broadly ellipsoid or obovoid, 19^{-23} by $24^{-29 \mu}$, rounded above, rounded or somewhat narrowed below, not constricted at septum, pale cinnamonbrown, 1.5μ thick, thicker above, $3-7 \mu$, smooth, the septum variously oblique; pedicel colorless, about length of spore.

On Lygodium polymorphum (Cav.) H. B. K. (Schizaeaceae), near Bahia, Brazil, May 28, 1915, J. N. Rose \& P. G. Russell 21514. A collection of the host, made at the same place and date, bearing the number 19664a, now in the National Herbarium, also shows an abundance of the rust. For a fragment from this sheet I am indebted to W. R. Maxon. This is the material erroneously referred to by the writer as Desmella, in Bot. Gaz. 73: 62. January 1922. The superficial appearance of the rust is not unlike that of a Desmella, but by making sections it is easily seen that the sori are subepidermal, and wholly accord with those of the genus Dicaeoma, to which it may be referred as D. Lygodii (Hariot) comb. nov. This is the first
fern rust to be referred to the genus Dicaeoma, and is undoubtedly heteroecious. The pale color of the teliospore-walls and the generally oblique septum remind one of species in Desmella. It can scarcely be doubted that we have in this species the most primitive form yet known in the great genus Dicaeoma.

Puccinia ecuadorensis sp. nov.

II. Uredinia hypophyllous, scattered or somewhat grouped, roundish, applanate, $0.2-0.4 \mathrm{~mm}$. across, early naked, pulverulent, cinnamon-brown, ruptured epidermis evident; urediniospores globoid, $23-30 \mu$ in diameter; wall cinnamon- or goldenbrown, moderately thick, $1.5-3 \mu$, sparsely and prominently verrucose-echinulate, the pores evident, usually 6, scattered.
III. Telia hypophyllous, similar to the uredinia; teliospores oblong or clavate-oblong, $19-23$ by $42-48 \mu$, rounded or obtuse above, narrowed below, somewhat constricted at septum; wall pale cinnamon-brown, thin, $\mathbf{I}-\mathrm{I} .5 \mu$, thicker above, $3-5 \mu$, smooth; pedicel nearly or quite colorless, slender, as long as spore or less.

On Wedelia sp. (Carduaceae), vicinity of Guayaquil, Ecuador, August 11, 1918, II, iii, J. N. \& Geo. Rose 22113. The general aspect of this rust is similar to that of Puccinia Helianthi Schw., but the urediniospores and teliospores appear abundantly distinct. The available material is scanty, and only a few old telia were found, all upon one leaf. All of the teliospores had germinated, and were more or less collapsed. The urediniospores are remarkable in having a number of scattered pores; most of the rusts known on the tribe Heliantheae have but two equatorial pores.

Puccinia minuscula sp. nov.

O. Pycnia epiphyllous, subepidermal, globoid, $110-128 \mu$ in diameter; ostiolar filaments long and prominent.
I. Aecia hypophyllous, in groups 2 to 3 mm . across, without much discoloration, cylindric or cupulate, $0.3^{-0.5 ~ m m}$. in diameter; peridial cells in face view oblong-polyhedric, 16-23 by $35-48 \mu$, prominently verrucose, in section linear, 7-9 by $32-45 \mu$, scarcely overlapping, the outer wall very thin, about 1μ, smooth, the inner wall slightly thicker, $1.5-2 \mu$, verrucose; aeciospores ellipsoid, $19-26$ by $30-35 \mu$; wall colorless, thin, about 1μ, coarsely verrucose, reticulate, or reticulately rugose.
II. Uredinia hypophyllous, thickly scattered, round, o.30.5 mm . in diameter, soon naked, applanate, cinnamon-brown, pulverulent, ruptured epidermis inconspicuous; urediniospores broadly ellipsoid or globoid, 23-26 by 26-29 μ; wall light cinna-
mon brown, $\mathrm{I}-1.5 \mu$ thick, finely and closely echinulate, the pores indistinct, about 6, scattered.
III. Telia hypophyllous, similar to the uredinia, somewhat pulvinate, chestnut-brown, ruptured epidermis inconspicuous; teliospores oblong or cylindroid, $18-21$ by $48-67 \mu$, rounded or blunt at both ends, slightly or not constricted at septum, germinating at maturity; wall dark cinnamon-brown, uniformly thin, about $\mathrm{I} \mu$, or slightly thicker at apex with a small hyaline papilla over germ-pore, smooth; pedicel delicate, colorless, $10-16 \mu$ in diameter, collapsing, once to twice length of spore.

On Helianthus hypargyreus Blake ined. (Carduaceae), vicinity of Huigra, Ecuador, on the Hacienda de Licay, September 6, 1918, i, II, III, J. N. \& Geo. Rose 22560. This species, like P. ecuadorensis, has urediniospores with scattered pores, which taken with the long delicate teliospores with their obtuse ends, germinating at maturity, make it a distinctive form. The markings of the aeciospores are also unusual, often appearing distinctly reticulate. Only old aecia have been seen, which have not yielded all the characters with certainty.

Uromyces Standleyanus sp. nov.

II. Uredinia hypophyllous, scattered or closely gregarious, round, $0.3-0.5 \mathrm{~mm}$. in diameter, soon naked, pulverulent, cin-namon-brown, ruptured epidermis inconspicuous; urediniospores broadly ellipsoid or obovate, $23-26$ by $29-32 \mu$; wall pale golden-brown with a colorless outer layer becoming evident in lactic acid, moderately thick, 3μ, strongly and sparsely echinulate, the points $3-5 \mu$ apart, the pores indistinct, apparently 3 , approximately equatorial.
III. Telia hypophyllous, scattered, round, about 0.5 mm . in diameter, soon naked, pulvinate, cinnamon-brown, slightly darker than the uredinia, ruptured epidermis inconspicuous; teliospores obovate or cuneiform, 15-19 by 38-42 μ, rounded above, narrowed below, germinating at maturity; wall pale cinnamon-brown, thin, 1μ, greatly thickened above, $12-16 \mu$, smooth; pedicel colorless, fragile, length of spore or less.

On Gaudichaudia Schiedeana Juss. (Malpighiaceae), near Tonacatepeque, Department of San Salvador, Salvador, Dec. 30, 31, 1921, Paul C. Standley 1946r. This species possesses the sparsely and strongly echinulate urediniospores so general in the rusts of the Malpighiaceae, and also the hygroscopic layer beneath the cuticle, causing the cuticle to swell like a
bladder. Of the nine or more other species of rusts known on Malpighiaceae all but Puccinia barbatula Arth. \& Johnston, from Cuba, have sculptured teliospores, but that species and the present one are in every other way unlike.

I am especially pleased to have this opportunity to call attention to the excellent work of Mr. Paul C. Standley of the National Herbarium, as a taxonomist and collector. Although largely engaged with phanerogamic plants, he has made notable additions to the knowledge of the cryptogams. In his recent botanical excursion to Salvador, a region heretofore almost unknown to uredinologists, he obtained about 125 collections of rusts, among them being some new species. The name given to the present species is in recognition of Mr. Standley's contribution to uredinology.

Uromyces Betheli sp. nov.

O. Pycnia not seen.
I. Aecia hypophyllous, in orbicular groups $2-5 \mathrm{~mm}$. across, short, cupulate, $0.3-0.4 \mathrm{~mm}$. in diameter; peridium colorless, fragile, the margin recurved, ragged; peridial cells rhomboidal, 16-19 by $20-32 \mu$, somewhat overlapping, the outer wall $5-7 \mu$ thick, transversely striate, smooth, the inner wall thinner, I.5$2.5 \mu$, strongly verrucose; aeciospores globoid, ellipsoid or oblong, 13-16 by $16-22 \mu$; wall colorless, thin, $\mathrm{I} \mu$, finely verrucose.
III. Telia mostly hypophyllous or caulicolous, intermixed with the aecia or separate, roundish or oblong, $0.5-0.8 \mathrm{~mm}$. across, of ten confluent into groups $2-5 \mathrm{~mm}$. across, soon naked, somewhat pulverulent, dark chestnut-brown, ruptured epidermis evident; teliospores globoid, $25-30 \mu$ in diameter; wall chocolatebrown, $3-4 \mu$ thick, sometimes slightly thicker above, coarsely and closely verrucose; pedicel colorless, fragile, half length of spore or less.

On Silene verecunda S. Wats. (Caryophyllaceae), Whitmore, California, June 26, 1923, E. Bethel. This is the first Caryophyllaceous rust known in which the telia immediately follow the aecia with no production of uredinia. Uromyces Lychnidis Tracy \& Earle was originally described without uredinia. But they do occur, and this name is now made a synonym of U. Suksdorfii Diet. \& Holw. Beside the two species already named there are three other species in North America, viz., U. caryophyllinus, U. verruculosus and U. Silenes. Under the genus Nigredo these names become N. Suksdorfii (Diet. \& Holw.)
comb. nov., N. caryophyllina (Schrank) Arth., N. verruculosa (Schroet.) comb. nov., and N. Silenes (Schlecht.) Arth. In the same manner the new species here described becomes Pucciniola Betheli comb. nov. The last is not correlated with any of the others, for besides the lack of uredinia, the teliospores are more globose, less thickened above, and much more strongly sculptured.

I take especial pleasure in naming this new and interesting species in honor of Mr. Ellsworth Bethel, of Denver, Colorado, who has given many years to the extensive collection and close observation of the Uredinales, particularly throughout the mountainous region of western North America.

Purdue University,
Lafayette, Indiana

Fossil fruits from the Eastern Andes of Colombia

Edward W. Berry
(WITH TWENTY-five text figures)

The interesting fruits described on the following pages are part of a series of paleobotanical specimens that I owe to the friendship and courtesy of Brother Aristé of Bogotá, whose interest in all branches of Natural History is well worthy of emulation in other lands. These specimens come from the localities Zipacón or Cipacón and the Paramo of Guasca, in the Province of Cundinamarca, and at no great distance from Bogotá.

They are from the post Cretaceous coal bearing series of shales and sandstones, and I regret that their precise age is undeterminable. The Saccoglottis is Tertiary and probably late Eocene or Oligocene, the other two species appear to be somewhat younger than the former and may be Miocene or Pliocene.

The Eastern Andes around Bogotá are said by Veatch* to be synclinal mountains, hence there has been an enormous amount of erosion in late geological times, as the uplift was admittedly very recent. \dagger The present fossils, which are tropical forms, support the view of the recency of elevation, but are less significant than they would be if precisely dated.

The locality at Zipacon at the mines is 8185 feet in altitude and it therefore falls in the subtropical altitudinal zone which, according to Chapman, \ddagger lies between 6000 and 9500 feet. I suppose that Saccoglotis might live at 8185 feet in that latitude but its optimum conditions would be at a lower level and I imagine the rainfall would have to be greater than it is at the present time. I do not know the altitude of the locality of Guasca from which the other two specimens were obtained. It is spoken of as Paramo, but may not be true Paramo, since the western upland of the Sabana of Bogotá has the Paramo of San

[^7]Fortunata and the Paramo of Pasquilla, the one slightly under and the other slightly over 10,000 feet. The true Paramo in the Eastern Andes near Bogotá lies, according to Chapman, above 12,000 feet. At any rate Guasca appears to be in the temperate altitudinal zone ($9500-12,000$ feet) and therefore unsuited at its present elevation for Simaruba and Cordia.

Figs. 1-19. Cordia vera Berry, sp. nov. 20-22. Saccoglottis cipaconensis Berry, sp. nov. 23-25. Simaruba versicoloroides Betry, sp. nov.

These species therefore indicate a certain undeterminable amount of uplift since they were living in the region. The question of actual amount is so complicated by direction of winds, consequent humidity, and position of exposure, that much more knowledge will have to accumulate before precise data are available, but it is not without either interest or significance that all of the evidence of this sort from the Andes in Bolivia, Peru, and Colombia, meager as it is, all points in the same direction, and
places the uplift of this great mountain chain in late Tertiary times. Indeed the distributional evidence of the avifauna of Colombia, set forth in such a masterly way by Chapman (op. cit.), leaves little to be added in the future in the way of proof beyond confirmation, from a study of the past floras of the region-today a practically unknown field.

Order GERANIALES

Family SIMARUBACEAE
Genus Simaruba Aublet
Simaruba versicoloroides sp. nov.

> Figs. 23-25

Species based upon the crustaceous stones of a thin fleshed unsymmetrical drupe. These are compressed so that their lateral diameter (maximum thickness) is about half their width and about one-third their length The surface is conspicuously marked by anastomosing low ridges separated by shallow unsymmetrical longitudinally elongated depressions. These stones are not bilaterally symmetrical in any profile. They are broadly rounded proximad with a conspicuous scar one-third of the distance from the widest side. Distad they terminate as a blunt point, the profile when viewed from the side is therefore approximately elliptical, widest in the middle and slightly more narrowed distad than proximad. When viewed from the edge the profile is very slightly sigmoid, more broadly rounded proximad than distad. Viewed from below the profile is elliptical, more broadly rounded toward the inside than the outside, the scar occupying the position of the inner foci of the ellipse toward its inner edge.

Length 3.2 cm . Maximum width 2.0 cm . Thickness I.I cm .

The identity of this well marked and characteristic drupaceous stone has proved somewhat of a puzzle but it appears to be referable to the genus Simaruba and doubtless with adequate recent material for comparison could be closely matched among existing species. Among these in so far as comparisons have been possible, it most closely resembles Simaruba versicolor St. Hil., a Brazilian species, and this resemblance is recognized in the specific name proposed for it.

The genus Simaruba of the family Simarubaceae has about 6 existing species, confined to the warmer parts of the Western

Hemisphere in the region extending from southern peninsular Florida to Brazil. The characteristic leaflets of the pinnate leaves have occasionally been found fossil and three species, based upon leaves, have been described by the writer. These are Simaruba eocenica* from the Eocene of Tennessee, Simaruba miocenica \dagger from the Miocene of Venezuela and Simaruba haitensis \ddagger from the Miocene of Haiti. The present is the first recorded occurrence of fossil fruits of this interesting genus.

The specimens figured are from Guasca, Province of Cundinamarca.

Family HUMIRIACEAE

Genus Saccoglottis Martius

Saccoglottis cipaconensis sp. nov.
Figs. 20-22
Fruits relatively small, drupaceous, with thin mostly corroded flesh (sarcotesta). The stone or pericarp varies in form from a nearly rounded prolate spheroid with but slight evidence of a beak to elongate specimens with a pronounced central pointed beak. The proximal end of the stone is rounded, with a chalazal scar centrally located. The distal end, as mentioned above, is more or less acutely pointed. The surface is minutely mammillated, and if these mammae represent the resin cysts which are so prominent in the modern Saccoglottis amazonica which is the only living species of which I have had fruits for comparison, these cysts are much smaller in the present fossil than in the existing species, or in the Pliocene Saccoglottis tertiaria Berry of Bolivia.

The stone has imbedded in it from five to seven large seeds arranged symmetrically around the central axis, more rounded distad and more pointed proximad, narrowing inward with flat sides and triangular in cross section. These seeds are narrowly much elongate-elliptical in surface outline and are mostly $1.5-1.75 \mathrm{~cm}$. in length and $2-3 \mathrm{~mm}$. in width. The seeds are somewhat unequally developed in all of the specimens, but not markedly so. Of the four specimens collected one is five-seeded, two are six-seeded, and one is seven-seeded. The total dimen-

[^8]sions of the stone are $1.75^{-2.25} \mathrm{~cm}$. in length and $1.2-1.5 \mathrm{~cm}$. in greatest diameter, which is in the equatorial region. The present species is of unknown age and comes from Cipacón, or Zipacón in the Province of Cundinamarca, which locality is commemorated in the specific name.

Since this paper was submitted for publication I have received a considerable collection of silicified fruits from the upper Eocene (Lobitos formation) of Peru. Among these are the abundant remains of a Saccoglottis, scarcely, if at all, distinguishable from the present species, which leads me to think that the latter may be as old as late Eocene or early Oligocene.

I know of no plant family except the Humiriaceae which has the features shown by these fruits, that is, thin flesh, woody stone with radially symmetrically arranged seeds. The family is a small one, consisting of but three or four genera and about a score of existing species. The nearest living relative of the fossil in the upper basin of the Amazon I am unable to state, being hampered in this respect by the lack of comparative material. This scarcity is well illustrated by the number of years that elapsed before the botanists at Kew could determine the fruits of Saccoglottis amazonica, which are so abundant in the Antillean sea drift.

The modern Humiriaceae are usually segregated into the three genera Humiria, Vantanea and Saccoglottis, and all of the species are dwellers in the wet forests of Brazil, the Guianas, Venezuela and eastern Peru, except the single west African species Saccoglottis or Humiria gabonensis Urban, which is sometimes considered the type of a fourth genus-Aubrya. The genus Saccoglottis has about ten existing species in the region mentioned above, and Saccoglottis amazonica, whose curious fruits are such a feature of the sea drift in the Antilles, and has even reached southwestern England, is an inhabitant of the estuarine forests of the great rivers of Brazil, the Guianas, and Venezuela, and a few individuals have been found growing in southern Trinidad. The tree has never been recorded from Colombia, Central America, or the Pacific coast, but 1 collected characteristic fruits in the sea drift of Panama Bay, and I subsequently came across a record from the Pacific coast of Costa Rica. The presence of a fossil species in central Colombia, of a second fossil species in Bolivia and the finding of Saccoglottis amazonica on
the Pacific coast of Central America suggests an American origin for the family, and that the single west African coastal species reached that region either by means of the equatorial counter current, or before the continental outlines had assumed their present form.

Order POLEMONIALES

Family BORAGINACEAE

Genus Cordia Linné
Cordia vera sp. nov.

Figs. $1-19$

Fruit a more or less elongated drupe with a thin flesh, which is not over I mm. thick as lignified; the interior filled with a relatively large woody stone. Stones varying considerably in size and proportions, ranging from prolate spheroids in the smaller specimens to cylindrically tapering forms somewhat truncated proximad and somewhat narrowed and rounded distad. They are slightly compressed by pressure during fossilization and are frequently somewhat curved but whether the last is a natural or assumed feature cannot be determined. The surface of the stone is faintly and shallowly longitudinally sulcate; the walls are thick and there are from one to four long seed-cavities somewhat reniform in cross section when not distorted by pressure. Sometimes but one is abortive, more frequently two or three are abortive. Dimensions ranging from $6 \times 4 \mathrm{~mm}$. in the small less elongated forms, which are far less common than the more elongated forms, to $14 \times 5 \mathrm{~mm}$. in the latter. Average of a great many specimens slightly under the maximum dimensions.

There are a number of unrelated drupaceous genera with fruits superficially like the fossils, particularly in the families Rubiaceae and Boraginaceae. Many somewhat similar stones are only single-celled. Others like the rather similar stones of the genus Chomelia (Rubiaceae) are two-celled.

The genus Guettarda of the Rubiaceae has stones with from four to nine cells, but these are less elongated than the fossils. There is naturally very little available material of recent species for comparison. Among this the fossils agree remarkably with the one- to four-celled stones of the genus Cordia. I am unable to point out the most closely related existing species of Cordia, since the majority of the species are not represented by fruiting material in the larger herbaria, but there can be no doubt but that the fossils represent a late Tertiary species of this genus.

Berry: Fossil fruits from the Andes of Colombia

The fossils are exceedingly abundant and I have some hundreds of specimens from the lignite deposit at Guasca, in the Province of Cundinamarca. The only previously known fossil species of Cordia are based upon leaves and thus lack the certainty of identification of the present species. They include an Upper Cretaceous species from southeastern North America,* a Tertiary species from Tasmania, \dagger two Eocene species from southeastern North America, \ddagger a lower Miocene species from Chile, \S and a second from Bohemia, $\|$ and an early Pleistocene species from Java. \dagger

The genus comprises about 250 existing species of shrubs or trees of the tropical and warmer extra tropical regions of both hemispheres. The majority are American and the genus is largely developed in northern South America, ranging through the Antilles to the Bahamas and Florida Keys and through Central America and Mexico to the valley of the Rio Grande.

[^9]
INDEX TO AMERICAN BOTANICAL LITERATURE

1923
The aim of this Index is to include all current botanical literature written by Americans, published in America, or based upon American material; the word America being used in the broadest sense.

Reviews, and papers that relate exclusively to forestry, agriculture, horticulture, manufactured products of vegetable origin, or laboratory methods are not included, and no attempt is made to index the literature of bacteriology. An occasional exception is made in favor of some paper appearing in an American periodical which is devoted wholly to botany. Reprints are not mentioned unless they differ from the original in some important particular. If users of the Index will call the attention of the editor to errors or omissions, their kindness will be appreciated.

This Index is reprinted monthly on cards, and furnished in this form to subscribers at the rate of three cents for each card. Selections of cards are not permitted; each subscriber must take all cards published during the term of his subscription. Correspondence relating to the card issue should be addressed to the Treasurer of the Torrey Botanical Club.

Benedict, R. C. Artificial varieties under natural conditions.Can the bud sports of the Boston fern thrive under conditions of natural selection? Jour. Hered. 14: 115, 116.f. io. 30 Je 1923.
Bessenich, H. K. Über Beziehungen zwischen dem Vegetationspunkt und dem übrigen Pflanzenkörper bei Chara. Jahrb. Wiss. Bot. 62: 214-243. f. 1-I4. My 1923.
Blake, S. F. A new Gymnocoronis from Mexico. Proc. Biol. Soc. Washington 36: 179, 180. I My 1923. Gymnocoronis sessilis, sp. nov.
Boshnakian, S. The relation of the spelt factor in wheat to rachis internode characters. Genetics 8: 26I-275. My 1923.

Boynton, K. R. Cornus stricta. Addisonia 8: 13, 14. pl. 263. 15 My 1923.
Native of the southeastern United States.
Boynton, K. R. Deuzzia scabra Watereri. Addisonia 8: 15,
16. pl. 264. 15 My 1923.

Of horticultural origin.

Boynton, K. R. Schizocapsa plantaginea. Addisonia 8: II, 12. pl. 262. 15 My 1923.
Native of China.
Brannon, J. M. Influence of certain sugars on higher plants. Bot. Gaz. 75: 370-389. f. 1-3. 25 Je 1923.

Brinkman, A. H. List of British Columbia Hepatics. Canad. Field-Nat. 37: 94-96. 5 My 1923.

Brisley, H. R. Studies on the blight of cucurbits caused by Macrosporium cucumerinum E. \& E. Phytopathology 13: 199-204. II My 1923.
Brotherton, W. Further studies of the inheritance of "Rogue" type in garden peas (Pisum sativum L.). Jour. Agr. Research 24: 815-852. pl. $1-8+f .1-3$. 9 Je 1923.

Brownell, L. W. The well known horse chestnut. Nat. Mag. 1: 24-26. My 1923 [Illust.].

Bryan, O. C. The effect of different reactions on the growth and calcium content of oats and wheat. Soil Sci. 15: 375-380. pl. 1. My 1923.

Carey, C. L. The relation of acidity of carbon dioxide absorption by certain gels and plant tissues. Physiol. Res. 2: 407432. My 1923.

Chase, A. The identification of Raddi's grasses. Jour. Washington Acad. Sci. 13: 167-179. 4 My 1923.

Chupp, C., \& Clapp, G. L. Fusicoccum canker on apple. Phytopathology 13: 225-230. pl. 12. II My 1923.
Fusicoccum pyrorum, sp. nov.
Clarkson, E. H. Autumn frosts and the ferns. Am. Fern Jour. 13: 45-47. 11 My 1923.

Coker, W. C., \& Couch, J. N. The Gasteromycetes of North Carolina. Jour. E. Mitchell Sci. Soc. 38:231-244. pl. 71-83. My 1923.

Collins, G. N. An ear of prehistoric maize that resembles the fossil form, Zea antiqua. Jour. Hered. 14: 61-64.f. 2. 31 My 1923.

Conard, H. S. Revegetation of a denuded area, II. Bot. Gaz. 75: 414-420.f. I, 2. 25 Je 1923.
Area located in Long Island, New York.
Connors, C. H. Twin and triplet peaches. Jour. Hered. 14: 89-92.f. 15-17. 31 Мy 1923.

Cook, M. T. Blister rust of the white pine. Phytopathology 13: 283. 7 Je 1923.

Cook, M. T. A disease of dahlias. Phytopathology 13: 285. 7 Je 1923.

Cook, M. T. Dwarf Asparagus. Phytopathology 13: 284. 7 Je 1923.

Cook, O. F. Evolution of compound leaves in walnuts and hickories. Jour. Hered. 14: 77-88. f. 9-14. 3I My 1923.

Cook, O. F. Opsiandra, a new genus of palms growing on Maya ruins in Petén, Guatemala. Jour. Washington Acad. Sci. 13: 179-184. 4 My 1923.
Opsiandra maya Cook, gen. and sp. nov.
Crawford, J. A. Hardy ferns. Jour. New York Bot. Gard. 24: 114-119. Je 1923.

Crawford, J. A. Parsonsia micropetala. Addisonia 8: 5, 6. pl. 259. I5 My 1923.

Native of Mexico.
Crawford, J. A. Verbena venosa. Addisonia 8: 3, 4. pl. 258. I5 My 1923.
Native of southern Brazil and Argentina.
Czarnecki, H. Studies on the so-called black heart disease of the apricot. Phytopathology 13:216-224. pl. II $+f_{.1}$ I-4. II My 1923.
Dearness, J., \& House, H. D. New and noteworthy species of Fungi. New York State Mus. Bull. 243: 70-80. Je 1923. Includes new species in Microdiplodia (1), Mycosphaerella (1), and Sphaerulina (1).

Debbarman, P. M. A floral abnormality of the Indian water lily. Jour Hered. 14: 96. f. 18. 31 My 1923.

Detmers, F. Dothichiza canker on Norway poplar. Phytopathology 13: 245-247. pl. 13. II My 1923.

Dodge, B. O. Morphology and host relations of Puciiniastrum americanum. Jour. Agr. Research 24: 885-894. pl. I-5. 16 Je 1923.
Douin, C. Recherches sur le gametophyte des Marchantiées. Rev. Gen. Bot. 35: 213-226.f. I-27. My 1923.
Farwell, O. A. Botrychium dissectum. Am. Fern. Jour. 13: 42-45. II My 1923.

Fernald, M. L. The gentian of the tidal shores of the St. Lawrence. Rhodora 25: 85-89. pl. 139. 20 Je 1923. Gentiana Victorinii, sp. nov.

Fernald, M. L. The northern variety of Geum virginianum. Rhodora 25: 98, 99.20 Je 1923.
Folsom, D. Mutations of the potato. Jour. Hered. 14: 45-48. f. 19-21. 18 My 1923.

Gaines, E. F., \& Stevenson, F.J. Occurrence of bunt in rye. Phytopathology 13: 210-215.f. 1, 2. II My 1923.

Gainey, P. L. Influence of the absolute reaction of a soil upon the Azotobacter flora and nitrogen fixing ability. Jour. Agr. Research 24: 907-938. f. I. 16 Je 1923.

Gericke, W. F. Further notes on effect of extent of root systems on tillering of wheat. Bot. Gaz. 75: 320-322. 19 My 1923.

Gleason, H. A. Hamamelis vernalis. Addisonia 8: 9, 10. pl. 261. 15 My 1923. Native of the Ozark Mountain region.

Grout, A. J. Leucodon julaceus (Hedw.) Sulliv., with flagella. Bryologist 26: 30. 16 Je 1923.
Harper, R. A. The species concept from the point of view of a morphologist. Am. Jour. Bot. 10: 229-233. 10 My 1923.
Harper, R. M. Some recent extensions of the known range of Pinus palustris L. Torreya 23: 49-51. Je 1923.

Harrington, J. B., \& Aamodt, O. S. The mode of inheritance of resistance to Puccinia graminis with relation to seed color in crosses between varieties of durum wheat. Jour. Agr. Research 24: 979-996. pl. 1-4. 23 Je 1923.

Harter, L. L., \& Weimer, J. L. Influence of the substrate and its hydrogen-ion concentration on pectinase production. Jour. Agr. Research 24: 86I-878. 9 Je 1923.
Harter, L. L., \& Weimer, J. L. The relation of the enzym pectinase to infection of sweet potatoes by Rhizopus. Am. Jour. Bot. 10: 245-258. io My 1923.

Hayes, H. K., \& Aamodt, O. S. A study of rust resistance in a cross between Marquis and Kota wheats. Jour. Agr. Research 24: 997-1012. pl. 1-3. 23 Je 1923.
Hemmi, T. On the relation of temperature to the damping-off of garden-cress seedlings by Pythium Debaryanum and Corticium vagum. Phytopathology 13: 273-282. f. 1, 2. 7 Je 1923.
Hendricks, H. V. Torsion studies in twining plants. Bot. Gaz. 75: 282-297.f. I-Io. 19 Мy 1923.

Hitchcock, A. S. Dissanthelium, an American genus of grasses. Jour. Washington Acad. Sci. 13: 223-225. 4 Je 1923.

Hitchcock, R. Tolypella longicoma in Cayuga Lake, N[ew] Y[ork]. Bull. Torrey Club 50: 173-176. pl.8. 25 My 1923.

Hoskins, J. H. A Palaeozoic Angiosperm from an American coal ball. Bot. Gaz. 75: 390-399. pl. $17+f .1-7.25 \mathrm{Je}$ 1923. Angiospermophyton, gen. nov.

House, H. D. Notes on Fungi. New York State Mus. Bull. 243: 80-97. Je 1923.
House, H. D. Local flora notes VIII. New York State Mus. Bull. 243: 13-57. Je 1923.
House, H. D. Nomenclatorial notes regarding certain New York state plants. New York State Mus. Bull. 243: 5869. Je 1923.

House, H. D. Plants new to the state herbarium. New York State Mus. Bull. 243: II-13. Je 1923.

Hungerford, C. W. A Fusarium wilt of spinach. Phytopathology 13: 205-209.f. I-4. II My 1923. Fusarium Spinaciae, sp. nov.

Hungerford, C. W. Studies on the life history of strips rust, Puccinia glumarum (Schm.) Erikss. \& Henn. Jour. Agr. Research 24: 607-620. pl. 1-4. 19 My 1923.

Jewkins, M. T. A new method of self-pollinating corn. Jour. Hered. 14: 41-44.f. 17, 18. 18 My 1923.

Jones, D. B., \& Gersdorff, C. E. F. Proteins of the cantaloupe seed, Cucumis Melo. Isolation of a crystalline globulin and a comparative study of this globulin with the crystalline globulin of the squash seed, Cucurbita maxima. Jour. Biol. Chem. 56: 79-96. My 1923.

Jones, E. S. Influence of temperature, moisture, and oxygen on spore germination of Ustilago Avenae. Jour. Agr. Research 24: 577-592. f. I-3. 19 My 1923.
Jones, E. S. Influence of temperature on the spore germination of Ustilago Zeae. Jour. Agr. Research 24: 593-598. f. I. 19 My 1923.

Judd, C. S. Twenty familiar trees of Honolulu. Hawaiian For. \& Agric. 20: 50-52. Je 1923.

Kempton, J. H. Erythrodextrin in maize. Science II 57 : 556, 557. II My 1923.

Knuth, R. Oxalidaceae, in Pilger, R., Plantae Lützelbergianae brasilienses. Notizbl. Bot. Gart. u. Mus. Berlin-Dahlem 8: 425, 426. I5 Je 1923. Includes 2 new species of Oxalis from Brazil.

Korstian, C. F. Control of snow molding in coniferous nursery stock. Jour. Agr. Research 24: 741-748. pl. 1-3. 2 Je 1923.
Krause, K. Note on Schizocasia Regnieri. Jour. Washington Acad. Sci. 13: 253. I9 Je 1923.

Land, W. J. G. A suspensor in Angiopteris. Bot. Gaz. 75: 421-425.f. 1, 2. 25 Je 1923.

Lauritzen, J.I., \& Harter, L. L. Species of Rhizopus responsible for the decay of sweet potatoes in the storage house and at different temperatures in infection chambers. Jour. Agr. Research 24: 44I-456. f. I. 12 My 1923.
Lee, H. A. A disease of satsuma and mandarin orange fruits caused by Gloesporium foliicolum Nishida. Philipp. Jour. Sci. 22: 603-6I4. pl. i. Je 1923.

Lee, H. A., \& Serrano, F. B. Banana wilt of the Manila hemp plant. Phytopathology 13: 253-256. II My 1923.
Leonard, L. T. An influence of moisture on bean wilt. Jour. Agr. Research 24: 749-752. pl. 1-3. 2 Je 1923.

Leonian, L. H. The physiology of perithecial and pycnidial formation in Valsa leucostoma. Phytopathology 13: 257272. 7 Je 1923.

Levine, M. N. A statistical study of the comparative morphology of biologic forms of Puccinia graminis. Jour. Agr. Research 24: 539-568. pl. 1, $2+f .1$ 17. 19 My 1923.

Lewis, F. T. The typical shape of polyhedral cells in vegetative parenchyma and the restoration of that shape following cell division. Proc. Am. Acad. Arts \& Sci. 58: 537-552. pl. $1-3+f .1,2$. Je 1923.

Lindstrom, E. W. Heritable characters of maize. XII]. Endosperm defects-sweet defective and flint defective. Jour. Hered. 14: 127-135.f. 16-20. 30 Je 1923.

Lutman, B. F. Potato scab in new land. Phytopathology 13: 241-244. 11 My 1923.

MacKay, A. H. The phenology of Nova Scotia, 1919. Proc. Nova Scotia Instit. Sci. 15: 129-136. 30 Je 1923. [With map.]

Mangelsdorf, P. C. The inheritance of defective seeds in maize. Jour. Hered. 14: 119-125.f. 11-15. 30 Je 1923.

Markgraf, F. Apocynaceae, in Pilger, R., Plantae Lützelbergianae brasilienses. Notizbl. Bot. Gart. u. Mus. BerlinDahlem 8: 427. I5 Je 1923.
Includes Aspidosperma Chodatii, sp. nov., from Brazil.
Marsh, R.S. Seasonal variation of sulphur content in certain tissues of the apple tree. Bot. Gaz. 75: 400-413.f. I-Q. 25 Je 1923.

Mattfeld, J. Compositae, in Pilger, R., Plantae Lützelbergianae brasilienses. Notizbl. Bot. Gart. u. Mus. BerlinDahlem 8: 428-45I. 15 J'e 1923.
Includes Arrojadoa and Stylotrichium, gen. nov., and new species in Haplostephium (1), Lynchnophora (5), Arrojadoa (1), Stylotrichium (1), Agrianthus (4), and Trichogonia (3).

Maxon, W. R. Occasional notes on Old World ferns,-I. Proc. Biol. Soc. Washington 36: 169-177. I My 1923.

McGinnis, F.W., \& Taylor, G.S. The effect of respiration upon the protein percentage of wheat, oats and barley. Jour. Agr. Research 24: 1041-1048. 23 Je 1923.

McHargue, J. S. Effect of different concentrations of manganese sulphate on the growth of plants in acid and neutral soils and the necessity of manganese as a plant nutrient. Jour. Agr. Research 24: 781-794. pl. 1, 2. 2 Je 1923.
McLuckie, J. Studies in parasitism. A contribution to the physiology of the Loranthaceae of New South Wales. Bot. Gaz. 75: 333-369. pl. 14-16 + f. I-6. 25 Je 1923.

Merrill, E. D. Sandoricum koetjape and Dendrobium caninum. Jour. Bot. 61: 172-174. Je 1923.

Moffatt, W. S. The higher Fungi of the Chicago region. II. Gasteromycetes. Chicago Nat. Hist. Surv. Bull. 72 : 1-24. pl. i-26. My 1923.

Moore, D. W. A botanical survey of the campus of Denison University [Ohio]. Jour. Sci. Lab. Denison Univ. 20: 131154. pl. 17-19 + f. 1-7. Je 1923.

Muenscher, W. C. Protein synthesis in Chlorella. Bot. Gaz. 75: 249-267.f. I, 2. 19 My 1923.

Neidig, R. E., \& Snyder, R. S. Sunflower investigations. Jour. Agr. Research 24: 769-780. 2 Je 1923.

Neidig, R. E., \& Snyder, R. S. Sweet clover investigations. Jour. Agr. Research 24: 795-800. 2 Je 1923.

Noe, A. C. A Paleozoic Angiosperm. Jour. Geol. 31:344-347. f. i, 2. Je 1923.

Olson, G. A. A study of factors affecting the nitrogen content of wheat and of the changes that occur during the development of wheat. Jour. Agr. Research 24: 939-954. f. I, 2. 16 Je 1923.

Overbeck, F. Zur Kenntnis des Mechanismus der Samenausschleuderung bei Oxalis. Jahrb. wissensch. Bot. 62: 258282. f. I-I2. My 1923.

Pearson, W. H. More New Zealand Hepaticae. Univ. California Publ. Bot. 10: 373-392. pl. 104-109. 9 Je 1923.

Pearson, W. H. Notes on a collection of New Zealand Hepaticae. Univ. California Publ. Bot. 10: 307-370. pl. 83-103. 9 Je 1923.

Peltier, G. L., \& Frederich, W. J. Relative susceptibility of Citrus fruits and hybrids to Cladosporium Citri Massee. Jour. Agr. Research 24: 955-960. 16 Je 1923.

Pilger, R. Plantae Lützelbergianae brasilienses I. Notizbl. Bot. Gart. u. Mus. Berlin-Dahlem 8:425-45I. I5 Je 1923.

Pilger, R. Gramineae nonnullae austro-americanae. NotizblBot. Gart. u. Mus. Berlin-Dahlem 8:452-456. I5 Je 1923. Includes new species in Schizachyrium (\mathbf{I}), Melica (3), and Chusquea (\mathbf{I}).

Plunkett, O. A., Young, P. A., \& Ryan, R. W. A systematic presentation of new genera of Fungi. Trans. Am. Micr. Soc. 42: 43-67. My 1923. Lists genera proposed since 1910 .

Pringsheim, E. G. Über die Transpiration bei Fucus. Jahrb. wissensch. Bot. 62:244-257. f. 1-4. My 1923.

Pritchard, F. J., \& Porte, W. S. Watery rot of tomato fruits. A physiological study of Oospora lactis; effect on the host; penetration of the cell walls by enzymic action. Jour. Agr. Reszarch 24: 895-906. pl. I-4. 16 Je 1923.

Raber, O. Permeability of cells to electrolytes. Bot. Gaz. 75 : 298-308. 19 My 1923.

Rau, V. Inheritance of some morphological characters in Crepis capillaris. Univ. California Publ. Agr. Sci. 2: 217-242. pl. $42,43+f .1$-3. Je 1923.

Reed, G. M. Varietal resistance and susceptibility of sorghums to Sphacelotheca Sorghi (Link) Clinton and Sphacelotheca cruenta (Kühn) Potter. Mycologia 15: 132-143. pl. 14, 15. 3I My 1923.

Reed, \mathbf{G} [uilford]. The species concept from the point of view of a physiologist and bacteriologist. Am. Jour. Bot. 10: 234238. Io My 1923.

Reed, H. S., \& Haas, A. R. C. Growth and composition of orange trees in sand and soil cultures. Jour. Agr. Research 24: 801-814. pl. 1-5. 2 Je 1923.
Ricker, P. L. The protection of our native plants. Nat. Mag. 1: 35-41. My 1923. [Illust.]

Rigg, G. B. An old British herbal. Bot. Gaz. 75: 318-320. 19 My 1923.

Rydberg, P. A. Notes on Fabaceae-I. Bull. Torrey Club 50: 177-188. 25 My 1923. Includes 2 new species in Homalobus.

Rydberg, P. A. Ribes cereum. Addisonia 8: 7, 8. pl. 26o. 15 My 1923.
Native of the Pacific United States.
Sanford, G. B. The relation of soil moisture to the development of common scab of potato. Phytopathology 13: 231-236. f. 1-3. II My 1923.

Sargent, C. S. Notes on North American trees, XI. Jour. Arnold Arb. 4: 99-107. 8 My 1923.
Includes 8 new species of Crataegus.

Sax, K., \& Gowen, J. W. Permanence of tree performance in a clonal variety and a critique of the theory of bud mutation. Genetics 8: $179-211$. My 1923.

Schaffner, J. H. Observations on the sexual state of various plants. Ohio Jour. Sci. 23: 149-159. Je 1923.

Schmitz, H. Notes on wood decay-I. The wood destroying properties of Polyporus volvatus. Jour. For. 21:502, 503. My 1923.

Schulz, O. E. Cruciferae-Brassiceae (pars 2). Pflanzenreich IV 105: 1 -100. f. 1 -26. 26 Je 1923.

Schulz, O. E. Erythroxylaceae, in Pilger, R., Plantae Lützelbergianae brasilienses. Notizbl. Bot. Gart. u. Mus. BerlinDahlem 8: 426, 427. 15 Je 1923.
Includes Erythroxylon Arrojadoi, sp. nov., from Brazil.
Setchell, W. A. Parasitic Florideae, II. Univ. California Publ. Bot. 10: 393-396. 24 My 1923. Includes 3 new genera and 7 new species from California.

Setchell, W. A. A revision of the west North American species of Callophyllis. Univ. California Publ. Bot. 10: 397-402. 24 My 1923.
Includes 14 new species.
Shear, C. L. Life histories and undescribed genera and species of Fungi. Mycologia 15: 120-131. pl. 12, $13+f .1$-7. 31 My 1923.
Includes 3 new genera and 3 new species.
Shedd, O. M. Effect of adsorption and other factors on certain plant food constituents obtained in the dilute nitric acid digestion of soils and an improvement for their estimation. Soil Sci. 15: 383-394. My 1923.
Shull, C. A., \& Davis, W. B. Delayed germination and catalase activity in Xanthium. Bot. Gaz.75:268-281. 19 My 1923.
Shull, G. H. The species concept from the point of view of a geneticist. Am. Jour. Bot. 10: 219-228. Io My 1923.
Sim, R. J. Observations on the climbing fern in Pennsylvania. Am. Fern Jour. 13: 40-42. II My 1923.

Small, J. K. Eugenia buxifolia. Addisonia 8: 1, 2. pl. 257. 15 My 1923.
Native of Chile.
Small, J. K. The needle palm-Rhaphidophyllum hystrix. Jour. New York Bot. Gard. 24: 105-114. Je 1923. [Illust.]

Spencer, E. R. To demonstrate protein grains. Science II 57: 693. Je 1923.

Stakman, E. C. The species concept from the point of view of a plant pathologist. Am. Jour. Bot. 10: 239-244. 10 My 1923.

Stakman, E. C., Levine, M. N., \& Bailey, D. L. Biologic forms of Puccinia graminis on varieties of Avena spp. Jour. Agr. Research 24: 1013-1018. pl. 1-4. 23 Je 1923.
Stakman, E. C. et al. Spores in the upper air. Jour. Agr. Research 24: 599-606. pl. i, 2. 19 My 1923.

Stapf, O. Xerophyllum tenax. Bot. Mag. 148: pl. 8g64. 3 My 1923.

Stevens, F. L., \& Dowell, R. I. A Meliola disease of cacao. Phytopathology 13: 247-250.f. I-3. I I My 1923. Includes new species in Meliola (\mathbf{I}) and Helminthosporium: (\mathbf{I}).
Sudworth, G. B. The age of Monterey cypress. Am. For. 29: 270, 271. My 1923. [Illust.]
Suksdorf, W. Eine neue Weide aus dem Staate Washington. Österr. Bot. Zeitschr. 72: 94, 95. My 1923. Salix Disckiana, sp. nov.

Tanner, F. W., \& Rider, E. Action of ultraviolet light on yeast-like Fungi. Bot. Gaz. 75: 309-317. 19 My 1923.
Thayer, P. Raspberry breeding notes. Jour. Hered. 14: 12, 13.f.5, 6. 18 My 1923.
Thurston, H. W. Intermingling gametophytic and saprophytic mycelium in Gymnosporangium bermudianum. Bot. Gaz. 75: 225-248. pl. 12, $13+f .4$. 19 My 1923.

Tidestrom, I. The floral alphabet of the Celts. Torreya 23: 41-49. Je 1923.
Tidestrom, I. New or noteworthy species of plants from Utah and Nevada. Proc. Biol. Soc. Washington 36: 181-184. I My 1923.
Includes new species in Eriogonum (4), Arabis (2), Cleomella (1), Amelanchier (1), Peteria (1), Dodecatheon (1), Frasera (1), and Senecio (1).

Turrill, W. B. Rhipsalis Warmingiana. Bot. Mag. 148: pl. 8966. 3 My 1923.

Walker, J. C. Disease resistance to onion smudge. Jour. Agr. Research 24: 1019-1040. pl. I-4 +f. I-4. 23 Je 1923.
Walter, H. Protoplasma- und Membranquellung bei Plasmolyse, Untersuchungen an Bangia fusco-purpurea and anderen Algen. Jahrb. wissensch. Bot. 62:145-213.f. I-IO. My 1923.
Weber, F. Zur Physiologie der Spaltöffnungsbewegung. Österr. Bot. Zeitschr. 72: 43-57. My 1923.

BULLETIN

OF THE

TORREY BOTANICAL CLUB

MARCH, 1924

New Polygalas from Colombia

S. F. Blake

Polygala diversa sp. nov.
Frutescent, sometimes flowering the first year, densely pubescent; leaves oval to elliptic, $1.5-4 \mathrm{~cm}$. long, $7^{-14} \mathrm{~mm}$. wide; racemes short, $12-15 \mathrm{~mm}$. thick, short-peduncled; bracts deciduous; pedicels $1.5-2 \mathrm{~mm}$. long; sepals ciliolate with glandular and eglandular hairs; wings suborbicular-obovate, $6.5^{-7} \mathrm{~mm}$. long, $4.5-5.8 \mathrm{~mm}$. wide, inequilateral, densely spreading-pubescent and ciliate; capsule quadrate-oval, 5 mm . long, ciliolate; seed 4 mm . long, silky-pilose.

Frutescent, up to 90 cm . high, much branched, but flowering also as a simple-stemmed annual only 18 cm . high; stem 5 mm . thick or less, terete, densely incurved-pubescent or ascendingpubescent, often with spreading hairs intermixed; leaves alternate; petioles $\mathrm{I}^{-2} \mathrm{~mm}$. long, pubescent like the stem; blades oval to elliptic or ovate-elliptic, $\mathrm{I} .5^{-4} \mathrm{~cm}$. long, $7-\mathrm{I} 4 \mathrm{~mm}$. wide, acute or acuminate to rounded, sometimes mucronulate, at base rounded to cuneate, papery, above evenly spreading- or ascend-ing-puberulous, glabrescent except toward margin, beneath about equally green, spreading-pubescent, more densely so along the veins, these $3-5$ pairs, prominulous beneath, the secondaries obscure; peduncles terminal and supra-axillary, 5 mm . long or less; racemes $\mathbf{1 2 - 2 5} \mathrm{mm}$. long, 12-15 mm. thick, obtuse or acute, slightly comose, pubescent like the stem, the axis becoming 4 cm . long or less; bracts subulate, I .5 mm . long, hispid-pilose, deciduous; pedicels puberulous, $1.5^{-2} \mathrm{~mm}$. long; flowers "pink or violet-pink"; upper sepal oblong-ovate, 3.5-3.8 mm . long, obtuse, densely ciliolate with eglandular hairs for its basal third, above bearing about 8 pairs of stipitate glands and a few eglandular hairs, on back spreading-puberulous; lower sepals united nearly to apex, obtuse, 2.8 mm . long, spreadingpuberulous on back, bearing about 10 pairs of stipitate glands from base to apex, the eglandular hairs few; wings suborbicularobovate, $6.5^{-7} \mathrm{~mm}$. long, $4.5^{-5.8} \mathrm{~mm}$. wide, strongly inequilateral, emarginate, at base unequal, cuneate on one side,

[^10]obliquely rounded i mm. above base on other side, rather densely and evenly spreading-pubescent outside and ciliate, about 5 -veined, the veins forked above and anastomosing toward the margin; upper petals 4.8 mm . long, pilose within to middle, the limb oblong-obovate, rounded, glabrous, about 7 -nerved; keel 5 mm . long, ciliate at extreme base, not ciliate on the upper margin of the saccate portion, spreading-pubescent on the outer anterior face of the saccate portion; capsule quadrate-oval, 5 mm . long, $4.2-4.8 \mathrm{~mm}$. wide, ciliolate, narrowly margined, emarginate, at base subcordate; seed 4 mm . long (including aril), oblong-oval, terete, densely appressed-silky-pilose; aril I. 3 mm . high, i. 8 mm . long, casque-shaped, white, subcorneous, sparsely pilose, 3 -lobed from near the middle, the lobes equal, the dorsal the broadest.

Colombia: On sandstone cliff at Honda, Dept. Tolima, 250-350 m., 3-4 Jan. 1918, F. W. Pennell 3602 (type in herbarium of the N. Y. Botanical Garden; duplicate in U. S. National Herbarium). Open clayey loam, Melgar, Dept. Cundinamarca, 500-600 m., Dec. 1917, Pennell 2902. Open woodland, west of San Lorenzo, Dept. Tolima, 500-700 m., Dec. 1917, Pennell 3549. Open rocky slope, Honda, Dept. Tolima, 300400 m., Jan. 1918, Pennell 3582.

Polygala diversa belongs in the subgenus Hebeclada, and may be distinguished readily by its densely pubescent wings. At maturity it is distinctly frutescent, but it also flowers as a seedling, as shown by Pennell 3549, which in all other characters is identical with the type of the species.

P. Smithii sp. nov.

Suffrutescent, densely incurved-puberulous; leaves ovate, $5.5-8 \mathrm{~cm}$. long; racemes $1.2-5 \mathrm{~cm}$. long, $1-1.4 \mathrm{~cm}$. thick; bracts deciduous; pedicels $1-2 \mathrm{~mm}$. long; sepals densely ciliate with eglandular hairs; wings obliquely oval-obovate, $5^{-6} \mathrm{~mm}$. long, $3.8-4.5 \mathrm{~mm}$. wide, inequilateral, ciliolate; capsule quadrate-oval, 4-4.8 mm . long, shorter than the wings; seed 4.2 mm . long, subsericeous-pilose.

Suffrutescent, erect, about I meter high, simple or sparsely branched, the base not seen; stem subterete, $2-3 \mathrm{~mm}$. thick, greenish, densely incurved-puberulous, a few longer straighter hairs sometimes present; leaves alternate; petioles pubescent like the stem, $2-4 \mathrm{~mm}$. long; blades ovate, $5.5-8 \mathrm{~cm}$. long, $2-4.2$ cm . wide, acuminate (sometimes abruptly so), at base cuneate or rounded-cuneate, membranaceous, above deep green, evenly spreading-puberulous on surface (the hairs along the veins shorter and incurved), beneath sparsely spreading-puberulous on surface,
along the veins incurved-puberulous and sparsely spreadingpubescent, the veins 7^{-8} pairs, prominulous beneath, the secondaries obscure; peduncles terminal and supra-axillary, 4 mm . long or less; racemes loose or rather dense, $\mathbf{I} .2-5 \mathrm{~cm}$. long, obtuse to acute, slightly comose, $1-1.4 \mathrm{~cm}$. thick, the axis becoming 10 cm . long or less, pubescent like the stem; bracts lance-subulate, 1.8 mm . long, attenuate, hispid-pilose, deciduous; pedicels glabrous, curved, $\mathrm{I}-2 \mathrm{~mm}$. long; flowers greenish; upper sepal oblong-ovate, 3 mm . long, obtuse, densely ciliate with eglandular hairs; lower sepals similar, 2.2 mm . long, united for four-fifths their length, obtuse; wings obliquely oval-obovate, $5^{-6} \mathrm{~mm}$. long, $3.8-4.5 \mathrm{~mm}$. wide, strongly emarginate, inequilateral, cuneate at base on one side, contracted 1.2 mm . above base on other, ciliolate except on narrowed basal portion, 4nerved, the nerves branched and anastomosing toward margin; upper petals 3.5 mm . long, pilose within except on the expanded portion of limb, this oblong-ovate, rounded, erose, manynerved; keel 4.2 mm . long, pilose-ciliate on the posterior upper margin of the saccate portion; capsule quadrate-oval, 4-4.8 mm. long, $4^{-4.7 ~ \mathrm{~mm}}$. wide, distinctly shorter than the wings, margined, emarginate at apex, subcordate at base, not stipitate, glabrous; seed oval, terete, 4.2 mm . long (including aril), 1.8 mm . wide, rounded at apex, densely subsericeous-pilose with subappressed hairs; aril 1.8 mm . high and wide, sparsely pilose, rounded-quadrate, compressed, with much excavated sides, yellowish-white, not corneous, with three subequal rather short rounded lobes.

Colombia: In dry forest near Agura Dulce, vicinity of Santa Marta, 8 June 1898-1899, Herbert H. Smith 1300 (TyPE in herbarium of the N. Y. Botanical Garden; duplicate of this number in U. S. National Herbarium, no. 533,456, labeled October 1898-1901). Lower hills on the trail from Río Frío to San Andrés de la Sierra, State of Magdalena, 400 m., July 1906, Pittier 1714.

This species is a member of the section Apopetala of the subgenus Hebeclada, and is nearest P. Vauthieri Chod., which is described as having lanceolate or lance-oblong leaves and larger wings (up to 8 mm . long), these as wide as long. The type collection was distributed as P. violacea Vahl, but the original P. violacea Aubl., a still doubtful species, is described as having a crested keel.

Polygala Fendleri heterothrix var. nov.

Leaves sometimes nearly all in (2-4) whorls; hairs of seed straight; otherwise as in P. Fendleri.

Colombia: Dry grassy bank, Guayabotal, southeast of Quetame, Dept. Cundinamarca, 1300-1400 m., 5 Sept. 1917, F. W. Pennell 1746 (type in U. S. National Herbarium, no. 1,041,907; duplicate in herbarium of N. Y. Botanical Garden).

The group of the subgenus Orthopolygala known as the Series Glochidiatae is characterized principally by the uncinate hairs clothing the seed. In the variety above described, however, the hairs of the seed are straight, although the most careful comparison has failed to disclose any other constant difference from P. Fendleri Chod. in habit or structure. The occurrence of a very few hook-tipped hairs on some of the seeds, moreover, shows conclusively that the plant in question is merely an anomalous form of P. Fendleri and not a mimetic species of the group Tenues, to which I was at first inclined to refer it.

Polygala Fendleri Chod. was based on Fendlè 238, from Colonia Tovar, Venezuela. The following specimens agree with the type collection in every respect except in having the crest on each side composed of a lamella and a single linear lobe, while there are a lamella and two linear lobes in P. Fendleri. The seeds in the specimens of the type collection examined, kindly lent from the Gray Herbarium and the herbarium of the New York Botanical Garden, are obtusish at each end, not attenuate as described, and rather densely pubescent with somewhat spreading hairs which are as distinctly uncinate as they are in any of this group.

Colombia: Open rocky ridges and grass lands above Jivacasaca, vicinity of Santa Marta, 915-1065 m., 27 Sept. 18981899, Herbert H. Smith 1306 (U. S., N. Y. Bot. Gard.; distr. as P. paniculata). In open loam, El Convenio, west of San Lorenzo, Dept. Tolima, 1000-1200 m., Dec. 1917, F. W. Pennell 3494 (N. Y. Bot. Gard.).

Polygala Pennellii sp. nov.

Glabrous annual; lower leaves whorled, the others alternate, linear; racemes subcapitate or short-cylindric, acute; flowers white, pedicellate; bracts caducous; wings oval or obovate-oval, $1.8-2 \mathrm{~mm}$. long, 1.2 mm . wide, rounded, short-clawed; crest of 2 pairs of 2 -lobed or bifid segments; capsule oval, 1.7 mm . long, very short-stipitate, equaling the wings or one-fourth shorter; seed densely uncinate-pilose; aril obsolete.

Slender single-stemmed annual, freely branched, $12-33 \mathrm{~cm}$. high; stem subterete, glabrous; lower leaves in about 5 whorls
of about 4, or sometimes opposite or ternate on the branches, the others alternate, linear, $4-9 \mathrm{~mm}$. long, $0.3-0.6 \mathrm{~mm}$. wide, cuspidate-acuminate, subsessile, revolute-margined, glabrous; peduncles terminal and axillary, 3-19 mm. long; racemes subcapitate or short-cylindric, rather dense, acute, not comose, $3^{-12} \mathrm{~mm}$. long, $2.5-4.5 \mathrm{~mm}$. thick, the axis becoming 14 cm . long or less; bracts ovate, acuminate, glabrous, I-nerved, caducous, 0.7 mm . long; pedicels $0.5-0.8 \mathrm{~mm}$. long; flowers white; upper sepal ovate-oval, I mm. long, obtuse, I-nerved; lower sepals similar, oval, o. 8 mm . long; wings oval or obovate-oval, I. $8-2 \mathrm{~mm}$. long, I .2 mm . wide, rounded, at base rather abruptly short-clawed (claw 0.4 mm . long), 3 -nerved, the lateral nerves extending to middle; upper petals 1.5 mm . long, the free portion oblong-ovate, obtuse, about 3 -veined; keel 1.8 mm . long, the crest on each side of a 2 -lobed lamella and a single lobe 2 -fid to middle; capsule oval, 1.7 mm . long, 1.2 mm . wide, equaling the wings in fruit or about one-fourth shorter, emarginulate, at base cuneate-rounded and usually unequal, very short-stipitate; seed oval, 0.7 mm . long, obtuse at each end, densely uncinatepilose, the hairs about two-thirds as long as the diameter of the seed; aril obsolete.

Colombia: On open foothill in the Cordillera Oriental, east of Neiva, Dept. Huila, 1000-1700 m., I-8 August 1917, H. H. Rusby \& F. W. Pennell 534 (type in herbarium of the N. Y. Botanical Garden; photograph in U. S. National Herbarium). Fusagasugá, 3 Jan. 1853, I. F. Holton (N. Y. Bot. Gard.). Open clayey loam, Melgar, Dept. Cundinamarca, 500-600 m., Dec. 1917, Pennell 2890 (N. Y. Bot. Gard.).

This species is a close relative of P. Fendleri Chod. It seems distinct, however, in its smaller distinctly short-clawed wings and its oval capsule which is usually nearly or quite as long as the wings, while in the other species, P. Fendleri, the distinctly obovate capsule is much shorter than the wings.

Polygala subsecunda sp. nov.

Incurved-puberulous annual; leaves alternate, linear; racemes cylindric, acutish; flowers rosy, pedicellate; bracts caducous; wings elliptic to obovate-elliptic, $2.3^{-3} \mathrm{~mm}$. long, I.I mm. wide, rounded; capsule elliptic, 3.5 mm . long, about one-fourth longer than the wings; seed obconic, silky-comose, 2.7 mm . long; aril 0.4 mm . long.

Slender one-stemmed erect annual, simple or sparsely branched, $27-50 \mathrm{~cm}$. high; stem subterete, sparsely and finely incurved-puberulous; leaves (except sometimes for a basal whorl of 4) alternate, linear or linear-acicular, $7-19 \mathrm{~mm}$. long, $0.3-1 \mathrm{~mm}$.
wide, cuspidate-acuminate, subsessile, obscurely papillose, slightly revolute-margined, i-nerved, chiefly erect or ascending; peduncles terminal, rarely axillary, $3-10 \mathrm{~mm}$. long; racemes slender-cylindric, acutish, loose, slightly comose at apex, secund or subsecund especially in fruit, $5-9 \mathrm{~cm}$. long, $3-7 \mathrm{~mm}$. thick, the axis becoming 19 cm . long or less; bracts obovate or oblong-obovate, 1.8 mm . long, abruptly attenuate above by the excurrent costa (this 0.4 mm . long), erose above, glabrous, caducous; pedicels glabrous, o.8-1 mm. long; flowers "light rosy"; upper sepal ovate-oval, rounded, $\mathbf{1} .2 \mathrm{~mm}$. long, -nerved, glabrous, slightly glandularthickened along the costa; lower sepals similar but narrower, oblong, 1.2 mm . long; wings elliptic, oval-elliptic, or slightly obovate-elliptic, $2.3-3 \mathrm{~mm}$. long, i.I mm . wide, rounded, cuneate at base, glabrous, 3 -nerved, the nerves simple, the lateral ones usually reaching nearly to apex; upper petals $2.5^{-3} \mathrm{~mm}$. long, equaling wings, the free portion ovate, 4 -veined, narrowed to an obtuse or truncate-rounded apex; keel $2.8-3.2 \mathrm{~mm}$. long, slightly exceeding the wings and upper petals, the crest on each side of an ovate sometimes lobed lamella and two 2 - to 4 -parted lobes; upper stigmatic lobe slightly stipitate; capsules elliptic, 3.5 mm . long, 1.2 mm . wide, emarginulate, rounded at base, not glandbearing, chiefly spreading in fruit, about one-fourth longer than the wings; seed obconic, silky-comose, 2.7 mm . long (including coma), short-rostrate at base; aril 0.4 mm . long, 2 -lobed, appressed.

Colombia: Open grass lands, near Escoleva de los Indios, vicinity of Santa Marta, 240 m.; August 1898-1899, Herbert H. Smith 575 (TYPE in U. S. National Herbarium, no. 533,071; duplicate in herbarium of the N. Y. Botanical Garden).

A member of the Series Trichospermae, as nearly related to P. variabilis H. B. K. as to any other described species, but readily distinguished by its long, slender racemes and its eglandular capsule distinctly longer than the wings. The type collection was distributed as P. paniculata L., a species of a different series. The original label of the sheet in the New York Botanical Garden herbarium states that the species is fairly common in open grass lands between 150 and 750 meters elevation, flowering from July to October.

Polygala apodanthera sp. nov.

Incurved-puberulous annual; leaves alternate, linear; racemes cylindric, acuminate; flowers pale pink, pedicellate; bracts caducous; wings elliptic, obtuse, $3-3.2 \mathrm{~mm}$. long, 1.2 mm . wide; crest plurifid; capsule elliptic, $3.3-3.8 \mathrm{~mm}$. long, not stipitate, distinctly exceeding the wings; seed short-rostrate, 2 mm . long, spreading-pilosulous; aril 2 -lobed, $0.5-0.7 \mathrm{~mm}$. long.

Slender erect annual, 23-38 cm. high, with few erect branches; stem below the inflorescence finely puberulous with incurved glanduliform hairs; leaves alternate except for one or two basal pairs, numerous, rather crowded, erect, linear, $\mathbf{1 - 2} \mathrm{cm}$. long, $0.5-1 \mathrm{~mm}$. wide, acute, cuspidulate, very shortly petioled, 1 nerved; peduncles 3 to 8 mm . long, terminating stem and branches; racemes cylindric, dense above, loose below, acuminate to an obtusish somewhat comose apex, occasionally secund, $2-9.5 \mathrm{~cm}$. long, $5-7 \mathrm{~mm}$. thick, the axis becoming 15.5 cm . long or less, rather densely puberulous with longer hairs than those of the stem; pedicels glabrous, $0.6-1 \mathrm{~mm}$. long, spreading or recurved at maturity; bracts oval, abruptly cuspidate-acuminate, erose above, caducous, 1.8 mm . long; flowers pale pink, the upper petals and keel apparently more purplish; upper sepal ovalovate, obtuse, I-nerved, 1.2 mm . long; lower sepals ellipticoblong, obtuse, I-nerved, 1.2 mm . long; wings elliptic, $3-3.2$ mm . long, I .2 mm . wide, equaling the keel, obtuse, cuneate but not clawed at base, 3 -nerved, the nerves simple; keel 3.1 mm . long, the crest on each side of a 3-fid or 3-parted lamella and a 2-parted lobe; upper petals shorter than keel, the free portion obliquely ovate, obtuse, 3- or 4-nerved; anthers sessile or subsessile; capsule elliptic, $3.3-3.8 \mathrm{~mm}$. long, r .5 mm . wide, emarginulate, not stipitate, about one-fourth longer than the wings; seed subcylindric, short-rostrate, 2 mm . long, rather densely spreading-pilosulous; aril attached to the beak, 2 -lobed, o.5-0.7 mm . long, the lobes oblong, obtuse or sometimes acutish.

Colombia: Rocky bank in prairie, Mariquita, Dept. Tolima, 250-300 m., 7 Jan. 1918, F. W. Pennell 3638 (type in U. S. National Herbarium, no. $1,044,846$; duplicate in herbarium of the New York Botanical Garden).

A species of the Tenues group, nearest the Venezuelan Polygala Funkii Chod., in which, according to description, the stem and raceme axis are glabrous, the wings and sepals acute, the crest on each side composed of a lamella and a slender lobe (both entire), and the free portion of the filaments nearly as long as the anthers.

Studies in the genus Lupinus-X. The Micranthi concluded

Charles Piper Smith
(with text figures 92-94)

My treatment of this group was introduced in the seventh paper of this series (Bull. Torr. Club 49: 204. 1922). The list of published names and combinations there given shows that at least nineteen proposed species, plus some seven "ined." proposals, have called for consideration in the preparation of this review. Careful study of all these propositions, with the exception of one Mexican form, has now been completed, the result being that just seven real species seem to stand the test given them. Six of these are indicated and contrasted in the following key.

Key to the species of the Micranthi

Densely velvety pubescent with short, spreading hairs; flowers 10 mm . long; pods $8-10 \mathrm{~mm}$. wide; seeds 5-6 mm. long.
Loosely villous and (or) minutely appressed or spreading pubescent, but not velvety.
Pedicels $3^{-8} \mathrm{~mm}$. long; flowers $8-16 \mathrm{~mm}$. long, banner suborbicular or wider than long; verticils four to several.
Pedicels $\mathbf{1}-\mathbf{3} \mathbf{~ m m}$. long; flowers $\mathbf{5 - 1 2} \mathbf{~ m m}$. long; verticils one to five.
Stems quite fistulous, flattening in the press; flowers $8-10 \mathrm{~mm}$. long, banner suborbicular or broader than long.
Stems more solid, not flattening in the press. Keel non-ciliate.

Banner suborbicular or obcordate; flowers about 8 mm . long; pods $6-9 \mathrm{~mm}$. wide; seeds $4-5 \mathrm{~mm}$. long by $3-3.5 \mathrm{~mm}$. wide. Banner obovate, rhombic, or elliptic, longer than wide; flowers $5-7 \mathrm{~mm}$. long; seeds $2-3 \mathrm{~mm}$. long by about 2 mm . wide.
Keel ciliate on the free edges above, between middle and apex.
Keel slender, with long, narrow acumen, nearly straight to much arcuate; banner orbicular-obcordate, obovate, rhom-
2. L. niveus.
I. L. nanus.
3. L. chihuahuensis.
5. L. pachylobus.
6. L. bicolor.

> bic, or oblong-spatulate, more often longer than wide; flowers $5^{-12 ~ m m . ~}$ long. K. L. bicolor. Keel short and broad, the blunt acumen little or not at all upturned; banner cuneate or spatulate; flowers $5^{-8} \mathrm{~mm}$. long.

1. Lupinus nanus Dougl., Benth. Trans. Hort. Soc. II, 1: 409 . 1835.

This species was treated in the eighth paper of this series (Bull. Torr. Club 50: 159. 1923).
2. Lupinus niveus Wats., Proc. Am. Acad. 11: 126.1876.

Treated in the seventh paper (Bull. Torr. Club 49: 205. 1922).
3. Lupinus chihuahuensis Wats., Proc. Am. Acad. 21: 423. 1886. [Fig. 92.]

Annual, erect, $25-45 \mathrm{~cm}$. tall, simple or branched, fistulous, inconspicuously short-appressed hairy, with fewer, spreading, stiff hairs; leaves several, not crowded at the base, somewhat hairy on both sides, especially on the margins; petioles $6-8 \mathrm{~mm}$. long, villous; stipules conspicuous, linear, with long filiform free portion; leaflets five to seven, oblanceolate, obtuse or broadly acute, $15-40 \mathrm{~mm}$. long, $4-12 \mathrm{~mm}$. wide; peduncles $5^{-15} \mathrm{~cm}$. long, villous, equaling or surpassing the leaves; racemes 5-10 cm . long; flowers $8-10 \mathrm{~mm}$. long, subverticillate; bracts linear, deciduous, about equalling the calyx; pedicels $2-3 \mathrm{~mm}$. long, spreading-pubescent; calyx appressed- or subappressed-pubescent, minutely bracteolate, upper lip two-toothed or bifid, about 4 mm . long, lower lip entire and acute, $6-7 \mathrm{~mm}$. long; petals broad, mostly blue, banner $8-10 \mathrm{~mm}$. long by $8-\mathrm{II} \mathrm{mm}$. wide, glabrous, wings elliptic or oblong, $8-10 \mathrm{~mm}$. long by $5-7 \mathrm{~mm}$. wide, keel covered by the wings, ciliate on the upper edges along the acute upturned acumen, 8 -10 mm . long: pods $20-25 \mathrm{~mm}$. long by $4-5$ mm . wide, ovules five to seven; seeds about 2.5 mm . long by 2 mm . wide, pale yellowish and finely mottled; roots stout, $10-15$ cm . long, much shorter than the stems.

The above diagnosis is practically that of Watson, as supplemented for me by Mr. I. M. Johnston, from the type specimen at the Gray Herbarium. With this type sheet are dissections of a flower, from which, through the kindness of Dr. Robinson, I was permitted to get drawings for the accompanying figure. For purposes of record only, and the convenience of others, I am citing here the two Gray Herbarium specimens. Although I
have not seen these, Mr. Johnston's critical notes have made it possible for me to recognize the species and name the Arizonan collection here recorded.

Chinuahua: Cumbre, on the summit of the mountains above Batopilas, 8850 feet, 1885 , E. Palmer 318 (G); summits of the Sierra Madre, Oct., 1887, C. G. Pringle 1483 (G).

Arizona: Cochise County: Chiricahua Mountains, May, 1894, W. W. Price (DS, CPS).

This appears to be a species with fair characters, although closely allied to L. nanus, which it resembles not a little. The fistulous character of the stems and branches seems to be one of its strongest peculiarities.

Fig. 92. Lupinus chinuahuensis Wats. I. E. Palmer gr8, Chihuahua (G). 2. W. W. Price, Arizona (CPS).
4. Lupinus Aschenbornii S. Schauer, Linnaea 20: 739. 1847.

In my seventh paper I listed this species as a member of the Micranthi. This was done because I have, for some four years, been interpreting a certain Chihuahuan plant as Schauer's species. His description is unusual in its comprehensiveness, and applies quite well to the specimens concerned; but no hint is given as to the ciliation of the keel. Recently, however, I have been favored with flowers for dissection from specimens from Southern Mexico and Costa Rica, all labelled L. Aschenbornii. Since three possible species seem to be included in this small assortment of material, I now feel it necessary to withhold my treatment of both Schauer's species and the Chihuahuan plant until after I have had opportunity to study Aschenborn's
own collection, especially since the actual type locality of same is unknown.
5. Lupinus pachylobus Greene, Pittonia 1: 65. 1887.
[Fig. 93.]
Lupinus micranthus pachylobus (Greene) Jepson, Fl. West. Mid. Cal. ed. 1: 318. 1901.
Annual, stoutish, $10-30 \mathrm{~cm}$. tall, usually branched at the base, villous with spreading hairs $\mathrm{I}-2 \mathrm{~mm}$. long; leaves several, not crowded; petioles slender, $6-8 \mathrm{~cm}$. long; stipules subulate, $7-10$ mm . long; leaflets six to eight, linear-oblanceolate to ellipticoblanceolate, $15-25 \mathrm{~mm}$. long by $2-4 \mathrm{~mm}$. wide, hairy on both sides; peduncles $6-8 \mathrm{~cm}$. long; racemes loose, of two to four

Fig. 93. Lupinus pachylobus Greene. 1. E. B. Copeland, Baker distribution 3043, Butte County (US). 2. A. A. Heller 10,682, Butte County (CPS). 3. C. P. Smith 3232, Santa Clara County (CPS).
whorls; flowers few, $6-8 \mathrm{~mm}$. long, sometimes almost scattered; bracts shorter than the calyx, early deciduous; pedicels short, 1-2 mm. long; calyx much shorter than the petals, its upper lip bifid, 2-4 mm. long, lower lip usually three-toothed, broad, 3-5 mm . long; petals blue, except the white center of the banner, which is suborbicular, $6-8 \mathrm{~mm}$. wide, usually as wide as long, wings $6-8 \mathrm{~mm}$. long and about 4 mm . wide; keel non-ciliate, somewhat arcuate, with slender acumen; pods especially large, 25-30 mm . long, 6-9 mm. wide, usually thick and succulent when green, ovules four to six; seeds $4-5 \mathrm{~mm}$. long, $3-3.5 \mathrm{~mm}$. wide, brown, more or less marked with darker brown lateral and marginal lines; roots slender, much shorter than the stems; cotyledons of the seedlings about 15 by 10 mm ., with petioles about 5 mm . long (Heller 11,150).

While I feel justified in maintaining this as a distinct species, I must admit that certain forms of L. bicolor, in flower, approach
close to it, and have been, and probably still will be, confused with same. Those, however, have the keel ciliate, and the pods and seeds as in typical L. bicolor. The species is evidently very local in the southern part of its range, as I have made three trips into the type region without finding a trace of it, and I also failed to find it where found by Bradshaw. It is scarce and very restricted at its Los Gatos station.

California. Butte County: Chico, April, 1903, E. B. Copeland, Baker distribution 3043 (B, BP, CA, UC, US); Oroville, March, 1913, A. A. Heller 10,682 (DS, UCX, US, CPS); same, Dec., 1913, A. A. Heller 11,150 (CA, DS, UCX). Calaveras County: Mokelumne Hill, F. E. Blaisdell (CA, CPS). Contra Costa County: Mount Diablo, May, 1862, W. H. Brewer 1074 (UC); same, March, 1892, G. W. Dunn (CA); same, May, 1915, A. Eastwood 4498 (CA). Eldorado County: near Pilot Hill, May, 1909, K. Brandegee (B, UC), and April, 1915, K. Brandegee (UC). Glenn County: near Orland, May, 1915, A. A. Heller 11887 (UCX). Mariposa County: Cathey Valley, April, 1915, A. Eastwood 4350 (CA). Napa County: Mount St. Helena, May, 1918, A. Eastwood 6844 (CA). San Diego County: Sweetwater, April, 1908, Christino Simpson (UC). San Mateo County: Woodside, hills north, April, 1922, R. V. Bradshaw 2599 (CPS). Santa Clara County: Los Gatos, March, 1907, R. L. Pendleton 534 (UC); same, March, 1912, A. A. Heller 10,379 (CA, DS, US); same, March, 1921, C. P. Smith 3232 (CPS). San Antonia Creek hills, March, 1898, W. R. Dudley (DS). Shasta County: Redding, May, 1896, M. S. Baker (UC). Sonoma County: Altura, April, 1900, A. Eastwood (UC, US); Taylor Mountain, April, 1898, M. S. Baker 631 (UC).
6. Lupinus bicolor Lindl. Bot. Reg. 13: pl. 1109. 1827. This species was treated in the last paper of this series, (Bull. Torr. Club 50: 373. 1923.).
7. Lupinus micranthus Dougl. Lindl. Bot. Reg. 15: pl. 1251.
1829. [Fig. 94.]

Lupinus polycarpus Greene, Pittonia 1: 171. 1886.
Annual, rather stout and succulent or slender and dry, $10-40 \mathrm{~cm}$. tall, simple or branched at the base, erect or the branches ascending, short-appressed or subappressed pubescent, and more or less villous, rarely densely villous with hairs $\mathbf{2} \mathbf{~ m m}$.
long; leaves several to many, thick and fleshy or rather thin, appressed pubescent below, glabrous or sparsely hairy above; petioles $5-8 \mathrm{~cm}$. long; stipules subulate, often purplish-brown; leaflets five to seven, linear-oblanceolate to oblanceolate, I5-40 mm . long, by $2-6 \mathrm{~mm}$. wide; peduncles $3-6 \mathrm{~cm}$. long; racemes $1-8 \mathrm{~cm}$. long, verticils two to seven, but usually three to five; flowers few to many, $5-8 \mathrm{~mm}$. long; bracts subulate, purplishbrown, early deciduous; pedicels stout, $1-2 \mathrm{~mm}$. long; calyx relatively large, minutely bracteolate, upper lip bifid, about 3 mm . long, lower lip broad, minutely three-toothed, $3-4 \mathrm{~mm}$. long, three-nerved; petals blue and white, banner $6-8 \mathrm{~mm}$. long, cuneate-obovate to spatulate, the purple-dotted white center often turning violet, the sides only slightly reflexed, wings 5-6 mm . long by about 3 mm . broad, keel short and broad, nearly straight along the upper edges, ciliate above the middle,

Fig. 94. Lupinus micranthus Dougl. i. A. A. Heller 10,ioo, Oregon, (CPS). 2. C. P. Smith 3262, Santa Cruz County (CPS). 3. B. Dold ror, San Francisco (CPS). 4. J. W. Congdon, Toulumne County (US 466,502).
the blunt acumen not well defined: pods $25-30 \mathrm{~mm}$. long by 5^{-6} mm . broad, appressed-hairy, ovules six to seven; seeds oblong, rather thick, about $3 \times 2 \mathrm{~mm}$., gray or brown, usually much mottled and often with marginal or lateral lines.

Since the original description of L. micranthus has been so recently republished by Heller (Muhlenbergia 7: 2. 1911), I will not reproduce it here. Neither the original description nor plate leaves any doubt in my mind as to the species to which this name must be applied. Just one descriptive phrase given by Lindley, namely: "keel falcate, acute," has made me hesitate at times; but the lower edge of the keel is much curved, as seen in many undissected flowers, while dissection shows the upper edge to be nearly straight. I have examined over one hundred collections of the species and hundreds of plants in the field, and fail to find first-class excuse for retaining L. polycarpus even as a variety. It is certainly a mere ecologic form of more
moist soils, showing only vegetative characters uncertain and non-dependable. Greene surely had an odd hallucination when he saw his L. polycarpus as "more related to the coarse, fleshy, large-flowered L. affinis" $[L$. succulentus] than to "the very different L. micranthus." Though quite variable in its vegetative parts, the flowers are remarkably constant in type, so that varietal classification must be based upon leaflets and pubescence, characters found by me to be largely unsatisfactory for such purposes, though at times offering real temptation.

Quite a few specimens examined are not cited below, especially some from Santa Clara County.

British Columbia. Vancouver Island: Victoria, May, igoi, A. J. Pineo (BP, UC); same, May, 1908, J. Macoun 78,884, -5, -6 , and -7 (UCX).

Washington. King County: Seattle, June, 1891, C. V. Piper 255 (UC). Klickitat County: Bingen, April \& June, I91 I, W. N. Suksdorf 7203 (B, UC, CPS); same, June, i9II, Suksdorf 7240 (B, UC, CPS) ; same, May, 1914, Suksdorf 7743 (CPS).

Oregon. Douglas County: Winchester, May, 1922, M. W. Gorman 5624 (CPS). Hood River County: Hood River, June, 1896, L. F. Henderson (DS); same, May, 1910, A. A. Heller Io,ioo (B, DS, CPS). Josephine County: Grants Pass, May, 1910, A. A. Heller 10,024 (CPS); same, May, 1912, H. S. Prescott (CPS). Lane County: Eugene, April, 1920, R. V. Bradshaw 1405 (CPS); same, May, 1922, F. L. Wynd 971 (CPS); same, July, 1922, C. P. Smith 3561 (CPS). Marion County: Champoeg, May, 1919, M. W. Gorman (DS); Chemawa, April, 1915, J. C. Nelson 71 (DS) ; Gervais, May, 1922, M. W. Gorman 5725 (CPS); Salem, April, 1921, J. C. Nelson 3468 and 3520 (CPS); same, July, 1922, C. P. Smith 3579 (CPS). Umatilla County: Pendleton, May, 1896, T. Howell (DS).

California. Alameda County: Berkeley, May, 1893, E. L. Greene (UC); same, May, 1891, and May, 1893, Michener \& Bioletit (UC); Oakland, April, 1921, C. P. Smith 3338 (CPS). Butte County: Chico, April, 1903, E. B. Copeland, Baker's distribution 3043 (BP); Oroville, 8 miles N., March, 1914, A. A. Heller 11,198 (CA, DS, UC, UCX). Calaveras County: Mokelumne Hill, F. E. Blaisdell (CA, CPS). Colusa County: Williams, April, 1917, R. S. Ferris 545 (DS). Contra Costa County: Antioch, April, 1922, C. P. Smith 3485 and 3486 (CPS); Byron

Springs, May, 1914, A. Eastwood 3825 (CA); Moraga Valley, April, i888, V. K. Chesnut (UC); Walnut Creek, K. Brandegee (UC). Eldorado County: Pilot Hill, April, 1915, K. Brandegee (UC). Glenn County: Willows, April, 1921, A. Eastwood 10,220 (CPS). Humboldt County: Alton, May, 1912, J. P. Tracy \& E. B. Babcock (UC); Bucksport, June, 1911, J. P. Tracy 325 I (UC); Grizzly Creek, Van Duzan River, July, i916, L. R. Abrams 6035 (DS); Scotia, May, 1901, H. P. Chandler 1094 (UC). Kern County: Tehachapi, K. Brandegee (UC). Marin County: Olema, May, 1913, H. A. Walker 2971 a (UC); Point Reyes, May, 1906, A. Eastwood (CA); Sausalito to Larkspur, April, 1918, L. R. Abrams 6883 (DS). Mendocino County: Ukiah Valley, Russian River, April, 1918, L. R. Abrams 6978 (DS). Modoc County: no locality, Aug., 1893, M. S. Baker (BP, UC). Monterey County: Santa Lucia Mountains, May, 1920, R. S. Ferris 1854 (CPS). Napa County: Calistoga, April, 1903, C. F. Baker 1982 (B); same, C. F. Baker 1988 (CA, UC); Napa City, 1893, W. L. Jepson (UC). Plumas County: Crescent Mills, July, 1921, C. P. Smith 3419 (CPS); Greenville, June, 1920, Mary S. Clemens (CA); same, July, 1921, C. P. Smith 3410 (CPS). San Bernardino County: Crafton, April, 1876, J. G. Lemmon 122 (UC). San Diego County: Cuyamaca Lake, June, 1903, L. R. Abrams 3840 (DS, US). San Francisco County: Twin Peaks, April, 1921, Bertha Dold 101 (CPS). San Mateo County: Crystal Springs Lake, April, 1903, C. F. Baker 1931 (BP, CA, UC) ; San Bruno hills, Bay Shore road, April, 1918, L. R. Abrams 7054 (DS); San Mateo, April, 1921, C. P. Smith 3297 and 3298 (CPS); Stanford Park, March, 1921, C. P. Smith 3228 (CPS). Santa Clara County: Betabel, April, 1921, C. P. Smith 3265 (CPS); Halls Valley, May, 1907, C. P. Smith 1297 (CPS); Los Gatos, April, 1904, A. A. Heller 7294 (B, DS, UC, UCX), same, April, I9II, A. A. Heller 10,246 (B, BP, DS, UCX, CPS) ; Monto Bello Ridge, April, 1921, C. P. Smith 3332 (CPS); Morgan Hill, April, 1921, C. P. Smith 3253 (CPS); Sargent, April, 1921, C. P. Smith 3272 (CPS); Stanford University, April, 1895, W. R. Dudley (DS); Wright, April, 1921, C. P. Smith 3309 and 3310 (CPS). Santa Cruz County: Chittenden, April, 1921, C. P. Smith 3261 and 3262 (CPS); Scott Creek, May, 1920, R. S. Ferris 2012 (DS, CPS). Sonoma County: Bodega, May, 1900, H. P. Chandler 671 (UC); Healdsburg, April, 1918,
L. R. Abrams 6915 (DS); Petaluma, April, 1908, C. P. Smith 1379 and 1385 (DS, CPS); Santa Rosa, Sept., 1898, M. S. Baker 707 (UC); same, April, 1902, Heller \& Brawn 5226 (B, DS); same, April, 1918, L. R. Abrams 6899 (DS). Sutter County: Marysville, March, i905, A. A. Heller 7560 (B, DS, UC, CPS). Tehama County: Corning, April, igoi, H. C. Stiles (UC). Yolo County: Davis, April, 1915, P. B. Kennedy 27, 28, and 33 (UCX).

Usually abundant where found, especially in the Bay Region. As recorded by both Dr. Greene (Pittonia 1: 171. 1886) and myself (Muhlenbergia 6: 141. 1911), this species is the least conspicuous of all when in flower; yet in fruit it is more conspicuous than L. bicolor.

Just one variety do I care to characterize here.

7b. Lupinus micranthus Congdoni, var. nov.

Erectus $5-8 \mathrm{~cm}$. altus, caulibus gracilibus pubescentibus pilis brevis ascendentibus; foliis paucibus, petiolis $1-3 \mathrm{~cm}$. longis, foliolis sex ad octo spathulatis $4^{-6} \mathrm{~mm}$. longis $\mathbf{I}-\mathbf{I} .5 \mathrm{~mm}$. latis utrimque pubescentibus; racemis $\mathbf{I - 2} \mathrm{cm}$. longis, floribus paucibus alternis $6-7 \mathrm{~mm}$. longis, pedicellis circa 1 mm . longis, petalis iis plantae typicae persimilibus; legumina seminaque non vidi.

Erect, $5-8 \mathrm{~cm}$. tall, the slender stems pubescent with short ascending hairs; leaves few, the petioles $1-3 \mathrm{~cm}$. long, the leaflets
 cent on both sides; raceme $\mathbf{I}-2 \mathrm{~cm}$. long, flowers $6-7 \mathrm{~mm}$. long, few and scattered, pedicels about 1 mm . long, petals not different from those of the typical plant.

California. Tuolumne County: Big Oak Flat, Smith Ranch, Yosemite road, April, 1902, J. W. Congdon (type, G; type-duplicates US 466,501 and 466,502).

Labelled, "L. gracilis Agardh," and annotated, "n. sp." I at first freely accepted it as a new species; but after making dissections and drawings of the floral parts, came to the decision followed here. It is certainly an odd extreme, evidently representing the result of a keen struggle for existence. My drawings are included in Fig. 94.

The abbreviations used herein, in citing specimens, are explained in the list below.

B, Brooklyn Botanic Garden;
BP, C. F. Baker Herbarium, Pomona College, Claremont, Calif.;

CA, California Academy of Science, San Francisco;
CPS, herbarium of the writer;
DS, Dudley Herbarium, Stanford University;
G, Gray Herbarium, Harvard University;
NY, New York Botanical Garden;
UC, Department of Botany, University of California;
UCX, Division of Agronomy, University of California Experiment Station;

US, United States National Herbarium.

This paper completes my review of the annual and biennial lupines of North America, exclusive of Southern Mexico and southward. The next pafer, therefore, will probably be concerned with scme one of the several perennial groups that have already received considerable of my attention. It seems appropriate, then, to append here notes concerning certain forms, as follows:

Lupinus microcarpus scopulorum, comb. nov.
Lupinus densiflorus scopulorum C. P. Smith, Bull. Torr. Club 45: 201. 1918,-as to Vancouver Island plants.
When this variety was published I made certain reservations, expressed in the following words:

While this form and var. austrocollinum may not be properly included in L. densiflorus, they certainly are less closely related to typical L. microcarpus.

In July, 1922, I had the pleasure of visiting Victoria, Vancouver Island, and studying this plant in its natural home and type locality. It was abundant, in full bloom, fruit, and seed, and I followed it along the seacoast cliffs, throughout the area occupied, looking for variations. Much to my surprise, I found the flowers to be constantly and conspicuously suberect or ascending in both the axial racemes and in all those of the branches. The petals are decidedly yellow in the fresh flowers, the fruits typical of the group, ovate, $10-12 \mathrm{~mm}$. long, secund, the seeds dull, dark brown, unmarked, $5 \times 4 \mathrm{~mm}$. The plants are widely branched at the base, often also above.

Thus I was able to settle, in my own mind, all doubts as to the proper classification of the Victoria elements of my original treatment, the phrase, "floribus ad anthesin et postea panden-
tibus," applying to the Whidby Island and Fossil Island* elements only, and not to the Vancouver Island plants which I supposed were merely in bud. The form of the Puget Sound islands will be studied in the field, as soon as possible, and then disposition made of it according to my findings.

Lupinus Havardi Wats., Proc. Am. Acad. 17: 369. 1882.
The idea of a perennial lupine of the Sericei along the upper Rio Grande in Texas has frequently started some mental speculations, ' and often have I entertained the desire to visit that region and investigate the matter. The specimens in the L. Havardii cover at the National Herbarium offered no help to a conclusion and I did not think to investigate the case when looking up the annuals at the Gray Herbarium. Recently access has been had to scraps of this, filed at the University of California, labelled as coming from the type at Harvard, and annotated, "L. Havardii-leonensis ?, annual." The questioned identification thus indicated is fully justified by the material concerned, a leaf, a flower, and dissected floral parts. Thus L. subcarnosus Hook. seems to claim a fifth synonym. \dagger L.bimaculatus Hook. was described as a perennial, as well as L. Havardii; but why Watson should compare the latter with L. sericeus and L. Sitgreavesii I am not prepared to explain at this time. I see nothing in Watson's description to oppose the conclusion that L. Havardii is the same as L. texensis and L. leonensis, which are phases of L. subcarnosus, having narrower petals and leaflets.

Lupinus uncialis Wats., Bot. King's Rep. 54. 1871.
It would doubtless seem odd if I closed a series of papers upon the annual lupines of North America without referring to this species, the sole representative of Watson's subgenus Lupinellus. Watson's illustrations (Plate VII) are excellent and his description good enough; and I have examined the type specimens at the Gray Herbarium.

The character of "flowers axillary, solitary" is, indeed, a remarkable variation for the genus Lupinus; but I have already reported that in L. concinnus the very common axillary branches

[^11]are sometimes reduced to mere racemes, as noted by Watson, himself, in his L. Orcuttii, and often also to one or two flowers only (Bull. Torr. Club 48: 222. 1921). I therefore now confess, that, to me at least, L. uncialis is nothing more or less than an extreme reduction of L. brevicaulis Wats., described by him at the same time and illustrated in the same plate. His figures do not disprove this conclusion, and same should be compared with my figure 46, showing variations in L. brevicaulis (Bull. Torr. Club 46: 397. 1919).

San Jose, California.

Expression of the sexual state in Sagittaria latifolia*

John H. Schaffner

In 1921, the writer \dagger published a paper on the nature of sexual expression in those plants which have a definite reversal of sex in the inflorescence, one part of the axis bearing staminate and the other carpellate flowers. Sagittaria latifolia Willd. was mentioned as being a plant of this type with carpellate flowers below and staminate flowers above.

During the past summer the opportunity was presented for an extensive study of this plant in the field, observations being made in Ohio, Missouri, Kansas, and Colorado. As will be seen from the facts presented below the development of flowers in Sagittaria agrees completely with the idea that sex is dependent on a functional state of the protoplasm and that when there is alternative sexual expression or sex reversal in the inflorescence axis there must be a neutral zone of tissue, of greater or less extent, between the two parts.

The inflorescence of Sagittaria is commonly a scapose, simple raceme with the flowers in whorls of threes. Quite frequently one or more members of the lowest whorl are developed as branches giving rise to a paniculate inflorescence, which probably represents a more primitive evolutionary stage. In the manuals, Sagittaria latifolia is described as normally monecious or occasionally diecious. Buchenau in "Das Pflanzenreich" also describes it as "Monoeca, rarius dioeca." Probably this statement means only that entire inflorescences are known to be purely staminate or purely carpellate. Since the plant is perennial, stoloniferous and tuberiferous it would be difficult to determine whether entire individuals were staminate or carpellate unless the plants were subjected to experimental control. The stamen vestiges of the carpellate flowers are usually small and few in the lower flowers, while near the top of the carpellate inflorescence they are more numerous and more perfectly developed. Usually

[^12]also the carpel vestiges are more perfectly developed in the lowest staminate flowers. Commonly the transition is abrupt from carpellate whorl to staminate whorl.

Since, as intimated above, in passing from the female to the male state the inflorescence bud must pass through a neutral condition, it becomes evident that this may occasionally take place in a node rather than in the internodal tissue. It is then possible for one side of the axis to pass into the one sexual condition and the other side into the opposite sexual condition. Such cases were found to be quite common, the transition whorl containing one carpellate flower and two staminate flowers or two staminate and one carpellate. It is also evident that a flower incept may be exactly on the neutral tissue and then continue for a while in the neutral state, in which case the original, bisporangiate flower, from which type Sagittaria evolved, should again be produced. A search for this condition showed the reasoning to be correct: such bisporangiate flowers of all degrees of staminateness and carpellateness being not at all difficult to find. In fact they are quite frequently developed. One flower was found with a nearly equal number of good stamens and normal carpels. But usually there are only a few normal carpels at the tip of the flower, which soon become green, or a few normal stamens at the base together with the vestiges. There are also flowers which have nearly perfect carpels but which are plainly staminate in general nature and some which are plainly carpellate but with a few imperfect stamens. From these conditions one can find all gradations to the ordinary type of staminate and carpellate flowers with the usual types of vestiges for each.

When the basal whorl develops one or more branches, they often change immediately, or after the production of one or two carpellate flowers, to the staminate condition while the main axis may continue to be carpellate for some distance up. Bi sporangiate flowers are apt to be produced in the lower part of such branches; for there is apparently a slight disturbance of the normal progression of functional states as the branch develops. One such branch was found which had its terminal bud slightly injured through some unknown cause and which showed a complete reversal of the normal sexual development. The lowest whorl of this branch was staminate and the next node
ended the growth with a single large carpellate flower. There was in this case, therefore, a complete reversal of sex, as stated, in the opposite direction from what usually takes place, a change from the male to the female condition in the progressive development of the inflorescence axis. Apparently it required but a slight change in the physiological activity to throw the branch from the female state to the male state and then back to the female state again. The other two basal branches of this compound inflorescence were carpellate below and staminate above in normal order. This case brings out an important point and shows that with a proper knowledge of the functional states of the protoplast, it should be possible to bring out reversals of sex of an opposite nature from that which the heredity of the plant allows under the normal environment of the species.

The reversal of the sexual state from female to male typically takes place at or near the middle of the inflorescence axis. It may take place at any point, however, through all gradations from inflorescences with an equal number of carpellate and staminate flowers to those in which there is a single carpellate flower at the base or a single staminate flower at the tip. The next step results in monosporangiate inflorescences. If the male condition is determined before the development of the first flower incept the entire inflorescence is staminate, there being no reversal to the female state under normal conditions. If the female condition is determined at the beginning as is normally the case and this state is continued to the end, the entire inflorescence must, of course, be carpellate. Since in the field the patches of plants are usually crowded with interlacing rhizomes, it was not possible to determine whether any individual was completely staminate or carpellate. Theoretically such a condition must occasionally be produced in any given season.

The following data which are taken from a single gathering of inflorescences in a patch of Sagittaria, growing in a ditch along the roadside east of Manhattan, Kansas, will show what one can frequently find in the field. The list does not show the proportion of monosporangiate inflorescences to bisporangiate inflorescences, since they were gathered especially with reference to their apparently extreme staminateness or carpellateness and the ordinary monecious ones were passed by.
I. A compound inflorescence with two basal branches, with a large number of staminate flowers having the usual vestigial carpels. In the basal whorl with the two branches there was a carpellate flower or rather a bisporangiate flower with a large number of normal carpels, with three pollen-bearing stamens and a considerable number of large stamen vestiges. The head of carpels was of normal size. In the second node of the main axis there was one staminate flower together with one staminate intermediate flower with a few perfect carpels, and a carpellate intermediate flower with twenty pollen-bearing stamens, a number of stamen vestiges, and a large number of normal carcels. The rest of the inflorescence was staminate.
2. A simple inflorescence with all the flowers carpellate.
3. A compound inflorescence with all the flowers staminate.
4. A compound inflorescence, the first whorl with one staminate branch, one staminate flower, and one carpellate flower with normal stamen vestiges. The rest of the inflorescence was staminate.
5. A simple inflorescence completely staminate.
6. A compound monecious inflorescence, the lower half carpellate, the upper half staminate.
7. A compound inflorescence with one branch in the lowest ncde. The first whorl of the main axis contained one normal carfellate flower; the rest of the inflorescence was staminate.
8. A compound staminate inflorescence with three basal branches.
9. A completely carpellate, compound inflorescence but the upper flowers with unusually large staminodes, none, however, bearing pollen.
10. A completely carpellate, simple inflorescence with all the flowers typical.
11. A completely carpellate, compound inflorescence.
12. A compound inflorescence with two carpellate flowers in the lowest whorl together with a staminate branch; the rest of the main axis was staminate.
13. A simple, completely staminate inflorescence.
14. A compound, completely staminate inflorescence.
15. A normal monecious inflorescence.
16. A completely staminate; compound inflorescence.
17. A ccmpletely staminate, compound inflorescence.
18. A compound inflorescence; the first node with one staminate branch, one carpellate flower with large stamen vestiges, and one partly carpellate flower. This flower had a large number of normal, green carpels, six pollen-bearing stamens, and a number of stamen vestiges. The remaining part of the inflorescence was staminate.

Discussion and Conclusions

It is evident that the different expressions or types of inflorescences do not depend on differences of hereditary constitution. The genotype is the same, and the diversity of sexual expressions between different inflorescences and different branches or flowers of the same inflorescence represent alternative functional activity. Recently Stout* has come to similar conclusions in his paper on alternation of sexes in Cleome. He says that-"The theory of sex chromosomes decidedly fails in general application to plants, and even in animals, where its application seems most marked, sex is often intergrading and reversible, showing that there is alternative expression rather than alternative inheritance."

One of the most unwarranted developments of recent genetic analysis is the setting up of an inadequate or rather improper symbolism to designate monecious and hermaphroditic states. One might, with nearly as much reason, use a genetic symbol for ontogenetic fluctuations, as to have a simple symbol H for the heredities that lead to the many different types of normal and abnormal monecious conditions. There is a large number of types of moneciousness, and so far as sexual condition is concerned a plant with bisporangiate flowers is not fundamentally different from the monecious types. Individuals of both types express both maleness and femaleness in their bodies. There are hereditary factors or groups of factors which are responsible for the different types of hermaphroditic and bisporangiate expressions developed under their normal environments, as well as for those which are unisexual or monosporangiate. The hereditary background is fundamental. But the expression of any type of sexual condition in the individual is not to be inter-

[^13]preted as being due to the presence or absence of a specific sex chromosome gene or set of genes. The sexual expression changes with the proper change of environment as has been abundantly shown by the writer and others through direct experiment. Therefore sexuality as maleness or femaleness is not primarily a matter of heredity. There can be no doubt that apparently the functional activity which leads to maleness or femaleness under the given environment or at the proper stage in the ontogeny may depend on the properties of a single chromosome in some groups, and in others on a number of chromosomes. But even with such chromosomes present it would still be possible to change the sexual state, since the influence of such hereditary factors must be the same in bringing about a given sexual state of the cell, whether neutral, male, or female, as any other influence which affects the metabolic processes. As stated above, the writer has shown by observation and direct experiment in a considerable number of plants that the sexual expression of an individual or part of an individual as male, female, or hermaphrodite, of various type and degree, is not at all due to a compelling sex factorial arrangement in the organism and that the same individual may at one time be pure male, at another time pure female, and at another hermaphroditic. The given sexual character can only be understood and explained by the circumstances of its expression even though we believe that the expression of a given sexual condition must come through an ultimate hereditary constitution which permits or leads up to that condition under the given environment.

It is, therefore, entirely superficial and contrary to both observation and experimental evidence to treat sexual expressions and sexual characters as being dependent on three simple Mendelian factors and their combinations, namely, F, M, H, FM, FH, MH, or whatever such symbols are employed. The inadequacy of such a procedure becomes evident when one can cause all the characters, which are supposed to be due to such different factorial combinations, to be developed in a single individual.

If one takes a comprehensive view of the plant kingdom certain fundamental facts become prominent. Sexuality in the lowest organisms is purely physiological. In the higher plants the segregation of chromosomes has nothing to do with the
sexual expression, the sex of the gametophyte coming through the process unchanged. Unisexual forms are plainly related by intergradations to the more primitive hermaphrodites. Sex is from the lowest to the highest expressed in three simple states, female or positive, male or negative, and neutral, but with numerous gradations of intensity and fixity between either extreme and the neutral condition. Sex is definitely reversible, in many cases at least, through environmental influence. Mendelian phenomena and unit factors are concerned with minute morphological and physiological characters of multitudinous diversity, ranging from the unicellular forms to the higher plants and the higher animals. The phenomena of sexuality are entirely different. The evolution of primary sexual dimorphism is attained, being practically complete, before the multicellular condition is reached. Secondary sexual characters of the lower forms are in no way different from those of the higher. The only difference is that in the higher the cell has a larger number of factors which may become dimorphic or trimorphic. It is only in a few plants and in the higher animals that there is a seeming similarity to Mendelian segregations, because of the sex ratios obtaining and because of a certain type of association of specific chromosomes which it has become the vogue recently to call "sex chromosomes." Such allosomes with peculiar differential complements of factors, which are not to be regarded as of any different nature from other factors in other chromosomes, may and no doubt do in certain groups of organisms give the cell a functional activity that leads to a specific sexual state under the ordinary environment of the species and the ordinary hereditary complex. But the control is brought about in the same way as through any other environmental influences, like length of illumination period, external nutritive supply, etc., which are known to control or modify the sexual state in the individual. It is far better to call these special chromosomes "allosomes" in contradistinction to the "autosomes" as was done by Montgomery,* who proposed the terms, rather than "sex chromosomes." The matter will thus be considerably cleared for a rational and understandable discussion of the prob-

[^14]lems of sex. The term allosome implies no special hypothesis as to the nature of these bodies. From a general or fundamental point of view, every chromosome of a sexual organism is a "sex chromosome"; for apparently in gametes the primary sexual property of attraction is possessed to a high degree by the chromatin. The attractive property disappears or is neutralized when the two sex nuclei have united. Now at synapsis, in the reduction division, this primary attractive property develops again but the attraction is between the specific pairs of chromosomes in the diploid nucleus, whether the cell be an oöcyte or spermatocyte, a megasporocyte or microsporocyte, or a more primitive homosporous sporocyte, zygospore, or primitive oöspore. Attractive properties appear between the specific pairs of chromosomes and continue until the extreme folding or looping stage of synapsis when the two members of the diploid chromosome seem to be neutralized and are then soon separated by the reduction spindle. There is no need of assuming that this attractive property of the synaptic chromosomes is anything different from the sexual attraction shown at a previous stage between the entire male and female nuclei which are usually in the resting stage during fusion. The dimorphism of allosome pairs, together with their apparent differences in complements of hereditary factors, may have a decided influence over the attractive states which arise in them, both while they are in synapsis and while they form a part of the chromatin masses of conjugating male and female nuclei. And this specificity may lead to differential attraction between the gametes.

The evolution of sex from the primitive, physiological, isogamous condition has come about by the shifting of the origin of the male and female states into an earlier and earlier stage of the sexual cell ontogeny. In case of the primary or gamete sexual characters, the lowest type shows gametes with no apparent morphological difference. The sexual state evidently does not arise until the development of the gamete is complete. By a succession of forms in many independent lines the extreme dimorphism of egg and sperm is soon attained. This progression can be explained by assuming that the origin of the sexual state arises at an earlier and earlier stage of the ontogeny of the gamete as stated above. When it arises with
sufficient intensity at the very beginning of the development of the gametes, the greatest dimorphism results. The heterogametes of the higher organisms, whether plant or animal, are not different in general aspects from those near the base of the evolutionary series.

The evolution of the secondary sexual states and characters is along exactly similar lines. In the simple sexual plants and in gametophytes with an alternation of generations, there is a progression from the condition where dimorphism arises only at the end of the ontogeny in cells and tissues immediately contiguous to the gamete-producing cells, and the progression leads backward from this condition through sex determination at earlier and earlier stages of the ontogeny until the entire individual is involved, the determination of sex taking place, or being already determined, in the spore from which the gametophyte arises.

Finally, there is an exactly similar progression in the evolution of sexual states in the sporophyte. In the lowest heterosporous sporophytes the secondary sexual states arise side by side at the end of the ontogeny, namely, when the sporangia are produced, just as they do in the primitive hermaphrodites. Then the different types fall into an orderly progression of earlier and earlier sex determination; first the male and female states arising in the same sorus, second in separate sori of the same leaf, and third in entirely different sporophylls, giving rise to bisporangiate flowers. This condition remains in most groups even to the very highest. From the condition of bisporangiate flowers there are various types and degrees of moneciousness, with the sex determined at the base of or beyond the floral axis, up to the complete diecious condition. The determination of sex is again thrown back into earlier and earlier stages of the ontogeny until it coincides with the development of the female gamete or the time of its fertilization.

In view of these evident conditions and the nature of sexual expression in monecious plants together with the fact that the sex of diecious sporophytes can be reversed in both directions, the writer* in an earlier paper said that the characters of an

[^15]
112 Schaffner: Sexual state in Sagittaria latifolia

organism appear to be conditioned on the interaction of four fundamental causes:

1. The presence of hereditary factors in the protoplast, apparently properties of the chromosomes. This is, of course, the fundamental influence or cause.
2. The influence of environment, both external and internal, giving rise to fluctuations, often resulting in very great morphological and physiological differences.
3. The progression of senility or rejuvenation which often has a decided effect on the hereditary expression.
4. The presence or absence of sexual states in the living substance through which primary and secondary sexual characters or dimorphisms are produced without a change in genotype.

In so far as the evidence goes, the observed conditions of the monecious state in Sagittaria are in entire agreement with these conclusions.

Ohio State University.

INDEX TO AMERICAN BOTANICAL LITERATURE

1923
The aim of this Index is to include all current botanical literature written by Americans, published in America, or based upon American material; the word America being used in the broadest sense.

Reviews, and papers that relate exclusively to forestry, agriculture, horticulture, manufactured products of vegetable origin, or laboratory methods are not included, and no attempt is made to index the literature of bacteriology. An occasional exception is made in favor of some paper appearing in an American periodical which is devoted wholly to botany. Reprints are not mentioned unless they differ from the original in some important particular. If users of the Index will call the attention of the editor to errors or omissions, their kindness will be appreciated.

This Index is reprinted monthly on cards, and furnished in this form to subscribers at the rate of three cents for each card. Selections of cards are not permitted; each subscriber must take all cards published during the term of his subscription. Correspondence relating to the card issue should be addressed to the Treasurer of the Torrey Botanical Club.

Allen, C. E. The potentialities of a cell. Am. Jour. Bot. 10: 387-398. 28 Jl 1923.

Allen, W. E. Observations on surface distribution of marine diatoms of Lower California in 1921. Proc. California Acad. Sci. IV 12: 437-442. 2I Au 1923.
Ames, O. Calanthe vestita Regnieri. Addisonia 8: 25, 26. pl. 269. 22 Au 1923.

Ames, O. Sarcopodium Lyonii. Addisonia 8: 17, 18. pl. 265. 22 Au 1923.
Arbuckle, H. B. \& Thies, O. J. Variation of protein content of corn-II . Jour. E. Mitchell Sci. Soc. 39: 56-62. Au 1923.

Ashe, W. W. The common names of some trees. Jour. E. Mitchell Sci. Soc. 39: 89-9I. Au 1923.
Ashe, W. W. Notes on shrubs of the southeastern states. Jour. E. Mitchell Sci. Soc. 39: 110, 111. Au 1923. Includes two new species of Robinia from North Carolina and Tennessee

Bailey, I. W. Slime bodies of Robinia pseudo-acacia L. Phytopathology 13: 332, 333. pl. 16. 28 Jl 1923.

Bailey, L. H. George Lincoln Goodale. Rhodora 25: 117-120. 28 Au 1923.
Barlow, N. Inheritance of the three forms in trimorphic species. Jour. Genet. 13: 133-146. 3I Au 1923.
Study of Lythrum Salicaria and Oxalis valdiviana.
Benedict, R. C. Game laws for the conservation of wild plants. Science II 58: 39-4I. 20 J1 1923.
Bird, H. On the "boreal" character of bogs and an artificial modification. Ecology 4: 293-296. 7 Au 1923.

Bishop, S. C. \& Clarke, N. T. A scientific survey of Turners Lake, Isle-au-Haut, Maine. Pp. 1-30. Albany, N. Y. Au 1923. [Illust.]
Contains a list of the plants found.
Blake, S. F. On the type-species of Bignonia. Jour. Bot. 61: 191, 192. J1 1923.
Blake, S. F. Two new composites from Florida. Bull. Torrey Club 50: 203-206. pl. g. 6 Jl 1923.
Lacinaria Ohlingerae and Flaveria pinetorum, spp. nov.
Blake, S. F. New American Connaraceae. Bull. Torrey Club 50: 273-276. 17 Au 1923.
New species in Connarus (1) and Rourea (2).
Blake, S. F. Notes on two Ericaceae of the Boston district flora. Rhodora 25: 116.7 Jl 1923.

Blake, S. F. The forms of Osmorhiza longistylis. Rhodora 25: IIO, III. 7 Jl 1923.
Blodgett, F. H. The embryo of Lemna. Am. Jour. Bot. 10: 336-342. pl. $28+$ f. I. 2 Jl 1923.

Blomquist, H. L. Dormancy in the seeds of the persimmon. Jour. E. Mitchell Sci. Soc. 39: 83-85. f. I, 2. Au 1923.

Bower, F. O. Studies in the phylogeny of the Filicales. VIII. On Loxsoma and Loxsomopsis. Ann. Bot. 37: 349-354. f. I-6. Jl 1923.

Boyce, J. S. A study of decay in Douglas fir in the Pacific northwest. U. S. Dept. Agr. Dept. Bull. 1163: 1-19. pl. I-8. 21 Jl 1923.

Brackett, A. Revision of the American species of Hypoxis. Rhodora 25: 120-147.f. I-I3. 28 Au 1923.
Includes five new species.
Brandegee, T. S. A note on Penstemon Stephensi. Bull. Torrey Club 50: 215. 6 Jl 1923.
Britton, N. L. An unrecorded weed in Bermuda. Torreya 23: 67, 68. Au 1923.
Norta erysimoides (Desf.) Britton, comb. nov.
Brownell, L. W. The pin oak. Nat. Mag. 2: il2-114. Au 1923. [Illust.]

Brownell, L. W. The white oak. Nat. Mag. 2: 27-29. Jl 1923. [Illust.]

Burkholder, W. H. The gamma strain of Colletotrichum Lindemuthianum (Sacc. et Magn.) B. et C. Phytopathology 13: 316-323. 28 Jl 1923.
Cammerloher, H. Zur Biologie der Blüte von Aristolochia grandiflora Swartz. Oesterr. Bot. Zeitschr. 72: 180-198. pl. 5-7. Au 1923.
Chambers, R. \& Sands, H. C. A dissection of the chromosomes in the pollen mother cells of Tradescantia virginica L . Jour. Gen. Physiol. 5: 815-820. pl. I. 20 Jl 1923.

Clements, F. E. The ecological method in teaching botany. New Phytol. 22: 98-104. 31 Jl 1923.
Cockerell, T. D. A. White-flowered Primula angustifolia. Torreya 23: 68. Au 1923.
Coffman, F. A. \& Quisenberry, K. S. A multiflorous variation in Burt oats. Jour. Hered. 14: 185-192.f. 17-21. 31 J1 1923.
Coker, W. C. \& Couch, J. N. A new species of Thraustotheca. Jour. E. Mitchell Sci. Soc. 39: 112-116. pl. 8. Au 1923. Thraustotheca achlyoides sp. nov., from North Carolina.

Cooper, W. S. The recent ecological history of Glacier Bay, Alaska: II. Ecology 4: 223-246. f. I-10. 7 Au 1923.

Councilman, W. T. The root system of Epigaea repens and its relation to the fungi of the humus. Proc. Nat. Acad. Sci. 9: 279-285.f. I-4. 15 Au 1923.

Curtis, O. F. The effect of ringing a stem on the upward transfer of nitrogen and ash constituents. Am. Jour. Bot. 10: 361-382. f. x-3. 28 Jl 1923.

Davidson, A. New California plants. Bull. S. California Acad. Sci. 22: 71-74. pl. 16-20. Jl 1923.

Dodge, B. O. Systematic infections of Rubus with the orangerusts. Jour. Agr. Research 25: 209-242. pl. $1-6+f$. 1-7. 4 Au 1923.

Doolittle, S. P. \& McKinney, H. H. Intracellular bodies in the phloem tissue of certain plants and their bearing on the mosaic problem. Phytopathology 13: 326-329. pl. 15. 28 Jl 1923.

Edson, H. A. Acid production by Rhizopus Tritici in decaying sweet potatoes. Jour. Agr. Research 25: 9-12. 7 Jl 1923.

Eldridge, A. G. An insect trap in nature. Nat. Mag. 2: 45, 46. Jl 1923. [Illust.]

Pollination of Asclepias syriaca.
Enomoto, N. Studies on an ever-segregating race in Portulaca grandiflora. Japanese Jour. Bot. 1: 137-151. Jl 1923.

Ezekiel, W. N. Hydrogen-ion concentration and the development of Sclerotinia apothecia. Science II 58: 166. 3I Au 1923.
Fernald, M. L. Notes on the distribution of Najas in northeastern America. Rhodora 25: 105-109. 7 J1 1923.
Fernald, M. L. Baffin Land plants collected by the Macmillan Expedition, 1922. Rhodora 25: III-114. 7 Jl 1923.

Fitzpatrick, H. M. Generic concepts in the Pythiaceae and Blastocladiaceae. Mycologia 15: 166-173. 20 Jl 1923.

Gardner, M. W. \& Kendrick, J. B. Bacterial spot of tomato and pepper. Phytopathology 13: 307-315. pl. 14. 28 Jl 1923.
Gericke, W. F. On the adaptation of wheat to growth media deficient in nutrients. Science II 58: 17. 6 Jl 1923.
Gericke, W. F. Some effects of physiological conditions on genetic characters of wheat. Am. Jour. Bot. 10: 275277. 2 Jl 1923.

Gilbert, A. H. Correlation of foliage degeneration diseases of the Irish potato with variations of the tuber and sprout. Jour. Agr. Research 25: 255-266. pl. i-6. il Au 1923.
Gleason, H. A. Coreopsis verticillata. Addisonia 8: 29. pl. 27I. 22 Au 1923.
Gleason, H. A. The Bolivian species of Vernonia. Am. Jour. Bot. 10: 297-309. 2 Jl 1923. Includes six new species.
Greenwood, H. E. A contribution to the Hepatic flora of Center County, Pennsylvania. Bryologist 26: 36-38. 21 Au 1923.

Györffy, I. Novitas bryologica-III, IV. Bryologist 26: 38, 39. f. I-8. 21 Au 1923.

Hall, H. M. Callistemon salignus viridiflorus. Addisonia 8: 23, 24. pl. 268. 22 Au 1923.
Hall, H. M. \& Clements, F. E. The phylogenetic method in taxonomy.-The North American species of Artemisia, Chrysothamnus, and Atriplex. Carnegie Inst. Washington Publ. 326: 1-356. pl. 1 -58 +f. 1 -47. 20 Jl 1923.

Handel-Mazzetti, H. Nachträge zur Monographie der Gattung Taraxacum. Österr. Bot. Zeitschr. 72: 254-275. Au 1923.

Hansen, A. A. Columbine. Nat. Mag. 2: 96-98. Au 1923. [Illust.]
Harshberger, J. W. Hemerecology: the ecology of cultivated fields, parks, and gardens. Ecology 4: 297-306. 7 Au 1923.

Harvey, E. M. Is it maltose or phloridzin that is abundant in apple tissue? Am. Jour. Bot. 10: 288-293. 2 Jl 1923.

Harvey, R. B. Cambial temperatures of trees in winter and their relation to sun scald. Ecology 4: 261-265. f. 1-4. 7 Au 1923.

Heald, F. D. \& Boyle, L. W. Further notes on the relation of the spore load to the per cent of stinking smut appearing in the crop. Phytopathology 13: 334-337. 28 Jl 1923.

Heppner, M. J. The factor for bitterness in the sweet almondGenetics 8: 390, 391. Jl 1923.

Hollick, A. Cycads, living and extinct. Jour. New York Bot. Gard. 24: 135-140. Jl 1923. [Illust.]
Hollick, A. The taxonomic and morphologic status of Ophioglossum Alleni Lesquereux. Bull. Torrey Club 50: 207214. pl. 10-12. 6 Jl 1923.

Holm, T. Chenopodium ambrosioides L.-A morphological study. Am. Jour. Sci. 206: 157-167. Au 1923.

Hylander, C. J. Notes on the Desmids of New York. Torreya 23: 59-62. Au 1923.
Janchen, E. Die Stellung der Uredineen und Ustilagineen im System der Pilze. Österr. Bot. Zeitschr. 72: 164-180; 302-304. Au 1923.

Johnson, A. M. Cryptomorpha, a new section of Saxifraga. Am. Jour. Bot. 10: 294-296. f. I, 2. 2 Jl 1923.
Based on Saxifraga eriophora S. Wats. from Arizona.
Johnston, I. M. Studies in the Boraginaceae. Contrib. Gray Herb. II 68: 43-80. 18 Au 1923.
Includes new species in Antiphytum (2), Cryptantha (2), and Plagiobothrys (1).

Johnston, I. M. Diagnoses and notes relating to the spermatophytes chiefly of North America. Contrib. Gray Herb. II 68: 80-104. 18 Au 1923.
Includes Halliophytum and Eremonanus, gen. nov., and new species in Lilium (1), Alternanthera (1), Astrocasia (1), Cnidoscolus (2), Ditaxis (1), Jatropha (1), Manihot (2), Penstemon (1), Hymenopappus (2), Gnaphalium (6), and Eremonanus (1).

Jones, L. H. \& Shive, J. W. Influence of ammonium sulphate on plant growth in nutrient solutions and its effect on hydrogen-ion concentration and iron availability. Ann. Bot. 37: 355-378. f. 1-6. Jl 1923.

Kearney, T. H. Segregation and correlation of characters in an upland-Egyptian cotton hybrid. U. S. Dept. Agr. Dept. Bull. 1164: 1-58. pl. $I-2 I+f .1-41$. io Au 1923.

Kelley, A. P. Soil acidity, an ecological factor. Soil Sci. 16: 41-54.f. I, 2. J1 1923.

Kempton, J. H. Inheritance of dwarfing in maize. Jour. Agr. Research 25: 297-322. pl. $x-5+f .1$-9. 18 Au 1923.

Kempton, J. H. Inheritance of mesocotyl length in hybrids of brachytic maize. Am. Nat. 57: 374-377.f. I. Au 1923.

Kidder, N. T. Further notes on the plants of Isle au Haut [Maine]. Rhodora 25: 147, 148. 28 Au 1923.

Kofoid, C. A., Severin, H. H. P., \& Swezy, O. Nelson's spiral bodies in tomato mosaic not protozoans. Phytopathology 13: 330, 331. 28 J1 1923.

Korstian, C. F. Density of the cell sap of plants in relation to environmental conditions. Jour. E. Mitchell Sci. Soc. 39: 63-69. Au 1923.

Kotila, J. E., \& Coons, G. H. Trypanosome-like bodies in Solanaceous plants. Phytopathology 13: 324, 325. 28 Jil 1923.

Levine, M. Studies on plant cancers-IV. The effects of inoculating various quantities of different dilutions of Bacterium tumefaciens into the tobacco plant. Bull. Torrey Club 50: 23I-243. 27 Jl 1923.

Lindstrom, E. W. Genetical research with maize. Genetics 5: 327-356. J1 1923.
Lloyd, F. E. A method of ultramicroscopy whereby fluorescence in the Cyanophyceae and Diatomaceae may be demonstrated. Science II 58: 91, 92. 3 Au 1923.

Loesener, T. Celastraceae, in Pilger, R., Plantae Lützelbergianae brasilienses II. Notizbl. Bot. Gart: u. Mus. BerlinDahlem 8: 535, 536. 15 Au 1923.
Includes new species in Maytenus (I) and Plenckia (I).
Mains, E. B. \& Leighty, C. E. Resistance in rye to leaf rust. Puccinia dispersa Erikss. Jour. Agr. Research 25: 243252. pl. 1, 2. 4 Au 1923.

Martin, R. D., Ballard, W. W., \& Simpson, D. M. Growth of fruiting parts in cotton plants. Jour. Agr. Research 25: 195-208. pl. 1, 2. 28 Jl 1923.
Mason, T. G. Ligneous zonation and die-back in the lime (Citrus medica, var. acida) in the West Indies. Sci. Proc. Roy. Dublin Soc. 17: 255-262. pl. 13-16 + f. I. Au 1923.

Merrill, E. D. Distribution of the Dipterocarpaceae. Philipp. Jour. Sci. 23: 1-34. pl. 1-8. Jl 1923.
Murneek, A. E. Studies of physical and morphological changes in Bartlett pears. Am. Jour. Bot. 10: 310-324. pl. 24 $+f .1$, 2. 2 Jil 1923.
Murrill, W. A. Springtime in Florida. Jour. New York Bot. Gard. 24: 125-I35. J1 1923.
Nelson, J. C. Additions to the flora of western Oregon during 1922. Torreya 23: 63-67. Au 1923.

Neumayer, H. Einige Fragen der speziellen Systematik, erläutert an einer Grupe der Gattung Silene. Österr. Bot. Zeitschr. 72: 276-287. Au 1923.
Nye, H. A. A station in Maine for Ilex verticillata, forma chrysocarpa. Rhodora 25: 148. 28 Au 1923.
Orton, W. A. \& Beattie, R. K. The biological basis of foreign plant quarantines. Phytopathology 13: 295-306. 28 J1 1923.
Osterhout, G. E. Two new plants from Colorado. Bull. Torrey Club 50: 217, 218. 6 Jl 1923.
Draba alpicola and Oreocarya stricta, spp. nov.

Overholts, L. O. Diagnoses of American Porias-II. Bull. Torrey Club 50: 245-253. pl. 13, 14. 27 Jl 1923.

Park, J. B. Selection in broom corn. Jour. Hered. 14: 213219. f. 10-12. 30 Au 1923.

Pfeiffer, H. Histologische Untersuchungen an den Stämmchen von Lagenocarpus Dracaenula Pfeiff. und an den Knollstöcken. ' Bot. Archiv 4: 147-I53. I Au 1923.

Pilger, R. Plantae Lützelbergianae brasilienses II. Notizbl. Bot. Gart. u. Mus. Berlin-Dahlem 8: 535, 536. 15 Au 1923.

Includes two new species of Celastraceae.
Pilger, R. Rosaceae-Chrysobalanoideae austro-americanae novae vel minus cognitae. Notizbl. Bot. Gart. u. Mus. Berlin-Dahlem 8: 537-543. I3 Au 1923. Includes new species in Couepia (2), Hirtella (1), and Licania (4).
Porsch, O. Blütenstände als Vogelblumen. Österr. Bot. Zeitschr. 72: 125-149. pl. r-3. Au 1923.

Rehder, A. Enumeration of the ligneous plants of northern China. Jour. Arnold Arbor. 4: 117-192. II S 1923.

Reinking, O. A. Comparative study of Phytophthora Faberi on coconut and cacao in the Philippine Islands. Jour. Agr. Research 25: 267-284. pl. 1-12. il Au 1923.

Richardson, C. W. Notes on Fragaria. Jour. Genet. 13: 147-152. 3I Au 1923.
Rigg, G. B., Thompson, T. G., \& Gilliland, W. L. The influence of plants on the air in houses. Am. Jour. Bot. 10: 383386. 28 Jl 1923.

Riker, A. J. Some relations of the crowngall organism to its host tissue. Jour. Agr. Research 25: 119-132. pl. 1-5. 21 Jl 1923.
Robinson, B. L. Records preliminary to a general treatment of the Eupatorieae-III. Contrib. Gray Herb. II 68: 3-43. 18 Au 1923.
Includes new species in Symphypappus (2), Eupatorium (27), Mikania (5), and Brickellia (I).

Rose, J. N. Lenophyllum texanum. Addisonia 8: 21. pl. 267. 22 Au 1923.

Rose, J. N. Schizocentron elegans. Addisonia 8: 19. pl. 266. 22 Au 1923.
Rose, J. N. Sedum diffusum. Addisonia 8: 27. pl. 270. 22 Au 1923.

Rosen, H. R., \& Elliott, J. A. Pathogenicity of Ophiobolus cariceti in its relationship to weakened plants. Jour. Agr. Research 25: 351-358. pl. 1-5. 25 Au 1923.

Rydberg, P. A. A new genus of Senecioid composites. Jour. Washington Acad. Sci. 13: 287-289. 19 Jl 1923. Pseudoclappia, gen. nov., from New Mexico.

Rydberg, P. A. Notes on Fabaceae-II. Bull. Torrey Club 50: 261-272. 17 Au 1923.
Includes Homalobus MacGregorii, sp. nov., from California.
Rydberg, P. A. Galegeae (pars). N. Am. Fl. 24: 155-200. 16 Jl 1923.
Includes new species in Cracca (13) and Brongniartia (8).
Rydberg; P. A. Indigofereae. N. Am. Fl. 24: 137-154. 16 Jl 1923.
Includes eleven new species in Indigofera.
St. John, H. William Conklin Cusick. Rhodora 25: 101-105. 7 Jl 1923. [With portrait.]
Salaman, R. N. \& Lesley, J. W. Genetic studies in potatoes; the inheritance of immunity to wart disease. Jour. Genet. 13: 177-186. 3I Au 1923.
Sands, H. C. The structure of the chromosomes in Tradescantia virginica L. Am. Jour. Bot. 10: 343-360. pl. 29, $30+f .1-9.28 \mathrm{Jl} 1923$.
Saunders, E. R. A reversionary character in the stock (Matthiola incana) and its significance in regard to the structure and evolution of the gynoecium in the Rhoeadales, the Orchidaceae, and other families. Ann. Bot. 37: 451482. f. 1-53. Jl 1923.

Sax, K. The relation between chromosome number, morphological characters and rust resistance in segregates of partially sterile wheat hybrids. Genetics 8: 301-32I. Jl 1923.

Sax, K. \& McPhee, H. C. Color factors in bean hybrids. Jour. Hered. 14: 205-208. f. 7, 8. 30 Au 1923.

Schiller, J. Beobachtungen über die Entwickelung des roten Augenfleckes bei Ulva Lactuca. Österr. Bot. Zeitschr. 72: 236-245. Au 1923. [Illust.]

Schultz, E. S. \& Folsom, D. Transmission, variation, and control of certain degeneration diseases of Irish potatoes. Jour. Agr. Research 25: 43-118. pl. 1-16. 14 Jl 1923.

Schussnig, B. Die Kernteilung bei Cladophora glomerata. Österr. Bot. Zeitschr. 72: 199-222. pl. 8. Au 1923.

Seifriz, W. Observations on the reaction of protoplasm to some reagents. Ann. Bot. 37: 489-510.f. 1-4. Jl 1923. Experiments made with Elodea.

Shear, C. L. Phoma: a sample of mycological nomenclature and classification. Mycologia 15: 174-182. 20 Jl 1923.

Shreve, E. B. Seasonal changes in the water relations of desert plants. Ecology 4: 266-292.f. I-II. 7 Au 1923.

Shull, C. A. Multiple-seeded burs of Xanthium. Science II 58: 145, 146. 24 Au 1923.

Sinnott, E. W. \& Durham, G. B. A quantitative study of anisophylly in Acer. Am. Jour. Bot. 10: 278-287. 2 Jl 1923.
Small, J. K. The cabbage-tree-Sabal Palmetto. Jour. New York Bot. Gard. 24: 145-158. 'Au 1923. [Illust.] Includes biographical notes of various botanists by J. H. Barnhart.
Smith, H. H. Botanical collecting in southwestern Wisconsin. Yearb. Public Mus. Milwaukee 2: 113 -133. f. 68 -76. 20 Au 1923.
Snell, W. H. Occurrence and identity of cotton mill fungi. Mycologia 15: 153-165. pl. 16. 20 J1 1923.

Spegazzini, C. Breves notas cactologicas. An. Soc. Ci. Argentina 96: 61-75. Au 1923. [Illust.]
Includes A ylostera, gen. nov., and Frailea Bruchi, sp. nov., from Argentina.
Sprague, T. A. On the type-species of Bignonia. Jour. Bot. 61 : 192, 193. Jl 1923.
Standley, P. C. Calderonia and Exandra, two rew genera of the family Rubiaceae. Jour. Washington Acad. Sci. 13: 289-293. 19 Jl 1923.
Calderonia salvadorensis and Exandra rhodoclada, gen. and spp. nov., from Salvador.

Stanton, T. R. Naked oats. Jour. Hered. 14: 177-182.f. 1416. 31 Jl 1923.

Stapf, O. Echinocereus Baileyi. Curtis Bot. Mag. 148: pl. 8971. 13 Au 1923.

Steil, W.N. The antherozoid of the genus Riccardia. Bull. Torrey Club 50: 197-202.f. I-5. 6 J1 1923.

Stevens, O. A. Plants which attract popular attention. Sci. Мо. 17: 114-128. f. 1 -б. Au 1923.
Notes made in North Dakota.
Stoneback, W. J. \& Calvert, R. Histology and chemistry of the avocado. Am. Jour. Pharm. 95: 598-612. f. I-I2. Au 1923.
Taylor, W. R. Bryophyte herbarium of the University of Pennsylvania. Bryologist 26: 39, 40. 21 Au 1923.

Tharp, B. C. Ecologic investigations in the Red River valley. Univ. Texas Bull. 2327: 89-156. I5 J1 1923.
Tisdale, W. B. \& Williamson, M. M. Bacterial spot of lima bean. Jour. Agr. Research 25: 141-154. pl. 1-3. 21 Jl 1923.
Totten, H. R. Development of the fruit-body of a new parasitic Rhizopogon. Jour. E. Mitchell Sci. Soc. 39: 101-109. pl. 1-7. Au 1923.
Rhizopogon parasiticus, sp. nov., from North Carolina.
Tottingham, W. E. Temperature effects in plant metabolism. Jour. Agr. Research 25: 13-30. pl. i-4. 7 Jl 1923.

Trelease, S. F. Night and day rates of elongation of banana leaves. Philipp. Jour. Sci. 23: 85-96. Jl 1923.

Tupper-Carey, R. M. \& Priestley, J. H. The composition of the cell-wall at the apical meristem of stem and root. Proc. Roy. Soc. B 95: 109-131. 2 Jl 1923.

Valleau, W. D. Over-summering of leaf rust of cereals in Kentucky. Phytopathology 13:338-340. 28 Jl 1923.

Victorin, M., Frere. Note sur un arbre nouveau du Quebecle Crataegus Victorinii Sargent. Nat. Canad. 50: 21-23. Au 1923.

Walton, J. On the structure of a middle Cambrian Alga from British Columbia (Marpolia spissa Walcott). Proc. Cambridge Phil. Soc. Biol. Sci. 1: 59-62. pl. $5+f .1$. Au 1923.

Weatherby, C. A. The identity of Carex gynandra Schwein. Rhodora 25: 115, 116. 7 Jl 1923.

Weimer, J. L. \& Harter, L. L. Hydrogen-ion changes induced by species of Rhizopus and by Botrytis cinerea. Jour. Agr. Research 25: 155-164. 2I Jl 1923.

Weir, J. R. The genus Chrysomyxa. Mycologia 15: 183-187. pl. 17. 20 Jl 1923.

Williams, R. S. Two undescribed mosses from Mexico. Bryologist 26: 33-35. pl. 4. 21 Au 1923.
New species in Pohlia and Stereophyllum.
Young, W. J. The formation and degeneration of germ cells in the potato. Am. Jour. Bot. 10: 325-335. pl. 25-27 $+f .1,2$. 2 Jl 1923.

Yuncker, T. G. Two new species of Cuscuta from Peru. Bull. Torrey Club 50: 277, 278.f. 1. 17 Au 1923. Cuscuta lucidicarpa and C. rubella, spp. nov.

Zederbauer, E. Versuche über Saisondimorphismus und verwandte Erscheinungen bei Ackerunkräutern. Österr. Bot. Zeitschr. 72: 223-230. Au 1923. Study of Amarantus retroflexus and other plants.

BULLETIN

OF THE
TORREY BOTANICAL CLUB
APRIL, 1924

The Tissue Fluids of Cuscuta*

J. Arthur Harris

I. INTRODUCTION

The relationship of the phanerogamic parasite to its host presents a group of problems of great biological interest and economic importance. Physiologically, one of the most interesting of these groups of problems is that of the relative magnitude of various physico-chemical constants in the parasite and host form, since it is upon these forces that the absorption of water and essential solutes may be reasonably assumed to depend.

Earlier studies on the mistletoes have indicated that in general the osmotic concentration of the tissue fluids of the parasites is higher than that of the host plant. This has been shown for Viscum by plasmolytic studies by Senn (8). \dagger It has been found to be the case in Jamaican Montane Rain Forest (4) and in desert Loranthaceae (I). The osmotic concentration of a secondary loranthaceous parasite has been found to be higher than that of the pimary parasite (2), (4). Furthermore there is evidence that the specific electrical conductivity, K, of the tissue fluids of desert mistletoes is higher than that of the host plant (5). Finally, it is interesting to note that in these parasites, as in terrestrial vegetation, the osmotic concentration is far higher in the desert forms than in those of the rain forest.

[^16]While some of these Loranthaceae are leafless species, all are chlorophyll-bearing. The investigation of a form less capable of photosynthesis seems desirable.

III. PRESENTATION OF DATA

As far as I am aware determinations on Cuscuta have not been published heretofore. The purpose of the present note is to call attention to a few readings made on plants growing under a rather wide range of environmental conditions.*

A single set of determinations \dagger of osmotic concentration in atmospheres, P , as computed from the freezing point depression, \triangle, made in August, 1914, on Cuscuta sp. growing on Impatiens biflora Walt. in saturated soil at Cold Spring Harbor, Long Island, gave for the stem and leaves of the host and for the stems of the parasite:

Freezing point Osmotic concentration in

Sample Number
Stems of Impatiens, Ci443I A
Leaves of Impatiens, Ci443I B
Stems of Cuscuta, Ci443I C
depression, Δ
0.41
0.46
o. 45
atmospheres, P
4.88
5.55
5.36

The host and parasite do not seem to differ significantly in osmotic concentration.

A single determination was made on Cuscuta sp. growing on Chrysoma laricifolia (A. Gray) Greene at the mouth of Pima Canyon, Santa Catalina Mountains, Arizona, April 3, 1914. The host tissue was accidentally lost. The parasite gave:

Freezing point
Sample Number
C14131 B
depression, Δ
0.74

Osmotic concentration in atmospheres, \mathbf{P} 8.90

The osmotic concentration of the desert Cuscuta is higher than that growing in the hydrophytic habitat.

[^17]In 1920 while working in cooperation with R. A. Gortner, W. F. Hoffman and A. T. Valentine in Tooele Valley, Utah, the writer found Cuscuta salina Engelm. on the extremely halophytic Allenrolfea occidentalis (S. Wats.) Kuntze. The determinations in the accompanying table were made on tissues of the parasite collected from many host plants and on the samples of tissue of the individual host plants upon which the parasites were growing. The results appear in the accompanying table.

Number and Species	Freezing point depression Δ	Osmotic pressure in atmospheres P	Specific electrical conductivity K	Ratio of conductivity to depression K / Δ	Chloride content per liter Cl
C 20723 Cuscuta Allenrolfea					
	2.25	27.0	. 0205	. 0091	5.3
	3.70	44.4	. 0700	. 0186	21.8
Difference C 20727 Cuscuta Allenrolfea	-I. 45	-17.4	-. 0495	-. 0095	-16.5
	2.16	26.0	. 0183	0085	3.8
	3.56	42.6	. 0690	. 0194	19.1
Difference C 20729 Cuscuta Allenrolfea	-1. 40	-16.6	-. 0507	-. 0109	-15.3
	2.07	24.8	. 0203	. 0098	4.5
	3.21	38.5	. 0652	. 0203	17.2
Difference	-1. 14	-13.7	-. 0449	-. 0105	-12.7

In each of the three pairs of determinations the osmotic concentration as measured in terms of freezing point depression, \triangle, and atmospheres osmotic concentration, P, is lower in the parasite than in the host. The same is true of the specific electrical conductivity, K, and of the ratio of specific electrical conductivity to freezing point depression, K / \triangle. Thus the concentration of total solutes and of solutes capable of carrying the electric current is lower in the parasite than in the host plant.

The determinations on chloride content made by Mr. Lawrence by a method described elsewhere (7) are particularly interesting. The results are given in terms of grams of Cl per liter of tissue fluid. The tissue fluids of Cuscuta contain only about onefourth of the chlorides found in the host plant.

The explanation of these results, which are conspicuously different from those elsewhere announced for the Loranthaceae, and from others which are still unpublished for root parasites, is not clear. It must be the object of further investigation. Possibly the hydration of colloids plays a part in the phenomenon. Possibly the Cuscuta is highly ephemeral in its development and grows only at a time when water lost from the host to the parasite can be readily replaced by the host plant from the soil.

In this connection it is interesting to note that the Allenrolfea upon which these plants of Cuscuta were found grew in a locality where a number of other plant species occurred, and not under the most saline conditions of the areas along the southern shore of the Great Salt Lake (3). (6).

SUMMARY

Determinations on Cuscuta indicate that the desert forms have a far higher osmotic concentration of their leaf tissue fluids than those of moist regions. This result is in accordance with the findings so far published for the osmotic concentration of the mistletoes.

When parasitic on an extreme halophyte, Allenrolfea occidentalis, the dodder, Cuscuta salina, shows high values of osmotic concentration, specific electrical conductivity and chloride content, but these are in every instance lower than those demonstrated in the tissue fluids of the host plant. This result is contrary to that generally found for the Loranthaceae.

Dynamic phases of these interrelationships are open to investigation.

LITERATURE CITED

(I) Harris, J. Arthur.

1918. On the osmotic concentration of the tissue fluids of desert Loranthaceae. Mem. Torrey Bot. Club 17: 307-315.
\qquad
1919. Secondary parasitism in Phoradendron. Bot. Gaz. 66: 275-276.
(3) - Gortner, R. A., Hoffman, W. F., Lawrence, J. V., and Valentine, A. T.

The osmotic concentration, specific electrical conductivity and chloride content of the tissue fluids of the indicator plants of the vegetation of Tooele Valley, Utah. Jour. Agric. Research. In press.
(4) and Lawrence, J. V.
1916. On the osmotic pressure of the tissue fluids of Jamaican Loranthaceae parasitic on various hosts. Amer. Jour. Bot. 3: 438-455, fig. I-2.
(5) and Valentine, A. T.
1920. The specific electrical conductivity of the tissue fluids of desert Loranthaceae. Proc. Soc. Exp. Biol. and Mer., 18: 95-97.
(6) Kearney, T. H., Briggs, L. J., Shantz, H. L., McLane, J. W., and Piemeisel, H. L.
1914. Indicator significance of vegetation in Tooele Valley, Utah. Jour. Agr. Res. 1: 365-417. pl. 42-48.
(7) Lawrence, J. V., and Harris, J. Arthur.
1924. Tests of a wet oxidation and modified Volhard method for the determination of chlorides in plant tissue fluids. Jour. Amer. Chem. Soc. In press.
(8) Senn, G.
1913. Der osmotische druck einiger Epiphyten und Parasiten. Verhandl. Naturf. Gesell. Basel 24: 179183.

Chinese marine Algae

Marshall A. Howe

(With plates I AND 2)

In November, 1919, the late Mr. F. S. Collins published in Rhodora (21: 203-207) a short paper on "Chinese Marine Algae," based chiefly on a small collection made by Mrs. Spencer Lewis in 1915 at Pei-tai-ho, in the Gulf of Pe-chi-li. In this Lewis collection Mr. Collins named 27 species and referred three others to genus only. Of the 27 species, 17 are said to be reported for the first time as occurring in China. From the previous rather meager literature on the Chinese marine algae, Mr. Collins accepted 18 species as satisfactorily determined, making the very modest grand total of 45 species of marine algae known from the Chinese coasts. However, specific determinations in the important genus Sargassum were not included, as the author considered determinations in that genus more difficult and uncertain than in the other genera. And under the heading "Species recorded from China but unverified and improbable," Mr. Collins listed in species reported by von Martens in 1866, nine species (excluding one duplicated by v. Martens) reported by Debeaux in 1875 , and one species reported by Mrs. Gepp in 1904.

In compiling and combining the previous lists of Chinese algae Mr. Collins overlooked the longest list of all, the one published by Mr. A. D. Cotton in 1915.* This list included 39 species and is based chiefly on specimens collected at Wei-hai-wei, with addition of a few from Hong Kong, Macao, and Formosa, the last-named being Chinese geographically, even though Japanese politically. Cotton's list includes in species of Sargassum, a genus omitted by Collins on account of its difficult nature, but in naming the species of Sargassum Cotton had the assistance of Yendo, who had given much attention to this genus in Japan, and it seems probable that at least 10 of these species are as deserving of recognition as are any of the other species that have been attributed to Chinese waters. But Ecklonia cava Kjellm., found in the markets of

[^18]Peking, may well have been imported from Japan, as was recognized by Cotton, and should probably be excluded.

A shorter list of Chinese seaweeds, published only a few months before Collins' paper, was contributed by Major Th. Reinbold to Loesener's Prodromus Tsingtauensis.* Excluding one doubtful determination, referred to below under Polysiphonia japonica, this list includes 9 species, of which 4 appear to be additions to lists published before that date. Including these 4 species, io of the II species of Sargassum reported by Cotton, and the other species of Cotton's enumeration that are not recognized in Collins' approved list, and allowing for one duplication in the lists of Reinbold and Collins, we seem justified in stating that the number of Chinese algae known on the publication of Collins' paper may conservatively be placed at 80 .

The small collections reported upon below were made by Mr. N. H. Cowdry, partly in the summer of 1919 in the vicinity of Pei-tai-ho, the locality from which came also the specimens studied by Mr. Collins, and partly in the summer of 1920 at Chefoo. The specimens from Pei-tai-ho were forwarded for determination by Dr. Wm. R. Maxon, Associate Curator, Division of Plants of the U.S. National Museum, as was the case also with the specimens collected at the same place four years earlier by Mrs. Spencer Lewis. Later, Dr. Maxon sent a fluid-preserved specimen of Grateloupia that had been collected at Pei-tai-ho by Lieut. A. deC. Sowerby. Later, also, after the present writer had studied the Pei-tai-ho material submitted by Dr. Maxon, Mr. Cowdry himself brought his collection of Chinese algae to The New York Botanical Garden, most of the specimens with determinations provided by Professor K. Okamura of Tokyo, a list of whose determinations had been published by Mr. Cowdry at about the same time (Journal of the North China Branch of the Royal Asiatic Society 53: 180, 181. 1922). The present enumeration is then but an expansion and in a small way a revision of Cowdry's previously published list. The number of species collected by Cowdry and now listed is 39 , in addition to two named varieties and three species that are referred to genus only. Of the 39 named species, 12 do not appear in lists previous to Cowdry's and these 12 added to the 80 mentioned above bring the conser-

[^19]vatively compiled list of known Chinese algae to 92 species, which is somewhat more than twice the known total as figured by Collins in 1919.

But even as now increased, the list is a brief one for a coast line as long and as varied as is China's and the number is sure to be greatly increased by future investigations. It seems probable, however, as already noted by Cotton, that owing to the great amount of fresh water brought down by the rivers Hoang-Ho and Yang-ste-Kiang and to other causes, the marine flora of China may prove to be not particularly rich.

Besides the two species and one variety that are here described as new, the collections made by Mr. Cowdry appear to add to lists published previously to his own the following species: Ulva rigida, Enteromorpha Linza, Myriaciis pulvinata, Chorda Filum, Sargassum microceraiium, Dictyota divaricata, Neurocarpus divaricatus, Endocladia complanala, Gymnogongrus flabelliformis, and Gloiopeltis coliformis.

The list is remarkable for the inclusion of a considerable number of species that appear to be identical with species that are more or less common on the Atlantic coast of the United States, such as Ulva Lactuca, Enteromorpha compressa, E. Linza, E. prolifera, Bryopsis plumosa, Scytosiphon Lomentaria, Myriactis pulvinata, Leathesia difformis, Chorda Filum, Gracilaria confervoides, G. lacinulata, Champia parvula, Rhodomela subfusca, Dasya pedicellata, Ceramium rubrum, and Corallina officinalis. This fact harmonizes well with correspondences in the land floras of eastern North America and eastern Asia already pointed out by Asa Gray and others. The annotated list follows, P referring to Pei-tai-ho and C to Chefoo:

CHLOROPHYCEAE

Ulva Lactuca L. P, 292. Thallus 37-45 μ thick, the cells subquadrate in section.
Ulva rigida Ag. C,525. Thallus $60-80 \mu$ thick, the cells twice as high as broad, showing conspicuous trigones in a surface view. The membrane is occasionally perforate and it is apparently the Ulva pertusa of Cowdry's list.
Enteromorpha compressa (L.) Grev. P, 294.
Enteromorpha Linza (L.) J. Ag.forma. P, 291; C, 553; apparently the first record for China.

Enteromorpha prolifera (O. F. Müll.) J. Ag. C, 526, 527.
Cladophora sp. C, 528.
Bryopsis plumosa (Huds.) Ag. P, 293; C, 53 I.
Codium fragile (Sur.) Hariot. P, 285; C, 529. Codium mucronatum of Cowdry's list. Setchell and Gardner (Univ. California Publ. 8: 171. 1920) have recently reduced the more widely recognized Codium mucronatum J. Ag. to the position of a synonym of C. fragile, the type of which was Japanese. Codium mucronatum was originally described with three named forms (no specified or implied type) from Tasmania, Alaska, California, New Zealand, and Chatham Island.

PHAEOPHYCEAE

Colpomenia sinuosa (Roth) Derb. \& Sol. P, without number.
Scytosiphon Lomentaria (Lyngb.) J. Ag. P, 286; C, 550.
Myriactis pulvinata Kütz. In cryptostomata of Sargassum microceratium, C, 523.
Leathesia difformis (L.) Aresch. C, 550 p.p., a minute form, making cushions I mm. broad or less, but fertile; C, 55 I, making cushions $5^{-8} \mathrm{~mm}$. broad.
Chordaria firma Gepp. P, $288 a$; C, 538 , in rock pools.
Chordaria Chordaria (Harv.) comb. nov. Cladosiphon Chordaria Harv. Phyc. Austral. pl. 6o. 1858. Chordaria Cladosiphon Kütz. Tab. Phyc. 9: 2. pl. 2. f. II. 1859. C, 536, attached to Chorda Filum.

The plants are $8-12 \mathrm{~cm}$. tall and are more slender and smaller in every way than in the type (from Port Phillip, Australia) figured by Harvey, who says that specimens from Georgetown, Tasmania, are "very much larger and more robust than our figure." Kützing's figure is based upon a plant from Port Fairy, Victoria, and is somewhat similar to Harvey's. Okamura has referred the present number to Chordaria Cladosiphon Kütz. (in herb. Cowdry) and it is apparently this that bears that name in Cowdry's Pei-tai-ho list, although the label in the Cowdry herbarium indicates that the plant really came from Chefoo. Collins also has listed the same species from Pei-tai-ho.
Chorda Filum (L.) Stackh. P, 284; C,963. The appearance
of this name in the Cowdry list seems to be the first record for China.
Cystophyllum Thunbergil (Mert.) J. Ag. P, 282; C, $521,522$. Yendo (Jour. Coll. Sci. Tokyo 21 ${ }^{12}$: 118 . 1909) adopts Otto Kuntze's reference of this species to Sargassum on the ground that the receptacles are "axillary." It seems, however, to the present writer that the receptacles are as much terminal as axillary and that the plant is rather more at home in Cys. tophyllum.
Sargassum confusum Ag. (?) P, 283 and another without number (May 23, 1919); C, 520 pp., "drifted on shore in large quantities with Zostera." We have not seen Agardh's original from Japan. Our more or less doubtful determination is based chiefly on Yendo's figures and descriptions (Jour. Coll. Sci. Tokyo 21 ${ }^{12}$: 106-112. pl. 14. f. 1-12. 1909), and may be influenced by Okamura's doubtful reference of no. 520 to this species. However, no. 520 in herb. Cowdry is possibly a mixture.

A specimen from Pei-tai-ho, without number, is about 25 cm . long and shows a pronounced dimorphism or polymorphism in its leaves. Most of the leaves on certain young branches are oblanceolate or obovate, $20-35 \mathrm{~mm}$. long and $6-17 \mathrm{~mm}$. wide and dentate, while all of the leaves now remaining on longer older branches are narrowly linear or subfiliform, $5-45 \mathrm{~mm}$. long, and subentire. The Pei-tai-ho specimen under no. 283 manifestly represents the terminal parts of a plant of the same species, with vesicles, receptacles, subfiliform leaves, and nothing at all to suggest that parts of it might bear leaves of a very different character.
Sargassum microceratium (Mert.) J. Ag. C, 523, 524. In 523 , the plants are $20-35 \mathrm{~cm}$. long, the basal leaves are linear, twisted, $\mathbf{r}-2 \mathrm{~cm}$. long, $\mathbf{r}-\mathrm{I} .5 \mathrm{~mm}$. wide, entire or nearly so; the upper leaves filiform, $2-4 \mathrm{~mm}$. long, $0.2-0.3 \mathrm{~mm}$. wide; the receptacles are fusiform, $2-4 \mathrm{~mm}$. long; the vesicles are 1.5 mm . wide, ellipsoid or obovoid, apiculate or muticous, on pedicels that are often very short but are sometimes longer than the vesicles, sometimes showing much variation on a single plant. The part bearing the basal leaves is short, only 2 or 3 cm . long; the rest of the plant is loosely paniculate, with numerous slender branches, small vesicles, and rather
inconspicuous leaves and receptacles. In another specimen, 524, from the same locality, the leaves and receptacles are less numerous.

The no. 523 is the Sargassum fuliginosum (?) of the Cowdry list. Yendo makes S. microceratium a synonym of S. piluliferum (Turn.) Ag., but Turner's original plates of the two look very different and our Chefoo plant is nearer the S. microceratium. Sargassum piluliferum has large compound dichotomous leaves; the Chefoo specimens have very small simple leaves.
Dictyota divaricata Lamour. C, 548, in rock pools.
Dictyota indica Sond. With the preceding and under the same number. The two species or forms apparently intergrade. as also in the West Indies. D. indica has been reported from Pei-tai-ho by Collins and D. divaricata appears in the Cowdry list, based on determinations by Okamura.
Neurocarpus divaricatus (Okam.) comb nov. Haliseris divaricata Okam. Ic. Jap. Alg. 1: 57. pl. 13, 14. 1907. C, 549, in rock pools. Apparently seen and named by Okamura.

RHODOPHYCEAE

Gelidium corneum (Huds.) Lamour. In rock pools, $\mathrm{P}, 296$; C , $540,541,544$, and 554. Nos. 540 and 544 are slender bitripinnate forms of this notoriously variable species, resembling Turner's varieties pulcheilum and claviferum; these formed the basis of the Gelidium Amansii of the Cowdry list. Nos. 296 and 544 are taller, less densely and rather less regularly branched plants, somewhat resembling Lamouroux's figure of his Fucus Amansii (from Mauritius and Madagascar) and resembling also some of the Australian plants distributed by J. Agardh as his Gelidium australe; no. 554 appears to be the "Gelidium Amansii Lmx., f. radicans Okam. mscr." of the Cowdry list. No. 54 I is more regularly bipinnate with more clavate, more obtuse branchlets; this is apparently the Pterocladia capillacea of the Cowdry list, but the specimens are sterile or tetrasporic and we find no reason for believing them to belong to Pterocladia rather than to Gelidium. A Pei-tai-ho form similar to no. 544 from Chefoo is the Gelidium australe of the Collins list.

Endocladia complanata Harv. C, 969 p.p., forming a matted covering on rocks. The thallus is only slightly complanate, but it agrees with the plant distributed under this name by Okamura in Alg. Jap. Exs. 56. In herb. Cowdry the species is mounted with fragments of Symphyccladia gracilis, to which it may bear some superficial resemblance in size, color, and general habit.
Gymnogongrus flabelliformis Harv. C, 546 and 547, in shaded rock pools. A narrow form, the thallus segments only about $0.6-0.8 \mathrm{~mm}$. broad (when soaked out) except under the dichotomies where they may reach a width of 1.2 mm . Suringar, who, like us, had not seen Harvey's type, makes the laciniae 3 mm . broad, and Cowdry plant would seem to accord better with Suringar's G. japonicus (Alg. Jap. 36. pl. 24 A), which appears to differ from G. flabelliformis only in its narrower segments and generally smaller size. However, the Chefoo plant is no narrower than the Japanese plant distributed by Okamura as G. flabelliformis in the Algae Japonicae Exsiccatae no. 10. Possibly G. japonicus should be considered a synonym of G. flabelliformis.
Gracilaria confervoides (L.) Grev. P, 287 and 2886 ; C, 538 p.p. Under 287 are elongate sparingly branched tetrasporic plants $20-32 \mathrm{~cm}$. long; under 538 are a few smaller more branched plants, tetrasporic and cystocarpic.
Gracilaria lacinulata (Vahl) M. A. Howe. P, 200. Two or three small fragments.
Champia parvula (Ag.) Harv. C, 556. Very similar to European and American forms in habit, but the superficial cells of the thallus cortex are somewhat smaller and less clearly defined and the cystocarps are often slightly larger and more globose. Mrs. Gepp has reported the species from Wei-haiwei.
Lomentaria sinensis sp. nov. Plants small, $2-3 \mathrm{~cm}$. high, flaccid, somewhat gelatinous, intertangled, dichotomous below, the main axes irregularly bipinnate, with an occasional branch in another plane, mostly $0.3-0.6 \mathrm{~mm}$. in diameter, the branches and branchlets lightly constricted at base, other constrictions rare, the ultimate branchlets ovoid-fusiform to digitiform; thallus wall thin, mostly $30-65 \mu$ thick; cells of the superficial layer mostly $12-24 \mu$ in maximum diameter in surface view, often broader than high in cross sections of the
older parts; tetrasporangia in sori at the bottom of orbicular, oval, or elliptic pits $75-300 \mu$ wide or long, and also scattered. (Plate i, figure 1.)

In rock pools, Chefoo, July 29, 1920, N. H. Cowdry 556, p.p. in herb. Cowdry.

Lomentaria sinensis is allied to the type of the genus, the European L. articulata (Huds.) Lyngb., and to the Japanese L. catenata Harv., but manifestly differs from both in the smaller size of the plants, in the more bifarious branching, in the lack of a catenate or moniliform appearance owing to the rarity of constrictions except at the bases of lateral branches, and in the large superficial cells, which have 2-5 times the diameter of corresponding cells of L. articulata and twice the diameter of those of L. catenata. In general consistency, the plant is more gelatinous and less cartilaginous than L. catenata. The pits which form ostioles for the tetrasporic sori are more highly specialized and more obvious than in L. articulata, but less so than in L. catenata.
Laurencia obtusa (Huds.) Lamour. P, 289; C,539. Referred to genus only by Okamura (in Cowdry's list) but Collins has identified similar plants from Pei-tai-ho with this widely distributed species. Tetrasporic plants under no. 539 have sporangiophores that are more corrugated and more constricted at the base than in West Indian plants that are currently referred to this species.
Chondria sp. P, 299, with incipient tetrasporangia. Near C. tenuissima (Good. \& Woodw.) Ag.
Polysiphonia japonica Harv. P, 300 and a specimen without number (Sept. 4, 1919) ; C, 967 (on Zostera) and 968 (on Chorda) ; and perhaps also C, 555 , on rocks at low tide. Resembles in habit some of the West Indian plants currently referred to P. ferulacea Suhr, but the segments are often relatively longer, the sporangial branchlets are often more podlike or stichidioid, the main axis is corticated at the base, and there are often traces of cortication on the principal branches in the form of narrow inconspicuous cells alternating with the primary siphons. This species is omitted in J. Agardh's "Species" and in De-Toni's "Sylloge." A plant from Wei-hai-wei has been referred to this species by Mrs. Gepp (1904), who publishes a copy of Harvey's description.

The plant from Pei-tai-ho referred by Collins to P. ferulacea belongs here; perhaps also the poor specimen from the Kiautschou region referred doubtfully to this species by Reinbold. In Cowdry's list the species is referred to genus only. No. 555, on rocks, may be a form of the present species, but the plant is usually corticated almost to the apices and it has more divaricate branches; it is possibly P. Stimpsoni Harv.
Symphyocladia gracilis (Mart.) Falkenb. P, 295; C, 545 and 969 p.p.
Rhodomela subfusca (Woodw.) Ag. C, 543, thrown up on a sandy shore. A single tetrasporic plant differing somewhat in habit from European and American plants, the difference due, perhaps, chiefly to the more curved and contorted tetrasporic branchlets. Also several loose denuded basal fragments in a bundle of "duplicates" supposed to have come from Pei-tai-ho. The species has been recorded from Chefoo by Cotton and from Wei-hai-wei by Gepp.
Dasya pedicellata Ag. Dasya elegans (Mart.) Ag. P, 297; C, 965 . Rather small tetrasporic plants, $9^{-1} 3 \mathrm{~cm}$. long. Collins was the first to ascribe this species to China, basing the record on plants from Pei-tai-ho. Okamura, in the Cowdry list, refers the specimens doubtfully to Dasya punicea Menegh.
Ceramium japonicum Okam. P, May, 1919, without number; C, 557, tetrasporic plant in rock pool, determined by Okamura.
Ceramium BoydeniI Gepp. P, May, 1919, without number, cystocarpic; C, g66, p.p., thrown up on a sandy shore, tetrasporic. Type from Wei-hai-wei. The cystocarps, which seem to be hitherto undescribed, are mostly terminal on short lateral proliferations; they are subtended and more or less enclosed by a sort of calyx of 2-8 (usually 4-6) mostly incurved bracts.
Ceramium rubrum (Huds.) Ag. P, 298 and 30i; C, 542. Reported from Tsingtau by Reinbold.
Gloiopeltis coliformis Harv. C, 530, in small clumps on rocks, often uncovered at low tide. Plants about 2 cm . high, irregularly furcate.
Grateloupia filicina (Wulf.) Ag. C, 535 (tetr.) and 537 p.p.
(cyst.), in shaded rock pools at low-tide mark. Like Japanese specimens currently referred to G. filicina (e. g., Okam. Alg. Jap. Exsicc. 32), Cowdry's plants are somewhat softer and more gelatinous and rather more inclined to be hollow than Mediterranean plants that are held to be typical of the species.
Grateloupia filicina porracea (Mert.)
Grateloupia porracea (Mert.) Kütz. Phyc. Gen. 397. 1843; Tab. Phyc.17: pl. 25.f.a-c. 1867.
Grateloupia tubulosa Okam. MS. in herb. Cowdry. C, 537, $p . p$., in rock pools. This evidently intergrades with the preceding and also with the following.
Grateloupia filicina Lomentaria var. nov.
Thallus terete or subterete, coriaceous or subcoriaceous, tubulose, occasionally constricted, especially in the lomentarioid ultimate branchlets, rather copiously and very irregularly branched in all directions, the cystocarpic plants sometimes vaguely bipinnate, the ultimate branchlets ovoid, ellipsoid, fusiform, or much elongated, obtuse or subacute, the tetrasporic less branched and subspinescent, the tetrasporangial branchlets commonly rostrate, mostly $0.75^{-1.5}$ mm . long. (Plate i, figures 2-4; plate 2.)

East Cliff, vicinity of Pei-tai-ho, Cowdry 302 (type, cystocarpic) Sept. 25, 1919; also at Pei-tai-ho, A. de C. Sowerby 94 (cyst.), Aug., 1921; and at Chefoo, Cowdry 537, p.p. (tetr.) $538, p . p$. (cyst.) Aug. 2, 1920 and 966 p.p. (tetr.)

The above variety differs so much in habit from the ordinary solid flattened pinnate representatives of the extremely variable Grateloupia filicina that its true affinities eluded the writer on the first examination. The hollow thallus, the frequently ovoid or ellipsoid branchlets very strongly constricted at the base and with occasional constrictions elsewhere suggested relationship with Lomentaria of the Rhodymeniaceae, from which family, however, the deeply immersed cystocarps and the more obviously filamentous cortex seemed to exclude it. The first impulse to describe the rigid Pei-tai-ho plant as a new species or even as the type of a new genus was counteracted by the discovery of its relationship to the terete or subterete hollow-thallused West Indian plant originally described as Grateloupia porracea (Mert.) Kütz. and now currently considered to be a form of Grateloupia filicina,
and furthermore by seeing later Cowdry's collections made at Chefoo, which appeared to show all gradations between the rigid mostly short-branched plant here described as G. filicina Lomentaria and a laxer more gelatinous longerbranched plant close to the typical G. porracea (Grateloupia tubulosa Okam. MS. in herb. Cowdry). The last-mentioned forms, on the other hand, intergrade at Chefoo with flattened pinnate forms which may be compared without violence with typical G. filicina.
Grateloupia sp. C, 532 in herb. Cowdry. A single sterile fragment 8 cm . long, $5-10 \mathrm{~mm}$. wide, subpinnate, with lanceolate lobes, which are scarcely or not at all constricted at base. Perhaps related to the Japanese Grateloupia acuminata Holmes. In herb. Cowdry the specimen was named Nemastoma.
Nemastoma Cowdryi sp. nov. Thallus lubricous, moderately gelatinous, subcorneous on drying, deep purplish vinaceous, Indian lake, or dahlia carmine, repeatedly (mostly 7^{-12} times) and rather regularly dichotomous, rarely trichotomous, $4^{-10} \mathrm{~cm}$. high, the more finely divided somewhat suggestive of Ceramium rubrum in habit, occasionally proliferous, mostly terete or subterete, but more or less complanate in older parts and below the dichotomies, tubulose below, the wider parts $1-3 \mathrm{~mm}$. broad, the widely spreading, of ten subdivaricate terminal branches $150-300 \mu$ in diameter (not including the mucous sheath, which is $75-150 \mu$ thick), the apices subacute; medullary filaments $\mathbf{1 2 - 2 4} \mu$ in diameter; cortex consisting of 3-5 times closely di-(tri-)chotomous strictly fastigiate filaments $80-120 \mu$ long, the penicillate clusters rather easily separable, their proximal cells ovoid, about $12-15 \mu$ in diameter, sometimes broader than high, the succeeding cells ellipsoid or short-cylindric, $7-9 \mu$ broad, the clusters usually terminating in rather rigid tapering unbranched filaments 2-4 cells long, their cells mostly about 3μ broad and 2 or 3 times as long, the distal cells $12-25 \mu$ long, commonly trichomic and often capitate; tetrasporangia scattered, sessile on cortical branchlets of the penultimate order, ellipsoid or obovoid, $30-42 \mu \times 16-24 \mu$ (incl. wall), the spores decussately paired; other parts unknown. (Plate i, FIGURE 5.)

In shaded rock pools, Chefoo, July 14, July 29, and Aug. 2, 1920, N. H. Cowdry 534 (type) and 533 (July 10, 1920).

Nemastoma Cowdryi is related to N. dichoiomum J. Ag., but differs in its more delicate, more terete, more Ceramioid
thallus, and very decidedly in the longer-celled, more rigid and tapering short-piliferous filaments of the cortex.
Corallina officinalis L. C, 552 in herb. Cowdry.
On rocks at low tide. Reported from Pei-tai-ho by Collins.

New York Botanical Garden

Explanation of plate 1

Fig. I. Lomentaricit sinensis. Photograph of the type specimen (dried). Natural size.

Fig. 2. Grateloupia filicina Lomentaria. Photograph of the dried type specimens (Cowdry 302). Natural size.

Fig. 3. Grateloupia filicina Lomentaria. Photograph of a formalinpreserved specimen (Sowerby 94, from the U.S. National Museum). Natural size.

Fic. . Grateloupia filicina Lomentaria. Photograph of a transverse section of the thallus near the base. From dried material (Covedry 302), soaked out. Enlarged 84 diameters.

Fig. 5. Nemastoma Cowdryi. Photograph of the type specimen (dried). Natural size.

Explanation of plate 2

Grateloupia filicina Lomentaria

All figures are photomicrographs of microtome sections of soaked-out fragments of the dried type material (Cowdry 302).

Fig. 1. A transverse section through a primary or secondary axis (to the left) and median longitudinal section through the base of an ultimate branchlet, showing the tubulose character and the septum at the base of the branch. Enlarged 100 diameters.

Figs. 2 and 3. Transverse sections showing immersed cystocarps projecting into the lumen and sometimes coalescent there. Enlarged 74 diameters.

Fig. 4. Transverse section of thallus, showing cell structure, etc. Enlarged 450 diameters.

Fig. 5. Longitudinal section of thallus. Enlarged 450 diameters.

The section Tuberarium of the genus Solanum in Mexico and Central America

P. A. Rydberg

This section belongs to the subgenus Pachystemon of Dunal, $i . e$. , the anthers are short, thick, subcylindric or oblong, not attenuate at the apex. It is in general characterized by odd-pinnately dissected leaves, by terminal and lateral corymbiform or racemiform cymes, plicate corollas, pedicels with an articulation, and, as the name indicates, supposedly with tuber-bearing stolons. Some botanists may have been inclined to separate it as a genus disti nct from Solanum, and Carl Börner* united the section with Lycopersicum into a new genus Solanopsis. None of the characters by which the section is separated from the rest of the genus holds, however. Solanum bulbocastanum Dun., S. muricatum Ait., S. apalophyllum Dunal, S. simplicifolium Bitter, and S. morelliforme Bitter, which evidently belong to this section, have simple leaves and several species in the sections Morella and Dulcamara have pinnatifid leaves. The pedicels are usually articulate some distance above the base, but in some species the articulation is practically basal. In the rest of the genus it is basal but often obsolete. The shrubby species of Tuberarium bear, as far as known, no tubers and in several of the herbaceous ones no tubers have as yet been found. There are therefore no constant characters to separate the section generally from the rest of the sections included in the subgenus Pachystemon. Bitter \dagger has shown that there exists still less reasons for uniting the section with Lycopersicum.

Since Dunal's monumental work on Solanum in De Candolle's Prodromus, \ddagger very little systematic work on this group has been made until in the last decade. Dunal divided the section into two groups "Potatoe," with interruptedly pinnatifid leaves, and "Pterophyllum," with regularly pinnatifid leaves. As the presence or absence of smaller intermittent lobes vary in the same

[^20]species, this division was very artificial. Bitter, who in 1812-15 published such valuable contributions to the knowledge of Solanum and especially of this very section, substituted instead the mode of articulation of the pedicels as the main bases of classification of this section, and established two subsections: Basarthrum, with basal articulation, and Hyperbasarthrum, with the articulation higher up. He also pointed out that the latter could be subdivided by the shape of the fruit, subconic or subglobose, and the deeper or shallower division of the corolla. Following these suggestions and elaborating on the same, I have been able to present the following key of the Mexican and Central American species as far as they are known to me.

Bitter, following more or less the German fashion of classifying the different forms of a genus in many categories, used the ranks: superspecies, or collective species, species, subspecies, variety, and forma. In most cases I have regarded his subspecies as distinct species, admitting, however, that each is most closely related to the species of which he made it a subspecies. In most cases I have not regarded it worth while to pay special attention to his varieties or formas. In one case, however, I think, a certain variety deserves specific rank, better than some of his subspecies and even better than one of his species.

Key

Pedicels articulate some distance above the base
(Hyperbasarthrum).
Stem herbaceous.
Fruit globose or ellipsoid, rounded at the apex; plants with tubers.
Leaves pinnatifid.
Corolla 5 -agonal, its lobes as broad as or broader than long.

1. Tuberosa.

Corolla distinctly star-shaped, its lobes longer than broad.
2. Pinnatisecta.

Leaves simple; corolla star-shaped.
3. Bulbocastana.

Fruit elongated-ovoid or sub-conical, acute at the apex; plant probably not tuker-bearing. .
Stem woody, climbing; plant not tuber-bearing...
4. Oxycarpa.
5. Juglandifolia.

Pedice!s articulate at or near the base; plant not tuber-bearing as far as known. (Basarthrum).
Stem herbaceous
6. Suaveolentia.

Stem woody, climbing and rooting at the nodes

1. TUBEROSA

Leaf-segments of an ovate type, acute or obtuse or abruptly short-acuminate.
Leaf-segments distinctly stalked, cordate or rounded at the base.
Corolla more than 15 mm . high; leaflets rather thick, densely pubescent on both sides; calyxlobes long-acuminate
Corolla less than 15 mm . high; leaflets rather thin; calyx-lobes acute.
Leaves equally pubescent on both sides; calyx-lobes distinctly longer than broad.
Inflorescence many-flowered, usually exceeding the leaves; corolla white to skyblue, about 20 mm . broad; leaf-segments 7-11, intermittent segments quite numerous
Inflorescence few-flowered, usually not exceeding the subtending leaf; leafsegments 3-7; intermittent segments rate or none.
Corolla blue-violet; leaflets mostly 5-7. . Corolla white, leaflets $1-3$, or if 5 the lower pair small
Leaves almost glabrous above; calyx-lobes as broad as long; corolla white, $12-16 \mathrm{~mm}$. broad.
Leaf-segments sub-sessile or the lower ones very short-stalked.
Plant grayish, stem and leaves densely hirsute with long white hairs
Plant green; stem and leaves rather sparingly hirsute with short hairs.
Corolla distinctly 5 -angled, the sinuses without lobes.
Corolla somewhat ro-angled, the interpetalar membranes produced into short lobes
Leaf-segments of a lanceolate type, usually longacuminate.
Leaf-segments $\mathbf{7}$-11, decidedly pubescent, broadly lanceolate, mostly acute at the base.
Corolla 2 cm . broad or more; leaves coarsely hirsute, with intermittent segments
Corolla $\mathbf{I c m}$. broad; leaves finely pubescent, without intermittent segments.
9. S. verrucosum.
10. S. Ervendbergiz.
2. S. longipedicellatum.
3. S. Papita.
4. S. Wightianum.
5. S. stoloniferum.
6. S. polytrichon.
8. S. demissum.
I. S. tuberosum.
7. S. Fendleri.
rous or nearly so, very oblique at the base, acute on the upper margin, semi-cordate on the lower.
II. S. agrimonifolium.

1. Solanum tuberosum L. Sp. 185. 1753

The cultivated potato is apparently not wild in North America. In the United States it is found occasionally on garbage dumps and waste places, but rarely persists more than a single season. From reports, it seems to be more common in Mexico and Central America. In the United States National Herbarium there are but two Mexican specimens and in the collections of the New York Botanical Garden only one from Costa Rica. These are:

Vera Cruz: (Orizaba) Rose \& Hay 5700.
Nuevo Leon: Palmer 938, in part.*
Costa Rica: Kuntze 2296.
2. Solanum longipedicellatum Bitter, Repert. 11:457. 1912

This species is closely related to S. tuberosum, differing in the smaller flowers, thinner leaves and acute instead of acuminate calyx-lobes. I see no reason for regarding the var. pseudoprophyllum Bitter, l.c.458, as anything but an individual variation. Bitter himself was inclined to regard the specimen representing the type number Pringle 8602 in the Munich herbarium as belonging to the variety, or at least approaching it. The following specimens belong here:

Mexico (Federal District): Pringle 8602, 8571.
Mexico (State): Pringle 9142.
Guanajuato: Dugès 417 A.
3. Solanum Papita Rydberg sp. nov.

A perennial, with subterranean stolons and tubers; stems herbaceous, 1-2 dm. high, terete, slender, puberulent with short acute hairs; leaves odd-pinnatifid, $4-1 \mathrm{ccm}$. long; rachis slightly winged, sparingly pubescent, principal leaf-segments

[^21]5-7, more or less stalked, ovate, rounded or obtuse at the base, obtuse, acute, or sometimes short acuminate at the apex, 1 - 3 cm . long, short hirsute with few-celled hairs on both sides, dark-green above, paler beneath, the lower pairs much smaller than the rest; intermittent small segments rarely present, $\mathrm{I}-3 \mathrm{~mm}$. long; pseudo-stipular leaves lunate, $2-4 \mathrm{~mm}$. long; peduncle $1-3 \mathrm{~cm}$. long, puberulent; inflorescence $3-7-$ flowered; pedicels $\mathbf{I}-3 \mathrm{~cm}$. long, articulate above the middle, the lower portion puberulent, the upper glabrous; calyx sparingly hirsutulous, the tube 2.5 mm . long, the lobes lanceolate, acute, 2.5 mm . long; corolla dark bluish-violet, about 12 mm . broad, the lobes broadly triangular, 3 mm . long, broader than long, puberulent without; anthers oblong, cordate at each end, 3 mm . long; fruit globose, the mature berry unknown.
Type collected at Otinopa, Durango, 1906, Palmer 392 (U. S. Nat. Herb. no. 571417).

This is also related to the potato, but is still smaller, the corolla only about 12 mm . broad. The leaf-segments are few, 5 or 7 , the intermittent smaller ones usually found in the potato and its relatives are practically lacking in this species. No specimens except the type have been seen.

4. Solanum Wightianum Rydberg sp. nov.

A perennial, with subterranean stolons and tubers; stem herbaceous, about 3 dm . high, striate, pilose with flat, somewhat kinked hairs; leaves on the seedlings or young shoots simple, the petioles $1-1.5 \mathrm{~cm}$. long, the blade ovate, $2-3 \mathrm{~cm}$. long; leaves of the better developed plant pinnately $3-5^{-}$ foliolate, $\mathbf{I}-1.5 \mathrm{dm}$. long; rachis wing-margined; leaf-segments distinctly petioluled, long-pilose on both sides, the blade ovate or oval, acute or acutish, that of the terminal segment $4^{-6} \mathrm{~cm}$. long, that of the upper pair $\mathbf{2}^{-4} \mathrm{~cm}$. long and that of the lower pair if present, $5^{-15} \mathrm{~mm}$. long; peduncle $4-5 \mathrm{~cm}$. long; raceme about 5 -flowered; pedicels $2-3$ cm . long, articulate above the middle; calyx white-pilose, 5 mm . long, the lobes lance-deltoid, acute, slightly longer than the tube; corolla pentagonal, $14^{-15} \mathrm{~mm}$. wide, white, puberulent without; anthers oblong, 4 mm . long, cordate at the base.
Type grown from tubers, collected by F. S. Lozano near Acambaro, Guanajuato, in 1904 (Gray Herbarium).

This species is named in the honor of W. T. Wight of Washington, who has done a good deal of work on the tuber-bearing Solanums, and has indicated on the type sheet that he regarded it as belonging to an undescribed species.
5. Solanum stoloniferum Schlecht. \& Bouché, Verh. Beförd. Gartenb. Preussen 9: 317. pl. 2. 1833
Bitter seems not to have seen any native specimen except those collected by Schiede and Deppe. There is, however, no uncertainty as to its identity as the original publication contains a good illustration. Furthermore, there is a cultivated specimen in the Columbia University herbarium from the Botanic Garden at Brasel. A specimen collected on ballast, near Communipaw Ferry, New Jersey, by Addison Brown might belong to it. The only Mexican specimens I have seen are the following:

Querétaro: Near Cadueyta, Rose, Painter \& Rose 9841.
6. Solanum polytrichon Rydberg sp. nov.

A perennial, with subterranean stolons and tubers; stem herbaceous, $1-3 \mathrm{dm}$. high, densely hairy with long white crisp many-celled hairs; leaves $6-15 \mathrm{~cm}$. long, odd-pinnatifid; rachis narrowly winged, densely hirsute; principal leaf-segments 5-9, sessile, ovate, or the terminal one broadly oval, $1-4 \mathrm{~cm}$. long, obtuse or acute at the apex, rounded at the base, densely white-hairy on both sides, the lowest one or two pairs much reduced; intermittent smaller segments usually present, $1-4 \mathrm{~mm}$. long, rounded; pseudo-stipular leaves lunate, $3-5 \mathrm{~mm}$. long; peduncles $1-4 \mathrm{~cm}$. long, hirsute; inflorescence branched, 5^{-8}-flowered; pedicels $\mathbf{1 - 2} \mathrm{cm}$. long, articulate above the middle; calyx sparingly hirsute, the tube and the lobes each about 2.5 mm . long, the latter lanceolate, acute; corolla white, about 1.5 cm . broad, puberulent, the lobes broadly triangular; anthers 4 mm . long, cordate at each end; young fruit globose.
Type collected in the vicinity of San Luis Potosi, 1878, Parry \& Palmer 632 (U. S. Nat. Herb. 42677).

This species is most closely related to S. Fendleri, but differs in the dense pubescence with long white hairs.
7. Solanum Fendleri A. Gray, Am. Journ. Sci. II. 22: 285. 1856
S. tuberosum boreale A. Gray, Syn. Fl. 2':227. 1878.
S. boreale Bitter, Repert. 11:459. 1912.

The original specimens of S. Fendleri had deep violet corollas but the color varies considerably and white-flowered specimens are as common as those with purple or bluish shades. Bitter thought that the white-flowered specimens represented a distinct species and adopted for this Dr. Gray's varietal name, boreale. Though the white-flowered specimens of ten are less hairy and the
leaves of a paler color, these characters are by no means constant, and all kinds of grades exist. Apparently the first specimens collected of the white-flowered form were those by Bigelow at Puerto de Paysano, Mexican Boundary Survey roo8, in part. These were referred by Dr. Torrey* to S. Jamesii, probably because they had white flowers. The blue- or purple-flowered specimens from the Copper Mines were named by him S. Fendleri.

The following specimens belong here. Those numbers with white flowers are so indicated.

New Mexico: Mex. Bound. Surv. 1009; 1008, in part (white); Greene (in 1880); Rusby 313 (white); Wooton (in 1894, 1895 and 1899) ; Metcalfe 838.

Arizona: Wilcox (in 1892); Goodding 746, 264, (white); Griffths \& Thornber 102 (white); Blumer 1432 (white); 1566, 1579; Mearns 1534.

Sonora: Mearns 1599, 1635, 1752.
Chinuahua: Pringle 667 (white); E. W. Nelson 6ı66; Townsend \& Barber 173; Gregg 420.

Coahuila: Palmer 305.
Nuevo Leon: Palmer 937, 938, in part (white).
Durango: Palmer 484 (white).
8. Solanum demissum Lindl. Jour. Hort. Soc. 3: 69, 70. 1848
S. utile Klotzsch. All. Gart. Zeit. 17 : 315. 1849.
S. demissum Klotzschii Bitter, Repert. 11:454. 1912.-12: 454. 1913.
S. demissum resembles S. Fendleri in habit, and Mr. W. F. Wight of Washington has regarded the latter as a synonym of the former. From Lindley's figure on page 69 and Bitter's description of S. utile, the corolla is different. In S. Fendleri the corolla is pentagonal, but in S. demissum the intrapetalar membranes are developed into lobes, making the corolla almost io-angled, a character which the species has in common with S. verrucosum. The characters by which Bitter tries to distinguish S. utile from S. demissum seem to me trifling, and perhaps due to cultivation. Bitter evidently knew S. utile only in the cultivated form. A cultivated specimen of S. utile is in the herbarium of Columbia University. This agrees with Lindley's figure of S. demissum.

[^22]Mexico (Federal District) : Bourgeau 346.
Mexico (State) : Kuntze 23611, 23774.
Vera Cruz: Rose \& Hay 570i, 6024, 6240.
Hidalgo: Rose \& Hough 4487.
San Luis Potosi: Palmer 83½, Schaffner 407-693.
Zacatecas: Pringle 3499.
9. Solanum verrucosum Schlecht. Ind. Sem. Hort. Hal. 1839 : 10.

$$
\text { 1839.-Hort. Hal. 13,: pl.2. } 184 \mathrm{I}
$$

S. squamulosum Mart. \& Gal. Bull. Acad. Brus. 12 : 140. 1845.
S. verrucosum iopetalum Bitter, Repert.11:455. 1912.

In the United States National Herbarium there is a specimen which bears the following label:
" 1132 . Solanum stoloniferum Schlecht. et Bouche.
(Solanum squamulosum Martens et Galeotti). Mexico. C. Ehrenberg."
This specimen had come from the Botanical Museum at Berlin. The specimen does not agree with the description of S. stoloniferum, but well with that of S. verrucosum. Schlechtendahl,* who had before him Ehrenberg's specimens of both species, stated that the flowers of S. stoloniferum had white flowers and S. verrucosum bluish-purple. In the specimen mentioned in the National Herbarium the flowers are purple and the leaves bearing the strong hairs of the latter species. Furthermore, S. squamulosum is supposed to be a synonym of S. verrucosum, not of S. stoloniferum. Evidently there must have been some error committed in labelling the specimen. Perhaps it represents part of the original collection of S. verrucosum made at Mineral del Monte.

The species was originally published in the Index Seminum of 1839, though the description is very meager. In that publication no reference was made to Ehrenberg's specimen and the species must therefore be regarded as based on the cultivated specimens, which according to Schlechtendahl would be illustrated together with another species with acute fruit. These illustrations were published two years later, when the author stated that the seeds were collected by Ehrenberg at Mineral del Monte. Bitter regarded one of Ehrenberg's herbarium specimens as the type, and drew his description from that. Schlechtendahl's illustration in

[^23]Hortus Halensis, drawn from the cultivated material, resembles so closely our duplicate of the type of Bitter's var. iopetalum, that I regard the latter as typical S. verrucosum. The Ehrenberg specimen, however, does not differ, as far as I can judge, very much from them.

San Luis Potosi: Parry \& Palmer 633 (in part, as represented in U. S. Nat. Herb.*).
Hidalgo: Rose \& Rose 11490; Pringle 8954; Rose \& Hay 5579; Ehrenberg 1132.
Mexico (State): Rose \& Hay 6259.
Vera Cruz: F. Mueller 304I, 1673.
Oaxaca: Galeotit 1100, 1225 P.
Costa Rica: Volcan Irazu, Popence 1015.
10. Solanum Ervendbergii Rydberg sp. nov.

A perennial with subterranean rootstocks and tubers; stem low, less than 2 dm . high, striate, puberulent; leaves $6-10 \mathrm{~cm}$. long, the rachis scarcely margined, puberulent; leaf-segments mostly 7 , distinctly petioluled, the blades lanceolate, somewhat oblique at the base, $2-3 \mathrm{~cm}$. long, acute or somewhat acuminate, puberulent on both sides; intermittent segments not present; peduncle 6-7 cm. long, slender, puberulent; racemes $4-7$-flowered; calyx strigose, $3-3.5 \mathrm{~mm}$. long, the lobes lanceolate, longer than the tube, acute; corolla white, pentagonal, about $\mathbf{I} \mathrm{cm}$. wide, the lobes broader than long.
Type collected at Wartenberg, near Tantoyuca, Vera Cruz, in 1858, Ervendberg 175 (Gray Herbarium).

The type was first determined as S. Jamesii Torr.?, then changed to S. appendiculatum Dunal? Somebody has later determined it as S. stoloniferum, which name again has been changed by Wight to Solanum Jamesii Torrey. It has nothing to do with S. appendiculatum which is a climbing vine with subbasal articulation on the pedicels. In habit it resembles S. Jamesii but the leaflets are stalked and the corolla pentagonal and not star-shaped. S. stoloniferum has ovate leaf-segments and larger flowers. It is probably most closely related to S. verrucosum, but the plant is more slender, with much smaller corolla, and the leaves are puberulent not hirsute and without intermittent segments.

[^24]
154 Rydberg:Solanum in Mexico and Central America

II. Solanum agrimonifolium Rydberg sp. nov.

A perennial, probably stoloniferous and with tubers; stem at least 5 dm . high, angled, or even slightly winged, glabrous; leaves odd-pinnatifid, $1-2 \mathrm{dm}$. long; rachis narrowly margined, glabrous; principal leaf-segments 9-15, narrowly lanceolate, $3-8 \mathrm{~cm}$. long, $1-2 \mathrm{~cm}$. wide, long-acuminate, glabrous or with a few scattered hairs, the lateral ones sessile, very oblique at the base, cuneate on the upper margin, semicordate on the lower; intermittent smaller segments numerous, often two pairs in each interval, elliptic, $2-8$ mm . long; pseudo-stipular leaves obliquely ovate, $5-10 \mathrm{~mm}$. long; cymes $8-10$-flowered; peduncle $7-10 \mathrm{~cm}$. long, glabrous; pedicels $2-4 \mathrm{~cm}$. long, articulate above the middle; calyx glabrous, turbinate, the tube 3 mm . long, the lobes lanceolate, $4^{-5} \mathrm{~mm}$. long, acuminate, corolla $15-18 \mathrm{~mm}$. broad; lobes broadly triangular, short-acuminate, puberulent without; anthers oblong, 4 mm . long, cordate at each end; fruit unknown.
Type collected at Cerro del Boqueron, Chiapas, September, 1913, C. A. Purpus 6977 (U. S. Nat. Herb. 567248).

New York Botanical Garden

[To be continued in May Bulletin.]

INDEX TO AMERICAN BOTANICAL LITERATURE

1923
The aim of this Index is to include all current botanical literature written by Americans, published in America, or based upon American material; the word America being used in the broadest sense.

Reviews, and papers that relate exclusively to forestry, agriculture, horticulture, manufactured products of vegetable origin, or laboratory methods are not included, and no attempt is made to index the literature of bacteriology. An occasional exception is made in favor of some paper appearing in an American periodical which is devoted wholly to botany. Reprints are not mentioned unless they differ from the original in some important particular. If users of the Index will call the attention of the editor to errors or omissions, their kindness will be appreciated.

This Index is reprinted monthly on cards, and furnished in this form to subscribers at the rate of three cents for each card. Selections of cards are not permitted; each subscriber must take all cards published during the term of his subscription. Correspondence relating to the card issue should be addressed to the Treasurer of the Torrey Botanical Club.

Abbott, O. Chemical changes at beginning and ending of rest period in apple and peach. Bot. Gaz. 76: 167-184. f. I-6. I5 O 1923.

Allen, W. E. Studies of marine diatoms and dinoflagellates caught by aid of the Kofoid bucket in 1922. Univ. California Publ. Zool. 22: 435-445. f. 1-5. 3I O 1923.
Allen, W. E. Recent work on marine micro-plankton at the La Jolla (California) Biological Station. Trans. Am. Micros. Soc. 42: 180-183. O 1923.

Anderson, E. G. \& Emerson, R. A. Pericarp studies in maize. I. The inheritance of pericarp characters. Genetics 8: 466476. S 3923.

Anderson, P. J. The relation of soil moisture to formaldehyde injury of onion seedlings. Phytopathology 13: 392-403. f. I, 2. 18 S 1923.

Anderson, R. J. Concerning the anthocyans in Norton and Concord grapes. A contribution to the chemistry of grape pigments. Jour. Biol. Chem. 57: 795-814. O 1923.

Andrews, A. L. A new Bryum from Alberta. Bryologist 26: 43-45. 30 O 1923. Bryum Brinkmanii, sp. nov.

Ashe, W. W. Notes on trees and shrubs of the southeastern United States. Rhodora 25: 179-183. 26 O 1923.
Includes three new species of Robinia.
Bensaude, M. A species of Olpidium parasitic in the roots of tomato, tobacco and cabbage. Phytopathology 13: 451454.f. 1-5. 19 O 1923.

Berry, E. W. The age of the supposed Lower Cretaceous of Alabama. Jour. Washington Acad. Sci. 13: 433-435.f. I-6. 4 O 1923.
Contains paleobotanical matter.
Boncquet, P. A. Discovery of curly leaf of sugar beets in the Argentine Republic. Phytopathology 13: 458-460. 19 O 1923.

Branscheidt, P. Zur Kenntnis der experimentellen Beeinflussung. Bot. Archiv 4: 181-195. IS 1923.
Study of Helianthus annuus and other plants.
Britton, N. L. \& Rose, J. N. The Cactaceae, vol. 4. Carnegie Inst. Washington Publ. 248. 4: I-80. f. 1-72. 9 O 1923. Includes 7 new genera and 13 new species.

Brown, J. G. \& Gibson, F. A new host for Bacterium Malvacearum. Phytopathology 13: 455-457.f. 1, 2. 19 O 1923. Thurberia thespesioides.

Brownell, L. W. The black oak. Nat. Mag. 2: 239-24I. O 1923. [Illust.]

Campbell, D. C. A remarkable development of the sporophyte in Anthoceros. Science II. 58: 307, 308. 19 O 1923.
Cook, M. T. Brown rot of apples. Phytopathology 13: 462. 19 O 1923.

Cook, M. T. A greenhouse disease of melons. Phytopathology 13: 462. 19 O 1923.

Cook, M. T. The life history of Nectria Ipomoea. Mycologia 15: 233-235. pl. 25. 15 S 1923.

Darling, C. A. Chromosome behavior in Acer platanoides L. Am. Jour. Bot. 10: 450-458. pl. 31, 32. 23 O 1923.

Davidson, J. Is gaseous nitrogen a product of seedling metabolism? Bot. Gaz. 76:95-IOI. 15S 1923.

Dietz, S. M. The rôle of the genus Rhamnus in the dissemination of crown rust. U. S. Dept. Agr. Bull. i162: $1-18$. f. I-8. S 1923.

Dodge, B. O. Effect of the orange-rusts of Rubus on the development and distribution of stomata. Jour. Agr. Research 25: 495-500. pl. I. 22 S 1923.

Dodge, B. O. A new type of orange-rust on blackberry. Jour. Agr. Research 25: 491-494. 22 S 1923.

Dorsey, M. J. \& Strausbaugh, P. D. Plum investigations I. Winter injury to plum during dormancy. Bot. Gaz. 76: 113-143. pl. 1o, if. 15 O 1923.

Durland, W. D. Notes on quebracho colorado. Jour. For. 21: 600-603. O 1923.
Quebrachia Lorentzii Griseb. of Argentina.
Ellen, M., Sister. The Marchantiaceae of Sinsinawa Mound [Wisconsin]. Am. Midl. Nat. 8: 222-224. S 1923.

Elliott, C. A bacterial stripe disease of Proso millet. Jour. Agr. Research 26: 151-160. pl. I-4. 27 O 1923.

Emberger, L. Recherches sur le protoplasme des Lycopodinées. Arch. Anat. Microscop. 19: 309-348. pl. 13-22. I O 1923.

Fernald, M. L. Lycopodium sabinaefolium and L. sitchense. Rhodora 25: 166, 167. 29 S 1923.

Fernald, M. L. The American variety of Scheuchzeria palustris. Rhodora 25: 177-179. 26 O 1923.

Fonseca, O. da \& Arealeao, A-E. de. Sur la systématique des champignons produisant des chromobl astomycosis. Compt. Rend. Soc. Biol. 89: 762, 763. I3 O 1923.

Fromageot, M. C. Influence de la concentration en sels de l'eau de mer sur l'assimilation des Algues vertes. Compt. Rend. Acad. Sci. 177: 779, 780. 22 O 1923.
Study of Ulva Lastuca.
Gager, C. S. The first "botanic" garden in Brooklyn: supplementary note. Brooklyn Bot. Gard. Record 12: 1 19-125. f. 13, 14. O 1923.

Garber, R. J. \& Quisenberry, K. S. Delayed germination and the origin of false wild oats. Jour. Hered. 14: 267-274. f. 10, iI. $5 \mathrm{O}_{1923 .}$

Gardner, M. W. Origin and control of apple-blotch cankers. Jour. Agr. Research 25: 403-418. pl. 1-3. 8 S 1923.

Gardner, M. W. Field control of tomato mosaic. Phytopathology 13: 372-375. 8S 1923.

Gates, R. R. The chromosomes of a triploid Oenothera hybrid. Ann. Bot. 37: 565-570. pl. 12. O 1923.

Gates, R. R. The trisomic mutations of Oenothera. Ann. Bot. 37: 543-564. pl. ir. O 1923.

Gilman, J. C. \& Melhus, I. E. Further studies on potato seed treatment. Phytopathology 13: 341-358.f.1-5. 8S 1923.

Goldstein, B. Resting spores of Empusa Muscae. Bull. Torrey Club 50: 317-328. pl. 19. 19 N 1923.

Graves, A. H. The Melanconis disease of the butternut (Juglans cinerea L.). Phytopathology 13: $41 \mathbf{1}-435 . p l .19,20 .+f$. 1-5. 19 O 1923.

Graves, E. W. Is Botrychium dissectum a mutant? Am. Fern J'our. 13: 87-89. 3 O 1923.
Griffiths, D. Production of double cone flowers. Jour. Hered. 14: 265, 266. 5 O 1923.

Gundersen, A. Evolution in flowering plants. Brooklyn Bot. Gard. Leafl. XI 9: 1-4. 17 O 1923.
Hansen, A. A. Our American golden-rod. Nat. Mag. 2: 212214. O 1923. [Illust.]

Hansen, A. A. A woodland plant that is becoming a grainfield weed. Torreya 23: 85, 86. O 1923. Phacelia Purshii.

Hansen, H. R. Severity of attacks of black stem-rust in Denmark, 1884-1921. Phytopathology 13: 404-407. 18 S 1923.

Harter, L. L. \& Jones, L. R. Cabbage diseases. U. S. Dept. Agr. Farm. Bull. 1351 : 1 -28. f. 1-14. S 1923.

Harvey, R. B. Elias Judah Durand. Phytopathology 13: 408, 409. pl. 18. 18 S 1923.

Hoagland, D. R. The absorption of ions by plants. Soil Sci. 16: 225-246. f. 1, 2. O 1923.
Hoagland, D. R. \& Davis, A. R. Further experiments on the absorption of ions by plants, including observations on the effect of light. Jour. Gen. Physiol. 6: 47-62. 20 S 1923.
Hollick, A. Erect silky leather flower on Staten Island [New York]. Proc. Stat. Isl. Inst. Arts \& Sci. 1: 120-122. 13 O 1923.

Viorna ochroleuca (Aiton) Small.
Holm, T. Chelone glabra L. A morphological study. Am. Jour. Sci. 206: 265-270.f. 1-5. S 1923.
Holzinger, J. M. Desmatodon arenaceus Sull. redivivus. Bryologist 26: 48, 49. 30 O 1923.
Holzinger, J. M. Unusual provision for vegetative reproduction in Syrrhopodon parasiticus. Bryologist 26: 47. 30 O 1923. [Illust.]
Howe, M. A. Dahlias and their culture. Jour. New York Bot. Gard. 24: 169-187. S 1923. [Illust.]
Hungerford, C. W. A serious disease of wheat caused by Sclerotium rhizodes in Idaho. Phytopathology 13: 463, 464. 19 O 1923.
Hungerford, C. W. Specialized varieties of Puccinia glumarım, and hosts for variety Tritici. Jour. Agr. Research 25: 363402. pl. I-6. I S 1923.

Hunnewell, F. W. A new station for three local Appalachian plants. Rhodora 25: 168. 29 S 1923.

Hunt, N. R. Notes on the occurrence and growth of cankers of Endothia parasiica. Phytopathology 13: 366-371. 8 S 1923.

Hurd, A. M. Acidity of corn and its relation to vegetative vigor. Jour. Agr. Research 25: 457-470. f. I, 2. I5 S 1923.

Ives, S. A. Maturation and germination of seeds of Ilex opaca. Bot. Gaz. 76: 60-77.f.I-5. I5 S 1923.

Jones, L. R., Williamson, M. M., Wolf, F. A., \& McCulloch, L. Bacterial leafspot of clover. Jour. Agr. Research 25: 47 I490. pl. $1-6+f . I-3 . \quad 22 \mathrm{~S}$ I923.

Kempton, J. H. Heritable characters of maize XIV.-Branched ears. Jour. Hered. 14: 243-25I.f. 1-5. 5 O 1923.

Kendall, M. L. A study of variation in Polypodium californicum Kaulf. Am. Fern Jour. 13:75-87. pl. 3. 3 O 1923.

Khazanoff, A. A new tumor of the apricot. Jour. Agr. Research 26: 45-60. pl. 1-13. 13 O 1923.
Caused by Monochaetia Rosenvaldia, sp. nov.
Killip, E. P. New species of Urticaceae from Colombia. Jour. Washington Acad. Sci. 13: 354-360. 19 S 1923. Includes new species in Pilea (9), Boehmeria (2), and Phenax (1).

Knowlton, C. H. \& Deane, W. Reports on the flora of the Boston district,-XLI. Rhodora 25: 185-187. 26 O 1923.

Kostytschew, S. Die Photosynthese der Insektivoren. Ber. Deutsch. Bot. Gesellsch. 41: 277-280. 17 O 1923.

Kurz, H. Hydrogen ion concentration in relation to ecological factors. Bot. Gaz. 76: I-29.f. I-14. I5 S 1923.

Lamb, M. A., Sister. Leaflets of Cycadaceae. Bot. Gaz. 76: 185-202. pl. 15, 16. 15 O 1923.

Lloyd, F. E. Ultramicroscopically observable fluorescence. Science II 58: 229, 230. 2I S 1923.
Observed in Algae.

Lomanitz, S. A preliminary study of the effects of sodium chloride upon alfalfa grown in solution cultures. Soil Sci. 16: 183-192. pl. I. S 1923.

Long, B. Naturalized occurrence of Prunus Padus in America. Rhodora 25: 169-177. 26 O 1923.

MacMillan, H. G. Cause of sunscald of beans. Phytopathology 13: 376-380. 8S 1923.

Malloch, W. S. Experimental accuracy in fruit breeding. Am. Nat. 57: 435-442. O 1923.

Malloch, W. S. The problem of breeding nematode-resistant plants. Phytopathology 13: 436-450.f. 1, 2. 19 O 1923.

Maxon, W. R. Notes on American ferns-XIX. Am. Fern Jour. 13: 73-75. 3 O 1923.

McGeorge, W. T. The chlorosis of pineapple plants grown on manganiferous soils. Soil Sci. 16: 269-274. O 1923.

Merrill, E. D. Diagnoses of Hainan piants, II. Philipp. Jour. Sci. 23:237-268. S 1923.

Miller, E. C. \& Saunders, A. R. Some observations on the temperature of the leaves of crop plants. Jour. Agr. Research 26: $15-44$. f. 1 -8. 6 O 1923.

Newton, W. The rest period of Solanum tuberosum in relation to available nitrogen. Science II. 58: 207, 208. 14 S 1923.

Nitschke, R. Die geographische Verbreitung der Gattung Acalypha. Bot. Archiv 4:277-317. I O 1923.

Nuttall, G. H. F. Symbiosis in animals and plants. Am. Nat. 57: 449-475. O 1923.
Ottley, A. M. A revision of the Californian species of Lotus. Univ. California Publ. Bot. 10: 189-305. pl. 61-82. 11 S 1923.

Overholts, L. O. The species of Poria described by Schweinitz. Mycologia 15: 207-232. pl. 21-24 +f.1-30. 15S 1923.

Paine, S. G. \& Chaudhori, H. The blackleg disease of the potato. On the relationship of Bacillus atrosepiicus and

Bacillus solanisaprus. Phytopathology 13: 359-361. 8 S 1923.

Parlin, J. C. Selaginella apoda in Maine. Rhodora 25: 188. 26 O 1923.

Pickett, F. L. An ecological study of Cheilanthes gracillima. Bull. Torrey Club 50: 329-338. f. 1-25. I9 N 1923.
Poole, J. P. Comparative anatomy of leaf of Cycads, with reference to Cycadofilicales. Bot. Gaz. 76: 203-214. pl. 17-19. 15 O 1923.
Power, F. B. \& Chestnut, V. K. Chemical examination of "chufa," the tubers of Cyperus esculentus Linné. Jour. Agr. Research 26: 69-76. I3 O 1923.

Pretz, H. W. Additional notes on Sonchus uliginosus. Torreya 23: 79-85. O 1923.
Rathbun, A. E. Damping-off of taproots of conifers. Phytopathology 13: 385-391. 18 S 1923.
Record, S. J. Forests of the Amazon. Am. For. 29: 591. O 1923.

Reed, E. L. Extra-floral nectar glands of Ricinus communis. Bot. Gaz. 76: 102-106. f. 1-12. 15 S 1923.
Reed, H. S. \& Haas, A. R. C. Studies on the effects of sodium, potassium, and calcium on young orange trees. Univ. Calıfornia Publ. Agr. Exp: Sta. Techn. Pap. i1: 1-24. pl. i. O 1923.

Richards, B. L. Soil temperature as a factor affecting the pathogenicity of Corticium vagum on the pea and the bean. Jour. Agr. Research 25: 431-450. pl. 152. 15S 1923.
Robbins, W. J. An isoelectric point for plant tissue and its significance. Am. Jour. Bot. 10: 412-439. f. I-6. 23 O 1923.
Robinson, B. L. Emily Frances Fletcher. Rhodora 25: 149, 150. 29 S 1923 .

Sax, K. \& Gowen, J. W. The place of stocks in the propagation of clonal varieties of apples. Genetics 8: 458-465. f. I. S 1923.

Schaffiner, J. H. The time of sex determination in plants. Ohio Jour. Sci. 23: 225-240. O 1923.

Seaver, F. J. Studies in tropical Ascomycetes-II. An interesting Xylaria from Porto Rico. Bull. Torrey Club 50: 307-310. pl. 18. 23 O 1923.
Xylaria Bruneriana, sp. nov.
Seifriz, W. The altitudinal distribution of plants on Mt. Gedeh. Java. Bull. Torrey Club 50: 283-306. pl. 15-17 +f. 1 - 6 . 23 O 1923.

Seward, A. C. A supposed Paleozoic Angiosperm. Bot. Gaz. 76: 215. I5 O 1923.

Seward, A. C. \& Walton, J. On a collection of fossil plants from the Falkland Islands. Quart. Jour. Geol. Soc. 79: 313-333. pl. 19-22 + f. 1-5. S 1923.
Includes Dadoxylon Bakeri, sp. nov., from the Permo-Carboniferous.
Sherff, E. E. Studies in the genus Bidens VI. Bot. Gaz. 76: 144-166. pl. 12-14. 15 O 1923.
Includes two new species from Bolivia.
Sherff, E. E. New or otherwise noteworthy Compositae. Bot. Gaz. 76: 78-94. pl. 6-9. 15 S 1923. Includes Coreopsis microcephalus, sp. nov., from Mexico.

Small, J. K. Green deserts and dead gardens. Jour. New York Bot. Gard. 24: 193-247. O 1923. [Illust.] "A record of exploration in Florida in the spring of 1921."

Smith, C. M. Excretions from leaves as a factor in arsenical injury to plants. Jour. Agr. Research 21: 191-194. 27 O 1923.

Snell, W. H. The effect of heat upon the mycelium of certain structural-timber-destroying fungi within wood. Am. Jour. Bot. 10: 399-41I. f. I. 23 O 1923.

Sprague, T. A. Heliocarpus americanus. Jour. Bot. 61: 255257. O 1923.

Sprague, T. A. Pehria, nom. nov. Jour. Bot. 61:238, 239. S 1923.

Standley, P. C. New species of plants from Salvador. Jour. Washington Acad. Sci. 13: 363-369. 401923.
New species in Pennisetum (1), Lindmania (1), Tillandsia (1), Dioscorea (1), Agave (1), Peperomia (3), Piper (1), Ficus (1), Aristolochia (1), Coccoloba (1), and Pleuropetalum (1).

Standley, P. C. Ten new species of trees from Salvador. Jour. Washington Acad. Sci. 13: 350-354. I9 S 1923.
New species in Pseudolmedia (1), Ledenbergia (1), Hyperbaena (1), Rollinia (1), Inga (1), Cupania (1), Karwinskia (1), Clethra (2), and Avicennia (1).

Stevens, F. L. \& Weedon, A. G. Three new Myriangiaceous fungi from South America. Mycologia 15: 197-206. pl. 1820. I5 S 1923.

Includes Myrianginella and Kusanoopsis, gen. nov.
Stout, A. B. Sterility in lilies. Jour. Hered. 13: 369-373. f. 17-19. 25 Ap 1923.

Stout, A. B. Studies of Lythrum Salicaria I. The efficiency of self-pollination. Am. Jour. Bot. 10: 440-449. 23 O 1923.

Svenson, H. K. Plant notes from Squam Lake, New Hampshire. Rhodora 25: 183-185. 26 O 1923.

Torrey, R.E. The significance of the "foliar ray." Science II. 58: 304, 305. 19 O 1923.

Warington, K. The effect of boric acid and borax on the broad bean and certain other plants. Ann. Bot. 37: 629-672. pl. $13+f .1$-6. О 1923.

Warth, G. Über Fuchsien mit verschieden gestateten Pollen und Chromosomenzahl. Ber. Deutsch. Bot. Gesellsch. 41:281285.f. 1-7. 17 O 1923.

Weir, J. R. Note on Poria fatiscens. Rhodora 25: 163-165. 29 S 1923.

Welles, C. B. A new leaf spot disease of onion and garlic. Phytopathology 13: 362-365. pl. $17+$ f. I. 8 S 1923.

Noted in the Philippines.

Whitaker, E. S. Root hairs and secondary thickening in the Compositae. Bot. Gaz. 76: 30-59. pl. I-5 +f. I-6. 15 S 1923.

Williams, R. S. Pilotrichum Leoni, sp. nov. Bryologist 26:50, 5I.f. I-7. 30 O 1923.
A new species of moss from Cuba.
Williams, R.S. Syrrhcpodon parasiticus (Sw.) Besch. in Florida. Bryologist 26: 46.f.I-9. 30 O 1923.
Willis, J. C. The origin of species by large, rather than by gradual change, and by Guppy's method of differentiation. Ann. Bot. 37: 605-628. O 1923.

Wolf, F. A. Studies of the physiology of some plant pathogenic bacteria-VII. Phytopathology 13: 381-384. 18 S 1923.
Wurdack, M. E. Chemical composition of the walls of certain Algae. Ohio Jour. Sci. 23: 181-191. O 1923.
Youngken, H. W. Studies on the greater yam (Dioscorea alata L.). Am. Jour. Pharm. 95: 678-684. f. I-4. S 1923.

BULLETIN

OF THE
TORREY BOTANICAL CLUB
MAY, 1924

The Section Tuberarium of the Genus Solanum in Mexico and Central America: Concluding Paper

Per Axel Rydberg
 2. Pinnatisecta

Fruit globose; plant not glandular.
Leaf-segments distinctly stalked; calyx-lobes broadly deltoid, as broad as long (except in S. brachistotrichum).

Leaf-segments of an ovate or cordate type, rounded, obtuse, or merely acute at the apex. .
12. S. cardiophyllum.

Leaf-segments of a lanceolate type, acuminate. Calyx 5 mm . long; corolla fully 1 cm . long; leaflets 9-11
13. S. sambucinum.

Calyx 2.5-4 mm. long; corolla $8-9 \mathrm{~mm}$. long; leaflets 7-9.
Calyx-lobes broadly triangular, shorter than the tube.
Leaves glabrous above, glabrous or slightly pruinose beneath
Leaves pubescent on both sides, segments short petioluled.
14. S. lanciforme.
15. S. Ehrenbergii

Calyx-lobes lanceolate, fully as long as the tube; leaves puberulent on both sides
16. S. brachistotrichum.

Leaflets sub-sessile, decurrent on the rachis.
Calyx-lobes lanceolate, as long as or longer
than the tube; plant $3-5 \mathrm{dm}$. high.
Leaf-segments lanceolate, usually 7 or more.
Corolla more or less crisp-hirsute without; leaves hirsute on both sides; pedicels articulate above the middle.
Corolla glabrous or puberulent.
Inflorescence more or less hairy; leafsegments mostly $5-9$; pedicels articulate near the middle.

[^25]Leaves glabrate or with a few scattered
hairs; calyx glabrous; corolla 8-10
mm. long............................... 18. S. Jamesii.

Leaves decidedly pubescent, especially above; calyx sparingly hirsute; corolla about 12 mm . long.
19. S. michoacanum.

Inflorescence and calyx glabrous or nearly so; leaf-segments $9-15$; pedicels articulate above the middle.
20. S. pinnatisectum.

Leaf-segments lance-linear, usually $5 \ldots \ldots$..... 2I. S. stenophyllidium.
Calyx-lobes triangular, shorter than the tube; plant 1-2 dm. high
22. S. nicaraguense.

Fruit ellipsoid; upper part of the stem, the peduncle, and its branches more or less glandular with stipitate hairs.
23. S. polyadenium.
12. Solanum cardiophyllum Lindl. Jour. Hort. Suc. 3: 70, 71. 1847.
S. cardiophyllum oligozygum Bitter, Repert. 11: 439. 1912.
S. cardiophyllum pliozygum Bitter, l. c.

With the more numerous specimens before me, I think that the varieties proposed by Bitter are of little value. Bitter cited altogether only three specimens. The type of the first variety was a cultivated specimen raised from seeds of Uhde's collection, probably from the very type collection of S. cardiophyllum. Schmilz 670 was also cited, with the remark that it verges towards the var. pliozygum. The only specimen cited under the second variety is Pringle 6421. The specimen of this number in the Columbia University herbarium has only 2 or 3 pairs of leaf-segments, and does in no way differ essentially from the other specimens.

Zacatecas: Palmer 593, 376; Rose 2784.
Aguascalientes: Rose \& Hay 6225.
Hidalgo: Pringle 13138.
San Luis Potosi: Parry \& Palmer 633 (in part, Columbia Univ.).

Mexico (Federal District): Rose \& Hay 5975; Pringle 6421.
Puebla: Purpus 3365, 3364.
There is one collection from Querétaro, Rose \& Rose 11183 (represented in the U. S. Nat. Herb. and herbarium N. Y. Bot. Gard.), which has larger, fully 1 cm . long, purple-tinged corollas and the leaves decidedly pubescent beneath. This may represent a distinct species closely related to S. cardiophyllum, though more material is needed.

13. Solanum sambucinum Rydberg sp. nov.

A perennial, with subterranean stolons and tubers; stem herbaceous, perhaps 5 dm . high, angled, with scattered severalcelled hairs; leaves odd-pinnatifid, about I. 5 dm . long; rachis wing-margined, glabrous or nearly so; principal segments 9-11, short-stalked, lanceolate, $2-5 \mathrm{~cm}$. long, acute at the base, acuminate at the apex, glabrous above, paler and somewhat pruinose beneath; intermittent segments wanting; pseudostipular leaves lanceolate, oblique, 3-5 mm. long; inflorescence branched, $5^{-8} \mathrm{~cm}$. long, glabrous; pedicels I cm . long or more, articulate at the middle; calyx glabrous, 5 mm . long, the lobes ovate, nearly as long as the tube; corolla white, fully 1 cm. long, the lobes lanceolate, about as long as the tube, puberulent on the margins; anthers 6 mm . long, cordate at the base, retuse at the apex; fruit unknown.

Type collected on stony hillsides near San Juan del Rio, Querétaro, August 18, 1905, Rose, Painter \& Rose 9586 (U. S. Nat. Herb. no. 453076).

14. Solanum lanciforme Rydberg nom. nov.

S. cardiophyllum subsp. lanceolatum Bitter, Repert. 11: 440. 1912.
S. lanceolatum Berth.; Bitter, loc. cit., as synonym. Not S. lanceolatum Cav. 1794.
I think that this very well deserves specific rank. The name originally proposed is preoccupied, however. It would not be advisable to adopt one of Bitter's varietal names endoiodandrum and amphixanthandrum, as these varieties and these names were based on the variable color of the anthers, a character of no value whatever. Both were described from individuals of Pringle 8599.

Hidalgo: Rose \& Painter 6627.
Puebla: Pringle 8509.
15. Solanum Ehrenbergii (Bitter) Rydberg sp. nov.

Solanum cardiophyllum subsp. Ehrenbergii Bitter, Repert. 11: 443. 1912.

This is closely related to the preceding but the leaves are densely short-pubescent, the inflorescence more branched and the pedicels longer. The type was collected in Mexico by Ehrenberg, but without any definite locality and without number.

The only specimen seen, which agrees with the original description, is the following.

San luis Potosi: C. C. Parry 10.
16. Solanum brachistotrichum (Bitter) Rydberg sp. nov.
S. Jamesii brachistotrichum Bitter, Repert. 11:444. 1912.

Bitter made this merely a variety of S. Jamesiu, evidently overlooking the fact that the leaf-segments are distinctly stalked, and the lateral ones decidedly oblique at the base. The general habit, leaf-form, and corolla, are practically the same as in S. lanciforme, but the calyx-lobes are lanceolate and fully as long, as the tube, and the leaves are decidedly puberulent.

Chihuahua: Pringle 668; Wilkinson (in 1885).

> 17. Solanum nayaritense (Bitter) Rydberg sp. nov.
S. Jamesii subsp. nayaritense Bitter, Repert. 12: 8. 1913.

This is related to S_{0}. Jamesii, but distinguished from all related forms by the corolla which is crisp-hairy without, and the leaves hirsute on both sides. It is represented by the type collected by Diguet, in Sierra Nayarit and by the following specimen, which agrees fully with the original description.

Tepic: Rose 2134.
18. SoLanum Jamesii Torr. Ann. Lyc. N. Y. 2:227. 1827.
S. Jamesii heterottichum Bitter, Repert. 11: 444. 1912.
S. Jamesif subsp. septentrionale Bitter, Repert. 12: 10. 1913.
S. Jamesii subsp. septentrionale ripicolum Bitter, Repert. 12: 151. 1913.

The first variety, proposed by Bitter, represents one of the common forms of the typical S. Jamesii from Colorado. The subspecies septentrionale was proposed to cover all the varieties of S. Jamesii from the United States and Northern Mexico. It included the typical form, the two varieties mentioned above and the variety brachistotrichum, which last one evidently is distinct.. The variety ripicolum I have not seen, but from the description I judge that it represents a form of S. Jamesin. S. Jamesii is mostly confined to the United States, i.e. Colorado, New Mexico, southeastern Utah, and Arizona, but is also found in Chihuahua and perhaps in Sonora.
19. Solanum michoacanum (Bitter) Rydberg sp. nov.
S. Jamesii subsp. nayaritense michoacanum Bitter, Repert. 12: 9. 1913.

In my opinion, this is more closely related to S. Jamesii than to 'S. nayaritense, differing from the former in being decidedly more pubescent, in the sparingly hirsute calyx, and in the larger corolla about 12 mm . long. The question may be asked: Why not accept Bitter's views and include all these species in S. Jamesii? They are all closely related to it. If so, we must include also S. pinnatisectum Dunal and S. stenophyllidium Bitter, which are also closely related to it and not based on better characters. S. michoacanum is known only from the type collected at Pungauto, near Morelia, Michoacan, Arsène 2806.
20. S. pinnatisectum Dunal, in D.C. Prodr. 13¹:40. 185^{1}.

This species is characterized by its narrower and more numerous leaflets, glabrous inflorescence and the articulation of the pedicels, which is higher up. Bitter* proposed two varieties, pentazygum, the typical form, and heprazygum, of very little value.

Michoacan: Arsène 2895.
Querétaro: Agniel 10380, 10467, 10580.
21. Solanum stenophyllidium Bitter, Repert. 12: 5I. 1913.

This species is closely related to the preceding, but differs in the still narrower, and few, usually 5, leaf-segments. Palmer $\sigma_{I I}$ from Jalisco is the type.
22. Solanum nicaraguense Rydberg sp. nov.

A perennial, with stolons and probably tubers; stem 1-2 dm. high, sparingly hirsute or glabrate; leaves $7-12 \mathrm{~cm}$. long, odd-pinnatifid; segments $3-7$, subsessile, elliptic or lance-elliptic, glabrous or sparingly hirsute above, more pubescent beneath, the terminal one $3-5 \mathrm{~cm}$. long, the lateral ones gradually smaller; intermittent segments rare and very small; pseudo-stipular leaves minute or wanting; inflorescence 2 -forked; peduncle 2-5 cm . long; pedicels $1-1.5 \mathrm{~cm}$: long, sparingly hirsute, the articulation far below the middle; calyx puberulent, 3-4 mm. long, the lobes triangular or ovate, acute, shorter than the tube;

[^26]corolla about 8 mm . long, the lobes deltoid-lanceolate, longer than the tube, puberulent especially along the margins; fruit unknown.

Type collected in Nicaragua, 1868, C. Flint 8 (U. S. Nat. Herb. no. 42676).
23. Solanum polyadenium Greenm. Proc. Am. Acad. 39: 89. 1903.

This is a very distinct species, differing from the other species with star-shaped corolla in the glandular pubescence, the broader corolla lobes, and the oblong fruit.

Hidalgo: Pringle 13136, 8602; Rose \& Painter 7080.
Michoacan: Arsène 5232.

3. Bulbocastana

Leaves pubescent, acute or obtuse; corolla 17-20
\qquad 24. S. bulbocastanum.

Leaves glabrous, acuminate; corolla about 10 mm . broad.
25. S. morelliforme.
24. Solanum bulbocastanum Dunal, in Poir; Lam. Encycl. Suppl. 3: 749. 1813.

Bitter* proposed two varieties: dolicophyllum and latifrons. The former cannot be separated from the type, the latter I have not seen.

Veracruz: F. Mueller (in 1855).
Puebla: Arsène 10132.
Mexico (Federal District): Pringle 9340; 9136; Rose \& Hay 5513; Salazar.

Morelos: Pringle 6397.
25. Solanum morelliforme Bitter \& Muench, Repert. 12: 154. pl. 2. 1913.

In both of the two instances this plant has been collected, it was found growing in hollow trees.

Chiapas: Muench (in 1912).
Puebla: Purpus 7399.

4. Oxycarpa

Principal leaf-segments 9-11; calyx-lobes lanceolate.
Calyx-lobes $3-4 \mathrm{~mm}$. long, acuminate; corolla not glandular; leaf-segments elliptic-lanceolate, abruptly contracted at the base.
26. S. monoteranthum.

[^27]Calyx-lobes 2 mm . long, acute; corolla glandular without near the base; leaf-segments lanceolate, tapering at the base. 27. S. oxycarpum.

Principal leaf-segments 7-9; calyx-lobes ovate, 1.5 mm . long, short-acuminate; leaf-segments abruptly contracted at the base.
26. Solanum manoteranthum Bitter, Repert. 11: 383. 1912.

I have seen no specimens, but the description and its stated relationship to S. columbianum, makes it easy to place it systematically. It must be related to S. oxycarpum. The type was collected at Vulcan Barba Volu, Panama, Reesl.
27. Solanum oxycarpum Scheede, in Schlecht. Hort. Hal. 1:5.pl. 3. 1841.

No specimens have been seen, but there is a good illustration in "Hortus Halensis."
28. Solanum longiconicum Bitter, Repert. 10: 534. 19 II.

Bitter cited two collections from Costa Rica; to these may be added:

Costa Rica: San Cristobal, C. Wercklé.

5. Juglandifolia

29. Solanum Juglandifolium Oerstedii Bitter, Repert. 11 : 461. 1912.

As I have not seen the specimens on which Bitter based this variety, I am not prepared to state if it is distinct from the S. juglandifclum of Columbia, or not.

6. Suaveolentia

Principal leaf-segments 5-7; foliage and inflorescence somewhat glandular.
30. S. Grossularia.

Principal leaf-segments $9-11$; foliage and inflorescence not glandular.
Leaves i-2 dm. long; principal segments shortstalked, the intermittent ones small, sessile; inflorescence usually simple.
31. S. suaveolens.

Leaves $2-3 \mathrm{dm}$. long; principal segments with stalks $5-30 \mathrm{~mm}$. long, the intermittent ones often $\mathbf{1 - 2 ~ c m . ~ l o n g , ~ s t a l k e d ; ~ i n f l o r e s c e n c e ~} 2-$ forked.
32. S. canense.
30. Solanum grossularia Bitter, Repert. 10: 537. 191 i. This species was described from cultivated specimens raised
from seed from Costa Rica or Nicaragua. No wild specimens have been seen by me.

3I. Solanum suaveolens Kunth \& Bouché, Ind. Sem. Hort. Berol. 1848: 14. 1848.

This resembles S. verrucosum in habit, but the flowers are smaller, white and more deeply lobed and the articulation of the pedicels strictly basal. No tuber has been found. Bitter* proposed three varieties, glabrescens, plucphyllidium, and chalarophyes, apparently on trifling characters. The following specimens belong to the species:

Mexico: Zacuápan, Purpus 6320.
Costa Rica: Cock \& Doyle 329: Tonduz 11495, Kuntze 2053.

Nicaragua: Volcan Mombacks, Baker 34.

32. Solanum canense Rydberg sp. nov.

A perennial, probably without tubers; stem herbaceous, I-2 mm . long, spreading, pruinose, angled; leaves $\mathrm{I}-3 \mathrm{dm}$. long, odd-pinnatifid; rachis barely wing-margined; principal leafsegments 9-II, lanceolate, acuminate, minutely granularpuberulent on both sides, sometimes with a few scattered hairs on the veins, the terminal one $5-10 \mathrm{~cm}$. long, the lateral ones stalked, the petiolules $1-3 \mathrm{~cm}$. long, the blades $3-8 \mathrm{~cm}$. long, oblique at the base; intermittent segments $5-20 \mathrm{~mm}$. long, stalked; peduncles infra-axillary, sub-opposite the leaves, I-I. 5 dm . long (below the forking), 2 -forked, the branches $5-10 \mathrm{~cm}$. long; pedicels $1-1.5 \mathrm{~cm}$. long, articulate at the base; calyx puberulent, the tube 1.5 mm . long, the lobes ovate, less than I mm . long; corolla white, star-shaped; fruit globose, about 1.5 cm. in diameter.

Type collected between April 17 and June 8, 1908 in the vicinity of Cana, Panama at an altitude of 2500 feet, $R . S$. Williams 844 (heib. N. Y. Bot. Gard.).

7. Appendiculata

Style shorter than the stamens.
Leaves and branches sparingly hairy; leaf-segments 3 , rarely 5 , thin
33. S. appendiculata.

Leaves and branches densely hairy; leaf-segments 7 , rarely 5 , firmer 34. S. subvelutinum.

Style much longer than the stamens; leaf-segments mostly 5 , moderately pubescent.
35. S. inscendens.

[^28]30. Solanum appendiculatum Humb. \& Bonpl.; Dunal Solan. Syst. 5. ${ }^{-1816 .}$

There are at least three species in Mexico, which have been taken for S. appendıculautm. Of the three known to me, there is only one which agrees with the original description and that in De Candolle's Prodomus. The other two do not agree in the following particulars: "foliis . . . 1-2 jugis, segmentis oblongis acuminatis, utrinque acutis, supra adpresse pilosiusculis, subtus in venis pubescentibus; . . . Stylus staminibus subaequalis;' for the second has 7 leaflets, densely pubescent, and in the third the style is twice as long as the stamens. The first one which I regard as the true S. appendiculatum, is well represented by Pringle 4922 from Oaxaca. The type came from Hidalgo.

34. Solanum subvelutinum Rydberg sp. nov.

A perennial woody vine; stem brown, in age glabrate, rooting at the nodes; branches densely short-pilose, subvelutinous when young; leaves $5-10 \mathrm{~cm}$. long, odd-pinnatifid; petioles $\mathbf{I}-\mathbf{2}$ cm . long, as well as the rachis subvelutinous; leaf-segments 5^{-7}, elliptic or oblanceolate, acute at both ends, or short-acuminate at the apex, pilose on both sides, densely so beneath, shortstalked, the terminal one $2-4 \mathrm{~cm}$. long, the lateral ones successively smaller; inflorescence at the ends of the leafy branches, 2 -forked and again branched; common peduncle $1-2 \mathrm{~cm}$. long, as well as its branches subvelutinous; pedicels glabrous, about 1 cm . long, articulate at the base, gradually thickened upwards; calyx sparingly pilose, the tube 1 mm . long, the lobes triangularovate, 1.5 mm . long, corolla white, 4 mm . high and 6-7 mm. broad, star-shaped, the lobes ovate; anthers oblong, 3 mm . long, cordate at each end; style shorter than the stamens; stigma capitate; fruit unknown.

Type collected at San Ramón. Durango, in April or May, 1906, Edward Palmer 183 (U. S. Nat. Herb. nc. 571203).

35. Solanum inscendens Rydberg sp. nov.

A perennial woody vine; stem brown in age, glabrate, rooting at the nodes; branches rather densely and finely pilose when young; leaves $5-8 \mathrm{~cm}$. long; petioles $\mathrm{I}-3 \mathrm{~cm}$. long, finely pilose; rachis not winged; leaflets $3-7$, sparingly hispidulous above puberulent and on the veins somewhat pilose beneath; terminal leaf-segments rhombic-ovate, or rhombic-lanceolate, $2-4 \mathrm{~cm}$. long, cuneate at the base, acuminate at the apex; upper lateral segments ovate or lanceolate, $1.5-3 \mathrm{~cm}$. long, short-stalked,
the lower pair if present much smaller; inflorescence at the ends of the leafy branches, $6-$ Io-flowered, 2 -forked and again branched; common peduncle $1-2 \mathrm{~cm}$. long, finely pilose; pedicels glabrous, about 1 cm . long, articulate at the base; calyx sparingly pilose, the tube scarcely I mm . long, the lobes broadly ovate, I .5 mm . long; corolla about 5 mm . high and broad, star-shaped, the lobes broadly ovate; anthers broadly oblong; 2-2.5 mm. long, cordate at each end; style 6 mm . long, more than twice as long as the stamens, in age curved; stigma capitate; fruit globose, 15 mm . in diameter when fully developed.

Type collected on Ixtaccihuatl, January, i906, at an altitude of 8000 ft ., C. A. Purpus 1733 (herb. N. Y. Bot. Gard.).

Apparently the same species in fruit was collected near Cataract, Orizaba, Vera Cruz, in 1883 , A. Gray.

There are a few species reported from Mexico or Central America, of which I have seen no specimens and which I cannot place in my key.

Solanum muricatum parvifolium H. B. K. Nov. Gen. \& Sp. 3: 21. 1818.

The type of S. muricatum came from Peru, and no specimen of the subsection Basarthrum with simple leaves has been seen from Mexico. The name parvifclium cannot be used as specific name, however, as it has already been used as such. It is a possibility that this variety is the same as S. morelliforme Bitter.

Solanum Schenckil Bitter, Repert. 11: 448. 1912.
Solanum schizostigma Bitter, Repert. 11: 449. 1912.
Both these species are related to S. uubercsum. The types are both in the Berlin herbarium. No specimens answering the descriptions have been seen by me.

New York Botanical Garden.

Contributions to the Flora of Long Island, N. Y. Second Paper

William C. Ferguson

Introductory

The writer became interested in Botany in 1917. At the end of the season of 1918 he had collected 753 herbarium sheets comprising 370 species. At the end of 1923,8800 herbarium sheets comprising 1345 species of Long Island plants, all found and collected by himself, with the exception of 15 to 20 sheets. 1080 native species and 264 introduced.

At the close of the season of 1921 the writer published a list of the plants he had found that seemed of most interest entitled: Some Interesting Plants from Long Island, by William C. Ferguson. Torreya 22: 43-49. May-June, 1922.

The present paper (the 2d) gives a list of the more interesting plants the writer has found on Long Island since the first publication, but includes also some of earlier date, goes more into details as to locality, in some cases describes plants more elaborately and offers some opinions, but with the diffidence that comes through a realization of but few years' field experience.

The writer gratefully and with pleasure acknowledges the kind assistance of other workers who have kindly reviewed his plants.

Mrs. Agnes Chase-All grasses.
Dr. N. L. Britton-All sedges except Carex.
Mr. K. K. Mackenzie-Carex.
Professor M. L. Fernald, Dr. Witmer Stone, Dr. P. A. Rvdberg, Dr. J. K. Small, Mr. Bayard Long, Mr. Eugene P. Bicknell, Mr. Paul C. Standley, Mr. F. V. Coville. Dr. Ezra Brainerd, Dr. H. M. Denslow, Dr. Edward S. Burgess, Dr. F. W. Pennell, Mr. Percy Wilson, Mr. Norman Taylor, and others have kindly reviewed plants when there was doubt about identity. Such progress as the writer has made is largely due to kind assistance from the above experienced botanists.

The views of many authorities both from the literature and from letters to the author are freely quoted. The names of the
plants are based mainly upon Britton \& Brown's "Illustrated Flora" with the exception of the grasses which are in accordance with Hitchcock \& Chase and in a number of cases the interpretation of Professor M. L. Fernald is given prominence.

EQUISETACEAE. Horsetail Family
Equisenum fluviatile L. Open swamp. Woodside. " " Sag Harbor.

TAXACEAE. Yew Family

Taxus canadensis Marsh. Woods, 3 to 4 miles northwest of Deer Park.
Plant 12 to $15 \mathrm{ft} . \times 12 \mathrm{ft}$. associated with Lycopodium complanatum var. flabelliforme. The writer can find no other record of a wild plant on Long Island. Mr. Henry Hicks knows of but three, all introduced, on estates.
Mr. R. W. DeForest-Cold Spring Harbor, Plant 19 years old Mr. Paul Dana-Glen Cove, Plant 50 years old $20 \mathrm{ft} . \times 20 \mathrm{ft}$. Parsons' Estate-Flushing, Plant 50 years old $20 \mathrm{ft} . \times 20 \mathrm{ft}$.

This wild plant is older than that at Cold Spring Harbor, and is either a native survival from colder times or may be due to birds carrying the seeds from the Long Island cultivated plants or from wild plants further north.

Note-Britton \& Brown's Illustrated Flora describes the leaves as "dark green on both sides;" Gray's Manual as "green on both sides;" F. Schuyler Mathews' Field Book of American Trees and Shrubs describes the leaves "of warm bright-yellow green beneath, very dark green above." This last description is the only good one.

ZANNICHELLIACEAE. Pondweed Family
Potamogeton confervoides Pine barrens, Sandy Pond, Manor-
Reicht
ville.
Name conferred by Norman
Taylor.
ALISMACEAE. Water Plantain Family
Sagittaria teres S. Wats.
Growing in water, Kent Pond, Manorville.
Pond northeast of Kent Pond, Manorville.

Deep Pond and Long Pond, Wading River.
All four stations in the pine barrens.
The beak of mature achenes is horizontal or somewhat inclined, not vertical as described and figured in Gray's Manual, Britton \& Brown's "Illustrated Flora" and J. G. Smith's "North American Species of Sagittaria and Lophotocarpus." The writer's determinations were kindly corroborated by Mr. Bayard Long who describes them as typical but observes that the beak is more or less oblique. Professor M. L. Fernald has also examined them and pronounces them typical; as the same as twenty-four collections from Massachusetts, all with horizontal beaks.

Sagittaria Engelmanniana J. Pine barrens, shores of ponds and
G. Smith swamps.
Ronkonkoma.
Central Islip.
Wading River.
Manorville, 4 stations.
Leaves varying from phyllodia to linear, to sagittate with narrowly linear to ovate parts. Extremely variable. The writer's identification has been kindly verified by Dr. Witmer Stone, Mr. Bayard Long, and Mr. E. P. Bicknell.

This species has been so puzzling to the writer that it seems worth while to review his experience. Britton \& Brown's "Illustrated Flora," Gray's Manual, J. G. Smith's "North American Species of Sagittaria and Lophotocarpus 1894" all separate Sagitaria Engelmanniana J. G. Smith from Sagittaria longirostra (Micheli), J. G. Smith principally by leaf form, describing and figuring the former with sagittate leaves with linear parts, and the latter with sagittate leaves with ovate parts, although Smith in his monograph in general introductory remarks calls attention to the unreliability of leaf form as a means of separating species unless co-related with other more important
characters. So late a publication as "Flora of the District of Columbia", Contributions from the National Herbarium at Washington, 1919, separates the above two species (?) by leaf form. As to localities, in a general way all of the above authorities place S. Engelmanniana north of New Jersey and S. longırostra, New Jersey and south, with but few exceptions.

In Torreya, February, 1909, Mr. K. K. Mackenzie as a result of field observation states that as described in the manuals S. Engelmanniana and S. longirostra are but different forms of the same species, the leai form having no diagnostic value.

In Flora of Nantucket, Bulletin of the Torrey Botanical Club, Mr. E. P. Bicknell describes the Nantucket plant as Sagittaria Engelmanniana J. G. Smith with lamina of blades varying from linear to ovate, from I mm . to 4 cm . wide.

In Plants of Southern New Jersey, Dr. Witmer Stone describes as the common arrowhead of the Pine Barrens Sagittaria longirostra (Micheli) J. G. Smith with a very variable leaf form narrowly linear to broadly hastate and states that the narrow leaved form of the Pine Barren plants was long confused with S. Engelmanniana, a more northern species.

At a time when the writer was much perplexed over this subject he found in a Pine Barren swamp at Ronkonkoma two colonies of Sagitiaria one-quarter of a mile apart, one colony growing in the open with linear sagittate leaves and one colony in shady thickets with ovate sagittate leaves. They were undoubtedly the same species, but which; Engelmanniana or longirosira? Specimens of both forms were sent to Dr. Witmer Stone who identified them as the same as the New Jersey Pine Barren plant described as S. longirostra (Micheli) J. G. Smith in Plants of Southern New Jersey. Dr. Stone wrote that the researches of Mr. Bayard Long had caused them to now name this plant S. Engelmanniana J. G. Smith.

Specimens from the same colonies were also sent to Mr. Eugene P. Bicknell, who identified them as the same as his Nantucket plants, S. Engelmanniana. Mr. Bicknell wrote as follows: "I should call these plants S. Engelmanniana believing at the same time that this name will be a synonym of S. longirostra with variations named as forms if one wants to do hairsplitting. The winging of the fruit varies with the width of the leaves. In a swamp now filled in at Lynbrook was a plant 7.5
dm. tall with leaf blades 3 dm . long. Such plants further south would undoubtedly pass as S. longirosira."

The writer has not yet found this type of arrowhead outside of the Pine Barrens and it is suggestive to realize that the robust plant referred to above by Mr. Bicknell undoubtedly grew in much richer soil.

Is there a Sagittaria with long oblique beak that is specifically distinct from that described above as Sagiltaria Engelmanniana J. G. Smith or is the more robust plant due to the more favorable conditions that one would expect outside of the Pine Barrens? It is to be hoped that Mr. Bayard Long will soon publish the result of his study of this subject.
Sagittaria latifolia Willd.
Although widely distributed throughout Long Island the writer has not found this Arrowhead in the Pine Barrens. Writing of this experience to Mr. Bayard Long, Mr. Long replied that neither he nor his associates had ever found it in the Pine Barrens of New Jersey.

GRAMINEAE. Grass Family

Danthonia compressa Austin. Hempstead Reservoir, edge of oak woods.
Roslyn, edge of rich woods.
Montauk, edge of rich woods.
Eragrostis capillaris (L) Nees Northwest of Plattsdale, edge of woods.
Smithtown, edge of woods.
Roslyn, edge of woods.
Festuca nutans Willd. Hempstead Reservoir, thicket, one small colony.
Festuca gigantea (L) Mill. Lloyd's Neck, north of Huntington roadside. Native of Europe. Letter from National Herbarium, Washington, states, "The only records from America Ottawa, Canada and Dobbs Ferry, N. Y. 188ı."

Hordeum jubatum L.
Montauk near village. One clump. Yaphank, Camp Upton. One clump.
$\left.\begin{array}{cc}\begin{array}{c}\text { Panicularia septentrionalis } \\ \text { (Hitch) (Bicknell) }\end{array} & \begin{array}{c}\text { Montauk Point. Swampy woods. }\end{array} \\ \text { Panicularia acutiflora (Torr.) } & \text { Swamps, Montauk. Hempstead } \\ \text { Kuntze } & \text { Reservoir. Queens. Three Mile }\end{array}\right\}$

CYPERACEAE. Sedge Family	
Cyperus erythrorhizus Muhl.	Coram. Swampy meadow Edwards Pond. Mr. E. S. Miller found this plant and locality many years ago.
Cyperus ferax L. C. Richard	Flushing. Bog. East Hampton. Salt marsh. Long Beach. Salt marsh. Millneck. Edge of pond. Edge of woods.
Note-Cyperus speciosus described and figured in The not yet found these plants.	Vahl. Cyperius Engelmannii St. as Illustrated Flora. The writer has
Eleocharis	
Eleocharis capitata (L.) R. Br. (E. tenuis (Willd.) Schultes)	Montauk. Edge of swampy woods. Much taller and correspondinglystouter than the type with upper scales of spike acute as in Eleocharis acuminata (Muhl.) Nees, but lacking the flat culms of the latter.
Eleocharıs Robbinsii Oakes	Manorville. Pond northeast of Kent Pond. Long Pond. Pine barrens. Wading River. Pine barrens. OPHORUM
Eriophorum tenellum Nutt.	Meadowbrook. Montauk. Open swamps. Central Islip. Open Pine Barrens Swamps. Ronkonkoma. Open Pine Barrens Swamps. Manorville. Open Pine Barrens Swamps.
	cirpus
Scirpus novae-anglae Britton	North of Queens. Water hole. Motor Parkway. One colony.

Scurpus heterochaetus Chase Montauk. Small pond. One colony.
Scirpus polyphyllus Vahl. Setauket. Swamps.
Wading River. Swamps.
Manorville. Pine barrens. Bog near Kent Pond.
Riverhead. Salt marsh.
Douglaston.
Mr. E. N. E. Klein knew of lastnamed locality.
Yaphank.
Ronkonkoma.
Flanders.
Last two localities, pine barrens.
Montauk. Road near village. Colony of a half-dozen plants. Swamps both sides of road. Located by Mr. Roland Speed of Sea Cliff.

Hemicarpha

Hemicarpha micrantha (Vahl) Lake Ronkonkoma. Sandy shore Pax.

Rynchospora

Rynchospora pallida M. A. Central Islip. Pine Barren swamp. Curtis July 24, 1920-21. Small colony. Drier ground and maturing earlier than R. alba in same swamp. Probably never found before north of Pine Barrens of Southern New Jersey. It is interesting to record here that in a Pine Barren Swamp at Ronkonkoma, four miles distant. from the Central Islip Swamp the writer discovered Lycopodium carolinianum, a plant never before reported north of the New Jersey Pine Barrens.

Rynchospora fusca (L.) Ait. Manorville. Wet sandy shores of Kent Pond and pond northeast of Kent Pond.
Ronkonkoma swamp. All in Pine Barrens.
Rynchospora macrostachya Torr.

Smithtown. Wet shore of Miller's Pond.
Middle Island, wet shore Artists' Lake.
Long Pond, wet shore.
Wading River swamp.
Manorville. Sandy pond.
Two last localities in pine barrens.
Rynchospora inundata (Oakes) Manorville. Grows in some depth Fernald of water Kent Pond and pond northeast of Kent Pond. Pine barrens. Mr. E. S. Miller guided writer to first locality.
These plants have been determined by Professor M. L. Fernald. For a review of this group see Rhodora, Aug. 1918, "Allies of Rynchospora macrostachya." M. L. Fernald. Rynchospora corniculata (Lam.) Gray

The above plants were also determined by Dr. N. L. Britton as R. corniculata and so reported in my first paper, Torreya 22: 43-49. Dr. Britton includes all forms of the large beaked Rynchospora under one species. See Britton \& Brown's Illustrated Flora.
Scleria reticularis Michx. Long Pond, Wading River. Pine barrens wet sand shore.
Scleria Torreyana Walp. Central Islip. Grassy, sandy swamp.
The name of Torreyana Walp. is in accordance with the opinion of Dr. N. L. Britton who, with the writer, has studied these Long Island plants at the New York Botanical Garden and compared them with the type Scleria setacea from Porto Rico. The Porto Rico plants have the achene very deeply reticulated and with sharp edges. The lobes of the hypogynium are rounded. Some characteristics of the above two Long Island plants are given herewith:

S. Torrejana Walp

Height of plant $4^{1 / 2}$ to $51 / 2 \mathrm{dm}$.
General aspect Slender or more drooping
Lower leaf sheaths Glabrous
Roots when fresh Fibrous, pinkish-red
Hypogynium lobes Acute or acuminate
Achene Pubescent. Irregularly rough- Glabrous. Regularly reti- ened. Broader than long. $\mathbf{I} 3 / 4$ culated. Reticulations shalto 2 mm . broad. $11 / 2 \mathrm{~mm}$. low with rounded edges. high. Smooth and rather flat Achenes as broad as longon top. Immature achenes $11 / 2 \mathrm{~mm}$. broad, $11 / 2 \mathrm{~mm}$. perfectly smooth and glabrous high. Reticulation right up to the prominently apiculate top.

Dr. N. L. Britton is of the opinion, in which the author concurs, that this group should be revised and has urged the writer to undertake it. The latter feels it should be done by one with far more experience.

Certainly the above two Long Island plants are separate species.

Carex

Carex cristatella Britton
" trisperma Dewey

- virescens Muhl.
" festucacea Schk.
" anceps Wahl.
prasina Wahl. umbellata Schk.
hystricina Muhl.
" typhina Michx.
" squarrosa L .

Woodside. Swampy woods. Abundant. Only locality found.
Coast cedar swamp between Good Ground and Flanders.
Rich woods. Wading . River. Douglaston. Northwest of Huntington.
Rich woods. Richmond Hill. Northwest of Huntington.
Rich woods. Plattsdale. Roslyn. Bayside.
Bayside. Open bog.
Lakeview. Open dry sand, but few plants associated with C. tonsa.
Woodside. Swamp. In shade in tall grass.
Swampy woods. Queens, Hollis; Bayside, Flushing.
Swampy woods. Douglaston.

this and form of open plains. He stated it might be a shade form of J. Greenir, a hybrid of J. Greenii or a new species. Mr. E. P. Bicknell has determined it as a shade form of J. Greenir similar to plants he found at Nantucket. (See Bull. Torrey Botanical Club, Jan. 1909). Mr. Bicknell writes "as nearly as I can remember there were intermediate forms between the hard open soil and the loose soil of shady pine woods."

LILIACEAE. Lily Family

Lilium canadense L.
" philadelphicum L.

Montauk. Open swamps. Rare. Montauk. Open rolling downs. Locally frequent.

CONVALLARIACEAE. Lily-of-the-Valley Family

Uvularia nivida (Britton)
Mackenzie

Manorville. Pine barrens. Thicket near swamp, Jones Pond. Single colony of 3 plants found by Mr. E. S. Miller when with the writer. Determination confirmed by K. K. Mackenzie.

TRILLLIACEAE. Wake Robin Family

Trillium erectum L . cernuum L .

Millneck. Wet woods. Abundant. Cold Spring Harbor. Wet woods. Single plant, Bayside. The Alley. Rich hilly woods. Small colony.

ORCHIDACEAE. Orchid Family

Blephariglottis psycodes (L.) Montauk. Reed Pond. Rich Rydbg. woods. Single plant.
Isotria affinis (Austin) Rydbg. Woods. Half Hollow Hills. Wyandanch. Two plants; one single and one double-flowered, $1 / 2$ mile apart. Thorough search at each station revealed no others. Have never seen Isotria verticillata in these woods. Name verified by Dr. H. M. Denslow. Both in fruit. Found middle of October.

Malaxis unifolia Michx. Montauk Point. Open swampy meadow. Two plants.
Rich woods north of Wyandanch. One plant.
Rich woods northeast of Wyandanch. One plant.

BETULACEAE. Birch Family

Betula lutea Michx. f.
Betula papyrnfera Marsh

Cold Spring Harbor. Several trees both sides of ponds.
Wading River. Coram. Shown these trees by Mr. E. S. Miller.
Millneck. Rich woods. Single tree.

ULMACEAE. Elm Family

Ulmus americanus L. Growing as dominant tree in extensive woods at Trains Meadows south of North Beach and north of Woodside. Associated with Quercus bicolor and Acer rubrum, both abundant and Fraxinus pennsylvanica occasional.
Very wet woods. Unquestionably native. The writer has also observed it in woods at Kissena Flushing and scattered through Long Island, in such cases difficult to decide whether native or introduced.

ARISTOLOCHIACEAE. Birthwort Family
Asarum reflexum Bicknell
Rich woods northeast of Woodside.
Southeast of North Beach. Single station to which the writer was taken by Mr. Edward N. E. Klein of College Point who had collected it years ago.

Persicaria pennsylvanica var.
laevigata Det. by M. L. Small colony. Pine barren bog.
Fernald Det. by Bayard Sandy pond. Manorville.
Long.

Persicara Careyi (Olney)
Greene
" coccinea (Muhl.) Greene

Wet shore, Edwards Pond, Coram.
Wet shore, Long Pond, Wading River.
Swamp southeast of Deep Pond, Wading River.
All in pine barrens.
Aquatic form, pond Cypress Hills. Aquatic form, Bowne Pond, Flushing.
Terrestrial form in swamps and wet pond borders, Woodside, Queens, Plattsdale, BownePond, Flushing. Edwards Pond, Cor-am-the last in pine barrens.

This name is from a revision of the group in Flora of the Rocky Mountains and Adjacent Plains by Dr. P. A. Rydberg who kindly determined the Long Island plants.

The aquatic form was reported in my former paper Torreya 22: 43-49 as P. amphibia (L.) S. F. Gray. The terrestrial form as P. muhlenbergii (S. Wats.) Small; both following description in Britton and Brown's "Illustrated Flora."

Rumex persicarioides L. This plant was so reported in my former paper Torreya 22: 43-49 following treatment in Britton and Brown's "Illustrated Flora." Salt wet shores at Great pond and Oyster pond. Montauk. Shore of bay at Point of Woods.

The plants were sent to Professor M. L. Fernald who named them Rumex maritimus var. fueginus (Phil.) Dusen. See Rhodora, April 1915. Rumex persicarioides and its allies. H. St. John.
Rumex britannica L. Swamps, Flushing, Kissena and swamp northeast of Bowne Pond.

Pleuropteris Zuccarini Small Extensively established at Laurel

Pleuropteris sachalinense Schmidt

Hill and Woodside in waste ground. Native of Japan.
Old Field. Sound Avenue, Native of Asia. ground Native Japan

AMARANTHACEAE. Amaranth Family
Amaranthus pumilus Raf. Sea beach, Point of Woods.
CHENOPODIACEAE. Goosefoot Family
Chenopodium hybridum L. Smithtown, Woods.
Bassia hirsuta (Linn.)
Oyster Pond, Montauk.
Smithtown.
Pine barrens Central Islip.
branches. The writer has observed two types of D. linearis, that on sea beaches being slenderer in all its parts with smaller leaves and bright green; that of muddy, salt marshes, heavier, stouter, fleshier and pinkish. The seeds of both types are identical.

Most herbarium specimens of both species are immature and in this state often difficult to determine.
D. maritima matures later than D. linearis. The plant from Cold Spring Harbor, October 2, had ripe seed but that seems exceptional as even as late as October 20 the seed in a large majority of the plants had not matured. D. maritima grows in wetter situations than D. linearis and is almost completely submerged at high tide.
D. linearis matures probably late in September; all of the plants the writer collected in October had ripe seed. It grows in drier situations, farther back on the beaches nearly, if not quite out of reach of high tide. Or on the salt marsh-where it is just wet or damp.

These remarks are based on comparatively few observations during one season and further experience may change or modify them.

PORTULACACEAE. Purslane Family

Claytonia virginica L .
Millneck. Swampy woods. One small colony, 4/29/20.
Northwest of Plattsdale. Rich woods. Two small colonies, 4/22/21.
Wet woods, south of North Beach and north of Woodside, extensive colonies, $5 / 10 / 23$.

RAŃUNCULACEAE. Crowfoot Family

Anemone virginiana L.
Batrachium trichophyllum (Chaix) F. Schultz Caltha flabellifolia Pursh.

Montauk. Rich woods.
Valley Stream. Running water.
Central Islip. Pine barren stream. Determined by P. A. Rydberg.

CRUCIFERAE. Mustard Family

Cardamine parviflora L. Wading River. Pine barrens. Wet sandy shore of Deep Pond. One small colony.
Dentaria laciniata Muhl. South of North Beach. Rich woods. One colony.

SARRACENIACEAE. Pitcher Plant Family

Sarracenia purpurea L. Coast cedar swamp between Flanders and Good Ground.
Sphagnum barren with small bushes, Calverton.

SAXIFRAGACEAE. Saxifrage Family.
Heuchera americana L.
Richmond Hill. Rich hilly woods. One small colony.

FABACEAE. Pea Family

Lespedeza capitata Michx. \times Lespedeza angustifolia (Pursh.) Ell. Bicknellii House)

Hempstead Plains, between Garden City and Mineola.
These hybrids show every possible variation between the parents with which they are closely associated in growth. Mr. E. P. Bicknell has kindly verified the naming and wrote that he had collected them years ago.
Lathyrus palustris L. var. pilosus (Cham) Led Easthampton. Salt marsh.
Reported in my first paper as L. palustris L. Torreya 22: 43-49.

See Rhodora, March 1911. Variations of Lathyrus palustris. M. L. Fernald.

OXALIDACEAE. Wood Sorrel Family
Ionoxalis violacea (L.) Small Richmond Hill. Rich hilly woods. One colony.

Nemopanthes mucronata (L.) Merrick. Coast cedar swamp. Trelease.

ACERACEAE. Maple Family

Acer platanoides L.
" Saccharum Marsh

Northwest of Plattsdale. Rich woods. Two trees far apart and far from roads; one 9 inches in diameter and one somewhat smaller. Native of Europe.
Northwest of Plattsdale. Rich swampy woods quite in center of woods away from roads. Colony of maybe 50 trees including many saplings. Largest tree 1 I inches in diameternext largest 9 inches. The interesting question and one difficult to determine is whether they are native or introduced.

HYPERICACEAE. St. Johnswort Family
Hypericum virgatum Lam. var. Manorville. Pine barrens. ovalifolium Britton Meadow bordering small pond. Small colony. In flower 7/22/23. Flowers withered 8/7/22. Writer can find no previous record for Long Island. Determination verified by N. L. Britton.

CISTACEAE. Rock Rose Family

Lechia Leggettii Britt. \& Hall South Hempstead. Oak woods. Merrick. Dry grassy hollow.
" tenuifolia Michx.
Wading River. Pine woods at Long Pond.
North of Pinelawn, edge of woods. Northwest of Central Islip. Dry woods.
All three localities in pine barrens.

ONAGRACEAE. Evening Primrose Family
Ludwigia sphaerocarpa Ell. Boggy shores and in stream at Kent Pond and northeast of Kent Pond, Manorville. Pine barrens.

Kneiffia

These plants are named from "A Brief Conspectus of The Species of Kneiffia with the Characterization of a New Allied Genus." By Francis W. Pennell. Bull. Torrey Bot. Club. Oct. 17, 1919.
Kneiffa tetragona (Roth) Woodside. Wet meadow and
Pennell thicket. The only colony the writer has so far -seen.
This is the K.fruticosa (L) Raimarin of The Illustrated Flora. Kneiffia fruticosa (L.) Rai- Very variable, common and widely marin distributed.
This plant is K. linearis (Michx.) Spach and K. longipedicellata Small. of The Illustrated Flora.

HALORAGIDACEAE. Water Milfoil Family

Myriophyllum tenellum Bigel. Montauk. Small pond. One station.
ARALIACEAE. Ginseng Family

Aralia hispida Vent. | Point of Woods. Swamp near bay. |
| :---: |
| East of Amagansett on Montauk |
| road between pine barrens and |
| sand dunes. |
| Cypress Hills. Rich swampy |
| woods. |

AMMIACEAE. Carrot Family

Cicuta bulbifera L. Calverton. Wet border stream.
OLEACEAE. Olive Family

Fraxinus pennsylvanica Marsh.

South of North Beach. Swampy woods.
Greenport. Swampy woods.

GENTIANACEAE. Gentian Family
Dasystephana saponaria (L.) Meadowbrook. Open swamp and

Small

Gentiana clausa Raf. thicket.
Meadowbrook stream $1 / 2$ mile south of Meadowbrook swamp.
Hempstead. Damp meadow and thickets northeast of village near water tower.
Massapequa. Damp meadows near salt meadows.
Millneck. Thicket between rich woods and swamp. Small colony.
Both plants have been verified by Mr. E. P. Bicknell and by Professor M. L. Fernald. The Millneck plant was reported in my former paper, Torreya 22: 43-49 as Dasystephana Andrewsii, following The Illustrated Flora.

For a review of this group by M. L. Fernald see Rhodora, August 1917.
Gentiana crinita Froel
Northwest of Deer Park, not Brentwood as reported, Torreya 22: 43-49.
Woods north of Kew Gardens. In Richmond Hill woods, a continuation of Kew Garden woods, 50 years ago, I found a single plant.

ASCLEPIADACEAE. Milkweed Family
Asclepias quadrifolia Jacq. Rich woods. Richmond Hill, 6/ 15/20.

LABIATAE. Mint Family
Stachys palustris L.
Montauk Point. Damp edge of pond. Small colony.
SCROPHULARIACEAE. Figwort Family

Agalinis holmiana (Greene)	Ronkonkoma.
Pennell.	Setauket.
	Manorville.

All in dry pine barrens. Not common but widely distributed through the pine barrens and dry oak woods adjoining.
Mimulus moschatus Dougl. Woods. Millneck. Swampy border stream. $1 / 2$ dozen plants. There is some doubt whether this is a native of Long Island or introduced. Determination verified by F. W. Pennell.

LENTIBULARIACEAE. Bladderwort Family
Utricularia pumila Walt. Pine barren bogs. Ronkonkoma, Yaphank, Central Islip, Long Pond, Wading River Bog (not pine barrens), Speonk.
" fibrosa Walt. Ronkonkoma.
Jones Pond, Manorville.
Central Islip.
All in pine barrens.
" intermedia Hayne Manorville between Jones \& Sandy Ponds.
Jones Pond, in water.
Pine barrens.
" radiata Small Wading River, Long Pond.
Coram, Edwards Pond.
Both in pine barrens.
Rockville Centre, waterworks pond.
" Gibba L. Deep Pond, Wading River. Pine Barrens. Small colony in shallow water.
Dr. J. H. Barnhart has kindly verified the determinations of Utricularia.
Vesicularia purpurea (Walt) Kent Pond, Manorville.
Raf.
Long Pond, Wading River.
Ronkonkoma swamp.
Pond, Wyandanch.
All in pine barrens.
Miller's Pond, Smithtown.
Pond at Babylon.

Setiscapella subulata (L.) Barnhart

Setiscapella subulata (L)
Barnhart forma cleistogama
(Gray) N. comb.
Setiscapella cleistogama (A.
Gray) Barnhart of The Il-
lustrated Flora.
Late in September 1923, the writer found a large colony of these plants growing on the sandy shore of Long Pond, Wading River where earlier in the season in former years typical Setiscapella subulata grew. The plants varied from 1 to 3 cm . high with small bluish heads and on the larger ones an occasional small yellow flower. The writer did not realize that this was the Setiscapella cleistogama of The Illustrated Flora, but considered it a depauperate form of S. subulata due to the late date combined with an abnormally dry season and unfortunately with this view did not keep the specimens.

For the views of other observers the reader is referred to Fernald Expedition to Nova Scotia; Rhodora 1921 pp. 100-108-142-143-169-291; Bull. Torrey Bot. Club, June 1915. Bicknell, Flora of Nantucket. Flora of Southern New Jersey, Witmer Stone.

RUBIACEAE. Madder Family

Galium verum L.
" cruciatum

Kings Park. Waste field. Adventive from Europe.
Easthampton. Roadside. Adventive from Europe.

CAPRIFOLIACEAE. Honeysuckle Family
Lonicera sempervirens L. South Hempstead. Woods.
" japonica Thunb. Bayside Woods. Native of Japan.
var.flexuosa

Reported Torreya 22:43-49. Determination verified by Dr. J. H. Barnhart.
Ronkonkoma, 6/6/2I.
Long Pond, Wading River,6/19/21, 7/21/23.
Central Islip, 9/14/2I.
All pine barrens, sandy shores and swamps.
var. Morrowi Gray Kissena Flushing. Border of swamp. Native of Japan.
" Standishii Roslyn. Hilly woods. Native of China. Only escape known to Mr. Alfred Rehder of the Arnold Arboretum who kindly named the last three species.
LOBELIACEAE. Lobelia Family
Lobelia Dortmanna L. Riverhead. Great Pond. In profusion in 6 inches to a foot of water on white sand bottom.

CICHORIACEAE. Chicory Family

Nabalus altissimus (L.) Hook. Roslyn. Border hilly woods. One colony.

Hieracium venosum L .

" marianum Willd.
The typical H. venosum of the manuals, a slender, almost glabrous plant with few stem leaves is wide-spread on Long Island in shady woodlands. In more open dry and sterile pine barrens what the writer believes is the same species is more pubescent and rougher and on the open rolling wind-swept downs at Montauk, the plant varies from almost typical venosum through almost every possible gradation to almost typical marianum of the manuals, leafy and with long pilose hairs on stem and leaves, floccose pubescence and abundant glands on stem and inflorescence. In the Hither Woods, Montauk, a mile from the open downs and separated by the depression of Fort Pond, the writer has found typical woodland H. venosum.

Mr. E. P. Bicknell has kindly examined these Montauk plants and describes them as intermediate in varying degree between H. venosum and H. marianum, one plant being quite typical marianum, and as being similar to the plants of Nantucket found on open ground. On Nantucket, Mr. Bicknell found no typical venosum. For a complete description of the Nantucket plants, see Bulletin Torrey Bot. Club 42: 552-3.

Dr. F. W. Pennell examined most of the Montauk plants and named them venosum. He doubted that marianum orcurred in our area.

Mr. K. K. Mackenzie has written the writer that he doubts there is such a species as marianum and that all he has seen so named were referable to venosum or scabrum. One of the Montauk plants closest to venosum was sent to Mr. Mackenzie who called it unquestionably venosum.
"Flora of the Vicinity of Washington" does not record Hieracium marianum, only H. venosum.

In "Plants of Southern New Jersey" Dr. Witmer Stone writes of Hieracium marianum: "These plants are very unsatisfactorily identified. While extreme examples fit the description of H. marianum others seem to be H. venosum with one or two stem leaves. The veining does not seem an important matter as many plants from the pine barrens have uniformly green leaves and they also show a great variation in pubescence."
"From the material on hand I cannot see any clear cut line of separation between the two and possibly we do not have marianum at all."

The writer has reached the conclusion from his own field experience and from the variations recorded by others as condensed in this article, that all of these plants are forms of one species quite sensitive to environment and all should be named venosum or marianum according to which name has priority.

In the writer's experience typical venosum is a plant of woods protected from wind and sun. In the more open pine barren woods it is a rougher, more pubescent plant.

On the flat or rolling downs at Montauk it occurs on windswept hills and open plains and the more or less protected hollows, of ten shielded by thickets and varies as described above from nearly typical venosum to marianum of the manuals.

The writer has seen Solidago rugosa and S. altissima in shady woods, slender and almost glabrous. The same species in the open are very pubescent and rough in varying degree.

COMPOSITAE. Thistle Family

Eupatorium Torreyanum
Short

Hempstead Plains, Garden City. Many colonies.
Montauk. Open downs. One colony.

Eupatorium rotundifolium L. Hempstead Plains, Garden City. Small colony.
Long Pond, Wading River. Two small colonies opposite shores of pond.
Eupatorium sessilifolium L. North of Kew Gardens. Rich hilly woods. Single colony.
Solidago arguta Ait. Woods north of Wyandanch. Colony of three plants. The only plants the writer has seen. Mr. E. P. Bicknell wrote that he had found the basal leaves in hilly woods at Roslyn west side of Hempstead Harbor.

A Study on the Effect of Evaporation and Light on the Distribution of Lichens

Charles C. Plitt and Louis J. Pessin

An investigation has recently been completed of the effect of climatic conditions on the distribution of Polypodium polypodioides in Mississippi by the junior writer. It was found that the evaporating power of the air plays the main rôle in determining the distribution of this epiphytic fern. The intensity of the light, the humidity of the air, the temperature in the immediate vicinity of the tree and the temperature of the bark to which the fern was attached exerted only an indirect influence on the occurrence of this polypody.*

The aim of the present paper is to give the results obtained from a study of the effect of certain climatic conditions on the distribution of the lichens on a tree on Mt. Desert Island, Maine, Lat. $44^{\circ} 26^{\prime} \mathrm{N}$. The writers sought to determine what correlation exists between the evaporating power of the air, the intensity of the light, and the distribution of the lichens along the height of the tree and around its circumference.

A tree (Quercus rubra) a little over thirteen meters in height and about one-half meter in diameter at two meters from the ground was selected for the investigation. The tree was located in a rather dense woods in the immediate vicinity of the Harpswell Laboratory. A small part of this oak projected above the tops of the neighboring trees. From the base to the top of tree, zones, about a meter apart, were measured off vertically along the tree. In each individual zone a careful study of the lichen flora was made. Three of the zones were selected for the study of the climatic conditions. These were located at \mathbf{I} to 2 meters, 5.5 to 6.5 meters, and 9 to 10 meters above ground. In each of three selected zones a white, spherical, porous-cup atmometer was set up on the northeast, northwest, and south sides. Evaporation was recorded once a day, generally at nine o'clock in the morning. At these stations the light intensity was also measured. Light readings were usually made at nine and eleven

[^29]in the morning, and two and four in the afternoon by means of a "Wynne Photographic Exposure Meter." The observations began July 1oth, 1923, and ended August 23d of the same year. Thus, records were obtained during forty-three consecutive days.

The different species of lichens are indicated in "Table I" together with the evaporation and the light measurements obtained for the different stations in each zone. It will be noted that the stations in the table are arranged according to the evaporation rates for each station.

It is realized that the ectinometer is not especially suitable for measuring the light intensity, since the rays that act on the photographic paper are not the ones that affect the main activities of the plant. It may be sufficiently accurate for our purpose since it gives the comparative light intensity of two regions for the kind of light it records. The readings obtained by means of this instrument were compared with those obtained in direct sunlight. It was found that it took four seconds (the average of four tests) to change the color of the photographic paper, when the ectinometer was exposed four times at noon to direct sunlight. Four seconds were then regarded as the standard or maximum light intensity. All the other readings obtained were computed as percentage of the intensity of the light in the open.

TABLE I

Relation of Evaporation and Light to the Distribution of Lichens on the Trunk of Quercús rubra

Station	Exposure	Lichen	Evaporation	Light
I to 2 m. from ground	Northwest	Conotrema urceolata Pertusaria multipuncta	$\mathbf{4 2 7 . 6 2}$ c.c. in 43 days	6.2%

I

1 to 2 m . from	South	Buellia parasema	432.13 c.c.	13.5\%
ground		Lecanora albella Lecidea vernalis	in 43 days	
		Leptogium tremelloides		
II		Lobaria pulmonaria		
		Parmelia sp. .		
		Pertusaria amara		

I to 2 m . from ground III	Northeast	Buellia parasema Conotrema urceolata Lecanora subfusca Parmelia sp. Pertusaria amara	435.12 c.c. in 43 days	10.6\%
5.5 to 6.5 m . from ground IV	South	Arthonia radiata Buellia parasema Parmelia caperata Parmelia sp. Parmelia physodes Pertusaria multipuncta Usnea florida Usnea hirta	477.31 c.c. in 43 days	29.7%
5.5 to 6.5 m . from ground V	Northeast	Arthonia radiata Buellia parasema Lecanora albella Parmelna sulcata Ramalina canaliculata	489.56 c.c. in 43 days	19.8\%

5.5 to 6.5 m. from ground	Northwest	Arthonia radiata Conotrema urceolata Lecanora albella	$495 \cdot 33$ c.c. in 43 days
VI	Lecanora varia		
	Parmelia conspurcata		
	Parmelia sp. Ramalina canaliculata		

9 to 10 m. from South	Buellia parasema	717.63 c.c.	50.1%
ground	Lecanora subfusca	in 43 days	
	Parmelia conspurcata		
	Parmelia sulcata		
	Pertusaria mulipuncta		
VII	Ramalina canaliculata		
		Usnea florida	
	Usnea hirta		

9 to 10 m . from Northeast	Buellia parasema	734.7 c.c.	41.3\%
ground	Lecanora subfusca	in 43 days	
	Parmelia conspurcata		
	Parmelia sulcata		
	Pertusaria mullipuncta		
VIII	Ramalina canaliculata		
	Usnea florida		
	Usnea hirta		

9 to 10 m. from Northwest

ground | | Buellia parasema | 764.64 c.c. |
| :--- | :--- | :--- |
| | Lecanora subfusca | in 43 days |

A study of the table seems to suggest that it is the evaporating power of the air that most affects the distribution of the lichens on the tree. It is true that there is some correlation between the intensity of the light and the distribution of the lichens, but this correlation is not as definite as that existing between the plant distribution found and the evaporating power of the air. It seems quite evident even from the limited data, thus far gathered that evaporation plays the chief rôle in limiting the distribution of the lichens. Accepting this as a fact one can arrange the lichens found on this tree into four groups: Group I would include those lichens which inhabit only regions of relatively low evaporation. Thus, Lecidea vernalis, Leptogium tremelloides, Lobaria pulmonaria and Pertusaria amara would fall in this group. Into Group II would fall such lichens which inhabit regions of moderate evaporation. This group would include Conotrema urceolata, Arthonia radiata, Lecanora albella, Parmelia caperata, Parmelia physodes, and Lecanora varia. Into Group III would fall those lichens which are able to withstand dry conditions, and are found only in regions of high evaporation. Lichens included in this group are Pertusaria mulitpuncta, Lecanora subfusca, Parmelia conspurcata, Parmelia tiliacea, Ramalina canaliculata, Usnea florida, Usnea hirta and Xanthoria parietina. Group IV includes those lichens which seem to show no preference and are found in regions of high evaporation as well as in regions of low evaporation such as Buellia parasema.
List of Lichens Found on Quercus rubra and their Distribution
Arthonia radiata (Pers.) Th. Fr.
The lowest level at which this lichen was found was about four meters above ground in the northeast zone. No trace of it was found above eight meters from the ground.

Buellia parasema (Ach.) Th. Fr.
The occurrence of this lichen began at one meter above ground, and from there on, it was distributed abundantly all over the tree. More than one hundred patches of this lichen were counted from the lower portion of the tree to the top.
Candelaria concolor (Dicks.) Wainio.
Only two patches of this species were found on the tree. Both were on the south side of the tree, and both just where a branch extended out from the trunk.

Conotrema urceolata (Ach.) Tuck.
This is perhaps the best represented species on the tree. In ascending the tree it was first found at one meter above ground on the north side of the tree.' At first only small patches of it were present, but the higher one climbed the larger and more abundant became the patches of this lichen. From about seven meters above ground, the lichen became less and less abundant, so that at about eight meters from the ground there was no trace of it left. Apparently this lichen is an ombrophilous form, for it is found exclusively on the shady side of the tree in the northeast to northwest zones.

Lecanora albella (Pers.) Ach.
At about two meters from the ground only a small patch of this lichen was found. At about four meters from the ground it began to appear abundantly competing, as it were, with Conotrema. Higher up the patches became more abundant. At about eight meters from the ground it reached its maximum distribution. Two meters above that this lichen did not appear.

Lecanora subfusca (L.) Ach.
Over thirty patches of this lichen were counted beginning above the lower third of the tree. This lichen occurred on all sides, and was especially abundant on the upper third of the tree.

Lecanora varia (Ehrh.) Ach.
Only two patches of this species were found. Both were on the upper third of the trunk.

Lecidea vernalis.(L.) Ach.
One small patch of this lichen was found on the south side of the tree at about two meters from the ground.

Leptogium tremelloides (L.) Gray.
Near the base of the tree this lichen was very abundant. At one meter above ground practically no trace of it was left.

Lobaria pulmonaria (L.) Hoffm.
The distribution of this species is similar to that of Leptogium but it was not quite as abundant.

Parmelia sp.

This species was practically all over the tree. Although so abundant, it was impossible to decide upon the species, for everywhere it seemed to be in a juvenile condition.
Parmelia caperata (L.) Ach.
One large specimen of this lichen was found on the upper third of the trunk on the south side.
Parmelia conspurcata (Schaer.) Wainio.
A few patches of this lichen were found on the upper third of the trunk. No preference to any particular side was evident. Parmelia physodes (L.) Ach.

Only one patch of this form was found at about seven meters from the ground, on the south side of the tree.
Parmelia rudecta Ach.
One patch only of this species was found, at about eight meters from the ground, on the northeast side of the trunk.
Parmelia saxatilis (L.) Ach.
This form had a similar distribution to Parmelia rudecia.
Parmelia sulcata Tayl.
More than fifteen patches of this lichen were found on the upper quarter of the tree.
Parmelia tiliacea (Hoffm.) Ach.
One specimen of it only was found, near the very top of the tree.

Pertusaria amara (Ach.) Nyl.
A few specimens of this lichen were found on the north side of the tree between one and two meters from the ground.
Perrusaria multipuncta (Turn.) Nyl.
This lichen was most abundant on the upper half of the tree. No preference for any particular side of the tree was apparent.

Physcia stellaris (L.) Nyl.
Several specimens of this lichen were found on the tree. There seemed to be no definite distribution.

Pyrenula nitida (Schrad.) Ach.
One specimen of this lichen was found at about six meters from the ground on the northwest side of the tree.
Ramalina canaliculata Fr.
This licheri was found only in the upper half of the tree. At first a very few depauperate specimens were found, but at the upper third of the tree the lichen was very abundant. Possibly the patches on the lower part of the tree were washed down by the rains from above.

Ramalina farinacea (L.) Ach.
A small patch of this was found on the upper third of the tree on the south side.

Usnea florida (L.) Hoffm.
The distribution of this lichen was very similar to that of Ramalina canaliculata.

Usnea hirta (L.) Hoffm.
This lichen was found in abundance in the same regions on the tree inhabited by U. florida.
Xanthoria parietina (L.) Fr.
One patch of this form was found near the very top of the tree on the northwest side.

Summary

I. The evaporating power of the air was found to be different at the different sides and heights of the tree.
2. The evaporating power of the air seems to be the condition which most affects the distribution of the lichens.
3. Certain lichens may be restricted to certain heights or sides of the trunk. Their restriction depends on the evaporation rates at those regions.
4. Some lichens seem to have no restrictive distribution, and occur all along the height of the tree, on any side.
5. Some lichens seem to show preference for the north side; others for the south side.
6. Marked illustration of restriction is shown by Leptogium tremelloides, Pertusaria amara, and Lobaria pulmonaria. These occur only in regions of low evaporation.
7. Usnea and Ramalina occur only in regions where light is intense. The high evaporation in those regions does not seem to affect their distribution.

In conclusion it may be stated that although these results should be regarded as preliminary ones, it is safe to say that this method of investigation opens up an interesting phase in the study of epiphytes, for in two different regions (in Mississippi and in Maine) and in two diverse types of plants (a fern and lichen) the investigation brings out similar results.

The writers are indebted to Professors Duncan S. Johnson and Burton E. Livingston for the loan of the apparatus used. Thanks are especially due to Professor Ulric Dahlgren, Director of Harpswell Laboratory, for offering to the writers the facilities of the laboratory. Finally, acknowledgments should be made to Mr. A. F. Skutch who cared for the apparatus and made the records after the writers left the laboratory.

INDEX TO AMERICAN BOTANICAL LITERATURE

1923
The aim of this Index is to include all current botanical literature written by Americans, published in America, or based upon American material; the word America being used in the broadest sense.

Reviews, and papers that relate exclusively to forestry, agriculture, horticulture, manufactured products of vegetable origin, or laboratory methods are not included, and no attempt is made to index the literature of bacteriology. An occasional exception is made in favor of some paper appearing in an American periodical which is devoted wholly to botany. Reprints are not mentioned unless they differ from the original in some important particular. If users of the Index will call the attention of the editor to errors or omissions, their kindness will be appreciated.

This Index is reprinted monthly on cards, and furnished in this form to subscribers at the rate of three cents for each card. Selections of cards are not permitted; each subscriber must take all cards published during the term of his subscription. Correspondence relating to the card issue should be addressed to Dr. Fred J. Seaver, N. Y. Botanical Garden, Bronx Park, N. Y. City.

November-December, 1923

Allard, H. A. Some possible relationships of the mosaic diseases. Phytopathology 13: 555-557. 26 D 1923.

Allen, W. E. Statistical studies of marine diatoms of the San Diego region collected by U.S. S. Pioneer in midwinter 1923. Univ. California Publ. Zool. 22: 445-448. 20 N 1923.

Allison, J. H. Twenty years' growth of planted Norway, Jack, Scotch, and white pine in north central Minnesota. Jour. For. 21: 796-801. D 1923.

Allison, R. V. \& Shive, J. W. Studies on the relation of aeration and continuous renewal of nutrient solution to the growth of soybeans in artificial culture. Am. Jour. Bot. 10: 554-566. pl. $39+f .1$, 2. 31 D 1923.
Anderson, E. G. Maternal inheritance of chlorophyll in maize. Bot. Gaz. 76: 411-418.f. I, 2. 28 D 1923.

Arber, A. Leaves of the Gramineae. Bot. Gaz. 76: 374-388. pl. 28-30. 28 D 1923.

Ashe, W. W. Further notes on trees and shrubs of the southeastern United States. Bull. Torrey Club 50: 359-363. I D 1923.
Includes new species in Vaccinium (1), Castanea (3), and Robinia (2).
Bailey, I. W. The cambium and its derivative tissues. IV. Am. Jour. Bot. 10: 499-509. pl. $36+f .1$-3. 27 N 1923.

Bailey, L. H. Certain cultivated Rubi. Gent. Herb. 1: 139^{-} 200. f. 62-90. io N 1923.

Includes four new species from eastern North America.
Baxter, D. V. The genus Ribes with reference to the white pine blister rust in the west. Pap. Michigan Acad. Sci., Arts \& Lett. 2: 1, 2. 2 D 1923.

Benedict, R. C. Ruffling as a distinct type of leaf variation. Am. Fern Jour. 13: 128-131. pl. 4. 2I Ja 1924.

Benedict, R. C. Variations in the dagger fern. Am. Fern Jour. 13: 124-126. 21 Ja 1924.
Observations of Polystichum near Meyersdale, Pennsylvania.
Blake, S. F. Many-spiked lycopods. Am. Fern Jour. 13: 126-128. 21 Ja 1924.

Blake, S. F. New botanical names. Proc. Biol. Soc. Washington 36: 200. 19 D 1923.

Blakeslee, A. F., Belling, J., \& Farnham, M. E. Inheritance in tetraploid Daturas. Bot. Gaz. 76: 329-373. 28 D 1923.

Blakeslee, A. F., \& Farnham, M. E. Trisomic inheritance in the Poinsettia mutant of Datura. Am. Nat. 57: 481-495. f. I. D 1923.

Blodgett, F. M. Time-temperature curves for killing potato tubers by heat treatment. Phytopathology 13: 465-475. f. 1-3. 9 N 1923.

Bowman, H. H. M. The distribution and pollination oi certain sea-grasses. Pap. Michigan Acad. Sci., Arts \& Lett. 2: 3-10. pl. 1-4 +f. 1, 2. 2 D 1923.

Boynton, K. R. Alstroemeria aurantiaca. Addisonia 8: 33. pl. 273. 10 N 1923. Native of Chile.

Boynton, K. R. Swainsona galegifolia. Addisonia 8: 43, 44. pl. 278. 10 N 1923.
Native of Australia.
Brannon, J. M. Influence of glucose and fructose on growth of fungi. Bot. Gaz. 76: 257-273. io D 1923.
Breazeale, J. F. The absorption of carbon by the roots of plants. Jour. Agr. Research 26: 303-312. 17 N 1923.

Briggs, F. N. The toxicity of copper sulfate to the spores of Tilletıa Tritici (Bjerk.) Winter. Univ. California Publ. Agr. Sci. 4: 407-412. f. I. 20 N 1923.

Britton, E. G: Cultivation of the fringed gentian. Jour. New York Bot. Gard. 24: 258, 259. N .1923. [Illust.]

Britton, N. L. Bignonia radicans. Addisonia 8: 39, 40. pl. 276. 10 N 1923.

Britton, N. L. Phlebotaenia Cowellii. Addisonia 8: 47, 48. pl. 28o. 10 N 1923.
Britton, N. L., \& Rose, J. N. The Cactaceae. Descriptions and illustrations of plants of the Cactus family. IV. Publ. Carnegie Inst. Washington 2484: i-viii. 1-318. pl. I-37 $+f .1$-262. 24 D 1923.
Includes II new genera and 67 new species, all American.
Brownell, L. W. The shagbark hickory. Nat. Mag. 2: 296298. N 1923.

Burnham, S. H. Supplementary list of the ferns of the Lake George flora, New York. Am. Fern Jour. 13: 109-113. 2I Ja 1924.
Campbell, D. H. Australasian botanical notes. III. New Zealand. Am. Jour. Bot. 10: 515-536. pl. $37+f . r$ 3I D 1923.

Chapman, H. H. The recovery and growth of loblolly pine after suppression. Jour. For. 21: 709-711. N 1923.

Cleland, R. E. Chromosome arrangements during meiosis in certain Oenotheras. Am. Nat. 57:562-566.f. 1-14. D 1923.

Clements, F. E., \& Long, F. L. Experimental pollination. An outline of the ecology of flowers and insects. Carnegie Inst. Washington Publ. 336: 1-274. pl. I-17. 6 N 1923.

Cook, M. T. Early stages of crown gall. Phytopathology 13: 476-482. f. I-14. 9 N 1923.

Cook, O. F. Pseudophoenix insignis, a new palm from Haiti, and two other new species from the West Indies. Jour. Washington Acad. Sci. 13: 397-408. f. I. 4 N 1923. Three new species of Pseudophoenix from the West Indies.

Crawford, R. F. Fungi isolated from the interior of cotton seed. Phytopathology 13: 501-503. 9 N 1923.

Davis, B. M. Pollen- and seed-sterility in hybrids. Am. Jour. Bot. 10: 462-467. 27 N 1923.
Dickson, J. G., Eckerson, S. H., \& Link, K. P. The nature of resistance to seedling blight of cereals. Proc. Nat. Acad. Sci. 9: 434-440. f. 1-4. I5 D 1923.

Doran, W. L. Toxicity studies with some copper fungicides. Phytopathology 13: 532-542. 26 D 1923.

Dorsey, M. J. Sterility in relation to horticulture. Am. Jour. Bot. 10: 474-484. 27 N 1923.

Eames, A. J., \& Wiegand, K. M. Variations in Trillium cernuum. Rhodora 25: 189-191. 4 D 1923.

East, E. M. Genetical aspects of self- and cross-sterility. Am. Jour. Bot. 10: 468-473. 27 N 1923.

Ellis, M. M., \& Eyster, W. H. Some effects of insulin and glucokinin on maize seedlings. Science II 58: 541, 542. 28 D 1923.

Evans, A. W. Notes on the Hepaticae of California. Proc. California Acad. Sci. 13: ili-130. 6 N 1923.

Evans, A. W. Notes on North American Hepaticae-X. Bryologist 26: 55-67. N 1923. Includes Bazzania nudicaulis, sp. nov., from North Carolina.

Evans, A. W. Second revised list of New England Hepaticae. Rhodora 25: 192-199. 4 D 1923.

Fahmy, T. The production by Fusarium Solani of a toxic excretory substance capable of causing wilting in plants. Phytopathology 13: 543-550. 26 D 1923.
Farwell, O. A. Notes on the Michigan flora-V. Pap. Michigan Acad. Sci., Arts \& Lett. 2: 11-46. D 1923. Includes Lethea Cahnae, sp. nov.

Fisher, G. C. A common name for Phacelia Purshii. Torreya 23: 106. D 1923.

Fulmer, E. I., \& Grimes, M. The growth of yeasts on synthetic agar media. Jour. Bact. 8: 585-588. N 1923.
Gaiser, L. O. Intracellular relations of aggregate crystals in the spadix of Anthurium. Bull. Torrey Club 50: 389-398. 24 Ja 1924.

Gates, F. C. Extensions of range in the Douglas Lake region, Cheboygan County, Michigan. Pap. Michigan Acad. Sci., Arts. \& Lett. 2: 47, 48. D 1923.
Gerry, E. Five molds and their penetration into woods. Jour. Agr. Research 26: 219-230. pl. 1-4. 3 N 1923.
Gleason, H. A. Botanical observations in northern Michigan. Jour. New York Bot. Gard. 24: 273-283. N 1923.

Glock, W. S. Algae as limestone makers and climatic indicators. Am. Jour. Sci. 206: 377-408. N 1923.
Gustafson, F. G. Studies on the hydrogen ion concentration of plant juices. Pap. Michigan Acad. Sci., Arts \& Lett. 2: 49-52.f.3. D 1923.
Haasis, F. W. Significance of a 255 -year age class in an eastern Kentucky forest. Jour. For. 21: 700-704. N 1923.
Hale, J. D. The bars or rims of Sanio. Bot. Gaz. 76: 241-256. pl. 24-26 +f. I-5. 10 D 1923.
Hansen, A. A. Fringed gentian (Gentiana criniza). Nat. Mag. 2: 357, 358, 363. D 1923. [Illust.]
Hansen, T. S. Current growth in Norway pine. Jour. For. 21: 802-806. D 1923.

Harter, L. L., \& Weimer, J. L. Some physiological variations in strains of Rhisopus nigricans. Jour. Agr. Research 26: 363-372. 24 N 1923.

Hauman, L. Un viaje botanico desde Embarcación a Yacuiba [Argentina]. Physis 7: 134. 12 D 1923.

Hauman, L. Notes sur le saule sud-americain et sur la valeur des espéces botaniques de Molina. Physis 7: 67-81. pl. I, 2. 12 D 1923.

Herre, A. W. C. T. Cordyceps Sphingıum (Schw.) in the Philippines. Mycologia 15: 280, 281.f. I. 2I D 1923.

Hitchcock, A. S. New species of grasses from South America. Proc. Biol. Soc. Washington 36: 195-198. 19 D 1923. New species in Bromus (1), Lamprothyrsus (1), Stipa (2), and Chloris (1).

Hitchcock, A. S. Sodiro herbarium. Science II 58: 465. 7 D 1923.

Hitchcock, A. S. Type species of the first 100 genera of Linnaeus' Species Plantarum. Am. Jour. Bot. 10: 510-514. 27 N 1923.

Hoagland, D. R., \& Martin, J. C. A comparison of sand and solution cultures with soil as media for plant growth. Soil Sci. 16: 367-388. N 1923.
Hollick, A. Menispermum canadense. Addisonia 8: 41, 42. pl. 277. 10 N 1923.
Holzinger, J. M., \& Bartram, E. B. The genus Crossidium in North America. Bryologist 26: 67-72. pl. 5, 6. N 1923.

Hotson, J. W., \& Hartge, L. A disease of tomato caused by Phytophthora mexicana, sp. nov. Phytopathology 13: 520531. pl. 22, $23+f$. . 26 D 1923.

Hoyt, W. D. Some aspects of the relation of species to their environment. Science II 58: 432-434. 30 N 1923.
Humphrey, C. J. Decay of lumber and building timbers due to Poria incrassata (B. \& C.) Burt. Mycologia 15: 258-277. pl. 28-30. 21 D 1923.

Ihering, H. V. Der periodische Blattwechsel der Bäume im tropischen und subtropischen Südamerika. Bot. Jahrb. Syst., Pflanzengesch. u. Pflanzengeog. 58: 524-598. I N 1923.

Jennings, O. E. Elias Judah Durand. Bryologist 26: 67. N 1923.

Jones, E. S. Taxonomy of the Sclerotinia on Helianthus annuus L. Phytopathology 13: 496-500.f. I. 9 N 1923.

Jones, F. M. "The most wonderful plant in the world." Nat. Hist. 23: 589-596. D 1923. [Illust.] Dionaea muscipula.

Kauffman, C. H. The genus Armillaria in the United States and its relationships. Pap. Michigan Acad. Sci., Arts \& Lett. 2: 53-68. pl. 5-9. D 1923.
Kempton, J. H. Heritable characters of maize. XVI. Dead leaf margins. Jour. Hered. 14: 349-351.f.5, 6. 17 D 1923.
Kittredge, J., \& Belyea, H. C. Reproduction with fire protection in the Adirondacks. Jour. For. 21: 784-787. D 1923.

Lachmund, H. G. Bole injury in forest fires. Jour. For. 21: 723-73I.f. I. N 1923.

Lachmund, H. G. Relative susceptibility of incense cedar and yellow pine to bole injury in forest fires. Jour. For. 21: 815-817. D 1923.
LaRue, C. D. Helminthosporium Heveae in Sumatra. Phytopathology 13: 483-487. 9 N 1923.
LaRue, C. D. Two unreported parasites of Hevea brasiliensis. Pap. Michigan Acad. Sci., Arts \& Lett. 2: 69-72. D 1923.

LaRue, C. D., \& Bartlett, H. H. Diplodia disease of Hevea brasiliensis. Pap. Michigan Acad. Sci., Arts \& Lett. 2: 91-108. D 1923.
LaRue, C. D., \& Bartlett, H. H. A leaf-fall disease of Hevea brasiliensis Muell.-Arg. due to Gloeosporium alborubrum Petch. Pap. Michigan Acad. Sci., Arts \& Lett. 2: 73-90. D 1923.

Lee, H. A. Gum diseases of sugar cane in the Philippines. Phytopathology 13: 504. 9 N 1923.

Lewis, F. J., \& Tuttle, G. M. On the phenomena attending seasonal changes in the organization in leaf cells of Picea canadensis (Mill.) B. S. P. New Phytol. 22: 225-232. I D 1923.
Longley, A. E. Cytological studies in the genera Rubus and Crataegus. Am. Nat. 57: 568, 569. D 1923.

Lund, E. J. Electrical control of organic polarity in the egg of Fucus. Bot. Gaz. 76: 288-301. pl. $27+$ f. I, 2. 10 D 1923.
Lutman, B. F. Further observations on the osmotic pressure of the juices of the potato plant. Jour. Agr. Research 26: 243-256. 10 N 1923.
Mackay, A. H. Diatoms of Nova Scotia; collected by Alexander Howard Mackay and determined, distributed and lists published by J. Tempère and H. and M. Peragallo, Paris, France. Proc. \& Trans. Nova Scotia Inst. Sci. 15: 175188. I N 1923.

Mackay, A. H. The phenology of Nova Scotia, 1920. Proc. \& Trans. Nova Scotia Inst. Sci. 15: 153-160. I N 1923.

Mackay, A. H. The phenology of Nova Scotia, 192 I. Proc. \& Trans. Nova Scotia Inst. Sci. 15: 189-196. I N 1923.

Mackenzie, K. K. Notes on Carex-XIII. Bull. Torrey Club 50: 343-358. i D 1923.
Includes Carex plana, sp. nov., from New York, and C. brachyglossa, sp. nov., from Pennsylvania.

McKinney, H. H. Influence of soil temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. Jour. Agr. Research 26: 195-218. pl. 1-4. 3 N 1923.

Mamelide Calvino, E. The direct assimilation of free nitrogen by plants. Torreya 23: 99-104. D. 1923.

Menaul, P. A chemical analysis of Jatropha stimulosa. Jour. Agr. Research 26: 259, 260. : 10 N 1923.

Merrill, E. D. Die pflanzengeographische Scheidung von Formosa und den Philippinén. Bot. Jahrb. Syst., Pflanzengesch. u. Pflanzengeog. 58: 599-604. I N 1923.
Molfino, J. F. Notas botanicas-II. Physis 7: 89-105. 12 D 1923.

Morton, J. N. Wild black cherry in northern Pennsylvania. For. Leaves 19: 92, 93. D 1923.

Murrill, W. A. Botanical features of Mountain Lake, Virginia. Jour. New York Bot. Gard. 24: 249-256. N 1923.
Murrill, W. A. Florida Fungi-I. Mycologia 15: 278, 279. 2I D 1923.

Namikawa, I. Growth of pollen tubes in self-pollinated apple flowers. Bot. Gaz. 76: 302-310. f. I-10. io D 1923.

Nichols, G. E. Cercis canadensis in Connecticut. Rhodora 25: 203, 204. 4 D 1923.

Norton, G. F. How to have fringed gentians. Jour. New York Bot. Gard. 24: 256-258. N 1923.

Penland, C. W. T. Cytological behavior in Rosa. Bot. Gaz. 76: 403-410. pl. 31, 32. 28 D 1923.

Perry, W. J. Mistletoe-the insidious enemy of trees. Am. For. 29: 748, 749. D 1923. [Illust.]

Pittier, H. Note on plants collected in tropical America. Jour. Washington Acad. Sci. 13: 428-43I. 19 N 1923.

Pool, R. J. Xerophytism and comparative leaf anatomy in relation to transpiring power. Bot. Gaz. 76: 221-240. pl. 20-23. 10 D 1923.

Recknagel, A. B. Growth of white spruce in the Adirondacks. Jour. For. 21: 794, 795. D 1923.

Rehder, A. New species, varieties and combinations from the herbarium and the collections of the Arnold Arboretum. Jour. Arnold Arb. 4: 107-116. 8 My 1923; 246-253. 19 N 1923.

Rhoads, A. S. Notes on the failure of grapevines to set fruit and in shelling. Phytopathology 13: 513-519. pl. 21. 26 D 1923.

Richey, F. D. Defective seeds in maize-an ancient character. Jour. Hered. 14: 359, 360.f. 12. 17 D 1923.

Robbins, W. J., \& Maneval, W. E. Further experiments on growth of excised root tips under sterile conditions. Bot. Gaz. 76: 274-287. f. 1-3. Io D 1923.
Rogers, W. E. Resistance of trees to ice-storm injury. Torreya 23: 95-99. D 1923. [Illust.]
Rose, J. N. Dudleya arizonica. Addisonia 8: 35. pl. 274. 10 N 1923.

Rose, J. N. Hamatocactus setispinus. Addisonia 8: 45, 46. pl. 279. 10 N 1923.
Rydberg, P. A. Genera of North American Fabaceae. I. Tribe Galegeae. Am. Jour. Bot. 10: 485-498. pl. 33-35. 27 N 1923.
Includes Daubentoniopsis, gen. nov.
Rydberg, P. A. Rosa palustris. Addisonia 8: 37, 38. pl. 275. io N 1923.
Schallert, P. O. Notes on a new rose-flowered Robinia from South Carolina. Torreya 23: 104, 105. D 1923. Robinia Ashei, sp. nov.

Schmitz, H. Leafcast of Larix occidentalis by Hypodermella Laricis Tubeuf. Phytopathology 13: 505, 506.f.I. 9 N 1923.

Schneider, C. Notes on hybrid Berberis and some garden forms. Jour. Arnold Arb. 4: 193-232. 19 N 1923.
Schrader, F. The origin of the mycetocytes in Pseudococcus. Biol. Bull. 45: 279-302. pl. 1-3. D 1923. Treats of the parasitism of Fungi in a Homopterous insect.
Seifriz, W. Reaction of protoplasm to salts and antagonistic action of salts and alcohol. Bot. Gaz. 76:38-402. 28 D 1923.

Sherwood, E. C. Hydrogen-ion concentration as related to the Fusarium wilt of tomato seedlings. Am. Jour. Bot. 10: 537-553. pl. 38. 31 D 1923.
Shamel, A. D., Pomeroy, C. S., \& Caryl, R. E. Bud selection as related to quantity production in the Washington navel orange. Jour. Agr. Research 26: 319-322. pl. 1, 2. 17 N 1923.

Smith, C. P. Studies in the genus Lupinus-IX. Bull. Torrey Club 50: 373-388. 24 Ja 1924.
Smith, H. B. Stomatal behavior of plants in the greenhouse in winter. Pap. Michigan Acad. Sci., Arts \& Lett. 2: 109-117. D 1923.

Smith, R. W., Waldron, L. R. \& Clark, J. A. Improvement of Kubanka durum wheat by pure-line selection. U. S. Dept. Agr. Dept. Bull. 1192: 1 -14. f. 1-4. N 1923.

Spegazzini, C. Nota sobre el Alpa-sandia. Physis 7: 135-138. 12 D 1923.
Dioscorea microbotrya Griseb. of Argentina.
Standley, P. C. New species of plants from Salvador. II. Jour. Washington Acad. Sci. 13: 436-443. 4 D 1923. Cashalia, gen. nov., and new species in Piper (1), Cucatlania (1), Capparis (1), Sedum (1), Prunus (1), Acacia (1), Pithecollobium (1), Apalatoa (1), Cashalia (1), and Amerimnon (1).

Stapf, O. Maxillaria chrysantha. Curtis Bot. Mag. 149: pl. 8979. 26 N 1923. [with text.]

Species of Orchidaceae from Brazil.
Stapf, O. Tecophilaea cyanocrocus. Curtis Bot. Mag. 149: pl. 8987. 26 N 1923. [With text.]
Species of Amaryllidaceae from Chile.
Stout, A. B. The physiology of incompatibilities. Am Jour. Bot. 10: 459-461. 27 N 1923.

Suksdorf, W. A new saxifrage from Oregon. Torreya 23: 106, 107. D 1923.

Saxifraga Gormani, sp. nov.

Suksdorf, W. Washingtonische Pflanzen III. Werdenda 1: I-14. 20 D 1923.
Includes new species in Festuca (3), Elymus (1), Sitanion (1), Carex (1), Stenanthium (1), Olsynium (2), Polygonum (1), Cerastium (1), Montia (2), Claytonia (2), and Lupinius (2).

Tanaka, T. A brief history of Citrus scab in Japan. Phytopathology 13: 492-495. 9 N •1923.

Thone, F. Evaporation rates on rock canyon walls. Bot. Gaz. 76: 419-424.f. I. 28 D 1923.

Tisdale, W. H. An effective method of inoculating barley with covered smut. Phytopathology 13: 55I-554. 26 D 1923.

Toumey, J. W. Multiple pine embryos. Bot. Gaz. 76: 426. f. I. 28 D 1923.

Walker, L. B. Some observations on the development of Endogone malleola Hark. Mycologia 15: 245-257. pl. 26, $27+f .1$-3. 21 D 1923.

Weatherby, C. A. An interesting relic and its owner. Am. Férn Jour. 13: 114-118. 21 Ja 1924. Field note-book of ferns of August Fendler.

Webb, R. W., Leighty, C. E., Dungan, G. H., \& Kendrick, J. B. Varietal resistance in winter wheat to the rosette disease. Jour. Agr. Research 26: 26I-270. Io N 1923.

Weimer, J. L. Two diseases of udo (Aralia cordata Thunb.). Jour. Agr. Research 26: 271-278. io N 1923.

Welles, C. G.; \& Roldan, E. F. . Another economic host of Bacterium Solanacearum. Phytopathology 13: 488-491. f. I, 2. 9 N 1923.

Wherry, E. T. Ferns of eastern West Virginia-I. Am. Fern Jour. 13: 104-109. 21 Ja 1924.

Wiegand, K. M. Notes on Triosteim perfoliatum and related species. Rhodora 25:-199-203. 4 D 1923:

Wilson, E. H. The hortensias: Hydrangea macrophylla DC. and Hydrangea serrata DC. Jour. Arnold Arb. 4: 233-246. 19 N 1923.

Yamagata, U., \& Itano, A. Physiological study of Azotobacter chroococcum, Beijerinckii and Vinelandil types. Jour. Bact. 8: 521-532. N 1923.

BULLETIN

OF THE

TORREY BOTANICAL CLUB

JUNE, 1924

New Species of Mosses from the Malay Peninsula

H. N. Dixon

For some years I have been accumulating in my herbarium undescribed species from the East Indies, a number of them from Mitten's herbarium in The New York Botanical Garden. A large proportion of these were collected by Mr. H. N. Ridley and sent to Mitten for naming, but unfortunately remained undetermined at Mitten's death.

I have also received a considerable number of specimens of the same collector, some from Mr. Ridley himself, some from the Kew Herbarium, and others from the Singapore Botanical Gardens. The present paper deals with such of these as come from the Malay Peninsula.

The order ard nomenclature followed are for the most part those of Brotherus in Engler \& Prantl, Pflanzenfamilien.

Dicranaceae

Braunfelsia longipes Dixon sp. nov. (Plate 3, Fig. i)
Species insignis, habitu B. scariosae, sed caulikus propter folia densissime conferta turgidis, robustioribus, usque ad 6 cm . altis, infra spadiceis, apice stramineis.

A B. scariosa quoque differt foliis omnino enerviis; a B. enervi foliis longius, angustius dcuminatis, cellulis alaribus magis rectangularibus, (1.5-2 $\times 1$); ab omnibus speciebus seta longiore, 2.5 cm . vel paullo ultra. Bracteae perichaetii pilo longissimo tenuissimo thecam aequante vel superante terminatae. Theca B. scariosae.

HAB. Gunong Tahan, Pahang, alt. 7000 ft ., 1922 ; Mohammed Haniff and Mohammed Nur (7905).

[^30]Distinct from all the species in the long seta, and from all but B. luzonensis Broth. and B. enervis (Doz. \& Molk.) in the nerveless leaves. The former differs in the small size, piliform leaves and short seta; B. enervis varies considerably in the form of the leaf-point; the leaf figured by Fleischer in the Musci der Flora von Buitenzorg, 1: 95 being much more finely acuminate than as shown in the Musci Frond. Ined. Arch. Ind., Tab. III; the present plant has them still more finely and longly acuminate, while the seta is more than twice as long as usual in that species, though it may at times approach it in length.

Dicranoloma perintegrum Dixon sp. nov.

D. Billardieri (Schwaegr.) affine; differt foliis siccis inferne plicatis, superne integerrimis. Fructus ignotus.

HAB. Mt. Ophir, Malacca, Dec. 1898; Ridley (780).
In the absence of perichaetia and fruit it must not be too hastily assumed that this is a very close ally of D. Billardieri, but in the vegetative characters it could only be separated by those underlined above. The leaves are falcate-secund, the stems 6 cm . or more high. D. braunfelsioides Herzog from Ceram is near it, but has leaves and back of nerve somewhat toothed above, a narrow hyaline border to the leaf-base, absent here, and the leaves not falcate.

All the other Indo-Malay species differ in the leaves being toothed, apart from other characters.

Dicranoloma brevicapsulare Dixon sp. nov. (Plate 3, Fig 2)

Stirps procerus, habitu D. Braunii vel formarum validarum D. Blumii; caules 10 cm . alti vel supra; folia valde patentia, sicca flexuosa, haud falcala, apicalia solum leniter falcato-secunda.

Folia D. assimilis fere, sed cellulis superioribus angustioribus, atque limbo hyalino perangusto, saepe obsoleto. Setae singulares nec aggregatae 2.5 cm . longae, eis D. assimilis crassiores; theca multo brevior latiorque, deoperculata vix 3 mm . longa, turgide subcylindrica vel ab ore ad infra sensim angustata, leniter curvata, subhorizontalis, basi estrumosa; peristomium magnum, intense rubrum.

HAB. Gunong Tahan, Pahang, 5500-7000 ft. alt., 1922; Mohammed Haniff \& M. Nur (7915a).

All the allied species of the genus in this region are at once known by having the setae either aggregate or much shorter, or the capsule narrowly cylindric and distinctly strumose. In D. sumatranum Broth. the capsule is suberect, not arcuate, and more cylindrical, with a somewhat distinct neck. In the present plant there is no trace of struma, and very little of collum.

Thysanomitrium abbreviatum Dixon sp. nov. (Plate 3, Fig. 3)
Habitu T. exasperati, sed caulibus siccis turgide julaceis, et propter folia multo breviora subteretibus. Folia eis T. exasperati similia sed breviora, apice latiora, obtusa, valde concava, nervo omnino alieno, basi $1 / 5-\mathrm{I} / 4$ folii latitudinem aequante, tenerrimo, plerumque unistratoso, cellulis 3-4-serianis medianis tanium bistratosis, omnibus homogeneis. Caulis unicus fructiferus vel masculús juvenis T. exasperato similis.

HAB. Summit of Gunong Tahan, Pahang, alt. circa 7000 ft.; Ridley (Ior 2).

This and the following species are very remarkable; with nearly all the characters of T. exasperatum, and T. umbellatum respectively, they present a nerve structure which is totally different, so much so as to suggest even a generic distinction. In those species, as is well known, the broad nerve, though thin, consists of at least three elements throughout the breadth, viz., a central layer of guide-cells, and both a ventral and dorsal layer of stereid ones, with occasionally outside these a slightly differentiated superficial layer of external cells. In the two species under consideration the nerve, while broad, consists for the greater part of its width of a single layer of small cells, scarcely distinguishable in section from those of the lamina (though quite distinct, owing to their form, from these when viewed from the front or back); the middle part of the nerve alone showing a double layer, but still of the same form of cells, and only extending for the width of three or four rows.

The leaves are shorter, more closely imbricated and appressed when dry, so that the stems are more terete and julaceous than occurs, unless very rarely, in T. exasperatum.

Thysanomitrium Ridleyi Dixon sp. nov. (Plate 3, Fig. 4)
Praecedenti (T. abbreviatum) peraffine; differt tantum foliis pilo longiusculo hyalino sublaevi abrupte terminatis.

HAB. Gunong Tahan, Pahang, July, i91ı; Ridley (ioigb).
The stems of this plant are a little taller than in the specimen of T.abbreviaium, but there is no reason to suppose that this is a specific character. The sole difference lies in the constant presence of a distinct hyaline hair-point; otherwise the leaf form and structure, nerve, \&c., are identical.

It stands therefore in the same relation precisely to that species that T. umbellatum (T. Blumii Nees) does to T. exasperatum, from which it only differs in the presence of a hair-point and in one or two very minor and perhaps doubtful characters. (The fringing of the calyptra, which is perhaps the chief distinguishing character given by Fleischer, is certainly of no real value, for I have more than once found in T. umbellatum capsules with calyptra both fringed and unfringed on the same tuft).

The two plants being described, therefore, give decided support to the opinion that I have elsewhere expressed that T. exasperatum may be only a muticous leaved form of T. umbellatum. There is, however, this difference, that while in T. umbellatum the leaves are acuminate at the apex, and taper gradually into the hair-point, in T. Ridleyi they are obtuse and cucullate, just as in T.abbreviatum, then passing abruptly into the hyaline point.

Fissidentaceae

Fissidens subdiscolor Dixon sp. nov. (Plate 3, Fig. 5)

§ Aloma. F. discolori Wils. ceylonensi affinis; difert caulibus altioribus, circa 1.5 cm . altis, foliis latioribus, wagis obtusis, costa saepius ad apicem attingente; cellulis minoribus, $10-14 \mu$ latis (F. discoloris $15-18 \mu$), et lamina dorsali sat abrupte desinente, haud anguste decurrente. Fructus subsimilis.

HAB. Gemas, Negri Sembilan, 1920, on root in a boggy hollow; Burkill (6388).

This may ultimately have to be united with the South Indian and Ceylonese species; but it differs in the larger size, the leaves nearly always rounded and obtuse at apex with percurrent nerve (In F. discolor the apex though often quite obtuse is frequently somewhat pointed, and the nerve generally ceases just below the apex); the cells also are decidedly smaller, and the dorsal lamina is not narrowed at the base as in that species.

Fissidens amblyotis Dixon sp. nov. (Plate 3, Fig. 6)
§ Amblyothallia. Stirps subrobustus; caules 2 cm . vel ultra alti, rufi, crassiusculi, stricti; folia laxiuscula, madida patentia pulchre plumosa, sicca rigide lecurvo-falcăta, $\mathbf{I}-\mathbf{I} .5 \mathrm{~mm}$. longa, lingulato-lanceolata, breviter acuminata, subacuta, integra vel apice subintegra; costa fuscescens, inferne valida, superne sensim angustata, saepe sinuosula, infra apicem desinens. Lamina vaginans vix dimidiam partem folii aequans, apice in media lamina rotundate vel obtuse terminata; lamina dorsalis ad basin sat abrupte desinens. Cellulae $9-13 \mu$ latae, incrassatae, irregulariter ovoideae, laeves, pellucidae.

Fructus terminalis; seta perbrevis, circa 2 mm ., theca parva, erecta.

HAB. On wet rock by stream, circa 700 ft . alt., Gunong Lambak, Johore, 1922; Holttum (9456).

The nearest species to this would appear to be F. irroratus Card. from Formosa, but from the description the cells in that species are smaller and of a different nature; while the obtuse termination of the vaginant lamina here, forming a sort of rounded auricle (whence the specific name) is a very distinct and unusual feature. It appears best placed in the Amblyothallia.

Calymperaceae

Syrrhopodon Ridleyi Broth. in sched. (Plate 3, Fig. 7)
§ Leucophanella. Inter S.bornensem et S. rufescentem ludens. Ab illo foliis siccis apice plus minusve flexuosis, nec arcte imbricatis, angustius acuminatis; ab hoc foliis siccis madidisque haud reflexis, cellulis chlorophyllosis multo paucioribus, pellucidioribus, leniter tantum papillosis, limbo latiore; ab utroque colore fuscescente vel sordide viridi, infra nec pallido nec rufescente.

HAB. On Platycerium, Bukit Timah, Singapore, 1908; Ridley (731). On large Platycerium, 2400 ft . alt.; Government Hill, Pulau Penang, 1915; Burkill (763). Both fruiting.

Near to S. bornense, which also occurs on the peninsula, but quite distinct in the narrowly acuminate leaves and their arrangement. In S. bornense they are in the dry state erect and closely appressed, the leaf-point quite straight and unaltered by drying; so that the stems are more or less terete; in the present plant the upper part of the leaf or the apex only is distinctly
flexuose and not appressed, giving a totally different appearance under the lens. In S. rufescens, which is perhaps nearer, the leaves are rather abruptly bent back from the erect base, both moist and dry; the chlorophyllose cells there too reach much farther down the leaf, and are highly scabrous and opaque.

The type specimen is of a bright snuff colour above, and not much paler below; the Penang plant however is of a dull green; neither plant showing the very pale neat stems in the interior of the tufts characteristic of the two allied species, nor is the red colour often produced by the radicles in these at all pronounced here.

Syrrhopodon ligulifolius Dixon sp. nov.

Eu-syrrhopodon. § Tristichi. S. Griffithii Mitt. subsimilis, sed longe differt colore rufo-fusco, foliis perstrictis, e basi appressa rigide divaricatis, siccis vix mutatis; e basi perhyalina margine fortiter anguste reflexo cito in laminam strictam, exacıe ligulatam perangustam, circa 80μ latam, acutiusculam nec acuminatam contractis. Limbus marginalis apicem attingens, ubique, nisi summo apice denticulato, integerrimus; laminae cellulae fortiter papillosae, costa dorso laevissima.

Seta 1 cm . longa, tenuis; theca parva, deoperculata vix I mm . longa, elliptica, nitida, fusca.

HAB. Penara Bukit, Pulau Penang, 1896; Ridley (576).
Differs from S. Griffilhii and others of that affinity in the extremely narrow, ligulate leaves, highly rigid, not at all crisped when dry, as well as in other characters. From S. tristichus and its allies it differs entirely in the small size, red colour, entire margin, \&c.

Syrrhopodon elimbatus Dixon sp. nov. (Plate 3, Fig. 8)
§ Eu-syrrhopodon. S. spiculoso Hook. \& Grev. peraffine; differt autem foliis longioribus, 5-6 mm. longis vel paullo ultra, peranguste ligulatis, siccitate superne hamatis, colore (propter vetustatem?) fusco, lamina omnino elimbata, margine basilari fortius spiculoso.

HAB. Mt. Ophir, Malacca; Ridley (sine numero); herb. Mitten, ex herb. New York Botanical Garden.

Very near to S. spiculosus, but differs in the longer leaves, apparently in the colour, in the more strongly toothed border of the shoulder, and especially in the quite borderless lamina. In
S. spiculosus the hyaline border varies very greatly, and may be almost or quite obsolete here and there in a leaf; but it is always to some extent at least present. The basal part of the leaf here is perhaps narrower than in that species.

Syrrhopodon perakensis Dixon sp. nov. (Plate 3, Fig. 9)
§ Calymperophyllum Fleisch. S. Treubii Fleisch. affinis, longe autem differt foliis omnibus multo brevius, latius acuminatis, margine basilari integro, cellulis majoribus, multo pellucidioribus, cancellina multo breviore quam parte folii vaginante.

HAB. Lumut Dindings, Perak, 1896; Ridley (449).
This plant belongs to a small Section of Syrrhopodon separated recently by Fleischer as § Calymperophyllum; the resemblance to certain species of Calymperes, notably of the § Calymperidium, renders the determination very perplexing. In these species, however, the thickening of the margin is usually intramarginal, so that the actual margin forms a sort of wing to the thickened border, while in the present species the margin itself is thickened; the cells however being of just the same character as those of the rest of the lamina, not being elongated nor incrassate. The lamina cells are larger ($8-10 \mu$) and much more pellucid and distinct than in S. Treubii, and the leaves, especially the upper, "abnormal" ones much more shortly and broadly pointed. The sheath is narrow, very short, as in S. Treubii, about $1 / 5^{-1 / 4}$ the length of the leaf, and quite entire at margin, or only obtusely and sinuosely notched; the cancellina is only about half the length of the sheath, and the cells pass abruptly into the lamina cells. This is at variance with the character of the Section as defined by Fleischer, but the relationship of the species with S. Treubii is otherwise so close that I do not think it can be separated on that account. The cancellina cells decrease in width gradually from the nerve to the broad, narrow-celled border of the leaf-base.

Syrrhopodon pungens Dixon sp. nov. (Plate 4, Fig. 17)
Thyridium. S. undulato (Doz. \& Molk.) et affinibus comparabilis, sed gracilior, multo rigidior, brunnescens; rami $\mathbf{1 - 2} \mathbf{c m}$. alti, strictiusculi. Folia madida erecto-patentia vel patentia, sicca erecta subtorta apicibus horride patentibus; eis S. undulati similia sed apice in cuspidem pungentem longam subtubulosam strictam acutam producto.

Seta circa 1 cm . alta; calyptra angusta, basi subinflata, supra longe aciculata; theca erecta, 1.5 mm . longa (deoperculata), anguste elliptica, operculo longiore aciculari.

HAB. Petaling, Selangor, 1898; Ridley (772).
Nearest to S. undulatus and S. Junquilianus, but with a very marked difference in the leaf apex; the lingulate, undulate lamina quickly contracted into a straight, acute, narrow, subtubular, cuspidate acumen of varying length, frequently tipped, in the upper leaves, with gemmae. The hyaline border reaches usually to about the base of this acumen.

It is possible that it may prove to be a varietal form of S. undulatus.

Note on Calymperes setifolium Hampe.
Calymperes angustatum Broth. n. sp. in sched. Hab. Tapah, Perak, 1908; Ridley (149). This is certainly C. setifclium Hampe.

This species, and C. aeruginosum Hampe belong to a small Section of Machrimanta (consisting of two or three species only) having the leaves markedly constricted above the leaf-base and below the lamina, so as to form a sort of waist; this being especially noticeable in the upper, "abnormal" leaves, where the lamina cells are often reduced to an exceedingly narrow strip on either side of the nerve. Brotherus in his Key,-following Bescherelle-puts C. aeruginosum in a group with the margin at shoulder toothed. Bescherelle, it is true, describes the leaves as toothed in the upper part, and with the marginal cells at shoulder "dentiformes;" the latter character, however, is contrasted with "acute serratae" in C. setifolium, and does not imply, apparently, a high degree of dentation. But Hampe's specimens do not appear to bear out even this, and I am not able to explain the statement.

The figures of the leaf in Lacoste, Sp. Nov. vel Ined. Musc. Arch. Indici, Tab. V, show the leaf-base quite entire, and all the leaves I have examined of Hampe's type bear this out. In the present species (C. setifolium) the marginal and submarginal (perhaps representing the teniole) cells of the leaf-base remain elongated not only to the shoulder, but in a very narrow, $1-2$ seriate border almost to the apex. The apical part of the leaf margin also is usually distinctly toothed, while in C.aeruginosum the leaf apex is quite entire or only very faintly toothed at the extreme tip.

Calymperes stenophyllum Dixon sp. nov.

Hyophilina. § Climacina. Humile; dense caespitosa. C. hyophilaceo et C. Delessertii affine; differt foliis superioribus multo angustioribus, e marginibus convolutis subtubulosis, nervo dorso infra laevi, supra sublaevi vel minute tantum scaberulo, cellulis superioribus laevibus.

Folii pars vaginans anguste obovata vel elliptica, tertiam partem folii longitudinem vel ultra aequans. Teniola nulla. Cancellinae cellulae rectangulares.

Ditissime fructiferum. Seta perbrevis, folia suprema haud superans. Calyptrae anguli supra fortiter serrulato-papillosi.

HAB. Lumut Dindings, Perak, 1899; Ridley (777).
Very near to the two species with which I have compared it, and to others closely allied, but with the leaves (except perhaps the very lowest) much narrower, tubular above, and the nerve nearly and often quite smooth at back. C. hyophilaceum and C. Brotheri Besch. have the cancelline cells quadrate. C. eutrichostomum C. M. I have not seen, but Fleischer states that it is only a narrow-leaved form of C. Dozyanum. C. Delessertii Besch. has distinctly wider leaves, and the back of nerve strongly papillose.
Calymperes constrictum Dixon sp. nov. (Plate 3, Fig. io)
Eu-calymperes. § Machrimanta. C. setifolio Hampe affine, folia latiora, medio minus constricta, apice latiore, integro vel raro indistincte distanter denticulato; teniola ad apicem fere, limbum perangusium instruente, circumdata; et parte basilari vaginante multo angustiore, sensim in laminam transeunte, margine supériore spinulis paucis sed fortibus armato.

HAB. Klang Watercatchment Forest, Selangor, on rotten bark on the ground, 1922 ; Burkill (6836):

The leaves in this species are only slightly constricted above the base, and it may therefore possibly not be so closely allied to the group of C. aeruginosum and C. setifolium as I have suggested. Moreover the leaves are closely enrolled when dry, and this is contrary to the habit of most of the species of this group; the cancelline here too is rather of the Climacina outline, the juxta-costal rows of its cells being the longest, while in the two species referred to the median rows are the longest, giving the cancellina a rounded summit. The cancelline cells too are
rather longer, those of C. aeruginosum and C. setifolium being sub-quadrate. The toothing of the marginal shoulder is different from that of C. setifolium, the upper teeth being few, and markedly rigid and spine-like, with a few much smaller ones lower down. The marginal cells of the base form a broad, pale border quite to the shoulder, which gradually narrows from there into the very narrow, thickened border of the lamina.

Whatever its exact relationship be, it is a very distinct species.

Orthotrichaceae

Macromitrium magnirete Dixon sp. nov.
§ Leiostoma. M. Zollingeri forsan affine. Sat robustum, dense intricatum, fuscum; caules densissime ramosi, ramis inaequalibus, $.5-\mathrm{Icm}$. longis, foliis densissime confertis, siccitate inferioribus laxiuscule, apicalibus arcte spiraliter contortis, madidis patentibus. Folia circa 1 mm . longa, oblongo-lanceolata, e medio ad apicem acutum vel subobtusum angustata, costa excurrente longiuscule cuspidata; costa ad basin sat valida, profunde carinata, supra multo angustior; margine integro, basi uno latere reflexo. Cellulae magnae, 12-18 μ latae, mamillosae, ovales, perincrassatae, infra sensim elongatae, basilares angustissime lineares, rectae, grosse tuberculatae. Seta circa 1.5 cm ., laevis. Theca minuta, elliptica, laevis, microstoma. Calyptra laevis. Peristomium externum nullum; internum membrana altiuscula albida.

HAB. Gunong Tahan, Pahang, 7000 ft ., 1922; Mohammed Haniff and M. Nur (7907).

Nearest to M. Zollingeri and M. Blumii, but differing in the larger, highly mamillose cells, more acute leaf apex; and apparently in the peristome, which in both these species is double. The numerous capsules I have examined of the present plant show no trace of outer teeth, although some of them are in quite good condition; they are, however, all past maturity; and it is quite possible that the outer teeth may have been lost.

Myuriaceae

Myurium subnitens Dixon sp. nov.
Sat gracilis, statura M. sinici Mitt. vel M. quinquefarii Thér., sed ramis longioribus, flexuosis, densissime caespitesis, pallide fusco-viridibus, breviter cuspidatis haud vel vix nitentibus.

Folia conferta, imbricata, perconcava a basi cordata late ovatoorbicularia, cucullata, abrupte in acumen circa $1 / 2$ longitudinem folii aequans, loriforme, acutissimum fortiter denticulatum contracta, ecostata; marginibus toto ambitu superiore argute tenerrime denticulata. Cellulae superiores sinuato-rhomboideae, parietibus incrassatis porosis sed tenerrimis, ideo cellulae velut conflatae; basilares angustiores, infimae saepe aurantiacae, alares nonnullae aurantiacae, subinflatae, auriculas parvas bene notatas instruentes. Cetera ignota.

HAB. Sempang, Fraser Hill, Pahang, 1911 ; Ridley (282).
With the leaf form and structure of M. rufescens, but more slender than any of its forms and without the glossy texture of that species; the leaf-point also is wider and more rigid than is usual there; the dense habit is also characteristic.

Neckeraceae

Endotrichella plano-marginata Dixon sp. nov.
E minoribus generis; caules $3-4 \mathrm{~cm}$. alti, densifolii, foliis patulis, frondes $4^{-5} \mathrm{~mm}$. latas formantibus; folia late cordatoovata, $3-3.5 \mathrm{~mm}$. longa, 2 mm . lata, apice raptim in cuspidem brevem, latam, fortiter dentatam contracta, plicata, marginibus omnino plania, superne magis magisque fortiter denticulatis; costae nullae; cellulae parvae, superiores 40-55 μ longae, lumine $5^{-8} \mu$ lato, parietibus incrassatis; basilares elongatae, angustae, alares numerosae, multo latiores, subquadratae, pellucidae, alas minusculas conspicuas instruentes.

Fructus ignotus.
HAB. Batu Caves, Selangor, 1896; Ridley (472). Base of a large tree in jungle, Sekong, Brit. North Borneo, 1913; Binstead (185).

The generic position of this species in the absence of fruit must remain doubtful, but whether it be an Endotrichella or a Garovaglia it is a distinct new species. Very few of the species of these genera have the leaf margin plane, and. from those with this character the small size, small rounded leaves, small cells, conspicuous alar cells, and sharply toothed robust apiculus will separate it without difficulty. Garovaglia aristata is perhaps the most like it, but has finer, quite entire apiculus; while G. densifolia Thw. \& Mitt. has almost entire leaves and much larger cells.

236 Dixon: New Mosses from Malay Peninsula

Pinnatella lingulata Dixon sp. nov. (Plate 3, Fig. ii)
P. liguliferae (Lac.) Fleisch. affine, sed frondibus et foliis percomplanatis, atque foliis siccis minute transverse rugosis, siccitate quoque leniter longitudinaliter biplicatis; sine ullo limbo intramarginali.

Frondes oblongae, bipinnatae; folia stipitis suberecta, haud reflexa, caulina e basi latiore uno margine late inflexo concava, late oblongo-lingulata, apice rotundato et breviter acuto, integro vel minutissime crenulato, marginibus planis; costa infra valida, apice cito angustata ibidemque saepe bifurcata, longe infra folii apicem desinens; cellulae superiores minute ovato-hexagonae, incrassatae, dorso laeves, marginales magis elongatae, omnes basin versus longiores, basilares lineares. Folia ramulina minora, paullo acutiora.

Fructus in parte superiore caulis et in ramis superioribus situs; seta 1 mm . longa, laevis; theca subaequilonga, elliptica, brunnea, operculo curvato rostellato; peristomium majusculum, pallidum.

HAB. Growing horizontally on upright tree-trunks, Gunong Tampin, 1800 ft . alt., Negrı Sembilan, 1917 ; Burkill (2864).

A rather marked species in having the leaves and branches very complanate, the marginal cells slightly elongate, and smooth. P. Kuhliana differs in the reflexed leaves of the stipes, smoother, more pointed, more ovate, concave leaves, and very different cells; P. ligulifera Fleisch. in the not or less complanate habit, and other points.

The transverse rugulosity of the leaves is minute, and best seen under the microscope, but is quite evident with the lens in the dry state.

Entodontaceae

Clastobryum prionotrichum (Hampe in sched.) Dixon sp. nov. (Plate 3, Fig. 14)

Caules secundarii brevissimi, dense caespitosi, gracillimi, fusci (? propter vetustatem), saepe ramos flagelliformes microphyllos tenuissimos emittentes. Folia imbricata, erecto-patentia, vix .5 mm . longa, e basi angustiore ovalia; in acumen flexuosam subulatum subaequilongum argute denticulatum sat cito angustata; ecostata, pellucida, concava; cellulae anguste lineares, perpel-
lucidae, prosenchymaticae, laeves, parietibus tenuibus, infra medium folium vix mutatae, ad angulis plures magnae, vesiculosae, hyalinae, alas optime notatas triangulares instruentes. Cetera nulla.

HAB. Nullonng, 7000 ft., Burma; Kurz (2863).
This plant was sent to me from Mitten's Herbarium at The N. Y. Botanical Garden, as Hypnum prionotrichum Hampe ined. It seems to belong clearly to Clastobryum, but is very distinct from the published species in the oval leaves rather abruptly narrowed to a fine, flexuose, toothed subula, and in the large, vesicular, thin-walled alar cells, ascending in 2-3 series of smaller ones at margin. The microphyllous flagella are also noteworthy; a somewhat allied species from Assam (C. surculare Dixon ined.) has similar branchlets, but more shortly pointed leaves and small alar cells.

Hookeriaceae

Chaetomitrium setosum Broth. in sched. (Plate 3, Fig. 13)
Sat robustum, habitu C. philippinensi subsimile; dense ramosum ramulosumque; folia sat distincte seriata, stricta, I.5-2 mm . longa, oblongo-ovata, cochlearia, infra acumen breve acutum reflexum constricta; costis binis brevibus bene notatis, marginibus inflexis, e medio folio sensim argutius denticulatis, parte superiore saepe spinulose dentatis; cellulae perangustae, dorso alte argute papillosae.

Perichaetii bracteae foliis subsimiles, angustiores, minus concavae, longius acuminatae, fortius spinulose dentatae; seta circa 5 mm . alt. per totam longitudinem fere dense praealte setosa. Calyptra basi longe laciniata, ciliis flexuosis, e cellulis pluriseriatis compositis. Theca horizontalis.

HAB. Tapah, Perak, 1908; Ridley (169).
A quite distinct species, with somewhat the habit of C. philippinense and C. elongatum, but with a highly setose, short fruit-stalk. The deeply concave leaves, with the upper part of the inflexed margin often very sharply toothed, also give marked distinguishing characters.

Chaetomitrium perakense Broth. in sched. (Plate 3, Fig. 12) C. orthorrhyncho proximum, nec differt nisi caracteribus fructiferis; perichaetii bracteae haud ciliatae, sed fortiter runcina-
tae, dentibus plus minusve recurvis; seta ad basin fere tuberculata:

HAB. Bidor Tapah, Perak, 1908; Ridley (sine numero).
The inner perichaetial bracts in C. orthorrhynchum are longly ciliate-fringed in the upper margin, while here the margin-like the subula-is runcinately toothed; the lower part of the seta is in that species smooth, while here it is warted almost or quite to the perichaetium. I find no difference in the gametophyte.

HYPNACEAE

Hylocomieae

Ctenidium falcifolium Dixon sp. nov.
Laxe caespitosum, flavo-aureum, sat robustum. Caulis repens, ad 3 cm . longus, plusminusve regulariter, nonnunquam dense pinnatus, ramis circa .75 cm . longis, apicem versus caulis sensim decrescentes. Folia haud valde conferta, plerumque falcatodecurva, flexuosa; caulina e basi anguste oblonga sensim in subulam longam piliformem fortiter argute dentatam, saepe tortam, angustata. Folia ramea similia sed angustiora. Cellulae perangustae, longae, dorso laeves, per totum folium fere uniformes, basilares haud laxiores, alares vix ullae, ad angulos extremos tantum 1-2 parvae, hyalinae.

Perichaetium majusculum, foliis internis longis, patentibus, sensim longe subulatis, argute dentatis. Seta circa 1 cm . alta, tenuis, laevis; theca parva, 1 mm . longa, inclinata, oblonga, gibbosa, sub ore constricta; ad basin in setam abrupte contracta. Operculum, calyptra, ignota.

HAB. Thaiping Hills, Perak, 1903; Ridley (817).
A little obscure as to position, having some title to be considered a Stereodon rather than a Ctenidium. The general foliation, the coarsely toothed leaves, turgid capsule, \&c., however, rather suggest Ctenidium. It is quite distinct from its allies in the falcate, narrow leaves without angular cells, and small capsule, with the exception of C. stereodontoides Dixon from South India, which has much the same habit and leaf form and structure. The colour there, however, is green, not golden, the leaves are far less sharply toothed, with more numerous and distinct alar cells.

Stereodonteae

Ectropothecium singapurense Dixon sp. nov.
Dioicum. E robustioribus generis, habitu E. buitenzorgii et E. Dixoni Fleisch. simile; caules elongati, densissime pinnatim ramosi, ramis $5^{-7} \mathrm{~mm}$. longis, crassiusculis, haud complanatis. Folia confertissima, fortiter falcata vel hamata, magnx, circa 2 mm . longa, ad basin I mm . fere lata, leniter plicata; e basi lata subdeltoidea in acumen subulatum falcatum subintegrum vel tenuiter denticulatum angustata, margine prope apicem plerumque leniver anguste reflexo; ecostata. Cellulae pro folii magnitudine parvae, breviusculae, angustissimae, basin versus paullo latiores, infimae tantum hyalinae, tenues, aias decurrentes conspicuas, majusculas instruentes.

Folia ramea minora, angustiora, latius acuminata, magis denticulata; cellulae superiores dorso tenuissime scaberulae.

Cetera nulla.
HAB. In grass in open, Botanical Gardens, Singapore, 1913; Binstead (78).

One of a group of closely allied species, differing, however, in quite sufficiently marked characters. E. Dixoni Fleisch. has much longer, smooth cells, and more strongly toothed leaves. E. goliathense Fleisch. from New Guinea has longer branches and much larger cells. E. buitenzorgii differs entirely in the basal areolation.

Hypnum malaccanum C. M. in sched.; Penang, 1896, leg. Curtis, cannot be separated from Ectropcthecium buitenzorgii (Bél.) Jaeg.

Ectropothecium callichroides (C. M.) Jaeg.
elongatum Dixon var. nov. (Plate 3, Fig. 15)
Caules haud dense caespitosi, elongati, 7 cm . longi vel ultra, conferte regulariter pinnati, ramis subaequalibus, $4-5 \mathrm{~mm}$. longis.

HAB. Rawang, Selangor, 1896; Ridley (382). Gunong Raya, Lankawi Islands, 1921 ; Mohammed Haniff \& M. Nur (7134).
E. callichroides was so named from its resemblance to Hypnum callichroum (Brid.), and like that usually grows in densely interwoven tufts, the stems being difficult to separate. In this variety the stems are not intertwined, but grow loosely, and are
very regularly pectinate with short branches throughout their length.
E. callichroides has not been recorded from the mainland of Asia; its distribution has hitherto been the Philippines and Borneo.

It was described from sterile plants, and the fruit has, so far as I am aware, not been found. Perichaetia are present in the Lankawi Islands specimen; these are large, with long, spreading, rigidly loriform-subulate leaves, denticulate at the tips.

Ectropothecium siamense Dixon sp. nov. (Plate 3, Fig. I6)
Dioicum videtur. E. scaberulo Broth. (E. incubans f. scaberula Fleisch.) forsan affine; mediocriter robustum; caules regulariter pinnati, ramis circa 5 mm . longis, percomplanatis; sordide viride; folia valde patentia, minuscula, circa .75 mm . longa, valde complanata, nec curvata; caulina e basi ovata sensim breviter argute acuminata, ramea ovata, late breviter acuta; omnia margine plano, e basi fere breviter, densissime serrulata; cellulae parvae, laeves, foliis caulinis medianae breviter lineares, marginalibus una serie brevioribus; omnes granulosa ideo subopacae, ad angulos paucae laxiores pellucidae, alas minimas, sat notatas formantes; areolatio foliorum rameorum sat similis sed omnes cellulae breviores, apicales laiiores, ovatorhombcideae. Cetera ignota.

HAB. Khan Poi Hill Kasum, Siam, 1898; Mohammed Haniff \& M. Nur (3919).

There is a close resemblance between this plant and E. scaberulum Broth., which Fleischer considers a form of E. incubans (Reinw. \& Hornsch.). This is enhanced by the cell ends appearing punctate under the microscope, as if projecting; they are however entirely smooth; the shortly pointed branch leaves, the rather opaque, short cells, and especially the very regularly and closely serrulated margins distinguish it from all the species I know except an unpublished species I have in my herbarium from New South Wales.

It was growing closely associated with fruiting Taxithelium nepalense.

Ectropothecium Moritzii (C. M.) Jaeg.
stereodontoides Dixon nov. var.
Pernitidum, albescens; folia ramea caulinis similia, angusta, valde falcata, sensim subulata, cellulis pellucidioribus.

HAB. Fraser Hill, Pahang, 4000-4370 ft. alt.; Burkill \& Holttum (8715 d). Also, same locality, on \log in jungle, at 4000 ft .; Holttum (11375).
E. Moritzii is said by Fleischer to be a rare species in Java, and I have no Javan specimens in my herbarium. It is however a common plant in Borneo, and on the Malay Peninsula, and I have numerous specimens from both of these parts. While easily recognized they show a considerable amount of variation in the leaf form and direction, as well as in the degree of glossiness. One form especially has the branch leaves very different from those of the typical plant as figured in the Bry. Jav. (though it is referred to by the authors in their diagnosis-"ramulina similia vel oblonga, brevius acuminata"), being almost straight, and complanate, scarcely or not at all falcate or decurved, widely spreading, very shortly and sometimes quite widely pointed; in this case they are usually brown, scarcely at all glossy, with shorter, opaque cells and the marginal row especially short and markedly differentiated. The plant is in this case very markedly different from the type (so much so that an extreme form of it (Singapore, Ridley, No. 203) has been named Chaetomitrium Ridleyi Broth, MS. in sched.!); as a rule however some branches show the more normal form of leaf, and-together with the fruiting characters-establish identity with E. Moritzii.
E. Moritzii is described in the Bry. Jav. as "nitidula," by Fleischer as "wenig glanzend." This description is applicable to the usual forms, though here and there a plant, or part of a plant, shows a decided gloss. In the present variety the branch leaves are exceedingly glossy, and in their extreme form of a pale or quite white colour; they are much narrower than usual, and strongly decurved-falcate, with fine, subulate or almost filiform points; the areolation is much more pellucid, of longer cells, with the marginal cells not or scarcely differentiated. The first specimen I received of the variety showed only a few sterile scraps mixed with Trichosteleum, \&c., and showed no resemblance whatever to E. Moritzii; it was in fact, to all intents
and purposes a Stereodon, but it showed such an almost absolute resemblance to a South Indian species of Ctenidium recently described by me as C. stereodontoides that I gave it the MS. name of Ctenidium substereodonioides; and I had indeed actually drawn up a description of it for this article under that name, when a further consignment of mosses from Fraser Hill threw a quite unexpected light upon it. A large tuft of more or less typical E. Moritzii showed here and there a branch entirely identical with the new species, and I was able to find here and there a stem having some or most of the branches bearing the short, shortly pointed, complanate, brown leaves, other branches being typical, but here and there a single branch with all the "stereodontoid" characters of the present var. clearly marked (one had in fact on a single stem, Ectropothecium Moritzii, Chaetomitrium Ridleyi, and Ctenidium substereodontoides!). Further examination showed some stems with all the branches exhibiting the varietal characters, and one or two of them were fruiting. Others in the same tuft were nearly typical, and some quite so: and it is difficult therefore to draw a clear linebetween the variety and the type; but the extreme form being so marked and sc deceptive, it seems desirable to characterize it and perhaps avoid future pitfalls by separating it as a variety.

Plagiotheclaceae

Taxithelium instratum (Brid.) Broth.
Kurzii Dixon. nov. var. (Hypnum microcladum Hampe MS. in herb. Trichosteleum Kurzii Sanesb.; Jaeg. Adumbr. II, 480 nomen).

A forma typica cellulis minus dense, magis irregulariter papillosis solum differt.

HAB. Yomah, Pegu; Kurz (2922).
This plant was distributed as Hypnum micrccladum Hampe MS. (or sometimes, erroneously as it seems, as H. microcladum C. M. MS.). It must not be confused with H. microcladum Tayl. \& H. microcladum Doz. \& Molk., both of which belong to Rhaphidostegium.

It is scarcely to be distinguished from Tax. instratum, only the leaves are less densely, less regularly papillose.

Taxithelium isocladioides Dixon sp. nov. (Plate 4, Fig. i)
T. isoclado (Bry. Jav.) affine atque simile, differt foliis angustioribus, perfecte lanceolatis nec ovato-lanceolatis, longius argutius acuminatis, sat fortiter denticulatis, cellulis majoribus, tenerrime, saepius indistincte seriatim papillosis. Cetera ut in T. isoclado.

HAB. Bujong Malacca, Perak, 1898; Ridley (737) in herb. Mitten.

With the habit and fruiting characters of T. isocladum (so far as seen) this differs quite markedly in the much narrower and more narrowly acuminate leaves, the sharply denticulate margin, and the larger, pellucid cells, only very minutely and usually quite indistinctly papillose. In fact it might easily be mistaken for an Isopterygium.

Taxithelium trachaelophyllum (C. M. in sched.) Dixon sp. nov. (Plate 3, Fig. 17)
T. Gottscheano Hampe forsan proximum; differt foliis rameis percomplanatis, perfecte rotundato-obtusis, rarissime latissime subacutis; cellulis indistincte, minutissime, humillime papillosis, alaribus majoribus, elongatis, incrassatis, saepe aurantiacis.

Fructum haud vidi.
HAB. Yonah, Burma; Kurz (3332).
This was determined as Hypnum trachaelophyllum C. M., but has not been published. It is nearest to T. Gottscheanum Hampe and T. capillipes, both of which differ in the more pointed leaves, and the smaller and less distinct alar cells, while T. Gottscheanum also has the cells quite distinctly seriate-papillate; in the present plant the papillae while present and seriate, 3-4 on a cell face, are extremely low and often quite indistinct and with difficulty seen.

Taxithelium subtrachaelophyllum Dixon sp. nov. (Plate 3, Fig. 18)
T. trachaelophyllo (v. supra) affine; foliis autem angustioribus, apice minus rotundatis, cellulis duplo majoribus, parietibus firmioribus (eis T. trachaelophylli pertenuibus), alaribus minoribus, paucioribus; papillae perindistinctae, tenerrimae, 2-4 seriatae.

Bracteae perichaetii in acumen subrectum rigide late loriforme nec subulatum, subdenticulatum angustatae. Seta circa

2 mm . alta. Theca parva, elliptica, collo in setam defluente, erecta vel suberecta.

HAB. Borneo, Motley. Krangi, Singapore, 1895; Ridley (695). Suli Archipelago, 1898; Burbidge, Bukit Timah, Singapore, 1896 ; Ridley (692, 693).

This is intermediate between T. trachaelophyllum and T. sumatranum; it differs from the former in the characters detailed above, especially in the quite different cells; T. sumatranum has more acute, pointed leaves, and the papillae almost wanting; the inner perichaetial bracts also are much more finely subulate and flexuose.

The papillae vary greatly, being at times wanting, at others very faint and scarcely to be detected except with great care, and at others quite well marked; they vary from $1-2$ on each cell surface to 3-4.

Taxithelium bilobatum Dixon sp. nov. (Plate 4, Fig. 2)
Subgen. Anastigma. Species praeclara. Habitus T. instraii, caulibus ramisque valde complanaiis, substrato arcte adpressis; (vetustate) fuscis. Folia octofaria, heteromorpha; ea serierum quattuor ventralium et dorsalium late oblonga, apice roiundato, obtuso, concava, ecostata, marginibus fere e basi arcte denticulatis, apice denticulis confertissimis irregularibus saepe recurvis quasi erosa. Cellulae breviter sinuoso-lineares, laeves, serie marginali breviores, pellucidiores; basilares infimae breviores, latiores, alares nullae.

Folia serierum quattuor lateralium majora, perconcava, seu lobis duobus conduplicata, quorum uno minore breviore, altero majore longiore; a sinu plus minus profunde sejunctis; areolatio et marginum denticulato ut in foliis dorsalibus et ventralibus.

Perichaetium breve, turgidiusculum, bracteis e basi latiore breviter late acuminatis, nec multo attenuatis, irregulariter dentatis, erecto-patentibus. Seta 2 cm . vel paullo ultra; theca (immatura) parva, brevis, basi in setam defluens; inclinata, operculo rostellato.

HAB. Bujong Malacca, Perak; Ridley (739), in herb. Mitten.
A very remarkable species, with the lateral leaves more distinctly bi-lobed than in any other moss that I know. It is most nearly allied to T. glossoides (Bry. jav.), and the dorsal and ventral, undivided leaves are very similar to those of that species, but the lateral leaves are entirely different.

Sematophyllaceae

Acanthocladium polymorphum Dixon sp. nov. (Plate 4, Fig. 3)
A. surculari Mitt. affine, statura autem robustiore. Stirps habitu, ramificatione, foliorum forma et structura valde polymorpha; caules 5 cm . longi vel ultra, nunc flexuosi, irregulariter brevissime pinnatim ramosi, nunc dense pinnati ramis strictis, .75 -fere 1 cm . longis, obtusis vel breviter attenuatis nunquam flagelliformibus. Folia caulina eis A. surcularis simillima, e basi latissime, oblongo-ovata in pilum subaequilongum flexuosum integerrimum subito contracta, ecostata; areolatio perdensa, e cellulis angustis lineari-flexuosis laevibus, parietibus tenuibus, basin versus sensim paullo majoribus, latioribus instructa; alaribus 3-4 magnis, elongatis, vesiculosis, pulchre aurantiacis, supra-alaribus nonnullis multo minoribus, hyalinis vel aurantiacis.

Folia ramea polymorpha, nunc anguste ovato-lanceolata, longe tenuiter subfiliformiter acuminata, integra vel subintegra, nunc breviter late acuminata marginibus ad apicem reflexis, denticulatis, nunc late ovata, brevitef late acuminata vel tantum acuta, marginibus ad acumen valde recurvis, argute, fortiter dentatis. Areolatio diversa, foliorum angustiorum e cellulis elongatis, linearibus vel anguste rhomboideo-linearibus, latiorum e cellulis brevioribus, latioribus, ovoideo-rhomboideis, instructa; cellulae aut omnino laeves, aut hic illic unipapillosae, aut, praecipue eae foliorum latiorum, unaquaque papilla magna alta medio lumine praedita.

Dioicum. Perichaetium polyphyllum, foliis erectis, sensim in subulam strictiusculam subintegram vel denticulatam angustatis. Seta (unica imperfecta) crassiuscula.

HAB. N. W. slopes of Mt. Mooleyit, near Moulmein, Tenasserim. Comm. W. R. Sherrin.

A remarkably polymorphous plant, as described above, the leaves of the branches being of such diverse form and structure, as to make it very difficult to believe that they all belong to one species, the margins being plane or strongly recurved above, entire or strongly, coarsely toothed, the cells sometimes narrowly linear and ten or more times as long as wide, at others ovate-rhomboid and not more than three or four times as long as wide; I have seen branches with all the cells quite smooth,

246 Dixon: New Mosses from Malay Peninsula

others with all the leaves highly and densely papillose, and others in which they are all smooth but a few here and there slightly parillose. It is a very perplexing, but a quite distinct species. A surculare Mitt. has the branch leaves scarcely toothed and smooth, and most of the branches attenuated to a caudiform arex.

Trichosteleum brachypelma (C. M.)

compactum Dixon var. nov.
Caespites humiles, densissimae; folia complanata, strictiuscula; folia ramea atque perichaetialia brevius acuminata.

HAB. Garden jungle, Singapore, 1894; Ridley (321).
Trichosteleum brachypelma appears to be a rather widely distributed plant; sometimes scarcely differing from T. Boschii except in the smooth seta; but often with more gradually tapering leaves and less papillose cells. These characters are evident here, but in addition the tufts are extremely compact, the leaives complanate and less flexuose, often very shortly and even widely pointed.

Trichosteleum albifolium Dixon sp. nov. (Plate 4, Fig. 4)

Inter Taxithelium papillatum intertextum, dense compactum, habitu Tr. singapurensis, \&c.; albidum, pernitidum; caules irregulariter ramosi, ramis inaequalibus, percomplanatis, strictis; folia rigide complanata, e basi subamplexicauli, contracta, patentia, ovato-lanceolata, breviter anguste acuminata, integra; folia ramea minora, angustiora, brevius latius acutata, apice subdenticulato; omnia ecostata; cellulae anguste lineares, parietibus angustis, indistinctibus; omnino laeves; alaribus 2-3 magnis, hyalinis, vesiculosis.

Perichaetium magnum, polyphyllum, \{oliis suberectis, sensim in subulam rectam haud flexuosam denticulatam angustatis. Cetera nulla.

HAB. On fallen tree in forest, seventh mile from Kluang, Mersing, Johore, 1922; Holttum (9296b).

Quite distinct in the very white, glistening, shortly pointed leaves, and quite smooth cells, though otherwise in habit and leaf form resembling several other species, e. g., T. singapurense Fleisch. It grew closely mixed up with a form of Taxithelium papillatum in fruit, but none of the fruit appears to belong to
the Trichosteleum. T. singapurense has besides the papillae much longer leaf points. The leaf form and alar cells show it not to be an Isopterygium. Unfortunately the quantity is very small.

ACROPORIUM Mitt.

The genus as understood here includes the species of Sematophyllum as employed by Brotherus, with the exception of a small group of autoicous species of the Section Chaetomitriella, which appear to me better placed in Trichosteleum. American writers usually retain the arrangement of the Musci Austroamericani, i.e., they include under Sematophyllum all the species of Acroporium and also those separated by most recent authors (Jaeger, Brotherus, etc.) as Rhaphidostegium. Fleischer, on the other hand, in his recent work distributes the Javan species of the aggregate genus over ten different genera. I must confess that on the whole I prefer-with a few slight exceptions-the middle course kept by Brotherus, especially as concerns the keeping apart Rhaphidostegium and Sematophyllum. United they form a very unwieldy genus, at least 400 species having been described in the two Sections; while Rhaphidostegium, if not easy to separate by well defined structural characters, is so distinct in habit that so far as I know there has never been any doubt as to the position of any species of the whole 400 or so as to the group in which it should be placed, with the possible exception of two-R. saproxylophilum (C. M.) being placed among species of Acroporium in the Bry. Javanica, and R. Schwaneckeanum (C. M.) having been placed-for some obscure reason-in Pungentella (i. e., Acroporium) by C. Mueller himself in Hedwigia, 1898.

As regards the name, I think it is clear that Fleischer is correct in restoring Mitten's name Acroporium, in the place of Sematophyllum, the name retained by Jaeger, Paris, and Brotherus.

The genus Acroporium was validly published by Mitten in his List of Samoan Mosses in Journ. Linn. Soc., Bot., x, 182 (1868), and the diagnosis makes it clear that it is used in the restricted sense, not including the species often placed in Rhaphidostegium, and already separated from Hypnum (or Stereodon) by Mitten in 1864.

Sematophyllum Mitt. was validly published in Journ. Linn. Soc., viii, 5 (1864), for S. auricomum sp. nov., which is found identical with Hypnum substrumulosum Hampe; and this must be considered the type of the genus. Neither in that paper nor till 1869 did Mitten unite the two groups.

Sematophyllum Mitt. does not date from the Musci Austroamericani, Journ. Linn. Soc., Bot., xii, 20 (I869), as stated by Paris, nor, as it is given by Jaeger, from 1868. Jaeger wisely attempts no closer reference than "Journ. Linn. Soc. 1868," relying, no doubt, on Mitten's note on p. 474 of the M. Austr.amer., "Sematophyllum, Mitt. in Journ. Linn. Soc., 1868. " This, however, is a false reference. The only paper of that year that could be referred to is Mitten's List of Samoan Mosses, in Journ. Linn. Soc., Bot., x (1868) where Mitten founded his genus nov. Acroporium, but where Sematophyllum is not even mentioned. Mitten wrote 1868 either by error for 1864 , or, wishing to widen his genus Sematophyllum (to include the species of Acroporium), he referred to the 1868 paper, but should have cited Acroporium, instead of implying that Sematophyllum was there used.

Clearly therefore Acroporium is the correct name to be used for the present group of species by those who keep the two groups separate; while Sematophyllum is the earliest name for the species of Rhaphidostegium (Schimp.) De Not. For those who still unite them the correct name would be Sematophyllum Mitt. (1864) emend. Mitt. 1869.

Fleischer has found that several of the names used in the Bry. Jav., and subsequently employed by authors under Sematophyllum are antedated by earlier valid names, especially of Reinwardt and Hornsch., and these of course must be restored. It may save trouble if I give here these equivalents for the more familiar specific names.

Bry. Jav.
Hypnum scabrellum Lac.
H. gracilicaule Lac.
H. Braunii C. M.
H. strepsiphyllum Mont.
H. hyalinum Reinw.

Fleischer
Acroporium lamprophyllum (Mitt.) A. diminuium (Brid.)
A. rufum (Reinw. \& Hornsch.)
A. secundum (Reinw. \& Hornsc ${ }_{\mathrm{h}}$.) A. stramineum (Reinw. \& Hornsc ${ }_{\text {h. }}$.)

The exceedingly interesting genus Acroporium has its centre in the Indo-Malayan region. Of 75 species included by Brotherus in the "Musci," 42 occur in this region (including New Guinea), and are indeed confined to it; as compared with 13 in Africa, 12 in Oceania, and 8 in America. Since the publication of that work at least a dozen new species have been described in the area; the present paper describes in additional ones, and I have two or three further undescribed ones from Borneo, in my herbarium. Probably 60%, therefore, of the species belong to this region, very few of them, or indeed of any species of the genus having at all a wide range.

Acroporium serrulatum Dixon sp. nov. (Plate 4, Fig. 5)

A. cuculligero (Bry. Jav.) proximum; minus; rami breviores, nec attenuati, nec gemmipari; foliis paullo latioribus, e basi fere conferte serrulatis; areolatio pellucida, nunc laevis, nunc dorso sparse papillosa, e cellulis multo brevioribus minoribus, parietibus incrassatis; bracteae perichaetii suberectae, sensim in subulam haud flexuosam, densissime, argute serrulatam, fere spinulosam, angustatae.

Seta plusminusve 1 cm., crassiuscula, superne humillime ruguloso-papillosa; theca paullo major, inclinata vel horizontalis, operculo rostello longiore, deflexo.

HAB. Penang Hill, Pulau Penang, 1898; Ridley (750). Ibidem, 1896 (547).

This very pretty little plant is very close to A. cuculligerum, and would be placed by Fleischer in his new genus Clastobryella. It differs however quite markedly from that species in several respects. The cells in A. cuculligerum are thin-walled, but owing to the cell contents are not translucent, and the leaves always have a rather opaque appearance. Here the cells are much smaller, and thick-walled (the lumen being only about the width of the adjoining wall) especially at the cell ends; but both wall and cell being translucent the leaf is quite pellucid. The alar cells are pale, two or three on each side, and not occupying a large proportion of the width of the base.

The margin in A. cuculligerum is acutely, but distantly denticulate; here the serrations are much closer, gradually increasing in size and acuteness almost from the leaf-base. The seta is stouter, and shorter than it often, at least, is in A. cucul-
ligerum, though it may there also be only I cm . long. The principal difference, however, lies in the perichaetial leaves; in A. cuculligerum they are slightly denticulate only; here the whole acumen is densely fringed with long, almost ciliolate teeth. The seta, as in A. cuculligerum, is set, in the upper part with flat, sub-discoid thickenings, such as are found here and there in various genera, e. g., in several species of Meiothecium; it would seem desirable to have a suitable term for these; and I suggest tentatively the terms platypapillae, platypapillose.

Acroporium leucophyllum Dixon sp. nov. (Plate 4, Fig. 6)
Sat robustum, peralbidum; caulis longe repens, irregulariter pinnatus, ramis nunc brevioribus, subobtusis, plerumque elongatis, rigidiusculis, valde attenuatis, ad 3 cm . longis, caudiformibus. Caulium et rami cortex nigricans, inter folia albida valde conspicuus.

Folia saepe spiraliter seriatim disposita, erecta, erectopatentia vel saepe rigide divergentia, lanceolata, $a b$ insertione fere paullo angustiore sensim angustata, valde concava et profunde carinata, longiuscule stricte anguste acuminata, marginibus infra subrecurvis, ad basin acuminis explanatis, acumine ipso argute deniiculato fortiter late recurvis, unde acumen dorsaliter subconvolutum. Folia apicem versus ramorum sensim magis magisque minora, angustiora.

Cellulae peranguste lineares, parietibus tenuibus, dorso apicibus valde prominentibus hispide papillosae, infra vix mutatae sed laeves, inferne aurantiacae, alares circa trinae vesiculosae, intense purpureae, opacae. Cetera ignota.

HAB. On wood, Gunong Tahan, Pahang, July 1911 ; Ridley (1032).

A very distinct and striking species, both in habit and the white colour, and in the structure of the leaves. A. asperifolium (Thw. \& Mitt.) is perhaps the nearest, but is greener in colour, and the leaves, much less papillose at back, are very longly and gradually tapering and of quite different form. A. ruficaule is quite different in size, habit and colour.

The form of the acumen is rather remarkable; as in many species with concave leaves (Trichosteleum, Chaetomitrium, $\& c$.) the base of the acumen is flattened out at the margins, with the centre hollowed out and subcucullate; but higher up in
the acumen the margins become widely revolute, so as almost or quite to meet at the back, rendering the back of the acumen subtubular, a very unusual feature.

The long, attenuated branches would appear to be pendulous.
The rather small, deep purple auricles contrast very strongly and prettily with the narrow, pale, lamina cells.

The spiral arrangement of the leaves comes out rather strikingly when dry, in more than one way. On some branches the leaves are rigidly divergent and little altertd when dry, in which case they give the appearance of a spiral herring-bone arrangement. At other times the leaves of each spiral become accumbent on one another, and the resulting strand is twisted spirally round the branch, in a funicular manner, not, however, crowded as in Grimmia funalis and many species of Macromitrium, but distantly, so that the black cortex of the branch shows distinctly and prettily in contrast with the white leaves. (I have tried to depict one of these branches on Pl. II. fig. 6b). Frequently, on the other hand, the spiral arrangement is not at all manifest.

Acroporium obscurum (Broth.) Dixon sp. nov. (Sematophyllum obscurum Broth. MS. in sched.) (Plate 4, Fig. 7)
Dioicum. Sordide viride. Habitus et folia fere A. rufi formarum robustiorum, ramis saepe elongatis, flexuosis. Folia rigide patentia, saepe homomalla, superiora plerumque leniter falcato-secunda, lanceolato-subulata, e basi fere convoluta, apice tubulosa, stricta acuta sed haud valde attenuata, integra, superne dorso plerumque (praecipue superiora) rugosa-papillosa. Cellulae parietibus valde incrassatis, porosis, obscurae.

Flores σ^{7} numerosi, majusculi, caulini. Perichaetium majusculum, bracteis angustis, internis erectis, sensim in subulam piliformem, flexuosam, quam laminam saepe multo longiorem, grosse dentatam, attenuatis, 3 mm . fere longis. Seta usque ad 3 cm . alta, laevis. Theca immatura solum visa.

HAB. Lohore, Aug. 1908; Ridley (sine numero); det. Brotherus. Penang Hill, Pulau Penang, 1896; Ridley (538) in herb. Mitten; det. H. N. D. Oto Jungle, Upper Sarawak, Borneo; Ridley (sine numero) in herb. Mitten; det. H. N. D.

The foliation is very much that of robust A. rujum or the smallest forms of A. secundum, but the fruiting characters are quite different; the long, quite smooth seta separates it from
the former, and the long perichaetial leaves with long, flexuose, strongly toothed piliform points often as long as or considerably longer than the expanded part, from all forms of A. secundum. The perichaetial bracts vary a good deal, however, and are sometimes much less longly piliform, and less coarsely toothed; but are still quite different from those of A. secundum. The perichaetium figured is one of the more shortly pointed forms.

The subula of the leaf, as in many of the allied species varies much in degree and character of papillosity; it may be quite smooth or lowly undulate-rugulose, or highly and acutely papillose. The cells are rendered rather obscure by the cell contents.

Acroporium rigens (Broth.)

dicranolomoides (Broth.) Dixon. var. nov. (Plate 4, Fig. 10)
Sematophyllum dicranolomoides Broth. n. sp. in sched.
Folia laxiora quam in planta typica, valde patentia, minus stricta. Habitu formarum minorum specierum nonnullarum Dicranolomatis, e. g., D. brevisetum, D. reflexifolium. Sporogonium ei plantae typicae simile.

HAB. Gunong Berumban, Pahang, 1908; Ridley (131).
The more loosely set leaves, divaricate, sometimes at right angles to the stem, give this a quite different appearance to that of the densely and rigidly foliate type form, but there are no other differences in either the leaves or the fruit.

Eucamptodon Wrayi Broth. in sched. in Herb. Kew., "summit of Gunong Batu Putih, Perak, L. Wray Jr., No. 394. Herb. Mus. Perak," is the same thing. The resemblance to some of the Dicranaceous genera, e.g., Braunfelsia (Eucamptodon auct.) is quite striking, particularly of course in sterile specimens.

Acroporium denticulatum Dixon sp. nov. (Plate 4, Fig. 8)
Dioicum videtur. Inter alios muscos intertextum, nitidissimum, albidum, A. hamulato Fleisch. forsan affine sed minus, brevius, atque colore omnino alienum. Folia circa 1.5 mm . longa, eis A. monoico, \&c., simillima, sed apice paullo angustiore, saepe obliquo vel leniter falcato; marginibus per totum ambitum fere minute, distanter denticulais. Folia ramea angustiora, longius cuspidata. Cellulae parietibus incrassatis valde porosis,
circa dimidiam latitudinem luminis aequantibus; superne dorso saepius rugulosae, vel humiliter papillosae.

Cetera nulla.
HAB. Fraser Hill, Pahang, alt. 4000-4370 ft., 1922 ; Burkill \& Holttum (8715a).

Growing densely interwoven with close masses of A. secundum var. angustifolium Fleisch., Trichosteleum hamatum and T. Boschii, so that it is very difficult to separate it or to judge of the actual habit of growth. It is however very distinct from alt the allied species in the glistening white colour, and the denticulate margins. The toothing being very delicate and the margins usually strongly incurved, this may easily be overlooked, but on careful examination it will be seen to be almost constantly present, and frequently at the leaf apex very pronounced. The rugosity of the leaves also is unusual in the wider leaved species.

The cuspidate leaf-points are usually straight, but quite frequently hooked slightly, as in A. hamulatum.

Acroporium aciphyllum Dixon sp. nov. (Plate 4, Fig. 9).
E majoribus generis, habitu A. falcifolii Fleisch. sed multo robustius, caespites altos, extensos, laxiusculos formans; caules 8 cm . longi vel supra, parce ramosi, apice brevicuspidati, falcati. Folia magna, 3-4 mm. longa, valde falcato-secundo; e basi late ovato-oblonga parum concava sat cito in subulam subaequilongam inferne convolutam superne piliformem substriciam contracta; integerrima, dorso laevia. Cellulae perincrassatae, parietibus porosis quam lumine multo latioribus, unde pori valde conspicui, elongati, parent; alares magnae, vesiculosae, sat angustae, elongatae.

Dioicum videtur. Flores feminei solum visi, apices versus ramorum siti; perichaetii bracteae erectae, arcte adpressae, e basi late convoluta superne denticulata in subulam piliformem rectam argute denticulatam contractae. Seta circa 2 cm . alta, inferne laevis, apice leniter rugulosa. Theca pendula, angusta.

HAB. Gunong Tahan, Pahang, i91I; Ridley (1017, 1029). Ibidem (IO37), f. foliis patentibus, haud falcatis.

This fine species differs from all the known Malaysian species with broad leaf bases at once in the long, fine, often piliform subula. A. sigmatodontium is perhaps the nearest species, but has leaves much narrower below, less finely acuminate, with very different perichaetial leaves.

No. 1037 has the leaves quite straight, and may possibly be the type form, but only a stem or two were seen of this, while the falcate-leaved plant is present in considerable quantity, and must be presumed to be the prevailing form.
A. piliferum Broth. from the Philippines has much wider leaves, more rapidly, often quite abruptly piliferous.

Acroporium longicuspis (Broth.) Dixon sp. nov. (Plate 4, Fig. 12)

Sematophyllum longicuspis Broth. MS. in sched.
Habitu staturaque S. secundi var. angustifolii Fleisch., sed folia parum secunda, undique patentia. Folia breviuscula, circa 2 mm . longa, e basi subconvoluta ovato-lanceolata, stricte subulatotubulosa, integerrima; cellulae majusculae, valde incrassatae, lumine parietem porosam latitudine subaequante, dorso plerumque mamillose undulato-rugosae, saepius quoque papilla unica media alta grosse scabrae.

Dioicum videtur. Perichaetium sat parvum, bracteis erectis e basi late ovata in acumen subpiliforme vel loriforme subaequilongum argute denticulatum angustatis. Seta 1.5 cm ., laevis vel apice paullo rugulosa. Theca parva, pendula.

HAB. Taiping, Perak, 1909; Ridley (200). Fraser Hill, Pahang, 4000-4370 ft., 1922 ; Burkill \& Holttum (871I). . Bukit Hitam, Selangor, 1896; Ridley (391).

Somewhat resembling the narrow-leaved forms of A. secundum this species differs in the short leaves not twisted and rarely secund; in the more incrassate cells, and especially in their papillosity. They are frequently markedly rugulose at back above, as in several species, but in addition to this in most leaves all the upper cells bear a high single median papilla so that the leaf is strongly scabrous. Curiously, however, among the normally papillose leaves there are frequently found branches with slightly longer and narrower leaves which are entirely or almost entirely smooth; a very marked example of dimorphism. A certain degree of rugulosity is frequent in the narrow-leaved species of Acroporium, and a few species have occasionally at least a distinct central papilla on the cell lumen--though this is rare-but I know of no species where it is so marked and so highly developed as here; in fact the leaf may be said to have
the form of Acroporium with the papillae of Trichosteleum, e. g., T. Boschii.

The seta also is shorter than in A. secundum, and the perichaetial leaves, though similar, are not identical, having a straighter and longer, more gradually tapering subula.

The leaves in this genus, at least in the Section Eu-acroporium, fall into two groups as regards outline. In most of the larger species the general outline is oval, with a more or less cuspidate, semi-convolute tip, which however bears a very small proportion in length to that of the whole leaf. In the other group, mostly of the smaller species, but including A. secundum of the larger ones, the outline of the leaf is narrow throughout, and the leaves frequently taper almost from the base, often being more or less convolute throughout, or at any rate tubular and subulate for a great proportion of their length. The present plant, with A. falcifolium Fleisch. and A. aciphyllum described above, holds a somewhat intermediate position, the two latter, however, belonging rather to the first group, while the present plant is clearly of the second.

The Pahang and Selangor plants were named and distributed as Sematophyllum perpapillosum Dixon sp. nov. before I saw Brotherus' species.

Acroporium albidissimum Dixon sp. nov. (Plate 4, Fig. 13)
A. longicuspidi Broth. ante descripto affine; differt colore pulchre albido, nitido, foliis multo brevioribus, latioribus, oblongis, breviter, stricte, subobtuse, tubuloso-acuminatis; areolatio et papillae similes; rami quoque nonnulli dimorphi foliis multo angustioribus, subcylindricis, laevibus vel sublaevibus inveniuntur.

Planta sterilis solum nota.
HAB. Among Rhizogonium spiniforme, Gunong Tahan, Pahang, 191I; Ridley (1023b).

The highly papillose cells are identical in this and the last species, and apart from any possible fruiting characters the difference lies entirely in the white colour, and the much broader and shortly pointed leaves. The dimorphism of the branches is quite as clearly marked here.

Acroporium Ridleyi Dixon sp. nov. (Plate 4, Fig. 14)

Sat robustum, albescens, nitidum; caules elongati, ad 6 cm . longi, complanati, ad 4 mm . lati; parce ramosi. Folia plusminusve complanata, valde divergentia, saepe horizontaliter explanata, 2 mm . longa vel paullo ultra, obovato-oblonga, perconcava, apice acuto, subconvoluta, integerrima; areolatio specierum duarum praecedentium, cellulis alaribus permagnis, pulcherrime aurantiacis.

Cetera nulla.
HAB. Gunong Tahan, Pahang, 1911; Ridley (1039).
A very distinct species in the colour, habit, papillose cells and leaf form.

These three species, A. longicuspis, A. albidissimum, and A. Ridleyi, form a new and very distinct group of Acroporium, having the general leaf form of Eu-acroporium, but in the highly papillose cells coming near to Trichosteleum. The alar cells, however, are quite distinctive of Acroporium. The cell structure is identical in all three (except that in the present species I have found no dimorphic branches), and is very marked, not only in the dorsal papillae and rugulosity, but also in the uniform, highly incrassate cells. The colour of the present plant is whitish, but scarcely so marked as in the last; the leaves are quite different in form from both species, and are almost identical in outline with those of A. monoicum and A. hermaphroditum.

Acroporium complanatum Dixon sp. nov. (Plate 4, Fig. 15)
Hypno pycnophyllo C. M. (Sematophyllum Jaeg.) affine; differt ramis complanatis, foliis bifarie divaricatis, subula multo latiore, breviore, robustiore late loriformi, obtusiuscuia, rigida, superne dense, argute serrulata. Cellulae laeves vel humiliter papillosae. Perichaetium parvum, ut in A. pycnophyllum, sed foliorum subula, tanquam foliis caulinis, latiore, breviore, loriformi. Seta $.75^{-1} \mathrm{~cm}$. longa, infra laevis, apice grosse nec alte papillosa, theca parva, horizontalis, castanea. Peristomium saturate rubrum, dentes lati, approximati, dorso fortiter dense transverse striolati, linea media irregulari, haud sulcati.

HAB. Base of Gunong Ledang, Malacca, 1892 ; Ridley (236).
Clearly allied to Hypnum pycnophyllum C. M., but differs at once in the leaves widely spreading almost at right angles to the branch, in one plane, so that the branches are flattened (the
leaves themselves, however, not lying in that plane); and in the coarse, rigid, wide subula, instead of the long, piliform flexuose one of H. pycnophyllum.

That species has usually been placed in Sematophyllum (Acroporium), but is transferred to Warburgiella by Fleischer, with one or two species of somewhat near alliance. This has necessitated the widening of the generic character, especially in regard to the calyptra, which as the genus is defined by C. Mueller is campanulate or mitriform, not cucullate. The genus as enlarged appears to me rather ill-defined, and I should be inclined to keep it restricted as by C. Mueller.

Hypnum pycnophyllum is placed by Brotherus with about a dozen species more or less allied, under the Section Chaetomitriella (C. M.). Some of these certainly, as S. palanense (Hampe) and S. bistrumosum (C. M.), and others less clearly, appear to me better placed in Trichosteleum than in Acroporium. The small group to which H. pycnophyllum, the present and following two species belong, is however perhaps best kept in Acroporium.

Acroporium malayanum Dixon sp. nov. (Plate 4, Fig. 16)
A. pycnophyllo (C. M.) and A.cuspidatifolio (Fleisch.) affine; ab illo cellulis multo latioribus, 6-8 μ latis, opacioribus, incrassatis, dorso superne plus minus spiculosis, foliis angustioribus, minus cito, brevius, minus flexuose, subulatis, ramisque obtusis differt; ab hoc ramis plus minus complanatis, cellulis opacioribus, marginalibus haud diversis, apice prominente, spiculoso, sine papillis medianis.

Dioicum. Planta mascula solum visa.
HAB. Botanical Gardens, Penang, 1915; Binstead (57).
Very near to A. pycnophyllum, but that species has more concave, wider leaves, less spreading, more abruptly contracted into a long, flexuose piliform arista, the cells there are much narrower, thin-walled, pellucid, and smooth at back. The cells here are decidedly incrassate, much wider, and opaque with the cell contents.

Warburgiella cuspidatifolia Fleisch., of which I have seen no specimen, has leaves, from the description, of a similar form, but the marginal cells are there shorter and differentiated from the inner, and the upper cells have a strong papilla in the middle of the lumen; in the present species it is the apices of the cells alone that are prominent and spiculose.

Acroporium surculare Dixon sp. nov. (Plate 2, Fig. in)
Caulis longe prostratus, sat robustus, irregulariter, subpinnatim ramosus, ramis erectis, vel patentibus, saepe subfasciculatis, complanatis, subnitidis, sordide viridibus, $2-3 \mathrm{~mm}$. latis, foliorum axillis surculos microphyllos capillares numerosos $1-3$ $c m$. longos emittentibus. Folia 2 mm . longa, perconcava, e basi contracta late oblongo-ovata, marginibus incurvatis, apice subcucullata, raptim in acumen breviusculum latiusculum acutum denticulatum contracta. Cellulae angustissime lineares, laeves, parietibus sat tenuibus, indistinctis, inferiores paullo laxiores, infimae aurantiacae, alares plures vesiculosae magnae.

Cetera nulla.
HAB. On twigs, Bidor Road, Tapah, Perak, 1908; Ridley (153). Penang Hill, Pulau Penang, i896; Ridley (551).

Somewhat intermediate between A. complanatum (described above) and A. pyonophyllum (C. M.). Larger than the latter species, with complanate branches, and with the acumen of the leaf much shorter and not piliferous, but much narrower and shorter than in the former, the cells also in the present species are, so far as I have examined them, quite smooth. The flagelliform ramuli are quite different from anything I have seen in the genus.

Explanation of plate 3

The type specimen is figured in each case.
The figures indicate the magnification.
Fig. 1. Braunfelsia longipes-a, leaf, 5. b, alar cells, 40.
Fig. 2. Dicranoloma brevicapsulare-a, capsule, 3.
Fig. 3. Thysanomitrium abbreviatum-a, leaf, 5. b, section of nerve
(a. . .b, width of nerve; c, central strand of nerve.), 40.
Fig. 4. Thysanomitrium Ridleyi-a, leaf apex, 20.
Fig. 5. Fissidens subdiscolor-a, stem, I. b, leaf, 20. c, leaf apex, 40.
Fig. 6. Fissidens amblyotis-a, stem, 1. b, leaf, 20. c, cells, 200.
Fig. 7. a, Syrrhopodon bornensis, upper part of stem, dry, 4.
b, S. Ridleyi, upper part of stem, dry, 4 .
c, S. rufescens, upper part of stem, dry, 4.
Fig. 8. Syrrhopodon elimba'us-a, leaf, 10. b, apex of leaf, 50.
Fig. 9. Syrrhopodon perakensis-a, leaf apex, 50. b, leaf base, 20. c, marginal cells of mid-leaf, 200.

Fig. 10. Calymperes constrictum-a, leaf apex, 50. b, margin at shoulder, 40. c, margin of mid-leaf, 200.

Fig. 11. Pinnatella lingulata-a, leaf, 20. b, apex of leaf, 40.
Fig. 12. Chatomitrium perakense-a, apex of perichaetial leaves, 40.
Fig. 13. Chaetomitrium setosum-a, leaf, 20.

Fig. 14. Clastobryum prionotrichum-a, plant, I. b. leaves, 25. c, alar cells, 50.

Fig. I5. Ectropothecium callichroides var. elongatum-a, stem, I.
Fig. 16. Ectropothecium siamense- a, stem and branch leaves, 20. b, leaf apex, 50. c, upper marginal cells, 200.

Fig. 17. Taxithelium trachaelophyllum-a, leaf, 20. b, marginal cells, 200. c, alar cells, 40 .

Fig. 18. Taxithelium subtrachaelophyllum-a, leaf, 20. b, marginal cells, 200. c, alar cells, 40. d, upper part of perichaetium, 20.

Explanation of plate 4

Fig i. Taxithelium isocladioides-a, leaf, 20. b, upper margin, 100.
Fig. 2. Taxithelium bilobatum-a, dorsal leaf, 20. b, lateral leaves, 20. b, lateral leaves, flattened out, 20.

Fig. 3. Acanthocladium polymorphum-a, leaf, 20. $b, b^{\prime}, b^{\prime \prime}$, apices of branch leaves, 40. c, upper cells of $b^{\prime \prime}, 200$. d, upper cells of $b^{\prime}, 200$.

Fig. 4. Trichosteleum albifolium-a, stem leaf, 20. b, branch leaf, 20. c, alar cells, 100. d, upper cells, 200.

Fig. 5. Acroporium serrulatum- a, a^{\prime}, leaves, 20. b, apices of perichastial leaves, 50.

Fig. 6. A. leucophyllum-a, plant, I. b, branch, 2. c, leaf, 20. d, apex of branch leaf, 50. e, upper cells, 200.

Fig. 7. A. obscurum-a, upper part of perichaetium, 20.
Fig. 8. A. denticulatum-a, leaf, 20. b, upper margin, 50.
Fig. 9. A. aciphyllum- a, leaf, io. b, perichaetium, 10.
Fig. io. A. rigens var. dicranolomoides- a, stem, i.
Fig. iI. A. surculare-a, plant, i. b, leaf, io.
Fig. 12. A. longicuspis-a, leaf, io. b, dorsal cells in profile, 50.
Fig. 13. A. albidissimum-a, a^{\prime}, leaves, 10. b, upper cells of $a, 200$ b^{\prime}, upper cells of $a^{\prime}, 200$.

Fig. 14. A. Ridleyi-a, leaf, 10.
Fig. 15. A. complanatum-a, leaf apex, 40.
Fig. 16. A. malayanum-a, leaf, 10.
Fig. 17. Syrrhopodon pungens- a, leaf apex 4 c .

Cytological Study of Living Cells of Tobacco Plants Affected with Mosaic Disease

Bessie Goldstein

As one phase of a more extensive cytological study of the diseased cells in tobacco mosaic, as well as the mosaic of Solanum sculeatissimum and other plants, I have recently spent some time in the study of the now well-known intracellular mosaic bodies in the living condition. In epidermal and hair cells mounted in water, the bodies are easily recognizable and can be studied for hours at a time under the immersion lens.

The facts as to their structure, varying sizes and shapes, and their relation to the other contents of the cell are so definite and easily demonstrable, that I am presenting a number of figures illustrating their appearance in the living cell in advance of a more extended account of their appearance and behavior as shown in fixed and sectioned material.

The epidermis of the diseased tobacco leal is stripped off by the ordinary methods, and mounted in water. Material from the midrib and petiole is especially favorable, and such preparations mounted under zero cover slips, can be easily studied with the $1 / 12^{\prime \prime}$ oil immersion lenses. The intracellular bodies are found in both epidermal and hair cells. I shall call them \mathbf{X} bodies.

In such preparations, these X bodies appear at any particular moment as oval or perfectly rounded or more or less amoeboid in outline, as in figures 1,2 , and 5. They may lie in close contact with the nucleus, often as it were apparently wrapped around it, or they may be found in any other region of the cell.

Internally they may be very coarsely and unevenly granular, or they may appear very evenly and finely granular as in figure 2. They may contain several large vacuoles, or many small ones, as in figure 1 . Sometimes the material of the body appears quite regularly alveolar as in figure 2.

In figure I is shown an epidermal cell from the midrib in which the nucleus contains three nucleoli. Scattered through the cytoplasm are small chloroplasts. The X body lies in con-
tact with the nucleus. It is densely granular and contains several small vacuoles. Careful and prolonged observation of such bodies shows that they undergo slow changes in position and sometimes of form. The contents seem sometimes to become more vacuolar. This body closely resembles the bodies found in sectioned and stained material, as in figures 7 and 8, in its irregularly lobed or oval outline, in its compact granular structure, and in the presence of one or more vacuoles. Bodies of this kind can be seen in almost every cell of a bit of epidermal tissue stripped from the yellow area of the midrib or leaf blade.

Such bodies as this shown in figure 1 are not the result of nuclear fragmentation or direct nuclear division as Iwanowski first suggests. From his figures and mine, it is clearly evident that the finely granular and rounded nucleus could not be fragmenting or giving rise by direct division to daughter nuclei.

They do not represent migrated nuclei such as Miehe observed in stripped off epidermal tissue of Tradescantia stems and leaves of Allium. Miehe found the nuclei that had migrated through the cell walls into adjacent cells showed exactly the same finely granular content as did the original nucleus of the cell.

I have also attempted to stain preparations containing such cells as shown in figure 1 , with various intra-vitam nuclear stains. I have obtained the best results with thionin. In a drop of water placed against the edge of the cover glass, a grain of the stain was dropped. This gradually dissolved and the violet color slowly diffused under the cover glass. The nucleus of the cell takes a lavender tint, while the nucleole stains violet. The X body does not take the stain as a whole but its granules seemto become more clearly differentiated.

In figure 2, the nucleus is shown, as is frequently the case, suspended in the cell by fine cytoplasmic threads in which active streaming is going on. In this cell five X bodies are lying about the nucleus. Within the bodies themselves, active motion of granules, amounting almost to circulation, was conspicuous. All five of these bodies were slowly rotating and at the same time gradually changing their positions in the cell. During the several hours in which this cell was under observation, the bodies moved up and down the cell for considerable distances, continually changing their positions relative to the nucleus and to each other.

Often as the bodies slowly rotate they seem to roll along the protoplasmic threads of the host cell. This movement seems quite independent of the rate of streaming of the cytoplasm of the host cell. The bodies do not all move along at the same rate. In fact they often pass one another. One may turn back or move across the cell, while the others continue their way lengthwise of the cell.

The general interrelations of the X bodies and the other constituents of the cell can be even better seen perhaps under lower magnifications. In the cell shown in figure 3, drawn under a magnification of 450 diameters, eight X bodies were found. Here also the nucleus is seen imbedded in a mass of cytoplasm from which streaming threads arise. Along the threads are very many small pale green chloroplasts. In this cell as noted are three large \mathbf{X} bodies and five very small ones. They all have a finely granular structure with coarser granules which showed what was probably Brownian movement. These X bodies were constantly changing their positions in the cell. The streaming cytoplasmic threads were also constantly taking new positions, lying now across the cell, now diagonally longitudinally through the cell, or merging in the cytoplasm of the primordial utricle.

In figure 4, I have shown a normal hair cell from a healthy leaf for comparison with these cells containing the X bodies. It is obvious at once that there are no conspicuous differences in the distribution of the cytoplasm and its relations to the nucleus between such a cell and the cells with the X bodies. The position of the nucleus, the streaming and constantly changing cytoplasmic threads, and the distribution of the very small pale green plastids, resemble in general the same structures and conditions found in the cell shown in figure 3.

As noted the nucleus may lie suspended in the cell by cytoplasmic threads or be pressed close to the wall of the cell. Usually the nucleus lies in the primordial utricle against the wall of the cell. I. have seen the nucleus, in a hair cell containing the rotating X bodies, move out from the wall with the radiating streaming cytoplasmic threads about it, and hang suspended in the cell vacuole without further changing its position during a period of observation lasting five hours. The nuclei of the cells in figures 3 and 4 were being carried by the streaming cytoplasm
around the periphery of the cell during the whole period of several hours during which the drawings were made.

Kunkel seems to emphasize somewhat the fact that the X bodies lie in intimate association with the nucleus of the cell. My observations do not lead me to attach any very special significance to such a position, especially in the case of the hair cells. From my studies of living material, and also from the appearance of the nucleus in fixed preparations of both diseased tissue in which the bodies are present, and healthy tissue, I find no evidence that the nuclei in cells from mosaic diseased areas are at all changed in appearance by the presence of the X bodies. The bodies, as they move through the more fluid cytoplasm or cell sap, may come to rest upon the nucleus. It appears simply as an impediment to their movement. In one instance, a cell was observed in which there were several very large rounded X bodies lying about the nucleus which was thus quite obscured from view though it could be seen by carefully focusing down among the bodies. After some time, the bodies gradually moved away, so that the nucleus now came into clear view. It was then seen to be very much flattened on one side apparently where the bodies or a body had been closely pressed against it. After several minutes, the nucleus slowly rounded out and regained its normal oval outline. It showed no further changes although the cell was studied several hours.

I find no evidence from my studies that the X bodies could be considered as secretion or disorganization products arising from or in the neighborhood of the nucleus. I have studied very many preparations from healthy leaves but they have never been found to contain these bodies.

Kühne has described a balling up of the protoplasm of living stamen hairs of Tradescantia under the influence of electrical stimulation. In such electrically stimulated cells, when the charge was strong, the entire primordial utricle became loosened from the walls and hung suspended in the cell space by a few threads still attached to the walls. A weaker charge led to the breaking up of the strands of protoplasm. The fragments then rounded up into globules or rounded masses. In such preparations the balls of cytoplasm within a few hours elongated and flowed back again into the streaming cytoplasm.

The X bodies in my preparations keep their form in living
preparations of tissue kept in a moist chamber for several days. Their content, however, becomes very granular, and no movements of the body or its contents were observable after the second day.

The X bodies as I have noted often exhibit distinct but sluggish amoeboid movements. They also are bounded by a definite plasma membrane as is clearly shown when the more active X bodies thrust out short rounded pseudopods. The presence of this membrane can also be demonstrated when acids or drops of fixing solutions are added to the water under the cover slip. The content of the body then contracts thus showing that it is separated from the cell sap by a definite limiting layer. The contents of the contracted X body also appears more coarsely granular and distinctly vacuolated.

In figure 5, the nucleus lies suspended in the cell vacuole. The body here is granular in structure, and showed conspicuously a sort of vibratory motion, and perhaps a circulation of its granular content. This body continually changed its form by putting out slight bulbous projections on all its surfaces which were withdrawn again after several seconds, while other projections arose in other parts. It continually showed changes of position, moving up over the nucleus, or across the striated body, and then back again to the position shown in the drawing. These motions were not easily to be associated with the streaming movements of the cytoplasm. The \mathbf{X} body did not as long as the cell was observed, during a period of several hours, move away from the vicinity of the nucleus and the striated body.

Such amoeboid X bodies have also been observed to move through the cell. The amoeboid processes are put out in the direction of the movement, and these often show a clear hyaline area at their blunt extremities. I am not certain, however, that the entire movement of the X body is due to the thrusting out of these projections though the entire body appears to move forward at the same time that the projection is put out. When the body turns after moving forward in a certain direction, it elongates, or becomes less rounded, or oval, and this elongation is in the direction of the turning movement. The body may now appear pear shaped. The upper narrower region now swings around toward the direction in which the body will soon begin to move.

Fig. 1. Camera sketches of the changes in form of an X body as it moved through a diseased hair cell of the tobacco. Period of observation one and one-half hours. There was only one X body in the cell and in appearance it resembled the one shown in plate 1, figure 5. Magnification about 1,200.

I have diagrammed with the aid of a camera lucida the changes of form which one of these \mathbf{X} bodies showed in the course of one and one-half hours. The stages are numbered from I to 34 and are shown in text figure \mathbf{I}. In several stages a clear hya-

Fig. 2: Diagram of a cell from a branching trichome showing the general direction of the path followed by the \mathbf{X} body whose changes in form are shown in text figure 1. The movement of the nucleus for the same period is also shown in the dotted line.
line ectoplasm-like cap (h) was seen on a more or less protruding portion of the X body. A small crystal (c) either adhering to its surface or embedded in the \mathbf{X} body was also seen at several stages. The whole series of figures while not suggestive of the active pseudopod formation seen in Amoeba proteus is certainly not unlike that of more sluggish types.

The body at first was near the distal end of the trichome cell. During the stages shown in figures $1-15$ it moved to the proximal end of the cell. Figures 16 - 34 show its later movements in the proximal end of the cell. Its general path during the whole period of observation is diagrammatically shown in text figure 2. How much of this motion is due to autonomous activity of the X body, and how much to cytoplasmic streaming in the trichome cell is not easy to determine. Certainly the movement of the nucleus in the same direction is due to cytoplasmic streaming.

Cells from the paler areas of the mosaiced leaf also show the presence of great numbers of crystals. Although similar crystals are present in healthy tissue, they are not nearly as abundant as they are in cells of diseased tissue. These crystals appear as hexagonal plates of various thicknesses, as irregular polygonal plates, or as more or less irregular elongated forms with cross striations as in figures 5 and 6. These various appearances may be due to the varying positions of the crystals in the cells as well as to the occurrence of twinning, etc. I am reserving a fuller report on the nature of these crystals for a later paper.

Figures 7 and 8 represent drawings made from fixed and stained material. In figure 7 there is present an elongated cross striated body lying within the protoplast. A similar striated body is shown in figure 8 . Such bodies are very common in my sectioned material. In the diseased areas nearly every cell is found to contain such a striated body. Often there are two or three of them in a single cell.

If one adds to the fresh preparations mounted in water, Flemming's weak, medium, or strong solutions, or chromo-acetic solution, allowing the preparations to stand over night in a moist chamber, the typical crystal forms are no longer found. Instead one finds long irregularly lobed and striated masses which are stained deep yellow by the fixative. That at least many of the crystals actually become the striated bodies found in fixed
material can be easily demonstrated by a few hours observation under the microscope of living preparations to which drops of the fixing solutions are added from time to time. Only the smallest thin crystalline plates will disappear entirely.

Iwanowski has figured several somewhat amoeboid bodies, "amöben erinnernde Plasmaanhäufungen," attached to nuclei, as seen in sections of living material of mosaic infected tobacco leaves. He also observed the presence of the numerous crystalline plates in the living cells, which in fixed material, according to his description, seemed to have disappeared entirely and given place to plates in which were imbedded small rod-like bodies. He concludes that these are plates of "bacteria," or zoogloea formations, which are not seen in living cells save as the smooth crystalline plates. Their true nature therefore can only be demonstrated in fixed material. Iwanowski argues that amoebae could not possibly pass through bacterial filters. He maintains that the amoeboid bodies he found are only reaction products of the cells resulting from the continued irritation by the parasite, namely, the "rod-like bacteria" in the plates.

What seem to have been similar intracellular bodies have been described by Palm as occurring in the cells of tobacco plants affected with mosaic. Palm's account of their occurrence and position in the cells agrees with what I find. He describes these bodies as frequently amoebiform, less frequently round to spherical. In structure they may be decidedly reticulate, or show very little structure at all. He finds there may be one or more cavities in the bodies which resemble vacuoles. He reports the bodies as not seeming to possess any automotive power though they change their position at times by the normal movement of the cell plasm.

Palm accepts Iwanowski's viewpoint as to the character of these amoeboid bodies, and also claims that small "granules" found in the cells of diseased tissue are the organisms responsible for the disease.

In a preliminary report by Rawlins and Johnson on "Cytological Studies on Tobacco Mosaic," these authors associate three different intracellular bodies with the disease. The first, a yellow striated mass of material, is no doubt the result of fixation and the fixing solutions upon the crystals found in fresh material as I have described above. The second type consists
of small bodies about the size of a nucleole. The third, the vacuolate bodies, are no doubt the same as those I find in living and fixed preparations.

The bodies shown in my plate, figure 2, resemble very closely those figured by Kunkel for corn mosaic and drawn from stained and sectioned material, Plate 5, Fig. J. Kunkel describes the intracellular bodies found in mosaic diseased corn tissue as varying in size and form. In their reticulate or granular structure, and the presence of vacuoles, these bodies agree with those I find. The bodies are further described as showing no indication of a membrane, though the author adds that a membrane must be present since when the bodies come in contact with one another they do not fuse. Kunkel observed that the bodies in living material were often moved by the vigorous streaming of the protoplasm but never seemed to move independently or change their shape.

The intracellular bodies figured by Lyon in preparations of sugar cane affected with the Fiji disease, are strikingly similar to those I find. They have the same finely granular content and general appearance of the X bodies I am figuring. They are described as small spherical or oval plasma bodies. The larger bodies may be oblong so as to accommodate themselves to the shape of the cell. Occasionally they may appear lobed or distorted. His drawings were made from fresh material stained with various aniline dyes.

McKinney and his co-workers have described intracellular bodies in living and fixed material associated with the rosette disease and a mosaic-like leaf mottling of wheat. These bodies show considerable resemblance in form, size, and distribution to those described by other investigators of mosaic diseases.

Matz describes the presence of a granular plasmodium-like substance in cells of sugar cane tissue affected with the yellow stripe disease. Such yellow granular material may perhaps be a decomposition product. That the granules exhibit Brownian movement is further proof of such a disorganization in the cells since the contents of dying cells usually show the presence of granules exhibiting such movements.

It is possible that the disease may be transmitted over a limited area by the natural division of growing cells resulting in the formation of daughter cells each containing some of the
bodies present in the original cell. Cells in stained sections of the growing tips show the presence of X bodies in cells containing mitotic nuclear division figures. This, however, could hardly account for the transmission of the disease from the point of infection to distant parts of the same plant.

For instance, I have inoculated young leaves of plants, and two months later have secured severe infections of healthy plants when the juices of the apparently healthy basal leaves of the diseased plants were used as the inoculum. Moreover, the X bodies may be found in tissue from these leaves, although not so abundantly as in the mottled leaves.

It is, of course, at first thought difficult if not impossible to conceive that such bodies as these, assuming they carry the mosaic, can pass through plant tissues as the mosaic virus has been shown to do. In this connection, however, Miehe's observations on migrating nuclei must be kept in mind. Miehe's description of the nuclei of Tradescantia and other cells, passing through the minute pores, Tongl lines, in cell walls has been confirmed by Schürhoff.

These observations certainly suggest also that such plastic bodies as the X bodies in spite of their comparatively large size may very well be able to pass through cell walls and the pores of bacterial filters as the virus has been shown to do. Still such comparisons are not very convincing in the absence of positively known cases of parasites which behave in the fashion suggested. As noted I am reserving for a further paper a fuller account of the behavior of the X bodies in growing points together with a fuller crystallographic account of the numerous bodies which accompany them, in cells suffering from mosaic.

I gratefully acknowledge my indebtedness to Professor R. A. Harper for his many valuable suggestions in this study and in the preparation of this paper.

> Botanical Laboratory, Columbia University.

Explanation of plate

The drawings were made with the aid of the Abbe camera lucida. A Zeiss microscope was used with a $1 / 12^{\prime \prime}$ oil immersion objective and a number 3 ocular. The magnification in figures $1,2,5,6,7,8$ is about 1,200 diameters. Figures 3 and 4 were drawn with the Zeiss objective D and number 3 ocular.

272 Goldstein: Plants Affected with Mosaic Disease

The magnification is about 450 diameters. All the drawings with the exception of figures 7 and 8 are from living preparations. Figures 7 and 8 are drawings from material fixed with Flemming's weak solution, cut at 10μ, and stained with Flemming's triple stain.

Fig. 1. An epidermal cell from a yellowed area on the midrib of a mottled leaf. The nucleus is finely granular and contains three nucleoli. The X body is very densely granular, and contains many vacuoles. Scattered through the cytoplasm are small oval plastids.

Fig. 2. A portion of a hair cell showing five X bodies about the nucleus which lies suspended in the cell by streaming cytoplasmic threads. Two of the bodies show a fine alveolar structure. The other three are granular. Imbedded in the bodies were highly refractive granules.

Fig. 3. A portion of a hair cell showing the distribution of many X bodies of varying size through the vacuole of the cell. Three large and five small bodies are present. Scattered through the cytoplasm are very small oval plastids. The nucleus lies imbedded in the primordial utricle, against the wall.

Fig. 4. A normal hair cell from healthy tissue. The cell contents save for the absence of the \mathbf{X} bodies present an exactly similar appearance to that of the diseased cell shown in figure 3.

Fig. 5. A portion of a hair cell in which a single large X body, a crystal and the nucleus of the cell are shown. The X body drawn here shows the appearance of the body when very active and constantly changing its form and position. The small oval bodies are plastids.

Fig. 6. A portion of an epidermal cell of the midrib showing 2 X bodies, and 3 crystals.

Fig. 7. A portion of a cell from a petiole spine of Solanum sculeatissimum affected with tobacco mosaic. The striated body shows the appearance of the crystals after fixation. The nucleus lies against the opposite wall. The \mathbf{X} body contains two vacuoles. The striated body and the X body are stained deep orange, the chromatin purple, and the nucleole red. The cytoplasm and cell walls are orange.

Fig. 8. An epidermal cell from the petiole near the growing region of a diseased tobacco plant. This cell contains an elongated striated body, a nucleus, and a large vacuolated X body. In the cytoplasm around the nucleus and the X body were smaller orange stained bodies each containing a single large round vacuole.

Bibliography

I. Iwanowski, D. Über die Mosaikkrankheit der Tabakspflanze. Zeit. Pflanzenkrankheiten. 13: 1-41. pl. I-3. 1903.
2. Kühne, W. Untersuchungen über das Protoplasma und die Contractilität. Leipsig, 1864.
3. Kunkel, L. O. A possible causative agent for the mosaic disease of corn. Bull. Expt. Sta. Hawaiian Sugar Planters' Assoc. Bot. Series 3: 1-14. pl. 4-15. 1921.
4. Lyon, H. L. A new cane disease now epidemic in Fiji. Hawaiian Planters' Record. 3: 200-205. 1910.
5. McKinney, H. H., Eckerson, Sophia H., and Webb, R. W. The intracellular bodies associated with the Rosette Disease and a Mosaic-like Leaf Mottling of Wheat. Jour. Agr. Research 26: 605-608. pl. I-8. 1923.
6. Matz, J. Infection and nature of the yellow stripe disease of cane (mosaic, mottling, etc.) Jour. Dept. Agr. Porto Rico 3: 65-82. f. I-1I. 1919.
7. Miehe, H. Ueber die Wanderungen des pflanzlichen Zellkernes. Flora 88: 105-142. pl. II. 1901.
8. Palm, B. T. Is the mosaic disease of tobacco a chlamydozoonose? Bull. van het Deli-proefstation te MedanSumatra. No. 15: 1922. Preliminary Note.
9. Rawlins, T. E., and Johnson, James. Cytological Studies on Tobacco Mosaic. Phytopathological Abstracts. Phytopathology 14: Jan. 1924.

INDEX TO AMERICAN BOTANICAL LITERATURE

 1924The aim of this Index is to include all current botanical literature written by Americans, published in America, or based upon American material; the word America being used in the broadest sense.

Reviews, and papers that relate exclusively to forestry, agriculture, horticulture, manufactured products of vegetable origin, or laboratory methods are not included, and no attempt is made to index the literature of bacteriology. An occasional exception is made in favor of some paper appearing in an American periodical which is devoted wholly to botany. Reprints are not mentioned unless they differ from the original in some important particular. If users of the Index will call the attention of the editor to errors or omissions, their kindness will be appreciated.

This Index is reprinted monthly on cards, and furnished in this form to subscribers at the rate of three cents for each card. Selections of cards are not permitted; each subscriber must take all cards published during the term of his subscription. Correspondence relating to the card issue should be addressed to Dr. Fred J. Seaver, N. Y. Botanical Garden, Bronx Park, N. Y. City.

Allison, F. E., Braham, J. M., \& McMurtrey, J. E. Field experiments with atmospheric-nitrogen fertilizers. U.S. Dept. Agr. Bull. 1180: 1-43. 22 Ja 1924. [Illust.]

Bailey, L. H. Manual of cultivated plants $\mathbf{I}-85 \mathrm{I}$. New York. 1924.

Bayer, L. Wild life on and around Mount Elgon, Equitorial East Africa. Zool. Soc. Bull. 27: 3-12. Ja 1924. [Illust.] Including notes on the plants of the region.

Beebe, W. Tree-ferns. Zool. Soc. Bull. 27:32. Ja 1924. [Illust.]
Benton, R. A. Scientific plant-lore. Am. Bot. 30: 30-3I. Ja 1924.

Berry, E. W. A curcurbitaceous fruit from the tertiary of Texas. Torreya 24: 5-7. f. 1-2. Ja-F 1924. Including Calycophysoides balli gen. et sp. nov.
Berry, E. W. A fossil flower from the Miocene of Trinidad. Am. Jour. Sci. 7: 103-108. f. 1-2. F 1924.
Including the description of a new species and genus, Lecythidoanthus K̇ugleri.

Berry, J. B. Northern woodlot trees. A guide to the identification of the trees and woods to accompany farm woodlands. A handbook for students, teachers, farmers and woodsmen. I-VIII. I-214. f. I-IO5. 1924.
Britton, N. L. Plants of the Galapagos Islands. Jour. New York Bot. Gard. 25: $10-11$. "Ja" F 1924.

Britton, N. L. Studies of West Indian Plants-XII. Bull. Torrey Club 51: $1-12$. "Ja" F 1924.
Including descriptions of a new genus, Necramium and new species in Cyperus (1), Reynosia (1), Peperomia (1), Clidemia (1), Rondeletia (I), Kallstroemia (1), Anthurium (I), Piper (2), Prestonia (I), Decastelma (I), Necramium (1), Dorstenia (3), Maytenus (1), Eugenia (5), Calyptranthes (1).

Burlingham, G. S. Notes on species of Russula. Mycologia 16: 16-23. pl. 4-5. 19 Ja 1924.
Including descriptions of 9 new species.
Call, L. E., \& Getty, R. E. The eradication of bindweed. Kansas Agr. Exp. Sta. Circular ioi : I-I8.f. I-9. D 1923.
Clute, W. N. Flowering habit of tamarix. Am. Bot. 30: 34. Ja 1924.

Clute, W. N. Plant names and their meanings-XVIII. Ericaceae. Am. Bot. 30: 5-I4. Ja 1924.
Clute, W. N. The adjustment of plants. Gardeners' Chron. Am. 28: 50. F 1924.

Clute, W. N. What are sports? Gardeners' Chron. Am. 28: 18. Ja 1924.

Cockerell, T. D. A. A genuine fossil Ophioglossum. Torreya 24: 10-11. Ja F 1924. [Illust.]
Including the description of I new species, Ophioglossum hastathforme.
Cottam, W. P. Utah's giant fir. Am. Forests and Forest Life 30: 109. "F" Ja 1924. [Illust.]

Crosby, N. The charm of California wildflowers. Am. Bot. 30: 2-4. Ja 1924.

Emerson, R. A. A genetic view of sex expression in the flowering plants. Science II. 59: 176-182. 22 F 1924.

Eyster, W. H. A primitive sporophyte in maize. Am. Jour. Bot. 11: 7-14.f. 1-3. "Ja" F 1924.
[Farrington, E. I.] New England trees. Horticulture II. 1: 188-189. I5 Ja 1924. [Illust.]

Freedley, A. B. Some interesting trees of Honolulu. Gardeners' Chron. Am. 28: 46-49. F 1924. [Illust.]

Gardner, M. W. Apple blotch in Indiana. Hoosier Horticulture 6: 3-II. Ja 1924.

Garrett, A. O. The aecial stage of Puccinia pattersoniana. Mycologia 16: 33-35. 19 Ja 1924.

Gustafson, F. G. Hydrogen-ion concentration gradient in plants. Am. Jour. Bot. 11: 1-6. "Ja" 7 F 1924.

Hastings, G. T. Spring flowers in the winter. Torreya 24: 1-3. pl. I. Ja-F 1924.

Heath, F. M. The Pasque flower. Am. Bot. 30: 1-2. Ja 1924. [Illust.]

Hollick, A. The ancestral history of some existing plants. Jour. New York Bot. Gard. 25: 14-15. "Ja" F 1924.

Holm, T. Gratiola L. and Sophronanthe Benth. A morphological study. Am. Jour. Sci. 7: 132-140. f. I-Q. F 1924.

Holm, T. Camandra umbellata (L.) Nutt. Am. Mid. Nat. 9: 1-13. pl. r-2. "Ja" F 1924.

Holm, T. Polypremum procumbens L. A morphological study. Am. Jour. Sci. V. 7: 210-218.f. 1-IU. Mr 1924.

Howes, P. G. Fungus diseases that destroy insects. Nature Mag. 3: 151-152, 158 . "Mr" F 1924. [Illust.]

Humphrey, H. B. The phytogeography of the Coeur d'Alêure flood plain of northern Idaho. Ecology 5: 6-13. f. 1-4. Ja 1924.
Johnson, A. M. The mid-styled form of Piaropus paniculatus. Bull. Torrey Club 51: 25-28.f. i-2. "Ja" 8 F 1924.

Johnson, D. S. The influence of insolation on the distribution and on the developmental sequence of the flowers of the giant cactus of Arizona. Ecology 5: 70-82. f. 1-4. Ja 1924.

Kenoyer, L. A. Plant life of British India. Sci. Mo. 18: 4865. Ja 1924. [Illust.]

Leighty, C. E., \& Taylor, J. W. Electrochemical treatment of seed wheat. U. S. Dept. Agr. Circular 305: 1-7. f. I. F 1924.

Leonian, L. H. A study of factors promoting pycnidiumformation in some Sphaeropsidales. Am. Jour. Bot. 11: 19-50. "Ja" 7 F 1924.

Levine, M. Studies on plant cancers-VI. Further studies on the behavior of crown gall on the rubber plant, Ficus elastica. Mycologia 16: 24-29. pl. 6. I9 Ja 1924.

Lowry, R. B. The American lotus (Nelumbo lutea). Fl. Grow. 11: 1-4. Ja. 1924. [Illust.]

MacRae, J. D. The X-ray study of flowers. Am. Forests and Forest Life 30: 31-33. Ja 1924. [Illust.]

McAdow, M. A. Palms. Florida Grower 29: 5, 25. I9 Ja 1924.
McMurray, N. Green Rudbeckias. Am. Bot. 30: 28-29. Ja 1924.

McMurray, N. Indian strawberry. Am. Bot. 30: 27-28. Ja 1924.

Merrill, E. D. Plants from Banguey Island. Philippine Jour. Sci. 24: 113-116. Ja 1924.
Including descriptions of I new variety and I new species.
Moir, W. S. White-pine blister-rust in western Europe. U. S. Dept. Agr. Bull. 1186: 1-31. f. 1-15. 8 F 1924.
Munns, E. N. The biotic factor in forestry. Sci. Mo. 18: 322-330. Mr 1924. [Illust.]
Murrill, W. A. Cocoa and chocolate. Jour. New York Bot. Gard. 25: 11-14. "Ja" F 1924.

Murrill, W. A. Woodstock fungi. Mycologia 16: 44-46. I9 Ja 1924.

Nakai, T. Araliaceae imperii Japonici. Jour. Arnold Arboretum 5: 1-36. "Ja" I8 F 1924.
Including descriptions of new species and I new genus and new combinations.

Nakai, T. Ehretiae quaedam novae Asiaticae. Jour. Arnold Arboretum 5: 36-4I. "Ja" 18 F 1924. Including descriptions of 1 new species and several new varieties.

Newbold, P. T. Notes on some foreign crab-grasses. Torreya 24: 8-9. Ja-F 1924.

Pammel, L. H. Black huckleberry in Iowa. Bull. Iowa State Parks 1: 3. Ja 1924.
[Pamme1, L. H.] Farmington State Park. Bull. Iowa State Parks 1: 9. Ja 1924.
Including notes on the flora of the region.
Pammel, L. H. Ledges State Park. Bull. Iowa State Parks 1: IO-II. Ja 1924. Including notes on the flora of the region.

Pammel, L. H. Medium Lake. Bull. Iowa State Parks 1: 4. Ja 1924.
Including notes on the flora of the region.
Pammel, L. H. Rush Lake. Bull. Iowa State Parks 1: 6-9. Ja 1924. [Illust.]
Including notes on the flora of the region.
Pammel, L. H. The bur oak. Bull. Iowa State Parks 1: 13-15. Ja 1924. [Illust.]

Pammel, L. H. Willow bars of the Missouri river. Bull. Iowa State Parks 1: 4-6. Ja 1924. [Illust.]

Patch, E. M. Mullein-a naturalized American plant. Nature May. 3: 82. F 1924. [Illust.]

Peattie, D. C. A new avocado disease. Florida Grower 29: 7. 9 F 1924. [Illust.]

Phillips, H. B. Some foreign trees used for ornamental planting in Pennsylvania. Forest leaves 29: 104-105. pl. 19. F 1924.
Piper, C. V. Bulbous bluegrass (Poa bulbosa L.). Torreya 24: 7-8. Ja-F 1924.
Plitt, C. C. An ecological study of lichens. Ecology 5: 95-98. Ja 1924.
Prescott, A. Gasterias. Am. Bot. 30: 24-25. Ja 1924.
Rand, F. V., \& Cash, L. C. Further evidence of insect dissemination of bacterial wilt of corn. Science II. 59: 67-69. 18 Ja 1924.

Reed, H. S., \& Haas, A. R. C. Some effects of certain calcium salts upon the growth and absorption of citrus seedlings. Am. Jour. Bot. 11: 15-18. "Ja" 7 F 1924.

Rehder, A. New species, varieties and combinations from the herbarium and the collections of the Arnold Arboretum. Jour. Arnold Arboretum 5: 49-59. "Ja" I8 F 1924. Including the genera Xolisma, Andromeda, Erica, Vaccinium, and Viburnum.

Rigg, G. B. The pharmacists' botany I-XVII 1-303. New York. 1924.
Robbins, W. J. Isoelectric points for mycelium of fungi. Jour. General Physiology 6: 259-27I. f. 1-2. 20 Ja 1924.

Rydberg, P. A. Notes on Fabaceae-III. Bull. Torrey Club 51: 13-23. "Ja" 8 F 1924.
Including descriptions of new species in Homalobus (3), Kentrophyta (2) and 9 new combinations.

Sargent, C. S. Notes on North American trees-XII. Jour. Arnold Arboretum 5: 41-49. "Ja" 18 F 1924.
Including new varieties, hybrids and combinations in the genus Areculus.
Saunders, C. F. Amphichromy again. Am. Bot. 30: 34-35. Ja 1924.
Scott, I. T. The influence of hydrogen-ion concentration on the growth of Fusarium Lycopersici and on tomato wilt. Missouri Agri. Exp. Sta. Research Bull. 64: 1-32.f. I-Io. Ja 1924.

Seaver, F. J. Additions to the rust flora of the West Indies. Mycologia 16: 46-48. 19 Ja 1924.
Including description of I new species, Uromyces Anthacanthi H. S. Jackson from the island of St. Croix.

Seaver, F. J. The fungous flora of St. Thomas. Mycologia 16: 1-15. pl. 1-3. 19 Ja 1924.
Including descriptions of 7 new species.
Soth, M. E. Western plant names. Am. Bot. 30: 32-33. Ja 1924.

Sprague, T. A., \& Riley, L. A. M. A recension of Lopezia. Jour. Bot. 62: 7-16. Ja 1924.
Including descriptions of 3 new species from Mexico and Guatemala.
Springer, M. E. Cuba-an historical sketch. 2. Side glimpses of Cuba-natural features. The Cuba Rev. 22: 10-16. F 1924. [Illust.]
Including notes on Cuban plants.
Stevens, O. A. Redseeded dandelion. Am. Bot. 30: 25-26. Ja 1924.

Stevens, O. A. Some effects of the first fall freeze. Am. Mid. Nat. 9: 14-17. "Ja" F 1924.

Stout, A. B. The flower mechanism of avocados with reference to pollination and the production of fruit. Jour. New York Bot. Gard. 25: i-7.f. I. "Ja" F 1924.

Swingle, W. T., Robinson, T. R., \& May, E. Quarantine procedure to safeguard the introduction of citrus plants: a system of aseptic plant propagation. U. S. Dept. Agr. Circular 299: $\mathbf{I}-\mathbf{1 5}$. f. I-13. Ja 1924.
Lodge, U. S. A new method of controlling blackspot [of roses]. Fl. Exch. 57: 437. 16 F 1924. [Illust.]

Taylor, W. R. Cytological studies on Gasteria I. Chromosome shape and individuality. Am. Jour. Bot. 11: 51-59. f. 1-25. "Ja" 7 F 1924.
Taylor, A. D. Why does our garden Phlox revert to type? Landscape Archit. 14: I12-113. Ja 1924.

Tehon, L. R., \& Young, P. A. A new Hysterium from Illinois. Mycologia 16: 30-32. f. I. 19 Ja 1924.

Theron, J. J. Influence of reaction on inter-relations between the plant and its culture medium. Univ. Calif. Pub. Agr. Sci. 4: 413-444. 24 Ja 1924.

Tottingham, W. E. Physiological stability in maize. Science II. 59: 69-70. I8 Ja 1924.

Vainio, E. A. Lichenes a W. A. Setchell et H. E. Parks in Insula Thaiti a 1922 collecti. Univ. Calif. Pub. Bot. 12: 1-16. Ja 1924.
Wannamaker, J. S. From boll to bolt. Nature Mag. 3: $14 \mathbf{I}^{-}$ 146, 182. "Mr" F 1924. [Illust.]
A description of cotton.
Waksman, S. A. Influence of soil reaction upon the distribution of filamentous fungi in the soil. Ecology 5: 54-59. Ja 1924.
Watson, J. R. Crotalaria as a trap for bugs in citrus groves. Florida Grower 29: 6-7. 5 Ja 1924. [Illust.]

Waugh, F. A. Cornus florida. Fl. Exch. 57: 459. I6 F 1924. [Illust.]
Weaver, J. E., Kramer, J., \& Reed, M. Development of root and shoot of winter wheat under field environment. Ecology 5: 26-53.f. I-5. Ja 1924.

Welles, C. G. Observations on taxonomic factors used in the genus Cercospora. Science II. 59: 216-217. 29 F 1924.

Wentworth, C. K. The fossil swamp deposit at the Walker Hotel site, Connecticut Avenue and De Sales Street, Washington, D. C. Jour. Washington Acad. Sci. 14: 1-4I. pl. $1-4+f .1-2.4$ Ja 1924.
Including notes on diatoms by Albert Mann with description of I new species, Stauroneis Washingtoniana.

Wilson, E. H. Travel tales of a plant collector-XI. The tropics of the old world-Part 2. Predacious plants of classic fame that feed on air and insects-a race of ever-blooming rhododendrons-begonias from the dark forests of Assam. Gard. Mag. 38: 285-287. .- "Ja 1924" D 1923. [Illust.]

BULLETIN
 OF THE

TORREY BOTANICAL CLUB

JULY, 1924

Across the Sonoran Desert

Forrest Shreve

The type of desert so well known in southwestern Arizona extends southward into the Mexican state of Sonora for about 300 miles with relatively slight changes in the general physiognomy of the vegetation and in the local distribution of the plant communities. This natural province, which may well be termed the Sonoran Desert, is bounded on the north on the southern edge of the Colorado Plateau, in central Arizona, on the east by the Sierra Madre Occidental, and on the west by the Colorado River and the Gulf of California. To the southward it merges, at first gradually and then rapidly, into the xerophytic tropical thorn-forest which is characteristic of the west coast of Mexico south of Cape Corrientes. Many plants characteristic of the Sonoran Desert extend to the west of the Colorado River and thence northward, and many of them occur in Lower California and in the more elevated desert regions of Chihuahua and Coahuila. Considered as a whole, however, the Sonoran Desert is a very distinct area with respect to its plant life. In, the variety of its plant communities, the relatively large number of species of striking growth-form, and in the abundance of succulents, it is very distinct from the Colorado and Mojave Deserts and from the deserts of Chihuahua and Coahuila.

The distinctive character and relative luxuriance of the Sonoran Desert may be attributed to the occurrence of biseasonal rainfall. Many of its characteristic plants fail to range into the Californian region of low rainfall confined to the winter and spring. The mountain barriers to the north and east offer adjacent territory with higher rainfall, but they also present
[The Bulletin for June (51: 225-282) was issued July 12, 1924.]
conditions of lower temperature into which the desert forms are unable to move. To the south the slightly greater rainfall and the much higher temperature conditions are responsible for a distinct type of vegetation in which only a few of the Sonoran forms are represented. The precipitation is least along the western edge of the desert and increases with altitude toward the east, ranging from about 4 inches to about 16 inches. The temperature conditions in the northern part of the Sonoran Desert are such that at Phoenix and Tucson frost occurs several times every winter, but a freezing temperature never persists throughout the day. At Guaymas freezing temperatures are unknown.

The vegetation of the northern portion of the Sonoran Desert has been described and illustrated by several writers,* with particular reference to the Tucson region. It is the purpose of this paper to describe some of the salient features of the vegetation as observed in an expedition from the Desert Laboratory, at Tucson, to the shores of the Gulf of California at a point half way between Guaymas and the mouth of the Colorado River. This trip was made by automobile in November, 1923, immediately following the first of the winter rains. The course lay southwest from Tucson to the International Boundary, which was crossed at El Sasabe, thence south to Altar, west to Pitiquito, and then south and west to the shores of the Gulf at Libertad, thence southward to Punto Kino. The return was made by essentially the same route.

It happens that the International Boundary between El Paso and Yuma lies very close to the divide separating the drainages which run northward into the Gila River and those that flow south and southwest into the Gulf of California. The approach to El Sasabe from the north lies across the grassy plain known as the Baboquivari Valley. The entry into Mexico is made among low hills at an elevation of 3500 ft . Another extensive grassy plain is then traversed, falling gradually south and east to the Rio Seco. The coarse, granitic loam of this plain supports only

[^31]a cover of annual and perennial summer-growing grasses, with very infrequent individuals of Prosopis and Opuntia. The elevation is too high for Covillea, Parkinsonia and Carnegiea, although all of these species are found in the hills near the Boundary, at a slightly higher elevation. This anomaly, which is common in many other localities, may be explained by the greater insolation and warmer soil of the south-facing slopes of the hills.

On reaching the foot of the plain at San Rafael Ranch the road follows the flood plain of the Rio Seco nearly all the way to Altar. The vegetation of this region is essentially identical with that of the flood plains near Tucson, and the new species that appear in it are not so striking as the new ecological habits exhibited by some of the familiar plants. For example, Encelia farinosa, a composite shrubwhich is confined to rocky slopes and coarse outwash in the Tucson region, always in company with other plants, may here be seen in extensive pure stands on alluvial soil. Two conspicuous cacti are first seen a few miles south of San Rafael, Lophocereus Schottii and Lemaireocereus Thurberi. These are both columnar forms with branches from 4 to 6 inches in thickness, which rise in groups of 5 to 25 and attain a height of 4 to 10 feet. Both of these plants are found in Arizona, but their northernmost outposts are naturally to be found on south slopes in sheltered positions. Lophocereus is first seen in the Rio Seco valley on alluvial and outwash soil, and is most commonly found in such situations throughout its range. Lemaireocereus is first seen on the hills that skirt the valley and its occurrence in general is confined to rocky slopes and coarse outwash.

The Rio Seco is a tributary of the Altar River, which it reaches in a number of small channels after spreading out into an alluvial delta 10 miles in width. The town of Altar is at one corner of the delta and the town of Pitiquito near the other. These old settlements are both on the Altar River, and between them this stream is joined by the Magdalena, or San Ignacio River, which drains an extensive area of hilly country in the District of Nogales. The narrow streets of these towns are lined with unbroken rows of stuccoed and tastefully tinted adobe houses, with no hint of lawn, fence or porch. The streets and the mudwalled gardens of pomegranates, oleanders, oranges and date
palms give the traveler the impression of being in some Moroccan village, far from the confines of the United States.

Throughout northern Sonora the vegetation of the floodplains and alluvial areas is more nearly like that of southern Arizona than is the vegetation of the hills and the outwash slopes or "mesas." The "Little Peaklet" from which the town of Pitiquito derives its name is the first place that the cardon, Pachycereus Pringlei, is detected. This is an arborescent form similar to Carnegiea but more massive and unlike it both in its

Fig. I. Characteristic vegetation between Pitiquito and the Picu Mountains, Sonora. The trees are Parkinsonia, Olneya, and Prosopis. The cactus is Lophocereus Schottii.
coarser armature and in the more acute angle of insertion of its branches. Pachycereus grows here together with Carnegiea and Lemaireocereus, and the abundant Opuntia Bigelovii, making a landscape that would arrest the attention of any traveler.

After crossing the broad bed of the Magdalena River the remainder of the journey to the Gulf is across small valleys with unimportant streamways and small ranges of volcanic hills. Between Pitiquito and the Sierra Picu, the last range of hills crossed, the course lies between 1100 and 2000 ft . in elevation.

On the coarse, gravelly mesas the characteristic plants are chiefly species of wide distribution in the Sonoran Desert, such as Covillea tridentata, Parkinsonia microphylla, Olneya tesota,

Carnegiea gigantea, Acacia paucispina, Opuntia fulgida and Fouquiera splendens. In the vicinity of Tucson Olneya is confined to the warmest situations, sheltered south exposures which are not subject to the influence of cold air drainage. In the valleys between Pitiquito and Libertad it is much more ubiquitous, and occurs abundantly in situations where cold air drainage operates to produce minimum temperatures that are considerably below those of the upper slopes and foothills of each valley. The behavior of Carnegiea remains unchanged, however. In the Tucson region it is much more abundant on the south slopes of hills than on the north, and this is true of it down to the point at which it begins to be infrequent and to yield its place in the landscape to Pachycereus. The latter cactus in turn, and also Lemaireocereus, are like Carnegiea in exhibiting greater abundance on south slopes than on north ones.

Parkinsonia microphylla and Cercidium Torreyanum are both abundant down to the Gulf, showing no change in their habitat. Parkinsonia aculeata, which is widely cultivated throughout the southern United States, is first seen within 60 miles of Tucson. It is nowhere a common tree but occurs singly or in small groups at widely separated localities.

The Arizona shittimwood, Bumelia rigida, is a tree known only from four localities in Arizona, from the Dragoon Mountains to the Baboquivari Mountains. Its foliage and the character of the localities in which it is found, indicate that it is a tree of relatively high water requirement. A closely related and very similar species, B. occidentalis, was detected at three places in Sonora, one of them near a natural water hole, and the second near a well. The third locality was in the center of a large valley where there are no wells, and it was interesting to note that an unsuccessful well had been dug to a considerable depth near the Bumelia trees, indicating that the high water requirement of the tree had not gone unobserved by the Mexican ranchers.

The valleys lying east of the Sierra Picu have a deep loam soil and a rich cover of vegetation. Covillea is infrequent here, and large trees of Parkinsonia, Olneya and Prosopis are intermingled with Carnegiea, Pachycereus, large colonies of Lophocereus, occasional colonies of Lemaireocereus, and frequent groups of a large Yucca, often reaching 25 ft . in height. Smaller cacti
and numerous species of shrubs, together with mats of the gray grass, Hilaria, all combine to make a highly diversified community of plants that constantly gives one the impression of being in some gigantic botanical garden.

In the Sierra Picu and the lower ranges of hills which lie between it and the valley of the Magdalena River, the traveler from the north finds more plants that are new to him than in the valleys. The general groundwork of the vegetation is composed of those species that extend north to the edge of the Sonoran Desert, but a large number of shrubs, cacti, vines and

Fig. 2. Pachycereus Pringlei, 8 miles south of Libertad, Sonora.
herbaceous plants are already added to the vegetation here within a linear distance of 100 miles from the Boundary. One of the most striking and abundant of these is Elaphrium microphyllum, the copal tree, of the family Burseraceae. In the largest trees the trunk emerges from the rocks with a diameter of 12 to 14 inches. It branches freely and dwindles rapidly in thickness, so that the limbs 4 ft . from the ground are seldom more than 1 or 2 in . in thickness, while the twigs are of the ordinary size. The cortex is very thick, forming nearly half the thickness of the trunk, and exudes a milky and resinous sap when cut. The leaves are pinnate and dark green, the twigs a rich brownish red. The bark is stripped from the twigs by

Indians and used in weaving the colored designs of baskets. Another abundant shrub in which the branches dwindle rapidly in diameter is the terrote blanco, Jatropha cinerea, but the basal diameter is rarely more than 2 in. Jatropha cordata is abundant here, together with the similar but smaller leaved J. cardiophylla. An undescribed Opuntia of the series Clavatae is abundant in several localities, its erect branches giving the largest plants a resemblance to the cylindropuntias. The platyopuntias, or prickly pears, become very much less abundant in this region than they are at Tucson, both as to the number of species and individuals. This type of cactus appears to be unable to resist the adverse moisture conditions of the driest portions of the Sonoran Desert, as it is poorly represented here and also in Arizona west of the longitude of Phoenix.

The last one of the low passes in the Sierra Picu is 20 miles from the Gulf coast, and its elevation is approximately 1750 ft . The very gradual descent to sea-level is made over a detrital slope on which the vegetation is at first very heavy, then rather open, and finally very scanty and low. The vegetation of the heavily covered portion of the slope presents many features which distinguish it from similar situations to the east and north. The giant Pachycereus Pringlei here reaches such a size that many of the individuals must weigh 20 tons, as the largest plants of the much less massive Carnegiea are known to weigh half that much. Lemaireocereus Schottii, Opuntia fulgida and O. gosseliniana are also abundant. The principal distinctive features of the area, however, are the great number of small trees and the abundance and variety of shrubs and shrub-like perennials. The commonest of the trees are Elaphrium microphyllum, Olneya tesota, Parkinsonia microphylla, Prosopis glandulosa and Parkinsonia Torreyana. Prosopis velutina, characteristic of the higher portions of the Sonoran Desert, was not detected here. The shrubby vegetation not only includes the compact type, branching freely from the ground, but numerous individuals of Malvaceous, and Solanaceous shrubs, with a single erect stem and the form of a small tree. Some of these are not woody, and their presence is a strong indication that frosts are either absent or very light in this locality. Among the shrubs and suffrutescent perennials characteristic of the upper seaward slope are Jatropha spathulata, Covillea tridentata, Encelia farinosa,

Franseria dumosa, Simmondsia californica, Abutilon palmeri, Sebastiania pavoniana, Acalypha adenostachya, Euphorbia tomentulosa, Franseria deltoidea, Solanum sp., Abutilon sonorae, and Horsfordia alata.

After descending the slope to within 10 miles of the Gulf the vegetation becomes much poorer and more open. Prosopis, Olneya, Covillea, and Fouquiera are the most abundant of the larger plants. Pachycereus is much smaller and less abundant, and the only other cacti are the infrequent individuals of Echinocactus Lecontei and Opuntia gosseliniana.

The Bay of Libertad is a slight concavity in the coast line, stretching from Punto Lobos on the north to Punto Kino on the south, a distance of about 12 miles. There is a slight escarpment, of from 10 to 20 ft . along the entire coastline of the bay. The soil is a coarse loam except for a distance of about two miles just north of Punto Kino, where a belt of sand stretches for several miles inland. The surface of this area is stable and well covered with vegetation. Within half a mile of the escarpment the vegetation is very sparse, consisting of a few low individuals of Covillea and Prosopis, and occasional plants of Ptiloria pauciflora, Frankinia Palmeri, and Psorobatus megacarpus. Here also is to be found an interesting species of the night-blooming cactus, Wilcoxia, in which the storage organs are numerous enlarged portions of the root system resembling small sweet potatoes. Over 70 of these enlargements were taken from a single plant.

At Punto Kino a low range of granitic hills abuts directly on the coast. To the south the mountainous outline of Tiburon Island is plainly seen standing well out into the Gulf, and successive ranges of hills end in abrupt seaward slopes along the entire coast as far as Tiburon Island. Across the Gulf it is possible to make out the low outlines of Angel Guardia Island and to see the profile of the hills of Lower California, culminating in the San Pedro Martir Mountains. During the five days that we were within sight of the Gulf there was no evidence of human existence detected on its waters.

In sandy soil at the base of the outwash slopes which stretch north from the mountains at Punto Kino was found the heaviest stand of Pachycereus noted on the entire trip, accompanied by large and numerous examples of Elaphrium microphyllum.

Whereas the hills are the optimum habitat for arborescent cacti in the interior, at this locality they are bare of all but a few small individuals.

On approaching Punto Kino the eye is arrested by what appears to be a forest of small trees denuded of their branches and leaves, extending along the base of the hills. This proves to be the cirio, Idria columnaris, of the family Fouquieraceae, previously known only on the peninsula of Lower California. The trunk of this singular tree is from 12 to 18 in . in thickness at the base but tapers very rapidly to a slender top and rarely

Fig. 3. Idria columnaris, on rocky slopes near Punto Kino, Sonora. The trees in the center are Elaphrium Macdougalii.
exceeds 20 ft . in height. The trunk itself occasionally forks into two or three branches, all of which continue to grow in a vertical position. From base to top the trunk is beset with short slender lateral branches, growing in a horizontal position and bearing thorns and seasonal leaves after the manner of Fouquiera. The large racemose inflorescences are borne only at the upper end of the trunk or its branches. The trunk is smooth, of a pale salmon color, and the cortex is so soft that it can be cut with great ease. There is ligneous tissue throughout the cross section of the trunk, but the trunk also serves as a reservoir for a considerable quantity of water. The very young individuals of

Idria are globose, and all of the thickening of the stem is above ground.

The heaviest stands of Idria were along the base of the granitic hills. It is infrequent on the upper slopes, and nowhere grows very far away from rock in place. Unlike most plants at the northernmost limit of their occurrence, Idria is more abundant on north slopes than on south slopes. It was found inland from Punto Kino as far as the hills extend, and southward as far as the second ridge of hills below the point, which marked the southern limit of our exploration.

Throughout these hills Idria is the most conspicuous plant, Pachycereus, Lophocereus and Lemaireocereus are all infrequent, although they may be found in the valleys and on alluvial slopes. Carnegiea is confined to the hills, but nowhere reaches its customary size. Parkinsonia is very uncommon, and Covillea is confined to coarse detrital slopes at the bases of the hills. On the slopes there are few large individuals of any plants. The most characteristic forms are Elaphrium Macdougalii, Olneya tesota, Idria columnaris, Jatropha cinerea, Simmondsia californica, Hyptis Emoryi, Opuntia Bigelovii, Fouquiera splendens, Encelia farinosa, Franseria dumosa, Trixis angustifolia, Verbesina chihuahuensis, Porophyllum gracile, Hibiscus denudatus, Stegnosperma halimifolium and Ptiloria pauciflora.

The vicinity of Libertad and the hills of Punto Kino were of particular interest as examples of a pronounced desert running right down to the shores of a large body of water. While the temperature conditions here are extremely favorable there is every evidence that the precipitation is much less along the coast than it is 10 miles and more inland. In November, 1923, the writer installed non-evaporating volumetric rain gauges at Libertad and at the pass in the Sierra Picu 18 miles from Libertad. At the latter locality a Six's maximum-minimum thermometer was also installed. These instruments were read in March, 1924, by Mr. Gilbert Sykes. The precipitation at Libertad was 1.0 cm . and at Picu pass 4.8 cm ., while for the same period at Tucson it was 11.2 cm . The minimum temperature at Picu Pass was $34^{\circ} \mathrm{F}$., and for the same period at Tucson $27.5^{\circ} \mathrm{F}$. These figures indicate the extreme aridity of the coastal belt and show that the precipitation of the hills nearest the coast is considerably higher. The minimum temperature reading
shows that there are at least occasional winters without frost, a thing that can not be said of the more elevated portions of the Sonoran Desert. At Libertad and Punto Kino freezing temperatures doubtless occur only at rare intervals and for periods of very brief duration.

Desert Laboratory
Tucson, Arizona.

Miscellaneous notes on plants of Southern California-III*

Philip A. Munz \dagger and Ivan M. Johnston \ddagger

In the following pages specimens cited as (B) are at the C. F. Baker Herbarium of Pomona College, and those as (G) at the Gray Herbarium of Harvard University.

Eriogonum Kennedyi Porter

A study of the type of E. Kennedyi Porter (Wats. Proc. Am. Acad. 12: 263. 1877), contained in the Gray Herbarium, has shown that it differs in the shape of its calyx-lobes from those plants commonly identified as E. Kennedyi which grow in the San Bernardino Mts. and in the Mt. Piños region. The original material of the species, according to its label, is from "Kern County, California." It has broadly elliptical calyx-segments which are very abruptly expanded and rounded at the base, whereas the more southern material has obovate or narrowly obovate segments which are gradually contracted toward the base and cuneate. Although these two forms differ markedly in the shape of the calyx-lobes, they are indistinguishable otherwise, and it seems best to consider them only varietally distinct.
\checkmark Eriogonum Kennedyi var. austromontanum var. nov.
Plant with the habit of the species, but differing in having obovate or oblance-obovate calyx-segments which are gradually contracted into a cuneate base.-Ventura County: Fraziers Borax Mine, Mt. Piños, Abrams \& McGregor 264 (G); Upper Lockwood Valley, Mt. Piños, Dudley \& Lamb 4675 (B). San Bernardino County: Bear Valley, San Bernardino Mts., alt. 6500 ft., July 4, 1920, R. D. Harwood 4369 (Type, Baker Herb. 9162) ; Bear Valley, San Bernardino Mts., Parish 3736 and 3166 (G), Abrams 2890 (G), Abrams 2119 (B); summit of San Gorgonio, alt. 11500 ft ., Grant 453 (B, G), San Gorgonio Summit, 11000 to 11500 ft . alt., Munz 6208 (B); San Gorgonio Mt., alt. 11700 ft ., Burlew 3587 (G).

[^32]In the San Bernardino Mts. about the crest of Mt. San Gorgonio, at altitudes from 11000 to 11700 ft ., the var. austromontanum becomes consistently much reduced in stature, having stems only $\mathbf{1}-2 \mathrm{~cm}$. high. This form, typified by Munz 6208 (Baker Herb. 12844), may be known as the forma alpigenum.

\checkmark Malvastrum clementinum sp. nov.

A rounded tufted shrub with many ascendingly branched stems 7-10 dm. high; stems rather coarse, tomentose when young; leaves angularly 3 -lobed or orbicular or ovate, $3-5 \mathrm{~cm}$. broad, base cordate, margin irregularly crenate, upper surface green but with a very sparse stellate pubescence, under surface canescent with a dense stellate tomentum, veiny; flowers many, subsessile and densely glomerate in the axils of the uppermost leaves and continuing out into an elongate naked interrupted spike $1-2 \mathrm{dm}$. long; calyx 7 mm . high, loosely stellate-tomentose; calyx-lobes broadly lanceolate, acute, enervose, 4 mm . long; bractlets filiform, well developed, nearly reaching the tips of the calyx-lobes; corolla pink, in color suggesting that of appleblossoms, lobes oblong-obovate, about 13 mm . long; carpels $2.5^{-3} \mathrm{~mm}$. high, 8-10, thin-walled, smooth, promptly deciduous, inner edge excised, summit stellate-tomentose, sides and base glabrous; seeds ovoid, 1.8 mm . long, short villous.

Los Angeles County: On walls of the canyon running into the sea from Lemon Tank, San Clemente Island, April 9, 1923, Munz 6684 (type, Baker Herb. 20491 ; isotype, Gray Herb.).

This beautiful Malvastrum was found to be occasional in rock-crevices and at the base of rocky walls of a very precipitous canyon on the northeast side of San Clemente Island. It is characterized by its pale dense stellate pubescence with long trichome-branches, by its conspicuously bicolored leaves, and by its very dense interrupted spicate inflorescence. It suggests typical M. fasciculatum (T. \& G.) Greene in the contour of its bicolored leaves, but differs in its much looser pubescence of long whitish hairs, in its more crowded flowers, more deeply lobed and more loosely pubescent calyces, and very much longer bractlets. From M. Fremonti Torr. and allies, which it suggests in its loose tomentum and interrupted congested spikes, it differs in its longer pubescence, bicolored leaves, and longer bractlets.

Malvastrum nesioticum Robins., an endemic of Santa Cruz Island, differs from M. clementinum in the characters enumerated for M. fasciculatum, and furthermore, like M. fasciculatum var.
laxiflorum (Gray) n. comb.,* may be distinguished by its very branched lax inflorescence.
\checkmark Styrax officinalis var. fulvescens (Eastw.) comb. nov.
Styrax californica var. fulvescens Eastw. Bot. Gaz. 41: 286. 1906.

Santa Barbara County: Santa Barbara, 1873, Bolander (G) ; Santa Inez Mts., 1891, Dunn (B); Painted Cave Ranch, Eastwood 33 (G). Los Angeles County: "Los Angeles," 1879, Nevin (G). San Bernardino County: Waterman Canyon, Parish 11380 (B), Munz 2228 (B), 1916, Crawford (B); City Creek, Johnston 2857 and 2935 (B); Devil Canyon, 1904, Wilder (B); San Bernardino, 1896, Cummings (G); Wright 210 (G); without locality, 1876, Parry \& Lemmon 226 (G). Orange County: Trabuco Canyon, 1903, Bradshaw (B), Peirson 3493 (B). San Diego County: Mesa Grande, Spencer 1147 (B, G).

Perkins (Pflanzenr. iv. Fam. 241, 10 and 80. 1907) has treated S. californica Torr. and S. californica var. fulvescens Eastw. as identical with S. officinalis L., a species of the Mediterranean region of the Old World. Styrax officinalis is, indeed, very closely related to the Californian plants, particularly so to typical S. californica. The latter has the same shape of leaf and similar flowers, differing from the Mediterranean species chiefly in pubescence, being glabrate or lightly tomentose on the under side leaf-surfaces instead of closely and densely whitetomentose. In certain material from Greece, however, the pubescence is similar to the densest produced by S. californica. In S. californica var. fulvescens, and in the pubescent forms of S. californica the pubescence is dimorphic on the veins and midrib, dark colored trichomes (appearing as glandular atoms to the unaided eye) being scattered among and projecting above the pallid mass of the tomentum. These trichomes are present in the European material, but are not dark-colored. The style in the Mediterranean plants appears to be less compressed than in the American material and is less evidently lobed. Since the only differences detectable between the European and

[^33]Californian material are minor ones and relative in nature, it has been thought best to treat the two Californian forms of Styrax as S. officinalis var. californica (Torr.) n. comb. and as S. officinalis var. fulvescens (Eastw.) Munz \& Johnston.

Styrax officinalis var.fulvescens differs from the var. californica in its broader, heavily tomentose, usually subcordate leaves, and characteristically fulvescent pubescence. It ranges along the coastal slopes of California from the mountains back of Santa Barbara to those back of San Diego, whereas the var. californica occurs in northern California on the hills surrounding the Sacramento valley, from Colusa and Calaveras Counties northward to Shasta County. The range of the two varieties is hence widely separated.

Phacelia (§ Eutoca) Keckii sp. nov.

Erect or ascending annual I-4 dm. high, branching freely, densely short spreading viscid villous, somewhat canescent but stems more or less reddish brown in color; leaves firm, concolored, ovate or oblong, principal ones $20-35 \mathrm{~mm}$. long and $9-20 \mathrm{~mm}$. wide, deeply crenate-dentate, apex obtusish, base broadly cuneate; petioles of lower leaves $15-20 \mathrm{~mm}$. long, of upper leaves $3-7 \mathrm{~mm}$. long; flowers in rather dense terminal unilateral circinate racemes becoming $3-5 \mathrm{~cm}$. long; pedicels I-2 mm. long; sepals green, narrowly oblanceolate, acute, short viscid hirsute, becoming $7-8 \mathrm{~mm}$. long; corolla tubular-funnelform, sparsely pubescent outside, $12-14 \mathrm{~mm}$. long, ca. 7 mm . wide, the expanded throat and ascending limb purplish-red; lobes suborbicular, ca. 2.5 mm . long; tube cylindrical, 2.0 to 2.5 mm . thick, about 8 mm . long, yellowish with linear purplish stripes; stamens glabrous, unequal, $5-6 \mathrm{~mm}$. long; appendages linear, $2-3 \mathrm{~mm}$. long, adnate to corolla, united to filaments for about 2 mm .; ovary and style glandular and pubescent; style scarcely exceeding calyx, apically bifid; ovules ca. 8; capsules 4-5 mm. long, ovoid, pubescent; seeds brownish, angled, acute ovate or oblong in dorsal outline, coarsely foveolate.

Riverside County: along trail from Glen Ivy to Santiago Peak, Santa Ana Mts., alt. 4000 ft ., Munz 7056 (type, Baker Herb. 20490; isotype, Gray Herb.). Orange County: west slope of Santa Ana Mts., alt. $4800 \mathrm{ft} .$, Munz 776_{3} (B).

Growing on dry slopes and ridges in the chaparral belt, between 3500 and 5000 ft . alt., on both the east and west sides of the Santa Ana Mts. The species is apparently most closely related to P. suaveolens Greene, and keys out to that species in

Brand's monograph (Pflanzenr. iv. Fam. 25I, II3, fig. 19. 1913). It differs in its much longer narrower corolla, smaller, narrow capsule, and detached southern range. The two species are similar in gross aspect. The new species is named for Mr. David Keck, an enthusiastic young student, who helped collect the type and who has been of much assistance to the senior author in field work.

'Galium gabrielense sp: nov.

A dioecious perennial herb $5-20 \mathrm{~cm}$. high, dull and cinerescent throughout from a short hirsute pubescence, with a coarse taproot crowned with a small compact caudex tending to produce short stolons; stems herbaceous, in crowded tufts, simple or branched only above, evidently quadrangular, each side bisulcate; leaves in whorls of 4 , linear or rarely oblongish, $5-10$ mm . long, $\mathrm{x}-2 \mathrm{~mm}$. broad, acute but not cuspidate, commonly not exceeding the internodes; inflorescence cylindrical, 3-8 cm . long, $2-3 \mathrm{~cm}$. thick, consisting of small cymes terminating the stem and the rather numerous short ascending laterals; corolla yellowish, short hirsute externally, with 4 oblong-ovate broadly acute spreading lobes, limb 3 mm . broad; fruit covered with long ($\mathbf{I}-\mathbf{I} .5 \mathrm{~mm}$.) white straight hairs; carpels $\mathbf{I} .5 \mathrm{~mm}$. thick, dry.

Los Angeles County: Baldy U. S. F. S. Lookout, alt. 7000 ft., Johnston 1262 (B); Cow Canyon Divide, June 7, 1919, Peirson (B). San Bernardino County: ridge east of Ontario Peak, alt. 8400 ft ., Munz 6078 (Type, Baker Herb. 13691); San Antonio Canyon, alt. 5750 ft., Johnston 159 (B).

This species is not uncommon in the pine-belt of the eastern section of the San Gabriel Mts. in the vicinity of Mt. San Antonio. It frequents well drained gravelly situations under the pines and forms scattered open colonies $1-2 \mathrm{~m}$. broad. It was reported by Johnston (Plant World 22: 118. 1919) as doubtfully referable to Galium siccatum Wight. Wight's type is in the herbarium of the California Academy of Sciences, and evidently represents a bushy fruticose plant $3-12 \mathrm{dm}$. high. It suggests G. angustifolium Nutt. in gross habit, and may be only a cinereous-puberulent phase of the Nuttallian species. Galium gabrielense is, hence, not a close relative of G. siccatum. Its relations are probably with G. multiflorum Kell. and its relatives, from which the new species is readily distinguished by its tufted strict habit, narrow leaves, and dull grayish hirsute pubescence.

Downingia concolor Greene

Jepson (Madroña 1: 10i. 1922) in his excellent recent revision of the Californian Downingias does not report this species from Southern California, but the following material, which differs from the subjoined species in having two nipples and two purple spots at the faucal edge of the lower corolla-lip, as well as having the lateral corolla-sinuses cut below the plane of the limb, is either D. concolor Greene (Bull. Calif. Acad. Sci. 2: 153. 1886) or a closely related undescribed form.

San Diego County: Margin of Cuyamaca Lake, Abrams 385 I (G) ; in shallow water, Cuyamaca Valley, Parish Bros. 394 (G); in pools on the mesas, May 5, 1920, Spencer 1073 (B).

\checkmark Downingia immaculata sp. nov.

Erect glabrous annual herb, branched only at the base, 1-2 dm . high; leaves few oblong or oblong-lanceolate, $5^{-12} \mathrm{~mm}$. long, $1.5-2.5 \mathrm{~mm}$. wide; sepals linear, ascending or erect, equalling or exceeding the length of the corolla-tube; corolla predominantly blue; lower lip flat, $9-14 \mathrm{~mm}$. broad, with 3 spreading broadly obovate somewhat angular mucronate lobes, with a white central field enlivened by 2 more or less confluent yellow spots and traversed by two weak plaits; upper lip cleft, the 2 lobes narrow, acute, paralleling or slightly spreading, curving backwards; lateral corolla-sinuses scarcely if at all cut below plane of limb; corolla-tube narrowly funnelform, in length about equalling the upper corolla-lobes, $3-4 \mathrm{~mm}$. long; corolla-throat obscurely bidentate on lower edge, unspotted; stamineal tube partially exserted, practically straight, cylindrical, ca. 2.5 times as long as thick.

Riverside County: On desiccated clay mud-flat south of Lake Elsinore, alt. 1250 ft., April 29, 1922, Munz 5093 (Type, Baker Herb. 13766); Perris, 1922, Banning Flower Show (B); rare on desiccating mud-flat, Menifee Valley, alt. 1350 ft ., Munz \& Johnston 5380 (B). San Diego County: In clay depressions on the mesas, San Diego, T. S. Brandegee (Baker distribution) 1668 (B, G); wet places around shallow pools, 6 mi . north of San Diego, Peirson 3394 (B); in pools on Camp Kearny road, San Diego, alt. 400 ft., April 16, 1919, Spencer 1073 (G); exsiccated places on mesas, near San Diego, Abrams 3445 (B, G).

This is the most common Downingia in Southern California and that which has mainly passed as D. pulchella (Lindl.) Torr.

That species differs, however, in having usually a larger corolla with different proportions and a lighter shade of blue and has 3 small blue spots along the faucal edge of the lower lip, in addition to having more developed, straight, strongly divergent upper corolla-lobes, a less developed corolla-tube, an evidently exserted stamineal tube, divergent sepals, and a distinct northern range.

The only material of true D. pulchella studied from Southern California is the specimen in the Gray Herbarium collected by J. G. Cooper in "wet ground" on the "Upper Mojave River ?." From this station and others in San Luis Obispo County, it ranges northward through the state. It is not improbable that D. immaculata is the same as D. pulchella var. arcana Jepson (Madroña 1: 100. 1922), a variety based upon material collected at La Mesa, San Diego County. Since both D. immaculata and D. concolor occur in that vicinity and are equally well covered by Jepson's brief description, we are basing our D. immaculata upon material which we know to be characteristic of the concept we have in mind, rather than forming a binomial based upon Jepson's trinomial.

\checkmark Stephanomeria Blairi sp. nov.

A coarse-stemmed, straggly, lactiferous shrub ca. 12 dm . high; flowering branch decidedly woody, $4^{-5} \mathrm{dm}$. long, becoming $8-10 \mathrm{~mm}$. thick, lightly white-tomentose above, below lucid light-brown and studded with the persistent indurated bases of the petioles; leaves crowded, abruptly reduced up the stem, obovate to oblong-obovate, $5^{-1} 3 \mathrm{~cm}$. long, $4^{-6} \mathrm{~cm}$. broad, firm but rather thin, light green, glabrate, secondary venation evident and abundant, base broadly cuneate, apex rounded, margin very coarsely and unequally sinuate or lobulate; petioles ca. 1 cm . long, frequently narrow winged, base thickened and persistent; inflorescence terminal, stiff, paniculate, $5-20 \mathrm{~cm}$. long, $8-10 \mathrm{~cm}$. thick, branches strict or ascending and several to many-headed; peduncles $2-4 \mathrm{~mm}$. long, stiff, bracteolate; heads narrowly cylindrical, $9-12$-flowered, ca. 7 mm . high; inner tegules about equal, linear rounded, pale green and somewhat tinged with rose, 6 mm . long; outer tegules short-lanceolate 1-2-seriate, $\mathrm{I}-\mathrm{I} .5 \mathrm{~mm}$. long; ligules rose-colored, ca. 1 cm . long, somewhat puberulent outside, tip 2-3-dentate; anthers deeply sagittate, ca. 5 mm . long, auricles linear and obtusish or even subapically dilated; style-branches linear; achenes $3-3.5 \mathrm{~mm}$. long, 5-6 times as long as thick, gray-brown, pentangular, faces
with 1-3 shallow longitudinal grooves, apex truncate, base cal-lous-tipped; pappus of numerous white antrorsely bearded deciduous bristles ca. 4 mm . long; receptacle low convex, glabrous, bearing umbonate scars left by the excavated bases of the achene.

Los Angeles County: On a rocky canyon-wall, San Clemente Island, 1923, E. G. Blair (TyPe, Baker Herb. 20492); on rocky walls of the canyon running from Lemon Tank, San Clemente Island, Munz 668 I (B).

A very remarkable species, apparently without immediate relatives, differing from all its congeners in its coarse woody habit and broad herbaceous veiny leaves. Although in gross aspect strange in Stephanomeria, the reproductive structures of the plant are quite characteristic of the genus. It is a pleasure to name this plant in honor of Mr. E. G. Blair of the San Clemente Sheep Co., who extended many courtesies to a Pomona College party during a visit to San Clemente Island in 1923, and who has obligingly furnished us with a fine flowering and fruiting specimen from the cliffs where the senior author had obtained a weathered inflorescence.

Studies in the genus Lupinus-XI. Some new names and combinations

Charles Piper Smith

The lupines of California, Oregon, and Washington have not as yet been treated, as a unit, by any one writer. Numerous botanists, holding widely differing taxonomic views, have contributed much to the literature of this genus in these three States, some one hundred ten species having been described from California alone, and about fifty others from Oregon and Washington. Recently I have attempted to coordinate all of these propositions, with the natural result that I find it necessary to present some new names and combinations. Accordingly I here offer some nomenclatural adjustments, in advance of a general treatment that will necessarily, because of its bulk, appear elsewhere.

1. Lupinus lyallii fruticulosus (Greene) comb. nov.

Lupinus fruticulosus Greene, Muhlenbergia 8:-117.. 1912.
The stoutest form of the species, with leanings toward L. aridus: flowers large and banner broad.
2. Lupinus aridus Washoensis (Heller) comb. nov.

Lupinus pinetorum Heller, Muhlenbergia 6: 25. 1910; not Lupinus pinetorum Jones, Contr. West Bot. 8: 25. 1898. Lupinus Washoensis Heller, Muhlenbergia 6: 72. 1910.

Pubescence long and widely spreading.
3. Lupinus aridus Torreyi (Gray) comb. nov. Lupinus Torreyi Gray, King Expl. 58. 1871. Lupinus sellulus Kellogg, Proc. Calif. Acad. 5: 36. 1873. Peduncles elongated, usually exceeding the foliage.
4. Lupinus aridus abortivus (Greene) comb. nov.

Lupinus abortivus Greene, Muhlenbergia 8: 117. 1912.
Pubescence mostly short and appressed; racemes slender and loosely-flowered.
5. Lupinus aridus Cusickii (S. Wats.) comb. nov. Lupinus Cusickii S. Wats., Proc. Am. Acad. 22: 469. 1887.

Peduncles shorter and racemes all equalled or surpassed by the foliage, densely-flowered.
6. Lupinus lepidus Culbertsoni (Greene) comb. nov.

Lupinus Culbertsoni Greene, Leaflets 1: 73. 1904.
Stems usually short, foliage greenish, not silky; lower flowers suberect after anthesis.
7. Lupinus lepidus confertus (Kellogg) comb. nov. Lupinus confertus Kellogg, Proc. Calif. Acad. 2: 192. 1862.

Stems usually elongated and leafy; foliage usually silky, not greenish; flowers many, crowded, spreading after anthesis.
8. Lupinus laxifiorus calcaratus (Kellogg) comb. nov.

Lupinus calcaratus Kellogg, Proc. Calif. Acad. 2: 195. 1862.
Lupinus multitinctus A. Nels. Bot. Gaz. 53: 221. 1912.
Lupinus variegatus Heller, Muhlenbergia 8: 89. 1912.
Calyx-spur $1-3 \mathrm{~mm}$. long. Too near L. laxiflorus to be a distinct species.
9. Lupinus inyoensis demissus var. nov.

Plantae $1-3 \mathrm{dm}$. altitudine, racemis $3-4 \mathrm{~cm}$. longis, compactis, pedicellis 2 mm . longis, floribus $8-10 \mathrm{~mm}$. longis, vexillo glabro.

Plants I-3 dm. tall, racemes $3-4 \mathrm{~cm}$. long, compact, pedicels 2 mm . long, flowers $8-10 \mathrm{~mm}$. long, calyx merely gibbous, not woolly, banner suborbicular, glabrous.

Oregon. Baker County: Wallowa Mountains, 3 Sept., 1915, M. E. Peck 5329 (WSO).
10. Lupinus caudatus subtenellus var. nov.

Foliolis linearis pubescentibus bene viridibus, racemis laxis, floribus $8-10 \mathrm{~mm}$. longis, pedicellis gracilioribus $3-5 \mathrm{~mm}$. longis.

Leaflets linear, short hairy, decidedly greenish, racemes lax, flowers $8-10 \mathrm{~mm}$. long, pedicels more slender, $3-5 \mathrm{~mm}$. long.

Oregon. Deschutes County: Paulina Lake, 30 July, 1894 , J. B. Leiberg 59 I (UO).
11. Lupinus holosericeus amblyophyllus (Robinson) comb. nov. Lupinus canescens amblyophyllus Robinson, Piper, Contr. U.S. Nat. Herb. 11: 354. 1906.
Bracts early deciduous, as in L. holosericeus Nutt. and to which it is certainly closer than to L. canescens.

Washington. Douglas County: Egbert Springs, 5 July, 1893, Sandberg \& Leiberg 402 (CA, SCW).
12. Lupinus bingenensis dubius var. nov.

A L. bingenensi differt carina ciliata in marginibus superioribus.

Differing only in the keel being constantly ciliate on more or less of the upper edges, petals blue or white.

Washington. Benton County: Prosser, 27 May, 1903, J.S. Cotton 1106 (Type, SCW 14130). Yakima County: Cleman Mountain, 13 May, 1923, E. Nelson 1467 (CPS); Naches, 10 May, 1923, E. Nelson 1453 (CPS); Yakima, 10 May, 1923, E. Nelson 1452 (CPS). Kittitas County: Ellensburg, 2 May, 1897, K. Whited (UO).

British Columbia. Kaslo District: Creston, 12 July, 1920, W. B. Anderson 5949 (CPS).

13. Lupinus oreganus Kincaidi var. nov.

Labio superiore calycis brevi non operto lateribus reflexis vexilli, ungue vexilli longo.

Upper calyx-lip short, not concealed by the reflexed sides of the long-clawed banner.

Oregon. Benton County: Corvallis, 8 June, $1898, T$. Kincaid (Type, SCW 1428I).
14. Lupinus oreganus pusillulus var. nov.

Plantae solum $\mathrm{I}^{-2} \mathrm{dm}$. altitudine, floribus $8-9 \mathrm{~mm}$. longis, pedicellis prope 3 mm . longis pilis pandentibus, labio superiore fere inoperto.

Plants I-2 dm. tall, flowers $8-9 \mathrm{~mm}$. long, pedicels about 3 mm . long, spreading-pubescent, upper calyx-lip entirely exposed.

Oregon. Josephine County: Waldo, 13 miles southwest, I July, i918, M. E. Peck 8080 (Type, WSO; type duplicate, CPS).

15. Lupinus leucophyllus Belliae var. nov.

Floribus solum 8-10 mm. longis, caulibus plus minus villosis, racemis plerumque densis.

Flowers only $8-10 \mathrm{~mm}$. long, stems more or less villous, racemes usually dense.

Idaho. Power County: Crystal Creek, Sept., 1914, Mrs. May Bell Zundel (Type, DS; type duplicate, CPS).

Very common in eastern Oregon, Washington, and Idaho; about fifty sheets examined.
16. Lupinus leucophyllus canescens (Howell) comb. nov.

Lupinus canescens Howell, Erythea 1: 110. 1893.
Flowers $8-10 \mathrm{~mm}$. long, racemes dense or almost lax, stems without spreading hairs.
17. Lupinus leucophyllus tenuispicus (A. Nels.) comb. nov.

Lupinus tenuispicus A. Nels. Bot. Gaz. 54: 4io. 1912.
Flowers only $6-7 \mathrm{~mm}$. long, banner suborbicular, racemes very slender, many-flowered, pubescence very short, somewhat spreading and tangled.

18. Lupinus albifrons flumineus var. nov.

Frutex humilis foliis parvis, foliolis petiolo 3-4-plo brevioribus, pilis pedicelli appresso-pubescentibus.

Low shrub with small leaves, the petioles 3-4 times as long as their leaflets, pedicels appressed-pubescent.

Oregon. Marion County: Willamette River, above Salem,
24 June, 1916, J. C. Nelson 741 (Type, DS 71759).
Riverbanks and mountain sides, Oregon City to Siskiyou County, California; many sheets examined. I have collected it near Salem, Eugene, Wolf Creek, Grants Pass, Gold Hill, and Ashland. This is the Lupinus holosericeus of Howell, Piper, and others, not of Nuttall.
19. Lupinus lapidicola Heller, sp. nov.

Pumilio subalpina abbreviata appresso-sericea, foliis ad basin congregatis, utrimque sericeis, petiolis gracilibus 20-45 mm . longis, foliolis 7 ad 8, oblanceolatis apice acutis prope 10 mm . longis; pedunculis scaposis erectis aut ascendentibus 5^{-8} cm . longis, racemis subcapitatis, verticillis $2-3$ bene separatis; floribus paucis $10-12 \mathrm{~mm}$. longis, pedicellis $2-3 \mathrm{~mm}$. longis appresso-sericeis; calyce sericeo labio superiore subdentato inferiore paulo tridentato; petalis caerulis aut purpuratis, vexillo glabro aut paulo pubescenti exterius, carina ciliata aut eciliata; legumina seminaque non vidi.

Appressed-silky, abbreviated, subalpine dwarf, scarcely I dm . tall; leaves crowded basally, silky both sides, petioles slender, $20-45 \mathrm{~mm}$. long, leaflets 7 to 8 , oblanceolate, acute at apex, about 10 mm . long; peduncles scape-like, erect or ascending, $5-8 \mathrm{~cm}$. long, racemes subcapitate, of 2 or 3 well-separated whorls, about 4 cm . long; flowers few, $10-12 \mathrm{~mm}$. long, pedicels ${ }^{2-3} \mathrm{~mm}$. long, appressed-silky, bracts subpersistent; calyx silky, upper lip notched, lower minutely tridentate; petals blue or purple, banner with a dull-yellow center, glabrous or
somewhat pubescent on the back, keel ciliate on the upper edges or non-ciliate, only the short acumen upturned; pods and seeds not seen.

California. Siskiyou County: Gravelly slopes of Mount Eddy, 9 July, 1920, A. A. Heller 13422 (Type, DS 113281; type duplicate, UCX).
20. Lupinus sericeus flexuosus (Lindl.) comb. nov.

Lupinus flexuosus Lindl., Agardh, Syn. Gen. Lup. 34. 1835.
Lupinus ornatus bracteatus Robinson, Piper, Contr. U. S. Nat. Herb. 11: 355. 1906.
Lupinus subulatus Rydb., Bull. Torrey Club 34: 43. 1907.
Pubescence of stems and petioles all appressed, but pedicels spreading-pubescent; floral bracts subpersistent, equalling or exceeding the buds.
21. Lupinus ornatus obtusilobus (Heller) comb. nov.

Lupinus obtusilobus Heller, Muhlenbergia 8: 115.1912.
Usually not over 3 dm . tall, subdecumbent to ascending; petioles $3-4 \mathrm{~cm}$. long, pedicels more loosely appressed-pubescent, lower calyx-lip often tridentate.
22. Lupinus latifolius columbianus (Heller) comb. nov.

Lupinus confusus Heller, Muhlenbergia 8: 63. 1912.
Lupinus columbianus Heller, ibid. 8: 84. 1912.
Lupinus agninus Gandoger, Bull. Soc. Bot. France iv, 13: 461. 1913.

Wing petals broader, outcurved on the lower free margins, covering all or most of the keel; leaflets glabrous above.
23. Lupinus latifolius canadensis var. nov.

A var. columbiano differt foliolis constanter pubescentibus super pilis brevibus appressisque.

Differing from var. columbianus only in having the leaflets consistently pubescent above with short appressed hairs; stems commonly branched, but sometimes simple and shortened.

British Columbia. Vancouver Island: Colwood, 24 June, 1915, C. F. Newcombe (Type, DS; type duplicate, CPS); Duncan, 21 June, $1917, W$.B. Anderson (CPS, PBC); Goldstream, 3 June, 1911, C. F. Newcombe (CPS); Oak Bay, 14 June, 1896, J. R. Anderson (CVP) ; Mount Benson, 27 June, 1898, J. R. Anderson. (CPS, PBC); Palmer to Colwood, 25 July, 1922, C. F. Newcombe
\& C. P. Smith 3677 (CPS); Sahtlam, il May, 1915, E. M. Anderson (CPS, PBC); Shawingan, 24 May, 1897, J.R. Anderson (CPS, CVP, PBC); same, 19 July, 1917, C. F. Newcombe (CPS). Yale District: Mount Cheam, 14 Aug., 1896, J. R. Anderson (CPS, PBC). Lillooet District; Mount McLean, 28 July, 1916, E. M. Anderson 2962 (CPS, PBC).

I am informed by both Mr. W. R. Carter and Dr. C. F. Newcombe that this is the most common and representative lupine of Vancouver Island. It has been called L. nootkatensis, L. arcticus, L. laxiflorus, and L. columbianus.
24. Lupinus latifolius subalpinus (Piper \& Robinson) comb. nov.
Lupinus subalpinus Piper \& Robinson, Contr. U. S. Nat. Herb. 11: 356. 1906.
This also belongs to Heller's group Latifolii (Muhlenbergia 8: 63. 1912), as shown by the ciliation of the keel, and is, to me, just another of the many variations of L. latifolius, sensu lato.
25. Lupinus Abramsi sp. nov.

Plantae ramosae decumbentes $5^{-6 ~ d m}$. altitudine, albilanatovillosae; foliis albilanatis utrimque, petiolis brevis $3-5 \mathrm{~cm}$. longis, foliolis 8 aut 9, oblanceolatis; pedunculis $6-10 \mathrm{~cm}$. longis, racemis $15-25 \mathrm{~cm}$. longis; floribus $14-16 \mathrm{~mm}$. longis pandentibus verticillatis, bracteis deciduis villosis Io mm . longis, pedicellis $4^{-7} \mathrm{~mm}$. longis lanato-villosis; calyce bracteolato lanato labio superiore bifido inferiore tridentato; petalis latis caerulis vexillo pubescente apice exterius $15-16 \mathrm{~mm}$. lato, carina ciliata marginibus superioribus; ovules 8 aut 9 , legumina seminaque non vidi.

White-woolly-villous, decumbent, branched, $5^{-6} \mathrm{dm}$. tall; leaves many, white-woolly both sides, petioles short, $3-5 \mathrm{~cm}$. long, leaflets 8 to 9 , oblanceolate, acute or obtuse, $20-30$ by 5-7 mm . ; peduncles $6-10 \mathrm{~cm}$. long, racemes $15-25 \mathrm{~cm}$. long, flowers $14-16 \mathrm{~mm}$. long, spreading, verticillate, bracts deciduous, villous, 10 mm . long, pedicels $4-7 \mathrm{~mm}$. long, woolly-villous; calyx non-gibbose, woolly, upper lip bifid, lower 3 -toothed; petals broad, blue, banner suborbicular, pubescent on the back near apex, ${ }^{1}{ }^{-16} \mathrm{~mm}$. wide, with a yellow center, keel slightly curved, ciliate along acumen and middle; ovules 8 to 9 , pods and seeds not seen.

California. Monterey County: Los Pesares, Santa Lucia Mountains, 9 June, 1920, L. R. Abrams 7358 (Type, DS 103181); same, L. R. Abrams 7360 (DS).

This belongs to Heller's group Arborei (Muhlenbergia 8: 65. 1912); but cannot, as I see it, be referred to any of the described species, though having considerable resemblance to the very villous L. formosus Bridgesii Greene, of the Albicaules.

26. Lupinus Cottoni sp. nov.

Caules e stirpe ligneo eramosis corpulentis fistulosis glabratis; foliis paucis nullis ad basin, petiolis inferioribus $10-18 \mathrm{~cm}$. longis, foliolis 5 ad 9, oblanceolatis, lucido-viridis, glabris super subpubescentibus subter; pedunculis $4-10 \mathrm{~cm}$. longis, racemis $10-20 \mathrm{~cm}$. longis; floribus $\mathrm{II}-14 \mathrm{~mm}$. longis subverticillatis, pedicellis $4-5 \mathrm{~mm}$. longis gracilibus pilis pandentibus; calyce bracteolato labio superiore serrato aut integro inferiore integro, petalis latis, carina curvata paulo ciliata super marginibus; leguminibus $20 \times 5 \mathrm{~mm}$., appresso-pubescentibus, ovulis prope 6 , seminibus 4 mm . longis pallidis minute maculatis.

Glab̄rate, $30-50 \mathrm{~cm}$. tall, few-leaved, simple, stout, fistulous, from a woody caudex; leaves cauline, none strictly basal, lower petioles $10-18 \mathrm{~cm}$. long, upper shorter, stipules lance-linear, $8-20 \mathrm{~mm}$. long, leaflets five to nine, oblanceolate, acute, bright green, glabrous above, minutely and sparsely pubescent beneath, $40-70 \mathrm{~mm}$. long by $8-20 \mathrm{~mm}$. wide; peduncles $4-10 \mathrm{~cm}$. long, racemes $10-20 \mathrm{~cm}$. long; flowers $1 \mathrm{I}-14 \mathrm{~mm}$. long, subverticillate, spreading after anthesis, bracts about 5 mm . long, appressedpubescent, early deciduous, pedicels $4-5 \mathrm{~mm}$. long, slender, spreading-pubescent; calyx bracteolate, upper lip about 4 mm . long, entire or notched, lower some 5 mm . long, entire; petals wide, banner glabrous, almost as wide as long, keel arcuate, sparsely ciliate about the middle of the upper edges; pods $20 \times$ 5 mm ., appressed-hairy, ovules 6 , seeds about $4 \times 3 \mathrm{~mm}$., pale flesh-color, closely dotted with purplish brown.

Washington. Yakima County: Head of Hell Roaring River, Mount Rainier National Forest, 7000 feet, 6 Sept., 1903, J. S. Cotton 1518 (Type, SCW 13430); Mount Adams, 10 July, 1882, L. F. Henderson (UO); same, 13 Aug., 1882, (UO) ; same, 16 Aug., 1882, T. J. Howell (DS, UO).

Subalpine meadows, near snowline. Labelled L. Burkei, but evidently nearer L. Wyethii, as commonly interpreted.

The following list explains the abbreviations herein used in citing the specimens examined:

[^34]PBC, Provincial Museum, Victoria, British Columbia;
SCW, State College of Washington, Pullman;
UCX, Division of Agronomy, University of California
UO, University of Oregon, Eugene;
WSO, Willamette University, Salem, Oregon.
San Jose, California.

INDEX TO AMERICAN BOTANICAL LITERATURE

1920-1924
The aim of this Index is to include all current botanical literature written by Americans, published in America, or based upon American material; the word America being used in the broadest sense.

Reviews, and papers that relate exclusively to forestry, agriculture, horticulture, manufactured products of vegetable origin, or laboratory methods are not included, and no attempt is made to index the literature of bacteriology. An occasional exception is made in favor of some paper appearing in an American periodical which is devoted wholly to botany. Reprints are not mentioned unless they differ from the original in some important particular. If users of the Index will call the attention of the editor to errors or omissions, their kindness will be appreciated.

This Index is reprinted monthly on cards, and furnished in this form to subscribers at the rate of three cents for each card. Selections of cards are not permitted; each subscriber must take all cards published during the term of his subscription. Correspondence relating to the card issue should be addressed to Dr. Fred J. Seaver, N. Y. Botanical Garden, Bronx Park, N. Y. City.

Aamodt, O. S. The inheritance of growth habit and resistance to stem rust in a cross between two varieties of common wheat. Jour. Agr. Research 24: 457-470. pl. 1, 2. 12 My 1923.

Abrams, L. R. An illustrated flora of the Pacific states, vol. I. Pp. i-xii $+\mathrm{I}-558$. Stanford University, California. 1923. [Illust.]

Abrams, L. R., \& Coville, F. V. Juncaceae. In Abrams, L. R., An illustrated flora of the Pacific states 1:350-371. 1923. [Illust.] Includes Juncus macrandrus, sp. nov.

Allen, R. F. Cytological studies of infection of Baart, Kanred, and Mindum wheats by Puccinia graminis Tritici forms III and XIX. Jour. Agr. Research 26: 571-604. pl. 1-7. 22 D 1923.
Ames, O. Additions to the orchid flora of Central America. Sched. Orchid. 4: 1-60. pl. 2, 3. 4 My 1923.
Includes Lankasterella, gen. and sp. nov., and new species in Campylocentrum (1), Chondrorrhyncha (1), Cranichis (2), Cryptophoranthus (1), Dichaea
(1), Epidendrum (9), Habenaria (1), Malaxis (1), Oncidium (1), Ornithidium (1), Pleurothallis (1), and Stelis (3).

Ames, O. Orchidaceae quaedam americanae. Sched. Orchid. 1: 1-24. 18 N 1922.
Includes new species in Elleanthus (1), Epidendrum (9), Gomphicis (1), Lepanthes (\mathbf{I}), Physosiphon (1), Pleurothallis (3), and Stelis (6).

Ames, O. Orchidaceae quaedam americanae II. Sched. Orchid. 2: 1-38. pl. i. 6 Ja 1923.
Includes new species in Epidendrum (5), Lepanthes (2), Maxillaria (1), Ornithidium (1), Pelexia (2), Pleurothallis (5), Sarcoglottis (4), Spiranthes (1), and Stelis (I).
Ames, O. New or noteworthy orchids. Sched. Orchid. 3: 1-27. 30 Ja 1923.
Includes new American species in Lepanthes (3), Ornithocephalus (1), Pleurothallis (2), Stelis (3), Telipogon (1), and Zygopetalum (1).

Ames, O. New or noteworthy orchids from Central America and the Philippine Islands. Sched. Orchid. 5: 1 -42.f. I-6. 6 Je 1923.
Includes new American species in Campylocentrum (1), Epidendrum (2), Lepanthes (2), Lockhartia (1), Malaxis (1), Masdevallia (1), Notylia (1), Pleurothallis (3), and Trichogonidium (I).

Anderson, E. N., \& Walker, E. R. An ecological study of the Algae of some sandhill lakes. Trans. Am. Micr. Soc. 39: 51-85. pl. 3-12. 1920.
Bailey, L. H. Various cultigens, and transfers in nomenclature. Gent. Herb. 1: 113-136.f. 5I-6I. 1923.
Bakke, A. L., \& Pammel, L. H. The effect of weeds upon crop production. Proc. Iowa Acad. Sci. 29: 271-280. 1922.
Ball, C. R. Salix. In Abrams, L. R., An illustrated flora of the Pacific states 1: 487-507. 1923. [Illust.]
Bergey, D. H., and others. Bergey's Manual of determinative bacteriology. Pp. i-xii + I-442. Baltimore, Maryland. 1923.

Berry, E. W. Miocene plants from southern Mexico. Proc. U. S. Nat. Mus. 62 ${ }^{19}$: 1-27. pl. 1-7. 2 Je 1923.

Includes new species in Polypodiales (2), Urticales (1), Ranales (1), Rosales (2), Geraniales (4), Sapindales (6), Rhamnales (1), Thymeleales (3), Myrtales (4), Gentianales (2), and Personales (2).

Berry, E. W. Pathological conditions among fossil plants. In Moodie, R. L., Paleopathology 99-108. pl. 12, 13. Urbana, Illinois. 1923.
Berry, E. W. Tertiary fossil plants from the republic of Haiti. Proc. U.S. Nat. Mus. 62 ${ }^{14}$: $\mathbf{1}-\mathbf{1 0}$. pl. $I+f .1,2.28$ D 1922. Includes new species in Characeae (I), Polypodiaceae (I), Simarubaceae (1), Lauraceae (1), and Sapotaceae (3).

Berry, E. W. Tree ancestors-a glimpse into the past. Pp. $\mathrm{i}-\mathrm{vi}+\mathrm{I}-270$. f. 1 -48. $\quad 1923$.

Berry, J. A comparative study of the red-seeded and common dandelion [Taraxacum]. Proc. Iowa Acad. Sci. 29: 313-318. 1922.

Bessey, E. A. Nymphaea microphylla in Michigan. Pap. Michigan Acad. Sci., Arts \& Lett. 1: 59, 60. F 1923.

Bigelow, N. K. The plankton of Lake Nipigon [Ontario] and environs. Univ. Toronto Stud. Biol. Ser. 22: 39-66. 1923.

Biourge, P. Les moisissures du groupe Penicillium Link. Cellule 33: 1-332. pl. 1-23. 1923.

Bisby, G. R., \& Buller, A. H. R. Preliminary list of Manitoba Fungi. Trans. Brit. Mycol. Soc. 8: 91-109. 14 D 1922.

Black, O. F., Kelly, J. W., \& Turner, H. C. Poisonous properties of Bikukulla cucullaria (Dutchman's-breeches) and B. canadensis (Squirrel-corn). Jour. Agr. Research 23: 69-78. pl. 1. I3 Ja 1923.

Blake, S. F. Three new composites from Bolivia. Proc. Biol. Soc. Washington 36: 51-54. 28 Mr 1923. New species in Erigeron (1), Aspilia (1), and Calea (1).

Blake, S. F. Meliaceae. [In Standley, P. C., Trees and shrubs of Mexico.] Contrib. U.S. Nat. Herb. 23:553-563. 1923.
Blake, S. F. Polygalaceae. [In Standley, P. C., Trees and shrubs of Mexico.] Contrib. U.S. Nat. Herb. 23: 578-595. 1923.

Bouly de Lesdain, M. Lichens du Mexique (Etats de Puebla et Michoacan) recuillis par le frère G. Arsène Brouard. Ier Supplement. Pp. 1-24. [1923].

Bower, F. O. The ferns (Filicales) treated comparatively with a view to their natural classification, vol. I. Pp. i-x $+1-$ 360.f. 1-307. Cambridge, England. 1923.

Bowman, H. H. M. The development and activation of hibernacula. Pap. Michigan Acad. Sci., Arts \& Lett. 1: 61-73. pl. 26-29. F 1923.

Britton, N. L. Cyperaceae [excluding Carex]. In Abrams, L. R., An illustrated flora of the Pacific states 1: 255-280. 1923. Includes Cyperus Hanseni sp. nov., from California.
Britton, N. L., \& Standley, P. C. Three new plants of the family Rubiaceae from Trinidad. Jour. Washington Acad. Sci. 13: 105-107. 19 Mr 1923. New species in Evea (1) and Urceolaria (2).
Brown, N. A. Experiments with Paris daisy and rose to produce resistance to crown gall. Phytopathology 13: 85-99. pl. 3, 4 +f. 1-4. 27 F 1923.
Burnham, S. H., \& Latham, R. A. The flora of the town of Southold, Long Island, and Gardiner's Island, New York. Torreya 23: 3-9, 25-31. 1923.
Burt, E. A. Higher Fungi of the Hawaiian Islands. Ann. Missouri Bot. Gard. 10: 179-190. Ap 1923.
Calvino, M. Quinientas toneladas anuales de forraje fresco. Cuba Secr. Agric. Com. y Trab. Bol. 50: I-40. N 1922. [Illust.]

Camp, A. F. Citric acid as a source of carbon for certain Citrus fruit-destroying Fungi. Ann. Missouri Bot. Gard. 10: 213-298. pl. 14 +f. r-21. S 1923.
Cardot, J., \& Brotherus, V. F. Botanische Ergebnisse der Schwedischen Expedition nach Patagonien und dem Feuerlande 1907-1909. X. Les Mousses. Kungl. Svenska Vetensk. Handl. 63 ${ }^{10}$: 1-74. pl. 1-4. 7 F 1923. Includes 73 new species of mosses.
Carey, C. L. The relation of acidity to carbon dioxide adsorption by certain gels and plant tissues. Physiol. Researches 2: 407, 408. My 1923.

Cavanagh, L. M. Notes on the genus Catharinea in Iowa. Proc. Iowa Acad. Sci. 28: 223, 224. Ap 192 I.

Chermezon, H. Sur la position systématique du genre Remirea. Bull. Soc. Bot. France 69: 809-814. 1923.

Chiovenda, E. La culla del cocco. (Contributo alla ricerca della patria originaria della Palma del Cocco.)-V. Webbia 5: 359-450. 1923.

Colin, H., \& Franquet, R. Greffes d'Helianthus à inuline sur soleil annuel et sur diverses Composées. Bull. Mus. Nat. Hist. Natur. 1923: 119-121. 1923.

Conard, H. S. A manual of the ferns and "fern-allies" of Grinnell [Iowa] and vicinity. Proc. Iowa Acad. Sci. 29: 317-327. 1922.

Conard, H. S. A manual of the Gymnosperms ("evergreens') of Iowa, both native and cultivated. Proc. Iowa Acad. Sci. 29: 328-338. . 1922.

Coulter, M. C. Outline of genetics, with special reference to plant materials. Pp. i-viii + I-212.f. I-34. Ap 1923.
Cratty, R. I. Dr. Rudolph Gmelin and his collection of Minnesota, Wisconsin and Iowa plants. Proc. Iowa Acad. Sci. 28: 247-255. 1921.

Cratty, R. I. Two additions to our list of Cruciferae. Proc. Iowa Acad. Sci. 28: 256-262.f. 32-35. 1921.

Cremer, H. Untersuchungen über die periodischen Bewegungen der Laubblätter. Zeits. Bot. 15: 593-656. f. 1-66. 1923.

Czurda, V. Zur Kenntnis der Brutzweibeln von Lycopodium Selago und L. lucidulum. Flora 116: 457-475.f. 1-7. 1923.

Darlington, H. T. Contributions to the flora of Gogebic County, Michigan. Pap. Michigan Acad. Sci., Arts \& Lett. 1: 74-82. F 1923.
Davidson, A. New plants from S. California. Bull. S. California Acad. Sci. 22: 5, 6, 70-74. pl. 16-20. 1923.
New species in Aster (1), Dudleya (1), Gilia (2), Hasseanthus (1), and Allium (1).

Davidson, J., \& Le Clerc, J. A. Effect of various inorganic nitrogen compounds, applied at different stages of growth, on the yield, composition, and quality of wheat. Jour. Agr. Research 23: 55-68. I3 Ja 1923.

Deletang, L. F. Diatomeas subfosiles de Quilino (Córdoba [Argentina]) e importancia de las investigaciones micropaleontológicas. Physis 6: 22-29. 30 N 1922.

Demerec, M. Inheritance of white seedlings in maize. Genetics 8: 561-593. N 1923.

Dietel, P. Ein neues Coleosporium aus Mexico. Ann. Mycol. 21:340,341. 1923.
Coleosporium Reichei sp. nov.
Dodge, B. O. Thie distribution of the orange rusts $=$ of Rubus. Phytopathology 13: 6I-74. 27 F 1923.

Duggar, B. M., \& Armstrong, J. K. Indications respecting the nature of the infective particles in the mosaic disease of tobacco. Ann. Missouri Bot. Gard. 10: 191-212. S 1923.

Durrell, L. W. The nodal infection of corn by Diplodia Zeae. Proc. Iowa Acad. Sci. 29: 346, 347. 1922.
Edson, H. A., \& Shapovalov, M. Parasitism of Sclerotium Rolfsii on Irish potatoes. Jour. Agr. Research 23: 41-46. pl. I-3. 6 Ja 1923.

Ellsworth, W. Parry's catalog of Iowa plants of 1848 . Proc. Iowa Acad. Sci. 29: 339-344. 1922.
Elmer, O. H. Studies of insect transmission and cross-inoculation of mosaic on the Solanaceae, Cucurbitaceae and Leguminosae. Proc. Iowa Acad. Sci. 29: 311, 312. 1922.
Elmore, C. J. The diatoms (Bacillarioideae) of Nebraska. Nebraska Univ. Stud. 21: 22-170. pl. 1-22. O 1921.
Emerson, R. A. The inheritance of blotch leaf in maize. Cornell Univ. Agr. Exp. Sta. Mem. 70: 1-16. pl. 1-3. Je 1923.
Farwell, O. A. Notes on the Michigan flora. Pap. Michigan Acad. Sci., Arts \& Lett. 1: 85-100. F 1923. Includes Gentiana Billingtonii sp. nov.

Fawcett, H. S., Horne, W. T., \& Camp, A. F. Citrus blast and black pit. Univ. California Agr. Exp. Sta. Techn. Pap. 5: 1-24.pl. 1-6. My 1923.

Fernald, M. L., \& Wiegand, K. M. Notes on some plants of the Ontario and St. Lawrence basins, New York. Rhodora 25: 205-214. D 1923.

Garner, W. W., McMurtrey, J. E., Bacon, C. W., \& Moss, E. G. Sand drown, a chlorosis of tobacco due to magnesium deficiency, and the relation of sulphates and chloride of potassium to the disease. Jour. Agr. Research 23: 27-40. pl. 1-7. 6 Ja 1923.

Geitler, L. Der Zellbau von Glaucocystis Nostochinearum und Gloeochaete Wittrockiana und die Chromatophoren-Symbiosetheorie von Mereschkowsky. Arch. Protistenk. 47: I-24.f. I-8. 8 N 1923.

Godfrey, G. H. A Phytophthora footrot of rhubarb. Jour. Agr. Research 23: 1-26. pl. $1-12+f .1-3.6 \mathrm{Ja} 1923$.

Goodspeed, T. H. A preliminary note on the cytology of Nicotiana species and hybrids. Svenska Bot. Tidskr. 17: 472-478.f.1,2. 1923.

Greenman, J. M. Studies of South American Senecios-I. Ann. Missouri Bot. Gard. 10: 73-98. F 1923.
Includes 13 new species.
Håkansson, A. Studien über die Entwicklungsgeschichte der Umbelliferen. Lunds Univ. Årsskr. II 2:187: 1-120. pl. I + f. I-18. 1923.

Haley, D. E. Availability of potassium in orthoclase for plant nutrition. Soil Sci. 15: 167-180. Mr 1923.

Hall, H. M., \& Clements, F. E. The phylogenetic method in taxonomy.-The North American species of Artemisia, Chrysothamnus, and Atriplex. Carnegie Inst. Washington Publ. 326: 1-356. pl. 1 -58 +f. 1-47. 20 Jl 1923.

Harrington, G. T. Forcing the germination of freshly harvested wheat and other cereals. Jour. Agr. Research 23: 79-100. 13 Ja 1923.

Harrington, G. T. Respiration of apple seeds. Jour. Agr. Research 23: 117-130. 13 Ja 1923.

Hartmann, A. Zur Entwicklungsgeschichte und Biologie der Acanthaceen. Flora 116: 216-258. pl. r-4. 1923.

Hassler, E. Una nueva especie de lirio del Paraguay y de Misiones. Physis 6: 359-361. 30 Ap 1923. Marica candida, sp. nov.

Hassler, E. Una nueva especie de seibo. Physis 6: 123-125. 30 N 1922.
Erythrina Dominguezii, sp. nov., from Argentina, Paraguay, and Gran Chaco.

Hauman, L. La vegetación de la isla Martín Garcia [Argentina]. Physis 7: 55. 21 S 1923.

Hauman, L. Para la protección de la naturaleza en la Republica Argentina. Physis 6: 283-300. pl. 1-8. 30 Ap 1923. Contains information of special natural areas of Argentina.
Hauman, L. "Nomina conservanda" et "Nomina rejicienda." Physis 6: 88-98. 30 N 1922.
Lists for plants of Argentina.
Hauman, L. El género "Proserpinaca L." en la America del Sur. Physis 6: 151. 30 N 1922.

Heppner, M. J. A study of deciduous fruit tree rootstocks with special reference to their identification. Univ. California Agr. Exp. Sta. Techn. Pap. 6: i-26. pl. r-6. Je 1923.
[Herrera, A. L.] Catalogo alfabetico de nombres vulgares y científicos de plantas que existen en Mexico. Pp. 1-32. Mexico. 1923.

Herzfelder, H. Experimente an Sporophyten von Funaria hygrometrica. Flora 116: 476-490. pl. $7+$ f. 1-5. 1923.
Herzog, T. Die Pflanzenwelt der bolivischen Anden und ihres östliches Vorlandes. Vegetation der Erde 15: 1-258. f. 1-25. 1923.

Hill, A. F. The vegetation of the Penobscot Bay region, Maine. Proc. Portland Soc. Nat. Hist. 3: 307-438. f. 1-50. 1923.

Hitchcock, A. S. Poaceae. In Abrams, L. R., An illustrated flora of the Pacific States 1: 103-255. 1923. [Illust.]
Includes Festuca Tracyi sp. nov., from California.
Hoehne, F. C. Phytophysionomia do Estado de Matto-Grosso [Brazill' e ligeiras notas a respeito da composição e distribucão de sua flora. Pp. i-104. Sao Paulo, Brazil. 1923. [Illust.]

Hoehne, F. C. Contribuicão ao conhecimento das Leguminosas da Rondonia [Brazil]. Comm. Linh. Telegr. Estrat. de Matto-Grosso ao Amazonas Annex. 5 Bot. 12: 1-28. pl. 178-192. 1922.
Includes new species in Inga (1), Calliandra (I), Mimosa (4), Macrolobium (1), Cassia (4), Swartzia (2), Arachis (1), and Centrosema (1).

Hoehne, F. C., \& Pilger, R. Novidades da flora Mattogrossenes [Brazil] e do hervario da Commissão Rondon. Revista Mus. Paulista 13: 1245-1252. pl. 1, 2. 1923.
Includes new species in Arthropogon (1), Capparis (1), Hirtella (2), and Aniseia (I).

Howe, M. A. Two new Lithothamnieae, calcareous Algae, from the lower Miocene of Trinidad, British West Indies. Proc. U. S. Nat. Mus. 62 ${ }^{7}$: I-3. pl. I-4. 22 D 1922.

Hubert, E. E. The red stain in the wood of boxelder [Acer Negundo L.]. Jour. Agr. Research 26: 447-458. pl. I-3 + f. 1, 2. 8 D 1923.

Caused by Fusarium Negundi Sherbakoff, sp. nov.
Hughes, D. K. Orthacne and Streptachne. Kew Bull. Misc. Inform. 1923: 301-303. 1923. [Illust.]

Hutchinson, J. Affinity of Rhododendron micranthum. Kew Bull. Misc. Inform. 1923: 299-30I. 1923.
Suggested kinship with Ledum glandulosum Nutt. of western North America.

Hutchinson, J. Contributions towards a phylogenetic classification of flowering plants. Kew Bull. Misc. Inform. 1923: 65-89, 241-261. 1923. [Illust.]
Ingham, W. Georgian mosses. Rev. Bryol. 48: 43. 1921. A short list of mosses from British Columbia.

Irmscher, E. Pflanzenverbreitung und Entwicklung der Kontinente. Mitteil. Inst. Allg. Bot. Hamburg 5: 17-235. 1922.

Iwanoff, L. A., \& Thielmann, M. Über den Einfluss des Lichtes verschiedener Wellenlange auf die Transpiration der Pflanzen. Flora 116: 296-311. 1923.
Jennison, H. M. Potato blackleg-with special reference to the etiological agent. Ann. Missouri Bot. Gard. 10: 1 -68. pl. 1, 2. F 123.

Jones, F. R. Stem and rootrot of peas in the United States caused by species of Fusarium. Jour. Agr. Research 26: 459-476. pl. I +f. I. 8 D 1923.
Kauffman, C. H. The mycological flora of the higher Rockies of Colorado. Pap. Michigan Acad. Sci., Arts \& Lett. 1: 101-150. pl. 30-34. F 1923.
Includes new species in Helotium (I), Boletus (1), Corinarius (7), Marasmius (2); Pholiota (1), and Tricholoma (1).
Keller, R. Über neue Arten der Gattung Hypericum. Bot. Jahrb. Syst., Pflanzengesch. u. Pflanzengeog. 58: 193-199. 1923.

Includes 8 new American species.
King, C. J. Habits of the cotton rootrot fungus. Jour. Agr. Research 26: 405-418. pl. $1-7+f .1$-4. I D 1923.

Knowlton, C. H. Butomus umbellatus on the St. Lawrence River. Rhodora 25: 220, 221. D 1923.
Kofoid, C. A., Severin, H. H. P., \& Swezy, O. Nelson's spiral bodies in tomato mosaic. Phytopathology 13: 330, 331 . 28 Jl 1923.
Kränzlin, F. Orchidaceae-Monandrae-Pseudomonopodiales. Pflanzenreich IV 50: 1 -66. f. 1 -5. 1923. Includes new American species in Lockhartia (3), Pachyphyllum (4), and Dichaea (13).

Kuhlmann, J. G. Gramineas (I fasc.). Comm. Linh. Telegr. Estrat. de Matto-Grosso ao Amazonas [Brazil] Annex. 5 Bot. 11: 1-96. pl. 1-6. 3 Mr 1922.
Includes Spheneria, gen. nov., and Ichnanthus Rondonii, sp. nov.

Kuhlmann, J. G. Contribuicão para o conhecimento de una nova especie de Lentibulariaceae. Comm. Linh. Telegr. Estrat. de Matto-Grosso ao Amazonas [Brazil] Annex. 5 Bot. 13: 1, 2. Ap 1923. [Illust.]
Utricularia Hoehnei, sp. nov., from Brazil.
Kylin, H. Studien über die Entwicklungsgeschichte der Florideen. Kungl. Svenska Vetensk. Handl. 63 ${ }^{11}$: $\mathbf{I}-\mathbf{I} 39$. f. 1 -82. 10 Mr 1923.

La Rue, C. D. Notes on a bud-sport of Hibiscus mutabilis L. Pap. Michigan Acad. Sci., Arts \& Lett. 1: 151-154. F 1923.

Laurent, V. Zur Entwicklungsgeschichte von Corytoloma cyclophyllum Dus. n. sp. ined. Svensk. Bot. Tidskr. 17: 165174.f. 1-3. 1923.

Corytoloma cyclophyllum, sp. nov., from Brazil.
Lavialle, P., \& Delacroix, J. Caractères histologiques du péricarpe et déhiscence du fruit chez les Euphorbes. Bull. Soc. Bot. France 69: 585-590. f. I, 2. 1923.

Lehman, S. G. Pod and stem blight of soybean. Ann. Missouri Bot. Gard. 10: 111-178. pl. $9-13+f .1-13$. Ap 1923.

Leonard, L. T. Nodule-production kinship between the soybean and the cowpea. Soil Sci. 15: 277-284. Ap 1923.
Linsbauer, K. Über die Interferenz von Stossreizen und über Ermüdungserscheinungen an Blattgelenken von Mimosa pudica. Jahrb. Wissensch. Bot. 62: 283-327.f. 1-9. 1923.

Lizer, C. Una nueva criptógama para la Argentina. Physis 6: 325. 30 Ap 1923. Pseudoaplosporella aurantiorum Speg.

Loeske, L. Bryologische Notizen. Herbarium 2: 145-149. 1923.

Lutz, F. E. Altitude in Colorado and geographical distribution. Bull. Amer. Mus. Nat. Hist. 46: 335-366. f. I-Q. 31 My 1922.

Data considered are chiefly botanical.
Mackenzie, K. K. Carex. In Abrams, L. R., An illustrated flora of the Pacific states 1:282-344. 1923. [Illust.] Includes 2 new species.

Malme, G. O. A:N. Desmodii species in Herbario Regnelliano asservatae. Arkiv Bòt. 187: i-20. pl. i-4. 22 N 1922. Includes 4 new species of Desmodium from Brazil.
Malme, G. O. A:N. Die Flechten der ersten Regnellschen Expedition. Die Gattungen Bombyliospora, Megalospora, Catillaria und Rhizocarpon. Arkiv Bot. 18 ${ }^{12}$: $1-18.2 \mathrm{~F}$ 1923.

Includes new species from Brazil in Megalospora (I) and Catillaria (6).
Marchionatto, J. B. Contribucion al estudio de los hongos parasitos de nispero del Japon. Rev. Facult. Agron. Univ. Nac. La Plata 15: 69-72. 1923. [Illust.]
Marchionatto, J. B. Sobre la presencia de la Sclerotinia Trifoliorum Erikss. en la Republica Argentina. Rev. Facult. Agron. Univ. Nac. La Plata 15: 65-67. 1923. [Illust.]
Marchionatto, J. B. Notas sobre la S[ophora] japonica L. y la S. tomentosa L. Rev. Facult. Agron. Univ. Nac. La Plata 15: 73-76. 1923. [Illust.]
Marquand, C. V. B. Additions to the flora of the Falkland Islands. Kew Bull. Misc. Inform. 1923: 369-37I. 1923.
Martin, J. N. The structure and development of the seed coat and cause of delayed germination in Melilotus albus. Proc. Iowa Acad. Sci. 29: 345, 346. 1922.
Martin, J. N., Werkenthin, F. C., \& Hudson, E. Structure and function of the stigma in relation to the germination requirements of the pollen in the Easter Lily. Proc. Iowa Acad. Sci. 29: 345. 1922.

Martin, T. L. Soil flora studies. Soil Sci. 16:475-478. D 1923.
Mason, T. G. A note on growth and the transport of organic substances in bitter cassava (Manihot utilissima). Sci. Proc. Roy. Dublin Soc. 17: 105-112. Je 1923.

Maximow, N. A. Physiologisch-ökologische Untersuchungen über die Dürreresistenz der Xerophyten. Jahrb. Wissens. Bot. 62: 128-144. 1923.
Maxon, W. R. A new Dryopteris from Dominica. Proc. Biol. Soc. Washington 36: 49, 50. 28 Mr. 1923. Dryopteris mollicella sp. nov.

Maxon, W. R. The genus Microstaphyla. Jour. Washington Acad. Sci. 13: 28-31. I9 Ja 1923. Includes Microstaphyla columbiana sp. nov.

Maxon, W. R. Pteridophyta [excluding Isoetaceae]. In Abrams, L. R., An illustrated flora of the Pacific states 1: $1-35,38-50$. 1923. [Illust.]

Mazza, A. Aggiunte al saggio di Algologia Oceanica. Nuov. Notar. 35: 1-27. 1923. [" 1924."]

McAtee, W. L. Notes on interesting plants of Michigan. Pap. Michigan Acad. Sci., Arts \& Lett. 1: 155-166. F 1923. Being notes made by the late C. F. Wheeler.

McCrea, A. Longevity in spores of Aspergillus Oryzae and Rhizopus nigricans. Science II 58: 426. 23 N 1923.

McKee, R. History and seed production of purple vetch. U. S. Dept. Agr. Circ. 256: 1-5.f. I. F 1923.

McKinney, H. H., Eckerson, S. H., \& Webb, R. W. The intracellular bodies associated with the rosette disease and a mosaiclike leaf mottling of wheat. Jour. Agr. Research 26: 605-608. pl. $1-8.22$ D 1923.

Miller, R.B. First report on a forestry survey of Illinois. Bull. Illinois Nat. Hist. Surv. 14: 291-378. pl. 72-100. Mr 1923. [With map.]

Molfino, J. F. Una Burmaniácea interesante para Misiones: "Apteria lilacina" Miers. Physis 6:328-330. 30 Ap 1923. [With plate.]

Molfino, J. F. Cuatro Eriocauláceas para la Argentina. Physis 6: 361-363. 30 Ap 1923.

Molfino, J. F. Enumeración de las Lentibularíáceas argentinas. Physis 6: 353-355. 30 Ap 1923.

Molfino, J. F. Monocotiledóneas para la Argentina. Physis 6: 152-154. 30 N 1922.
Molfino, J. F. Nictagináceas de interes para la flora Argentina. Physis 7: 50-53. 21 S 1923.

Molfino, J. F. Notas botanicas-I. Physis 6: 128-150. 30 N 1922.

Molfino, J. F. "Physostemon," un nuevo genero de Caparidáceas para el pais [Argentina]. Physis 7: 53. 21 S 1923.

Mounce, I. Homothallism and heterothallism in the genus Coprinus. Trans. Brit. Mycol. Soc. 7: 256-269. 2 I Jl 1922.

Mounce, I. Homothallism and the production of fruit-bodies by monosporous mycelia in the genus Coprinus. Trans. Brit. Mycol. Soc. 7: 198-217.pl. 6, 7. 13 D 1921.

Muncie, J. H. The relation of cucurbit mosaic to wild catnip. Proc. Iowa Acad. Sci. 29: 346. 1922.

Munz, P. A. Southern California plant notes-I. Bull. S. California Acad. Sci. 22: 7-11. Mr 1923.
Murphy, P. A. On the cause of rolling in potato foliage; and on some further insect carriers of the leaf-roll disease. Roy. Dublin Soc. Sci. Proc. 17: 163-184. pl. 6. Je 1923.

Neger, F.W. Beiträge zur Biologie der Erysìpheen.-III. Flora 116: 331-335.f. I. 1923.
Newhall, A. G. Seed transmission of lettuce mosaic. Phytopathology 13: 104-106. 27 F 1923.
Newton, J. D. A comparison of the absorption of inorganic elements, and of the buffer systems of legumes and nonlegumes, and its bearing upon existing theories. Soil Sci. 15: 181-204. Mr 1923.
Nichols, G. E. A working basis for the ecological classification of plant communities. Ecology 4: II-23, 154-179. 1923.

Nordenskiold, E. Deductions suggested by the geographical distribution of some post-Columbian words used by the Indians of S. America. Pp. I-I76. Göteborg, Sweden. 1922.

Contains a chapter on "The introduction of the banana into S. America."
Oehlkers, F. Vererbungsversuche an Oenotheren IL. Zeits. Indukt. Abstamm. u. Vererbungsl. 31: 20I-260. f. 1-17. 1923.

Olmsted, F. C., Coville, F. V., \& Kelsey, H. P. Standardized plant names. Pp. i-xvi+1-546. Salem, Massachusetts. 1923.
"A catalogue of approved scientific and common names of plants in American commerce."

Oppenheimer, H. Keimungshemmende Substanzen in der Frucht von Solanum Lycopersicum und in anderen Pflanzen. Sitzungsber. Akad. Wissens. Wien 131: 59-64. 1922.

Osterhout, W. J. V. Injury, recovery, and death, in relation to conductivity and permeability. Pp. i-260.f. 1 -q6. Philadelphia. 1922.

Oudemans, C. A. J. A. Enumeratio systematica fungorum, vol. 4. Pp. i-xiv+1-1232. Hague, Netherlands. 1923.

Pammel, L. H. The species of Rhamnus in southwestern United States and the Pacific coast and Puccinia coronata. Proc. Iowa Acad. Sci. 29: 267-270. 1922.

Pammel, L. H. Notes on the flora of Yosemite [California] and adjacent regions. Proc. Iowa Acad. Sci. 29: 245-256. f. I-6. 1922.

Pammel, L. H. Shrubs of the McGregor [Iowa] district. Proc. Iowa Acad. Sci. 28: 268-272. 192 I.
Pammel, L. H. Trees of the proposed Mississippi Valley National Park. Proc. Iowa Acad. Sci. 28: 265-267. 1921.
Pammel, L. H., \& King, C. M. Studies in the germination of some woody plants. Proc. Iowa Acad. Sci. 28: 273-282. f. 36-48. 1921.

Pammel, L. H., \& King, C. M. Germination studies of some shrubs and trees. Proc. Iowa Acad. Sci. 29: 257-266. f. 1-14. 1922.

Parish, S. B. Cleomella obtusifolia, Torr. \& Frem. Bull. S. California Acad. Sci. 22: 12-14. Mr 1923.

Parodi, L. R. Algunas Gramineas mal conocidas o nuevas para la flora Argentina. Physis 6: iol-104. 30 N 1922.

Parodi, L. R. Nuevas Gramineas para la flora Argentina. Physis 7: 56-62.f. 1-3. 21 S 1923.

Payne, F. W. Liostephania and its allies. Pp. 1-30. pl. 1-4. London, England. 1922.

Pennell, F. W. Through the Andes of western Colombia. Ann. Rep. Acad. Nat. Sci. Philadelphia 1922: 15-28. 1923. [Illust.]

Petrak, F. Mykologische Notizen V. Ann. Mycol. 21: I-69. 1923.

Petrak, F. Mykologische Notizen V1. Ann. Mycol. 21: 182335. 1923.

Includes Brencklea, gen. nov., from Dakota, and new species from Porto Rico in Peroneutypa (1), Calosphaeria (1), Physalospora (1), Psiloglonium (I), and Patellaria ($\mathbf{1}$).

Petrak, F., \& Sydow, H. Kritisch-systematische Originaluntersuchungen über Pyrenomyzeten, Sphaeropsideen und Melanconieen. Ann. Mycol. 21: 349-384. 1923. Includes Rhynchostomopsis, gen. nov., from Brazil.

Pfeiffer, N. E. Isoetaceae. In Abrams, L. R., An illustrated flora of the Pacific states 1:35-38. 1923. [Illust.]

Raeder, J. M. Study of the Phycomycetes of Iowa. Proc. Iowa Acad. Sci. 28: 283-293. 1921.

Rawitscher, F. Epinastie und Geotropismus. Zeits. Bot. 15: 65-100. pl. I. 1923.
Reports experiments made with Tradescantia.
Reddy, C. S., \& Godkin, J. A bacterial disease of brome-grass. Phytopathology 13: 75-86. pl. 1, 2. 27 F 1923.

Reed, H. S. A note on the statistics of cyclic growth. Proc. Nat. Acad. Sci. 9: 65-67.f. I. I5 Mr 1923.

Reed, H. S., \& Haas, A. R. C. Effect of sodium chloride and calcium chloride upon growth and composition of young orange trees. Univ. California Agr. Exper. Sta. Techn. Pap. 4: 1-22. pl. 1-6. Ap 1923.
Riker, A. J. Some morphological responses of the host tissue to the crown-gall organism. Jour. Agr. Research 26: 425436. pl. r-6. I D 1923.

Riley, L. A. M. Contributions to the flora of Sinaloa: I. Kew Bull. Misc. Inform. 1923: 103-115. 1923.
Includes new species in Halimium (1), Polygala (1), Anoda (1), and Triumfetta (\mathbf{I}).

Riley, L. A. M. Contributions to the flora of Sinaloa: II. Kew Bull. Misc. Inform. 1923: 163-175. 1923.
Includes new species in Bursera (4) and Rhamnus (2).
Riley, L. A. M. Contributions to the flora of Sinaloa: III. Kew Bull. Misc. Inform. 1923: 333-346. 1923.
Includes new species in Crotalaria (I), Lupinus (1), Hosackia (1), and Tephrosia (2).

Riley, L. A. M. Contributions to the flora of Sinaloa: IV. Kew Bull. Misc. Inform. 1923: 388-401. 1923.
Includes new species in Acacia (1) and Inga (1).
Riley, [L. A. M.] Aeschynomene bracteolaris Riley. Kew Bull. Misc. Inform. 1923: II5, I16. 1923.
New species from Mexico.
Riley, [L. A. M.] Buchnera minor Riley. Kew Bull. Misc. Inform. 1923: 117. 1923.
Buchnera minor (Hemsley) Riley from Mexico.
Riley, [L. A. M.] Vaccinium Gonzalezii Riley. Kew Bull. Misc. Inform. 1923: 116.1923.
New species from Mexico.
Roberts, J. W. A bud-rot of the peach caused by a species of Fusarium. Jour. Agr. Research 26: 507-512. pl. I + f. I. 8 D 1923.

Rodriguez, L. Contribution a l'étude de la flore du Guatémala. Bull. Soc. Bot. France 69: 814-818. 1923.

Roig, J. T. Reseña sobre una excursion botanica a Isla de Pinos. Mem. Soc. Cubana Hist. Nat. Poey 5: 72-76. 1923.

Rosen, H. R. A bacterial disease of foxtail (Chaetochloa lutescens). Ann. Missouri Bot. Gard. 9: 333-402. N 1922.
Rudolfs, W. Influence of temperature and initial weight of seeds upon the growth rate of Phaseolus vulgaris seedlings. Jour. Agr. Research 26: 537-540. I5 D 1923.

Ruth, W. A. The effect of Bordeaux mixture upon the chlorophyll content of the primordial leaves of the common bean, Phaseolus vulgaris L. Am. Jour. Bot. 9: 535-550. 1922.

Rydberg, P. A. Flora of the Rocky Mountains and adjacent plains. Ed. II. Pp. i-xii $+1-1143$. New York. 1922. Includes new species in Celtis (r), Cartiera (r), Xylophacos (1), Homzlobus ($\mathbf{1}$), and Comandra ($\mathbf{1}$).

Rydberg, P. A. Galegeae (pars). N. Am. Fl. 24: 155-200. 16 Jl 1923.
Includes new species in Cracca (13) and Brongniartia (8).
Samuelsson, G. Revision der sudamerikanischen Epilobiumarten. Svensk Bot. Tidskr. 17: 241-296. 1923.
Includes 15 new species from South America.
Sartory, A., \& Maire, L. Compendium Hymenomycetum. Amanita. Pp. r-318. Paris, France. 1922-1923. [Illust.]

Sax, K. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8: 552-560. N 1923 .

Scala, A. C. Contribución al conocimiento histologico de la yerba-mate y sus falsificaciones. Rev. Mus. La Plata 26: 69-165.f. 1-142. 1922.
Study of Ilex paraguayensis.
Schaffner, J. H. Additions to the catalog of Ohio vascular plants for 1922. Ohio Jour. Sci. 23: 107-114. Ap 1923.

Schmidt, D. The relation of seed weight to the growth of buckwheat in culture solution. Soil Sci. 15: 285-292. Ap 1923.

Schürhoff, P. N. Zur Apogamie von Calycanthus. Flora 116: 73-84. 1923.

Scouvart, A. Les arbres géants de la Californie. Bull. Soc. Roy. Bot. Belgique 55: 73-86. pl. 2, 3. 1923.
Shantz, H. L. The natural vegetation of the Great Plains region. Ann. Assoc. Am. Geog. 13: 81-107. pl. 3-8. Je 1923.

Shimek, B. The genus Ceanothus L. in Iowa. Proc. Iowa Acad. Sci. 28: 230-242. pl.8. 1921.
Shimek, B. The use of common names for plants. Proc. Iowa Acad. Sci. 28: 225-229. 192 I.
Skottsberg, C. Botanische Ergebnisse der Schwedischen Expedition nach Patagonien und dem Feuerlande 1907-1909. IX. Marine Algae. 2. Rhodophyceae. Kungl. Svenska Vetensk. Handl. 63²: 1-70.f. I-29. 8 Mr 1923.
Includes Dendrymenia, Microrhinus, Pseudophycodrys, and Anisocladella, gen. nov., and new species in Gracilaria (I), Delesseria (I), Phycodrys (I), and Platyclinia (I).
Small, J. The wanderings of the groundsel [Senecio vulgaris]. Bot. Soc. \& Exch. Club British Isles 6: 78x-785. 1923. Treats of the ancestry of the Compositae.
Small, J. K. Land of the question mark. Jour. New York Bot. Gard. 24 : 1-23, 62-70. 1923.
"Report of exploration in Florida in December, 1920."
Souges, R. Recherckes sur l'embryogénie des Solanacées. Bull. Soc. Bot. France 69: 555-585.f. 126-259. 1923.
Spegazzini, C. Algunos hongos de Tierra del Fuego. Physis 7: 7-23. 21 S 1923. [Illust.]
Includes Dictyochaeta, gen. nov., and new species in Calospora (1), Zignoella (1), Acrospermum (I), Humaria (1), Helotium (1), Agyrium (1), Phacio dium (1), and Dictyochaeta ($\mathbf{1}$).
Spegazzini, C. Algunas observaciones relativas al suborden de las Mimosoideas. Physis 6: 308-315. 30 Ap 1923.
Includes Manganaroa, Pithecodendron, and Anadenanthera, gen. nov.
Spegazzini, C. Descripción de hongos mirmecofilos. Rev. Mus. La Plata 26: 166-174.f. 1-5. 1922.
Includes new species in Locellina (I) and Poroniopsis (1).
Spegazzini, C. Fitoadénomas. Physis 6: 325-327. f. 1-3. 30 Ap 1923.
Discusses nectaries on leaves of Ipomoea fistulosa Mart.
Spegazzini, C. Observaciones relativas a las espècies del genero "Convolvulus" de los alrededores de la ciudad de La Plata. Physis 6: 220-237. pl. 1-7. 30 Ap 1923.
Includes 2 new hybrids of Convolvulus.

Sprague, T. A. Notes on Heliocarpus. Kew Bull. Misc. Inform. 1923: 348-35I. 1923.
Includes 2 new species from Central America.
Sprague, [T. A.], \& Riley, [L. A. M.] Calliandra confusa Sprague et Riley (Leguminosae-Ingeae). Kew Bull. Misc. Inform. 1923: 371, 372.1923.
New species from Guatemala.
Sprague, [T. A.] \& Riley,[L. A. M.] Calliandra similis Sprague et Riley (Leguminoseae-Ingeae). Kew Bull. Misc. Inform. 1923: 372, 373. 1923.
New species from Costa Rica.
Sprague, [T. A.] \& Riley, [L. A. M.] Piriqueta (Erblichia) xylocarpa Sprague et Riley (Turneraceae). Kew Bull. Misc. Inform. 1923: 373. 1923.
New species from British Honduras.
Staedtier, G. Über Reduktionserscheinungen im Bau der Antherenwand von Angiospermen-Blüten. Flora 116: 85-108. 1923.

Standley, P. C. Trees and shrubs of Mexico (OxalidaceaeTurneraceae). Contrib. U. S. Nat. Herb. 23: 517-848 + I-XXVIII. 1923.
Includes Orthosphenia and Calatola, gen. nov., and new species in Rutaceae (1), Euphorbiaceae (3), Aquifoliaceae (1), Celastraceae (6), Hippocrateaceae (1),

Icacinaceae (2), Sapindaceae (4), Rhamnaceae (6), Vitaceae (3), Elaeocarpaceae
(1), Malvaceae (10), Bombacaceae (1), Sierculiaceae (6), Ochnaceae (1), Cistaceae
(1), Violaceae (1), and Flacourtiaceae (3).

Standley, P. C. New species of plants from western Mexico. Jour. Washington Acad. Sci. 13: 5-8. 4 Ja 1923.
New species in Allionia (1), Caesalpinia (1), Amyris (1), Schaefferia (1), Bouvardia (I), and Chomelia (I).

Stevens, O. A. An amateur wild flower bed. Am. Midl. Nat. 8: 164-171. Ja 1923.

Stout, A. B. Alternation of sexes and intermittent production of fruit in the spider flower (Cleome spinosa). Am. Jour. Bot. 10: 57-66. pl. 6. 2 Mr 1923.
Svedelius, N. Zur Kenntnis der Gattung Neomeris. Svensk Bot. Tidskr. 17: 449-471. 1923.

Taubenhaus, J. J., \& Killough, P. T. Texas root rot of cotton and methods of its control. Texas Agr. Exp. Sta. Bull. 307: r-98. f. 1 -15. Ap 1923.

Thompson, B. E. Distribution of the Violaceae of Michigan. Pap. Michigan Acad. Sci., Arts \& Lett. 1: 167-184. pl. 35, 36. F 1923.

Titcomb, J. W. Aquatic plants in pond culture. U. S. Bur. Fish. Docum. 948: 1-24. f. I-32. 1923.

Trinkgeld, R. Beiträge zur Morphologie der Vegetationsorgane der Cucurbitaceen. Flora 116: 270-295. pl. 5. 1923.

Troll, K. Öffnung und Samenentleerung an nickenden Kapselfrüchten. Flora 116: 346-359. pl. 6. 1923.
Tulaikov, N. M. The soil solution and its importance in the growth of plants. Soil Sci. 15: 229-234. Ap 1923.

Ulbrich, E. Ueber die neuen, von Ranunculus zu trennenden Gattungen Rhopalopodium, Aspidophyllum und Laccopetalum. Verh. Bot. Ver. Brandenburg 64: 192-196. 1922.

Uphof, J. C. T. Die Jugendform von Hypericum aspalathoides. Flora 116: 312-315.f. 1-3. 1923.
Uphof, J. C. T. Vegetationsbilder aus Florida. Vegetationsbilder 15: pl. 13-24. [With text.] 1923.
Urban, I. Ueber einige westindische Pflanzengattungen. Verh. Bot. Ver. Brandenburg 64:220-222. 1922.
Valleau, W. D. The inheritance of flower types and fertility in the strawberry. Am. Jour. Bot. 10: 259-274. 10 My 1923.

Vizioli, J. Some Pyrenomycetes of Bermuda. Mycologia 15: 107-119. pl. 11. . 31 My 1923.
Vries, H. de. Oenothera Lamarckiana mut: perennis. Flora 116: 336-345. 1923.

Vries, H. de. Über die Mutabilität von Oenothera Lamarckiana mut. simplex. Zeits. Indukt. Abstamm. u. Vererbungsl. 31: 313-351. 1923.

Vries, H. de. Über sesquiplex-Mutanten von Oenothera Lamarckiana. Zeits. Bot. 15: 369-408. 1923.

Vries, H. de, \& Boedijn, K. On the distribution of mutant characters among the chromosomes of Oenothera Lamarckiana. Genetics 8: 233-238.f. I. Мy 1923.
Waby, J. F. Chrysalidocarpus glaucescens Waby (Palmae-Areceae). Kew Bull. Misc. Inform. 1923: 376. 1923. New species from Trinidad.

Wakefield, F. W. A biometric study of the conidia of Macrosporium and Alternaria. Pap. \& Proc. Roy. Soc. Tasmania 1922: 27-31. 1923.

Walton, J. On the structure of a middle Cambrian Alga from British Columbia (Marpolia spissa Walcott). Proc. Cambridge Phil. Soc., Biol. Sci. 1: 59-62.pl. $5+$ f. I. Au 1923.

Weir, J. R. Fomes roseus (A. \& S.) Cke. and Trametes subrosea nom. nov. Rhodora 25: 214-220.

Werdermann, E. Uber die Gattung Teratonema Syd. Ann. Mycol. 21: 336-339. 1923.

Werkenthin, F. C. Description and key of the genus Cucurbita. Proc. Iowa Acad. Sci. 29: 281-290. f. 1-3. 1922.
Werkenthin, F. C. The founders of the art of plant breeding. Proc. Iowa Acad. Sci. 29: 291-310. 1922.
Whetzel, H. H. The Alternaria blight of potatoes in Bermuda. Phytopathology 13: 100-103.f. I. 27 F 1923.
Wilson, E. H. Travel tales of a plant collector-XII. The tropics of the new world. Mexico's gift of the gorgeous poinsettia-West Indian plants that make men dumb-a water flower from the Orinoco with leaves five feet by six. Gard. Mag. 38: 355-359. "F" Ja 1924. [Illust.]
Wilson, B. D. The effect of plants on the concentration of drainage water from the Cornell lysimeters. Soil Sci. 16: 427-432. D 1923.
Wright, C. H. Pita and silk grass. Kew Bull. Misc. Inform. 1923: 266, 267.1923.

Wylie, R. B. Concerning the capacity of foliage leaves to withstand wounding. Proc. Iowa Acad. Sci. 28: 293-304. f. 49-54. 1921.

Wylie, R. B. Submarginal venation of foliage leaves. Proc. Iowa Acad. Sci. 29: 233-237. f. 1. 1922.

Wylie, R. B. Some wound responses of foliage leaves. Proc. Iowa Acad. Sci. 29: 238-244.f. 1-6. 1922.

Wylie, R. B., \& Yocum, A. E. The endosperm of Utricularia. Univ. Iowa Stud. Nat. Hist. 10: 3-18. pl. I-6. I My 1923.

Yeager, A. F., \& Heath, F. M. Perennial flowers for North Dakota homes. N. Dak. Agr. Exp. Sta. Bull. 170: 1-56. f. 1-26. D 1923.

Youngken, H. W. Animal-eating plants. Pop. Sci. Talks 1: 136-157.f. I-II. 1923.

Yuncker, T. G. The genus Cuscuta in Michigan. Pap. Michigan Acad. Sci., Arts \& Lett. 1: 185-189. F 1923.

Yuncker, T. G. Revision of the South American species of Cuscuta. Am. Jour. Bot.9:557-575.
Includes 6 new species.
Zimmermann, W. Zytologische Untersuchungen an Sphacelaria fusca Ag. Ein Beitrag zur Entwicklungsphysiologie der Zelk. Zeits. Bot. 15: II3-175.f. I-7. 1923.

BULLETIN

OF THE

TORREY BOTANICAL CLUB

AUGUST, 1924

Studies in Tortula as represented in Southern Arizona

Edwin B. Bartram

Viewed even in a restricted sense the species of Tortula from this region present some critical problems that are not lacking in interest and suggestion. The section Syntrichia, comprising a number of closely related species that have been interpreted in various ways by bryological students, is especially richly represented and I have been tempted to present some of the following conclusions, not as in any sense final but simply as a step toward a more complete understanding of this puzzling complex. The scarcity or absence of male flowers and sporophytes in several closely related species makes the result of critical study somewhat a matter of personal equation.

Tortula muralis (L.) Hedw. Represented by a single collection, in fruit, from the foothills of the Catalina Mts., on the shaded face of a boulder. The lower leaves mucronate and the comal leaves with the costa excurrent into a long smooth hyaline hair point two times or more the length of the leaf. Probably a form of var. incana (Bry. eur.).

Tortula inermis (Brid.) Mont. Common on ledges and banks in the foothills and extending up the mountain canyons to an elevation of 6500 ft . The closely folded leaves regularly spiralled with a low pitch give the dry plants a distinctive screw like aspect in the field that is very characteristic. Dozens of collections from widely separated localities are in every way uniform and indicate no transitional tendency toward T. subulata. The oblong ligulate; mucronate leaves with the margins strongly recurved almost to the apex are unlike anything else in the region.
[The Buletin for July (51: 283-333) was issued July 24, 1924.]

Tortula ruralis (L.) Ehrh. Widely distributed over the foothills and mesas, on the shaded banks of dry washes, on slightly shaded slopes or even on the open desert where it is usually sterile and depauperate. In the mountain canyons at altitudes above 4000 ft . it is usually replaced by the following.

Tortula montana (N. v. E.) Lindb. Readily distinguished from T. ruralis, as a rule, by the concave, hardly carinate leaves, erect spreading when moist, the less strongly recurved leaf margins and especially the smaller more obscure leaf cells in the upper part of the lamina which rarely measure over 10μ in diameter and often only 6 to 8μ. Some forms show a slight tendency to intergrade with T. ruralis in one or more characters but in this region, at least, the species surely represents a well defined segregate that replaces T. ruralis almost entirely in the mountain canyons.

Tortula alpina (Bry. eur.) Bruch. While this plant does not seem to have been credited to the North American flora heretofore, comparisons of various collections from Arizona with authentic European material of the species, generously supplied by Mr. Holzinger and Mr. Chamberlain, indicate that T. alpina, in various forms, is widely scattered through the canyons and fonthills of mountain ranges in the southern part of the state. In this arid country the collections from shaded ledges below 4000 ft ., in the treeless foothills, are naturally xerophytic types, somewhat dwarfed and reduced in every way. As one works up the canyons into the oak belt above 4500 ft ., the plants become more typical and at 6000 ft . or above, where moisture and shade are not lacking, the collections, in part at least, approach closely to the typical form of the species. The variations seem to be of degree rather than kind and present a close series of transitional forms ranging from the xerophytic types of low altitudes with reduced leaves, broadly obtuse or emarginate at the apex as in figures 12 and 13 of the accompanying plate to well developed plants of higher altitudes with larger leaves less broadly pointed, as in figure 14, which seem to closely approximate typical T. alpina in every essential vegetative feature. Indeed these observations lead logically to the question of whether T. alpina and T. laevipila might not better be treated as extreme forms of a single specific aggregate, modified by environment but connected by a series of transitional forms.

Exsicc:-Holz. Musc. Ac. Bor. Am. No. 500 as Tortula pagorum.

Bartr. Mosses of So. Arizona No. 15 as T. pagorum.-No. 91 and No. 95.

Tortula alpina (Bry. eur.) Bruch. var. propagulifera Limp. in Rab. Krypt. Fl. 4 ${ }^{1}$: 683. (Tortula pagorum (Milde.) DeNot.; Barbula laevipila var. pagorum Husn.) The presence of characteristic propagula as figured by Limpricht, Vol. I: 682^{*} is the only character by which it seems possible to separate this variety from the plants referred elsewhere to T. alpina. In the same tuft are found plants with abundant propagula, others with only a few and still others devoid of them entirely. The dry plants with leaves folded lengthwise and tightly spirally incurved into a close head, the tendency of the hair point to become reduced to a short, more or less roughened arista, colored at the base, and the apparent preference for a rock substratum even where trees are available are all characters, which as far as the collections from this region are concerned, indicate a closer relationship to T. alpina than to T. laevipila. While the absence of any plants typical of T. laevipila is only a negative factor it is not without suggestion when compared with the distribution of the T. alpina composite over the same area.

Exsicc:-Holz. Musc. Bor. Am. No. 360 as Tortula pagorum.
Small Mosses of So. U. S. No. 39 as Tortula papillosa.
Tortula alpina (Bry. eur.) Bruch. var. inermis (Milde.) DeNot. One of the very characteristic mosses of dry shaded, vertical rock faces in canyons of the Santa Rita Mts. and the Patagonia Mts. The plants grow in loose mats so lightly attached to the substrata that when sections are removed for specimens they seem to hang from the rock face like a curtain. The lamina structure is rather tender and fragile, much as in T. fragilifolia but not nearly so pronounced, the leaves are wide in the upper half with a broadly rounded apex, shortly mucronate by the excurrent red-brown costa, very similar to the outline of T. latifolia but always distinctly mucronate or even cuspidate. A fine moss agreeing in every essential particular with E. Bauer Musc. eur. Exsicc. No. 1595a, b from Italy also with a collection

[^35]by Dixon and Nicholson from Meran, S. Tyrol, Aug. 15, 1904. Apparently this is the first record from North America.

Exsicc:-Bartr. Mosses of So. Arizona No. 71 and No. 94.
Tortula fragilifolia sp. nov. (Plate 7) Evidently dioicous, only sterile $\&$ plants found. Plants robust, from I to 1.5 cm . high, branched above, strongly rufous tinged and lustrous throughout in dense cushions closely matted together with red radicles. Leaves erect spreading when moist, folded lengthwise and closely spirally incurved when dry, up to 2.5 mm . long, slightly concave, oblong spatulate to ovate oblong in outline, apex obtuse, shortly mucronate by the excurrent redbrown costa, margins narrowly recurved in the middle, distinctly crenately lobed in the upper half, torn and broken in various ways so that complete leaves are rarely if ever present; leaf cells rectangular and hyaline at the base, a well defined area of larger cells with richly colored walls in the median portion on either side of the costa bordered by a marginal band of about six rows of much smaller short rectangular cells, quickly becoming shorter and hexagonal quadrate above, 10 to 12μ in diameter, strongly papillose on both sides with 4 to 7 large C shaped or forked papillae; costa red-brown, more or less rough and papillose on the back, in cross section showing two large median guide cells, about three smaller cells in one or two layers on the ventral side and a thick stereid band of three or more layers on the dorsal side with the outer cells little or not differentiated. Reduced branches bearing ecostate, ovate acuminate, verrucose propagula in the form of imbricated brood leaves are found sparingly in the axils of the upper stem leaves.

Type:-On bark near the base of Live Oaks along Baldy Trail, Santa Rita Mts., Santa Cruz County, Arizona. 7500 ft . E. B. Bartram No. 860. February 4, 1924.

Exsicc:-Bartr. Mosses of So. Arizona No. 87.
This plant suggests some connection with T. alpina var. inermis bat the habitat on tree trunks, the dense cushions closely bound together by radicles, the very fragile structure of the lamina and the strongly crenately lobed margins would seem sufficient in the aggregate to give the plant a specific identity. It seems to be well distributed over the Santa Rita Mts. on bark near the base of oak trees above 6000 ft . but is more robust and characteristically developed at altitudes of 7500 ft . and over.

Tortula aurea sp. nov. (Plate 6). Probably dioicous, male flowers not found, female flowers terminal or lateral by innovations, archegonia numerous, usually shrunken and unfertilized, with slender paraphyses. Plants robust, I to 2 cm . high, branched above or simple, in deep rather loose cushions, yellowish green above, light brown beneath, sparingly radiculose. Leaves spirally twisted when dry, erect spreading when moist, ovate lanceolate, tapering above to a sub-acute apex, about 2 mm . long, cuspidate by the stout excurrent costa which is occasionally prolonged into a smooth yellow hair point half as long as the leaf, margins spirally once or more revolute from base to apex; leaf cells golden yellow at the base, linear in the median portion 1 to 8 or 1 to 10 , broader and shorter at the extreme base and short rectangular to quadrate toward the margins with yellowish pellucid walls, gradually shorter above, in upper half quadrate hexagonal, 10 to 12μ in diameter, highly chlorophyllose and obscure with numerous papillae on both sides. Costa light brown, strong, about 90μ wide from base to apex, smooth, in cross section showing two large median guide cells with one layer of about three somewhat smaller cells on the ventral side and a thick stereid band of three or more layers on the dorsal side with the outer row of cells somewhat larger.

Type:-On dry shaded ledges, Bear Canyon, Santa Catalina Mts., Pima County, Arizona. 2500 ft. E. B. Bartram No. 307. January 6, 1923.

Exsicc:-Mosses of So. Arizona No. 93.
Frequent and abundant on dry shaded ledges in the foothills of the Santa Catalina Mts. and the Tucson Mts. The absence of sporophytes leaves the relative position of this species rather uncertain but the characters in the aggregate seem to indicate a relationship to Tortula muralis, from any form of which it is abundantly distinct in leaf outline, spirally revolute margins and in the yellow pellucid basal areolation without any suggestion of hyaline cells.

Description of plate 6

Tortula aurea

Figs. I and 2. Dry plants four-fifths natural size.
Fig. 3. Upper part of moist plant $\times 12$.
Figs. 4 and 5. Stem leaves $\times 16$.
Fig. 6. Leaf apex $\times 40$.
Fig. 7. Leaf apex $\times 80$.
Fig. 8. One side of cross-section near middle of leaf $\times 240$.
Fig. 9. Upper leaf cells $\times 240$.
Fig. io. Basal margin $\times 240$.
Fig. 11. Median basal cells next to costa $\times 240$.

Tortula alpina

Fig. 12. Leaf from plant growing on rubble bank in Patagonia Mts., Ariz. $\times 16$.

Fig. 13. Leaf from plant growing on shaded ledges in Santa Catalina Mts., Ariz. $\times 16$.

Fig. 14. Leaf from plant growing on rock face in Santa Rita Mts., Ariz. $\times 16$.

Description of plate 7

Tortula fragilifolia

Fig. 1. Moist plant four-fifths natural size.
Fig. 2. Moist plant $\times 4$.
Figs. 3, 4, 5, 6. Leaves $\times 16$.
Fig. 7. Propagula $\times 80$.
Fig. 8. Basal cells on one side of costa $\times 80$.
Fig. 9. One side of cross-section from lower half of leaf $\times 240$.
Fig. 10. Cross-section of costa from upper half of leaf $\times 240$.
Fig. 11. Upper leaf cells $\times 480$.

Tortula alpina var. propagulifera

Fig. 12. Leaf from plant growing on tree in Santa Rita Mts., Ariz., $\times 16$.
Fig. 13. Leaf from plant growing on tree in Patagonia Mts., Ariz. $\times 16$.
Fig. 14. Leaf from plant growing on rocks at Harpers Ferry, Va. A. T. Beals' No. 3177×16.

Fig. 15. Leaf from plant growing on tree, Augusta, Ga. Small Mosses of Southern U. S. No. 39×16.

Fig. 16. Leaf from plant growing on ledges in Patagonia Mts., Ariz. $\times 16$.
Fig. 17. Leaf from p'ant growing on tree, Berkeley, Calif. Holzinger Musc. Ac. Bor. Am. No. 360×16.

dei. E. B. Bartram.

1-11. Tortula aurea E. B. Bartram sp. nov.
12-14. Tortula alpina (Bry. eur.) Bruch.

del. E. B. Bartram.
i-il. Tortula fragilifolia E. B. Bartram sp. nov.
12-17. Tortula alpina var. prcpagulifera Limp.

The Gregarious Flowering of the Talipot Palm, Corypha umbraculifera, at Peradeniya, Ceylon*

William Seifriz

The extent to which the activities of a plant are determined or influenced by the environment has long been a subject of discussion and investigation among botanists. There are those (6) who maintain that "every life process must to some degree be dependent upon the external world," while others (ii) hold to the belief that many vital phenomena are innate and, within certain limits, independent of the environment.

The problem of the possible influence of environmental factors on the activities of a plant assumes an especial interest in connection with the gregarious flowering of monocarpous plants of long life cycle. There are species of bamboo which flower gregariously over large areas after 32 years of a purely vegetative life. This habit is also characteristic of the talipot palm, Corypha umbraculifera.

There is a popular belief, which has received some support from scientific circles, that the phenomenon of simultaneity in flowering of monocarpous plants of long life cycles is due to drought (7). The writer has collected data bearing on this hypothesis and has found little evidence to support it. Whatever effect drought may have on gregarious flowering it is relatively slight, certainly not sufficient to be regarded as the ultimate determining factor of the phenomenon. The following data, previously collected, support this point of view:
I. The simultaneous flowering throughout the mountains of Jamaica in 1918 of the climbing bamboo, Chusquea abietifolia, whose vegetative life extends over a period of 32 or 33 years, was preceded not by a drought but by two years of rainfall which was above the average (8).
2. The gregarious anthesis of extensive forests of the bamboos, Dendrocalamus strictus and Bambusa arundinacea, estimated to cover in some instances areas of over a thousand square miles in India, is also not always preceded by a drought ($\mathbf{1 0 \text {). }}$

[^36]3. In 1918 there flowered simultaneously in the Peradeniya Gardens in Ceylon three species of monocarpic plants, Corypha umbraculifera, Dendrocalamus giganteus, and D. strictus, and a fourth species, Bauhinia anguina, which, while not monocarpic, flowers rarely. This remarkable instance of gregarious flowering was immediately preceded by a "drought" of such mildness that, when it is compared with other droughts of previous years which did not arouse the plants to anthesis, it cannot be regarded as the direct cause of this unusual simultaneous blossoming of three widely differing genera, all of which flower only after many years of purely vegetative growth.
4. At the time that the talipot palms, with other monocarpous and rarely flowering plants, were in blossom at Peradeniya, there was also in flower in the Buitenzorg Gardens in Java a talipot palm which had, every month of its life, been drenched in rain. Droughts are unheard of at Buitenzorg where even a normal dry season is a rarity (10).
5. There lives in Burma today a forest of Bambusa polymorpha covering hundreds of square miles, which has, since 1853, flowered sporadically in restricted and scattered areas. The forest as a whole has not flowered in these seventy years, although subjected to repeated droughts (io).

There is another case of gregarious anthesis which, though not in plants of monocarpic habit, has an interesting bearing on the problem of the possible effect of external environment on simultaneity in flowering. In the orchid, Dendrobium crumenatum, the time of the simultaneous appearance of the flowers is apparently due to a climatic influence occurring eight days in advance of the flowering. The environmental stimulus is commonly associated with, but not always accompanied by, rain (2 and 10). It is here suggested that this factor is possibly a humidity stress. High humidity may well occur without rainfall while it is always present with rainfall. It should be emphasized that it is the time of flowering rather than the simultaneity itself which the humidity stress determines. The simultaneily is due to an inherent characteristic of the orchids (Io).

On the basis of the foregoing data it seems reasonable to conclude that gregarious flowering in bamboos and palms is not determined by drought but rather by a germinal factor. If an environmental complex exists which is responsible for simul-
taneous flowering, it has not yet been discovered. The following additional observations further support this conclusion.*

Fig. i. The avenue of talipot palms in the Peradeniya Gardens, Ceylon, in December, 1920. Seven out of the twenty palms composing the avenue flowered in 1918. It will be noticed that the palm at the end of the avenue on the left is here in full foliage while in plate 8 it is in flower.

* In connection with this habit of monocarpy in long lived plants, it is of interest to note that Wieland (12) has established its presence in at least two if not six species of fossil cycads. In Cycadeoidea Dartoni the armour is packed with hundreds of mature cones with no trace of a succeeding foliar crown.

Among its several excellent avenues of palms, the Peradeniya Gardens in Ceylon have long had an avenue of superb specimens of the talipot palm, Corypha umbraculifera. The twenty palms of which this avenue formerly consisted were planted in stu in 1881. In June, 1918, seven of the talipots in the avenue commenced flowering and remained in blossom until the end of the year, being at their best in October-November (Fig. I). At the same time there flowered two species of bamboo, Dendrocalamus giganteus and D. stricuus, and the liane, Bauhinia anguina. Bauhinia had never before been seen in blossom at Peradeniya (io). It was locally suspected that the drought of JanuaryApril of that year was the cause of this remarkable case of simultaneous flowering of four species of plants all of whose flowering periods occur after many years of purely vegetative growth. In substantial support of this belief was the widespread occurrence of flowering talipots throughout Ceylon. From one observation point on the island 200 talipots were counted in flower.

When the question of the possibility of drought being the cause of the gregarious flowering of the Coryphas at Peradeniya in 1918 was discussed in a previous publication (10), it was pointed out that the remaining thirteen palms in the avenue did not flower, although of the same age and subjected to the same environmental conditions. This fact is disturbing to either hypothesis of the cause of gregarious flowering. Whether we regard the flowering as the result of an environmental stimulus, or the expression of a heritable tendency, all of the palms should have flowered simultaneously since all were of the same age and all grew in the same environment. This difficulty, however, is easily met on the basis of the hereditary hypothesis.

If a climatic factor is responsible for gregarious flowering in plants, the question arises, How long before the flowering does the stimulus occur? In the case of plants of long vegetative periods it has been suggested that the stimulus must act at least a year before flowering. If this is true, then the drought of January-April of 1918, quite aside from the fact that it was relatively mild, could not have been the cause of the flowering which followed not more than two months later. But conclusions reached on the basis of a single instance of flowering are too speculative. More convincing deductions can be formed when at least two flowerings are considered.

In June, 1922, eight more of the remaining thirteen talipot palms in the avenue at Peradeniya commenced to flower. (Plate 8). The palms were at this time 4 I years of age. The seven palms which flowered in 1918 (Fig. i) were 37 years old. The second lot of eight Coryphas were in full flower in December, 1922. (Plate 9.) They began to set fruit visibly in March, 1923. The fruit ripened toward the end of 1923. At the time of writing (June, 1924) the palms are still standing, but without leaves or fruit, all dead, awaiting cutting and removal.

The gregarious flowering of Corypha umbraculifera in the Gardens at Peradeniya in 1922 was not accompan ed by any widespread flowering of this or any other monocarpic species of plant on the island.

A comparison of precipitation data preceding the flowering of the Coryphas at Peradeniya in 1918 and in 1922 should reveal the occurrence of a drought occurring at precisely the same length of time before each of the two flowering periods, if drought is the cause of the anthesis. (Should this prove to be true we should still be confronted with the problem of why the first drought aroused only seven of the palms to sexual activity, and failed to stimulate the remaining thirteen of the same age.) The precipitation data for several years preceding each of the two flowering periods is presented in the following table.*

The total annual rainfall is given for each year named. Since this total is of less significance than the amount of rain which falls during the dry season, there is also given the total rainfall for the months January-April. It is this dry season which is most likely to have a telling effect on the plants. During the remainder of the year there is usually a surplus of precipitation.

	Precipitation at Peradeniya		
	Jan.-Apr.	Yearly Total	
Average \dagger	17.67 inches	87.36 inches	
1915	26.32	88.21	
1916	18.14	81.42	
1917	23.01		

[^37]Precipitation at Peradeniya (Cont'd)

	Jan.-Apr.	Yearly Total
1918*	13.60	94.97
1919	19.41	86.64
1920	19.41	103.06
1921	18.67	66.66
1922^{*}	15.78	85.41

From the above table it is quite evident that drought cannot be the cause of the simultaneous flowering of seven of the talipot palms in 1918 and of eight of them in 1922. The precipitation during the dry season (Jan.-Apr.) for each of the three years preceding both flowering periods is above average. The total annual rainfall for the year immediately preceding the 1922 flowering is 21 inches below average while it is 15 inches above average for the corresponding year preceding the 1918 flowering. For the second year preceding each flowering the situation is reversed, and for the third year the annual rainfall is about average in both cases. The only possible basis for regarding drought as the cause of gregarious flowering in these talipots is to assume that the relatively mild droughts during the dry season of the two years of flowering-Jan.-Apr., 1918 and 1922-are the cause. This is quite improbable; first, it is very unlikely that a drought occurring but a month or two before flowering is the stimulus which starts anthesis; second, if drought is the cause one would expect it to affect all palms of the same age; and third, the two droughts in question are not deserving of the name, because the precipitation is but slightly below average. \dagger

The belief that the dry season of 1918 had been the unfavorable factor which caused the palms, bamboos, and liane at Peradeniya to flower in that year, was supported by the extraordinary number of talipots which were to be seen in flower throughout the island. It seemed an almost unavoidable conclusion that some climatic factor of widespread occurrence

[^38]had brought on so extensive a flowering of these palms. In 1922, on the other hand, there was no report of a general flowering of Coryphas in Ceylon. In fact, between Colombo and Kandy no talipots were to be seen in flower.

If the anthesis of the talipots in the Peradeniya Gardens in 1922 was the result of an environmental factor this factor could not have been widely distributed because of the very restricted region of gregarious flowering among the palms on the island in that year.

Since our data do not permit the deduction that an environmental factor is the direct cause of gregarious flowering in Corypha umbraculifera, the only other conclusion is, that simult aneity in flowering is the expression of a heritable tendency, yet this hypothesis is not unequivocally supported by the behavior of the palms. If the age at which the palms mature sexually is fixed, one would rather expect all twenty of the palms in the avenue at Peradeniya to have flowered simultaneously since all were of the same age. The fact that they did not do this suggests, what is quite probable, that the parentage of the palms is different, and that the age of sexual maturity is not precisely the same in the offspring of different parents.*

The acceptance of the hereditary hypothesis of the cause of gregarious flowering in plants does not altogether preclude the

[^39]possibility of climatic influences having a slight but appreciable effect on the exact time of blossoming. It is an old theory that favorable environmental conditions tend to produce purely vegetative growth while unfavorable conditions tend to bring on reproductive activity. How much truth there is in this theory it is difficult to say. What may be unfavorable for one species may have no effect on another adapted to the same general surroundings as the first. If it is true that drought is an unfavorable condition which tends to bring on reproductive activity in plants, then it is possible that as plants of long life cycle approach their normal time of flowering, the occurrence of a severe drought shortly before this time would somewhat hasten the coming of the reproductive period.

One final bit of evidence which seems to utterly preclude the possibility of drought being the primary cause of gregarious flowering in plants is, that this flowering is rhythmic in certain species. This is true in some bamboos. Thus, in Bambusa arundinacea three successive flowering periods in India have been recorded, making the life cycle one of 32 years (7). The flowering of Phyllosiachys puberula is recorded in old manuscripts of China and Japan as occurring every 60 years (5). The records, somewhat incomplete, go back to the year 292 A.D.

There is little reason to doubt the fact that flowering in certain bamboos is rhythmic. There is, on the other hand, no conclusive evidence to support the presence of rhythmic changes in climate which are commensurable in length with the life cycle of certain palms and bamboos. Meteorologists are generally of the opinion that climatic cycles of some 30 or more years duration do not exist. The only approximate climatic cycle of which we can be reasonably certain is that which corresponds to the sun spot cycle. This is greatly variable, with an eleven year period and probably other periods, both shorter and longer (3). The variations which this cycle occasions are negligible, being in temperature of the order of $1^{0} \mathrm{C}$. between extremes, and often less. The other climatic changes, such as changes of precipitation, wind velocity, and the like, which are consequences of the temperature change, are correspondingly small. That there is much evidence (for example, in growth rings of old trees) that appreciable climatic changes of many years duration have occurred within historic times, is true, but these changes do not
appear to have been rhythmic. The so-called Brückner (i) cycle of 35 years is very irregular in length, and is, apparently, confused with volcanic explosions. This cycle too, if indeed there really is such a one, is of small amplitude. Climatic changes of the geologic past are certain, but they are of irregular occurrence and of unequal duration (3), and of much too great a length to be of any interest to us here. So far as the cause of gregarious flowering is concerned the meteorologist has nothing to offer which appears to have any bearing on the problem.

Were we willing to accept the popular belief in the existence of climatic cycles,* we should still be confronted with the task of explaining why these cycles cause the talipot palm to flower in 34 years while certain bamboos reach sexual maturity in 32 years; and why the climatic cycle should cause Chusquea abietifolia and Bambusa arundinacea to reproduce every 32 years while other bamboos flower most irregularly (this seems to be generally true of many of the Philippine species).

The persistent attempt of some investigators to interpret rhythmic vital phenomenon in terms of environmental factors is apparently due, in part, to opposition to any hypothesis of behavior which dissociates the organism from its environment. But there is nothing mysterious in a rhythmic life cycle or an innate sexual periodicity. The rhythm in the flowering of talipot palms and bamboos is no more extraordinary than rhythmic sexual periods in animals, the rhythm of the life cycle of man, and the rhythmic beat of the heart. The causes are simply internal instead of external.

Conclusion.-Allavailable evidence points towards a heritable tendency as the cause of gregarious flowering in the talipot palm, Curypha umbraculifera.

Acknowledgment.-The photographs published as Plates 8 and 9 are the work of Plâté, Ltd., Ceylon, and are published

[^40]with their permission. The writer wishes to express his indebtedness to Plâté, Ltd., for their kindness in keeping him posted on the condition of palms in the Peradeniya Gardens.

Bibliography

I. Brückner, E. Klimaschwankungen, Vienna, 1890.
2. Burkhill, I. H. The flowering of the pigeon orchid, Dendrobium crumenatum, Gardens' Bull., Straits Settlements, 1,400, 1917.
3. Humphreys, W. J. Physics of the air, (U. S. Weather Bur.) Philadelphia, 1920.
4. Huntington, E. and Vischer, S. S. Climatic changes, their nature and causes, New Haven, 1922.
5. Kawamura, S. On the cause of the flowering of bamboo, Bot. Mag. Tokyo, 25, 294, 1911 (Japanese), Abstr. in Zeitschr. Pflanzenzücht. (Fruwirth), I, 96, 1912.
6. Klebs, G. Uber die periodischen Erscheinungen tropischer Pflanzen, Biol. Centralbl., 32, 257, 1912.
7. Schimper, A. F. W. Plant Geography, Oxford, 1913.
8. Seifriz, W. The length of the life cycle of a climbing bamboo. A striking case of sexual periodicity in Chusquea abietifolia Griseb., Amer. Jour. Bot., 7, 83, 1920.
9. Seifriz, W. The gregarious flowering of the orchid, Dendrobium crumenatum, Amer. Jour. Bot., 10, 32, 1923.
10. Seifriz, W. Observations on the causes of gregarious flowering in plants, Amer. Jour. Bot., 10, 2, 1923.
iI. Volkens, G. Laubfall und Lauberneuerung in den Tropen, Berlin, 1912.
12. Wieland, G. R. Monocarpy and pseudocarpy in the cycads, Amer. Jour. Bot., 8, 218, 1921.

Description of plate 8

The view down the avenue of talipot palms (Corypha umbraculifera) in the Peradeniya Gardens, Ceylon, in August, 1922. (Photo. by Platé, Ltd.)

Description of plate 9

The avenue of talipot palms in the Peradeniya Gardens in August, $\mathbf{1 9 2 2}$. The floral crowns of eight Coryphas can be counted. Five palms remain in foliage. (Photo. by Plâté, Ltd.)

Notes on algae of Bermuda and the Bahamas

Marshall A. Howe

Since the publication of the autho:'s contributions to Britton's Flora of Bermuda (1918) and Britton and Millspaugh's The Bahama Flora (1920), further collections in Bermuda by Dr. A. B. Hervey and in the Bahamas by Mr. L. J. K. Brace and more critical studies of material previously collected have resulted in the recognition of four species that are apparently new to science, one Bermudian and three Bahamian, and in the determination of three more species not before attributed to the Bahamas. The species proposed as new are a Pithophora (family Cladophoraceae) from Bermuda; from the Bahamas, a Protoderma (?) (family Chaetophoraceae), a Chondrocystis (family Chroococcaceae), and a Dichothrix (family Rivulariaceae). The diagnoses follow:

Pithophora heterospora Howe \& Hervey, sp. nov.

Filaments intricately intertangled, dark green, $\mathbf{r}-\mathbf{2} \mathbf{~ c m}$. long, rhizoid and proximal cauloid parts often not well differentiated, the rhizoid parts occasionally developing cauloid branches and the cauloid parts sometimes emitting rhizoid branches, special haptera or helicoids not seen; main fertile cauloid filaments averaging about $56 \mu(45-90 \mu)$ in diameter, the branches commonly of one or two, occasionally of three, rarely of four and even five orders, solitary or sometimes in opposite pairs, the ultimate about 50μ in diameter; sterile cells mostly 6-20 times as long as broad, those of the ultimate branches often $30-53$ times as long as broad, the cell walls $1.5-3 \mu$ thick; rhizoid part rarely unicellular, usually equaling and similar to the cauloid in size and ramification, the cells often somewhat more rigid and with denser content; spores (akinetes) occurring in both cauloid and rhizoid parts, mostly intercalary, occasionally terminal, those of rhizoid and proximal cauloid parts solitary, geminate, or more often $3-5$, sometimes up to $10-22$, in a concatenate series, polymorphic, mostly cask-shaped to subglobose and $130-182 \mu \times 80-143 \mu$, occasionally fusiform-clavate or somewhat pestle-shaped and up to 286μ long, sometimes branched, the terminal ovoid, conic-ovoid, or ellipsoid, subacute, apiculate or subrostrate, those of median and distal cauloid parts usually intercalary and solitary or geminate, rarely in threes or fours, cask-shaped or subcylindric, mostly $156-182 \mu \times 68-$ 80μ, the occasional terminal ones bullet-shaped or conic-ellipsoid. [Figures I-14.]

Figures 1-io. Pithophora heterospora Howe \& Hervey. 1, a plant showing nearly all the cells of the rhizoid part converted into spores and solitary or geminate spores in the cauloid part; 2, a plant showing branches of five orders in cauloid part; 3, a fragment showing reversal of polarity or a cell of the cauloid part sending out a rhizoid branch; 4, another similar case, showing also spores of cauloid part branching or germinating in situ; 5-9, ends of rhizoidal filaments, showing form and arrangement of the rhizoid spores; 10 , fragment of cauloid filament, showing a proliferous or germinating spore. Figures 1-3 are enlarged in diameters; figures 4-10, 28 diameters.

Figures 11-14. Pithophora heterospora Howe \& Hervey. 11, a plant with spores in cauloid part and with one rhizoid from a median cauloid part; 12, a plant in which the basal part, with spores characteristic of rhizoid parts, has the direction of growth of the cauloid part; 13, a rhizoid part, with spores, 14, the apical portion of a cauloid branch, showing one terminal and one intercalary spore. Figures II and 12 are enlarged 11 diameters; figures 13 and 14, 28 diameters.

In an old cistern, on Sound Shore Road, Bermuda, A. B. Hervey, December, 1920; also Jan. 15, 1921.

Pithophora heterospora, though belonging to Wittrock's section "Pithophorae Heterosporeae" and more heterosporous than any of the species that he refers to that section, shows points of contact with P. oedogonia (Mont.) Wittr., of his section "Pithophoreae Isosporeae." It resembles P. oedogonia in the usual great development of the rhizoid part of the thallus and its slight differentiation from the cauloid part. In fact, with the chlorophyll content of the two parts nearly the same and with both parts producing spores in nearly equal abundance, it is sometimes difficult to assert with confidence which is the cauloid end and which the rhizoid. In distal and median cauloid parts the spores have about the same form and arrangement as in P. oedogonia, though smaller ($156-182 \mu \times .68-80 \mu$ vs. av. 230μ $\times 114 \mu$). But in the rhizoid and proximal cauloid parts the spores are often more nearly spherical, we believe, than in any previously described species and also are often in more extended chains, in one case as many as twenty-two being counted in a single unbroken concatenate series. So far as we discover, three spores in a series are the most that have hitherto been described.

In our material, preserved with formalin, there are in the cells, lying in the protoplast or extruded from it and lying between it and the cell wall, numerous irregular or subspheric dark-colored bodies, which in the older cells and the spores take the form of flocculent or substellate flecks. We have not noted these bodies in dried specimens of other species, but do not know whether they are really characteristic of Pithophora heterospora or may be due to mode of preservation or to transitory physiologic conditions. These bodies do not respond to the customary microchemical tests for oil.

Pithophora heterospora is associated with Oedogonium consociaium Collins \& Hervey, which grows epiphytically upon it, in some parts densely clothing it with young filaments or with encrusting masses of attached spores, as was the case with the type of the O. consociatum, which was described from Bermuda as occurring on Pithophora kewensis (but figured, in contradiction of the text, on Rhizoclonium). Closterium moniliferum Ehrenb. also accompanies the Pithophora in profuse abundance.

Protoderma (?) polyrhizum sp. nov.

Thalli light green, irregular in outline, confluent or widely continuous, closely appressed and following the irregularities of the substratum, mostly $2-10$ cells thick, more or less unistratose at margins, showing frequently small ventral lobes and ridges penetrating and perhaps boring out minute cavities in the substratum; cells of the dorsal surface irregularly hexagonal or pentagonal in surface view, $10-24 \mu$ (mostly about 14μ) in diameter, often somewhat longer at the margins, the separating walls firm, usually $1.5-4 \mu$ thick; cells of the interior and of the ventral surface mostly somewhat elongate vertically, often 25 45μ long; ventral rhizoids commonly numerous, lime-boring, septate, finally more or less branched, contorted or geniculate, mostly 6-20 μ in diameter; unmodified cells of the dorsal surface becoming sporangia, these apparently of two kinds, one with very numerous and minute ovoid pallescent zoospores (?) about I μ long, these (in dried plants) of ten lying in more or less coherent mucous masses on the surface of the emptied cells, other sporangia producing larger, ovoid, ellipsoid, or fusiform aplanospores (?) 2-4 μ long.

Forming a thin almost continuous green crust on an eroded oölitic or aeolian limestone pebble in a cavern, low littoral. Malcolm Road, Caicos Islands, Dec. 19, 1907 (Howe 5686, type), The rhizoids spring mostly from ridges or irregular ventral thickenings that fit into grooves or cavities of the substratum and they may be wholly lacking over wide areas of the smoother parts of the ventral surface. Wille (Eng. \& Prantl, Nat. Pflanzenfam. \mathbf{I}^{2} : Nachtr. 79. 1909) denies "rhizoidenartigen Verzweigungen" to the genus Protoderma.

As compared with specimens of Protoderma marinum Reinsch from Achill Sound, Ireland, distributed by Mr. A. D. Cotton, the cells of the dorsal surface of the Bahama plant are much larger and are much more firmly and regularly parenchymatous in their general arrangement; and the same holds true when comparison is made with specimens from Massachusetts distributed as P. marinum by Mr. F. S. Collins (Phyc. Bor.-Am. LIII), though the cells of the latter are larger than those of the Irish specimens.

Chondrocystis Bracei sp. nov.
Thallus cartilaginous or subcoriaceous, pinkish blue-green when living, more or less incrusted with lime, forming irregular expansions about 1.5 mm . broad (or broader through coalescence),
$0.1-0.8 \mathrm{~mm}$. thick, up to 5 mm . thick by overlapping (or falsely through corrugations), bullate, rugose, lacunose, or vesiculose, commonly somewhat hollow and bistratose, sometimes explanate or concave and more or less saucer-shaped, often with irregular ascending marginal or superficial lobes; colonies, in vegetative condition, mostly $25-80 \mu$ in diameter, more or less polyhedral and forming a coherent pseudoparenchymatous thallus 2-10 colonies thick, or at the margins subglobose or ellipsoidal and rarely becoming free, the common wall $12-40 \mu$ thick, cartilaginous, homogeneous or very obscurely and finely lamellate, the cells 2-64, bright blue-green to yellowish green, mostly ovoid or ellipsoid, $3-8 \mu$ long, $3-5 \mu$ broad, irregularly disposed or somewhat cubical or quadrangular-prismatic in arrangement, somewhat closely aggregated in a central space $20-40 \mu$ in long diameter, the walls of subsidiary colonies and of the individual cells rather obscurely defined; colonies, in reproductive condition, subglobose, ovoid, or quadrangular-ellipsoid, o.5-I. 8 mm . in diameter, including numerous daughter-colonies of 64, 128, 256 , or 512 cells, these $3-10 \mu$ long, usually arranged in a cubical or quadrangular-prismatic fashion, but sometimes irregularly disposed, the mother colony becoming more or less hollow and thus giving rise to a similar condition in the succeeding pseudoparenchymatous small-colonied vegetative state.

Moss Hill Ponds, Long Cay, Bahamas, Dec. 15, 1905, L. J. K. Brace 4235,-apparently forming a crust on the margin of a brackish or salt-water pond.

Chindrocystis Bracei has points of contact with the genus Placoma, and in the often cubical arrangement of its cells in the "reproductive" stage or stage of most active division, it is suggestive of the genus Eucapsis of Clements and Schantz, described* from fresh-water plankton of Colorado. From Placoma vesiculcsa Schousb., the type species of the genus Placoma, the plant apparently differs in the solidly coherent pseudoparenchymatous thallus formed by the colonies in their ordinary vegetative condition, in the absence of any radial, filamentous, or Entophysaloid arrangement of the colonies, and perhaps in the more excentric, unilateral or irregular development of the gelatinous or cartilaginous sheaths. In these characters it seems to resemble Chondrocystis Schauinslandii, \dagger the mid-Pacific Ocean type of Lemmermann's genus, Chondrocystis, from which species it evidently differs in its foliaceous

[^41]rather than cushion-like habit of growth, the larger cells, etc. In general habit, C. Bracei is slightly suggestive of small conditions of Dictycsphaeria favulosa.

Dichothrix Bornetiana sp. nov.
Filaments $16-52 \mu$ in diameter, fascicled in erect anastomosing wick-like or penicillate clusters, terminating in short, stout, or elongate, often agglutinate, sometimes caducous hairs or merely acuminate, forming an extensive sordid-green or subfuscous turf or cespitose stratum 3-8 mm. thick and more or less encrusted with lime; branches mostly strict, appressed, or subparallel, often agglutinate; trichomes prasinous or dull yellowishaeruginous, $8-14 \mu$ in diameter, tapering out at apex and becoming obsolete in older parts; cells $2-8 \mu$ (mostly 5-6 μ) long, soon obscure; sheaths $5^{-16} \mu$ thick, yellowish, lamellated, the surface often rough and delaminating; heterocysts basal, solitary or geminate, elongate-ellipsoidal, $18-30 \mu$ long.

Littoral; surrounding pneumatophores of Avicennia nivida and forming a turf on mud in association with Avicennia and Rhizophora.

Bahamas: Bimini Harbor, Howe 3268-type, April 17, 1904; Joulter's Cays, 3115 and 3116; New Providence, 3087; Shroud's Cay, Exuma Chain, 3949.

Dichothrix Bornetiana is a plant that has evoked diverse opinions from phycologists who have examined it and it may continue to be a subject for a divergence of views. No less competent authorities than F. S. Collins and W. A. Setchell to whom specimens were submitted in 1908 have considered it be Polythrix corymbosa (Harv.) Grun., which "has burst the shell and run riot." The late Edouard Bornet, who also examined specimens, wrote under the date of April 27, 1908:
"Les nos. 3087, $3115,3116,3268$, et 3949 me paraissent appartenir à la même espèce. Les differences d'aspect que présentent les échantillons ne sont pas plus grandes que dans d'autres espèces plus ou moins encroutées de calcaire. Les trichomes sont de même dimension, les gaines ont la même structure, elles bleuissent également par le chloroiodure de zinc; mais surtout les filaments sont réunis en faisceaux anastomosés comme on en voit dans le Calothrix panncsa. Cette plante, que m'est inconnue, ne se trouve ni dans la Révision, ni dans le Sylloge Algarum. J'ignore si des espèces nouvelles de Dichcthrix marins ont été décrits récemment. Je la placerais dans le voi-
sinage des Dichothrix cyanea et penicillata dont elle est d'ailleurs bien distincte."

Dichothrix Bornetiana is occasionally mixed with small quantities of undoubted Polythrix corymbosa and very rarely the agglutination of filaments in a terminal fascicle may be so pronounced as to suggest Polythrix. It is not impossible that it does represent a condition of the Polythrix, yet it is preponderantly so very different from Polythrix corymbosa that the burden of proof.would seem to rest with those who would assert identity. At least until such proof is forthcoming, it seems desirable to give the plant a distinctive name.

The trichomes and filaments are coarser, (trichomes 8-14 μ vs. $3^{-7 \mu}$) and the sheaths are thicker than in Polythrix corymbosa, but increased development along these lines is perhaps what might be expected if the filaments of the Polythrix really became discrete and free. The heterocysts also are larger and often more elongate, the cells are commonly about one half as long as broad, while in P. corymbosa they often seem longer than broad, (perhaps on account of coalescence or imperfect definition), the trichomes are usually but not always duller or more yellowish in color, and the sheaths are commonly yellower.

Dichothrix Bornetiana is somwehat suggestive of Harvey's description and figure of Calothrix dura (Harv. Ner. Bor.-Am. 3: 106. pl. 48 D), which Bornet and Flahault make a synonym of Calothrix pilosa Harv., but it has more of a Dichothrix habit, usually well-developed apical hairs, and no suggestion of the apical hemispheric cell or "bouton," which Bornet and Flahault have considered to be a characteristic of Calothrix pilosa.

In addition to Polythrix corymbosa, the species is sometimes associated also with Scytonema crassum Naeg., as determined by Bornet.

Following are three more additions to the Bahama flora:
Porphyridium cruentum (Ag.) Näg.
Growing sparsely on a small portion of a much cracked pavement, Nassau, N. P. L. J. K. Brace (comm. Feb. 17, 1920).

Lyngbya lutea (Ag.) Gomont.
Specimens agreeing fairly well with descriptions, figures, and herbarium specimens of this species have been collected on the Berry Islands, the Exuma Chain, and Atwood (Samana)

Key. (Howe 3640, 3986, 4162, and 5327), and on North Pine Cay, Andros (Bartsch 22I). The trichomes range from 2 to 6 μ in diameter.

Chroothece Richteriana Hansg.
New Providence, without definite locality. L. J. K. Brace (comm. Sept., 192I).

New York Botanical Garden.

INDEX TO AMERICAN BOTANICAL LITERATURE

1920-1924
The aim of this Index is to include all current botanical literature written by Americans, published in America, or based upon American material; the word America being used in the broadest sense.

Reviews, and papers that relate exclusively to forestry, agriculture, horticulture, manufactured products of vegetable origin, or laboratory methods are not included, and no attempt is made to index the literature of bacteriology. An occasional exception is made in favor of some paper appearing in an American periodical which is devoted wholly to botany. Reprints are not mentioned unless they differ from the original in some important particular. If users of the Index will call the attention of the editor to errors or omissions, their kindness will be appreciated.

This Index is reprinted monthly on cards, and furnished in this form to subscribers at the rate of three cents for each card. Selections of cards are not permitted; each subscriber must take all cards published during the term of his subscription. Correspondence relating to the card issue should be addressed to Dr. Fred J. Seaver, N. Y. Botanical Garden, Bronx Park, N. Y. City.

Allison, R. V. The effect of aeration upon the development of barley in a heavy clay soil. Soil Sci. 17: 97-104. f. I-2, pl. I. F 1924.
Anderson, E. Studies on self-sterility VI. The genetic basis of cross-sterility in Nicotiana. Genetics 9: 13-40. Ja 1924.
Andrews, A. L. Hymenostomum in North America. Bryologist 27: $1-3$. ' Ja" 13 Mr 1924.
Arber, A. Leaves of Triglochin. Bot. Gaz. 77: 50-62. pl. 810. 19 Mr 1924.

Arthur, J. C. New species of Uredineae-XV. Bull. Torrey Club 51: 5I-59. "F" 12 Mr 1924.
Including 7 new species and a number of new combinations.
Bachmann, F. M. An unusual growth of mold. Bot. Gaz. 77: III-II4. f. I-3. 19 Mr 1924.
Bailey, I. W. Notes on neotropical ant-plants III. Cordia nodosa Lam. Bot. Gaz. 77: 32-49. pl. 6-7, f. 1-5. 19 Mr 1924.

Bartram, E. B. Grimmia poecilostoma Card. \& Seb. in North America. Bryologist 27: 14-15. "Ja". 33 Mr 1924.

Bartram, E. B. Notes on Grimmia orbicularis Bruch. Bryologist 27: 10. "Ja" 13 Mr 1924.

Bell, H. P. Fern rusts of Abies. Bot. Gaz. 77: 1-31. pl. 1-5. 19 Mr 1924.

Belling, J., \& Blakeslee, A. F. The configurations and sizes of the chromosomes in the trivalents of 25 -chromosome daturas. Proc. Nat. Acad. Sci. 10: 116-120. f. 1-2. Mr 1924.

Benedict, R. C. The moss-leaved fern, Nephrolepis Trevilliani, a remarkable new sport in the Boston fern series. Jour. Heredity 15: 19-24. f. $9-13$. "Ja" 5 Mr 1924.

Berry, E. W. Fossil fruits from the Eastern Andes of Colombia. Bull. Torrey Club 52: 6I-67. f. I-19. "F" 12 Mr 1924.

Blake, S. F. Eight new Asteriaceae from Mexico, Guatemala, and Hispaniola. Proc. Biol. Soc. Washington 37: 55-62. 2. F 1924.

Including new species in Erigeron (1), Guardiola (1), Montanoa (1), Hymenostephium (1), Verbesina (1), Perityle (2), Anastraphia (1).

Blake, S. F. Erucastrum Pollichii in West Virginia. Rhodora 26: 22-23. "Ja" 26 F 1924.

Blakeslee, A. F. Distinction between primary and secondary chromosomal mutants in Datura. Proc. Nat. Acad. Sci. 10: 109-116. Mr 1924.

Bonar, L. Studies on the biology of Brachysporium trifolii. Am. Jour. Bot. 11: 123-158. pl. 2-3, f. A-B. 26 Mr 1924.

Boynton, K. R. Australian plants. Jour. New York Bot. Gard. 25: 31-33. "F" Mr 1924. Abstract of a lecture.

Britton, E. G. Holly. Jour. New York Bot. Gard. 25: 39-40. " F " Mr 1924.

Britton, N. L. La vegetación de cayo Icacos. Revista Agr. Puerto Rico 12: 91-96. F 1924. [Iliust.]

Button, H. K. Up-to-date findings about acid soil fertility. Gard. Mag. 39: 120. "Ap" Mr 1924.
Clayton, E. E. Investigations of cauliflower diseases on Long Island. New York (Geneva) Agr. Exp. Sta. Bull. 506: 3-15. pl. 1-8. Ja 1924.
Comstock, A. B. A green tree in the desert. Nature Mag. 3: 234-235. "Ap" Mr 1924. [Illust.]

Cook, M. T. Succession of fungi on culture media. Am. Jour. Bot. 11: 94-99.f. I-2. "F" 6 Mr 1924.
Cunningham, G. H. Fabraea-scald, Fabraea maculata (Lév.) Atk. A fungus disease of the pear and quince. New Zealand Jour. Agr. 28: 96-102. f. 1-4. 20 F 1924.
Davidson, A. Eriogonum crocatum n. sp. Bull So. Calif. Acad. Sci. 23: 17. pl. E. Ja-F 1924.
Degener, O. Four new stations of Lycopodium prothallia. Bot. Gaz. 77: 89-95. pl. Ir-13, f. I-2. 19 Mr 1924.
[De La Mare, A. T.] Electric light as an aid to plant growth. Further experiments prove that flowers can be hastened considerably. Fl. Exch. 57: 712. 8 Mr 1924. [Illust.]
Du Rietz, G. E. Flechtensystematische studien. III. Bot. Notiser 1924: 49-68. 30 Ja 1924.
Including references to North American species.
Emerson, R. A. Control of flowering in teosinte. Jour. Heredity 15: 41-48.f. 23-25. "Ja" 5 Mr 1924.

Faris, J. A. Factors influencing infection of Hordeum sativum by Ustilago Hordei. Am. Jour. Bot. 11: 189-213. pl. 7-8, f. 1-7. Mr 1924.

Farwell, O. A. The correct name for the spearmint. Rhodora 26: 19-22. "Ja" 26 F 1924.

Gilbert, W. W., \& Popenoe, C. H. Diseases and insects of garden vegetables. U. S. Dept. Agr. Farmers' Bull. 1371: I-46.f. I-65. Ja 1924.
Godfrey, G. H., \& McKay, M. B. The stem nematode Tylenchus dipsaci on wild hosts in the Northwest. U. S. Dept. Agr. Bull. 1229: 1-8.f. I, pl. x-3. I Mr 1924.

Gortner, R. A., \& Hoffman, W. F. Quantitive estimation of chlorides and sulphates in expressed plant tissue fluids. Bot. Gaz. 77: 96-102. 19 Mr 1924.

Gravatt, G. F. The present status of the chestnut blight. Jour. For. 22: 193-196. F 1924.

Greaves, J. E., \& Carter, E. G. Influence of sodium arsenite on microflora of soil. Bot. Gaz. 77: 63-72. 19 Mr 1924.

Griffith, I. Idiosyncrasies, or the story of a sneeze. Am. Jour. Pharmacy 96: 170-193. Mr 1924. [Illust.]
Including notes on pollen and its relation to hay fever. A lecture.
Hansen, A. A. Arbutus. Nature Mag. 3: 229, 250, 256. "Ap" Mr 1924. [Illust.]

Hansen, A. A. Poison in the woods. The strange story of white snakeroot, which science has finally found guilty of causing many mysterious deaths. Am. Forests and Forest Life 30: 163-164, 190-19I. Mr 1924. [Illust.]

Holbert, J. R., \& Koehler, B. Anchorage and extent of corn root systems. Jour. Agr. Research 27: 71-78. pl. 1-5, f. I 12 Ja 1924.

Hollick, A. When a tropical vegetation flourished in Alaska. Jour. New York Bot. Gard. 25: 33-35. "F" Mr 1924. Abstract of a lecture.

Holzinger, J. M., \& Bartram, E. B. The genus Crossidium in North America. Bryologist 27: 3-8. pl. 1-3. "Ja" 13 Mr 1924.

Including descriptions of 3 new species.
Howe, M. A. Tropical ferns. Jour. New York Bot. Gard. 25: 37-38. "F" 6 Mr 1924.
Abstract of a lecture.

Keener, A. E. A study of the factors concerned in the reddening of leaves of Diervilla lonicera. Am. Jour. Bot. 11: 61-77. f. $1-3$, pl. I. "F" 6 Mr 1924.

Kendrick, J. B., \& Gardner, M. W. Soybean mosaic: seed transmission and effect on yield. Jour. Agr. Research 27: 91-98. 12 Ja 1924.

Knowlton, C. H., \& Deane, W. Reports on the flora of the Boston district,-XLII. Rhodora 26: $13-19$. "Ja" 26 F 1924.

Lankester, C. H. Notes from Costa Rica. Orchid Rev. 32: 89. Mr 1924.

Lepeschkin, W. The influence of vitamins upon the development of yeasts and molds. Bot. Gaz. 11: 164-167.f. i. 26 Mr 1924.

Lloyd, F. E. The fluorescent colors of plarts. Science II. 59: 241-248. 14 Mr 1924.

Loeb, J. Theory of regeneration based on mass relation. III. Further experiments on the cause of the polar character of regeneration. Jour. Gen. Physiology 6: 463-477. f. $x-8$. 20 Mr 1924.
Studies based on Bryophyllum calcinum.
Lorenz, A. A Revision of the Mt. Desert hepatic list. Rhodora 26: 6-13. "Ja" 26 F 1924.

Magness, J. R., \& Diehl, H. C. Physiological studies on apples in storage. Jour. Agr. Research 27: 1-38. f. 1-15. 5 Ja 1924.

Martin, T. L. Soil flora studies. Soil Sci. 16: 475-477. D 1923.
Maxon, W. R. A third species of Atalopteris. Proc. Biol. Soc. Washington 37: 63-64. 21 F 1924.
Including Atalopteris ekmani sp. nov. from Haiti.
[Moore, G. T.] Local oaks and their uses. Missouri Bot. Gard. Bull. 12: 25-32. pl. 2. "F" Mr 1924.
[Moore, G. T.] White-oak acorns as food. Missouri Bot. Gard. Bull. 12: 32-33. pl. 3. "F" Mr 1924.

Mousley, H. Calypso. Jour. New York Bot. Gard. 25: 25-30. pl. 283-284. "F" Mr 1924.

Mousley, H. Further notes on the ferns of Hatley, Que. Can. Field Nat. 38: 50-51. 14 Mr 1924.

Munz, P. A., \& Johnston, I. M. The penstemons of Southern California. Bull. So. Calif. Acad.Sci. 23:21-40. Ja-F i924. Including new varieties and combinations.

Newcombe, F. C. Significance of the behavior of sensitive stigmas II. Am. Jour, Bot. 11: 85-93. "F" 6 Mr 1924.

Palmer, E. L. Woody plants in winter. Cornell Rural Sch. Leaflet 17: 1-47. Ja 1924. [Illust.]

Porter, C. L. Concerning the characters of certain fungi as exhibited by their growth in the presence of other fungi. Am. Jour. Bot. 11: 168-188. pl. 4-6, f. x-g. 26 Mr 1924.

Reed, H. S., \& Haas, A. R. C. The effect of hydroxyl-ion concentration on the growth of walnut roots. Am. Jour. Bot. 11: 78-84. f. 1 -6. "F" 6 Mr 1924.

Reid, M. E. Relation of kind of food reserves to regeneration in tomato plants. Bot. Gaz. 77: 103-110.f. 1-2. 19 Mr 1924.

Rice, M. A. Internal sori of Puccinia Sorghi. Bull. Torrey Club 51: 37-50. f. I-4. "F" 12 Mr 1924.

Richey, F.D. Effects of selection on the yield of a cross between varieties of corn. U. S. Dept. Agr. Bull. 1209: 1-19.f. I-2. F 1924.

Ryerson, K. Embryo-budding of the avocado. Jour. Heredity 15: 33-37. f. 19-22. "Ja" 5 Mr 1924.
Ryerson, K. The recovery of the avocado tree after the 1922 freeze in California. Florida Grower 29: 6-7. I Mr 1924.

Schmitz, H. Studies in wood decay IV. The effect of sodium carbonate, bicarbonate, sulphate, and chlorid on the rate of decay of Douglas fir sawdust induced by Lenzites saepiaria Fr. with special reference to the effect of alkaline soils on the rate of decay of wood in contact with them. Am. Jour. Bot. 11: 108-121. f. 1-5. "F" 6 Mr 1924.
Seaver, F. J. Greenhouse pests. Jour. New York Bot. Gard. 25: 35-37. "F" Mr 1924.
Abstract of a lecture.

Shapovalov, M., \& Link, G. K. K. Control of potato-tuber diseases. U. S. Dept. Agr. Farmers' Bull. 1367: 1 - 37. f. 1 -39. Ja 1924.

Shull, J. M. Frost injury in Iris and Diervilla. Jour. Heredity 15: 29-32.f. I-3. " Ja" 5 Mr 1924.

Sieglinger, J. B. Seed-corn inheritance in certain grain-sorghum crosses. Jour. Agr. Research 27: 53-64. 5 Ja 1924.

Small, J. K. Polygalales. N. Am. Fl. 25: 299. 10 Mr 1924.
Small, J. K. The land where spring meets autumn. A record of exploration in Florida in December, 1921. Jour. New York Bot. Gard. 25: 53-94. pl. 285-287. Mr 1924.
Smith, C. P. Pseudotaenidia in Maryland. Rhodora 26: 23-24. "Ja" 26 F 1924.
Sprague, T. A., \& Riley, L. A. M. Materials for a flora of British Honduras: I. Kew Bull. Misc. Inform. 1924: $\mathbf{I}-20$. Mr 1924.

Including new species in Hypericum (1), Sloanea (2).
St. John, H., \& Courtney, W. D. The flora of Epsom Lake. Am. Jour. Bot. 11: 100-107.f. r. "F" 6 Mr 1924.
Standley, P. C. Eight new species of plants from Mexico. Proc. Biol. Soc. Washington 37: 43-47. 21 F 1924.
Including new species in Hyperbaena (2), Capparis (1), Pithecollobium (1).
Jatropha (1), Malache (I), Parathesis (1), Ruellia (1).
Standley, P. C. Nine new species of plants from Central America. Proc. Biol. Soc. Washington. 37: 49-54. 2I F 1924.

Including new species in Podocarpus (1), Coussapoa (2), Neea (1), Sparattanthelium (1), Capparis (\mathbf{I}), Maieta (1), Hamelia (1), Psychotria (1).
Standley, P. C. Trigoniaceae. N. Am. Fl. 25: 297-298. 10 Mr 1924.
Standley, P. C. Vochyaceae. N. Am. Fl. 25: 301-303. 10 Mr 1924.

Stapf, D. Epidendrum cristobalense. Central America. Curt. Bot. Mag. 149: pl. 89g6. 3 Mr 1924.

Stoddard, E. M., Rose, D. H., \& Stevens, N. E. Spraying strawberries for the control of fruit rots. U. S. Dept. Agr. Circular 309: 1-4. Mr 1924.

Stokey, A. G., \& Starr, A. M. Lycopodium prothallia in western Massachusetts. Bot. Gaz. 77: 80-88. i9 Mr 1924.

Stout, A. B. Rubber plants. Jour. New York Bot. Gard. 25: 94-96. Mr 1924. Abstract of a lecture.

Stout, A. B. The distribution of seed of the fringed gentian. Jour. New York Bot. Gard. 25: 38-39. "F" Mr 1924.
Swartwout, H. G. Grape growing in Missouri. Missouri Agr. Exp. Sta. Bull. 208: 3-35. f. I-19. Ja 1924. Including notes on insects and diseases of grapes.

Tanner, F. W., \& Dack, G. M. A study of yeasts from sore throats. Centr. Bakt. 91: 282-299. F 1924.

Transeau, E. N., \& Sampson, H. C. Laboratory and field work in general botany, pp. I-VI, 1-I54. Worid Book Company. Yonkers-on-Hudson, New York. 1924.
Uphof, J. C. T. Hygrochastic movements in floral bracts of Ammobium, Acroclinium, Rhodanthe, and Helichrysum. Am. Jour. Bot. 11: $159-\mathrm{I} 63$. $f . A-B$. Mr 1924.
de Vries, H. Preferential fertilization in Oenothera Lamarckiana. Bot. Gaz. 77: 73-79. 19 Mr 1924.
Weed, C. M. The Trillium and the fly. Nature Mag. 3: 239. "Ap." Mr. 1924. [Illust.]

Weiss, F. The effect of rust infection upon the water requirement of wheat. Jour. Agr. Research 27: 107-118. 12 Ja 1924.

Wiegand, K. M. Some changes in nomenclature. Rhodora 26: 1-5. "Ja" 26 F 1924.
Wilson, E. H. Plants new or noteworthy. The Sargent hemlock. Gardeners' Chron. III. 75: 107. 23 F 1924. [Illust.]
Wilson, P. Meliaceae. N. Am. F1. 25: 263-296. 10 Mr 1924.

TORREY BOTANICAL CLUB

SEPTEMBER, 1924

Some Senecioid Genera-I

P. A. Rydberg

Cacalia L. Sp. Pl.

Bentham \& Hooker in their Genera Plantarum included in Senecio quite a number of genera proposed by various authors, among them Ligularia Cass., Cacalia L., Psacalium Cass., Kleinia Haw., etc. I shall confine myself in this paper to the genera of North America only, and especially those species which have been known as members of the so-called genus Cacalia.

The first questions which present themselves are: Can this genus be separated from Senecio and what is the reason for merging it in that genus? The characters by which it is usually distinguished are the white or cream-colored, not yellow, disccorollas, the absence of ray-flowers, and the more elongate corollalobes. Several of the true Senecios have cream-colored disccorollas, and quite a number of them are rayless. A few species, usually included in Cacalia, have short corolla-lobes. There is no reason therefore why the genus Cacalia, as usually instituted, should be excluded from Senecio. The trouble has arisen because botanists have included in Cacalia several different types which can easily be distinguished from each other and from Senecio if considered separate but not if taken as an aggregate.

If these groups can be separated and segregated as distinct genera, another question arises: To which group should the name Cacalia L. be applied?

In Species Plantarum the genus Cacalia contains ten species, divided in two groups. The type must be sought in the second group, for at the end of the genus Linnaeus made the statement that the two genera, Cacalia and Kleinia, should be united.

[^42]By the genus Kleinia he meant the first group of four species, which all had been known as Kleinia. Of the species of the second group only the last two, Cacalia atripicifolia and C. alpina, had been known as Cacalia before Linneaus' time. The name Cacalia, applied to the last one, dates back to Vaillant and L'Obel. C. alpina L. or Adenostylis alpinus is therefore the historical type of Cacalia.

It is true that Linnaeus did not always follow the general accepted interpretation of a name but occasionally made a quite different application of the same. Let us see how he treated the genus in the fifth edition of his Genera Plantarum. Here he credited the name to Vaillant and also cited Tournefort and gave as synonyms: Kleinia of former editions, Cacalianthemum Dill., Porophyllum Vaill., and questionably Tithymaloides Klein. The first four species of the Species Plantarum, which constituted Kleinia, he therefore did not regard as typical Cacalia. This disposes also Cacalianthemum Dill. and probably Tithymaloides Klein, which belong to the same species. Porophyllum Vaill. became Cacalia Porophyllum L. Cacalia sonchifolia L. and C. hastata L. were placed in the genus for the first time in Species Plantarum and only Linneaus himself had used Cacalia for C. suaveolens in his Hortus Upsaliensis. C. atripicifolia L. had been known as Cacalia virginiana glabra, etc., by Morrison, while C. alpina had been known as Cacalia by many authors. Furthermore Linnaeus' diagnosis of the genus points to this species especially the description of the style tips: "Stigmata duo, oblonga, revoluta." This is characteristic of Adenostylis alpinus which on account of its oblong style branches has been placed in the tribe Eupatorieae, but which Dr. B. L. Robinson rightly restored to the Senecroneae. C. atriprcifolia as well as C. suaveolens has a true Senecioid style, with truncate stylebranches. Cacalia alpina L. must therefore be regarded as the type of Cacalia, and Adenostylis becomes a synonym. Cacalia is to be excluded from the North American flora.

Psacalium Cass. Dict. Sci. Nat. 43: 46i. 1826.

Cassini was one of our best students of the Composites, and it would have been well if Lessing, Bentham \& Hooker, Gray, Klatt, and Hoffman had paid more attention to his genera, most
of which were well founded. Psacalium is a very natural genus, just as well distinguished from Cacalia as understood by Gray as it is from Senecio, by the style which is practically Vernonioid, i. e., the branches are filiform, elongate, spirally curved, acute, neither truncate nor with a hair-pencil at the end. The same kind of style is found in Gynura and in some segregates of Liaburn. The genus differs from Senecio in the white or whitish corollas, with a long slender tube, a short broadly campanulate throat and elongate lobes, several times as long as the throat. The heads are always discoid, as in so-called Cacalia, and the basal leaves always with peltate blades. The latter character is not found in any of the other genera, included in Cacalia. It is found, however, in a group of species still included in Senecio, but these species have radiate heads, short corolla lobes and truncate style-tips with a terminal pencil.

Bracts decidedly pubescent or puberulent.
Leaf-blades deeply cleft, the divisions again lobed or coarsely toothed.
Achenes tomentulose; heads nodding; leaves of the branches of the inflorescence linear-filiform.
Achenes glabrous; heads not nodding; leaves of the inflorescence foliaceous or subulate.
Heads few; involucral bracts 12-16, arachnoidvillous, $12-18 \mathrm{~mm}$. long.
Stem and leaves decidedly pubescent.
Heads 20-40-flowered; bracts $15-18 \mathrm{~mm}$. long; primary divisions of the basal leaves usually 5 -lobed.
Heads 12-20-flowered; bracts about 12 mm . long; primary divisions of the basal leaves 3 -lobed.
Stem and leaves glabrous.
Heads numerous; involucral bracts 5^{-8}, shorthirsute, about 10 mm . long or less. Bracts 8-10, about 10 mm . long; flowers 8-12.
Ultimate lobes of the basal leaves rounded, obtuse, mucronate.
Ultimate lobes of the basal leaves lanceolate, acute.
Bracts 5 or 6 , usually less than 10 mm . long, striate; flowers 5 or 6.
Involucre $8-10 \mathrm{~mm}$. long; bracts ovateoblong; lobes of the basal leaves acute.
Involucre $5^{-6} \mathrm{~mm}$. long; bracts oblong; lobes of the basal leaves rounded, obtuse and mucronate.

1. P. Holwayanum.
2. P. Conzattii.
3. P. Coulteri.
4. P. thyrsoideum.
5. P. peltatum.
6. P. argutum.
7. P. megaphyllum.
8. P. oblusilobum.

Leaf-blades sinuately lobed, the lobes broadly tri-
$\begin{array}{ll}\text { angular, merely denticulate; achenes hirsute; } \\ \text { involucre puberulent. } & \text { 14. P. Langlassei. }\end{array} l=$.
Bracts glabrous or slightly puberulent.
Basal leaf-blades divided to near the center into lance-linear divisions.
Basal leaf-blades lobed half-way to the center or less deeply into broad divisions.
Leaf-blades divided half-way to the center; divisions again lobed.
Leaf-blades usually divided less than half-way to the middle; divisions toothed or denticulate. Inflorescence cymose-paniculate; bracts yellowish, obtuse or rounded at the apex.
Inflorescence elongate-paniculate; bracts more or less purplish, acute or acutish.
Basal leaf-blades 1.5-2.5 dm. broad; lobes about 7, ovate, acute; inflorescence with many heads; leaves of the branches of the panicle subulate.
Basal leaf-blades less than 1 cm . broad; lobes not more than 5 ; leaves of the inflorescence foliaceous.
9. P. peltigerum.
10. P. Nelsonii.
11. P. poculiferum.
12. P. tabulare.
13. P. laxiflorum.
I. Psacalium Holwayanum (B. L. Robinson) Rydb.

Cacalia Holvayana B. L. Robinson, Proc. Am. Acad. 43: 45. 1907.

This is characterized by its tomentose achenes and nodding heads, and by the leaves of the inflorescence, which are linearfiliform. The type came from Uruapan, Michoacán.

Michoacán: Holway 3617 (type); Pringle 13297, 13672; Langlassé 576.*
2. Psacalium Conzattii (Rob. \& Greenm.) Rydb. n. sp.

Cacalia peltata Conzattii Rob. \& Greenm. Proc. Am. Acad. 32: 49. 1896.
This was described as a variety of C. pelvata but is distinguished by its few large heads with 12-16 bracts and 20-40 flowers. It is more closely related to the next, differing in its larger heads, longer bracts, more flowers, and by its more lobed leaves. The type came from San Filipe, Oaxaca.

OAxaCA: Pringle 6238; Conzarti 27.

[^43]
3. Psacalium Coulteri (Greenm.) Rydb. n. sp.

Cacalia peltata Coulteri Greenm., Proc. Am. Acad. 40: 51. 1904.

I also believe this to be specifically distinct from C. peltata, differing in the larger heads with 12-20 flowers and about 12 villous instead of hirsutulous bracts. The type locality is Real del Monte, Veracruz.

Puebla: Purpus 3038.
Mexico: Rose \& Painter 7939.
Michoacán: E. W. Nelson 6582.
Veracruz: Coulier (type).
4. Psacalium thyrsoideum DC. Prodr. 6: 335. 1837.

Senecio insignis Hemsley, Biol. Cent. Am. Bot. 2:242. 1881.
This was described from specimens collected by Haenke in Mexico, and has not been rediscovered as far as I know. It is known to us only through De Candolle's short description, which does not fit any of the species collected in later years. Hemsley referred it to Senecio in which the specific name thyrscideum was preoccupied.
5. Psacalium peltatum (H.B.K.) Cass. Dict. Sci. Nat. 43: 461. 1826.

Cacalia peliata H.B.K. Nov. Gen. \& Sp. 4: 170.1820.
Senecio peliterus Hemsley, Biol. Cent. Am. Bot. 2: 245. 1881.

This is the type species of the genus, and was originally collected in woods near Patzcuaro, Michoacán.

Michoacán: Humboldt; Pringle 3340; Seler 1259.
Morelos: Pringle 9871.
6. Psacalium argutum Rydberg sp. nov.

Stem 1 m. high or more, striate, finely crisp-hispidulous; petioles of the basal leaves $2-3 \mathrm{dm}$. long; blades $2-3 \mathrm{dm}$. broad, divided half-way to the center or deeper, strongly reticulate, hispidulous on both sides; primary lobes 7 or 8 , obovate in outline, usually 5 -lobed and the upper lobes again lobed, the ultimate divisions lanceolate and acute; sinuses rounded; upper stemleaves oblanceolate, entire or with a few teeth or lobes, those of the inflorescence mostly oblong or lanceolate and entire; heads
many, in a leafy panicle; involucre campanulate-turbinate, $12-$ 13 mm . high, about 10 mm . broad, subtended by $\mathrm{I}-3$ narrowly linear leaves, scarcely longer than the bracts; bracts about 8, lance-linear, acute, hispidulous on the back; flowers 10-12; corolla-tube 7 mm . long; throat 0.5 mm . long; lobes nearly 5 mm . long; achenes glabrous; pappus 7 mm . long.

Type collected at San Luis Potosi, 1879, Schaffner 725 (herb. N. Y. Bot. Gard.).
P. argutum is closely related to P. peltatum differing in the outline and cut of the leaves.

San Luis Potosi: Schaffner 725; Parry \& Palmer 543.
Durango: E. W. Nelson 4954.
7. Psacalium megaphyllum (Rob. \& Greenm.) Rydb.

Cacalia megaphylla Rob. \& Greenm., Am. Jour. Sci. III. 50: 157. 1895.

This is related to the two preceding, differing in the smaller 5 -6-flowered heads and usually only 5 bracts. The type came from Guadalajara, Jalisco.

Jalisco: Pringle 2490.
Morelos: Pringle 6165.
Michoacán: A rsène 2386.
Puebla: Nicolas 334; Arsène (in 1908).
8. Psacalium obtusilobum (Rob. \& Greenm.) Rydb.

Cacalia obtusiloba Rob. \& Greenm. Am. Jour. Sci. III. 50: 158. 1895.

It differs from the last in the round-lobed basal leaves and the smaller involucre. It is known only from the type collection from Sierra de San Filipe, Oaxaca, Pringle 5840.
9. Psacalium peltigerum (Rob. \& Seaton) Rydb.

Cacalia peltigera Rob. \& Seaton, Proc. Am. Acad. 28: III. 1893.
This is characterized by its deeply divided leaf-blades, the divisions again divided into lanceolate or lance-linear lobes; the bracts are 5 or 6 , glabrous, and the flowers $5-7$. Type locality, Rio Blanco, Jalisco.

Jalisco: Pringle 9872, 4627, 5154; Palmer 171.

10. Psacalium Nelsonii Rydberg sp. nov.

Stem 5 dm . high or more, sulcate, tomentulose-puberulent; basal leaves long-petioled; blades about 3 dm . broad, cleft
half-way to the center, short-pubescent above, tomentose beneath; divisions $7-8$, cuneate in outline, mostly 3 -lobed and sinuately toothed, the ultimate lobes broadly ovate; heads numerous in an elongate panicle; involucre campanulate, about 8 mm . long, 6 mm . broad, glabrous, purplish; bracts $9-10$, oblong, acute; flowers about 10; corolla-tube 5 mm . long; lobes 2.5 mm . long, linear-oblong; achenes glabrous; pappus-bristles 6 mm . long, white.

Type collected in the vicinity of Cerro San Filipe, Oaxaca, 1894, E. W. Nelson ilit (U. S. Nat. Herb. no. go8oi8).

This intermediate between the preceding and the next following. The leaves are divided half-way to the center into oval sinuately lobed divisions. The inflorescence is elongatepaniculate.
II. Psacalium poculiferum (S. Wats.) Rydb.

Cacalia poculifera S. Wats., Proc. Am. Acad. 26: 143. 1891.
The leaf-blades are divided less than half-way to the center into broad divisions, again lobed or toothed with triangular lobes or teeth; the inflorescence is cymose-paniculate.

Jalisco: Pringle 9874, 4414.
Tepic: Rose 1935.

12. Psacalium tabulare (Hemsley) Rydb.

Senecio iabularis Hemsley, Biol. Cent. Am. Bot. 2: 248. 1881. Cacalia tabularis A. Gray, Proc. Am. Acad. 19: 52. 1883.
Cacalia macrota Schultz Bip.
This is related to the preceding, but with broader less lobed divisions, more elongate inflorescence and acute purplish bracts. The type was collected in the valley of Orizaba, Veracruz.

Veracruz: (Orizaba) F. Mueller (in 1855); Bourgeau 2926 (type).

Puebla: Purpus 5630.
13. Psacalium laxiflorum Benth. Pl. Hartw. 41. 1840.

Senecio Moreliae. Hemsley, Biol. Cent. Am. Bot. 2: 243. 1881.
This is characterized by its small blades of the lower leaves and the more foliaceous leaves of the inflorescence. The type came from Morelia, Michoacán.

Michoacán: Hartweg 318.
Durango: Rose 2337.

14. Psacalium Langlassei Rydberg sp. nov.

Stem 7.5 dm . high or more, sulcate, scabrous-puberulent, brownish; basal leaves long-petioled, the petiole r.5-2 dm. long; blade about 1.5 dm . broad, strongly veined, short-pubescent on both sides, 9 -10-ribbed, $9-15$-lobed; lobes broadly triangular, broader than long, mucronulate-denticulate; leaves of the inflorescence linear or linear-filiform; heads in an elongate panicle; involucre $1^{15-17} \mathbf{~ m m}$. high, and nearly as broad; bracts about 10 , linear, acute, glandular-puberulent, acute; flowers 15-20; corolla-tube 8 mm . long; throat scarcely $\mathbf{I} \mathrm{mm}$. long; lobes linear, 3 mm . long; achenes hirsute, 5 mm . long; pappus-bristles white, 10 mm . long.

Type collected in the Sierra Madre, Michoacán or Guerrero, 1898, E. Langlasse 576 (U. S. Nat. Herb. no. 386047).

The species resembles somewhat the last two in its leaf-form, but the heads are larger, like those of P. peltatum and its relatives, the bracts about io, puberulent, and the achenes are hirsute. It is known only from the type collection.

Cacalia calotricha Blake, Contr. Gray Herb. II. 52: 58. 1917.

This should probably be referred to Senecio.

Pericalia Cass. Dict. Sci. Nat. 48: 459. 1827.

This genus has the short corolla-lobes and the style-branches of Senecio, but the corollas are white or nearly so, the throat is elongate, narrowly funnelform, the lobes conspicuously rolled back after anthesis. The achenes are subcylindric, strongly ro-ribbed, the pappus of barbellate white bristles, slightly clavate at the tip, and the leaves are palmately ribbed and lobed.
Leaves sessile.
Leaves petioled.
Leaves of the inflorescence conspicuous, foliaceous, ovate. 2. P. suffulta.
Leaves of the inflorescence linear or linear-filiform.

Stem glabrous, leafy throughout.
Stem pubescent, leafy at the middle only.

1. P. sessilifolia.
2. P. vvatifolia.
3. P. michoacana.

1. Pericalia sessilifolia (H. \& A.) Rydb.

Cacalia sessifolia H. \& A. Bot. Beechey Voy. 436. 1841.
Schultz Bipontinus transferred it to Senecio under the name S. Beecheyamus. So did also Hemsley who, however, retained
the original specific name. The type was collected between San Blas and Tepic.

Tepic: Palmer 1832: Rose 2828.

> 2. Pericalia suffulta (Greenm.) Rydb.

Cacalia suffulta Greenm. Proc. Am. Acad. 32: 310. 1897.
The type was collected above Cuernavaca, Morelos.
Morelos: Pringle 9876, 6626 (type).
3. Pericalia ovatifolia (Schultz Bip.) Rydb.

Senecio ovatifolius Schultz Bip. Flora 28: 498. 1845.
This is the type of the genus, which was based on Cacalia cordifolia H.B.K., ${ }^{*}$ not C. cordifolia L. 1781. Cassini, however, did not make the combination Pericalia cordifolia, which appeared for the first time as a synonym in De Candolle's Prodromus. \dagger Hemsley transferred it to Senecio as S. cardicphyllus. The type came from Santa Rosa, Mexico.

Mexico: Purpus 5625; Vischer 14.
Jalisco: Pringle 9869, I736; Palmer 576; Safford 1451.
San Luis Potosi: Palmer 47.
Michoacán: Arsène 7347, 5729.

4. Pericalia michoacana (B. L. Robinson) Rydb.

Cacalia michoacana B. L. Robinson, Proc. Am. Acad. 43: 46. 1907.

This is known only from the type collection from Uruapan, Michoacán, Pringle 10117.

$$
\text { Mesadenia Raf.; Loud. Gard. Mag. 8: 247. } 1832 .
$$

This is the same as Cacalia section Conophora of De Candolle or Conophora Niewl. The genus is closely related to Odontotrichum but the corolla has a distinct campanulate throat and the achenes are oblong and terete. It differs from the discoid species of Senecio in the white or whitish corollas and the longer corolla lobes. Usually the center of the receptacle is produced into a cone-shaped prolongation which gave the name Conophora.

[^44]The species are all North American and have been treated by Small in his Flora of the South Eastern United States with the exception of Mesadenia Elliottii R. M. Harper* and the following species:
/ Mesadenia angustifolia Rydberg sp. nov.
Cacalia lanceolata ? Ell. Bot. S. C. \& Ga. 2: 311. 1824.

Not C. lanceolata Nutt. 1818.

Mesadenia lanceolata Small, Fl. SE. U. S. I301, in part. 1903.
Stem terete, glabrous, 5-15 dm. high; lower leaves petioled, the upper sessile; petioles of the lower leaves $5^{-1} 5 \mathrm{~cm}$. long; blades narrowly lanceolate, $\mathrm{I}-2 \mathrm{dm}$. long, less than 2 cm . wide, 3 -ribbed or indistinctly 5 -ribbed, often glaucescent beneath, entire or distantly sinuate-dentate, acuminate; upper leaves reduced, linear or lance-linear, less than 1 cm . wide, acute or more commonly acuminate; involucre 9-10 mm. high, 4 mm . broad; bracts linear-oblong, acute, slightly scarious-margined; corolla-tube $4-5 \mathrm{~mm}$. long; throat 1.5 mm . long; lobes lancelinear, 3 mm . long; achenes about 5 mm . long, obscurely ribbed; pappus-bristles 6-7 mm. long.

Type collected in the Everglades, between Fort Lauderdale and Miami, 1911, Small, Carter \& Small 3318 (herb. N. Y. Bot. Gard.).

Distribution: Throughout Florida to southern Georgia and Louisiana.

The New York Botanical Garden

[^45]
Plant Novelties from Florida*

John K. Small

The species and genera proposed and described on the following pages represent discoveries made, for the most part, in the course of exploration in peninsular Florida during the past few years by the writer and his associates in the field-work.
\checkmark Tradescantia roseolens Small, sp. nov. Stems tufted, 2-4 dm. tall, pubescent, especially above, with unequal ascending glandless hairs, ultimately branched; leaves elongate, the basal and lower cauline equalling or exceeding the stem, gradually tapering, mostly involute, pubescent with unequal hairs, striate, the margins reddish, the veins reddish in the sheaths: bracts elongate, slightly saccate at the base, colored like the leaves and similarly pubescent, but more copiously so: flowers numerous, rose-scented; pedicels slender-clavate, densely pubescent with short spreading gland-tipped hairs; sepals elliptic 9-10 mm. long, pubescent like the pedicels and somewhat tufted at the apex, margenta-margined; petals blue, $13-16 \mathrm{~mm}$. long, orbic-ular-ovate, erose-crenulate; anthers lemon-yellow; ovary hirsutulous; style glabrous; capsule not seen.-Inland sand-dunes, southern peninsular Florida.

The genus Tradescantia, already generously represented in the southern States, is now augmented by the species described above. A species of northern peninsular and eastern Florida, Tradescantia longifclia, is the nearest relative of T. roseolens. The latter differs from its relative, not only in structural features, such as smaller flowers and glandless stem, but also in the fragrance of the flowers which resembles that of tea-roses, hence the specific name. Tradescantia roseolens inhabits the "scrub" or that portion of it in the southern part of the lake region. It is particularly plentiful on the ancient dunes between Avon Park and Sebring. It is often so abundant that the fragrance of its flowers fills the air in the neighborhood of the plants. Plants are sometimes found in the gardens of recently established settlements, but whether their presence there is the result of introduction or the remains of the original plant covering of the

[^46]region is not known. The plant was first observed near Sebring, Florida, in April, 1919.

The specimens on which the above description is based were collected south of Avon Park, Florida, by the writer on May 23, 1921. Plants have been observed and collected in the same general region in successive years. Live specimens sent to The New York Botanical Garden in 1919 have flowered each succeeding year.
${ }^{*}$ Delopyrum basiramia Small, sp. nov. Annual, glabrous: stems and branches few or many ($10-70$) from the top of a woody tap-root, slender, wiry-filiform in the inflorescence; leaves slenderly linear, mostly $\mathbf{1}-2.5 \mathrm{~cm}$. long, acute, revolute; ocreae terminated by setaceous brown bristles; ocreolae short-acuminate: hypanthium-base clavate, nearly i mm.long at maturity; sepals of the pistillate flowers spatulate to linear, the inner about 2 mm . long, much exceeding the outer; achene subulate, fully 2.5 mm . long, thrice as long as thick, much exceeding the loosely investing calyx.-Inland sand-dunes ("scrub"), southern end of the lake region, Florida.

The following synopsis indicates some of the characters that distinguish D. ciliatum and D. basiramia.
Achene ellipsoid-ovoid; hypanthium-base obconic; upper ocreae leaf-bearing; fruiting calyx persistent.

1. D. cliatum.

Achene subulate; hypanthium-base clavate; upper ocreae leafless; fruiting calyx deciduous.
2. D. basiramia.

The buckwheat family, to which the above proposed species belongs, is well represented in the Florida "scrub." Several well-known genera are often abundantly in evidence, and also a new one which is proposed on a subsequent page. The type specimens of Delopyrum basiramia were collected by the writer on the high dunes north of Kuhlman, May 23, 1921.
\checkmark Kuhnistera truncata Small, sp. nov. Plants $\mathbf{1}$ m. tall or less with rather slender glabrous branches; leaflets mostly 5^{-7}, sometimes fewer; blades narrowly elliptic to elliptic-oblanceolate; 3-6 mm. long, obtuse, short-petioluled; spikes short and thick; lower bracts of the involucre suborbicular or orbicular-reniform, abruptly pointed; calyx villous; tube campanulate; lobes fili-form-setaceous, conspicuously plumose; corolla white; standard about 7 mm . long, the blade shorter than the claw, emarginate at the apex, narrowly cuneate at the base; wings and keel-petals about 5 mm . long, slender-clawed, the blades truncate-emarginate at the apex; pod $2.5-3 \mathrm{~mm}$. long, strigose.-Pine-palmetto lands, southern peninsular Florida.

The genus Kuhnistera embraced but one described species, until K. adenopoda was recently proposed. It and the above described species are rare plants compared to the abundance of the type species K. pinnata which also has a wide geographic range.

The present species, K. truncata, differs from K. pinnata in many respects-the larger spikes which are borne in a more open inflorescence, the broad leaflets, the long-clawed petals in which the claws are about as long as the blades, in the longer standard, and the larger pods. The petals, too, are truncate or slightly emarginate instead of rounded at the apex as they are in K. pinnata.

The type specimens were collected at Earman, Florida, by Fannie C. Rane, March 2, 192I. Specimens were also collected at Jupiter, Florida, many years ago by C. Hitchcock.
\checkmark Polygala cumulicola Small, sp. nov. Stem arising from a coralloid root, simple below or much-branched, closely appressedpubescent; leaf-blades spatulate to broadly linear below, elliptic to linear or elliptic-lanceolate above, sparingly fine-pubescent, short-petioled; racemes short, few-flowered; bracts lanceolate, scarious-tipped; pedicels glabrous; outer sepals green, glabrous, about 2 mm . long, slightly scarious-margined; wings rosepurple, $4-5 \mathrm{~mm}$. long, not conspicuously veiny; keel about 3.5 mm . long; pod oblong-elliptic, $5-5.5 \mathrm{~mm}$. long, nearly or quite as long as the wings, not stipitate, notched; seed-body 2.5 mm . long, long-hairy.-Active sand-dunes, eastern coast of southern peninsular Florida.

Heretofore nine species of Polygala were known to be endemic in Florida. The following proposed one adds another. It is a beautiful species restricted to the coastal dunes, mostly near the barrier beach, of the lower eastern coast of the Florida peninsula. It is characterized by the bright-green of the foliage and the deep rose-purple of the flowers. It maintains itself in the loose sand by means of deeply buried coralloid roots. The stem accommodates itself to the depth of the sand quite readily. Thus we find the leafless part of the main stem either an inch long or a foot long, according to the movements of the sands and the consequent adjustment of the stems. It differs from Polygala grandiflora as far as the inflorescence is concerned, by the short racemes, the deep rose-purple wings which are not conspicuously veiny at maturity, the sessile pod, and the narrower long-hairy seeds.

The type specimens were collected on the sand-dunes opposite Miami, by J. K. Small and G. K. Small, 4568. Other specimens in the herbarium of The New York Botanical Garden from the same region, collected by the writer are: numbers 3999, 4575, $5872,6939$.

Ilex cumulicola Small, sp. nov. A shrub or a small tree with copiously fastigiate-branched stems, the head often dense, the branchlets with pale-gray or whitish bark; leaves numerous, evergreen, deep-green; blades leathery, cuneate-obovate, 2.5 4.5 cm . long, sinuate-spinescent, with the spine-tipped teeth directed forward, nearly smooth and sometimes slightly shining above, dull beneath, short-petioled; fertile flowers one or two together; sepals broadly deltoid or somewhat reniform, acute or obtusish, ciliate; petals suborbicular to ovate, $3.5-4 \mathrm{~mm}$. long; stamens mostly shorter than the petals, abortive; drupe globose, about 8 mm . in diameter, deep-red; nutlets $5-5.5 \mathrm{~mm}$. long, ribbed and finely cross-veined on the back.-Inland sand-dunes ("scrub"), in the southern part of the lake region, Florida.

The "scrub" of Florida not only yields new endemic herbs, but shrubs and trees as well. The following proposed species of Ilex is one of this class. Other woody plants are described on succeeding pages.

The discovery, on Christmas Day, 1922, of this decorative holly in the southern end of the lake region of Florida was a surprise. The plants grow on the ancient sand-dunes. They are more copiously and rigidly branched than those of Ilex opaca. The leaves are rather closely toothed, with the teeth directed somewhat forward. The sepals are more reniform, merely acute or even obtusish, and eciliate. The pulp of the drupe is rather dry and the shorter and thicker nutlets are less prominently ribbed. The fresh fruits when crushed have the fragrance of apples.

The specimens on which the species is based were collected by the writer on the inland sand-dunes about Lake Nancesowe (Lake Jackson) near Sebring, Florida, December 25, 1922 (fruits), and April 15, 1923 (flowers).
\checkmark Ilex Buswellii Small, sp. nov. A shrub 3 m . tall or less, much-branched throughout, the branches gray, the foliage twigs glabrous, dark-purple, the flower-bearing twigs spur-like, scaly by the persistent petiole bases; leaves deciduous; blades elliptic to ovate-elliptic, $2-3 \mathrm{~cm}$. long, glabrous or nearly so, acute or short-acuminate, serrulate above the middle, dark-green and
somewhat shining above, slightly paler beneath, rather abruptly narrowed into short slender petioles; staminate flowers in clusters of 12-25, on short clavate pedicels; calyx $2-2.5 \mathrm{~mm}$. wide in anthesis, about 4 mm . wide in fruit; lobes 4 or 5 , more or less reniform in anthesis, becoming ovate or half-orbicular, ciliate; corolla white, $4-5 \mathrm{~mm}$. wide; lobes 4 or 5 , suborbicular or nearly so, ciliolate; stamens 4 or 5 , or rarely more, $1.5^{-2} \mathrm{~mm}$. long; anthers oval, longer than the filaments; ovary rudimentary; drupe globose, $9^{-11 ~ m m . ~ i n ~ d i a m e t e r, ~ r e d, ~ s h i n i n g ; ~ n u t l e t s ~ n a r-~}$ row, $4.5-5 \mathrm{~mm}$. long, sharply ribbed on the back.-Near the Caloosahatchee above Fort Myers, Florida.

The above proposed new holly belongs to a section of the genus Ilex different from that of the preceding one. It is a relative of Ilex caroliniana from which it differs in the somewhat coriaceous leaf-blades, the reniform calyx-lobes of the staminate flowers, the broader anthers, and in the larger fruits.

The type specimens were collected by W. M. Buswell, October 2, 1923, in fruit. Flowering specimens were collected later, December, 1923, by the writer in company with Mr. Buswell.

Cyrilla arida Small, sp. nov. A small tree, perhaps also a shrub, with slender, usually vine-like branches with gray bark, the twigs glabrous; leaves rather approximate at the ends of the twigs; blades elliptic-spatulate, $\mathrm{I}-3 \mathrm{~cm}$. long, coriaceous, usually acute or acutish, veiny at maturity, entire, glabrous, acuminate at the base, short-petioled; raceme-like panicles narrow, 3-5 cm . long in anthesis, short-peduncled, the rachis glabrous, the bracts and the bractlets subulate; sepals lanceolate, $\mathbf{I}-\mathrm{I} .5 \mathrm{~mm}$. long, acuminate; petals elliptic-lanceolate, $2-2.5 \mathrm{~mm}$. long, somewhat acuminate; anthers notched at both ends; capsule globose-ovoid, about 2 mm . long, often depressed.-Inland sanddunes ("scrub"), southern end of the lake region, Florida.

To anyone accustomed to see the two well-known species of Cyrilla (C. racemiflora and C. parvifolia) growing in their native haunts-the swamps and titi-bogs of the lowlands-the occurrence of trees of this genus growing on the dry inland dunes of white sand is surprising. The species just described is the third Cyrilla for Florida and for the continental United States. This Cyrilla, growing high up on the dry inland sand-dunes, is associated with a dozen or more novelties, of both specific and generic rank, some of which are described in this paper. It differs from C. parvifolia in the narrower sepals and petals and the notched anthers, as well as in the vine-like branches.

The type specimens were collected by the writer between Avon Park and Sebring, December 13, 1920.
\checkmark Lechea cernua Small, sp. nov. Plants $3-6 \mathrm{dm}$. tall, the foliage pubescent; flowering stems stout, often clustered, closely fine-pubescent, widely branched above; leaves of the inflorescencebranches finely pubescent; blades elliptic or nearly so, mostly $4^{-6} \mathrm{~mm}$. long, acute; basal shoots stout, mostly $2^{-} 5 \mathrm{dm}$. long, usually much-branched, pale-gray with short dense shaggy somewhat viscid pubescence; leaves of the shoots numerous; blades suborbicular, oval, or elliptic, $4-12 \mathrm{~cm}$. long, acute or abruptly pointed, copiously pale-pubescent, sessile; bracts of the inflorescence narrower than the branch-leaves; flowers very numerous; pedicels $1.5-2 \mathrm{~mm}$. long, deflexed at maturity, appressed-pubescent; outer sepals two minute scales; inner sepals three, suborbicular, I.5-2 mm. long, appressed-pubescent; pod obovoid, 2 mm . long, slightly exserted, glabrous, smooth, shining; seeds nearly 1.5 mm . long.-"Scrub" on inland sanddunes in the lake region and ancient dunes on the eastern coast, peninsular Florida.

The majority of the known North American species of Lechea occur naturally in Florida. Recent exploration indicates that several additional endemic species occur there. The above described one is the most conspicuous. The plants of this species are the most robust of any of our species of Lechea. Technically it is related to Lechea racemulosa. Its vegetative and floral parts are larger throughout. It may be distinguished from its relatives, and in fact from all our lecheas by the great development of basal shoots with broad leaves and by the nodding capsules.

The type specimens were collected by the writer on the ancient sand-dunes near Sebastian, Florida, September 6, 1922. Specimens of the same species have been collected in the "scrub" on the ancient dunes of the southern end of the lake region.

Chionanthus pygmaea Small, sp. nov. Shrub with underground stems, the branches $2-4 \mathrm{dm}$. tall, sometimes branched at the base, and sometimes also above; leaves few, remote or approximate on the short branchlets; blades thin leathery, elliptic or nearly so, $3-9 \mathrm{~cm}$. long, short-petioled; flower-clusters rather dense; calyx-lobes broadly ovate or orbicular-ovate, about 1 mm . long, obtuse or minutely pointed; corolla-lobes narrowly linear, about 1 cm . long; anthers ellipsoid, less than 2 mm . long, abruptly blunt-tipped; drupe oval, $2-2.5 \mathrm{~cm}$. long, purpleblack; putamen ellipsoid, constricted at the base, $1.5^{-2} \mathrm{~cm}$. long.

Inland sand-dunes ("scrub"), southern end of lake region, Florida.

Chionanthus has really been a monotypic genus, unless the Asiatic plant described as Linociera chinensis be actually congeneric with it. The species described above is a true Chionanthus, differing from the typical species as indicated in the description, appended synopsis, and note.
Corolla-lobes about 2 cm . long; anthers acuminate; drupe 1-1. 5 cm . long.

1. C. virginica.

Corolla-lobes about 1 cm . long; anthers abruptly blunttipped; drupe $2-2.5 \mathrm{~cm}$. long.
2. C. pygmaea.

The discovery of this plant adds another to the class of shrubs with underground stems-thus rendered less likely to elimination from the flora by fire. As far as we have observed, the present shrub has an average height of about a foot. In proportion to its size it is very floriferous. Curiously enough the flowers are about half the size of those of its larger relative, the well known fringe-tree (Chionanthus virginuca), while the fruits are about twice as large or more.

The type specimens were collected by the writer on the ancient sand-dunes between Avon Park and Sebring, Florida, May 23, 1921 (flower) and August 30 and 31, 1922 (fruit).
\checkmark Clinopodium Ashei (Weatherby) Small. Plants annual or biennial, but woody; stem much-branched, $1-5 \mathrm{dm}$. tall, minutely cinereous-pubescent and more or less glandular; leaves numerous, usually mainly clustered on short branchlets; blades thick, elliptic or nearly so if flattened out, strongly revolute, almost tubular, $4^{-9} \mathrm{~mm}$. long, obtuse, entire, pubescent like the stem, glandular-punctate, sessile; flowers solitary in the leaf-axils, short-pedicelled; calyx pubescent like the leaves, $7-8 \mathrm{~mm}$. long, the tube slightly longer than the lips, with a ring of hairs in the throat; upper lip reniform, slightly 3 -lobed, lower lip with two subulate-lanceolate lobes; corolla lavender, 12-13 mm. long, finely pubescent without; tube pubescent within; the upper lip flattish, with the slightly 2 -lobed tip curved upward, the lower lip strongly 3 -lobed, with the broad middle lobe again lobed; stamens 4, exserted, the upper (posterior) pair the shorter; filaments glabrous, anthers unappendaged; style glabrous. [Satureja Ashei Weatherby, Rhodora 26: 80. 1924.]-Inland sand-dunes ("scrub"), lake region, Florida.

The "scrub" has long been known to harbor a bright-red flowered calaminth. Several years ago a bright-lavender
flowered species was discovered at several localities. It grows on the otherwise desert-like sands by the acre, and when in flower is very conspicuous and so plentiful as to make extensive seas of lavender in the landscape. Recently this plant was described as a new species of Satureja. The preceding description was made in the field in April, 1923.

This labiate technically belongs to Clinopodium, and it is closely related to Clinopodium dentatum, a rare and endemic species of the upper Apalachicola River region of Florida. It differs from that species in the more compactly branched habit, the entire tightly revolute leaf-blades, the larger upper lip of the calyx, and the less deeply notched middle lobe of the lower corolla lip. In habit, foliage, and inflorescence it may be considered as distantly related to Clincpodium coccineum and C. macrocalyx, but the proportions of the parts and colors of the flowers are quite different.
${ }^{\wedge}$ Conradina grandifiora Small, sp. nov. Shrub 2 m . tall or less, with few, irregular virgate, often long arching branches, the bark reddish, the twigs puberulent; leaves somewhat fascicled; blades spatulate, but more or less clavate on account of the revolute margins, mostly $10-25 \mathrm{~mm}$. long, of ten puberulent and punctate above, but shining, white canescent beneath, short-petioled; flowers few together at the ends of the branches, nodding, short pedicelled, the cymes often 3 -flowered; calyx becoming $6.5-7.5 \mathrm{~mm}$. long, minutely pubescent and often with some slender bristly hairs; upper lip with a broad middle lobe and 2 lateral narrower curved lobes; lower lip exceeding the upper, with 2 subulate lobes; corolla showy lavender and spotted with magenta; upper lip ovate, $7-9 \mathrm{~mm}$. long, rounded or truncate at the apex, sparingly pubescent without; lower lip much larger than the upper, much spotted in the center, with 2 lateral somewhat reniform lobes and a median suborbicular or orbicularreniform notched lobe; stamens curved under the upper corollalip, included; style exserted; nutlets nearly 1.5 mm . long.Inland sand-dunes, lower eastern coast region of Florida, and locally on the dunes ("scrub") in the lake region.

Lavender-shaded flowers of an odd type may be seen on shrubby plants in the "scrub" of the lower eastern coast of Florida during any month of the year. The habit of the plants of Conradina canescens is stiff and compact. That of C.grandiflora conveys the opposite impression The stem and branches are elongate and straggling, and sometimes when growing among
larger woody plants the branches elongate and sprawl among the branches of shrubbery. The present species differs from C. canescens in the larger flower, particularly the large copiously spotted corolla with the reniform lateral lobes of the lower lip. The type specimens were collected by the writer on the ancient sand-dunes near Sebastian, Florida, April, 1921.

Borreria terminalis Small, sp. nov. Perennial with a woody, often branched, root; stems simple or several together from the branching top of the root, $1-4 \mathrm{dm}$. tall, simple, at least above the base, or rarely branched, glabrous, or sparingly pubescent above; leaves opposite, usually with more or less prominent clusters of smaller leaves in their axils; blades spatulate to elliptic-spatulate, linear or narrowly linear-lanceolate, acute, glabrous, often revolute, narrowed to the bases which are joined with the deltoid or lanceolate stipules; flowers mainly or wholly in a terminal glomerole, sometimes also in less dense glomeroles in the upper axils; sepals in pairs, finely-pubescent, the 2 larger lanceolate or triangular-lanceolate, $1.5^{-2} \mathrm{~mm}$. long, the 2 smaller broad and irregular; corolla white, $3.5-4 \mathrm{~mm}$. long; lobes deltoid, obtuse, shorter than the tube; anthers ellipsoid, about 1 mm . long, much shorter than the filaments; fruits 2.5-3 mm. long, exclusive of the persistent sepals.-Pinelands, Everglade Keys and lower Florida Keys.

The Borreria here described has heretofore been referred to the little known Mexican B. podocephala. Borreria terminalis is a parallel of the Antillian B. verticillata. It has the same habit and exhibits nearly the same range of variation in its foliage. There are, however, decided differences in the flowers and fruits. The Floridian species differs from the Antiliean in the relatively short corolla which only slightly exceeds the sepals, the lobes of which are about as long as the tube, the short ovoid anthers, and the larger fruits.
${ }^{\checkmark}$ Aster plumosus Small, sp. nov. Stem 1 m . tall or less, branched above, finely pubescent, the branches more closely pubescent than the stem, villous-hirsute near the tips; leafblades various, those of the lower part of the stem not seen, those above linear or nearly so, those of the branches linearelliptic to lanceolate, mostly 1 cm . long or less, acute, all sessile, finely pubescent on both sides; heads showy, in loose racemes: involucre turbinate-campanulate; bracts linear-acuminate to narrowly linear-lanceolate, imbricated in several series, the inner $6.5-7.5 \mathrm{~mm}$. long, the loosely spreading or recurved green tip with copious long white hairs; ray-flowers about 10; ligules
violet, 7-8 mm. long; pappus tawny; achenes silky-villous.Dry woods, middle Florida.

Continued exploration in Florida has brought to our attention asters additional to those described about a decade or more ago.*

Aster plumcsus is related to Aster concolor and it was formerly confused with that well-known species. It differs from Aster concolor in its more branching habit, and in the copiously loosely pubescent branches of the inflorescence. The involucre, however, is the more ready means of separation. This is larger than in A. concclor and has longer bracts with long, loosely spreading or recurved tips which are green, but the green tips are hidden in the dense white pubescence.

The type specimens were collected in dry sandy soil, Aspalaga, Florida, October, 1897, distributed as a duplicate from the Chapman Herbarium, by the Biltmore Herbarium, as Aster concolor L .
\checkmark Aster simulatus Small, sp. nov. Stem 2-15 dm. tall, wandlike or with few virgate branches, pale-pubescent, the branches, especially near the tips, villous-silky; leaf-blades linear-elliptic to lanceolate or linear-lanceolate, $\mathbf{1}-2.5 \mathrm{~mm}$. long or somewhat scalelike and smaller above, more or less silky, acute, entire, sessile; heads in virgate racemes or panicles, showy; involucre turbinatecampanulate; bracts broadly linear to linear-lanceolate, imbricated in several series, the outer with deltoid green tips, the inner $6-7 \mathrm{~mm}$. long, with lanceolate green acute tip, all appressed; copiously pubescent with appressed whitehairs;ray-flowers 10-13; ligules violet, $6-7 \mathrm{~mm}$. long; pappus whitish; achene copiously silky.—Pinelands, Everglade Keys, Florida.

Aster simulatus is related to A. concolor. It differs from that species in the smaller more scale-like leaf-blades, and the more copiously long-pubescent bracts of the involucre.

The type specimens were collected in the pinelands near the homestead trail, about the Silver Palm Schoolhouse, Dade County, Florida, by the writer and George K. Small, November 26, 1913. Other specimens by number collected during the writer's exploration of the Everglade Keys are 1076, 2244, 2740, 2741.
${ }^{J}$ DENTOCERAS Small, gen. nov. Shrub, with depressed branches, but perhaps short-lived. Leaves alternate, numerous, jointed at the top of the ocreae. Flowers in small terminal

[^47]panicles, crowded on the short branches. Sepals mainly white, accrescent, the outer slightly so, the inner decidedly so, but not as specialized wings, the outer appressed to and folded over the edges of the inner. Stamens 8 ; filaments alternately narrow and with widely dilated and shouldered bases. Achene included. (Generic name from the Latin referring to broader filaments which resemble horns with a lobe or tooth on either side at the base.)

In a few places in the "scrub" of the southern lake region of Florida one may find a depressed shrub forming mats of dark green foliage on the almost snow-white sand of the ancient dunes. The prostrate branches are copiously branched into slender almost innumerable branchlets all of which bear numerous small narrow leaves.

It is associated with a number of rare and local plants, such as species of Polygonella, Delopyrum, Chionanthus, Cyrilla, and Lechea mentioned on preceding pages.
\checkmark Dentoceras myriophylla Small. Shrub with prostrate radiating branches $2-20 \mathrm{dm}$. long, copiously branched, often densely fastigiate; leaves very numerous, clavate, $3-12 \mathrm{~mm}$. long, often fascicled on the short branchlets; panicles usually dense, the racemes short-stalked; outer sepals becoming ovate, boat-shaped, appressed; inner sepals much longer than the outer, oval or orbicular-ovate, often slightly obovoid, $2.5-3 \mathrm{~mm}$. long; achene ovoid or ellipsoid-ovoid, about 2.5 mm . long.-Inland dunes, ("scrub"), southern lake region, Florida.

The plants are conspicuous on account of the green mats on the white sand in which the plant grows, the panicles of white flowers are small and the flowers themselves are intermediate between Polygonella and Delcpyrum. It differs from both those genera in the calyx, which closely invests the achene, and in the long styles.

The type specimens were discovered by the writer on the inland dunes south of Frost Proof, Florida, April 18, 1920.

DEERINGOTHAMNUS Small, gen. nov. A low shrub with stems clustered on the top of a long fusiform root, the buds red-hairy. Stems of two kinds, foliaceous and floriferous. Leaves alternate, not crowded on the stems; blades of a spatulate or cuneate type, somewhat coriaceous, pinnately veined and finely reticulate. Flowers perfect or polygamous, axillary to leafy bracts, pedicelled, more or less nodding, solitary, or two or three together. Sepals 2-4, green, short, imbricate, appressed. Petals 6-13, white or ochroleucous, elongate, often or a linear
type, imbricate, recurved-spreading. Stamens 14-21, crowded on a flat receptacle; filaments a mere disk-like dilation; anthers parallel, adnate, surmounted by a gland-like protuberance from the connective, extrorse. Carpels I or 2, erect, at the center of the receptacle; style wanting; stigma subulate, shorter than the carpel-body, introrse, deciduous. Ovary I-celled. Ovules 6-8. Fruit usually of one or two carpels, baccate, stipitate, with thin flesh, I-4 seeded, of ten somewhat torulose. Seeds very turgid.(Named for Charles Deering, generous patron of the Sciences and the Arts.)

On one of our detours across the Florida peninsula in April, 1923,* we discovered a very peculiar shrub in the uninhabited pineland wilderness between Punta Gorda and Fort Myers. It is a genus of the custard-apple family, most closely related to the genus Asimina. Following is a description of the genus and of the species:

The family Annonaceae has been represented in the continental United States by two genera-Annona and Asimina. Annona is widely distributed geographically, while A simina is not known outside the eastern United States. The third genus, Deeringothamnus is still more restricted in range, being confined to limited areas in southern peninsular Florida. It is related to $A \operatorname{simina}$ from which it differs in the dimorphous stems, the flat or depressed receptacle, and the narrow nearly uniform unsculptured petals.

Deeringothamnus pulchellus Small, sp. nov. Shrub with clustered stems mostly 3 dm . tall or less, from a succulentfibrous perpendicular root $3^{-6} \mathrm{dm}$. long; leaves bright-green; blades cuneate to spatulate, $3-11 \mathrm{~cm}$. long; obtuse or rounded at the apex, sharply reticulate when dry, glabrous above, at least at maturity, with scattered fuscous hairs, especially on the yellow or orange midrib, beneath, or even glabrous beneath at maturity, acute at the base; flowering stems stouter than the leafy stems, the bracts foliaceous, ovate, oval, or elliptic, relatively broad, thus differing from the foliage leaves, sessile or nearly so; pedicels curved, mostly i-2.5 cm. long, sparingly pubescent, mostly simple, enlarged at the top; sepals coriaceous, ovate to lanceolate, $4^{-8} \mathrm{~mm}$. long, acute, stiff, red-pubescent; petals linear, varying to broadest above the middle or below it; recurved-spreading above the middle, usually $1-2 \mathrm{~cm}$. long, (the inner the smaller), the outer finely pubescent, the inner

[^48]glabrous; stamens 2 mm . long, the anthers much longer than the filaments, the apical gland knob-like; berry obovoid to ellipsoid, but more or less irregular or somewhat torulose, $2-5 \mathrm{~cm}$. long, glaucous; seeds subglobose, but often irregularly impressed.-In low pinelands, DeSoto County, Florida.

The type specimens were collected by the writer in the uninhabited wilderness east of Punta Gorda, April 28, 1923.
\checkmark SANIDOPHYLLUM Small, gen. nov. Biennial, partly woody herbs with one or more stems from the top of a woody tap-root. Leaves opposite, approximate and decussate at the base of the stem and on short sterile branches, remote on the flower stem; blades narrow, rather subulate. Cymes with elongate spike-like wiry branches. Flowers subtended by two bracts. Sepals 5, unequal, ribbed. Petals 5, spreading, oblique and inequilateral, the blade mostly on one side of the midrib. Stamens mostly 20. Ovary 3-celled. Styles filiform. Stigmas terminal. Capsule narrowly conic, acuminate, the carpels distinct, erect. (Generic name from the Greek, meaning crossleaf, referring to the decussate leaves of the stems.)

Sanidophyllum, a genus of Hypericaceae, is characterized by the short vegetative branches clothed with spreading decussate small linear leaves; the slender wiry flowering branches with small linear remote leaves except near the base of the plant; and the carpels distinct in fruit.

The petals are very inequilateral, the blade being mostly on one side of the midvein. The stamens are usually grouped in 4's.
\checkmark Sanidophyllum cumulicola Small, sp. nov. Plants with a woody tap-root; leafy branches at or near the top of the taproot, 5 mm . long or less; flowering stems $2-7 \mathrm{dm}$. tall, wiry, usually clustered; leaves $1-6 \mathrm{~mm}$. long, spreading on the lower part of the stem, appressed and scale-like above; inflorescencebranches very slender, the ultimate ones zigzag, the bracts scalelike; flowers erect; sepals leathery, broadly linear to ovate, $\mathbf{r}-\mathbf{1} .5$ mm . long, 2-4-ribbed; petals yellow, 3-4 mm. long; capsule 5-6 mm. long, between twice and thrice as long as the calyx, brown, the carpels slender-beaked; seeds oval, less than 0.5 mm . long.-In the "scrub," southern part of lake region, Florida.

The habit of this plant, in life, is suggestive of a yellow-flax (Cathartolinum). It resembles several of the Mexican species of Cathartolinum, which also have the short basal foliage branches with the decussate leaves.

The type specimens were collected by the writer on the ancient sand-dunes between Avon Park and Sebring, August 30 and 31, 1922.
\checkmark LITRISA Small, gen. nov. Perennial caulescent herb, the rootstock freely branching and bearing rosettes of leaves on stout caudices from which the flower stems arise. Leaves alternate, the basal ones larger than the cauline; blades fleshyleathery, becoming parchment-like, entire, parallel-veined. Heads corymbose. Involucre campanulate, few-flowered; bracts few, relatively broad, pubescent. Receptacle slightly chaffy. Corolla purplish, with a short tube and a cylindric throat. Androecium included. Anther-appendages ovate, entire, obtuse. Achene cuneate, ribbed. Pappus of many barbellate bristles.(Generic name an anagram of Trilisa, the species of which the plant under consideration somewhat resembles in habit.)

The prairies of Florida, like the dunes of the lake region, harbor various endemic species of flowering plants. There is one composite herb that is prominent during the summer and fall, by a shade of purple in the inflorescence that is not duplicated in the flora. During the rest of the year it shows itself only by rosettes of fleshy or parchment-like leaves.

Litrisa is a member of the Eupatorieae of the Carduaceae. Its morphological associates are the genera of the group known best by the genus Laciniaria. Technically it is most closely related on the one hand to Trilisa, by its involucre, and on the other, to Carphephorus, by its chaffy receptacle.
\checkmark Litrisa carnosa Small, sp. nov. Stem $3^{-8} \mathrm{dm}$. tall, finely pubescent; basal leaves in a rosette; blades mostly $2-8 \mathrm{~cm}$. long, linear, varying to lanceolate or spatulate, acute; cauline leaves remote; blades sessile; involucres erect; bracts mostly acute or numeronate, the outer ovate, the inner elliptic or broadly linear, about 4 mm . long; achenes $2-2.5 \mathrm{~mm}$. long, pubescent.-Low pinelands and prairies, southern peninsular Florida.

The type specimens were collected by the writer on the Istokpoga Prairie, east of Lake Istokpoga, Florida, August 3I, 1922, number 10658.
${ }^{d}$ AMMOPURSUS Small, gen. nov. Perennial succulent herb, the stem from a long, perpendicular, fleshy root, simple or branched. Leaves alternate, fleshy; blades narrow, entire, punctate, sessile. Heads solitary or in panicles, showy, not radiate, erect. Involucre cylindric-campanulate, many-flowered; bracts broad, in six or more series, appressed, fimbriolateciliate. Receptacle naked, honey-combed. Flowers perfect. Corolla rose-purple; tube slender-cylindric; throat thicker than the tube, more or less urceolate; limb slightly zygomorphic, the lobes 5 , spreading, about as long as the throat. Stamens
included; filaments filiform-subulate; anthers linear, rounded or emarginate at the apex, cordate at the base, the lobes rounded. Style filiform. Stigmas filiform, usually longer than the style. Achene fusiform, 10-12-ribbed, pubescent. Pappus of numerous capillary barbellate bristles, longer than the achenes.-(Generic name Greek, meaning sand-torch, referring to the habitat and the blazing rose-purple flower-heads.)

The white sands of the inland dunes are an excellent background for showing off the various plants that arise from the desert-like surface from season to season. This is one of the more conspicuous plants of the summer months, chiefly on account of its bright rose-purple flower-heads.

This showy plant is confined strictly to the dry sands of the "scrub." It is well adapted to maintain itself there by a large storage root. Ammopursas is related to Laciniaria, from which it differs in the succulent foliage, the open inflorescence, the somewhat zygomorphic corollas with inflated throats, and the short pappus. As a genus it is on a par with Garberia and Carphephorus.
\checkmark Ammopursus Ohlingerae (Blake) Small. Stem 2-11 dm. tall, solitary or several from the top of the root, usually paniculately branched above, minutely pubescent with pale crisped hairs; leaves fleshy, nárrowly linear or linear-clavate, acute, glabrous; involucre about 2 cm . long; bracts numerous, the outer orbicular-reniform, thence gradually longer and narrower up to the linear-spatulate inner ones, all obtuse, the body deep green, punctate, the scarious margins pale; corollas bright rosepurple, about 2 cm . long; tube slender; throat cylindric-urceolate; lobes lanceolate, $5^{-6} \mathrm{~mm}$. long, acute; achenes fusiform, 8-9 mm . long, about io-ribbed, densely pubescent with spreading hairs; pappus whitish, much shorter than the corolla, barbellate. [Lacinaria Ohlingerae Blake, Bull. Torrey Club 50: 203. pl. g. 1923.]-"Scrub," southern end of lake region, Florida.

The writer first observed this plant in full flower in various parts of the "scrub" in the southern end of the lake region in August, 1922.

> The New York Botanical Garden, Bronx Park, New York, N. Y.

INDEX TO AMERICAN BOTANICAL LITERATURE

1920-1924

The aim of this Index is to include all current botanical literature written by Americans, published in America, or based upon American material; the word America being used in the broadest sense.

Reviews, and papers that relate exclusively to forestry, agriculture, horticulture, manufactured products of vegetable origin, or laboratory methods are not included, and no attempt is made to index the literature of bacteriology. An occasional exception is made in favor of some paper appearing in an American periodical which is devoted wholly to botany. Reprints are not mentioned unless they differ from the original in some important particular. If users of the Index will call the attention of the editor to errors or omissions, their kindness will be appreciated.

This Index is reprinted monthly on cards, and furnished in this form to subscribers at the rate of three cents for each card. Selections of cards are not permitted; each subscriber must take all cards published during the term of his subscription. Correspondence relating to the card issue should be addressed to Dr. Fred J. Seaver, N. Y. Botanical Garden, Bronx Park, N. Y. City.

Adams, J. The effect on tomato, soy bean, and other plants of altering the daily period of light. Am. Jour. Bot. 11: 229232. 21 Ap 1924.

Anderson, J. P. Botrytis cinerea in Alaska. Phytopathology 14: 152-I55. pl. 3. "Mr" 12 Ap 1924.

Anderson, P. J. Overwintering of tobacco wildfire bacteria in New England. Phytopathology 14: $132-139$. "Mr" 12 Ap 1924.
Artschwager, E. On the anatomy of the sweet potato root, with notes on internal breakdown. Jour. Agr. Research 27: 157166. f. 1-6. pl. 1-4. 19 Ja 1924.

Babcock, E. B. Genetics and plant taxonomy. Science II. 59: 327-328. II Ap 1924.
Barnes, P. T. Poplar canker. Horticulture II. 1:289. I Ap 1924.

Bauer, H. A. Studying tree growth with an increment borer. Jour. For. 22: 298-301. Mr 1924.

Baxter, D. V. The heart rot of black ash caused by Polyporus hispidus Fr. Mich. Acad. Sci. Papers 3: 39-50. pl. 8-I4. The Macmillan Co., New York. 1924.
Bergman, H. F. The composition of climax plant formations in Minnesota. Mich. Acad. Sci. Papers 3: 51-60. The Macmillan Co., New York. 1924.

Berry, E. W. Paleobotany at the New York State Museum. Science II. 59: 336-337. iI Ap 1924.

Berry, J. B. Southern woodland trees. A guide to the identification of trees and woods to accompany farm woodlands. I-VIII. I-214. f. I-IO5. World Book Company, New York. 1924.

Bessey, E. A. Notes on the orange rusts of Rubus. Mich. Acad. Sci. Papers 3: 61-66. f. 3. The Macmillan Co., New York. 1924.

Blair, A. W., \& Prince, A. L. Influence of varying ratios of phosphoric acid and potash on crop yield and nitrogen recovery, Soil. Sci. 17: 327-330. pl. I. Ap 1924.

Blair, A. W., \& Prince, A. L. Preliminary note on the distribution of nitrates in soil under corn culture. Soil Sci. 17: 323-326. Ap 1924.

Blake, S. F. New Polygales from Colombia. Bull. Torrey Club 51: 83-89. "Mr" 22 Ap 1924. Including descriptions of 5 new species and I new variety.
Blake, S. F. Notes on American cespedezas. Rhodora 26: 2534.f. I-2. "F" 19 Mr 1924.

Including descriptions of 3 new varieties.
Blake, S. F. Polygalaceae. N. Am. F1. 25: 305-326. io Mr 1924; 327-379. 20 Mr 1924.
Blakeslee, A. F. Bottle grafting again. Invention the daughter of necessity. Jour. Heredity 15: 54. F 1924.
Bosch, M. M. Nuestras papas. Revista Agr. [Santo Domingo]. 18: 134-145.f. 1-3. 29 F 1924.

Boynton, K. R. Chrysanthemam "California." "California" Chrysanthemum. Addisonia 9: 7-8. pl. 292. 7 My 1924.
Boynton, K. R. Chrysanthemum "Christmas Gold." "Christmas Gold" Chrysanthemum. Addisonia 9: 13-14. pl. 295. My 1924.
Boynton, K. R. Chrysanthemum "Cranfordia." "Cranfordia" Chrysanthemum. Addisonia 9: 11-12. pl. 294. My 1924.
Boynton, K. R. Chrysanthemum "Emma." "Emma" Chrysanthemum. Addisonia 9: 15. pl. 296. My 1924.
Boynton, K. R. Chrysanthemum "Joan Edwards." "Joan Edwards" Chrysanthemum. Addisonia 9: 1-2. pl. 289. 7 My 1924.

Boynton, K. R. Chrysanthemum "Nellie Blake." "Nellie Blake" Chrysanthemum. Addisonia 9: 9. pl. 293. 7 My 1924.

Boynton, K. R. Chrysanthemum "Rena." "Rena" Chrysanthemum. Addisonia 9: 5-6. pl. 291. 7 My 1924.
Boynton, K. R. Chrysanthemum "White Doty." "White Doty" Chrysanthemum. Addisonia 9: 3-4. pl. 290. 7 My 1924.
Bracher, R. Notes on Rhyisma acerinum and Rhytisma pseudoplatani. Trans. Brit. Myc. Soc. 9: 183-186. pl. 7. 3 II Mr 1924.

Branstetter, B. B. Corn root rot. Missouri Agr. Exp. Sta. Circular 117: i-8. f. 1-4. Mr 1924.
Brink, R. A. The physiology of pollen I. The requirements for growth. Am. Jour. Bot. 11: 218-228. 21 Ap 1924 .
Britton, E. G. Syrrhopodon parasiticus (Schwgr.) Besch. Bryologist 27: 34-35. "Mr" 6 My 1924.
Brown, M. S. Hepatics in Georgia. Bryologist 27: 31-34. "Mr" 6 My 1924.
Brownell, L. W. Our white pine-a famous tree (Pinus Strobus). Nature Mag. 3: 297-299. "My" Ap 1924. [Illust.]

Burge, W. E., \& Burge, E. L. Effect of temperature and light on catalase content of Spirogyra. Bot. Gaz. 77: 220-224. f. 1 -2. 17 Ap 1924.

Burkholder, W. H. Varietal susceptibility among beans to the bacterial blight. Phytopathology 14: I-7. "Ja" II F 1924.

Burnham, S. H., \& Latham, R. A. The flora of the town of Southold, Long Island. and Gardener's Island, New York. Torreya 24: 22-32. Mr-Ap 1924.

Cashen, D. J. Growth of Pinus resinosa and Pinus Snobus. Mich. Acad. Sci. Papers 3: 67-85. pl. 15. The Macmillan Co., New York. 1924.
Chardon, C. Agustin Stahl. Revista Agr. Porto Rico 12: 68-84. F 1924. [Illust.]

Claassen, E. Abundance of Erysiphe. Am. Bot. 30: 79. Ap 1924.

Clausen, R. E., \& Mann, M. C. Inheritance in Nicoriana Tabacum. V. The occurrence of haploid plants in interspecific progenies. Proc. Nat. Acad. Sci. 10: 121-124. 15 Ap 1924.

Cleland, R. E. Meiosis in pollen mother cells of Oenothera francisciana sulfurea. Bot. Gaz. 77: 149-170. pl. 14-15. 17 Ap 1924.

Clute, W. N. Plant names and their meanings-XIX. Eri-caceae-II. Am. Bot. 30:54-63. Ap 1924.
Clute, W. N. Practical plant protection. Am. Bot. 30: 68-7I. Ap 1924.

Clute, W. N. The inheritance of acquired characters. Gardeners' Chron. Am. 28: 106. Ap 1924.
Clute, W. N. The penstemons. Am. Bot. 30: 47-49. Ap 1924. [Illust.]

Coburn, L. H. Gentiana linearis, var. latifolia in Maine. Rhodora 26: 40. "F" 19 Mr 1924.

Cook, M. T. Development of seed of Linaria vulgaris. Bot. Gaz. 77: 225-227. pl. 16. 17 Ap 1924.
Coons, G. H., \& Kotila, J. E. Michigan potato diseases. Mich. Agr. Exp. Sta. Spec. Bull. 125: 3-55. f. I-49. D 1923.
Crist, J. W., \& Weaver, J. E. Absorption of nutrients from subsoil in relation to crop yield. Bot. Gaz. 77: 121-148. f. I-Q. 17 Ap 1924.

Cummings, C. E. Nature observations in the Allegany State Park. Hobbie $4^{11}: 2-19$. Ap 1924. [Illust.] Including notes on plants.
Davidson, J., \& Wherry, E. T. Changes in hydrogen-ion concentration produced by growing seedlings in acid solutions. Jour. Agr. Research 27: 207-217. 26 Ja 1924.
Duley, F. L. Easily soluble calcium of the soil in relation to acidity and returns from liming. Soil Sci. 17:213-228. Mr 1924.

Farwell, O. A. Notes on the Michigan flora. Part VI. Mich. Acad. Sci Papers 3: 87-109. The Macmillan Co., New York. 1924.

Including descriptions of new varieties and forms.
Fassett, N. C. An Epilobium under estuarine conditions. Rhodora 26: 48-49. "Mr" 24 Ap 1924.
Fisher, D. F., \& Brooks, C. Control of brown-rot of prunes and cherries in the Pacific Northwest. U. S. Dept. Agr. Farmers' Bull. 1410: 1-12.f. I-12. Mr 1924.
Floyd, F. G. Proliferation of Asplenium platyneuron (L.) Oakes. Am. Fern. Jour. 14: 13-17. "Ja-Mr" 5 My 1924.

Fromme, F. D. The rust of cowpeas. Phytopathology 14: 68-79. f. I. pl. I. "F" 20 Mr 1924.

Garber, R. J., \& Wade, B. L. Another instance of defective endosperm in maize. Jour. Heredity 15: 69-7I. f. 7-8. F 1924.

Garner, W. W., Bacon, C. W., \& Allard, H. A. Photoperiodism in relation to hydrogen-ion concentration of the cell sap
and the carbohydrate content of the plant. Jour. Agr. Research 27: 119-156. f. I-IO. pl. I-2. 19 Ja 1924.

Glasgow, H., \& Gloyer, W. O. Mercuric chloride as a preventive of certain damping-off fungi. Science II. 59: 338339. II Ap 1924.

Gleason, H. A. Dichapetalaceae. N. Am. Fl. 25: 381-383. 20 Mr 1924.
Including I new species of Tapura from the West Indies and I new combination.

Gleason, H. A. The spices of commerce. Jour. New York Bot. Gard. 25: 111-114. Ap 1924. Abstract of a lecture.

Goss, R. W. Effect of environment on potato degeneration diseases. Nebraska Agr. Exp. Sta. Bull. 26: 1-40 f. 1-3. Mr 1924.

Gray, F. W. Ferns of eastern West Virginia. II. Am. Fern Jour. 14: 1-13. pl. 1-2. "Ja-Mr" 5 My 1924.
Haire, A. A. Attempts at reversal of geotropic response. Mich. Acad. Sci. Papers 3: 111-122. pl. 16-17. The Macmillan Co., New York. 1924.

Hansen, A. A. Jack-in-the-Pulpit-One of nature's oddities. Nature Mag. 3: 281-282. "My" Ap 1924. [Illust.]
Hansford, C. G. Tomato diseases and their control. Dept. Agr. Jamaica Microb. Circular 3: $\mathbf{I}-\mathbf{I 2}$. 1924.
Harris, J. A., Lawrence, Z. W., Hoffman, W. F., Lawrence, J. V., \& Valentine, A. T. The tissue fluids of Egyptian and Upland cottons and their F_{1} hybrid. Jour. Agr. Research 27: 267-327. pl. I. 2 F 1924.

Hartley, C., \& Rands, R. D. Plant pathology in the Dutch East Indies. Phytopathology 14: 8-23. "Ja" II F 1924.
Hepler, J. R. Gardening in New Hampshire. Univ. N. H. Ext. Bull. 25: 1-52.f. 1-25. F 1924.
Including notes on plant diseases.

Higgins, J. E. Seediness in pineapples. Philippine Agriculturist 12: 333-338. Ja 1924.

Holmes, F. O. Herpetomonad flagellates in the latex of milkweed in Maryland. Phytopathology 14: 146-150. f. I-IO. "Mr" 12 Ap 1924.

Hunt, G. M. The devil's flower garden. Am. Forests and Forest Life 30: 278-280. My 1924. [Illust.]

Hursh, C. R. Morphological and physiological studies on the resistance of wheat to Puccinia graminis Tritici Erikss. and Henn. Jour. Agr. Research 27: 381-4II. pl. 1-2. 9 F 1924.

Johnson, J., Slagg, C. M., \& Murwin, H. F. Host plants of Bacterium tabacum. Phytopathology 14: 175-180. pl. 5-6. Ap 1924.

Judd, C. S. The leper's tree. Am. Forests and Forest Life 30: 275-277. My 1924. [Illust.]

Kanouse, B. B. The life-history of a new homothallic Mucor. Mich. Acad. Sci. Papers 3: 123-129. pl. 18-19. The Macmillan Co., New York. 1924.

Kearney, T. H., \& Harrison, G. J. Selective fertilization in cotton. Jour. Agr. Research 27: 329-340. 9 F 1924.

Kendall, J. C. Potato growing in New Hampshire. Univ. N. H. Ext. Bull. 23: 1-3I. Ja 1924. [Illust.]

Kennedy, C. The nutritive properties of wild rice (Zizania aquatica). Jour. Agr. Research 27: 219-224. f. I-2. 26 Ja 1924.

Kenoyer, L. A. Distribution of the Ericales in Michigan. Mich. Acad. Sci. Papers 3: 166-191. The Macmillan Co., New York. 1924.

Kenoyer, L. A. Distribution of the Umbellales in Michigan. Mich. Acad. Sci. Papers 3: 131-165. The Macmillan Co., New York. 1924.
Knoche, H. Vagandi mos. Reiseskizzen eines Botanikers. I. Die Kanarischen Inseln 1923. 1-304. pl. 1-24. 1924.

Knowlton, C. H., \& Deane, W. Reports on the flora of Boston district,-XLIII. Compositae. Rhodora 26:34-36. "F" 19 Mr 1924.

Knowlton, C. H., \& Deane, W. Reports on the flora of the Boston district,-XLIV. Compositae. Aster. Rhodora 26: 5560. "Mr" 24 Ap 1924.

Knudson, L. Further observations on nonsymbiotic germination of orchid seeds. Bot. Gaz. 77: 212-219.f. I-3. Ap 1924.

Kozlowska, A. Diluvian flora of Poland. Bot. Gaz. 77: 186198.f. I-5. 17 Ap 1924.

La Rue, C. D. Notes on the failure of the seed crop of Hevea brasiliensis on the east coast of Sumatra. Mich. Acad. Sci. Papers 3: 193-20I. The Macmillan Co., New York. 1924.

Leighty, C. E., \& Sando, W. J. The blooming of wheat flowers. Jour. Agr. Research 27: 23I-244. 2 F 1924.

Longley, A. E. Cytological studies in the genus Rubus. Am. Jour. Bot. 11: 249-282. pl. II-15.f. I-13. 21 Ap 1924.
Manns, T. F. John Asbury Elliott. Phytopathology 14: 129131. pl. 2. "Mr" 12 Ap 1924.

Marsh, C. D., \& Clawson, A. B. The woolly-pod milkweed (Asclepias eriocarpa) as a poisonous plant. U. S. Dept. Agr. Bull. 1212: 1-13. f. I-7. 29 Ap 1924.
McCulloch, L. A bacterial blight of Gladioli. Jour. Agr. Research 27: 225-229. pl. I-2. 26 Ja 1924.
McIndoo, N. E., \& Sievers, A. F. Plants tested for or reported to possess insecticidal properties. U. S. Dept. Agr. Bull. 1201: 1-62. 19 Mr 1924.

McMurray, N. Flowers of willow-herb. Am. Bot. 30: 81. Ap 1924.

Merrill, G. K. Some new species of American Cladoniae. With an enumeration and description of some hitherto unrecognized varieties and forms of the older species. Bryologist 27: 21-26. "Mr" 1924.
Including descriptions of 6 new species.
[Moore, G. T.] A new white orchid from Panama. Missouri Bot. Gard. Bull. 12: 53. Ap 1924. [Illust.]
[Moore, G. T.] Poisoning caused by eating daffodil bulbs. Missouri Bot. Gard. Bull. 12:52. Ap 1924.

Mousley, H. Further notes on the orchids of Hatley, Stanstead County, Quebec, 1923. Can. Field Nat. 38: 61-63. Ap 1924; 86-88. My 1924.

Munz, P. A. A revision of the genus Nemacladus (Campanulaceae). Am. Jour. Bot.11:233-248. pl.g-1o. 2I Ap 1924.

Murrill, W. A. Lake Placid fungi. Mycologia 16: 96-98. 3I Mr 1924.

Nakai, T. Raphiolepidis et Eriobotŕyae species sine-Japonicae. Jour. Arnold Arboretum 5: 6i-83. "Ap" 1924. Including descriptions of many new species and varieties.

Newcombe, F. C. Optimum temperatures for growth of some grass coleoptiles. Mich. Acad. Sci. Papers 3: 203-210. The Macmillan Co., New York. 1924.

Orton, C. R. Studies in the morphology of the ascomycetes I. The stroma and the compound fructification of the Dothideaceae and other groups. Mycologia 16: 49-94. pl. 7-9. f. I-2. 31 Mr 1924.

Palmer, E. J. The ligneous flora of rich mountain, Arkansas and Oklahoma. Jour. Arnold Arboretum 5: 108-134. "Ap" 1924.

Parker, F. W. Carbon dioxide production of plant roots as a factor in the feeding power of plants. Soil Sci. 17: 229-247. Mr 1924.

Pease, A. S. Eleocharis tuberculosa in New Hampshire. Rhodora 26: 37-38. "F" 19 Mr 1924.

Pinckney, R. M. Sorghum as an indicator of available soilnitrogen. Soil Sci. 17: 315-321. Ap 1924.

Povah, A. Hypoxylon poplar canker. Phytopathology 14: 140145.f. I. "Mr" 12 Ap 1924.

Pritchard, F. J., \& Porte, W. S. The relation of temperature and humidity to tomato leaf spot (Sepioria Lycopersici Speg.). Phytopathology 14: 156-169. pl. 4. J. I-Q. "Mr" 12 Ap 1924.

Quick, B. E. A comparative study of the distribution of the climax association in southern Michigan. Mich. Acad. Sci. Papers 3: 211-243. pl. 2o. The Macmillan Co., New York. 1924.
Reddy, C. S., \& Holbert, J. R. The black-bundle disease of corn. Jour. Agr. Research 27: 177-205. pl. 1-6. 26 Ja 1924.

Rehder, A. Forsythia viridissima, var. Koreana. Jour. Arnold Arboretum 5: 134-135. "Ap" 1924.
Reynolds, E. S. Some relations of Fusarium Lini and potassium cyanide. Am. Jour. Bot. 11: 215-217. 21 Ap 1924.
Robinson, B. L. Miss Day. Rhodora 26: 4I-47. "Mr" 24 Ap 1924. [Illust.]
Rusby, H. H. Tropical American plants at home-I. The begonias. Jour. New York Bot. Gard. 25: 107-1II. Ap 1924.

Schaffner, J. H. Additions to the catalog of Ohio vascular plants. Ohio Jour. Sci. 24: 107-116. 26 Mr 1924.
Schaffner, J. H. Expression of the sexual state in Sagittaria latifolia. Bull. Torrey Club 51: 103-112. "Mr" 22 Ap 1924.

Scott, D. H. Extinct plants and problems of evolution. I-XIV. 1-240. f. 1-63 and frontispiece. 1924.
Seaver, F. J. Cup-fungi of common occurrence. Torreya 24: 17-20. pl. 2. Mr-Ap 1924.
Severin, H. H. P. Curly leaf transmission experiments. Phytopathology 14: 80-93.f. I. "F" 20 Mr 1924.
Shapovalov, M., \& Lesley, J. W. The behavior of certain varieties of tomatoes towards Fusarium-wilt infection in California. Phytopathology 14: 188-197. pl. 7-8. Ap 1924.

Shear, C. L. Grape rust in Florida. Phytopathology 14: 170171. "Mr" 12 Ap 1924.

Sherff, E. E. Charles Frederick Millspaugh. Bot. Gaz. 77: 228-230. 17 Ap 1924. [Portrait.]

Sievers, F. J. Crop injury resulting from magnesium oxide dust. Phytopathology 14: 108-113. f. I. " F " 20 Mr 1924.

Smith, C. P. Studies in the genus Lupinus-X. The Micranthi concluded. Bull. Torrey Club 51: 91-102. "Mr" 22 Ap 1924.

Smith, R. G. A chemical and pathological study of decay of the xylem of the apple caused by Polystictus versicolor. Phytopathology 14: II4-118. "F" 20 Mr 1924.

Spegazzini, C. Acácieae Argentinas. Bol. Acad. Ci. Cordoba 26: 163-334: 1924. [Illust.]
Including new species, varieties, and combinations.
Spegazzini, C. Algunos honguitos Portoriqueños. Bol. Acad. Ci. Cordoba 26: 335-368. 1924. [!llust.] Including a number of new species and genera of ascomycetes.

Spegazzini, C. Honguillos exóticos. Bol. Acad. Ci. Cordoba 26: 269-403. 1924. [Illust.]
Including new species, genera, and combinations.
Sprague, T. A. Notes on Mexican Tiliaceae. Jour. Bot. 62: ro6-108. Ap 1924.

Stackman, E. C., \& Aamodt, O. S. The effect of fertilizers on the development of stem rust of wheat. Jour. Agr. Research 27: 341-380. pl. 1-3. 9 F 1924.

Staneliff, J. O. Tahiti Lycopodiums. Am. Bot. 30:80-81. Ap 1924.

Stevens, N. E. Notes on the cranberry fungi in Massachusetts. Phytopathology 14: 101-107. "F" 20 Mr 1924.

Stevens, O. A. What is a weed? Science II. 59: $360-361$. 18 Ap 1924.

Stewart, F. C. Recommendations for the improvement of official inspection for crown-gall. Phytopathology 14: 172173. "Mr" 12 Ap 1924.

Stokdyk, E. A., \& Melchers, L. E. Potato disease controi in Kansas. Agr. Exp. Sta. Bull. 23I : I-45.f. I-I6. Mr 1924.
Stout, A. B. Consider an avocado fruit. Calif. Cultivator 62 : 256. I Mr 1924.

Stout, A. B. Let the bees do the work. Calif. Cultivator 62 : 392. 29 Mr 1924.

Stout, A. B. Sightseeing among the avocado flowers. Calif. Cultivator 62: 3, 15. 5 Ja 1924.
Stout, A. B. The viability of date pollen. Jour. New York Bot. Gard. 25: 10I-106. f. I. pl. 289-290. Ap 1924.
Stout, A. B. Why solid block plantings of a clonal variety often fail. Los Angeles Times 1, 6, 14, 16. 13 Ja 1924.
Stout, A. B., \& Clark, C. F. Sterilities of wild and cultivated potatoes with reference to breeding from seed. U.S. Dept. Agr. Bull. 1195: 1-32. pl. 1-8. Mr 1924.
Sudworth, G. B. The Arizona cypress and weeping juniper. Two notable trees of the Chisos Mountains of west Texas. Am. Forests and Forest Life 30: 273-274. My 1924. [Jllust.]

Svedelius, N. On the discontinuous geographical distribution of some tropical and subtropical marine algae. Arkiv. Bot. 19: 1-70.f. 1 -i4. 1924.

Tehon, L. R., \& Young, P. A. Notes on the climatic conditions influencing the 1923 epidemic of stem rust on wheat in Illinois. Phytopathology 14: 94-100. f. I. "F" 20 Mr 1924.

Thomas, H. E. Tobacco wildfire and tobacco seed treatment. Phytopathology 14: 181-187.f. I. Ap 1924.
Thomas, R. C. Control of stinking smut or bunt of wheat with special reference to dust treatment. Ohio Agr. Exp. Sta. Bull. 9: 22-27.f. 14-16. Ja-F 1924.

Tiffany, L. H. A physiological study of growth and reproduction among certain green algae. Ohio Jour. Sci. 24: 65-98. pl. I. 26 Mr 1924.
Trelease, S. F., \& Trelease, H. M. Relation of seed weight to growth and variability of wheat in water cultures. Bot. Gaz. 77: 199-212. 17 Ap 1924.
Valleau, W. D. The infection of tobacco plant beds by spitting. Science II. 59: 337-338. if Ap 1924.
Viljoen, J. A., \& Fred, E. B. The effect of different kinds of wood and wood pulp. cellulose on plant growth. Soil Sci. 17: 199-208. pl. 1-3. Mr 1924.

Washburn, F. L. Breadfruit in the Marquesas. Science II. 59: 359-360. 18 Ap 1924:
Waugh, F. A. Phytolacca decandra. The pokeberry. Fl. Exch. 57: 1145. 12 Ap 1924. [Illust.]
Weatherby, C. A. Another Davenport fern herbarium. Rhodora 26:49-55. "Mr" 24 Ap 1924.
Weatherby, C. A. Two more wool-waste plants from Westford, Mass. Rhodora 26: 38-39. "F" 19 Mr 1924.
Wehmeyer, L. E. The imperfect stage of some higher pyrenomycetes obtained in culture. Mich. Acad. Sci. Papers 3: 245-266. pl. 21-23. The Macmillan Co., New York. 1924.
Weiss, H. B. Insect food habits and vegetation. Ohio Jour. Sci. 24: 100-106. 26 Mr 1924.
Weldon, G. P. Instability in peach varieties. Jour. Heredity 15: 86-90. f. 14-16. F 1924.
Wilson, E. H. The rhododendrons of Hupeh. Jour. Arnold Arboretum 5: 84-107. "Ap" 1924.
Including descriptions of a number of new forms.
Wilson, E. H. Where orchids are at home. I. Tropical orchids of the Old World. Gard. Mag. 39: 215-219. My 1924. [1llust.]
Wise, L. E. Trees as oil producers. Am. Forests and Forest Life 30: 301-304. My 1924. [Illust.]

Wise, L. E. Twilight of the natural dyes. Am. Forests and Forest Life 30: 235-238. Ap 1924 [Illust.]

Wolfe, K. A. A list of Nebraska mosses. Bryologist 27: 26-31. "Mr" 6 My 1924.

Woolman, H. M., \& Humphrey, H. B. Summary of literature on bunt, or stinking smut of wheat. U. S. Dept. Agr. Bull. 1210: 1-44. I My 1924.

BULLETIN

OF THE

TORREY BOTANICAL CLUB

OCTOBER, 1924

Some Senecioid Genera-II*

P. A. Rydberg
Odontotrichum Zucc. Abh. Baier. Akad. Wiss.
1832: 311. 1832.

Sciadoseris Kunze, Bot. Zeit. 9: 349. 1851.
Mesoneuris A. Gray, Proc. Am. Acad. 8: 66I. 1873.
This genus was proposed by Zuccarini and described from a plant collected in Mexico, the type being O. cirsiifolium. Apparently the same plant was collected by Andrieux and described by De Candolle as Cacalia cervariaefolia with the remark that it perhaps should be separated generically. Hemsley transferred the latter to Senecio. Gray's Mesoneuris bipinnatifida was based on a closely related species. From the description Kunze's Sciadcseris seems to be the same genus, but his type S. vaginata was described from cultivated material in the botanic garden at Berlin. The origin was unknown but Kunze suggested Peru. If from Mexico, it might be the same as Gray's plant. In the two species, which constitute the genus as originally characterized, the style branches are oblong or slightly clavate, merely obtuse, and the terminal hair-pencil characteristic of Senecio is poorly developed. I hardly think that this character alone should be regarded as being enough to base a genus on. I have therefore extended the genus, rather than propose a new genus for the larger group of species with truly senecioid style, but otherwise closely related. This group includes more than half of the Mexican species referred to Cacalia. Most of these are of

[^49]somewhat different habit, but one species, Cacalia decomposita A. Gray, has the habit of the true Odontotrichum but the style of the other group.

As constituted in this paper the genus has the following characters distinguishing it from Senecio: Head always discoid; disc-corollas white or nearly so, the tube long and slender, the dilation into a distinct throat obsolete, so that the corolla is split clear to the tube, the lobes being long and linear; the achenes are elliptic in cross-section, Io-I5-ribbed, obovoid, rounded above and tapering at the base; basal leaves long-petioled, strongly reticulate, firm; pappus scabrous or barbellate, in one species wanting.
Leaves twice to four times pinnatifid into linear divisions.
Style-branches somewhat flattened, obtuse, and slightly clavate at the tip; bracts 8-15.
Leaves of the branches of the inflorescence not conspicuously foliaceous; rachis of the primatry divisions of the leaves $3-4 \mathrm{~mm}$. wide; bracts 8-12
Leaves of the branches of the inflorescence conspicuous, foliaceous; rachis of the primary division of the leaves $5-10 \mathrm{~mm}$. wide; bracts 12-15
Style-branches truncate at the apex, with a distinct hair-brush; bracts 5 or 6 .
Basal leaf-blades $2-3 \mathrm{dm}$. long; stem 5-10 dm. high, leafy; inflorescence ample; achenes glabrous.
Basal leaf-blades 6 cm . long or less; stem 4-5 dm. high, subscapiform; inflorescence small; achenes villous.
Leaves not twice pinnatifid, at most deeply divided;
divisions not linear.
Leaves pinnately ribbed.
Plant tall, 4 dm . high or more; heads corymbose or paniculate.
Leaf-blades divided more than half-way to the mid-rib.
Divisions of the lower leaves $5-1$, divaricate, with rounded sinuses, again lobed or toothed, not acuminate.
Involucre $12-18 \mathrm{~mm}$. high; bracts $8-15$; heads 40 - 50 -flowered; achenes pubescent.
Stem and leaves glabrous; bracts ovate. .

1. O. cirsiifolium.
2. O. bipinnatifidum.
3. O. decompositum.
4. O. filicifohum.
5. O. platylepis.

Stem and lower surfaces of the leaves
floccose-tomentose; bracts oblonglanceolate.
6. O. paucicapitatum.

Involucre $5^{-7} \mathrm{~mm}$. high; bracts 5-8; heads 5-12-flowered.
Blades of the basal leaves much longer than broad.
Achenes glabrous; leaves coriaceous, the ultimate lobes broadly triangular.
Achenes pubescent; leaves scarcely coriaceous, the ultimate lobes lanceolate.
Blades of the basal leaves as broad as long; achenes pubescent.
Leaves not tomentose beneath.
Basal leaf-blades 1.5-2 dm. broad, slightly reltate at the base, i , e., the basal lobes slightly united across the petiole; involucre turbinate.
Basal leaves not at all peltate, about 1 dm. broad; involucre tubularcampanulate.
7. O. sinuatum.
8. O. Pringlei.
9. O. Schaffneri.
10. O. radulaefolium.
11. O. tussilaginoides.
26. O. chiapense.
27. O. napeaefolium.
28. O. jatrophoides.
29. O. tridactylitis.
12. O. brachycoma.

Petioles of the basal leaves not winged, pappus about equaling the corolla-tube.
Basal leaf-blades decidedly longer than broad, their lobes as long as broad. Basal leaves more or less lobed.

Leaves decidedly pubescent beneath.
Lobes of the basal leaves with a few large teeth; leaves tomentose beneath; achenes pubescent.
Lobes of the basal leaves with many small teeth; leaves villous beneath; achenes glabrous
Leaves glabrous, except on the veins
'beneath; achenes glabrous.
Basal leaves merely dentate, not lobed.
Basal leaf-blades deeply cordate at the base, doubly sinuate-dentate; corollas 9 mm . long
Basal leaf-blades shallowly cordate at the base, denticulate; corollas 7-8 mm . long.
Leaves glabrous and shining, thin.
Leaves scabrous-puberulent, dull, thick, strongly reticulate
Basal leaf-blades about as broad as long or broader, merely sinuately lobed, i. e., the lobes much broader than long. Involucre $12-13 \mathrm{~mm}$. high, nearly 2 cm . broad; leaves of the inflorescence foliaceous, oblong to ovate; flowers 30 or more; bracts $15-20$ broadly oblong. Involucre $5-10 \mathrm{~mm}$. high, $4-15 \mathrm{~mm}$. broad; leaves of the inflorescence linear to filiform.
Heads 20-30-flowered; involucre 10 mm . high and 15 mm . broad; bracts 11-I4
Heads 5-7-flowered; involucre $5-7 \mathrm{~mm}$. high, $4-5 \mathrm{~mm}$. broad; bracts 5-7.
Leaf-blades sparingly crisp-hairy, distinctly but shallowly lobed and doubly dentate; pappus half as long as the corolla.
Leaf-blades densely scabrous-puberulent, sinuate and denticulate; pappus equalling the corolla
22.O.nephrophyllum
13. O. ampullaceum.
14. O. amplifolium.
15. O. rumicifolium.
16. O. silphiifolium.
17. O. Goldsmithii.
18. O. scabrum.
19. O. amplum.
20. O. pachyphyllum.
21. O. Palmeri.

Plant less than 4 dm . high; leaf-blades less than
6 cm . long; the heads in dense head-like clusters.

> Leaf-blades dentate or crenate, green. Stem-leaves much reduced; base of the stem wooly; inflorescence acute at the base.... 23. O. Purpusi. Stem-leaves ample; base of the stem not woolly; inflorescence globose.......... 24. O. globosum. Leaf-blades deeply 5 -cleft, densely tomentose beneath; stem woolly at the base.......... 25. O. eriopodum.

Leaves digitately or pedately ribbed and lobed or divided.
Leaves palmately lobed or cleft.

Leaves pedately divided to near the base.
Divisions of the leaves broad, the ultimate ones lanceolate.
Heads corymbose; involucre 6 mm . high; leaves 3-5-divided; achenes hairy
32. O. napellifolium.

Heads solitary; involucre about 15 mm . high; leaves 7-9-divided; achenes glabrous
33. O. delphinifolium

Divisions of the leaves narrow, linear.
Leaf-blades glabrous; primary divisions 5; paopus present.
34. O. cervinum.

Leaf-blades crisp-hairy; primary divisions 9-11; pappus wanting
35. O. calvum.
I. Odontotrichum cirsiffolium Zucc. Abh. Baier. Akad. Wiss. 1832: 5II. 1832.
This is the type species of the genus as stated before and the same as Cacalia cervariaefolia DC. and Senecio cervariaefolium Hemsley. An illustration is given in Biologia Centrali-Americana, pl. 51. The type was collected in Mexico by Karwinsky, probably in Oaxaca, in which state he spent most of the time during his first journey.

Oaxaca: Pringle 4894.
2. Odontotrichum bipinnatifidum (A. Gray) Rydb.

Mesoneuris bipinnatifida A. Gray, Proc. Am. Acad. 8: 661. 1873.
This species, the type of Mesoneuris, is closely related to the preceding, and when better known, they might be found to be identical. It may also be the same as Sciadoseris vaginata Kunze, but I prefer to use Gray's specific name as the identity of the latter is not doubtful.

Chiapas: Giesbreght 805 (type).
3. Odontotrichum decompositum (A. Gray) Rydb. Cacalia decomposiza A. Gray, Pl. Wright 2: 99. 1853.

As stated above, this species has the general habit of the two preceding, but the style-tips of the rest of the genus.

Arizona: Goodding 784; Blumer 1378; Mearns 2219, 527, 531; Eggleston 10765; Palmer E.

Chinuahua: Pringle 767; Townsend $\mathfrak{E o}$ Barber 158; E. W. Nelson 6095.

Sonora: Santa Cruz, Wright 1286 (type).
Durango: E. W. Nelson 4758.

4. Odontotrichum filicifolium Rydb. sp. nov.

Stem 4-5 dm. high, striate, slender, glabrous below, hirsutepuberulent above; basal leaves long-petioled, the petioles $7-10$ cm . long, glabrous; blades bipinnatifid, triangular in outline, $3^{-6} \mathrm{~cm}$. long, glabrous, purple-tinged along the margins, the rachis broadly winged, the divisions linear, acute, divaricate; stem-leaves similar but few and much reduced; leaves of the inflorescence small, filiform; inflorescence corymbiform-cymose; heads 12-20; involucre campanulate, $7-8 \mathrm{~mm}$. high, about 4 mm . broad, purplish, glabrous; bracts 5 to 6 , oblong, membran-ous-margined, acute; flowers 5 or 6 ; corolla-tube 4 mm . long; lobes linear, about as long; achenes 4 mm . long, densely villous with yellowish white hairs; pappus-bristles light-brown, barbellate.

Type collected between Santa Gertrudis and Santa Teresa, Tepic, August 8, 1897, J. N. Rose 2101 (U. S. Nat. Herb. no. 301002).

5. Odontotrichum platylepis (Rob. \& Seaton) Rydb.

 Cacalia platylepis Rob. \& Seaton, Proc.Am.Acad.28: 1 1o. 1893.This and the next species are characterized by their large heads.

Jalisco: Pringle 1816, 9873; Rio Blanco, Palmer 689 .(type); Safford 1432; Jory, in 1892.
6. Odontotrichum paucicapitatum (Rob. \& Greenm.) Rydb. Cacalia paucicapitata Rob. \& Greenm., Am. Jour. Sci. III. 50: 158. 1895.

This is known only from the type collection, at Sierra Clavellinas, Oaxaca, Pringle 6oI8.
7. Odontotrichum sinuatum (Cerv.) Rydb.

Cacalia sinuata Cerv.; Lave \& Lex. Nov. Veg. Desc. 1:29. 1824.
The type of this species came from San Angel, near Mexico City. Senecio albo-luteus Schultz Bip. and S. calophyllus Hemsley are evidently synonyms.

Сhihuahua: Gcldman 132; Hartweg 125.
Durango: Palmer 65 I.
Michoacán: Arsène 5740.
Mexico: Vischer 58; Pringle 9875, 4274; Rose \&o Painter 7808.

Puebla: Arsène 93, 93a, 334, ir81.

8. Odontotrichum Pringlei (S. Wats.) Rydb.

Cacalia Pringlei S. Wats., Proc. Am. Acad. 25: 156. 1890.
Jalisco: Guadalajara, Pringle I8iI (type), 11499.
Tepic: Palmer 1892.
Colima: Palmer 1234.
9. Odontotrichum Schaffneri (A. Gray) Rydb.

Cacalia Schaffneri A. Gray, Proc. Am. Acad. 19: 53. 1883.
San Luis Potosi: Schaffner 294-729 (type); Pringle 4095, 3566.
10. Odontotrichum radulaefolium (H. B. K.) Rydb. Cacalia radulaefolia H. B. K. Nov. Gen. \& Sp. 4: 169. 1820.

The type was collected by Humboldt at Guanajuato, Mexico. The only specimen seen by me, which agreed with the original description, was collected in Mexico without given definite locality, Liebmann 169. Schultz Bipontinus transferred the species to Senecio.
11. Odontotrichum tussilaginoides (H. B. K.) Rydb.

Cacalia tussilaginoides H. B. K. Nov. Gen. \& Sp. 4: 168. 1820.
Schultz Bipontinus transferred the species to Senecio and Hemsley renamed it S. farfarus. The type came from Real del Monte, Mexico. No specimens have been seen by me.
12. Odontotrichum brachycoma (Blake) Rydb. Cacalia brachycoma Blake, Contr. Gray Herb. II. 52: 58. 1917.

It is known only from the type locality, Uruapan, Michoacán, Pringle 10126.
13. Odontotrichum ampullaceum (Greenm.) Rydb.

Cacalia ampullacea Greenm., Proc. Am. Acad. 34: 577. 1899.
Hidalgo: Pringle 9868, Sierra de Pachuca, 6917 (type).
14. Odontotrichum amplifolium (DC.) Rydb.

Cacalia amplifolia DC. Prodr. 6: 328. 1837.
The type came from Sierra de San Filipe, Oaxaca, Andrieux. Schultz Bipontinus transferred the species to Senecio.

OAXACA: Pringle 4785; Purpus 3139; Smith 39I; E.W. Nelson 1061.

Guerrero: E. W. Nelson 2243.
? Veracruz: F. Mueller ibig.
15. Odontotrichum rumicifolium (Klatt) Rydb.

Senecio rumicifolius Klatt, Leopoldina 24: 126. 1888.
This species was based on Liebmann 237 from Combe de Estepa, Mexico. No specimens have been seen by me, but in Klatt's herbarium, now at the Gray Herbarium, there is a tracing of the type in the herbarium of the Botanical Garden of Copenhagen. A copy of this tracing is now here.
16. Odontotrichum silphiifolium (Rob. \& Greenm.) Rydb.

Cacalia silphiifolia Rob. \& Greenm., Am. Jour. Sci. III. 50: 158. 1895.

Mexico: Sierra de las Crucis, Pringle 5251 (type); Pringle, 6453.

Morelia: Rase \& Hay 5311, 9080.
17. Odontotrichum Goldsmithii (B. L. Robinson) Rydb.

Cacalia Goldsmithii B. L. Robinson, Proc. Am. Acad. 43: 45. 1907.

This species may not be distinct from the preceding.
Jalisco: Hacienda San Marcos, Goldsmith 8 (type).
Hidalgo: Rose, Painter \& Rose 9187.
18. Odontotrichum scabrum Rydberg, sp. nov.

Stem about 8 dm . high, leafy, striate, scabrous-puberulent; basal leaves long-petioled, the petioles about 2 dm . long; blades broadly cordate, with an open sinus, $5^{-8} \mathrm{~cm}$. long, $4^{-8} \mathrm{~cm}$. wide, sinuate-dentate, thick, dull, strongly reticulate, scabrous-
puberulent on both sides; lower stem-leaves with shorter petioles, dilated at the base and more ovate blades; upper stem-leaves oblong, sessile; those of the inflorescence linear or filiform; heads about 18, corymbose-cymose; involucre campanulate, $8-9 \mathrm{~mm}$. high, about 6 mm . broad, glabrous; bracts about 8 , oblong, acutish, thick on the back, with scarious margins; flowers $8-10$; tube nearly 4 mm . long, lobes slightly longer, linear; achenes glabrous, striate; pappus-bristles white, about 3.5 mm . long; barbellate.

Type collected in Sierra Madre, Durango, August 13, 1897, J. N. Rose 347 I (U. S. Nat. Herb. no. 302448).

19. Odontotrichum amplum Rydberg, sp. nov.

Stem stout, perhaps I m. high, sulcate, glabrous; basal leaves long-petioled, the petioles about 4 dm . long, sulcate; blades rounded sagittate-reniform, the distance from the apex to the basal sinus nearly 1.5 dm . and from the apex to the end of the basal lobes nearly about 2.5 dm ., the extreme width 2.5 dm., sinuate dentate, strongly reticulate, thick, glabrous on both sides; lower stem-leaves unknown, the upper ones sessile and half-clasping, ovate or oval, strongly reticulate, entire at the base, dentate above; those of the inflorescence similar but smaller and less reticulate; heads many, in an ample corymbiform cyme, 30 -flowered or more; involucre $12-13 \mathrm{~mm}$. high, nearly 2 cm . broad, glabrous; bracts $\mathbf{1 5}^{-20}$, broadly oblong acute or obtuse; corolla-tube 9 mm . long; lobes linear, 5 mm . long; achenes glabrous; pappus-bristles white, 9 mm . long, scabrous.

Type collected between Heujuquilla and Mesquitec, Jalisco, August 25, 1897, J. N. Rose 3575 (U. S. Nat. Herb. no. 302552 and 302739).
20. Odontotrichum pachyphyllum (Schultz Bip.) Rydb.

Cacalia pachyphylla Schultz Bip.; Seem. Voy. Herald 3IO. 1856.
The type was collected in the Sierra Madre, in either Sinaloa or Durango, by Seemann. A specimen is in the Gray herbarium. No other has been seen.

21. Odontotrichum Palmeri (Greene) Rydb.

Cacalia Palmeri Greene, Pittonia 1: 219. 1888.
The type locality is Rio Blanco, Jalisco.
Jalisco: Palmer 168, in 1886 type; Pringle 2304, 11500. Michoacan: Arsène 5112.
22. Odontotrichum nephrophyllum Rydberg, sp. nov.

Stem scapiform, brown-woolly at the base, about 4 dm . high, terete, puberulent; basal petioles $6-8 \mathrm{~cm}$. long, densely crisphairy and puberulent; blades reniform, thick, not strongly reticulate, $6-7 \mathrm{~cm}$. long, about 10 cm . broad, sinuate and denticulate, scabrous-puberulent on both sides; stem-leaves much reduced, lanceolate, sessile, those of the inflorescence lance-linear; heads few, corymbose; involucre campanulate, glabrous, 5-6 mm . high, $4-5 \mathrm{~mm}$. broad, bracts $5-7$, oblong, obtuse; flowers 5-7; corolla-tube 4 mm . long; lobes linear, nearly 4 mm . long; achenes glabrous; pappus-bristles 4 mm . long, white, barbellate.

Type collected in the state of Durango, August 13, 1897, J. N. Rose 2248 (U. S. Nat. Herb. no. 301162).

23. Odontotrichum Purpusi (Greenm.) Rydb.

Cacalia Purpusi Greenm., Univ. Calif. Publ. Bot. 4: 95. 1910.
The type came from Cacalote, Puebla, Purpus 3845.
24. Odontotrichum globosum (Rob. \& Fern.) Rydb.

Cacalia globosa Rob. \& Fern., Proc. Am. Acad. 30: 119. 1894.
Chinuahua: Guachuchic, Hartman 522 (type). Durango: E. W. Nelson 4769.

25. Odontotrichum eriopodum (Klatt) Rydb.

Senecio eriopodus Klatt, Leopoldina 24: 125. 1888.
The type came from Sierra Blanca, "Mexico," Ehrenberg I. No specimens have been seen, but Klatt's drawing of the type in the Berlin Herbarium, is now at the Gray Herbarium and a copy of this in our collection.
26. Odontotrichum chiapense (Hemsley) Rydb.

Senecio chiapensis Hemsley, Biol. Centr.-Am. Bot. 2:238. I88I.
Dr. Gray transferred the species to Cacalia.
Chiapas: Giesbreght 537 (type); E. W. Nelson 3467.
27. Odontotrichum napeaefolium (DC.) Rydb.

Cacalia napeaefolia DC. Prodr. 6: 328. 1837.
The type was collected in Sierra de San Filipe, Oaxaca, by Andrieux. Schultz Bipontinus transferred it to Senecic.

OAXACA: Pringle 4778; E. W. Nelson 1133.
28. Odontotrichum jatrophoides (H. B. K.) Rydb.

Cacalia jatrophoides H. B. K. Nov. Gen. \& Sp. 4: 169. 1820.
The type locality is given as near Lake Cuitzeo, Michoacán.
Schultz Bipontinus transferred the species to Senecio.
Oaxaca: C. L. Smith 388; Rose 3040.
Guanajuato: Pringle 4262.
29. Odontotrichum tridactylitis (Rob. \& Greenm.) Rydb. Cacalia tridactylitis Rob. \& Greenm. Am. Jour. Sci. III. 50:
159. 1895.

Oaxaca: E. W. Nelson 2080; Sierra de San Filipe, Pringle 584 (type).

Morelos: Pringle 9877, 6164.
30. Odontotrichum Liebmannii (Buchinger) Rydb.

Senecio Liebmannii Buchinger; Klatt, Leopoldina 24: 125. 1888.
The type was collected between San Andres and San Miguel, Mexico, Liebmann 174. No specimens have been seen, but Klatt's drawing of the type is at the Gray Herbarium.

31. Odontotrichum pallescens (Klatt) Rydb.

Senecio pallescens Klatt, Leopoldina 24: 126. 1888.
The type was collected at Mesatlan, San Andres, Mexico, Liebmann 235, in the herbarium of the Botanic Garden at Copenhagen; Klatt's tracing of the type is in the Gray Herbarium.
32. Odontotrichum napellifolium (Schauer) Rydb.

Cacalia napellifolia Schauer, Linnaea 19: 732. 1847.
The type was collected in Mexico by Aschenborn. Hemsley transferred the species to Senecio.

Hidalgo: Pringle 10024; Salazar, in 1913.

33. Odontotrichum delphinifolium Rydberg, sp. nov.

Stem scapiform, about 4 dm . high, densely brown, woolly at the base, striate, glabrous or slightly villous; basal leaves longpetioled, the petioles 1.5-2 dm. long; blades reniform in outline; pedately divided to near the base, glabrous, $5-7 \mathrm{~cm}$. long, $10-13 \mathrm{~cm}$. wide; divisions oblanceolate in outline, again cleft into lanceolate lobes; sinuses rounded; stem-leaves often solitary, reduced, sessile, 3 -cleft at the apex; head solitary; involucres
hemispheric, about 15 mm . high and nearly 3 cm . broad in fruit; bracts 15-20, lanceolate, acute, glabrous; achenes broadly obovoid, slightly compressed, striate, 4 mm . long, 3 mm . thick; pappus in the specimen seen wanting, apparently fallen.

Type collected in the Sierra Madre, Zacatecas, August 18, 1897, J. N. Rose 2390 (U. S. Nat. Herb. no. 301300).

34. Odontotrichum cervinum Rydberg, sp. nov

Stem about I m. high, slender, striate, glabrous or tomentu-lous-puberulent in the inflorescence; woolly at the base; basal leaves long-petioled, the petioles $1.5-3 \mathrm{~cm}$. long; blades rhombicovate to orbicular in outline, pedately divided to near the base, glabrous, $7^{-9} \mathrm{~cm}$. long, and nearly as broad; divisions narrow, again cleft into linear divisions and some of these with 1 or 2 lobes; stem-leaves smaller, usually twice ternate; heads rather few, paniculate; involucre campanulate, tomentulose, $6-7 \mathrm{~mm}$. high; bracts $5-7$; corolla tube 5 mm . long; lobes 4 mm . long, linear; achenes sparingly pubescent; pappus-bristles yellowish, 5 mm . long, scabrous.

Type collected between Pedro Paulo and San Blascito, Tepic, August 4, I897, J. N. Rose 1986 (U. S. Nat. Herb. nc. 300878).

35. Odontotrichum calvum (Brand.) Rydb.

 Cacalia calva Brand., Univ. Calif. Publ. Bot. 4: 193. 1911.The type came from Cerro del Gavilan, Puebla. This is abnormal in the genus, as the pappus is wanting; not even the disk bearing the pappus is present.

Cacalia cirsiifolia H. \& A. Bot. Beechey Voy. 436. 1841, may belong to this genus, but the incomplete description makes it very hard to locate in the key. I thought that it might be my own Odontotrichum filicifolium, which also came from Tepic, but the involucral bracts are given as 10 , while in 0 . filicifolium, they are only 5 or 6 .

New York Botanical Garden

New South American Verbesinas

S. F. Blake

The synopsis of Verbesina published by Robinson and Greenman* in 1899 listed 109 valid species, and some 63 additional ones have since been described. The 13 new species here published bring the total number to approximately 185, making the genus by far the largest in its subtribe and, with the exception of Bidens, the largest in the tribe Heliantheae. The present paper will be followed by another presenting a rearrangement of the section Lipactinia, which has grown more rapidly than any other group of the genus since 1899 .

Verbesina Macbridei, sp. nov.

Herbaceous (?); stem sordid-lanate; leaves alternate, large, elliptic, obscurely serrulate, scabrid above, sordidly pubescent beneath chiefly along the veins, on rather long naked petioles; heads about 12, medium-sized, yellow, radiate, about 47 -flowered, long-peduncled; involucre about 4 -seriate, graduate, about 8 mm. high; pappus awn 1 .
"Coarse, 3 m . high;" stem stout, densely and sordidly lanatepilose with matted hairs; petioles stout, naked or very narrowly margined above, not auriculate or decurrent, lanate-pilose, 1 - 3.5 cm . long; blades elliptic (or obovate-elliptic?), the main ones $18-23 \mathrm{~cm}$. long or more, $4-8 \mathrm{~cm}$. wide or more, acuminate at each end, minutely serrulate with remote teeth, thin, above dull green, sordidly hirsute-pilose, densely so along the veins (the hairs mostly deciduous except along the veins, the tuberculate bases persistent), beneath dull brownish green, densely sordid-hirsutulous with spreading hairs along the larger veins and costa, sparsely so elsewhere, featherveined, the chief veins about II pairs, prominulous on both sides, the secondaries loosely prominulous-reticulate beneath; tufts of oblanceolate leaves about 12 cm . long and 2.5 cm . wide present in the upper axils; heads in cymes of $2-4$ on terminal and axillary peduncles, these $6.5-10 \mathrm{~cm}$. long, the pedicels sordidly pilose-tomentose, $5.5-12 \mathrm{~cm}$. long, subtended by very small linear bracts; disk about 1.2 cm . high, 1 cm . thick, in young fruit about 1 cm . high, 1.4 cm . thick; involucre about 4 -seriate, graduate, about 8 mm . high, the phyllaries linear-oblong to oblong, sometimes spatulate, hispidulous-ciliolate and sparsely hirsutulous, with indurate

[^50]few-ribbed base and shorter subherbaceous obtuse or rounded tip, the innermost (subtending the rays) sometimes acutish; rays about 7 , yellow, pistillate, exceeding disk, the densely hirsutulous tube 1 mm . long, the lamina narrowly elliptic, 12 mm . long, 3 mm . wide, 3 -denticulate, about 8 -nerved, hirsutulous on back; disk flowers about 40, their corollas slender, hirsutulous below, 6.8 mm . long (tube 1.5 mm ., teeth 1.3 mm .) ; pales acutish or obtuse, narrow, hirsutulous and ciliolate, blackish green above, about 9 mm . long; ray achenes (very immature) trigonous, epappose, somewhat hispidulous; disk achenes cuneate-obovate, very flat, 6 mm . long, 2.5 mm . wide (including wings), hispidulous above, rather narrowly 2 -winged (wings 0.8 mm . wide or less, hispidulous-ciliolate above); awn 1 , on the outer angle, usually lance-subulate, upwardly hispidulous, 4 mm . long, sometimes (teratologically?) reduced to a triangular or oblong lacerate squamella 0.8 mm . long.

Peru: On gravelly stream bank, Cushi, Dept. Huanuco, alt. about 1525 m. , 19-23 June 1923, J. F. Macbride 4822 (type no. 535859, herb. Field Mus.; duplicate no. i,191,517, U. S. Nat. Herb.).

Rather closely related to the Brazilian V. glabrata Hook. \& Arn., of the section Verbesinaria. In that plant the stem is short-pubescent or glabrate, the leaves are much less pubescent beneath, and the pappus awns are 2 and subequal. The pappus of V. Macbridei, when reduced to a single squamella, is very similar to that of the recently described genus Monopholis, but the achenes and disk corollas are entirely different from those of that genus.

Verbesina malacophylla, sp. nov.

Suffrutescent, 2 m . high; stem cinereously pilose-tomentose, winged by the decurrent leaves; leaves mostly alternate, oblongovate, sessile, decurrent but not auriculate, serrate-dentate, velvety above, canescent-tomentose beneath; heads mediumsized, radiate, yellow, about 50 -flowered, numerous in terminal panicles; outer phyllaries obovate, 8 -1o mm . long, rounded, densely canescent-tomentose, the inner oblong, subequal; achenes narrowly winged.

Stems "in clumps, unbranched," rather stout, very densely and sublanately pilose-tomentose with reflexed matted hairs (these more or less deciduous in age, leaving the small tuberculate bases), narrowly winged; leaves alternate or sometimes opposite, oblong-ovate or the upper lance-ovate, $9.5-18 \mathrm{~cm}$. long, $2.5^{-7} \mathrm{~cm}$. wide, sessile, acute or acuminate, rounded at base and long-decurrent on the stem (wings $2-4 \mathrm{~mm}$. wide),
rather coarsely serrate-dentate (teeth deltoid, mucronulate, r-4 mm. high), thickish, above grayish-green, densely and rather softly velvety-pubescent with spreading several-celled hairs with glandular-tuberculate bases, beneath densely and softly canescent-tomentose (the hairs along the veins somewhat yellowish, those along costa mostly reflexed), featherveined (the chief veins 4^{-6} pairs), reticulate beneath; heads $1.5-2.8 \mathrm{~cm}$. wide, in flattish clusters of about 17-30 at ends of stem and branches, forming a large concave compound panicle 26 cm . wide; pedicels mostly $5-17 \mathrm{~mm}$. long, pubescent like the stem; disk 6-II mm . high, 7 -II mm. thick; involucre about 2 -seriate, subequal or somewhat unequal, $8-10 \mathrm{~mm}$. high, the outer phyllaries obovate or sometimes oblong or oblong-ovate, rounded or sometimes acute, indurate and pale below, herbaceous for their upper half, appressed, densely lanate-tomentose, the inner often shorter, oblong, less pubescent or nearly glabrous, blackish green with pale margin and short yellowish apiculation; rays 8 , yellow, pistillate, the lamina oval, $3.5-9 \mathrm{~mm}$. long; disk flowers $35-48$, their corollas yellow, pilose on tube and base of throat, 6 mm . long; pales obtuse or apiculate, with firm erect tips, with blackish green center and yellowish white tip, sparsely pilose and ciliate, about 8 mm . long; disk achenes obovate, strongly compressed, I-ridged on the sides, narrowly 2 -winged, glabrous throughout (including wings), 6.5 mm . long, 2.8 mm . wide; awns 2, slender, finely hispidulous, subequal, 3 mm . long.

Peru: On sunny stream bank, $4.8-9.6 \mathrm{~km}$. northwest of Mito, Dept. Huanuco, altitude about 3355 m. , 10 Aug. 1922, Macbride \mathcal{E}° Featherstone 1935 (type no. 518430, herb. Field Mus.; photog. and fragm. in U. S. Nat. Herb.).

The small rays of this species would place it in Robinson and Greenman's synopsis in the section Saubinetia, where its closest ally would be V. semidecurrens Kuntze (of which V. soratae Schultz Bip. is a later synonym), a species very distinct in character of pubescence, shape and toothing of leaves, and color of rays. Its real affinity is rather with the V. elegans group of section Verbesinaria, from all of which it differs in its decurrent leaves, as well as in various details.

Verbesina saubinetioides, sp. nov.

Suffrutescent; stem strigillose, winged; leaves alternate, obovate, sessile, serrate, rather sparsely strigillose; heads few to many, medium-sized, whitish, radiate, on pedicels usually $1-6 \mathrm{~cm}$. long; involucre about 3 -seriate, barely graduate, about 5 mm . high, the outermost phyllaries linear or linear-lanceolate,
acute or acuminate, the inner oblong, obtuse to acute, all rather densely hirsutulous; achenes winged.
"Low straggling shrub;" stem angulate, $3-6 \mathrm{~mm}$. thick, sparsely strigillose, glabrescent, winged into the inflorescence (the wings $\mathrm{I}-2 \mathrm{~mm}$. wide), the branches winged only below, sometimes erect-hirsutulous; internodes $2-5 \mathrm{~cm}$. long, usually winged throughout; leaves obovate or oblong-obovate, $8-17.5$ cm . long, $2.5^{-5} \mathrm{~cm}$. wide, acuminate, sometimes falcate at tip, long-cuneate at base, not auriculate, serrate above the lower third (teeth very acute, about 1 mm . high, mostly $3-5 \mathrm{~mm}$. apart), firm-papery, above deep green, evenly strigillose or antrorse-hirsutulous with tuberculate-based, at length deciduous hairs, smooth to the touch, beneath somewhat yellowish green, evenly short-strigose or antrorse-hirsutulous along all the veins and veinlets, featherveined, the chief veins $8-$ II pairs, prominulous beneath, the secondaries loosely anastomosing, the costa prominent beneath; heads I. $3-1.5 \mathrm{~cm}$. wide, few to numerous in terminal cymes or cymose panicles, the bracts small, the pedicels usually $1-6 \mathrm{~cm}$. long, strigillose or erect-hirsutulous, sometimes shorter and densely sordid-hirsutulous with somewhat spreading hairs; disk subglobose, $7-10 \mathrm{~mm}$. high and thick; involucre about 3 -seriate, slightly or not at all graduate, 5-6 mm . high, the outermost phyllaries linear to linear-oblong, acute to acuminate, with indurate 2 -ribbed central portion and blackish green margin and apex, the inner similar but broader (about 2.5 mm . wide), oblong, obtuse to acute, all appressed, rather densely erect to spreading-hirsutulous and ciliolate; rays 7-9, equaling the young disk, "dirty white," pistillate, the tube densely hirsutulous, 2 mm . long, the lamina suborbicular, emarginate or 3 -dentate, about 8 -nerved, $4.2-5 \mathrm{~mm}$. long, about 4 mm . wide; disk flowers about 55 , dull white (the teeth tinged with blackish green), densely hirsutulous on tube and to middle of throat, glabrous above (the teeth papillose-margined), 4.5 mm . long (tube 1.3 mm ., throat slender-funnelform, 2.2 mm ., teeth ovate, I mm.) ; pales obtuse or acute, hirsutulous on keel and apex, ciliolate above, blackish green toward tip, 6.5 mm . long; ray achenes compressed, obovate, 3.5 mm . long, narrowly or rather broadly 2 -winged (the wings usually unequal, sparsely ciliolate above, $0.1-0.5 \mathrm{~mm}$. wide, adnate to the awns at base), 1- or 2 -awned, the awns weak, unequal, 2.5 mm . long or less; disk achenes similar, 5 mm . long, always 2 -awned, the wings as variable as in the ray achenes.

Peru: Obrajillo, Wilkes Exploring Expedition (U. S. Nat. Herb.) ; interior of Peru, 1862, Mathews 562 (N. Y. Bot. Gard.); on steep southern slope, Matucana, alt. 2440 m., 12 April-3 May 1922, Macbride \mathbb{E} Featherstone 132 (type no. 516665 , herb. Field Mus.; photog. and fragm. in U. S. Nat. Herb.).

Nearest Verbesina saubinetia Klatt (Saubinetia helianthoides Remy), of the Province of Coquimbo, Chile, known to me only from description. This species agrees in most features with V. saubinetioides, but is said to have hirsute-subvelvety leaves, tridentate pales, mostly sterile disk flowers, disk corollas pubescent throughout their length, 2 -awned ray achenes, and iawned disk achenes. The Wilkes plant was identified doubtfully by Dr. Gray as V. helianthoides H. B. K. ($=$ V. Humboldtii Spreng.), an entirely different species.

Verbesina altipetens, sp. nov.

Branches sordid-tomentose; leaves opposite; petioles naked; blades lance-elliptic, attenuate, acuminate at base, sparsely serrulate above, sordid-pilose beneath; heads medium-sized, yellow, about 32 -flowered, small-rayed, cymose-panicled; involucre about 3 -seriate, subequal, about 10 mm . high, the phyllaries loose, oblanceolate, acute, herbaceous, sordid-pilose.

Shrubby (?); branch densely and sordidly pilose-tomentose with loose, many-celled, brownish hairs; leaves (only first pair below inflorescence seen) opposite; petioles 1.5 cm . long, pubescent like the branches; blades lance-elliptic, 9.5 cm . long, 2 cm . wide, subentire or with a few small sharp teeth above the middle, papery, above dull dark green, evenly but not densely hirsutepilose (hairs many-celled, with small tuberculate bases), beneath dull green, similarly pubescent, densely so along the veins, featherveined, the chief veins about 5 pairs, prominulous beneath; heads about 1.3 cm . wide, about 13 in a terminal flattish panicle II cm . wide, its lowest branches subtended by somewhat reduced leaves; pedicels $0.5-3 \mathrm{~cm}$. long, pubescent like the branches, naked or I-bracteate; disk about I. 8 cm . high, I cm. thick; involucre about 3 -seriate, subequal or slizhtly unequal, $10-11.5 \mathrm{~mm}$. high, the two outer series of phyllaries oblanceolate (about 2 mm . wide), herbaceous, loose or spreading, acute, densely and sordidly hirsute-pilose on both faces, the innermost (subtending the rays) similar but more nearly lanceolate, not spreading; rays about 7 , equaling or shorter than the mature disk, pistillate, yellow (or greenish-yellow?), the tube pilose, 2.5 mm . long, the lamina linear, 6 mm . long, 1.2 mm . wide, 3 -denticulate, 3 -nerved, pilose on back; disk flowers about 25 , their corollas yellow (teeth apparently blackish green), pilose on tube and sparsely so on throat and teeth, at maturity 8 mm . long (tube 2.5 mm ., throat 4.5 mm ., teeth I mm .) ; pales acuminate, blackish green above, hispid-pilose along back and on upper margin, 11 mm . long; disk achenes (immature) linear-cuneate, obsoletely winged, glabrous, $5^{-6} \mathrm{~mm}$. long; awns 2, slender, upwardly hispidulous, equal or unequal, $4.5^{-6.8} \mathrm{~mm}$. long.

Colombia: In shrub zone (" paramillo"), Mt. El Derrumbo, Dept. El Cauca, Cordillera Occidental, alt. 2500-2900 m., I July 1922, E. P. Killip 7993 (type no. 1,140,323, U. S. Nat. Herb.).

A member of the section Saubinetia, distinguished from all other South American species of its group by its opposite leaves. The involucre is also characteristic.

Verbesina hastifolia, sp. nov.

Suffrutescent, 1.6 m . high ; stem densely cinereous-puberulous; leaves opposite or subopposite; petioles short, naked; blades triangular, hastately 2 -lobed at base, coarsely lobate-toothed to middle, cinereous-tomentose beneath; heads small, radiate, yellow, about 25 -flowered, numerous in long-peduncled axillary. and terminal cymose panicles.

Stem rather slender, terete, striatulate, very densely cinereouspuberulous with somewhat matted hairs, these more or less deciduous in age, leaving the sordid, subglandular bases; petioles similarly pubescent, stout, $\mathrm{I}-2 \mathrm{~cm}$. long, not auriculate or decurrent; blades triangular in outline, usually oblique, $10-14 \mathrm{~cm}$. long, $6.5-10 \mathrm{~cm}$. wide across the basal lobes, $3.5-5.5 \mathrm{~cm}$. wide near middle, obtuse, at base subtruncate and very shortly decurrent on the petiole, sharply serrate, thickish, above dull green, densely hispid-pilose with several-celled spreading hairs (these mostly deciduous except along the veins, leaving the glandular-tuberculate bases), beneath densely and softly pilosetomentose, triplinerved and reticulate beneath; panicles axillary and terminal, many-headed, $5.5-10 \mathrm{~cm}$. wide, the lower on peduncles up to 20 cm . long, the bracts mostly minute, the pedicels usually $6-15 \mathrm{~mm}$. long, pubescent like the stem; heads about 1.6 cm . wide; disk $8-10 \mathrm{~mm}$. high, $5^{-7} \mathrm{~mm}$. thick; involucre about 3 -seriate, graduate, about 5 mm . high, rather densely and loosely pilose and ciliate with whitish hairs, the outermost phyllaries usually obovate, rounded, thickish, subherbaceous above, the others oblong or ovate-oblong, obtuse, with blackish green center and narrow yellowish margins; rays 5 , pistillate, yellow, the lamina oval, 6.5 mm . long, tridenticulate, about II-nerved, pubescent on back; disk flowers 18-23, their corollas yellow, densely pilose on limb and lower throat, 5.3 mm . long; pales obtuse, lacerate-ciliate, pilose on back, with blackish green center and yellowish tips, about 7 mm . long; achenes very flat, narrowly cuneate, 6 mm . long, obsoletely 2 -winged, hispidulous on the wings, otherwise glabrous; awns 2, slender, upwardly hispidulous, unequal, 4.5 mm . long or less.

Peru: On rocky western slope, Matucana, Dept. Lima, alt. about 2440 m., 12 April-3 May 1922, Macbride ©o Feather-
stone 195 (type no. 516728, herb. Field Mus.; duplicate no. I, I85,439, U. S. Nat. Herb.).

Described on the labels as a fragrant, coarse half-shrub $4-5 \mathrm{ft}$. high. In Robinson and Greenman's synopsis of the genus, this species enters the section Pseudomontanoa. It is well characterized by the shape and pubescence of its leaves.

Verbesina nudipes, sp. nov.

"Shrubby;" stem angled, rather sparsely sordid-hirsutulous with mostly appressed hairs; leaves alternate, large, oval-oblong, obscurely serrulate, harsh above, sordid-hirsutulous chiefly on the veins beneath, on long naked petioles; heads small, radiate, white, about 23 -flowered, very numerous in a large dense cymose panicle; involucre 3 -seriate, about 5 mm . high.

Stem stout (1 cm . thick), pithy, strongly angled above, evenly but not densely hirsutulous with mostly appressed hairs to the inflorescence, glabrate below; internodes usually about 1.5 cm . long; petioles sordid-hirsutulous, slender, $4-5.5 \mathrm{~cm}$. long; blades oval-oblong, $16.5^{-20} \mathrm{~cm}$. long, $6.5-8.5 \mathrm{~cm}$. wide, short-acuminate, rounded-cuneate or cuneate at base, serrulate (teeth about 0.5 mm . high, 3-6 mm. apart), firm-papery, above deep brownish green, somewhat shining, evenly and harshly hispidulous with mostly antrorse hairs with persistent tuberculate bases, beneath brownish green, hirsutulous along all the veins and veinlets with spreading, tuberculate-based, brownish hairs, featherveined, the chief veins about io pairs, curved-anastomosing, with the secondaries prominulous-reticulate; heads about 1.3 cm . wide, very numerous in axillary and terminal cymose panicles, forming a large rounded compound panicle 25 cm . wide or more, the axis, branches, and pedicels (these very slender, usually $8-15 \mathrm{~mm}$. long) densely sordid-hirsutulous with crisped, several-celled, spreading hairs; disk about 8 mm . high, 5 mm . thick; involucre 3 -seriate, graduate, about 5 mm . high, the phyllaries of the 2 outermost series linear or linear-oblong, hirsutulous, with pale base and short subherbaceous obtuse tip, the innermost (subtending the rays) oblong, acutish, sparsely hirsutulous, thin-tipped; rays $4-5$, pistillate, white, about equaling the disk, the lamina oval-oblong, 5 mm . long, 3 -denticulate, about 6 -nerved; disk flowers 16-21, their corollas probably white, hirsute-pilose on the short tube (1 mm . long) and base of throat, hirsutulous on teeth, 5 mm . long; pales obtuse or acutish, sparsely hirsutulous, about 6 mm . long; disk achenes (very immature) cuneate, narrowly margined, essentially glabrous; awns 2, slender, upwardly hispidulous, unequal, $4^{-5} \mathrm{~mm}$. long.

Colombia: In thicket, La Cumbre, Dept. El. Valle, Cordillera

Occidental, alt. 1500-1750 m., 7-10 May 1922, F. W. Pennell 5208 (type no. $1,140,129$, U. S. Nat. Herb.).

A species of Ochractinia, allied to V. synethes Blake, also Colombian, which has petioles margined nearly to the base, and leaves smoothish to the touch above and with a denser and more grayish pubescence beneath. Pennell © Killip 8034, from the Department of El Cauca, is so similar to V. nudipes in nearly all features that it might easily be a more pubescent form of it, but the flowers are described as yellow.

Verbesina grandis, sp nov.

Very tall, herbaceous (?); stem glabrous, glaucescent; leaves alternate, large, pinnately lobed, harsh above, densely hispidulouspilosulous beneath, the long petioles winged throughout, auriculate but not decurrent at base; heads rather small, radiate, white, about 30 -flowered, very numerous in large open cymose panicles.

Stout herb (?), 6 m . high, "the branchlets leafy only below;" stem and branches stout, pithy, striate, purplish, glabrous; main leaves ovate in outline, $35-48 \mathrm{~cm}$. long (including petiole, this about 14 cm . long, winged to base, about 1.3 cm . wide, the wings forming auricles at base, not decurrent), 14.5-28 cm . wide, pinnately about 9 -lobed (lobes lance-oblong, acuminate, often falcate, subentire or sparsely serrulate toward apex, $6.5-13.5 \mathrm{~cm}$. long, $2-3.5 \mathrm{~cm}$. wide, the second and third pairs usually somewhat the longest, the rachis between them 3-4 cm . wide), acuminate, cuneately narrowed into petiole, firmpapery, above deep dull green, harshly hispidulous, somewhat bullate, beneath dull grayish-green, densely and rather softly hispidulous-pilosulous with spreading straightish hairs, on costa hispid-pilose, the veins and veinlets impressed above, prominu-lous-reticulate beneath; panicles axillary and doubtless terminal, large and loose, up to 36 cm . long and 32 cm . wide, very manyheaded, the bracts lanceolate, unlobed, with auriculate bases, the upper minute, the axis and branches wide-spreading, sordidpuberulous only on their upper half, the pedicels mostly $5-10$ mm . long; heads $1.2-1.5 \mathrm{~cm}$. wide; disk 7-9 mm. high, $5^{-7} \mathrm{~mm}$. thick; involucre about 3 -seriate, graduate, about 4 mm . high, the phyllaries few, the outermost small, linear to lance-ovate, obtuse, subherbaceous-tipped, sparsely hirsutulous and ciliolate, the inner (subtending the rays) whitish-stramineous, thintipped, acute, sparsely hirsutulous chiefly toward margin; rays about 3-5, white, pistillate, the lamina elliptic-oblong, emarginate, 5 -nerved, 5.5 mm . long; disk flowers about 26 , their corollas hirsute-pilose on tube and lower throat, 4 mm . long; pales obtuse or acute, sparsely hispidulous above, about 7 mm . long; achenes
(ray and disk) obovate, flattish, bluntly I-ridged on each side, very narrowly 2 -winged (the wings hispidulous-ciliate, adnate to base of awns), sparsely hispidulous above, 4 mm . long, $\mathrm{I} .8-2$ mm . wide; awns 2, slender, upwardly hispidulous, unequal, 3 mm . long or less.

Peru: In gravelly, shrubby stream bottom, Yanano, Dept. Huanuco, alt. 1830 m., I3-16 May 1923, J. F. Macbride 3786 (type no. 534848, herb. Field Mus.; duplicate no. 1,191,467-8, U. S. Nat. Herb.).

A member of the section Ochractinia, nearest V. columbiana Robinson, in which the involucre and pales are densely pubescent, and the main axis and branches of the inflorescence densely sordid-pilosulous with lax many-celled hairs.

Verbesina pterophora, sp. nov.

Tall herb; stem essentially glabrous, glaucescent; leaves alternate, large, pinnately lobed, puberulent beneath, the long winged petioles long-decurrent; heads small, radiate, white, about 23 -flowered, short-pedicelled, numerous in cymose panicles.

Stem rather stout, multistriate, whitish, sparsely branched, glabrous below, hispidulous with mostly incurved hairs towards the inflorescence; leaves ovate in outline, $16-27 \mathrm{~cm}$. long (including petiole, this $5-7.5 \mathrm{~cm}$. long, winged to base, and decurrent on the stem for $2-6.5 \mathrm{~cm}$. in herbaceous wings $\mathrm{I}-3 \mathrm{~mm}$. wide), 9-12 cm. wide, pinnately about 9-lobed (the upper leaves merely shallowly repand-dentate or lobed) with lance-elliptic or triangular, acuminate, remotely serrulate lobes (the rachis between them $0.7-5 \mathrm{~cm}$. wide), acuminate, long-cuneate at the base and decurrent the whole length of the petiole, thin, above dark green, slightly harsh with small incurved scarcely tuberculatebased hairs, beneath lighter green, evenly puberulous with curved antrorse hairs and along the veins hispidulous, featherveined (the lateral veins about 6 pairs); heads numerous, 6 mm . wide, in axillary and terminal pedunculate, bracteolate, cymose panicles $4-9 \mathrm{~cm}$. wide; pedicels $1.5-5 \mathrm{~mm}$. long, densely sordid-hispidulous with mostly curved ascending hairs like the upper part of the peduncles; disk (scarcely mature) 7 mm . high, 4 mm . thick; involucre about 3 -seriate, graduate, about 5.5 mm . high, the outer phyllaries linear to oblong, acute or short-acuminate, the innermost (subtending the rays) oblong, acute or acuminate, all whitish-stramineous, with thin obscurely subherbaceous tips, hispidulous-puberulous chiefly above and toward margin; rays 3-4, white, pistillate, the lamina oblong-oval, 3.5 mm . long, 3 -toothed, 5 -nerved; disk flowers about 19, their corollas white, hispidulous with several-celled hairs chiefly on tube and lower
part of throat, 3.5 mm . long; pales obtuse to acuminate, hispidulous above, whitish, about 6 mm . long; achenes (ray and disk) cuneate-obovate, hispidulous, broadly winged, $4^{-5} \mathrm{~mm}$. long, $3-3.3 \mathrm{~mm}$. wide (including the wings, these 1 mm . wide, hispidulous-ciliolate above, adnate to the awns at base); awns 2, upwardly hispidulous, unequal or subequal, $2-3 \mathrm{~mm}$. long.

Colombia: Vicinity of Cartagena, 1919, Bro. Heriberto 228 (type no. 1,036,970, U. S. Nat. Herb.); in thicket, Sincelejo, Dept. Bolivar, alt. 250-350 m., 26 Jan. 1918, Pennell 406I (N. Y. Bot. Gard.).

A species of the section Ochractinia, nearest the Brazilian V. macrophylla (Cass.) Blake,* which has a more definitely pubescent stem, and leaves with fewer lobes and more densely pubescent with longer hairs beneath. The vernacular name is "cerbatana."

Verbesina crassicaulis, sp. nov.

Tall herb; stem glabrous, glaucescent; leaves alternate, large, pinnately lobed, densely sordid-pilosulous beneath, the petioles winged, auriculate at base, not decurrent; heads rather small, white, discoid, about 21 -flowered, numerous in cymose panicles.

Stem stout, 1.3 cm . thick, striate, pithy, purplish, glabrous, the branches of the inflorescence elongate, loosely and sordidly pilosulous especially above; leaves $20-30 \mathrm{~cm}$. long (including petiole, this $7.5-11 \mathrm{~cm}$. long, winged throughout, the wings dilated at base into rounded auricles about 1 cm . wide), $15-28$ cm . wide, pinnately 7 or 9 -lobed (the lobes ovate or oblongovate to lance-elliptic, acuminate, serrate, $7 \cdot 5^{-14} \mathrm{~cm}$. long, $3-6.5 \mathrm{~cm}$. wide, the second pair usually largest, the rachis between the lobes $2-4 \mathrm{~cm}$. wide), acuminate, abruptly contracted into

[^51]the cuneate-winged petiole, thick-papery, more or less corrugate and bullate above especially along the costa, above dark green, rather harshly hispidulous-pilosulous with antrorse-curved hairs, densely so along the chief veins, beneath densely and rather softly griseous-pilosulous, featherveined, the veinlets impressed above, prominent-reticulate beneath; peduncles elongate, axillary and doubtless terminal; heads $6-10 \mathrm{~mm}$. high, 4 mm . thick, numerous in a flattish cymose panicle 14.5 cm . wide, its branches and the pedicels (mostly $2-8 \mathrm{~mm}$. long) densely sordid-pilosulous; involucre 2 -seriate, graduate, 4 mm . high, the phyllaries few, oblong or linear-oblong, whitish-stramineous, with obtuse or rounded subherbaceous tips, sordid-pilosulous and ciliate; flowers 20-22, their corollas white, hirsute-pilose on tube and to middle of throat, 4.5 mm . long; pales obtuse to acute, hispidulous above, about 7 mm . long; achenes flat, cuneate-obovate, very narrowly 2 -winged, finely hispidulous on edge of wings and sparsely so on the body, 5 mm . long, 2 mm . wide; awns 2 , slender, subequal, upwardly hispidulous; about 3.5 mm . long.

Colombia: Open ground, La Cumbre, Dept. El Valle, Cordillera Occidental, alt. $1500-1750 \mathrm{~m} ., ~ 7-10 ~ M a y ~ 1922, ~ F . W . ~$ Pennell 5200 (type no. $1,140,127$, U. S. Nat. Herb.).

Although its discoid heads artificially place this species in the section Lipactinia, its real relationship is with species of the section Ochractinia. This is shown not only by its whole habit and the color of its florets, but by the fact that several of the outer florets sometimes have imperfect anthers, suggesting that rays may be developed at times. It is distinguished from V. columbiana Robinson by its perfectly glabrous stem and discoid, fewer-flowered heads (flowers about 38 in V.columbiana), and from V. myriocephala Schultz Bip. by the longer, more spreading, sordid pubescence of its lower leaf surface, as well as by the absence of rays.

Verbesina minuticeps, sp. nov.

Tall herb; stem glabrous, glaucescent; leaves alternate, large, pinnately lobed, subsericeous-hispidulous beneath, the petioles winged throughout, shortly auriculate-decurrent; heads tiny, discoid, white, about 15 -flowered, very numerous in a large cymose panicle.

Herb about 4.5 m . high; stem stout, 1.2 cm . thick, striate, glabrous or with a few minute appressed hairs; main leaves broadly ovate in outline, about 38 cm . long (including petiole, this $12-14 \mathrm{~cm}$. long, winged throughout, about 1.2 cm . wide, the wings obliquely decurrent on the stem for about 1 cm . as
rounded auricles about 6 mm . wide), about 26 cm . wide, pinnately 9 -lobed (lobes lanceolate or oblong, $7 \cdot 5^{-13} \mathrm{~cm}$. long, $2.5-7.5 \mathrm{~cm}$. wide, acuminate, serrate or the lower sometimes repandly about 6 -lobed, the second pair largest, the rachis between the lobes about 2.2 cm . wide), acuminate, abruptly contracted into the winged petiole, papery, above deep green, rather harshly tuber-culate-hispidulous, beneath pale, very densely and somewhat harshly subsericeous-hispidulous with curved-spreading tuber-culate-based hairs; leaves subtending the lower branches of the panicle similar to the main leaves, but only $7.5^{-9} \mathrm{~cm}$. long; heads discoid, 13 -15-flowered, 5 mm . high, 2.5 mm . thick, very numerous in a large rounded cymose panicle 30 cm . wide, its axis and the lower part of its branches essentially glabrous, the upper part of the branches and the pedicels ($1-3 \mathrm{~mm}$. long) cinereous-puberulous; involucre about 3 -seriate, graduate, 3 mm . high, the phyllaries few, the outermost small, linear, subherba-ceous-tipped, obtuse, hispidulous and ciliate, the inner oblong, obtuse to acute, whitish-stramineous, ciliate, sparsely hispidulous dorsally; corollas white, hirsute-pilose on tube and to middle of throat, 3 mm . long; pales obtuse to acute, whitish-stramineous, hispidulous and ciliate above, about 4.5 mm . long; achenes cune-ate-oblong, obsoletely 2 -winged, rather plump, 1 -angled on each side, hispidulous on wings and toward apex, 2.5 mm . long; awns 2, upwardly hispidulous, unequal, about 2 mm . long.

Ecuador: Guayaquil, alt. 0-50 m., 18-26 June 1923, A. S. Hitchcock 20159 (type no. 1,195,177, U. S. Nat. Herb.).

Like V. crassicaulis, described above, this species is technically referable to the section Lipactinia on account of its discoid heads, but is really more closely allied to the V. gigantea group of section Ochractinia. The only closely related members of the section Lipactinia are V. bipinnatifida Baker, of Brazil, which has the leaves griseous-pubescent beneath and the achenes distinctly winged, and V.crassicaulis, described above, which has larger heads and leaves griseous-pilosulous beneath. Its nearest ally in the section Ochractinia is V. myriocephala Schultz Bip., which has radiate, about 20 -flowered heads, and a different pubescence on the lower leaf surface.

Verbesina grandifolia, sp. nov.

Very tall; stem sordidly lanate-tomentose; leaves alternate, very large, rhombic-oval or rhombic-oblong, serrate above the cuneate entire lower portion, sordidly subtomentose beneath; petioles naked; heads small or medium-sized, yellow, radiate, about 18 -flowered, very numerous in flattish cymose panicles; rays small; involucre few-seriate, about 5.5 mm . high.

Evidently shrubby, up to 7.5 m . high; stem stout, pithy, striate, densely lanate-tomentose with brownish hairs; petioles stout, not auriculate or decurrent, pubescent like the stem, 1-2.5 cm . long; blades rhombic-oval or rhombic-oblong, $15-36 \mathrm{~cm}$. long, $6-17.5 \mathrm{~cm}$. wide, acuminate at each end. serrate or serrulate above the entire lower third (teeth small, unequal, mucronulate, $0.5-3 \mathrm{~mm}$. high, 2-4 mm. apart), papery, above deep dull green, evenly and harshly antrorse-hispidulous with ochroleucous hairs, very densely so along the veins (the hairs with persistent tuberculate bases), beneath densely and ochroleucously subtomentosepilosulous (the hairs crisped, brownish along the veins), featherveined, the lateral veins io-15 pairs, prominent beneath, the secondaries prominulous; heads about 7 mm . wide in flower, very numerous in dense cymose panicles, these terminal and from the upper axils, forming a compound panicle up to 30 cm . wide; bracts small, mostly linear or oblanceolate; pedicels mostly I-2 cm. long, densely sordid-hirsutulous; disk in anthesis if mm. high, 6 mm . thick; involucre about 3 -seriate, graduate, about 5.5 mm . high, the outer phyllaries oblong or oblong-oblanceolate, with pale base and shorter, thickened, subherbaceous, rounded or sometimes apiculate tip, sordid-hirsutulous, the innermost (subtending the rays) similar but with thin subglabrous obtuse tips; rays about 4, pistillate, yellow, shorter than the disk, the tube densely hispidulous, the lamina oblong-oval, 3 mm . long, 1.5 mm . wide, rather deeply 3 -dentate, with about 8 brown nerves; disk flowers about I4, their corollas yellow, hispid-pilose on tube and base of throat, ciliolate on inner edge of teeth, 5.3 mm . long; pales obtuse, blackish green and densely hispidulous except on the essentially glabrous, erose, subscarious, yellowish tips, about 8 mm . long; disk achenes cuneate-obovate, flat, i-nerved on each side (the nerves sometimes narrowly winged above), $5-6 \mathrm{~mm}$. long, $3-4 \mathrm{~mm}$. Wide (including the wings, these I mm . wide above), tuberculate-hispidulous, rather broadly 2-winged, the wings ciliolate, usually adnate to the awns at base; awns 2 , upwardly hispidulous, unequal, 4.5 mm . long or less.

Peru: On sunny, rocky stream bank, Mito, Dept. Huanuco, alt. about $2745 \mathrm{~m} ., 8$-22 July 1922, Macbride \& Featherstone 1500 (type no. 517999-518000, herb. Field Mus.; duplicate no. I,185,980, U. S. Nat. Herb.).

The presence of small rays in this species would place it in the section Saubinetia in Robinson and Greenman's revision. Its proper place, however, is clearly in the section Lipactinia, in which several species with small rays have been described. It is related to V. adenobasis Blake, of Ecuador, which has opposite leaves and much less densely pubescent involucre and
pales, and to V. flavovirens R. E. Fries of Bolivia and V. lloensis Hieron. of Ecuador. V. flavovirens is described as herbaceous, $\mathbf{I} .5 \mathrm{~m}$. high, with alternate, opposite, or ternate leaves pubescent only on the veins beneath, while V. llcensis has narrower leaves, linear or linear-lanceolate phyllaries, and acute pales. The label of the type collection of V.grandifolia describes it as reaching 25 ft . in height and gives the vernacular name as "wampu." The stem is described as branched only in the inflorescence, the new shoots being unbranched. The rays and disk corollas appear to have been greenish-yellow.

Verbesina brachypoda, sp, nov.

Stem (or branch?) winged, griseous-pilosulous; leaves alternate, broadly ovate, acute, serrate, rough above, griseous-subtomentose beneath, on short winged petioles; heads small, about 15 -flowered, radiate, yellow, pedicellate, in a flattish cymose panicle; involucre about 4 mm . high, the phyllaries mostly oblong, obtuse or rounded, blackish green, ciliolate, sparsely pubescent on back; achenes distinctly winged.

Shrubby (?), 3 m . high; stem (or branch) stoutish, 5 mm . thick, pithy, griseous-pilosulous with crisped many-celled hairs, about 4 -winged to the inflorescence, the wings herbaceous, $1-2$ mm . wide; petioles winged to base, not auriculate, $5^{-15} \mathrm{~mm}$. long, 4-12 mm. wide, the wings long-decurrent; blades ovate or broadly ovate, the larger $8-17.5 \mathrm{~cm}$. long, $4.5-10 \mathrm{~cm}$. wide, acute, apiculate, at base broadly rounded or cuneate-rounded and often unequal, decurrent on the petiole, serrate above the usually entire base (teeth low, apiculate, about 0.5 mm . high, mostly $3^{-6} \mathrm{~mm}$. apart), firm-papery, above yellowish green, harshly tuberculate-hispidulous, beneath densely subtomentosepilose with many-celled, mostly spreading hairs, featherveined or obscurely triplinerved, the chief veins 3-4 pairs, prominulous beneath, the veinlets prominulous-reticulate beneath; panicle terminal, ternately divided, many-headed, $12-18.5 \mathrm{~cm}$. wide, densely ochroleucous-hirsutulous with spreading hairs, the bracts mostly minute, the pedicels mostly $2-8 \mathrm{~mm}$. long; heads about II mm . wide; disk at maturity about II mm . high, 5 mm . thick; involucre about 2 -seriate, unequal, 4 mm . high, the phyllaries few, the outer oblong, rounded, with pale obscurely ribbed base and blackish green tip, hispidulous-ciliolate and above sparsely hispidulous, the inner (subtending the rays) similar but obtuse or acute, blackish green with yellowish margin and apex, less pubescent; rays about 3, equalling disk, yellow, pistillate (styles short, included), the tube hirsute, the lamina elliptic or oval, 2-3-dentate, 4-6-nerved, 5 mm . long; disk flowers I I-12,
their corollas yellow, hirsute on tube and sparsely on throat, $5.5-6 \mathrm{~mm}$. long; pales acute or obtuse, blackish green with yellowish margin and apex, ciliolate and sparsely hirsutulous dorsally, about 6 mm . long; achenes cuneate, flat, sometimes I-ridged on sides, glabrous, 2 -winged, $4.5^{-6} \mathrm{~mm}$. long, $2.5^{-3} \mathrm{~mm}$. wide (including wings, these about I mm. wide above, glabrous, adnate to awns at base); awns 2, subequal, slender, slightly hispidulous, about 5 mm . long.

Ecuador: Cuenca, 12 Sept. 1920, E. W. D. ㅇ M. M. Holway (type in Gray Herb.; duplicate in herb. N. Y. Botanical Garden; photog. and fragm. in U. S. Nat. Herb.).

The type collection has been identified as Verbesina arborea H. B. K., but that plant has an unwinged stem and different pubescence. V. brachypoda is nearer V. callacatensis Hieron., which has a densely hirsutulous involucre and longer, auriculate petioles, and the wings of the stem, when present, are much less developed in that species.

Verbesina pentantha, sp. nov.

Herb, 3 m . high; stem appressed-puberulous; leaves alternate; blades elliptic, obscurely serrulate, appressed-puberulous beneath, on slender naked petioles; heads discoid, $4-5$-flowered, white, cylindric, in a flattish terminal panicle; involucre very unequal, about 4.5 mm . high, its phyllaries about 6 , whitish.

Stem 3.5 mm . thick, terete, striatulate, whitish; petioles appressed-puberulous, $0.4-3 \mathrm{~cm}$. long; blades $8.5-12 \mathrm{~cm}$. long, $2-3.2 \mathrm{~cm}$. wide, acuminate at each end, minutely serrulate (teeth I-2 mm. apart), papery, above light green, scabrid-hirsutulous with antrorse-curved, tuberculate-based hairs, beneath light green, densely subappressed-puberulous, featherveined, the chief veins about 7 pairs, with the secondaries prominulousreticulate beneath; panicle dense, terminal, 13.5 cm . wide, its lower branches subtended by greatly reduced leaves, the other bracts minute, the branches and pedicels (these obsolete or up to 3 mm . long) densely hirsutulous with erect or ascending, several-celled, yellowish white hairs; disk in anthesis 8 mm . high, $2.5-3 \mathrm{~mm}$. thick; involucre about 4.5 mm . high, very unequal, the phyllaries few (about 6), the outermost whitish, obscurely greenish above, short-ciliate and sparsely hirsutulous, obtuse, minute, linear or linear-oblong, the innermost about three times as long, linear-oblong, obtuse, without greenish tips, nearly glabrous dorsally; corollas white, hirsutulous on tube and base of throat, sparsely so above, papillose-ciliolate on inner margin of teeth, 4.5 mm . long (tube 0.8 mm ., throat slender-funnelform, teeth ovate, 0.6 mm .); pales whitish, obtuse (involute above
and appearing acute), short-ciliate, hirsutulous below or nearly glabrous dorsally, about 6 mm . long; achenes (immature) linear-obovate, obscurely margined but not winged, hirsutulous, 3 mm . long, 0.8 mm . wide; awns 2 , slender, unequal, upwardly hirsutulous, $3-4.5 \mathrm{~mm}$. long.

Ecuador: Dry brushy land, between Santa Rosa and La Chorita, Prov. Oro, alt. 0-100 m., 27 Aug. 1923, A. S. Hitchcock 21144 (type no., 1,195,584, U. S. Nat. Herb.).

This species is of interest from its evidently close alliance with the Argentinian species of the Chaenocephalus macrophyllus group. Its heads are fewer-flowered than those of any other species of Verbesina, those of V. Cumingii Schultz Bip. being 5-6flowered, of V. crassiramea Blake rarely 5 -flowered, and of several other species 6-10-flowered.

Bureau of Plant Industry, Washington, D. C.

INDEX TO AMERICAN BOTANICAL LITERATURE

1924
The aim of this Index is to include all current botanical literature written by Americans, published in America, or based upon American material; the word America being used in the broadest sense.

Reviews, and papers that relate exclusively to forestry, agriculture, horticulture, manufactured products of vegetable origin, or laboratory methods are not included, and no attempt is made to index the literature of bacteriology. An occasional exception is made in favor of some paper appearing in an American periodical which is devoted wholly to botany. Reprints are not mentioned unless they differ from the original in some important particular. If users of the Index will call the attention of the editor to errors or omissions, their kindness will be appreciated.

This Index is reprinted monthly on cards, and furnished in this form to subscribers at the rate of three cents for each card. Selections of cards are not permitted; each subscriber must take all cards published during the term of his subscription. Correspondence relating to the card issue should be addressed to Dr. Fred J. Seaver, N. Y. Botanical Garden, Bronx Park, N. Y. City.

Amator, F. Why not the Aquilegia as our national flower? Gardeners' Chron. Am. 28: 13 1, 14I. My 1924.

Ames, O. Additions to the orchid flora of tropical America. Schedulae Orchidianae No. 7, 1-36.f. i-6. pl. 4-20. 27 Mr 1924.

Including descriptions of new species in Cranichis (1), Epidendrum (6), Maxillaria (1), Oncidium (1), Pelexia (1), Pleurothallis (3), Polystachya (1), Rolfea (1), Sobralia (1), and new combinations.

Babcock, E. B. Remarkable variations in tarweeds. Jour. Heredity 15: $133-144 . f .16-23$. " Mr^{\prime} ' 77 My 1924.

Barnum, C. C. The production of substances toxic to plants by Penicillium expansum Link. Phytopathology 14: 238243.f. I-2. 24 My 1924.

Beckwith, A. M. The life history of the grape rootrot fungus Roesleria hypogaea Thüm \& Pass. Jour. Agr. Research 27: 609-616. pl. I. 23 F 1924.
Berry, E. W. Mesozoic plants from Patagonia. Am. Jour. Sci. 7: 473-482. f. I-4. Je 1924.

Bethel, E. "Red snow" in Colorado. Colorado Mag. 1: 159162. My 1924.

Bisby, G. R. Fungi from Central Manitoba. Mycologia 16: 122-129. 3I My 1924.

Blake, S. F. New American Asteraceae. Contr. U. S. Nat. Herb. 22: i-xi, 587-661. pl. 54-63. 1924.

Boyce, A. M. How to teach the flower. Nature Mag. 3: 368369. "Je" My 1924. [Illust.]

Brink, R. A. The physiology of polien II. Further considerations regarding the requirements for growth. Am. Jour. Bot. 11: 283-294. 17 My 1924.

Britton, N. L. Descriptive flora of Porto Rico and the Virgin Islands. Jour. N. Y. Bot. Gard. 25: 129-135. My 1924.
Brown, N. A. An apple stem-tumor not crowngall. Jour. Agr. Research 27: 695-698. pl. 1-3. I Mr 1924.
Brunson, A. M. The inheritance of a lethal pale green seedling character in maize. N. Y. (Ithaca) Agr. Exp. Sta. Memoir 72: 1-22. pl. I. Ja 1924.

Clute, W. N. Evolution in the garden. Gardeners' Chron. Am. 28: 170. Je 1924.

Clute, W. N. The individuality of plants. Gardeners' Chron. Am. 28: 141. My 1924.

Coker, W. C. The Clavarias of the United States and Canada. 1-209. pl. 1-92. Chapel Hill, "1923" My 1924.
Comstock, A. B. The giant cactus or Suharo. Nature Mag. 3: 364-365. "Je" My 1924. [Illust.]
Cox, J. F., \& Megee, C. R. The clovers and clover seed production in Michigan. Mich. Agr. Exp. Sta. Special Bull. 130: 1-23.f. 1 -13. Mr 1924.
Currey, J. A. Stem wilt in roses. Portland Roses and Flowers 3^{10} : 4. My 1924.
Dahlgren, B. E. A fossil flower. Field Mus. Nat. Hist. Bot. Leaflet 5: I-16. f. I-IO. 1924.

Davis, W. H. Infection produced by the spores of Ustilago striaeformis (Westd.) Niessl. Phytopathology 14: 244. 24 My 1924.

Davis, W. H. Lactophenol [preserving solution]. Bot. Gaz. 77: 343-344.- 19 My 1924.

Denny, F. E. Effect of ethylene upon respiration of lemons. Bot. Gaz. 77: 322-329. 19 My 1924.

Denny, F. E. Hastening the coloration of lemons. Jour. Agr. Research 27: 757-769. f. 1 -3. 8 Mr 1924.
deSampaio, A. J. Bibliographia botanica. Bol. Mus. Nac. Rio De Janeiro 1: ili-125. 1924.

De-Toni, J. B. Sylloge algarum omnium hucusque cognitarum 6: Florideae, Sectio V, Additamenta. $\mathrm{i}-\mathrm{xi}+\mathrm{I}-767$. Patavii, 1924.

Dodge, B. O. Aecidiospore discharge as related to the character of the spore wall. Jour. Agr. Research 27: 749-756. f. I-3. 8 Mr 1924.

Doran, W. L., \& Osmun, A. V. Combating apple scab. Mass. Agr. Exp. Sta. Bull. 219: 1-17. Ja 1924.

East, E. M. The Harvard Botanical Garden in Cuba. A tropical station for general biological research. Science II. 59: 433. 16 My 1924.

Eaton, F. M. Assimilation-respiration balance as related to length of day reactions of soy beans. Bot Gaz. 77: 311-321. f. I-4. 19 My 1924.

Edgerton, C. W. "Dry rot" in buildings and building material. Louisiana Agr. Exp. Sta. Bull. 190: 1-12. f. 1-5. Ap 1924.
Fairchild, D. Barro Colorado Island Laboratory. Jour. Heredity 15: 99-112.f. 1-12. Mr 1924. Including notes on plants.
Ferguson, M. C. Botany at Wellesley. Wellesley Alum. Quart. 8: 170-183. My 1924. [Illust.]

Ferguson, W. C. Contributions to the flora of Long Island, N. Y. Second Paper. Bull. Torrey Club 51: 177-20I. "My" 13 Je 1924.

Fiske, J. G. Some methods of eliminating poison ivy. N. J. Agriculture $6^{6}: 4$. 15 Je 1924. [lllust.]

Fitzpatrick, H. M. The genus Fracchiaea. Mycologia 16: ror114. pl. 10. 31 My 1924.

Fraser, A. C. Heritable characters of maize XVLI-Intensified red and purple aleurone color. Jour. Heredity 15: 119-123. f. 13. "Mr" 17 My 1924.

Gardner, N. L. Two new fossil algae from the miocene. Proc. Acad. Sci. Phila. 75: 36i-363. I9 F 1924. [Illust.]

Gates, F. C. Three sets of megasporangiate cones per year in Pinus. Bot. Gaz. 77: 340-342.f. I-2. 19 My 1924.
Gloyer, W. O., \& Glasgow, H. Cabbage seedbed diseases and Delphinium root rots: their relation to certain methods of cabbage maggot control. N. Y. (Geneva) Agr. Exp. Sta. Bull. 513: 1-38. pl. 1-6. F 1924.

Griffiths, M. A. Experiments with flag smut of wheat and the causal fungus, Urocystis Tritici Kcke. Jour. Agr. Research 27: 425-449. pl. I-3. I6 F 1924.
Guba, E. F. Phyllosticta leaf spot, fruit blotch and canker of the apple; its etiology and control. Phytopathology 14: 234-237. pl. 12-13. 24 My 1924.
Haberer, J. V. Botanical researches in central part of state. Utica Daily Press. 5 Je 1924.
Including portrait of Mrs. Mary Hedges with an account of her botanical work.

Hansen, A. A. The daisy. Nature Mag. 3: 366-367, 380 . "Je" My 1924. [Illust.]

Harms, H. Leguminosae [Brazil]. Notizbl. Bot. Gart. Berlin 8: 711-716. 15 F 1924.
Including new species in Mimosa (2), Piptadenia (1), Copaifera (2), Cassia (4).

Harms, H. Leguminosae americanae novae. VI. Repert. Sp. Nov. Regn. Veg. 19: 288-294. 20 F 1924.
Including new species in Ormosia (2), Dussia (2) and new combinations
Harris, J. A. The tissue fluids of Cuscuta. Bull. Torrey Club 51: 127-131. "Ap" 17 My 1924.

Hendricks, E., \& Harvey, R. B. Growth of plants in artificial light II. Intensities of continuous light required for blooming. Bot. Gaz. 77: 330-334.f. I. 19 My 1924.

Heinicke, A. J. Catalase activity in dormant apple twigs: its relation to the condition of the tissue, respiration, and other factors. N. Y. (Ithaca) Agr. Exp. Sta. Memoir 74: I-33. Mr 1924.

Hitchcock, A. S. The North American species of Aristida. Contr. U. S. Nat. Herb. 22: i-viii + 517-586. 1924. Including descriptions of new species and subspecies.

Hitchcock, A. S. The type specimen. Jour. Bot. 62: 166. Je 1924.

Hoehne, F. C. Campos do Jordão seu clima e sua phytophysionomia. Campos do Jordão 1-37. Mr 1924. [Illust.]

Hollick, A. Swamps, ancient and modern. Jour. N. Y. Bot. Gard. 12: 145-147. My 1924.

Holm, T. Apios tuberosa Moench. Am. Mid. Nat. 9: 118I36. pl. 7-9. My 1924.
Howe, M. A. Chinese marine algae. Bull. Torrey Club 51: 133-144. pl. 1-2. "Ap" 17 My 1924.

Howe, M. A. Starch-bearing plants. Jour. N. Y. Bot. Gard. 25: 135-142. My 1924.

Hurd, A. M. The course of acidity changes during the growth period of wheat with special reference to stem-rust resistance. Jour. Agr. Research 27: 725-735. 8 Mr 1924.

Hutchinson, A. H. Embryogeny of Abies. Bot. Gaz. 77: 280289.f. 1-3. pl. 17-20. 19 My 1924.

Jones, L. K. Anthracnose of cane fruits and its control on black raspberries in Wisconsin. Wisc. Agr. Exp. Sta. Research Bull. 59: i-26. pl. I-8. My 1924.

Kearney, T. H. Inheritance of petal spot in Pima cotton. Jour. Agr. Research 27: 491-512. pl. I. 16 F 1924.

Kelley, A. P. Smoke and soil acidity. Bot. Gaz. 77: 335-339. f. 1-2. 19 My 1924.

Kempton, J. H. Inheritance of the crinkly, ramose, and brachytic characters of maize in hybrids with teosinte. Jour. Agr. Research 27: 537-596. pl. I-8.f. I-106. 23 F 1924.

Killip, E. P. New species of Passiflora from tropical America. Jour. Washington Acad. Sci. 14: 108-116. 4 Mr 1924. Including descriptions of 12 new species and 1 subspecies.

Killip, E. P. Notes on Tacsonia. Jour. Washington Acad. Sci. 14: 212-213. 19 My 1924.
Including description of new species in Passifora (I) and new combinations.

Knowlton, C. H., \& Deane, W. Reports on the flora of the Boston district,-XLV. Rhodora 26: 82-88. "Ap" 2 Je 1924.

Korstian, C. F. A silvical comparison of the Pacific coast and Rocky Mountain forms of western yellow pine. Am. Jour. Bot. 11: 318-324.f. I. 17 My 1924.
Krause, K. Zwei neue Manettia-arten aus Peru. Repert. Sp. Nov. Regn. Veg. 19: 308-309. 20 F 1924.
Kunkel, L. O. Further studies on the intercellular bodies associated with certain mosaic diseases. Bull. Exp. Sta. Hawaiian Sug. Pl. Assoc. Bot. Series 3: 108-114. f. 1-2. pl. 29. Ap 1924.

Kunkel, L. O. Histological and cytological studies on the Fiji disease of sugar cane. Bull. Exp. Sta. Hawaiian Sug. Pl. Assoc. Bot. Series 3: 99-107. f. 1. pl. 24-28. Ap 1924.
Kunkel, L. O. Studies on the mosaic of sugar cane. Bull. Exp. Sta. Hawaiian Sug. P1. Assoc. Bot. Series 3: $115-167 . f$. 1-19. pl. 30. Ap 1924.

BULLETIN

OF THE

TORREY BOTANICAL CLUB

NOVEMBER, 1924
Studies on the flora of northern South America-I.

H. A. Gleason

Centropogon, Section Burmeisteroides

The genus Burmeistera Karst. is distinguished from Centropogon by the possession of green or greenish-yellow corollas of peculiar and characteristic shape and by the absence of terminal appendages from the two lower anthers. In Centropogon, these appendages are regularly present, and may consist either of a tuft of straight, separate, erect or reflexed hairs, or of a scale composed of accrescent hairs. The section Burmeisteroides is here constituted to include a group of species from the Andean region of northwestern South America with green or greenish corollas and with anther-appendages of villous or tomentose hairs. Differing from other species of Centropogon in these two features, they are also distinguished from Burmeistera by the longer and more slender corolla-tube, which is lobed to about the same depth on both upper and lower sides, and from most species of Burmeistera by the presence of conspicuous pubescence on the stem, foliage, flowers, or anthers.

The fruit is a dry, indehiscent berry, of the type prevalent in Centropogon and Burmeistera. This feature serves to differentiate the section from some species of Siphocampylus with green or yellowish flowers, such as S. giganteus and its relatives.

The older collections seem to include relatively few species of this section, but the recent explorations of Pennell, Killip, and Hazen have brought several undescribed species to light. The following are known to me from Colombia.

> Sepals $18-50 \mathrm{~mm}$. long, linear.
> Calyx gamosepalous for $10-15 \mathrm{~mm}$. above the base, 45^{-}
> 50 mm . long; sepals glabrous on the back; anthers very
> sparsely hirsute on the connectives near the base..... C. Andreanus.

[The Bulletin for October (51: 409-442) was issued October 24, 1924.]

Calyx chorisepalous, or weakly gamosepalous for $\mathbf{1 - 2}$ mm . above the base; anthers densely hirsute on the connectives distally.	
Sepals glabrous on the back; leaf-pubescence about equally dense on the surface and veins beneath.	C. asservatus.
Sepals villous on the back with flat crooked hairs; leafpubescence chiefly along the principal veins.	C. Lehmanni.
Sepals not more than II mm. long.	
Sepals oblong, united below, erect and foliaceous	C. caldasensis.
Sepals linear to linear-oblong, separate, erect or spreading. Stem appressed-pubescent	
Stem pubescent with spreading hairs.	
Sepals narrowly oblong, $2-3 \mathrm{~mm}$. wide, thinly hirsute; leaves acuminate at base.	C. variabilis.
Sepals linear, $1-2 \mathrm{~mm}$. wide, densely hirsute; leaves broadly cuneate to obtuse below.	
Leaves acuminate, acute at the base; sepals erect, 8 mm . long.	C. gravidu
Leaves obtuse, rounded at base; sepals spreading, 6 mm . long	C. breviflorus.

Centropogon Andreanus n. sp. Stem 2 m . high, the upper portion hollow, finely striate, glabrous to barely puberulent; petioles $25-45 \mathrm{~mm}$. long; leaf-blades broadly elliptic-oblong, the largest 85 mm . wide and 210 mm . long, cuneate at base, abruptly acuminate at apex, broadest at the middle, finely denticulate (about 6 teeth to 1 cm . of margin) with minute, black, triangular teeth 0.5 mm . high, pubescent on the upper surface with pale, flat, crooked and contorted hairs averaging I mm. in length, more crowded along the midvein, pubescent beneath with similar hairs, about 0.8 mm . long and located chiefly on the veins, ciliate with hairs of the same type but with dark purple or black septa, scattered along the margin and collected in tufts of 6-12 on every serration; peduncles stout, axillary, $11-14 \mathrm{~cm}$. long, essentially glabrous below, pubescent distally with hairs like those of the leaves; hypanthium de-pressed-globose, when pressed $12-17 \mathrm{~mm}$. wide by three-fourths as high, nearly glabrous, 10 -ribbed, 5 ribs prolonged into sepalar midveins, 5 forking below each sinus and entering both sepals; sepals united for the basal $10-15 \mathrm{~mm}$., the lobes linear-triangular, glabrous on the surface, faintly veined, $30-35 \mathrm{~mm}$. long, finely callous-denticulate, ciliate with tufts of hairs on the teeth; corolla 80 mm . long, its tube 60 mm . long, glabrous, the lobes strongly depressed and falcate; anthers barely exserted, glabrous or barely pilose on the connectives below, the two lower anthers strongly bearded at the apex.

The herbarium of the Royal Botanic Garden at Kew contains two sheets, both collected by André under his number 2799 ,
and agreeing precisely in every detail. One is labeled "Rio dos Brazos prope Popayan, 19 April 1876," the other "ad decliv. occident. mont. igniv. Corazon And. Ecuad. 3400 m., 10 Jun. 1876." The latter is the type, and bears a reference to the collector's illustration tab. CLXXX, but unfortunately plate CLXXXII is mounted with the plant.

Centropogon asservatus n. sp. A tall herb; stems hollow above, faintly angled, puberulent above, becoming glabrous and somewhat verrucose in age; internodes $2-3 \mathrm{~cm}$. long; leaves thin, membranous, dull-green, oblong-elliptic, $8-11 \mathrm{~cm}$. long, $2-3 \mathrm{~cm}$. wide, acuminate, gradually cuneate at base into a narrowly winged petiole 1 cm . long, finely, sharply, and irregularly dentate (about 9 teeth per centimeter of margin) with triangular, callously mucronate teeth $0.4-\mathbf{1} \mathrm{mm}$. high, sparsely puberulent above with short, contorted, dark purple hairs, thinly pubescent on the venation beneath with flat, crooked, pale brown hairs, thinly ciliate with crooked hairs with black septa, veins not prominent, reticulate beneath; peduncles from the upper axils, $8-12 \mathrm{~cm}$. long, thinly puberulent to nearly glabrous, erect or ascending; hypanthium obconic, $16-20 \mathrm{~mm}$. high, 9-11 mm. wide at the summit when pressed, faintly nerved, nearly glabrous; sepals erect, narrowly linear above a narrowly triangular dilated base, about 5 cm . long, glabrous on the surface, remotely and minutely callous-denticulate, sparsely ciliate with crooked hairs with black septa; corolla-tube 28 mm . long, glabrous, gradually narrowed to the middle, thence dilated to the throat, the lobes narrowly triangular-falcate, depressed, 20 mm . long; filaments 10 mm . longer than the corolla-tube, subtomentose above; anthers 13 mm . long, subtomentose with white hairs below, hirsute with erect brown hairs on the connectives, the two lower strongly bearded at the apex; fruit a dry berry, ellipsoid, 3 cm . long, surmounted by the persistent sepals.

Type, Pennell 927, collected 3-6 Aug. 1917, in forests on the Rio Balsillas, Dept. Huila, Colombia, altitude 2000-2100 m., and deposited in the herbarium of the New York Botanical Garden. Other specimens are Pennell 960 and 601 , Cordillera Oriental, east of Neiva, Dept. Huila, i-8 Aug. 1917. Of these the latter has broader leaves, about three times as long as wide, with sepals 40 mm . long.

Centropogon Lehmanni Zahlbr. Four numbers in the herbarium of the New York Botanical Garden are referred to this species, although differing in some unimportant respects from each other and from the type. In Lehmann. 529, without
data, and 882 , forests of Popayán, $\mathbf{1 7 0 0 - 2 5 0 0} \mathrm{m}$., the leaf-blades are more than twice as long as broad and sharply cuneate at base and the thinly villous sepals are about 30 mm . long. In Pennell and Kilhp 8087, Rio Ortega, Dept. El Cauca, Colombia, 2 July 1922, and Pennell io,279, Apia, Dept. Caldas, 4, 5 Sept. 1922, the leaf-blades are less than twice as long as wide and the densely villous sepals are only 20 mm . long. Zahlbruckner cited two sheets, Lehmann 4754 and Triana 1569. I have seen the latter in the herbarium of the Museum at Paris and find it essentially intermediate between the two forms mentioned above.

Centropogon caldasensis n. sp. Stem herbaceous, angled, hollow, puberulent above, becoming glabrous below, bearing numerous short axillary leafy branches; petioles $20-25 \mathrm{~mm}$. long, slender, minutely puberulent; leaf-blades membranous, bright green, ovate-lanceolate, $45-65 \mathrm{~mm}$. long, $20-25 \mathrm{~mm}$. wide, subacuminate, rounded at base, shallowly repand to subentire (4-6 teeth per centimeter of margin), glabrous above, thinly pubescent on the veins beneath, the veinlets obscurely reticulate; peduncles ascending from the upper axils, 4 cm . long, conspicuously ridged, thinly puberulent, with two basal linear bracts 8 mm . long; hypanthium obconic, 9 mm . high, 4 mm . wide at the summit when pressed, thinly puberulent, faintly ribbed; sepals 10 mm . long, united for the basal 2 mm ., the lobes oblong, erect, somewhat foliaceous, short-acuminate, many-nerved, irregularly contorted along the margin or serrulate, essentially glabrous, separated by narrow acute sinuses; corolla-tube slender, $\mathbf{1 4 ~ m m}$. long, puberulent, the lobes linearfalcate, depressed, 7 mm . long; filaments glabrous, equaling the petals; anther-tube strongly depressed, short and stout, 4 mm . long, glabrous, the two lower anthers densely villous at the apex.

Type, Pennell 10,322, collected 7-11 Sept. 1922, along the Rio San Rafael, below Cerro Tatama, altitude 2200-2400 m., Dept. Caldas, Colombia, and deposited in the herbarium of the New York Botanical Garden.

Centropogon Mutisianus (H.B.K.) n. comb. (Lobelia Mutisiana H.B.K.) The distinction between this and related species stated in the key above has been drawn from the type specimen in the herbarium of the Museum at Paris.

Centropogon variabilis n. sp. Stem herbaceous, strongly angled, densely pubescent or subtomentose with sordid brown hairs above, becoming glabrate with age, the internodes I^{-2} cm . long; petioles angled, densely pubescent, $\mathbf{1 0 - 2 5} \mathrm{mm}$. long; leaf-blades broadly elliptic, about 9 by 18 cm ., thin and mem-
branous, bright green, abruptly acuminate, cuneate or acute at base, coarsely and irregularly repand, the larger teeth triangular, $2-4 \mathrm{~mm}$. high and $10-20 \mathrm{~mm}$. apart, the intermediate teeth much smaller, thinly pubescent along the midvein and laterals above and likewise on the surface when young, thinly pilose on the surface and densely so the veins beneath, the hairs straight, appressed, 0.4 mm . long, forming conspicuous belts along the veins; peduncles from the upper axils, 5 cm . long, thinly pubescent; hypanthium short-cylindric, 9 mm . high, 7 mm . wide when pressed, puberulent; sepals triangular, 6 mm . long, 2.5 mm . wide at the base, pubescent on both sides, with about three pairs of low callous teeth, separated by narrow rounded sinuses; corolla puberulent, the tube 25 mm . long, straight, slender, the lobes linear-oblong, falcate, depressed; filaments glabrous, included; anther-tube 8 mm . long, subtomentose on the sutures, the two lower anthers villous at the apex.

Type, Pennell 10,734, collected 18, 19 Sept. 1922, at Buenos Aires, north of Supia, Dept. Caldas, Colombia, altitude 2000^{-} 2200 m ., and deposited in the herbarium of the New York Botanical Garden. Four other sheets are also referred here, which differ so much from the type as to suggest the specific name variabilis. These differences do not appear to warrant the recognition of additional species but indicate merely a considerable degree of variability. In Pennell 3409, Libano, Dept. Tolima, 26-29 Dec. 1917, the leaves are proportionately narrower and the serrations lower; in Pennell 10,324, Rio San Rafael, below Cerro Tatama, Dept. Caldas, 7-11 Sept. 1922, the leaves are smaller, thicker, and blunter; in Pennell 10,325, same place and date, the small leaves are almost obovate, while Pennell 4397, Cascada Chorron, south of Antizales, Dept. Bolivar, 25 Feb. 1918, is a fragmentary specimen without flowers.

I have not seen the type of Karsten's Burmeistera tomentosula, which was imperfectly described. It may be similar to our species.

Centropogon gravidus n. sp. Stem herbaceous, hollow, strongly angled, densely pubescent with straight spreading hairs with black septa; petioles stout, densely pubescent, $10-13 \mathrm{~mm}$. long; leaf-blades elliptic-oblong, firm, dull-green, $13-23 \mathrm{~cm}$. long, $3^{-7} \mathrm{~cm}$. wide, abruptly acuminate to long-acuminate, tapering to an acute or cuneate base, coarsely, sharply, and irregularly dentate, especially above the middle, with triangular teeth as much as 5 mm . long (about 2 teeth per centimeter of margin) to subentire, pubescent above with straight, stiff,
brown hairs about 0.5 mm . long, especially along the midvein, pubescent with similar hairs below, especially along the veins, where they form conspicuous belts of pubescence; peduncles numerous from the upper axils, ascending, $5-7 \mathrm{~cm}$. long, pubescent like the stem, the bracts linear, 3 mm . long, deciduous; hypanthium short-cylindric, 9 mm . long, 7 mm . wide when pressed, sparsely pubescent; sepals erect, 8 mm . long, narrowly triangular, acute, irregularly serrate with 3 or 4 pairs of teeth, thinly hirsute, conspicuously ciliate with tufts of hairs with dark septa; corolla sparsely pubescent below, becoming densely so toward the apex of the lobes, the tube 27 mm . long, stout, the lobes broadly linear-falcate, depressed; filaments included, glabrous; anther-tube stout, somewhat curved, 8 mm . long, thinly pubescent, especially at the apex, the two lower anthers villous at the summit.

Type, Killip \&o Hazen 1I,I22, collected 9 Sept. 1922, at La Cumbre, Dept. El Valle, Colombia, altitude $1700-2100 \mathrm{~m}$., and deposited in the herbarium of the New York Botanical Garden. Other collections are Pennell 4398, Cascada Chorron, south of Antizales, Dept. Bolivar, 25 Feb. 1918, Pennell 5723 , La Cumbre, Dept. El Valle, I4-19 May, 1922, and Killip 5921, La Cumbre, 21-25 May 1922.

Centropogon breviflorus n. sp. Stem shrubby, climbing, angled, apparently solid, densely pubescent or subtomentose with septate hairs; petioles densely pubescent, stout, 3 mm . long; leaf-blades firm, spreading, dull-green or brown-green, elliptic, $5-8.5 \mathrm{~cm}$. long, $3.5-4.5 \mathrm{~cm}$. wide, obtuse, rounded at base, entire or barely repand, thinly puberulent above with short curved hairs, especially on the midvein, closely pubescent on the surface and veins beneath with short brown hairs, and hirsute on the midvein with longer, straight, spreading hairs; peduncles from the upper axils, stout, $2-3 \mathrm{~cm}$. long, pubescent like the stem; hypanthium short-cylindric, 7 mm . high, 8 mm . wide when pressed, densely pubescent like the peduncle, especially at the base; sepals spreading, narrowly triangular-linear, 6 mm . long, somewhat involute, densely hirsute and ciliate with straight brown hairs; corolla 20 mm . long, densely pubescent with septate hairs, the tube 15 mm . long, the lobes linear-falcate, depressed, glabrous along the margin; filaments included, glabrous; anther-tube black, 5 mm . long, thinly and sparsely pubescent, the two lower anthers villous at the tip.

Type, Pennell 7545, collected 29, 30 June 1922, on Mount El Trueno, Dept. El Cauca, Colombia, altitude $2700-3000 \mathrm{~m}$., and deposited in the herbarium of the New York Botanical Garden.

Crown gall on Bryophyllum calycinum*

Michael Levine
(with plate io)

In a paper on the effect of inoculations of Bacterium tumefaciens into the notches and midveins of detached leaves of Bryophyllum calycinum planted in moist sand, the present writer (Levine 1919) pointed out that in a great majority of cases the notches produced only crown galls of the common globular type without indications of leafy shoots. The inoculations into a midvein, however, invariably resulted in the development of only a crown gall. Inoculations of the crown gall organism alongside of the notches in these detached leaves yielded occasionally a crown gall with a dwarfed leafy shoot. Control leaves set out under similar conditions resulted in large and vigorously growing shoots in the time that it took the stunted leafy shoot and crown gall to develop.

Inoculations of Bacterium tumefaciens into the region near the axillary buds of the stem caused the formation of a crown gall and a poorly developed axillary bud. Frequently the crown gall formed over its surface a number of leaflets. The axillary bud failed entirely in its development.

Smith (192I) inoculated Bacterium tumefaciens into the notches of undetached leaves of Bryophyllum calycinum, which, he states, resulted in the development of shoots in the notches. He contends that Bacterium tumefaciens stimulated the development of these buds. Inoculations of the axillary bud of the stem with the same organism resulted in the two types of leafy crown galls described by me (Levine 1923). Smith's results confirm my supposition that Bryophyllum has many totipotent cells. He fails, however, to show that these cells may be stimulated by Bacterium tumefaciens to form "embryomata" or leafy shoots in any region other than that where dormant buds are known to exist.

In a later paper (Levine 1923) the writer reported studies on the effects of inoculations of Bacterium tumefaciens on the tobacco

[^52]plant, which forms leafy crown galls readily. Three distinct types of crown galls appear here also, namely, the common globular type, the differentiated globular type which forms small and slowly growing leaflets over its surface, and the axillary leafy crown gall which consists of a crown gall and a poorly developed axillary bud. The stimulus to growth of this type of crown gall is not the direct result of B. tumefaciens, but is due rather to a mechanical interference with the food supply incident to the development of the mass of crown gall tissue.

In a recent paper (Levine 1924) the author reports further observations on rubber trees, which were studied for a period of over four years. The results substantiate his earlier studies made on the Bryophyllum and the tobacco plants.

De Vries (1891), Goebel (1908) and Loeb (1915, 1917, 1918) have claimed that the development of shoots in the notches of the Bryophyllum leaf was inhibited by the presence of the main root or regenerated roots on the stem. These authors further claimed that the organic separation of the leaf from the rooted part of the plant acts as a stimulus upon the leaf and induces growth of the buds in the notches. Loeb (1915) contends that this is not the only factor involved. He states that a piece of stem, even if it does not form any roots but only a shoot, will prevent or greatly delay the growth of the notches of a leaf connected with it.

Miss Braun (1918) pointed out that leaves of Bryophyllum attached to the plant were capable of producing leaves and roots at their notches. Loeb (1918 b) claims that this development occurs only in sick plants. He contends that the recumbent position of the stem acts as a partial block to normal transportation of fluids, and that such sick and bent stems behave to all purposes like isolated pieces of stems, the leaves of which will give rise to shoots. Reed (1923) holds that, while the stem and roots of the plant do not influence the development of the buds in the leaf notches, conditions, such as the absence of light, and the abundance of very moist air or water, do have such an effect.

The present report deals with further observations on the effect of inoculations of Bacterium tumefaciens into the notches of leaves of Bryophyllum. I showed that in leaves which were stimulated to shoot development by being cut from the stem and planted in moist sand, relatively few leafy crown galls
developed after inoculation. It has seemed to me to be desirable to determine the effects of inoculation of the notches of these leaves undetached from the mother plant and to determine the frequency of the leafy crown galls thus formed, as compared to the number of the common globular types that appear. I have found in my cultures what appear to be mature and healthy Bryophyllum plants which developed leafy shoots at their notches. The number of shoots formed on these leaves resulting from an apparently unknown condition was compared with the number of leafy shoots resulting after the inoculation with Bacterium tumefaciens. Both plants were grown under similar conditions. Up to the present the differentiated globular crown gall with leaflets on its surface has not been observed at the margin of Bryophyllum leaves.

Material and Observations

In the present experiment twelve young Bryophyllum calycinum plants were set out on benches in the greenhouses at Columbia University. These were rapidly growing plants with numerous leaves of all ages, although none were very old. Only the young leaves in the middle portion of the plant were used. Five to ten of these leaves in each plant were selected. The inoculations were made by piercing the notches of the middle portion of the leaves where shoots most frequently develop (Loeb $1918 a$) with a needle dipped into a sub-culture of the hop strain of Bacterium tumefaciens. The inoculations were made on September 25 , 1923. The leaves were carefully labeled. They were examined from time to time and all changes were noted. On April 21, 1924 it was observed that the inoculated leaves were becoming old and dying. The leaves were detached and the numbers and kinds of crown galls were recorded.

Fig. I represents a crown gall with four leafy shoots resulting from the inoculation of Bacterium tumefaciens into the notches of the leaf. It is quite clear from this photograph that where the inoculations were made globular crown galls developed, with the exception of one case shown here, where the bud at the notch developed into four shoots. At the bases of these shoots a large crown gall is to be seen. Such leafy crown galls are like those that sometimes develop when the axillary bud of the stem is inoculated with B. tumefaciens, such as shown by

Smith (i921, f. IOI) and in my own studies on tobacco (Levine 1923, f. 13, 14). To test whether or not these shoots are diseased or only stunted, owing to interference with their water and other food supplies by the crown gall tissue, I removed them from the leaf. All parts of the mother leaf were trimmed away from the crown gall and the leafy shoots attached to it. No roots were at this time visible. The adventitious leafy crown gall was then planted in a pot. Fig. 2 represents this leafy crown gall two months later. It shows the leaf and stem portion of the crown gall developed into an apparently normal plant with four stems, at the bases of which may still be seen the globular portion of the crown gall. Long, fibrous roots have developed not only from the surface of the crown gall tissue but also from the lower nodes of the stems. The plants grew rapidly and are still growing in the experimental garden at Montefiore Hospital.

The other types of crown gall are represented in Fig. 3at a, the globular type, and at b, the differentiated leafy crown gall. The crown gall at b first appeared as a mass of globular tissue. Later the leaves began to make their appearance, as described previously in my studies on tobacco. These leafy shoots are not due to injury of the dormant bud at the notch of the leaf. When the bud is cut into a number of parts at the time of inoculation, each part develops into a shoot, as I have pointed out and figured before (Levine 1923, f. 16). In the present instance, as in the case of Smith's Fig. 103 (1921) the crown gall cells became differentiated and developed into the small leaves and stems shown there. Under moist atmospheric conditions roots may also appear. It is barely possible that five pricks of the inoculating needle will cut up the bud into fifty or more parts which develop into small leaves frequently sessile.

Smith (192I) believes these leafy crown galls are embryomata comparable to embryomata in human cancer. He considers the internal differentiated tissues of the crown gall comparable to the stroma of cancer. The stroma of human and of animal cancers arises from muscle, nerve, blood vessel, and other connective tissue elements, which occur in the region of the neoplasm. By resumption of growth of these tissues the stroma is formed. Vessels and tracheids in plants once formed cannot resume
growth. The meristematic tissue which forms vessels and tracheids is stimulated to proliferate through the agency of the crown gall organism. These cells, on differentiation, form isolated parts of a poorly organized fibro-vascular system. In benign crown galls there is frequently a considerable increase in the thickness of the wood. This is likewise due to stimulated meristematic tissue with subsequent differentiation. The cortical cells are capable of responding to the stimulus to divide. They eventually become mature cortical cells.

Frequency of Leafy Crown Galls

The following table shows the number of crown galls that are formed at the notches of leaves of Bryophyllum when inoculated with Bacterium tumefaciens. The fourth column shows the number of leafy crown galls formed when the notches of the longitudinal half of the leaf are inoculated. The figures in the third column do not include the leafy crown galls.

Table I

Results of inoculations of Bacterium tumefaciens into the notches of leaves of Bryophyllum calycinum.

| No. of leaves | No. of globular crown galls
 per long half of leaf | Total | No. of leafy
 crown galls |
| :---: | :---: | :---: | :---: | :---: |
| 17 | 4 | 68 | 13 |
| 9 | 6 | 54 | 4 |
| 9 | 5 | 45 | 8 |
| 8 | 3 | 24 | 4 |
| 3 | 2 | 6 | 0 |
| 2 | 1 | 2 | 2 |
| 48 | | 199 | 31 |

An analysis of the results obtained from these inoculations shows that 17 leaves produced 68 globular crown galls. Seven of these leaves produced in addition one leafy crown gall each, while three leaves produced two leafy crown galls each; the remaining seven leaves produced no leafy crown galls at all. Another group of leaves, nine in number, produced 54 globular crown galls, and only four leaves produced one leafy crown gall each. In another group of nine leaves 45 crown galls of the globular type were formed. Four of these produced one leafy
crown gall each; two other leaves produced two leafy crown galls each. Eight leaves in another group showed 24 globular crown galls; in addition, two of the leaves showed four leafy crown galls. In two smaller groups made up of five leaves, eight globular crown galls with two leafy crown galls were formed.

In all, 230 crown galls were formed at the notches. Of these, 199 were of the globular type without any indication of leafy shoots of any form. Thirty-one were of the leafy type, of which 12 were like axillary leafy crown galls and 19 were of the differentiated type. That is, in 48 counted leaves, with one-half of the notches inoculated, the globular crown gall without leaves or roots appeared 7.4 times more frequently than the leafy crown galls of either the differentiated type or the axillary bud type. A number of notches failed to develop crown gall of any form. The inoculation induced necrosis of the leaf in the region of inoculation.

I have studied the development of the notches of Bryophyllum leaves uninoculated and attached, that were growing on the same bench with the inoculated plants. The conditions which induced the notches of all the uninoculated plants to proliferate appeared later. My observations on detached leaves are in accord with Loeb (1918 a) on the position of the developing notches. Few apical and basal notches develop, although in my cultures I have seen apical notches form shoots. Loeb (1918 b) contends that attached leaves of B. calycinum which show sprouting notches are sick plants. The specimens I have under observation are not bent nor growing in pots. Fig. 4 shows a very young plant with numerous sprouting notches on lower leaves. It appears to be an actively growing plant. The conditions that induced the notches to develop in these uninoculated plants were apparently equally active in the inoculated plants also, for, as mentioned above, all these plants were growing on the same bench.

In Table 2, column 2 gives the number of notches in each of twelve leaves. Under column 3 is given the number of shoots that appeared on each leaf. Of 195 leaf notches of Bryophyllum, 106 produced shoots.

Table 2
Uninoculated notches of leaves of Bryophyllum calycinum

No. of leaf	No. of notches per leaf	No. of sprout- ing buds
1	17	14
2	18	9
3	16	11
4	15	6
5	17	10
6	18	9
7	17	7
8	15	6
9	14	11
10	15	5
11	16	10
12	17	8
	195	106

It appears from these data that Bacterium tumefaciens does not stimulate bud development, even in the presence of conditions which favor it. B. tumefaciens, it appears, induces a neoplasm which offers mechanical obstruction to the transportation of fluids, which, in turn, calls forth bud proliferation, as shown in the rubber plant (Levine 1924). If bent stems induce partial interference in the conducting system, which is responsible for the development of shoots in the notches of leaves of Bryophyllum calycinum, as held by Loeb (1918 b), it appears to be reasonable to suppose that a disturbance induced by a mass of invading meristematic tissue may at least have a similar effect on these buds one in 8.4 chances.

Literature Cited

Braun, E. L. Regeneration of Bryophyllum calycinum. Bot. Gaz. 65: 191-193.f. 1, 2. 1918.
de Vries, H. Ueber abnormale Entstehung secondärer Gewebe. Jahrb. Wiss. Bot. 22: 35-72. pl. 2, 3. 1891.
Goebel, K. Einleitung in die experimentelle Morphologie der Pflanzen. 142-I48. Leipzig, 1908.
Levine, Michael. Studies on plant cancers-I. The mechanism of the formation of the leafy crown gall. Bull. Torrey Club 46: 447-452. pl. 17, 18. 1919.

Levine, Michael. Studies on plant cancers-V. Leafy crown galls on tobacco plants resulting from Bacterium tumefaciens inoculations. Phytopathology 13: 107-116. pl. 5-7. 1923.

Studies on plant cancers-VI. Further studies on the behavior of crown gall on the rubber plant, Ficus elastica. Mycologia 16: 24-29. pl. 6. 1924.
Loeb, J. Rules and mechanism of inhibition and correlation in the regeneration of Bryophyllum calycinum. Bot. Gaz. 60: 249-276. f. I-4I. 1915.
——. A quantitative method of ascertaining the mechanism of growth of dormant buds. Science II. 45: 436-439. 1917.
——. Chemical basis of correlation. I. Production of equal masses of shoots by equal masses of sister leaves in Bryophyllum calycinum. Bot. Gaz. 65: $150-174 . f .1$-18. 1918 a.
—_ Healthy and sick specimens of Bryophyllum calycinum. Bot. Gaz. 66: 69. 1918 b.
Reed, E. Hypothesis of formative stuffs as applied to Bryophyllum calycinum. Bot. Gaz. 75:113-142.f. 1-10. 1923. Smith, E. F. Effect of crowngall inoculations on Bryophyllum. Jour. Agr. Res. 21: 593-597. pl. Ior-1IO. 1921.

Explanation of plate 10

Fig. I. Attached leaf of Bryophyllum calycinum inoculated with Bacterium tumefaciens showing crown gall and bud development similar to the axillary leafy crown gall resulting from the inoculation of an axillary bud.

Fig. 2. The leafy crown gall shown in Fig. x after growing in soil for two months.

Fig. 3. Globular crown gall at a. Differentiated crown gall showing small leaves growing out of crown gall at b.

Fig. 4. Young uninoculated B. calycinum plant showing developed marginal notches.

BRYOPHYLLUM WITH CROW゙N (BALL

INDEX TO AMERICAN BOTANICAL LITERATURE

1924

This Index is reprinted monthly on cards, and furnished in this form to subscribers at the rate of three cents for each card. Selections of cards are not permitted; each subscriber must take all cards published during the term of his subscription. Correspondence relating to the card issue should be addressed to Dr. Fred J. Seaver, N. Y. Botanical Garden, Bronx Park, N. Y. City.
Albrecht, W. A. Inoculation for legumes. Missouri Agr. Exp. Sta. Circular 12I: I-12.f. I-5. My 1924.
Ames, O. An enumeration of the orchids of the United States and Canada. i-viii, $\mathbf{1}-120$. Boston, 1924.

Arthur, J. C. New combinations. Torreya 24: 52. 25 Je 1924
Ball, C. R. Extensions of range and a new variety in Salix. Rhodora 26: 135́́44. 20 Jl 1924. Including Salix discolor Overi Ball n. var.
Barrett, O. W. Impresiones de mi viaje a Dominica. Revista Agr. Puerto Rico 12: 327-330. My 1924. Including notes on plants.
Beals, A. T. How I find Ephemera. Bryologist 27: 46-49.f. 1-2. "My" 2 Jl 1924.
Berry, E. W. A fossil Celtis from Colombia. Torreya 24: 44-46. f. $x-2.25 \mathrm{Je} 1924$. Including Celtis bolivarensis n. sp.
Berry, E. W. Ophioglossum hastatiforme Ckl. not an Ophioglossum. Torreya 24: 49-50. 25 Je 1924.
Berry, J. B. Western forest trees. A guide to the identification of trees and woods to accompany farm woodlands. A handbook for students, teachers, farmers and woodsmen. i-xi, 1 -212.f. I -g6. New York. 1924.
Brink, R. A. The physiology of pollen-III. Growth in vitro and in vivo. Am. Jour. Bot. 11: 351-364. f. 1-4 + pl. 19-20. 28 Je 1924; IV. Chemotropism; effects on growth of grouping grains; formation and function of callose plugs; summary and conclusions. Ibid. 416-436. "Jl" 14 Au 1924.

Britton, N. L., \& Wilson, P. Botany of Porto Rico and the Virgin Islands. Descriptive Flora-Spermatophytes (continued). N. Y. Acad. Sci. Survey 5: 315-474. 16 Je 1924; 475-626. 8 N 1924.

Buchholz, J. T. Notes on Arkansas Pteridophytes. Am. Fern. Jour. 14: 33-38. "Ap-Je" 12 Jl 1924.
Burkholder, W. H. The effect of varying soil moistures on healthy bean plants and on those infected by a root parasite. Ecology 5: 179-187. "Ap" 29 My 1924.
Burt, E. A. Some wood-destroying fungi of Java. Ann. Missouri Bot. Gard. 11: 37-42. pl. 2. "F" 25 Jl 1924. Including description of three new species.
Burt, E. A. The Thelephoraceae of North America. XIII. Cladoderris, Hypolyssus, Cymatella, Skepperia, Cytidia, Solenia, Matruchotia, Microstroma, Protocoronospora, and Asterostroma. Ann. Missouri Bot. Gard. 11: 1-36. pl. 1. "F" 25 Jl 1924.
Buttrick, P. L. Connecticut's state flower, the mountain laurel. A forest plant. Marsh Bot. Gard. Publ. 1: 1-28. 1924. [Illust.]
Callendar, J. National flowers. Farm and Garden 12: 7-10. J1 1924.

Calvino, M. Doce puntos relacionados con el mosaico de la caña y el modo de combatirlo. Chaparra Agr. 1: 19-20. 20 My 1924.

Chardon, C. E. La relación de ciertas yerbas con el matizado de la caña de azúcar. Revista Agr. Puerto Rico 12: 305314.f. I-5. My 1924.

Clarkson, E. H. The rootstocks of the spinulose ferns. Am. Fern Jour. 14: 46-50. "Ap-Je" 12 J1 1924.
Clausen, R. E., \& Goodspeed, T. H. Inheritance in Nicotiana Tabacum. IV. The trisomic character, "enlarged." Genetics 9: 181-197. "Mr" II Jl 1924.
(Clute, W. N.) Common names of heathworts. Am. Bot. 30: 124-125. Jl 1924.
(Clute, W. N.) Conspicuous tropical plants. Am. Bot. 30: 19-23. Ja 1924. 64-67. Ap 1924; 112-117. Jl 1924.
(Clute, W. N.) Needle palm overspecialized. Am. Bot. 30: 125-126. Jl. 1924.
Clute, W. N. Plant names and their meanings-XX. Malvaceae. Am. Bot. 30: 103-109. Jl 1924.
(Clute, W. N.) The pioneers of botany. Am. Bot. 30: 99-103. Jl 1924.
Clute, W. N. The spring beauties. Am. Bot. 30:95-96. Jl 1924.
Cockerell, T. D. A. A yellow variation of Eustoma (Gentianaceae). Torreya 24: 50-5I. 25 Je 1924. Including Eustoma russellianum (Hook) Griseb. f. flaviflorum f. nov.

Comstock, A. B. The Cholla, the pest of the desert. Nat. Mag. 4: 45-46. "JI" Je 1924. [Illust.]
Cook, M. T. Development of seed of Crotalaria sagittalis. Bot. Gaz. 77: 440-445. pl. 30-31. 16 Je 1924.
Corne, F. E. Ferns-facts and fancies about them-I. Am. Fern Jour. 14: 50-56. pl. 3-4. "Ap-Je" 12 Jl 1924.

Coulter, J. M. George Lincoln Goodale. Bot. Gaz. 77: 453. 16 Je 1924. [Portrait.]
Crosby, F. Wheat's worst enemy. Nat. Mag. 4: 42-43. "Jl" Je 1924. [Illust.]
Davis, W. H. Spore germination of Ustilago striaeformis. Phytopathology 14: 251-267. pl. 14-16. 27 Je 1924.

Dixon, H. N. New species of mosses from the Malay Peninsula. Bull. Torrey Club 51: 225-259. pl. 3-4. "Je" 12 Jl 1924.

Dunn, M. S. The microloop. A rapid method for isolating single spores. Phytopathology 14: 338-340. f. I. 21 Jl 1924.

Dustman, R. B. Effect of potassium acid phthalate on early growth of tomato plants. Bot. Gaz. 77: 419-43I. f. I-6, 16 Je 1924.
Eckerson, S. H. Protein synthesis by plants. I. Nitrate reduction. Bot. Gaz. 77: 377-390. 16 Je 1924.

Elliott, G. R. B. Relation between the downward penetration of corn roots and water level in peat soil. Ecology 5: 175-178. f. \boldsymbol{x}-2. "Ap" 29 My 1924.
Evans, A. W. Report on the Hepaticae of Nebraska. Bryologist 27: 49-52. "My" 2 Jl 1924.
Felt, E. P. Some plant galls and how they come. Gard. Mag. 39: 354-355. " Jl" Je 1924. [Illust.]
Fernald, M. L. Polystichum Mohrioides and some other subantarctic or Andean plants in the northern hemisphere. Rhodora 26: 89"95. "My" 18 Je 1924.
Contr. Gray Herb. N. S. no. LXXII. I. Including new combinations.
Fernald, M. L. The dwarf Antennarias of northeastern America. Rhodora 26: 95-102. pl. 142. "My" 18 Je 1924. Contr. Gray Herb. N. S. no. LXXII. II. Including two new species.
Fernald, M. L. The eastern American representatives of Arnica alpina. Rhodora 26: 103-107. pl. 143. "My" 18 Je 1924.
Contr. Gray Herb. N. S. no. LXXII. III. Including A. Griscomi, n. sp.
Fernald, M. L. Some Senecios of eastern Quebec and Newfoundland. Rhodora 26: 113-122. pl. 144. "Je" 5 Jl 1924. Contr. Gray Herb. N. S. no. LXXII. IV.

Fernald, M. L. New or recently restudied plants of eastern America. Rhodora 26: 122-127. "Je" 5 Jl 1924.
Contr. Gray Herb. N. S. no. LXXII. V. Including Agoseris gaspensis sp. nov. and new combinations.
Frenguelli, J. Resultados de la primera expedición a Tierra del Fuego (1921). Diatomeas de Tierra del Fuego. Anal. Soc. Ci. Argentina 97: 87-118. 1924.
Including 2 new species in Navicula and new varieties.
Gager, C. S. The educational value of a botanic garden. Museum Work 7: 3-10. My-Je 1924. [Illust.]
Garabedian, S. A revision of Emilia. Kew Bull. Misc. Inf. 1924: 137-144. 1924.
Including tropical American species.
Gardner, M. W. A native weed host for bacterial blight of bean. Phytopathology 14: 341. 2I Jl 1924.

Goldstein, B. Cytological study of living cells of tobacco plants affected with mosaic disease. Bull. Torrey Club 51: 261273. pl. 5. "Je" 12 Jl 1924.

Goodwin, J. C., \& Fenton, F. A. Morphological studies on the injury to apple caused by Ceresa bubalis. Phytopathology 14: 334-335.f. 1-4. 2I Jl 1924.
Gregory, C. T. Sick vegetables and how to doctor them. Fruit, Gard. and Home 2: io-II. Jl 1924. [Illust.]

Gustafson, F. G. Total acidity compared with actual acidity of plant juices. Am. Jour. Bot. 11: 365-369.f. I-6. 28 Je 1924.

Hayes, H. K., Stakman, E. C., Griffee, F., \& Christensen, J. J. Reactions of selfed lines of maize to Ustilago Zeae. Phytopathology 14: 268-280. 27 Je 1924.
Höhnel, F. Beitrag zur Kent.tnis der Gattung Cylindrosporium Grev. Ann. Myc. 22: 191-203. 1924.
Including notes on American species and the new genera Phloeosporella (type Cylindrosporium Ceanothi Ellis \& Ev.) and Phlooosporina (type Cylindrosporium minor Ellis \& Keller).
Hor, K. S. Interrelations of genetic factors in barley. Genetics 9: I5I-I80. "Mr" II Jl 1924.
Hubert, E. The red stain in the wood of the box elder. Am. Forests and Forest Life 30: 443. Jl 1924. [lllust.]
Johnston, I. M. Expedition of the California Academy of Sciences to the Gulf of California in 1921. The botany (the vascular plants). Proc. Calif. Acad. Sci., IV. 12: 951-1218. 31 My 1924. Including many new species and combinations.
Johnston, I. M. Studies in the Boraginaceae.-II. Contr. Gray Herb. 70: i-61. I Ap 1924.
Including many new species and combinations.
Johnston Taxonomic records concerning American spermatophytes. 1. Parkinsonia and Cercidium; 2. New or otherwise noteworthy plants; 3. A neglected paper by Jean Louis Berlandier; 4. On the validity of Molina's scientific names. Contr. Gray Herb. 70: 61-92. I Ap. 1924. Including many new species and combinations.

Jones, D. F. Selective fertilization among the gametes from the same individuals. Proc. Nat. Acad. Sci. 10: 218-221. Je 1924.

Kelley, A. P. Myrica carolinensis, new to Chester County, Pennsylvania. Torreya 24: 51. 25 Je 1924.
Kerr, G. W. Some "rich relatives" of the poppy family. Gard. Mag. 39: 419-420. "Au" Jl 1924. [Illust.]
Knowlton, C. H. \& Deane, W. Reports on the flora of the Boston district-XLVI. Compositae. Rhodora 26: 107III. "My" 18 Je 1924; XLVII. Ibid. 26: I30-132. "Je" 5 Jl 1924; XLVIII. Ibid. 26: 149-152. 20 Jl 1924; XLIX. Ibid. 26: 166-168. 4 Au 1924.
Komuro, H. Cytological and physiological changes in Vicia Faba irradiated with Röntgen rays. Bot. Gaz. 77: 446452.f. I. 16 Je 1924.

Korstian, C. F. Natural regeneration of southern white cedar. Ecology 5: 188-191. f. I. "Ap" 29 My 1924.
Kramer, W. P. El Bosque del Acueducto. Revista Agr. Puerto Rico 12: 315-323. My 1924. [Illust.] Including notes on plants.
Kulkarni, G. S. Resistance of sorghum to loose and covered smut. Phytopathology 14: 288. 27 Je 1924.
Kylin, H. Studien über die Delesseriaceen. Lunds Univ. Årssk. II. 20 0^{6} : 1-1II. f. 1-8o. 1924.

Lankester, C. H. Epidendrum pumilum and E. tonduzii. Orchid Rev. 32: 163. Je 1924.
Leighty, C. E., \& Taylor, J. W. Electrochemical treatment of seed wheat. U. S. Dept. Agr. Circalar 305: 1-7. f. I. F 1924.

Lesley, J. W. Fusarium wilt of tomato and its control by means of resistant varieties. Calif. Agr. Exp. Sta. Circular 274: 1-6. f. 1-2. Ja 1924.
Lewis, F. J., \& Dowding, E. S. The anatomy of the buds of Coniferae. Ann. Bot. 38: 217-228. f. 1-12. Ap 1924.

Lichtin, A. The iron content of spinach. Am. Jour. Pharmacy 96: 361-364. My 1924.
Lindfors, T. Studien über den Entwicklungsverlauf bei einigen Rostpilzen aus zytologischen und anatomischen Gesichtspunkten. Svensk. Bot. Tidsk. 18: 1-84. f. 1-20. pl. 1-4. 1924.

Lloyd, C. G. Mycological Notes 7: 1237-1268. f. 2625-2768. Ja 1924.
Lloyd, C. G. Professor A. H. R. Buller. Mycological Notes 7: 1237. Ja 1924. [Portrait.]

Longley, A. E. Cytological studies in the genus Crataegus. Am. Jour. Bot. 11: 295-317. f. 1-8. pl. 16-18. 17 My 1924.
Longley, A. E., \& Darrow, G. M. Cytological studies of diploid and polyploid forms in raspberries. Jour. Agr. Research 27: 737-748. pl. r-3. 8 Mr 1924.
Lutz, F. E. Apparently non-selective characters and combinations of characters. Including a study of ultraviolet in relation to the flower-visiting habits of insects. Annals N. Y. Acad. Sci. 29: 181-283. pl. 3-9. 15 Ap 1924.

Macbride, J. F. Spring wild flowers. Field Mus. Nat. Hist. Bot. Leaflet 7: 1-32. 1924. [Illust.]
MacDougal, D. T. Growth in trees and massive organs of plants. Dendographic measurements. Carnegie Inst. Wash. Publ. 350: 1-87. f. 1-19. My 1924.
Macwatt, [J.] Notes on Primulas. American Primulas. Garden 88: 356. 24 My 1924.
Mattoon, W. R. Black walnut. Where and how to plant it. Am. Forests and Forest Life 30: $347-348$, 362. "Je" My 1924. [Illust.]

Maxon, W. R. Further notes on Hispaniola ferns. Jour. Washington Acad. Sci. 14: 195-199. 4 My 1924.
Including descriptions of new species in Danaea (I), Hypolepis (I), Pteris (1).

Maxon, W. R. New or critical ferns from Haiti. Jour. Washington Acad. Sci. 14: 86-92. 19 F 1924.
Including descriptions of new species in Adiantum (1), Cheilanthes (I), Hypolepis (1), Dryopteris (2).

Maxon, W. R. New West Indian ferns. Jour. Washington Acad. Sci. 14: 139-145. I9 Mr 1924
Including descriptions of new species in Cyathea (1), Polypodium (I), Stenochlaena (1), Dryopteris (2), Leptochilus (1).

Maxon, W. R. Report upon a collection of ferns from Tahiti. Univ. Calif. Pub. Bot. 12: 17-44. pl. 1-6. 27 My 1924.
Including new species in Stenochlaena (1), Dryopteris (1), Tectaria (1) and new combinations.

Maxon, W. R. Two new species of Jamesonia. Jour. Washington Acad. Sci. 14: 72-74. 1924.
McFarland, F. T., \& Anderson, W. A. A new Helianthus from Kentucky. Am. Mid. Nat. 9: $137-$ I4I. pl. 10. My 1924. Including description of Helianthus kentuckiensis.
Miller, E. C. Daily variation of the carbohydrates in the leaves of corn and the sorghums. J'our. Agr. Research 27: 785808.f. 1-6. 8 Mr 1924.

Mix, A. J. Biological and cultural studies of Exoascus deformans. Phytopathology 14: 217-233.f. 1-2. 24 My 1924.
[Moore, G. T.] Forcing peaches and nectarines. Missouri Bot. Gard. Bull. 12: 57-61. pl. 12-13. My 1924.
[Moore, G. T.] The maidenhair tree. Missouri Bot. Gard. Bull. 12: 64-65. pl. 14. My 1924.
Murrill, W. A. Botanical features of Lake Placid. Jour. N. Y. Bot. Gard. 25: 142-145. My 1924.
Murrill, W. A. Kashmir fungi. Mycologia 16: 133. 3I My 1924.

Muenscher, W. C. Coleus parasited by broom-rape. Gardeners' Chron. Am. 28: 165. f. I-6. Je 1924.
Newell, W. Preliminary report on experiments with the tungoil tree in Florida. Florida Agr. Exp. Sta. Bull. 171: 193-234.f. 77-96. My 1924.
Noble, R. J. Studies on parasitism of Urocystis Tritici Koern. the organism causing flag smut of wheat. Jour. Agr. Research 27: 451-489. pl. 1-3. 16 F 1924.

Penland, C. W. Notes on North American Scutellarias. Rhodora 26: 6I-79. pl. 140-i41. "Ap" 2 Je 1924.
Including descriptions of new forms, varieties, and combinations.
Pfeiffer, H. Conspectus Cyperacearum in America medionali nascentium III. Additamenta ad cognitionem generis Pleurostachys Brongh. II. Repert. Sp. Nov. Regn. Veg. 19: 294-296. 20 F 1924.
Including descriptions of 3 new species and I new combination.
Pilger, R. Plantae Luetzelburgianae brazilienses III. Notizbl. Bot. Gart. Berlin 8: 712-716. I5 F 1924.
Including descriptions of 10 new species.
Pinckney, R. M. Effect of nitrate applications upon the hydro-cyanic-acid content of sorghum. Jour. Agr. Research 27: 717-723. 8 Mr 1924.
Piper, C. V. The genus Oxyrhynchus Brandegee. Jour. Washington Acad. Sci. 14: 46-49.f. 1-10. 19 Ja 1924.
Including descriptions of Oxyrhynchus alienus sp. nov.
Plitt, C. C., \& Pessin, L. J. A study on the effect of evaporation and light on the distribution of lichens. Bull. Torrey Club 51: 203-210. "Мy" 13 Je 1924.
Reed, H. S., \& Haas, A. R. C. Iron supply in a nutrient medium. Bot. Gaz. 77: 290-299. 19 My 1924.
Reddick, D., \& Stewart, V. B. Crown-gall of apple and peach with notes on the biology of Bacterium tumefaciens. N. Y. (Ithaca) Agr. Exp. Sta. Memoir 73: 1-19. pl. 1-2.f. I-2. Mr 1924.
Riley, L. A. M. The Mexican and Central American species of Ouratea. Kew Bull. Misc. Inf. 1924: Ioi-III. 1924. Including descriptions of 6 new species and 1 new combination.
Roberts, J. W. Morphological characters of Alternaria mali Roberts. Jour. Agr. Research 27: 699-708. pl. 1-2. I Mr 1924.

Roquette-Pinto, E. Nota sobre a acção physiologica da Fava Tonka. Bol. Mus. Nac. Rio de Janeiro 1: 127-135. 1924.
Rowlee, S. A collection of Costa Rican fungi. Mycologia 16: 115-121. pl. II-I2. 3I My 1924.

Russell, H. L. New facts in farm science. Wisc. Agr. Exp. Sta. Bull. 362: 1-114.f. 1-40. Mr 1924.

Rydberg, P. A. The section Tuberarium of the genus Solanum in Mexico and Central America. Bull. Torrey Club 51: 145-154. "Ap" $17 \mathrm{My} ; 167-176$. "My" 13 Je 1924. Including descriptions of 5 new species.

Sanford, S. N. F. Hibiscus oculiroseus in Rhode Island. Rhodora 26: 88. "Ap" 2 Je 1924.
Schaffner, J. H. Principles of plant taxonomy. I. Ohio Jour. Sci. 24: 146-160. My 1924.
Schmidt, O. C. Meeresalgen der Sammlung v. Luetzelburg aus Brasilien. Hedwigia 65: 85-100. f. 1 -6. 16 Ap 1924.

Schneiderhan, F. J., \& Fromme, F. D. Apple scab and its control in Virginia. Va. Agr. Exp. Sta. Bull. 236: 1-29. f. 1-6. Mr 1924.
Sedgwick, P. J. Life history of Encephalartos. Bot. Gaz. 77: 300-310. f. 1-4. pl. 21-22. 19 My 1924.

Setchell, W. A., \& Gardner, N. L. New marine algae from the Gulf of California. Proc. Calif. Acad. Sci. IV. 12: 695948. pl. 12-88. 13 My 1924.

Shreve, F. Growth in trees and massive organs of plants. The growth record in trees. Carnegie Inst. Wash. Publ. 350: 89-116. f. 20-29. Му 1924.
Shull, C. A., \& Shull, S. P. Temperature coefficient of absorption in seeds of corn. Bot. Gaz. 77: 262-279. f. I. I9 My 1924.

Sideris, C. P. Species of Fusarium isolated from onion roots. Phytopathology 14: 211-216. pl. o-11. 24 My 1924.
Smith, F. F. Self-fertilization in Nicotiana. Science II. 59: 46I. 23 My 1924.
Spoehr, H. A., \& McGee, J. M. Absorption of carbon dioxide the first step in photosynthesis. Science II. 59: 513-514. 6 Je 1924.

Standley, P. C. New species of plants from Salvador. JII. Jour. Washington Acad. Sci. 14: 93-99. f. I. 19 F 1924.
Including Ophellantha spinosa gen. et sp. nov. and new species in Zamia
(1), Aeschynomene (1), Machaerium (1), Banisteria (1), Acalypha (I), Croton (1), Triumfetta (I), Abutilon (I).

Stout, A. B. Sterility in lilies. Gardeners' Chron. III. 75: 209.f. 91. 12 Ap 1924; 256.f. 107-108. My 1924.

Sudworth, G. B. A new hickory from Florida. Am. Forests and Forest Life 30: 334-335. "Je" My 1924. [Illust.]

Tehon, L. R. Marasmius on wheat. Mycologia 16: 132-I33. 31 My 1924.
Thomas, C. C. The Chinese jujube. U. S. Dept. Agr. Bull. 1215: i-30. f. I-8. Ap 1924.
Thomas, H. E. Tobacco wildfire. N. Y. (Ithaca) Agr. Exp. Sta. Ext. Bull. 79: 3-7.f. I. F 1924.
Tootle, E. H. The transformations and course of development of germinating maize. Am. J'our. Bot. 11: 325-350.f. 1-4. 17 My 1924.
Waksman, S. A., \& Starkey, R. L. Influence of organic matter upon the development of fungi, actinomycetes and bacteria in the soil. Soil Sci. 18: 373-378. My 1924.
Waksman, S. A., \& Karunakar, P. D. Microbiological analysis of soil as an index of soil fertility. IX. Nitrogen fixation and mannite decomposition. Soil Sci. 18: 379-393. My 1924.

Walker, J. C. Cabbage-seed treatment. U. S. Dept. Agr. Circular 3II: 1-4. Ap 1924.
Weatherby, C. A. A new Satureja from Florida. Rhodora 26: 80-81. "Ap" 2 Je 1924.
Including Satureja Ashei n. sp.
Wells, B. W. Major plant communities of North Carolina. N. C. Agr. Exp. Sta. Tech. Bull. 25: 1-20. f. 1-14. Ap. 1924
Weston, W. H. Nocturnal production of conidia by Sclerospora graminicala. Jour. Agr. Research 27: 771-784. pl. 1-2. 8 Mr 1924.

WHAT WOULD YOU GIVE
 TO AVOID TUBERCULOSIS?

STAMP OUT TURERCULOSIS WITH
CHRISTMAS SEALS

YOU would give everything you have to avoid the Great White Plague. The germs of tuberculosus are everywhere. There is only one sure way for you and everybody to avoid consumption, and that is to stamp out the disease entirely.

It can be stamped out. Today only one person dies of tuberculosis where two died before. Christmas Seals helped to save the other life.

The war against tuberculosis, waged by the Tuberculosis Associations, is financed by the annual sale of Christmas Seals. Remember, when you buy Christmas Seals, you not only help to save others, but you protect yourself as well. Buy Christmas Sealsand buy as many as you can.

Agroup of cbildren taking the sun cure to uroid tuberculosis THE NATIONAL, STATE, AND LOCAL TUBERCULOSIS ASSOCIATIONS OF THE UNITED STATES

BULLETIN OF THE

 TORREY BOTANICAL CLUB
DECEMBER, 1924

A preliminary account of the influence of light and temperature on growth and reproduction in Chara fragilis*

John S. Karling (With plates II-I3)

The fruiting in nature of the different species of the Characeae is reported by Migula (25), Allen (3), and Robinson (30) to occur during the summer and early fall. In undertaking a cytological study of nuclear and cell division and fertilization in the Characeae three cultures of Chara fragilis Desvaux were placed on an east window-sill in the laboratory on September 24, 1923, to determine whether the stimulus of higher temperature and more favorable illumination would lead to the development of reproductive organs at other than normal times. The vegetative growth of these cultures was vigorous, but no antheridia and oogonia were formed. In view of results recently described by Garner and Allard (17), Adams (1), and Harvey (19) it was thought worth while to test the cultures as to photoperiodism. Consequently on January 8, 1924, as a preliminary experiment, two of the cultures were placed under a 60 -watt 120-volt electric light suspended 15 cm . above them and given continuous illumination throughout the night. Within a few days antheridia and oogonia appeared in abundance on these plants, while the control culture remained entirely free from reproductive organs. It was then determined to make a further preliminary study of the response of Chara fragilis to changes in illumination periods and temperature with the particular purpose of obtaining material for cytological study. The

[^53]results so far obtained in these experiments are here reported. A further, more extensive series of experiments is now being made with controlled temperature and light intensities.

The problem of the periodicities in the life cycles of the algae has been widely studied both in the field and under laboratory conditions. The literature in this field is extensive, and I shall summarize only those results that deal more directly with the problem of photoperiodism as related to sexual reproduction. Klebs (23) aimed to demonstrate complete environmental control over the life cycles of various algae and fungi which he studied, but his results have not been generally confirmed. Many of his experiments involve environmental conditions which are scarcely ever realized in nature and are hardly applicable to the explanation of the normal periodicity of algae. Similar studies by a large number of investigators both in the field and laboratory have yielded diverse results and consequent views regarding the underlying causes of algal periodicities. The results of these studies, however, cannot be said to have been decisive either for the internal or environmental periodicity theories. Danforth (13), Copeland (11), Hoyt (22), Williams (35), and Transeau (31) hold that the periodic changes in the life cycles of the algae that they studied resulted not so much from external as from internal conditions and hereditary tendencies. Comère (10), Benecke (7), Fritsch and Rich (16), West and West (34), Brown (9), and Hodgetts (21), on the other hand, take the opposite view and account for the periodic changes on the basis of change in external environment.

For the higher plants many observers, including Corbett (12), Bailey (4), Rane (28), Bonnier (8), and Vöchting (32), have held that increased illumination led to rapid growth and to early production of flowers and seed. Results recently described by Garner and Allard (17), Hendricks and Harvey (20), and Adams (I) relating to a wide variety of flowering plants show that the relative length of the day is a primary factor in growth and development, and particularly in determining the occurrence of sexual reproduction.

Relatively few investigations have been made on the response of Characeae to light changes. In 1894, Richter (29), using Chara fragilis and C. hispida, found that the shoots were positive and the rhizoids negative in their response to light. In cultures
of C. hispida grown a meter or more from a window, Müller (26) found plants in which some of the internodes were without corticating cells. He also grew cultures of C. foetida in dark and half-dark rooms and in full daylight. In many of the plants grown in reduced illumination the corticating cells were either absent or abnormally arranged about the internodes. In such cases, the corticating cells, instead of adhering closely to the internodal cell, formed a loose sheath. Müller, however, made no experiments involving the lengthening or shortening of the period of illumination.

Nonweiler (27) grew Chara strigosa with peat and sand as substrata in sodium chloride solutions of various concentrations in full and reduced illumination. Increased concentration of the solution reduced the length but increased the diameter of the internodes. He observed that high temperature and light intensity hindered length growth. Ernst (I4) reports that the length of the oospores of Chara crinita varied considerably with changes in temperature and light intensity, culture medium, and substratum on which the cultures were grown. Cultures grown under double-walled bell-jars with potassium bichromate and with ammoniacal cuprous oxide solution, or in reduced illumination, produced shorter oospores than in normal cultures. Hodgetts (21) in his study of the periodicity of fresh-water algae in nature reports that Nitella flexilis develops most rapidly when the temperature is moderately high, and that abundant bright sunshine is very necessary for oospore-production.

Chara fragilis growing in nature

The plants used in the following experiments were secured from a small, shallow pond in Van Cortlandt Park, New York City, during the interval between September, 1923 and April, 1924. This is apparently an unreported locality for Chara in the vicinity of New York City. The water in this pond during winter of 1923 and the early summer of 1924 was shallow ($5-20 \mathrm{~cm}$. deep) and during June and July when the vegetative growth appeared most vigorous, the plants did not attain a length over 45 cm . The growth from October to March was negligible. It seems probable that when the winter is severe the tops of the plants may be killed by freezing. In such an instance, the nodes and other parts of the plants buried in the soil give rise to the next year's growth.

In the mild winter of 1923-24 the plants did not die down but remained alive under the ice when the pond was frozen over. Healthy green plants were secured throughout the entire winter. On several visits to the pond it was frozen over with a thin sheet of ice, and when the ice was broken away the plants were found to be in a dormant, healthy condition with a deep green color. The temperature under the ice was approximately $2^{\circ} \mathrm{C}$. The plants at that time were only about 15 cm . in length, including the dead basal end. The internodes were 13 to 15 mm . in length and .75 mm . in diameter. The leaves and main axis were covered with brownish-colored plankton forms.

The formation of antheridia and oogonia in Chara fragilis, according to Migula (25) and Robinson (30), occurs generally from July until September. When this bed of Chara was discovered on September 19, 1923, there were no indications of reproductive organs. The plants were examined carefully throughout the winter for the appearance of these structures The first antheridia and oogonia occurring spontaneously were observed on May 26, 1924. The plants were still partly covered with brownish plankton, but they had increased several inches in length and branched freely.

Experimental methods

Large masses of plants were brought into the laboratory and grown in shallow pots with sand loam as a substratum and placed in battery jars. The battery jars were of various sizes, ranging from 15 to 30 cm . in diameter and 30 to 45 cm . in depth. The taller jars were found to be more favorable than the smaller ones. Tap water was used in every case. Very little difficulty was encountered from invasion of algae. A small crustacean was introduced into the jars to keep down the growth of the algae whenever they became abundant. When necessary the pots were lifted out and the jars were cleaned. Fresh water was added once or twice every month.

The cultures were placed in north, east, south and west windows in the laboratory where they received varying degrees of illumination. All cultures with the exception of those in the north windows received the direct rays of the sun several hours each day. The reponse to this increase in illumination and temperature was immediate in every culture. The plants began
to grow vigorously and branch freely. Two cultures of the plants and a control were used in each of these preliminary experiments. The plants were allowed to acquire a good vegetative development by leaving them in their positions for several days to weeks before they were subjected to experimental conditions. For increasing the period of illumination a 60 -watt 120-volt mazda lamp was placed approximately 8 cm . above the battery jars. In every case the light bulbs were immersed in a battery jar of water to prevent an increase in temperature when they were burning. In all experiments the light was turned on at sunset; and the daylight period was reckoned from sunrise to sunset. The intensity of illumination when the sun was not shining directly on the cultures was measured rather roughly each week with a foot-candle meter. The controls in every case were covered with blackened bell-jars at sunset. The electric light was used only to supplement the normal daylight of the period of each experiment, and was not turned on until sunset. At the time that Chara fragilis began to fruit out-of-doors on May 26, 1924, the period of daylight had increased more than five hours over that in January when the experiments were begun. Thus the last cultures studied were receiving relatively more daylight and less electric illumination. The increase of the daylight period is shown in Chart 2.

A thermometer was placed in each battery jar, and temperature readings were made at intervals of four hours. Each culture was examined daily with a hand lens, and when there were indications of antheridia and oogonia the plants were examined with the low power of a microscope to determine with certainty the presence of reproductive organs. Photographs were made as soon as the first antheridia and oogonia had reached full size. Representative plants from each culture were selected and photographed. Records of the cultures are here reported, covering the period from October 18, 1923 to November 6, 1924.

Observations and results

Series o, Cultures o-i and o-2
Collected in park pond...... Culture 0-1, Oct. 18; Culture 0-2, Dec. 28
Outside on east window-sill.
Oct. 18 to Jan. 11
Inside on shelf before east window with all-night electric illumination
Jan. 11 to March 26
On shelf in east window with only daylight illumination. . March 26 to Nov. 6

Series o, Culture 0-3

Collected
1922
Grown in greenhouse . 1922 to Jan. 22, 1924
Grown in greenhouse under all-night electric illumination Jan. 22 to April 23 Grown in north window of laboratory with only daylight illumination April 23 to Nov. 6
Series o, Culture o-I consisted of three jars with a control. The plants were brought from the field on October 18 and grown outside on an east window-sill. The plants were there subject to alternate chilling and warming as the weather changed. On bright days the morning sunlight fell directly on the cultures. The plants were green and healthy but grew slowly. They had increased about three inches in length when on January in the culture was placed on a shelf inside of the window under electric illumination during the night. A more vigorous growth was immediately evident. The internodes increased in length, and the leaves spread out at right angles to the main axis. As the experiment continued there was a noticeable difference in growth as compared with the control. The control plants were shorter and stockier and deeper green in color. On January 21 antheridia and oogonia appeared, ten days after the all-night illumination was begun. There was no indication of fruiting in the control. The electric illumination was discontinued on March 8. Photographs were made on March 26. The development of antheridia and oogonia was slow in comparison with that in some of the later cultures. Fig. i, Plate if shows the result of the continuous illumination in contrast with the condition of the control culture shown in Fig. 4, Plate ii. When the electric illumination was discontinued, the culture with its control was left in the same place in the east window. It continued to grow and fruit moderately throughout the summer, but by September 12 the whole culture was dead except for the tips of the plants. A few antheridia and oogonia were present in the two upper whorls of leaves. The tips, 10 cm . long, were transplanted to a new pot of sand loam where they subsequently began a rapid vegetative growth. By October 19 the plants were approximately 25 cm . in length, but no reproductive organs were present on the new growth. Since that time, until November 6, a few sporadic antheridia and oogonia have been formed on the upper whorls of leaves.

The control culture began to fruit on June 7. The fruiting continued throughout the summer, and on September 12 tips

10 cm . long were transplanted to a pot of fresh sand and loam. A good vegetative growth followed, and on October 13 a few antheridia and oogonia were observed on this new growth. By November 6, however, these had fallen off.

The plants of Series o, Culture $0-2$, consisting of a single jar, were brought in from the park on December 28, I923 and grown in the east window alongside Culture 0-I. Its growth, however, had not been as vigorous when on January 18 it was placed inside of the window under the same light and temperature conditions as 0-I. Antheridia and oogonia were formed twentyone days later, on February 9. No reproductive organs were present in the control culture at that time. Culture o-2 continued to fruit during the summer, but the plants were very slender with long internodes and short leaves. On September 12 a number of 10 cm .-long tips of these plants were transplanted. Growth was very slow, and by the first of November the entire culture was dead. The original culture, pruned down on September 12, began to grow rapidly, and on October 19 the new growth was approximately 8.5 cm . long. Antheridia and oogonia were abundant on the new growth. By November 6, the longest plants were about 25 cm . long, with a few reproductive organs in the apical whorl of leaves.

Series o, Culture o-3, consisting of two jars, contained about seventy-five plants of Chara fragilis which were collected in 1922 and had been growing in the greenhouse for two years without forming reproductive organs. This culture had been subject to usual greenhouse conditions in a house used for ordinary herbaceous annuals. On January 22, 1924, the jars were placed under a 75 -watt 120 -volt light suspended 1 meter above. The light was kept burning throughout the entire night. On March 14, fifty days later, antheridia and oogonia appeared in the two uppermost leaf whorls of the plants. The night temperatures in the greenhouse were considerably lower than in the laboratory in which Cultures $0-1$ and o-2 were grown. Fig. 2, Plate II shows this culture in contrast with its control. Nearly every oogonium formed in this culture developed mature oospores, while from the thousands of antheridia and oogonia formed in $0-1$ and $0-2$, less than twenty-five mature oospores were developed. In these latter cultures the oogonia turned white in color and dropped off after attaining full size.

Culture $0-3$ continued to fruit until July. By September 12 the plants had increased fully 24 cm . in length, were healthy and deep green in color. No antheridia and oogonia were present on this new growth, however. At the end of October the plants had died, but a new growth was beginning at the base of the old plants. No reproductive organs have been observed on this culture since June 28. The control grew slowly but did not fruit during the spring and summer.

Series A

Collected from under the ice in the park pond................ March 15
Grown on east window-sill in laboratory...................... March 15-19
In east window under electric light daily from sunset to I a. m .
March 19-April 22
Grown \ln north window with only daylight illumination. . May 4 -Nov. 6
This culture consisted of three jars of plants brought indoors on March 15 , at a time when the pond in the park was frozen over. As soon as the cultures were placed in the east window in the laboratory they began to grow. On March 19 two jars were placed under electric light, which was kept burning until $1 \mathrm{a} . \mathrm{m}$. The vegetative growth was more rapid than in the third jar, the control. On March 30, eleven days later, antheridia and oogonia appeared in abundance in the two jars which had been under the electric light, while there was no indication of fruiting in the control. On April 22 the experiment was terminated. Photographs of typical plants made on April I3 are shown in Fig. 3, Plate if.

The temperature at which this culture was grown was 15° to $35^{\circ} \mathrm{C}$., as shown in Chart i. In some periods the daily range was as much as eighteen degrees. This wide daily variation in temperature may have been in part the cause of the abortion of the oogonia and the subsequent etiolation of the plants. As the experiment continued, the plants became light green in color, and by the end of April the basal nodes, internodes and leaves were almost white in color.

Owing to the advancing season this culture was receiving almost two hours additional daylight above that of the preceding one. On March 19 when this experiment was begun the daylight period was approximately 12 hours. When the fruiting was first observed on March 30, it had increased to $121 / 2$ hours,
and at the time of photographing the period of daylight was about $131 / 2$ hours. Since the artificial light was not turned on until sunset and then turned off at I a. m. there was a constant decrease in the period of electric illumination corresponding to the increase in daylight period.

The growth in length of the plants subjected to artificial illumination was generally greater and more rapid as noted, but etiolation developed as the experiment continued. The internodes were considerably longer than those of the control, and the leaves were shorter in proportion. By the end of April

Chart i. Showing the temperature variations of the cultures of Chara fragilis throughout the period of experiments.

the control culture, left to itself, was overrun with filamentous algae, and at the end of May the Chara plants had completely disintegrated. The two cultures which had been subjected to the electric illumination were placed on a north window shelf away from the electric light on May 4. The subsequent growth of these plants was slow. A few antheridia and oogonia appeared on the new growth throughout the summer. Fig. 3, Plate 13, shows three typical plants of Culture A photographed June II. By the end of September one of these cultures was dead. Tips 10 cm . long from the remaining culture were transplanted to a pot of fresh sand loam. By November 6 a new vegetative growth was beginning, but no antheridia and oogonia were visible.

Series B
Collected from park pond.. . . March 26
Grown on shelf in south window......................... March 26-April 8
Grown on shelf in south window under daily electric illumination from
sunset to 10 p. m...................................... April 8-May II
Grown on shelf in south window with only daylight illumination
May II-Nov. 6
Culture B consisted of two jars containing approximately two hundred shoots which had been brought indoors on March 26 and kept in a south window where the direct sunlight fell on the jars from $9 \mathrm{a} . \mathrm{m}$. until $4 \mathrm{p} . \mathrm{m}$. The control cultures were placed beside the two jars. The intensity of illumination in the early morning and late afternoon when the sun was not shining on the cultures, was measured with a photometer and found to be approximately 50 foot-candles. The electric light supplied was the same as in the preceding cultures, with the exception that it was turned off at $10 \mathrm{p} . \mathrm{m}$. Antheridia and oogonia appeared four days after the artificial illumination was started. Photographs were made 33 days after the first reproductive organs appeared. Fig. 3, Plate 12 shows the extent of fruiting at that time. The length of day, in the meantime, had increased one hour and ten minutes.

The production of antheridia and oogonia in this culture was not as abundant as in the preceding one. About half of the plants had formed no reproductive organs when the photographs were made. The vegetative growth, however, was striking. In nature, according to Migula, Chara fragilis does not reach much more than 75 cm . in length. In one jar of this culture, however, the plants attained a length of over a meter. The internodes were approximately 10 cm . long, but less than normal in diameter. All plants in the culture grew well during the summer. There was no apparent etiolation such as was so characteristic of the preceding culture. Fruiting throughout the summer was moderate. On September 12, tips of the plants about 10 cm . long were cut off and transplanted. By October 19 these transplanted tips had grown to a length of 30 cm ., and of the hundred or more plants in the culture three showed a few antheridia and oogonia. On November 6, the plants were growing vigorously with occasional reproductive organs in eight of the plants. The stock culture from which
the tips were taken put out new branches after being pruned and grew rapidly. A few antheridia and oogonia were present on the new growth on November 6.

The temperature of the water of this culture was more constant than that of Culture A. The range of temperature extended between 16° and $25^{\circ} \mathrm{C}$., and the variation within any 24 hours was not over nine degrees, as shown in Chart i. This fairly low temperature appears to be the most favorable for continuous growth of the plants.

Series C

Collected from park pond... 26
Grown in south window. March 26-3I
Transferred to glass case containing ice in west window and grown under all-night electric illumination........................ March 3I-May 7

The plants of this culture were of the same lot as those of Culture B, collected at the same time and kept in a south window under the same conditions. On March 3I one jar with a control was transferred to a glass case in a west window where there was direct sunlight from 3 p. m. until sunset. The dimensions of the case were $50 \times 60 \times 100 \mathrm{~cm}$. The sides and top were of thin clear glass that allowed full passage of light. Fifty pounds of ice was placed between the two jars each day. The temperature did not go above $7^{\circ} \mathrm{C}$. throughout the experiment, and on several days it ran down as low as $2^{\circ} \mathrm{C}$. The illumination in the glass case in the early forenoon was about 25 foot-cañdles. Electric illumination was continuous throughout the night with the light bulb in the same position as in the preceding experiments. On April 15, seven days after the all-night illumination was begun, antheridia and oogonia appeared.

The vegetative growth in this case during the time of the experiment was hardly noticeable. There was no elongation of the internodes, and scarcely any new leaves were formed. The antheridia and oogonia grew slowly, and at the time of photographing, May 28, were only one-fourth full size. Fig. 2, Plate 12 shows a typical plant of this culture beside a control plant. The length of day for the period of this culture had increased about three hours and forty minutes beyond that for cultures o and A. Culture C was receiving several hours additional daylight and correspondingly less electric illumination.

When the refrigeration and electric illumination were discontinued the plants began to grow rapidly, and by the middle of June the plants were 18 cm . long, with abundant antheridia and oogonia.

Series D

Collected from park pond. March 26
Grown in south window..................................... March 26-April 8
Grown in south window under two hours electric illumination in addi-
tion to daylight. .. April 8-May 7
Grown in south window with only daylight illumination. .May 7-Nov. 6
Culture D consisted of three jars of about 500 plants collected at the same time as those of Cultures B and C. They were kept alongside of Culture B in a south window in the laboratory and had the same temperature and light conditions up to April 8. On this date two of the jars were placed under electric illumination each night until 8:30 p. m., while the third jar was kept as a control. Antheridia and oogonia appeared on April 17, nine days after the experiment was begun. No reproductive organs were formed in the control culture. Fig. i, Plate i2 shows the extent of fruiting in contrast to that attained by Culture B in Fig. i, B, Plate 12.

The temperature conditions and length of day for the period of this culture were the same as for Culture B. The vegetative growth of the plants was rapid and vigorous throughout. By the middle of June the plants were about 55 cm . long and of a deep green color. The internodes were longer than those of plants growing in nature. No etiolation was evident.

Culture D continued in a healthy growing condition throughout the summer and fall, but fruited only sparingly. The plants were approximately .75 meter long by September 12. On that date one of the cultures was pruned, and about fifty tips 10 cm . long were transplanted to a new jar with fresh soil, thus making four cultures in all. The transplanted tips as well as the pruned plants immediately began to grow. The other jars also showed vigorous growth. By October 19 the new growth in all the cultures was about 15 cm ., and by November 6 most of the plants had abundant antheridia and oogonia.

Series E
Collected from park pond.
March 26
Grown in south window.
March 26-April 15
Grown in photographic dark room under electric illumination:April 15-May 7
Grown in east window
May 7-Nov. 6

Culture E consisted of a jar of about one hundred and fifty shoots collected at the same time as those of Cultures B, C and D. It had been kept in the south window of the laboratory under the same light and temperature conditions as the three preceding cultures up to April 15. On that date the jar was transferred to a photographic dark room. The plants were il-

Chart 2. Summary and comparison of cultures of Chara fragilis.

\square

Hours of daylight at timeof starting each experiment.
Hours of electric illumination in addition to daylight.
Increase of hours of daylight due to advancing season.
Decrease in hours of electric illumination due to increase in hours of daylight.

S-date of starting experiment.
F-date of fruiting of culture.
luminated with electric light continuously from April 15 to May 7, receiving no daylight whatever. On April 19, four days after starting the experiment, rudimentary antheridia and oogonia were visible. By the end of the month they were fullsized and had begun to drop off and disintegrate. The production of antheridia and oogonia was more abundant than in any of the preceding cultures. Practically every leaf axil was full
of reproductive organs; whereas in the other cultures the antheridia and oogonia were developed only at the four uppermost nodes. None of the oogonia, however, developed mature oospores. The appearance of the antheridia and oogonia was normal in every respect. Motile antherozoids were produced in abundance, and the eggs were completely filled with large starch grains.

The vegetative growth was quite striking in appearance. At the time the culture was placed in the dark room the plants were only 15 cm . in length, but when the photographs were made on May 7 they had increased about 10 cm . Fig. 3, Plate 12 shows the character of the vegetative growth and the extent of fruiting. When compared with the plants of the other cultures it is evident that the leaves are longer and the internodes shorter. It does not follow, however, that this is solely due to light and temperature differences. The plants of Culture E reached the surface of the water, bent over and continued to grow. It has been observed in other instances that when this occurs the internodes are shorter and the leaves longer than in normal cultures. Such behavior is frequently observed in Chara growing in shallow ponds and lakes.

The temperature of the water was fairly constant throughout the period of this experiment. The range of temperature extended between 23° and $27^{\circ} \mathrm{C}$., and the fluctuation, as shown in Chart I, was not over three degrees. This culture throws interesting light on the relation of intensity of illumination to the formation of antheridia and oogonia. The intensity of a 60 -watt 120 -volt lamp is less than ten foot-candles, while that of the direct sunlight at midday might be as high as 12,000. Yet the plants in Culture E produced antheridia and oogonia in greater abundance and in shorter time than plants which had been grown in the direct rays of sunlight for several hours each day. These results are in harmony with those of Garner and Allard, who found that the soy bean grown under one-fourth and one-third natural light intensity matured and produced seed in the same length of time as plants which had been grown in full sunlight. Klebs secured somewhat similar results with Vaucheria when the cultures were shaded. Using artificial light, he found zoospore and gamete production to be more abundant in an illumination equivalent to forty foot-candles than in higher intensities.

On May 12 Culture E was removed from the dark room to an east window in the laboratory. There it continued to grow slowly all summer, producing numerous antheridia and oogonia on the new growth. By September 12 the plants were about .75 meter in length. The culture was transferred to a clean jar on that date; and from that time to November 6 it grew steadily, until the plants were curled around in the jar several times. Antheridia and oogonia were abundant on all plants.

Series F

Collected in park pond.
March 26
Grown in full sunlight in a greenhouse at $22^{\circ}-25^{\circ} \mathrm{C}$. March 26 -May 18 Grown in full sunlight in a greenhouse....................... . May 18-Nov. 6

Since the response of Chara fragilis to increased periods of illumination in the laboratory was so direct, a series of cultures was run to determine the results of growing cultures in battery jars in a greenhouse where the plants would receive sunlight from sunrise to sunset during the spring months. On March 26 , six large cultures with approximately 200 plants in each jar were started in a room in a greenhouse on which the direct rays of the sun fell the greater part of the day. The plants began to grow vigorously as soon as they were planted, but considerable difficulty was encountered in preventing them from being overrun by algae. The cultures were cleaned, and fresh water added several times, but by the end of May all but three of the cultures were dead. In the meantime, antheridia and oogonia appeared in the three remaining cultures on April 22. The length of day, reckoned from sunrise to sunset, at the time of fruiting was thirteen hours and fifty-five minutes. The temperature in the greenhouse in which Series F was grown was fairly constant and high. The variation was between 22° and $25^{\circ} \mathrm{C}$. The growth at this temperature is rapid, but the plants become very slender and deteriorate in a short time. Fig. i, Plate 13 shows the variation of fruiting in different plants in these cultures on May 18.

On May 18, the three cultures were removed to a room with lower temperature. The plants continued to grow and fruit vigorously throughout the summer, and by September 12 some of the plants were .75 meter in length, with antheridia and oogonia in as many as six whorls of leaves. A large number of mature oospores were present on the plants. On September 12 the
cultures were cleaned and fresh water added. The growth from that time to November 6 was about 6 cm . A few antheridia and oogonia appeared on the new growth.

It is apparent from these results that a relatively long daily period of illumination is necessary to initiate the process of sexual reproduction in Chara fragilis in the spring months. The limit of the most favorable illumination period has not been determined, but it apparently falls beyond twelve hours.

Series G
Collected from the park pond.
March 19
Grown in south window of laboratory.
March 19-May 7
The great sensitiveness of these reactions to light is suggested by the record of three cultures growing in a south window of the laboratory. These cultures were started on March 19 and had the same temperature conditions as Series B and D. About 50 feet across from this window was a building with windows generally lighted as late as II p. m. This light was sufficiently intense to enable a person to read coarse print at the window where the cultures were standing. The reaction to this diffuse light was quite striking. On April 15, twenty-six days after the cultures were started, antheridia and oogonia appeared. In view of the results of other cultures like A, B, C, D and E, where an intensity of illumination of only a few foot-candles was sufficient to induce sexual reproduction, it seems probable that even this diffuse light had an appreciable effect in favoring the formation of antheridia and oogonia.

Conclusions

These experiments as noted were started mainly for the purpose of obtaining material for cytological study. It is apparent, however, that the sexual reproduction of Chara fragilis under the conditions described is in a considerable degree photoperiodic. The occurrence of the reaction is also independent, within a certain range, of the intensity of the illumination. These limits have not yet been determined, but an illumination of less than ten foot-candles was found sufficient under the conditions given to induce the formation of antheridia and oogonia in four days. Growing at the bottom of ponds and lakes as Chara is generally found, the illumination is mostly from above, and
relatively little lateral light reaches the plants. When grown in battery jars in the laboratory, however, the plants may receive light equally from all sides. As to the effects of intensity, it remains to be tested whether there is a quantitative difference in the response.

Under the conditions of my experiments temperature, within the minimum and maximum limits for vegetative growth, did not appear to be a primary factor in bringing out the tendency to reproduction. It does, however, have a marked effect on the rapidity of development of the antheridia and oogonia. In only one case, Series A, did the control culture form reproductive organs. Yet the controls had the same temperature conditions as the other cultures. Under the conditions given the formation of antheridia and oogonia can be induced at a temperature as low as $2^{\circ} \mathrm{C}$. with continuous illumination. With my material and conditions the optimum temperature for continuous vegetative growth and gamete production varied between 18° and $25^{\circ} \mathrm{C}$. At a constant temperature over 32° the plants soon deteriorated and died. These limits, however, are set only tentatively. Further experiments are necessary for definite proof.

It is not certain whether the failure of the eggs in most cases to develop into mature oospores is due to the unnatural conditions of the experiments or whether it is inherent in this particular form of Chara fragilis. This question remains to be studied in connection with observations on plants growing in nature. Culture $0-3$ formed an abundance of mature oospores. The temperature for this culture was not as high as in the other experiments, and the out-of-doors conditions were perhaps more closely simulated. It is not clear whether the resulting sterility was due to the incompatibility of the gametes or to the abortion of the fertilized eggs.

Summary

Under the conditions of the experiments described, length of day appears to be a primary factor in inducing the formation of antheridia and oogonia in Chara fragilis. A few hours of artificial illumination in addition to the daylight is sufficient to induce the development of antheridia and oogonia in mid- and late winter, whereas in nature C. fragilis fruits only from June to September, according to Migula (25) and Robinson (30).

Within wide limits the response is not dependent on the intensity of illumination under the conditions observed. A continuous illumination of less than ten foot-candles is sufficient to induce the development of antheridia and oogonia within four days.

Growth under artificial illumination, as used in my experiments, led to the lengthening of the internodes, shortening of the leaves, reduced branching, etiolation, and a general spindling habit in the plants. Very few of the eggs developed into mature oospores.

Under the conditions studied, the temperature, within the minimum and maximum limits for vegetative growth, is apparently a secondary factor in determining the production and functional activity of antheridia and oogonia in Chara fragilis.

The writer is indebted to Professor R. A. Harper for his assistance and advice in this study and in the preparation of this paper.

Literature Cited

I. Adams, J. The effect on certain plants of altering the daily period of light. Ann. Bot. 37: 75-94. 1923.
2. - The effect on tomato, soy bean, and other plants of altering the daily period of light. Am. Jour. Bot. 11: 229-232. 1924.
3. Allen, T. F. The Characeae of America. I. New York, 1888.
4. Bailey, L. H. Some preliminary studies of the influence of the electric arc light upon greenhouse plants. Cornell Univ. Exp. Sta. Bull. 30: 83-122. f. 1-13. 1891.
5. Second report upon electro-horticulture. Ibid. 42: 133-146. 1892.
6. Third report upon electro-horticulture. Ibid. 55: 127-143. pl. 1, 2. 1893.
7. Benecke, W. Uber die Ursachen der Periodicität im Auftreten der Algen auf Grund von Versuchen über die Bedingungen der Zygotenbildung bei Spirogyra communis. Internat. Rev. Gesamt. Hydrobiologie u. Hydrographie 1: 533-552. 1908.
8. Bonnier, G. Influence de la lumière électrique continue sur la forme et la structure des plantes. Rev. Gén. Bot. 7: 241-257, 289-306, 332-342, 409-419. pl. 6-15. 1895.
9. Brown, H. B. Algal periodicity in certain ponds and streams. Bull. Torrey Club 35: 233-248. f. i-3. 1908.
IO. Comère, J. Observations sur la périodicité du développement de la flore algologique dans la région toulousaine. Bull. Soc. Bot. France 53: 390-407. 1906.
11. Copeland, W. E. Periodicity in Spirogyra. Bot. Gaz. 47: 9-25. 1909.
12. Corbett, L. C. A study of the effect of incandescent gas light on plant growth. W. Va. Agr. Exp. Sta. Bull. 62: 77-1 10. pl. I-9. 1899.
13. Danforth, C. H. Periodicity in Spirogyra, with special reference to the work of Benecke. Missouri Bot. Gard. Ann. Rep. 21: 49-59. 1910.
14. Ernst, A. Bastardierung als Ursache der Apogamie im Pflanzenreich. Jena, 1918.
15. Fritsch, F. E. Problems in aquatic biology, with special reference to the study of algal periodicity. New Phytol. 5: 149-169. 1906.
16. Fritsch, F. E., \& Rich, F. Studies on the occurrence and reproduction of British freshwater algae in nature. I. Preliminary observations on Spirogyra. Ann. Bot. 21: 423-436. 1907.
17. Garner, W. W., \& Allard, H. A. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. Jour. Agr. Res. 18: 553-607. f. I-3 + pl. 64-79. 1920.
18. __ Further studies on photoperiodism, the response of the plant to relative length of day and night. Jour. Agr. Res. 23: 871-920. pl. 1-19. 1923.
19. Harvey, R. B. Growth of plants in artificial light. Bot. Gaz. 74: 447451. f. 1, 2. 1922.
20. Hendricks, E., \& Harvey, R. B. Growth of plants in artificial light. II. Intensities of continuous light required for blooming, Bot. Gaz. 77: 330-334. f. I. 1924.
21. Hodgetts, W. J. A study of some of the factors controlling the periodicity of freshwater algae in nature. New Phytol. 21: 15-33. f. IO, 1I. 1922.
22. Hoyt, W. D. Periodicity in production of sexual cells in Dictyota dichotoma. Bot. Gaz. 43: 383-392. 1907.
23. Klebs, G. Die Bedingungen der Fortpflanzungen bei einigen Algen und Pilzen. Jena, 1896.
24. Uber die Vermehrung von Hyrodictyon utriculatum. Flora 73: 351-410. 1890.
25. Migula, W. Die Characeen Deutschlands, Oesterreichs und der Schweiz. Rabenhorst's Kryptogamenflora 5: Leipzig, 1890-1897.
26. Müller, A. Beiträge zur Kenntnis von Chara hispida Linné und Chara foetida Braun. Inaug. Diss. Univ. Zürich. München, 1907.
27. Nonweiler, G. Morphologische und Physiologische Untersuchungen an Chara strigosa Braun. Diss. Zürich. Borna-Leipzig, 1907.
28. Rane, F. W. Electro-horticulture with the incandescent lamp. W. Va. Agr. Exp. Sta. Bull. 37: 1-27. f. I-9. 1894.
29. Richter, J. Ubér Reaktionen der Charen auf äussere Einflusse. Flora 78: 399-423. 1894.
30. Robinson, C. B. The Chareae of North America. Bull. New York Bot. Gard. 4: 244-308. 1906.
3I. Transeau, E. N. The periodicity of freshwater algae. Amer. Jour. Bot. 3: 122-133. 1916.
32. Vöchting, H. Ueber den Einfluss des Lichtes auf die Gestaltung und Anlage der Blüthen. Jahrb. Wiss. Bot. 25: 149-205. pl. 8-10. 1893
33. West, G. S. Algae. Vol. I. Cambridge, 1916.
34. West, W., \& West, G. S. On the periodicity of the phytoplankton of some British lakes. Jour. Linn. Soc. Bot. 40: 395-432. f. 1-4 + pl. 19. 1912.
35. Williams, J. L. Studies on the Dictyotaceae. III. The periodicity of the sexual cells in Dictyota dichotoma. Ann. Bot. 19: 531-560. 1905.

Explanation of plates 11-13

PLATE 1 I

Fig. I. Typical plant of Cultures 0 - \mathbf{I} and o-2 made 65 days after . antheridia and cogonia first appeared, $\times 3$.

Fig. 2. Typical plant of Culture $0-3$ made 70 days after fruiting began, natural size.

Fig. 3. Typical plant of Culture A made 14 days after antheridia and oogonia first appeared, $\times 2$.

Fig. 4. Typical control plant of Culture A, $\times 3^{3 / 2}$.

PLATE 12
Fig. 1. Typical plants of Cultures D and B made 34 days after antheridia and oogonia were first formed, $\times 11 / 4$.

Fig. 2. Typical plant of Culture C and its control made 50 days after fruiting began, $\times 2$.

Fig. 3. Typical plant of Culture E made 27 days after fruiting began, $\times 2$.

PLATE 13
Fig. I. Typical plant of Culture \mathbf{F} made 47 days after the culture was started, natural size.

Fig. 2. A typical distal node of plants in the control of Culture A after it had been left uncovered in the laboratory light 22 days, $\times 2$.

Fig. 3. Typical plants of Culture A made two months after the experiment was terminated, $\times 1 / 4 / 4$.

Chara fragilis

Chara fragilis

Chara fragilis

INDEX TO AMERICAN BOTANICAL LITERATURE

 1924This Index is reprinted monthly on cards, and furnished in this form to subscribers at the rate of three cents for each card. Selections of cards are not permitted; each subscriber must take all cards published during the term of his subscription. Correspondence relating to the card issue should be addressed to Dr. Fred J. Seaver, N. Y. Botanical Garden, Bronx Park, N. Y. City.
N.B. See new installment of Index beginning on page 494.

Lyon, C. J. A freak Erythronium. Am. Bot. 30: 123. Jl 1924.
Mains, E. B. Notes on the life history of the snapdragon rust. Puccinia Antirrhini Diet. \& Holw. Phytopathology 14: 281-287. 27 Je 1924.
Marsh, C. D., \& Clawson, A. B. The meadow death camas (Zygadenus venenosus) as a poisonous plant. U.S. Dept. Agr. Bull. 1240: 1-13.f. 1 -2. 27 Je 1924.
Maxon, W. R. New or noteworthy ferns from the Dominican Republic. Proc. Biol. Soc. Wash. 37: 97-104. 21 F 1924.
McGuinn, A. F. The action of dicyandiamid and guanyl urea sulphate on plant growth. Soil Sci. 17: 487-500. Je 1924.
Medsger, O. P. The Man-of-the-earth or wild potato vine, Torreya 24: 39-4I. 25 Je 1924.
Merrill, E. D., \& Lee, H. A. A consideration of the species Citrus maxima (Burm.) Merrill. Am. Jour. Bot. 11: 382384.f. 1-2. 28 Je 1924.

Muenscher, W. C. Orobanche ramosa on a Coleus. Rhodora 26: 133-135. pl. 145. 20 Jl 1.924.
Murrill, W. A. Fungi at Woodstock, New York. Torreya 24: 47-48. 25 Je 1924.
Ocfemia, G. O. The Helminthosporium disease of rice occurring in the southern United States and in the Philippines. Am. Jour. Bot. 11: 385-408. pl. 22-27. 28 Je 1924.

Orton, C. R. Seed-borne parasites-a general consideration of the problem. Science II. 59: 530-546. 20 Je 1924.

Palmer, E. J. Two interesting ferns from Arkansas. Am. Fern Jour. 14: 39-41. "Ap-Je" i2 J1 1924.

Pax, F., \& Hoffmann, K. Euphorbiaceae-Crotonoideae-Acaly-pheae-Acalyphinae. Euphorbiaceae-Additamentum. VII. Pflanzenreich 447: 1-231. 16 My 1924. Including new species from tropical America.

Perkins, A. T. A note on the nodulation of soy beans. Soil Sci. 17: 449-456. Je 1924.
Perkins, A. T. The effect of several mineral fertilizers upon the nodulation of Virginia soy beans. Soil Sci. 17: 439-447. Je 1924.

Pessin, L. J. A physiological and anatomical study of the leaves of Polypodium polypodioides. Am. Jour. Bot. 11: 370-381. f. $1-2+$ pl. 21. 28 Je 1924
Petrak, F. Mykologische Notizen VII. Ann. Myc. 22: 1-182. 1924.

Including a number of new species and genera from North America.
Piper, C. V. New flowering plants of the Pacific Coast. Proc. Biol. Soc. Wash. 37: 91-95. 21 F 1924.
Including new species in Iris (I), Arabis (I), Cardamine (1), Astragalus (I), Godetia (I), Lappula (I), Allocarya (3), Crytantha (I), Valeriana (I).

Popenoe, W. Economic fruit-bearing plants of Ecuador. Contr. U.S. Nat. Herb. 24: i-ix, 10I-134. pl. 34-49. 1924.

Ramsey, G. B. Sclerotinia intermedia n. sp., a cause of decay of salsify and carrots. Phytopathology 14: 323-327. f. 1-5+pl. 23. 21 Jl 1924.
Reed, G. M. The smuts of cereals; their nature, economic importance, and the significance of recent discoveries. Brooklyn Bot. Gard. Record 13: 103-124. f. I-7. J1 1924.

Reid, M. E. Quantitative relations of carbohydrates to nitrogen in determining growth responses in tomato cuttings. Bot. Gaz. 77: 404-418. f. 1-8. 16 Je 1924.

Rettger, L. F., Reddish, G. F., \& McAlpine, J. G. The fate of the bakers' yeast in the intestine of man and of the white rat. Jour. Bact. 9: 327-337. Jl 1924.

Reynolds, L. G. Female gametophyte of Microcycas. Bot. Gaz. 77: 391-403. f. 1 -6 + pl. 28-29. I6 Je 1924.

Rhoads, A. S. Apple measles, with special reference to the comparative susceptibility and resistance of apple varieties to this disease in Missouri. Phytopathology 14: 389-3I4. pl. 17-21. 21 Jl 1924.

Ricker, P. L. Successful dogwood protection campaign. Nat. Mag. 4: if. "Jl" Je 1924. [Illust.]

Robbins, C. A. Some new Cladonias. Rhodora 26: 145^{-148}. 20 Jl 1924.
Including Cladonia clavulifera Wainio sp. nov. and a number of new forms and "modifications."

Sanford, S. N. F. Notes on some Rhode Island and southeastern Massachusetts plants. Rhodora 26: 127-129. "Je" 5 Jl 1924.

Santos, J. K. Determination of sex in Elodea. Bot. Gaz. 77: 353-376. f. 1 - $8+$ pl. 23-27. 16 Je 1924.

Schaffner, J. H. Dichotomous branching in Equisetum. Am. Fern Jour. 14: 56-57. "Ap-Je" 12 Jl 1924.

Schaffiner, J. H. Equisetum laevigatum and its near relatives. Am. Fern. Jour. 14: 41-46. "Ap-Je" 12 J1 1924.

Schmitz, H. Notes on wood decay-Il. The comparative resistance to decay of edge-grained and flat-grained Douglas fir and western yellow pine lumber. Idaho Forester 6: 12-15. 1924.
Setchell, W. A. American Samoa: Part I. Vegetation of Tutuila Island. Part II. Ethnobotany of the Samoans. Part III. Vegetation of Rose Atoll. Dept. Marine Biol. Carnegie Inst. Wash. 20: i-vi, 1-275. f. 1-46 + pl. 1-37. Je 1924.
Including many new species and combinations.

Showalter, W. J. Exploring the mysteries of plant life. Nat. Geogr. Mag. 45: 58i-646. Je 1924. [Illust.]

Shreve, E. B. Factors governing seasonal changes in transpiration of Encelia farinosa. Bot. Gaz. 77: 432-439. 16 Je 1924.
Shreve, F. Soil temperature as influenced by altitude and slope exposure. Ecology 5: 128-136, f. 1-6. "Ap" 29 My 1924.

Skottsberg, C. Zur Gefässpflanzen Flora Westpatagoniens. Göteborgs Vet.-Samh. Handl. IV. 283: 1-29. f. I-7. 1924.

Small, J. K. Onobrychis Onobrychis (L.) Rydb. in the eastern United States. Torreya 24: 48-49. 25 Je 1924.
Speare, A. T., \& Yothers, W. W. Is there an entomogenous fungus attacking the citrus rust mite in Florida? Science II. 60: 41-42. II Jl 1924 .
Sprague, T. A. Proposed alterations in the international rules. Jour. Bot. 62: 196-198. Jl 1924.
Stancliff, J. O. The taros of Tahiti and the Marquesas. Am. Bot. 30: 110-111. J1 1924.
Stell, F. Wither tip of limes in Dominica. Proc. Agr. Soc. Trinidad 24: 181-185. Ap-My 1924.
Stewart, R. R. Alpine plants of Kashmir. Torreya 24: 41-44. pl.3. 25 Je 1924.
Stone, A. L. Some farm weeds. How to know them-How to grow them. Wisc. Agr. Exp. Sta. Circular 171: 1-135. My 1924. [Illust.]
Stout, A. B. The flowers and seed of sweet potatoes. Jour. N. Y. Bot. Gard. 25: $153-168 . f .1-3+p l .292$. Je 1924.

Stroman, G. N. Genetic relations of chlorophyll and anthocyanin seedling characters in maize. Genetics 9: 91-123. f. 1-2. "Mr" II Jl 1924.

Sydow, H. Petrakiella Syd., eine neue Gattung aus der verwandtschaft der Diaportheen. Ann. Myc. 22: 230-234. f. 1-5. 1924.

Including Petrakiella insignis nov. gen. et. nov. sp.

Thorne, F. A carnivorous plant. Nat. Mag. 4: 50. "Jl" Je 1924.

Thorne, F. What is a deodar? Nat. Mag. 4: 55. "Jl" Je 1924.

Tilton, G. H. A fern lover's garden. Am. Fern Jour. 14: 5759. "Ap-Je" 12 Jl 1924.

Tourneur, N. The plant that clothes the island. Nat. Mag. 4: 56. "Jl" Je 1924.

Townsend, F. H. Grass nut. Am. Bot. 30: 128-129. Jl 1924.
Uphof, J. C. T. The plant formations on the corai reefs along the northern coast of Cuba. Am. Jour. Bot. 11: 409-416. pl. 28. 28 Je 1924.
Walker, J. C. White rot of Allium in Europe and America. Phytopathology 14: 315-322. pl. 22. 21 Jl 1924.
Weatherby, C. A. Note on the forms of Polypodium virginianum. Am. Fern Jour. 14: 60-6I. "Ap-Je" 12 Jl 1924.
Weed, C. M. Insect burglars steal from flowers. Nat. Mag. 4: 12, 55. "Jl" Je 1924. [Illust.]
Weaver, J. E., \& Crist, J. W. Direct measurement of water loss from vegetation without disturbing the normal structure of the soil. Ecology 5: 153-170. pl.3. "Ap" 29 My 1924.
Whitley, F. E. Friends and foes of the wild flowers. Nature Mag. 3: 357-359. "Je" My 1924. [Illust.]
Wilbur, R. Wheat, the king of cereals. Nat. Mag. 4: 39-41. "Jl" Je 1924. [Illust.]
Wilder, L. B. Adventures in my garden and rock garden. i-xii, 1-355. New York, 1924. [Illust.]
Williams, R. S. Galapagos and Cocos Island mosses collected by Alban Stewart in 1905-6. Bryologist 27: 37-44. pl. 5-8. "My" 2" Jl 1924.
Including descriptions of 4 new species.
Wimmer, F. E. Lobelioideae. Species et varietates novae ex generibus Centropogon et Siphocampylus. Repert. Sp. Nov. Regn. Veg. 19: 241-265. 20 F 1924. Including new species from Central and South America.

Wilson, E. H. Where orchids are at home-II. Tropical orchids of the new world. Gard. Mag. 39: 357-360. "Jl" Je 1924. [!̣llust.]
Wolf, T. K. A biometrical analysis of characters of maize and of their inheritance. Virginia Agr. Exp. Sta. Technical Bull. 26: 1-70. f. 1-26. F 1924.
Wolfi, H. Azorellopsis, genus novum Umbelliferarum Bolivianum. Repert. Sp. Nov. Regn. Veg. 19: 312. F 1924.
Wolpert, F. S. Studies in the physiology of the fungi. XVII. The growth of certain wood-destroying fungi in relation to the H -ion concentration of the media. Ann. Missouri Bot. Gard. 11: 43-97. f. 1-18. "F" 25 Jl 1924.
Woodard, J. Origin of prairies in Illinois. Bot. Gaz. 77: 241261. 19 My 1924.

Woolman, H. M., \& Humphrey, H. B. Studies in the physiology and control of bunt, or stinking smut, of wheat. U.S. Dept. Agr. Bull. 1239: 1-29. pl. 1-5. f. 1-3. My 1924.
Zeller, S. M. Sphaeropsis Malorum and Myxasporium corticola on apple and pear in Oregon. Phytopathology 14: 329-333. 2I Jl 1924.

Aldous, A. E., \& Shantz, H. L. Types of vegetation in the semiarid portion of the United States and their economic significance. Jour. Agr. Res. 28: 99-128. pl. 1-16. 12 Ap 1924.
Anderson, R. J., \& Nabenhauer, F. P. A contribution to the chemistry of grape pigments. II. Concerning the anthocyans in Clinton grapes. Jour. Biol. Chem. 61:97-107. Au 1924.
Artschwager, E. Studies on the potato tuber. Jour. Agr. Res. 27: 809-839, f. 1 - $8+$ pl. $\boldsymbol{1 - 1 0 .} 15 \mathrm{Mr} 1924$.
Bartram, E. B. Studies in Tortula as represented in southern Arizona. Bull. Torrey Club 51: 335-340, pl. 6, 7. 22 Au 1924.

Berry, E. W. An Oligocene cashew nut from South America. Am. Jour. Sci. 8: 123-126. f. 1-8. Au 1924. Including Anacardium peruvianum Berry, n. sp.

Blake, S. F. Hemibaccharis, a new genus of Baccharidinae. Contr. U. S. Nat. Herb. 20: 543-554. pl. 47-51. 1924. Including descriptions of 6 new species and several new combinations.
Blake, S. F. New plants from Venezuela. Contr. U. S. Nat. Herb. 20: 519-541. pl. 38-47. 1924. Including descriptions of 35 new species in various genera.
Blake, S. F. Revision of the American species of Rinorea. Contr. U. S. Nat. Herb. 20: 491-518. pl. 3I-37. 1924. Including descriptions of 6 new species.
Blakeslee, A. F., \& Belling, J. Chromosomal mutations in the Jimson weed, Datura Stramonium. Jour. Hered. 15: 195206. f. I-7. "My" 30 Jl 1924.

Britton, N. L. A botanical expedition to extreme western Cuba. Jour. N. Y. Bot. Garden 24: 194-195. Jl 1924.
Brooks, C., \& Fisher, D. F. Prune and cherry brown-rot investigations in the Pacific Northwest. U. S. Dept. Agr. Bull. 1252: 1-21. f. 1-14 + pl. 1-5. 16 Jl 1924.
Brownell, L. W. Mushrooms, edible and otherwise. Nat. Mag. 4: 143-149. "S" Au 1924. (Illust.)
Brownell, L. W. Native North American orchids. Nat. Mag. 4: 97-100. "Au" Jl 1924. (Illust.)
Brownell, L. W. The red maple, a popular tree (Acer rubrum). Nat. Mag. 4: 173-175. "S" Au 1924. (Illust.)
Bruner, S. C. Una interesante planta fanerogama parasitica sobre el naranjo. Revista Agr. Cuba 512: 38-39. 1924. (Illust.)
Bunting, G. A. Jewel weed vs. poison ivy. Am. Forests and Forest Life 30: 495-496. "Au" Jl 1924. (Illust.)

Buxbaum, F. Diagnosen neuer pflanzen aus Süd-Brasilien. J. Öster. Bot. Zeit. 73: 119-122.f. 1, 2. 1924. Including descriptions of new species in Bombax (2) and 2 new varieties.

Chace, E. M., Church, C. G., \& Denny, F. E. Inheritance of composition in fruit through vegetative propagation. Bud variants of Eureka and Lisbon lemons. U. S. Dept. Agr. Bull. 1255: 1-18. Jl 1924.

Chaney, R. W. Quantitative studies of the Bridge Creek flora. Am. Jour. Sci. 8: 127-I44. pl. 5, 6. Au 1924.
Chung, H. L., \& Ripperton, J. C. Edible Canna in Hawaii. Hawaii Agr. Exp. Sta. Bull. 54: 1-16. f. $1-3+p l$. I, 2. Jl 1924.
Cleaves, H. H. How trees make sounds. Nat. Mag. 4: 177. "S" Au 1924.
Clute, W. M. Plants of acid soils. Gardeners' Chron. Am. 28: 214. " S " Au 1924.

Cole, L. J. A seedless muskmelon. Jour. Heredity 15: 219. "My" 30 Jl 1924. (Illust.)
Collins, G. N. Measurement of linkage values. Jour. Agr. Res. 27: 881-891. 15 Mr 1924.
Cook, E. F. Chocolate. Am. Jour. Pharmacy 96: 549-556. Au 1924. (Illust.)

Coville, F. V. Grossularia echinella [sp. nov.] a spiny-fruited gooseberry from Florida. Jour. Agr. Res. 28: 71-74, pl. I. 5 Ap 1924.

Crandall, C. S. Blooming periods of apples. Illinois Agr. Exp. Sta. Bull. 251: 113-145. My 1924.
Crocker, W. Ethylene, or the gas that puts plants and animals to sleep. Jour. N. Y. Bot. Gard. 25: 219-223. Au 1924. Abstract of a lecture.

Darrow, G. M. The American cranberry bush. The domestication of Viburum americanum-a new fruit for the northern United States. Jour. Hered. 15: 243-253. f. 1-10. "Je" 2I Au 1924.
Davidson, F. R., Brewbaker, H. E., \& Thomson, N. A. Brittle straw and other abnormalities in rye. Jour. Agr. Res. 28: 169-172. f. 1, 2. 12 Ap 1924.
Davis, R. N. The lightest wood in the world. Nature Mag. 4: 166-167. " S " Au 1924. (Illust.)
Dayton, W. A. Flowers of the high places. I. Some striking examples of Alpine flora which brave the eternal frosts to
paint our western mountains with fleeting but vivid colors. Am. Forests and Forest Life 30:486-489,50I.f.I-II. "Au" Jl 1924; II. More striking examples of Alpine flora which flash their summer colors on the rugged shoulders of our western mountains. Ibid. 548-551, 564. f. 12-32. "S" Au 1924.

Dearness, J. Gyromitra poisoning. Mycologia 16: 199. "Jl" 16 Au 1924.
Dearness, J. New and noteworthy fungi.-III. Mycologia 16: 143-176. "Jl" 16 Au 1924.
Detmers, F. Gladiolus diseases. Ohio Agr. Exp. Sta. Mo. Bull. 9: 99. My-Je 1924.
Fassett, N. C. A study of the genus Zizania. Rhodora 26: 153-160. 4 Au 1924.

Gardner, M. W. Apple blotch in Indiana. Trans. Indiana Hort. Soc. 1923: 71-85. 1924. (Illust.)

Gates, F. C., \& Erickson, E. Swamp and bog plants: Iris versicolor. Torreya 24:55-57. 21 Au 1924.

Gates, R. R. Meiosis and crossing-over. Jour. Hered. 15: 237240. "My" 30 Jl 1924.

Guhman, H. Variations in the root system of the common everlasting (Gnaphalium polycephalum). Ohio Jour. Sci. 24: 199-207. pl. I. "Jl" 8 Au 1924.

Gussow, H. T., \& Faull, J. H. Plant pathology in Canada. Handb. of Canada 229-237. Univ. of Toronto press. 1924.

Hansen, A. A. Indiana's new state park in the dunes. Trans. Ind. Hort. Soc. 1923: 90-95. 1924. (Illust.) Including notes on the flora.

Hansen, A. A. The Lady's-slipper or moccasin-flower. Nat. Mag. 4: 168-170. "S" Au 1924. (Illust.)

Howe, M. A. Notes on algae of Bermuda and the Bahamas. Bull. Torrey Club 51: 351-359. f. 1-14. 22 Au 1924. Including descriptions of 4 new species.

Jennett, H. N. Ivy poisoning: treatment and cure. Nat. Mag. 4: I19. "Au" Jl 1924.
Johnson, M. O. Manganese chlorosis of pineapples: its cause and control. Hawaii Agr. Exp. Sta. Bull. 52: 1-38. f. 1-5 + pl. 1-4. Jl 1924.
Jones, W. B. La ceiba, the silk cotton tree of Mexico. Am. Forests and Forest Life 30: 463-464. "Au" Jl 1924. (Illust.)
Kern, F.D.,\& Whetzel, H. H. Observaciones en las enfermedades del cafeto y de los arboles de sombra. Revista Agr. Puerto Rico 13: 7-1I. Jl 1924. (Illust.)
Koch, F. J. An Orchis in the Michigan wilds. American Forests and Forest Life 30: 499-500. "Au" Jl 1924. (Illust.)
Koehler, B., Dickson, J. G., \& Holbert, J. R. Wheat scab and corn rootrot caused by Gibberella Saubinetii in relation to crop successions. Jour. Agr. Res. 27: 86I-880. f. I-3 + pl. 1, 2. 15 Mr 1924.
Latshaw, W. L., \& Miller, E. C. Elemental composition of the corn plant. Jour. Agr. Res. 27: 845-860. f. i + pl. i. 15 Mr 1924.
Leighty, C. E., \& Sando, J. W. Pistillody in wheat flowers. Jour. Hered. 15: 263-268. f. 15, 16. "Je" 21 Au 1924.
Lesley, J. W. Cross pollination of tomatoes. Varietal differences in amount of natural cross-pollination important factor in selection. Jour. Hered. 15:233-235. f. 20. "My" 30 Jl 1924.
Lloyd, F. E. The vegetation of Canada. Handb. of Canada. 207-228. f. 19-21. Univ. of Toronto press. 1924.
Lowe, R. L. Saxifraga Aizoon on Mt. Ktaadn. Rhodora 26: 168. 4 Au 1924.

MacDougal, D. T. The arrangement and action of material in the plasmatic layers and cell-walls of plants. Proc. Am. Philos. Soc. 63: 76-93.f. 1, 2. 1924.
MacReynolds, G. Two remarkable tree growths. Am. Forests and Forest Life 30: 497-498. "Au" Jl 1924. (Illust.)

McClelland, T. B. Coffee varieties in Porto Rico. Porto Rico Agr. Exp. Sta. (Mayaguez) Bull. 30: 1-27. pl. I-II. 1924.

Munz, P. A., \& Johnston, I. M. Miscellaneous notes on plants of southern California-III. Bull. Torrey Club 51: 295302. 24 Jl 1924.

Including new species in Malvastrum (1), Phacelia (1), Galium (1), Downingia (1), Stephanomeria (1); also new variety and combination.

Murrill, W. A. Dr. Carlos Spegazzini. Mycologia 16: 200-20I. "Jl" 16 Au 1924.

Pack, A. N. Long leaf pine. Nat. Mag. 4: $114-115$. "Au" Jl 1924. (Illust.)

Pease, A. S. Vascular flora of Coös County, New Hampshire. Proc. BostonSoc. Nat. Hist. 37:39-388. pl.5-II. Jl 1924.

Petch, T. Thread blights. Ann. Royal Bot. Gard. Peradeniya 9: 1-45. pl. r-9. 23 Je 1924.
Including a chapter on the brown thread blight on cacao of the West Indies, pp. 36-37.

Popenoe, P. The date-palm in antiquity. Sci. Mo. 19:313325. S 1924.

Reyes, G. M. On the occurrence of maize rust in the Philippines. Philippine Agr. Rev. 17: 3-9. pl. 1-4. 1924.

Ricalton, J. The bamboo. Am. Forests and Forest Life 30: 473-475. "Au" Jl 1924. (Illust.)

Ripperton, J. C. The Hawaiian tree fern as a commercial source of starch. Hawaii Agr. Exp. Sta. Bull. 53: 1-16. pl. 1-5 + f. 1, 2. Jl 1924.

Rose, D. H. Diseases of apples on the market. U. S. Dept. Agr. Bull. 1253: 1-24. f. I-8. 21 Jl 1924.

Rusby, H. H. Tropical plants at home- II. The fuchsias. Jour. N. Y. Bot. Gard. 25: 213-219. Au 1924.

Ryan, R. W. The Microthyriaceae of Porto Rico. Mycologia 16: 177-196. "Jl" 16 Au 1924.
Including descriptions of 50 new species and several new varieties.

Rydberg, P. A. Plants used by ancient American Indians. Jour. N. Y. Bot. Gard. 25: 204-205. J1 1924.

Schwartze, E. W., \& Alsberg, C. L. Pharmacology of gossypol. Jour. Agr. Res. 28: 191-198, pl. I, 2. 12 Ap 1924.
Schwartze, E. W., \& Alsberg, C. L. Relation between toxicity of cottonseed and its gossypol content. Jour. Agr. Res. 28: 173-189.f. 1-13. 12 Ap 1924.
Seaver, F. J. The snapdragon rust. Jour. N. Y. Bot. Gard. 25: 203-204. Jl 1924.
Seifriz, W. The gregarious flowering of the talipot palm Corypha umbraculifera at Peradeniya, Ceylon. Bull. Torrey Club 51: 341-350.f. $1+$ pl. 8, g. 22 Au 1924.
Setchell, W. A. Ruppua and its environmental factors. Proc. Nat. Acad. Sci. 10: 286-288. Je 1924.
Shreve, F. Across the Sonoran desert. Bull. Torrey Club 51: 283-293. f. 1-3. 24 Jl 1924.
Small, J. K. The cacti-an interesting plant group in the study of survival. Jour. N. Y. Bot. Gard. 25: 197-201. J1 1924.
Smith, C. P. Studies in the genus Lupinus-XI. Some new names and combinations. Bull. Torrey Club 51: 303-310. 24 Jl 1924.
Including descriptions of 3 new species and several varieties.
Stevens, N. E., \& Jenkins, A. E. Occurrence of the currant cane blight fungus on other hosts. Jour. Agr. Res. 27: 837-844.f. I + pl. 1, 2. 15 Mr 1924.
Stout,A. B. Seedling lilies: a report of progress of experimental studies with species of Lilium. Jour. N. Y. Bot. Gard. 25: 185-194. f. r-6. Jl 1924.
Stover, E. L. The vascular anatomy of Calamovilfa longifolia. Ohio Jour. Sci. 24: 169-178. pl. I. "Jl" 8 Au 1924.
Sutton, E. P. F. Inheritance of "bolting" in cabbage. "Tendency to bolt" probably a recessive Mendelian character. Jour. Hered. 15: 257-260. f. 12, 13. "Je" 21 Au 1924.

Tapke, V. F. Effects of the modified hot-water treatment on germination, growth, and yield of wheat. Jour. Agr. Res. 28: 79-97. pl. 1-5. 5 Ap 1924.

Taylor, W. R. Further notes on British Columbia algae. Rhodora 26: 160-166. 4 Au 1924.

Tehon, L. R. Notes on the parasitic fungi of lllinois. Mycologia 16: 135-142. pl. 13. "Jl" 16 Au 1924.
Including new species in Septoria (1), Leptothyrium (1), Actinothyrium (1), Pirostoma (1), Cercospora (5), Colletotrichum (1).

Thomas, R. C. A Fusarium disease of celery. Ohio Agr. Exp. Sta. Mo. Bull. 9: 88-90. f. 3, 4. My-Je 1924.

Thomas, R. C. Stewart's disease or bacterial wilt of sugar corn. Ohio Agr. Exp. Sta. Mo. Bull. 9: 8i-84. My-Je 1924.

Tiffany, L. H. Some new forms of Spirogyra and Oedogonium. Ohio Jour. Sci. 24: 180-187. pl. 1-3. "Jl" 8 Au 1924.

Tifford, P. E. Diseases of the potato which may be detected in the seed tubers. Ohio Agr. Exp. Sta. Mo. Bull. 9: 85-87. f. 1 , 2. My-Je 1924.

Toepffer, A. Johann David Schöpff, a pioneer of American botanical exploration. Torreya 24: 57-58. 21 Au 1924.

Trelease, W. The relation of botany to agriculture. Science II. 60: 89-94. I Au 1924.

Uphof, J. C. T. Estudio botanico de la yuca (Manihor esculenta Crantz). Revista Agr. Cuba 5²: 27-34.f. 1-12. 1924.

Vickery, H. B. Some nitrogenous constituents of the juice of the alfalfa plant. II. The basic nitrogen. Jour. Biol. Chem. 61: 117-127. Au 1924.

Weniger, W. Ergot and its control. N. Dak. Agr. Exp. Sta Bull. 176: 1-23. f. I-12. Ap 1924.

Wentz, J. B. Heritable characters of maize XVIII-Miniature germ. Jour. Hered. 15: 269-272. f. r7-19. "Je" 21 Au 1924.

Weatherby, C. A. A note on Stellaria pubera Michx. Rhodora 26: 169-171. "S" 1924.

Weatherby, U. F. Asplenium Platyneuron, var. incisum in Connecticut. Am. Fern. Jour. 14: 96-97. Jl-S 1924.

Westwood, R. W. Tobacco-the plant of peace. Nat. Mag. 4: 151-154, 186-187. "S" Au 1924. (Illust.)

Wiebe, G. A. Albinism in barley. Jour. Hered. 15: 221, 222. f. 18. "My" 30 Jl 1924.

Williams, R. S. Fruiting of the maidenhair-fern tree. Jour. N. Y. Bot. Gard. 25: 271-272. O 1924.

Wilson, C. L. Medullary bundle in relation to primary vascular system in Chenopodiaceae and Amaranthaceae. Bot. Gaz. 78: 175-199. f. 1-19. 16 O 1924.

Wilson, O. T. The holdfast of Chaetomorpha torta. Bot. Gaz. 78: 238-240.f. I. 16 O 1924.
(Wilson, G.) The orchid collection of Mr. C. W. Powell. Orchid Rev. 32: 177-179. Je 1924.

Woodworth, C. M. A program of corn improvement. Illinois Agr. Exp. Sta. Circular 284: 1-24. J. I-I2. Jl 1924.

Yampolsky, C. The pneumathodes on the roots of the oil palm (Elaeis guineensis Jacq.). Am. Jour. Bot. 11: 502512. pl. 37-38. 7 O 1924.

INDEX TO VOLUME 51

New names and the final members of new combinations are in bold face type.

Abutilon Palmeri, 290; sonorae, 290
Acacia paucispina, 287
Acalypha adenostachya, 290
Acanthocladium surculare, 245, 246; polymorphum, 245, 259
Acer platanoides, 194; rubrum, 189; Saccharum, 194
Acroporium, 247; aciphyllum, 253, 255, 259; albidissimum, 255, 256, 259 ; asperifolium, 250; complanatum, 256, 258, 259; cuculligerum, 249, 250; cuspidatifolium, 257 ; denticulatum, 252, 259; diminutum, 248; falcifolium, 253, 255; hamulatum, 253; hermaphroditum, 256; lamprophyllum, 248; leucophyllum, 250, 259; longicuspis, 254256, 259; malayanum, 257, 259; monoicum, 256; obscurum, 251, 259; piliferum, 254 ; pycnophyllum, 256-258; Ridleyi, 256, 259; rigens, 252 ; rigens dicranolomoides, 252, 259; ruficaule, 250; rufum, 248,251; secundum, 248, 251, 252, 254, 255; secundum angustifolium, 253; serrulatum, 249, 259; sigmatodontium, 253; stramineum, 248; surculare, 258, 259
Across the Sonoran Desert, 283
Adenostylis, 370 ; alpinus, 370
Agalinis holmiana, 196
Algae, Chinese marine, 133
Algae of Bermuda and the Bahamas, Notes on, 351
Allenrolfea, 129, 130; occidentalis, 129, 130
Amaranthus pumilus, I91
Ammopursus, 392, 393; Ohlingerae, 393
Andes of Colombia, Fossil fruits from the Eastern, 61
Anemone virginiana, 192
Annona, 390
Anthurium aripoense, 4; Guildingii, 4; panduraeforme, 4
Apopetala, 85
Appendiculata, 146
Aralia hispida, 195; spinosa, 195
Arthonia radiata, 205, 206
Arthur, Joseph Charles, New species of Uredineae-XV, 5I

Asarum reflexum, 189
Asclepias quadrifolia, 196
Ascospora Scolopendrii, 52
Asimina, 390
Aster concolor, 388; plumosus, 387, 388; simulatus, 388
Astragalus, 18, 20; aculeatus, 20, 22; alvordiensis, 18 ; bicristatus, 19 ; collinus, 14, 17; collinus subglaber, 17; curvicarpus, 17; cyrtoides, 14-16; falciformis, 16; flexuosus, 20; Gibbsii, 14, 15; Gibbsii curvicarpus, 16; Gibbsii falciformis, 16; Hallii, 20; inversus, 14; Kentrophyta, 20, 22; Kentrophyta coloradensis, 23; Kentrophyta elatus, 20, 21 ; Kentrophyta rotundus, 23; Kentrophyta ungulata, 23; lonchocarpus, 19; miser, 2I; pauciflorus, 21; podocarpus, 18; porrectus, 14, 19; sclerocarpus, 18; sinuatus, 16; speirocarpus, 18 ; speirocarpus curvicarpus, 16 ; speirocarpus falciformis, 16; stenophyllus, 14; tegetarius, 20-22; tegetarius implexus, 22; tegetarius rotundus, 23; Tweedyi, 14; viridis, 20; viridis impensus, 21; Whitedii, 17
Aubrya, 65
Avena, 37
Avicennia, 357; nitida, 357
Bacterium tumefaciens, 449-451, 453, 455, 456
Bahamas, Notes on algae of Bermuda and the, 351
Bambusa arundinacea, 341, 348, 349; polymorpha, 34^{2}
Barbula laevipila pagorum, 337
Bartram, Edward B., Studies in Tortula as represented in Southern Arizona, 335
Bassia hirsuta, 19I
Batrachium trichophyllum, 192
Bauhinia anguina, 342, 344
Berberis vulgaris, 37,38
Bermuda and the Bahamas, Notes on algae of, 351
Berry, Edward W., Fossil fruits from the Eastern Andes of Colombia, 61

Betula lutea, 189; papyrifera, 189
Bidens, 42 I
Blake, S. F., New Polygalas from Colombia, 83; New South American Verbesinas, 42 I
Blechnum hastatum, 53
Blephariglottis psycodes, 188
Borreria, 387; podocephala, 387; terminalis, 387 ; verticellata, 387
Botanical literature, Index to American, 29, 69, 113, 155, 211 , 275, 31 I , 361, 395, 437, 457
Braunfelsia enervis, 226; longipes, 225, 258; luzonensis, 226; scariosa, 225
Brickellia californica, 52
Britton, Nathaniel Lord, Studies of West Indian plants-XII, I
Bryophyllum, 449-451, 453, 454; calcyinum, 449, 451, 454-456
Bryophyllum calycinum, Crown gall on, 449
Bryopsis plumosa, 135,136
Buellia parasema, 204-207
Bulbocastana, 146
Bumelia, 287; occidentalis, 287; rigida, 287
Burmeistera, 443; tomentosula, 447
Cacalia, 369-371, 409, 418; alpina, 370; amplifolia, 416; ampullacea, 416; atripicifolia, 370; brachycoma, 415; calva, 420; calotricha, 376; cervariaefolia, 409, 413; cirsiifolia, 420; cordifolia, 377; decomposita, 410, 414 ; globosa, 418 ; Goldsmithii, 416; hastata, 370; Holwayana, 372; jatrophoides, 419; lanceolata, 378; macrota, 375; megaphylla, 374; michoacana, 377; napeaefolia, 418; napellifolia, 419; obtusiloba, 374; pachyphylla, 417 ; Palmeri, 417; paucicapitata, 414; peltata, 372, 373; peltata Conzattii, 372 ; peltata Coulteri, 373 ; peltigera, 374 ; platylepis, 414 ; poculifera, 375; Porophyllum, 370; Pringlei, 415; Purpusi, 418; radulaefolia, 415 ; Schaffneri, 415 ; sessilifolia, 376 ; silphiifolia, 416; sinuata, 415; sonchifolia, 370; suaveolens, 370; suffulta, 377; tabularis, 375; tridactylitis, 419; tussilaginoides, 415 ; virginiana glabra, 370
Cacalianthemum, 370
Calothrix dura, 358; pannosa, 357 ; pilosa, 358
Caltha flabellifolia, 192
Calymperes aeruginosum, 232-234;
angustatum, 232; Brotheri, 233; constrictum, 233, 258; Delessertii, 233; Dozyanum, 233; eutrichostomum, 233; hyophilaceum, 233; setifolium, 232-234; stenophyllum, 233
Calyptranthes portoricensis, II
Candelaria concolor, 207
Cardamine parviflora, 193
Carex, 186; anceps, 186; brachyglossa, 187; cristatella, 186; festucacea, 186; hirsutella, 187; hystricina, 186; laxiculmis, 187 ; prasina, 186; squarrosa, 186; Swanii X gracillima, 187; tensa, 186; trisperma, 186 ; typhina, 186 ; umbellata, 186 ; umbellata \times tonsa, 187 ; varia X tonsa, 187 ; virescens, 186
Carnegiea, 285-287, 289, 292; gigantea, 287
Carphephorus, 392, 393
Carum Carvi, 37
Cassia, 54, 55
Cathartolinum, 391
Centropogon, 443; Andreanus, 443, 444; asservatus, 444, 445; breviflorus, 444, 448; caldasensis, 444, 446; gravidus, 444, 447; Lehmanni, 444, 445; Mutisianus, 444, 446; variabilis, 444, 446, 447
Ceramium Boydenii, I41: japonicum, 141; rubrum, 135, 141, 143
Cercidium Torreyanum, 287
Cestrum, 53
Ceylon, The gregarious flowering of the talipot palm, Corypha umbraculifera, at Peradeniya, 341
Chaenocephalus macrophyllus, 436
Chaetomitrium elongatum, 237; orthorrhynchum, 237, 238; perakense, 237, 258; philippinense, 237; Ridleyei, 241, 242 ; setosum, 237, 258; stereodontoides, 242
Champia parvula, 135, I39
Chara, $471,482,484$; crinita, 471 ; foetida, 471 ; fragilis, 469-471, 473, $475,477,478,481,483-486$; hispida, 470, 47I ; strigosa, 471
Chara fragilis, A preliminary account of the influence of light and temperature on growth and reproduction in, 469
Chenopodium hybridum, 191
Chinese marine algae, 133
Chionanthus, 385,389 ; pygmaea, 384 , 385 ; virginica, 385
Chondria, 140 ; tenuissima, 140
Chondrocystis, 351, 356; Bracei, 355-357; Schauinslandii, 356

Chorda, 140; Filum, 135, 136
Chordaria Chordaria, 136; Cladosiphon, 136; firma, 136
Chroothece Richteriana, 359
Chrysoma laricifolia, 128
Chrysopora, 53; aurantiacum, 53; Cestri, 53; Gynoxidis, 53; Mikaniae, 54
Chusquea abietifolia, 34I, 349
Cicuta bulbifera, 195
Cladophora, I36
Cladosiphon Chordaria, 136
Clastobryum prionotrichum, 236, 259; surculare, 237
Claytonia virginica, 38,192
Cleome spinosa, 107
Clidemia Clementiana, 2
Clinopodium, 386; Ashei, 385; coccineum, 386 ; dentatum, 386 ; macrocalyx, 386
Closterium moniliferum, 354
Codium fragile, 136; mucronatum, 136
Coleosanthus californicus, 52
Coleosporium aridum, 52; Spigeliae, 5 I
Colombia, Fossil fruits from the Eastern Andes of, 6I
Colombia, New Polygalas from, 83
Colpomenia sinuosa, 136
Conotrema, 207; urceolata, 204-207
Conradina canescens, 386,387 ; grandiflora, 386
Contributions to the flora of Long Island, New York, 177
Corallina officinalis, 135, 144
Cordia, 66, 67; vera, 62, 66
Corypha umbraculifera, 341, 342, 344, 345, 347, 349, 350
Corypha umbraculifera, at Peradeniya, Ceylon, The gregarious flowering of the talipot palm, 341
Covillea, 285, 287, 290, 292; tridentata, 286, 289
Cronartium ribicola, 39, 4I, 47, 48
Crown gall on Bryophyllum calycinum, 449
Ctenidium falcifolium, 238; stereodontoides, 238 ; substereodontoides, 242
Cuscuta, 128-130; salina, 129, 130
Cuscuta, The Tissue fluids of, 127
Cycadeoidea Dartoni, 343
Cyperus Engelmannii, 183 ; erythrorhizus, 183 ; ferax, 183 ; naguensis, I; speciosus, 183 ; stenolepis, I
Cyrilla, 383, 389; arida, 383; parvifolia, 383 ; racemiflora, 383
Cystophyllum, 137; Thunbergii, 137

Cytological study of living cells of tobacco plants affected with mosaic disease, 261

Danthonia compressa, 181
Dasya elegans, 141 ; pedicellata, 135 , I4I; punicea, 14 I
Dasystephana Andrewsii, 196; saponaria, 196
Decastelma, 6; Broadwayi, 6; trinitense, 5
Deeringothamnus, 389, 390; pulchellus, 390
Delopyrum, 389; basiramia, 380; ciliatum, 380
Dendrobium crumenatum, 342
Dendrocalamus giganteus, 342. 344 ; strictus, 341, 342, 344
Dentaria laciniata, 193
Dentoceras, 388; myriophylla, 389
Desmella, 55, 56
Dianthus, 39; caryophyllus, 38
Dicaeoma, 55, 56; Lygodii, 55; poculiforme, 38
Dichothrix, 351, 357, 358; Bornetiana, 357, 358; cyanea, 358; penicillata, 358
Dicranoloma assimilis, 226; Billardieri, 226; Blumii, 226; braunfelsioides, 226; Braunii, 226; brevicapsulare, 226, 258; brevisetum, 252; perintegrum, 226 ; reflexifolium, 252; sumatranum, 227
Dictyosphaeria favulosa, 357
Dictyota divaricata, 135, 138; indica, 138
Diorchidium, 54; australe, 55; brasiliensis, 54; Piptadeniae, 55; Puiggarii, 55
Ditrichum macrophyllum, 430
Dixon, H. N., New species of mosses from the Malay Peninsula, 225
Dondia linearis, 191, 192; maritima, 191, 192
Dorstenia confusa, 8, 9; Contrajerva, 7,8 ; cordifolia, 7,8 ; crassipes, 8, 9; crenulata, 7: 8; erythrandra, 8, 9; jamaicensis, 8, 10; peltata, 7, 9; petraea, 7, 9; Rocana, 7, 8; Roigii, 8, 9; tuberosa, 7, 8; tubicina, 7,9
Downingia concolor, 300, 301; immaculata, 300, 301; pulchella, 300, 301 ; pulchella arcana, 301

Echinocactus Lecontei, 290
Ecklonia cava, 133
Ectropothecium buitenzorgii, 239: callichroides, 239. 240 ; calli-
chroides elongatum, 239, 259; Dixoni, 239; goliathense, 239; incubans, 240: Moritzii, 24I, 242; Moritzii stereodontoides, 24I; scaberulum, 240; siamense, 240, 259; singapurense, 239
Elaphrium Macdougalii, 291, 292; microphyllum, 288-290
Eleocharis, 183; acuminata, 183 ; capitata, 183; Robbinsii, 183; tenuis, 183
Encelia farinosa, 285, 289, 292
Endocladia complanata, 135, 139
Endotrichella plano-marginata, 235
Enteromorpha compressa, 135 ; Linza, 135; prolifera, 135, 136
Equisetum fluviatile, 178
Eragrostis capillaris, 181
Eriogonum Kennedyi, 295; Kennedyi alpigenum, 296; Kennedyi austromontanum, 295, 296
Eriophorum, 183 ; tenellum, 183
Eucamptodon Wrayi, 252
Eucapsis, 356
Eugenia boqueronensis, 10 ; cordata, II; corozalensis, II; Stewardsonii, II; Underwoodii, 10 ; merophytica, in
Eupatorium rotundifolium, 201 ; sessilifolium, 201 ; Torreyanum, 200
Euphorbia, 47; cyparissias, 38 ; tomentulosa, 290
Expression of the sexual state in Sagittaria latifolia, 103

Fabaceae-III, Notes on, 13
Ferguson; William C., Contributions to the flora of Long Island, New York, 177
Festuca gigantea, 181 ; nutans, 181
Fissidens amblyotis, 229, 258; discolor, 228 ; irroratus, 229 ; subdiscolor, 228, 258
Flora of Long Island, N. Y., Contributions to the, 177
Flora of Northern South America-I, Studies on the, 443
Florida, Plant novelties from, 379
Fossil fruits from the Eastern Andes of Colombia, 61
Fouquiera, 290, 291 ; splendens, 287, 292
Frankinia Palmeri, 290
Franseria deltoidea, 290; dumosa, 290, 292
Fraxinus pennsylvanica, 189, 195
Fucus Amansii, 138
Galium angustifolium, 299; cruci-
atum, 198; gabrielense, 299; multiflorum, 299; siccatum, 299; verum, 198
Garberia, 393
Garovaglia aristata, 235; densifolia, 235
Gaudichaudia Schiedeana, 57
Gelidium, 138; Amansii, 138; Amansii radicans, 138 ; australe, 138 ; corneum, ${ }^{138}$; corneum claviferum, 138; corneum pulchellum, 138
Gentiana clausa, 196; crinita, 196
Gleason, H. A., Studies on the flora of Northern South America-I. 443
Glochidiatae, 86
Gloiopeltis coliformis, 135,141
Goldstein, Bessie, Cytological study of living cells of tobacco plants affected with mosaic disease, 261
Gracilaria confervoides, 135, 139; lacinulata, 135, 139
Grateloupia, 134, I43; acuminata, 143; filicina, 141-143; filicina Lomentaria, 142-144; filicina porracea, 142; porracea, 142, 143; tubulosa, 142, 143
Gregarious flowering of the talipot palm, Corypha umbraculifera, at Peradeniya, Ceylon, The, 341
Grimmia funalis, 251
Guettarda, 66
Gymnogongrus flabelliformis, $\mathbf{3 5}$, 139; japonicus, 139
Gymnosporangium, 47 ; macropus, 38
Gynura, 371
Haliseris divaricata, 138
Harris, J. Arthur, The tissue fluids of Cuscuta, 127
Hebeclada, $\mathbf{8 4}_{4} 85$
Helianthus hypargyreus, 57
Hemicarpha, 184 ; micrantha, 184
Heuchera americana, 193
Hibiscus denudatus, 292
Hieracium marianum, 199, 200; scabrum, 200; venosum, 199, 200
Hilaria, 288
Homalobus, 13, 18-20; aculeatus, 22 ; alvordensis, 13,18 ;. bicristatus, 13, 19; californicus, 13-15; collinus, $13-15,17-19$; curvicarpus, 17, 18; Gibbsii, $13-18$; Laurentii, 13, 15; Plummerae, 13, 16, 19; podocarpus, 13,18 ; porrectus, 19; sinuatus, 13 , 16 ; speirocarpus, 13 , 18; subglaber, 13,17 ;

Tweedyi, 13, 14, 19; Whitedii, 13, 16; Wolfi, 22 ; vexiliflexus, 21
Hordeum jubatum, 181
Horsfordia alata, 290
Howe, Marshall A., Chinese marine algae, 133; Notes on algae of Bermuda and the Bahamas, 35 x
Humiria, 65; gabonensis, 65
Hypericum virgatum, 194; virgatum ovalifolium, 194
Hypnum Braunii, 248; callichroum, 239; gracilicaule, 248; hyalinum, 248; malaccanum, 239; microcladum, 242; prionotrichum, 237; pycnophyllum, 256 , 257; scabrellum, 248; strepsiphyllum, 248; substrumulosum, 248; trachaelophyllum, 243
Hyptis Emoryi, 292
Idria, 292; columnaris, 291, 292
Ilex, 382, 383; Buswellii, 382; caroliniana, 383 ; cumulicola, 382 ; opaca, 382
Impatiens, 128 ; biflora, 128
Index to American Botanical Literature, 29, 69, 113, 155, 211, 275, 31I, 361, 395, 437, 457
Internal sori of Puccinia Sorghi, 37
Ionoxalis violacea, 193
Isotria affinis, 188 ; verticillata, 188
Jatropha cardiophylla, 289; cinerea, 289, 292 ; cordata, 289 ; spathulata, 289
Johnson, Alice M., The mid-styled form of Piaropus paniculatus, 25
Johnston, Ivan M. \& Peilip A. Munz, Miscellaneous notes on plants of Southern California, 293
Juglandifolia, 146
Juncus articulatus, 187; Greenii, 187, 188; militaris, 187; Torreyi, 187
Kallstroemia caribaea, 3; curta, 3; incana, 3
Karling, John S., A preliminary account of the influence of light and temperature on growth and reproduction in Chara fragilis, 469
Kentrophyta, 20; aculeata, 22; impensa, 21, 23; minima, 22; montana, 20-23; rotunda, 23; tegetaria, 21, 23; ungulata, 23; viridis, 20, 21; Wolfii, 22
Kleinia, 369,370
Kneiffia, 195; fruticosa, 195; linearis, 195; longipedicellata, 195; tetragona, 195

Kuhnistera, 381; adenopoda, 381; pinnata, 381 ; truncata, 380,381

Laciniaria, 392, 393; Ohlingerae, 393
Lathyrus palustris, 193; palustris pilosus, 193
Laurencia obtusa, 140
Leathesia difformis, $\mathbf{1 3 5}, 136$
Lecanora albella, 204-207; subfusca, 205-207; varia, 205-207
Lechea, 384, 389; cernua, 384; Leggettii, 194; racemulosa, 384 ; tenuifolia, 194
Lecidea vernalis, 204, 206, 207
Lemaireocereus, 285-287, 292; Schottii, 289; Thurberi, 285
Leptogium, 208; tremelloides, 204, 206, 208, 210
Lespedeza capitata \times angustifolia, 193; Bicknellii, 193
Levine, Michael, Crown gall on Bryophyllum calycinum, 449
Liabum, 371
Lichens, A study on the effect of evaporation and light on the distribution of, 203
Ligularia, 369
Lilium canadense, i88; philadelphicum, 188
Linociera chinensis, 385
Lipactinia, 421
Litrisa, 392; carnosa, 392
Lobaria pulmonaria, 204, 206, 208, 210
Lobelia Dortmanna, 199; Mutisiana, 446
Lomentaria, 142; articulata, 140; catenata, 140; sinensis, 139, 140, 144
Long Island, N. Y., Contributions to the Flora of, 177
Lonicera japonica, 198; japonica flexuosa, 198; japonica Morrowi, 199; japonica Standishii, 199; sempervirens, 198
Lophocereus, 285, 287, 292; Schottii, 285, 286
Ludwigia sphaerocarpa, 195
Lupinellus, 101
Lupinus, IOI; abortivus, 303; Abramsi, 308; affinis, 97; agninus, 307; albifrons flumineus, 306; arcticus, 308; aridus, 303; aridus abortivus, 303; aridus Cusickif, 303; aridus Torreyi, 303; aridus washoensis, 303; Aschenbornii, 93; bicolor, 91, 92, 94, 95, 99; bimaculatus, ro1; bingenensis, 305 ; bingenensis dubius, 305 ; brevi-
caulis, 102; Burkei, 309; calcaratus, 304; canescens, 304, 306; canescens amblyophyllus, 304 ; caudatus subtenellus, 304; chihuahuensis, 9193; columbianus, 307, 308; concinnus, 101; confertus, 304; confusus, 307; Cottoni, 309; Culbertsoni, 304 ;Cusickii, 303 ; densiflorus, 100; densiflorus austrocollinum, 100; densiflorus scopulorum, 100; flexuosus, 307 ; formosus Bridgesii, 309; fruticulosus, 303; gracilis, 99; Havardii, IOI; holosericeus, 304, 306 holosericeus amblyophyllus, 304 inyoensis demissus, 304 ; lapdicola, 306; latifolius, 308 ; latifolius canadensis, 307; latifolius columbianus, 307 ; latifolius subalpinus, 308 ; laxiflorus 304, 308; laxiflorus calcaratus 304; leonensis, 101; lepidus con, fertus, 304; lepidus Culbertsoni 304; leucophyllus Belliae, 305; leucophyllus canescens, 306; leucophyllus tenuispicus, 306; Lyallii fruticulosus, 303; micranthus, 92, 95-97; micranthus Congdoni, 99; micranthus pachylobus, 94; microcarpus, 100; mictocarpus scopulorum, 100; multitinctus, 304; nanus, 91-93; niveus, 91, 92; nootkatensis, 308 ; obtusilobus, 307 ; Orcuttii, 102; oreganus Kincaidi, 305; oreganus pusillulus, 305; ornatus bracteatus, 307; ornatus obtusilobus, 307; pachylobus, 9i, 94; pinetorum, 303; polycarpus, 95-97; sellulus, 303; sericeus, 101; sericeus flexuosus, 307 ; Sitgreavesii, 10I; subalpinus, 308; subcarnosus, 101; subulatus, 307; succulentus, 97; tenuispicus, 306; texensis, 101; Torreyi, 303; uncialis, 101, 102; variegatus, 304; washoensis, 303; Wyethii, 309
Lupinus- X, Studies in the genus, The Micranthi, (concluded), 91
Lupinus-XI. Some new names and combinations, Studies in the genus, 303
Lycopersicum, 145
Lycopodium carolinianum, 184; complanatum flabelliforme, 178
Lycopus virginicus, 38
Lygodium polymorphum, 53, 55
Lyngbya lutea, 358
Lythrum Salicaria, 25, 27
Macromitrium Blumii, 234; magnirete, 234; Zollingeri, 234

Malacothamnus fasciculatus splendidus, 297
Malaxis unifolia, 189
Malay Peninsula, New species of mosses from the, 225
Malvastrum clementinum, 296; fasciculatum, 296; fasciculatum laxiflorum, 296; Fremonti, 296; nesioticum, 296; splendidum, 297; Thurberi laxiforum, 297
Maytenus ponceana, Io
Melampsorella Blechni, 52
Mesadenia, 377; angustifolia, 378; Elliottii, 378; lanceolata, 378
Mesoneuris, 409, 413; bipinnatifida, 409, 413
Metastelma, 6
Mexico and Central America, the section Tuberarium of the genus Solanum in, 145
Micranthi concluded, Studies in the genus Lupinus-X. The, 91
Mid-styled form of Piaropus paniculatus, The, 25
Mikania, 54; buddleiaefolia, 54
Milesia, 52; australis, 53; Blechni, 52, 53; Scolopendrii, 52, 53
Milesina Blechni, 52 ; Scolopendrii, 52
Millettia caffra, 54
Mimosa Roca, 55
Mimulus moschatus, 197
Miscellaneous notes on plants of Southern California, 293
Monopholis, 422
Mosaic disease, Cytological study of living cells of tobacco plants affected with, 261
Mosses from the Malay Peninsula, New species of, 225
Munz, Philip A. \& Ivan M. Johnston, Miscellaneous notes on plants of Southern California, 293
Myriactis pulvinata, 135, 136
Myriophyllum tenellum, 195
Myurium quinquefarium, 234; rufescens, 235 ; sinicum, 234; subnitens, 234

Nabalus altissimus, 199
Necramium, 6; gigantophyllum, 7
Nemastoma, 143; Cowdryi, 143, 144; dichotomum, 143
Nemopanthes mucronata, 194
Neurocarpus divaricatu8, 135, 138
New Polygalas from Colombia, 83
New species of mosses from the Malay peninsula, 225
New species of Uredineae-XV, 51
New South American Verbesinas; 421
Nigredo Caladii, 38; caryophyllina,
38. 59; Sileres, 59; Suksdorfii, 58; verruculosa, 59
Nitella flexilis, 471
Notes on algae of Bermuda and the Bahamas, 351
Notes on Fabaceae-III, 13
Ochractinia, 428-432
Odontotrichum, 377, 409, 410; amplifolium, 412, 416; amplum, 412, 417; ampullaceum, 412, 416; bipinnatifidum, 410, 413; brachycoma, 41I, 415; calvum, 413, 420; cervinum, 413, 420; chiapense, 411, 418; cirsiifolium, 409, 410, 413; decompositum, 410, 414; delphinifolium, 413, 419; eriopodum, 413, 418; filicifolium, 410, 414, 420; globosum, 413, 4 18; Goldsmithii, 412, 416; jatrophoides, 41I, 419; Liebmannii, 4I3, 419; napeaefolium, 411, 418; napellifolium, 413, 419; nephrophyllum, 412, 418; pachyphyllum, 412, 417; pallescens, 413, 419; Palmeri, 412 , 417; paucicapitatum, 411, 414; platylepis, 410, 414; Pringlei, 4II, 415; Purpusi, 413, 418; radulaefolium, 411,415; rumicifolium, 412, 416; scabrum, 412, 416; Schaffneri, 411, 415; silphiifolium, 412, 416; sinuatum, 41I, 415; tridactylitis, 4II, 419; tussilaginoides, 4 II, 415
Oedogonium consociatum, 354
Olneya, 286, 287, 290; tesota, 286, 289, 292
Opuntia, 285, 289; Bigelovii, 286, 292; fulgida, 287, 289; gosseliniana, 289, 290
Orontium aquaticum, 187
Pachycereus, 286, 287, 290, 292; Pringlei, 286, 288, 289
Pachystemon, 145
Panicularia acutiflora, 182; laxa, 182 ; septentrionalis, 182
Panicum Ashei, 182; barbulatum, 182; dichotomum, 182; microcarpon, 182; spretum, 182
Parkinsonia, 285-287, 292; aculeata, 287; microphylla, 286, 287, 289; Torreyana, 289
Parmelia, 204, 205, 208; caperata, 205, 206, 208; conspurcata, 205, 206, 208; physodes, 205, 206, 208; rudecta, 208; saxatilis, 208; sulcata, 205, 206, 208; tiliacea, 206, 208

Peltandra virginica, 38
Peperomia Leoclemerocana, 2
Pericalia, 376; cordifolia, 377; michoacana, 376,377 ; ovatifolia, 376 , 377; sessilifolia, 376 ; suffulta, 376 , 377
Persicaria amphibia, 190; Careyi, 190; coccinea, 190; Muhlenbergii, 190; pennsylvanica laevigata, 190
Pertusaria amara, 204-206, 208, 210; multipuncta, 204-206, 208
Pessin, Louis J. \& Charles C. Plitt, A study on the effect of evaporation and light on the distribution of lichens, 203
Phaca, 20; collina, 14; podocarpa, 18; sinuata, 16
Phacelia Keckii, 298; suaveolens, 298
Phyllostachys puberula, 348
Physcia stellaris, 209
Piaropus azureus, 25; crassipes, 25; paniculatus, 25, 26, 28
Piaropus paniculatus, The midstyled form of, 25
Pinnatella Kuhliana, 236; ligulifera, 236; lingulata, 236, 258
Pinnatisecta, 146
Pinus Strobus, 39, 41
Piper aripoense, 5; ovatum, 4; maravalanum, 4; Schackii, 4
Piptadenia latifolia, 55
Pirus Malus, 38
Pithophora, 351, 354; heterospora, 351-354; kewensis, 354; oedogonia, 354
Placoma, 356; vesiculosa, 356
Plant Novelties from Florida, 379
Plants of Southern California, Miscellaneous notes on, 293
Pleuropterus sachalinensis, i91; Zuccarinii, 19 I
Plitt, Charles C. \& Louis J. Pessin, A study on the effect of evaporation and light on the distribution of lichens, 203
Polygala, 381; apodanthera, 88; cumulicola, 381 ; diversa, 83, 84; Fendleri, 85-87; Fendleri heterothrix, 85; Funkii, 89: grandiflora, 381; paniculata, 86, 88; Pennellii, 86; Smithii, 84; subsecunda, 87 ; variabilis, 88; Vauthieri, 85; violacea, 85
Polygalas from Colombia, New, 83
Polygonella, 389
Polypodium polypodioides, 203
Polysiphonia ferulacea, 140, 141; japonica, 134, 14e; Stimpsoni, 141
Polythrix, 358 ; corymbosa, $357,35^{8}$

Pontederia, 27; cordata, 25, 27; rotundifolia, 25
Porophyllum, 370 ; gracile, 292
Porphyridium cruentum, 358
Potamogeton confervoides, 178
Preliminary account of the influence of light and temperature on growth and reproduction in Chara fragilis, A, 469
Prestonia Brittoni, 5
Prosopis, 285-287, 290; glandulosa, 289; velutina, 289
Protoderma, 351, 355; marinum, 355; polyrhizum, 355
Psacalium, 369, 371; argutum, 371, 373, 374; Conzattii, 371, 372; Coulteri, 371 , 373; Holwayanum, 371, 372; Langlassei, 372, 376; laxiflorum, 372, 375; megaphyllum, 371, 374; Nelsonii, 372, 374; obtusilobum, 371, 374; peltatum, 371, 373, 374, 376; peltigerum, 372, 374; poculiferum, 372, 375; tabulare, 372, 375; thyrsoideum, 371, 373
Psorobatus megacarpus, 290
Pterocladia, 138 ; capillacea, 138
Ptiloria paucifora, 290, 292
Puccinia, 53, 55; albiperidia, 39; angustata, 38 ; barbatula, 58 ; caribistortae, 37; Cestri, 53; Claytoniata, 38; ecuadorensis, 56, 57; glumarum, 37, 38; graminis, 37 , 38; graminis tritici, 37-39; Helianthi, 56; Lygodii, 55; minuscula, 56; Sorghi, 37, 40; Spegazzinii, 54; Xanthii, 38
Puccinia Sorghi, Internal sori of, 37
Pucciniastrum americanum, 39, 47
Pucciniola Betheli, 59
Pyrenula nitida, 209
Quercus bicolor, 189; rubra, 203, 204, 206

Ramalina, 210; canaliculata, 205, 206, 209; farinacea, 209
Reynosia camagueyensis, 1 ; latifolia, I
Rhaphidostegium saproxylophilum, 247 ; Schwaneckeanum, 247
Rhizoclonium, 354; spiniforme, 255
Rhizogonium spiniforme, 255
Rhizophora, 357
Rhodomela subfusca, 135, 141
Ribes, 39, 48; glandulosum, 39; hirtellum, 39, 48
Rice, Mabel A., Internal sori of Puccinia Sorghi, 37
Rondeletia calophylla, 3; Ekmanii, 2

Rubus strigosus, 39, 47
Rumex britannica, 190; maritimus fueginus, 190; persicarioides, 190
Rydberg, Per Axel, Notes on Fabaceae-III, I3; Some senecioid genera-I, 369; -II, 409; The section Tuberarium of the genus Solanum in Mexico and Central America, 145, 167
Rynchospora, 184, 185; alba, 184; corniculata, 185; fusca, 185; inundata, 185; macrostachya, 185 ; pallida, 184

Saccoglottis, 61, 64, 65; amazonica, 64, 65; cipaconensis, 62, 64; tertiaria, 64
Sagittaria, 103-105, 112, 180, 181; Engelmanniana, I79-181; latifolia 103, 181; longirostra, 179-181; teres, 178
Sagittaria latifolia, Expression of the sexual state in, Io3
Sanidophyllum, 39I; cumulicola, 391
Sargassum, 133, 134, 137; confusum, 137; fuliginosum, 138 ; microceratium, $135-138$; piluliferum, 138
Sarracenia purpurea, 193
Satureja, 386; Ashei, 385
Saubinetia, 423, 426; helianthoides, 425
Schaffner, John H., Expression of the sexual state in Sagittaria latifolia, 103
Sciadoseris, 409; vaginata, 409, 413
Scirpus, 183; heterochaetus, 184 ; lineatus, 184; novae-angliae, 183 ; Olneyi, 184; polyphyllus, 184; subterminalis, 184 ; Torreyi, 184
Scleria reticularis, 185,186 ; setacea, 185; Torreyana, 185, 186
Scytonema crassum, 358
Scytosiphon Lomentaria, 135, 136
Sebastiania pavoniana, 290
Secale, 38
Section Tuberarium of the genus Solanum in Mexico and Central America, The, 145,167
Seifriz, Whliam, The gregarious flowering of the talipot palm, Corypha umbraculifera, at Peradeniya, Ceylon, 341
Sematophyllum auricomum, 248; bistrumosum, 257; dicranolomoides, 252; longicuspis, 254; obscurum, 251 ; palanense, 257 ; perpapillosum, 255; secundum angustifolium, 254 Senecio, 369. 371, 373, 376, 377, 409, 410, $415,416,418,419$; albo-luteus,

415; Beecheyanus, 376; calophyllus, 415 : cardiophyllus, 377 ; cervariaefolius, 413 ; chiapensis, 418 ; eripodus, 418 ; farfarus, 415 ; insignis, 373; Liebmannii, 419; Moreliae, 375; ovatifolia, 377; pallescens, 419 ; peltiferus, 373 ; rumicifolius, 416 ; tabularis, 375
Senecioid genera, Some, 369, 409
Setiscapella cleistogama, 198; subulata, 198; subulata cleistogama, 198
Shreve, Forrest, Across the Sonoran Desert, 283
Silene verecunda, 58
Simaruba, 63 ; eocenica, 64 ; haitensis, 64; miocenica, 64; versicolor, 63; versicoloroides, 62, 63
Simmondsia californica, 290, 292
Siphocampylus, 443 ; giganteus, 443
Small, John K., Plant novelties from Florida, 379
Smith, Charles Piper, Studies in the genus Lupinus-X, The Micranthi concluded, 91 ;-XI, Some new names and combinations, 303
Solanopsis, 145
Solanum, 145, 290; aculeatissimum, 261, 272; agrimonifolium, 148, 154; apalophyllum, 145; appendiculatum, 153, 174, 175; boreale, 150; brachistotrichum, 167,170 ; bulbocastanum, 145, 172; bulbocastanum dolicophyllum, 172; bulbocastanum latifrons, 172 ; canense, 173, 174; cardiophyllum, 153, 167-169; cardiophyllum amphixanthandrum, 169; cardiophyllum endoiodandrum, 169; cardiophyllum oligozygum, 168; cardiophyllum pliozygum, 168; columbianum, 173; demissum, 147, 151; demissum Klotzschii, 151 ; Ehrenbergii, 167, 169; Ervendbergii, 147, 153; Fendleri, 147, 148, 150; Grossularia, 173 ; inscendens, 174 , 175; Jamesii, 151, 153, 168, 170 , 171; Jamesii brachistotrichum, 170; Jamesii heterotrichum, 170; Jamesii nayaritense michoacanum, 171 ; Jamesii septentrionale ripicolum, 170 ; juglandifolium, 173 ; juglandifolium Oerstedii, 173; lanceolatum, 169; lanciforme, 167 , 169, 170 ; longiconicum, 173 ; longipedicellatum, 147, 148; longipedicellatum pseudoprophyllum, 148; michoacanum, 168, 171 ; monoteranthum, 172, 173 ; morelliforme,

145, 172, 176; muricatum, 145, 176; muricatum parvifolium, 176; nayaritense, $167,170,171$; nicaraguense, 168, 171 ; oxycarpum, 173; Papita, 147, 148; pinnatisectum, 168, 171; pinnatisectum heptazygum, I7I; pinnatisectum pentazygum, 17I; polyadenium, 168, 172; polytrichon, 147, 150; sambucinum, 167, 169 ; Schenckii, 176; schizostigma, 176 ; simplicifolium, 145: squamulosum, 152; stenophyllidium, 168,171 ; stoloniferum, 147, 150, 152, 153 ; suaveolens, 173,174 ; subvelutinum, 174, 175; tuberosum, 147, 148, 176; tuberosum boreale, 150 ; tuberosum pseudoprophyllum, 148 ; utile, 151 ; verrucosum, 147, 151-153, 174; verrucosum chalarophyes, 174 ; verrucosum glabrescens, 174 ; verrucosum iopetalum, 153 ; verrucosum pliophyllidium, 174; Wightianum, 147, 149
Solanum in Mexico and Central America, The section Tuberarium of the genus, 145,167
Solidago altissima, 200; arguta, 201; rugosa, 200
Some senecioid genera-I, 369; -II, 409
Sonoran Desert, Across the, 283
South America-I, Studies on the flora of northern, 443
South American Verbesinas, New, 421
Southern Arizona, Studies in Tortula as represented in, 335
Southern California, Miscellaneous notes on plants of, 293
Spigelia Humboldtiana, 51
Sporobolus asper, 182; compressus, 182; uniflorus, 182
Stachys palustris, 196
Stegnosperma halmifolium, 292
Stephanomeria Blairi, 30I
Studies of West Indian plants-XII, I
Studies on the flora of northern South America-I, 443
Studies in the genus Lupinus-X. The Micranthi concluded, 91
Studies in the genus Lupinus-XI. Some new names and combinations, 303
Studies in Tortula as represented in Southern Arizona, 335
Study on the effect of evaporation and light on the distribution of lichens, A, 203
Styrax, 298; californica, 297; cali-
fornica fulvescens, 297; officinalis, 297; officinalis californica, 298; officinalis fulvescens, 297, 298
Symphyocladia gracilis, 139, 141
Syrrhopodon bornensis, 229, 258; elimbatus, 230, 258; Griffithii, 230; Junquilianus, 232; ligulifolius, 230; perakensis, 231, 258; pungens, 23 I, 259; Ridleyi, 229, 258; rufescens, 229, 230, 258; spiculosus, 230, 231 ; Treubii, 231 ; tristichus, 230; undulatus, 23I, 232

Talipot palm, Corypha umbraculifera, at Peradeniya, Ceylon, The gregarious flowering of the, 341
Taxithelium bilobatum, 244, 259; capillipes, 243; glossoides, 244; Gottscheanum, 243; instratum, 242; instratum Kurzii, 242; isocladioides, 243, 259; isocladum, 243; nepalense, 240; papillatum, 246; subtrachaelophyllum, 243, 259; sumatranum, 244; trachaelophyllum, 243, 244, 259
Taxus canadensis, 178
Thysanomitrium abbreviatum, 227, 228, 258; Blumii, 228; exasperatum, 227, 228; Ridleyi, 227, 228, 258; umbellatum, 227, 228
Tissue fluids of Cuscuta, The, 127
Tithymaloides, 370
Tobacco plants affected with mosaic disease, cytological study of living cells of, 261
Tortula alpina, $336,337,340$; alpina inermis, 337,338 ; alpina propagulifera, 337,340 ; aurea, 339,340 ; fragilifolia, $337,338,340$; inermis, 335 ; laevipila, 336,337 ; latifolia, 337 ; montana, 336; muralis, 335, 339; pagorum, 337; papillosa, 337 ; ruralis, 336 ; subulata, 335
Tortula as represented in Southern Arizona, Studies in, 335
Tradescantia, 379; longifolia, 379; roseolens, 379
Tragacantha porrecta, 19
Trichosteleum, 247; albifolium, 246, 259; Boschii, 246, 253, 255; brachypelma, 246; brachypelma compactum, 246; hamatum, 253; Kurzii, 242 ; singapurense, 246, 247
Trilisa, 392
Trillium cernuum, 188; erectum, 188
Triticum, 37-39; monococcum vulgare, 38
Trixis angustifolia, 292
Tuberosa, 146

Ulmus americana, 189
Ulva Lactuca, 135; pertusa, 135; rigida, 135
Uredineae-XV, New species of, 51
Uredinopsis Scolopendrii, 5^{2}
Uredo Blechni, 53; Lygodii, 55; Scolopendrii, 52
Uromyces, 48; Betae, 4I; Betheli, 58; Caladii, 38, 41 ; caryophyllinus, 38, 58; Pisi, 38, 47; Lychnidis, 58 ; Silenes, 58; Standleyanus, 57; Suksdorfii, 58; Veratri, 46; verruculosus, 58
Usnea, 210 ; florida, 205, 206, 209; hirta, 205, 206, 209
Utricularia, 197 ; fibrosa, 197 ; Gibba, 197; intermedia, 197; pumila, 197 ; radiata, 197
Uvularia nitida, 188
Vantanea, 65
Vaucheria, 482
Veratrum album, 46
Verbesina, $421,430,436$; a denobasis, 433 ; altipetens, 425 ; arborea, 435; bipinnatifida, 432; brachypoda, 434, 435; callacatensis, 435; chihuahuensis, 292 ; columbiana, 429 . 431; crassicaulis, 430,432 ; crassiramea, 436; Cumingii, 436; diversifolia, 430; elegans, 423; flavovirens, 434; gigantea, 432; glabrata, 422; grandifolia, 432 , 434; grandis, 428 ; hastifolia, 426 ; helianthoides, 425; Humboldtii, 425, lancifolia, 430; lloensis, 434; Macbridei, 421 , 422; macrophylla, 430; malacophylla, 422 ; minuticeps, 43I; myriocephala, 431, 432; nudipes, 427,428 ; pentantha, 435; pterophora, 429; saubinetia, 425 ; saubinetioides, 423, 425; semidecurrens, 423; soratae, 423 ; synethes, 428

Verbesinaria, 423

Verbesinas, New South American, 421
Vesicularia purpurea, 197
Viscum, 127
Warburgiella cuspidatifolia, 257
Wedelia, 56
West Indian plants-XII, Studies of,
Wilcoxia, 290
Xanthium, 43, 48; canadense, 38
Xanthoria parietina, 206, 209
Xyris Congdoni, 187
Zostera, 137, 140

[^0]: * Bull. Torrey Club 50: 48. 1923.

[^1]: *Jones in his recent "Revision" placed this species in the Homalobi, together with Astragalus stenophyllus, A. Antiselli, A. porrectus and A. inversus, giving it No. 7, while the rest of the group he placed in his Collini, A. collinus, its closest relative being No. 93 .

[^2]: * Proc. Am. Acad. 6: 525. 1865.
 \dagger Proc. Am. Acad. 6: 201. 1864.

[^3]: *Jones has corrected this error in his recent "Revisicn".

[^4]: - Zoe 3: 298.

[^5]: ${ }^{*}$ Proc. Calif. Acad. II. 5: 650. 1895.
 \dagger Contr. West. Bot. 10: 68. 1902; 12: II. 1908.
 \ddagger These specimens were first named A. Kentrophyta, later corrected by Jones to A. tegetarius.

[^6]: * Contributions from the Botanical Department of Purdue University Agricultural Experiment Station.

[^7]: * Quito to Bogota. 1917.
 \dagger In this connection see Gutiérrez, M., Geologia de Bogotá y sus alrededores, Am. Ing. 20: 313-331. 1913.
 \ddagger Am. Mus. Nat. Hist. Bull. 36. 1917.

[^8]: * U. S. Geol. Survey Prof. Paper 91: 252. pl. 54, f. 7. 1916.
 \dagger U. S. Natl. Mus. Proc. 59: 573. pl. 100,f. 2, 1921.
 \ddagger Idem. 62: 6. pl. i, f. 8. 1922.

[^9]: * Berry, E. W. U. S. Geol. Surv. Prof. Paper II2: 137. pl. 30, f. 7, 8. 1919.
 \dagger Ettingshausen, C. v. Tertiarfl. Australia 34. pl. 5, f. 3-5. 1883.
 \ddagger Berry, E. W. U. S. Geol. Surv. Prof. Paper 91: 345. pl. 106, f. II, I2; pl. 107, f. I. 1916.
 § Engelhardt, H. Abh. Senck. Naturf. Gesell: 16: 659. pl. 6, f. 3. 1891.
 || Ettingshausen, C. v. Foss. Fl. von Berlin 2: 221. pl. 37, f. 21. 1868.
 IT Schuster,J. Abh. k. Bayer. Akad. 25: 28. pl. 25, f. 1, 2. 1911.

[^10]: [The Bulletin for February (51: 37-82) was issued March 12, 1924.]

[^11]: * Washington.-San Juan County: Fossil Island, June 25 and Aug. I, 1917, S. M. \& E. B. Zeller 1229 (B).
 \dagger See Bull. Torr. Club 48: 230. 1921.

[^12]: * Papers from the Department of Botany. The Ohio State University. No. 145.
 \dagger Schaffner, John H. Reversal of the sexual state in certain types of monecious inflorescences. Ohio Jour. Sci. 21: 185-200. 1921.

[^13]: * Stout, A. B. Alternation of sexes and intermittent production of fruit in the spider flower (Cleome spinosa). Am. Jour. Bot. 10: 57-66. 1923.

[^14]: * Montgomery, Jr., Thos. H. The fTerminology of aberrant chromosomes and their behavior in certain hemiptera. Science N. S. 23: 36-38. 1906,

[^15]: * Schaffner, John H. Progression of sexual evolution in the plant kingdom. Ohio Jour. Sci. 22: 1or-113. 1922.

[^16]: * The determinations reported here were made in part in connection with field operations for the Office of Alkali and Drought Resistant Plant Investigations and the Office of Biophysical Investigations of the Bureau of Plant Industry, U. S. Department of Agriculture.
 \dagger Numbers refer to literature cited.
 [The Bulletin for March (51: 83 -126) was issued April 22, 1924.]

[^17]: *This fragment is published because of the fact that the writer has been unable, notwithstanding persistent effort during the past several years; to secure sufficient materials for further determinations.
 t All determinations of physico-chemical constants of the expressed tissue fluids have been determined by a technique employed during the past several years in a number of investigations. Methods and results have been recently reviewed elsewhere (3).

[^18]: *Some Chinese Marine Algae. Kew Bull. Misc. Inf. 1915: 107-113. 1915.

[^19]: * Beih. Bot. Centralb. 37': 76. 15 Ap 1919.

[^20]: * Abh. Nat. Ver. Bremen 21: 282. 1912.
 \dagger Rerpert. 11: 255-260. 1912.
 \ddagger D. C. Prod. 13: 27-43. 1852.

[^21]: *This number in the National Herbarium consists of two plants; one belongs to S. tuberosum, the other to S. Fendleri. To the latter belongs also Palmer 937. Maybe the specimens have been mixed.

[^22]: * Bot. Mex. Bound. Surv. 151. 1859.

[^23]: *Linnaea 19: 274. 1847.

[^24]: * On this specimen in the U. S. Nat. Herb., the number has been changed from 753 to 633 , which change might have been unwarranted. Number 633 in the Columbia University herbarium belongs to S. cardiophyllum.

[^25]: [The Bulletin for April (5I: 127~165) was issued May 17, 1924.]

[^26]: * Repert. 12: 49-50. 1913.

[^27]: * Repert. 11: 447. 1912.

[^28]: * Repert. 11: 352-354. 1912.

[^29]: * This paper will appear in ECOLOGY within the year.

[^30]: [The Bulletin for May (51: 167-224) was issued June 13, 1924.]

[^31]: * MacDougal, D. T. Botanical Features of North American Deserts. Pub. 99, Carnegie Inst. Washn., 1908. Hornaday, W. T. Camp Fires on Desert and Lava. New York, Scribners, 1908. Spalding, V. M. Distribution and Movements of Desert Plants, Pub. 113, Carnegie Inst. Washn., 1909.

[^32]: * The second paper of this series was published in the Bulletin for December, 1922 (49: 349-359).
 \dagger Pomona College, Claremont, California.
 \ddagger Gray Herbarium, Harvard University.

[^33]: * Malvastrum Thurberi var. laxiflorum Gray, Proc. Am. Acad. 22: 291. 1887. M: splendidum Kell., Proc. Calif. Acad. Sci. 1: 65. 1855. Malacothamnus fasciculatus splendidus Abrams, Bull. N. Y. Bot. Gard. 6:417. 1910.

[^34]: CA, California Academy of Science, San Francisco;
 CPS, herbarium of the writer;
 CVP, herbarium of Prof. C. V. Piper;
 DS, Dudley Herbarium, Stanford University;

[^35]: * Limpricht's figure more closely reproduces the shape and appearance of these "brood leaves" than either figure 52, p. 86, or figure 53, p. 87, in Correns Vermehrung der Laubmoose.

[^36]: * Contribution from the Osborn Botanical Laboratory, Yale University.

[^37]: *The data given in this table are from Peradeniya where the palms were growing. In a previous publication, the data were from Kandy, a nearby station, where the rainfall does not differ greatly from that at Peradeniya.
 \dagger Averages are based on the data of 18 years, from 1905 to 1922.

[^38]: * The years of flowering.
 \dagger The absence of any rain during February was the fact which gave rise to the belief that the season, Jan.-Apr., 1918, was one of drought. Those locally interested forgot that no rain fell during February in 1916 and 1911 (and but 0.4 inches in 1912 and 1914) without causing any widespread flowering of talipots.

[^39]: * It has been suggested that it is not primarily the age of Corypha which determines the time of flowering, but the height of the palm. At a certain height, which Corypha normally attains in about 34 years, the plant is unable to cope with the mechanical difficulties of maintaining a water column of that height in its vascular system. The suggestion is nicely supported by the fact that 5 shorter palms (3 clearly visible in plate 8) did not flower, either at the first period in 1918 (Fig. I) or at the second period in 1922 (plates 8 and 9), even though of the same age as all the palms making up the avenue. (The talipot palm varies considerably in rate of growth. In the young state the peasants, including Garden coolies, habitually cut the leaves for use as umbrellas or for other purposes, so that the palm may take anything up to 20 years or more before forming a stem.) As interesting and suggestive as the above speculation is, it cannot be unqualifiedly accepted in view of the fact that it seems hardly likely that the rate of growth of 7 of the palms should be so uniform as to cause them to attain the maximum height simultaneously in 1918, while 8 of the remaining palms were equally uniform in rate of growth, being all precisely two years behind the first 7. The date of planting, it will be recalled, was precisely the same (1888) for all of the 20 palms making up the avenue.

[^40]: * An interesting account of a popular belief in climatic cycles is the following from Francis Bacon (4). "There is a toy, which I have heard, and I would not have it given over, but waited upon a little. They say it is observed in the Low Countries (I know not in what part), that every five and thirty years the same kind and suit of years and weathers come about again; as great frosts, great wet, great drought, warm winters, summers with little heat, and the like, and they call it the prime; it is a thing I do the rather mention, because, computing backwards, I have found some concurrence."

[^41]: * Minnesota Bot. Stud. 4: 134. pl. 20. 1909.
 \dagger Abh. Nat. Ver. Bremen 16: 353. 1900.

[^42]: [The Bulletin for August (51: 335-368) was issued August 22, 1924.]

[^43]: *This might have come from Guerrero.

[^44]: * Nov. Gen. \& Sp. 4: 168. 1820.
 \dagger DC. Prodr. 6: 328. 1837.

[^45]: * Torreya 5: 184. 1905.

[^46]: * The type specimens of all the novelties described in this paper are in the herbarium of The New York Botanical Garden.

[^47]: * Small, Flora of the Southeastern United States; Flora of Miami.

[^48]: * To be described in full in a future issue of the Journal of The New York Botanical Garden.

[^49]: * Continued from Bull. Torrey Club 51: 378. 1924.
 [The Bulletin for September (51: 369-408) was issued Sept. 18, 1924.]

[^50]: *Proc. Amer. Acad. 34: 534-566. 1899.

[^51]: * Verbesina macrophylla (Cass.) Blake.-Ditrichum macrophyllum Cass Dict. Sci. Nat. 13: 371. 1819. Verbesina diversifolia DC. Prodr. 5: 615. 1836; Baker in Mart. Fl. Bras. $\mathbf{6}^{2}:$ 213. pl. 65. 1884. Verbesina lancifolia Gardn. Lond. Journ. Bot. 7: 406. 1848, fide Baker.-This transfer is made on the basis of the equation of Cassini's and De Candolle's names by Bentham \& Hooker (Gen. PI. 2: 380. 1873), who had examined a head from Cassini's type, and by Baker (loc. cit.). Cassini's description agrees fairly well with this plant, except that the heads are described as rayless and yellow. Probably the rays, which are not obvious in the young heads, were overlooked by Cassini. No yellow-flowered Verbesina with alternate, pinnately lobed leaves is known. The name Ditrichum macrophyllum is usually cited from Bull. Soc. Philom. 1817: 33, but only the generic name appears in that paper.

[^52]: * Contribution from the Cancer Laboratory, Montefiore Hospital, New York.

[^53]: * Contributions from the Department of Botany of Columbia University, no. 337 .
 [The Bulletin for November (51:443-468) was issued 28 November 1924.]

