

 JOURNAL

 JOURNAL
 AND
 Proceedings
 OF THE
 ROYAL SOCIETY
 OF
 NEW SOUTH WALES,
 1878.

VOI. XII.

EDITED BY
Prof. LIVERSIDGE and Dr. LeibiUs.

THE AUTHORS OP PAPEHS ARE ALOXE RESPONSHBLE FOR THE STATEMEXTS MIDE AND THE OPIDTONS EXPREEBED THEREIN.

AGENTS FOR THE SOCIETY:

Messrs. Trübner \& Co., 57 , Ludgate Hill, London, E.C.

SYDNEX: THOMAS RICHARDS, GOVERNMENT PRINTER.

$$
1879 .
$$

NOTICE.

It is requested that all Communications respecting the Printing of the Fournal of the Society, or List of Members, may be sent to Professor Liversidge, the Society's House, Elizabeth-street, Sydney.

All Donations presented to the Society are acknowledged by letter, and in the printed Proceedings of the Society.

The Smithsonian Institute, Washington, U.S.A., and Messrs. Triibner \& Co., 57, Ludgate Hill, London, have kindly undertaken to recive and forward parcels of books and printed matter intended for the Society.

ROYAL SOCIETY OF NEW SOUTH WALES.

JOURNAL

PROCEEDINGS

OF THE

ROYAL SOCIETY

OF

NEW SOUTH WALES,
 1878.

VOL. XII.

EDITED BY
Prof. LIVERSIDGE and Dr. LEIBIUS.

THE AUTHORS OF PAPERS ARE ALONE RESPONSTBLE FOR THE STATEMENTS MADE AND THE OPINIONS EXPRESSED THEREIN.

AGENTS FOR THE SOCIETY:
Messrs. Trübner \& Co., 57, Ludgate Hill, London, E.C.

SYDNET: THOMAS RICHARDS, GOVERNMENT PRINTER.
1879.

A

THE ROYAL SOCIETY OF NEW SOUTH WALES.

The Royal Society of New South Wales originated in 1821 as the "Philosophical Society of Australia"; after an interval of inactivity, it was resuscitated in 1850 , under the name of the "Australian Philosophical Society," by which title it was known until 1856, when the name was changed to the "Philosophical Society of New South Wales"; and finally, in May, 1866, by the sanction of Her Most Gracious Majesty the Queen, it assumed its present title.

CORRIGENDA.

Page	Line.			
11	\ldots.	13	$\ldots .$.	For "Romane's" read "Ronianes'."
171	\ldots	30	$\ldots .$.	For "Gilliati" read "Gilliat."
200	\ldots.	6	$\ldots .$.	For "Hackett's" read " Haeckel's."
"	.. .	40	$\ldots .$.	For "Fresinius" read "Fresenius."

CONTENTS

VOLUME XII.

Page.
Art. I.-List of Officers, Fundamental Rules, By-laws, and List of Members ito xxxy
Art. II.-Anniversary Address, by Christopher Rolleston, Vice-President 1 to 16
Akt. III.-Tasmanian Forests; their Botany and Economical Talue. Hy Fiev. J. E. Tenison-Woods, F.G.s., F.L.S. 17 to 28
Art. IV.- The Molluscan Fauna of Tasmania. By the Rev. J. E. Tenison-Woods, F.(T.S., F.L.S. 29 to 56
Art. V.-On some Australian Tertiary Fossil Corals and Polyzoa. (Ome plate.) By the Rev. J. E. Tenison- Woods, F.G.S., F.L.S. 57 to 61
Art. VI.-Proposed Correction to the assumed Longitude of the Sylney Observatory: By John Tebbutt, F.R.A.S. 63 to 69
Art. VII.-()n the Meteorology of the Coast of New South Wales during the Winter Months, with the desirability of issuing cautionary Ntorm Warnings, by telegrams to the various Ports, from the Ohservatory. By Marshall smith, Master of the ship "T. L. Hall" 71 to 85
Arv. VIII.-Ntorms on the Coast of New South Wales. (Four diaymme.) By H. ('. Russell, B.A., F.R.A.S., Government Astronomer 77 to 101
Art. IX.-Some Facts about the Great Tidal Wave, May 187. (Thre diayram..) By J. P. Josephson, C.E. 103 to 115
Art. X.-Nome Results of an Astronomical Experiment on the Blue Mountains. (Two diagrame.) By H. C. Russell, B.A., F.R.A.S., F.M.S., \&c 117 to 126
Art. XI.-On the Metallurgy of Nickel and Cobalt. By W. A. Dixon, F.C.S., F.I.C. 127 to 132
Art. XII.-The Deep Well Waters of Sydney. By W. A. Dixon, F.C.S., F.I.C. 133 to 141
Art. XIII.-Note on Huan Island Guano. By W. A. Dixon, F.C.S., F.I.C., Lecturer on Chemistry, Sydney School of Arts 143 to 144
Art. XIV.-The Rise and Progress of Photography. By Ludorico W. Hart 145 to 164
Art. XV.-Proceedives 167 to 187
Art. XVI.-Additions to the Library 188 to 200
Art. XVII.-Donations to the Cabinets 201 to 206
Art. XVIII. - List of Exchanges and Presentations 207 tn 21.3
Papers read before the Sections.
Page.
Art. XIX.-Reports from the Sections 217 to 293

1. Note on the Planet Uranus. By John Tebbutt, F.R.A.S 220
2. On the Longitude of Sydney Observatory. By H. C. Russell, B.A., F.R.A.S. 222
3. Note on the Transit of Mercury. (One diagram.) By John Tebbutt, F.R.A.S. 226
4. Note on the Star "Brisbane 6183." By John Tebbutt, F.R.A.S. 228
5. Notes on the Observatories in the United States. By W. J. MacDonnell, F.R.A.S 229
6. Clark's Companion of Sirius. By H. C. Russell, B.A., F.R.A.S 233
7. The Triangle Micrometer. By H. C. Rassell, B.A., F.R.A.S 236
8. Notes on Jupiter during his Opposition, 1878 By G. D. Hirst 238
9. On Star-discs, and the separating power of Telescopes. By W.J. MacDonnell, F.R.A.S. 241
10. Abstract of the Results of the Transit of Venus. By H. C. Russell, B.A., F.R.A.S. 243
11. Notes on the Geocentric Conjunction of Mars and Saturn, 1879. By John Tebbutt, F.R.A.S 246
12. Remarks on the Mounting of Large Object Glasses. By H. C. Russell, B.A., F.R.A.S 247
13. On a New Form of Equatorial Mounting. By H. C. Russell, B.A., F.R.A.S 249
14. Note on the Boorook Silver Mine. By A. W. Dixon, F.C.S 255
15. Notes on the Incrustation of the Sydney Water Main. By Dr. Morris 264
16. An Apology for the Introduction of the Study of Photography in our Schools of Art and Science. By Ludovic Hart 269
17. On Music. By Mons. Jules Meilhan 281
Art. XX.-Appendix : Abstract of the Meteorological Obser- vations taken at the Sydney Observatory. By H.C. Russell, B.A., F.R.A.S., Government Astronomer 297 to 308
Art. XXI-List of Publications 309 to 318
Art. XXII.-Index 319

The Aopal Society of Alefo Sonty cilales.

OFFICERS FOR 1878-9.

PRESIDENT:
HIS EXCELLENCY SIR HERCULES ROBINSON. G.C.M.G., \&C., \&C., \&C.

VICE-PRESIDENTS:
REV. W. B. CLARKE, M.A., F.R.S., F.G.S. (Obiit, June 16th, 1878.) HON. J. SMITH, C.M.G., M.L.C., M.D., LL.D., \&c. CHARLES MOORE, F.L.S. (Elected, July 31st, 1878.)

HONORARY TREASURER:
H. C. RUSSELL, B.A., F.R.A.S., F.M.S., de.

HONORARY SECRETARIES:
PROFESSOR LIVERSIDGE. | Dr. ADOLPH LEIBIUS.

COUNCIL:

FITZGERALD, R. D., F.L.S.	MONTEFIORE, E. L. (Elected,
GERNEY, PROFESSOR, M.A.	July 31, 1878.)
JONES, P SYDNEY, M.D.	ROLLESTON, CHRISTOPHER.
WRIGHT, H. G. A., M.R.C.S. ENG.	

1
ASSISTANT SECRETARY:
W. H. WEBB.

FUNDAMENTAL RULES.

Object of the Society.

1. The object of the Society is to receive at its stated meetings original papers on subjects of Science, Art, Literature, and Philosophy, and especially on such subjects as tend to clevelop the resources of Australia, and to illustrate its Natural History and Productions.

President.

2. The Governor of New South Wales sball be ex officio the President of the Society.

Other Officers.

3. The other Officers of the Society shall consist of two Vice-Presidents, a Treasurer, and two or more Secretaries, who, with six other Members, shall constitute a Council for the management of the affairs of the Society.

Election of Officers.

4. The Vice-Presidents, Treasurer, Secretaries, and the six other Members of Council, shall be elected amnually at the General Meeting in the month of May。

Vacancies during the year.

5. Any vacancies occurring in the Council of Management during the year may be filled up by the Council.

Fees.

6. The entrance money paid by Members on their admission shall be One Guinea; and the annual subscription shall be One Guinea, payable in advance.

The sum of Ten Pounds may be paid at any time as a composition for the ordinary annual payment for life.

Honorary Members.

7. The Honorary Members of the Society shall be persons who have been eminent benefactors to this or some other of the Australian Colonies, or distinguished patrons and promoters of the objects of the Society. Every person proposed as an Honorary Member must be recommended by the Council and elected by the Society. Honorary Members shall be exempted from payment of fees and contributions; they may attend the meetings of the Society, and they shall be furnished with copies of Transactions and Proceedings published by the Society, but they shall have no right to hold office, to vote, or otherwise interfere in the business of the Society.

Confirmation of By-laws.

8. By-laws proposed by the Council of Management shall not be binding until ratifled by a General Meeting.

Alleration of Fundamental Rules.

9. No alteration of or addition to the Fundamental Rules of the Society thall be made unless carried at two succewsive general meeting*.

B Y-L A W S

Passed at a General Meeting of the Society, held June 7th, 1876.

Ordinary General Meetings.

I. An Ordinary General Meeting of the Royal Society, to be convened by public advertisement, shall take place at 8 p.m., on the first Wednesday in every month, during the last eight months of the year; subject to alteration by the Council with due notice. These meetings will be open for the reading of papers, and the discussion of subjects of every kind if brought forward in conformity with the Fundamental Rules and Bylaws of the Society.

Annual General Meeting.-Annual Reports.-Election of Officers.
II. A General Meeting of the Society shall be held annually in May, to receive a Report from the Council on the state of the Society, and to elect Officers for the ensuing year. The Treasurer shall also at this meeting present the annual financial statement.

Election of the Officers and Council.

III. The Officers and other members of the Council shall be elected annually by ballot at the Annual General Meeting to be held in May.
IV. It shall be the duty of the Council each year to prepare a list containing the names of members whom they recommend for election to the respective offices of Vice-Presidents and Hon. Secretaries and Hon. Treasurer, together with the names of sir other members whom they recommend for election as ordinary members of Council. The names thus recommended shall be proposed at one meeting of the Council, and agreed to at a subsequent meeting.
V. Each member present at the General Annual Meeting shall have the power to alter the list of names recommended by the Council, by adding to it the names of any eligible members not already included in it and removing from it an equivalent number of names, and he shall use this list with or without such alterations as a balloting list at the election of Officers and Council.

Council Meetings.

VI. Meetings of the Council of Management shall take place on the last Wednesday in every month, and on such other days as the Council may determine.

Absence from Meetings of Council.-Quorum.
VII. Any member of the Conncil absenting himself from three consecutive meetings of the Council, without giving a satisfactory explanation in writing, shall be considered to have vacated his office, and the election of a member to fill his place shall be proceeded with at the next Council meeting in accordance with Fundamental Rule 5. No business shall be transacted at any meeting of the Council unless three members are present.

Duties of Secretaries.

VIII. The Honorary Secretaries shall perform, or shall cause the Assistant Secretary to perform, the following duties:

1. Conduct the correspondence of the Society and Council.
2. Attend the General Meetings of the Society and the meetings of the Council, to take minutes of the proceedings of such meetings, and at the commencement of such to read aloud the minutes of the preceding meeting.
3. At the Ordinary Meetings of the members. to announce the presents made to the Society since their last meeting; to read the certificates of candidates for admission to the Society, and such original paper's communicated to the Society as are not read by their respective authors, and the letters addressed to it.
4. To make abstracts of the papers read at the Ordinary General Meetings, to be inserted in the Minutes and printed in the Proceedings.
5. To edit the Transactions of the Society, and to superintend the making of an Index for the same.
6. To be responsible for the arrangement and safe custody of the books, maps, plans, specimens, and other property of the Society.
7. To make an entry of all books, maps, plans, pamphlets, \&c., in the Library Catalogue, and of all presentations to the Society in the Donation Book.
8. To keep an account of the issue and return of books, $\& c$. , borrowed by members of the Society, and to see that the borrower, in every case, signs for the same in the Library Book.
9. To address to every person elected into the Nociety a printed copy of the Forms Nos. 2 and 3 (in the Appendix), together with a list of the members, a copy of the Fundamental Rules and By-laws, and a card of the dates of meeting ; and to acknowledge all donations made to the Society, by Form No. 5.
10. To cause due notice to be given of all Meetings of the Society and Council.
11. To be in attendance at $4 \mathrm{p} . \mathrm{m}$. on the afternoon of Wednesday in each week during the session.
12. To keep a list of the attendances of the members of the Council at the Council Meetings and at the Ordinary General Meetings of the members of the Society, in order that the same may be laid before the Society at the Annual General Meeting held in the month of May.
The Honorary Secretaries shall, by mutual agreement, divide the performance of the duties above enumerated.

The Honorary Secretaries shall, by virtue of their office, be members of all Committees appointed by the Council.

Candidates for admission.

IX. Every candidate for admission as an ordinary member of the Society shall be recommended according to a prescribed form, by not less than three members, to two of whom he must be personally known.

Election of new Members.

\mathbf{X}. The names of such candidates, with the names of their supporters, shall be read by one of the Secretaries at an Ordinary General Mceting of the Nociety. The vote as to admission to take place by ballot at the next subsequent meeting. At the ballot the assent of at least four-fifths of the members voting shall be requisite for the admission of the candidate.

New Members to be informed of their election.

XI. Every new member shall receive due notification of his election, and be supplied with a copy of the obligation (No. 3 in Appendix), together with a copy of the Fundamental Rules and By-laws of the Society, a list of members, and a card of the dates of meeting.

Members whose subscriptions are unpaid to enjoy no privileges.
XII. An elected member shall not be entitled to attend the meetings or to enjoy any privilege of the Society, nor shall his name be printed in the list of the Society, until he shall have paid his admission fee and first annual subscription, and hare returned to the Secretarics the obligation signed by himself.

Members shall sign Rules-Formal admission.

XIII. Every member who bas complied with the preceding By-laws shall at the first Ordinary General Meeting at which he shall be present, sign a duplicate of the aforesaid obligation in a book to be kept for that purpose, after which he shall be presented by some member to the Chairman, who, addressing him by name, shall say :-"By the authority and in the name of the Royal Society of New South Wales I admit you a member thereof."

Annual subsciptions, when due.

XIV. Annual subscriptions shall become due on the 1st of May for the year then commencing. The entrance fee and first year's subscription of a new member shall become due on the day of his election.

Subscriptions in arrear.

XV. Members who have not paid their subscriptions for the current year, on or before the 31st of May, shall be informed of the fact by the Hon. Treasurer, and any member who shall be two years in arrear with his subscriptions shall be considered to have resigned.

At the meeting held in July, and at all subsequent meetings for the year, a list of the names of all those members who are in arrear with their annual subscriptions shall be suspended in the Rooms of the Society. Members shall in such cases be informed that their names have been thus posted.

Resignation of Members.

XVI. No member shall be at liberty to withdraw from the Society without previously giving notice to one of the Secretaries of his desire to withdraw, and returning all books or other property belonging to the society. Members will be considered liable for the payment of all subscriptions due from them up to the date at which they may give notice of their intention to withdraw from the Society.

Expulsion of Members.

XVII. A majority of members present at any ordinary meeting shall have power to expel an obnoxious member from the Society, provided that a resolution to that effect has been moved and seconded at the previous ordinary meeting, and that due notice of the same has been sent in writing to the member in question, within a week after the meeting at which such resolution has been brought forward.

Contributions to the Society.
XVIII. Contributions to the Society, of whatever character, must be ment to one of the Secretaries, to be laid before the

Council of Management. It will be the duty of the Council to arrange for promulgation and discussion at an Ordinary Meeting such communications as are suitable for that purpose, as well as to dispose of the whole in the manner best adapted to promote the objects of the Society.

Order of Business.

XIX. At the Ordinary General Meetings the business shall be transacted in the following order, unless the Chairman specially decide otherwise:-

1-Minutes of the preceding Meeting.
2-New Members to enrol their names and be introduced.
3-Ballot for the election of new Members.
4-Candidates for membership to be proposed.
5-Business arising out of Minutes.
6-Communications from the Council.
7 -Communications from the Sections.
8-Donations to be laid on the Table and acknowledged.
9 - Correspondence to be read.
10-Motions from last Meeting.
11-Notices of Motion for the next Meeting to be given in.
12 -Papers to be read.
13-Discussion.
14-Notice of Papers for the next Meeting.
Admission of Visitors.
XX. Every ordinary member shall have the privilege of admitting two friends as visitors to an Ordinary General Meeting of the Society, on the following conditions :-

1. That the name and residence of the visitors, together with the name of the member introducing them, be entered in a book at the time.
2. That they shall not have attended two consecutive meetings of the Society in the current year.
The Council shall have power to introduce visitors, irrespective of the above restrictions.

Management of Funds.

XXI. The funds of the Nociety shall be lodged at a Bank named by the Council of Management. Claims against the Society, when approved by the Council, shall be paid by the Treasurer.

Money Grants.

XXII. Grants of money in aid of scientific purposes trom the funds of the Society-to Sections or to members-shall expire on the 1st of November in each year. Such grants, if not expended, may be re-voted.
XXIII. Such grants of money to Committees and individual members shall not be used to defray any personal expenses which a member may incur.

Audit of Accounts.

XXIV. Two Auditors shall be appointed annually, at an Ordinary Meeting, to audit the Treasurer's Accounts. The accounts as audited to be laid before the Annual Meeting in May.

Property of the Society to be cested in the Vice-Presidents, \&c.
XXV. All property whatever belonging to the Society shall be vested in the Vice-Presidents, Hon. Treasurer, and Hon. Secretaries for the time being, in trust for the use of the Society; but the Council shall have control over the disbursements of the funds and the management of the property of the Society.

Library.

XXVI. The Members of the Society shall have access to, and shall be entitled to borrow books from the Library, under such regulations as the Council may think necessary.

Museum.

XXVII. It shall be one of the objects of the Society to form a Museum.

Branch Societies.

XXVIII. The Society shall have power to form Branch Societies in other parts of the Colony.

Sections.

XXIX. To allow those members of the Society who devote attention to particular branches of science fuller opportunities and facilities of meeting and working together with fewer formal restrictions than are necessary at the general Monthly Meetings of the Society,--Sections or Committees may be established in the following branches of science:-

Section A.-Astronomy, Meteorology, Physics, Mathematics, and Mechanics.

Section B.-Chemistry and Mineralogy, and their application to the Arts and Agriculture.

Section C.-Geology and Palrontology.
Section D.-Biology, i.e., Botany and Zoolngy, including Entomology.
Section E.-Microscopical Science.
Section F.-Geography and Ethnology.
Section G.-Literature and the Fine Arts. including Architecture.

Section H.—Medical.
Section I.—Sanitary and Social Science and Statistics.

Reports fiom Sections.

XXX. There shall be for each Section a Chairman to preside at the meetings, and a Secretary to keep minutes of the proceedings, who shall jointly prepare and forward to the Hon. Secretaries of the Society, on or before the 7 th of November in each year, a report of the proceedings of the Section during that year, in order that the same may be transmitted to the Council.

Section Committees—Card of Meetings.

XXXI. The first meeting of each Section shall be appointed by the Council. At that meeting the members shall elect their own Chairman, Secretary, and a Committee of four ; and arrange the days and hours of their future meetings. A card showing the dates of each meeting for the current year shall be printed for distribution amougst the members of the Society.

Money Grants to Sections.

XXXII. By application to the Council, grants of money may be made out of the General Funds of the Society to the Sections.

Membership of Sections.

XXXIII. No person who is not a member of the Society shall have the privilege of joining any of the Sections.

THE LIBRARY.

1. During the Session, the Library shall be open for consultation and for the issue and return of books between 4 and 6 p.m. on the afternoon of each Wednesday, and between τ and 10 p.m. on the evenings of Monday, Wednesday, and Friday, and during the recess (January to end of April) on Wednesdays, from 4 to 6 and 7 to 10 p.m.
2. No book shall be issued without being signed for in the Library Book.
3. Members are not allowed to have more than two volumes at a time from the Library, without special permission from one of the Honorary Secretaries, nor to retain a book for a longer period than fourteen days; but when a book is returned by a member it may be borrowed by him again, provided it has not been bespoken by any other member. Books which have been bespoken shall circulate in rotation, according to priority of application.
4. Scientific Periodicals and Jourmals are not to be horrowed until the volumes are completed and bound.
5. Members retaining books longer than the time specified shall be subject to a fine of sixpence per week for each volume.
6. The books which have been issued shall be called in by the Secretaries twice a year ; and in the event of any book not being returned on those occasions, the member to whom it was issued shall be answerable for it, and shall be required to defray the cost of replacing the same.

> Form No. 1.
> Royal Society of New South Wales. Certificate of a Candidate for Election.

Name
Qualification or occupation
Address
being desirous of admission into the Royal Society of New South Wales, we, the undersigned members of the Society, propose and recommend him as a proper person to become a member thereof.

> Dated this day of ,18.

From Personal Knowledge.

Signature of candidate
Date received

18

Form No. 2.
Royal Society of New South Wales.
The Society's Ronms,
Sir, Sydney, 18 .
I have the honor to inform you that you have this day been elected a member of the Royal Society of New South Wales, and I beg to forward to you a copy of the Fundamental Rules and By-laws of the Society, a printed copy of an obligation, a list of members, and a card announcing the dates of meeting during the present session.

According to the Regulations of the Socicty (vide Rule No. 6), you are required to pay your admission fee of one guinea, and annual subscription of one guinea for the current year, before admission. You are also requested to sign and return the enclosed form of obligation at your carliest convenience.

I have the honor to be,
Sir,
Your most obedient servant,
To
Hon. Secretary.

Form No. 3.

Royal Soctery of New South Walss.
I, the underaigned, do hereby engage that I will endeavour to promote the interests and welfare of the Royal Society of New South Wales, and to observe its Rules and By-laws, as long as I shall remain a member thereof.

Signed,

Address

Date

> Form No. 4. Rofal Society of New South Wales. The Society's Rooms, Sydney, 18.

Sir,
I have the honor to inform you that your annual subscription of one guinea for the current year became due to the Royal Society on the 1st of May last.

It is requested that payment may be made by cheque or Post Office order drawn in farour of the Hon. Treasurer.

I have the honor to be,
Sir,
Your most obedient servant,
To Hon. Treasurer.

Form No. 5.

Rotal Soctety of New South Wales.
The Society's Rooms,
Sir,
Sydney, 18.

I am desired by the Royal Society of New South Wales to forward to you a copy of its Journal for the year 18 , as a donation to the library of your Society.

I am further requested to mention that the Socicty will be thankful to receive such of the very valuable publications issued by your Society as it may feel disposed to send.

I have the honor to be, Sir, Your most obedient servant,

Hon. Secretary.

Form No. 6.
 Rofal Soctety of New Soutif Waxes.
 The Society's Rooms,

 Sydney, 18.Sir, Wey, I ber to acknow ledge the receipt of and I am directed to convey to you the best thanks of the Society for your most valuable donation.

> I have the honor to be,
> Sir,
> Your most obedient serrant,

Form No. 7.

Balloting List for the Election of the Officers and Councit. Royal Society of New South Wales.

May, 18 .
Ballotivg List for the election of the Officers and Council.

Present Council.	Names proposed as Members of the new Council.	
	Vice-Presidents.	
	Hon. Treasurer.	
	Hon. Secretaries.	

If you wish to substitute any other name in place of that proposed, erase the printed name in the second column, and write opposite to it, in the third, that which you wish to substitute.

LIST OF THE MEMBERS

OF THE

Browal Society of atem South relates.

P Members who have contributed papers which have been 'published in the Society's Transactions or Journal. The numerals indicate the number of s'tch contributions.

+ Members of the Council.
\ddagger Life Members.

Elected.

1878

Backhouse, Benjumin, Ithaca, Elizabeth Bay.
Backhouse, Alfred P., M.A., Ithaca, Elizabeth Bay.
Balfour, James, Union Club.
Abbott, Joseph Palmer, Murrurundi.
Abbott, Thomas Kingsmill, P.M., Gumedah.
Abbott, W. E., Glengarry, Wingen.
Adams, Francis, A.J.S. Bank, Sydney.
Adams, P. F., Survevor General, Kirribilli Point, St. Leonards.
Alexander, Greorge M., 4S, Margaret-street.
Alger, John, Macquaric-strcet.
Allen, The Hon. Sir George Wigram, M.P., Speaker of the Legislative Assembly, Elizabeth-street North.
Allerding, F., Hunter-street.
Allerding, H. R., Hunter-street.
Allwood, Rev. Canon, B.A. Cantab., Vice-Chancellor, University of sidney, Woollahra.
Alston, Johi Wilson, M.B. Edin., Mast. Surg. Edin., 455, Pittstreet.
Anderson, A. W., Oriental Bank, Sydney.
Anderson, II. C. L., M.A., Sydner Grammar School.
Armstrong, W. D., Surveyor General's Office.
Archer, W. H., F.I.A., Australian Club.
Atchison, Cunningham Archibald, C.E., North Shore.
Atherton, Ebenezer, M.R.C.S. Eng., O'Connell-street.
Austen, Henry, Ifunter-sitreet.

Barkas, Wm. James, Lic. R. Col. Phys. Lond., M.R.C.S. Eng., Warialda.
Barker, Francis Lindsoy, 130, Pitt-street.

NOTICE.

Members are particularly requested to communicate any change of address to the Hon. Secretaries, for which purpose this slip is inserted.

Corrected Address.

Name

Titles, \&c.

Address

Date

To the

Hon. Secretaries, Royal Society of N. S. W., Elizabeth st., Sydney.

LIST OF THE MEMBERS
 OF THE

Elected.

1875
1876
1878
1875
1868
1875
1877
1875
1876
1869
1877
1878
1878
1878
1878
1877
1869
1872
1874
1858
1876
1871
1868
1874
1876
1876
1878
1876
1876
1878
1877
1876
1875
1877
1878
1875
1878

Bartels, W. C. W., Union Club.
Bassett, W. F., M.R.C.S., Eng., Bathurst.
Bayley, George W. A., Railway Department, Phillip-street.
Bedford, W.J. G., M.R.C.S. Eng., Staff Surgeon.
Beilby, E. T., Pitt-street.
Belgrare, Thomas B., M.D. Edin., M.R.C.S. Eng., 153 Eliza. beth-street.
Belficld, Algernon II., Eversleigh, Armidale.
Belisario, John, M.D., Lyons' Terrace.
Benbow, Clement A., 24, College-street.
P 2 Bensusan, S. L., Exchange, Pitt-street.
Bennett, George F., C.M.Z.S., Toowoomba, Queensland.
Berney. Augustus, II. M. Customs, Sydner.
Bestic, Edwin Henry, L.R.C.S., Irel., L.R.C.P., Edin., Arthurs-leigh-terrace.
Black, Reginald James, Bank of New South Wales. Sydney.
Black, Morrice A., F.I.A., Actuary, Mutual Provident Society.
Bladen. Thomas, Prrmont.
Bode, Rev. G. C., St. Leonards, North Shore.
Bolding, H. J., P.M., Newcastle and Union Club.
Bowen, George M. C., Keston, Kirribilli Point, North Shore.
Bradridge, Thomas H., Town Hall, George-street.
Brady, Andrew John, Lic. K. \& Q. Coll. Phys. Irel., Lic. R. Coll. Sur. Irel., Lyons' Terrace.
P 1 : Brazier, John, C.M.Z.S., Corr. M.R.S., Tas., 11, Windmill-street.
Brereton, John Le Gay, M.D. St. Andrev's, L.R.C.S. Edin., Domain Terrace.
Brewster, John, George-street.
Bristowe, E. H. C., 435, Crown-street, Sydney.
Brodribb, W. A., FrR.G.S., Double Bay.
Brooks, Joseph, F.R.G.S., Hope Bank, Nelson-st., Woollahra.
Brown, Henry Joseph, Newcastle.
Brown, Thomas, Eslibank, Bowenfels, and Australian Club.
Brown, Thomas, J.P., Darlinghurst Road.
Bundock, W. C., Australian Club.
Burn, James Henry. 93, Palmer-strect. Woolloomooloo.
Burton, Edmund, Land Clitles Office, Elizabeth-street North. .
Burnell, Arthur, Surrey Office.
Burnett, Robt. H., C.E., Railway Department.
Busby, The Iton. William, M.L.C., Redleaf, South Head Road, Woollahra.
Butterfield, George, Survey Office.

Elected.

1876
1876
1878
1878
1876
1850

$|$| Cape, Alfred J., Torfrida, Elizabeth Bar. |
| :--- |
| Chandler, Alfred, 185, Pitt-street. |
| Chatfield, William, 69, Pitt-street. |
| Chisholm, Edwin, M.D., M.R.C.S., L.S.A., Se., Ashfield. |
| Christie, Wm., L.S., Hawthorn Lodge, Glen Innes. | P 18 +Clarke, Rev. W. B., M.A. Cantab., F.R.S., F.G.S., C.M.Z.S., F.R.G.s., Mem. Geol. Soc. France, Corres. Imp. Roy. Geol. Inst. Austria, Mon. Mem. N.Z. Inst. Cor. Mem. Roy. Soc. Inst. Austria, Hon. Mem. A.Z. Inst. Coll. Mem. Roy. Soc.

Tasmania, Fellow of St. Paul's College, Iice-President, Branthwaite, S't. Leonards, North Shore. Obiit, June 16, 1878.

1877
1874
1876
1876
1878
1878
1876
1856
1876
1874
1878
1859
1865
1869
1870
1877

1873
1876
1876
1875
1876
1877
1876
1878
1877
1856
1869
1878
1875
1875
Cape, Alfred J., Torfrida, Elizabeth Bar.
Chandler, Alfred, 185, Pitt-street.
Chatfield, William, 69, Pitt-strect.
Chisholm, Edwin, M.I)., M.R.C.S., L.S.A., Ee., Ashfield.
Christic, Wm., L.S., Hawthorn Lorlge, Glen Innes.

Clarke, William, E. S. \& A. C. Bank, Pitt-street.
Clay, William French, M.A., Cantab., M.D. Syd., M.R.C.S. Eng., Fellow of St. Paul's Coil., North shore.
Clune, Michael Joseph, M.A.,Lic. K. \& Q. Coll. Phys. Irel., Lic. R. Coll. Sur. Irel., 4, Hyde Park Terrace.
Codrington, John Fredk., M.R.C.S., E.; Lic. R.C. Plıys., L.; Lic. R.C. Phys., Edin., Orange.
Collie, Revd. Robert, Newtown.
Colquhoun, George, 3, Mona-terrace, Rusbcutters' Bay.
Colyer, John Lssher Cox, A.S.N. Cumpany, Sydney.
Comrie, James, Northfield, Kurrajong Heights.
Conder, Wm., Survey Office, Syduey.
Combes, Edward, M.L.A., Bathurst.
Cottee, Wm. Alfred, Spring-street.
P 1 Cox, James, M.D. Edin. C.M.Z.S., F.L.S., Hunter-street.
P 2 Cracknell, E. C., Superintendent of Telegraphs, Telegraph Office, George-street.
Creed, J. Mildred, M.R.C.S. Eng., Scone.
Croudace, Thomas, Lambton.
Cunningham, Andrew, Lanyon, Queanberan.

Daintrey, Edwin. Eolia, Randwick.
Dalgarno, John V., Telegraph Office, George-street.
Dansey, George Frederick, M.R.C.S. London, York and Margaret Streets, W ynyard Square.
Dangar, Frederick II., (Areenknowes, Darlinghurst.
Darley, Cecil West, Newcastle.
Darley, F. M., M.A., U'nion Club, Syiney.
Davidson, L. Gordon, M.D., M.C., Aberdeen, Goulburn.
Dean, Alexander, Eilizabeth-street.
Deck, John Feild, M.D., 251, Macquarie-strect.
Deffell, George II., Bay ficld, Woolwich Road, IIunter's Hill.
De Lissa, Alfred, Pitt-street.
De Lissa, S., 3, Barrack-street.
De Salis, The Hon. Leopold Fane, M.L.C., Cuppercumbalong, Lanyon.
De Salis, L. W., junr., Strathmore, Bowen, Queensland.

Elected.		
1873		Dibbs, George R., M.P., 131, Pitt-street.
1876		Dight, Arthur, Richmond.
1876		Dixon Douglas, Australian Club.
1875	P 5	Dixon, W. A. F.C.S. Fellow and Member Inst. of Chemistrs of Gt. Britain and Irel., Lecturer on Chemistry, School of Arts; Chemical Laboratory, School of Arta, Sydney.
1876		Docker, Ernest, M.A. Sydn., 134, Burton-strect. "
1876		Douglas, James, L.R.C.S. Edin., Hope Terrace, Glehe Road.
1876		Drake, William Hedler, Sherwood Serubs, Parramatta.
1873		Du Faur, Eccleston, Tr.R.G.S., Lands Othee.
1876		Eales, John, Duckenfield Park. Morpeth.
1876		$\underset{\text { Egrect. }}{\text { Egan, Myles, M.R.C.S. Eing., D, Hyde Park Terrace, Liverpoul- }}$
1874		Eichler, Charles F., M.D. Heidelberg, M.R.C.S. Eng., Bridgestreet.
1876		Ehdred. W. II., 119, Castlereagh-strect.
1878		Ellis, Thomas Augustus, C.E., 132, Pitt-street.
1876		Erans, George, solicitor, Pitt-strect.
18.6		Evans, Owen spencer, M.R.C.s. Eng., Darling-street, Balmain.
1877		Fache, Charles James, Cleveland House, Redfern.
1877		Fairfax, Edward R., 177, Macquarie-street.
1868		Fairfax, James R., Herald Otfice, Hunter-street.
1876		Firth, Rev. Frank, Weslevan Parsonage, Waverley.
1874		Fischer, Carl F., M.D., F.L.S., Soc. Zool. Bot. Vindob. Socins., 231, Macquarie-street.
1876		Fisher, Chas. Marshall, 132, Pitt-street.
1876		\dagger Fitzgerald, R. D., F.L.S., Surreyor General's Office.
1856		Flavelle, John, George-street.
1863		Fortescue, Gr., M.B. Lond., F.R.C.S., F.L.S., Lyons' Terrace.
1877		Fraser, A. C., 235, Albion-street.
1878		Fraser, Robert, 12, Barrack-stroet.
1875		Frazer, Ifon. John, M. L.C., York-street.
1876		Fran, Richard, M.R.C.S. Eng., Sydney Infirmary.
1876		Freehill, Bernard Austin, 130, Elizabeth-street.
1878		Fry, Elward H., 5, Verena Termee, Walker-street, Redfern.
1878		Fuller, Francis Juhn, St. Leonards, North Shore.

Ixvi

Eiected.

1877
1868
1877
1878
1878
1876
1878
1876
1875
1876

1876
1878
1859
1876
1876
1873
1878
1877
1875
1875

1864
1878
18.4

187
18%
1878
1878
187
1874
1876
1875
1877
1878
1878
1876
1878
18 ร9
1877
1876
1878
1868

Garnser, Rer. C. F., Christ Church Parsonage, Sydney.
P 1 Garran, Andrew, LIs.D. Syd., Herald Office, Hunter-street.
Garran, J. P., 130, Elizabeth-street, Sydner,
Gedye, C'harles Townsend, Eastbourne, Darling Point.
George, Hugh, Sydizey Morning IIerald Office.
George, W. R, 172, Castlereagh-strect.
Giblin, Vincent W.. Australian Joint Stock Bank, Sydney.
Gilchrist, W. O., Elizabeth Bay.
Gilliat, Henry Mlfred, Australian Club.
Gillman, Thomas Henry, B.A., C.M., M.D., Queen's Univ. Irel., Mast. Surg. Queen's Euir. Irel., 1, Clarendon Terrace, Hyde Park.
Gipps, F. B., 134, Pitt-strcet.
Goddard, William C., The Exelhange, New Pitt-street.
Croodlet. John H., George-street.
Goode, George, M.A., M.D., M. Ch., Trin. Coll., Dub., Enfield House, Camden.
Graham, Hon. Wm., M.L.C., Stratheam House, Waverley.
Grenves, W. A. B., Armidale.
Griffiths, Frederick C., Macquarie-street.

- Grifiths, G. Neville, The Domain, Sydney.

Grundy, F. H., 183, Pitt-street.
+Gurney, T. T., M.A. Cantab., Fellow of St. John's College, Cambridge, Professor of Mathematics and Natural Philosophy. University of Sylney.

Hale, Thomas, Gresham-strect.
Hall, Richard T., Seaton House, Crown-street, Surry Hills.
Hardy, J., Hunter-street.
Hargrave, Lawrence, 94, Epper William-street.
Harrison, L. M., Bell's C'hambers, Pitt-street.
P 1 Hart, Ludovico, Government Printing Office.
Haviland, E. Cyril, Civil Serrice, Fire Dock.
Hawkins, H. S., M.A., Balmain.
Hay, The Hon. Sir John, K.C.M.C., M.L.C., M.A. Glasgow,
President of the Legislative Council, Rose Bay, Woollahra.
Heaton, J. H., Town and Country Office, Pitt-street.
Helsham, Douglass, York's Terrace, Glebe.
IHenry, James, 754, Grorge-street.
Herborn, E. W. L., Victoria-street, Darlinghurst.
Herborn, Eugene, 318, Victoria-street, Darlinghurst.
Heron, Henry, solicitor, 49, Hunter-strect.
Hewett, Thomas Edward, Observatory, Sydney.
\ddagger Hill, Edward S., C.M.Z.S., Rose Bay, Woollahra.
Mindson, Lawrence, Careening Cove, North Shore.
P 1 Hirst, Geo. D., 379, George-strect.
Hodgson, Rev. E. G., M.A. Oxon., S.C.L., Tice-Warden of St. Paul's College, University.
Holt, The Hon. Thomas, M.L.C., The Warren, near Sydney.

Elected

Holrord, Arther Tadd, M.B. Cantal,, M.D. Edin, F.T.S., F.Z.S., F.R.G.S., Master-in-Equitr, Sherwond Scrubs, Parramatta.
P 1 Horton, Rev. Thomas. Ina Terrace, Woollahra.
Hume, J. K., Cooma Cottage, Tiss.
Hunt, Robert, F.G.s., Deputy Master of the Roval Mint, Sydnev.

Icely, Thos. R., Carcoar.
Innes, Sir J. George L., Kut., Darlinghur-t.

Jackson, Arthur Levett, Government Printing Offles.
Jackson, Henry William, L.R.C.s. Eilin., Lic. R. Phys.. Edin., 130, Phillip-street.
Jenkins, Richard Lewis, M.R.C.S., Nupenn Towere, Douglass Park.
Jennings, P. A.. Edgeclife Rond. Woollahm.
Jennings, W. E., B.A., Mining Department, Sydney.
Jones, James Aberdeen, Lic. R.C. Phys, Edin., Booth-street, Balmain.
Jones. Richard Theophilus, M.D. Sydn., L. R.C.P. Edin., Ashfield. +Jones, P. Sydner. M.D. Lond., F.R.C.S. Eng., College-street.
Jones. Edward Lilord, 345. (reurge-street, Sydnes.
Jones. James. Bathiurst-strect.
Jones, Griffith Eran Russell, B.A. Syd., 392, Cromn-street, Sury Hills.
Josephson, Joshua Frey, F.G.S.. I Iistrict Court Judge, Enmore Road. Newtown.
P 1 Josephson, J. P., 2533 , Macequaricontreet North. Joubert, Numa, Noumea.

Keele, Thos. Win., Harbours and Rivers Depmetment, Phillipstrect.
Keep, John, Broughton, Leichhardt.
Kennedy, Hugh, B.A. Oxon. Registrar of the Sydney University.
King, Philip G., William-street, Double Bay.
Kinloch, John, M.A., Hurlstone College, Ashfield.

Electce.		
1876		Knaggs, Saml. J., MI.D., Nerreastle.
1877		Knox, Elward, jun., Fioni, Double Rar.
1874		Knox, George, M.A., Cantub, King-stret.
1875		Knox, Edward, 24, Bridge-street.
1877		Kopieh, Gr., Telegraphi Department.
1878		Kretechmam, Joeeph ; care of Mr. Mess, Hunter-street.
1878		
1878		Kyngdon, Fred. II., M.D. Aberdeen; L.S.A., L.; M.R.C.S., E.; C.M., Aberdeen, North Shure.
1867	P 3	Lang, Rer. John Dunmore, D.D., M.A. Glasgow, Jamison-street. Obiit Aucust \& 1878
1876		Langlev, W.E., Heralul Office, Sviney.
18.1	P1	Latta, G. J., O'Connell-street.
1876		Laure, Louis Thos, M.D. Surg. Univ. Paris, 138, Castlereaghstreet.
1859	P 5	tLeibius, Adolph, Ph. D. Heidellerg, Senior Assayer to the Sydney Branch of the Roral Mint, Hon. Secretary.
1872	P 9	+ Liversidge. Archibald, F.C.s.: ; Fel. Inst. Chemistry of Gtt. Brit. and Irl.; F.G.s.; F.L.S.; F.R.G.S.; Assoc. Roy. Sch. Mines, Lond.; Mem. Phy. Soc. London; Mem. Mineralogical Soc. Gt. Brit. and Irel.; Cor. Memı Roy. Soc. Tras.; Cor. Mem. Senckenberg Institute, Frankfurt; Cor. Mem. Soc. d'Acclimat. Mauritius; Hon. Fel. Roy. Hist. Soc. Lond.; Mem. Min. Sor. of France ; Professor of Geology and Mineralngy in the L'niversity of Sydney, Hon. Secretary, Union Cluh.
1870		Tiring, Jolin, Marsalon, North Shore.
1874		Lloyd, George Alfred, F.R.G.S., O'Connell-street.
1886		Lord, The Hon. Francis, M.L.C., North Shore.
1877		Lord, George Lee, Woulloomoolon.
1878		Low, Hamilton, 139, Phillip-street.
1876		M'Carthy, W. F., solicitor, Pitt-atreet.
1876		M'Cullock, A. H., jun., 160̃, Pitt-street.
18%		M"Cutcheon, John Warmer, Assayer to the Syilrey Branch of the Hosyal Mint.
1878		MaeDonald, Ebenezcr, Oriental Bank, Sydney.
1859		MacDonnell, William, George-street.
1868		MacDonnell, William J., F.R.A.S., George-street.
1877		MacDonnell, Samuel, 326, Greorge-street, Sydney.
1876		M‘Guire, W. H., Telegraph Office, Greorge-street.

Electe:"
1876
1878
1872
1874
1876
1876
1876
1878
1873
1878
1877
1873
1876
1869
1878
1878
1872
1876
1876
1876
1875
1878
1877
1868
1873
1876
1876
1875
1875
1876
1878
1856

1872
1876
1876
1878
1865
1877
1877
1865
1876
1876

```
M'Kar, Dr., Chureh ITill.
+MacPherson, Ker. Piter, M.A., Bank-strect, East Maitland.
Mackenzie, Juhn, F.G.s., Examiner of Coal Fields, Neweantle.
Mackenzic, W. F., M.R C.S., Eng., Lyons' Terrace.
Mackenzie, Rer. P. F., Friendrille. Paddington.
Mackelar, C'has. Kimmorl, M.B., C'. M., Gilus., Lyons' Terrace.
Macharin, Henry Vorman, M.A., M.D. Univ. Edin., Lic. R. Coll. Sur. Eeflin., 1S̄̄, Macquarie-strect.
Maitland, Duncarn Mearns, junior.
Makin, G. E., Berrima.
Mallarky, Stephen. Cow mament Printing Offec.
Mann. John, Noutral Bay.
P4 Maming, Fames. Milson's Point, North Shore.
Mimning, Erederick Norton, M.I. Unir. St. And., M.R.C.S. Eng., Lic. Noc. Apoth. Lond., Gladesville.
Minnfield, (r.A., Pitt-street.
Marker, James, L.R.C.S., Irel., L.R.C. Phys., Ealin., Regentstreet.
Marklove, Robert J., 52, Pitt-street.
Marsden, The Right Rev. Dro, Bishop of Bathurst, Bathurst.
Marsh, J. M., Edgeeliff Road, Woollahm.
Marshall, Grorge, M.D. Unir. Glas., Lic. R. Coll. S. Edia.. Lyons' 'Terruce.
Martin, Rer. George, Princes-street.
Mathews, R. H., Mundooran.
Meilhan, Jules, Victoria Terrace, Victoria-stmet.
Merriman, James, Mayor of Sydney.
Metcilfe, Michael, Bridge-street.
Milford, E., M.D. Meitelberg, M.R.C.S. Eng., :3. Clarendon Terrace, Hyde Park.
Milford, S. F. F. Lands Office.
Millard, Kev. Menry Shaw, Newcastle Grammar School.
Moir, James, Margaret-strect.
P1 † Montefore, F.. L., Macleay-strect.
Montefiore, (forge W., k.G.S., 5, Greslam-street.
Montefore. Motavius L., Belgian Consul, Gresham-strept.
P2 Moore, Charies, F.L.S., Director of the Botanic Girdens, Botanic Gardens, Fice-President.
Morehead. R. A. A., 30, O'Connell-strect.
Morgan. Cusbr William, M.D. Brussels, L.R.C.P. Lond., 13\%, Castleragh-strcet.
Morgan, Allan Bradley, M.R.C.S. Eng., Lic. Mid. Lic. R. Coll thys. Edin. Ashenhurst, Burwood.
Morgan, T. C. L.R.C.S. F.tim., M.K. \& Q. Coll. Phys. Irelaml, 13\%, Castlereagh-street.
Morton, Rev. Carion, St. Peter's Parsonage, Woolloomooloo.
P 1 Morrell, G. A., C.E., Hist-strect.
Morris, William, F.F.P.S. Glas.\& F.R.M.S.L., 5\& Curlton Terrace, Wyntard Square, Sydney.
+Mullens, Josiah, F.R.G.S., 34, Hunter-street.
Murnin, M. L., Eisenfels, Nattai.
Murray, W. G., 52, Pitt-street.
Myles, Chas. Henry, Wymela, Burwood.
```

Elected,

Neild, John Cash, M.D. \& C.D., Berlin, M.R.C.S. Eng., Lic. Soc. Apoth. Lond., Elizabeth-street, Sydney.
Neill, William, City Bank, Pitt-street.
Neill, A. I. P., City Bank, Pitt-street.
Newton, John, Darling Point.
Nichol, D., 12 Barrack-strect.
Nilson, Aroid, Department of Mines.
Norton, James, solicitor, Elizabeth-street.
Nott, Thomas, M.D. Aberdeen, M.R.C.S. Eng., Ocean-street, Woollahra.
Nowlan, John, L゙nion Club and West Maitland.

Ogily, James L.,Oriental Bank, Sydney.
Olley, Rev. Jacob, Manly.
O'Reilly, W. W. J., M.D., M.C., Q. Univ. Irel., M.R.C.S., Eng., Liverpool-street.
Owen, The Hon. Robert, M.L.C., 88, Elizabeth-street.

Palmer, J. H., Legislative Aseembly.
Parbury, Chas., Union Club.
Partott, Thomas S., Ashfield.
Paterson, Hugh, Macquarie-street.
Paterson, Hugh, june., 247, Macquarie-street.
Paterson, James A., Lnion Bank, Pitt-street.
Paterson, Alesander, M.D., M.A., Hillcrest, Stanmore Road.
Pedley, Perceval R., 1, C'arlton Terrace, Wynyard Square.
Perkins, Henry A., Pembrook, Johnson-street, Balmain.
Phillip, H., Pacific Insurance Company.
Pickburn, Thomas, M.D. Aberdeen, Ch. M., M.R.C.S. Eng., 40, College-street.
Pile, George, 154, Pitt-street,
Poolman, F., Colonind Sugar Refining Co, Bridge-street.
Patts, J. H., Victoria-street, Ashfield.
Prince, Henry, George-street.

Elected

Quaife, Fredk. Harrison, M.D., Mast. Surg. Lnir. Glas., Piper. street, Woollahra.
Quirk, Rev. Dr. J. A.. O.S.B., LL.D., Syd., Lyndhurst College. Quirk, Rev. D. Placid, M.A. (Syd. U'niv.), Post Offee, Cook's River. Quodling, W. H., Burwood.

P $1 \not \ddagger$ Ramsay, Edward, F.L.S., Curator of the Australian Museum, College-street.
${ }_{+}{ }^{+}$Ratte, F., Noumea, New Caledonia.
Read, George H., Secretary to the Attorney General.
Read, Reginald Bligh, M.R.C.S., Eng., Paddington.
Read, Richard, M.D., Singleton.
Reading, E., Mem. Odont. Soc. Lond., Castlereagh-street.
Recer, J. D., Surveyor General's Office.
Renwick, Arthur, M.D.' Edin., B.A., Sydn., F.R.C.S. E., 295, Elizabeth-street.
Roberts, J., George-street.
P 3 Roberts, Alfrel, M.R.C.S. Eng., Hon. Mcm. Zool. and Bot. Soc. Vienna, Bridge-street.
Roberts, William, Australian Club.
Robertson, Thomas, solicitor, 91 Pitt-street.
Iobinson, His Excellency Sir Hercules, G.C.M.G., Gorernor of New South Wales, Government House.
Rogers, Rev. Edward, Rural Dean, Fort-strect.
P6 +Rolleston, Christopher, Auditor General, Castlereagh-street.
Rose, W., Union Club.
Ross, J. Grafton, 24, Bridge-strcet.
Rowling, Dr., Mudgee.
P $14 \nmid$ Russell, Henry C., B.A., Syd., F.R.A.S., F.M.S., Hon. Mem. S. Aust. Inst., Government Astronomer, Sydney Observatory, Hon. Treasures.

Sahl, Charles L., German Consul, Consulate of the Crerman Empire, Wynyard Square.
Saliniere, Rer. E. M., Glebe.
Samuel, The Hon. Saul, C.M.G., M.L.C., Gresham-street.
Schuette, Rudolf, M.D., Univ. Göttingen, Lic. Soc. Apoth. Lomd., 10, College-street.
P1 \ddagger Scott, Rev. William, M.A. Cantab., Hon. Mem. Roy. Soc. Vic., Gunning.
Scott, A.W., M. A. Cantab., Ferndale, South Head Road.

Elected.

1876 1877 1876 1876 1878

1875
1878
1876
1875
1877
1872

Sedgwick, Wm. Gillett, M.R.C.S., Eng., Newtown.
Selfe, Norman, C.E., Rockleigh. Balmain.
Sharp, James Burleigh. J.P., Clifton Wood, Iass.
Sharp, Heure, Green Hills, Adelong.
Sharp, Revd. W. Hey, M.A. Oxon., Warden of St. Paul's College, University.
Sheppard, Rev. G., Liverpool.
Skimer, J. H., B.A. Oxon., St. Palul's College, U'niversity.
Shields, John, M.R.C'S.. Eil., Viewforth, Bega.
Slade, GF. P., sulicitor, Bridie-street.
slattery, Thomas, Premier Terrace, 169, William-strect, Woolloomooloo.
Sleep, John S., 139, Pitt-street.
Sloper, Fredk. Frans, 360 , Liverpool-street.
P 5 +Smith, John, The Hon., C.M.G., M.D., LL.D., Aberdeen, M.L.C., F.C.S., Hon. Mem. Roy. Sore. Vic., Professor of Physies and Chemistry in the University of Syducy, 193, Macquariestreet, Vice-President.
Smith, Marshall, Onebrgamba, Neweastle.
Smith, Robt., M.A. Syd., Solicitor, Sydney.
Smith, John M Garvic, Ifunter-street.
Smith, R. S., Surreyor General's Office.
Smith, E. E., Fevereaux, Roslyn-street, Upper William-street, North.
Southey, H. E., Oaklands, Mittagong.
Stephen, Grorge Milner, B.A., F.G.S., Mpm. Geol. Soc. of Germany; Cor. Mem. Nat. Hist. Soc., Dresden; F.R.G.S. of Cornwall; 3 Cambridge Terrace, Newtown Road.
Stephens. William John, M.A. Oxom., 233, Narlinghurst Road.
Stopps, Arthur J., Surveyor General's Office.
Street, John Rendell, Birtley, Elizabeth Bay Road.
Strong, Wins. Edmumd, M.D., Aberdeen, M.K.C.S., Eng., Liverpool.
Stuart, Alexander, M.L.A., Sydney.
Stuart, Clarendon, Upper Willian Street South.
Suttor, The Hon. Wm. IIenry, M.L.A., Secetary for Mines, Cangouma, Bathurst.

Tarlor, Chns, M.D. Syd., M.R.C.S., Eng., Parmamatta.
Tayler, William George, F.R.C.s., Lomi., 219, Pitt-street.
P6 Tebbutt, John, F.RAS., Obserratory, Windsor.
Teunant, E. C., M R.C.s., Hourke-street, Dubbo.
P1 Thompson, H. A., O'Connell-street.
Thompson, Joseph. Bellevue Hill, Double Bay.
Thompson, Thos. James, Pitt-street, Syduey.
Thomas, H. Arding, Narellan.
Thomas, F. J., Hunter River N.S.N. Co., Market-strect.

Electer:

1876
1876
1876
1873
1876
1877
1868
1875
1875

1874

1867
1870
1867
1877
1876
1876
1876
1877
18.59

1876
1876
1867
1878
1878
1877
1874
1875
18.7
$18 \% 6$
1870
1874
1876
1878

Thomas, Wra. Smith, M.R.C.S., Eng., Wollongong.
Tibbits, Walter Hugh, Dubbo.
Toohey, J. T., Melrose Cottage, Cleveland-street.
Trebeck, Prosper N., George-street.
Trouton, F. H., A.S.N. Company's Offices, Sydney.
'Tucker, G. A., Ph. D., Superintendent, Bay View Asylum, Cook's River.
Tucker, William, Clifton, North Shore.
Tulloh, W. H., Margaret-street.
Turner, G., 3 Fitzroy Terrace, Pitt-street, Redfern.

Vessey, Leonard A., Survey Office.
Vose, Houlton H., Union Club.

Walker, Philip B. Telegraph Office, George-street.
Wallis, William, Moncur Lodge, Potts Point.
Ward, R. D., M.R.C.S. Eay., North Shore.
Warren, William Edward, M.D., M.R.C.S., 281, Elizabeth street, Sydney.
Waterhouse. J., M.A. Syd., Perkin-street, Neweastle.
Watkins, John Leo, B.A. Cantab., M.A. Syd., Randwick.
Watsom. C. Russell. M.R.C.S., Eng., Camden Terrace, Newtown.
Watt, Alfred Joseph, Ashfield, Parramatta Road.
Watt, Charles, New Pitt-street.
Waugh, Isaac, M.B., M.C., T.C.D., Parramatta.
Webater, A. S., Union Club.
Weigall, Albert Bythesea, B.A. Oxon.. M.A. Syd., Head Master of the Sydney Grammar School. College-street.
Welch, Edward Wm., St. Olives, Bondi.
Westgath, G. C., solicitor, Pitt-street.
Weston, W. J., Union Club.
White, Rer. Janes S., M.A., I_L.D.. Syd., Growrie, Singleton.
White, Mon. Tames, M.L.C.. Cranbrook, Double Bay.
White, Ret. W. Moore, LL.D., Arthursleigh Terrace, Elizabothstreet.
Windever, W. C., M.A., Syd., M.L.A.. King-strect.
Wise, George Foster, Immigration Office, Hyde Park.
Wilkinson, C. S., F.G.S., Gorernment Geologist, Department of Mines.
Wilkinson, Henry Toller, Department of Mines.
Wilkinson, Her. Namuel, 5, Argyle Terrace, Pitt-street, Redfern.

xxxiv

Hovorary Members.

Elected, August, 1875.
Agnew, Dr., Hon. Secretary, Royal Society of Tasmania, Hobart Town.
Barlee, The Hon. F., late Colonial Secretary of Western Australia.
Bernays, Lewis A., F.L.S., Vice-President of the Queensland Acclimatization Society, Brisbane.
Ellery, Robert F., F.R.S., F.R.A.S., Government Astronomer of Victoria, Melbourne.
Gregory, Augustus Charlez, F.R.G.S., Surveyor General of Queensland, Brisbane.
Haast, Dr. Julius von, Ph. D., F.R.S., F.G.S., Gorernment Geologist and Director of the Canterbury Muscum, New Zealand.
Hector, James, C.M.G., M.D., F.R.S., Director of the Colonial Museum and Geological Survey of New Zealand, Wellington.
$\mathbf{M}^{\text {c Cov }}$, Frederick, F.G.S., Hon. F.C.P.S., C.M.Z.S., Professor of Natural Science in the Melbourne University, Government Palæontologist, and Director of the National Museum, Melbourne.
Müller, Baron Ferdinand von, C.M.G., M.D., Ph. D., F.R.S., F.L.S., Government Botanist, Melbourne.
Schomburgif, Dr., Director of the Botanic Gardens, Adelaide, South Australia.
Waterhouse, F. G., F.G.S., C.M.Z.S., Curator of the Muscum, Adelaide South Australia.
Woods, Rev. Julian E. Tenison-, F.L.S., F.G.S., Hon. Mem. Roy. Soc., Victoria, Hon. Mem. Roy. Soc., Tasmania, Hon. Mem. Adelaide Phil. Soc., Hon. Mem. Linnean Soc., \&c., Union Club, Sydney.

Elected, 6 December, 1876.
Cockle, His Honor Sir James, Chief Justice, M.A., F.R.S., Brisbane, Queensland.
De Konince, Prof., M.D., Liège, Belgium.
Elected, 1 May, 1878.
Waleer, Thomas, Yaralla, Concord.

Obituary, 1878.

Bected.

1876. Bennett, Samuel, Little Coogee.
1877. Clarke, Rev. W. B., M.A., F.R.S., F.G.S., \&c., V.P.
1878. Lang, Rev. John Dunmore, D.D., M.A., Glasgow.
1879. Macafee, A. H. 0.

ANNIVERSARY ADDRESS.

By Christopher Rollestov, Esq., Vice-President.

[Delivered to the Royal Society of N.S.Wr., 1 Mcry, 1878.]

Gentlemen,

The absence of our highly esteemed Senior Vice-President must be a subject of great regret to all of you, more particularly when it is known that his absence is not a matter of choice, but of necessity, forced upon him by failing health, and it is especially so to myself, upon whom devolves the duty of opening this year's Session. I may venture to say that nothing has conduced more to the success of the Royal Society, and rendered its meetings at the sarne time both instructive and popular, than meeting under the presidency of a gentleman of such varied scientific attainments and general mental accomplishments as are concentrated in the person of the Rev. W. 13. Clarke.

Whilst the Institution affords ample scope for every class of workers amongst us-for the man of reading as well as the geologist or naturalist--the laborious collector of facts must always hold the first rank amongst us; and foremost in this rank stands the name of our venerable Vice-President, whose researches into the geological formation of this country would fill rolumes, and whose contributions to this Society have done so much to illustrate the Natural History of Australia.

In a new country like this, whilst we may not, perhaps, look for great original thinkers or investigators of the calibre of Darwin, Tyndall, or Huxley, we may bo well satisfied to have amongst us so accomplished a geologist as Mr. Clarke; and although it may be true that his unobtrusive labours in the field of science have not met with that public recognition to
which, in the opinion of his friends and admirers, their importance entitles them, I renture to suggest that this arises rather from the lack of scientific knowledge amongst us than from any lack of generous sympathy or appreciation of the services which he has rendered to the country. But however this may be, it must be as gratifying to our venerable friend as to ourselves to know that his labours have met with flattering commendation from the most cminent men of science in Europe - that his name has been enrolled in the list of Members of some of the chief Scientific Societies of the Mother Country, and occupies a high place amongst the leading geologists of the day. I should particularly mention the honor conferred upon Mr. Clarke in the year 1876, by the Royal Society of England, in his election to a Fellowship-first, for valuable geological work in classifying the rocks of New South Wales; secondly, for services rendered in the discovery and development of gold-fields; thirdly, for his contributions to knowledge, anounting to upwards of fifty, published since 1526, in the Journals of the Geological and Metcorological Societies, and elsewhere; and, fourthly, for the important part taken by him in the re-founding of the Royal Society of New South Wales, and in the promotion of scientific knowledge in the Colony. Here we have an epitome of Mr. Clarke's valuable labours in the cause of science, as set forth in the "Journal of the Royal Society of England," which stamps him as a man of whom the Colony has reason to be proud.

The spread of a taste for scientific inquiry is one of the leading objects of our Society. With this view the different Sections hold their mectings, and with what degree of success may be gathered from the records of their proceedings published in the Society's Journal for the past year. Doubtless we are all of us, each in his own sphere, anxious to promote this object, and to direct our efforts to make the Institution the rehicle of practical rather than theoretical science. Those who can collect facts will communicate them to the Society, so as to give value and interest to its proceedings; and those who, like myself, have no special scientific knowledge will endeavour to combine those general
scientific facts which may come within the range of their observation, or which can be collected from scientific literature in a form to enlisen our meetings, and to make them at the same time both attractive and instructive.

In order, then, to keep alive an interest in all the higher branches of science, we must not allow to pass unheeded the great discoverics and expansions of thought which characterize the age in which we live, and which in Europe as well as in America are traversing the realms of nature at greater depths than have hitherto been sounded, and continually stirring up to greater efforts the inquiring intellects of the master-minds of the present gencration. In pursuance of this view. I propose to lay before you to-night a slight sketch of the progress of science during the past year, in those phases of it which will interest not scientific men only, but all who regard with general interest the investigations and discoreries which mark the stirring times in which our lot is cast.

Foremost, I think, in point of interest is the Telephone of Professor Graham Bell, which may be claimed as a British invention. Mr. Bell, a native of Edinburgh, originated the idea whilst enaged in the work of teaching the deaf and dumb to speak, in Boston, United States. His researches began with the production of musical sounds by means of electrical telephony. It is generally supposed that the dumb are mute because they are deaf, and that when they know how to regulate the action of their vocal organs they can articulate with comparative facility. In his attempts to perfect his system of teaching it occurred to Mr. Bell that if, instead of presenting to the eye of his pupils a system of symbols, he could make visible the vibrations of the air, a great step would be gained in teaching them to articulate. To this end Mr. Bell directed all his energies. Employing apparatus by which he had been producing undulatory currents of electricity for the purpose of multiple telegraphy, Mr. Bell attached a rod loosely by one extremity to the uncovered pole of a magnet, and fastened the other extremity to the centre of a
stretched membrane of gold-beater's skin. He supposed that upon speaking in the neighbourhood of the membrane it would be thrown into vibration, and cause the steel rod to make a corresponding motion, thereby occasioning undulations in the electrical current that would correspond to the vibrations in the density of the air during the production of sound; and further, that the change in the intensity of the current at the recciving end would cause the magnet there to attract its rod so as to copy the motion imparted to that at the acuding end.

Mr. Bell's first experiments were not altogether successful, but, perserering in his efforts, he at last produced a model which consisted of a permanent magnet with a coil of wire round it, and an iron plate in front, which produced audible results. The vibration of the voice caused the vibration of the iron phate, that vibration produced a current of electricity, the current of electricity caused a variation of porrer in the magnet in the distant instrument ; the variation of power in the distant magnet caused the iron plate in front of the magnet to vibrate, and that vibration produced a sound. Thus the voice was converted into electricity at one end, and clectricity becane voice at the other ond.

Such was the instrument that Mr. Bell sent to the Centennial Exhibition at Philadelphia, and the following is the official report of Sir William Thomson upon it:-"Mr. Alexander Graham Bell exhibits apparatus by which he has achieved a result of transcendent scientific interest-the transmission of spoken words by electric currents through a telegraph wire. To obtain this result, Mr. Bell perceived that he must produce a variation of strength of current in the telegraph wire as nearly as may be in exact proportion to the velocity of a particle of air moved by the sound, and he invented a method of doing so-a piece of iron attached to a membrane, and thus moved to and fro in the neighbourhood of an electric-magnet-which has proved pertectly successful. The battery and wire of this electro-magnet are in circuit with the telegraph wire and the wire of another electromagnet at the receiving-station. This second electro-magnet has
a solid bar of iron for core, which is connected at one end by a thick dise of iron to an iron tube surrounding the coil and bar. The free circular end of the tube constitutes one pole of the electro-magnet, and the adjacent fiec end of the bar core the other. A thin circular iron disc, held pressed against the end of the tube by the clectric-magnetic attraction, and free to ribrate through a very small space without touching the central pole, constitutes the sounder by which the electric effect is reconverted into sound. With my ear pressed against this disc I heard it speak distinctly several sentences. * * * I need scarcely say I was astonished and delighted; so were others, including some judges of our group who witnessed the experiments and verinied with their own ears the electric transmission of speech. This, perhaps, the greatest marvel hitherto achieved by the electric telegraph, has been obtained by appliances of quite a homespun and rudimentary character. With somewhat more adranced plans and more powerful apparatus, we may con fidently expect that Mr. Bell will give us the means of making voice and spoken words audible through the electric wire to an ear hundreds of miles distant."

Inspired by so flattering a rerdict, Mr. Bell returned to his experiments with renewed enthusiasm, and in 1573 he subjected his instrument to a series of experiments in America, of which, if not greatly exaggerated, the accounts we have received are perfectly astounding. We read of concerts being heard at places forty-three miles distant, and telephonic communication being carried on between Boston and New York, a distance of 250 miles. The first practical application of the telephone is stated to hare been made in May, 1877, by the Water Board of Cambridge, in the State of Massachusetts, who established telephonic communication with the waterworks at Freshpond, in order to facilitate the sending of messages. Now more than 500 houses in New England hold telephonic communication, and more than 3,000 telephones are said to be in operation in the United States.

The invention was introduced into England last year, where it has reccived marked attention. Telephonic communication has been established between the mainland and Jersey. Several business houses have been connected with the private residences of their principals, whilst at the Prescott Colliery, near Liverpool, remarkable sucecss has attended some experiments made under the superintendence of Sir W. Thomson. In these experiments 600 yards of ordinary electric wire were used, the end in one instance being at the bottom of the pit, while the other end, to which the tubes or trumpet-like orifices, which resemble ordinary stethoscopes, were attached, were brought into the office of the Company, some distance from the pit's mouth. While one of the Government Colliery Inspectors and others went to the bottom of the pit, the majority of the audience remained in the office. Complete success crowned the experiment-which was merely to test the telephone as a means of communication. Questions asked in the office were answered instantaneously from the pit-cren the cheering of the colliers at a distance from the instrument was distinctly heard. The telephone was afterwards applied to test the rentilation of the mine, and so adjusted in comection with the air-measurer in the mine, that the overseer above ground could ascertain at once at what rate of current the air was ruming in the mine. It is hardly possible to conceive a greater bencfit to colliers than this discovery entails. Sir William Thomson expressed his own amazement at the great improvement which the instrument had undergone since he tested it at Philadelphia, and stated that if such admirable results had been accomplished by the telephone while still in embryo, what may not be hoped from the future?

At the meeting of the British Association in Plymouth, in August last, Professor Graham Eell himself explained the processes by which the telephone had been brought to its present state. He stated that it had been evolved from a study of the mechanism of the human ear. What ultimate form it might yet assume he did not know; it was as yet only in its embryo state; experiments and investigations were still being carried on by
himself and other scientific friends. Mr. Precce conducted some experiments on the same occasion by placing the meeting in connection with the Guild Mall, and in a very short time a verse of " God sare the Queen," as played on a harmonium, was distinctly heard. A song, with chords, was afterwards played, which was clearly heard by numbers of the audience seated near this instrument. But Mr. Bell stated in reply to a question that the report that a concert had been heard in America by means of the telephone was not correct. We may not unreasonably hope that our able Superintendent of Electric Telegraphs will farour this Society with some experiments in connection with this remarkable instrument during the course of the present session.

In the month of December Professor Tyndall communicated to the Royal Society the results of cerlain experiments made by him in relation to "spontaneous generation," which had been confirmed by further experiments during a summer residence in the Alps. This question has for years been one of interest and experiment by men of science; but it appears now to be determined that the theory of spontaneous generation of infusoria-the lowest forms of which, called bacteria, are the known agents of putrefaction-must be abandoned. The method by which boiling has been employed to destroy germs in the infusion used has been thoroughly tested. The difficulty of killing germs in the infusions, and the difficulty of being sure that the infusions were opened in air free from serms, appear to have led to the belief in spontaneous gencration and to the early mistakes in connection with the subject. In a lecture before the Royal Institution, in June last, Professor Tyndall showed that oxygen was necessary to the life of these low organisms. Hence the idea of sterilizing the infusions by depriving them of air. This was done with perfect success. Subjecting an infusion for four or five hours to the action of the Sprengel pump, and afterwards to one minute's boiling, with a view to extinguish its already expiring life, germs were completely destroyed. A minute thus accomplished what three hundred minutes in the
presence of air had failed to accomplish. Nor is the effect here mentioned to be ascribed to a mere suspension of the life of the germs. They are deprived of life when they are deprived of air; for when after a sufficient time germless air is restored to the infusions it fails to revire them. There is a singular similarity between the vital actions of these lowest organisms and those of the highest. Pribation of oxygen st:fles both hizh and low, and excess of oxyren poisons buth. Professor Tyudall coucludes by saying that he is led inexorably to the conclusion that no evidence of "spontaneous gencration" exists, and that in the lowest as in the highest of organized creatures the method of nature is that life shall be the issue of antecedent life. A perusal of Professor Tyndall's paper on the subject, contributed to the Nineteenth Century Revieu, in January last, will well repay any one who will take the trouble to look it up. Professor Sanderson, who at one time favoured the belief in the possibility of spontancous generation, has since announcel himself as entirely in accord with Professor Tyndall on the general question.

The important researches of Mr. Dallinger and Mr. Drysdale on the origin and development of minute and low forms of life, which were communicated by Mr. Dallinger to the Royal Institution in May last, being closely allied to the question of spontaneous generation, call for passing notice. After years of special training for the work, these gentlemen watched in turns through a powerful microscope the whole life and reproluction of a monad. The largest specimens examined by them were the one-thousandth of an inch when young, and four-thousaudths of an inch when adult. The spores were so small that it required a magnifying power of 5,000 diameters to see them as they began to grow. Among other points of interest, they observed that while it was possible for monads to live with a gradual change of temperature from 45° to 125°, any sudden increase of heat was fatal ; and that, whilst adults could stand 140°, the spores could live for ten minutes in a temperature of 300°.

In December last, Professor Stokes communicated to the Royal Society some of the latest investigations of the radiometer, and set
forth in his paper the many difficulties which surround the problem -a problem which, involving the consideration of so many apparent anomalies, seems to suggest the need for re-examination of some of the accepted theories in physics. Most of us are familiar with the small glass racuum bulbs enclosing the rotating dises, which are shown in the windows of philosophical instrument makers, and no doubt many hare noticed the greater rapidity of rotation when much light is thrown upon them than when there is little light. When the instrument was first invented it was thought to be conclusively shown that the rotation resulted from a hitherto unknown mode of action of light. The fact that the light of a candle would cause a radiometer to rotate, even when the light was passed through a solution of alum, which is believed to stop all radiant heat, was put forward as a triumphant proof that an important discovery with regard to light had been made. A multitude of experiments were, however, soon brought to demonstrate that heat unaccompanied by light would produce the same results. The theory of the mechanical action of light had therefore to be given up, and many and various experiments were marde to solve the question of "repulsion resulting from radiation." Mr. Stoney gave the results of his experiments to the Royal society in connection with the question; and subsequently Mr. Crookes, in April, 187万, exhibited to the same Society a form of radioneter differing so far from the ordinary instrument that he proposed to give to it the name of "otheoscope." In the radiometer the alteruate sides of the dises of the fly are bright and dark; in the otherscope the heater is stationary, and the cooler rotates. In the radiometer the glass bulb is an essential part of the machinery, for without it the fly woulid not more. In the othenseope Mr. Crookes believes it is only useful to preserve the requisite amount of rarefaction. The unsolved mesteries which still enshroud it give to the radiometer an interest second to none amongst the scientific problems of the present day.

I dare say most of you may remember the risit of H.M.S. "Challenger" to this port, and some of you may
have had the pleasure of becoming acquainted with Mr . Moseley, the naturalist, on board that ship. In the early part of the past year that gentleman published a very interesting paper on the colouring matter of various animals, especially of deep sea forms, in which are mentioned some interesting facts referring to light in occan depths. At a depth of 60 fathoms it has been proved that light has no effect on sensitized paper, and it is considered probable that at a depth of from 1,000 to 2,000 fathoms solar light has no effect. At a depth of 450 and 490 fathoms respectively, two blind decapod crustaceans were dredged up in the " Challenger" expedition; and other forms without the eyes posscssed by their shallow water congeners were found at various depths. Other animals, however, living in very deep water, were found to have very large eyes; hence it seems to Mr. Moseley fair to infor that some kind of light must exist. He mentions that all the deep-sea alcyonarians dredged up were highly phosphorescent, and suggests that there are probably large areas peopled by these ; so that there may probably be illuminated patches in the ocean with dark tracts between. He further threw out this interesting idea,--that it is quite conceivable that animals may exist to which obscure heat rays may be visible, and to such eren men and animals generally would appear constantly luminous.

The periodicity of Indian famines has been another subject of importance which has engaged the attention of the learned in investigations of this nature. The question between these and the sun spot period has been discussed, but the theory has yet to be worked out to a practical conclusion. The theory is that the rainfall rises and falls as the sun spots increase or decrease, and that the minimum of the solar spots is the period of the maximum sun heat, which prevents the atmospheric water supply condensing into rain clouds. A trained observer has been sent out to India to arrange for the taking of daily photographs of the sun, and we may know more by and by as to the merits of this problem. This is a question so full of interest to ourselves that I dare say our own able and indefatigable

Astronomer may have had his attention directed to the subject; and if so we may hope to be favoured with the results of his obscrvations before the present session of our Society closes.

The Astronomer Royal has during the past year issued a report on the Transit of Venus Expeditions, and intimated that when the photographs of this transit have been measured and worked out another report may be required. The observations of our own Astronomer were, it is well known, amongst the most valuable of the contributions offered towards the solution of the problem of the earth's distance from the sun, and the result of the working-out of the caiculations gires the mean distance as equal to $93,300,000$ miles.

Mr. Pomane's observations on the nerves of jelly-fish, communicatel to the Royal Institution in May last, were a raluable contribution in the direction of our knowledge on the erolution of nerve and nerve systems, possessing additional significance when considered in connection with Mr. Mcrbert Spencer's "Principles of Psychology"; whilst the studies of Mr. Osborne Reynolds, on vortex motions in fluids, which were communicated to the Physical Society, and which may be illustrated by puffing rings of smoke into the air, will, it is believed, when further carried out, afford many raluable data in shipbuilding, as well as in other ways. His communication to the British Association "On the difference of the steering of steamers with the screw reversed when under full way and when moring slowly," is specially valuable to such a maritime country as Great Britain.

But I must not attempt to pursue this interesting inquiry further to-night. It would be impossible within the limits of an address of this kind to follow out and bring under notice the progress that has been made in all the departments of science in the Mother Country, and I must now return to matters of local concern calling for notice at my hands. In the first place, I should call attention to the work that has been done by our own Sections towards the promotion of the
scientific objects of the Society. It is both interesting and important, covering as it does the fields of-1. Astronomy and Physics; 2. Chemistry and Mineralogy; 3. Geology and Palæontology ; 4. Botany ; 5. Microscopical Science ; 6. Geography and Ethnology; 7. Literature and Fine Arts; 8. Medical Science; 9. Social and Sanitary Science. Good work has been done in nearly all of these Sections, for particulars of which I must refer you to the Journal of the Society.

In addition to the interesting address delivered by your late Vice-President (Mr. H. C. Russell) at the opening of the session of 1877, seventeen papers were communicated to the Society, which will be found at length in the Jcurnal of the Society's proceedings. Of these papers perhaps the most noteworthy are those of Mr. Tenison Woods:-1st. On "the Tertiary Deposits of Australia." 2nd. On "the palæontological evidence of Australian Tertiary formation"; and 3rd. On "some Australian Tertiary Corals." And next to these, the two papers by the Rev. W. B. Clarke, on "Dromornis austratis, a new fossil gigantic Bird of Australia," and "Sthenu'us minor, a new fossil extinct species of Kangaron,"-as illustrative of the geological history of animal forms long since passed away-are full of interest to the palæontologist. Professor Huxley, in a lecture delivered at the Royal Institution last year on "the History of Birds," says that there is not one of the distinctive characteristics of birds as they now exist but has to be given up as a characteristic in looking at fossil forms. How true this may be of the fossil remains discovered in Australia further researches may be necessary to determine. He further says that the discoveries to which he alluded, if they did not indicate the actual gradation between birds and reptiles, did show the intermediate forms that had existed.

The report of the Council which has been read to you by the Honorary Secretary, dealing, as it does most fully, with all the details of the Society's position and progress during the past rear, relieres me of the duty of laying
these matters before you; but I cannot help noticing the munificent gift of Mr. Thomas Walker towards the Building Fund of our contemplated new Home. This instance of liberality on the part of a gentleman not bound to us by membership ought to animate us with greater zeal in the cause we have in hand, and instigate us to greater efforts to secure for the Society a permanent habitation.

In his last address the Rev. W. B. Clarke laid great stress upon the obtaining of a Charter for the Society, and I may venture to say that the announcement that has been made to-night will afford to him in his sick room the pleasing prospect of a speedy accomplishment of his aspirations in that behalf. Whether the Home should precede the Charter or the Charter should precede the Home has been a moot point amongst us. We now see an early prospect of obtaining the one, and can have no difficulty, I apprehend, whenever we see fit to apply for it, in obtaining the other. But whilst the one and the other will give stability to the Society, we must never forget that, upon the individual efforts of its members to collect facts and to supply information in a manner to attract attention and to stimulate thought and discussion, rest the popularity, the usefulness, and the success of the Institution.

And now gentlemen, before closing this address, I will ask you to farour me with your further attention for a few minutes, whilst I submit to your notice a very remarkable and interesting piece of information contributed by Mr. Henry Bessemer to the Times newspaper, in the month of January last. It is headed 'A Billion dissected." Few, if any of us, are I dare say aware of the vastness of the quantity expressed in that little word, and, as I have not seen the information reproduced in this Colony, I make no apology for appending it to my address, being assured that you will not grudge the time occupied in listening to its very remarkable revelations.

He says: "It would be curious to know how many of your readers have brought fully home to their inner consciousness the
real significance of that little word 'billion' which we have seen of late so glibly used in your columns. There are, indeed, few intellects that can fairly grasp it and digest it as a whole ; and there are, doubtless, many thousands who cannot appreciate its true worth eren when reduced to fragments for more easy assimilation. Its arithmetical symbol is simple and without much pretension; there are no large figures-just a modest 1 followed by a dozen ciphers, and that is all. Lict us briefly take a glance at it as a measure of time, distance, and weight.
"As a measure of time, I would take one second as the unit, and carry myself in thought through the lapse of ages back to the first day of the year 1 of our era, remembering that in all those years we have 365 days, and in every day just 86,400 seconds of time. Hence, in returning in thought back again to this year of grace 185\%, one might have supposed that a billion of seconds had long since elapsed; but this is not so. We have not even passed one-sixteenth of that number in all these long eventful years, for it takes just 31,687 years 17 days 22 hours 45 minutes and 5 seconds to constitute a billion of seconds of time.
"It is no easy matter to bring under the cognizance of the human eye a billion objects of any kind. Let us try in imagination to arrange this number for inspection, and for this purpose I will select a sovereign as a familiar object. Let us put one on the ground and pile upon it as many as will reach 20 feet in height; then let us place numbers of similar columns in close contact, forming a straight line, and making a sort of wall 20 feet high, showing only the thin edges of the coin. Imagine two such walls running parallel to each other and forming, as it were, a long street. We must then keep on extending these walls for miles-nay, hundreds of miles, and still we shall be far short of the required number. And it is not until we have extended our imaginary strect to the distance of $2,386 \frac{3}{2}$ miles that we shall have presented for inspection our one billion of coing.
"Or in lieu of this arrangement we may place them flat upon the ground, forming one continuous line like a long golden chain, with every link in close contact. But to do this we must pass over land and sea, mountain and valley, desert and plain, crossing the Equator, and returning around the southern hemisphere through the trackless ocean, retrace our way again across the Equator, then still on and on, until we again arrive at our starting point; and when we have thus passed a golden chain around the huge bulk of the earth we shall be but at the beginning of our task. We must drag this imaginary chain no less than 763 times round the globe. If we can further imagine all these rows of links laid closely side by side and every one in contact with its neighbour, we shall have formed a golden band around the globe just 52 feet 6 inches wide; and this will represent our one billion of coins. Such a chain, if laid in a straight line, would reach a fraction orer $18,328,445$ miles, the weight of which, if estimated at ${ }_{4}^{2} \mathrm{oz}$. each sovereign, would be $6,975,447$ tons, and would require for their transport no less than 2,325 ships, each with a full cargo of 3,000 tons. Even then there would be a residue of 447 tons representing 61,081,920 sovereigns.
"For a measure of height let us take a much smaller unit as our measuring rod. The thin sheets of paper on which these lines are printed, if laid flat and firmly pressed together in a well-bound book, would represent a measure of about 1-333rd of an inch in thickness. Let us see how high a dense pile formed by a billion of these thin paper leaves would reach. We must, in imagination, pile them rertically upward, by degrees reaching to the height of our tallest spires; and passing these, the pile must grow higher, topping the Alps and Andes and the highest peaks of the Himalayas, and shooting up from thence through the fleecy clouds, pass beyond the confines of our attenuated atmosphere, and leap up into the blue ether with which the universe is filled, standing proudly up far beyond the reach of all terrestrial things; still pile on your thousands and millions of thin leaves, for we are only beginning to rear the mighty mass. Add millions on
millions of sheets, and thousands of miles on these, and still the number will lack its due amount. Let us pause to look at the neat ploughed edges of the book before us. See how closely lie those thin flakes of paper, how many there are in the mere width of a span, and then turn our eyes in imagination upwards to our mighty column of accumulated sheets. It now contains its appointed number, and our one billion of sheets of the Times superimposed upon each other and pressed into a compact mass has reached an altitude of 47,348 miles.
"Those who hare taken the trouble to follow me thus far will, I think, agree with me that a billion is a fearful thing, and that few can appreciate its real value. As for trillions and quadrillions, they are simply words, mere words, wholly incapable of impressing themselves on the human intellect."

I think you will all agree with me that the moral conveyed in this communication is not the least interesting nor yet the least instructive feature in it.

Tasmanian Forests: their Botany and Economical Value.

By Ref. Julian E. Tenison-Woods, F.G.S., F.L.S., IIon. Mem. Roy. Soc. N.S.W., Victoria, Tasmania, Adelaide Philosophical Soc., \&c., \&c.

[Read before the Royal Society of N.S.W., 5 June, 1878.]

In February, 1874, I visited Tasmania for a missionary tour throughout the island, and for nearly three years traversed its various districts. I had thus an opportunity of becoming acquainted with all the inhabited portions, except the north-west and two or three places on the east coast. I sometimes resided for weeks together in some localities, and on the south coast made frequent journeys on foot amongst the splitters and fishermen on that part of the island. These journeys gave me leisure for observation, and I was able in some small degree to increase the knowledge of Tasmanian natural history. Many of the notes made have been published, and some I hope still to place in an arailable shape before the public. Some are of a strictly technical character, but some hare a more simple and popular aspect. Such, for instance, are the notes made upon the forests and timber resources, and I renture to think it may be worthy of a place in the Royal Society's proceedings if I bring before them what I have been able to note on this subject. It is well known that Tasmania has in its timber one of its very great industrial resources, and a more intimate knowledge of what these are cannot fail to be of service to the public.

Tasmania may be said generally to be a thickly timbered country. With the exception of the table-lands and the slopes between the main ranges and the sea, the soil is usually clothed with forest. But these forests are not the timber-producing forests of the islands. These are confined to a few localities, and are limited in extent. They are only found in the narrow deep gorges and gullies proceeding from some of the highest mountains. They do not appear to be confined to any particular soil, though some of the best are found on modern (Tertiary) basaltic rocks; neither are they confined to any particular height above the sea level. The fine timber near the Mill-house Falls grows in gullies 1,000 feet and more above the sea, while the forests on
the banks of the Huon and Kermandee descend right down to the beach. The aspects of these forests are most peculiar, and quite different from the thickly timbered country of other parts of the island. The regetation is dense and almost tropical in character. The most conspicuous objects are the tall and tapering blue gum trees, by which name I shall always refer subsequently to the Eucalyptus globulus. They grow so close together as quite to shut out the prospect, but so straight and wand-like that the slim lines of bark look like fine ornamental graining. They are of immense height; 200 feet without a branch is not at all uncommon, and there are very many trees ranging from 300 to 400 feet high. Long bands of bark hang down from their sides and across their branches, and these when set in motion by the wind keep up a constant rattle and creaking, filling the gloomy forest with the strangest echoes and sounds. The great height of the trees would never be imagined from the aspect they present. As they always grow on very steep slopes and never crown the summit of the ridges, their height is lost against the adjacent ranges. It is only when standing at the foot of their moss-covered stems, where the roots rise gracefully up around from the buttress-like base, twisting and turning round the bole like massive moorings, that one gets an inea of their enormous size. Far above one's head, twinkling in the daylight, which contrasts so strongly with the sombre green atmosphere around, a moderate tuft of leaves is seen at the summit of the graceful yot massive stem. The branches look nothing beside the butt, and in reality the effect of the crown with the straggling branches and ragged untidy strips of bark is disappointing and insignificant. Here the true rugred character of the Eucalyptus asserts itself, which is in the strongest contrast to the regularand so extremely graceful stem. Beside the E. globulus there is always a very dense growth of other but smaller trees. In Tasmania it is generally what is called sassafras (Atherosperma moschatum), muskwood (Ole(tria argophylla), beech (Fagus cunninghami), pine (Frenela rhomboidea). Underneath this there is always an almost impenetrable scrub of pear tree (Pomaderris elliptica), stinkwood (Ziera smithii), varied with fern trees, rarely any other than Dicksonia antartica, with an undergrowth of Lomaria patersoni, \&e. Sometimes the forest is a little changed in appearance by a dense growth of Bedfordia salicina, Olearea rosmarinifolia, Senecio lautus, australis, and velleioides, Olearea viscosa* and glandulosa, Aster ramulosus, \&c.; and it is very beautifully covered over with the showy blossoms, or still more showy seed-vessels, of the Clematis aristata.

[^0]To a casual observer there seems to be absolutely no difference between these forests and those of the Dividing Range in Victoria; as, for instance, on the Upper Yarra and along the Wood's Point Road, the great bulk of the regetation is certainly the same. Thus the Olearea rosmarinifolia, Aster stellulatus, and ramulosus, Pomaderris elliptica and Bedfordia salicina meet the cye on every side. The two last, indeed, almost exclude every other undergrowth, the long narrow stems of the Pomaderris forming almost impenctrable thickets on the Black Spur. But the Eucalyptus, though identical in aspect and graceful height, is not the same species. E. amyydalina* taking the place of E. globulus, which is the more singular as they are both accompanied by stringy bark trees (E. obliqua), which affects the same lofty habit in both localities. The fern tree is different; at least Dicksonia is not so common as Alsophila excelsa; the other common plants are the same in both places, such as Olearea argophylla, Olearea stellulata, Fuyus cunniaghami, Drimys aromatica, and the common Lomaria. A ciose attention, of course, will reveal a good many differences. One will miss numerous familiar beauties of the Tasmanian forests, and their places will be taken hy forms as peculiar and interesting.

This close resemblance is more remarkable if we bear in mind how rery distinct and ahmost complete the forests of Tasmania and Victoria are from those of New south Wales at the east side of the continent. There the Eucalyp!i are different, and the undergrowth of shrubs is alnost entirely different. The vegetation is sub-tropical in character: at least as far south as Clladulla. The gigantic nettle (Laporten gigas) and cedar (Cedrela australis) take the place of Fugus cunninghami; while the fern trees are few in comparison with the stately palms. Seaforthic elegans and the cabbage-tree (Coryplia australis) shoot up continually, high above the brush, and vie in eleration with the elegant furpentine (Syncarpia leptopetala) and ironbark (Eucalyptus siderophloia). The sub-tropical rines of various descriptions bind the veretation into massive walls of dark shining green, while the stems of the trees are varied and adorned with immense fronds of the epiphytic ferns (Asplenium nidus and Platycerium alcicorne), which here reach their perfection. There are some few points of resemblance between the Eastern forests and those of Tasmania. Olearia argophylla is found in both, and it is in the New South Wales forests only that its odour of musk is fully developed. In Victoria the scrubs are in some places (on the slopes of Mount Juliet for instance) crowded very thickly with the dense leafy bushes of Prostanthera

[^1]rolundifolic, a labiate of very pretty flowers but most offensive odour, which seems to be given off from a sticky resinous exudation abounding in the branches and leaves. The same shrub is very common in the scrubs of the Illawarra and Shoalharen districts, equally abundant, and equally offensive. It is found in N. Tasmania, but I never noticed it among the timberproducing forests of Tasmania; indeed there are but few species common to all three. Those found commonly in Victoria and Tasmania are not common in New South Wiales, and those common in the forests of the latter Colony are either absent from Tasmania or from Victoria. Of course this is speaking, in a general way. There are exceptions, which, however, do not go far beyond those I have mentioned, to which I might add Leptospernum lanigera, Daviesia latifolia, D. ulicina, Hakea pugioniformis, Gleichenia dicarpa, G. Alabellata, and a few others.

Before I pass on to the consideration of the timber products I may say a word here as to what I regard as the cause of the singular height and straightness of the Eucalypti in these forests. This is a peculiarity almost restricted to Tasmania and Victoria. The trees grow to a great height in the forests of New South Wales, but nothing like the altitude they attain in the other Colonies. In this respect the greatest height seems to be reached in Victoria. Trees have been felled which measured over 460 feet, and it is common to see them in both Colonies rising 200 feet and more, as straight as an arrow, before sending forth a branch. Now, in what way are we to account for this? First of all it must be observed that we never see this kind of timber except in rery deep gullies, where we may say the light is almost shut out by the rich close vegetation, and where the subsoil is probably sereral feet of a humus composed of decayed wood and leaves. As soon as the seeds of the gum tree germinate they shoot up with extraordinary rapidity. Young stems may be constantly seen 25 to 30 feet in height, and the stem not 2 inches across near the ground. At the top there are only a few leaves, set on small twiggy branches. Some of them can be seen not more than two years old, because they have risen around timber that was quite recently felled. I consider that three causes combine to produce this rapid and straight growth, which might easily be secured in other countries, where this (to my mind the most wonderful) property of the Eucalyptus might be developed. One is the extreme richness and moisture of vegetable soil; second, perfect absence of disturbance, eren by the wind; third, the comparative obscurity or modified light, which causes this young plant to throw out but few branches or leaves until the light of day is reached, which is often at a height of 100 feet or nore above the root. It must be remembered also that in the young state of Eucalypti, with few
exceptions, the leares and young brancbes are quite of a different pattern and plan from those of the mature tree. The earlier stages fall away and leave the tree still more bare as it grows up. That light and shade and absence of movement are the main causes can be easily scen on the more exposed summits. At Mount Juliet the trees at the base are very lofty, though not the most lofty of the range or equalling those of the Black Spur ; but at about 400 feet below the summit the timber becomes stunted and ragged, and those lofty trees on the slope which send these branches thus far partake of the knotted twisted character, and have them all rery singularly bent towards the mountain by the prevailing direction of the winds to which they are exposed.

It is a rery important fact to ascertain if these views as to the growth of the Eucalyptus are correct. There are plenty of deep shady gullies in the mountains of Europe where the experiment might be tried. In Norway and in some of the valleys of the Alps farourable places might rery easily be found. I am convinced that the trees are of very rapid growth, and even the largest are not of great age. Cold does not affect them. In many of the gullies of Tasmania the snow lies around the trees for sis months of the year or even longer; and in Victoria the same trees are sometimes exposed to a very high temperature. The acclimatization, therefore, ought not to be a matter of great difficulty, neither would much time be required for the experiment. Baron von Mueller assures us in his "Select Plants" that the Eucalypt is much more hardy than the orange or lemon tree.

It is a rery interesting inquiry to know how old are the stately trees which people these forests. Judging from their size, one would be inclined to attribute to them great antiquity. I was very anxious to collect data on the subject; but to nearly all my inquiries I only received mere guesses; from 200 to 300 years was the general reply. I found, however, in Mr. Hill, a source of information at once reliable and valuable. Mr. R. Hill is the proprictor of an extensive sawmill at Honeyrood, on the Huon; he is also a shipbuilder and hop-grower. It is from him that I have derived the most of the statistical information in the paper, and the facts which did not come under my personal observation : and I take this opportunity of thanking him for his readiness in affording every aid to inquiry, and express the hope that the Colony may long profit by his intelligenee, industry, and enterprise. Mr. Hill assured me that some of the gum trees, and perhaps all of them, shed their bark twice in the year. The stringy bark (E. obliqua) is one of the most striking instances of this. He further informed me that, hearing a lecture from Mr. Bicheno on the growth of trees, and the statement that a ring of wood was added to the diameter each
year of growth, he was induced to test the truth of this. There was a blue gum tree in his garden in Ilobart Town, the age of which he was sure of, as his brother had planted it eighteen years previously. He felled it and counted the rings, and found them to be thirty-six in number. or two for every year. From this, and from the shedding of the bark as described, and a long series of observations, he concludes that the sap rises twice in the year. He has for many years watered the growth of the trees, and he believes that for the first twenty years the areage growth is about one inch in diameter for each year. Out of thousands of trees felled or cut in his mill, he has not found one over seventy-five years old, and a very large proportion of the serviceable timber is composed of trees alout fifty rears of age. Quite recently he has had a rery interesting opportunity of rerifying these observations. At Ladies Bay (between Port Esperance and Southport), a paldeck on the farm of Mr. D. Rafton was cleared for the purposes of cultivation. It was exactly sixteen years this sumnier ($1575-78$) since a crop was taken of it, and was quite overgrown with saplings, which were all cut down. Mr. Hill, at my request, wrote to Jr. Rafton, requesting him to examine the stumps, and I append his reply: "Ladies" Bay, April 26, 185\%. Acrording to sour request I send you the result of my exanination of the stumps of young saplings in the paddock which we are now clearing. Nimber of rings in the longest saplings, thirty-three: size across the heart-wood where the rings cease, one inch. The rings, I obocrev, are not an equal distance from each other, some of them beine the times the size of the othere. ()n making inquiries I find bewond a doubt that it is exactly sixteen years this summer since the last crop was taken oft the paddock.-- Yours truly, D. Rafros." From these facts I think we mar safely adopit Mr. Hill's ennclusion that there are two rings of growth for cach year, and that the tallest trees of the forest, the giant timber of Tasmania, range from fifty to seventy-five years old.

I may mention here incidentally two ineonreniences to which the Tasmanian forests are subjecteil. () ne is the "ticts." This is a small insect which lives on the fern leaves. It burrows readily under the skin of any animal upon which it creeps and produces much irritation and ineonvenience. It is sail sometimes to cause the death of dogs, calves, and woats. I do not know whether the species is the same as that which is found in the fern gullies of New South Wales and Queensland, where the hite is reyarded, though erroneously, as almost venomous. The other pest is the abundance of leeches which swarm the undergrowth. After even slight rain they come out in great numbers, and unless a pedestrian takes precautions against them, and keeps a careful watch, they may not only be painful but dangerous in their attacks. A
similar plague used to be common on the open swampy plains of the south-eastern district of south Australia, especially on the Mosquito Plains. Cattle suffered much from them in the long grass, but of late years they have disappeared.

The principal use to which the timber is put is for what is called "sawn stuft," coopers" staves, shingles, and palings. The shingles are for the most part now made by young girls, and they do all the work, even in some instances to the felling of the trees. It is not every tree that will suit for the purpose. It must be a young tree, or "spar" as it is here called, and must be very straight in the grain. This is ascertained by cutting a square block out of the side at about 10 or 15 feet from the ground. A stout young sapling is first cut down. One with a good strong fork is necessary, and thus it is seldom a Eucalypt. It is cut to a length of 14 or 20 feet. A deep notch for a foothold is cut a little below the fork, and it is then rested against the tree which is to he tried. The wood-cutter then climbs to the fork, in which one foot is placed, and the other a little below on the notch. This erives a firm enough footing to wicld the axe. The tree is then tried, and if found suitable a stage is erected at a height of 10 (ir 12 fect from the surface. From this the tree is felled. It n:ont unfrequently happens, however, that the labour is in vain, as the timber is so close around that the tree will not fall-it morely topples over and reclines against its neighbours. The "trying" a great height from the ground and the stage is seldom necessary except for very heary timber. The "spars" are more easily dealt with: when fallen they are rapidly cut into shope lensthe with a crosseut saw. The billets are again split with wedges into the requisite width. and then by a rapid series of blows with a wooden mallet amd a shingle knife, the shingles are pait, two lieing generally wit with one blow. The shingle knife is first used as a wedge: the handle, which is at right angles to the lack of the hade. then is worked as a lever to widen the openiag. in which the hand is inserted while the knife is workod down. The wet sap of the wood is full of tannin, with which the irn of the knife combines to make a deep back stain wherever it rest. The poor girls who work at this trade have their hands almost permanently staned a deep inky hue.

Where the useful timber grows the brushwoud is always so thick that resular tracks have first to be cut to the places. First of all the nwncrs of the different sawmills run out tramways in various directions for three or four miles. These tramways are of the simplest kind, heing merely cross sleepers, on which square wooden rails are peysed down ; yet they are rather expensive structures, because of the many bridges that have to be made over the numerous creeks. From rarious points on these tramways tracks are cut into the thick scrub. First of all a gigantic
gum-tree is cut down, and its stem is used as a bridge over the brushwood, thus leading 300 or 400 feet into the scrub, and often arching some feet above it ; from this the track is carried further, either by cutting fresh trees, or by using the stems of fern trees either as flights of steps or pathways. Thus, perhaps, the scrub will be penetrated for half a mile, and the huge and lofty timber will be seen rising on every side. The scene is one of peculiar beauty. Dull green is the light, and the perfect stillness and quiet is disturbed by nothing but the distant rustlines of leaves far overhead, the sound of some woodman's ave, or the peculiar cry of the wattle bird (Anthocherea inuuris), or the loud smack of the whip bird (Pachycephala glatecura). The ground is carpeted with bright green moss, elegant brakes and flowers spring up all around, and the brown stems of the fern trees, bearded with Hymenophyllum and surmounted with whorls of palm-like fronds, shut in the view on every side, and make the seclusion lorely berond description. The whole place is, however, dripping with moisture, so that the poor foung workers may be said to be always wet through. They make their shingles into bundles of fifty, fastened round with bands of green bark, but as tight and compact as if the whole mass were of stone. This is done by tying up a bundle of somewhat less than the number and then wedging in the remainder. A bundle of fresh wet shingles will weigh from 50 to 60 lbs , yet I have seen young girls of sixteen years of age carrying out two of such bindles on their shoulders. They divide the labour between themselves in this way, that a party of four, often sisters, will have two for splitting and felling and two for "carrying out." They arrange rests or "spells," as they are called, every furlong, where is a small stage of paling about three feet from the ground. The bundle of shingle has a long peg driven into the centre, and two bundles are held together by a cross strap of bark. The "carricr" stoops with her back towards the bundle, raises her hands over her head, and by means of the two pegs tilts the luad on to her shoulder and staggers along to the first "spell," where the burden is slid down on the stage for awhile. It is certainly a most unfeminine occupation, and still less is it adapted to comparative children. The splitters are very often utterly uneducated; yet in spite of the way young females are thus exposed in the midst of the remains of an almost entirely ex-convict population, they are simpie and innocent and wonderfully accessible to religious impressions and teaehing. The boys and girls are able to earn about 2s. 6d. or 3 s . a day, while men can make from 6s. to 7 s . There seems to be no searcity of employment, but the supply of labour is at least not less than the demand. Most of the sawmillers keep their own stores, so that most of the wages are taken out in goods; and though the disadrantages
of this are felt on both sides, yet the very few inducements for small capitalists to settle in these wild districts renders this system almost unavoidable.

The larger timber which is useful for heavier purposes than shingles, is treated in a different way. The trees, when they are felled, are cut into lengths of 10,12 , and 14 feet, according to the nature of the "stuff," as it is called. The huge round logs thus resulting are rolled down to the edge of the tramway, or drawn by bullocks on a kind of wheeled sleigh. It is thus brought to the sawmill, where it is speedily cut up into "sawn stuff." The thickness and length of course depend upon the kind of timber required. At the time of the goldferer (1852-3-4), when the timber trade of the Huon reached a prosperity which has never been seen before or since, the demand was enormous. But it could not be cut too light; the thinnest shingles, studs, palings, and battens were sure to meet the readiest sale. The state of the roads to the diggings, and the difficulty of carriage, explain this peculiarity. At the present the trade is very fluctuating, and the supply probably in excess of the demand. The favourite timber used for sawing is stringy-bark (Eucalyptus obliqua) and blue-rum (Eucalyptus globulus). The former is most in use-first of all because it is more abundant, but probably, also, because it is a softer timber and more " mellow," as they say here, to work. It is preferred for all kinds of carpentry where more strength is required than pine could furnish. But there is a second species of stringy-bark which is called here "gum-topped stringy-bark." I have very little doubt that this is Eucalyptus virgata, of Siebold. The Rev. W. W. Spicer has made known its existence in Tasmania, which was not hitherto recorded. It is the "mountain ash" of New South Wales splitters, and occurs in the south-eastern part of this Colony and in Victoria. In South Australia it is a mere twiggy bush 15 to 20 feet high. It is exactly like stringy-bark in the fibrous twisted bark, but it is rery much more like the blue gum in the leaf. I never examined the seed-vessels or flowers. The wood is lighter in colour than Eucalyptus obliqua, which goes by the name of brown stringy-bark. The "gum-top" is close-grained, and very few are able to distinguish the timber from blue gum. It is much used for shipbuilding purposes.

But for all work where length, strength, and durability are required Eucalyptus globulus, or blue gum, is most in demand, It is generally procured by hand sawyers, who cut up the trees where they fall in the forest. Its uses are very various. It is in demand for bridges, railway sleepers, coach and whee'wright work; but to shipbuilders it is invaluable. It makes the very best planking for ships' bottoms. It has the property of awell. ing under water to such an extent that it becomes a matter of
some difficulty to find the seams when the ressels are put upon the slips for coppering. When properly seasoned it is the best timber for keelsons, keels, ribs, knees, beams, and stringers. But much judgment is required in selecting the timber. All pieces that contain heart-wood or sap-wood must be rejected. These are both worthless and soon decay. The true serviceable blue gum must come from the circumference of the tree, about midway between the bark and centre.

There are other trees used besides these, hut they are not the main soures of supply. The celebrated Huon pine (Daceydium franklinii, Hooker) is much in demand, but setting daily more scarce; it is only found in a few remote spots far in the mountain ranges. The sources of the Picton are now the principal localities whence this timber is derived. Another tree, much used for spars, is the celery-topped pine (Phyllocladus thombidalis*); it is much more common than the former. Muskwod (Olearea argophylla), dogwood (Bedfordia salicina) are used for ornamental purposes with lightwood, or blackwood, for it goes by both names (Acacia melanoxylon) she-oak (Casuarina stricta), and other trees.

The blackwood (Acacia melanoxylon) is largely used for oilcasks, and is the only wood we have in Australia, as far as we know, that is suitable for the purpose. The tree, on good soil and well-watered valleys, reaches a height of so feet, with a stem several feet in diameter. It is split into staves 6 by 3 inches thick and 6 feet long, and then shipped from the Tamar to Victoria. The wood is also considered most valuable for furniture, railway carriages, boats, casks, billiard tables, pianos (for sounding boards and actions), and numerous other purposes. Silver wattle (Acacia decuriens) is also much used for staves, from 20 inches to 5 feet long; it is shipped in quantity to Victoria, and used for beef and water casks. Trees from 12 to 24 inches in diameter are the usual sizes worked; but they become daily scarcer, from the fact that they are annually destroyed in hundreds of thousands for the sake of the valuable bark. The bark and gum of this tree are becoming highly esteemed because of the many dyeing purposes for which it is found they are almost unequalled. Young trees are still very common, but the time is not far distant when Tasmanian colonists will find it worth their while to cultivate them.

The sassafras (Atherosperma moschatum) is found to be very valuable for sash and door work. The myrtle or beech (Fagus cunninghani) is equally prized for the same purposes, and indeed all kinds of light joinery. Latterly sash and door

[^2]machinery have been introdned into Hubart, and thus these trees have come into much demand among the sawyers, though hitherto they have been in a measure spared. They are both splendid trees, but the beech, for elegance of foliage-that is to say, in shape, denseness, and for colour, which varies in every shade from light orange to a rich dark glossy green-has no equal in Australia. Its elegrant aprays of leaves form lovely backings for rases of flowers or greenhouses. It is to be regretted that it is not used more to vary the monotony of the Moreton Bay fig in our streets and parks; it is quite equal to it as a shade-giving tree.

The principal places of export for timber are the Huon district, including Franklin, Honeywood (on the Kermandee), and Port Cygnet; next is Port Esperance, then Southport. All of these employ two or three sawnills, with some at intermediate places. At Recherche Bay there is no mill, but some hand work is done; and the same at Port Dary, which is a very remote district on the extreme south-west of the island. The timber is brought up from these places to Hohart Town in small cutters or "crafts" as they are called, very much like the osster elredgers or herring ketch of the British Channel.

Quite a flotilla of these small ressels are employed in the trade, and the port of Hobart is prineipaliy oceupied with them. Were the export trade of timber to fail in Tasmania the harbour would look harren indeed. There is a considerable trade with New Zealand as well as with Australia; the former island sends timber, kauri pine (Dammara australis), to Tasmania, and receives hardwood (blue gum and stringy-bark) in return.

The question naturally arises whether the supply of timber is likely to fail. I have had the opinions of some of the most experienced sawmillers, and they were unanimous that the supply is rapidly decreasing. But this arises not so much from the quantity cut as from the absence of timber reserves, where the sawyer could precede the settler. Under the present (1876) Waste Lands' Ict of Tasmania, the 24th section binds purchasers to reside for fourteen years upon the ground he selects, and to improre it. He generally chooses where the blue gum grows, as the soil is there of the best description. To fulfil the conditions of the Act, he "rings" all the standing timber-that is, he makes a deep incision all round the tree so that it may die. In about two years the timber is thus rendered utterly worthless, being full of "sun-shakes," as the irregular splitting and weathering is termed. The consequence is, that there is daily greater difficulty experienced in finding suitable trees. If young trees were allowed to grow up to supply those which have been felled, the supply might be considered inexhaustible. But this is not the case. If the ground has been at
all well cleared by the splitter or sawyer it is seized upon by the settler, who grubs the stumps and destroys the saplings, planting in place raspberry canes, currant bushes, and those fruits which, next to timber, form the principal export of the Huon.

Yet, in spite of all these drawbacks, there is still a considerable supply of timber in the forests which can hardly be ever selected, as the scrub is too dense. I am informed that, judging from the area of land worked over in the Huon district for the last thirty years, there is beyond a doubt a supply for fifty years at the same rate of production.

The only way to prevent the wholesale destruction of the timber will be by proclaiming reserves or State forests, as they have done in Victoria. This is what the sawyers and splitters are crying out for, but as yet without effect. I do not undertake to pronounce an opinion on a question which may hare political difficulties unappreciable by me; but it does seem a mistaken liberty to allow selectors to settle on land of great value as a timber forest but useless for agriculture, until the whole of the valuable timber is ruthlessly destroyed. It seems to me that as long as any arailable land can be obtained free from timber, or with timber of little value upon it, no selector should be allowed to destroy the forests. The matter is one which the Legislature should deal with promptly, or the forests of Tasmania, peerless and priceless as they once were, will soon be things of the past.

The Molluscan Fauna of Tasmania.

By the Rev. J. E. Tenisox-Woods, F.L.S., F.G.S., Hon. Member Royal Society, N.S.W., \&c., \&c., \&c.

[Read before the Royal Society of N.S.W., 4 September, 1878.]

Hating recently completed a census of the Molluscan Fauna of Tasmania, it will be probably useful if I add some remarks on the nature of that fauna and its geological relations. The time has hardly come when this can be done completely. Dredging operations hare not been carried out to any extent, so that the nature of the laminarian zone is little understond. The Molluscan Fauna of Australia is also only very partially known. New South Wales or the east coast is perhaps the best explored, but still far from completely; and as for South Australia and Victoria, our knowledge is extremely imperfect. It will be seen, therefore, that I can only give broad and very general conclusions, such as I think future diseoveries will not materially alter.

In order to understand the fauna of Tasmania we must bear in mind first of all the physical character of the island. It is separated from Australia by a wide and deep strait, 90 miles at least at its narrowest part, though that interral is to some extent bridged over by groups and chains of large islands. It is situated in more temperate latitudes than any part of Australia, and on its southern side it is exposed to the full force of the southern ocean, as well as to the influence of much colder seas. The coast is almost without exception bold, precipitous, and rocky, with many islands. There are numerous inlets and bars running up very far into the land and perfectly sheltered, so that tranquil and shallow waters are by no means wanting. The sea, though not a warm one, appears to be very equal in temperature. It is fed by numerous freshwater streams, and there are many brackish estuaries. In these particulars Tasmania contrasts very strongly with the south coast of Australia. The sea there is warmer, and the coasts are seldom bold. There are immense stretches of sandy beach of nearly 100 miles at a time. There are few rivers, and instead of estuaries there are many shallow arms of the sea or brackish water lakes. The south-east coast of Australia differs to some extent from this, resembling Tasmania more. The shore is often bold and much more broken; there are scarcely any islands, and the seas are exposed to the full influence of the southern ocean.

First of all, it may be necessary to note from what naturalists our knowledge of the Tasmanian "Molluseau Fanna is principally derived. The first that ever visited the island were undoubtedly Banks and Solander, in the colebrated expedition of Captain Cook in 1770; yet from these, or any subsequent naturalist up to the time of the royage of the "Astrolabe," it does not appear that Tasmanian or even Australian conchologr receised any development. No doubt collertions were male, and thesestored in the muscums of London and Paris, awaited the advent of su.h men as hamarek; but, from actual observations during voyares, we tim nothing printed until the voyage of the " Istrolabe." The only sholl which appears to have been named by solander is Cyprea piperita, teste Gray in the Zoological Journal (London, 142t, vol. 1, p. 498), and this must have been merely a uame given to the specimen in the British Nuseum, as there is no record of any prablication. Linneus died January 10, 177e, but from the year $177{ }^{2}$ he had ceased to take a part in scientific diseovery; yet wo have no less than cight Tasmanian species with his name as an authority. They are Tirton cutaceus, Fasciolaria trapezium, Csprea annulus, Philine aperta, Teredo navalis, Lucina divaricata, Ostrea edulis, and Lima rudula. The latter I think we may dismiss as doubtful. The shell thus identified is described as an Ostrea hy Jinnæus, which genus according to his views included in it:s first section Lima and Pecten, and in the second Ostren, Malleus, Pedrm, \&c. The shell deseribed by him was taken from Lister (1685) and Rumphius (1705). ILe deseribes it as "shell nearlverquivalve, with twelve conver rays erossed by cremate strix 3_{4}^{2} inches lone by $2 \frac{1}{2}$ broad." He sarys "it inhabits the Indian Ocean, and is oblong, white or varied with white and brown, lower valve a little more convex, ends wrinkled and furrowed with oblique stris." The shell is now recognized as a Pecten, and is described as such in Lamarek (Anim. S. V., vol. 7, p. 131) and Sowerby (Thes. Conch, pl. 17, fig. 154-5). Triton cutaceus is described in Linnés genus Murex. If the identification is correct, this is also figured in Lister (Tab. 912). It is said to inhabit Barbary, (4 uinea, and South America. Fasciolaria trapezium is also of Einnés Wurices, and figured by Lister (Tab. 930, 931) and Rumphius (Mus. tab. 29, E., tab. 49, fig. K). It is said to inhabit the Indian Ocean, and to be often above f inches long. Sowerby sars it occurs in the West Indies also.* Cyprea ammus is figured by Rumphius, but not very successfully. It is said by Limé to inhabit Amboyna and Alexandria, which is not very likely. It is said also to come from the Red Sea, and certainly its appearance is different from any of the Australian Cypreas. I have been assured howerer that it occurs in Tasmania, where specimens in private collections

[^3]are not at all uncommon. It is much more like a Red Sea shell than of any other locality. It is stated to occur in New Zealand, but Captain Hutton assures me that he has never seen or heard of an instance. It is known on the E. Australian coast. Further inquiries are needed to clear up this rather mysterious case of irregular distribution. Philine (Bulla) aperta is described as a roundish pellucid transversely substriate small shell with one end much produced, and the apertures very open, that is with the lower lip spread out. It inhabits Europe and Africa (sic in origine). It is probable that Linne got his description from Gualtieri's work, which appeared at Florence in 1742, and was entitled Index Testarum Conchy, q. adservantur in Mus. N. Gualtieni Phil. et INed. Florentini.* Lucina divaricata is another somewhat doubtful identification. It was figured by Lister, and was described by Linné as a shell with thin transverse longitudinal strie crossing some divergent ones towards the margin, posterior impression ovate, margin crenate. Inhabits the East Indies. 'Turton adds that it is white, with brown lines, veins, and spots, anterior slope oblong, gaping, veined blackish brown, with 4 hiuge teeth. (See Turton's Linnous-A General System of Nature. London: 1806. Vol. 4, p. 226†.) No doubt many other identifications might be made if the firures in some of the earlier works were a little better, or had the types been preserved. But such an inquiry would be harren of any results, except to rake up new synonyms, of which we have quite enough already. Besides, the identifications that we have so far are by no means satisfactory, and what is admitted by one as a description or a figure of a known spectes is denied by another: and thus considerable confusion resultw. For my part, it does seem a useless waste of time, space, and printing to burden our scientific books with synonyms of a pre-Linnean history. They are doubtful at the best, and can serve no uscful purpose whatever.

Erery one of the eight species above enumerated are of wide distribution, and, almost certainly, the specimens from which the descriptions were made came from the West ludies, the Red Sea, the Indian Ocean, or the Mediterranean. Thus. Ostreet edulis was the common European form. No difference ean be detected between our species and that of Linné. It may well be questioned if it be not introduced in Tasmania at least. In Australia the case is different, for it is more abundant, and is found as a Pliocene fossil. Teredo navalis is most certainly

[^4]introduced and was known to Linné only from European forms. It has been brought in timber from Europe, and a more unwelcome case of acclimatization we can hardly imagine.

After Linné we have very few names or descriptions anterior to those of Lamarck, who published the first edition of his Histoire Naturelle des Animaux sans Vertèbres in 1815-23. During the period intervening between Lamarck and the discoveries of Capt. Cook in 1770, we have only the following names:-Argonauta oryzata, Meuschen; Triton spengleri, Dillwyn. Both these were not from Australian specimens, as the species have a wide range. Heliotis ncevosa, Martyn; Purpura succincta, Martyn; Risella melanostoma (or Trochus), Gmelin; Phasianella tritonis, Chemnitz; Trochocochlea Australis, Tavame; Patella tromoserica, Martyn; Patella radians, Gmelin; Cyprea angustata, Gmelin; C. comptoni, Gmelin ;* Turbo undulatus, Ċhemnitz; Turbo stramineus, Martyn.

Before I make any observations on these, it may be necessary to say something about the authors and the various works where their descriptions are to be found.

The dawn of a true science of conchology may be said to date from the books of our countryman, Lister, who in 1685 commenced the publication of his great work entitled, Historia sive Synopsis Methodica Conchyliorem. It was in four books: 1, of land univalres; 2, of freshwater univalves and bivalves; 3, of marine bivalves and Balanidæ. (Conchis anatiferis); 4, of marine Patellæ, Dentaliums and Buccinums. I have translated the title of the divisions of this really marvellous work-marvellous for the age, whether one regards the genius of the author or the accuracy of the figures. These were 1,057 in number; but, the plates being bequeathed to the University of Oxford, another edition of them was published in 1770, where the figures of shells alone (exclusire of fossils) amount to 1,153 -all executed with rare industry by Dr. Lister's daughters, Sussanah and Anne Lister. I gladly avail myself of the opportunity of helping to make known their names. The remains of Dr. Lister's Museum are still to be seen in the Ashmolean Museum at Oxford. Without mentioning any of the subsequent writers on the subject-as they may searcely be said to have advanced it at all-we may just refer to the work of D'Argenville, a French writer, who in his work, L'Histoire Naturelle éclaircie dans deux de ses Parties principales, les Lithologie et la Conchyhologie, Montpellier, 1742, laid the foundation of a system which Limné subsequently adopterl. His genera include-Patella, Haliotis, Dentalium, Verita, Helix, Trochus, Strombus, Nautilus, Conus, Cyprea, Ostrea, Venus, Chama, Pholas, Solen. These genera correspond very nearly with those of

Limne, under the same name. The figures were excellent, and earned for the author from Linne the title of "nitidissimus," i.e., neatest or most exact.*

The advent of the great systematist Charles mon Linné + began a new era for conchology. The first edition of his Systema, published in 1735, was little more than a small prospectus of fourteen folio pages, but which was sufficiently important to attract universal attention. His efforts in the matter of shells was less happy than other portions. The great aim of the author was simplicity, and this feature was decidedly destroyed by his senera being too few. Confusion, not simplicity, was the result. His original genera were only eight in number-viz., Cochlea. Cyprea, Haliotis, Patella, Tautilus, Lepas, Concha, and Dentatium. Two or three more genera were added; but it was not until the tenth edition (1553) that he augmented the number to thirty-two. which was subsequently increased to thirty-five, and the most of them we have seen were taken from D'Argenville. The genius of Lime was seen in the way in which he seized upon salient specific characters, and rejected the weak, shifting, and multitudinous features of preceding naturalists, which impeded science, as they were too numerous, non-permanent, and confusing. Still Limné never rose to a true perception of the nature of the animals with which he had to deal. The shells were all Testacea, and the animals which dwelt in them Vermes or worms, distinguished from one another by very arbitrary features. It was left to Cuvier to perceive the true relations of the animals, and to build the science on a solid and permanent basis. It must not be imagined, however, that this was all Linné erer did on conchology. His Fauna Suecica (1st ed. 1746, 2nd ed. 1761), his Museum Tessinianum, Museum Adolphi Fred. Regis. and Museum Ludovica Ulrice Regince, all contributed to extend his system, and doubtless to enlarge his own knowledge of the subject. In the last-named work he describes 434 species of shells. Strangely enough, however, though the volume is published in 1764 -that is after the tenth edition of his Systema-it preserves his old divisions of Conchee and Cochlea. His Mantissa altera (another addition) embraces the description of thirty-five new species.

From Linné to Lamarck is nearly half a century, that is from the date of their systems; yet we have only very few pre-

[^5]Lamarckian names amongst the shells of Tasmania. This is more astonishing if we remember the numbers of different expeditions to Australia, \&c., in the last twenty years of the 18th century. There was the French expedition under Captain Marion, in 1772, in the ships "Mascarin" and "Castres"; Furneaux in 1573; Cook in 1777 ; and the settlement at Port Jackson in 1788, from which a perfect stream of specimens of natural history must have flowed into Europe. There was Tancouver in King George's Sound in 1791, Cox in Tasmania in 1789, Bligh also in 1792, and D'Entrecasteaux, with Labillardiere as naturalist, in the same year. Then came Flinders, Bass, Grant, and the French expedition under Baudin with the naturalists Peron and Freycinet. No doubt the latter contributed largely towards Lamarck's work; but until then, from the time of Linne, we have only the names already given: Argonauta oryzata and Triton spengleri may both have come from the Indian Ocean. Meuschen, who is the authority for the first, is only known for two catalogues of celebrated collections, viz: - - . Of Laurence (X . Gronow* a senator of Leyden (published in 17S1), and the collection of Abraham Gevers of Rotterdam. It is in the catalogue of the second (p. 252, n. 133) that the Argonautu is described. As most of these Dutch collections were made in the trade to the Indian Ocean and Spice Islands, we can senerally guess to what locality to attribute any specimen. Dillwym's species was deseribed in "A Descriptive Catalogue of Recent Shells, arvanyed according to the Linnean method with particular attention to the synonyms. 2 vols. 8vo. London, 181\%." Purpura succincta is from Thomas Martyn'st Unicersal Conchologist, which is deserihed by the author as "exhibiting the figure of every known shell aceurately drawn and painted after nature, with a new systematie arrangement and explanatory tables in English and French; also figures of nondescript shells collected in different voyages to the south Seas since the year 1764 , with seventr-seren coloured drawings of shells. London, 1789. I vol. tto." I have had at copy of this very rare work sent to me from London for inspection. It is extremely costly, and was only the first volume of a work which was never finished. The author also published "Drawings of shells of the South Sea. I vol. 4to.. fifty-eight plates." The whole work is an édition de luxe, and cannot be too highly praised for accuracy as far as it goes. The

[^6]author was a systematist, but not of much genius. He gave tables of the Limean method as well with many valuable observations on conchological writers. (Amelin was the continuator of Limné, and published a 13 th edition of the Systema Nature, in 8 vols.; Leipsic, 1788-93. He is said to have raised the number of species of sholls to 2,334. Messrs. Maton and Kackett,* however, do not give him much eredit for either accuracy or genius, or to his translator Turton. The names of Martini and Chemnitz occur pretty ennstintly in erery conchological work of modern times. Both authors were engaged upon one work which is entitled "-Feues S'ystematishes Conchylien-Cabinet." It was begun by F. H. W. Martini, who published the lst volume in 1769, 2nd rolume 1733 , the 3rd 1734 . The work would have been left unfinished but for a Danish clergyman named J. H. Chemnitz, who published the S concluding rols. as follows: 4 th, 1780 ; 5 th, 1781 : 6th, 1782 ; 7th, 1784; 8th, 178.5 9th, 1786 ; 10th, 1788: 11th, 179. An alphabetical index of specific names was added by J. S. Schrötter, in 1788, to the first 10 vols. All were published at Nuremberg. There were over 4,000 coloured figures, and in the latter volumes very many species from the South Seas. It is one of the most raluable of the old works, though some of the figures are barely recognizable. Its greatest value was from the new materials which it made use of from various cabinets, more particularly that of spengler, who had one of the finest collections then known.

In the year 1797, Georre Mumphrey, F.L.S., the chief dealer in shells then living, pullished a small pamphlet entitled, "Museum Calonnianum - Specification of the various articles which compose the magnificent Museur of Natural History collected be MI. de Calome in 「rance. Lomdon, May 1, 1797." It was published anonymounly. I mention this work, as it is much mixed up with the question of nomenelature. Some naturalists have elaimed for it a merit to which it is seareely entitled, and would even make the genera of Lamarek give way to it. The latter published his work, Ters Testacés, Tablemz Encyclopédique et Méthodique. Paris, 1797-98, 390 Plates, a year later, but Humphrey's work is in every way inferior. It is a mere list without any definitions its principal merit being in the indication of several good genera. We may be sure, however, that through Mr. Humphrey a large number of Tasmania shells became known to the worlc. \dagger His son was oue of the very early colonists. Had

[^7]the pursuit of shell-collecting any really scientific pretensions at that time we should have had little to glean; but size and colour were more regarded then, so that the smaller shells or the unattractive shells were left for the scientific gleaners.

In the list I have given of the shells with pre-Lamarckian names there are none which may not have come from Australia, as they are equally common there, and two, as we have seen, extend to the Indian Ocean. One, Patella radians, Gmelin, cannot be made out at all, unless I am right in supposing that it is one of the many varicties of Quoy's Acmaa septiformis. (Patelloideas. in his work.)

Haring stated what I think important in reference to those books in which the older names of Tasmanian shells are to be found, I proceed to give a list of all the books in which any part of the same fauna is described. I have marked with an asterisk those works which I have not been able to consult, and shall merely name the works already referred to, marking them thus \dagger.

First enumerating the serials, we have :-

1. Proceedings of the Zoological Societt of Londongenerally. The earlier numbers containing the monographs of Hinds, Reeve, Adams, and the later (from 1865) the lists of Australian fauna of Angas.
2. Arsals of Natural History generally.
3. Proceedinges of the Linntean Society of Londonthe earlier transactions.
4. The Zoological Journal. 5 vols., 8ro., with supplementary coloured plates. London, 1825-35.
5. Proceedings of the Rotal Society of N. S. Wales from 1866.
6. Proceedings of the Rofal Society of Victoria from 1857.
7. Proceedings of the Royal Socety of Tasmania, years 1854-55, contain valuable papers by W. Swainson. Fears 1875-76-77.78, papers on conchology from myself and various authors.
8. Pboceedings of Boston Natural History Soctety, containining all Dr. A. A. Gould's papers, descriptions of Australian shells in nearly every volume.
9. Journal de Conchylioligir, from 1860 to date, containing all the diagnoses of Crosse and Fischer's new Australian shells, and numerous monographs and lists of our fauna.
10. Britisif Musetm Catalogues. All the conchological ones contain Australian materials, notably the elaborate diagnoses of Deshayes.
$11+$ Linne. The tenth edition is the first which contains any details about conchology. The other works have been referred to already.
$12 \dagger$. Martini and Ciemititz, ut sup.
13†. Martin's Unitersal Conchologt, \&c.
$14 \dagger$. Humphrey. Musecm Colon., ut supra. I have only seen Swainson's reproduction of his system.
15*†. Meuscien, ut supra.
16* \dagger. Dilliwiny's Catalogue.
11. The Malacological and Conchological Magazine. By G. B. Sowerby, Parts I \& II, London, 1838-9.
12. Species Concuylioriar, or concise original descriptions and observations of all the species of recent shells, with their varieties. Part I containing a monograph of the genus Cymba, by W. J. Broderip, and monographs of the genera Ancillaria, Ovulum, and Pandora, by G. B. Sowerby. 4to, 14 col. plates. London, 1830.
19*. A catalogue of the shells contained in the collection of the late Earl of Tankerville, arranged according to the Lamarckian Conchological System; with an appendix containing the descriptions of many new species. Small 4to. 9 col. plates. Loudon, 1825. By (G.B. Sowerby.
13. Thesaurles Conchiliorem, or figures and descriptions of shells. By G. B. Sowerby, jun., London. Begun in 1812, and continued for some years. I hare only seen three volumes, and beliere that the work was not continued.
14. A Coxchological Mantal. By G. B. Sowerby, jun., 8ro., second edition, 662 figures (only 500 in the first edition). London, 1842.
15. Conchological Itlestrations, or coloured figures of all the hitherto unfigured recent shells. Containing monographs of Cardium, Chiton, Bulimus, Murex, C'ancellaria, Conus, Neritina, Fissurella, Eulima, \&c. 2 vols., $12 \mathrm{mo} ., 158$ coloured plates. London, 1832-41. The figures excellent, bat the letter-press very bad, and the arrangement confused.
16. The Genera of Recent and Fossil Shells. 2 vols. Svo., 266 col. plates. By James Sowerby. London, 1820-24.
17. Swatnson's Treatise on Shells and Shele-fish. London, Longmans, 1840. 12mo. Woodcuts only, but good figures. A rather fanciful work, but some of the genera have been adopted, and full justice has hardly been done to it. It is one of Lardner's Cabinet Cyclopædia.
18. Exotic Conchologr, or drawings of rare, beautiful, or undescribed shells. 4to., 48 col. plates. London, 1834. By W.Swainson. Contains only one or two Australian species.
26\%. Appendix to the Cathlogee of tie Bhigh Collectios. By W. Swainson. I have not seen this work; my knowledge of it is derived from the reference in the Exotic Conchology.
19. Zoological Ilflstratioss, or Original figures and descriptions of new, rare, or otherwise interesting animals. By W. Swanison. 3 rols., 8vo ; 182 eol. plates of birds, insects, and shells. London, 18332-3\%.
20. Catalogue of Marine Mollusca, \&e., of Nett Zealand. By Capt. F. Wollaston Hutton, N.Z., 1869.
21. Ceittcal List of Martye Moleusch of New Zeatand. By Dr. E. von Martins, N.Z., 1872.
22. Addenda and Corrections to same. 1877.
23. *Bory (Ignatius, Baron) Testacea Mesel Yirdobonexsis. (A Catalogue of the shells preserved in the Museum of the Empress of Austria at Vienna.) 1 vol., fol. Viemna, 1780 . It is printed in German and Latin. The method is Linnean, descriptions terse and correct, with a copious list of smonyms which is very valuable. There are 616 species described, with indexes to the German, Dutch, French, and English names. Two vears after the publication of the descriptive letterpress, which forms a thick volume, the plates appeared, 15 in number, with above 200 figures, in a splendid folio. I am not aware that there is a copy in any of the Australian Colonies.
24. Cozemoboitca Systemitica, or a complete system of eonchologr. By Lovell Reeve. 2 vols., 4 to, col., 1,500 figures. London, 1842.
25. Elemexts of Conchologe, an introduction to the Nat. Hist. of Shells and of the animals which form them. By Lovell Reeve. 2 rols., large 8 vo., with 174 col . plates, containing 370 figures. London, 1860. The system is Lamarck's nearly. There is a useful list of all the species.
26. Concholoftea Iconica. A complete repertory of species, pictorial and descriptive, 4to. London. By Lovell Reeve. This work was begun in 1842, and is continued to the present day. It forms perbaps the most accessible general work we have, and therefore the most valuable. It must be admitted, however, that the diagnoses are faulty and brief, and the habitats can
seldom be relied upon-Tasmania, Australia, and New Zealand are confounded; but in this respect most European writers are not particular. The figures are generally very good. But since Australian and Tasmanian conchology have made their greatest adrances subsequent to the earlier monographs, the work will be necessarily very incomplete for the Australian provinces unless a supplement should be published.
27. Iconographie des Coqulles vivantes. Par L. C. Kiener. Paris. 4to. A series begun in 1834, and very similar to Reeve's. I have only seen one or two parts, but in those the figures, \&e., seemed to me superior to the English work.
28. Dife Stdafrikaytsciee Molitsker. 4to., 6 coloured plate\%. Stuttgart, 1848. By Prof. Ferd. Krauss. Thourh this work professes to deal only with S. African shells, a good many Australian and Tasmanian species are deseribed amongst them. Dr. E. yon Martinsstates that in the collections sent to the Muscum hy Baronn von Ludwis there were a good many Australian shells. and that Krauss was not aware of this.
29. Tofage of H.M.s." "sclpher." Zoology. 4to. Lomil. 1839. Mollusea by s. Hinds. A very few Australian species in this work, but it may be consulted for the tropical fauna.
30. Tofage de th Cortftte" l'Astrotate". soun le emmmandement de M. Dumont d'trville. Paris, 15:35. Zoologie. par Quor and Garmard. 4 vols., 8ro. Athas with coloured piates. This work is one of the most valuable we have for Australian sjecies. The firyures are good, and the drawings of the animals, anatomy, \&e, very full and detailed.
31. Toyage of IL. Mr.s."Shararayg." Zonlogy. 4to, coloured plates. London, 1848. Mollisea by Arthur Allams. R.N. Teseful for our tropical fama. The drawings of the animals are most useful.
32. Tofage of II. M. S. "Ratrlesnake." 2 rols. Sro. London, 1852. Appendix on the Mollusca by Prof. Forbes. A very few tropical Australian species described.
33. King's Vorades in Austrafia. London, 1827. The appendir on the Mollusea, by J. E. Gray, of the British Museum, is very full, and contains many descriptions of new species, which, however, are rather too brief. It must be consulted in all questions of nomenclature.
34. Dieffenbach's New Zealand. 2 vols., Sro. London, 1843. The appendix to this work is also by Gray, and contains very many new species.
35. Yate's New Zealand. Appendix by Gray, with many new species. In this and the preceding work the diagnoses are far too brief. 1 vol. 8vo. London, 1835.
36. \dagger Lamarce, ut supra.
37. Menke Molluscorta Novfe Hollatife specimey. Hanover, 1843. 4to. A very thin tract in Latin which contains full diagnoses of a large number of Australian species, the most of which, however, were from the southwestern part of the continent. A few Tasmanians are to be found amongst them. The work is very rare; I have never seen but two copies in Australia. There are none in any of our public libraries. It would be a very small expense, but a great boon to reprint it.
38. Wood's General Conchology. London, 1815, with 59 coloured plates, 8 vo.
39. Wood's Index Testaceologictes, or a catalogue of shells, British and foreign, arranged according to the Linnean system. 8vo.,2nd edition, 0,300 coloured figures. London, 1828. Supplement with 480 coloured figures. This work, though the figures are all of one size and small, yet are tolerably executed. The arrangement is very confusing; but still, I may safely say it is indispensable to any person collecting, and is a very convenient handbook of species.
40. Gexera of Mollusca, by A. \& H. Adams. 3 vols., small 8vo., with 138 plates. London, 1858. This is certainly one of the most valuable books on the subject; but, according to the opinion of many, much marred by the revival of many useless genera, and by the substitution on the most slender claims, of the forgotten names of Humphrey, Bolten, Montague, \&c., for the well-known ones of Lamarck. I shall refer to this subject again in this essay.
41. Woodward's Manyal of the Mollusca, being a treatise on Recent and Fossil Shells. 3rd edition, with an appendix of recent and fossil conchological discoveries, by Ralph Tate, pp. xiv, 542, 86; 23 plates and many woodcuts, 8 vo. London. The appendix treats of those recent and fossil shells not mentioned in edition 2. It contains, therefore, descriptions of all the genera founded since 1866. It is separately paged, and illustrated by 27 woodeuts. No commendation is needed for this most excellent manual. There is no other book
in any language like it for cheapness and high scientific character. It has done more to popularize conchology than any other book in the range of the subject. Professor Tate's additions are very valuable.
42. Mantel de Conchiliologie et de Paléontologie conchyliologique, par le Dr. J. E. Chenu. 2 vols., large 8 vo. Paris, 1859. This work is illustrated by very nearly 5,000 exquisite wood engrarings. It is much more costly than Woodward, but then its range is much wider. A very large number of Australian species are figured. With its aid one ought to be able to arrange and name the most of the species in any collection.
43. A Monograph of Australian Land Shells, by James C. Cox, M.D., 8vo., Sydney, 1868, with 18 coloured plates, containing over 400 figures. This work, I need hardly say, is perfect of its kind, and reflects the highest credit upon the author. It is truly an astonishing production for a young Colony.
44. Cox's Exchange List of Acstralian Shelle, Sydney. Names only. Dr. Cox very properly did not undertake the question of synonomy or genera, but merely gare a list of such species as he had recognized.
45. A Monograph of the Land Shells of Tasmania, 1 vol., Svo., Tasmania, 1873. By W. Legrand. A smaller work than that of Dr. Cox, but nearly equal to it in finish and completeness.
54.* Fatanne de Monterville, père et fils. 3 vols., 4to., Paris, 1780. This is an augmentation of D'Argenville, vide supra.
55.* Kocir in Abbildungen und Beschreibungen neuer oder wenig gekannter Conchylien. 3 vols., 4to., col. plates. R. A. Philippi. Cassel, 1842-50.
46. Pfeiffer Monographia Helicobca Viventicm. 2 vols., 8vo. Leipzig, 1848.
47. Jonas Zeitschrift, für. Malac., \&c. The German Journal of Conchology, in which many Australian species are described.
48. C. F. Schumacher. Essai d'un nouveau système des habitations des vers testacés. Copenhagen, 1817. 4to., plates. I only know of one copy of this bearce work in these Colonies, which is in the library of the Royal Society of Tasmania.
59.* H. C. Kuster. This is a new edition of Martini and Chemnitz, published in Nuremberg from 1837, and for many years subsequently. Many new Australian shells are described.
49. Deshayes Historie Nat. des animaux sans vertèbres. This is a second edition of Lamarck from 1835-45, in 11 vols., 8vo. In this edition Milne Edwards also assisted. A good many \dagger of the Tasmanian shells are described in it, but the diagnoses are very brief.
50. Desuayes Tratite Eiementatre de Conchyliologie. 8vo., 8 pl . Paris, 1838.
51. Tife Youyg Conchologist's Book of Species. Univalves. 12 mo., with figures. London, 1840. By Silvanus Hanley.
52. An illustrated and descriptive Catalogie of recent shells. By Sifunes Hanley. Sro. London, 1844.
53. Cooper in Magazine of British Zoology, vol. 9.
54. Blaivtille in Bulleten des Seiences Naturelles. Feb., 1817.
55. Beaintille. Mantel de Malacofogie et de Conchyliologie. 2 vols., 8vo., 87 plates. Paris, 1836-7.
56. Ed. Doxotay. The Nattralist's Repositort, vol. 3, p. 78. (The whole work is in 5 vols., 1824-27.)
68.* Spevaler Schrift. Nat. Ges. Z. Y. Copenhagen, 1790.
57. D'Orbignt-Alcide. Voyage dans l'Imérique Méridionale, dans 1826-33. Mollusques Foraminifera et Géologie. Paris, 4to., 1834-44.
58. A. Adams and Angas refer to the Zool. of Beechey's Toy. of the "Beagle" for a description by Sowerby of Patella costata $=$ Acmace costata Angas. I have not been able to find any such name.
59. Jif's Catalogee of Sielis, 4to. New York, 1852. This contains a very extensive list of Australian and New Zealand species. There is also a bibliography, though not extensive, in the library catalogue of the author at the end of the work.
I have not arranged these works chronologically, because I have kept the works by the same authors together. I have only enumerated those authors or those works where the original figures or descriptions, or both, of species inhabiting Tasmania are to be found, or else of works which will give the greatest help in the classification of the Tasmanian fauna.

It remains to state that until the date of the census published in last year's Proceedings of the Royal Society of Tasmania, nothing whatever was done towards a classification of the mollusca of those seas. Indeed it has only been lately that anything has been done towards making a census of the mollusca of any part of Australia. The first step was by Mr. Angas, who, in 1865, published a rery complete list of the shells of South

Australia. This appeared in the Proceedings of the Zoological Society, and was accompanied and followed by the description of very many new speries. In 1867 a similar list was made in the same periorical for the mollusea of Now south Wales. This, however, was more than a list, for it had descriptions or a short diagnosis of each speries dealt with. Ever since that time Mr. Angas has been making additions to the list by publishing new species, and we mar say that no naturalist has so persistently laboured to classify Australian shells, or done more for our mollusean fauna. Text to him Mr. Cox and Mr. J. Brazier. The latter, in his painstaking enumeration of the mollusea of the Chevert Expedition, has done mueh to simplify the labours of all future observers.

I now proceed to enumerate from the works of the naturalists named above what shells Tasmania really possesses; for the mistakes of habitats found in most European writers are really innumerable. I find the following shells mentioned as oceurring in Tasmania which I have not been able to trace. Ancillaria mucronata, sowerbr; Terebra Fieneri, Deshayes: T. nitida, II inds; * Conus pontificalis, Lamarck; Littorina plitippi, Carpenter; Claneulus nodulosus, A. Adams; Cerithium serorina, A. Adams; Zizyphinus granulatus, Born; Patella costata, (.) Patella radians, Gmelin; Chiton: U. piceus, Gmelin; C.proteus, Reeve; C.glaucus, Gray; C. Sinclairi, Gray; Corbula zelandicus, Gray; Anapa triquetrum, Hanley; Tellina diemanensis, Deshayes; T. tristis, Deshaves; Gari compta, Deshayes; Hiatula vitrea, Deshayes; Semelé pxigua, H. Adams; Callista planetella, Lamarctr; C. candida, Deshayes; C.rutila, Desh.; C. citrina, Lamarck; Dosinia coryne, A. Adams; D. crocea, Deshayes; Rupellaria brevis, Quoy; Mytilus Dunkeri, Reeve. To this may be added Patella limbata, which Phil states came from N. Lustralia, but which has been identified with P.tramoserica Chemnitz; but whether rightly or no we have no authentic specimens to determine. Some of these shells are distinctly stated to have come from Tasmania by the authors, and others are referred to as coming from places which can only be doubtfully identified with Tasmania.

It is curious however to observe the converse of this list, that is, of shells which are attributed to other countries which belong only to Tasmania. A list has lately been published in the Journal de Conchyliologie (1878, p. 1), by Capt. F. W. Hutton, of the shells known to occur in New Zealand and the Chatham Islands. In this list is given the names of shells attributed to New Zealand, but which the author had been unable to find there. Amongst those the following are found iu TasmaniaThalotia conica, Gray; Siphonariodiemanensis, Quoy; Mytilus

* This is a West Australian shell.

hirsutus, Lamarck; Tenus (Chione) lamellata, Cardita amabilis, Deshayes' Lamarck; Cominella lactea, Reeve; Haliotis albicans, Sw.; Littornia vilis, Reeve (which is a young and dwarfed species of L.pyramidalis, Quoy); Kraussia lamarckiania, Davidson.

On the other hand, some of the missing shells of the former list are chronicled as occurring in New Zealand, which is the true habitat of the following-Chiton sinclari, Chiton glaucus Corbula zelandica, Mytilus dunkeri.

I must now refer to another matter, that is, the names of the genera. Mr. G. F. Angas, in his list, has followed the generic names of Messrs. Adams in his critical list, a plan which I have not adopted. My reasons for this are best found in the words of M. Chenu, whose opinion I shall quote in the extract which follows-"Lamarck is the true founder of conchology as a science, and his generic names, which were always judiciously chosen, have been universally adopted. They belong to science, and consecrated by use ought to be preserved, if we do not desire to throw into confusion a science which is already complicated enough, and which the necessary creation of new genera is complicating still more. Let us leave to Lamarck the credit which no one can deny him, and do not let us uselessly re-baptize his families and his genera for the sake of ascending to equivocal and trifling genealogies, which are not in most cases improvements. The principle of priority is a good one, but it is not advisable to apply it too strictly in such cases, and above all in the names of genera. Most of the authors whose generic names are thus revived knew but a small number of species, and their observations were too limited for the names they employed to have any other importance than their historic interest. The collections with which Linné had to deal were not proportionate to the power of his genius, and we cannot suppose that he would have misunderstood the differences which did not escape Lamarck, whose opportunities for observation were more than double, and which have led him to divide the great genera proposed by that prince of science. It was thus that Lamarck, more faroured than Linné, was able to lay the foundations of conchology, and as it were incorporate the science, but at the same time giving us an example by respecting the names given by his predecessors when they had come into general use. For instance, if he divided a genus of the Swedish naturalist into many others, he kept the name given by his illustrious predecessor for the principal one. We have always thought that everything should be avoided which tends to render the access to science difficult, and all that would discourage the first steps. But we regret to see that Messrs. Adams, in order to submit themselves to the principle of priority, have adopted names generally ignored or completely forgotten, for genera
which all conchologists know perfectly well by names long consecrated by use. We will give some instances to prove that certain names which have no motive whatever for their adoption, cannot be preferred at the present day to names given since or about the same epoch by a man of science, whose book is still the most sure and most generally adopted guide. Who is the collector of the present day who would go back willingly to the names given formerly by Bolten, Klein, Gronovius, Humphrey, Link, and Denys de Montfort, to genera which often did not exist, or whose characters, relations, and limits Lamarck was the first to establish? If we place side by side of the names employed by Lamarck the old names whose revival we condemn, the question will be decided at once. Thus-Architectonica, Bolten $=$ Solarium, Lamarck. Bursa, B. $=$ Ranella, L. Angavia, $\mathrm{B} .=$ Delphinula, L. Harpago, Klein $=$ P'terocera, L . Actinobolus, K. = C'ardita, L. Pentadactylus, K. = Ricinula, L. Dactylus, K. = Oliva, L. Gladius, K. = Rostellaria, L. Amphiperas, Gronovius $=$ Ovula, L. Eutropia, Humphrey $=$ Phasia nella, L. Isognomum, K. = Perna. L. Umbonium, Link = Rostella, L." After stating his appreciation and admiration of the labours of Messrs. Adams, whose divisions he follows where possible, as well as those of Albers, Pfeiffer, and partly Gray, and after making every allowance for fossil genera, M. Chenu states that he preserves all the names of genera hitherto received, and he expressss a hope which I am sure has been generally reciprocated, except by a very few conchologists in England, that a stand will be made for the defence and preservation of the old names. Otherwise, he says, we must begin to forget the scientific language we have learned, and which is not such a simple thing, but with which we are now familiar for more than half a century, to acquire a new language which offers us no advantage whatever." ${ }^{\prime *}$

I am sure there are few who will not be convinced by this most reasonable appeal. What have we to gain by the new names? They are not better and they are of doubtful import, for many of them have not been defined. But if we do adopt them will all European conchologists adopt them? Certainly not. And if they did would the geologists do so? I think not. In any case the whole science of paleontology would have to be learned again, and all the books hitherto printed on the fossils would be useless, and only tending to confuse or mislead those who relied on them for scientific names. Besides, paleontologists cannot adopt those sub-divisions which rest on the animal alone; they can never study that part of the subject, except indirectly.

* See Preface to Manuel de Conchyliologie.

For these reasons, therefore, I have declined to follow the example of Mr. (木. F. Angas, whose labours in other respects have been such a wondertul help to conchology in Australia. I cannot consent to call the well-known Phasianella by the name of Eutropia, Ranella by the name of Bursa, Modiola by the name of Perna. The latter is a good instance of the confusion which would result, for Perna is a most important name in geology, and means quite a different shell. Yeither will I call Pectunculus Axinia, but 1 need not extend the hist, which will, I hope, speak for itself.

It must not be imagined, however, that on this account all the names are to be rejected which have been introduced by the necessity of creating new genera. But I have not adopted all the new genera. Some of them appear to me to be erected on slight and insufficient grounds. Tet it was not so much on that account that I have not adopted them, because my experience is not wide enough to pronounce on systems which far more learned, and more experienced and industrious men have erected after such care and labour. But T have been doulttul of their application to Australian suells, and in cases where the genera were wholly Australian I may perhaps safely estimate their value, but upou what grounds I have always given aud will always give scientific men an opportunity to judge.

In the census published by me I did not attempt to mention families, except in rare and undisputed instances. With regard to this part of the subject we may well say "o adhuc sub judice lis est." From the time of Linnæus to our own day systems have followed one another in increasins rapidity. To mention only a few of the leading ones: Lamarek, Cuvier, Blainville, Ferussac, Latreille, Deshayes, DOrbigny, Savigny, Sander Rang, Milne Edwards, Schumacher, Hartmam, Muhlfeldt, Philippi, Pfeiffer, and Albers, on the Continent, and Humphrey, Fleming, J. E. Gray, Swainson, Adams, and Gwym Jeffreys, in Britain, have not succeeded in establishing a system which all accept. Still there has been progress. Even some of Lamarck's divisions are still preserved. In the beginning all were too artificial, and now the aim at a perfectly natural arrangement prevents anything short of a perfect system being stativuary. It would have been well if some had known where to stop in this matter. As far back as 1822 an eminent Scotch conchologist, Dr. Fleming, in his very able "Philosophy of Zoology" uttered a warning note which would be well worth our while to listen to now. He says in his preface: "There is now much declamation about the wortblessness of artificial systems and the excellence of natural methods. But this excellence is more apparent than real. Many of those natural groups which are so much praised are ill-defined, and it is even acknowledged by their admirers that precise limits must
not be assigned to them. Hence it frequently happens that the definition of a group is applicable to a few genera only, which are considered as its type, and does not embrace other genera which are regarded as belonging to it but beginning to assume the characters of some of the other neighbouring groups. There is here the use of a method where there is no precision, and a boasting that the plan of nature is followed when that plan is confessedly incomprehensible. Indeed it often happens that the admired natural method of one differs from the censured artificial method of another merely in the circumstance that different systems of organ have been made choice of as the basis of the respective classifications. Unless zoologists in the formation of their primary groups endearour to determine those characters which all the members possess in common, admitting only such marks into the definition, and practise the same method with all the subordinate divisions, the progress of the science will be unsteady; the student will be startled at its contradictions, and the revolutions in nomenclature be as frequent as the cultivators of the science are numerous."

I now proceed to give a brief view of the Molluscan subkingdom as it affects Tasmania.

Class, Cephalopoda.

Argonauta, Spirula, Sepia, \&ce. I do not enter into detail in this matter, as absolutely next to nothing bas been done towards their classification in Tasmania.

Class, Gasteropoda; Sub-class, Proso-branchita; Sub-order, Proboscidifera; Family, Mubicide.
Shell thick, with numerous scaly spiniform projections, and more or less salient varices or spines ; operculum oval, oblong; nucleus apical. Murex 3, Typhis 1, Trophon 9, Fusus 6, Siphonalia 5.

2nd Family, Pleurotomide.

Animal, with a posterior slit in the mantle corresponding to a sinus in the shell, and a straight siphon. Shell turriculate. with a canal; operculum horny; odontophore, two lateral series of teeth only. Pleurotoma 1, Drillia 7, Clathurella 2, Mangelia 9, Daphnella 2.

Family, Tritonide.

Animal: Head large; foot short, thick, truncated in front; adontophore 7, only 3-1-3; operculum horny, oval, oblong; nucleus subapical. Shell ridged, with irreoular varices. Triton 5, Tritonidea 1, Ranella (rarices regular) 3, Pisania 1.

Family, Buccinide.

Animal: Head flat, large, two conical tentacles, with ocular tubercles at base; operculum horny, small, dentate at the edge; odontophore, three lingual teeth in the series, one central and two lateral. Shell oval, oblong, turriculate, notehed anteriorly; columella smooth, rounded, with conspicuous callosity, Buccinum (alveolatum) 1, Cominella 5, Adamsia 1, Nassa 5. Eburna 1.

Family, Purpuride.
Animal: Head small, two conical tentacles often obtuse, in the middle of which are the eyes; foot short, elliptic ; operculum horny, with a lateral nucleus. Shell smooth, tuberculous or spiny; columella flattened, pointed, aperture wide with an oblique notch. Purpura 6 (this includes one of the family of Coralliophilidæ of Chenu our \boldsymbol{P}. madreporarum, but the Tasmanian shell does not live on corals).

Family, Olitide.

Animal: Almost covering the shell; foot very large, with two auriculate lobes in front; operculum rudimentary. Shell polished, spire almost always very short; columella often twisted, callous.

Ancillaria 2, Oliva 1.

> Family, Fasciolaride.

Animal, with an enclosed mantle and a straight siphon. Operculum ovate acute, nucleus apical. Shell fusiform, with a straight canal and plaits on the fore part of the pillar.

Fasciolaria 3. Josephia 1. The latter a genus which perhaps might belong to the Buccindæ.

> Family, Vouutide.

Animal: Head large, eyes sessile, placed at the back of the tentacles, a reversed and auriculated siphon, very large foot partly enclosing the shell. No operculum, one single line of teeth. Shell highly coloured, ovate, or fusiform, smooth or tuberculate with distinct folds on columella. Voluta 7, Mitra 14, Marginella 8, Erato 1.

Family, Columbellists.

Animal: Head large, flat, foot narrow, elongated, oval, siphon short, no operculum. Shell short with a periostraca, spire short aperture rather narrow often toothed on the outer margin, a slight noteh at the anterior end of aperture. Columbella 10.

Family, Casside.
Animal: Head large, thick with fine tentacles, eyes at base, siphon extensile, thick and salient, mantle with filaments and a double fold. Operculum horny, Odontophore, 3-1-3. Shell solid, globose, more or less tubercular, aperture narrow, canal abruptly recurved. Cassis 4.

Family, Naticide.

Animal, very large, head small, tentacles wide apart, united by a veil-mantle almost covering the shell, eyes none or minute, operculum multispiral and horny, often with a second calcareous plate. Shell large, globose, smooth, spire short, aperture large, almost round, with an umbilicus or a callosity. Odontophore short, 3-1-3, central quadrate, broad based.

Natica 4, Ruma 2, Sigaretus 1.

> Family, Scalaride.

Animal, cylindric, foot short, sub-quadrangular, head short ohtuse flattened, tentacles conical, eves at the external base. Operculum horny, 1 or $1 \frac{1}{2}$ whorled, nucleus central. Odontophore with no central teeth, but simple transverse rows of teeth. Shell turriculate with ribs, mouth entire, round, reflected. Scala* 8.

> Family, Terebride.

Animal: Head large, tentacles small, a rather long siphon hotween, mouth at the end, operculum oval, horny. Shell very lung, couical. with a notch in the aperture.

Terebra 4 (though others are deseribed).

Family, Prramidellider.

This is a rather heterogeneous family, as will be seen by the genera included in it by various authors. M. Chenu makes it receive such genera as Ringicula. Messrs. Adams's definition is less than that of Gwynn Jeffreys, who includes Stylifer. But following his arrangement we should have the Families Pyramidellide with Turbonilla 4, Odostomia 2, Aclis 1, Fam. Eulimidæ, Eulima 5, Elusa 1, Syrnola 2, Strlifera 1, Stvloptigma, Cingulina 1, Acus 1. All small shells, agreeing generally in their terriculate habit and entire mouth, with or without plaits on the columella.

Family, Cerithiopside.

Animal: Head short, broad, tentacles subulate obtuse, eyes at base, mouth with retractile probocis, mantle not reflected with rudimentary siphonal fold, operculum horny, on a well developed lobe. Shell turreted, many-whorled, spirally keeled. Odontophore like Naticidx. Cerithiopsis 2.

Family Solabide, doubtfully represented, no species determined.

Family, Conids.

Animal: Head with produced tubular veil, tentacles subulate, eyes on tubercles at outer side, mantle enclosed, an elongate siphon at fore part, foot simple, undivided, oblong, conspicuous

* This name is Klein's, and before Linnæus, but we may adopt it as it is shorter and not much different from Lamarex's.
aquiferous pore on middle of under surface. Teeth subulate in two series, on tubular prolongation of retractile proboscis, bundle of sharp subulate teeth at extremity. Shell inversely conical, aperture long and narrow, outer lip thin, free or notched near suture. Conus 5.

Family, Cypretide.
Animal, elongate, mantle very large with many cirrous filaments, almost concealing shell, tentacles very long, eyes upon a protuberance, siphon short. Odontophore with seven rows 3-1-3, branchial plume single, no operculum. Shell in general like cowry. Cyprea 6 (one doubtful), Trivia 1, Birostra 1.

Family, Cancellaride.
Animal, with subulate tentacles united at the base, eyes at the outside, foot small, simple and triangular without operculum, spire short, whorls convex, often cancellate and ribbed, mouth entire, no odontophore, rostrum rudimentary. Cancellaria 4.

Family, Cerithitde.

Animal, with a large foot, short, and angular, a front mantle with anterior rudimentary siphonal fold, rostrum large, short, folded, eyes at external base of tentacles, which are subulate and very wide apart. Odontophore long linear, 3-1-3, conical, curved. Operculum horny, subspiral. Shell turriculate, many whorls, notched at the anterior aperture, labrum produced.

Cerithium 3, Lampania 1, Bittium 4, Triforis 1.

Family, Littorinid.s.

The family of Perrywinkles, best characterized by that name. See Proc. Linn. Society, N. S. Wales, June, 1878, for the reasons why I only make one genus Littorina of Risella, Tectaria, of which we have probably four species in Tasmania. Fossarus 2, Ampularina 3, Fossarina 1.

Family, Plavaxides.

Animal, with a long rostrum, subulate tentacles, eyes sessile on the swollen exterior base, foot short, simple with small tentacular filaments, operculum thin, horny paucispiral, odontophore 3-1-3, and in general much like the perrywinkles. Tasmanian representatires (included doubtfully), Diala 3.

Family, Rissome.

Small white or horny shells of various forms, but more or less turriculate. Animal with a proboscidiform head and subulate tentacles, eyes at base, foot long, sub-triangular truncated in front. Odontophore with a 3-1-3 inner lateral; teeth very broad, outer dissimilar; all with denticulated apices.

Rissoa 12, Rissoina 7.

Family, Turbitellida.

Animal: Rost rum short, broad, teutacles long, fine, eyes at base. Mantle with a fringed matgin obscurely siphonated at right side. Operculum horny. Odontophove very short, 3-1-3, median square, laterals ligulate, summit, homked, serrulate. Shell turreted. subulate many-whorled imperforate, spirally grooved, aperture entire, outer lip acute.

Turritella 5. Siliquaria 2. Vermetus is also placed in a different family. We have two of the former and one of the latter, or perhaps two. Buth are abnormal mollusea-the latter fixed, and with the foot rudimentary. Lingual dentition unknown.

Family, Cályptreide.

Animal dilated and depressed on its sides, tentacles medium, eves at their external hase, font large, no operculum. Odontophome winged on cach side in front, 3-1-3, central small, broad, lateral lons, hooked, gill a single plume. Shell limpet-like, apex subspiral, interiur simple or with a diaphragm. The egg-cases in this family are membranaceous in a tuft in front of foot, under the nech. Trochita 1, Concholepas 2, Crepidula 1 or 2.

It is doultful whether some of the species ranged under the above genera should not be placed in others. In the family Pileopsidce they are not known from the animals. Analthea, of which we have probably two species, is referred to the latter family, which generally corresponds to Adam's Capulide. The animals hardly differ in either.

2nd Order, Scutibranchiata.

Hermaphrodite molluses, with a double branchial plume in the neck, or in cirrhi round the foot.

1. Sub-order, Podophthalma-eyes pedunculate.

Family, Neritide.

Animal: Muzzle broad. whort, tentacles slender, eyes on stout peduncles at outer base, no head lobes or neck lappets, foot oblong. triangular, no filaments, operculum shelly, articulated, subspiral, operculum central, teeth $5-1-\overline{5}$, with a long comb of very numerous laterals. Shell depressed, oval, spire short, no umbilicus. Nerita 1.

Family, Trociride

Animal: Head proboscidiform, tentacles fine, often ciliated, eyes on free peduncles at their outer base. head lobes between tentacles, gill single, long, neek lappet at sides of foot near eye peduncle, continucus with a side membrane with 3 to 5 filaments on free margin, operculigerous lobe ornamented with cirrhi, operculum horny, spiral, often calcareous. Odontophore like Neritidæ. Shell pyramidal, turbinate, or ear-shaped, pearly
within. Phasianella 5, Turbo 4, Carinidea 2, Astele 1, Liotia 5, Cyclostrema 7, Monilea 2, Ethalia 1, Adeorbis 1, Minolia 2, Clanculus 13, Euchelus 3, Thalotia 4, Zizyphinus 7, Elenchus 4, Bankivia 1, Gibbula 6, Trochocochlea 2, Trochus (Diloma) 2, Stomatella 1, Gena 1.

Family, Haliotide.
Animal: Head large, flat, tentacles long, eyes on terminal peduncles, foot very large exceeding the shell, and fringed, Branchial plumes two, no operculum, shell ear-shaped, nacreous. The Odontophore is like Trochus 1 median, two beam-like laterals, and numerous uncini with denticulated hooks, the four inner very large. Haliotis 4.

Sub-Order Edriophthalma, eyes sessile.

Family, Fissurellide.

Animal: Head with short wide muzzle, body broad, conical, tentacles short, fine, eyes at base on protuberances, mantle margin fissured in front. free edges forming an oval siphon through apex of shell, gills two at back of neck, foot dilated upper sides with rudimentary filaments. No operculum. Shell not nacreous, conical, perforated at the apex or slit.

Fissurella 4, Macroschisma 1, Emarginula 4, Scutus 1, Tugalia 1.

Family, Devtalide.

Animal, long, conical, truncate entirely enveloped in a mantle terminated in a fringed or plicate varix, foot proboscidiform, head distinct and pedunculate, lips with tentacles, but no other filaments or eyes. Dentalium 2: but there are others which may belong to the genus Cocum, which is a family by itself near to the Vermitidæ.

> Family, Tecturide.

Animal like preceding, but with gill plume at back of head. Odontophore long, two central and two hooked lateral teeth on each side in an oblique line. Shells like limpets, apex not central. Acmæа 9.

Family, Patellide.

Animal like preceding, but with gills in cirrhi all round foot. Odontophore very long, tecth simple in numerous transverse rows. Shell a simple cone. Patella 6 or 7.

Family, Ceitonide.

Animal elongated. Gills in lamellæ, placed like last. Heart central, alimentary canal terminating at end of median line. Odontophore not long, teeth 3 central, median small, laterals large, with dentated hooks, uncini five. Shell of numerous plates, Chiton. 6? Cryptoplax 2.

Sub-class, Opisthobranchiata.

Hermaphrodite molluses, branchia always posterior uncovered, or only covered by a fold of the mantle. Sheli external or internal, testaceous membranceous, rudimentary, or none.

1st Order Tectibranchiata. Branchia covered by shell or fold.

Family, Cylichnide.

Animal with frontal disk, head sub-quadrate, truncate in front, produced behind into broad flattened recumbent lobes, with eyes immersed in front of their bases, mantle with posterior thickened lobe, foot shorter, thin shell truncate in front, no operculum. Odontophore 6-6, no median, inner large and hooked, outer uniform. Shell without colour, cylindrical, spirally convoluted, spire short. Cylichna 2, Tornatina 1.

Family, Bullide.

Animal, partly or wholly covering shell, frontal disk expanded, no eyes or sessile on frontal disk, mantle with right margin thickened, left thin. Odontophore one central tooth and lateral numerous in an arched series, gizzard with calcareous plates, foot expanded for swimming. Shell thin ventricose, spire none. Bulla, 1, Haminea, 1. I include in this Philine 1, but the shell is wholly covered and the head differs.*

Family, Aplisinde.

Animal large, eyes sessile, tentacles (?) ear-like, mouth with tentacles, mantle with internal calcareous plate protecting gil. Odontophore broad, short, teeth, central one, lateral numerous similar, gizzard with cartilaginous plates. Aplysia 2.

Nothing has been done hitherto with the Nudibranchiate molluscs, and I need not pursue the classification for the brackish water shells, such as Ophicardelus 2 and Auricula, as they are so widely separated from the other families that it would extend this essay too long to explain the intermediate system. Our Marinula is a marine shell, and until the animal is studied and known I should hesitate on what system to place it. The Family Siphoxartie is also very far removed. It is distinguished by a pulnonic cavity for respiration, a conical shell, and a short ligulate odontophore, with one small central tooth and an immense number of laterals.

The length to which this paper has extended prevents me from giving a synopsis of the Conchifera, to which I may return on a future occasion, as well as to the Land and Freshwater mollusca.

I wish to conclude with some observations on the geographical distribution of the species. I have already published my opinion that for convenience it would be well to divide Australia into several molluscan provinces. The S.E. coast forms one, Victoria

[^8]another, South Australia, as far as Eucla, another, and Western Australia another. In this sense we should have to divile Tasmania into two provinces. The north side. which womd have its relations with the South Australian coast, and the eastern and southern, which would be found more in relation with the S.E. province of Australia. But just as there is in all these provinces the same general character or as we term it, the same Australian facies, so in Tasmania,--it has the most of the species which are very common on the South Iustralian coasts. Beginuing with the littoral shells, we have the same Patella (P.tramoserica Chem.) on the rocks of New south Wales, of Port Phillip, or South Australia, but it differs a good deal in character. In its young state it is streaked with bright vermilion in Victoria; on the New South Wales coast it is often a rosy red; in South Australia it is of a beautiful grolden yellow; while in South Tasmania it is a dull leaden colour, and attains a much larger size than anywhere else. Perhaps the two most common shells on all the south coast of Australia are Phasiunella tritonum and Turbo undulatus. Evers one is familiar with the former of these shells, which assumes such astonishing varieties of colour, all oif great beauty. It would bo havd to find any part of the Tarmania const where they are not washed up on the beach; but as we proceed south ther become more searee. T. undulatus especially so. On the other hand. the rommon coast shell of Tamania is the beautiful Femus lameflatu. On the beach of sandy Bay, near IIolart Town, they are drifted up in imnense numbers at times. The same shell is common on the north coast, and on the South Australian coasts the are considered ereat ravities. A shell that is very common throughout Tasmania, and equally common on all the south eoasts of Australia, is Buccinum miveolutum. Kiener. The animal acts as a kind of scavenger to the enast. Its powers of sight or scent must be very kech, becanse i_{k}^{*} a large limpet is cut out of its shell and thrown into a rocky pool it is in a very short time completely covered with this molluse. It has a long siphon or proboseis, which contains the radula. 'I his is a thin sharp spear-like instrument, strongly harbed on each side. It evidently tears away the muscular tissue with great facilitr.

Taking Southport, Port Esperance, or Recherche Bay in South Tasmania as places for comparison, we find a very marked differeace from the Australian coasts. The rocks are covered with Patella tramoserica, P. ustulata, Aemea altcostata, A. marmorata, 4. septiformis, Siphonaria zonata, S. diemanensis Littorina (Risella) melanostoma. (L. nana and aurea occur, but I have shown that these are simple varieties) Trochocochlea cunstralis, T. constricta, with the variety T. taniata, Diloma odontis, Littorina coerulescens, the many varieties ziczac, Phillipi, dc.

All these shells are between the tide marks. A little further from the shore we find Haliotis nevosa, Carinidea aurca, Cominella costatum, Purpura lit!orinoides, Ostrea edulis, and in sandy places Venus roborata, V. gallinula, V. conularis, Pecten asper, P. bifions. There are also three species of Mytilus in thick patches on some of the rocks, M. latus, M. rostratus, and M. hirsutus. In this list I mention only the most common shells, to which I may add in places, Chiton petholatus and C. australis. Compare this now with Guichen Bay on the South Australian coast. We still find Patella tramosereca and Acmaa alticostata and the usual varieties of Littorina. But in place of the Trochocochlea australis, which in Tasmania swarms under every stone, we find large numbers of a Thalotia, T. conica, with occasionally T. picta, and the variety (which is regarded as a species by Messrs. Crosse and Fischer), T. Ramburi, Elenchus bellulus, E. badius and E. irosodontis are alsó tery common and very large, but not upon the rocks; they are found feeding on the sea-weeds a little way out from the shore. Now all of these shells are found on the north coast of Tasmania, but the genus Thalotia is not at all common. On South Tasmania it is never found so far as I could learn. Elenchus bellulus is found rarely in Bass's straits. E. badius is not at all rare in any part of Tasmania, hut rather smaller. The finest and commonest specimens appear to be found at Lacepede Bay, a little north of Guichen Bay. Neritn atrata. a very common shell abore tidal marks on the south and southeast coast of Australia, is rarely found on the south coast of Tasmania. Haliotis nevosa is common through all the S. E. and S. coasts, and in Tasmania everywhere ; it forms an article of export to some Chinese fishermen on the south coast. Haliotis albicans is found only on the north coast ; it has not been found in Victoria, and is more generally on the S. A. coast.* The Littorinde of Tasmania generally are those of the Australian coast, except Littorina scabia, and L. pyramidata so common ou the south-east. The latter is found on the north Tasmanian coast, but rarely and very small. Ostrea morlax, so abundant in N.S. W., is almost entirely absent from Tasmania. Cardium cygnorum, from W. Australia, occurs on the north T. coast, but small and thin. It occasionally extends to N. S. W.

These remarks might be very much extended, but sufficient has been said to give a general idea of the differences of the fauna, and as the subject is too large to be disposed of in one paper, further details may form the subject of a future essay. In conclusion, I give a list of those fossil forms more or less abundant in our tertiary strata which are found living in Australia.

[^9]Pecten laticostatus, south coast only, small and rare. Limopsis decussata, doubtfully on the north coast. Cylichna arachis, common. Liotia discoidea, rather common. Fissurella concatenata, rather rare, and in Sydney.

Disclession.

The Chairmax said, precisely the same thing occurred with the vegetable kingdom as with the animal, as described by Mr. Tenison-Woods. Along our own coast and the coast of Queensland there were upwards of 200 species of ferns, whereas on the west coast of Australia there were not more than two or three species. As we go to the southward and westward the number of ferns decreases, while as we go to the north the number increases. There was nothing so marked in the vegetation of this country as the want of ferns in the southern part of Victoria, South Australia, and Western Australia; whereas there was nothing more marked than the large number of ferns on the eastern coast. Some of them attained a very great height. Some of them did not extend beyond the Dandenong Range, west and south. (Mr. Tenison-Woods: I do not think there are any in South Australia.) No, but in this country they abound, and reach a height perhaps equal to any in the world. On the Blue Mountain Range they attain a height of about 60 feet. He desired to make a suggestion with regard to the discussions on their papers. The late Sir William Denison endeavoured to get short papers read in order to excite discussion. He believed if they had short papers read, they would excite discussions that would be both interesting and instructive to the members of the Society.

Dr. Nerld thought, with regard to the suggestion of the Chairman, the idea about discussions could be carried out in even a simpler way, namely, by members haring the power to propose certain subjects. He was a member of an institution in England, and they met once a month and had exceedingly valuable discussions in this way. He thought the idea, if carried out, would lead to profitable results, and greatly increase the interest of the meetings.

The Charman thought that could only be done by means of short papers.

On some Australian Tertiary Fossil Corals and Polyzoa.

By the Rev. J. E. Tenison-Woods, F.L.S., F.G.S., Hon. Mem. Roy. Soc. N.S.W., \&c., \&c.

[Read before the Royal Society of N.S.W., 4 September, 1878.]

Last year I published in the Proceedings of this Society (vol. 11, p. 183) a description of some tertiary fossil corals from the Muddy Creek beds, Western Victoria. Since then I have found others amongst the detritus and matrix of fossils in my possession. They are of especial interest, not only from the beauty and peculiarity of their form, but also because of the new facts they contribute to our tertiary paleontology and the structure of corals generally. In the first place I am able to signalize the discovery of a Montlivaltia in our tertiary beds, and this is another link to that chain of facts which gives our tertiary fauna such a mesozoic aspect: I allude especially to the discovery of Salenia and Belemnites in the Aldinga beds, Thamnastraa in Tasmania, our simple endothecal corals generally, and Pleurotomaria, Trigonia semiundulata,* \&c., among the mollusca. Most of these genera have probably living representatives, though they were at their highest development long before the dawn of the tertiary period. Montlivaltia is a similar instance. The genus was established by Lamouroux (Expos. Méthodique des genres de l'ordre des Polypiers, Caen, 1821, page 78) for a trochoid simple free coral found in the jurassic limestone near Caen. It includes at least a hundred species, the most of which are found in the jurassic or the chalk formations. There are about ten tertiary species known, but none living. The tertiary species are Eocene and Miocene. The forms of this coral vary very much, from conical to discoid. I cannot find that one form is more peculiar to any given period than another. The discoid corals are few in number, and it is to this kind that the fossil to which I draw attention belongs; but it is a discoid form which is flat or even concave beneath, and that is, I believe, rare in the genus. There is a fossil form lately described by Mr. Tomes

[^10](Jour. Geol. Soc., vol. 34, p. 193) from the Lias of Warwickshire, which is very like our species, but it is attached while the present is free. The following is the diagnosis :-

Family Astreide. Div. Lithophilliacee.

Montlualta discus. Corallum circular, depressed, convex, but slightly depressed in the centre. Costa corresponding with septa, faintly risible under the epitheca, covered with rather large but faint rounded granules. Epitheca thick, smooth, showing scarcely any concentric lines of growth. Systems six, cycles four. Septa moderately thick, regularly and finely dentate, the serrations extending as ridges far along the higher orders; moderately granular. Primaries nearly always free to the centre. Tertiaries curving round and joining secondaries at about threc-fifths from centre, but the secondaries are not subsequently thicker. Fourth and fifth orders curving round and joining the tertiaries, but the fifth order always nearer the centre than the fourth. Endotheca abundant, no interseptal space without one or two dissepements, thick, curved, sloping. Base concave, and no trace of attachment. In some cases the secondary septa of some systems curve suddenly and join the primaries close to the centre. Diameter, 6 $\frac{1}{2}$, alt. 2 millims. Muddy Creek; not very abundant.

There is a coral described by Professor Duncan from the Australian tertiaries which is very like this species. It is named Antillia lens, and from the Professor's description I judge the differences to be that it has a columella, the septa do not unite in the manner here described, and the endotheca is not abundant. In all other respects they might easily be mistakeu for one another.

The next fossil I have to describe is one of most singular and interesting characters. It is a combination of some of the lead ing characteristics of several families and sub-families. It is a Turbinolidian coral with pali, without a columella and a perforated wall! It is well known that the perforation and nonperforation of the walls of corals form two of the largest subgections of the Madreporarta. The perforated section is less diversified than the other, since it generally possesses other marked features in combination. In this fossil we have a perforated wall, but none of those features. In exterior form it is very like a Turbinolia, and like some members of that genus it has what seem to be deep pores between the costa. But in the true Turbinolia these pores go no further than the wall. They follow a groove between the costa and, though deep, they never go through. In the fossil I am describing they go right through the wall, in fact, as the pores are very large, the portion of the wall which separates them becomes little more than a Hat transverse bar, an arrangement which reminds us of Porites. There
are other peculianities which I will notice in the diagnosis; it is sufficient here to call attention to the singular beauty of the design of these corals. They might be made serviceable as designs for ornamental purposes, a suggestion which has more than once been made with regard to other members of this order.

The affinities of this species are all with Conocyathus, a genus which, in addition to being Australian, has several fossil members in our tertiary beds. The perforation of the wall is, I think in this case, a generic feature, at least, if it should not be the representative of a family. We have in Dasmia a family with a single species, but others may be found for ours, as the beds in which this fossil occurs are so little explored. I propose to name the genus from its perforated aspect Trematotrochus, which is thus characterized :-

Trematotrochus, new genus.

Corallum free, with the risceral chambers free, the septa distinct, only united in the middle, pali present; no endotheca or synapticule and the wall incomplete, so as to leare large interstices at regular intervals. No epitheca. Trematotroches fenestratis. Corallum, a regular cone, celindrical, fincly pointed, without trace of attachment. Costa in three cycles the third order branching off very close to the base. rather prominent, thin and closely envered with short blunt spinous granulations. Marginal edge of calice rounded. No fossa. Septa exsert in rounded lobes spinously granular at the edges like the costa. Systems six, cycles two. Secondaries very much smaller than the primaries. Pali before both the orders in rather stout granular processes, not rising so high as the septa. In addition the septa sometimes send out long narrow lobes such as recall the Astrangiacex, which join the pali. Dimensions, alt. $\overline{3}$, diam. of calice $2 \frac{1}{2}$, of rounded base 1. Rare at Muddy Creek. Only two specimens found by me sufficiently well preserved to show details.

I am now of opinion that the coral which I described in last year's proccedings as Conocyathus fenestratus was no other than a very much worn specimen of the present fossil. The interstices were filled up with sediment.

It will be observed that in the case of this fossil, as in many other fossil and recent corals which are found in Australia, there is one cycle of costa more than the septa. I have figured for the plate which accompanies this a remarkable fossil from Aldinga, which has a structure which may throw a light upon this peculiarity. In Trochocyathus heterocostatus we have costa in cycles, and though they correspond with the septa, yet it is the higher orders (the fourth and fifth) which are continuous to the base, while the costa corresponding to the primaries and tertiaries do not appear until about half way. The fourth and fifth orders of
septa are only rudimentary; so that if we found this coral in its young stage we should have no fourth cycle of septa, and no primary and secondary costa. Thus the costa would alternate with the septa. We see in this, probably, a proof that an extra cycle of costa shows that a cycle of septa to correspond with them either will appear or is aborted. It would be very interesting to learn if there are tentacles in the animal to correspond with the extra cycle of costa, or organs of any kind that will account for the irregularity. In Trochocyathus heterocostatus,* the primary costa at the end of the major axis are continuous to the base, and even wider than the fourth and fifth order. This shows us something of the mole of growth, which may be of interest in tracing the homology of these organs. It seems very certain that the new forms which Australian paleontology is bringing forth will hereafter throw much light on the meaning of many of those facts which an imperfect knowledge of the plan of nature has rendered apparently anomalous, and which may eventually lead to a more gound system of classification than that at present adopted.

Class, Polizoa. Order, Infundibulata. Sub-order, Cheilostomata. Section, Inarticulata. Sub-section, Bi-multiserialia. Family, Gemellariada. Cells opposite, in pairs.
The fossil which I am about to describe is close to Gemellaria, wherein the cells are joined back to back, and all the pairs face the same way. But in this species the faces alternate in two ways-that is, the faces are on all four sides of the almost cylindrical branches, and they alternate in each of the opposing cells arising on the side of the centre of its alternate neighbour. This peculiarity is of generic value, and I propose the name of Tetraplaria for the genus. A fossil similar to this has been included in the genus Cellaria by A. E. Reuss. \dagger It is a Miocene form of the Vienna basin, which the author thus describes: Cellabia schreibersi. C. gracillima, raro dichotoma, cellulis quadrifariis ovatis aut semi-cylindraceis, plus minusve convexis, medio punctatis apertura supera, immersa, late elliptica, poris duobus minimis lateralibus.

The specimen figured by me differs from this in the cells being smooth and not punctate.

[^11]Tetraplaria, nov. gen.
P. with erlindrical smooth branches. Cells back to back, facing four ways, the opposite pairs of two sides alternating with the other two.

Tetraplaria acstralis, n. s.

P. with smooth slender branches. Cells elongately pyriform, not punctate ; aperture nearly oval.

Muddy Creek, Western Victoria.-The occurrence of a fossi! form so very near the Vienna miocene species, and of a genus which, as far as I am aware, has no plincene or living representative, is another link in the chain of evidence which fixes the age of these beds.

ENPLANATION OF PLATE.

Fig. 1a. Montlivaltia diseus, enlarged.
1b. Ditto calice.
", 1c. Ditto base
", 2a. Trematotrochus fenestratus, much enlurged.
," 2b. Ditto calice.
", 3a. Trochocyathus heterocostatus, enlurged.
" 3b. Ditto end view, showing peculiar costa.
", 4a. Tetraplaria australis, enlarged.
, 4b. Ditto section.
\square

Fis 36

a

Fig int Trematutrochus, Batnce
Fig 3", Trochocyathum hoterocostatus, (enlamed)
Fig 等 Ditto end wew shownif paymy costa

Proposed Correction to the assumed Longitude of the Sydney Observatory.

By John Tebbutt, F.R.A.S.

[Read before the Royal Society of N.S.W., 5 June, 187S.]

One of the most important problems to the colonists, from an astronomical, a nautical, or a geographical point of view, is the accurate determination of the longitude of the Sylney Observatory. Four mothods may be mentioned for this determination, namely, the transportation of chronometers, observations of moonculminations compared with corresponding ones at Greenwich, observations of lunar occultations of stars, and exchanges of telegraph signals between Europe and the Observatory. Of these four methods, only one has hitherto been emplored, namely, observations of moon-culminations. During the latter part of the year 1859, the Rev. W. Scott, the then Government Astronomer, observed forty-eight meridian transits of the moon, namely twenty-six of the first limb, and twenty-two of the second. These, compared with the tabular positions in the Nautical Almanac, gave 10h. 4m. 59.9s. E. as the longitude of the Observatory from Greenwich; and this is the value hitherto adopted in the Ñautical Almanac and the Astronomische Jahrbuch. During the year 1860 fifty other meridian transits were observed, namely, twenty-six of the first limb, and twenty-four of the second. These likewise, compared with the tabular positions in the Nautical Almanac, gave 10h. $5 \mathrm{~m} .6 \cdot 54 \mathrm{~s}$. E. as the longitude. In the year 1861 fifty-six transits were observed. From the assemblage of observations ohtained in the years 1539, 1860 , and 1861, a selection was made of those trausits which had corresponding observations at the Cape of Good Hope and Greenwich Observatories. It appears from a discussion in the rolume of "Sydney tstronomical and Meteorological Observations for 1861," page S2, that twentythree transits in 1859, compared with corresponding ones at the Cape of Good Hope, give $10 \mathrm{~h} .4 \mathrm{~m} .44 \cdot 43 \mathrm{~s}$. E., and that thirtythree in 1860 and 1561, compared with corresponding ones at Greenwich, give 10h. 4 m .4666 s . E. as the longitude-the mean result being $10 \mathrm{~h} .4 \mathrm{~m} .45 \% 4 \mathrm{~s}$. E. In vol. xxvii of the Royal Astronomical Society's Monthly Notices, page 299, there is a paper on the longitude of the Sydney Observatory, by Mr. Stone, the present Astronomer Royal at the Cape of (aood Hope. In that paper he has compared sixteen transits of the moon's first limb, and eight of the second, observed at Greenwich and Sydney in 1859, the resulting longitudes being respectively 10 h .4 m . 45.05 s . and 10 h .4 m .48 .08 s . E. He has also compared thirteen transits of the first limb, and eleven of the second, observed at both places in 1860, with the respective results- 10 h .4 m .45 .81 s .
and 10 h .4 m .50 .05 s . E. Combining the obserations of the two years, he got for the resulting longitude-10h. $4 \mathrm{~m} .45^{\circ} 39 \mathrm{~s}$. E. from observations of the first limb, and $10 \mathrm{~h} .4 \mathrm{~m} .49 \cdot 26 \mathrm{~s}$. E. from observations of the second limb; or, as the final result, 10 h .4 m . 47.32 s. E. This value differs only 1.58 s. from the Rev. W. Scott's, before stated. The discussions by the Rev. W. Scott and Mr. Stone, so far as I am aware of, are the only ones that have yet appeared.* I believe, however, that the method of moon-culminations must yield in point of accuracy to that founded on lunar occultations of stars. While the Greenwich corrections to the moon's tabular places in the meridian depend, of course, upon observations made by thoroughly practised observers with the great transit circle, whose telescope is an instrument of about 8 inches aperture and nearly 12 feet focal length, and a clock of the highest class, the transits at Sydney were observed with a telescope of only 3^{3} inches aperture and 62 inches focal length, with a clock of not first-rate quality. The determinations of right ascension at Sydney cannot, therefore, compare in point of accuracy with those made at Greenwich. What we want here, therefore, are observations which are more nearly comparable in precision with those made at Greenwich, and these, I believe, are to be found in observations of lunar occultations of stars. An occultation, it is well known, can be observed within a fraction of a second of time, and if the moon's dise were a perfect circle, and the tabular elements could only admit of being corrected at Greenwich with the same degree of accuracy, the resulting longitude would be correct within a second of time. Professor Newcomb, in his "Investigations of Corrections to Hansen's Tables of the Moon, Washington, 1876," says that the determinations of longitude from moon-culminations are found by experience to be subject to constant errors which it is difficult to determine and allow for, and that it was, therefore, a part of the policy of the American Commission for the observation of the transit of Yenus to depend on occultations, rather than upon moon-culminations, for the determination of longitudes. I am not aware that any attempt has jet been made to fix the longitudes of either the sydney or Melbourne Observatories, or, indeed, of any other position in this or the adjacent Colonies, by means of observations of lunar nceultations of stars. I have, therefore,

[^12]thought it would be desirable to investigate the problen and lay the results before our Society. If the longitude of any point in the Colony could only be accurately determined in this way, that of any other point could readily be determined by exchanges of time signals with the electric telegraph. I thought at first to include the observations of solar eclipses in my investigations, but as these phenomena cannot be ohserved with the same precision as an occultation I considered it adrisable to reject them. I am not aware if any occultations have been systematically observed at Sydney. During the period 1803-187 . however, I have succeeded in observing one hundred and sisty-uine of these phenomena at Windsor. By far the great majority of the stars so observed hare not yet been catalogued with sufficient accuracy, and have been observed only at the dark limb during the first semi-lunation. I have selected twelve stars for the discussion of the longitnde of my observatory observed previously to 1875 , and for which I am enabled to get the (ireenwich corrections of the moon's tabular places. Ther have all been observed at the dark limb during the first semi-lunation. Their positions depend on numerous observations made at Creentich. Radeliffe, Washington, and Melbourne, and mar therofore be considered fixed with almost absolute accuracy. For the computations I have adopted- $33^{\circ} 36^{\prime} 28^{\prime} 9^{\prime \prime}$ as the astronomical latitude of my observatory. This value rests upon ninety-three prime vertieal observations with a transit instrument of $2 \cdot 1$ inches apperture and 20 inches focal length, of stars culminating within 3!') of the zenith. whose positions have been determined in the Southern Observatories of Sydner, Melbourne, and Williamstown. Fifty-nine observations were taken on the centre wire of the instrument, and thirty-five on one of the side wires, with the transit both direct and reversed, both before and after the meridian passage. In this way each star was observed on the same wire four times for each complete observation. Rejecting only one observation for discordance, I obtained the following results for each class of obserrations:-

Mean of 59 observations on the centre wire- $33^{\circ} 36^{\prime} 28 \cdot 8^{\prime \prime}$
34 , , a side wire ...- $33^{\circ} 36^{\prime} 292^{\prime \prime}$
The mean result, ns before stated, is-33 $36^{\prime} 28 \cdot 9^{\prime \prime}$
With the exception of the discordant observation before mentioned to have been rejected, the extremes of the individual results are- $33^{\circ} 36^{\prime} 20^{\circ} 0,{ }^{\prime \prime}-33^{\circ} 36^{\prime} 37^{\circ} 7^{\prime \prime}$. It will the refore be seen that any further correction to the latitude must be very small. and not likely appreciably to affect the computed longitude. Adopting now Bessel's ratio of the squares of the earth's semi-axes, or $\frac{\mathrm{B}^{3}}{\mathrm{~A}^{2}}=0.9933254$, I got $33^{\circ} 25^{\prime} 53.0^{\prime \prime}$ and 99995576 as the geocentric latitude and the log. earth-radius corresponding tomy observatory. With these constants, corrections of the moon's tabular places concluded from observations at Greenwich, and an
assumed longitude of $10 \mathrm{~h} .3 \mathrm{~m} .15 \% \mathrm{~s}$. E., I hare discussed the twelve occultations. The following table exhibits certain data employed in the calculations and the resulting corrections of the assumed longitude:-

The value $S^{-}-c$ in the eighth column of the table is the difference between the calculated apparent semi-diameter (\mathcal{S}) of the moon and the calculated apparent distance (c) of the star from the moon's centre for the Observatory mean solar time of disappearance. Assuming that the only corrections required to the tabular elements are those of the moon's right ascension and north polar distance, the final equations give the corrections in the last column of the table. The moon's apparent right ascensions and north polar distances have been interpolated with second differences from the Nautical Almanac and the Greenwich corrections applied. I may mention that the occultation of m 'Tauri on March 2, 1868, is a very unfavourable one for the determination of the longitude, owing to its disappearance having taken place near the moon's northern limb. If, therefore, we reject the correction due to this observation, we have for the mean of the remaining eleven corrections, allowing equal weights to all, $+7 \cdot 64 \mathrm{~s}$., and the longitude of my observatory becomes $10 \mathrm{~h} .3 \mathrm{~m} .23 \cdot 34 \mathrm{~s}$. E.

It may also be well to state that the observation of the dispearance of ψ^{\prime} Aquarii on November 30, 1870, was rendered uncertain owing to a passing cloud. It will be interesting for the sake of comparison to state here that I have compared fiftythree transits of the moon observed at Windsor with the hourly Ephemeris in the Nautical Almanac, corrected by means of the observations with the Washington transit circle. These transits were observed with the 2 -inch transit instrument, fifty-one being of the first limb, and two of the second. The mean result for longitude is 10 h .3 m .21 .58 s . E., which agrees pretty well with that derived from the occultations. In May, 1865, a number of signals by electric telegraph were exchanged between the late Mr. Smalley and myself, in order to determine the difference of longitude between Sydney and Windsor. The result of this exchange of signals was that my observatory was 1 m .30 .04 s . west of that of Sydney. No regard, however, was paid to personal equation in this determination. If now we add this quantity to the corrected longitude of my observatory, as given in this paper, we have 10 h .4 m .53 .38 s . E. as the longitude of the Sydney Observatory. This value is greater by $7 \cdot 64 \mathrm{~s}$. than that determined by the Rev. Mr. Scott from moon-culminations at Greenwich and Sydney.

I have a few other observed occultations of well-determined ntars, both at disappearance and re-appearance, made since 1874, but the Greenwich corrections are not yet available. I trust at some future date to be enabled to turn these occultations to account, and also to obtain more trustworthy corrections of the tabular elements from a discussion of the meridian observations made at all the principal observatories during the semi-lunations in which the occultations have occurred.

In the meantime, I must express it as my opinion that the longitude of the Sydney Observatury, as given by Messrs. Scott and Stone, really requires a considerable positive correction. Before many years elapse, telegraphic communication will probably be so well established that we shall by that means be enabled to accomplish the accurate solution of the problem, just as in the case of Washington, whose longitude from Greenwich has been determined satisfactorily in this way within a second of time.

In conclusion, I may mention that I should have presented this paper to the last meeting of the Astronomical section of the Society, but that I deemed it expedient to wait for the carrying out of a proposed exchange of telegraphic signals, for a new and more trustworthy determination of the difference of longitude between Sydney and Windsor. Arrangements were made for an exchange of signals during the latter half of this week, but cloudy weather having set in the proposal has been frustrated for the present. I therefore deem it advisable to communicate the paper to the Council in time for their meeting on the 29th instant, in order to its approval for the General Meeting on the 5 th proximo.

Windsor, May 25th, 1878.

The following supplementary paper, on the same subject, was forwarded by Mr. Tebbutt, and read at the meeting of the Astronomical Section of the Society, held on June 13th :-

On the 5 th instant I read before the general monthly meeting of the Royal Society a paper on a correction to the assumed longitude of the Sydney Observatory, deduced from observations of lunar occultations of stars, made at my observatory, Windsor, in the years 1866-68-69-70-73-74. In that paper twelve occultations of well-determined stars were discussed, two of which were unfavourable for longitude results. One of these in particular was rejected, as having occurred near the moon's northern limb, and the resulting longitude of my observatory was made to depend on the eleven remaining occultations. This value is 10 h .3 m .23 .34 s . E. of Greenwich; and to it was added 1 m .30 .04 s ., the difference of longitude between the Sydney Observatory and mine, as determined from telecraphic signals in May, 1865 , giving 10 h .4 m .5338 s . F. as the concluded longitude of the former from Greenwich. Having reason to suspect that the telegraphic difference of longitude just stated was considerably too great, I requested the co-operation of Mr. Kussell in a new and more accurate determination of the difference. This unfortunately could not be accomplished in time for the presentation of my raper to the Society. A new determination has now, however,
been made, and it fully confirms the suspicions which I had entertained respecting the old value. The following are the results from the recent exchange of signals :-

> Mean of thirty-four signals sent from
> Sydney to Windsor
> Mean of all 1m. 28.83s.

If now we reject both the unfarourable occultations referred to in my paper, and assign equal weights to the remaining ten results, we get the following :-

Assumed longitude of my observatory 10h. $3 \mathrm{~m} .15 \% \mathrm{~s}$.
Correction from the ten occultations ... +6.84 s .
Longitude of the Sydney Observatory
east of mine +1 m .28 .83 s .
Concluded longitude of the Sydney
Observatory 10h. 4 m .51 .37 s .
This ralue exceeds by 0.56 s . that obtained by Mr. Russell from moon-culminations observed by himself during the years 1863-71-72-73-74.

I trust, before the close of the present session of the Royal Society, to be in a position to discuss this question more completely. I have other occultations of well-determined stars, for which I yet require the corrections of the moon's tabular places. In the meantime I am desirous that these few remarks may be brought before the Astronomical Section of the Society, and regarded in the light of an appendix to my paper already referred to.

On the Meteorology of the Coast of New South Wales during the Winter Months, with the desirability of issuing cautionary storm warnings, by telegrams to the various ports, from the Observatory.

By Marsinali Smiti, Master of the ship "T. L. Hall."

[Read before the Royal Society of N.S.W., 3 July, 1878.]
The periodical return of bad weather, of a most treacherous character, during our winter months-notably July, our worst storms in the past having occurred during that month, and which have generally caused more or less loss of life and property at sea-caused the writer to prepare this paper, with a view to elicit the views of those who may have better chances of procuring or compiling metcorological data, whether they are or are not preceded by certain atmospherical conditions and barometrical readings.

The writer's experience during six years as a shipmaster on this coast leads him to believe that the normal state of the weather is cyclonic; that is, areas of low pressure come up and follow each other quickly from the westward. The gales commencing in a northern quarter, veering with the sun's course through west and south-west, will blow hard for a time from the southern quarter, and gradually moderate, and, after a short spell of five weather, again begin in the northern quarter, as another area of low pressure comes up from the westward. The barometrical conditions are, as we might expect, steep gradients on our coast; the lower readings being at our southern stations, the steepness of gradient between Newcastle and Eden, as a rule, denoting the strength or force of the coming gale. While the above conditions are in force, we have a continuance of comparatively fine weather, for these cyclonic winds brines very little rain with them, the clouds having probably parted with their vapour in passing orer the high lands of the Australian enntinent. But nearly every winter we have a gale of an opposite character, namely, bad weather of an anti-cyelonic character. which comes up upon our coast from the eastward, bringing with it fierce gales, a heary breaking sea, and a deluge of rain. These gales generally commence at some point between north-east and south-east, and they back against the sun's course more or less during the contivuance of the gale.

In Knagg's Almanac we find that in July, 1866, the steamer "Cawarra" foundered, drowning all her crew save one, and fourteen coasters foundered or were driven on shore ; and, agaiu, in 1867, eight or nine more coasters followed. In July, 15\%6, the barques " Union," "Moneynick," and "Ann," with the whole of their respective crews, were lost, with several coasters; and in July, 1877, the "Yarra Yarra" foundered with the whole of her crew while endeavouring to re-enter the port of Newcastle.

The barometrical conditions preceding these storms (anticyclonic) we find in the storms of 1876 and 15 5r to be of quite an opposite character, the barometer standing high at the various coast stations, and the gradients beginning to stecpen in the reverse order, viz, the readings at the southern stations become the higher, and from observations of the barometer readings as given in the Sydney Morning Herald, the writer found that for some little time preceding the July gale of 1 sots, the barometer had been standing high at the different stations, with a steepness of gradient of about 20-100 of an inch between Neweastle and Eden, when then the gale burst upon us. Again, taking the gale of July last year, during which the "Yarra Tarra" foundered, the writer found that the barometer readings as giem in the weather chart for Neweastle and Eden were as follows:-

	Newcastile	Eden.	Received in Observatory	Published in chart.
Wednesday, July 11.	$30 \cdot 43$	30:56	July 11	July 12
Thursday, Julv 12	30.33	30.50	July 12	July 13
Friday, July 13	$30 \cdot 26$	3036	July 13	July 14
Saturday, July 14.	$30 \cdot 10$	$30 \cdot 30$	July 14	July 16

From the above readings it may be seen that the readings had been very high at the coast stations for some time preceding the storm. and that on the Saturday morning (July 14) that the "Yarra Yarra" proceeded to sea, they were aware in the Observatory that gradients had steepened $10-100$ of an inch between Newcastle and Eden-in itself a dangerous sign ; and again, as in 1876, the difference between the readings at Newcastle and Eden was 20-100 of an inch, yet no cautionary storm-warning was issued from the Observatory that morning, or at least none was received in Newcastle, for had there been, the "Yarra Yarra" would probably have remained in port, and thus avoided her bad end. The inferences which the writer wishes to draw and place before the members of this Society for their free discussion (believing that by doing so be is best serving the cause of his fellow sailors) are:-1. That the normal state of the barometer during the winter months on the coast of New South Wales is low readings with steep gradients, the lowest readings being at the southern stations, with westerly winds of a cyulonic character and comparatively fine weather. 2. That when these barometrical conditions cease
to exist, and that instead of a set of low readings we find thatas in July, 1876 and 1877-the readings getting high at our coast stations, and the gradients beginning to steepen in the reverse order, I think we may fairly infer that an atmospherical disturbance of an anti-cyclonic character is threatening our coast, which may or may not reach our shores. 3. If the last inference is true (as the writer belieres it is, and also believes that it is only by the careful study of meteorological data that this can be determined), but if it should be found to be so, then surely it would become our duty to urge upon the Government of New South Wales the necessity of issuing from the Observatory by telegraph to the various outports bad weather forecasts, when cautionary stormwarnings could be hoisted, and old and ill-found ressels would remain in port until the storm had passed over, or the atmospherical disturbance had passed away.

It may be said that the writer only gives the barometer readings preceding two gales, tiz, those of July, 1876 and 1877 , to substantiate this theory, and that this is not sufficient. In reply he can only say that they are the only ones; that he has been able (by being on the spot at the time) to look carefully over the weather reports, as during the gale of July, 1876, he was in Neweastle, and in July, 1877, he was off Wollongong, when the gale commenced, bound to Neweastle.

In conciusion, the writer would like to place before your notice the good that has been done on the coasts of Great Britain by the issuing of these storm warnings by the Meteorological Society, and the large percentage of successful warnings issued by them: and hopes that, by the careful study of data which we may possess, we may obtain some knowledge of fixed laws concerning these heavy storms which sweep upon our coast nearly every winter, and that warnings may be sent out, and the lives of our seamen be spared in the future; and as one of the means to this end, the writer would recommend the obtaining the logs of the vessels who may arrive after these gales are over, and most especially those vessels which may be en route to New South Wales from New Zealand ports, and so perhaps obtain information of their size, shape, and then progressive movement.

Discession.

Mr. C. Sreart said: I consider that this is one of the most reliable papers upon this sulject, or perhaps the only one we have had during this year. It shows the great value that nautical gentlemen set upon the observations from the Observatory. Although the writer is not a member of the Nociety, he hoped the paper would be considered of sufficient importance and sufliciently well written to be printed in our volumes at the end of the year. If it is necessary, I will move that the paper be printeu.

The Chatrmar said this was not necessary. The printing of the papers read was a matter that rested with the Council.

Mr. Kinioch asked what was meant by the steepness of the gradients, and coming in the reverse order. These storms interested him. Would Mr. Russell tell them if he bad noticed the state of the atmosphere before these fierce south-east storms came on. He had generally been able to tell from the barometer and the state of the skin when they were coming on.

Mr. Rusself said: Mr. Marshall Smith has raised a most important question, and I wish he had said more about it. I felt rather disposed to shirk speaking about it to-night, because it is a long subject to go into, and would take about an hour to explain, on the assumption that there are members present who do not understand it. The writer of the paper really raises a wide question as to the character of the atmospheric disturbances on our coast. In England they have clearly made out the cyclonic character of the storms that pass over Great Britain. In New Zealand the character of the storms is very much the same; but in A merica they bave quite a different state of thingsthe storms travel there in a different way. Now, in order to trace out the eyclouic storms, you want daily observations by telegram from a large number of stations, and since I have received such telegrams at the Observatory, I have learned to correct some ideas I had formed about our weather; one of these, viz., that our storms are similar to those in England-that is, that they are cyclonic-I had to give up. I am convinced that our storms are not cyclonic, in the ordinary sense of the term. Now in fine weather we generally get winds from the northern points; but if the barometer begrins to fall in the summer, the wind gradually veers round to the westward, and thence to the south, the barometer indicating the approach of the southerly wind by a steady rise. As the polar wind comes in the loss of pressure is made up, and the wind dies out, and with a high (about 30 inches) barometer we have a return of fine weather. Such is the ordinary fine weather course of the wind. The weather telegrams have taught me this-that, for some reason which I am at a loss to explain, the barometric waves which pass rapidly across the surface of the earth in this country generally come from some point between south and south-west. A rising barometer on the south or south-west coast indicates that the barometer will soon rise here. The effect is that if one of these waves comes on rapidly, we have an increase of pressure on the southern coast which gives rise to a strong southerly wind. This represents what Mr. Smith speaks of as a gradient. If you will refer to the daily weather map you will see that these gradients frequently exist, but until they rise to 6 or 7 they are not dangerous; that is until the difference of barometers
for every 60 miles is 0.06 or 0.07 : but here we seldom have anything of the sort. In the "Dandenong" storm there was a gradient, but there was nothing like circular motion in it. It came in from the south-west coast, followed up the Murray, across the mountains to Bathurst, and reached Sydney by the easterly motion of the atmosphere. I was able to trace its speed. It reached Sydney - (I am speaking just now from memory) -about 10 o'clock p.m.; it was at Neweastle about 1 o'clock a.m. and was met by one of the A.S.N. Co.'s steamers off the coast bevond Port Macquarie. I traced that storm in almost a straight line for nearly a thousand miles. So that it could not have been a cyclone. It is very evident to me that the bulk of our south-westerly storms come on in that way. The more important question which Mr. Smith raises is that of the easterly gales; and here I confess myself at a loss. I have studicd them closely for some twenty years, and I am obliged to say that there is no satisfactory warning of them. I know that there is a certain sensation felt before these gales. There is an intense dampness of the atmosphere; but this often occurred and no gale followed. Within the last twelre months I have obtained some scraps of information which show that sometimes the south-east gale did not "blow home." as the sailors say. That is to say, a heavy sea could be seen off the coast, but it did not come right in, and while a south-easterly wind was blowing hard out at sea, the wind here was west. The cause which brings in the south-easterly gale was probably somedecrease of pressure in the interior of the country; or probably from the demand of the trade winds. But there is really a great deal to be learned about it; and I would be afraid to predict the approach of a south-east wind. In nine cascs out of ten they do not blow home. Sometimes the stations report a heary sean the coast, though the wind is light; but I know from the telcgrams that the south-east gale is blowing overhead at the time. If such south-east winds off the coast had a little more force, they would come in and make destructive gales. The barometer was always high before these gales came on, and generally fell as they continued. I fully believe that something ought to be done in the way Mr. Smith suggests, but it cannot be said off-hand what is best to be done. I expect to get a good deal more information from the daily weather study about the gradients than I have hitherto obtained. We seldom or never get a gradient here that represents a southeast gale. It is found in England that if a moderate gradient continues in one direction for some days, the wind blows in that direction with considerable force-more so than if the gradient had existed for only a short time. I think the number of gales of wind of at all a serious character on this coast are small compared with those that prevail in New Zealand or the Mother Country. (Applause.)

Storms on the Coast of New South Wales.

By H. C. Russell, B.A., F.R.A.S., Government Astronomer.

[Read before the Royal Society of N.S.W., 7 August, 1878.]
I purpose in this paper bringing under your notice the results of my observations upon the storms which pass over New South Wales. Before doing so, however, I should like to say a few words about some of the terms used in describing storms, and the sense in which I shall use them here. And first, what is a meteorological gradient? It is a term that has but recently been introduced, and is the expression for one of the atmospheric conditions, viz., a state in which if the pressure as shown by the barometer be examined along some line of country it will be found to increase or decrease gradually, as, for instance, when an area of low pressure exists it is found that the readings of barometers on linea radiating from its centre get gradually greater. It is not supposed that the atmosphere, like water, may have an inclination on its surface; but that it is in somewhat the same condition as a large mass of water heated more at one part than at another, and just as water in that condition would begin to move, the warmer flowing over the colder with a rapidity proportionate to the difference in temperature, so when a gradient exists in the atmosphere we have the condition which will produce motion, and the steeper the gradient the more rapid the motion. Various methods have been devised for expressing gradients. In England, a gradient is the difference in pressure expressed in hundredths of an inch of the barometer, between two places 60 miles apart: thus a gradient of 6 means that in 60 miles the pressure changes 0.06 in .; on the continent of Europe gradients are measured in millimètres instead of hundredths of an inch.

When the term is used here the English gradient is that understood. Now the experience in Europe amounts to this: that the force of wind will not exceed a fresh breeze, or 30 miles an hour, unless the gradient is higher than 6, so that a gradient along our coast would have to rise a difference in pressure between Sydney and Newcastle, for instance, of 0.06 before the wind would become strong from this cause, but there is another consideration which must always have weight when estimating the effect of gradients, and that is the time that they continue; for the bulk of the air to be set in motion is so great that it requires time to respond to small forces, and gradients frequently
exist between two places sufficient to produce gales, but before the air can be set in motion the wave of pressure passes on and remores the tendency to motion; and it is difficult in the ordinary atmospheric waves which pass orer us to make allowances for this fact. At times when the wave is coming from the south a fresh breeze comes with it, but more frequently it passes with no appreciable effect upon our winds. Another difficulty is to estimate the effect of changing pressure at tro stations, becanse it is impossible to tell how far the changes are going; a sood illustration of this will be found in the "Dandenong" gale, of which more presently. On that day, with a southerly vi ind, barometer falling here and rising to south, a gale was inevitable, and warning might have been given had a system for such warnings been in existence, but the extreme force wo experienced could not have been anticipated; the change in pressure was so rapid that the effect was like an impulse that doubled the relocity of the wind suddenly.

Another term which requires defining lofore I make use of it, is cyclone. By it I simply mean carrents of wind moving in a generally circular direction, and whirluind would be a better term, were it not that we generally confine it to cyclones of such small dimensions.

Two other words I should like to define, and then pass on to our subject: they are tropical and polar. By tropical currents or winds, I understand warm winds coming from any direction north of west and east, but generally between north "and west; and by polar current, any southerly wind (cold hy comparison with the tropical) and most frequently from south-west, but the normal direction of which is south-east. Now, as you are doubtless aware, these two main currents are possessed by very opposite tendencies ; that from the equator where it has gained the highest easterly velocity possible by the earth's rotation, comes to a higher latitude on its way south, and its easterly tendency is so much greater than the earth's surface motion there, that it becomes a north-west wind, or perhaps a strong westerly, while the polar current, coming from a higher latitude, has just the opposite tendency-that is, it moves towards west and north, or from south-east. But the tropical wind being by far the more abundant of the two, when meeting the polar wind generally deflects it, by the friction it exerts at the place of meeting, from its true course, and makes a south wind of it, and this action, aided by the form of the land (a long ridge of mountains) generally make our polar current south-west. It is obvious then that where these winds meet the direction will be a compound or resultant of the two, being westerly when they are equal, veering to north as the tropical gains force, and to south as the polar element increases, and being, when this has complete
mastery, south-east. Another important consideration in regard to the meeting of these winds is their extent. The meeting is not only at our point of observation, but extends many hundreds of miles east and west of us. Now, if from an extra heating at the equator, more than the usual amount of wind is sent south, what is to become of it at the meeting? Generally it finds vent in a strong west wind. Sometimes it drives back the polar current till the whole of Australia is in the tropical current and north-west winds are reported from the whole of south-east Australia; at Syduey by far the greater part of our time is spent in this dry (more or less) cloudless wind. But when the tropical wind loses power, the polar wind takes its place, and we then have south-west winds veering gradually to south-east, as they gain power, and I have known the south-east wind to blow over Sydney for several weeks. Now one circumstance which assists the incoming polar winds is the form of the country. A mountain chain stretching north and south, and rising to some 3,000 feet, obliges the north-west winds to rise to that extent, and so leave along our coast-line a way prepared for the incoming southerly wind, which comes rushing along our coast under the north-west wind and makes the plane of meeting of the two winds inclined to the surface, and in this meeting ground we have the most favourable conditions for the establishment of small cyclones, and some hill or other local cause frequently starts them into existence.

Turning now to consider the ordinary winds,
I have elsewhere ("Climate of New South Wales") briefly indicated the normal course of our winds, but with your permission I should like here to state again the general laws, because it is in the disturbance of these that we find our storms.

In summer our fine weather winds consist of the north-easterly by day (an indraft to the heated interior) and the light westerly off laud winds at night, while over our heads is steadily blowing the north-west (that is, from N.W.) return trade wind, as may be traced by any upper clouds. The thickness of the local winds is generally under 4,000 feet, and the velocity seldom exceeds 40 miles per hour, while the overhead warm current generally travels some 80 miles per hour ; such is the summer system which in fine weather is maintained sometimes for weeks. Now it will be admitted that an upper current such as I have indicated, and extending over all Australia and the trade winds to the east of it, is not easily deflected from its course; but if the sun's heat becomes greater at the tropics an extra demand is made upon the trade winds springing from these latitudes; and the barometer begins to fall, partly from the loss of air thus sustained, and partly from the greater amount of warm air which is present. Should the causes continue, the warm wind comes down to the
surface as the N.W. hot wind. In fact, a want of wind is produced in these latitudes by the action of the sun at the equator, and the N.W. Wind, being as it were on the spot, is the first to come in and supply it, but it does not continue long, for the polar wind rushes in and being hearier naturally keeps the surface and lifts up the warm wind. It is this wedging underseath the warm wind that makes the peculiar roll of clouds that come with the southerly squall. With this inrush of cold heary air the barometer rises rapidly, and the partial vacuum in the trades is supplied generally in a few hours, but at times it will blow hard from the south for days. The cause being thus removed, and the trade wind want supplied, the usual course of fine weather returns. If, however, the sun maintains its demand at the equator these inrushes of polar wind are frequent, and the regularity of the north-easters is disturbed.

There is still another form of disturbance resulting from excess in sun power, and it appears to come on in this way: If the sun be unusually powerful upon the interior it makes a sudden demand upon the supply of air for its up-current, our northeaster comes in with unusual force, and the southerly winds rush in from the south coast; these meet the warm tropical current, and give rise to thunderstorms which in many cases seem to be small cyclones. I do not like to be too positive about their character, for some of them seem to be so large that it is difficult to conceive of their passing over us with so little wind disturbance as they do. But with your permission I will refer to one storm that I brought under your notice last year, bearing upon this subject. The occasion for my doing so was, as you may remember, the passage of several remarkable thunderstorms over Sydney. The one to which I refer was on the 27 th Nevember, 1877. That morning was fine and very warm at Sydney; the temperature in the shade rose to 840 , and the sun thermometer in black box showing the sun's heating power rose to 195.5 . The barometer was falling and weather very hazy, showing the presence of the tropical hot wind nearer than usual, and a fresh sea breeze came in. The shade temperature inland was rery great. At Bourke it rose to 113°. In Victoria and Adelaide a fresh S. to S.W. wind without any sea was blowing by 9 a.m. Such were the conditions that gave rise to the storm, that will long be remembered in the western districts. At Grenfell great damage was done to the houses by the violence of the wind, and at other places on the storm's track it proved most destructive. At noon the storm clouds could be seen in the west from Sydncy, and at 5 p.m. a deluge of hail and rain broke over the city. While watching this storm I was struck by the long interval between flash and report, and found that one of the flashes seen nearly vertical was 8 seconds before the report; it was seen as it were
under the clouds. Other flashes were observed, not perpendicular, 10 seconds, 12 seconds, and so on. The storm clouds must therefore have had an altitude of at least 9,000 feet.

Now, taking the interral between the time at which the first streak of sky was seen in the west, and the time at which the end of the storm cloud passed over Sydney with an altitude of 9,000 feet, as shown, I found the storm was moring at least 50 miles per hour; and taking the time of its passing Grenfell and Sydney the relocity is found to be 68 miles per hour. Now these storm clouds must have been more than 200 miles in diameter, for when the storm was breaking over Grenfell at 5 p.m., 170 miles west, they obscured the sky at Syduey. But the most remarkable fact about this storm is its effect upon the barometer. At 6 o'elock, when the storm could be heard coming, the barometer suddenly began to rise, and in 20 minutes had risen $0 \cdot 12$ inch; and it is remarkable that in the middle of this rise it fell rapidly for 3 minutes and then began to rise again. (See copy of barograph sheet attached.) At 920, when the storm passed, an equally sudden fall set in for 20 minutes, and again a check came in the midalle, and the barometer rose for 5 minutes and then fell equally fast. Now you will observe that from $6 \mathrm{p} . \mathrm{m}$., when the rise began, to 9.40 , the end of the fall, we have 3 h .40 m ., which is taking the determined rate of translation of the storm cqual to 250 miles. Now, large as this will appear, I believe we have here a species of cyelone moving rapidly through the upper atmosphere with such force (68 miles per hour) that it increases the pressure in front of it, and causes a partial racuum in its rear. I find by calculation that such a mass of clouds moring through the air at the rate stated would produce in front of them a pressure equal to 0.14 inch of barometer, and we have here a sudden rise of 0.12 inch after passing. A partial vacuum to the same amount would be left iu the rear and would not be filled up quite so fast, as the front pressure would be distributed. Now we find here a fall of 0.15, and it took ahout an hour to recover itself. In fact if this view be correct, the storm cloud would be like a solid body moving through the air, giving rise to pressure in front of it as shown by the barometer and to a want of pressure in its wake which would be more gradually filled up; now if such a storm were formed in the upper air between, or in the meeting ground of the two main currents, its rotary velocity would be greater than that of its translation, and therefore sufficient to maintain its form. There can, I think, be no doubt about the velocity of its translation, and the explanation I have offered of the increase of pressure in front and the loss of it in the rear seems the most probable. It may be remarked that such a cyclone passing over us should disturb the surface air, and such was not
the fact, but it passed over so rapidly that there would not be time to get the heavier air in motion below it, impeded as such an effect would be by surface friction. And further, in proof that such cyclone storms are translated as I have supposed, it may be stated that it is a fact of common observation with regard to whirlwinds which pass along the surface rapidly, especially in the interior, and it was once my good fortune to see such storms in the meeting of tropical and polar wind in progress. When coming from Auckland to Sydney in October, 1875, the steamer's course brought us on the southern side of a series of such whirling storms that were travelling to the eastward; we passed through several smaller ones, which simply amounted on the surface to a squall of wind and a shower : but several of considerable size were in sight, and they presented the appearance of a mass of cumulus clouds rolled up, the sides being shaped like those of a funnel, but not coming to a point; they seemed very dense, as if a torrent of rain were falling there; the clouds did not reach the surface, and between the two rell-defined sloping sides they seemed to curve upwards. These cyclones were probably two to three miles in diameter, and about $\frac{3}{4}$ of that in height; they progressed steadily to the east. Many similar storms recorded by the barograph might be brought forward had we time. The date of this great thunderstorm surgests a digression for which I have no time now, but may surgest in what direction it would lead me. I have found by the old records, that our most important thunderstorms have taken place in the latter half of November, and the earth as you linow passes the great meteor stream on 13th and 14th of that month.

We have still another form of summer storm which is common enough in its milder forms, and at times rises to the danger pitch, but as it will be impossible within the limit of this paper to give many examples, I must select one or two that are typical and leave to your imagination or memories others that are of less consequence to us in tracing the causes of our storms.

This form is the summer easterly storm, commonly known as the black north-easter; that is, a strong N.E. wind, that blows continuously night and day for several days. The weather usually becomes cloudy as the storm proceeds, or perhaps is so When it begins, and very frequently rain falls. They are not so strong or so dangerous as the winter easterly gale, because the direction is generally inclined to the coast; so that a ressel can beat off, while the winter easterly blows from E. to S.E., fair on to the coast.

But to turn to the selected example. On the 17 th February, 1873, with barometer at 30.01 , weather very fine and N.E. breeze; 18th, barometer 30.12 very fine, N.E. breeze; 19th, barometer 29.98 , hot and cloudy, N.E. breeze ; 20th, barometer
29.90 , fine, hot, N.E breeze, thunderstorm in afternonn ; 21st, barometer 29.9, very light S.S.E. and E.N.E. winds, steady rain in the afternoon; on 22 nd, barometer 29.729 am ., and 9966 3 p.m., sea brecze E.N.F., thunderstorm and rain in the afternoon, and wind to south at night; on 23rd, barometer 29.74 , cloudy day and thunderstorin at night. Now, so far, we have just a week of ordinary summer weather, except that the barometer had fallen; the southerly wind and rising barometer on 22nd seemed to betoken return of fine weather, but without any other warning a fresh N.E. wind sprane up in the night and by 9 a.m. of 24 th was bowing 20 miles an hour and increased to 26 miles per hour during the day, with showers and dropping rain; barometer rose to 2983 , wind blowing fresh all the evening; and just after midnight of 24 th, with no change in relocity and searcely any in direction of wind only from E.N.E.to E.S.E.a perfect deluge of rain set in and the amount br $9 \mathrm{a} . \mathrm{m}$. of 2.5th was 890 , the greatest ever recorded in Sidney for one day; and the total number of miles of wind for the day was 49 f ; after $9 \mathrm{a} . \mathrm{m}$. of 25 th the rain ibated a little, but the wind increased and rose to 36 miles an hour, and the strongest gust rose to $8: 3$ miles, afternoon showery and very stormy-looking ; barometer 29.s2, and total rain for 25 th 493 ; during the evening of 25 th the wind abated, and by 2 a.m. the wind had changed to west, with fine weather. Fine weather-sea and land breezes followed with no noteworthy chauge in the barometer. Such is a violent summer N.E. storm; and one feels disposed to say whence came it, and whither did it go? for instruments tell one nothing. In this instance we have the storm with a low and risine barometer, and only a few week before we have a less severe but similar storm (2lst November, 1872), with barometer at 30.01 and falling. Many of these storms clear up by change round to north and west, and others by change to south, so that there seems to be no rule which would help to find their source. The attached observations in New South Wales show weather and barometer changes similar to those at Sydner, but on turning to see the weather upon the the south coast, some light is thrown upon the cause, for at Melbourne a strong S.E. to S. wind was blowing; and I find upon examining a number of such storms, that almost invariably a strong S.E. to S. wind is blowing in Melbourne. Now this is a significant fact, for it points unmistakably to the cause of our N.E. gale, viz., the heated interior of Australia, which, by the up-current which it establishes draws in the wind on the south and east coasts. I have looked for observations in the centre of Australia to confirm this view, but unfortunately I find but few. Colonel Warburton, the explorer, happened to be camped near Alice Spriags or as near the centre of Australia as possible, from December, 1872, to April, 1873, and he says, little or no rain fell during that time, and the temperature observations which he took
show that the weather was very hot all the time, but hottest in February; unfortunately he does not give the daily readings or the heat wave might have been traced. At Bourke we find a similar account of the weather, viz, very hot in February, especially from 16 th to 22 nd. Such readings as $106-109^{\circ}, \& c$. , in the shade, point to a sun power quite enough to require a good deal of wind from the south and east coasts to make up for the up-current it would set in motion.

Weather at Country Stations from 19th to 26th February, 1873:-
Thargomindah ...19th, barometer falling till 24 th, fell $0 \cdot 40$, gradual rise till end of munth.
Armidale......... Barometer rery steady; wind E. ; raining on 22nd and 24 th ; 3 inches recorded in the two days.
Bourke..........Weather very hot during February; on 16th maximum shade $109^{\circ} ; 17$ th, $94^{\circ} ; 18$ th, $95^{\circ} ; 19$ th, $106^{\circ} ; 20$ th, 100°; 21st, 91°.
Port Macquarie Wind W., went round to N.E. on 24 th and E. on 25 th ; thick rainy weather after 19 th, with frequent thunderstorms and a great deal of lightning.
CassilisILeavy thunderstorms; violent S.W. gale on 28th.
SconeVery hot and oppressive, winds S.W.
Muswellbrook...Heary thunderstorms with rain from 20th till end of month ; winds N.N.E. and N.E.
West Maitland Fine till 21st, dull till 24th, raining rest of month; fresh E. winds.
NewcastleBarometer steady, slight fall (0.30) till 2.3rd, then rose $0 \cdot 10$; fresh N.E. winds; raining after 22nd, stormy on 25th.
OrangeE. winds; heavy thunderstoms and rain.
Bathurst......... Barometer fell gradually about 0.30 until 24th, then rose a little; fine weather; stormy on 25th; wind N.E. on 19th, S.E. on 2 Jth , calm on other dates.
KurrajungHeavy thunderstorms and rain ; wind N.E.
Mount Victoria Barometer, slight fall till 22nd, then rose again; fine till 21 st , heary weather till end of month; calms and W. winds.
WoodfordBarometer, slight fall (0.30) till 23rd, rising again till end of month ; wind on 19th N.E., 20th, W.; remaining days calm; heavy rains.
ParramattaThunderstorms with very heavy rain.

	Weather at Country Stations-continued.
Liverpool	Barometer fell 0.25 till 23 rd, then went back again; wind W. till 21st, then E.; thunderstorms and very heavy rains; 10 in . in two days, viz, 25 th and 26 th.
	Fresh S.W. winds; fine till 25th; stormy on 26th and till end of month.
Moss Vale	Thunder and hail storms, heary rains; 7 inches in one day (26th).
Goulb	Barometer fell about 0.30 till 23rd, then rose again; wind rariable ; thick rainy weather.
Terrara	Thunderstorms on 20th and 23rd, 12.57 inches recorded on 26th.
C	Barometer fell 0.30 between 19th and 22nd, and rose 0.25 between 22 nd and 25th; N.E. wind prevalent; heavy rains and thunderstorms.
La	Barometer fell 0.30 till 23 rd, then rose again, wind variable; heary rains and thunderstorms.
	Barometer falling 0.20 till 24 th, rose again towards end of month ; prevailing wind, S.E. ; thunderstorms and squally after 3 p.m., 22nd.
Kiandra	Barometer fell about $0 \cdot 20$ till 23 rd, rose again gradually ; E.S.E. and S.E. winds ; heavy storm after the afternoon of 19th.
	Barometer fell about 0.20 between 19 th and 24 th, then rose gradually ; fine until 8 p.m., 23 rd ; storms and rain rest of month.
Cooma	Winds E. ; thunderstorms on 21st ; rain till end of month.
	Barometer fell 0.22 between 19th and 23rd, and rose 0.20 between 23 rd and 26 th ; wind S.W. on 20 th, 21 st, and 22 nd, and E. on 24 th, $2 ⿹$ th, and 26th ; dull 19th and 20th; thunderstorm from S.W. on 21st; heavy rains till end of month.

Melbourne.......Barometer 29.674 on Feb. 23rd, then rose to 29801 , and fell again on 26th, strong S.E. gale ; 22 nd to 26 th inclusive, weather squally with rain.
Turning our attention now to the south-east storms in winter, which, from a commercial point of view, are the most important, because of their destructiveness, we remark that-

The general characteristics of a south-east storm are,-high barometer, great humidity, and rain ; strong steady gale of wind from some point between S. and E., and very heavy sea, which
generally precedes the storm; they seldom last over three days, and in the majority of cases the dangerous part of the storm does not last tiro dars. The velocity of the wind seldom exceeds 40 miles an hour; but the down-pour of rain seems to add force to the wind, and makes the air so thick that it is impossible to see any distance. In the very severe storms thunder, lightning, and hail come; but they are not by any means a necessary part of the storm. The danger of these storms lies in the direction of the wind blowing fair on the coast, and the very heary sea which comes from the long stretch of ocean over which the wind blows. The most terrible wrecks on our coast hare been in these storms, and they are limited (almost) to the months of June and July.

Erroneous opinions as to the cause of them, and the indications which mark their approach, have frequently been published; and I must confess that it is only a recent investigation into records of the Observatory which has made clear to my own mind what place we are to assign to our south-east storms. If, in the earlier part of this paper about the tropical and polar currents, I have made clear ordinary laws which govern the meeting of these two great wind currents, you will have no difficulty now in following out the history of a S.E. gale.

For this purpose, I have taken the anemometer and other selfregistered results in the Observatory, and I find that since 1870 we have the following facts :-

During 1801 the westerly winds were very strong in the winter, and twice during ol uly heary grales from west, running up the daily number of miles to upwards of 570 , took place, and we had no éasterly gale.

In 1872 the winter was marked by still stronger westerly winds, whirh twice in June reached orer 500 , and in July reached 592 and 759 on separate days. These figures represent very heavy westerly gales, and ue had no easterly gate.

In $15 \% 3$ we find a very marked falling off in the force of the westerly winds: and in June, from 105th to 19th, we had an easterly gale, the greatest number of miles being on 16th, 539 ; the rainfall was not heavy, and the barometer standing at 30.21 on 14 th, fell steadily to 29689 on 19th. The humidity ranged from 96 on 15th to 893 on 19th, and fell to 64% on 20 th. Reference to the tables will give fuller details. And in July this year, another moderate S.E. gale broke on the coast, bringing abundant rains. In this case, as in the one that preceded it in June, the wind had been between W.S.W. and S., when suddenly, about noon on July 24, it veered S.E. and increased in force; on the 25 th it blew harder, with heavy rain and some hail ; and on 26th it was clearing up. Here again we
have a high barometer, 30200 on 23rd ; but after falling to 30.176 on 24 th, it rose steadily till the gale was over. The humidity was very high- 100 on 23 rd, $99 \cdot 3$ on 24 th, 97.7 on 2 चैth, and then suddenly down to $67 \cdot 0$ on 26 th.

In 15\%4 westerly gales were very strong in the winter, running up the miles from 400 to 619 per day; and again we had no easterly gale.
1875. The early part of the winter the westerly winds were very light, and on the 5-6 of June a little easterly galeif I may so express myself-set in, with barometer, on 5th, 30.106 , falling steadily on 6 th and following days. Humidity, $87 \cdot 7$, and rain very heavy; on 5 th, 92 ; on 6th weather clearing at night ; the miles of wind on 5 th, 598 ; and on 6 th, 524 . Later in the winter the westerly winds gained force up to 500 and 659 miles per day, and we had no return of easterly gale.

In 1876 the westerly winds were strong only twice, the first time on June 16-17, and the second time, July 27-28-29; and during this winter S.E. winds blew home to the coast manr fimes, and twice were remarkable, the first in June 25, 26, and 27, for the very heary rain and high barometer 30430 , and the sceond on July 13th to 16 th for the small amount of rain which fell, the barometer at it begiming stood at $30 \cdot 153$, rose to $30 \div 95$ on 15th, and then fell steadily as the wind backed to west, where the storm cleared' up.

18\%7. In Tune this year westerly winds were strong, the daily number of miles being several times over 400, and on one day 590 ; but in July they seemed to have lost all force and in fact were very light. and as if it were only waiting the opportunity in rushed the S.E. gale, in which the ill-fated "Yarra Iarra" was lost. On the 14 th July, 1877 , the wind was W.S.W. to S.S.W., barometer $30-112$ and falling, and between 7 and 8 p.m. the wind changed from S.W. to E.S.E. and began to blow fresh, increasing rapidly to 40 miles an hour with heavy rain; as the chanre in wind took place, there was thunder and lightning to S. and s.W.; on 15 th barometer 3000 , blowing hard, very heavy rain with thunder and hail at half an hour after noon; at 6 p.m. on the 15th, the wind was blowing 46 miles per hour; hut from that time it fell off and the wind backed to S.W. At Neweastle this gale was very severe, and the "Yarra Farra" was lost there on the 15th (Sunday).

In 1878 you can all remember we have had unusually strong westerly winds. in June specially so ; the daily register of velocity being frequently over 400 miles and twice over 720 . In July the force was much less, but still it would seem too much for the S.E. wind.

Readings of instruments and anemometer records of these S.E. storms are given in the following tables:-

Table showing instrumental observations during S.E. gales.

Year.	Day.	Barometer.	Temperature.	$\begin{gathered} \mathrm{Ha}- \\ \text { midity. } \end{gathered}$	Rain for 24 hours previous.	Remarks.
1878	June 12	30.080	59.0	$99 \cdot 3$	0.972	
		$30 \cdot 158$	57.3	883	$0 \cdot 120$	
		30.214	54.0	88.7	0.000	
		$30 \cdot 185$	$56 \cdot 8$	960	0.520	
		$30 \cdot 150$	68.8	943	$1 \cdot 650$	
		30.088	$65 \cdot 8$	963	0.339	
		29.969	$68 \cdot 8$	943	0.021	
		29.689	$67^{\circ} 1$	$80 \cdot 3$	0.021	
		$29 \cdot 819$	58.0	64.8	0.080	
		Rising.	Es\%	71.0	$0 \cdot 000$	

Painted walls very damp, water rumning down them 12th, 130h, 15th, and 16th; lightning E. and E.S.E. at $7 \cdot 50$ p.m. on 20 th.

Extracts prom ter Sembegistering Anfyometerr．
Direction of Wind，and Velocity（in Italic figures），at each hour．

Date	9 am	$\begin{aligned} & 10 \\ & a m \end{aligned}$	$\begin{aligned} & 11 \\ & \text { am } \end{aligned}$	$\begin{aligned} & 12 \\ & \mathrm{am} \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{pm} \end{gathered}$	$\begin{gathered} 2 \\ \mathrm{pm} \end{gathered}$	$\begin{gathered} 3 \\ \mathrm{pm} \end{gathered}$	$\begin{gathered} 4 \\ \mathrm{pm} \end{gathered}$	$\stackrel{5}{\mathrm{pm}}$	$\begin{gathered} 6 \\ \mathrm{pm} \end{gathered}$	$\begin{gathered} 7 \\ \mathrm{pm} \end{gathered}$	8	$\stackrel{9}{\mathrm{pm}}$	$\begin{aligned} & 10 \\ & \mathrm{pm} \end{aligned}$	$\begin{aligned} & 11 \\ & \mathrm{pm} \end{aligned}$	$\begin{aligned} & 12 \\ & \mathrm{pm} \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{am} \end{gathered}$	$\stackrel{2}{\mathrm{am}}$	$\begin{gathered} 3 \\ a \mathrm{~m} \end{gathered}$	$\frac{4}{\mathrm{am}}$	$\begin{gathered} 5 \\ \mathrm{am} \end{gathered}$	$\stackrel{6}{9}$	$\begin{gathered} 7 \\ \mathrm{am} \end{gathered}$	$\begin{gathered} 8 \\ \mathrm{am} \end{gathered}$	Mean
(W	W	$\begin{gathered} \text { WNW } \\ \hline \end{gathered}$	$\begin{array}{r} \text { WNI } \end{array}$	W	$\underset{7}{\operatorname{SSW}}$	$\underset{8}{\text { SSW }}$	SSW	SSW	SSW	$\underset{8}{\text { SSW }}$	81	SW	WSW	W	${ }_{6}$	W	W	SSW	$\text { SSW }_{17}$	$\begin{aligned} & 8 \\ & 17 \end{aligned}$	$\begin{aligned} & 8 \\ & 20 \end{aligned}$	$\underset{14}{\mathrm{~S}}$	$\underset{26}{\text { SSE }}$	$\begin{gathered} \text { SSW } \\ 195 \end{gathered}$
	$\begin{gathered} \text { SSE } \\ 10 \end{gathered}$	$\begin{gathered} \text { SSE } \\ \end{gathered}$	$\underset{16}{\text { SE }}$	$\underset{18}{\operatorname{SSE}_{1}}$	$\begin{gathered} \mathrm{SE} \\ { }_{2} \end{gathered}$	${ }_{10}$	$\underset{12}{\mathrm{SE}_{1}}$	${\underset{15}{\text { SSE }}}^{\text {SSE }}$	$\underset{1 ;}{\mathrm{SE}}$	SE_{10}	$\begin{aligned} & \text { ESE } \\ & 11 \end{aligned}$	$\underset{1_{i}}{\text { ENE }}$	$\underset{\text { In }}{\mathrm{ESE}}$	$\frac{\mathbf{E}}{1 \pi}$	$\underset{\pi}{\mathbf{E}}$	$\underset{18}{\mathbf{E}_{0}}$	${ }_{1 \pi}^{\mathbf{E}}$	$\begin{aligned} & \mathbf{E}_{18}^{*} \end{aligned}$	$\begin{aligned} & \mathbf{E} \\ & 18 \end{aligned}$	$\frac{\mathbf{E}}{18}$	$\underset{\sim}{\mathbf{E}}$	$\underset{16}{\mathrm{E}}$	$\underset{18}{\mathbf{E}}$	$\begin{gathered} \mathbf{E} \\ \underset{\sim}{\mathbf{E}} \end{gathered}$	$\underset{390}{\mathbf{E}}$
	$\stackrel{\text { E }}{\text { 2 }}$	$\underset{19}{\mathbf{E}}$	$\begin{gathered} \text { ENE } \\ 27 \end{gathered}$	$\begin{gathered} \text { ENE } \\ \underset{27}{ } \end{gathered}$	$\begin{aligned} & \text { ENE } \\ & 26 \end{aligned}$	$\begin{gathered} \text { ENE } \\ 30 \end{gathered}$	$\text { ENE }_{25}$	$\begin{gathered} \text { ENE } \\ { }_{2} 1 \end{gathered}$	$\begin{gathered} \text { ENE } \\ 23 \end{gathered}$	$\begin{gathered} \text { ENE } \\ 19 \end{gathered}$	$\underset{i: 3}{\text { ENE }}$	ENI_{21}	18		ENE	$\begin{gathered} \text { ENE } \\ \vdots ⿰ 冫 ⿰ 亅 ⿱ 丿 丶 丶 ⿱ 亠 乂 \end{gathered}$	$\underset{20}{\text { ENE }}$	$\underset{\text { ENE }}{\mathrm{EN}}$	$\underset{\substack{\text { ENE } \\ i n}}{ }$	$\begin{gathered} \text { ENE } \\ \because \geq 1 \end{gathered}$	$\underset{\sim 2}{\mathrm{ENE}}$	$\underset{\sim}{\text { ENE }}$	$\begin{gathered} \mathrm{NE}_{10} \end{gathered}$	$\begin{gathered} \text { EYE } \\ i \because \end{gathered}$	ENE 530
	$\begin{gathered} \text { NE } \\ 18 \end{gathered}$	${ }_{16}^{\text {ENE }}$	$\begin{aligned} & \text { NE } \\ & 24 \end{aligned}$	$\begin{aligned} & \text { NE } \\ & 2.3 \end{aligned}$	$\underset{\sim}{\text { NE }}$	$\underset{\substack{2 \\ \text { NE }}}{ }$	$\begin{aligned} & \text { NE } \\ & \underset{2}{2} \end{aligned}$	$\begin{gathered} \text { NE } \\ 27 \end{gathered}$	${ }_{2 / 4}$	$\begin{gathered} \text { NNE } \\ \hline 24 \end{gathered}$	$\begin{aligned} & \text { NE } \\ & \$ 1 \end{aligned}$	NR 3	26	NE	$\underset{10}{\mathrm{NE}}$	${ }_{1 /}^{\mathrm{NE}}$	${ }_{14} \text { ENE }$	$\begin{gathered} \text { ENE } \\ 1 / 4 \end{gathered}$	$\begin{gathered} \text { NE } \\ 1 \% \end{gathered}$	$\underset{1, \bar{j}}{\mathrm{NE}}$	ENE	$\begin{gathered} \text { ENE } \\ 14 \end{gathered}$	NE	${ }_{2 .}^{\mathbf{N E}}$	$\underset{483}{\mathrm{NE}}$
	NE	N_{27}	NNE	$\begin{aligned} & \text { NE } \\ & \text { 20 } \end{aligned}$	$\underset{\sim}{\mathrm{NE}}$	$\underset{26}{\text { NE }}$	$\begin{gathered} \text { NNE } \\ : 2: 3 \end{gathered}$	$\begin{gathered} \text { NNE } \\ 17 \end{gathered}$	$\begin{aligned} & \text { NE } \\ & 16 \end{aligned}$	$\begin{gathered} \text { NE } \\ 15 \end{gathered}$	${ }_{17}$	$\begin{aligned} & \mathrm{NI} \\ & 9 \end{aligned}$	$\begin{aligned} & \mathrm{NE} \\ & 20 \end{aligned}$	NE	$\begin{gathered} \text { NE } \\ 19 \end{gathered}$	$\begin{gathered} \mathrm{NE} \\ 19 \end{gathered}$	$\begin{gathered} \text { NE } \\ 18 \end{gathered}$	$\begin{gathered} \text { NE } \\ 19 \end{gathered}$	$\begin{gathered} \text { NE } \\ 18 \end{gathered}$	NNE_{14}	${ }_{7}^{\text {NE }}$	NNE	NE．	NE	$\begin{aligned} & \text { NE } \\ & 40 . \end{aligned}$
	NE	NE	$\stackrel{N}{\sim}$	$\underset{3}{\text { NNW }}$	$\begin{gathered} \text { WNW } \\ \hline \end{gathered}$	$\stackrel{\text { W }}{8}$	$\underset{6}{\text { WNW }}$	$\begin{gathered} \text { NW } \\ 5 \end{gathered}$	$\begin{gathered} \text { NNW } \\ \hline \end{gathered}$	NW 3	$\begin{gathered} \text { NW } \\ 14 \end{gathered}$	$1 / 4$ 18	WNW	$\underset{15}{\text { W }}$	$\begin{gathered} \text { WNW } \\ y \end{gathered}$	$\begin{gathered} \text { WNW } \\ 11 \end{gathered}$	$\begin{gathered} \text { WSW } \\ 12 \end{gathered}$	${ }_{11}^{W}$	$\mathbf{W s w}_{10}$	$\underset{d i}{\text { WSW }}$	$\underset{\partial y}{\mathbf{W}}$	Wsw 32	WSW	$\begin{gathered} \mathrm{w} \\ 14 \end{gathered}$	$\begin{aligned} & \mathrm{WSW} \\ & 29.5 \end{aligned}$
$\begin{gathered} 23 \\ 00 \\ 00 \\ 0 \\ 0 \\ 0 \end{gathered}\left\{\begin{array}{l} 23 \\ 25 \\ 26 \end{array}\right.$	S 5 SW 3 SsW 7 SE 2／4	S 9 WSW 3 SSW 9 SSE 27	SSW 6 S 11 SSW 6 SSE 26	W 8 SE 11 SSE 8 SSE i4	$\begin{gathered} \text { SW } \\ 10 \\ \text { SSE } \\ 11 \\ \text { S } \\ 5 \\ \text { SSE } \\ 25 \end{gathered}$	$\begin{gathered} \mathrm{S} \\ 11 \\ \mathrm{SSE} \\ 3 \\ \mathrm{~S} \\ 11 \\ 11 \\ \text { SSE } \\ 2 / \end{gathered}$	$\begin{gathered} \mathrm{S} \\ 7 \\ \mathrm{SSE}_{2} \\ 14 \\ \mathrm{SSE} \\ 12 \\ \mathrm{SSE} \\ 2 \end{gathered}$	$\begin{gathered} \mathbb{S} \\ 6 \\ \text { SSE } \\ 9 \\ 9 \\ \mathrm{SSE} \\ 3 \\ \mathbf{S S E} \\ 18 \end{gathered}$	S 6 SSE 10 ESE 13 SSE 18	$\begin{gathered} \mathrm{S} \\ D \\ \mathrm{SSE} \\ 10 \\ \text { SE } \\ 12 \\ \text { SSE } \\ 19 \end{gathered}$	$\begin{gathered} \mathrm{S} \\ 3 \\ \mathrm{~s} \\ 8 \\ 8 \mathrm{SK} \\ 11 \\ \mathrm{SSE} \\ \mathrm{SE} \end{gathered}$		SW 5 S 10 SE 15 SSE 14	WSW 6 ESE 11 SE 10 SSE 10	$\begin{gathered} \text { WSW } \\ 7 \\ \mathbf{8 E} \\ 16 \\ \text { SE } \\ 8.3 \\ 8 \\ 17 \end{gathered}$	$\begin{gathered} \text { W } \\ 3 \\ \text { SE } \\ 17 \\ \text { ESE } \\ 1 / 4 \\ 8 \\ 0 \end{gathered}$	$\begin{gathered} \text { WSW } \\ 5 \\ \text { SE } \\ 18 \\ \text { SE } \\ \text { S. } \\ \text { SSE } \\ 7 \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{SSE} \\ 10 \\ \text { SE } \\ 2, \\ \text { W } \\ \hline 7 \end{gathered}$	$\begin{gathered} \text { W } \\ \text { SSW } \\ 11 \\ \text { SE } \\ \text { di } \\ \text { WNW } \\ \text { C } \end{gathered}$	$\begin{gathered} \mathrm{S} \\ 5 \\ \mathrm{~S} \text { W } \\ 9 \\ \mathrm{SE} \\ 20 \\ \mathrm{WNW} \\ 7 \end{gathered}$	SSE 9 SSW 11 SE 2.3 WNW c	$\begin{gathered} \mathrm{SE} \\ 9 \\ \mathrm{SSW} \\ 9 \\ 9 \\ \text { SE } \\ 2 \not{ }_{2}^{W} \\ 6 \end{gathered}$	$\begin{gathered} \text { SSW } \\ 6 \\ \text { SE } \\ 9 \\ \text { SE } \\ 23 \\ \text { W } \\ 8 \end{gathered}$	$\begin{gathered} \text { SSW } \\ 8 \\ \mathrm{~S} \\ 11 \\ \text { SE } \\ .45 \\ \mathrm{~W} \\ 8 \end{gathered}$	8 144 SSE 248 SE 363 $88 E$ 368
	$\begin{gathered} \text { WNW } \\ 3 \\ \text { ESE } \\ \text { 27 } \\ \text { E } \\ 39 \end{gathered}$	$\begin{gathered} \text { WNW } \\ 7 \\ \text { SE } \\ 25 \\ \text { E } \\ 3! \end{gathered}$	$\begin{aligned} & \text { SSW } \\ & \text { 14 } \\ & \text { ESE } \\ & 24 \\ & \text { E } \\ & 44 \end{aligned}$		$\begin{gathered} \mathrm{S} \\ 16 \\ \mathrm{SE} \\ 25 \\ \mathrm{ENE} \\ 39 \end{gathered}$	$\begin{gathered} \mathrm{S} \\ 17 \\ \text { ESE } \\ 26 \\ \text { ENE } \\ 36 \end{gathered}$	$\begin{gathered} \text { SSW } \\ 1 \% \\ \text { SE } \\ 2.3 \\ \mathrm{~F}_{3} \\ 3.3 \end{gathered}$	$\begin{gathered} \mathrm{S} \\ 17 \\ \text { SE } \\ \text { NE } \\ \text { ENE } \end{gathered}$	$\begin{gathered} \mathrm{S} . \\ 12 \\ \mathrm{SE} \\ \text { SH } \\ \text { ENE } \end{gathered}$		$\begin{gathered} \text { SSW } \\ 6 \\ \text { ESE } \\ 30 \\ \text { ENE } \\ 38 \end{gathered}$		$\begin{gathered} \text { SSW } \\ n \\ \text { ESE } \\ \text { Wijw } \\ 18 \end{gathered}$	SSW 1 EsE 13 W 10	$\begin{gathered} \mathrm{SBW} \\ \underset{\sim}{\underset{2}{2}} \\ \mathrm{ESA}_{18}^{18} \\ \mathrm{~W} \\ 10 \end{gathered}$	$\begin{gathered} \text { SSW } \\ 1 \\ \text { ESE } \\ 18 \\ \text { SW } \\ 10 \end{gathered}$	$\begin{gathered} \text { SSW } \\ \text { ESE } \\ \text { N1 } \\ \text { WW } \\ 5 \\ 5 \end{gathered}$	$\begin{gathered} \text { SSW } \\ 1 \\ \text { ESE } \\ 1: 1 \\ \text { WSW } \end{gathered}$	$\begin{gathered} \text { SSW } \\ 1 \\ \text { ESE } \\ 2: 3 \\ \text { WSW } \end{gathered}$	$\begin{gathered} \text { SSW } \\ 0 \\ \text { ESE } \\ \ddot{W} \\ \underset{S}{3} \end{gathered}$	$\begin{gathered} \text { ESE } \\ 12 \\ \mathbf{E} \\ 27 \\ \mathbf{W} \\ 6 \end{gathered}$	$\begin{gathered} \text { ESE } \\ 20 \\ \mathrm{E} \\ \text { WNW } \\ 2 \end{gathered}$	$\begin{gathered} \text { ESE } \\ 2 \% \\ \mathbf{F}_{2}^{2} \\ 3 \stackrel{3}{2} \\ \text { WN } \\ 5 \end{gathered}$	$\begin{gathered} \text { ESE } \\ 27 \\ \text { E } \\ 3.6 \\ \text { WNW } \\ 7 \\ 7 \end{gathered}$	SSW 231 ESE S．98 ENE 584
	NW 8 ESE 8 ENF， d3	WSW 5 ESE II N 5	WNW 6 SE 8 NW 5	WSW 8 ESE 11 N 18	$\begin{gathered} \mathrm{SW} \\ 9 \\ \mathrm{E}_{0} \\ \mathrm{NWW} \\ 2 \end{gathered}$	SW 11 ESE 9 8	SSW 8 ESE 9 N 5	$\begin{gathered} \text { WNW } \\ 5 \\ \text { ESE } \\ 7 \\ \text { N } \\ 8 \end{gathered}$	$\begin{gathered} \text { SW } \\ 9 \\ \text { ESE } \\ 11 \\ \mathbf{N} \\ d \end{gathered}$	$\begin{gathered} \text { SW } \\ 7 \\ \text { E } \\ 1 / 4 \\ \text { NW } \\ 5 \end{gathered}$	S 10 \mathbf{E} 18 NW 8		$\begin{gathered} \text { SSE } \\ 16 \\ \mathbf{E} \\ 18 \\ \text { NW } \\ 11 \end{gathered}$	SSE 18 E 20 W 11	$\begin{gathered} \text { ESE } \\ 16 \\ E \\ 20 \\ W \\ 11 \end{gathered}$	$\begin{gathered} \text { ESE } \\ 11 \\ \text { ENE } \\ 18 \\ \text { WNW } \\ 18 \end{gathered}$	$\begin{gathered} \text { ESE } \\ 18 \\ \text { ENE } \\ 20 \\ \text { WNW } \\ 9 \end{gathered}$	$\begin{gathered} \text { ESE } \\ 10 \\ \text { NE } \\ 8 \\ \text { WN } \\ \hline \% \end{gathered}$	$\begin{gathered} \text { ENE } \\ 18 \\ \text { ENE } \\ 17 \\ \text { NW } \\ 11 \end{gathered}$	$\begin{gathered} \text { ENE } \\ 11 \\ \text { ENE } \\ 1 / \\ \text { NW } \\ 9 \end{gathered}$	$\begin{gathered} \text { ENE } \\ 11 \\ \text { ENE } \\ 11 \\ \begin{array}{c} 11 \\ 3 \end{array} \end{gathered}$	SE $1 /$ $1 /$ NE 7 NW 3		$\begin{gathered} \mathrm{SE} \\ 9 \\ \mathrm{NE} \\ 3 \\ \text { WNW } \\ 10 \end{gathered}$	$\begin{aligned} & \text { ESE } \\ & 255 \\ & \text { ESE } \\ & 290 \\ & \text { NW } \\ & 19 \% \end{aligned}$
$\begin{gathered} 13 \\ 14 \\ 15 \\ 16 \\ 17 \end{gathered}$	W 12 $S E$ 18 SE 3.3 SE 97 SSW 9	$\begin{gathered} W \\ 9 \\ \text { SE } \\ 28 \\ \text { SSE } \\ 27 \\ \text { SEE } \\ 87 \\ \text { SSW } \\ 9 \end{gathered}$	$\begin{gathered} \text { W } \\ 14 \\ \text { SE } \\ 23 \\ \text { SSE } \\ \text { o7 } \\ \text { SSE } \\ 30 \\ \text { SSW } \\ \text { II } \end{gathered}$	$\begin{gathered} \text { SW } \\ 18 \\ \text { SE } \\ 24 \\ \text { SE } \\ 26 \\ \text { SE } \\ 27 \\ \text { SSW } \\ 18 \end{gathered}$	SW 18 SE 23 SE 24 SSE 27 $2 W$ 18	$\begin{gathered} \text { WSW } \\ 9 \\ \text { SE } \\ 23 \\ \text { SE } \\ 91 \\ \text { SSE } \\ 28 \\ \text { SW } \\ 18 \end{gathered}$	$\begin{gathered} \mathrm{W} \\ 9 \\ \mathrm{SE} \\ 20 \\ \mathrm{SE} \\ 24 \\ \text { SSE } \\ 26 \\ \text { SSW } \\ 18 \end{gathered}$		$\begin{gathered} \text { SW } \\ 14 \\ \text { SE } \\ \text { \& } \\ \text { SE } \\ \text { \&S } \\ \text { SSE } \\ \text { Q6W } \\ \text { SSW } \\ 18 \end{gathered}$	$\begin{gathered} \text { SSW } \\ 16 \\ \text { SE } \\ 27 \\ \text { 18E } \\ 87 \\ 86 \\ 24 \\ \text { SW } \\ 14 \end{gathered}$	$\begin{gathered} \text { SSW } \\ 11 \\ \text { SE } \\ 27 \\ \text { SE } \\ \$ 7 \\ \text { SE } \\ \text { i1 } \\ \text { WSW } \\ 16 \end{gathered}$		SSW 16 ESE 37 SE 3. $8 E$ 18 SW 28	S 17 ESE 2F SE 27 86 18 $8 W$ 17	$\begin{gathered} 8 \\ 17 \\ \$ E \\ 26 \\ 26 \\ \text { SE } \\ 23 \\ \text { SSE } \\ 18 \\ \text { SSW } \\ 2 W \end{gathered}$	$\begin{gathered} \text { S } \\ 16 \\ \text { SE } \\ 28 \\ 8 E \\ 8 E \\ 27 \\ 8 \\ 14 \\ \text { SSW } \\ 27 \end{gathered}$	$\begin{gathered} \mathrm{SSE} \\ 19 \\ \mathrm{SE} \\ 27 \\ \mathrm{SE} \\ \$ 7 \\ 8 \\ 14 \\ 8 \mathrm{SW} \\ \$ 8 \end{gathered}$	$\begin{gathered} \text { SE } \\ 80 \\ \text { SE } \\ 27 \\ \text { SE } \\ 30 \\ 8 \\ 14 \\ \text { SW } \\ \hline 8 \end{gathered}$	$\begin{aligned} & \text { SSE } \\ & 19 \\ & \text { SE } \\ & 87 \\ & \text { SE } \\ & \& 8 \\ & 8 \\ & 11 \\ & \text { SW } \\ & \text { OV } \end{aligned}$	ESE 18 $8 E$ 26 $\$ E$ 2% 8 11 11 SW 38	$\begin{gathered} \text { ESE } \\ 13 \\ \text { SE } \\ 28 \\ \text { SE } \\ 87 \\ 88 \\ 9 \\ \text { SW } \\ 87 \end{gathered}$	$\begin{gathered} \text { ESE } \\ 1.5 \\ S E \\ 27 \\ 28 \\ \mathrm{SE} \\ 27 \\ \mathrm{~S} \\ 10 \\ \mathrm{SW} \\ 25 \end{gathered}$	$\begin{gathered} \text { SE } \\ 11 \\ \text { SE } \\ 8 . \\ \text { SE } \\ 2.3 \\ \text { SSW } \\ 8 \\ \text { SW } \\ \text { Sif } \end{gathered}$	$\begin{gathered} \text { SE } \\ 18 \\ \text { SE } \\ 27 \\ \text { SE } \\ \text { QU } \\ \text { SSW } \\ \text { SW } \\ \text { SSW } \\ \text { OW } \end{gathered}$	$\begin{aligned} & \text { W } \\ & 354 \\ & \text { SE } \\ & 603 \\ & \text { SE } \\ & 617 \\ & \text { SSE } \\ & \text { Li9 } \\ & \text { SSW } \\ & 4.99 \end{aligned}$
	WSW	SW	SW	SW	SW	${ }_{18}^{\text {SW }}$	$\begin{gathered} \text { SSW } \\ 10 \end{gathered}$	${ }_{11} \mathrm{SSW}^{2}$	$\mathbb{S}_{16}^{\mathbb{E}}$	$\begin{gathered} \text { SsW } \\ 9 \end{gathered}$	${ }_{H 1}$	$\frac{50}{1}$	$\begin{aligned} & 8 E \\ & \text { \&38 } \end{aligned}$	$\begin{gathered} 88 \\ \hline 8 \end{gathered}$	$\begin{aligned} & 8 \\ & 28 \end{aligned}$	$\begin{aligned} & \text { S } \\ & \hline 3 \end{aligned}$	$\underset{\mathcal{S Z}}{\text { SSE }}$	${ }_{27}^{\text {SSE }}$	$\underset{S Z}{\text { SSE }}$	$\underset{30}{\text { SSE }}$	$\underset{\text { SKE }}{\text { SSE }}$	$\begin{gathered} \text { SSE } \\ 36 \end{gathered}$	${ }_{41}$	${ }_{36}^{\mathrm{SSE}}$	${ }_{498}$
	$\begin{gathered} \text { SSE } \\ 36 \end{gathered}$	$\begin{aligned} & \text { SSE } \\ & 29 \end{aligned}$	$\begin{gathered} \text { S8E } \end{gathered}$	$\begin{aligned} & \mathbf{N S E} \\ & 36 \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & 32 \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & 30 \end{aligned}$	$\begin{array}{r} \mathbf{S} \\ 28 \end{array}$	$\begin{aligned} & 8 \\ & 45 \end{aligned}$	$\begin{array}{r} 5 \\ 39 \end{array}$	$\begin{gathered} \text { § } \\ \hline 6 \end{gathered}$	$\underset{38}{\mathbf{S}}$	8	19	8	${ }_{7}^{8}$	SW	wsw	$8 W$	$\underset{18}{\text { SsW }}$	$\begin{aligned} & 8 \\ & 18 \end{aligned}$	$\frac{8}{15}$	$\underset{18}{\mathrm{~S}}$	$\underset{18}{\mathrm{~S}}$	$\begin{aligned} & 8 \\ & 16 \end{aligned}$	$\underset{563}{\mathbf{S}}$
	${ }_{16}$	$\begin{gathered} \text { S8W } \\ 18 \end{gathered}$	$\begin{aligned} & \text { SSW } \\ & 21 \end{aligned}$	$\begin{gathered} \text { SSW } \\ 19 \end{gathered}$	$\begin{gathered} \text { SSW } \\ 1_{4} \end{gathered}$	$\underset{11}{\mathrm{~S}}$	$\begin{gathered} \mathrm{S} \\ 11 \end{gathered}$	$\begin{aligned} & \mathbf{S} \\ & 9 \end{aligned}$	${ }_{8}^{8}$	8	${ }_{9}$	W	7	WSW	Wsw	WSW	WSW	WSW	W8w	WSW	W	w	$\begin{gathered} \mathrm{W} \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{W} \\ & 10 \end{aligned}$	${ }_{24}^{\mathrm{W}}$

The weather at the end of last month (July, 1878) affords such a good example of the course of winds and changes which lead on to a S.E. gale that we may spend a few moments in following them.

On 24th July barometer stood at 30.03 , cloudy and cold, with westerly winds.

On 25 th, barometer 29.96 ; wind and weather similar, barometer unsteady and falling fast.

On 26th, barometer fallen to 2964 ; cloudy with warm W.N.W. wind blowing fresh; and the weather map shows that on the south coast, where N.W. winds had prevailed, a change to S.W. had set in-in South Australia and Portland-and indications of change appeared at Wentworth, where weather looked stormy.

On 27th, wind had vecred to W. here, blowing fresh and cold; at Sydney barometer low and unsteady, and between 2 and 5 p.m. one of those peculiar markings which I suppose to show the passage of a cyclone is recorded with something like a faint repetition of it between 9.30 and midnight; at 3 h .7 m . p.m. there were a few drops of rain, weather very cloudy. In Victoria, 3 p.m., weather wet and squally ; wind south, 48 miles an hour. Barometer risen to 29.68 ; barometers to south rising; weather wet and squally, with heary sea on the south coast; barometers very low at Sydney and along the coast south of it.

28th, strong cold W. to W.S.W. wind ; barometer $29 \cdot 89$, and generally rising fast.

29th, S. to S.W. winds generally on the weather map ; barometers all from $30 \cdot 10$ to $30 \cdot 30$; very heavy sea reported at Gabo, and heary as far as Cape George. By a letter from Mr. Thomas Hale, at Bulli, I was informed that this sea began on Sunday morning (28th) with a heavy quick swell from S.E.-heary-looking clouds in east-rollers making up a mile from the shore in 7 fathoms. On 29 th the S.E. sea did not follow along the coast, but missed Sydney and Newcastle, and at 3 p.m. was reported at Port Macquarie. Note to foot of weather map stated that there was S.E. gale off the coast.

30th, barometers all high, $30 \cdot 30$ to $30 \cdot 40$; winds between south and west ; very heavy sea along the coast from S.E., but still not home at Sydney, and did not get home here until 4 p.m.; easterly winds reported on the high lands, but by no station on the coast; it was evident thet S.E. Wind was blowing orerhead, and the sea only was coming home.

On 31st, barometers nearly the same; heary sea on the coast ; winds westerly, and weather seems to be clearing. During the day barometer fell fast, and at 3 p.m. smooth sea at Cape George, Sydney, and Newcastle-still heavy to north and south-looks as if the easterly gale was nearly over; but a rery rapid fall of pressure was going on at Sydney, and places west of it to Forbes-
becoming more rapid after 11 p.m., and by midnight a light easterly wind with rain had set in, and looked rery like the gale coming home On 31st, from Clarence River to Cape George wind had changed to N.E. to E. with rain. Still heary sea in places. At Sydney the morning looked rery dirty, and barometer fell 0.18 by $12 \cdot 30$ p.m., when a terrific shower of rain came on. I inch fell in 6 minutes, and the weather cleared up from west.

On August 1st and 2nd, the wind got round to West again, and the weather cleared up.

Now, we have in this period just the ordinary changes of wind which lead on to a S.E. gale, and the gale was evidently blowing hard off the land, but did not come home; and I believe the single reason why it did not is that the westerly wind had more power, and kept it in check, as it were, so that it spent its force to the east of us, for during the recent storms the miles of wind on 26 th was 615 , on 27 th 220 , and on 25 th 601 ; and in all the examples given of easterly gales which have blown home (see tables herewith) we have seen that the westerly winds have always been light. Now, my experience of the weathor here, and especially since the weather map has been published, which places before us day by day a general view of the weather, is that easterly gales frequently blow in the offing, sending a heary sea home; while along the coast the S.E. Wind is not felt at all, but it shows itself high up on the mountains, sometimes far inland, and on the south coast. Now, in the recent storms which I have described (July, 1878) you will observe that the wind veers round from west by south-west and south to east. Now, this is the normal way for the wind to veer here. Our northwest wind is tropical; the west-compound of north-west and south-west-is generally with us a low barometer wind, proving that we are generally in the light or tropical part of the current; and as the wind veers to south the barometer rises to its maximum; and when the wind reaches south-cast, that is in the unadulterated polar current, it is highest. Here the polar current is generally from south-west, being changed in direction by the prevalent westerly winds. Now, when a disturbance takes place, if it is to the east of us the westerly winds blow over here in full force, and the south-west and west winds come in and supply the want. If, however, the disturbance be west of us, or from some cause the tropical wind be wanting in its usual force, then the polar wind takes its true direction and blows on our coast as the dangerous south east gale. The facts from self-registered, and therefore unbiased observations, which I have brought under your notice, are very significant. Year after year, with strong westerly (tropical) winds, we see nothing of the polar (southeast) current; but in the same series we have seen that if the westerly fails in force then the south-east gale comes in. Should
further investigation bear out these results, as I have no loubt it will, the south-east gale is shorn of one of its dangers, for we shall know when to expect it. Of what might le caller the immediate indications it is more difficult to speak. The safest guide I think is to be found in the sea and the clouds to south aud south-cast. The barometer, as you will see by looking at the results given, sometimes rises and at others falls, is at one gale $30 \cdot 530$, and at another $30 \cdot 101$; and the humidity varies from 73 to 100 , so that barometer and thermometer are not much use. Now, you will doubtless have noticed that I have confine this investigation to the past seven years. I have done so because during that period the records of the Observatory have been sufficiently complete to enable me to trace out the storms completely in the short time deroted to this paper. There are however two historical S.E. gales of which I should like to say a few words. The first is that in which the "Dunbar" was wrecked, on 20th August, 1555. On 18th, barometer stood at 30131 , wind rariahle; on 19th, barometer $30 \cdot 270$, cloudy, wind S . to S.S.E.; on 20th, $30 \cdot 020$, heary rains and blowing a heary gale from E.s.E. to E.N.E. : on $\because 1$ st, barometer had falleu to 29750 , S.E. to S. wind; on 23rd, the wind was south, weather clearing. Now during tlins winter (1857), the westerly winds were almost absent here, and the S.E. wind came home frequently. During June 15 th, 16 th, and 17 th, there was a heary storm from S.E., with torrents of rain; barometer $30^{\circ} 192$ on 15th, and falling as the gale blew itself out back by south into fine weather. Again in July of the same year, on 21 st, with barometer at $30 \cdot 188$, wind changed to S.E. on 22nd ; barometer had risen to $30 \cdot 199$, and it then gradually fell as the wind backed into S.W. on 25th; on 26 th the wind was again in S.E., barometer falling ; torrents of rain fell on 27th, wind E. to E.N.E., heary gales and floods. Barometer $29 \cdot 966$ on 28 th, barometer rose to $33 \cdot 062$, wind S.E., clearing; 29th, $30 \cdot 115$, S.E., clearing. So that it appears that during this winter when westerly winds were almost absent, there were three heavy easterly gales.

The other gale to which I referred, was that known as the "Cawarra" gale, perhaps the most disastrous ever known on this coast. In the winter of this year, also, the westerly winds were very light, and at times altogether absent for days together; in May, E. to N.E. winds were frequent, and in June there were two light S.E. gales and rain; the first becan on the 11th, with barometer 30619 , the velocity only from 15 to 20 miles an hour and the rain light. The second began on 18th, with barometer $30 \cdot 400$, moderate rains fell, and the wind was not strong, in fact although these two have all the characteristics of S.E. storms, they did not rise in force to gales. In July however the storm was severe, preceded as usual by light winds from W. and S.W.,
the barometer gradually rose to 30249 . On the 9th of July, 1866, a light N.W. wind was blowing, the day was fine with light southerly winds; at 9 p.m. it was overcast, with rain-like clouds; on the 10 th, barometer $30 \cdot 282$, light westerly winds a.m., light S. in afternoon, and light west at night, cloudy, but clearing towards night, but at 6.45 p.m. lightning was observed in a bank of clouds low down in S.S.E. On the 11th, barometer $30 \cdot 210$ and falling, wind westerly, in the moming weather fine; about one o'clock p.m. the wind began to reer from N. through west to S., and by 230 p.m. was blowing from S.E. a light breeze of only four miles an hour, but it steadily increased hour by hour; weather was cloudy, and at 5.45 p.m. lightning began in S.S.E. and spread all over the heavens as the storm clouds came upon us; by 9 p.m. the wind was blowing 21 miles an hour; it was then raining and continued to do so all night, with inereasing wind, which by 6 a.m. of 12 th had risen to 40 miles an hour, with gusts of from 50 to 60 miles an hour ; rain fell in torrents and there was a heary sea all day of 12 th ; it blew hard, 30 to 40 miles an hour, during the day, the strongest gust being 56 miles per hour; meantime the barometer was falling and stood at $30 \cdot 036$, after 9 p.m. the wind very gradually backed to S.S.E., and the velocity began to fall, and by $9 \mathrm{a} . \mathrm{m}$. of 13 th it was S . only 25 miles an hour; the barometer rose a little, 30.073 , and the weather cleared with falling barometer on 14th.

Several obvious and important conclusions come from these examples. 1st, we may never expect a dangerous easterly gale if the westerly winds are in full force in the winter. 2nd, the easterly gale comes on with the wind reering round from W. through S. 3rd, when the barometer is very high, 30400 and upwards, the gale is not strong. The heary gales come on with barometer about 30200 , and are accompanied by thunder and lightning usually. 4th, as the barometer falls, the gale clears up by backing to S., and it rarely returns to S.E., but clears up at ouce by returning westerly wind.

We have another kind of winter storm which may be dismissed with very few words, as it seldom is dangerous to shipping and is so gradual and well marked in its approach that no careful observer will be caught unprepared. I allude to the westerly gales, which, excepting those from S.S. W., to S., are the strongest we get, but blowing as they do right off the land, it is only when vessels are on the way from New Zealand here that they become serious. The strong west winds of these latitudes are well known, and the simple reason, it would seem, why they at times blow so hard is that an extra supply of tropical current has come down with its great initial velocity, which, as I have shown, amounts in the upper currents to 80 miles an hour. A little extra force then in the circulation within the tropics will give us a westerly gale.

I hare one other variety of storm to place before you, if you will have pationce with me for a few minutes longer. It is that rariety which brings us the most furious storms, but fortunately for us the direction S.W. to S. is not such a dangerous one for shipping as that of the S.E. gale. In this class we must place the "Dandenong" gale, and as I was at considerable troubie to work out the history of that gale, I have chosen it as an illustration of the variety of storm we have now to consider. They are caused by the polar wind rushing northwards, and being accelerated by some local cause they are often made more serere by the passare of one of those barometric waves from the south which so frequently pass over us. Should one of these arrive on the south coast when the S.S.W. wind is blowing, it seems to give it new force and send the wind forward. If indeed we are not here confusing cause and effect, which I am very much disposed to believe; fur there must be a continual oseillation between the two currents tropical and polar; when the former prevails, pressure falls, and when the latter pressure increases, by the weight of the wind as well as its relocity, and such an impulse in an elastic fluid must go forward even if the air does not go with it. On the 7th September, pressure was falling along the south coast, and the lowest barometer (29 ± 60) is recorded at Hobart Town, at 430 p.m. on the 8th ; on both these days, but especially on the 8th, all the obscrvations taken in the four Colonies, South Australia, Victoria, Tasmania, and New South Wales, show that a strong tropical current from N.W. was blowing all over south-eastern Australia. In New south Wales all the barometers stood at about 30 inches, and the weather was very hot; this warm wind extended to the southern point of Tasmania during the morning, and the humidity at Hobart Town was down to 64.

Barometer readings during the "Dandenong" gale, September, 1876.

Time, 9 am .	9th.	10th.	11th.	12th.
Melbourne, for 91 feet above sea...	$29 \cdot 892$	$30 \cdot 190$	80.031	29.736
Adelaide	$30-015$	30.242	30.046	29.657
Deniliquin	29.895	30.111	29.973
Albury.	29.877		30.002	29.926
Eden	29.817	29.883	30.119	29.930
Cape St. George	29.846	29.586	29.742	29.833
Goulburn ..	29.955	.	29.971	29.935
Bathurst	29-961	29.859	29.862
Forbes	$30 \cdot 503$	30.025	29.837	29.857
Sydney	29.942	29.652	29.710	29.714
Neweastle	29.986	29.583	29.528	29.721
Armidale.	29.956		30.038	29483
Port Macquarie	30.060	29.672	$29 \cdot 382$	$29 \cdot 604$

The first note of the change to polar wind comes from the "Agnes Jessie," then on her way from Hobart Town to Melbourne. She started on the 3rd September, had N.W. wind, till 5th, and thence to Sth, fresh W.N.W. to the sth, when it shifted to s.W. and blew hard until her arrival in Dlelbourne on the 9th. Between noon and 3 p.m. of the sth September, at Adelaide, the wind changed suddenly to s.W., and at Portland the same change is reported at 3 p.m. At Tasmania it had not taken phace at ± 30 p.m., but is reported next morning at $7 \cdot 30$, and wim south.

During the night of the sth the battle between the two currents was going on, and at 9 am. of September 9 th the polar current had made considerable progress. We find on reference to map 1 that it was hlowing at Adelaide, Portland, Melhourne, Wentworth, Balranald, Hay, Deniliquin, Parker, and Forbes; that is, it had made its way under the tropical current hy following along the rivers or low lands in Riverina and up the Lachlan River; exeept the S.W. corner, all other pertw of Now , Nouth Wales were at that time involved in the tropical hot wind. Another tongue of the S.W. wind was makins it, way along the coast to the east of the Dividing Range, and reached Eden at 4 a.m. on the 9 th, and by $9 \mathrm{a} . \mathrm{m}$. the whole district from Kiandra to Eden was involved in thunderstorms, which marked the meeting of the $t w o$ currents. That morning (9th), the "City of Hobart" was cominy round Cape Howe, had fine weather ant N. W. winds, and about I am, when off Merimbula, the wimd suddenly whifted to south, and the weather lonked very bad to S. S. S. wind and heary sea followed the " "ity of Mobart" all day and until $\overline{5}$ com. of the 10th, when she ran into the westerly wind then blowing over Sydner. It Moruya the wind changed to S. at 6 p.m. of 9 th. The "(Yleaner" schooner, from Albany, New Zcaland, to Melbourne, and about half-way on her royage, after continued head winds, had, on september 9th, a sudden change to S. E. about noon, and the wind blew with almost hurricane violence. The schooner "Louise," from Neweastle to Warnamboul, met a s.E gale at 6 p.m. on the 9th. "You Sings," from Sydney to Melbourne, left at \& p.m. Bth, northerly winds to Gabo ${ }^{\circ}$ g p.m. Th, theuce to Rain Head fresh N.W. winds, and then a sudden shift to S.E., wind blew with almost hurricane violence for cirhteen hours, with high cross nea, passed Wilson's Promontory 7 p.m. on ! 9 th September. "Ifero," left Sydney for Melbourne 1 am, September 9th, had northerly winds to the Pireon-house, then changed to S.S.E., and gradually increased to a heary gale, ship hove to fourteen hours, light winds thence to Cape Liptrap, thence N.E. winds, passed Wilson's Promontory 1 p.m., 11 th September.

It is worthy of note here that, at 9 a.m. on September 9 th, when as we have seen the S.W. Wind was blowing along the low lands from Portland to Forbes, a N.W. wind was blowing at

Urana and Albury, showing that the N.W. was then hlowing over a narrow tongue of S.W. wind. At 9 a.m., Orange and Bathurst were still in N.W. wind, but at the latter place the change was visible like a thunderstorm in S.W., and at 10.15 a.m. the storm and change burst 12 miles north of Bathurst. Upon the road to Hill End, where a friend of mine was going, there was much thunder and great disturbance, but between 11 a.m. and noon they were out of it, and aqain in the N.W. hot wind. Arriced at Hill End, terrific storm and change of wind broke orer the town at $4 \mathrm{p} . \mathrm{m}$. The first storm at Sydney that evening was at 6 p.m., and assumine as is probable, that this was the first storm mentioned near Bathurst, carried east the still powerful N.W. current, it represents a motion of translation for the storm of 15 miles per hour, and as it passed over Sydney there was a sudden rise in the barometer, and a fall in its rear, similar to those noted earlier in this paper. All the 9th September the barometer at Sydney was falling fast, and the heary rains inland were evidently increasing the partial vacuum and helping the polar wind. Map No. 2̈ shows the state of the weather at $3 \mathrm{p} . \mathrm{m}$. on 9th. Thunderstorms and rain extended from Parkes to the sea, showing the meetine of the two currents, and the S.W. wind was blowins arenerally s . of this line.

The barometer continued all that night to fall rapidly at Sydner, and along the south coast it was rising fast. During the night, that is, at $19.40 \mathrm{a} . \mathrm{m}$. of the 10th september, the wind at Sydney veered to S.W., but got back arain into the old quarter (west) by $3 \mathrm{a} . \mathrm{m}$., at $9 \mathrm{a} . \mathrm{m}$. it beran to hlow fresh from W.N.W. Unlike as the dircetion may look, this was really polar wind that was blowing over Sydnet from W.N.W., for the temperature had fallen from 76.5 on 9 th to 5.5 .2 , and all day of the 10th the wind at Sydney continued from W.N.W. to W.S.W.

Map No. 3 is intended to show, first, the state of the weather at $9 \mathrm{a} . \mathrm{m}$. of the 10th, and second the obserrations of the vessels off the coast. You will observe that the S.W. wind had found its way to the west of the mountains as far north as Narrabri, and along the coast as far as Bodalla, while at sydney. Neweastle, Musclebrook, and Scone, the westerly wind was still blowing, and in Queensland N. to W. winds, while at Adelaide the polar current had already changed to its true direction, S.E. At sea the "City of Melbourne," then off Cape George at 10 a.m. of 10th, met the S.E. gale, which blew furiously all day. At Moruya a terrific gale from S.S. W. set in at 10° a.m., and this had been preceded by a thunderstorm at $4 \mathrm{a} . \mathrm{m}$. The steamer "Boomerang" (Rockhampton to Sydney), was off Smoky Cape at $10.30 \mathrm{a} . \mathrm{m}$., and she there met a strong southerly breeze, which lasted only a few hours, and the wind backed to the west again.

The southerly was only a puff of the coming storm, and it is interesting because it shows how difficult it was to displace the tropical current.

During the forenoon of the 10th, snow in some places three feet thick was lying on most of the western slopes of the Dividing Range, provinir how fresh the polar current was from cold regions, when it could make snow within a few hours of a hot wind (for on the morning of the 9 th, the same country had been covered with a hot wind). The change had begun 3 p.m. on 8 th, at Portland, and did not reach Sydney till afternoon of 10th, or progressed about 13 miles an hour, while the wind velocity was 50 , and the difference represents the work done in displacing the tropical current.

We have thus traced the polar current from Portland to Smoky Cape, a distance of 1,000 miles in a straight line, in fact the S.W. wind kept steadily on, following what is evidently the line of least resistance for this wind; aud the air being once in motion in that direction, was ready to receive any impulse that might be given to it in the same direction, and such an impulse in the form of one of those waves of pressure from S. was then coming up, and the barometers on the south coast were responding by a rapid rise, while that at Sydney was still falling. At 9 a.m. the barometer at Melbourne read $30 \cdot 198$, at Adelaide 30.242, and at Sydner it was down to 29.652 , which shows that there was a gradient of G between Melbourne and syduey, and this acting all iay upon wind already in motion, hat a very decided effect, the more so as the barometer got still lower on the coast north of us, and the "Boomerang" reports the barometer down to 29.30 at'3 a.m. of lith, when the violent squall struck her. At this time the barometer at Sydney read 29.593 , which is a gradient of 16 , which is quite enough to account for the squall passing on so furinusly. I have already mentioned that a furious squall struck the " "ity of Melbourne" at 10 a.m. of 10 th, and the "City of Hohart" at noon, and the "Royal Duke" coming through Bass's Straits at noon on 9th. At Sydney the gale burst upon us in all its fury at $9.50 \mathrm{p} . \mathrm{m}$. of 10 th , wind S.S. W., 68 miles an hour, all night it blew at an average rate of 57 miles per hour, and between $12 \cdot 18$ and $12 \cdot 30$, or in 12 minutes, $22 \frac{1}{2}$ miles of wind passed the Observatory, that is at the rate of 112 miles per hour, and in one short gust at 1230 , the velocity rose to 153 miles per hour, equal to 117 lbs . pressure on the square foot. It must however be borne in mind that this was not on the surface of the ground. The ancmometer is (ia feet above the top of the hill on which the Observatory stands, where the wind has full play, and I have frequently found the velocity of wind near the surface 50 per cent. less than where the instrument is. Now following the squall north, it reached Newcastle
at 1 a.m., " Gorernor Plackall," 18 miles off Teweastle, 2 a.m. At Morpeth, the night watchman on the stemmer's wharf reported that there was a shock of earthquake between 1 and 2 a.m., that lifted the steamer "Collaror," and made a rumbling noise, at the same time it disturbed the water very much. The squall reached the "Boomerang" at Seal Rocks, at 3 a.m.

At the Clarence and Richnond Rivers as well as in Queensland no such gale is reported. At the Tweed River it was blowing strong from N. and West, and in the aftemon of the 11th September reered to S.W. The schooner "Noumea" coming from New Caledonia in latitude 30° met the S.W. quale on the 10th, but this was prolmaby only the first puff-he sars nothing of the furious gale; and the "City of San Francisen" reports that on the 11 th of September he had strong winds from N.N.W. with heary sea, and wind veering to N.W., barometer falling gradually till it reached 29.32 ; the captain determined the steaner to be on the moderate or castern side of a cyclune, distant from its centre about 180 miles; wind continned to veer to west and moderated; passed Lord Howe's Island at nown on 1"th, wind now W.S.W.; during the night of the 10th had riolent squalls of wind and rain, with heary topping sea from monthwat and westward. The abure is the "City's" report as whe passed Lord Howe's Island at moon on the 12th. It is evident from her report. those from Queensland and our northern ports, that the S. W. gale did not extend much further than we have traced it, and the captain was in orror when he thought that there was a cyclone to west of him, for the "Noumea" schnoner was about 180 miles west of him and saw nothing of it. The truth was he was passing from the tropical into the polar current, and the wind veered in a normal way from N. round by W. to s.

It is worthy of remark that the first puff of the storm passed over Sydney twente- hours before the main storm, and over the "Boomeranir" seventeen hours before; so that this puff was moring in the same direction, but sluwer than the wreat storm. It is seldom that such a gale as the one we have been considering offers any satisfactory means of determining its rate of progress, but the violent aquall was not to be mistaken ; and though observers generally forget to give the time of chaneses this one, howerer. was so marked, that they have in this case given the times. Now, if we here repeat these times and see the rate of progress, we get some valuable results, which show that the actual progress of such a storm over the surface is by no means the same as the velocity of the wind. In fact, that the wind in displacing another uses up in so doing its own velocity.
Storm renched
Sydney at $9.50 \mathrm{p} . \mathrm{m}$. Newcastle, 60 miles, 1 a.mn $=20$ miles fer hour.
"Boomerang," 100 miles, $3 \mathrm{am} .=20$
"Governor Blackall," 2 a.m. $=19$ "
or the storm's rate of motion is 20 miles an hour. In the earlier part of its progress it only made 13 miles per hour, but then it had to make its way uphill and overcome the surface friction as well as the apposing N.W. current, but haring passed the mountains and got on the coast its progress was more rapid.

That this storm was not a cyclone is evident from many facts I have placed before you, but if anything more is wanted, it may be found in the report of the steamer "Llewellyn," from Auckland to Sydney. She left Auckland 4 p.m. of 9th, and had light head winds to the 11th, when she was met by a furious westerly gale that lasted all the way to Syduer. At the same time then, that a violent S.s.W. gale was blowing along our coast, there was blowing over it the strong westerly gale that began $t a . \mathrm{m}$. of the 10th, and which was lifted up by the polar current.

No better example than this storm could be selected to show how the polar winds at times displace the tropical ones. Without waiting to ăraw conclusions from what we have seen, I would like to call your attention to one which explains a common phenomenou on the coast, viz., the S.E. sea when the wind has been from S.W. In this storm, you saw that the polar current, where free to move, came in from S.E. past the "Gleaner" schooner and others; as a S.E. gale bringing a very heary sea on to the coast, at the very time a furious S.W. wind was blowing on the land. This is the ordinary course-only the sea comes home.

If in what I have said it has been made clear to you how the polar current found its way north, you will see at once that the ordinary southerly burster is just the same wind in character as this dangerous storm, and that it gets in by following the land along the mountains where the tropical current is most easily displaced. No doubt the "Dandenong" storm was remarkable, but it was one of the ordinary changes from tropical to polar current, accelerated by the circumstances then oceurring in the wares of pressure, \&c. Now these changes do not come without warning, and the system of weather telegrams now in use gires us in the weather map ample warning of their approach, but whether the change will be violent or not can only be ascertained by a careful study of the forces at work at the time.

I have omitted much that I should like to have added to these remarks, but I have already far exceeded the bounds usually set to a paper of this kind, and I will not longer trespass upon your time.

SYDNEY WEATHER MAP

Note.

The vanes or arrows point to the direclione from which the wind is blowing.
PHOTO-LITHOGRAPHED AT THE GOVT. PRINTING OFFICE,
SYDNEY, NEW SOUTH WALES.
 pPM. SEPT. $^{\text {9. }} 1876$.

Barograph Sheet, from 9 a.m. November 27, to 9 a.m. November 28, 1877

Discussion.

Captain Trottox said:-It may be naturally expected from me as a scaman, and one who has been intimately connected with the shipping, and consequently has had knowledge of the winds prevailing on this coast, to make some remarks on the very admirable and useful paper read to you by my friend Mr. Russell. But it would require a very clever head to gather up all the figures and matters referred to in indication of the winds, and properly criticise them at this hour of the night. But there were one or two remarks that just struck me in passing, that I think would require future consideration. One was his description of the gradients of the barometer. Mr. Russell, from his position at the Observatory, has referred to the fact that mariners have a great source of adrantage now in knowing the course of the winds on the coming day. I must differ from Mr. Russell there, because a mariner navigating a ship is not aware, as we are here, of the recorded winds on various parts of the continent. Of course a commander that was 250 miles off Sydney would not be aware of the south-west wind blowing about South Australia, or through Bass's Straits, that is indicated to us daily on the map. The data, therefore, from which he draws his conclusions is wanting to make the knowledge practicaliy useful to those whom it most concerns; and it requires that some one should be appointed by the Government to watch over this matter and give this knowledge to navigators on the coast, so that they might know what was likely to be the wind blowing. (Hear, hear.) As a navigator on this coast for many years, I have given thi subject my careful study, and I have since given it much study from a stationary position. Occupying the position I do, I watch the weather very closely, for I should not like to send out one of the vessels of which I have charge, with some 200 or 300 passengers on board, to meet the fate of the "Cawarra" and other vessels. But the result of all my observations is, that I have failed to be able to indicate the weather of the following day. I may tell you that some of the travelling public had perceived my weakness of being a little weatherwise. One old gentleman, now no longer with us, used to say, "Well, captain, how is the weather going to be to-morrow ?" Well, I would say, "I think it will be so and so." "I will bet you a bottle of champagne it will not," he would say. And I can assure you I lost more bottles of champagne than ever he paid me. Although I had so long an experience on the coast, I have to confess I know very little about the weather likely to come on the following day. Since then, I have watched a barometer in $m y$ desk, and recorded its indications three times a day. Well, I have seen the barometer standing steadily at the same range during excessive changes in
the weather as in beautiful fine set weather. Whether I am in as good a position sheltered by the hill as Mr . Russell is in on the hill I do not know, but I believe Mr. Russell is free to confess he even cannot now tell what weather we aro going to lave tomorrow. There is another observation I caught as MIr. Russell read his paper,- it was with regard to the black north-easter, " we know not where it comes from, nor whence it goes." I would point my fricud's attention to where I think it goes. It docs not extend south of Cape St. George. I think that these black northeasters fringe on our hills, striking off them into eddying winds. Many of the travelling public, not mariners onls, between here and Tictoria, must hare frequently seen how ships coming up from the south in the summer with topsails set, as they get oif Cape St. George, are invariably taken aback by tho north-easterly. It is only a matter of a fen minutes. This north-easterly wind very rarely works its way further than Cape St. George ; I camot say where exactly it coines from, but it always comes at exact right angles with the snuth-east tride wind, even when blowing at the strongest. But it is the south-easters that we ought to look out for, with a view to warn mariners of their coming ; and I think it my friend looked through the telegraph wire to Jew Zaaland, he would get a better indication of the south-easter coming on our coast than by looking anywhere else. The principle he has laid domn for secking the cause of this southeerst trale is very heautiful, but I do not think it is very useful to the mariner at sea. My own experience-and I have written to the papers sume ten years ago on the subject-is, that when there iis a strong westerly current through Bass's Straits, there is a strong set northerly on to our south-east coast. It certainly throws a swell on to the coast; and in all the vessels I have navigated I found, after passing through the Straits with a westerly current, and turning Wilson's Promontory, that there was south-easterly weather setting in to the 90 -mile Beach or on to the Ram Head, as was clearly indicated by the compasses. It was owing to this current that I think the unfortunate loss of the "Auckland" was due. Tou will remember that one of the Melbourne Niteamship Company's boats was close in beside her ; both vessels were running the same course, relying on their compasses, when they found themselves in the bight. And this occurred in just such weather as I have stated. The dangerous winds for us are the south-easters, and I think as we hare now a wire to New Zealand, we must look there for their source; I feel we shall get more information from there than in relying on the direction of the wind on our own continent. With regard to the seas that break on our coast, Mr. Russell observes that some come truly hothe and others do not. This may possibly arise from the fact that the gale in the distance does not come home. But there is this,

I think, that you should bear in mind,- that fresh westerly winds through Bass's Straits will throw a very strong southerly wave up this coast; that you will particularly see at Bateman's Bay, where although there may be a west or a west-south-west wind blowing, a heary sea will be running in. I regard this as one of the most valuable papers that have been real before the Society, but it cannot be fairly discussed to-night.

Some Facts about the Great Tidal Wave, May, 1877.

By J. P. Josephson, C.E.

[Read before the Royal Society of N.S.W., 4 December, 1878.]
This tidal wave was observed at the following places, viz, Sydney Harbour, Newcastle Harbour, Ballina, Richmond River, (in N.S.W.), Brisbane (Queensland), Napier, Wellington, Christchurch, Akaroa, Omaru, Kaitangata, Lyttleton, and many other ports and bays in New Zealand, sandwich Islands, Houth America.

Sydney Harbour. -The gauge is fixed at Fort Denison. The tidal wave of the harbour marked on diagram made its appearance on the gauge at $520 \mathrm{a} . \mathrm{m}$. on the 11th of May, 1873, and the oscillations gradually increased to a maximum of 42 inches, and on the 13th they died away. The average interval was 34 minutes.

I may mention that the float of the gauge at Fort Denison is placed in a well, and a tube, 6 inches diameter, is connected to it from the harbour to let the water in; diameter of well, 3 feet 6 inches, but may perhaps be partly stopped with seaweed; the gauge could not record the full force of the wave; it came up the harbour almost at righ̀ angles to it. (See sketch.)

There are two tides in sydney Harbour regularly every day; the extreme range from the extreme highest tide to the extreme lowest is 6 feet 9 inches; and the range of low water, or difference between lowest spring-tide and lowest neap-tide, is 2 feet 1 inch, while the arerage difference for the year through between these tides is only 1 foot, and the average difference between high and low water is 3 feet 4 inches. (Russell-Climate, N.S.II.)

The establishment of the port is 8 hours 38 minutes.
The entrance to the harbour is between two headlands, which are called the North and South Heads, distance apart being about $1 \frac{1}{4}$ mile. When entering them, no doubt the ware got partly broken, and then having to fill several large bays, and cruss the bar, the full strength got lost before reaching the gauge, which is fixed about 3 miles up harbour from the heads.

[^13]It may be within the memory of some that between the 15th and 20th August, 1868, a succession of waves reached Sydney, and were recorded by the self-registering tide-gauge. The average interval between the wares was about 25 minutes, and the greatest oscillation 34 inches, measuring from the crest of one wave to the hollow of the next. It was thought at the time that they were earthquake phenomena.

A similar visitation reached us agdin in August, 1873, but it was not so marked in its character. The self-registering tidegauge shows that the disturbance began during the afternoon of the 15 th, and attained its maximum between 1 a.m. and 4 a.m. of the 17th; the greatest oscillation, amounting to 5 inches, occurred between $3 \cdot 15 \mathrm{a} . \mathrm{m}$. and $3.33 \mathrm{a} . \mathrm{m}$. of the 17 th ; the average interval of the waves at this time was 25 minutes; but the average of 20 between 8 p.m. and 530 a.m., was 28 minutes. The waves could not be traced beyond the 18th. (See Natare, Oct., 1873.)

Denerastle Mrarbour, situated about C0 miles north of Sydney. The tidal wave made its appearance on gauge (shown by a full line on diagram) at $500 \mathrm{am} . \mathrm{m}$. (same as Sydner) on the 11th May, 1877. At the greatest oscillations the water fell 31 inches in about 10 minutes, after which the cacillations gradually died away. The average interval between the waves is about 22 minutes; the greatest oscillation, 31 inches. The float of gauge is fixed in a well, the sides of which are formed of ballast; an ordinary wave washes in and out free'y. This port has a bar across the heads, which no doubt helped to break the waves before they reached the gauge.

Ballina, situated about 320 miles north of Sydney Heads. This place was also visited with a similar phenomenon; it was observed all day; greatest rise, 18 inches. No gaugo there to obtain information.

Brisbene.-Neveral tidal disturbances have been observed in Moreton Bay: No gauge there for information.

I have no rceords of these waves from the Southern Colonies.
There are two tide-gauges in Sydney Harbour-one at Forto Denison, and the other at Fitzroy Dock, Cockatoo Island, about four (t) miles westward of the other - andone in Neweastle. Night and day are distinguished on the diagrams by a shading of the hours which belong to night, viz, the smace from 6 p.m. till 6 a.m.

The waves, as shown on the diagrams, appear as a suceession of abrupt uphearals of the surface. and they have lost every trace of resemblance to the true form of the natural wave, although for engineering purposes, arguments, and reference, the outline in the diagram is correct. (This arises from the difference in the horizontal and vertical scales of diagram.)

On diagram I have shown the rise and fall of the surface of the harbour due to the tidal wave from the Pacific Ocean.

Table showing the highest and lowest points displayed by the Tidal Wave on the 11th, 12 th, and 13 th May, 187%.

New Zeatand.

Telegrans from Now Zealand report similar waves on the east coast from 5 a.m., extending from the Bluff to Poverty Bay. The greatest range was 6 feet, the least 2 feet. It would therefore appear that the waves came from the S.E, as they are not reported from the west coast of New Zealand. It is unfortunate that the exact time they reached there is not given; but it is evident the have come orer the thousands of miles in a very short time, and mast be similar to the earthquake wares which reached our coast in August, 1865.

On 11 th May a remarkable fluctuation of the tide occurred, and attracted a good deal of attention. The pulsation of old ocean was in fact quite abnormal, indicating a restlessness that has not been noticeable here since the so termed tidal wave of 1868. This time a disturbance in the waters of the harbour was first remarked about daybreak by fishermen in pursuit of their calling about the banks. The tide was observed to rapidly recede, and then as suddenly to flow several feet up the banks. An hour or two afterwards a person of Mansford Bay was astonished to observe the water rapidly ebb away far below spring tide low-water-marh, exposing the lower part of his slip, which had not been laid bare since the disturbance of 1869 . About 9 o'clock a strange tidal turmoil was noticed at the pier of the Quarantine Island. First the tide ebbed, it being then about low-water, and then it flowed, and so continued rising and falling from 7 inches
to 18 inches. The tide pulsations were very apparent up and down, and that, too, with a strong flood tide running-the rise sometimes being as much as 15 inches to 20 inches in half as many minutes, whilst the ebb was nearly as great. This action and reaction stirred the harbour to its depths, and rendered the water quite turbid, whilst the ressels at anchor in the stream were slewed about by the changing tide - and once the tide, then being strong flood, took quite a half cant to ebb. This was particularly noticed by a person who happened to be afloat at the time. He also timed and measured one of the pulsations, and found the rise to be quite 15 inches in about eight (8) minutes, whilst the recoil was about 9 inches in a similar time. A tidal disturbance was also noticed at the Heads. The pilot said that a strong ebb tide was rumning at Hobart Tomn Point, whilst the ressels at anchor and the lightsinip were swung at flood. He thought it was caused by the heary sea on the bar. From this it would seem that the fluctuations were not closely observed at the Heads, which is to be regretted, as they would dountless have been more decided there.

Fapier, 11th.-A special telegram states that there was a great tidal disturbance all through last night at Gisborne. This morning. at $2 \cdot 45$, at 3_{8}^{3} ebb tide, the tidal wave came over the bay, and rase sfeet ahove the top of the hull of the "Go-a-head." The men to sare thicir own lives had to fly to the rigging. The wave struck the har partially and broke; it nevertheless caused a sudilen rise in the river of from 3 to 4 feet, overflowing the banks on the low-lying portions. At $9 \cdot 30$ the second and a heavy wave ran up the river, calusing great alarm. At $9 \cdot 45$ there was another, and almost immediately afterwards a fourth. The weather was fine, with a fresh breeze blowing, and the water in the bay was much agitated.

Wellington, 11th.- Since before $\& o^{\prime}$ clock this morning a tidal wave was noticed, its rise and fall being about 4 feet, and the action and reaction occupying about 15 minutes. It is still going on, but increasing. At the reclamation works, where the water is confined to an incompleted breastroork, the tide rushed in and out with a force resembling the tide at the French Pass.

Christchurch, 11th.-There was a strange tidal disturbance this morning in Lyttleton Harbour. From 7 till 1 oclock the water has been rising and falling in an unusual manner, at times rising 3 feet in a few minutes, and falling equally rapidly. No damage has been done. It was felt at Waimakariri also, and at Timaru.

Akaroa, 11th. - A heavy tidal wave was experienced here this morning, first at 7 o'clock, when it was nearly dead low, water. The sea came in with great force and receded in 5 minutes, the rise and fall being about 8 feet. The waves are coming in at intervals of about 20 minutes. No damage is reported.

Omame, 11th.-A curious tidal phenomena was experienced here to-day at low-water (about $8 \mathrm{a} . \mathrm{m}$.). The water in the bay rose in about 10 minutes until within 1 foot of high-water-mark. This continucd with more or less variation till noon, when a tidal ware came rushing into the bay. A barque broke away from her mooring warps at the breakwater, and being caught in a strong current and whirlpool was dashed against the inside of the breakwater, and then washed towards the shore, where she struck the bottom. Under the able seamanship of the harbour-master she got clear and put to sea. Through striking the bottom she commenced to leak, and an hour after she put to sea she had made a foot of water. The other ressels at the wharf were only slightly damaged about the rigging, through colliding with one another.

Faitanguta, 11th.-At 10 o'clock this morning a wave about 18 inches in height was scen coming up the river, carrying all small pieces of driftwood. Ece., with it, against the current and strong S.W. wind. The river rose 4 feet above its former height, but receded within 20 minutes. This swelling bad continued hourly up till 2 p.m.

Lytfleton, 11th. -The effects of the tidal-wave were much felt in Pigeon Bay. The water rose 12 inches above o.h.w. mark, covering the handrail of the wharf.

From a private letter received from Port Charters (New Zealand, Auckland) I collected the following information:-

Fridar, 11 th instant, we had a tidal ware that washed from 200 to 300 logs which were down at the mill up the creek.

The tide kept rushing in and out all day. It rose and fell on an arerare about 8 feet in every 20 minutes, sometimes as much as 10 or 12 feet in that time.

Once, about 2 p.m., it rose and fell more than the first time. A punt was anchored in Reef Bay. She parted her chains and went on shore. The wharf is a good deal twisted, but none of it carried away.

A powerful steamer, while crossing Cook's Straits, encountered a very heary tidal ware. The stern dipped under water, and the vessel was drawn back about $\frac{1}{2}$ a mile.

Off New Zealand Coast.-C'ruise of H.M.S. "Sappho."-H.M.S. "Sappho" arrived at Auckland on May 26th. She was caught in a violent squall a few days before, which blew away all her sails and hove her on her beam ends. She lay in a rery dangerous position for a few minutes, but afterwards righted. The "Sappho," after leaving Samoa, went through Hapu and Tonga Groups, searching for the schooner "May Queen," supposed to have disappeared when the earthquake was felt at Tonga, out without success. It was also experienced very strongly at Vava. There were ten or twelve rises and falls at Varao on 11th May,
the greatest rise being about 10 feet. The reef was left quite exposed at times, and as the water receded it left millions of fish behind it on the rocks. The effects were very extraordinary. The natives do not recollect anything like it, and they are in a great rage-accused the "Sappho" of bringing the wave. At Tonga the wave lifted the stranded ketch "Pearl" right off the reel, and left her in deep water, saving a lot of trouble and expense.

A huge Wave.-On the passage of the Union Company's steamer "Taranaki" across Cook's Straits on the 25th May (the Otago Daily Times reports) a huge tidal or blind wave struck her fair abeam, poured in volumes over bridge and decks, filled the main-deck rail-high, lifted the after starboard bridge boat out of the chocks, and dashed it upon the engine-room skylight, and, passing over, swept both the post-bridge boats away, wrenched one of the iron darits out of the brackets, and carried away all the bridge-rail on the port side. The main body of the sea swept over the poop, carrying with it the after skylight, the brass head of the capstan, the wheel and everything appertaining to it, excepting the bare iron stearing gear; all the taffrail and starboard quarter-rail, with the netting of course, and as the quarter-rail went it wrenched away a section of the covering board. The force of the sea also burst in four dead-lights of the saloon cabins, splintering the thick glass, and in the case of one of them drove the fragments right across the cabin into the wooden jalousie partition, fracturing the woodwork. When the after skylight went, tons of water poured into the saloon, flooding it over 2 feet deep on the lee side. For a minute or so after the sea struck her the "Taranaki" lay like a \log in the water, and no wonder, weighted as she was with a flooded main deck, but, as good fortune ordered, the poop gave way, and through the openings thus formed the water discharged itself, and the steamer was once more free and buoyant. It is a remarkable thing that not one life was lost over it.

Saxdwicif Island.

The Tidal Wave at Sanclwich Island.-At various places on the coast of the Sandwich Island great disturbances of the tide (which was felt on the distant coast on 11th May last) were observed, but at Hilo the disturbance appears to have reached its maximum.

The tidal wave struck the group of islands on the 10th May, between 4 and 5 a.m. The sea suddenly receded, and returned with great violence in a wave 16 feet high, which entered the harbour of Hilo, and swept away the wharf and storehouses in front part of the town.

We are informed by the Honolulu papers that there the difference between the highest and lowest water-mark was 36 feet, and that it rose $1: 33_{2}^{1}$ feet above half-tide mark. It was the severest ocean wave experienced at the Sandwich Islands since 1837. The destruction at Hilo may thus be summed up :Seventeen people drowned, thirty-seven dwelling-houses entirely destroyed, and seventeen badly injured, 163 people left destitute without homes; the total damage done at this port is estimated at $£ 3,000$. Although Hilo has suffered the worst of all the Hawaiian ports, the above record of loss gives some idea of the aggregate loss the kingdom has sustained.
It is remarked by the Hawaiiun Gazette, that though the volcano Kilane had been active about that time, there had been no earthquakes there, and it was concluded that the upheaval of the coast had occurred on the west coast of South America. A captain who had arrived from Samoa has given some information respecting the earthquake ware at Upolo, Navigator's Group. He states that the ware was felt at 3.30 am . on the 11 th May, and from that time the water washed out and into the harbour until 3 o'clock in the afternoon. Sometimes the harbour seemed to be empty. There was not much damage done.

South America.

Losses by Tidal Wave.-Panama, June 9th. Losses by tidal wave are fully up to first reports. The Government is a heavy loser, from 40,000 to 50,000 tons of guano having been lost. June 17th.-The Chilian Times of May 16th, reports that south of Valparaiso there was no loss of life or destruction of property by the earthquake between Valparaiso and the Bolivian frontier. Shocks were more severe at Autredefagasta, in Bolivia. No lives were lost, but the damage to property is estinated at 500,000 dollars. It is said that the towns of Celama, Chinchia, and San Pedro have entirely disappeared.
On May 12th a telegram from London stated that the town of Iquiqua, on the Peruvian coast, had been destroyed by an earthquake. Iquique is a sea-port town in the department of Arequipa, Peru, and near the port is an island famed for its guano deposits.

Subsequent news told us that the earthquake took place on May 9th, and on July 6th a London telegram said the damage done amounted to $20,000,000$ dollars, equal about $£ 4,000,000$.

The distance between Sydney and Iquique is about 7,000 miles.
The Liverjool Albion, 26th May, says:-"The tidal wave which lately caused so much destruction at Iquique extended its ravages to other portions of the western coast of South America, and a telegram from Valparaiso announces the total destruction of no less than seventeen vessels on the Peruvian coast, whilst forty more have been more or less seriously damaged. If those
lost fifteen are known to have been laden with guano ; and it is probable the remaining two were. The total loss of property is estimated at nearly $£ 300,010$. The following are the names of the vessels lost laden with guano, viz.:-

「The "Alida," an American ship. The " Drot," a Norwegian ship. The "E. F. Gabain," a Dutch ship. The " Lady Belleau," an English barque. The "Uncle Toby," an American ship.
Loaded
at Pabellon de Pica.

The "Lancashire Witch," an English ship. The "Geneva," an American ship. The "Courier de Lima," a French barque. The "R. B. Chapman," an English barque. The "Shamrock," an English ship. "Coquimbo."
Loaded (The "Avonmore," an English ship. at Huan- $\{$ The "Conference," an English ship.
illos. (The "Conway Castle," an English ship.

The Earthquare in South America and Great Tidal Wave.

Town destroyed and 600 lives lost.-" The Star and Herald" of Panama, received to-day, June 17, has details of the disaster and destruction caused on the South Pacific coast by the earthquake and tidal wave of May 9th. The towns of Arica, Iquique, Ponta, Delabos, Isabellon, Depica, Chanavaya, Huanillos, Copilla, Cobija, Mijillones, De Boliva, Antopagasta, and Chanarabal, are nearly destroyed. About 600 lives were lost. The destruction of Piballoa is estimated at $£ 5,000,000$. The destruction was confined mostly to the coast, although the town of Tarapaca 23 miles inward, and the villages of Pocomattalia and Conejonas, far in the interior, were more or less ruined. The shipping of guano from the southern deposits will be indefinitely suspended, as all facilities in the way of launches, chutes, wharves, water-condensers, and buildings of all kinds have been swept away. The destruction of and damage to the shipping have been very great, and attended by very serious loss of life.

At Mollendo the railway was torn up by the sea 300 feet, and at Ilo the railway was also injured. At Arica the people were preparing temporary fortifications to repel the threatened assault of the rebel ran "Huascar," the moment when the roar of an earthquake was heard.

The shocks were very numerous and caused immense damage. The sea was suddenly perceived to recede from the beach, and a wave from 10 to 15 teet feet high rolled upon the shore, carrying all before it. Eight times was repeated this assault of the ocean,
and 4 miles of embankment of the railway melted away like sand; locomotives, cars, and rails. were hustled about like so many playthings, and left in a tumbled mass of rubbish.

The United States Steamer " Wateree," stranded in 1868, was lifted bodily, and floated half-a-mile north of her old position. A cable buoy was moved a quarter of a mile northward. Merchandise from the Custom-house and stores were carried away 5 miles distant. The damage done was grea'er than that of the calamity of 3868. It has levelled the Custom-house, railmay station, submarine cable office, hotel, British Consulate, steamship agency, and many private dwellings. Thieres began to rob, when the troops fired upon them, Eilling and wounding several.

Destruction of Iquique.

Iquique was built of wood, and tumbled down at the first anset. Lamps were broken, and the burning oil, spreading over the débris, started a general conflagration. Three companies of firemen were instantly at their posts, although it was diffcult to maintain an upright position, shock following shock with dreadful regularity. To procure water, the two best fire-engines were stationed at the beach. Just then the ery arose- "The sea, the sea!" and the waves rushed in ; the engines were carried away by the reflux, and the fire continued unsuppressed. Three elements of destruction were busy at one moment-fire, water, and earthquake. The affrighted people left the city to its fate, flying to the neighbouring eminences. The fire destroyed a large portion of the town, the earthquake levelled nearly all the rest, and the water covers ruins which it took out in its reflux. The water condensers along the shore are ruined. Nearly 400,000 quintals of nitrate at Iquique and the adjacent ports of Molle and Pisaque were destroyed. A small loss of life took place, probably ten (10) persons in all. Coasting crafts and small boats in the harbour were broken to pieces, away up the Pampas, eleven (11) miles from Iquique.

The splendid nitrate establishment, La Neuva Carolina, was completely destroyed.

The sufferings of the people of Iquique were intense. Absence of water and the destruction of the principal stores added to their hardship. It is estimated that the damage done in Iquique will amount to nearly $£(500,000$.

Other Towns destroyed.

Danage to Shipping.-Chanivare, a little town at Guano Landing Deposit, known as Pabellon de Pica, with 450 houses, has only two standing. In one of the guano cuttings thirty (30) labourers were buried by the falling earth. Among the shipping
the havoc is terrible. The town of Tarabaza, two or three leagues inland, and the villages of Pica, Matella, and Conehones, were more or less ruined. The loss of life is reported small. The earthquake was especially severe at Chanenoogo. The earth opened 1.5 mètres in depth, and the whole surface of the ground changed. At least 200 were killed. The bodies were floating in the bay. At Huanillas, the guano-loading station, the damage inflicted was fearful. The wave which succeeded the earthquake, and completed the work of destruction, was nearly sixty (60) feet in height. Many vessels were lost here, together with several of those on board. At Mijillones the tidal wave was 65 feet in height. Two-thirds of the town is completely obliterated. At Tecopilla little or nothing remains of the town. A mine called La Pena Bianca, four (4) miles to the southward, sank, smothering 200 workmen, forty of whom were Cornish miners. Cobija, the principal town on the Balactian coast, has lost three-fourths of its houses.

Relief for the sufferers.-As soon as this lamentable intelligence reached Lima, the Govermment chartered a steamer, and organised a relief commission, loaded a vessel with provisions, clothing, \&c., together with 50,000 gallons of water, and despatched her on the 16 th for the South; 100,000 soles in silver coin also formed part of her cargo, to be distributed among the unfortunates by a commission of engineers accompanying the expedition. It has been urged by the Government to recommend the rebuilding of the ruined towns on sites which may offer greater sceurity and more remote from shore, since this is the second instance of a similar calamity to the positions occupied. Subscriptions are being made at Lima and Callao for the relief of the distressed. The northern ports of Peru are damaged but little, though the sea was ruming remarkably high.

The shock at sea. -The captain of the steamer "John Elder" reports that when 2:3 miles west of Antapagosta, going at full speed, the ship was completely stopped by the shock of the earthquake, and she remained almost stationary for five minutes. The passengers beliering she had struck on a reef, soundings were taken immediately, but no bottom was found.

Earthreate in Peru.

Mr. R. A. Proctor, of the Royal Astronomical Society, in speaking of this convulsion, sars:--"One remarkable feature in this terrible carthquake is the cnormous range of country affected by it. From Quito southwards as far as Iquique, or in other words, for a distance considerably a full third part of the whole length of the South American Andes, the shock was felt with the most terrible distinctness. The immense volcanoes found with

Cordilleras are thought to have some influence in causing the disturbances which are by no means uncommon in these regions; and Humboidt states that the shock which devastated Riobamba in 1797 was so great that he found on the summit of La Culca the skeletons of scores of the inhabitants who had been flung vertically into the air, and alighted on the hill referred to, on the opposite bank of a small river to that on which the town was built.

When these terrific earthquakes occur near the coast they are invariably followed by an uphearal of the water, which assumes the shape of a tidal wave of greater or less magnitude, and in more instances than one the tidal waves have proved infinitely more disastrous than the earthquake. One case, for the sake of example, will serve to demonstrate the magnitude of such a wave as that which razed to the ground the city of Arica. An eyewitness thus describes what he saw of it: -"While passing towards the hills, with the earth shaking, a great cry went up to heaven. The sea had retired. On clearing the town, I looked back and saw that the vessels were being carried irresistibly seawards. In a few minutes the sea stopped, and then arose a mighty wave fifty (50) feet high, and came in with a fearful rush, carrying everything before it in terrible majesty. The whole of the shipping came back, speeding towards inevitable doom. In a few minutes everything was completed-every ressel was either on shore or bottom upwards."
M. Boussingault observes that in the vicinity the trembling of the earth is almost incessant, but this he ventures to attribute in part at least to the immense falling masses of rock that have been fractured by disturbances in the mountains.

In the July number of Frazer's Magazine for 1870, a lengthy account is given of the greatest sea-wave that is reported to have ever occurred, and the effects of which we observed were perceptible in Sydney. Its origin, the course which it pursued, and other minutix respecting it, served as subjects for scientific research by savans for many months, and two German geographers, Professor Von Hochstetter and Her Von Tschudi, wrote papers about the wave, and disclosed various facts that will prove of service to those who take an interest in this branch of science. Mr. Proctor's opinion is that "the progress of the great sea-wave which was generated by the uphearal of the Peruvian shores in 1868, and propagated over the whole of the Pacific Ocean, differs altogether from any earthquake phenomena before obscrved. Other earthquakes have indeed been followed by oceanic disturbances; but these have been accompanied by terrestrial motions, so as to suggest the idea that they have been caused by the inotion of the sea bottom, or of the neighbouring land. In no instance has it ever before been known that a well-
marked wave of enormous proportions should have been propagated over the laryest ocean track of our slobe, by an earthquake whose direct acion was limited to a relatively sinall region, and that region not situated in the centre but on one side of the wide area traversed by the wave.

The origin of the great sea wave seems to have been traced in the first instance to rumblinus of the earth at Arequipa, which is situat d in the neighbourhood of the volumic momitain of Misti, which oceasionally has been known to romit strems of lava, dust and ashes, \&e. On the evening of the 1yth August, or on the morning of the 1 isth, the inhabitants had, so far as they were aware, no reason to be frigitened, as the mountain was perfectly quiet until 5 o'clock in the eveninr, when slight sensations of a disturbance were visible. Halff minute later, however, a terrible noise was heard benarth the earth; a second shock more violent than the first was felt: and then beran a swaying motion, gradually increasing in iutensity.

Von Tschuli remarks: "And now there followed during two or three minutes, a terrible scene. The swaying motion which had hitherto prevailed e anned int, fiere vertical upheaval. The subterranean ruaring increased in the most terrifying manner; then were heard the heart-piercing shrieks of the wretehed people, the busting of walls, the crushing fall of houses and churches. while over all rolled thick chouds of a yellowish black dust, which, had they been poured furth many minutes longer would hare suffocated thousands. Notwithstanding that the shocks lasted only a few minutes, they were sufficiently severe to demolish the whole town, and not one building remained uninjured. At Taccua and Arica the shocks were felt, but with less severity than at Arequipa. At Arica the carthquake was followed by an immense tidal wave which carried the Peruvian corvette "America" and the U.S. vessel "Watertree" from the harbour nearly half a mile north of the tomn, and there left them stranded high and dry.
This same ware risited Iquique mentioned in a telegram to-day. It rose to a height of upwards of 50 ft . and then rushed in with inconceivable rapidity, washing down buildiugs and otherwise doing considerable damaye, and bringiny in with it great quantities of mud and slime which it had stirreal up from the bottom of the sea. The oscillations continued during the 11th. and it was not till the lapse of several days that the tide resumed its customary ebb and flow. The line of the wave when crossing the Pacific is estimated to have measured not less than 8,000 miles. People have wondered at the remarlable rapidity with which the tidal wave reached here on Friday after being felt at New Zealand; but the great wave of 1865 is reckoned to have travelled across the Pacific at a speed of three or four hundred sea miles an hour.

Three hours after the earthquake which destroyed so many towns, the tidal wave inundated Coquimbo on the Chilian coast, some 800 miles from Arica, and slightly more than an hour passed before it destroyed Constitutiscion, 450 miles distant. At Honolulu, where our Pacific mail-boats call, the sea continued oscillating for sume three or four days, and many of the islands in the South Seas were totally submerged, until the water had receded. The wave passed the Navigators, and partially submerged some of the low-lying islands, and at Opara in the Marquesas Isle, the coaling depôt of the mail-boats then running was partly washed away.

Mallet, who is regarded as an authority upon these subjects, in speaking of tilal waves, says: "The ureat seat ware, advancing at the rate of several mil!s in a minute, consists, in the deep ocean, of a lung low swell of an enormous volume, having an equal slope before and behind, and that so gentle that it might pass under a ship without being noticed. But when it reaches the edge of soundings, its front slope becomes short and steep, while its rear slope is long and gentle."

\qquad

 ．in． Trs．
\qquad
I

$$
\operatorname{mox}
$$

$$
2
$$

$$
0
$$

Some Results of an Astronomical Experiment on the Blue Mountains.

By H. C. Russell, B.A., F.R.A.S., F.M.S., \&e.

[Read before the Royal Society of N.S.W., 6 November, 1878.]

It has long been my intention to make an astronomical experiment on the Blue Mountains. Four years siuce, when selecting the transit of Venus stations, I made a hurried trip to Woodford, for the purpose of testing the fitness of that station for observing the great event. My attention was then chiefly directed to the state of the air during the day, and it proved then and at the transit wonderfully steady and clear. I went up in June-the depth of winter - and although the air during the day was all that could be desired, I found that an hour after sunset there was so much motion or unsteadiness in it that its clearness was of no avail for star-work.

I wanted now particularly to test the air spectrum, and see if the lines between the Ds were the same there as at Sydney. There were also several difficult questions about double stars wanting answers and a better atmosphere to get them than I have in Sydney. There were some questions about the thickness of our air currents I wished to answer. And, lastly, there was a desire that this Colony should have some share in answering one of the pressing astronomical questions of the day, viz. : Can anything be done by going on the hills to improve the performance of telescopes which are too powerful to use in the unsteady atmosphere of the plains? The results obtained by Piazzi Sinsth, twenty years since, were quite enough to induce others to make the experiment; yet little or nothing has been done in a direction that promises so much for physical astronomy. My object in going in October was to try in what may be considered a mean between winter and summer. and also that I might be able to see Jupiter before he passed away to the sunlight. Woodford, 2,200 feet high, was selected because the supports for the transit of Venus instruments were ready for use; and, to a large extent, I was influenced by the kindness of A. Fairfax, Esq., who placed his country house at my disposal, and so made it unnecessary for me to encumber the expedition with tents to live in, and all the baggage that must go with them. Mr. G. D. Hirst voluntecred to go, and I was then sure of enthusiastic assistance.

I left Sydney on the evening of the 15 th . On the morning of the 16 th, at 8 a.m. the observatory (in parts of course) and the instruments were left at Wondfird by the train, and by the evening of that day, and in spite of a steady gale of wind, the observatory was up and roofed, and the heavy parts of the instrument were in their places. On the second day we were able to begin observing about noon.

The instrunents consisted of (1) the $7 \frac{1}{4}$-inch Merz telescope, with equatorial stand, clock driving gear, micrometer, eyepieces, \&e. ; (2) a $4 \frac{1}{4}$-inch Cooke telescope, equatorially mounted; (3) the large spectroscope, haring dispersion of $1 \times-64^{\circ}$ prisms, fine micrometer, and every appliance to render it complete; (4) heliostat, driven by clockwork ; (5) electroscope, thermometers, \&c. Of the quality of the $7 \frac{1}{4}$ telescope I need say nothing more now than that it is a first-class instrument, as these results will show, and well adapted for the purpose.

The spectroscope was made by Hilger, of London, and at the time (1576) it was considered the most powerful and perfect one in the world.

At $11: 30$ a.m. of the 17 th October I began the spectroscopic work, and was at once struck by the clear definition of the lines, the gain in clearness over the sydney atmosphere was very striking, but the next moment I asked myself where were the lines; instead of seven lines between the two Ds there was but one, and on either side of them, where it is usual to see a host of lines, the spectrum was remarkable for their absence. The line D3, however, which I discovered in 1877, was visible definitely but very fine, and on very carefully examining the space between the Ds there was a shading such as would be produced by very fine lines, too faint to be seen separately; these observations were made about noon, and I did not again look at the spectrum until near sunset, when a great change had come over it. Six lines were visible between the Ds, and the usual host on either side; they were more clearly defined than I had ever seen them before, and as the sun approached the horizon they thickened very rapidly; this will be best understood by reference to the drawings herewith.

The 18 th October proved a cloudy day and night, with a light easterly wind or sea breeze. Towards morning of the 19 th the clouds began to break, and soon after 9 a.m. the sun shone out. At 10.30 there were a few passing clouds only, but the sky was very white like it is in Sydney; and looking at the spectrum I found six lives between the D_{8}. The clouds were disappearing fast, and by 11 a.m. it was difficult to make ont the six lines, they also, were fading fast; on either side there seemed to be a shading such as was seen on the 17 th. At noon the air lines had faded, and the spectrum appeared as in figure 1 , that is
without air lines, those shown being evidently part of the solar spectrum. At 4 p.m. seven lines could be distinctly seen between the Ds. and the first set of measures were taken ; and at $5 \cdot 20$ p.m., when the air lines were getting better defined, I measured twenty lines between C.A. and 11 1, where only three lines had been seen at noon; their positions are shown in diagram 3, as well as the D lines seen at the same time.

After these measures had been taken, the micrometer was removed and an eyepiece that defined a little better was used, and twenty-four lines were counted where only twenty had been measured and I found for the first time an eighth line between the D_{s}; the definition was wonderfully fine and steady. Just as the sun was setting I counted twenty-six lines instead of the twenty above measured; in fact, new lines seem to be coming into the spectrum every minute. These are lines produced by the absorption of our atmosphere; and it is no longer surprising that the sunlight decreases rapidly as the sun leaves the meridian, when one sees the lines starting into being like so many black strokes from a pen, each one having definitely hidden so much of the sunlight ; and it is not simply by the increase in numberthere is a great increase in thickness of most of them, and one gets fully ten times thicker on the horizon than it is on the meridian.

Another fact was now clearly made out. In Sydney, owing to unsteady definition near the horizon, I had been led to suppose that the D 2 became twiee as thick, and that D 3 disappeared. Now I learn that the thickening was due to D 3, and at sunset it seemed another D 2, and only the faintest line of light separated these lines. See diagrams 2 and 4.

While observing the spectrum to-day, I noticed a bright line near D line 6. I have seen the same less distinctly in Sydney; it was no subjective effect of contrast. Mr. Hirst also saw it very distinetly; it is not a defined line, but a bright streak, and I find its wave length is, taking a mean of three measures, 5893.05 , and it is worthy of note that 5594 is the position of one of the zine lines. On the 20th October the day was fine, but the sky was streaked with cirrus; at $12 \mathrm{~h} .30 \mathrm{~m} . \mathrm{p}$ m., I can make out very faintly five lines between the Ds , but they are almost in-visible-little better than shading; and between Ca and D 1 are the three lines seen yesterday and the positions of eight others, mere ghosts of themselves, can be made out. At 5 h . $10 \mathrm{~m} . \mathrm{p} . \mathrm{m}$. two sets of measures of the eight lines between the Ds were taken, and line 8 was estimated, much the faintest of all of them. At $5.40 \mathrm{p} . \mathrm{m}$. twenty-twa lines were counted between C and D 1, and D 3 is rapidly thickening-it is nearly half as thick as D 2; and line 6 is darker than line 4 which looks a little hazy. $5 \cdot 50$ p.m., count twenty-six lines between Ca and D 1 , and the three next D 1 are very dark and thick (intensity 2).

The fourth line from D 1, that is the line always there, seems to get wider at sundown without getting blacker as the others do, as if it were a double line, or that another air-line appeared alongside of it. I have several times suspected that it was double, and now I am almost sure of it. D 3 at sunset nearly equal D 2, and the two are only separated by the faintest streak of light.
$9 \cdot 25 \mathrm{a} . \mathrm{m}$. on the 21 st , I can see all the eight lines between the Ds faintly; morning is warm and hazy, and a good deal of cloud about, especially in the direction of the sun. 11 h .10 m ., the air lines are rapidly fading; line 4 does not seem changed, but the others are more or less invisible.

Measures of the lines between the two Ds mean of three taken at Woodford, on the afternoons of 19th October, 1878, 4 p.m., and 21 st October, $5 \cdot 10$. The measures are taken from line to line, and represent parts of the micrometer. The whole distance D 1 to D 2 is covered by 2655 r parts of the micrometer:-

Some of the members present may remember that, when I brought my Sydney measures of the D line before you last year, I produced a copy of Dr. Huggins's drawing of the D lines at Oxford, and those of Colonel Campbell at London. Since then I have received from Dr. Huggins a more complete and perfect copy of his drawing of the lines between the Ds and it is interesting to compare it with those observed here; there is very little similarity between his drawings and mine. From Mr. Hilger, the maker of my spectroscope, I learnt that, before he sent it out, he tried it in London, and saw twenty-four lines between the D_{s}; unfortunately I have no drawing or measure of these. These facts point clearly to the conclusion which I brought before you, viz., that our atmosphere contained much less of that absorptive matter, whatever that might be, than does the atmosphere of England, and especially London. Knowing the proverbially clear atmosphere of our western hills, I was the more anxious to test this question of purity by means of the large spectroscope, and see if we might affirm that it stood the test. Now the facts which I have brought before you do this most emphatically; on a fine clear day, with dry wind on the mountains, at noon, there is not a single line due to the absorption of the atmosphere in the part of it examined; but as the sun sinks to the west, they gradually appear ; and when he is setting, and the rapours begin to condense about the hills, the lines stand out conspicuously; or let an easterly breeze bring the moisture from the sea, and at once the lines appear at noon. Of couse I have been dealing with only a small fraction of the solar spectrum; to take the whole in such detail would require the labour of a life,
and would, I am sure, well repay it. My time was but a few days (three and a half only available for the purpose), and I could of course only take a small part; but it may very fairly be taken as a sample of the whole, and there can, I think, be no doubt that the cause of these lines is water vapour, and that if any of the twenty-four lines which are visible in London are due to gases which are the product of manufactures, we in Sydney have so far not contaminated the air in this way; for the lines visible in Sydney are likewise visible upon the mountains, when there is sufficient moisture present for the purpose. It was a sight never to be forgotten to see in the splendid definition of the mountain air, the clear solar spectrum, and then, as the day waned, line after line coming into view as if drawn with a pen, and getting blacker and more defined as the sun neared the horizon. The line which I have called D 3s is a wonder. At midday it is a fine thin line, and at sunset it is fully ten times darker. With regard to the line 8, which I have never seen in Sydner, I feel sure it would be visible were the air steady enough. I have obstrved a shading there, but could never see the line. With regard to the other portion, Ca to D 1, mapped at Woodford. I cannot say much, for it has not yet been mapped in Sydney. It is a perfect mine of air lines. How many would be found in it in London it is hard to say, but towards sunset the lines seemed alnost to cut out the sunlight.

Now, with regard to telescopic work. On the 16th October the day proved as fine as the one which preceded it, and which had been lost in erecting the observatory. About noon on 16th the telescope was turned to the sun, and its edge and surface markings were beantifully seen, but not a spot was visible whose changes we could record. There were many exclamations from the observers about fine definition, but we wanted spots, and could not fiud even the facula which precede them; for once the sun was spotless. Several stars were observed in the sunlight with the object of adjusting the instrument, and the sharp clear dises which they presented gave us abundant proof of the good observing quality of the air. At night the feature that seemed most strikiug at first was the perfect blackness of the sky. There was no white halo round Jupiter forming a bright background; and my notes are full of such remarks as (" planet seems hung in a perfectly black sky'? , but as one looked, the perfect clearness and definition, but perhaps most striking, the clearness, gave us views of Jupiter such as I think I never saw equalled. There was such an amount of detail that the eye scarcely took it all in before the scene changed by the rotation of the planet. As to drawing it all, that was out of the question. Mr. Hinst and I both tried, and I am sure he will bear me out when I say that the drawings only show a fraction of what we saw.

It was just before and after sunset that the air seemed so perfectly steady; later in the evening there was a little motion, but it was nothing like so much as I had seen when on the mountains in the winter of 1874.

I had selected some severe star tests, as a trial of the observing quality of the mountain air, and when I turned the telescope to the stars I was not disappointed. The companion to Rigel has recently been found itself to be a double star by one of the keenest of American observers; he was led to think it was double with a telescope of 6 inches aperture; but it required all the power of one of $18_{\frac{1}{2}}$ inches to place the matter beyond question. You may judge, therefore, that we looked for this closest of known double stars with considerable interest on the first available night, and the old 74 -inch telescope fully maintained its firstclass character. We used a power of 800 (the highest I had) with advantage, and directly I looked at the companion to Rigel I saw it elongated, and it appears so with all powers over 400. It was evident that the components were unequal, the smaller one following ; independently Mr. Hirst and myself observed it, and agreed in assigning the position angle of 64°, and in moments of best definition, for at midnight the air was not so steady as it was at sunset, the star seemed to me clearly divided with a magnifying power of 800 , though I am sure the distance cannot be more than one quarter of a second. As proof of the definition, it may be mentioned that under such a high power Rigel presents a hard and clearly defined disc.

On the 20th he was again examined, and Mr. Fairfax independently made the angle the same; there could therefore be no question as to what it was, and I was not a little surprised to find, on reference to Mr. Burnham's position, that he made it 179°. This is very remarkable. I am confident the result at Woodford is as correct as such an observation can be, and I have confirmed it with the large telescope in Sydney. If Mr. Burnham's observations are right, then we shall have a most wonderful double star, as well as the most difficult known, for his observations were made in February and March, 1878, this year. and our observations point to a change of angle of 115°. The distance as estimated cannot be more than a quarter of a second. Of other stars, a great many were examined; Alpha Indi had been suspected of duplicity in Svdney, but on the mountains his character was restored as a well-defined, round star, and single. On the 17th, when looking about, I found a very beautiful double star that is not in Hersehel's catalogue, and I do not remember having seen it before. Its right ascension is 21 h . 28 m ., and declination south $83^{\circ} 20^{\prime}$ the magnitudes are 9 and 10 - the larger one white, and the small one bright blue- $2 \cdot 82$ sec. distance, and angle $112^{\circ} 10^{\prime}$.

Herschel's double 5326 cannot be found; there is no such double in the place he assigns, and there must be either a mistake in his catalogue, which is probable, or a disappearance of one of the stars.

5326 in Herschel's catalogue was examined, the stars are fully a magnitude less than he estimated them, and are now 10 magnitude.
H. 5321 seems to be an error in Herschel's list-angle is given 124°, it is now only $19^{\circ} 18^{\prime}$; distance, $10^{\circ} 29^{\prime}$ sec.

5132 H .'s angle of this star is 180°, in error; it should be 312°
Examined H. 3419. He says nothing about colour in either star; as seen on the mountains, the larger star was greenish yellow, and the companion copper-red. Un 13th August, 1573, I discovered a very pretty double star, R.A. 18 h .2 lm. , dec. $66^{\circ} 22^{\prime}$, large one yellow, other blue, distance 5.02 secs, angle $295^{\circ} 14^{\prime}$. This was re-examined at Woodford, where it seemed a beautiful object with the same colours; but the distance measured there is 3.79 secs., and angle $288^{\circ} 43^{\prime}$, so that there appears to be decided and rapid motion in this pair.

At 1 h .34 m. R.A. and dec. $56^{\circ} 4 \mathrm{l}^{\prime}$, found a very pretty double star, both components yellow, and of 7 th magnitude; distance is $6^{\circ} 28^{\prime}$ sees., and angle $235^{\circ} 0^{\prime}$.

Many otherstars were examined, and some questions raised about double stars, which there was not time to answer at Woodford.

Some time was given to Saturn, and clear views obtained, but the planet is not in a cood position fur observation just now, for it is very difficult to tell whether a dark line which appears across his body is wholly the shadow of the ring, or made up of that and the dark line which I found four years since, and which, it appeared at that time had not been seen in Europe.

On the afternoon of the 20th October watched the third satellite as a dark body crossing the disc. It seemed remarkably small, and the definition was splendid. As it neared Jupiter's limb, the blackness seemed to get hazy, as if it were seen through a mist, and at $7 \mathrm{~h} .27 \mathrm{~m} . \mathrm{p} . \mathrm{m}$. I lost sight of it ; four minutes later it was detected as a small bright bulye on the limb of Jupiter, and its white edge against the black sky background looked whiter than the edge of Jupiter. At 7h. $\mathbf{3} 6 \mathrm{~m} .40 \mathrm{~s}$. egress was complete, and there was nothing about its bright appearance then that would have given rise to the suspicion that it was black a few minutes before.

During the daylight hours, when I was at work with the spectroseope, Mr. Hirst emuloyed sone of his time in looking up Venus near the sun, and many other objects, principally wellknown double stars ; and of these some splendid views were obtained, but he found noting about which 1 wish now to detain you, until the morning of the 21st, at 9 h .5 m ., when, on luohing at the moon. ho found that a large part of it was covered with a dark shade, quite as dork as the shadow of the earth during an eclipse of the moon. Ins outline was generally circular, and it seemed to be fainter near its edges. Conspicnous bright spots on
the moon could be seen through it, but it quite obliterated the view of about half of the moon's terminator (or that part where the sunlight ends), while those parts of the terminator not in the shadow could be very distinctly seen. I should estimate the diameter of the shadow from the part we could see on the moon at about three-fourths that of the moon.

This is one of those remarkable facts which, being seen, should be recorded, although no explanation can at present be offered. One can hardly resist the conviction that it was a shadow, yet it could not be the shadow of any known body, and if produced by a comet it must be one of more than ordinary density, although dark bodies have been scen crossing the sun, which were doubtless comets. No change in the position of the shade could be detected after three hours' watching. Mr. Hirst has faithfully copied on this paper what he suw. See photo-lithograph.

I went prepared to make some experiments upon the thickness of the air currents, and also of the electrical condition of the air strata, but in this matter I was disappointed; although we made every effort to get kites up above the lower current, it was useless. Although on the afternoon of the 17 th, in a moderate north-westerly wind. we managed to get the large kite up about 1,000 feet, there was no sign of another current, and very little electrical effect. Mr. Hirst's experience with electrical kites became valuable, and he constructed a smaller one, which was attached to the large one, and thus we hoped to get it high enough ; but on the 18th the westerly wind was done, and we got a light easterly, which would not raise our kites. The small one was tried time after time, and rose to about 100 feet, when it seemed suddenly to lose the wind and no amount of vigorous running would take it higher. Whether this represented the thickness of the light easterly wind I cannot say, because it was so puffy on the surface that it seemed more probable the kite fell in one of the lulls. On the 19th, with light easterly wind, an altitude of about 400 feet was reached, but no amount of professional effort would get it higher, and the work with so small a result was getting wearisome. On the "1st we had a return of the westerly wind and our hopes revived, but were again disappointed. One fact, however, is worth recording. At 1030 a.m., the kites would rise from 100 to 200 feet, and then begin gyrating, as if the air was full of eddies; and when the two were flying together, the smaller flying above the large one, and attached to it, the direction of the two strings sometimes included an angle of 40°. In oue obscration the string of the large (lower) kite pointed E.S.E., while the small (upper) one pointed E.N.E., and yet their beights were respectively 100 and 200 feet. About 11 a.m. things were improving, an altitude of some 300 feet was attained, with wind from W.N.W.; and then guddenly the wind dropped,- another proof that these were merely local eddies in which we had been trying to raise the kites.

It was remarkable that during the time we were there little or no electrical indications could be oltained with a delicate goldleaf electroscope, even when the air was dey and matches for collecting it were burnt. Some experiments were made on a warm dry day (October 21) on the electroseope. A single rub with a white felt hat made the leares diverge to the horizontal point, and they stood for a few seconds inclined 60°, and did not come together for two minutes. Mr. Mirst then stood on an old bottle that was found on the ground, and he put oise hand on the electroscope, and directly I rubbed any part of his clothes with a piece of glass, a divergence of some 20° was obtained. One afternoon, when tired of attempts to mansure what we could not get (atmospheric electricity), Mr. Hirst took the electroscope to a place where the telegraph lines were within reach, and hung it on one wire after another, without getting a sigu of anythingwhich was the more remarkable, as there were thunder-clouds in the distance, and these wires passed riyht orer the mountains.

I will not detain you with any speculations about what an observer might see in a mountain atmosphere. but it is right to say one word about the weather. For some weeks before the 15th October the weather had been very unfavourable in Sydney for observations; and during the time I was on the mountains, although it was fine in Sydney on the same nights it was fine at Woodford, yet there was no improvement in the atmosphere generally affecting both places; the grain which I have described was clearly owing to the fact that we were 2,200 feet higher, and therefore avoided so much of the worst part of the air nuisance (for such an astronomer may fairly call it). Could he but look through a vacuum, many a question that takes years of patient labour to answer would be decided in a single glance.

Recorded lines between $C a$ and D^{1}, and the positions of the lines A, B, C, seen at Woodford.
Ca, 5857.
Osmium, 5858.
Gold, 5862.
Titanium. 5865.
Iodine, 5866. Sulphur, 5866. Palladium, 5866. Air line, 5866 A.
Bromine, 5868
Mercury, 5871
Lead, 5876.
Air line, 5872 B.
Air line, 5879 C.
Gold, 5880. Iron, 5880.
Mercury, 5885.
Molydenum 5887.
Palladium, 5888.
$\mathrm{D}^{\mathbf{\prime}}, 5889$.

Apevtare \%s. Focal length, 10 ft . A in. Power used, 150.
Kemurks.
The peruliar bluck shadiw represented above was obsesved partly obscuring terminator.
The perulias bluck shadow represented above was obsesved partly obscuring terminator

On the Metallurgy of Nickel and Cobalt.

By W. A. Diron, F.C.S., M.I.C.

[Read before the Royal Society of N.S.W., 3 July, 1878.]

Shorthy after the discovery of the large deposits of nickel and cobalt ores in New Caledonia I turned my attention to the metallurgy of these metals, and began this research with a view to improvements in their extraction, keeping in view the fact that here the reagents usually employed in their extraction are exceedingly expensive.

The sources of nickel, previously to the discorery of these deposits, consisted chiefly of speiss, the residue from the manufacture of smalt, which contains from six to eight per cent. of nickel and three of cobalt, and a few pyritous ores containing copper and nickel. The details of the processes used for the extraction of the metal from the former are jealously guarded by the manufacturer as trade secrets, but the method adopted is, in general outline, to fuse the speiss with fluor-spar and chalk to remove part of the iron and obtain an enriched matt. This matt is ground, thoroughly roasted, to expel arsenic and sulphur and convert the metals into oxides, which are then dissolved in hydrochloric acid. The solution is diluted with water, any ferrous chloride converted into ferric chloride by a solution of hypochlorite of calcium, and the iron precipitated by the cautious addition of milk of lime, any arsenic being removed at the same time. Sulphureted hydrogen is then passed into the fililate to precipitate copper, and from the clear solution cobalt is precipitated by hypochlorite of calcium, and afterwards the nickel by milk of lime.
It seemed probable that the nickel in the New Caledonian ore. occurring as it does in serpentine, might have been deposited from an acid solution percolating through the magnesian rocks, and that if this process could be reversed the nickel might be again obtained in solution. Digestion with ammoniacal solutions of magnesium sulphate and chloride and calcium chloride at various temperatures was therefore tried, but minute quantities only of nickel were dissolved, though in every case distinct traces were obtained.

Trials were made with the view of taking advantage of the comparatively easy decomposition of magnesium chloride by aqueous vapour at a high temperature. The nickel and magnesium were obtained together in solution evaporated to dryness and treated with steam at rarious temperatures ranging from $212^{\circ} \mathrm{F}$. to dull redness, but much nickel chloride was invariably decomposed along with the magnesium chloride.

A portion of the ore in pea-sized pieces was then treated at a dull red heat in a combustion tube with dry hydrochloric acid gas, with the view of converting the nickel into chloride, whilst the magnesium remained as silicate. Water was freely given off and the pieces of ore became covered with crystals of anhydrous chloride of nickel. The effect was very beautiful as the goldenyellow scales of chloride gradually grew out of the ore until each piece seemed converted into a golden ball. The chloride was readily dissolved out by hot water, but numerous trials gave only an average of 362 per cent. of nickel extracted from an ore containing 10.66 per cent. The solution contained both ferrous and magnesium chlorides in small quantities. Its composition. calculating the metals as dry chlorides, was:-

Ferric chloride, traces.

Ferrous	do.	\ldots	\ldots	542
Magnesium	do.	\ldots	\ldots	1245
Nickel	do.	\ldots	\ldots	82.13

$100 \cdot 00$

From finely-ground ore similarly treated for five hours 6.73 per cent. of nickel was extracted, whilst no increase was observed on continuing the treatment for two hours longer.

It seemed therefore as if part of the metal was in more intimate combination with the silica than that extracted; so with a view to decompose this silicate different portions of the residue were treated at a red heat with hydrogen, coal gas, and finelydivided carbon (obtained by mixing starch with the ore), and afterwards roasted to re-convert the reduced metals into oxides. On further treatment with hydrochloric acid gas $1 \cdot 65$ per cent. of nickel was obtained, still leaving 3.93 per cent. There was little apparent difference between the reducing agents, although on the whole the carbon scemed the best. The solutions obtained after reduction were much more impure than those got in the first instance, showing more iron than nickel. Calculated ass before, they contained:-

Ferrous chloride \ldots \ldots 47.36 Magnesium do. \ldots \ldots 1680 Nickel do \ldots \cdots			

These results were obtained with a somewhat friable ore containing much ferric oxide, but it was observed that some dense varieties yielded searcely any chloride of nickel by this method.

When a chareoal chaufer was used for heating the tube, on some parts of it small brilliant black crystals were deposited. These were highly magnetic, aud contained ferric oxide and nickel oxide, and probably contained ferroso-ferric oxide with the whole or greater part of the ferrous oxide replaced by nickel oxide, but sufficient for an analysis was not obtained. They seemed to be formed on those parts of the tube which were over-heated, but some other circumstances contributed to their formation, as repeated trials to obtain them in larger quantities failed.

These experiments, although failing to separate the nickel from the silicate, showed that oxide of nickel could be separated from ferric oxide by treatment with gascoun hydrochloric acid, so the behaviour of the mixed oxides was next examined.

The New Caledonian ore is very infusible, from the large proportion of magnesia it contains, and some cheap flux containing other silicates was necessary to obtain the nickel in a metallic or reguline state. This was found in copper ore furnace slag, which with half its weight of ore yielled a sufficiently fusible charge. The alloy of iron, nickel, and copper obtained by fusing with carbon only as a reducing agent was too tough to grind and was therefore difficult of conversion into oxides, but the addition of arsenical pyrites readily yielded brittle buttons which were easily pulverized. Indeed a piece of arsemious oxide thrust into the fused mass in the crucible gare a similar result, as was also the case with iron pyrites. Thus a mixture of 400 grains ore, 100 grains mispickel, and 800 grains copper slag gave a button weighing 1756 grains, and containing 63 grains nickel, whilst the rield should have been 66 grains. Again, 400 grains ore, 800 grains slag, with 50 grains pulverized charcoal being fused, 90 grains of arsenious oxide was thrust into the molten mass, and a button was obtained weighing 271 grains, containing 64.8 grains nickel, showing a loss of only 0.3 per cent. of the nickel in the ore. The various buttons were crushed and roasted, and the oxides were treated with hydrochloric acid gas (from which aqueous vapour was partially removed by passing it through a Leibig's condenser) at dull red heat. The whole caked together into a mass from the nickel chloride formed; so, to render it permeable, it was removed, crushed, and retreated until water ceased to be evolved. With boiling water a solution was obtained containing nearly all the nickel, but at the same time a considerable quantity of ferrous chloride, whilst ferric oxide with traces of nickel remained.

It was evident, therefore, that a more thorough ealcination was required to effect the separation of the iron and nickel, but it was difficult to determine when the calcination had been carried far enough, as the presence of copper and nickel obscured the usual reaction for ferrous oxide. It was found, however, that by treating a sample from the muffe with hydrochloric acid until complete solution was effected, cautiously mising with this solution an equal bulk of sulphuric acid, boiling to expel the hydrochloric acid, and adding to the cooled solution a crystal of potassium nitrate, the characteristic brown colour was rapidly developed as long as ferrous sulphate was present.

As speiss was actually the substance under treatment, it was thought adrisable to examine the behaviour of the other oxides which are generally contained in it. A speiss was therefore made with ore and various residues, and after calcination was found to contain 41 per cent. of oxide of nickel with the oxides of iron, copper, zinc, cobalt, and arsenic. These oxides treated as before yielded in a flask attached to the outlet a solution containing arsenic and zine which had been volatilized as chlorides, and the residuc on boiling with water a solution containing nickel and cobalt with a small quantity of iron. The insoluble residue contained the ferric oxide, a small quantity of nickel oxide and copper as cuprous chloride, which could he removed hy abslution of salt.

It now remained to separate the small yuntity of iron in the solution from the nickel and cobalt and these metals from each other, and it seemed desirable to do so without adding fixed reagents. It was found that this could be dome by passing cblorine into the solution until all the iron was in thie form of ferric chloride, and then adding to the boiling solution suceessive small portions of anhydrous oxide of nickel, which dissolved, precipitating the iron as a basic chloride. The precipitate was dense, and contained a small quantity of oxile of nickel added in excess. From a neutral solution containing ferrous chloride it was also found that manganese dioxide completely precipitated the iron without a trace of nickel or cobalt.

On adding to the hot iron free solution rather more oxide of nickel than was equivalent to the cobalt present, and passing chlorine into it, the whole of the cobalt was precipitated as cobaltic oxide, and a pure green solution of chloride of nickel obtained. This solution evaporated to dryness and ignited in a current of steam evolves hydrochloric acid, and leaves oxide of nickel, which may be reduced in the usual manner. The chloride could also be reduced directly to metalic nickel by igniting in a current of bydrogen; and in the case of a solution containing
manganese, this would be adrantageous as its chloride is not reduced by hydrogen, and cond be separated from the nickel hy washing.

The precipitated cobaltie oxide was suspended in water and treated with chlorise at the hoiling point, whilst small quantities of chloride of cobalt was added until cobalt remained in solution. All the nickel was thus remured from the precipitate to the solution, whith contained also the cobalt added in excess. The same result could the oltained by digesting the precipitate with dilute hydrochlorice acid, which would dissolve the nickel only.

Attached is a scheme which shows the process at a glance, with the destination of the internediate products; and, although somewhat complicated, it must be remembered that six metals have to be separated. and that two of these-nickel and cobalt-are perhaps the most diffecult of all metals to separate satisfactorily. The separation is moreover effected without having voluminous precipitates, such as ferric and nickel hydrates, four or five ounces of which occupy a cubic foot of space, to treat and wash, whilst the reagents used are in great part recovered in an available form. It is scarcely necessisary to ohserve that if the number of metals present is redured. the truatment wond be correspondingly shortened and simplified.
CAICINED apeiss containing oxides of nickel, cobalt, cupper, zinc, iron, arsenic. 1. Treat dil with gaseous hydroc'bleric a id gives

The Deep Well Waters of Sydney.

By W. A. Drxon, F.C.s., F.I.C.

[Read before the Royal Society of N.S.W., 2 October, 1878.]

Tue obtaining of a Water Supply for Sydney by means of Artesian Wells has been mooted at different times, and the successful results obtained in other countries hare been cited to encourage a search for subterranean water, both in our immediate neighbourhood and elsewhere in the Colony. It has been suggested, indeed, that the great supply of water drawn from the Botany swamps during the drought of 1876 might be partly due to natural artesian springs rising beneath the sand.

Two wells of this description have already been sunk in Sydney, and I now venture to lay before you analyses of the waters obtained, with some conclusions drawn from them. The following are analyses of the Sydney water, as supplied in Hunter-strect, in May last, and of a surface spring near Waverley, analysed nearly two years since for comparison with the deep waters:-

Sydney Water.

Carbonate of calcium..		0.07 grains per gallon.		
Alumina and iron oxide		traces	"	"
Chloride of magnesium		115	"	"
sodium	...	$2 \cdot 11$	"	"
Loss on ignition	\ldots	41	"	"
Sulphates	...	traces	"	"
Total solids	...	3.74		"

The residue darkened slightly on ignition, and contained traces of nitrates and -

Free ammonia...	\ldots	\ldots	0.01 parts per million.
Albuminoid	\ldots	\ldots	0.08

Spring at Waverley.

Carbonate of calcium		1.90 grains per gallon.		
Chloride of magnesium	...	215	"	$»$
sodium	...	350	$"$	"
potassium	...	traces	"	n
Sulphates	...	traces	"	',
Loss on ignition	...	191	"	"
Total solids	946	"	"

The residue scarcels tinged on ignition, nitrates were absent, and the water contained.-

| Free ammonia... | \ldots | \ldots | 0.01 | parts per million. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Albuminoid | ... | \ldots | \ldots | $0.26 \quad$, |

In 1876 the Colonial rugar Retining ('ompany began to bore for water at their new works at Pyrmont, and at a depth of 200 feet they obtained a supply of water, of which the following is an analysis, made in August, 1866 :-

Carbonate of calcium...	10.12		r gallon	Deposit on boiling, $13 \cdot 63$
Oxide of iron...	3.51	,	\}	
Sulphate of calcium	72	"	,	
magnesium	376	"	"	
Cbloride of magnesium	$\cdot 69$	"	"	
, potassium	$3 \cdot 05$	"	"	
" sodium ...	21.65	"	"	
Loss on ignition	6.36	"	"	
Total solids	$49 \cdot 86$			

This sample of water was sent in a cask, which charged it with organic matter, so that it was uscless to determine the organic nitrogen.

The supply of water found at this depth proving inalequate, boring was resumed until at a depth of 127 feet a more abundant supply was tapped. A well $1: 27$ feet deep and 5 feet in diameter was sunk close to the bore and a drive put through to form a connection. The well was perfectly dry for its whole depth, showing that surface water was completely excluded. The water rose to a height of between 3 and 4 feet above high-water mark, and rose and fell slightly with the tide. This has been noticed in other wells, as, for example, that at the palace of the Bishop of London, at Fulham, which is bored to a depth of 300 feet, yields from 60 to 80 gallons per minute, according to the state of the tide. Continuous pumping reduced the level of the water at Pyrmont; and somewhat curiously, on the pumps being stopped, the water only rose to within about 4 feet of its original level, and on being left at rest for a week it gradually rose 2 feet further, being still 2 feet under the first height. Quite lately Mr. Poolman has told me that after several months continuous pumping the water does not rise within 30 feet of its original level, on the pumps being stopped.

The water was analysed in June, 1877, and gave-
Carbonate of calcium... 13.55 grains per gallon? Deposit on
Oxide of iron 1.54 , \quad) boiling, 15.09

Chloride of calcium	\ldots	$1 \cdot 13$	$"$	$"$
$"$	magnesium	$11 \cdot 12$	$"$	$"$
$"$	potassium	1.40	$"$	$"$
$"$	sodium	\ldots	10.85	$"$

Sulphates traces
Silica and alumina ... •31
Loss on ignition ... 7.09 " "
Total solids ... 46.99 , "
Total chlorine... 16.18 ., "
The residue blackened slightly on ignition, nitrates were absent, and the water gave

Free ammonia... 027 parts per million.
Albuminoid ammonia

$$
0.01
$$

In the beginning of the present year the Company began to draw on the well to its full extent, pumping about 50,000 gallons per day, and with this draught a considerable quantity of fine clay was pumped up. The clay is of a grayish colour, and contained a trace of carbonate of calcium; it was examined by the microscope for diatomace x, \&c., with negative results. With the continuous pumping, the water gave indications of haring altered somewhat in character; so a sample drawn on the 1st of March was analysed, and gare -

The residue blackened slightly on ignition, nitrates were absent, and ammonia was not determined.

This analysis shows mere traces of iron, and it seems likely that the iron in the previous sample was due to particles of iron abraded from the boring rods and left adhering to the bore. It showed, however, a notable increase in the saline constituents of the water, and especially in the amount of chlorine, which showed 4 grains per gallon more than the first. To see whether any further increase took place the water was examined recularly for some weeks, the chlorine being determiner and also the free and albuminoid ammonia, the amounts of which were also found to have risen. The following are the results of this examination, the chlorine being stated in grains per gallon, and the anmonia in parts per million:-

	Chlorine.	Free ammonia.	Albumenoid.
Mar. 12	21.30	0.24	0.48
$" 15$	20.66	0.32	0.39
$" \quad 23$	21.08	0.30	0.36
$" 30$	21.09	0.37	0.39
Apr. 8	20.87	0.35	0.38
$" 16$	2130	0.36	0.39
Average		$\underline{21.05}$	$\underline{0.325}$

The upper part of the well was at this time carefully examined to find whether anv percolation from the waters of the harbour was taking place which would account for this result, as some blasting operations had been carried on in the neighbourhood, but for the whole hundred feet the wails were found to be dry.

The second boring put down for water is that of Messrs. J. T. and J. Toohey, of the Standard Brewery. In 1875 they put down a well to a depth of 79 feet, and a bore to a total depth of 180 feet, and obtained a supply of water which gave on analysis-

Oxide of iron	155 grains per ga		
Sulphate of calcium	158	"	
magnesium	... 61	"	
Chloride	$5 \cdot 63$	",	
, sodium	. 13.58	"	"
, potassium	- traces.		
Loss on ignition	$2 \cdot 82$	"	
Total solids	... 25.77	*	

The residue scarcely tinged on ignition, nitrates were absent, and the water contained :-
$\begin{array}{llll}\text { Free ammonia } & \ldots & 0.01 \\ \text { Albuminoid ammonia } & 0 & 0.04\end{array}$
The quantity of water obtainable at this d"epth being insufficient for their use, and the Sugar Company having obtained an abundant supply at a greater depth, boring was recommenced, and at
a depth of 350 feet water was again struck in the end of January. The boring rods seemed to have suddenly dropped, as some of the screw threads were stripped for a length of two and a half inches. The following is an analysis of a sample drawn on the 5th February-

Carbonate of calcium	4.20 grains per gallon.traces.			$\left\{\begin{array}{c} \text { Deposit on } \\ \text { boiling, } 4 \cdot 20 \end{array}\right.$
Oxide of iron ...				
Alumina and silica	4.42	"	"	
Sulphate of calcium	$2 \cdot 14$	"	"	
"\% magnesium...	120	,	"	
Chloride of ".	$0 \cdot 66$	"	"	
" sodium	15.59	"	"	
" potassium...	traces.			
Loss on ignition ...	434	"	"	
Total	32.55	'»	"	
Total chlorine	9.95		"	

The residue darkened slightly on ignition, nitrates were absent, and the water contained-

Free ammonia	..	0.02	parts per million.
Albuminoid	..	0.07	„

This well was drawn upon generally to the extent of 10,000 gallons per day, and on the sth of May, when the maximum yield of the well had been pumped from it during the previous twenty-four hours, a sample was taken and examined for chlorine and ammonia, and was found to contain-

$$
\begin{array}{lccc}
\text { Chlorine ... } & . . & 12 \cdot 00 & \text { grains per gallon. } \\
\text { Free ammonia } & \ldots . & 0.12 & \text { parts per million. } \\
\text { Albuminoid } & \ldots & 0.14 \quad " \quad "
\end{array}
$$

It is evident from this, that when the wells are fully drawn upon, the same cause operates to increase the amount of chlorine and ammonia in both waters, and it seemed probable that the supply came from crevices along which it formerly flowed until it escaped at the outcrop below the sea. This underground flow and escape of fresh water into the sea elsewhere, and that often in large quantities, is evidenced by Humboldt's description of a submarine spring in the Gulf of Mexico, some considerable distance from the South American coast, which converts so large a space into a fresh water lake that it is inhabited by the fresh water cetaceafound in the Orinoco ("Travels") ; also, by Buchanan, who found "an abundant spring of fresh water in the Indian Ocean, 125 miles from Chittagong and 100 miles from the coast of the Sunderbunds. ("Tomlinson's Cyclopedia: Art. 'Artesian Wells.' ")

The bore, in the cases under consideration, opened a new outlet for the water, and allowed more water to rise through it than the crevices supplied, and therefore a slight flow was established from the sea to the bore along the old channel.

If this theory was correct, the ratio of the chlorine to the free and albuminoid ammonia in sea water should be the same as that observed in the increase of these constituents in the well water. To determine whether this was the case, a sample of sea water was obtained from Lavender Bay at high-water spring tide, and was found to contain 1,369 grains of chlorine per gallon. Now, to obtain an increase of chlorine from 1618 grains per gallon (the contents of the Sugar Company's water when first obtained) to 21.05 (the average of the water on steady pumping), would require 1 part of sea water to 228 of the original water; 2 c.c. therefore of sea water was added to 456 c.c. of Sydney water, and the free and albuminoid ammonia determined in the mixture, with the following result:-

Free ammonia in mixture	0.12 parts per million.	
Less amount in Sydney water	0.01	„
$\left.\begin{array}{c} \text { Free ammonia in well water } \\ \text { of June 26th, } 1877 \ldots \end{array}\right\}$	$0 \cdot 11$	"
	$0 \cdot 27$	"
	0.38	"
Average of six determinations, in March and April, 1878, in water from bore	$0 \cdot 325$	"
Albuminoid ammonia in mixture	0.48	"
Less amount in Sydney water	0.08	"
$\left.\begin{array}{l} \text { Albuminoid in well water } \\ \text { in June 26th, } 1877 \quad \ldots \end{array}\right\}$	$0 \cdot 40$	"
	0.01	"
	041	"
Average of six determinations, March and April, 1878 ...	0:397	

These results show a surprising agreement; a repetition gave concordant figures, and calculation shows a perfect agreement in the case of the water from the Standard Brewery.

The total increase of chlorine in the Sugar Company's water is 4.49 grains per gallon, with a total increase of ammonia of 0442 parts per million, so that the increase of 2.05 grains of chlorine per gallon in Messrs. 'Toohey's water should increase the total ammonia by 018 parts per million, whilst the actual increase is $0 \cdot 17$ parts, or within the limits of cexperimental error on a siugle distillation.

The large quautity of albuminoid ammonia yielded by sea water (87 parts per million) is doubtless largely due to the immense number of microscopic organisms contained in it, and these could only reach the bores if the water flowed in fissures. If the water percolated through a porous bed, many of these organisms would doubtless be retained during the filtration, and the close agreement found in the experimental trials would not exist. The fact that the water-level now remains so many feet below its original height militates against the above hypothesis, and is not easy of explanation in any way unless the original outlet is getting slowly silted up, in which case we might expect the water to return to its original condition ; but up till now (30th September) this has not occurred. The water, being originally higher than sea-level, would only represent the head required to cause the water to flow along a fissure probably some miles in length.

Everthing indicates, however, that no great underground supply of water is available in this neighbourhood, and it will be observed that the total quantity of solid matter in solution increases with the depth. Thus, deducting the oxide of iron found in the borewaters as accidental, the total solids are-

Sydney water	..	3.74 grains per gallon.		
Surface spring	- ...	646	"	"
Standard Brewery	180 feet	2422	"	"
"	380 "	32.55	"	"
Sugar Company,	427 "	45%	"	"

This considerable increase of salts in solution would be objectionable for most domestic purposes, and probably on boring deeper the waters of the coal-beds would be obtained. These waters in this country are generally charged with mineral matter, so much so as to render them useless, so far as they have
come under my observation. For example, three different waters from the mines of the Australian Agricultural Company at Newcastle gave-
 of which $5 \cdot 45$ grains was insoluble after evaporation. No. 2.

Alumina	$40 \% 0$ grains per gallon.		
Lime			437	"	"
Magnesia	...		4.38	,	"
Chloride of sodium			23.54	,	"
, patassium	...		traces		
Silica	090	,	"
Sulphuric oxide	$110 \cdot 40$	"	"
Phosphoric ,	\ldots	...	traces		
Loss on ignition	$82 \cdot 83$	"	"
Total solids...			$267 \cdot 32$		

No. 3.

Alumina ...	\ldots	...		1028 grains per gallon.		
Lime			12.98	,	,
Magnesia		$19 \cdot 19$	"	"
Soda		1370	,	"
Potash...	...	\ldots		traces		
Chloride of sodium	...	-	-.	$8 \cdot 86$	"	"
Silica	...	\cdots	..	454	,	"
Sulphuric oxide	\ldots	\ldots	...	99.99	"	"
Phosphoric	\ldots	traces		
Sulphhydric acid	-..	*.	\ldots	005	m	"
Loss on ignition	\ldots	9931		"
Total solids...		268.90		

of which $29^{\circ} 45$ grains were insoluble after evaporation.

Discussion.

The Rev. J. E. Tenison-Woods asked if any record was kept of the character of the strata passed through in the boring.

Mr. Dixon said that as the borings were done with the ordinary boring tools the rock was all crushed, and therefore samples would not be of so much value as by the improved methods, and he did not know whether samples had been kept by Mr. Poolman.

Mr. Poolman said that when he arrived the boring was down 100 feet and no samples had been kept, but from that depth he had samples in his possession. At 100 feet the rod passed through a bed of soft saud, and they fully expected to obtain water there, but did not. At the greater depth the rock had much the appearance of Bath-brick.

Mr. Hevry had examined some of the samples brought up at the Newington boring, and found them to be carboniferous sandstone. He did not like to hear of so much total solids in the brewers' wells or the idea of drinking beer "cum grano salis." he considered it probable that springs rose at Botany.

Mr. Dixon said that the fault of all the water obtained here for brewing was that it did not contain enough solid matter in solution. The water at Burton-on-Trent contained about 78 grains of total solids per gallon, and the waters used for brewing the best beers in England varied from 60 to 80 grains per gallon of total solids.

The Rev. J. E. Tenison-Woods said he had seen carboniferous fossils brought up by the borings at Newington, but he did not know whether they had come on good water. He would like to know what the character of the water at Newington was, as found in the coal borings.

Mr. Dixos said that he had not seen any of the water from the coal boring at Newington, but in all cases which had come under his observation the deeper they sunk the harder the water became, until the waters of the coal measures were so charged with solids as to be unfit for drinking purposes. This was however not universal, as the town of Rutherglen, in Scotland, was supplied with water pumped from a coal-pit.

The Chatrman asked if it was Mr. Dison's opinion that Botany was simply a watershed, or were there springs there.

Mr. Dixon believed that Botany was simply a watershed. The spring waters were all so much harder than the Botany water that if any of the Botany swamps were supplied from an underground source the water would have become much harder during the drought of 1876 , when the waterworks were severely taxed, but this had not been the case.

Note on Huan Island Guano.

By W. A. Dixon, F.C.S., F.I.C., Lecturer on Chemistry, Sydney School of Arts.

[Read before the Royal Society of N.S.W., 4 December, 1878.]
In a paper which I read before the Society on the guano deposits of Malden Island, and which was published in the Society's Journal, Vol. XI, I observed that the deeper layers of guano were invariably richer in calcium phosphate than those nearer the surface, and that although I had made numerous experiments I was unable to account for this difference. I have lately had a number of samples of guano from the Huan Islands, which lie to the north of New Caledonia, and they appear to throw some light on the subject.

These samples of guano were from the surface, and, although phosphatic, are characterized by containing a much larger proportion of organic matter than is usual in this class. The organic matter ranges in many of the samples between 20 and 25 per cent., and although somewhat nitrogenous it is evident that much of it is of vegetable origin-all the samples contained carbonate of calcium varying in amount from a little over 2 to 10 per cent.; and it is therefore surprising to find that in most cases they have a strougly acid reaction, and that this is due to free phosphoric acid or acid calcium phosphate.

The guano effervesces slightly on the addition of water, and it was therefore attempted to get rid of this action of the acid on the carbonate of calcium by treating with dilute carbonate of ammonium, the phosphoric acid being determined in the solution, which was of a dark brown colour. It was found, however, on adding magnesia mixture to the solution and allowing it to stand, that dark warty crystals were deposited with the ammonio magnesian phosphate. These proved to be the magnesium salt of some organic acid, as on treating the ignited precipitate with sulphuric acid and re-igniting, its weight was more than doubled, from the formation of magnesium sulphate.

It seemed probable that the crystals might be one of the ammonio magnesian oxalates, as oxalate of ammonia occurs in Peruvian guano, and I had observed that the tissues of some of the plants growing on a guano island were loaded with raphides of calcium oxalate. On adding to a similar solution, however, chloride of calcium, and acidifying with acetic acid, a light flocculent precipitate only was obtained readily soluble in ammonia.

The amount of carbon dioxide evolved from the ash of the guano was also found to be slightly greater than that from the guano itself, showing the presence of an organic calcium salt. Thus, three samples gave as the mean of several closely approximating determinations :-

The limited quantity of material at command has prevented further research on this point for the present.

As the carbonate of ammonia method failed, portions of the guano were mixed with a little hot water, transferred to a filter and rapidly washed with successive small quantities of hot water, the total washings being about 75 c.c. for 5 grm . The solution was slightly yellow only, and was treated with oxalate of ammonium and acetic acid to remove a trace of calcium, and the phosphoric acid determined as magnesium pyrophosphate with the following results from different samples, the first three being from one island and the other two from another, the total phosphoric acid and carbonate of calcium calculated from the carbon dioxide being also given :-

Total Phosphoric Acid. Soluble Phosphoric Acid. Calcium Carbonate.
No. 1
2
3
4
5
$\mathrm{P}_{2} \mathrm{O}_{5}$

$\mathbf{1}$	$29 \cdot 96$	0.18	9.47
$\mathbf{2}$	$31 \cdot 68$	0.53	2.88
$\mathbf{3}$	31.57	0.44	$2 \cdot 54$
$\mathbf{4}$	32.14	0.42	2.47
$\mathbf{5}$	34.63	0.63	2.29

It appears as if the organic matter protected the calcium carbonate to some extent from the action of the phosphoric acid, so that it may be washed out, and thus occasional showers of rain would carry it down into the lower layers of the guano beds where the organic matter has been removed by slow oxidation, and there convert the carbonate into phosphate. As each successive layer of guano passed through this acid stage in the gradual decomposition of the organic matter and passage from a misture containing much organic matter a small quantity of calcium phosphate and a still smaller quantity of calcium in organic combination to its residual form of phosphate and carbonate of calcium, the layers below would thus continually become enriched in phosphates. The small quantity found cannot be taken as a measure of the total acid available, as it is probably confined to a thin layer at one time, with which other layers had been mixed in the samples examined.

The Rise and Progress of Photography.

By Ludovico W. Hart.

[Read before the Royal Society of N.S.W., 4 December, 1878.]

In glancing through the world's history, from the early ages down to the present time, we find that each age or epoch has been marked by one or more discoreries or inventions, that have called forth the energy of clever and refined minds, which have served to benefit the great family of nations; and as age has succeeded age, so great and important discoveries have succeeded each other, each one vieing with the other in importance and maguitude, and so beautifully and wisely hare these taken place, that as one has become old by the difference of the age and the requirements of time, another springs up and fills its place; thus does nature, constantly in her own way, and by her own means, keep up a regular supply of what is good and beneficial to man.

Now among those that have characterized the present century, there are few, if anr, that have been of more service, or are more deserving of our gratitude, than that of the invention of photography. Sure and marvellously rapid has been the progress of this art-science, and like steam and electricity it soon found its way round the globe, and I think I may safely say that it has been at work in many places where the other two have not as yet appeared.

Nor is its influence less than its greatness; morally, artistically, scientifically, and commercially, it has opened a new epoch in the history of the world's knowledge, and although great were the hopes of its originators, I can scarcely imagine that they could have foreseen the future importance of their great discovery. A disenvery is valued according to two things, its artistic or scientific value and its commercial value; both these things are considered of importance-the one giving knowledge and the application of that knowledge ; the other concerns all the daily intercourse and workings of the great human family. As to which of the two is more conductive to our welfare is not in my programme, but an invention combining the two is certainly deserving of our warmest support. Such then is photography"; there is no branch of knowledge that does not gain by it. Art is even guided by it, however much the fact may be disputed and denied. Science accepts it as a most perfect exposition of her truths, and in the hundred and one phases of daily life we find her playing a prominent and important part.

I propose dividing my paper into two parts-firstly, the history and progress of photography ; secondly, its practice and applications. In tracing to its abstract the history of any great discovery which has not been sudden or fortuitous, but which has been gained by deep study and oft repeated trial, we find two prominent things, the idea that caused the wish, and the means for the perception of the fulfilment of that wish.

The one is the essence and the other the substance, and they are as important to each other as soul to bolly. These are represented by certain substances which have from time to time been noticed to darken under the influence of white light, and the camera obscura aided by chemical and optical research. We will now see how photography came into existence and to whom we are indebted for our knowledge in its present adranced state.

Assertions have from time to time appeared in print crediting both the Chinese and Japanese with having possessed the knowledge of photography; others have given the ancient Egyptians the place of honor, as being the first to empley the salts of silver in making sun pictures, and it seems pretty certain that they employed it in some of the paintings on the cloths wrapped round their mummies. We will, however, leave these uncertain theories and go back about three hundred years. The alchemists certainly knew of the existence of chloride of silver, as verified by Fabricius about the year 15f6 in his work "De rebus metallicus." Again we find it in a very singular work by Tephaigne de la Roche, entitled "Giphantie ì Babylone," who supposed himself transferred to the palace of the genii of the element, the chief of whom thus addressed him:
"You know that the rays of light reflecting rarious bodies paint them on the retina of the eye, on the surface of water, and on mirrors. The spirits have sought to fix these images; they have composed a very subtle adhesive material which hardens very quickly, by means of which a picture is made in the twinkling of an eye. They spread this substance on a piece of cloth and expose it to the object ther wish to depict. The first effect of this prepared cloth is that of a mirror, near and distant objects being shown upon it, but that which a glass cannot effect, this cloth with a viscous covering does, namely, it retains the image faithfully. It is taken away directly to a dark place, and an hour after you have a picture far more precious, truthful, and lasting than any that art can produce. The spirit then entered into a physical disquisition, first on the nature of the glutinous body employed; secondly, on the difficulties of preparing and employing it ; and thirdly, on the mutual action of the light and glatinous body, three problems," adds Tiphaigue, on waking from his trance, "I propose to the philosophers of our days."

Both England and France have laid claim to be the cradle of this giant baby, and both countries have about the same claim to its rapid development, for although France has the honor of having brought most of the experiments, both in its earliest and later stages, to a practical issue, yet the names of Herschell, Wedgewood, Davy, and Fox Talbot will always hold a prominent place wherever the history of photography is proclaimed.

The mention of the principles of the camera obscura or dark chamber is the earliest reliable record we have concerning the future discovery of the invention of photography. It was discovered in 1544 by Giovani Baptista della Porta, a Neapolitan monk, who on seeing the objects from without reflected upon the white walls of his cell through a hole in the shutter, became the means of giving to the world a pleasing and as it has since proved a valuable instrument.

The next thing we have record of is the chloride of silver, called by the alchemists "horn silver" from its peculiar appearance. This mineral is still occasionally found in some parts of Germany, and has a vitrous dull shining aspect, white in colour, which changes rapidly to riolet on exposure to white light. In 1777, just 233 years after Porta's diseovery, the learned Scheel, a native of Sweden, experimented with this substance in another form, and remarks that paper prepared with chloride of silver and exposed to light turns dark, and accordinglv produced many copies of drawings by contact; he likewise was the first to call attention to the fact that paper prepared with nitrate of silver and exposed to the solar spectrum, by passing a beam of light through the prism, that the action was greatest at the blue end of the spectrum, and that it even went beyond the visible spectrum, whilst no change took place in the green, yellow, orange, and red portions. Priestly and Senebier also experimented with the nitrate and muriate of silver, for making pictures and writing on glass with the aid of the sun; this does not seem to have excited more than a momentary curiosity, for it was not until the year 1802, in the month of June, when we find in the journal of the Royal Institution ". An account of the method of copying paintings upon glass and making profiles by the agency of light," by Thomgs Wedgewood, Esq., with notes by Mr. H. Davy, afterwards Sir Humphrey Davy. Here again it was nitrate of silver used. Fac-similes of these light pictures, which were called heliotypes, still exist, and further research into the doings and experiments of Wedgewood guarantee the fact that as early as 1591 he was experimenting with one, a Monsieur Daguerre, who died between 1798 and 1802, poor and very much in debt; this however was not the Daguerre destined to become the discoverer of the process bearing his name but his father, and the Wedgewood mentioned was the son of the
great Josiah Wedgewood. Wedgewood and Davy became great friends, and for some time continued their researches together. They produced many beautiful copies of drawings, leaves, lace, and such like things, but alas, their beautiful discosery was only of partial value, for a new difficulty now presented itself: the beautiful pictures obtained with so much trouble and patience when exposed to daylight gradually darkened all over.

We must now pass over a few years, during which time we occasionally hear of various experimenters using the different salts of silver as their predecessors had done; among them may be mentioned Seebeck, Guy Lussac, Draper, Ritter, and Wollaston.

In 1814, we find the celebrated Niépce likerrise engaged in prosecuting a series of studies in this new light process, and about twelve years later we hear of him engraring by the same process ; to do this he prepared metallic plates by coating them with asphaltum, and then exposed them to light in the camera obscura; where the light had acted upon the asphaltum it became insoluble, whereas the shaded parts were washed away with oil of lavender, which left bare the metallic surface of the plate, and which was then etched. In 1824 Louis Jacques Daguerre, the inventor of the diorama, experimented also upon the nitrate and chloride of silver, employing the camera obscura, and striving to fix the pictures so obtained. In 1827 Niépce was introduced to Daguerre, and for some time kept up a regular correspondence which ended in a partnership; we now find the latter neglecting altogether his diorama painting and closely studying chemistry. It was while pursuing those studies that he observed the curious fact that a silver spoon he had left on a metal plate previously treated with iodine, had left its impression clearly on the metal surface; this he further developed with oil of petroleum. Shortly after this, about 1833, Niépce died and left Daguerre to solve alone the problem of the process called after him. I may as well state here in what consisted his invention: He exposed a highly polished silver surface to the action of iodine, and after exposure to light to bring out the latent image by development with petroleum. He continued toiling along, looking for a more active and convenient means of derelopment, until an accident greatly assisted him. Having prepared as usual some plates and exposed them to light, he placed them away in a cupboard for a short time, being called away and intending to develop them on his return; but what was his surprise and joy shortly afterwards on returning to his cupboard to find his plates fully developed, and having a perfect image upon them. He imagined at once that the impression must be due to some chemical or other in the cupboard. He therefore took the chemicals away by degrees, still preparing and exposing plates, and placing them in what he
called his magic cupboard, one and all of them became developed ; at last all the chemicals were removed. In a fever of anxious excitement he again prepared and exposed some plates and put them in their usual place, and on going a few hours later, imagining to find them still in their latent state, lo! they also were fully developed. Mystery of mysteries! but soon to be cleared up; for on a close examination of the magical cupboard he found a small dish containing mercury that had escaped his notice. Other plates were quickly prepared, exposed, and put in the cupboard; result the same. Thus mercurial vapour became the recognized medium for development in this process.

The news of his discorery soon spread, and IIumboldt, Biot, Arago, and others became his confidants. After much persuasion and delay he consented to give his discorery to his country in consideration of a yearly pension of 4,000 francs, and on the 19th of August, 18:39, at the memorable séance public of the French Academy of Science, in the Palais Mazarin, Daguerre illustrated his process by development. As might be expected, the news of this wonderful process of pieture-making had been spread abroad, and on this occasion the seance was attended by all the efite of art, science, and even diplomacy, resident at that time in Paris. Arago, in his opening speech, says. "France has adopted the discovery and is proud to present it to the whole world." In a number of the Monitenr Criversel about that date it is thus spoken of:-" "After years of patient research, of disappointment, and hope almost crushed, Monsieur Daguerre has succeeded in fixing the natural light on a solid substance, in giving a body to the impalpable and fugitive image of objects reflected in the retina of the cye, in a mirror, in the apparatus of the camera obscura."

It need hardly be stated that from all parts of cirilization eame disciples to Dayuerre. Morse, of America, and Sachse, of Berlin, were among the first to take it up. Professor Draper joined Morse, Claudet came to London, and Goddard, Blake, and others commenced practising in different parts of England. Daguerre had constantly been asked to make his process known before he did, but his reply was always the same: "When I have so perfected it as to allow others to work it as easily as myself, I will then make it known, and not till then." Now these pictures were very slow, and when required for portraiture the sitters were obliged to be placed in the sun; hence the unpleasant expressions so often seen in the early specimens of the process.

To give you some idea of the patience required in posing in those days, I have taken an extract from Gaston Tissandier. He says:-" "The model took a graceful attitude, resting one hand on the back of a chair, and looking as amiable as one could do
with the sun full in his face; the operator gives the final warning to be still. The seconds pass-sliceced each other-and seem to expand into centuries. The sitter (or as he ought now to be called the "patient"), in spite of all his efforts, is overpowered by the solar rays; the eyelids open and close, the face contracts, the immobility to which he is constrained becomes at last a torture ; his features shrivel up, tears fall from his eyes, perspiration breaks out from his forehead, he pants for breath, his entire body shakes like that of an epileptic who wants to keep still, and the Daguerreotype plate represents the image of a poor wretch who is undergoing the torture of ordeal by fire."

Shortly after its publication, Goddard added bromine to the iodine, which greatly accelerated its effect; and Claudet finally added chlorine. Better lenses were also speedily manufactured, the best of which were those by Professior Petzval, manufactured by Toightlander, who becane celebrated for his now-called photographic lenses. These, however, have in their turn been superseded by those of Lerebours and Secretain, Chevallier, Ross, and Dallmeyer.

While these great erents were going on in France our English investigators had not been idle, for we fint that Mr. Fox Talbot had been working silently for some time with the silver salts. For the carrying out of his particular process he used to prepare his paper by immersing it in a solution of common salt, and when dry in another of nitrate of silver, thus ontaining the chloride of silver as a medium for his impressions. He found that the paper so prepared was much more rapid in its action than that by Wedgewood and Davy; but like them, the pictures so obtained soon became dark and useless. He tried to fix them by plunging them into a hot solution of salt, but this only parfially succeeded; and it is to the eminent English astronomer, Herschell, that we are indebted for the introduction of a substance answering all the wants in this direction, and which is used to this day-the hyposulphite of soda. He also introduced many interesting processes that are out of date now. The chemicals employed by him were the ferricyanide of potash, ammonia, citrate of iron, and the ferro tartrate of silver.

The scientific world had by this time become thoroughly interested in these photographic experiments. Pictures were regularly taken by the Daguerreotrpe, Talbotype, and other processes. The negative process on wax paper harl been clearly demonstrated, but many anxious experimenters were held back by the patents held by Mr. Talbot, and the formation of a Photographic Society was for a time prevented. These patents were, however, eventually withdrawn, as will be seen by the following letters. The first is from the Presidents of the Royal society and the Royal Academy, and appeared in the Times, August 13th, 1852, after an
unsuccessful attempt by Mr. Talbot to bring an action against Messrs. Scott, Archer, and Gustave le Grey, the inventors of the collodion process; the second one is his reply. We will begin with the first:
"The art of photgraphy on paper, of which you are the inventor, has arrived at such a degree of perfection that it must soon become of national importance; and we are anxious that as the art itself oniginated in England, it should also receive its further perfection and development in this country. At present, however, although England continues to take the lead in some branches of the art, yet in others the French are unquestionably making more rapid progress than we are. It is tery desirable that we should not be left behindhand by the nations of the Continent in the improrement and development of a purely British invention, and as you are the possessor of a patent right in this invention, which will continue for some years, and which may perhaps be renewed, we beg to call your attention to the subject, and to inquire whether it may not be possible for you by making some alteration in the exercise of your patent rights to obviate most of the difficulties which now appear to hinder the progress of the art in England. Many of the finest applications of the invention will probably require the co-operation of men of science and skilful artists, hut it is evident the more freely they can use the resources of the art the more probable it is that their efforts will be attended with success, and, as we feel no doubt that some such judicious alteration would give great satisfaction and be the means of rapidly improving this beautiful art, we beg to make this friendiy communication to you in the full confidence that you will reccive it in the same spirit, the improvement of art and science being our mutual object.
"Signed-Lord Rosse and Sir Charles Eastlake."
Mr. Fox Talbot's reply was as follows:-
"I am as desirous as any one of the lovers of art and science whose wishes you hare kindly undertaken to represent, that our country should continue to take the lead in this newly discorered branch of the fine arts; and after much consideration I think the best thing I can do, and the most likely to stimulate to further improvenents in photography, will be to invite the emulation and competition of our artists and amateurs by relaxing the patent rights that I possess in this invention. I therefore beg to reply to your kind letter by offering the patent (with the exception of a single point, hereafter mentioned) as a free present to the public, together with any other patents for improvements in the same art. The exreption to which I refer, and which I am desirous of keeping in the hands of my own licensees, is the application of the invention for photographing for sale to the
public; this is a branch of the art which must necessarily be in a few hands. With this exception then, I present my invention to the country, and trust that it may realize our hopes of its future utility.-Fox Talbot."
The exception to which Mr. Talbot referred fell through at once, as the advance of photography was so rapid that other improvements soon left his original process in the background. Paper, although a convenient, was nevertheless a defective medium; it is true it had not the unpleasant mirror-like glare of the silver plate, but then the texture was not all that was required; its fibrous nature gave oftentime much trouble; it did not absorb uniformly the liquids required, and had many other little inconveniences. It was while our early workers were in this trouble that a nephew of Niépce, named Niépce de St. Victor, came upon the scene and added another name to the already host of inventors or improvers of photography. This gentleman had been a student at the military school of Saumur, and became Lieut. of Dragoons in 1842 ; it was at that time he began to study seriously scientific pursuits. He soon found, however, that a provincial town afforded him very few chances for becoming known to the men of the day, and accordingly got transferred to the Paris Municipal Guard. It was in the gay capital, in a small room belonging to an under officer of police, that he pursued under great difficulties his various studies and very interesting experiments; for it is not to be wondered at that he followed in the footsteps of his uncle, and in 1814 used glass as a support for the substances he employed to hold the silver salts, which at that time was starch, subsequently abandoned for albumen about the year 1847. Albumen was considered a perfect medium for the salts of silver until another happy application took place. In 1846, Schœnbier announced his discovery of gun cotton. Le Grey, Archer, and Fry at once saw hopes of utilizing the new material, and after many trials and failures, Scott Archer sueceeded in introducing it and brought out his collodion process. Le Grey in France had also been rewarded with success in the same direction.

This discovery opened a new and brighter epoch than had as yet dawned upon the now army of photographers; this process is a perfect answer to all the requirements of the most sanguine photographer, for from the date of its first appearance to the present day it has never ceased to prove itself to be the greatest boon we have yet received, and allowed the invention of photography to be advanced to a degree of perfection hitherto unthought of.

It was my intention to omit any matter relating to the practical part of photography, but the importance of this process calls for a passing and short notice of its modus operandi. We
will begin with the gun cotton. This substance is procured by saturating ordinary cotton wool, certain fibrous woods or paper, in a mixture of nitric and sulphuric acids, after which it is well washed to free it from all traces of acid and allowed to dry. It is then dissolved in a misture of alcohol and ether, and forms a glutinous solution of the consistency of oil; certain iodides and bromides are now introduced into it, and it takes the name of iodized collodion. This being poured on a glass plate is allowed to evaporate, which it does rapidly, until it is set and forms a film and is then plunged into an aqueous solution of nitrate of silver. The iodides and bromides now combine with the silver and form by double decomposition an iodide and bromide of silver with an excess of nitrate of silver in solution. This plate is then exposed to the action of light in the camera obscura, when a latent image is formed, which is developed or brought out by the action of proto-sulphate of iron or pyrogillic acid; the unaltered iodide of silver is then dissolved away by means of cyanide of potassium or hyposulphite of soda.

Perfect negatives being now easily procured it became necessary to use another and more perfect paper to receive the positive image. A smooth and finely grained paper was choseu and prepared by laying on its surface a solution of albumen in which was deposited a chloride; when dry this was floated on a solution of nitrate of silver, forming a chloride of the same salt. After again drying it was exposed behind a negative; gradually the exposed parts became changed in colour, turning first violet or pale reddish brown according to the chloride used, gaining in intensity as the light acted upon them, and finally becoming almost bronzed in the perfectly transparent parts of the negative.

These prints are now toned in a solution of chloride of gold and fixed in hyposulphite of soda; these are called silver prints, and the process is the one in actual use where only small numbers of proofs are required.

One would naturally imagine that all the trials and uncertainties had been now overcome, and that nothing remained but to work and multiply ; so it was for some time thought, but soon came back the ghost of past days, and it was found that these beautiful proofs were not permanent. A variety of causes made them uncertain, and one is never sure of having a silver print that will not either fade or turn yellow; some have retained their brilliancy for many years, and we have specimens made in the early days of albumenized paper looking as fresh and pure as when first produced, but they are the exception and are very, very few in number.

This indeed was a serious drawback in the now advanced stage of photography, but progression, the natural order of things, brought its powerful aid, and as trouble and uncertainty came
upon us so also came the means of preventing them ; and if the early investigators of photography laboured hard to overcome their difficulties, their earnestness and good example has been nobly taken up, not by one, but by a legion, to sare this beautiful and valuable aid to art and science from the stigma of being but a fading record.

Two things seemed now to be required to complete photographic printing, printing in natural colours and permanent prints. The former may yet be a long way off, but the experiments of Bèquerel, Niépce de St. Victor, Vidal, Woodbury and others, have so far succeeded that for commercial purposes there are already three processes in use. We turn to the latter requirement and find that success has bountifully rewarded the many patient months and years of trial in this direction, for photography which has already in many cases supplied the place of the artist or designer, has now allied itself to the printer, and photo-mechanical printing has now become a practical fact, is in use all over the civilized world, and I think the day not far distant when large printing establishments will not be considered complete without a photographic branch. The advantages derived from these processes are permanent impressions, rapidity of printing, printing independently of white light, perfect equality in the tone and value of the proofs, printing in any colour desired, cheapness, with the correctness and perfection of outline, detail, \&c., generally found in photographs. No remarks need follow these advantages to show the immense utility of such processes, but a short extract from an article in the London Times on the value of the reproductions of the pictures of the great masters would not be mal à propos:-
"If pictorial art, is, indeed an educational influence of a high order, and if it is desirable to keep beauty of form before the eyes of the young, the autotypes (mechanical prints) of the great masters should not only find the places of honor of which they are well worthy, but they should be in every nursery and schoolroom in the kingdom."

This is only one application for them; there are astronomy, botany, geology, ethnology, jurisprudence, and a hundred other ways of using them. But I must leave these for the present and introduce to your notice the various processes of permanent photo-mechanical printing. I have thought it not out of place to include a very valuable and beautiful process, which although not mechanical is nevertheless a permanent printing process, and in point of value is not the least among them. I refer to the Carbon process, or as it is called in Great Britain "Autotype," which is simply the production of pictures by the means of light and chemical action upon gelatime and permanent pigments, such as are used by artists in oil, water colour, or crayon drawings.

The rationale of the process is this,--that bichromate of potash, in conjunction with gelatine, albumen, gum, \&c., when dry becomes decomposed and insoluble in hot water when acted upon by light, whereas it remains unaltered in those parts not subjected to light, the action that takes place is "that gelatine, aided by light, reduces the chromic acid of the bichromate to a lower state of oxidation, then enters into a combination with a compound of chromic acid, produced by a mutual decomposition of chromic acid and gelatine, the original being the formation of a leatherlike substance, insoluble in hot water."

The first person who observed this action was Mungo Ponton ; Monsieur Bequerel found that sized papers aided the result, but it was Poitevin who discovered the important fact that if a pigment were added to the gelatine and bichromate of potash and then dried and exposed to light, the pigment became entangled in those portions of the gelatine rendered insoluble by the light, and could not be washed out again. In this and rarious other interesting experiments he may be said to have been the father of all the various processes having for their base bichromate of potash and gelatine.

A paper prepared with a coating of these substances and exposed to light behind a negative in cases of line subjects, where the action had been continued sufficiently long to traverse the gelatine coating and reach the paper, all was good so far as washing away the insoluble parts was concerned, but the image thus obtained was reversed, and when subjects in half tones were tried it failed, as the action taking place from the outside portion of the paper the half tones would be washed away in the subsequent treatment, as they rested upon a substratum of the compound entirely unacted upon by light. To remedy this, the Abbé Laborde, in France, and Mr. Blair, in England, spread the compound upon glass and transparent paper, printing the picture through the transparent medium, and, after the necessary exposure to light, washed away the soluble portions of the compound, leaving the insoluble picture firmly attached to the glass or paper. This was a step in the right direction, and was soon followed by others of importance, notably by Swan, of Newcastle, who spread his sensitive compound upon glass previously coated with collodion; in this manner he was enabled to separate it from the glass, expose it to light, and remount it again for development. This he called the tissue, and afterwards greatly improved upon his process by making his support of paper. After many important improvements and the establishment of the single and double transfer, Mr. R. Sawyer, in 1874, introduced his flexible support for the purpose of allowing the development of a carbon print on a soft film of an insoluble nature, and afterwards transferring it to any other
body, such as paper, glass, wood, porcelain, ivory, \&c., \&c.; thus the image is no longer reversed, but seen in its right position. The process as it now stands may be described in a few words:A paper is coated with gelatine and pigments, sensitized in a solution of bichromate of potash, dried and exposed behind a photographic negative; those parts affected by light become insoluble in the development, whilst the soluble portions are washed away and form the whites of the picture; the half-tones remain more or less insoluble, according to the amount of light received through the negative ; the development is effected by warm water; the print is then passed through a solution of alum, washed and dried.

The first process of photo-mechanical printing that I shall speak of is photo-lithography. Among the early records of the process we find by a letter from Monsieur Lacon in December, 1874, that a modest lithographic printer as far back as 1842 produced, by means not known, or then forgotten, many beautiful photographic impressions on stone; he worked quietly and unheeded in his leisure hours, and to the fact of his great modesty and humble position we owe the misfortune of not being acquainted with his process. I merely mention this fact, en passant, in order to render honor to whom honor is due, for of all the many treatises published on these processes only one does justice to the memory, or even mentions the early labours of the workman Zurcher. About the year 1852 we find three French gentlemen, Lemercier, the head of a large and well known printing establishment in Paris, Lerebours, the optician, and Davanne, the chemist, using bitumen dissolved in ether. They coated a lithographic stone with this solution, dried it, exposed it to light behind a negative, and subsequently washed it in ether; those parts affected by light remained on the stone insoluble, and the nonaffected parts were washed away by the ether; the stone was now gummed and acidified and rolled in like an ordinary lithographic stone. In 1860 Monsieur Poitevin issued a book of instructions for this process ; he also coated a stone with a compound capable of being acted upon by light, but employed gelatine, starch, gum, and albumen, rendered sensitive by the bichromate of potash; thus up to this day all the so-called inventors of new photographic processes have simply been using modifications of Poitevin's process, inasmuch as these substances became and still are the recognized media for the proper carrying out of photo-lithography. Among the many modifications may be mentioned, Asser of Amsterdam, Colonel Sir H. James, Newton, and Osborne, in England, Simonau and Toovey of Bruxelles, Captain Waterhouse, in India, and many others.

Asser used starch spread upon paper and sensitized with bichromate-the latter substance being the salt used by all for
this purpose. After exposition to the light, he put the print into cold water to soak away all the unaltered bichromate, inked in with a peculiar roller and a thin transfer ink mised with ordinary printing ink. This formed the transfer ready to be put upon stone and treated in the ordinary manner.

Simonau and Toovey used gum in the following manner:-A paper is floated upon a solution of gum and bichromate, dried and exposed behind a negative; by a peculiar process the unaltered portions of the gum are pressed into the stone, leaving the lines bare ; the light having acted upon these parts, has rendered them insoluble ; a roller is now charged with ink and passed over the stone, which only takes the ink in the uncovered parts. One peculiarity in this modification is that the stone is not acidified as in the others.

All the rest use gelatine, gum, or albumen, either alone or combined, and use warm water and a fine sponge to remove the ink and gelatine from the unaltered portions of the transfer; but were I to give you an epitome of the many ways of working out this process I should occupy you for some hours. Photu-zincography is another form of photo-lithography, using a zine plate in place of a stone. We will now pass on to photo-typorraphy, which consists in preparing a metal block by photographic means to be used in ordinary printing with text. There are two principal ways of doing this-by biting in with acid, or ly making a gelatine relief and taking casts of it afterwards, to be treated by electrotyping. In the first case a transfer from stone is laid down on a zinc plate; or the plate may be preparel with bitumen and exposed to light, and then treated with a weak solution of nitric acid; great care is required in keeping the lines good, as they are formed by the biting in, it being necessary to re-ink frequently the image, and to add powdered resin, so that by a gentle application of heat this composition cradually falls over the sides of the lines formed, and protects them from the action of the acia employed in biting in deeper.

In the other ease a gelatine relief is made from which is taken a plaster cast, or ne of wax and starine, which is then treated by the electrotyper; this process like that of photolithography is employed for line subjects, or anthing in black and white; half-tone may be procured, as you wili see by some of my specimens; but unless printed by men especially kept at that work, the fine details soon become choked up, and the block rendered useless. This process is largely employed in Europe and America, and I fiud with pleasure that it is mow introlured into one of the leading printing firms in this city. Another process, allied to the former ones, is that called holiography, and sometimes heliolithography; here a glass is covered with a suitable substance, and when dry is engraved by an artist by means of a
needle point ; very beautiful designs and effects are produced by these means, and one of the chicf uses consists in the fact that an artist on the staff of an illustrated newspaper takes out with him in place of his sketching materials a small number of these prepared glasses; he engraves them on the spot almost as rapidly as drawing them, sends them home to the photo-mechanical operator, who in a few hours produces a perfect matrix to be electrotyped for printing with the text, or photo-lithographed if required to form a collection, or, if preferred, a copper-plate made for printing as eugraving. This process is really very useful and advantageous, as the cost is regulated by the size of the plate, and not the amount of work upon it ; thus a most complieated plate costing perhaps $£ 20$ or $£ 30$ sterling to engrave can be done for £2 or £3.

The next process I shall speak of, is that known as the " fatty ink process," or more familiarly the "Albertype" "Heliotype" "Obernetter process" or "autotype mechanical process." All these are one and the same process, the same result being arrived at by different formula, and are all based on the early experiments of Poitevin and Tessic de Mathey. A glass or metal plate is coated with gelatine and sensitized in the usual way; when dry, it is exposed behind a nocrative, until all the details are visille; it is now placed in cold water, when it will be seen that the portions of the plate that have been protected from the light are slightly in relief, having swollen up by taking a part of the water, those portions that have been fully exposed to the action of the light, and consequently changed into a leather-like suustance, refuse the water; the half-tones take moisture in proportion as they have heen more or less shaded from the light. When all the free bichronate has been washed out the plate may be left to dry or inked up at once in the following manner: A roller is charged with rather stiff lithographic ink and passed over the plate as over a stone. It will be observed that all the darkest parts of the image take kindly to the ink, whereas the portions holding the water quite refuse it, the half tones taking little or nothing from the stiff ink. If now another roller be charged with a thinner ink, and the same plate is again rolled with it, all these half-tones wil soon appear in their relative force, and the plate in ready to be printed. This is done in an ordinary Albion press, and when taken from the press is ready for binding, havir.g a margin all round it. Here we have a perfect photograph, possessing all the delicate tones of the negative, in ordinary printers' ink, which is consequently as permanent as the most fastidious person can desire. You will perceive that this process is strongly allied to lithography, inasmuch as in the printing it has to be treated in almost the same way as a lithographic stone. There is however this difference: The
litho. stone absorts water in erery part of its surface whereon an image in lithographic ink has not been previously produced, but it has no graduated capacity of absorption, the slightest touch of a fatty matter will cause the stone to repel water and take the ink; but where the stone is clean and no part of the image is, it absorbs water completely and repels the ink, whereas these processes possess a "discriminative power of absorption," and that not only to quantity but to the consistency of the ink taken up by various parts of the plate. To harden the gelatine in orler that it may not get worn out too soon, it is generally exposed to light for a short time in such a manner that the gelatine is rendered altogether insoluble where it is in contact with the glass. Another manner is to use chrome alum in the preparation. Again, a fine grain is given to its surface in a variety of ways, which facilitates the after process of printing. Taken in all, they may be considered as taking rank amongst the foremost of photo-mechanical processes.

We now come to perhaps the most beautiful of all these processes, not only in point of resembling perfectly the silver print, but also for the many important applications that spring from it. I refer to the Woodbury process, which differs essentially from all the rest, although starting from the same point. It was principally to carry out this process that I had the houor of being brought to this Culony, and I trust, with the continued assistance of the able and energetic gentleman at the head of the Government Printing ()ffive, Thomas Richards, Esq., that it will, before long, speak for itself.

A glass plate is coated with a special collodion and dried; a compound of gelatine, sugar, glycerine, and Indian ink is then poured on and likewise dried; this is exposed behind the negative. When sufficiently smpressed it is transferred to another plate, and all the portions of gelatine unaffected by light washed away. A very beatiful relief is the result ; this is pressed into a sheet of lead by means of the hylraulic press, as much as four to five hundred tons of pressure being given to a relief of the dimensions of 12 to 10 inches. We have now a mould in metal ; this has to be printed, or, more properly speaking, moulded; presses especially made for this purpose are arranted on a revolving table, one man being able to take charge of six presses. The mould is now placed on the bed of the press, a warm solution of gelatine and pisments is poured over it, a paper specially prepared placed on it, and the press shut down ; the same operation is gone through until the six presses have been charged; when the gelatime is set, the presses are re-opened, and the paper lifted off the mould, bringing away with it the gelatine left in the hollows of the mould which forms the image; these are dried, fixed in alum, washed and re-dried, when they are ready for trimang
and mounting ; they possess all the fine detail of the silver print and are perfectly permanent. Time would not allow me to enter into the many valuable and highly interesting ramifications of this process ; suffice it to say that by its aid we can obtain the finest photo. engravings known, prepare metal blocks for type printers, make watermarks, transparencies for windows, \&c., and magic lantern slides for educational purposes. Up to the present time no improvement of any importance has been made in this process, but we may reasonably hope that before very long such alterations will have taken place that will enable us to make moulds without the use of the hydraulic press.

Photo-chromo-lithography and photo-chromography come under the same head. In the first case a negative is made of the subject, say an oil painting; a photo-lithograph is then made of it, and the required number of transfers printed, that is for the number of tints required the same number of transfers are put upon separate stones. The chromist then commences his work, taking off from each stone such portions of the work as he does not require, and where required adding to the work; when all the stones are ready they are treated as ordinary chromo-lithographs. The advantages derived are great exactness in readering the artist's outlines, less work for the chromist, less time occupied, and consequently less expense in the getting up.

Photo-chromography is practised in various ways, of which the following I consider to be the best:-Say 5,000 impressions are required of any subject, the copies are taken from an ordinary negative by means of the Woodbury process. A mosaic block is then made, composed of the colours required; the same number of prints are made from this block as from the negative, printed on an especially prepared paper. When both impressions are dry they are brought into contact and held together in their right places by a weak solution of gelatine. When again dry the paper holding the Woodbury print is removed, leaving the gelatine image firmly secured to the mosaic print, the two forming one picture, and have been produced by only two printings, which forms one of the most important features in the process.

I wish to remark that the observations I have made on these processes have only been such as to give the outlines of them, and are not intended as practical details, as it would be impossible in a paper of this description to enter into anything more than a general and brief review of them; but, independently of the place they occupy in photographic literature, 1 considered that it might be interesting to this society to hear something of them from me, as I am aware that it was through the instrumentality of the Royal Society these processes were first introduced into the Colony; and I trust I may be allowed to
offer a tribute of respect and admiration to those gentlemen who were the first to introduce here these valuable and beautiful processes. It was a step in the right direction, for countries, like individuals, if they are to succeed, must have a healthy mind as well as a strong body, and no country can afford to slight such a powerful auxiliary to education, art, and science as photography and photo-mechanical printing.

In a paper I had the honor of reading before the Fine Art Section of this Society, I called attention to photography in its relation to, and as one of the Fine Arts. I will not therefore trouble you with a repetition of my remarks thereon, but I must ask your indulgence while I read an extract from a recent number of the Art Journal relative to photcgraphic portraiture:

The Art Journal says:-
" Mr. Faulkner, of Baker-street, whose photographs generally, but of children more especially, have long been of unsurpassed excellence, is publishing a scries of copies from nature of 'the little ones,' so exceedingly beautiful and perfect as works of art that high praise of them is a duty. At first sight, indeed, after minute inspection, so thoroughly does photography seem to be put aside that one receives them as transcripts after great painters, and is slow to believe that they have no other aid given to them beyond that they obtain from light, regulated by the mind of the photographer, who is as true an artist as any painter can be. We refer to those that are published, but a large number of his productions are the living pets of a household, and are not to be scanned by every eye. These treated as Mr. Faulkner has treated them are far more effective than any drawings can be; all the objections urged against photography vanish, the likeness is entire truth, and obtains all the value derivable from the most consummate art. Some portraits in his studio of fair and stately dames may be taken for copies from Gainsborough or Sir Joshua Reynolds. We may not say that the art can never go farther, but beyond question the art has never yet gone so far as Mr. Faulkner has carried it."

And now, in conclusion, let me say a few words relative to the position that photography occupies as a means of demonstration.

We find that it is used by almost all the European Governments, firstly in the form of photo-lithography for reducing and copying plans, where a great saving of time and capital is effected by its use; then since the introduction of photo-mechanical printing and permanent enlarged prints it is employed for illustrating the resources of these countries, for Government reports, for copying and vulgarizing the public collections of pictures of ancient and modern masters, rare objects from the museums, \&c. Its use is still more wonderful in the Astronomical observations, and we are all more or less familiar with such names as Rutherford,

Draper, Vogel, Delarue and Jansseu. Up to within very recently the photographs taken of the sun were very imperfect, but Janssen has brought them to perfection, and his wonderful photographs of the sun 18 inches in diameter show clearly markings of a twofold kind, some granular, and some elongated or willow-leaf shape. A magnified examination of these markings by Father Lamey, a French astronomer, has led to the remarkable discovery that the markings on the sun and moon much resemble one another. Father Lamey believes he can trace without difficulty, upon the solar pictures of Mr. Janssen, appearances that resemble the craters plainly shown in the Rutherfurd lunar photographs. The photographs here spoken of are enlaremeuts of photographs taken of the moon, and are threr feret in diameter. The blinding light of the sun had hitherto baffled the means at the disposal of of photo-astronomers, until the superior intellect and great perseverance of Janssen, who believed in the camera, took the matter up and arrived at the present state of progress. Rutherfurd's moon pictures, and Janssen's photorraphs of the sum stand out as two wonderful results in recent investigation, and prove beyond question the indispensability of a knowledge of photography for all who would in future follow this branch of science. I might also mention that it was Janssen who by means of photography discovered the photospheric network around the sun. Then again we have the barograph, thermograph. magnetograph, and a variety of other instruments used in the observatory for photographic observations, whose utility can be seen by consulting the published records of the establishments at Kew and Greenwich.

Medicine also finds valuable aid in the art of photography. Dr. Vogel cites a peculiar case of a lady, who as the phrase goes "takes well," but having been photographed, what was the surprise of all to find the face of the portrait covered with small black spots; naturally the photographer was blamed. Two days after, the lady was laid up with small-por and dicd.

Yellow comes out black in the sun picture, so her face must have been covered with very faint yellow spots, before any eye could trace the least mark upon the skin. This is a case of the invisible, but there are many visible ways of utilizing photography. As in adjusting special photographic apparatus to the ophthalmoscope, laryngoscope, otoseope, \&e., in which case medical men could study the various diseases at their leisure. Neqatives like these enlarged for view during the lectures would be of great use to students.

A French gentleman (Monsieur Marcy) has also invented an apparatus by means of which the pulsations of the heart or pulse are photographed; in the same way the play of the muscles and the eirculation of the blood may be described. To the general
looker-on this may seem of little service, but scientific men know better, and are daily adding to their store of knowledge that of photography.

One of the most remarkable things yet recorded is the photographing articulated speech. The possibility of this is asserted by Professor Blake, of Brown University. Dr. Klein, of Frankfort, and M. Konig, of Paris, have both shown figures or curves corresponding to certain noises ; but this is the first time that a word or sentence uttered br the human roice has been recorded by the camera obscura. Professor Blake employed the mouthpiece of the telephone, and fixes to the vibrating plate a piece of steel wire, upon which a mirror is set. The mirror and vibrating plate being in perfect communication, all movements of the mouthpiece are imparted to the mirror. A bright ray or pencil of light is sent by a heliostat upon the mirror, which reffects it again, and it passes into the camera, where it is received upon a movable sensitive plate.

The mirror, as already stated, is attached to the vibrating plate in the mouthpiece of a telephone; consequently when any one speaks in the telephone the iron phate vibrates. and with it the mirror, the result being that the tiny spot of light inside the camera dances up and down upon the moring sensitive plate, and impresses upon the latter a series of curves: the rate at which the sensitive plate travels varies from sixteen to forty inches per second. These sounds are so marked and different that the study of them would no doubt teach us something more than we know at present of articulate speech.

Nor is Are behindhand in making use of photography-it has been the means of rulgarizing those beautiful studies of the great masters that for so lomer a time had been the property of the few. By its means we can all be possessors of copies of the works of such men as Albert Durer, Nartin Schïen Leyden. de., and how largely has it been applied to book illustration, and with what success we know! In the prescht are we require truthful illus-trations-such illustrations that when we have seen them and then risited the places we have no trouble in recognizing them; such eannot be said of many hundreds of engravinge used for book illustration, beautiful as works of art, but so changed by the artist's ideas to make up what he thinks is a picture. that truthfulness is left out of the question. To the ethnologist it is invaluable-all the peeuliarities that are required in studies of this kind are at once depicted by photography ; how interesting would be a pablic collection of photographs of the races that onee peopled this country! 'Tis true there are several enllections taken here and there for sale, but there exists no public and official collection, notwithatanding the great worth that would be attached to such a collection; not only for the purpose of adorning our native
museums and libraries, but how gratefully would some enlargements of these races be received by the scientific bodies at Home and on the Continent. Take again the case of the Fiji Islands : how valuable a history of this new addition to our country may be made by a carefully regulated tour with the camera. Manners and customs, races and habitations, everything of real interest might be faithfully made to the general benefit of allinteresting to the general public who like to know all about such things; interesting to keep in the records of the country; interesting to science and art, in short to all; and since knowledge is power, and we possess all the necessary requirements for that knowledge, the fault is our own if we do not avail ourselves of these privileges. One more remark, I would mention microphotography; a world of wonders has been brought into view by this branch of the art; wonders never dreamt of have become familiar facts; so astonishing is this branch of photography that if required all the books in the British Museum library might be reduced and packed in a chest of drawers. I might go on enumerating for a long time the many applications of photography, but I must desist ; suffice it to say, that all who are engaged in the study of art or science find in photography a valuable friend:--to the manufacturer it has became a necessity and its service in daily life as a portraitist is simply unbounded. I cannot do better than finish this paper in the words of a writer in All the Year Round, "If you do not understand photography, learn it at once."

PROCEEDINGS.

PROCEEDINGS

OF THE

ROYAL SOCIETY OF NEW SOUTH WALES.

WEDNESDAY, 1 MAY, $18 \% 8$.
Arveal General Meoting of the Royal Society of New South Wales, held in the Society's Rooms, Elizaheth-street.

Mr. Christopher Rolleston, V.P., in the chair.
The minutes of the last mesting were real and confirmed.
The following gentlemen were duly electerl ordinary members of the Society:-

Samuel T. Knaggs, M.D., Newcastle,
Frederick (triftiths, Macquarie-street.
The certificates's of eight new camblidates were read.
One hundred and sixty-one donations were laid upon the table.
The Annual Report of the Council was then read :-
"The C'ouncil, in lringing hefore the Society their annual report, refer with satisfaction to the continued progress in the number of its members, and to the growing interest taken in the work of the Society, as evinced by the enlarged attendance of members at the monthly genteral meetings.
"At the beginning of last session of 18% there were 298 members on the rolls, sixty-two new members were elected during the session closed in December last, while three members died and ten resigned, leaving at the opening of the present session of 1878 347 members, besides fourteen honorary members.
"This steady increase in the number of members warrants the hope on the part of the Council that the active interest taken in the scientific work which this Society is intended to foster throughout the Colony will extend more and more. Hitherto the number of active members who have taken part in the bringing of matters of scientific interest before the society, either at its qeneral monthly meetings, or at the monthly sectional metetings, has heen comparatively small, and the acquisition of a few more 'working bees' would be welcomed by every one who has the welfare of the Society and of the Colony at large at heart.
"In establishing nine (9) different Sections during the session of 1876 it was intended to give every member a farourable opportunity for bringing any matter of scientific interest before the Society, even without requiring to dress those observations in the garb of a more or less claborate paper, such as would be laid before the monthly general meeting.
"It is hopel these Sections will he more fully made use of during the present session. The preliminary meetings for the election of officers for each section, and the fixing of the days of meeting, were held much earlier this year than before, viz, during the early part of last month. This will enable each Section to berin their regular monthly meetings this month, and thus to secure during the current year seven monthly sectional meetings, besides eight monthly general meetings.
"The financial position of the 'Society, as shown by the balancesheet of the Hon. Treasurer, laid before the Society this evening, is in every way satisfactory. To the general receipts from subscriptions and entrance fees is, for the first time, to be alded the sum of $£ 200$, which Parliament had liberally granted under the condition of a double amount being received from private sources.
"This addition to our ordinary ineome enabled the Council to expend a larger sum on books aik periodicals and other necessary requirements than they would otherwise have been mabled to do. The Government and Parliament has thus recognizel the position of the Society, and it must be the desire of each of its members to make the Society increasingly useful.
"During last year the appeal to the Government for assistance towards providing a suitable building for the Society has been answered, Parliament having granted the sum of $£ 500$ conditionally that the sum of $£ 1,000$ be subscribed for the same purpose by the public.
"A circular was, therefore, addressed in September last to every member of the Society, in response to which up to April last the sum of $£ 4752 \mathrm{~s}$. had been promised towards such a building fund, leaving still about $£ 525$ to be provided for. Our Honorary Treasurer, the Rev. W. Scott, thereupon laid the matter before Mr. Thomas Walker, of Yaralla, a gentleman always ready to support most liberally anything which he considers to benefit the Colony, in a letter auldressed to him on the 11th of April last. To this letter Mr. Thomas Walker replied the same day, and in the most liberal manner subscribed $£ 500$ towards this fund, which, but for this generous help, would probably have collapsed. There is now but about $£ 25$ needed to complete the subscription of $£ 1,000$, which, when collected, will enable the Council to apply to Government for the payment of the aforesaid Parliamentary grant of $£ 500$.
"The Council, while happy to be able to report to the members the present prosition of the builiing fund, think it but right to point ont that lout ahout seventy mombers, out of 347 on the rolls of the Nociety, have hitherto contributed to this building fund; and though we are now, hy Mr. Walker's most liberal assistance, placed in a position pessently to claim the Government grant, this fact ought all the mons to induce thase members who have not yet sulhomibel to cone forward without delay and liberally assist in a work not only of hencfit to onrsolves, but in a wider sense to the Colony at large. To must he self-evident that $£ 1,500$ will be far from sutficin to acemplish the olject in view except by borrowing ou mortage, thercfore every assistance must be valuable, and where alout 3.50 mombers unite, even small individual subscriptions berome in the asegregate most useful to the end in view.
"The Council has, within the past few days, taken active steps to secure the builling which hitherto has leen leased by the Academy of Aws, and partly sublet lay the later to the Roval Society ; the Council considering this huiding, with few alterations, the most cligible for the purposes of the Society. The purchase of the said building and frenises for the sum of $£ 3,525$, has been agreced upon, sulject to a farourahle report by our solicitor as to title.
"Mr. Henry Heron, solicitur, and a member of this Society, has most kindly undertaken to prepare a charter for the Society, which, when passel through Parliament, will put the Society on a proper legal footing.
"During the last year the Hon. Secretaries have forwarded the Journal of the Society for 1856 , and other publications entrusted to them for distribution airroal, to no less than 228 places, Great Britain and the Cobnies, the Continent and America, comprising in all 1,066 puldications. The Society has thus been the means of communication with the principal centres of leaming in the world, and a vast anount of bendit is alpeady derived from the liberal donations of publications received ly the society in return. These donations have amounted since May, 187%, to the present day, to no less than sis0 publiations, among which are many most valuable hooks. Berides these dunations, the library has been enriched during lasi yent by the purchase of several valuable scientitic works, and a reaglar supply of thirty-four periodials in Euglish, French, and Corman. Thus, in time a very valuable scientific library will be socurel.
"The Joura: "m Procedines of the society for 1876 are in course of distril,ution to the mombers. The Council acknowledge here, with thataks, the experlition on the part of the fovernment Printing Department, which thus emabled the members to receive last year's Journal at the beginning of the new session."

Honorary Menber.

In accordance with a recommendation from the Council, Thomas Walker, Esy, of Yaralla, Concord, was duly elected honorary member of the Society.

The following Financial Statement for the year ending 30 April, 18ir, was presented by the Rer. W. Scott, M.A., Honorary Treasurer:

Receipts.		s.	
To balance in the Union Bank, 30th April, 1877	123	3	
,, Sulsciptions and entrance fees	433	13	0
\%,Government Grant	200	0	0
, Professor Liversidge (for engravings)	9	5	8
	$\mathfrak{£} 766$		10

Disbersments.

By rent of rooms from 1st May, 187, to 30th April, $18 \% 8$. Office-keeper (Mrs. (asey), to 30th April, 1878
Hire of Masomic Hall for conversazione
Refreshments do. do.
Sundry expenses do. do.
Refreshments for monthly meetings
Furniture and effects.
Books
Engravings
Printing account
stationery do.
Petty cash and postage account
Book-binding
Alvertisements
Gas account

Reporter

Bank commission on draft cheques
H. W. Ingram (collector) commission
Packing cases, insurance, de.
Assistant Necretary (Mr. C'atlett) to 30th April, 18.7
Mr. Casey, distributing books
Assistant Secretary, twelve months salary to 30th April, $18: 8$ extra services
", Balance in" the Union Bank on the 30 th April, 18.8

Assets.

By perionlicals ordered

Liabilities.

Balance of assets over liabilities
$\begin{array}{rrr}50 & 0 & 0 \\ 10 & 10 & 0 \\ 9 & 0 & 0 \\ 25 & 0 & 0 \\ 22 & 7 & 2\end{array}$
1400
61146
$8919 \quad 9$
74150
$\begin{array}{lll}87 & 5 & 9\end{array}$
30121
$47 \quad 0 \quad 0$
$4019 \quad 0$
$21 \quad 3 \quad 4$
1000
660
280
$\begin{array}{lll}1 & 7 & 3\end{array}$
1136
$\begin{array}{lll}23 & 6 & 8\end{array}$
5189
$60 \quad 0 \quad 0$
7110
63141

| 2766 | 1 | 10 |
| ---: | ---: | ---: | ---: |
| 63 | 14 | 1 |
| 19 | 19 | 0 |
| 400 | 0 | 0 |
| $\mathbf{x 4 8 3}$ | 13 | 1 |

$47 \quad 0 \quad 1$
436130
$£ 483131$

The statement was adopted

The Honorary Treasurer reported that including the £500 from

 Mr. Thomas Walker, the subscriptions promised towards the Building Fund up to 30 April, 1878 , amounted to $£ 976$ 3s., as per the following list:£ s.d.
Abbott, Thomas Kingsmill $3 \quad 3 \quad 0$
Bartels, W. C. W. 500
Belfield, Algernon H. 330
Bensusan, S. L. 220
Bennett, George F 100
Bladen, Thomas 220
Bolding, H. J 500
Bowen, George M. C. $3 \quad 30$
Brazier, John, C.M.Z.S 220
Brodrib)b, W. A., F.R.G.S. $1010 \quad 0$
Brown, Thomas $5 \quad 0 \quad 0$
Burnell, Arthur $2 \quad 0$
Campbell, Allan, L.R.C.P. 500
Camploell, The Hon. Alexander, M.L.A. $20 \quad 0 \quad 0$
Clarke, Rev. W. B., M.A., F.R.s., F.R.G.N., \&c. $5 \quad 50$
Croudace, Thomas 300
De Salis, The Hon. Leopold Fane, M.L.C. $10 \quad 0 \quad 0$
De Salis, L. W., jun. $10 \quad 0 \quad 0$
Dixon, W. A., F.C.S. 110
Docker, Ernest, M. A. $3 \quad 30$
Fairfax, James R. $20 \quad 0 \quad 0$
Fairfax, Edward $10 \quad 10 \quad 0$
Favelle, John 500
Flavelle, Brothers, and Roberts 500
Frazer, The Hon. John, M.L.C. $20 \quad 0 \quad 0$
Gilliatz, Henry A. 110
Graham, The Hon. W., M. I.C. 500
Griffiths, \mathbf{F}. C. 500
Hay, The Hon. John, M.A., M.L.C. $20 \quad 0 \quad 0$
Holt, The Hon. Thomas, M.L.C. $10 \quad 0 \quad 0$
Henry, James $3 \quad 30$
Horton, Rev. Thomas 200
Hume, J. K $3 \quad 3$
Hume, F 5.5
Jones, P. Sydney, M.D., F.R.C.S. $10 \quad 10 \quad 0$
Jesephson, J. F., F.G.S., District Court Judge $20 \quad 0 \quad 0$
Keele, 'Thomas W, $3 \quad 3 \quad 0$
Knox, EilwardS $20 \quad 0 \quad 0$
Leibius, Adolph, Ph.D. $5 \quad 50$
Lenehan, Henry A $\because 20$
Liversidge, Archibald, F.C.S., F.G.S., \&c. $10 \quad 0 \quad 0$

still learing the sum of $£ 231 \%$ s. to be subscribed before he could claim the Government grant of $£ 500$, but he truster this amount would be made up by those present before leaving the room.

He was glad to inform them that the Council were in treaty for the purchase of the building they were now in, and that there was every probability of their being successful ; but he begged to draw attention to the fact that nearly $£ 500$ had been suloscribed by 73 members out of ahout 350 on the rolls of the Society, and that as considerable funds would be required towards the purchase
of the building (after obtaining the Government grant), he hoped those members who had not hitherto promisel anything would come forward and give them a helping hand.

A ballot was then taken, and the following gentlemen were duly elected officers and members of Council for the current year :-

PRESIDENT
(,$+{ }^{\circ}$ officio):
HIS EXCELLENCY sIR HERCLLES ROBINSON, G.C.M.G., \& C., \&C., \&c.
VICE-PRESIDENTS:
Rev. W. B. CLARKE, M.A., F.R.S., F.G.S., Hon. J. SMITH, C.M.G., M.D.
HONORARY TREASURER:
H. C. RLSSELL, B.A., F.R.A.S., F.M.S.

HONORARY SECRETARIES:
Professur LIVELidimik. Dr. ADOLPH LEIBIUS.

COUNCIL:

FITZGERALD, R. I., F.L.N. fURNEY, Proressor, M.A. JONES, P. SIDNET, M.D.

MOORE, CHARLES, F.L.S. ROLLENTON, CHRISTOPHER. WRIGHT, H. G. A., M.R.C.S., E.

Dr. Leibics stater that arrangements had been made for the various Sections to hold meetings during the ensuing year on the following dates:-

Nections.
At S o'clock p.m., except Sect. D, which meets at 4 p.m. Hay. June. July Aug. Sept. Oct. Nor.

| A-Astronomy, \&c. Friday | 3 | 7 | 5 | 2 | 6 | 4 | 1 |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| B,C-Chemistry and (ieology, Wednesday | 22 | 19 | 17 | 21 | 18 | 16 | 20 |
| D-Nat. Hist. \& Botany, Monday, 4 p.m. | 6 | 3 | 1 | 5 | 2 | 7 | 4 |
| E-Microscopy, Monday | 13 | 10 | 8 | 12 | 9 | 14 | 11 |

$\left.\begin{array}{l}\text { E.-Geography } \\ \text { G-Literature and Fine Arts }\end{array}\right\}$ Lapsed.
H-Medical, Friday $10 \begin{array}{lllllll}10 & 4 & 12 & 9 & 13 & 11 & 8\end{array}$

Nors-The Literature and Fine Art Section was resuscitated $26 \mathrm{July}, 18 \mathrm{i}$.
and announced the following names of the Committer-men of the different Sections of the Society, viz. :-

Section A-Astronomy.-Chairman: H. U. Russell, B.A., F.R.A.S. Secretary: G. D. Hirst. Committee: H. G. A. Wright, M.R.U.S.; W. J. MacDomell, F.P.A.s.; Rer. G. Martin, I. U. C. Colyer.

Sections B, C-Chemistiy und Goologh- - 'liaiman: Dr. Leibius. Secretary: W. Dixon, F.C.S. Committee: Messss. Sleep, M'Cutcheon, Bensusan, (ixps.
Section D-ATatural Mistory and Botany.-Chairman: R.D. Fitzgerald, F.L.s. Secretary: A. J. Stopps. Keeper of Herbarium: W. D. Armstrong. Committee: Messrs. Daintrey and James Norton.
Section E-Microscopy.-Chairman: Rew. George Martin. Secretary: P. Pedley. Committee: G. D. Hirst, W. MacDomell, W. Morris, L.F.P. ands. Glas.; H. G. A. Wright, M.R.C.s.
Section H-Medienl.-Chairman: H. (六. A. Wright, M.R.C.S. Secretaries: Drs. Sydney Jones and MacLaurin. Committee: A. Roberts, MI.R.C.S. ; Drs. Schuette is O'Reilly, and M. S. Clune, M.A., Lic. K.Q., Coll. Phy.
Section I-Sanitay,-Chairman: Alfred Roberts, M.R.C.S. Secretary: Harrie Wood. Committee: Hon. J. Smith, C.M.G. : H. G. A. Wright, M. R.C.s.; W. J. G. Bedford, M.R.C.S. ; and Dr. Belgrave.

Mr. C'ifistopifer Roliestor (Vice-President) then read his address, and referred to some of the more important scientific discoveries and investigations of the past year.

$$
\text { WEDAESDAY, } 1 \overline{0} \text { MAY, } 187 \mathrm{~S} .
$$

The annual Conversazione given by the Society was held in the Masonic Hall, York-street, at $\&$ p.m. on the evening of May 15, 1878.

The attendance was larger than on any previous year ; the members on this, as on former occasions, were permitted to introduce the ladies of their families.

The Vice-Presidents and Council received the visitors at the eastern entrance to the large hall, which together with the hall, were appropriately decorated by Mr. U. Moore, F.LLS., Director of the Botanic Gardens, who also exhibited a fine collection of rare plants.

The proceedings commenced by the Hon. J. Smith, C.M.G., M.A.D., V.P., delivering an introductory address which referred briefly to the various objects in the hall possessing more than a passing interest. Amongst the more prominent was the large collection of telegraphic apparatus exhibited by Major Cracknell,
the Superintendent of the Telegraph Department, and which was under the supervision of Mr. P. B. Walker, the Assistant Superintendent, assisted by Messrs. Dalgarno, Wilson, and Maguire, all of whom were present to explain the various technicalities. Amongst the numerous instruments on view was Fuller's mercurybichromate battery connected with automatic and quadruplex instruments; also Major Cracknell's torpellu-exploding shutter apparatus, together with a dynamo-electric apparatus intended for torpedo purposes in Sydney Harbour.

Mr. Dalgarno exhibited a private collection of magnetic and electric instruments, including an electric liattery for curative purposes.

Amongst the astronomical instruments exhihitel by the Government Astronomer was a new barrel chronorraph for registering star transits, the pen of which by the action of electro-magnets had two motions.

Mr. Russell also had on view a metermengraph instrument designed by himself and made at the Observatory, for registering on a sheet of paper 20 inches long by inches wide one day's record of thermometer, barometer, direction and force of wind and rain.

There was a fine collection of microseopes, and amongst the objects shown were the following:- The circulation of the sap of the Nitelle translucens-a species of water plant, samples of sediments of the water used in Sydney for domestic purposes; the cornea of a beetle's eye, which could be scen to le composed of various smaller lenses each producing a sequate image; and the orange-perforating moth belong to the genus (Pphideres.

A model printing press at work was exhibited hy the (fovernment Printer ; and a large number of interenting oljects, including geological specimens, rare old books and engravings, photographs, autotypes, etchings, dre., the necessary references to which were made in the printed Catalogue.

The Conversazione Committee consisted of the following gentlemen :-

Rev. W. Scott, M.A.
Dr. Leibius.
H. C. Russell, B.A., F.R.A.S.
C. Moore, F.L.S.
G. D. Hirst.

WEDNESDA $Y, 5$ JUNE, 1878.

Ordinary monthly meeting of the Royal Society of New South Wales, held in the Society's Rooms, Elizabeth-street.

Hon. J. Smith, C.M.G., M.D., V.P., in the Chair.
The minutes of the last meeting were read and confirmed.

The following gentlemen were duly elected ordinary Members of the Society, viz. :-

Robert Hunt, F.G.S., Royal Mint, Sydney.
Richard Thomas Hall, Seaton House, Crown-street, Surry Hills.
Francis Lindsay Barker, 130, Pitt-street.
Francis John Fuller, St. Leonards, North Shore.
Rev. Aanuel Wilkinson, Islington Cottage, Munni-street, Newtown.
James Thomas Wilshire, C.P.S., Scone.
George Moses Alexander, 48, Margaret-street.
J. H. Skinner, St. Paul's College, Darlington.

The certificates of nineteen new candidates were read.
One hundred and ninety-four donations were laid upon the table.

The Hon. Treasurer drew attention to the unsatisfactory condition of the Building Fund, and stated that until the $\mathfrak{E}^{2} 1,000$ promised had been raised, the grant of $\mathfrak{f} 000$ roted could not be paid by the Govermment. The advisability of securing subscriptions as speedily as possible was urgel on the Members by the Chairman, who pointer out that the purchase of the prolosed building would the even protitable as a commercial speculatior.

The Rev. J. E. Tevison-Woons, F.L.S., F.G.S., then read a paper on "Timber-producing Forests of Tasmania."

Mr. Jons Tebbi"tт, F.R.A.N', then read a paper on "A Proposed Correction to the Assumed Longitude of the Sydney Observatory."

WEDNESDAY, 3 JULY, 1878.

Ordinary montlly meeting of the Royal Society of New South Wales, held in the 'Society's rooms, Elizabeth-street, the Hon. J. Smith, C.M.G., M.D., V.P., in the Chair.

The minutes of the last meeting were read and confirmed.
The Cifirmas delivered the following address:- "It is impossible to go on with the business of this meeting without referring to the great loss the Society has recently sustained in the removal by leath of nur senior Vice-President, the Rew. Mr. (larke. A detailed notice of his life and labours will have to be given at the next annual meeting, but we cannot wait till then without giving some expression to our feelings. Mr. Clarke was one of the steadiest friends of our Society, and alway, one of its most efficient supporters. He attended regulanly the general meetings and the meetiugs of the Council whenever it wats in his power, and we were indebtel to him for many valuable papers and addresses. It is pleasant to think that in his last days he suffered little pain,
and that his faculties remained unclouded to the end. A fortnight before his death he had completel a new edition (the 4th) of the 'Scdimentary Formations of New South Wales,' a copy of which is on the table, and I understand that he had also finished the preparation of a geological map of the Colony. On the last day of his life he busied himself arranging fossils, and in writing a letter to Professor de Koninck, of Liége, who had examined and named many of his specimens. This letter, through the kindness of his son, Mr. M. Clarke, I have heen able to bring with me, and I will read portions of it for the sake of the interesting particulars relaing to his last illness:--‘ Branthwaite, 15th June, 1878. My dear Professor de Koninck,-You have cloubtless expected to hear from me before this, but I have been sorely hindered in writing. I have before told you of my general weakness in health since the first days of August last; but I did not anticipate such a culmination as I have since experienceld, and from which I am only now slowly recovering. I went with the Chief Engineer of Railways in the begiming of August to the Liverpool Range and Plains, and visited some of my old camps in 1851-2, returning the better for the journey to and fro. This amendment was followed by paralysis of my left side and limbs, and this is the second letter I have attempted since the date of the attack, which was the 6 th of March. I was seater in my arn-chair in this my study, when, trying to rise to get down a book, I found myself a prisoner bound hand and foot, and after two hours struygling to lift myself I gave it up, and begran to call for help, with cries of fire, murder, thieves, de., which I soon discovered was useless, as I found my speech anything but intelligible. Knocking on the floor with my right font hrought my son from the garden, and I was soon attended by my usual medico, Dr. Ward, and by a young friend of his, Dr. Kyngdon, who with my own sou carried me upstairs to bed, where, with some exceptions, I have since chiefly rested. Dr. Kyngdon said to me, "Put out your tongue," and this done, he observed. "Your tongue is half paralyzed.' This was intimation to me of my condition. I am now, however, so far recovered as to be ahle to walk upstairs, step by step, holding the banister; but I can only come down sideways, crab-like, with both feet on a step, the left sliding over the one above; and I have once, by aid of two assistants, managed to visit a friend across the road. Dr. W. said to my wife * * that he did not think I should recover, and now he has expressed to me his astonishment that I am so far towards health. I must apologize to you for this serawl, but I did not like to wait till I could write better * * I hal just completed the MSS. of a fourth edition of my 'Remarks' when the stroke came, and by the help of my son I have got it through the press, but the copies have not yet left the printing office. * * * * * * I had a
somewhat similar attack in 1856, which occurred on Easter Sunday in church, and I lad a hard struggle to get through my ministerial duties. But God is ever merciful, and I am not despairing of his loving-kindness towards me now. All my friends will have it that I have suffered from over-work about the book. Perlaps they are right, for I had to make a good deal of research to complete it. * * * * * My new edition brings us all to 1sin, and sives lists of fossils, from various anthorities, with fresh sections, and a small map. I hope you have in some degree recovered from the effects of your severe sorrow, and, with the warmest regard, sympathy and gratitude, I remain, my dear friend, Yours, very sincere.-W. B. Clarke-P.S.- * * * * Lastly, give nie absolution for this letter, which is as shameful productions; but I cannot do more.' These concluding words had a deeper significance than the writer was aware of. About the middle of the same night he was heard making some noise in his room. His son went to him and found him standing on the floor complaining of pain across his chest. He was assisted into bed, and the doctor sent for, hut within ten minutes it was all over. On June 18 the Council and many members of the Royal Society paid the last trisute of respect and affection to their late VicePresident hy following him to the grave. And now we shall long miss the well-known face at these meetings, and the cheering voice, ever ready with a kindly greeting for his fellow-members and friends."

Mr. H. C. Resssilil, B.A., F.R.A.'., moved the following resollution :- "That the members of the Royal Society of New South Wales desire to express their grief for the loss which the Society has sustaine: by the death of their late Vice-President the Rev. W. B. Clarke, F.R.S., and at the same time express their sympathy with Mrs. Clarke and the members of his family. That a copy of this resolution be sent to Mrs. Clarke.

The resolution was seconded and manimously agreed to.
Mr. J. R. Farmax moved the following resolutions:-" 1 . That, in the opinion of this Meeting, the distinguished services rendered by the late Rev. W. B. Clarke, not only to these Colonies, but in the causs of science, call for sonte special recognition throughout the Australian group. ©. That an opportunity for the public gemerally to give expression of their appreciation of the character and services of the late Rev. W. B. Clarke as a learned colonist, a faithful minister of religion, and an eminent scientific man, may be most appropriately afforded through the medium of this Society, of which he was for so many years senior VicePresident. 3. That the Council of the Royal Society be requested to take the necessary steps to bring before the inhabitants of the Australian Colonies the subject of the foregoing resolutions, with
a view to provide a suitable memorial of him whose decease we lament, and whose services to science, as well as in connection with the development of our mineral resources, command our grateful acknowledgment."

The Resolutions were duly carried.
Professor (xtraer, M.A., moved "That the following gentlemen be appointed a Committee to co-operate with the Council in carrying out the objects of these resolutions, viz. :-

Messrs. J. R. Fairfax, J. Kinloch, R.A. A. Morehead, W. (\%. Murray, A. S. Webster, and E. L. Montefiore.

The Resolution was agreed to.
The following gentlemen were duly clected ordinary members of the Society :-

Edwin Chisholm, M.D., M.R.C.S., L.S.A., ďe., 161, Macquarie-street.
Vincent W. (tiblin, Australian Joint Stock Bank, Sydney.
E. W. L. Herborn, Victoria-street, Darlinghurst.

Alfred P. Backhouse, M. A., Ithaca, Elizaheth Bay.
Numa Joubert, Noumea.
Joseph Brooks, F.R.G.S., Hope Bank, Nelson-street, Woollahra.
James Markey, L.R.C.s., Irel. L.R.C. Phys. Edin., Regent-street.
Ludlovico Hart, Government Printing Office.
William C. Goddard, The Exchange, New Pitt-street.
Edward Wm. Welch, St. Olive's, Bondi.
Edwd. H. Fry, 4 Verena Terrace, Walker-street.
E. E. Smith, Struth's Wharf, King-street.

James Balfour, Union Club.
Lamont (t. N. Young, Assoc. R. S., Mines, F.G.S., Dept. of Mines.
Alexander Paterson, M.D., M.A., 117, Castlereagh-street.
Hugh George, Sydney Moraing Herald Office.
John Rendell street, Birtley, Elizabeth Bay Road.
F. Poolman, Colonial Sugar Retining Co., Bridge-street.

Hugh Paterson, junr., 24i, Macquarie-street.
The certificates of nine new candidates were read.
The Chatrmax announced that the Council had in contemplation the election Mr. Charles Moore, F.L.S., as one of the VicePresidents, in the place of the Rev. Mr. Clarke, for the remainder of the year. One hundred and thirty-six donations received since the last meeting were laid upon the table.

Mr. W. A Dixon, F.C.S., F.I.C., read a paper on "Metallurgy of Nickel and Cobalt."

Mr. H. C. Russelle, B.A., F.R.A.s., then read a paper by Capt. Marshall Smith, of the ship "T. L. Hall," on "The Meteorology of the Coast of New south Wales, and the desirability of issuing cautionary storm warnings ly telergrams to the various ports, from the Observatory."

WEDNESDAY, raldedst, 18\%s.

Ordinary monthly meeting, of the Royal society of New South Wales, held in the Society's Ruoms, Elizabeth-street.

The minutes of the last meeting were read and confirmed.
The following gentlemen were duly elected ordinary members of the Society, viz. :-
T. H. Potts, Victoria-street, Ashitield.

Thomas Browne, J.P., Darlinghurst Road.
Reginald James Black, Bank of New South Wales, Sydney.
F. B. Kingdon (care of Lieut. Taunton), Victoria Barracks. Rev. D. Placid Quirk, M.A. (Sydney University), Post Office, Cook's River.
Rev. E. G. Hodgson, St. Paul's College, University.
Eugene Herborn, 31\%, Victoria-street, Darlinghurst.
George Buttertield, Buckland-street, Newtown.
Hamilton Lambert Low, 139, Plillip-street.
The certificates of twelve new candidates were read.
The Charrmax said that a copy of the resolution of condolence with Mrs. Clarke, passed at the last evening, in reference to the death of the late Rev. Mr. Clarke, having been forwarded to Mrs. Clarke, a letter had been received in reply from Mr. (larke's son.

The Secretary read the letter as follows:-
Branthwaite, St. Leonards,
Dear Dr. Leibius, 8 July, 1878.
1 have been requester by my mother to convey to you her sincere thanks for your kind sympathy for her in her deep sorrow; also her grateful acknowledgment of the gratifying mention made of my much-lamentel father at the late meeting of the Royal society. Allow me also to express my deep sense of the honor bestowed on his memory, and to wish for the Royal Society all the success which he so earnestly desired.

I am, my dear Dr. Leibius,
A. Leibius, Esq.,
Secretary Royal Society, N.S.W.

Yours faithfully, M. W. S. CLARKE.

The Chairman said that the general committee appointed to carry out the resolutions respecting the Rev. W. B. Clarke had had several meetings and a good deal of diseussion. Various plans had been suggested, and it was agreed that the memorial should take the form of an annual course of lectures on geology, free to the public, to be delivered under the auspices of the Royal Society. These lectures would be known as the Clarke lectures on geology,
or some such term as that. And it was also proposed that a gold medal should be given from time to time as a reward of meritorious contributions to geological science. It was intended that they should follow the example of the Murchison medal given by the Geological Society of Great Britain. There might be some difficulty in determining precisely how it should be given, but it was not thought necessary at this stage to go into details. The fact was that the exact character of the memorial must be determined to at large extent hy the amount of the contributions; but it was thought that they cuald not ask for contributions from the public without a definite statement in the first instance of what was proposed. There was the proposition of the joint committee-an annual course of lectures and a gold medal. The joint committee, he thought, were invested with full powers to deal with this matter, but he thought it was the feeling of the committee that it would be well to hare the sunction of the meeting of members so as to strengthen them in their intentions and enable them to go to the public with contidence to call for subscriptions to carry out these ends. They knew that there were differences of opinion about the form of a memorial, and it was not professed that these things were the very best possible, but they seemed to be things that were most easily within their power. Various suggestions were made, attended by considerable ditticulties in their carrying out; and the committee saw its way more clearly to carry out the memorial in these two forms than in any other. It was also thought that taking these forms it would attract more general sympathy. If plenty of money were subscribed - enough to do these things and something over -then they might have some permanent memorial in the shape of a bust to be put in some public institution. But the committee though that at present there was no use to go any further until they saw what response was likely to be made to the appeal to the public. He did not know that it was necessary to ask a formal sanction to these proposals by a vote of this meeting. He thought the powers conferred on the committee pretty large, but he believed the committee would like to have some kind of sanction from the meeting, whatever they might choose to give. It had been suggested that unless some actual disapproval was stated they would take silence as consent. (Hear, hear.)

Mr. J. Henry should like to express his disapproval of the proposals. With all due deference for the views of the committee, he still maintained respectfully that a scholarship in the University for geology and other subjects connected therewith would perpetuate the memory of the late Mr. Clarke in a far more substantial manner than monumental brass or marble. He also submitted that a scholarship would be of far more benefit to the
rising young men of Australia than the forms suggested. The course of lectures would attract very few persons, and would hardly appeal to any feeling of sympathy. He gathered from what he had heard that this medal was to be given to young persons unconnected with the University; but he thought the time was far distant when they would have a class of young men who would be able to pursue their studies apart from some help from the University. He thought it was a great mistake to establish these lectures unless you gave young men the foundation of a hope of reward to stimulate their love for science. While these were his views, he was willing to assist in whatever was generally decided upon.

The Chatrman saill that the idea of a scholarship was discussed loy the committee, and he must say that his sympathy rather went in that way; but there were certain difficulties in the carrying out of the idea, that were thought sufficient hy the committee to cause it to be set aside.

Mr. Charles Moore would only mention nue objection to Mr. Henry's proposal ; and that was that the University lectures were only open to a certain portion of the public, whereas lectures under the Royal Society would be open to the public at large.

The subject then dropped.
The Chatrmax announced that, in aceordance with the rules, the Council had at their last meeting elected Mr. Charles Moore, F.L.S., one of the Vice-Presidents of the Society, to fill the vacancy caused by the death of the late Rev. W. B. Clarke, and that Mr. E. L. Montefiore had been elected a member of the Council in the place of Mr. Charles Moore, in each case for the remainder of the year.

Seventy donations were laid upon the table.

The Cmarman intimated that the Society had just received notice of the death of Professor Henry, Secretary and Director of the Smithsonian Institute, who had been one of the Society's most valuable correspondents, and had sent them a great many contributions every year.
The Hon. Treasurer gave notice of his intention to move at the next General General Meeting that an addition be made to By-law XV.
Mr. H. C. Resselle, B.A., F.R.A.S., then read a paper on "Storms on the Coast of New South Wales,"

A microphone constructed by the Rev. Frank Firth was exhibited by Mr. William MacDonnell, who read a short paper by the Rev. F. Firth upon it ; several interesting experiments were then successfully made.

Ordinary Monthly Meeting of the Royal Society of New South Wales held at the Society's Rooms, Elizaheth-street.

Charles Moore, F.L.S., V.P., in the Chair.
The minutes of the last meeting were real and confirmed.
The following gentlemen were duly elected ordinary members of the Society, viz. :-

Rev. Canon Moreton, N't. Peter's Parsonage, Woolloomooloo. Octarius L. Montefiore, Gresham-street.
S. De Lissa, 3 Barrack-street.

Rev. Peter Macpherson, M.A., Bank-street, East Maitland. Fred. H. Kyngdon, M.D., L.'.A., M.R.C.S., C.M., North Shore.
C. W. A. Bayley, Miller's Point.

George H. Reid, Necretary to Attomey-General.
Henry Wise, Sarings' Bank, Barrack-street.
Ret. Edwin H. Wright, Dubbo.
George Colquhoun, care of Messrs. Wiant ix Johnson, Solicitors.
Robert J. Marklove, 52 Pitt-street.
William Roberts, Penrith.
The certificates of thirteen new candidates were read.
Mr. A. S. Webster, Hon. Treasurer to the Clarke Memorial Fund, announced that the subscription list was lying upon the table, and that the Secretary and Treasurer would be glad to receive the signatures of members present.

The Charman stated that the number of sulseriptions to date was forty, and the amount subscribed and promised, £136; he regretted the amount was not larger.

The Hon. Sreciaetari (Dr. Leibius) amounced the receipt of a microscope ordered by the society, and which had been selected by Professor Liversilge"; he also statel that in the matter of the purchase Mr. Swift hat treated the Society rery liberally.

Eighty-one donations were laid upon the table.
On the motion of Mr. H. C. Russell, seconded by Dr. Leibius, and duly carried, the following aldition was made to By-law XV, viz. -
"And any member who shall be two years in arrear with his subscription shall be considered to have resigned."

The Rev. J. E. Tenison-Woods, E.L.S., F.G.S., then read the two following papers:-

1. "On Molluscan Fauna of Tasmania."

- 2. "On some new Australian Miocene Corals."

Mr. Thomas Bladey exhihited a phonograyh made by him, and after reading a short paper describing the instruments, a series of experiments were tried, which were very suceessiful, and caused much amusement.

After concluding his paper, Mr. Bladen said he would commence the experiments by asking his son to say something in the tube.

Mr. Bladen, junr., speaking in the tube in a loud, clear tone of voice, said:" Gentlemen, I am a phonorpaph, some people think I can't talk, but I can talk a littic. How do you like me? How do you do? Good night."

These words were faithfully reproduced by the phonograph, and distinctly heard by all the members present, who warmly applauded the result. At the request of a member, Mr. Bladen made the instrument repeat the words.

The next experiment was with the words "Advance Australia! God sare the Queen."

These words were also successfully repeated by the instrument.
Mr. Beaden, semr, in answer to an inquiry, said the instrument was capable of repeating about 250 words. Mr. Eddison, the inventor, was making an instrument that would record 500 words.

A member asked if it would reproduce musical sounds.
Mr. Bladen, senr., said he had tried it with the flute and the cornet, but it did not give the proper tone; it gave the time correctly, and all the notes, but not the same tones.

Mr. Bladery, junr., next delivered the following words in the tube: "Gentlemen, I beg to propose a rote of thanks to Mr. Eddison, for his very interesting invention.-Coo-ee!"

The phonograph repeated the words with unvarying fidelity, but with a peculiarly comical tone in the last word that caused great diversion amongst the andience.

Mr. Bladex, semr., sang the well-known words in the patriotic song,

> Rule Britannia, Britannia rules the wares,
> Britons never, never, never shall be slaves!

The words were accurately repeated by the phonograph, though the musical tones were not reflected correctly. At the request of members the words of the song were repeated by the instrument, and they were delivered much as they would be if sung by a very drunken man.

Mr. Bladen, senr., explained that when the same message was repeated it became less distinct at each repetition, through the impressions on the tinfoil being rubbed out or worn away.

The last experiment was with the following words, spoken in the tube by the Rer. Mr. Tenison-Woods: "I beg to propose a vote of thanks to Mr. Bladen for his very interesting exposition of this valuable instrument." These words were accurately and very distinctly $r \in$ peated by the phonograph.

WEDNESDAY, 2 OCTOBER, 1878.
Ordinary monthly meeting of the Royal Society of New South Wales, held in the Society's Ronms, Elizabeth-street.

Charles Moore, F.L.S., in the Chair.
The minutes of the last meeting were read and confirmed.
Tho following gentlemen were duly elected ordinary members of the Society, viz :-

John Newton, Darling Point.
Morrice A. Black, F.I.A., Australian Club.
F. J. Thomas, Hunter River N.s. N. Co., Market-street.

Marshall Smith, Oneby-gamba, Newcastle.
Alexander Dean, Elizabeth-street.
Thomas Elward Hewett, The Observatory, Sydney.
Robert Fraser, 12, Barrack-street.
Arthur Levett Jackson, Government Printing Office.
W. Rose, Merchant, O'Connell-street, Sydney.

Rev. Wm. Hey Sharp, St. Paul's Collere, University.
Augustus Berney, H.M. Customs, Sydney.
Ebenezer Macdonald, Oriental Bank.
E. Cyril Haviland, Ashfich.

The certificates of seven new candidates were read.
Seventy-four donations were laid upon the table.
Mr. W. A. Dixox, F.C.S., F.I.C., then read a paper on "The Deep Well Waters of Sydney."

WEDJESDAY, 6 NOVEMBER, 15% S.
Ordinary monthly merting of the Royal Society of New Nouth Wales, held at the Society's Rooms, Elizabetli-street.

Hon. J. Surtir, C.M.G., M.D., V.-P., in the Chair.
The minutes of the last meeting were read and confirmed.
The following gentlemen were duly elected ordinary members of the Society, vizi :-

John Nowlan, Union Club, or "Eelal," West Maitland.
Thos. Augastus Ellis, C.E., 132, Pitt-street.
Rev. Robert Collie, Newtown.
Chas. Townsend (fedye, Eastbourne, Darling Point.
William Alfred Cottee, Spring-street.
Rohert H. Burnett, O. F., Railway Department.
George Chas. Westerarth, Cnion Club).
The certificates of eight new camdidates were read.
Forty-three elonations wrere laid upon the table.
Mr. H. C. Russell, B.A., E.R.A.S., then real a paper un "Some Results of an Astronomical Experiment on the Blue Mountains."

IHEDNESDAY, \& DECEMBER, 1878.

Ordinary monthly mecting of the Royal Society of New South Wales, held in the Society's Rooms, Elizabeth-street.

The minutes of the last meeting were read and confirmed.
The following gentlemen were duly elected ordinary members of the Society, viz. :-

> W. H. Archer, F.I.A., London, Australian Club.

Edwin Henry Bestic, L.R.C.S., Ireland, L.R.C.P., Edinburgh, Arthursleigh-terrace.
William Chatfield, 69, Pitt-strect.
Herr Kretschmann, Sydney.
Stephen Mallarky, Govermment Printing Office.
Duncan Mearns Maitland, jun., Elizabeth-street, Paddington.
Jules Meilhan, Victoria-tervace, Victoria-street. James L. Ogilyy, Oriental Bank Corporation, Sydney.
The certificates of seven new candidates were read.
Nineteen donations (publications) were laid upon the table, also a special donation to the museum of the Society, namely a collection of two hundred and one species of land and marine shells, presented by John Brazier, Esq., C.M.Z.S.

A paper was then read by Mr. L. W. Hart on "The Rise and Progress of Photography."

Mr. W. A. Dixon, F.C.S., F.I.C., read a paper entitled "Notes on Huan Island Guano."

Mr. H. C. Russell, in the absence of the author, read a paper by Mr. J. P. Josephson on "Some Facts about the great Tidal Wave, May, 187%," at the conclusion of which-

Mr. Charles Moore, F.L.S., one of the Vice-Presidents of the Society, informed the members that Dr. Leibius, one of the Honorary Secretaries, intended shortly to proceed on a tour to Europe, and would probably be absent at the next general meeting of the Society: Mr. Moore referred in very eulogistic terms to the services rendered to the Society by Dr. Leibius, and to the large amount of time and attention bestowed upon the Society's affairs by him, more especially since during the absence of Professor Liversidge, the joint Honorary Secretary, the whole of the duties of this office had fallen upon him.

The Cifarman heartily indorsed all that was said by Mr . Moore, and a hearty vote of thanks to Dr. Leibius, coupled with best wishes for his intended journey, were passed by the meeting.

Dr. Leibius, in thanking the two Vice-Presidents and the meeting for their very kind appreciation of his services to the Society, and their good wishes for his intended trip to Europe, assured them that, though the work of Honorary Secretary had, on account of the large extension and progress of the Society, very much
increased, he always looked upon it as a labour of love, and felt amply rewarded by seeing the Society steadily progress. The Socirty was now in correspondence and interchange of scientific pullications with most of the principal scientific Institutions of Europe and America. Professor Liversidge, as one of the Honorary sideretaries, had certainly done the lion's share of the work when here, and great credit is due to him for the part he took in bringing about the new start the Society had takenduring the last few years. While abroad, Professor Liversidge had been of much service to this Society in selecting books, and a very valuable microscope, \&c. During this session of the Society, seventy-right members have been elected; and it is hoped that, as the Society now consists of over four hundred members, a larger number of working members than hitherto will be forthoming.

ADDITIONS

TO THE
LIBRARY OE THE ROYAL SOCIETY OF NEW SOUTH WALES.

DONATIONS-1878.

The names of the Donors are in Italics.
Feports, Obseryations, \&c.
Adelaide:--The Adelaide University Calendar for the Academical Yea
1878.

The Registrar.
Catalogue of Plants in the Government Botanic Garden, Adelaide, S.A.

Report of the Progress and Condition of the Botanic Garden and Government Plantations during 18\%.

Dr. Schomburgk.
Meteorological Observations made at the Adelaide Observatory, January, February, March, and April, 1878.

The Observer.
Arckland :--Report of the Auckland Institute for 1877-78.
The Institute.
Boston, U.S.A. :-Memoirs of the Boston Society of Natural History.-
Vol. II. Part 4. Nos. 5 and 6.
Proceedings of the Boston Society of Natural History :Vol. XVIII. Parts 3, 4.
Vol. XIX. Parts 1, 2.
The Society.
Proccedings of the American Academy of Arts and Sciences.-
Vol. XIII. Part 1.
The Academy.
Brisbane:- Report of Board on Dr. Leaton's Minute re Quarantine and Medical Inspection.
A Bill "to amend" the Health Act of 18,2.
L. A. Bernays, F.L.S.

Buffalo :-Proceedings of the American Association for the Advancement of Science. Twenty-fifth Meeting, August, 1876.

The Association.
Brossels :-Moniteur Industriel. Vol. V. No. 29, 10 October, 1878.
The Publisher.
Calcutra:-Memoirs of the Geological Survey of India-
Vol. XII. Parts 1, 2.
Vol. XIII. Parts 1, 2.
Do.
do. (Palæontologia Indica.)
Series II. Parts 2 and 3.
Series IV. Part 2.
Series X. Parts 2 and 3.
Series XI. Parts 1 and 2.
Records of the (reological Survey of India-
Vol. IX. Parts 2, 3, and 4.
Vol. X. Parts 1, 2, 3, and 4.
The Superintendent of the Geological Survey of India.

Christanta :-Some Remarkable Forms of Animal Life from the Great

 Deeps off the Norwegian Coast (with seven plates).Enumeratio Insectorum Norvegicorum Fasciculus. II, III.
Oversight of Norges Arancider, by Robert Collett. I. Saltigradæ, Citigradx (with four maps).
De i sander Bergenhus Amt hiltil observerede Coleoptera og Lepidoptera, by J. Sparae Schneider.
Insecter og Midder (with four plates), by W. M. Schoyen.
Insecter og Smaakryb (with eight plates), hy W. M. Schoyer.
Forhandlinger, I Videnskabs-selskabet i Christiania, Aar, $18 \% 4$ (eight plates).

Do. do. do. do. do. 1875 (five do.)
Le Royaume de Norvige et le Peuple Norvígien, by Dr. O. J. Broch.
Quellen zur Geschichte des Taufsymbols und der Glaubensregel. III.
Norwegian sipecial Catalogue for the International Exhibition at Philadelphia, 1876.
Rejsckart over Norges, 5 sydlige stifter (two maps).
The Royal Unirersity of Norway.
Difor:-Mémoires de l'Académie dez Sciences, Arts et Belles Lettres de Dijon. Troisicme Série. Tome quatricme. 15%.

The Acoulemy.
Dremen:-Zeitschrift des K. Sachsischen Statistischen BureausBand XXII. Heft 1, 2,3 und 4 .
Band XXIII. Heft 1, 2, 3 und 4. | The Bureau.
Leopoldina. Heft 7, $8,9,10,11$ und 12.
Nova Acta. Band 37 und 33 .
Royn! Áatemy of Natural Sciences.
Mittheilungen aus dem K. Zoologisehen Museum zu"Dresilen.
Bericht iiber die Verwaltung der Kiniglichen sammlungen für Kunst und Wissenschaft an Dresden. 1874-75.
Archiv für literaturgeschichte. Merausgeceben von Dr. R. GoscheBand I, II, III, IV, V, VI.
Band VII. Heft land 2.
D2. Martin Iuther's ersten und älesten Vorlesungen uiber die Psalmen. Band I und II.
Generat-Hirection der K. summlungen für Kunst und Wissenschaft all Uiorseden.
Deblin :- Proceedings of the Royal Irish AcallemyVol. II. Series II. Nos. 4, 5, 6.
The Transactions of the Royal Irish AcademyVol. XXV. Nino 20. Vol. XXXI. No. 1, 2, 3, 4, 5.
List of Council, Officers, and Nembers of the Royal Irish Academy, 31 July, 15.6.

The Ararlemy.
Edinburfin:--Transactions of the Edinhurgh (ieological Society. Vol. Mif. Part 1.
Proccedings of the Royal Society of Edinhurgh-
Session 15: - - 3.
Do. 1873-74.
Da. 187475.
Do. 1875-76.
Do. $1876-7 \%$
The Socity.
Edinburgh Astronomical Observations. Tol. XIV. 18,0-7\%. (N2 plates.) The Royal Ubservatory, Scotland.
Freiburg:-Berichte iiber die Verhandlungen der naturforschenden Gesellschaft zu Freiburg i Buden. Band VII. Heft 1 und 2.

The Society.

Glasgow :-The Glasgow University Calendar, 1878-79. The Registrar.
Hamburg:-Verhandlungen des Vereins für Naturwissenschaftliche Unterhaltung zu Hamburg, 1871-1874.

1875, Band 11.
The Society.
Mittheilungen der Geographischen Gesellschaft in Hamburg, 1876, 1877.
The Society.
Haarlem :-Archives Keerlandaises des Sciences exactes et Naturelles. Tome, XIII. Livraison 1, 2 and 3.

The Society.
Heidelberg:-Verhandlungen des Naturhistorisch-Medicinischen Vereins zu Heidelberg, zweiter band erstes heft. The Society.
Iowa:-Proceedings of the Davenport Academy of Natural Sciences, Vol. II., Part I.

The Academy.
Jena :-
Report from the Society of Natural History of Jena.
XI. Bd. N.F. 4 Bd. 3 Heft.

XI.	,	4	,	4	,$"$
XII.	$"$,	5	$"$	1	$"$,
XII.	$"$	5	,	2	$"$,
XII.	$"$,	5	,	3	$"$,
XII.	,	5	,	4	,$"$

The Society.
Lausanne:-Bulletin de la Société Vaudoise des Sciences Naturelles. Vol. XV. Nos. 78, 79.

The Society.
Liege:-
Annales de la Société Géologique de Belgique.
Tome II. 1874, 1875.
, III. 1875, 1876.
" ${ }^{\prime}$. 1877, 1878.
The Society.
Loxembourg :-Publications de l'Institut Royal Grand-Ducal de Luxembourg (Section des Sciences Naturelles). Tomes XV and XVI. The Institute.
Leeds:-
The Yorkshire College of Science, Leeds, Calendar for 1877-8.
Third Annual Report of the Yorkshire College of Science, 1876-7.
The College.
Lille :-Société Géologique du Nord, 1870, 1874. Annales II, III, IV.
The Society.
LTVERPOOL :-Proceedings of the Literary and Philosophical Society of Liverpool. No. XXXI.

The Society.

London :-

Proceedings of the Royal Society. Vol. XXVI. Nos. 179, 180, 181, 182, 183, 184, 185, 186, 187.

Vol. XXVII. Nos. 188, 189.
The Society.
Transactions of the Royal Historical Society. Vol VI. The Society.
List of the Linnean Society of London, 1877.
The Journal of the Linnean SocietyBotany. Vol. XVI. Nos. 93, 94, 95, 96, 97, 98. Zoology. Vol. XIII. No. 72.

Vol. XIV. Nos. 74, 75.
The Society.
Monthly' notices of the Royal Astronomical Society. Vol XXXVIII. Nos. 1, 2, 3, 4, 5, 6, 7, 8.
Memoirs of the Royal Astronomical Society. Vol. XIIII. 1875-77.
The Society.
A Catalogue of the Books in the Admiralty Library. The Librarian.
The Geological Record for 18%.
The Editor.
Quarterly Jourrial of the Meteorological Society. Vol. III. Nos. 23, 24.
The Society.

London-continued.
The Journal of the Anthropological Institute of Great Britain and Ireland. Vol. VII. No. IIf. February, 1878. Vol. IV. No. IV. May, 1878.

The Institute.
Journal of the Royal Microscopical Society. Vol. I. No. 1.

| " | $"$ | No. 2. |
| :--- | :--- | :--- | :--- |
| $"$ | $"$ | No. |
| $"$ | $"$, | No. 4. |

The Society.
Transactions of the Institution of Naval Architects, 1877.
The Librarian.
Proceedings of the Royal Institution of Great Britain. Vol. VIII., Parts 1, 2, 3, 4 .
Proceedings of the Royal Geographical Society. Vol. XXII, Nos. 2, $3,4,5,6$.

The Society.
Report of the Council of the Royal Colonial Institute, 28 June, $18{ }^{\circ} 8$.
Proceedings of the Royal Colonial Institute. Vol. IX, 1877-78.
On Trek in the Transvaal. By Harriet A. Roche. The Institute.
Proceedings of the Physical Society of London. Vol. II, Part IV.
The Sociefy.
Manciester:-Transactions of the Manchester Geological Society. Vol. XIX. Parts 14, 15, 16, 18, 19, 20, 21, 22.

The Society.
Marberg:--Sitzungsberichte der Gesellschaft zur Befiorderung der Gesammten Naturwissenschaften in Marburg. 1866 to 1876 (inclusive).
Untersuchungen uiber Einseitig frei Schwingende Membranen, \&c. By Carl Mïller.
Untersuchungen uiber die Wirkung des Veranderten huftdrucks, \&c. By Dr. Speck.
Uerber die zugleich gleicheckigen und gleichflachigen Polyeder. By Dr. E. Hess.

The Society.
Massachusetrs :-Bulletin of the Essex Institute. Vol. VIII, 1876.
$\begin{array}{cc}\text { Do. } & \text { do. } \\ \text { Essex } \\ \text { Institute } \\ \text { Historical Collections. Vol. XIII. Parts 3, } 4 .\end{array}$
The Institute.
Dredging Operations of the U.S. Coast Survey Steamer "Blake." Letter No. 1, from Alex. Agassiz.
Annual Report Museum of Comparative Zoology. Harvard College,
1876.

The Museum, Harvand College.
Melbotrne:- -Statistical Register of the Colony of Victoria, 1876.
Part VII-Interchange. Part VIII-Law, Crime, \&ic. Part IXReligious, Moral, and Intellectual Progress.
Index for Statistical Register of the Colony of Victoria, 1876.
Statistics of Friendly societies for the year $18 \% 6$.
Statistical Register of the Colony of Victoria, 187%.
Part I-Blue Book. Part II-Population. Part III-Finance,
\&c. Part IV-Production. Part V-Vital Statistics. Part VI -Accumulation.
Index to Australian Statistics for year $18 \% 7$.
Victorian Year Book for 18\%-8.
The Government Statist.
Reports of the Mining Surveyors and Registrars of Victoria, quarter ending 30th September, 1877.

> Do. 31st March, 1878.
> Do. $\quad 30$ th June, 1878.

Report of the Chief Inspector of Mines for 18%.
Mineral Statistics of Victoria for year 187%. The Minister of Mines.
Melbourne Medical Record. Vol. VII, No. 5.
The Publishers.

Melbourne-continued.
The Melbourne University Calendar for the Academic Year 18\%7-78.
The University.
Eucalyptus (different varieties) 11 Litho. Plates.
The Organic Constituents of Plants and Vegetable Substances. By Dr. G. C. Wittstein. Translated ly Baron Ferd. von Miieller, C.M.G.

Proceedings of the Zoological and Acclimatisation Society of Victoria. Vol. V, 1878. Baron Ferd. von Müeller, Government Botanist.
Transactions and Proceedings of the Royal Society of Victoria. Vols. XIII, XIV.

The Society.
Middlesborough :-Report on the Progress of the Iron and Steel Industries in Foreign Countries. 11. 187.
Journal of the Iron and Steel Institute. No. 1, 18.8. The Institute.
Montpellier :-Mémoires de la section des Sciences. Tome IX. 1 Fasc., 1876.

The Academy.
Molhorse:-Bulletin de la Société Industrielle de Mulhouse. January, February, March, April, May, June, July Augnst, September, October, Norember, 1878.

The Society.
Moxchen :-Abhandlungen der Mathematische-Physickalischen classe der Koniglich Bayerischen Akademie der Wissenschaften. XII, XIII. Band 1, 2, and 3, abtheilung.

Sitzungs berichte der Mathematisch-Physickalischen classe der k. b. Akademie der Wissenschaften.
Munchen, 1876. Heft 1, 2, 3.
Do. 187\%. do. 1, 2, 3.
Monographie der Sapindaceen-Gattung Serjania (von L. Radlkofer. Almanach der Koeniglich bayerischen Academie der Wissenschaften for $18 \% 8$.

The Academy.
Neuchatel :-Bulletin de la Société des Sciences Naturelles de Neuchatel. Tome XI. Premier cahier.

The Society.
Newcastle-tpon-Tyne:-Newcastle-upon-Tyne Chemical Society Transactions. Vol. III, 1874-7.
Do. Report of Committee.
The Society.
Oxford :-Radcliffe Observations, 18\%\%. Vol. XXXV.
Radcliffe Library Catalogue of Books on Natural Science, up to December, 18%.
Additions to Radcliffe Library during 1873, 1874, 1875, 1876.
Catalogue of Transactions of Societies, Periodicals, and Memoirs.
Catalogue of Books added to the Radcliffe Library, Oxford University Muscum, 1877.

The Radcliffe Trustees.
Donations to the Bodleian Library year ending November. 8 March, 1877.

The Librarian.
The Main Drainage of Oxforl. By W. H. White, Assoc. Inst., C.E.
On the Mineral Water discovered in sinking the Artesian Well at St. Clement's, Oxford.
On the Rainfall for 25 years-1851-18\%
A new form of Polariscope, \&c.
The Ashmolean Society.
Parls :--Etude sur les Ouragans de l'Hémisphere Austral. By M. Bridet.
Nouvelle Classification des Nuages.
Usage du Cercle Méridien Portatif, \&c.
Meteorologie Nautique, Vents et Courants, Routes Générales.
Eight Maps. Nos. 3,381-4, 3495-8.
Directeur-Général uu Depốt des Cartes et Plans.

Penvsilfania :-Seventh Annual Report of the Board of Commissioners of Public Charities of the State of Pennsylvania.

The Board of Commissioners. Philadelpha:-Journal of the Franklin Institute. Vol. CIV, Nos. 623-624.
Do. Do., Vol. CV, Nos. 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635.

The Institute.
Transactions of the American Entomological Society. Vol. V, Nos. 1, 2,3 , and 4 .
Do. Vol. VI, Nos. 1, 2, 3, and 4.
Catalogue of the Lepidoptera of America, North of Mexico. Part I. Diurnals. By William H. Edwards.

The Society.
Proceedings of the American Philosophical Society. Vol. XVII, No. 100.
List of Surviving Members of the American Philosophical Society.
The Society.
Proceedings of the Academy of Natural Sciences of Philadephia. Parts I, II, III. 187\%. The Academy.
Sixth Annual Report of the Board of Directors of the Zoological Society of Philadelphia.

The Society.
Prsa :-Atti della Societa Toscana di Scienze Naturali. Vol. III., fase 1-2.
Societa Toscana di Scienze Naturali, Processi Verbali, 13 January, 1878 ; 10 March, 1878 ; 5 May, 1878 ; 7 July, 1878.

The Society.
Plymotth :-Annual Report and Transactions of the Plymouth Institution and Deron and Cornwall Natural History Society. Vol. VI, Part 1, 18\%-\%. The Institution.
Rome:-Atti della R. Accademia dei Lincei. Vol. I, fascicolo 1, 2, 3, 4, 5, 6, 7.
Do. Vol. II, fascicolo 1, 2, 3, 4, 5, 6, \%. The Academy.
R. Comitato Geologico dItalia Bollettino. No. 5 E $6 ;$ No. 7 E 8.

The Society.
Stockholm:--Kongliga Svenska Vetenskaps-Akademiens Handlingar (Memoires). Bd. 13 and 14.
Bihang Till K. Vet-Akad-Handl. Bd. 3.
Ofversigt af K. Svenska Vetenskaps Akademiens Förhandlingar Arg. $33,1876$.
Enumeratio Hemipterorum Bridrag Till en Förteckning Ofver alla Hittills Kända Hemiptera, \&c., by C. Stael.
Iconographia Crinvideorum in Stratio Sueciæ Siluricis Fossilium, (29 plates.)

Royal Sucedish Academy of Sciences.
Stuttanrt :-Württembergische Naturwissenschaftliche Jahreshefte-
1870. Vols. I, II, III.

1871 ". I, II, III.
1872 , I, II, II.
1873 ", I, II, III.
1874 I, II, III.
1875 , I, II, III.
1876 ," I, II, III.
1877 ,, I, II.
Festschrift zur Feier der Vierhundertjährigen Jubiliums der Eber-hard-Karls-Universität zu Tübingen. 9th August, 18\%, With 3 litho. plates.

The Editors.
Sxdney :- Proceedings of the Linnean Society of New South Wales-
Vol. II. Part 2, 4.
III. , 1 and 2.

SXDNET-continued.
Geological Map of the Districts of Hartley, Bowenfels, Wallerawang and Rydal.

The Minister of Mines.
Blue Book, N.S.W., for the year 1877.
The Government Printer.
Flora Australiensis, by George Bentham, F.R.S., assisted by Baron von Müeller, C.M.G.
Fossil Remains of the Extinct Mammals of Australia, by Professor Owen.

The Colonial Secretary.
Tasmania :-Papers and Proceedings of the Royal Society of Tasmania, 1876.

The Society.
Trieste:-Bollettino della Società Adriatica di Scienze Naturali in Trieste-
Vol. III. No. 3.
, IV. , l.
The Society.
Toronto :--The Canadian Journal of Science, Literature, and HistoryVol. XV. Nos. V, VI.

The Canadian Institute.
Truro :-The Mineralogical Magazine and Journal of the Mineralogical Society of Great Britain and Ireland-
Vol. II. No. 5, 6, 7, 8, and 9.
The Society.
Vienna :-Zeitschrift der Osterreichischen Gesellschaft fuir Meteorologie Band XIII. Nos. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, $22 . \quad$ The Society.
Jahrbuch der Kaiserlich-Königlichen Geologischen Reichsanstalt. Band XXVII. Nos. 1, 2, 3, 4. 1877.

Do. XXVIII. Nos. 1, 2. 1878
", Verhandlungen der K. K. Geologischen Reichanstalt. Nos. 1 to 13. 187%.

Do. Nos. 1 to 10 . 1878. The Society.
", Sitzungsberichte der Kaiserlichen, Akademie der Wissenschaftens Mathematisch-Naturwissenschaftliche Classe Erste Abtheilung. Band LXXI, LXXII, LXXIII, LXXIV, LXXV.
, Zweite Abtheilung. Band LXXI, LXXII, LXXIII, LXXIV, LXXV, LXXVI. Heft I.
Dritte Abtheilung. Band LXXI, LXXII, LXXIII, LXXIV, LXV.

The Academy.
Verhandlungen der K. K. Zoologisch-Botanischen Gesellschaft in Wien. Band XXVII.

The Society.
Jahrbücher der K. K. Central-Anstalt für Meteorologie und Erdmagnetismus. Band XII. Jahrgang, 1875.

The Society.
Washivgton:-The Navigation of the Caribbean Sea and Gulf of Mexico, Vol. I.
Sailing Directions for the English Channel, Part II.
The West Coast of Africa, Vol. III.
List of Lights of North and South Arerica, No. 1.

"	South and East Coast of Africa and East Indies, No. 2.
"	West Coast of Africa and Mediterranean Sea, No. 3.
"	Atlantic Coast of Europe, No. 4.
"	North Baltic and White Seas, No. 5.
"	British Islands, No. 6.

Washingron-continued.
Coasts and Ports of the Gulf of Lyons and Gulf of Genoa.
Revised Instructions for keeping the Ship's Log Book, \&c.
Report on the Telegraphic Determination of Differences of Longitude in the West Indies and Central America.
The Determinations of Secondary Meridians by Electric Telegraph and Personal Equation.
Coasts and Islands of the Mediterranean Sea, Part 2.
The Hydrographic Office.
On the First Discovered Traces of Fossil Insects in the American Tertiaries, by Samuel H. Scudder.
On the Classification of Putterflies, by Samuel H. Scudder.
Bulletin of the United States Entomological Commission, Nos. 1, 2, and 5.
Bulletin of the United States Geological and Geographical, Vol. II., Nos. 1, 2, and 4.
Survey of the Territories, Vol. III., Nos 1, 2, 3, and 4. Vol. IV., No. 1.
Catalogue of the Publications of the United States Geological and Geographical Survey of the Territories.
United States Geological Survey of Wyoming, \&c., 1870.
Ethnography and Philology of the Hidatsa Indians, by Washington Matthews.
Explorations made under the direction of Professur F. V. Hayden in 1876.

United States Geological Surrey of the Territories, Vol. IX.
," Invertebrate Palæontology, by F. B. Meek.
United"States Geographical Surveys West of the 100th Meridian. Vol. IV, Patrontology (with 83 plates).
United States Geological survey of the Territories. Vol. XI., Monographs of North American Rodentia (Cones and Allen).
Vol. VII. Tertiary Flora (Lesquereux), (6ā plates).
United States Geological and Geographical Survey of Colorado and adjacent Territory, 1874 and 1875 (by F. V. Hayden).
Descriptive Catalogue of Photographs of North American Indians.
Fur-bearing Animals (20 plates).
Contributions to North American Ethnology. Vol. 1.
Preliminary Report. Palæontology of the Black Hills.
Prifessor F. V. Hayden, U.S. Geologist.
Report of the Director of the Mint for 18\%3, 1876, 187%.
The Director of the Mint.
Microscopical Petrography, by Ferdinand Zirkel (12 plates).
United States Geological Exploration of the 40th Parallel.
Vol. II. Descriptive Geology (25 plates).
IV. Ornithology and Palæontology (23 plates).

Report of the Chief of Engineers. Parts 1 and 2. 1877.
Enyineer Department, U. S. Navy.
Historical Sketch of the United States Naval Academy.
Annual Register do. 1876-7\%.
Regulations governing the Admission of Candidates in the Naval Academy as Cadet-midshipmen. 1875-6. 1876-7.
An Address to the Members of Graduating Class of the U. S. Naval Academy, 20 June, 1876.
List of Vessels of the U. S. Navy. 1875.
Suggestions on Torpedo Outfits of the Viessels of the Navy, \&c.
Naval Medical Schools of France and England.
The Opposition of Mars in 187%.

Washington-continued.
Report of the Board of Civil Engineers re Improvement of the Naval Station at New London. (Conn.)
Naval Light Artillery Tactics, \&c.
The Secretary U. S. Navy Department
Catalogue of Minerals U. S. Naval Academy.
Regulations for the appointment of Cadet-Engineers in the U. S. Navy. Annual Register of the U. S. Naval Academy. 1877-78.

Superintendent U. S. . Taval Academy.
A Manual of Signals, by Bvt. Brig-Gen. A. J. Meyer.
Daily Bulletin of Weather Reports.

> Apmil to November inclusive 1873.
> February to October

Chiof signal Officer, War Dept.
Medical and Surgical History of the War of the Rebellion. Part II. Surgical Volume.
Constitution Manual, Rules and Barclay's Digest. 1876.
Patent Laws, January and August. 1876.
Rules of Practice in the U. S. Patent Office, Norember, $18 \% 6$.
U.S. Trade-mark Statutes, \&c., in the U.S. Patent Office, January, 18%.

Statement relative to the Proposed Changes in the U. S. Patent Office.
Laws relating to Acquisition of Title to Land required for Light-house Purposes.
Congressional Directory, corrected to 20 December, 1875.
The United States Treasury Register. 1875.
Circulars of Information of the Bureau of Education, No. 8.
The Planters Guide for Cultivating and Curing Tobacco, \&c.
Historical Sketch of Mount Holyoake Seminary.
Charter and By-laws of the Columbia Hospital for Women and Lying. in-Asylum.
Investigations of Corrections to Hansen's Tables of the Moon, \&c.
Summary Statement of the Imports and Exports of the United States. February, March, April, May, June, July. 1876.
Digest of Opinios and Leading Cases on International Law.
Memorial Addresses. Life and C'haracter of Allen T. Caperton. Do. do. do. Michael C. Kerr.
Cases decided in the Court of Claims, \&c. Vol. XII.
Constitution of the United States of America, \&ce.
Rules of Practice in the U. S. Patent Office, August, 18%.
Congressional Directory to 18 October, 1876.
Smithsonian Report, 1876.
List of Publications of the Smithsonian Institution. July, 1877.
The Smithsonian Institule.
The Coasts of Chili, Bolivia, and Peru.
List of Merchant Vessels of the United States.
Tide Tables for the Atlantic Coast of the United States. 1877.
Do. Pacific do. do.
Papers relating to Metric Standards, \&c.
Regulations respecting Navigation of Channels at Mouth of the Mississippi River.
Discussions of Tides in New York Harbour.
A new System of Binary Arithmetic.
Description of an Apparatus for Measuring Secondary Base Lines.
Catalogue of Charts of the United States Coast Survey, 1877.
Meteorological Researches for the use of the Coast Pilot. Part L.
Notes on Measurements of Terrestrial Magnetism. (2nd Edition.)
Field-Work of the Triangulation.
Superintendent U.S. Couat Surcey Office.

Washington-continued.

Bulletin of the United States National Museum.
No. 1. Check List of North American Batrachia and Reptilia, by Edward D. Cope.
No. 4. Birds of Suuth-western Mexico, collected by F. E. Sumichrast.
No. 5. Catalogue of the Fishes of the Bermudas, by G. Brown Goode.
No. 6. Classification of the Collection to illustrate the Animal Resources of the United States, by G. Brown Goode.
Index to the Names applied to the Subdivisions of the Class Brachiopoda.

Department of the Interior, U.S. National Museum.
Seventh Annual Report of the Board of Indian Commissioners for year $187 \overline{3}$.
Laws and Regulations Relating to Trade with Indian Tribes.
Report of William Vanderer, U.S. Indian Inspector.
Department of the Interior, Office of Indian Affairs.
A Manual of the Common Native Trees of the Northern United States.
Circulars of Information of the Bureau of Education.
No. 1. Ieports on the System of Public Instruction in China.
2. do do do in Finland, The Netherlands, Denmark, \&c.
Medical Education and Medical Institutions in the United States of America.
Register Officers of the Navy of the United States, \&c., 20 July, 18%. Department of the Interior, Bureau of Education.
Regulations Relating to Army and Navy Pensions.
Instructions to Examining Surgeons for Pensions, 1877.
Commissioner of Pensions.
Report upon the Yellowstone National Park.
Catalogue of the Library of the Department of the Interior, to May 31, 187%.

Secretary of the Interior.
Sugar-cane Industry in the United States. No. 1.
Report of the Commissioner of Agriculture for 1875 \& 1876.
Monthly Report of the Department of Agriculture, November and December, 1875; January and February, May and June, July, 1876; August and September, October, November and December, 1876.
Report upon Condition of Crops. No. 2.
Commissioner of Agriculture.
Legislative History of the Subsistence Department of the U. S. Army, from June 16, 1875, to August 15, 1875.
List of Cadets Admitted into the U.S. Military Academy, West Point, from its establishment till September 30, 1876.
Practical Forms for use in Courts-Martial.
Description and Rules for the Management of the Springfield Riffe, Carbine, and Army Revolver.
Letter from the Chief of Engineers to the Secretary of War, re Corps of Engineers, \&c.
War Department Signal Service U. S. Army. Rules for the Govera. ment of U. S. Telegraph.
Programme of Instruction, and Code of Regulations of the Artillery School, U.S. A.
Table of Land Grant Railroads.
Remarks upon the Reorganization of the Army, by Major-General John M. Schofield.
Do. do. : by Brigadier-

General Benjamin Alvord.
Washingtox-contimued.
Regulations re Bounty Land with Statutes. Impeachment of William W. Belknap.
List of Medical Journals required by the National Medical Library.
Price List of Ordnance and Ordnance Stores.
Annual Report of the Board of Visitors of the U. S. Military Academy, 1877.
A History of the Rock Island Arsenal, from 1863 to 1876.
U. S. Army Wagon Harness (Horse and Mule), 1877. (16 Plates.)
Digest of Opinions of the Judge-Advocate General.
A sketch of the History and Duties of the Judge-Advocate General's Department, U. S. Army.
Annual Report of the Judge Advocate General of the Army, for the year 1877.
Official Army Register for January, $18 \% 8$.
Secretary, War Department.
Quarterly Report of the Chief of the Bureau of Statistics, Nos. 3 and 4.
The United States Treasury Register.
Regulations and Instructions concerning the Tax on Distilled Spirits, July 2, 1877.
Digest of Appropriations for the Support of the Government of the United States.

Secretary, Treasury Department.

Almanac for the use of Navigators.
American Ephemeris and Nautical Almanac, 1878-1880.
Seventh Report upon the Improvement of the South Pass of the Mississippi River.
Notice to Mariners, Foreign Lights, No. 59-60-62.
Do. Hydrographic Notice, No. 64.
List of Charts, 187\%, for the European Station
Do. Pacific ,
Do. South Atlantic ,
Do. Asiatic "
Do. North Atlantic
Articles ander cognizance of the Bureau of Steam Engineering for Vessels, 1877.
Bureau of Navigation, Navy Department.
Observations and Orbits of the Satellites of Mars, by Asaph Hall.
Naval Observatory.

Welangron:-Transactions and Proceedings of the New Zealand Insti-tute-
Vol. IX. Part 2. 1876.
, X. , 1877.
Index of the Transactions and Proceedings of the New Zealand In-stitute-
Vol. I. to VIII.
The Institute.
Twelfth Annual Report of the Colonial Museum and Laboratory.
The Colonial Museum.
Wurtyemberg :-Württembergische Naturwissenschaftliche Jahreshefte, 1878
Heft, I. II. III.

Foromama :-Transactions of the Asiatic Society of Japan. Vol. VI, Part I.

Miscellaneous.
 (The names of Donors in Italics.)

Australian. Vol. 1 ; Nos. 1, 3. The Publishers.
Brazier, Jno., C.M.Z.S. : List of Land Shells collected on Fitzroy Island.
The Author.
Jack, R. L., F.G.S., and John Horne, F.G.S. : Glacial Drift in the Northeastern Carpathians. The Authors.
Lamb, Prof. N., M.A. : On the Free Motion of a Solid through an Infinite Mass of Liquid.

The Author.
Mauritius Expedition, 1874. Division I. Lord Lindsay.
Müller, Baron Ferd. von, C.M.G. : Fragmenta Photographiæ Australiæ. Vol. 10.

The Author.
Microscopes, Catalogues and Illustrated Lists of. F.B. Kyngdon.
Petermann, Dr. A. : Mittheilungen aus dem Gesammtgebiette der Geographie Erganzungsheft. Nos. 53 and 54.

The Author.
Ratte F.; Note sur les Roches et Gisements Métallifères de la NouvelleCalédonie.

The Author.
Schomburgk, Dr. : Forest Tree Planting and its Influence on Climate.
The Author.
Smyth, R. Brough : The Aborigines of Victoria. Vols. I and II.
Rev. Peter Macpherson, M.A.
Woods-Tenison, Rev. J. F., F.G.S., F.L.S. : Census; with Brief Descriptions of the Marine Shells of Tasmania and the adjacent Islands.

The Author.

Books purchased in 1878.
Chambers's Descriptive Astronomy.
Grant's History of Physical Astronomy.
Sir John Herschel's Cape Observations.
Outlines of Astronomy.
Hambolt's Cosmos. 5 vols.
Jenkin's Electricity.
Lacaille's Catalogue of Southern Stars
Lardner and Dunkin's Handbook of Astronomy.
Loomes' Practical Astronomy.
,, Treatise on Meteorology.
Lockyer's Solar Physics.
Spectrum Analysis.
Neison, E.: The Moon.
Noad's Manual of Electricity.
Proctor's Large Star Atlas.
Other Worlds.
", The Sun.
", Saturn and his Systems.
Routledge, W. : Inventions and Discoveries of the Nineteenth Century Schellen's Spectrum Analysis.
Simm's Achromatic Telescope.
Sprague's Electricity.

English Mechanic, from 1864 to 18\%8. 15 vols.
Astronomical Register, from 1863.
Microscopical 1)ictionary.
Carpenter on the Microsenpe.
Wratt's Dictionary of Chemistry. 7 vols.
Hackett's History of C'reation.
Darwin's Origin of Species.
,, Variations of Animals. 2 vols.
,, Descent of Man.
" Expression of the Emotions, \&c.
", Movements of Climbing Plants.
", Insectivorous Plants.
", Cross and seif Fertilisation, \&c.
Huxley's Physiography.
,9. Anatomy of Invert Animals.
," American Addresses.
", Lessons in Elementary Physiology.
", Lay Sermons.
Huxley aud Martin's Elementary Instruction. Practical Biology.
Australian Handbook. 188.
Wamer's ('hemical Techaology, edited by Crookes. I vol.
Swindell's Well-digging.
Sutton's Volumetric Analysis.
Atlas of the Diatomacea. Nos. 1 to 14.

Pertodicals purchased in 1878.

American Journal of Science and Art.
Annals of Natural History.
Botanical Journal (Trimen).
Chemical News.
Comptes Rentas.
Annales des Mines.
Annales des Chimie et Physique.
Popular Science Review, Dallas.
Quarterly Journal of science, Crookes.
Journal of Society of Arts, 1878.
Athenreum, 1878.
Science (rossip, Harlwick, 1878.
Zoologist, Harting, $18: 8$.
Wagner's Jahresbericht der Technischen Chemie, 1877.
Fresinius' Zeitschrift fü Analytische Chemie, 1878.
Dingler's Polytechnisches Journal, 1878.
English Mechanic and Mirror of Science, $15 \% 8$.
Geological Magazine, 1878.
Journal of the Chemical Society, London, 1878.
Nature, 1878.
Philosophical Magazine, $18 \% 8$.
Quarterly Journal of Meteorological Society.
Encyclopedia Britannica. Vols. VII. VII. (half-bound in Russia, as issued).
L'Art (Paris), 1877, 1878.
Portfolio, 1877, 1878.
Art Journal, 1877, 1578.
Bulletin de la Soc. Géologique de France.
Australian Hand Book, 1878.

Donations to the Society's Cabinets, 18.8.
A Collection of Fossil Leaves.
John K. Itume, Erq.
201 Species of Land and Marine Shells, as per the following list :-
John Brotuier, Esq., C.M.Z.S., de.
Class. GASTEROPODA.
Family. Mericid.s.

1. Murex alustus, Lam. Philipuine Islands.
2. ,, capucinus, Lam. North Australia.

Family. Tritonide.
3. Tritun rubecula, Lam. New Caledonia.
4. Persona anus, Lam. Red Sea.
5. Ranella granifera, Lam. Red Sea.

Family. Beccinidex.
Sub-Fumily. Nassive.
6. Eburna (Zemira) Australis, Sowerbi. Port Jackson Heals.
7. Nassapapillosa, Linn. Philippine Islands.

Fomil?: Otivinat.
8. Oliva sanguinolenta, Letm. Rolomon Islands.
9. ,, ponderosa, Duclos. Miuritins.
10. ,, corulea, Bolton. Sandiwich Isliands. episcopalis, Lam.
11. , tigrina, Mpusihen. Torres Straits. tenselato, Lam.
19. ,, olivaceus, Meuschen. Panama.
13. ", cruenta, solander. Nosibe.
emicator, Meuschen.
14. " irisans, Lam. Ceylon.
1.). ,, porphyritica, Mrotini. New Calcdon:a.
erythrostoma, Lem.
porphyritica, dark varicty. Now Calerionis.
16. " elegans, Lam. Fiji Islands.
17. „, ispidala, Lam. Cape Iork.
18. ', maura, Lam. Fiji Islands.
19. ", carneola, Gmel. ,"
20. ", seripta, Lum.
21. Seophula hiplicata, somed, (califurnia.
22. Olivina jaspidea, Gonel. West Indies.

Femily. Fancolintde.
23. Fasciolaria tulipa, Lane. West Indies.

Family. Volutioew
24. Voluta fusiformis, Sucainson. Tasmania.
25. ," vespertilio, Linn. ihilippine Islanis.

2ti. ", Norrisi, čonerim. Western Australia.
2\%. "Angasi, Somell! Tasmania.
28. ", zelra, Leuch Port Ntephens, N.S.W.
29. Mitra episcoralis, Lum. Aneiteum, New Hebriées.
30. , Pontificalis, Lam.

Family. Colcheelin:e.
31. Columbella varians, Nout Shy. Sandwich Islands
32. Engina nendicaria, Lam. Aneiteum, Nert Hebrides

Family. Harptos.
33. Harpa ventricosa, Lam. Solomon Islands.

Family. Cassmete.
34. Cassis canaliculata, Lam. Ceylon.
35. ," testiculus, Lam. Cuba.

Family. Dolidee.
36. Malea pomum, Linn. New Caledonia.
37. Sycotypus ficoides, Lam. Philippine Islands.

Family. Naticide.
38. Natica conica, Lam. Port Lincoln.
39. „, melanostoma, Lam. Singapore.
40. " millepunctata, Lam. Adriatic Sea.
41. ", marochiensis, Lam. Flji Islands.

Family. Terebride.
42. Terebra dimidiata, Lam. Tahiti.

Family. Conide.
43. Conus marmoreus, Linn. New Caledonia.
44. „ imperialis, Linn. Philippine Islands.
45. ", pulicarius, Brug. Solomon Islands.
46. ", figulinus, Brug. Philippine Islands.
47. ", quercinus, Brug. Solomon Islands.
48. ," amadis, Mart. Ceylon.
49. " textile, Linn. New Caledonia.
50. " aulicus, Limn. Ceylon.
51. ", striatus, Linn. New Caledonia.
52. " geographus, Linn. New Caledonia.
53. " tulipa, Linn. Sandwich Islands.
54. ", canonicus, Brug. Maupitius.
55. " maculatus, Sowb. Port Jackson.
56. ", tessellatus, Born. Aneiteum, New Hebrides.
57. „, catus, Bruy. Loyalty Islands.
58. ", miliaris, Brug. Sandwich Islands.

Family. Strombide.
59. Strombus pacifica, Soverby. Bampton Reef.
, Novce Zotandic. Chem.
60. ", epidromus, Linn. New Caledonia.
61. „, luhuanus, Linn. New Caledonia.
62. Chenopus pes-pelecani, Linn. British.
63. Pelicaria seutulata, Mart. Port Jackson.
64. Terebellum punctatum, Lam. New Caledonia.

Family. Cypretdae.
65. Cypreda lynx, Linn. Fiji Islands.
66. " Argus, Linn. Marshall Islands.
67. ", exanthema, Limn. Tobago.
68. „, pantherina, Solander. Red Sea.
69. ", reticulata, Mart. Sandwich Islands.
70. ", caput-serpentis, Linn. Fiji Islands.
71. " helvola, Linn. Bampton Reef.
72. ", moneta, Linn. Tongataboo.
73. „ annulus, Linn. Tongataboo.
74. „ talpa, Linn. Andaman Islands.
75. ", carneola, Linn. Kingsmill's or Marshall Island.
76. „, arenosa, Gray, Paumotus Islands.
77. " mus, Linn. West Indies.
Family. Cypraidae-continued.
78. Cypræda caurica, Linn. Sandwich Islands.
79. , xanthodon, Gray. New South Wales.
80. ", errones, Linn. Ceylon.
81. ", cylindrica, Born. New Caledonia.
82. ", isabella, Linn. Bampton Reef.
83. " clandestina, Linn. Tongataboo or Tonga.
84. ", asellus, Linn. Tongataboo or Tonga.
85. . felina, Gmel. Tongataboo or Tonga.
86. Trivia quadripunctata, Gray. West Indies.
87. Cyphoma gibbosa, Linn.
(Ovulum gibbosum, Lam.)
Family. Cerithides.
88. Cerithium moniliferum, Kiener. New Caledonia.
89. ," lemniscatum, Quoy. New Caledonia.
90. ", stercus-muscarum, Val. Panama.
91. Vertagus obeliscus, Brug. New Caledonia.
Family. Melanode.
92. Melania setosa, Swainson. Solomon Islands.
93. ,, acuta, Lea. Island of Guam.
Family. Paludinide.
94. Paludina bengalensis, Lam. Mauritius.
Family. Capulide.
95. Cochlolephas antiquata, Linn. Cape Solander, Botany Bay.
Family. Nerintide.
96. Nerita polita, Linn. Solomon Islands.
97. , albicilla, Linn. Solomon Islands.
98. Neritina nucleolus, Morelet. New Caledonia.
99. " cornea, Linn. Solomon Islands.
100. ", zebra, Lam. Philippine Islands.
101. " sumatrensis, Sowo. Solomon Islands.
102. ," pupa, Linn. Cuba, West Indies.
103. " reticulata, Brod. Tahiti.
104. ", mertoniana, Lesson. Fiji Islands.
105. ", longispina, Reclaz. Philippine Islands.
106. Navicella porcellana, Linn. Solomon Islands.
Family. Trochide.
107. Rotella elegans, Beck. Ceylon.
108. Clanculus pharonis, Linn. Madagascar.
109. Elenchus lineatus, Lam. Tasmania.
110. Trochus merula, Chem. Cape of Good Hope.
111. Gibbula strangei, A. Ad. Port Jackson.
Sub-Family. Stomatellins.s.
112. Stomatella imbricata, Lam. Port Jackson.
113. Gena strigata, A. Adams. Port Jackson.
Family. Hanomde.
114. Haliotis cocco-radiata, Reeve. Port Jackson.
Family. Frssurelhide.
115. Lacapina incei, Reeve. Port Jackson.
116. Scutus elongatus, Lam. Port Jackson.

Family. Chitonide.
117. Lophyrns anstralis, Sowerby. Port Jackson.
i18. Cryptoplax striatus, Lam. Port Jackson.
Family. Aplustride.
119. Bullina lineata, Wood. Port Jackson.

Family. Bullide.
120. Bulla ampulla, Linn. Port Jackson.
121. ," oblonga, A. Adams. Port Jackson.

Order.-PULMONIFERA.
 Family.-Helicide.

122. Helix xanthocheila, Pfr. Solomon Islands.
123. ,, lambei, Pfr. Duke of York Islands.
124. ", malantaensis, Angas. Solomon Islands.
125. ", boivini, Petit. Solomon Islands.
126. ", flexilabris, Pfo. Rubiana, Solomon Islands.

12\%. ", hargravesi, Angas. Bougaineville, Solomon Islands.
128. ", leucophæ, Cox. Guadalcanar, Solomon Islands.
129. ", ambrosia, Angas. Galera, Solomon Islands.
130. ", cleryri, Petit. San Christoval, Solomon Islands.
131. ", solitaria, Say. Ohio, United States of America.
132. ,, louisiadensis, Forbes. Louisiarle Islands.
133. " maddoxi, Brazier. Solomon Islands.
134. " fringilla, Pfr. Rubiana, Solomon Islands.
135. ", hunteri, Cox. Guadalcanar, Solomon Islanids.
136. ", nemoralis, Linn, England.
137. " iloconensis, S_{c} uerby. Philippine Islands.
138. " hombrani, Pfr. Ysabel, Solomon Islands.
139. ", grayi, Pfr. New South Wales.
140. ," launcestonensis, Reeve. Tasmania.
141. ", coxi, Crosse. Port Denison.
142. " majuscula, Pfr. New Ireland.
143. ,, vitatta, Mull. Ceylon.
144. ", cineracea, Homb et Jacr. Solomon Islands.
145. ,, cereolus, Muhl. Florida, U.S. A.
146. ,, sophix, Gaskoin. Lord Howe's Island.
147. Bulimus strangei, Pfi. Rubiana, Solomon Islands.
148. ", palmarum, Mousson. ('alera, Solomon Islands.
149. ", san-christovalensis, Cox. Solomon Islands.
150. ", sellersi, Cox. Guadalcanar, Solomon Islands.
151. ", miltocheilus, Reere. San Christoval, Solomon Islands.
152. " dux, Pfr. King George's Sound.
153. ", dufresni, Leach. Tasmania.
154. ", zebra, Mull. Honduras, Cent. America.
155. ", lazonicus, Soverby. Philippine Islands.
156. ", melo, Qnoy and Gaimard. King George's Sound.

15\%. ", Kingi, Gray. King George's Sound.
158. Partula gibba, Fer. Guam.
159. Achatina virginea, Linn. Cuba.
160. Achatinella vulpina, Fer. Sandwich Island.
161. Pupa uva, Linn. West India Islands.

Family. Auriculme.

162. Auricula auris-judæ, Linn. Cape York.
163. Cassidula angulifera, Petat. Cape York.
164. Pythia argenvillei, Pfr. Fitaroy Island.
165. Melampus fasciatus, Desh. Solomon Islands.

Order- -OPERCULATA.
166. Pupina angasi, Brazier. New Guinea.
167. Hargravesia polita, H. Allams. Solomon Islands.

Family. Helicinide.
168. Helicina moquiniana, Recluz. San Christoval, Solomon Islands.

> CLASS.-CONCHIFERA. Order. PHOLADACEA.
> Family. Pholadide.
169. Barnea similis, Gray. Port Jackson.

Family. Solenide.
150. Solen sloanei, Gray. Port Jackson.

Family. Tellinide.
171. Tellina virgata, Linn. Fiji Islands.
172. ", scobinata, Linn. Philippine Islands.

Sub-Family. Donactex.
173. Donax deltoides, Lam. Port Jackson.

Family. Venerids.
774. Chione lamellata, Lam. Tasmania.
175. ," calophylla, Hanley. Port Jackson.
176. ", alatus, Reere. Purt Jackson.
178. ,, scalarina, Lam. South Australia.
179. Tivela undulosa, Lam. South Australia.
180. Cytherea castrensis, Lam. Tongataboo.
181. Circe undatina, Lam. Port Jackson.
182. ,, pectinata, Linn. Port Curtis.
183. Tapes undulata, Born. Port Jackson.

Family. Cardidde.
184. Cardium lyratum, Sowerby. Tongataboo.
185. ," unedo, Linn. Fiji Islands.

Family. Lecintid.
186. Lucina rugifera, Reeve. Port Jackson. Family. Mytilide.
187. Lithodomus gracilis, Lam. Torres Straits.

Family. Trigonidde.
188. Trigonia margaritaces, Lam. Tasmania.
189. " lamarcki, Gray. Port Jackson.

Fumily. Arcide.
190. Barbatia fasciata, Reeve. Port Jackson.
191. Axinia holoserica, Reeve. Port Jackson.

Family. Pectinides
192. Pecten tegula, Wood. Port Jackson.
193. ", pallium, Lam. New Caledonia.
194. D' purpuratus, Lam. Panama.
195. Vola fumata, Reeve. Port Jackson.
196. Radula lima, Linn. Port Jackson.

Family. Volsellide.
197. Vulsella rugosa, Lam. New Caledonia.

Family. Ostreide.
198. Ostrea mordax, Gould. Port Jackson.

CLASS.-BRACHIOPODA.
Family. Terebratulide.
Sub-Family. Terebratuline.
199. Waldheimia flavescens, Lam. Port Jackson.

Sub-Family. Magasine.
200. Magus cumingi, Dariddson. Port Jackson Heads.
201. Kraussia lamarckiand, Davidson. Port Jackson.

191 mounted on glass tablets, 10 done up in paper.

EXCHANGES AND PRESENTATIONS

MADE BY THE

ROYAL SOCIETY OF NEW SOUTH WALES.

Is the following Lists the numbers refer to the under-mentioned publications:-
No. 1.-Journal of the Royal Society of New South Wales, 1877.
, 2.-Remarks on the Sedimentary Formations of New South Wales, by the Rev. W. B. Clarke, M.A., F.R.S., \&c.
,, 3.-Report of the Mining Department of New South Wales, 1877.
, 4.-Report of the Commissioner for Railways of New South Wales, 1876.
,, 5. -Report of the Council of Education of New South Wales, 187%.

America (United States).

Albany. - New York State Library, Albany. Nos. 1, 2, 3, 4, 5.
Annapolis (M.D.) - Naval Academy. Nos. 1, 2, 3, 4.
Baltimore.-John Hopkins' University. Nos. 1, 2, 3, 4, 5.
Boston.-American Academy of Science. Nos. 1, 2, 3, 4.
," Boston Society of Natural History. Nos. 1, 2, 3, 4.
Buffalo.-Buffalo Society of Natural Sciences. Nos. 1, 2, 3, 4.
Cambridge.-The Museum of Comparative Zoology, Harvard College. Nos. 1, 2, 3, 4.
Chicago.-Academy of Sciences. Nos. 1, 2, 3, 4.
Coldwater.-Michigan Library Association. Nos. 1, 2, 3, 4.
Davenport (Iowa).-Academy of Natural Sciences. Nos. 1, 2, 3, 4.
Hoboken (N.J.) The Stevens' Institute of Technology. Nos. 1, 2, 3, 4.
Minneopolis.-Minnesota Academy of Natural Sciences. Nos. 1, 2, 3, 4
New York.-American Chemical Society. Nos. 1, 2, 3, 4.

* American Geographical Society of New York. Noa. 1, 2, 3, 4.
" Lyceum of Natural History. Nos. 1, 2, 3, 4.
", School of Mines, Columbia College. Nos. 1, 2, 3, 4.
Penikese Island.-Anderson School of Natural History. Nos, 1, 2, 3, 4.
Philadelphia,-Academy of Natural Science. Nos. 1, 2, 3, 4.
," American Entomological Society. Nos. 1, 2, 3, 4.
," American Philosophical Society. Nos. 1, 2, 3, 4.
" Franklin Institute. Nos. 1, 2, 3, 4, 5.
" Zoological Society of Philadelphia No. 1, 2, 2,
Salem (Mass).-Peabody Academy of Sciences. Nos. 1, 2, 3, 4. " Essex Institution. Nos. 1, 2, 3, 4, 5.
St. Lonis.-Academy of Sciences. Nos, 1, 2, 3, 4.

```
Washington.-Commissioner for Agriculture. Nos. 1, 2, 3, 4.
                            Dr. F. V. Hayden, Geological Survey of Territories
                    Nos. 1, 2, 3, 4,5.
% Hydrographic Office. Nos. 1, 2, 3, 4, 5.
", Smithsonian Institute. Nos. 1, 2, 3, 4, 5.
,, War Dept. Nos. 1, 2, 3, 4.
,, Chief Signal Officer. War Dept. Nos. 1, 2, 3, 4.
", Director of the Mint. Treasury Dept. Nos. 1, 2, 3, 4, 5.
" The Secretary. Treasury Dept. Nos. 1, 2, 3, 4, 5.
", The Secretary. Navy Dept. Nos. 1, 2, 3, 4.
" U.S.A. Coast Survey. Nary Dept. Nos. 1, 2, 3, 4.
" Bureau of Navigation. ,, Nos. 1, 2, 3, 4.
", The Secretary. Dept. of the Interior. Nos. 1, 2, 3, 4, 5.
" U.S. National Museum. ," Nos. 1, 2, 3, 4, 5.
" Bureau of Education. ,, Nos. 1, 2, 3, 4.
,"Office of Indian Affairs. ," Nos. 1, 2, 3, 4.
```


The Dominion of Canada.

```
Hamilton (Canada West).-Scientific Association. Nos. 1, 2, 3, 4, 5.
Montreal.-Geological Survey of Canala. Nos. 1, 2, 3, 4.
Natural History Society of Montreal. Nos. 1, 2, 3, 4.
Ottawa.-Acadeny of Natural Sciences. Nos. 1, 2, 3, 4.
Toronto.-Canadian Institute. Nos. 1, 2, 3, 4, 5.
```


Austria.

```
Prague.-Küniglich bïhmische Gesellschaft der Wissenschaften. Nos. 1, \(2,3,4,5\).
Vienna.-Anthropologische Gesellschaft. Nos. 1, 2, 4.
," Geographische Gesellschaft. Nos. 1, 2, 3, 4.
,, Geologische Reichsanstalt. Nos. \(1,2,3,4\).
," Kaiserliche Akademie der Wissenschaften. Nos. 1, 2, 3, 4, 5.
,, Esterreichische Gesellschaft für Metenrologie. Nos. 1, 2, 4.
" Zoologisch-Botanische Gesellschaft. Nos. 1, 2, 3.
, K. K. Central Anstalt für Meteorologie und Erdmagnetismus. Nos. 1, 2, 4, 5.
Trieste.-Societa Adriatica di Scienze Naturale. Nos. 1, 2, 4, 5.
```


Belgium.

Brussels.-Académie Royale des Sciences, des Lettres et des Beaux Arts. Nos. 1, 2, 3, 4, 5.
Liege.-Société des Sciences. Nos. 1, 2, 3, 4.
Société Gjéologique. Nos. 1, 2, 3, 4.
Lnxembourg.-InstitutRoyalGrand-ducal deLuxembourg. Nos. 1, 2, 3, 4,5.

COLONIES.

Capt on Good Hope
Cape Town.-The Philosophical Society. Nos. 1, 2, 3, 4, 5.

Mauritics.

Port Louis.-The Royal Society of Arts and Sciences. Nos. 1, 2, 3, 4, 5.

New South Wales.

Sydney.-The Australian Club. No. 1.
The Australian Museum. No. 1.
", The Free Public Library. No. 1.
" The Linnean Society of New South Wales, No. 1.
", The Mining Department. No. 1.
", The Observatory. No. 1.
," The School of Arts. No. 1.
", The Union Club. No. 1.
,, The University. No. 1.

New Zealand.

Auckland.-Auckland Institute. Nos. 1, 2, 3, 4, 5.
Christchurch.-Philosophical Society of Canterbary. Nos. 1, 2, 3, 5.
Otago.-Otago Institute. Nos. 1, 2, 3, 4, 5.
Wellington.-The Philosophical Society. Nos. 1, 2, 3, 5.
Colonial Museum. Nos. 1, 2, 3, 4, 5.
", Colonial Museum. Nealand Institute. Nos. 1, 2.
(Forwarded per farour of the Wellington Museum.)
Queensland.
Brisbane.-The Philosophical Society. Nos. 1, 2, 3, 4, 5.
The Acclimatization Society. Nos. 1, 2.
South Aestralla.
Adelaide.-The Government Astronomer. Nos. 1, 2, 5.
" The South Australian Institute. Nos. 1, 2, 3, 4, 5.
" The University. Nos. 1, 2, 3.
", The Government Botanist. Nos. 1, 2, 3, 4, 5.
Tasmania.
Hobart Town.-The Royal Society of Tasmania. Nos. $1,2,3,4,5$.
Victoria.
Melbourne.-The Government Statist. Nos. 1, 2, 3, 4, 5.
The Government Astronomer. Nos. 1, 2, 3.
The Mining Department. No3. 1, 2, 3, 4.
The Public Library. Nos. 1, 2, 3, 4, 5.
The Royal Society. Nos. 1, 2, 3.
The University. Nos. 1, 2.
The Eclectic Association. Nos. 1, $2,5$.
The Government Botanist. Nos. 1, 2.
The Registrar General. Nos 1, 2, 5.
(Forwarded per favour of the Public Library.)

Evgland.
Cambridge.-The Natural Science Club. Nos. 1, 2, 4.
The Philosophical Society. Nos. 1, 2, 4.
The Public (Town) Library. Nos. 1, 2, 4, 5.
", The Public (Town) Library.
", The Union Society. Nos. 1,2, 4.
", The University Library. Nos. 1, 2, 4, 5.

Dudley.-Dudley and Midland Geological and Scientific Society. Nos. 1, $2,3,4,5$.
Leeds.-Philosophical Society. Nos. 1, 2, 4.
The College of Science. Nos. 1, 2, 4.
Liverpool.-Literary and Philosophical Society. Nos. 1, 2, 4, 5.
London.-Editor Cassell's Encyclopædia. Nos. 1, 2, 4, 5.
Editor Encyclopredia Britannica. Nos. 1, 2, 4, 5.
", Editor English Encyclopædia. Nos. 1, 2, 4, 5.
" Editor Popular Science Review. Nos. 1, 2, 4, 5.
", Quekett Microscopial Club. Nos. 1, 2.
" The Admiralty Library. Nos. 1, 2, 4.
", The Agent-General. Nos. 1, 2, 3, 4, 5.
," The Anthropological Society. Nos. 1, 2.
" The British Association. Nos. 1, 2, 4.
" The British Museum. Nos. 1, 2, 4, 5.
" The Chemical Society. Nos. 1, 2.
" The Entomological Library. Nos. 1, 2, 4.
" The Geological Society. Nos. 1, 2, 3, 4.
," The Geological Survey of (treat Britain. Nos. 1, 2.
" The Museum of Practical Geology. Nos. 1, 2, 4.
" The Institution of Civil Engineers. Nos. 1, 2, 4.
", The Institution of Naval Architects. Nos. 1, 2, 4.
" The Linnean Society. Nos. 1, 2. 4.
", The London Institution. Nos. 1, 2, 4, 5.
", The Meteorological Office. Nos. 1, 2, 4.
," The Meteorological Society, Nos. 1, 2, 4.
,, The Physical Society, South Kensington Museum. Nos. 1, 2, 4
," The Queen's Library, Windsor. Nos. 1, 2, 4, 5.
,, The Royal Asiatic Society. Nos. 1, 2, 4.
," The Royal Astronomical Society. Nos. 1, 2.
" The Royal Colonial Institute. Nos. 1, 2, 3, 4.
" The Royal College of Physicians. Nos. 1, 2.
" The Royal College of Surgeons. Nos. 1, 2.
" The Royal (ieographical Society, Nos. 1, 2, 4.
" The Royal Historical Society. Nos. 1, 2, 4, 5.
, \quad The Royal Institution of Great Britain. Nos. 1, 2, 3, 4.
,, The Royal Microscopical Society. Nos. 1, 2, 4.
\rightarrow, The Royal School of Mines. Nos. 1, 2, 3, 4.
," The Royal Society. Nos. 1, 2, 3, 4, 5.
," The Royal Society of Literature. Nos. 1, 2, 4.
" The So ziety of Arts. Nos. 1, 2, 4.
," The Treasury Library. Nos. 1, 2, 4, 5.
,, The United Service Museum. Nos. 1, 2, 4.
" The War Office. Nos. 1, 2.
,, The Zoological Society. No. 1, 2.
,* Lord Lindsay. Nos. 1, 2, 4, 5.
Manchester.-Literary and Philosophical Society. Nos. 1, 2, 4, 5.
" The Owen's College. Nom. 1, 2, 4, 5.
," The Geological Society. Nos. 1, 2, 3, 4.
Middlesboro'-Iron and Steel Institute. Nos. 1, 2, 3, 4.
Newcastle-upon-Tyne.-Chemical Society. Nos. 1, $2,3$.
North of England Institute of Mining Engineers.
Nos. 1, 2, 3, 4.
0xford. The Ashmolean Library. Nos. 1, 2, 4, 5.
The Bodleian Library. Nos. 1, 2, 4, 5.
The Radcliffe Library. Nos. 1, 2, 4, 5.
" The Radcliffe Observatory. Non. 1, 2.

Penzance.-Geological Society of Cornwall. Nos. 1, 2, 4.
Plymouth.-Devon and Cornwall Natural History Society. Nos. 1, 2, 4.
Truro.-Miners' Association of Cornwall and Devon. Nos. 1, 2, 4.
," Mineralogical Society of Great Britain and Ireland. Nos. 1, 2, 4.

France.

Bordeaux-Académie des Sciences. Nos. 1, 2, 3, 4, 5.
Caen.-Académie des Sciences. Nos. 1, 2, 4.
Dijon.-Académie des Sciences. Nos. 1, 2, 4.
Lille.-Société Géologique du Nord. Nos. 1, 2, 3, 4.
Montpellier.-Académie des Sciences et Lettres. Nos. 1, 2, 4, 5.
Paris.-Académie des Sciences de l'Institut. Nos. 1, 2, 4.
" Cosmos (Mons. Victor Meunier). Nos. 1, 2, 4, 5.
, Depôt de la Marine. Nos. 1, 2, 5.
n Ecole des Mines. Nos. 1, 2, 3, 4.
,, Ecole Normale Supérieure. Nos. 1, 2, 4.
, Ecole Polytechnique. Nos. 1, 2, 4 .
" Faculté des Sciences de la Sorbonne. Nos. 1, 2, 4, 5.

* Jardin des Plantes. Nos. 1, 2.
" Les Mondes (Mons. l'Abbé Moigno). Nos. 1, 2, 4.
" L'Observatoire. Nos. 1, 2.
", Musée d'Histoire Naturelle. Nos. 1, 2.
," Royale Académie des Sciences. Nos. 1, 2, 3, 4, 5.
,, Société Botanique. Nos. 1, 2.
" Revue des Cours Scientifiques (Mons. Alglave). Nos. 1, 2, 4.
., Société de Biologie. Nos. 1, 2, 4.
" Société d'Encouragement pour l'Industrie Nationale. Noa. 1, 2,
" Société de Géographie. Nos. 1, 2, 3, 4.
" Société Entomologique. Nos. 1, 2, 4.
" Société Géologique. Nos. 1, 2, 3, 4.
," Société Méteorologique de France. Nos. 1, 2, 4.
" Société Minéralogique. Nos. 1, 2, 4.
," Société Philotechnique. Nos. 1, 2, 4, 5.
Saint Etienne.-Société de l'Industrie Universale. Nos. 1, 2, 4.
Toulouse.-Académie des Sciences. Nos. 1, 2, 4, 5.

Germary.

Berlin.-Chemische Gesellschaft. Nos. 1, 2, 3.
" Königliche Akademie der Wissenschaften. Noa. 1, 2, 3, 4, 5.
Bonn.-Naturhistorischer Verein der Preussischen Rheinlande und Westphalens in Bonn. Nos, 1, 2, 3, 4, 5.
Carlsruhe.-Naturwissenschaftlicher Verein 20 Carlaruhe. Nom. 1, 2, 3, 4.
Dresden.-Das Statistische Bureau des Ministeriums des Innern 2m Dreden. Nos. 1, 2, 3, 4, 5.
Die Kaiserlich Leopoldinisch-Carolinisch Deutsche Akademio der Naturforscher zu Dresden. Nos. 1, 2, 3, 4.
General Direction der Königlichen Sammlungen für Kunst und Wissenschaft zu Dresclen. Nos. 1, 2, 4.
Königliches Geologischen Museum. Nos. 1, 2, 4.
Frankfurt a/M.-Senckenbergische Naturforschende Gesellschaft in Frankfurt a/M. Nos 1, 2, 3, 4, 5.

Freiberg (Sazony).-Die Berg Akarlemie zu Freiberg. Nos. 1, 2, 3, 4. $"$ Naturforschende Giesellschaft zu Freiberg. Nos. 1, 2, 3, 4.
Gottingen.-Kïnigliche Gesellschaft der Wissenschaften in Göttingen. Nos. 1, 2, 3, 4, 5.
Gorlitz.-Naturforschende (resellschaft in Gürlitz. Nos. 1, 2.
Hamburg.-Die Geographische Gesellschaft in Hamburg. Nos. 1, 2.
Verein für Naturwissenschaftliche Untechaltung in Hamburg. Nos. 1, 2, 3, 4, 5.
Heidelberg.-Naturhistorisch Medicinische Gescllschaft zu Heidelberg. Nos. 1, 2, 4.
Jena.-Medicinisch Naturwissenschafcliche Gesellschaft. Nos. 1, $2,4$.
Konigsberg.-Die Physikalisch-ökonomische Gesellschaft. Nos. 1, 2.
Leipzig (Saxony).-University Library. Nos. 1, 2, 3, 4, 5.
Marburg.-The University. Nos. 1, 2, 3, 4.
Gesellschaft zur Beforłerung der Gesammten Naturwissenschaften in Marburg. Nos. 1, 2, 4, 5.
Muhlhausen.-Industrial Society. Nos. 1, 2.
Munchen.-Konigliche Akademie der Wissenschaften in München. Nos. 1, 2, 3, 4, 5 .
Stuttgart.-Königlich-Statistich-Topographisches Bureau zu Stuttgart. Nos. 1, 2, 5.
Wurttemberg.-Der Verein fiir Vaterliandische Naturkunde in Wiurttemberg. Nos. 1, 2, 3, 4, 5.

India.

Calcutta-The Asiatic Society. Nos. 1, 2, 4, 5.
,, The Creological Museum. Nos. 1, 2, 4.
" The reological Survey of India. Nos. 1, 2, 4.
Ireland.
Dublin-Geological Socicty. Nos. 1, 2, 3, 4.
Royal Irish Academy. Nos. 1, 2, 4, 5.

Italy.

Genoa-Museo Civico di Storia Naturale. Nos. 1, 2.
Milan.-Societa Italiana di Scienze Naturalc. Nos. 1, 2, 3, 4.
Naples.-Societa Reale Academia delle Scienze. Nos. 1, 2, 4, 5.
," Zoological Station (Dr. Dohrn). Nos. 1, 2.
Palermo.-Academia Palermitana di Scienze, Lettere ed Arti. Nos. $1,2,4$.
Pisa.-Societa Toscana di"Scienza Naturale. Nos. 1, 2, 4, 5.
Rome.-Circolo ('ieographico d'Italia. Nos. 1, 2.
Osservatorio del Collegio Romano. Nos. 1, 2.
" R. Academia die Lincei. Nos. 1, 2, 4, 5.
," R. Comitato ('eologico Italiano. Nos, 1, 2, 3, 4.
Siena.-R. Accademia de Fisiocritici. Nos. 1, 2.
Turin.-Reale Academia delle Scienza. Nos. 1, 2, 4.
Regio Osservatorio della Regio Universita. Nos. 1, 4.
Venice.-Reale Instituto Veneto di Scienze, Lettere ed Arti. Nos, 1, 4, 5.

Japan.
Yokohama.-Asiatic Society. Nos. 1, 3, 4, 5.
Netherlands.
Amsterdam.-Académie Royale des Sciences. Nos. 1, 4, 5.
Haarlem.-Société Hollandaise des Sciences. Nos. 1, 4, 5.
Norway.
Christiania.-Kongelige Norske Fredericks Universitet. Nos. 1, 4, 5.
Russla.
Moscow.-La Société Impériale des Naturalistes. Nos. 1, 3, 4, 5.
St. Petersburg.-L'Académie Impériale des Sciences. Nos. 1, 4, 5.

Scotland.	
Edinburgh.-Geological Society. Nos. 1, 3, 4.	
", Royal Physical Society. Nos. 1, 4.	
The Royal Society. Nos. 1, 3, 4, 5.	
" The Royal Observatory. Nos. 1, 3.	
" The University. Nos. 1, 3, 4,5.	
Glasgow.-Cieological Society. Nos. 1, 3, 4. ," The Üniversity. Nos 1, 4, 5 .	
Aberdeen.-The University. Nos. 1, 4, 5.	
Spain. Madrid.-Instituto Geografico y Estatistico. Nos. 1, 4, 5.	
Sweden.Stockholm.-Kongliga Svenska Ventens Kapo-Akademie. Nos. 1, 4, 5.," The University. Nos. 1, 4.	
Switzerland.	
Geneva.-Institut National Génevoie. Nos. 1, 4, 5.	
Lausanne.-De la Société Vaudois des Sciences Naturelles Neuchatel.-Société des Sciences Naturelles. Nos. 1, 4, 5	Nos. 1, 4, 5.

Total (including Editors of Periodicals) 87%
$\left.\begin{array}{l}\text { A. LIVERSIDGE, } \\ \text { A. LEIBIUS, }\end{array}\right\}$ Hon. Secretaries.

REPORTS FROM THE SECTIONS
 (IN ABSTRACT).

REPORTS FROM THE SECTIONS.
 (IN ABSTRACT.)

SECTION A.-ASTRONOMY AND PHYSICS.
Preliminary meeting-5 APRIL, 1878.
Mr. H. C. Russell, B.A., F.R.A.S., in the Chair.

AfTER the confirmation of the minutes of the preceding meeting of the Section, the election of officers for the current year was proceeded with, and the following gentlemen were elected :-Chairman : Mr. H. C. Russell, B.A., F.R.A.S. Secretary : Mr. G. D. Hirit. Committee : Mr. H. G. A. Wright, M.R.C.S. ; Mr. W. J. MacDonyell, F.R.A.S.; Rev. Geo. Martin, and Mr. J. U. C. Colyer.

It was resolved that the meetings of the Section for the present session should be held on the first Friday in each month.

$$
\text { з MAY, } 1878 .
$$

Mr. H. C. Russell, B.A., de., in the Chair.
A paper was read from Mr. John Tebbutt, F.R.A.S., Windsor, entitled "Note on the Planet Uranus."

The Chairman read a paper on the "Longitude of the Sydney Observatory," and stated that as the longitude determined by him agreed very closely with that arrived at by comparison with Melbourne and Wellington (N.Z.) by telegraph, it would in future be assumed as the correct longitude of the Observatory.

Mr. G. D. Hirst quoted some remarks published by Mr. Bessemer in "Nature" on the construction of large silvered glass reflectors.

$$
13 \text { JUNE, } 18 \% \text {. }
$$

Mr. H. C. Russell, B.A., \&c., in the Chair.
Mr. W. J. MacDonnell, F.R.A.S., read a paper on sundry forms of governors for telescope-driving clocks. He stated that he had not been able to place on record all that he had found on the subject, but that he hoped to finish the paper on a future occasion.

A paper was read from Mr. John Tebbutt, F.R.A.S., Windsor, on the recent transit of Mercury. A supplementary paper was also read from the same gentleman on the result of a recent determination of the difference in longitude between his observatory and that of Sydney.

Mr. G. D. Hirst read a note on his personal observation of the remarkable meteor seen on the afternoon of the 1st June.

The Chatrman exhibited a set of eye-pieces, manufactured by Hilger, of London, for the large equatorial at the Sydney Observatory, ranging from 150 to 1,200 diameters, the lenses being composed of quartz. He also exhibited a micrometer for the large spectroscope by the same maker.

A clock was exhibited, the invention of Mr. Barraclough, for producing a perfectly uniform motion in the revolving barrel of a chronograph. The governing power was produced by two pendulums swinging at right angles to each other.

$$
5 J U L Y, 1878 .
$$

This meeting lapsed in consequence of the absence from town of several of the members.

$$
2 \text { A UGUST, } 1878
$$

Mr. H. C. Russell, B.A., \&c., in the Chair.

A discussion took place in reference to the clock exhibited at the last meeting Mr. Russell stated that he had succeeded in greatly simplifying the attachment to the pendulums. The clock was being tried on a chronograph at the Observatory, and was giving very satisfactory results.

A paper was read from Mr. John Tebbutt, F.R.A.S., Windsor, on the star "Brisbane, 6183."

Mr. W. J. MacDonnell, F.R.A.S., read a letter he had received from Mr. Neisson urging the establishment of a Selenographical Society in Sydney. He also read a paper on observatories in the United States.

The Chairman read a paper on "The Comparison to Sirius."

6 SEPTEMBER, 1878.

Mr. H. C. Russell, B.A., \&c., in the Chair.

The Chatraman introduced to the notice of the members a new form of triangular micrometer, which he recommended as possessing many advantages over the old form of ring micrometer. It consisted of a metal triangle introduced into the diaphragm of the eye-piece, the base of the triangle being equal to its height.

Mr. G. D. Hirst exhibited some crayon drawings of Jupiter made during the present opposition; he read some notes on the most remarkable features presented by the planet at the present time.

Mr. W. J. MacDornell and the Charrman exhibited some new forms of microphones and apparatus.

4 OCTOBER, 1878.
Mr. H. C. Russell, B.A., \&c., in the Chair.
A paper was read from Mr. W. J. MacDonnell, F.R.A.S., on star discs and the separating power of telescopes.

The Chairman read a paper on the results of the transit of Venus observations published by Captain Tupman.

$$
1 \text { NOVEMBER, } 1878 .
$$

Mr. H. C. Russell, B.A., \&c., in the Chair.
A paper was read from Mr. Johe Tebbutt, F.R.A.S., Windsor, on the "Geocentric Conjunction of Mars and Saturn on the 1st July, 1877."

The Chairman read a paper on the "Mounting of large Objectglasses." He also read a note on a new form of equatorial stand; it was accompanied by a model and working drawings. The model was inspected by the meeting, and the plan proposed met with general approval.

Note on the Planet Uranus.

By John Tebbutt, F.R.A.S.

[Read before the Astronomical Section, 3 May, 1878.]

A century has now almost elapsed since Sir William Herschel detected the planetary character of Uranus, and during that long period the planet has passed only once through its perihelion. This perihelion passage occurred about the close of last century. The planet, in consequence of its slow angular movement, comes into geocentrie opposition to the sun once in every period of 370 days. Its nearest approach to the earth takes place, of course, about the time of the opposition, but it is obvious from a consideration of the eccentricity of the planet's orbit that the oppo-sition-distance varies according to the distance of the planet itself from its perihelion. Without regarding the small variation due to the earth's distance from its own perihelion, it is also obvious that when the opposition takes place at the same time that the planet is in or very close to its perihelion the opposition-distance is at a minimum, and this is the most favourable opportunity for the telescopic examination of the planet and its satellites. Now this combination of circumstances will soon take place; the planet has, in fact, for the past forty years been gradually approaching the earth at each successive opposition. It will be remembered that in the newspapers I pointed out a somewhat similar circumstance in connection with the planet Mars previously to its opposition last year. The heliocentric longitude of Uranus at the last opposition (15 February, 1878) was $147^{\circ} 25^{\prime}$, and that of the perihelion, according to Chambers's Descriptive Astronomy, 1867, p. 38, is $167^{\circ} 30^{\prime}$, and as the heliocentric motion of the planet is at present about 43 degrees during a synodical period, it follows that the opposition of March, 1882, will fall the nearest to the perihelion during the present century. Adopting the planet's orbit-elements in Chambers's Astronomy, I get 18.2875 and 20.0780 respectively as the perihelion and aphelion distances expressed in parts of the earth's mean distance from the sun. The radii-vectores of the earth corresponding to the heliocentric longitudes of the planet's perihelion and aphelion are respectively 0.9932 and 1.0064 . From these values I deduce therefore 1 1-2943 and 19.0716 as the minimum and maximum limits of the variation of the planet's opposi-tion-distance. If now we assume Sir G. B. Airy's determination (R.A.S. Monthly Notices, Vol. XXXVIII. p. 16) of the sun's mean distance from the telescopic observations of the British Expedition for the Observation of the transit of Venus, 1874, namely, $93,375,000$ miles, we have for the real minimum and maximum op-position-distances 1,615 and 1,781 millions of miles respectively,
giving a difference of 166 millions of miles. This difference certainly does not form a great proportion of the whole distance, but it is sufficient to indicate that Uranus is now in the most favourble part of its orbit for telescopic observation, and this favourable combination of circumstances will increase till 1882, after which it will diminish.

Another result of the conditions I have thuspointed out is the fact that the planet is becoming more distinct to the naked eye at each successive opposition. It can, even now that several weeks have elapsed since its opposition, be distinctly seen without a telescope. At the present time it is nearly on the same meridian of right ascension with $\mathrm{Nu}(\nu)$ Leonis, andabout forty-five minutes of are north of that star. Both stars being embraced within the field of the finder of my equatorial, I had a good opportunity last evening, April 24th, of comparing their relative brilliancy. The objects appeared to he exactly equal: if there was any difference, the inferiority was perhaps with the planet. The British Association Catalogue of 8,377 stars for 1850 and the U.S. Naval Observatory Catalogue of 10,658 stars for 1860 both give 51 as the magnitude of v Leonis, so that Uranus may certainly be regarded as a large star of the sixth magnitude. My attention was not directed to the planet at the time of its maximum brilliancy in February last.

In February, 1869, I observed the planet on the meridian with the transit instrument, and found it to be very nearly fifteen seconds of time west of the place assigned to it by the old Tables of Bouvard, which have been employed in the computations of the Nautical Almanac down to the end of 1876 . Observations taken last evening, however, showed it to be almost precisely in the place deduced from Professor Newcomb's new Tables since employed for the Ephemeris in the Nautical Almanac.

Observatory, Windsor, 25 April, 1878.

On the Longitude of Sydney Observatory.

By H. C. Russell, B.A., F.R.A.S.
[Read before the Astronomical Section, 3 May, 18\%8.]

Tire members present this evening are probably all aware of the extreme difficulty of finding the longitude by astronomical observations alone, that is, by observations of the moon's change of position, due to her motion. To those who have not been in the habit of discussing lunar observations, it may be worth while to say that an error made in observing the moon's right ascension (taking the moon's average change in right ascension) is magnified some twenty-five times in the resulting error of longitude; thus, an error of observation of the moon of only one-fifth of a second would produce an error of 5s. in the longitude, and if the observation were made when the moon was changing her right ascension slowly the error would be much greater. All the refinements of modern instruments are required for such delicate work as the determination of longitude from observations of the moon; but there are other obstacles in the way which are still more difficult to overcome than the adjustments of instruments; foremost amongst these is the remarkable peculiarity amongst observers of the moon pointed out by the Astronomer Royal so long since as 1848, which might, I think, be called lunar personality. During that year it was found that between Mr. Dunkin and Mr. Breen, two of the Greenwich observers using the altazimuth, there existed a difference of 0.38 s . in determining the moon's right ascension; and the Astronomer Royal rernarks:-
"The circumstances under which the large errors given by Mr. Breen occurred were so various, in respect of moon's age and moon's position in her orbit, and the intermixture of the observations had been so complete that there was no doulut whatever that this was the result of a difference in the mode of observation.
"And this was not the result of personal equation usually so called; for it was known from the investigations of personal equation as exhibited in the clock crrors given by stars (which are confirmed by similar investigations made to the end of 18.49) that the personal equation was small. Neither was it a different estimation of the moon's diameter, for the difference of errors of moon's R. A. is nearly the same, and in the same direction, whether the first limb or the second limb be observed. It is strictly speaking a difference between the personal equation for the moon and that for the stars; or, it may be thus stated, that the duration of the impression on the nerves of the eye, or the time occupied in bringing into comparison the impressions on the
eye and on the ear, is not the same when the moon is observed with the eye as when a star is observed with the eye. The evidence of this is given in the following numbers:-
"By observations of the first limb of the moon from 1847, May 16, to 1848, May 28 :-

The mean of 45 errors of moon's tabular R.A. by Mr. Dunkin, is plus 0.53 secs.
The mean of 35 error:, by Mr. Breen is...... plus 0.99

Excess of Mr. Breen

- plus $0 \cdot 46$ secs.
"By observations of the second limb of the moon through the same period :-

The mean of 33 errors by Mr. Dunkin is ... plus 0.50 secs.
The mean of 27 errors by Mr. Breen is...... plus 0.80 secs.
Excess of Mr. Breen plus 0.30 secs."
-Introduction, "Greenwich Observations, 1848," page 70.
Here then we have a difference between observers which would make a difference of about 10.00 secs. of time in the longitude; and a careful examination of all the moon observations at Greenwich by Mr. Dunkin, and published in the R. A. S. Notices, vol 19, page 259, revealed the fact that no two of the observers had the same personality in observing the moon. I have mentioned this fact in explanation of a suggestion I have to make to-night on the cause of the difference in the longitude of Sydney Observatory, as determined by the Rev. W. Scott and myself-a difference which appeared as soon as I began to take the observations in 1863.

The lnngiturle of Sydney Obserratory now used was determined by the Rer. W. Scott from 48 observations of the moon, taken during 1853, 1860, and 1861, and compared with observations taknen on the same days at Greenwich, or the Cape of Good Hope. The resulting longitude was $10 \mathrm{~h} .4 \mathrm{~m} .45 \cdot 79 \mathrm{~s}$., which has ever since been used as 10 h .4 m .46 s . Mr. Stone, the Astronomer Royal at the Cape, from observations selected from the abovy (equal numbers of both limbs), found the longitude of Sydnee $10 \mathrm{~h} .4 \mathrm{~m} .47 \cdot 32$ sees. In 1863 I obtained a large number of observations of the moon, and, fortunately, for 36 of them, correspond ing observations at Greenwich; from all these the longitude derived was 10 h .4 m .50 .50 s . During 1864 to 1870 inclusive Mr. Smalley did not observe for longitude. In 1871 I again observed, and had twenty-four corresponding observations from Greenwich, the mean of which gave $10 \mathrm{~h} .4 \mathrm{~m} .50-91 \mathrm{~s}$ for the longitude of Sydney. In 180^{2} the number of comparisons between Sydney and Greenwich from cloudy weather and other causes was only seven, giving for this year a mean longitude of

10 h .4 m .51 .08 s . In 1873 fourteen comparisons were obtained, and the mean longitude derived was $10 \mathrm{~h} .4 \mathrm{~m} .51 \cdot 07$. In 1874 thirteen comparisons were obtained, and the mean longitude derived is $10 \mathrm{~h} .4 \mathrm{~m} .504 \%$. For subsequent years I have not yet received the moon observations from Greenwich. We have then, as the result of my own observations compared with corresponding observations at Greenwich -

		h.	m.	s.
1863	\ldots	10	4	50.50
1871	\cdots			50.91
1872	\cdots			51.08
1873	\cdots			51.07
1874	\cdots			50.47
Giving a mean	10	4	50.806	

which differs by 5.01 s. from that determined by the Rev. W. Scott, although the same instrument and method of observation were used by both of us; and it is therefore obvious that between the Rev. W. Scott and myself there is a personal equation when observing the moon different from that between us when observing stars. Just as has been found to be the case at Greenwich, the quantity is really a very small one-only $0 \cdot 20$--which produces this difference of 5 s . in the longitude, and I am not surprised to find it; forbetween us, when observing stars, there was a difference of 0.37 s .

It must not, however, be forgotten that there is very great difficulty in determining the moon's position, and the observations made at Greenwich on all possible occasions for determining the moon's true place for comparison with the Nautical Almanac predictions, vary in a very remarkable degree, and prove beyond question that extreme care is necessary in observing the moon.

Now, turning to other sources for data upon the longitude of Sydney, we have first and most important, the longitude of Melbourne ; this, Mr. Ellery has found from a large number of moon observations to be $9 \mathrm{~h} .39 \mathrm{~m} .54 \cdot 80 \mathrm{~s}$. ; a very careful determination of the difference in longitude between the two observations by means of the telegraph lines makes it 24 m .55 .77 s ., and this added to $9 \mathrm{~h} .39 \mathrm{~m} .54 \cdot 80 \mathrm{~s}$. gives us $10 \mathrm{~h} .4 \mathrm{~m} .50 \cdot 57 \mathrm{~s}$. as the longitude of Sydney.

In 1874, Major Palmer, while in New Zealand with the Transit of Venus Expedition, found the longitude of Wellington, New Zealand, to be 11 h .39 m .481 s . and as soon as the New Zealand cable was laid the Cable Company courteously placed the cable at our disposal for the purpose of determining the difference of longitude between Sydney and Wellington, the cable being connected with the land lines at each end, so that the signals went
from one observatory to the other without interruption. Signals were therefore exchanged between the Venerable Archdeacon Stock, B.A., and myself, with the following result:-From Wellington to Sydney, 1h. 34 m .15 .35 s . ; Sydney to Wellington, 1h. 34 m .16 .64 s . But it appears that the signals received at Wellington from Sydney were received by an assistant, whose cry as soon as he saw the signal from Sydney, was compared with the clock by Archdeacon Stock, and I quite agree with the riew of Archdeacon Stock-that in such a process time must have been lost, and it does not appear that any attempt was made to determine how much was so lost; as the signals were received and recorded on the chronograph at Sydney by one observer, it is more than probable that the result so obtained is the more correct of the two. I therefore adopt, as has been done by Archdeacon Stock, 1 h .34 m .15 .35 s . as the difference between Sydney and Wellington observatories, and subtracting this from Major Palmer's longitude, we have $10 \mathrm{~h} .4 \mathrm{~m} .49 \cdot 46 \mathrm{~s}$ as the resulting longitude of Sydney. We thus have four values of the longitude of Sydney.

		H.	M.	S.
Rev. W. Scott	$\ldots . .$.	10	4	45.79
Mr. Russell (Me........		50.81		
Mr. Ellery (Melbourne)	50.57			
Major Palmer (New Zealand)	$49 \cdot 46$			

And I have no doubt that these differences may all be accounted for by personality in observing the moon, and the question is naturally asked which is right, but it is impossible to say, and the question must, I fear, be left unanswered until the difference shall have been determined by the use of the telegraph lines. It is very much to be regretted that the various transit of Venus' parties did not combine and do this important work when they were in the Pacific Ocean. Probably it will be long before such a number of trained observers will be again on the spot to do this work, and the cost of doing it now would be considerable.

I have only to say in conclusion that in future the longitude of Sydney Observatory will be assumed to be 10 h .4 m .50 .81 s .

Note on the Transit of Mercury, on May 6th, 1878.

By Jom Tebbutt, F.R.A.S.
[Read before the Astronomical Section, 13 June, 18\%8.]

A transit of Mereury across the sun's dise necurred on the 6 th of May last, cestronomicelt time. .- The ingress took place before the sun rose, so that the early part of the transit wasunt seon here. Owing to the presence of clouds the egress, unfortunately, was not completely observed by me. The fog having cleared off and the clouds having partially remnved, I ohtained the first view of the planet about 19 h .58 m . with $\mathrm{my} 3{ }_{4}^{1}$-inch refractor. At this time I thought I could perceive a faint whitish spot on the planet's disc, but I could soonothing of the kind shortly afterwards with the 4 -inch equatorial. The lattor telesenpe, provided with Cooke's prismatic reflecting eye-piece and a magnifying power of 180 diameters, was employed in the observation of the egress. The sun was free from spots, and there was no ring or halo round the planet when on the sun's dise, nor could I detect anything like a satellite. At 20h. $48 \mathrm{~m} .19 \cdot 3 \mathrm{~s}$. observatory mean solar time, when I estimated the thread of light between the limbs of the sun and planet to be about a second of are in breadth, the planet suddenly threw out a narrow ligament and immediately became somewhat pear-shaped, as represented in figure 1. The appearance at this time reminded me very much of that observed by Mr. Dunkin at Greenwich with the 3^{3}-inch alt-azimuth during the egress of the planet in Nuvember, 1868 , and represented in his diagram on page 12 of the 29 th volume of the Royal Astronomical Society's Monthly Notices. The ligament observed by me was nearly as black as the planet itself, and rendered it very difficult to estimate the time of the geometrical or apparent internal contact of limbs. This phase occurred about twenty-two seconds after the formation of the ligament, or at 20 h .48 m .41 .3 s . It appears from the Sydney Morning Herald of May 8th that the times of the internal contact as observed at the Sydney Observatory by Messrs. Russell, Hirst, and MacDonnell, were respectively 20 h .49 m .43 .09 s 。, 20h. 49 m .52 .04 s . and 20 h .50 m . 3.67 s . The apertures of the telescopes employed in these observations were respectively, $11 \frac{1}{2}, 7 \frac{1}{4}$, and $4 \frac{1}{4}$ inches. Their times correspond to $20 \mathrm{~h} .48 \mathrm{~m} .13 \cdot 0 \mathrm{~s} .20 \mathrm{~h} .48 \mathrm{~m} .22 .00 \mathrm{~s}$. and 20 h . 48 m .33 .63 s . at my observatory. Taking into consideration the fact that the differential effect due to parallax is in this instance almost inappreciable, it will be scen that my estimation of the geometrical contact agrees best with Mr. MacDonnell's observation, and it will also be noted that our telescopes had almost precisely the same aperture. What, however, seems to

$$
9
$$

me anomalous is the circumstance that the earliest estimation of the geometrical coincidence of limbs should have been made with the largest telescope, and the latest with the smallest telescope. Considering the small difficulty which the observers encountered with regard to the ligament, one might suppose that the order of the estimated contacts at Sydney would have been precisely the inverse of that stated to have been observed. The diminishing thread of light between the limbs should have been seen last by the largest telescope. The anomaly may, perhaps, be explained by a consideration of the magnifying power of the eyepieces employed in the observations. The order of the observed external contacts is what one might expect in accordance with the various apertures. At $20 \mathrm{~h} .49 \mathrm{~m} .0 \% \mathrm{~s}$. Windsor mean time, I noted the appearance of the planet to be that shown in figure 2, which is similar to that given by Mr. Criswick in his observations, on page 13 of the Roval Astronomical Society's Monthly Notices already cited, the sun's cusps being rounded. I estimated the central bisection of the planet by the limb at $\because 0 \mathrm{~h} .50 \mathrm{~m}$. 14.3 s . Owing to the clouds becoming suddenly thicker and rendering the oljects indistinct, I was unable to observe the external contact with satisfaction.

Note on the Star "Brisbane, 6183."

By John Tebbutt, F.R.A.S.

[Read before the Astronomical Section, 2 August, 1878.]
While engaged last evening in micrometer observations of stars in the neighbourhood of the Variable which I discovered in the constellation Ara in November last, I was struck with the fact that Brisbane, 6183, a star recorded at Parramatta between the years 1822 and 1826 as of the seventh magnitude, had either disappeared or become almost invisible in my equatorial of $4 \frac{1}{2}$ inches aperture. I succeeded in identifying the stars numbered $6142,6172,6177$, 6181, 6196, and 6220 in the Brisbane catalogue, but the only stars now to be seen in the catalogued position of 6183 are two or three excessively faint ones. They are barely distinguishable in my telescope even on a brilliant sky with the moon absent, and it is therefore impossible to determine their position with the micrometer; this, however, might be done with the $11 \frac{1}{3}$-inch refractor of the Sydney Observatory. It is quite possible that the catalogued position of 6183 may be an exroneous observation of 6196, the right ascension being almost exactly two minutes of time too small. The south polar distances in the catalogue agree within a fraction of a second.

The non-appearance of the star may be thus accounted for, but in the meantime it will be well to record the fact in the Proceedings of the Astronomical Section of the Royal Society. The star is not to be found in Lacaille's catalogue.

Windsor, June 28th, 1878.

Notes on Observatories in the United States.

By W. J. MacDonnell, F.R.A.S.

[Read before the Astronomical Section, ©August, 18iS.]
I have recently received Messrs. André and Angot's work on Observatories in America, "L'Astronomie Pratique et Les Observatoires en Europe et en Amérique, $3^{m e}$ partie, Paris, 1877 ," in which the marvellous success of astronomical pursuits in that country, and present high position of the science in the United States, are graphically described; and perhaps this Section will kindly bear with me whilst I make a few remarks on the subject. To the student of astronomy in Australia the lesson taught by the past experience of the States is one of great interest, and one from which we ought to gain much in advancing our favourite science.

The progress of astronomy in North America was at first very slow. No results worthy of record are noted during the eighteenth century, with the exception, perhaps, of a few observations of the transit of Venus, 1769 ; and, in spite of the advocacy of John Quincy Adams and others, Congress was decidedly opposed to the construction or maintenance of a permanent astronomical obserratory.

The first attempt to found an observatory worthy of the name was that of Professor A. Hopkins, in 1836, in connection with the Williams College, Massachusetts, soon after the apparition of Halley's comet in 1835. Other observatories soon followed, viz., the Hudson Observatory, Western Reserve College, Ohio, 1838, and the Philadelphia High School, 1840, and the first State observa-tory-that of the military college of West Point-was completed in the same year. Astronomy had by this time taken a firm hold in the States, and Congress withdrawing its objections, the magnificent national observatory at Washington (now known as the United States Naval Observatory) was commenced ; and although little more than thirty years have elapsed since its existence, it now ranks as a worthy peer of the grand observatories of Europe, and is a brilliant instance of the commendable perseverance towards success of American astronomers. I will now pass on to the erection of the Cincinnati Observatory. In 1842 the late Professor O. M. Mitchell gave a series of lectures on astronomy (since republished under the title of "Orbs of Heaven," one of the most fascinating astronomical works ever printed). The enthusiasm raised by this course of lectures was promptly availed of by Mitchell, and a Cincinnati Astronomical Society was formed, the object of which was to furnish the city with an observatory. $\$ 11,000$, in shares of $\$ 25$ each, were subscribed, a site was given by a citizen, and Mitchell was deputed to visit Europe for the
purchase of a telescope. He secured one at Munich of twelve inches aperture-one of the finest then in existence-at a cost of $\$ 9,500$. The observatory was completed in 1845 , and at once began a career of usefulness which reflected honor both on founders and manarers. The next observatory to come under our notice is that of Harvard College, Cambridge, Massachusetts. This is perhaps the most famous of all the American "Light-houses of the skies," as $\mathbf{J} . Q$. Adams calls them. A meeting of the leading citizens of Boston was held in March, 1843, to determine on the construction of an observatory. The question was settled in the attirmative, and $\$ 20,000$, to defray expenses, were at once subscribed. It is a noteworthy fact that several Insurance Companies were subscribers for considerable sums. The observatory was built on ground purchased by the Harvard University, a splendid refractor of 15 inches aperture (then only equalled by the Pulkova telescope) procured, and active operations, under the guidance of the two Bonds, were begun in 1847 . It is unnecessary to recapitulate the splendid services rendered to astronomy by the magnificent observatory, which is still in active operation.

Another well-known observatory, that of Dartmouth College, Hanover. New Hampshire, founded in 1853 , is due principally to the liberality of one individual, Dr. G. Shattuck, who supplied the means for the acquisition of the site, purchase, and construction of the necessary instruments. This observatory is now under the direction of Mr. C. A. Young, who utilizes the $9 \frac{1}{2}$-inch Alvan Clark equatorial in spectroscopic researches.

In 1860 a certain number of the inhabitants of Pittsburg and Alleghany city, Pennsylvania, undertook to provide an observatory for that city. A 13 -inch equatorial was secured and the erection of a suitable building was commenced; but funds failing, the whole was about to be seized for debt, when a rich citizen of Pittsburg, Mr. William Thaw ($q y$. Shaw), paid the debt due and completed the observatory, at a cost of $\$ 40,000$. To secure the future of the observatory, he handed it over to the University of Pittsburg (Western University), with the sole condition that an efficient astronomer should be provided for by the University. Professor Langley, so well-known for his solar studies, is now in charge of this fine observatory. A curious event has happened to Professor Langley since his installation, and one fortunately without precedence in the annals of astronomy. During the night of the 8th of July, 1872, a thief broke into the observatory and stole the fine 13 -inch object-glass of the equatorial. After some search it was found in the possession of a broker, who stated that he had purchased it from an unknown person. Luckily it had not sustained much damage, and on being retouched by Alvan Clark, is now one of the finest glasses extant.

In December, 1862, the Professors of the University of Dearborn, Chicago, having learnt that Fitz, of New York, had a fine objective of $14 \frac{1}{2}$ inches for sale, started a subscription for its purchase, and succeeded in getting $\$ 20,000$. A Mr. Moyne was deputed to negotiate the purchase of the object-glass, but hearing en route that Alvan Clark had a splendid equatorial of $18 \frac{1}{2}$ inches aperture, and 23 feet focal length, on his hands, ordered by the University of Mississippi, but owing to the war of secession, the University was unable to complete the purchase, Mr. Moyne at once secured the $18 \frac{1}{2}$-inch, at at cost of $\$ 18,000$, completely mounted. A wealthy public-spirited citizen of Chicago, Mr. J. Y. Scammon, promptly came forward with funds necessary for the installation of the telescope and the support of an observer.

The city of Albany (State of New York) possesses a first-class observatory, also founded by private means. The total cost was over $\$ 200,000$, of which Mrs. Dudley contributed $\$ 105,000$ in the name of her deceased husband, and hence the managers of the establishment have given it her name-"The Dudley Observatory."

Within the last few years, the United States Naval Observatory has added to the already fine collection of instruments it possesses, a refractor by Alvan Clark, the object-glass of which is 26 inches in diameter, exceeding by 1 inch the great Newall refractor, made by the eminent English maker, the late Thomas Cooke. But even with this magnificent telescope American ambition is not satisfied; for finding that Vienna is on the point of obtaining a 27 -inch achromatic by Grubb, of Dublin, a still larger one must be secured. Mr. James Lick, of California, has devoted $\$ 700,000$ for the estallishment of an observatory, to be furnished with the largest telescope procurable. Mr. M'Cormick, of Chicago, has announced his intention of founding an observatory in connection with the University of Virginia, to contain amongst other instruments a $26 \frac{1}{2}$-inch equatorial. And finally, Alvan Clark and Sons have a dise of glass from Feil (of Paris) in hand for an object-glass of 29.8 inches aperture, which Mr. Winchester is having made for New Haven, at his expense.

The private observatories of Rutherfurd, Draper, Burnham, and other astronomers need not be specially described. They are fully detailed in Messrs. André and Angot's work.

Now is there anything in the history of American astronomy which is applicable to us in Australia? With the exception of the three Government Observatories, viz, Washington, Westpoint and Annapolis the latter a mere adjunct to the naval school established for the instruction of junior officers), all the observatories in the States are due to private enterprise, either in the shape of a public subscription or to individual liberality. There is no appeal to the national Government for aid, and I am sure
our worthy Chairman will testify that much of the recent advance in astronomy is due to our American cousins. We have in Sydney, Melbourne, and Adelaide, observatories provided with fine instruments, thanks to the openhanded liberality of our colonial Governments, to whom all honour is due for their support of science in these young countries, but ought no effort be made to procure a thirty or forty inch telescope for this colony? Have we no wealthy citizens desirous of emulating the example furnished by their confrères in the States and establish an observatory with a giant telescope? And, again, when small cities in the States, such as they were thirty or forty years ago, determined to have their own observatories, with as large telescopes as were then procurable, why cannot we do the same here? Let our Section originate, and our Society sanction, an appeal to the public for the funds to procure one of the powerful instruments now in vogue. I merely broach the idea (probably premature) for the consideration of the Astronomical Section of the Royal Society.

Another thing may be considered: when the demand for large telescopes commenced in America, Alvan Clark and Sons, FitzYoung and others, came forward to supply the wants of the community. The quality of the work performed by these makers may be judged from the fact that not only have they supplanted foreign opticians in their own country, but their instruments (especially those of the Clarks) are sought after by English observers. Who knows then, but that should a local demand arise, the same results will follow, and some Australian Alvan Clark, or a Cooke, or a Grubl, emerge from his obscurity and find a fitting field for his talents.

List of the more important Observatories in the United States.

Government.

Private Observatories.

Projected Observatories.

University and College Observatories.

Equatorial.

	Equatorial.
Williams College	7 -inch.
Western Reserve	4 "
Philadelphia High School	
Georgetown College	
Harvard do.	
Tuscaloosa University	
Amhurst College...	74
Shelly do....	7 生
Hamilton do.	$13 \frac{1}{2}$
Dartmouth do.	$9 \frac{3}{2}$
Michigan do.	12
Alleghany do.	
Scientific School, Sheffield	
Dearborne University,	
Chicago...	182,
Alfred Centre	
Lehigh University	

Clark's Companion of Sirius.

By H. C. Russell, B.A., F.R.A.S.
[Read before the Astronomical Section, 2 August, 1878.]

Several communications have appeared in Nature upon this interesting object, which was discovered in January, 1862, and found then by Bond to have an angle of $85^{\circ} 1$ and distance $10^{\prime \prime} \cdot 4$. Few measures have been taken of it since, and in a communication to Nature, March, $1876, \mathrm{Mr}$. Wentworth Erck says he cannot estimate the angle at more than 55°, and that it is getting less, as required by Dr. Auwer's theory of a dark body revolving about Sirius and causing its anomalous proper motion. The following calculated and observed positions will be interesting. (In part copied from Nature.)

Year.	Computed on Dr. Auwers Theory. Angle. Distance.		Measured Angle. Pos Dist.		Observer.
1862	$85 \cdot 4$	$10 \cdot 10$	$85 \cdot 1$	$10 \cdot 4$	Bond.
1865	$79 \cdot 9$	10.78			
1868	$75 \cdot 0$	11-15			
1871	$70 \cdot 3$	$11 \cdot 20$			
1872-25			$63 \cdot 0$	$10 \cdot 6$	Washington.
1874	65.5	10.95			
1874•18			59.0	10.5	
1875 ${ }^{\text {24 }}$		10.59	56.6	10.0	
1876	$62 \cdot 1$	10:59	55.0	10.97	Russell.
1876.30			55.0		Erck.
1877.97			$52 \cdot 4$	$10 \cdot 83$	Burnham.
1878	$58 \cdot 4$	10.05			
1880	542	$9 \cdot 33$			

From this table it is obrious that since 1862 the companion has not followed exactly the computed orbit, the angle being now about 6° less than theory requires; nevertheless it comes so near to the path which theory requires the companion to take, that there can be no doubt that it is this apparently insignificant companion which causes the observed irregularities in the proper motion of Sirius. Dr. Auwer's theory requires the companion to be 6.71 times as large as our Sun and Sirius himself 13.76 times. Yet though about half the size, it shines with a light almost infinitely less than that of Sirius. What can be the cause of such a difference it is hard to conjecture, and it does not seem probable that the spectroscope will aid us in answering the question. The spectrum of Sirius has been frequently examined, but there is so much light about the primary that there seems no hope of catching the faint rays from the companion; (estimated at 10 magnitude) in the presence of such splendour.

I have frequently been struck when observing Sirius with the planet-like dise of the companion, and I find that on the 7th March, 1876 , I have made this note:-"Small star appears as a hard clear dise outside the rays of the large star."

The following measures have all been taken by me with the large equatorial.

Measures of the close companion (Clark's) of Sirius, made with the 11 i in, equatorial, power 280.

Date.	Distance.		Angle.	Remarks.
28 Dec., 18\%5...	Mic.	\cdots		Fine night ; definition good.
	0.616	11.02	$54 \cdot 6$	
	$0 \cdot 590$	10.57	$55 \cdot 16$	
	$0 \cdot 624$	$11 \cdot 19$	$55 \cdot 14$	
	$0 \cdot 650$	$11 \cdot 65$	$55^{\circ} 5$	
	$0 \cdot 610$	$10 \cdot 93$	$54 \cdot 46$	
Means		11.07	$54 \cdot 53$	

February 17, 1876. Measures of Sirius with $11 \frac{1}{3}$, power 280.

Date.	Distance.	Angle.	Remarks.
17 Feb., 1876...	Mic.	0.644	11.5
	0.636	11.40	$54 \cdot 10$
	0.652	11.69	55.14
	0.639	11.46	54.30
	0.634	11.37	55.10
	0.643	11.53	Fine clear night after cloudy
	0.648	11.62	54.40
		11.52	54.35

March 7, 1876. Measures of Sirius, $11 \frac{1}{3}$, power 200.

Date	Dictance.		Angle.	Ecmarks.
7 March, 18\%6...	Mic.	9.94	5.5-40	Light haze over the sky ; defi nition good ; small star ap pears as a hard disc outside the rays of the large star Haze for a time hid smal star and interferes with ob servations.
	0.571	$10 \div 3$	54.54	
	$0 \cdot 56$	$10 \cdot 16$	$55 \cdot 30$	
	0.588	$10 \cdot 54$	$55 \cdot 5$	
	0.605	10.84	$55 \cdot 18$	
	0.568	$10 \cdot 18$	54.58	
		$10 \cdot 31$	$55 \cdot 14$	

April 5, 1876. Measures of Sirius, $11 \frac{1}{3}$, power 180.

Date.	Distance.	Angle.	Remarks.
5 April, 1876...	(See remarks.)	$\begin{aligned} & 55 \cdot 2 \\ & 54 \cdot 57 \\ & 55 \cdot 57 \\ & 54 \cdot 54- \\ & 54 \cdot 37 \\ & 55 \cdot 4 \\ & \frac{55 \cdot 5}{2} \end{aligned}$	Fine calm night, but very much smoke about. Measures of distance not satisfactory.

The Triangle Micrometer.

By H. C. Russell, B.A., F.R.A.S.

[Read before the Astronomical Section, 6 September, 1878.]

Most observers who have had to observe the positions of small bodies, comets for instance, have learned to dislike the ring micrometer; for although it gives differences of time with tolerable accuracy, the differences in declination are most unsatisfactory when found and very troublesome to compute; when therefore I had occasion to use it recently the old feeling of dissatisfaction came back to me, and set me thinking whether some more convenient form might not be devised, and the result I propose to lay before you tonight.

You are aware that Lacaille's observations at the Cape were made with rhomboidal figures, that is, two triangles base to base in the focus of the object-glass of the telescope. This form is much more satisfactory and convenient than the ring, yet I cannot find that any one has suggested its use in preference to the ring, nevertheless the advantages are many and they are still further increased by making the figure a triangle. I therefore adopted the one in which the hase of the triangle is exactly equal to the height, which is the most convenient form for the reduction of the results, and has, as you will at once see, this property,-- that the difference in time of transit between two bodies crossing it, converted into arc, is their difference in declination. Of course, if the observations are made away from the equator the difference must be multiplied by the cosine of the star's declination; and since the determination of this distance depends upon the observation of time in a triangle so proportioned that the differences in time are equal to those in declination, the declinations are as valuable as the right ascensions, which as we have seen is not the case in the ring micrometer. In use the triangle is very convenient: by allowing a star to run along the base while the instrument is at rest it can at once be set in position, so that its base is a parallel of declination and its perpendicular one of right ascension.

If the transits are observed at ingress and egress for each side, four transits are obtained from which to get the mean.

The sides of the triangle may be tested by allowing a star to run along, which if they are not straight will at once show the irregularity.

In the absence of a wire micrometer it might be of some service in estimating angles of position and distance ; for the times of transit may be made to indicate the distance, and the lines of the triangle supply six known angles of position, as shown in diagram herewith.

When the line O.M. is adjusted by the passage of a star, the sides are in the following angles of position :-

Before concluding I would like to draw your attention to a change in Saturn's belts since last year : there are two dark bands at about 45° declination, one on either side of the equator.

Notes on Jupiter during his Opposition, 1878.

By G. D. Hirst.

[Read before the Astronomical Section, 6 September, 1878.]

I have the pleasure of laying before you a few sketches of Jupiter, made this opposition.

At the planet's approach in 1876 I was able to secure a number of drawings, which I had the honor of exhibiting to the Society at the August meeting of that year; they were afterwards forwarded to Dr. Lohse, at Potsilam. In his letter acknowledging the receipt of these, he expressed a hope that the oppositions of the succeeding two or three years would not be allowed to pass by sonthern olservers without securing a permanent record of the planet's appearance. Last year. however, whether it was that the extremely favourahle opposition of Mars absorbed all our attention, to the exclusion of Jupiter, I camot say, but I have since heard that Dr. Lohse has expressed regret at the few drawings of Jupiter which reached his hands for that year.

As the planet is still more unfarourahly placed for observation in Europe this year, by reason of his increased southern declination, the doctor has again appealed to us not to let the opposition of this year pass unrecorded.

The drawings I have to exhibit are but few, as unfavourable weather early in the opposition, and other demands upon my time, have preventer me from making any regular observations; still, as far as they go, they may be considered typical of the most prominent and permanent features of the planet as fairly as I can represent them at the present time. They have been drawn prineipally from the Merz $7 \frac{1}{4}-\mathrm{in}$. refractor at the Sudney Observatory, for the use of which I am indebted to the kindness of our Chairman. Three are from the telescope I used in 18:6, viz, Mr. Colyer's $10{ }^{1}-\mathrm{in}$. reflector.

Speaking of these telescopes, there is one peculiarity which has struck my attention this year. You will perhaps remember that my notes in 1876 mention the strange discrepancy in the colour of the equatorial belt shown in the refractor and reflector.

In that year the colour of the broad equatorial band in the silvered glass reflector was a rich tawny orange ; you will see the colour in this diagram, which I exhibited to the Society in 1876, as a sort of rêsumé of the most prominent features of the planet. This band at that time appeared in both of the observatory refractors of a bright pink ; the discrepancy was confirmed by Mr. Russell, who examined the planet with a silvered glass mirror of his own make. Now if you will compare the drawings before you, made from the reflector, with those from the refractor, you will see that
this difference has vanished ; the northern equatorial belt appears in both descriptions of telescope of a bright coppery red, and the southern half ochre-yellow, inclining sometimes to grey.

There is something at present unaccountable here; for if the diversity of tint exhibited by the reflector and refractor two years since appeared inexplicable, their agreement this year makes matters still more strange. It would be interesting at future oppositions to make similar comparisons, which might eventually throw some light on the subject.

Referring again to the large diagram, and comparing it with the drawings of this year, we notice at once the alteration undergone by the equatorial belt; in 1876 it invariably presented itself as a broad band traversed in several places by narrow dark streaks ; last year what was before the central portion of this band, was the brightest part of the planet's disk, the broad band had split into two belts. This appearance is still preserved, the northern band being, as I said, bright copper colour, and the southern one ochre, or sometimes grey.
In 1876 the changes in the equatorial zone appeared to be very sudden and violent, the lower portion of the belt could rarely be recognized after one or two revolutions. This year it appears to be much more quiescent, the changes that occur are slower, and the same portion of the belt presents generally but little alteration after the lapse of several days. One bright red spot, referred to by Mr. Russell in the Herald, now more than a month ago, still appears in the same place, having undergone no alteration of shape or position; it corresponds very much to a marking we called the "Fish" in 1876 , being on the same, viz, the south side of the equatorial belt, the only difference being that in that year it was incorporated in the beit, from which it is at present well detached; its shape is exactly the same, though it is now reversed, the preceding end tapering off, instead of the following.

The north pole of the planet, in 1876, appeared in the reflector in nights of good definition, of a fine sea green tint. I have looked for this colour this year in the refractor, but have not been able to see it; the northern shading has always appeared light brown, and on one or two occasions grey.

Definition on the night of the 31st August was superb, and observing Jupiter in the reflector, I again noticed the green tint; to be well seen it seems to require most perfect definition, a large aperture, and perhaps the almost absolute achromatism of the silvered glass reflector is also a great requisite. Between the north polar shading and the equatorial band there is a narrow streak, which probably extends quite round the planet, for it has been visible on every occasion. I have suspected a purple tint on this once or
twice when using the refractor; on the evening of the 31st August the reflector showed it to be without doubt of a rich dark purple.

I have not observed any of the small white spots that have been remarked at previous oppositions, nor any of the minute and intensely black ones which I saw so repeatedly in 1876 ; larger and ill-tefined spots of a very dusky hue have been seen on the equatorial band this year, but they are evidently not of the same character.

On the evening of the 24th August there was a transit of No. IV satellite. I did not see the ingress, but at about $9.45 \mathrm{p} . \mathrm{m}$. I looked at the planet with a $43-\mathrm{in}$. refractor belonging to Mr. A. Fairfax, and was immediately struck with what appeared to be an intensely black spot on the northern portion of the equatorial belt. It was quite as black as the shadows of any of the satellites in transit, and for this I at first mistook it, until upon reflection I could not see any satellite in a position to cast the shadow. It grew lighter as it approached the limb, and finally at the edge lecame quite bright. I have since noticed No. IV, as compared with the other satellites on the dark background of the sky; it is certainly much less luminous, and if they were stars I should say it was two-thirds of a magnitude smaller. It must certainly possess reflecting powers vastly inferior to any of the others, to become so intensely black by contrast with Jupiter's dise. I could understand its appearing dusky under the circumstances, but it is difficult not to imagine that there is not some other cause for such intense and pitchy blackness.

In conclusion, I would express a hope that the anticipations of Dr. Lohse and others working with him, of a gain to our knowlege of the physical conditions of J upiter derived from a connected series of observations may not prove vain. One cannot help sometimes, as I have once before said, putting the question whether we are not after all but drawing "clouds on the summer sky;" yet now and then, as if to encourage us, we see markings possessing a certain permanence which might lead us to suppose that all is not vapour, and if the result of many years' watching should be the establishment of cycle of changes on the surface of our "giant planet," a great step will be gained, and our labour well repaid.

On Star-discs and the separating power of Telescopes.

By W. J. MacDonnell, F.R.A.S.
[Read before the Astronomical Section, 4 October, 1878.]

The fixed stars, although many of them are suns rivalling and often exceeding ours in splendour and magnitude, yet, owing to the enormous distances which separate them from our tiny world, appear as mere points of light, no telescope, however large, no magnifying power however great, has ever raised a real dise like that of the planets. It is, nevertheless, a well known consequence of optical laws, explainable by the undulatory theory of light, that the telesicope shows the stars with a sensible dise of a varying size according to the nature, quality, and power of the instrument used ; and it is a question of great practical and important interest to the double star observer to ascertain the conditions which govern the size of these false or spurious dises as they are called. Are the spurious dises dependent on the aperture or focus or the relation of aperture to focus; and with the view of raising a discussion on this question, I have brought together some of the riews of a few of our leadins observers on this subject.

Sir (9. B. Airy, Astronomer Roval for England, in his "Undulatory Theory of Optics," p. 80, has shown that the image of a star in a telescope is a circular dise rapidly decreasing in brightness towards the margin and degrading to a ring of absolute blackness, surrounded by a series of alternate bright and dark rings, the intensities of the bright rings being respectively about $3_{3}^{1}=2 \frac{1}{4}, \frac{1}{0}$ of that of the central disc. Two well known practical observers in England have given this subject a grood deal of attention: one, the late Rev. W. R. Dawes, and the other, Mr. G. Knott, of Cuckfield. Mr. Dawes had experimented with telescopes by eight different opticians, and came to the conclusion that the size of the star dises depended on the aperture only, irrespective of focal length, and found that the diameter of the star images varied inversely as aperture, and taking one inch aperture as a standard, ascertained that with this he could separate stars of the sixth magnitude $4^{\prime \prime} 6$ apart, and hence the separating power of any given aperture " a " will be expressed by the fraction $\frac{4^{\prime \prime} 56}{a}$ (Monthly Notices, Vol. 27, pp. $217-238$. See also "Astronomical Register," vol. 3, p. 153, and vol. 5, p. 100 ; "Intellectual Observer," vol. \&, pp. 240 and 276 ; Smyth's "Cycle," vol. 1, p. 417).

Mr. G. Knott, who is an experienced observer, and is the possessor of a fine $7 \frac{1}{3}$ inch Alvan Clark refractor, instituted a series of experiments for the direct measurement of the telescopic discs of stars, employing varions apertures of his telescope for
comparison. He found a marked and pretty regular increase in the apparent diameter of the dise as the aperture of the telescope is diminished, thus agreeing with the results derived a fortiori from theory. For example, the measurements of a Lyre (Vega) were-

> Aperture 7 in $33-6$ in $0-4$ in 954 in $00-3$ in $00-2$ in 00
> Size of dise $0^{\prime} \cdot 31-0^{\prime} \cdot 807-0^{\prime} \cdot 991-1^{\prime \prime} \cdot 284-1^{\prime \prime} \cdot 8 \cdot 29-2^{\prime \prime} \cdot 435$
("Monthly Notices," vol. $\quad 07, \mathrm{pp}, 87$ and 88 .) In a letter to the "Astronomical Register," vol. 5, p. 51, Mr. Knott further states that, other things being equal, the separating power of a telescope depends solely on its aperture, the diameter of the dise and rings varying inversely as the aperture; in other words, the larger the diameter of the object glass the smaller is that of the apparent image of the star.

The eminent optician Dallmeyer agrees closely with Mr. Dawes in the separating power of telescopes, which he finds to be $\frac{4^{\prime \prime} 33}{\text { for }}$
On the other hand, Mr. Warren de la Rue thinks that focal length has something to do with the size of the dises ("Astronomical Register," vol. 5, p. 128).

Steinheil, the well known (xerman optician, is of opinion ("Astronomische Nachrichten" No. 152.-" Intellectual(O)server," vol. $7, \mathrm{p}$. 4* 9) that it is a known consequence of the diffraction of light that the star.s appear as dises with measurable diameters. These diameters stand in relation to the intensity of the light, and the proportion that exists between the aperture of an object glass and its focal length, so that a telescope of 8 inches aperture and 1上 feet focal leugth, which could not divile γ^{2} Andromedre, would necessarily give to the component stars larger dises than one of the same aperture and shorter focal length.

Mr. Dawes controverted this opinion, and Steinheil partly accepted his correction, and explainel the fact that his 8 -inch telescope did not separate stars which other instruments of the same size will divide by ascribing it to the superior light of his own instrument. By augmenting the apparent brightness of a star, he said, its dise was increased and diminished by lessening its brilliancy. It has been long known that a central pateh to stop out the midfle rays has reduced the brilliancy of the stars and their dises, and thus increased the separating power of a telescope; hence the superiority of a reffector, the small reffector acting as a stop to the central rays. ("Intellectual Observer," vol. 8, p. 240.)

It will he seen from the foregoing extracts that the balance of opinion is that the separating power is principally a function of aperture only, but we have in Sydney refractors up to $11 \frac{1}{3}$ inches, and reflectors to $10 \frac{1}{4}$ inches apertures, and experiments could be instituted by members of the Section to throw further light on this interesting question.

Abstract of the Results of Transit of Venus.

By H. C. Russell, B.A., F.R.A.S., Observatory.

[Read before the Astronomicrl Section, 4 October, 1878.]
I thocgur that it would be interesting to the members of the Astronomical Section, if a short abstract of the results of the Transit of Venus observations as published loy Captain Tupman in the June number of the Royal Astronomical society's Notices were made. It would be impossible without destroying the value of it to make an abstract of the whole paper ; it was prepared to show how the various observations used in determining the parallax have been combined, and it is as short as possible, but we may extract just such portions as indicate the value of the work done in this colony.

It will he within your reenlection that the preparations for this grand astronomical event, the Transit of Venus, in 1874, cnlisted the efforts of the astronomers in every country in the world, and in most eases Governments, tonk an active interest in thr work. Captain Tupman discusses only these onservations made ly the British nation, and from all the preparations and partiess sent out to observe it, in Egypt, South reas, Now Zealand, India, and Australia, there were onty thirty-onte observers whose reports could be made arailable for the determination of the sun's parallax by olscrvation at imyorse ; of these, eight are from the New South Wales partics, and five from the Victorian parties. But by a system of giving weights, and rejecting observations thought doubtful, the number used in determining the parallax was reducel to twenty; of these, eight receive double weight, and amain our obssrrations take a favourable position ; there are three New South Wales observers, and two, Menrs. Scott and Russell, receive double weight, and MacDonnell single weight; while there are three ohservers in Victoria, and only une gets double weight; so that for parallax at ingress the Ubservatories at Sydney and Melbourne furnish six out of the twenty reports from the whole British nation.

For the obscrvations at curress there was a larger number of available reports. The experience at ingress had in fact, as some of us remember, taught us to record what we did see, and not look for what we could not spe. There are forty-eight olservations of egress, and again New South Wales furnishes eight, and Victoria four, and when the observations are weighted, seven of the forty-eight are struck out as no use, hut all ours remain, and two of them again, Vessey and Russell, with double weight, and the other six, Allerding, Hixson (Capt.), Lenehan, Liversidge, Wright (Dr.), and Tornaghi, get the usual single weight; of the
four Victorian observers, only one gets double weight, and Adelaide, with four observers, two are struck out by the weighting, and one gets double weight. So that Australia, if we include Mr. Tebbutt's observations, furnishes seven out of the twenty available reports at ingress, and fifteen out of forty-one at egress; in both cases more than one-third, and this is no small honor for Australia: one-third of the observations obtained by the whole British nation.

The resulting mean solar parallax at ingress is $8^{\prime \prime} \cdot 84.5$, and by those at egress $8^{\prime \prime} \cdot 846$, or a mean of $8 \cdot 8 \cdot 55.5$, equal a distance of $92,400,000$.

Captain Tupman remarks that the observations at Sydney by Russell, Lenehan, Wright, and Allerining have great weight in lowering the parallax or increasing the stun's distance ; but he sees "no reason for rejecting them, on the contrary he has given double weight to Russell, and his is one of the most detailed observations made"; and Dr. Wright's and Mr. Russell's agree exactly ; Mr. Lenehan is only 3 s., and Mr. Allerding 5 s. from the two first. It is obvious that four such observations could not be rejected, and although they have had much to do with making the sun's distance half a million of miles greater, they have been retained. But this fact really opens up a most important question, viz, how far that distance in such observations is affected by atmospheric conditions? It is well known that, at the moment of cgress, the atmosphere at Sydney was wonderfully steady, and all four observers are by the general testimony of all other onservers made to be late in their recorded time; now this I think simply means that they were able, owing to the splendid definition, to see the line" of light for a few seconds longer than those who ouserved through a less favourable atmosphere.

I need scarcely recall the circumstances of the transit; Venus, as a black dise moved over the stun's bright surface so slowly that the motion could only be seen when it was near the sun's limb. and a second of are was only passed over in about ten seconds of time; now a second of arc is far less than the displacement which an ordinary atmospheric tremor would produce, so that the limbs of Venus and the sun would be seen in contact under such unfavourable circumstances from 10 seconds to 20 seconds before they would so appear to an observer in the perfectly steady atmosphere which existed at Sydney at the time; and it is quite in accordance with what might have been expected that we should make the egress late when compared with others observing in an unsteady atmosphere. It seems, therefore, that the correct way of dealing with the observations in which some were early and others late from uncertain atmospheric conditions, is that which has been adopted, namely, taking a mean of all the results; including the late and early ones, and it is noteworthy that for egress in

New South Wales the average of all the observations is 8.6 seconds late; and it is a fact that here we were all favoured with exceptionally fine and favourable weather.

It is to be regretted that the photographic observations have not yielded better results. The use of photography was urged as an experiment by many astronomers in Europe, and the wisdom which induced the British observers generally to combine it with other means of observation as a means of filling up the time between ingress and egress, when little else could be done, is now apparent. Some money and labour were spent upon it, but here, at least, the method was not allowed to interfere with eye observations; and if the photographs hare not helped to determine the sun's distance, they have at least taught us something, and revealed some remarkable physical features of Venus, which, had it not been for the unbiased testimony of photography, would have been set down as optical illusions experienced by the few observers who saw them ; hut the testimony of the photographs to the ring of light round Venus camot be disputed ; nor can the testimony that the ring of light was more brilliant than the sun itself be any more disputed, for the photographs show that it deposited more silver than the sunlight. I will not detain you to point out many other important results of the photographs; no one can justly regret that the time was devoted to them, for compared with the labour, they yielded more than the usual inerement to increased knowledge ; but it certainly is to be regretted that they did not turn nut all that scientific men wished them to be, for then we should have known the solar parallax within a mile.

Note on the Geocentric Conjunction of Mars and Saturn, on July I, 1879.

By Join Tebbutt, F.R.A.S.

[Read before the Astronomical Section, 1 November, 18\%8.]
As the present meeting of the Astronomical Section of the Royal Society is the last of the series for the current session and the members do not again meet till the middle of next year, I think it will be desirable to draw their atteution to the remarkable circumstances connected with the next conjunction of the planets Mars and saturn. I find from an approximate calculation for the centre of the earth, that the conjunction in right ascension will take place at 5 h .50 m . in the morning of July 1, 1859 , mean time at Sydney, lut that the nearest approach of centres will occur nineteen minutes previously, being seventy-one seconds of arc. The distance as seen from Sydney will be slightly greater than this, owing to parallax. The phenomenon will be invisille to Europe and America, but it may lee well seem from this part of the earth. To olservers without telescopes the phanets will at the time indicated apprar to be but one olject, and, doubtless, in the ages when astronomical observers were unprovided with telescopes the phenomenon would be set down as an occultation of Saturn by Mars. Within the past quarter of a century at least there is no instance of the two planets approaching so near to each other in their geocentric tracks, and I believe that during the same period there are only three instances in which any two of the old planets came into the same aspect. The distance between Jupiter and Venus was about a minute of are on July 20, 1859. Mercury approached Venus and Jupiter within about the same distance on December 5, 1859, and April 24, 1869, respectively; but these phenomena were unfavorably situated for observation.

Some Remarks on the Mounting of large Object-glasses.

By H. C. Russell, B.A., F.R.A.S.

[Read before the Astronomical Society, on 1 November, 1878.]
IT is perhaps hardly necessary to remark lere, that although the first-class optician ains at perfertion, and comes nearer to it perhaps than my other artist,--although he can, by the aid of Framhofers beautiful method of testing the refractive indices of different pieces of glass, and mathematical formula all ready to his hand, determine exactly what curres his lonses should have in order to etfect his purpose, - yet the erroct accomplishment of these curves in cach case is a matter of chance; he can be sure of getting vepy near what he wants, but to be exact is more than human. His only resource, therefore, is by trial to make the best of the lenses he has made, and his patience is, I believe, generally rewarded by the best result under the circumstances. When he has placed and marked the glasses, as a rule it is folly to attempt improvement; yet there are exceptions in my own experience of so much practical importance that I lave rentured to say a few words about them this evening.
Some years since 186 t the Observatery received from Messrs. Merz and sons, of Munich, a 7_{4}^{1}-inch refractor, which appeared to be in every respect a first-class instrument. In 1801 I began to use this instrument for double star measures, and was by no means satisfied with its performance; for instance, I could not see the companion to Antares, for the false light and want of detinition that enveloped the large star. Reasoning about this, I was led to the conclusion that perhaps it would be possible to make a better adjustment of the lenses than the maker had done, and after many attempts, I found the definition wonderfully improved by seprarating the lenses by three pieces of tin 0.087 m . thick in addition to the three pieces put in by the maker, and which measure 0.008 in ., so that the lenses are now separated by 0.095 in., and the focus is shortened about two inches, the original focal length being 10 feet 4 inches. The companion of Antares is now quite an easy object, and the definition, under farourable conditions of atmosphere, leaves nothing to be desired, and a power of 800 has been used with advantage.

Such experiments are troublesome, and not without risk, still it is worth while to make the experiment when mounting large lenses.

It is alnost the invariable custom of opticians tosupport large lenses on three points only, and in the $7 \frac{1}{4}$ inch Mertz I could nerer detect any flexure from this cause, although the glass is not very thick.

When I received the $11 \frac{1}{3}$-inch Schroeder telescope I had not forgotten the experience with Merz , and I tried separating the lenses
as before, but each thousandth of an inch that the lenses were separated made the definition worse. In this case the curve of the second surface has a smaller radius than the third, so that the lenses put together without foil touch in the centre, and the maker sent them out with pieces of foil just thick enough to support the edges, and at the same time let the lenses touch in the centre, and a beautiful batch of Newton's rings marked the point of contact.

These lenses, as usual, were supported only on three points, but in this case I found that with full aperture and high powers there was a decided tendency to a triangular figure in the rays about bright stars; I therefore removed the three points in the brass cell on which the lenses rested, and allowed them to rest directly on a plain brass ring touching all round, and I put three more pieces of foil between those placed l,y the maker, so that the lenses were supported on six points inside, and on the brass rings outside ; this nearly cured the triangular figures, and I determined to put a piece of paper in the form of a ring so as to support the lenses all round. Now several difficulties arose here: this ring of paper was to be 11? inches in diameter, and th of an inch broad, and more important still, exactly 0.010 inch thick ; the nearest to this I could get was 0.012 inch, and when it was in I knew the lenses were 0.002 inch separated in the middle, and therefore not in the best position for work. The paper, when wet with gum, was not a convenient thing to place, and in some parts it extended farther from the edge than was desirable. I remored it and tried to replace it with foil exactly 0.010 inch thick, and here a fact became evident that has had a great deal to do with my writing of these remarks. The thickness of foil which I wanted was 0.010 inch ; the nearest J could command was 0.0105 inch, and this was put in and the lenses did not touch in the centre. The next thinner foil measured 0.009 inch, and I tried this; now the lenses not only truched in the centre, but one would spin freely on the other as if it did not touch the foil at all ; I was obliged therefore to use 0.0105 inch, and twelve pieces of this were carefully placed round the edge of the lower lens, and then the upper one put on it-no rings appeared, and I put my finger on the centre and pressed hard to see if I could produce them, but without effect. You will observe that the difference in thicknesses of tin foil on the two experiments is only 0.0015 inch, yet in one case the lenses touch in the middle and will spin as if not resting on the foil at all, and in the other case thry do not touch, nor will they together; for the lower lens was only supported in the centre, bend under considerable pressure 0.0015 inch. This result surprised me a good deal, for I feel certain that the actual distance between these lenses as now mounted cannot be more than 0.0005 inch, and yet the two lenses, when pressed in their centres, will not together bend that small quantity.

On a new form of Equatorial Mounting.

By H. C. Russell, B.A., F.R.A.S.
[Read before the Astronomical Section, 1 November, 18\%\%.]

The question-How shall a telescope be mounted? is one that has not, in any of the answers which have been made, received its final answer ; and yet it is one of such great importance to the observer, that one can readily understand the number of mountings which have been suggested. In fact, it comes to this: that each form has some advantages over the others, and it must be left to each observer to select what may suit and, at the same time, please him best. In regard, however, to large mounting, or rather the mounting of large telescopes, the conditions are somewhat different from those affecting smaller instruments, and so few have have leen mounted that the results of experience are meagre. There can be no doukt that the form used by Mr. Grubb in mounting the great Mellbourne reflector, and which has in principle been repeated in mounting the great reflector at the Piris Observatory, is thoroushly effective, and enables the observer to point his telescope to any point in the hearens ; but the quantity of metal necessary to make such a form rigid is enormons. First the telescope must be fixed to the end of the equatorial axis, and in order that no flexure may take place, the tube must be made rigid enough to support its own weight as well as that of the speculum, when all are hanging on that one point when it is attached to the axis. This, of course, involves a great increase of weight about the tube, and a corresponding weight must be put on the other end of the equatorial axis. Mr. Lassell, to aroid this, continued the polar axis beyond its upper bearing, and forked it so that the telescope worked freely between the sides of the fork; but, although all unnecessary weight in the tube, as well as counterpoise, are by this plan avoided, we have another equally objectionable condition introduced, and that is the extreme distance from the point of support at which the telescope is hung. Now it has occurred to me that a moditication of the equatorial mounting is possible, which avoids both these difficulties, by sacrificing a small part of the range of the telescope; and as it is only proposed for large reffectors the sacrifice of the ability to see objects on the horizon is of little or no consequence, for such an instrument is worse than useless for observing objects far from the zenith. Much more can be seen there with a refractor of very moderate dimensions, and this appears to me sufficient reason for the proposed curtailment of range, without considering the serious effect the horizontal position has on the adjustment of the large mirror, so serious, indeed, as in most cases to oblige the observer to readjust the instrument.

The plan proposed then is, to make a polar axis, the lower end of which is similar to that in an ordinary equatorial stand, but from that point upwards it branches into two arms, wide enough apart to allow the telescope room to more between them. On these arms the telescope is supported, like a transit instrument, on its centre of gravity, so that no counterpoise is required ; and the tube being supported at two points need not be made so strong as in the ordinary mounting. Now so far as we have Mr. Lassel's plan ; but my proposed alteration takes the two sides of the polar axis beyond the point at which the telescope is supported, about one-third of their length, and there unites them into a very rigid semi-circular piece, which is very carefully turned, and runs on two large friction wheels; this, in fact, constitutes the second bearing of the polar axis. With proper care, such a bearing may be made sufficiently accurate for the purpose-I think as accurate as the ordinary bearing, and it would work quite as freely. A small piece projecting from the stand over the inner part of the semi-circle, and two small stops, prevent the polar axis from being turned too far, or thrown off its bearing.

Now the axis of the tube (declination axis) is marle to bisect the polar axis, and the telescope may therefore be laid down in the semi-circular bearing, until it points to the pole, or it may be pointed to any degree of declination between that and 20° north declination, and in right ascension it may be moved at least six hours on either side of the meridian. The range, therefore, amounts to this: all stars, and all members of the solar system, from 20° north to 20° south may be watched from rising to setting, and all orjects from 20° south to the pole may be watched from (say) seven hours before meridian to seven hours after it; and this is far more than such an instrument is wanted to do. A slight increase in the length of the polar axis would make the range greater, but that seems unnecessary.

Now as to the weight of the polar axis. Having much less to carry than the ordinary polar axis, and, from the method of support, all its own weight and that of the tube being brought within the bearings, it may be made light without fear of vibration. Another advantage, or rather several, will be found in the fact that there is less work in its construction, less metal to pay for, less trouble in putting it together, less room required in the observatory, greater facility of transport, and greater ease in working.

But about these I will not detain you. One word about the adjustments, At first sight they seem hopeless--the ordinary rules won't apply here; but there are others very simple and satisfactory which make the adjustment of this form perhaps less trouble than the ordinary equatorial stand.

To set the dec. vernier right, point the telescope to the pole, then turn the polar axis and adjust the telescope until it turns as a continuation of the polar axis, which may be known very nearly, by the tube turning from six hours before meridian to six hours after in its own diameter. To do this, put the telescope as directed, and the equatorial axis in the plane of the meridian, then bring an object to touch the side of the open end of the tube; turn the axis 180°; the other side of the tube should touch the same object ; if not, move it until, on repeating the test, it will, then the telescope points to its own pole, and the vernier should read 90°.

Now, when this is adjusted, and the telescope tried on a star, and the observed declination does not agree with the tabular position, the polar axis must be raised or lowered until it does.*

Having now the polar axis at the true elevation, take meridian transits of two stars about equally distant from the equator north and south, the greater the declination the better. If clock error by each of these is the same, instrument is in meridian ; if not, adjust it and repeat ; or, set the telescope to the declination of a star (well known) and about six hours from meridian correct for refraction. If star is on declination wire, instrument is on meridian, if not adjust.

When in meridian, adjust hour circle vernier to read 0 h . when a star is on meridian by clock.

Maker must set the declination axis at right angles to the polar axis.

[^14]SECTION B.-CHEMISTRY, MINERALOGY, and by amalgamation with Section C, GEOLOGY and PALEANTOLOGY.

The first meeting of the session was held on 12th April, when Dr. Leibius was elected Chairman, Mr. Dixon, Hon. Secretary, and Messrs. Bexsusan, Sleep, M'Cutcheon, and Gipps, members of Committee, and the meetings for ensuing session were fixed for the third Wednesday of each month.

WEDNESDAY, 23 MAY, 1878.

Dr. Leibius in the Chair.

Dr. Leibius exhibited: (1) Some very nice specimens of bismuth-gold, from the Cloncurry, North Queensland, about 500 miles from Townsville. A large sample of this ore, weighing over 60 ounces, was, a short time ago, imported into the Mint, and found to consist of about 10 per cent. coarse nuggetty gold (assaying 98 per cent. fine gold) and earthy matter, with little quartz, containing a large quantity of carbenate of bismuth. Very fine gold was largely disseminated throughout the whole sample, which yields over 21 per cent. of pure gold. It is stated that bismuth exists in large quantities in the above-mentioned locality. (2) A specimen, consisting of conglomerate of crystals of carbonate of lime, richly interspersed with gold ; also, (3), small specimen of quartz, alnost covered with gold. Both the last two specimens came from a place about 18 miles distant from Ravenswood, Queensland, from a depth of 100 feet. They were presented to the Mint by Mr. C. Hansen, and exhibited by the kind permission of the Deputy Master.

Mr. Dixox showed a piece of glass having a curious exfoliation on its surface. The glass was a circular piece cut from a crown glass flask, which had been used as a wash bottle, and in which water had been frequently boiled during eighteen months. On placing the piece on a hot plate, the temperature of which was probably between 300 and 400 degrees F., the interior surface developed numerous radial cracks, between many of which a film of glass separated and curled up, covering the surface with a multitude of spiculæ, some of which were 0.2 inch in length. They were rather less than 0.01 inch in thickness, and were quite transparent, but it seemed as if the long continued action of boiling water had altered the glass to that depth by removing some of the alkali, and that the portion so altered separated from the remainder under the circumstances described.

Messrs. Bensusan and Sleez were appointed Curators of the Mineral Cabinet.

WEDNESDAY, 19 JUNE, 1878.

Lapsed from want of a quorum.

$$
\text { WEDNESDAY, } 17 \text { JULY, } 1878
$$

Dr. Leibius in the Chair.
The Chamman laid on the table a letter from Mr. Gipps, M.E, inviting the members of the Section to visit Mount Prospect and inspect the geological formation of the district.

Mr. Dixon exhibited a specimen of rich silver ore submitted to him for examination by the Department of Mines. The sample contained sulphides and metal, 10.16%, and yielded, silver 522 ozs. 2 dwt. per ton, and gold, 18 ozs. 6 dwt. 10 gr. per ton. The sulphicles consisted of iron pyrites with antimony, and traces of copper and lead. Also an ore from the border of Qucensland, containing 5% copper, 19% lead, and 16 oz . 16 dwt. silver per ton.

Mr. M'Cvtoheos read details of ammonia determinations made at intervals of Sydney water as supplied to the Mint. He found:-

1877.-September 7	Free ammonia. Parts per million.		Albumenoid ammonia. Parts per million.	
		-... 0014	...	0.15
10 0.016	...	$0 \cdot 15$
October 5 0.010	...	$0 \cdot 16$
25	-at	.. 0.010	...	0.13
30		0.010	...	$0 \cdot 18$
Norember 2	...	0.014	...	$0 \cdot 19$
1878.-February 16	...	Trace	...	$0 \cdot 16$
21	...	"	...	$0 \cdot 16$
April 23	\ldots	,	...	$0 \cdot 18$

These results show that the Sydney water is about on a par with the filtered Thames water supplied in London by the Southwark and Vauxhall Companies.

WEDNESDAY,21 AUGUST, 1378.

Dr. Leibius in the Chair.

The Chairman reported that he and several members of the Section had visited Mount Prospect on the invitation of Mr. Gipps, and laid on the table specimens of diorite, $\& c$, which had been obtained.

Mr. Bensusan exhibited a specimen of silicate of copper (Chrysocolla) accompanied by native copper and red oxide, from Parkes.

WEDNESDAY, 18 SEPTEMBER, 1878.

Dr. Leibius in the Chair.

Mr. Dixor brought under the notice of the meeting a process for making phosphorous acid. Having occasion to make some of the acid, he used the process by Schiff, by acting on phosphorus with sulphate of copper, but found the sulphuric acid set free in the reaction to be a cause of considerable troukle. He therefore tried whether oxide of copper would yield the acid by the equation

$$
3 \mathrm{CuO}+3 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{P}=2 \mathrm{H}_{3} \mathrm{PO}_{3}+3 \mathrm{CuP}
$$

and found that by adding phosphorus and oxide of copper in the proportions shown by the equation to water, the acid was readily produced. The phosphorus was granulated, and the mixture put in a stoppered bottle, when the solution soon became bluish green, and metallic copper was deposited. The solid matter set into a compact mass, which, with occasional shaking, gradually disintegrated, and in three weeks the solution became colourless, and consisted of a pure solution of phosphorous acid. The solid residue consisted of metallic copper mixed with one or more of the higher phosphides; but although the equation thus does not represent the actual reaction, it does so practically, as there remained no oxide of copper and mere traces of phosphorus.

Dr. Leibiesstated that some parcels of silver from near Tenterfield had been received at the Mint, and the metal was found to contain a considerable proportion of antimony.

WEDNESDAY, 16 OCTOBER, $18 \% 8$.

Dr. Leibres in the Chair.

Eighteen specimens of fossil leares from Tertiary beds at Dalton, which had been sent by John K. Hume, Esq., were exhibited.

Mr. Bexsusan laid on the table a specimen of indurated clay from the boring at Newington, from a depth of 1,150 feet, showing a nodule of quartz containing metallic copper, which had been cut through by the diamond borer. The clay is similar to that found at Bulli, 700 feet above the coal seam; also, a piece of black shale, from a depth of 1,100 feet, in the same boring, and a sample of graphite, from near Grafton.

WEDNESDAY, 20 NOVEMBER, 1878.
Mr. Bensusan said he had received from Mr. Sleep, for the mineral cabinet, some fine specimens of copper ores from Cloncurry.

Mr. Dixon exhibited silver ores from Boorook, and read a paper on the same.

Note on the Boorook Silver Ore.

By W. A. Dixox, F.C.S., F.I.C., Lecturer on Chemistry, Sydney School of Arts.

[Read before the Chemical Section, 20 November, 1878.]

As a new mining industry which promises to be soon of considerable importance has during the last few months begun to be developed in the Colony, I have thought it might be of some interest to lay before you a short résumé of what has been done at the Boorook silver lodes. I have had a considerable number of samples of the ores from the different reefs, de., submitted to me for examination by the Mining Department, and can therefore show some specimens with arssays.

Boorook is situated on the eastern fall of the Main Dividing Range, at a distance of about twenty miles in a north-east direction from Tenterfield. The country is very mountainous, and its geological formation is sandstone, granite, and slate, the last of which is reported to contain marine fossils. The argentiferous reefs appear to be found near the junction of the slate and granite.

Some seren or cight years ago a reef named the "Nil Desperandum" was diseovered and opened out as a gold mine, a shaft being sunk to some depth, and two tons of the picked stone sent to the Mint in Sydney for treatment. The first ton from near the surface yielded 60 oz . of gold and 45 oz . of silver, and the second from the 40 ft . level yielded 150 oz . of precious metals, the proportion of each being about the same as the first. On sinking further into the reef however, the stone became poorer, and as the discovery of the rich tin ore deposits was made at this time, the mine was abandoned for what promised to be a more lucrative undertaking.

On the Addison reef a shallow shaft had also been sunk, but nothing seems to have been done with it, and it was the appearance of the stuff removed from this shaft that induced the present lessees to proceed with the exploration and put up a small machine for its treatment. This reef runs into a steep hill which rises at an angle of 30° or 35°; and at about a hundred and fifty feet from the base an opening has been made, and the reef is there found to be six feet wide, with well defined walls. A hundred feet higher up another opening has been made, and the reef is there of the same width and character. Twenty-five chains north 1° west from this is the original shaft, where the reef is three feet wide and has a westerly dip.

The stone from this reef varies considerably in richncss ; one picked specimen yielded

> Silver 522 oz .2 dwt Ogrs. per ton.
> Gold 18 oz .6 dwt . 10 grs.
and contained 10% of sulphides, \&c. soluble in nitric acisl. Other samples gave

and stone taken from the thirty feet level, gave

> Silver 42 oz. 10dwt. 0 grs. per ton. Gold ... $10 \mathrm{dwt}$. 19grs. ",

The mineral matter in the picked specimen contained iron pyrites, sulphide of silver, antimonite of silver, free silver and gold, and small quantities of galena.

The Golden Age reef appears to be a continuation of thr Addison reef, as it is in the same direct line. A sample of the stone taken from the fifty feet level on the reef gave

> | Silver $98 \mathrm{oz} .16 \mathrm{dwt} .19 \mathrm{grs}$. per ton. |
| :--- |
| Gold 1 loz .4 dwt. |
| Ogrs. |

whilst a sample of the crushed stone from the same level as delivered from the stamper boxes of the machine, gave

> Silver 83 oz. 12dwt. Gold loz. lodwr. Ogrs. per ton.

The whole neighbourhood appears to contain argentiferous reets, and there have lately been discovered the Golden Crown recef, which runs parallel to the Addison, and distant from it about 11 chains. A sample of stone from the surface of this reef gave

Silver 459 oz. 16 dwt. 10 grs. per ton.
Gold Eoz. 11dwt. 14grs.
The silver in this ore is partly in the form of antimonide with arsenide, sulphide, and free silver.

The Cornstalk reef, situated about quarter of a mile east of the Nil Desperandum, and a mile and a half north from Boorook station, is two feet wide, and Curran's reef is in the same locality.

The Woolshed reef is three and a half miles north north-west from Boorook, and a sample of the stone yielded

> Silver 5oz. 10dwt. 0grs. per ton.
> Gold 0oz. 0dwt. 19grs.

Near to this is the Alderman reef, a sample of which from the surface gave

Silver 37 oz . 15 dwt . 14 grs . per ton.
Gold 0oz 9dwt. 5grs. ",

Another reef, the Copenhagen, contains a very considerable quantity of galena, a sample of the stone yielding

$$
\begin{aligned}
& \text { Lead 13.4\% } \\
& \text { Silver } 5 \text { oz. } 16 \mathrm{dwt} .48 \mathrm{grs} \text {. per ton. } \\
& \text { Gold 0oz. Odwt. 10grs. " }
\end{aligned}
$$

The method adopted for the treatment of such of the ores as have heen already washed is exceedingly crude, much of the silver being lost by the imperfection of the process. It seems probable indeed that most of the silver which has been hitherto obtained is that which is present in the ore in the free state, and that on further sinking on the reef when the water level is reached, and black unweathered ores only are obtained, the produce by the present method would be nil.

At present the stone after crushing is run over blankets, and the material saved on them is subjected to grinding with mercury in a Berdan pan, the tailings being run into pits, to be saved for subsequent treatment. The separation of the ore by the blankets, if the slime had also been saved, would have been pretty successful in the case of the first ores which I saw, but in recent specimens the silver is much more minutely disseminated through the quartz.

If the contents of the stone going through the battery is compared with the products, it will be seen that great loss is experienced ; thus, a sample of the crushed stuff gave

> Silver 83 oz .12 dwt . $19 \mathrm{grs}$. per ton. Gold 1 loz. 0 dwt. 0 grss.

Mr. Warden Graham reports that 5 or 6 tons of the stone is passed through the machine in twelve hours, and that about half-a-ton of this is saved on the blankets and yields 100 oz . of silver.

Now 5 tons contain 418 oz. of silver and 5oz. of gold, whilst the half-ton of tailings from the Berdan would contain by my assay 19 oz . Odwt. 17 grs . of silver, and even if the whole of the tailings from the blankets had been saved, as these contained 10 oz . 1 dwt . Sgrs. silver per ton, the loss of silver in the treatment of the five tons would lue 252 oz., even supposing all the silver in the residues was recovered.

This great loss is doultless due to the exceeding friahility of the silver ores, -the finest slimes, which take many hours to settle in still water, invariahly containing more silver than the original ore. Phillips says of the Nerada ores that they yield 20% of slimes (not tuilings), which from an ore containing 800z. per ton contain 1000 . per ton of silver. I have myself found in one instance the slimes to be much more enriched, and that, when the mineral was carefully hand-crushed and dressed, but the quantity of the slimes produced was not more than 12% of the ore operated on.

In America the water holding these slimes in suspension is run into large settling ponds, three or four ounces of alum is added for each thousand gallons of liquid, and the whole is left at rest until the water is perfectly clear, the clarification being much hastened by the alum.

In the United States the richer silver ores containing over 80 oz . per ton are ground dry, roasted with from five to ten per cent. of salt, and treated by amalgamation in barrels with scrap iron.

The poorer ores, especially in places where fuel is scarce, are treated by a direct method, based on the same principle as the patio process of Mexico, namely, that chloride of copper in presence of salt converts sulphide of silver into chloride. In Nevada, however, the process is hastened by artificial heat, and the reduction of the chloride of silver instead of being effected by mercury, is effected at the expense of the iron of the grinding pans. The process is carried out as follows:-The ore is broken and crushed under stampers, the whole material being saved, and 1,250 to $1,5001 \mathrm{tbs}$. of the sand is ground to an impalpable powder in a Wheeler pan, which takes about an hour. The contents of the pan are then heated to about $200^{\circ} \mathrm{F}$. by steam, taking care not to allow the condensed water to dilute the mud to too great an extent, and 10 to 15% of the weight of the ore of mercury is showered into the pan by pressing it through a canvas bag. Two pounds of sulphate of copper and three pounds of salt or more are then added, and the grinding continued for three hours and a half, the temperature being kept between 180° and $200^{\circ} \mathbf{F}$. Water is then added and the whole transferred to a wooden settling cistern, where it is kept in gentle motion until the mercury has settled. The pulp must only be so diluted that the mercury may fall to the bottom, and if the pulp appears thicker at the bottom of the settler than at the top, when the hand is plunged into it, with the stirrers making six or seven revolutions a minute, there has been too much water added. The separation takes about three hours, and when it is effected the sludge is washed away and the mercury filtered to obtain the amalgam, which is retorted. In this way from 65% to 80% of the silver is obtained, according to the ore operated on and care taken.

It seems highly probable that other discoveries of silver ores may be made in New South Wales. Such discoveries not having been made before is doubtless due to the fact that silver ores are not so readily recognizable as gold, and that prospectors have often little general mineralogical knowledge, in evidence of which we need only consider the comparatively recent discovery of the rich tin deposits lying almost on the surface. Many of the ores which have been worked for gold, notably about Mitchell's creek, contain much silver, and doubtless in treating for gold a great
quantity of this metal has been lost from the cause already stated.
It may be of some assistance to prospectors to note that silver deposits are generally found amongst the ancient stratified rocks, as micaceous, quartzose, and clay slates, limestone, and sandstone near granite. All the great silver deposits of the world, as at the Comstock in Nerada, Tracatecus, and others in Mexico, Carpathia, in Europe, and in Bolivia, are found accompanying a recent dioritic porphyry (the prophylite of Richthofen), probably of tertiary or post-tertiary age, though resembling ancient rocks. This rock is composed of a tine-grained basis, generally greenish, but sometimes red, grey, or brown, with enibedded crystals of olioclase and dark green fibrous hornblende, whilst quartz is generally absent. The rock contains much iron and is decomposed by weathering, becoming stained red with the oxide.

The silver ore is generally found in quartz, and the surface of the veins is usually drusy and much stained with oxide of iron, whilst the quartz is often very friable.

SECTION D.-NATURAL HISTORY AND BOTANY.
 [No report of the meetings of this Section has been sent in.]

> SECTION E.-MICROSCOPICAL SCTENCE. MONDAY, 1 APRIL, 1878.

The preliminary meeting of the session was held on the above date.
The Rev. George Martin was voted to the Chair.
The minutes of the previous meeting were read and confirmed.
The Secretary reported a donation of a number (45) of slides of hairs, from Professor Liversidge, previous to his departure for Europe.

The Secretary reported that he had received an answer to his letter, addressed to the General Council, requesting the use of the room during the recess; and in reply, they had stated that it was not considered desirable that the Section should meet during the recess.

On the motion of Mr. H. G. A. Wright, seconded by Mr. W. MacDonnell, the Rev. G. Martin was elected Chairman for the current year.

Mr. Gr. D. Hirst tendered his resignation of the office of Secretary to the Section.

The Chaimman, on behalf of the meeting, expressed to Mr. Hirst their appreciation of the manner in which Mr. Hirst had discharged the duties of that office.

Moved by Mr. Hirst, seconded by Mr. WV. MacDonsell, that Mr. Pedley be elected Secretary. Carried.

A ballot was then taken for the election of the Committee, and the following gentlemen were declared duly elected:-Dr. Morris, Mr. W. MacDonnell, Mr. H. G. A. Wright, Mr. G. D. Hirst.

It was decided that for the present session the meetings of the Section should be held on the evening of the second Monday in each month.

$$
\text { MONDAY, } 13 \text { MAY, } 1878
$$

The Rev. George Martin in the Chair.

The minutes of the previous meeting were read and confirmed.
Mr. G. D. Hiast presented twelve miscellaneous slides to the Society's cabinet. Mr. Hirst also exhibited a Swift's portable microscope lamp, which, while perfectly adantel to the purpose for which it is intended, is of so portable a constmetion that it may be packed in a tin cylinder 7 inche's long by 18 inch in diameter, and it possesses the further advantage that it may be carried in any position without leakage of the oil.

Mr. R. B. Read exhibited specimens of Ophideres fullonica, an insect which destroys large quantities of fruit, oranges in particular, by boring into the fruit and pumpingout the juice. Mr. Readshowed
a preparation of the haustellium (proboscis) of this insect, and also a series of drawings of the same magnified about 30 diameters.

The Chairman called the attention of the meeting to a box of polishing powder, sold under the title "Oriental Polish," which on examination proved to be a diatomaceous deposit of the purest character, fully 90 per cent. being the siliceous loricece of diatomacea.

Mr. Pedley exhibited the curious wheel-like plates which form the calcareous skeleton of the chirodota, from specinens found in Double Bay.

Dr. Morris showed sponge spicules and diatoms from Sydney water ; and Mr. H. Paterson, a preparation of the fumes of mercury.

Mr. W. MacDonvell exhibited one of Seibert's 50th inch immersion lenses, and resolved some difficult tests with a Zeiss' 25 th inch immersion lens, the microscope in this case being one of Swift's upon the improved Hartnach model.

MONDAY, 10 JUNE, $18 \% 8$.

The Rev. George Martin in the Chair.

The minutes of the previous meeting were read and confirmed.
Mr. Hirst exhibited a reduced diagram of a photograph of British microscopic animals and plants collected from a pond at Leytonstone, near London. This exhibit, apart from its value as a representation of typical British pond life, possessed additional interest in that nearly every object figured had been identified in gatherings made in the immediate vicinity of Sydney.

Dr. Clune showed the alkaloid crystals of Duboisia myopoides; and Mr. H. Paterson some diatoms (Eunotic diadem) mounted by Dr. Morris.

MONDAY, \& JULY, $18 \% 8$.

The Rev. G. Martin in the Chair.

The minutes of the previous meeting were read and confirmed.
Mr. H. G. A. Wright exhibited a Ross's new patent No. 2 microscope stand, on the Zentmayer principle. The stand embraces several valuable improvements, the principal of which are a movable tail-piece, carrying the substage and its accessory apparatus, which may be swung laterally either to the right or left. By this means any degree of obliquity of light may be obtained, the axis upon which it is worked being central with the object under examination. To such an cxtent can this motion be carried, that the mirror may be used as a condenser for the illumination of opaque objects, in place of the ordinary bull's-eye condenser. The stage is an interchangeable concentric rotating one, which can be almost instantly removed, and a thin diatom stage, or one more suited for dissecting purposes, placed in its stead.

Mr. Hirst recommended the placing of a piece of ground glass immediately beneath the achromatic condenser, by which means he obtains a soft pearly light, very suitable for the display of insect preparations, and with the least possible fatigue to the eyes.

Mr. W. MacDonvell, for Mr. H. J. Brown, exhibited and presented to the Society's cabinet a series of slides of spicules of Symapta, of small Tunicata, and of Gorgonia.

Mr. Martin showed Lord Osborne's diatom exhibitor, the object operated upon being Gomphorema constrictu, in situ on alya.

Mr. MacDonyell exhibited some new and rare aulacodiscoidal diatoms from Peru and California, and Mr. Gilliat Climacosphenia australis.

Mr. Pedley exhibited a rich gathering of Desmidiacece, from Bondi ; and Dr. Morris Möller's new series diatom typen platte.

$$
\text { MONDAY, } 12 \text { AUGUST, } 1878
$$

The Rev. George Martin in the Chair.

The minutes of the previous meeting were read and confirmed.
Dr. Morris read a paper upon "The Incrustation of the Sydney Water-main."

Mr. Hirst exhibited some very thin glass suitable for thecovering of micro-objects. This glass is simply blown from ordinary glass tubing, is incomparably thinner that the thinnest covering glass, and is so elastic that it is easier torn than broken, and may be readily cut to any shape with scissors.

Dr. Tcceer exhibited a human foctus six weeks old, and the hand and foot of another four months old.

Mr. F. B. Kyngdon exhibited a collection of insect preparations ; and Mr. H. Paterson showed the partial crystallization of chalk subjected to a pressure of about 95 lbs , to the square inch for three and a half hours, at a temperature of 350° Fahrenheit.

Mr. Martin exhibited Sertularian zoophites, and crystals of santonine, and Mr. Pedley, polyzoa from Port Jackson.

MONDAY, 9 SEPTEMBER, 1878.
 Mr. H. G. A. Wright in the Chair.

The minutes of the previous meeting were read and contirmed.
The Secretary called the attention of the meeting to a handsome binocular microscope of Swift's make, which had just been imported by the Society for the use of the different Sections. The most noticeable feature of this microscope is a quarter-inch objective of 100° of angular aperture, specially adapted for use with Wenham's binocular arrangement.

There was little or no formal business to transact, but some interesting exhibits were made by the raembers present, amongst. which may be mentioned a pocket microscope, adapted for medical
purposes, exhibited by Dr. Wright. This little instrument is as small as is consistent with practical utility ; is fitted with a tripod stand, achromatic condenser, and two objectives, the whole packing in a case measuring but $4 \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in}$.

Mr. G. D. Hirst exhibited a curious fungoid growth which had lately appeared upon a slip of pine wood that had been immersed for the last two years in a tightly stoppered vial of distilled water, and Mr. Pedley exhibited some slides of parasites and local polyzoa.

MONDAY, 16 OCTOBER, 1878.
 The Rev. George Martin in the Chair.

The minutes of the previous meeting were read and confirmed.
Mr. W. MacDonvell exhibited a large and valuable series of micro-photographs of recent and fossil diatoms, executed by Dr. Gustav Fritsch, from specimens specially prepared by Herr Otto Müller. By means of an improved micro-photographic method, Dr. Fritsch has succeeded in producing a series of plates showing an amplification hitherto unattainable, owing to the great loss of light which has prevented the necessary enlargement.

Mr. MacDonnell read a paper describing the plates, and explained the bearing of micro-photography upon the question of the nature of the markings on the silicious skeletons of the diatomacer.

Mr. H. Sharp exbibited a beautifully stained section of tumour, Mr. Hewett slides of parasites, and Mr. Pedley sections of teeth.

Mr. F. B. Kyxgdon presented for the use of the Section a postal cabinet for micro-slides.

MONDAY, 11 NOVEMBER, 1878.
 The Rev. G. Martiv in the Chair.

The minutes of the previous meeting were read and confirmed.
The Secretary, on behalf of Mr. H. Sharp (Adelong), presented to the Society's cabinet three beautifully mounted slides, comprising a stained section of cancer of the lip (Epithelioma); the scales of eight species of Lepidoptera, symmetrically arranged; and the gizzard of a large cockroach.

Mr. G. D. Hirst read some notes by Mr. Sharp upon a comparative trial of Powell and Leland's new formula 8th inch objective, with one of Zeiss' G. immersion lenses. Mr. W. MacDonvell exhibited the former lens, with which he resolved some difficult diatom tests.
Dr. Morris exhibited a pure gathering of Actinocyclus Ralfsii, from fresh water, Botany ; Mr. De Lissa a collection of seeds and pollens; and Mr. Pedley sections of Foraminifora, from New Guinea, Orbitolites, Alveolina, \&c.

Notes on the Incrustation of the Sydney Water-main.

By Dr. Morris.
[Read before the Microscopical Section, 1 August, 1878.]

About six weeks ago, one of the water-mains which supply this city with water burst, and haring seen a notice in the papers that the inside of the pipe was encrusted an inch thick with a soft substance, I at once obtained a sample, but instead of being soft, I found that it consisted of layers of oxide of iron, with other ingredients. This deposit I now submit for your inspection. On boiling a portion of this deposit in muriatic acid, and afterwards in nitric acid, washing, and collecting the sediment, a microscopical examination of it proved that it contains a substance not accounted for in the following analysis, which was forwarded to the Mayor of Sydney by Mr. Charles Watt, and published in the Sydney Morning Herald of July 17th:-

Sir,-I have the honor to acknowledge the receipt of your communication of the 9 th inst., and the packet containing a substance which had been found incrusting the 30 -inch water-main learling from Botany to Sydney. The substance in question has had its origin partly from the oxidation of the mains and partly from suspended matters which have found their way with the water from the dams. By reference to the analysis it will be seen that this incrustration consists chiefly of oxides of iron, a large proportion of which is magnetic oxile. Magnetic oxide of iron has a well-marked action in promoting the oxidation of any organic matter which water may contain. In June, 1877, I reported to the Government respecting the composition of a deposit found in the street mains, and the incrustration now under consideration bears a very close resemblance to the article before mentioned. A microscopical examination did not show the existence of any forms of live animalcule.

I have the honor, \&ce.,
CHARLES WATT.
Analysis of substance forming an incrustation on the inner surface of certain water mains.-"Substance dried at 300 ' Fahrenheit before analysis. Oxides of iron (magnetic peroxide), $79 \cdot 3$; silica (chiefly in the form of sand), 4.5 ; volatile at red heat (consisting of combined water and organic matter), $15 \cdot 1$; alumina, ' 5 ; traces of chloride of sodium, lime, loss, \&e., $6 \cdot 100 \cdot 0$."

I now submit for your examination a slide prepared from the sediment after treatment as above. This preparation consists of minute spheroidal bodies partly adhering to one another, accompanied by the silicious spicula which I once exhibited to you before. On carefully examining these spheroidal bodies, I came to the conclusion that they were composed of precipitated sulphur, and on applying heat a strong smell of sulphur was given off. The blow-pipe test gives the same reaction with the crude preparation. On seeing Mr. Watt's report to the Municipal Council, I put myself in communication with that gentleman, and on asking him what had become of the sulphur, he seemed quite incredulous about sulphur being a constituent of this deposit, as we had no sulphites in our water supply. However, on asking him to apply
the blow-pipe test, the fumes of sulphur soon became perceptible to his olfactory nerves. Since then he has made a second analysis, and returned it as containing $1 \frac{1}{2}$ per cent. of pure sulphur. This sulphur exists in this incrustration at the rate of $1 \frac{1}{2}$ per cent., or $1 \frac{1}{2} \mathrm{lb}$. to every $98 \frac{1}{2}$ of deposit in a free state. It can be dissolved out by lisulphuret of carbon, which shows that it is not chemically combined with the iron deposit. Now the question naturally arises, where does this sulphur come from? Mr. Watt, in a subsequent conversation with me, said he thought it must come from the iron piping. If so, what about arsenic and other kindred companions of sulphur found in the pyrites of the coal used for smelting purposes? Probably an analysis of the iron pipe would determine what are the ingredients besides iron, because if sulphur exists to such an extent in the piping, other deleterious ingredients are certain to accompany it. On the other hand, if the sulphur is a product of decomposed organic matter, then the sonner we have a new water supply the better, because this would admit that sewage to a great extent is still finding its way into our water supply. According to a report ly the Commissioners appointed to inquire into the best means of preventing the pollution of rivers, they say, -"We now recommend therefore that with the exceptions already mentioned in reference to the standards \mathbf{D} and E , the following liquids be deemed polluting, and inalmissible into any of them, viz., any liquid which contains in 100,000 parts by weight more than one part by weight of sulphur in the condition either of sulphuretted hydrogen or of a soluble sulphuret.

SECTION F.-GEOGRAPHY AND ETHNOLOGY.

[No meetings of this Section were held during 1878.]

SECTION G.-LITERATURE AND FINE ARTS, INCLUDING ARCHITECTURE.

This Section, which, from various causes, lapsed during the year 1877, was, through the exertions of a few gentlemen interested in the promotion and cultivation of the fine arts in this Colony, reorganized during the current session; and at a special meeting held 26 July, 1878 , the following office-bearers were appointed :Chairman :-Mr. E. L. Montefiore. Hon. Secretary : Mr. Percy E. Williays. Committee: Messrs. E. Du Faur, Ledotico W. Hart, G. A. Morell, C.E., and Professor Gurney, M.A.

It was decided that the future meetings of the Section should be held on the fourth Friday in each month, at 8 p.m.

On the motion of Mr. Russell, seconded by Dr. Leibirs, it was resolved that the Council should be applied to, to subscribe to the Art Journal, Portfolio, and L'Art, from the 1st January, 1878.

Mr. Ludovico W. Hart promised to read a paper entitled, "An Apology for the Introduction of Photography in our Schools of Art and Science."

The Charman (Mr. E. L. Montefiore) expressed his opinion that the Section would become one of the most popular with the members of the Royal Society, embracing as it did so wide a range of suljects, and trusted that the Colony at large would eventually profit by the united labours of the members of the Section.

FRIDAY, 23 AUGUST, 18TS.
 Mr. E. L. Montefiore in the Chair.

It was notified by the Secretary that the Council had sanctioned the purchase of the Portfolio, Art Journal, and L'Art, from 1 January, 1878.

Mr. Iudonico W. Hart read a most interesting paper, entitled, "An Apology for the Introduction of the Study of Photography in our schools of Art and science." The various reasons advanced pointed to the study and practice of photography as employments which would serve to enlarge the mind and refine the ideas, so that while we should be able to see and appreciate the wonders of nature inmediately around us, we could as nations become more familiar with the various countries of the world, increasing our knowledge not only for our own benefit, but for the welfare of the whole human race. The paper concluded by expressing a
hope that the time was not far distant when we should see the commencement of a course of lectures on photography in connection with Schools of Art and Science, and the establishment of a training school for the purpose of giving a sound and practical knowledge of photography.

A lengthy discussion ensued as to the place photography took amongst the arts.

A number of valuable photographs and autotypes were exhibited; and a beautiful work on wedgewood, illustrated by photography, was laid on the table by Mr. E. L. Montefiore.

$$
\text { FRIDAT, } 27 \text { SEPTEMBER, } 1878 .
$$

Mr. E. L. Montefiore in the Chair.

Owing to the inclemency of the weather, only a few members were present, and Mir. J. W. Stephevs, M.A., proposed to adjourn the business to the next monthly meeting (25 October), which was seconded by Mr. L W. Hart.

The Chairman exhibited some rare and curious specimens of sun pictures by Fox Talbot.

FRIDAY, 2J OCTOBER, 1878.

Mr. E. L. Montefiore in the Chair.
Mr. Ludovico W. Hart read a paper on "Photo-mechanical Processes," before a very large meeting, describing the processes of Woodburytype, photo-zincography, photo-lithography, phototypography, photo-chromography, heliography, de. Mr. Hart rendered his lecture greatly interesting by exhibiting a large number of pictorial specimens of the processes he described.

At the close of the reading an interesting discussion took place on the utility of the many processes and their inventors.

FRIDAY, 29 NOVEMBER, $18 \% 8$.
 Mr. E. I. Montefione in the Chair.

The last meeting of the session. A good meeting of members assembled to hear a very interesting and amusing paper on "Music," read by Mons. Jules Meilhan, who very ably set forth the claims of music as a fine art, and dwelt at some length on the desirability of classes being established for imparting a thorough knowledge to the rising generation. Until this was done we could not expect to hear high class music well rendered. Mons. Meilhan interspersed his lecture with several interesting anecdotes, illustrating the woes of composers and art critics in connection with stars and theatrical managers.

At the close of the reading, an animated discussion arose on the subject of the position of music in the Colony, many of the members echoing the desire of the lecturer, that a training school should be established.

At the close of the meeting, the Charman thanked the members for their attendance during the session, evidencing the interest they took in the subjects appertaining to the Section. He trusted that during next session some of the members would be prepared to read papers upon literary as well as upon art subjects, to which the papers of the session just ended had been confined.

An Apology for the Introduction of the Study of Photography in our Schools of Art and Science.

By Mr. L. Hart.

[Read before the Literature and Fine Art Section, 23 August, 18\%S.]
Among the many splendid and important discoveries that have characterized the present century, few have more claims upon our sympathy than Photography. While many of these inventions have served only a special purpose, or benefited but certain communities, either industrial, artistic, or scientific, photography has placed its services at the disposal of all branches of human knowledge, and to uso the words of Dr. Vogel, "There is scarcely a single field in the universe of visible phenomena where its productive inlluence is not felt." To botany, geology, astronomy, and geography, it is the faithful delineator of their marvels ; in surgery, sociolory, jurisprudence, its services are too well known to be dispensed with: in scientific research it has opened out a new tield for the investigation of the philosophy of light; comnerce and industry alike avail themselves of it, and to art and to art education it has become a handmaid and gracetul satellite. It is as it were a new language, and may be said to lee to "form" what printing is to "thought." To the photographer, the camera and its appurtenances are what the brush is to the painter, or the chisel to the sculptor. They are all causes of production, directed by inspiration of the mind, and guided by cultivation and intelligence. How rapid has been the progress of this new art-science. It has made its power fult throughout the length and breadth of the universe in less time perhaps than any other invention, and not only has it extended its application to various branches of art, science, and industry, in the dissecting room of the hospital, the astronomer's observatory, the philosopher's home, the editor's table, the artist's studio, public museums, and down in the profound depths of the earth, anong miners; but it is in the humbler form of a portrait, where one of its greatest influences is felt. Here it makes no distinction as to whether it shall adorn castle or cottage, for in all the varied grades of fortune is it to be found. Its never-ceasing voice cries, "In memoriam, in memoriam." This single application of photography ought to be sufficient to secure our lasting gratitude. A portrait! What a boon of consolation it has been to thousands upon thousands of the human race, and what recollections does it not call up-a parent, sister, child, a dear friend, the native village in all its rural beauty, the old home wherein we were born. Scenes of home and childhood may be things that Were, but, thanks to photography, we may be the possessors of the shadow, though the substance be beyond our reach. It is here we feel the value of photography, and whilst looking through the
album, each particular portrait calling up a fresh history, we may exclaim with joy, "Oh, memory, fond memory, when all things fade we fly to thee!" The preservation and veneration of our photographic albums is one of the best means of keeping up a wholesome state of mind in young people living away from their friends. It has indirectly a moral action, for the presence of good is generally productive of good, and we could not or ought not to have the portraits of persons constantly hefore us, of whose virtues we are assured, without becoming unconsciously possessed in part of those virtues; thus portraits are continually exerting over us a powerful, though silent influence.

One of the first requirements in many leading branches of life is a knowledge of drawing. The study of this is long and requires certain aptitudes. All students have not the means of purchasing that great desideratum "a royage through the more classical or artistic countries." 'Tis true that sometimes a student gains a prize of money, enahling him to make the tour of Italy or Greece, but many have run the race, and only one perhaps has gained the prize. Here then comes photography to the aid of unsuccessful competitors. They cannot go to those places, but those places by photography are brought to them in all their richness. Paintings, sculptures, rare collections of art treasures-all are within their reach. Those marvels of art of the great masters-Rubens, Raphael, Vandyke, Del Sarto, Durer, Martin Schon, and all their host, are, thanks to photography, vulgarized over the whole of the civilized world. Now, is the influence of such works as these productive of good? Is mankind benetited by the study and advance of art in general? I think there is only one reply, and that in the affirmative. If so, then the principles of photography ought to form a part of the education given in our schools of art. The illnstrious Paul de la Roche did not fear to say, in the presence of the members of the Academy of Science, "Photography brings to such perfection certain essential points of art, that it ought to become an object of study and olservation to the greatest painters." Thus one of the greatest modern artists says it must not only become an ohject of observation, but of study to great painters; more particularly then ought it to be one for art students. We must not forget that photography is not what it was some years ago. One might then have said, "Ah, but your photographs are only of partial value, for you look on a beautiful picture to-day, and lo, on the morrow, it has begun to fade." Yes, it was so, and how proud are we lovers and disciples of our delicate art to be able to say it was so, for thanks to Fox Talbot, Tessie de Mothey, the valuable processes of Woodbury, Albert, Photograrure, Photo-lithography, and all the long list of photo-mechanical processes, we can now claim for
photography perfect stability ; and so long as the paper on which it is printed will stand the wear and tear of time, its photographic impression will cling to it as ivy around an old tower. And at what cost are these unalterable and faithful reproductions to be obtained? From a few pence to a few shillings, for by reason of the peculiar nature of these processes, a large number of impressions may be turned out at a very moderate cost. Should there be students so poor as not to be able to possess copies, they might have recourse to the public ones. I night mention here that it would be well for the Government to present series of collections of interest to the different museums, University, libraries, scientific bodies, mechanics' institutes, dc., and interchange with other countries possessing similar collections, thus familiarizing the eye to grod work, and keeping up a lively interest for progression aniong all classes, as well as procuring a constant and perfect record of what was for future generations. In this manner both present and future would alike benefit from it. The Right Hon. G. J. Goschen, speaking at the Liverpool Institute, at the distribution of prizes, says:-" Education must deal with men's lives as well as qualify them to earn their daily bread. He wanted education to cmohle, hrighten, and to beautify their lives; he wishod it to increase their pleasures and their powers of happiness. It was not sufficient that man should have only knowledge of his nwn surroundings." It is very true, man to be thoroughly happy must possess an educated mind, and surely photography is of great ansistance in helping forward this education. An ohjection might he made that it would hecome too expensive: hot that is a mistake, as the public sale of such collections would more than corer the expenses. It might also be urged that it would be unfair to compete with the public dealers. Here, arain, is an error. If in England where there are several large and influential photo-mechanical establishments in full work, the Cowrmment have thought it alrisable to do so, how mueh more rasen would there he to do sn in a young flourishing country where no public estahlishment of the hind exists. I refer to the photographic establishments at the British Museum and South Kensington: and it would be a boon to the artistic interests of the country as well as a means of making it hetter known in Europe if the invernment would deal likerally with the question. What would be more interesting to us than photographs taken from nature of Captain Conk and the seenes of his early diseoveries. The one we cannot possess, the others we might.

Let us now turn to surgery, and see how the camera makes known in all their dreadful aspects, the various aflictions of human nature-how photographs of the different stages of certain diseases, assist the student in his pursuit
of knowledge respecting them. In cases of deformity and fleshy protuberances, I have heard medical men state, that indifferent photographs were far preferable to highly finisherl sketches. Here again I would remark that photography offers its assistance for the general good, and in particular for the suffering part of humanity. How does physiological research accept photngraphy? Dr. Stein has succeeded in producing photographic rucords of the pulse-beatings, tones given from musical instruments, and recently astonished the scientific world, by photographing upon a sensitive plate the sounds produced by the human voice. In speaking of this wonder, the Photographic News says:-"As the tones vary, so the wares of the line occupy more or less space, or are taller or shorter. Shrill notes or tones, where the vilmations are rapid, are represented by many steep waves; low or hass tones, where the vibrations do not follow each other so rapidly. produce but a few waves in a line."

Another practical use of the camera is thus described by Mr. Baden Pritchard. One instance taken from the war of 1858 is especially interesting. The Austrians held Venice at the time, and to protect the harbour, torpedoes were laid down, which were fired by means of electricity. A camera was built overlooking the harbour, and upon the white table of this instrument were reflected the waters of Venice. As the torpedoes wern simk onc by one, a sentinel in the camera noted the place of their disappearance with a pencil, giving each torpedo a consecutive number. A rowing boat in the harbour described a circle around the sunken torpedos indicating the zone of their distructive power. The sentinel again with his pencil made a corresponding ring upen the camera table. In the end, therefore, when the harthour wits apparently free from danger, a very effective means of torped defence was established, the key of which was only to be found in the camera; here the sentinel had wires in connection with every torpedo, and was in a position to fire any one as he pleased. The Prussians used the process of photo-lithography largely during the-Franco-German war. They reduced plans of the part of the country they were in, and distributed them to the several army corps. One firm alone printed 300,000 impressions. Another most interesting application of photography was made use of during this same war by the French during the siege of Paris. Private and pullic despatches were printed upon a sheet of paper containing alout 300,000 letters. This was reduced by means of photography to ab,out two inches by one and a half, then printed on films of collodion, each weighing about one grain, and containing the matter of several newspapers. Several of these despatches were rolled up into a quill about three inches long, and by means of pigeons, sent to all parts of France. Here, on their arrival,
they were magnified by the oxy-hydrogen apparatus, and rewritten ly newspaper authorities and others interested therein. Upwards of 100,000 despatches were received in Paris during the siege by these means.

In astronomy, we find the assisting hand of photography. It seems to have in this case a twofold purpose-obtaining the images of the hearenly bodies for the purpose of measurement, and for producing pictures of some of these bodies with more accuracy than could be obtained by hand-drawn ones. Berkowsky was the first to apply photography to astronomy, by obtaining daguerreotypes of the eclipse of the sun in 1851. Warren de la Rue and Secchi of Rome used the collodion process for the same purpose in 1860 , and at the present time all the European Governments use it in connection with astronomy. The Scientific American says :- "Astronomical photography has recently assumed a higher place than as a mere mode of reproduction of the images seen through the telescope. It has, in fact, become an important means of discovery; and the researches of Professor Janssen of Paris, has shown that photographic pictures reveal phenomena otherwise perfectly invisible. It was through such prints that he discovered the photospheric network round the sun." Another proof of its utility was furnished during the late transit of Venus, and another not less important exists in the fact, that the British Government possesses four photoheliographs at different stations under Government supervision. The French Government, however, possess the most important set of photo-astronomical instruments in their splendidly fitted-up ateliers at Meudon Observatory, near Paris. There daily photographs are taken of the sun, the average exposure being one-twelfth of a secoud for an image $i^{\circ} \%$ of an iuch in liameter. Sir George Airy gives another proof of its utility when he says, "The" computation of the photographic records of the barometers, from 18.54 to 1873 , has so far advanced that it is asserted positively that there is no trace of lunar tide in the atmosphere, but that there is a strongly-marked semi-diurnal tide, accompanied by a smaller diurnal tide." I must also allude to Professor Draper's late discovery of oxygen in the sun, and perhaps nitrogen, which discovery was made by the aid of photography. (Vide paper read before the American Philosophical Society, July 20, 1857.) Professor Janssen's photographs of the sun are now causing as much excitement as De la Rue's photographs of the moon did some years ago.

Another important use to which photography is put is jurisprudence, its rigorous exactness rendering it particularly fit for such an application. In many instances truth has been able to be indelibly proved by its means. In

1852 Monsieur Christolphe proposed to the French Government that all prisoners should be photographed prior to their discharge, and notes of their cases and biography attached to them, but nothing important was done until after the reorganization of the country in 1871, when Monsieur Lombard succeeded in obtaining permission of the authorities to establish a photographic department in the prisons. Some idea of its usefulness may be formed when it is stated that it already occupies nine operators in Paris alone, where there are several stations, one being used exclusively by the Morgue Dépint, where are laid out all persons found drowned or otherwise killed, and whose residence is not known. All bodies brought in are immediately photographed, and, when buried, the photographs are put in the register. Thus, persons seeking lost relatives or friends may daily be seen consulting this shocking but useful record. Views are taken where crimes hare been committed. Even cares or cellars do not escape, for by aid of artificial light, such as magnesium, or oxy-hydrogen light, or others, these interiors are perfectly photographed-in fact nothing is omitted to assist Justice in her decision. In cases of arson, the condition and position of the furniture is faithfully depicted. Thieves' tools are photographed; in forgery eularged proofs are made so as to detect the slightest irregularity; and in many other ways does photography make its services appreciated in connection with jurisprudence. The photographic albums of well-known criminals are also sent by one European nation to another, and all the sea-port towns are possessed of them, which, in the event of prisoners or untried persons trying to make their escape by sea, becomes of great service to the police. So photography in this case again shows her great utility.

Let us now briefly turn to industry, and see how eagerly her services have been taken up here. Its adaptability is so great that there is really no end to it. Copying machinery, porcelain, glass, books, manuscripts, dec., \&c., illustrating works by mechanical means, reducing plans, burning in portraits on porcelains, making blocks to be printed with text,-in fact one might enumerate hundreds of different ways of employing it, but the most perfect proof of its usefulness is in the fact of the existence of so many splendid photomechanical firms in different parts of the world, particularly in Europe-such as those of London, Paris, Berlin, Vienna, Munich, Dresden, Brussells, St. Petersburg, Lisbon, \&c., \&c. The Woodbury Comprany, and Heliotype Company, in London, are principally occupied in illustrating books. A matter of considerable interest to geologists has recently been made in the Trafalgar Coal Mine, belonging to Messrs. W. and T. Brain, in the forest of Dean. One of the roads in the mine required repairing, and in cutting away the walls, the workmen exposed two very
large "stools," known by geologists as sigillariæ. This is the fossil form of the trunk or stem of a tree which grew during the age in which the coal measures were deposited, and its genus contributed more than any other to the formation of coal, but it differed much from the forest trees such as we are acquainted with in these days. Dr. Hooker suggested that it probably belonged to the tree ferns found in tropical and semi-tropical countries. It being a very rare occurrence, all desired to have a drawing made, when Mr. G. Emlrey (master of the Gloucester School of Science), accompanicd by a few friends, visited the pit for the purpose of making some photographs of it. The dry plate process was employed, and the subject wais lit by the use of magnesium wire-certainly the photographs of such a subject were more valuable than mere hand drawings.

It would be foreign to the nature of this paper were I to enter into a long dissertation as to whether photography is a fine art or not. Monsieur Gaston Tissandier says, "It is dangerous to wish to establish a parallel between photography and painting, which differ essentially in their processes; at the same time, it appears to me unjust to deny to photography the rank of one of the fine arts." Now we have already heard the opinion of that great authority, Paul de la Roche, who says that it ought to become a study and observation to great painters. Much has been written for and against its introduction among the fine arts; and I shall make but a few remarks concerning it. I think if we keep within the acknowledged description of fine art, we shall find it to be one. The fine arts, as generally understood, comprehend those productions of human genius and skill, more or less addressed to the sentiment of taste, or to the imagination. This, therefore, may be opposed to nature, and are we to conclude that effects opposed to nature are really fine art, or should we take our standing-point from nature herself? For my own part I start from Mr. Ruskin's estimation of art when he says, "Art should be full of truth or full of use ;" or again, "Let me finally tell you, and with all distinctness possible to me, that the main business of art is the service it renders in the actual uses of daily life." I think it a degradation to art if its sole object is simply to flatter and please the senses. This is luxury, and luxury means decay. Let truth and utility be its high aim, and although many may laugh and others turn in scorn at this treatment of their idol, Yet the day is dawning when art will no longer be valued by its imaginary figures and luxurious painting, but by its trath and the amount of service it renders to humanity. Mr. Cocking has stated, "In fine art the materials are so plastic that they follow and obey the also plastic emotional feelings which guide their use, and hence, in fine art, an imitation is something independent of and different
from the sulject imitated. Whereas in photography the materials are not plastic, being unyielding scientific facts, which in their workings are not subject to plastic emotional feelings, and hence, the imitation is dependent on, and cannot differ from, the subject imitated." This is true only in part, and I claim for photography such emotional feeling as guides it in the difficult task of imitating, and the plastic power according to the nature of the materials necessary for the carrying out of the task. How, I would ask, is this power of altering nature at will, to serve our likes and dislikes, worthy of the appellation of tine art? Cultivated minds differ as well as uncultivated ones, and painters are no exception to the rule. One will pronounce a piece of work a marvel, and another will disclaim it. This being so, and following out the theory of Mr. Cocking, fine art may really reverse nature alto-gether-inasmuch as it has become independent of and different from the sulject imitated. This may be called a creation. Strange use of the word; if so, it is a creation formed after having seen and sturlied the original, and so becomes but a bad imitation. We surely do not presume to improve upon nature, for what could we produce even equal to the colouring of a simple wild flower? We can only imitate. Composition is simply an imitation of nature, and he who keeps nearest to her is the most faithful representative of tine art. The colourist can do a great deal ; but he can only copy nature, and in attempting more shows weakness. Whatever combinations we may choose to make and call them creations, they are, if opposed to nature, simply dull and meaningless imaginations, proceeding from a wandering, if not a diseased brain. Now, it was said that the materials used in photography were not plastic, by which I presume is meant that they are not under the same control as paints and brushes; relatively they are under the same control when used by those who know their properties and actions. As in painting so in photography, two things are required, materials, and the necessary amount of brains to use them to advantage. These are represented by canvas, paints, and brushes, and photographic materials on the one part, and by a knowledge of certain laws called "rules of art," on the other part, aided by a Keen perception of the beauties of nature. In the matter of the hrst I. fail to perceive any difference ; canvas, paints, and brushes are an much materials as camera lenses and chemicals ; and in the knowledge of how to use them I also can see no difference. Let us dismiss from our minds the picture ton often drawn, of a photographer being a sort of wooden man, a man of tin, or anything else, brought out when required, wound up and set to work; when finished with, carefully put away for future use. But take the travels of, and follow up such men as Vernon Heath, Braun, Mundi, Wilson, England, and others; see them up with the lark, searching after the beauties of nature, watohing all the various
changes of light, seeing their subjects under all phases, looking for a happy spot where the combination of a picture may be in harmony with the rules of art, and where nature is seen in her most beautiful aspect-in short, the brain working hard from morning till night. Not only have they to use equal judgment with the painter in his selection of light and position, but the practical part of their work is more dificult, and requires more consideration and patience. They have also many things to think of in assisting chemicals or making them plastic in their hands. They may partially expose one part and not another; they may develop one part more fully than another; one subject may require a shortfocussed lens, another a long one-one require a collodion with much more bromide than another. Again, in the after-printing of their subjects they have large scope for judgment and taste. In short, the proper working of photography requires the same amount of intellectual faculty as is required for painting or for sculpture, and their tools are in their way equally as pliable. The loss of colour in the photograph is represented in painting by loss of valuable and truthful detail. When photography has the power of representing by natural means subjects in their natural colours it will be proclaimed the first of the fine arts. Photographers, as a rule, have neglected art-education; but that has nought to do with the fact of photography being a fine art. All men who sit before an easel and handle their materials are not artists, any more than all persons using camera and chemicals are photographers. Are the splendid enlargements by photography seen in London, Paris, Vienna, Rome, de., merely mechanical works? Do they lack emotional plastic feeling? Those grand pictures of ancient Rome, or the quieter scenes of rural life-do they call forth no sentiment? These are all imitations, but the grandest that art ever saw-imitations that it is given to photography alone to produce, for their perfection and truth defy all other processes. Here then is another reason why it should be taught in our Schools of Art and Science. It is yet a young art, and seeing what it has already done, what may we not expect from it in the future? Take it then by the hand and give it its place ungrudgingly. If you do not, sooner or later it will take that place by the force of its truth and utility.

We will now come to one more application of photography, which, although coming last, is not of least importance. I refer to its applicability to educational purposes. It is well,known the great difference that exists between reading of any subject and seeing illustrations of it. The latter must of necessity fix itself more lastingly on the brain. Now photographs are acknowledged to be, in certain cases where trathfulness is required, better illustrations than any engraving process can be
for educational purposes; therefore large ones become very valuable. What then ought to be the value set upon the method that allows us to procure real photographs upon a screen varying from 6 to 30 feet in diameter? I speak now of the adaptation of photography to the sciopticon and oxy-hydrogen apparatus. Here is a special manner of teaching, at once the most perfect and the most interesting, allowing any number to see the illustration at the same time, the number depending solely upon the size of the hall used, which illustration bears truth in every line. There is really no limit to this mode of instruction-thousands upon thousands of subjects are in the market already, embracing all branches of knowledge. Science, art, travels, history-in fact, every subject may be treated in a manner which is calculated to produce most wonderful results. It was introduced into France with great success, and is still used in connection with the lectures in the military and other large schools. It can well be understood the great charm these monster photographs would produce on old and young alike. And how full of interest-look at those striking views of that great Indian empire. Alas! how very few of our countrymen know anything of its grandeur? Then there is much to be learned about those wonderful people the Chinese, the Japanese, the wilds of America, Africa-and, indeed, what is there not that we do not all want to know something about? But our occupation may forbid our roving, or pecuniary matters stand in our way, or again, ill health may prevent many from travelling. In all these cases photography comes again to our aid. Then, why let our rising generation so long remain ignorant of these places-why not illustrate our geographical lectures by these grand means by which the manners and customs of various nations can be so vividly described? I feel that I could dwell longer upon this subject than the nature of this paper would allow, for the knowledge of our fellow-creatures is such a good, interesting, and important one, and the amount of ignorance, or the want of knowledge of other nations, even among Europeans, is still so great, and the bigoted ideas of past years so firmly fixed to us, that it will require a large amount of patience and careful teaching ere one-half of the civilized world understands, willingly or not, the virtues and abilities of their neighbours. The gradual extension of this mode of teaching, for public assemblies, schools, \&c., is one that will serve to enlarge our minds and refine our ideas, that we may be able not only to see and appreciate the wonders of nature all around us, but that we may, as nations, become more familiar with the various countries of the world, and be able and willing to render justice to the different peoples for their various virtues and abilities; and knowing these, we can all of us use what we ourselves are deficient in, and so increase in
knowledge to the general welfare of the human race. Thomas Pearsall, F.C.S., in an article in the "British Journal of Photography," on photography, philosophy, and civilization, says: -"To the literary world the power of light has become so obedient that the very choicest stores of learning can be copied with a marvellous service, the choicest, priceless books, and manuscripts, can be copied with such exactness that the strains and ravages of time become matters of pictorial interest and truth-they can be copied, condensed, or enlarged, and even transferred from one material to another. In the current literature of the day, especially devoted to arts, science and manufactures, authors, artists, engravers, and publishers have a rare aid to pictorial illustrations. Take the book-illustrations by wood-engraving. The wood-engraver, in a sort of Chinese fashion, would and could only follow the lines traced for him by a special artist on the wood block. This artist was hampered by haring perhaps a crude sketch on the one hand, to be followed out by such lines as the engraver could cut. Now, the wood block may have a photograph impressed upon it, and thus, having truth of faithful outlines, due proportion, and correct light and shade, both artists and engravers can shape their lines to suit the texture, and their own art sympathies of expression. Metal after metal has been employed until a solid block of metal enables the picture of a once delicate film of matter acted upon by light to be multiplied and worked with all the appliances of mechanical power." He concludeshisarticle by saying:- "The caverns of the deep will soon be explored, and light will shine in the valleys of deep waters, will point to the dangerous rocks to shun or how to follow a safe track, if mists, darkness, or fog, obscure the mariner's sky. The magnesium and electric lights will shine out if the sun at Stratford-le-Bow does not shine through fog and murky air ; and as in the evening sky we seem to find islands in a golden sky, so our thoughts have a grateful feeling for the obvious union of photography, philosophy, and civilization, and we rejoice in such reveries in "gloaming time."
I might go on for almost volumes on the great advantages of this particular mode of educating the mass, but I must conclude with a few remarks by John Beattie, Esq. :- "There are few,"says he, "if any, branches of seience not indebted to photography, but especially those immediately connected with man. It has rendered anthropology comparatively easy. Ethnology is the science of characterthe essence of all social science. Now photography is every day forcing us to see how social character is so directly connected with form. No sketch or engraving can please us-it must be a photograph ; then the social influence of photography is seen to be great in the multiplication of works of art I trust we are coming to a time when all things will be valued according to their true educational worth, in fact in proportion to their sociological
influence and power to reveal man to man, and man to himself, and above all to cultivate the sentiment of beauty in the popular mind. Photography is made to bring under popular view all that has been rare and almost unattainable, the forms and pictures of suns and planets, the portraits and forms of life whose whole existence is spent in the eternal darkness of deep ocean. Surely then the educational influence of photography is immense, and must take its value from so great a social power. The use of photography to social science could never be supplied by another art-nothing else could so hold up the mirror to nature." From the foregoing we must make the following conclusions:- That the study of the good and beautiful is necessary, and of benefit to the human race. Photography I have shown to be one of the best means of vulgarizing these studies. It follows as a matter of course that photography should therefore become a serious study amongst us, and no place better for it than in our schools of art and science, where a knowledge of the mode of working this mighty power might be made easy to all students. A course of six months' instruction in any one branch of photography would be sufficient to make one acquainted with its principles, and enable the student to work alone, where, by the aid of any of the wellwritten works on the subject, and the many practical journals devoted to its literature, he would be able to continue prosecuting his studies without the constant presence of the professor. The cost would be but small compared with the results, as one professor could risit many schools. What a great advantage to the Government of a country having its photographers spread all over its surface. What a wonderful collection of valuable information could be thus obtained. Nor must the professor be simply a teacher or lecturer of his art--he must be a lover of it, so as to bring out boldly and earnestly its advantages, and so by his own ferrour and devotion make ardent disciples. No study could possibly become more popular-so full of wonder, newness, and marvels at every step, and constantly unravelling to us Nature's most beautiful and profound truths. I trust that abler pens than mine will take the subject in hand, and that the time is not far distant when we shall see announced the opening of a course of lectures, like those in the practical museums of France and Belgium, on photography, in connection with the schools of art and science, and by these means a good training school for our young professionals will be started, who will thus have an opportunity of getting a sound and practical knowledge of photography -when, by successive examinations, a wholesome desire to excel may be created, and finally crowned by some recognized degree or mark, that will have raised the careful student to the competent and experienced operator.

On Music.

By M. Jeles Meilhan.

[Read before the Literature and Fine Art Section, 29 November, 1878.]
When asked a few days ago by our honorable Chairman to write an article or essay on Music, to be read before this learned Society, I naturally felt gratified at having been chosen for this task, as well as at being, as I believe, the first professional musician entered on your list of members. I must then commence by thanking you for this mark of your esteem for me as an artist, and my second duty is to assure you that I shall always do my best to prove worthy of it, by contributing my mite towards the progress of this Royal Society of New South Wales.

The subject of this address has been suggested by the apparent state of humiliation in which, it sems to me, music is vegetating in this Colony. I notice with amazement, for instance, that many persons here, ewa amongst the leamed, question the claims of music to the highest ranks of excellence as an art ; and it should therefore be interesting to discuss this question, and try to comprehend why music in this Colony is not what at all times it has been, "primus inter preres." I pass, without waste of time, the strange fact that amongst our citizens have been found some asking whether or not music is a fine art. Well, controversy on such a question is out of place, and it is certain that any chemist worthy of the name would obscrve the same silence if asked if chemistry is a science, as I, and all true musicians, must do when asked if musie is a fine art. I also pass loy quickly the fact searcely less strange of there existing persons to whom music is simply a painful or disagrerable noise in which they can distinguish neither tune or rhythm. Such cases must be referred to the examination and discussion of our Medical Section. Now, there are other persons who do not like musicians, and who risit on music a part of the contempt they feel for its rotaries. I knew, however, a rich amateur who, when asked if he loved music, replied: "Do I row love music! Why, sir, I love it so much that musicians themselves have been unable to disgust me with it." Well, the test is sometimes a severe one. Again, there are side questions, as that Nature has not made us all alike, and that it would therefore be as ridiculous for a musician to expect that every one should like music, as for an astronomer, for instance, to be indignant that every one cannot calculate the parallax of the sun.

That music has always been considered and written of in all times as the most popular of arts is not to be denied, and there is truth in the assertion, inasmuch as there is a kind of music that speaks to every one. I speak of course of the simplest, which, for some nations, is the only kind, consisting of a few airs and dance
tunes. A single voice or a single instrument, however rough, may be sufficient to produce such, and the infant, be it man or nation, is capable of enjoying such music. But as man or nation develops, something more is attempted, and the fine art gradually grows up from the infant seed ; concerted music of every description, with its fanciful melodies and elaborate harmonies, leaves behind the mere dance tunes, and eventually asserts the glory of art, just as from the mere rough-hewn stone some great sculptor will produce to our wondering, reverent eyes the very image of the gods. In its progress, however, music recedes from the crowd, for the composer is no more the only producer of his works. Between him and his public is an immense distance, interspersed with obstacles of all sorts, unknown to other artists. A painter, for instance, composes a picture, and with the last touch of the brush his work is done; any one can see it ; any one can eren to a certain degree form an opinion on it. The work of the sculptor once finished enjoys the same privilege. Architecture, it is true, presents to its votaries more difficulties, and in this, as in some other respects, it is perhaps the art that most resembles music ; for, when the architect has conceived and drawn his plan, showing all sides of the building carefully measured and numbered, his work is but at the beginning. Still, many can judge at least of its artistic value; many can anticipate what the effect will be when the structure rises from the ground ; but once all the difficulties of builders and masons are surmounted, what a rich recompense to see grow into form the reality of his conception. Then any one, every one may admire, may criticise, every day, every hour. There stands the noble pile to outlive centuries of human beings, and to glorify by its harmonious proportions and beauty the memory of the man who was its architect. Its very ruins, in its age or possible misfortunes, sing his praise. And yet architecture is an art in which intellect alone works, and in which intellect alone is stirred to admiration. Now when the musician takes his pen, or, if I may be permited to use the more poetical expression of old, when he seizes the lyre, it is not only to create harmonious proportions of sounds, and to charm our ears with tunes as the arehitect charms our eyes with lines, - it is also to tell us what he thinks and feels, to make us think and feel as he dnes, to give us in fine something of his soul and of his very hoart's hlood, so that what has been said of the great condition of tme eloquence, Pectios est quorl discertos fucit," may he applied with at least equal truth to musie. Whilst in other arts it is the artist we turn to admire, in music we forget the composer in the multitude of impressions with which he fills our hearts and lrains. Whilst the chief business of other artists is to be clever in their craft, and to exert all their powers of observation, the musician should in addition be the student of human nature with its many passions, good and evil, its longings
after happiness, its hope and despair, its tenderness, its love and hatred, its generosity and meanness, and so down to the everyday moods and affections of indolence and vivacity, sullenness and good humour, \&c.; and thus it is that he alternately drags and beguiles us through all the infinite variety of his fancy. He must be a Proteus ready to assume all shapes-man, beast, fire, stream-always deceiving those who do not know how to tame and to force from him his precious secrets. I admit, of course, that such an organization-one, I mean, so rich in natural gifts as well as in professional acquirements-is not to be found in all musicians; some, indeed, having been remarkable for a few only of the above requisites, have as a natural consequence been consigned to an inferior position in the judgment of posterity. Let us, however, take a good composer of the day-say the celebrated author of "Faust" and of "Romeo and Juliet." He commences an opera. One, two, perhaps three years of labour are before him. During all that time he lives in the world, spending an afternoon here, an evening there-garden parties, dinners, publishers' soirees-he must attend all the social gatherings to which the movement of his own social life as a genius and a favourite drag him. He must listen to sickly hallads at these places, to insane opera-bouffe selections, to empty crashing military band music. He must answer silly journalist questions, submit well or badly to the real and the would-be aristocratic smiles and praises lavished on him ; perhaps even being hunted by some of those commercial firms who order music by the yard, he may find himself bound down to compose between hours, things which, good or bad, can add but little to his renown. But all this time the true musician must carry about with him, in his head and in his heart, his whole subject. When smiling to the duchess who drives by his side, he is perhaps sounding the passion of Romeo's heart, or keeping ever before his eyes the maiden purity of Juliet, or maybe the fierce quarrels of the Capulets and Montagues are sounding in his ears. And to give life to these human passions, what are his materials? The most fugitive of all-sound-the mere vibrations of the air. But these vibrations produced by different voices and instruments strike our ears and convey to our souls the expression of the composer's fancies, in the proportion of his genius and of our individual masically receptive power and of our sympathy with him. Not to digress, however, let us say the composer has finished his score ; that is to say, about 1,500 pages large quarto size, closely covered with fanciful dots, lines, zig-zags, serpent-looking lines of correction, and hieroglyphics of all sorts, expressing all he has in him of talent or genius. As it stands now it is a work, but who knows it? Nobody. A few of the initiated perhaps might look through that labyrinth, and catch a glimpse of its beauties; but
who cares to spell slowly and painfully through such a manuscript with its numerous abbreviations, so deceptive that often the eye mistakes one clef for another, thus altering sufficiently the sound to put you all out and oblige you to read again the twenty or thirty lines which performed simultancously are to produce the effect of that portion of the work. No one cares for a task so hard, and no one undertakes it. It is for this reason that judges of musical competition require from the candidates a pianoforte arrangement and reduction of the general scores, and it is for this same reason that young composers find it so difficult to present themselves fairly before the world; for in many compositions the pianoforte score is powerless to give any sufficient or correct idea of the whole work. Of course in the case of an already celebrated composer, matters run smoothly enough, as you will see. It is then a matter of course that the opera is to be performed, and it is not difficult to find a publisher to buy the copyright. He immediately prints the pianoforte score for the assistance of the artists at the rehearsals. Then the general score is delivered to the copyists, who extract and separate the parts of the various instruments and chorus-roices, and this is often the affair of many weeks, after which only really commences the practical labour. I do not know if an astronomer finds that stars of the first magnitude or those of minor importance cause the most embarras in the havenly system; but I am quite sure that, if the former are great trials to a composer, the latter are often ten times more irritating to his nervous system. The Signora A. would like a calmazathed to this or that air; Signor B. must have a B flat or a (at suchand such a place to show off his best notes; some one else desires the time made quicker or slower to suit him ; and another, perhaps, worries to have a cut made in his part ; and so on ad infinitum. In vain the distressed compaser tries to make each one in turn comprehend that his request is out of keeping with the style of the music, the sense of the words, or the dramatic situation. What signify such trifles to stars who know their importance! They have spoken! Make the required alterations, or they throw up their parts! The unhappy composer has to yield; and to save the life of his work he, perhaps, maims or cuts off a limb. I doubt if there ever existed a composer who has not had to bow his head before the tyranny of the stars. It is true that, in a few rare cases, with the greatest stars this may have been for the best, practical experience being an excellent gaide for genius itself, but these exceptions only prove the rule. I may mention as a case in point two of the finest scenes of the French opera-Rachel, in "La Juive," and the duet closing the fourth act of "The Huguenots," which we owe to the suggestions of great tenors. But against these exceptional cases are numberless deplorable passages introduced to please singers in certain
other works, mostly French and Italian. Happy composers when such so-called improvements are only made after their deaths, as in a case which occurred not long before I left Paris, I remember. A certain Madame Hisson, then singing at the Opera, took it into her head to try her hand at improving her part in "Der Freischutz," and so violently did she resent the very moderate and even courteous critique on her interpolations which appeared in the Figaro, that she actually drove next morning to that newspaper office; and when in obedience to her request the writer of the article in question politely presented himself at the door of her carriage, she lent forward, and, with all her strength administering a couple of slaps to the outstretched face of the bewildered victim, she drove quickly away. Of course, this circumstance was calmly recounted in full in next day's Figaro, with the natural remark that such conduct, especially from the fair sex, on whom it could not be returned in kind, left but one course open to the critic, which would be to pass them by with merely the observation that, as they not only professed to have arrived at perfection and to need no improvement, but also were ready to assert by the valour of their fair hands their being better interpreters than the composers themselves of great works like "Der Freischutz," they must clearly be above all criticism.

To return to our composer's miseries. The stars restored to yood humour, he has next to run the gauntlet of the managerthe interpreter of public taste ; and if his energy or diplomacy has saved his work from some of the vandalism of the stars, it is to be teared it will not hold out against the storming of the director. Wagner himself, the despotic Wagner, had to give way when his "Tannhäuser" was rehearsed in Paris. In his own account of that unfortunate affair, he confesses he was obliged to modify his work in order to make room for a ballet, without which, he says, no opera there can succeed. It is true that the great tone-poet has long done with this mild spirit of condescension. Now, he not only imposes his own conceptions without suffering the very slightest modification, or the hint of such a possibility, but he forbids the audience to give any mark, even of approval, before the close of the act. It is related also of him that when, at the close of the Bayreuth festival, all the chief performers were clamorously called upon to reappear before the curtain to receive the applause they so well merited, Wagner's overweening personality taking alarm, he tyrannically forbade their obeying, and he made his appearance all alone before the public.

Well, it is not every composer, even though popular, who can afford thus to stand on his dignity, and composers therefore in general know well what it is to pass under the caudine forks of directorial tyranny; moreover, during the rehearsals there are
plenty of well-meaning friends to hazard their various suggestions "Would it have a fine effect if the trombones had a note here, or if the oboe could be added to the flute there?" and so on ; and these prick-points, without counting the necessary corrections of the faults of copy, make his life a real martyrdom.

At last the day appointed for the full and final practice arrives. Everybody is at his post. A sort of solemnity prevails on these occasions. Members of the Press crowd in with their note-books; provincial managers are there to see if the new work is one likely to suit the tastes of their special public. The composer, sitting near the conductor, is already prepared to give the temps, when, perhaps, as the last drop overflowing the cup, comes the indisposition of the prima donna, or some equally happy accident, involving postponement. Why the general disappointment and annoyance should be visited on the composer, who can tell? But so it mostly is; and, alas ! he who is the most bitterly annoyed and disappointed of them all has no one on whom he has the right to fall foul of in his turn.

I will not weary you with further details. The first representation is generally the term of our composer's worst tribulations and anxieties, though of course success or failure equally delivers him up to the critics, and he must harden himself to every possible exaggeration-he is a demigod or a cobbler, a tone-poet or an organ-grinder; he is "ballooned" (excuse the word) up to the seventh heaven, or "diamond-drilled" (pardon again) to the bottom of hell. Anyway he once more breathes freely-his work is produced-it is known-he can do no more. He waits the verdict of time, and may perhaps never know it.

To return now to my assertion that the musician, or rather composer, has to struggle against many more material difficulties than have other artists, in the production of their works,-do not imagine I have enumerated them all in my rather lengthy sketch of our friend the composer. Alas, no! For the success of a work, good or bad, before the public, depends in so large a measure on the degree of perfection of the performance. The more beautiful the work the more perfect should be the performance, in order to show forth its varied charms, and this is why compositions that in London, Paris, Vienna, and Leipzic excite unbounded enthusiasm, create but little effect sometimes in other towns. Instance the works of Beethoven. If any man ever conquered a sublime position in the estimation of all those who love and understand music, it is Beethoven, whose illustrious name has become almost an object of worship. All his works have been published by handreds of music-sellers, yet all have been enriched by such publications. There is not a serious amateur who does not possess a copy of his pianoforte sonatas. I know I myself possess four
editions of them, without reckoning duets, trios, quartettes, symuphonies, dc. There is not a musical Society whose programmes do not contain some of his orchestral compositions. Beethoven to music is what Shakespeare is to poetry. It is, then, precisely to this same grandeur and perfection in his conceptions that we should trace the painful fact that few can enjoy the performance of his works here-that many are found wondering that such "heary, fatiguing" music should be termed highest class, and that a few, whilst suffering martyrdom, tremble to see the future of art in this country conpromised for ever by such well-meant but imprudent and inadequate productions of such masterpieces. Can I ever forget the performance of his "Fifth Symphony," as given here some months ago. Oh, the profanation of that splendid work! There was not a single bar without its mistake-time, tune, expression, movement, all went wrong-a veritable representation of chaos. Is it to be wondered at if those who heard that masterpiece of composition then for the first time left with weary, confused nerves, and an irritable conriction that there must be much humbug in the growing worship of the great master's genius? It must be remembered it is not easy to play high-class music. To build such cathedrals as Strasburg or Cologne with masons who have never worked but at the humblest of huts would be easier than to play Beethoven with musicians who have never achieved a scale in tune. And here is another difference between architecture and music. Whilst the architect needs but good workmen to carry out his work, the musician needs artists capable of comprehending the entire structure, so as each to be able to give to his part the exact proportions requisite in every passage to its perfect rendering as a whole. We must not therefore be surprised if music in this Colony has yet to take its proper place and that if not precisely despised in its present humiliation, it is as yet ranked only among the amusements which often fail of their purpose. Quite lately I was looking in the Syimey Morning Merald at Mr. Windeyer's bill on copyright, and I could not but notice that, speaking of the tine arts, the author provided for the painter, engraver, sculptor, and even for the photographer, whilst not a word was said about music or the musician. Nevertheless, he has read Plato's "Republic," where the great philosopher legislates at such length on musical matters that he actually goes so far as to fix in what way and at what times, according to their ages, people shall sing ; and when Mr. Windeyer read for the University degrees, did he never see in books on resthetics that music is generally esteemed the first of the fine arts? Doubtless he has known this, but has forgotten it ; and I should be wrong to throw the whole blane, if so, on this modern legislator, since his obliviousness is, I dare say, largely traceable to the fact that music itself in this young community has
failed to remind him of its divine qualities and to assume its natural position. Again, the musical critics of our papers do not show either much knowledge of their subject, or much care for their task. Read over the hundred, say, of musical critiques of each year, and this is about the substance of them all :-"On such a day such a person gave a concert at such a place ; the attendance, though not very large was appreciative. Mr. A. sang with his customary success. Miss B. displayed such a power over her instrument that she elicited an encore. Mrs. C.'s charming song this or the other, never fails to be appreciated," and so on, from five to twenty lines, according to the number of artists not to be offended. One exception to this rule, however, I do recall, and that was in an erening paper, after one of Mitlle. Charbonnet's concerts, where the writer made an attempt if not at criticism, at any rate at analysis. He wrote, speaking of a stringed quartette, to this effect:--" Those who write for strings make use of dis;onants not only of the 7 th of dominant kut of other 7 ths: they are not only employed singly, but also in sequences. This sort of sequences are to be found principally in Gounod's compositions." Now what would a painter say if he read in an art critique, "Painters who paint landseapes frecly use yellow, not only alone but in mixture with blue or other colours, and these mixtures are to be found principally in the works of Millais?"

If I ask myself if the editors are responsible for these shortcoraings, I believe I should answer no. It is true most of them must be aware that not a single member of their staff is cupable of writing a musical critique ; but if spoken to of a reform in that respect they reply: C'ui bono? If reproached with inserting useless and even wearisome and exhaustive articles on cricket, they answer : "Cricket here is a national passion, and is played in great perfection." Our cricketers are in their way, a sort of artists, and I must confess there is a show of truth and common sense in this retort. Artists complain that there is no public for the higher-class music. The fact is that many attempts at high-class concerts have been made in Sydney, both by private artists and by musical Societies. These concerts, considered apart from their intrinsic worth and interest, have been failures-I mean financially. I except, of course, those for which considerations of friendship, patronage, or charity, have done more than any musical enthusiasm. It is then apparent that music does not occupy its proper place among the fine arts in this Colony, and on this point no one will, I think, contradict me. Ignored by the learned, forgotten by the Legislature, overlooked by the Press, more or less forsaken by the public, the noblest, purest, and most intimately human of the arts is not even acknowledged as an art. Deeply, however, as I myself feel this miscomprehension of that to which I have devoted most of my studies, I
might say of my life, I do not despair of its future in this country, because I can trace its present humiliation to very natural causes, and I therefore see no reason that time and patience should not put the matter right. In so young a community as this every one is at work to make his fortune and to advance the Colony. To give a value to the waste lands, to make the city a centre of commerce, so as to attract population and money, are less the means to the end than the end itself; squatting, banking, buying and selling, and building, are the great pursuits to which all else is entirely subordinate; and of the liberal professions, two only push their way in so new a country, law and medicine, for moral and physical diseases follow us everywhere. In the struggle for existence the young Colony can spare neither time nor strength for more refined culture ; but as time goes on, it follows that some families will, from wealth or official position, raise themselves above the mass, thus at once creating a demand for a higher and more refined education. Professors of various kind appear on the scene-a University is founded ; but the means of the Colony being still limited, the curriculum embraces only the most indispensable matters of learning. No doubt some members of the Senate do not forget that music is one of the liberal arts taught in the mother-country, but they dare not ask the sum necessary for a Chair of Music from a Government which has already done so much. Then outside the University and Government primary schools, teaching is abandoned to private enterprise. The teachers arrive with the demand, and the pianoforte being considered as specially the instrument of the fair sex, it is the lady teachers who predominate ; moreover, it is only the ladies who can find time for cultivating the fine arts. It follows that for a long period, therefore, the notion of music as a fine art is confounded with mediocre piano-playing and still more doubtful singing. In my present capacity of pianoforte teacher, it would be out of taste to repeat all the witticisms circulated at the expense of that most popular of instruments; but I may be allowed to say that the piano, by making music easy for the many, has contributed to lower its standard in the estimation of outsiders. Later on, new comers try to see if something cannot be done besides pianoforte and vocal music, and they attempt to form orchestras. The military bands are first called upon for their aid in the trial. Now military bands fail because the instruments used are not capable of producing anything but powerful, noisy music, and becanse that class of musicians cannot ordinarily have had that delicate professional training without which really good music is impossible. However, they do what they can, and to mend matters some wellmeaning musicians endeavour to mix with these military instrumentists all the amateur talent available among the citizens. That this combination also fails is not wonderful, seeing that such
amateurs, being engrossed with very different pursuits since their arrival in the Colony, have mostly forgotten the use of their instrument, and can find neither time for private practise nor for rehearsals. All the same, say I, all honor to these valiant champions of art! Though working in a wrong direction, they thus direct the attention of a certain number of persons to the subject, and help consciously or unconsciously to the more serious and well-directed morement which must come in the course of time. Nevertheless, for the present, weighed by their own intrinsic worth, these attempts are far from putting music in its best light, for, as before said, high-class music requires high-class execution, and high-class execution can be ohtained only from thoroughly educated musicians-musicians sufficiently masters of their instruments to perform to a nicety every sign of time and expression marked on their parts. Now, do we possess a sufficient number of such artists here? Assuredly not! Of course I speak only of those composing our orchestras and choruses, not of the fraternity to which I belong, nor of certain ladies and gentlemen I know who would be valuable acquisitions to our musical Societies, though for their own doubtless valid reasons they stand aloof. Under all these circumstances, then, it is not wonderful if, though often called upon to testify to the progress of music, and to endure highclass compositions, the public fail to fall in love with them. "Is that musie ?" they say. "Well, it is not worth the strain of listening to it, nor the trouble and expense we have been at to take our families to hear it." They are in the main right, and, what is worse, anything that repeatedly attempted repeatedly fails must he considerably depreciated by the process.

Having now endearoured to trace to its natural causes what I term the state of humiliation in which music here vegetates, I must hasten to the consideration of how we might to some extent raise its standard, and so, gradually winning new allies and admirers every year, finish by lifting the divine art to the pedestal it occupies in Europe. I begin, then, abruptly by deploring what seems to me the mistaken zeal of some music-lovers in proposing to build a new musichall. That the wretched accommodation of our present concert-rooms makes the attending a concert a very uncomfortable amusement is not to be denied, and no doubt the new hall wonld be a great improvement as regards seats and cloakrooms; at the same time, artistically speaking, had we a Gerant Haus here, would it alter what I have said of the performers ; and if money is to be spent, should it be spent in doctoring the body when the soul is languishing? Poor performance is poor everywhere-we must not forget this; and it would be a small consolation for being told we did not know what good music was in New South Wales to hear it added, "but you could not have a finer hall!"

People might almost as well say, "But then Sydney harbour is so lovely !" No, the music-hall is not what most presses! But there are some other persons who suggest having practices of orchestral and vocal music. This scheme, though in principle better than the other, is practically, in my opinion, as powerless to serve the purpose proposed. You succeed in procuring, say, the names of twenty or thirty amateurs on your list. At the first practice five or six of these persons attend; at the next meeting perhaps a few more, or a few less; and this is your average luck through the season. Now, of these serious members-I say serious because they are in earnest and attend-few know enough to execute their parts even roughly. Dubious tune, fantastic time, indescribable bowing, \&c., are among their characteristics-and this from no fault, mind you, of their own. They cannot do better. They have other pursuits, and have had no time to learn as music requires to be learned; or they have never been taught the necessity of sound grounding in an art they imagine an affair merely of pastime and a fair ear for music, as it is called. Knowing little more than the rudiments of music, they have perhaps been induced to join an orchestra just as they should have been sent to school, and thenceforward, prond to sit in an orchestra, they have neglected the most desirable and necessary studies-they have not seen that they were neglecting the real thing for an amusement which was destroying in them the artists they seek to be. Learning was, perhaps, not to their tastes. And yet learning alone is the way to progress; it is by trouble and learning we can alone hope to see music flourishing in our midst. It is useless to go singing in choruses if you do not know your solfège and the management of your roice-it is useless to sit in an orchestra when your fingers are stiff and heary, and your comprehension of the music as a part and as a whole more than slender. The result of such labour is, at any rate to the audience, vanity and vexation of spirit (and a longing for home and bed); but let there be classes where aspirants for the orchestra and for chorus singing may learn slowly and surely not only their solfège, but how to manage their voice or instrument. Let us have a school for music as we have for drawing. Let us teach boys and girls in preference to men and women, and thus sow what we may reap. Let us build a solid foundation. I have always adrocated this idea; but I have met with that too natural propensity of youth to eat the fruit before it is ripe. Those to whom I have spoken have listened to me, and acknowledged I was right, and then they went and did the exact contrary of what I suggested to them. A sound idea, however, should not be too easily silenced, and this of mine which after all is only the reminiscence of what I have seen or known to be done in other towns, is a very simple one, though perhaps its carrying out here might meet with a few
difficulties. I propose, then, the establishment of a school for music, in which boys and girls shall be taught the solfège, vocal music, and instruments. The teaching must be gratuitous, or at least at a merely nominal rate, say half a guinea for a course of thirty lessons, three times a week; children admitted to the school should be between T and 15 years of age-any older applicants would require a special examination before being admitted. Four perfectly competent teachers would be sufficient to commence this scheme; one for solfège, one for vocalization, one for stringed instruments, and one for such instruments as the clarionct, flute. hautboy, bassoon, dc.-at any rate until time and success would permit of having a special and clever teacher for each branch, not excepting harmony and composition. Perhaps only two teachers-ons for solfege (boys and girls) and one for stringed instruments-might do for starting the affair. As far as these two teachers go, I am happy to say I believe there would be little difficulty, there being in Sydney an artist whose disinterestedness in the cause of musical progress would doubtless, lead him to accept gladly the class of stringed instruments for love of art. The artist to whom I refer has already offered his services, though in a slightly different line, to the Academy of Art ; and I cannot doubt but that he would be willing to modify, or even altogether give up, his project of practices, if such a school as I propose were seriously estallished, either in connection with the acalemy or as a distinct institution. And for the solfege teacher I can answer for another who would do the work on the same terms. Under these circumstances, when the only thing requested from those whose patronage would be desirable is countenance and a little warnth of sympathy, ought we go on as now-dozing, if not slumbering? No! we must awake ; we must bestir ourselves and make our step forward in the right direction. There are in Sydney more than fifty influential amateurs of music. Let them combine with the Academy of Art, about to assume the title of Academy of $A \sim t s$, to help that institution to carry out its new aspirations. Let them give to nusic the prestige of their position in the State or in society, so that both students and teachers may know and feel that their work is followed with interest by those whom they are accustomed to esteem and respect. What is money in these matters of art compared to distinguished and intellectual patronage? Nothing: We can do almost without money, but we must have moral and intellectual support-artist disinterestedness and zeal. Further, we shall need a room, a black board, and a few desks. If New South Wales can afford these few essentials, we must not despair of the future of music in this Colony.

SECTION H.-MEDICAL SCIENCE.

During the session 1878 the Medical Section of the Royal Society held eight meetings. At the first meeting, on April 12, Mr. H. G. Wright was eleeted Chairman, Messrs. Clune and Roberts were appointed to the Committee, and Messrs. Jones and MacLaurin were continued in their office of Secretaries.

At the other meetings of the Section numerous papers were read of a very interesting character, and many pathological specimens were exhibited.

> P. SYDNEY JONES,
> H. N. MACLAURIN, Hon. Secretaries.

SECTION I.-SANITARY SCIENCE.

Report of the Social and Sanitary Science Section of the Royal Society for the session of 1878 .

Sydney, 19 December, 1878.
To the President of the Royal Society.
Sir,
I have the honor to submit the following report:-
The first meeting of the session was held on the 15th day of April last, when Mr. Alfred Roberts was elected Chairman; Professor Smithi, Dr. Belgrave, and Messrs. Wrigut and Bedford were elected members of the Committee, and Mr. Harrie Wood was chosen Honorary Secretary.

At subsequent meetings the subjects Vital Statistics and the Form of Certificate of the Cause of Death were further considered; but owing to the absence from Sydney of some of the members of the Section, and other causes, the course of action to be pursued for remedying the defects found to exist was not definitely agreed upon.

It is hoped that during the next session these and other important matters will be dealt with, and that the Section will be able to offer some valuable suggestions thereupon.

I have, dec.,
ALFRED ROBERTS.

APPENDIX.

ABSTRACT OF THE METEOROLOGICAL OBSERVATIONS TAKEN AT THE SYDNEY OBSERVATORY.

(Being $3: 3$ less than that of the same month on an avemge of the preceding 10 years.)
Rain

$$
\begin{array}{llll}
\text { Number of Days } & \ldots & \ldots & 12 \text { rain. (No dew.) } \\
\text { Greatest Fall } & \ldots & \ldots & 0.888 \text { inches on the 22nd. } \\
0.636 \text { inch. } 65 \text { feet above ground. }
\end{array}
$$

(Being 2.682 inches less than that of the same month on an average of the preceding 19 years.)
Evaporation Total Amount 8.791 inches.
Ozone Mean Amount 5 • 8
(Being $1 \cdot 1$ inch greater than that in the same month on an average of the preceding 18 years.)

| Electricity ... | Number of Days Lightning | 4 | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Cloudy Sky ... | Mean Amount | \ldots | \ldots | $6 \cdot 6$ |
| | | Number of Clear Days | .. | 3 |
| Meteors | \ldots | Number Observed | \ldots | 2 |

The barometer has been above the average, and the temperature, although in no day has it exceeded 86.9 , yet gives a mean 12 above the average for 19 years. Generally, the rainfall has been light ; but along the coast good rains have fallen, the highest being 8.93 inches at Port Macquarie.

GOVERNMENT OBSERVATORY, SYDNEY.

Latituda $33^{\circ} 51^{\prime} 41^{\prime \prime}$; Longitcde 10° 4m $^{m} 46^{\prime \prime}$; Magnetic Variation $9^{\circ} 25^{\prime} 2^{\prime \prime}$ Easto

FEBRUARY, 1878.-General Abstract.

Barometer ... Highest Reading ...

At 32° Faht.
Lowest Reading
Mean Height

(Being 0.060 inch greater than that in the same month on an average of the preceding 19 years.)

Temperature	Highest in the Shade	$91 \cdot 1$ on the 23rd.
	Lowest in the Shade	62.5 on the 27 th
	Greatest Range	18.6 on the 23 rd
	Highest in the Sun	146.2 on the 25 th.
	Highest in Black Box with Glass Top	206.4 on the 12th.
	Lowest on the Grass	56.7 on the 5th.
	Mean Diurnal Range	10.0
	Mean in the Shade	$72 \cdot$

(Being 1.3 greater than that of the same month on an average of the preceding 19 years.)

Humidity	Greatest Amount \ldots	\ldots	100.0 on the 5 th.		
	Least	\ldots	\ldots	\ldots	55.0
on the 25 th and 26 th.					

(Being 3.4 greater than that of the same month on an average of the preceding 19 years.)

Evaporation	Total Amount	\ldots	\ldots	4.691	
Ozone'...	...	Mean Amount	7.0

(Being $2 \cdot 2$ greater than that in the same month on an average of the preceding 18 years.)
Electricity ... Number of Days Lightning 10
Cloudy Sky... Mean Amount $7 \cdot 9$
Number of Clear Days ... 0
Meteora ... Number Observed... ... 0

Remarks.

Like last month, the mean barometer has been above the average, and the mean temperature $1: 3$ above the average of 19 years. Very heavy rain, 7.526 inches fell at Sydney on the 6th, and throughout the Colony good rains have fallen, the smallest being 101 inch at Boulka, and the greatest 23.39 inches at Bodalla The Murray Kiver has risen 5 ft . and is still rising. At Wentworth the Darling is below summer level, but a flood is coming down.

GOVERNMENT OBSERVATORY, SYDNEY.
Latitcde $33^{\circ} 51^{\prime} 41^{\prime \prime}$; Longitcde $10^{\mathrm{h}} 4^{\text {mi }} 46^{*}$; Magnetic Variation $9^{\circ} 25^{\prime} 2^{\prime \prime}$ East. MARCH, 1878.-General Abstract.

Barometer ... Highest Reading $30^{\circ} 160$ inches on the 22nd at 8.45
At 32° Faht. Lowest Reading Mean Height
29.418 inches on the 27 th at 3 p.m.
(Being 0.010 inch less than that in the same month on an average of the preceding 19 years.)
Wind.

Greatest Pressure...	\ldots	14.6 lbs . on the 30 th .
Mean Pressure	\ldots	\ldots
0.4 lb .		
Number of Days Calm	\ldots	1
Prevailing Direction	\ldots	E.N.E.
g direction during the same month for the preceding 19 years, N.E.)		

Temperature

Highest in the Shade
Lowest in the Shade
\ldots

(Being 3.2 greater than that of the same month on an average of the preceding 19 years.)

Humidity ... Greatest Amount ...
... 100.0 on the 7th, 24th, and 25 th. Least 47.0 on the 16 th. Mean 79.9
(Being 3.5 greater than that of the same month on an average of the preceding 19 years.)

Rain ...	Number of Days	\ldots	\ldots	8 rain and 3 dew.
Greatest Fall	\ldots	$\ldots .652$ inches on the $23 \mathrm{rd}$.		
	Total Fall \ldots	\ldots	\ldots	1.410 inch. 65 ft above ground.
1.992 inch. 15 in. above ground.				

(Being $3 \cdot 496$ inches less than that of the same month on an average of the preceding 10 years.)

Evaporation	Total Amount			
Ozone... ...	Mean Amount	657

(Being 1.4 greater than hat in the same month on an average of the preceding 18 years.)
Electricity ... Number of Days Lightning 3
Cloudy Sky... Mean Amount 6.8
Number of Clear Days ... 0
Meteors ... Number Observed ... 0
Remarks.
The temperature this month has been unusually high, and the mean is 3.2 greater than the average of past 19 years. Moderate rains have fallen generally over the Colony, the heaviest being 8.88 inches at Deniliquin, and the least 0.68 inch at Gilgoin. At Wentworth the Rivers Murray and Darling are 11 ft .9 in . above summer level, but no appearance of a high flood; at Bathurst, mosquitoes and grasshoppers never known to be so numerons as during this month.

GOVERNMENT OBSERVATORY, SYDNEY.

Latitude $33^{\prime} 51^{\prime} 41^{\prime \prime}$; Longitudra $10^{\mathrm{h}} \mathrm{4m}^{\mathrm{m}} 46^{\circ}$; Magnetic Variation $9^{\circ} 25^{\prime} 2^{\prime \prime}$ East.
APRIL, 1878.-General Abstract.

Barometer ...		30.267 inches on the 9that 10\%0a.m.
At 32 Faht.	Lowest Reading Mean Height	$\begin{aligned} & 29 \cdot 39 \\ & 29.92 \end{aligned}$

(Being 0.005 inch less than that in the same month on an average of the preceding 19 years.)

Wind...	\cdots	Greatest Pressure... Mean Pressure Number of Days Calm Prevailing Direction		32.0 lbs on the 29 th 0.4 lb . $\stackrel{1}{\mathrm{~W}}$

Temperature	Highest in the Shade		
	Lowest in the Shade		51
	Greatest Range		
	Highest in the Sun		139
	Highest in Black Box with		
	Lowest on the Grass		
	Mean Diurnal Range		13
	Mean in the Shade		

(Being 1-1 inch greater than that of the same month on an average of the preceding 19 years.)

Humidity	Greatest Amount ...	\ldots	100.0 on the 10 th.			
		Least	\ldots	\ldots	\ldots	47.0
	on the 15 th.					

(Being 1.6 less than that of the same month on an average of the preceding 19 years.)

(Being 5.433 inches less than that of the same month on an average of the preceding 19 years.)

| Evaporation Total Amount | | | |
| :--- | :--- | :--- | :--- | :--- |
| Ozone Mean Amount | | | 3.570 inches. |

(Being 1.3 greater than that in the same month on an average of the preceding 18 years.)

Electricity ... Number of Days Lightning 4

Cloudy Sky... Mean Amount 45
Number of Clear Days ... 4
Meteors ... Number Observed.... ... 2

Remarks.

The barometer this month has been lightly below the average of past 19 years, and the temperature $1^{\cdot} 1$ above the average. Rain in the Colony generally has been light, but along the coast an average quantity has fallen. At Wentworth the Murray and Darling Rivers are 8 ft . 6 in . above summer level, and falling. Navigation on the Darling is almost closed ; during the late flood some of the steamers got up the river as far as Wilcannia.

GOVERNMENT OBSERVATORY, SYDNEY.

Latitude, $33^{\circ} 51^{\prime} 41^{\prime \prime}$; Longitude, $10^{\mathrm{h}} 4^{\mathrm{m}} 46^{\circ}$; Magnetic Variation $9^{\circ} 25^{\prime} 2^{\prime \prime}$ East.

MAY, 1878.-General Abstract.

Barometer .. Highest Reading 30.357 inches on the 6 th at 11 a.m.
At 32° Faht. Lowest Reading $29 . \% 12$ inches on the 24 th, at $3 \mathrm{p} . \mathrm{m}$.
Mean Height 29.967 inches.
(Being 0.046 inch greater than that in the same month on an average of the preceding 19 years.)
Wind Greatest Pressure 8.8 lbs , on the 11 th.
Mean Pressure 0.5 lb .
Number of Days Calm ... 0
Prevailing Direction ... W.
(Prevailing direction during the same month for the preceding 19 years, W.)
Temperature Highest in the Shade ... 73.4 on the 12th.

Lowest in the Shade	\ldots	44.9 on the llth.
Greatest Range	\cdots	\cdots
22.0	on the lst.	

Highest in the Sun ... $128 \cdot 3$ on the Ind.
Highest in Black Box with Glass Top
$152 \cdot 4$ on the 2 nd .
Lowest on the Grass ... $39^{\circ} 1$ on the 15th.
Mean Diurnal Range ... 14.9
Mean in the Shade ... $57 \cdot 7$
(Being 0.8 less than that of the same month on an average of the preceding 19 years.)
Humidity ... Greatest Amount 100.0 on the 26th.
Least 51.0 on the 1st.

Mean 78.6.
(Being 2.5 greater than that of the same month on an average of the preceding 19 years.)
Rain Number of Days 6 rain and 16 dew.
Greatest Fall 0.562 inch. On the 27 th.
Total Fall $\left\{\begin{array}{l}0.549 \text { inch. } 65 \text { feet above ground. } \\ 0.817 \text { inch. } 15 \text { in. above ground. }\end{array}\right.$
(Being 4.552 inches less than that of the same month on an average of the preceding 19 years.)
Evaporation Total Amount 2.355 inches.

Ozone... ... Mean Amount 65
(Being 1.8 inch greater than that in the same month on an average of the preceding 18 years.)

Mectricity	..	Number of Days Lightning	3	
Cloudy Sky ...	Mean Amount	\ldots	\ldots	$4 \cdot 2$
		Number of Clear Days	\ldots.	1
Meteors	\ldots	Number Observed	\ldots	4

Remarks.

This is the first month this year in which the mean temperature has been below the average of 19 years, and now it is only 0.8 less. The rainfall has been very light throughout the Colony, except the Clarence River District, where moderate rains have fallen. At Wentworth the Darling is down to summer level, and the Murray is 10 feet above summer level.

GOVERNMENT OBSERVATORY, SYDNEY.

Latitude $33^{\circ} 51^{\prime} 41^{\prime \prime}$; Longitude 10^{h} 4m $^{\mathrm{m}} 46^{\prime \prime}$; Magnetic Varlation $9^{\circ} 25^{\prime} 2^{\prime \prime}$ East.

> JUNE, 1878.-General Abstract.

Barometer ...	Highest Reading	...		$30 \cdot 156$ inches on the 22 nd at $9 \mathrm{a} . \mathrm{m}$.
At 32° Faht.	Lowest Reading Mean Height	\ldots	\ldots	$29 \cdot 367$ inches on the 13 th at $1 \mathrm{p} . \mathrm{m}$.

(Being 0.130 inch less than that in the same month on an average of the preceding 19 years)
Wind

Temperatare Highest in the Shade ... $63 \cdot 1$ on the 12th.
Lowest in the Shade...$\quad 38 \cdot 7$ on the 17th.
Greatest Range 17.8 on the 18th.
Highest in the Sun ... 123.0 on the 14th.
Highest in Black Box with
Glass Top
$137 \cdot 3$ on the 23 rd .
Lowest on the Grass ... $32 \cdot 8$ on the 20th.
Mean Diurnal Range ... 12.8
Mean in the Shade... ... $51 \cdot 3$
(Being 3.5 less than that of the same month on an average of the preceding 19 years.)

(Being 5.2 less than that of the same month on an average of the preceding 18 years.)

... 10 rain and 4 dew.
... 2.995 inches. On the 3 rd.
$\ldots\left\{\begin{array}{l}5 \cdot 190 \text { inches. } 65 \text { feet above ground. } \\ 7 \cdot 107 \text { ind }\end{array}\right.$
$\cdots\{7 \cdot 167$ inches. 15 in . above ground.
(Being 1.549 inches greater than that of the mame month on an average of the preceding 19 years.)

Evaporation	Total Amount			...
Ozone...	...	Mean Amount inches.		
O.	...	8.3		

Ozone... ... Mean Amount $8 \cdot 3$
(Being 3.1 greater than that in the same month ou an average of the preceding 19 years.)
Electricity Number of Days Lightning 6
Cloudy Sky ... Mean Amount 3.9
Nr:aber of Clear Days .. 3
Meteors ... Number Observed... ... 3

Remarks.

This month the mean temperature is 3.5 below the average of 19 years. Generally there has been a moderate rainfall, except in the far west where little or none has fallen. On the 8 th, at 3 p.m., a remarkable meteor was seen here and the border of Queensland, and at Geelong, in Victoria. It was vertical over Cooms, 257 miles S.W. by S. from Sydney. At Wentworth the Darling is at summer level, and the Murray 8 feet above summer level and rising.

GOVERNMENT OBSERVATORY, SYDNEY.

Latitude $33^{\circ} 51^{\prime} 41^{\prime \prime}$; Longitude $10^{\text {b }} 4^{m} 46^{*} ;$ Magnetic Variation $9^{\circ} 25^{\prime \prime} 2^{\prime \prime}$ East.
JULY, 1878.-General Abstract.

B	Highest Reading	30.
At 32° Fah		
22	Mean Height	29.826 inches.

(Being 0.119 inch less than that in the same month on an average of the preceding 19 years.)
Wind
... Greatest Pressure $19 \cdot 2 \mathrm{lbs}$ on the 27 th .

$$
\begin{array}{lll}
\text { Mean Pressure } & \ldots & 0.7 \mathrm{lb} \\
\text { Number of Days Calm } & \ldots & 0 \\
\text { Prevailing Direction } & \ldots & \text { W. }
\end{array}
$$

(Prevailing direction during the same month for the preceding 19 years, \mathbf{W}.)
Temperature Highest in the Shade ... 71.2 on the 26 th.
Lowest in the Shade ... $39 \cdot 7$ on the 8 th.
Greatest Range 21.2 on the 10 th .
Highest in the Sun $\ldots 121^{\circ} 1$ on the $20 \mathrm{th}^{2}$.
Highest in Black Box with 160.7 on the 29th.
Glass Top
Lowest on the Grass ... $34^{\circ} 0$ on the 9 th.
Mean Diurnal Range ... 14.2
Mean in the Shade ... 52.7
(Being 0.2 greater than that of the same month on an average of the preceding 19 years.)

(Being $1 \cdot 2$ greater than that of the same month on an averase of the preceding 19 years.)
Rain ...
Number of Days ...
Greatest Fall
Total Fall ..
... 10 rain and 13 dew.
1669 inches on the 12th.
. $\begin{aligned} & 1.846 \text { inch. } 65 \mathrm{ft} \text { above ground. } \\ & 3.445 \text { inches. } 15 \text { in above ground. }\end{aligned}$
(Being 1-164 inch less than that of the same month on an averaye of the precedinco 19 years.)

Evaporation Total Amount	\ldots	\ldots	$2 \cdot 111$ inches.	
Oqone...	Mean Amount	\ldots	\ldots	$7 \cdot 1$

(Being 2.2 greater than that in the same month on an average of the preceding years.)

Electricity ...	Number of Days Lightning	5		
Cloudy Sky ...	Mean Amount	Number of Clear Days	\ldots	$5 \cdot 1$
		...	4	

Remarks.

The mean barometer is 0.119 inch less than the average of past 19 years, and temperature is only 0.2 greater. Except the Darling District, fine rains have fallen generally, the heaviest being $5 \cdot 45$ inches at Orange. At Wentworth the Darling is still at summer level, and the Murray is 14 feet above summer level.

GOVERNMENT OBSERVATORY, SYDNEY.

Latitude $33^{\circ} 51^{\prime} 41^{\prime \prime}$; Longitude $10^{\text {h }} 4^{m} 46^{\prime \prime}$; Magnetic Variation $9^{\circ} 25^{\prime} 2^{\prime \prime}$ East.

AUGUST, 1878.-General Abstract.

Wind . ..

| Greatest Pressure... | \ldots | 13.0 lbs on the 9 th. |
| :--- | :--- | :--- | :--- |
| Mean Pressure | \ldots | 0.5 lb. |
| Number of Days Calm | \ldots | 3 |
| Prevailing Direction | \ldots | W. |

(Prevailing direction during the same month for the preceding 19 years, W.)
Temperature Highest in the Shade ... 77.9 on the 28th.
Lowest in the Shade ... 40.6 on the 7 th.
Greatest Range $29 \cdot 6$ on the 28th. Highest in the Sun ... 149.0 on the 30th. Highest in Black Box with

Glass Top 160% on the 28th.
Lowest on the Glass ... $35 \cdot 6$ on the 7 th.
Mean Diurnal Range ... 16.4
Mean in the Shade ... $566^{\circ} 4$
(Being 1.8 greater than that of the same month on an average of the preceding 19 years.)

Hnmidity	Greatest Amount \ldots	\ldots	$100 \cdot 0$ on the 2 nd.			
	Least	\ldots	\ldots	\ldots	37.0	on the 13 th
Mean	\ldots	\ldots	\ldots	$68 \cdot 8$		

(Being 3.1 less than that of the same month on an average of the preceding 19 years.)
Rain Number of Days
Greatest Fall $\quad \cdots \quad \cdots \quad 2 \cdot 280$ inches. On the 2 nd.
Total Fall
1.936 inches. 65 ft . above ground.
3.304 inches. 15 in . above ground.
(Being 0.540 inch greater than that of the same month on an average of the preceding 19 years.)

Evaporation	Total Amount	3.814 inches.	
Ozone	Mean Amount	8.3

(Being 32 greater than that in the same month on an average of the preceding 17 years.)

Electricity .. Number of Days Lightning 5

Cloudy Sky... Mean Amount 2.9
Number of Clear Days ... 6
Meteors ... Number Observed... ... 2

Remarks.

The barometer is 0.090 less, and the temperature 1.8 greater than the average of the past 19 years. A remarkably heavy shower of rain, in which 116 inches fell in 12 minutes; a mile east of the Observatory there was none, and from that position the rain could be seen like a wall of water passing from north to south over the Observatory. On the same day a similar shower passed over Wollongong, during which 6 inches of rain fell.

GOVERNMENT OBSERVATORY, SYDNEY.

Latitcde $33^{\circ} 51^{\prime} 41^{\prime \prime}$; Longitlde $10^{\mathrm{h}} 4^{\mathrm{m}} 46^{*}$; Magnetic Variation $9^{\circ} 25^{\prime} 2^{\prime \prime}$ East.
SEPTEMBER, 1878.-General Abstract.

Barometer...	Highest Reading	$30 \cdot 173$ inches on the 8 th at 9 a.m.
At 32° Faht.	Lowest Reading Mean Height	\ldots	\ldots	$29 \cdot 217$ inches on the 24 th at 7 p.m.

(Being 0.116 inch less than that in the same month on an average of the preceding 19 years.)
Wind Greatest Pressure... ... $17 \cdot 4 \mathrm{lbs}$. on the 24 th and 28 th. Mean Pressure 0.8 lb . Number of Days Calm ... 0 Prevailing Direction ... W.
(Prevailing direction during the same month for the preceding 19 years, W.

(Being 1.7 greater than that of the same month on an average of the preceding 19 years.)

| Humidity | Greatest Amount \ldots | \ldots | 100.0 on the 3 rd, 5 th, and 27 th. | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Least | \ldots | \ldots | \ldots | 29.0 on the 21 st . |
| | Mean | \ldots | \ldots | \ldots | 74.0 |

(Being 4.6 greater than that of the same month on an average of the preceding 19 years.)

Rain	Number of Days			18 rain and 6 dew3.060 inches. On		
		Greatest Fall					
		Total Fall			(4.472 inches. \{ 5.852 inches.		

(Being 3.346 inches greater than that of the same month on an average of the preceding 10 years.)

Evaporation	Total Amount	\ldots	\ldots	3.711 inches.
Ozone...	...	Mean Amount	\ldots	\ldots
7.6				

(Being $2 \sim$ greater than that in the same month on an average of the preceding 16 years.)

Electricity ...	Number of Days Lightning	3			
Cloudy Sky ...	Mean Amount	Number of Clear Days	\ldots	$5 \cdot$	4
		Number			
Meteors	\ldots	Number Observed	\ldots	2	

Remarks.

The mean barometer is 0.116 less, and the temperature 1.7 greater than the average of the past 19 years; valuable rains have fallen, and this time have reached the Darling ; at Boarke, 3.85 inches fell ; at Walgett, 4.39 inches; but in the lower parts of the Darling River little or no rain has fallen; on the coast the rain has been heavy-greatest, 585 inches at Sydney.

GOVERNMENT OBSERVATORY, SYDNEY.

Latitude 33° b1 $41^{\prime \prime}$; Longitude $10^{\mathrm{h}} 4^{\mathrm{m}} 46^{\circ}$; Magnetic Varlation $9^{\circ} 32^{\prime} 45^{\prime \prime}$ East OCTOBER, 1878.-General Abstract.

Barometer ...	Highest Rearling ...		$30 \cdot 146$ inches on the 5 th at $10 \mathrm{a} . \mathrm{m}$.	
At 32° Faht.	Lowest Reading	...	28.967 inches on the 10 th at $3 \mathrm{p} . \mathrm{m}$.	
	Mean Height	\ldots	...	29.788 inches.

(Being 0.050 inch less than that in the same month on an average of the preceding 19 years.)
Wind... ... Greatest Pressure... ... $27^{\circ} 4 \mathrm{lbs}$ on the 11 th and 15 th.
Mean Pressure $1^{\circ} 1 \mathrm{lb}$.
Number of Days Calm ... 0 .
Prevailing Direction ... N.E.
(Prevailing direction during the same month for the preceding 19 years, N.E.)

Temperature Highest in the Shade
Lowest in the Shade Greatest Range Highest in the Sun
86.5 on the 30th.
$49 \cdot 7$ on the 17 th.
30.3 on the 4 th.
$139^{\circ} 0$ on the 14th and 29th.
Highest in Black Box with
Glass Top
Lowest on the Grass
Mean Diurnal Range
Mean in the Shade
$198 \cdot 3$ on the 29th.
37.7 on the 17 th.
... 15.4
... 63.6
(Being 0.1 greater than that of the same month on an average of the preceding 19 years.)

Humidity	Greatest Amount	$100 \cdot 0$ on the 28 th.
	Least	$29^{\circ} 0$ on the 14th
	Mean	68.6

(Being 0.1 less than that of the same month on an average of the preceding 19 years.)

(Being 0.848 inch less than that of the same month on an awerage of the preceding 19 years.)
Evaporation Total Amount 4.872 inches.
Ozone... ... Mean Amount $7 \cdot 4$(Being 20 greater than that in the same month on an average of the preceding 18 years.)
Electricity ... Number of Days Lightning 8
Cloudy Sky... Mean Amount 5%
Number of Clear Dayz 1
Meteors ... Number Observed 1

Remarks.

This month barometer and thermometer are very close to the average for 19 years. Coast rains have been light, and the mountains and western slopes have had fine rains; butt at Wentworth the fall has been light.

GOVERNMENT OBSERVATORY, SYDNEY.

Latitude $33^{\circ} 51^{\prime} 41^{\prime \prime}$; Longitude $10^{\mathrm{h}} 4^{\mathrm{m}} 46^{\circ}$; Magetic Variation $9^{\circ} 25^{\prime} 2^{\prime \prime \prime}$ East
NOVEMBER, 1878.-General Abstract.
Barometer
$\underset{\substack{\text { Highest Reading ... } \\ \text { Lowest Reading } \\ \text { Mean Height }}}{\text { L... }}$
... $30 \cdot 167$ inches on the 7 th at $10 \cdot 20 \mathrm{a} . \mathrm{m}$.
(Being 0.041 inch less than that in the same month on an average of the preceding 19 years.)
Wind Greatest Pressure... ... 18.6 lbs on the 21 st . Mean Pressure 0.8 lb .
Number of Days Calm ... 0 Prevailing Direction ... S.
(Prevailing direction during the same month for the preceding 19 years, S .

Temperature	Highest in the Shade Lowest in the Shade reatest Range Highest in the sum Highest in Black Box Glass Top Lowest on the Grass Mean Diurnal Range Mean in the Shade	$102 \cdot 7$ on the 21 st 53.6 on the 1st. 3. . on the 21 st . 210% on the 21st. 44.5 on the 8th 164 68%

(Being $2 \cdot 1$ greater than that of the same month on an average of the preceding 19 years.

| Hamidity | Greatest Amount ... | ... 100.0 on the 1st and 6 th. | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Least | \ldots. | \ldots | \ldots | 15.8 on the 21st. |
| | Mean | \ldots | \ldots | \ldots | 67.8 |

(Being 1.6 less than that of the same month on an average of the preceding 19 years.

Rain	Number of Days Greatest Fall		7 rain and 1 dew. 0.750 inches on the 1 st.
	Total Fall		0.765 inch. 65 feet above ground. 1.931 inch 15 in above ground.

(Being 1-594 inch less than that of the same month on an average of the preceding 19 years.)

Evaporation	Total Amount	\ldots	\ldots	6.577 inches.
Ozone	Mean Amount

(Being 1.8 greater than that in the same month on an average of the preceding 18 years.)

Electricity...	Number of Days Lightning	0		
Cloudy Sky ...	Mean Amount	\ldots	${ }^{5}$	54
Meteors	\ldots	Number of Clear Days	\ldots	0
Mumber Observed	\ldots	2		

Remarks.
The temperature this month is again above the average by $2 \cdot 1$, and on the 21 st the maximum in shade reached the unusually high temperature 102%. Moderate rains have fallen, except in the far west and part of the New England District. The Murray and Da:ling Rivers in full flood at Wentworth, the rainfall at Bourke was only 1.68 inch, but on the upper tributaries to the Darling was heavy, and at Narrabri reached 4.65 inches.

GOVERNMENT OBSERVATORY, SYDNEY.

Latitcoe $33^{\circ} 51^{\prime} 41^{\prime \prime}$; Longitcide $10 \mathrm{~h} 4^{\mathrm{m}} 46^{\prime \prime}$; Magnetic Vabiation $9^{\circ} 25^{\prime} 2^{\prime \prime}$ East.

DECEMBER, 1878.-General Abstract.

Barometer ...	Highest Reading	$29 \cdot 993$ inches on the 19 that 11.30 a.m.	
At 32° Faht.	Lowest Reading	..	\ldots	$29 \cdot 171$ inches on the 25 th at 4 p.m.
	Mean Height	\ldots	\ldots	29.673 inches.

(Being 0.078 inch less than that in the same month on an average of the preceding 19 years.)

Temperature Highest in the shade ... $89 \cdot 1$ on the 17 th.
Lowest in the Shade ... 56.3 on the 2 nd.
Greatest Range $26^{3} 3$ on the 3rd.
Highest in the Sun $\ldots 152.4$ on the 23rd.

Highest in Black Box with
Glass Top 223.5 on the 23 rd .
Lowest on the Grass ... 50.5 on the 26th.
Mean Diurnal Range ... 13.2
Mean in the Shade ... 70.4
(Being 0.8 greater than that of the same month on an average of the preceding 19 years.)

Humidity	...	Great	Amo					0	
		Least	...				28	0	
		Mean					$2 \cdot$		

(Being 3-1 greater than that of the same month on an average of the preceding 19 years.)

(Being 1.874 inches greater than that of the same month on an average of the preceding 19 years.)
Evaporation Total Amount 6.300 inches. Ozone Mean Amount 7%
(Being 33 greater than that in the same month on an average of the preceding 18 years.)

Electricity	..	Number of Days Lightning	8	
Cloudy Sky	..	Mean Amount	\ldots	\ldots
7.0				
		Number of Clear Days	\ldots	2
Meteors	\ldots	Number Observed	\ldots	0

Remarks.
Barometer 0.078 below and temperature 0.8 greater than the average of 19 years, and the maximum in shade is only $89 \cdot 1$, as compared with $102 . \%$ last month. Generally the rain has been from 1 to 4 inches, and at Kurrajong reached 11 inches. At Wentworth the Marray and Darling are 19 feet above summer level, but falling here and up the rivers.

LIST OF PUBLICATIONS.

TRANSACTIONS OF THE PHILOSOPHICAL SOCIETY OF NEW SOUTH WALES, 1862-1865.

Contents.

On the Vertebrated Animals of the Lower Murray and Darling-their habits, economy, and geogra-. $\}$ Gerard Krefft. Gerard Krefft.
On Snakes obserred in the neighbourhood of Sydney
aerarta Aleat
'Geometrical Researches" in four papers, comprising) numerous new Theorems and Porisms, and complete $\}$ Martin Gardiner, C.E. Solutions to celebrated Problems. Paper No. 1...
Researches concerning n'gons inscribed in other n'gons. Paper No. 2

Martin Gardiner, C.E.
Researches concerning n'gons inscribed in curves of the second degree. Paper No. 3

Martin Gardiner, C.E.
Researches concerning n'gons inscribed in surfaces of the second degree. Paper No. 4

Martin Gardiner, C.E.
On the desirability of a systematic search for, and observation of, variable Stars in the Southern Hemisphere ...

John Tebbutt, junr.
On the Comet of September, 1862. No. 1
On the Comet of September, 1862. No. $2 \ldots$...
On
Remarks on the preceding Paper, made at the Rev.W.B.Clarke, M.A.。 Meeting of 7th September, $1864 \ldots$...... F.G.S., \&c., V.-P.
On the Cave Temples of India Dr. Berncastle.
On Snake bites and their antidotes Dr. Berncastle.
On the Wambeyan Caves Dr. James Cor.
On the Fibre Plants of New South Wales Charles Moore, F.L.S.
On Osmium and Iridium, obtained from New South $\}$ A. Leibius, Ph.D.
Wales gold ... $\quad . . \quad$... $\quad .$.
On the Prospects of the Civil Service under the Superannuation Act of 1864
On the Distribution of Profits in Mutual Insurance Societies
On the Agricultural Statistics of New South Wales
On the Defences of Port Jackson

On the Transmutation of Rocks in Australasia
On the Oology of Australia E. P. Ramsey.
The Theory of Encke's Comet
On certain possible relations between Geological? Changes and Astronomical Observations
The present state of Astronomical, Magnetical, and
Meteorological Science ; and the practical bearings of those subjects
On the Manners and Customs of the Aborigines of the Lower Murray and Darling

Lieut. Colonel Ward.
M. B. Pell. C. Rolleston.
G. A. Morell, C.E.
(Rev.W.B.Clarke, M.A.
$\left\{\begin{array}{c}\text { Rev.W.B.Clarke, M } \\ \text { F.G.S., F.R.G.S. }\end{array}\right.$
G. R. Smalley.
G. R. Smalley.
G. R. Smalley.

John Tebbutt, junr
John Tebbutt, junr.
John Tebbutt, junr.

Gerard Krefft.

TRANSACTIONS OF THE ROYAL SOCIETY OF NEW SOUTH WALES, 1867.

Vol. I.

Contents.
Inaugural Address, by the Rev. W. B. Clarke, M.A., F.G.S., \&c., FicePresident.
Article I.-On Non-Linear Coresolvents, by the Honorable Chief Justice Cockle, F.R.S., President of the Queensland Philosophical Society.
II.-Remarks on a paper by S. IF. Wintle,) Gerard Krefft, Curator Esq., on the bones found in a cave at $\}$ of the Sydney MuGlenorchy, Tasmania seum.
" III.-On the Auriferous and other Metal- Rev. W. B. Clarke, liferous Districts of Northern Queensland
" IV.-On the re-appearance of Scurvy in the Merchant Service
V.-On the Rates of Mor ahts and Lixpectation of Life in New South Wales, as compared with England and other

I B Pell B A Pro countries
, VI. - Note on the Geology of the Mary River
VII.--On the Mutual Influence of Clock Pendulums

TRANSACTIONS OF THE ROYAL SOCIETY OF NEW SOUTH WALES, 1868.

Vol. II.

Contents.

Opening Address by George R. Smalley, B.A., F.R.A.S., Vice-President.
Article I.-On the value of Earth Temperatures ... G. R. Smalley; B.A., II.-On the Improvements effected in Modern $\left\{\begin{array}{c}\text { Gerard Krefft, F.L.S., } \\ \text { C. M. Z.S., Curator of }\end{array}\right.$ Museums in Europe and Australia ${ }^{\text {(}}$ the Sydney Museum.
" III.-On the Hospital Requirements of Alfred Roberts, Sydney M.R.C.S. IV.-On the Causes and Phenomena of Rev. W B. Clarke, Earthquakes, especially in relation to $\}$ M.A., F.G.S., de., shocks felt in Australia V.-P.

Professor Smith, M.D.
V.-On the Water Supply of Sydney

Christopher Rolleston.
" VI.-Results of Wheat Culture in New South Wales during the last ten years ...
, VII.-Remarks on the Dry Earth System of (Edward Bedford, Conservancy F.R.C.S.
"VIII.-On Pauperism in New South Wales-- Alfred Ruberts, past, present, and future M.R.C.S.

```
    TRANSACTIONS OF THE ROYAL SOCIETY OF NEW SOUTH
                                    WALES, 1869.
                                    Vol. III.
                    Contents.
Opening Address, by the Rev. W. B. Clarke, M.A., F.G.S., Vice-President.
```



```
    IV.-Esposition of the American Method of
            Levelling for Sections. The supe-
                        riority to the English and French
                        methots as regards actual field prac-
                        tice and subsequent plotting of the
                        sections
        V.-On the Electric Telegraph between Eng-
                        land and India, and how to connect
                        the Australian Colonies with the tele-
                        graphic systems of Europe and
                        America
    ,, VI.-Notes on the Geology of the country
        around Goulburn .%. ... ,...
    ,,VII.-On the Origin and Migrations of the
        Polynesian Nation, demonstrating
        Polynesian Nation, demonstrating
                        ment of the Continent of America
    ", VIII.-Improved Solutions of Problems in Nrigonometrical Surveying
        E. C. Cracknell, Super-
        intemdent of Tele-
                                graphs for N.S.W.
                                A. M. Thompson, Sc. D.
    IX.-On the Water Supply of Sydney from \...
Martin Gardiner, C.E.
    X.-On the Results of the Chemical Exami-
        nation of Waters for the Sydney } Professor Smith, M.D.
        Water Commission
```



```
    ",XII.-On a new Apparatus for Reducing}}}\mathrm{ A. Leibius, Phil. Doc.
    ", XIII.-Remarks on Tables for Calculating}\begin{array}{l}{\mathrm{ the Humidity of the Air ... ... H. C. Russell, B.A.}}
```


TRANSACTIONS OF THE ROYAL SOCIETY OF NEW SOUTH WALES, 1870.

Vol. IV.

Contents.

[^15]

transactions of the royal society of new south WALES, 1872.

Vol. VI.
 Contents.

Opening Address by the Rev. W. B. Clarke, M.A., Vice-President.
Article I.-On an Improved Method of Separating
Gold from Argentic Chloride, as ob- $\}$ Dr. Leibius.
tained in gold-refining by chlorine gas
II.-Remarks on the Fallacy of a certain
method of Assaying Antimony Ores $\}$ Dr. Leibius.
given by some Manuals of Assaying
III.-Remarks on Tin Ore, and what may appear like it

Dr. Leibius,
IV.-On Australian Gems \{ George Milner Stephen, F.G.S.
V.-Astronomical Notices H. C. Russell, B.A.
", Vi.-On the Coloured Cluster Stars sbout
" VI.-On the Coloured Cluster Stars sbout
" VII.—On the Deniliquin Meteorite H. C. Russell, B.A. Archibald Liversidge, F.C.S.

VIII-Statistical Review of the Progress of
New South Wales in the last ten $\}$ Chris. Rolleston, Esq. years, 1862-71

TRANSACTIONS OF THE ROYAL SOCIETY OF NEW SOUTH WALES, 1873.

Vol. VII.

Contents.

Article I.-Annirersary Address, by the Rev. W. B. Clarke, M.A., VicePresident.
., II.-Appendix to the Anniversary Address, by the Rev. W. B. Clarke, M.A., Vice-President.

" III.-On the Solution of certain Geodesic | Problems |
| :---: | ... Martin Gardiner, C.E.

IV.-Local Particulars of the Transit of Venus H. C. Russell, B.A.
V.-Note on the Bingera Diamond District Arch. Liversidge, F.C.S.
", VI.-On our Coal and Coal Ports James Manning.
", VII.-Appendix to "On our Coal and Coal \} James Manning.
,, VIII.-On our Coal and Coal Ports James Manning.
,, IX.-The Mammals of Australia and their Classification. Part 1. Ornithodelphia \} Gerard Krefft.
and Didelphia ,. X.-On Geodesic Investigations Martin Gardiner, C.E.

TRANSACTIONS OF THE ROYAL SOCIETY OF NEW SOUTH WALES, 1874.

Vol. VIII.

Contents.

	I.-Duplex Telegraphy	E. C. Cracknell, Esq.
	II.-Hospital Accommodation	Roberts, M.R.C.S.
,	III.-Criminal Statistics of New South Wale 1860, 1873	Chris. Rolleston.
	Description of Eleven new species of Terrestrial and Marine Shells, from north-east Australia ...	John Brazier, C.M.Z.S
	ron Pyrites	
	dney Water Supply by Gravit	
	Nickel Minerals from New Caledo	
	II. -Iron Ore and Coal Deposits at Wallerawang, N.S.W.	Professor
	IX.-Some of the Results of the Observation of the Transit of Venus in N.S.W.	
	-The Transit of Venus as observed at Eden	Rev. Wm. Scott, M.

TRANSACTIONS AND PROCEEDINGS OF THE ROYAL SOCIETY OF NEW SOUTH WALES, 1875.

Vol. IX.
 Contents.

(Edited by Professor Liversidge.)

PAGE.
ArticleIV.-Anniversary Address, by the Rev. W. B. Clarke, M.A., F.G.S., Vice-President 1 to 56
,, V.-Notes on Deep Sea Soundings. By Rer. W. B. Clarke, M. A., F.G.S. 57 to 72
VI.-Facts in American Mining. By S. L. Bensusan 73 to 85
VII.-stamiferous 1):posits of Tasmania (Illustrated).By S. H. Wintle, Hobart Town87 to 95
,, VIII.-Permanent Water supply to Sydney by Gravita- tion. By James Manning 97 to 119
,, IX.-Metropolitan Water Supply. By James Manning 121 to 123
", X.-Water supply to Sydney by Gravitation (Plans). By James Manning 125 to 134
" XI.-Scientific Notes. By H. C. Russell, B.A., Govern- ment Astronomer... 135 to 150
,"XII.-Example: of Pseudo-Crystallization (Illustrated). Professor Liversidge 152 to 153
, XIII.-The Minerals of ivew South Wales. By Professor Liversidge 154 to 215
, XIV -Index 217 to 223
, XV.-Appendix: Metcorological Observations, Sydney. By H. C. Russell, B.A., Sydney Observatory 1 to 12
JOURNAL OF THE ROYAL SOCIETY OF NEW SOUTH WALES, 1876.
Vol. X.
Contents.
(Edited by Professor Liversidge.)
Article 1.-List of Officers, Fundamental Rules, By-laws, and List of Members i to $\mathbf{x I x}$
" II.-Anniversary Address, by the Rev. W. B. Clarke, M.A., F.R.S., Vice-President 1 to 34., III.-Notes on some Remarkable Errors shown by Ther-morneters (Diagram). By H. C. Russell, B.A.,F.R.A.S., Government Astronomer35 to 42
" IV.-On the Origin and Migrations of the Polynesian Nation. By Rev. Dr. Lang 43 to 74
" V. -On the Deep Oceanic Depression off Moreton Bay. By Rev. W. B. Clarke, M.A., F.R.S. 75 to 82
" VI.-Some Notes on Jupiter during his Opposition. By G. D. Hirst 83 to 98
VII.-On the Genus Ctenodus. Parts I to IV. (Fire plates.) By W. J. Barkas, M.R.C.S. 99 to 123
VIII.-On the Formarion of Moss Gold and Silver. By Archibald Livcraidge, Professor of Mineralogy in the University of Sydney 125 to 134
IX.-Recent Copper Extracting Processes. By is. L. Bensusan 135 to 145
X.-On some Tertiary fust ialian Polyzas. (Two plates.) By Ret. J. E. Tenison-Woods, T.G S., F.L.S. 147 to 150
1.-Metenrological Periodicity. (Three eliagrams.)
H. C. Russell, B.A., F.R.A.S., Government
PAGE.
Article XII.-Effects of Forest Vegetation on Climate. By Rev. W. B. Clarke, M.A., F.R.S.
179 to 235
, XIII.-Fossiliferous Siliceous Deposit, Richmond River. (one plate) : and the so-called Meerschaum from the Richmond River. By Professor Liversidge 237 to 239
" XIV.-Remarkable Example of Contorted Slate. (T'uo plates.) By Professor Liversidge
XV.-Proceedings
", XVI.-Additions to Library
", XVII.-Donations
241 to 242
$\because 43$ to 266
267 to 276
277 to 281
", XVIII.-Reports from the Sections
285 to 314
Papers mead before Sections

1. Macrozamia spiralis. By F. Milford, M.D. (Thoo plates.)

296
2. Transverse Section of Fang of Human Tooth, showing Exostoris. By Hugh Paterson
3. Notes on two Species of Insectivorous Plants indigenous to this Colony. By J. U.C.Colyer
4. Etching and Etchers. By E. L. Montefiore...
XIX.-Appendix: Abstract of the Meteorological Observations taken at the Sydney Observatory. By H. C. Russell, B.A., F.R.A.S., Government Astronomer

315 to 328
" XX.-Inder...

JOURNAL OF THE ROYAL SOCIETY OF NEW SOUTH WALES, 1877.
 Vol. XI.

Contents.
(Edited by Professor Liversidge.)
PAGE.
Article I.-List of Offcers, Fundamental Rules, By-laws,
and List of Members
i to xxy
1 to 20
II.-Anniversary Address, by H. C. Russell, B.A., F.R.A.S., F.M.S., Vice-President

21 to 39
III.-The Forest Vegetation of Central and Northern
New England in connection with Geological
Intluences. By W. Christie, Licensed Surveyor.
IV.-On Dromornis Australis, a new fossil gigantic
III.-The Forest Vegetation of Central and Northern
New England in connection with Geological
Intluences. By W. Christie, Licensed Surveyor.
IV.-On Dromornis Australis, a new fossil gigantic Bird of Australia. By the Rev. W. B. Clarke, M.A., F.R.S., \&c., Vice-President

41 to 49
" V.-On the Sphenoid, Cranial Bones, Operculum, and supposed Ear-Bones of Ctenodur. On the Scapula, Coracoid, Ribs, and Scales of Ctenodus. By W. J. Barkas, M.R.C.S.
VI.-On the Tertiary Deposits of Australia. By the Rev. J. E. Tenison-Woods, F.G.S., F.R.G.S....

65 to 82
VII.-On some New Australian Polyzoa. (Two woodcuts.) By Rev. J E. Tenison-Woods, F.G.S., \&rc...
VIII.-On the occurrence of Chalk in the New Britair Group. By Professor Liversidge, F.C.S., F.G.S., F.R.G.S., \&e.85

PAGE.
Article IX.-On a New Method of extracting Gold, Silver, and other Metals from Pyrites. By W. A. Dixon, F.C.S.

93 to 111
X.-The Palæontological Evidence of Australian Tertiary Formations. By the Rev. J. E. TenisonWoods, F.G.S., F.R.G.S.

113 to 128
XI.-A Synopsis of Australian Tertiary Polyzoa. By R. Etheridge, junr., F.G.S.

129 to 143
XII.-Ctenacanthus, a Spine of Hybodus. By W.J. Barkas, M.R.C.S.

145 to 155
" XIII.-A System of Notation adapted to explaining to Students certain Electrical Operations. By the Hon. J. Smith, C.M.G., M.D., LL.D., M.L.C.

157 to 163
XIV.-Notes on the Meteorology, Natural History, \&c., of a Guano Island; and Guano and other Phosphatic Deposits, Malden Island. By W. A. Dixon, F.C.S.

165 to 181
XV.-On some Australian Tertiary Corals. (Two plates.) By the Rev. J. E. Tenison-Woods, F.G.S., F.R.G.S.

183 to 195
XVI.-On a new and remarkable Variable Star in the Constellation Ara. By J. Tebbutt, F.R.A.S....
XVII.-On a Dental peculiarity of the Lepidosteidæ. By W. J. Barkas, M.R.C.S.

197 to 202
203 to 207
,, XVIII.-A New Fossil Extinct Species of Kangaroo, Sthenurus minor (Owen). By the Rev. W. B. Clarke, M.A., F.R.S.

209 to 212
XIX.-Notes on some recent Barometric Disturbances. By H. C. Russell, B.A., F.R.A.S.

213 to 218
" XX.-Proceedings $\quad .$.
" XXI.-Additions to the Library
", XXIII.-Reports from the Sections... 253 to 278
Papers read before Sections.

1. Remarks on the Coccus of the Cape Mulberry. By F. Milford, M.D., \&c.
2. Notes on some local Species of Diatomacer. By G. D. Hirst

270
272
, XXIV.-Appendix: Abstract of the Meteorological Observations taken at the Sydney Observatory. By H. C. Russell, B.A., F.R.A.S., Government Astronomer

281 to 294
" XXV.-List of Publications by the Society 295 to 302
, XXVI.-Index

303 to 305

JOURNAL OF THE ROYAL SOCIETY OF NEW SOUTH WALES, 1878.

Vol. XII. Contents.
(Edited by Prof. Liversidge and Dr. Leibius.)
PAGE.

Article 1.-List of Officers, Fundamental Rules, By-laws, and List of Members

Article II.-Anniversary Address, by Christopher Rolleston, Vice-President

PAGE.
1 to 16
,, III.-Tasmanian Forests; their Botany and Economical Value. By Rev. J. E. Tenison-Woods, F.G.S., F.L.s.

17 to 28
IV.-The Mollusean Fanna of Tasmania. By the Rev. J.' E. Tenison-Woods, F.G.S., F.L.S.

29 to 56

57 to 61

63 to 69

71 to 75
7.7 to 101
10.5 to 115
, \quad.--some Rewalts of an Astronomical Experiment on the Blue Monntains. (Tvo (lingram*) By H. C. Russell, B.A., F.R.A.s., F.M.S., \&c.

117 to 126
XI.-On the Metallurgy of Nickel and Cobalt. By W. A. Dixon, F.C.s., F.I.C.

127 to 132
XII.-The Deep Well Waters of sydney. By W. A. Dixon, F. ('s... F.I. ${ }^{\prime}$.

133 to 141
, XIII. -Note on Huan Island traano. By W. A. Dixon, F.C.S., F.I.C., Lecturer on Chemistry, Sydney school of Arts

143 to 144
,, XIV.-The Rise and Progress of Photography. By Ludovico W. Hart

145 to 164
XV.-Proceedings 167 to 187
,, XVI. -Additions to the Library 188 to 200
,, XVII. - Donations to the Cabinets 201 to 206
,, XVIII.--List of Exchanges and Presentations 207 to 213
," XIX.-Reports from the Sections 21. to 293

Papers read before the Sections.

1. Note on the Planet Uranus. By John Teblbatt,
F.R.A.S.
2. On the Longitude of Sydney Ohservatory.
By H. C. Russell, B.A., F.R.A.S ... 222
3. Note on the Transit of Mercury. (One
diagram.) By John Tehbutt, F.R.A.s. ... 226
4. Note on the Star "Brisloane 6183." By John - 228
5. Notes on the Obserratories in the United
States. By W. J. MacDounell, F.R.A.S.... 229
6. Clark's Companion of Sirius. By H. C. Russell,
B.A.s F.R.A.S. 233
7. The Triangle Micrometer. By H. C. Russell, B.A., F.R.A.S. 236
8. Notes on Jupiter during his Opposition, 1878. By G. D. Hirst. 238
9. On Star-discs, and the separating power of Telescopes. By W.J. MacDonnell, F.R.A.S. 241
10. Abstract of the Results of the Transit of Tenus. By H. C. Russell, B.A., F.R.A.S.. 243
11. Notes on the Ceocentric Conjunction of Mars and Saturn, 1879. By John Tebbutt, F.R.A.S 246
12. Remarks on the Mounting of Large Object- glasses. By H. C. Russell, B.A., F.R.A.S. 247
13. On a New Form of Equatorial Mounting. By H. C. Russell, B.A., F.R.A.S. 249
14. Note on the Boorook Silver Mine. By A. W. Dixon, F.C.S. 255
15. Notes on the Incrustation of the Syiney Water Main. By Dr. Morris 264
16. An Apology for the Introduction of the Study of Photography in our Schools of Art and Science. By Ludovico Hart. 269
17. On Music. By Mons. Jules Meilhan. 281
Art. XX.-Appendix: Abstract of the Meteorological Obser-vations taken at the Sydney Observatory. ByH. C. Russell, B.A., F.R.A.S., GovernmentAstronomer
297 to 308
XXI. -List of Publications. 309 to 318
,, XXII.-Index 319

INDEX.

A
Acacia melanoxylon 26
-__ decurrens 26
Additions to library 188
Address, anniversary, by C. Rolles- ton, V.P. 1
Age of eucalypti 21
Albertype process 158
Alcyonarians, phosphorescent 10
Alsophila excelsa 19
Alvan Clark, object-glass, 26 inches 231
American Commission, transit of Venus 64
Ammonio-magnesian oxalates in guano 143
Ammonia in Sydney water 253
Analysis of incrustation in Sydney water-pipes 264
Analyses of Sydney water 13.
of Waverley, 133
of Pyrmont , 134
of Newcastle", 140
Anemometer, self-registering 88
Angas, list of shells of South Aus- tralia 43
Annual report of Council 167
Aplysiidæ, Tasmanian 35
Appendix 297
Asplenium nidus 19
Aster ramulosus 18
Astronomical experiment on the Blue
Mountains, some results of ; by H.
C. Russell, B. A., F.R.A.S., F.M.S. 117
Astronomical Society, Cincinnati 229
Atherosperma moschatum 18
Australian conchology 30
-- prevailing winds 79
polyzoa 57
Autotype process of photography 154
B
Barograph sheet 98
Barometer, normal state of, on coast of New South Wales 72
Barometer readings during the "Dandenong" gale 93
Bedfordia salicina 18, 26
Bell's telephone 4
page. PAGE.
Billion dissected; Henry Bessemer. 13
Bismuth-gold, Cloncurry 252
Blackwood 26
Blue-gum (Eucalyptus globulus), its uses 25
Blue Mountains, results of an as- tronomical experiment on the; by
H. C. Russell, B.A., F.R.A.S...... 117
Boorook Silver Mine 255
Boring at Newington, depth 1,150 ft. 254
Botany and economical value ofTasmanian forests ; by Rev. J. E.
Tenison-Woods, F.G.S., F.L.S. 17
Brazier, J. ; mollasca of the "Chevert" expedition 43
"Brisbane," star 6183 228
Buccinidæ, Tasmanian 48
Building fund, subscription-list to- wards 171
Bullidx 53
By-laws, Fundamental Rules, List of Officers and Members i to XXXV
C
Cabinets, donations to the 201
Calyptræidx, Tasmanian 51
Cancellaridx, 50
Cassidæ, Tasmanian 48
"Cawarra" gale 91
Cedrela australis 19
Celery-topped pine 26
Cephalopoda, Tasmanian 4
Cerithidre 50
Cerithiopsidre 49
Chatham Island shells 43
"Chevert"expedition, mollusca of the 43
Chitonidx, Tasmanian 52
Chronograph clock, Mr. Barraclough's 218
Chronograph for registering star transits 175
Clarke memorial 178, 181
Clark's companion of Sirius 233
Clematis aristata 18
Climate of New South Wales 79
Coast of New South Wales, meteor* ology of. 71
Coast of Now South Wales, stormson the ; by H. C. Russell, B.A.,F.R.A.S., Govermment Astronomer77
PAGE. PAGE.
Cobalt and nickel, metallurgy of ; by 127
C'olumbellinie, Tasmanian 48
Conchology, Australian 30
35
Conide, Tasmanian 49
Conjunction, geocentric, of Mars and Saturn, 1879 246
Corals, Tertiary fossil, and polyzoa;by Rer. J. E. Tenison-Woods,F.G.S., F.L.S57
Correction, proposed, to the assumed longitude of the Sydney Observa- 63-69
Corypha 19
Crooke's radiometer 9
Cyclonic storms 74
Cylichnidu, Tasmanian 63
Cypreidx, 50
D
Dacrydium Franklinii 26
Daguerre, inventor of diorama 143
Daily photographs of the sun 10
Dallinger, on development of life 8
Dammara australis 27
"Dandenong," gradient of storm 75
93
Daviesia latifolia 20
Deep-water organisms 10
Dentalide, Tasmanian 52
Dicksonia antaretica 18, 19
Dixon, W. A., F.C.S., F.I.C., on the metallurgy of nickel and cobalt. 127
on Huan Island grano 143
on the Boorook Silver Mine. 255
deep well waters of Sydney 133
Dogwood 26
Donations to Society's cabinets 201
Drimys aromatica
Drimys aromatica 19 19
ulicina 20
Drysdale, on development of life 8
E
Earthquake at Africa 114
—— in Peru 112
great tidal wave 110
Edriophthalma, Tasmanian 52
Equatorial mounting, a new form of 2
Eucalyptus amygdalina 19
—_ obliqua
19
19
siderophloia 19
——_globulus, its uses 25 18
Eucalyptus, test for ascertaining age of 22
Exchanges, list of 207
Expeditions, transit of Venus 11
F
Fagus Cunninghami 18, 26
Fanines, periodicity of Indian 10
Fasciolaridx, Tasmanian 48
Fauna, molluscan, of Tasmania; by
Rev. J. E. Tenison-Woods, F.G.S., F.L.S. 29
Fauna of Tasmania, books referring 36
Ferns, species of, New South Wales 56
Queensland 56
West coast of Aus-
tralia 56 56
Fissurellidas 52
Frenela rhomboidea 18
Fundamental Rules, By-laws, List of Officers and Members i to xxxy
G
Gale, "Cawarta" 72
-_ "Dunbar" 91

- "Yarra Yarra" 72
"Dandenong" 78, 93
ings during the 93
Gales, black north-east 100
___ south-east 75
servations during 88
Gasteropoda, Tasmanian 47
Gemellariadæ 60
Generation, spontaneous 7
Gencentric conjunction of Mars and
Saturn, 1879 246
Glass exfoliation 252
Gleichenia dicarpa 20
flabellata 20
Gradient, meteorological 7
Grubb, 27 -ineh achromatic glass 231
Guano, phosphoric acid in. 143
from Huan Island. 143
PAGE.

H

Hakea pugioniformis 20
Haliotidæ, Tasmanian 52
Hart, Ludovico W. The rise and progress of photography 145
the introduction of the study of photography in our Schools of Art and Science 269
Height of the eucalypti 20
Heliotype process 158
Hirst G. D. Notes on Jupiter during his opposition, 1878 238
Huan Island guano, note on ; by W. A. Dixon, F.C.S., F.I.C. 143
Huon pine 26
Hutton, Capt. F. W. New Zealand and Chatham Island shells. 43
I
Incrustation of the Sydney water- main 264
Index
Iudian famines, periodicity of 10
Introduction of the study of photo- graphy in our Schools of Art and Science 269
Iquique, destruction of 111
J
Josephson, J. P., C.E. Some facts about the great tidal wave, May, 187 103
Jupiter during his oprosition, 18.8. 238
K
Kauri pine 27
Laportea gigas 19
Leeches in Tasmanian forests 22
Leptospermum lanigera 20
Library, additions to 188
Littorinidæ, Tasmanian 50
Local winds, thickuess of 79
Lomaria Patersoni 18
Longitude of the Sydney Observa- tory, proposed correction to the assumet; by John Tebhutt, F.P.A.S. 63
Longitude of Mr. Tebbutt's observa- tory 69

PAGE.
Longitude of Melbourne 224

- Sydney Observatory..... 68, 69, 222
Wellington, N.Z. 224
Lunar occultations of stars 65
M
MacDonnell, W. J., F.R.A.S. Ob- servatories in the United States 229
- On star-discs, and the separating power of tele- scopes 241
Mars and Saturn, geocentric con- junction of, 1579 246
Meilhan, Jules, on music 281
Mercury, note on the transit of 226
Meridian transits of the mom 63
Metallurgy of nickel and cobalt 127
Meteorograph, Mr. Iassell's 175
Meteorology of the coast of New South Wales during the winter months 71
Meteorological observations taken at the Sylney Observatory 297
Meteorological gradient 7
Micrometer, the triangle 236
Miocene corals 57
Mollusca of the "C'hevert" expedition 43
Molluscan fauna of Tasmania 29
Montlivaltia discus 58, 61
Moon, meridian transits of 63
——culminations, 1863-71-72-73, 69
Morris Dr. Incrustation of the Sylney water-main 204
Mountain ash of New South Wales 25
Mountains, Blue, astronomical ex- periment on the 117
Mounting of large object-glasses 248
new form of equatorial 249
Muricide, Tasmanian 47
Music 291
Muskwood 26
Myrtle 26
N
Naticide, Tasmanian 49
Neritide 51
New Caledonia-deposits of nickel and cobalt 129
New Zealand shexls 43
- tidal wave 105
Nickel and cobalt, on the metallurgyof ; by W. A. Dixon, F.C.S., F.I.C. 12%

0

Obernetter process 158
Object-glasses, mounting of large 947
Observations, meteorological, sylney Observatory $2!7$
Observations of lunar occultations of stars 65Olservations, instrumental, during
S.E. gales. 88
Observations, spectroscopic, on the Blue Mountains 118
Observations, telescopic, on the Blue Mountains 121
Olservations during south-east gales 88
Ohservatory, clesirability of issuing cautionary storm warnings from the 71
Sydney, on the longi-tude of …68, 2.2
-- Sydney, meteorologicalabstract297

- Mr. Tebbutt's, longi- turle of (6)
Williams College, Mas- sachusetts............... 229
- Harrard College, Cam- bridge, Mass. 230
- Dartmouth College, New Hampshire 230
- - Pittsburg, P'ennsylva- nia 230
Alleghany City, Penn. 230
Albany 2:31
-... United States Naval 231
James Lick's, Califor- nia 231
231
- - - - New Haven - New Haven 231
Z........... 231
Draper 231
Burnham 231
Observatories, list of, in the United States 232
Officers, list of, Fundamental Rules, By-laws, and List of Members, ito Xxxy Olearia argophyylla 18, 19, 26
-- rommarinifolia 18
viscosa 18
glamulusa 18
emhlata 19
Olividee, Tismanian 48
Opisthobranchiata, Tasmanian 53
Otheoscope, the 9

PAGE. P
Patellidæ, Tasmanian 52
Patio process, Mexico $2: 8$
Peppermint grom tree $1!$
Periodicity of Indian famines 10
Peru, earthyuake in 112
Phosphoric acid in guano 144
Phosphorescence of alcyonarians 10Phosphorus acid, process for making
Plotography, rise and progress of ;by L. W. Hart145
Photography on paper 151
Photography in Schools of Ait and Science 269
Photosraphy, patentel by Fox 'labloot 151
Photo-lithography 156
Photo-chromo-lithography 160
Photo-chromography 160
Photo-zincography 157
Pine, kauri 27
Planaxidre, Tasmanian 50
Planet Uranus; by John Tebbutt, F.R.A.S 220
Platycerium alcicorne $1!$
l'Leurotomider, Tasmanian 4
Polar currents of winds. 78
Polyzon, new Australian ; by Rev. J. F.. Tenison-Woods 5.
Pomalerris elliptica 18
Preece, on telephone 7
Principles of Psychology 11
Proboscidifera, Tasmanian 4
Provectines of Royal society of New south Wales 167
Proctor, R. A. on the earthquake in Pern 112
Proso-hranchiata, Tasmanian 4
Prostanthera 19
Psychology, Principles of 11
Publications, List of 309
Purpuridæ, Tasmanian 48
Pyramidellidee, Tasmanian 49
R
Radiation 9
Radiometer, Professor Stokes on Crooke's 8
Raphides in Goano Island plants.. 143
Reperte from the sections 217
Repulsion 9
Liev. Mr. Clarke, death of 176
Ringing of timber 27
Rings of growth in Tasmanian trees 22
Rise and progress of photography ; by L. W. Hart 145
PAGE.
Rissoidx, Tasmanian 50
Rolleston, Christopher - Anniver- sary Address 1
Royal Society of New South Wales,Proceedings of 167-187Russell, H. C., B.A., F.R.A.S.Storms on the coast of New SouthWales77
_- on meteorology of the coastof New South Wales 74
———Astronomical experiment onthe Blue Mountains 117
—— on the longitude of Sydney Observatory 222
233
Clark's companion of Sirius
236
236
The triangle micrometer
Abstract of the results of the transit of Venus 243
—— Remarks on the mounting of large object-glasses 247
——On a new form of equatorial mounting 249
—— Meteorological observa- tions taken at the Sydney Observatory 297
———Crooke's 9
S
Sandwich Island, the tidal wave at 108
Sassafras (Atherosperma moschatum) 26
Saturn and Mars, geocentric conjunc- tion of, 1879 246
Scalaridæ, Tasmanian 49
Scutibranchiata, Tasmanian. 51
Seaforthia elegans 19
Sections, Reports from the 217
Senecio lautus 18
___ australis 18
relleioide 18
Separating power of telescopes 241
She-oak (Casuarina stricta) 26
Silver from Tenterfield 254
Silver mine, Boorook. 255
Silver wattle (Acacia decurrens) 26
Sirius, Clark's companion of 233
Smith, Marshall, on the meteorology of the coast of New South Wales during the winter months. 71
South-east gales 75

- observations during. 88
chacteristics of 85
South America, the tidal wave at 109
Spectrascopic work on the Blue Mountains 118
PAGE.
Speiss, analysis of, containing) nickel cobalt Spencer, Herbert-Principles of Psy-chology11
Star "Brisbane," 6183 , note on the 226
Star-discs and the separating power of telescopes 241
Stars, lunar occultations of 65
Star transits, chronograph for regis- tering 175
Steering with reversed screw 11
Stokes, Professor-radiometer 8
Storms on the coast of New South Wales 77
Storms, rate of 97
Storm warnings, desirability of issu- ing cautionary, from the Observa- tory. 71
Straightness of the eucalypti 20
Stringy-bark gum tree (Eucalyptus obliqua) 25
Sydney Observatory, longitude of 68
rection to the assumed longitude of the 63
Syncarpia leptopetala 19
Sydney, deep well waters of. 133
Sydney water, analyses of 133
- sulphur in 265
Sun, daily photographs of the 10
Sun-shakes in timber 27
T
Tasmanian forests, botany and economical value of 17
Tasmania, mollusean fauna of 29
- basaltic rocks 17
Tebbutt, John, F.R.A.S. Correctionof longitude of the Sydney Obser-vatory63
___ Note on the planet Uranus 220
__ Note on the transit of Mer- cury 226
—_ Note on the star "Bris- bane," 6183 225
- Note on the geocentric conjunction of Mars and Saturn, 1879 246
Tecturidæ, Tasmanian 52
Telephone, first application of 5
Telescopic work on the Blue Moun- tains 121
P-
Telescopes, separating power of. 341
Terebridæ, Tasmanian 49
Tertiary, Australian, fossil corals and polyzoa 57
Tertiary basaltic rocks, Tasmania 17
Tetraplaria, nov. gen. 61
- australis, n. v. 61
Thickness of air currents 124
Thickness of local winds 79
Thunderstorms over Sydney 80
Tick of Tasmanian forests 22
Tidal wave, May, 1877 103
- Newcastle Harbour 104
Ballina 104
- - Brisbane 104
Table, May, 1877 105
- New Zealand 105
Sandwich Island. 108
- South America 109, 110
Tide iquique 109
Tide-gauges, Sydney and Newcastle, diagrams 117
Tides in Sydney Harbour 103
Timber trade of Tasmania. 27
Transit expeditions 11
Transits of the moon, meridian 63
Transit of Mercury, note on the 226
Transit of Venus, abstract of the results of 243
Trematotrochus, new genus 59
fenestratus 61
Triangle micrometer, the 236
Tritonidæ, Tasmanian 47
Trochidæ, Tasmanian 51
Trochocyathus heterocostatus 61
Tropical currents of winds 78
Trouton, Captain, on New South Wales coast storms 99
Tupman, Captain, results of transit of Venus 243
Turritellidæ, Tasmanian 51
Tyndall, Professor, oh spontaneousgeneration7

U

United States, observatories in the. 229
Uranus, note on the planet 220
Uses of blue-gum (Eucalyptus globu- lus) 25
V
Venus, abstract of the results of the transit of 243
Venus, transit of, expeditions 11
mission 64
Volutidæ, Tasmanian 48
W
Warnings, storm, advantage of 73
Water, analyses of Sydney 133
of Waverley
of Waverley 133 133
—— of Waverley
—— of Waverley 134 134 140 140
Water-main, incrustation of the Sydney 264
Wave, great tidal, May, 1877 103
Weather maps, Sydney 98
Well waters of Sydney, deep; by W. A. Dixon, F.C.S., F.I.C. 133
West Coast of Australia, species of ferns 56
Wind, pressure of 96
Winds, Australian, prevailing 79
Woodbury process 159
Woods, Tenison, Rev. J. E., F.G.S.,
F.L.S. Tasmanian forests, their17
botany and economical value 1
fauna of Tasmania 29

- Australian terti- ary fossil corals and polyzoa 57
ZZiera Smithii18

NOTICE.

Members of the Royal Society of New South Wales are informed that the Library will be open for consultation and for the issue of books on Wednesday afternoons from 4 to 6 p.m., and on ; the evenings of Monday, Wednesday, and Friday, from 7 to 10 p.m. during the session, and during the recess (January to end of April) on Wednesdays from 4-6 and 7-10 p.m.

Públications.

Certain of the following publications of the Society can now be obtained at the Society's House in Elizabeth-street:-

Trans. of the Phil. Soc. of N.S.W., $1862-6$, price, 105.6 d .
Wransactions of the Royal Society, N.S.W., 1867, out of print.

$"$	$"$	$"$	$"$
$"$	$"$	$"$	$"$
$"$	$"$	$"$	$"$
$"$	$"$	$"$	$"$
$"$	$"$	$"$	$"$
$"$	$"$	$"$	$"$
$"$	$"$,	$"$

Transactions and Proceedings, Journal
 1874, out of print. 1875, price $7 \mathrm{~s}, 6 \mathrm{~d}$. 1876, , 10s.6d.
1877, ,, 1os. 6d.
1878, , 10s. 6d.

[^0]: - It is 0 . viscosa which is said to have a musky odour, but I have never observed it, except on O. argophylla.

[^1]: * This tree, known as peppermint gum, has a poor and worthless character in light soils, but becomes in the shaded gullies of the Dandenong Rangea one of the finest and loftiest trees of the world.

[^2]: * Besides the Tasmanian tree, which is endemic, there are only two more pecies of this curious genus known, one in New Zealand and the other in Borneo.

[^3]: * In this case the shells of two such remote places being similar is no proof that the animals are equally alike.

[^4]: * This work is especially interesting as containing a conchologiewl srstem composed by Tournefort.
 + As Turton translates Gmelin and adds a few (rerv few, and often incorreet) remarks of his own, I am uncertain whether the observations are his or by the continuator of Linné.

[^5]: * Swainson, however, says that the platea are inferior, and whatever was good in the work was taken from Lister. See "Shells and Shellifish," p. 14.
 + The Swedish form of this name-i.e., Linnæus-is the one most in use. When knighted he was better known as Charles von Linné. It is said that the termination in "us" denotes a plebeian origin, and that when in 1757 the was admitted amongst the hereditar =obility be was called C. von Linné.

[^6]: * This work of Meusehen's must not be confounded with the catalogue previously published by Gronow himself, entitled Zoophylacium Gronovianum. It came oat in 3 parts, viz.:-Fasc. 1, 1763; Fase. 2, 1764; Fase. 3, 1781. There are twenty copper plates of figures and descriptions of 589 species. The method is Linnear.
 + This author must not be confounded with W. F. Martyn, who wrote a "New Dictionary of Nataral History," 2 vols. felio, coloured plates (many shells). London, 1785."

[^7]: * "A Historical Account of Testaceological Writers." Linnean Transactions, vol. 7, 1804. I have found this essay of great use to me, though some of the omissions are remarbable, and the details at times scanty.
 t Mr. Swainson, in his "Shells and Shell-fish," goes so far as to say that Bragiere and probably Lamarck and Cuvier, borrowed from Humplirey without acknowledgment.

[^8]: *The Bullina lineata of Wood found at Port Jackson has a homy operculum.

[^9]: * This shell was first named II. glabra by Swainson. but as that name was preoccupied, the name albicans, of Quoy, hy which it is generally known, may be adopted.

[^10]: * Thi Trigonia is a remarkable instance, as it is so different from our living species and so like some mesozoic forms.

[^11]: * This fossil coral has been described by me in the Proceedings of the Adelaide Philosophical Society for this year, along with all the corals found by Professor Tate in the Aldinga beds.
 \dagger Fossile Polyparies des Wiener Tertiar Beckens. Vol. 2, p. 63, plate 8, fig. 8.

[^12]: * The primipal portion of the preceding paper was written previously to the last meeting of the Astronomical scetion of the Royal Societ, hence there is no mention made of the result recently arrived at for longitude by the present Government Astronomer. At that meeting as paper was read by him based on numerous moon-culminations olserved by himself in the years 1863 , 1871, 1872, 1873, and 1874. He gives for the remiting longitude 10 h .4 m . 50.81 s . F. (see Herald, May 7 th, 1878), which differs unly 2-5is. from that derived from the occultation observations. It must be remembered, however, that all the moon-culminations referred to hare been obseryel by means of the old traneit circle of 3 inches aperture.

[^13]: Note. - A man was cleaning a yacht in the harbour, when suddenly the water rushed upon him, which he recorded about 3 feet 6 inches. The
 "Boomerang" stenmer, $6 \overline{5} 5$ tons, was being taken on the A.S.N. Co.'s slip, at noon, when one of the wares came in, and lifted her suddenly off the cradle, and then receding, left her high and dry.

[^14]: * Should there be a doubt about the polar and equatorial axes bisecting each other, this may be tested by applying the method above given to both ends of the tube at the same time; for if there was this error in construction, it would be impossible to get both ends of the tube to turn 180° in a diameter.

[^15]: Opening Address, by the Rev. W. B. Clarke, M.A., F.G.S., Vice-President.
 Article I.-On Post-office Saving Banks, Friendly $\begin{gathered}\text { Societies, and Government Life }\} \text { C. Rolleston, Auditor }\end{gathered}$ Societies, and Government Life
 Aseurance

