# STUDIES OF NEOTROPICAL COMPOSITAE-IV. PSEUDOGNAPHALIUM LEUCOSTEGIUM, A NEW SPECIES FROM HUEHUETENANGO, GUATEMALA, AND A NEW COMBINATION IN CHIONOLAENA (GNAPHALIEAE) 

John F. Pruski<br>Missouri Botanical Garden<br>P.O. Box 299<br>St. Louis, Missouri 63166


#### Abstract

A new species, Pseudognaphalium leucostegium Pruski, is described from Huehuetenango, Guatemala. The combination Chionolaena stolonata (S.F. Blake) Pruski, based on Gnaphalium stolonatum, is made. KEY WORDS: Asteraceae, Central America, Chtonolaena, Compositae, Cuchumatanes, Gnaphalieae, Gnaphaliothamnus, Gnaphalum, Guatemala, Huehuetenango, Mesoamerica, Pseudognaphalum.


The following taxonomic innovations in Compositae tribe Gnaphalieae are validated preliminary to the treatment of Compositae for Flora Mesoamericana. Both species treated here are white-bracted and endemic to Huehuetenango, Guatemala. Each species would fall under the umbrella of a traditionally defined Gnaphalnum L. but differs by technical features as discussed below.

PSEUDOGNAPHALIUM LEUCOSTEGIUM Pruski, sp. nov. TyPE: GUATEMALA. Huehuetenango: ravine near the ruins of Zacaleu, mixed forest area near Huchuetenango, $1800 \mathrm{~m}, 5$ Dec 1962, Williams et al. 22433 (holotype: NY). Figure 1.

Plantae herbaceeae perennes $0.3+\mathrm{m}$ altae; folia linearia $1-3 \mathrm{~cm}$ longa $01-02 \mathrm{~cm}$ lata subtus sericeatomentosa revoluta, capitulescentia paniculata-glomerulata, capitula $4-5 \mathrm{~mm}$ alta $25-4 \mathrm{~mm}$ lata, involucrum hemisphaericum vel campanulatum, phyllaria ca 31 4-6-seriata alba, externa triangulari-ovata $18-25 \mathrm{~mm}$ longa 15-2.2 mm lata obtusa, interna oblanceolata vel oblonga 4-5 mm longa $05-1 \mathrm{~mm}$ lata obtusa vel rotundata, flosculı pistillatı $18-23$, flosculı discı $23-25$, corollis $25-3 \mathrm{~mm}$ longis, stylı ramı truncat1, cypselae ca 05 mm longae, setae pappo ca 3 mm longae

Perennial herbs $0.3+\mathrm{m}$ tall; stems erect or ascending, several-branched distally, moderately to densely leafy, exalate, closely sericeous-tomentose, eglandular, internodes much shorter than leaves. Leaves sessile, linear, $1-3 \mathrm{~cm}$ long, $0.1-0.2 \mathrm{~cm}$ wide, the more distal ones strongly ascending, midrib impressed adaxially, surfaces slightly bicolorous, adaxial surface green to graygreen, eglandular and arachnoid-lanate, abaxial surface grayish, closely sericeous-tomentose, base very slightly dilated and scarcely subclasping, short-decurrent for $1-3 \mathrm{~mm}$ onto stem, margins entire, revolute, apex short-apiculate. Capitulescence of ca. 9 branches each terminated by a narrowly paniculate-glomerule, branches $10-20 \mathrm{~cm}$ long, glomerules $1-1.7 \mathrm{~cm}$ diam., held slightly above the evenly descrescent stem leaves, broadly rounded, each 5-13-capitulate. Capitula (immature) 4-5 mm tall, $2.5-4 \mathrm{~mm}$ wide, 41-48-flowered; involucre hemispherical or broadly campanulate; phyllaries ca. 31, imbricate, graduate, 4-6-seriate, outer phyllaries about $1 / 2$ as long as the inner, appressed, glabrous, stereome divided, $0.5-1.5 \mathrm{~mm}$ long, pale greenish, lamina of each white and strongly opaque; outer phyllaries broadly triangular-ovate, $1.8-2.5 \mathrm{~mm}$ long, $1.5-2.2 \mathrm{~mm}$ wide, apex broadly obtuse, evenly grading to mid-series and inner series; mid-series phyllaries and inner phyllaries oblanceolate to oblong, $4-5 \mathrm{~mm}$ long, $0.5-1 \mathrm{~mm}$ wide, apex broadly obtuse to rounded;


Figure 1. Holotype of Pseudognaphalium leucostegium Pruski (Williams et al. 22433, NY).
receptacle ca. 1 mm diam. Marginal florets pistillate, 18-23, less numerous than the disk florets. Disk florets bisexual, 23-25; corolla (immature) $2.5-3 \mathrm{~mm}$ long, lobes sparsely papillose; immature styles branched within anther cylinder, branches truncate, papillose only apically. Cypselae (immature) and ovaries ca. 0.5 mm long, glabrous; pappus bristles ca. 3 mm long, individually deciduous, evenly thickened throughout, never clavate, terminal cells obtuse.

Distribution and ecology: Pseudognaphalium leucostegium was collected at about 1800 meters elevation near the Mayan ruins of Zacaleu, just outside the modern-day city of

Huehuetenango, Guatemala. Pseudognaphalium leucostegium appears to be endemic to the environs of Huehuetenango and is known to be in early flower in December.

Pseudognaphalum Kirp. is a segregate of Gnaphaltum and is characterized by phyllary bases with divided (fenestrate) stereomes (Hilliard \& Burtt 1981; Anderberg 1991). Pseudognaphalum leucostegrum has fenestrated phyllary bases and is thus described in Pseudognaphalum. In Flora Mesoamericana I recognize 19 species of Pseudognaphalnum, with Gnaphalum polycaulon Pers. being the sole species retained in Gnaphalium s. str. Pseudognaphalum leucostegnum, the epithet of which alludes to the white lamina of the phyllaries, is part of a species group (including undescribed Mexican species) that is anomalous in Pseudognaphalum (Guy Nesom, pers. comm.) by having fewer pistillate florets than bisexual disk florets. In this sexual ratio feature, P . leucostegrum resembles Helichrysum Mill. (Guy Nesom pers. comm.), a genus as traditionally defined is known only from the Old World.

By its narrow leaves and white-opaque phyllaries, Pseudognaphalium leucostegium among Mexican and Central American species is most similar to P. leucocephalum (A. Gray) Anderb. of northern Mexico and the southwestern United States. Indeed, specimens of $P$. leucostegrum, originally distributed as Gnaphalium stramineum Kunth, were referred by Nash (1976: 172) to G. leucocephalum A. Gray. Pseudognaphalum leucostegium differs from P. leucocephalum (as well as from P. strammeum (Kunth) Anderb., which has phyllary lamina yellowish-tan to stramineous), however, by eglandular vestiture and in the pistillate to bisexual floret ratios, where the marginal pistillate florets of the new species are fewer than the bisexual disk florets. Pseudognaphalum leucostegnum is by its white-opaque phyllaries also similar to Mexican P. chartaceum (Greenm.) Anderb., which differs by having broader, subclasping to clasping, glandular leaves. Occasionally, however, $P$. chartaceum has as many bisexual disk florets as marginal pistillate florets, thus approximating the sexual ratio condition found in $P$. lencostegium.

Pseudognaphalum leucostegnm by white-opaque phyllaries superficially resembles Anaphalis margaritacea (L.) Benth. \& Hook. f., which one may possibly expect to encounter planted in tropical gardens or escaping near ruins such as those from where $P$. leucostegium is described. Anaphalis margaritacea, however, differs by apically and abaxially (vs. solely apically) papillose style branches and pubescent (vs. glabrous) cypselae and is not known to me to occur in Mesoamerica, cultivated or otherwise.

A second white-bracted gnaphalioid species is treated below. Chtonolaena DC. was monographed by Freire (1993) who recognized 17 typically subshrubby species. Subsequently, Nesom (2001) transferred to Chionolaena an additional five species, these mostly from Gnaphaliothamnus Kirp., which he reduced to synonymy of Chionolaena.

By the technical floral features of white-opaque spreading inner phyllaries coupled with capitula often with functionally staminate disk florets with purplish and papillose corolla lobes, Gnaphalum stolonatum S.F. Blake fits comfortably within Chionolaena as circumscribed by Freire (1993) and as emended by Nesom (2001). The new combination C. stolonata is thus proposed. Within Chonolaena, however, C. stolonata is apparently unique by occasionally producing stolons in immature plants. Among species from southern Mexico and Guatemala, C. stolonata appears by leaf shape most similar to C. eleagnoides Klatt, C. lavandulifolia (Kunth) Benth. \& Hook. f. ex B.D. Jacks., C. mexicana S.E. Freire, and C. salicifolia (Bertol.) G.L. Nesom. Gnaphalium stolonatum differs from these species by the combination of smaller leaves that are often remote distally and its stalked capitulescence. Because C. stolonata slightly differs vegetativly from typical Chtonolaena, I have provided a description and a photograph of it to aid in identifications.

CHIONOLAENA STOLONATA (Blake) Pruski, comb. nov. Gnaphalium stolonatum S.F. Blake, Brittonia 2: 341. 1937. Type: GUATEMALA: Huehuetenango: llanos of the Sierra Cuchumatanes, along trail between Huehuetenango and Soloma, 3200 m, 24 Aug 1934, Skutch 1098 (holotype: GH, photograph in MO; isotype: LL). Figure 2.

Perennial herbs or reduced subshrubs $0.1-0.3 \mathrm{~m}$ tall, when immature sometimes stoloniferous; stems ascending, often few-branched from subwoody base, 1-few leafy stolons 4-6.5 cm sometimes present, upright branchlets simple below capitulescence, a somewhat densely leafy basal rosette usually also present but sometimes withered in older plants, upright stems often remotely leaved distally (leaves usually moderately ascending) or older plants with stems densely leafy proximally, exalate, arachnoid-lanate, eglandular, the surface often purplish and sometimes visible through indumentum, internodes about as long as leaves. Leaves sessile, oblanceolate to spatulate, $1-4.2 \mathrm{~cm}$ long, $0.2-0.4 \mathrm{~cm}$ wide, surfaces somewhat bicolorous, eglandular, adaxial surface green or gray-green, weakly arachnoid-lanose, abaxial surface griseous arachnoid-lanose, base not dilated, not obviously subclasping, usually about as broad as stem, margins not obviously decurrent onto stems, entire, narrowly revolute, apex obtuse, apiculate. Capitulescence narrowly corymbiform-paniculate with a single terminal stalked glomerule, glomerule 1-2 cm diam., rounded, 7-11(-20)-capitulate.


Figure 2. Topotype of Chionolaena stolonata (S.F. Blake) Pruski (Molina 16441, NY).

Capitula 5-7 mm tall, 50-100-flowered; involucre campanulate, base embedded in tomentum; phyllaries $5-7 \mathrm{~mm}$ long, to ca. 2 mm wide, slightly graduated with the outer ones about $1 / 2$ as long as the inner ones, 4-6-seriate, glabrous or stereome sometimes loosely arachnoid-pubescent, stereome undivided, apex obtuse; outer phyllaries greenish-brown; inner ca. 3 series of phyllaries with lamina white and obviously opaque to near base, receptacle 1-1.5 mm diam. Marginal florets pistillate, $30-$ $70+$, about as few as the disks to more commonly many more than disks. Disk florets often functionally staminate, $11-25$; corolla $2.5-3 \mathrm{~mm}$ long, cells beaded (with irregular thickenings) longitudinally, lobes purplish and papillose; anther collar elongate and usually slightly longer than the tails; ovary sterile, cylindrical, style branches minutely papillose abaxially. Cypselae $0.8-1 \mathrm{~mm}$ long, constricted at both ends, oblong-setose with elongate duplex trichomes; pappus bristles ca. $20+$, to ca. 3.2 mm long, scabridulous but base and apex more or less smooth, persistent, connate basally and deciduous as a ring, apical cells obtuse to rounded.

Distribution and ecology: Chionolaena stolonata occurs in alpine areas from 3100-4000 meters elevation. This species is endemic to the Sierra Cuchumatanes in Huehuetenango, Guatemala (Nash, 1976), and is not known to me to occur at similar elevations on any of the relatively nearby volcanoes. Chonolaena stolonata has been collected in flower in January, March, and August.

Figure 2. Topotype of Chonolaena stolonata (S.F. Blake) Pruski (Molina 16441, NY).

## ACKNOWLEDGEMENTS

I thank Guy Nesom (FNA) for much helpful discussion and for confirming the identifications of the specimens treated here. I would also like to thank Rosa Ortiz (MO) for reading an earlier version of the manuscript and for preparing the figures for publication.

## LITERATURE CITED

Anderberg, A.A. 1991. Taxonomy and phylogeny of the tribe Gnaphalieae (Asteraceae). Opera Bot. 104: 1-195.
Freire, S.E. 1993. A revision of Chtonolaena (Compositae, Gnaphalieae). Ann. Missouri Bot. Gard. 80: 397-438.
Hilliard, O.M and B.L. Burtt. 1981. Some generic concepts in Compositae-Gnaphaliinae. Bot. J. Linn. Soc. 82: 181-232.
Nash, D.L. 1976. Flora of Guatemala: tribe IV. Inuleae. Fieldiana, Bot. 24(12): 164-181, 496-502. Nesom, G.L. 2001. New combinations in Chionolaena (Asteraceae: Gnaphalieae). Sida 19: 849-852.

# STUDIES OF NEOTROPICAL COMPOSITAE-V. MUNNOZIA ORTIZIAE (LIABEAE), A NEW SPECIES FROM THE ANDES OF PASCO, PERU 

John F. Pruski<br>Missouri Botanical Garden<br>P.O. Box 299<br>St. Louis, Missouri 63166


#### Abstract

A new species, Munnozia ortiziae Pruski (Compositae: Liabeae: Munnoziinae), is described from the Andes of Pasco, Peru. It is most similiar to M. oxyphylla, also of Peru, in its pinnately veined, lanceolate to elliptic-lanceolate leaves and moderately large capitula in loose, open cymose capitulescences. KEY WORDS: Andes, Asteraceae, Compositae, Liabeae, Liabum, Munnozia, Munnoziinae, Pasco, Peru.


Munnozta Ruiz \& Pav. (Compositae: Liabeae: Munnoziinae) is an Andean-centered genus of more than 40 species (Robinson 1978, 1983). It was resurrected from synonymy of Liabum Adans. by Robinson and Brettell (1974) and differs from Liabum by black (vs. pale) anther thecae. A new species, Munnozia ortiziae Pruski, from the Andes of Pasco, Peru, is described herein. The new species appears most similar to M. oxyphylla (Cuatrec.) H. Rob., which is known from Huánuco and Pasco, Peru.

MUNNOZIA ORTIZIAE Pruski, sp. nov. Type: PERU. Pasco. Prov. Oxapampa. Dist. Oxapampa: La Suiza Nueva, open forest with many tree ferns, $10^{\circ} 38^{\prime} \mathrm{S}, 75^{\circ} 27^{\prime} \mathrm{W}, 2240 \mathrm{~m}, 21 \mathrm{Jun} 2003$, H. van der Werff, R. Vásquez, B. Gray, R. Rojas, R. Ortiz, \& N. Davila 17600 (holotype: MO; isotypes: AMAZ, F, HOXA, USM). Figures 1-5.

Plantae herbaceae perennes vel fruticosae usque ca $2(-4) \mathrm{m}$ altae, folia opposita petiolata, lamina lanceolata vel elliptico-lanceolata $5-11 \mathrm{~cm}$ longa $1-4(-6) \mathrm{cm}$ lata chartacea pinnatim venosa supra virida saepe glabra subtus albo-grisea tom entoso-sericea; capitulescentia cymosa, pedunculi 4-12 cm long1, capitula radata, mvolucrum campanulatum vel hemisphaericum, phyllaria subaequalia vel obgradata ca 3 -seriata $9-14 \mathrm{~mm}$ longa albo-grisea tomentoso-sericea, flosculı radı $24-36$, corollis $24-275 \mathrm{~mm}$ longıs, flosculı discı $40-50+$, corollis $7-8 \mathrm{~mm}$ longis infundibuliformis, anthera niger, cypselae ca 1 mm longae strigillosae, setae pappo ca 6 mm longae

Perennial herbs to shrubs to ca. 2(-4) m tall, branching opposite (trichotomous). Stems ascending to scandent, subterete or angled, loosely arachnoid-tomentose to sometimes subglabrous proximally. Leaves simple, opposite, petiolate; petiole $1-1.5 \mathrm{~cm}$ long, narrow, unwinged, slightly dilated and subconnate at base; blade lanceolate to elliptic-lanceolate, $5-11 \mathrm{~cm}$ long, $1-4(-6) \mathrm{cm}$ wide, chartaceous, venation pinnate, secondary veins $7-10$ per side, surfaces discolorous, adaxial surface green, glabrous or sometimes lingering arachnoid-tomentose, abaxial surface white-gray, tomentose-sericeous, trichomes fused, midrib and secondary veins visible but tertiary reticulation obscured by tomentum, base acute to broadly obtuse, margins entire to less commonly few crenulateserrulate, apex acute to acuminate. Capitulescence few- to several-capitulate, open, cymose; peduncles $4-12 \mathrm{~cm}$ long, tomentose-sericeous or lingering arachnoid-tomentose. Capitula radiate, many-flowered; involucre campanulate to hemispherical; phyllaries subequal or obgradate, ca. 3-


Figure 1. Munnozta ortzzae Pruski. Photograph of a paratype (van der Werff et al. 23417, MO) showing the opposite discolorous leaves and subequal to obgradate tomentose-sericeous phyllaries.
seriate, lanceolate to elliptic-lanceolate, $9-14 \mathrm{~mm}$ long, white-gray, tomentose-sericeous with fused persistent (sometimes thinning but never subglabrate) trichomes or inner phyllaries sometimes arachnoid-tomentose; receptacle subpaleate, pseudopaleae ca. 2 mm long, lacerate-echinate. Ray florets $24-36$, pistillate; corolla $24-27.5 \mathrm{~mm}$, pale yellow, tube $3-3.5 \mathrm{~mm}$ long, limb lanceolate, 2124 mm long, ca. 2 mm wide, 4 -nerved; style well-exserted, subglabrous, branches ascending, linear, ca. 1.5 mm long, terete, stigmatic surfaces continuous. Disk florets bisexual, $40-50+$; corolla funnelform, $7-8 \mathrm{~mm}$ long, 5 -lobed, pale yellow, tube $3-3.5 \mathrm{~mm}$ long, narrow, usually shorter than limb, sparsely setose, limb $4-4.5 \mathrm{~mm}$ long, throat only slightly ampliate, $1-1.5 \mathrm{~mm}$ long, lobes lanceolate, ca. 3 mm long, noticeably longer than short throat, sparsely setulose with antrorse biseriate trichomes apically; anther thecae black, appendage triangular, stramineous; style shaft setulose distally, branches spreading, shortly elliptical, ca. 0.5 mm long, somewhat flattened, abaxially sparsely setulose, stigmatic surfaces continuous. Cypselae obconic, ca. 1 mm long, brown, strigillose; pappus bristles many, subequal, 2-3-seriate, ca. 6 mm long, pale brown, subentire or proximally scabridulous, reaching only to about midpoint of corolla lobes.

Paratypes. PERU. Pasco. Prov. Oxapampa. Dist. Chontabamba: Carretera Chontabamba a la Suiza, $2100 \mathrm{~m}, 11$ Nov 2004, Monteagudo et al. 7599 (HOXA, MO, USM +2 unmounted duplicates for distribution); Sector La Suiza, $2211 \mathrm{~m}, 6$ Dec 2004, Monteagudo et al. 7876 (AMAZ, HOXA, MO, USM + 2 unmounted duplicates for distribution); La Suiza Nueva, $2240 \mathrm{~m}, 21$ Jun 2003, van der Werff et al. 17589 (HOXA, MO, USM +2 unmounted duplicates for distribution); La Suiza Nueva, $2210 \mathrm{~m}, 6$ May 2005, van der Werff et al. 19775 (HOXA, MO, USM +2 unmounted duplicates for distribution); La Suiza Nueva, $2200 \mathrm{~m}, 17$ Oct 2005, Vilca \& Rojas 492 (AMAZ, HOXA, MO, MOL, USM +2 unmounted duplicates for distribution). Dist. Huancabamba: Parque Nacional Yanachaga Chemillén, Grapanazú, alrededor de la laguna San Daniel, $2366 \mathrm{~m}, 6$ Sep 2006, Castillo 346 (AMAZ, HOXA, MO, MOL, USM + 2 unmounted duplicates for distribution); Entre el Río cueva blanca y milpo, $2720 \mathrm{~m}, 18 \mathrm{Sep} 2004$, Monteagudo et al. 7078 (HOXA, MO, USM); Sector Milpa, $3000 \mathrm{~m}, 1$ Feb 2005, Monteagudo \& Francts 8040 (HOXA, MO, USM); Parque Nacional Yanachaga-Chemillén, cerca a la cordillera Yanachaga, $3330 \mathrm{~m}, 24$ Apr 2007, Monteagudo et al. 13801 (HOXA); Lanturachi, sector Santa Barbara, camino a Cueva Blanca, Remanente, 2813 m, 18 Oct 2004, Perea et al. 789 (HOXA, MO, USM); Sector Grapanazú, 2400 m, 17 Oct 2003, Rojas et al. 1929 (HOXA, MO, USM + 1 unmounted duplicate for distribution), same date and locality, Rojas et al. 1977 (HOXA, MO, USM + 1 unmounted duplicate for distribution); Sector Oso Playa, Bosque montano (bofedal) sobre suelo arenoso, $2559 \mathrm{~m}, 13$ Oct 2009, Valenzuela et al. 13458 ( $\mathrm{MO}+2$ unmounted duplicates for distribution). Dist. Oxapampa: Parque Nacional Yanachaga Chemillén, Cercanías del Refugio el Cedro, $2240 \mathrm{~m}, 27$ Nov 2002, Monteagudo et al. 4456 (HOXA, MO, USM); Parque Nacional Yanachaga Chemillén, Cercanías del Refugio el Cedro, 2200-2400 m, 6 Feb 2003, Monteagudo et al. 4491 (HOXA, MO, USM); La Suiza, $2200 \mathrm{~m}, 10$ Dec 2002, Vásquez et al. 27750 (HOXA, MO, USM +2 unmounted duplicates for distribution); Parque Nacional Yanachaga-Chemillén, Sector San Alberto, $2600 \mathrm{~m}, 14$ Mar 2003, Vásquez et at. 28023 (HOXA, MO, USM); La Suiza Nueva, 2200 m, 1 May 2003, Vásquez et al. 28080 (MO); Parque Nacional Yanachaga-Chemillén, sector Chacos, 2219 m, 21 Jan 2004, Vásquez et al. 28834 (HOXA, MO, USM). Dist. not given on labels: Palmazu, Cooperativo Navarra, $2000 \mathrm{~m}, 5$ Mar 1986, van der Werff et al. 8373 (MO); Laguna San Daniel, 2400 m, 8 Nov 2009, van der Werff et al. 23416 (MO + 1 unmounted duplicate for distribution); Laguna San Daniel, $2400 \mathrm{~m}, 8$ Nov 2009, van der Werff et al. 23417 (MO).

Etymology. This beautiful new species is named for Dra. Rosa Ortiz (MO), co-collector of the type and a native Peruvian. Rosa Ortiz is a specialist in the taxonomy and phylogeny of Menispermaceae, so it is both appropriate and a pleasure to dedicate to her this new (ascending to) scandent species.


Figure 2 Mumnozia ortiziae Pruski Distal portion of stem showing the discolorous leaves and the subequal to obgradate, tomentose-sericeous phyllaries (Castillo 346)


Figure 3 Munnozia ortzziae Pruski Habit (Monteagudo et al. 13801)


Figure 4 Mumnozia orttziae Pruskı Close-up of two capitula (Monteagudo et al. 13801)


Figure 5 A-C Munnozia ortiziae Prusk. Biseriate trichomes of disk corollas (van der Werff et al 17600)

Distribution and ecology This apparently locally common species is endemic to Prov Oxapampa in Pasco, Peru, where it has been collected in low forests and disturbed areas from 20003330 meters elevation in several districts

Munnozia ortiziae is most simmlar to the Peruvan M axyphylla of sect Munnozia - both species have pinnately vemed, lanceolate to elliptic-lanceolate leaves and moderately large capitula in loose, open cymose capitulescences Mumozia ortiziae clearly differs from $M$ oxyphylla by its subequal or obgradate (vs gradate), tomentose-senceous (vs glabrous to lingering arachnoid) phyllaries that are $9-14$ (vs 6-7) mm long, by generally more numerous ray florets, and by funnelform (vs campanulate) disk corollas with tube shorter (vs longer) than limb

## ACKNOWLEDGEMENTS

Rosa Ortiz (MO) and Rodolfo Vásquez (HOXA) are thanked for orgamzing our trip in 2008 to Pasco, PeruL I would to extend my thanks to Gina Castillo (HOXA) for kindly sending me the field photographs used here and also for her comments on an earher draft of the manuscnpt Gina Castillo, Rosa Otiz, Rigoberto Rivera (HOXA), and Rodolfo Vasquez are thanked for therr help in the field, and I thank Guy Nesom (FNA) for review and editing

## LITERATURE CITED

Robinson, H 1978 190(2) Compositae-Lıabeae Pp 1-62 m G Harling and B Spare (eds ), Flora of Ecuador No 8
Robinson, H 1983 A genenc review of the tribe Liabeae (Asteraceae) Smuthsoman Contr Bot 54. 1-69
Robinson, H and R D Brettell 1974 Studies in the Liabeae (Asteraceae) II Preliminary survey of the genera Phytologia 28 43-63

# NEW NAMES IN DERMATOPHYLLUM (FABACEAE) 

Billie L. Turner<br>Plant Resources Center<br>The University of Texas<br>Austin, Texas 78712


#### Abstract

Dermatophylhum is a newly established generic name for a group of taxa centering about Sophora secundiflora, a species largely confined to southern Texas and Mexico. The new combination Dermatophyllum juanhintonianum (B.L. Turner) B.L. Turner, comb. nov. is proposed, the name not otherwise accounted for, and one subspecific name, Sophora. gypsophtla subsp. guadalupensts (B.L. Turner \& A.M. Powell) Vincent, is elevated to specific status as Dermatophyllum guadalupense (B.L. Turner \& A.M. Powell) B.L. Turner, comb. et stat. nov. Justification for the new nomenclature is provided, along with maps showing distributions. KEY WORDS: Fabaceae, Sophora, Dermatophyllum


The publication by Gandhi, Vincent, and Reveal (2011), in which the generic name Dermatophylhum Scheele is provided for a group of taxa centering around Sophora secundiflora Ortega, has occasioned the present paper. The authors provided new generic combinations for all of the taxa except for Sophora juanhintoniana B.L. Turner, which was not accounted for in their treatment.

DERMATOPHYLLUM JUANHINTONIANUM (B.L. Turner) B.L. Turner, comb. nov. Sophora juanhintoniana B.L. Turner, Phytologia 76: 385. 1994.

Turner (1994), in the Latin diagnosis of the taxon, compared this gypseous species with the closely related calciphile (so far as known) Sophora purpust Brandegee, the latter possessing smaller leaves and mostly white corollas with larger banners.

It should be noted that Dermatophyllum juanhintoniamum occasionally occurs on gypsum soils with the more commonly encountered $D$. secundiflorum. At least one putative hybrid between these has been noted (Hinton et al. 25155, TEX), this collected with both parents on 9 November 1994, at 1650 m near Aramberi, Nuevo León, and noted by the collectors to be a hybrid. In my opinion, it is likely to be an F1 hybrid, with only a single such plant found at that locality.

DERMATOPHYLLUM GUADALUPENSE (B.L. Turner \& A.M. Powell) B.L. Turner, stat. nov. Sophora gypsophtla Turner \& Powell var. guadahupensts B.L. Turner \& A.M. Powell, Phytologia 22: 421. 1972. Dermatophyllum gypsophilum (B.L. Turner \& A.M. Powell) Vincent subsp. guadalupense (B.L. Turner \& A.M. Powell) Vincent, Phytoneuron 2011-57: 2. 2011.

Turner and Powell (1972) first called attention to this taxon, noting its similarity to the simultaneously described Sophora gypsophila Turner \& Powell, a taxon occurring on gypseous soils in the state of Chihuahua, Mexico, a locality ca 300 km south of the Texas sites. The two varieties differed by numerous characters, including edaphic parameters, the Texas populations occurring in calcareous soils, the Mexican populations in gypsum soils, this all documented by the excellent study
of Northington (1976). Almost certainly, if Turner and Powell had information presented in the latter study, the two taxa would have been treated as distinct species instead of varieties. At least there is no morphological evidence suggesting that the two taxa intergrade, the populations concerned being isolated and occurring in different soil types, without intervening populations.

Northington, Morey, and Van Devender (1977), based upon rat-midden cave materials (dated at ca $16,000 \mathrm{BP}$ ) from southern Presidio County, concluded that the species of Dermatophyllum in the southwestern USA and northern Mexico are a monophyletic assemblage that possibly differentiated during the Pliocene. Evidence for such speciation events was largely based upon leaflet structure and shape, this depicted in their paper. To me, the latter data are not convincing, largely because the hypothetical "fossil" leaves of Dermatophyllum (as pictured) seem too small and isometric to serve as a prototype taxon for the taxa concerned. A presumed ancestor would likely have had much larger, less evenly shaped leaflets. Regardless, such phyletic speculation is based upon relatively little data. It seems more likely to me that the widespread $D$. secundifforum, with much larger leaflets, gave rise to the rather isolated, smaller populations, which opted for special substrates many eons ago, persisting today as localized edaphic endemics.

The following simplified key provides for the identification of the several taxa discussed here. Their distributions are shown in Figures 1 and 2.

1. Larger leaflets mostly 3-6(-7) cm long; pods woody, cylindric and torose

Dermatophyllum secundiflorum 1. Larger leaflets mostly $0.5-3.0 \mathrm{~cm}$ long; pods not woody, flattened.
2. Larger leaflets mostly $1.0-2.5 \mathrm{~cm}$ long; USA, Sonora ................ Dermatophyllum arizonicum
2. Larger leaflets mostly $0.5-1.0 \mathrm{~cm}$ long; Mexico but not in Sonora.
3. Larger leaves mostly 6-12 cm long; petioles $8-12 \mathrm{~mm}$ long; Chihuahua
3. Larger leaves mostly $3-6 \mathrm{~cm}$ long; petioles $4-8 \mathrm{~mm}$ long; Coahuila, Zacatecas.
4. Leaves $3-4 \mathrm{~cm}$ long; corollas essentially white, banner ca. 20 mm long

Dermatophyllum purpusii
4. Leaves $4-6 \mathrm{~cm}$ long; corollas lavender, banner ca. 14 mm long

Dermatophyllum juanhintonianum

## ACKNOWLEDGEMENTS

Guy Nesom and Jana Kos reviewed the paper and provided helpful suggestions. My academic son David Northington provided helpful insight as to the reality of Dermatophyllum guadalupense.

## LITERATURE CITED

Gandhi, K.N., M.A. Vincent, and J.L. Reveal. 2011. Dermatophyllum, the correct name for Calia (Fabaceae). Phytoneuron 2011-57: 1-4.
Northington, D.K. 1976. Evidence bearing on the origin of infraspecific disjunction in Sophora gypsophila. Plant Syst. Evol. 125: 233-244.
Northington, D.K., E.D. Morey, and T.R. Van Devender. 1977. Phyletic interpretations from fossil (ca. $16,000 \mathrm{BP}$ ) remains of Sophora in the southwestern United States. Southwestern Naturalist 22: 495-504.

Turner, B L 1994 A nek gypsophlite species of Soptara (Fabaceae) from Nuepo Leon, Mexico Phytologla 76 385-388
Turnar, B L and AM Powell 1972 A new gypsoptulc Saphorw (Legumanosae) from northcentral Mexico and adjacent Texas Phytologa 22 419-422


Figure 1 Distribution of Dermatophylhw secwadylormm


Figure 2 Distribution of the Dermatophplium gppsoph hiton complec

# BELLARDIA TRIXAGO (OROBANCHACEAE): 40 YEARS OF RANGE EXPANSION IN TEXAS AND A FIRST REPORT FROM LOUISIANA 

JASON R. SINGHURST<br>Wildlife Diversity Program<br>Texas Parks and Wildlife Department<br>Austin, Texas 78704<br>Jason.singhurst@tpwd.state.tx.us

Jeffrey N. Mink
Department of Biology
Baylor University
Waco, Texas 76798-7388

Walter C. Holmes<br>Department of Biology<br>Baylor University<br>Waco, Texas 76798-7388

Guy L. Nesom<br>2925 Hartwood Drive<br>Fort Worth, Texas 76109


#### Abstract

The naturalized occurrence of Bellardia trixago, a species known as adventive to Texas since 1970, is reported and documented for an additional set of counties. Study of the distribution of the species in Texas led directly to its discovery in Louisiana, reported here as new to that state. The collections are mapped by county with symbols to indicate the date of first collection, showing the chronological spread of the species. KEY WORDS: Orobanchaceae, Scrophulariaceae, Bellardia, lineseed, Texas, Louisiana, USA, adventive


Bellardia trixago (L.) All. (Orobanchaceae) is native to the Mediterranean region from Portugal and Morocco east to Turkey, Syria, and Jordan (excluding Egypt but including Mediterranean islands and Madeira and the Azores of the Atlantic Ocean). The species has been introduced to Argentina and Chile (Tropicos.org 2011), Australia (FloraBase 2011), the Canary Islands (Euromed 2011), and the USA. The genus was formerly included as a member of the Scrophulariaceae, in the traditional sense a family consisting of about 275 genera and 5000 species. It is now placed in the Orobanchaceae, which includes the hemiparasitic genera (e.g., Orobanche, Castilleja, Pedicularis, Seymeria, and others; see Olmstead 2002 for a summary of the dismemberment of the Scrophulariaceae into at least seven families).

The common name most often used in the USA (Mediterranean lineseed) seems to be newly coined, since the species is not native to any English-speaking country. It possibly alludes to the longitudinally ribbed seeds (as described by Polunin 1969), a condition that could be interpreted as "lined." In error, the name lineseed is often rendered as "linseed." Another common name is "sticky bellardia" and in Spain the species is generally known as gallocresta (Spanish, "cock's comb").

Bellardia in the USA is adventive in California (Weatherwax 1993) and Texas, where first reported from Navarro County by Lipscomb and Ajilvsgi (1982), although a collection from Leon County had been made 10 years earlier (see below). In Texas, Bellardia typically occurs along highway roadsides and rights-of-way, vacant lots, and pastures where it is conspicuous by height and color among the colorful spring wildflowers.

Do et al. (1996) provided an account of the expanded distribution of Bellardia trixago in Texas to include Anderson, Brazos, Colorado, Freestone, Harris, Henderson, Hill, Kaufman, Leon, Liberty, Limestone, Milam, Montgomery, and Robertson counties. Continued general collecting in the state has resulted in the discovery of the species in additional counties, and new records since the report by Do et al. are documented here. Additionally, Turner et al. (2003) mapped the species in the Ellis, Johnson, Tarrant, and Walker counties but we have not located vouchers for those records.

Voucher specimens. USA. Texas. Austin Co.: NE side of FM 1094, ca. 2.3 road mi NW of jet FM 2187 , NW of Seely, locally frequent in sandy loam on gently unshaded roadside through Fayette Prairie, 31 Mar 1999, Carr 18040 (TEX). Chambers Co.: at intersection of I-10 and Hwy 1406 at Winnie, frequent white-flowered herb on disturbed soil, 29 Mar 1997, Brown 20144 (TEX). Fayette Co.: SE side of St. Rte. 237, 2.3 road mi NE of jct FM 1291 South, just NE of Warrenton, locally frequent in sandy loam over Oakville Sandstone (Miocene), unshaded grassy roadside through Fayette Prairie, 29 Mar 1999, Carr 18000 (TEX). Gillespie Co.: Hwy 290, ca. 0.1 mi E of KOA Campground near "25 miles to Johnson City" road sign, N side of Hwy 290, 20 Apr 2005, Singhurst 13342 (BAYLU). Grimes Co.: FM 105 between Plantersville and Navasota, 6 Apr 2003, Stancik 64 (BAYLU). Hays Co.: 6 mi E of Dripping Springs on Hwy 290, N side of Hwy 290, 20 April 2005, Singhurst 13344 (BAYLU). Jefferson Co.: Jct. of I-10 and St Rt 365 at Fannett, Texas, S. side of I10 and E side of State Rte 365, 28 Apr 2004, Singhurst 13520 (BAYLU). Kaufman Co.: 2.6 mi . S of jet of Hwy 175 and FM 274, W side of 274 (just W of Cedar Creek Reservoir), 5 May 1995, Singhurst 3263 (TEX). McLennan Co.: Texas Hwy 31, 1.3 mi W of FR 1330, just west of Axtell, 10 Apr 1999, Holmes 9924 (BAYLU). Orange Co.: Jct. Hwy 105 and Hwy 73 in West Orange, ca. 0.2 mi S on Hwy 73 and E side of Hwy 73, 29 Mar 2007, Singhurst 16124 (BAYLU). Parker Co.: U.S. Hwy 180 at jet with FM 113, ca. 12 mi W of Weatherford, 7 May 1998, Holmes \& White (BAYLU). Rains Co.: State Hwy 47 at Sabine River on Sabine River Authority property, 18 Apr 2000, White s.n. (BAYLU). Travis Co.: 0.1 mi S of jet of Slaughter Lane and Hwy 1 (Mopac Expressway), W side of Hwy 1, 13 April 2005, Singhurst 14181 (BAYLU). Victoria Co.: Goliad, 17 Apr 2010, Nitschmann 16 (TAMU, fide TAMU 2011). Waller Co.: Hwy 290 West, beside Hempstead/Magnolia exit, FM 1488, 10 Apr 2007, Idowu 85 (BAYLU).

The species has not been reported in Louisiana by Thomas and Allen (1998), USDA, NRCS (2010), or Neyland (2011) but a brief excursion into Louisiana, barely 16 kilometers east of the locality in Orange Co., Texas, resulted in the discovery of the species, reported here as new to Louisiana. Voucher specimen. USA. Louisiana. Calcasieu Parish: Jct Hwy 109 and I-10, disturbed highway right-of-way in the town of Toomey, northwest comer of jet along access to I-10, 29 Mar 2007, Singhurst 16125 (BAYLU).

The Louisiana locality is the easternmost record for the species in the USA and an excellent starting point to chronicle the expected spread of the species further eastward. Associated flora at the Toomey locality included introduced and disturbed-site species such as Cynodon dactylon, Bidens alba, Bromus sp., Centaurnum pulchellum, Cyperus spp., Chloris gayana, Nothoscordum bivalve, Trifolium spp., Medicago sp., and Vicia ludovicicana.

The rapid dispersal of Bellardta trixago in Texas over the last $30-40$ years is remarkable (Fig 1) Dispersal clearly is along highway corridors, the tiny seeds presumably whipped along by natural winds and by those created by cars and trucks The most recent movement is southwestern (Gillespre, Hays, and Travis cos ), southern (Victoria Co), and southeastern (Jefferson and Orange cos, both bordering southwest Loussiana) Movement northward appears to be slower, perhaps indicating ecological limitations.


Figure 1 Distribution and chronological spread of Bellardia trixago in Texas and Lousiana Small red dots are records from the Texas atlas by Tumer et al (2003) - vouchers not located in the present study

Records for the oldest Texas collections mapped on Figure 1 are these. Brazos Co.: W side of roadside of W Loop 2818 at jet of 2818 and Carson Street, 20 May 1983, Ajilvsgi 8390 (TAMU). Leon Co.: off Hwy 75 at Leona, along roadside, 4 May 1970, Lundell \& Lundell 18514 (LL). Navarro Co.: open pasture ca. 11 mi SE of Corsicana, 19 Jun 1980, Ajitlusgi s.n. (SMU).

## ACKNOWLEDGEMENTS

The authors thank Bill Carr (botanical consultant, Austin, Texas) for information on Bellardia trixago in Hays and Travis counties and George Diggs and Larry Brown for checking for additional records. Collections at TEX-LL and SMU-BRIT were surveyed and we appreciate the hospitality of the staff at those institutions.

## LITERATURE CITED

Do, L.H., W.C. Holmes, and J.R. Singhurst. 1996. New county records for Bellardta trixago (Scrophulariaceae) in Texas. Sida 17: 295-297.
Euromed. 2011. Euro+Med PlantBase. The information resource for Euro-Mediterranean plant diversity. <Euromed luomus fi/euromed_map php?taxon=308544\&size=medium> Accessed 13 Dec 2011.

FloraBase. 2011. The Western Australian Flora. Western Australian Herbarium. Dept. of Environment and Conservation. \&ttp //florabase dec wa gov au> Accessed 13 Dec 2011.
Lipscomb, B. and G. Agilvsgi. 1982. Bellardta trixago (L.) All. (Scrophulariaceae) adventive in Texas. Sida 9: 370-374.
Neyland, R. [in collaboration with M.H. Mayfield and L.E. Urbatsch]. 2011. Vascular Flora of Calcasieu Parish. The Herbarium of Louisiana State Univ., Baton Rouge. sherbarium lsu edu/checklist-calcasieu-list htmL> Accessed 8 Dec 2011.
Olmstead, R.G. 2002. Whatever happened to the Scrophulariaceae? Fremontia 30: 13-22.
Polunin, O. 1969. Flowers of Europe. Oxford Univ. Press, London.
Thomas, R.D. and C.M. Allen. 1998. Atlas of the Vascular Flora of Louisiana, Vol. III: Dicotyledons, Fabaceae-Zygophyllaceae. Louisiana Dept. of Wildlife and Fisheries, Baton Rouge.
Tropicos.org. 2011. Missouri Botanical Garden, St. Louis. Chttp//www tropicoss org> Accessed 13 Dec 2011.
Turner, B.L., H. Nichols, G. Denny, and O. Doron. 2003. Atlas of the Vascular Plants of Texas. Vol. 2. Sida, Bot. Misc. 24. Botanical Res. Inst. of Texas, Fort Worth.

USDA, NRCS. 2011. The PLANTS Database. National Plant Data Team, Greensboro, North Carolina. Lhttp//plants usda gov> Accessed 2 Dec 2011.
Weatherwax, M. 1993. Bellardia. Page 1016 in J.C. Hickman (ed.). The Jepson Manual: Higher Plants of California. Univ. of California Press, Berkeley.

# TWO VASCULAR PLANT SPECIES NEW TO OKLAHOMA 

Jason R. Singhurst<br>Wildlife Diversity Program<br>Texas Parks and Wildlife Department<br>Austin, Texas 78704<br>Jason.Singhurst@tpwd.state.tx.us

Jeffrey N. Mink

Department of Biology
Baylor University
Waco, Texas 76798-7388

Walter C. Holmes<br>Department of Biology<br>Baylor University<br>Waco, Texas 76798-7388


#### Abstract

Calyptocarpus vialss (Asteraceae) and Rhynchospora mexpansa (Cyperaceae) are reported as new to the state of Oklahoma. The Calyptocarpus is considered to be a recent introduction, while the Rhynchospora is presumed to be native. KEY WORDS: Asteraceae, Cyperaceae, Calyptocarpus, Rhynchospora, Oklahoma, Bryan County, McCurtain County, floristics, adventive


This paper documents the occurrence of two vascular plant species previously unknown to the flora of Oklahoma.

Calyptocarpus vialis Less. (Asteraceae), straggler daisy, is here reported as a recent introduction to Oklahoma, perhaps representing the northern edge of a gradual expansion. Nesom (2011) considered the species as native to Mexico and Texas ("at least to the southernmost counties of the Rio Grande valley, where it is essentially continuous with the Mexican distribution, and possible as far north as Austin (Travis County) along the eastern edge of the Edwards Plateau."). All other distributions (elsewhere in Texas and the USA, Australia, Taiwan, and Hawaii) are apparently recently adventive.

Voucher specimen: USA. Oklahoma. Bryan Co.: 0.5 mi . N of E2190 Rd and Hwy 69, E side of Hwy 69 and 0.9 miles SSW of Colbert, $33^{\circ} 50^{\prime} 36.78^{\prime \prime} \mathrm{N}, 96^{\circ} 30^{\prime} 46.02^{\prime \prime} \mathrm{W}, 20$ Nov 2011 , Singhurst \& family 18736 (BAYLU).

The Oklahoma record is from Bryan Co., which is contiguous (across the Red River) with Grayson Co., Texas. Calyptocarpus vialts is documented from Grayson Co. (Haller s.n., TEX-LL) at a site about 6 kilometers from the Oklahoma locality.

In Oklahoma, Calyptocarpus vialis occurred on a flood plain terrace in shady understory of Acer saccharimum and Quercuts shumardii forest. Dominant herbaceous flora growing in association with C. vialis included Carex cherokeensis, Senecio vulgaris, Poa annua, Viola sororia, Allum sp., and Lamium amplexicaule.

Rhynchospora inexpansa (Michx.) Vahl (Cyperaceae), the nodding beaksedge, is native to the southeastern USA (Kral 2003), being reported from Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Texas, and Virginia (Kartez 2011; USDA, NRCS 2011). The reported Oklahoma collection is from McCurtain Co., which is contiguous with southwest Arkansas and northeast Texas. In southwest Arkansas, the species has been documented in Miller Co. (Gentry 9131, UARK), Lafayette Co. (Reid 2339, UARK), and Hempstead Co. (Lawson 1801, NLU). In east Texas, the species is known as far north as Marion Co. (Singhurst \& Bridges 14436, BAYLU). The species occurs in sands, peats, clays, and silts of moist meadows, pond shores, flatwoods, and disturbed low areas (Kral 2003). In eastern Texas, R. inexpansa occurs primarily on damp sandy soils in longleaf pine savannas, pitcher plant bogs, flatwood ponds, and disturbed areas (such as sand-based wetlands in maintained clearings for electrical transmission lines).

Voucher specimen: USA. Oklahoma. McCurtain Co.: 0.8 mile W of Tom, on north side of Rd EE, 9 Oct 2008, Singhurst 16174 (BAYLU).

In Oklahoma, Rhynchospora inexpansa occurred in a maintained right-of-way (of an electrical power transmission line) that bisected a low sand hill characterized by water seepage. This site is 60 kilometers west of the nearest known occurrence in Hempstead Co., Arkansas, and 98 kilometers north of the nearest known Texas occurrence in Marion Co. Presently, the Oklahoma record is the most northwesterly known occurrence for the species. Characteristic associated flora included Bidens aristosa, Conoclimum coelestinum, Eupatornum serotnum, Eupatortum compositifolium, Rhynchsopora glomerata, and Axonopus fissifolius.

## ACKNOWLEDGEMENTS

The authors thank Theo Witsell of the Arkansas Natural Heritage Program for information on the distribution of Rhynchospora inexpansa in southwest Arkansas.

## LITERATURE CITED

Kartez, J.T. 2011. North American Plant Atlas. The Biota of North America Program (BONAP). Chapel Hill, North Carolina. <http $/ /$ www bonap org/MapSwitchboard html>
Kral, R. 2003. Rhynchospora. Pp. 200-239 in Flora of North America Editoral Committee. Flora of North America, Vol. 23, Magnoliophyta: Commelinidae (in part): Cyperaceae.
Nesom, G.L. 2011. Is Calyptocarpus vialls (Asteraceae) native or introduced in Texas? Phytoneuron 2011-31: 1-7.
USDA, NRCS. 2011. The PLANTS Database. National Plant Data Team. Greensboro, North Carolina. •http //plants usda gov> 11 October 2011

# PORTULACA UMBRATICOLA (PORTULACACEAE) IN LOUISIANA 

Michael H. Macroberts and Barbara R. MacRoberts<br>Bog Research, 740 Columbia, Shreveport, Louisiana 71104<br>Herbarium, Museum of Life Sciences<br>Louisiana State University-Shreveport<br>Shreveport, Louisiana 71115<br>mmacrobe@lsus.edu


#### Abstract

Portulaca umbraticola Kunth is documented as occurring in Louisiana. A small population has been found in sandy soil on the Red River floodplain in Shreveport. KEY WORDS: Portulaca umbraticola, Portulacaceae, Louisiana


We recently discovered a population of Portulaca umbraticola Kunth, also known as Chinese-hat or Wing-pod Purslane, in open sandy soils along the Southern Extension of the Clyde E. Fant Memorial Parkway on the Red River floodplain in Shreveport, Louisiana (Figs 1, 2, 3) and report it here as the first documented occurrence of the species in the state. The population of about 50 plants is restricted to a small area (ca. 0.1 ha). This area, which is adjacent to a bicycle trail and the Parkway, is frequently mowed. We searched several other similar areas on the Red River floodplain but without result. Associated species included Cenchrus spinifex, Chamaesyce maculata, Chrysopsts pilosa, Coronopus didymus, Cynodon dactylon, Eragrostis minor, Kallstroemia parviflora, Mollugo verticillata, Oenothera laciniata, Paspalum notatum, Polygomum aviculare, Portulaca oleracea, and Tribulus terrestris.

Voucher. Louisiana. Bossier Parish: Shreveport near Southern Extension of the Clyde E. Fant Memorial Parkway centered on $32^{\circ} 28^{\prime} 41.00^{\prime \prime}$ N, $93^{\circ} 41^{\prime} 28.41^{\prime \prime} \mathrm{W}$, at about 48 meters elevation, 20 Nov and 1 Dec 2011, MacRoberts \& MacRoberts 8929, 8931 (LSU, LSUS, UNCC).

Portulaca umbraticola was reported for Louisiana in the Flora of North America survey of Portulaca (Matthews 2003). It was not shown as occurring in Louisiana, however, in the accompanying map. No one else has reported this species from Louisiana (MacRoberts 1989; Thomas \& Allen 1998; Kartesz \& Meacham 2005; USDA Plants 2011; Nature Serve 2011). Consequently we contacted Matthews regarding this matter, and he replied: 'I looked at my original distribution maps and I do not have a dot for Louisiana. ... The easiest explanation is that I made a mistake, and that is distinctly possible. With that explanation, then your collection does extend the distribution into Louisiana" (Matthews pers. comm. e-mail, 20 Nov. 2011). Matthews gave us a list of the herbaria from which he had obtained specimens of Louisiana Portulaca and we checked these collections either by e-mail or on-line search. None had P. umbraticola specimens from Louisiana. The closest location Matthews gives to Louisiana is Panola County, Texas, which is adjacent to Caddo Parish, Louisiana (pers. comm. e-mail, 29 Nov. 2011). The dot map in Turner et al. (2003) shows $P$. umbraticola no closer to Louisiana than Henderson County, Texas, about 200 kilometers west. With the range expansion of opportunistic species over recent years it is not unexpected to find this species in northwest Louisiana. Whether it has been brought into the area by human activity or is expanding its range because of climate change is a matter of conjecture (Chen et al. 2011).


Figure 1. Portulaca umbraticola habit.


Figure 2. Portulaca umbraticola, showing winged capsules

The native range of Foptulaca awbraticola is both Nerth Anemea and South Amenca Withun the USA st occurs in Arizona Arkansas Georga Misssapp (one locatica) Missours New Mexico Otdahoma and South Caroluna (Mathews 2003) In Georga and South Carolnathe species is uncommen and is designated as subsp coronata while all other populations are desgnated subsp lasceadata (Matthews 2003) Accocding to Mathews who aramined ar photegraphs and a specimen (pers comfu e masl 2 Doe and 12 Dec 201]) our specamens are $P$ umbraticola Kunth subse lacceolataJ F Mathews \& Ketron (Matthews \& Ketroa 1991 Mathews et al 1992)

Whete thas populatust of Portulaca unbrancola cocurs on the wost alde of the Red River it poltically occurs in Bossace Patish stnall lats of Bosser Fansh occur on the west side of the Red River becanse the fiver which was the cengnal pansh boundery in the mid $19^{\text {a }}$ century has changed course through natural meander and man made alterahons [cutoffs] (Jonnes 2006) (Fig 3) Thus whule this $A$ umbaticola popalaton is poltically or technucally in Bosser Parish coologically and bicgeographically this area should be cons decedto be in Caddo Fansh untal populations are found on tbe east sade of the nver



## ACKNOWLEDGMENTS

Special thanks to Jtm Mathewe who aded anth subspecses 1 dentificat on and generonsly
 State Universaty in Shrevepart) alded with the figures Fred Alford (Chuef Deputy Asses sor Bossau Panch) prounded the Caddo Bossier Partsh bourdary map Thanks are due Amanda Nell (BRIT), Dennus Bell (NLU) and Garne Landsy (LAF) who searched thers herbara for Partmiosa wombatrcala

## LITERATURE CITED

Chen, I-Ching, J.K. Hill, R. Ohlemuller, D.B. Roy, and C.D. Thomas. 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333: 1024-1026.
Joiner, G.D. 2006. Mapping the Red River after the Freeman and Custis expedition. Bulletin of the Museum of Life Sciences 14: 271-298.
Kartesz, J.T. and C.A. Meacham. 2005. Synthesis of North American flora. Version 2.0. Biota of North America Program, Chapel Hill, North Carolina.
MacRoberts, D.T. 1989. A Documented Checklist and Atlas of the Vascular Flora of Louisiana. Bulletin of the Museum of Life Sciences (LSU-Shreveport) 8: 257-536.
Matthews, J. F. 2003. Portulaca. Pp. 496-502. In: Flora of North America Editorial Committee, Flora of North America North of Mexico, Vol. 4.
Matthews, J.F. and D.W. Ketron. 1991. Two new combinations in Portulaca (Portulacaceae). Castanea 56: 304-305.
Matthews, J.F., D.W. Ketron, and S.F. Zane. 1992. Portulaca umbraticola Kunth (Portulacaceae) in the United States. Castanea 57: 202-208.
NatureServe Explorer 2011. [http://www.natureserve.org/explorer/](http://www.natureserve.org/explorer/)
Thomas, R.D. and C.M. Allen. 1998. Atlas of the Vascular Flora of Louisiana. Vol. 3. Louisiana Dept. of Wildlife and Fisheries, Natural Heritage Program. Baton Rouge.
Turner, B.L., H. Nicols, G.C. Denny, and O. Doron. 2003. Atlas of the Vascular Plants of Texas. Sida, Bot. Misc. 24: 1-888.
USDA, NRCS. 2011. The PLANTS Database. National Plant Data Team, Greensboro, North Carolina. दhttp//plants usda gov> Accessed June 2011.

# TYPIFICATION OF VARIOUS WESTERN NORTH AMERICAN SPECIES OF JUGLANS (JUGLANDACEAE) 

Mónica R. Carvalho<br>L.H. Bailey Hortorium<br>Department of Plant Biology<br>412 Mann Library Building<br>Cornell University, Ithaca, NY 14853-4301

Gwynne S. Lim
L.H. Bailey Hortorium

Department of Plant Biology
412 Mann Library Building
Cornell University, Ithaca, NY 14853-4301

Simon T. Gunner<br>L.H. Bailey Hortorium<br>Department of Plant Biology<br>412 Mann Library Building<br>Cornell University, Ithaca, NY 14853-4301

Stephanie M. Stuber
Department of Horticulture
134A Plant Science Building
Cornell University, Ithaca, NY 14853-4301

James L. Reveal<br>L.H. Bailey Hortorium<br>Department of Plant Biology<br>412 Mann Library Building<br>Cornell University, Ithaca, NY 14853-4301<br>e-mail: jlr326@cornell.edu


#### Abstract

Juglans major (Torr.) A. Heller (1904) was superfluous when published as Heller cited $J$. californica S. Watson (1875) in synonymy. As both authors included J. rupestris var. major Torr. (1853) in their protologues, only by lectotypification is it possible to render $J$. major legitimate. Accordingly we propose (1) a step-two lectotypification for var. major on a specific Samuel W. Woodhouse specimen (NY), following the step-one lectotypification by Heller on this gathering, and (2) the lectotypification of J. californica on the William H. Brewer (no. 65) specimen (GH) mentioned by Callahan (2008) as the "type." Only in this way is it possible for $J$. major and $J$. californica to be correct when the two are considered to represent different species. In addition, lectotypes are designated for J. microcarpa Berland. (J.L. Berlandier 2459, US), J. nana Engelm. (F.J. Lindheimer 1178, MO) and J. rupestris Engelm. ex Torr. (J.M. Bigelow s.n., NY). The latter overturns an earlier typification by Wolf (1988) on a specimen not seen by Torrey. Juglans nana and $J$. rupestris are synonyms of $J$. microcarpa; all three types were gathered in western Texas. Typification of five Dode names is discussed briefly. Juglans arizonica and J. elaepyren were recently lectotypified by Mauz (2011); isotypes of $J$. subrupestris have been seen but a holotype has not been located. Lectotypes are designated here for J. neomextcana and J. torreyz. Isotypes and isolectotypes are reported when appropriate. KEY WORDS: lectotypification, step-two lectotypification, Juglans


When Heller (1904:50) proposed Juglans major (Torr) A. Heller (Juglandaceae), based on $J$. rupestris var. major (Torrey 1853: 171), he cited in synonymy J. californica (Watson 1875: 349) thereby rendering his name nomenclaturally superfluous when published. Fortunately, the 2006 International Code of Botanical Nomenclature (McNeill et al. 2006) states that a superfluous name is legitimate if its type differs from that of the name that ought to have been adopted (Art. 52). Juglans rupestris var. major Torr. and J. californica S . Watson are hereby lectotypified so as to render $J$. major legitimate. This then allows the continued use of both names as they are applied in a wide variety of today's systematic literature (e.g., Kearney \& Peebles 1951; Munz 1974; Martin \& Hutchins 1980; Hickman 1993; Whittemore \& Stone 1997) and non-systematic literature (e.g., Harker et al. 1999; Johnson 1999; Cullina 2002; Fralish \& Franklin 2002; Preston \& Braham 2002; Thompson et al. 2006; Moerman 2010).

In our attempt to resolve the above problem, we found it necessary to examine the typification of other names. Lectotypes are designated here for Juglans microcarpa Berland. (Berlandier 1850: 276), J. nana Engelm. (Engelmann 1851: 226), and J. rupestris Engelm. ex Torr. (Torrey 1853: 171). Five other species names, all proposed by Dode $(1907,1909)$ and synonyms of $J$. major or $J$. microcarpa (Manning 1957), are discussed briefly. Lectotypes are designated here for $J$. neomexicana (Dode 1909: 169, 191) and J. torreyl (Dode 1909: 169, 194). Two of the other Dode names, J. arizonica (Dode 1909: 169, 193) and J. subrupestris (Dode 1909: 169, 191), were typified by Dode. Juglans elaeopyren (Dode 1907: 247) was lectotypified recently by Mauz (2011).

## Lectotypification of Juglans rupestris var. major Torr.

Torrey (1853: 171) simultaneously proposed Juglans rupestris (a synonym of J. microcarpa, fide Johnston 1944: 436) and its var. major, characterizing the species as a shrub or small tree with the leaflets of var. major longer and broader ("oblong-lanceolatis" [sic]) than those of var. rupestris ("lanceolatis"-compare figs. 15 and 16 in Torrey; see also figs. CCCXXXV and CCCXXXVI in Sargent [1895]). In his protologue, Torrey stated that Samuel W. Woodhouse found var. major in "western New Mexico" and Dr. John Milton Bigelow "collected it at the Copper Mines."

The Woodhouse specimen in the Torrey Herbarium at NY was annotated by Torrey "Juglans rupestris $\beta$." However, we have not found a specimen at GH, NY, or US that we can associate unequivocally with "Bigelow" and a "copper mine." The available sheets that were gathered by Bigelow are all Texas collections of J. microcarpa.

The only sheet we found in the Torrey Herbarium (NY) from the vicinity of a copper mine is an "Ex coll. Geo. Thurber" sheet numbered 702, gathered 3 Jul 1852. The specimen was collected in Santa Cruz Valley in what is now Pima Co., Arizona, based on the information on the GH sheet, which has " 702 / large tree. Sta Cruz Valley / July 1852 / G.T." written by George Thurber. We have also seen two other sheets at NY (general herbarium) dated 3 Jul 1852 that have printed labels entitled "Mexican Boundary Survey." As both Thurber and Bigelow were botanists with William H. Emory on the Mexican Boundary Survey in 1852 (McKelvey 1955) it is possible the "Ex coll. Geo. Thurber" sheet was gathered by Bigelow as stated by Torrey, but given what is on the GH sheet we suspect Torrey simply received the specimens from Bigelow, and 702 is actually a Thurber gathering. Critical to our discussion here is that Torrey (1859: 205) later assigned material from the "Copper Mines" to var. rupestris noting that var. major "seems to pass gradually into the small-fruit form" of his var. rupestris. As stated by Wooton and Standley (1915: 162) the Woodhouse collection certainly came from modern-day Arizona. They also noted that the plant growing in the Santa Cruz Valley of southern Arizona, where the copper mines were located, was a "good-sized tree, not infrequently with a trunk 3 to 4 meters to the first branch."

Torrey's observation of the fruit in 1853 is critical because in the original description of var. major Torrey wrote "fructibus subovato-globosis apiculatis leviter sulcatis." He distinguished var. rupestrts as "fructibus globsus [sic] compressiusculis glanduloso-pubescentibus; nuce longitudinaliter sulcato; putamine creberrimo." As the extant Woodhouse sheet lacks fruit, the fruit of var. major described by Torrey could only have been derived from his Thurber specimen, and as Torrey questioned the inclusion of this element in 1859, one might then assume that Torrey himself restricted his concept of var. major to the fruitless Woodhouse collection. This may account for Heller's (1904: 50 ) statement that the "type of $J$. major came from western New Mexico, collected by Dr. Woodhouse." In doing so, Heller effectively proposed the Woodhouse gathering as a lectotype (stepone); here we propose a step-two lectotypification by designating a specific herbarium sheet:

Juglans rupestris Engelm. ex Torr. var. major Torr. in L. Sitgreaves, Rep. Exped. Zuni \& Colorado Rivers 171, pl. 16. Mar-Apr 1853. Type: Arizona. "Western New Mexico," without location or date, S.W. Woodhouse s.n. (lectotype, step 1, designated by A.A. Heller, Muhlenbergia 1: 50. 1904, NY! [bar code 00214588], designated here. [ $\equiv$ J. major (Torr.) A. Heller, Muhlenbergia 1: 50.22 Feb 1904$]$ ).

As now defined, Juglans major var. major is found in western Arizona, southern New Mexico, and southwestern Texas south into Sonora, Chihuahua, Durango, and Sinaloa, with disjunct populations ranging from central Texas to central Oklahoma (Little 1976; Whittemore \& Stone 1997; BONAP 2011). Other varieties of the species extend its range south to the Mexican states of Michoacan, Mexico, Jalisco, and Guerrero.

## Lectotypification of Juglans californica S. Watson

When Watson (1875) proposed Juglans californica he cited no specimens but mentioned Torrey's $J$. rupestris var. major, a name associated with at least two syntypes, a Woodhouse collection from "western New Mexico" and a "Bigelow" (actually Thurber) collection from the "Copper Mines" of Santa Cruz Valley in modern-day Arizona (see above). Peter (1876: 1366) considered J. californica equal to Torrey's var. major in his brief review of the Watson paper, implying perhaps that Watson provided a new name for var. major. Rothrock (1879: 249) and Sargent (1880:42) also cited var. major as a synonym under J. californica, but later Sargent (1884: 131) assigned both to $J$. rupestris; this latter view was followed by Parish (1894: 345). Nagy (1886: 382-383) considered $J$. californica to be a later name ("Juglans calfornica Wats., später neuerdings als Jugl. rupestris major v. Torrey beschrieben" [Juglans calfornica Wats. was described recently for Jugl. rupestris major Torrey]) for var. major. None of these actions resolved the nomenclatural status of J. calffornica relative to var. major, nor were any of these statements an effective typification of either name. In addition to the Woodhouse and Thurber gatherings, Watson also had before him at least three or four other elements, (1) a sterile John Torrey collection (485, GH!, NY!) from near Santa Barbara, California, gathered in 1865; (2) a William H. Brewer collection with fruit obtained in the "Sierra Santa Monica" of Los Angeles Co., California, in 1860 (GH[2]); and (3) an A. Kellogg \& W.G.W. Harford 902 ( 30 Apr 1868, GH, NY[2]) collection with only "California" given as a location. Watson also likely had access to an unnumbered and undated Bolander collection labeled "San F." (GH!).

As defined by Watson (1875), the species ranged from "the vicinity of San Francisco ... southward to Santa Barbara, Southern Arizona and Sonora." His "San Francisco" reference is almost certainly based on the Bolander and the Kellogg and Harford gatherings; both are in anthesis and are now assigned to $J$. hindsit (Jeps.) Jeps. ex R.E. Sm. (Smith 1909). His reference to Santa Barbara was clearly based on J. Torrey 485. The Sonora, Mexico, reference was based on a Thurber specimen (GH!). Curiously, none of these specimens was annotated by Watson. Writing in the work known as "Botany of California," Watson (1880: 93) essentially gave the same distribution that he did in 1875 only this time he added "Thurber" without any explanation. It is possible that Watson was aware of
the sheet numbered 702, gathered in Santa Cruz Valley in 1852, but simply failed to mention this collection of var. major when he proposed J. californica. Watson probably was not aware of a collection gathered by Charles C. Parry from the San Fernando area near Los Angeles in 1850 (NY!, US!) although a small leaf fragment is at GH!; Parry labeled his US sheet "Juglans rupestris. Eng. var" and wrote "fruit larger, less sculptured than the Texas form." The NY sheet is in flower while the US sheet has fruit. Accordingly, we propose the following lectotype:

Juglans californica S. Watson in Proc. Amer. Acad. Arts 10: 349. Apr 1875. Type: California. Los Angeles Co.: "Sierra Santa Monica [=Santa Monica Mountains], 1860-1862 [=18 Dec 1860], W.H. Brewer 65 (lectotype, designated here: GH! [bar code no. 00033626]; isolectotypes: GH![frag.], UC! [2 sheets, herb. nos. 5314 and 5319]!, US!).

The Dode (1909: 195) statement "La localité type cité S. Watson, Santa Barbara," which alludes to the Torrey collection, is fortunately not a declaration of a lectotype. The statement by Callahan (2008: 43) that the "type specimen, collected in December 1860 by W.H. Brewer ( $\# 65$ ) from Sierra Santa Monica, California, is now stored in Gray Herbarium at Harvard University" was also not an effective lectotypification (Art. 7.11; MeNeill et al. 2006) but his suggestion is accepted here.

The geographical range of Juglans californica was gradually restricted to just a portion of California (Sargent 1895: 130; Hough 1899: 46; Jepson 1901: 146; Orcutt 1902: 146, 1907: 96). The information was summarized by Jepson (1908), who confined var. californica to southern California and established var. hindsil Jeps., named for Brinsley Hinds, who found the plant along the Sacramento River in 1846 (K!), for the northern California populations of the Central Valley. This view was basically repeated by Sudworth (1908: 208) and Jepson (1909a: 365, 1909b: 145-147; 1910: 192-196), with Smith (1909: 27) proposing J. hindsit, a combination not mentioned by Jepson $(1910,1911)$ until much later (Jepson 1923: 109, 1924: 69-70, 1925: 279). In fact, the combination was attributed to Sargent (e.g., Babcock 1916) or Rehder (e.g., Sudworth 1927: 50), based on the isonym J. hindsul Sarg. ex Rehd. (in L.H. Bailey, Stand. Cycl. Hort. 3: 1722. 1915), even though Smith (e.g., 1912) and others (e.g., Wylie 1920; Pratt 1922: 110) used J. hindsti in their publications with Jepson as the authority. Today, J. hindsit is generally accepted (Whittemore \& Stone 1997) although Wilken (1993: 709) maintained var. hindsit in his treatment for the Jepson Manual.

The taxonomic application of Juglans californica to a coastal shrub or small tree (up to 15 m tall) of California (Little 1976; Whittemore \& Stone 1997; BONAP 2011), and J. major for a somewhat larger shrub or tree (up to 18 m tall) found well to the east of $J$. calfornica, essentially has been unchanged for nearly a century. Our lectotypifications allow the names $J$. californica and $J$. major to remain in current use. Should the two names be combined then J. californica has priority. Should one assign var. major to $J$. mucrocarpa then the combinations J. microcarpa var. major (Torr.) L.D. Benson (1954: 110) and subsp. major (Torr.) A.E. Murray (1984: 11) become available.

## Lectotypification of Juglans microcarpa Berland.

The description of Juglans microcarpa is at best minimal:

> A la orilla de los torrentes, y sobre todo, en la del arroyo principal, se encuentran nogales de una especie natural, cuyos frutos muy pequeños, parecidos á una grande avellana, tienen un Endocarpo muy duro, y por esto se ha descrito bajo el nombre de Juglans Microcarpa [Along the border of the torrents, and mainly, in one of the main streams, are walnuts of a natural species, whose very small fruits, resemble a great hazelnut, they have a very hard Endocarp, and for this it has been described under the name of Juglans Microcarpa]

The above is at least diagnostic and not different all that much from Engelmann's characterization of Juglans nana ("nuts of the size of a musket ball"-see below) but is sufficient to distinguish this species of walnut from all others in North America. The travels of Berlandier in late 1828 are covered only briefly by McKelvey (1955: 898) but at least a translation of the Berlandier and Chovell's diary is informative (Kaye 2010), so that the 1828 location can be rather precisely stated. Thus, Berlandier's observation of J. microcarpa was made along the Frio River west of Utopia in an area known historically as Arroyo de la Soledad until a 1790 battle, when the site was renamed "Cañon de Ugalde" in honor of the Spanish general Juan de Ugalde (1729-1816) who was governor of Coahuila (Wade 2003: 213; Starnes 2011). A collection from this area has not been found, but other Berlandier specimens are extant.

Berlandier's 1851 diary does not mention his later travels in Texas, but certainly his extant specimens (Berlandier 2459, GH, NY, PH, US), gathered in 1834, and an undated specimen (Berlandier 2275, G bar code G00305360) were available to him when his diary was published in 1851. Thus, we consider these collections to be original material and available for lectotypification. A critical examination of Berlandier 2459 shows this to be typical material of Juglans microcarpa, but Berlandier 2275 is a gathering of J. major. The latter collection came to Geneva via the 1908 donation of the Moïse-Etienne Moricand herbarium and not directly from Berlandier, whose primary set of specimens is at G (Stafleu \& Cowan 1976: 196).

The role of Berlandier in the botany of Texas and the fate of his collections and manuscripts were reviewed in some depth by Geiser (1933; see also McKelvey 1955: 378-381). As a result we propose the Berlandier 2459 as the type and cite the location and date taken from labels on his specimens. However we must note that the sheet at GH, which consists of a single specimen, bears two labels. One gives the location as Rio de Medina and the date simply as 1834. A second bears the number 1029 with "De Mortamoras a Goliad" and a date of "April 1834." This implies that the collection was gathered somewhere between Matamoras, Tamaulipas, Mexico, and Goliad in Goliad County, Texas. However, this is well out of the known distribution of Juglans microcarpa, and thus this label is discounted. We suspect the Berlandier sheets at GH, NY, PH, and US most likely were obtained by Lieutenant D.N. Couch, who purchased "the entire collection of notes and specimens left by Doctor L. Berlandier" when Couch was in Matamoras (Baird 1855: 87).

In a fragment packet on this sheet we also found a letter to Asa Gray, dated 11 Jan 1853, written by Dr. Edward Foreman, assistant to the Secretary Joseph Henry of the Smithsonian Institution. The letter was wrapped around a single walnut.

Dear Sir
An accompanying dried plant has been sent from Austin Texas [so] that is [sic, 1ts] name may be ascertaining, also the little nut Prof Henry directs me to send them to you for this [eg , your identification] - Also please state in your answer what is the botanical name of the Comal of which we have recerved seeds

On my own account I would take the liberty to say that the continuation of your Flora of N Am is much wanted \& would probably save you many troublesome applications like this present one

This is all rather confusing. In 1853, Forman was no longer with the Smithsonian but rather had been appointed Chief Examiner for the Patent Office in 1852 and did not return to the Smithsonian until 1874 (Baird 1886: 24). Furthermore, references to both Austin and to Comal strongly suggest the material was gathered by Lindheimer, as "Comal" is the name of the county where Lindheimer lived. Yet, the "dried plant" on the GH sheet is associated with the two Berlandier labels. We believe the nut, specimen, and labels all represent material gathered by Berlandier.

Juglans microcarpa Berland. in J.L. Berlandier and R. Chovell, Diario Viaje Comis. Limites 276. 1850. Type: Texas. Bexar Co.: Rio de Medina, Jun 1834, J.L. Berlandier 2459 (lectotype, designated here: US!; isolectotype: GH!, NY!, PH!).

Juglans microcarpa occurs from north-central New Mexico east to south-central Kansas south through much of central and eastern New Mexico and western Texas into Chihuahua, Coahuila, and Nuevo León, Mexico (Little 1976; Whittemore \& Stone 1997; BONAP 2011).

## Lectotypification of Juglans nana Engelm.

When George Engelmann (1851) described this species it was, admittedly, a bit off-handed: "a shrub, that bears nuts of the size of a musket ball." This simple statement is still diagnostic, for Whittemore and Stone (1997: 427) report the nut of this species to be a mere $1.1-1.7 \mathrm{~cm}$ in diameter - the smallest nut of any North American species of walnut. Engelmann commented on the "beautiful collections of my friend Ferdinand Lindheimer, together with his very full notes" (p. 223), and wrote a paper read at a session of the American Association for the Advancement of Science on 9 May 1851. That paper was published sometime between late August and December of 1851.

The name Juglans nana probably did not originate with Engelmann. In a letter dated 9 October 1846, Lindheimer wrote (as translated) "More fruit specimens of Juglans nana will [be] following" (fide, Goyne 1991: 168). Indeed we have seen Lindhermer 535, fasc. III found in 1846 (GH!, NY!, PH!, US!). The GH sheet bears an original handwritten label suggesting that the collection was made in May of 1846 . We have also seen a September 1845 collection from "the gravelly banks of the upper Guadaloupe [sic] ete." gathered by Lindheimer (GH!) with the name "Juglans fruticosa n sp" on the label. There is also an April 1851 label suggesting that Lindheimer found the plant "on gravelly river banks and in dry creek beds, Guadalup[e]." A third printed label (Lindheimer 480, Fasc. III. 1846) is also added to the same sheet; we are uncertain which label goes with which specimen.

A specimen at MO can be associated with this name, namely a Lindheimer collection with a label bearing a printed location ("Comanche Spring: New Braunfels, etc.") stating this is one of the plants "Collected by Lindheimer from 1849 to 1851 ." Also printed on this label are a collection date ("May 1849") and a collection number ("No. 1178"). Above that label on the MO sheet is what we believe to be Lindheimer's original label. This one is only partially printed ("FLORA TEXANA" [top], "Hab." [lower left], "Ferd. Lindheimer leg. [bottom left], and "18" [bottom right]. In pen is a number " 20 " (upper left, perhaps Lindheimer's original number), the name "Juglans rupestris?" and in the lower right "May" and " 49 " after the printed number "18." One of the sheets at GH also bears the number " 20 " but here the date is given at "April 1849." We consider this to be a lapsis for May. Accordingly we designate a lectotype for Juglans nana:

Juglans nana Engelm. in Proc. Amer. Assoc. Advancem. Sci. 5: 226. Aug-Dec 1851. Type: Texas. Kendall Co.: Comanche Spring, May 1849, FJ. Lindheimer 1178 (lectotype, designated here: MO! [sheet no. 210374]; isolectotype: BM!, GH[2]!, NY, PH[2]!, US!).

Juglans nana is a synonym of J. microcarpa.
Lectotypification of Juglans rupestris Engelm. ex Torr.
Wolf (1988: 1630) declared the "type" of Juglans rupestris to be the lectotype we have designated here for J. nana, in the mistaken belief that Engelmann validated the name. This is not the case. Furthermore there is no evidence that Lindhermer 1178 was even seen by Torrey (1853: 171) because of what he wrote:


#### Abstract

I first received specimens of this plant from Dr. J M Bigelow, when he was attached, as botanists, to the Mexican Boundary Commission, in 1850 He thought it was probably a new species, and wished me, in case it should prove to be undescribed, to name it $J$. Whippleana, in compliment to Lieut Whipple, who was also a member of the Boundary Commission Accordingly I read an account of it, under this name, before the American Scientific Association, in August, 1851, but the description was not published Afterwards I was informed that Dr Engelmann had obtained the plant before me, and had already named it J. rupestris, which name is therefore adopted


In fact, Engelmann (1851: 226) named the species Juglans nana, not J. rupestris, and furthermore Torrey's intended paper, entitled "On two new species of Juglans," was indeed marked as "Not received" in the summary of the meeting held in Albany, New York (Baird 1852: 307). Torrey wrote in 1853 that he "received from Dr. Woodhouse, and also from Dr. Bigelow, specimens of what I at first took for a second new species of Juglans" - this confirms that by 1851 Torrey probably had at least three elements at hand, one or more 1850 Bigelow gatherings from Texas that he considered to represent $J$. rupestris, and two more western specimens of what he termed, in $1853, J$. rupestris var. major. The Bigelow gatherings from western Texas are critical, for today there are two sheets at NY confirming Torrey's use of the word "specimens" in the above quote. One has a handwritten label that states "Juglans Whippleana. Gravelly bed of Stream from Devil's River to the Pecos" (NY, bar code 00214587) while the second has a printed Mexican Boundary Survey label bearing in pen "Juglans rupestris. Engelm. Rio San Pedro (Devil's River). Western Texas. Dr. Bigelow, Oct 1850." The first specimen (which is not dated and lacks a collector's name but almost certainly is a Bigelow collection) lacks mature fruit whereas the second specimen with the printed label has several fruits.

Not mentioned by Torrey, but in his personal herbarium, were two additional collections of Juglans microcarpa. One is a Josiah Gregg collection (NY) gathered in Mexico. The second is a Charles Wright collection (NY) but it is not dated; duplicates are at GH! and PH!. Another probable syntype is a Bigelow collection from the "Second Crossing, Devils River" gathered on 3 Nov 1850 (GH!, bar code no. 0003632 ; NY!). It is possible that this collection is a duplicate of the one Torrey received that was annotated "Juglans Whipplianus" (NY, bar code 00214587). The remark "Second Crossing" and a later date suggest that this is not a duplicate of our lectotype. We have also seen Wright 363 (May-Oct 1849; GH![2], K!, US!) and Wright 1863 (1851-1852, US!), both specimens of $J$. microcarpa, and Wright 1862 (1851-1852, US!), a collection of $J$. californica. A sheet at GH! numbered 1862 bears a label by Wright that states "Limpio Valley - Texas." As none of the Wright material was available to Torrey, none is considered to be original material.

We have also seen a collection numbered 1369 at NY and US (bar code no. 00888534) with a printed label that indicates the material was gathered "chiefly in the Valley of the Rio Grande, below Doñana-by C.C. Parry, M. D., J.M. Bigelow, M. D., Mr. Charles Wright and Mr. A. Schott." This is of Juglans microcarpa as well. Since there is no direct evidence that this gathering was seen by Torrey prior to publication of his name, we do not consider these sheets to be original material. No such sheet is at GH.

In view of Torrey's inclusion of characters of both leaves and nuts for Juglans rupestris in his protologue, and of his specific reference to Bigelow, we hereby designate the following lectotype:

Juglans rupestris Engelm. ex Torr. in L. Sitgreaves, Rep. Exped. Zuni \& Colorado Rivers 171, pl. 15. Mar-Apr 1853. Type: Texas. Val Verde Co.: Rio San Pedro (Devil's River), Oct 1850, J.M. Bigelow s.n. (lectotype, designated here: NY! [bar code no. 00214586]; isolectotype: NY![bar code 00214587].

Juglans rupestris is a synonym of $J$. microcarpa.

## Lectotypification of two Dode (1909) names in Juglans

Dode (1907; 1909: 191-195) proposed five names now considered to be synonyms of Juglans microcarpa or J. major (Manning 1957: 136-140). Mauz (2011: 128) noted that the holotype of $J$. arizonica Dode $(1909: 169,193)$ is a C.G. Pringle s.n. collection from the Santa Rita Mountains of Pima or Santa Cruz County, Arizona, gathered on 11 Jun 1884 (holotype: P! [bar code P005065583]; isotypes CM!, F!, NY/WAB!, PH!, US! = J. major). She also designated a lectotype for J. elaeopyren Dode (1907: 247), namely another unnumbered Pringle collection, this one from the Santa Catalina Mountains of Pima Co., Arizona, obtained on 17 May 1881 (lectotype: G![bar code $103606 / 1$ ]; isolectotypes: A!, ARIZ!, CM!, F!, G![3], GH!, MO!, NY!, PH!, US[2]! = J. major, fide LaFerrière 1994: 219).

We can now report on a third species:
Juglans subrupestris Dode. Bull. Soc. Dendrol. France 13: 169, 191. 15 Aug 1909. Type: Texas. Without location, 1847, FJ. Lindhermer 704 (holotype not found; isotypes: GH![2], K!, NY!; US[2]! = J. mıcrocarpa)

A sheet seen and annotated as Juglans subrupestris by Dode, and therefore the probable holotype, might be at P. At the moment, specimens of Juglans are not available due to ongoing renovations (P.P. Lowry, pers. comm.). Curiously, this collection is not at MO (Blankinship 1911: 155). The plant could have been collected near present-day Llano, Llano Co., Texas, where Lindheimer resided for at least part of 1847 (Goyne 1991; 180) or more likely it was gathered in the Fredericksburg area near the Pedernales River in Gillespie Co. (Geiser 1937: 170; McKelvey 1955: 903 ), where the walnut is found today.

Lectotypes are required for the following two names proposed by Dode:
Juglans neomexicana Dode, Bull. Soc. Dendrol. France 13: 169, 191. 15 Aug 1909. Type: New Mexico. Lincoln Co.: White Mts., 19 Aug 1897, E.O. Wooton 362 (lectotype, designated here: P! [bar code no. P00506584]; isolectotype: NY!, P! [bar code no. P00506585], RM!, US!. = J. microcarpa).

Our designation of the Wooton specimen allows Juglans neomextcana to remain a synonym of $J$. microcarpa as the other syntype (Arizona, Coconino Co.: near Flagstaff, 12 Jul 1898, D.T. MacDougal 271, GH!, NY!, NY/DPU!, PH!, US!) is a collection of J. major and, obviously, not from New Mexico.

Juglans torreyi Dode, Bull. Soc. Dendrol. France 13: 169, 194. 15 Aug 1909. Lectotype, designated here: C.S. Sargent, Silva N. Amer. 7: t. CCCXXXVI. 1 Feb 1895. = J. major).

Dode (1909: 194-195) did not accept Juglans rupestris or J. major, treating both as pro parte names of $J$. californica and $J$. torreyt for reasons not entirely true:

Sous le nom de J. nupestris $\beta$ major, Torrey n'entendait pas seulement l'espèce qu'il a figurée (loc. cit. [eg, CS Sargent, Silva N Amer 7 t CCCXXXVI 1 Feb 1895]) et dont 11 s'agit ici, mais aussi $J$. calyformica Lorsque ce dernier a été spécifiquement 'etabli, la synonymie $J$. nupestris major a été donnée, non sans raison Le caractère des anthers pubescentes (non encore signalé, croyons-nous) suffit à le séparer facilement de $J$. rupestris et de $J$.
califormica [Under the name $J$. rupestris $\beta$ major, Torrey not only treated the species in question here, but also J. californica When the latter was established, the synonym $J$. rupestris major was given without reason The character of the pubescent anthers (not yet reported, we believe) is enough to easily separate it $[J$. torreyr] from $J$. nupestris and $J$. calffornica ]

As mentioned above, Torrey (1853: 171) alluded to only two collections under his var. major. Six years later, also as mentioned above, Torrey (1859: 205) considered the Bigelow collection to be an expression of var. rupestris rather than var. major. At no time did Torrey ever allude to any element of $J$. californica. Clearly, Dode confused Torrey's efforts with what Watson did more than two decades later. Given the nature of the name and the distribution of $J$. torreyn and the citation of the 1895 Sargent plate, the lectotype of J. rupestris var. major clearly falls within J. torreyi. By lectotypifying Dode's name on the cited Sargent plate, J. torreyt is at least legitimate while the question of whether or not this name was superfluous when published is left unresolved. Manning (1957: 138) suggested that this name was "based on plants cultivated in France" as Dode (1909: 195) mentioned "Cultivé: ALLARD, Angers (fructifiant)," but our choice of a lectotype ensures application of the name.

## ACKNOWLEDGEMENTS

This work was done during a course on botanical nomenclature at Cornell University (BIOPL 6540). We are grateful to members of the L.H. Bailey Hortorium for their help and the support by the Department in making publication possible. We wish to acknowledge especially the assistance of Kanchi Gandhi (GH), Werner Greuter (B), and John McNeill (E). The assistance of Porter P. Lowry II (MO, P) and Kathryn Mauz (ARIZ) is acknowledged. Finally, this effort could not have been done without the assistance of numerous curators for which we are grateful.

## LITERATURE CITED

Babcock, E.B. 1916. Studies in Juglans. III. (1) Further evidence that the oak-like walnut originates by mutation; (2) A parallel mutation in Juglans hindsii (Jepson) Sargent. Univ. Calif. Publ. Agric. Sci. 2: 71-80.
Baird, S. 1852. D. Natural history, including physiology. Proc. Amer. Assoc. Advancem. Sci. 6: 307-374.
Baird, S. 1855. Report on American explorations in the years 1853 and 1854. Smithsonian Inst. Ann. Rep. 9: 79-87.
Baird, S. 1886. Report of Professor Baird. Secretary of the Smithsonian Institution, for 1885. Ann. Rep. Board Regents Smithsonian Inst. 1: 1-46.
Benson, L.D. 1954. Juglans microcarpa. Pp. 110, 414, m L.D. Benson and R.A. Darrow. Trees and Shrubs of the Southwestern Deserts. Univ. of Arizona Press, Tucson.
Berlandier, J.L. 1850. Caza del Oso y Cibolo el N. O. de Tejas. Pp. 249-282, in J.L. Berlandier \& R. Chovell, Diario de viage de la Comisión de Límites que puso el gobierno de la república, bajo la dirección del exmo. Sr. general de división D. Manuel de Mier y Terán. J.R. Navarro, Mexico City.
Blankinship, J.W. 1907. Plantae lindheimerianae. Part III. Missouri Bot. Gard. Ann. Rep. 1907: 123-223.
BONAP [Biota of North America Program]. 2011. North American Plant Atlas (NAPA) (US countylevel species maps). Biota of North America Program, Chapel Hill, North Carolina. <http//www bonap org/genera-list html> Accessed 28 November 2011.
Callahan, F. 2008. Hinds walnut (Juglans hindsti) in Oregon. Kalmiopsis 15: 42-52.
Cullina, W. 2002. Native Trees, Shrubs, \& Vines: A Guide To Using, Growing and Propagating North American Woody Plants. Frances Tenebaum Books, Houghton, Mifflin, Harcourt, Boston.

Dode, L.A. 1907. Contribution de l'etude du genre Juglans. Bull. Herb. Boissier, ser. 2, 7: 247-248. 1907.

Dode, L.A. 1909. Contribution de l'etude du genre Juglans. Bull. Soc. Dendrol. France 13: 165215.

Engelmann, G. 1851. On the character of the vegetation of south western Texas. Proc. Amer. Assoc. Advancem. Sci. 5: 223-228.
Fralish, J.S. and S.B. Franklin. 2002. Taxonomy and ecology of woody plants in North American forests (excluding Mexico and subtropical Florida). Wiley, New York.
Geiser, S.W. 1937. Naturalists on the frontier. University Press, Dallas, Texas.
Goyne, M.A. 1991. Alife among the Texas flora. Texas A\& M Univ. Press, College Station.
Harker, D., G. Libby, K. Harker, S. Evans, and M. Evans. 1999. Landscape restoration handbook (ed. 2). Lewis Press for CRC Press, Danvers, Massachusetts.

Heller, A.A. 1904. Western species, new and old.-II. Muhlenbergia 1: 47-62. 1904.
Hickman, J.C. (ed.). 1993. The Jepson Manual: Higher Plants of California. Univ. of California Press, Berkeley.
Hough, R.B. 1899. American Woods, Exhibited by Actual Specimens and With Copious Explanatory Text. Part. VIII. Representing twenty-five species by twenty-five sets of sections. Published by the author, Lowville, New York.
Jepson, W.L. 1901. A Flora of Western Middle California. Encina Pub1. Co., Berkeley.
Jepson, W.L. 1908. The distribution of Juglans calfforntca Wats[.] Bull. S. Calif. Acad. Sci. 7: 2324.

Jepson, W.L. 1909a. Juglandaceae. F1. Calif. 1:365.
Jepson, W.L. 1909b. The Trees of California. Cunningham, Curtiss \& Welch, San Francisco.
Jepson, W.L. 1910. The silva of California. Mem. Univ. Calif. 2: 1-480.
Jepson, W.L. 1911. A Flora of Western Middle California (ed. 2). Cunningham, Curtiss \& Welch, San Francisco.
Jepson, W.L. 1923. The Trees of California (ed. 2). Cunningham, Curtiss \& Welch, San Francisco.
Jepson, W.L. 1924. Economic Plants of California. Associated Students Store, Berkeley.
Jepson, W.L. 1925. A Manual of the Flowering Plants of California. Sather Gate Bookshop, Berkeley.
Johnson, T. 1999. CRC Ethnobotany Desk Reference. CRC Press, Boca Raton, Florida.
Johnston, I.M. 1924. A neglected paper by Jean Louis Berlandier. Contr. Gray Herb. 70: 87-90.
Johnston, I.M. 1944. Plants of Coahuila, eastern Chihuahua, and adjoining Zacatecas and Durango, IV. J. Arnold Arbor. 25: 431-453.

Kaye, J. 2010. Berlandier: A French Naturalist on the Texas Frontier. Trafford Publ., Bloomington, Indiana.
Kearney, T.H. and R.H. Peebles. 1951. Arizona Flora. Univ. of California Press, Berkeley.
Laferrière, J.E. 1994. Juglandaceae Walnut family. J. Arizona-Nevada Acad. Sci. 27: 219.
Little, E.L., Jr. 1977. Atlas of United States Trees, Vol. 3, Minor Western hardwoods. U.S. Dept. Agric. Misc. Publ. 1314: 1-13+290 maps.
Manning, W.E. 1957. The genus Juglans in Mexico and Central America. J. Arnold Arbor. 38: 121150.

Martin, W.C. and C.R. Hutchins. 1980. A Flora of New Mexico. 2 vols. J. Cramer, Vaduz.
Mauz, K. 2011. Cyrus Pringle's vascular plant types from western United States and Mexico, 18811884. Harvard Pap. Bot. 16: 71-141.

McKelvey, S.D. 1955. Botanical Exploration of the Trans-Mississippi West. Arnold Arboretum of Harvard University, Jamaica Plain, Massachusetts.
McNeill, J., F.M. Barrie, H.M. Burdet, V. Demoulin, D.L. Hawksworth, K. Marhold, D.H. Nicolson, J. Prado, P.C. Silva, J.E. Skog, J.H. Wiersema, and N.J. Turland (eds.). 2006. International Code of Botanical Nomenclature (Vienna Code) adopted by the Seventeenth International Botanical Congress Vienna, Austria, July 2005. GantnerVerlag, Ruggell, Liechtenstein.

Moerman, D.E. 2010. Native American Food Plants: An Ethnobotanical Dictionary. The food uses of more than 1500 plants by 221 Native American groups. Timber Press, Portland, Oregon.
Murray, A.E. 1984. Notae spermatophytae (Spermatophytea notes). Kalmia 12: 21-27.
Munz, P.A 1974. AFlora of Southern California. Univ. of California Press, Berkeley.
Nagy, L. von. 1886. Neue Gehölze. Wiener. Ill. Gart.-Zeitung 8/9: 382-384.
Orcutt, C.R. 1902. Juglandaceae. Calif. Art Nat. 1: 146. 1902.
Orcutt, C.R. 1907. American Plants. Volume One. Published by the author, San Diego.
Parish, S.B. 1894. Distribution of southern California trees. Zoe 4: 332-353.
Peter, A. 1876. Zusammenstellung der neuen und kritisch besprochenen Arten und Varietäten der Phanerogamen. Just's Bot. Jahresber 4(2): 1308-1400.
Pratt, M.B. 1922. Shade and Ornamental Trees of California. Sacramento: State Board of Forestry.
Preston, R.J., Jr. and R.R. Braham. 2002. North American Trees (ed. 5). Iowa State Press, Ames.
Rothrock, J.T. 1879. Catalogue of plants collected in Nevada, Utah, Colorado, New Mexico, and Arizona with descriptions of those not contained in Gray's Manual of the Northern U.S., and Vol. V, Geological Explorations of the Fortieth Parallel. Pp. 53-404, pl. 1-30, in Report upon United States geographical surveys west of the one hundredth meridian, in charge of first lieut. Geo. M. Wheeler. Government Printing Office, Washington.
Sargent, C.S. 1880. A Catalogue of the Forest Trees of North America. Pp. 1-93, in Department of the Interior. Tenth Census of the United States. Forestry. Government Printing Office, Washington.
Sargent, C.S. 1884. Report on the Forests of North America (Exclusive of Mexico). Pp. i-ix + 1612, in Department of the Interior. Census Office. House of Representative Document 42, part 9. Government Printing Office, Washington.

Sargent, C.S. 1895. The Silva of North America. Volume 7. Lauraceae-Juglandaceae. Houghton, Mifflin \& Co., Boston.
Smith, R.E. 1909. Report of the plant pathologist and superintendent of southern California stations. Univ. Calif. Agric. Exp. Sta. Bull. 203: 5-63.
Smith, R.E., C.O. Smith, and H.J. Ramsey. 1912. Walnut culture in California: walnut blight. Univ. Calif. Agric. Exp. Sta. Bull. 231: 119-398.
Starnes, G.B. 2011. Ugalde, Juan de. Handbook of Texas Online. shttp//www tshaonline org/ handbook/online/articles fug $01>$, accessed 25 Nov 2011.
Stafleu, F.A. and R.S. Cowan. 1976. Taxonomic Literature. A Selective Guide to Botanical Publications and Collections With Dates, Commentaries and Types. Volume 1: A-G. Regnum Veget. 94: xl, 1-1136.
Sudworth, GB. 1908. Forest Trees of the Pacific Slope. Government Printing Office, Washington.
Sudworth, G.B. 1927. Check list of the Forest Trees of the United States: Their Names and Ranges. Government Printing Office, Washington.
Thompson, R.S., K.H. Anderson, L.E. Strickland, S.L. Shafer, R.T. Pelltier, and P.J. Bartlein. 2006. Atlas of relations between climatic parameters and distributions of important trees and shrubs in North America-Alaska species and ecoregions. U.S. Geol. Surv. Prof. Pap. 1650-D: 1-342.
Torrey, J. 1853. Botany. Pp. 153-178, pl. 1-21, in L. Sitgreaves. Report of an Expedition Down to the Zuni and Colorado Rivers. Robert Armstrong, Washington.
Torrey, J. 1859. Botany of the Boundary. Rep. U.S. Mex. Bound. 2(1): 27-270, pl. 1-61.
Wade, M. de Fátima. 2003. The Native Americans of the Texas Edwards Plateau, 1582-1799. Univ. of Texas Press, Austin.
Watson, S. 1875. Revision of the genus Ceanothus and descriptions of new plants with a synopsis of the western species of Silene. Proc. Amer. Acad. Arts 10: 333-350.
Watson, S. 1880. Botany. Volume II. Pp. xvi +559 , in J.D. Whitney. Geological survey of California. John Wilson \& Son, Univ. Press, Cambridge.
Whittemore, AT. and D.E. Stone. 1997. Juglans. Fl. N. Amer. 3: 425-428.

Wilken, D.H. 1993. Juglandaceae. Pp. 709, in J.C. Hickman (ed.). The Jepson Manual: Higher Plants of California. Univ. of California Press, Berkeley.
Wolf, S.J. 1988. George Engelmann type specimens in the herbarium of the Missouri Botanical Garden. Ann. Missouri Bot. Gard. 75: 1608-1636.
Wooton, E.O. and P.C. Standley. 1915. Flora of New Mexico. Contr. U.S. Natl. Herb. 19: 1-794.
Wylie, D.C. 1920. Heavy walnut planting. Amer. Nut J. 12: 77.

# A STEP-TWO LECTOTYPIFICATION AND EPITYPIFICATION OF PENTAPTERYGIUM SIKKIMENSE W.W. SM. (ERICACEAE) WITH AN AMPLIFIED DESCRIPTION 

Subhasis Panda<br>Taxonomy \& Biosystematics Laboratory<br>Post-Graduate Department of Botany<br>Darjeeling Government College<br>PO. North Point<br>Darjeeling-734101, India<br>e-mall bgc panda@gmal com

James L. Reveal
L H Balley Hortorium
Department of Plant Biology
412 Mann Library Buldmg
Cornell Unversity
Ithaca, New York 14853-4301
e-mail jlr326@comell edu


#### Abstract

An epitype is selected for Pentapterygium sikkimense W.W. Sm., the basionym of Agapetes smithiana Sleumer, to augment the inadvertent lectotypification by Airy Shaw (1959) on a G.A Gammie collection from Sikkim, India. A step-two lectotypfication on the specimen at Kew is designated here. An amplified description of var. smithiana is provided. Photographs of the lectotype, isolectotype, epitype, and live plants are provided to facilitate identification. KEY WORDS: typification, Sikkim, West Bengal, India.


Pentapterygnum sikkimense was described by William Wright Smith (1911 268) based on specimens collected by George Alexander Gammie in 1892 (1216, K! [Fig. 1], CAL! [Fig. 2]) from Lachung Valley in the state of Sikkim, and by Charles Gilbert Rogers in 1899 (accession no. 264374, CAL!) from the lower Tonglu region of the Darjeeling Himalaya in the state of West Bengal, India. Sleumer (1939: 106) transferred P. stkkimense to Agapetes D. Don ex G. Don and proposed a new named, A. smithiana, because the Smith epithet was blocked by A. sikkimensis Airy Shaw (1935: 29). Years later, in a casual remark made in passing, Airy Shaw (1959: 489) effectively performed a stepone lectotypification of $P$. sikkmense by considering the Gammie collection to the "type." Here we designate the sheet at the Royal Botanic Garden at Kew in a step-two lectotypification. Unfortunately, the lectotype is devoid of floral parts, except for the calyx, and based only on vegetative features this specimen could be confused with $A$. interdicta (Hand.-Mazz.) Sleumer or $A$. borit Airy Shaw. Likewise, A. smuthana is subdivided into two varieties, var. smithtana with a corolla 10-13 mm long, and var. major Airy Shaw (1959: 489) with a corolla $17-21 \mathrm{~mm}$ long. Only by consulting Smith original description can one learn that the specimens he examined either had a corolla " 1 cm longa" or in some way he knew the corolla was that length. Hence, for the purpose of the precise application of the name an epitype (Art. 9.7, McNeill et al. 2006) is proposed. The epitype (Fig. 3) was obtained during the course of recent field studies in Singalelah National Park, Darjeeling Himalaya, Sikkim, India, when specimens of Agapetes smithtana were collected near Chitrey along a rocky slope.

## Taxonomic treatment

Agapetes smithiana Sleumer in Bot. Jahrb. Syst. 70: 106. 1939, a new name for Pentapterygium sikkimense W.W. Sm. in Rec. Bot. Surv. India 4: 268. 1911. Type: INDIA. Sikkim, North District: Sikkim Himalaya, Lachung Valley, $7500 \mathrm{ft} \mathrm{elev}, 14$ Sep 1892, G. A. Gammie 1216, designated by Airy Shaw in Kew Bull. 13: 489.1959 (lectotype [designated here]: K! [barcode no. K000729429]; isolectotype: CAL! [acc. no. 264376]). Figs. 1, 2. EPITYPE (designated here): INDIA. West Bengal. Darjeeling District: Darjeeling Himalaya, Singalila (or Singalelah) National Park, 3 km NW of Chitrey (or Chitre) along Singalila Ridge Trek to Meghma, 2650 m elev, ca $27^{\circ} 00^{\prime} 25^{\prime \prime} \mathrm{N}, 88^{\circ} 05^{\prime} 25^{\prime \prime} \mathrm{E}, 11$ Dec 2011, S. Panda 81 (CAL!). Fig. 3.

Airy Shaw (1959: 489) distinguished Agapetes smithzana var. major, known from Bhutan, based on differences in the corolla size as may be seen in the key below. Here, for the record, we have amplified the description of var. smithiana based on field observation of live plants from Darjeeling Himalaya as well as available herbarium specimens at CAL.

1. Corollas $10-13 \mathrm{~mm}$ long, $3.5-4.5 \mathrm{~mm}$ in diameter var. smithiana
2. Corollas $17-21 \mathrm{~mm}$ long, $6-9 \mathrm{~mm}$ in diameter var. major

## var. smithiana (Fig. 4)

Plants usually epiphytic on tree trunks or rarely in rock crevices, $0.1-0.4 \mathrm{~m}$ long. Stems rigid, terete, lenticellate, sparsely strigose-hispid; branches similar to stems but beset with dense brown strigose-hispidulous to hirtellous hairs (more towards twigs); perulae 3-9, alternate. Leaves compactly $2-3$-stichous, $2-10 \mathrm{~mm}$ apart, coriaceous, subsessile; petioles $1-3 \mathrm{~mm}$ long, puberulous; lamina elliptic-obovate to obovate, $12-32 \times 6-16 \mathrm{~mm}$, glaucous and green adaxially, glabrous and light green abaxially, serrate with minute teeth to 0.5 mm long, these becoming obscure near basal half, incurved marginally, mucronate to mucronulate apically, cuneate to obtuse basally with one basal pair of glands; venation brochidodromous with 5-8 pairs of lateral veins, these often obscure adaxially but conspicuous and slightly raised abaxially. Inflorescence cauline, 1-4-fascicled in a corymb; peduncle $3-5 \mathrm{~mm}$ long, sparsely hirtellous with several basal bracts. Flowers $13-16 \mathrm{~mm}$ long including pedicels with bract and bracteoles; pedicels greenish-pink, sparsely hirtellous, 4-5 mm long, bract 1 , basal, $1 \times 0.5 \mathrm{~mm}$, ovate-triangular, glabrous, caduceus; bracteoles $2-4$, basal to subbasal, persistent in fruit, otherwise like bract. Calyx cup-like, winged, light green with pinkish wings, $6-8 \times 4 \mathrm{~mm}$, glabrous, accrescent in fruits; lobes 5, basally united, ovate-triangular, 4-5 $\times 3$ mm , glabrous, shortly acuminate apically, entire marginally. Corolla greenish-yellow, tubular, 10-13 $\times 4 \mathrm{~mm}, 3.5-4.5 \mathrm{~mm}$ diam., glabrous; lobes $5,1 \times 0.5 \mathrm{~mm}$, ovate-linear. Stamens 10 , encircling the pistil, distinct, $8-8.5 \mathrm{~mm}$ long; filaments slightly adnate to ovary dise, ca. 1 mm long, greenish-white, glabrous, spathulate, basally dilated; anthers 2-lobed, $7-7.5 \mathrm{~mm}$ long incl. tubules $4-5 \mathrm{~mm}$ long, granular with a minute tail. Pistil ca. 12 mm long; ovary syncarpous, 5 -locular, ca. $4 \times 3.5 \mathrm{~mm}$, glabrous; ovules several in each locule on axile placentation; style slender, 8 mm long with 3-4 longitudinal ridges, glabrous; stigma simple, truncate apically. Fruit a berry, ovoid, 12-16 $\times 10-12$ mm , light green (immature) to white (mature), glabrous, with an accrescent, winged calyx. Seeds numerous, ca. 1 mm long, obconical, scarious.

Distribution. Endemic to the eastern Himalaya of India (Sikkim and Darjeeling), eastern Nepal, and eastern Bhutan (Mongar and Deothang districts; fide Long and Rae 1991: 402).

Habitat. This species is extremely rare and threatened in subtropical-temperate forests at an altitude of about $2300-2650 \mathrm{~m}$, associated with Gaultheria stapfiana Airy Shaw, Rhododendron spp., and Vaccintum retusum (Griff.) C.B. Clarke of Ericaceac as well as with Quercus spp. (Fagaceae).

Flowering. April-early September; December. Fruiting. July-August; December-January.


Figure 1. Lectotype of Pentapterygium sikkimense W.W. Sm. (K).


Figure 2 Isolectotype of Pentapterygium sikkimense W W Sm


Figure 3. Epitype of Pentapterygium stkkimense W.W. Sm.


Figure 4 Agapetes smithana Sleumer var smithona A Habit B Flowering and fruting twigs C-D Inflorescence E Fruits F Floral parts All from S Panda 81 (CAL), as also shown in Fig 3

Additional specimens exammed: INDIA Sikkim: Chutrey to Uttarey, 18 May 2002, P Singh 24981 (BSHC fl buds), Danthang, $7000-8000 \mathrm{ft}$ elev, Feb 2004, $A K$ Sahu 26669 (BSHC fl) Darjeeling: below Tongh at Dilpa, 8300 ft elev, 2 Apr 1975, D Chamberlain 49 (DD. fl)

## ACKNOWLEDGEMENTS

One of us (SP) is grateful to the Additional Director of the Central National Herbarium, Dr. P. Venu, for his permission to consult herbarium specimens at CAL and to Dr. S. Mukhopadhyay, Assistant Prof. of Bengali, Darjeeling Govt. College, for company during the field trek to Singalelah National Park. We also acknowledge the Board of Trustees of Royal Botanic Gardens, Kew, for permission to publish the photograph of the lectotype.

## LITERATURE CITED

Airy Shaw, H.K. 1935. II.-Studies in the Ericales: I. New and less-known species of Agapetes. Kew Bull. 1935: 24-53.
Airy Shaw, H.K. 1959. Studies in the Ericales: XI. Further new species and notes on Agapetes on continental Asia. Kew Bull. 13: 468-514.
Banik, D. 2008. Taxonomic revision of the genus Agapetes D. Don ex G. Don (Ericaceae). Unpublished doctoral dissertation. Kalyani University, Nadia, West Bengal, India.
Hara, H. (ed.). 1966. The flora of eastern Himalaya. Results of the botanical expedition to eastern Himalaya organized by the University of Tokyo, 1960-1963. Univ. of Tokyo Press, Japan.
Hara, H., A.O. Charter, and L.H.J. Williams. 1982. An enumeration of the flowering plants of Nepal. Vol. 3. Trustees of British Museum (Natural History), London.
McNeill, J., F.R. Barrie, H.M. Burdet, V. Demoulin, D.L. Hawksworth, K. Marhold, D.H. Nicolson, J. Prado, P.C. Silva, J.E. Skog, J.H. Wiersema, and N.J. Turland. (eds.). 2006. International Code of Botanical Nomenclature (Vienna Code) adopted by the Seventeenth International Botanical Congress Vienna, Austria, July 2005. Gantner Verlag, Ruggell, Liechtenstein [Reg. Veg. 146].
Long, D.G and S.J. Rae. 1991. Family 149. Ericaceae. Pp. 347-404, in A.J.C. Grierson and D.G. Long, Flora of Bhutan. Vol. 2, part 1. Royal Botanic Garden, Edinburgh.
Sleumer, H. 1939. Revision der Ericaceen von Neu-Guinea. I. Die papuasisch-ozeanischen Arten der Gattung Agapetes D. Don. Bot. Jahrb. 70: 95-106.
Smith, W.W. 1911. Some additions to the flora of the eastern Himalaya: Order Vacciniaceae. Rec. Bot. Surv. India 4: 261-272.

# LECTOTYPIFICATION OF MAXIMILIANEA TRIPHYLLA S.F. BLAKE (BIXACEAE) 

L. J. DORR<br>Department of Botany, MRC-166<br>National Museum of Natural History<br>Smithsonian Institution<br>P O Box 37012<br>Washington, DC 20013-7012<br>dorrl@si edu


#### Abstract

The specimen originally designated as type of Maximilianea triphylla S.F. Blake is a single sheet composed of two syntypes collected on different dates. These syntypes belong to two different families of plant and the one that consists of reproductive material is selected here as the lectotype of M. triphylla in order to fix the name as Bixaceae.

KEY WORDS: lectotypification, Maxtmiltanea, Cochlospermum, Bixaceae


When Blake (1921) revised the American species of Maximilianea Mart. ex Schrank (1819), nom. rej. (=Cochlospermum Kunth (1822), nom. cons.) (Bixaceae) he described and illustrated M. triphylla S.F. Blake from a single specimen in the U.S. National Herbarium (US). This specimen (Fig. 1), however, consists of two collections made by Henri Pittier on separate dates at or near the same locality in north-central Venezuela. Flower buds, flowers, and an inflorescence stalk were collected by Pittier in April and leaves in July 1920, and these separate collections were combined and distributed as Ptther 8930. No species of Maxtmilanea (=Cochlospermum) had the combination of characters seen on this specimen (i.e., trifoliolate leaves and anthers opening by a single terminal pore) and as a consequence Blake (1921) not only described M. triphylla but also noted that this new species upset the subgeneric classification of Cochlospermum proposed by Planchon (1847).

Poppendieck (1980), who revised Cochlospermum worldwide, concluded that the sole specimen cited by Blake when he described Maxmitianea triphylla was a mixture of two elements: flowers of C. vitifolum (Willd.) Spreng. and leaves of an unknown family of plant. Although Poppendieck $(1980,1981)$ associated the name $M$. triphylla with $C$. vitifolum, he failed to typify $M$. triphylla on the Bixaceae element since he applied the word type to the sheet and not to the reproductive material on that sheet. In fact, Poppendieck (1980: 218, note 1) explicitly stated in his revision that lectotypes were designated for accepted names only. Examination of the type in the U.S. National Herbarium confirms that the reproductive material is $C$. vitifolium and that the leaves are Pseudobombax septenatum (Jacq.) Dugand (Malvaceae). The leaves on the type have 3-5 leaflets (not 3 as stated and illustrated by Blake) and these leaflets lack abscission zones at the base of their petiolules, an apomorphy peculiar to Pseudobombax Dugand and one that the artist who illustrated Blake's paper captured well (Blake, 1921, fig. 1a). Not surprisingly, P. septenatum also flowers when leafless and it is easy to imagine Pittier inadvertently collecting the leaves of this species thinking he had the leaves of the other. Interestingly, Pittier does not appear to have attempted to identify his specimen, as the species name and word "Type" on the label of the type specimen (as well as the collection number and year) are in Blake's hand. A duplicate specimen deposited in NY has a similar discordant mixture of floral and vegetative elements.


Figure 1 Lectotype of Maximilianea trphylla S F Blake (H. Pitther 8930, US-flower buds, flowers, and inflorescence stalk only)

In order to fix the name published by Blake as a species of Bixaceae rather than Malvaceae, the following lectotype is proposed:

Maximilianea triphylla S.F. Blake, J. Wash. Acad. Sci. 11(6): 129, fig. lb-e. 19 Mar 1921. Cochlospermum triphyllum (S.F. Blake) Pittier, Man. Pl. Usual. Venez. 141. 1926. Type: Venezuela. Carabobo: In hedges, Valencia and vicinity, Apr 1920 (f1), H. Pittier 8930 (lectotype, designated here: US-flower buds, flowers, and inflorescence stalk only! [bar code 1065095]; isolectotype: NY-flower buds and flowers only, as image! [bar code 00095010]) [= Cochlospermum vitifolum (Willd.) Spreng.].

The Code (McNeill et al., 2006; see Art. 8.2) now defines a specimen for the purposes of typification as "a gathering ... made at one time," which effectively proscribes the former and illadvised practice of combining collections made on different dates. Certainly what tempted Pittier was the desire to make a "complete" specimen by associating leaves with the flowers of a species that was leafless when flowering, but as has been shown here we would have been better served if his two collections had been numbered and mounted separately.

## ACKNOWLEDGEMENT

Ingrid Pol-Yin Lin (US) provided the photograph of the lectotype specimen.

## LITERATURE CITED

Blake, S.F. 1921. The American species of Maximilianea (Cochlospermum). J. Wash. Acad. Sci. 11: 125-132.
McNeill, J., F.R. Barrie, H.M. Burdet, V. Demoulin, D.L. Hawksworth, K. Marhold, D.H. Nicolson, J. Prado, P.C. Silva, J.E. Skog, J.H. Wiersema, and N.J. Turland (eds.). 2006. International Code of Botanical Nomenclature (Vienna Code) adopted by the Seventeenth International Botanical Congress, Vienna, Austria, July 2005. A.R.G. Gantner Verlag, Ruggell, Liechtenstein.
Planchon, J.E. 1847. Sur la nouvelle famille des Cochlospermées. London J. Bot. 6: 294-311.
Poppendieck, H.-H. 1980. A monograph of the Cochlospermaceae. Bot. Jahrb. Syst. 101: 191-265.
Poppendieck, H.-H. 1981. Cochlospermaceae. Fl. Neotrop. Monogr. 27: 1-33.

# CHAMAESYCE CORDIFOLIA (EUPHORBIACEAE) NEW TO OKLAHOMA 

JASON R. SINGHURST<br>Wildlife Diversity Program<br>Texas Parks and Wildlife Department<br>Austin, Texas 78704<br>Jason Singhurst@tpwd state tx us<br>AMY K. BUTHOD<br>Oklahoma Biological Survey/Oklahoma Natural Heritage Inventory/<br>Robert Bebb Herbarıum<br>The University of Oklahoma<br>Norman, Oklahoma 73071<br>WALTER C. HOLMES<br>Department of Biology<br>Baylor Unversity<br>Waco, Texas 76798-7388


#### Abstract

Chamaesyce cordifolia (Euphorbiaceae) is reported as new to the state of Oklahoma. It is now known there from two collections, apparently at the northwestern edge of the distribution of the species. KEY WORDS: Euphorbiaceae, Chamaesyce, Atoka County, Pushmataha County, Oklahoma, USA.


Chamaesyce [Euphorbia] cordifolia (Elliott) Small (Euphorbiaceae; heartleaf sandmat) is a prostrate annual with stems to 65 cm long, entire leaves, and styles that are bifid to the base (Diggs et al 1999) (Figs. 1, 2]. The species occurs in loose sandy soils in the southeastern coastal plain from North Carolina south to Florida and west to Arkansas and Texas. It was not included in the flora of Oklahoma by Waterfall (1966) or Taylor and Taylor (1994), and it is not cited as part of the Oklahoma flora in USDA, NRCS (2012) or the Oklahoma Vascular Plants Database (2012). Based upon the specimens cited below, C. cordifolia is here reported as new to Oklahoma.

Voucher specimens: USA. Oklahoma. Atoka Co.: Boehler; 0.5 mi W of Boehler, 13 Aug 1976, L.K. Magrath, J. Taylor, \& A. Lavallee 9476 (OKL, Fig. 1). Pushmataha Co.: 0.1 mi. W of Jct. of Co Rd 1940 (N Hall Rd) and Co Rd 4100 on Co Rd 1940, N side of Co Rd 1940 ( $34^{\circ} 12^{\prime} 1.42^{\prime \prime} \mathrm{N}$, $95^{\circ} 43^{\prime} 47.23^{\prime \prime}$ W), 2 Jun 2007; J. Singhurst 19083 (BAYLU).

The area of the Magrath et al. collection from 1976 is the Bochler Seeps and Sandhills Preserve owned by the Oklahoma Chapter of the Nature Conservancy. The Taylors obviously knew it was there but failed to get it into the last edition of Taylor and Taylor (1994). It might have been because the specimen itself went missing; it just recently turned up in a box received (within the past two years) from Larry Magrath's herbarium in Chickasha, Oklahoma, that was sent as a gift to the BEB Herbarium.

There is, however, another undocumented citation of Chamaesyce cordifolia in Oklahoma. Bridges et al. (1985), in an inventory of the vegetation of the Boehler Seeps and Sandhills Preserve in Atoka County, mentioned observing a population of C. cordifolia there. Steve Orzell provided the following comments extracted from their (Bridges \& Orzell) collection records: "We were in OK collecting May 27, 1985 thru June 1st with John \& Connie Taylor but NO [upper case by Orzell]
collections of Chamaesyce cordifoha We were also collecting in OK in March 25, 1987 but no specmens of Chamaesyce - "

The cited Oklahoma occurrences apparently represent the northwestern edge of the distribution of the species Chamaesyce cordifolia is documented in Miller Co, Arkansas (Witsell $07-0597$ \& 11-0443 (ANHC)), which is approximately 225 km to the southeast In Texas, the nearest known occurrences are from Bivins, Cass Co (Correll 26414, LL), about 200 km to the southeast, and Roanoke, Denton Co (Lundell \& Lundell 9547, LL), about 185 km to southwest

In Atoka County, Chamaesyce cordifolia occurs in open areas in upland oak woods over Atoka sand Specific associates include Paronychta drummondit, Polygonella americana, and Dalea phleotdes var microphylla In Pushmataha County, C cordifolta occurs in Post Oak Savanna xeric sandhill openings over Atoka sand The areas are dominated by Aristida desmantha, Cnidoscolus texanus, Croptilon divaricatum, Eriogonum multiflorum, Helianthemum georgianum, Matelea cynanchoides, Paronychia drummondiu, and Penstemon murrayanus. The Chamaesyce presumably will be ranked S1 by the Oklahoma Natural Heritage Inventory, indicating that its is "critically imperiled in the state because of extreme rarity or because of some factor(s) such as very steep declines making it especially vulnerable to extirpation from the jurisdiction" (Oklahoma Natural Heritage Inventor 2012, NatureServe Explorer 2012)


Figure 1 Chamaesyce cordifolta (Magrath et al. 9476, OKL, see Voucher specmens), the first known collection of the species from Oklahoma. Inset shows scale.


Figure 2 Chamaesyce cordifolta in natural habitat in Aransas Co, Texas (photo by William R Carr)

## ACKNOWLEDGEMENTS

The authors thank Edwin Bridges of Seebring, Florida, and Steve Orzell of Avon Park, Florida for comments on the vegetation of the Boehler Seeps and Sandhill Preserve in Atoka Co, permission to use extractions from their field notes, and for supplying the authors with a copy of inventory report (see hiterature cited) We thank Theo Witsell, Botannst with the Arkansas Natural Hentage Commission for providing collection information for Miller County, Arkansas We are also grateful to the Plant Resources Center, The University of Texas, Austin, for use of the Flora of Texas Database and to Willam (Bill) R Carr for permission to publish the photograph

## LITERATURE CITED

Bridges, E, S Orzell, C Taylor, and J Taylor 1985. Floristic inventory of Boehler Seeps and Sandmlls Preserve, Atoka County, OK 2 pp. [On file with the Wildlife Diversity Program, Texas Parks and Wildhfe Department and Baylor University Herbanum (BAYLU) ] Diggs, G M , Jr, B L Lipscomb, and R J O'Kennon 1999 Shinners and Mahler's Illustrated Flora of North Central Texas Sida Bot Mise 16, Bot Research Inst of Texas, Fort Worth Hoagland B W, Buthod A K, Butler I H, Crawford P H C , Udasi A H, Elisens W J, and Tyrl R J 2012 Oklahoma Vascular Plants Database Oklahoma Biological Survey, Umiv of Oklahoma, Norman <http//wwwoklahomaplantdatabase org/>Accessed 23 January 2012
NatureServe 2012 NatureServe Explorer An online encyclopedia of life [web application] Version 71 NatureServe, Arlington, Virginia <http//www natureserve org/explorer> Accessed 23 January 2012

Oklahoma Natural Heritage Inventory (ONHI). 2012. Oklahoma Natural Heritage Inventory working list of rare Oklahoma plants. Univ. of Oklahoma, Norman. shttp//www biosurvey ou edu/download/publications/NEWtrackinglist7192010.pdf Accessed 23 January 2012.
Smith, E.B. 1988. An atlas and annotated list of the vascular plants of Arkansas (ed. 2). Published by the author, Fayetteville, Arkansas.
Taylor, R.J. and C.E.S. Taylor. 1994. An annotated list of ferns, fern allies, gymnosperms, and flowering plants of Oklahoma. Southeastern Oklahoma State Univ., Durant.
USDA, NRCS. 2011. The PLANTS Database. National Plant Data Team. Greensboro, North Carolina. Lhttp //plants usda gov> 17 January 2012
Waterfall, U.T. 1966. Keys to the Flora of Oklahoma. Department of Botany and the Research Foundation. Oklahoma State Univ., Stillwater.

# A NOMENCLATURAL SUMMARY OF THE PLANT AND ANIMAL NAMES <br> BASED ON IMAGES IN MARK CATESBY'S NATURAL HISTORY (1729-1747) 

JAMES L. REVEAL<br>L. H Bailey Hortorium<br>Department of Plant Biology<br>Cornell University, Ithaca, NY 14853-4301<br>e-ma1l jlr326@comell edu


#### Abstract

The English naturalist Mark Catesby is best known for his two volume work entitled Natural History of Carolna, Florida and the Bahama Islands wherein he described and illustrated numerous plants and animals found mainly in the eastern North American English colonies of Virginia, South Carolina, Georgia, and the Bahamas. This monumental work, published in parts from 1729 until 1747, became an important source of new species described by the Swedish natural Carl Linnaeus in the 1750s and 1760s. The summary presented here attempts to account for all instances where a new taxon was proposed wherein a reference was made by the author of the name to a published plate in Catesby. The nomenclatural status of each image is evaluated with a footnote providing a reference to both where the name was proposed and who, in the case of plants, designated a lectotype. Images are not considered to be types under the rules governing zoological nomenclature. No attempt is made here to account for the subsequent neotypification of names established under that code. KEY WORDS: Mark Catesby, nomenclature, typification, North America


The English naturalist and artist, Mark Catesby, was born on 24 March 1683 (Julian) in the village of the Castle Hedingham, Essex, as the fifth son of John Catesby, a lawyer, and Elizabeth Jekyll, the daughter of a prosperous family of lawyers. When his father died in 1805 , leaving Mark with a small inheritance and decidedly limited prospects in England, he sailed for Northumberland, Virginia, to live with his sister, Elizabeth Cocke, and her husband, Dr. William Cocke. His travels in the Virginia colony were limited but fruitful as it was here that he began to gather specimens of the local flora and fauna, sketching each in varying degrees of exactness. While there Catesby became acquainted with a young clerk named John Clayton who would play a future role in Catesby's life and was destined to become a foremost source of Virginia plants prior to 1753 for Swedish naturalist Carl Linnaeus.

When he returned to England in 1719, Catesby gave his collection of pressed, dried flowering specimens to Samuel Dale, and via this gift-and a talent in natural history-Catesby was nominated to the Royal Society which, in 1721, granted him membership. The following year Catesby returned to the New World, arriving in South Carolina - now under the formal sponsorship of the Royal Society, and its informal off-shoot, the Temple House Coffee Club, and thus he had the financial support of the likes of Hans Sloane (secretary of the Society), William Sherard (Oxford University), and Charles Dubois (of the East India Company). Most importantly he had the support of Governor Francis Nicholson, long a supporter of naturalists in American colonies, starting with Hugh Jones in Maryland in the late 1690s.

With the Governor's allowance of $20 £$ a year, Catesby set to the task of collecting and illustrating the curious animals of the Carolina colony. He made detailed sketches of both plants and animals and may have learned to watercolor in the process, while collecting numerous specimens of flowering plants, conifers, and ferns, marine algae, and a multitude of animals from mammals, birds, and fishes to tiny insects and beetles. He even gathered some marine organisms, but most importantly he concentrated on the birds. This time he traveled widely, venturing into coastal

Georgia, but not Florida, and while he visited Cuba in 1717, in 1825 Catesby went to the Bahamas as the guest of Governor Charles Phinney and spent nine months there collecting and drawing its natural history. In 1726, Mark Catesby returned to England with the goal of composing a book on the natural history he observed.

A proposal to the Royal Society (Catesby 1728) resulted in a number of members subscribing to Natural history of Carolna, Florida and the Bahama Islands with the first set of twenty plates issued in May of 1729. It was not an easy task even though, eventually, there were 154 subscribers. Catesby learned to watercolor and he engraved copper plates from Joseph Goupy; Catesby was a good but not all that talented an illustrator. He wrote the text and coined a number of new scientific names for his novelties. The first volume was published in parts from 1729 into 1732 with a total of 100 plates, most devoted to birds. With the completion of the first volume, Catesby was elected a Fellow of the Society in 1733 and thereafter his name was associated with those famed initials "F.R.S."

The second volume was more slowly and painfully produced. Catesby realized that he needed more material and called upon John Clayton to send him plant specimens and especially seeds so that he could more accurately illustrate his plants, which became a more dominant feature in this volume. Even with a larger number of subscribers and the help of famed botanical illustrator Georg Ehret, there was rarely enough cash on hand to do the work and feed his young family. Complicating matters even more was Catesby's gradually failing health. Forced to work at various nurseries and at a few, select estates, at least Catesby had access to some of his own introductions in England. With Clayton augmenting Catesby's understanding of several species, and Catesby own access to the introductions of others - most notably those of John Bartram-his knowledge of the flora grew considerably, meaning that some new errors were introduced into the scientific literature resulting in confusion that has persisted to the present. In addition to plants, the last volume was dominated by mammals, insects, beetles, and marine organisms, with the illustrations usually far better than those of the first volume.

The last years of Catesby's life were fraught with illness and frustration in producing an appendix of twenty images sometimes sold without text in 1747, four years after completion of the second 100 plates. He died sometime in mid-December of 1749 and was buried on the $23^{\text {rd }}$ of that year.

Catesby's Virginia plants were given by Samuel Dale's widow to the Apothecary Society of London and were "lost" until rediscovered in 1983. His later collections from South Carolina, Georgia, and the Bahamas were obtained by Hans Sloane and are now in the Natural History Museum in London. Other samples were sent to Johann Jacob Dillenius and thus are in the Sherard and Dubois herbaria at the University of Oxford. A limited number of extant herbarium specimens are in Leiden, Paris, and elsewhere in Europe. New editions of Catesby's Natural history soon appeared. The Seligmann edition was published in German in 1749-1750, with Seligmann re-etching the birds. A French version of this work was published from 1768 until 1776 (see also Seligmann 1770-1773). In 1750, Eisenberger and Lichtensteiger published another new edition of the second volume. This was reprinted in 1777.

Far more significant was the second edition of Catesby's Natural history revised and reissued by George Edwards. While Catesby hand-colored each of his plates, those of the second edition were colored by a variety of individuals, with some copies stunning and others rather mundane. Abbreviated volumes were published as Hortus britanno-americanus (1763) and Hortus europae americanus (1767). A third edition, exquisitely colored, was published by Benjamin White in 1771. This edition contains an index with Linnaean names for all plants and animals. Several new names
were proposed by Edwards, and while several of his plant names are in use or at least known, those of animals have been forgotten and are now suppressed because there were not in common use for a century or more.

The most recent edition is an abbreviated version issued in 1974 by Beehive Press with an introduction by George Frick and identification notes by Joseph Ewan. Catesby's birds were recently evaluated by Feduccia in 1985 while the plants subsequently were reviewed by Howard and Staples (1983) and Wilbur (1990). In 2009, Reveal published a detailed review of Catesby's published plates and his original drawings (now at the Royal Library at Windsor Castle - see McBurney 1997), and with the help of many others, was able to identify essentially all plants (save one) and animals (except a few insects and one marine organism). Significantly, as a result of this review, the blue-winged warblers, first found in 1768, was given its own name in 2009 as zoologists had used the same Linnaean epithet taken from Catesby to apply to two different birds in different genera.

The best review of Catesby's life remains Frick and Stearns (1961); the book by Meyer et al. (1998) is useful. The 1996 Alecto facsimile of the original Catesby watercolors is elegant but expensive. Online copies of Catesby are also available (see p. 30). Information on the published Catesby plates used as types of plants named by Linnaeus is summarized by Jarvis (2007) and by Reveal (2009). This summary is presented as part of the tercentennial celebration of Mark Catesby's arrival in Virginia.

## Summary of organisms illustrated by Mark Catesby (1729-1747) with comments on their typification

Below is a summary table of the identity of the organisms illustrated by Mark Catesby (17291747). When possible, published images in Catesby's Natural History were compared with the original watercolors to update determinations of the species; this presentation updates that by Ewan (1974), Howard and Staples (1983), Wilbur (1990), and Reveal (2009). The summary is arranged by the Catesby volume and plate number. Where applicable, scientific names are followed by an indication of the organism's location on the image (right, left, above, below, foreground, background, etc.). Names are followed by the Royal Library accession number (RL, Windsor Castle) and the sheet numbers in the facsimile of watercolors reproduced by Alecto Historical Edition (AHE). In its complete set, the AHE facsimile is divided into three volumes consisting of volume 1 (plates 1-100), volume 2 (plates 101-200), and volume 3 (plates 201-263). Plant names are in bold type to distinguish them from other organisms. Images cited in the original descriptions of new taxa are indicated by an asterisk. Footnotes detail aspects of the type information starting on page 14.

| Catesby | Scientific Name \& Common Name | RL | AHE |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & -1729- \\ & 1: \text { t. } 1 . \end{aligned}$ |  |  |  |
|  | Haltaeetus leucocephalus (Linnaeus, 1766)- bald eagle ${ }^{1}$ | 24814 | * |
|  | Mugil cephalus Linnaeus, 1758 (probably) - gray mullet | 24814 | 1 |
| 1: t. 2. | Pandion haliaetus (Linnaeus, 1758) - osprey ${ }^{2}$ | 24815 | 186 * |
| 1:t. 2. | Mugll cephalus Linnaeus, 1758 (probably) - gray mullet | 24815 | 186 |
| 1: t. 3. | Falco columbartus Linnaeus, 1758 -merlin ${ }^{3}$ | 24816 | 161 * |
| 1: t. 4. | Elanoides forficatus (Linnaeus, 1758) - swallow-tail kite ${ }^{4}$ | 24817 | 21 * |
| 1: t. 5. | Falco sparverius Linnaeus, 1758 - American kestrel ${ }^{5}$ | 24818 | 61 * |
| 1: t. 6. | Cathartes aura (Linnaeus, 1758) - turkey vulture ${ }^{6}$ | 24819 | 162 * |
| 1:t. 7. | Megascops asto (Linnaeus, 1758) - eastern screech-owl ${ }^{\top}$ | 24820 | 101* |
| 1: t. 8. | A composite of three birds: Chordeiles minor (J.R. Forster, 1771) - common nighthawk Caprimulgus carolmensis J.F. Gmelin, 1789 - chuck's-will-widow; and Caprimulgus voctferus A . Wilson, 1812 - whip-poor-will ${ }^{8}$ | 24821 | 141 * |


| Catesby | Scientific Name \& Common Name | RL | AHE |
| :---: | :---: | :---: | :---: |
|  | Gryllotalpa gryllotalpa (Linnaeus, 1758; right) - mole cricket ${ }^{9}$ | 24821 | 141 * |
| 1: t. 9. | Coccyzus americanus (Linnaeus, 1758) - yellowbilled cuckoo ${ }^{10}$ | 24822 | 81 * |
|  | Castanea pumila (L.) Mill. - Allegany chinquapin ${ }^{11}$ | 24822 | 81 * |
| 1: t. 10. | Amazona aff. leucocephala (Linnaeus, 1758) - Cuban parrot ${ }^{12}$ | 24823 | 226 * |
|  | Colubrina elliptica (Sw.) Brizicky \& W.L. Stern - soldierwood | 24823 | 226 |
| 1: t. 11. | Conuropsis carolinensis (Linnaeus, 1758) - Carolina parakeet ${ }^{13}$ | 24824 | 22 * |
|  | Taxodium distichum (L.) L.C. Rich. - bald cypress ${ }^{14}$ | 24824 | 22 * |
| 1: t. 12. | Quiscalus quiscula (Linnaeus, 1758) - common grackle ${ }^{15}$ | 24825 | 201 * |
| 1: t. 13. | Agelans phoeniceus (Linnaeus, 1766) - red-winged blackbird ${ }^{16}$ | 24826 | 142 * |
|  | Morella caroliniensis (Mill.) Small - evergreen bayberry ${ }^{17}$ | 24826 | 142 * |
| 1: t. 14. | Doluchonyx oryzivorus (Linnaeus, 1758) - bobolink ${ }^{18}$ | 24827 | 181 * |
|  | Oryza sativa L. - rice ${ }^{19}$ | 24827 | 181* |
| 1: t. 15. | Cyanocitia cristata (Linnaeus, 1758) - bluejay ${ }^{20}$ | 24828 | 42* |
|  | Smilax laurifolia L. - laurel greenbrier ${ }^{21}$ | 24828 | 42 * |
| 1: t. 16. | Campephilus principalis (Linnaeus, 1758) - ivory-billed woodpecker ${ }^{22}$ | 24829 | 82* |
|  | Ouercus phellos L. - willow oak ${ }^{23}$ | 24829 | 82 * |
| 1: t. 17. | Dryocopus pileatus (Linnaeus 1758) - piliated woodpecker ${ }^{24}$ | 24830 | 102* |
|  | Quercus virginiana Mill. - live oak ${ }^{25}$ | 24830 | 102* |
| 1: t. 18. | Colaptes curatus (Linnaeus, 1758) - northern flicker ${ }^{26}$ | 24831 | 121 * |
|  | Quercus michauxii Nutt. - swamp chestnut oak ${ }^{27}$ | 24831 | 121 * |
| 1: t. 19. | Melanerpes carolinus (Linnaeus, 1758; above, right) - red-bellied woodpecker ${ }^{28}$ | 24832 | 216 * |
|  | Picoides villosus (Linnaeus, 1766; below, left) - hairy woodpecker ${ }^{29}$ | 24832 | 216* |
|  | Quercus marilandica Münchh. - blackjack oak ${ }^{30}$ | 24832 | 216 * |
| 1: t. 20. | Melanerpes erythrocephalus (Linnaeus, 1758) - red-headed woodpecker ${ }^{31}$ | 24833 | 182* |
|  | Quercus nigra L. (above) - water oak ${ }^{32}$ | 24833 | 182* |
|  | Mitchella repens L. (below) - partridgeberry ${ }^{33}$ | 24833 | 182 * |
| -1730- |  |  |  |
| 1: t. 21. | Sphyrapicus varms (Linnaeus, 1766; above, right) - yellowbellied sapsucker ${ }^{34}$ | 24834 | 183 * |
|  | Picoides pubescens (Linnaeus, 1766; below, left) - downy woodpecker ${ }^{35}$ | 24834 | 183 * |
|  | Quercus alba L. (left; acorn on right) - white oak ${ }^{36}$ | 24834 | 183 * |
|  | Quercus falcata Michx. (right) - southern red oak ${ }^{37}$ | 24834 | 183 |
| 1: t. 22. | Sitta pusilla (Latham, 1790; above) - brown-headed nuthatch ${ }^{38}$ | 24835 | 196 * |
|  | Sitta carolmensss (Latham, 1790) - white-breasted nuthatch ${ }^{39}$ | 24835 | 196 * |
|  | Quercus incana W. Bartram - bluejack oak ${ }^{40}$ | 24835 | 196 * |
| 1: t. 23. | Ectopistes migratorius (Linnaeus, 1758) - passenger pigeon ${ }^{41}$ | 24836 | 62 * |
|  | Quercus laevis Walter - turkey oak ${ }^{42}$ | 24836 | 62 * |
| 1: t. 24. | Zenalda macroura (Linnaeus, 1758) -mourning dove ${ }^{43}$ | 24837 | 202* |
|  | Podophyllum peltatum L. - mayapple ${ }^{44}$ | 24837 | 202* |
| 1: t. 25. | Patagioenas leucocephala (Linnaeus, 1758) - whitecrowned pigeon ${ }^{45}$ | 24838 | 163 * |
|  | Chrysobalanus icaco L. - icaco coco plum | 24838 | 163 |
| 1: t. 26. | Columbina passerina (Linnaeus, 1758) - common ground-dove $(24839 b)^{46}$ | 24839 | 232 * |


| Catesby | Scientific Name \& Common Name | RL | AHE |
| :---: | :---: | :---: | :---: |
|  | Columbina passerina (Linnaeus, 1758) - common ground-dove (24839a) | 24839 | 231 |
|  | Zanthoxylum clava-herculis L. - Hercules' club (24839a) ${ }^{47}$ | 24839 | 231 * |
|  | Anacardium occidentale L. (fruit) - cashew (24839b) | 24839 | 231 |
| 1: t. 27. | Mimus polyglottos (Linnaeus, 1758) - northern mockingbird ${ }^{48}$ | 24840 | 143 * |
|  | Cornus florida L. - flowering dogwood ${ }^{49}$ | 24840 | 143 * |
| 1: t. 28. | Toxostoma rufum (Linnaeus, 1758) - brown thrasher ${ }^{50}$ | 24841 | 23 * |
|  | Prunus virginiana L. - choke cherry ${ }^{51}$ | 24841 | 23 * |
| 1: t. 29. | Turdus migratorius Linnaeus, 1766 - American robin ${ }^{52}$ | 24842 | 217 * |
|  | Aristolochia serpentaria L. - Virginia dutchmanspipe ${ }^{53}$ | 24842 | 217 * |
| 1: t. 30. | Turdus plumbeus Linnaeus, 1758 - red-legged thrush ${ }^{54}$ | 24843 | 184 * |
|  | Bursera simaruba (L.) Sarg. - gumbo limbo ${ }^{53}$ | 24843 | 184* |
| 1: t. 31. | Catharus guttatus (Pallas, 1811) - hermit thrush (doubtful) | 24844 | 218 |
|  | Ilex cassine L. - dahoon ${ }^{56}$ | 24844 | 218 * |
| 1: t. 32. | Eremophila alpestris (Linnaeus, 1758) - horned lark ${ }^{57}$ | 24845 | 203 * |
|  | Anthus rubescens (Tunstall, 1771; below) - American pipit not published | 24845 | 203 |
|  | Uniola paniculata L. - sea-oats - not published |  |  |
| 1: t. 33. | Sturnella magna (Linnaeus, 1858) - eastern meadowlark ${ }^{58}$ | 24846 | 164 * |
|  | Hypoxis hirsuta (L.) Coville - common goldstar | 25892 | 44 |
| 1: t. 34. | Pipilo erythrophthalmus (Linnaeus, 1758; above) - eastern towhee ${ }^{59}$ | 24847 | 204 * |
|  | Molothrus ater (Boddaert, 1783; below) - brown-headed cowbird | 24847 | 204 |
|  | Populus heterophylla L. - swamp cottonwood ${ }^{60}$ | 24847 | 204 * |
| 1: t. 35. | Passerina cyanea (Linnaeus, 1766), probably - indigo bunting | 24848 | 205 |
|  | Dendroica dominica (Linnaeus, 1766; below) - not published | 24848 | 205 |
|  | Hypercompe scribonia (Stoll, 1790) - giant leopard moth | 26077 | 94 |
|  | Unidentified wasp (lower left) - not published | 24848 | 205 |
|  | Ipomoea sagitata Poit. - saltmarsh morningglory | 24849 | 36 |
| 1: t. 36. | Junco hyemalis (Linnaeus, 1758) - dark-eyed junco ${ }^{61}$ | 24855 | 242 * |
|  | Monotropa uniflora L. (left) - one-flower Indian-pipe ${ }^{62}$ | 24850 | 241 * |
|  | Geoglossum glabrum Pers. ex Fr. (right) - black adder tongue fungus | 24850 | 241 |
| 1: t. 37. | Tiarts bicolor (Linnaeus, 1766) - black-faced grassquit ${ }^{63}$ | 24851 | 197* |
|  | Tabebuia bahamensis (Northr.) Britton - white dwarf tabebuia ${ }^{64}$ | 24851 | 197 * |
| 1: t. 38. | Cardinalis cardinalis (Linnaeus 1758) - northern cardinal ${ }^{65}$ | 24852 | 122 * |
|  | Carya tomentosa (Lam.) Nutt. (branch) - mockernut hickory ${ }^{\text {66 }}$ | 24852 | 122 * |
|  | Carya glabra (Mill.) Sweet (solitary fruit; below right) - pignut hickory | 24852 | 122 |
| 1: t. 39. | Passerina caerulea (Linnaeus, 1758) - blue grosbeak ${ }^{67}$ | 24853 | 63 * |
|  | Magnolia virginiana L . - sweetbay ${ }^{68}$ | 24853 | 63 * |
| 1: t. 40. | Loxtgilla violacea (Linnaeus, 1758) - greater Antillean bullfinch ${ }^{69}$ | 24854 | 123 * |
|  | Metopium toxiferum (L.) Krug \& Urb. - Florida poisonwood ${ }^{70}$ | 24854 | 123 * |
| 1: t. 41. | Carpodacus purpureus (J.F. Gmelin, 1789) - purple finch ${ }^{71}$ | 24855 | 242 * |
|  | Nyssa sylvatica Marshall - black tupelo ${ }^{72}$ | 24855 | 242* |
| 1: t. 42. | Spindalis zena (Linnaeus, 1758) - stripe-headed tanager ${ }^{73}$ | 24856 | 1 * |
|  | Jacaranda caerulea (L.) J. St.-Hil. - cancer tree ${ }^{74}$ | 24856 | 1 * |
| 1: t. 43. | Carduelis tristts (Linnaeus, 1758) - American goldfinch ${ }^{75}$ | 24857 | 64 * |
|  | Gleditsia aquatica Marshall - water honeylocust ${ }^{76}$ | 24857 | 64 * |
| 1: t. 44. | Passerina ciris (Linnaeus, 1758) - painted bunting ${ }^{77}$ | 25875 | 43 |


| Catesby | Scientific Name \& Common Name | RL | AHE |
| :---: | :---: | :---: | :---: |
|  | Passerina cyanea (Linnaeus, 1766) - indigo bunting - not published | 25875 | 43 |
|  | Gordonia lasianthus (L.) J. Ellis - loblolly bay ${ }^{78}$ |  |  |
|  | Magnolia virginiana L. - sweetbay - not published | 25875 | 43 |
| 1: t. 45. | Passerina cyanea (Linnaeus, 1766) - indigo bunting ${ }^{79}$ | 25877 | 243 * |
|  | Trillium catesbaei Elliott - bashful wakerobin ${ }^{80}$ | 25876 | 176 * |
| 1: t. 46. | Bombycilla cedromum Vieillot, 1808 - cedar waxwing ${ }^{81}$ | 25878 | $244 *$ |
|  | Calycanthus floridus L. - eastern sweetshrub ${ }^{82}$ | 25877 | 243 * |
|  | Magnolia virginiana L. - sweetbay - not published | 25878 | 244 |
| 1: t. 47. | Stalia stalis (Linnaeus, 1758) - eastern bluebird ${ }^{83}$ | 25879 | $83^{*}$ |
|  | Smilax pumila Walter - sarsaparilla vine ${ }^{84}$ | 25879 | $83^{*}$ |
| 1: t. 48. | Icterus galbula (Linnaeus, 1758) - Baltimore oriole ${ }^{85}$ | 25880 | 116* |
|  | Liriodendron tulipifera L. - tulip poplar ${ }^{\text {86 }}$ | 25880 | 116* |
| 1: t. 49. | Icterus spurius (Linnaeus, 1766) - orchard oriole ${ }^{87}$ | 25881 | 245 * |
|  | Catalpa bignonioides Walter - southern catalpa ${ }^{88}$ | 25881 | 245 * |
| 1: t. 50. | Icteria virens (Linnaeus, 1758) - yellow-breasted chat ${ }^{89}$ | 25882 | 246 * |
|  | Trillium maculatum Raf. - spotted wakerobin ${ }^{90}$ | 25883 | 247 * |
|  | Acer rubrum L. var. trilobum Torr. \& A. Gray ex K. Koch Carolina red maple - not published | 25882 | 246 |
| 1: t. 51. | Progne subis (Linnaeus, 1758) - purple martin ${ }^{91}$ | 25884 | 248 * |
|  | Cocculus carolinus (L.) DC. - Carolina coralbead ${ }^{92}$ |  |  |
| 1: t. 52. | Mytarchus crmitus (Linnaeus, 1758) - great crested flycatcher ${ }^{93}$ | 25886 | 250 * |
|  | Smilax tamnoides L. - bristly greenbrier ${ }^{94}$ | 25886 | 250 * |
| 1: t. 53. | Sayornis phoebe (Latham, 1790) - eastern phoebe | 25886 | 250 |
|  | Gelsemium sempervirens (L.) J. St.-Hil. - Carolina jessamine ${ }^{95}$ | 25887 | 251 * |
| 1: t. 54. | Contopus virens (Linnaeus, 1766; above) - eastern wood-pewee | 25888 | 252 |
|  | Vireo olvvaceus (Linnaeus, 1766; below) - red-eyed vireo ${ }^{96}$ | 25888 | 252 * |
|  | Symplocos tinctoria (L.) L'Her. - common sweetleaf ${ }^{9}$ | 25888 | 252* |
| 1: t. 55. | Tyrannus tyranmus (Linnaeus, 1758) - eastern kingbird ${ }^{\text {P }}$ | 25890 | 254 * |
|  | Unidentified wasp or bee | - | - |
|  | Sassafras albidum (Nutt.) Nees - sassafras ${ }^{\text {99 }}$ | 25890 | 254 * |
|  | Sassafras albidum (Nutt.) Nees - sassafras - not published | 25889 | 253 |
| 1: t. 56. | Piranga rubra (Linnaeus, 1758) - summer tanager ${ }^{100}$ | 25891 | 255 * |
|  | Platanus occidentalis L. - American sycamore ${ }^{101}$ | 25891 | 255 * |
| 1. t. 57. | Baeolophus bicolor (Linnaeus, 1766) - tufted titmouse ${ }^{102}$ | 25892 | 44 * |
|  | Rhododendron viscosum (L.) Torr. - swamp azalea ${ }^{103}$ | 25892 | 44 * |
| 1: t. 58. | Dendrotca coronata (Linnaeus, 1766) - yellowrumped warbler ${ }^{104}$ | 25893 | 256 * |
|  | Cleistes divaricata (L.) Ames - rosebud orchid ${ }^{105}$ | 25893 | 256 * |
|  | Echites umbellatus Jacq. (below) - devil's potato |  |  |
| 1: t. 59. | Coereba flaveola bahamensis (Reichenbach, 1853) - Bahama bananaquit ${ }^{106}$ | 25894 | 117* |
|  | Casasia clusiifolia (Jacq.) Urb. - sevenyear-apple ${ }^{107}$ | 25894 | 117* |
| 1: t. 60. | Wilsonta citrina (Boddaert, 1783) - hooded warbler | 25895 | 257 |
|  | Nyssa aquatica L. - water tupelo ${ }^{108}$ | 25895 | 257 * |
| -1731- |  |  |  |
| 1: t. 61. | Dendroica pimus (Linnaeus, 1758) - pine warbler ${ }^{109}$ | 25897 | 2 * |
|  | Osmanthus americanus (L.) Benth. \& Hook.f. ex A. Gray American devilwood | 25896 | 198 |
| 1: t. 62. | Dendroica dominica (Linnaeus, 1766) - yellowthroated warbler | 25897 | 2 |


| Catesby | Scientific Name \& Common Name | RL | AHE |
| :---: | :---: | :---: | :---: |
|  | Acer rubrum L. -red maple ${ }^{110}$ | 25897 | 2* |
| 1: t. 63. | Dendroica petechia (Linnaeus, 1766), sen. lat. - yellow warbler | 25898 | 258 |
|  | Persea borbonia (L.) Spreng. - redbay ${ }^{111}$ | 25898 | 258 * |
| 1: t. 64. | Parula americana (Linnaeus, 1758) - northern parula ${ }^{112}$ | 25899 | 259* |
|  | Halesia tetraptera J. Ellis - mountain silverbell ${ }^{113}$ | 25899 | 259* |
| 1: t. 65. | Archilochus colubris (Linnaeus, 1758) - rubythroated hummingbird ${ }^{14}$ | 25900 | 236 * |
|  | Campsis radicans (L.) Seem. ex Bureau - trumpetcreeper ${ }^{155}$ | 25900 | 236 * |
| 1: t. 66. | Dumetella carolinensts (Linnaeus, 1766) - gray catbird ${ }^{166}$ | 25901 | 237* |
|  | Unidentified insect (left) - not published | 25901 | 237 |
|  | Clethra alnifolia L. - coastal sweetpepperbush ${ }^{117}$ |  | - * |
| 1: t. 67. | Setophaga ruticilla (Linnaeus, 1758) - American redstart ${ }^{118}$ | 25902 | $84^{*}$ |
|  | Juglans nigra L. - black walnut ${ }^{119}$ | 25902 | 84 * |
| 1: t. 68. | Melopyrrha nigra (Linnaeus, 1758) - Cuban bullfinch ${ }^{120}$ | 25903 | 238 * |
|  | Chionanthus virginicus L. - fringetree ${ }^{121}$ | 25903 | 238 * |
| 1: t. 69. | Megaceryle alcyon (Linnaeus, 1758) - belted kingfisher ${ }^{122}$ | 25904 | 206 * |
|  | Unidentified - non-descript fish | 25904 | 206 |
|  | Morella cerifera (L.) Small - wax myrtle ${ }^{123}$ |  |  |
| 1: t. 70. | Porzana carolna (Linnaeus, 1758) -sora (25905b) ${ }^{124}$ | 25905 | 260* |
|  | Gentiana catesbaei Walter - Elliott's gentian (25905a) ${ }^{125}$ | 25905 | 261* |
|  | Unidentified - bryophyte (lower left) |  |  |
|  | Nyssa sylvatica Marshall - black tupelo - not published | 25905 | 261 |
| 1: t. 71. | Charadrus voctferus Linnaeus, 1758 - killdeer ${ }^{126}$ | 25906 | 233 * |
|  | Oxydendrum arboreum (L.) DC. - sourwood ${ }^{127}$ | 25906 | 233* |
| 1: t. 72. | Arenaria interpres (Linnaeus, 1758) - ruddy turnstone | 25907 | 234 |
|  | Salmea petrochioides Griseb. - shanks | 25907 | 234 |
| 1: t. 73. | Phoenicopterus ruber Linnaeus, 1758 (foreground) - American flamingo ${ }^{128}$ | 25908 | 103 * |
|  | Plexaurella dichotoma (Esper, 1791) (background) - doubleforked plexaurella | 25908 | 103 |
| 1: t. 74. | Phoenicopterus ruber Linnaeus, 1758 (foreground) - American flamingo ${ }^{129}$ | 25909 | $165^{*}$ |
|  | Plexaura flexuosa Lamouroux, 1821 (background) - bent sea-rod | 25909 | 165 |
| 1: t. 75. | Grus americana (Linnaeus, 1758) - whooping crane ${ }^{130}$ | 25910 | 221* |
|  | Reynosia septentrionalis Urb. - darlingplum |  |  |
| 1: t. 76. | Egretta caerulea (Linnaeus, 1758) - little blue heron ${ }^{131}$ | 25911 | 65* |
| 1: t. 77. | Egretta caerulea (Linnaeus, 1758) - little blue heron |  |  |
|  | Phymosia abutiloides (L.) Desv. ex Ham. - Bahaman thymosa ${ }^{132}$ |  |  |
| 1: t. 78. | Botaurus lenttgmosus (Rackett, 1813) - American bittern | 25912 | 211 |
| 1: t. 79. | Nyctanassa volacea (Linnaeus, 1758) - yellowcrowned night-heron ${ }^{133}$ | 25913 | 227 * |
|  | Scaevola plumieri (L.) Vahl - gullfeed ${ }^{134}$ | 25913 | 227* |
| 1: t. 80. | Butordes virescens (Linnaeus, 1758) - green heron ${ }^{135}$ | 25914 | 24 * |
|  | Fraxinus caroliniana Mill. - Carolina ash ${ }^{136}$ | 25914 | 24 * |
| -1732- |  |  |  |
| 1: t. 81. | Mycteria americana Linnaeus, 1758 - wood stork ${ }^{137}$ | 25915 | 228 * |
| 1: t. 82. | Eudoctmus albus (Linnaeus, 1758) - white ibis ${ }^{138}$ | 25916 | 124 * |
|  | Orontium aquaticum L. - goldenclub | 25917 | 239 |
| 1: t. 83. | Eudocimus albus (Linnaeus, 1758) - white ibis ${ }^{139}$ | 25918 | $45^{*}$ |


| Catesby | Scientific Name \& Common Name | RL | AHE |
| :---: | :---: | :---: | :---: |
|  | Peltandra virginica (L.) Raf. ex Schott - green arrow arum |  |  |
| 1: t. 84. | Eudoctmus ruber (Linnaeus, 1758) - scarlet ibis ${ }^{140}$ | 25919 | * |
| 1: t. 85. | Haematopus palliatus Temminck, 1820 - American oystercatcher ${ }^{141}$ | 25920 | 235 * |
|  | Avicennia germinans (L.) L. - black mangrove | 25920 | 235 |
| 1: t. 86. | Morus bassamus (Linnaeus, 1758) - northern gannet | 25921 | 229 |
|  | Laguncularia racemosa (L.) C.F. Gaertn. - white mangrove | 25921 | 229 |
| 1: t. 87. | Sula leucogaster (Boddaert, 1783) - brown booby ${ }^{142}$ | 25922 | 230 * |
| 1: t. 88. | Anous stolddus (Linnaeus, 1758) - brown noddy ${ }^{143}$ | 25923 | 222* |
| 1: t. 89. | Larus atricilla Linnaeus, 1758 - laughing gull ${ }^{144}$ | 25924 | 207* |
| 1: t. 90. | Rynchops niger Linnaeus, 1758 - black skimmer ${ }^{145}$ | 25925 | 262 * |
| 1: t. 91. | Podtlymbus podtceps (Linnaeus, 1758) - pied-billed grebe ${ }^{146}$ | 25926 | 223 * |
| 1: t. 92. | Branta canadensis (Linnaeus, 1758) - Canada goose ${ }^{\text {147 }}$ | 25927 | 263 * |
|  | Wedelia bahamensis (Britton) O.E. Schulz - rong bush | 25927 | 263 |
| 1: t. 93. | Anas bahamensis Linnaeus, 1758 - white-cheeked pintail ${ }^{148}$ | 25928 | 4* |
|  | Borrichia arborescens (L.) DC. - tree seaside tans ${ }^{149}$ | 25928 | 4* |
| 1: t. 94. | Lophodytes cucullatus (Linnaeus, 1758) - hooded merganser ${ }^{150}$ | 25929 | 208 * |
| 1: t. 95. | Bucephala albeola (Linnaeus, 1758) - bufflehead ${ }^{151}$ | 25930 | 209 * |
| 1: t. 96. | Anas clypeata Linnaeus, 1758 - northern shoveler | 25931 | 224 |
| 1: t. 97. | Aix sponsa (Linnaeus, 1758) - wood duck ${ }^{152}$ | 25932 | 85* |
| 1: t. 98. | Bucephala albeola (Linnaeus, 1758) - bufflehead ${ }^{153}$ | 25933 | 264 * |
|  | Jacquinia keyensis Mez - joewood |  |  |
| 1: t. 99. | Anas discors Linnaeus (1766) - blue-winged teal (right) ${ }^{154}$ | 25934 | 210 |
| 1: t. 100. | Anas discors Linnaeus (1766) - blue-winged teal (center) ${ }^{155}$ | 25935 | 225* |
| -1734 |  |  |  |
| 2: t. 1. | Sphyraena barracuda (Edwards, 1771; above) - great barracuda ${ }^{156}$ | 25936 | $10{ }^{*}$ |
|  | Albula vulpes (Linnaeus, 1758; below) - bonefish ${ }^{157}$ | 25936 | 106 * |
| 2: t. 2. | Orthopristis chrysoptera (Linnaeus, 1766) - pigfish ${ }^{158}$ | 25937 | 166 * |
|  | Synodus foetens (Linnaeus, 1766; below)-inshore lizardfish ${ }^{159}$ | 25938 | 167* |
| 2: t. 3. | Micropogonias undulatus (Linnaeus, 1766; above) - Atlantic croaker ${ }^{160}$ | 25939 | 107* |
|  | Holocentrus rufus (Walbaum, 1792; below) - longspine squirrelfish ${ }^{161}$ | 25940 | $86^{*}$ |
| 2: t. 4. | Anisotremus virginicus (Linnaeus, 1758; above) - porkfish ${ }^{162}$ | 25941 | 6* |
|  | Lutjamus apodus (Wilbaum, 1792; below) - schoolmaster | 25942 | 168 |
|  | Albula vulpes (Linnaeus, 1758) - bonefish - not published | 25942 | 168 |
| 2: t. 5. | Mycteroperca venenosa (Linnaeus, 1758) - princess rockfish ${ }^{163}$ | 25943 | 108* |
| 2: t. 6. | Diplectrum formosum (Linnaeus, 1766); above) - sand perch ${ }^{164}$ | 25944 | 146 * |
|  | Mugll cephalus Linnaeus, 1758 (probably; below) - gray mullet ${ }^{165}$ | 25945 | 187* |
| 2: t. 7. | Cephalopholis fulva (Linnaeus, 1758; above) - coney ${ }^{166}$ | 25946 | 188 * |
|  | Haemulon melanurum (Linnaeus, 1758; below) - cottonwick ${ }^{167}$ | 25946 | 188* |
| 2: t. 8. | Unidentified (probably Exocoetidae; above) - flying fish | 25947 | 87 |
|  | Kyphosus saltatrix (Linnaeus, 1758; middle) - Bahama rudderfish ${ }^{168}$ | 25948 | 88 * |
|  | Lepomis gibbosus (Linnaeus, 1758; below) - pumpkinseed ${ }^{169}$ | 25949 | 89 * |
| 2: t. 9. | Lutjanus griseus (Linnacus, 1758) - gray snapper ${ }^{170}$ | 25950 | 169 * |
| 2: t. 10. | Acanthurus coeruleus Bloch \& Schneider, 1801 (above) - blue | 25951 | 7 * |


| Catesby | Scientific Name \& Common Name | RL | AHE |
| :---: | :---: | :---: | :---: |
|  | tang ${ }^{171}$ |  |  |
|  | Cephalopholis fulva (Linnaeus, 1758) - coney ${ }^{172}$ | 25952 | $26^{*}$ |
| 2: t. 11. | Gerres cinereus (Walbaum, 1792; above) - yellowfin mojarra ${ }^{173}$ | 25952 | $26^{*}$ |
|  | Bodiamus rufus (Linnaeus, 1758; below) - Spanish hogfish ${ }^{174}$ | 25953 | 126* |
| 2: t. 12. | Haltchoeres radatus (Linnaeus, 1758; above) - puddingwife ${ }^{175}$ | 25954 | 127* |
|  | Menticirrhus americanus (Linnaeus, 1758; below) - southern kingfish | 25955 | 128 * |
| 2: t. 13. | Ulaema lefroyi (Goode, 1874; probably) - longfinned silverbiddy | 25956 | 147 |
|  | Gorgonudae (unidentified; background) |  |  |
| 2: t. 14. | Epinephelus guttatus (Linnaeus, 1758; above) - red hind ${ }^{177}$ | 25957 | $46^{*}$ |
|  | Pomatomus saltatrix (Linnaeus, 1766; below) - bluefish ${ }^{178}$ | 25958 | $47^{*}$ |
| 2: t. 15. | Lachnolatmus maxtmus (Walbaum, 1792) - hogfish ${ }^{179}$ | 25959 | $27^{*}$ |
| 2: t. 15. | Calamus calamus (Valenciennes, 1830) - saucereye porgy ${ }^{180}$ | 25960 | 189* |
| 2: t. 17. | Lutjamus synagris (Linnaeus, 1758; above) - lane snapper ${ }^{181}$ | 25961 | $66^{*}$ |
|  | Fistularia tabacaria Linnaeus, 1758 (below) - tobacco trumpetfish ${ }^{182}$ | 25962 | 67* |
| 2: t. 18. | Scarus coeruleus (Edwards, 1771) - blue parrotfish ${ }^{183}$ | 25963 | $48^{*}$ |
| 2: t. 19. | Alaterus scruptus (Osbeck, 1765) - scrawled filefish ${ }^{184}$ | 25964 | 109* |
| 2: t. 20. | Gymnothorax funebris Ranzani, 1839 - green moray ${ }^{185}$ | 25965 | 170* |
| 2: t. 21. | Gymnothorax moringa (Cuvier, 1829), spotted moray ${ }^{186}$ |  | - * |
|  | Gorgonitdae (unidentified; background) ${ }^{187}$ |  |  |
| 2: t. 22. | Bahistes vetula Limaeus, 1758 -queen triggerfish ${ }^{188}$ | 25966 | 28 * |
| 2: t. 23. | Ameturus catus (Linnaeus, 1758) - white catfish ${ }^{189}$ | 25967 | 29* |
| 2: t. 24. | Elops saurus Linnaeus, 1766 (probably) - ladyfish ${ }^{190}$ | - | - * |
|  | Dalbergia ecastaphyllum (L.) Taub. - coinvine |  |  |
| 2: t. 25. | Lutjams analis (Cuvier, 1828) - mutton snapper ${ }^{191}$ | 25968 | 129* |
| 2. t. 26. | Remora remora (Linnaeus, 1758) - remora ${ }^{192}$ | 25970 | 190 * |
|  | Phyllanthus epiphyllanthus L. - swordbush ${ }^{193}$ | 25969 | 195 * |
| 2. t. 27. | Bothus lunatus (Linnaeus, 1758) - peacock flounder ${ }^{194}$ | 25971 | 68 * |
| 2: t. 28. | Sphoerotdes testudinews (Linnaeus, 1758) - checkered puffer | 25972 | 76 |
|  | Nectandra coriacea (Sw.) Griseb. (above) - lancewood | 25973 | 69 |
|  | Galactia rudolphioides (Griseb.) Benth. \& Hook.f. ex C. Wright (below right) - red milk-pea ${ }^{195}$ | 25973 | 69 * |
| 2: t. 29. | Sparisoma viride (Bonnaterre, 1788) - stoplight parrotfish ${ }^{196}$ | 25974 | $90^{*}$ |
| 2: t. 30. | Lepisosteus platyrhncus DeKay, 1842 - Florida gar ${ }^{197}$ | 25975 | 8* |
|  | Unknown flowering branch with 6-merous flowers and 4 -sided capsules ${ }^{198}$ | - | - |
|  | Leucothoe axillaris (Lam.) D. Don, pro parte (fruiting branch) |  |  |
| 2: t. 31. | Holacanthus clliaris (Linnaeus, 1758) - queen angelfish ${ }^{199}$ | 25976 | 9* |
| 2. 1. 32. | Gecarcimus ruricola (Linnaeus, 1758) - purple land crab ${ }^{200}$ | 25977 | $30^{*}$ |
|  | Picrodendron baccatum (L.) Krug \& Urb. - blackwood | 25977 | 30 |
| 2. t. 33. | Coenobita clypeatus (Fabricius, 1787) - land hermit crab | 25978 | 171 |
|  | Conocarpus erectus L. (above) - button mangrove | 25979 | 177 |
|  | Amyris elemifera L. (below) - sea torchwood ${ }^{201}$ | 25979 | 177* |
| 2: t. 34. | Petrochirus diogenes (Linnaeus, 1758) - giant hermit crab ${ }^{202}$ | 25980 | 148* |
|  | Pterogoria sp. [perhaps $P$. anceps (Pallas, 1766) - angular sea-whip] | - | - |
| 2: t. 35. | Ocypode quadrata (Fabricius, 1787; above) - Atlantic ghost crab $^{203}$ | 25981 | $11^{*}$ |
|  | Pseudopterogorgia sp. [probably P. acerosa (Pallas, 1766)- | - | - |


| Catesby | Scientific Name \& Common Name purple sea-plume] | RL | AHE |
| :---: | :---: | :---: | :---: |
|  | Aphonopelma sp. - tarantula - not published | 25981 | 11 |
| 2: t. 36. | Grapsus grapsus (Linnaeus, 1758; above) - sally lightfoot crab ${ }^{204}$ | 25982 | 70 * |
|  | Calappa flammea (J.F.W. Herbst, 1794) - flame box crab ${ }^{205}$ | 25982 | 70 * |
| 2: t. 37. | Dromta erythropus (Edwards 1771; foreground) - redeye sponge $\mathrm{crab}^{206}$ | 25978 | 171* |
|  | Muricea muricata (Pallas, 1766), spiny sea-fan ${ }^{207}$ | 25983 | $51^{*}$ |
| 2: t. 38. | Chelonia mydas (Linnaeus, 1758) - green sea turtle | 25984 | 110 |
|  | Thalassia testudinum König - turtlegrass |  |  |
| 2: t. 39. | Eretmochelys imbricata (Linnaeus, 1766) - hawksbill sea turtle ${ }^{208}$ | 25985 | 49 * |
| 2: t. 40. | Caretta caretta (Linnaeus, 1758) - loggerhead sea turtle | 25986 | 10 |
|  | Vachellia choriophylla (Benth.) Seigler \& Ebinger - cinnecord not published | 25986 | 10 |
| -1736 |  |  |  |
| 2: t. 41. | Crotalus horridus Linnaeus, 1758 - timber rattlesnake | 25987 | 131 |
| 2: t. 42. | Sistrurus miliarius (Linnaeus, 1766) - pygmy rattlesnake ${ }^{209}$ | 25989 | 152* |
|  | Unidentified inseet - not published | 25989 | 152 |
|  | Lysiloma latisiliquum (L.) Benth. - false tamarind | - | - |
|  | Banara minutiflora (A. Rich.) Sleumer - banara | 25988 | 151 |
| 2: t. 43. | Agkistrodon piscivorus (Lacépède, 1789) - eastern cottonmouth | 25990 | 172 |
|  | Leucothoe racemosa (L.) A Gray - swamp doghobble ${ }^{210}$ | 25885 | 249 * |
| 2: t. 44. | Heterodon platirhmos Latreille, 1801 - eastern hognose snake | 25991 | 153 |
|  | Vachellia tortuosa (L.) Seigler \& Ebinger - poponax |  | - |
| 2: t. 45. | Heterodon platirhmos Latreille, 1801 - eastern hognose snake | 25992 | 91 |
|  | Bos taurus Linnaeus, 1758 - domestic cattle - not published | 25992 | 91 |
|  | Unidentified salamander | - | - |
|  | Xanthosoma sagittifolium (L.) Schott - arrowleaf elephant's-ear |  |  |
| 2: t. 46. | Nerodta erythrogaster (Forster, 1771) - redbellied water snake ${ }^{211}$ | 25993 | 191* |
|  | Croton eluteria (L.) W. Wight - cascarilla ${ }^{212}$ | - |  |
| 2: t. 47. | Opheodrys aestivis (Linnaeus, 1766) - rough green snake ${ }^{213}$ | 25994 | 50 * |
|  | Callicarpa americana L. (above) - American beautyberry ${ }^{214}$ | 25994 | 50 * |
| 2: t. 48. | Elaphe obsoleta Say, 1823 - black rat snake ${ }^{215}$ | 25995 | 192* |
|  | Cissus obovata Vahl. - spoonleaf treebine | 25996 | 192 |
| 2: t. 49. | Storeria dekayi (Holbrook, 1839) - brown snake | 25997 | 71 |
|  | Erythrina herbacea L. - coral bean ${ }^{216}$ | 25997 | $71^{*}$ |
| 2. t. 50. | Thamnophts sauritus (Linnaeus, 1766) - eastern ribbon snake ${ }^{217}$ | 25998 | 111* |
|  | Canella winterana (L.) Gaertn.- wild cinnamon ${ }^{218}$ | 25999 | 111* |
| 2: t. 51. | Thamnophis sauritus (Linnaeus, 1766) - eastern ribbon snake ${ }^{219}$ | 25999 | 173* |
|  | Caesalpinia bahamensis Lam. - brasiletto ${ }^{220}$ | 25999 | 173 * |
|  | Passiflora suberosa L. - corkystem passionflower | 25999 | 173 |
| 2: t. 52. | Lampropeltis getula (Linnaeus, 1766) - eastern kingsnake ${ }^{221}$ | 26000 | 193* |
|  | Leucothoe axillaris (Lam.) D. Don (right) - coastal doghobble | 25885 | 249 |
| 2: t. 53. | Thamnophis sirtalus (Linnaeus, 1758) - common gartersnake ${ }^{222}$ | 26001 | 212* |
|  | Pentalinon luteum (L.) B.F. Hansen \& Wunderlin - hammock viper's-tail ${ }^{223}$ | - |  |
| 2: t. 54. | Masticophis flagellum (Shaw, 1802) - eastern coachwhip ${ }^{224}$ | 26002 | 213 * |
|  | Silene virginica L . - fire pink | 26002 | 213 |
| 2: t. 55. | Elaphe guttata (Linnaeus, 1766) - corn snake - see 2: t. 60 below. | 26003 | 214 |
|  | Polystachya concreta (Jacq.) Garay \& H.R. Sweet - greater | 26003 | 214 |


| Catesby | Scientific Name \& Common Name yellowspike orchid | RL | AHE |
| :---: | :---: | :---: | :---: |
|  |  | 26030 | 18 |
| 2: t. 56. | Heterodon platirhinos Latreille, 1801 - eastern hog-nosed snake ${ }^{25}$ | 26004 | 215 * |
|  | Lilium superbum L. - turk's-cap lily (overall aspect; buds and right flower) | 26005 | 156* |
|  | Lilium michauxii Poit. - Carolina lily (left flower and whorl of leaves) | 26006 | 16 |
| 2: t. 57. | Opheodrys vernatis (Harlan, 1827) - smooth green snake ${ }^{227}$ | 26007 | 12 * |
|  | Ilex vomitoria Aiton - yaupon ${ }^{228}$ | 26007 | 12 |
| 2: t. 58. | Farancia abacura Holbrook, 1836 - eastern mud snake ${ }^{229}$ | 26008 | 52 * |
|  | Lilium catesbaei Walter - pine lily | 26008 | 52 |
|  | Lilium catesbaei Walter - pine lily | 26009 | 96 |
|  | Lilium superbum L. - Turk's-cap lily - not published | 26009 | 96 |
| 2: t. 59. | Ophisaurus ventralis (Linnaeus, 1766) - eastern grass snake ${ }^{230}$ | 26010 | 132* |
|  | Echinacea laevigata (C.L. Boynton \& Beadle) S.F. Blake - smooth purple coneflower | - |  |
| 2: t. 60. | Cemophora coccinea (Blumenbach, 1788) - scarlet snake ${ }^{231}$ | 26011 | 31 * |
|  | Ipomoea batatas (L.) Lam. - sweet potato ${ }^{232}$ | 26011 | 31* |
| -1738- |  |  |  |
| 2: 1. 61. | Magnolia grandiflora L. - southern magnolia ${ }^{233}$ | - |  |
| 2: t. 62. | Spilogale putortus (Linnaeus) - eastern spotted skunk ${ }^{234}$ | 26013 | 13 * |
|  | Commelina erecta L. (below) - erect dayflower | 25994 | 50 |
| 2: t. 63. | Alltgator mississippiensis (Daudin, 1802) - alligator ${ }^{235}$ |  | * |
|  | Rhizophora mangle L. - American mangrove | 26014 |  |
| 2: t. 64. | Cychura cornuta (Bonnaterre, 1789) - horned ground iguana ${ }^{235}$ | 26015 | 133 * |
|  | Annona glabra L. - pond-apple ${ }^{237}$ | 26015 | 133 * |
| 2. t. 65. | Anolis carolmensis Voigt, 1832 - green anole ${ }^{238}$ | 26016 | $53^{*}$ |
|  | Liquidambar styraciflua L. - sweetgum ${ }^{239}$ | 26016 | 53 * |
| 2: t. 66. | Norops garmant (Stejneger) - Jamaican giant anole ${ }^{240}$ | 26018 | 154 * |
|  | Haematoxylum campechianum L. - bloodwood tree ${ }^{241}$ | 26017 | 17 * |
| 2: t. 67. | Eumeces fasciata (Linnaeus, 1758) - five-lined skink ${ }^{242}$ | 26018 | 154** |
|  | Annona glabra L. - pond-apple ${ }^{243}$ | - |  |
| 2: t. 68. | Cnemtdophorus sexlmeatus (Linnaeus, 1766) - six-lined racerunner ${ }^{244}$ | - | - |
|  | Epidendrum nocturnum Jacq. - night scented orchid | 26019 | 199 |
| 2: t. 69. | Anaxyrus terrestris (Bonnaterre, 1789) - southern toad ${ }^{245}$ | 26020 | 54 * |
|  | Anaxyrus terrestris (Bonnaterre, 1789) - southern toad | 26023 | 113 * |
|  | Pyrophorus noctilucus (Linnaeus, 1758) - fire beetle | 26020 | 54 |
|  | Sarracenia minor Walter (left) - nodding pitcherplant ${ }^{246}$ | 26020 | $54 *$ |
|  | Sarracenia flava L. (right) - yellow pitcherplant ${ }^{247}$ | 26020 | 54 * |
| 2: t. 70. | Lithobates pipiens (Schreber, 1782) - northern leopard frog | 26021 | 72 |
|  |  | 26023 | 113 |
|  | Sarracenia purpurea L. - purple pitcherplant ${ }^{248}$ | 26021 | 72 * |
|  | Sarracenia purpurea L. - purple pitcherplant (leaf on right) | 26022 | 112 |
| 2: t. 71. | Hyla cmerea (Schneider, 1799) - green tree frog ${ }^{249}$ | 26023 | 113* |
|  | Peucetia virıdans (Hentz, 1832) - green lynx spider ${ }^{250}$ | 26024 | 92 |
|  | Symplocarpus foetidus (L.) Salisb. ex W.P.C. Barton - skunk cabbage | 26024 | 92 |
| 2: t. 72. | Lithobates catesbeianus (Shaw, 1802) - bullfrog ${ }^{251}$ | 26025 | 33 |


| Catesby | Scientific Name \& Common Name | RL | AHE |
| :---: | :---: | :---: | :---: |
|  | Cypripedium acaule Aiton - pink lady's-slipper ${ }^{252}$ | 26026 | 77 * |
| 2: t. 73. | Sciurus niger Linnaeus, 1758 - eastern fox squirrel ${ }^{253}$ | 26028 | 134* |
|  | Cypripedium pubescens Willd. - greater yellow lady's-slipper ${ }^{254}$ | 26027 | 219 * |
| 2: t. 74. | Sciurus carolinensis J.F. Gmelin, 1758 - eastern gray squirrel ${ }^{255}$ | 26029 | 155* |
|  | Prosthechea boothiana (Lindl.) W.E. Higgins - dollar orchid | 26030 | 18 |
| 2: t. 75. | Tamias striatus (Linnaeus, 1758) - eastern chipmunk ${ }^{256}$ | 26032 | 73 * |
|  | Sideroxylon foetidissimum Jacq. - false mastic | 26031 | 179 |
|  | Caly canthus floridus L. - eastern sweetshrub |  |  |
|  | Carya sp. - hickory (nut) - not published | 26032 | 73 |
| 2: t. 76. | Glaucomys volans (Linnaeus, 1758) - southern flying squirrel eating a common persimmon ${ }^{257}$ | 26034 | 174 * |
|  | Diospyros virginiana L. - common persimmon ${ }^{288}$ | 26033 | 179 * |
| 2: t. 77. | Glaucomys volans (Linnaeus, 1758) - southern flying squirrel ${ }^{29}$ | 26036 | 115* |
|  | Catopsis berteroniana (Schult.f.) Mez - powdery strap airplant | 26035 | 114 |
| 2: t. 78. | Urocyon cinereoargenteus (Schreber, 1778) - common gray fox ${ }^{260}$ | 26038 | 135* |
|  | Spigelia marilandica (L.) L. - Indianpink ${ }^{261}$ | 26037 | 200 * |
| 2: t. 79. | Geocapromys ingrahami Allen, 1891 - Bahaman hutia | 26039 | 55 |
|  | Bourreria baccata Raf. (above) - bodywood ${ }^{262}$ | 25996 | 178 * |
|  | Magnolia virginiana L. - sweetbay - not published | 26040 | 157 |
| 2. t. 80. | Magnolia tripetala (L.) L. - umbrella magnolia ${ }^{263}$ | 26041 | 158* |
|  | Magnolia tripetala (L.) L. - umbrella magnolia (fruit only) | 26012 | 240 |
| -1743- |  |  |  |
| 2: t. 81. | Swietenia mahagoni (L.) Jacq. (top and right) - West Indian mahogany ${ }^{264}$ | 26042 | 136 * |
|  | Phoradendron rubrum (L.) Griseb. (bottom left) - mahogany mistletoe ${ }^{265}$ | 26058 | $97^{*}$ |
| 2: t. 82. | Bignonia capreolata L. - cross vine | 26043 | 56 |
| 2. t. 83. | Papilio glancus (Linnaeus, 1758) - tiger swallowtail ${ }^{266}$ | 26045 | 93 * |
|  | Ptelea trifoliata L. - common hoptree | 26045 | 93 |
| 2: t. 84. | Actias luna (Linnaeus, 1758) - luna moth ${ }^{267}$ | 26046 | 137* |
|  | Actias luna (Linnaeus, 1758) - luna moth cocoon (upper right corner) | 26046 | 137 |
|  | Philadelphus inodorus L. (above) - scentless mock-orange ${ }^{268}$ | 26046 | 137* |
|  | Smilax smallii Morong (below; twining) - lanceleaf greenbrier ${ }^{269}$ | 26046 | 137 |
| 2: t. 85. | Asimina triloba (L.) Dunal - pawpaw ${ }^{270}$ | 26047 | 119 * |
| 2: t. 86. | Hyalophora cecropla (Linnaeus, 1758) - cecropia moth ${ }^{271}$ | 26048 | 138* |
|  | Annona reticulata L. - netted pawpaw | 26048 | 138 |
| 2: t. 87. | Manilkara jaimiqui (C. Wright) Dubard subsp. emarginata (L.) Cronquist - wild dilly ${ }^{272}$ | 26049 | 78 * |
|  | Ipomoea microdactyla Griseb. - calcareous morning-glory | 26049 | 78 |
| 2: t. 88. | Danaus plexippus (Linnaeus, 1758) - monarch butterfly ${ }^{273}$ | 26050 | 159* |
|  | Encyclia plicata (Lindl.) Schltr. (left) - pleated encyclia | 26050 | 159 |
|  | Prosthechea cochleata (L.) W.E. Higgins (right) - clamshell orchid ${ }^{274}$ | 26050 | 159* |
|  | Prosthechea boothiana (Lindl.) W.E. Higgins (above left)dollar orchid - not published | 26050 | 159 |
| 2: t. 89. | Dissosterra carolnnus (Linnaeus, 1758) - Carolina grasshopper ${ }^{275}$ | 26051 | 13 * |
|  | Tillandsia balbisiana Schult.f. - northern needlelea ${ }^{276}$ | 26051 | 13 * |
| 2: t. 90. | Antheraea polyphemus (Cramer, 1775), sen. lat. - polyphemus | 26053 | 14 |


| Catesby | Scientific Name \& Common Name moth | RL | AHE |
| :---: | :---: | :---: | :---: |
|  | Talipariti tiliaceum (L.) Fryxell - tree hibiscus | 26052 | 180 |
| 2: t. 91. | Anthercaea polyphemus (Cramer, 1775), sen. lat. - polyphemus moth ${ }^{277}$ | 26053 | 14 * |
|  | Cordia sebestena L. - geiger-tree ${ }^{275} 8$ | 26054 | 139* |
|  | Ipomoea carolina L. - tievine ${ }^{279}$ | 26054 | 139 * |
| 2: t. 92. | Plumeria rubra L. - frangipani ${ }^{280}$ | 26055 | $19^{*}$ |
| 2: t. 93. | Plumeria obtusa L. - Singapore frangipani ${ }^{281}$ | 26056 | 57 * |
|  | Passiflora cuprea L. - no common name ${ }^{282}$ | 26056 | 57 * |
| 2: 1. 94. | Citheronia regalis (Fabricius, 1793) - horned devils caterpillar ${ }^{283}$ | 25988 | 151* |
|  | Coccoloba diversifolia Jaeq. - pigeon-plum | 26057 | 220 |
| 2: t. 95. | Zerynthia rumina (Linnaeus, 1758) - Spanish festoon ${ }^{284}$ |  |  |
|  | Hippomane mancinella L. (above) - manchineel ${ }^{285}$ | 26058 | 97* |
|  | Dendropemon purpureus (L.) Krug \& Urb. (below) - smooth leechbush ${ }^{286}$ | 26058 | 97* |
| 2: t. 96. | Utetheisa bella (Linnaeus, 1758) - ornate moth ${ }^{287}$ | 26059 | 175 * |
|  | Coccoloba uvifera (L.) L. - sea-grape ${ }^{288}$ | 26059 | 175 * |
| 2: t. 97. | Papilo glaucus Linnaeus, 1758 - tiger swallowtail | 26044 | 74 |
|  | Pithecellobium $\times$ bahamense Northr. - Bahaman cat's claw | 26060 | 37 |
| 2: t. 98. | Kalmia latifolia L. - mountain laurel (composite drawing) ${ }^{289}$ | 26061 | 58 * |
|  | Kalmia latifolia L. - mountain laurel (original drawing) | 26062 | 98 |
|  | Kalmia latifolia L. - mountain laurel (below, right branch) | 26046 | 137 |
| 2: t. 99. | Clusia rosea Jacq. - Scotch attorney ${ }^{290}$ | 26063 | 20 * |
| 2: t. 100. | Protographtum marcellus (Cramer, 1777) - zebra swallowtail ${ }^{291}$ | 26064 | 34 * |
|  | Catesbaea spinosa L. - lily thorn ${ }^{2892}$ | 26064 | $34 *$ |
| -1747- |  |  |  |
| 2App.: t. 1. | Tympanuchus cupido (Linnaeus, 1758) - greater prairie chicken ${ }^{293}$ |  |  |
|  | Primula meadia (L.) Mast \& Reveal - pride-of-Ohio ${ }^{294}$ | 26065 | 38 * |
| 2App.: t. 2. | Scolopendra alternans Leach, 1813 (probably) - Florida Keys centipede | 26067 | 194 |
|  | Hamamelis virginiana L. - witch hazel ${ }^{295}$ | 26066 | $39^{*}$ |
| 2App.: t. 3. | Crotophaga ani Linnaeus, 1758 -smooth-billed ani ${ }^{296}$ | 26068 | 104* |
|  | Cypripedium acaule Aiton - pink lady's-slipper ${ }^{297}$ | 26069 | 35 * |
| Catesby | Scientific Name \& Common Name | RL | AHE |
| 2App.: t. 4. | Megarhyssa atrata (Fabricius, 1781) - giant ichneumon wasp | 26069 | 35 |
|  | Rhus glabra L. - smooth sumac | 26071 | 99 |
| 2App.: t. 5. | Icterus icterus (Linnaeus, 1766) - troupial ${ }^{298}$ | 26070 | 5* |
|  | Chalybion califoricum (de Saussure, 1867) - blue mud wasp ${ }^{299}$ | 26070 | 5* |
|  | Pancratium maritimum L. - sea-daffodi ${ }^{300}$ | 26070 | $5 *$ |
| 2App.: t. 6. | Theobroma cacao L. - caca ${ }^{301}$ | 26072 | 79 * |
| 2App.: t. 7. | Vanilla mexicana Mill. - Mexican vanilla ${ }^{302}$ | 26073 | 59 * |
| 2App.: t. 8. | Chaetura pelagica (Linnaeus, 1758) - chimney swift ${ }^{303}$ | 26075 | 144 * |
|  | Lilium philadelphicum L. - wood lily | 26074 | 160 |
| 2App.: t. 9. | Anacardium occidentale L. - cashew ${ }^{304}$ | 26076 | 40 * |
| 2App.: t. 10 | . Ardea herodias Linnaeus, 1758 - great blue heron ${ }^{305}$ | 26078 | 125 * |
|  | Ambystoma maculatum (Shaw, 1802; in bill) - spotted salamander ${ }^{306}$ | 26018 | 154 * |
|  | Hypercompe scribonia (Stoll, 1787) - giant leopard moth (top right $)^{307}$ | 26077 | 94 |



## Footnotes

Lectotypes and syntypes associated with Catesby's published plant images are noted along with an indication the author(s) who designated each lectotype. Plates devoted only to animals were not reviewed by Reveal in 2009 although in an appendix an attempt was made, when possible, to assign each a scientific and common name. Here, all 220 images are discussed with a reference to whom cited a Catesby image when a new animal taxon was proposed. The code of nomenclature for
zoology does not consider an image to be a type so neotypes occasionally have been designated for names based in whole or part on a published Catesby etching. No effort has been made here to ascertain whom or where such neotypes have been effectively published. To avoid any hint as to the type status for any zoological name only a reference to the basionym or presently accepted name is given here. Nonetheless, as may be seen, many of the animals were known to Linnaeus and other authors only from the published image.
${ }^{1}$ Linnaeus (1766: 124) under Falco leucocephalus; two references, one image. The fish may be the gray mullet, Mugil cephalus; Linnaeus made no reference to Catesby in describing the mullet.
${ }^{2}$ Gmelin (1788: 263) under Falco carolmensis, a synonym; four references and four images. Linnaeus did not cite this image in his works; see footnote 1 for the fish.
${ }^{3}$ Linnaeus (1758: 90); the only reference cited.
${ }^{4}$ Linnaeus (1758:89) under Falco forficatus; the only reference cited.
${ }^{5}$ Linnaeus (1758: 90); the only reference cited.
${ }^{6}$ Linnaeus (1758:86) under Vultur aura; six citations and one of two images
${ }^{7}$ Linnaeus (1758: 92) under Strix asio; the only reference cited.
${ }^{8}$ Forster (1771a: 13) under Caprimulgus minor; the only reference cited. Gmelin (1789: 1028) under Caprimulgus virginianus; eight references and five images. Wilson (1812: 71) discussed the Catesby published etching but did not base his name on that image.
${ }^{9}$ Linnaeus (1758: 428) under Gryllus gryllotalpa; eleven references, five with images. Scudder (1862: 426) under Gryllotalpa longipennis; the only reference cited.
${ }^{10}$ Linnaeus (1758: 111) under Cuculus americanus; the only reference cited.
${ }^{11}$ Linnaeus (1753: 998) under Fagus pumila (syntype); lectotype: Clayton 927 (BM-Clayton), designated by Johnson (1988: 41).
${ }^{12}$ Linnaeus (1758: 101) under Psittacus paradisa; the only reference cited.
${ }^{13}$ Linnaeus (1758: 97) under Psittacus caroliniensis; the only reference cited.
${ }^{14}$ Linnaeus (1753: 1003) under Cupressis' distıcha (syntype); lectotype: Herb. Linn. No. 1137.2 (LINN), designated by Wijnands (1983: 196).
${ }^{15}$ Linnaeus (1758: 109) under Monedula quiscula; two references and one image.
${ }^{16}$ Linnaeus (1766: 161) under Oriolus phoeniceus; six reference and three images.
${ }^{17}$ Miller (1768: Myrica no. 3) under Myrica carolmnensts; lectotype: [icon.] Catesby Nat. Hist. Carolina 1: t. 13. 1729, designated by Wilbur (2002: 39).
${ }^{18}$ Linnaeus (1758: 179) under Fringilla oryzivora; two references and one image.
${ }^{19}$ Linnaeus (1753: 333; syntype); lectotype: Herb. Linn. No. 460.1 (LINN), designated by Meikle (1985: 1716).
${ }^{20}$ Linnaeus (1758: 106) under Corvus cristatus; the only reference cited.
${ }^{21}$ Linnaeus (1753: 1030; syntype); lectotype: Clayton 617, Herb. Linn. No. 1182.9 (LINN), designated by Reveal in Jarvis (2007: 858).
${ }^{22}$ Linnaeus (1758: 113) under Picus principalis; the only reference cited.
${ }^{23}$ Linnaeus (1753: 994; syntype); lectotype: Clayton 780 (BM-Clayton), designated by Reveal et al. (1987: 233).
${ }^{24}$ Linnaeus (1758: 113) under Picus pileatus; three references and two images.
${ }^{25}$ Linnaeus (1753: 994) under Quercus phellos var. $\beta$; Miller (1768: Quercus no. 16); neotype: [icon.] Catesby, Nat. Hist. Carolina 1: t. 17. 1729, designated by Reveal (2009: 280).
${ }^{26}$ Linnaeus (1758: 112) under Cuculus auratus; the only reference cited.
${ }^{27}$ Linnaeus (1753: 995) under Quercus prinus (syntype), a rejected name.
${ }^{28}$ Linnaeus (1758: 113) under Picus carolinus; the only reference cited.
${ }^{29}$ Linnaeus (1766: 175) under Picus villosus; three references and one image.
${ }^{30}$ Linnaeus (1753: 996) under Quercus nigra var. $\beta$; Münchhausen (1770: 253); lectotype: [icon.] Catesby, Nat. Hist. Carolina 1: t. 19. 1729, designated by Reveal et al. (1987: 232).
${ }^{31}$ Linnaeus (1758: 113) under Picus erythrocephalus; the only reference cited.
${ }^{32}$ Linnaeus (1753: 995; syntype); see Reveal (2009: 281) for a discussion of the nomenclatural problems associated with the current typification of this name.
${ }^{33}$ Linnaeus (1753: 111; syntype); lectotype: Herb. Linn. No. 135.1 (LINN), designated by Reveal et al. (1987: 215).
${ }^{34}$ Linnaeus (1766: 176) under Picus varmus; two references and one image.
${ }^{35}$ Linnaeus (1766: 175) under Picus pubescens; two references and one image.
${ }^{36}$ Linnaeus (1753: 996; syntype); lectotype: Herb. Linn. No. 1128.6 (LINN), designated by Nixon and Barrie in Jarvis (2007: 783).
${ }^{37}$ Linnaeus (1753: 996) under Quercus rubra var. $\beta$.
${ }^{38}$ Latham (1790: 263); numerous references and at least five images.
${ }^{39}$ Latham (1790: 262); numerous references and at least four images.
${ }^{40}$ Linnaeus (1753: 994) under Quercus phellos var. $\gamma$, neotype of Q. incana W. Bartram (1791: 378, 403): [icon.] Catesby, Nat. Hist. Carolina 1: t. 22. 1730, designated by Reveal (2009: 282); syntype of $Q$. cinerea Michx. (1801: 8).
${ }^{41}$ Linnaeus (1758: 164) under Columba macroura; see footnote no. 43, below; Linnaeus (1766: 285) under Columba migratorta; four references and one image.
${ }^{42}$ Linnaeus (1753: 996) under Quercus rubra; Michaux (1801: 17) under $Q$. catesbaei; lectotype: [icon.] Catesby, Nat. Hist. Carolina 1: t. 23. 1730, designated by Howard and Staples (1983: 525).
${ }^{43}$ Linnaeus (1758: 164) under Columba macroura; two references and one image. Linnaeus (1766: 286) under Columba carolinensts, a synonym; four references and two images, see footnote 41, above.
${ }^{44}$ Linnaeus (1753: 505; syntype); lectotype: Herb. Linn. No. 667.1 (LINN), designated by Reveal in Jarvis et al. (1993: 77).
${ }^{45}$ Linnaeus (1758: 164) under Columba leucocephala; three references and two images.
${ }^{46}$ Linnaeus (1758: 165) under Columba passerme; seven references and images.
${ }^{47}$ Linnaeus (1753: 270); lectotype: [icon.] Catesby, Nat. Hist. Carolina 1: t. 26. 1730, designated by Reveal (2009: 284).
${ }^{48}$ Linnaeus (1758: 169) under Turrdus polyglottos; four references and two images.
${ }^{49}$ Linnaeus (1753: 117; syntype); lectotype: Clayton 51 (BM-Clayton), designated by Reveal et al. in Jarvis (2007: 448) where, in one place, "Clayton 23 " (the number on the herbarium sheet but seemingly not a Clayton collection number) is given.
${ }^{50}$ Linnaeus (1758: 169) under Turchus rufus; the only reference cited.
${ }^{51}$ Linnacus (1753: 473). See Gandhi et al. (2009: 312) and the discussion in Reveal (2009: 286). As pointed out by Gandhi et al., the Catesby watercolor is Prunus virginiana but the discussion and Catesby's published plate (t. 28) is a composite of the choke cherry, P. virgmiana (inflorescences), and the black cherry, $P$. serotina Ehrh. (leaves). A proposal to conserve $P$. virginiana to maintain current use has yet to be acted upon. The traditional type of $P$. virginica, J. Clayton 627 (BM-Clayton), supposedly selected by Mackenzie (1928: 235; but see Jarvis 2007: 785 who maintains that indeed Mackenzie designate a lectotype), is a gathering of $P$. serotina. As a result, $P$. virginiana, unless conserved on the specimen suggested by Gandhi et al. is adopted, must be applied to the black cherry or alternatively (as discussed by Reveal et al. [1989: 217]) the name has equal priority with Itea virginica L. At the moment, the nomenclaturally correct name for the choke cherry is P. canadensis L (Sp. Pl., ed. 2, 1: 678. 1762) but is not adopted here awaiting a final decision.
${ }^{52}$ Linnaeus (1766: 292); three references and one image.
${ }^{53}$ Linnaeus (1753: 961; syntype); lectotype: Kalm s.n., Herb. Linn. No. 1071.1 (LINN).
${ }^{54}$ Linnaeus (1758: 169); the only reference cited.
${ }^{55}$ Linnaeus (1753: 1026) under Pistacta simaruba (syntype); lectotype: [icon.] Sloane, Voy. Jamaica Nat. Hist. 2: t. 199. 1725, designated by Wijnands (1983: 55).
${ }^{56}$ Linnaeus (1753: 125; syntype); lectotype: Herb. Linn. No. 173.3 (LINN), designated by González et al. (in Greuter and Rankin Rodriguez, 2004: 10).
${ }^{57}$ Linnaeus (1758: 166) under Alauda alpestris; the only reference cited.
${ }^{58}$ Linnacus (1758: 167) under Alauda magna; the only reference cited.
${ }^{59}$ Linnaeus (1758: 180) under Fringilla erythrophthalma; the only reference cited.
${ }^{60}$ Linnaeus (1753: 1034) under Populus balsamtfera (syntype).
${ }^{61}$ Linnaeus (1758: 183) under Fringilla hyemalis; the only reference cited.
${ }^{62}$ Linnaeus (1753: 387; syntype); lectotype: Kalm s.n., Herb. Linn. No. 551.3 (LINN), designated by Wallace (1975: 31).
${ }^{63}$ Linnaeus (1758: 183) under Fringllla zena (the only reference cited), non Linnaeus (1758: 181); Linnaeus (1766: 324) under Fringilla bicolor, two references and one image.
${ }^{64}$ Linnaeus (1753: 624) under Bignonia leucoxylon (syntype); Linnaeus (1763: 870) under $B$. pentaphylla, nom. tlleg,
${ }^{65}$ Linnaeus (1758: 172) under Loxta cardinalts; nine references and eight images.
${ }^{66}$ Linnaeus (1753: 997) under Juglans alba (syntype); J. glabra (Miller, 1768: Juglans no.5) has yet to be lectotypified.
${ }^{67}$ Linnaeus (1758: 175) under Loxia caerulea; the only reference cited.
${ }^{68}$ Linnaeus (1753: 535) under Magnolia virginiana var. glabra, lectotype: [icon.] Catesby, Nat. Hist. Carolina 1: t. 39. 1730, designated by Dandy (1958: 112); the only reference cited.
${ }^{69}$ Linnaeus (1758: 176) under Loxta violacea, the only reference.
${ }^{70}$ Linnaeus (1759: 1000) under Amyris toxifera, lectotype: [icon.] Catesby, Nat. Hist. Carolina 1: t. 40. 1730, designated by Howard (1989: 99).
${ }^{71}$ Gmelin (1789: 923) under Fringilla purpurea; five references and four images.
${ }^{72}$ Marshall (1785: 97); neotype: [icon.] Catesby, Nat. Hist. Carolina 1: t. 41. 1730, designated by Howard and Staples (1983: 533).
${ }^{73}$ Linnaeus (1758: 181) under Fringilla zena; the only reference.
${ }^{74}$ Linnaeus (1753: 625) under Bignonia caerulea; lecotype: [icon.] Catesby, Nat. Hist. Carolina 1: t. 42. 1730, designated by Dandy (1958: 112).
${ }^{75}$ Linnaeus (1758: 181) under Fringilla tristis; the only reference cited.
${ }^{76}$ Marshall (1785: 54); neotype: [icon.] Catesby, Nat. Hist. Carolina 1: t. 43. 1730, designated by Reveal (2009: 294).
${ }^{77}$ Linnaeus (1758: 179) under an unnamed variant of Emberiza ciris; the only reference cited.
${ }^{78}$ Linnaeus (1753: 783) under Hypericum lasianthus; lectotype: [icon.] Catesby, Nat. Hist. Carolina 1: t. 44. 1730, designated by Reveal in Jarvis (2007: 583).
${ }^{79}$ Linnaeus (1766:315) under Tanagra cyanea, two references and two images.
${ }^{80}$ Linnaeus (1753: 339) under Trillium cermuum (syntype).
${ }^{81}$ Linnaeus (1758:95) under Ampelts garrulus $\beta$ (Linnaeus, 1758: 95); the only reference cited. Also erroneously cited under Certhia pimus Linnaeus (1766: 187), as one of three references and two images; see 1: t. 61 and footnote 109.
${ }^{82}$ Linnaeus (1759: 1066; syntype); lectotype: P. Miller s.n., Herb. Linn. No. 660.1 (LINN), designated by Nicely (1965; 66).
${ }^{83}$ Linnaeus (1758: 187) under Motacilla sialis, two references and images cited.
${ }^{84}$ Miller (1768: Smilax no. 3) under Smilax humilis, a rejected name; lectotype: [icon.] Catesby, Nat. Hist. Carolina 1: t. 47. 1730, designated by Reveal (2000: 297).
${ }^{85}$ Linnaeus (1758: 108) under Coractas galbula; the only reference cited. Linnaeus (1766: 162) under Oriolus baltimora, a synonym; two references and images.
${ }^{86}$ Linnaeus (1753: 535; syntype); lectotype: [icon.] Herb. Clifford: 223, Litrodendron No. 1A (BM), designated by Reveal in Jarvis et al. (1993: 62).
${ }^{87}$ Linnaeus (1766: 162) under Oriolus spurius; two references and images.
${ }^{88}$ Walter (1788: 64), a new name based on Bignonia catalpa (Linnaeus 1753: 622); lectotype: [icon.] Catesby, Nat. Hist. Carolina 1: t. 49. 1730, designated by Reveal et al. (1990: 17). Walter, who
cited Linnaeus as the basis for his names, did not propose a new species as suggested by Ward (2007: 1098), contrary to his (Ward 2010) objections on a similar case.
${ }^{89}$ Linnaeus (1758: 171) under Turdus virens; the only reference cited.
${ }^{90}$ Linnaeus (1753:340) under Trillium sessile; lectotype: Clayton 856 (BM-Clayton), designated by Freeman (1975: 11).
${ }^{91}$ Linnaeus (1766: 344) under Hirundo purpurea, a synonym; three references and one image.
${ }^{92}$ Linnaeus (1753: 1032) under Cissampelos smilacina, a synonym; lectotype: [icon.] Catesby, Nat. Hist. Carolina 1: t. 51. 1730, designated by Howard and Staples (1983: 532). No known material of Minispermum carolinum (Linnaeus 1753: 340) resulted in the designation of a neotype (Godfrey \& Tryon 373) by Reveal and Jarvis (2009: 980).
${ }^{93}$ Linnaeus (1758: 170) under Turdus crinitus; the only reference cited.
${ }^{94}$ Linnaeus (1753: 1030); lectotype: [icon.] Catesby, Nat. Hist. Carolina 1: t. 52.1730 , designated by Fernald (1944: 38).
${ }^{95}$ Linnaeus (1753: 623) under Bignonta sempervirens (syntype); lectotype: [icon.] Plukenet, Almagest. Bot.: 359, ad t. 112, f. 5. 1696, designated by Ornduff (1970: 7).
${ }^{96}$ Linnaeus (1766: 327) under Muscicapa oltvaceus; three references and two images.
${ }^{97}$ Linnaeus (1767: 509 \& 105) under Hopea tinctoria (syntype); lectotype: Herb. Linn. No. 942.1 (LINN), designated by Howard and Staples (1983: 538).
${ }^{98}$ Linnaeus (1758:94) under Lannus tyrannius; two references and two images.
${ }^{99}$ Linnaeus (1753: 259) under Laurus sassafras (syntype): lectotype: Kalm s.n., Herb. Linn. No. 518.21 (LINN), designated by Reveal (2009: 301).
${ }^{100}$ Linnaeus (1758: 181) under Fringilla rubra; the only reference cited.
${ }^{101}$ Linnaeus (1753: 999; syntype); lectotype: Herb. Linn. No. 1133.5 (LINN), designated by Reveal (2009: 301).
${ }^{102}$ Linnaeus (1766: 340) under Parus bicolor; two references and two images.
${ }^{103}$ Linnaeus (1753: 151) under Azalea viscosa (syntype); lectotype: Kalm s.n., Herb. Linn. No. 215.4 (LINN), designated by Kron (1993: 329).
${ }^{104}$ Linnaeus (1766:342) under Parus virgmianus, a synonym; two references and one image.
${ }^{105}$ Linnaeus (1763: 1346) under Arethusa divaricata (syntype); lectotype: Clayton 635, Herb. Linn. No. 1059.3 (LINN), designated by Catling and Gregg (1992: 70).
${ }^{106}$ Reichenbach (1853: 253) under Certhola bahamensts; the only reference cited.
${ }^{107}$ Jacquin (1797:37) under Gardemia chusiffolia (syntype); no lectotype designated.
${ }^{108}$ Linnaeus (1753: 1058; syntype); lectotype: Clayton s.n. (BM-Clayton), designated by Reveal (1992: 470).
${ }^{109}$ Linnaeus (1766: 187) under Certhra pmus; three references and two images. The name (due the citation of Edwards by Linnaeus) was long misapplied to the blue-winged warbler now known as Vermivora cyanoptera Olson \& Reveal (2009).
${ }^{110}$ Linnaeus (1753: 1055; syntype); lectotype: Kalm s.n., Herb. Linn. No. 1225.7 (LINN), designated by Murray (1981: 6).
${ }^{111}$ Linnaeus (1753: 370) under Laurus borbonia (syntype); lectotype: [icon.] Catesby, Nat. Hist. Carolina 1: t. 63. 1731, designated by Kopp (1966: 44).
${ }^{112}$ Linnaeus (1758: 190) under Parus americanus; the only reference cited.
${ }^{113}$ Linnaeus (1759: 1044) under Halesia carolina (syntype); lectotype: [icon.] Stephen Hales commemorative plate by G.D. Ehret, designated by Reveal and Seldin (1976: 133). Neotype of H. tetraptera: Reveal \& Seldm 3832 (BM).
${ }^{114}$ Linnaeus (1758: 120) under Trochilus colubris; two references and images.
${ }^{115}$ Linnaeus (1753:624) under Bignonia radicans; lectotype: [icon.] Catesby, Nat. Hist. Carolina 1: t. 65. 1731, designated by Dandy (1958: 112).
${ }^{116}$ Linnaeus (1766: 328) under Musctcapa carolmensis; two references and one image.
${ }^{117}$ Linnaeus (1753: 176; syntype); lectotype: Herb. Linn. No. 567.1 (LINN), designated by Sleumer (1967: 75).
${ }^{118}$ Linnaeus (1758: 186) under Motacilla ruticilla; four references and three images.
${ }^{119}$ Linnaeus (1753: 997; syntype); lectotype: Herb. Linn. No. 1129.5 (LINN), designated by Reveal et al. (1987: 226).
${ }^{120}$ Linnaeus (1758: 175) under Loxta nigra; two references and images.
${ }^{121}$ Linnaeus (1753: 8; syntype); lectotype: Herb. Linn. No. 21.1 (LINN), designated by Reveal (in Jarvis et al. 1993: 33).
${ }^{122}$ Linnaeus (1758: 115) under Alcedo alcyon; two references and three images.
${ }^{123}$ Linnaeus (1753: 1024) under Myrica cerifera (syntype); lectotype: Clayton 692 (BM-Clayton), designated by Parra-Osorio (2001: 136).
${ }^{124}$ Linnaeus (1758: 153) under Rallus carolmus; two references and images. Linnaeus (1766: 263) under Rallus vifginianus, a synonym; two references and one image.
${ }^{125}$ Linnaeus (1753: 288) under Gentiana saponaria (syntype); lectotype: Kalm s.n., Herb. Linn. No. 328.8 (LINN), designated by Pringle (1967: 2). Neotype of G. catesbaet is folio 50 (BMWalter), des ignated by Fernald (1947: 176).
${ }^{126}$ Linnaeus (1758: 150); the only reference cited.
${ }^{127}$ Linnaeus (1753: 394) under Andromeda arborea (syntype); lectotype: Clayton 613 (BM-Clayton), designated by Vander Kloet (in Cafferty and Jarvis, 2003: 752).
${ }^{128}$ Linnaeus (1758: 139); numerous references and images.
${ }^{129}$ Linnaeus (1758: 139); numerous references and images.
${ }^{130}$ Linnaeus (1758: 142) under Ardea americana, two references and images.
${ }^{131}$ Linnaeus (1758: 143) under Ardea caerulea; five references and three images.
${ }^{132}$ Linnaeus (1763: 971) under Malva abutiloides; lectotype: [icon.] Dillenius, Hort. Eltham. 1: t. 1. 1732, designated by Reveal (2009: 310).
${ }^{133}$ Linnaeus (1758: 143) under Ardea violacea; the only reference cited.
${ }^{134}$ Linnaeus (1753: 929) under Lobelia plumieri (syntype); lectotype: [icon.] Catesby, Nat. Hist. Carolina 1: t. 79. 1731, designated by Jeffrey (1980: 543).
${ }^{135}$ Linnaeus (1758: 144) under Ardea virescens; three references and images.
${ }^{136}$ Linnaeus (1753: 1057) under Fraxinus americana (syntype); lectotype: Herb. Linn. No. 1230.3 (LINN), designated by Fernald (1946: 391). Miller (1768: Fraxinus, no. 6) proposed $F$. caroliniana; Neotype: [icon.] Catesby, Nat. Hist. Carolina 1: t. 80. 1731, designated by Reveal (2009: 311).
${ }^{137}$ Linnaeus (1758: 140) under Tantahus loculator, a synonym; three references and one image.
${ }^{138}$ Linnaeus (1758: 145) under Scolopax alba; the only reference cited.
${ }^{139}$ Linnaeus (1758: 145) under Scolopax fusca, a synonym; the only reference cited.
${ }^{140}$ Linnaeus (1758: 145) under Scolopax rubra; six references and three images.
${ }^{141}$ Linnaeus (1758: 152) under Haematopus ostralegus; eight references and four images.
${ }^{142}$ Linnaeus (1758: 134) under Pelecanus piscator; six references and two images.
${ }^{143}$ Linnaeus (1758: 137) under Sterna stolida; four references and two images.
${ }^{144}$ Linnaeus (1758: 136); the only reference cited.
${ }^{145}$ Linnaeus (1758: 138); three references and one image.
${ }^{146}$ Linnaeus (1758: 136) under Colymbus podiceps; the only reference cited.
${ }^{147}$ Linnaeus (1758: 123) under Anas canadensis; four references and five images.
${ }^{148}$ Linnaeus (1758: 124); the only reference cited.
${ }^{149}$ Linnaeus (1759: 1227) under Buphthalmum arborescnes (syntype); lectotype: Clayton 242 (BMClayton), designated by Reveal (in Jarvis and Turland, 1998: 355).
${ }^{150}$ Linnaeus (1758: 129) under Mergus cucullatus; the only reference cited.
${ }^{151}$ Linnaeus (1758: 125) under Anas bucephala; the only reference cited.
${ }^{152}$ Linnaeus (1758: 128) under Anas sponsa; three references and two images.
${ }^{153}$ Linnaeus (1758: 125) under Anas rustica, a synonym; the only reference cited.
${ }^{154}$ Linnaeus (1766: 205) under Anas discors $\beta$; two references and one image.
${ }^{155}$ Linnaeus (1766: 205); three references and one image.
${ }^{156}$ Edwards, 1771 [2]: 1); the only reference cited.
${ }_{158}^{157}$ Linnaeus (1758: 313) under Esox vulpes; the only reference cited.
${ }^{158}$ Linnaeus (1766: 485) under Perca chrysoptera, two references and one image.
${ }^{159}$ Linnaeus (1766: 513) under Salmo foetens; two references and one image.
${ }^{160}$ Linnaeus (1766:483) under Perca undulata; two references and one image.
${ }^{161}$ Walbaum (1792: 351) under Perca rufus; the only reference cited.
${ }^{162}$ Linnaeus (1766: 470) under Sparus rhomboides, two references and one image.
${ }^{163}$ Linnaeus (1758: 292) under Perca venenosa; the only reference cited.
${ }^{164}$ Linnaeus (1766:488) under Perca formosa, two references and one image.
${ }^{165}$ Linnaeus (1766: 520) under Mugll albula; three references and one image.
${ }^{166}$ Linnaeus (1758: 291) under Perca punctata, a synonym; the only reference cited.
${ }^{167}$ Linnaeus (1758: 292) under Perca melanura; the only reference cited.
${ }^{168}$ Linnaeus (1758: 293) under Perca saltatrix; the only reference cited. Linnaeus (1766: 486) under Perca sectatrix "corrected" the spelling, the epithet used by Catesby, although "K. spectator" is often used.
${ }^{169}$ Cuvier (1829: 147) under Pomotis vulgaris, a synonym; the only reference cited.
${ }^{170}$ Linnaeus (1758: 283) under Labrus griseus; the only reference cited.
${ }^{171}$ Linnaeus (1766:507) under Teuthis hepatus; five references and three images.
${ }^{172}$ Linnaeus (1758: 287) under Labrus fulvis; the only reference cited.
${ }^{173}$ Walbaum (1792: 228) under Mugil cmereus; three references and one image.
${ }^{174}$ Linnaeus (1758: 284) under Labrus rufus; the only reference cited.
${ }^{175}$ Linnaeus (1758: 288) under Labrus radiatus; the only reference cited.
${ }^{176}$ Linnaeus (1766: 482) under Perca alburmus; two references and one image.
${ }^{177}$ Linnaeus (1758: 292) under Serranus guttatus; five references and three images.
${ }^{178}$ Linnaeus (1766: 491) under Gasterosteus saltatrix; two references and one image.
${ }^{179}$ Walbaum (1792: 261) under Labrus maximus; the only reference cited. Cuvier (1829: 257) under Lachnolatmus suillus, a synonym; the only reference cited.
${ }^{180}$ Linnaeus (1766:471) under Sparus chrysops; two references and one image.
${ }^{181}$ Linnaeus (1858: 280) under Sparus synagris, the only reference cited.
${ }^{182}$ Linnaeus (1758:312); five references and three images.
${ }^{183}$ Edwards (1771(2): 1) under Coryphaena coerulea; the only reference cited.
${ }^{184}$ Linnaeus (1758:327) under Balistes monoceros; three references and one image.
${ }^{185}$ Linnaeus (1758:244) under Muraena helena; five references and three images.
${ }^{186}$ Cuvier (1829:352) under Muraena mormga; the only reference cited.
${ }^{187}$ Linnaeus (1758: 801) under Gorgonta ceratophyta; four references and three images.
${ }^{188}$ Linnaeus (1758: 329); four references and two images.
${ }^{189}$ Linnaeus (1758: 305), under Silurus catus; two references and one image.
${ }^{190}$ Linnaeus (1766:519) under Argentina carolna, a synonym; two references and one image.
${ }^{191}$ Linnaeus (1758: 282) under Labrus anthias; two references and one image.
${ }^{192}$ Linnaeus (1758: 260) under Echeneis remora; four references and three images.
${ }^{193}$ Linnaeus (1753: 981; syntype); lectotype: Hort. Clifford 439.1 (BM-Clifford), designated by Webster (1956: 2).
${ }^{194}$ Linnaeus (1758: 269) under Pleuronectes lunatus; the only reference cited.
${ }^{195}$ Michaux (1803: 244) under Laurus catesbyana (syntype); lectotype: [icon.] Catesby, Nat. Hist. Carolina 2: t. 28. 1734, designated by Howard and Staples (1983: 528).
${ }^{196}$ Bonnaterre (1788: 96, pl. 50, fig. 193) under Scarus viridis; the only reference cited. Lacepede (1802: 16) under Scarus catesby, sometimes cited as "catesbaet" or "catesbyi"; the only reference cited.
${ }^{197}$ Linnaeus (1758:313) under Esox osseus; three references and images.
${ }^{198}$ The identity of this plant continues to be frustrating. In spite of Catesby's declaration that his plant had 6 -merous flowers, 4 -merous capsules, and a height of twelve feet, the general feeling of
most botanists continues to be that this plant is representative of a species of Hypericum with the shrubby H. prolificum L . the most likely candidate. This species occurs within the areas visited by Catesby in both Virginia and South Carolina, but flowering in the winter, as stated by Catesby, is questionable although it is possible he saw some individual flowers at that time.
${ }^{199}$ Shaw (1803:325) under Chaetodon catesbeil; the only reference cited.
${ }^{200}$ Linnaeus (1758: 626) under Cancer ruricola; four references and two images.
${ }^{201}$ Linnaeus (1759: 1000; syntype); lectotype: [icon.] Catesby, Nat. Hist. Carolina 2: t. 33. 1734, designated by Howard (1988: 557).
${ }^{202}$ Linnaeus (1758: 631) under Cancer diogenes; three references and two images.
${ }^{203}$ Linnaeus (1758: 626) under Cancer vocans; two references and images. The earlier Cancer arenarius Edwards (1771[2]: 1) is suppressed; also Ocypoda albicans Bose (1802: 196) with an indirect reference to Catesby.
${ }^{204}$ Linnaeus (1758: 630) under Cancer grapsus; two references, two images.
${ }^{205}$ Linnaeus (1758: 627) under Cancer graulatus; two references, one image.
${ }^{206}$ Edwards (1771[2]: 1) under Cancer erythropus; the only reference cited.
${ }^{207}$ Pallas (1766: 198) under Gorgonia muricata; six references and five images.
${ }^{208}$ Linnaeus (1758: 197) under Testudo caretta; four references and two images; see also 2: t. 40.
${ }^{209}$ Linnaeus (1758:222) questionable cited under Coluber nebulatus; two references and two images.
${ }^{210}$ Linnaeus (1753" 394) under Andromeda racemosa (syntype); lectotype: Kalm s.n., Herb. Linn. No. 563.15 (LINN), designated by Howard and Staples (1983: 524).
${ }^{211}$ Forster (1771b: 364) under Coluber erythrogaster; the only reference cited.
${ }^{212}$ Linnaeus (1753: 1042) under Clutia cascarilla, a synonym; lectotype of C. cascarilla: [icon.] Catesby, Nat. Hist. Carolina 2: t. 46. 1736, designated by Dandy (1958: 112).
${ }^{213}$ Linnaeus (1758: 226) under Cohber mycterizans; four references and five images.
${ }^{214}$ Linnaeus (1753: 111; syntype); lectotype: Herb. Linn. No. 136.1 (LINN), designated by Moldenke (1936: 306).
${ }^{215}$ Linnaeus (1766:385) under Coluber constrictor; two references and one image.
${ }^{216}$ Linnaeus (1753: 706; syntype); lectotype: [icon.] Catesby, Nat. Hist. Carolina 2: t. 49. 1736, designated by Reveal (in Jarvis and Turland, 1997: 469).
${ }^{217}$ Linnaeus (1766:385) under Coluber saurita; two references and one image.
${ }^{218}$ Linnaeus (1753:371) under Laurus winterana (syntype); lectotype: Herb. Clifford: 488, Winterana 1 (BM), des ignated by Reveal (2009: 324).
${ }^{219}$ Linnaeus (1766:385) under Coluber saurita; see also footnote 216.
${ }^{220}$ Linnaeus (1753: 380) under Caesalpinia brasiliensis (syntype); lectotype: [icon.] Plumier, "Caesalpinia polyphylla, aculeis horrida," Codex Boerhaavianus, Groningen University Library, Rijksuniversiteit, Groningen, designated by Lewis and Reveal (in Jarvis et al. 1993: 28).
${ }^{221}$ Linnaeus (1766:382) under Coluber getulus; two references and one image.
${ }^{222}$ Linnaeus (1766:379) under Coluber ordinatus, a synonym; four references and two images.
${ }^{223}$ Linnaeus (1756: 12) under Vinca lutea (syntype); lectotype: [icon.] Catesby, Nat. Hist. Carolina 2: t. 53. 1736, designated by Dandy (1958: 112).
${ }^{224}$ Shaw (1802: 475) under Coluber flagellum; the only reference cited.
${ }^{225}$ Linnaeus (1766:373) under Boa contortrix; three references and two images.
${ }^{226}$ Linnaeus (1762: 434; syntype); lectotype: [icon.] Trew, PI. Select.: t. 11. 1751, designated by Reveal (in Jarvis 2007: 633).
${ }^{227}$ Linnaeus (1766:387) under Coluber aestivus; two references and one image.
${ }^{228}$ Linnaeus (1753: 125) under Ilex cassine var. $\beta$.
${ }^{229}$ Linnaeus (1766:378) questionably cited under Coluber fasclatus; two references and one image.
${ }^{230}$ Linnaeus (1766:391) under Anguis ventralis; two references and one image.
${ }^{231}$ Linnaeus (1766:385) questionably cited under Coluber guttatus; two references and one image.
${ }^{232}$ Linnaeus (1753: 154) under Convolvulus batatas (syntype); lectotype: Herb. Linn. No. 77.5 (S), designated by Biju (2002: 755); also lectotype of Ipomoea catesbaei GF.W. Mey. (1818; 103), designated by Reveal (2009: 331).
${ }^{233}$ Linnaeus (1759: 1082; syntype); lectotype: [icon.] Miller, Fig. Pl. Gard. Dict. 2: t. 172. 1757, designated by Vázquez-G. (1994: 5); also lectotype of Magnolia virginiana var. foetida (Linnaeus 1753: 536), designated by Reveal (2009: 331).
${ }^{234}$ Linnaeus (1758: 44) under Viverra putorius; two references and one image.
${ }^{235}$ Linnaeus (1758: 200) under Lacerta crocodilus; numerous references and images.
${ }^{236}$ Linnaeus (1758:206) questionably cited under Lacerta Iguana, numerous references and images. Indirectly cited by Cuvier (1829: 45) under Iguana cychlura.
${ }^{237}$ Linnaeus (1753: 537; syntype); lectotype: [icon.] Catesby, Nat. Hist. Carolina 2: t. 64. 1738, designated by Dandy (1958: 112).
${ }^{238}$ Voigt (1832: 71) translated a Cuvier (1829:50) phrase in French into a Latin binomial wherein Catesby is cited in error ( t .66 instead of t. 65); the only reference cited.
${ }^{239}$ Linnaeus (1753: 999; syntype); lectotype: Kalm s.n., Herb. Linn. No. 1134.1 (LINN), designated by Wijnands (1983: 109).
${ }^{240}$ Linnaeus (1758: 208) under Lacerta bullaris, a suppressed name; the only reference cited.
${ }^{241}$ Linnaeus (1753: 384; syntype); lectotype: Herb. Linn. No. 538.1 (LINN), designated by Howard and Staples (1983: 529).
${ }^{242}$ Linnaeus (1758: 209) under Lacerta fasciata; the only reference cited. Later cited under Plestiodon quanquelineatum var $\beta$. Lacerta quinquelineatum Linnaeus (1766: 366) is a synonym; the only reference cited.
${ }^{243}$ Linnaeus (1753: 537; syntype); lectotype: [icon.] Catesby, Nat. Hist. Carolina 2: t. 67. 1738, designated by Dandy (1958: 112)
${ }^{244}$ Linnaeus (1766:364) under Lacerta sixlmeata (as" "6-lineata"); two references and one image.
${ }^{245}$ Bonnaterre (1789: 8) under Rana terrestris; the only reference cited.
${ }^{246}$ Elliott (1821: 11) under Sarrcenta $\times$ minor (pro sp., syntype).
${ }^{247}$ Linnaeus (1753: 510; syntype); lectotype: [icon.] Catesby, Nat. Hist. Carolina 2, t. 69. 1738, designated by McDaniel (1971: 15).
${ }^{248}$ Linnaeus (1753: 510; syntype); conserved type: Baldwin \& Breitung 2910 (K), designated by Cheek et al. (1997: 781).
${ }^{249}$ Shaw (1802: 136) under Rana bilmeata, a synonym; the only reference cited.
${ }^{250}$ Hentz (1832: 106), under Sphasus viridans, made no reference to Catesby. Until now this spider has not been identified.
${ }^{251}$ Linnaeus (1766: 356) under Rana ocellata, five references and four images, see Lavilla et al. (2010).
${ }^{252}$ Linnaeus (1753: 951) under Cypripedtum calceolus var. $\gamma$, lectotype of C. vittatum Vell. var. planum Raf. (1833: 44) is [icon.] Catesby, Nat. Hist. Carolina 2: t. 72. 1738, designated by Howard and Staples (1983: 516).
${ }^{253}$ Linnaeus (1758: 64); the only reference cited.
${ }^{254}$ Linnaeus (1753: 951) under Cypripedum calceolus var. $\beta$; lectotype of $C$. vittatum Vell. var. tortile Raf. (1833: 44) is [icon.] Catesby, Nat. Hist. Carolina 2: t. 73. 1738, designated by Howard and Staples (1983: 516).
${ }^{255}$ Linnaeus (1758: 64) under Sciurus cinereus; three refereces and one image.
${ }^{256}$ Linnaeus (1758: 64) under Schurius striatus; four references and two images.
${ }^{257}$ Linnaeus (1758: 64) under Schurus volans; seven references and three images.
${ }^{258}$ Linnaeus (1753: 1057; syntype); lectotype: Kalm s.n., Herb. Linn. No. 1231.4 (LINN), designated by Reveal (in Jarvis 2007: 482).
${ }^{259}$ Linnaeus (1758: 64) under Schurus volans; seven references and three images.
${ }^{260}$ Schreber (1778: 361, 585, pl. 92B) under Cants virgimianus, a synonym (Wozencraft 2005: 582); the only reference cited. The Schreber image, drawn by Nufsbiegel and engraved by Kretsch,
is a near copy of Catesby's own illustraton. Catesby is briefly mentioned by Schreber (1776: 361) under another name, a taxon now known as C. cinereoargenteus Schreber (1776:360, 585 [as "argenteus"], pl. 92 [as cinereo argenteus]). The full citation on the plate, "Canis cinereo argenteus Briss.," was taken from from Brisson (1756: 241) who actually wrote "Canis ex cinereus argenteus" as a phrase name, his binomial being Vulpes cinerea. It is likely that the correct epithet for the gray fox, unless conserved, should be argenteus not cinereoargenteus.
${ }^{261}$ Linnaeus (1753: 175) under Lonicera marllandica (syntype); lectotype: Clayton s.n. (BMClayton), des ignated by Reveal et al. (1987: 230).
${ }^{262}$ Linnacus (1759:936) under Cordia bourrerta (syntype); lectotype P. Browne s.n., Herb. Linn. No. 254.2 (LINN), designated by Stearn (1971: 620).
${ }^{263}$ Linnaeus (1753: 536; syntype); lectotype: [icon.] Catesby, Nat. Hist. Carolina 2: t. 80. 1738, designated by Dandy (1958: 112).
${ }^{264}$ Linnaeus (1759: 940) under Cedrela mahag[ont] syntype); lectotype: [icon.] Catesby, Nat. Hist. Carolina 2: t. 81. 1743, designated by Dandy (1958: 112).
${ }^{265}$ Linnaeus (1753: 1023) under Viscum rubrum (syntype); lectotype: [icon.] Catesby, Nat. Hist. Carolina 2: t. 81. 1743, designated by Dandy (1958: 112).
${ }^{266}$ Linnaeus (1758: 463) under Papllo anttlochus, a synonym; two references and two images.
${ }^{267}$ Linnaeus (1758: 496) under Phalaena hina; three references and two images.
${ }^{268}$ Linnaeus (1753: 470; syntype); lectotype: [icon.] Catesby, Nat. Hist. Carolina 2: t. 84. 1743, designated by Dandy (1958: 112).
${ }^{269}$ Reveal and Jarvis (2009: 981) lectotypified Smilax lanceolata L. on the Plukenet (1691: t. 110, f. 4) plate cited by Linnaeus unaware of the existence of a second original element, a mislabeled sheet in the Clifford herbarium (Herb. Clifford: 459, Smilax no. 2B; Acosta and Greuter 2010: 287). The Linnaean name is a synonym of $S$. tamnotdes L .
${ }^{270}$ Linnaeus (1753: 537) under Annona triloba (syntype); lectotype: [icon.] Catesby, Nat. Hist. Carolina 2: t. 85. 1743, designated by Dandy (1958: 112).
${ }^{271}$ Linnaeus (1758: 496) under Phalaena cecropia; the only reference cited.
${ }^{272}$ Linnaeus (1753: 512) under Sloanea emarginata (syntype); lectotype: [icon.] Catesby, Nat. Hist. Carolina 2: t. 87. 1743, designated by Dandy (1958: 112).
${ }^{273}$ Linnaeus (1758: 471) under Papitlo plexippus; four references and five images.
${ }^{274}$ Linnaeus (1763: 1351) under Epidendrum cochleatum (syntype); lectotype: [icon.] Plumier in Burman, Pl. Amer.: t. 185, fig. 2. 1758, designated by Garay and Sweet in R.A. Howard (1974: 163).
${ }^{275}$ Linnaeus (1758: 433) under Gryllus carolinus; the only reference cited.
${ }^{276}$ Linnaeus (1753:286) questionably cited under Renealmia polystachia (syntype).
${ }^{277}$ Linnaeus (1758: 496) questionably cited under Phalaena paphac, two references and two images.
${ }^{278}$ Linnaeus (1753: 190; syntype); lectotype: [icon.] Sloane, Voy. Jamaica 2: t. 164. 1725, designated by J.S. Miller in Cafferty and Jarvis (2004: 801).
${ }^{279}$ Linnaeus (1753: 160; syntype); lectotype: [icon.] Catesby, Nat. Hist. Carolina 2: t. 91. 1743, designated by Dandy (1958: 112).
${ }^{280}$ Linnaeus (1753: 209; syntype); lectotype: [icon.] Sloane, Voy. Jamaica 2: t. 185, f. 1. 1725, designated by Wijnands (1983: 44)
${ }^{281}$ Linnaeus (1753: 209; syntype); lectotype: [icon.] Catesby, Nat. Hist. Carolina 2: t. 93. 1743, designated by Dandy (1958: 112).
${ }^{282}$ Linnaeus (1753: 995; syntype); lectotype: [icon.] Catesby, Nat. Hist. Carolina 2: t. 93. 1743, designated by Reveal (2009: 351).
${ }^{283}$ Edwards (1771[2]:2) under Eruca maximacornuta, a suppressed name; the only reference cited.
${ }^{284}$ Linnaeus (1758: 480) under Paptlio rumina; the only reference cited.
${ }^{285}$ Linnaeus (1753: 1191; syntype); lectotype: [icon.] Sloane, Voy. Jamaica 2: t. 159. 1725, designated by Wijnands (1983: 103).
${ }^{286}$ Linnaeus (1753: 1023) under Viscum purpureum (syntype); lectotype: [icon.] Catesby, Nat. Hist. Carolina 2: t. 95.1743 , designated by Dandy (1958: 112).
${ }^{287}$ Linnaeus (1758:534) under Phalaena bella, three references and images.
${ }^{288}$ Linnaeus (1753: 365) under Polygonum uvifera (syntype); lectotype: Herb. Linn. No. 511.1 (LINN), designated by Brandbyge (1989: 39).
${ }^{289}$ Linnaeus (1753: 391; syntype); lectotype: [icon.] Plukenet, Amalth. Bot.: t. 379, f. 6. 1705, designated by Reveal (in Jarvis et al. 1993: 58).
${ }^{290}$ Jacquin (1760: 34; syntype); lectotype: [icon.] Catesby, Nat. Hist. Carolina 2: t. 99. 1743, designated by D'Arcy (1981: 986).
${ }^{291}$ Cramer (1777: 4, t. 98, f. F, G) under Papilio marcellus, a questionable validly established binomial.
${ }^{292}$ Linnaeus (1753: 109; syntype); lectotype: Catesby, Nat. Hist. Carolina 2: t. 100. 1743, designated by Dandy (1958: 112).
${ }^{293}$ Linnaeus (1758: 160) under Tetrao cuptdo; two references and images.
${ }^{294}$ Linnaeus (1753: 144) under Dodecatheon media (syntype); lectotype: [icon.] Catesby, Nat. Hist. Carolina 2App.: t. 1. 1747, designated by Dandy (1958: 112).
${ }^{295}$ Linnaeus (1753: 124; syntype); lectotype: Kalm s.n., Herb. Linn. No. 169.1 (LINN), designated by Reveal (in Jarvis et al. 1993: 52).
${ }^{296}$ Linnaeus (1758: 105); six references and four images.
${ }^{297}$ Rafinesque (1833: 44) under Cypripedium catesbianum (syntype); lectotype: [icon.] Catesby, Nat. Hist. Carolina 2App.: t. 3. 1747, designated by Howard and Staples (1983:516).
${ }^{298}$ Linnaeus (1758: 108) under Coracias xanthornus, in error; three references and two images. Linnaeus (1766: 161) under Ortolus tcterus; nine references and eight ima ges.
${ }^{299}$ Linnaeus (1767: 941) questionably cited under Sphex caerulea, a later homonym; two references and images.
${ }^{300}$ Linnaeus (1753: 291) under Pancratium carolinianum (syntype); lectotype: [icon.] Catesby, Nat. Hist. Carolina 2App.: t. 5. 1747, designated by Dandy (1958: 112).
${ }^{301}$ Linnaeus (1753: 782; syntype); lectotype: [icon.] Sloane, Voy. Jamaica 2: t. 160, 1725, designated by Dorr (in Jarvis et al. 1993: 93).
${ }^{302}$ Miller (1768: Vanilla no. 1; syntype); lectotype: [icon.] Catesby, Nat. Hist. Carolina 2App.: t. 7. 1747, designated by Reveal (2009: 359).
${ }^{303}$ Linnaeus (1758: 192) under Hirundo pelagica; the only reference cited.
${ }^{304}$ Linnaeus (1753: 383; syntype); lectotype: Herb. Hermann 3: 50, No. 165 (BM), designated by Faweett and Rendle (1926: 6).
${ }^{305}$ Linnaeus (1758: 143), questionable cited; two references and two images.
${ }^{306}$ Linnaeus (1766: 370) under Lacerta punctata, a homonym, non Linnaeus (1758: 209); the only reference cited. Shaw (1802: 304); the only reference cited.
${ }^{307}$ Stoll (1787: 177) under Phalcena scribonta without any direct reference to Catesby, also known as Ecpantheria scribonia.
${ }^{308}$ Linnaeus (1758:614) under Pulex penetrans; three references and one image.
${ }^{309}$ Linnaeus (1758: 349) under Scarabaeus pllularius; four references and images.
${ }^{310}$ Linnaeus (1758: 249) apparently under Scarabaeus pilularius, see footnote 305.
${ }^{311}$ Linnaeus (1753: 303; syntype); lectotype: Herb. Linn. No. 420.6 (LINN), designated by Adams and Dress (1982: 172).
${ }^{312}$ Linnaeus (1758: 161) under Tetrao virginianus; the only reference cited.
${ }^{313}$ Linnaeus (1753: 292) under Amaryllis atamasca (syntype); lectotype: Hort. Clifford 135.4 (BMClifford), designated by Reveal (in Jarvis 2007: 284).
${ }^{314}$ Linnaeus (1758: 188) under Motacilla regulus; seven references and six images. Linnaeus (1766: 337) described M. calendula from Pennsylvania but maintained the Catesby reference under $M$. regulus.
${ }^{315}$ Linnaeus (1753: 698; syntype); lectotype: Clayton 734, Herb. Linn. No. 876.1 (LINN), designated by Spongberg (1974: 194).
${ }^{316}$ Linnaeus (1758: 134); seven references and five images.
${ }^{317}$ Linnaeus (1758: 131) under Procellaria pelagica, nine references and four images.
${ }^{318}$ Linnaeus (1758: 582) under Mutlla occidentalis; two references and images.
${ }^{319}$ Linnaeus (1753: 536) under Magnolia virgmiana L. var. acuminata L. (syntype); lectotype: [icon.] Catesby, Nat. Hist. Carolina 2App.: t. 15, excluding the flower, designated by Dandy (1958: 112).
${ }^{320}$ Linnaeus (1758: 193) under an unnamed variety of Caprimulgus europaeus; two references and images. Forster (1771a: 13) under Caprimulgus minor; the only reference cited.
${ }^{321}$ Linnaeus (1753: 1058; syntype); lectotype: Kalm s.n., Herb. Linn. No. 1237.1 (LINN), designated by Reveal (1991: 473).
${ }^{322}$ Linnaeus (1753: 391; syntype); lectotype: Herb. Linn. No. 560.2 (LINN), designated by Southall and Hardin (1974: 18) with a second lectotypification by Ebinger (1974: 367).
${ }^{323}$ Linnaeus (1753: 392; syntype); lectotype: [icon.] Catesby, Nat. Hist. Carolina 2App.: t. 17. 1747, designated by Chamberlain (in Cafferty and Jarvis 2003: 753).
${ }^{324}$ Linnaeus (1758:59) under Mus leporinus; the only reference cited.
${ }^{325}$ Miller (1768: Ficus no. 10; syntype); lectotype: [icon.] Catesby, Nat. Hist. Carolina 2App.: t. 18. 1747, designated by Reveal (2009: 364).
${ }^{326}$ Linnaeus (1758: 307) under Silurus cataphractus; two references and images.
${ }^{327}$ Linnaeus (1758: 72) under Bos bison; seven references and three images.

## ACKNOWLEDGEMENTS

Dr. Mark Skinner (USDA) kindly provided insight on Liluum. Dr. Melissa A. Luckow at Cornell University confirmed some identifications of Fabaceae. Dr. Benjamin Torke of the New York Botanical Garden identified the Catesby sketch of Vachellia choriophylla. Dr. Daniel B. Ward of the University of Florida provided insight on the names proposed by Thomas Walter. Dr. Kraig Adler also of Cornell identified a few snakes that had gone unnamed or misnamed for decades. Dr. Rowland Shelley of the Museum of Natural Sciences in North Carolina provided possible names for a centipede. Dr. Paul Opler commented on the butterflies. Dr. Patsy A. McLaughlin of Western Washington University provided insights on the nomenclature of hermit crabs. Dr. Wojciech J. Pulawski of the Department of Entomology at the California Academy of Sciences identified a Sphecidae wasp that has gone unnamed until now. Dr. John Calhoun of the Florida Museum of Natural History has provided critical information on moths, and Dr. Robert F.C. Naczi of the New York Botanical Garden was able to identify the green lynx spider, apparently from some kind of personal experience. Drs. Mary Alice Coffroth and Howard Lasker at the University of Buffalo named various marine gorgonian animals. Dr. Charlie Jarvis (BM) has long been supportive of the effort to evaluate Catesby's illustrations and a fountain of information about Linnaean types and typification in general.

Special thanks are extended to the staffs of the Sherardian Herbarium at Oxford University, The Natural History Museum, London, and the Linnean Society of London. My review of the facsimiles of Catesby's watercolors and several copies and editions of Catesby at Cornell University was made possible by Dr. David Corson of the Kroch Library and Mr. Frank Brown of the Mann Library at Cornell. My thanks, too, to Lady Jane Roberts of the Royal Library, Windsor Castle, England, and Susan Fugate, National Agricultural Library, Beltsville, Maryland. Of considerable use are the notes on Catesby in the Elsa G. Allen Papers in the Division of Rare and Manuscript Collections at Cornell.

Funding was provided by the U.S. Fish \& Wildlife Service, National Science Foundation, U.S. Department of Agriculture, University of Maryland, College Park, and Cornell University.

## LITERATURE CITED

Acosta, L.F. and W. Greuter. 2010. Typification of the name Smilax lanceolata L. Taxon 59: 287287.

Adams, R.M. and W.J. Dress. 1982. Nodding Lilium species of eastern North America (Liliaceae). Baileya 21:165-188.
Bartram, W. 1791. Travels through North \& South Carolina, Georgia, East \& West Florida, the Cherokee country, the extensive territories of the Muscogulges, or Creek Confederacy, and the country of the Chactaws; containing, an account of the soil and natural productions of those regions, together with observations on the manners of the Indians. Embellished with copperplates. James \& Johnson, Philadelphia.
Biju, S.D. 2002. Lectotypification of two Linnaean specific names in Convolulaceae. Taxon 51: 755-756.
Bonnaterre, J. 1788. Encyclopédie méthodique, tableau encelopédique et méthodique des trois règnes de la nature ... Ichthyologie. Panckoucke, Paris.
Bonnaterre, J. 1788. Tableau encyclopédie et méthodique des trois règnes de la nature ... Erpétologie. Panckoucke, Paris.
Bosc, L.A.G. 1802. Histoire naturelle des crustacés, contenant leur Description et leur moeurs; avec figures dessinées d'après nature. Tome premier. Deterville, Paris.
Brandegee, J. 1989. Polygonaceae. Fl. Ecuador 38: 1-62.
Brisson, A.D. 1756. Regnum animale in classes IX distributum, sive synopsis methodica sistens generalem animalium distributionem in Classes IX, \& duarum primarum classium, Quadrupedum scilicet et Cetaceorum, particularein divisionem in ordines, sections, genera \& species. Cum brevi cujusque specie description, citationibus auctorum de iis tractantium nominibus eis $a b$ ipsis \& nationibus impositis, nominibusque vulgaribus. J.-B. Bauche, Paris.
Cafferty, S. and C.E. Jarvis. 2003. Typification of Linnaean plant names in Ericaceae. Taxon 51: 751-753.
Cafferty, S. and C.E. Jarvis. 2004. Typification of Linnaean plant names in Boraginaceae. Taxon 53: 799-805.
Catesby, M. 1728. Proposals, for printing an essay, towards a natural history of Florida, Carolina and the Bahama islands: Containing the figures of birds, beasts, fishes, serpents, insects and plants; particularly, the forest trees, shrubs, and other plants, not hitherto described, remarkable for their rarity, virtues, \&c. To which will be added, in English and French, their descriptions, and history; together with observations of the air, soil and waters; with an account of the agriculture, grain, pulse, roots, \&c. With maps of the countries treated of to the whole, is prefixed a new and correct map of the countries treated of. By Mark Catesby; assisted and encouraged by others. Published by the author, London.
Catesby, M. 1729-1747. The natural history of Carolina, Florida and the Bahama Islands: Containing the figures of birds, beasts, fishes, serpents, insects, and plants: Particularly, the forest-trees, shrubs, and other plants, not hitherto described, or very incorrectly figured by the authors. Together with their descriptions in English and French. To which, are added observations on the air, soil, and waters: With remarks upon agriculture, grain, pulse, roots, \&c. To the whole is prefixed a new and correct map of the countries treated. Published by the author, London.
Catesby, M. 1750. Piscium, serpentum, insectorum aliorumque nonnullorum animalium nec non plantarum quarumdam Imagines quas Marcus Catesby in posteriore parte splendidi illius operis quo Carolinae Floridae et Bahamensium Insularum tradidit historiam naturalem, ejusque appendice descripsit vivis coloribus pictas edere coeperunt Nicolaus Fridericus Eisenberger et Georgius Lichtensteger $=$ Die Abbildungen verschiedener Fische, Schlangen, Insecten, einiger andern Thiere, und Pflanzen, welche Herr Marcus Catesby im zweyten Theil, und im Anhang seines vortreflichen Werks der natürlichen Historie von Carolina, Florida und den Bahamischen

Inseln, beschrieben in ihren natürlichen farben vorgestellet herausgegeben von Nicolaus Friedrich Eisenberger und Georg Lichtensteger. J.J. Gleischmann, Nürnberg.
Catesby, M. 1754. The natural history of Carolina, Florida, and the Bahama Islands; containing the figures of birds, beasts, fishes, serpents, insects, and plants; particulary the forest-trees, shrubs, and other plants, not hitherto described, or very incorrectly figured by authors. Together with their descriptions in English and French. To which are added, observations on the air, soil, and waters; with remarks upon agriculture, grain, pulse, roots, \&c. To the whole is prefixed a new and correct map of the countries treated of. Revis'd by Mr. Edwards. C. Marsh, T. Wilcox \& B. Stichall, London.

Catesby, M. 1755. Die Beschreibung von Carolina, Florida und den Bahamischen Inseln, worinnen von der Luft, dem Boden, dem Wasser, den Einwohnern, den vierfüssigen Thieren, den Fischen, Pflanzen etc. dieser Länder umständliche und zuverlässige Nachricht mitgetheilet wird; zu erst nebst einer neuen und genauen Charta dieser Länder in engl. u. franz. Sprach hrsg. von Marcus Catesby; nunmehr aber i.d. Deutsche übersetzet v. Georg Leonhard Huth. J.M. Seligmann, Nürnberg.
Catesby, M. 1763. Hortus Britanno-Americanus: or, a curious collection of trees and shrubs, the produce of the British Colonies in North America; adapted to the soil and climate of England. With observations on their constitution, growth and culture and idrections how they are to be collected, packed up, and secured during their passage. W. Richardson \& S. Clark for J. Ryall, London.
Catesby, M. 1767. Hortus Europae americanus, or, a collection of 85 curious trees and shrubs, the produce of North America, adapted to the climates and soils of Great-Britain, Ireland, and most parts of Europe, \&c together with their blossoms, fruits and seeds, observations on their culture, growth, constitution and virtues, with directions how to collect, pack up and secure them in their passage. J. Millan, London.
Catesby, M. 1768-1776. Histoire naturelle de la Caroline, la Floride et les isles Bahama, contenant les desseins des oiseaux, animaux \&c., et en particulier des arbres, des forets, arbrisseaux et autres plantes, avec une carte nouvelle des pais dont il s'agist. J.M. Seligmann, Nürnberg.
Catesby, M. 1771. The natural history of Carolina, Florida, and the Bahama Islands; containing the figures of birds, beasts, fishes, serpents, insects, and plants; particularly, those not hitherto described, or incorrectly figured by former authors, with their descriptions in English and French. To which is prefixed, a new and correct map of the countries; with observations on their natural state, inhabitants, and productions. Revised by Mr. Edwards ... To the whole is now added a Linnean index of the animals and plants. B. White, London.
Catesby, M. 1777. Piscium, serpentum, insectorum aliorumque nonnullorum animalium nec non plantarum quarumdam imagines quas Marcus Catesby in posteriore parte splendidi illius operis quo Carolinae Floridae et Bahamensium Insularum tradidit historiam naturalem, ejusque appendice descripsit vivis coloribus pictas edere coeperunt Nicolaus Fridericus Eisenberger et Georgius Lichtensteger et ad finem perduxerunt beati Georgii Wolfgangi Knorii heredes (Supplementa) : = Die abbildungen verschiedener fische, schlangen, insecten, einiger andern thiere, und pflanzen, welche Herr Marcus Catesby im zweyten theil, und im anhang seines vortreflichen werks der natürlichen historie von Carolina, Florida und den Bahamischen Inseln, beschrieben in ihren natuürlichen farben vorgestellet herausgegeben von Nicolaus Friedrich Eisenberger und Georg Lichtensteger und fortgesetzt von Georg Wolfgang Knorr seel. erben. J. Felseker. Nürnberg.

Catesby, M. 1974. The natural history of Carolina, Florida, and the Bahama Islands: Containing two hundred and twenty figures of birds, beasts, fishes, serpents, insects, and plants / by Mark Catesby; [rev. by Mr. Edwards]; with an introd. by George Frick, and notes by Joseph Ewan. Savannah, Georgia: Beehive Press.

Catesby, M. 1996. [facsimile edition] The Natural History of Carolina, Florida and the Bahama Islands, by Mark Catesby (1682-1749): The watercolour drawings for his figures of birds, beasts, fishes, serpents, insects, and plants. 3 vols. Alecto Historical Editions, London.
Catling, P.M. and K.B. Gregg. 1992. Systematics of the genus Cletstes in North America. Lindleyana 7: 57-73.
Cheek, M., D. Schnell, J.L. Reveal and J. Schlauer. 1997. Proposal to conserve the name Sarracenta purpurea (Sarraceniaceae) with a new type. Taxon 46: 781-783.
Cuvier, G. 1829. Le règne animal distribute d'après son organization, pour server de base a l'histoire naturelle des animaux et d'introduction a l'anatomie compare. Nouvelle edition, revue et argumentée. Tome II. Déterville, Paris.
Dandy, J.E. 1958. The Sloane Herbarium. Natural History (British Museum), London.
D'Arcy, W.G. 1981. Flora of Panama. Part VI. Family 123. Guttiferae. Ann. Missouri Bot. Gard. 67: 969-1043.
Ebinger, J.E. 1974. A systematic study of the genus Kalmia (Ericaceae). Rhodora 76: 315-398.
Edwards, G. 1771. A catalog of the animals and plants represented in Catesby's Natural History of Carolina with the Linnaean names, pp. 1-2. In: M. Catesby, The Natural History of Carolina, Florida and the Bahama Islands: Containing the figures of birds, beasts, fishes, serpents, insects, and plants: Particular those not hitherto described, or incorrectly figured by former authors, with their descriptions in English and French. To which is prefixed, a new and correct map of the countries; with observations on their natural states, inhabitants, and productions. By the late Mark Catesby, F.R.S. Revised by Mr. Edwards, of the Royal College of Physicians, London. To the whole is now added a Linnaean index of the animals and plants. 2 vols. Benjamin White, London. [The Edwards lists of modern scientific names usually appear at the front of each volume, both independently paginated from the rest of the volume. An index for the appendix usually appears in both volumes.]
Elliott, S. 1816-1824. A sketch of the botany of South-Carolina and Georgia. 2 vols. J.R. Schenck, Charleston.
Ewan, J. 1974. Notes, pp. 89-100. In: M. Catesby, The Natural History of Carolina, Florida and the Bahama Islands, Containing Two-hundred and Twenty Figures of Birds, Beasts, Fishes, Serpents, Insects, and Plants. With an introduction by George Frick and notes by Joseph Ewan. Beehive Press, Savannah, GA. [facsimile of 1771 edition]
Feduccia, A. (ed.) 1985. Catesby's Birds of Colonial America. Univ. North Carolina Press, Chapel Hill, NC.
Faweett, W. and A. B. Rendle. 1926. Flora of Jamaica containing descriptions of the flowering plants known from the island. Vol. 5, Part 3: Dicotyledons; Families Buxaceae to Umbelliferae. Trustees of the British Museum, London.
Fernald, M.L. 1944. Overlooked species, transfers and novelties in the flora of eastern North America (concluded). Rhodora 46: 32-57.
Fernald, M.L. 1946. Types of some American trees. J. Arnold Arbor. 27: 386-394.
Fernald, M.L. 1947. Additions to and substractions from the flora of Virginia (concluded). Rhodora 49: 194-196.
Forster, J.R. 1771a. A catalogue of the animals of North America. Containing an enumeration of the known quadrupeds, birds, reptiles, fish, insects, crustaceous, and testaceous animals; many of which are new, and never described before. To which are added, short directions for collecting, preserving, and transporting, all kinds of natural history curiosities. Benjamin White, London.
Forster, J.R. 1771 b. Travels through that part of North America formerly called Louisiana by Mr. Bossu, Captain in the French Marines. Translated from the French by Johann Reinhold Forster, F.A.S. Illustrated with notes relative chiefly to natural history. To which is added by the translator a systematic catalogue of all the known plants of English North-America, or, a Flora Americae Septentrionalis. together with an abstract of the most useful and necessary articles
contained in Peter Loefling's Travels through Spain and Cumana in South America. Referred to the pages of the original Swedish edition. T. Davis, London.
Freeman, J.D. 1975. Revision of Trillium subgenus Phyllantherum (Liliaceae). Brittonia 27: 1-62.
Frick, GF. 1974. Introduction, pp. 1-88. In: M. Catesby, The Natural History of Carolina, Florida and the Bahama Islands, Containing Two hundred and Twenty Figures of Birds, Beasts, Fishes, Serpents, Insects, and Plants. With an introduction by George Frick and notes by Joseph Ewan. Beehive Press, Savannah, GA. [facsimile of 1771 edition]
Frick, G.F. and R.P. Stearns. 1961. Mark Catesby, the Colonial Audubon. Urbana, Univ. Illinois Press.
Gandhi, K.N., J.L. Reveal and L. Brouillet. 2009. Proposal to conserve the names Prunus serottna and P. virginiana (Rosaceae) with conserved types. Taxon 58: 312-314.
Gmelin, J.F. 1788-1789. Caroli a Linné ... Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tom. I. G.M. Beer, Leipzig.
Greuter, W. and R. Rankin Rodríguez. 2004. Flora de la República de Cuba, Fascículo 9: Aquifoliaceae, Eriocaulaceae, Piperaceae. AR. Gantner Verlag, Ruggell, Liechtenstein.
Hentz N.M. 1832. On North American spiders. Amer. J. Arts Sci. 21: 99-109.
Howard, R.A. 1974. Flora of the Lesser Antilles: Leeward and Windward islands. Vol. 1. Arnold Arboretum, Harvard University, Cambridge.
Howard, R.A. 1988. Flora of the Lesser Antilles: Leeward and Windward islands. Vol. 4. Arnold Arboretum, Harvard University, Cambridge.
Howard, R.A. 1989. Flora of the Lesser Antilles: Leeward and Windward islands. Vol. 5. Arnold Arboretum, Harvard University, Cambridge.
Howard, R.A. and G.W. Staples. 1983. The modern names for Catesby's plants. J. Arnold Arbor. 64: 511-546.
Jacquin, N.J. 1797. Collectaneorum supplementum. Vol. 5. Wappleriana, Wien.
Jarvis, C. 2007. Order Out of Chaos. Linnaean Plant Names and Their Types. London: Linnean Society of London and Natural History Museum.
Jarvis, C., F.R. Barrie, D. Allan and J.L. Reveal. 1993. A list of Linnaean generic names and their types. Koeltz Scientific Books, Konigstein, Germany.
Jarvis, C. and N.J. Turland (eds.). 1998. Typification of Linnaean specific and varietal names in the Compositae (Asteraceae). Taxon 47: 347-370.
Jeffrey, C. 1980. On the nomenclature of the strand Scaevola species (Goodeniaceae). Kew Bull. 34: 537-545.
Johnson G.P. 1988. Revision of Castanea sect. Balanocastanon (Fagaceae). J. Arnold Arbor. 69: 2549.

Kopp, L.E. 1966. A taxonomic revision of the genus Persea in the Western Hemisphere (PerseaLauraceae). Mem. New York Bot. Gard. 14(1): 1-117.
Kron, K.A. 1993. A revision of Rhododendron section Pentanthera. Edinburgh J. Bot. 50:249-364.
Lacepède, C. la de. 1802. Histoire naturelle des poissons, par le citoyen la cepède. Tome Quatrième. Plassan, Paris.
Lavilla, E.O., J.A. Langone, U. Caramaschi, W.R. Heyer, and R.O. de Sá. 2010. The identification of Rana ocellata Linnaeus, 1758. Nomenclatural impact on the species currently known as Leptodactyhus ocellatus (Leptodactylidae) and Osteopilus brunneus (Gosse, 1851) (Hylidae). Zootaxa 2346: 1-16.
Linnaeus, C. 1753. Species plantarum, exhibentes plantas rite cognitas, ad genera relatas, cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas. 2 vols. L. Salvii, Stockholm.
Linnaeus, C. 1758-1759. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis, 10th ed. 2 vols. L. Salvii, Stockholm.

Linnaeus, C. 1762-1763. Species plantarum, exhibentes plantas rite cognitas, ad genera relatas, cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas, 2nd ed. 2 vols. L. Salvii, Stockholm.
Linnaeus, C. 1766-1768. Systema naturae, per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis, 12th ed. 2 vols. L. Salvii, Stockholm.
Mackenzie, K.K. 1928. The identification of Linnaean species. Rhodora 30: 232-237.
Marshall, H. 1785. Arbustrum americanum: The American grove, or, an alphabetical catalogue of forest trees and shrubs, natives of the American United States, arranged according to the Linnaean system. Containing, the particular distinguishing characters of each genus, with plain, simple and familiar descriptions of the manner of growth, appearance, \&c. of their several species and varieties. Also, some hints of their uses in medicine, dyes, and domestic oeconomy. Compiled from actual knowledge and observation, and the assistance of botanical authors. J. Crukshank, Philadelphia.
McBurney, H. 1997. Mark Catesby's Natural History of America. The Watercolors from the Royal Library Windsor Castle. Merrell Holberton, London.
McDaniel, S. 1971. The genus Sarracenia (Sarraceniaceae). Bull. Tall Timbers Res. Sta. 9: 1-36.
Meikle, R.D. 1985. Flora of Cyprus. Bentham Moxon Trust, Royal Botanic Gardens, Kew.
Meyer, A.R.W. and M.B. Pritchards (eds.). 1998. Empire's Nature: Mark Catesby's New World Vision. Univ. North Carolina Press, Chapel Hill.
Meyer, G.F.W. 1818. Primitiae florae essequeboensis adjectis descriptionibus centum circiter stirpium novarum, observationibusque criticis. H. Dieterich, Gottingae.
Michaux, A. 1801. Histoire de chênes de l'Amérique, ou descriptions et figures de toutes les espècees et varieties de Chênes de l'Amérique septentionale, considérées sous les rapports de la botanique, de leur culture et de leur usage. C. Crapelet, Paris.
Michaux, A. 1803. Flora boreali-Americana, sistens caracteres plantarum quas in America septentrionali collegit et detexit. C. Crapelet, Paris.
Miller, P. 1768. The gardeners dictionary: Containing the best and newest methods of cultivating and improving the kitchen, fruit, flower garden, and nursery; as also for performing the practical parts of agriculture: Including the management of vineyards, with the methods of making and preserving wine, according to the present practices of the most skil[l]ful vignerons in the several wine countries in Europe. Together with directions for propagating and improving, from real practices and experience, all sorts of timber trees. The eighth edition, revised and altered according to the latest system of botany; and embellished with several copper-plates, which were not in some former editions. 8th ed. Printed for the author, London.
Moldenke, H.N. 1936. A monograph of the genus Callicarpa as it occurs in America and in cultivation. Repert. Spec. Nov. Regni Veg. 39: 288-317.
Murray, A.E. 1981. Acer Notes No. 10. Kalmia 11: 2-8.
Nicely, K.A. 1965. A monographic study of the Calycanthaceae. Castanea 30: 38-81.
Olson, S.L. and J.L. Reveal. 2009. Nomenclatural history and a new name for the blue-winged warbler (Aves: Parulidae). Wilson J. Ornithol. 121: 618-620.
Ornduff, R. 1970. The systematics and breeding system in Gelsemium (Loganiaceae). J. Arnold Arbor. 51: 1-17.
Pallas, P.S. 1766. Elenchus zoophytorum sistens generum adumbrations generaliores et specierum cognitarum succinctas descriptions cum selectis auctorum synonymis. P. van Cleef, Hague.
Parra Osorio, C.A. 2001. Lectotypification and epitypification of Morella cerifera (L.) Small (Myricaceae). Caldasia 23: 135-137.
Plukenet, L. 1691. Leonardi Plukenetij Phytographia, sive stirpium illustriorum \& minus cognitarum icones, tabulis æneis, summa diligentia elaboratæ, quarum unaquaeq[ue] titulis desciptorijs, ex notis suis proprijs, \& characteristicis desumptis, insignita, ab alys ejusdem sortis facile discriminatur. Published by the author, London.

Pringle, J.S. 1967. Taxonomy of Gentiana, section Pneumonanthae, in eastern North America. Brittonia 19: 1-32.
Rafinsque, C.S. 1833. Genus Cypripedium. Herb. Raf. 2: 43-44.
Reveal, J.L. 1992. Typification of Nyssa aquatica L. (Nyssaceae). Phytologia 71: 468-471.
Reveal, J.L. 2000. Proposal to reject the name Smilax humilis (Smilacaceae). Taxon 49: 297.
Reveal, J.L. 2009. Mark Catesby's "Little Sparrow." Living Bird 28(1): 32-33.
Reveal, J.L. 2009. Identification of the plant and associated animal images in Catesby's Natural History, with nomenclatural notes and comments. Rhodora 111: 273-388.
Reveal, J.L., C.R. Broome, M.L. Brown, and G.F. Frick 1987. On the identity of Maryland plants mentioned in the first two editions of Linnaeus' Species Plantarum. Huntia 7: 209-245.
Reveal, J.L. and C.E. Jarvis. 2009. Typification of names of temperate North American plants proposed by Linnaeus. Taxon 58: 977-984.
Reveal, J.L., C.E. Jarvis, and F.R. Barrie. 1990. On the typification of Btgnonta catalpa L. (Bignoniaceae). Bartonia 56: 17-18.
Reveal, J.L. and M.J. Seldin. 1976. On the identity of Halesia carolina L. (Styracaceae). Taxon 25: 123-140.
Schreber, J.C.D. 1778. Die Säugthiere in Abbildungen nach der Natur. Vol. 3. Expedition des Schreber'schen Saugthier- und des Esper'schen Schmetterlingswerkes, Erlangen.
Scudder, S.H. 1862. Materials for a monograph of the North American Orthoptera. Boston J. Nat. Hist. 7: 409-480.
Seligmann, J.M. 1770-1773. Recueil de divers Oiseaux étrangers et peu communs, qui se trouvent dans les ouvrages de MM Edwards et Catesby. Histoire naturelle de la Caroline, la Floride et les isles Bahama. J.M. Seligmann, Nürnberg.
Sleumer, H. 1967. Monographia clethracearum. Bot. Jahrb. Syst. 87: 36-175.
Southhall, R.M. \& J.W. Hardin. 1974. A taxonomic revision of Kalmta (Ericaceae). J. Elisha Mitchell Sci. Soc. 90: 1-23.
Spongberg, S.A. 1974. A review of deciduous-leaved species of Stewartia (Theaceae). J. Arnold Arbor. 55: 182-214.
Stearn, W.T. 1971. Taxonomic and nomenclatural notes on Jamaican gamopetalous plants. J. Arnold Arbor. 52: 614-648.
Stoll, C. 1791. Aanhangsel van het Werk, de uitlandsche kapellen voorkomende in de drie waerelddeelen, Asia, Africa en America, by een verzameld en beschreeven door den Heer Pieter Cramer ... Papillons exotiques de trois parties du monde, l'Asie, l'Afrique et l'Amérique. Rassemblés et décrits par Mr. Pierre Cramer contenant les figures exactes des chenilles et des chrysalides de suriname; come celles des plusieurs rares et nouvellement decouvertes papillons et phalens. T. Gravius, Amsterdam.
Vázquez-G., J.A. 1994. Magnolia (Magnoliaceae) in Mexico and Central America: A synopsis. Brittonia 46: 1-23.
Voigt, F.S. 1832. Das Thierreich, geordnet nach seiner Organisation. Als Grundlage der Naturgeschichte der Thiere und Einleitung in die vergleichende Anatomie von Baron von Cuvier. Vol. 2. Brodhaus, Leipzig.
Walbaum, J.J. 1792. Petri Artedi sueci genera piscium. In quibus systema totum ichthyologiae proponitur cum classibus, ordinibus, generum characteribus, specierum differentiis, observationibus plurimis. Ichthyologiae Pars III. Rose, Grypeswaldiae.
Wallace, G.D. 1975. Studies of the Monotropoideae (Ericaceae): Taxonomy and distribution. Wasmann J. Biol. 33: 1-88.
Walter, T. 1788. Flora caroliniana, secundum systema vegetabilium perillustris Linnaei digesta; characters essentiales naturalesve et differentias versa exhibens; cum emendationibus numerosis: descripionum antea evulgatarum: adumbrations stirpium plus mille continens: nee non, generibus novis non paucis, speciebus plurimis novisq. ornate. J. Fraser, London.

Ward, D.B. 2007. Thomas Walter Typification Project, IV: Neotypes and epitypes for 43 Walter names, of genera A through C. J. Bot. Res. Inst. Texas 1: 1091-1100.
Ward, D.B. 2010. The type of Amsonia tabernaemontana (Apocynaceae): A discourse on the limits of "indirect references". Phytologia 92: 334-344.
Webster, GL. 1956. Studies of the Eurphorbiaceae, Phyllanthoideae. II. The American species of Phyllanthus described by Linnaeus. J. Arnold Arbor. 37: 1-14.
Wijnands, D.O. 1983. The botany of the Commelins. A. A. Balkema, Rotterdam, The Netherlands.
Wilbur, R.L. 1990. Identification of the plants illustrated and described in Catesby's Natural History of the Carolinas, Florida, and the Bahamas. Sida 14: 29-48.
Wilbur, R.L. 2002. The identity and history of Myrica carolmiensis (Myricaceae). Rhodora 104: 31-41.
Wilson, A. 1812. American ornithology; or, the natural history of the birds of the United States. Illustrated with plates, engraved and colored from original drawings taken from nature. Vol. 5. R. Carr, Philadelphia.

Wozencraft, W.C. 2005. "Order Carnivora," pp. 532-628. In: D.E. Wilson and D.M. Reeder (eds.), Mammal species of the world. A taxonomic and geographic reference. Ed. 3. John Hopkins Press, Baltimore.

## ONLINE RESOURCES

Alecto Historical Editions. Cateby's Natural history. http://www.alectouk.com/Catesby/catesby.htm
Alexander Street Press. 2009. Early encounters in North America.
http://solomon.eena.alexanderstreet. com/cgi-
bin/asp/philo/eena/imageidx.pl?image_artistid=A6997
Amacker, K. 2009. Mark Catesby's The natural history of Carolina, Florida and the Bahama Islands. An e-text. http://xroads.virginia.edu/ MA02/amacker/etext/home.htm
Catesby Commemorative Trust. http://www.catesbytrust.org/
Catesby, M. 1729-1747. The Natural History of Carolina, Florida and the Bahama Islands:
Containing the figures of birds, beasts, fishes, serpents, insects, and plants.http://www.archive.org/details/ mobot31753000502952; other copies:
http://www.botanicus.org/title/b11924998;
http://digital.library.wisc.edu/1711.d1/DLDecArts.CateNatHisV1 and
http://digicoll.library.wisc.edu/cgi-bin/DLDecArts/DLDecArts-
idx?id=DLDecArts.CateNatHis V2; http://www.rarebookroom.org/Control/catthf/index.html and http://www.rarebookroom.org/Control/catthg/index.html
Catesby, M. 1754. The Natural History of Carolina, Florida and the Bahama Islands: Containing the figures of birds, beasts, fishes, serpents, insects, and plants. http://digicoll.library.wisc.edu/cgi-bin/DLDecArts/DLDecArts-idx?type=browse\&scope=DLDECARTS.CATENATHIS
Catesby, M. 1771. The Natural History of Carolina, Florida and the Bahama Islands: Containing the figures of birds, beasts, fishes, serpents, insects, and plants.
http://bibdigital.rjb.csic.es/ing/obras_avanzada.php - see in particular the last two pages in each volume for Edwards's list of identifications.
Miner, L. 2009. Mark Catesby's plants. http://lisaminer.com/deg/catesby.html; see also http://plantilus.com/plantdb/info/catesby.html
Natural History Museum, London. Mark Catesby. http://piclib.nhm.ac.uk/results.asp?search= 1\&screenwidth=939\&pixperpage=40\&searchtxtkeys=mark+catesby\&lastsearchtxtkeys=Mark+ catesby\&withinresults=\&lstformats=\&lstorients=All+Orientations\&chkpho=\&chkill=\&chkpor $=\&$ chkarc $=\&$ chkfos $=\&$ chkspe $=\&$ chksem $=\&$ chkmodrel $=$
Wright, T. 2005. The life \& works of Mark Catesby, America's first naturalist/illustrator. http://www. jijaudubongallery.com/Catesby\ Bio.htm

# SPOROBOLUS JUNCEUS (POACEAE) IN OKLAHOMA 

Jeffrey N. Mink<br>Department of Biology<br>Baylor University<br>Waco, Texas 76798-7388<br>J_Mink@baylor.edu<br>Jason R. Singhurst<br>Wildlife Diversity Program<br>Texas Parks and Wildlife Department 4200 Smith School Road<br>Austin, Texas 78704<br>Walter C. Holmes<br>Department of Biology<br>Baylor University<br>Waco, Texas 76798-7388


#### Abstract

Sporobolus junceus, Piney Woods dropseed, a native of the contiguous southeastern states from Virginia to Texas, has been discovered in Oklahoma in sandhills bordering the Harrison/Doshier Bog in Pushmataha County. Key Words: Poaceae, Sporobohus, Oklahoma, oak-pine savanna, sandhills


A cosmopolitan genus of at least 160 species, Sporobolus is widely distributed in warmtemperate, sub-tropical, and tropical habitats (Clayton \& Renvoize 1986). Seventy three species are native to the Western Hemisphere (Peterson et al. 2003), with 27 species native to the United States (Peterson et al. 1997).

Fourteen species of Sporobolus (sensu latu) are documented as occurring in Oklahoma (McGregor \& Barkley 1977, 1986; Oklahoma Biological Survey 2012; USDANRCS 2012). The discovery of a $15^{\text {th }}$ species is reported here. Studies on the flora of sandy prairies and sandhill bogs in Pushmataha County have resulted in the collection of Sporobolus junceus (P. Beauv.) Kunth.

Voucher specimen: OKLAHOMA. Pushmataha Co.: Sandhill above Harrison/Doshier Bog, 5.16 miles W (at $266^{\circ}$ ) from Antlers; $34^{\circ} 13^{\prime} 34.33^{\prime \prime} \mathrm{N}, 95^{\circ} 42^{\prime} 34.60^{\prime \prime} \mathrm{W}$; deep sandhills, 13 August 2006, J.R. Singhurst andE. Bridges 14408 (BAYLU). Figs. $1 \& 2$.

The sandhills surrounding Harrison and Doshier bogs contains sandy land graminoid and herbaceous species such as Aristida desmantha, Triplasis purpurea, Phemeranthus mugospermus, Paronychia drummondit, Stillingta sylvatica subsp. sylvatica, Dalea phleoides var.microphylla, Evax candida, Eragrostis secundiflora, Croptllon divaricatum, Hypericum drummondir, Chamaecrista fasciculata, Cnidoscolus texanus, Froelichia floridana, Pediomelum sp., Scutellaria cardıophylla, and Matelea cynanchoides, found in association with Sporobolus junceus.

Sporobolus junceus is distributed in the lower Atlantic and Gulf coastal plains from Virginia and Tennessee to Florida and west to eastern Texas and Arkansas (Peterson, Hatch, \& Weakley 2003; USDA, NRCS 2012). It is native and occurs in openings of hardwood forests, sandy prairies, pine


Figure 1-Sporobolus junceus Pushmataha Co, Oklahoma (Singhurst \& Bridges 14408, BAYLU)


Figure 2 Close-up of Sporobolus junceus pancle (Singhurst \& Bridges 14408, BAYLU)
barrens, and savannas within its distribution. The Oklahoma locality is isolated from several known distributions in other states. Within Texas, S. junceus is known from coastal prairie areas and interspersed in scattered locations throughout east Texas. The nearest site to the Pushmataha Co., Oklahoma, collection is Upsur Co., Texas (Turner et al 2003) approximately 155 km south. A Louisiana collection from Caddo Parish (Allen 1992) is about 190 km southeast of the Pushmataha Co. record. Locations in Bradley Co. and Drew Co., Arkansas, are about 330 km distant from the Oklahoma location.

Among the Oklahoma Sporobolus both S. cryptandrus and S. pyramidatus appear similar to $S$. junceus. However, $S$. junceus can be distinguished from the other species by a whorled panicle ( 3 or more branches per lower node), long spikelets ( $>2.5 \mathrm{~mm}$ ) and lack of tufted sheath apex (see Figs. 1\&2). Sporobolus cryptandrus lacks a whorled panicle, has distinct white tufts of trichomes at the distal part of the sheath and shorter spikelets ( $<2.5 \mathrm{~mm}$ ). Sporobolus pyrmadatus has a distinctly whorled ( 5 or more branches per lower node) pyramidal-shaped panicle, lacks a distinct tuft of trichomes at the sheath apex and shorter spikelets ( $<2.5 \mathrm{~mm}$ ).

## ACKNOWLEDGEMENTS

The authors appreciate the efforts of Darrell S. Vodopich (Baylor Department of Biology) for his photographic efforts and image processing of the included photos of Sporobolus junceus.

## LITERATURE CITED

Clayton, W.D. and S.A. Renvoize. 1986. Genera Graminum: Grasses of the World. Kew, London: Royal Botanical Gardens, Great Britain.
McGregor, R.L. (coord.) and T.M. Barkley (ed.). 1977. Atlas of the Flora of the Great Plains. Iowa State Univ. Press, Ames.
MeGregor, R.L. (coord.) and T.M. Barkley (ed.). 1986. Flora of the Great Plains. Univ. Press of Kansas, Lawrence.
Oklahoma Biological Survey. 2012. Vascular Plants Database, Univ. of Oklahoma, Norman. shttp//www biosurvey ou edu/> Accessed 19 Jan 2012.
Peterson, P.M., R.D. Webster and J. Valdés-Reyna. 1997. Genera of New World Eragrostideae (Poaceae: Chloridoideae). Smithsonian Contr. to Bot. 87:1-50.
Peterson, P.M., S.L. Hatch and A.S. Weakley. 2003. Sporobolus R. Br. Pp. 115-139, in Flora of North America Editorial Committee, Flora of North America, Vol. 25. Oxford Univ. Press, New York.
Turner, B.L., H. Nichols, G. Denny, and O. Doron. 2003. Atlas of the Vascular Plants of Texas, Vol.II. Sida, Bot. Misc. 24. Bot. Res. Inst. of Texas, Fort Worth.
USDA, NRCS. 2012. The PLANTS Database. National Plant Data Team, Greensboro, North Carolina. <http //plants usda gov> Accessed 24 Jan 2012.

# NEW TO OKLAHOMA: CAREX COMOSA (CYPERACEAE) 

Bruce W. Hoagland<br>Oklahoma Natural Heritage Inventory<br>Department of Geography and Environmental Sustainability<br>University of Oklahoma<br>Norman, Oklahoma 73071<br>bhoagland@ou edu<br>AMy K. Buthod<br>Oklahoma Bıologıcal Survey/Oklahoma Natural Herıtage Inventory<br>Robert Bebb Herbarium<br>University of Oklahoma<br>Norman, Oklahoma 73071


#### Abstract

This paper documents the occurrence of a vascular plant species previously unknown to the flora of Oklahoma. Carex comosa, a perennial sedge, was discovered in a small emergent wetland known as Ferndale Bog in Atoka County of southeastern Oklahoma. KEY WORDS: Carex comosa, Cyperaceae, Oklahoma, sedge


Carex comosa Boott (Cyperaceae, sect. Vesicariae; longhair sedge) is a perennial sedge. The species has been reported from much of the North American continent north of Mexico but is uncommon in the unglaciated South and in the West (Ball \& Reznicek 2002). Populations have been found in neighboring states of Arkansas, Missouri, and Texas (BONAP 2012; USDA, NRCS 2012) but a collection reported here is the first for Oklahoma (Hoagland et al. 2012).

Oklahoma. Atoka Co.: McGee Creek Natural Scenic Recreation Area, "Ferndale" Bog, 15S 242185 3810626, T25S R14E Sec. 2, 6 May 2008, Buthod \& Hoagland AB-7776(OKL 239346a). Figs. 1, 2.

The Oklahoma collection was found at a site known as Ferndale Bog in Atoka County in southeastern Oklahoma. The habitat is considered unique in the state and was cored for palynological research in the 1970s. The substrate consists of generations of sphagnum growing near a spring on a Ouachita Mountain sandstone ridge (Albert 1981). The site is dominated by a $1.5+$ meter tall growth of Osmunda cinnamomea (cinnamon fern) and $O$. regalis (royal fern) (Fig. 3). Other associated species included Boehmeria cylndrica, Carex lupulna, and Carex stricta.

ACKNOWLEDGEMENTS
This work was supported by a grant from the U.S. Fish and Wildlife Service.

## LITERATURE CITED

Albert, L.E. 1981. Ferndale Bog and Natural Lake--Five Thousand Years of Environmental Change in Southeast Oklahoma. Oklahoma Archaeological Survey (1981), 7.
Hoagland B.W., A.K. Buthod, I.H. Butler, P.H.C. Crawford, A.H. Udasi, W.J. Elisens, and R.J. Tyrl. 2012. Oklahoma Vascular Plants Database. Oklahoma Biological Survey, Univ. of Oklahoma, Norman. <http//www oklahomaplantdatabase org/> Accessed Jan 2012.
BONAP. 2012. North American Plant Atlas (US county-level species maps). Biota of North America Program, Chapel Hill, NC. दhttp //www bonap org/genera-list html>
Ball, P. W. and A.A. Reznicek. 2002. Carex.(Cyperaceae). Pp. 254-572, in Flora of North America North of Mexico. Vol. 23. Oxford Univ. Press, New York.

USDA, NRCS 2012 The PLANTS Database National Plant Data Team, Greensboro, North Carolna <http//plants usda gov> Accessed Jan 2012


Figure 1 Carex comosa from Ferndale Bog in Atoka Co, Oklahoma Buthod \& Hoagland AB7776 (OKL)


Figure 2 Spikelet of Carex comosa (Hoagland \& Buthod AB-7776)


Figure 3 Aspect of Ferndale Bog with Osmunda cinnamomea in foreground

# ON THE VALIDATION OF CHORIZANTHE AND MUCRONEA (POLYGONACEAE: ERIOGONEAE) 

James L. Reveal<br>L H Bailey Hortorium<br>Department of Plant Biology<br>Cornell University, Ithaca, NY 14853-4301<br>jlr326@cornell edu


#### Abstract

Traditionally Chorizanthe R. Br. ex Benth. and Muronea Benth. (Polygonaceae: Eriogoneae) were considered to have been published in the third part of volume 17 of the Transactions of the Linnean Society sometime between 21 June and 9 July 1836. In fact, both names were validly published earlier, initially in May of 1835 in the London and Edinburgh Philos ophical Magazine and Journal of Science, and again on 7 June 1836 in the journal Flora. No species were assigned to either genus until Bentham's paper on Eriogoneae was published in mid-1836. KEY WORDS: nomenclature, George Bentham, Transactions of the Linnean Society, London and Edinburgh Philosophical Magazine


While assembling a new and updated bibliography on Polygonaceae Juss. trib. Eriogoneae Dumort., it was discovered that Chorizanthe R. Br. ex Benth. and Mucronea Benth. were validated in a review of the 7 April 1835 meeting the Linnean Society of London (Brewster et al. 1835) in which George Bentham presented a paper entitled "On the Eriogoneae, a tribe of the order Polygoneae." As may be seen from the dates given on the first page of individual signatures as well as the subsequently published table of contents, this notice was published in the May 1835 issue (pages 321-400) of the London and Edinburgh Philosophical Magazine and Journal of Science, or about a month after the meeting. On page 379 the following appears in part of that review:

The group [Eriogoneae] consists of three genera, namely, Enogonum distinguished by its manyflowered involucrum, Chorizanthe, a genus proposed by Mr Brown, and distinguished from the former by having a single-flowered involucrum, and lastly, Mucronea, characterized by its bidentate involucrum, composed of two confluent bractes

This same notice was reproduced almost word-for-word later (Beilschmied 1836) in the journal Flora (19: 332. 7 Jun 1836):

Diese Gruppe [Eriogoneae] besteht aus 3 Gattungen Eriogonum, durch vielbluthige Hulle ausgezeichnet, Chorizanthe RBr , ng , deren nur enbluthiges Involucrum sie von Eriogomum unterscheidet, und Mucronea, welche sıch durch en aus zwel susammenflessenden Braeteen gebildetes Involucrum bidehtatum charakterisirt

According to Raphael (1970: 75), volume 17, part 3, pp. 315-464, along with plates 10-22, of the Transactions was published sometime between 21 June and 9 July of 1836. Thus Bentham's 1836 paper, long considered the first place of validation for both names (Bentham 1856; Torrey \& Gray 1870; Goodman 1934; Reveal \& Hardham 1989; Reveal 2005), did not appear until after at least two reviews were published wherein his new genera were validated.

Thus, the correct citation of both names is as follows:

Chorizanthe R. Br. ex Benth. in London Edinburgh Philos. Mag. \& J. Sci., ser. 3, 6: 379. Mai 1835. LT.: Chorizanthe virgata Benth. in Trans. Linn. Soc. London 17: 416. 1836, designated by Goodman in Ann. Missouri Bot. Gard. 21: 19. 1934.

Mucronea Benth. in London Edinburgh Philos. Mag. \& J. Sci., ser. 3, 6: 379. Mai 1835. T.: Mucronea californica Benth. in Trans. Linn. Soc. London 17: 419. 1836.

## ACKNOWLEDGEMENTS

The development of a bibliography, aided greatly by the advent of searchable, online resources of scientific literature, is part of an effort to prepare an identification manual of Eriogoneae for members of the Eriogonum Society. I wish to thank Kanchi N. Gandhi for his counsel and help with this matter.

## LITERATURE CITED

Beilschmied, K.T. 1836. II. Gesellschafts - Versammlungen. Flora 19: 326-332.
Bentham, G. 1836. On the Eriogoneae, a tribe of the order Polygonaceae. Trans. Linn. Soc. London 17: 401-420.
Bentham, G. 1856. "Eriogoneae." In: A.P. de Candolle \& A.L.L.P. de Candolle, Prodr. 14: 5-28.
Brewster, D., R. Taylor, and R. Phillips. 1835. Proceedings of the Linnaean Society. London Edinburgh Philos. Mag. \& J. Sci., ser. 3, 6: 379.
Goodman, G.J. 1934. A revision of the North American species of the genus Chorizanthe. Ann. Missouri Bot. Gard. 21: 1-102.
Raphael, S. 1970. The publication dates of the Transactions of the Linnean Society of London, series 1, 1791-1875. Biol. J. Linnean Soc. 2: 61-76.
Reveal, J.L. 2005. 44a. Polygonaceae Jussieu subfam. Ertogonoideae Arnott, Encycl. Britannica (ed. 7), 5: 126. 1832 • Wild buckwheat subfamily. F1. N. Amer. 5: 218-478.

Reveal, J.L. and C.B. Hardham. 1989. A revision of the annual species of Chorzanthe (Polygonaceae: Eriogonoideae). Phytologia 66: 98-198.

# INFRAGENERIC CLASSIFICATION OF RHEXIA (MELASTOMATACEAE) 

Guy L. Nesom<br>2925 Hartwood Drive<br>Fort Worth, TX 76109 , USA<br>guynesom@sbcglobal net


#### Abstract

An infrageneric classification of Rhexia is presented, based primarily on morphology. The 13 species are divided into four sections: (1) Sect. RHEXLA (R. virginica, the type; 9 species, divided informally into two morphological groups based on stem morphology); (2) Sect. Cymborhexia Nesom, sect. nov. (R. alifanus, the type; 1 species); (3) Sect. Brevianthera Nesom, sect. nov. ( $R$. petiolata, the type; 2 species); and (4) Sect. Luteorhexia Nesom, sect. nov. (R. lutea the type; 1 species). A diagnostic key to the sections and groups and comments on species delimitations in the $R$. mariana group are provided.


Rhexta comprises 13 species (see comments below), all of which are restricted to central and eastern North America (the USA and Canada) except for R. cubensis, which also occurs in the West Indies (Cuba, Hispaniola, Puerto Rico). The genus has been the subject of taxonomic studies (James 1956; Kral \& Bostick 1969, largely repeating the James study, with addition of a new species and cytological data; Snyder 1996, a regional study) as well as a phylogenetic study (Ionta et al. 2007).

Rhexta has sometimes been treated as the monotypic tribe Rhexieae DC. The genus was hypothesized by Renner (1993) to be sister to tribe Merianieae Triana, but a later study (Clausing \& Renner 2001) indicated that Rhexia is sister to Arthrostemma Pavón ex D. Don, a genus comprising seven species of herbaceous perennials native from Mexico and the West Indies to Bolivia in South America. The analysis by Fritsch et al. (2004) placed Rhexta and Arthrostemma as sister to the primarily Brazilian tribe Microlicieae, but wider sampling (Michelangeli et al. submitted) indicates that a clade that includes these two genera along with Pachyloma DC. (ca. 6 species, northern South America) is nested cladistically within the broader group that constitutes tribe Melastomeae.

The present account provides a formal infrageneric classification of Rhexta. It arose out of an attempt to understand the patterns of variation within the genus during preparation of a taxonomic treatment for the Flora of North America North of Mexico and the need for a summary of discussions and analyses by previous authors.

## Species delimitations

Species of Rhexta recognized here and in the FNA treatment are similar to those of Kral and Bostick (1969) except in one instance. In the concept of Kral and Bostick, R. mariana includes the two tetraploid entities var. ventricosa and var. interior - the geographic ranges of both of the latter lie almost completely within that of the typical expression, which is diploid. Var. martana is completely reproductively isolated from the tetraploid varieties, which form sterile seeds in experimental crosses. Variety interior and var. ventricosa are morphologically similar to each other but completely allopatric and each differs from var. mariana in a prominent feature of stem morphology - typical $R$. martana has unequal stem faces (see below) while each of the two tetraploids has equal faces. Following James (1956), these two non-typical taxa are recognized here and at specific rank, apart from R. mariana in the strict sense. The morphological differences that separate these three entities are consistent and the ploidal differences contribute to the reproductive isolation that has been experimentally documented.

The biological situation is different in Rhexia cubensis (diploid, tetraploid, hexaploid), $R$. nashii (tetraploid, hexaploid), and R. virginica (diploid, tetraploid), where conspecific plants of different ploidy apparently occur sympatrically and are completely reproductively isolated (no seeds formed in experimental crosses), but there are no obvious morphological differences among them (see chromosome counts, geography, and crossing data in Kral and Bostick).

Rhexia mariana var. exalbida was formally recognized by James (1956) as distinct in its white flowers and linear leaves and, as mapped (his Fig. 15), centered mostly from southern Mississippi to Florida and north along the coastal plain to the Carolinas. James noted, however, that differences between var. exalbida and var. mariana are quantitative and intergrading. Kral and Bostick (1969) observed that recognition of var. exalbida "might be held tenable on the basis of the floras of the Atlantic and eastern Gulf coastal plains" but that intergradation with the typical expression, especially in the Florida panhandle across to outer coastal plain to Texas, suggested to them that only a single entity should be recognized. The geography of chromosome counts reported by Kral and Bostick indicates that both var. mariana and var. exalbida are diploid. Emphasizing its geographic concentration in the southeastern corner of the species range, var. exalbida is treated for FNA as distinct at varietal rank. Only the broader-leaved, purple-petaled plants (var. mariana) occur in the northern and western parts of the range; narrow-leaved, often white-petaled plants with small hypanthia appear to be nearly exclusive in peninsular Florida; intergrades are common in the narrower region between the extremes.

As noted by Kral and Bostick (1969), Rhexia mariana is the most abundant and wide-ranging of the species. It is sympatric with all other species and apparently hybridizes with several, the hybrids often seemingly taking on characteristics of the other species. Hybrids and hybrid swarms of R. mariana with R. salicifolia, R. virginica, and R. nashil have been observed (James 1956; Kral \& Bostick 1969).

The taxonomy here of species and varieties in Rhexia exactly matches that of LeBlond (2010), who provides a useful pair of keys (one using all characters, the other using only vegetative features) to the species.

## Infrageneric groups

Ideas about species groups in Rhexia have been discussed by earlier students of the genus (i.e., James 1956; Kral \& Bostick 1969; Wurdack \& Kral 1982; Ionta et al. 2007) and the groups formalized in the present account are for the most part similar to earlier ones.

Based primarily on anther morphology, James (1956) recognized two major groups among the species of Rhexta: "Series A," including R. nuttallu, R. petolata, and R. Iutea, and "Series B," including the rest of the species. Series B was noted to be "a very natural assemblage of species with the exception of $R$. alifanus" (emphasizing the anomalous seed morphology of the latter). He further divided Series A into two groups, observing that $R$. lutea differed in capsule morphology from the other two species, and Series B into subgroups, based first on stem morphology and then on rootrhizome morphology.

Kral and Bostick (1969) observed essentially the same pattern, for the most part closely following the discussion by James, adding that (p. 387) species of series A "show no tendency to cross-pollinate or at least do not produce successful hybrids, tend to have strikingly uniform morphologies over their range, and are less weedy. On the other hand most of the latter series [series $B$ (with the exception of $R$. parviflora and $R$. alifanus) do produce successful hybrids, show considerable diversity of morphology over their ranges, and are often weedy." They also noted (p. 388) that "On a basis of chromatographic and anatomical analysis of plant parts it would appear that
R. lutea in series 'A' and $R$. alffanus in series ' B ' of James may actually represent distinct sections." The pattern observed by Wurdack and Kral (1982) was similar but they referred to four main groups ("four natural entities"), giving $R$. alifanus and $R$. lutea coordinate rank with series A and B .

Following Wurdack and Kral (1982), the present account recognizes four primary morphological groups (formal nomenclature validated below): (1) sect. Rhexia - series B of James excluding R. alifamus, (2) sect. Cymborhexia - Rhexia alifanus (3) sect. Brevianthera - series A of James excluding R. lutea, and (4) sect. Luteorhexia - Rhexta lutea. Each of the four sections appears to be monophyletic.

The species of sect. Rhexia are divided into two groups, corresponding to a difference in stem morphology. Data of Ionta et al. (2007, see comments below) suggest that the species of sect. Rhexia are likely to have reticulate relationships reflecting ancestral hybridization, thus the division into two groups may prove to be artificial. The apparent cauline specialization, however, is discontinuous and remarkably distinct.

## Stems and roots

Inequality in width and morphology of stem faces has commonly been used in keys to species of Rhexia - one set of opposing faces is broader and convex, the other narrower, concave, and paler. Another correlated difference apparently has not been previously described or it has been noted only obliquely in descriptions. In those species with "unequal" faces, the nature of the faces abruptly alternates 90 degrees at each node. In a given plane, at each successive node a narrow-concave face abruptly becomes a broad-convex face and vice versa. This feature is unequivocally interpreted. In the Aequales group of sect. Rhexta, sect. Brevianthera, and sect. Luteorhexia, the four stem faces are similar in morphology ("equal") and continuous across the nodes from one internode to the next. Stem faces of R. nuttallii and R. petiolata (sect. Brevianthera) and R. lutea (sect. Luteorhexia) were scored as "unequal" by Ionta et al. (2007), in disagreement with the observation here, insofar as that term refers to the 'alternating' morphology. "Equal" stem faces also are characteristic of species of Arthrostemma (pers. observ. and as recorded by Ionta et al. 2007).

In Rhexta alifanus, stems are not clearly demarcated as four faces - instead they are terete proximally, with internodes distally somewhat flattened in a plane parallel to the subtending leaf pair and longitudinally striate, the narrower bands paler and aligned with the leaf midribs. Stems of $R$. alifanus were recorded as having "unequal" faces by Ionta et al., but the morphology is not similar to either the "equal" or "unequal" division into faces as in other species of the genus.

Vegetative reproduction in sect. Rhexia is through adventitious buds from long, laterally extending, lignescent, rhizome-like roots (Fig. 2). These structures were correctly identified as roots by James (1956), following the earlier, detailed study by Holm (1907), but their identification as rhizomes (or "stolons" or "rootstocks") has persisted (e.g., Kral \& Bostick 1969; Godfrey \& Wooten 1981; Ionta et al. 2007) without mention of the earlier-observed distinction between rhizomes and roots. Root tubers (tuberous swellings; Fig. 1) are produced in most species of sect. Rhexia. Plants of sect. Brevianthera and sect. Cymborhexia produce only short lignescent-fibrous roots without tubers.

In sect. Rhexia, the tuberous swellings may develop on the primary root at the very base of the stem or at irregular positions on secondary roots. Adventitious buds arise from tuberous and nontuberous portions of the root.


Figure 1a, b Vegetation reproduction in Rhexia mariana var mariana through adventitious buds from rhizome-like roots Root tubers are not produced in $R$ mariana Georgia Wayne Co NW of Sterling, 16 Aug 1993, Kral 83069 (VDB)


Figure 2a, b, c. Root tubers in Rhexia virginica, with adventitious buds and shoots originating from the tubers. From Holm (1907).

## Phylogenetic study of Ionta et al.

Ionta et al. (2007) studied phylogenetic relationships among Rhexia species using DNA sequence data - ribosomal nuclear (ITS), chloroplast (trnC-D), and nuclear (ncpGS) - and a morphological data set of 37 characters, with outgroups (following Renner and Meyer 2001, Renner et al. 2001) as species of Arthrostemma and Dissotis Benth.

The ITS and trnC-D topologies "differed in the phylogenetic positions of several taxa (Rhexia lutea, R. nashil, and R. salicifolia [also of R. cubensis]), and for R. cubensts, R. lutea, R. nashil, R. parviflora, and $R$. salicifolia, we recovered multiple alleles of ncpGS, which is single copy in most species of Rhexiz, indicating that these individuals may be of hybrid origin" (Ionta et al. 2007, p. 1055). Evidence suggests that $R$. nashii originated as a hybrid between the two groups of sect. Rhexia - one of its nepGS alleles is sister to $R$. mariana while the other is sister to $R$. verginica.

Analyses of pruned data sets (eliminating taxa that appeared in different places in the ITS and trnC-D topologies and/or that had two copies of nepGS) using all three molecular regions plus the morphology resulted in a single, strongly supported most parsimonious tree with three major clades: Rhexia petolata (sect. Brevianthera), R. mariana (Inaequales group), and R. virginica (Aequales group).

Rhexta lutea shows as sister to the whole genus in the trnC-D analysis and as sister to the Inaequales group of sect. Rhexia in the ITS analysis. Morphology, in contrast, places it as sister to sect. Brevianthera. Advanced characters strongly linking these two groups ( $90 \%$ bootstrap value), as scored by Ionta et al., are glabrous petals (homoplasious), curved-ascending petals, strongly and shortly constricted hypanthia, and short anthers. As noted by Ionta et al. (p. 1065), this indicates that morphological synapomorphies of $R$. lutea with sect. Brevianthera "may be homoplasious ... or were passed to R. lutea as a result of ancient hybridization with a member (either extinct or extant) of the R. petiolata clade." Observation of multiple heterozygous ncpGS loci also supports this possibility.

Rhexia allfamus shows as sister to the Inaequales group of sect. Rhexia in the morphological analysis. Ionta et al. noted, however (p. 1061), that this position is not well supported. "Putative synapomorphies linking $R$. allfamus with this clade include leaf stomatal distribution ... and anthers
with elongated, narrowly conical-filiform dorsal connective appendages ... ." Equal distribution of stomates on both leaf surfaces occurs in R. alifanus and in R. salicifolia and R. aristosa (Aequales group) and $R$. parviflora and $R$. cubensis (Inaequales group), hardly supporting a link to one or the other group, if indeed the state is apomorphic. Conical anther appendages, which are present in $R$. alifanus, are present in $R$. marilandica, $R$. nashil, and $R$. cubensis (Inaequales group) but also in $R$. virginica (Aequales group).

Molecular data from all three genes, in contrast to the morphology, place Rhexia alifanus is sister to sect. Brevianthera. There appears to be no morphological character of $R$. alfanus that might be unequivocally interpreted as synapomorphic with sect. Brevianthera.

## Infrageneric classification

RHEXIA L., Sp. Pl. 1:346. 1753. Type: Rhexia virginica L.

1. Sect. Rhexia Type: Rhexia virginica L.

Anthers elongate, (3-)4-8(-11) mm long, curved, opening by small pores, surfaces minutely papillate; caudex absent or weakly developed; roots long, laterally extending, budding adventitiously, with tuber-like swellings (in the interpretation here, this tendency lost in $R$. parvoflora and in $R$. martana, R. interior, and R. ventricosa); stems branched to unbranched or nearly so, axillary buds suppressed or not, stem faces subequal or unequal (see comments above, "Stems and roots"), hairy at least at nodes; leaves bifacial (dorsiventral), surfaces not glaucous; stomates mainly on abaxial lamina surface or more or less equally distributed on both surfaces; hypanthia with a short but distinctly tubular neck; petals plane and horizontal, petals white to pink to lavender or purple; capsule dehiscence only in the apical depression; seeds cochleate, $0.6-0.75 \mathrm{~mm}$ long, surfaces variously sculptured; chromosomes small (see comment under sect. Cymborhexia); diploids and polyploids.

1a. The Equales group
Species included: R. aristosa Britt. (2x), R. salicifolia Kral \& Bostick (2x), R. virginica L. (2x, 4x), R. interior Pennell (4x), R. ventricos $\alpha$ Fern. \& Griscom (4x)

Stem faces subequal; stomates on abaxial lamina surface ( $R$. virginica, $R$. interior, $R$. ventricosa) or more or less equally distributed on both surfaces ( $R$. aristosa, $R$. salicifolia, ).
lb . The Inaequales group
Species included: R. mariana L. (2x), R. cubensis Griseb. (2x, 4x, 6x), R. nashil Small (4x, 6x), R. parviflora Chapm. (2x)

Stem faces unequal (see comments in text); stomates mainly on abaxial lamina surface (equally distributed on both surfaces in $R$. cubensis).

The anthers of Rhexia parviflora are relatively shorter (3-3.5 mm long) than those of other species of sect. Rhexia. James (1956) noted the difference in length but observed that the curvature, small pores, and papillate surfaces are similar to the anther morphology of his series B. The planehorizontal petals also are similar to sect. Rhexia and the unequal stem faces suggest that its ancestry is connected with others of the Inaequales group, especially with $R$. mariana, which also produces white flowers.


Figure 3a, b, c, d. Representative species of the four sections. a. Rhexia alifanus. b. Rhexia virginica. c. Rhexia petiolata. d. Rhexia lutea. Photos a, b, and d by James Van Kley, from the Pineywoods Plants Digital Gallery; c by Fred Nation from the Alabama Plant Atlas website.


## 2. Sect. Cymborhexia Nesom, sect. nov. Type: Rhexia alifanus Walt. <br> Species included: $R$. alifanus Walt. (2x)

Anthers $7-8 \mathrm{~mm}$ long, curved, opening by small pores, surfaces smooth; caudex distinct, woody; roots short, fibrous, without adventitious buds or tubers; stems unbranched or nearly so, axillary buds suppressed, stems faces not demarcated, without ridges, terete proximally, internodes distally somewhat flattened in a plane parallel to that of the subtending leaf pair, longitudinally striate, the narrower bands paler and aligned with the leaf midribs), completely glabrous; leaves isofacial, surfaces glaucous, stomates more or less equally distributed on both surfaces; hypanthia with a very short but tubular neck; petals plane and horizontal, lavender-rose, capsule dehiscence only in the apical depression; seeds oblong-cuneate, subprismatic, 1-2 mm long, surfaces nearly smooth; chromosomes large (Kral and Bostick 1969 noted that the chromosomes of $R$. alifanus are relatively large compared to those in all other species); diploid.
3. Sect. Brevianthera Nesom, sect. nov. Type: Rhexia petiolata Walt.

Species included: R. nuttallil C.W. James (2x), R. petiolata Walt. (2x)
Anthers $1.2-2 \mathrm{~mm}$ long, straight, opening by large pores, surfaces smooth; caudex strongly (R. lutea) or weakly developed; roots short, fibrous, without adventitious buds or tubers; stems unbranched or nearly so, axillary buds suppressed, stem faces subequal, glabrous; leaves bifacial, surfaces not glaucous, stomates mainly on abaxial lamina surface; hypanthia with an indistinct neck region, abruptly constricted above the locules and then immediately flaring into the lobes; petals curved and ascending, lavender to purple or pink; capsule dehiscence by a partial separation of the capsular segments; seeds cochleate, $0.6-0.7 \mathrm{~mm}$ long, surfaces variously sculptured; chromosomes relatively small; diploids and polyploids.

## 4. Sect. Luteorhexia Nesom, sect. nov. Type: Rhexia lutea Walt. <br> Species included: R. lutea Walt. (4x)

Anthers ca. 2 mm long, straight, opening by large pores, surfaces smooth; caudex strongly ( $R$. lutea) or weakly developed; roots short, fibrous, without adventitious buds or tubers; stems conspicuously branched, axillary buds not suppressed, stem faces subequal, hairy; leaves bifacial, surfaces not glaucous, stomates mainly on abaxial lamina surface; hypanthia with an indistinct neek region, abruptly constricted above the locules and then immediately flaring into the lobes; petals curved and ascending, yellow; capsule dehiscence only in the apical depression; seeds cochleate, 0.6 0.7 mm long, surfaces variously sculptured; chromosomes relatively small; polyploid.

## Key to sections and groups of Rhexia

1. Anthers $1.2-2 \mathrm{~mm}$ long, straight, surfaces smooth, opening by large pores; petals curved and ascending.
> 2. Petals lavender to purple or pink; stems unbranched or nearly so, axillary buds suppressed, stem faces completely glabrous; inflorescences strongly condensed, obscured by foliaceous bracts; leaves short-petiolate
> 3. sect. BREVIANTHERA 2. Petals yellow; stems conspicuously branched, axillary buds not suppressed, stem faces hairy; inflorescences diffuse, bracteate but not obscured by bracts; leaves subsessile
> 4. sect. Luteorhexia
2. Anthers (3-)4-8(-11) mm long, curved, surfaces smooth or minutely papillate, opening by small pores; petals plane and horizontal.
3. Caudex distinct, woody; roots short, ligneous-fibrous, without tubers; leaves is ofacial, surfaces glaucous; anther surfaces smooth; seeds oblong-cuneate, subprismatic, $1-2 \mathrm{~mm}$ long, surfaces smooth; chromos omes large $\qquad$ 2. sect. Cymborhexia 3. Caudex absent or weakly developed; roots often long and rhizome-like, commonly tuberiferous; leaves bifacial (dorsiventral), surfaces not glaucous; anther surfaces minutely papillate; seeds cochleate, $0.6-0.75 \mathrm{~mm}$ long, surfaces variously sculptured; chromosomes small 1. sect. RHEXIA
4. Stem faces subequal
1a. Aequales group
5. Stem faces unequal 1b. Inaequales group

## ACKNOWLEDGEMENTS

I'm grateful to Dave Boufford for many suggestions, Susanne Renner for invaluable comments on recent literature and the phylogenetic placement of Rhexta within the family, Fabian Michelangeli for comments, Sam Kieschnik for the photos in Figure 1, James Van Kley and Fred Nation for permission to publish the color photos in Fig. 3, and especially to Walter Judd for perspectives related to the classification and other salutary suggestions. This study has been supported by the Flora of North America Association.

## LITERATURE CITED

Clausing, G. and S.S. Renner. 2001. Molecular phylogenetics of Melastomataceae and Memecylaceae: implications for character evolution. Amer. J. Bot. 88: 486-498.
Fritsch, P.W., F. Almeda, S.S. Renner, A.B. Martins, and B.C. Cruz. 2004. Phylogeny and circumscription of the near-endemic Brazilian tribe Microlicieae (Melastomataceae). Amer. J. Bot. 91: 1105-1114.

Godfrey, R.K. and J.W. Wooten. 1981. Aquatic and Wetland Plants of Southeastern United States. Dicotyledons. Univ. of Georgia Press, Athens.
Holm, T. 1907. Morphological and anatomical studies of the vegetative organs of Rhexia. Bot. Gaz. 44: 22-33.
Ionta, G.M., W.S. Judd, N.H. Williams, and W.M. Whitten. 2007. Phylogenetic relationships in Rhexta (Melastomataceae): Evidence from DNA sequence data and morphology. Internatl. J. Pl. Sci. 168: 1055-1066.
James, C.W. 1956. A revision of Rhexia (Melastomataceae). Brittonia 8: 201-230.
Kral, R. and P.E. Bostick. 1969. The genus Rhexia (Melastomataceae). Sida 3: 387-440.
LeBlond, R.J. 2011. In A.S. Weakley, Flora of the Southern and Mid-Atlantic States. Working draft of 15 May 2011. Univ. of North Carolina Herbarium (NCU), Chapel Hill. <http//www herbarium unc edu/WeakleyFlora2010Mar pdfs
Michelangeli, F.A., P.J.F. Guimaraes, D.S. Penneys, F. Almeda, and R. Kriebel. Submitted. Phylogenetic relationships and distribution of New World Melastomeae (Melastomataceae). Bot. J. Linn. Soc.
Renner, S.S. 1993. Phylogeny and classification of the Melastomataceae and Memecylaceae. Nordic J. Bot. 13: 519-540.
Renner S.S. and K. Meyer. 2001. Melastomataceae come full circle: Biogeographic reconstruction and molecular clock dating. Evolution 55: 1315-1324.
Snyder, D. 1996. The genus Rhexta in New Jersey. Bartonia 59: 55-70.
Wurdack, J.J. and R. Kral. 1982. The genera of Melastomataceae in the southeastern United States. J. Arnold Arbor. 63: 429-439.

# ANDROPOGON GLAUCOPSIS (POACEAE) IN TEXAS 

Jason R. Singhurst<br>Wildlife Diversity Program<br>Texas Parks and Wildlıfe Department<br>Austin, Texas 78704<br>jason singhurst $@$ tpwd state tx us<br>Bruce A. Sorrie<br>North Carolina Natural Heritage Program and Herbarium<br>NC Botanical Garden<br>3076 Niagara-Carthage Road<br>Whispering Pines, North Carolina<br>bruce sorrie @ucdenr gov<br>Walter C. Holmes<br>Department of Biology<br>Baylor University<br>Waco, Texas 76798-7388


#### Abstract

Andropogen glaucopsis, purple bluestem or coastal bluestem, is documented by two collections as occurring in southeastern Texas at the westernmost extension of its range. KEY WORDS: Poaceae, Andropogoneae, Andropogon, Pineywoods, Texas


Andropogon glaucopsss Elliott (Poaceae, tribe: Andropogoneae), purple bluestem or coastal bluestem, has long been treated as a variety (or referred to synonymy) of $A$. virginicus L . or $A$. glomeratus (Walt.) Britton, Stearns, \& Poggenb. (Fernald 1950; Radford et al 1968; Campbell 2003; and others). In 2011, Weakley et al. resurrected the species based upon its distinct morphology, distribution, and apparent lack of intergradation with A. glomeratus. The species is mentioned in the Illustrated Flora of East Texas, Vol. 1 (Diggs et al. 2006), where it is treated as A. virginicus, presumably in synonymy. This mention is based upon the Shinners specimen (Fig. 1) cited below, which was originally identified as $A$. virginicus. In 2001, Sorrie annotated the specimen as $A$. glaucopsis with the notation that it is a state record. Unfortunately, this information was never published. Weakley (2011) has cited the distribution of A. glaucopsts as "Se. VA south to c. peninsular FL and west to e. TX. The extent of the western Gulf Coastal Plain distribution (to the West Gulf Coastal Plain of w. LA and e. TX) is based on specimens (at BRIT) and sight records (B. Sorrie, pers. comm..)." USDA, NRSC (2012) does not include Texas as part of the distribution of the species.

Recent field studies in the longleaf pine area of the Pineywoods vegetational region of Texas have resulted in the discovery and collection of an additional specimen of Andropogon glaucopsis, hence our interest in the species. The purpose of this paper is not to report the presence of the species within the state, for that has been previously noted, but to document, under the name we are following, its occurrence in two counties of Texas by citation of specimens and additional remarks.

Voucher specimens: Texas. Hardin Co.: 0.3 mi W of jet of Paula Road and U.S. Hwy 69 on W side of Paula Road, wetland savanna with pimple mounds, 19 Oct 2009, Singhurst 17778 (BAYLU). Jasper Co.: 3 miles SSE of Buna, border of pine-hardwood stand, sandy loam, 6 Nov 1966, Shinners 31669 (SMU). Figure 1.


Figure 1 Andropogon glancopsis (Shinners 31669, SMU) Used with permassion of BRIT Virtual Herbarnum. Atrium Biodversity Information System for the Botarncal Research Institute of Texas 4ttp //atrumbrit.org> Accessed February 2012

The longleaf pine area of Texas is the western edge of a forest of similar character that extends eastward to Virginia (Bray 1906; Frost 1993; Diggs et al. 2006). Both the Texas and the western and northern Louisiana longleaf pine areas are, due to the Mississippi River embayment, discontinuous (disjunct) from the longleaf pine regions east of the Mississippi River. The Andropogon collected by Singhurst occurred in a "wet pine savanna," which is characterized by poorly drained sandy-loan soils and periodic occurrences of fires (Diggs et al 2006). The number of woody species is limited by fluctuating water levels, while those that tolerate the wet conditions are limited by fire. Characteristic species included Rhynchospora divergens, R. elltottll, R. filifolia, $R$. plumosa, Sclerta georgiana, S. reticularis, Schizachyrum scopartum, Eriocaulon decangulare, Aletris aurea, Drosera capillaris, Pingucula pumila, Arnoglossum ovatum, Furrena breviseta, Hypericum galioides, Hyptis alata, Liatris acidota, Liatris pycnostachya, Ludwigia linearis, Lycopodiella appressa, Marshallia tenuifolia, Mitreola sessilifolia, Myrica cerifera, Panicum tenerum, Pmus palustris, Polygala ramosa, Rhexta hutea, Xyrts ambtgua, and X. loustantca. Wet pine savannas are overgrown by Nyssa sylvatica, Liquidambar styractflua, Acer rubrum, and Magnolia virgintana when fire is excluded. Nothing other than what is on the label is known about the Shinners specimen.

## ACKNOWLEDGEMENTS

The authors thank Edwin Bridges of Seebring, Florida, and Steve Orzell of Avon Park, Florida, for comments on the occurrence of Andropogon glaucopsis in Texas. In 2007, Bridges suggested a search for this species. Jeffrey Mink of the Department of Biology, Baylor University, reviewed the manuscript.

## LITERATURE CITED

Bray, W.L. 1906. Distribution and adaptation of the vegetation of Texas. Univ. of Texas Bull. 82, Sci. ser. 10: 1-108, Austin.
Campbell, C.S. 2003. Andropogon. Pp. 649-664, in Flora of North America Editorial Committee, Flora of North America. Vol. 25. Magnoliophyta: Commelinidae (in part): Poaceae, part 2. Oxford Univ. Press, New York.
Diggs, G.M., Jr., B.L. Lipscomb, M.D. Reed, and R.J. O'Kennon. 2006. Illustrated Flora of East Texas. Vol.1. Sida Bot. Misc.26. Bot. Res. Inst. of Texas, Fort Worth.
Fernald, M.L. 1950. Gray's Manual of Botany (ed. 8). American Book Company, New York.
Frost, C.C. 1993. Four centuries of changing landscape patterns in the longleaf pine ecosystem. Proc. Tall Timbers Fire Ecol. Conference 18: 17-43.
Radford, A.E., H.E. Ahles, and C.R. Bell. 1968. Manual of the Vascular Flora of the Carolinas. Univ. of North Carolina Press, Chapel Hill.
USDA, NRCS. 2012. The PLANTS Database. National Plant Data Team, Greensboro, North Carolina. <http //plants usda gov> Accessed February 2012.
Weakley, A.S. 2011. Flora of the Southern and Mid-Atlantic States. Working draft of 15 May 2011. Univ. of North Carolina Herbarium (NCU), Chapel Hill. <http//www herbarium unc edu/WeakleyFlora2010Mar pdf>
Weakley, A.S., R.J. LeBlond, B.A. Sorrie, C.T. Witsell, L.D. Estes, K. Gandhi. K.G. Mathews, and A. Ebihara. 2011. New combinations, rank changes, and nomenclatural and taxonomic comments in the vascular flora of the southeastern United States. J. Bot. Res. Inst. Texas 5: 437-455. 733X

# NOMENCLATURAL AND TAXONOMIC ANALYSIS OF CONVALLARIA MAJALIS, C. MA.JUSCULA, AND C. MONTANA (RUSCACEAE/LILIACEAE) 

Kanchi N. Gandhi<br>Harvard Unıversity Herbaria<br>22 Divinity Avenue<br>Harvard University<br>Cambridge, Massachusetts 02138-2094<br>Correspondence: gandhi@oeb harvard edu<br>James L. Reveal<br>L H Bailey Hortorium, Dept of Plant Biology<br>412 Mann Library Buldmg<br>Cornell Unversity<br>Ithaca, New York 14853-4301<br>James L. Zarucchi<br>Missouri Botanical Garden<br>PO Box 299<br>St Louis, Missourt 63166-0299


#### Abstract

Convallaria montana Raf. is shown to be a superfluous name for C. pseudomajalss Bartr., which was likely based on a specimen of Polygonatum, so that the earliest available name for the American lily-of-the-valley is C. majuscula Greene. Two new combinations proposed: C. majalis L. subsp. majuscula (Greene) Gandhi, Reveal, and Zarucchi and C. majalis var. majuscula (Greene) Gandhi, Reveal, and Zarucchi. A neotype is chosen for Convallaria majuscula Greene. KEY WORDS: Nomenclature, eastern North America, Convallaria majalis subsp. majuscula, Convallaria pseudomajalis, lily-of-the-valley


The American lily-of-the-valley has been known under the following names: Convallaria majalis L. (Michaux 1803: 201; Pursh 1813: 232; Nuttall 1818: 224; Elliott 1817: 396; Britton \& Brown 1896: 434; Small 1933: 301; Gleason \& Cronquist 1991: 839), C. montana Raf. (Fernald 1944: 14), C. majuscula Greene (USDA, NRCS 2012), "C. majalis var. montana (Raf.) H.E. Ahles" (Utech 2002: 206), and C. majalis var. montana H.E. Ahles (USDA, ARS, National Genetic Resources Program, 2012). The known range of this taxon is confined mainly to the Appalachian Mountains of the eastern United States in northern Georgia, southeastern Kentucky, western North Carolina, northwestern South Carolina, eastern Tennessee, western Virginia, and West Virginia.

Typical Convallaria majalis is a native of Europe. Among those who applied this name to the American plants, it was Small (1933) who distinguished the American plants from their European counterparts as follows: "The native American plant usually has a shorter inflorescence, and has larger bracts and an oblate seed." In contrast, Gleason and Cronquist (1991) were of the opinion that the "seemingly native" plants are "casually escaped plants" and "may reflect an early escape of a different phase of sp. [C. majalts] in cult[ivation]." Others, such as Michaux (1803) and Pursh (1813), did not comment on the nativity of the American plants.

During a comparative study of the specimens of Convallaria majalis and C. majuscula, we discovered a nomenclatural problem that was previously overlooked.

William Bartram (1810), who was the first to distinguish the American native taxon from the European taxon, assigned to it the name Convallaria pseudomajalts and remarked: "It differs but little from C. majalts of Europe, only is larger every way, and the fruit blue more oblong to ovate." Although Rafinesque (1840:66) was aware of Bartram's name, he proposed the name Convallaria montana for the American plants and at the same time cited C. pseudomajalis as a synonym. Thus, C. montana was superfluous and illegitimate when published, and it is automatically typified on the type of C. pseudomajalis. Within his treatment, Rafinesque mentioned that according to Bartram, "the berries are blue and ovate." Rafinesque characterized his C. montana, after a Latin description, where he mentioned "fol. binis sessilib. ovatobl. acum." and "racemo 10-12floris, bract. lanc. ad ped. eq. fl. secundis" as a "large plant, leaves 6 to 8 inches long, 2 wide, fl. size of C. majalis." He contrasted C. majalls with "leaves petiolate elliptic acute" (size not given) and "raceme of 7-8 fl. bracts half the length of the pedicels."

Greene (1908: 46), without a reference to Bartram or Rafinesque, proposed Convallaria majuscula. He characterized his species as with "very large light-green leaves without trace of bloom, with excessively fibrous anatomy, insomuch that the surface of the leaf when growing looks to be plicate rather than plane and even."

Fernald (1944: 12-14) emphasized the nativity of the American plants. He treated Convallarta montana and C. majuscula as conspecific. Based on the priority, he accepted C. montana and cited C. majuscula as its synonym. Based on Bartram's description of the fruits as blue, Fernald speculated that that "Bartram could quite as well have had Polygonatum" For this reason, he excluded C. pseudomayalss (the illegitimacy-causing synonym) from C. montana, and thus he inadvertently created "C. montana Fernald" as a later homonym (Vienna Code Art. 48.1 applies; McNeill et al. 2006). Ahles (1964: 172), seemingly unaware of the illegitimacy of C. montana Raf., transferred it to C. majalis at the rank of a variety and thus effectively created a nomen novum for the Rafinesque name. Since he did not exclude Bartram's C. pseudomajalis from his var. montana, the varietal name is automatically typified by the type of Bartram's species.

In our study, we looked for the earliest collection records of the Appalachian native plants. Because it was included in Pursh's treatment ("On the highest mountains of Virginia and Carolina"), it is evident that it was collected before 1813. We located the following pre-1900 collections: (1) 1838: S.B. Buckley (MO, NY, US); (2) 1839: J. Reinhart (GH) and J. Torrey (GH); (3) 1841: A. Gray \& J. Carey (GH); (4) 1871: A.H. Curtiss (NY); (5) 1873: A.H. Curtiss (GH, MO, NDG, NY); (6) 1874: A.H. Curtiss (US); (7): 1878: H. Shriver (NY); (8) 1890: W.M. Canby (GH, MO, NY) and A. Brown et al. (NY); and (9) 1892: N.L. Britton et al. (NY) and J.K. Small (MO). None of the specimens was annotated by Greene.

We also found that most of the traditional, distinguishing characters between the American and European plants overlap, such as leaf size and number of flowers per raceme. Nevertheless, the bract/pedicel length ratio and flowering raceme/leaf blade length ratio appear to be informative. Furthermore, cultivated populations of Convallaria majalis and the native populations of $C$. majuscula are allopatric. Accordingly, we follow Ahles (1964) and Utech (2002) in treating the American plants at the infraspecific rank.

1. Plants forming dense colonies; leaves green until frost, veins faint; raceme (excluding scape) about half the length of the leaves; bracts $4-10 \mathrm{~mm}$ long, shorter than the pedicels; seeds almost globose subsp. majalis
2. Plants scattered or forming small groups; leaves yellowing in late summer, veins strong; raceme (excluding scape) much shorter than the leaves; bracts $8-20 \mathrm{~mm}$ long, usually as long or longer than pedicels; seeds oblate or lenticular
subsp. majuscula

## Typification

Since no known type exists for Convallaria majuscula, the name needs to be neotypified. We found that the GH, NDG, and NY specimens of the A.H. Curtiss collection made in 1873 bear a 1966 annotation by H.H. Iltis as "neotype." Two specimens (MO) of this collection do not have Iltis's annotation, and to the best of our knowledge, Iltis did not publish his designation. We communicated with Iltis asking for any information on his neotype designation but did not receive any response. Therefore, we opt to neotypify C. majuscula here.

Convallaria majalis L. subsp. majuscula (Greene) Gandhi, Reveal, and Zarucchi [comb. et stat. nov.] var. mujuscula (Greene) Gandhi, Reveal, and Zarucchi [comb. et stat. nov.]. Basionym: Convallaria majuscula Greene, Repert. Spec. Nov. Regni Veg. 5: 46. 1908. Neotype (designated here): USA. Virginia. Bedford Co.: Peaks of Otter, alt. $3500 \mathrm{ft}, 2$ Jun 1873, A.H. Curtiss s.n. (GH; isoneotypes: MO-2 sheets, NDG, NY).
Synonyms: C. montana Fernald, Rhodora 46: 14. 1944, nom. illeg., non Raf. 1840; C. montana sensu Raf., Aut. Bot. 1(Cent. V): 66. 1840, p.p., excluding the reference to C. pseudomajalls; C. majalis var. montana sensu H.E. Ahles, J. Elisha Mitchell Sci. Soc. 80: 172. 1964, p.p., excluding the type.

## ACKNOWLEDGMENTS

We thank Dr. Werner Greuter (B) and Dr. John H. Wiersema (BARC) for a nomenclature discussion and Dr. Alan S. Weakley (NCU) and Dr. David E. Boufford (GH) for comments on the taxonomy of Convallaria majuscula. We also thank Dr. John Boggan and Ms. Ingrid Lin (US) for the digitized images of Buckley's and A.H. Curtiss's collections, Dr. Thomas A. Zanoni and Ms. Lucy Klebieko (NY) for making NY's pre-1900 collections of C. majuscula available on the web, and Ms. Emily W. Wood (A, GH) and Dr. Barbara J. Hellenthal (ND, NDG) for making the Convallaria specimens of NDG available to us for this study.

## LITERATURE CITED

Ahles, H.E. 1964. New combinations for some vascular plants of southeastern United States. J. Elisha Mitchell Sci. Soc. 80: 172-173.
Bartram, W. 1810. Convallaria pseudo-majals. In: A. Rees, The Cyclopædia; or, Universal dictionary of arts, sciences, and literature ... with the assistance of eminent professional gentlemen; illustrated with numerous engravings, by the most distinguished artists. First American edition, revised, corrected, enlarged, and adapted to this country, by several literary and scientific characters. Vol. 10. Samuel F. Bradford, and Murray, Fairman, and Co., Philadelphia.
Britton, N.L. and A. Brown. 1896. An Illustrated Flora of the Northern United States. Vol. 1. Addison Brown, New York.
Elliott, S. 1817. A Sketch of the Botany of South-Carolina and Georgia. J.R. Schenck, Charleston, South Carolina.
Fernald, M.L. 1944. Flora of eastern North America. Rhodora 46: 1-21.
Gleason, H.A. and A. Cronquist. 1991. Manual of Vascular Plants of Northeastern United States and Adjacent Canada (ed. 2). The New York Botanical Garden, Bronx, New York.
Greene, E.L. 1908. Novitates Boreali-Americanae. I. Repert. Spec. Nov. Regni Veg. 5: 4546.

McNeill, J., F.R. Barrie, H.M. Burdet, V. Demoulin, D.L. Hawksworth, K. Marhold, D.H. Nicolson, J. Prado, P.C. Silva, J.E. Skog, J.H. Wiersema, and N.J. Turland (eds.). 2006. International Code of Botanical Nomenclature (Vienna Code) adopted by the Seventeenth International Botanical Congress, Vienna, Austria, July 2005. A.R.G. Gantner Verlag, Ruggell, Liechtenstein.
Michaux, A. 1803. Flora Boreali-Americana. Vol. 1. Apud fratres Levrault, Parisiis et Argentorati.

Nuttall, T. 1818. The Genera of North American Plants. Vol. 1. Printed for the author by D. Heartt, Philadelphia.
Pursh, F.T. 1813. Flora Americae Septentrionalis; or, a Systematic Arrangement and Description of the Plants of North America. White, Cochrance, \& Co., London.
Rafinesque, C. 1840. Autikon botanikon: Icones plantarum select. nov. vel rariorum, plerumque americana, interdum african. europ. asiat. oceanic \&c. centur, xxv. Philadelphia.
Small, J.K. 1933. Manual of the Southeastern Flora. Univ. of North Carolina Press, Chapel Hill.
USDA, ARS, National Genetic Resources Program. Germplasm Resources Information Network (GRIN) [Online Database]. 2012. National Germplasm Resources Laboratory, Beltsville, Maryland. <http//www ars-grin gov/cg1-bin/npgs/htm1/taxon pl${ }^{19454358>}$ Accessed February 2012.
USDA, NRCS. 2012. The PLANTS Database. National Plant Data Team, Greensboro, North Carolina. <http//plants usda gov> Accessed February 2012.
Utech, F.H. 2002. Convallarta. Pp. 205-206, in Flora of North America Editorial Committee (ed.), Flora of North America North of Mexico, Volume 26. Oxford Univ. Press, New York and Oxford.

# THE SHELL OF CATESBY'S HERMIT-CRAB 

James L. Reveal<br>L H Balley Hortorium<br>Department of Plant Biology<br>Cornell University, Ithaca, NY 14853-4301<br>e-mail jlr326@cornell edu


#### Abstract

When the English naturalist Mark Catesby illustrated "The Hermit-Crab" in 1734, he pictured it inside the shell of the West Indian topsnail, Cittarium pica (Linnaeus, 1758). This creature was not accounted for in a 2012 review of the plant and animals illustrated by Catesby.


In an earlier volume of Phytoneuron (Reveal 2012), a nomenclatural summary of the plants and animals illustrated by the English naturalist and artist Mark Catesby (1683-1749) was presented. It did not occur to me in treating the creatures on t .33 of the second volume published in 1834 that the shell in which Catesby positioned the land hermit crab, Ceonobita clypeatus (Fabricius, 1787), was identifiable. Dr. Robert Robertson, the emeritus curator of the Department of Malacology at the Academy of Natural Sciences in Philadelphia, soon sent me his paper (Robertson 2003) on the edible West Indian "whelk" in which he discusses the natural history of Cittarnum pica (Linnaeus 1758) and even reproduced the Catesby image (his fig. 5, p. 34). The reason I failed to identify the shell was that Catesby himself did not propose a name. Yet, Catesby had a discussion and mentioned a generic name:

> The shells they [the hermit crab] mostly make use of are of the Buccinum kind, whose spiral form is most fit to hold them fast, and secure them in the shell, in which they can fix themselves to fast, by means of short claws at their tails, that in pulling them out of it, the tender part separates from the crustaceous, and remain in the spiral part of the shell

Catesby's use of the expression "of the Buccimum kind" is understandable as the common whelk, Buccinum undatum Linnaeus (Syst. Nat., ed. 10, 1: 740. 1758), is a large snail common to many an English garden and is frequently encountered in coastal marine waters where, not surprisingly, they are the home of large hermit crabs. Linnaeus recognized that the Old World snail differed from the one in the New World and named the West Indian topsnail Turbo pica (Linnaeus, Syst. Nat., ed. 10, 1: 763.1758) making, like me, no reference to the Catesby illustration.

Recognition of Catesby's shell was not new with Dr. Robertson's paper. Broderip (1828) identified the shell stating (p. 206) that "Catesby gives a figure of Pagurus Diogenes in the shell of Turbo Pica." Nonetheless, failure to note this lies with me.

Two other oversights in my 2012 paper require comment. Thanks to the editor's mother-inlaw, Carol Wells of Natchitoches, Louisiana, I can only repeat her comment that likely Catesby's father did not survive him as I implied, nor did Catesby go to the Bermuda Islands as a ghost. Thus, Catesby's father passed in 1705 (not 1805, p. 1), and his visit to the Islands was in 1725 (not 1825, p. 2). Neither the editor nor I have any excuses except to note that many others read an early version of this manuscript and also failed to spot the obvious!

## LITERATURE CITED

Broderip, W.J. 1828. On the habits and structure of Paguri and other crustacean. Zool. J. 4: 200210.

Reveal, J.L. 2012. A nomenclatural summary of the plant and animal names based on images in Mark Catesby's Natural History (1729-1747). Phytoneuron 2012-11: 1-32.
Robertson, R. 2003. The edible West Indian "whelk" Ctttarium pica (Gastropoda: Trochidae): Natural history with new observation. Proc. Acad. Nat. Sci. Philadelphia 153: 27-47.

# TAXONOMY AND DISTRIBUTION <br> OF THE ZINNIA ACEROSA (ASTERACEAE) COMPLEX 

Billie L. Turner<br>Plant Resources Center<br>The University of Texas<br>Austin, TX 78712


#### Abstract

A taxonomic treatment of the Zmnia acerosa (DC.) A. Gray complex is provided. Six species are recognized: Zinnta acerosa, Zinnia austrotexana B.L. Turner, sp. nov., Zinnia citrea Torres, Zinnia guanajuatensis comb. et stat. nov., Zinnia coahuilana B.L. Turner, sp. nov., and Zinnta oligantha I.M. Johnst. Photos of the type specimens of the new taxa are provided along with a map showing their distributions. KEY WORDS: Asteraceae, Zinnia, Z. acerosa, Texas, Mexico, Coahuila


Zinnta acerosa is typified by material collected in the Mexican state of San Luis Potosi by Berlandier (Torres 1963). Torres, following Robinson and Greenman (1896), placed Z. pumila A. Gray, typified by a Gregg collection from south-central Coahuila, as the only synonym of the species. I also accept such a disposition.

Torres did not recognize infraspecific taxa within his concept of Zinnia acerosa, but he did propose new specific taxa from among its cohorts, namely $Z$. citrea, a tetraploid taxon having bright yellow rays but otherwise very similar to $Z$. acerosa. Its validity also is accepted here and I also propose below three new species from the Z. acerosa complex - Z. coahulana, a striking taxon with elongate, ciliate-margined but otherwise glabrous leaves and markedly pedunculate, large heads bearing 8 ray florets; Z. guanajuatensis, a localized taxon from the state of Guanajuato, Mexico, possessing a prostrate habit, originally proposed as a variety of Z. acerosa by Rzedowski and Rzedowski (1996); and Z. custrotexana, a highly localizd taxon of southern Texas having more numerous disc and ray florets that dry pale yellow. The following key should serve to identify members of the Zinnia acerosa complex, as currently perceived.

## Key to the Zinnia acerosa complex

1. Rays bright lemon-yellow

Zinnia citrea 1. Rays white or pale lemon-yellow.
2. Ray florets 2-3; disc florets 2-4(-5) ............................................................ Zinnia oligantha
2. Ray florets 5-8; disc florets 5-20.
3. Leaves elongate, ca 3 cm long, glabrous; north-central Coahuila ............ Zinnia coahuilana

3 . Leaves variously curvate, $1-2 \mathrm{~cm}$ long, clearly pubescent; widespread.
4. Stems mostly prostrate; Guanajuato, Mexico .............................. Zinnia guanajuatensis
4. Stems mostly erect; USA and north-central Mexico.
5. Ray florets 5-8, the ligules drying pale yellow; disc florets $10-20$

Zinnia austrotexana
5. Ray florets mostly 5 , the ligules drying chalky white; dise florets 5-10

Zinnia acerosa


Figure 1 Distribution of the Zimna aceross complex
ZINNIA ACEROSA (DC) A Gray, Pl Wright 1.105 .1850 . Diplathry acerosa DC, Prodr 5 611 1836 TYPE MEXICO. San Luis Potosi Dec 1827, I I Beriandier 1343 (holotype G-DC, isotypes MO digital mage', NY)
Zinma pumita A Gray, Mem Amer Acad Arts, n ser, 4:81 1849 Lectotype (designated here) MEXICO. Coahuila Near San Juan de la Vaqueria, high plan, 20 May $1847, J$ Gregg 722 (GH) Annotated by A Gray as "n sp"

Torres cited the type as "T High plains near San Juan de la Vequenia, and at Castamola in northem Mexico, Gregg $279, \mathrm{GH}$," essentially repeating the protologue for the geographic information ("High plain near San Juan de la Vequeria, and at Castantola, in North Mexico, Dr Gregg") The choice of "type" by Torres, however, is problematic In 1959 he annotated as Zanna pumia the sheet Coahuila Near Buena Vista Battlefield, dry plains, 24 Jul 1848, J Gregg 279 (GH) Another GH sheet has two specimens of Zinma mounted at the bottom (1) Gregg 279 with the same collection data as the one above and (2)

Gregg 722, as in the type citation above; this sheet has two non-type collections mounted on the upper portion (fide HUH 2012). Gregg 722 (not 279) is the appropriate choice of lectotype.

As noted by Torres (1963, p. 9), "The species includes four known chromosome races ( $n=$ $10,11,19$, and 20 ), which cannot be distinguished morphologically at the present time. Genetically, the widespread $n=10$ race is most closely allied to Z. juniperifolia (Torres 1961), although morphologically it is closely similar to Z. oltgantha. The $n=20$ race is of alloploid origin to judge from crossing results; possibly it is an allotetraploid derived from $Z$. acerosa $(n=10)$ and $Z$. oligantha." Torres's diploid counts for Z. acerosa were from San Luis Potosí, Arizona, and New Mexico; tetraploid counts were from Texas (Brewster Co.) and Coahuila (near Saltillo).

ZINNIA AUSTROTEXANA B.L. Turner, sp. nov. Figure 1. TyPE: USA. TEXAS. Starr Co.: rare in opening in medium-stature thorn shrubland on gravelly saline clay soils (Catarina Series), on gentle slope underlain by Catahoula and Frio formations undivided, NE of near cabin along S fenceline on Las Estrellas Preserve, ca 7.5 mi NW to NNW of jct US 83 and F. M. 755 in downtown Rio Grande City, $270 \mathrm{ft}, 5$ Aug 2010, W.R. Carr 29100 with A. TreuerKuehn (holotype: TEX).

Resembling Zinnia acerosa (DC.) Gray but ray florets mostly more numerous ((5-)8 vs 4-6), ligules, upon drying, pale lemon-yellow (vs white), and usually more numerous disc florets ( $10-20$ vs 10 or fewer). The epithet refers to southern Texas, to which the taxon is confined.

Suffruticose taprooted herbs, $10-15 \mathrm{~cm}$ high. Leaves loosely arcuate, $10-20 \mathrm{~mm}$ long, pubescent with short hairs. Heads campanulate, $6-10 \mathrm{~mm}$ high, $4-8 \mathrm{~mm}$ across (rays excluded); bracts imbricate, 4-6 seriate, their apices broadly rounded and ciliate. Peduncles sparsely pubescent, $5-12 \mathrm{~mm}$ long. Ray florets (5-)8, pistillate, fertile; ligules drying pale lemon-yellow, 5-8 mm long, $4-6 \mathrm{~mm}$ wide; achenes ca 3 mm long, epappose or minutely 2 -awned. Disc florets $10-20$; corollas glabrous, yellow; achenes ca 3 mm long, pubescent with short erect hairs; pappus of 2 short awns, or absent. Chromosome number, $\mathrm{n}=10$ pairs, plus a single univalent (Turner 4499, TEX).

Additional collections examined. USA. TEXAS. Jim Hogg Co.: 12 mi S of Petroleum, 28 Jun 1962, Correll \& Johnston 25634 (LL); ca 1 mi S of Thompsonville, on rocky slopes of breaks, 13 Jun 1963, Correll \& Wasshausen 27718 (LL); San Antonio Viejo Ranch, local on shallow, gravelly soil over the Catahoula formation, 30 Oct 2010, Treuer-Kuehn IV-0941 (TEX); 17.6 mi SW of Hebbronville along Farm Rd. 3073, 5 Jun 1983, Turner 15116 (TEX). Starr Co.: 8 mi N of Rio Grande City, 31 Aug 1932, Clover 479 (LL); 10 mi N of Rio Grande City, 29-30 Sep 1951, Runyon 4405 (TEX); local on shallow, gravelly soil over the Goliad formation, $26^{\circ} 45^{\prime} 29.582^{\prime \prime} \mathrm{N}, 98^{\circ} 46^{\prime}$ $58.569^{\prime \prime} \mathrm{W}, 14$ Oct 2010, Treuer-Kuehn IV-0951.2 (TEX); 9 mi W of Rio Grande City, 8 Mar 1959, Turner 4499 (TEX); dry hills, Fronton Road, 9 Oct 1965, Wood 511 (TEX).

Zinnia austrotexana is relatively rare and is known to occur only along the roadsides of westernmost Jim Hogg and Starr counties (Fig. 3), mostly between Miranda City and Roma, where geological outcroppings of Frio Clay and Catahoula tuff occur, this well documented by the comments of Carr on the label of the type collection. Torres (1963) apparently did not examine material of the novelty, to judge from his description of $Z$. acerosa, which noted that it had " $4-6$ " ray florets and " $8-13$ " dise florets. Plants of Z. custrotexana typically have 8 ray florets and $10-20$ dise florets, but occasional plants have 5-6 ray florets.

My initial inchnations were to treat this relatively isolated, south Texas population system as a variety of $Z_{\text {innia }}$ acerosa in recognition of its relatively weak morphological differentiation, but its seemngly consistent number of ray and disc florets, ranty, and confinement to specific geological outcrops has led to its treatment at the specific level

In the fall of 2011, in company whth Jana Kos, I revisited the two sites from which specimens of Zinnta austrotexana were gathered much earlier, but we were unable to relocate the taxon, perhaps due to the unusual drought conditions of that year but surely also to the considerable disturbances at the sites concerned. The Starr County location is now an assemblage of roadside houses


Figure 2 Zinna austrotexana, holotype TEX


Figure 3a, b. Zinnia austrotexana at the type locality in Starr County, Texas. Photos by Bill Carr.

ZINNIA CITREA Torres, Madrono 15: 215. 1960. Type: MEXICO. San Luis Potosí. Mpio. de Guadalcazar: near San Domingo, 1979 [the type grown in the greenhouse from seed collected at the type locality], A.M. Torres 139 (holotype: IND).

According to Torres (1963), Zinnia citrea is a tetraploid, possessing characters of both Z. juniperifolia and $Z$. acerosa. Because of this he suggested that it might be "an allopatric derivative of the two."

Zinna citrea is known to occur within populations of the white-rayed $Z$. acerosa, no intermediates observed (as noted on the collection label of Nesom 6694, TEX). The distribution of $Z$. citrea, as currently known, is shown in Figure 2.

ZINNIA COAHUILANA B.L. Turner, sp. nov. Figure 2. Type: MEXICO. Coahuila. ca 39 mi SSW of Cuatro Cienagas, on the upper limestone slopes of Sierra de Los Alamitos, 11.6 road miles S of Hwy 30, on the road to Los Cuates de Australia, starting just W of El Hundido, near KM 139, S-facing slope, 23 Sep 2004, J. Henrickson 24116 (holotype: TEX).

Resembling Zinnia acerosa (DC.) A. Gray but the leaves ca 3 cm long and straight (vs 1-2 cm and variously recurved), glabrous with sparsely short-ciliate margins (vs variously pubescent with mostly eciliate margins); heads with mostly 8 ray florets (vs 4-6) borne on nearly glabrous peduncles $2-4 \mathrm{~cm}$ long (vs mostly 2 cm long or less).

Perennial herbs, $10-20 \mathrm{~cm}$ high. Midstem and upper leaves mostly linear, ca 3 cm long, glabrous or nearly so, the margins minutely, but sparsely ciliate. Heads $10-11 \mathrm{~mm}$ high, $5-6 \mathrm{~mm}$ wide (rays excluded). Peduncles $2-4 \mathrm{~cm}$ long, sparsely pubescent to glabrate. Involucres glabrous or nearly so; bracts imbricate, 5-6 seriate, their apices broadly rounded with scarious margins. Recptacles conical, ca 1 mm high, 1.5 mm across; pales scarious, linear-lanceolate, ca 8 mm long. Ray florets 8 , pistillate, fertile; ligules white, $9-12 \mathrm{~mm}$ long, $5-7 \mathrm{~mm}$ wide; achenes ca 5 mm long, 1.5 mm wide, epappose. Disc florets ca 20 per head; corollas yellow, 4-5 mm long, glabrous; achenes $3-4 \mathrm{~mm}$ long, black, glabrous or nearly so; pappus of 2 unequal awns, $1-4 \mathrm{~mm}$ long.

Representative collections examined. MEXICO. Coahuila. Mpio. M. Muzquiz: ca 130 road km NW of Muzquiz on Coa Hwy 2A, mid slope of Sa. La Encantada basin and mining areas, scattered but common on relatively flat areas near bottom of slope, forming large masses, $28^{\circ} 30^{\prime} 40^{\prime \prime}$ N, $102^{\circ} 19^{\prime} 30^{\prime \prime}$ W, 3 Jun 1992, Nesom 7389 (TEX); Mpio Ocampo: La Cuesta del Plomo on the Muzquiz-Boquillas highway, $1750-1775 \mathrm{~m}, 28^{\circ} 44^{\prime} \mathrm{N}, 102^{\circ} 31^{\prime} \mathrm{W}$, steep limestone slopes and canyons, 14 Sep 1972, Chiang et al. $9213 a$ (TEX); Mpio. San Pedro Colonias: northern flank of Sierra de los Alamitos, $26^{\circ} 20^{\prime} \mathrm{N}, 102^{\circ} 20^{\prime} \mathrm{W}, 1450 \mathrm{~m}, 13$ Jun 1972, Chiang et al. 7716 (TEX); Mpio Villa Acuna: Rancho El Rincon, SW margin of Serranias del Burro, ca 80 km SE of Big Bend National Park, Texas, 1400-2100 m, 23 Jun 1991, Ruiz 43; same locality, 15 Jul 1991, Ruiz 110 (TEX).

Zinnia coahutana is clearly closely related to $Z$. acerosa but readily distinguished by its more elongate, glabrous leaves, larger, mostly glabrous heads on more elongate peduncles, and more numerous mostly larger rays. Clear intergrades between Z. coahulana and Z. acerosa in regions of near contact have not been observed. None of the specimens cited above was examined by Torres (1963) in his seminal study of the $Z$. acerosa complex.

The epithet refers to the state of Coahuila, Mexico, to which the novelty is seemingly confined (Fig. 3).


Figure 4. Zinnia coahuilana, holotype TEX.

ZINNIA GUANAJUATENSIS (Calderón \& Rzedowski) B.L. Turner, comb. et stat. nov. Zinnia acerosa var. guanajuatensis Calderon \& Rzedowski, Acta Bot. Mex. 36: 78. 1996. Type: MEXICO. Guanajuato. Mpio. de San Luis de la Paz: cerca de Pregón, ladera caliza con vegetación de pastizal, $2100 \mathrm{~m}, 22$ Aug 1988, J. Rzedowski 47043 (isotype: TEX!).

Zinnia guanajuatensts is a well-circumscribed taxon readily distinguished from Z. acerosa by its low, prostrate habit, heads with more numerous florets, and distinctive achenes, as noted by its authors. Further, the taxon is known by seven or more, relatively uniform populations, all from the Mpio. de San Luis de la Paz, and no intergradation between the two taxa is noted, suggesting that their recognition at specific rank is appropriate.

ZINNIA OLIGANTHA I.M. Johnst., J. Arnold Arb. 21: 74. 1940. Type: MEXICO. Coahuila. [Mpio. Sierra Mojada:] road from Mohovano northeast to Estancia Station, 13 mi S of Laguna del Rey, on old dunes, 21 Sep 1938, I.M. Johnston 7821 (holotype: GH).

Torres (1963) provided an excellent account of Zinnia oligantha, noting its few-flowered heads and diploid chromosome count of $n=10$. He further noted that "Morphologically, it is most like $Z$. acerosa. It is suspected of containing a genome that is non-homologous to those in diploid $Z$. acerosa and Z. juniperifolia."

## ACKNOWLEDGEMENTS

I am grateful to my colleague Guy Nesom for helpful suggestions on the manuscript and to Jana Kos for accompanying me on field studies in southern Texas. Distribution maps are based upon collections on file at LL-TEX and specimens cited by Torres (1963).

## LITERATURE CITED

Harvard University Herbaria (HUH). 2012. Index of Botanical Specimens. Harvard University Herbaria Databases. Shttp//kiki huh harvard edu/databases/> Accessed Feb 2012.
Robinson, B.L. and J.M. Greenman. 1896. A revision of the genus Zinnia. Proc. Amer. Acad. Arts 32: 14-20.
Rzedowski, G.C. and J. Rzedowski. 1996. Dos novedadas en Zinnia subgenus Diplothrix (Compositae: Heliantheae) del centro del Mexico. Acta Bot. Mex. 36: 77-83.
Torres, A.M. 1963. Taxonomy of Zinnia. Brittonia 15: 1-25.

# CERASTIUM SEMIDECANDRUM (CARYOPHYLLACEAE) IN TEXAS 

Matt White<br>882 HWY 24<br>Campbell, Texas 75422<br>Jason R. Singhurst<br>Wildlife Diversity Program<br>Texas Parks and Wildlife Department<br>Austin, Texas 78704


#### Abstract

Cerastrum semidecandrum (Caryophyllaceae) is reported as new to the flora of Texas. This species was collected in both a city park and a vacant lot in Sulphur Springs, Hopkins County, in the northeastern corner of the state. KEY WORDS: Caryophyllaceae, Cerasttum, Texas, Hopkins County, adventive


Cerastrum semidecandrum L. (Caryophyllaceae; fivestamen chickweed) was recently discovered in the town of Sulphur Springs in Hopkins County of northeast Texas - it has been collected there in Buford Park and in a nearby vacant lot. There are no previous reports of this introduced species in the state.

At the Buford Park site it was growing in full sun in thin to bare patches in the Bermuda grass turf both as scattered lone individuals and in dense patches, where it was locally abundant, often intermixed with the associated species including Erodum cicutarnum, Capsella bursa-pastoris, Stellaria sp., Solva pterosperma, Veronica persica, Lepidum densiflora, Lamum amplextcaule, Houstona rosea, Sherardia arvensts, Krigia sp., and Medicago sp. At the vacant lot, associated species included many of the same species as well as Erigeron philadelphicus, Claytonia virginica, and Houstonia pusilla. Cerastium semidecandrum appears to be well established at both of the sites in Sulphur Springs.

Voucher specimens. USA. Texas. Hopkins Co.: just S of Connally Street in Buford Park, $33^{\circ}$ $08^{\prime} 17.06^{\prime \prime} \mathrm{N}, 95^{\circ} 36^{\prime} 52.06^{\circ} \mathrm{W}, 7$ Feb 2012, M. White s.n (BAYLU); vacant lot, 250 ft W of intersection of League and Main, Sulphur Springs, $33^{\circ} 08^{\circ} 02.71$ N, $95^{\circ} 36^{\prime} 48.81^{\prime \prime} \mathrm{W}, 16$ Feb 2012, M. White s.n. (BAYLU).

Cerastum semidecandrum is a small, annual species that closely resembles C. pumilum but is easily distinguished by the broad, conspicuous, white to translucent bract and sepal margins (Morton 2005; Yatskievych 2006). The plant shown in Figure 1 was just beginning to flower.

This species is native to Eurasia and adventive in North America. According to de Schweinitz (1832) this species arrived on this continent as seed contaminant, although no dates were cited. While Mack and Erneberg (2002) suggested that this assertion reflected "informed opinion" instead of careful documentation, it is clear that the species was early introduced on this continent and is not a recent arrival though it is not possible to say how long it has been established in Texas. It is known from scattered collections throughout many of the states and provinces east of the Great Plains as well as several in the Pacific Northwest (Morton 2005). Due to its inconspicuous and ephemeral nature, it may well be more frequent than is generally known - especially in Texas and in Louisiana and Arkansas, where it has been only sporadically collected (BONAP 2012).

## ACKNOWLEDGMENTS

We would like to thank Joe Jackson, reference librarian at Paris Junior College for help obtaining literature.

## LITERATURE CITED

BONAP. 2012. North American Plant Atlas (US county-level species maps). Biota of North America Program, Chapel Hill, NC. [http://www.bonap.org/genera-list.html](http://www.bonap.org/genera-list.html)
Mack, R.N. and M. Erneberg. 2002. The United States naturalized flora: largely the product of deliberate introductions. Ann. Missouri Bot. Gard. 89: 176-189.
Morton, J.K. 2005. Cerastium. Pp. 74-93, in: Flora of North America Editorial Committee (eds.) Flora of North America North of Mexico, Vol. 5. Oxford Univ. Press, New York and Oxford.
Schweinitz, L.D. de. 1832. Remarks on the plants of Europe which have become naturalized in a more or less degree, in the United States. Ann. Lyceum Nat. Hist. New York 3: 148-155.
Yatskievych, G. 2006. Steyermark's Flora of Missouri. Vol. 2. Missouri Botanical Garden Press. St. Louis.


Figure 1. Cerastium semidecandrum. Note the very broad, scarious margins of the sepals. Photograph taken at Buford Park in Sulphur Springs, Hopkins Co., Texas, 7 February 2012.

# TWO INTERSECTIONAL HYBRIDS IN LIATRIS (ASTERACEAE) FROM EAST TEXAS 

Matt White<br>882 Hwy 50<br>Campbell, TX 75422<br>mwhite@parisjc edu<br>Guy L. Nesom<br>2925 Hartwood drive<br>Fort Worth, TX 76109<br>guynesom@sbcglobalnet


#### Abstract

A hybrid between Liatris squarrosa var. glabrata (sect. Liatris) and L. pycnostachya (sect. Suprago) from Lamar Co., Texas, is described and named here as L. $\times$ johnsonii M. White. A hybrid between L. elegans var. elegans (sect. Liatris) and L. tenuis (sect. Vorago) from Newton and Angelina counties, Texas, is described and named as L. $\times$ orzellii Nesom. Documentation is provided for each hybrid. KEY WORDS: Liatris squarrosa, L. pycnostachya, L. elegans, L. tenuıs, hybrids, Texas


Two interspecific hybrids in Liatris have been observed in east Texas, neither of which has been previously reported, and in keeping with the tradition of providing names for Liatris hybrids, each is here formally identified with an epithet. Hybrids are not unusual in the genus, and "The evolutionary and taxonomic coherence of Liatris is supported by the apparent ease with which hybrids are formed between species" (Nesom 2005, p. 1306). Both examples reported here are intersectional hybrids, further emphasizing this coherence. A list of Liatris hybrids and their putative parents is at the end of the FNA treatment of the genus (Nesom 2006) and an infrageneric classification is given in Nesom (2005).

Liatris $\times$ johnsonii M. White, hybrid nov. [L. pycnostachya Michx., sect. Suprago $\times$ L. squarrosa (L.) Michx. var. glabrata (Rydb.) Gaiser, sect. Liatris] Type: USA. Texas. Lamar Co.: ca 11 mi W of center of Paris, 0.73 mi N of jet of CR 35150 and CR 35020 to corner and then 0.19 $\mathrm{mi} \mathrm{NW}, 33^{\circ} 41^{\prime} 38^{\prime \prime} \mathrm{N}, 95^{\circ} 46^{\prime} 12^{\prime \prime} \mathrm{W}$, native Sporobolus silveanus prairie at the head of intermittent tributary stream of Maxey Creek, Parisian Silt Loam (Ressel 1979) atop the Bonham Formation, 7 Jul 2009, M. White 09-1 (BRIT).

Hybrid between Liatris pycnostachya and L. squarrosa var. glabrata and intermediate in morphology, especially in head size and arrangement and involucral bract shape. (Fig. 1, center).

The epithet ("johnsonii") commemorates Johnny Johnson who, after purchasing the Lamar County property where this new hybrid grows, recognized it was native prairie and began working to reclaim it from the cedars and brush.

The hybrid was discovered in a native prairie growing with populations of Liatris pycnostachya (White 09-2, BRIT) and $L$. squarrosa var. glabrata (White 09-3, BRIT) and is clearly intermediate between the two species. At this site, hundreds of plants of $L$. pycnostachya grow mainly in the flatter open areas, while the relatively uncommon $L$. squarrosa var. glabrata is confined to a slope receiving afternoon shade. Only one or two individuals of L. pycnostachya were found within the population of $L$. squarrosa var. glabrata, one of which was very close to the hybrid.


Figure 1. Liatris $\times$ johnsonii (center) and its parents: L. squarrosa var. glabrata (left) and $L$. pycnostachya (right). Photos from prairie west of Paris, Lamar Co., Texas. July 7 and 9, 2009.


Figure 2 Liatris $\times$ johnsonuz Lamar Co, Texas July 7, 2009 A single plant with two stems.

The single hybrid plant, which consisted of two stalks arising from a single corm (Fig. 2), was growing within a population of about 75 individuals of Liatris squarrosa var. glabrata. At first glance the hybrid appeared to be a much taller individual of var. glabrata. Closer inspection revealed that the heads are smaller with shorter, stiffly spreading, purple-tinged phyllaries and are more densely arranged around the stem, like L. pycnostachya, rather than mostly alternate, as in $L$. squarrosa var. glabrata. Compared to L. pycnostachya at the site, the heads are noticeably larger and not nearly so densely spaced, and the phyllaries are broader. The hybrid also is intermediate in other features, as noted in the comparison below, which corroborate the hypothesis of hybridity.

Liatris squarrosa var. glabrata
Leaf margins with a narrow, bright white, indurate-thickened band, involucres cylindrocampanulate, $18-22 \times 8-9 \mathrm{~mm}$, phyllaries in 5-7 series, apices erect,margins without a hyaline border, florets ca $28-30$, corolla lobes hispid on adaxial surface, pappus bristles plumose, barbels $8-10$ times longer than the bristle width.

## Liatris $\times$ johnsonii

Leaf margins with a narrow, whitish, indurate-thickened band, involucres cylindro-campanulate, 9-11 $\times 7-8 \mathrm{~mm}$, phyllaries in 5-6 series, apices spreading to slightly recurved, margins whthout a hyaline border, florets 18-19, corolla lobes sparsely hirsute to glabrate on adaxial surface, pappus bristles subplumose, barbels $2-3$ times longer than the bristle wath

Latris pycnostachya
Leaf margins green (without a white band) and not indurate-thickened, involucres campanulatecylindric, $7-8 \times 4-5 \mathrm{~mm}$, phyllaries in $4-5$ series, apices sharply recurving, distally dilated and petaloid, margins wth a narrow hyaline border, florets 6, corolla lobes glabrous on adaxial surface, pappus bristles minutely barbellate, barbels shorter than the bristle width

Nesom (2006) recognized two varieties within Liatris squarrosa but noted (p. 518) that "var. glabrata apparently is morphologically discontinuous from var. squarrosa where their ranges closely approach each other (but do not meet) in Texas, and they might be treated as separate species, especially in view of the treatment here of Liatris compacta [(Torr. \& Gray) Rydb.] at specific rank." Liatris pycnostachya also hybridizes with var. squarrosa and these two are the parents of a hybrid from southeastern Illinois, where only var. squarrosa occurs, although neither parent was identified to a rank below species. Mohlenbrock's floristic treatment (2002) included both L. squarrosa var. squarrosa and L. squarrosa var. hirsuta (Rydb.) Gaiser (= L. hirsuta Rydb., "scattered in sw. Ill."), but the presence of typical L. hersuta was not confirmed for the state in the FNA study and it is assumed here that typical $L$. squarrosa was the parent.

## Liatris $\times$ ridgwayl Standley, Rhodora 31: 37. 1929. Type: USA. Illinois. Richland Co.: E of Bethel Church, 26 Aug 1928, R. Rudgway 3265 (holotype: F, digital image!).

Standley (1929, p. 38) noted the following about the Illinois hybrid, which was found growing with both parents: "In characters it is intermediate between these two species, but in general appearance it resembles more closely L. pycnostachya. The spikes are less dense and have fewer heads than those of that species. The long bracts occurring in the upper part of the spike, the large heads, and the green squarrose outer phyllaries all suggest $L$. squarrosa, and the terminal head of the spike is very similar to a head of that species, except for its smaller size. The heads, of course have more numerous florets than in $L$. pycnostachya, and the pappus is about intermediate between the barbellate pappus of $L$. pycnostachya and the plumose pappus of $L$. squarrosa."

Liatris $\times$ orzellii Nesom, hybrid nov. [L. elegans (Walt.) Michx. var. elegans, sect. Liatris $\times$ L. teruīs Shinners, sect. Vorago] Type: USA. Texas. Newton Co.: ca. 2 mi E of Texas Hwy 87 at a point 0.3 mi S of Sabine Co. line, W side of valley of tributary N of Mill Creek, $31^{\circ} 09^{\prime} 47^{\prime \prime}$ $\mathrm{N}, 93^{\circ} 42^{\prime} 03^{\prime \prime} \mathrm{W}$, dry sandy cutover longleaf pine savannah, near Willis Formation and Catahoula Formation contact, elev. $330-350 \mathrm{ft}, 25$ Aug 1988, S. Orzell \& E. Bridges 8273 (TEX).

Hybrid between Liatris elegans var. elegans and L. tenuts and intermediate in morphology, especially in involucral bracts and pappus.

Additional collection examined. USA. Texas. Angelina Co.: Angelina Natl. Forest, SW of Forest Service Rd 313 and FS Rd 313A, N of Boykin Spring Recreation Area, 31 $04^{\circ} 27^{\prime \prime}$ N, $94^{\circ} 16^{\prime}$ $30^{\prime \prime}$ W, old-growth, burned, dry, upland longleaf pine savannah, Catahoula Formation, elev. 200-350 $\mathrm{ft}, 14$ Aug 1989, Orzell \& Bridges 11418 (TEX).

The collectors (Steve Orzell and Edwin Bridges) identified both of these collections as interspecific hybrids. Both hybrid plants are similar between themselves and both clearly show intermediate morphology between the two putative parents. Var. elegans is the only expression of $L$. elegans that grows at either site (Mayfield 2001). At the same site and date as the type collection, the collectors vouchered both parental species: Ltatrts elegans var. elegans (Orzell \& Bridges 8272, TEX - perhaps slightly introgressed by L. tenuts, according to an annotation in 1994 by Mark Mayfield) and typical L. tenuis (Orzell \& Bridges 8271, TEX - slightly different in ecology, Catahoula barrens below high hillside seepage bog). In documentation of the paratype hybrid, the collectors vouchered Liatris elegans var. elegans from the same site (Orzell \& Bridges 11428 ) - perhaps slightly introgressed by L. tenuts, according to an annotation in 1994 by Mark Mayfield. Two years earlier, they had collected typical L. tenuis at exactly the same site: 10 Aug 1987, Orzell \& Bridges 5614 (TEX).

Liatris elegans (sect. Liatris, ser. Elegantes) is a distinctive species in its foliaceous floral bracts with petaloid apices, and the hybrids with $L$. tenuts (sect. Vorago) show intermediacy in this feature. The pappus of the hybrids also is intermediate between L. elegans (plumose bristles) and $L$. tenuts (barbellate bristles). Liatris tenuis is similar to species of sect. Latris in its "whitish, thickened, and minutely scabrous leaf margins, cylindric heads, and indurate and loose or spreading, subequal to weakly graduate, somewhat foliaceous, triangular phyllaries with acute to acuminate apices and without hyaline margins" (Nesom 2005, p. 1313), and "In the original description of Liatris tenuis, Shinners (1959) noted its general similarity to L. squarrosa (ser. Liatris) but rejected a hypothesis of close relationship because of the disparity in pappus bristle morphology. Still, the weakly 3 -veined leaves of $L$. tenuus suggest that it may be closest to species of ser. Liatris, perhaps as a sister element" (p. 1313).

## Latris temus

Leaves linear-lanceolate to linear-oblanceolate, $2-3(-5) \mathrm{mm}$ wide, involucres cylindrocampanulate, $10-13 \mathrm{~mm}$ long, phyllaries margins whout hyaline borders, ciliate, apices mostly acute to acuminate, not dliated, green, florets 10-12, pappus bristles barbellate or proximally plumose

## Liatris ×orzellii

Leaves linear-lanceolate, 25-6 mm wide, involucres cylindric, 12-15 mm long, phyllaries margins with narrow, pinkish, hyaline borders, apices slightly or not dilated, abruptly acuminate, florets 6-7, pappus bristles subplumose Both collections of the hybrid are very similar between themselves, in 11418, the heads of the inflorescence widely spaced and the pappus bristles are subplumose, intermediate between the two parents; in 8273 , the heads of the inflorescence are more densely arranged and the pappus bristles are more nearly barbellate, more like $L$ tenuis

## Liatris elegans <br> Leaves narrowly oblanceolate, $3-8 \mathrm{~mm}$ wide, involucres turbinate-cylindric, $12-20 \mathrm{~mm}$ long, phyllaries margins with hyaline borders, apices (at least inner) prolonged, $\pm$ dilated, petaloid (pink, purplish, white, or yellow), florets 4-5; pappus bristles plumose

Liatris elegans var. elegans is the putative parent in another interspecific hybrid, Liatris $\times$ boykinit Torr. \& Gray (F1. N. Amer. 2(1): 70. 1841), a cross with L. temuffolıa Nutt. (sect. Pilifilis Nesom), described from near Columbus, Georgia. Gaiser (1951) noted that another collection from Georgia (Sumter Co.: Harper 635, NY, US, as cited) is similar to L. $\times$ boyktnı and was noted by its collector to be intermediate between L. elegans and L. temuifolia. Liatris elegans var. carrizana Gaiser, an endemic of east Texas, is the putative parent in two hybrid crosses, one with $L$. pycnostachya (sect. Suprago) and one with L. punctata Hook. (sect. Liatris). Both hybrids were discovered and vouchered in 1992 (TEX) by Mark Mayfield.

## ACKNOWLEDGEMENTS

We are grateful to the staffs of BRIT-SMU and TEX-LL for their hospitality, Barney Lipscomb for his help, and Mark Mayfield for review comments. A special thank-you is extended to Johnny Johnson for the invitation to visit his Lamar County prairie and for his efforts to reclaim it from the cedars.

## LITERATURE CITED

Gaiser, L.O. 1951. Evidence for intersectional field hybrids in Liatris. Evolution 5: 52-67. Mayfield, M.H. 2001. The varieties of Liatris elegans (Asteraceae). Sida 20: 597-603.
Mohlenbrock, R.H. 2002. Vascular Flora of Illinois. Southern Illinois Univ. Press, Carbondale.
Nesom, G.L. 2005. Infrageneric classification of Ltatris (Asteraceae: Eupatorieae). Sida 21: 13051321.

Nesom, G.L. 2006. Liatris (Eupatorieae). Pp. 513-535, in Flora of North America North of Mexico, Vol. 21. Oxford Univ. Press, New York and Oxford.
Ressel, D. 1979. Soil Survey of Lamar and Delta counties, Texas. Texas Agricultural Experiment Station, College Station.
Shinners, L.H. 1959. Liatris tenuis n. sp. (Compositae), another endemic in southeastern Texas. Southwestern Nat. 4: 207-208.
Standley, P.C. 1929. Two new plants from Illinois. Rhodora 31: 36-38.

# A NEW SPECIES OF EUCNIDE (LOASACEAE) FROM CHIAPAS, MEXICO 

Billie L. Turner<br>Plant Resources Center<br>The University of Texas<br>Austin, TX 78712


#### Abstract

A new taxon, Eucnide chiapasana B.L. Turner, sp. nov., is described from the Tropical Deciduous Forest of Chiapas, Mexico. It is presumably most closely related to the more arid, $E$. hypomalaca, a species of the Sonoran Desert. Aphotograph of the holotype is provided, along with maps showing distributions of the taxa concerned. KEY WORDS: Loasaceae, Eucnide, Eucnide hypomalaca, Eucnide arida, Mexico, Chiapas


Routine identification of Mexican plants has brought to light a previously undescribed species of Eucnide. Thompson and Ernst (1967) provided an excellent treatment of the genus, but unfortunately, none of the specimens of the present novelty was available at the time of their study. In their key to species the taxon will key to or near E. hypomalaca Standl., a species of the Sonoran Desert (Fig. 2). The two taxa differ in numerous morphological characters.

EUCNIDE CHIAPASANA B.L. Turner, sp. nov. Figure 1. Type: MEXICO. Chiapas. Mpio. Chiapa de Corzo, at the Rio Grijalva, 10 km W of Chiapa de Corzo along Mexican Highway 190, edge of cliff, Tropical Deciduous Forest, $500 \mathrm{~m}, 24$ Feb 1973, D.E. Breedlove 33828 (holotype: TEX; isotype: CAS).

Resembling Eucnide hypomalaca Standl. but the leaves more nearly cordate with much broader blades ( $10-15 \mathrm{~cm}$ wide vs $3-6 \mathrm{~cm}$ ), peduncles densely pubescent with numerous elongate, non-peltate hairs $1-2 \mathrm{~mm}$ long (vs mostly peltate and ca 1 mm long); anthers 4 -sided, ca 1.5 times as long as wide (vs reniform to ovoid and as long as wide), minutely pubesecent when first formed (vs not so).

Suffruticose perennial herbs to 30 cm high. Mid-stems 5-7 mm thick, densely pubescent with long, acicular trichomes, $1-2 \mathrm{~mm}$ long, beneath these a more densely array of short peltate hairs. Leaves at mid-stem ( $10-$ )15-20 cm long, 8-15 cm wide; petioles (3-)6-10 cm long; blades cordate (rarely not), pinnately nervate, pubescent above and below like the stems, the margins with ca 9 , broadly rounded, lobes, the sinuses $0.5-1.0 \mathrm{~cm}$ deep. Flowers 6-9 in terminal congested racemes 610 cm long, and as wide; peduncles relatively short, $1-2 \mathrm{~cm}$ long. Sepals, $1-2 \mathrm{~cm}$ long, $4-5 \mathrm{~mm}$ wide. Corollas reportedly white or "pale yellow" (Neill 5515 ), the petals $3-4 \mathrm{~cm}$ long, $1.5-2.0 \mathrm{~cm}$ wide, united at base for ca 2 mm . Stamens numerous (ca 200 or more), mostly exceeding the petals in length; anthers somewhat quadrate in shape, ca 1 mm long, 0.75 mm wide; young anthers minutely pubescent with glandular hairs, these shedding with age. Fruits obpyramidal, ca 1.5 cm long, 1.3 cm wide, densely pubescent like the stems; seeds ca 1 mm long.

Additional specimens examined. MEXICO. OAXACA. Mpio. Chiapa de Corozo, steep bank of Rio Grijaloa along Mexican Hwy 190 between Chiapa de Corzo and Tuxtla Gutz, $300 \mathrm{~m}, 3$ Dec 1971, Breedlove 22956 (CAS). Mpio. Ocozocoautla de Espinosa, head of the Rio de la Venta, near Derna, 800-1000 m, 3 Dec 1971, Breedlove 27401 (CAS); same locality, 24 Dec 1976, Breedlove 42864 (CAS); same locality, 11 Oct 1979, Breedlove 44383 (CAS); same locality, 16 Dec 1972,


Figure 1. Eucnide chiapasana B.L. Turner (holotype, TEX).


Fig 2 Distribution of Eucride chiapasana, E hirta, and E hypomalaca
Breedlove \& Thorne 30302 (CAS), steep walled limestone canyon of Rıo de Venta near Cascada El Aquacero, 15 km W of Ocozocuautla on Hwy 190, then $3 \mathrm{~km} \mathrm{~N}, 12$ Mar 1983, Neill 5515 (CAS)

Eucnide chtapasana is a very distinct species, as noted in the diagnosis Hufford (1988) annotated all of the specimens cited above as $E$ hypomalaca, these sirmlar to the latter in habit and flower size The novelty is also superficially similar to the widespread and quite vanable $E$ hirta, the latter readily distinguished by its narrow corollas and much fewer stamens. Distribution of all three taxa is shown in Figure 2

A notable trat of Eucntde chiapasana is the anthers, which are elongate-quadrate, resembling the head of a rattlesnake when young, and possessing minute hairs that are deciduous with matunty Such hairs were found on both of the types The young anthers of $E$ hypomalaca are essentially ovod and glabrous

Hufford (1988) has provided a scanned electron micrograph of the seed from the isotype of Eucnide chiapasana (his Figs. 19 and 20, which are labeled as E. hypomalaca).

The species is named for the state of Chiapas, Mexico, to which it seems confined (Fig. 2).

## ACKNOWLEDGEMENTS

I am grateful to my colleague Guy Nesom for his review and helpful comments. Dot maps are based upon specimens on file at LL-TEX and CAS. A loan from the latter is much appreciated.

## LITERATURE CITED

Hufford, L.D. 1988. Seed morphology of Eucnide and other Loasaceae. Syst. Bot. 13: 154-167. Thompson, H.J. and W.R. Ernst. 1967. Floral biology and systematics of Eucnide (Loasaceae). J. Arnold Arb. 48: 56-88.

# A NEW COMBINATION IN CHUSQUEA (POACEAE: BAMBUSOIDEAE) 

L. J. Dorr<br>Department of Botany, MRC-166<br>National Museum of Natural History<br>Smithsonian Institution<br>PO. Box 37012<br>Washington, DC 20013-7012<br>dorrl@si edu


#### Abstract

A new combination, Chusquea glomerata (Swallen) Dorr, is proposed for Neurolepis glomerata Swallen, a species of bamboo with a disjunct distribution in the Venezuelan Guayana and northern Andes. KEY WORDS: Bambusoideae, Chusquea, Poaceae


Fisher et al. (2009) concluded that chloroplast genomes indicate probable paraphyly of the genus Neurolepts Meisn. (1843) with respect to Chusquea Kunth (1822) (Poaceae: Bambusoideae). In the same paper, Clark transferred the species of Neurolepis to Chusquea and proposed a score of new combinations and new names. Both genera have been collected in Guaramacal (Dorr et al., 2000), a national park in the Andes of Venezuela, and as a treatment of the grasses is being finalized for a flora of this area (Dorr et al., in prep.) the names of the bamboo species present in the park were reviewed. In that review it was discovered that a nomen novum proposed in Chusquea for $N$. glomerata Swallen was superfluous.

Clark in Fisher et al. (2009) proposed "Chusquea steyermarkit L.G. Clark, nom. nov." to replace Neurolepis glomerata, as she presumably concluded that a new combination was precluded by "Chusquea glomerata Munro." However, this name has no nomenclatural standing, as Munro (1868) merely cited "Chusquea (Rettbergia) glomerata, Munro in herb. Trin. Coll. Dublin" as a synonym of Merostachys capitata Hook. ( $\equiv$ Athroostachys capitata (Hook.) Benth.). Furthermore, if a combination based on $N$. glomerata had been blocked, there still would not have been a need to propose a nomen novum, because either one of the two heterotypic synonyms, $N$. nigra Swallen or $N$. densiflora Swallen, that Clark in Fisher et al. (2009) cited was available to serve as a basionym for a new combination in Chusquea.

Consequently, the correct name (and synonymy) for Neurolepis glomerata in Chusquea is this:

Chusquea glomerata (Swallen) Dorr, comb. nov. Basionym: Neurolepis glomerata Swallen in Maguire et al., Mem. New York Bot. Gard. 9: 399. 1957. Chusquea steyermarkii L.G. Clark in A.E. Fisher et al., Syst. Bot. 34: 681. 2009, nom. superfl. Type: Venezuela. Bolivar: Chimantá Massif, Bonnetia forest, northwestern part of summit of Abácapa-tepuí, 2125-2300 m, 13 Apr 1953 (f1), J.A. Steyermark 74925 pro parte (holotype: US-2182879!; isotypes: F-2 sheets, MO-fragment, NY, US-2182878!; probable isotype: US-2182881!).
Chusquea glomerata Munro, Trans. Linn. Soc. London 26(1): 50. 1868, nom. nud., pro syn.
Neurolepts densiflora Swallen in Maguire et a1., Mem. New York Bot. Gard. 9: 399. 1957. Type: Venezuela. Bolivar: Chimantá Massif, lower mixed Bonnetia forest above southeast-facing upper shoulder on slope leading to summit of Apácara-tepuí, 2000-2150 m, 20 Jun 1953 (f1), J.A. Steyermark 75806 (holotype: US-2 sheets!; isotypes: F, NY).

Neurolepis nigra Swallen in Maguire et al., Mem. New York Bot. Gard. 9: 400. 1957. Type: Venezuela. Bolívar: Chimantá Massif, Central Section, open forested laterite slopes along tributary of east branch of headwaters of Río Tirica, 2185-2210 m, 13 Feb 1955 (fl), J.A. Steyermark \& J.J. Wurdack 860 (holotype: US-3 sheets!; isotypes: NY-3 sheets).

LITERATURE CITED
Dorr, L.J., B. Stergios, A.R. Smith, and N.L. Cuello A. 2000 [2001]. Catalogue of the vascular plants of Guaramacal National Park, Portuguesa and Trujillo states, Venezuela. Contr. U.S. Natl. Herb. 40: 1-155.
Fisher, A.E., J.K. Triplett, C.-S. Ho, A.D. Schiller, K.A. Oltrogge, E.S. Schroder, S.A Kelchner, and L.G. Clark. 2009. Paraphyly in the bamboo subtribe Chusqueinae (Poaceae: Bambusoideae) and a revised infrageneric classification for Chusquea. Syst. Bot. 34: 673-683.
Munro, W. 1868. A monograph of the Bambusaceae, including descriptions of all the species. Trans. Linn. Soc. London 26(1): 1-157.

# PINUS CLAUSA (PINACEAE) ADVENTIVE IN TEXAS 

Jason R. Singhurst<br>Wildlife Diversity Program<br>Texas Parks and Wildlife Department<br>3000 South IH-35, Suite 100<br>Austin, Texas 78704<br>jason singhurst@tpwd state tx us<br>Jeffrey N. Mink<br>Department of Biology<br>Baylor University<br>Waco, Texas 76798-7388<br>Walter C. Holmes<br>Department of Biology<br>Baylor University<br>Waco, Texas 76798-7388


#### Abstract

An adventive population of Pimus clausa, sand pine, is reported in the Post Oak Savanna of Henderson County, Texas. About 25-30 individuals are present at the site but there is no evidence of how they arrived. KEY WORDS: Pinaceae, Pinus clausa, Pinus, adventive, Post Oak Savanna, Texas, U.S.A.


Pimus clausa (Chapm. ex Engelm.) Vasey ex Sarg., sand pine, is a fire successional in sandy dunes and sandhills (Kral 1993). The species was mapped as native and endemic to Florida (central peninsula and western part of the panhandle) and adjacent Baldwin Co., Alabama (Little 1978). USDA, NRCS (2012) also included Pike County in the Alabama distribution, but without comment. The Mississippi Natural Heritage Program cites the species as native to Jackson County of that state (Mississippi Museum of Natural Science 2007). Weakley (2011) mentions that the species is "widely planted in pulp plantations in FL and s. GA, experimentally planted as far north as NC." Duncan and Duncan (1988) reported the species is "reproducing naturally in s GA." The species is not an important timber tree because of small size (up to 21 m tall) and profuse branching, but it is important for pulpwood production (Kral 1993).

Based upon the specimen cited below, Pinus clausa is reported here as adventive to Texas. Approximately 25-30 reproductive individuals (serotinous cones) of Pimus clausa were present at the site, these being from $20-30 \mathrm{~cm}$ diameter at breast height (ca. 137 cm ) and $7-9 \mathrm{~m}$ tall. Based on site descriptions and silvics of natural stands in Florida (Schumacher \& Coile 1960; USDA, USFS 1965) and other engineered stands (Burns 1978; Hebb 1982) upper age estimates at this Texas site were determined to be about 35-40 years of age, with other age classes occurring. Seedlings were interspersed among the age classes, but there was no evidence as to how the plants may have arrived.

Voucher specimen. Texas. Henderson Co.: Clements Scout Ranch, 0.3 mi . N of jet. of FM 2970 and Co Rd 1116 on FM 2970, E through entrance of camp 0.1 mi ., then NE on sand road 0.3 mi . ( $32^{\circ}$ $5^{\prime} 51.46^{\prime \prime} \mathrm{N}, 95^{\circ} 53^{\prime} 38.50^{\prime \prime} \mathrm{W}$ ), deep sandhills, 27 Sep 2006, Jason R. Singhurst \& Edwn Bridges 16031 (BAYLU). Figs. 1-3.


Figure 1. Close-up of Pmus clausa Voucher with serotmous ovulate cone (Singhurst \& Bridges 16031, BAYLU)

The specimen is from the Post Oak Savanna and area of deep sands located to the west of the Pineywoods of deep east Texas This savanna can generally be charactenzed as a Quercus stellata- $Q$ marilandica overstory and an understory of grass, chiefly Schuzachyrium scoparium (in Diggs et al 2006) At thus locale Quercus mcana was a common overstory species The area of occurrence was vold of other woody plants and dommated by Arishda desmantha, Cropfilon divaricatum, Enoogonum multiflorum, Liatrus elegans subsp bridgenl, Matelea cynanchoides, Paromychia drummondit, Polanisia erosa, Penstemon murrayamus, Rhododon chlhatus, and Truplasts purpurea

Because of the short needles (to 10 cm long), Pimus clansa would key to $P$ echinata Mill in Correll and Johnston (1970) and Diggs et al (2006) Thus sumlarity is superficial, however, as $P$ clausa is said to be more closely related to $P$ virginama Mill, $P$ banksama Lamb, and the $P$ contorta Douglas ex Loudon complex (Weakley 2011) Pimus clausa and $P$ echinata may be distingushed by use of the following key, which 18 adapted from Duncan and Duncan (1988), Kral (1993), and Wunderlin (1998)

1 Twigs roughened and crackng below leafy portion, bark plates with evident resm pockets, leaves mostly ca 1 mm wide, tps of seed cone scales without a conspicuous honzontal nidge, inconspicuous light-colored band located dstally on adaxual surface of ovulate scales

Pinus echinata 1 Twigs smooth below leafy portions, bark plates lacking resin pockets, leaves mostly 05 -less than 1 mom wide, tup of seed cone scales with a conspicuous honzontal ndge, conspicuous dark red-brown to purple band located distally on adaxaal surface of ovulate scales

Pinus clausa


Figure 3 Pinus clausa Henderson Co, Texas (Singhurst \& Bridges 16031, BAYLU)


Figure 2 Adaxial aspect of Pimus clausa ovulate scales (Simghirst \& Bridges 16031, BAYLU)
Pinus clousa is the second species of the genus known to be introduced to east Texas, the other being $P$ elliottr Engelm (Diggs et al 2006). Pinus echnata M1ll, $P$ taeda L, and $P$ palustris Mill are native east Texas pine species.

## ACKNOWLEDGEMENTS

The authors thank Edwm Bridges, co-collector of the species, and the stewards of the Clements Scout Ranch for access to the ranch

## LITERATURE CITED

Burns, R M 1978 Evaluation of a Choctawhatchee sand pine plantation at age 35 USDA Forest Service, Research Paper SE-183 Southeastern Forest Experimental Station, Asheville, North Caroluna
Correll, DS and M C Johnston 1970 Manual of the Vascular Plants of Texas Texas Research Foundation, Renner, Texas
Diggs, G.M, Jr, BL Lipscomb, M D Reed, and R J O'Kennon 2006 Illustrated Flora of East Texas Vol 1 Sida Bot Misc 26, Bot Res Inst of Texas, Fort Worth
Duncan, W H and M B Duncan 1988 Trees of the Southeastern Unuted States Umv Georga Press, Atheris
Hebb, EA 1982 Sand pine performs well in the Georga-Carolna sandhulls Southern Journal of Apphed Forestry 6 144-147

Kral, R. 1993. Pinus. Pp. 373-398, in: Flora of North America Editorial Committee, Flora of North America Vol. 2. Pteridophytes and Gymnosperms. Oxford Univ. Press, New York.
Little, E.L., Jr. 1978. Atlas of the United States Trees. Vol. 5, Florida. U.S. Dept. Agric. Misc. Publ. 1361, U.S. Government Printing Office, Washington, D.C.
Mississippi Museum of Natural History. 2007. Checklist of plants of Mississippi: Gymnosperms. Mississippi Dept. of Wildlife, Fisheries and Parks, Jackson.
Schumacher, F.X. and T.S. Coile. 1960. Growth and yields of natural stands of southern pines. T.S. Coile, Inc., Durham, North Carolina.
USDA, NRCS. 2012. The PLANTS Database. National Plant Data Team, Greensboro, North Carolina. shttp//plants usda gov> Accessed February 2012.
USDA, USFS. 1965. Silvics of Forest Trees of the United States. H.A. Fowells (comp.). U.S. Department of Agriculture, Agriculture Handbook 271. Washington, D.C.
Weakley, A.S. 2011. Flora of the Southern and Mid-Atlantic States. Working draft of May 2011. Univ. of North Carolina Herbarium (NCU), Chapel Hill.
<http//WWw herbarium unc edu/WeakleyFlora2010Mar pdf>
Wunderlin, R.P. 1998. Guide to the Vascular Plants of Florida. Univ. Press of Florida, Gainesville.

# A NEW SPECIES OF SCROPHULARIA (SCROPHULARIACEAE) FROM NORTHEASTERN MEXICO 

Mark H. Mayfield<br>Herbarium and Division of Biology<br>Kansas State University<br>Manhattan, Kansas 66506-4901

Guy L. Nesom<br>2925 Hartwood Drive<br>Fort Worth, Texas 76109


#### Abstract

A new species from the mountains of northeastern Mexico is described and illustrated: Scrophularia mexicana Mayfield \& Nesom. The new species is compared to the more widely distributed S. marilandica from the eastern USA, from which it is geographically separated by more than 700 kilometers.


Scrophularia L. in North America is represented by 11 native and at least one introduced species, as currently considered (e.g., Hitcheock \& Cronquist 1973; Martin \& Hutchins 1981; Gleason \& Cronquist 1991; Wetherwax 1993; Kartesz 1999). Scrophularia marilandica L. is the only species restricted to the eastern USA. and adjacent Canada (west to northeastern Texas and Oklahoma). Scrophularta lanceolata Pursh also occurs in the eastern USA but is distributed sporadically from coast to coast in the northern half of the USA and southern Canada. The remaining North American species occur from the southern Rocky Mountains to California, Washington, and British Columbia. Among the native North American species, S. californica Cham. \& Schlect. and S. villosa Pennell are the only ones known to occur naturally in Mexico, each represented there by southward range extensions.

Here we describe a new species known only from a single population in the mountains of Nuevo León, about 30 kilometers (air) northwest of Victoria, Tamaulipas. The new species is geographically separated from the closest known populations of any Scrophularia species (S. marilandica) by more than 700 kilometers.

Scrophularia mexicana Mayfield \& Nesom, sp. nov. (Figs. 1, 2, and 3). Type: MEXICO. Nuevo León. Mpio. Aramberri, along the road to Dulces Nombres, Nuevo León, from Sta. Engracia, Tamaulipas, 36 road miles from Sta. Engracia, at the road crossing of the deep canyon of Arroyo Ramirez Luna, riparian association of Juglans mollis, Carya palmeri, Quercus rysophylla, Scrophularia scattered and uncommon along gravel bars of stream with thick herbaceous vegetation, $1390 \mathrm{~m}, 23^{\circ} 58^{\prime} 13^{\prime \prime} \mathrm{N}, 99^{\circ} 31^{\prime} 12^{\prime \prime} \mathrm{W}, 22$ Sept 1994, Guy Nesom 7474 with Mark Mayfield (holotype: MEXU; isotypes: TEX, US).

Similar to Scrophularia marilandica L. but different in its villous-glandular stems, smaller leaves with shorter petioles, and narrowly oblanceolate staminodes with acute apices.


Figure 1 Scrophulana mexicana, isotype (TEX)


Figure 2. Upper stem habit, ventral and lateral view of flower, inflorescence branching, capsule, and stem vestiture of Scrophularia mexicana.

Stems 1.0-1 4 m tall, erect, squared in cross-section, the angles rounded, villous in the mflorescence and at least to midstem with simple and gland-tipped hars $(0.1-0.2-0.8(-1.0) \mathrm{mm}$ long, the trichomes vitreous, shortest along the axis of the inflorescence. Leaves blades (mid to upper stems) ovate with acute apex and obtusely rounded to broadly subacuninate at base, 4-7 cm long, 2-4 cm wide, the margms crenate-serrate, petioles $5-15 \mathrm{~mm}$ long, somewhat flattened laterally
Inflorescences apical and solitary at the tips of the several branches and mamstem, each consisting of a raceme of diffisely branched, ascending cymes, the primary branches divergent and slightly ascending Corollas brcadly cylindric to subglobose, $7-8 \mathrm{~mm}$ long, reddsh-brown, the lower lip lightgreert, staminode (sterile filament) dark purple, the free portion ca 15 mmn long, oblanceolate, 0.4-0.5 mm wide at the widest point, acute- to subacute-deltord at the apex Capsules $5-6 \mathrm{~mm}$ long, ovoid to pyriform, apically blunt or slightly depressed, greenish-brown, somewhat lustrous Seeds ca 1 mm long, black, rugose Known only from the type collection


Figure 3 Variation in termmal portions of starmnodes of Scrophularia species Top line CAL $=S$ callfornica sensu lato (includng var caltfornica, var floribunda, $S$ oregana, and $S$ desertorum) Midille line $\mathbf{A T R}=S$ atrata, $\mathbf{P A R}=S$ parvffora, $\mathbf{M O N}=S$ montana Bottom lme LAN $=S$ Ianceolata, $\mathbf{M A R}=S$ marilandtca, $\mathbf{M E X}=S$ mexicana

The caulne vestiture of long, vitreous, glandulat trichomes (Fig 2) and narrow, acute staminodes (Fig 3) are the most divergent features that distinguish Scrophularia mexicana from other North Amencan members of the genus The new species is compared here to the widespread $S$ marilandica not because of direct evidence of close relationship but because it is the geographically closest Scrophularia species and because biogeographical considerations suggest a possible close relationship between them (see comments below) The key differences between Scropluflaria mexicana and $S$ marilandica are summarized in the following couplet

1. Stems minutely glandular in the inflorescence, trichomes mostly less than 0.1 mm long, free portion of the staminode spatulate, blunt and rounded apically, $1.2-1.8 \mathrm{~mm}$ wide; blades of upper stem leaves mostly ( $6-$ ) $8-15 \mathrm{~cm}$ long, the petioles $10-20(-25) \mathrm{mm}$ long

Scrophularia marilandica

1. Stems villous-glandular in the inflorescence and at least to midstem, the glandular trichomes (0.1-) $0.2-0.6(-1.0) \mathrm{mm}$ long; free portion of the staminode oblanceolate and apically acute, $0.4-0.5 \mathrm{~mm}$ wide; blades of upper stem leaves $4-7 \mathrm{~cm}$ long, the petioles $5-15 \mathrm{~mm}$ long

Scrophularia mexicana
Although the western species of Scrophularia have been studied comparatively (Shaw 1962), all of the North American species have yet to be considered within a single study, which we believe will emphasize the close vegetative similarities between $S$. calfornica sensu stricto, $S$. marilandica, and $S$. mexicana. All three of these species share a rather uniform glandular pubescence, basally rotund leaves with evenly serrate margins, and tend to have spreading diffuse inflorescences. None of these characters, however, is invariant within a species.

Scrophularia mexicana shares no unequivocally derived features with any other species or group of species of North America that would suggest a phyletically coordinate relationship. Most keys emphasize the staminode morphology in distinguishing some of the paired species, an indication that this character may be more consistent than others. The staminodia of $S$. mexicana_are unique in having the free portion more elongate, much narrower, and more acutely apiculate than all other North American species. Nevertheless, the floristic relationship between the eastern and southeastern United States and the Sierra Madre Oriental of Mexico is well known and demonstrated by numerous species pairs and disjunctions within species (see Nesom and Mayfield 1995 for examples and discussion). A hypothesis that $S$. mexicana and $S$. marilandica are closely related is consistent with this biogeographical phenomenon as well as the morphology.

## ACKNOWLEDGEMENTS

We thank [Kim Kersh (UC)] for comments on the manuscript. Amber Schoneman provided the photo of the type and Piero Delprete the line drawing.

## LITERATURE CITED

Gleason H.A and A. Cronquist. 1991. Manual of vascular plants of northeastern United States and adjacent Canada (ed. 2). The New York Botanical Garden, Bronx, New York.
Hitcheock, C.L. and A. Cronquist. 1973. Flora of the Pacific Northwest, an illustrated manual. Univ. of Washington Press, Seattle.
Kartesz, J.T. 1999. A synonymized checklist and atlas with biological attributes for the vascular flora of the United States, Canada, and Greenland. In: J.T. Kartesz and C.A. Meacham. Synthesis of the North American Flora, Version 1.0. North Carolina Botanical Garden, Chapel Hill.
Martin, W.C. and C.R. Hutchins. 1981. AFlora of New Mexico (vol. 2). J. Cramer, Vaduz.
Nesom, G.L. and M.H. Mayfield. 1995. A new species of Dirca (Thymelaeaceae) from the sierra of northeastern Mexico. Sida 16: 459-467.
Shaw, R.J. 1962. The biosystematics of Scrophularia in western North America. Aliso 5: 147-178.
Wetherwax, M. 1993. Scrophularta. Page 1062, in J. Hickman (ed.). The Jepson Manual, higher plants of California. Univ. California Press, Berkeley.

# IDENTIFICATION OF EASTERN NORTH AMERICAN MORUS (MORACEAE): TAXONOMIC STATUS OF M. MURRAVANA 

Madhav P. Nepal<br>Division of Biology and Microbiology<br>South Dakota State University<br>Brookings, SD 57007<br>Madhav Nepal@sdstate edu<br>Mark H. Mayfield<br>Herbarıum and Division of Biology<br>Kansas State University<br>Manhattan, KS 66506-4901<br>Carolyn J. Ferguson<br>Herbarium and Division of Biology<br>Kansas State University<br>Manhattan, KS 66506-4901


#### Abstract

Recent recognition of a new species of Morus (Morus murrayana D.E. Saar \& S.J. Galla) from eastern North America highlights a general misapplication of the characters that discriminate the native $M$. rubra and the morphologically and ecologically variable introduced species $M$. alba. Morphological and molecular data presented here show that M. murrayana is best treated as a synonym of $M$. rubra, well within its range of morphology and sexual expression. Salient features of M. alba and $M$. rubra are presented in order to clarify the distinctions among these species.


KEY WORDS: Moraceae, Morus alba, Morus murrayana, Morus rubra

Two species of Morus L. (mulberry) occur in eastern North America (Wunderlin 1997). The native M. rubra L. ranges throughout much of the eastern United States - from the Edwards Plateau of Texas and north in the eastern Great Plains, to southern New England and the southern extreme of Ontario, Canada (Parks Canada Agency 2011), and south to northern Florida (Wunderlin 1982). It occurs in rich, circumneutral soils in native forested land and is now considered rare and threatened in many areas, particularly in the northeastern United States and southeastern Canada (United States see USDA, NRCS 2012; Canada - Ambrose \& Kirk 2004, Penskar 2009, Parks Canada Agency 2011). The introduced M. alba L., native to China, was established in North America during colonial times and is now naturalized and often invasive throughout most of the range of M. rubra (Wunderlin 1997). It has broad ecological amplitude, occurring in forests and open areas alike (and it continues to be commonly cultivated). The two species are known to hybridize where they co-occur (Burgess et al. 2005; Burgess \& Husband 2006; see also Salah, 2006; Nepal 2008), with M. alba posing a potential threat to conservation of the native species. These species are generally easily distinguished in the field, but the recent description of M. murrayana highlights confusion often encountered when discriminating among them.

Students of dendrology commonly encounter the "weedy"Morus alba but ironically may be less familiar with the native M. rubra. Because M. alba thrives in a variety of habitats and exhibits much morphological variation, workers may - and commonly do - mistakenly identify variants within $M . a l b a$ as the native $M$. rubra. Herein, we analyze the evidence used to support recognition of a new species of Morus - the recently described M. murrayana (Galla et al. 2009). We purport that $M$. murrayana and $M$. rubra are taxonomic synonyms and that recognition of the new species
resulted from the authors' failure to understand the identity of the type of M. rubra. Their misconception further led to misinterpretation of their molecular data (discussed below). Our taxonomic position with respect to $M$. murrayana is also supported by the available taxonomic information on these species (including the Flora of North America North of Mexico [FNANM] treatment by Wunderlin [1997], with which we concur). We think this clarification is critical and urgent because M. rubra is a species of conservation concern (see Parks Canada Agency 2011) and because of the potential for further propagation of a broad, multifaceted misunderstanding of its taxonomy. The present contribution is intended to serve primarily as an aid to proper identification of eastern North American Morus and to promote further study of these species.

## Morus murrayana is fairly typical M. rubra

Identification of Morus alba and M. rubra is complicated by intraspecific variation in these species, coupled with contemporary abundance of the introduced species. For example, leaf size, lobing, and vestiture are highly variable within both species and must be properly contextualized when used as criteria for taxonomic recognition (see Britton \& Brown 1913; Radford et al. 1968; Gleason \& Cronquist 1991; Mohlenbrock 2002). Fruit color (a character highlighted by common names and sometimes employed by the layperson) is highly variable within $M$. alba and nondiagnostic. In fact, in wild populations, fruits of M. alba are usually red to black rather than white. Breeding system variation has also caused confusion. In describing M. murrayana, Galla et al. (2009) state that "Trees produce either predominately staminate or carpellate inflorescences, but the presence of some staminate inflorescences on carpellate trees and vice-versa is common. ... Both staminate and carpellate inflorescences may occur on the same large branch, usually separated on different twigs." They suggest, by contrast, that M. rubra is consistently monoecious. In fact, breeding system has generally not been carefully documented in North American Morus species and is intriguing. Despite wide reports of monoecy in M. rubra, our observations for this species in Kansas are corroborated by the description in Galla et al. (for M. murrayana, quoted above). We have found populations of both $M$. alba and $M$. rubra in the eastern Great Plains to be subdioecious, with the majority of individuals producing catkins of a single sex but with some (ca. $10 \%$ ) being hermaphrodites (Nepal 2008 and unpubl.). The lectotype of M. rubra includes two separate branches, one with only staminate inflorescences and another with one twig bearing staminate inflorescences and another bearing carpellate inflorescences (Fig. 1).

The primary character emphasized by Galla et al. (2009) in support of their initial recognition of a new species (Morus murrayana) was large leaf size $(>15 \mathrm{~cm})$. The authors further noted that Wunderlin's (1997) description of $M$. rubra in FNANM mostly encompasses the larger leaf size of $M$. murrayana. In addition, they state that "[M. murrayana] ... can be distinguished from M. rubra based on leaf vein pattern ... leaves longer than 15 cm with caudate tips (vs. leaves <15 cm with cuspidate to broadly acute or acuminate tips), and fruits longer than 3 cm (vs. $\leq 3 \mathrm{~cm}$ )." These features are congruent with the type of M. rubra (Fig. 1), and, in our experience, with the morphology of typical individuals of $M$. rubra from across the range. It is likely that larger leaves are under-represented in herbarium collections because leaves near flowering material are typically smaller and larger leaves may also be avoided by collectors. Overall, the details of the shape, vestiture, margins, and venation of leaves (rather than overall size) provide the most distinctive aspects of the leaves. The typical unlobed leaf of M. rubra is well represented by Figure 2C (M. murrayana) of Galla et al. ( $2009 ;$ p. 108). Most characteristic (M. rubra-like) are the drawn out "caudate" apices, closed venation, and smaller, more numerous, marginal teeth, features that are typically utilized in keys for M. rubra based on leaf morphology (e.g., Britton \& Brown 1913; Gleason \& Cronquist 1991; Wunderlin 1997). We have not been able to access type material of $M$. murryana (isotypes noted by Galla et al., 2009 have not been distributed). However, consideration of the description and illustration of M. murrayana (coupled with molecular data; see below) indicate that it is truly M. rubra.


Figure 1 Morus rubra lectotype (LINN 1112 6, Reveal 2007) image reproduced by the permission of the Linnaean Soclety of London The upper branch and night side portion of the lower branch bear stamnate inflorescences, whule the left side portion of the lower branch bears carpellate inflorescences

Galla et al (2009) nghtly highight the value of field study (they studned plants directly in the field in Kentucky), but fieldwork cannot take the place of careful comparative study of herbanum
specimens collected over space and time While species descriptions in floras accommodate typical variation, they are mostly based upon herbarium specimens Galla et al reported study of specimens at Missouri Botanical Garden (MO, which has holdings from throughout eastern North America) and considered some of the $M$ rubra specimens to be $M$ murrayana ("There were no herbarium specimens at MO with similar morphological characteristics from any continent, except those identiffed as Morus rubra" Galla et al 2009, p 111), but they did not annotate material (MHM, pers obs 2009) Most surprisingly, they did not indicate any study of the type specmens of $M$ aiba and $M$ rubra (both of which are housed at the Linnaean Herbanum with images readily accessible online $M$ alba, LINN 11121 , <http //www linnean-online org/11602/», $M$ rubra, LINN 1112.6, shttp //www hnnean-online org/11607/>, Fig 1)

Molecular data confirm M. murrayana as a case of misidentification
Galla et al (2009) applied molecular data to bolster ther hypothesis of a new species, but an underlying assumption - proper identification of samples - was incorrect The authors reported their sequence data for the intemal transcribed spacer (ITS) region of the nuclear ribosomal DNA for accessions they identified as $M$ murrayana (three individuals) and $M$ rubra (two individuals), with comparison to some accessions from GenBank They pointed out that sequences from what they described as $M$ murrayana were very different from their other sequences, which we contend represent $M$ alba The latter set of sequences was in turn sumilar to GenBank accessions of Asian material In a molecular phylogenetic study of the genus Morus, we have found $M$ rubra to form a well-supported clade with the native North American species $M$ celtudfohia Kunth and $M$ microphylla Buckley based on combined ITS and chloroplast data (Nepal \& Ferguson, in press). Furthermore, alignment of our sequences of $M$ alba and $M$ rubra with sequences presented by Galla et al (2009, as well as with additional sequences of these taxa now available on GenBank) confirms that their $M$ murrayana sequences match with $M$ rubra, while sequences of material they identified as $M$ rubra match with $M$ alba (Table 1).


Table 1 ITS sequence differences between Morus murrayana of Galla et al (2009) and other accessions of $M$ rubra and $M$ aiba Each row lists the GenBank accession number for the sequence, taxon as listed by submission authors and identification if interpreted differ ently here (in parentheses, inferred identification for each accession shown in bold face font), general locality, and base pair positions in the aligned ITS sequence matrix for which there are differences among these accessions $\wedge$ indicates a sequence of Galla et al (2009) * meicates new data reported herein (see also Nepal \& Ferguson, in press)

## Salient features for correct identification of M. alba and M. rubra

Morus rubra can be easily distinguished from $M$. alba using morphological characters of the leaf, bud, branch, bark and infructescence. Leaf characters present a challenge because of the tendency for leaves of juvenile shoots to converge in morphology among these species. Nearly all of the unique characteristics of M. rubra fail in juvenile leaves. Leaves of M. rubra (5-40 x 3-28 cm ) are larger overall than those of $M$. alba ( $2-20 \times 1.5-18 \mathrm{~cm}$ ). In M. rubra leaves, the adaxial (upper) surface is rough and dull green (vs. smooth and lustrous) and the abaxial (lower) surface is usually densely hairy with erect trichomes evenly distributed (soft to the touch); the base is often cordate (heart-shaped); the apex is acute, acuminate to subcaudate; marginal teeth are often pointed; and the color of the main veins is more or less like the color of the lamina on the underside. Leaves of Morus $a l b a$ are usually deep green and lustrous adaxially and have few hairs concentrated along the main veins on the abaxial surface; the base is rounded (vs. cordate); the apex is obtuse; the marginal teeth are fewer, relatively larger, and rounded; and the primary veins (underside) contrast more with the leaf surface than in M. rubra. The winter buds of M. rubra have bud scale margins with a darker (almost black) apical band, while in M. alba, the bud scale margins are uniformly brown. Morus rubra has grayish bark with flattened, thin plates that peel outwards in age. Morus alba bark has thick and solid ridges that are more of a reddish tan coloration. The orientation of branches in a mature M. rubra is somewhat planar (flat) and spreading like an umbrella. In M. alba the orientation of branches is more erect or spreading, and the plants appear more rounded or bushy as a result. The fruit of $M$. rubra is longer and narrowly cylindric, while in M. alba it is typically ovoid or ellipsoid.

## Opportunities for future study

There is no question that Morus exhibits intriguing morphological variation in eastern North America, and further study is warranted. Patterns of intraspecific variation as well as effects of interspecific hybridization between $M . a l b a$ and $M$. rubra warrant additional morphological and ecological scrutiny. We are encouraged to know that colleagues are exploring these issues (D. Saar, pers. comm.; Salah 2006; A. Whittemore, pers. comm.). We hope the present contribution clarifies the identities of the species $M . a l b a$ and $M$. rubra in North America and spurs additional work on these taxa.

## ACKNOWLEDGEMENTS

We are grateful to the Linnaean Society of London for permission to reproduce an image of the Morus rubra lectotype specimen. We thank A. Whittemore for useful discussions regarding Morus, and G. Nesom and R. Wunderlin for manuscript review, and MO and GH for specimen loans to KSC in support of MPN's research on the genus Morus. This is publication 12-351-J of the Kansas Agricultural Experiment Station.

## LITERATURE CITED

Ambrose, J.D. and D. Kirk 2004. National recovery strategy for red mulberry (Morus rubra L.). Ontario Ministry of Natural Resources, Guelph, Ontario.
Britton, N.L. and A. Brown. 1913. An Illustrated Flora of the Northern United States and Canada (ed. 2). Dover reprint (1970), Dover Publications Inc., New York.
Burgess, K.S., M. Morgan, L. DeVerno, and B.C. Husband. 2005. Asymmetrical introgression between two Morus species (M. alba, M. rubra) that differ in abundance. Molec. Ecol. 14: 3471-3483.
Galla, S.J., B.L. Viers, P.E. Gradie, and D.E. Saar. 2009. Morus murrayana (Moraceae): a new mulberry from eastern North America. Phytologia 91: 105-116.
Gleason, H.A. and A. Cronquist. 1991. Manual of Vascular Plants of Northeastern United States and Adjacent Canada (ed. 2). The New York Botanical Garden, Bronx.
Mohlenbrock, R.H. 2002. Vascular Flora of Illinois. Southern Illinois Univ. Press, Carbondale.

Nepal, M.P. 2008. Systematics and reproductive biology of the genus Morus L. (Moraceae). Ph.D. dissertation, Kansas State Univ., Manhattan.
Nepal, M.P. and C.J. Ferguson. In press. Phylogenetics of Morus (Moraceae) inferred from ITS and $\operatorname{trnL}-\operatorname{trnF}$ sequence data. Syst. Bot.
Parks Canada Agency. 2011. Recovery Strategy for the Red Mulberry (Morus rubra) in Canada. Spectes at Risk Act Recovery Strategy Series. Parks Canada Agency. Ottawa, Ontario. vi + 47 pp .
Penskar, M.R. 2009. Special Plant Abstract for Morus rubra (red mulberry). Michigan Natural Features Inventory, Lansing. thttp //web4 canr msu edu/mnfi/abstracts/botany/Morus_rubra pdf>
Radford, A.E., H.E. Ahles, and C.R. Bell. 1968. Manual of the Vascular Flora of the Carolinas. Univ. of North Carolina Press, Chapel Hill.
Reveal, J. 2007. M. rubra L. P. 686 in C. Jarvis (ed). Order out of chaos. Index of Linnean plant names and specimens. Linnean Society of London and the Natural History Museum, London.
Salah, S.M. 2006. Genetic and morphological characterization of red mulberry (Morus rubra L.), white mulberry (Morus alba L.) and their hybrids. M.S. thesis, Central Missouri State Univ., Warrensburg.
USDA, NRCS. 2012. The PLANTS Database. National Plant Data Center, Greensboro, North Carolina. =http //plants usda gov> Accessed 29 February 2012.
Wunderlin, R.P. 1982. Guide to the Vascular Plants of Central Florida. Univ. Presses of Florida, Gainesville.
Wunderlin, R.P. 1997. Moraceae. Pp. 388-399 in Flora of North America Editorial Committee. Flora of North America North of Mexico, Vol. 3. Oxford Univ. Press, New York.

# IPOMOEA DIRIADACTYLINA (CONVOLVULACEAE), A NEW SPECIES FROM THE NICOYA PENINSULA, COSTA RICA 

Barry E. Hammel<br>Missourl Botanical Garden<br>PO Box 299<br>St Louis, Missouri 63166<br>and<br>Instituto Nacional de Biodiversidad (INB10)<br>Apdo 22-3100<br>Santo Domingo, Heredia, Costa Rica barry hammel@mobot org


#### Abstract

Ipomoea diriadactylina Hammel (Convolvulaceae), a new white-flowered species with bilobed stigmas and marginally lanate seeds, is described from an isolated ridge on the Nicoya Peninsula of Costa Rica. This publication provides a name for the species treated as Ipomoea "sp. A" in the Manual de Plantas de Costa Rtca. The species is somewhat similar to the locally sympatric $I$. batatotdes and $I$. lindentt, both of which can have white or greenish white corollas of similar size and shape, and lanate seeds. From both, and from all their known relatives, the new species differs strikingly by its large, persistent bracts and by its indistinctly mucronate sepals that (in life) become markedly convex in fruit, resembling fingers or claws.


## RESUMEN

Ipomoea diriadactylina Hammel (Convolvulaceae), una especie nueva con flores blancas, estigmas bilobulados, y semillas marginalmente lanosas, se describe de una fila aislada en la Península de Nicoya de Costa Rica. Esta publicación provee un nombre para la especie tratada como Ipomoea "sp. A" en el Manual de Plantas de Costa Rica. La especie es algo parecida a las localmente simpátricas $I$. batatotdes e $I$. lindenii, ambas que pueden tener las corolas blancas o blanco verduzco y de similar tamaño y forma, y tienen semillas lanosas. De ambas, y de todas las especies relacionadas conocidas, la especie nueva difiere notoriamente por sus brácteas grandes persistentes y por sus sépalos indistintamente mucronados que (en vivo) se vuelven marcadamente convexos en el fruto, con apariencia de dedos o garras.
KEY WORDS: Convolvulaceae, Costa Rica, Ipomoea, Nicoya Peninsula.

Ipomoea is a large genus with upwards from 650 species worldwide, over half of them from the New World (Austin \& Huáman 1996). Many of the species, however, are wide-ranging. Although Ipomoea is quite large even in Costa Rica - I. diriadactylina becomes the fifty-second species known from the country - only eight other species names still considered to belong to Ipomoea were originally described from Costa Rica. Ipomoea amparoana Pilg., said to be related to I. squamosa Choisy ( $=$ I. morelit Duchass \& Walp.) and described from cultivated material with no type designated nor yet found, is by its protologue most likely a synonym of $I$. carnea Jacq. (Hammel, in prep.). That assumed, of those eight names just one, I. magniflora O'Donell (known only from the type), has not been relegated to synonymy. Thus, the present new species, so far known only from a few plants along an isolated ridge on the Nicoya Peninsula, is only the second endemic Ipomoea for the country.

Ipomoea diriadactylina Hammel, sp. nov. Type: COSTA RICA. Guanacaste. Cantón Santa Cruz. Dist. Santa Cruz: Rumbo a Vista al Mar por P. N. Diriá, ca. 200 m N de las primeras antenas, $10^{\circ} 08.5^{\prime} \mathrm{N}, 85^{\circ} 37.8^{\prime} \mathrm{W}, 800 \mathrm{~m}, 6$ Nov 2009, B. Hammel \& I. Pérez 25480 (holotype: MO; isotypes: ARIZ, CR, F, INB, MEXU, P, TEX, US). Figures 1-4.


Figure 1 poonoex diradactylura A, habit with flowers and close up of cross section of leaf midrab, lowet surface of blade, B , front. vies of corolla, C , sedico of flower showing two of the five stamets attached to corolla and pistil with close up of tip of sep al, $D$, habit with nearly mature fruits showin8 calyx of markedly convex sepals, E, seed Drawn by Clauda Aragon. A. C from the type, D from Hormel \& Perez 24989, E from Hommel \& Perez $2502 \sigma$

This species is similar vegetatively and in its marginally lanate seeds to Ipomoea batatoides Choisy and in its short peduncles and pedicels to I. lindenit M. Martens \& Galeotti - the new species can be distinguished from both of those and all their known relatives by its large and persistent inflorescence bracts and by its calyx of large sepals that almost completely encompass the mature fruit and in life are strongly convex, giving the appearance of the fruit being held in claws or fingers.

Plants suffruticose perenial vines or lianas. Stems glabrous, without adventicious roots. Leaves glabrous; petiole $5-10 \mathrm{~cm}$; blade 8-13.5 $\times 4.5-9 \mathrm{~cm}$, ovate, unlobed, basally cordate to truncate, apically acuminate, often with small dark dots on the lower surface, the midvein abaxially flattened (and especially at the base, slightly overhanging the blade surface), with 7-9 secondary veins per side, the tertiary veins adaxially impressed. Inflorescences of 1-20 flowers; peduncle 1-2 cm , terete; bracts $10-20 \times 5-10 \mathrm{~mm}$, elliptic, minutely pustulose, $\pm$ persistent. Flowers subsessile or with the pedicel $1-5 \mathrm{~mm}$; sepals subequal, $11-16 \times 5-10 \mathrm{~mm}$, oblong-elliptic, apically obtuse and mucronate (the mucro $1-2 \mathrm{~mm}$ ), abaxially and minutely pustulose, adaxially and minutely strigulose, the margin somewhat lighter in a narrow, subhyaline band; corolla white with yellowish interplicae, $50-70 \mathrm{~mm}$, funnelform, externally glabrous; stamens with 2 filaments $27-34 \mathrm{~mm}$ and 3 filaments $18-22 \mathrm{~mm}$, the basal 5-6 mm of filaments villous, the anthers 4-6 mm , oblong, saggitate, the pollen spheroidal, spinulose; ovary 2-3 mm, glabrous, the style $34-40 \mathrm{~mm}$, glabrous (the basal $3-5 \mathrm{~mm}$ thickened and appearing rostrate on the ovary), the stigma biglobose. Fruits white, $1.1-1.2 \times 0.9-1$ cm , subglobose, glabrous, usually with the lower, thickened part of the style persistent; seeds dark brown, $6-7 \times$ ca. 4 mm (not including trichomes), ovoid, $\pm$ trigonous, lanate around the margin with silvery golden to copper-colored trichomes to 10 mm .

Flowering Aug, Nov. Climbing on low shrubs and trees at edge of moist forest, $500-960 \mathrm{~m}$; Costa Rica (Guanacaste), northern Pacific slope, northern Nicoya Peninsula, Cerro Brujo.

Additional collections examined. COSTA RICA. Guanacaste. Cantón and Dist. Santa Cruz. Dist. Santa Cruz. Península de Nicoya. Parque Nacional Diriá: Fila Vista del Mar. Camino a las Torres de Telecomunicaciones, 25 Aug 1995, J. González et al. 940 (INB); Rumbo a Cerro Brujo y Vista al Mar, 15 Nov 2008, B. Hammel \& I. Pérez 24989 (CR, INB, MO); Cerca a la cima de Cerro Brujo, bajando rumbo a Vista al Mar, 16 Nov 2008, B. Hammel \& I. Pérez 25026 (CR, INB, MO).

Etymology. The epithet is a combined toponym and descriptive: "diria" for the national park, near or in which the species has been found and "dactylina" meaning "divided into fingerlike structures" (Stern, 1983), in reference to its unusual fruiting calyx.

In the Convolvulaceae treatment (Hammel, 2010) for the Manual de Plantas de Costa Rica Ipomoea diriadactylina was treated as $I$. "sp. A " and keyed out next to $I$. Indenti. It can be confused with that locally sympatric species by the latter's similarly short-peduncled inflorescences with the pedicels sometimes as short, by its flowers with sepals of similar size and shape, and by the often white corolla with a similar shape. Ipomoea lindenn, however, is immediately distinguishable by having smaller, narrowly lanceolate and soon-caducous bracts, usually lanceolate and more distinctly hyaline-margined, non mucronate sepals, and seeds that are lanate with white trichomes and not only along the margin but also (at least puberulent) on the rest of the body. Even vegetatively these two species can be distinguished easily since 1 . lindenil is only rarely glabrous and often manifestly tomentose, its leaves are without black dots, and the midrib is abaxially and distinctly convex (vs. flattened). By these vegetative characters as well as by the seeds, the present species is much more easily confused with - virtually identical to - I. batatotdes Choisy, which also is locally sympatric. One suspects that $I$. diriadactylna may be more closely related to $I$. batatordes and its near relatives. This latter species has much more open, virtually ebracteate inflorescences, and the flowers have much smaller, often suborbicular, non-mucronate sepals, usually with a pink (occasionally white)
corolla The sepals of I diriadactylina also appear to be unique for their indument, mnutely pustulose on the outer surface, minutely stngulose on (at least the upper $1 / 2$ of) the inner As per its characters and comparison to simlar species, thas new spectes would certanly be classfied by Austin and Huáman (1996) in subgenus Eraspermidm perhaps even of that same section and senes, [ $\mathrm{Er}, \mathrm{Er}, \mathrm{Er}]$ in their amnotation


Figure 2 Ipon oea deradactydaca Photo by the author with flowers, from the type
The first maternal of sporeaed diradactiva was collected (with just one open flower) in 1995 by former DNB curator José González Not until several years later during preparation of the Convolvulaceae for the Mancoal did the problematic nature of this enfity become apparent In spite of several intervening searches, fatule plants were not found again unfll 2008 (in fruit) and 2009 (in flower and frut) Apparently the species is not very common

Although many trees in the area are thucldy covered with large unes that resemble the new species, a reliable way has not been found to distinguish it vegetatively from Iponoea batatodes, which also grows in the area The Gonzalez specimen and two of the Hammel and Perez gatherings are,


Figure 3 Iponoed diradactylna Photo by the author with frints, from the type
by therr geographic coordnates, from vurtually the same spot, perhaps even the same plant Thus, only two different indviduals are known for certain Although it seems highly likely that $I$ diradactylina is more common than collections indicate, the evidence is lacking Records show that at least seven different botarists have collected in the area during the last 15 years, gathenng only about 500 numbers and just over 300 species (from above 300 m ) Lpomoea driadactylima was found serendipitously only once out of those 500 numbers, the other three gatherings were the result of a concentrated effort by the author


Figure 4 Type locality of Ipomoea diradactylina Photo by the author from south side of Cerro Brugo looking south towards Cerros Mata de Caña and Vista al Mar

The ridge from where the new spectes has been collected comprises, in part, a close North to South series of three hills (named on maps) above 900 meters Cerro Brujo (ca 960 m ), Cerro Mata de Caña ( 972 m ), and Cerro Vista al Mar (Cenizosa, 983 m ) Only one other peak, Cerro Azul, ca 45 km southwest, is slightly higher, at 1018 m , on the generally low-lying Nicoya Perinsula At least part of this ridge is in , or borders on, the recently declared National Park of Diria and has been the site of numerous recent country records for Costa Rica, meluding Anusacantlus micaraguensis Durkee, Chteranthemum pyramidatum (Lindau) T F Danuel (Acanthaceae), Doyerea emetocathartica Grosourdy (Cucurbitaceae), Ipomoea suaveolens (M Martens \& Galeotti) Hemsl, Schwencka lateriflora (Vahl) Carvalh (Solanaceae), and Trudax platyphylla B L Rob (Asteraceae) As contunued exploration (and work on previously collected material) in this area ensues, more new species and country records are sure to follow

## ACKNOWLEDGMENTS

I thank Isabel Pérez (INB) for her help in the field on all trips to the Parque Nacional Dirlá, as well as for reviewing the Spanish abstract I am also grateful to park administrator Ademar Rosales for faciltatung our numerous visits to P N Diria Freelance illustrator Claudia Aragon provided the fine black-and-white illustration. Thanks also to Michael Grayum (MO) for helpful discussions concerning ths manuscript and especially for help in zerong in on an appropriate epithet, I take full
blame, however, for its final form. Special thanks to Dan Austin (ASDM) for his, as always, prompt and helpful comments on the manuscript.

## LITERATURE CITED

Austin, D.F. and Z. Huáman. 1996. A synopsis of Ipomoea (Convolvulaceae) in the Americas. Taxon 45: 3-38.
Hammel, B. E. 2010. Convolvulaceae. Pp. 72-126 in, B.E.Hammel, M.H. Grayum, C. Herrera, and N. Zamora (eds.). Manual de Plantas de Costa Rica. Vol. V. Dicotiledóneas (ClusiaceaeGunneraceae). Monogr. Syst. Bot. Missouri Bot. Gard. 119: 1-970.
Stearn, W.T. 1983. Botanical Latin (ed. 3). David \& Charles, Newton Abbot, Devon, Great Britain.

# A DIVULGATION OF IGNORED OR FORGOTTEN BINOMIALS 

James L. Reveal<br>L. H Bailey Hortorium<br>Department of Plant Biology<br>Cornell University, Ithaca, NY 14853-4301<br>e-mail jlr326@comell edu


#### Abstract

A review of two works published in 1874 and 1875 (Gardeners' Chronicle and Revue Horticole) lead to a number of names (mainly binomials) for vascular plants (861) not reported in the International Plant Nomenclature Index (461) or for which an earlier place of publication was found for the same name (400). Given the results from this small sampling, and because more of the horticultural literature is becoming available online, a major effort should be made to review these long ignored works for their scientific plant names. Four new generic names (Acanthorrhiza, Brassica-napus, Eremospatha, and Polyanthus) were noted along with one name at the rank of tribe (Adenostyleae). One species, Jonquilla odora Raf. (1838), and one genus, Phylogyne Salisb. ex Haw. (1819), are lectotypified.

KEY WORDS: nomenclature, horticultural literature, online nomenclatural resources, International Plant Name Index (IPNI), Gardeners' Chronicle, Revue Horticole


Modern-day vascular plant taxonomists are dependent upon the International Plant Name Index database (IPNI - http://www.ipniorg/ipni/) that has replaced the printed versions known commonly at the Kew Index and Gray Gard Index. While other databases such as TROPICOS (http://www.tropicos.org/) and the recently introduced Plant List (http://www.theplantlist.org/) are useful, IPNI is still the most authoritative. These works have tended, properly, to concentrate upon the established systematic literature and therefore have tended to ignore such works as scientific dictionaries, general interest encyclopedias, and textbooks even though these publications often contain taxonomic novelties. A survey of the horticultural literature (e.g., weekly or monthly newspapers, seed catalogues, horticultural proceedings or journals, gardening or agriculture books) has been more thorough, but emphasis, at least in IPNI, has been to specific articles by select individuals - possibly a result of the once prevalent "Kew Rule" for botanical names (i.e., nomenclature used by an established monographer or in a major publication should be adopted, or "priority within a genus was reckoned from the date when a specific epithet was first associated with that generic name" - see IPNI 2012; Jackson 1887; Nicolson 1991). What has been overlooked have been the more general articles, letters, reports of meetings, results of horticultural shows and events, and especially the advertisements that frequent such weekly publications as the Gardeners' Chronicle or The Garden. Even less attention has been paid to local garden or farm newspapers, and less still to gardening columns in rural newspapers.

The information presented here is the result of a simple experiment at the Liberty Hyde Bailey Hortorium to ascertain what could be learned about the names listed in Hortus Third (1976) as names of no taxonomic standing. It did not take long to realize that many of these names were validly published and could be found by an online search. As more and more of the horticultural holdings at Harvard University (including Arnold Arboretum), Cornell University, and other institutions became available online, it was soon obvious that to understand the extent of the nomenclatural problem required a detailed review using only a small subset of the potential literature where vascular plant names might be found. Accordingly, two works were selected that were available online, and then names or references found therein were followed in search (hopefully) of
the first place of publication of a name. If another work was then suggested in a subsequent source, then that too was consulted for that name or names, and so forth.

Two years (1874-1875) of the weekly newspaper Gardeners' Chronicle and the monthly publication Revue Horticole were selected as both were readily available in the Hortorium Library and online. Literally each page of each publication was reviewed for names. This included not only the articles, but the letters and reports on garden shows and events wherein plants were named and often described, albeit briefly, usually because such new species typically were on public display for the first time and received awards or certificates of recognition. It soon became obvious that the other weekly British newspaper, The Garden, also had to be consulted (although less intensely) as often the same garden show was reviewed in both papers, and thus some names have priority in one place by a week although in a few cases the same name was validated in both newspapers on the same date.

A critical source of names was found to be the advertisements. Here one would often find a detailed diagnosis or description of a new species. Such ads then meant one had to look at the company's catalogue. This, then, often required a search of newspapers to determine exactly when the catalogue was published. It was not unusual to find one or the other was published a few days apart based on announcements of the availability of a new catalogue from a particular company. This kind of work can only be done at an institution like the Bailey Hortorium because of the readily available resources at Cornell University.

On 6 October 2011, a listing of some 4600 names not listed or not correctly listed in IPNI was submitted to IPNI (both at Harvard University and the Royal Botanic Garden at Kew), with copies of the report sent to the International Association for Plant Taxonomy (IAPT) and the New York Botanical Garden. The vast majority of names were at the rank of variety - names traditionally ignored by IPNI (except for New World plants) until 1970 (IPNI 2012). Nonetheless, of that number, some 855 names were binomials, and of those only three names proved to have a possible nomenclatural impact that will require formal proposals to conserve or reject a name. What taxonomic problems might result from the findings presented here are unknown as this requires the expertise of monographers and a review of extant type material. In many instances, the binomials reported here are associated with original material, expecially at Kew (K), so that additional nomenclatural work dealing with the designation of lectotypes will be necessary.

An obvious question is "why bother?" After all, the scientific world has existed happily without making a specific effort to look seriously for names in the horticultural literature. Still, it is obvious that by consulting just the two years of the Gardeners' Chronicle one does find several new names, especially orchids described by Heinrich Gustav Reichenbach (1824-1889), that were described therein and are listed in the IPNI database. Likewise, some genera and families have been carefully reviewed by past workers, and again many names first proposed in the Chronicle are already in IPNI although not always dating from the earliest place of publication. What is much more common is that a name in IPNI is taken from a traditional taxonomic work, or from a work published by a well-known author, even though the very same name was first validly proposed originally in the horticultural literature. Finally, and this is the most critical fact, such names can now be found easily as more of the horticultural literature is made available, online, in a searchable form. Researcher can no longer pretend that the traditional horticultural literature no longer exists, and when the early seed catalogues are made available, as they will be in the future, the problem will only become more exasperating.

The purpose of this report to the broad botanical community is to suggest that now is the time to review the horticultural literature in a more consistent manner than done in the past. Either the Code must be altered to disallow names published in the horticultural literature, or we must in some
way to evoke a new "Kew Rule" so that we can ignore certain categories of names as seemingly we are presently.

The following listing is divided into three parts: (a) names not currently in IPNI; (b) names published earlier than given in IPNI; and (c) names arranged by families. Each name is associated with a full bibliography entry and a statement of how the name was validated. When the diagnosis or description is brief, or dubious, the actual wording is given. Such brief remarks must be evaluated in context of what was known at the time about the genus or species complex, and with closer study it is likely that some names listed here will be interpreted as invalid. Combinations can sometimes be affected by provisions in Art. 33.3 (McNeill et al., 2006), although more often the reference is merely indirect. Minor differences in spelling are noted for it might be argued that some names are orthographic variant rather than new entities. Questionable cases are noted. Names that are not legitimate when published are also noted - most are later homonyms. A family name (APG 2009; Christenhusz 2011a, b) is given for each name followed by an occasional note. A few additional names not related to the horticultural literature are also noted (e.g., Arctostaphylos intermedia Greene ex Howell; Persicaria alata (Buch.-Ham. ex D.Don) Nakai).

## NAMES NOT CURRENTLY IN IPNI

Abtes brachyptera Rafarin, Rev. Hort. 46: 74. 16 Feb 1874. Validated by a description in French. Pinaceae.
Abies dicksonii C. van Geert ex K.Koch, Wochensch. Vereines Beförd. Gartenbaues Königl. Preuss. Staaten 6: 119. 11 Apr 1863. Validated by a diagnosis in German. - Pinaceae.
Abutlon savizu André, Rev. Hort. 67: 249. 1 Jun 1895. Validated by a description. - Malvaceae.
Acacia oletfolia Gera, Nouv. Diz. Univ. Ragion. Agric. 1: 111. 1834, nom. illeg., as "oleaefolia", non A. Cunn. ex G. Don (1832). Validated by a brief description in Italian. - Fabaceae.

Acacta scandens (L.) Gera, Nouv. Diz. Univ. Ragion. Agric. 1: 117. 1834, nom. tlleg., non Willd. (1806) nee Willd. (1809), nom. illeg., based on Mimosa scandens L., Sp. Pl., ed. 2, 2: 1501. JulAug 1763. - Fabaceae.
Acacta spini Gera, Nouv. Diz. Univ. Ragion. Agric. 1: 123. 1834. Validated by a description in Italian. - Fabaceae.
Acantholimon spinosum Rob., Gard. Chron., ser. 3, 96: 31. 14 Jul 1934. Validated by a description in English. - Plumbaginaceae.
Acer flavescens Veitch, Garden (London) 5:364. 25 Apr 1874. Validated by a diagnosis in English. Sapindaceae.
Acnida rhyssocarpa Gera, Nouv. Diz. Univ. Ragion. Agric. 1: 384. 1834, nom. illeg., as new name for A. rusocarpa Michx., Fl. Bor.-Amer. 2: 234, t. 40. 19 Mar 1803. - Amaranthaceae.

Adenanthera ossea Mannetti in F.A. Gera, Nouv. Diz. Univ. Ragion. Agric. 2: 141. 1834, nom. llleg. Validated by a description in Italian. - Fabaceae. NOTE: The name is not legitimate as the author cited "Clypearia rubra" Rumphius, Amb. 3: 176, t. 112. 1743, the type of Inga clypearia Jack. (1822).

Adenophora farrert S.Arnott, Gard. Chron., ser. 3, 86: 183. 7 Sep 1929. Validated by a description in English. - Campanulaceae.
Adenostyleae Cass. in F.A. Gera, Nouv. Diz. Univ. Ragion. Agric. 2: 14. 1834 (Adenostlleae). Validated by a description in Italian. - T.: Adenostyles Cass. (1816). - Asteraceae.
Adiantum jarlegense C.Loury, Rev. Hort. 47: unpaged. 16 Jul 1875. Validatedby description in French. - Adiantaceae.
Adiantum zahnit Veitsch, Florist \& Pomol. 27: 158. Jul 1874. Validated by a description in English. Adiantaceae.
Aethionema purpureum F.G.Sealey, Gard. Chron. 36: 73. 1932. Validated by a brief description in English ("Adwarf evergreen shrublet with many purple flowers"). - Brassicaceae.

Agave kellischea Rafarin, Rev. Hort. 46: 73. 16 Feb 1874. Validated by a brief description in French ("feuilles longues vert clair avec une bande jaune au centre"). - Asparagaceae.
Agave leopoldn Rafarin, Rev. Hort. 46: 73. 16 Feb 1874. Validated by a description in French. Asparagaceae.
Agave monstruosa Rafarin, Rev. Hort. 46: 73. 16 Feb 1874. Validated by a brief description in French ("feuilles épaisses, vert foncé, largement bordées de blanc"). - Asparagaceae.
Agave mooreana Mast. \& T.Moore, Gard. Chron., n. s., 1: 60. 10 Jan 1874. Validated by a diagnosis in English. - Asparagaceae.
Agave perringea Rafarin, Rev. Hort. 46: 73. 16 Feb 1874. Validated by a brief description in French ("feuilles courtes, vert terne, bordées de blanc"). - Asparagaceae.
Agave robusta Rafarin, Rev. Hort. 46: 73. 16 Feb 1874. Validated by a brief description in French ("feuilles vert clair, bordées de blanc"). - Asparagaceae.
Agnus-castus alba Carriére, Rev. Hort. 46: 400. 16 Oct 1874. Validated by a description in French. Lamiaceae.
Agnus-castus marostachya Carriére, Rev. Hort. 46: 400. 16 Oct 1874. Validated by a description in French. - Lamiaceae.
Ä̈phanes bicuspidata (H.Karst.) Ed.Otto, Hamburger Garten-Blumenzeitung 31: 24. Jan 1875, based on Marara bicuspidata H.Karst., Linnaea 28: 390. Jun 1857. - Arecaceae.
Alloplectus bicolor Linden, Cat. Pl. Exot. 22/23: 1. Jan-Jun 1869, nom. illeg., non G.Don (1855). Validated by a description in French. - Gesneriaceae.
Alocasia chantrieri (Andre) Duch. (pro hybr.), J. Soc. Nat. Hort. France, ser. 3, 9: 704. 24 Nov 1887. Validated by a description in French. - Araceae.
Alocasta $\times$ hybrida W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 17. 1 Apr 1871 (A. lowil $\times$ A. metallica). Validated by a description in English. - Araceae.

Alocasıa $\times$ intermedia H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 2. Aug 1868 (A. longlloba $\times A$. vettchil). Validated by a diagnosis in German. - Araceae.
Aloe frasktI Croucher, J. Hort. Cottage Gard. 27: 163. 20 Aug 1874. Validated by a brief diagnosis in English ('the base of the leaves clasping the stem like a cup).- Xanthorrhoeaceae. NOTE: See also Garden 6: 188. 22 Aug 1874. Validated by a brief diagnosis in English ("thick amplexicaulent leaves").
Aloe macchata Da Pare in F.A. Gera, Nouv. Diz. Univ. Ragion. Agric. 4: 547. 1835. Validated by a diagnosis in Italian. - Xanthorrhoeaceae. NOTE: The name could also be considered a new name for $A$. maculata Ker. Gawl., Bot. Mag. 20: ad t. 765. 1804, non Forssk. (1775) or $A$. obliqua Haw., Trans. Linn. Soc. London 7: 14. 1804, nom. tlleg., non DC. (1802).
Aloe quadrangularts Da Pare in F.A. Gera, Nouv. Diz. Univ. Ragion. Agric. 4: 546. 1835, nom. tlleg., non Dum. Cours. (1811). Validated by a description in Italian. - Xanthorrhoeaceae.
Amaranthus chlororuber Haage \& Schmidt, Haupt-Verz. Samen 1875: 6. Jan 1875, as "chloro-ruber." Validated by a diagnosis in German. - Amaranthaceae.
Amaranthus $\times$ henderi Hurst, Gard. Chron., n.s., 2: 738. 12 Dee 1874. Validated by description in English. - NOTE: Name given as "Hybrid Amaranthus henderi." - Amaranthaceae.
Amaranthus hendert W.Hend., Gard. Chron., n.s., 2: 770. 19 Dec 1874, nom. illeg., non Hurst. (1874). Validated by description in English. - Amaranthaceae.
Amaranthus hendersonit J.Weber, J. Hort. Cottage Gard. 27: 304. 1 Oct 1874. Validated by a description in English. - Amaranthaceae.
Amaranthus hendersonil Hort., Vick's Ill. Mag. 1: 354. Dec 1878, nom. illeg., as "hendersoni" Validated by a description in English. - Amaranthaceae.
Amaranthus salignus Carrière, Rev. Hort. 46: 80. 16 Feb 1874. Validated by a poorly organized description in French. - Amaranthaceae.
Amaryllis hybrida Neubert, Deutsch. Mag. 32: 333. 1879. Validated by a diagnosis in German. Amaryllidaceae.

Amaryllis $\times$ mooreana B.S. Williams, Garden (London) $5: 364.25$ Apr 1874. Validated by a diagnosis in English. - Amaryllidaceae.
Amaryllis virgmalis B.S.Williams, Gard. Chron., n.s., 1: 363. 21 Mar 1874. Validated by a description in English. - Amaryllidaceae.
Andromeda forrestu (Harrow ex W.W.Sm.) C.K.Schneid. in Gartenbau im Reich 11: 209. 1930, based on Pieris forresti Harrow ex W.W.Sm. in Notes Roy. Bot. Gard. Edinburgh 8: 196. 1914. Ericaceae.
Anemia plumbea Makoy ex E.Morren, Belg. Hort. 25: 200. 1875. Validated by a description in French. - Anemiaceae.
Anemia tessellata Makoy ex E.Morren, Belg. Hort. 25: 200. 1875. Validated by a description in French. - Anemiaceae.
Anoectochlus lobbu B.S.Williams, Orch. Grow. Man., ed. 2, 49. Oct 1862. Validated by a description in English. - Orchidaceae.
Anoectochilus maculatus B.S.Williams, Orch. Grow. Man., ed. 2, 50. Oct 1862 . Validated by a description in English. - Orchidaceae.
Anoectochilus quercetcolus B.S.Williams, Orch. Grow. Man., ed. 2, 50. Oct 1862. Validated by a description in English. - Orchidaceae.
Anoectochilus veitchil B.S.Williams, Orch. Grow. Man., ed. 2, 50. Oct 1862 . Validated by a description in English. - Orchidaceae. NOTE: As there is an earlier A. veitchiamus Blume (Coll. Orchid. 119. 1859), it is possible the Williams name is an orthographic variant.
Anthurium crystallinum Th.Meehan, Gard. Chron., n.s., 1: 92. 17 Jan 1874. Validated by a description in English. - Asparagaceae.
Anthyllus spinosa Franceschi in F.A. Gera, Nouv. Diz. Univ. Ragion. Agric. 4: 901, 902. 1835. Validated by a diagnosis in Italian. - Fabaceae.
Antirrhimum numidicum Haage \& Schmidt, Haupt-Verz. Samen 1875: 67. Jan 1875. Validated by a description in German. - Plantaginaceae.
Aqualegia caryophyllotdes S.Hibberd in Floral World Gard. Guide: 142. Jul 1860. Validated by a brief diagnosis in Latin ("double white-striped"). - Ranunculaceae. NOTE: A later place of publication: Aquilegia caryophyllordes G. Abbey in J. Hort. Cottage Gard. 32: 457. 21 Jun 1877. Validated by a brief description in English ("striped and mottled flowers").
Aralta granatensts W.Bull, Gard. Chron., n.s., 1: 532.25 Apr 1874. Validated by a description in English. - Araliaceae.
Araucaria neocaledonica Linden ex Regel, Gartenflora 24: 176. 15 Jun 1875. Validated by a diagnosis in German. - Araucariaceae.
Arctostaphylos intermedia Greene ex Howell, Fl. N.W. Amer. 1: 415. 1901, nom. illeg. Ericaceae.The name is a superfluous renaming of $A$. media Greene in Pittoma 2: 171. Sep 1891.
Areca dealbata W.Bull., Proc. Roy. Hort. Soc. 3:280. 29 Mai 1863. Validated by a description in English. - Arecaceae.
Aristolochia elevata Gera, Nuovo Diz. Univ. Agric. 5: 348. 1837. Validated by a description in Italian. - Aristolochiaceae.
Armentaca alexandrina Gera, Nouv. Diz. Univ. Ragion. Agric. 3: 337. 1835. Validated by a description in Latin. - Rosaceae.
Armerta echtotdes Dennst., Hort. Belveder. 1: 95. 1820, nom. illeg., a new name for Statice denticulata Bertol., Rar. Ital. Pl. Dec. 2: 34. 1806. -Plumbaginaceae.
Armeria laucheana Haage \& Schmidt, Pl.-Verzeichn. 2. Jan 1875. Validated by a description in German. - Plumbaginaceae.
Artocarpus neo-caledontca Linden ex Cazzuola \& Nencioni, Coltiv. Piante Ornam., ed. 2, 222. 1889. Validated by a diagnosis in Italian. - Moraceae. NOTE: Only the second edition seen and the first edition should be checked.
Astelia bivittata Watson, Proc. Roy. Hort. Soc. 46: 159. Oct 1864. Validated by a description in English. - Asteliaceae.

Aster rubicaulis Gera, Nuovo Diz. Univ. Agric. 6: 494. 1837. Validated by a description in Italian. Introducted from "America settentrionale [sic]". - Asteraceae.
Astilbe sinensis C.Pfeiff., Gartenwelt 3: 512. 23 Jul 1899. Validated by a diagnosis in German. Saxifragaceae. NOTE: Possibly an orthographic variant of Astilbe chinensis Franch. \& Sav., Enum Pl. Jap. 1: 144. 1873.
Atragene ceilanica (Thurb.) Gera, Nuovo Diz. Univ. Agric. 6: 507. 1837, based on Fagraea ceilanica Thunb., Kongl. Vetensk. Acad. Nya Handl. 1782: 132. 1782. Also associated with a description in Italian. - Ranunculaceae based on generic name; Loganiaceae based on epithet. NOTE: This is almost certainly an error, and the intended name was $A$. clematides Crantz (1769).
Aubrieta hendersonil E.GHend., Gard. Chron., n.s., 1: 2. 3 Jan 1874, as "Aubrietia henderson." Validated by a description in English. - Brassicaceae.
Aucuba vivicans W.Bull, Gard. Chron., n.s., 3: 619. 15 May 1875. Validated by a description in English. - Garryaceae.
Azalea $\times$ todmanit Veitch, Gard. Chron. 1873: 706. 24 Mai 1873 (Azalea Duchess Adelaide von Nassau $\times$ A. stella). Validated by a diagnosis in English. - Ericaceae.
Batemannta burtit W.B.Hume, Florist \& Pomol. 27: 60. Mar 1874. Validated by a description in English. - Orchidaceae.
Beaucarnea tuberculata (Hort. ex Lem.) Hurst, Gard. Chron., n.s., 2: 738. 12 Dec 1874, based on Pincenectitia tuberculata Hort. ex Lem., Ill. Hort. 8: 48, 59, 61. 1861. - Asparagaceae.
Begonia $\times$ valida P.W.Burbidge, Cultivated P1. 202. 1877 (B. longipila $\times$ B. boliviensis). Validated by a description in English. - Begoniaceae.
Berberis cordiformis W.Bull, Gard. Chron., n.s., 1: 532. 25 Apr 1874. Validated by a description in English. - Berberidaceae.
Bertolonia pubescens G.W.Johns. \& R.Hogg, J. Hort. Cottage Gard, n.s., 8: 397. 23 Mai 1865. Validated by a brief description in English. - Melastomataceae.
Bertolonia punctata W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 3. 1 Apr 1871. Validated by a diagnosis in English. - Melastomataceae.
Bertolonta $\times$ vanhouttet T.Moore, Florist \& Pomol. 28: 143. Jun 1875. Validated by a diagnosis in English. - Melastomataceae.
Betula purpurea Veitch, Gard. Chron., n.s., 3: 795. 19 Jun 1875. Validated by a description in English. - Betulaceae.
Btgnonta roezliana W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 4. 1 Apr 1871. Validated by a description in English. - Bignoniaceae.
Billbergia musaica (Linden \& André) Regel, Gartenflora 23: 378. Dec 1874, based on Tillandsia musanca Linden \& André., Ill. Hort. 20: 171. 1873. - Bromeliaceae.
Boltonia laevigata E.Witte, Ned. Tuinbouwbl. Sempervirens 1: 419. 10 Oct 1903. Validated by a description in Dutch. - Asteraceae.
Brassıca-napus Vilm., Bon Jard. 348. 1837. Validated by a diagnosis in French. - T.: B. sylvestris Vilm. - Brassicaceae.
Brassica-napus sylvestris Vilm., Bon Jard. 348. 1837. Validated by a diagnosis in French. Brassicaceae. NOTE: Under the provisions of Art. 33.3, one might argue that the combination is based on Brassica sylvestris Mill. (1768) although that name is not mentioned.
Burlingtonia amoena B.S.Williams, Orch. Grow. Man., ed. 2, 62. Oct 1862. Validated by a description in English. - Orchidaceae.
Calceolaria discolor Herb., Amaryllidaceae 363. late Apr 1837. Validated by a diagnosis in English. - Calceolariaceae.

Calochortus krelagei (Regel) Ortgies, Gartenflora 23: 49. Jan 1874, based on C. gunnisonil var. krelagei Regel, Gartenflora 22: 213. 1873. - Liliaceae.
Caltha grandiflora (Robert) Rob., Garden (London) 6:47. 18 Jul 1874, based on Ficaria grandiflora Robert, Pl. Phan. Toulon 57, 112. 1838. - Ranunculaceae.

Camellia fimbriata P.B.M, Young Churchman Misc. 3: 47. Feb 1848. Validated by a description in English. - Theaceae.
Camellia mearnata P.B.M., Young Churchman Misc. 3: 47. Feb 1848. Validated by a description in English. - Theaceae.
Carludovicajonghei Schaedtler, Hamburger Garten-Blumenzeitung 31: 301. Jul 1875. Validated by a diagnosis in German. - Cyclanthaceae.
Caryota tenuis Schaedtler, Hamburger Garten-Blumenzeitung 31: 111. Mar 1875. Validated by a diagnosis in German. - Arecaceae.
Caryota verschaffeltil Schaedtler, Hamburger Garten-Blumenzeitung 31: 111. Mar 1875. Validated by a diagnosis in German. - Arecaceae.
Catalpa $\times$ aureovittata Carrière, Rev. Hort. 46: 140. 1 Apr 1874 (C. syringifolia $\times$ C. bunget). Validated by a description in French. - Bignoniaceae.
Cattleya lutea Guidon, J. Soc. Cent. Hort. France 4: 250. Apr 1858. Validated by a description in French. - Orchidaceae.
Cattleya momorlandit B.S.Williams, Orch. Grow. Man., ed. 2, 74. Oct 1862. Validated by a description in English. - Orchidaceae.
Ceropegia macrocarpa Haage \& Schmidt, Pfl.-Cat. 1874: 2. Jan 1874. Validated by a diagnosis in German. - Apocynaceae.
Cephalotaxus robusta Rafarin, Rev. Hort. 46: 74. 16 Feb 1874. Validated by a description in French. - Cephalotaceae.

Chamaedorea ahrenbergii Schaedtler, Hamburger Garten-Blumenzeitung 31: 113. Mar 1875. Validated by a diagnosis in German. - Arecaceae.
Chamaeranthemum reticulatum W.Bull, Proc. Roy. Hort. Soc. 4: 73. Apr 1864. Validated by a diagnosis in English. - Acanthaceae.
Chamaerops arborea Linden, Supp. Extrait Cat. Gén. 82/24: 26. 1 Jul 1869. Validated by a diagnosis in French. - Arecaceae.
Chamaerops major Schaedtler, Hamburger Garten-Blumenzeitung 31: 158. Apr 1875. Validated by a diagnosis in German. - Arecaceae.
Chamaerops nivea Schaedtler, Hamburger Garten-Blumenzeitung 31: 158. Apr 1875. Validated by a diagnosis in German. - Arecaceae.
Chamaerops tenuffrons Schaedtler, Hamburger Garten-Blumenzeitung 31: 158. Apr 1875. Validated by a diagnosis in German. - Arecaceae.
Cheiranthus dillenianus R.Dean, Florist \& Gard. 28: 188. Aug 1875. Validated by a brief description in English ("coppery-bluff flowers, and a rather straggling and weakly habit of growth"). Brassicaceae.
Chironia ixtfera W.Bull, Gard. Chron., n.s., 2: 294. 5 Sep 1874. Validated by a description in English. - Gentianaceae.

Chrysophyllum lancifolum Linden, Cat. P1. Exot. 22/23: 25. Jan-Jun 1869. Validated by a diagnosis in French. - Sapotaceae.
Cibotium spectabile H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 2. Aug 1868. Validated by a diagnosis in German. - Cibotiaceae.
Clarkia integripetala S.O.Johnson, Rural Affairs 6: 198, fig. 108. 1877. Validated by a description in English. - Onagraceae.
Clematis atropurpurea Spae ex T.Moore \& Jackman, Clematis 82. Sep-Dec 1872. Validated by description in English. - Ranunculaceae. NOTE: Moore and Jackman cited Ill. Hort. 7: ad t. 254. 1860 where the name C. patens var. atropurpurea is a nom. nud.
Clematts $\times$ aureltana Briolay-Goiffon ex T.Moore \& Jackman, Clematis 83. Sep-Dec 1872 (C. lanuginosa $\times$ C. patens), as "aureliant." Validated by a description in English. - Ranunculaceae.
Clematts calypso Lemoine ex T.Moore \& Jackman, Clematis 86. Sep-Dec 1872. Validated by a description in English. - Ranunculaceae.

Clematis crippsii R.D., Florist \& Pomol. 3: 214. Sep 1870. Validated by a description in English. Ranunculaceae.
Clemats $\times$ filgens Simon-Louis ex T.Moore \& Jackman, Clematis 100. Sep-Dec 1872 (C. lanuginosa $\times$ C. viticella var. grandiflora). Validated by a description in English. - Ranunculaceae.
Clematis tmpertalts Carré ex T.Moore \& Jackman, Clematis 107. Sep-Dec 1872. Validated by a description in English. - Ranunculaceae.
Clematss insignis T.Moore \& Jackman, Clematis 107. Sep-Dec 1872. Validated by a description in English. - Ranunculaceae.
Clematss magnifica T.Moore, Fl. Mag.; ad t. 8: 453. 1869. Validated by a description in English. Ranunculaceae.
Clematis marmorata Jackman ex T.Moore \& Jackman, Clematis 125. Sep-Dec 1872. Validated by a description in English. - Ranunculaceae.
Clematls $\times$ modesta Modeste-Guérin ex T.Moore \& Jackman, Clematis 127. Sep-Dec 1872 (C. lanuginosa $\times$ C. viticella). Validated by a description in English. - Ranunculaceae.
Clematts ornata Lemoine ex T.Moore \& Jackman, Clematis 132. Sep-Dec 1872. Validated by a description in English. - Ranunculaceae.
Clematts perfecta Simon-Louis ex T.Moore \& Jackman, Clematis 134. Sep-Dec 1872. Validated by a description in English. - Ranunculaceae.
Clematss picturata Jackman Gard. Chron., n.s., 3: 790. 19 Jun 1875. Validated by a description in English. - Ranunculaceae.
Clematss plena V.A.Gressent, Class. Jard. 245. 1880. Validated by a brief description in French. Ranunculaceae.
Clemats pulcherrima Cripps ex T.Moore \& Jackman, Clematis 136. Sep-Dec 1872. Validated by a description in English. - Ranunculaceae.
Clematts purpurea V.A.Gressent, Class. Jard. 245. 1880. Validated by a brief description in French. Ranunculaceae.
Clematts reginae A.Henry, Mag. Hort. Bot., ser. 4, 29: 153. Apr 1862. Validated by a description in English. - Ranunculaceae.
Clematss rendatlerii Carré ex T.Moore \& Jackman, Clematis 138. Sep-Dec 1872. Validated by a description in English. - Ranunculaceae.
Clematss $\times$ symestana Anderson-Henry ex T.Moore \& Jackman, Clematis 145. Sep-Dec 1872 (C. lanuginosa $\times$ C. fortunei). Validated by a description in English. - Ranunculaceae.
Clematis vanhoutter Jackman ex T.Moore \& Jackman, Clematis 149. Sep-Dec 1872, as "Van Houtter." Validated by a description in English. - Ranunculaceae.
Clemats verschaffeltii Carré ex T.Moore \& Jackman, Clematis 149. Sep-Dec 1872. Validated by a description in English. - Ranunculaceae.
Clematts vesta Jackman ex T.Moore \& Jackman, Clematis 150. Sep-Dec 1872. Validated by a description in English. - Ranunculaceae.
Clematis $\times$ vittcello-lanugmosa E.Morren, Beliq. Hort. 14: ad t. 18. 1864, nom. illeg., a new name for C. $\times$ intermedia Bonamy ex T.Moore \& Jackman, Clematis 107. Sep-Dec 1872, see above. Ranunculaceae.
Clematss $\times$ willisonil Hort., Gard. Chron., n.s., 4: 17. 3 Jul 1875 (parentage not given). Validated by a description in English. - Ranunculaceae.
Clerodendrum balfourianum Hort., Gard. Chron., n.s., 3: 667. 22 Mai 1877. Validated by a brief description in English (...white calyces and crimson corollas..."). - Lamiaceae.
Codiaeum angustifolium Hort., Gard. Chron., n.s., 1: 664. 23 May 1874. Validated by a description in English ("long, slender drooping foliage"). - Euphorbiaceae.
Coelanthus amplficatus Willd. ex Herb., Amaryllidaceae 86. late Apr 1837. Validated by a description in English. - Asparagaceae. NOTE: Herbert took his name from an herbarium
specimen. If this is the same collection Schultes used to establish C. complicates Willd. ex Schult.f., then the Herbert name is not legitimate.
Coelogyne lowit B.S. Williams, Orch. Grow. Man., ed. 2, 80. Oct 1862. Validated by a description in English. - Orchidaceae.
Coelogyne meadia B.S.Williams, Orch. Grow. Man., ed. 2, 80. Oct 1862. Validated by a description in English. - Orchidaceae.
Coleus $\times$ batemannit T.Moore, Gard. Chron. 1868:377. 11 Apr 1868 (C. verschaffetii $\times$ C. gibsonit), as "Batemanni." Validated by a description in English. - Lamiaceae.
Coleus $\times$ bauset T.Moore, Gard. Chron. 1868: 377. 11 Apr 1868 (C. verschaffetu $\times$ C. vetchu). Validated by a description in English. - Lamiaceae.
Coleus $\times$ berkeleyn T.Moore, Gard. Chron. 1868: 376. 11 Apr 1868 (C. verschaffetu $\times$ C. vetchti) . Validated by a description in English. - Lamiaceae.
Coleus $\times$ clarket T.Moore, Gard. Chron. 1868: 377. 11 Apr 1868 (C. verschaffetii $\times$ C. gibsonit) . Validated by a description in English. - Lamiaceae.
Coleus $\times d_{1 x i l}$ H. T.Moore, Gard. Chron. 1868: 376. 11 Apr 1868 (C. verschaffetil $\times$ C. veitchit) Validated by a description in English. - Lamiaceae.
Coleus marmoratus W.Bull, Proc. Roy. Hort. Soc. 4:133. Jul 1864. Validated by a description in English. - Lamiaceae.
Coleus $\times$ murrayt T.Moore, Gard. Chron. 1868: 377. 11 Apr 1868 (C. verschaffetil $\times$ C. gibsonu) . Validated by a diagnosis in English. - Lamiaceae.
Coleus $\times$ reveesil T.Moore, Gard. Chron. 1868: 377. 11 Apr 1868 (C. verschaffetil $\times$ C. blumei), as "Reveest." Validated by a description in English. - Lamiaceae.
Coleus $\times$ muckeri T.Moore, Gard. Chron. 1868: 376. 11 Apr 1868 (C. verschaffetti $\times$ C. gibsonit $)$. Validated by a description in English. - Lamiaceae.
Coleus $\times$ saundersti T.Moore, Gard. Chron. 1868: 376. 11 Apr 1868 (C. verschaffetii $\times$ C. veitchit). Validated by a description in English. - Lamiaceae.
Coleus $\times$ scottt T.Moore, Gard. Chron. 1868: 377. 11 Apr 1868 (C. verschaffett $\times$ C. gtbsonti), as "Scottt." Validated by a description in English. - Lamiaceae.
Coleus telfordii McPhail ex H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 3. Aug 1868 (C. verschaffetil $\times$ C. veitchin), as "Telfordt." Validated by a description in German. - Lamiaceae.
Cordyline kirknt Haage \& Schmidt, Haupt-Verz. Samen 1875: 4. Jan 1875. Validated by a diagnosis in German. - Asparagaceae.
Corypha robusta Wendl. ex Devansaye, Rev. Hort. 47:32. 16 Jan 1875, nom. illeg., based on Saribus subglobosus Hassk., Hoev. \& De Vriese, Tijschr. 9: 177. 1842. - Arecaceae.
Crinum alboense Herb., Amaryllidaceae 272. late Apr 1837. Validated by a diagnosis in Latin. Amaryllidaceae.
Crinum $\times$ gowenianum Herb., Trans. Hort. Soc. London 3: 190-191, fig. Jan-Feb 1820 (C. capense $\times$ C. zeylanicum). Validated by a diagnosis in English. - Amaryllidaceae.

Crinum $\times$ loustae Herb., Amaryllidaceae 274. late Apr 1837 (C. spectosum $\times$ C. defixum). Validated by a diagnosis in English. - Amaryllidaceae.
Crocus napolitanus Loisel., Herb. Gén. Amateur 2: ad t. 101. 1817, nom. illeg., based on C. vernus Curtis, Bot. Mag. 2: ad t. 45. 1788. - Iridaceae.
Croton aucubifolius Linden, Supp. Extrait Cat. Gén. 82/24: 5. 1 Jul 1869, as "aucubaefolnum." Validated by a diagnosis in French. - Euphorbiaceae.
Croton chrysophyllum W.Bull. Gard. Chron., n.s., 3: 523. 24 Apr 1875. Validated by a description in English. - Euphorbiaceae.
Croton cooperi Hort., Gard. Chron., n.s., 1: 836. 27 Jun 1874, as "cooperii." Validated by a description in English. - Euphorbiaceac.
Croton disraelll Veitch, Gard. Chron., n.s. 3: 473. 10 Apr 1875, as "Disraeli." Validated by a description in English. - Euphorbiaceae.

Croton fucatum W.Bull, Retail List [Spec. List Gladiolus. 68:] 13. Sep-Oct 1872. Validated by a description in English. - Euphorbiaceae.
Croton harwoodiamum Hort, Gard. Chron., n.s., 3: 602. 8 May 1875. Validated by a description in English. - Euphorbiaceae.
Croton lacteum Veitch, Cat. New Beautiful Pl. 1873: 37. Jul-Aug 1873. Validated by a description in English. - Euphorbiaceae.
Croton limbatum W.Bull, Gard. Chron. 1873: 606. 3 Mai 1873. Validated by a description in English. - Euphorbiaceae.

Croton majesticum T.Moore, Gard. Chron., n.s., 1: 92. 17 Jan 1874. Validated by a description in English. - Euphorbiaceae.
Croton maximus Linden, Supp. Extrait Cat. Gén. 82/24: 5. 1 Jul 1869, as "maximum." Validated by a diagnosis in French. - Euphorbiaceae.
Croton trilobum W.Bull, Hamburger Garten-Blumenzeitung 31: 446. Oct 1875. Validated by a description in German. - Euphorbiaceae.
Croton veitchit W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 20. 1 Apr 1871. Validated by a diagnosis in English. - Euphorbiaceae.
Croton volutum Hort., Gard. Chron., n.s., 1: 690. 30 May 1874. Validated by a description in English that is quoted from Bull's Catalogue of New Plants. - Euphorbiaceae.
Croton youngti Veitch, Gard. Chron. 1873: 706. 24 Mai 1873. Validated by a description in English. - Euphorbiaceae.

Cryptomeria lycopodioides Carrière, Rev. Hort. 46: 220. 1 Jun 1874. Validated by a description in French. - Cupressaceae.
Cyanophyllum bowmannu W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 21. 1 Apr 1871, as "Bowmannt." Validated by a diagnosis in English. - Melastomataceae.
Cyanophyllum marmoreum Linden ex Ender, Gartenflora 24: 360. 1 Dec 1875. Validated by a diagnosis in German. - Melastomataceae.
Cyanophyllum spectandum Linden, Cat. P1. Exot. 22/23: 4. Jan-Jun 1869. Validated by a diagnosis in French. - Melastomataceae.
Cyathea microlepis G., Garden (London) 5: 9. 3 Jan 1874. Validated by a description in English. Cyatheaceae. NOTE: The identity of "G." is unknown.
Cycas rummana W.Bull, Proc. Roy. Hort. Soc. 4:134. Jul 1864. Validated by a description in English. - Cycadaceae.
Cyclobothra maweama Tubergen, Wholesale Cat. Flowerroots 14. 1892. Validated by a diagnosis in English. - Liliaceae.
Cypripedum biflora B.S.Williams, Orch. Grow. Man., ed. 2, 85. Oct 1862 . Validated by a description in English. - Orchidaceae.
Cypripedium dayil B.S. Williams, Orch. Grow. Man., ed. 2, 85. Oct 1862. Validated by a description in English. - Orchidaceae. NOTE: Possibly an orthographic variant of C. dayanum Rehb.f., Bot. Zeitung (Berlin) 20: 214. 1862.
Cypripedium longtfolium W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 61. 1 Apr 1871, nom. illeg., non Rchb.f. \& Warsz. Validated by a description in English. - Orchidaceae.
Cypripedium $\times$ marshalltanum Rchb.f., Gard. Chron., n.s., 4: 804. 25 Dec 1875 (C. concolor $\times$ C. paridinum). Validated by a description in Latin. - Orchidaceae.
Cypripedum pearchi Veitch, Proc. Roy. Hort. Soc. 4:133. Jul 1864. Validated by a description in English. - Orchidaceae.
Cypripedium $\times$ selligerum Veitch, Gard. Chron., n.s., 3: 728. 5 Mai 1875 (C. laevigatum $\times$ C. barbatum). Parentage indicated but no description or diagnosis. - Orchidaceae.
Daemonorops cinnamomeus Schaedtler, Hamburger Garten-Blumenzeitung 31: 161. Apr 1875. Validated by a diagnosis in German. - Arecaceae.
Daemonorops ornatus W.Bull, Gard. Chron., n.s., 3: 523. 24 Apr 1875. Validated by a brief description in English ("finely cut pinnate leaves"). - Arecaceae.

Daemonorops oxleyanus Schaedtler, Hamburger Garten-Blumenzeitung 31: 162. Apr 1875. Validated by a diagnosis in German. - Arecaceae.
Daphne rubra P.B.M., Young Churchman Misc. 3: 383. Dec 1848. Validated by a description in English. - Thymelaeaceae. NOTE: The identity of the author "P.B.M." has not been determined.
Davallia younglı Veitch, Gard. Chron., n.s., 3: 795. 19 Jun 1875. Validated by a brief description in English ("fronds cut into very fine segments"). - Davalliaceae.
Deckeria nobilis Schaedtler, Hamburger Garten-Blumenzeitung 31: 162. Apr 1875. Validated by a diagnosis in German. - Arecaceae.
Delphntum candelabrum Lebas, Rev. Hort. 46: 297. 1 Aug 1874. Validated by a diagnosis in French. - Ranunculaceae. NOTE: The name, D. candelabrum Ostenf. (in Hedin, S. Tibet 6(3): 80. 1922), is a later homonym, and as the name is in current use it will require conservation to be maintained.
Dendrobum walluchtanum B.S.Williams, Orch. Grow. Man., ed. 2, 98. Oct 1862 . Validated by a diagnosis in English. - Orchidaceae.
Dieffenbachia baraquiniana W.Bull, Proc. Roy. Hort. Soc. 4:133. Jul 1864, nom. illeg. Validated by a description in English. - Araceae. NOTE: The name is not legitimate as D. verschaffeltil (Hort., Proc. Roy. Hort. Soc. 3:280. 29 Mai 1863, non Engl. [1879]) was cited in synonymy.
Dipladenia $\times$ willtamsit B.S.Williams, Gard. Chron., n.s., 1: 363. 21 Mar 1874. Validated by a description in English but no indication of parentage. - Apocynaceae.
Dorema asafetıda (Falconer ex Lindl.) Haage \& Schmidt, Pl.-Verzeichn. 4. Jan 1875, based on Narthex asafettda Falconer ex Lindl, Gard. Chron. 1846: 743. 7 Nov 1846. - Apiaceae.
Dracaena albicans W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 23. 1 Apr 1871. Validated by a description in English. - Asparagaceae.
Dracaena $\times$ albo-marginata T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875 (D. nigrescens $\times D$. regina). Validated by a description in English. - Asparagaceae.
Dracaena $\times$ amalliae T.Moore, Gard. Chron., n.s., 4: 616. 13 Nov 1875 (D. congesta $\times$ unknown), as "amallae." Validated by a description in English. - Asparagaceae.
Dracaena angusta W.Bull, Retail List [Wholesale List New Beautiful Rare P1. 60:] 23. 1 Apr 1871. Validated by a description in English. - Asparagaceae.
Dracaena $\times$ barronu T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875 (D. terminalis $\times$ D. regina), as "baront." Validated by a description in English. - Asparagaceae.
Dracaena $\times$ bausei T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875 (D. chelsonil $\times$ D. regina). Validated by a description in English. - Asparagaceae.
Dracaena $\times$ bella T.Moore, Gard. Chron., n.s., 4: 616. 13 Nov 1875 (D. concinna $\times$ D. chelsonit). Validated by a description in English. - Asparagaceae.
Dracaena $\times$ berkeleyt T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875 (D. excelsa $\times$ D. terminalis). Validated by a description in English. - Asparagaceae.
Dracaena candida W.Bull, Gard. Chron., n.s., 3: 474. 10 Apr 1875. Validated by a description in English. - Asparagaceae.
Dracaena $\times$ cantrellit T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875 (D. excelsa $\times$ D. ferrea). Validated by a description in English. - Asparagaceae.
Dracaena $\times$ carolettiae T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875 (D. concinna $\times$ D. regina), as "carolettae." Validated by a description in English. - Asparagaceae.
Dracaena denntsontt Veitch ex E.Morren, Belgique Hort. 22: 353. Dec 1872. Validated by a brief description in French. - Asparagaceae.
Dracaena dennissonea Veitch, Cat. New Beautiful Pl. 1873: 38. Jul-Aug 1873. Validated by a description in English. - Asparagaceae.
Dracaena duffil E.G.Hend., Gard. Chron., n.s., 2: 722. 5 Dec 1874. Validated by a description in English. - Asparagaceae.

Dracaena $\times$ elizabethiae T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875 (D. cooperi $\times$ D. regina), as "eltzabethae." Validated by a description in English. - Asparagaceae.
Dracaena $\times$ ernestii T.Moore, Gard. Chron., n.s., 4: 616. 13 Nov 1875 (D. concinna $\times$ D. terminalis), as "ernestr." Validated by a description in English. - Asparagaceae.
Dracaena $\times$ exmina T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875 (D. excelsa $\times$ D. terminalis). Validated by a description in English. - Asparagaceae.
Dracaena $\times$ fredericil T.Moore, Gard. Chron., n.s., 4: 616. 13 Nov 1875 (D. excelsa $\times$ D. terminalis), as "frederic." Validated by a description in English. - Asparagaceae.
Dracaena $\times$ fulgens T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875 (D. excelsa $\times$ D. terminalis). Validated by a description in English. - Asparagaceae.
Dracaena gemma W.Bull, Gard. Chron., n.s., 3: 557. 1 Mai 1875. Validated by a diagnosis in English. - Asparagaceae.
Dracaena glonerea Linden ex Rafarin, Rev. Hort. 46: 75. 16 Feb 1874. Validated by a diagnosis in French. - Asparagaceae.
Dracaena grandis W.Bull, Gard. Chron., n.s., 1: 78. 17 Jan 1874. Validated by a description in English. - Asparagaceae.
Dracaena $\times$ imperator T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875 (D. ngrescens $\times$ D. regma). Validated by a description in English. - Asparagaceae.
Dracaena $\times$ jucunda T.Moore, Gard. Chron., n.s., 4: 616. 13 Nov 1875 (D. limbata $\times$ D. terminalis). Validated by a description in English. - Asparagaceae.
Dracaena $\times$ leucochila T.Moore, Gard. Chron., n.s., 4: 616. 13 Nov 1875 (D. coopert $\times$ D. regma). Validated by a description in English. - Asparagaceae.
Dracaena $\times$ mabliae T.Moore, Gard. Chron., n.s., 4: 616. 13 Nov 1875 (D. cooperi $\times$ D. regina). Validated by a description in English. - Asparagaceae.
Dracaena $\times$ mastersii T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875 (D. nigrescens $\times$ D. regina). Validated by a description in English. - Asparagaceae.
Dracaena mooret Veitch ex E.Morren, Belgique Hort. 22: 354. Dec 1872. Validated by a brief description in French. - Asparagaceae.
Dracaena nigrorubra Linden, Supp. Extrait Cat. Gén. 82/24: 7. 1 Jul 1869, as "nigro-rubra." Validated by a diagnosis in French. - Asparagaceae.
Dracaena ntgrostriata W.Bull, Gard. Chron., n.s., 1: 78. 17 Jan 1874, as "nigro-striata." Validated by a description in English. - Asparagaceae.
Dracaena $\times$ pendens T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875 (D. cooperi $\times$ D. regina). Validated by a description in English. - Asparagaceae.
Dracaena picta W.Bull, Gard. Chron., n.s., 1: 78. 17 Jan 1874. Validated by a description in English. - Asparagaceae.

Dracaena $\times$ picturata T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875 (D. nigrescens $\times$ D. regina) . Validated by a description in English. - Asparagaceae.
Dracaena porphyrophylla E.Morren, Belgique Hort. 22: 354. Dec 1872. Validated by a brief description in French. - Asparagaceae.
Dracaena princeps W.Bull, Gard. Chron., n.s., 1: 78. 17 Jan 1874. Validated by a description in English. - Asparagaceae.
Dracaena $\times$ rebecciae T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875 (D. cooperi $\times$ D. regina), as "rebeccae." Validated by a description in English. - Asparagaceae.
Dracaena $\times$ renardiae T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875 (D. cooperi $\times$ D. regma), as "renardae." Validated by a description in English. - Asparagaceae.
Dracaena rex W.Bull, Gard. Chron., n.s., 3: 795. 19 Jun 1875. Validated by a description in English. - Asparagaceae.

Dracaena rubella W.Bull., Gard. Chron., n.s., 3: 557. 1 Mai 1875. Validated by a diagnosis in English. - Asparagaceae.

Dracaena $\times$ salmonea T.Moore, Gard. Chron., n.s., 4: 616. 13 Nov 1875 (D. concinna $\times$ D. regina). Validated by a description in English. - Asparagaceae.
Dracaena $\times$ scottiae T.Moore, Gard. Chron., n.s., 4: 616. 13 Nov 1875 (D. concinna $\times$ D. regina). Validated by a description in English. - Asparagaceae.
Dracaena shepherdit Hort., Gard. Chron. 1873: 6. 4 Jan 1873. Validated by a diagnosis in English. Asparagaceae. NOTE: An alternative name for D. gloriosa (see below). See also: W.Bull, Gard. Chron. 1873: 606. 3 Mai 1873. Validated by a description in English.
Dracaena shepherdn T.Moore, Gard. Chron., n.s., 1: 92.17 Jan 1874, nom. illeg. Validated by a description in English. - Asparagaceae. NOTE: The name is a superfluous, alternative name for D. gloriosa Linden ex E. Morren (see below).

Dracaena $\times$ sydneyt T.Moore, Gard. Chron., n.s., 4: 616. 13 Nov 1875 (D. concmna $\times$ D. regina). Validated by a description in English. - Asparagaceae.
Dracaena $\times$ taylori Veitch, Gard. Chron., n.s., 3: 795. 19 Jun 1875 (D. magnifica $\times$ D. mooreana). Validated by a brief description in English ("dense-habited broad-leaved"). - Asparagaceae.
Dracaena $\times$ tellingit T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875 (D. ferrea $\times$ D. regina). Validated by a description in English. - Asparagaceae.
Dracaena $\times$ thomiae T.Moore, Gard. Chron., n.s., 4: 616. 13 Nov 1875 (D. termatls $\times$ D. concmna), as "thomae." Validated by a description in English. - Asparagaceae.
Dracaena triumphans W.Bull, Gard. Chron., n.s., 3: 795. 19 Jun 1875. Validated by a description in English. - Asparagaceae.
Dracaena $\times$ venusta T.Moore, Gard. Chron., n.s., 4: 616. 13 Nov 1875 (D. concinna $\times$ D. regina), nom. illeg., non Planch. (1850-1851). Validated by a description in English. - Asparagaceae.
Dracaena verschaffelth Verschaff., Mag. Hort. Bot. 33: 187. Jun 1867. Validated by a diagnosis in English. - Asparagaceae.
Dracaena $\times$ versicolor T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875 (D. chelsonit $\times$ D. regina) . Validated by a description in English. - Asparagaceae.
Dracaena $\times$ victoriae T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875 (D. concinna $\times$ D. regina). Validated by a description in English. - Asparagaceae.
Dracaena $\times$ violacea T.Moore, Gard. Chron., n.s., 4: 616. 13 Nov 1875 ( $D$. concinna $\times D$. nigrescens). Validated by a description in English. - Asparagaceae.
Dracaena $\times$ voluta T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875 (D. cooperi $\times$ D. regina). Validated by a description in English. - Asparagaceae.
Dracaena $\times$ willsti T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875 (D. excelsa $\times$ D. regina). Validated by a description in English. - Asparagaceae.
Dracaena youngn E.Morren, Belgique Hort. 22: 354. Dee 1872. Validated by a brief description in French. - Asparagaceae.
Drimyspermum australe W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 36. 1 Apr 1871. Validated by a diagnosis in English. - Thymelaeaceae.

Duranta baumgartentr K.Koch, Wochenschr. Vereines Beford. Gartenbaues Konigl. Preuss. Staaten 6: 47. 8 Feb 1862. Validated by a brief description in German ("eine Pflanze mit grün- und gelbgezeichneten Blättern"). - Verbenaceae. NOTE: This plant was subsequently called $D$. baumgartu; see below.
Duranta baumgartn J.T.Hibbert, Gard. Chron., n.s., 3: 730. 5 Jun 1875. Validated by a brief description in English ("leaves are nicely margined with gold"). - Verbenaceae. NOTE: This seems to be an orthographic variant of $D$. baumgartenil, see above.
Dyckia lemairaeana W.Bull, Gard. Chron., n.s., 1: 78. 17 Jan 1874. Validated by a description in English. - Bromeliaceae.
Dyckia splendens Anderson., Gard. Chron., n.s., 4: 227. 21 Aug 1875. Validated by a brief description in English ("scarlet inflorescence"). - Bromeliaceae.

Echeveria $\times$ carinata W.Bull, Retail List [Spec. List Gladiolus. 68:] 14. Sep-Oct 1872 (E. metallica $\times$ E. atropururea). Validated by a diagnosis in English. - Crassulaceae.

Echeveria $\times$ glaucometallica W.Bull, Retail List [Wholesale List New Beautiful Rare PI. 60:] 151. 1 Apr 1871 ( $E$. secunda var. glauca $\times$ E. metallica), as "glauco-metallica." Validated by a diagnosis in English. - Crassulaceae.
Echeverta $\times$ rotundifolia R.Dean, Gard. Chron., n.s., 4: 627. 13 Nov 1875 (E. glauca var. metallica $\times$ E. secunda var. major). Validated by a brief description in English ("a flat-growing form, of a metallic green hue"). - Crassulaceae.
Embothrium despardil Hort., Gard. Chron., n.s., 3: 371. 20 Mar 1875. Validated by a description in English. - Proteaceae. NOTE: This name and description is in a published letter from "Ooshooia, Fireland, Patagonia" and signed by " $B$ " about whom there is no more information.
Entelea bakeri W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 36. 1 Apr 1871. Validated by a diagnosis in English. - Malaceae.
Epidendron hanburyamum B.S. Williams, Orch. Grow. Man., ed. 2, 100. Oct 1862. Validated by a diagnosis in English. - Orchidaceae. NOTE: This might be an orthographic variant of $E$. hanburil Lindl., Edwards's Bot. Reg. 30(Misc.): 46. 1844.
Eremurus elwestanus Krelage \& Krelage, Krelage's Bulbs, 472B: 101. 15 Jul 1894. Validated by a brief description in English ("robust spike, pink flowers"). - Xanthorrhoeaceae. NOTE: This name was used by Leichtlin (Garden (London) 38: 143. 9 Aug 1890) as a new name for $E$. robustus var. nobilis which was not validly published, and thus Leichtlin's name is not validly published. Krelage and Krelage mentioned "(robustus var. nobilis)" but at least provided a brief description. The name, E. elwesii Micheli, Rev. Hort. 1897: 280. 16 Jun 1897, cited by IPNI, is a later orthographic variant; see the series of comments by Goverts (Gartenflora 48: 127-128. 1899), Wittmack (p. 128-129), and Krelage and son (p. 160).

Eremurus $\times$ hem-rob Tubergen, Cat. Flowerroots 18. Mai 1906 (E. himalaicus $\times$ E. robustus). Validated by a brief description in English (e.g., "pale rosy, immense spikes"). Xanthorrhoeaceae.
Eremurus $\times$ tubergenii Tubergen, Cat. Flowerroots 18. Mai 1906 ( $E$. himalaicus $\times$ E. bungit). Validated by a brief description in English (e.g., "pale yellow, growth and spikes like himalaicus"). - Xanthorrhoeaceae.
Erica denisontana Hort., Gard. Chron., n. s., 1: 739. 6 Jun 1874. Validated by a description in English. - Ericaceae.
Erica lindleyana W.Holloway, Proc. Roy. Hort. Soc. 46: 159. Oct 1864. Validated by a description in English. - Ericaceae.
Erinosma vermum (L.) Herb., Amaryllidaceae 331. late Apr 1837, based on Leucofum vernum L., Sp. Pl. 1: 289. 1 Mai 1753. - Amaryllidaceae.
Erythrina bogotensts W.Bull, Gard. Chron. 1873: 606. 3 Mai 1873. Validated by a description in English. - Fabaceae.
Ficus wendlandea Rafarin, Rev. Hort. 46: 75. 16 Feb 1874. Validated by a description in French. Moraceae.
Fragaria bergemontis Poit., Bon Jard. 235. 1837. Validated by a description in French. - Rosaceae.
Fragaria duplex Poit., Bon Jard. 235. 1837. Validated by a description in French. - Rosaceae.
Fragaria efflagellosa Poit., Bon Jard. 235. 1837. Validated by a description in French. - Rosaceae.
Fritillaria modora Tubergen, Wholesale Cat. Flowerroots 19. 1892. Validated by a diagnosis in English (e.g., "dark purple" flowers - no other species so characterized). - Liliaceae.
Fuchsia destderatum B.S.Williams, Gard. Chron., n.s., 1: 363. 21 Mar 1874. Validated by a description in English. - Onagraceae.
Fuchsta grandidens B.S.Williams, Gard. Chron., n.s., 1: 363. 21 Mar 1874. Validated by a description in English. - Onagraceae.

Funckia lilifolia W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 47. 1 Apr 1871. Validated by a diagnosis in English. - Asparagaceae.
Funckia platyginifolia H.A.Dreer, Gard. Monthly Hort. 10: 64 [Hort. Advert. unpaged]. Feb 1868, as "Funkia." Validated by a brief description in English ("Blue flowers"). - Asparagaceae.
Geonoma purpurascens Schaedtler, Hamburger Garten-Blumenzeitung 31: 166. Apr 1875. Validated by a diagnosis in German. - Arecaceae.
Geonoma tenelliana Schaedtler, Hamburger Garten-Blumenzeitung 31: 166. Apr 1875. Validated by a diagnosis in German. - Arecaceae.
Gleditsta subvirescens Poit., Bon Jard. 893 ["93"]. 1837. Validated by a description in French. Fabaceae.
Gloxinia heroglyphica Wilh.Busch. ex Ed.Otto, Hamburger Garten-Blumenzeitung 31: 473. Oct 1875. Validated by a description in German. - Gesneriaceae.

Goodyera dawsontana W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 66. 1 Apr 1871. Validated by a diagnosis in English. - Orchidaceae.

Grias zamorensts Linden, Cat. Pl. Exot. 22/23: 6. Jan-Jun 1869. Validated by a diagnosis in French. Lecythidaceae.
Griselmia macrophylla (Hook.f.) Burb., Domestic Floricult. 287. 1874, based on G. lucida (J.R.Forst. \& G. Forst.) G.Forst. var. macrophylla Hook.f., Handb. Fl. N. Zeal. Fl. 105. Sep-Oct 1864. Griseliniaceae. NOTE: There is no reference to the basionym but this obviously is a new combination. Nonetheless, there is also an excellent description in English. The name was published several times prior to 1874 (e.g., J. Robson, J. Hort. Cottage Gard. 32: 215. 13 Sep 1864) but all are here considered to be nomen nuda. In the case of the Robson name, however, if it were ever shown that the Hooker book was published prior to 13 Sep 1864, then Art. 33.3 would come into play and the name would be Validated a decade earlier than mentioned here.
Gymnogramma $\times$ steizneriana H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 4. Aug 1868 (G. chrysophylla $\times$ G. lanata), as "Gymnogramme." Validated by a diagnosis in German. Pteridaceae. NOTE: There is no indication that this is an orthographic variant of G. stelznert K.Koch (Gärtnerei Pflanzenk. 2: 183. 1859) as the Laurentius name has an " i " instead of an " l " as the fourth letter in the Koch epithet.
Heliconia vinosa W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 5. 1 Apr 1871. Validated by a description in English. - Heliconiaceae.
Hemerocallis picta W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 26. 1 Apr 1871. Validated by a description in English. - Xanthorrhoeaceae.
Hermone Salisb. ex Haw., Suppl. Pl. Succ. 137. Mai 1819. Validated by a description in Latin. Amaryllidaceae. NOTE: The Salisbury (Trans. Hort. Soc. London 1:357. 1812) generic name is not validly published and thus none of his epithets is valid. Likewise, Hermione Salisb. ex Haw. (Syn. Pl. Succ. 329. 1812) is equally not validly published and thus none of Haworth's epithets of 1812 are valid.
Hibiscus albovariegata W.Bull, Retail List [Spec. List Gladiolus. 68:] 14. Sep-Oct 1872, as "albovariegata." Validated by a diagnosis in English. - Malvaceae.
Hibiscus carminata-perfecta W.Bull, Retail List [Spec. List Gladiolus. 68:] 14. Sep-Oct 1872. Validated by a diagnosis in English. - Malvaceae.
Hibiscus fulgzdus W.Bull, Gard. Chron. 1873: 606. 3 Mai 1873. Validated by a description in English. - Malvaceae.
Hippeastrum oriffamme B.S.Williams, Florist \& Pomol. 27: 116. Mai 1874. Validated by a description in English. - Amaryllidaceae.
Hippeastrum picturatum W.Bull, Garden (London) 5: 176. 28 Feb 1874. Validated by a brief description in English ("white flowers striped with reddish-crimson"). - Amaryllidaceae.
Huntleya wailesiae B.S.Williams, Orch. Grow. Man., ed. 2, 109. Oct 1862 . Validated by a description in English. - Orchidaceae.

Hymenocalyx undulata (Kunth) Houllet, Rev. Hort. 1869: 418. 1 Nov 1869, based on Pancratum undulatum Kunth in F.W.H.A. von Humboldt et al., Nov. Gen. Sp. 1: 280. late Aug 1816. Amaryllidaceae.
Hyophorbe madagascaariensis Schaedtler, Hamburger Garten-Blumenzeitung 31: 167. Apr 1875. Validated by a diagnosis in German. - Arecaceae.
Hyospathe chiriqui Schaedtler, Hamburger Garten-Blumenzeitung 31: 168. Apr 1875. Validated by a diagnosis in German. - Arecaceae. NOTE: This taxon may well have been named later as $H$. chrriquensis by Wendland (Palmiers 247. 1878).
Imantophyllum barkeri C.J.Barker, Gard. Chron., n.s., 1: 317.7 Mar 1874. Validated by a description in English. - Amaryllidaceae.
Iresine aureoreticulata J.Saul, Gard. Monthly Hort. 10: 64 [Hort. Advert. 48]. Feb 1868, as "aureoreticulata." Validated by a brief description in English ("Leaves beautifully reticulated"). Amaranthaceae.
Irts ciengtaltit Tubergen, Wholesale Cat. Flowerroots 22. Mai 1901, as "ciengialti." Validated by a diagnosis in English (e.g., "Rhizomatous ... fine blue, dwarf"). - Iridaceae.
Iris eggeri Tubergen, Wholesale Cat. Flowerroots 23. Mai 1901. Validated by a diagnosis in English (e.g., "cushion iris ...blackbrown") - Iridaceae.

Jonquilla odora Raf., Fl. Tellur. 4: 20-21. mid 1838, based on Narcissus jonquilla L., Sp. PI. 1:290. 1 Mai 1753. - Amaryllidaceae. NOTE: Haworth (Monogr. Narcissin. 7. 1 Jun 1831) proposed the genus and proposed three species, of which only J. minor Haw. can be traced unambiguously to N. jonquilla via the polynomial Narcissus juncifolius luteus minor. Accordingly, J. minor is designated here as the lectotype of Jonquilla. This then renders the Rafinesque an inadmissible name. See Phylogyne Haw., below.
Kentia mooret W.Bull, Garden (London) 5: 493. 6 Jun 1874. Validated by a brief description in English ("dark green pinnate [leaves]"). - Arecaceae. NOTE: This might be an orthographic variant of K. mooreana F.Muell. (Fragm. 7(54): 101. Apr 1870).
Laelia maryanil B.S. Williams, Orch. Grow. Man., ed. 2, 113. Oct 1862. Validated by a description in English. - Orchidaceae.
Latania jenktnsiana (Griff.) Devansaye, Rev. Hort. 47: 34. 16 Jan 1875, based on Livistona jenkinstana Griff., Calcutta J. Nat. Hist. 5: 334. 1845. - Arecaceae.
Latania olvaeformis Devansaye, Rev. Hort. 47:34. 16 Jan 1875. Validated by a diagnosis in French. - Arecaceae.

Lecythis nobilis Linden, Cat. Pl. Exot. 22/23: 26. Jan-Jun 1869. Validated by a diagnosis in French. Lecythidaceae.
Licuala orleyt Schaedtler, Hamburger Garten-Blumenzeitung 31: 214. Mai 1875. Dubiously Validated by a diagnosis in German. - Arecaceae.
Litium wallacei Tubergen, Wholesale Cat. Flowerroots 25. 1892. Validated by a diagnosis in English (e.g., "flowers yellow with black spots"). - Liliaceae.

Lobelia gordonit T.Moore, Proc. Roy. Hort. Soc. 4: 47, 195. Dec 1864. Validated by a description in English. - Campanulaceae. NOTE: The association of the epithet with the generic name is only made in the index (p. 195). Thus, the date of valid published is Dec 1864, not Feb 1864.
Lobelta paxtontana T.Moore, Proc. Roy. Hort. Soc. 4: 47, 195. Dec 1864. Validated by a description in English. - Campanulaceae. NOTE: The association of the epithet with the generic name is only made in the index (p. 195). Thus, the date of valid published is Dec 1864, not Feb 1864.
Lomaria dobroydensis W.Bull, Gard. Chron., n.s., 3: 795. 19 Jun 1875. Validated by a description in English. - Blechnaceae.
Macrozamia australis Schaedtler, Hamburger Garten-Blumenzeitung 31: 306. Jul 1875. Validated by a diagnosis in German. - Zamiaceae.
Martinezta nobitis W.Bull, Garden (London) 8: 77. 24 Jul 1875. Validated by a brief description in English ("spinace petioles, free in growth"). - Arecaceae.
Methonica senegalensis Poit., Bon Jard. 507. 1837. Validated by a diagnosis in French. - Liliaceae.

Methonica simplex Poit., Bon Jard. 507. 1837. Validated by a diagnos is in French. - Liliaceae.
Miconia argyroneura Veitch, Proc. Roy. Hort. Soc. 3:280. 29 Mai 1863. Validated by a description in English. - Melastomataceae.
Miltonta morelti B.S.Williams, Orch. Grow. Man., ed. 2, 119. Oct 1862. Validated by a diagnosis in English. - Orchidaceae. NOTE: Possibly an orthographic variant of M. moreliana Lindl. (Fol. Orchid. 5: 1. 1854).
Mimosa conspicua Poit., Bon Jard. 890. 1837. Validated by a description in French. - Fabaceae.
Mimulus exquisitus J.Muir, Garden (London) 6: 46. 18 Jun 1874. Validated by a diagnosis in English. - Phrymaceae.

Mimulus meteor J.Muir, Garden (London) 6: 46. 18 Jun 1874. Validated by a diagnosis in English. Phrymaceae.
Mimulus maculosus J.Muir, Garden (London) 6: 46.18 Jun 1874. Validated by a brief diagnosis in English ("yellow and crimson" flowers). - Phrymaceae.
Morenta galeottiona Schaedtler, Hamburger Garten-Blumenzeitung 31: 218. Mai 1875. Validated by a diagnosis in German. - Arecaceae.
Morenia rutzil Schaedtler, Hamburger Garten-Blumenzeitung 31: 218. Mai 1875. Validated by a diagnosis in German. - Arecaceae.
Musa africana W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 6. 1 Apr 1871. Validated by a description in English. - Musaceae.
Nepenthes cuneata Veitch, Gard. Chron., n.s., 4:368. 18 Sep 1875. Validated by a brief description in English ([pitcher] "with its fringe of large saw-tooth teeth"). - Nepenthaceae.
Nerine amabilis Tubergen, Wholesale Cat. Flowerroots 28. 1892. Validated by a diagnosis in English (e.g., "pale carmine rosy"). - Amaryllidaceae.

Nerine $\times$ mitchamiae Herb., Amaryllidaceae 283, 286, t. 43. late Apr 1837 (N. curvifolia $\times N$. undulata). Validated by descriptions in Latin and English. - Amaryllidaceae.
Nerium madonit M.Vincent, J. Soc. Cent. Hort. France, sér. 2, 8: 184. 30 Apr 1875. Validated by a brief description in French ("semi-double, beau blanc") and a proposed as a new name for $N$. oleander var. alba but no valid place of valid publication found for this potential basionym. Apocynaceae.
Odontoglossum caradenit Veitch, Garden (London) 5: 256. 21 Mar 1874. Validated by a brief description in English ("pale yellow sepals and petals, and lip narrow, spotted with brown"). Orchidaceae.
Oeceoclades guineensis W.Bull, Gard. Chron., n.s., 2: 309. 5 Sep 1874. Validated by a brief description in English ("with a large, broad, rosy lilac lip, and narrow sepals and petals"). Orchidaceae.
Oncidium batemanit B.S.Williams, Orch. Grow. Man., ed. 2, 125. Oct 1862. Validated by a description in English. - Orchidaceae. NOTE: Possibly an orthographic variant of $O$. batemanianum J.Parm. ex Knowles \& Westc. (Fl. Cab. 3: 183. 1840).
Oncidium cavendishit B.S.Williams, Orch. Grow. Man., ed. 2, 126. Oct 1862. Validated by a description in English. - Orchidaceae. NOTE: Possibly an orthographic variant of $O$. cavendishianum Bateman (Orchid. Mexico Guatemala ad t. 3. 1837).
Oncidium krameri J.Muir, Garden (London) 6: 384. 24 Oct 1874. Validated by a description in English. - Orchidaceae. NOTE: Possibly an orthographic variant of $O$. krameriamum Rchb.f. (Allg. Gartenzeitung 23: 9. 1855).
Oncidium roezltanum W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 71. 1 Apr 1871. Validated by a diagnosis in English. - Orchidaceae.

Pancrattum notatum W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 28. 1 Apr 1871. Validated by a description in English. - Amaryllidaceae.
Paphinia tigrina B.S.Williams, Orch. Grow. Man., ed. 2, 131. Oct 1862. Validated by a description in English. - Orchidaceae.

Pelargonium lycopodioides Carrière, Rev. Hort. 46: 38. 16 Jan 1874. Validated by a description in French. - Geraniaceae.
Pelargonium pseudozonale Huber, Florist \& Pomol. 28: 68. Mar 1875, as "pseudo-zonale". Validated by a description in English. - Geraniaceae.
Pelargonium $\times$ rienzit Cannell ex T.Moore, Florist \& Pomol. 28: 116. Mai 1875 ( $P$. inquinans $\times P$. zonale), as "rienzi". Validated by a description in English. - Geraniaceae.
Pelargonium sanguineum Loisel., Herb. Gén. Amateur 5: ad t. 320. 1821, nom. illeg., non J.C. Wendl. (1808). Validated by a description in Latin. - Geraniaceae. NOTE: There is no indication that this is anything but a new species, albeit a later homonym.
Peperomia argentea Sallier, Rev. Hort. 55: 323. 16 Jul 1883. Validated by a description in French. Piperaceae.
Pescatorta albosangumea W.Bull, Garden (London) 5: 538. 20 Jun 1874. Validated by a description in English. - Orchidaceae.
Philodendron parimense Linden ex Regel, Gartenflora 24: 175. 15 Jun 1875. Validated by a diagnosis in German. - Araceae.
Phormum nigroptctum W.Bull, Retail List [Spec. List Gladiolus. 68:] 15. Sep-Oct 1872, as "ntgropictum." Validated by a diagnosis in English. - Xanthorrhoeaceae.
Phylogyne Salisb. ex Haw., Suppl. Pl. Suce. 132. Mai 1819. Validated by a diagnosis and a description in Latin. - Amaryllidaceae. NOTE: The genus name is cited by ING but not in IPNI. The name Phtlogyne Salisb. (Trans. Hort. Soc. London 1: 355. 1812) cited by IPNI is not valid as Salisbury did not provide a generic description and accounted for more than a single species. Thus, none of the species (Phtlogyne conspicua, p. 355, Philogyne heminalts, p. 356, Philogyne calathina, p. 356) is validly published contrary to the information in IPNI. In 1819, Haworth assigned six species to the genus of which P. minor Haw., Suppl. Pl. Succ. 137. Mai 1819, is designated here as the lectotype of the genus; this species is considered to be a synonym of Narcissus fonquilla L. Nonetheless, in 1831, Haworth reverted to the orthography of Philogyne. See Jonquilla odora, above.
Picea hookeriana (AMurray) Roezl, Rev. Hort. 47: unpaged. 16 Feb 1875, based on Abies hookeriana A.Murray, Edinb. New Philos. J., n.s., 1: 289. Jan-Apr 1855. - Pinaceae.
Picea lambertiana (Douglas) F.Sander, Gard. Chron., n.s., 2: 702. 5 Dec 1874, based on Pinus lamberttana Douglas, Trans. Linn. Soc. London 15: 500. 11-20 Dec 1827. - Pinaceae.
Picea magnifica (A.Murray) F.Sanders, Gard. Chron., n.s., 2: 702. 5 Dec 1874, validated by a reference to Abies magnifica A.Murray, Proc. Roy. Hort. Soc. London 3: 318. 1863. -Pinaceae.
Picea pyrenatca E.Manning, Gard. Monthly Hort. 10: 109. Apr 1868. Validated by a brief description in English ("leaves over six inches long, very deep bright green"). - Pinaceae. NOTE: This might have been based on Pimus pyrenatca Lapeyr., Hist. Pl. Pyrenées 146. 1813 at which time Art. 33.3 could be cited to validate the name as a new combination.
Plectocomia andersonii W.Bull, Gard. Chron., n.s., 1: 78. 17 Jan 1874, as "andersoni," Validated by a description in English. - Arecaceae.
Polianthes purpureus R.Dean, Garden, 5: 298. 4 Apr 1874, as "Polyanthus." Validated by a brief description in English. - Amaryllidaceae.
Polygala dalmaistana T.Baines, Gard. Chron., n.s., 2: 617. 14 Nov 1874. Validated by a description in English. - Polygalaceae.
Pothos endresis Veitch, Gard. Chron., n.s., 4: 294. 4 Sep 1875. Validated by a brief description in English ("neat marbled leaves"). - Araceae.
Pteris $\times$ serrulato-tremula T.Moore, Gard. Chron., n.s., 1: 92.17 Jan 1874 ( $P$. serrulata $\times$ P. tremula). Validated by a description in English. - Pteridaceae.
Ptychosperma olviformis Schaedtler, Hamburger Garten-Blumenzeitung 31: Jun 252. 1875, as "oltvaeformis." Validated by a diagnosis in German. - Arecaceae.
Puntca legrellet Haage \& Schmidt, Pl.-Verzeichn. 2. Jan 1875. Validated by a description in German. - Lythraceae.

Quercus salıcifolia Siebold ex J.W.Ottol., Gard. Chron., n.s., 1: 726. 6 Jun 1874, nom. illeg., non Neé (1801). Validated by a description in English. - Fagaceae.

Reynoutria compacta (Hook.f.) Nakai, Rigakkai 24: 293. 1926, based on Polygomum compactum Hook.f., Curtis's Bot. Mag. 106: ad t. 6476. 1880. - Polygonaceae.
Rhododendron $\times$ cliato-dauricum Carrière, Rev. Hort. 46: 200. 16 Mai 1874 (R. dauricum $\times C$. cillatum). Validated by a description in French. - Ericaceae.
Rosa $\times$ alpina-laevis Rouen, Cat. Desc. Ros. 38. 1829, as "alpina laevis." $(R$. alpina $\times R$. cinnamonea). Validated by a description in French. - Rosaceae.
Rosa apetala Dupont ex Dum.-Cours., Bot. Cult., ed. 2, 5: 488. 1811. Validated by a diagnosis in French. - Rosaceae.
Rosa atra Rössig, Oekon.-Bot. Beschr. Rosen 1: 187. 1799. Validated by a description in German and Latin. - Rosaceae. NOTE: Proposed with an alternative name to $R$. atropurpurascens, see below.
Rosa atropurpurascens Rössig, Oekon.-Bot. Beschr. Rosen 1: 187. 1799. Validated by a description in German and Latin. - Rosaceae. NOTE: Proposed with an alternative name to $R$. atra, see above.
Rosa bifera (Poir.) Pers., Syn. P1. 2: 48. Nov 1806, based on R. centifolia var. byfera Poir. Encyel. 6(1): 276. 2 Oct 1804. - Rosaceae. NOTE: The IPNI entry, "Rosa bifera Poir." is not correct as the name was proposed at the rank of variety as given here.
Rosa bracteata Andrews, Roses 2: ad t. 87. 1827, nom. illeg., non J.C.Wendl. (1798). Validated by a description in Latin. - Rosaceae.
Rosa caerulea Guillemeau, Hist. Nat. Rose 93. 1800. Validated by a description in French. Rosaceae.
Rosa calycina Rössig, Oekon.-Bot. Rosen 1: 124. 1799. Validated by a description in German. Rosaceae.
Rosa cannabina Pronville, Nomencl. Rosier 53. Nov-Dec 1818. Validated by a description in French. - Rosaceae.

Rosa $\times$ carbonara Rouen, Cat. Desc. Ros. 214. 1829. Validated by a description in French. Rosaceae.
Rosa clliata Bose, Nouv. Nouv. Agric. Dict. Rais. Agric. 11: 250. 1809. Validated by a description in French. - Rosaceae.
Rosa clynophylla Thory in P.J. Redouté, Roses 1: 43. 24 Mai 1817. Validated by a description in Latin. - Rosaceae.
Rosa dicksoniana Lind1., Syn. Brit. F1. 99. Feb 1829. Validated by a description in English. Rosaceae. NOTE: Possibly an orthographic variant of $R$. dicksonu Lindl. (Trans. Hort. Soc. London 7: 224. 1830).
Rosa euonymifolia Chesnel, Hist. Rose 113. 1820, as "evonymifolia." Validated by a description in French. - Rosaceae.
Rosa formosa Breiter, Hort. Breiter 422. Jan-Oct 1817. Validated by a diagnosis in German and a diagnosis in German by Wrede, Verz. Ros. 19. 1814. - Rosaceae.
Rosa fraxmifolia Dupont ex Dum.-Cours., Bot. Cult. 3: 352. 1-4 Jul 1802, nom. illeg., non Borkh. (1791), associated with a diagnosis in French. - Rosaceae.

Rosa fraxinfolta F.Dietr., Vollst. Lex. Gärtn. 8: 233. Sep 1808, nom. tlleg., non Borkh. (1790). Validated by a diagnosis in German. - Rosaceae.
Rosa fraxinifolia Pronville, Nomencl. Rosier 54. Nov-Dec 1818, nom. illeg., non Borkh. (1790). Validated by a description in French. - Rosaceae.
Rosa glanduloso-calycina Opiz, Lotos 4: 47. Feb 1854. Validated by a description in German. Rosaceae.
Rosa glanduloso-punctata Opiz, Lotos 4: 69. Mar 1854. Validated by a description in German. Rosaceae.

Rosa glauca Fr., Novit. Fl. Svec. 35. 11 Mai 1814, nom. illeg., non Pourr. (1788). Validated by a description in Latin. - Rosaceae.
Rosa hardyana Poit., Bon Jard. 864. 1837. Validated by a diagnosis in French - Rosaceae.
Rosa heterocarpa Opiz, Flora 7(2): 525. 7 Sep 1824. Validated by a description in Latin. - Rosaceae.
Rosa hybrida Tratt., Rosac. Monogr. 1: 62. Jul-Dec 1823, nom. illeg., non Vill. (1788). Validated by a description in Latin. - Rosaceae.
Rosa inermis Thory in P.J. Redouté, Roses [Oct.] 1: Livr. 16a. 1824, nom. illeg., not Delaun. ex Mill. (1768). Validated by a diagnosis in Latin and a description in French. - Rosaceae.

Rosa lacteola Breiter, Hort. Breiter 425. Jan-Oct 1817, nom. tlleg. Validated by diagnoses in Latin associated with a Bauhin and a John Ray phrase name. - Rosaceae. NOTE: The name is not legitimate as the author included R. lactea Loisel., J. Bot. 2: 337. 1809, and R. mutabilis Dum.Cours., Bot. Cult., ed. 2, 5: 475.1811 in synonymy.
Rosa lanceolata Rössig, Oekon-Bot. Rosen 1: 162. 1799. Validated by diagnoses in German and Latin. - Rosaceae.
Rosa mosceuton Guillemeau, Hist. Nat. Rose 92. 1800. Validated by a description in French. Rosaceae.
Rosa multtflora Rössig, Oekon.-Bot. Rosen 68. 1799, nom. illeg., non Thunb. (1784). Validated by diagnoses in German and Latin. - Rosaceae. NOTE: Proposed as an alternative name for $P$. polyanthos Rössig, Oekon.-Bot. Rosen 1: 68. 1799, nom. tlleg., validated by diagnoses in German and Latin and proposed as an alternative name for R. multtflora Thunb. (F1. Jap. 214. 1784) and thus even this new name is not legitimate.

Rosa mundil Andrews, Roses 1: 46. 1805, as "Mundt." Validated by diagnoses in Latin and English. - Rosaceae. NOTE: Proposed as a new and alternative name for $R$. gallica var. varlegata Andrews, Roses 1: 46. 1805, nom. illeg., non Guillemeau, Hist. Nat. Rose 60. 1800.
Rosa nitens Bechst., Forstbot., ed. 4, 158, 607. 1821, nom. illeg., non Desv. (1812), based on $R$. canina var. ramosissima A.Rau, Enum. Ros. Wirceb. 74. Mar-Dec 1815. - Rosaceae.
Rosa notsettaeana Loisel., Herb. Gén. Amateur 5: ad t. 288. 1821. Validated by a description in Latin. - Rosaceae. NOTE: Almost certainly an orthographic variant of R. nolsettana Redouté (Roses 2: 77. 1820). The later Bosc (Encycl. Méth. Agric. 6: 705. 1821) cited by IPNI, was Validated by a reference to a description in French associated with the expression "Le Rosier à feuilles odorantes", the common name often associated with R. rubiginosa L., published by A. Parmentier (in J. Rozier, Cours Compl. Agric., ed. 2, 11: 261. 1809).
Rosa obovata Bechst., Forstbot., ed. 4, 159, 675. 1821, nom. illeg., non Raf. (1820). Validated by a diagnosis and a description in German. - Rosaceae.
Rosa pulchella Andrews, Roses 1: 57. 1817, nom. illeg., non Salisb. (1798). Validated by diagnoses in Latin and English. - Rosaceae.
Rosa saintfrancisci Rössig, Oekon.-Bot. Beschr. Rosen 2: 61. 1803, as "St. Francisci." Validated by descriptions in German and Latin. - Rosaceae.
Rosa $\times$ serratipetala Rouen, Cat. Desc. Ros. 232. 1829. Validated by a description in Latin. Rosaceae.
Rosa sultana Rössig, Oekon.-Bot. Beschr. Rosen 2: 51. 1803. Validated by descriptions in German and Latin. - Rosaceae.
Rosa syrmgorosea Rössig, Oekon.-Bot. Rosen 2: 34. 1803, as "Syrmgo-rosea." Validated by descriptions in German and Latin. - Rosaceae.
Rosa tenera Breiter, Hort. Breiter 431. Jan-Oct 1817. Validated by a diagnosis in German and a diagnosis in German by Wrede, Verz. Ros. 12. 1814. - Rosaceae.
Rosa terebinthina (Thory) Tratt., Rosac. Monogr. 1: 111. Jul-Dec 1823, nom. tlleg., non Besser (1822), based on R. villosa var. terebinthina Thory in P.J. Redouté, Roses 2: 71. 8 Jul 1820. Rosaceae.
Rosa versicolor Tratt., Rosac. Monogr. 2: 124. Jul-Dec 1823, nom. illeg., non Steud. (1821). Validated by a diagnosis and description in Latin. - Rosaceae.

Ruellia pitcairnifolia W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 41. 1871, as "pitcairnaefolia." Validated by a diagnosis in English. - Acanthaceae.
Sabal warscewiczil Schaedtler, Hamburger Garten-Blumenzeitung 31: 254. Jun 1875. Validated by a diagnosis in German. - Arecaceae.
Samyda nobilis W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 30. 1 Apr 1871. Validated by a description in English. - Salicaceae.
Sarracenia flavopurpurea B.S. Williams, Garden (London) 5: 400. 9 Mai 1874, as "flavo-purpurea." Validated by a diagnosis in English. - Sarraceniaceae. NOTE: Suggested as a possibly naturally occuring hybrid between S. rubra and S. purpurea so that this might be rendered Sarracenia $\times$ flavopurpurea.
Saurauıa superba H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 5. Aug 1868. Validated by a diagnosis in German. - Actinidiaceae.
Saxifraga aromatica Niven, Garden (London) 5: 349. 18 Jul 1874. Validated by a diagnosis in English. - Saxifragaceae.
Saxifraga germanica Niven, Garden (London) 5: 284. 4 Apr 1874. Validated by a diagnosis in English. - Saxifragaceae.
Saxıfraga huettı Vilm.-Audrieux, J. Soc. Cent. Hort. France, sér. 2, 8: 226. 31 Mai 1874. Validated by a brief description in French ( ${ }^{*} .$. . petite plant à fleurs jaunes..."). - Saxifragaceae.
Scabosa parnasstae Hort., Gard. Chron. 1873: 1175. 30 Aug 1873, as "parnassae." Validated by a brief description in English. - Caprifoliaceae.
Scilla hughil Mast. \& T.Moore, Gard. Chron., n. s., 1: 26. 3 Jan 1874. Validated by a diagnosis in English. - Asparagaceae.
Scutellaria moccintana W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 30. 1 Apr 1871. Validated by a description in English. - Lamiaceae.

Seaforthta alexandriae Schaedtler, Hamburger Garten-Blumenzeitung 31: 255. Jun 1875. Validated by a diagnosis in German. - Arecaceae.
Seaforthra excelsa Schaedtler, Hamburger Garten-Blumenzeitung 31: 255. Jun 1875. Validated by a diagnosis in German. - Arecaceae.
Sedum calfornicum E.G.Hend., Gard. Chron., n.s., 3: 795. 19 Jun 1875. Validated by a description in English. - Crassulaceae.
Selagmella ascendens Baker, Garden (London) 6: 407. 31 Oct 1874. Validated by a description in English. - Selaginellaceae.
Selaginella griffithu Baker, Garden (London) 6: 407. 31 Oct 1874. Validated by a brief description in English ("an elegant creeping species, the tips of the fronds of which are gracefully recurved"). Selaginellaceae.
Selaginella inaequalifolia Baker, Garden (London) 6: 407.31 Oct 1874. Validated by a description in English. - Selaginellaceae.
Selaginella faponica Moore ex M'Nab, Trans. Proc. Bot. Soc. Edinburgh 9: 8. Jan-Mar 1867. Validated by a description in English. - Selaginellaceae.
Selaginella poulterı H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 6. Aug 1868. Validated by a diagnosis in German. - Selaginellaceae.
Selaginella setosa Linden, Cat. Pl. Exot. 22/23: 9. Jan-Jun 1869. Validated by a diagnosis in French. - Selaginellaceae.

Senecio glesbreghtit Brongn. ex Clémenc., Rev. Hort. 46: 100. 1 Mar 1874. Validated by a poor organized description in French. - Asteraceae.
Sennebiera pinnatifida Poit., Bon Jard. 294. 1837. Validated by a description in French. Brassicaceae. NOTE: The generic name is not legitimate but the epithet is valid.
Socratea affinis Schaedtler, Hamburger Garten-Blumenzeitung 31: 256. Jun 1875. Validated by a diagnosis in German. - Arecaceae.
Socratea squitos Schaedtler, Hamburger Garten-Blumenzeitung 31: 256. Jun 1875. Validated by a diagnosis in German. - Arecaceae.

Sophora pendula Ounous, Rev. Hort. 46: 280. 16 Jul 1874. Validated by a description in French. Fabaceae.
Spathiphyllum macrophyllum Linden ex Rafarin, Rev. Hort. 46: 73. 16 Feb 1874. Validated by a diagnosis in French. - Araceae.
Sphaerogyne ferruginea W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 30. 1 Apr 1871. Validated by a description in English. - Melastomataceae.

Spondias olvvaeformis W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 31. 1 Apr 1871. Validated by a description in English. - Anacardiaceae.

Stephensonta sechallara (H.Wendl.) R.Hogg, Florist \& Pomol. 133. Jun 1865, as "Stevensonia sechallarum," based on Phoenicophornum sechallarum H.Wendl., Ill. Hort. 12: Misc. 5. 1865. Arecaceae.
Struthopteris japonica W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 121. 1 Apr 1871. Validated by a description in English. - Blechnaceae.

Synechanthus gracilis Schaedtler, Hamburger Garten-Blumenzeitung 31: 256. Jun 1875. Validated by a diagnosis in German. - Arecaceae.
Synechanthus sarapiquensis Schaedtler, Hamburger Garten-Blumenzeitung 31: 256. Jun 1875. Validated by a diagnosis in German. - Arecaceae.
Theophrasta andrea Linden ex Rafarin, Rev. Hort. 46: 76. 16 Feb 1874. Validated by a description in French. - Primulaceae.
Thuja defresneana C. van Geert ex K.Koch, Wochensch. Vereines Beförd. Gartenbaues Königl. Preuss. Staaten 6: 119. 11 Apr 1863. Validated by a diagnos is in German. - Cupressaceae. NOTE: An alternative name for Biota defresneana (see below).
Tritoma abyssimica (Redouté) W.Mast., Garden (London) 5: 500. 13 Jun 1874, based on Veltheimia abyssinica Redouté, Lilac. 4: ad t. 186. 1807. - Xanthorrhoeaceae. NOTE: The basionym is often ascribed to DC. However Redouté only mentions "Veltheimia abyssinica Vel. Du Mus. D'Hist. nat. 8. 55."
Tritoma breviflora (Harv. ex Baker) W.Mast., Garden (London) 5: 500. 13 Jun 1874, based on Kniphofia brevflora Harv. ex Baker, J. Linn. Soc., Bot. 11:361. 1870. - Xanthorrhoeaceae.
Tritoma comosa (Hochst.) W.Mast., Garden (London) 5: 500. 13 Jun 1874, based on Kniphofia comosa Hochst., Flora 27(1): 31. 1844. - Xanthorrhoeaceae.
Tritoma gractls (Harv. ex Baker) W.Mast., Garden (London) 5: 500. 13 Jun 1874, based on Kniphofia brevflora Harv. ex Baker, J. Linn. Soc., Bot. 11: 362. 1870. - Xanthorrhoeaceae.
Tritoma grantil (Baker) W.Mast., Garden (London) 5: 500. 13 Jun 1874, based on Kniphofia grantii Harv. ex Baker, J. Linn. Soc., Bot. 11: 363. 1870. - Xanthorrhocaceae.
Tritoma isoetifolta (A.Rich) W.Mast., Garden (London) 5: 500. 13 Jun 1874, based on Kniphofia isoetifolia A.Rich., Tent. Fl. Abyss. 2: 324. 1850. - Xanthorrhoeaceae.
Tritoma parviflora (Kunth) W.Mast., Garden (London) 5: 500. 13 Jun 1874, based on Kniphofia parvflora Kunth, Enum. Pl. 4: 553. 23-29 Mai 1841. - Xanthorrhoeaceae.
Tritoma porphyrantha (Baker) W.Mast., Garden (London) 5: 500. 13 Jun 1874, based on Kniphofia porphyrantha Baker, J. Bot. 12: 4. 1874. - Xanthorrhoeaceae.
Tritoma praecox (Baker) W.Mast., Garden (London) 5: 500. 13 Jun 1874, based on Kniphofia praecox Baker, Refug. Bot. 3: ad t. 169. Jan 1870. - Xanthorrhoeaceae.
Tritoma quartiniana (A.Rich) W.Mast., Garden (London) 5: 500. 13 Jun 1874, based on Kniphofia isoetifolia A. Rich., Tent. Fl. Abyss. 2: 324. 1850. - Xanthorrhocaceae.
Tritoma rigidissima W.Mast., Garden (London) 5: 500. 13 Jun 1874. Validated by a description in English. - Xanthorrhoeaceae.
Tritoma schimper (Baker) W.Mast., Garden (London) 5: 500. 13 Jun 1874, based on Kniphofia schimperi Baker, J. Bot. 12: 4. 1874. - Xanthorrhoeaceae.
Tritoma triangularts (Kunth) W.Mast., Garden (London) 5: 500. 13 Jun 1874, based on Kniphofia triangularis Kunth, Enum. Pl. 4: 551. 23-29 Mai 1841. - Xanthorrhoeaceae.

Tropaeolum pyramidalis H.A.Dreer, Gard. Monthly Hort. 10: 64 [Hort. Advert. unpaged]. Feb 1868. Validated by a description in English. - Tropaeolaceae.
Tulipa virudflora Tubergen, Wholesale Cat. Flowerroots 11. 1892. Validated by a diagnosis in English (e.g., "green flowered"). - Liliaceae.
Urceolaria fulva Herb., Amaryllidaceae 194, pl. 26, f. 5. Dec 1837, nom. inadmıs. Validated by a description in English. - Colchicaceae.
Uvularia sinensis Loudon, Gardener's Mag. 8: 111. Feb 1832, nom. illeg., based on Disporum fulvum D.Don, Prodr. Fl. Nepal 5: 50. 26 Jan-1 Feb 1825. - Colchicaceae.

Vaccintum mortenia J.M'Nab, Garden (London) 6: 206. 29 Aug 1874. Validated by a brief description in English. - Ericaceae. NOTE: Based on M'Nab's statement that this "is a beautiful new evergreen species" it is assumed that this is not an orthographic variant of $V$. mortinia Benth. (Pl. Hartw. 221. 1846).
Vanda pygmaea H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 20. Aug 1868, a new base based on Oeceoclades falcata Lindl., Gen. Sp. Orchid. Pl. 237 1833, non V. falcata Beer (1854). Orchidaceae.
Vitis zongylioides D.Thomson, Gardener 8: 102. Mar 1874. Validated by a description in English. Vitaceae.
Wallichia oblongata Regel, Gartenflora 24: 177. Jun 1875. Validated by description in German. Arecaceae.
Wetgela gractlfflora Carrière, Rev. Hort. 47: 211. 1 Jun 1875. Validated by a description in French. Caprifoliaceae.
Weigela hendersonii W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 54. 1871, as "hendersont." Validated by a description in English. - Caprifoliaceae.
Wetgela hybrida Carrière, Rev. Hort. 47: 211. 1 Jun 1875. Validated by a diagnosis in French. Caprifoliaceae.
Weigela lemoine, W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 54. 1 Apr 1871. Validated by a description in English. - Caprifoliaceae.
Weigela multiflora Carrière, Rev. Hort. 47: 210. 1 Jun 1875. Validated by a description in French. Caprifoliaceae.
Wetgela mutabtlis Carrière, Rev. Hort. 1861: 331. 1861. Validated by a description in French. Caprifoliaceae.
Weigela nivea Carrière, Rev. Hort. 47: 130. 1 Apr 1875. Validated by a description in French. Caprifoliaceae.
Weigela striata B.K.Bliss, Hort. J. Rural Arts Rural Taste 17: 10. Apr 1862. Validated by a description in English. - Caprifoliaceae.
Weigela vanhouttil B.K.Bliss, Hort. J. Rural Arts Rural Taste 17: 10. Apr 1862. Validated by a description in English. - Caprifoliaceae.
Zamia plumosa Rafarin, Rev. Hort. 46: 74. 16 Feb 1874. Validated by a description in French. Zamiaceae.

## NAMES WITH AN EARLIER REFERENCE THAN CURRENTLY IN IPNI

Abies commatata A.Murray, Gard. Chron., n.s., 3: 106. 23 Jan 1875. Validated by a brief, and somewhat dubious diagnosis in English but also considered the name to be a new name for Abies menziesu argentea, but if this name was Validated before the above date, it has not been found and, frankly, does not seem to have been Validated prior to 23 Jan 1875. - Pinaceae.
Abies hanburyana A.Murray, Garden (London) 6: 272. 19 Sep 1874, nom. illeg., a new name for $A$. pattoniana Jeffrey ex A. Murr., Bot. Exped. Oregon Circ. 2: 1, t. 4, fig. 2. 1850. - Pinaceae.
Acanthophoentx grands André, Rev. Hort. 67: 250. 1 Jun 1895. Validated by a diagnosis in French. - Arecaceae.

Acanthorrhiza Linden, Cat. Pl. Exot. 2223: 47. Jan-Jun 1869, as "Acanthorhiza." T.: A. warscewiczit Linden. - Arecaceae.
Acanthorrhiza warscewiczit Linden, Cat. Pl. Exot. 22/23: 47. Jan-Jun 1869, as "Warscewiczt." Validated by a diagnosis in French. - Arecaceae.
Acer atheniense GGordon, Garden (London) 5: 83. 24 Jan 1874. Validated by a description in English. - Sapindaceae.
Adiantum elegantissimum B.S.Williams ex R.Hogg, Florist \& Pomol. 27: 135. Jun 1874. Validated by a description in English. - Adiantaceae.
Adiantum gracillimum B.S.Williams ex R.Hogg, Florist \& Pomol. 27: 42. Feb 1874. Validated by a description in English. - Adiantaceae.
Adiantum hendersonii E.C.Hend., Gard. Chron. 1873: 570. 26 Apr 1873. Validated by a description in English. - Adiantaceae.
Aerides freldingin B.S.Williams, Orch. Grow. Man., ed. 2, 39. Oct 1862. Validated by a description in English. - Orchidaceae.
Aerides huttonil (Hook.f.) Veitch, Cat. New Beautiful Pl. 1873: 16. Jul-Aug 1873, based on Saccolabium huttonil Hook.f., Curtis's Bot. Mag. 93: ad t. 5681. 1 Dec 1867. - Orchidaceae.
Aerides lobbul B.S.Williams, Orch. Grow. Man., ed. 2, 39. Oct 1862. Validated by a description in English. - Orchidaceae.
Aerides nobilis B.S.Williams, Orch. Grow. Man., ed. 2, 40. Oct 1862, as "nobtle." Validated by a description in English. - Orchidaceae. NOTE: See also R. Warner, Select Orchid. PI., ser. 1, ad t. 10. Sep-Nov 1862, as "nobile." Validated by a description in English.

Aerides veitchil B.S.Williams, Orch. Grow. Man., ed. 2, 41. Oct 1862. Validated by a description in English. - Orchidaceae.
Aerides willhams B.S. Williams, Orch. Grow. Man., ed. 2, 43. Oct 1862. Validated by a description in English. - Orchidaceae.
Aesculus rubicunda Loisel., Herb. Gén. Amateur 6: ad t. 357. 1822. Validated by a description in Latin. - Sapindaceae.
Agave bulbosa W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 3. 1 Apr 1871. Validated by a description in English. - Asparagaceae.
Agave guccaefolia Mannetti in F.A. Gera, Nouv. Diz. Univ. Ragion. Agric. 2: 380. 1834. Validated by a description in Italian. - Asparagaceae.
Agave gustaviana Haage \& Schmidt, Pfl-Cat. 1874: 1. Jan 1874. Validated by a diagnosis in German. - Asparagaceae.
Ä̈phanes bicuspidata (H.Karst.) Ed.Otto, Hamburger Garten-Blumenzeitung 31: 24. Jan 1875, based on Marara bicuspidata H.Karst., Linnaea 28: 390. Jun 1857. - Arecaceae.
Ajax cernuus Haw., Philos. Mag., n.s., 8: 131. Aug 1830, a new name for Narcisssus cernutis Roth, Catal. Bot. 1: 43. Jan-Feb 1797, nom. illeg., non Salisb. (1796). - Amaryllidaceae.
Ajax lorifolnus Haw., Suppl. Pl. Succ. 119. Mai 1819. Validated by a diagnosis in Latin. Amaryllidaceae.
Ajax minor (L.) Haw., Suppl. Pl. Succ. 112. Mai 1819, based on Narcissus minor L., Sp. Pl., ed. 2, 415. Sep 1762. - Amaryllidaceae.

Ajax moschatus (L.) Haw., Suppl. Pl. Succ. 118. Mai 1819, based on Narctssus moschatus L., Sp. Pl., ed. 2, 1: 415. Sep 1762. - Amaryllidaceae.
Afax nanus Haw. in R. Sweet, Brit. Fl. Gard., ser. 2. 25(App.): 2. 1 Jun 1831, based on A. minor var. conspicuus Haw., Suppl. Pl. Suce. 112. Mai 1819. - Amaryllidaceae.
Ajax propinqzus (Salisb.) Haw., Suppl. Pl. Succ. 116. Mai 1819, based on Narcissus propinquus Salisb., Prodr. Stirp. Chap. Allterton 221. Nov-Dec 1796. - Amaryllidaceae.
Ajax serratus (Haw.) Haw., Suppl. Pl. Succ. 114. Mai 1819, based on Narcissus serratus Haw., Misc. Nat. 179. Jul-Dec 1803. - Amaryllidaceae.
Ajax tortuosus (Haw.) Haw., Philos. Mag., n.s., 8: 131. Aug 1830, based on Narcissus tortuosus Haw., Misc. Nat. 179. Jul-Dec 1803. - Amaryllidaceae.

Alnus imperials (Hems1.) Rob., Gard. Chron., n.s., 2: 334. 12 Sep 1874. Validated by brief description in English and a reference to A. glutmosa var. imperialis Hems1., Handb. Trees 415. 1873. - Betulaceae.

Alocasta $\times$ chantrieri Andre in Rev. Hort. [Paris]. 59: 465, f. 92.16 Oct 1887. - Araceae.
Alocasia gibsonit E.C.Hend., Gard. Chron. 1873: 604. 3 Mai 1873, as "Calocasia Gibsoni." Validated by a description in English. - Araceae.
Alocasia illustris W.Bull, Gard. Chron. 1873: 606. 3 Mai 1873. Validated by a description in English. -Araceae.
Alocasta phumbea van Houtte, Fl. Serres 21:93. 1 Oct 1875, nom. illeg. Validated by a description in French. - Araceae. NOTE: The name is not legitimate by virtue of the inclusion of $A$. cuprea (K.Koch \& Bouché) K.Koch, Wochenschr. Vereines Beförd. Bargenbaues Königl. Preuss. Staaten 4: 141. 1861, based on Caladrum cupreum K.Koch \& Bouché, App. Gen. Sp. Nov. 1854: 6. 1855.

Aloe greenit Green, Garden (London) 8: 77. 24 Jul 1875. Validated by a description in English. Xanthorrhoeaceae.
Alpinia vittata W.Bull, Gard. Chron. 1873: 606. 3 Mai 1873. Validated by a description in English. Zingiberaceae.
Alsophila beyrichiana (C. Presl) G., Garden (London) 5: 160. 21 Feb 1874, based on Hemitelia beyrichiana C.Presl, Abh. Boehm. Ges. Wiss. V. 5: 353. 1848. - Cyatheaceae.
Alsophila eleganttsstma Linden, Cat. P1. Exot. 22/23: 57. Jan-Jun 1869. Validated by a diagnosis in French. - Cyatheaceae.
Alstroemeria bredemeyerana Willd. ex Schult. \& Schult.f., Syst. Veg. 7(1): 751. 1829. Validated by a description in Latin. - Alstroemeriaceae.
Amaryllis caplyptrata Ker Gawl., Bot. Reg. 2: ad t. 164. 1 Jan 1817. Validated by a description in Latin. - Amaryllidaceae.
Amaryllis citrma Sibth. \& Sm., Fl. Graec. Prodr. 1: 221 . Mai-Nov 1809. Validated by a description in Latin. - Amaryllidaceae.
Amaryllis chustana Ker Gawl., Curtis's Bot. Mag. 27: ad t. 1089. 1 Mar 1808. Validated by a diagnosis in Latin, that being the phrase name used by Clusius. - Amaryllidaceae.
Amaryllis colchiciflora (Waldst. \& Kit.) Ker Gawl., Curtis's Bot. Mag. 27: ad t. 1089. 1 Mar 1808, based on Sternbergia colchiciflora Waldst. \& Kit., Descr. Icon. Pl. Hung. 2: 172, t. 159. 1804. Amaryllidaceae.
Amaryllis grandiflora (Lindl.) Herb., Amaryllidaceae 278. late Apr 1837, based on Brunsvigia grandiffora Lindl., Edwards's Bot. Reg. 16: 1335. 1 Jul 1830. - Amaryllidaceae.
Amaryllis tettaut Haage \& Schmidt, Pfl.-Cat. 1874: 1. Jan 1874. Validated by a diagnos is in German. - Amaryllidaceae.

Ampelopsis veitchit H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 6. Aug 1868. Validated by a diagnosis in German. - Vitaceae. NOTE: The current IPNI record lists Hort., Gard. Chron. 1868: 814. 1 Aug 1868, nom. prov., a name associated with a diagnosis in English.

Ananas mordilona Linden, Cat. Pl. Exot. 22/23: 2. Jan-Jun 1869. Validated by a diagnosis in French. - Bromeliaceae.

Anguloa mantını André, Rev. Hort. 67: 249. 1 Jun 1895, as "martini." Validated by a diagnosis in French. - Anemiaceae. NOTE: The same name was proposed by C. Maron at the same time but on p. 250; this is in IPNI.
Anoectochtlus Javanicus (Blume) B.S.Williams, Orch. Grow. Man., ed. 2, 49. Oct 1862, based on Hetaeria javanica Blume, Bijdr. Fl. Ned. Ind. 8: 410. 20 Sep-7 Dec 1825. - Orchidaceae. NOTE: The basionym was not cited, but validate by the provisions in Art. 33.3. Also, the name was associated with a description in English.
Anoectochtlus zebrinum W.Bull, Proc. Roy. Hort. Soc. 4: 9. Jan 1864. Validated by a description in English. - Orchidaceae.

Anthericum variegatum B.S.Williams, Gard. Chron., n.s., 3: 442. 3 Apr 1875. Validated by a brief description in English ("with white margins to its long green leaves"). - Asparagaceae. NOTE: The Williams name can be exactly dated. Any exact date for the current IPNI record (Flor. Mag., t. 152. 1875) could not be determined.

Anthurium candidum W.Bull, Gard. Chron., n.s., 3: 491. 17 Apr 1875. Validated by a description in English. - Asparagaceae. NOTE: Also in Bull's Catalogue as noted in IPNI but when the catalogue was published could not be determined.
Anthurium hybridum B.S.Williams ex Rob., Garden (London) 5: 276. 28 Mar 1874. Validated by a description in English. Also: B.S.Williams, Florist \& Pomol. 27: 115. Apr 1874. Validated by a description in Engllish. - Asparagaceae. NOTE: The Williams name predates that of Engler (Monogr. Phan. 2: 191. 1879). A taxonomic decision is necessary to determine if the original material associated with the Williams name at Kew represents the same entity as described by Engler.
Anthurium witliamsit Hort., Gardener 8: 198. Mai 1874. Validated by a diagnosis in English. Asparagaceae.
Aralia guilfoylei W.Bull, Gard. Chron. 1873:606. 3 Mai 1873. Validated by a description in English. - Araliaceae.

Aralia laciniata Rafarin, Rev. Hort. (Paris) 49: 326. 1 Sep 1877. Validated by a brief diagnosis in French ("à feuilles très-découpées"). - Araliaceae. NOTE: An alternative name, Panax laciniatus Rafarin (Rev. Hort. 49: 326. 1 Sep 1877, as lacmatum), nom. illeg., was also proposed (as "Aralia laciniata ou Panax lacmatum"). Panax laciniatus Rob., Garden (London) 9: 436. 1 Jun 1876 is probably validly published although it is associated only by the expression "cut-leaved" and "elegant habit" is not much better than what is in Revue Horticole so it is possible that the Rafarin name might be considered a new combination (via Art. 33.3). The 1876 reference for $P$. lacinatus now in IPNI (e.g., Gard. Chron., n.s., 6:372. 16 Sep 1876 ) is not correct as the name is a nomen nudum.
Aralta steboldit T.Meehan, Gard. Monthly Hort. 10: 24. Jan 1868. Validated by an unorganized description in English. - Araliaceae.
Aralia vettchii Veitch, Gard. Chron. 1873: 706. 24 Mai 1873. Validated by a description in English. Araliaceae.
Arbutus croomn Rob., Garden (London) 6: 442.14 Nov 1874, as "Croom." Validated by a diagnosis in English. - Ericaceae.
Artocarpus calophylla Haage \& Schmidt, Pfl.-Cat. 1874: 1. Jan 1874. Validated by a diagnosis in German. - Moraceae.
Artocarpus cannont Veitch, Gard. Chron., n.s., 4: 242. 21 Aug 1875. Validated by a diagnosis in English. - Moraceae.
Artocarpus grandis Linden ex Cazzuola \& Nencioni, Coltiv. Piante Ornam., ed. 2, 222. 1889. Validated by a diagnosis in Italian. - Moraceae. NOTE: Only the second edition seen and the first edition was not seen and thus not checked.
Asparagus albanensis André, Rev. Hort. 67: 249. 1 Jun 1895. - Asparagaceae.
Astrocaryum filare W.Bull, Gard. Chron., n.s., 3: 491. 17 Apr 1875. Validated by a description in English. - Arecaceae.
Bactris caravellana Schaedtler, Hamburger Garten-Blumenzeitung 31: 67. Feb 1875. Validated by a diagnosis in German. - Arecaceae.
Bactris cucullata Schaedtler, Hamburger Garten-Blumenzeitung 31: 67. Feb 1875. Validated by a diagnosis in German. - Arecaceae.
Bactris diplothemium Schaedtler, Hamburger Garten-Blumenzeitung 31: 67. Feb 1875. Validated by a diagnosis in German. - Arecaceae.
Bactris elegans Schaedtler, Hamburger Garten-Blumenzeitung 31: 67. Feb 1875. Validated by a diagnosis in German. - Arecaceae.

Bactris martinezifformis Schaedtler, Hamburger Garten-Blumenzeitung 31: 67. Feb 1875, as "martineziaeformis." Validated by a diagnosis in German. - Arecaceae.
Bactris obovata H.Wendl. ex Schaedtler, Hamburger Garten-Blumenzeitung 31: 67. Feb 1875. Validated by a diagnosis in German. - Arecaceae.
Bactris spinosissima Schaedtler, Hamburger Garten-Blumenzeitung 31: 67. Feb 1875. Validated by a diagnosis in German. - Arecaceae.
Begonia diadem W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 138. 1 Apr 1871. Validated by a description in English. - Begoniaceae.
Begonia $\times$ hybrida P.W.Burbidge, Cultivated Pl. 202. 1877 (B. manicata $\times$ B. coccinea). Validated by a description in English. - Begoniaceae.
Begonta vesuvius Veitch, Garden (London) 4: 204. 6 Sep 1873. Validated by a diagnosis in English. Begoniaceae. NOTE: Not published as a hybrid, but so indicated in 1874 (e.g., Florist \& Pomol. 27: 201. Sep 1874), but the parentage not stated.
Begonia weltontensts W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 139. 1 Apr 1871. Validated by a description in English. - Begoniaceae.

Bertoloma $\times$ marchandu T.Moore, Florist \& Pomol. 28: 143. Jun 1875. Validated by a description in English. - Melastomataceae.
Biota aurea (Carrière) K.Koch, Dendrologie 2(2): 183. Nov 1873, , based on Thufa aurea Carrière, Traité Gén. Conif.: 96. 1855. - Cupressaceae. NOTE: See also B. aurea (Carrière) Mast. \& T.Moore, Gard. Chron., n. s., 1:60. 10 Jan 1874, an isonym. Also see Thuja defresneana (above).

Biota defresneana C. van Geert ex K.Koch, Wochensch. Vereines Beförd. Gartenbaues Königl. Preuss. Staaten 6: 119. 11 Apr 1863. Validated by a diagnosis in German. - Cupressaceae. NOTE: An alternative name for Thufa defresneana (see above).
Bhumenbachia coronata Rob., J. Hort. Pract. Gard. 25: 216. 18 Sep 1873. Validated by a brief diagnosis in English ("orange flowers"). - Loasaceae.
Boccoma japonica Haage \& Schmidt, Pl. Cat. 36. Jan 1870. Validated by a description in German. Papaveraceae.
Bocconta jedoensis Carrière, Rev. Hort. 37: 340. 15-31 Aug 1866. Validated by a description in French. - Papaveraceae. NOTE: This name predates Macleaya jedoensis (Carrière) E.André, Rev. Hort. 37: 369. 15-30 Sep 1866, as "Macleya yedoensis"), and as this combination was based on B. jedoensts Carrière, the current orthography in IPNI ("Macleaya yedoensis") should be corrected.
Brahea filamentosa H. Wendl., Rev. Hort. 47: unpaged. 16 Aug 1875. Validated by a description in French. - Arecaceae. NOTE: This is in an advertisement by Haage \& Schmidt; see also the following isonyms: Veitch, Gard. Chron., n.s., 4: 294. 4 Sep 1875. Validated by a description in English. Also described in Gartenflora 24: 361. 1 Dec 1875.
Brahea ghiesbreghtii Schaedtler, Hamburger Garten-Blumenzeitung 31: 68. Feb 1875. Validated by a diagnosis in German. - Arecaceae.
Brahea lucida Schaedtler, Hamburger Garten-Blumenzeitung 31: 69. Feb 1875. Validated by a diagnosis in German. - Arecaceae.
Brahea nitida Schaedtler, Hamburger Garten-Blumenzeitung 31: 69. Feb 1875. Validated by a diagnosis in German. - Arecaceae.
Brassica rutabaga Vilm., Bon Jard. 345. 1837. Validated by a diagnosis in French. - NOTE: Brassicaceae.
Briza compacta H.A.Dreer, Gard. Monthly Hort. 10: 64 [Hort. Advert. unpaged]. Feb 1868. Validated by a description in English. - Poaceae.
Brugmansta lutea Hort., Paxton's Mag. Bot. 4: 95. 1838. Validated by a description in English. Solanaceae.
Burlingtona knowlesit B.S.Williams, Orch. Grow. Man., ed. 2, 63. Oct 1862 . Validated by a description in English. - Orchidaceae.

Caesalpmia alternifolia W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 19. 1 Apr 1871. Validated by a description in English. - Fabaceae.

Caladium hilliputianum André, Rev. Hort. 67: 250. 1 Jun 1895. Validated by a brief description in French. - Araceae.
Calamus dealbatus W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 123. 1 Apr 1871. Validated by a description in English. - Arecaceae.
Calamus nicolai Schaedtler, Hamburger Garten-Blumenzeitung 31: 70. Feb 1875. Validated by a diagnosis in German. - Arecaceae.
Calamus obovoideus Schaedtler, Hamburger Garten-Blumenzeitung 31: 70. Feb 1875. Validated by a diagnosis in German. - Arecaceae.
Calyptrogyne elata Rafarin, Rev. Hort. 46: 76. 16 Feb 1874. Validated by a description in French. Arecaceae.
Calyptrogyne saraptquensts Schaedtler, Hamburger Garten-Blumenzeitung 31: 70. Feb 1875. Validated by a diagnosis in German. - Arecaceae.
Campanula $\times$ smithit Hort., Gard. Chron., n.s., 2: 83. 18 Jul 1874 (C. fragilis $\times$ C. pumila var. alba). Validated by a description in English. - Campanulaceae. NOTE: Name attributed to a "Mr. Smith" See also Campanula $\times$ smithil Smith, Garden (London) 6:63. 18 Jul 1874. Validated by a diagnosis in English. See also the note of the parentage in Garden 6: 79. 25 Jul 1874.
Campsidnum filicifolum W.Bull, Gard. Chron., n.s., 1: 78. 17 Jan 1874. Validated by a description in English. - Bignoniaceae.
Carica aurantiaca W.Bull, Gard. Chron. 1873: 606. 3 Mai 1873. Validated by a description in English. - Caricaceae.
Carica gracilts Linden, Cat. Pl. Exot. 22/23: 24. Jan-Jun 1869. Validated by a diagnosis in French. Caricaceae.
Carludovica lancaefolia Schaedtler, Hamburger Garten-Blumenzeitung 31: 301. Jul 1875. Validated by a diagnosis in German. - Cyclanthaceae.
Carludovica rotundifolia Schaedtler, Hamburger Garten-Blumenzeitung 31: 301. Jul 1875. Validated by a diagnosis in German. - Cyclanthaceae.
Caryota elegans Schaedtler, Hamburger Garten-Blumenzeitung 31: 111. Mar 1875. Validated by a diagnosis in German. - Arecaceae.
Caryota majestica Schaedtler, Hamburger Garten-Blumenzeitung 31: Mar 111. 1875. Validated by a diagnosis in German. - Arecaceae.
Cattleya amabilis B.S.Williams, Orch. Grow. Man., ed. 2, 63. Oct 1862 . Validated by a description in English. - Orchidaceae.
Cattleya edithiana B.S.Williams, Orch. Grow. Man., ed. 2, 70. Oct 1862. Validated by a description in English. - Orchidaceae.
Cattleya $\times$ trrorata (Rchb.f.) Low, Proc. Roy. Hort. Soc. 4: 8. Jan 1864, based on Laelia irrorata Rchb.f. in Hamb., Gartenz. 15: 57. 1859. - Orchidaceae.
Centropogon hucyamus W.Bull, Retail List [Wholesale List New Beautiful Rare PL. 60:] 19. 1 Apr 1871. Validated by a diagnosis in English. - Campanulaceac.

Ceroxylon ferrugineum Devansaye, Rev. Hort. 46: 214. 1 Jun 1874. Validated by a description in French. - Arecaceae.
Ceroxylon nuveum Hort., Gard. Chron., n.s., 1: 255. 21 Feb 1874. Validated by a description in English. - Arecaceae.
Chamaedorea elegans Schaedtler, Hamburger Garten-Blumenzeitung 31: 114. Mar 1875. Validated by a diagnosis in German. - Arecaceae.
Chamaedorea ghesbreghtil Schaedtler, Hamburger Garten-Blumenzeitung 31: 114. Mar 1875. Validated by a diagnosis in German. - Arecaceae.
Chamaedorea hartwegil B., Garden (London) 6: 368 . 17 Oct 1874 . Validated by a diagnosis in English. - Arecaceae. NOTE: The note is simply signed "B."

Chamaedorea obovoidea Schaedtler, Hamburger Garten-Blumenzeitung 31: 155. Apr 1875. Validated by a diagnosis in German. - Arecaceae.
Chamaedorea wendlandit Schaedtler, Hamburger Garten-Blumenzeitung 31: 156. Apr 1875, as "Wendlandi." Validated by a diagnosis in German. - Arecaceae.
Chamaerops ghiesbreghtil Schaedtler, Hamburger Garten-Blumenzeitung 31: 157. Apr 1875, as "Ghiesbreghtt." Validated by a diagnosis in German. - Arecaceae.
Chloraster fissus Haw., Philos. Mag. J. 63: 103. Feb 1824. Validated by a diagnosis and a description in Latin. - Amaryllidaceae.
Chloraster integer Haw., Philos. Mag. J. 63: 104. Feb 1824. Validated by a diagnosis in Latin. Amaryllidaceae.
Cibotium regale Verschaff. ex Regel in Gartenfl. 14: 251. Aug-Sep 1865. Validated by a diagnosis in German. - Cibotiaceae.
Clematts $\times$ henryı Anderson-Henry ex T.Moore \& Jackman, Clematis 106. Sep-Dec 1872 (C. lanuginosa $\times$ C. fortunet). Validated by a description in English. - Ranunculaceae. NOTE: Predates the IPNI record for C. henryl Hort., Gard. Chron. 10: 439. 5 Oct 1878; see below.
Clematts henryi Oliv., Hooker's Icon. Pl. 19: ad t. 1819. Jan 1889, nom. tlleg., non C. henryi Hort., Gard. Chron. 10: 439. 5 Oct 1878, validated by a brief description in English ("robust habit, good foliage, and large white flowers..."). - Ranunculaceae. NOTE: See Clemats $\times$ henryi (see above).
Clematis monstrosa Jackman, Florist \& Pomol. 5: 201. Jul 1855. Validated by a description in English. - Ranunculaceae.
Clematts $\times$ rubro-violacea Jackman, Florist \& Pomol. 3: 265. 1864 (C. lamugmosa $\times$ C. vticella) . Validated by a description in English. - Ranunculaceae.
Clematts sophia Hérincq, Hort. Franç. 1854: 31, pl. 3. 1854 . Validated by a diagnosis and a fragmented description in French. - Ranunculaceae.
Clematıs $\times$ splendida Barral, Rev. Hort. 1865: 70, fig. 16 Feb 1865 (C. lanuginosa $\times$ C. viticella var. grandiflora). Validated by a description in French. - Ranunculaceae.
Clematts stella Jackman ex T.Moore \& Jackman, Clematis 144. Sep-Dec 1872. Validated by a description in English. - Ranunculaceae.
Clematus sylph Cripps, Florist \& Pomol. 3: 166. Jul 1870 or Gardener 1870: 323. Jul 1870. Validated by a brief description in English. - Ranunculaceae. NOTE: A more exactly date either publication could be established.
Clematts tunbridgensts R.Dean, Gardener 2: 359. Sep 1867. Validated by a brief description in English ("reddish purple, with a blue stripe up each segment"). - Ranunculaceae.
Cocos elegantissima Schaedtler, Hamburger Garten-Blumenzeitung 31: 158. Apr 1875. Validated by a diagnosis in German. - Arecaceae.
Colchicum giganteum Tubergen, Wholesale Cat. Flowerroots 17. 1903. Validated by a diagnosis in English (e.g., "large dark lilac"). - Colchicaceae.
Colpothrinax wrightı Schaedtler, Hamburger Garten-Blumenzeitung 31: 160. Apr 1875. Validated by a diagnosis in German. - Arecaceae.
Cooperia drummondiana Herb., Amaryllidaceae 178. late Apr 1837, nom. illeg., a new name for C. drummondit Herb., Edwards's Bot. Reg. 22: ad t. 1835, 1 Feb 1836. - Amaryllidaceae.
Copernicta barbadensts (Lodd. ex Mart.) Devansaye, Rev. Hort. 47: 35. 16 Jan 1875, based on Thrmax barbadensis Lodd. ex Mart., Hist. Nat. Palm. 3: 320. 1839. - Arecaceae.
Copernicia macroglossa Schaedtler, Hamburger Garten-Blumenzeitung 31: 160. Apr 1875. Validated by a diagnosis in German. - Arecaceae.
Copernicia robusta Schaedtler, Hamburger Garten-Blumenzeitung 31: 160. Apr 1875. Validated by a diagnosis in German. - Arecaceae. NOTE: The Devansaye (Rev. Hort. 47: 35. 16 Jan 1875) reference is not considered to be valid: Très-belle plante don't les feuilles ont un aspect qui le milieu entre celui $L[a t a n i a]$ olvaeformis et du Pritchardia pacifica.

Corbularia albrcans Haw., Syn. Pl. Succ. 332. 1812. Validated by a description in Latin. Amaryllidaceae.
Cordyline banksii J.Dix, Proc. Roy. Hort. Soc. 4:133. Jul 1864, nom. illeg. Validated by a description in English. - Asparagaceae. NOTE: This later homonym may or may not be the same plant described by Hooker in 1860; see also Gartenflora 1864: 13. 1864.
Coreopsts elegans Loisel., Herb. Gén. Amateur 7: ad t. 450. 1824. Validated by a description in Latin. - Asteraceae.
Corypha glauca Devansaye, Rev. Hort. 47: 32. 16 Jan 1875, nom. illeg., based on Corypha glaucescens Lodd. ex Loudon, Hort. Brit. 125. 1830. - Arecaceae. NOTE: Although Devansaye cited "Sabal glaucescens" (a synonym cited under C. glaucescens "Lodd. ex Mart., Hist. Nat. Palm. 3: $247,1839^{\circ}$ ), the reference is thus indirect to the above basionym and the Devansaye name is still not legitimate as it is also superfluous.
Corypha marttana Devansaye, Rev. Hort. 47: 32. 16 Jan 1875, nom. illeg., based on Pritchardta martit H. Wendl., Bonplandia 10: 199. 1862. - Arecaceae.
Coryanthes speciosa B.S.Williams, Orch. Grow. Man., ed. 2, 80. Oct 1862. Validated by a description in English. - Orchidaceae.
Crinum anomalum Herb., Curtis's Bot. Mag. 47: ad t. 2121. 1 Jan 1820. Validated by a description in Latin. - Amaryllidaceae.
Crimum brevifolnum Herb., Curtis's Bot. Mag. 47: ad t. 2121. 1 Jan 1820, nom. flleg. Validated by a brief diagnosis in Latin. - Amaryllidaceae.
Crinum macrocarpon Herb., Curtis's Bot. Mag. 47: ad t. 2121. 1 Jan 1820. Validated by a diagnosis in English. - Amaryllidaceae.
Crinum makoyanum E.C.Hend., Gard. Chron. 1873: 534. 19 Apr 1873. Validated by a description in English. - Amaryllidaceae.
Crinum procerum Herb., Curtis's Bot. Mag. 47: ad t. 2121. 1 Jan 1820. Validated by a diagnosis in English. - Amaryllidaceae.
Crinum venustum Carey ex Herb., Appendix 22. late Dec 1821. Validated by a diagnosis in Latin. Amaryllidaceae.
Crinum verecundum Carey ex Herb., Appendix 22. late Dec 1821. Validated by a diagnosis in Latin. - Amaryllidaceae.

Croton cornutus W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 20. 1 Apr 1871, as "cornutum." Validated by a diagnosis in English. - Euphorbiaceae.
Croton hilliamus Linden, Supp. Extrait Cat. Gén. 82/24: 5. 1 Jul 1869, as "hillianum." Validated by a diagnosis in French. - Euphorbiaceae.
Croton interruptus H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 4. Aug 1868, as "interruptum." Validated by a description in German. - Euphorbiaceae.
Croton irregularis W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 21. 1 Apr 1871, as "trregulare." Validated by a diagnosis in English. - Euphorbiaceae.
Croton picturatum W.Bull, Gard. Chron., n.s., 3: 795. 19 Jun 1875. Validated by a description in English. - Euphorbiaceae.
Croton tortzle Veitch, Gard. Chron., n.s. 3: 474. 10 Apr 1875. Validated by a description in English. Euphorbiaceae.
Croton undulatus W.Bull, Retail List [Wholesale List New Beautiful Rare PI. 60:] 21. 1 Apr 1871, as "undulatum." Validated by a diagnosis in English. - Euphorbiaceae.
Croton wesmannu Veitch, Gard. Chron. 1868: 659. 1868. Validated by a description in English. Euphorbiaceae.
Cupressus balfouriana W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 45. 1 Apr 1871. Validated by a diagnosis in English. - Cupressaceae.

Cyclanthus estaba Schaedtler, Hamburger Garten-Blumenzeitung 31: 302. Jul 1875. Validated by a diagnosis in German. - Cyclanthaceae.

Cydonia maulei W.Earley, Florist \& Pomol. 27: 281. Dec 1874. Validated by a description in English. - Rosaceae.

Cytisus everestianus W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 35. 1 Apr 1871. Validated by a description in English. - Fabaceae.
Davalllua tyermanii (T.Moore) Veitch, Cat. New Beautiful Pl. 1873: 18. Jul-Aug 1873, based on Humata tyermanit T.Moore [not in IPNI] or Validated by a diagnosis in English. - Davalliaceae.
Davallia truffautiana André, Rev. Hort. 67: 250. 1 Jun 1895. Validated by a diagnosis in French. Davalliaceae.
Delphinium alopecuroides W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 46. 1 Apr 1871. Validated by a diagnosis in English. - Ranunculaceae.

Dendrobum $\times$ ainsworthil W.Miteh., Garden (London) 5: 176. 21 Feb 1874 (D. nobile $\times$ D. heterocarpum). Validated by a description in English. - Orchidaceae.
Dendrobrum citrmum W.Bull, Garden (London) 5: 502. 13 Jun 1874. Validated by a diagnosis in English. - Orchidaceae.
Dendrobium eburneum Low, Proc. Roy. Hort. Soc. 4: 8. Jan 1864. Validated by a description in English. - Orchidaceae.
Dendrobium partshit Low, Proc. Roy. Hort. Soc. 3:281. 29 Mai 1863. Validated by a description in English. - Orchidaceae. NOTE: The name D. parishil Rchb.f., Bot. Zeitung 21: 236. 31 Jul1863 is a later homonym. An even later homonym (D. parishil Bateman, Bot. Mag. 91: ad t. 5488. 1 Jan 1865) is also cited in IPNI with the name attributed to Reichenbach and dated 1863 rather than 1865.
Dieffenbacha antioquensts Linden ex Rafarin, Rev. Hort. 46: 73. 16 Feb 1874. Validated by a brief description in French ("feuilles vert foncé, légèrement maculées"). - Araceae.
Dieffenbachia eburnea W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 22. 1 Apr 1871. Validated by a description in English. - Araceae.

Dieffenbachia gigantea Verschaff. ex Regel in Gartenfl. 14: 250. Aug-Sep 1865. Validated by a description in German. - Araceae.
Dieffenbachia grandis W.Bull, Proc. Roy. Hort. Soc. 4:133. Jul 1864. Validated by a diagnosis in English. - Araceae.
Dieffenbachia nobilis Verschaff. ex Regel in Gartenfl. 14: 251. Aug-Sep 1865. Validated by a brief description in German. - Araceae.
Dieffenbachia parlatoret Hort., Gard. Chron., n.s., 1: 665. 23 May 1874. Validated by a description in English. - Araceae.
Dieffenbachia pearcel H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 4. Aug 1868. Validated by a description in German. - Araceae.
Dieffenbachia verschaffeltii Hort., Proc. Roy. Hort. Soc. 3:280. 29 Mai 1863. Validated by a description in English. - Araceae.
Dieffenbachia wallisit Linden, Cat. Pl. Exot. 22/23: 4. Jan-Jun 1869, as "wallisi." Validated by a diagnosis in French. - Araceae.
Diglossophyllum serrulatum (Michx.) H.Wendl. ex Schaedtler, Hamburger Garten-Blumenzeitung 31: 162. Apr 1875, based on Chamaerops serrulata Michx., Fl. Bor-Amer. 1: 206. 19 Mar 1803. - Arecaceae.

Dioscorea illustrata W.Bull, Gard. Chron. 1873: 606. 3 Mai 1873. Validated by a description in English. - Dioscoreaceae.
Diospyros mazelı Carrière, Rev. Hort. 46: 70. 16 Feb 1874. Validated by a description in French. Ebenaceac.
Dipladenia brearleyana T.Moore, Gard. Chron., n.s., 1: 92. 17 Jan 1874. Validated by a description in English. - Apocynaceae.
Disteganthus scarlatimus Linden ex Rafarin, Rev. Hort. 46: 73. 16 Feb 1874. Validated by a description in French. - Bromeliaceae.

Doryanthes palmeri W.Bull, Gard. Chron. 1873: 606. 3 Mai 1873. Validated by a description in English. - Amaryllidaceae.
Dracaena alborosea W.Bull, Gard. Chron., n.s., 2: 160. 8 Aug 1874, as "albo-rosea." Validated by a diagnosis in English. - Asparagaceae.
Dracaena $\times$ anerleyensts T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875 (D. terminalus $\times D$. regina). Validated by a description in English. - Asparagaceae.
Dracaena excelsa W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 23. 1 Apr 1871, nom. flleg., non Ten. (1838). Validated by a description in English. - Asparagaceae.
Dracaena formosa W.Bull, Gard. Chron., n.s., 1: 78. 17 Jan 1874. Validated by a diagnosis in English. - Asparagaceae.
Dracaena frasert Hort., Gard. Chron. 1873: 5. 4 Jan 1873. Validated by a diagnosis in English. Asparagaceae.
Dracaena glortosa Hort., Gard. Chron. 1873: 6. 4 Jan 1873. Validated by a diagnosis in English. Asparagaceae.
Dracaena goldieana Hort., Gard. Chron. 1873: 5. 4 Jan 1873. Validated by a brief description in English. - Asparagaceae.
Dracaena gulfoylei Moore ex Linden, Supp. Extrait Cat. Gén. 82/24: 6. 1 Jul 1869. Validated by a diagnosis in French. - Asparagaceae.
Dracaena hendersonil Veitch, Gard. Chron., n.s., 1: 531. 25 Apr 1874, as "hendersoni." Validated by a description in English. - Asparagaceae.
Dracaena $\times$ hybrida W.Bull ex R.Hogg, Florist \& Pomol. 27: 158. Jul 1874 (D. magntica $\times$ D. albicans). Validated by a description in English. - Asparagaceae.
Dracaena tllustris W.Bull, Gard. Chron., n.s., 1: 78. 17 Jan 1874. Validated by a diagnosis in English. - Asparagaceae.
Dracaena imperialis Hort., Gard. Chron. 1873: 5. 4 Jan 1873. Validated by a brief description in English. - Asparagaceae.
Dracaena insignis W.Bull, Gard. Chron., n.s., 3: 474. 10 Apr 1875. Validated by a description in English. - Asparagaceae.
Dracaena intermedia E.C.Hend., Gard. Chron. 1873: 498. 12 Apr 1873. Validated by a description in English. - Asparagaceae.
Dracaena macleayi Linden, Supp. Extrait Cat. Gén. 82/24: 7. 1 Jul 1869. Validated by a diagnosis in French. - Asparagaceae.
Dracaena magnifica Veitch ex E.Morren, Belgique Hort. 22: 15. Jan 1872. Validated by a brief description in French. - Asparagaceae.
Dracaena mooreana W.Bull, Retail List [Wholesale List New Beautiful Rare P1. 60:] 24. 1 Apr 1871. Validated by a description in English. - Asparagaceae.
Dracaena pulchella W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 24. 1 Apr 1871. Validated by a description in English. - Asparagaceae.
Dracaena spectabilis W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 24. 1 Apr 1871. Validated by a description in English. - Asparagaceae.
Dracaena splendens W.Bull ex E.Morren, Belgique Hort. 22: 15. Jan 1872. Validated by a brief description in French. - Asparagaceae.
Dracaena striatifolia E.C.Hend., Gard. Chron. 1873: 498. 12 Apr 1873. Validated by a description in English. - Asparagaceae.
Dracaena weismannt Veitch, Gard. Chron. 1871: 841. 1 Jul 1871. Validated by a description in English. - Asparagaceae.
Dryopteris nobilis J.Douglas, J. Hort. Cottage Gard. 11: 459. 18 Dec 1866. Validated by a description in English. - Dryopteridaceae. NOTE: The 1941 Ching name requires conservation to be maintained.
Echeverta abyssmica W.Bull, Retail List [Spec. List Gladiolus. 68:] 13. Sep-Oct 1872. Validated by a description in English. - Crassulaceae.

Echeveria exima E.G.Hend. ex R.Hogg, Florist \& Pomol. 27: 136. Jun 1874. Validated by a description in English. - Crassulaceae.
Echeverta globosa Rafarin, Rev. Hort. 46: 74. 16 Feb 1874. Validated by a diagnosis in French. Crassulaceae.
Echeveria peacockil J.Croucher, Gard. Chron., n.s. 1: 674. 23 May 1874. Validated by a description in English. - Crassulaceae.
Epidendron syringothyrsus Veitch, Cat. New Beautiful Pl. 1873: 19. Jul-Aug 1873. Validated by a description in English. - Orchidaceae.
Eranthemum aureoreticulatum Veitch, Garden (London) 5: 276. 28 Mar 1874. Validated by a description in English. - Acanthaceae.
Eranthemum rubronentum Veitch, Proc. Roy. Hort. Soc. 3:280. 29 Mai 1863. Validated by a diagnosis in English. - Acanthaceae.
Eremospatha Mann \& H. Wendl. ex Schaedtler, Hamburger Garten-Blumenzeitung 31: 163. Apr 1875. T: E. macrocarpa Mann \& H.Wendl. ex Schaedtler. Validated by a single description (Art. 42.1). - Arecaceae.

Eremospatha macrocarpa Mann \& H.Wendl. ex Schaedtler, Hamburger Garten-Blumenzeitung 31: 163. Apr 1875. Validated by a diagnosis in German. - Arecaceae.

Erythrina compacta W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 4. 1 Apr 1871. Validated by a diagnosis in English. - Fabaceae.
Erythrina fulgens Loisel., Herb. Gén. Amateur 4: ad t. 247. 1820. Validated by a description in Latin. - Fabaceae.

Erythrina parcelit Dombrain, Flor. Mag., n.s., 3: ad t. 95. Dee 1873. Validated by a description in English. - Fabaceac.
Eucharts amazonica R.Hogg, Florist Fruitist Gard. Misc. 1856: 228. Aug 1856. Validated by a brief description in English ("...beautiful white flowers which are large in size and very showy"). Amaryllidaceae.
Euonymus flavescens W.Paul., Gardener 2: 383. Oct 1867. Validated by a brief diagnosis in English ("shoot all yellow"). - Celastraceae.
Euterpe antioquensis Schaedtler, Hamburger Garten-Blumenzeitung 31: 163. Apr 1875, nom. illeg. Associated with a diagnosis in German but not legitimate as proposed as a new name for $E$. montana Graham, Bot. Mag. 67: ad. t. 3874. 1841. - Arecaceae.
Euterpe decurrens Schaedtler, Hamburger Garten-Blumenzeitung 31: 164. Apr 1875. Validated by a diagnosis in German. - Arecaceae.
Euterpe zamora Schaedtler, Hamburger Garten-Blumenzeitung 31: 164. Apr 1875. Validated by a diagnosis in German. - Arecaceae.
Ficus dealbata H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 4. Aug 1868. Validated by a description in German. - Moraceae. NOTE: See also Linden, Supp. Extrait Cat. Gén. 82/24: 7. 1 Jul 1869. Validated by a diagnosis in French.
Ficus parcellit Veitch, Gard. Chron., n.s., 1: 531. 25 Apr 1874. Validated by a description in English. - Moraceae.

Fittonia gıgantea Linden, Cat. P1. Exot. 22/23: 5. Jan-Jun 1869. Validated by a diagnosis in French. Acanthaceae. NOTE: Possibly predates the IPNI record; Rev. Hort. 186. 16 Mai 1869.
Freesia leichtlmiana Klatt ex Rob., Garden (London) 6: 215. 5 Sep 1874. Validated by a brief description in English ("yellow and orange-coloured flowers deliciously scented"). - Iridaceae. NOTE: Freesta leichtlinil Klatt (Gartenflora 23: 289, t. 808. Oct 1874) is here considered to be an orthographic variant.
Gaussia portoricensis H.Wendl. ex Schaedtler, Hamburger Garten-Blumenzeitung 31: 164. Apr 1875. Validated by a diagnosis in German. - Arecaceae.
Geonoma amazontca Schaedtler, Hamburger Garten-Blumenzeitung 31: 164. Apr 1875. Validated by a diagnosis in German. - Arecaceae.

Geonoma longipes Schaedtler, Hamburger Garten-Blumenzeitung 31: 165. Apr 1875. Validated by a diagnosis in German. - Arecaceae.
Geonoma longipes Schaedtler, Hamburger Garten-Blumenzeitung 31: 165. Apr 1875. Validated by a diagnosis in German. - Arecaceae.
Geonoma tenuffolia André, Rev. Hort. 67: 250. 1 Jun 1895. Validated by a diagnosis in French. Arecaceae.
Geonoma verschaffeltil Schaedtler, Hamburger Garten-Blumenzeitung 31: 166. Apr 1875. Validated by a diagnosis in German. - Arecaceae.
Geonoma wallisth Schaedtler, Hamburger Garten-Blumenzeitung 31: 166. Apr 1875. Validated by a diagnosis in German. - Arecaceae.
Geonoma zamorensis Schaedtler, Hamburger Garten-Blumenzeitung 31: 166. Apr 1875. Validated by a diagnosis in German. - Arecaceae.
Gladolus $\times$ brenchleyensts Hort, Ann. Hort.: 523. Sep 1848 (G. psittacinus $\times$ floribundus). Validated by a brief description in English. - Iridaceae.
Gladiohus oppositiflorus Herb., Amaryllidaceae 366. late Apr 1837. Validated by a diagnosis in English. - Iridaceae.
Glaziova insignts Rob., Gard. Chron., n.s., 1: 665. 23 May 1874. Validated by a description in English. - Arecaceae.
Gloxinia hybrida Mountjoy, Floric. Cab. \& Florist's Mag. 8: 156. 1840. Validated by a brief description in English ("soft blue flowers"). - Gesneriaceae. NOTE: If this is considered dubious, the name was Validated numerous times after 1840 and there are a whole series of varital names associated with the binomial, including some proposed before 1840 (e.g., Gloxinia hybrida var. purpurascens and var. richtern in 1836) suggesting that the binomial may even predate 1840 .
Goodyera dawsonii Boxall, Garden (London) 6: 197. 29 Aug 1874. Validated by a diagnosis in English. - Orchidaceae.
Goodyera $\times$ dommn B.S.Williams, Orch. Grow. Man., ed. 2, 105. Oct 1862. Validated by a description in English. - Orchidaceae. NOTE: Hybrid parentage not stated.
Goodyera picta B.S.Williams, Orch. Grow. Man., ed. 2, 105. Oct 1862 . Validated by a description in English. - Orchidaceae.
Goodyera rubrovema B.S.Williams, Orch. Grow. Man., ed. 2, 105. Oct 1862, as "rubo-venia." Validated by a description in English. - Orchidaceae. NOTE: It is possible the later G. rubovena Boxall ex Náves, Nov. App. 248. 1880 is an orthographic variant.
Gymnogramma pearcet Veitch, Proc. Roy. Hort. Soc. 4: 72. Apr 1864, as "pearcht." Validated by a description in English. - Pteridaceae.
Habranthus robustus Herb. in R. Sweet, Brit. Fl. Gard. ser. 2. 1: ad t. 14. 1 Sep 1829. Validated by a description in Latin. - Amaryllidaceae. NOTE: While Herbert later (Amaryllidaceae 166. late Apr 1837) cited Amaryllts tubispatha L'Her. (Sert. Angl. 9. Mai 1790), this was not mentioned in 1829 and thus the name is not superfluous when published. Contrary to IPNI there is no direct evidence that this name was proposed by Herbert in Loddiges Botanical Cabinet.
Haemanthus cooperl E.G.Hend., Garden (London) 5: 430. 16 Mai 1874. Validated by a description in English. - Amaryllidaceae.
Heracleum leichtlmn Haage \& Schmidt, PI. Cat. 36. Jan 1870, as "Leichtlini." Validated by a description in German. - Apiaceae.
Hermione Jasminea Salisb. ex Haw., Philos. Mag., n.s., 8: 133. Aug 1830. Validated by a description in English and the citation of pre-Linnaean phrase names associated with an effectively published but not valid R.A. Salisbury (Trans. Hort. Soc. London 1: 357. 1812, as "Hermione jasminea") name. - Amaryllidaceae.
Hermione lacticolor Haw. in R. Sweet, Brit. Fl. Gard., ser. 2. 25(App.): 10. 1 Jun 1831. Validated by a description in Latin. - Amaryllidaceae.

Hippeastrum ambiguum Herb., Curtis's Bot. Mag., n.s. 11: ad t. 3542. 1 Jan 1837. Validated by a description in Latin. - Amaryllidaceae.
Hippeastrum breviflorum Herb., Curtis's Bot. Mag., n.s. 11: ad t. 3549. 1 Feb 1837. Validated by a description in Latin. - Amaryllidaceae.
Hippeastrum striatifolnm (Herb.) Herb., Appendix 34. Dec 1821, based on Amaryllis reticulata var. striattfolia Herb., Bot. Mag. 47: ad t. 2113. 1 Dec 1819. - Amaryllidaceae.
Indigofera atropurpurea Buch.-Ham. Ex Hornemann, Hort. Bot. Hafn. Suppl. 152. 1819. Validated by a description in Latin. - Fabaceae.
Indtgofera bilabtata Loisel., Herb. Gén. Amateur 6: ad t. 392. 1822. Validated by a description in Latin. -Fabaceae.
Iriartea gigantea Schaedtler, Hamburger Garten-Blumenzeitung 31: 168. Apr 1875. Validated by a diagnosis in German. - Arecaceae.
Ixora $\times$ colet W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 167. 1871 (I. coccmea $\times I$. alba). Validated by a description in English. - Rubiaceae.
Ixora dixtana W.Bull, Retail List [Wholesale List New Beautiful Rare P1. 60:] 26. 1 Apr 1871. Validated by a description in English. - Rubiaceae.
Ixora fraseri Rob., Gard. Chron., n.s., 2: 83. 18 Jul 1874. Validated by a description in English. Rubiaceae. NOTE: See also Ixora $\times$ frasert Fraser, Garden (London) 6: 63. 18 Jul 1874. Validated by a diagnosis in English.
Juglans macrophylla Haage \& Schmidt, Pfl.-Cat. 1874: 4. Jan 1874. Validated by a diagnosis in German. - Juglandaceae.
Juglans segratstensis M.B.Verlot, J. Soc. Cent. Hort. France, sér. 2, 8: 281. 30 Jun 1875. Validated by a brief description in French ("...à fruits allongées..."). - Juglandaceae.
Justicia lutea Loisel., Herb. Gén. Amateur 6: ad t. 403. 1822. Validated by a description in Latin. Acanthaceae.
Kennedia fredwoodii W.Bull, Proc. Roy. Hort. Soc. 4: 21. Feb 1864, as "Kennedya". Validated by a diagnosis in English. - Fabaceae.
Kentia balmoreana Rafarin, Rev. Hort. 46: 76. 16 Feb 1874. Validated by a description in French. Arecaceae.
Laelia gigantea R.Warner, Proc. Roy. Hort. Soc. 2:247. Mai 1862. Validated by a description in English. - Orchidaceae.
Lastrea floridana (Hook.) K.Koch, Wochenschr. Vereines Beford. Gartenbaues Konigl. Preuss. Staaten 12: 143. 8 Mai 1869, based on Nephrodium floridanum Hook., Fil. Exot. ad t. 99. 1859. - Thelypteridaceae.

Latana glaucophylla Schaedtler, Hamburger Garten-Blumenzeitung 31: 170. Apr 1875. Validated by a diagnosis in German. - Arecaceae.
Lathyrus sibthorpil Haage \& Schmidt, Pfl.-Cat. 1874: 4. Jan 1874. Validated by a diagnosis in German. - Fabaceae.
Ledenbergta roseo-aenea Lem. ex Linden, Supp. Extrait Cat. Gén. 82/24: 8. 1 Jul 1869. Validated by a diagnosis in French. - Phytolaccaceae.
Leptopteris intermedia G, Garden (London) 5: 414. 16 May 1874. Validated by a diagnosis in English. - Osmundaceae.
Leptopteris wilkestana (Brack.) G., Garden (London) 5: 414. 16 May 1874, based on Todea wilkesiana Brack., U.S. Expl., Filic. 16: 309, t. 43. 1854. - Osmundaceae. NOTE: Although the basionym is not mentioned, Art. 33.3 applies.
Liboma $\times$ penrhostensts W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 5. 1 Apr 1871. Validated by a description in English. - Acanthaceae.

Licuala kirsteniana André, Rev. Hort. 67: 249. 1 Jun 1895. Validated by a diagnosis in French. Arecaceae.

Ligustrum coriaceum W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 48. 1 Apr 1871. Validated by a diagnos is in English. - Oleaceae.
Ltlium takestma Morren, J. Soc. Natl. Hort. France, sér. 1, 7: 460. Jul 1861. Validated by a description in French. - Liliaceae.
Livistonia moluccana Schaedtler, Hamburger Garten-Blumenzeitung 31: 215. Mai 1875. Validated by a diagnosis in German. - Arecaceae.
Macrozamia cylindrica W.Bull, Gard. Chron., n.s., 1: 532. 25 Apr 1874. Validated by a description in English. - Zamiaceae.
Macrozamia phumosa W.Bull, Gard. Chron., n.s., 1: 532 . 25 Apr 1874. Validated by a description in English. - Zamiaceae.
Malortiea intermedia Schaedtler, Hamburger Garten-Blumenzeitung 31: 215. Mai 1875. Validated by a diagnosis in German. - Arecaceae.
Malorttea lacerata W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 126. 1 Apr 1871. Validated by a description in English. - Arecaceae.
Maranta chimboracensis Linden, Cat. Pl. Exot. 22/23: 6. Jan-Jun 1869. Validated by a diagnosis in French. - Marantaceae.
Maranta concmna W.Bull, Gard. Chron., n.s., 1: 78. 17 Jan 1874. Validated by a description in English. - Marantaceae. NOTE: Calathea leopardina (Bull) Regel in Gartenfl. 26: 35. 1877, based on M. leopardina W.Bull in Country Gentleman's Magazine 3: 796, f. 5. Oct 1875, is not legitimate being a superfluous name because Regel cited $M$. concmna in synonymy. Presently, $C$. leopardina is widely accepted so that a conservation proposal is necessary.
Maranta tubispatha Linden, Supp. Extrait Cat. Gén. 82/24:9. 1 Jul 1869. Validated by a diagnosis in French. - Marantaceae.
Martinezta granatensts W.Bull, Gard. Chron., n.s., 1: 532. 25 Apr 1874. Validated by a description in English. - Arecaceae.
Masdevalla harryana W.Bull, Retail List [Spec. List Gladiolus. 68:] 15. Sep-Oct 1872. Validated by a diagnosis in English. - Orchidaceae.
Masdevalha tgnea W.Bull, Retail List [Spec. List Gladiolus. 68:] 15. Sep-Oct 1872. Validated by a diagnosis in English. - Orchidaceae.
Miconia peruviana H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 5. Aug 1868. Validated by a diagnosis in German. - Melastomataceae.
Mormodes citrma B.S. Williams, Orch. Grow. Man., ed. 2, 120. Oct 1862, as "citrinum." Validated by a description in English. - Orchidaceae.
Narcissus albicans (Haw.) Link, Handuch 1: 205. 4-11 Jul 1829, nom. illeg., non Spreng. (1825), based on Corbularta albtcans Haw., Syn. P1. Succ. 332. 1812. - Amaryllidaceae. NOTE: The earlier Sprengel name (N. albicans Haw. ex Spreng., Syst. Veg., ed. 16, 2: 45. Jan-Mai 1825) is not legitimate as both $N$. obesus Salisb. (1796) and $N$. inflatus Haw. (1800) are cited in synonym.
Narcissus canartensts J.C.Niven, Garden (London) 7: 11. 2 Jan 1875. Validated by a description in English. - Amaryllidaceae.
Narcissus floribundus (Haw.) Link, Handuch 1: 202. 4-11 Jul 1829, based on Hermione floribunda Salisb. ex Haw., Suppl. Pl. Succ. 141. Mai 1819. - Amaryllidaceae.
Narcissus spurius (Haw.) Link, Handuch 1: 204. 4-11 Jul 1829, based on Ajax spurrus Haw., Syn. Pl. Succ. 327. 1812. - Amaryllidaceae.
Nenga pumila H.Wendl. ex Schaedtler, Hamburger Garten-Blumenzeitung 31: 218. Mai 1875. Validated by a diagnosis in German. - Arecaceae.
Odontoglossum maxillare J.B.Norman, Gard. Chron., n.s., 2: 309. 5 Sep 1974, nom. illeg., non Lindl. (1847). Validated by a brief description in English ("lip white with yellow base, petals and sepals white blotched at the base with brown"). - Orchidaceae. NOTE: This appears to be the same plant later described by J.D. Hooker in 1875 as O. maxillare Hookf., Bot. Mag. 101: ad t. 6144. 1875, nom. illeg.

Odontoglossum roezlii W.Bull, Garden (London) 4: 20 Sep 1873. Validated by a brief description in English. - Orchidaceae.
Osmanthus rotundifolnus W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 51. 1 Apr 1871. Validated by a description in English. - Oleaceae.

Palicourea discolor H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 5. Aug 1868. Validated by a diagnosis in German. - Rubiaceae.
Pandanus ceramensis W.Bull, Retail List [Spec. List Gladiolus. 68:] 15. Sep-Oct 1872. Validated by a diagnosis in English. - Pandanaceae.
Pandanus gramineus (Blume) H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 22. Aug 1868, based on Freycmetia graminea Blume, Rumphia 1: 159. 1837. - Pandanaceae.
Pandanus lmnei Schaedtler, Hamburger Garten-Blumenzeitung 31: 298. Jul 1875. Validated by a diagnosis in German. - Pandanaceae.
Passfflora macrocarpa Linden, Cat. Pl. Exot. 22/23: 27. Jan-Jun 1869. Validated by a diagnosis in French. - Passifloraceae.
Peperomia verschaffeltu Linden, Supp. Extrait Cat. Gén. 82/24: 10. 1 Jul 1869, as "verschaffelti." Validated by a diagnosis in French. - Piperaceae. NOTE: Peperomia verschaffeltii Lem. (Ill. Hort. 16: ad t. 598. Jul 1869) was apparently published after 1 July.
Persicaria alata (Buch.-Ham. ex D.Don) Nakai, Rept. Veg. Ooryongto 18. 1919, based on Polygonum alatum Buch.-Ham. ex D.Don, Prodr. Fl. Nepal. 72. 26 Jan-1 Feb 1825. Polygonaceae.
Persicaria filiformis (Thunb.) Nakai, Rept. Veg. Ooryongto 18. 1919, based on Polygonum filiforme Thunb. in J.A.Murray, Syst. Veg., ed. 14, 377. Mai-Jun 1784. - Polygonaceae.
Persicarta posumbu (Buch.-Ham. ex D.Don) H.Gross in Engl. Bot. Jahrb. Syst. 49: 313. 1913, based on Polygomum posumbu Buch.-Ham. ex D.Don, Proc. Fl. Nepal. 71: 26 Jan-1 Feb 1825. Polygonaceae.
Phalaenopsis lobbii (Rchb.f.) B.S.Williams, Orch. Grow. Man., ed. 2, 136. Oct 1862, based on Phalaenopsts parishil Rchb.f., var. lobbul Rchb.f., Refug. Bot. 2: ad t. 85. Jun 1869. Orchidaceae. NOTE: The above combination is based on provisions in Art. 33.3.
Philodendron devansayamum André, Rev. Hort. 67: 250. 1 Jun 1895. Validated by a brief description in French. - Araceae.
Philogyne of authors, see Phylogyne above; for a list of species, see below.
Phlox nelsonti G.W.Johnson \& Hogg, J. Hort. Cottege Gard., n.s., 28: 366. 13 Mai 1875. Validated by a diagnosis in English. - Polemoniaceae. NOTE: See also H.Jäger, Gartenflora 24: 270-271. 15 Sep 1875, as "Nelsoni."
Phoenix hanceana Schaedtler, Hamburger Garten-Blumenzeitung 31: 218. Mai 1875. Validated by a diagnosis in German. - Arecaceae.
Phormium atropurpureum Rafarin, Rev. Hort. 46: 75. 16 Feb 1874. Validated by a description in French. - Xanthorrhoeaceae.
Phyllanthus nivosus W.Bull, Gard. Chron. 1873: 606. 3 Mai 1873. Validated by a description in English. - Euphorbiaceac.
Phyllotaentum mirabile W.Bull, Gard. Chron., n.s., 1: 532. 25 Apr 1874. Validated by a description in English. - Araceae.
Phylogyne heminalis Haw., Suppl. Pl. Succ. 136. Mai 1819. Validated by a diagnosis and a description in Latin. - Amaryllidaceae.
Phylogyne interjecta Haw., Suppl. Pl. Succ. 135. Mai 1819. Validated by a diagnosis and a description in Latin. - Amaryllidaceae.
Phylogyne minor Haw., Suppl. Pl. Succ. 137. Mai 1819. Validated by a diagnosis and a description in Latin. - Amaryllidaceae.
Phylogyne odora (L.) Haw., Suppl. Pl. Succ. 134. Mai 1819, based on Narcissus odorus L., Cent. Pl. 2: 14. 2 Jun 1756. - Amaryllidaceae.

Phylogyne rugulosa Haw., Suppl. Pl. Succ. 133. Mai 1819. Validated by a diagnosis and a description in Latin. - Amaryllidaceae.
Phylogyne triloba (L.) Haw., Suppl. Pl. Suce. 135. Mai 1819, based on Narctssus trilobus L., Sp. PI., ed. 2, 1: 417. Sep 1762. - Amaryllidaceae.
Picea parsonstana E.Manning, Gard. Monthly Hort. 10: 109. Apr 1868. Validated by a brief diagnosis in English ("of less glaucous hue" when compared to P. amabilis). - Pinaceae. NOTE: Possibly an orthographic variant of $P$. parsonil Gordon (Pinetum Suppl. 52. 1862).
Pilocereus dautwitztı J.N.Haage, Gard. Chron. 1873: 7. 4 Jan 1873. Validated by a description in English. - Cactaceae.
Palocereus hoppenstedtu Haage \& Schmidt, Pfl.-Cat. 1874: 5. Jan 1874, as "hoppenstedt"". Validated by a diagnosis in German. - Cactaceae.
Pimus hookeriana (A.Murray) W.R.MeNab, Gard. Chron., n.s., 4: 711. 4 Dee 1875, based on Abies hookertana A.Murray, Edinb. N. Philos. J., n.s., 1: 289. Jan-Apr 1855. - Pinaceae.
Pinus pattonit A.Murray, Phytologist 4: 1140. Dec 1853. Validated by a description in English. Pinaceae. NOTE: No doubt this name alludes to the same species known as Abres pattoniana A.Murray, Rep. Bot. Exped. Oregon 1, pl. 4, fig. 2. 1853. As such either the Pytologist name is new (being published after the Cicular) or is a correctable orthography and as such would be Pimus pattoniana (A.Murray) A.Murray, and thus predate P. pattonaana (A.Murray) Parl., Prodr. 16: 429. 1868. The MeNab record in IPNI is a later place of publication for the name that wass validly proposed first in Gard. Chron., n.s., 4: 711. 4 Dec 1875.
Pinus sieboldin A.Murray, Phytologist 4: 1140. Dee 1853, nom. illeg., a new name for P. tsuga (Siebold \& Zucc.) Antoine, Conif. 83, t. 32, f. 2. 1846, itself based on Abies tsuga Siebold \& Zucc., Fl. Jap. 2: 14, t. 106. 1842. - Pinaceae.
Pitcairnta floccosa Regel, Gartenflora 23: 307. Oct 1874, based on Pourretta floccosa K. Koch, Wochenschr. 3: 251. 1860, nom. illeg., non Linden (1853), and also Validated by a description in Latin. - Bromeliaceae.
Plectocomia hystrix Schaedtler, Hamburger Garten-Blumenzeitung 31: 251. Jun 1875. Validated by a diagnosis in German. - Arecaceae.
Polyanthus Comstock, Intr. Stud. Bot. 122. 1832, nom. illeg. et orth. var. ( $\equiv$ Polianthes L., 1753). Validated by a description in English. - Amaryllidaceae. NOTE: No species was assigned to the genus by Comstock but the common name "Tuberose" was used which means his generic name is an orthographic variant of Polianthes L. (1753).
Pourretia yuccoides Linden, Supp. Extrait Cat. Gén. 82/24: 12. 1 Jul 1869. Validated by a diagnosis in French. - Bromeliaceae.
Pritchardia filffera Rafarin, Rev. Hort. 46: 76. 16 Feb 1874. Validated by a description in French. Arecaceae.
Pritchardia grandis T.Moore, Gard. Chron., n.s., 1: 92. 17 Jan 1874. Validated by a description in English. - Arecaceae.
Queltra galanthifolia Haw., Syn. Pl. Succ. 328. 1812. Validated by a diagnosis and a description in Latin. - Amaryllidaceae.
Quercus afghanistanensis Hort., Gard. Chron. 1873: 1404. 18 Oct 1873. Validated by a brief description in English. - Fagaceae.
Quercus concordia Hort., Gard. Chron. 1873: 1404. 18 Oct 1873. Validated by a brief description in English. - Fagaceae.
Quercus pectinata Hort., Gard. Chron. 1873: 1404. 18 Oct 1873. Validated by a brief description in English. - Fagaceae.
Rhapholepis ovata Rob., J. Hort. Cottage Gard. 6: 378. 24 Mai 1864. Validated by a brief description in English ("...evergreen, with dark ovate leaves...spikes of white flowers with pink stamens...shrub..."). - Rosaceae.
Rhapholepis ovata Veitch, Proc. Roy. Hort. Soc. 4:133. Jul 1864, nom. illeg., non Rob. (1864). Validated by a description in English. - Rosaceae.

Ricinus gibsonil Veitch, Gard. Chron., n.s., 2: 610. 14 Nov 1874. Validated by a description in English. - Euphorbiaceae.
Rosa affinis Sternb., Flora 9(1, Beil.): 80. Apr-Mai 1826, nom. illeg., non A.Rau (1815). Validated by a description in Latin. - Rosaceae.
Rosa amblyotis C.A.Mey., Zimmtrosen 30. 1847. Validated by a description in Latin. - Rosaceae.
Rosa anglica Rössig, Oekon.-Bot. Rosen 59. 1799. Validated by description in German. - Rosaceae.
Rosa belladonna Andrews, Roses 1: 16. 1806, as "Bella Donna." Validated by diagnoses in Latin and English. - Rosaceae.
Rosa carnea Dum.-Cours., Bot. Cult. 3: 348. 1-4 Jul 1802. Validated by a description in French. Rosaceae.
Rosa casta Tratt., Rosac. Monogr. 2: 126. Jul-Dec 1823. Validated by a diagnosis and description in Latin. - Rosaceae.
Rosa cmerea Rössig, Oekon.-Bot. Rosen 2: 21. 1803. Validated by descriptions in German and Latin. - Rosaceae.

Rosa dumalis Bechst., Forstbot. 241, 969. 1810. Validated by a diagnosis and a description in German. - Rosaceae.
Rosa fimbriata Rössig, Oekon.-Bot. Beschr. Rosen 2: 60. 1803. Validated by descriptions in German and Latin. - Rosaceae.
Rosa glaucina Bechst., Forstbot., ed. 4, 157, 605. 1821. Validated by a diagnosis and a description in German. - Rosaceae.
Rosa humilis Besser, Cat. Jard. Bot. Krzemieniec 117. 1811, nom. illeg., based on R. carolina L., Sp. PI. 1: 492. 1 Mai 1753. - Rosaceae.
Rosa intermeda Bosc, Nouv. Agric. Dict. Rais. Agric. 11: 262. 1809. Validated by a description in French. - Rosaceae.
Rosa massiliensts Breiter, Hort. Breiter 425. Jan-Oct 1817. Validated by a diagnosis in German by Wrede, Verz. Ros. 22. 1814. - Rosaceae.
Rosa mmtata Breiter, Hort. Breiter 425. Jan-Oct 1817. Validated by a diagnosis in German by Wrede, Verz. Ros. 10. 1814. - Rosaceae.
Rosa monophylla Dum.-Cours., Bot. Cult. 3:351. 1-4 Jul 1802. Validated by a description in French. - Rosaceae. NOTE: The author lists two names, one after the other: " $R$. monophylla. $R$. simplicifolia" with no indication of an author for the latter or an indication if the one name is an alternative name. However, if this refers to R. simplicifolta Salisb. (Prodr. Stirp. Chap. Allerton 359. 1796), a validly published name, then the Dumont de Courset name is not legitimate as it would be superfluous when published.
Rosa monstrosa Breiter, Hort. Breiter 425. Jan-Oct 1817. Validated by a diagnosis in German and a diagnosis in German by Wrede, Verz Ros. 10. 1814. - Rosaceae.
Rosa montana Steven ex Tratt., Rosac. Monogr. 2: xix. Jul-Dec 1823, nom. illeg., non Chaix (1786). Validated by a description in Latin. - Rosaceae.
Rosa nana Rössig, Oekon.-Bot. Rosen 2: 39. 1803. Validated by descriptions in German and Latin. Rosaceae.
Rosa paristensts Rössig, Oekon.-Bot. Rosen 1: 60. 1799. Validated by a diagnosis in German. Rosaceae.
Rosa picta Breiter, Hort. Breiter 427. Jan-Oct 1817. Validated by a diagnosis in German and a diagnosis in German by Wrede, Verz. Ros. 23. 1814. - Rosaceae.
Rosa podolica Tratt., Rosac. Monogr. 2: 71. Aug-Dec 1823, based on R. glaucescens Besser, Enum. Pl. 19. 1822, nom. illeg., non Wulfen (1805). - Rosaceae. NOTE: The name was also associated with a diagnosis and a description in Latin.
Rosa pomponia Rössig, Oekon.-Bot. Beschr. Rosen 2: 53. 1803. Validated by descriptions in German and Latin. - Rosaceae.
Rosa prolffera Breiter, Hort. Breiter 427. Jan-Oct 1817. Validated by a diagnosis in German. Rosaceae.

Rosa purpurea Breiter, Hort. Breiter 428. Jan-Oct 1817. Validated by a diagnosis in German and a diagnosis in German by Wrede, Verz Ros. 24. 1814. - Rosaceae.
Rosa rechutea Thory, Rosa Redutea 3. 20 Dec 1817. Validated by a description in Latin. - Rosaceae. NOTE: It is likely that $R$. reduteana Thory ex Red. (Roses 1: 101. 16 Mai 1818), currently cited by IPNI, is an orthographic variant.
Rosa resinosa Sternb., Flora 9(1, Beil.): 76. Apr-Mai 1826. Validated by a description in Latin. Rosaceae.
Rosa rotundifolia (A.Rau) Tratt., Rosac. Monogr. 2: 73. Aug-Dec 1823, based on R. rubiginosa var. rotundifolta ARau, Enum. Ros. Wirceb. 136. Mar-Dec 1815. - Rosaceae. The combination was also associated with a diagnosis and a description in Latin.
Rosa rubricans Breiter, Hort. Breiter 429. Jan-Oct 1817. Validated by a diagnosis in German and a diagnosis in German by Wrede, Verz. Ros. 34. 1814. - Rosaceae.
Rosa sorbifolta Breiter, Hort. Breiter 431. Jan-Oct 1817. Validated by a diagnosis in German and a diagnosis in German by Wrede, Verz Ros. 32. 1814. - Rosaceae.
Rosa spherica Gren. ex Ardoino, Fl. Anal. Alpes-Mar. 127. 1867. Validated by a description in French. - Rosaceae.
Rosa swartziana Fr., Novit. Fl. Svec. 34. 11 Mai 1814. Validated by a description in Latin. Rosaceae.
Rosa tricolor Breiter, Hort. Breiter 431. Jan-Oct 1817. Validated by a diagnosis in German and a diagnosis in German by Wrede, Verz Ros. 28. 1814. - Rosaceae.
Rosa unica Bose, Nouv. Nouv. Agric. Dict. Rais. Agric. 11: 259. 1809. Validated by a description in French - Rosaceae.
Rosa venosa Steven ex Tratt., Rosac. Monogr. 2: xv. Jul-Dec 1823. Validated by a description in Latin. - Rosaceae.
Rosa vilmorma Breiter, Hort. Breiter 433. Jan-Oct 1817. Validated by a diagnosis in German and a diagnosis in German by Wrede, Verz. Ros. 6. 1814. - Rosaceae.
Rosa viscida Raf., Kentucky Gaz. 1(32): 3. 8 Aug 1822. Validated by a description in English. Rosaceae.
Sabal nobilis Schaedtler, Hamburger Garten-Blumenzeitung 31: 254. Jun 1875. Validated by a diagnosis in German. - Arecaceae.
Saccolabum furcatum B.S.Williams, Orch. Grow. Man., ed. 2, 141. Oct 1862. Validated by a description in English. - Orchidaceae.
Salacca wagnerl Schaedtler, Hamburger Garten-Blumenzeitung 31: 257. Jun 1875, as "Zalacca Wagnerı." Validated by a diagnosis in German. - Arecaceae.
Sartbus hogendorpu Zoll. ex Schaedtler, Hamburger Garten-Blumenzeitung 31: 255. Jun 1875. Validated by a diagnosis in German. - Arecaceae. NOTE: The later S. hoogendorpil Kuntze (Revis. Gen. 2: 736. 1891) is almost certainly an orthographic variant. If the plant was named for Count Ghisbert Karl van Hogendorp (1762-1834) or his brother Count Dirk van Hogendorp (1761-1830), or a relative, then the orthography in Schaedtler would be correct.
Sarracenia $\times$ stevensii Rob., Garden (London) 5: 494. 6 Jun 1874 (S. purpurea $\times$ S. flava). Validated by a diagnosis in English. - Sarraceniaceae.
Saurauta saraptgtensis W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 30. 1 Apr 1871. Validated by a description in English. - Actinidiaceae.

Saxifraga bucklandui Niven, Garden (London) 6: 4. 4 Jul 1874. Validated by a description in English. - Saxifragaceae.

Sempervivum atlanticum (Ball ex Hook.f.) Baker, Gard. Chron., n.s., 2: 104. 25 Jun 1874, based on S. tectorum var. atlanticum Ball ex Hook.f., Curtis's Bot. Mag., ser. 3, 29: ad t. 6055. 1 Sep 1873. Crassulaceae.
Sempervivum calcareum Rob., Alpine Fl. Engl. Gard. 336. 1870, nom. tlleg. Validated by a description in English. - Crassulaceae. NOTE: Although Robinson said this species was "probably" the same as $S$. calcareum, this does not render his name provisional as Robinson
accepted $S$. calcareum. However, his name is not legitimate has he cited $S$. californicum (see below) in synonymy.
Sempervivum californicum K.Koch, Wochenschr. Vereines Beford. Gartenbaues Konigl. Preuss. Staaten 6: 167. 23 Mai 1863. Validated by a brief description in German ("Ein Sempervivum mit dem Namen californicum hatte Blätter mit braunen Spitzen"). Crassulaceae. NOTE: See also: GW.Johnson \& R.Hogg, J. Hort. Cottage Gard. 1867: 256. 3 Oct 1867. Validated by a brief description in English ("...tipped with brownish crimson...", and D. Thomson, Handy Book Fl.Gard. 245. 1868. Validated by a brief description in English ("...large dense green rosettes, each leaf being tipped with dark brown ... forming offsets..."). Each of these places of publication predate that given currently in IPNI.
Smilacina oligophylla Baker ex Elwes, Garden (London) 6: 191. 29 Aug 1874. Validated by a diagnosis in English. - Asparagaceae.
Sonertla hendersonn E.G.Hend., Garden (London) 6: 63. 18 Jul 1874. Validated by a diagnosis in English. - Melastomataceae. NOTE: The name was published on the same day: Gard. Chron., n.s., 2: 83. 18 Jul 1874, validated by a diagnosis in English.

Spathiphyllum pictum W.Bull, Gard. Chron., n.s., 2: 160. 8 Aug 1874. Validated by a description in English. - Araceae.
Starkea odoratissima Haage \& Schmidt, Pfl.-Cat. 1874: 6. Jan 1874. Validated by a diagnosis in German. - Asteraceae.
Sternbergıa clustana Sweet, Hort. Brit. 401. Sep-Oct 1826. Validated by a reference to a preLinnaean diagnosis by Clusius in Latin. - Amaryllidaceae.
Sternbergia lutea (L.) Sweet, Hort. Brit. 401. Sep-Oct 1826, based on Amaryllis lutea L., Sp. Pl. 1: 292. 1 Mai 1753. - Amaryllidaceae.

Streptocarpus $\times$ greenei Green, Gard. Chron., n.s., 4: 180. 7 Aug 1875 (S. saundersil $\times$ S. rexi). Validated by a diagnosis in English. - Gesneriaceae.
Thrinax graminifolia Schaedtler, Hamburger Garten-Blumenzeitung 31: 257. Jun 1875. Validated by a diagnosis in German. - Arecaceae.
Thuja semperaurea Hort., Gard. Chron., n.s., 2: 303. 5 Sep 1874. Validated by a diagnosis in English. - Cupressaceae.

Tillandsia lindenil H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 6. Aug 1868, as "Lindenl." Validated by a diagnosis in German. - Bromeliaceae.
Tillandsta mosaic Linden ex Rafarin, Rev. Hort. 46: 73. 16 Feb 1874. Validated by a description in French - Bromeliaceae.
Tillandsta roezlu Linden ex Ortgies, Gartenflora 23: 47. Jan 1874. Validated by a description in German. - Bromeliaceae.
Torreya bogotensis Linden, Supp. Extrait Cat. Gén. 82/24: 10. 1 Jul 1869. Validated by a diagnosis in French. - Taxacae.
Tritoma caulescens (Baker) W.Mast., Garden (London) 5: 500. 13 Jun 1874, based on Kniphofia caulescens Baker, Bot. Mag. 98: ad t. 5946. 1872. - Xanthorrhoeaceae.
Tritoma macowanit Rob., Garden (London) 6: 262. 19 Sep 1874, as "MacOwani." Validated by a diagnosis in English ("blooms are of a paler colour than those of ... T. Uvaria." Xanthorrhoeaceae. NOTE: No reference is made to the earlier Kniphofia macowanii Baker, J. Bot. 12: 3. 1874, but as Tritoma, a subdivision of Kniphofia, was mentioned by Baker, one could consider the Robinson name to be a new combination via Art. 33.3 rather than a new species as indicated here.
Tritoma sarmentosa (Kunth) W.Mast., Garden (London) 5: 500. 13 Jun 1874, based on Kniphofia sarmentosa Kunth, Enum. Pl. 4: 552. 23-29 Mai 1841. - Xanthorrhoeaceae.
Vrtesea reticulata W.Bull, Gard. Chron. 1873: 606. 3 Mai 1873. Validated by a description in English. - Bromeliaceae.
Zamia fusca Schaedtler, Hamburger Garten-Blumenzeitung 31: 307. Jul 1875. Validated by a diagnosis in German. - Zamiaceae.

Zamia wallisil Veitch, Gard. Chron., n.s., 3: 795. 19 Jun 1875. Validated by a description in English. - Zamiaceae. NOTE: The authorship given currently by IPNI for a slightly later name should be corrected to Veitch ex A. Braun.

## BINOMIALS ARRANGED BY FAMILIES

Acanthaceae Juss.
Chamaeranthemum reticulatum W.Bull, Proc. Roy. Hort. Soc. 4: 73. Apr 1864.
Eranthemum aureoreticulatum Veitch, Garden (London) 5: 276. 28 Mar 1874.
Eranthermum rubronenium Veitch, Proc. Roy. Hort. Soc. 3:280. 29 Mai 1863.
Fittonia gigantea Linden, Cat. Pl. Exot. 22/23: 5. Jan-Jun 1869.
Justicia lutea Loisel., Herb. Gén. Amateur 6: ad t. 403.1822.
Libonia $\times$ penrhostensts W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 5. 1 Apr 1871.

Ruellia pitcanntfolia W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 41. 1871.

Actinidiaceae Engl. \& Gilg.
Sauraua sarapigıensis W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 30. 1 Apr 1871.

Saurauta superba H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 5. Aug 1868.

## Adiantaceae Newman

Adrantum elegantissimum B.S. Williams ex R.Hogg, Florist \& Pomol. 27: 135. Jun 1874.
Adiantum gracillimum B.S.Williams ex R.Hogg, Florist \& Pomol. 27: 42. Feb 1874.
Adiantum hendersonu E.C.Hend., Gard. Chron. 1873: 570. 26 Apr 1873.
Adiantum jarlegense C.Loury, Rev. Hort. 47: unpaged. 16 Jul 1875.
Adiantum zahnit Veitsch, Florist \& Pomol. 27: 158. Jul 1874.

## Alstroemeriaceae Dumort.

Alstroemeria bredemeyerana Willd. ex Schult. \& Schult.f., Syst. Veg. 7(1): 751. 1829.
Amaranthaceae Juss.
Acnida rhyssocarpa Gera, Nouv. Diz. Univ. Ragion. Agric. 1: 384. 1834, nom. illeg. Amaranthus chlororuber Haage \& Schmidt, Haupt-Verz. Samen 1875: 6. Jan 1875. Amaranthus $\times$ henderi Hurst, Gard. Chron., n.s., 2: 738. 12 Dee 1874. Amaranthus hendert W.Hend., Gard. Chron., n.s., 2: 770. 19 Dec 1874, nom. tlleg. Amaranthus hendersonil Hort., Vick's Ill. Mag. 1: 354. Dec 1878, nom. illeg. Amaranthus hendersonii J. Weber, J. Hort. Cottage Gard. 27: 304. 1 Oet 1874. Amaranthus salıgnus Carrière, Rev. Hort. 46: 80. 16 Feb 1874. Irestne aureoreticulata J.Saul, Gard. Monthly Hort. 10: 64 [Hort. Advert. 48]. Feb 1868.

Amaryllidaceae J.St.-Hil.
Ajax cermuus Haw., Philos. Mag., n.s., 8: 131. Aug 1830.
Ajax lorifolius Haw., Suppl. Pl. Suce. 119. Mai 1819.
Afax minor (L.) Haw., Suppl. Pl. Succ. 112. Mai 1819.
Ajax moschatus (L.) Haw., Suppl. Pl. Succ. 118. Mai 1819.
Ajax namus Haw. in R. Sweet, Brit. Fl. Gard., ser. 2. 25(App.): 2. 1 Jun 1831.
Ajax propinquus (Salisb.) Haw., Suppl. Pl. Succ. 116. Mai 1819.
Ajax serratus (Haw.) Haw., Suppl. Pl. Succ. 114. Mai 1819.
Ajax tortuosus (Haw.) Haw., Philos. Mag., n.s., 8: 131. Aug 1830.
Amaryllis caplyptrata Ker Gawl., Bot. Reg. 2: ad t. 164. 1 Jan 1817.

[^0]Phylogyne triloba (L.) Haw., Suppl. Pl. Succ. 135. Mai 1819.
Polianthes purpureus R.Dean, Garden, 5: 298. 4 Apr 1874.
Polyanthus Comstock, Intr. Stud. Bot. 122. 1832, nom. illeg. et orth. var.
Queltta galanth folia Haw., Syn. P1. Succ. 328. 1812.
Sternbergia clusiana Sweet, Hort. Brit. 401. Sep-Oct 1826.
Sternbergia lutea (L.) Sweet, Hort. Brit. 401. Sep-Oct 1826.
Anacardiaceae R. Br.
Spondtas olivaeformis W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 31. 1 Apr 1871.

Anemiaceae Link
Anemia plumbea Makoy ex E.Morren, Belg. Hort. 25: 200. 1875.
Anemia tessellata Makoy ex E.Morren, Belg. Hort. 25: 200. 1875.
Anguloa mantinil André, Rev. Hort. 67: 249. 1 Jun 1895.
Apiaceae Lindl.
Dorema asafetida (Falconer ex Lindl.) Haage \& Schmidt, Pl.-Verzeichn. 4. Jan 1875.
Heracleum leichtlinit Haage \& Schmidt, PI. Cat. 36. Jan 1870.
Apocynaceae Juss.
Ceropegia macrocarpa Haage \& Schmidt, Pfl.-Cat. 1874: 2. Jan 1874.
Dipladenia $\times$ williamsil B.S.Williams, Gard. Chron., n.s., 1: 363. 21 Mar 1874.
Dipladenia brearleyana T.Moore, Gard. Chron., n.s., 1:92. 17 Jan 1874.
Nerium madonii M. Vincent, J. Soc. Cent. Hort. France, sér. 2, 8: 184. 30 Apr 1875.
Araceae Juss.
Alocasta chantrieri (Andre) Duch. (pro hybr.), J. Soc. Nat. Hort. France, ser. 3, 9: 704. 24 Nov 1887. Alocasia gibsonil E.C.Hend., Gard. Chron. 1873: 604. 3 Mai 1873.
Alocasta $\times$ hybrtda W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 17. 1 Apr 1871.
Alocasia $\times$ intermedia H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 2. Aug 1868.
Alocasta illustris W.Bull, Gard. Chron. 1873: 606. 3 Mai 1873.
Alocasta plumbea van Houtte, Fl. Serres 21: 93. 1 Oct 1875, nom. illeg.
Caladium lilliputianum André, Rev. Hort. 67: 250. 1 Jun 1895.
Calamus dealbatus W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 123. 1 Apr 1871.
Calamus nucolai Schaedtler, Hamburger Garten-Blumenzeitung 31: 70. Feb 1875.
Calamus obovoideus Schaedtler, Hamburger Garten-Blumenzeitung 31: 70. Feb 1875.
Dieffenbachta antioquensis Linden ex Rafarin, Rev. Hort. 46: 73. 16 Feb 1874.
Dieffenbacha baraquintana W.Bull, Proc. Roy. Hort. Soc. 4:133. Jul 1864, nom. illeg.
Dieffenbachta eburnea W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 22. 1 Apr 1871.

Dieffenbachta gigantea Verschaff. ex Regel in Gartenfl. 14: 250. Aug-Sep 1865.
Dieffenbachia grandıs W.Bull, Proc. Roy. Hort. Soc. 4:133. Jul 1864.
Dieffenbachia nobillis Verschaff. ex Regel in Gartenfl. 14: 251. Aug-Sep 1865.
Dieffenbachia parlatorei Hort., Gard. Chron., n.s., 1: 665. 23 May 1874.
Dreffenbacha pearcet H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 4. Aug 1868.
Dieffenbachia verschaffeltı Hort., Proc. Roy. Hort. Soc. 3:280. 29 Mai 1863.
Dieffenbacha wallssil Linden, Cat. Pl. Exot. 22/23: 4. Jan-Jun 1869.
Philodendron devansayanum André, Rev. Hort. 67: 250. 1 Jun 1895.
Philodendron parimense Linden ex Regel, Gartenflora 24: 175. 15 Jun 1875.
Phyllotaentum mirabile W.Bull, Gard. Chron., n.s., 1: 532. 25 Apr 1874.

Pothos endresn Veitch, Gard. Chron., n.s., 4: 294. 4 Sep 1875.
Spathiphyllum macrophyllum Linden ex Rafarin, Rev. Hort. 46: 73. 16 Feb 1874.
Spathiphyllum pictum W.Bull, Gard. Chron., n.s., 2: 160. 8 Aug 1874.
Araliaceae Juss.
Aralta granatensts W.Bull, Gard. Chron., n.s., 1: 532. 25 Apr 1874.
Aralia guilfoylei W.Bull, Gard. Chron. 1873: 606. 3 Mai 1873.
Aralia laciniata Rafarin, Rev. Hort. (Paris) 49:326. 1 Sep 1877.
Aralta steboldit T.Meehan, Gard. Monthly Hort. 10: 24. Jan 1868.
Aralia veitchil Veitch, Gard. Chron. 1873: 706. 24 Mai 1873.
Araucariaceae Henkel \& W.Hochst.
Araucarta neocaledonica Linden ex Regel, Gartenflora 24: 176. 15 Jun 1875.
Arecaceae Bercht. \& J.Presl
Acanthophoenix grandis André, Rev. Hort. 67: 250. 1 Jun 1895.
Acanthorrhiza Linden, Cat. Pl. Exot. 22/23: 47. Jan-Jun 1869.
Acanthorrhiza warscewiczil Linden, Cat. Pl. Exot. 22/23: 47. Jan-Jun 1869
Ä̈phanes bicuspidata (H.Karst.) Ed.Otto, Hamburger Garten-Blumenzeitung 31: 24. Jan 1875.
Ä̈phanes bicuspidata (H.Karst.) Ed.Otto, Hamburger Garten-Blumenzeitung 31: 24. Jan 1875.
Areca dealbata W.Bull., Proc. Roy. Hort. Soc. 3:280. 29 Mai 1863.
Astrocaryum filare W.Bull, Gard. Chron., n.s., 3: 491. 17 Apr 1875.
Bactris caravellana Schaedtler, Hamburger Garten-Blumenzeitung 31: 67. Feb 1875.
Bactris cucullata Schaedtler, Hamburger Garten-Blumenzeitung 31: 67. Feb 1875.
Bactris diplothemium Schaedtler, Hamburger Garten-Blumenzeitung 31: 67. Feb 1875.
Bactris elegans Schaedtler, Hamburger Garten-Blumenzeitung 31: 67. Feb 1875.
Bactris martinezuformis Schaedtler, Hamburger Garten-Blumenzeitung 31: 67. Feb 1875.
Bactris obovata H. Wendl. ex Schaedtler, Hamburger Garten-Blumenzeitung 31: 67. Feb 1875.
Bactris spinosisstma Schaedtler, Hamburger Garten-Blumenzeitung 31: 67. Feb 1875.
Brahea filamentosa H. Wendl., Rev. Hort. 47: unpaged. 16 Aug 1875.
Brahea ghtesbreghtil Schaedtler, Hamburger Garten-Blumenzeitung 31: 68. Feb 1875.
Brahea hucida Schaedtler, Hamburger Garten-Blumenzeitung 31: 69. Feb 1875.
Brahea nitida Schaedtler, Hamburger Garten-Blumenzeitung 31: 69. Feb 1875.
Calyptrogyne elata Rafarin, Rev. Hort. 46: 76. 16 Feb 1874.
Calyptrogyne saraptquensis Schaedtler, Hamburger Garten-Blumenzeitung 31: 70. Feb 1875.
Caryota elegans Schaedtler, Hamburger Garten-Blumenzeitung 31: 111. Mar 1875.
Caryota majestica Schaedtler, Hamburger Garten-Blumenzeitung 31: Mar 111. 1875.
Caryota tenuts Schaedtler, Hamburger Garten-Blumenzeitung 31: 111. Mar 1875.
Caryota verschaffeltii Schaedtler, Hamburger Garten-Blumenzeitung 31: 111. Mar 1875.
Ceroxylon ferrugineum Devansaye, Rev. Hort. 46: 214. 1 Jun 1874.
Ceroxylon niveum Hort., Gard. Chron., n.s., 1: 255. 21 Feb 1874.
Chamaedorea ahrenbergit Schaedtler, Hamburger Garten-Blumenzeitung 31: 113. Mar 1875. Chamaedorea elegans Schaedtler, Hamburger Garten-Blumenzeitung 31: 114. Mar 1875.
Chamaedorea ghiesbreghtu Schaedtler, Hamburger Garten-Blumenzeitung 31: 114. Mar 1875.
Chamaedorea hartweglı B., Garden (London) 6: 368. 17 Oct 1874.
Chamaedorea obovoidea Schaedtler, Hamburger Garten-Blumenzeitung 31: 155. Apr 1875.
Chamaedorea wendlandil Schaedtler, Hamburger Garten-Blumenzeitung 31: 156. Apr 1875.
Chamaerops arborea Linden, Supp. Extrait Cat. Gén. 82/24: 26. 1 Jul 1869.
Chamaerops ghtesbreghtu Schaedtler, Hamburger Garten-Blumenzeitung 31: 157. Apr 1875.
Chamaerops major Schaedtler, Hamburger Garten-Blumenzeitung 31: 158. Apr 1875.
Chamaerops nivea Schaedtler, Hamburger Garten-Blumenzeitung 31: 158. Apr 1875.

Chamaerops temuifrons Schaedtler, Hamburger Garten-Blumenzeitung 31: 158. Apr 1875. Cheiranthus dillenianus R.Dean, Florist \& Gard. 28: 188. Aug 1875.
Cocos elegantisstma Schaedtler, Hamburger Garten-Blumenzeitung 31: 158. Apr 1875.
Colpothrinax wrightui Schaedtler, Hamburger Garten-Blumenzeitung 31: 160. Apr 1875.
Copernicia barbadensıs (Lodd. ex Mart.) Devansaye, Rev. Hort. 47: 35. 16 Jan 1875.
Copernicta macroglossa Schaedtler, Hamburger Garten-Blumenzeitung 31: 160. Apr 1875.
Copernicia robusta Schaedtler, Hamburger Garten-Blumenzeitung 31: 160. Apr 1875.
Corypha glauca Devansaye, Rev. Hort. 47: 32. 16 Jan 1875, nom. illeg.
Corypha martiana Devansaye, Rev. Hort. 47: 32. 16 Jan 1875, nom. tlleg.
Corypha robusta Wendl. ex Devansaye, Rev. Hort. 47: 32. 16 Jan 1875, nom. illeg.
Daemonorops cinnamomeus Schaedtler, Hamburger Garten-Blumenzeitung 31: 161. Apr 1875.
Daemonorops ornatus W.Bull, Gard. Chron., n.s., 3: 523. 24 Apr 1875.
Daemonorops oxleyamus Schaedtler, Hamburger Garten-Blumenzeitung 31: 162. Apr 1875.
Deckerta nobilis Schaedtler, Hamburger Garten-Blumenzeitung 31: 162. Apr 1875.
Diglossophyllum serrulatum (Michx.) H. Wendl. ex Schaedtler, Hamburger Garten-Blumenzeitung 31: 162. Apr 1875.
Eremospatha Mann \& H.Wendl. ex Schaedtler, Hamburger Garten-Blumenzeitung 31: 163. Apr 1875.
Eremospatha macrocarpa Mann \& H. Wendl. ex Schaedtler, Hamburger Garten-Blumenzeitung 31:
163. Apr 1875.

Euterpe anttoquensts Schaedtler, Hamburger Garten-Blumenzeitung 31: 163. Apr 1875, nom. illeg. Euterpe decurrens Schaedtler, Hamburger Garten-Blumenzeitung 31: 164. Apr 1875. Euterpe zamora Schaedtler, Hamburger Garten-Blumenzeitung 31: 164. Apr 1875. Gaussta portoricensts H. Wendl. ex Schaedtler, Hamburger Garten-Blumenzeitung 31: 164. Apr 1875. Geonoma amazonica Schaedtler, Hamburger Garten-Blumenzeitung 31: 164. Apr 1875. Geonoma longipes Schaedtler, Hamburger Garten-Blumenzeitung 31: 165. Apr 1875. Geonoma longipes Schaedtler, Hamburger Garten-Blumenzeitung 31: 165. Apr 1875. Geonoma purpurascens Schaedtler, Hamburger Garten-Blumenzeitung 31: 166. Apr 1875. Geonoma tenelliana Schaedtler, Hamburger Garten-Blumenzeitung 31: 166. Apr 1875. Geonoma tenuifolia André, Rev. Hort. 67: 250. 1 Jun 1895.
Geonoma verschaffeltii Schaedtler, Hamburger Garten-Blumenzeitung 31: 166. Apr 1875.
Geonoma wallsus Schaedtler, Hamburger Garten-Blumenzeitung 31: 166. Apr 1875.
Geonoma zamorensis Schaedtler, Hamburger Garten-Blumenzeitung 31: 166. Apr 1875. Glaziova msignis Rob., Gard. Chron., n.s., 1: 665. 23 May 1874.
Hyophorbe madagascaariensts Schaedtler, Hamburger Garten-Blumenzeitung 31: 167. Apr 1875.
Hyospathe chiriqut Schaedtler, Hamburger Garten-Blumenzeitung 31: 168. Apr 1875.
Iriartea gigantea Schaedtler, Hamburger Garten-Blumenzeitung 31: 168. Apr 1875.
Kentia balmoreana Rafarin, Rev. Hort. 46: 76. 16 Feb 1874.
Kentia moorel W.Bull, Garden (London) 5: 493. 6 Jun 1874.
Latania glaucophylla Schaedtler, Hamburger Garten-Blumenzeitung 31: 170. Apr 1875.
Latania jenkinsiana (Griff.) Devansaye, Rev. Hort. 47: 34. 16 Jan 1875.
Latania olivaeformis Devansaye, Rev. Hort. 47: 34. 16 Jan 1875.
Licuala kirstentana André, Rev. Hort. 67: 249. 1 Jun 1895.
Licuala orleyi Schaedtler, Hamburger Garten-Blumenzeitung 31: 214. Mai 1875.
Livistonta moluccana Schaedtler, Hamburger Garten-Blumenzeitung 31: 215. Mai 1875.
Malortiea intermedra Schaedtler, Hamburger Garten-Blumenzeitung 31: 215. Mai 1875.
Malortiea lacerata W.Bull, Retail List [Wholesale List New Beautiful Rare PI. 60:] 126. 1 Apr 1871.
Martinezia granatensis W.Bull, Gard. Chron., n.s., 1: 532. 25 Apr 1874.
Martinezia nobilis W.Bull, Garden (London) 8: 77. 24 Jul 1875.
Morenta galeottana Schaedtler, Hamburger Garten-Blumenzeitung 31: 218. Mai 1875.
Morenia ruitzil Schaedtler, Hamburger Garten-Blumenzeitung 31: 218. Mai 1875.
Nenga pumila H. Wendl. ex Schaedtler, Hamburger Garten-Blumenzeitung 31: 218. Mai 1875.

Phoenxx hanceana Schaedtler, Hamburger Garten-Blumenzeitung 31: 218. Mai 1875.
Plectocomia andersonit W.Bull, Gard. Chron., n.s., 1: 78. 17 Jan 1874.
Plectocomia hystrix Schaedtler, Hamburger Garten-Blumenzeitung 31: 251. Jun 1875.
Pritchardia filifera Rafarin, Rev. Hort. 46: 76. 16 Feb 1874.
Pritchardia grandis T.Moore, Gard. Chron., n.s., 1: 92. 17 Jan 1874.
Ptychosperma oltviformis Schaedtler, Hamburger Garten-Blumenzeitung 31: Jun 252. 1875.
Sabal nobilis Schaedtler, Hamburger Garten-Blumenzeitung 31: 254. Jun 1875.
Sabal warscewiczil Schaedtler, Hamburger Garten-Blumenzeitung 31: 254. Jun 1875.
Salacca wagneri Schaedtler, Hamburger Garten-Blumenzeitung 31: 257. Jun 1875.
Sarıbus hogendorpu Zoll. ex Schaedtler, Hamburger Garten-Blumenzeitung 31: 255. Jun 1875.
Seafortha alexandriae Schaedtler, Hamburger Garten-Blumenzeitung 31: 255. Jun 1875.
Seaforthia excelsa Schaedtler, Hamburger Garten-Blumenzeitung 31: 255. Jun 1875.
Socratea affinis Schaedtler, Hamburger Garten-Blumenzeitung 31: 256. Jun 1875.
Socratea squitos Schaedtler, Hamburger Garten-Blumenzeitung 31: 256. Jun 1875.
Stephensonia sechallara (H.Wendl.) R.Hogg, Florist \& Pomol. 133. Jun 1865.
Synechanthus gracilts Schaedtler, Hamburger Garten-Blumenzeitung 31: 256. Jun 1875.
Synechanthus sarapiquensis Schaedtler, Hamburger Garten-Blumenzeitung 31: 256. Jun 1875.
Thrinax graminifolia Schaedtler, Hamburger Garten-Blumenzeitung 31: 257. Jun 1875.
Wallichta oblongata Regel, Gartenflora 24: 177. Jun 1875.
Aristolochiaceae Juss.
Aristolochia elevata Gera, Nuovo Diz. Univ. Agric. 5: 348. 1837.
Asparagaceae Juss.
Agave bulbosa W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 3. 1 Apr 1871.
Agave guccaefolıa Mannetti in F.A. Gera, Nouv. Diz. Univ. Ragion. Agric. 2: 380. 1834.
Agave gustaviana Haage \& Schmidt, Pfl.-Cat. 1874: 1. Jan 1874.
Agave killischea Rafarin, Rev. Hort. 46: 73. 16 Feb 1874.
Agave leopoldit Rafarin, Rev. Hort. 46: 73. 16 Feb 1874.
Agave monstruosa Rafarin, Rev. Hort. 46: 73. 16 Feb 1874.
Agave mooreana Mast. \& T.Moore, Gard. Chron., n. s., 1: 60. 10 Jan 1874.
Agave perringea Rafarin, Rev. Hort. 46: 73. 16 Feb 1874.
Agave robusta Rafarin, Rev. Hort. 46: 73. 16 Feb 1874.
Anthericum variegatum B.S. Williams, Gard. Chron., n.s., 3: 442. 3 Apr 1875.
Anthurnum candtdum W.Bull, Gard. Chron., n.s., 3: 491. 17 Apr 1875.
Anthurium crystallimum Th.Meehan, Gard. Chron., n.s., 1: 92. 17 Jan 1874.
Anthurium hybridum B.S. Williams ex Rob., Garden (London) 5: 276. 28 Mar 1874.
Anthurnum wilhamsu Hort., Gardener 8: 198. Mai 1874.
Asparagus albanensis André, Rev. Hort. 67: 249. 1 Jun 1895.
Beaucarnea tuberculata (Hort. ex Lem.) Hurst, Gard. Chron., n.s., 2: 738. 12 Dec 1874.
Coelanthus amplificatus Willd. ex Herb., Amaryllidaceae 86. late Apr 1837.
Cordyline banksit J.Dix, Proc. Roy. Hort. Soc. 4:133. Jul 1864, nom. illeg.
Cordyline kirkit Haage \& Schmidt, Haupt-Verz. Samen 1875: 4. Jan 1875.
Dracaena albrcans W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 23. 1 Apr 1871.
Dracaena $\times$ albo-marginata T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875.
Dracaena alborosea W.Bull, Gard. Chron., n.s., 2: 160. 8 Aug 1874.
Dracaena $\times$ amallae T.Moore, Gard. Chron., n.s., 4: 616. 13 Nov 1875.
Dracaena $\times$ anerleyensis T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875.
Dracaena angusta W.Bull, Retail List [Wholesale List New Beautiful Rare P1. 60:] 23. 1 Apr 1871.
Dracaena $\times$ barroni T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875.

Dracaena $\times$ bausel T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875.
Dracaena $\times$ bella T.Moore, Gard. Chron., n.s., 4: 616. 13 Nov 1875.
Dracaena $\times$ berkeleyt T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875.
Dracaena candida W.Bull, Gard. Chron., n.s., 3: 474. 10 Apr 1875.
Dracaena $\times$ cantrellit T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875.
Dracaena $\times$ carolettiae T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875.
Dracaena dennisonil Veitch ex E.Morren, Belgique Hort. 22: 353. Dec 1872.
Dracaena dennissonea Veitch, Cat. New Beautiful Pl. 1873: 38. Jul-Aug 1873.
Dracaena duffil E.G.Hend., Gard. Chron., n.s., 2: 722. 5 Dec 1874.
Dracaena $\times$ elizabethiae T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875.
Dracaena $\times$ ernestı T.Moore, Gard. Chron., n.s., 4: 616. 13 Nov 1875.
Dracaena excelsa W.Bull, Retail List [Wholesale List New Beautiful Rare PI. 60:] 23. 1 Apr 1871, nom. illeg.
Dracaena $\times$ exmia T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875.
Dracaena formosa W.Bull, Gard. Chron., n.s., 1: 78.17 Jan 1874.
Dracaena fraseri Hort., Gard. Chron. 1873: 5. 4 Jan 1873.
Dracaena $\times$ fredericı T.Moore, Gard. Chron., n.s., 4: 616. 13 Nov 1875.
Dracaena $\times$ fulgens T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875.
Dracaena gemma W.Bull, Gard. Chron., n.s., 3: 557. 1 Mai 1875.
Dracaena glonerea Linden ex Rafarin, Rev. Hort. 46: 75. 16 Feb 1874.
Dracaena gloriosa Hort., Gard. Chron. 1873: 6. 4 Jan 1873.
Dracaena goldteana Hort., Gard. Chron. 1873: 5. 4 Jan 1873.
Dracaena grandts W.Bull, Gard. Chron., n.s., 1: 78. 17 Jan 1874.
Dracaena gulfoylei Moore ex Linden, Supp. Extrait Cat. Gén. 82/24: 6. 1 Jul 1869.
Dracaena hendersonil Veitch, Gard. Chron., n.s., 1: 531. 25 Apr 1874.
Dracaena $\times$ hybrida W.Bull ex R.Hogg, Florist \& Pomol. 27: 158. Jul 1874.
Dracaena illustris W.Bull, Gard. Chron., n.s., 1: 78. 17 Jan 1874.
Dracaena $\times$ imperator T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875.
Dracaena imperialts Hort., Gard. Chron. 1873: 5. 4 Jan 1873.
Dracaena insignis W.Bull, Gard. Chron., n.s., 3: 474. 10 Apr 1875.
Dracaena intermedta E.C.Hend., Gard. Chron. 1873: 498. 12 Apr 1873.
Dracaena $\times$ Jucunda T.Moore, Gard. Chron., n.s., 4: 616. 13 Nov 1875.
Dracaena $\times$ leucochila T.Moore, Gard. Chron., n.s., 4: 616. 13 Nov 1875.
Dracaena $\times$ mabiliae T.Moore, Gard. Chron., n.s., 4: 616. 13 Nov 1875.
Dracaena macleayi Linden, Supp. Extrait Cat. Gén. 82/24: 7. 1 Jul 1869.
Dracaena magnifica Veitch ex E.Morren, Belgique Hort. 22: 15. Jan 1872.
Dracaena $\times$ mastersit T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875.
Dracaena mooreana W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 24. 1 Apr 1871.
Dracaena mooret Veitch ex E.Morren, Belgique Hort. 22: 354. Dec 1872.
Dracaena ntgrorubra Linden, Supp. Extrait Cat. Gén. 82/24: 7. 1 Jul 1869.
Dracaena ntgrostriata W.Bull, Gard. Chron., n.s., 1: 78.17 Jan 1874.
Dracaena $\times$ pendens T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875.
Dracaena picta W.Bull, Gard. Chron., n.s., 1: 78. 17 Jan 1874.
Dracaena $\times$ picturata T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875.
Dracaena porphyrophylla E.Morren, Belgique Hort. 22: 354. Dec 1872.
Dracaena princeps W.Bull, Gard. Chron., n.s., 1: 78. 17 Jan 1874.
Dracaena pulchella W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 24. 1 Apr 1871.
Dracaena $\times$ rebecciae T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875.
Dracaena $\times$ renardiae T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875.

Dracaena rex W.Bull, Gard. Chron., n.s., 3: 795. 19 Jun 1875.
Dracaena rubella W.Bull., Gard. Chron., n.s., 3: 557. 1 Mai 1875.
Dracaena $\times$ salmonea T.Moore, Gard. Chron., n.s., 4: 616. 13 Nov 1875.
Dracaena $\times$ scottiae T.Moore, Gard. Chron., n.s., 4: 616. 13 Nov 1875.
Dracaena shepherdti Hort., Gard. Chron. 1873: 6. 4 Jan 1873.
Dracaena shepherdit T.Moore, Gard. Chron., n.s., 1:92. 17 Jan 1874, nom. illeg.
Dracaena spectabilis W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 24. 1 Apr 1871.
Dracaena splendens W.Bull ex E.Morren, Belgique Hort. 22: 15. Jan 1872.
Dracaena striatifolia E.C.Hend., Gard. Chron. 1873: 498. 12 Apr 1873.
Dracaena $\times$ sydneyı T.Moore, Gard. Chron., n.s., 4: 616. 13 Nov 1875.
Dracaena $\times$ taylort Veitch, Gard. Chron., n.s., 3: 795. 19 Jun 1875.
Dracaena $\times$ tellngnt T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875.
Dracaena $\times$ thomae T.Moore, Gard. Chron., n.s., 4:616. 13 Nov 1875.
Dracaena triumphans W.Bull, Gard. Chron., n.s., 3: 795. 19 Jun 1875.
Dracaena verschaffeltiI Verschaff., Mag. Hort. Bot. 33: 187. Jun 1867.
Dracaena $\times$ venusta T.Moore, Gard. Chron., n.s., 4: 616. 13 Nov 1875.
Dracaena $\times$ verstcolor T.Moore, Gard. Chron., n.s., 4:615. 13 Nov 1875.
Dracaena $\times$ victoriae T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875.
Dracaena $\times$ violacea T.Moore, Gard. Chron., n.s., 4: 616. 13 Nov 1875.
Dracaena $\times$ voluta T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875.
Dracaena wetsmannit Veitch, Gard. Chron. 1871: 841. 1 Jul 1871.
Dracaena $\times$ willsıl T.Moore, Gard. Chron., n.s., 4: 615. 13 Nov 1875.
Dracaena youngii E.Morren, Belgique Hort. 22: 354. Dec 1872.
Funckia Itliffolia W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 47. 1 Apr 1871.
Funckia platyginifolia H.A.Dreer, Gard. Monthly Hort. 10: 64 [Hort. Advert. unpaged]. Feb 1868.
Scilla hughi Mast. \& T.Moore, Gard. Chron., n. s., 1: 26. 3 Jan 1874.
Smilacina oligophylla Baker ex Elwes, Garden (London) 6: 191. 29 Aug 1874.
Asteliaceae Dumort.
Astelia bivittata Watson, Proc. Roy. Hort. Soc. 46: 159. Oct 1864.
Aster aceae Bercht. \& J.Pres1
Adenostyleae Cass. in F.A. Gera, Nouv. Diz. Univ. Ragion. Agric. 2: 14. 1834.
Aster rubrcaults Gera, Nuovo Diz. Univ. Agric. 6: 494. 1837.
Boltonta laevigata E. Witte, Ned. Tuinbouwbl. Sempervirens 1: 419. 10 Oct 1903.
Coreopsis elegans Loisel., Herb. Gén. Amateur 7: ad t. 450. 1824.
Senecio giesbreghtii Brongn. ex Clémenc., Rev. Hort. 46: 100. 1 Mar 1874.
Starkea odoratussima Haage \& Schmidt, Pfl.-Cat. 1874: 6. Jan 1874.

## Begoniaceae C. Agardh

Begonia diadem W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 138. 1 Apr 1871.
Begonia $\times$ hybrida P.W.Burbidge, Cultivated PL. 202. 1877.
Begonia $\times$ valida P.W.Burbidge, Cultivated Pl. 202. 1877.
Begonta vesuvius Veitch, Garden (London) 4: 204. 6 Sep 1873.
Begonia weltoniensis W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 139. 1 Apr 1871.

Berberidaceae Juss.
Berberis cordiformis W.Bull, Gard. Chron., n.s., 1: 532. 25 Apr 1874.

## Betulaceae Gray

Alnus imperialis (Hems1.) Rob., Gard. Chron., n.s., 2: 334. 12 Sep 1874.
Betula purpurea Veitch, Gard. Chron., n.s., 3: 795. 19 Jun 1875.

## Bignoniaceae Juss.

Bignonta roezliana W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 4. 1 Apr 1871. Campsidnum filcitifolum W.Bull, Gard. Chron., n.s., 1: 78. 17 Jan 1874.
Catalpa $\times$ aureovittata Carrière, Rev. Hort. 46: 140. 1 Apr 1874.
Blechnaceae Newman
Lomaria dobroydensis W.Bull, Gard. Chron., n.s., 3: 795. 19 Jun 1875.
Struthopterts japonica W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 121. 1 Apr 1871.

## Brassicaceae Burnett

Aethonema purpureum F.G.Sealey, Gard. Chron. 36: 73. 1932.
Aubrieta hendersontı E.G.Hend., Gard. Chron., n.s., 1:2. 3 Jan 1874.
Brassica rutabaga Vilm., Bon Jard. 345. 1837.
Brassica-napus Vilm., Bon Jard. 348. 1837.
Brassica-napus sylvestris Vilm., Bon Jard. 348. 1837.
Sennebiera pinnatifida Poit., Bon Jard. 294. 1837.
Bromeliaceae Juss.
Ananas mordllona Linden, Cat. PL. Exot. 22/23: 2. Jan-Jun 1869.
Billbergia musaica (Linden \& André) Regel, Gartenflora 23: 378. Dec 1874.
Disteganthus scarlatmus Linden ex Rafarin, Rev. Hort. 46: 73. 16 Feb 1874.
Dyckia lematraeana W.Bull, Gard. Chron., n.s., 1: 78. 17 Jan 1874.
Dyckia splendens Anderson., Gard. Chron., n.s., 4: 227. 21 Aug 1875.
Pitcairnia floccosa Regel, Gartenflora 23:307. Oct 1874.
Pourretia yuccordes Linden, Supp. Extrait Cat. Gén. 8224: 12. 1 Jul 1869.
Tillandsta lmdentı H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 6. Aug 1868.
Tillandsia mosaic Linden ex Rafarin, Rev. Hort. 46: 73. 16 Feb 1874.
Tillandsia roezliu Linden ex Ortgies, Gartenflora 23: 47. Jan 1874.
Vriesea reticulata W.Bull, Gard. Chron. 1873: 606. 3 Mai 1873.
Cactaceae Juss.
Ptlocereus dautwtzti J.N.Haage, Gard. Chron. 1873: 7. 4 Jan 1873.
Pilocereus hoppenstedtit Haage \& Schmidt, Pfl.-Cat. 1874: 5. Jan 1874.

## Calceolariaceae Olmstead

Calceolaria discolor Herb., Amaryllidaceae 363. late Apr 1837.

## Campanulaceae Juss.

Adenophora farrert S. Arnott, Gard. Chron., ser. 3, 86: 183. 7 Sep 1929.
Campanula $\times$ smithit Hort., Gard. Chron., n.s., 2: 83. 18 Jul 1874.
Centropogon lucyanus W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 19. 1 Apr 1871.

Lobelia gordoniı T.Moore, Proc. Roy. Hort. Soc. 4: 47, 195. Dec 1864.
Lobelia paxtontana T.Moore, Proc. Roy. Hort. Soc. 4: 47, 195. Dec 1864.

Caprifoliaceae Juss.
Scabiosa parnassiae Hort., Gard. Chron. 1873: 1175. 30 Aug 1873.
Weigela gractliflora Carrière, Rev. Hort. 47: 211. 1 Jun 1875.
Wetgela hendersont W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 54. 1871.
Weigela hybrida Carrière, Rev. Hort. 47: 211. 1 Jun 1875.
Wetgela lemoinet W.Bull, Retail List [Wholesale List New Beautiful Rare P1. 60:] 54. 1 Apr 1871.
Wetgela multiflora Carrière, Rev. Hort. 47: 210. 1 Jun 1875.
Wetgela mutabilis Carrière, Rev. Hort. 1861: 331. 1861.
Wetgela nivea Carrière, Rev. Hort. 47: 130. 1 Apr 1875.
Weigela striata B.K.Bliss, Hort. J. Rural Arts Rural Taste 17: 10. Apr 1862.
Weigela vanhouttn B.K.Bliss, Hort. J. Rural Arts Rural Taste 17: 10. Apr 1862.

## Caricaceae Dumort.

Carica aurantiaca W.Bull, Gard. Chron. 1873: 606. 3 Mai 1873.
Carica gracilis Linden, Cat. Pl. Exot. 22/23: 24. Jan-Jun 1869.
Celastraceae R.Br.
Euonymus flavescens W.Paul., Gardener 2: 383. Oet 1867.

Cephalotaceae Dumort.
Cephalotaxus robusta Rafarin, Rev. Hort. 46: 74. 16 Feb 1874.

## Cibotiaceae Korall

Ctbotuim regale Verschaff. ex Regel in Gartenfl. 14: 251. Aug-Sep 1865.
Cibotıum spectabile H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 2. Aug 1868.

Colchicaceae DC.
Colchicum giganteum Tubergen, Wholesale Cat. Flowerroots 17. 1903.
Urceolaria fulva Herb., Amaryllidaceae 194, pl. 26, f. 5. Dec 1837, nom. inadmis.
Uvularia sinensis Loudon, Gardener's Mag. 8: 111. Feb 1832, nom. tlleg.
Crassulaceae J.St.-Hil.
Echeveria abyssimica W.Bull, Retail List [Spec. List Gladiolus. 68:] 13. Sep-Oct 1872.
Echeveria $\times$ carinata W.Bull, Retail List [Spec. List Gladiolus. 68:] 14. Sep-Oct 1872.
Echeveria exima E.G.Hend. ex R.Hogg, Florist \& Pomol. 27: 136. Jun 1874.
Echeverta $\times$ glaucometallica W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 151. 1 Apr 1871.
Echeveria globosa Rafarin, Rev. Hort. 46: 74. 16 Feb 1874.
Echeverta peacockii J.Croucher, Gard. Chron., n.s. 1: 674. 23 May 1874.
Echeveria $\times$ rotundifolia R.Dean, Gard. Chron., n.s., 4: 627. 13 Nov 1875.
Sedum californicum E.G.Hend., Gard. Chron., n.s., 3: 795. 19 Jun 1875.
Sempervivum atlanticum (Ball ex Hook.f.) Baker, Gard. Chron., n.s., 2: 104. 25 Jun 1874.
Sempervivum calcareum Rob., Alpine Fl. Engl. Gard. 336. 1870, nom. illeg.
Sempervivum californicum K.Koch, Wochenschr. Vereines Beford. Gartenbaues Konigl. Preuss. Staaten 6: 167. 23 Mai 1863.

## Cupressaceae Gray

Biota aurea (Carrière) K.Koch, Dendrologie 2(2): 183. Nov 1873.
Biota defresneana C. van Geert ex K.Koch, Wochensch. Vereines Beförd. Gartenbaues Königl. Preuss. Staaten 6: 119. 11 Apr 1863.
Cryptomeria lycopodioides Carrière, Rev. Hort. 46: 220. 1 Jun 1874.

Cupressus balfouriana W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 45. 1 Apr 1871.

Thuja defresneana C. van Geert ex K.Koch, Wochensch. Vereines Beförd. Gartenbaues Königl. Preuss. Staaten 6: 119. 11 Apr 1863.
Thuja semperaurea Hort., Gard. Chron., n.s., 2: 303. 5 Sep 1874.

## Cyatheaceae Kaulf.

Alsophila beyrichtana (C. Presl) G., Garden (London) 5: 160. 21 Feb 1874. Alsophila elegantissima Linden, Cat. Pl. Exot. 22/23: 57. Jan-Jun 1869. Cyathea microlepis G., Garden (London) 5: 9. 3 Jan 1874.

Cycadaceae Pers.
Cycas rumintana W.Bull, Proc. Roy. Hort. Soc. 4:134. Jul 1864.

## Cyclanthaceae Poit. ex A.Rich.

Carludovicajonghei Schaedtler, Hamburger Garten-Blumenzeitung 31: 301. Jul 1875.
Carludovica lancaefolia Schaedtler, Hamburger Garten-Blumenzeitung 31: 301. Jul 1875.
Carludovica rotundifolia Schaedtler, Hamburger Garten-Blumenzeitung 31: 301. Jul 1875.
Cyclanthus estaba Schaedtler, Hamburger Garten-Blumenzeitung 31: 302. Jul 1875.
Davalliaceae M.R.Schomb.
Davallia truffautiana André, Rev. Hort. 67: 250. 1 Jun 1895.
Davallia youngll Veitch, Gard. Chron., n.s., 3: 795. 19 Jun 1875.
Davallta tyermann (T.Moore) Veitch, Cat. New Beautiful P1. 1873: 18. Jul-Aug 1873.
Dioscoreaceae R.Br.
Dioscorea tllustrata W.Bull, Gard. Chron. 1873: 606. 3 Mai 1873.

## Dryopteridaceae Herter

Dryopteris nobilis J.Douglas, J. Hort. Cottage Gard. 11: 459. 18 Dec 1866.
Ebenaceae Gürke
Diospyros mazelii Carrière, Rev. Hort. 46: 70. 16 Feb 1874.
Ericaceae Juss.
Andromeda forrestll (Harrow ex W.W.Sm.) C.K.Schneid. in Gartenbau im Reich 11: 209. 1930.
Arbutus croomil Rob., Garden (London) 6: 442. 14 Nov 1874.
Arctostaphylos intermedia Greene ex Howell, F7. N.W. Amer. 1: 415. 1901, nom. illeg.
Azalea $\times$ todmanil Veitch, Gard. Chron. 1873: 706. 24 Mai 1873.
Erica denisoniana Hort., Gard. Chron., n. s., 1: 739. 6 Jun 1874.
Erica lindleyana W.Holloway, Proc. Roy. Hort. Soc. 46: 159. Oet 1864.
Rhododendron $\times$ clliato-dauricum Carrière, Rev. Hort. 46: 200. 16 Mai 1874.
Vaccinium mortenia J.M'Nab, Garden (London) 6: 206. 29 Aug 1874.
Euphorbiaceae Juss.
Codiaeum angustifolium Hort., Gard. Chron., n.s., 1: 664. 23 May 1874.
Croton aucubifolus Linden, Supp. Extrait Cat. Gén. 82/24: 5. 1 Jul 1869.
Croton chrysophyllum W.Bull. Gard. Chron., n.s., 3: 523. 24 Apr 1875.
Croton cooperl Hort., Gard. Chron., n.s., 1: 836. 27 Jun 1874.
Croton cormutus W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 20. 1 Apr 1871.
Croton disraelll Veitch, Gard. Chron., n.s. 3: 473. 10 Apr 1875.

Croton fucatum W.Bull, Retail List [Spec. List Gladiolus. 68:] 13. Sep-Oct 1872.
Croton harwoodianum Hort, Gard. Chron., n.s., 3: 602. 8 May 1875.
Croton hillhanus Linden, Supp. Extrait Cat. Gén. 82/24: 5. 1 Jul 1869.
Croton interruptus H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 4. Aug 1868.
Croton irregularis W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 21. 1 Apr 1871.
Croton lacteum Veitch, Cat. New Beautiful Pl. 1873: 37. Jul-Aug 1873.
Croton limbatum W.Bull, Gard. Chron. 1873: 606.3 Mai 1873.
Croton majesticum T.Moore, Gard. Chron., n.s., 1: 92. 17 Jan 1874.
Croton maximus Linden, Supp. Extrait Cat. Gén. 82/24: 5. 1 Jul 1869.
Croton picturatum W.Bull, Gard. Chron., n.s., 3: 795. 19 Jun 1875.
Croton tortile Veitch, Gard. Chron., n.s. 3: 474. 10 Apr 1875.
Croton trilobum W.Bull, Hamburger Garten-Blumenzeitung 31: 446. Oct 1875.
Croton undulatus W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 21. 1 Apr 1871.
Croton veitchit W.Bull, Retail List [Wholesale List New Beautiful Rare PI. 60:] 20. 1 Apr 1871.
Croton volutum Hort., Gard. Chron., n.s., 1: 690. 30 May 1874.
Croton weismannil Veitch, Gard. Chron. 1868: 659. 1868.
Croton youngı Veitch, Gard. Chron. 1873: 706. 24 Mai 1873.
Phyllanthus nivosus W.Bull, Gard. Chron. 1873: 606. 3 Mai 1873.
Ricinus gibsonit Veitch, Gard. Chron., n.s., 2: 610. 14 Nov 1874.

## Fabaceae Lindl.

Acacia oleifolia Gera, Nouv. Diz. Univ. Ragion. Agric. 1: 111. 1834, nom. illeg. Acacta scandens (L.) Gera, Nouv. Diz. Univ. Ragion. Agric. 1: 117. 1834, nom. illeg. Acacta spini Gera, Nouv. Diz. Univ. Ragion. Agric. 1: 123. 1834.
Adenanthera ossea Mannetti in F.A. Gera, Nouv. Diz. Univ. Ragion. Agric. 2: 141. 1834, nom. illeg. Anthyllis spinosa Franceschi in F.A. Gera, Nouv. Diz. Univ. Ragion. Agric. 4: 901, 902. 1835.
Caesalpmia alternifolta W.Bull, Retail List [Wholesale List New Beautiful Rare P1. 60:] 19. 1 Apr 1871.

Cytisus everestiamus W.Bull, Retail List [Wholesale List New Beautiful Rare PI. 60:] 35. 1 Apr 1871.
Erythrina bogotensis W.Bull, Gard. Chron. 1873: 606. 3 Mai 1873.
Erythrina compacta W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 4. 1 Apr 1871.
Erythrina fillgens Loisel., Herb. Gén. Amateur 4: ad t. 247. 1820.
Erythrina parcelli Dombrain, Flor. Mag., n.s., 3: ad t. 95. Dec 1873.
Gleditsia subvirescens Poit., Bon Jard. 893 ["93"]. 1837.
Indrgofera atropurpurea Buch.-Ham. Ex Hornemann, Hort. Bot. Hafn. Suppl. 152. 1819.
Indigofera bilabiata Loisel., Herb. Gén. Amateur 6: ad t. 392. 1822.
Kennedia fredwoodti W.Bull, Proc. Roy. Hort. Soc. 4: 21. Feb 1864.
Lathyrus stbthorpu Haage \& Schmidt, Pfl.-Cat. 1874: 4. Jan 1874.
Mimosa conspicua Poit., Bon Jard. 890. 1837.
Sophora pendula Ounous, Rev. Hort. 46: 280. 16 Jul 1874.

## Fagaceae Dumort.

Quercus afghanistanensis Hort., Gard. Chron. 1873: 1404. 18 Oct 1873.
Quercus concordta Hort., Gard. Chron. 1873: 1404. 18 Oct 1873.
Quercus pectmata Hort., Gard. Chron. 1873: 1404. 18 Oct 1873.
Quercus salicifolta Siebold ex J.W.Ottol., Gard. Chron., n.s., 1: 726. 6 Jun 1874, nom. illeg.
Garryaceae Lindl.
Aucuba vivicans W.Bull, Gard. Chron., n.s., 3: 619. 15 May 1875.

## Gentianaceae Juss.

Chiroma ixifera W.Bull, Gard. Chron., n.s., 2: 294. 5 Sep 1874.
Pelargonium $\times$ rienzil Cannell ex T.Moore, Florist \& Pomol. 28: 116. Mai 1875.
Pelargonium lycopodioides Carrière, Rev. Hort. 46: 38. 16 Jan 1874.

## Geraniaceae Juss.

Pelargonium pseudozonale Huber, Florist \& Pomol. 28: 68. Mar 1875.
Pelargonium sanguineum Loisel., Herb. Gén. Amateur 5: ad t. 320. 1821, nom. illeg.
Gesneriaceae Rich. \& Juss.
Alloplectus bicolor Linden, Cat. Pl. Exot. 22/23: 1. Jan-Jun 1869, nom. tlleg.
Gloxinia heroglyphica Wilh.Busch. ex Ed.Otto, Hamburger Garten-Blumenzeitung 31: 473. Oct 1875.

Gloxinta hybrida Mountjoy, Floric. Cab. \& Florist's Mag. 8: 156. 1840.
Streptocarputs $\times$ greenet Green, Gard. Chron., n.s., 4: 180. 7 Aug 1875 .
Griseliniaceae J.R.Forst. \& G.Forst. ex A.Cunn.
Griselmia macrophylla (Hook.f.) Burb., Domestic Floricult. 287. 1874.

## Heliconiaceae Vines

Heltconta vinosa W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 5. 1 Apr 1871.

## Iridaceae Juss.

Crocus napolitanus Loisel., Herb. Gén. Amateur 2: ad t. 101. 1817, nom. illeg.
Freesta letchtliniana Klatt ex Rob., Garden (London) 6: 215. 5 Sep 1874.
Gladiolus $\times$ brenchleyensis Hort, Ann. Hort.: 523. Sep 1848.
Gladiohus oppositiflorius Herb., Amaryllidaceae 366. late Apr 1837.
Irts ctengzaltu Tubergen, Wholesale Cat. Flowerroots 22. Mai 1901.
Iris eggeri Tubergen, Wholesale Cat. Flowerroots 23. Mai 1901.
Juglandaceae DC. ex Perleb
Juglans macrophylla Haage \& Schmidt, Pfl.-Cat. 1874: 4. Jan 1874.
Juglans segraistensis M.B.Verlot, J. Soc. Cent. Hort. France, sér. 2, 8: 281. 30 Jun 1875.
Lamiaceae Martinov
Agnus-castus alba Carriére, Rev. Hort. 46: 400. 16 Oct 1874.
Agnus-castus marostachya Carriére, Rev. Hort. 46: 400. 16 Oct 1874.
Clerodendrum balfourtamim Hort., Gard. Chron., n.s., 3: 667. 22 Mai 1877.
Coleus $\times$ batemannu T.Moore, Gard. Chron. 1868: 377. 11 Apr 1868.
Coleus $\times$ bausei T.Moore, Gard. Chron. 1868: 377. 11 Apr 1868.
Coleus $\times$ berkeleyi T.Moore, Gard. Chron. 1868: 376. 11 Apr 1868.
Coleus $\times$ clarket T.Moore, Gard. Chron. 1868: 377. 11 Apr 1868.
Coleus $\times$ dixu H. T.Moore, Gard. Chron. 1868: 376. 11 Apr 1868.
Coleus marmoratus W.Bull, Proc. Roy. Hort. Soc. 4:133. Jul 1864.
Coleus $\times$ murrayt T.Moore, Gard. Chron. 1868: 377. 11 Apr 1868
Coleus $\times$ reveesii T.Moore, Gard. Chron. 1868: 377. 11 Apr 1868.
Coleus $\times$ ruckerl T.Moore, Gard. Chron. 1868:376. 11 Apr 1868.
Coleus $\times$ saundersil T.Moore, Gard. Chron. 1868:376. 11 Apr 1868.
Coleus $\times$ scottu T.Moore, Gard. Chron. 1868: 377. 11 Apr 1868.
Coleus telfordil McPhail ex H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 3. Aug 1868.

Scutellaria mocciniana W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 30. 1 Apr 1871.

Lecythidaceae A. Rich.
Grias zamorensts Linden, Cat. P1. Exot. 22/23: 6. Jan-Jun 1869.
Lecythis nobilis Linden, Cat. Pl. Exot. 22/23: 26. Jan-Jun 1869.

## Liliaceae Juss.

Calochortus krelagei (Regel) Ortgies, Gartenflora 23: 49. Jan 1874.
Cyclobothra maweama Tubergen, Wholesale Cat. Flowerroots 14. 1892.
Fritillaria inodora Tubergen, Wholesale Cat. Flowerroots 19. 1892.
Lilium takesima Morren, J. Soc. Natl. Hort. France, sér. 1, 7: 460. Jul 1861.
Litlum wallacer Tubergen, Wholesale Cat. Flowerroots 25. 1892.
Methonica senegalensis Poit., Bon Jard. 507. 1837.
Methonica simplex Poit., Bon Jard. 507. 1837.
Tulipa viridiflora Tubergen, Wholesale Cat. Flowerroots 11. 1892.
Loasaceae Juss.
Blumenbachta coronata Rob., J. Hort. Pract. Gard. 25:216. 18 Sep 1873.
Lythraceae J.St.-Hil.
Punica legrellei Haage \& Schmidt, Pl.-Verzeichn. 2. Jan 1875.
Malvaceae Juss.
Abutilon savitzit André, Rev. Hort. 67: 249. 1 Jun 1895.
Entelea bakeri W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 36. 1 Apr 1871.
Hibiscus albovartegata W.Bull, Retail List [Spec. List Gladiolus. 68:] 14. Sep-Oct 1872.
Hibiscus carminata-perfecta W.Bull, Retail List [Spec. List Gladiolus. 68:] 14. Sep-Oct 1872.
Hibiscus fullgidus W.Bull, Gard. Chron. 1873: 606. 3 Mai 1873.
Marantaceae R.Br.
Maranta chimboracensis Linden, Cat. Pl. Exot. 22/23: 6. Jan-Jun 1869.
Maranta concinna W.Bull, Gard. Chron., n.s., 1: 78.17 Jan 1874.
Maranta tubispatha Linden, Supp. Extrait Cat. Gén. 82/24: 9. 1 Jul 1869.

## Melastomataceae Juss.

Bertolonia $\times$ marchand $n$ T.Moore, Florist \& Pomol. 28: 143. Jun 1875.
Bertolonta pubescens G.W.Johns. \& R.Hogg, J. Hort. Cottage Gard, n.s., 8: 397. 23 Mai 1865.
Bertolonia punctata W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 3. 1 Apr 1871.
Bertolonta $\times$ vanhoutter T.Moore, Florist \& Pomol. 28: 143. Jun 1875.
Cyanophyllum bowmannil W.Bull, Retail List [Wholesale List New Beautiful Rare P1. 60:] 21. 1 Apr 1871.

Cyanophyllum marmoreum Linden ex Ender, Gartenflora 24: 360. 1 Dec 1875.
Cyanophylhum spectandum Linden, Cat. Pl. Exot. 22/23: 4. Jan-Jun 1869.
Miconia argyroneura Veitch, Proc. Roy. Hort. Soc. 3:280. 29 Mai 1863.
Miconia peruviana H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 5. Aug 1868.
Sonerila hendersonn E.G.Hend., Garden (London) 6: 63. 18 Jul 1874.
Sphaerogyne ferruginea W.Bull, Retail List [Wholesale List New Beautiful Rare PI. 60:] 30. 1 Apr 1871.

Moraceae Gaudich.
Artocarpus calophylla Haage \& Schmidt, Pfl.-Cat. 1874: 1. Jan 1874.
Artocarpus cannoni Veitch, Gard. Chron., n.s., 4: 242. 21 Aug 1875.
Artocarpus grandis Linden ex Cazzuola \& Nencioni, Coltiv. Piante Ornam., ed. 2, 222. 1889.
Artocarpus neo-caledonica Linden ex Cazzuola \& Nencioni, Coltiv. Piante Ornam., ed. 2, 222. 1889.
Ficus dealbata H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 4. Aug 1868.
Ficus parcellıl Veitch, Gard. Chron., n.s., 1: 531. 25 Apr 1874.
Ficus wendlandea Rafarin, Rev. Hort. 46: 75. 16 Feb 1874.
Musaceae Juss.
Musa africana W.Bull, Retail List [Wholesale List New Beautiful Rare PI. 60:] 6. 1 Apr 1871.
Nepenthaceae Dumort.
Nepenthes cuneata Veitch, Gard. Chron., n.s., 4: 368. 18 Sep 1875.
Oleaceae Hoffmanns. \& Link
Ligustrum coriaceum W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 48. 1 Apr 1871.
Osmanthus rotundifolius W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 51. 1 Apr 1871.

Onagraceae Juss.
Clarkia integripetala S.O.Johnson, Rural Affairs 6: 198, fig. 108. 1877.
Fuchsta destderatum B.S. Williams, Gard. Chron., n.s., 1: 363. 21 Mar 1874.
Fuchsta grandidens B.S. Williams, Gard. Chron., n.s., 1:363. 21 Mar 1874.
Orchidaceae Juss.
Aerides fieldingin B.S. Williams, Orch. Grow. Man., ed. 2, 39. Oct 1862.
Aerides huttonit (Hook.f.) Veitch, Cat. New Beautiful Pl. 1873: 16. Jul-Aug 1873.
Aerides lobbin B.S.Williams, Orch. Grow. Man., ed. 2, 39. Oct 1862.
Aerides nobilts B.S.Williams, Orch. Grow. Man., ed. 2, 40. Oct 1862.
Aerides veitchit B.S.Williams, Orch. Grow. Man., ed. 2, 41. Oct 1862.
Aerides willliams B.S.Williams, Orch. Grow. Man., ed. 2, 43. Oct 1862.
Anoectochilus javanicus (Blume) B.S.Williams, Orch. Grow. Man., ed. 2, 49. Oct 1862.
Anoectochtlus lobbu B.S.Williams, Orch. Grow. Man., ed. 2, 49. Oct 1862.
Anoectochtlus maculatus B.S. Williams, Orch. Grow. Man., ed. 2, 50. Oct 1862.
Anoectochillus querceticolus B.S.Williams, Orch. Grow. Man., ed. 2, 50. Oct 1862.
Anoectochtlus veitchn B.S.Williams, Orch. Grow. Man., ed. 2, 50. Oct 1862.
Anoectochilus zebrmum W.Bull, Proc. Roy. Hort. Soc. 4: 9. Jan 1864.
Batemannia burtii W.B.Hume, Florist \& Pomol. 27: 60. Mar 1874.
Burlingtonia amoena B.S.Williams, Orch. Grow. Man., ed. 2, 62. Oct 1862.
Burlingtoma knowlesil B.S. Williams, Orch. Grow. Man., ed. 2, 63. Oct 1862.
Cattleya amabilss B.S.Williams, Orch. Grow. Man., ed. 2, 63. Oct 1862.
Cattleya edithiana B.S.Williams, Orch. Grow. Man., ed. 2, 70. Oct 1862.
Cattleya $\times$ irrorata (Rchb.f.) Low, Proc. Roy. Hort. Soc. 4: 8. Jan 1864.
Cattleya lutea Guidon, J. Soc. Cent. Hort. France 4: 250. Apr 1858.
Cattleya mcmorlandil B.S. Williams, Orch. Grow. Man., ed. 2, 74. Oct 1862.
Coelogyne lowil B.S.Williams, Orch. Grow. Man., ed. 2, 80. Oct 1862.
Coelogyne meadia B.S.Williams, Orch. Grow. Man., ed. 2, 80. Oct 1862.
Coryanthes speciosa B.S. Williams, Orch. Grow. Man., ed. 2, 80. Oct 1862.
Cypripedium biflora B.S.Williams, Orch. Grow. Man., ed. 2, 85. Oct 1862.
Cypripedium dayil B.S.Williams, Orch. Grow. Man., ed. 2, 85. Oct 1862.

[^1]Papaveraceae Juss.
Bocconia japonica Haage \& Schmidt, Pl. Cat. 36. Jan 1870.
Bocconta jedoensts Carrière, Rev. Hort. 37: 340. 15-31 Aug 1866.
Passifloraceae Juss. ex Roussel
Passiflora macrocarpa Linden, Cat. P1. Exot. 22/23: 27. Jan-Jun 1869.
Phrymaceae Schauer
Mimulus exquisitus J.Muir, Garden (London) 6: 46. 18 Jun 1874.
Mimulus maculosus J.Muir, Garden (London) 6: 46.18 Jun 1874.
Mimulus meteor J.Muir, Garden (London) 6: 46. 18 Jun 1874.
Phytolaccaceae R.Br.
Ledenbergia roseo-aenea Lem. ex Linden, Supp. Extrait Cat. Gén. 82/24: 8. 1 Jul 1869.
Pinaceae Spreng. ex F. Rudolphi
Abies brachyptera Rafarin, Rev. Hort. 46: 74. 16 Feb 1874.
Abies commutata A.Murray, Gard. Chron., n.s., 3: 106. 23 Jan 1875.
Abies dicksonti C. van Geert ex K.Koch, Wochensch. Vereines Beförd. Gartenbaues Königl. Preuss.
Staaten 6: 119. 11 Apr 1863.
Abies hanburyana A.Murray, Garden (London) 6: 272. 19 Sep 1874, nom. tlleg.
Picea hookeriana (A.Murray) Roezl, Rev. Hort. 47: unpaged. 16 Feb 1875.
Ptcea lambertiana (Douglas) F.Sander, Gard. Chron., n.s., 2: 702. 5 Dec 1874.
Picea magnifica (A.Murray) F.Sanders, Gard. Chron., n.s., 2: 702. 5 Dec 1874.
Picea parsonsiana E.Manning, Gard. Monthly Hort. 10: 109. Apr 1868.
Picea pyrenaica E.Manning, Gard. Monthly Hort. 10: 109. Apr 1868.
Pinus hookertana (A.Murray) W.R.MeNab, Gard. Chron., n.s., 4: 711. 4 Dec 1875.
Pimus pattoni A.Murray, Phytologist 4: 1140. Dec 1853.
Pimus steboldit A.Murray, Phytologist 4: 1140. Dec 1853, nom. illeg.
Piperaceae Giseke
Peperomia argentea Sallier, Rev. Hort. 55: 323. 16 Jul 1883.
Peperomia verschaffeltii Linden, Supp. Extrait Cat. Gén. 82/24: 10. 1 Jul 1869.
Plantaginaceae Juss.
Antirrhinum mumidicum Haage \& Schmidt, Haupt-Verz. Samen 1875: 67. Jan 1875.
Plumbaginaceae Juss.
Acantholimon spinosum Rob., Gard. Chron., ser. 3, 96: 31. 14 Jul 1934.
Armeria echoodes Dennst., Hort. Belveder. 1: 95. 1820, nom. illeg.
Armeria laucheana Haage \& Schmidt, Pl.-Verzeichn. 2. Jan 1875.
Poaceae Barnhart
Briza compacta H.A.Dreer, Gard. Monthly Hort. 10: 64 [Hort. Advert. unpaged]. Feb 1868.
Polemoniaceae Juss.
Phlox nelsonil G.W.Johnson \& Hogg, J. Hort. Cottege Gard., n.s., 28: 366. 13 Mai 1875.
Polygalaceae Hoffmanns. \& Link
Polygala dalmaisiana T.Baines, Gard. Chron., n.s., 2: 617. 14 Nov 1874.

Polygonaceae Juss.
Persicaria alata (Buch.-Ham. ex D.Don) Nakai, Rept. Veg. Ooryongto 18. 1919.
Persicaria filiformis (Thunb.) Nakai, Rept. Veg. Ooryongto 18. 1919.
Persicaria posumbu (Buch.-Ham. ex D.Don) H.Gross in Engl. Bot. Jahrb. Syst. 49: 313. 1913. Reynoutria compacta (Hook.f.) Nakai, Rigakkai 24: 293. 1926.

Primulaceae Batsch ex Borkh.
Theophrasta andrea Linden ex Rafarin, Rev. Hort. 46: 76. 16 Feb 1874.
Proteaceae Juss.
Embothrium despardii Hort., Gard. Chron., n.s., 3: 371. 20 Mar 1875.
Pteridaceae E.D.M.Kirchn.
Gymnogramma pearcei Veitch, Proc. Roy. Hort. Soc. 4: 72. Apr 1864.
Gymnogramma $\times$ steizneriana H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 4. Aug 1868.
Pteris $\times$ serrulato-tremula T.Moore, Gard. Chron., n.s., 1: 92. 17 Jan 1874.
Ranunculaceae Juss.
Aquilegıa caryophylloides S.Hibberd in Floral World Gard. Guide: 142. Jul 1860.
Atragene cetlantca (Thurb.) Gera, Nuovo Diz. Univ. Agric. 6: 507. 1837.
Caltha grandiflora (Robert) Rob., Garden (London) 6:47. 18 Jul 1874.
Clematts atropurpurea Spae ex T.Moore \& Jackman, Clematis 82. Sep-Dec 1872.
Clematis $\times$ aureliana Briolay-Goiffon ex T.Moore \& Jackman, Clematis 83. Sep-Dee 1872.
Clemats calypso Lemoine ex T.Moore \& Jackman, Clematis 86. Sep-Dec 1872.
Clematts crippsti R.D., Florist \& Pomol. 3: 214. Sep 1870.
Clematts $\times$ fillgens Simon-Louis ex T.Moore \& Jackman, Clematis 100. Sep-Dee 1872.
Clematts $\times$ henryy Anderson-Henry ex T.Moore \& Jackman, Clematis 106. Sep-Dec 1872.
Clematss henryı Oliv., Hooker's Icon. Pl. 19: ad t. 1819. Jan 1889, nom. illeg.
Clemats impertalis Carré ex T.Moore \& Jackman, Clematis 107. Sep-Dec 1872.
Clemats insignis T.Moore \& Jackman, Clematis 107. Sep-Dec 1872.
Clematis magnifica T.Moore, Fl. Mag. ; ad t. 8: 453. 1869.
Clematts marmorata Jackman ex T.Moore \& Jackman, Clematis 125. Sep-Dec 1872.
Clemats $\times$ modesta Modeste-Guérin ex T.Moore \& Jackman, Clematis 127. Sep-Dec 1872.
Clematts monstrosa Jackman, Florist \& Pomol. 5: 201. Jul 1855.
Clematss ornata Lemoine ex T.Moore \& Jackman, Clematis 132. Sep-Dec 1872.
Clemats perfecta Simon-Louis ex T.Moore \& Jackman, Clematis 134. Sep-Dec 1872.
Clematis picturata Jackman Gard. Chron., n.s., 3: 790. 19 Jun 1875.
Clematis plena V.A.Gressent, Class. Jard. 245. 1880.
Clematts pulcherrima Cripps ex T.Moore \& Jackman, Clematis 136. Sep-Dec 1872.
Clematts purpurea V.A.Gressent, Class. Jard. 245. 1880.
Clematts reginae A.Henry, Mag. Hort. Bot., ser. 4, 29: 153. Apr 1862.
Clemats rendatleriu Carré ex T.Moore \& Jackman, Clematis 138. Sep-Dec 1872.
Clematis $\times$ rubro-violacea Jackman, Florist \& Pomol. 3: 265. 1864.
Clematts sophia Hérincq, Hort. Franç. 1854: 31, pl. 3. 1854.
Clematts $\times$ splendtda Barral, Rev. Hort. 1865: 70, fig. 16 Feb 1865.
Clematis stella Jackman ex T.Moore \& Jackman, Clematis 144. Sep-Dec 1872.
Clematts sylph Cripps, Florist \& Pomol. 3: 166. Jul 1870 or Gardener 1870: 323. Jul 1870.
Clematis $\times$ symesiana Anderson-Henry ex T.Moore \& Jackman, Clematis 145. Sep-Dec 1872.
Clematis tunbridgensts R.Dean, Gardener 2: 359. Sep 1867.
Clemats vanhoutte1 Jackman ex T.Moore \& Jackman, Clematis 149. Sep-Dec 1872.

Clematis verschaffeltii Carré ex T.Moore \& Jackman, Clematis 149. Sep-Dec 1872.
Clematis vesta Jackman ex T.Moore \& Jackman, Clematis 150. Sep-Dec 1872.
Clematis $\times$ viticello-lanugmosa E.Morren, Beliq. Hort. 14: ad t. 18. 1864, nom. illeg.
Clematts $\times$ willisonii Hort., Gard. Chron., n.s., 4: 17. 3 Jul 1875.
Delphintum alopecurotdes W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 46. 1 Apr 1871.

Delphinium candelabrum Lebas, Rev. Hort. 46: 297. 1 Aug 1874.

## Rosaceae Juss.

Armentaca alexandrina Gera, Nouv. Diz. Univ. Ragion. Agric. 3: 337. 1835.
Cydoma maulei W.Earley, Florist \& Pomol. 27: 281. Dec 1874.
Fragaria bergemontus Poit., Bon Jard. 235. 1837.
Fragaria duplex Poit., Bon Jard. 235. 1837.
Fragaria efflagellosa Poit., Bon Jard. 235. 1837.
Rhapholepts ovata Rob., J. Hort. Cottage Gard. 6: 378. 24 Mai 1864.
Rhapholepis ovata Veitch, Proc. Roy. Hort. Soc. 4:133. Jul 1864, nom. tlleg.
Rosa affinss Sternb., Flora 9(1, Beil.): 80. Apr-Mai 1826, nom. tlleg.
Rosa $\times$ alpina-laevis Rouen, Cat. Desc. Ros. 38. 1829.
Rosa amblyotis C.A.Mey., Zimmtrosen 30. 1847.
Rosa anglica Rössig, Oekon.-Bot. Rosen 59. 1799.
Rosa apetala Dupont ex Dum.-Cours., Bot. Cult., ed. 2, 5: 488.1811.
Rosa atra Rössig, Oekon.-Bot. Beschr. Rosen 1: 187. 1799.
Rosa atropurpurascens Rössig, Oekon.-Bot. Beschr. Rosen 1: 187. 1799.
Rosa belladonna Andrews, Roses 1: 16. 1806.
Rosa bffera (Poir.) Pers., Syn. Pl. 2: 48. Nov 1806.
Rosa bracteata Andrews, Roses 2: ad t. 87. 1827, nom. illeg.
Rosa caerulea Guillemeau, Hist. Nat. Rose 93. 1800.
Rosa calycma Rössig, Oekon.-Bot. Rosen 1: 124. 1799.
Rosa cannabina Pronville, Nomencl. Rosier 53. Nov-Dec 1818.
Rosa $\times$ carbonara Rouen, Cat. Desc. Ros. 214. 1829.
Rosa carnea Dum.-Cours., Bot. Cult. 3: 348. 1-4 Jul 1802.
Rosa casta Tratt., Rosac. Monogr. 2: 126. Jul-Dec 1823.
Rosa ciliata Bosc, Nouv. Nouv. Agric. Dict. Rais. Agric. 11: 250. 1809.
Rosa cmerea Rössig, Oekon.-Bot. Rosen 2: 21. 1803.
Rosa clynophylla Thory in P.J. Redouté, Roses 1: 43. 24 Mai 1817.
Rosa dicksoniana Lind1., Syn. Brit. F1. 99. Feb 1829.
Rosa dumalss Bechst., Forstbot. 241, 969. 1810.
Rosa euonymifolta Chesnel, Hist. Rose 113. 1820.
Rosa fimbriata Rössig, Oekon.-Bot. Beschr. Rosen 2: 60. 1803.
Rosa formosa Breiter, Hort. Breiter 422. Jan-Oct 1817.
Rosa fraxinifolia Dupont ex Dum.-Cours., Bot. Cult. 3: 352. 1-4 Jul 1802, nom. illeg.
Rosa fraxinifolia F.Dietr., Vollst. Lex. Gärtn. 8: 233. Sep 1808, nom. illeg.
Rosa fraxinifolia Pronville, Nomencl. Rosier 54. Nov-Dee 1818, nom. illeg.
Rosa glanduloso-calycina Opiz, Lotos 4: 47. Feb 1854.
Rosa glanduloso-punctata Opiz, Lotos 4: 69. Mar 1854.
Rosa glauca Fr., Novit. F1. Svec. 35. 11 Mai 1814, nom. illeg.
Rosa glaucina Bechst., Forstbot., ed. 4, 157, 605. 1821.
Rosa hardyana Poit., Bon Jard. 864. 1837.
Rosa heterocarpa Opiz, Flora 7(2): 525. 7 Sep 1824.
Rosa humtlis Besser, Cat. Jard. Bot. Krzemieniec 117. 1811, nom. tlleg.

Rosa hybrida Tratt., Rosac. Monogr. 1: 62. Jul-Dec 1823, nom. illeg.
Rosa inermis Thory in P.J. Redouté, Roses [Oct.] 1: Livr. 16a. 1824, nom. illeg.
Rosa intermedia Bose, Nouv. Agric. Dict. Rais. Agric. 11: 262. 1809.
Rosa lacteola Breiter, Hort. Breiter 425. Jan-Oct 1817, nom. illeg.
Rosa lanceolata Rössig, Oekon.-Bot. Rosen 1: 162. 1799.
Rosa massiltensts Breiter, Hort. Breiter 425. Jan-Oct 1817.
Rosa miniata Breiter, Hort. Breiter 425. Jan-Oct 1817.
Rosa monophylla Dum.-Cours., Bot. Cult. 3: 351. 1-4 Jul 1802.
Rosa monstrosa Breiter, Hort. Breiter 425. Jan-Oct 1817.
Rosa montana Steven ex Tratt., Rosac. Monogr. 2: xix. Jul-Dec 1823, nom. illeg.
Rosa mosceuton Guillemeau, Hist. Nat. Rose 92. 1800.
Rosa multiflora Rössig, Oekon.-Bot. Rosen 68. 1799, nom. illeg.
Rosa mundit Andrews, Roses 1: 46. 1805.
Rosa nana Rössig, Oekon.-Bot. Rosen 2: 39. 1803.
Rosa nitens Bechst., Forstbot., ed. 4, 158, 607. 1821, nom. illeg.
Rosa noisettaeana Loisel., Herb. Gén. Amateur 5: ad t. 288. 1821.
Rosa obovata Bechst., Forstbot., ed. 4, 159, 675. 1821, nom. illeg.
Rosa parisiensıs Rössig, Oekon.-Bot. Rosen 1: 60. 1799.
Rosa picta Breiter, Hort. Breiter 427. Jan-Oct 1817.
Rosa podolica Tratt., Rosac. Monogr. 2: 71. Aug-Dec 1823.
Rosa pomponia Rössig, Oekon.-Bot. Beschr. Rosen 2: 53. 1803.
Rosa prolifera Breiter, Hort. Breiter 427. Jan-Oct 1817.
Rosa pulchella Andrews, Roses 1: 57. 1817, nom. tlleg.
Rosa purpurea Breiter, Hort. Breiter 428. Jan-Oct 1817.
Rosa redutea Thory, Rosa Redutea 3. 20 Dec 1817.
Rosa resinosa Sternb., Flora 9(1, Beil.): 76. Apr-Mai 1826.
Rosa rotundifolia (A.Rau) Tratt., Rosac. Monogr. 2: 73. Aug-Dec 1823.
Rosa rubricans Breiter, Hort. Breiter 429. Jan-Oct 1817.
Rosa saintfrancisct Rössig, Oekon.-Bot. Beschr. Rosen 2: 61. 1803.
Rosa $\times$ serratipetala Rouen, Cat. Desc. Ros. 232. 1829.
Rosa sorbifolta Breiter, Hort. Breiter 431. Jan-Oct 1817.
Rosa spherica Gren. ex Ardoino, Fl. Anal. Alpes-Mar. 127. 1867.
Rosa sultana Rössig, Oekon.-Bot. Beschr. Rosen 2: 51. 1803.
Rosa swartzana Fr, Novit. F1. Svec. 34. 11 Mai 1814.
Rosa syringorosea Rössig, Oekon.-Bot. Rosen 2: 34. 1803.
Rosa tenera Breiter, Hort. Breiter 431. Jan-Oct 1817.
Rosa terebinthina (Thory) Tratt., Rosac. Monogr. 1: 111. Jul-Dec 1823, nom. tlleg.
Rosa tricolor Breiter, Hort. Breiter 431. Jan-Oct 1817.
Rosa unica Bose, Nouv. Nouv. Agric. Dict. Rais. Agric. 11: 259. 1809.
Rosa venosa Steven ex Tratt., Rosac. Monogr. 2: xv. Jul-Dec 1823.
Rosa versicolor Tratt., Rosac. Monogr. 2: 124. Jul-Dec 1823, nom. illeg.
Rosa vilmorma Breiter, Hort. Breiter 433. Jan-Oct 1817.
Rosa viscida Raf., Kentucky Gaz. 1(32): 3. 8 Aug 1822.
Rubiaceae Juss.
Ixora $\times$ colei W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 167. 1871.
Ixora dixiana W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 26. 1 Apr 1871.
Ixora fraseri Rob., Gard. Chron., n.s., 2: 83. 18 Jul 1874.
Palicourea discolor H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 5. Aug 1868.

Salicaceae Mirb.
Samyda nobilis W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 30. 1 Apr 1871.

## Sapind aceae Juss.

Acer atheniense G.Gordon, Garden (London) 5: 83. 24 Jan 1874.
Acer flavescens Veitch, Garden (London) 5: 364. 25 Apr 1874.
Aesculus rubicunda Loisel., Herb. Gén. Amateur 6: ad t. 357. 1822.

Sapotaceae Juss.
Chrysophyllum lanclfolnum Linden, Cat. Pl. Exot. 22/23: 25. Jan-Jun 1869.
Sarraceniaceae Dumort.
Sarracenta flavopurpurea B.S. Williams, Garden (London) 5: 400.9 Mai 1874.
Sarracenia $\times$ stevensii Rob., Garden (London) 5: 494. 6 Jun 1874.
Saxifragaceae Juss.
Astilbe sthensts C.Pfeiff., Gartenwelt 3: 512. 23 Jul 1899.
Saxifraga aromatica Niven, Garden (London) 5: 349. 18 Jul 1874.
Saxifraga bucklandı Niven, Garden (London) 6: 4. 4 Jul 1874.
Saxifraga germanica Niven, Garden (London) 5: 284. 4 Apr 1874.
Saxifraga huettı Vilm.-Audrieux, J. Soc. Cent. Hort. France, sér. 2, 8: 226. 31 Mai 1874.

## Selaginellaceae Willk

Selaginella ascendens Baker, Garden (London) 6: 407. 31 Oct 1874.
Selaginella griffithu Baker, Garden (London) 6: 407. 31 Oct 1874.
Selagmella inaequalifolia Baker, Garden (London) 6: 407. 31 Oct 1874.
Selaginella japonica Moore ex M'Nab, Trans. Proc. Bot. Soc. Edinburgh 9: 8. Jan-Mar 1867.
Selaginella poulteri H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 6. Aug 1868.
Selaginella setosa Linden, Cat. P1. Exot. 22/23: 9. Jan-Jun 1869.
Solanaceae Juss.
Brugmansia lutea Hort., Paxton's Mag. Bot. 4: 95. 1838.
Taxacae Gray
Torreya bogotensis Linden, Supp. Extrait Cat. Gén. 82/24: 10. 1 Jul 1869.
Theaceae Mir. ex Ker Gawl.
Camellia fimbriata P.B.M., Young Churchman Misc. 3: 47. Feb 1848.
Camellia incarnata P.B.M., Young Churchman Misc. 3: 47. Feb 1848.
Thelypteridaceae Pic.Serm.
Lastrea floridana (Hook.) K.Koch, Wochenschr. Vereines Beford. Gartenbaues Konigl. Preuss. Staaten 12: 143. 8 Mai 1869.

Thymelaeaceae Juss.
Daphne rubra P.B.M, Young Churchman Misc. 3: 383. Dec 1848.
Drimyspermum australe W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 36. 1 Apr 1871.

Tropaeolaceae Juss. ex DC.
Tropaeolum pyramidalis H.A.Dreer, Gard. Monthly Hort. 10:64 [Hort. Advert. unpaged]. Feb 1868.

Verbenaceae J.St.-Hil.
Duranta baumgartenti K.Koch, Wochenschr. Vereines Beford. Gartenbaues Konigl. Preuss. Staaten 6: 47. 8 Feb 1862.

Duranta baumgartii J.T.Hibbert, Gard. Chron., n.s., 3: 730. 5 Jun 1875.

Vitaceae Juss.
Ampelopsis veitchil H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 6. Aug 1868. Vitis zongylioides D.Thomson, Gardener 8: 102. Mar 1874.

Xanthorrhoeaceae Dumort.
Aloe fraskil Croucher, J. Hort. Cottage Gard. 27: 163. 20 Aug 1874.
Aloe greenil Green, Garden (London) 8: 77. 24 Jul 1875.
Aloe macchtata Da Pare in F.A. Gera, Nouv. Diz. Univ. Ragion. Agric. 4: 547. 1835.
Aloe quadrangularis Da Pare in F.A. Gera, Nouv. Diz. Univ. Ragion. Agric. 4: 546. 1835, nom. illeg.
Eremurus elwestanus Krelage \& Krelage, Krelage's Bulbs, 472B: 101. 15 Jul 1894.
Eremurus $\times$ hem-rob Tubergen, Cat. Flowerroots 18. Mai 1906.
Eremurus $\times$ tubergenii Tubergen, Cat. Flowerroots 18. Mai 1906.
Hemerocallis picta W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 26. 1 Apr 1871.
Phormium atropurpureum Rafarin, Rev. Hort. 46: 75. 16 Feb 1874.
Phormum nigropictum W.Bull, Retail List [Spec. List Gladiolus. 68:] 15. Sep-Oct 1872.
Tritoma abyssinica (Redouté) W.Mast., Garden (London) 5: 500. 13 Jun 1874.
Tritoma breviflora (Harv. ex Baker) W.Mast., Garden (London) 5: 500. 13 Jun 1874.
Tritoma caulescens (Baker) W.Mast., Garden (London) 5: 500. 13 Jun 1874.
Tritoma comosa (Hochst.) W.Mast., Garden (London) 5: 500. 13 Jun 1874.
Tritoma gracilis (Harv. ex Baker) W.Mast., Garden (London) 5: 500. 13 Jun 1874.
Tritoma grantit (Baker) W.Mast., Garden (London) 5: 500. 13 Jun 1874.
Tritoma isoetifolia (A.Rich) W.Mast., Garden (London) 5: 500. 13 Jun 1874.
Tritoma macowanil Rob., Garden (London) 6: 262. 19 Sep 1874.
Tritoma parviflora (Kunth) W.Mast., Garden (London) 5: 500. 13 Jun 1874.
Tritoma porphyrantha (Baker) W.Mast., Garden (London) 5: 500. 13 Jun 1874.
Tritoma praecox (Baker) W.Mast., Garden (London) 5: 500. 13 Jun 1874.
Tritoma quartiniana (A.Rich) W.Mast., Garden (London) 5: 500. 13 Jun 1874.
Tritoma rigidisstma W.Mast., Garden (London) 5: 500. 13 Jun 1874.
Tritoma sarmentosa (Kunth) W.Mast., Garden (London) 5: 500. 13 Jun 1874.
Tritoma schimperi (Baker) W.Mast., Garden (London) 5: 500. 13 Jun 1874.
Tritoma triangularis (Kunth) W.Mast., Garden (London) 5: 500. 13 Jun 1874.
Zamiaceae Horan.
Macrozamia austrahs Schaedtler, Hamburger Garten-Blumenzeitung 31: 306. Jul 1875.
Macrozamia cylindrica W.Bull, Gard. Chron., n.s., 1: 532. 25 Apr 1874.
Macrozamia plumosa W.Bull, Gard. Chron., n.s., 1: 532. 25 Apr 1874.
Zamia fusca Schaedtler, Hamburger Garten-Blumenzeitung 31: 307. Jul 1875.
Zamia plumosa Rafarin, Rev. Hort. 46: 74. 16 Feb 1874.
Zamia wallisii Veitch, Gard. Chron., n.s., 3: 795. 19 Jun 1875.

## Zingiberaceae Martinov

Alpinia vittata W.Bull, Gard. Chron. 1873: 606.3 Mai 1873.

## ACKNOWLEDGMENTS

This work could not have been done without help from Drs. Kanchi N. Gandhi (GH), Werner Greuter (B), Dr. John H. Wiersema (BARC), and John McNeill (E). The support of the library staffs at Cornell University is invaluable, especially the guardians of rare books and seed catalogues whose knowledge of the holdings at Cornell is so helpful in finding just the right publication. Needless to say, this kind of effort would not be possible without the forethought of Liberty Hyde Bailey who single-handedly assembled the wealth of horticultural literature now at Cornell.

## LITERATURE CITED

APG III. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161: 105-121.
Christenhusz, M.J.M., J.L. Reveal, A. Farjon, M.F. Gardner, R.R. Mill, and M.W. Chase. 2011. A new classification and linear sequence of extant gymnosperms. Phytotaxa 19: 55-70.
Christenhusz, M.J.M., X.-C. Zhang, and H. Schneider. 2011b. A linear sequence of extant families and genera of lycophytes and ferns. Phytotaxa 19: 7-54.
IPNI. 2012. Understanding the Index Kewensis data. International Plant Names Index.
shttp//www ipni org/understand_the_data html>
Jackson, D.B. 1887. The new 'index of plant names.' J. Bot. (London) 25: 66-71.
Liberty Hyde Bailey Hortorium (eds.). 1976. Hortus Third: A Concise Dictionary of Plants Cultivated in the United States and Canada. Initially compiled by Liberty Hyde Bailey and Ethel Zoe Bailey; revised and expanded by the staff of the Liberty Hyde Bailey Hortorium. New York: Macmillan.
McNeill, J., F.R. Barrie, H.M. Burdet, V. Demoulin, D.L. Hawksworth, K. Marhold, D.H. Nicolson, J. Prado, P.C. Silva, J.E. Skog, J.H. Wiersema, and N.J. Turland (eds.). 2006. International Code of Botanical Nomenclature (Vienna Code) adopted by the Seventeenth International Botanical Congress, Vienna, Austria, July 2005. A.R.G Gantner Verlag, Ruggell, Liechtenstein.
Nicolson, D.H. 1991. Ahistory of botanical nomenclature. Ann. Missouri Bot. Gard. 78: 33-56.

# A NEW COMBINATION IN VIBURNUM SECT. ODONTOTINUS (ADOXACEAE) 

Bruce A. Sorrie<br>University of North Carolina Herbarıum North Carolina Botanical Garden<br>Chapel Hill, NC 27599-3280


#### Abstract

Plants generally identified as Viburnum dentatum var. deamu (Rehder) Fernald (V. pubescens var. deamu Rehder) are distinct from $V$. dentatum in the presence of stipules and stipitate-glandular cymes and are appropriately treated at specific rank: Viburnum deamii (Rehder) Sorrie, comb. nov. Viburnum dentatum var. indianense (Rehder) Gleason ( $V$. pubescens var. indianense Rehder) is a synonym of $V$ deamit.


KEY WORDS: Viburnum deamil (Rehder) Sorrie, Adoxaceae, Viburnum dentatum, Viburnum sect. Odontotimus

Rehder (1924) described two new entities from the Ohio River Basin and placed them within Viburnum pubescens (Aiton) Pursh: V. pubescens var. deamil Rehder and V. pubescens var. Indianense Rehder. Later, Svenson (1940) argued convincingly that $V$. pubescens is a later name for $V$. dentatum L. in the broad sense, thus leading to combinations authored by Fernald (1941) and Gleason (1952a, b) that transferred each of the two varieties to $V$. dentatum.

McAtee (1956) placed excessive emphasis on leaf vestiture in maintaining var. deamu and var. indıanense as infraspecific taxa within Viburnum dentatum. Var. deamil is more or less densely pubescent on leaf undersides and has stellate hairs over the entire petiole. Var. mdianense has glabrate leaf undersides and petiole hairs are more or less confined to the groove on the upper surface. Many intermediates exist, however, and numerous herbarium specimens cannot readily be assigned. Moreover, both taxa overlap greatly in range and occupy identical habitats. These two taxa do not appear to be clearly separable from one another as distinct entities.

While the stellate pubescent leaves and petioles of Viburnum dentatum var: deamu superficially align it with typical $V$. dentatum, the stipules and stipitate-glandular cymes of var. deamit more strongly argue for evolutionary affinity with $V$. bracteatum. Additional research is needed to resolve relationships. Meanwhile, it is prudent to emphasize the robust distinctions between typical V . dentatum and $V$. dentatum var. deamin by treating the latter at specific rank

Viburnum deamii (Rehder) Sorrie, comb. et stat. nov. Viburnum pubescens var. deami Rehder, J. Arnold Arb. 5: 58. 1924. Viburnum dentatum var. deamu (Rehder) Fernald, Rhodora 43: 649. 1941.

Viburnum pubescens var. inctanense Rehder, J. Arnold Arb. 5: 59. 1924. Viburnum dentatum var. indtanense (Rehder) Gleason, Phytologia 4: 24. 1952.

## LITERATURE CITED

Fernald, M.L. 1941. Another century of additions to the flora of Virginia. Rhodora 43: 485-665.
Gleason, H.A. 1952a. Change of name for certain plants of the "Manual Range." Phytologia 4: 2025.

Gleason, H.A. 1952b. The New Britton \& Brown Illustrated Flora of the Northeastern United States and Adjacent Canada. New York Botanical Garden, Bronx.

McAtee, W.L. 1956. A review of the nearctic Viburnum. Published by the author, Chapel Hill, North Carolina.
Rehder, A. 1924. New species, varieties and combinations from the herbarium and the collections of the Arnold Arboretum. J. Arnold Arb. 5: 49-59.
Svenson, H.K. 1940. Plants of southern United States. Rhodora 42: 1-19.

# CRATAEGUS CHRYSOCARPA ASHE VAR. PHOENICEA (SER. ROTUNDIFOLIAE; ROSACEAE) 

J.B. PHIPPS<br>Dept of Brology<br>The Unıversity of Western Ontario<br>London, Ontario, N6A 5B7<br>CANADA


#### Abstract

E.J. Palmer's widely used varietal name Crataegus chrysocarpa var. phoenicea was not typified in its original description of 1937 and is validated here as Crataegus chrysocarpa var. phoenicea E.J. Palmer ex J.B. Phipps, var. nov.


KEY WORDS: Crataegus chrysocarpa var. phoenicea, Crataegus aboriginum, Crataegus dodgei, Crataegus flavida, Rosaceae

Crataegus chrysocarpa Ashe var. phoenicea was described by E.J. Palmer in Dole's Flora of Vermont (1937) but unfortunately rather briefly and without designation of a type. This has led to a very wide interpretation of this taxon so as to include a variety of Crataegus chrysocarpa-like plants with glabrous inflorescences. Collectively these plants are widely found from the Great Lakes region to the St. Lawrence Valley and New England and are mostly seemingly intermediate between var. chrysocarpa and Crataegus dodget Ashe. As other taxa may be involved, the distribution statement given below for var. phoenicea is uncertain.

This paper typifies Crataegus chrysocarpa var. phoentcea from Palmer's original material and provides a more complete description. Type specimens are selected so as to maintain the intent of Palmer's usage.

Crataegus chrysocarpa Ashe var. phoenicea E.J. Palmer ex J.B. Phipps, var. nov. Figs. 1, 2, and 3. Type: USA. Vermont. Addison Co.: Ferrisburg, 22 Aug 1941, R.C. Bean C6 (holotype [designated here] $\mathrm{A}!$; isotype: $\mathrm{A}!$ ). The type is a good fruiting specimen from Vermont, annotated by Palmer and having glabrous infructescence branches. Because indumentum is quite often not persistent, however, this fruiting season glabrousness is not definitively predictive of early season glabrousness. EPITYPE (designated here): USA. Rhode Island. Kent Co.: Bristol, 28 May 1939, E.J. Palmer 44757 (A!). Inadequacy of the fruiting holotype requires the selection of an epitype and unavailability of a suitable flowering specimen from the geographic area of the holotype leads to the selection of an epitype from Rhode Island. The specimen chosen is an excellent flowering specimen annotated by Palmer and having all the diagnostic characteristics of the variety.

Bushes, 2-3 m. Leaves: petioles glabrous, with a few small glands or eglandular; blades $2.5-4 \mathrm{~cm}$ long, ovate to rhombovate, bases broad-cuneate, lobes acute, max. indentations $15-20 \%$, veins 3-5 per side, glabrous. Inflorescences: 5-10-flowered; branches glabrous; lower bracteoles with sessile glands. Flowers: $15-20 \mathrm{~mm}$ diam.; hypanthia externally glabrous; sepals glandulardenticulate/serrate; stamens 10 , anthers cream or ivory. Pomes: red, subglobose, $8-10 \mathrm{~mm}$ diam., glabrous.

Flowering May-Jun; fruiting Sep-Oct. Open brushy places; $50-350 \mathrm{~m}$. Ont., Que.; R.I., Vt.; local. Reports from Conn., Mass., Me., N.Y., and Wis. should be re-examined.


Figure 1 Herbarium specimen of Crataegus chrysocarpa var phoerucea in frut cropped to enhance detail (1sotype, from Vermont)


Figure 2 Herbarium specimen of Crataegus chrysocarpa vat phoenicea in flower cropped to enhance detall (epitype, from Rhode Island)


Figure 3 (a) inflorescence from part of epitype showing glabrous pedicels and a residual larger type bracteole with all glands sessile (b) Infructescence from part of isotype showing glabrous pedicels and fruit

Crataegus chrysocarpa var. phoenicea, as here elucidated, is similar to typical forms of var. chrysocarpa in stature, leaf shape (Figs.1, 2; +/- ovate or rhombovate with angular lobes), and fruit color (red) but differs by being completely glabrous (Figs. 3a, 3b) and having somewhat less deeply serrate sepals (Fig. 3a). Its larger lower bracteoles are somewhat narrow-elliptic (Fig. 3a) in the manner of the C. flavida Sargent of the C. dodgei group (also ser. Rotundifoliae). However, unlike C. flavida, these bracteoles are not stipitate-glandular in the few flowering specimens seen. Crataegus flavida further differs in its yellow to ruddy fruit color and smaller, differently-shaped leaves, usually broadest in the middle or somewhat beyond. The very rare Crataegus aboriginum Sargent from near Montreal is another similar form, differing in its larger leaves ( $5-6 \mathrm{~cm}$ ) and in having the larger bracteoles stipitate-glandular and the sepals deeply glandular-serrate. These features were also noted by Kruschke (1965).

LITERATURE CITED
Dole, E.J. 1937. Flora of Vermont. Free Press Printing Co., Burlington, Vermont.
Kruschke, E.P. 1965. Contributions to the taxonomy of Crataegus. Milwaukee Public Mus. Public.
Bot. 3: 1-273.

# ROSA SHERARDII DAVIES, AN OVERLOOKED SPECIES IN VERMONT AND NEW TO NORTH AMERICA 

Arthur V. Gilman<br>Gilman \& Briggs Environmental<br>1 Contı Circle, Suite 5<br>Barre, Vermont 05641<br>avglman@together net


#### Abstract

Documentation is provided for the historical and current distribution of Rosa sherardit Davies, a European species of sect. Caninae (dog-roses) that has only recently been reported for North America. Its known distribution is confined to east-central and northeastern Vermont and it is conjectured that it was introduced to the area by early settlers from Scotland. Its identification is discussed and illustrations are provided.


KEY WORDS: Rosa sherardil, Vermont, adventive

Haines (2011) recently reported Sherard's downy rose (Rosa sherardii Davies) from North America, stating that it occurred in Vermont. The report was based on specimens collected or annotated by the current author and joint field visits. This was the first report of this European dog rose species for North America and the purpose of the current article is to present information on the species and its presence on this continent. The species will be treated fully by Dr. Walter Lewis in the Flora of North America.

During fieldwork and review of herbarium specimens for the proposed New Flora of Vermont project, a distinctive rose was encountered that was not readily identified using standard keys and manuals for northeastern North America. Study of European literature (Kláštenský 1968; Graham \& Primavesi 1993) indicated that this entity was Rosa sherardil, and it is now known from a number of sites in four counties in Vermont (Fig. 1). It is not known to occur elsewhere in elsewhere in North America (Walter Lewis, pers. comm.).

Specimens examined. VERMONT. Orleans Co.: Troy: Near Great Falls of the Missisquoi River, 7 Aug 1983, Zıka $7525 a$ (VT). Irasburg: roadside pullout, Vt. Rte. 14 S of the village of Irasburg, 2 Aug 2007, Gilman 07110 (VT). Caledonia Co.: Peacham: along hedgerow and roadside, old hill farm country, East Hill Road, 21 Aug 2005, Gilman 05150 (VT); Hardwick: field edge, bank of Lamoille River, Rte. 15 ca .1 .5 E of the village of Hardwick, 21 July 2009, Gilman 07091 (VT). Groton: under powerlines, Pine Hill Wildlife Management Area, near Topsham Road, 13 June 2010, Gilman 10029 (VT). Washington Co.: Cabot: high land overlooking Joe's Pond, Joe's Pond Road, 13 Sep 2009, Gılman s.n. (VT). Calais: 15 Sep 1969, D. Franklin s.n. (LSC). Calais: 13 Sep 1969, Seymour 27,205 \& Dudey (VT). Marshfield: near junction of Vt. Rte. 232 and Peacham Pond Road, 9 Aug 1999, Gilman 99138 (VT, NEBC); same location, mature fruit, 30 Aug 2003, Gılman 99138 (VT). Plainfield: roadside, Middle Road just N of intersection with Gonyeau Road, 27 Aug 2010, Gilman 10124 (VT). Windsor Co: Bridgewater: 16 July 2001, Atwood 6315 (VT). West Windsor: old pasture/hedgerow, near Spear Cemetery Road, not near dwellings, 8 Aug 2005, Gilman 05098 (VT). Woodstock: Prosper, 28 Aug. 1920, C.McK. Mack 16 June 1921 and E.M. Kittredge 998 and (Herb. Billings-Kittredge).


Figure 1. Distribution of Rosa sherardii in Vermont; placement of dots within counties shows centers of observed abundance and collections.

Rosa sherardii Davies (1813) is a European species of sect. Caninae DC ex Ser., first described from Anglesy, Wales, UK. Smith (1800) had mentioned it as a variety of R. villosa L., the "apple rose," and in his diagnosis, Davies segregated it from R. villosa as follows: "The spines of the branches are larger and more bent; the flowers more numerous, and frequently in the form of an umbel; the fruit smaller, more globular, glossy, and without bristles." It is widespread in northern Europe where it is known from the British Isles east through Scandinavia, Germany, and Poland to

Bulgaria (Kláštenský 1968), while Rosa villosa, also long known as R. pomifera Herrm., has a more southern distribution in Europe and is further distinguished by having, on average, larger leaves and more pubescence (Kláštenský 1968). Early nomenclature in this group of roses is confused, but Smith (1824, pp. 379-380) specifically stated that his (1800) concept of R. villosa was "the common Apple Rose, single or double, of our gardens ... [which] is not found wild in England." Therefore, Davies's diagnosis can be taken at face value, not in relation to some other English downy rose. In cladograms based on molecular (AFLP) analyses (Koopman et al. 2008, Figs. 1, 2), R. sherardii does not cluster closely with $R$. villosa.

Rosa sherardii is unlike any other rose occurring in New England. It forms an arching-erect, tall (ca. 1.5-2 m), loosely patch-forming shrubs with large, bluish-green, moderately but not densely pubescent leaves and single, medium-pink flowers that are ca. 5 cm in diameter (Fig. 2). The best characters for recognition are the presence of reddish-brown, sessile glands with a resinous scent on the abaxial leaf surfaces and large, bright scarlet, plumply ellipsoid to globose hips that are glabrous to only sparsely stipitate-glandular. In anthesis, the style-orifice at the summit of the hypanthium is wide, about $1 / 3$ the diameter of the summit, and the pubescent stigmas collectively form a low dome. A noticeable feature of a vigorous plant in flower or fruit is that the inflorescences are often subtended by sylleptic growth. Although inflorescences in Rosa are usually terminal on branches of the new year (Kalkman 2004), in syllepsis a lateral bud below the inflorescence grows into a leafy shoot that surpasses the inflorescence. Rosa sherardii is especially conspicuous in autumn when fruit is ripe (Fig. 3) and its leaves have fallen - no other rose in our region has such large, conspicuous fruits except Rosa rugosa Thunberg.


Figure 2. Rosa sherardii in bloom; note bluishgreen leaves.


Figure 3. Hips of Rosa sherardii.


Figure 4. Rosa sherardii. Note that the hips, plumply ovate in life, dry to a nearly globose shape and often split when pressed; also note the sylleptic branch that exceeds the infructescence, a common circumstance in this species.

In comparison with locally cultivated Rosa villosa, R. sherardit plants seen in Vermont have leaves that are slightly smaller and that are much less pubescent on the abaxial leaf surfaces and have hips that are less glandular-hispid and that are typically more orange-red (scarlet) than red. The hips are, however, as large as those of cultivated $R$. villosa, contra Davies's original description that the hips are smaller. According to Graham and Primavesi (1993), "there appears to be more regional variation in R. sherardit than in most British wild roses," which may account for this discrepancy.

Few published illustrations of Rosa sherardit are available and only the one in Graham and Primavesi (1993, p. 121) fully shows diagnostic characters. Images published on the Web should be considered unreliable in identification.

Sherard's downy rose forms small, loose thickets and occurs primarily along roadsides, along old stone walls, in hedgerows, and in abandoned pastures in northeastern Vermont (Fig. 1). The general landscape where it occurs can be described as the "old agricultural" landscape of hilly, rural Vermont - where local dirt roads, stone walls, small fields, and widely-spaced houses and homesteads, along with intervening forests and woodlots, reflect two hundred years of agricultural use and rural life. The distribution of this species on the landscape indicates that is reproducing by seed and, while confined to settled areas, most plants are not near old house foundations or actual homesteads. This pattern of distribution indicates that it has been present as an escape from cultivation for some time in northeastern Vermont (Orleans, Caledonia, and Washington counties). In Windsor County, its presence was noted (erroneously as R. tomentosa Sm.) by Kittredge (1931), who stated on her specimen (Kittredge 998 \& Mack), "This rose is found on many of the way hillsides and pastures in Woodstock, Pomfret, and Barnard." That this earliest collection (ca. 1920-1921) should be from Woodstock is doubtless due to botanical effort rather than absence of the species elsewhere, as Kittredge was specifically hired to document the flora of the town (Kittredge 1928).

The best explanation for the presence of this rose in a limited region of northern New England is that was intentionally brought by people for ornament, herbal use, or sentiment. Rehder (1940) indicated that Rosa sherardn was cultivated in North America since 1933 (probably at the Arnold Arboretum near Boston) but no current US sources for it are known to me, so it seems unlikely to have been available in trade. It seems more likely that it was brought to the area for herbal use or for sentimental reason but, even so, its restriction to a small area that was settled relatively late (ca. 1770's-1850's) seems unusual. Most of Vermont was settled from southern New England, where the species is not recorded and if it had originated from there, it would now likely be more widespread throughout Vermont.

A small section of northeastern Vermont, however, was settled directly from Scotland in 1774-1775 (Crockett 1938). The Scotch-American Company settled as many as 40 settlers from Renfrewshire in the Caledonia County town of Ryegate by October 1774 and the neighboring town of Barnet had settlers from Perth and Sterling soon after (op. cit.). These areas in Scotland are well within the range of Rosa sherardu (Graham \& Primavesi 1993) and I conjecture that plants, cuttings, or seeds were brought by these early settlers, or perhaps later by their families, directly from Scotland to Vermont. Such an occurrence is known - the Simpson family East Craftsbury in Orleans County is stated (Carty 1952) to have brought a white rose (of unknown identity) with them from the area of Glasgow, Scotland. The presence of Sherard's downy rose in Windsor County (some 50 miles distant) is not as easily accounted for but the general landscape and rural agricultural patterns are similar to those of the more northern counties, and the species may have passed from hand to hand among the settlers and early descendents. It does not seem, however to have entered widely into gardening traditions in the region. Kittredge mentioned that some large-hipped roses, such as the one she reported (1931) as R. tomentosa, were removed from the landscape to local gardens, but I have not observed any plantings in local gardens or cemeteries, and the current place of $R$. sherardit in the
landscape seems to be largely non-anthropogenic. There is a minor folk use by herbalists and rural residents who gather ripe hips for tea, often drying them for use through the winter.

Reports of Rosa tomentosa Sm. from Vermont (e.g. Dole 1937; USDA, NRCS 2012) are apparently based ultimately on Kittredge's (1931) publication. The specimens (listed above) on which Kittredge's (1931) report was based were originally determined as $R$. tomentosa by P.A. Rydberg at the New York Botanical Garden, but they do not display the dense pubescence and very glandular hips of that species. Rosa tomentosa should be excluded from the flora of Vermont.

## ACKNOWLEDGEMENTS

I thank the curators of VT, LSC, NEBC, and the Billings-Kittredge Herbarium, which is housed at the Marsh-Billings-Rockefeller National Park in Woodstock, Vermont, for providing access to specimens. Dr. Walter Lewis of Washington University in St. Louis examined collections, accompanied me on a field trip to study Rosa sherardit in Washington and Caledonia counties, and commented on the text. Arthur Haines and David Werier also provided valuable comments on the text, and Bill Brumback provided access to certain horticultural literature. Local residents Norman Kennedy, Gail Africa, and Greg Williams provided information about folk use in Scotland and Vermont.

## LITERATURE CITED

Carty, M.D. 1952. Garden traditions of Vermont. Vermont Quarterly: a Magazine of History. New Series 20(2): 71-88. Vermont Historical Society, Montpelier.
Crockett, W.H. 1938. History of Vermont, the Green Mountain State. Fireside Forum Edition. Vermont Farm Bureau. Burlington.
Davies, H. 1818. Welsh Botanology. Published by the author. London. Biodiversity Heritage Library, online at www.biodiversityheritageibrary.org.
Dole. E.J. (ed.). 1937. Flora of Vermont (ed. 3). Free Press Printing Co. Burlington, Vermont.
Graham, GG. and A.L. Primavesi. 1993. Roses of Great Britain and Ireland. Bot. Soc. British Isles. London, UK.
Haines, A. 2011. Flora Novae-Angliae. New England Wild Flower Society. Yale University Press. New Haven, Connecticut.
James, E. 1821. Plants of Middlebury, Vermont. In F. Hall, Statistical Account of the Town of Middlebury. Reprinted in Collections Mass. Hist. Soc., Second Series 9: 147-158. 1822.
Kalkman, C. 2004. Rosaceae. Pp. 343-386 in Kubitzki, K. (ed.), Families and Genera of Vascular Plants, Vol. 6. Springer. Berlin.
Kittredge, E. M. 1928. An unusual herbarium. Vermont Bot. \& Bird Clubs Jt. Bull. 13: 76-81.
Kittredge, E. M. 1931. Ferns and Flowering Plants of Woodstock, Vermont. The Elm Tree Press. Woodstock, Vermont.
Kláštenský, I. 1968. Rosa. Pp. 25-32 in T.G. Tutin et al., Flora Europaea, Vol. 2. Cambridge University Press. Cambridge, UK.
Koopman, W.J.M. and 14 others. 2008. AFLP markers as a tool to reconstruct complex relationships: a case study in Rosa (Rosaceae). Amer. J. Bot. 95: 353-366.
Rehder, A. 1940. Manual of Cultivated Trees and Shrubs hardy in North America (ed. 2). The MacMillan Company. New York.
Seymour, F.C. 1969. The Flora of Vermont (ed. 4). Tuttle Press, Rutland, Vermont.
Smith, J.E. 1800. Flora Brittanica. J. Davis apud J. White. London, UK. Biodiversity Heritage Library, http://www.biodiversityheritagelibrary.org.
Smith, J.E. 1824. The English Flora. Longman, Hurst, Rees, Orme, Brown, \& Green, London. Biodiversity Heritage Library, online at http://www.biodiversityheritagelibrary.org.
USDA, NRCS. 2012. The PLANTS Database (http://plants.usda.gov, 21 March 2012). National Plant Data Team, Greensboro, North Carolina.

# STUDIES OF NEOTROPICAL COMPOSITAE-VI. NEW SPECIES OF EUPATORIEAE FROM BELIZE, HISPANIOLA, AND PERU 

JOHN F. PRUSKI<br>Missour1 Botanical Garden<br>PO Box 299<br>St Louis, Missouri 63166<br>Teodoro Clase G.<br>Jardin Botánico Nacional Dr. Rafael M Moscoso<br>Apartado 21-9<br>Santo Domingo<br>Dominican Republic


#### Abstract

Ageratina nubicola Pruski \& Clase, sp. nov., from Hispaniola, Fleischmannia mayana Pruski, sp. nov., from Belize, and Mikania holmesiana Pruski, sp. nov., from Peru are described and compared to their closest relatives. The genus Carminatia Moc. ex DC. is newly reported in Honduras.


KEY WORDS: Ageratina, Andes, Asteraceae, Belize, Carminatia, Central America, Cerro Tayu, Compositae, Cuba, Dominican Republic, Eupatorieae, Fleischmannia, Greater Antilles, Guatemala, Haiti, Hispaniola, Honduras, Jamaica, Maya Mountains, Mexico, Mikania, Peru, Río Cenepa, South America, West Indies.

The following new species of Ageratma Spach, Fleischmannia Sch. Bip., and Mikania Willd. (Eupatorieae) were each encountered either during routine determination efforts or while filing herbarium specimens. Each novelty described herein is positioned in a genus validated legitimately in the 1800 s, although of these three genera only consistently 4 -flowered monolithic Mikania has been recognized continuously since its inception (King \& Robinson 1987). Although Ageratina and Fleischmannia were resurrected more than four decades ago (King \& Robinson 1970a, 1970b) and differ from Eupatorium L. by glabrous style bases, they are nevertheless still usually thought of as segregates of the Linnaean genus. Perhaps not coincidentally, each of the novelties belongs to a very speciose genus - Ageratma having about 280 species, Fleischmanna about 95 species, and Mikanta about 430 species.

AGERATINA NUBICOLA Pruski \& Clase, sp. nov. Figs. 1-3. Type: DOMINICAN REPUBLIC. Santiago. Municipio San José de Las Matas: Cordillera Central, comunidad Mata Grande, Loma La Hamaca, Parque Nacional Armando Bermúdez, 2500-2600 m, 2 Dec 2001, T. Clase, R. Ramirez, M. Pérez, \& M. Calzada 3188 (holotype: MO; isotype: JBSD).

Fruticosa circiter 1.8 m alta, caules hexagoni distale valde hispido-tomentosi vix resinosi, folia opposita petiolata, lamına $25-45 \times 13-25 \mathrm{~cm}$ elliptico-ovata pinnatim venosa serrulata vel crenulata supra glabra subtus valde sericeo-tomentosa, capitulescentia $3-5 \times 5-6 \mathrm{~cm}$ dense corymbiformi-paniculata, pedunculi $1-3 \mathrm{~mm}$ longi, capitula discoidea 4 3-53 mm alta, involucrum campanulatum $25-35 \mathrm{~mm}$ diam, phyllaria 2seriata subimbricata subaequalia $5-6,2-3 \times 1-15 \mathrm{~mm}$ valde hispido-tomentosa; flosculı diseı $5-8$, corollis $25-$ 3 mm longıs infundibuliformis, tubo glandulifero, lobis $05-0.7 \mathrm{~mm}$ longis, cypselae $16-2 \mathrm{~mm}$ longae, setae pappo $2.5-3 \mathrm{~mm}$ longae


Figure 1. Ageratina nubicola Pruski \& Clase. Photograph of an isotype showing the pinnately veined discolorous leaves sericeous-tomentose abaxially and the densely hispid-tomentose stems, peduncles, and phyllaries. (Clase et al. 3188).

Shrubs ca. 1.8 m tall; stems hexagonal, faces 1 -striate between costae, densely hispidtomentose to proximally densely hirtellous, sometimes very slightly resinous, leafy at anthesis, internodes about half as long as leaves; herbage with simple trichomes, never stipitate-glandular, trichomes antrorse or those of capitulescence branchlets and peduncles often patent. Leaves opposite, petiolate; blade $2.5-4.5 \times 1.3-2.5 \mathrm{~cm}$, elliptic-ovate, thickly chartaceous or subcoriaceous, pinnately veined, 7-9 straight to slightly curving main secondaries per side diverging from midrib at ca. 45$55^{\circ}$, veins not obviously impressed adaxially, surfaces discolorous, adaxial surface green, glabrous, glutinous, abaxial surface ochraceous, densely sericeous-tomentose, base obtuse, margins serrulate to crenulate with 5-11 teeth per side, apex acute; petiole $0.4-0.7 \mathrm{~cm}$ long, densely hispid-tomentose. Capitulescence $3-5 \times 5-6 \mathrm{~cm}$, terminal, tightly corymbiform-paniculate, broadly rounded on top, slightly exserted from subtending leaves, few-bracteolate, branchlets densely hispid-tomentose, bracteoles $1-3 \mathrm{~mm}$ long, lanceolate, densely hispid-tomentose; peduncles $1-3 \mathrm{~mm}$ long, densely hispid-tomentose. Capitula discoid, $4.3-5.3 \mathrm{~mm}$ tall; involucre campanulate, $2.5-3.5 \mathrm{~mm}$ diam., much shorter than florets; phyllaries 2-seriate, subimbricate, subequal to slightly unequal, 5-6, 2-3 $\times$ $1-1.5 \mathrm{~mm}$, elliptic-ovate or outer 1 or 2 elliptic-lanceolate, spreading with age but mostly persistent, stiffly chartaceous, green throughout or distal margins purplish, densely hispid-tomentose, margins not scarious, apex acute to more commonly obtuse to rounded; receptacle flat, epaleate. Disk florets 5-8; corolla $2.5-3 \mathrm{~mm}$ long, funnelform, cream-colored or pinkish, tube ca. 1 mm long, glandular, limb glabrous or lobes sometimes very slightly glandular or setulose, throat longer than lobes, lobes $0.5-0.7 \mathrm{~mm}$ long, triangular-lanceolate, inner surface of lobes papillose-mamillose; anthers $0.7-0.8$ mm long, thecae cordate basally, auricles obtuse, anther collar cell walls (Fig. 2A) weakly beadedthickened, both vertical and transverse endothecial cell walls (Fig. 2B) thickened irregularly, appendages about as long as wide, apex obtuse to rounded; style base cylindrical to slightly dilated, glabrous, branches ca. 1.5 mm long, appendages cylindrical, short-papillose. Cypselae (not fully mature) $1.6-2 \mathrm{~mm}$ long, glandular, also sparsely setose, faces and angles brownish, concolorous, gradually narrowed basally to a narrowly annular carpopodium; pappus bristles many, $2.5-3 \mathrm{~mm}$ long, about as long as corollas, stramineous, scabrid-barbellate.

Distribution and ecology. This apparently regional endemic is known only from the type collection made at 2500-2600 meters elevation on Loma La Hamaca in the north-central Cordillera Central of the Dominican Republic (Fig. 3), about 20 kilometers north of Pico Duarte (elev. 3087 meters), the tallest mountain in the West Indies. Ageratina mubicola occurs in cloud forests (whence the epithet) and is known to flower in December.

Ageratina was included within a broadly defined Eupatorium by Bentham and Hooker (1873) and Robinson (1913). The Colombian species of Ageratma were spread variously among Eupatornum sections Subimbricata and Eximbricata in the key of Robinson (1918). Greene (1903) was the first to circumscribe Ageratina in the broad modern sense (King \& Robinson 1970b) and including both temperate and tropical elements, but he did so under Kyrstenia Necker. However, Necker's Elementa Botanica is listed in the Code (Appendix VI) as an oppressed work, rendering his Kyrstenta invalid and Ageratina as the earliest available generic name. Although Coulter (1895) described Mallinoa J.M. Coult. and M. corymbosa J.M. Coult. (synonyms, respectively, of Ageratina and A. mueller (Sch. Bip. ex Klatt) R.M. King \& H. Rob., fide King \& Robinson 1987) eight years before Greene's work, Coulter was misled by what he interpreted as sagittate anther thecae bases (the thecae bases are actually cordate fide Robinson 1913) and doubtfully ascribed his monotypic Mallmoa to tribe Inuleae, his genus approaching Greene's conglomerate in neither species numbers nor clarity.

The species of Ageratina from Hispaniola were treated by Liogier (1996) within a broadly defined Eupatorium, but Ageratina differs most notably by its phyllaries subequal or nearly so and by its glabrous style base. Among species of Ageratma from Hispaniola, A. nubicola by its pinnately
veined leaves resembles $A$ dictyopreura (Urb) R.M. King \& H Rob, $A$ ilita (Urb) R.M. King \& $H$ Rob, and A whans (Ekman ex Urb ) R M. King \& H Rob Ageratim $\alpha$ nwbicala differs from both $A$ dictyonecura and $A$ clisa by discolorous (vs concolorous) leaves densely tomentose (vs glabrous or glutinous) abaxially and from $A$ whanch by dstally densely haspid-tomentose (vs glabrous to puberulent), weally or non-resinous (vs resinous) stems, densely hspid-tomentose (vs. glabrous) phyllanes, and glancular and sparsely setose (vs glabrous) eypselae As an and to idenafication of $A$ nubicold, we pronde below a key to Hispannolan species of Agerctina


Figure 2 Ageratma mabscala Pruska \& Clase Photographs of anthers and their ceilular detals A Anther base showing cordate thecae with obtuse aurcles and weakly beaded-thickened cell walls (arrow) of the anther collar B Endothectal tissue showng irregularly thickenings on both the vertical and transverse cell walls (Clase et of 3188)

## Key to the species of Ageratina known or expected in Hispaniola

## 1 Leaf blades 3-nerved from near base

2 Peduncles stipitate-glandular (Mexico, weedy in Jamaica, South America, southem Europe, and the paleotropiss, expected in Hispariola) Ageratina adenophora (Spreng) R M King \& H Rob 2. Peduncles not stipitate-glandilar (Bahamas, Mexieo, and in the Greater Antilles in Cuba and Hispamola)

Ageratina havanensis (Kunth) RM King \&H Rob.
1 Leaf blades punately veined
3. Leaf surfaces concolorous, glabrous or gluanous abaxially-

4 Leaves lanceolate to oblanceolate, eypselac cglandular, sctulose (Domoncan Republic and Hata)

Ageratina dictyoneura (Urb ) R M King \& H Rob 4 Leaves ellipte to elliptic-ovate, eypselae glandular, otherwise glabrous (Donmmean Republic and Hati)

Ageratina illita (Urb ) R M King \& H Rob
3. Leaf surfaces discolorous, densely tomentose abaxially
5. Stems densely hispid-tomentose to proximally densely hirtellous, weakly or not resinous; leaf base obtuse, margins serrulate to crenulate with 5-11 teeth per side; phyllaries densely hispidtomentose; cypselae glandular and sparsely setose (Dominican Republic)

Ageratina nubicola Pruski \& Clase
5. Stems glabrous to puberulent, resinous; leaf base broadly obtuse to rounded, margins serrate to crenate with 15-30 teeth per side; phyllaries glabrous; cypselae glabrous (Haiti)

Ageratina urbanii (Ekman ex Urb.) R.M. King \& H. Rob.


Figure 3. Distribution map showing localities of Ageratina nubicola Pruski \& Clase (dot), Fleischmannia mayana Pruski (triangle), and Mikania holmesiana Pruski (bulleted circle).

FLEISCHMANNIA MAYANA Pruski, sp. nov. Figs. 3-6. Type: BELIZE. Western slope of Victoria Peak in the Cockscomb Range of the Maya Mountains, steep rock face, $16^{\circ} 48^{\prime} 43^{\prime \prime}$ N, $88^{\circ} 377^{\prime \prime} 14^{\prime \prime}$ W, $1080 \mathrm{~m}, 18$ Nov 2006, S.W. Brewer \& M. Pau 3349 (holotype: MO; isotypes: BRH, NY).


#### Abstract

Herba procumbens usque 30 cm alta inferne foliata, caules subglabri, folia opposita petiolata, lamina $4-7 \times 5-9 \mathrm{~mm}$ pedata 3-7-lobata basaliter 3-nervata supra sparse hirsuto-pilosa subtus glandulosa subglabra, petiolo 3-7 mm longo, capitulescentia laxe cymosa, pedunculi $7-20(-35) \mathrm{mm}$ long1, capitula discordea $5-6 \mathrm{~mm}$ alta, involucrum campanulatum $5-7 \mathrm{~mm}$ diam, phyllaria 2-3-seriata submbricata aliquantum gradata 2-3× $1.5-2 \mathrm{~mm}$ oblonga glabra, flosculi disci 23-30, corollis 22-23 mm longis campanulatis, tubo $05-06 \mathrm{~mm}$ longo valde nervato, lobis $04-05 \mathrm{~mm}$ longis deltatis frequenter pauciglandulosis, cypselae $12-1.3 \mathrm{~mm}$ longae, setae pappo $8-11,1.4-1.7 \mathrm{~mm}$ longae haud contiguata


Delicate procumbent perennial epipetric herbs rooting at the proximal nodes, with ascending apices, procumbent portion 5-20 cm long, moderately leafy with internodes $0.5-2.2 \mathrm{~cm}$ long, ascending portions $15-30 \mathrm{~cm}$ tall, unbranched below capitulescence, remotely leafy, internodes $3-8 \mathrm{~cm}$ long; stems subglabrous, subterete, striate. Leaves opposite, petiolate; blade (Fig. 5A, E) 4-7 $\times 5-9 \mathrm{~mm}$, pedate, deltate in outline, chartaceous, 3-7-lobed, 3-nerved from very base, the lateral veins usually dichotomous near base, base subtruncate to subcordate, margins broadly and obtusely lobed about $1 / 3-1 / 2$ of the distance to midrib, lobes to ca. 2 mm long, each proximal marginal primary lobe often shallowly 2-parted and more or less directed laterally, central lobe often shallowly 3-parted and lobules more or less directed forward, adaxial surface sparsely hirsute-pilose, abaxial surface glandular, otherwise subglabrous; petiole $3-7 \mathrm{~mm}$ long. Capitulescence $4-7 \times 3-5 \mathrm{~cm}$, openly and laxly cymose, 3-11-capitulate, held well above subtending leaves on basically unbranched leafless stalks, ultimate branches few, subequal; peduncles $7-20(-35) \mathrm{mm}$ long, sparsely hirsutulouspilosulose, 1-3-bracteolate, bracteoles $1.5-3 \mathrm{~mm}$ long, linear-lanceolate. Capitula discoid, 5-6 mm tall; involucre campanulate, $5-7 \mathrm{~mm}$ diam.; phyllaries $12-18$, primary phyllaries $2-3$-seriate, subimbricate to sometimes nearly eximbricate, subequal to slightly graduated with the outer $>1 / 2$ as long as the inner (Fig. 5B), 2-3 $\times 1.5-2 \mathrm{~mm}$, oblong, chartaceous-scarious, bicostate proximally, glabrous, apex obtuse to rounded, a few narrow irregularly disposed ascending to spreading outer phyllaries also typically present; receptacle convex, epaleate. Disk florets $20-23$; corolla 2.2-2.3 mm long, campanulate (Fig. 5C), white (Fig. 5F), glabrous or lobes usually sparsely glandular, tube $0.5-0.6 \mathrm{~mm}$ long, dilated at base, thickly ribbed, limb abruptly ampliate, lobes $0.4-0.5 \mathrm{~mm}$ long, deltate, veins intramarginal, faint, minutely papillose-roughened within; anthers ca. 0.5 mm long, anther collar cell walls (Fig. 6B) densely annulated (transversely banded), both vertical and transverse endothecial cell walls thickened irregularly, apical appendage (Fig. 6A) slightly broader than long, obtuse to broadly rounded at apex; style base cylindrical, glabrous, trunk glabrous, branches $1.3-1.5$ mm long, appendage slightly clavellate. Cypselae $1.2-1.3 \mathrm{~mm}$ long, shorter than corollas, 5 -ribbed, faces and ribs concolorous, black (Fig. 5D) at maturity, glabrous or sometimes sparsely glandular apically, carpopodium ca. 0.1 mm long, stopper-shaped with distinct distal rim, stramineous; pappus of $8-11$ persistent bristles, $1.4-1.7 \mathrm{~mm}$ long, slightly unequal with a few slightly shorter, noncontiguous at base (Fig. 5D), reaching to about base of corolla lobes, stramineous, scabridulous, narrow apically.

Distribution and ecology. This narrow endemic is known only from the type collection made at 1080 meters elevation on moderately steep rock faces in full sun in the Maya Mountains (whence the epithet) in Belize (Fig. 3). Fleischmannia mayana is known to flower only in November and was seen only once during the extensive field work of Steven Brewer, who kindly submitted for identification his collection to the first author.


Figure 4. Fleischmannia mayana Pruski. Photograph of an isotype showing the procumbent stems with leaves mostly proximal. (Brewer \& Pau 3349).

Fleischmannia, by virtue of its type having a pappus of 5 bristles only, was recognized by Bentham and Hooker (1873) and Robinson $(1906,1913)$ as distinct from Eupatorium. Bentham and Hooker (1873) and Robinson (1906, 1913), however, recognized Fleischmannia as containing only two species, whereas King and Robinson (1970a) transferred 50+ species from Eupatorium to a restructured Fleischmannia. Although F. rivulorum (B.L. Rob.) R.M. King \& H. Rob., the generic disposition of which Robinson (1926) said was not "entirely satisfactory," was included in the expanded Fleischmannia sensu King and Robinson (1970a, 1987), all species of either generic concept possess characteristic, albeit not diagnostic, strongly ribbed corolla tubes.


Figure 5 Fleischmannia mayana Pruski A Leaf showing lobing, venation, and glandular abaxial blade surface B Capitulum showing oblong subequal bicostate pnmary phyllanes C Campanulate corolla showing strongly nbbed tube D Cypsela showing 10 pappus bristles non-contiguous basally E Proximal stem leaves F Capitulescence from above (A-D from an sotype, E-F field photographs taken by Steven Brewer, all from Brewer \& Pau 3349)


Figure 6
Fleschmanna mayana Pruski Photographs of anthers and their cellular detals A Anther showing the broad apical appendage with rounded apex B Densely annulated (transversely banded) cell walls (arrow) of the anther collar (Brewer \& Pau 3349)

This new species is referable to Fleischmannia by the thickly ribbed corolla tube character (Fig. 5C), as well as by basally non-contiguous pappus bristles (Fig. 5D), and stopper-shaped carpopodia. The placement of this species in Fletschmannia is supported further by microcharacters of densely annulated anther collar cell walls and minutely papillose-roughened corolla lobe inner surfaces. Although in F. mayana the corollas (Fig. 5C) are clearly campanulate (vs. usually narrowly funnelform) and the anther appendages (Fig. 6A) are slightly broader than long (vs. usually slightly longer than wide), thereby testing the limits of Fleischmannia, other technical generic features (e.g., anther collar cell walls densely annulated and stopper-shaped carpopodia) are not violated.

Among the 30 or so Central American species of Fleischmannia (King \& Robinson 1987; Robinson 1991), F. mayana, by its delicate herbaceous habit, lobed leaves, and laxly cymose capitulescence, keys to (Williams 1976) and vaguely recalls $F$. carletonil (B.L. Rob.) R.M. King \& H. Rob. Fletschmannia carletontt, however, is a totally different Guatemalan and Honduran species with much larger deeply 2-3-pinnately dissected leaves with linear blade segments and cypselae with about 20 basally contiguous pappus bristles. Fleischmannia mayana, by its few non-contiguous pappus bristles and lax paucicapitulate cymose capitulescences, resembles the generitype $F$. arguta (Kunth) B.L. Rob., but $F$. mayana differs by many features not the least of which are the much longer never stipitate-glandular peduncles, fewer and oblong phyllaries, and the campanulate corollas. Balick et al. (2000) listed three species of Fleischmannia occurring in Belize, and among them $F$. blaket (B.L. Rob.) R.M. King \& H. Rob. is similar to the new species in habit and habitat preferences, but not overly similar otherwise. Other Central American openly corymbiform perennial Fleischmannias all are larger plants and basically have non-lobed lanceolate to ovate leaves, thereby differing from F. mayana. Representative species of this group, e.g., F. tmitans (B.L. Rob.) R.M. King \& H. Rob. and F. siderttides (Benth.) R.M. King \& H. Rob., are often epipetric rhyacophilous herbs, and it is perhaps no coincidence that $F$. mayana too is epipetric.

MIKANIA HOLMESIANA Pruski, sp. nov. Figs. 3, 8. Type: PERU. Amazonas. Bagua. Dtto. Imaza: Quebrada Almendra, Cerro Tayu, $5^{\circ} 15^{\prime} 56^{\prime \prime} \mathrm{S}, 78^{\circ} 22^{\prime} 07^{\prime \prime} \mathrm{W}, 1200 \mathrm{~m}, 20 \mathrm{Jul} 2004$, R. Rojas, R. Vasquez, \& R. Apanu 3165 (holotype: MO; isotypes: BAYLU, USM).

Plantae volubiles, caules dense pubescentes vel dense villosi, folia opposita petiolata, lamina 25-63× $1.3-29 \mathrm{~cm}$ lanceolata vel lanceolato-ovata glandulosa, supra pubescentia subtus dense villosa, capitulescentia $5-9 \times 8-10 \mathrm{~cm}$ corymbiform1-paniculata capitula ternata sessilia vel subsessilia; capitula discordea $7-8 \mathrm{~mm}$ alta, involucrum cylindricum circiter 2 mm diam, phyllaria $4-5 \times 0.8-11 \mathrm{~mm}$ lanceolata, bractea subinvolucri $3-5 \times 1-1.8 \mathrm{~mm}$ spatulata vel oblonga, flosculı disci 4 , corollis $3.4-3.9 \mathrm{~mm}$ longis anguste campanulatis, lobis 11-1 2 mm longis late lanceolatis, stylı ramı longe papillosi, cypselae $4-5 \mathrm{~mm}$ longae, setae pappo $35-45 \mathrm{~mm}$ longae

Herbaceous perennial vines to lianas; stems subterete, densely crisped pubescent to densely villous, pith solid. Leaves opposite, petiolate; blade 2.5-6.3 $\times 1.3-2.9 \mathrm{~cm}$, lanceolate to lanceolateovate, stiffly chartaceous, venation arching pinnate from well above base with 1 or 2 pairs of stronger secondary veins usually reaching at least to mid-blade, both surfaces punctate-glandular, the adaxial surface also crisped pubescent, the abaxial surface also densely brownish villous, the base broadly cuneate to obtuse, never decurrent, the margins entire, the apex acute; petiole $0.3-1.3 \mathrm{~cm}$ long. Capitulescence 5-9 $\times 8-10 \mathrm{~cm}$, terminal, corymbiform-paniculate and round on top, central axis and branchlets densely crisped pubescent to densely villosulous, ultimately of ternate clusters of sessile or subsessile capitula; peduncles (when present subtending some lateral capitula) to ca. $1(-2) \mathrm{mm}$ long, densely crisped pubescent. Capitula discoid, $7-8 \mathrm{~mm}$ tall; involucre cylindrical, ca. 2 mm diam., commonly large-bracteate or subinvolucrate; phyllaries 4, 4-5 $\times 0.8-1.1 \mathrm{~mm}$, in fruit reaching only to the corolla tube, lanceolate, stiffly chartaceous, apices obtuse to rounded, the outer 2 phyllaries crisped-puberulent to villosulous, the inner 2 crisped puberulent medially or distally; subinvolucral
bract 1 per capitulum, ascending, $3-5 \times 1-1.8 \mathrm{~mm}, 1 / 2$ the length to as long as involucre, spatulate to oblong, herbaceous, apex acute to obtuse, abaxial surface crisped-puberulent to villosulous, also sparsely punctate-glandular. Disk florets 4 ; corolla $3.4-3.9 \mathrm{~mm}$ long, well-exserted (at least in fruit) from involucre, shorter than mature fruits, narrowly campanulate, sparsely setulose at tube-throat juncture and on lobe apex, tube $1.1-1.2 \mathrm{~mm}$ long, never longer than the limb, throat $1.2-1.5 \mathrm{~mm}$ long, lobes $1.1-1.2 \mathrm{~mm}$ long, broadly lanceolate, erect, slightly shorter than to about as long as the throat; anthers $1.5-1.6 \mathrm{~mm}$ long, stramineous, rounded basally; style branches to ca .2 mm long, appendage long-papillose, papillae $0.05-0.1 \mathrm{~mm}$ long, nectary annular, $0.2-0.3 \mathrm{~mm}$ long. Cypselae $4-5 \mathrm{~mm}$ long, at maturity about as long as phyllaries, thus the persistent corolla then almost fully exserted from involucre, sparsely setulose to subglabrous; pappus bristles many, $3.5-4.5 \mathrm{~mm}$ long, usually slightly shorter than the cypselae, pale brown.

Paratypes: PERU. Amazonas. Bagua. Dtto. Imaza: Tayu Mujaji, Comunidad de Wawas, vegetación pequeña hasta 1.5 m de alto, $900 \mathrm{~m}, 23$ Oct 1997, Vásquez, Awanash, \& Pitug 24677 (MO); Tayu Mujaji, bosque primario, $900-1030 \mathrm{~m}, 17 \mathrm{Feb} 2002$, Vásquez 27609 (MO).

Distribution and ecology. Mikania holmesiana is a vine known only from three collections (two of these basically sterile) from 900-1200 meters elevation on the upper slopes and summit of Cerro Tayu (Tayu Mujaji), an isolated sandstone mountain in Dpto. Amazonas in northern Peru (Fig. 3). Mikanta holmestana is known to be in late flower and early fruit in July and appears to grow on rocky soil.

Etymology. It is truly a pleasure to name Mikanta holmestana for my (jp) good friend and native Louisianan (Holmes 1990b) Dr. Walter C. Holmes, the world authority on taxonomy of Mikania. Walter was party to the naming of M. pruskii H. Rob. \& W.C. Holmes and is very deserving of being commemorated similarly. Mikania holmesiana is validated herein so that the name may be used in Walter's revision of M. guaco-parviflora species group, which he has otherwise completed.

Mikanta, recognized by its 4 -flowered capitula and its usually vining habit, is an Americancentered genus of about 430 species, with $350+$ species being South American endemics. The Peruvian species of Mikania were revised by Holmes and McDaniel (1982), who recognized 75 species. More recently, Pruski (2010) credited 88 species of Mikania to Peru. Mikania holmestana is described from sandstone Cerro Tayu in the eastern Andes of northern Peru, immediately outside the region covered by Pruski (2010), raising to 89 the number of Peruvian Mikanias counted by the first author.

Mikanta holmestana fits well within the M. guaco-parveflora species group originally circumscribed by Robinson (1922a), a group recognized by sessile ternately disposed capitula (Fig. 7A-C) and long-papillose style branch appendages (Walter Holmes, pers. comm.). Indeed, in the treatments of Peruvian Mikanias by Holmes and McDaniel (1982) and Pruski (2010), M. holmestana keys to the M. guaco-parvfflora species group. Species of this group are routinely keyed out together, as done elsewhere by Robinson (1922b), Holmes (1990a), Pruski (1990, 1997, 2002), and Robinson and Holmes (2008). Within this species group, M. holmestana seems most similar by its large broad subinvolucral bracts more than half as long as the phyllaries to M. trintaria DC . and especially to $M$. parviflora (Aubl.) H. Karst., but it differs from each in herbage vestiture and floral details.

Mikania parviflora is remarkably consistent morphologically throughout its range, having stems subglabrous to puberulent with subappressed trichomes, adaxial leaf surfaces glabrous or nearly so, deltate corolla lobes much shorter than throat, and fruits included within the involucres. Hurtado \& Alvarado 496, referred to M. parviflora by Robinson and Holmes (2008) by ternate large-bracteate
capitula and deltate corolla lobes, has husute vestiture and is on the periphery of $M$ parvflora's sphere, it too perhaps represents yet another undescribed taxon Mikama holmestana differs from $M$ parviflona (and from Hurtado \& Alvanado 496 as well) by its densely pubescent herbage with cnisped trichomes, lanceolate corolla lobes nearly as long as the throat, phyllanes $4-5$ (vs 6-8) mm long, mature fiuts often longer than corollas and about as long as phyllaries, and by corollas well-exserted (at least in fruit) from involucre Additionally, $M$ parvfilora is centered in Amazonua where it occurs mostly at low elevations (Pruski 1997), whereas $M$ holmesiana occurs at 900-1200 meters elevation in the eastern Andes Mikania holmesiana thus sticks out like a sore thumb from the well-delimited M parviflora


Figure 7 Representative capitulescences of the Mikama guaco-parvzflora species group showing the ternately disposed terminal clusters of caprtula A Mikana guaco Bonpl showing small subinvolucral bracts B Rounded capitulescence of Mikanta guaco showing the clusters of capitula in concentric bands (Peru, Loreto, Puente Itaya, km 56 carretera Iquitos-Nauta Pruskr, Ortiz, \& Amastfiten 4346) C Lateral capitulescences of Mikanua speciosa DC (Peru, Pasco, Oxapampa, Cordillera Yanachaga, Quebrada San Alberto Pruska, Ortz, Castillo, \& Rivera 4393) (A from Pruski 2002, B-C field photographs taken by John Pruski)


Figure 8. Mikania holmesiana Pruski. Photograph of an isotype showing densely pubescent to densely villous stems, long-bracteate capitula in ternate clusters, and corollas well-exserted from involucres. (Rojas et al. 3165).

Another close congener of M. holmesiana with moderately large-bracteate capitula, found among species in the long-lobed corolla lead in the keys to the M. guaco-parviflora species group in Robinson (1922a), Holmes and McDaniel (1982), and Pruski $(1990,1997)$ is M. trinitaria. Mikania trinitaria is a puberulent to glabrate plant with corolla lobes very much longer than the short throats, thereby clearly differing from M. holmesiana. Similar to M. holmesiana in the capitulescence structure with ultimate capitula ternately clustered and by proportionally long subinvolucral bracts are Venezuelan M. steyermarkii R.M. King \& H. Rob. and western Amazonian (Bolivia, Brazil, Ecuador, and Peru) M. stygia B.L. Rob. However, each M. steyermarkii and M. stygia differs from M. holmesiana in vestiture of the herbage, by proportionally short corolla lobes, and by smooth to shortpapillose style branches, the latter character used by Walter Holmes (pers. comm.) to technically exclude both M. steyermarkii and M. stygia from the M. guaco-parviflora species group.

Carminatia recondita McVaugh, Contr. Univ. Michigan Herb. 9: 384. 1972. (Fig. 9).
Voucher: HONDURAS. Copán: Open pinares on hillside above CA11, ca. 5 km W of Ruinas de Copán and ca. 5 km E of El Florido at border with Guatemala, $14^{\circ} 50^{\prime} 23^{\prime \prime} \mathrm{N}, 89^{\circ} 11^{\prime} 08^{\prime \prime} \mathrm{W}, 795 \mathrm{~m}$, 15 Nov 2008, Pruski, Vega, Ortiz, \& Jiménez 4535 (EAP, USCG).


Figure 9. Carminatia recondita McVaugh. Photograph showing the nodding cylindrical capitula. (Guatemala, hillsides SSW of Lago de Amatitlán, 5 km NE of Volcán Pacaya: Pruski, MacVean, \& MacVean 4505).

The three species of Carminatio are annual herbs and recognized by their interrupted spiciform capitulescences with clusters of narrowly cylindrical few-flowered capitula and by cypselae with a plumose pappus. While botanizing a few years ago, we collected C. recondita on both sides of the Guatemala-Honduras border. Neither the genus nor species, however, were reported for Honduras by McVaugh (1972), Williams (1976), King and Robinson (1987), Turner (1997), or Nelson Sutherland (2008). This marks the first report of Carminatia Moc. ex DC. and C. recondita in Honduras. Because Williams (1976) noted only C. tenufflora DC. in Guatemala and because of the overall similarity among species of Carmnatia, it seems useful to supplement this Honduran record with a field photograph (Fig. 9) showing the diagnostic nodding capitula of $C$. recondita. Carminatia recondita is further distinguished from $C$. tenufflora by narrowly funnelform corollas $0.7-1 \mathrm{~mm}$ diam. apically and cypselae $\geq 5.5 \mathrm{~mm}$ long (McVaugh 1972; Turner 1997). Plants of C. recondita at the locality in Honduras were scattered in pine forests and not at all uncommon.

## ACKNOWLEDGEMENTS

We thank Walter Holmes (BAYLU), Guy Nesom, and Rosa Ortiz (MO) for reviewing the manuscript and Guy and Rosa for helping the first author prepare for publication the photographs and map. We also thank Monica Carlsen (MO) and Cynthia Hong-Wa (MO) for helpful advice, and Carlos Amasifuen (AMAZ), Gina Castillo (HOXA), Ricardo García (JBSD), Francisco Jiménez (JBSD), Jorge Jiménez (USCG), AnaLu MacVean (UVAL), Rosa Ortiz (MO), Sofia Ortiz (USCG), Rigoberto Rivera (HOXA), Iván Valdespino (PMA), Rodolfo Vásquez (HOXA), and José Juan Vega (USCG) for helping with field work in the Dominican Republic, Guatemala, Honduras, and Peru. The first author thanks Steven W. Brewer for kindly sending material for determination and for allowing us to use his field photographs, and Walter Holmes for confirming that Mikanta holmestana is previously undescribed and new to science.

## LITERATURE CITED

Balick, M.J., M.H. Nee, and D.E. Atha. 2000. Checklist of the vascular plants of Belize. Mem. New York Bot. Gard. 85: ix +1-246.
Bentham, G. and J.D. Hooker. 1873. Genera Plantarum, Vol. 2. Reeve \& Co., London.
Coulter, J.M. 1895. New or noteworthy Compositae from Guatemala. Bot. Gaz. 20: 41-53 + plates 5-6.
Greene, E.L. 1903. Neglected Eupatoriaceous genera. Leafl. Bot. Obs. Crit. 1: 7-13.
Holmes, W.C. 1990a. The genus Mikania (Compositae - Eupatorieae) in Mexico. Sida Bot. Misc. 5: iv $+1-45$.
Holmes, W.C. 1990b. Flore Louisiane: an ethno-botanical study of French-speaking Louisiana. Center for Louisiana Studies, University of Southwestern Louisiana, Lafayette.
Holmes, W.C. and S. McDaniel. 1982. Family Compositae: Part III. Genus Mikania - Tribe Eupatorieae in J.F. Macbride \& Collaborators, Flora of Peru. Fieldiana, Bot., n.s., 9: vii + 156.

King, R.M. and H. Robinson. 1970a. Studies in the Eupatorieae (Compositae). XVIII. New combinations in Fleischmannia. Phytologia 19: 201-207.
King, R.M. and H. Robinson. 1970b. Studies in the Eupatorieae (Compositae). XIX. New combinations in Ageratina. Phytologia 19: 208-229.
King, R.M. and H. Robinson. 1987. The genera of Eupatorieae (Asteraceae). Monogr. Syst. Bot. Missouri Bot. Gard. 22: ix + 1-581.
Liogier, A.H. 1996. La Flora de la Española, Vol. VIII. Universidad Central del Este, vol. 72, Ser. Ci. 29: 1-588. San Pedro de Macorís, República Dominicana.

McVaugh, R. 1972. Compositarum Mexicanarum Pugillus. Contr. Univ. Michigan Herb. 9: 359484.

Nelson Sutherland, C.H. 2008. Catálogo de las Plantas Vasculares de Honduras. SERNA, Tegucigalpa.

Pruski, J.F. 1990. Compositae of the Guayana Highland-III. Additions to Imeria and Mikania (Eupatorieae). Mem. New York Bot. Gard. 64: 239-247.
Pruski, J.F. 1997. Asteraceae. Pp. 177-393 in J.A. Steyermark et al. (eds.), Flora of the Venezuelan Guayana, Vol. 3, Araliaceae-Cactaceae. Missouri Botanical Garden, St. Louis.
Pruski, J.F. 2002. Asteraceae (Composite Family). Pp. 93-116 + plate 21 in S.A. Mori, G. Cremers, C.A. Gracie, J.-J. de Granville, S.V. Heald, M. Hoff, and J.D. Mitchell, Guide to the vascular plants of central French Guiana. Part 2. Dicotyledons. Mem. New York Bot. Gard. 76, part 2.
Pruski, J.F. 2010. Asteraceae Bercht. \& J. Presl (Compositae Giseke, nom. alt. et cons.). Pp. 339 420 in R. Vasquez M. et al. (eds.), Flora del Río Cenepa, Amazonas, Perú, Vol. 1. Monogr. Syst. Bot. Missouri Bot. Gard. 114.
Robinson, B.L. 1906. Studies in the Eupatorieae. Proc. Amer. Acad. Arts 42: 3-48.
Robinson, B.L. 1913. A generic key to the Compositae-Eupatorieae. Proc. Amer. Acad. Arts 49: 429-437.
Robinson, B.L. 1918. A descriptive revision of the Colombian Eupatoriums. Proc. Amer. Acad. Arts 54: 264-330.
Robinson, B.L. 1922a. Records preliminary to a general treatment of the Eupatorieae-I. Contr. Gray Herb. 64: 3-21.
Robinson, B.L. 1922b. The Mikanias of northern and western South America. Contr. Gray Herb. 64: 21-116.
Robinson, B.L. 1926. Records preliminary to a general treatment of the Eupatorieae-VI. Contr. Gray Herb. 77: 3-62.
Robinson, H. 1991. Two new species of Fleischmannia from Mesoamerica (Eupatorieae: Asteraceae). Phytologia 71: 181-183.
Robinson, H. and W.C. Holmes. 2008. 190(3). Compositae-Eupatorieae. Flora of Ecuador 83: 1347.

Turner, B.L. 1997. The Comps of Mexico. A systematic account of the family Asteraceae, Vol. 1. Eupatorieae. Phytologia Mem. 11: iv + 1-272.
Williams, L.O. 1976. Flora of Guatemala: tribe II. Eupatorieae. Fieldiana, Bot. 24(12): 32-128, 466-482.

# NEWLY REQUIRED INFRAFAMILIAL NAMES MANDATED BY CHANGES IN THE CODE OF NOMENCLATURE FORALGAE, FUNGI AND PLANTS 

JAMES L. REVEAL<br>L. H Bailey Hortornum<br>Department of Plant Biology<br>Cornell University, Ithaca, NY 14853-4301<br>e-mall jlr326@comell edu


#### Abstract

A recent change in the botanical code that gave priority to infrafamilial names based on conserved family names now requires adoption of a series of names either unused or not yet validatedly published. Accordingly, the following new names are proposed: Asteranthoideae (replaces Foetidoideae), Dialypetalantheae (replaces Condamineeae), Dialypetalanthoideae (replaces Ixoroideae), Heterophyxidoideae (replaces Psiloxyloideae), Limonieae (replaces Armerieae), and Limonioideae (replaces Staticoideae). The names Bretschneideroideae, Cochlospermoideae, Cyanastroideae, Desfontainioideae, Diclidanthereae, Gonystyleae, Hoplestigmateae, Hydrophyllinae, Julianieae, Malinae, Medusagynoideae, Olinioideae, Orchidinae, Petrosavioideae, Rhoipteleoideae, Samydoideae, Scyphostegioideae, Stemonoideae, Tecophilaeoideae, Theoideae, Thurnieae, Trichopoideae and Xanthorrhoeoideae are validated. All infrageneric names of conserved family names above the rank of genus are listed; such names now function as if they are conserved over earlier names of the same rank based on a non-conserved family name.


KEY WORDS: nomenclature, conserved family names, Asteranthoideae, Bretschneideroideae, Cochlospermoideae, Cyanastroideae, Desfontainioideae, Dialypetalantheae, Dialypetalanthoideae, Diclidanthereae, Gonystyleae, Heterophyxidoideae, Hoplestigmateae, Hydrophyllinae, Julianieae, Limonieae, Limonioideae, Malinae, Medusagynoideae, Olinioideae, Orchidiinae, Petrosavioideae, Rhoipteleoideae, Samydoideae, Scyphostegioideae, Stemonoideae, Theoideae, Thurnieae, Trichopoideae, Xanthorrhoeoideae

During the Nomenclature Session at the 2011 Botanical Congress in Melbourne a provision was proposed and supported by individuals wishing to establish Maloideae (1968) as an available subfamily name within Rosaceae instead of Spiraeoideae (1832), the earliest available name at that rank, for a taxon circumscribed to include the genus Mahus. That it was necessary to then conserve Malaceae over Amygdalaceae (Gunner et al. 2011) seems to have been unknown to the supporters, and one might also assume they were equally unaware of the impact their proposal had on other names long in use and well-established in the literature. To conform to the new provision in the Code, the following names are established.

Asteranthoideae Reveal, subfam. nov., based on Asteranthaceae R. Knuth in H.G.A. Engler \& K.A.E. Prantl, Pflanzenr. 105: 1. 22 Aug 1939, nom. cons. - T: Asteranthos Desf. (1820). Lecythidaceae - NOTE: This name replaces Foetidoideae Engl., Syllabus, ed. 1: 146. Apr 1892.

Bretschneideroideae Reveal, subfam. nov., based on Bretschneideraceae Engl. \& Gilg, Syllabus, ed. 9-10: 218.6 Nov 1924, nom. cons. - T: Bretschnetdera Hemsl. (1901). - Akaniaceae
Cochlospermoideae Takht. ex Reveal, subfam. nov., based on Cochlospermaceae Planch. in London J. Bot. 6: 305. Jun-Jul 1847, nom. cons. - T: Cochlospermum Kunth, nom. cons. (1822). Bixaceae

Cyanastroideae Engl. ex Reveal, subfam. nov., based on Cyanastraceae Engl., Bot. Jahrb. Syst. 28: 357. 22 Mai 1900, nom. cons. - T: Cyanastrum Oliv. (1891). - Tecophilaeaceae

Desfontainioideae Hegnauer ex Reveal, subfam. nov., based on Desfontainiaceae Endl. ex Pfeiff., Nomencl. Bot. 1: 1037. 3 Oct 1873, nom. cons. - T: Desfontainia Ruiz \& Pav. (1794). Columelliaceae
Dialypetalantheae Reveal, trib. nov., based on Dialypetalanthaceae Rizzini \& Occhioni in Lilloa 17: 253. 30 Dec 1948, nom. cons. - T: Dialypetalanthus Kuhlm. (1925). - Rubiaceae - NOTE: Condamineeae Benth. \& Hook.f., Gen. Pl. 2: 12. 7-9 Apr 1873.
Dialypetalanthoideae Reveal, subfam. nov., based on Dialypetalanthaceae Rizzini \& Occhioni in Lilloa 17: 253. 30 Dec 1948, nom. cons. - T: Dialypetalanthus Kuhlm. (1925). - Rubiaceae NOTE: This name replaces Ixoroideae Raf. in Ann. Gén. Sci. Phys. Bruxelles 6: 84. 1820.
Diclidanthereae Reveal, trib. nov., based on Diclidantheraceae J. Agardh, Theoria Syst. Pl.: 195. Apr-Sep 1858, nom. cons. - T: Dichdanthera Mart. (1827). - Polygalaceae - NOTE: This name replaces Moutabeeae Chodat in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 4: 329. Jul 1896.

Gonystyleae Reveal, trib. nov., based on Gonystyloideae Domke, Biblıoth. Bot. 111:33. 31 Dec 1934. - Type: Gonystylus Teijsm. \& Binn. (1862). - Thymelaeaceae
Heterophyxidoideae Reveal, subfam. nov., based on Heteropyxidaceae Engl. \& Gilg in H.G.A. Engler, Syllabus, ed. 8: 281. Jan-Feb 1920, nom. cons. - T: Heteropyxis Harv., nom. cons. (1863). - Myrtaceae - NOTE: This name replaces Psiloxyloideae Schmid in Taxon 29: 559. 14 Nov 1980.
Hoplestigmateae Reveal, trib. nov., based on Hoplestigmataceae Gilg in H.G.A. Engler \& E.F. Gilg, Syllabus, ed. 9-10: 322. 6 Nov 1924, nom. cons. - T: Hoplestigma Pierre (1899). Boraginaceae
Hydrophyllinae Reveal, subtrib. nov., based on Hydrophylleae Rchb., Fl. Germ. Excurs. 1(3): 347. Jul-Dec 1831. - Type: Hydrophyllum L. (1753). - Boraginaceae

Julianieae Reveal, trib. nov., based on Julianiaceae Hemsl., J. Bot. 44: 379. Oct 1906, nom. cons. - Type: Juliania Schltdl., nom. tlleg. (1844, non La Llave \& Lex., $1825 \equiv$ Amphipterygium Schiede ex Standl., 1923). - Anacardiaceae
Limonieae Reveal, subfam. nov., based on Limoniaceae Ser., Fl. Pharm.: 456. 1851, nom. cons. - T: Limonium Mill., nom. cons. (1754). - Plumbaginaceae - NOTE: This name replaces Armerieae Dumort., Anal. Fam. Pl.: 27. 1829.
Limonioideae Reveal, subfam. nov., based on Limoniaceae Ser., Fl. Pharm.: 456. 1851, nom. cons. T: Limonium Mill., nom. cons. (1754). - Plumbaginaceae - NOTE: This name replaces Staticoideae Burnett, Outl. Bot.: 1028, 1095, 1101. Feb 1835.
Malinae Reveal, subtrib. nov., based on Malaceae Small, Fl. S.E. U.S.: 529. 22 Jul 1903, nom. cons. - T: Malus Mill. (1754). - Rosaceae

Medusagynoideae Reveal, subfam. nov., based on Medusagynaceae Engl. \& Gilg, Syllabus, ed. 910: 280. 6 Nov 1924, nom. cons. - T: Medusagyne Baker (1877). - Medusagynaceae
Olinioideae Reveal, subfam. nov., based on Oliniaceae Harv. \& Sond., Fl. Cap. 2: ix. 15-31 Oct 1862, nom. cons. - T: Olma Thunb. (1800). - Penaeaceae
Orchidinae Dressler \& Dodson ex Reveal, subtrib. nov., based on Orchidaceae Juss., Gen. Pl.: 64. 4 Aug 1789, nom. cons. - T: Orchis L. (1753). - Orchidaceae - NOTE: Although this name is widely used, it has yet to be validated.
Petrosavioideae Reveal, subfam. nov., based on Petrosavieae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr.: 71, 72. Jul 1897. - Type: Petrosavia Becc. (1871). Petrosaviaceae
Rhoipteleoideae Reveal, subfam. nov., based on Rhoipteleaceae Hand.-Mazz., Repert. Spec. Nov. Regni Veg. 30: 75. 15 Feb 1932, nom. cons. - T: Rhoiptelea Diels \& Hand.-Mazz. (1932). Juglandaceae

Samydoideae Reveal, subfam. nov., based on Samydaceae Vent., Mém. Cl. Sci. Math. Inst. Natl. France 1807(2): 149. 1808. - Type: Samyda Jacq. (1760). - Salicaceae
Scyphostegioideae Reveal, subfam. nov., based on Scyphostegiaceae Hutch., Fam. Fl. Pl. 1: 229.15 Jan 1926, nom. cons. - Type: Scyphostegıa Stapf (1894). - Salicaceae
Stemonoideae Reveal, subfam. nov., based on Stemonaceae Caruel, Nuovo Giorn. Bot. Ital. 10: 94. Apr 1878, nom. cons. - Type: Stemona Lour. (1790). - Stemonaceae
Tecophilaeoideae Reveal, subfam. nov., based on Tecophilaeaceae Leyb., Bonplandia 10: 370. Dec 1862, nom. cons. - T: Tecophtlaea Bertero ex Colla (1836). - Tecophilaeaceae
Theoideae Reveal, subfam. nov., based on Theeae Szyszyl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 6: 180, 181. Mai 1893. - T: Thea L. (1753).
Thurnieae Reveal, trib. nov., based on Thurniaceae Engl., Syllabus, ed. 5: 94. 20-22 Jul 1907, nom. cons. - T: Thurnia Hook.f. (1883). - Thurniaceae
Trichopoideae Reveal, subfam. nov., based on Trichopodaceae Hutch., Fam. Fl. Pl. 2: 143. 20 Jul 1934, nom. cons. - T: Trichopus Gaertn. (1788). - Dioscoreaceae
Xanthorrhoeoideae Reveal, subfam. nov., based on Xanthorrhoeeae Benth, Fl. Austral. 7: 93, 112. 23-30 Mar 1878. - T: Xanthorrhoea Sm. (1798). - Hemerocallidaceae

The basic rule, that infrafamilial names of conserved families above the rank of genus have priority over earlier names based on non-conserved families names, essentially renders a series of names effectively conserved even though conservation in a strict sense is not authorized by the current code of nomenclature for algae, fungi, and plants (McNeill et al. 2006; McNeill \& Turland 2011; McNeill \& al. 2011) for names at these ranks. A distinct advantage of the approved proposal, however, is that the use of a single generic stem for all infrafamilial ranks for the majority of conserved family names is now mandated, a tradition long established in botanical nomenclature (e.g., Magnoliaceae, Magnolioideae, Magnolieae, Magnoliinae) even if there exists an earlier name. Nonetheless, the resulting nomenclature of any given family can be significantly altered when two or more conserved family names are included within a single family. For example, if Dialypetalanthaceae is excluded from Rubiaceae, a large and well-known subfamily of Rubiaceae must be termed Ixoroideae (1820), but if included, as now is the case (Reveal \& Chase 2011), then the name of this taxon must be if Dialypetalanthoideae. Proper assignment of infrafamilial names to some of the large and complex families, such as Malvaceae, can only be done with a clear understanding of the phylogeny of the family so as to ascertain if some long-used, traditional name might have to be changed. One example of an unfortunate change mandated by this new rule is the required adoption of Ambrosieae over Heliantheae in Asteraceae. Finally, it is critical to take into account superconservation notes in App. IIB of the current Code, for only by consulting this document will one realize that Maloideae (1964) has priority overe Amygdaloideae (1832).

Below is a listing of subfamily, supertribe, tribe, and subtribe names based on conserved family names. For a full list of conserved family names in App. IIB see McNeill et al. (2006).

Abietaceae Gray, Nat. Arr. Brit. Pl. 2: 222, 223. 10 Jan 1822, nom. cons.
Abieteae Dumort., Fl. Belg.: 9. 1827
Abietinae Eichler in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. II, 1: 65, 69. Jun 1887
Abietoideae Sweet, Hort. Brit.: 372. Sep-Oct 1826
Acanthaceae Juss., Gen. Pl.: 102. 4 Aug 1789, nom. cons.
Acantheae Dumort., Anal. Fam. Pl.: 23. 1829
Acanthinae Nees in N. Wallich, Pl. Asiat. Rar. 3: 76. 15 Aug 1832
Acanthoideae Eaton, Bot. Dict., ed. 4: 33. Apr-Mai 1836
Aceraceae Juss., Gen. Pl.: 250. 4 Aug 1789, nom. cons.
Acereae Dumort., Fl. Belg.: 113. 1827

Aceroideae Eaton, Bot. Dict., ed. 4: 39. Apr-Mai 1836
Achariaceae Harms in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr: 256. 4 Oct 1897, nom. cons.
Acharieae Benth. \& Hook.f., Gen. Pl. 1: 809. Sep 1867
Actinidiaceae Engl. \& Gilg, Syllabus, ed. 9-10: 279. 6 Nov 1924, nom. cons.
Actinidieae Gilg in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 6: 110. Mar 1893
Actinidioideae Gilg in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 6: 110. Mar 1893
Adiantaceae Newman, Hist. Brit. Ferns: 5. 1-5 Feb 1840, nom. cons.
Adianteae Gaudich. in H.L.C. de Saulces de Freycinet, Voy. Uranie, Bot.: 402. 18 Jul 1829
Adiantinae Pfeiff., Nomencl. Bot. 1(1): 46. ante 8 Dec 1871
Adiantoideae Horvát in Acta Bot. Inst. Bot. Univ. Zagreb. 2: 114. 1927
Adoxaceae E. Mey., Preuss. Pfl.-Gatt.: 198. 1-7 Sep 1839, nom. cons.
Adoxeae Dumort., Fl. Belg.: 84. 1827
Adoxoideae Syme in J.E. Smith \& J. Soweby, Engl. Bot., ed. 3(B), 4: 197. 1865
Aextoxicaceae Engl. \& Gilg in H.G.A. Engler, Syllabus, ed. 8: 250. Jan-Feb 1920, nom. cons. Aextoxiceae Baill., Hist. Pl. 2: 491, 493. 1870
Agavaceae Dumort., Anal. Fam. Pl.: 57, 58. 1829, nom. cons. Agaveae Dumort., Anal. Fam. Pl.: 58. 1829
Agavoideae Herb., Amaryllidaceae: 48, 57, 67, 121. late Apr 1837
Aizoaceae Martinov, Tekhno-Bot. Slovar: 15. 3 Aug 1820, nom. cons.
Aizoeae Rchb., Fl. Germ. Excurs. 2(2): 575, 586. 1832
Aizoinae K. Müll. in Bot. Jahrb. Syst. 42(Beibl. 97): 94. 29 Dee 1908
Aizooideae Spreng. ex Arn., Botany: 112. 9 Mar 1832
Alangiaceae DC. in D.F.L. von Schlechtendal, Linnaea 2: 505. Aug-Oct 1827, nom. cons. Alangieae Horan., Char. Ess. Fam.: 137. 17 Jun 1847 Alangioideae Burnett, Outlines Bot.: 723, 1092, 1134. Feb 1835
Alismataceae Vent., Tabl. Règne Vég. 2: 157. 5 Mai 1799, nom. cons.
Alismateae Dumort., Fl. Belg.: 135. 1827
Alismatinae Pichon in Notul. Syst. 12: 181. Feb 1946
Alismatoideae Arn., Botany: 136. 9 Mar 1832
Alliaceae Borkh., Bot. Wörterb. 1: 15. 1797, nom. cons.
Allieae Dumort., Fl. Belg.: 139. 1827
Alliinae Parl., Fl. Ital. 2: 510. 1852
Allioideae Herb., Amaryllidaceae: 48. late Apr 1837
Alsinaceae Bartl. in F.G. Bartling \& H.L. Wendland, Beitr. Bot. 2: 159. Dec 1825, nom. cons.
Alsineae Lam. \& DC., Syn. Pl. Fl. Gall.: 392. 30 Jun 1806
Alsinoideae Beilschm. in Flora 16(Beibl. 7): 92, 110. 14 Jun 1833
Alstroemeriaceae Dumort., Anal. Fam. Pl.: 57, 58. 1829, nom. cons.
Alstroemerieae Bernh. in Flora 23: 425. 21 Jul 1840
Alstroemerioideae Herb., Amaryllidaceae: 87. late Apr 1837
Altingiaceae Horan., Osnov. Bot: 271. 1841, nom. cons.
Altingieae Rchb., Fl. Germ. Excurs. 1(2): 162. Jan-Apr 1831
Altingioideae J. Williams in J.H. Balfour, Man. Bot., ed. 3: 524. 1855
Amaranthaceae Juss., Gen. Pl.: 87. 4 Aug 1789, nom. cons.
Amarantheae Rchb., Fl. Germ. Excurs. 2(2): 575, 583. 1832
Amaranthinae Fenzl in S.F.L. Endlicher, Gen. Pl.: 303. Oct 1837
Amaranthoideae Burnett, Outlines Bot.: 591, 593, 1091, 1142. Feb 1835
Amaryllidaceae J. St.-Hil., Expos. Fam. Nat. 1: 134. Feb-Apr 1805, nom. cons.
Amaryllideae Dumort., Anal. Fam. Pl.: 58. 1829
Amaryllidinae Walp., Ann. Bot. Syst. 3: 616. 28-29 Sep 1852
Amaryllidoideae Burnett, Outlines Bot.: 446. Feb 1835

Ambrosiaceae Bercht. \& J. Pres1, Přir. Rostlin: 254. Jan-Apr 1820, nom. cons.
Ambrosieae Cass. in J. Phys. Chim. Hist. Nat. Arts 88: 191. Mar 1819
Ambrosiinae Less. in Linnaea 5: 151. Jan 1830
Ambrosioideae Raf. in Ann. Gén. Sci. Phys. Bruxelles 6: 88. Oct-Dec 1820
Amygdalaceae Marquis, Esq. Règne Vég.: 49. 15-22 Jul 1820, nom. cons.
Amygdaleae DC., Prodr. 2: 529. Nov (med.) 1825
Amygdaloideae Arn., Botany: 107. 9 Mar 1832
Anacardiaceae R. Br., Observ. Congo 12. 3 Mar 1818, nom. cons.
Anacardieae DC., Prodr. 2: 62. Nov (med.) 1825
Anacardiinae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 75. 27 Aug-3 Sep 1837
Anacardioideae Arn., Botany: 106. 9 Mar 1832
Ancistrocladaceae Planch. ex Walp., Ann. Bot. Syst. 2: 175. 15-16 Dee 1851, nom. cons.
Ancistrocladeae Baill., Hist. Pl. 4: 210, 218. 1872
Annonaceae Juss., Gen. Pl.: 283. 4 Aug 1789, nom. cons.
Annoneae Endl., Gen. Pl.: 833. Jun 1839
Annoninae Engl. \& Diels in H.G.A. Engler, Monogr. Afr. Pflanzen-Fam. 6: 7. Nov 1901
Annonoideae Raf., Anal. Nat.: 175. Apr-Jul 1815
Apiaceae Lindl., Nat. Syst. Bot., ed. 2: 21. 13 Jun 1836, nom. cons. Apieae Takht. ex V.M. Vinogr., Fl. Vostochnoĭ Evropy 11: 339. 2004
Apiinae Caruel in F. Parlatore, Fl. Ital. 8: 389. Mar 1889
Apioideae Seem., Fl. Vit.: 112. Jan 1866
Apocynaceae Juss., Gen. Pl.: 143. 4 Aug 1789, nom. cons. Apocyneae Rchb., Fl. Germ. Excurs. 1(3): 410, 429. Jul-Dec 1831 Apocyninae Pichon ex Leeuwenb. in Wageningen Agric. Univ. Pap. 94(3): 59. 19 Aug. 1994 Apocynoideae Burnett, Outlines Bot.: 1012, 1095, 1104. Feb 1835
Aponogetonaceae Planch. in Bot. Mag. 82: ad. t. 4894. 1 Jan 1856, nom. cons. Aponogetoneae Benth. \& Hook.f., Gen. Pl. 3: 1011. 14 Apr 1883
Apostasiaceae Lindl., Nix. Pl.: 22. 17 Sep 1833, nom. cons. Apostasieae R. Br. ex Spach, Hist. Nat. Vég. 12: 182. 27 Jun 1846 Apostasioideae Horan., Char. Ess. Fam.: 46. 17 Jun 1847
Aquifoliaceae Bercht. \& J. Presl, Přir. Rostlin: 2(110): 438, 440. 1825, nom. cons.
Aquifolieae DC., Prodr. 2: 3. Nov (med.) 1825
Aquifolioideae Burnett, Outlines Bot.: 618, 1092, 1140. Feb 1835
Araceae Juss., Gen. Pl.: 23. 4 Aug 1789, nom. cons.
Areae R. Br. ex Duby, Bot. Gall. 1: 480. 12-14 Apr 1828
Arinae Schott, Prodr. Syst. Aroid.: 73. 1 Mai-15 Aug 1860
Aroideae Arn., Botany: 136. 9 Mar 1832
Araucariaceae Henkel \& W. Hochst., Syn. Nadelhölz.: xvii, 1. 17-18 Jan 1865, nom. cons.
Araucarieae D. Don in Trans. Linn. Soc. London 18: 163. 1839
Araucariinae Parl. in A.P. de Candolle and A.L.P.P. de Candolle, Prodr. 16(2): 363, 369. Jul (med.) 1868
Araucarioideae Beilschm. in Flora 16(Beibl. 7): 58, 104. 14 Jun 1833
Arecaceae Bercht. \& J. Presl, Přir. Rostlin: 266. Jan-Apr 1820, nom. cons.
Areceae Dumort., Anal. Fam. Pl.: 56. 1829
Arecinae Engl. in Bot. Jahresber. (Just) 3: 456. Mai-Dec 1877
Arecoideae Burnett, Outlines Bot.: 401. Feb 1835
Aristolochiaceae Juss., Gen. Pl.: 72. 4 Aug 1789, nom. cons.
Aristolochieae Dumort. ex Spach, Hist. Nat. Vég. 10: 560. 20 Mar 1841
Aristolochioideae Burnett, Outlines Bot.: 584, 1091, 1143. Feb 1835
Asclepiadaceae Borkh., Bot. Wörterb. 1: 31. 1797, nom. cons.
Asclepiadeae Duby, Bot. Gall. 1: 323. 12-14 Apr 1828

Asclepiadinae Decne. ex Miq., F1. Ned. Ind. 2: 484. 20 Aug 1857
Asclepiadoideae Burnett, Outlines Bot.: 1012, 1095, 1103. Feb 1835
Asparagaceae Juss., Gen. Pl.: 40. 4 Aug 1789, nom. cons.
Asparageae Dumort., Fl. Belg.: 138. 1827
Asparagoideae Burmeist., Handb. Naturgesch.: 224. 1837
Asteraceae Bercht. \& J. Presl, Přir. Rostlin: 254. Jan-Apr 1820, nom. cons.
Astereae Cass. in J. Phys. Chim. Hist. Nat. Arts 88: 195. Mar 1819
Asterinae Dumort., Fl. Belg.: 66. 1827
Asteroideae Lindl. in J.C. Loudon, Encycl. Pl.: 1074. 1829
Asteranthaceae R. Knuth in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenr. IV, $219 b$ (Heft 105): 1.22 Aug 1939, nom. cons.
Asterantheae Pichon in Notul. Syst. 12: 196. Feb 1946
Asteranthoideae Reveal in Phytoneuron 2012-33: 1. 9 Apr 2012
Austrobaileyaceae Croizat in Cact. Succ. J. (Los Angeles) 15: 64. Mai 1943, nom. cons.
Austrobaileyoideae Croizat in J. Arnold Arbor. 21: 404. 24 Jul 1940
Avicenniaceae Miq. in J.G.C. Lehmann, Pl. Preiss. 1: 353. 14-16 Aug 1845, nom. cons. Avicennieae Benth. in Ann. Mag. Nat. Hist., ser. 1, 2: 450. Feb 1839
Avicennioideae Miers in London J. Bot. 7: 58. 1848
Balanitaceae M. Roem., Fam. Nat. Syn. Monogr. 1: 26.14 Sep-15 Oct 1846, nom. cons. Balaniteae Dumort., Anal. Fam. Pl.: 45. 1829
Balanitoideae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 4: 354, 355. Jul 1896
Balanopaceae Benth. \& Hook.f., Gen. Pl. 3: v, 341. 7 Feb 1880, nom. cons. Balanopeae Baill., Hist. Pl. 6: 245, 258. Jan-Mai 1876
Balanophoraceae Rich. in Mém. Mus. Hist. Nat. 8: 429. 18 Nov 1822, nom. cons.
Balanophoreae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 1: 250, 260. Aug 1889
Balanophoroideae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 1: 250, 260. Aug 1889
Balsaminaceae A. Rich. in J.B.G.M. Bory de Saint-Vincent, Dict. Class. Hist. Nat. 2: 173. 31 Dee 1822, nom. cons.
Balsamineae Dumort., Anal. Fam. Pl.: 46. 1829
Balsaminoideae Arn., Botany: 103. 9 Mar 1832
Barbeyaceae Rendle in D. Oliver (ed. D. Prain), Fl. Trop. Afr: 6(2): 14. Mar 1916, nom. cons. Barbeyeae Kuntze in T.E. von Post \& C.E.O. Kuntze, Lex. Gen. Phan.: 633. 20-30 Nov 1903. Barbeyoideae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr.: 119. 2 Aug 1897
Barringtoniaceae DC. ex F. Rudolphi, Syst. Orb. Veg.: 56. 5-12 Jul 1830, nom. cons.
Barringtonieae DC. in D.F.L. von Schlechtendal, Linnaea 2: 505. Jul 1827
Barringtoniinae Benth. \& Hook.f., Gen. Pl. 1: 695. 19 Oct 1865
Barringtonioideae Beilschm. in Flora 16(Beibl. 7): 98, 104. 14 Jun 1833
Basellaceae Raf., Fl. Tellur. 3: 44. Nov-Dec 1837, nom. cons.
Baselleae Fenzl in S.F.L. Endlicher, Gen. Pl.: 297. Oct 1837
Baselloideae Raf., Fl. Tellur. 3: 44. Nov-Dec 1837
Begoniaceae C. Agardh, Aphor. Bot.: 200. 13 Jun 1824, nom. cons.
Begonieae Klotzsch, Ber. Bekanntm. Verh. Königl. Preuss. Akad. Wiss. Berlin 1854: 121. Mar 1854
Begonioideae Eaton, Bot. Dict., ed. 4: 30. Apr-Mai 1836
Berberidaceae Juss., Gen. Pl.: 286. 4 Aug 1789, nom. cons.
Berberideae Rchb., Fl. Germ. Excurs. 2(2): 697, 702. 1832

Berberidoideae Eaton, Bot. Dict., ed. 4: 41. Apr-Mai 1836
Betulaceae Gray, Nat. Arr. Brit. Pl. 2: 222, 243. 10 Jan 1822, nom. cons.
Betuleae Dumort., Fl. Belg.: 11. 1827
Betulinae DC. ex Duby, Bot. Gall. 1: 422. 12-14 Apr 1828
Betuloideae Rich. ex Arn., Botany: 131. 9 Mar 1832
Bignoniaceae Juss., Gen. Pl.: 137. 4 Aug 1789, nom. cons.
Bignonieae Dumort., Anal. Fam. Pl.: 23. 1829
Bignonioideae Arn., Botany: 121. 9 Mar 1832
Bixaceae Kunth, Malvac., Büttner., Tiliac.: 17. 20 Apr 1822, nom. cons.
Bixeae Rchb., Handb. Nat. Pfl.-Syst.: 273. 1-7 Oct 1837
Bixinae Kitt. in A. Richard, Nouv. Elém. Bot., ed. 3, Germ. trans1.: 903.1840
Bixoideae Beilschm. in Flora 16(Beibl. 7): 87, 105. 14 Jun 1833
Bombacaceae Kunth, Malvac., Büttner., Tiliac.: 5. 20 Apr 1822, nom. cons.
Bombaceae Kunth, Syn. Pl. 3: 258. 28 Feb 1824
Bombacoideae Burnett, Outlines Bot.: 816, 818, 1094, 1119. Feb 1835
Boraginaceae Juss., Gen. Pl.: 128. 4 Aug 1789, nom. cons.
Boragineae Rchb., Fl. Germ. Excurs. 1(3): 340. Jul-Dec 1831
Boragininae G. Don, Gen. Hist. 4: 307, 309. 1837-8 Apr 1838
Boraginoideae Arn., Botany: 122.9 Mar 1832
Brassicaceae Burnett, Outlines Bot.: 854, 1093, 1123. Feb 1835, nom. cons. Brassiceae DC. in Mém. Mus. Hist. Nat. 7(1): 242. 20 Apr 1821
Brassicinae Sond. in W.H. Harvey \& O.W. Sonder, F1. Cap. 1: 31. 10-31 Mai 1860
Brassicodae V.E. Avet. in Biol. Zhurn. Armenii 43: 602. 12 Oct 1990
Brassicoideae Prantl, Text-book Bot.: 255. 1 Mar-15 Apr 1880
Bretschneideraceae Engl. \& Gilg, Syllabus, ed. 9-10: 218.6 Nov 1924, nom. cons.
Bretschneideroideae Reveal in Phytoneuron 2012-33: 1.9 Apr 2012
Bromeliaceae Juss., Gen. PL.: 49. 4 Aug 1789, nom. cons.
Bromelieae Dumort., Anal. Fam. Pl.: 55. 1829
Bromelioideae Burnett, Outlines Bot.: 442, 444. Feb 1835
Bruniaceae R. Br. ex DC., Prodr. 2: 43. Nov 1825, nom. cons.
Brunieae Rchb., Fl. Germ. Excurs. 2(2): 546. 1832
Brunioideae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov.]: 241. 20 Jul 1943
Brunoniaceae Dumort., Anal. Fam. Pl.: 19, 21. 1829, nom. cons.
Brunonieae G. Don, Gen. Hist. 3: 723, 731. 8-15 Nov 1835
Brunonioideae Burnett, Outlines Bot.: 939, 1094, 1111. Feb 1835
Buddlejaceae K. Wilh., Samenpflanzen: 90. 12 Nov 1910, nom. cons.
Buddlejeae Bartl., Ord. Nat. Pl.: 172. Sep 1830
Buddlejinae Benth. \& Hook.f., Gen. Pl. 2: 787. 1-16 Mai 1876
Buddlejoideae Engl., Syllabus, ed. 1: 157. Apr 1892
Burmanniaceae Blume, Enum. Pl. Javae: 27. Oct-Dec 1827, nom. cons.
Burmannieae Miers ex Griseb. in Mart., F1. Bras. 3(1): 53. 1 Jun 1847
Burmannioideae Burnett, Outlines Bot.: 449. Feb 1835
Burseraceae Kunth in Ann. Sci. Nat. (Paris) 2: 346. Jul 1824, nom. cons.
Burseraceae Kunth in Ann. Sci. Nat. (Paris) 2: 346. Jul 1824, nom. cons.
Burseroideae Arn., Botany: 106.9 Mar 1832
Butomaceae Mirb., Hist. Nat. Pl. 8: 194. 1804, nom. cons.
Butomeae Dumort., Fl. Belg.: 136. 1827
Butomoideae Arn., Botany: 136. 9 Mar 1832
Buxaceae Dumort., Comment. Bot.: 54. Nov-Dec 1822, nom. cons.
Buxeae Dumort., Anal. Fam. Pl.: 45. 1829
Buxoideae Beilschm. in Flora 16(Beibl. 7): 61, 105. 14 Jun 1833

Byblidaceae Domin in Acta Bot. Bohem. 1:3. 1922, nom. cons.
Byblidaceae Domin in Acta Bot. Bohem. 1: 3. 1922, nom. cons.
Byttneriaceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 540. 19 Jul 1814, nom. cons.
Byttnerieae DC., Prodr. 1: 484. Jan (med.) 1824
Byttneriinae K. Schum. in C.F.P. von Martius, Fl. Bras. 12(3): 3, 83. 1 Mar 1886
Byttnerioideae Burnett, Outlines Bot.: 821, 1119. Feb 1835
Cabombaceae Rich. ex A. Rich. in J.B.GM. Bory de Saint-Vincent, Dict. Class. Hist. Nat. 2: 608.31 Dec 1822, nom. cons.
Cabombeae Gardner in Icon. Pl., ser. 2, 7: ad t. 641.1844
Cabomboideae Burnett, Outlines Bot.: 842, 1093, 1122. Feb 1835
Cactaceae Juss., Gen. Pl.: 310. 4 Aug 1789, nom. cons. Cacteae Rchb., Fl. Germ. Excurs. 2(2): 561. 1832 Cactinae Britton \& Rose, Cact. [=Publ. Carnegie Inst. Wash. 248(2)] 2: 1. 9 Sep 1920
Cactoideae Eaton, Bot. Dict., ed. 4: 43. Apr-Mai 1836
Caesalpiniaceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 551.19 Jul 1814, nom. cons. Caesalpinieae Rchb., F1. Germ. Excurs. 2(2): 544. 1832
Caesalpinioideae DC., Prodr. 2: 473. Nov (med.) 1825
Callitrichaceae Link, Enum. Hort. Berol. Alt. 1: 7. 16 Mar-30 Jun 1821, nom. cons. Callitricheae Dumort., Fl. Belg.: 90. 1827
Callitrichoideae Arn., Botany: 110. 9 Mar 1832
Calycanthaceae Lindl. in Bot. Reg. 5: ad t. 404. 1 Oct 1819, nom. cons. Calycanthoideae Burnett, Outlines Bot.: 710, 1092, 1135. Feb 1835
Campanulaceae Juss., Gen. Pl.: 163. 4 Aug 1789, nom. cons. Campanuleae Dumort., Fl. Belg.: 58. 1827
Campanulinae R. Schönland in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 5: 48. Jun 1889
Campanuloideae Burnett, Outlines Bot.: 942, 1094, 1110. Feb 1835
Canellaceae Mart., Nov. Gen. Sp. Pl. 3: 168, 170. Sep 1832, nom. cons. Canelleae Dumort., Anal. Fam. PL.: 47. 1829 Canelloideae Lindl., Nat. Syst. Bot., ed. 2: 75. Jul 1836
Cannabaceae Martinov, Tekhno-Bot. Slovar: 99.3 Aug 1820, nom. cons. Cannabeae Dumort., Fl. Belg.: 24. Dumort., Fl. Belg.: 24. 1827
Cannaboideae Beilschm. in Flora 16(Beibl. 7): 60, 105. 14 Jun 1833
Cannaceae Juss., Gen. P1.: 62. 4 Aug 1789, nom. cons. Canneae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 389, Comm. 291. 17-20 Aug 1842 Cannoideae Arn., Botany: 132. 9 Mar 1832
Capparaceae Juss., Gen. Pl.: 242. 4 Aug 1789, nom. cons.
Cappareae DC., Prodr. 1: 242. Jan (med.) 1824
Capparoideae Burnett, Outlines Bot.: 867. Feb 1835
Caprifoliaceae Juss., Gen. Pl.: 210. 4 Aug 1789, nom. cons.
Caprifolieae Dumort., Fl. Belg.: 55. 1827
Caprifoliinae Torr. \& A. Gray, Fl. N. Amer. 2: 2. Mai 1841
Caprifolioideae Eaton, Bot. Dict., ed. 4: 36. Apr-Mai 1836
Cardiopteridaceae Blume, Rumphia 3: 205. Jun 1847, nom. cons. Cardiopterideae Engl. ex Post \& Kuntze, Lex. Gen. Phan.: 663. 20-30 Nov 1903
Cardiopteridinae G. King in J. Asiatic Soc. Bengal 64: 98. Apr 1895
Cardiopteridoideae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 5: 242, 257. Mai 1893
Cartonemataceae Pichon in Notul. Syst. (Paris) 12: 219. 25 Mai 1946, nom. cons. Cartonemateae Faden \& D. Hunt in Taxon 40: 23. Feb 1991

Cartonematoideae Faden ex GC. Tucker in J. Arnold Arbor. 70: 99. 10 Jan 1989
Caryocaraceae Voigt, Hort. Suburb. Calcutt.: 88. Aug-Dec 1845, nom. cons.
Caryocareae Baill, Hist. Pl. 4: 247, 264. 1872
Caryophyllaceae Juss., Gen. Pl.: 299. 4 Aug 1789, nom. cons.
Caryophylleae Lam. \& DC., Syn. Pl. Fl. Gall.: 386. 30 Jun 1806
Caryophyllinae R.K. Rabeler \& Bittrich in Taxon 42: 858. 1993
Caryophylloideae Arn., Botany: 99. 9 Mar 1832
Cassythaceae Bartl. ex Lindl., Nix. Pl.: 15. 17 Sep 1833, nom. cons.
Cassytheae Dumort., Anal. Fam. Pl.: 16. 1829
Cassythoideae Burnett, Outlines Bot.: 564, 565, 1091, 1146. Feb 1835
Casuarinaceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 571.19 Jul 1814, nom. cons.
Casuarineae Colla, Herb. Pedem. 5: 169. 6-30 Apr 1830
Casuarinoideae J. Williams in J.H. Balfour, Man. Bot., ed. 3: 524. 1855
Celastraceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 554.19 Jul 1814, nom. cons.
Celastreae Rchb., Handb. Nat. Pfl.-Syst.: 301. 1-7 Oct 1837
Celastrinae Benth. \& Hook.f., Gen. Pl. 1:359. 7 Aug 1862
Celastroideae Burnett, Outlines Bot.: 621, 1140. Feb 1835
Centrolepidaceae Endl., Gen. Pl.: 119. Dec 1836, nom. cons.
Centrolepideae Baill., Hist. Pl. 12: 131, 133. Dec 1892
Centrolepidoideae Burnett, Outlines Bot.: 416. Feb 1835
Cephalotaceae Dumort., Anal. Fam. Pl.: 59, 61. 1829, nom. cons.
Cephaloteae Horan., Char. Ess. Fam.: 141. 17 Jun 1847
Cephalotinae Meisn., PI. Vasc. Gen.: Tab. Diagn. 105, Comm. 74. 8-14 Apr 1838
Cephalotoideae Burnett, Outlines Bot.: 736, 1092, 1132. Feb 1835
Cephalotaxaceae Neger, Nadelhölzer: 23, 30. 28 Oct 1907, nom. cons.
Cephalotaxeae Wettst., Handb. Syst. Bot. 2(1): 143. Nov. 1903
Ceratophyllaceae Gray, Nat. Arr. Brit. Pl. 2: 395, 554. 10 Jan 1822, nom. cons.
Ceratophylleae Dumort., Fl. Belg.: 165. 1827
Ceratophylloideae Arn., Botany: 108. 9 Mar 1832
Chenopodiaceae Vent., Tabl. Règne Vég. 2: 253. 5 Mai 1799, nom. cons. Chenopodieae Dumort., Anal. Fam. Pl.: 17. 1829
Chenopodioideae Burnett, Outlines Bot.: 591, 1091, 1142. Feb 1835
Chloranthaceae R. Br. ex Sims in Bot. Mag. 48: ad t. 2190. 1 Nov 1820, nom. cons.
Chlorantheae Baill., Hist. Pl. 3: 482, 494. 1872
Chrysobalanaceae R. Br., Observ. Congo: 14. 3 Mar 1818, nom. cons.
Chrysobalaneae DC., Prodr. 2: 525. Nov (med.) 1825
Chrysobalaninae Focke in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 3: 12. Dec 1888
Chrysobalanoideae Arn., Botany: 107. 9 Mar 1832
Cichoriaceae Juss., Gen. Pl.: 168. 4 Aug 1789, nom. cons.
Cichorieae Lam. \& DC., Syn. Pl. F1. Gall.: 255. 30 Jun 1806
Cichoriinae Dumort., Anal. Fam. Pl.: 30. 1829
Cichorioideae Chevall., Fl. Gén. Env. Paris 2: 531. 5 Jan 1828
Circaeasteraceae Hutch., Fam. Fl. Pl. 1:98. 15 Jan 1926, nom. cons.
Circaeasteroideae Thorne \& Reveal in Bot. Rev. (Lancaster) 73: 90. 29 Jun 2007
Cistaceae Juss., Gen. Pl.: 294. 4 Aug 1789, nom. cons.
Cisteae Rchb., Fl. Germ. Excurs. 2(2): 710, 711. 1832
Cistinae Janch. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 21: 300. 30 Jul 1925
Cistoideae Eaton, Bot. Dict., ed. 4: 42. Apr-Mai 1836
Clethraceae Klotzsch in Linnaea 24: 12. Mai 1851, nom. cons.
Clethreae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 243, Comm. 155. 18-24 Aug 1839

Clusiaceae Lindl., Nat. Syst. Bot., ed. 2: 74. 13 Jun 1836, nom. cons.
Clusieae Choisy in A.P. de Candolle, Prodr. 1: 557. Jan (med.) 1824
Clusioideae Burnett, Outlines Bot.: 794. Feb 1835
Cneoraceae Vest, Anleit. Stud. Bot.: 267, 285. 1818, nom. cons.
Cneoreae Baill., Hist. Pl. 4: 431, 503. Jul-Sep 1873
Cneoroideae Webb in London J. Bot. 1: 257. 1 Mai 1842
Cochlospermaceae Planch. in London J. Bot. 6: 305. Jun-Jul 1847, nom. cons.
Cochlospermeae Endl., Gen. Pl.: 1017. 1-14 Feb 1840
Cochlospermoideae Takht. ex Reveal in Phytoneuron 2012-33: 1. 9 Apr 2012
Colchicaceae DC., Essai Propr. Méd. Pl.: 56. Jul 1804, nom. cons.
Colchiceae T. Nees \& C.H. Eberm. ex Endl., Gen. PL.: 137. Dec 1836
Colchicoideae Burmeist., Handb. Naturgesch.: 223. 1837
Columelliaceae D. Don in Edinburgh New Philos. J. 6: 46, 49. Oct-Dec 1828, nom. cons. Columellieae Dumort., Anal. Fam. Pl.: 30. 1829
Columellioideae Beilschm. in Flora 16(Beibl. 7): 71, 106. 14 Jun 1833
Combretaceae R. Br., Prodr.: 351. 27 Mar 1810, nom. cons.
Combreteae DC., Prodr. 3: 18. Mar (med.) 1828
Combretoideae Beilschm. in Flora 16(Beibl. 7): 97, 106. 14 Jun 1833
Commelinaceae Mirb., Hist. Nat. Pl. 8: 177. 1804, nom. cons.
Commelineae Dumort., Anal. Fam. Pl.: 55. 1829
Commelinoideae Eaton, Bot. Dict., ed. 4: 27. Apr-Mai 1836
Connaraceae R. Br., Observ. Congo: 12. 3 Mar 1818, nom. cons.
Connareae DC., Prodr. 2: 84. Nov (med.) 1825
Connaroideae Gilg in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr.: 190. 2 Aug 1897
Convolvulaceae Juss., Gen. Pl.: 132. 4 Aug 1789, nom. cons. Convolvuleae Dumort., Fl. Belg.: 50. 1827
Convolvulinae Meisn. in C.F.P. von Martius, Fl. Bras. 7: 203, 209. 1 Aug 1869
Convolvuloideae Burnett, Outlines Bot.: 1002, 1095, 1105. Feb 1835
Cordiaceae R. Br. ex Dumort., Anal. Fam. Pl.: 20, 25. 1829, nom. cons.
Cordieae Dumort., Anal. Fam. Pl.: 25. 1829
Cordioideae Beilschm. in Flora 16(Beibl. 7): 69, 106. 14 Jun 1833
Coriariaceae DC., Prodr. 1: 739. Jan (med.) 1824, nom. cons.
Coriarieae Horan., Char. Ess. Fam.: 178. 17 Jun 1847
Coriarioideae Burnett, Outlines Bot.: 886, 1093, 1125. Feb 1835
Cornaceae Bercht. \& J. Presl, Přir. Rostlin 2( $23^{*}$ ): 91, 92. 1825, nom. cons.
Corneae Dumort., Fl. Belg.: 83. 1827
Cornoideae Endl., Gen. Pl. Suppl. 5: 17. 1850
Corsiaceae Bece. in Malesia 1: 238 . Sep 1878, nom. cons. Corsieae Benth. \& Hook.f., Gen. Pl. 3: 456. 14 Apr 1883
Crassulaceae J. St.-Hil., Expos. Fam. Nat. 2: 123. Feb-Apr 1805, nom. cons. Crassuleae DC., Prodr. 3: 381. Mar (med.) 1828
Crassuloideae Burnett, Outlines Bot.: 736, 1092, 1131. Feb 1835
Crypteroniaceae A. DC. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 16(2): 677. Jul 1868, nom. cons.
Crypteronieae Baill., Hist. Pl. 6: 443, 455. Jan-Aug 1877
Crypteronioideae Nied. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 7: 19. Aug 1893
Cucurbitaceae Juss., Gen. Pl.: 393. 4 Aug 1789, nom. cons.
Cucurbiteae Ser. in Mém. Soc. Phys. Genève 3: 25. 1825

Cucurbitinae E.G.O. Müll. \& Pax in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 5: 10, 32. Jun 1889

Cucurbitoideae Eaton, Bot. Dict., ed. 4: 47. Apr-Mai 1836
Cunoniaceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 548. 19 Jul 1814, nom. cons.
Cunonieae Schrank \& Mart., Hort. Reg. Monac.: 125. 1829
Cunonioideae Beilschm. in Flora 16(Beibl. 7): 94, 106. 14 Jun 1833
Cupressaceae Gray, Nat. Arr. Brit. Pl. 2: 222, 225. 10 Jan 1822, nom. cons.
Cupresseae Dumort., Fl. Belg.: 9. 1827
Cupressinae Eichler in C.F.P. von Martius, Fl. Bras. 4: 421, 427. 10 Jul 1863
Cupressoideae Sweet, Hort. Brit.: 372. Sep-Oct 1826
Cuscutaceae Dumort., Anal. Fam. P1.: 20, 25. 1829, nom. cons.
Cuscuteae Dumort., Fl. Belg.: 50. 1827
Cuscutoideae Burnett, Outlines Bot.: 1002, 1095, 1105. Feb 1835
Cyanastraceae Engl. in Bot. Jahrb. Syst. 28: 357. 22 Mai 1900, nom. cons.
Cyanastreae Kuntze in T.E. von Post \& C.E.O. Kuntze, Lex. Gen. Phan.: 624. 20-30 Nov 1903
Cyanastroideae Engl. ex Reveal in Phytoneuron 2012-33: 2. 9 Apr 2012
Cycadaceae Pers., Syn. Pl. 2: 630. Sep 1807, nom. cons.
Cycadeae Colla, Herb. Pedem. 5: 226. 6-30 Apr 1836
Cycadoideae Eaton, Bot. Dict., ed. 4: 48. Apr-Mai 1836
Cyclanthaceae Poit. ex A. Rich. in J.B.G.M. Bory de Saint-Vincent, Dict. Class. Hist. Nat. 5: 222. 15 Mai 1824, nom. cons.
Cyclantheae Bartl., Ord. Nat. P1.: 67. Sep 1830
Cymodoceaceae Vines, Stud. Text-book Bot. 2: 553. Mar 1895, nom. cons.
Cymodoceeae Benth. \& Hook.f., Gen. Pl. 3: 1011. 14 Apr 1883
Cymodoceoideae K. Schum., Lehrb. Syst. Bot.: 246. Jun 1894
Cynomoriaceae Endl. ex Lindl., Nix. Pl.: 23. 17 Sep 1833, nom. cons.
Cynomorieae Schott \& Endl., Melet. Bot.: 11. 1832
Cynomorioideae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 1: 250. Aug 1889
Cyperaceae Juss., Gen. Pl.: 26. 4 Aug 1789, nom. cons.
Cypereae Dumort., Anal. Fam. Pl.: 65. 1829
Cyperinae Pax, Bot. Jahrb. Syst. 7: 306. 28 Mai 1886
Cyperoideae Beilschm. in Flora 16(Beibl. 7): 52. 14 Jun 1833
Cyrillaceae Lindl., Veg. Kingd.: 445. 14-28 Mar 1846, nom. cons.
Cyrilleae Baill., Hist. Pl. 11: 216, 218. Jun-Jul 1891
Cyrilloideae Torr. \& A. Gray, Fl. N. Amer. 1: 256. Oct 1838
Daphniphyllaceae Müll.-Arg. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 16(1): 1. Nov (med.) 1869, nom. cons.
Daphniphylleae Pax in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 5: 13, 36. Mai 1890
Daphniphylloideae Gamble, Man. Ind. Timb.: 346, 347. Nov-Dec 1881
Datiscaceae Dumort., Anal. Fam. P1.: 13, 14. 1829, nom. cons.
Datisceae Rchb., Fl. Germ. Excurs. 2(2): 632. 1832
Datiscoideae Eaton, Bot. Dict., ed. 4: 47. Apr-Mai 1836
Desfontainiaceae Endl. ex Pfeiff., Nomencl. Bot. 1: 1037. 3 Oct 1873, nom. cons.
Desfontainieae G. Don, Gen. Hist. 4: 175, 213. 1837-8 Apr 1838
Desfontainioideae Hegnauer ex Reveal in Phytoneuron 2012-33: 2. 9 Apr 2012
Dialypetalanthaceae Rizzini \& Occhioni in Lilloa 17: 253. 30 Dec 1948, nom. cons.
Dialypetalantheae Reveal in Phytoneuron 2012-33: 2. 9 Apr 2012
Dialypetalanthoideae Reveal in Phytoneuron 2012-33: 2. 9 Apr 2012

Diapensiaceae Lindl., Nat. Syst. Bot., ed. 2: 233. 13 Jun 1836, nom. cons.
Diapensieae A. Gray, Man. Bot., ed. 2: 329. 1 Sep 1856
Diapensiinae A. Gray ex Airy Shaw in Kew Bull. 17: 509. 1964
Diapensioideae J. Williams in J.H. Balfour, Man. Bot., ed. 3: 479. 1855
Dichapetalaceae Baill. in C.F.P. von Martius, F1. Bras. 12(1): 365.1 Apr 1886, nom. cons. Dichapetaleae Baill., Hist. Pl. 5: 157, 233. Jan-Apr 1874
Dichondraceae Dumort., Anal. Fam. PL.: 20, 24. 1829, nom. cons. Dichondreae Choisy ex G. Don, Gen. Hist. 4: 253, 302. 1837-8 Apr 1838
Dicksoniaceae M.R. Schomb., Reis. Br.-Guiana 2: 1047. 12-15 Jul 1848, nom. cons. Dicksonieae Gaudich. in H.L.C. de Saulces de Freycinet, Voy. Uranie, Bot.: 367. 18 Jul 1829 Dicksonioideae Link, Fil. Sp.: 38. 3-10 Sep 1841
Diclidantheraceae J. Agardh, Theoria Syst. Pl.: 195. Apr-Sep 1858, nom. cons. Diclidanthereae Reveal in Phytoneuron 2012-33: 2. 9 Apr 2012
Didiereaceae Radlk. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 5: 462. 23 Apr 1896, nom. cons.
Didiereeae Thonner, Bl.-pfl. Afr:: 357. Oct 1908
Didiereoideae Appleq. \& R.S. Wallace in Adansonia 25: 15. 8 Jul 2003
Dilleniaceae Salisb., Parad. Lond. 2: ad t. 73. 1 Jun 1807, nom. cons. Dillenieae DC., Syst. Nat. 1: 397, 411. 1-15 Nov 1817 Dillenioideae Burnett, Outlines Bot.: 836. Feb 1835
Dioncophyllaceae Airy Shaw in Kew Bull. 6: 333. 26 Jan 1952, nom. cons. Dioncophylleae Engl. in H.G.A. Engler \& C.G.O. Drude, Veg. Erde 9(2): 558. Jul-Nov 1921
Dioscoreaceae R. Br., Prodr:: 294. 27 Mar 1810, nom. cons. Dioscoreeae Bernh. in Ann. Sci. Nat. Bot., sér. 2, 18: 308. Nov 1842 Dioscoreoideae Arn., Botany: 134. 9 Mar 1832
Dipentodontaceae Merr. in Brittonia 4: 69, 73. 16 Dee 1941, nom. cons. Dipentodonteae C.Y. Cheng \& J.S. Liu in J. Wuhan Bot. Res. 9: 30. 25 Feb 1991
Dipsacaceae Juss., Gen. Pl.: 194. 4 Aug 1789, nom. cons. Dipsaceae Rchb., Fl. Germ. Excurs. 1(3): 192. Jul-Dec 1831 Dipsacoideae Eaton, Bot. Dict., ed. 4: 36. Apr-Mai 1836
Dipterocarpaceae Blume, Bijdr. Fl. Ned. Ind. 4: 222. 20 Sep-7 Dec 1825, nom. cons. Dipterocarpeae Rchb., Handb. Nat. Pfl.-Syst.: 304. 1-7 Oct 1837 Dipterocarpoideae Burnett, Outlines Bot.: 824, 1094, 1120. Feb 1835
Dodonaeaceae Kunth ex Small, Fl. S.E. U.S.: 724, 737. 22 Jul 1903, nom. cons. Dodonaeeae Kunth ex DC., Prodr. 1: 615. Jan (med.) 1824 Dodonaeoideae Burnett, Outlines Bot.: 889. Feb 1835
Dombeyaceae Desf., Tabl. Ecole Bot., ed. 3: 252. 15-21 Mar 1829, nom. cons. Dombeyeae Kunth ex DC., Prodr. 1: 497. Jan (med.) 1824
Dombeyinae A. Dumont in Bot. Jahrb. Syst. 10(Litt.): 2. 6 Jul 1888
Dombeyoideae Beilschm. in Flora 16(Beibl. 7): 86, 106. 14 Jun 1833
Donatiaceae B. Chandler in Notes Roy. Bot. Gard. Edinburgh 5: 44. Nov 1911, nom. cons. Donatieae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 2a: 46. Dec 1890 Donatioideae Mildbr. in H.G.A. Engler, Nat. Pflanzenr. 35: 18. 26 Mai 1908
Dracaenaceae Salisb., Gen. Pl.: 73. 15-31 Mai 1866, nom. cons.
Dracaeneae Dumort., Anal. Fam. Pl.: 60. 1829
Dracaenoideae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. II, 5: 19. 26 Mar 1887
Droseraceae Salisb., Parad. Lond. 2: ad t. 95.1 Feb 1808, nom. cons.
Drosereae Dumort., Fl. Belg.: 115. 1827
Droseroideae Arn., Botany: 98. 9 Mar 1832

Dryopteridaceae Herter in Revista Sudamer. Bot. 9: 15. 1949, nom. cons.
Dryopterideae Ching in Acta Phytotax. Sin. 10: 2. Jan 1965
Dryopteridoideae Link, Fil. Sp.: 116. 3-10 Sep 1841
Dysphaniaceae Pax in Bot. Jahrb. Syst. 61: 230. 15 Jun 1927, nom. cons. Dysphanieae Pax in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 1b: 69, 92. Mai 1889

Ebenaceae Gürke in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 1: 153. Dec 1892, nom. cons
Ebenoideae Thorne \& Reveal in Bot. Rev. (Lancaster) 73: 121. 29 Jun 2007
Ehretiaceae Mart., Nov. Gen. Sp. Pl. 2: 136, 138. Jan-Jun 1827, nom. cons. Ehreticae Dumort., Anal. Fam. Pl.: 25. 1829
Ehretioideae Arn., Botany: 122. 9 Mar 1832
Elaeagnaceae Juss., Gen. PL.: 74. 4 Aug 1789, nom. cons. Elaeagneae Rchb., Fl. Germ. Excurs. 1(2): 162. Jan-Apr 1831 Elaeagnoideae Burnett, Outlines Bot.: 570, 571, 1091, 1145. Feb 1835
Elaeocarpaceae Juss. in A.P. de Candolle, Essai Propr. Méd. Pl., ed. 2: 87. 11 Mai 1816, nom. cons. Elaeocarpeae Bartl., Ord. Nat. Pl.: 340. Sep 1830
Elaeocarpoideae Arn., Botany: 100. 9 Mar 1832
Elatinaceae Dumort., Anal. Fam. Pl.: 44, 49. 1829, nom. cons. Elatineae Bartl., Ord. Nat. Pl.: 317. Sep 1830 Elatinoideae Eaton, Bot. Dict., ed. 4: 43. Apr-Mai 1836
Empetraceae Hook. \& Lindl. in W.J. Hooker, Fl. Scot.: 297. 10 Mai 1821, nom. cons. Empetreae Horan., Char. Ess. Fam.: 109. 17 Jun 1847
Empetroideae Sweet, Hort. Brit.: 491. Sep-Oct 1826
Epacridaceae R. Br., Prodr.: 535. 27 Mar 1810, nom. cons. Epacrideae Dumort., Anal. Fam. Pl.: 28. 1829
Epacridinae Kitt. in A. Richard, Nouv. Elém. Bot., ed. 3, Germ. trans1.: 824. 1840
Epacridoideae Arn., Botany: 118.9 Mar 1832
Ephedraceae Dumort., Anal. Fam. Pl.: 11, 12. 1829, nom. cons.
Ephedreae Rchb., Fl. Germ. Excurs. 1(2): 156. Jan-Apr 1831
Ephedroideae Burmeist., Handb. Naturgesch.: 236. 1833
Ericaceae Juss., Gen. Pl.: 159. 4 Aug 1789, nom. cons.
Ericeae DC. ex Duby, Bot. Gall. 1: 316. 12-14 Apr 1828
Ericinae D. Don in Edinburgh New Philos. J. 17: 152. Jul 1834
Ericoideae Arn., Botany: 118. 9 Mar 1832
Eriocaulaceae Martinov, Tekhno-Bot. Slovar: 237. 3 Aug 1820, nom. cons. Eriocauleae Bartl., Ord. Nat. Pl.: 36. Sep 1830 Eriocauloideae Burnett, Outlines Bot.: 416. Feb 1835
Erythropalaceae Planch. ex Miq., Fl. Ned. Ind. 1: 704. 10 Jul 1856, nom. cons.
Erythropaleae Baill., Hist. Pl. 11: 443, 472. 14 Jun 1892
Erythropalinae G. King in J. Asiatic Soc. Bengal 64: 95. Apr 1895
Erythropaloideae Hassk., Pl. Jav. Rar.: 193, 546. Jan-Feb 1848
Escalloniaceae R. Br. ex Dumort., Anal. Fam. Pl.: 35, 37. 1829, nom. cons.
Escallonieae R. Br. ex DC., Prodr. 4: 2. late Sep 1830
Escallonioideae Burnett, Outlines Bot.: 734, 1132. Feb 1835
Eucryphiaceae Gay in Bot. Zeitung (Berlin) 6: 130. 18 Feb 1848, nom. cons. Eucryphieae Cambess. ex G. Don, Gen. Hist. 1: 599, 613. prim. Aug 1831
Eucryphioideae Burnett, Outlines Bot.: 797. Feb 1835
Euphorbiaceae Juss., Gen. Pl.: 384. 4 Aug 1789, nom. cons.
Euphorbieae Dumort., Anal. Fam. Pl.: 45. 1829
Euphorbiinae Griseb., Fl. Brit. W. I.: 51. Dec 1859

Euphorbioideae Beilschm. in Flora 16(Beibl. 7): 61, 105. 14 Jun 1833
Eupomatiaceae Orb., Dict. Univ. Hist. Nat. 5: 511. 29 Mar 1845, nom. cons.
Eupomatieae Baill., Hist. Pl. 1: 263, 288. Aug-Dec 1868
Eupomatioideae Engl. \& Diels in Notizbl. Königl Bot. Gart. Berlin 3: 54. 1 Sep 1900
Eupteleaceae K. Wilh., Samenpflanzen: 17. 12 Nov 1910, nom. cons.
Eupteleeae Baill., Hist. Pl. 1: 172, 191. Mar-Aug 1868
Eupteleoideae K. Koch, Dendrologie 2(1): 434. 1872
Fabaceae Lindl., Nat. Syst. Bot., ed. 2: 148. 13 Jun 1836, nom. cons.
Fabeae Rchb., Fl. Germ. Excurs. 2(2): 525. 1832
Fabianinae Dunal in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 13(1): 8, 582. 10 Mai 1852
Faboideae Rudd in Rhodora 70: 496. 31 Dec 1968
Fagaceae Dumort., Anal. Fam. Pl.: 11, 12. 1829, nom. cons.
Fageae Rchb., Fl. Germ. Excurs. 1(2): 175. Jan-Apr 1831
Fagoideae K. Koch, Dendrologie 2(2): 16. Nov 1873
Flacourtiaceae Rich. ex DC., Prodr. 1: 255. Jan (med.) 1824, nom. cons.
Flacourtieae DC., Prodr. 1: 256. Jan (med.) 1824
Flacourtiinae Kitt. in A. Richard, Nouv. Elém. Bot., ed. 3, Germ. transl.: 903. 1840
Flacourtioideae Beilschm. in Flora 16(Beibl. 7): 88, 107. 14 Jun 1833
Flagellariaceae Dumort., Anal. Fam. P1.: 59, 60. 1829, nom. cons.
Flagellarieae Dumort., Anal. Fam. Pl.: 60. 1829
Flagellarioideae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 406. 17-20 Aug 1842
Fouquieriaceae DC., Prodr. 3: 349. Mar (med.) 1828, nom. cons.
Fouquierieae Rchb., Handb. Nat. Pfl.-Syst.: 232. 1-7 Oct 1837
Fouquierioideae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 129, Comm. 94. 8-14 Apr 1838
Francoaceae A. Juss. in Ann. Sci. Nat. (Paris) 25: 9. Jan 1832, nom. cons.
Francoeae Spach, Hist. Nat. Vég. 5: 39, 68. 27 Jun 1836
Francooideae J. Williams in J.H. Balfour, Man. Bot., ed. 3: 437. 1855
Frankeniaceae Desv. in S. Gérardin de Mirecourt \& N.A. Desvaux, Dict. Rais. Bot.: 188. 12-19 Apr 1817, nom. cons.
Frankenieae Hogg, Veg. Kingd.: 93. 1858
Frankenioideae Burnett, Outlines Bot.: 798, 1115. Feb 1835
Fumariaceae Marquis, Esq. Règne Vég.: 50. 15-22 Jul 1820, nom. cons.
Fumarieae Dumort., Anal. Fam. Pl.: 51. 1829
Fumariinae Lidén in Opera Bot. 88: 17, 42. 1 Sep 1986
Fumarioideae Eaton, Bot. Dict., ed. 4: 46. Apr-Mai 1836
Garryaceae Lindl. in Edwards's Bot. Reg. 20: ad t. 1686. 1 Jul 1834, nom. cons.
Garryeae Colla, Herb. Pedem. 5: 210. 6-30 Apr 1836
Garryoideae Harms in Ber. Deutsch. Bot. Ges 15: 28. 25 Feb 1897
Geissolomataceae A. DC. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 14: 491. Oct (med.) 1856, nom. cons.
Geissolomateae Baill., Hist. P1. 6: 23, 49. Jan-Apr 1875
Gentianaceae Juss., Gen. Pl.: 141. 4 Aug 1789, nom. cons.
Gentianeae Dumort., Anal. Fam. Pl.: 25. 1829
Gentianinae G. Don, Gen. Hist. 4: 173, 175. 1837-8 Apr 1838
Gentianoideae Burnett, Outlines Bot.: 1010, 1095, 1104. Feb 1835
Geosiridaceae Jonker in Receuil Trav. Bot. Néerl. 36 [ $=$ Meded. Bot. Mus. Herb. Rijksuniv. Utrecht 60]: 477. seors. impr. 18 Mai 1939, nom. cons.
Geosiridoideae Goldblatt \& J.C. Manning, Iris Fam.: 95. 12 Nov 2008

Geraniaceae Juss., Gen. Pl.: 268. 4 Aug 1789, nom. cons.
Geranieae Sweet, Geraniaceae 1: vii. 1820
Geranioideae Arn., Botany: 103. 1832
Gesneriaceae Rich. \& Juss. in A.P. de Candolle, Essai Propr. Méd. Pl., ed. 2: 192. 11 Mai 1816, nom. cons.
Gesnerieae Dumort., Anal. Fam. P1.: 30. 1829
Gesneriinae Örst., Centralamer. Gesner.: 10. 1858
Gesnerioideae Burnett, Outlines Bot.: 959, 1095, 1108. Feb 1835
Ginkgoaceae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr.: 19. 16 Jul 1897, nom. cons.
Ginkgooideae A.B. Frank, Lehrb. Bot. 2: 251. Jan-19 Jun 1893
Globulariaceae DC. in J.B.A.P.M. de Lamarck \& A.P. de Candolle, Fl. Franç., ed. 3, 3: 427. 17 Sep 1805 , nom. cons.
Globularieae Rchb., Handb. Nat. Pfl.-Syst.: 195. 1-7 Oct 1837
Globularioideae Luerss., Handb. Syst. Bot. 2: 1038. Sep 1882
Gnetaceae Blume, Nov. Pl. Expos.: 23. Aug-Dec 1833, nom. cons. Gneteae Le Maout \& Decne., Traité Général Bot.: 539. Jan-Apr 1868
Gnetoideae J. Williams in J.H. Balfour, Man. Bot., ed. 3: 531. 1855
Gomortegaceae Reiche in Ber. Deutsche Bot. Ges. 14: 232. 19 Aug 1896, nom. cons. Gomortegeae Baill., Hist. P1. 1: 328, 343. Jan-Mai 1869
Gonystylaceae Tiegh. in Just's Bot. Jahresber. 21(2): 389, 390. Jul-Dec 1896, nom. cons. Gonystyleae Reveal in Phytoneuron 2012-33: 2. 9 Apr 2012
Gonystyloideae Domke in Biblioth. Bot. 111: 33. 31 Dec 1934
Goodeniaceae R. Br., Prodr.: 573. 27 Mar 1810, nom. cons.
Goodenieae Dumort., Anal. Fam. P1.: 30. 1829
Goodenioideae Burnett, Outlines Bot.: 939, 1094, 1110. Feb 1835
Greyiaceae Hutch., Fam. Fl. Pl. 1: 202. 15 Jan 1926, nom. cons.
Greyieae Gürke in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 5: 379. Jan 1895
Greyioideae Harv. in Harv. \& Sond., Fl. Cap. 2: 306. 15-31 Oct 1862
Grossulariaceae DC. in J.B.A.P.M. de Lamarck \& A.P. de Candolle, Fl. Franç., ed. 3, 4(2): 405.17 Sep 1805 , nom. cons. Grossularieae Rchb., Fl. Germ. Excurs. 2(2): 561. 1832 Grossularioideae Eaton, Bot. Dict., ed. 4: 43. Apr-Mai 1836
Grubbiaceae Endl. ex Meisn., Pl. Vasc. Gen.: Tab Diagn. 323, Comm. 239. 18-24 Jul 1841, nom. cons.
Grubbieae Spach, Hist. Nat. Vég. 10: 460. 20 Mar 1841
Gunneraceae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 345, 346, Comm. 257. 13-15 Feb 1842, nom. cons. Gunnereae Horan., Char. Ess. Fam.: 77. 17 Jun 1847
Gunneroideae Schindl. in H.G.A. Engler, Nat. Pflanzenr. 23: 16, 104. 12 Dec 1905
Gyrostemonaceae A. Juss. in V.V.D. d'Orbigny, Dict. Univ. Hist. Nat. 6: 450. 1845, nom. cons. Gyrostemoneae Endl. ex Meisn., Pl. Vasc. Gen.: Tab. Diagn. 322, Comm. 235. 18-24 Jul 1841 Gyrostemonoideae Moq. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 13(2): 5, 35. 5 Mai 1849

Haemodoraceae R. Br., Prodr.: 299. 27 Mar 1810, nom. cons.
Haemodoreae Dumort., Anal. Fam. Pl.: 62. 1829
Haemodoroideae Arn., Botany: 133. 9 Mar 1832
Haloragaceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 549. 19 Jul 1814, nom. cons.
Halorageae Bartl., Ord. Nat. Pl.: 315. Sep 1830
Haloragoideae Beilschm. in Flora 16(Beibl. 7): 96, 104. 14 Jun 1833

Hamamelidaceae R. Br. in C. Abel, Narr. Journey China: 374. 15 Aug 1818, nom. cons.
Hamamelideae DC., Prodr. 4: 268. late Sep 1830
Hamamelidinae P.K. Endress in Taxon 38: 374. 1989
Hamamelidoideae Burnett, Outlines Bot.: 733, 1132. Feb 1835
Heliotropiaceae Schrad. in Commentat. Soc. Regiae Sci. Gott. Recent. 4: 192 [Asperifol. Linnei Comm.: 22]. Dec 1819, nom. cons.
Heliotropieae Dumort., Fl. Belg.: 39. 1827
Heliotropioideae Arn., Botany: 122.9 Mar 1832
Hernandiaceae Blume, Bijdr. Fl. Ned. Ind. 11: 550. 24 Jan 1826, nom. cons.
Hernandieae Horan., Char. Ess. Fam.: 75. 17 Jun 1847
Hernandioideae Endl. ex Miq., F1. Ned. Ind. 1(1): 886. 19 Aug 1858
Heteropyxidaceae Engl. \& Gilg in H.G.A. Engler, Syllabus, ed. 8: 281. Jan-Feb 1920, nom. cons. Heteropyxideae Harv., Gen. S. Afr. Pl., ed. 2: 116. Oct 1868
Heteropyxidinae A. Fern. in Mitt. Bot. Staatssamml. München 10: 233. 12 Jan 1971
Heterophyxidoideae Reveal in Phytoneuron 2012-33: 2. 9 Apr 2012
Hippocastanaceae A. Rich., Bot. Méd.: 680. 14-21 Jun 1823, nom. cons. Hippocastaneae Dumort., Fl. Belg.: 113. 1827 Hippocastanoideae Burnett, Outlines Bot.: 891, 1093, 1126. Feb 1835
Hippocrateaceae Juss. in Ann. Mus. Natl. Hist. Nat. 18: 486. Jul-Aug 1811, nom. cons. Hippocrateeae Rchb., Handb. Nat. Pf1.-Syst.: 301. 1-7 Oct 1837 Hippocrateoideae Lindl., Intr. Nat. Syst. Bot.: 120. 27 Sep 1830
Hippuridaceae Vest, Anleit. Stud. Bot.: 265, 278. 1818, nom. cons. Hippurideae DC., Prodr. 3: 71. Mar (med.) 1828 Hippuridoideae Burnett, Outlines Bot.: 577, 1091, 1144. Feb 1835
Hoplestigmataceae Gilg in H.G.A. Engler \& E.F. Gilg, Syllabus, ed. 9-10: 322. 6 Nov 1924, nom. cons.
Hoplestigmateae Reveal in Phytoneuron 2012-33: 2. 9 Apr 2012
Humbertiaceae Pichon in Notul. Syst. (Paris) 13: 23. 15 Dec 1947, nom. cons. Humbertieae Stefanović \& D.F. Austin in S. Stefanović, D.F. Austin \& R.G. Olmstead, Syst. Bot. 28: 800. 13 Nov. 2003
Humbertioideae Roberty in Candollea 14: 22. Oct 1952
Humiriaceae A. Juss. in A. Saint-Hilaire, Fl. Bras. Merid. 2: 87.10 Oct 1829, nom. cons. Humirieae Rchb., Handb. Nat. Pfl.-Syst.: 314. 1-7 Oct 1837 Humirioideae Arn., Botany: 103. 9 Mar 1832
Hydnoraceae C. Agardh, Aphor. Bot.: 88. 21 Dec 1821, nom. cons. Hydnoreae R. Br., Female Rafflesia: 25. Sep 1844 Hydnoroideae Walp., Ann. Bot. Syst. 3: 513. 24-25 Aug 1852
Hydrangeaceae Dumort., Anal. Fam. Pl.: 36, 38. 1829, nom. cons.
Hydrangeeae DC., Prodr. 4: 13. late Sep 1830
Hydrangeoideae Burnett, Outlines Bot.: 732, 1092, 1135. Feb 1835
Hydrocharitaceae Juss., Gen. Pl.: 67. 4 Aug 1789, nom. cons.
Hydrochariteae Horan., Char. Ess. Fam.: 60. 17 Jun 1847
Hydrocharitoideae Eaton, Bot. Dict., ed. 4: 29, 44. Apr-Mai 1836
Hydrocotylaceae Bercht. \& J. Pres1, Přir. Rostlin: 258. Jan-Apr 1820, nom. cons.
Hydrocotyleae Spreng. in J.J. Roemer \& J.A. Schultes, Syst. Veg. 6: xxxii. Aug-Dec 1820
Hydrocotylinae Tausch in Flora 17(1): ad t. 340. 14 Jun 1834
Hydrocotyloideae Burmeist., Handb. Naturgesch.: 308. 1837
Hydrophyllaceae R. Br. in Bot. Reg. 3: ad t. 242. 1 Dec 1817, nom. cons.
Hydrophylleae Rchb., Fl. Germ. Excurs. 1(3): 347. Jul-Dec 1831
Hydrophyllinae Reveal in Phytoneuron 2012-33: 2. 9 Apr 2012
Hydrophylloideae Beilschm. in Flora 16(Beibl. 7): 69, 107. 14 Jun 1833

Hydrostachyaceae Engl. in Bot. Jahrb. Syst. 20: 136. 16 Nov 1894, nom. cons.
Hydrostachyeae Tul. in Ann. Sci. Nat. Bot., sér. 3, 11: 91. Feb 1849
Hydrostachyoideae Wedd. in A.P. de Candolle \& A.L.P.P de Candolle, Prodr. 17: 43, 86. 16 Oct 1873
Hypericaceae Juss., Gen. Pl.: 254. 4 Aug 1789, nom. cons.
Hypericeae Choisy, Prodr. Monogr. Hypéric.: 32, 37. 9 Mar 1821
Hypericoideae Choisy in A.P. de Candolle, Prodr. 1: 541. Jan (med.) 1824
Hypoxidaceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 576. 19 Jul 1814, nom. cons.
Hypoxideae Bernh. in Flora 23: 426. 21 Jul 1840
Hypoxidoideae Burnett, Outlines Bot.: 446. Feb 1835
Icacinaceae Miers in Ann. Mag. Nat. Hist., ser. 2, 8: 174. Sep 1851, nom. cons. Icacineae Benth. in Ann. Mag. Nat. Hist., ser. 1, 7: 215. ante 25 Mai 1841 Icacininae G. King in J. Asiatic Soc. Bengal, Pt. 2, Nat. Hist. 64: 96. Apr 1895 Icacinoideae Sond. in W.H. Harvey \& O.W. Sonder, Fl. Cap. 1: 235. 10-31 Mai 1860
Illecebraceae R. Br., Prodr.: 413. 27 Mar 1810, nom. cons. Illecebreae DC., Prodr. 3: 367. Mar (med.) 1828
Illecebrinae Graebn. in P. Ascherson \& P. Graebner, Syn. Mitteleur. F1. 5: 866. 17 Feb 1919 Illecebroideae Arn., Botany: 112. 9 Mar 1832
Illiciaceae Bercht. \& J. Presl, Přir. Rostlin 2(72): 288. 1825, nom. cons. Illicieae DC., Prodr. 1: 77. Jan (med.) 1824 Illicioideae Raf., Anal. Nat:: 176. Apr-Jul 1815
Iridaceae Juss., Gen. PL.: 57. 4 Aug 1789, nom. cons. Irideae Kitt. in A. Richard, Nouv. Elém. Bot., ed. 3, Germ. transl.: 736. 1840 Iridinae Pax in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. II, 5: 144. Sep 1887 Iridoideae Eaton, Bot. Dict., ed. 4: 28. Apr-Mai 1836
Iteaceae J. Agardh, Theoria Syst. Pl.: 151. Apr-Sep 1858, nom. cons. Iteoideae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 18a: 108. 3 Mai 1930
Ixonanthaceae Planch. ex Miq., Fl. Ned. Ind. 1(2): viii, 494. 30 Sep 1858, nom. cons. Ixonantheae Benth. \& Hook.f., Gen. Pl. 1: 242. 7 Aug 1862
Ixonanthoideae H.J.P. Winkl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 19a: 123. 2 Sep 1931

Juglandaceae DC. ex Perleb, Vers. Arzneikr. Pfl.: 143. Mai 1818, nom. cons. Juglandeae Rchb., Fl. Germ. Excurs. 2(2): 488, 489. 1832 Juglandinae D.E. Stone \& P.S. Manos in Ann. Missouri Bot. Gard. 88: 260. 29 Jun 2001 Juglandoideae Eaton, Bot. Dict., ed. 4: 46. Apr-Mai 1836
Julianiaceae Hemsl. in J. Bot. 44: 379. Oct 1906, nom. cons. Julianieae Reveal in Phytoneuron 2012-33: 2. 9 Apr 2012 Julianiinae D.A. Young in Syst. Bot. 1: 159. 30 Nov 1976 Julianioideae Takht., Sist. Magnoliof. [Syst. Magnolioph.]: 180. 24 Jun 1987
Juncaceae Juss., Gen. Pl.: 43. 4 Aug 1789, nom. cons. Junceae Dumort., Anal. Fam. Pl.: 62. 1829 Juncoideae A. Eaton, Bot. Dict., ed. 4: 27. Apr-Mai 1836
Juncaginaceae Rich., Démonstr. Bot.: ix. Mai 1808, nom. cons. Juncagineae Rich. ex Duby, Bot. Gall. 1: 438. 12-14 Apr 1828 Juncaginoideae Arn., Botany: 136. 9 Mar 1832

Koeberliniaceae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 6: 319. 14 Mai 1895, nom. cons.
Koeberliniinae Engl. in C.F.P. von Martius, Fl. Bras. 12(2): 201. 1 Sep 1874
Koeberlinioideae Pilg. in H.G.A Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr. 3: 105. 12 Jun 1914
Krameriaceae Dumort., Anal. Fam. P1.: 20, 23. 1829, nom. cons.
Kramerieae Spach, Hist. Nat. Vég. 7: 111, 150. 4 Mai 1838
Kramerioideae Mart. ex Torr. \& A. Gray, Fl. N. Amer. 1(1): 4, 133. Jul 1838
Lacistemataceae Mart., Nov. Gen. Sp. Pl. 1: 154, 158. Jan-Mar 1826, nom. cons.
Lacistemateae Horan., Char. Ess. Fam.: 80. 17 Jun 1847
Lacistematoideae Burnett, Outlines Bot.: 558, 561, 1091, 1147. Feb 1835
Lamiaceae Martinov, Tekhno-Bot. Slovar: 355. 3 Aug 1820, nom. cons.
Lamieae Coss. \& Germ., Fl. Desc. Anal. Paris: 311, 324. 22 Feb 1845
Lamiinae Endl., Gen. Pl.: 624. Aug 1838
Lamioideae Harley in Kew Bull. 58: 765. 26 Nov 2003
Lardizabalaceae R. Br. in Trans. Linn. Soc. London 13: 212. 23 Mai-21 Jun 1821, nom. cons. Lardizabaleae DC., Prodr. 1: 95. Jan (med.) 1824
Lardizabaloideae Burnett, Outlines Bot.: 830. Feb 1835
Lauraceae Juss., Gen. PI.: 80. 4 Aug 1789, nom. cons. Laureae Le Maout \& Decne., Traité Général Bot.: 461. Jan-Apr 1868
Lauroideae Burnett, Outlines Bot.: 564, 1091, 1146. Feb 1835
Lecythidaceae A. Rich. in J.B.G.M. Bory de Saint-Vincent, Dict. Class. Hist. Nat. 9: 269. 25 Feb 1825, nom. cons.
Lecythideae DC. in D.F.L. von Schlechtendal, Linnaea 2: 505. Jul 1827
Lecythidoideae Beilschm. in Flora 16(Beibl. 7): 98, 108. 14 Jun 1833
Leeaceae Dumort., Anal. Fam. Pl.: 21, 27. 1829, nom. cons.
Leeeae DC., Prodr. 1: 635. Jan (med.) 1824
Leeoideae Burmeist., Handb. Naturgesch.: 338. 1837
Leitneriaceae Benth. \& Hook.f., Gen. PI. 3: vi, 396.7 Feb 1880 , nom. cons. Leitnerieae Baill., Hist. Pl. 6: 245, 258. Jan-Mai 1876
Lemnaceae Gray, Nat. Arr. Brit. Pl. 2: 729. 10 Jan 1822, nom. cons.
Lemneae Rich. ex A. Rich. in Arch. Bot. (Paris) 1: 200. 11 Mar 1833
Lemnoideae Bab., Man. Brit. Bot.: 320. Mai-Jul 1843
Lennoaceae Solms in Abh. Naturf. Ges. Halle 11: 174. 7 Jan 1870, nom. cons.
Lennoeae Baill., Hist. Pl. 11: 161, 207. Jun-Jul 1891
Lennooideae Craven in Blumea 50: 378. 14 Jul 2005
Lentibulariaceae Rich. in P.A. Poiteau \& P.J.F. Turpin, Fl. Paris 1: ed. fol.: 23, ed. qu.: 26. 18 Jan 1808, nom. cons.
Lentibularieae Fr., Fl. Scan.: 44, 45. 1835
Lentibularioideae A. Eaton, Bot. Dict., ed. 4: 32. Apr-Mai 1836
Lilaeaceae Dumort., Anal. Fam. Pl.: 62, 65. 1829, nom. cons.
Lilaeeae Engl., Syllabus, ed. 1: 67. Apr 1892
Lilaeoideae Thorne \& Reveal in Bot. Rev. (Lancaster) 73: 76. 29 Jun 2007
Liliaceae Juss., Gen. Pl.: 48.4 Aug 1789, nom. cons.
Lilieae Lam. \& DC., Syn. Pl. Fl. Gall.: 159. 30 Jun 1806
Lilioideae Eaton, Bot. Dict., ed. 4: 27. Apr-Mai 1836
Limnanthaceae R. Br. in London Edinburgh Philos. Mag. \&. J. Sci. 3: 71. Jul 1833, nom. cons.
Limnantheae Horan., Char. Ess. Fam.: 194. 17 Jun 1847
Limoniaceae Ser., Fl. Pharm.: 456. 1851, nom. cons.
Limonieae Reveal in Phytoneuron 2012-33: 2. 9 Apr 2012

Limonioideae Reveal in Phytoneuron 2012-33: 2. 9 Apr 2012
Linaceae DC. ex Perleb, Vers. Arzneikr. Pfl.: 107. Mai 1818, nom. cons.
Lineae Rchb., Fl. Germ. Excurs. 2(2): 830, 831. 1832
Linoideae Arn., Botany: 103. 9 Mar 1832
Lissocarpaceae Gilg in H.G.A. Engler \& E.F. Gilg, Syllabus, ed. 9-10: 324. 6 Nov 1924, nom. cons.
Lissocarpoideae B. Walln. in Ann. Naturhist. Mus. Wien, ser. B, 105: 523. 22 Apr 2004
Loasaceae Juss. in Ann. Mus. Natl. Hist. Nat. 5: 21. 1804, nom. cons.
Loaseae Rchb., Handb. Nat. Pfl.-Syst.: 232. 1-7 Oct 1837
Loasoideae Gilg in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 6a: 107. 27 Feb 1894
Lobeliaceae Juss. in A.J.A. Bonplond, Descr. Pl. Malmaison: 19, t. 7. 17-24 Sep 1813, nom. cons.
Lobelieae Rchb., Fl. Germ. Excurs. 1(3): 296. Jul-Dec 1831
Lobeliinae Sond. in W.H. Harvey \& O.W. Sonder, Fl. Cap. 3: 531. 24 Feb-30 Jun 1865
Lobelioideae Burnett, Outlines Bot.: 942, 1094, 1110. Feb 1835
Loganiaceae R. Br. ex Mart., Nov. Gen. Sp. Pl. 2: 133. Jan-Jun 1827, nom. cons.
Loganieae Kitt. in A. Richard, Nouv. Elém. Bot., ed. 3, Germ. trans1.: 817. 1840
Loganioideae Arn., Botany: 120. 9 Mar 1832
Loranthaceae Juss. in Ann. Mus. Natl. Hist. Nat. 12: 292. 1808, nom. cons.
Lorantheae Rchb., Fl. Germ. Excurs. 1(3): 203. Jul-Dec 1831
Loranthinae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr.: 125, 127. 2 Aug 1897
Loranthoideae Eaton, Bot. Dict., ed. 4: 37. Apr-Mai 1836
Lowiaceae Ridl., F1. Malay Penins. 4: 291. 1 Dec 1924, nom. cons.
Lowieae K. Schum. in H.G.A. Engler \& K.AE. Prantl, Nat. Pflanzenfam. Nachtr.: 89. 16 Jul 1897
Lowiineae W.J. Kress in Ann. Missouri Bot. Gard. 77: 717. 16 Nov 1990
Lowioideae K. Schum. in H.G.A. Engler, Nat. Pflanzenr. 1: 13, 40.4 Oct 1900
Lythraceae J. St.-Hil., Expos. Fam. Nat. 2: 175 . Feb-Apr 1805, nom. cons.
Lythreae Dumort., Anal. Fam. Pl.: 39. 1829
Lythrinae Koehne in Bot Jahrb. Syst. 1: 144, 145. 30 Jul 1880
Lythroideae Juss. ex Arn., Botany: 108. 9 Mar 1832
Magnoliaceae Juss., Gen. Pl.: 280. 4 Aug 1789, nom. cons.
Magnolieae DC., Prodr. 1: 79. Jan (med.) 1824
Magnoliinae Y.W. Law in Acta Phytotax. Sin. 22: 106. Apr 1984
Magnolioideae Arn., Botany: 95. 9 Mar 1832
Malaceae Small, Fl. S.E. U.S.: 495, 529. 22 Jul 1903, nom. cons.
Maleae Small, Man. S.E. Fl.: 632. 30 Nov 1933
Malinae Reveal in Phytoneuron 2012-33: 2. 9 Apr 2012
Maloideae C. Weber in J. Arnold Arbor. 45: 164. 15 Apr 1964
Malesherbiaceae D. Don in Edinburgh New Philos. J. 2: 321. 1827, nom. cons.
Malesherbieae DC., Prodr. 3: 337. Mar (med.) 1828
Malesherbioideae Burnett, Outlines Bot.: 750, 1092, 1129. Feb 1835
Malpighiaceae Juss., Gen. Pl.: 252. 4 Aug 1789, nom. cons.
Malpighicae DC., Prodr. 1: 577. Jan (med.) 1824
Malpighiinae Nied. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 4: 53, 71. Dee 1890
Malpighioideae Burnett, Outlines Bot.: 894, 1093, 1126. Feb 1835
Malvaceae Juss., Gen. Pl.: 271. 4 Aug 1789, nom. cons.
Malveae J. Presl, Fl. Sicula: 173. 1826
Malvinae K. Schum. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 6a: 36. 18 Apr 1894

Malvoideae Burnett, Outlines Bot: 816, 1094, 1118. Feb 1835
Marantaceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 575. 19 Jul 1814, nom. cons.
Maranteae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 389, Comm. 292. 17-20 Aug 1842
Marantoideae Eaton, Bot. Dict., ed. 4: 29. Apr-Mai 1836
Marattiaceae Kaulf., Enum. Filic.: 31. 8 Apr-29 Mai 1824, nom. cons.
Marattieae Bory in B.C.J. Dumortier, Anal. Fam. P1.: 67. 1829
Marattioideae C. Presl, Suppl. Tent. Pterid.: 8. late 1845
Marcgraviaceae Bercht. \& J. Presl, Přir. Rostlin: 218. Jan-Apr 1820, nom. cons.
Marcgravieae Choisy in B.C.J. Dumortier, Anal. Fam. Pl.: 47. 1829
Marcgravioideae Choisy in A.P. de Candolle, Prodr. 1: 565. Jan (med.) 1824
Martyniaceae Horan., Char. Ess. Fam.: 130. 17 Jun 1847, nom. cons. Martynieae Horan., Char. Ess. Fam.: 131. 17 Jun 1847
Mayacaceae Kunth in Abh. Königl. Akad. Wiss. Berlin 1840: 93. 1842, nom. cons.
Mayaceae M. Gómez, Noc. Bot. Sist.: 52. Apr-Dec 1893
Medusagynaceae Engl. \& Gilg, Syllabus, ed. 9-10: 280.6 Nov 1924, nom. cons. Medusagynoideae Reveal in Phytoneuron 2012-33: 2. 9 Apr 2012
Melanthiaceae Batsch ex Borkh., Bot. Wörterb. 2: 8. 1797, nom. cons. Melanthieae Griseb., Spic. Fl. Rumel. 2: 377. Jan 1846
Melanthioideae Eaton, Bot. Dict., ed. 4: 27. Apr-Mai 1836
Melastomataceae Juss., Gen. P1.: 328.4 Aug 1789, nom. cons.
Melastomateae Bartl., Ord. Nat. Pl.: 329. Sep 1830
Melastomatinae Baill., Hist. P1. 7: 31, 37. Dec 1877
Melastomatoideae Ser. ex DC., Prodr. 3: 100. Mar (med.) 1828
Meliaceae Juss., Gen. Pl.: 263. 4 Aug 1789, nom. cons.
Melieae DC., Prodr. 1: 619. Jan (med.) 1824
Melioideae Arn., Botany: 103. 9 Mar 1832
Melianthaceae Horan., Prim. Lin. Syst. Nat.: 100. 2 Nov 1834, nom. cons.
Meliantheae Dumort., Anal. Fam. Pl.: 45. 1829
Melianthoideae Benth. \& Hook.f., Gen. Pl. 1: 392, 411. 7 Aug 1862
Menispermaceae Juss., Gen. Pl.: 284. 4 Aug 1789, nom. cons.
Menispermeae DC., Syst. Nat. 1: 510, 511. 1-15 Nov 1817
Menisperminae Miers in Ann. Mag. Nat. Hist., ser. 3, 13: 123. Feb 1864
Menispermoideae Arn. in R. Wight \& G.A.W. Arnott, Prodr. Fl. Ind. Orient.: 11. 10 Oct 1834
Menyanthaceae Dumort., Anal. Fam. Pl.: 20, 25. 1829, nom. cons.
Menyantheae Dumort., Fl. Belg.: 52. 1827
Menyanthoideae Burnett, Outlines Bot.: 1010, 1095, 1104. Feb 1835
Mesembryanthemaceae Philib., Intr. Bot., ed. 2, 3: 268. 28 Jan 1800, nom. cons.
Mesembryanthemeae Benth. \& Hook.f., Gen. PI. 1: 852. Sep 1867
Mesembryantheminae K. Müll. in Bot. Jahrb. Syst. 42(Beibl. 97): 94. 29 Dec 1908
Mesembryanthemoideae Burnett, Outlines Bot.: 736, 1092, 1131. Feb 1835
Mimosaceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 551. 19 Jul 1814, nom. cons.
Mimoseae Bronn, Form. Pl. Legumin.: 78, 127, 130. 1822
Mimosoideae DC., Prodr. 2: 424. Nov (med.) 1825
Misodendraceae J. Agardh, Theoria Syst. Pl.: 236. Apr-Sep 1858, nom. cons.
Misodendreae Horan., Char. Ess. Fam.: 86. 17 Jun 1847
Misodendroideae R. Br. in Trans. Linn. Soc. London 19: 232. 6 Nov 1844
Mitrastemonaceae Makino in Bot. Mag. (Tokyo) 25: 252. Dec 1911, nom. cons.
Mitrastemoneae Engl. \& Gilg, Syllabus, ed. 9-10: 192. 6 Nov 1924
Molluginaceae Bartl. in F.G. Bartling \& H.L. Wendland, Beitr. Bot. 2: 158. Dec 1825, nom. cons.
Mollugineae Bartl., Ord. Nat. Pl.: 302. Sep 1830
Mollugininae Fenzl ex Meisn., Pl. Vasc. Gen.: Tab. Diagn. 130, Comm. 95. 8-14 Apr 1838

Molluginoideae Lindl., Veg. Kingd.: 498. Jan-Mai 1846
Monimiaceae Juss. in Ann. Mus. Natl. Hist. Nat. 14: 133. 1809, nom. cons.
Monimieae Rchb., Handb. Nat. Pfl.-Syst.: 174. 1-7 Oct 1837
Monimioideae Raf., Anal. Nat.: 175. Apr-Jul 1815
Monotropaceae Nutt., Gen. N. Amer. Pl. 1: 272. 14 Jul 1818, nom. cons.
Monotropeae Dumort., Anal. Fam. Pl.: 47. 1829
Monotropinae H. Andres in Verh. Bot. Vereins Prov. Brandenburg 56: 65. 6 Jun 1914
Monotropoideae Arn., Botany: 118. 9 Mar 1832
Montiniaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov.]: 243. 20 Jul 1943, nom. cons.
Montinieae DC., Prodr. 3: 35. Mar (med.) 1828
Montinioideae Beilschm. in Flora 16(Beibl. 7): 96, 108. 14 Jun 1833
Moraceae Gaudich. in C.B. Trinius, Gen. Pl.: 13. 1835, nom. cons.
Moreae Dumort., Anal. Fam. Pl.: 17. 1829
Morinae Benth. \& Hook.f. in Bot. Jahresber. (Just) 8(2): 129. 1883
Moroideae Lindl., Key Bot.: 57. 15-30 Sep 1835
Musaceae Juss., Gen. Pl.: 61. 4 Aug 1789, nom. cons.
Museae Benth., F1. Austral. 6: 261. 23 Sep 1873
Musinae Kuntze in T.E. von Post \& C.E.O. Kuntze, Lex. Gen. Phan.: 628. 20-30 Nov 1903
Musoideae Eaton, Bot. Dict., ed. 4: 28. Apr-Mai 1836
Myoporaceae R. Br., Prodr.: 514. 27 Mar 1810, nom. cons.
Myoporeae Rchb., Handb. Nat. Pfl.-Syst.: 196. 1-7 Oct 1837
Myoporoideae Arn., Botany: 123. 9 Mar 1832
Myricaceae Rich. ex Kunth in F.W.H.A. von Humboldt, A.J.A. Bonpland \& C.S. Kunth, Nov. Gen.
Sp. 2: ed. qu.: 16. 28 Apr 1817, nom. cons.
Myriceae DC. ex Duby, Bot. Gall. 1: 430. 12-14 Apr 1828
Myricinae O. Berg in Linnaea 27: 4. Nov 1855
Myricoideae Sweet, Hort. Brit.: 370. Sep-Oct 1826
Myrsinaceae R. Br., Prodr.: 532. 27 Mar 1810, nom. cons.
Myrsineae Pax in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 1: 87, 90. Dec 1889
Myrsininae Kuntze in T.E. von Post \& C.E.O. Kuntze, Lex. Gen. Phan.: 680. 20-30 Nov 1903
Myrsinoideae Burnett, Outlines Bot.: 1025, 1095, 1102. Feb 1835
Myrtaceae Juss., Gen. Pl.: 322.4 Aug 1789, nom. cons.
Myrteae DC. in D.F.L. von Schlechtendal, Linnaea 2: 504. Jul 1827
Myrtinae Nied. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 7: 62, 64. Apr 1893
Myrtoideae Sweet, F1. Australas.: ad t. 10. 1 Aug 1827
Najadaceae Juss., Gen. Pl.: 18. 4 Aug 1789, nom. cons.
Najadeae Dumort., Fl. Belg.: 164. 1827
Najadoideae Luerss., Handb. Syst. Bot. 2: 304. Dec 1879
Nelumbonaceae A. Rich. in J.B.G.M. Bory de Saint-Vincent, Dict. Class. Hist. Nat. 11: 492. 10 Feb 1827, nom. cons.
Nelumboneae DC., Syst. Nat. 2: 43. late Mai 1821
Nelumbonoideae Arn., Botany: 96. 9 Mar 1832
Nepenthaceae Dumort., Anal. Fam. Pl.: 14, 16. 1829
Nepentheae Spach, Hist. Nat. Vég. 10: 561. 20 Mar 1841
Nepenthoideae Arn., Botany: 128. 9 Mar 1832
Neuradaceae Kostel., Allg. Med.-Pharm. Fl. 4: 1496. Jan-Oct 1835, nom. cons.
Neuradeae DC., Prodr. 2: 548. Nov (med.) 1825
Neuradoideae Raf., Anal. Nat.: 173. Apr-Jul 1815
Nolanaceae Bercht. \& J. Presl, Přir. Rostlin: 244. Jan-Apr 1820, nom. cons.
Nolaneae Rehb., Handb. Nat. Pfl.-Syst.: 200. 1-7 Oct 1837

Nolinoideae Burnett, Outlines Bot.: 985, 1095, 1106. Feb 1835
Nyctaginaceae Juss., Gen. Pl.: 90. 4 Aug 1789, nom. cons.
Nyctagineae Horan., Char. Ess. Fam.: 106. 17 Jun 1847
Nyctaginoideae Eaton, Bot. Dict., ed. 4: 31. Apr-Mai 1836
Nymphaeaceae Salisb. in Ann. Bot. (König \& Sims) 2: 70. Jun 1805, nom. cons.
Nymphaeeae DC., Syst. Nat. 2: 43, 48. late Mai 1821
Nymphaeinae Engl., Syllabus, ed. 5: 125. 20-22 Jul 1907
Nymphaeoideae Arn., Botany: 96. 9 Mar 1832
Nyssaceae Juss. ex Dumort., Anal. Fam. Pl.: 13. 1829, nom. cons.
Nysseae Spach, Hist. Nat. Vég. 10: 461. 20 Mar 1841.
Nyssoideae Arn., Botany: 128. 9 Mar 1832
Ochnaceae DC. in Nouv. Bull. Sci. Soc. Philom. Paris 2: 209. Jan 1811, nom. cons.
Ochneae Bartl., Ord. Nat. Pl.: 384. Sep 1830
Ochnoideae Burnett, Outlines Bot.: 886, 1093, 1125. Feb 1835
Octoknemaceae Tiegh. in C.K. Schneider, Just's Bot. Jahresber. 33(2): 519. 1907, nom. cons. Octoknemoideae Thorne \& Reveal in Bot. Rev. (Lancaster) 73: 98. 29 Jun 2007
Olacaceae R. Br., Observ. Congo: 33. 3 Mar 1818, nom. cons. Olaceae Horan., Char. Ess. Fam.: 117. 17 Jun 1847
Olacinae G. King in J. Asiatic Soc. Bengal 64: 96. Apr 1895
Olacoideae Sond. in W.H. Harvey \& O.W. Sonder, Fl. Cap. 1: 234. 10-31 Mai 1860
Oleaceae Hoffmanns. \& Link, F1. Portug. 1: 62. 1 Sep 1809, nom. cons.
Oleeae Hoffmanns. \& Link ex Dumort., Fl. Belg.: 52. 1827
Oleinae E. Wallander \& V.A. Albert in Amer. J. Bot. 88: 390. 2001
Oleoideae Arn., Botany: 119. 9 Mar 1832
Oliniaceae Harv. \& Sond., Fl. Cap. 2: ix. 15-31 Oct 1862, nom. cons. Olinieae Horan., Char. Ess. Fam.: 155. 17 Jun 1847
Olinioideae Reveal in Phytoneuron 2012-33: 2. 9 Apr 2012
Onagraceae Juss., Gen. Pl.: 317. 4 Aug 1789, nom. cons.
Onagreae Dumort., Fl. Belg.: 89. 1827
Onagroideae Beilschm. in Flora 16(Beibl. 7): 96, 109. 14 Jun 1833
Opiliaceae Valeton, Crit. Overz. Olacin.: 136. 7 Jul 1886 , nom. cons.
Opilieae Benth. in Ann. Mag. Nat. Hist., ser. 1, 7: 215. ante 25 Mai 1841
Opiliinae G. King in J. Asiatic Soc. Bengal 64: 96. Apr 1895
Opilioideae Tiegh. in Just's Bot. Jahresber. 24(2): 292. 1898
Orchidaceae Juss., Gen. Pl.: 64. 4 Aug 1789, nom. cons.
Orchideae Small, Man. S.E. Fl.: 363. 30 Nov 1933
Orchidinae Dressler \& Dodson ex Reveal in Phytoneuron 2012-33: 2. 9 Apr 2012
Orchidoideae Eaton, Bot. Dict., ed. 4: 29. Apr-Mai 1836
Orobanchaceae Vent., Tabl. Règne Vég. 2: 292. 5 Mai 1799, nom. cons.
Orobancheae Lam. \& DC., Syn. P1. F1. Gall.: 214. 30 Jun 1806
Orobanchinae Teryokhin in L. Yu. Budantsev, Opred. Zarazikhovykh Fl. SSSR: 34. 1993
Orobanchoideae Eaton, Bot. Dict., ed. 4: 32. Apr-Mai 1836
Oxalidaceae R. Br., Observ. Congo: 33. 3 Mar 1818, nom. cons.
Oxalideae Rchb., Fl. Germ. Excurs. 2(2): 781. 1832
Oxalidoideae Arn., Botany: 104. 9 Mar 1832
Paeoniaceae Raf., Anal. Nat.: 176. Apr-Jul 1815, nom. cons.
Paeonieae DC., Prodr. 1: 64. Jan (med.) 1824
Paeonioideae Arn., Botany: 95. 9 Mar 1832

Pandanaceae R. Br., Prodr.: 340. 27 Mar 1810, nom. cons.
Pandaneae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 359, Comm. 268. 13-15 Feb 1842.
Pandanoideae Burnett, Outlines Bot.: 405. Feb 1835
Papaveraceae Juss., Gen. Pl.: 235. 4 Aug 1789, nom. cons.
Papavereae Dumort., Fl. Belg.: 130. 1827
Papaverinae Endl., Gen. Pl.: 855. Jun 1839
Papaveroideae Eaton, Bot. Dict., ed. 4: 38. Apr-Mai 1836
Papilionaceae Giseke, Prael. Ord. Nat. P1.: 415. Apr 1792, nom. cons.
Papilionoideae DC., Prodr. 2: 94. Nov (med.) 1825
Parnassiaceae Martinov, Tekhno-Bot. Slovar: 456.3 Aug 1820, nom. cons.
Parnassieae Dumort., Fl. Belg.: 115. 1827
Parnassioideae Arn., Botany: 98. 9 Mar 1832
Passifloraceae Juss. ex Roussel, Fl. Calvados, ed. 2: 334. 30 Mai 1806, nom. cons.
Passifloreae DC., Prodr. 3: 322. Mar (med.) 1828
Passifloroideae Burnett, Outlines Bot.: 750, 1092, 1130. Feb 1835
Pedaliaceae R. Br., Prodr.: 519. 27 Mar 1810, nom. cons.
Pedalieae Dumort., Anal. Fam. P1.: 22. 1829
Pedalioideae Arn., Botany: 121. 9 Mar 1832
Penaeaceae Sweet ex Guill. in J.B.G.M. Bory de Saint-Vincent, Dict. Class. Hist. Nat. 13: 171. 1 Mar 1828, nom. cons.
Penaeeae A. DC. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 14: 484. Oct (med.) 1856
Penaeoideae Horan., Char. Ess. Fam.: 111. 17 Jun 1847
Pentaphragmataceae J. Agardh, Theoria Syst. Pl.: 95. Apr-Sep 1858, nom. cons. Pentaphragmateae R. Schönland in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 5: 48. Jun 1889
Pentaphragmatinae Heintze, Cormofyt. Fylog.: 64. 1 Jun 1927
Pentaphylacaceae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr.: 214. 4 Oct 1897, nom. cons.
Pentaphylaceae P.F. Stevens \& A. L. Weitzman in K. Kubitzki (ed.), Fam. \& Gen. Vasc. Pl. 6: 455. 2004

Penthoraceae Rydb. ex Britton, Man. Fl. N. States: 475.16 Oct 1901, nom. cons. Penthoreae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 134, Comm. 99. 8-14 Apr 1838
Penthoroideae Pfeiff., Nomencl. Bot. 1(2): 905. ante 3 Oct 1873
Periplocaceae Schltr. in K. Schumann \& C.A.G. Lauterbach, Nachtr. Fl. Schutzgeb. Südsee: 351. 16 Nov 1905, nom. cons.
Periploceae Bartl., Ord. Nat. PL.: 203. Sep 1830
Periplocoideae Endl., Gen. Pl.: 587. Aug 1838
Petermanniaceae Hutch., Fam. FI. PI. 2: 113. 20 Jul 1934, nom. cons.
Petermannioideae Conran \& Clifford in Fl. Australia 46: 230. 2 Mai 1986
Petrosaviaceae Hutch., Fam. F1. P1. 2: 36. 20 Jul 1934, nom. cons.
Petrosavieae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr: 71, 72. 16 Jul 1897
Petrosavioideae Reveal in Phytoneur on 2012-33: 2. 9 Apr 2012
Philydraceae Link, Enum. Hort. Berol. Alt. 1: 5. 16 Mar-30 Jun 1821, nom. cons.
Philydreae M. Gómez, Noc. Bot. Sist.: 52. Apr-Dec 1893
Philydroideae Burnett, Outlines Bot.: 422. Feb 1835
Phrymaceae Schauer in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 11: 520. 25 Nov 1847, nom. cons.
Phrymeae Hogg, Veg. Kingd.: 584. 1858
Phrymoideae A. Gray, Bot. Text, ed. 5: 450. Jan-Sep 1858

Phyllanthaceae Martinov, Tekhno-Bot. Slovar: 369. 3 Aug 1820, nom. cons.
Phyllantheae Dumort., Anal. Fam. Pl.: 45. 1829
Phyllanthinae Thonner, Bl.-pfl. Afr.: 343. Oct 1908
Phyllanthoideae Beilschm. in Flora 16(Beib1. 7): 61, 109. 14 Jun 1833
Phytolaccaceae R. Br., Observ. Congo: 33. 3 Mar 1818, nom. cons.
Phytolacceae Duby, Bot. Gall. 1: 399. 12-14 Apr 1828
Phytolaccoideae Arn., Botany: 125. 9 Mar 1832
Picrodendraceae Small in J. New York Bot. Gard. 18: 184. Aug 1917, nom. cons.
Picrodendreae Fawc. \& Rendle, Fl. Jamaica 4(2): 249. Jul 1920
Picrodendrinae G.L. Webster in Ann. Missouri Bot. Gard. 81: 60. 21 Mar 1994
Pinaceae Spreng. ex F. Rudolphi, Syst. Orb. Veg.: 35. 5-12 Jul 1830, nom. cons.
Pineae Bluff \& Fingerh., Comp. Fl. German. 2: 538. late 1825
Pininae Berg \& C.F. Schmidt, Darstell. Beschr. Off. Gew. 1: 8d. Jan-Mar 1858
Pinoideae W. Hochst., Coniferen: 3. Oct 1881
Piperaceae Giseke, Prael. Ord. Nat. Pl.: 123. Apr 1792, nom. cons.
Pipereae Gaudich. in H.L.C. de Saulces de Freycinet, Voy. Uranie, Bot.: 492, 513, 514. 6 Mar 1830
Piperinae Endl., Gen. Pl. Suppl. 4(2): 16. Aug-Oct 1848
Piperoideae Arn., Botany: 130.9 Mar 1832
Pittosporaceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 542.19 Jul 1814, nom. cons. Pittosporeae Rchb., Handb. Nat. Pfl.-Syst.: 270. 1-7 Oct 1837
Pittosporoideae Burnett, Outlines Bot.: 896, 1093, 1127. Feb 1835
Plantaginaceae Juss., Gen. Pl.: 89. 4 Aug 1789, nom. cons.
Plantagineae Dumort., Anal. Fam. Pl.: 25. 1829
Plantaginoideae Eaton, Bot. Dict., ed. 4: 31. Apr-Mai 1836
Platanaceae T. Lestib., Botanogr. Elém.: 526. 12-19 Jun 1826, nom. cons.
Plataneae Juss. ex Duby, Bot. Gall. 1: 430. 12-14 Apr 1828
Platanoideae Arn., Botany: 131. 9 Mar 1832
Plumbaginaceae Juss., Gen. Pl.: 92. 4 Aug 1789, nom. cons. Plumbagineae Dumort., Anal. Fam. P1.: 27. 1829
Plumbaginoideae Burnett, Outlines Bot.: 1028, 1095, 1101. Feb 1835
Poaceae Barnhart in Bull. Torrey Bot. Club 22: 7. 15 Jan 1895, nom. cons.
Poeae R. Br. in M. Flinders, Voy. Terra Austral. 2: 582. 19 Jul 1814
Poinae Dumort., Anal. Fam. Pl.: 63. 1829
Poodae L. Liu in Acta Phytotax. Sin. 18: 324. Aug 1980
Pooideae Benth., Fl. Hongk.: 407. Feb 1861
Podocarpaceae Endl., Syn. Conif.: 203. Mai-Jun 1847, nom. cons.
Podocarpeae Dumort., Anal. Fam. Pl.: 12. 1829
Podocarpinae Tiegh. in Bot. Jahrb. Syst. 15(Litt.): 120.24 Feb 1893
Podocarpoideae Beilschm. in Flora 16(Beibl. 7): 58, 109. 14 Jun 1833
Podophyllaceae DC., Syst. Nat. 1: 126. 1-15 Nov 1817, nom. cons.
Podophylleae DC., Syst. Nat. 2: 32, 33. late Mai 1821
Podophylloideae Eaton, Bot. Dict., ed. 4: 38. Apr-Mai 1836
Podostemaceae Rich. ex Kunth in F.W.H.A. von Humboldt, A.J.A. Bonpland \& C.S. Kunth, Nov.
Gen. Sp. 1, ed. qu.: 246. 4-11 Mai 1816, nom. cons.
Podostemeae Dumort., Anal. Fam. P1.: 62. 1829
Podostemoideae Wedd. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 17: 39, 43. 16 Oct 1873
Polemoniaceae Juss., Gen. Pl.: 136. 4 Aug 1789, nom. cons.
Polemonieae Dumort., Anal. Fam. Pl.: 25. 1829
Polemonioideae Arn., Botany: 121. 9 Mar 1832

Polygalaceae Hoffmanns. \& Link, F1. Portug. 1: 62. 1 Sep 1809, nom. cons.
Polygaleae Fr., Fl. Scan.: 35, 38. 1835
Polygaloideae Eaton, Bot. Dict., ed. 4: 46. Apr-Mai 1836
Polygonaceae Juss., Gen. P1.: 82. 4 Aug 1789, nom. cons.
Polygoneae Rchb., Fl. Germ. Excurs. 2(2): 563, 568. 1832
Polygoninae Roberty \& Vautier in Boissiera 10: 30. Jul 1964
Polygonoideae Eaton, Bot. Dict., ed. 4: 30. Apr-Mai 1836
Pontederiaceae Kunth in F.W.H.A. von Humboldt, A.J.A. Bonpland \& C.S. Kunth, Nov. Gen. Sp. 1, ed. qu.: 265. 4-11 Mai 1816, nom. cons.
Pontederieae Dumort., Anal. Fam. Pl.: 61. 1829
Pontederoideae Eaton, Bot. Dict., ed. 4: 28. Apr-Mai 1836
Portulacaceae Juss., Gen. Pl.: 312. 4 Aug 1789, nom. cons.
Portulaceae Dumort., Fl. Belg.: 86. 1827
Portulacinae E. Franz in Bot. Jahrb. Syst. 42(Beibl. 97): 44. 29 Dec 1908
Portulacoideae Burnett, Outlines Bot.: 739, 1131. Feb 1835
Posidoniaceae Vines, Stud. Text-book Bot. 2: 553. Mar 1895, nom. cons.
Posidonieae Kunth ex Spach, Hist. Nat. Vég. 12: 14. 27 Jun 1846
Posidonioideae K. Schum., Lehrb. Syst. Bot.: 246. Jun 1894
Potamogetonaceae Bercht. \& J. Presl, Přir. Rostlin 1(7*-13): 1, 3. 1823, nom. cons. Potamogetoneae Dumort., Fl. Belg.: 163. 1827
Potamogetonoideae Luerss., Handb. Syst. Bot. 2: 304. Dec 1879
Primulaceae Batsch ex Borkh., Bot. Wörterb. 2: 240. 1797, nom. cons. Primuleae Dumort., Fl. Belg.: 30. 1827.
Primulinae Pax in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 1: 104. Jun 1890
Primuloideae Burnett, Outlines Bot.: 1025, 1095, 1102. Feb 1835
Proteaceae Juss., Gen. Pl.: 78. 4 Aug 1789, nom. cons.
Proteeae Dumort., Anal. Fam. Pl.: 18. 1829
Proteinae L.A.S. Johnson \& B.G. Briggs in Bot. J. Linn. Soc. 70: 172. 3 Sep 1975
Proteoideae Eaton, Bot. Dict., ed. 4: 30. Apr-Mai 1836
Pterostemonaceae Small in N.L. Britton, N. Amer. Fl. 22(1): 2. 22 Mai 1905, nom. cons. Pterostemoneae Kuntze in T.E. von Post \& C.E.O. Kuntze, Lex. Gen. Phan.: 648. 20-30 Nov 1903
Pterostemonoideae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 2a: 46. Dee 1890
Punicaceae Bercht. \& J.Pres1, Přir. Rostlin 2(94*): 378. 1825, nom. cons. Punicoideae Luerss., Handb. Syst. Bot. 2: 822. Oct 1881
Pyrolaceae Lindl., Syn. Brit. Fl.: 175. 16 Mar 1829, nom. cons.
Pyroleae Dumort., Anal. Fam. Pl.: 47. 1829
Pyroloideae Beilschm. in Flora 16(Beibl. 7): 72, 109. 14 Jun 1833
Quiinaceae Choisy ex Engl. in C.F.P. von Martius, Fl. Bras. 12(1): 475, 476. 1 Apr 1888, nom. cons. Quiineae Planch. \& Triana in Ann. Sci. Nat. Bot., sér. 4, 13: 317. Jan-Jun 1860 Quiinoideae Luerss., Handb. Syst. Bot. 2: 651. Jun 1881

Rafflesiaceae Dumort., Anal. Fam. P1.: 13, 14. 1829, nom. cons.
Rafflesieae Schott \& Endl. ex Spach, Hist. Nat. Vég. 10: 551. 20 Mar 1841
Rafflesioideae Walp., Ann. Bot. Syst. 3: 512. 24-25 Aug 1852
Ranunculaceae Juss., Gen. Pl.: 231. 4 Aug 1789, nom. cons.
Ranunculeae DC., Syst. Nat. 1: 130, 228. 1-15 Nov 1817
Ranunculoideae Arn., Botany: 94. 9 Mar 1832

Rapateaceae Dumort., Anal. Fam. P1.: 60, 62. 1829, nom. cons.
Rapateeae M. Gómez, Noc. Bot. Sist.: 52. Apr-Dec 1893
Rapateoideae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 405. 17-20 Aug 1842
Resedaceae Martinov, Tekhno-Bot. Slovar: 541. 3 Aug 1820, nom. cons.
Resedeae Rchb., Fl. Germ. Excurs. 2(2): 695. 1832
Resedinae Müll.-Arg. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 16(2): 550, 555. late Jul 1868
Resedoideae Eaton, Bot. Dict., ed. 4: 38. Apr-Mai 1836
Restionaceae R. Br., Prodr.: 243. 27 Mar 1810, nom. cons.
Restioneae Bartl., Ord. Nat. Pl.: 36. Sep 1830
Restionoideae Amott, Botany: 135. 9 Mar 1832
Rhamnaceae Juss., Gen. Pl.: 376. 4 Aug 1789, nom. cons.
Rhamneae Horan., Char. Ess. Fam.: 138. 17 Jun 1847
Rhamnoideae Eaton, Bot. Dict., ed. 4: 46. Apr-Mai 1836
Rhizophoraceae Pers., Syn. Pl. 2: 2. Nov 1806, nom. cons.
Rhizophoreae Bartl., Ord. Nat. Pl.: 320. Sep 1830
Rhizophoroideae Burnett, Outlines Bot.: 725, 1134. Feb 1835
Rhoipteleaceae Hand.-Mazz. in Repert. Spec. Nov. Regni Veg. 30: 75. 15 Feb 1932, nom. cons. Rhoipteleoideae Reveal in Phytoneuron 2012-33: 2. 9 Apr 2012
Roridulaceae Martinov, Tekhno-Bot. Slovar: 549. 3 Aug 1820, nom. cons.
Roriduleae Kuntze in T.E. von Post \& C.E.O. Kuntze, Lex. Gen. Phan.: 647. 20-30 Nov 1903
Rosaceae Juss., Gen. Pl.: 334. 4 Aug 1789, nom. cons.
Roseae Lam. \& DC., Syn. Pl. Fl. Gall.: 331. 30 Jun 1806
Rosinae J. Presl in Nowočeská Bibl. [Wšobecný Rostl.] 7: 503. 1846
Rosodae T. Eriksson, Smedmark \& M.S. Kerr in D. Potter et al., Pl. Syst. Evol. 266: 36. 2007
Rosoideae Arn., Botany: 107. 9 Mar 1832
Rubiaceae Juss., Gen. Pl.: 196. 4 Aug 1789, nom. cons.
Rubieae Baill., Hist. Pl. 7: 365, 390. Feb 1880
Rubinae Focke in H.G.A. Engler \& K.A.E. Prant1, Nat. Pflanzenfam. III, 3: 12. Dec 1888
Rubiodae Robbr. \& Manen in Syst. \& Geogr. PI. 76: 137. 7 Jul 2006
Rubioideae Bremek. ex Verdc. in Bull. Jard. Bot. État Bruxelles 28: 280. 30 Sep 1958
Ruppiaceae Horan., Prim. Lin. Syst. Nat.: 46. 2 Nov 1834, nom. cons.
Ruppieae Kunth ex Spach, Hist. Nat. Vég. 12: 15. 27 Jun 1846
Ruppioideae Rouy, Fl. France 13: 287, 292. Mai 1912
Ruscaceae M. Roem., Handb. Allg. Bot. 3: 446. 1840, nom. cons.
Rusceae Dumort., Anal. Fam. Pl.: 60. 1829
Ruscoideae Dippel, Handb. Laubholzk. 1: 9. Aug-Sep 1889
Rutaceae Juss., Gen. Pl.: 296. 4 Aug 1789, nom. cons.
Ruteae Dumort., Anal. Fam. Pl.: 45. 1829
Rutinae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 4: 110, 129. Mar 1896
Rutoideae Arn., Botany: 104. 9 Mar 1832
Salicaceae Mirb., Elém. Physiol. Vég. Bot. 2: 905. 24-30 Jun 1815, nom. cons.
Saliceae Rchb., Fl. Germ. Excurs. 1(2): 165. Jan-Apr 1831
Salicoideae Rich. ex Arn., Botany: 130. 9 Mar 1832
Salvadoraceae Lindl., Nat. Syst. Bot., ed. 2: 269. 13 Jun 1836, nom. cons.
Salvadorineae Engl., Syllabus, ed. 2: 171. Mai 1898
Samydaceae Vent. in Mém. Cl. Sci. Math. Inst. Natl. France 1807(2): 149. 1808, nom. cons.
Samydeae Vent. in B.C.J. Dumortier, Anal. Fam. Pl.: 18. 1829
Samydoideae Reveal in Phytoneuron 2012-33: 3. 9 Apr 2012

Santalaceae R. Br., Prodr.: 350. 27 Mar 1810, nom. cons.
Santaleae Dumort., Anal. Fam. Pl.: 13. 1829
Santalinae A. DC. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 14: 681. Oct (med.) 1856
Santaloideae Arn., Botany: 128. 9 Mar 1832
Sapindaceae Juss., Gen. Pl.: 246. 4 Aug 1789, nom. cons.
Sapindeae Kunth ex DC., Prodr. 1: 607. Jan (med.) 1824
Sapindoideae Burnett, Outlines Bot.: 889. Feb 1835
Sarcolaenaceae Caruel in Atti Reale Accad. Lincei, Mem. Cl. Sci. Fis., ser. 3, 10: 226, 248. 5 Jun 1881, nom. cons.
Sarcolaeneae Horan., Char. Ess. Fam.: 187. 17 Jun 1847
Sarcospermataceae H.J. Lam in Bull. Jard. Bot. Buitenzorg, ser. 3, 7: 248. Feb 1925, nom. cons.
Sarcospermateae Aubrév. in Adansonia, sér. 2, 4: 39. 8 Apr 1964
Sarcospermatoideae Swenson \& Anderb. in Cladistics 21: 120. Apr 2005
Sargentodoxaceae Stapf ex Hutch., Fam. Fl. Pl. 1: 100. 15 Jan 1926, nom. cons.
Sargentodoxoideae Thorne \& Reveal in Bot. Rev. (Lancaster) 73: 89. 29 Jun 2007
Sarraceniaceae Dumort., Anal. Fam. Pl.: 53. 1829, nom. cons.
Sarracenieae Rchb., Handb. Nat. Pfl.-Syst.: 269. 1-7 Oct 1837
Sarracenioideae Eaton, Bot. Dict., ed. 4: 38. Apr-Mai 1836
Saurauiaceae Griseb., Grundr. Syst. Bot.: 98. 1-2 Jun 1854, nom. cons.
Saurauieae DC., Prodr. 1: 525. Jan (med.) 1824
Saurauioideae Gilg in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 6: 110. Mar 1893
Saururaceae F. Voigt in L.C.M. Richard, Anal Frucht.: 45, 67. 1811, nom. cons.
Saurureae Dumort., Anal. Fam. Pl.: 66. 1829
Saururoideae Arn., Botany: 130.9 Mar 1832
Saxifragaceae Juss., Gen. Pl.: 308. 4 Aug 1789, nom. cons.
Saxifrageae Dumort., F1. Belg.: 84. 1827
Saxifraginae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 2a: 46. Dec 1890
Saxifragoideae Beilschm. in Flora 16(Beibl. 7): 94, 110. 14 Jun 1833
Schisandraceae Blume, Fl. Javae 32-33: 3. 25 Jun 1830, nom. cons.
Schisandreae DC., Syst. Nat. 1: 543. 1-15 Nov 1817
Schisandroideae Raf., Anal. Nat.: 175. Apr-Jul 1815
Scrophulariaceae Juss., Gen. Pl.: 117. 4 Aug 1789, nom. cons.
Scrophularieae Dumort., Fl. Belg.: 35. 1827
Scrophularioideae Beilschm. in Flora 16(Beib1. 7): 67, 110. 14 Jun 1833
Scyphostegiaceae Hutch., Fam. F1. Pl. 1: 229. 15 Jan 1926, nom. cons.
Scyphostegieae Zmarzty in M.W. Chase et al., Kew Bull. 57: 170. 2002
Scyphostegioideae Reveal in Phytoneuron 2012-33: 3. 9 Apr 2012
Scytopetalaceae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr.: 242.4 Oct 1897, nom. cons.
Scytopetaloideae O. Appel in Bot. J. Linn. Soc. 121: 225. 17 Sep 1996
Selaginaceae Choisy in Mém. Soc. Phys. Genève [Mém. Sélag.: 19] 2: 89. 1823, nom. cons.
Selagineae Horan., Char. Ess. Fam.: 119. 17 Jun 1847
Selaginoideae Arn., Botany: 124. 9 Mar 1832
Simaroubaceae DC. in Nouv. Bull. Sci. Soc. Philom. Paris 2: 209. Jan 1811, nom. cons.
Simaroubeae Dumort., Anal. Fam. Pl.: 45. 1829
Simaroubinae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 4: 207, 210. Apr 1896
Simarouboideae Rich. ex Arn., Botany: 105. 9 Mar 1832
Siphonodontaceae Gagnep. \& Tardieu in Notul. Syst. (Paris) 14: 102.25 Jul 1951, nom. cons.
Siphonodontoideae Croizat in Lilloa 13: 41. 1947

Smilacaceae Vent., Tabl. Règne Vég. 2: 146. 5 Mai 1799, nom. cons.
Smilaceae Dumort., Anal. Fam. Pl.: 60. 1829
Smilacoideae Burnett, Outlines Bot.: 437. Feb 1835
Solanaceae Juss., Gen. Pl.: 124. 4 Aug 1789, nom. cons.
Solaneae Dumort., Anal. Fam. Pl.: 24. 1829
Solaninae Dunal in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 13(1): 4, 23. 10 Mai 1852
Solanoideae Burnett, Outlines Bot.: 985, 1095, 1106. Feb 1835
Sonneratiaceae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr.: 261. 4 Oct 1897, nom. cons.
Sonneratieae Miq., F1. Ned. Ind. 1(1): 495. 20 Dec 1855
Sonneratioideae S. A. Graham, Thorne \& Reveal in Taxon 47: 436. 15 Mar 1998
Sparganiaceae Hanin, Cours Bot.: 400. 16-23 Apr 1811, nom. cons.
Sparganieae Dumort., Anal. Fam. Pl.: 66. 1829
Sparganioideae Rouy, Fl. France 13: 335. Mai 1912
Sphenocleaceae T. Baskerv., Affin. Pl.: 110. 1839, nom. cons.
Sphenocleeae A Gray, Syn. Fl. N. Amer. 2(1): 9. Mai 1878
Sphenocleinae Heintze, Cormofyt. Fylog.: 64. 1 Jun 1927
Sphenocleoideae Lindl., Nat. Syst. Bot., ed. 2: 238. 13 Jun 1836
Stackhousiaceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 555. 19 Jul 1814, nom. cons. Stackhousieae Baill., Hist. Pl. 6: 22, 43. Jan-Apr 1875
Stackhousioideae Burnett, Outlines Bot.: 618, 1092, 1140. Feb 1835
Staphyleaceae Martinov, Tekhno-Bot. Slovar: 598.3 Aug 1820, nom. cons.
Staphyleeae DC., Prodr. 2: 2. Nov (med.) 1825
Staphyleoideae Arn., Botany: 105. 9 Mar 1832
Stemonaceae Caruel in Nuovo Giorn. Bot. Ital. 10: 94. Apr 1878, nom. cons.
Stemoneae Voigt, Hort. Suburb. Calcutt.: 650. Aug-Dec 1845
Stemonoideae Reveal in Phytoneuron 2012-33: 3. 9 Apr 2012
Stenomeridaceae J. Agardh, Theoria Syst. PI.: 66. Apr-Sep 1858, nom. cons. Stenomerideae Pax in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. II, 5: 133. Sep 1887
Stenomeridoideae Reveal in Phytoneuron 2012-33: 3. 9 Apr 2012
Sterculiaceae Vent. in R. Salisbury, Parad. Lond. 2: ad t. 69.1 Mai 1807, nom. cons. Sterculieae DC., Prodr. 1: 481. Jan (med.) 1824
Sterculiinae A. Dumont in Bot. Jahrb. Syst. 10(Litt.): 2. 6 Jul 1888
Sterculioideae Beilschm. in Flora 16(Beibl. 7): 86, 110. 14 Jun 1833
Stilbaceae Kunth, Handb. Bot.: 393. 21-28 Sep 1831, nom. cons.
Stilbeae Hogg, Veg. Kingd.: 583. 1858
Stilboideae Harv., Gen. S. Afr. Pl., ed. 2: 288. Oct 1868
Strasburgeriaceae Tiegh. in H. Solereder, Syst. Anat. Dicot. Ergänz.: 45. 9 Mai 1908, nom. cons. Strasburgerioideae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr. 2: 226. Jun 1907
Strelitziaceae Hutch., Fam. Fl. Pl. 2: 72. 20 Jul 1934, nom. cons.
Strelitzieae Horan., Prodr. Monogr. Scitam.: 7. Aug-Dec 1862
Strelitziinae Kuntze in T.E. von Post \& C.E.O. Kuntze, Lex. Gen. Phan.: 628. 20-30 Nov 1903
Strelitzioideae K. Schum. in H.G.A. Engler, Nat. Pflanzenr. 1: 13. 4 Oct 1900
Stylidiaceae R. Br., Prodr.: 565. 27 Mar 1810, nom. cons.
Stylidieae Rchb., Handb. Nat. Pfl.-Syst.: 186. 1-7 Oct 1837
Stylidioideae Kitt. in A. Richard, Nouv. Elém. Bot., ed. 3, Germ. transl.: 827. 1840
Styracaceae DC. \& Spreng. [trans. Jameson], Elem. Philos. Pl.: 140. Jul 1821, nom. cons. Styraceae Rich. ex Duby, Bot. Gall. 1: 320. 12-14 Apr 1828
Styracoideae Eaton, Bot. Dict., ed. 4: 40. Apr-Mai 1836

Surianaceae Arn. in R. Wight \& C.A.W. Arnott, Prodr. Fl. Ind. Orient.: 1: 360. 10 Oct 1834, nom. cons.
Surianeae Baill., Hist. Pl. 4: 432, 511. Jul-Sep 1873
Surianoideae Raf., Anal. Nat.: 174. Apr-Jul 1815
Symplocaceae Desf. in Mém. Mus. Hist. Nat. 6:9.1820, nom. cons.
Symploceae A. DC. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 8: 246. Mar (med.) 1844
Symplocoideae A. Gray, Bot. Text, ed. 5: 443. Jan-Sep 1858
Taccaceae Dumort., Anal. Fam. Pl.: 57, 58. 1829, nom. cons.
Tacceae Horan., Char. Ess. Fam.: 55. 17 Jun 1847
Taccoideae Herb., Amaryllidaceae: 48, 63, 81. late Apr 1837
Tamaricaceae Link, Enum. Hort. Berol. Alt. 1: 291. 16 Mar-30 Jun 1821, nom. cons.
Tamariceae Rchb., Handb. Nat. Pfl.-Syst.: 240. 1-7 Oct 1837
Tamaricoideae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 129, Comm. 93. 8-14 Apr 1838
Taxaceae Gray, Nat. Arr. Brit. Pl. 2: 222, 226. 10 Jan 1822, nom. cons.
Taxeae Rich. ex Duby, Bot. Gall. 1: 431. 12-14 Apr 1828
Taxinae Masters in J. Linn. Soc. Bot. 30: 6. 28 Aug 1893
Taxoideae Sweet, Hort. Brit.: 371. Sep-Oct 1826
Taxoideae Sweet, Hort. Brit.: 371. Sep-Oct 1826
Taxodieae Eichler in C.F.P. von Martius, Fl. Bras. 4: 421. 10 Jul 1863
Taxodiinae Parl. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 16(2): 365, 432. Jul (med.) 1868
Taxodioideae Endl. ex K. Koch, Dendrologic 2(2): 186. Nov 1873
Tecophilaeaceae Leyb., Bonplandia 10: 370. Dec 1862, nom. cons.
Tecophilaeoideae Reveal in Phytoneuron 2012-33: 3. 9 Apr 2012
Tetracentraceae A.C. Sm. in J. Arnold Arbor. 26: 135. 16 Apr 1945, nom. cons.
Tetracentroideae Harms in Ber. Deutsch. Bot. Ges 15: 359. 27 Jul 1897
Tetragoniaceae Lindl., Nat. Syst. Bot., ed. 2: 209. 13 Jun 1836, nom. cons.
Tetragonieae Fenzl in Ann. Wiener Mus. Naturgesch. 2: 287. Feb 1839
Tetragonioideae Lindl., Veg. Kingd.: 527. 14-28 Mar 1846
Theaceae Mirb. ex Ker Gawl. in Bot. Reg. 2: ad t. 112.1 Mai 1816, nom. cons.
Theeae Szyszyl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 6: 180, 181. Mai 1893
Theoideae Reveal in Phytoneuron 2012-33: 3. 9 Apr 2012
Theligonaceae Dumort., Anal. Fam. Pl.: 15, 17. 1829, nom. cons.
Theligoneae Baill., Hist. PI. 4: 46, 55. 1872
Theligoninae Robbr. \& Manen in Syst. \& Geogr. Pl. 76: 138. 7 Jul 2006
Theligonoideae Rouy, Fl. France 12: 264, 278. Nov 1910
Theophrastaceae G. Don in Edwards's Bot. Reg. 21: ad t. 1764. 1 Jun 1835, nom. cons.
Theophrasteae Bartl., Ord. Nat. Pl.: 165. Sep 1830
Theophrastoideae A. DC. in A.P. de Candolle \& AL.P.P. de Candolle, Prodr. 8: 145. Mar (med.) 1844
Thismiaceae J. Agardh, Theoria Syst. Pl.: 99. Apr-Sep 1858, nom. cons.
Thismieae Miers in J. Lindley, Veg. Kingd., ed. 3: 171, 172. Aug 1853
Thurniaceae Engl., Syllabus, ed. 5: 94. 20-22 Jul 1907, nom. cons.
Thurnieae Reveal in Phytoneuron 2012-33: 3. 9 Apr 2012
Thymelaeaceae Juss., Gen. Pl.: 76. 4 Aug 1789, nom. cons.
Thymelaeeae Endl., Gen. Pl. Suppl. 4(2): 59, 61. Aug-Oct 1848
Thymelaeoideae Burnett, Outlines Bot.: 570, 1091, 1145. Feb 1835
Tiliaceae Juss., Gen. Pl.: 289. 4 Aug 1789, nom. cons.
Tilieae Bartl., Ord. Nat. Pl.: 339. Sep 1830
Tiliinae A. Dumont in Bot. Jahrb. Syst. 10(Litt.): 2. 6 Jul 1888

Tilioideae Arn., Botany: 100. 9 Mar 1832
Tovariaceae Pax in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 2: 207. Mar 1891, nom. cons.
Tovarieae Triana \& Planch. in Ann. Sci. Nat. Bot., sér. 4, 17: 88. Feb 1862
Trapaceae Dumort., Anal. Fam. P1.: 36, 39. 1829, nom. cons.
Trapeae Rchb., Fl. Germ. Excurs. 2(2): 633. 1832
Trapoideae Link in Voigt, Hort. Suburb. Calcutt.: 34. Aug-Dee 1845
Tremandraceae R. Br. ex DC., Prodr. 1: 343. Jan (med.) 1824, nom. cons.
Tremandreae Rchb., Fl. Germ. Excurs. 2(2): 828. 1832
Trichopodaceae Hutch., Fam. Fl. Pl. 2: 143. 20 Jul 1934, nom. cons.
Trichopoideae Reveal in Phytoneuron 2012-33: 3. 9 Apr 2012
Tricyrtidaceae Takht., Divers. Classif. Fl. Pl.: 482. 24 Apr 1997, nom. cons.
Tricyrtideae K. Krause in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 15a: 245, 260.25 Feb 1930

Tricyrtidoideae Thorne \& Reveal in Bot. Rev. (Lancaster) 73: 78. 29 Jun 2007
Trigoniaceae A. Juss. in V.V.D. d'Orbigny, Dict. Univ. Hist. Nat. 12: 670. 7 Jul 1849, nom. cons.
Trigonieae Baill., Hist. Pl. 5: 100, 103. late 1873 or prim. 1874
Trigonioideae Lindl. ex Voigt, Hort. Suburb. Calcutt.: 169. Aug-Dec 1845
Trilliaceae Chevall., Fl. Gén. Env. Paris 2: 297. 1827, nom. cons.
Trillieae Fr., F1. Scan.: 174. 1835
Trillioideae A. Gray, Manual: 485.10 Feb 1848
Trimeniaceae Gibbs, F1. Arfak. Mts.: 135. Jul 1917, nom. cons.
Trimenieae Perkins \& Gilg in H.G.A. Engler, Nat. Pflanzenr. 4: 13. 21 Jun 1901
Triuridaceae Gardner in Trans. Linn. Soc. London 19: 160. 5 Aug 1843, nom. cons.
Triurideae Miers in J. Lindley, Veg. Kingd., ed. 3: 144a, 144b. Aug 1853
Trochodendraceae Eichler in Flora 48: 14. 18 Jan 1865, nom. cons.
Trochodendreae Benth. \& Hook.f., Gen. Pl. 1: 954. Sep 1867
Trochodendroideae Luerss., Handb. Syst. Bot. 2: 584. Nov 1880
Tropaeolaceae Juss. ex DC., Prodr. 1: 683. Jan (med.) 1824, nom. cons.
Tropaeoleae Horan., Char. Ess. Fam.: 194. 17 Jun 1847
Tropaeoloideae Arn., Botany: 104. 9 Mar 1832
Turneraceae Kunth ex DC., Prodr. 3: 345. Mar (med.) 1828, nom. cons.
Turnereae Rchb., Handb. Nat. Pfl.-Syst.: 232. 1-7 Oct 1837
Turneroideae Eaton, Bot. Dict., ed. 4: 44. Apr-Mai 1836
Typhaceae Juss., Gen. P1.: 25. 4 Aug 1789, nom. cons.
Typheae Dumort., Anal. Fam. Pl.: 66. 1829
Typhoideae DC. ex Arn., Botany: 136. 9 Mar 1832
Ulmaceae Mirb., Elém. Physiol. Vég. Bot. 2: 905. 24-30 Jun 1815, nom. cons.
Ulmeae Dumort., Fl. Belg.: 25. 1827
Ulminae Duby, Bot. Gall. 1: 421. 12-14 Apr 1828
Ulmoideae Arn., Botany: 129.9 Mar 1832
Urticaceae Juss., Gen. Pl.: 400. 4 Aug 1789, nom. cons.
Urticeae Lam. \& DC., Syn. Pl. Fl. Gall.: 184. 30 Jun 1806
Urticoideae Arn., Botany: 129. 9 Mar 1832
Uvulariaceae A. Gray ex Kunth, Enum. Pl. 4: 199. 17-19 Jul 1843, nom. cons.
Uvularieae A. Gray ex Meisn., Pl. Vasc. Gen.: Tab. Diagn. 397, 402, Comm. 306. 17-20 Aug 1842
Uvularioideae A. Gray, Manual: 496. 10 Feb 1848

Vacciniaceae DC. ex Perleb, Vers. Arzneikr. Pfl.: 228. Mai 1818, nom. cons.
Vaccinieae Rchb., Fl. Germ. Excurs. 1(3): 203. Jul-Dec 1831
Vacciniinae Klotzsch in Monatsber. Königl. Preuss. Akad. Wiss. Berlin 1857: 4. Jan 1857
Vaccinioideae Arn., Botany: 118. 9 Mar 1832
Valerianaceae Batsch, Tab. Affin. Regni Veg.: 227. 2 Mai 1802, nom. cons.
Valerianeae Dumort., Fl. Belg.: 57. 1820
Valerianoideae Raf. in Ann. Gén. Sci. Phys. Bruxelles 6: 88. Oct-Dee 1820
Velloziaceae J. Agardh, Theoria Syst. Pl.: 9. Apr-Sep 1858, nom. cons. Vellozieae D. Don ex Meisn., Pl. Vasc. Gen.: Tab. Diagn. 396, Comm. 299. 17-20 Aug 1842 Vellozioideae Rendle, Class. Fl. Pl., ed. 2, 1: 309. 1930
Verbenaceae J. St.-Hil., Expos. Fam. Nat. 1: 245. Feb-Apr 1805, nom. cons. Verbeneae Dumort., Anal. Fam. Pl.: 22. 1829 Verbeninae Schauer in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 11: 524, 529. 25 Nov 1847
Verbenoideae Arn., Botany: 124. 9 Mar 1832
Violaceae Batsch, Tab. Affin. Regni Veg.: 57. 2 Mai 1802, nom. cons. Violeae DC., Prodr. 1: 288. Jan (med.) 1824
Violinae Kitt. in A. Richard, Nouv. Elém. Bot., ed. 3, Germ. transl.: 907.1840
Violoideae Beilschm. in Flora 16(Beibl. 7): 88, 111. 14 Jun 1833
Vitaceae Juss., Gen. Pl.: 267. 4 Aug 1789, nom. cons. Viteae Dumort., Anal. Fam. Pl.: 22. 1829
Vitoideae Eaton, Bot. Dict., ed. 4: 40. Apr-Mai 1836
Vivianiaceae Klotzsch in Linnaea 10: 433. Mai 1836, nom. cons. Vivianieae Klotzsch in A. Richard, Nouv. Elém. Bot., ed. 3, Germ. trans1.: 867. 1840 Vivianioideae Arn., Botany: 99. 9 Mar 1832
Vochysiaceae A. St.-Hil. in Mém. Mus. Hist. Nat. 6: 265. 1820, nom. cons. Vochysieae Dumort., Anal. Fam. Pl.: 41. 1829 Vochysioideae Takht., Fl. Pl.: 343. 9 Jul 2009

Walleriaceae H. Huber ex Takht. in Bot. Zhurn. (Moscow \& Leningrad) 79(12): 65. 7-28 Feb 1995, nom. cons.
Wallerioideae R. Dahlgren in R. Dahlgren \& A.E. van Wyk in Monogr. Syst. Bot. Missouri Bot. Gard. 25: 75, 76. Jun 1988
Welwitschiaceae Caruel in Nuovo Giorn. Bot. Ital. 11: 16, 17, 18.2 Jan 1876, nom. cons. Welwitschioideae Engl., Syllabus, ed. 1: 63. Apr 1892
Winteraceae R. Br. ex Lindl., Intr. Nat. Syst. Bot.: 26. 27 Sep 1830, nom. cons. Wintereae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 3, Comm. 5. 26 Mar-1 Apr 1837 Winteroideae Arn., Botany: 95. 9 Mar 1832

Xanthorrhoeaceae Dumort., Anal. Fam. Pl.: 60, 62, 103. 1829, nom. cons.
Xanthorrhoeeae Benth., Fl. Austral. 7: 93, 112. 23-30 Mar 1878
Xanthorrhoeoideae Reveal in Phytoneuron 2012-33: 3. 9 Apr 2012
Xyridaceae C. Agardh, Aphor. Bot.: 158. 23 Mai 1823, nom. cons. Xyrideae Rchb., Fl. Germ. Excurs. 1(1): 140(12). Jul-Dec 1831 Xyridoideae Kunth ex Arn., Botany: 135. 9 Mar 1832

Zannichelliaceae Chevall., Fl. Gén. Env. Paris 2: 256. 1827, nom. cons. Zannichellieae Dumort., Fl. Belg.: 164. 1827
Zannichellioideae Buchenau, Fl. Nordwestdeut. Tiefebene: 42. 28 Apr 1894
Zingiberaceae Martinov, Tekhno-Bot. Slovar: 682. 3 Aug 1820, nom. cons. Zingibereae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 388, Comm. 290. 17-20 Aug 1842

Zingiberoideae Hassk., Cat. Hort. Bot. Bogor.: 49. Oct 1844
Zosteraceae Dumort., Anal. Fam. Pl.: 65, 66. 1829, nom. cons.
Zostereae Dumort., Fl. Belg.: 163. 1827
Zosteroideae Buchenau, Fl. Nordwestdeut. Tiefebene: 41. 28 Apr 1894
Zygophyllaceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 545. 19 Jul 1814, nom. cons.
Zygophylleae Bartl., Ord. Nat. Pl.: 391. Sep 1830
Zygophyllinae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 4: 78, 79. Dee 1890
Zygophylloideae Arn., Botany: 104. 9 Mar 1832

## LITERATURE CITED

APG III [Bremer, B., K. Bremer, M.W. Chase, M.F. Fay, J.L. Reveal, D.E. Soltis, P.S. Soltis \& P.F. Stevens (comp.)]. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161: 105-121.
Gunner, S.T., S.M. Stuber, MR. Carvalho, G.S. Lim \& J.L. Reveal. 2011. Proposal to conserve Malaceae, nom. cons., against Amygdalaceae, nom. cons. (Magnoliophyta), a "superconservation" proposal. Taxon 60: 1776-1777.
McNeill, J., F.M. Barrie, H.M. Burdet, V. Demoulin, D.L. Hawksworth, K. Marhold, D.H. Nicolson, J. Prado, P.C. Silva, J.E. Skog, J.H. Wiersema, and N.J. Turland (eds.). 2006. International Code of Botanical Nomenclature (Vienna Code) adopted by the Seventeenth International Botanical Congress Vienna, Austria, July 2005. GantnerVerlag, Ruggell, Liechtenstein.
MeNeill, J. \& N.J. Turland. 2011. Synopsis of proposals on botanical nomenclature - Melbourne 2011: A review of the proposals concerning the International Code of Botanical Nomenclature submitted to the XVIII International Botanical Congress. Taxon 60: 243-286.
MeNeill, J., N.J. Turland, AM. Monro, \& B.J. Lepschi. 2011. XVIII International Botanical Congress: Preliminary mail vote and report of Congress action on nomenclature proposals. Taxon 60: 1507-1520.
Reveal, J.L. \& M.W. Chase. 2011. APG III: Bibliographical information and synonymy of Magnoliidae. Phytotaxa 19: 71-134.

# ATLAS OF THE FLORA OF NEW ENGLAND: ASTERACEAE 

RAY ANGELO ${ }^{1}$ and DAVID E. BOUFFORD ${ }^{2}$<br>Harvard University Herbaria<br>22 Divinity Avenue<br>Cambridge, MA 02138-2020<br>${ }^{1}$ rangelo(ooeb harvard edu<br>${ }^{2}$ david boufford@harvard edu


#### Abstract

Dot maps are provided to depict the distribution at the county level of the taxa of Magnoliophyta: Asteraceae (corresponding to Flora of North America, Vols. 19, 20, 21) growing outside of cultivation in the six New England states of the northeastern United States. The maps treat 491 taxa (species, subspecies, varieties, and hybrids, but not forms) based primarily on specimens in the major herbaria of Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, and Connecticut, with most data derived from the holdings of the New England Botanical Club Herbarium (NEBC). Brief synonymy (to account for names used in standard manuals and floras for the area), habitat, chromosome information, and common names are also provided.


KEY WORDS: flora, New England, atlas, distribution, Asteraceae

This article is the ninth in a series (Angelo \& Boufford 1996, 1998, 2000, 2007, 2010, 2011a, 2011b, 2012) that present the distributions of the vascular flora of New England in the form of dot distribution maps at the county level (Figure 1). The atlas is posted on the internet at http://neatlas.org, where it will be updated as new information becomes available.

This project encompasses all vascular plants (lycophytes, pteridophytes and spermatophytes) at the rank of species, subspecies, and variety growing independent of cultivation in the six New England states. Hybrids are also included, but forms and other ranks below the level of variety are not. The dots are based on voucher specimens primarily in New England herbaria (of colleges, universities, botanical gardens, and public museums) representing reproducing populations outside of cultivated habitats. This ninth installment includes the family in Magnoliophyta: Asteraceae corresponding to the family treated in Flora of North America, Vols. 19, 20,21 (Flora of North America Editorial Committee 2006a, 2006b, 2006c). Of the 491 taxa treated, 223 are not native to the region. Future accounts will treat the distribution of additional non-monocot angiosperms.

The habitat data are distillations from a variety of sources augmented by our own field observations. An attempt was made to indicate habitat information as it applies to a particular taxon in New England rather than to the entire range of the taxon. Such information is omitted where habitat is not indicated on the specimen label and where we also lack personal knowledge of the plant in New England. Omissions of habitat information are for a few introduced taxa and for all hybrids.

It is our hope that these articles will stimulate additional field work to supplement the distributions portrayed in the maps. The New England Botanical Club herbarium has proven to be the most important resource for this project. We are eager to receive information on voucher specimens in public herbaria documenting range extensions and filling county gaps in distributions. Similarly, because the atlas of the New England flora will be continuously updated as new information becomes available, we are eager to receive notification of published corrections of cytological information and new, documented chromosome counts for taxa in the New England flora.

## MATERIALS AND METHODS

Materials and methods are as outlined in Angelo and Boufford (1996) and in a web version (Angelo \& Boufford 2011c) and are not repeated here.

## TAXONOMY AND FORMAT

The taxonomy and nomenclature adopted for this work essentially follow that of the Flora of North America project, except that families, genera, and species are arranged alphabetically. The families and their circumscription do not necessarily reflect current views on relationships or composition. The Angiosperm Phylogeny Website (Stevens 2001 onwards) should be consulted for a continuously updated treatment of families and their inclusive genera. Named and unnamed hybrid taxa are placed alphabetically at the end of the genus in which they occur. Unnamed hybrids combine the names of the progenitors alphabetically by epithet. Taxa that are not native to New England are indicated by uppercase text. Unpublished names are not used, even if publication is pending.

Chromosome numbers are taken primarily from Flora of North America, Vols. 19, 20, 21 (Flora of North America Editorial Committee 2006a, 2006b, 2006c) and from Goldblatt and Johnson (1979-).

Synonymy is provided primarily with respect to names accepted in standard manuals covering New England published from 1950 onward, including Fernald (1950), Gleason (1952), Gleason and Cronquist (1991), and Seymour (1982). Synonyms have not been provided where the distribution for the synonymized name does not include New England.

The following list (which includes excluded taxa) will aid readers in finding familiar names that have been transferred to other taxa:

| Actinomeris | = | Verbesina |
| :---: | :---: | :---: |
| Anthemis (in part) | => | Chamaemelum |
| Anthemis (in part) | => | Cota |
| Aster (in part) | => | Doellingeria |
| Aster (in part) | => | Eurybia |
| Aster (in part) | => | Ionactis |
| Aster (in part) | => | Oclemena |
| Aster (in part) | => | Sericocarpus |
| Aster (in part) | => | Solidago |
| Aster (in part) | => | Symphyotrichum |
| Baeria (in part) | => | Lasthena |
| Cacalia | => | Hasteola |
| Chrysanthemum (in part) | => | Glebionis |
| Chrysanthemum (in part) | => | Leucanthemella |
| Chrysanthemum (in part) | => | Leucanthemum |
| Chrysanthemum (in part) | => | Nipponanthermum |
| Chrysanthemum (in part) | => | Tanacetum |
| Chrysopsis (in part) | => | Pityopsis |
| Cnicus | => | Centaurea |
| Dyssodia (in part) | => | Thymophylla |
| Erigeron (in part) | => | Conyza |
| Eupatortum (in part) | => | Ageratina |
| Eupatortum (in part) | => | Eutrochum |
| Gnaphalium (in part) | => | Euchiton |
| Gnaphalum (in part) | => | Gamochaeta |
| Gnaphalum (in part) | => | Omalotheca |


| Gnaphalum (in part) | => | Pseudognaphalium |
| :---: | :---: | :---: |
| Haplopappus (in part) | => | Xanthisma |
| Helichrysum (in part) | => | Xerochrysum |
| Hemizonia (in part) | => | Deinandra |
| Inula (in part) | \#> | Dittrichia |
| Iva (in part) | => | Cyclachaena |
| Lactuca (in part) | => | Mulgedum |
| Lactuca (in part) | \#> | Mycelis |
| Matricaria (in part) | \#> | Tripleurospermum |
| Megalodonta | => | Bidens |
| Picris (in part) | => | Helminthotheca |
| Senecto (in part) | => | Packera |
| Solidago (in part) | "> | Euthamia |

The following species have been reported from our area but are excluded for the reasons noted:
ACANTHOSPERMUM AUSTRALE (Loefling) Kuntze [no voucher found for wild occurrence; reported from Massachusetts]

AMBERBOA MOSCHATA (Linnaeus) de Candolle [no voucher found for wild occurrence; reported from Maine]

Antennaria rosea Greene subsp. pulvinata (Greene) R.J. Bayer [no specimen located; reported from Maine]

ARCTANTHEMUM ARCTICUM (Linnaeus) Tzvelev subsp. POLARE (Hultén) Tzvelev [no specimen located; reported from Massachusetts]

ARTEMISLA DRACUNCULUS Linnaeus (A. GLAUCA Pallas ex Willdenow var. DRACUNCULINA (S. Watson) Fernald) [no specimen located; reported from Massachusetts]

BRICKELLLA GRANDIFLORA (Hooker) Nuttall [no specimen located; reported from Rhode Island]

CARTHAMUS LANATUS Linnaeus [no voucher found for wild occurrence; reported from Massachusetts]

CENTAUREA BOVINA Velenovský [no specimen located; reported from Massachusetts]
CENTAUREA PHRYGIA Linnaeus (C. AUSTRIACA Willdenow) [no specimen located; reported from Vermont]

CENTIPEDA MINIMA (Linnaeus) A. Braun \& Ascherson [no voucher found for wild occurrence; reported from Massachusetts]

COTULA AUSTRALIS (Sieber ex Sprengel) Hooker f. [no specimen located; reported from Maine]

CHRYSANTHEMUM $\times$ MORIFOLIUM (Ramatuelle) Hemsley (pro species) - (C. INDICUM Linnaeus $\times$ C. JAPONICUM Thunberg) [no specimen located; reported from Massachusetts]

[^2]LIATRIS SCARIOSA (Linnaeus) Willdenow var. NIEUWLANDII (Lunell) E. G. Voss (L. $\times$ NIEUWLANDII (Lunell) Gaiser) [no specimen located; reported from Connecticut and Rhode Island]

LOGFIA MINIMA (Smith) Dumortier (FILAGO MINIMA (Smith) Persoon) [no voucher found for wild occurrence; reported from Massachusetts]

PEREZIA MULTIFLORA (Bonpland) Lessing subsp. SONCHIFOLIA (Baker) Vuilleumier (P. ALETES J. F. Macbride) [no voucher found for wild occurrence; reported from Massachusetts]

PETASITES JAPONICUS (Siebold \& Zuccarini) Maximowicz [no voucher found for wild occurrence; reported from Maine]

Rudbeckia lacmiata Linnaeus var. bipinnata Perdue [no specimen located; reported from Connecticut, Massachusetts and New Hampshire]

SANVITALIA PROCUMBENS Lamarck [no voucher found for wild occurrence; reported from Vermont]

SCHKUHRIA PINNATA (Lamarck) Kuntze ex Thellung [no voucher found for wild occurrence; reported from Maine and Massachusetts]

Senecio pseudoarnica Lessing [no specimen located; reported from Maine]
SENECIO SPARTIOIDES Torrey \& A. Gray (S. MULTICAPITATUS Greenman) [no specimen located; reported from Massachusetts]

SERRATULA TINCTORIA Linnaeus [no specimen located; reported from Connecticut]
SIGESBECKIA ORIENTALIS Linnaeus [no specimen located; reported from Middlesex Co., Massachusetts, almost certainly based on the voucher for S. JORULLENSIS Kunth from the same county]

Solidago erecta Banks ex Pursh [no specimen located; specimen from Plymouth Co., Massachusetts at CONN identified as this taxon is judged to be misidentified; reported from Connecticut, Massachusetts and Rhode Island]

SOLIDAGO LEPIDA de Candolle var. SALEBROSA (Piper) Semple (S. CANADENSIS Linnaeus var. SALEBROSA (Piper) M. E. Jones) [no specimen located; reported from Maine]

Solidago $\times$ beaudryi B. Boivin (S. rugosa Miller var. rugosa $\times$ S. uliginosa Nuttall) [no specimen located, reported from Maine]

Symphyotrichum $\times$ gravesii (E.S. Burgess) G.L. Nesom (pro species) -- (S. dumosum (Linnaeus) G. L. Nesom $\times$ S. laeve (Linnaeus) Á. Löve \& D. Löve var. laeve; Aster gravesti E. S. Burgess) [no specimen located; reported from Connecticut]

SYMPHYOTRICHUM LANCEOLATUM (Willdenow) G.L. Nesom var. HIRSUTICAULE (Semple \& Chmielewski) G.L. Nesom (ASTER LANCEOLATUS Willdenow var.

HIRSUTICAULIS Semple \& Chmielewski) [no specimen located; reported from Massachusetts, apparently from incorrect reading of a checklist]

Symphyotrichum novi-belgn (Linnaeus) G.L. Nesom var. crentfolum (Fernald) Labrecque \& Brouillet (Aster crenifolius (Fernald) Cronquist) [no specimen located; reported from Maine, New Hampshire and Vermont]

Symphyotrichum phlogifolium (Muhlenberg ex Willdenow) G.L. Nesom (Aster patens Aiton var. phlogifolmus (Muhlenberg ex Willdenow) Nees) [no specimen located; reported from Connecticut, Massachusetts, and Rhode Island]

Taraxacum ceratophorum (Ledebour) de Candolle [no specimen located; reported from Massachusetts and New Hampshire]

VERNONIA GLAUCA (Linnaeus) Willdenow [no specimen located; reported from Massachusetts]

## ANGIOSPERMAE (MAGNOLIOPHYTA) - ANGIOSPERMS

## ASTERACEAE

ACHILLEA FILIPENDULINA Lamarck-Gold Yarrow (Figure 2). $2 n=18,36,54$. Clay soil. From the Caucasus and western Asia.

ACHILLEA LIGUSTICA Allioni-Ligurian Yarrow (Figure 2). $2 n=18$. Roadsides. From the Mediterranean.

Achillea millefolnm Linnaeus-Common Yarrow (Figure 2). $2 n=18,27,36,45,63,72$ (including counts from Europe). Dry fields, roadsides, waste grounds. [A. borealus Bongard; A. lanulosa Nuttall]

ACHILLEA PTARMICA Linnaeus-Sneezewort (Figure 2). $2 n=18$. Roadsides, fields. From Eurasia.
Ageratina altissima (Linnaeus) R.M. King \& H. Robinson var. altissma - White Snakeroot (Figure 2). $2 n=34$. Rich, moist woods, especially along rivers. [Eupatornum rugosum Houttuyn]

Ageratina aromatica (Linnaeus) Spach-Smaller White Snakeroot (Figure 2). $2 n=34$. Dry, open woods, clearings, thickets. [Eupatornum aromaticum Linnaeus]

AGERATUM CONYZOIDES Linnaeus-Billygoat-weed (Figure 2). $2 n=20,40$. Waste ground. From South America.

AGERATUM HOUSTONIANUM Miller-Bluemink (Figure 2). $2 n=20$. Disturbed sites. From southeastern Mexico and Central America

Ambrosia artemisufolia Linnaeus-Common Ragweed (Figure 2). $2 n=34,36$. Waste areas, roadsides, fields. [A. artemisilfolia var. elatior (Linnaeus) Descourtiz; A. artemisiffolia var. paniculata (Michaux) Blankinship]

Ambrosia bidentata Michaux-Southern Ragweed (Figure 3). $2 n=34$. Waste ground.

AMBROSLA PSILOSTACHYA de Candolle-Western Ragweed (Figure 3). $2 n=18,27,36,45,54$, $63,72,100-104,108,144$. Railroads, waste places, dry fields. From farther west. [A. PSILOSTACHYA var. CORONOPIFOLIA (Torrey \& A. Gray) Farwell]

Ambrosia trifida Linnaeus-Great Ragweed (Figure 3). $2 n=24,48$. Waste places, railroads, rich, damp soil. [A. trifida var. texana Scheele]

- Ambrosta hybrid-

Ambrosia $\times$ helenae Rouleau-(Figure 3). [A. artemisifolia Linnaeus $\times$ A. trifida Linnaeus]
Anaphalis margaritacea (Linnaeus) Bentham \& Hooker f.-Pearly Everlasting (Figure 3). $2 n=28$. Dry woods, clearings, fields, roadsides. [A. margaritacea var. angustor (Miquel) Nakai; $A$. margaritacea var. mtercedens H. Hara; A. margaritacea var. subalpina (A. Gray) A. Gray]

Antennaria howellin Greene subsp. canadensts (Greene) R.J. Bayer-(Figure 3). $2 n=56,84$. Dry fields, open woods. [A. canadensts Greene]

Antennaria howellit Greene subsp. neodiotca (Greene) R.J. Bayer-Smaller Pussytoes (Figure 3). 2n $=56,84$. Dry fields, open woods. [A. neglecta Greene var. neodiowa (Greene) Cronquist; $A$. neodioica Greene var. neodioica; A. neodtotca var. attenuata Fernald; $A$. neodioica var. chlorophylla Fernald; A. neodioica var. grandis Fernald; A. rupicola Fernald]

Antennaria howellit Greene subsp. petalordea (Fernald) R.J. Bayer-(Figure 3). $2 n=56,84$. Dry fields, open woods. [A. neglecta Greene var. neodiotca (Fernald) Cronquist; A. petalondea (Fernald) Fernald var. petalondea; A. petalondea var. scartosa Fernald; A. petalotdea var. subcorymbosa (Fernald) Fernald]

Antennaria neglecta Greene-Field Pussytoes (Figure 3). $2 n=28$. Dry fields, open woods.
Antennaria parlintı Fernald subsp. parlmit-Smooth Pussytoes (Figure 4). 2n=56, 70, 84, 112. Dry fields, open woods. [A. parlinti var. arnoglossa (Greene) Fernald; A. plantagintfolia (Linnaeus) Richardson var. arnoglossa (Greene) Cronquist]

Antennarta parlinin Fernald subsp. fallax (Greene) R.J. Bayer \& Stebbins-(Figure 4). $2 n=56,70$, 84, 112. Dry fields, old woods. [A. brainerdil Fernald; A. fallax Greene; A. munda Fernald; A. plantaginfolua (Linnaeus) Richardson var. ambigens (Greene) Cronquist]

Antennaria plantaginifolia (Linnaeus) Hooker-(Figure 4). $2 n=28$. Dry, open woods, fields, rocky banks. [A. plantaginifolta var. petiolata (Fernald) A. Heller]

## - Antennaria hybrid-

Antennaria howellit Greene subsp. petaloidea (Fernald) R.J. Bayer $\times$ A. plantaginffolia (Linnaeus) Hooker-(Figure 4).

ANTHEMIS ARVENSIS Linnaeus-Corn Chamomile (Figure 4). $2 n=18$. Waste places, fields, roadsides. From Eurasia, northern Africa. [A. ARVENSIS var. AGRESTIS (Wallroth) de Candolle]

ANTHEMIS COTULA Linnaeus-Mayeed (Figure 4). $2 n=18$. Waste places, fields, roadsides. From Eurasia, northern Africa.

ARCTIUM LAPPA Linnaeus-Great Burdock (Figure 4). $2 n=32$ (Japan), 34 (China), 36 (Japan, Sweden). Waste places, roadsides. From Eurasia.

ARCTIUM MINUS (Hill) Bernhardi-Common Burdock (Figure 4). $2 n=32$ (Germany), 36. Waste places, roadsides. From Eurasia. [A. NEMOROSUM - misapplied; A. VULGARE misapplied]

ARCTIUM TOMENTOSUM Miller-(Figure 4). $2 n=36$. Waste places. From Eurasia.

- Arctum hybrid-

ARCTIUM LAPPA Linnaeus $\times$ A. TOMENTOSUM Miller-(Figure 5).
ARCTOTIS STOECHADIFOLIA P.J. Bergius-Blue-eyed African-daisy (Figure 5). $2 n=18$. Railroads. From southern Africa. [A. VENUSTA Norlindh]

Arnica lanceolata Nuttall subsp. lanceolata-(Figure 5). $2 n=76$. Damp banks and ledges in mountains, often subalpine. [A. mollis Hooker - misapplied; A. mollis var. petiolaris Fernald]

ARNOSERIS MINIMA (Linnaeus) Schweigger \& Körte-Lamb's Succory (Figure 5). $2 n=18$. Fields. From Europe.

ARTEMISIA ABROTANUM Linnaeus—Southernwood (Figure 5). $2 n=18$. Waste places, roadsides. From Eurasia.

ARTEMISIA ABSINTHIUM Linnaeus - Common Wormwood (Figure 5). $2 n=18$. Dry fields, roadsides, waste places. From Eurasia, northern Africa.

ARTEMISLA ANNUA Linnaeus - Sweet Annie (Figure 5). $2 n=18$. Waste places, roadsides, fields. From Eurasia.

ARTEMISIA BIENNIS Willdenow-(Figure 5). $2 n=18$. Waste places, roadsides, clearings. From farther west.

Artemista campestris Linnaeus subsp. canadensis (Michaux) Scoggan-Canada Wormwood (Figure 5). $2 n=$ ? Calcareous rocks and cliffs. [A. canadensis Michaux]

Artemista campestris Linnaeus subsp. caudata (Michaux) H.M. Hall \& Clements-(Figure 6). $2 n=$ ? Open, usually sandy, soil. [A. caudata Michaux]

ARTEMISLA CARRUTHII Alph. Wood ex Carruthers-(Figure 6). $2 n=18$. Railroads. From farther west.

ARTEMISLA FILIFOLIA Torrey-Sand Sage (Figure 6). $2 n=18$. Waste places. From farther west.
ARTEMISIA FRIGIDA Willdenow-Prairie Sagewort (Figure 6). $2 n=18$. Waste places, roadsides, railroads, dry fields. From farther west.

ARTEMISIA LUDOVICIANA Nuttall subsp. LUDOVICIANA R—Man Sage (Figure 6). $2 n=18,36$. Roadsides, railroads, waste places. From farther west. [A. LUDOVICIANA var. AMERICANA (Besser) Fernald; A. LUDOVICIANA var. BRITTONII (Rydberg) Fernald; A.

LUDOVICIANA var. GNAPHALOIDES (Nuttall) Torrey \& A. Gray; A. LUDOVICIANA var. LATIFOLIA (Besser) Torrey \& A. Gray; A. LUDOVICIANA var. PABULARIS (A. Nelson) Fernald; A. GNAPHALOIDES Nuttall]

ARTEMISIA PONTICA Linnaeus-Roman Wormwood (Figure 6). $2 n=18$. Roadsides, railroads, waste places, fields. From Eurasia.

ARTEMISIA STELLERIANA Besser-Dusty Miller (Figure 6). $2 n=18$. Sandy beaches, dunes. From northeastern Asia, Alaskan islands.

ARTEMISIA TRIDENTATA Nuttall subsp. TRIDENTATA—Big Sagebrush (Figure 6). $2 n=18,36$. Fields. From farther west.

ARTEMISLA VULGARIS Linnaeus-Common Mugwort (Figure 6). $2 n=18,36,40,54$. Roadsides, railroads, waste places, thickets. Eurasia, northern Africa. [A. VULGARIS var. GLABRA Ledebour; $A$. VULGARIS var. LATILOBA Ledebour]

ASTER TATARICUS Linnaeus f.-Shion (Figure 7). $2 n=54$. Roadsides, waste places. From northern Asia.

Baccharis halimifolua Linnaeus-Sea-myrtle (Figure 7). $2 n=18$. Salt marshes, waste places.
BELLIS PERENNIS Linnaeus-English Daisy (Figure 7). $2 n=18$. Waste places, roadsides. From Eurasia, northern Africa.

BIDENS ARISTOSA (Michaux) Britton-Midwestern Tickseed-sunflower (Figure 7). $2 n=$ ? Waste places, fields. From farther west. [B. ARISTOSA var. FRITCHEYI Fernald; B. ARISTOSA var. MUTICA (A. Gray) Gattinger ex Fernald]

Bidens beckil Torrey ex Sprengel-Water-marigold (Figure 7). $2 n=26$. Ponds, slow streams. [Megalodonta beckit (Torrey ex Sprengel) Greene]

Bidens bipinnata Linnaeus-Spanish-needles (Figure 7). $2 n=24,72$. Waste places, roadsides.
Bidens cernua Linnaeus-Nodding Bur-marigold (Figure 7). $2 n=24$, 48. Swamps, shores, wet ditches, bottomlands, marshes. [B. cernua var. elliptica Wiegand; B. cernua var. integra Wiegand; B. cernua var. mintma (Hudson) Pursh; B. cernua var. oltgodonta Fernald \& H. St. John]

Bidens connata Muhlenberg ex Willdenow-Swamp Beggar-ticks (Figure 7). $2 n=48$. Shores, swamps. [B. connata var. fallax (Warnstorf) Sherff, B. connata var. gractlpes Fernald; B. connata var. petiolata (Nuttall) Farwell]

Bidens discordea (Torrey \& A. Gray) Britton—Small Beggar-ticks (Figure 7). $2 n=24$. Shores, swamps, marshes.

Bidens eatonu Fernald-(Figure 8). $2 n=48$. Tidal shores, estuaries and marshes. [B. eatoni var. fallax Fernald; B. eatonit var. interstes (Fassett) Fassett; B. eatonii var. kennebecensis Fernald; B. eatonii var. major Fassett; B. eatonil var. mutabilis Fassett; B. eatonii var. simulans Fassett]

Bidens frondosa Linnaeus-Common Beggar-ticks (Figure 8). $2 n=24,48,72$. Swamps, shores, damp, open places.

Bidens heterodoxa (Fernald) Fernald \& H. St. John-(Figure 8). $2 n=48$. Lake shores. [ $B$. heterodoxa var. agnostica Fernald; $B$. heterodoxa var. monardifolia Fernald]

Bidens hyperborea Greene-Estuary Beggar-ticks (Figure 8). $2 n=24,36$. Tidal mud-flats. [ $B$. hyperborea var. cathancensis Fernald; B. hyperborea var. colpophila (Fernald \& H. St. John) Fernald]

Bidens laevss (Linnaeus) Britton, Sterns \& Poggenberg-Larger Bur-marigold (Figure 8). $2 n=22$, 24. Marshes, shores of ponds and slow streams.

BIDENS PILOSA Linnaeus-Cobblers'-pegs (Figure 8). $2 n=24,36,48,72$. Waste places. From Mexico, Central \& South America. [B. PILOSA var. RADIATA (Schultz-Bipontinus) SchultzBipontinus]

BIDENS TENUISECTA A. Gray-(Figure 8). $2 n=24,48$. Wool waste. From farther west.
Bidens trichosperma (Michaux) Britton-Tickseed-sunflower (Figure 8). $2 n=24$. Meadows, swamps, bogs. [B. coronata (Linnaeus) Britton - invalid name; B. coronata (Linnaeus) Britton var. brachyodonta Fernald]

Bidens tripartita Linnaeus-(Figure 8). $2 n=48$. Marshes, meadows, shores, other wet sites. [ $B$. comosa (A. Gray) Wiegand]

Bidens vulgata Greene-Tall Beggar-ticks (Figure 9). $2 n=24,48$. Low ground, ditches, roadsides, waste places, often in moist soil.

- Bidens hybrids-

Bidens cernua Linnaeus $\times$ B. connata Muhlenberg ex Willdenow-(Figure 9).
Bidens cernua Linnaeus $\times$ B. hyperborea Greene-(Figure 9).
Bidens connata Muhlenberg ex Willdenow $\times$ B. tripartita Linnaeus-(Figure 9).
Bidens $\times$ multiceps Fassett-(Figure 9). [B. connata Muhlenberg ex Willdenow $\times$ B. eatonil Fernald]
BOLTONIA ASTEROIDES (Linnaeus) L'Héritier var. LATISQUAMA (A. Gray) Cronquist-(Figure 9). $2 n=18$. Waste places, roadsides. From farther west. [B. LATISQUAMA A. Gray var. LATISQUAMA]

BOLTONIA ASTEROIDES (Linnaeus) L'Héritier var. RECOGNITA (Fernald \& Griscom) Cronquist-(Figure 9). $2 n=36$. Waste places. From farther west. [B. LATISQUAMA A. Gray var. RECOGNITA Fernald \& Griscom]

CALENDULA OFFICINALIS Linnaeus—Pot Marigold (Figure 9). $2 n=14,32$. Waste places. Probably from the Mediterranean region.

CALLISTEPHUS CHINENSIS (Linnaeus) Nees-China Aster (Figure 9). $2 n=18$. Fields, sandy, pond shores. From eastern Asia.

CALOTIS CUNEIFOLIA R. Brown-Purple Burr-daisy (Figure 10). $2 n=16,32$. Wool waste. From Australia.

CARDUUS ACANTHOIDES Linnaeus subsp. ACANTHOIDES-Plumeless Thistle (Figure 10). $2 n=$ 22. Roadsides, waste places, fields. From Eurasia.

CARDUUS CRISPUS Linnaeus-Welted Thistle (Figure 10). $2 n=16$ (Sweden). Roadsides, waste places, fields. From Eurasia.

CARDUUS NUTANS Linnaeus-Musk Thistle (Figure 10). $2 n=16$. Roadsides, waste places, fields. From Eurasia.

CARTHAMUS TINCTORIUS Linnaeus-Safflower (Figure 10). $2 n=24$. Waste areas. Probably from western Asia.

CENTAUREA BENEDICTA (Linnaeus) Linnaeus-Blessed Thistle (Figure 10). $2 n=22$. Waste places, roadsides. From Mediterranean region, Asia Minor. [CNICUS BENEDICTUS Linnaeus]

CENTAUREA CALCITRAPA Linnaeus-Purple Star-thistle (Figure 10). $2 n=20$. Roadsides, waste places, fields. From Eurasia, northern Africa.

CENTAUREA CYANUS Linnaeus-Cornflower (Figure 10). $2 n=24$ (Russia). Roadsides, waste places, fields. From Eurasia.

CENTAUREA DIFFUSA Lamarck-(Figure 10). $2 n=18,36$. Roadsides, waste places, fields. From Eurasia.

CENTAUREA JACEA Linnaeus-Brown Knapweed (Figure 11). $2 n=22$, 44. Roadsides, waste places, fields. From Eurasia. [C. AMARA Linnaeus]

CENTAUREA MELITENSIS Linnaeus-Tocalote (Figure 11). $2 n=24$. Waste places. From the Mediterranean region.

CENTAUREA MONTANA Linnaeus-Mountain-bluet (Figure 11). $2 n=24$ (Germany), 40 (Russia), 44 (France). Railroads, roadsides, waste places. From Europe.

CENTAUREA NIGRA Linnaeus - Spanish-buttons (Figure 11). $2 n=22,44$. Fields, roadsides, waste places. From Europe.

CENTAUREA NIGRESCENS Willdenow-Tyrol Knapweed (Figure 11). 2n = 22 (Hungary), 44 (Hungary, Italy). Fields, roadsides, waste places. From Eurasia. [C. DUBIA Suter misapplied; C. VOCHINENSIS Bernhardi ex Reichenbach]

CENTAUREA SCABIOSA Linnaeus-Greater Knapweed (Figure 11). $2 n=20$ (Russia), 40. Meadows, fields, roadsides, railroads. From Europe.

CENTAUREA SOLSTITLALIS Linnaeus-Yellow Star-thistle (Figure 11). $2 n=16$. Fields, roadsides, waste places. From Eurasia, northern Africa.

CENTAUREA STOEBE Linnaeus subsp. MICRANTHOS (S.G. Gmelin ex Gugler) Hayek-(Figure 11). $2 \mathrm{n}=36$. Fields, roadsides, waste places. From Europe. [C. MACULOSA Lamarck misapplied]
-Centaurea hybrid-
CENTAUREA $\times$ MONCKTONII C.E. Britton-(Figure 11). [C. NIGRA Linnaeus var. RADIATA de Candolle; C. PRATENSIS illegitimate name; C. JACEA Linnaeus $\times$ C. NIGRA Linnaeus]

CHAENACTIS GLABRIUSCULA de Candolle var. GLABRIUSCULA-(Figure 12). $2 n=12$. Wool waste. From farther west.

CHAMAEMELUM NOBILE (Linnaeus) Allioni-Garden Chamomile (Figure 12). $2 n=18$. Dry, oak woods, disturbed sites. From Europe, northern Africa. [ANTHEMIS NOBILIS Linnaeus]

Chrysopsis mariana (Linnaeus) Elliott-Maryland Golden-aster (Figure 12). 2n=8, 16, 24, 32. Dry, sandy fields, roadsides.

CICHORIUM ENDIVIA Linnaeus-Endive (Figure 12). $2 n=18$. Waste places. From Eurasia, northern Africa.

CICHORILM INTYBUS Linnaeus-Common Chicory (Figure 12). $2 n=18$. Fields, roadsides. From Eurasia, northern Africa.

Cirstum altissimum (Linnaeus) Sprengel-Roadside Thistle (Figure 12). $2 n=18$. Fields, thickets.
CIRSIUM ARVENSE (Linnaeus) Scopoli - Canada Thistle (Figure 12). $2 n=34$. Fields, roadsides, waste places. From Eurasia. [C. ARVENSE var. INTEGRIFOLIUM Wimmer \& Grabowski; C. ARVENSE var. MITE Wimmer \& Grabowski; C. ARVENSE var. VESTITUM Wimmer \& Grabowski]

Cirstum discolor (Muhlenberg ex Willdenow) Sprengel—Field Thistle (Figure 12). $2 n=20,21,22$. Moist thickets, damp woods, shores, meadows.

CIRSIUM FLODMANII (Rydberg) Arthur-(Figure 12). $2 n=22,24$. Dry pastures. From farther west.

Cirsum horridulum Michaux var. horridulum-Yellow Thistle (Figure 13). $2 n=32,34$. Fields, meadows, shores, roadsides, wood borders, usually in wet and often saline soil.

Cirsum muticum Michaux-Swamp Thistle (Figure 13). $2 n=20,21,22,23,30$. Swamps, wet thickets, low, wet woods.

CIRSIUM OCHROCENTRUM A. Gray var. OCHROCENTRUM-(Figure 13). $2 n=32,34$. Pastures. From farther west.

CIRSIUM PALUSTRE (Linnaeus) Scopoli-(Figure 13). $2 n=34$. Waste places. From Europe.
Cirsum pumilum (Nuttall) Sprengel var. pumilum-Pasture Thistle (Figure 13). $2 n=30$. Fields, roadsides, dry, open soil.

CIRSIUM VULGARE (Savi) Tenore-Bull Thistle (Figure 13). $2 n=68$. Fields, roadsides, waste places. From Eurasia, northern Africa.

CONYZA BONARIENSIS (Linnaeus) Cronquist - Hairy Fleabane (Figure 13). $2 n=54$. Wool waste. Probably from South America. [ERIGERON BONARIENSIS Linnaeus]

Conyza canadensis (Linnaeus) Cronquist—Horseweed (Figure 13). $2 n=18$. Fields, roadsides, waste places. [Erigeron canadensts Linnaeus; E. pusillus Nuttall]

COREOPSIS BASALIS (A. Dietrich) S. F. Blake-(Figure 13). $2 n=26$. Roadsides, waste places. From farther south. [C. DRUMMONDII Torrey \& A. Gray]

COREOPSIS GRANDIFLORA Hogg ex Sweet-(Figure 14). $2 n=26(+0-2 B)$. Fields, roadsides, waste places. From farther south and west. [C. GRANDIFLORA var. HARVEYANA (A. Gray) Sherff]

COREOPSIS LANCEOLATA Linnaeus-Sand Coreopsis (Figure 14). $2 n=26$ ( $+0-4 \mathrm{~B}$ ). Dry, sandy fields, roadsides. From farther south and west. [C. LANCEOLATA var. VILLOSA Michaux]

COREOPSIS MAJOR Walter—Wood Tickseed (Figure 14). $2 n=26,78,104$. Waste places. From farther south. [C.MAJOR var. STELLATA (Nuttall) B. L. Robinson]

COREOPSIS PUBESCENS Elliott-Star Tickseed (Figure 14). $2 n=26$ ( $+0-2 \mathrm{~B}$ ). Fields, waste places. From farther south. [C. PUBESCENS var. ROBUSTA A. Gray ex Eames]

Coreopsis rosea Nuttall—Pink Tickseed (Figure 14). $2 n=26$. Sandy, pond shores.
COREOPSIS TINCTORIA Nuttall-Garden Tickseed (Figure 14). $2 n=24(+0-2 \mathrm{~B})$. Waste places, roadsides, wetland margins. From farther west and south.

COREOPSIS TRIPTERIS Linnaeus-Tall Coreopsis (Figure 14). $2 n=26$. Roadsides. From farther west and south.

COREOPSIS VERTICILLATA Linnaeus-(Figure 14). $2 n=26,52,78$. Roadsides. From farther south.

COSMOS BIPINNATUS Cavanilles-Garden Cosmos (Figure 14). $2 n=24$. Waste places, roadsides. From Mexico and the southwestern United States.

COSMOS PARVIFLORUS (Jacquin) Persoon-(Figure 15). $2 n=24$. Waste places, roadsides. From the southwestern United States.

COSMOS SULPHUREUS Cavanilles-Orange Cosmos (Figure 15). $2 n=24,48$. Waste places. From Mexico.

COTA TINCTORIA (Linnaeus) J. Gay ex Gussone-Yellow Chamomile (Figure 15). $2 n=18$. Fields, waste places, roadsides. From Eurasia. [ANTHEMIS TINCTORIA Linnaeus]

COTULA CORONOPIFOLIA Linnaeus-Brass-buttons (Figure 15). $2 n=20$. Ballast waste. From South Africa.

CREPIS BIENNIS Linnaeus-Rough Hawk's-beard (Figure 15). $2 n=40$. Fields. From Europe.

CREPIS CAPILLARIS (Linnaeus) Wallroth-Smooth Hawk's-beard (Figure 15). $2 n=6$. Fields, waste places, roadsides. From Europe. [C. VIRENS Linnaeus]

CREPIS FOETIDA Linnaeus-Stinking Hawk's-beard (Figure 15). $2 n=10$. Wool waste. From Eurasia, northern Africa.

CREPIS NICAEENSIS Balbis-French Hawk's-beard (Figure 15). $2 n=8$. Waste places. From Europe.

CREPIS SETOSA Haller f.-Bristly Hawk's-beard (Figure 15). $2 n=8$. Fields. From Eurasia.
CREPIS TECTORUM Linnaeus-(Figure 16). $2 n=8$. Waste places, fields, roadsides, meadows, open, sandy, disturbed areas. From Eurasia.

CREPIS VESICARIA Linnaeus-Beaked Hawk's-beard (Figure 16). $2 n=8,16$. Fields. From Europe, northern Africa. [C. VESICARIA subsp. TARAXACIFOLIA (Thuiller) Thellung]

CYCLACHAENA XANTHIIFOLIA (Nuttall) Fresenius-Giant Sumpweed (Figure 16). $2 n=36$. Waste places, fields. From farther west. [IVA XANTHIIFOLIA Nuttall]

DEINANDRA FASCICULATA (de Candolle) Greene (Figure 16). $2 n=24$. Wool waste. From farther west. [HEMIZONIA FASCICULATA de Candolle; H. FASCICULATA subsp. RAMOSISSIMA (Bentham) D. D. Keck; H. RAMOSISSIMA Bentham]

DITTRICHIA GRAVEOLENS (Linnaeus) Greuter-Stinkwort (Figure 16). $2 n=18$ (Morocco). Sandy, open, disturbed sites. From Eurasia, northern Africa. [INULA GRAVEOLENS (Linnaeus) Desfontaines]

Doellingeria infirma (Michaux) Greene-Appalachian Flat-top Aster (Figure 16). $2 n=18$. Dry, open, deciduous, rocky woods. [Aster infirmus Michaux]

Doellingeria umbellata (Miller) Nees var. umbellata-Tall Flat-top White Aster (Figure 16). $2 n=18$. Moist thickets and openings, meadows, swamps, bogs. [Aster umbellatus Miller]

DORONICUM PARDALIANCHES Linnaeus-Great Leopard's-bane (Figure 16). $2 n=60$. Open, disturbed ground. From Europe.

DYSSODIA PAPPOSA (Ventenat) A. Hitchcock-Fetid Marigold (Figure 16). $2 n=26$. Wool waste, roadsides, gravelly, river shores. From farther west.

ECHINACEA PALLIDA (Nuttall) Nuttall-(Figure 17). $2 n=22$. Fields, roadsides. From farther west.

ECHINACEA PURPUREA (Linnaeus) Moench-Eastern Purple Coneflower (Figure 17). $2 n=22$. Dry roadsides, wood margins. From farther south and west.

ECHINOPS SPHAEROCEPHALUS Linnaeus-Common Globe-thistle (Figure 17). $2 n=30,32$. Waste places, roadsides, fields. From Eurasia.

ECLIPTA PROSTRATA (Linnaeus) Linnaeus-Yerba-de-Tajo (Figure 17). $2 n=22$. Waste places. From farther south and west. [E. ALBA (Linnaeus) Hasskarl]

Erechtites hieraciffolnus (Linnaeus) Rafinesque ex de Candolle var. hieraciffoltus-Pilewort (Figure 17). $2 n=40$. Damp thickets, clearings (especially burned areas), waste places, shores. [ $E$. heracufoltus var. intermedus Fernald; E. heracufoltus var. prealtus (Rafinesque) Fernald]

Erechtites hieracifolius (Linnaeus) Rafinesque ex de Candolle var. megalocarpus (Fernald) Cronquist-Saltmarsh Pilewort (Figure 17). $2 n=$ ? Salt marshes, sandy, sea beaches. [ $E$. megalocarpus Fernald]

Erigeron acris Linnaeus var. kamtschaticus (de Candolle) Herder-(Figure 17). $2 n=18$. Damp banks, thickets, clearings, roadsides. [E. angulosus Gaudin var. kamtschaticus (de Candolle) H. Hara - misapplied]

Erigeron annuus (Linnaeus) Persoon-Daisy Fleabane (Figure 17). $2 n=27$. Roadsides, fields, waste places.

ERIGERON GLABELLUS Nuttall var. PUBESCENS Hooker-Streamside Fleabane (Figure 17). $2 n=$ ? Swamps. From farther west.

Erigeron hyssopifoltus Michaux-(Figure 18). $2 n=18$. Rocky ledges.
Erigeron philadelphcus Linnaeus var. philadelphocus-Common Fleabane (Figure 18). $2 n=18$. Open woods, wood margins, fields, rich thickets, roadsides.

Erigeron phuladelphrus Linnaeus var. provancherr (Victorin \& J. Rousseau) B. Boivin-(Figure 18). $2 n=18$. Sandy crevices in shale receiving splashed water of river falls. [E. provanchert Victorin \& J. Rousseau]

Erigeron pulchellus Michaux var. pulchellus-Robin's-plantain (Figure 18). $2 n=9,18$. Fields, open woods, roadsides.

Erigeron strigosus Muhlenberg ex Willdenow var. strigosus-Lesser Daisy-fleabane (Figure 18). $2 n$ $=18,27,36,54$. Dry, open soil, fields, roadsides. [E. strigosus var. beyrichil (Fischer \& C. A. Meyer) Torrey \& A. Gray; E. strigosus var. discoideus Robbins]

Erigeron strigosus Muhlenberg ex Willdenow var. septentrionalis (Fernald \& Wiegand) FernaldLesser Daisy-fleabane (Figure 18). $2 n=?$ Dry, open soil, fields, roadsides.

Eupatorium album Linnaeus var. album-(Figure 18). $2 n=20$. Dry, open, disturbed soil.
EUPATORIUM ALTISSMMUM Linnaeus-(Figure 18). $2 n=20,30,40$. Roadsides, waste places. From farther west and south.

Eupatorium hyssopifolum Linnaeus var. hyssopifoltum-Justice-weed (Figure 18). $2 n=20,30$. Dry, sandy fields, dry, open woods and clearings, roadsides. [E. hyssopifolium var. calcaratum Fernald \& B. G. Schubert]

Eupatortum hyssoptfolnum Linnaeus var. lacintatum A. Gray-(Figure 19). $2 n=30,40$. Roadsides.
Eupatorium perfoliatum Linnaeus-Boneset (Figure 19). $2 n=20$. Low woods, shores, swamps. [ $E$. perfollatum var. colpophtlum Fernald \& Griscom]

Eupatorium pilosum Walter-(Figure 19). $2 n=20,30,40$. Low woods, shores, swamps, moist, low ground. [E. rotundifolnum Linnaeus var. scundersii (Porter ex Britton) Cronquist]

Eupatortum rotundifolum Linnaeus var. rotundifolium - Round-leaved Thoroughwort (Figure 19). $2 n=20,30$. Open woods, clearings.

Eupatorium rotundifolnum Linnaeus var. ovatum (Bigelow) Torrey ex de Candolle-Round-leaved Thoroughwort (Figure 19). $2 n=20,30$. Dry, open woods, clearings, roadsides.

EUPATORIUM SEROTINUM Michaux-(Figure 19). $2 n=20$. Roadsides, railroad yard, fields. From farther west and south.

Eupatorium sessilifolium Linnaeus-Upland Boneset (Figure 19). $2 n=20,30$. Rocky, open woods. [E. sessilifoltum var. brittontanum Porter]

- Eupatorium hybrid-

Eupatorium $\times$ novae-angliae (Fernald) V. Sullivan ex A. Haines \& Sorrie (pro species)-(Figure 19). [E. PALUDICOLA E. E. Schilling \& LeBlond $\times$ E. perfoliatum Linnaeus]

Eurybia divaricata (Linnaeus) G.L. Nesom-White Wood Aster (Figure 19). $2 n=18$. Rich, deciduous woods, clearings, roadsides. [Aster divaricatus Linnaeus]

Eurybia macrophylla (Linnaeus) Cassini-(Figure 20). $2 n=72$. Open woods, thickets, clearings, roadsides.[Aster macrophyllus Linnaeus var. macrophylhs; A. macrophylhis var. apricensis E.S. Burgess; A. macrophyllus var. excelsior E.S. Burgess; A. macrophyllus var. tanthinus (E.S. Burgess) Fernald; A. macrophyllus var. pinguifolius E.S. Burgess; A. macrophyllus var. sejunctus E.S. Burgess; A. macrophyllus var. velutinus E.S. Burgess]

Eurybia radula (Aiton) G.L. Nesom-(Figure 20). $2 n=18$. Sphagnum bogs, boggy shores, swamps, low woods. [Aster radula Aiton var. radula; A. radula Aiton var. strictus A. Gray]

Eurybia schrebert (Nees) Nees-(Figure 20). $2 n=54$. Rich, deciduous or mixed woods, thickets. [Aster glomeratus Bernhardi ex Nees; A. macrophylhus Linnaeus var. schreberi (Nees) F. Seymour; A. schreberi Nees]

Eurybia spectabilts (Aiton) G.L. Nesom-Seaside Purple Aster (Figure 20). 2n=72. Dry, sandy, open woods and clearings, roadsides. [Aster spectabilis Aiton]

## -Eurybia hybrid-

Eurybia $\times$ herveyi (A. Gray) G.L. Nesom (pro spectes)—(Figure 20). [E. macrophylla (Linnaeus) Cassini $\times$ E. spectabilis (Aiton) G. L. Nesom; Aster herveyl A. Gray]

Euthamia caroliniana (Linnaeus) Greene ex Porter \& Britton-Quobsque-weed (Figure 20). $2 n=18$. Sandy shores, open, sandy soils. [E. mtcrocephala Greene; Solidago microcephala Bush; $S$. tenuffolia Pursh var. tenuifolia; S. tenuifolia var. pycnocephala Fernald]

Euthamia graminifolia (Linnaeus) Nuttall-Common Flat-topped Goldenrod (Figure 20). $2 n=18$. Shores, beaches, salt marsh borders, fields. [Solidago graminifolia (Linnaeus) Salisbury var. graminifolia; S. graminfolia var. nuttallii (Greene) Fernald; S. grammifolia var. polycephala Fernald]

Eutrochium dubium (Willdenow ex Poiret) E.E. Lamont-Eastern Joe-pye-weed (Figure 20). $2 n=20$. Meadows, shores, low, moist, acid soil. [Eupatorium dubium Willdenow ex Poiret]

Eutrochtum fistulosum (Barratt) E.E. Lamont-Trumpetweed (Figure 20). $2 n=20$. Moist thickets, meadows, alluvial woods. [Eupatorium fistulosum Barratt]

Eutrochtum maculatum (Linnaeus) E.E. Lamont var. maculatum-(Figure 21). $2 n=20$. Moist thickets, meadows, shores, usually in rich or calcareous soil. [Eupatortum maculatum Linnaeus var. maculatum]

Eutrochium maculatum (Linnaeus) E.E. Lamont var. foliosum (Fernald) E. E. Lamont-(Figure 21). $2 n=20$. Moist thickets, meadows, shores, usually in rich or calcareous soil. [Eupatornm maculatum Linnaeus var. foliosum (Fernald) Wiegand]

Eutrochum purpureum (Linnaeus) E.E. Lamont var. purpureum-Sweet Joe-pye-weed (Figure 21). $2 n=20$. Rich, deciduous, chiefly calcareous woods. [Eupatornum purpureum Linnaeus var. purpureum]

FILAGO VULGARIS Lamarck-Herba Impia (Figure 21). $2 n=28$ (British Isles, Bulgaria, Czechoslovakia, Greece). From Eurasia, northern Africa. [FILAGO GERMANICA Linnaeus]

FLAVERIA BIDENTIS (Linnaeus) Kuntze - Coastal Plain Yellowtops (Figure 21). $2 n=36$. Wool waste. From South America.

GAILLARDIA PULCHELLA Fougeroux-Firewheel (Figure 21). $2 n=34$. Waste places, roadsides, dry, sandy open places. From farther west. [G. PULCHELLA var. PICTA (D. Don) A. Gray; G. PICTA D. Don]
-Gatlardia hybrid-
GAILLARDIA $\times$ GRANDIFLORA Van Houtte (pro species)-(Figure 21). [G. ARISTATA Pursh $\times$ G. PULCHELLA Fougeroux]

GALINSOGA PARVIFLORA Cavanilles var. PARVIFLORA-Gallant Soldier (Figure 21). $2 n=16$. Waste places, roadsides, fields. From Mexico, West Indies, Central \& South America.

GALINSOGA QUADRIRADIATA Ruiz \& Pavón-Shaggy Soldier (Figure 21). $2 n=16,32(+0-2 \mathrm{~B}$ ). Waste places, roadsides, fields. From Mexico, West Indies, Central \& South America. [G. BICOLORATA H. St. John \& D. White; G. CARACASANA (de Candolle) Schultz-Bipontinus; G. CILIATA (Rafinesque) S. F. Blake; G. PARVIFLORA Cavanilles var. HISPIDA de Candolle]

GAMOCHAETA PENSYLVANICA (Willdenow) Cabrera-(Figure 22). $2 n=28$. Waste places, roadsides, fields. From Mexico, Central \& South America. [GNAPHALIUM PEREGRINLM Fernald]

Gamochaeta purpurea (Linnaeus) Cabrera-Purple Cudweed (Figure 22). 2n=14, 28. Dry fields, sandy openings, waste places, roadsides. [Gnaphaltum purpureum Linnaeus]

GLEBIONIS CORONARIA (Linnaeus) Cassini ex Spach-Garland Chrysanthemum (Figure 22). $2 n=$ 18. Waste places. From Eurasia, northern Africa. [CHRYSANTHEMUM CORONARIUM Linnaeus]

GLEBIONIS SEGETUM (Linnaeus) Fourreau-Corn Marigold (Figure 22). $2 n=18$. Waste places, roadsides. From Eurasia, northern Africa. [CHRYSANTHEMUM SEGETUM Linnaeus]

Gnaphalum ultginosum Linnaeus-Low Cudweed (Figure 22). $2 n=14$. Roadside ditches, damp clearings, meadows, waste places.

GRINDELIA HIRSUTULA Hooker \& Arnott-(Figure 22). $2 n=12,24$. Waste places. From farther west. [G. SQUARROSA (Pursh) Dunal var. QUASIPERENNIS Lunell]

GRINDELIA LANCEOLATA Nuttall-(Figure 22). $2 n=12$. Roadsides. From farther south and west.
GRINDELIA SQUARROSA (Pursh) Dunal—(Figure 22). $2 n=12$. Waste places, roadsides. From farther west. [G. SQUARROSA var. SERRULATA (Rydberg) Steyermark]

GUIZOTIA ABYSSINICA (Linnaeus f.) Cassini-Niger Seed (Figure 22). $2 n=30$ (India). Waste places, roadsides. From tropical Africa.

Hasteola suaveolens (Linnaeus) Pojarkova-(Figure 23). $2 n=20$. Stream banks, thickets, rich woods. [C. suaveolens Linnaeus]

HELENIUM AMARUM (Rafinesque) H. Rock var. AMARUM —Yellowdicks (Figure 23). $2 n=30$. Waste places, railroads. From farther south. [H. TENUIFOLIUM Nuttall]

Helenium cutumnale Linnaeus-Common Sneezeweed (Figure 23). $2 n=32,34,36$. Shores, meadows. [H. autumnale var. canaliculatum (Lamarck) Torrey \& A. Gray; H. autumnale var. parviflorum (Nuttall) Fernald]

HELENIUM FLEXUOSUM Rafinesque-Purplehead Sneezeweed (Figure 23). $2 n=28$. Meadows, shores, fields. From farther south. [H. NUDIFLORUM Nuttall]

HELIANTHUS ANNUUSLinnaeus-Common Sunflower (Figure 23). $2 n=34$. Waste places, roadsides. From farther west.

HELIANTHUS DEBILIS Nuttall subsp. CUCUMERIFOLIUS (Torrey \& A. Gray) Heiser-(Figure 23). $2 n=34$. Waste places, fields. From farther south.

Helianthus decapetalus Linnaeus-(Figure 23). $2 n=34$, 68 . Open woods, thickets, often moist soil near streams, roadsides. [H. trachelifolius Miller]

Helianthus divaricatus Linnaeus-Woodland Sunflower (Figure 23). $2 n=34$. Dry, thickets, woods, and openings, roadsides. [H. divaricatus var. angustifoltus Kuntze]

Hehanthus giganteus Linnaeus-(Figure 23). $2 n=34$. Dry fields, salt marsh borders, usually wet, open sites.

HELIANTHUS GROSSESERRATUS M. Martens-(Figure 24). $2 n=34$. Roadsides, sandy fields, rich thickets. From farther west.

HELIANTHUS MAXIMILIANI Schrader-(Figure 24). $2 n=34$. Waste places, fields. From farther west. [H. dalyl Britton]

HELIANTHUS MOLLIS Lamarck-Ashy Sunflower (Figure 24). $2 n=34$. Dry, sandy fields, roadsides, waste places. From farther south and west.

HELIANTHUS PAUCIFLORUS Nuttall subsp. PAUCIFLORUS-(Figure 24). $2 n=?$ Dry, sandy fields, waste places. From farther west. [H. LAETIFLORUS Persoon var. RIGIDUS (Cassini) Fernald]

HELIANTHUS PAUCIFLORUS Nuttall subsp. SUBRHOMBOIDEUS (Rydberg) O. Spring \& E. E. Schilling-(Figure 24). $2 n=$ ? Roadsides, waste places. From farther west. [H. LAETIFLORUS Persoon var. SUBRHOMBOIDEUS (Rydberg) Fernald]

HELIANTHUS PETIOLARIS Nuttall subsp. PETIOLARIS-Prairie Sunflower (Figure 24). $2 n=34$. Dry roadsides, waste places. From farther west.

Heltanthus strumosus Linnaeus-(Figure 24). $2 n=68,102$. Thickets, open woods, clearings, roadsides.

HELIANTHUS TUBEROSUS Linnaeus-Jerusalem Artichoke (Figure 24). $2 n=102$. Waste places, roadsides, fields. From farther west and south. [H. TUBEROSUS var. SUBCANESCENS A. Gray]

- Heltanthus hybrids-

Heltanthus $\times$ ambiguus (Torrey \& A. Gray) Britton (pro species)—(Figure 24). [H. divaricatus Linnaeus $\times$ H. giganteus Linnaeus]

HELIANTHUS $\times$ DIVARISERRATUS R.W. Long-(Figure 25). [H. divartcatus Linnaeus $\times H$. GROSSESERRATUS M. Martens]

HELIANTHUS $\times$ DORONICOIDES Lamarck (pro species)-(Figure 25). [H. gıganteus Linnaeus $\times$ H. MOLLIS Lamarck]

HELIANTHUS $\times$ INTERMEDIUS R.W. Long (Figure 25). [H. GROSSESERRATUS M. Martens $\times$ H. MAXIMILLANI Schrader]

HELIANTHUS $\times$ KELLERMANII Britton (pro species)-(Figure 25). [H. GROSSESERRATUS M. Martens $\times$ H. SALICIFOLIUS A. Dietrich]

HELIANTHUS $\times$ LAETIFLORUS Persoon (pro species)-(Figure 25). [H.PAUCIFLORUS Nuttall $\times$ H. TUBEROSUS Linnaeus]

HELIANTHUS $\times$ LUXURIANS E. Watson (pro spectes)-(Figure 25). [H. giganteus Linnaeus $\times H$. GROSSESERRATUS M. Martens]

HELIOMERIS MULTIFLORA Nuttall var. MULTIFLORA-(Figure 25). $2 n=16$. Wool waste. From farther west.

HELIOPSIS HELIANTHOIDES (Linnaeus) Sweet var. HELIANTHOIDES - False Sunflower (Figure 25). $2 n=$ ? Fields, waste places, thickets. From farther west and south.

HELIOPSIS HELLANTHOIDES (Linnaeus) Sweet var. SCABRA (Dunal) Fernald-(Figure 25). $2 n=$ ? Fields, waste places, thickets. From farther west.

HELMINTHOTHECA ECHIOIDES (Linnaeus) Holub-Oxtongue (Figure 26). $2 n=10$. Fields, waste places, roadsides. From Eurasia, northern Africa. [PICRIS ECHIOIDES Linnaeus]

HETEROSPERMA PINNATUM Cavanilles-Wingpetal (Figure 26). $2 n=48,50$. Wool waste. From farther west.

HETEROTHECA SUBAXILLARIS (Lamarck) Britton \& Rusby subsp. LATIFOLIA (Buckley) Semple-(Figure 26). $2 n=18$. Roadsides. From farther south.

HIERACIUM AURANTIACUM Linnaeus-Devil's Paintbrush (Figure 26). $2 n=30,36,45,54,63$. Fields, clearings, roadsides. From Europe.

HIERACIUM CAESPITOSUM Dumortier-Yellow Fox-and-cubs (Figure 26). $2 n=18,36,45$. Fields, clearings, roadsides. From Europe. [H. PRATENSE Tausch]

HIERACIUM FLAGELLARE Willdenow-(Figure 26). $2 n=26,45,54$. Waste places, roadsides, fields. From Europe.

Hieractum gronovit Linnaeus-(Figure 26). $2 n=18$. Dry fields, open pine or pine-oak woods, dry openings, roadsides.

HIERACIUM LACHENALII Suter-European Hawkweed (Figure 26). $2 n=27,36$. Roadsides, thickets, openings in woods. From Europe. [H. VULGATUM Fries]

HIERACIUMMACULATUM Schrank-(Figure 26). $2 n=36$. Calcareous till. From Europe.
HIERACIUM MURORUM Linnaeus-Golden Lungwort (Figure 27). $2 n=27,36$. Roadsides, fields, thickets, openings in woods. From Eurasia.

Hieracium pantculatum Linnaeus-Allegheny Hawkweed (Figure 27). $2 n=18$. Dry, often rocky, open woods, roadsides.

HIERACIUM PILOSELLA Linnaeus-Mouse-ear Hawkweed (Figure 27). $2 n=18,36,45,54,63,72$, 81, 90. Dry, open soil, fields, roadsides. From Eurasia. [H. PILOSELLA var. NIVEUM Müller Argoviensis]

HIERACIUM PILOSELLOIDES Villars-Glaucous King Devil (Figure 27). $2 n=18,36$. Fields, roadsides, clearings. From Eurasia. [H. FLORENTINUM Allioni]

HIERACIUM PRAEALTUM Villars ex Gochnat-(Figure 27). $2 n=45$. Fields, meadows, roadsides. From Europe. [H. PRAEALTUM var. DECIPIENS W. D. J. Koch]

Hieracium robinsonit (Zahn) Fernald -(Figure 27). $2 n=27$. Ledge crevices, rocky shores.
HIERACIUM SABAUDUM Linnaeus-(Figure 27). $2 n=18,27,36$. Roadsides, waste places, fields. From Eurasia.

Hierachum scabrum Michaux-Sticky Hawkweed (Figure 27). $2 n=18$. Dry, open woods, fields, clearings, roadsides. [H. scabrum var. tonsum Fernald \& H. St. John]

Hieracium umbellatum Linnaeus-Northern Hawkweed (Figure 27). $2 n=18,27$. Dry, open woods, fields, woods margins, shores, thickets, clearings, roadsides. [H. canadense Michaux var.
canadense, H. canadense var. fasciculatum (Pursh) Fernald; H. canadense var. hirtirameum Fernald; H. kalmii Linnaeus]

Hierachum venosum Linnaeus-Rattlesnake-weed (Figure 28). $2 n=18$. Dry, open, sandy woods, fields, clearings. [H. venosum var. nudicaule (Michaux) Farwell]

- Hieracium hybrids-

HIERACIUM $\times$ ATRAMENTARIUM (Nägeli \& Peter) Zahn ex Engelmann (pro species)-(Figure 28). [H. AURANTIACUM Linnaeus $\times$ H. PILOSELLOIDES Villars]

Hieractum $\times$ fassettil Lepage-(Figure 28). [H. $\times$ fernaldit Lepage; H. scabrum Michaux $\times H$. umbellatum Linnaeus]

HIERACIUM $\times$ FLORIBUNDUM Wimmer \& Grabowski (pro species)-(Figure 28). [H. CAESPITOSUM Dumortier $\times$ H. LACTUCELLA Wallroth]

HIERACIUM $\times$ FUSCOATRUM Nägeli \& Peter-(Figure 28). [H. AURANTIACUM Linnaeus $\times H$. CAESPITOSUM Dumortier]

Hieractum $\times$ marianum Willdenow (pro species)-(Figure 28). [H. gronovi Linnaeus or H. scabrum Michaux $\times$ H. venosum Linnaeus]

HYMENOXYS ODORATA de Candolle-Bitter Rubberweed (Figure 28). $2 n=22,24,28,30$. Waste places. From farther west.

HYPOCHAERIS GLABRA Linnaeus-(Figure 28). $2 n=8,10,12$. Wool waste, fields. From Eurasia, northern Africa.

HYPOCHAERIS RADICATA Linnaeus-Common Cat's-ear (Figure 28). $2 n=8$. Roadsides, fields, waste places. From Eurasia, northern Africa.

INULA HELENIUM Linnaeus-Elecampane (Figure 29). $2 n=20$. Damp fields, roadsides, clearings, waste places. From Eurasia.

Ionactis linarifolia (Linnaeus) Greene-Stiff Aster (Figure 29). $2 n=18$. Dry, open, sandy soil, woods borders, rocky outcrops. [Aster linarifolus Linnaeus]

IVA ANNUA Linnaeus-Sumpweed (Figure 29). $2 n=34$. Waste places. From farther west and south. [I. CILIATA Willdenow]

Iva frutescens Linnaeus-Jesuits'-bark (Figure 29). $2 n=34$. Saline marshes and shores at normal high tide limit. [I. frutescens var. oraria (Bartlett) Fernald \& Griscom]

JACOBAEA VULGARIS Gaertner-Stinking Willie (Figure 29). $2 n=40$. Wet pastures, roadsides. From Eurasia, northern Africa. [SENECIO JACOBAEA Linnaeus]

Kngia biflora (Walter) S.F. Blake (Figure 29). $2 n=10,20$. Fields, meadows.
Krigia virginica (Linnaeus) Willdenow-(Figure 29). $2 n=10,20$. Dry fields, rock outcrops, sandy woods and roadsides.

Lactuca biennis (Moench) Fernald-Tall Blue Lettuce (Figure 29). $2 n=34$. Rich or damp, open woods, clearings, thickets.

Lactuca canadensis Linnaeus-Wild Lettuce (Figure 29). $2 n=34$. Thickets, woods borders, open woods, meadows, fields, clearings, roadsides. [L. canadensis var. latyolia Kuntze; $L$. canadensis var. longtfolta (Michaux) Farwell; L. canadensis var. obovata Wiegand]

Lactuca hirsuta Muhlenberg ex Nuttall-(Figure 30). $2 n=34$. Dry, open woods, clearings. [ $L$. hirsuta var. sangunea (Bigelow) Fernald]

LACTUCA SATIVA Linnaeus-Garden Lettuce (Figure 30). $2 n=18$. Waste places. From Eurasia.
LACTUCA SERRIOLA Linnaeus-Prickly Lettuce (Figure 30). $2 n=18$. Waste places, roadsides. From Eurasia, northern Africa. [L. SCARIOLA Linnaeus - illegitimate name]

- Lactuca hybrid-

Lactuca $\times$ morssil B.L. Robinson (pro species)-(Figure 30). [H. brennis (Moench) Fernald $\times H$. canadensis Linnaeus]

LAPSANA COMMUNIS Linnaeus-Nipplewort (Figure 30). $2 n=14,16$. Waste places, roadsides, rich woods. From Eurasia.

LASTHENIA CALIFORNICA de Candolle ex Lindley subsp. CALIFORNICA-(Figure 30). $2 n=16$, 32, 48. Wool waste. From farther west. [L. CHRYSOTOMA (Fischer \& C. A. Meyer) Greene; BAERIA CHRYSOTOMA Fischer \& C. A. Meyer]

LASTHENIA MINOR (de Candolle) Ornduff-Coastal Goldfields (Figure 30). $2 n=8$. Wool waste. From farther west. [BAERIA MINOR (de Candolle) Ferris]

LAYIA PLATYGLOSSA (Fischer \& C.A. Meyer) A. Gray-Tidy-tips (Figure 30). $2 n=14$. Wool waste. From farther west.

LEONTODON HISPIDUS Linnaeus-(Figure 30). $2 n=14$. Fields, roadsides. From Eurasia. [ $L$. HASTILIS Linnaeus var. HASTILIS; L. HASTILIS var. VULGARIS W. D. J. Koch]

LEONTODON SAXATILIS Lamarck subsp. SAXATILIS-(Figure 31). $2 n=8$. Sandy beaches and open areas. From Eurasia. [L. LEYSSERI (Wallroth) G. Beck; L. TARAXACOIDES (Villars) Willdenow ex Mérat de Vaumartoise - illegitimate name]

LEUCANTHEMELLA SEROTINA (Linnaeus) Tzvelev-Giant Daisy (Figure 31). $2 n=18$. Roadsides. From Europe. [CHRYSANTHEMUM ULIGINOSUM Persoon]

LEUCANTHEMUM VULGARE Lamarck-Oxeye Daisy (Figure 31). $2 n=18,36,54,72,90$. Fields, clearings, waste places, roadsides. From Eurasia. [CHRYSANTHEMUM LEUCATHEMUM Linnaeus var. LEUCATHEMUM; C. LEUCATHEMLM var. PINNATIFIDUM Lecoq \& Lamotte]

- Leucanthemum hybrid-

LEUCANTHEMUM $\times$ SUPERBUM (Bergmans ex J. Ingram) Bergmans ex D.H. Kent (Figure 31). [L. LACUSTRE (Brotero) Sampaio $\times$ L. MAXIMUM (Ramond) de Candolle]

LLATRIS CYLINDRACEA Michaux-(Figure 31). $2 n=20$. From farther west and south.
LIATRIS PYCNOSTACHYA Michaux var. PYCNOSTACHYA-(Figure 31). $2 n=$ ? Roadsides, waste places, fields, sandy, pine woods clearings. From farther west and south.

Liatris scariosa (Linnaeus) Willdenow var. novae-angliae (Lunell) Gandhi, S.M. Young \& P. Somers-(Figure 31). $2 n=$ ? Dry, sandy, fields, open woods, clearings and roadsides. [ $L$. borealis Nuttall ex J. McNab - misapplied]

LIATRIS SPICATA (Linnaeus) Willdenow var. SPICATA-(Figure 31). $2 n=20$. Roadsides, clearings, waste places. From farther south and west.

MADIA GLOMERATA Hooker-Mountain Tarweed (Figure 31). $2 n=28$. Waste places, roadsides. From farther west.

MADIA GRACILIS (Smith) D.D. Koch-(Figure 32). $2 n=32,48$. Fields, waste places. From farther west. [M. DISSITIFLORA (Nuttall) Torrey \& A. Gray; M. SATIVA Molina subsp. DISSITIFLORA (Nuttall) D. D. Keck]

MADIA SATIVA Molina-(Figure 32). $2 n=32$. Fields, waste places, roadsides. From farther west. [M. SATIVA var. CONGESTA Torrey \& A. Gray]

MATRICARIA CHAMOMILLA Linnaeus-German Chamomile (Figure 32). $2 n=18$. Waste places, roadsides. From Eurasia, northern Africa. [M. CHAMOMILLA var. CORONATA J. Gay ex Boissier, M. RECUTITA Linnaeus]

MATRICARIA DISCOIDEA de Candolle-Pineapple-weed (Figure 32). $2 n=18$. Waste places, roadsides, fields. From farther west. [M. MATRICARIOIDES (Lessing) Porter - misapplied]

MICROSERIS DOUGLASII (de Candolle) Schultz-Bipontinus subsp. DOUGLASII-(Figure 32). $2 n$ $=18$. Wool waste. From farther west.

Mikania scandens (Linnaeus) Willdenow-Climbing Hempweed (Figure 32). $2 n=38$. Wet thickets, swamps, stream banks, pond or lake margins, marshes.

MULGEDIUM PULCHELLUM (Pursh) G. Don-Blue Lettuce (Figure 32). $2 n=18$. Pond shores, fields. From farther west. [LACTUCA PULCHELLA (Pursh) de Candolle; L. TATARICA (Linnaeus) C. A. Meyer subsp. PULCHELLA (Pursh) Stebbins]

MYCELIS MURALIS (Linnaeus) Dumortier-(Figure 32). $2 n=18$. Roadsides, woodland margins or openings, waste places. From Eurasia, northern Africa. [LACTUCA MURALIS (Linnaeus) Gaertner - invalid name]

NIPPONANTHEMUM NIPPONICUM (Franchet ex Maximowicz) Kitamura-Montauk Daisy (Figure 32). $2 n=18$. Beaches. From Japan. [CHRYSANTHEMUM NIPPONICUM (Franchet ex Maximowicz) Sprenger]

Oclemena acuminata (Michaux) Greene-Mountain Aster (Figure 33). $2 n=18$. Woods, often acidic. [Aster acuminatus Michaux]

Oclemena nemoralts (Aiton) Greene-Bog Aster (Figure 33). $2 n=18$. Sphagnum bogs and shores. [Aster nemoralts Aiton]

## - Oclemena hybrid-

Oclemena $\times$ blaket (Porter) G.L. Nesom-(Figure 33). [O. acuminata (Michaux) Greene $\times O$. nemoralls (Aiton) Greene; Aster blakei (Porter) House]

Omalotheca supina (Linnaeus) de Candolle-Alpine Cudweed (Figure 33). $2 n=28$. Granitic alpine areas. [Gnaphalium supinum Linnaeus]

Omalotheca sylvatica (Linnaeus) Schultz-Bipontinus \& F.W. Schultz-Heath Cudweed (Figure 33). $2 n=56$. Clearings, rocky slopes, woods borders. [Gnaphalium sylvaticum Linnaeus]

ONOPORDUM ACANTHIUM Linnaeus subsp. ACANTHIUM - Cotton Thistle (Figure 33). $2 n=34$. Waste places, roadsides, gravelly, sandy tidal shores. From Eurasia.

Packera aurea (Linnaeus) Á. Löve \& D. Löve-Golden Ragwort (Figure 33). $2 n=44$. Swamps, low, wet woods, brooksides, springs, stream banks, meadows, moist roadsides. [Senecio aureus Linnaeus var. aureus; S. aureus var. aquilonnus Fernald; S. aureus var. gracils (Pursh) Hooker; S. aureus var. intercursus Fernald]

Packera obovata (Muhlenberg $e x$ Willdenow) W.A. Weber \& Á. Löve-(Figure 33). $2 n=44,88,90$. Fields, woods, stream banks, rocky slopes, in calcareous soil. [Senecto obovatus Muhlenberg ex Willdenow]

Packera paupercuta (Michaux) Á. Löve \& D. Löve-Balsam Groundsel (Figure 33). $2 n=44,46,92$. Stream banks, rocky, open outcrops, slopes and woods. [S. gaspensis Greenman; Senecio pauperculus Michaux var. pauperculus; S. pauperculus var. balsamitae (Muhlenberg ex Willdenow) Fernald; S. pauperculus var. praelongus (Greenman) House]

Packera schweintzzana (Nuttall) W.A. Weber \& Á. Löve-(Figure 34). $2 n=44$. Meadows, shores, swamps, thickets, fields, roadside ditches. [Senecio robbinsii Oakes ex Rusby]

PALAFOXIA TEXANA de Candolle-(Figure 34). $2 n=22$. Riverbanks. From farther south.
PARTHENIUM HYSTEROPHORUS Linnaeus-Santa Maria (Figure 34). $2 n=34$. Waste places. From Mexico, Central America, Caribbean, South America.

PARTHENIUM INTEGRIFOLIUM Linnaeus-Wild Quinine (Figure 34). $2 n=72$. Railroads, fields. From farther west and south.

Petasttes frtgidus (Linnaeus) Fries var. palmatus (Aiton) Cronquist—Sweet Coltsfoot (Figure 34). $2 n$ $=60,61,62$. Swampy woods, streambanks, damp clearings, roadside ditches. [P. palmatus (Aiton) A. Gray]

PETASITES HYBRIDUS (Linnaeus) G. Gaertner, B. Meyer \& Scherbius-Butterbur (Figure 34). $2 n=$ 60. Brooksides, waste places. From Eurasia.

PICRIS HIERACIOIDES Linnaeus-(Figure 34). $2 n=10$. Dry fields, roadsides, waste places. From Eurasia.

Pityopsis falcata (Pursh) Nuttall-(Figure 34). $2 n=18$. Dry, sandy, open soil, railroads. [Chrysopsis falcata (Pursh) Elliott]

PLUCHEA CAMPHORATA (Linnaeus) de Candolle-Spicy Fleabane (Figure 34). $2 n=$ ? Salt marshes. From farther south.

Pluchea odorata (Linnaeus) Cassini var. succulenta (Fernald) Cronquist-Saltmarsh Fleabane (Figure 35). $2 n=20$. Salt marshes, sandy shores of coastal ponds, tidal flats. $[P$. purpurascens (Swartz) de Candolle var. succulenta Fernald]

Polymnia canadensts Linnaeus-(Figure 35). $2 n=30$. Damp, calcareous woods.
Prenanthes alba Linnaeus-White Lettuce (Figure 35). $2 n=32$. Rich woods, thickets, mostly moist. [Nabalus albus (Linnaeus) Hooker]

Prenanthes altissma Linnaeus-(Figure 35). $2 n=16$. Rich, moist woods, shaded roadsides. [Nabahus altisstmus (Linnaeus) Hooker]

Prenanthes boottii (de Candolle) D. Dietrich—Alpine Rattlesnake-root (Figure 35). $2 n=32$. Alpine areas. [Nabalus bootth de Candolle]

Prenanthes racemosa Michaux-Glaucous White Lettuce (Figure 35). $2 n=16$. River shores. [Nabalus racemosus (Michaux) Hooker]

Prenanthes serpentaria Pursh-Cankerweed (Figure 35). $2 n=16$. Dry, open woods, clearings, woodland borders. [Nabalus serpentartus (Pursh) Hooker]

Prenanthes trifoltolata (Cassini) Fernald-(Figure 35). $2 n=16$. Open woods, thickets, clearings. [ $P$. trifoliolata var. nana (Bigelow) Fernald; Nabalus trifololatus Cassini]
-Prenanthes hybrid-
Prenanthes $\times$ mainensis A. Gray (pro species)-(Figure 35). [P. racemosa Michaux $\times P$. trifoliolata (Cassini) Fernald]

Pseudognaphalum macounti (Greene) Kartesz-(Figure 36). $2 n=$ ? Dry fields, clearings, woods margins, roadsides. [Gnaphalium macounit Greene; G. viscosum Kunth - misapplied; $P$. viscosum Kunth) Anderberg - misapplied]

Pseudognaphalum micradentum (Weatherby) G.L. Nesom-(Figure 36). $2 n=$ ? Dry, sandy woods, thickets, clearings, roadsides. [Gnaphalum obtusifolnum Linnaeus var. micradennum Weatherby]

Pseudognaphalum obtusffolum (Linnaeus) Hilliard \& B.L. Burtt-Sweet Everlasting (Figure 36). 2n =? Dry fields, woods margins, dry clearings, roadsides. [Gnaphalium obtusifolum Linnaeus var. obtustfolnum; Gnaphalum obtusifolium Linnaeus var. praecox Fernald]

RATIBIDA COLUMNIFERA (Nuttall) Wooten \& Standley-(Figure 36). $2 n=28$. Fields. From farther west.

RATIBIDA PINNATA (Ventenat) Barnhart-Grayhead Prairie-coneflower (Figure 36). $2 n=28$. Waste areas, roadsides. From farther west and south.

RUDBECKIA FULGIDA Aiton var. SPECIOSA (Wenderoth) Perdue-(Figure 36). $2 n=\mathrm{ca} 76$. Open swamp, roadsides in moist soil. From farther west and south. [R. SPECIOSA Wenderoth]

Rudbeckia hirta Linnaeus var. hirta-(Figure 36). $2 n=38$. Open woods, fields, roadsides.
Rudbeckia hirta Linnaeus var. pulcherrima Farwell—Black-eyed Susan (Figure 36). $2 n=38$. Fields, meadows, clearings, roadsides. [ $R$. bicolor Nuttall; R. serotina Nuttall var. serotina; $R$. serotina var. lanceolata (Bischoff) Fernald \& B. G. Schubert; R. serotına var. sericea (T. V. Moore) Fernald \& B. G. Schubert]

Rudbeckta lacmtata Linnaeus var. lacminata-(Figure 36). $2 n=36$, 54. Swampy thickets, rich, low ground, stream banks, meadows, roadsides. [R. lacmata var. hortensia L. H. Bailey]

RUDBECKIA SUBTOMENTOSA Pursh-Sweet Coneflower (Figure 37). $2 n=38$. Roadsides. From farther west.

RUDBECKIA TRILOBA Linnaeus var. TRILOBA-Brown-eyed Susan (Figure 37). $2 n=38,57$. Field, waste places, roadsides, woods, meadows, stream banks. From farther south and west.

SANTOLINA CHAMAECYPARISSIUS Linnaeus-Lavender-cotton (Figure 37). $2 n=18$. Dry, sandy banks, roadsides, thin, pine woods. From Europe.

Sclerolepts uniflora (Walter) Britton, Sterns, \& Poggenberg—Pink Bogbutton (Figure 37). $2 n=30$. Sandy or sphagnous shores or shallow water of ponds and lakes.

SCORZONEROIDES AUTUMNALIS (Linnaeus) Moench—Fall Dandelion (Figure 37). $2 n=12,24$. Fields, meadows, roadsides. From Eurasia. [LEONTODON AUTUMNALIS Linnaeus var. AUTUMNALIS; L. AUTUMNALIS var. PRATENSIS Koch]

SENECIO EREMOPHILUS Richardson var. MACDOUGALII (A. Heller) Cronquist-(Figure 37). $2 n$ $=40$. From farther west. [S. MACDOUGALII A. Heller]

SENECIO SYLVATICUS Linnaeus-Heath Groundsel (Figure 37). $2 n=40$. Cliff crevices, sandy beaches, gravelly seashores, waste places, roadsides. From Europe.

SENECIO VISCOSUS Linnaeus-(Figure 37). $2 n=40$. Waste places. From Eurasia.
SENECIO VULGARIS Linnaeus-Common Groundsel (Figure 37). $2 n=40$. Roadsides, waste places. From Eurasia, northern Africa.

Sericocarpus asteroides (Linnaeus) Nees-Toothed White-top Aster (Figure 38). $2 n=18$. Dry woods, clearings, and fields, roadsides. [Aster paternus Cronquist]

Sericocarpus linifolius (Linnaeus) Britton, Sterns, \& Poggenberg-(Figure 38). $2 n=18$. Dry woods, clearings, and fields, roadsides. [Aster solidagineus (Michaux) Nees]

SIGESBECKIA JORULLENSIS Kunth-(Figure 38). $2 n=30$. Waste places. From Mexico, Central America, South America.

SILPHIUM PERFOLIATUM Linnaeus var. PERFOLIATUM - Cup-plant (Figure 38). $2 n=14$. Moist thickets, low, open woods, moist roadsides, waste places. From farther west and south.

SILYBUM MARIANUM (Linnaeus) Gaertner-Milk Thistle (Figure 38). $2 n=34$. Waste places. From Eurasia, northern Africa.

Solidago altisstma Linnaeus subsp. altisstma-(Figure 38). $2 n=36,54$. Clearings, fields, meadows, thickets, roadsides, waste places. [S. canadensis Linnaeus var. scabra (Muhlenberg ex Willdenow) Torrey \& A. Gray]

Solidago arguta Aiton var. arguta-(Figure 38). $2 n=18$. Open woods, clearings, roadsides.
Solidago bicolor Linnaeus-Silverrod (Figure 38). $2 n=18$. Dry, open, sterile soils, open woods, rocky slopes, roadsides.

Solidago caesia Linnaeus var. caesia-Blue-stem Goldenrod (Figure 38). $2 n=18$. Open or rich woods, woods margins, clearings, thickets.

Solidago canadensis Linnaeus var. canadensts-(Figure 39). $2 n=18$. Fields, roadsides, thickets, clearings, open woods.

Solidago canadensts Linnaeus var. hargert Fernald-(Figure 39). $2 n=18$. Fields, roadsides, thickets, clearings.

Solidago flexicaulis Linnaeus-Zig-zag Goldenrod (Figure 39). $2 n=18,36$. Rich woods, thickets.
Solidago glgantea Aiton-(Figure 39). $2 n=18,36,54$. Damp thickets, meadows, stream banks, fields, swamps, open woods, roadsides. [S. gigantea var. leiophylla Fernald; S. gigantea var. serotina (Kuntze) Cronquist]

Solidago hispida Muhlenberg ex Willdenow-(Figure 39). $2 n=18$. Dry, open, rocky woods, usually in calcareous soil. [S. hisptda var. lanata (Hooker) Fernald; S. bicolor Linnaeus var. concolor Torrey \& A. Gray; S. brcolor var. lanata (Hooker) A. Gray]

Solidago juncea Aiton-Early Goldenrod (Figure 39). $2 n=18$. Fields, dry, open soil.
Solidago latissimifolia Miller-(Figure 39). $2 n=18,36,54$. Swamps, meadows, low thickets. [ $S$. elloottn Torrey \& A. Gray var. elloottin; S. ellottu var. ascendans Fernald]

Solidago leiocarpa de Candolle-Cutler's Alpine Goldenrod (Figure 39). $2 n=36$. Granitic alpine areas. [S. cutlerl Fernald]

Solidago lepida de Candolle subsp. fallax (Fernald) Semple-(Figure 39). $2 n=18$. Thickets, shores. [S. lepida var. molina Fernald]

Solidago macrophylla Banks ex Pursh-(Figure 40). $2 n=18$. Shaded, rocky, mountain slopes. [S. macrophylla var. thyrsordea (E. Meyer) Fernald]

Solidago multiradiata Aiton-Northern Mountain Goldenrod (Figure 40). $2 n=18,36$. Rocky, alpine slopes.

Solidago nemoralss Aiton subsp. nemoralis-Gray Goldenrod (Figure 40). $2 n=18,36$. Dry fields, open, sandy or gravelly soils, roadsides.

Solidago odora Aiton subsp. odora-Sweet Goldenrod (Figure 40). $2 n=18$. Dry, open woods, clearings, roadsides.

Solidago patula Muhlenberg ex Willdenow subsp. patula-Rough-leaved Goldenrod (Figure 40). $2 n$ $=18$. Calcareous swamps, meadows, swales, wet woods and moist roadsides.

Solidago ptarmicoides (Torrey \& Gray) B. Boivin-Snowy Aster (Figure 40). $2 n=18$. Dry, usually calcareous, ledges. [Aster ptarmicoides Torrey \& Gray; Ollgoneuron album (Nuttall) G.L. Nesom]

Solidago puberula Nuttall subsp. puberula-(Figure 40). $2 n=18$. Dry, open woods, clearings, sandy or rocky shores of ponds and streams, roadsides.

Solidago rigida Linnaeus subsp. rigida-(Figure 40). $2 n=18,36$. Dry, open woods, clearings, thickets, near salt marshes, roadsides. [Oligoneuron rigidum (Linnaeus) Small]

Soltdago rugosa Miller var. rugosa-(Figure 40). $2 n=18,36$. Moist, open soil, fields, thickets, borders of woods and streams. [S. rugosa var. villosa (Pursh) Fernald]

Soludago rugosa Miller var. sphagnophila C. Graves-(Figure 41). $2 n=18,54$. Swamps, meadows, wet thickets. [S. aestivalis E.P. Bicknell]

Solidago rugosa Miller subsp. aspera (Aiton) Cronquist-(Figure 41). $2 n=18,36$. Open woods, fields, thickets, roadsides. [S. aspera Aiton]

Solidago sempervirens Linnaeus subsp. sempervirens-Seaside Goldenrod (Figure 41). $2 n=18$. Salt marshes, seashores, tidal rivers, heavily-salted roadsides.

Soltdago sempervirens Linnaeus subsp. mextcana (Linnaeus) Semple-Seaside Goldenrod (Figure 41). $2 n=18$. Salt marshes, seashores, tidal rivers, heavily-salted roadsides.

Solidago stmplex Kunth var. monticola (Porter) G.S. Ringius-(Figure 41). $2 n=36$. Dry, serpentine soils, rocky, granite barrens below alpine slopes. [S. glutinosa Nuttall var. randit (in part); S. randil (Porter) Britton (in part)]

Solidago simplex Kunth var. racemosa (Greene) G.S. Ringius—Riverbank Goldenrod (Figure 41). $2 n$ $=36$. Dry, usually calcareous rocks and ledges along rivers. [S. glutmosa Nuttall var. racemosa (Greene) Cronquist; S. racemosa Greene; S. randıl (Porter) Britton (in part)]

Solidago speciosa Nuttall var. speciosa-(Figure 41). $2 n=18,36,54$. Fields, open woods, thickets, roadsides.

Solidago squarrosa Muhlenberg-Stout Goldenrod (Figure 41). $2 n=18$. Dry or rocky, open woods, rocky openings, thickets, fields, roadsides.

Solidago uliginosa Nuttall-Bog Goldenrod (Figure 41). $2 n=18,36$. Bogs, swamps, meadows, marshes, fens, shores, usually sphagnous habitats. [S. uliginosa var. linotdes (Torrey \& A. Gray) Fernald; S. ultginosa var. terra-novae (Torrey \& A. Gray) Fernald; S. purshtı Porter]

Solidago ulmifolia Muhlenberg ex Willdenow var. ulmifola-(Figure 42). $2 n=18$. Dry, open or rocky woods, thickets, occasionally meadows.

Solidago altssima Linnaeus subsp. altissima $\times$ S. rugosa Miller var. rugosa-(Figure 42).
Soltdago altissima Linnaeus subsp. altissima $\times S$. sempervirens Linnaeus subsp. sempervirens(Figure 42).

Sohdago arguta Aiton var. arguta $\times S$. broolor Linnaeus-(Figure 42).
Solidago arguta Aiton var. arguta $\times$ S. juncea Aiton-(Figure 42).
Solidago arguta Aiton var. arguta $\times$ nemoralis Aiton subsp. nemoralis-(Figure 42).
Sohdago arguta Aiton var. arguta $\times$ S. patula Muhlenberg $e x$ Willdenow subsp. patula-(Figure 42).
Solidago $\times$ asperula Desfontaines (pro species)-(Figure 42). [S. rugosa Miller var. rugosa $\times S$. sempervirens Linnaeus subsp. Sempervirens]

Solidago bicolor Linnaeus $\times$ S. caesia Linnaeus var. caesia-(Figure 42).
Solidago bicolor Linnaeus $\times$ S. hispida Muhlenberg $e x$ Willdenow-(Figure 43).
Solidago bicolor Linnaeus $\times$ S. nemoralis Aiton subsp. nemoralis-(Figure 43).
Solidago bicolor Linnaeus $\times$ S. odora Aiton subsp. odora-(Figure 43).
Solidago bicolor Linnaeus $\times$ S. puberula Nuttall subsp. puberula-(Figure 43).
Solidago bicolor Linnaeus $\times$ S. rugosa Miller var. rugosa-(Figure 43).
Solidago caesia Linnaeus var. caesia $\times$ S. flexicaults Linnaeus-(Figure 43).
Solddago caesta Linnaeus var. caesia $\times$ S. juncea Aiton-(Figure 43).
Solidago caesia Linnaeus var. caesia $\times$ S. rugosa Miller var. rugosa-(Figure 43).
Solidago $\times$ calcicola (Fernald) Fernald (pro species)-(Figure 43). [S. macrophylla Banks ex Pursh $\times S$. ?]

Solidago canadensis Linnaeus var. canadensis $\times$ S. gigantea Aiton-(Figure 44).
Solidago canadensis Linnaeus var. canadensis $\times$ S. juncea Aiton-(Figure 44).
Solidago canadensts Linnaeus var. canadensts $\times$ S. rugosa Miller var. rugosa-(Figure 44).
Sohdago canadensıs Linnaeus var. hargerı Fernald $\times$ S. rugosa Miller var. rugosa-(Figure 44).
Solidago gigantea Aiton $\times$ S. rugosa Miller var. rugosa-(Figure 44).
Solidago gigantea Aiton $\times$ S. sempervirens Linnaeus subsp. sempervirens-(Figure 44).
Soldago juncea Aiton $\times$ S. nemoralls Aiton subsp. nemoralis-(Figure 44).

Solidago juncea Aiton $\times$ S. sempervirens Linnaeus subsp. sempervirens-(Figure 44).
Solidago latissimffolia Miller $\times$ S. rugosa Miller var. sphagnophila C. Graves-(Figure 44).
Soltdago lewcarpa de Candolle $\times$ S. smplex Kunth var. monticola (Porter) G. S. Ringius-(Figure 45).

Solidago macrophylla Banks ex Pursh $\times$ S. mugosa Miller var. rugosa-(Figure 45).
Solidago nemoralls Aiton subsp. nemoralis $\times S$. sempervirens Linnaeus subsp. sempervirens(Figure 45).

Solidago nemoralis Aiton subsp. nemoralis $\times$ S. specios $a$ Nuttall var. speciosa-(Figure 45).
Solidago odora Aiton subsp. odora $\times$ S. rugosa Miller var. rugosa (Figure 45).
Solidago rugosa Miller var. rugosa $\times$ S. ulmifolia Muhlenberg ex Willdenow var. ulmifolia-(Figure 45).

SONCHUS ARVENSIS Linnaeus subsp. ARVENSIS Corn Sow-thistle (Figure 45). $2 n=54$. Waste places, fields, roadsides, shores, usually wet sites. From Eurasia, northern Africa.

SONCHUS ARVENSIS Linnaeus subsp. ULIGINOSUS (M. Bieberstein) Nyman-(Figure 45). $2 n=$ 36. Waste places, fields, roadsides, shores, usually wet sites. From Eurasia. [S. ARVENSIS var. GLABRESCENS Günther, Grabowski, \& Wimmer; S. ULIGINOSUS M. Bieberstein]

SONCHUS ASPER (Linnaeus) Hill-Prickly Sow-thistle (Figure 45). $2 n=18$. Waste places, roadsides, sea shores. From Eurasia, northern Africa.

SONCHUS OLERACEUS Linnaeus-Common Sow-thistle (Figure 46). $2 n=32,36$. Waste places, fields, roadsides, sea shores. From Eurasia, northern Africa.

Symphyotrichum anticostense (Fernald) G.L. Nesom-(Figure 46). $2 n=80$. Gravelly, river shores. [Aster anticostensis Fernald]

Symphyotrichum boreale (Torrey \& A. Gray) Á. Löve \& D. Löve-Northern Bog Aster (Figure 46). $2 n=16,32,48,64$. Bogs, swamps, shores, mostly in calcareous areas. [Aster borealis (Torrey \& A. Gray) Provancher; A. junciformis Rydberg]

SYMPHYOTRICHUM CILIATUM (Ledebour) G.L. Nesom-Rayless Aster (Figure 46). $2 n=14$. Roadsides, waste places. From farther west. [ASTER BRACHYACTIS S. F. Blake]

Symphyotrichum cillolatum (Lindley) Á. Löve \& D. Löve-(Figure 46). $2 n=48$. Dry woods, thickets, shores, clearings, roadsides. [Aster cillolatus Lindley]

Symphyotrichum concolor (Linnaeus) G.L. Nesom var. concolor-Eastern Silvery Aster (Figure 46). $2 n=8$. Dry, open, sandy woods, fields and barrens, roadsides. [Aster concolor Linnaeus]

Symphyotrichum cordifolium (Linnaeus) G.L. Nesom-Common Blue Wood Aster (Figure 46). 2n= 16, 32. Thickets, open woods, clearings, fields, roadsides, often in moist soil. [Aster cordifolus Linnaeus var. cordifolus; A. cordifolius var. furbishiae Fernald; A. cordifolius var. polycephalus Porter; $A$. cordifolus var. racemiflorus Fernald; A. lowrteanus Porter var.
lowrieanus; A. lowrieamus var. lanceolatus (Porter) Porter; A. sagittifolius Wedemeyer ex Willdenow]

Symphyotrichum dumosum (Linnaeus) G.L. Nesom-Rice-button Aster (Figure 46). $2 n=16,32$. Dry, open woods, fields, thickets, roadsides. [Aster dumosus Linnaeus var. dumosus; A. dumosus var. cordifolus (Michaux) Torrey \& A. Gray; A. dumosus var. strictior Torrey \& A. Gray; A. dumosus var. subulifolius Torrey \& A. Gray]

Symphyotrichum ericoides (Linnaeus) G.L. Nesom var. ericordes-White Heath Aster (Figure 46). $2 n$ $=10,20$. Dry fields and clearings, dry, open woods, waste places, roadsides, sometimes in moist, open, sandy sites. [Aster ericoides Linnaeus]

SYMPHYOTRICHUM FRONDOSUM (Nuttall) G.L. Nesom-(Figure 47). $2 n=14$. Wool waste. From farther west. [Aster frondosus (Nuttall) Torrey \& A. Gray]

Symphyotrichum laeve (Linnaeus) Á. Löve \& D. Löve var. laeve-Smooth Aster (Figure 47). $2 n=$ 48. Dry fields, open woods, roadsides, dry, open, sites. [Aster laevis Linnaeus]

Symphyotrichum lanceolatum (Willdenow) G.L. Nesom var. lanceolatum - Panicled Aster (Figure 47). $2 n=32,40,48,56,64$. Meadows, wet thickets, shores. [Aster lanceolatus Willdenow var. lanceolatus; A. lanceolatus var. stmplex (Willdenow) A. G. Jones; A. stmplex Willdenow var. simplex; A. simplex var. ramosissimus (Torrey \& A. Gray) Cronquist]

Symphyotrichum lanceolatum (Willdenow) G.L. Nesom var. interior (Wiegand) G. L. Nesom(Figure 47). $2 n=48,64$. Gravelly or rocky shores, often calcareous. [Aster lanceolatus Willdenow var. interior Semple \& Chmielewski; A. simplex Willdenow var. interior (Wiegand) Cronquist]

Symphyotrichum lanceolatum (Willdenow) G.L. Nesom var. lattfolum (Semple \& Chmielewski) G.L. Nesom-(Figure 47). $2 n=64$. Thickets, woods margins, shores.

Symphyotrıchum laterıflorum (Linnaeus) A. Löve \& D. Löve—Calico Aster (Figure 47). $2 n=16,32$, 48. Woods, swamps, fields, thickets, clearings, shores, meadows, moist ledges, roadsides. [Aster lateriflorus (Linnaeus) Britton; A. lateriflorus var. angustifolius Wiegand; A. laterfflorus var. pendulus (Aiton) E. S. Burgess; A. lateriflorus var. tenupes Wiegand; A. vimineus Lamarck]

Symphyotrichum novae-anglae (Linnaeus) G.L. Nesom-New England Aster (Figure 47). $2 n=10$. Fields, damp thickets, shores, meadows, clearings, open woods, roadsides. [Aster novaeangliae Linnaeus]

Symphyotrichum novi-belgii (Linnaeus) G.L. Nesom var. novi-belgii-New York Aster (Figure 47). $2 n=48$. Swamps, salt marshes, damp thickets, shores, sea beaches, moist woods, meadows, roadsides. [Aster folnaceus Lindley ex de Candolle - misapplied; A. foltaceus var. arcuans Fernald; A. johannensıs Fernald var. johannensts; A. longifolus Lamarck; A. novi-belgii Linnaeus var. novi-belgil]

Symphyotrichum novr-belgit (Linnaeus) G.L. Nesom var. elodes (Torrey \& A. Gray) G.L. Nesom(Figure 47). $2 n=48$. Salt marshes, pine barrens. [Aster novi-belgil Linnaeus var. elodes (Torrey \& A. Gray) A. Gray]

Symphyotrichum novi-belgii (Linnaeus) G.L. Nesom var. villicaule (A. Gray) Labrecque \& Brouillet-(Figure 48). $2 n=48$. Gravelly or rocky, river shores, ledges. [Aster johannensis Fernald var. villicaults (A. Gray) Fernald]

Symphyotrichum ontarions (Wiegand) G.L. Nesom var. ontarionis-(Figure 48). $2 n=32$. Thickets, meadows, alluvial woods and shores, often in calcareous soil. [Aster ontarionis Wiegand]

Symphyotrichum patens (Aiton) G.L. Nesom var. patens-Late Purple Aster (Figure 48). $2 n=10,20$. Dry fields, open woods, clearings and roadsides. [Aster patens Aiton var. patens]

Symphyotrichum pilosum (Willdenow) G.L. Nesom var. pilosum-Frost Aster (Figure 48). $2 n=32$, 40, 48. Dry fields, thickets, open woods, clearings and roadsides, often in sandy soil. [Aster pilosus Willdenow var. pilosus]

Symphyotrichum pilosum (Willdenow) G.L. Nesom var. pringlei (A. Gray) G.L. Nesom-(Figure 48). $2 n=48$. Rocky, gravelly or sandy soil, often calcareous. [Aster pilosus Willdenow var. demotus S. F. Blake; A. pllosus var. prongles S. F. Blake]

Symphyotrichum praealtum (Poiret) G.L. Nesom—Willow Aster (Figure 48). $2 n=32,48,64$. Low thickets and woods, meadows. [Aster praealtus Poiret var. praealtus; A. praealtus var. angustior Wiegand]

Symphyotrichum prenanthotdes (Muhlenberg ex Willdenow) G.L. Nesom - Zigzag Aster (Figure 48). $2 n=32$. Moist thickets and fields, rich woods, shores, roadsides. [Aster prenanthordes Muhlenberg $e x$ Willdenow]

Symphyotrichum puniceum (Linnaeus) Á. Löve \& D. Löve var. puniceum - Swamp Aster (Figure 48). $2 n=16,32$. Low thickets, woods, swamps, meadows, shores, ditches, roadsides. [S. firmum (Nees) G.L. Nesom; Aster puntceus Linnaeus var. puniceus; A. puntceus var. compactus Fernald; A. puniceus var. firmus (Nees) Torrey \& A. Gray; A. puniceus var. oligocephalus Fernald; A. puniceus var. perlongus Fernald]

Symphyotrichum racemosum (Elliott) G.L. Nesom-Small White Aster (Figure 48). $2 n=16$. Fields, meadows, shores, woods, clearings, roadsides. [Aster vimineus Lamarck - misapplied; $A$. vmineus var. subdumosus Wiegand]

Symphyotrichum subulatum (Michaux) G.L. Nesom var. subulatum - Annual Saltmarsh Aster (Figure 49). $2 n=10$. Salt marshes, salted highways. [Aster subulatus Michaux var. subulatus; $A$. subulatus var. euroauster Fernald \& Griscom]

Symphyotrichum tenuifolum (Linnaeus) G.L. Nesom var. tenuifolum-Perennial Saltmarsh Aster (Figure 49). $2 n=10$. Salt marshes, tidal shores. [Aster tenuffolius Linnaeus]

Symphyotrichum tradescantn (Linnaeus) G.L. Nesom—Shore Aster (Figure 49). 2n=16, 32. Rocky or gravelly, freshwater shores, waste places. [Aster tradescantu Linnaeus]

Symphyotrichum undulatum (Linnaeus) G.L. Nesom-(Figure 49). $2 n=16,32$. Dry fields and open, deciduous woods, clearings, fields, roadsides. [Aster undulatus Linnaeus; A. undulatus var. loriformis E. S. Burgess]

Symphyotrichum urophyllum (Lindley ex de Candolle) G.L. Nesom-(Figure 49). $2 n=16$. Dry open, woods, clearings and fields. [Aster sagittifolus Wedemeyer ex Willdenow - misapplied]

- Symphyotrichum hybrids-

Symphyotrichum $\times$ amethystmum (Nuttall) G.L. Nesom (pro spectes)-(Figure 49). [S. ericotdes (Linnaeus) G.L. Nesom var. ericordes $\times$ S. novae-angliae (Linnaeus) G.L. Nesom; Aster $\times$ amethystmus Nuttall (pro spectes)]

Symphyotrichum cllolatum (Lindley) Á. Löve \& D. Löve $\times$ S. prenanthoides (Muhlenberg ex Willdenow) G.L. Nesom - (Figure 49).

Symphyotrichum ciliolatum (Lindley) Á. Löve \& D. Löve $\times$ S. puniceum (Linnaeus) A. Löve \& D. Löve var. puniceum - (Figure 49).

Symphyotrichum cordifolium (Linnaeus) G.L. Nesom $\times$ S. ericordes (Linnaeus) G.L. Nesom var. ericoides-(Figure 49).

Symphyotrichum cordifolum (Linnaeus) G.L. Nesom $\times$ S. laterfflorum (Linnaeus) Á. Löve \& D. Löve (Figure 50).

Symphyotrichum cordifolumm (Linnaeus) G.L. Nesom $\times$ S. novi-belgil (Linnaeus) G.L. Nesom var. novi-belgil-(Figure 50).

Symphyotrichum cordifolnum (Linnaeus) G.L. Nesom $\times$ S. pllosum (Willdenow) G.L. Nesom var. pringlei (A. Gray) G.L. Nesom - (Figure 50).

Symphyotrichum cordlfolum (Linnaeus) G.L. Nesom $\times$ S. puntceum (Linnaeus) Á. Löve \& D. Löve var. puniceum-(Figure 50).

Symphyotrichum cordifolum (Linnaeus) G.L. Nesom $\times$ S. undulatum (Linnaeus) G.L. Nesom(Figure 50).

Symphyotrıchum dumosum (Linnaeus) G.L. Nesom $\times$ S. lateriflorum (Linnaeus) Á. Löve \& D. Löve-(Figure 50).

Symphyotrıchum dumosum (Linnaeus) G.L. Nesom $\times$ S. puntceum (Linnaeus) Á. Löve \& D. Löve var. puniceum-(Figure 50).

Symphyotrichum dumosum (Linnaeus) G.L. Nesom $\times$ S. racemosum (Elliott) G.L. Nesom-(Figure 50).

Symphyotrichum dumosum (Linnaeus) G.L. Nesom $\times S$. tradescantii (Linnaeus) G.L. Nesom(Figure 50).

Symphyotrichum ericotdes (Linnaeus) G.L. Nesom var. ericotdes $\times$ S. novi-belgit (Linnaeus) G.L. Nesom var. nov-belgil-(Figure 51).

Symphyotrichum ericoides (Linnaeus) G.L. Nesom var. ericoides $\times$ S. undulatum (Linnaeus) G.L. Nesom-(Figure 51).

Symphyotrichum laeve (Linnaeus) Á. Löve \& D. Löve var. laeve $\times$ S. lanceolatum (Willdenow) G.L. Nesom var. lanceolatum -(Figure 51).

Symphyotrichum laeve (Linnaeus) Á. Löve \& D. Löve var. laeve $\times$ S. praealtum (Poiret) G.L. Nesom-(Figure 51). [S. novi-belgii (Linnaeus) G.L. Nesom var. hitoreum (A. Gray) G.L. Nesom; Aster novi-belgit Linnaeus var. litoreus A. Gray; however, the parentage for this hybrid is in doubt]

Symphyotrıchum laeve (Linnaeus) Á. Löve \& D. Löve var. laeve $\times$ S. racemosum (Elliott) G.L. Nesom-(Figure 51).

Symphyotrichum laeve (Linnaeus) Á. Löve \& D. Löve var. laeve $\times$ S. undulatum (Linnaeus) G.L. Nesom-(Figure 51).

Symphyotrichum lanceolatum (Willdenow) G.L. Nesom var. tanceolatum $\times$ S. novae-angltae (Linnaeus) G.L. Nesom-(Figure 51).

Symphyotrichum lanceolatum (Willdenow) G.L. Nesom var. lanceolatum $\times$ S. novi-belgii (Linnaeus) G.L. Nesom var. nov-belgit-(Figure 51).

Symphyotrichum lanceolatum (Willdenow) G.L. Nesom var. lanceolatum $\times$ S. pilosum (Willdenow) G.L. Nesom var. pringler (A. Gray) G.L. Nesom-(Figure 51).

Symphyotrichum lanceolatum (Willdenow) G.L. Nesom var. lanceolatum $\times$ S. praealtum (Poiret) G.L. Nesom-(Figure 52).

Symphyotrichum lanceolatum (Willdenow) G.L. Nesom var. lanceolatum $\times$ S. puniceum (Linnaeus) Á. Löve \& D. Löve var. puniceum-(Figure 52).

Symphyotrichum lanceolatum (Willdenow) G.L. Nesom var. lanceolatum $\times$ S. tradescantil (Linnaeus) G.L. Nesom - (Figure 52).

Symphyotrichum lateriflorum (Linnaeus) Á. Löve \& D. Löve $\times$ S. novi-belgıt (Linnaeus) G.L. Nesom var. novi-belgil-(Figure 52).

Symphyotrichum lateriflorum (Linnaeus) Á. Löve \& D. Löve $\times$ S. puntceum (Linnaeus) Á. Löve \& D. Löve var. puniceum - (Figure 52).

Symphyotrichum laterfflorum (Linnaeus) Á. Löve \& D. Löve $\times$ S. racemosum (Elliott) G.L. Nesom(Figure 52).

Symphyotrichum lateriflorum (Linnaeus) Á. Löve \& D. Löve $\times$ S. undulatum (Linnaeus) G.L. Nesom-(Figure 52).

Symphyotrichum nov-belgu (Linnaeus) G.L. Nesom var. novi-belgu $\times$ S. pilosum (Willdenow) G.L. Nesom var. pringlei (A. Gray) G.L. Nesom-(Figure 52).

Symphyotrichum novi-belgu (Linnaeus) G.L. Nesom var. novi-belgil $\times$ S. praealtum (Poiret) G.L. Nesom-(Figure 52).

Symphyotrichum novi-belgil (Linnaeus) G.L. Nesom var. novi-belgul $\times$ S. prenanthoides (Muhlenberg ex Willdenow) G.L. Nesom - (Figure 53).

Symphyotrichum nov-belgut (Linnaeus) G.L. Nesom var. novi-belgu $\times$ S. puntceum (Linnaeus) Á. Löve \& D. Löve var. puniceum-(Figure 53).

Symphyotrichum pilosum (Willdenow) G.L. Nesom var. pilosum $\times$ S. undulatum (Linnaeus) G.L. Nesom-(Figure 53).

Symphyotrichum $\times$ tardiflorum (Linnaeus) Greuter, Aghababian \& Wagenitz-(Figure 53). [S. cordifoltum (Linnaeus) G.L. Nesom $\times$ S. puntceum (Linnaeus) A. Löve \& D. Löve var. puniceum; Aster tardiflorus Linnaeus]

TAGETES ERECTA Linnaeus-African Marigold (Figure 53). $2 n=24,48$. Waste places. From Mexico, Central and South America. [T. PATULA Linnaeus; T. SIGNATA Bartling; $T$. TENUIF OLIA Cavanilles]

TAGETES MINUTA Linnaeus-Southern Marigold (Figure 53). $2 n=48$. Waste places, fields. From South America.

TANACETUM BALSAMITA Linnaeus-Costmary (Figure 53). $2 n=54$. Roadsides. From Asia. [CHRYSANTHEMUM BALSAMITA (Linnaeus) Baillon]

Tanacetum brpinnatum (Linnaeus) Schultz-Bipontinus-(Figure 53). $2 n=18,54$. Gravelly or sandy riverbanks. [T. huronense Nuttall var. huronense; $T$. huronense Nuttall var. johannense Fernald]

TANACETUM PARTHENIUM (Linnaeus) Schultz-Bipontinus-Feverfew (Figure 53). $2 n=18$. Roadsides, waste places. From Europe. [CHRYSANTHEMUM PARTHENIUM (Linnaeus) Bernhardi]

TANACETUM VULGARE Linnaeus-Common Tansy (Figure 54). $2 n=18$. Roadsides, field borders, waste places. From Eurasia.

TARAXACUM ERYTHROSPERMUM Andrzejowski ex Besser-Red-seeded Dandelion (Figure 54). $2 n=16,24,32$ (Europe). Dry fields, woods, ledges, roadsides, and waste places. From Eurasia. [T. LAEVIGATUM (Willdenow) de Candolle - misapplied]

Taraxacum latılobum de Candolle (Figure 54). $2 n=$ ? Rich slopes and talus, often calcareous.
TARAXACUM OFFICINALE F.H. Wiggers-Common Dandelion (Figure 54). $2 n=16,24,26,32$, 40. Fields, meadows, roadsides, waste places. From Europe.

TARAXACUM PALUSTRE (Lyons) Symons-(Figure 54). $2 n=24,32,40$ (European complex). Wet ditches, roadsides, fields and waste places. From Europe. [T. OFFICINALE F. H. Wiggers var. PALUSTRE Blytt - misapplied]

THYMOPHYLLA TENUILOBA (de Candolle) Small var. TENUILOBA—Dahlberg Daisy (Figure 54). $2 n=16,24,32,40$. From Texas, Mexico. [DYSSODIA TENUILOBA (de Candolle) B. L. Robinson]

TRAGOPOGON DUBIUS Scopoli-Yellow Salsify (Figure 54). $2 n=12$. Fields, roadsides, waste places. From Eurasia. [T. MAJOR Jacquin]

TRAGOPOGON PORRIFOLIUS Linnaeus-Salsify (Figure 54). $2 n=12$. Fields, roadsides. From Eurasia, northern Africa.

TRAGOPOGON PRATENSIS Linnaeus-Goat's-beard (Figure 54). $2 n=12$. Fields, meadows, roadsides. From Eurasia.

TRIPLEUROSPERMUM INODORUM (Linnaeus) Schultz-Bipontinus-Scentless Chamomile (Figure 55). $2 n=18,36$. Fields, roadsides, waste places. From Eurasia. [T. MARITIMUM (Linnaeus) W. D. J. Koch subsp. INODORUM (Linnaeus) Applequist; MATRICARIA MARITIMA Linnaeus var. AGRESTIS (Knaf) Wilmott; M. PERFORATA Mérat]

TRIPLEUROSPERMUM MARITIMUM (Linnaeus) W.D. J. Koch subsp. MARITIMUM-Sea Mayweed (Figure 55). $2 n=18,36$. Waste places and roadsides near the coast. From Europe. [MATRICARIA MARITIMA Linnaeus var. MARITIMA]

TUSSILAGO FARFARA Linnaeus-Coltsfoot (Figure 55). $2 n=60$. Brooksides, moist banks, railroads, waste places, roadsides, trail edges. From Eurasia, northern Africa.

Verbesina alternifolia (Linnaeus) Britton ex Kearney-Wingstem (Figure 55). $2 n=68$. Woods borders, thickets, along streams, in rich soil. [Actinomerts alternffola (Linnaeus) de Candolle]

VERBESINA ENCELIOIDES (Cavanilles) Bentham \& Hooker f. ex A. Gray-Golden Crownbeard (Figure 55). $2 n=34$. Wool waste. From farther west. [V. ENCELIOIDES var. EXAURICULATA B. L. Robinson \& Greenman]

VERNONIA FASCICULATA Michaux-Western Ironweed (Figure 55). $2 n=34$. Sandy fields, wool waste. From farther west.

VERNONLA MISSURICA Rafinesque-(Figure 55). $2 n=34$. Sandy fields, wool waste. From farther south and west.

Vernonia noveboracensis (Linnaeus) Michaux-(Figure 55). $2 n=34$. Meadows, marshes, along streams, roadside ditches, swamps, wet pastures.

- Vernonia hybrid-

VERNONIA $\times$ PERALTA Daniels-(Figure 55). [V. BALDWINII Torrey $\times$ V.MISSURICA Rafinesque]

XANTHISMA GRACILE (Nuttall) D.R. Morgan \& R.L. Hartman-(Figure 56). $2 n=4,6,8$. Wool waste. From farther west. [HAPLOPAPPUS GRACILIS (Nuttall) A. Gray]

XANTHIUM SPINOSUM Linnaeus - Spiny Cocklebur (Figure 56). $2 n=36$. Waste places. Possibly from South America. [X. AMBROSIOIDES Hooker \& Arnott]

Xanthnum strumarium Linnaeus-Common Cocklebur (Figure 56). $2 n=36$. Shores, salt marshes, waste places. [X. chinense Miller; $X$. curvescens Millspaugh \& Sherff, X. echinatum Murray; $X$. italicum Moretti; $X$. oligacanthum Piper; $X$. orientale Linnaeus; $X$. oviforme Wallroth; $X$. pensylvanicum Wallroth; $X$. spectosum Kearney; $X$. wootonu Cockerell]

XEROCHRYSUM BRACTEATUM (Ventenat) Tzvelev—Golden Everlasting (Figure 56). $2 n=24,26$, 28. Waste places. From Australia. [HELICHRYSUM BRACTEATUM (Ventenat) Andrews]

## ZINNIA ELEGANS Jacquin-Garden Zinnia (Figure 56). $2 n=24$. Waste places. From Mexico. [Z. IIOLACEA Cavanilles]

## ACKNOWLEDGMENTS

We thank the curators and directors of the herbaria of the New England Botanical Club, the Harvard University Herbaria, the University of Massachusetts, and the University of Vermont for allowing access to their collections. For the University of Maine and University of Connecticut herbaria we used their exceptional online databases of specimens. We are grateful also to Karen Searcy and Roberta Lombardi for facilitating access to the herbarium and to the notebooks of Harry E. Ahles at the University of Massachusetts (Amherst) and to Dr. Searcy for kindly answering requests for information after our visit. James Hinds generously checked information on voucher specimens at the University of Maine (Orono). The following persons also checked certain records for us at their respective institutions: Janet Sullivan, Emily Wood, and Elizabeth Allen. In particular we thank the following individuals for repeated checking of specimens at their institution: Robert Capers of the University of Connecticut, Craig D. Layne of Dartmouth College, and Alina FreireFierro of The Academy of Natural Sciences of Philadelphia. James Morefield kindly provided information that aided in locating voucher specimens. John T. Kartesz and Misako Nishino generously provided the latest draft version of the Floristic Synthesis of North America, which was consulted for reports of occurrence and the sources of such reports. We thank Kanchi Gandhi for nomenclatural advice.

## LITERATURE CITED

(general references listed in our previous articles are not repeated here)
Angelo, R. 1994. A computer method for producing dot distribution maps. Rhodora 96: 190-194.
Angelo, R. and D.E. Boufford. 1996. Atlas of the flora of New England: Pteridophytes and gymnosperms. Rhodora 98: 1-79.
Angelo, R. and D.E. Boufford. 1998. Atlas of the flora of New England: Poaceae. Rhodora 100: 101-233.
Angelo, R. and D.E. Boufford. 2000. Atlas of the flora of New England: Monocots except Poaceae and Cyperaceae. Rhodora 102: 1-119.
Angelo, R. and D.E. Boufford. 2007. Atlas of the flora of New England: Cyperaceae. Rhodora 109: 237-360.
Angelo, R. and D.E. Boufford. 2010. Atlas of the flora of New England: Magnoliidae \& Hamamelidae. Rhodora 112: 244-326.
Angelo, R. and D.E. Boufford. 2011a. Atlas of the flora of New England: Salicaceae to Brassicaceae. Phytoneuron 2011-12: 1-12 + figs. 1-53 (maps).
Angelo, R. and D.E. Boufford. 2011b. Atlas of the flora of New England: Paeoniaceae to Ericaceae. Phytoneuron 2011-53: 1-13 + figs. 1-18 (maps).
Angelo, R. and D.E. Boufford. 2011c. Atlas of the flora of New England: Pteridophytes and Gymnosperms: Introduction. /http//neatlas org/ntro-Pterid\&Gym html>
Angelo, R. and D.E. Boufford. 2012. Atlas of the flora of New England: Caryophyllidae. Rhodora 113: 419-513.
Fernald, M.L. 1950. Gray's Manual of Botany (ed. 8). American Book Company, New York.
Flora of North America Editorial Committee (eds.). 2006a. Flora of North America North of Mexico. Volume 19, Magnoliophyta: Asteridae, part 6: Asteraceae, part 1. Oxford Univ. Press, New York and Oxford, U.K.
Flora of North America Editorial Committee (eds.). 2006b. Flora of North America North of Mexico. Volume 20, Magnoliophyta: Asteridae, part 7: Asteraceae, part 2. Oxford Univ. Press, New York and Oxford, U.K.

Flora of North America Editorial Committee (eds.). 2006c. Flora of North America North of Mexico. Volume 21, Magnoliophyta: Asteridae, part 8: Asteraceae, part 3. Oxford Univ. Press, New York and Oxford, U.K.
Gleason, H.A. 1952. The New Britton and Brown Illustrated Flora of the Northeastern United States and Adjacent Canada. The New York Botanical Garden, Bronx, New York.
Gleason, H.A. and A. Cronquist. 1991. Manual of Vascular Plants of Northeastern United States and Adjacent Canada 2nd ed. The New York Botanical Garden, Bronx, New York.
Goldblatt, P. and D.E. Johnson (eds.). 1979-. Index to Plant Chromosome Numbers (IPCN). Missouri Botanical Garden, St. Louis. <http//www tropicos org/Project/IPCN>
Haines, A. 2011. Flora Novae Angliae. Yale Univ. Press, New Haven, Connecticut, and London.
Seymour, F.C. 1982. The Flora of New England, 2nd ed. Phytologia Mem. V. Plainfield, New Jersey.
Stevens, P.F. 2001 onwards. Angiosperm Phylogeny Website, version 9, June 2008 [and more or less continuously updated since]. <http//www mobot org/MOBOT/research/APweb/>


Figure 1. Key map for counties of the New England states (and Mt Desert Island, Maine, Block Island, Rhode Island, arbitrary divisions of larger Maine counties and of Coos County, New Hampshire)


ACHILLEA FILIPENDULINA


Ageratha altssima var altıssima


AGERATUMCONYZOIDES



Figure 2 Distribution maps


Figure 3 Distribution maps


Figure 4 Distribution maps


Figure 5 Distribution maps


Figure 6 Distribution maps


ASTER TATARICUS


BIDENS ARISTOSA

Budens cernua



Baccharrs halmyfolia.


Bidens discotdea

Figure 7 Distribution maps


Figure 8 Distribution maps


Figure 9 Distribution maps


Figure 10 Distribution maps


CENTAUREA JACEA

CENTAUREA NIGRA



CENTAUREA MELITENSIS


CENTAUREA MONTANA


CENTAUREA NGGRESCENS


CENTAUREA SCABIOSA


CENTAUREA SOLSTITLALIS


CENTA UREA STOEBE
subsp MICRANTHOS


CENTAUREA $\times$ MONCKTONII

Figure 11 Distribution maps


Figure 12 Distribution maps


Figure 13 Distribution maps


COREOPSIS GRANDIFLORA


COREOPSIS LANCEOLATA


COREOPSIS TINCTORIA


COREOPSIS TRIPTERIS


COREOPSIS VERTICILLATA


Figure 14 Distribution maps


Figure 15 Distribution maps


CREPIS TECTORUM


CREPIS VESICARLA


DITTRICHIA GRAVEOLENS


CYCLACHAENA XANTHIIFOLLA


DEINANDRA FASCICULATA



Doellingera umbellata var umbellata


DORONICUM PARDALLANCHES


DYSSODIA PAPPOSA

Figure 16 Distribution maps


ECHINACEA PALLIDA


ECHINACEA PURPUREA


ECHINOPS SPHAEROCEPHALUS


ECLIPTA PROSTRATA


Erigeron acris var kontschatscus


Engeron annuus


ERIGERONGLABELLUS
yar PUBESCENS

Figure 17 Distribution maps


Engeron hyssopifolus



Ergeron pulchellus var pulchellus


Engeron phuladelphucus var phuladelphucus



Engeron philadelphecus var provanchert


Ergeron strigosus
var septentronalls


Eupatonum hyssopyfolum var laciniatum


Eupatortum rotwilfoltum var rotund folum


Eupatortum perfoliatum


Eupatonum rotwhdyfolt um var ovatum


EUPATORIUM SEROTINUM


Eupatonum sesstlyolum


Eupatornm $X$ novae-anghae


Figure 19 Distribution maps


Eurybıa macropiblla

Eurybia spectabilis


Ewhamia gramunfolia



Euybia radula



Eutrochum dubum


Buryba schreben


Eutrochum fistulosum

Figure 20 Distribution maps


Figure 21 Distribution maps


GAMOCHAETA PENSYLVANICA


Gamochaeta purpurea


GRNDELLIA LANCEOLATA


GRINDELLA SQUARROSA


GUIZOTLA ABYSSINICA

Figure 22 Distribution maps


Hasteola suaveolens

HELENIUM FLEXUOSUM



HELENIUMAMARUM
var AMARUM

HELLANTHUS ANNUUS



Helentum autumnale


HELIANTHUS DEBILIS subsp CUCUMERIFOLIUS


Hellanthus decapetalus


Heluanthus divarncatus


Figure 23 Distribution maps


HELIANTHUS GROSSE SERRATUS


HELLANTHUS MAXIMILIANI


HELLANTHUS MOLLIS


HELIANTHUS PAUCIFLORUS subsp PAUCIFLORUS


HELIANTHUS PAUCIFLORUS
subsp SUBRHOMBOIDEUS


HELIANTHUS TUBEROSUS


HELIANTHUS PETIOLARIS
subsp PETIOLARIS


Helaanthus strumosus


Figure 24 Distribution maps


HELIANTHUS $\times$ DIVARISERRATUS


HELLANTHUS $\times$ DORONICOIDES


HELLANTHUS $\times$ INTERMEDIUS


HELIANTHUS $\times$ KELLERMANNII


Heltanthus $\times$ LAETIFLORUS


HELIANTHUS X LUXURLANS


HELIOMERIS MULTIFLORA var MULTIFLORA


HELIOPSIS HE LIANTHOIDES var HELIANTHOIDES


HELIOPSIS HELLANTHOIDES
var SCABRA

Figure 25 Distribution maps


HE LMINTHOTHECA ECHIOIDES



HIERACIUMAURANTIACUM


HIERACIUM CAESPITOSUM


HIERACIUM FLAGELLARE


Hieractum gronovi


HIERACIUM LACHENALII


Figure 26 Distribution maps


HIERACIUM MURORUM

HIERACIUM PILOSELLOIDES



Heracrum panculatum

HIERACIUM PRAEALTUM




Heracrum robrnsonu


HIERACIUM SABAUDUM


Hieractum scabrum


Heracium umbellatum

Figure 27 Distribution maps


Heracum venosum


HIERACIUM $\times$ FLORIB UNDUM


HYMENOXYS ODORATA


HYPOCHAERIS GLABRA


Figure 28 Distribution maps


INULA HELENIUM


Iva.frutescens


Ionacts Inarnfolea

JACOBAEA VULGARIS



NA ANNUA


Lactuca biennus


Kigga biflora


Kigua virgmica


Lactuca canadensis

Figure 29 Distribution maps


Figure 30 Distribution maps


Figure 31 Distribution maps



MATRICARLA DISCOIDEA


MICROSERIS DOUGLASII subsp DOUGLASII


MULGEDIUM PULCHELLUM


Figure 32 Distribution maps


Oclemena acummata


Oclemena nemorals


Oclemena $\times$ blaket


Omalotheca supina


Figure 33 Distribution maps


Packera schwemuzzana


PALAFOXIA TEXANA


PARTHENIUM HYSTEROPHORUS


PARTHENIUM INTEGRIFOLIUM



PICRIS HIERACIOIDES


Pityopszs falcata


PLUCHEA CAMPHORATA

Figure 34 Distribution maps


Figure 35 Distribution maps


Psendognaphalum macown




RATIBIDA COLUMNIFERA


RATIBIDA PINNATA


RUDBECKIA FULGIDA vat SPECIOSA


Figure 36 Distribution maps


Figure 37 Distribution maps


Sericocarpus asterordes


SILPHIUM PERFOLIATUM var PERFOLIATUM


Sertcocarpus ingfoltus


Figure 38 Distribution maps


Figure 39 Distribution maps


Solidago macrophylla


Sohdago pubernia subsp puberula



Solidago multuradiata


-     - 




Figure 40 Distribution maps


Figure 41 Distribution maps


Figure 42 Distribution maps


Figure 43 Distribution maps


Soludago conadensts var canadensts XS gigantea



Soldago canadensis var canadensts XS juncea


Soltdago canadensis var canadensis XS rugosa var rugosa



Solidago juncea
XS nemoralts subsp nemorals


Solidago juncea $X S$ sempervrens subsp sempervrens


Soludago latussmmfolua XS rugosa var sphagnophula

Figure 44 Distribution maps


Figure 45 Distribution maps


SONCHUS OLERACEUS

SYMPHYOTRICHUM CILLATUM



Symphyotrichum anticostense


Symphyonnchum boreale


Symphyotrzchum cilolatum



Symphyotrichum cordfolum


Symphyotrachum dumosum


Symphyotrichum ericoides
var encoides

Figure 46 Distribution maps


SYMPHYOTRICHUM FRONDOSUM


Symphyotnchum lanceolatum var lanceolathm


Symphyotrichum lanceolatum
var interior

Symphyotnchum novae-anghae



Symphyotrichum lanceolatum var latifolum


Symphyotrichum latertforum


Symphyotrachum nov-belgn var nov-belgu


Symphyotnchum nov-belgu var elodes

Figure 47 Distribution maps


Symphyotrichum nov-belgu vat vilicaule

Symphyotrchum plosum
var plosum


Symphyotnchum prenanthoides



Symphyotrichum ontarionss var ontarions


Symphyotrchum patens
var patens


Symplyotrchum plosum
var pringler


Symphyotrzchum praealtum


Figure 48 Distribution maps


Symphyotrchum subulatum vat subulatum


Symphyotnchum undulatum


Symphyotrachum tenufolsum var temufolium


Symphyotrchum tradescants


Symphyotrchum wophyllum


Symphyotrchum $\times$ amethystinum


Symphyotrzchum cilolatum $X S$ prenanthordes


Symphyotrzchum cilsolatum $X S$ puniceum var puniceum


Symphyotnchum cordyfolum $X S$ encordes var ericoudes

Figure 49 Distribution maps


Symphyotrichum cordifolum XS Iaterfforwn


Symphyotnchum cordfolum XS now-belgii var now-belgii


Symphyotrchum cordfolum XS piosum var pringlei


Symphyotrchum cordifolum $X S$ puniceum var puniceum


Symphyotnchum cordfolium XS midulatum


Symphyotrchum dumosum
$X S$ puniceum var puniceum


Figure 50 Distribution maps


Symphyotrichum encordes var encordes $X S$ nov-belgn var nov-belgn


Symphyotnchum ertcordes var encordes XS midulatum


Symphyotrichum laeve var laeve XS lanceolatum var lanceolatum


Smphyotrichum laeve var laeve
$X S$ praealtum


Symphyotrachum laeve var laeve XS racemosum


Symphyotrichum laeve var laeve XS modulatum


Symphyotnchum lanceolatum var lanceolatum Symphyotrichum lanceolatum var lanceolatum Symphyotrichum lanceolatum var lanceolatum $X S$ novae-anglare XS nov-belgu var nov-belgn

XS pilosum var pronglet

Figure 51 Distribution maps


Symphyotrchum lanceolatum var lanceolatum Symphyotrichum lanceolatum var lanceolatum Symphyotrichum lanceolatum var lanceolatum XS prazaltum $X S$ puniceum var puniceum $\mathrm{X} S$ tradescantu


Symphyotnchum lateryflorum
$X S$ nov-belgr var nov-belgn


Symphyotrchum latenflorum
$\times S$ puniceum var puniceum



Symphyotnchum novi-belgn var novi-belgn
$\times S$ praealtum
XS praealtum

Symphyotnchum nov-belgu var novi-belgu
XS pilosum var pilosum

Figure 52 Distribution maps


Symphyotrichum nov-belgu var nov-belga $X S$ prenanthordes

Symphyotrichum X tardiflorum



Symphyotnchum nov-belgu var novi-belgu $X S$ puniceum var puniceum


Symphyotrichum pilosum var pulosum XS undulatum


TAGETES ERECTA


TANACETUM BALSAMTA


Figure 53 Distribution maps


TANACETUM VULGARE


TARAXACUM OFFICINALE

TRAGOPOGON DUBIUS



TARAXACUM ER YTHROSPERMUM


TARAXACUM PALUSTRE


THYMOPHYLLA TENULLOBA
var TENUILOBA


TRAGOPOGON PORRIFOLIUS


TRAGOPOGON PRATENSIS

Figure 54 Distribution maps


TRIPLEUROSPERMUM INODORUM


TRIPLEUROSPERMUMM MARITIMUM
SUbSp MARITIMUM


TUSSILAGO FARFARA


Verbesma altermfolua


VERBESINA ENCELIOIDES


VERNONIA FASCICULATA


VERNONLA MISSURICA


Vemonaa noveboracensis


VERNONLA $\times$ PERALTA

Figure 55 Distribution maps


XANTHISMA GRACILE


XANTHIUM SPINOSUM


Xanthrum strumapitm


XEROCHRYSUM BRACTEATUM


Figure 56 Distribution maps

# REDUCTION OF DIPLYCOSIA INDICA (2009) TO GAULTHERIA AKAENSIS (2006) (ERICACEAE) 

Subhasis Panda<br>Taxonomy \& Biosystematics Laboratory, Post-Graduate Department of Botany<br>Darjeeling Government College, Darjeeling-734101 INDIA<br>bgc panda@gmail com<br>James L. Reveal<br>L. H. Bailey Hortorium, Department of Plant Biology Cornell University, Thaca, New York 14853-4301 USA<br>jlr326@cornell edu<br>Munivenkatappa Sanjappa<br>Former Director, Botanical Survey of India<br>Presently at Botanical Garden, University of Agricultural Sciences<br>GKVK, Bengaluru-560064 INDIA


#### Abstract

Diplycosia indica M.R. Debta \& H.J. Chowdhery is reduced to synonymy under Gaultheria akaensis Panda \& Sanjappa due to a misinterpretation of immature floral features of the type material used by Debta and Chowdhery to establish their new species.


KEY WORDS: nomenclature, synonymy, India, Singalelah National Park

Diplycosia indica was described by Debta and Chowdhery (2009) based on two specimens collected by M.R. Debta in the Singalelah National Park area of the Darjeeling Himalaya. During the course of recent field studies (mid-December 2011) at different locations in Singalelah National Park as part of post-revisionary work in Indian Ericaceae, specimens of a species of Goultherta L. were collected near Megma, Megma-Tonglu road and in the Kainyakata-Kalapokhri area on rocky slopes near adjacent road sides. The Gaultheria was identified as G akaensis Panda \& Sanjappa (2006), a critically endangered species then known only from Aka Hill in the Arunachal Himalaya. This expression of $G$ akaensts from the Singalelah National Park then proved to be identical to the type of D. indica, which also was collected on hilly slopes in the Kainyakata-Kalapokhri area.

Surprisingly, during the consultation of the type specimens of Diplycosta indica at CAL and BSD, it was noted that the validating description and associated line drawing published by Debta and Chowdhery did not match features of the type specimens. Observations were made on different populations of Diplycosta indica/Gaulthera akaensis flowering in discontinuous patches from Megma to Tonglu and from Kainyakata to Kalapokhri, although Debta and Chowdhery (p. 149) stated that "the new species could not be traced from anywhere inside the Singalila [=Singalelah] National Park except for a small population." Here we provide a comparison of $G$ akaensts from two locations with the two specimens cited when $D$. indica was established to demonstrate that only a single species is involved (Table 1).

## Taxonomic treatment

Gaultheria akaensis Panda \& Sanjappa, Edinburgh J. Bot. 63: 15-20. 2006. Type: INDIA. Arunachal Pradesh, Aka Hills, West Kameng district, 3 km from Nechephu, 27 km towards Tenga, left bank of the bridge, $1800 \mathrm{~m}, 25$ Dec 2002, S. Panda 30824 (holotype: CAL!; isotype: CAL!). Fig. 1.
Diplycosia indica M. R. Debta \& H. J. Chowdhery, J. Bot. Res. Inst. Texas 3: 147. 2009. Type: INDIA. West Bengal, Darjeeling, Singalila [=Singalelah] National Park, Kainyakata to Kalapokhri, ca. 2950 m, 2 Jun 2006, M.R.Debta 40813 (holotype: CAL!; isotype: BSD!). Fig. 2.

Distribution. Endemic to the eastern Himalaya of India (Darjeeling in West Bengal and Arunachal Pradesh).

Habitat. This species is extremely rare and threatened in subtropical-temperate forests at an altitude of about $2250-3000 \mathrm{~m}$ associated with Gaultheria stapfiana Airy Shaw, various species of Rhododendron, and Quercus leucotrichophora A. Camus ex Bahadur. Fig. 3.

Flowering. June; December. Fruiting. July-August; January.
Specimens examined. INDIA. Eastern Himalaya-Arunachal Pradesh: Aka Hills, West Kameng district, 3 km from Nechephu, 27 km towards Tenga, left bank of the bridge, $1800 \mathrm{~m}, 25 \mathrm{Dec}$ 2002, S. Panda 30824 (CAL; type of Gaultherta akaensis). West Bengal: Darjeeling district, Singalelah National Park, 3 km from Chitray toward Megma, 2300 m , 11 Dec 2011, S. Panda 78 (CAL); 7 km from Chitray toward Megma, $2400 \mathrm{~m}, 11 \mathrm{Dec}$ 2011, S. Panda 79 (CAL); KainyakataKalapokhri road, 2900 m, 12 Dec 2011, S. Panda 80 (CAL); Kainyakata to Kalapokhri, 2950 m, 2 Jun 2006, M. R. Debta 40813 (BSD, CAL; type material of Diplycosia indica).

## Discussion

It is concluded that the description of Diplycosia mdica, as given by Debta and Chowdhery (2009), does not conform to their type materials due to their misinterpretation of the floral features associated with immature flower buds. They presented and described a mature flower which is not associated with their type material, although vegetatively their description conforms with collections made by the senior author (S. Panda 78, 79, 80; CAL) from Singalelah National Park, including the type location cited by Debta and Chowdhery.

Diplycosia indica does not possess any generic characters of Diplycosia Blume, namely a fasciculate inflorescence, awnless anther lobes, and anthers with tubules. Rather the type specimens of Debta and Chowdhery possess the generic characters of Gcultheria. Without doubt, their assumption that the anther lobes were awnless was due to the immature nature of the flowers, as an awnless condition is not unusual in immature flowers of some species of Goultheria. From Table 1, it is also concluded that while geographically isolated from G. akaensis, the Darjeeling populations of D. indica are nearly identical with the Arunachal population of $G$ akaensis except for leaf shape. The Arunachal population of G akaensis has slightly larger ovate to ovate-elliptic lamina and a reduced number of stamens (5-7) while the Darjeeling populations have a slightly shorter elliptic to ovateelliptic lamina and more stamens (10). As variation in leaf shape is to be expected, and differences in anther numbers are not uncommon in Gaultheria, we conclude that D. indica is a heterotypic synonym G akaensis.


Figure 1 Holotype of Gauitherna akaensis Panda \& Sanjappa (CAL) Arunachal population


Figure 2 Holotype of Diplycosia indica MR Debta \& H J Chowdhery (CAL) Darjeeling population


Figure 3 Live plants of Gaultheria akaensis Darjeeling populations A-B Habit (part) C-D Flowerng twigs (close up) E Dissected floral parts

Table 1. Comparison among Diplycosia indica, Gaultheria akaensis (Arunachal population) and $G$. akaensts (Darjeeling population) - see also Fig. 3.

| Unique characters | Diplycosia indica (M.R.Debta 40813 CAL \& BSD) Darjeeling population | Gaultheria akaensis (S. Panda 30824 CAL) Arunachal Population | $\begin{gathered} \text { G akaensis } \\ \text { (S. Panda } 78,79,80 \mathrm{CAL} \text { ) } \\ \text { Darjeeling populations } \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| Habit | Prostrate shrub up to 1.5 m high | Prostrate-decumbent matforming stout shrub up to 1 m high | Prostrate-decumbent matforming stout shrub up to 1 m high |
| Stem | Terete, laxly to densely brown hirsute or setose, reddish | Terete, densely brown hispidsetose, branchlets blood-red to dark pink | Terete, densely brown hispidsetose, branchlets blood-red to dark pink |
| Lamina | Subcoriaceous, elliptic to ovate-elliptic, $13-36 \times 7-18$ mm , mucronate at apex, serrulate margin with short cilia up to 1 mm long, | Papery to subcoriaceous; ovate to ovate-elliptic, (15) $25-42 \times 16-28 \mathrm{~mm}$, mucronate at apex, serrulate margin with long cilia up to 5 mm long, | Subcoriaceous, elliptic, ovateelliptic to oblong-elliptic, 12$46 \times 10-22 \mathrm{~mm}$, mucronate at apex, serrulate margin with short cilia up to 1 mm long, |
| petioles | $15-3 \mathrm{~mm}$ long, densely hispid-setulose, reddish | $2-3 \mathrm{~mm}$ long, setulose, reddish | 2-3 mm long, densely hispidsetulose, puk |
| Inflorescence | Congested and short racemes with fascicle of 3-6-flowered | Congested and short racemes with fascicle of 4-5flowered | Congested and short racemes with fascicle of 4-5-flowered |
| Flower | Not on type material but 6-8 mm long, urceolate with 1 basal bract and 2 opposite and apical bracteoles as per description | 8 mm long, urceolate with 1 basal bract and 2 opposite and median bracteoles | $6-8 \mathrm{~mm}$ long, urceolate with 1 basal bract and 2 opposite and apical bracteoles |
| Calyx lobes | 5-lobed, each lobe ovatetriangular, $3 \times 15 \mathrm{~mm}$, puberulous | 5-lobed, each lobe ovatetriangular, $2 \times 1 \mathrm{~mm}$, glabrous | 5-lobed, each lobe ovatetriangular, $3 \times 15 \mathrm{~mm}$, puberulous |
| Corolla | Not seen but as per description: 4 mm long (due to mature flower bud), urceolate, white, glabrous | 5 mm long, urceolate, light pink to white, glabrous | 5 mm long, urceolate, light pink to white with purple stripes at apex, glabrous |
| Stamens | Not seen but as per description. 10 , encircling round the pistrl, loosely epipetalous, 15 mm long (due to immaturity), each lobe of anthers without awns (due to immature flower buds), no apical tubule seen | 5 (7), encircling round the pistil, loosely epipetalous, 2 mm long, each lobe of anthers with 2 minute apical awns, no apical tubule seen | 10 , encircling round the pistil, free (not epipetalous), 25 mm long, each lobe of anthers with 2 minute apical awns, no apical tubule seen |
| Pistil | 2.5-3.5 mm long, ovary $1 \times 15$ mm , scarcely puberulous | 35 mm long, ovary $1 \times 1 \mathrm{~mm}$, densely puberulous | 35 mm long, ovary $1 \times 15$ mm , densely puberulous |
| Fruit | Not seen | Immature fruits loculicidally 5 -valved capsule, $3 \times 3 \mathrm{~mm}$ | Immature fruts loculicidally 5 -valved capsule, $3 \times 2 \mathrm{~mm}$ |

## ACKNOWLEDGMENTS

One of us (SP) is grateful to the Additional Director of the Central National Herbarium, Dr. P. Venu, for his permission to consult herbarium and type specimens at CAL, to Prof. Lalita Rai Ahmed, Principal of Darjeeling Govt. College for her kind permission for field survey, and to Dr. S. Mukhopadhyay, Assistant Prof. of Bengali, Darjeeling Govt. College, for company during the field trek to Singalelah National Park.

## LITERATURE CITED

Debta, M.R. and Chowdhery, H.J. 2009. Diplycosta indica (Ericaceae): A new species and a new generic record for India. J. Bot. Res. Inst. Texas 3: 147-150.
Panda, S. and M. Sanjappa. 2006. Two new species of Gaultheria (Ericaceae) from India. Edinburgh J. Bot. 63: 15-20.

# EXAMINATION OF HYBRIDIZATION RELATIONSHIPS BETWEEN SCHOENOPLECTUS HALLII AND S. SAXIMONTANUS (CYPERACEAE) USING ISSR MARKERS 

ElizabethJ. Esselman<br>Department of Biological Sciences<br>Southern Illinois University Edwardsville<br>Edwardsville, Illinois 62026 eesselm@siue edu<br>Tara A. Enders<br>Department of Biology<br>Washington University in St Louis<br>St Louis, Missouri 63130<br>Marian Smith<br>Department of Biological Sciences<br>Southern Illınois University Edwardsville Edwardsville, Illınoss 62026<br>Paul M. McKenzie<br>U S. Fish and Wildlife Service<br>101 Park Deville Dr Suite A<br>Columbia, Missouri 65203


#### Abstract

Schoenoplectus hallu, commonly known as Hall's bulrush, is an annual species restricted to wetland habitats that experience fluctuating water levels. This rare annual has suffered significant population losses over the last 25 years and the survival and conservation of the taxon is a concern wherever it has been reported. Although habitat loss has been the main reason for the decline of $S$. hallit, hybridization appears to be a new threat to the survival of the species. Putative hybridization has been reported between S. hallii and S. saximontanus where the two species co-occur in some sites in Oklahoma. We examined individuals from both species and putative hybrids from the Wichita Mountains Wildlife Refuge and adjacent areas on the Fort Sill Military Reservation in Oklahoma using three ISSR primers. We identified six species-specific markers in S. saximontanus and nine in S. hallii, all of which were present in the putative hybrids plants. Our results support previous studies suggesting that the two species are hybridizing in Oklahoma and that hybridization could occur in other areas where populations overlap.


KEY WORDS: Schoenoplectus, hybridization, ISSR markers, conservation

Schoenoplectus hallii (A. Gray) S.G. Sm and S. saximontanus (Fernald) Raynal are sedge species that were once thought to be allopatric, with $S$. hallt occurring primarily in the Midwest and eastern USA and $S$. saximontanus largely confined to the western portions of the USA(Gleason \& Cronquist 1991; Beatty et al. 2004). Both species belong to Schoenoplectus sect. Supini (Cherm.) J. Raynal. Schoenoplectus hallii has a global ranking of G2/G3 (imperiled/vulnerable) and is listed as "critically imperiled" in eight of the 11 states in which it occurs, "imperiled" in two, and "vulnerable" in one. Herbarium records indicate that it had been reported from Georgia and Massachusetts prior to 1981 (McKenzie et al. 2007), but those populations are likely extirpated (NatureServe 2011; McKenzie et al. 2007). Schoenoplectus saximontanus has a global ranking of G5 (secure) (NatureServe 2011), but it is listed as "critically imperiled" in British Columbia as well as in 7 of the 11 states where it occurs. It has been reported from two states in Mexico (Smith 2002). Throughout
its range, $S$. saximontanus is considered to be an uncommon species whose distribution is scattered (Smith 2002).

Schoenoplectus hallit and S. saxmontanus are obligate wetland species that have similar habitat requirements - most often sandy, rocky or gravelly soil, occasionally clay, around the margins of ponds, ditches and swales with fluctuating water levels, and a scarcity of other plants as competitors (Smith 2002; McKenzie et al. 2007). They most commonly complete their life cycle as annuals, but short-lived perennials have been reported from Texas (O`Kennon \& McLemore 2004). Dispersal within and among sites is thought to be facilitated by migrating waterfowl and a variety of large mammals, including elk, cattle, bison, and feral pigs (Magrath 2002; McKenzie et al. 2007).

Both species have 2-3 small basal leaves and tufted stems about 4-40 cm long with small, inconspicuous rhizomes. The species are amphicarpic (having two distinct types of achenes), with numerous inflorescences on aerial stems containing perfect flowers, and occasional pistillate flowers enclosed in a leaf sheath at the base (Smith 2002). Although it is difficult to distinguish between the species vegetatively, the achenes of Schoenoplectus hallit are 2 -sided and flowers have 2-lobed styles, whereas, achenes of $S$. saximontanus are 3 -sided and flowers have 3 -lobed styles (Smith 2002). Achenes of both species have transverse ridging, but Magrath (2002) and Smith and McKenzie (2011) reported that the ridges on S. saximontams are "winged," while those on $S$. hallit are smooth.

Five states (Kansas, Missouri, Nebraska, Oklahoma, and Texas) have populations of both species (NatureServe 2011); however, only Oklahoma (Magrath 2002), Kansas (Craig Freeman pers. comm. 2006) and Texas (Bob O'Kennon, pers. comm. 2007) have sites with mixed populations. Although Schoenoplectus saxtmontamus occurs in eight counties in Oklahoma, it co-occurs with $S$. hallit in only Comanche County (Oklahoma Vascular Plant Database 2012). In 2000, 134 sites at the Wichita Mountains Wildlife Refuge (WMWR) in Comanche County were surveyed for S. hallif and S. saximontanus (Magrath 2002). At that time no evidence of hybrids was reported (Magrath 2002; McKenzie et al. 2007). Young (2002) examined plants from two sites on the WMWR using amplified fragment length polymorphism (AFLP) data. She indicated there was no evidence for gene flow or hybridization between the taxa but acknowledged the possibility of hybridization.

In August 2001, Smith re-examined the population sites surveyed by Magrath in 2000 and noted plants that she identified as potential hybrids. In 2002, Smith and McKenzie returned to the site and collected voucher specimens and individuals for a laboratory study. Some plants had achenes that appeared to be 2-sided like those of Schoenoplectus hallit, except the usually flat or convex side contained a conspicuous bulge and the achene ridges often had the "winged" appearance reported by Magrath (2002). Other individuals had both 2- and 3-lobed styles with corresponding 2- or 3-sided achenes, with winged ridges present on some but lacking on others. Other plants produced only a few viable-looking achenes, with the majority of inflorescences bearing a preponderance of aborted achenes. Based on these observations, Smith et al. (2004) reported the first recorded observation of the putative hybrid, Schoenoplectus hallit XS . saxmontanus.

In subsequent years (2007-2010), Smith and McKenzie conducted surveys and collected specimens of Schoenoplectus from selected sites on the WMWR and on adjacent areas of the Fort Sill Military Reservation (FSMR) (Smith \& McKenzie 2011). At all four sites where the species occurred in mixed populations, putative hybrids were present. From 2007 to 2010, the relative number of hybrids at mixed sites increased compared to S. hallit and S. saximontanus. At one population site, neither parent species was present in 2010, but the putative hybrid was abundant (Smith \& McKenzie 2011).

## Molecular markers and ISSRs

A molecular marker that has proven useful in genetic diversity studies is inter-simple sequence repeats (ISSRs) (Esselman et al 1999) Unlike some other molccular markers, ISSRs require no prior knowledge of the exact DNA sequence (Godwin et al 1997), show more genctic diversty (Nagaoka and Ogihara 1997), and are an effective means for exarming simulanties or differences between spectes (Esselman et al 1999) ISSR marker analyses have been used in conjunction with mopphological characteristics to examune hybridization between the mustard family spectes Physaria belhi Mulligan and P viulifera Rydberg (Kothera et al 2007)

The objective of this report ts to present DNA evidence to confirm the existence of hybridization between Schoenoplectus hallu and $S$ saximontamus We used the identification of ISSR markers for $S$ hallit and $S$ saximontanus present in putative hybrids as a criterion for confirming hybridization in plants collected from sites in the WMWR and FSMR in Oklahoma where the parental species co-occur (Smith et al 2004, McKenzie et al 2007, Smith \& McKenzie 2011)

## MATERIALS AND METHODS

Parent and hybrid plant material was collected from the WMWR site in 2008 and 2009 Ter additional hybrid plants collected from the FSMR site in 2010 were included in our analysis. Smuth and McKenzie (2011) noted that while the parental species had been present in past years at the FSMR site, only hybrid plants were present in 2010 For this reason, only hybrid plants are included in our analysis from this site

|  | 9-18-2008 | 8-25-2009 | TOTAL |
| :---: | :---: | :---: | :---: |
| 5 Nalfï | 10 | 14 | 24 |
| Hy brods | 12 | B | 20 |
| S saxdidentemas | 14 | 0 | 14 |
|  | $9.18-2008$ | 8-25-2009 | TOTAL |

Table 1 Number of plants examined with ISSR markers from the Wichita Mountains Wildife Refuge (WMWR), Oklahoma

Species and putative hybrid identification was made in the field using a hand lens to examine achene morphology. All voucher specimens are deposited at the Missourı Botanical Garden (MO) with duphcates distributed to other herbaria The number of plants collected per year and the total number of plants exammed is as listed in Table 1

Culms were dried in slisea gel at the collection sites and processed in the laboratory of Dr Esselman at Southem Illinoss University Edwardsville They were frozen with hquid nitrogen and stored at - 80 C untıl DNA was extracted using Dneasy mimiprep kits from Qiagen The ISSR reactions protocols follow Esselman et al (1999) The primer designations and compositions [17898 (CA) 6RY, 17899 (CA) 6RG and 17901 (GT) 6YR] were obtaned from GenoSys Bands amplified by PCR were characterized on $15 \%$ agarose gels in 1x Tris-borate-EDTA buffer Gels were stained with ethidium bromide A 100 bp ladder (Gibco/BRL) was run with the PCR generated fragments to determine band sizes All samples were run at least twice for every primer to ensure band reproducibility

The gels were read and analyzed using the Bio-Rad Gel Doc XR Molecular Imager Band presence values were entered into a program written by Vera Ford, UC-Davis to generate average parwise similarity values

## RESULTS

A total of 60 bands were scored Primer 17898 revealed a total of 22 bands, Primer 17899 revealed 21 bands, and Prmer 17901 had seventeen bands scored (Table 2) We found six bands unique to Schoenoplectus saximontomus and nine unique to $S$ halhi (Table 2) These bands were found to be reliable species markers in that they were consistently present in the parental plants Both sets of bands were found in the hybrid plants from WMWR and FSMR populatons

| Prmer | Bands per promer | Hybrads Only | 5 saximonanars and by binds | 5 AaHIF and by hands |
| :---: | :---: | :---: | :---: | :---: |
| 17808 | 22 | 2 (275 and $750 b^{*}$ ) | 1 (55C bp) | 2 (650\%op)(700\%p) |
| 17899 | 21 | $2(800$ and 1400 bp$)$ | $3(450,550 \mathrm{ard} 1100 \mathrm{op})$ | $\begin{gathered} 4(350,1200,1500 \\ \text { and } 2328 \mathrm{bp}) \end{gathered}$ |
| 17901 | 17 | 0 | 1 (625) | $2(1500$ and 2122) |
| Total | 60 | 4 | 6 | 9 |

Table 2 Total number of bands per primer, numbers of unique bands per species and number of the unique bands present in the hybrid plants "Band unique to FSMR

Three bands were found to be unque to the hybrids at both sample sites The FSMR plants contanied cre additional unique band ( $17898,750 \mathrm{bp}$ ) We did not see complete additivity in anry of the hybrids examined from either site.

The distance values for all populations analyzed using ISSR markers are presented in Table 3 A distance value of one indicates complete ISSR marker similarity among compared individuals The highest similarities occur in the within taxa comparisons Individuals of Schoenoplectus hallin are the most genetically sumilar to other $S$ hallu plants ( 0823 ), as also is the case with $S$ saximontanus (0725) The FSMR hybrid plants have next highest within group similarity ( 0 697), followed closely in similarity to the $S$. hallii from the WMWR (0694). The highest within group diversity was observed in the WMWR hybrids (0 628)

|  | S hallu | WWWR bybrids | S. seximontamus | FSMIR by brids |
| :---: | :---: | :---: | :---: | :---: |
| S halla | 0323 |  |  |  |
| WMWR bybonds | 0616 | 0628 |  |  |
| S. saxamontanus | 0545 | 0648 | 0725 |  |
| FSXIR byhnds | 0694 | $05 \% \mathrm{~T}$ | 0536 | 069 T |

Table 3 Average parwise similarity values in comparison within and among taxa A similarity value of 1 indicates cornplete similarity, while a value of 0 indicates no similarity Within group simularity values are underlined

In among-group comparisons, the most similar were the FSMR hybrids and Schoenoplectus halluy ( 0 694), followed by the WMWR hybrids and $S$ saximontarus ( 0.648 ) The lowest smilarity values were seen when comparing $S$ saximontorus with the FSMR ( 0536 ) hybrids and the next least similar taxa were $S$ scaximontorus and $S$ hallin ( 0545 )

## DISCUSSION

## Species specific markers

Support for hybridization between the two taxa was evidenced by species specific ISSR markers present in parental and hybrid plants. We were able to find markers specific for each species: Schoenoplectus hallin (9 markers) and S. saximontanus ( 6 markers) (Table 2).

Archdale et al. (2010) and Stapay et al. (2011) previously demonstrated that identical ISSR markers were present in other populations of Schoenoplectus hallit and $S$. saxtmontanus. Species specific markers were consistent in $S$. hallit plants examined from Missouri and Illinois and other populations in WMWR where the hybrids have not yet been documented. The species specific markers were also consistent in all $S$. saximontanus plants examined from a population in Texas and a non-hybrid site in WMWR.

Young's (2002) AFLP marker results indicated that Schoenoplectus hallit and S. saximontanus are distinct with species specific markers. Our ISSR marker data are consistent with this result. Based on the presence of unique species markers (Table 2) and the higher within population similarity values compared to the between species comparisons (Table 3), these taxa are distinct and not exhibiting introgression or extensive gene flow.

## Support for hybridization

Young (2002) found no evidence for hybridization between sympatric populations of Schoenoplectus hallii and S. saximontanus on the WMWR. In contrast, our results confirm the initial suppositions of hybridization between S. hallit and S. saximontanus on the WMWR and FSMR based on morphological observations as reported by Smith et al. (2004), McKenzie et al. (2007) and Smith and McKenzie (2011). Plants previously identified by morphological characters as hybrids from both sites contained combinations of 9 species marker bands from $S$. hallii and 6 species marker bands from S. saximontanus (Table 2).

We did not find complete additivity in any of the hybrids. This was expected because we do not know what generations of hybrids were involved. They are most likely later generations than an F1 because the parents are now absent from some sites and the species is an annual. The inability to detect either parent during the 2010 visit strongly suggests that backerossing and F2 generation plants were involved.

In the comparisons among taxa, the hybrids do not appear to be consistently more similar to one parent over the other (Table 3). The WMWR hybrids appear to be more similar to Schoenoplectus saximontanus from the site and the FSMR plants appear to be more similar to S. hallit collected from WMWR. More genetic similarities with one parent versus the other may reflect differences in abundance of $S$. hallii and $S$. saxtmontanus at the different study sites. There were no parental plants observed at the FSMR in 2010, so genetic comparisons with parents from that site are currently not possible.

Although Schoenoplectus hallit and S. saximontanus are currently distinct species, hybridization at the WMWR and FSMR in Oklahoma may threaten their existence at these sites. As reported by Smith and McKenzie (2011), no parental species were found at the FSMR site in 2010 where parents and hybrids were abundant in 2009. They also reported declines of both parental species at the WMWR site since 2007 , and in 2010 , S. saximontanus was absent from the site. The decline in the parental taxa and the increasing number of hybrids, and areas with them, suggest that the hybrids likely outcompete either of the parental species. If mixing of the two parental species continue, eventually it is possible that only the hybrids will occur on the WMWR and FSMR and other areas in the USA where $S$. hallii and $S$. saxmontanus are now sympatric.

Why the number of hybrids is apparently increasing is unknown. Although the chromosome numbers (Schoenoplectus hallii $\mathrm{n}=11, S$. saximontanus $\mathrm{n}=25$ ) of the parental taxa differ, and many hybrid achenes examined during observations made between 2001 and 2010 appeared to be abortive (Smith et al. 2004; Smith \& McKenzie 2011), viable seed was produced by others (Smith et al. 2004). Arnold et al. (2011) hypothesized that despite the low fertility of hybrid species, they are still able to produce viable gametes for successive generations. Despite the lack of information on the chromosome numbers of S. hallii X S. saximontanus hybrids, it is possible that changes in chromosome number or chromosomal substitutions or rearrangements could result in the increased fertility and success of these plants over time (Chester et al. 2012; Soltis \& Soltis 2000). Future work should include examination of seed set and chromosome numbers of the hybrids. This information may provide insight as to why the hybrids are increasing in number and displacing the parents at some locations.

There are additional records of possible hybrids between closely related congeners of the Supini group of Schoenoplectus species. Galen Smith (2002) reported a suspected cross between Schoenoplectus hallin and S. erectus in Georgia where the two species are sympatric. There is a second specimen of $S$. saximontanus from Texas (Lundell and Lundell 1075, housed at MICH with a duplicate at BRIT) that is likely a hybrid between S. hallit and $S$. erectus (Poiret) Palla ex J. Raynal subsp. raynalı (Schuyler) Lye. The duplicate was annotated initially by A. E. Schuyler as a hybrid between S. bergonsu Schuyler (now S. saximontanus) and S. wilkensu Schuyler (now S. erectus). It was subsequently annotated by Galen Smith as $S$. saximontanus in 1993 as an atypical specimen of $S$. saxtmontanus, but with abortive and immature achenes (pers. comm. 2010). Dr. Anton Reznicek of the University of Michigan Herbarium compared the specimen with a duplicate of a hybrid collection of $S$. hallii XS . saxtmontanus (McKenzie 2317) and agreed that the Lundell and Lundell collection was of hybrid origin (pers. comm. 2010). Given that $S$. hallll is not known from the location, but $S$. saxtmontanus and $S$. erectus are, it is likely that hybridization involved these two species.
Hybridization is also possible at two sites where $S$. saximontanus and $S$. halli co-occur (Harper Co., Kansas, Freeman, pers. comm. 2005; and Wise Co., Texas, O'Kennon, pers. comm. 2004). Both Schoenoplectus halli and S. saxmontanus have been reported in Missouri and Nebraska, but the ranges of the two species currently do not overlap. Nonetheless, migrating waterfowl could bring both species in contact with one another at a future date.

There is possible evidence that hybridization between the two species near Lawton, Oklahoma, may be of recent origin and that hybrid plants may be gradually eliminating both parents. Although putative hybrids were discovered at the WMWR in 2002 (Smith et al. 2004), Smith and McKenzie examined many of the specimens collected by Larry Magrath on the WMWR in 2000 (Magrath 2002) and did not discover any evidence of hybridization. This was somewhat surprising because Magrath collected both species at some of the same sites visited by Smith and McKenzie in 2001 and 2002; however, not all of Magrath's 2000 collections were available, so it is possible that hybrid individuals were present in others that were not examined.

## Possible impact of hybridization on conservation efforts and future research needs

According to conservation geneticists, potential effects of hybridization are numerous and pose a serious threat to the survival of a rare species that hybridizes with a closely related congener (Levin et al. 1996). Such may be the case in the interaction of the two species considered here.

The confirmation of hybridization between Schoenoplectus hallit and S. saximontanus at the WMWR and adjacent areas of the FSMR indicates that there is a threat to the persistence of S. hallin in Oklahoma, and possibly the overall population status of the species in North America. Documentation of hybridization between species of Schoenoplectus within sect. Supmt strongly suggests that the genetic integrity of all members of this group could be compromised wherever
sympatry occurs. Because waterfowl are very likely dispersal agents, there are few control measures practical or feasible that could be implemented to prevent such interactions. Nonetheless, monitoring of extant populations should be undertaken to assess changes in population status of each species.

Although the extinction of rare species typically is attributed to systematic environmental change that renders the habitat unsuitable (Harrison 1991; National Research Council 1995), hybridization may have a profound effect on the persistence of a species (Rieseberg 1991; Ellstrand 1992; Levin 2002; Rieseberg \& Linder 1999). Wolf et al. (2001) noted that hybridization could result in extinction of rare plant species in five or fewer generations, and they viewed hybridization as perhaps the most rapidly acting genetic threat to endangered species.

Hybridization may reduce a population's growth rate by adversely affecting its reproductive effectiveness, its competitive status, and its interactions with herbivores (Levin et al. 1996). The numerical disadvantage of a rare species is compounded by the proliferation of fertile hybrids. The addition of these plants to a population containing two related plants decreases the proportional representation of the rare species. In time, this backerossing can result in the assimilation of the rare species whose genetic identity will become extinct (Rhymer \& Simberloff 1996). We see evidence of these processes in the interaction between Schoenoplectus hallii and S. saximontanus.

Additional surveys of Schoenoplectus halltu and S. saximontanus in Kansas and Texas where the two species are sympatric are warranted. Because S. saximontanus and S. erectus are sympatric in some areas of southern Texas, possible hybridization should be evaluated, especially at sites where both species have been documented. Genetic analyses of $S$. erectus subsp. raynall are needed because there is some possibility that the species may be of hybrid origin. We have observed achenes of S. hallii $\times$ S. saximontanus hybrids that are similar in shape to those described by Smith (2002) for $S$. erectus subsp. raynali, and variations in achenes of $S$. erectus contributed to the description of two species that are now synonymous with S. erectus (i.e. S. wilkensu and S. erismanae Schuyler). The same is the case for $S$. bergonsii that is now placed in synonym with $S$. saximontanus. In addition, the reproductive potential of $S$. halli $\times S$. saximontanus hybrids, estimates of pollen viability, seed set and ploidy level should be investigated.

## ACKNOWLEDGEMENTS

We would like to thank the USFWS and the SIUE URCA program for supporting this project. We also thank Jeri Boone and Susan Farmington for assistance with plant collections.

## LITERATURE CITED

Archdale, E., T. Stapay, M. Smith, P. McKenzie and E. Esselman. 2010. ISSR marker diversity in Schoenoplectus hallii (Cyperaceae) populations of Illinois. Trans. Illinois Acad. Sci. 103:34.
Arnold, M.L., E.S. Ballerini and A.N. Brothers. 2011. Hybrid fitness, adaptation and evolutionary diversification: lessons learned from Louisiana Irises. Heredity 108: 159-166.
Beatty, B.L., W.F. Jennings, and R.C. Rawlinson. 2004. Schoenoplectus hallu (Gray) S.G Sm. (Hall's bulrush): a technical conservation assessment. Prepared for the USDAForest Service, Rocky Mountain Region, Species Conservation Report. Peer review administered by Center for Plant Conservation, St. Louis, Missouri.
Chester, M., J.P. Gallagher, V.V. Symonds, A.V. Cruz de Silva, E.V. Mavrodiev, A.R. Leitch, P.S. Soltis, and D.E. Soltis. 2012. Extensive chromosomal variation in a recently formed antural allopolyploid species, Tragopogon muscellus (Asteraceae). Proc. Natl. Acad. Sci. 109: 11761181.

Ellstrand, N.C. 1992. Gene flow by pollen: implications for plant conservation genetics. Oikos 63 : 77-93.

Esselman, E.J., L. Jiangiang, D.J. Crawford, J.L. Windus, and A.D. Wolfe. 1999. Clonal diversity in the rare Calamagrostis porteri ssp. insperata (Poaceae): Comparative results for allozymes and random amplified polymorphic DNA(RAPD) and intersimple sequence repeat (ISSR) markers. Molec. Ecol. 8: 443-451.
Gleason, H.A. and A. Cronquist. 1991. Manual of Vascular Plants of Northeastern United States and Adjacent Canada (ed. 2). New York Botanical Garden, Bronx.
Godwin, I.D., E.A.B. Aitken, and L.W. Smith. 1997. Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophores is 18: 1524-1528.
Harrison, S. 1991. Local extinction in a metapopulation context: an empirical evaluation. Biol. J. Linn. Soc. 42: 73-88.
Kothera, L., S.M. Ward, and S.E. Carney. 2007. Assessing the threat from hybridization to the rare endemic Physaria bellii Mulligan (Brassicaceae). Biol. Conserv. 140: 110-118.
Levin, D. 2002. Hybridization and extinction. Amer. Sci. 90: 254-261.
Levin, D.A., J. Francisco-Ortega, and R.K. Jansen. 1996. Hybridization and the extinction of rare plant species. Conserv. Biol. 10: 10-16.
Magrath, L.K. 2002. Schoenoplectus hallii and S. saximontanus. 2000 Wichita Mountain (sic) Wildlife Refuge survey. Oklahoma Native Plant Record 2: 54-60.
McKenzie, P..M., S. G. Smith, and M. Smith. 2007. Status of Schoenoplectus hallin (Hall's bulrush) (Cyperaceae) in the United States. J. Bot. Res. Inst. Texas 1: 457-481.
Nagaoka, T. and Y. Ogihara. 1997. Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theoret. Appl. Genetics 94: 597-602.
National Research Council. 1995. Science and the Endangered Species Act. National Academy Press, Washington, DC.
NatureServe. 2011. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. Available. Accessed Jan 2012.

Oklahoma Vascular Plant Data Base. 2012. http//www oklahomaplantdatabase org/> April 2012.
O'Kennon, R.J. and C. McLemore. 2004. Schoenoplectus halli (Cyperaceae), a globally threatened species new for Texas. Sida 21: 1201-1204.
Rhymer, J.M. and D. Simberloff. 1996. Extinction by hybridization and introgression. Ann. Rev. Ecol. Syst. 27: 83-109.
Rieseberg, L.H. 1991. Hybridization in rare plants: insights from case studies in Cerocarpus and Helianthus. Pp. 171-181, in D.A. Falk and K.E. Holsinger (eds.). Genetics and conservation of rare plants. Oxford Univ. Press, New York.
Rieseberg, L.H. and C.R. Linder. 1999. Hybrid classification: Insights from genetic map-based studies of experimental hybrids. Ecology 80: 361-370.
Smith, M. and P. M. McKenzie. 2011. Schoenoplectus hallit, S. saxtmontanus, and the putative $S$. hallu S. saxtmontanus hybrid: Observations from the Wichita Mountains Wildlife Refuge and the Fort Sill Military Reservation 2002-2010. Oklahoma Native Plant Record 11: 22-30.
Smith, M., P. McKenzie, P. Mettler-Cherry, and S.G. Smith. 2004. A putative hybrid of Schoenoplectus saximontanus and S. halliu (Cyperaceae) from Oklahoma. Sida 21: 475-479.
Smith, S.G. 2002. Schoenoplectus. Pp. 44-60, in Flora of North America, Vol. 2. Magnoliophyta: Commelinidae (in part): Cyperaceae. Oxford Univ. Press, New York.
Soltis, P.S., and D E. Soltis. 2000. The role of genetic and genomic attributes in the success of polyploids. Proc. Natl. Acad. Sci. 97: 7051-7057.
Stapay, T., M. Smith, P. McKenzie, and E. Esselman. 2011. Evidence for hybridization between Schoenoplectus hallii and S. saximontanus (Cyperaceae) using ISSR markers. Bot. Soc. Amer. meetings. St. Louis July 2011.
Wolf, D.E., N. Takebayashi, and L.H. Rieseberg. 2001. Predicting the risk of extinction through Hybridization. Conserv. Biol. 15: 1039-1053.

Young L.A. 2002. Phylogenetic relationships within Schoenoplectus (Cyperaceae) using DNA sequence data. M.S. thesis, Univ. of Oklahoma, Norman.

# AN OUTLINE OF A CLASSIFICATION SCHEME FOR EXTANT FLOWERING PLANTS 

JAMES L. REVEAL<br>L H Bailey Hortorium<br>Department of Plant Biology<br>Cornell Unversity, Ithaca, NY 14853-4301<br>e-mail jlr326@cornell edu


#### Abstract

An outline of a linear arrangement for the flowering plants (Magnoliidae) is presented complete with full bibliographic citations and synonymy at and above the rank of family. It is a slight modification of the system established by the Angiosperm Phylogeny Group, with an expanded number of families, orders and superorders compared to that 2009 system. In addition, subfamilies, tribes, and in some cases subtribes, with bibliographic information, are provided as well. A total of 501 families are recognized and arranged in 92 orders and 20 superorders. The following new names are proposed: Abolbodoideae Suess. \& Beyerle ex Thorne \& Reveal, Aconieae Thiede ex Reveal, Alonsoinae Reveal, Anacolosoideae Sleumer ex Reveal, Anemarrheneae Reveal, Anopteroideae Reveal, Azorelleae Reveal, Behnieae Reveal, Bersamoideae Reveal, Bhesoideae Reveal, Calochortoideae Thorne \& Reveal ex Reveal, Canacomyriceae Reveal, Canarininae Eddie ex Reveal, Capuroniantheae Mabberley ex Reveal, Carnarvonieae Reveal, Castillejeae Reveal, Centroplacoideae Reveal, Coleeae Bojer ex Reveal, Croomieae Reveal, Delavayeae Reveal, Dicerocaryeae Reveal, Duckeodendroideae Reveal, Epithemateae Reveal, Eriospermoideae Reveal, Hemimeridinae Reveal, Hemimeridoideae Reveal, Hugonioideae Mabberley ex Reveal, Hypodaphnideae Kostermans ex Reveal, Iochrominae Reveal, Jaborosinae Reveal, Kaliphoreae Reveal, Kanieae Peter G. Wilson ex Reveal, Kirengeshominae Reveal, Laxmannioideae Thorne \& Reveal ex Reveal, Linconieae Reveal, Lindleyinae Reveal, Lophopetaleae Loes. ex Reveal, Macaranginae GL. Webster ex Reveal, Mareyinae Radel.-Sm. ex Reveal, Muntingioideae Reveal, Neuracantheae Reveal, Ondineinae Reveal, Oroxyleae A.H. Gentry ex Reveal \& L.G. Lohmann, Oxydendreae Cox ex Reveal, Pachysandreae Reveal, Pachystromateae Reveal, Pentastemonoideae Reveal, Phaceliinae Reveal, Philadelphinae Reveal, Physalidinae Reveal, Prionieae Reveal, Prockioideae Reveal, Pycnocomeae Hutch. ex Reveal, Quivisiantheae Reveal, Romanzoffiinae Reveal, Salpichroinae Reveal, Sarumeae O.C. Schmidt ex Reveal, Schwenckioideae Reveal, Spiraeanthemoideae Reveal, Stemodieae Reveal, Stenomeridoideae Reveal, Streptopoideae Mabberley ex Reveal, Suregadeae Reveal, Takhtajanieae Takht. ex Reveal, Tasmannieae Takht. ex Reveal, Tepuianthoideae Reveal, Tetramerantheae Reveal, Tovomiteae Mabberley ex Reveal, Tribuloideae D.M. Porter ex Reveal, Triosteeae Reveal, Triplostegioideae Reveal, Whitfieldieae Bremek. ex Reveal, Witheringinae Reveal, and Xanthosieae Reveal.


KEY WORDS: Angiosperm classification; Magnoliidae

In September of 2009 the Angiosperm Phylogeny Group (APG) published its system of classification, being the seventh to have been released over a three-year period (Heywood et al. 2007; Thorne \& Reveal 2007; Mabberley 2008; Takhtajan 2009; APG III, 2009) with the online systems of Shipunov (2012, Version 5.6) and Stevens (2001, onward, 20 Apr 2012) being continuously updated. A summary of these systems was presented by Reveal (2011) where a brief, personal outline of how the angiosperms might be arranged was presented as the last of the above-cited classification schemes. Here that system is broadened with names at the ranks of subfamily, tribe and, in a few instances, names even at the rank of subtribe, although at this time full synonymy is not indicated. Following the outline of the proposed system with full citation and synonymy (p.2) is a summary arrangement of the system composed only of names and authors (p. 98).

Comments on and an indication of taxa recognized by other authors, but not accepted here, are provided in a section entitled Notes and Comments (p. 152). A few names adopted by Mabberley (2007) and by Takhtajan (2009), but not validly published by them, are validated here to provide these names for those who might wish to use them. A change to the rules of nomenclature mandating that infrafamilial names of conserved family names have priority over names of non-conserved family names resulted in the validation of several new names and the replacement of some long-established names (Reveal 2012). An index to all fully cited names is also provided (p. 168). The 73 new names proposed here are validated on pages 215-220.

In their classification of land plants, Chase and Reveal (2009) recognized 14 subelasses within Equisetopsida Eaton This is now slightly revised with Pstlotidae Reveal assigned to Ophioglossidae Klinge for a total of 13 subclases of land plants (Reveal \& Chase 2010).

Validly published names for angiosperms at the ranks of class and above are summarized by Thorne and Reveal (2007) should one disagree with the view suggested by Chase and Reveal (2009) that the highest rank for the angiosperms is that of subclass. A published summary of all validly published names based on a generic name at and above the rank of family with full citation and type information is also available (Reveal 2010). That published listing is continually updated online at: http $\mathrm{z} /$ /www.plantsystematics.org/reveal/pbio/fam/allspgnames.html.

## AN OUTLINE OF A SYSTEM OF CLASSIFICATION FOR THE ANGIOSPERMS

XIII. Magnoliidae Novák ex Takht., Sist. Filog. Cvetk. Rast.: 51. 4 Feb 1967

Alismatidae Takht., Sist. Filog. Cvetk. Rast.: 461. 4 Feb 1967
Arecidae Takht., Sist. Filog. Cvetk. Rast.: 525. 4 Feb 1967
Aridae Takht., Divers. Classif. Fl. Pl.: 579. 24 Apr 1997
Astertdae Takht., Sist. Ftlog. Cvetk. Rast.: 405.4 Feb 1967
Bromeludae C.Y. Wu et al., Acta Phytotax. Sin. 40: 299. 2002
Burmanniidae Heintze, Cormofyt. Fylog.: 10. 1 Jun 1927
Calycanthidae C.Y. Wu et al., Acta Phytotax. Sin. 40: 292. 2002
Caryophyllidae Takht., Sist. Filog. Cvetk. Rast.: 144. 4Feb 1967
Ceratophyllddae Doweld, Tent. Syst.Pl. Vasc.: xxv. 23 Dec 2001
Chloranthddae C.Y. Wu et al., Acta Phytotax. Sin. 40: 292. 2002
Commelinidae Takht., Sist. Filog. Cvetk. Rast.: 171. 4 Feb 1967
Cornidae Frohne \& U. Jensen ex Reveal, Phytologia 76: 4. 2 Mai 1994
Dillemidae Takht. ex Reveal \& Tahkt., Phytologia 74: 171. 25 Mar 1993
Ericidae C.Y. Wu et al., Acta Phytotax. Sin. 40: 308. 2002
Hamamelıdıdae Takht., Stst. Filog. Cvetk. Rast.: 461.4 Feb 1967
Illiciidae C.Y. Wu et al., Acta Phytotax. Sin. 40: 291. 2002
Juncidae Doweld, Tent. Syst. Pl. Vasc.: lxii. 23 Dec 2001
Lamudae Takht. ex Reveal, Phytologia 74: 178. 25 Mar 1993
Lauridae C.Y. Wu et al., Acta Phytotax. Sin. 40: 292. 2002
Liliidae J.H. Schaffn., Oho Naturalist 11: 413. Dec 1911
Loranthrdae Tiegh., Just's Bot. Jahresber. 24(2): 319. 1898
Malvidae C.Y. Wu ex Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 111. 29 Jun 2007
Myrtidae J.H. Schaffn., Ohio Naturalist 11: 416. Dec 1911
Nelumbonidae Takht., Divers. Classif. Fl. Pl.: 83. 24 Apr 1997
Nymphaerdae J.W. Walker ex Takht., Divers. Classif. Fl. Pl.: 74. 24 Apr 1997
Orchididae Heintze, Cormofyt. Fylog.: 10. 1 Jun 1927
Piperidae Reveal, Phytologia 76: 3. 2 Mai 1994

Plumbaginidae C. Y. Wu et al., Acta Phytotax. Sin. 40: 291. 2002
Polygonidae C.Y. Wu et al., Acta Phytotax. Sin. 40: 294. 2002
Ranuncultdae Takht. ex Reveal, Novon 2: 235. 13 Oct 1992
Rosidae Takht., Sist. Filog. Cvetk. Rast.: 264. 4 Feb 1967
Rutidae Doweld, Tent. Syst. Pl. Vasc.: xxxiii. 23 Dec 2001
Thetdae Doweld, Tent. Syst. Pl. Vasc.: xliii. 23 Dec 2001
Triurididae Takht. ex Reveal, Novon 2: 235. 13 Oct 1992
Winteridae Doweld, Tent. Syst. Pl. Vasc.: xxiii. 23 Dec 2001
Zingtberidae Cronquist, Brittonta 30: 505. 19 Dec 1978
A. Amborellanae M.W. Chase \& Reveal, Bot. J. Linn. Soc. 161: 123. 28 Oct 2009

1. Amborellales Melikyan, A.V. Bobrov \& Zaytzeva in F. Manitz \& F.H. Hellwig, 14 Symp. Biodiv. Evolutionsbiol.: 122. 1 Sep 1999
2. Amborellaceae Pichon, Bull. Mus. Hist. Nat. (Paris), ser. 2, 20: 384. 25 Oct 1948, nom. cons.
B. Nymphaeanae Thorne ex Reveal, Novon 2: 236. 13 Oct 1992

Hydatellanae Takht. ex Reveal, Novon 2: 236. 13 Oct 1992
2. Nymphaeales Salisb. ex Bercht. \& J. Presl, Pr̈rr. Rostlin: 270. Jan-Apr 1820

Barclayales Doweld, Tent. Syst. Pl. Vasc.: xxiii. 23 Dec 2001 Cabombales Mart., Consp. Regn. Veg.: 38. Sep-Oct 1835
Euryalales H.L. Li, Amer. Midl. Naturalist 54: 39. 27 Aug 1955
Hydatellales Cronquist in A.L. Takhtajan, Bot. Rev. (Lancaster) 46: 317. 1980
Hydropeltıdales Spenn., Handb. Angew. Bot. 1: 202. 1-19 Jul 1834
2. Hydatellaceae U. Hamann, New Zealand J. Bot. 14: 195. 22 Jun 1976
3. Cabombaceae Rich. ex A. Rich. in J.B.G.M. Bory de Saint-Vincent, Dict. Class. Hist. Nat. 2: 608. 31 Dec 1822, nom. cons. Hydropeltdaceae Dumort., Comment. Bot.: 64. Nov-Dec 1822
a. Hydropeltoideae Eaton, Bot. Dict., ed. 4: 37. Apr-Mai 1836
b. Cabomboideae Burnett, Outlines Bot.: 842, 1093, 1122. Feb 1835
4. Nymphaeaceae Salisb., Ann. Bot. (König \& Sims) 2: 70. Jun 1805, nom. cons.

Barclayaceae H.L. Li, Amer. Midl. Naturalist 54: 40. 27 Aug 1955
Euryalaceae J. Agardh, Theoria Syst. Pl.: 51. Apr-Sep 1858
Nupharaceae A. Kern., Pflanzenleben 2: 699. 6-13 Jun 1891
a. Nupharoideae M. Ito, Bot. Mag. (Tokyo) 100: 33. 1987
b. Nymphaeoideae Arn., Botany: 96. 9 Mar 1832
b1. Cabombeae Gardner, Icon. Pl., ser. 2, 7: ad t. 641.1844
b2. Nymphaeeae DC., Syst. Nat. 2: 43, 48. late Mai 1821
b2a. Nymphaeinae Eng1., Syllabus, ed. 5: 125. 20-22 Jul 1907
b2b. Ondineinae Reveal, Phytoneuron 2012-37: 218. 23 Apr 2012
b3. Euryaleae Endl., Gen. Pl.: 899. Nov 1839
C. Austrobaileyanae M.W. Chase \& Reveal, Bot. J. Linn. Soc. 161: 123. 28 Oct 2009

Chloranthanae Doweld, Tent. Syst. Pl. Vasc.: xxiv. 23 Dec 2001
Illtctanae Doweld, Tent. Syst. Pl. Vasc.: xxiii. 23 Dec 2001
Trimenianae Doweld, Tent. Syst. Pl. Vasc.: xxiii. 23 Dec 2001
3. Austrobaileyales Takht. ex Reveal, Novon 2: 238. 13 Oct 1992

Illiciales Hu ex Cronquist, Integr. Syst. Class. Fl. Pl.: 94. 10 Aug 1981
Schtsandrales Mart., Consp. Regn. Veg.: 39. Sep-Oct 1835
Trimentales Doweld, Byull. Mosk. Obshch. Ispyt. Prir., Bıol. 105(5): 60. 9 Oct 2000
5. Austrobaileyaceae Croizat, Cact. Succ.J. (Los Angeles) 15: 64. Mai 1943, nom. cons.
6. Trimeniaceae Gibbs, Fl. Arfak. Mts.: 135. Jul 1917, nom. cons.
7. Schisandraceae Blume, Fl. Javae 32-33: 3. 25 Jun 1830, nom. cons.
8. Illiciaceae Bercht. \& J. Pres1, Přır. Rostlin 2(72): 288. 1825, nom. cons.
4. Chloranthales Mart., Consp. Regn. Veg.: 12. Sep-Oct 1835
9. Chloranthaceae R. Br. ex Sims, Bot. Mag. 48: ad t. 2190 . 1 Nov 1820, nom. cons.

Hedjosmaceae Caruel, Attı Reale Accad. Lincet, Mem. Cl. Scı. Fis., ser. 3, 10: 214, 249. 5 Jun 1881
D. Magnolianae Takht., Sist. Filog. Cvetk. Rast.: 51. 4 Feb 1967

Annonanae Doweld, Tent. Syst. Pl. Vasc.: xxiv. 23 Dec 2001
Aristolochanae Doweld, Tent. Syst. Pl. Vasc.: xxiv. 23 Dec 2001
Lactoridanae Takht. ex Reveal \& Doweld, Novon 9: 550. 30 Dec 1999
Lauranae Takht., Divers. Classtf. F1. Pl.: 53. 24 Apr 1997
Piperanae Reveal, Phytologia 76: 3. 2 Mai 1994
Winteranae Doweld, Tent. Syst. Pl. Vasc.: xxiii. 23 Dec 2001
5. Magnoliales Juss. ex Bercht. \& J. Presl, Přtr. Rostlin: 223. Jan-Apr 1820

Annonales Juss. ex Bercht. \& J. Presl, Prrtr. Rostlın: 223. Jan-Apr 1820
Degeneriales C.Y. Wu et al., Acta Phytotax. Sin. 40: 291. 2002
Eupomattales Takht. ex Reveal, Novon 2: 238. 13 Oct 1992
Himantandrales Doweld \& Shevyryova, Ann. Bot. (London) 81: 345. Feb 1998
Myristicales R. Br. ex Bercht. \& J. Pres1, Pritr. Rostlin: 235. Jan-Apr 1820
10. Myristicaceae R. Br., Prodr.: 399. 27 Mar 1810, nom. cons.
11. Magnoliaceae Juss., Gen. Pl.: 280. 4 Aug 1789, nom. cons.

Liriodendraceae F.A. Barkley, Phytologia 32: 304. 29 Oct 1975
a. Magnolioideae Arn., Botany: 95. 9 Mar 1832
b. Liriodendroideae Y.W. Law, Acta Phytotax. Sin. 22: 105. Apr 1984
12. Degeneriaceae I.W. Bailey \& A.C. Sm., J. Arnold Arbor. 23: 357. 15 Jul 1942, nom. cons.
13. Himantandraceae Diels, Bot. Jahrb. Syst. 55: 126. 27 Nov 1917, nom. cons.
14. Eupomatiaceae Orb., Dict. Unv. Hist. Nat. 5: 511. 29 Mar 1845, nom. cons.
15. Annonaceae Juss., Gen. Pl.: 283. 4 Aug 1789, nom. cons.

Hornschuchiaceae J. Agardh, Theoria Syst. Pl.: 65. Apr-Sep 1858
Monodoraceae J. Agardh, Theorta Syst. Pl.: 126. Apr-Sep 1858
a. Annonoideae Raf., Anal. Nat:: 175. Apr-Jul 1815
b. Monodoroideae Hutch., Kew Bull. 1923: 247. 20 Jul 1923
6. Laurales Juss. ex Bercht. \& J. Pres1, Přir. Rostlin: 235. Jan-Apr 1820

Atherospermatales Mart., Consp. Regn. Veg.: 38. Sep-Oct 1835
Calycanthales Link, Handbuch 2: 71. 4-11 Jul 1829
Gyrocarpales Dumort., Anal. Fam. Pl.: 13. 1829
Hernandiales Mart., Consp. Regn. Veg.: 15. Sep-Oct 1835
Illggerales Mart., Consp. Regn. Veg.: 15. Sep-Oct 1835
Monmuales Juss. ex Bercht. \& J. Presl, Přrr. Rostlın: 260. Jan-Apr 1820
6a. Atherospermatineae J. Presl, Nowočeská Bibl. [Wšobecný Rostl.] 7: 1381. 1846
16. Calycanthaceae Lindl., Bot. Reg. 5: ad t. 404. 1 Oct 1819, nom. cons.

Butnerlaceae Barnhart, Bull. Torrey Bot. Club 22: 24. 15 Jan 1895
Chtmonanthaceae Perleb, Clav. Class.: 33. Jan-Mar 1838
Idospermaceae S.T. Blake, Contr. Queenstand Herb. 12: 3. 4 Sep 1972
a. Idiospermoideae Thorne, Allso 8: 175. 9 Sep 1974
b. Calycanthoideae Burnett, Outlines Bot.: 710, 1092, 1135. Feb 1835
17. Siparunaceae Schodde, Taxon 19: 325. 29 Jun 1970
a. Siparunoideae Money, I.W. Bailey \& Swamy ex Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 73. 29 Jun 2007
b. Glossocalycoideae Thorne ex Philipson, Nordic J. Bot. 8: 24. 29 Feb 1988
18. Gomortegaceae Reiche, Ber. Deutsche Bot. Ges. 14: 232. 19 Aug 1896, nom. cons.
19. Atherospermataceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 553. 19 Jul 1814
a1. Atherospermateae Bartl., Ord. Nat. Pl.: 104. Sep 1830
a2. Laurelieae Pax in H.GA. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 2: 97. Mar 1889
6b. Monimiineae J. Presl, Nowočeská Bibl. [Wšobecný Rostl.] 7: 1381, 1382. 1846
20. Hernandiaceae Blume, Bijdr. 11: 550. 24 Jan 1826, nom. cons. Gyrocarpaceae Dumort., Anal. Fam. Pl.: 13, 14. 1829 Illigeraceae Blume, Nov. Pl. Expos.: 12. Aug-Dec 1833
a. Hernandioideae Endl. ex Miq., Fl. Ned. Ind. 1(1): 886. 19 Aug 1858
b. Gyrocarpoideae J. Williams in J.H. Balfour, Man. Bot., ed. 3: 425. 1855
c. Sparattanthelioideae Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 73. 29 Jun 2007
21. Monimiaceae Juss., Ann. Mus. Natl. Hist. Nat. 14: 133. 1809, nom. cons. Hortoniaceae A.C. Sm., J. Indian Bot. Soc. 50A: 220. Dec 1971
a. Hortonioideae Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 72. 29 Jun 2007
b. Monimioideae Raf., Anal. Nat.: 175. Apr-Jul 1815
b1. Palmerieae Philipson, Nordic J. Bot. 8: 24. 29 Feb 1988
b2. Monimieae Rchb., Handb. Nat. Pfl.-Syst.: 174. 1-7 Oct 1837
b3. Peumieae Philipson, Nordic J. Bot. 8: 24. 29 Feb 1988
c. Mollinedioideae Thorne, Altso 8: 172. 9 Sep 1974
cl. Hedycaryeae A. DC. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 16(2): 641, 671. late Jul 1868
c2. Mollinedieae Janet R. Perkins, Bot. Jahrb. Syst. 25: 556. 2 Sep 1898
c3. Hennecartieae Philipson, Nordic J. Bot. 8: 24. 29 Feb 1988
22. Lauraceae Juss., Gen. Pl.: 80. 4 Aug 1789, nom. cons. Cassythaceae Bartl. ex Lindl., Ntx. Pl.: 15. 17 Sep 1833, nom. cons. Perseaceae Horan., Prim. Lin. Syst. Nat.: 61. 2 Nov 1834
a. Cassythoideae Burnett, Outlmes Bot.: 564, 565, 1091, 1146. Feb 1835
a1. Hypodaphnideae Kostermans ex Reveal, Phytoneuron 2012-37: 217. 23 Apr 2012
a2. Cassytheae Dumort., Anal. Fam. Pl.: 16. 1829
a3. Cryptocaryeae Nees, Syst. Laur.: 21, 28bis, 191. 30 Oct-5 Nov 1836
a4. Perseeae Nees, Syst. Laur:: 20, 28bis, 121. 30 Oct- 5 Nov 1836
b. Lauroideae Burnett, Outlines Bot.: 564, 1091, 1146. Feb 1835
7. Canellales Cronquist, Bull. Jard. Bot. Bruxelles 27: 17. 31 Mar 1957

Winterales A.C. Sm. ex Reveal, Phytologia 74: 174. 25 Mar 1993
23. Winteraceae R. Br. ex Lind1., Intr. Nat. Syst. Bot.: 26. 27 Sep 1830, nom. cons. Drimyidaceae Baill., Adansonia 7: 383, 384. Aug 1867 Takhtajaniaceae J.-F. Leroy, Adansomia, sér. 2, 20: 20. 30 Mai 1980
a1. Takhtajanieae Takht. ex Reveal, Phytoneuron 2012-37: 219. 23 Apr 2012
a2. Tasmannieae Takht. ex Reveal, Phytoneuron 2012-37: 219. 23 Apr 2012
a3. Wintereae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 3, Comm. 5. 26 Mar-1 Apr 1837
24. Canellaceae Mart., Nov. Gen. Sp. Pl. 3: 168, 170. Sep 1832, nom. cons.
8. Piperales Bercht. \& J. Presl, Přtr. Rostlın: 261. Jan-Apr 1820 Aristolochiales Juss. ex Bercht. \& J. Presl, Př̈r. Rostlin: 270. Jan-Apr 1820 Asarales Horan., Char. Ess. Fam.: 68. 17 Jun 1847 Hydnorales Takht. ex Reveal, Novon 2: 239. 13 Oct 1992 Lactoridales Takht. ex Reveal, Phytologia 74: 174. 25 Mar 1993 Saururales Mart., Consp. Regn. Veg.: 13. Sep-Oct 1835
25. Saururaceae F. Voigt in L.C.M. Richard, Anal Frucht.: 45, 67. 1811, nom. cons.
26. Piperaceae Giseke, Prael. Ord. Nat. Pl.: 123. Apr 1792, nom. cons.

Peperomtaceae A.C. Sm., Fl. Vit. Nova 2: 75. 26 Oct 1981
a. Verhuellioideae Trel. ex Samain \& Wanke, Taxon 57: 586. 30 May 2008
b. Zippelioideae Samain \& Wanke, Taxon 57: 586. 30 May 2008
c. Piperoideae Arn., Botany: 130. 9 Mar 1832
d. Peperomioideae Miq., F7. Ned. Ind. 1(2): 432. 6 Oct 1859
27. Lactoridaceae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 2: 19. 27 Jan 1888, nom. cons.
28. Hydnoraceae C. Agardh, Aphor. Bot.: 88. 21 Dec 1821, nom. cons.
29. Aristolochiaceae Juss., Gen. Pl.: 72. 4 Aug 1789, nom. cons.

Asaraceae Vent., Tabl. Règne Vég. 2: 226. 5 Mai 1799
a. Asaroideae Burnett, Outlines Bot.: 584, 585, 1091, 1143. Feb 1835 a 1. Sarumeae O.C. Schmidt ex Reveal, Phytoneuron 2012-37: 219. 23 Apr 2012 a2. Asareae Rchb., Fl. Germ. Excurs. 1(2): 183. Jan-Apr 1831
b. Aristolochioideae Burnett, Outlines Bot.: 584, 1091. 1143. Feb 1835 b 1. Apameae Soler. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 1: 271. Aug 1889
b2. Aristolochieae Dumort. ex Spach, Hist. Nat. Vég. 10: 560. 20 Mar 1841
E. Lilianae Takht., Sist. Filog. Cvetk. Rast.: 473. 4 Feb 1967

Acoranae Reveal, Phytologia 82: 129. 28 Nov 1997
Alismatanae Takht., Sist. Filog. Cvetk. Rast.: 461.4 Feb 1967
Aranae Thome ex Reveal, Novon 2: 235. 13 Oct 1992
Arecanae Takht., Sist. Filog. Cvetk. Rast.: 525. 4 Feb 1967
Bromeltanae R. Dahlgren ex Reveal, Novon 2: 235. 13 Oct 1992
Butomanae Takht. ex Reveal, Novon 2: 235. 13 Oct 1992
Commelinanae Takht., Sist. Fllog. Cvetk. Rast.: 514. 4 Feb 1967
Cyclanthanae Thorne ex Reveal, Phytologia 79: 71. 29 Apr 1996
Dioscoreanae Takht. ex Reveal \& Doweld, Novon 9: 550. 30 Dec 1999
Juncanae Takht., Sist. Filog. Cvetk. Rast.: 510. 4 Feb 1967
Iridanae Doweld, Tent. Syst. Pl. Vasc.: lvi. 23 Dec 2001
Melanthianae Doweld, Tent. Syst. Pl. Vasc.: lv. 23 Dec 2001
Orchidanae Doweld, Tent. Syst. Pl. Vasc.: lviii. 23 Dec 2001
Najadanae Takht. ex Reveal, Novon 2: 236. 13 Oct 1992
Pandananae Thorne ex Reveal, Novon 2: 236. 13 Oct 1992
Petrosavianae Doweld, Tent. Syst. Pl. Vasc.: 1x. 23 Dec 2001
Poanae Takht. ex Reveal \& Doweld, Novon 9: 550. 30 Dec 1999
Pontederianae Takht. ex Reveal, Novon 2: 236. 13 Oct 1992
Rapateanae Doweld, Tent. Syst. Pl. Vasc.: lxii. 23 Dec 2001
Triuridanae Thorne ex Reveal, Novon 2: 236. 13 Oct 1992
Typhanae Thome ex Reveal, Novon 2: 237. 13 Oct 1992
Zingıberanae Takht. ex Reveal, Phytologia 74: 179. 25 Mar 1993 Zosteranae Doweld, Tent. Syst. Pl. Vasc.: Iviii. 23 Dec 2001
9. Acorales Mart., Consp. Regn. Veg.: 6. Sep-Oct 1835
30. Acoraceae Martinov, Tekhno-Bot. Slovar: 6. 3 Aug 1820
10. Arales Juss. ex Bercht. \& J. Presl, Pritr. Rostlin: 263. Jan-Apr 1820

Lemnales Link, Handbuch 1: 289. 4-11 Jul 1829
Orontiales J. Presl, Nowočeská Bibl. [Wšobecny' Rostl.] 7: 1653 ['1553']. 1846
Pistiales Mart., Consp. Regn. Veg.: 5. Sep-Oct 1835
31. Araceae Juss., Gen. Pl.: 23. 4 Aug 1789, nom. cons.

Arisaraceae Raf., Fl. Tellur. 4: 16. (med.) 1838
Caladraceae Salisb., Gen. Pl.: 5. 15-31 Mai 1866
Callaceae Rchb. ex Bartl., Ord. Nat. Pl.: 25, 66. Sep 1830 Colocastaceae Vines, Stud. Text-book Bot. 2: 541. Mar 1895 Cryptocorynaceae J. Agardh, Theoria Syst. Pl.: 32. Apr-Sep 1858

Dracontiaceae Salisb., Gen. Pl.: 7. 15-31 Mai 1866
Lastaceae Vines, Stud. Text-book Bot. 2: 540. Mar 1895
Lemnaceae Gray, Nat. Arr. Brit. Pl. 2: 729. 10 Jan 1822, nom. cons.
Monsteraceae Vines, Stud. Text-book Bot. 2: 540. Mar 1895
Orontiaceae Bartl., Ord. Nat. Pl.: 24, 68. Sep 1830
Pistiaceae Rich. ex C. Agardh, Aphor. Bot.: 130. 19 Jun 1822
Philodendraceae Vines, Stud. Text-book Bot. 2: 540. Mar 1895
Pothaceae Raf., F7. Tellur. 4: 16. (med.) 1838
Wolffiaceae Bubani, Fl. Pyren. 4: 22. 15-28 Feb 1902
a. Gymnostachyoideae Bogner \& Nicolson, Willdenowia 21: 37. 11 Dec 1991
b. Orontioideae R. Br. ex Müll. Berol., Ann. Bot. Syst. 5: 898. 1860
b1. Orontieae Dumort., Fl. Belg.: 162. 1827
b2. Symplocarpeae Engl., Nova Acta Acad. Caes. Leop.-Carol. German. Nat. Cur. 39: 141. 1876
c. Lemnoideae Bab., Man. Brit. Bot.: 320. Mai-Jul 1843
d. Pothoideae Engl., Nova Acta Acad. Caes. Leop.-Carol. German. Nat. Cur. 39: 140. 1876
d1. Anthericeae Bartl., Ord. Nat. Pl.: 50. Sep 1830
d2. Potheae Bartl., Ord. Nat. Pl.: 67. Sep 1830
e. Monsteroideae Engl., Nova Acta Acad. Caes. Leop.-Carol. German. Nat. Cur. 39: 142. 1876
e1. Heteropsideae Engl., Nat. Pflanzenr. 21: 20. 13 Jun 1905
e2. Anadendreae Bogner \& J. French in D.H. Nicolson, Taxon 33: 689. 1984
e3. Monstereae Engl., Nova Acta Acad. Caes. Leop.-Carol. German. Nat. Cur. 39: 143. 1876
f. Lasioideae Engl., Nova Acta Acad. Caes. Leop.-Carol. German. Nat. Cur. 39: 144. 1876
g. Zamioculcadoideae Bogner \& Hesse, Aroideana 28: 13. Jul 2005
g1. Stylochaetoneae Schott, Syn. Arotd.: 132. Mar 1856
g2. Zamioculcadeae Schott ex Engl., Nova Acta Acad. Caes. Leop.-Carol. German. Nat. Cur. 39: 141. 1876
h. Aroideae Arn., Botany: 136.9 Mar 1832
h1. Calleae Bartl., Ord. Nat. Pl.: 67. Sep 1830
h2. Philonotieae S.Y. Wong \& P.C. Boyce in S. Y. Wong et al., Taxon 59: 121. 5 Feb 2010
h3. Cryptocoryneae Blume, Rumphia 1: 83. Jul-Nov 1836
h4. Schismatoglottideae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov]: 218. 20 Jul 1943
h5. Anubiadeae Engl., Nova Acta Acad. Caes. Leop.-Carol. German. Nat. Cur. 39: 147. 1876
h6. Callopsideae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr. 2 : 29, 34. Apr 1906
h7. Culcasieae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. II, 3: 112, 116. Aug 1887
h8. Montrichardieae Engl., Nova Acta Acad. Caes. Leop.-Carol. German. Nat. Cur. 39: 144. 1876
h9. Philodendreae Schott, Syn. Aroid.: 71. Mar 1856
h10. Homalomeneae M. Hotta, Mem. Fac. Sci. Kyoto Univ., ser. Biol., 4: 89. 1970
h11. Aglaonemateae Engl., Nova Acta Acad. Caes. Leop.-Carol. German. Nat. Cur. 39: 148.1876
h12. Nephthytideae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. II, 3: 112, 128. Aug 1887
h13. Zantedeschieae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. II, 3: 113, 136. Aug 1887
h14. Dieffenbachieae Eng1., Nova Acta Acad. Caes. Leop.-Carol. German. Nat. Cur. 39: 148.1876
h15. Spathicarpeae Schott, Syn. Aroid.: 214. Mar 1856
h16. Thomsonieae Blume, Rumphia 1: 138. Apr-Jun 1837
h17. Caladieae Schott in H.W. Schott \& S.F.L. Endlicher, Melet. Bot.: 18. 1832
h18. Ambrosineae Schott in H.W. Schott \& S.F.L. Endlicher, Melet. Bot.: 16.1832
h19. Arisareae Dumort., Fl. Belg.: 162. 1827
h20. Peltrandreae Engl., Nova Acta Acad. Caes. Leop.-Carol. German. Nat. Cur. 39: 146. 1876
h21. Arophyteae A. Lemee ex Bogner, Bot. Jahrb. Syst. 92: 9. 1972
h22. Protareae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr. 2: 29, 34. Apr 1906
h23. Pistieae Lecoq \& Juill., Dict. Rass. Term. Bot.: 56, 493. 1831
h24. Colocasieae Brongn., Enum. Pl. Mus. Paris: 13. 12 Aug 1843
h25. Arisaemateae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov]: 221. 20 Jul 1943
h26. Areae R. Br. ex Duby, Bot. Gall. 1: 480. 12-14 Apr 1828
11. Tofieldiales Reveal \& Zomlefer, Novon 8: 176. 15 Jul 1998
32. Tofieldiaceae Takht., Bot. Zhurn. (Moscow \& Leningrad) 17(12): 65. 7-28 Feb 1995
12. Alismatales R. Br. ex Bercht. \& J. Presl, Přtr. Rostlm: 271. Jan-Apr 1820

Butomales Mart., Consp. Regn. Veg.: 8. Sep-Oct 1835
Elodeales Nakai, J. Jap. Bot. 25: 5. Feb 1950
Hydrocharitales Juss. ex Bercht. \& J. Presl, Přır. Rostlm: 271. Jan-Apr 1820
Najadales Bercht. \& J. Presl, Přrr. Rostlın: 271. Jan-Apr 1820
Vallisneriales Nakai, J. Jap. Bot. 24: 14. Dec 1949
33. Alismataceae Vent., Tabl. Règne Vég. 2: 157. 5 Mai 1799, nom. cons.

Damasontaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov]: 213. 20 Jul 1943
34. Limnocharitaceae Takht. ex Cronquist, Integr. Syst. Class. Fl. Pl.: 1048. 10 Aug 1981
35. Butomaceae Mirb., Hist. Nat. Pl. 8: 194. 1804, nom. cons.
36. Hydrocharitaceae Juss., Gen. Pl.: 67. 4 Aug 1789, nom. cons.

Blyxaceae Nakai, J. Jap. Bot. 24: 14. Dec 1949
Elodeaceae Dumort., Anal. Fam. Pl.: 54. 1829
Enhalaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov.]: 210, 211. 20 Jul 1943
Halophtlaceae J. Agardh, Theoria Syst. Pl.: 50. Apr-Sep 1858
Hydrillaceae Prantl, Lehrb. Bot., ed. 3: 188. 24 Jan 1879
Najadaceae Juss., Gen. Pl.: 18. 4 Aug 1789, nom. cons.
Stratootaceae Schultz Sch., Nat. Syst. Pflanzenr.: 274. 30 Jan-10 Feb 1832
Thalassiaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov.]: 210.20 Jul 1943
Vallisneriaceae Dumort., Anal. Fam. Pl.: 54, 55. 1829
a. Hydrocharitoideae Eaton, Bot. Dict., ed. 4: 29, 44. Apr-Mai 1836
b. Stratiotoideae Luerss., Handb. Syst. Bot. 2: 308. Dec 1879
c. Anacharidoideae Thomé, Fl. Deutschl. 1: 84. 1886
d. Najadoideae Luerss., Handb. Syst. Bot. 2: 304. Dee 1879
d1. Najadeae Dumort., Fl. Belg.: 164. 1827
d2. Vallisnerieae Dumort., Fl. Belg.: 135. 1827
d3. Halophileae Aschers., Flora 35: 172. Jul 1867
13. Potamogetonales Dumort., Anal. Fam. Pl.: 59. 1829
Aponogetonales Hutch., Fam. Fl. Pl. 2: 10, 43. 20 Jul 1934
Cymodoceales Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov]: 211. 20 Jul 1943
Juncaginales Mart., Consp. Regn. Veg.: 6. Sep-Oct 1835
Posidontales Nakai, Chosakuronbun Mokuroku[Ord. Fam. Trib. Nov]]: 211. 20 Jul 1943
Ruppiales Nakai, J. Jap. Bot. 25: 5. Feb 1950
Scheuchzeriales B. Boivin, Bull. Soc. Bot. France 103: 494. 20 Jan 1957
Zosterales J. Presl, Nowočeská Bıbl. [Wšobecný Rostl.] 7: 1667. 1846
37. Scheuchzeriaceae F. Rudolphi, Syst. Orb. Veg.: 28. 5-12 Jul 1830, nom. cons.
38. Aponogetonaceae Planch., Bot. Mag. 82: ad. t. 4904. 1 Jan 1856, nom. cons.
39. Juncaginaceae Rich., Démonstr. Bot.: ix. Mai 1808, nom. cons.
Heterostylaceae Hutch., Fam. Fl. Pl. 2: 41. 20 Jul 1934
Lilaeaceae Dumort., Anal. Fam. Pl.: 62, 65. 1829, nom. cons.
Triglochmaceae Bercht. \& J. Presl, Prír. Rostlin 1(7*-13): 1, 2. 1823
a. Juncaginoideae Arn., Botany: 136.9 Mar 1832
b. Lilaeoideae Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 76. 29 Jun 2007
40. Maundiaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov.]: 213. 20 Jul 1943
41. Zosteraceae Dumort., Anal. Fam. Pl.: 65, 66. 1829, nom. cons.
42. Cymodoceaceae Vines, Stud. Text-book Bot. 2: 553. Mar 1895, nom. cons.
43. Zannichelliaceae Chevall., F7. Gén. Env. Parıs 2: 257. 1827, nom. cons.
44. Potamogetonaceae Bercht. \& J. Presl, Přir. Rostlin 1(7*-13): 1, 3. 1823, nom. cons.
45. Posidoniaceae Vines, Stud. Text-book Bot. 2: 553. Mar 1895, nom. cons.
46. Ruppiaceae Horan., Prim. Lin. Syst. Nat.: 46. 2 Nov 1834, nom. cons.
14. Petrosaviales Takht., Divers. Classif. Fl. Pl.: 577. 24 Apr 1997
Myoshiales Nakai, J. Jap. Bot. 17: 189. Apr 1941
47. Petrosaviaceae Hutch., Fam. Fl. Pl. 2: 36. 20 Jul 1934, nom. cons.
Japonolrtaceae Takht., Bot. Zhurn. (Moscow \& Leningrad) 81(2): 85. Mai-Jun 1996
Miyoshiaceae Nakai, J. Jap. Bot. 17: 190. Apr 1941
a. Japonolirioideae M.N. Tamura in K. Kubitzki (ed.), Fam. Gen. Vasc. P1. 3: 390. 27
Aug 1998
b. Petrosavioideae Reveal, Phytoneuron 2012-33: 2. 9 Apr 2012
15. Nartheciales Reveal \& Zomlefer, Novon 8: 176. 15 Jul 1998
48. Nartheciaceae Fr. ex Bjurzon, Skandin. Växtfam. : 64. 1846
Lophtolaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov]: 225. 20 Jul 1943
16. Dioscoreales Mart., Consp. Regn. Veg.: 9. Sep-Oct 1835
Burmanniales Mart., Consp. Regn. Veg.: 9. Sep-Oct 1835
Taccales Dumort., Anal. Fam. Pl.: 57. 1829
Tamales Dumort., Anal. Fam. Pl.: 57. 1829
49. Taccaceae Dumort., Anal. Fam. Pl.: 57, 58. 1829, nom. cons.
50. Thismiaceae J. Agardh, Theoria Syst. Pl.: 99. Apr-Sep 1858, nom. cons.
51. Burmanniaceae Blume, Emum. Pl. Javae: 27. Oct-Dec 1827, nom. cons.
52. Dioscoreaceae R. Br., Prodr.: 294. 27 Mar 1810, nom. cons.
Avetraceae Takht., Divers. Classif. Fl. Pl.: 524. 24 Apr 1997
Stenomeridaceae J. Agardh, Theoria Syst. Pl.: 66. Apr-Sep 1858

Tamaceae Bercht. \& J. Presl, Přir. Rostlin: 267. Jan-Apr 1820
Tamnaceae J. Kickx f., Descr. Pl. Louvan.: 307. 1827
Trichopodaceae Hutch., Fam. Fl. Pl. 2: 143. 20 Jul 1934, nom. cons.
a. Stenomeridoideae Reveal, Phytoneuron 2012-37: 219. 23 Apr 2012
b. Trichopoideae Reveal, Phytoneuron 2012-33: 3. 9 Apr 2012
c. Dioscoreoideae Arn., Botany: 134. 9 Mar 1832
17. Pandanales R. Br. ex Bercht. \& J. Presl, Přir. Rostlin: 262. Jan-Apr 1820

Cyclanthales Mart., Consp. Regn. Veg.: 6. Sep-Oct 1835
Roxburghiales Mart., Consp. Regn. Veg.: 8. Sep-Oct 1835
Stemonales Takht. ex Doweld, Tent. Syst. Pl. Vasc.: 1x. 23 Dec 2001
Triuridales Hook.f. in J.E.M. Le Maout \& J. Decaisne, General Syst. Bot.: 1018. 25 Apr 1873
Velloztales R. Dahlgren ex Reveal, Novon 2: 239. 13 Oct 1992
53. Triuridaceae Gardner, Trans. Linn. Soc. London 19: 160. Jun-Dec 1843, nom. cons. Lacandoniaceae E. Martínes \& Ramos, Ann. Missourl Bot. Gard. 76: 128. 25 Apr 1989
a1. Sciaphileae Hook.f. in J.E.M. Le Maout \& J. Decaisne, General Syst. Bot.: 797. 25 Apr 1873
a2. Triurideae Miers in J. Lindley, Veg. Kingd., ed. 3: 144a, 144b. Aug 1853
a3. Kupeeae Cheek, Kew Bull. 58: 940. Feb 2004
54. Velloziaceae J. Agardh, Theoria Syst. Pl.: 9. Apr-Sep 1858, nom. cons. Acanthochlamydaceae P.C. Kao, Acta Bot. Sichuan 2: 1. Mar 1989 Barbaceniaceae Arn., Botany: 134. 9 Mar 1832
a. Velloziodeae Rendle, Class. Fl. Pl., ed. 2, 1: 309. 1930
b. Xerophytoideae Herb., Amaryllidaceae: 48, 55, 63, 81. late Apr 1837
c. Acanthochlamydoideae P.C. Kao, Acta Phytotax. Sin. 19: 323. Aug 1981
55. Stemonaceae Caruel, Nuovo Giorn. Bot. Ital. 10: 94. Apr 1878, nom. cons.

Croomiaceae Nakai, Iconogr. Pl. As. Ortent. 2: 159. Nov 1937
Pentastemonaceae Duyfjes, Bhumea 36: 552.9 Jun 1992
Roxburghiaceae Wall., Pl. Astat. Rar. 3: 50. 15 Aug 1832
a. Stemonoideae Reveal, Phytoneuron 2012-33: 3. 9 Apr 2012
a1. Stemoneae Voigt, Hort. Suburb. Calcutt:: 650. Aug-Dec 1845
a2. Croomieae Reveal, Phytoneuron 2012-37: 215. 23 Apr 2012
b. Pentastemonoideae Reveal, Phytoneuron 2012-37: 218. 23 Apr 2012
56. Cyclanthaceae Poit. ex A. Rich. in J.B.G.M. Bory de Saint-Vincent, Dict. Class. Hist.

Nat. 5: 222. 15 Mai 1824, nom. cons.
a. Carludovicoideae Harling, Acta Hort. Berg. 18: 126. 1958
b. Cyclanthoideae Burnett, Outlines Bot.: 405. Feb 1835
57. Pandanaceae R. Br., Prodr.: 340.27 Mar 1810, nom. cons.

Freycinetiaceae Brongn. ex Le Maout \& Decne., Traité Général Bot: 624. Jan-Apr 1868
a. Pandanoideae Burnett, Outlines Bot.: 405. Feb 1835
b. Freycinetioideae Kurz, J. Bot. 5: 94. 1 Apr 1867
18. Liliales Perleb, Lehrb. Naturgesch. Pflanzenr.: 129. Sep-Oct 1826

Alstroemeriales Hutch., Fam. Fl. Pl. 2: 12, 111. 20 Jul 1934
Campynematales Doweld, Tent. Syst. Pl. Vasc.: lvi. 23 Dec 2001
Colchicales Dumort., Anal. Fam. Pl.: 59. 1829
Lirtales K. Koch, Nat. Syst. Pflanzenr.: 151. 3-9 Nov 1839
Melanthiales Link, Handbuch 1: 145. 4-11 Jul 1829
Paridales Link, Handbuch 1: 277. 4-11 Jul 1829
Smilacales Link, Handbuch 1: 375. 4-11 Jul 1829

Trilliales Takht., Divers. Classif. Fl. Pl.: 485. 24 Apr 1997
Veratrales Dumort., Anal. Fam. Pl.: 59. 1829
18a. Campynematineae Reveal, Kew Bull. 66: 47. Aug 2011
58. Corsiaceae Becc., Malesta 1: 238. Sep 1878, nom. cons.
59. Campynemataceae Dumort., Anal. Fam. Pl.: 57, 58. 1829

18b. Alstroemeriineae J. Presl, Nowočeská Bibl. [Wšobecný Rostl.] 7: 1528, 1537. 1846
60. Petermanniaceae Hutch., Fam. Fl. Pl. 2: 113. 20 Jul 1934, nom. cons.
61. Colchicaceae DC., Essat Propr. Méd. Pl.: 56. Jul 1804, nom. cons.

Bulbocodiaceae Salisb., Gen. Pl.: 52. 15-31 Mai 1866
Burchardıaceae Takht., Bot. Zhurn. (Moscow \& Leningrad) 81(2): 85. Mai-Jun 1996
Merenderaceae Mirb., Hist. Nat. Pl. 8: 211. 1804
Uvilariaceae A. Gray ex Kunth, Enum. Pl. 4: 199. 17-19 Jul 1843, nom. cons.
a. Colchicoideae Burmeist., Handb. Naturgesch.: 223.1837
a1. Burchardieae J.C. Manning \& Vinn., Taxon 56: 177. 12 Mar 2007
a2. Uvularieae A. Gray ex Meisn., Pl. Vasc. Gen.: Tab. Diagn. 397, 402, Comm. 306. 17-20 Aug 1842
a3. Tripladenieae Vinn. \& J.C. Manning, Taxon 56: 177. 12 Mar 2007
b. Uvularioideae A. Gray, Manual: 496. 10 Feb 1848
b 1. Colchiceae T. Nees \& C.H. Eberm. ex Endl., Gen. Pl.: 137. Dec 1836
b2. Iphigenieae Hutch., Fam. Fl. Pl. 2: 84, 101. 20 Jul 1934
b3. Anguillarieae Pfeiff., Nomencl. Bot. 1(1): 192. ante 10 Mai 1872
62. Luzuriagaceae Lotsy, Vortr. Bot. Stammesgesch. 3: 760. 3-20 Sep 1911
63. Alstroemeriaceae Dumort., Anal. Fam. Pl.: 57, 58. 1829, nom. cons.
64. Melanthiaceae Batsch ex Borkh., Bot. Wörterb. 2: 8. 1797, nom. cons.

Chionographidaceae Takht., Bot. Zhurn. (Moscow \& Leningrad) 81(2): 85. MaiJun 1996
Heloniadaceae J. Agardh, Theoria Syst. Pl.: 4. Apr-Sep 1858
Veratraceae Salisb., Trans. Linn. Soc. London 8: 10. 1807
Xerophyllaceae Takht., Bot. Zhurn. (Moscow \& Leningrad) 81(2): 86. Mai-Jun 1996
a1. Meliantheae Dumort., Anal. Fam. Pl.: 45. 1829
a2. Heloniadeae Fr., Fl. Scan.: 174. 1835
a3. Chionographideae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov]: 229. 20 Jul 1943
a4. Parideae Bartl., Ord. Nat. Pl.: 53. Sep 1830
a5. Xerophylleae S. Watson, Proc. Amer. Acad. Arts 14: 225. 2 Aug 1879
18c. Smilacineae Reveal, Kew Bull. 66: 48. 2011
65. Philesiaceae Dumort., Anal. Fam. Pl.: 53, 54, 97. 1829, nom. cons.

Lapagertaceae Kunth, Emum. Pl. 5: 283. 10-11 Jun 1850
66. Rhipogonaceae Conran \& Clifford, Nordic J. Bot. 5: 219. 25 Oct 1985
67. Smilacaceae Vent., Tabl. Règne Vég. 2: 146. 5 Mai 1799, nom. cons.

18d. Liliineae Rchb., Deut. Bot. Herb.-Buch: xxxvii. Jul 1841
68. Liliaceae Juss., Gen. Pl.: 48. 4 Aug 1789, nom. cons.

Calochortaceae Dumort., Anal. Fam. Pl.: 53. 1829
Compsoaceae Horan., Prim. Lin. Syst. Nat.: 51. 2 Nov 1834
Erythronaceae Martinov, Tekhno-Bot. Slovar: 238. 3 Aug 1820
Fritillariaceae Salisb., Gen. Pl.: 56. 15-31 Mai 1866
Lirtaceae Batsch ex Borkh., Bot. Wörterb. 1:374. 1797
Medeolaceae Takht., Stst. Magnoliof. [Syst. Magnoltoph.]: 291. 24 Jun 1987
Paridaceae Dumort., Fl. Belg.: 131. 1827

Scoliopaceae Takht., Bot. Zhurn. (Moscow \& Leningrad) 81(2): 86. Mai-Jun 1996 Tricyrtidaceae Takht., Divers. Classif. Fl. Pl.: 482.24 Apr 1997, nom. cons. Trilltaceae Chevall., Fl. Gén. Env. Paris 2: 297. 1827, nom. cons. Tulipaceae Batsch ex Borkh., Bot. Wörterb. 2: 391. 1797
a. Medeoloideae M.N. Tamura in K. Kubitzki (ed.), Fam. Gen. Vasc. Pl. 3: 350. 27 Aug 1998
b. Lilioideae Eaton, Bot. Dict., ed. 4: 27. Apr-Mai 1836
b1. Tulipeae Duby, Bot. Gall. 1: 461. 12-14 Apr 1828
b2. Lilieae Lam. \& DC., Syn. Pl. Fl. Gall.: 159. 30 Jun 1806
c. Streptopoideae Mabberley ex Reveal, Phytoneuron 2012-37: 219. 23 Apr 2012
d. Tricyrtidoideae Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 78. 29 Jun 2007
e. Calochortoideae Thorne \& Reveal ex Reveal, Phytoneuron 2012-37: 216. 23 Apr 2012
19. OrCHIDALEs Raf., Anal. Nat:: 197. Apr-Jul 1815 Apostasiales Mart., Consp. Regn. Veg.: 10. Sep-Oct 1835
Asteliales Dumort., Anal. Fam. Pl.: 59. 1829 Hypoxidales Mart., Consp. Regn. Veg.: 9. Sep-Oct 1835
69. Orchidaceae Juss., Gen. Pl.: 64. 4 Aug 1789, nom. cons.

Apostastaceae Lindl., Nix. Pl.: 22. 17 Sep 1833, nom. cons.
Cypripediaceae Lindl., Nix. Pl.: 22. 17 Sep 1833
Limodoraceae Horan., Char. Ess. Fam.: 44. 17 Jun 1847
Liparidaceae Vines, Stud. Text-book Bot. 2: 567. Mar 1895
Neottiaceae Horan., Prim. Lin. Syst. Nat.: 50. 2 Nov 1834
Neuwtedhaceae R. Dahlgren ex Reveal \& Hoogland, Bull. Mus. Natl. Hist. Nat., ser. 4, sect. B Adansonia 13: 91. 4 Oct 1991 Ophrydaceae Vines, Stud. Text-book Bot. 2: 566. Mar 1895 Pycnanthaceae Ravenna, Onira 12(6): 29. 18 Mai 2011 (see p. 170) Vanillaceae Lindl., Key Bot.: 73. 15-30 Sep 1835
a. Apostasioideae Horan., Char. Ess. Fam.: 46. 17 Jun 1847
b. Vanilloideae Szlach., Fragm. Florist. Geobot., Supp. 3: 48.1995
b1. Pogonieae Pfetzer ex Garay \& Dunsterv., Venez. Orchids Ill. 2: 28. 1961
b2. Vanilleae Blume, Rumphia 1: 196. Dec 1837
c. Cypripedioideae Lindl. ex Endl., Gen. Pl.: 220. Jun 1837
d. Limodoroideae Burnett, Outlines Bot.: 461. Feb 1835
d1. Vandeae Lindl., Orchid. Select.: 7, 14. Jan 1826
d2. Neottieae Lindl., Orchid. Select.: 7, 9. Jan 1826
d3. Epipogonieae Parl., Fl. Ital. 3: 388. 1858
d3a. Nerviliinae Schltr., Notzzbl. Bot. Gart. Berlin-Dahlem 9: 571, 584. 22 Jul 1926
d3b. Epipogoniinae Schltr., Notizbl. Bot. Gart. Berlin-Dahlem 9: 571, 584. 22 Jul 1926
d4. Triphoreae Dressler, Selbyana 5: 204. 27 Dec 1979
d4a. Triphorinae Szlach., Fl. Geob. Phytotax. 26: 325. 11 Nov 1991
d4b. Dicer atostelinae Szlach., Fragm. Florist. Geobot., Supp. 3: 41. 1995
d5. Tropidieae Dressler, Telopia 2: 422. 13 Oct 1983
d6. Sobralieae Pfitzer, Entwurf. Anordn. Orch.: 99. Jan-Apr 1887
d7. Xerorchideae P.J. Cribb, Kew Bull. 60: 143. Jul 2005
d8. Gastrodieae Lindl., Orchid. Select.: 7, 11. Jan 1826
d9. Arethuseae Lindl., Orchid. Select.: 7, 10. Jan 1826
d9a. Coelogyninae Benth., J. Linn. Soc. London, Bot. 18: 287. 21 Feb 1881
d9b. Arethusinae Benth., J. Linn. Soc. London, Bot. 18: 288. 21 Feb 1881
d10. Malaxideae Lindl., Collect. Bot. 8: 7. Jan 1826
d11. Dendrobieae Lindl. ex Endl., Gen. Pl.: 190. Jun 1837
d12. Maxillarieae Pfitzer, Entwurf. Anordn. Orch.: 105. Jan-Apr 1887 d12a. Eriopsidinae Szlach., Fragm. Florist. Geobot. Supp. 3: 94. 1995
d12b. Coeliopsidinae Szlach., Fragm. Florist. Geobot. Supp. 3: 97. 1995
d12c. Stanhopeinae Benth., J. Linn. Soc. London, Bot. 18: 288. 21 Feb 1881
d12d. Maxillariinae Benth., J. Linn. Soc. London, Bot. 18: 288. 21 Feb 1881
d12e. Oncidiinae Benth., J. Linn. Soc. London, Bot. 18: 288. 21 Feb 1881
d12f. Zygopetalinae Schltr., Notizbl. Bot. Gart. Berlin-Dahlem 9: 577, 588. 22 Jul 1926
d12g. Vargasiellinae C. Schweinf. ex G.A. Romero \& Carnevali, Novon 3: 79. 19 Mar 1993
d12h. Cymbidiinae Benth., J. Linn. Soc. London, Bot. 18: 287. 21 Feb 1881
d12i. Cyrtopodiinae Benth., J. Linn. Soc. London, Bot. 18: 288. 21 Feb 1881
d12j. Catasetinae Schltr., Notizbl. Bot. Gart. Berlin-Dahlem 9: 577, 588. 22 Jul 1926
d12k. Eulophiinae Benth., J. Linn. Soc. London, Bot. 18: 287. 21 Feb 1881
d13. Corallorrhizeae Fr., Fl. Scan.: 163, 164. 1835
d14. Epidendreae Lindl., Collect. Bot.: 7, 16. Jan 1826
d14a. Coeliinae Dressler, Lindleyana 5: 124. 29 Jun 1990
d14b. Chysidinae Schltr., Notzzbl. Bot. Gart. Berlm-Dahlem 9: 575, 587. 22 Jul 1926
d14c. Ponerinae Pfitzer, Entwurf. Anordn. Orch.: 101. Jan-Apr 1887
d14d. Bletiinae Benth., J. Linn. Soc. London, Bot. 18: 287. 21 Feb 1881
d14e. Laeliinae Benth., J. Linn. Soc. London, Bot. 18: 287. 21 Feb 1881
d14f. Pleurothallidinae Lindl. ex G. Don in R. Sweet, Hort. Brit., ed. 3: 636. late 1839
d15. Collabieae Pfitzer, Entwurf. Anordn. Orch.: 100. Jan-Apr 1887
d16. Podochileae Pfitzer, Entwurf. Anordn. Orch.: 101. Jan-Apr 1887
d16a. Thelasinae Ridl., Fl. Malay Penins. 4: 9. 1 Dec 1924
d16b. Eriinae Benth., J. Linn. Soc. London, Bot. 18: 287. 21 Feb 1881
f. Orchidoideae Eaton, Bot. Dict., ed. 4: 29. Apr-Mai 1836
f1. Codonorchideae P.J. Cribb in P.J. Cribb \& P.J. Kores, Lindleyana 15: 169. 29 Sep 2000
f2. Satyrieae Fr., Fl. Scan.: 163. 1835
f2a. Brownleeinae H.P. Linder \& H. Kurzweil, Ann. Missourt Bot. Gard. 81: 710. 1994
f2b. Corycinae Benth., J. Linn. Soc. London, Bot. 18: 288. 21 Feb 1881
f2c. Disinae Benth., J. Linn. Soc. London, Bot. 18: 288. 21 Feb 1881
f2d. Huttonaeinae Schltr., Notizbl. Bot. Gart. Berlin-Dahlem 9: 568, 583. 22 Jul 1926
f2e. Satyriinae Pfitzer, Entwurf. Anordn. Orch.: 96. Jan-Apr 1887
f3. Orchideae Small, Man. S.E. Fl.: 363. 30 Nov 1933
f3a. Habenariinae Benth., J. Linn. Soc. London, Bot. 18: 288. 21 Feb 1881
f3b. Orchidinae Dressler \& Dodson ex Reveal, Phytoneuron 2012-33: 2. 9 Apr 2012
f4. Chloraeeae Pfeiff., Nomencl. Bot. 1(1): 722. ante 9 Mai 1873
f5. Pterostylideae P. Royen, Alpine Fl. N. Guinea 2: 88. 1979
f6. Cranichideae Pfeiff., Nomencl. Bot. 1(2): 901. ante 3 Oct 1873
f6a. Pterostylidinae Pfitzer, Entwurf. Anordn. Orch.: 97. Jan-Apr 1887
f6b. Physurinae Lindl. ex Meisn., Pl. Vasc. Gen.: Tab. Diagn. 386, Comm. 288. 17-20 Aug 1842
f6c. Galeottiellinae Salazar \& M.W. Chase, Lindleyana 17: 172. 9 Oct 2002
f6d. Manniellinae Schltr., Notzbl. Bot. Gart. Berlin-Dahlem 9: 572, 585. 22 Jul 1926
f6e. Cranichidinae Lindl. ex Meisn., Pl. Vasc. Gen.: Tab. Diagn. 384, Comm. 288. 17-20 Aug 1842
f6f. Spiranthinae Lindl. ex Meisn., Pl. Vasc. Gen.: Tab. Diagn. 385, Comm. 288. 17-20 Aug 1842
f6g. Chloraeinae Pfitzer, Entwurf. Anordn. Orch.: 98. Jan-Apr 1887
f6h. Achlydosinae M.A. Clem. \& D.L. Jones in D.L. Jones et al., Orchadian 13: 439. 30 Jan. 2002
f7. Diurideae Endl. ex Butzin, Willdenowia 6: 311. 22 Oct 1971
f7a. Rhizanthellinae R.S. Rogers, J. Roy. Soc. W. Australia 15: 4. 17 Oct 1928
f7b. Prasophyllinae Schltr., Bot. Jahrb. Syst. 45: 381. 21 Feb 1911
f7c. Cryptostylidinae Schltr., Notizbl. Bot. Gart. Berlin-Dahlem 9: 570, 583. 22 Jul 1926
f7d. Drakaeinae Schltr., Bot. Jahrb. Syst. 45: 381. 21 Feb 1911
f7e. Thelymitrinae Lindl. ex Meisn., Pl. Vasc. Gen.: Tab. Diagn. 387, Comm. 289. 17-20 Aug 1842
f7f. Megastylidinae Schltr., Notizbl. Bot. Gart. Berlin-Dahlem 9: 570, 583. 22 Jul 1926
f7g. Eriochilinae M.A. Clem. \& D.L. Jones in D.L. Jones, et al., Orchadian 13: 459. 30 Jan 2002
f7h. Spuricianthinae M.A. Clem. \& D.L. Jones in D.L. Jones et al., Orchadtan 13: 463. 30 Jan 2002
f7i. Townsoniinae M.A. Clem. \& D.L. Jones in D.L. Jones et al., Orchadian 13: 464. 30 Jan 2002
f7j. Acianthinae Schltr., Bot. Jahrb. Syst. 45: 381. 21 Feb 1911
f7k. Diuridinae Lindl. ex Meisn., Pl. Vasc. Gen.: Tab. Diagn. 387, Comm. 289. 1720 Aug 1842
f71. Adenochilidinae M.A. Clem. \& D.L. Jones in D.L. Jones, M.A. Clements, I.K. Sharma, A.M. Mackenzie \& B.P.J. Molloy, Orchadtan 13: 439. 30 Jan. 2002
f7m. Caladeniinae Pfitzer, Entwurf. Anordn. Orch.: 97. Jan-Apr 1887
f7n. Coilochilideae M.A. Clem. \& D.L. Jones in D.L. Jones et al., Orchadian 13: 439. 30 Jan. 2002
70. Boryaceae M.W. Chase, Rudall \& Conran, Kew Bull. 52: 416. Jul 1997
71. Blandfordiaceae R. Dahlgren \& Clifford in R. Dahlgren \& al., Fam. Monocot.: 155. 1985
72. Lanariaceae H. Huber ex R. Dahlgren in R. Dahlgren \& AE. van Wyk, Monogr. Syst. Bot. Missouri Bot. Gard. 25: 71. Jun 1988
73. Asteliaceae Dumort., Anal. Fam. Pl.: 59, 61. 1829
74. Hypoxidaceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 576. 19 Jul 1814, nom. cons. 20. Iridales Raf., Anal. Nat.: 197. Apr-Jun 1815

Agavales Hutch., Fam. Fl. Pl. 2: 14, 149. 20 Jul 1934
Alliales Bercht. \& J. Presl, Přrr. Rostlin: 267. Jan-Apr 1820
Amaryllidales Link, Handbuch 1: 193. 4-11 Jul 1829
Asparagales Link, Handbuch 1: 272. 4-11 Jul 1829
Asphodelales Doweld, Tent. Syst. Pl. Vasc.: lvii. 23 Dec 2001
Gilliestales Mart., Consp. Regn. Veg.: 7. Sep-Oct 1835
Ixiales Lindl., Key Bot.: 70. 15-30 Sep 1835
Narcissales Dumort., Anal. Fam. Pl.: 57. 1829

Tecophilaeales Traub ex Reveal, Phytologia 74: 176. 25 Mar 1993
Xanthorrhoeales Takht. ex Reveal \& Doweld, Novon 9: 552. 30 Dec 1999
20a. Iridineae Engl., Syllabus, ed. 2: 94. Mai 1898
75. Tecophilaeaceae Leyb., Bonplandia 10: 370. Dec 1862, nom. cons.

Androsynaceae Salisb., Gen. Pl.: 61. 15-31 Mai 1866
Conantheraceae Pfeiff., Nomencl. Bot. 1: 839. 21 Feb 1873
Cyanastraceae Engl., Bot. Jahrb. Syst. 28: 357. 22 Mai 1900, nom. cons.
Cyanellaceae Salisb., Gen. Pl.: 46. 15-31 Mai 18661866
Wallertaceae H. Huber ex Takht., Bot. Zhurn. (Moscow \& Leningrad) 79(12): 65. 7-28 Feb 1995, nom. cons.
a. Wallerioideae R. Dahlgren in R. Dahlgren \& A.E. van Wyk in Monogr. Syst. Bot. Missourl Bot. Gard. 25: 75, 76. Jun 1988
b. Tecophilaeoideae Reveal, Phytoneuron 2012-33: 3. 9 Apr 2012
c. Cyanastroideae Engl. ex Reveal, Phytoneuron 2012-33: 2. 9 Apr 2012
76. Ixiolirionaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov.]: 234. 20 Jul 1943
77. Doryanthaceae R. Dahlgren \& Clifford in R. Dahlgren \& al., Fam. Monocot.: 175. 1985
78. Iridaceae Juss., Gen. Pl.: 57. 4 Aug 1789, nom. cons.

Crocaceae Vest, Anleit. Stud. Bot.: 266, 283. 1818
Galaxiaceae Raf., New Fl. N. Amer. 1: 72. Dec 1836
Geosiridaceae Jonker, Receull Trav. Bot. Néerl. 36 [=Meded. Bot. Mus. Herb. Rijksunv. Utrecht 60]: 477. seors. impr. 18 Mai 1939, nom. cons.
Gladtolaceae Raf., Fl. Tellur. 4: 34. (med.) 1838
Isophysidaceae F.A. Barkley, Revista Fac. Nac. Agron. Medellin Univ. Antioquia 8: 152. Sep 1948

Ixiaceae Horan., Prim. Lin. Syst. Nat.: 51. 2 Nov 1834
a. Isophysidoideae Takht. ex Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 79. 29 Jun 2007
b. Iridoideae Eaton, Bot. Dict., ed. 4: 28. Apr-Mai 1836
b1. Irideae Kitt. in A. Richard, Nouv. Elém. Bot., ed. 3, Germ. trans1.: 736. 1840
b2. Trimezieae Ravenna, Wrightia 7: 12. 1 Jun 1981
b3. Tigridieae Kitt. in A. Richard, Nouv. Elém. Bot., ed. 3, Germ. trans1.: 736. 1840
b4. Sisyrinchieae Klatt in C.F.P. von Martius, Fl. Bras. 3(1): 511, 529. 1 Jul 1871
c. Patersonioideae Goldblatt in P. Goldblatt \& J.C. Manning, Iris Fam.: 93. 12 Nov 2008
d. Geosiridoideae Goldblatt \& J.C. Manning, Irts Fam.: 95.12 Nov 2008
e. Aristeoideae Vines, Stud. Text-book Bot. 2: 566. Mar 1895
f. Nivenioideae Schulze ex Goldblatt, Ann. Missouri Bot. Gard. 77: 621. 16 Nov 1990
g. Crocoideae Burnett, Outlines Bot.: 451. Feb 1835
g1. Tritoniopsideae Goldblatt \& J.C. Manning, Aliso 22: 408 . Oct 2006
g2. Ixieae Dumort., Fl. Belg.: 137. 1827
g3. Freesieae Goldblatt \& J.C. Manning, Aliso 22: 408. Oct 2006
g4. Gladioleae Dumort., Fl. Belg.: 137. 1827
g5. Watsonieae Klatt, Abh. Naturf. Ges. Halle 15: 351. Jun 1882
20b. Asphodelineae Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 80. 29 Jun 2007
79. Xeronemataceae M.W. Chase, Rudall \& M.F. Fay, Kew Bull. 55: 869. 27 Dec 2000
80. Hemerocallidaceae R. Br., Prodr.: 295. 27 Mar 1810

Aloaceae Batsch, Tab. Affin. Regni Veg.: 138. 2 Mai 1802
Asphodelaceae Juss., Gen. Pl.: 51. 4 Aug 1789
Dianellaceae Salisb., Gen. Pl.: 66. 15-31 Mai 1866
Geitonoplestaceae R. Dahlgren ex Conran, Telopea 6: 39. Nov. 1994
Johnsoniaceae Lotsy, Vortr. Bot. Stammesgesch. 3: 731. 3-20 Sep 1911

Phormiaceae J. Agardh, Theoria Syst. Pl.: 7. Apr-Sep 1858
Xanthorrhoeaceae Dumort., Anal. Fam. Pl.: 60, 62, 103. 1829, nom. cons.
a. Hemerocallidoideae Lindl., Veg. Kingd.: 201, 205. Jan-Mai 1846
a1. Phormieae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov.]: 230. 20 Jul 1943
a2. Dianelleae Baker, J. Lmn. Soc. London, Bot. 14: 521. 24 Apr 1875
a3. Hemerocallideae Duby, Bot. Gall. 1: 471. 12-14 Apr 1828
a4. Johnsonieae Benth., Fl. Austral. 7: 5, 63. 23-30 Mar 1878
b. Xanthorrhoeoideae Reveal, Phytoneuron 2012-33: 3. 9 Apr 2012
c. Asphodeloideae Burnett, Outlines Bot.: 427. Feb 1835
c1. Asphodeleae Lam. \& DC., Syn. Pl. Fl. Gall.: 160. 30 Jun 1806
c1a. Asphodelinae Baker, J. Linn. Soc. London, Bot. 15: 258. 14 Sep 1876
c1b. Kniphofiinae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. II, 5:
18, 42. 26 Mar 1887
c2. Aloeae A. Rich. in C.H.D. d'Orbigny, Dict. Univ. Hist. Nat. 1: 291. 18 Dec 1841
20c. Hyacinthineae Link, Handbuch 1: 160. 4-11 Jul 1829
81. Agapanthaceae F. Voigt, Gesch. Pflanzen-Reichs 2: 440. 1850
82. Alliaceae Borkh., Bot. Wörterb. 1: 15. 1797, nom. cons.

Cepaceae Salisb., Gen. Pl.: 88. 15-31 Mai 1866
Gilliestiaceae Lindl., Bot. Reg. 12: ad t. 992. 1 Jul 1826
Milulaceae Traub, Pl. Life 28: 131. 22 Feb 1972
Tulbaghiaceae Salisb., Gen. Pl.: 87. 15-31 Mai 1866
a. Allioideae Herb., Amaryllidaceae: 48. late Apr 1837
b. Tulbaghioideae M.F. Fay \& M.W. Chase, Taxon 45: 448. 13 Aug 1996
c. Gilliesioideae Arn., Botany: 134. 9 Mar 1832
83. Amaryllidaceae J. St.-Hil., Expos. Fam. Nat. 1: 134. Feb-Apr 1805, nom. cons.

Brunsvigiaceae Horan., Prim. Lin. Syst. Nat.: 51. 2 Nov 1834
Crinaceae Vest, Anleit. Stud. Bot.: 267, 283. 1818
Cyrtanthaceae Salisb., Gen. Pl.: 138. 15-31 Mai 1866
Galanthaceae G. Mey., Chloris Han.: 510, 560. Jul-Aug 1836
Gethyllidaceae Raf., Fl. Tellur. 4: 19. (med.) 1838
Haemanthaceae Salisb., Gen. Pl.: 129. 15-31 Mai 1866
Leucojaceae Batsch ex Borkh., Bot. Wörterb. 1: 372. 1797
Narcissaceae Juss., Gen. Pl.: 54. 4 Aug 1789
Oporanthaceae Salisb., Gen. Pl.: 97. 15-31 Mai 1866
Pancratiaceae Horan., Char. Ess. Fam.: 50. 17 Jun 1847
Strumariaceae Salisb., Gen. Pl.: 126. 15-31 Mai 1866
Zephyranthaceae Salisb., Gen. Pl.: 133. 15-31 Mai 1866
a 1. Amaryllideae Dumort., Anal. Fam. Pl.: 58. 1829
a2. Cyrtantheae Traub, Herbertia 5: 111. Nov 1938
a3. Haemantheae Hutch., Fam. Fl. Pl. 2: 130. 20 Jul 1934
a4. Calostemmateae D. Müll.-Doblies \& U. Müll.-Doblies, Feddes Repert. 107(Short commun.): 7. Dec 1996
a5. Gethyllideae Dumort., Anal. Fam. Pl.: 58. 1829
a6. Lycorideae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov.]: 235. 20 Jul 1943
a7. Pancratieae Dumort., Anal. Fam. Pl.: 58. 1829
a8. Narcisseae Lam. \& DC., Syn. Pl. Fl. Gall.: 165. 30 Jun 1806
a9. Galantheae Parl., F7. Ital. 3: 75. 1858
a10. Hippeastreae Herb. ex Sweet, Brit. Fl. Gard., ser. 2, 1: ad t. 14. 1 Sep 1829
a11. Eucharideae Hutch., Fam. Fl. Pl. 2: 130. 20 Jul 1934
a12. Hymenocallideae Small, Man. S.E. F7.: 315. 30 Nov 1933
a13. Stenomesseae Traub, Pl. Life 19: 60. Jan 1963
a14. Clinantheae Meerow, Syst. Bot. 25: 722. 21 Dec 2000
a15. Eustephieae Hutch., Fam. Fl. Pl. 2: 130. 20 Jul 1934
84. Hyacinthaceae Batsch ex Borkh., Bot. Wörterb. 1: 315. 1797

Eucomidaceae Salisb., Gen. Pl.: 16. 15-31 Mai 1866
Lachenaliaceae Salisb., Gen. Pl.: 20. 15-31 Mai 1866
Ornithogalaceae Salisb., Gen. Pl.: 33. 15-31 Mai 1866
Scillaceae Vest, Anlett. Stud. Bot.: 267, 284. 1818
a. Oziroëoideae Speta, Phyton (Horn) 38: 51. 14 Aug 1998
b. Urgineoideae Speta, Phyton (Horn) 38: 51. 14 Aug 1998
b1. Oziroëeae M.W. Chase, Reveal \& M.F. Fay, Bot. J. Linn. Soc. 161: 135. 28 Oct 2009
b2. Urgineeae Rouy, Fl. France 12: 330, 424. Nov 1910
c. Ornithogaloideae Speta, Phyton (Horn) 38: 51. 14 Aug 1998
cl. Ornithogaleae Rouy, Fl. France 12: 330, 411. Nov 1910
c2. Dipcadieae Rouy, Fl. France 12: 329, 426. Nov 1910
d. Hyacinthoideae Speta, Phyton (Horn) 38: 51. 14 Aug 1998
d1. Massonieae Baker, J. Linn. Soc. London, Bot. 11:355. 17 Sep 1870
d2. Hyacintheae Dumort., Fl. Belg.: 141. 1827
85. Aphyllanthaceae Burnett, Outlnes Bot.: 421, 1153. Feb 1835
86. Themidaceae Salisb., Gen. Pl.: 84. 15-31 Mai 1866
87. Agavaceae Dumort., Anal. Fam. Pl.: 57, 58. 1829, nom. cons.

Anemarrhenaceae Conran, M.W. Chase \& Rudall, Kew Bull. 52: 995. Dec 1997
Anthericaceae J. Agardh, Theoria Syst. Pl.: 27. Apr-Sep 1858
Behniaceae Conran, MW. Chase \& Rudall, Kew Bull. 52: 996. Dec 1997
Chlorogalaceae Doweld \& Reveal in J.L. Reveal, Bot. Rev. (Lancaster) 71: 53. 20
Mai 2005
Herreriaceae Kunth, Emum. Pl. 5: 290. 10-11 Jun 1850
Hesperocalldaceae Traub, Pl. Life 28: 131. 22 Feb 1972
Hostaceae B. Mathew, Kew Bull. 43: 302. Jun 1988
Yuccaceae J. Agardh, Theorla Syst. Pl.: 8. Apr-Sep 1858
a. Chlorogaloideae Lotsy, Vortr. Bot. Stammesgesch. 3: 723, 959. 3-20 Sep 1911
b. Agavoideae Herb., Amaryllidaceae: 48, 57, 67, 121. late Apr 1837
b1. Anemarrheneae Reveal, Phytoneuron 2012-37: 215. 23 Apr 2012
b2. Agaveae Dumort., Anal. Fam. Pl.: 58. 1829
b3. Behnieae Reveal, Phytoneuron 2012-37: 216. 23 Apr 2012
b4. Herrerieae Baill., Hist. Pl. 12: 482, 532. Apr 1894
c. Hesperocallidoideae Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 81. 29 Jun 2007
d. Anthericoideae Irvine, London Fl.: 41. Sep-Dec 1838

20d. Asparagineae J. Pres1, Nowočeská Bibl. [Wšobecný Rostl.] 7: 1556. 1846
88. Laxmanniaceae Bubani, Fl. Pyren. 4: 111. 15-28 Feb 1902

Eustrephaceae Chupov, Bot. Zhurn. (Moscow \& Leningrad) 79(3): 7. Mar-Sep 1994
Lomandraceae Lotsy, Vortr. Bot. Stammesgesch. 3: 761. 3-20 Sep 1911
a. Lomandroideae Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 82. 29 Jun 2007
b. Laxmannioideae Thorne \& Reveal ex Reveal, Phytoneuron 2012-37: 217. 23 Apr 2012
89. Asparagaceae Juss., Gen. Pl.: 40.4 Aug 1789, nom. cons.

90 . Ruscaceae M. Roem., Handb. Allg. Bot. 3: 446. 1840, nom. cons.
Aspidistraceae Hassk., Cat. Hort. Bot. Bogor.: 32. Oct 1844

Convallariaceae Horan., Prim. Lim. Syst. Nat.: 53. 2 Nov 1834
Dracaenaceae Salisb., Gen. Pl.: 73. 15-31 Mai 1866, nom. cons.
Eriospermaceae Orb., Dict. Univ. Hist. Nat. 5: 402. 29 Mar 1845
Nolmaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov.]: 226. 20 Jul 1943
Ophıpogonaceae Meissn., P1. Vasc. Gen., Tab. Diagn. 397, Comm. 308. 12-14 Feb 1842
Peliosanthaceae Salisb., Gen. Pl.: 63. 15-31 Mai 1866
Polygonataceae Salisb., Gen. Pl.: 63. 15-31 Mai 1866
Sansevieriaceae Nakai, J. Jap. Bot. 12: 779. Nov 1936
Tupistraceae Schnizl., Iconogr. Fam. Regn. Veg. 1: 72. Jan-Apr 1846
a. Eriospermoideae Reveal, Phytoneuron 2012-37: 217. 23 Apr 2012
b. Convallarioideae Herb., Amaryllidaceae: 48. late Apr 1837
b1. Polygonateae Benth. \& Hook.f., Gen. Pl. 3: 749, 752. 14 Apr 1883
b2. Convallarieae Dumort., F7. Belg.: 138. 1827
b3. Aspidistreae Endl. ex Meisn., Pl. Vasc. Gen.: Tab. Diagn. 397, 403, Comm. 307. 17-20 Aug 1842
c. Ruscoideae Dippel, Handb. Laubholzk. 1: 9. Aug-Sep 1889
d. Dracaenoideae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. II, 5: 19. 26 Mar 1887
e. Nolinoideae Burnett, Outlines Bot.: 985, 1095, 1106. Feb 1835
21. Dasypogonales Doweld, Tent. Syst. Pl. Vasc.: 1xi. 23 Dec 2001
91. Dasypogonaceae Dumort., Anal. Fam. Pl.: 54, 55. 1829

Baxtertaceae Takht., Bot. Zhurn. (Moscow \& Leningrad) 81(2): 85. Mai-Jun 1996 Calectastaceae Schnizl., Iconogr. Fam. Regn. Veg. 1: 51******. Jan-Jul 1845 Kingiaceae Endl. ex Schnizl., Iconogr. Fam. Regn. Veg. 1: 51*****. Jan-Jul 1845
a. Dasypogonoideae Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 84. 29 Jun 2007
b. Kingioideae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 406. 17-20 Aug 1842
22. Arecales Bromhead, Mag. Nat. Hist., n.s., 4: 333. Jul 1840

Cocosales Nakai, Husi-Shokubutsu: 48. 1930
92. Arecaceae Bercht. \& J. Pres1, Přlr. Rostlın: 266. Jan-Apr 1820, nom. cons., nom. alt. Acristaceae O.F. Cook, Contr. U.S. Natl. Herb. 16: 252. 14 Mai 1913
Borassaceae Schultz Sch., Nat. Syst. Pflanzenr.: 318. 30 Jan-10 Feb 1832 Calamaceae Kunth ex Perleb, Clav. Class.: 13. Jan-Mar 1838 Ceroxylaceae Vines, Stud. Text-book Bot. 2: 544. Mar 1895 Chamaedoreaceae O.F. Cook, Contr. U.S. Natl. Herb. 16: 252. 14 Mai 1913 Cocosaceae Schultz Sch., Nat. Syst. Pflanzent.: 316. 30 Jan-10 Feb 1832 Coryphaceae Schultz Sch., Nat. Syst. Pflanzenr.: 317. 30 Jan-10 Feb 1832 Geonomataceae O.F. Cook, Contr. U.S. Natl. Herb. 16: 252. 14 Mai 1913 Irtarteaceae O.F. Cook \& Doyle, Contr. U.S. Natl. Herb. 16: 225. 13 Feb 1913 Lepidocaryaceae Mart., Hist. Nat. Palm. 3: 196. 23 Sep 1838
Malortieaceae O.F. Cook, Contr. U.S. Natl. Herb. 16: 252. 14 Mai 1913
Manicariaceae O.F. Cook, Contr. U.S. Natl. Herb. 13: 140. 22 Jun 1910
Morentaceae O.F. Cook in A.P. Northrop, Mem. Torrey Bot. Club 12: 24. 1902
Nypaceae Brongn. ex Le Maout \& Decne., Tratté Général Bot.: 624. Jan-Apr 1868
Palmae Juss., Gen. Pl.: 37. 4 Aug 1789, nom. cons.
Phoenicaceae Burnett, Outlines Bot.: 395, 1155. Feb 1835
Phytelephantaceae Mart. ex Perleb, Clav. Class.: 11. Jan-Mar 1838
Pseudophoentcaceae O.F. Cook, Contr. U.S. Natl. Herb. 16: 243. 14 Mai 1913
Rhapidaceae Bercht. \& J. Presl, Prir. Rostlin: 266. Jan-Apr 1820
Sabalaceae Schultz Sch., Nat. Syst. Pflanzenr.: 317. 30 Jan-10 Feb 1832

Sagaceae Schultz Sch., Nat. Syst. Pflanzenr:: 316. 30 Jan-10 Feb 1832
Synechanthaceae O.F. Cook, Contr. U.S. Natl. Herb. 16: 252. 14 Mai 1913
a. Calamoideae Beilschm., Flora 16(Beibl. 7): 55, 105.14 Jun 1833
a 1. Eugeissoneae W.J. Baker \& J. Dransf., Syst. Bot. 25: 318. 5 Jun 2000
a2. Lepidocaryeae Dumort., Anal. Fam. Pl.: 55. 1829
a2a. Ancistrophyllinae Becc., Ann. Roy. Bot. Gard. Calcutta 12(2): 209. 1918
a2b. Raphiinae Wendl., J. Bot. 3: 383. 1 Dec 1865
a2c. Mauritiinae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 354, Comm. 265. 13-15 Feb 1842
a3. Calameae Lecoq \& Juill., Dict. Rats. Term. Bot.: 98. 1831
a3a. Korthalsiinae Bece., Ann. Roy. Bot. Gard. Calcutta 12(2): 209. 1918
a3b. Salaccinae Becc., Ann. Roy. Bot. Gard. Calcutta 12(2): 207. 1918
a3c. Metroxylinae Blume, Rumphta 2: 176. Jan-Aug 1843
a3d. Pigafettinae J. Dransf. \& N.W. Uhl, Princtpes 30: 5. 20 Feb 1986
a3e. Plectocomiinae J. Dransf. \& N.W. Uhl, Principes 30: 5. 20 Feb 1986
a3f. Calaminae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 354, Comm. 265. 13-15 Feb 1842
b. Nypoideae Griff., Palms Brit. E. Ind.: 7. post 3 Sep 1850
c. Coryphoideae Burnett, Outlmes Bot.: 398. Feb 1835
c1. Sabaleae Dumort., Anal. Fam. Pl.: 55. 1829
c2. Cryosophileae J. Dransf., N.W. Uh1, Rasmussen, W.J. Baker, M.M. Harley \& C. Lewis, Kew Bull. 60: 561. 2006
c3. Phoeniceae Horan., Char. Ess. Fam.: 43. 17 Jun 1847
c4. Trachycar peae Satake, Hikobia 3: 121. Oct 1962
c4a. Rhapidinae J. Dransf., N.W. Uhl, Rasmussen, W.J. Baker, M.M. Harley \& C. Lewis, Kew Bull. 60: 561. 2006
c4b. Livistoninae Saakov, Palmy Kult. SSSR [=Palms Cult. USSR]: 193.1954
c5. Chuniophoeniceae J. Dransf., N.W. Uh1, Rasmussen, W.J. Baker, M.M. Harley \& C. Lewis, Kew Bull. 60: 561. 2006
c6. Caryoteae Scheff., Ann. Jard. Bot. Buitenzorg 1: 142. 1876
c7. Corypheae Martinov, Tekhno-Bot. Slovar: 166. 3 Aug 1820
c8. Borasseae Dumort., Anal. Fam. Pl.: 55. 1829
c8a. Hyphaeninae Becc. ex J. Dransf. \& N.W. Uh1, Prmncipes 30: 4. 20 Feb 1986
c8b. Lataniinae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 357, Comm. 266. 13-15 Feb 1842
d. Ceroxyloideae Drude, Bot. Zeitung (Berlin) 35: 632. 28 Sep 1877
d1. Cyclospatheae O.F. Cook in A.P. Northrop, Mem. Torrey Bot. Chub 12: 24. 1902
d2. Ceroxyleae Blatter, Palms Brit. India Ceylon: xvi, 337. 1926
d3. Phytelephanteae Horan., Char. Ess. Fam.: 38. 17 Jun 1847
e. Arecoideae Burnett, Outlines Bot.: 401. Feb 1835
e1. Iriarteeae Drude, Bot. Zettung (Berlin) 35: 632. 28 Sep 1877
e2. Chamaedoreeae Drude, Bot. Zeitung (Berlin) 35: 632. 28 Sep 1877
e3. Podococceae J. Dransf. \& N.W. Uh1, Principes 30: 6. 20 Feb 1986
e4. Oranieae Becc. in O. Beccari \& R.E.G. Pichi Sermolli, Webbia 11: 15. 1955
e5. Sclerospermateae J. Dransf., N.W. Uhl, Rasmussen, W.J. Baker, M.M. Harley \& C. Lewis, Kew Bull. 60: 562. 2006
e6. Roystoneeae J. Dransf., N.W. Uhl, Rasmussen, W.J. Baker, M.M. Harley \& C. Lewis, Kew Bull. 60: 562. 2006
e7. Reinhardtieae J. Dransf., N.W. Uhl, Rasmussen, W.J. Baker, M.M. Harley \& C. Lewis, Kew Bull. 60: 562. 2006
e8. Cocoseae Dumort., Anal. Fam. Pl.: 56. 1829
e8a. Attaleinae Drude in C.F.P. von Martius, Fl. Bras. 3(2): 395. 1 Mai 1882
e8b. Bactridinae Drude in C.F.P. von Martius, Fl. Bras. 3(2): 301, 395. 1 Mai 1882
e8c. Elaeidinae Drude in C.F.P. von Martius, Fl. Bras. 3(2): 395. 1 Mai 1882
e9. Manicarieae J. Dransf., N.W. Uhl, Rasmussen, W.J. Baker, M.M. Harley \& C. Lewis, Kew Bull. 60: 562. 2006
e10. Euterpeae J. Dransf., N.W. Uhl, Rasmussen, W.J. Baker, M.M. Harley \& C. Lewis, Kew Bull. 60: 562. 2006
e11. Geonomateae Luerss., Handb. Syst. Bot. 2: 342. Jan 1880
e12. Leopoldinieae J. Dransf., N.W. Uhl, Rasmussen, W.J. Baker, MM. Harley \& C. Lewis, Kew Bull. 60: 562. 2006
e13. Pelagodoxeae J. Dransf., N.W. Uhl, Rasmussen, W.J. Baker, M.M. Harley \& C. Lewis, Kew Bull. 60: 563. 2006
e14. Areceae Dumort., Anal. Fam. Pl.: 56. 1829
e14a. Archontophoenicinae J. Dransf. \& N.W. Uhl, Principes 30: 8. 20 Feb 1986
e14b. Arecinae Engl., Bot. Jahresber. (Just) 3: 456. Mai-Dec 1877
e14c. Basseliniinae J. Dransf., N.W. Uh1, Rasmussen, W.J. Baker, M.M. Harley \&
C. Lewis, Kew Bull. 60: 563. 2006
e14d. Car poxylinae J. Dransf., N.W. Uhl, Rasmussen, W.J. Baker, M.M. Harley \& C. Lewis, Kew Bull. 60: 563. 2006
e14e. Clinospermatinae J. Dransf., N.W. Uhl, Rasmussen, W.J. Baker, M.M. Harley \& C. Lewis, Kew Bull. 60: 563. 2006
e14f. Dypsidinae Becc., Palmae Madagascar: 2. 1912
e14g. Laccospadicinae J. Dransf., N.W. Uhl, Asmussen, W.J. Baker, M.M. Harley \& C. Lewis, Palms 55: 199. 14 Dec 2011
e14h. Oncospermatinae Benth. \& Hook.f., Gen. Pl. 3: 872, 874. 14 Apr 1883
e14i. Ptychospermatinae Benth. \& Hook.f., Gen. Pl. 3: 872, 874. 14 Apr 1883
e14j. Rhopalostylidinae J. Dransf., N.W. Uhl, Rasmussen, W.J. Baker, MM. Harley \& C. Lewis, Kew Bull. 60: 563. 2006
e14k. Verschaffeltiinae J. Dransf., N.W. Uhl, Rasmussen, W.J. Baker, M.M. Harley \& C. Lewis, Kew Bull. 60: 564. 2006
23. Typhales Juss. ex Bercht. \& J. Presl, Přrr. Rostlin: 263. Jan-Apr 1820
93. Typhaceae Juss., Gen. Pl.: 25. 4 Aug 1789, nom. cons.

Sparganiaceae Hanin, Cours Bot:: 400. 16-23 Apr 1811, nom. cons.
a. Sparganioideae Rouy, Fl. France 13: 335. Mai 1912
b. Typhoideae DC. ex Arn., Botany: 136. 19 Mar 1832
24. Bromeliales Link, Handbuch 1: 207. 4-11 Jul 1829
94. Bromeliaceae Juss., Gen. Pl.: 49. 4 Aug 1789, nom. cons.

Tillandstaceae Wilbr., Nat. Pflanzenfam.: 44. Jun-Dec 1834
a. Brocchinioideae Givnish, Aliso 23: 15. Dec 2007
b. Lindmanioideae Givnish, Aliso 23: 15. Dec 2007
c. Hechtioideae Givnish, Allso 23: 15. Dec 2007
d. Tillandsioideae Burnett, Outlines Bot.: 442. Feb 1835
d1. Catopsideae Harms in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 15a: 100. 1930
d2. Glomeropitcairnieae Harms in H.GA. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 15a: 100. 1930
d3. Vrieseeae Beer, Fam. Bromel.: 9, 19. Sep-Oct 1856
d4. Tillandsieae Dumort., Anal. Fam. Pl.: 55. 1829
e. Navioideae Harms, Notizbl. Bot. Gard. 10: 575. 30 Mar 1929
f. Pitcairnioideae Harms in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 15a: 99. 1930
g. Puyoideae Givnish, Altso 23: 16. Dec 2007
h. Bromelioideae Burnett, Outlines Bot.: 442, 444. Feb 1835
25. Rapateales Colella ex Reveal \& Doweld, Novon 9: 551. 30 Dec 1999
95. Rapateaceae Dumort., Anal. Fam. Pl.: 60, 62. 1829, nom. cons.
a. Rapateoideae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 405. 17-20 Aug 1842
b. Monotremoideae Givnish \& P.E. Berry in T.J. Givnish et al., Inter. J. Pl. Scl. 165(Suppl. 4): S45. 27 Sep 2004
c. Saxofridericioideae Maguire in B. Maguire et al., Mem. New York Bot. Gard. 10: 21. 1 Jul 1958
c1. Saxofridericieae Maguire in B. Maguire et al., Mem. New York Bot. Gard. 10: 21.1 Jul 1958
c2. Schoenocephalieae Maguire in B. Maguire et al., Mem. New York Bot. Gard. 10: 21. 1 Jul 1958
26. XYRIDALES Lindl., Veg. Kingd.: lvii, 185. 14-28 Mar 1846

Eriocaulales Nakai, Hist-Shokubutsu: 49.1930
Mayacales Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov]: 214. 20 Jul 1943
26a. Eriocaulineae Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 85. 29 Jun 2007
96. Eriocaulaceae Martinov, Tekhno-Bot. Slovar: 237. 3 Aug 1820, nom. cons.
a. Eriocauloideae Burnett, Outlines Bot.: 416. Feb 1835
b. Paepalanthoideae Ruhland in H.G.A. Engler, Nat. Pflanzenr. 13: 30, 40. 27 Mar 1903

26b. Xyridineae Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 85. 29 Jun 2007
97. Xyridaceae C. Agardh, Aphor. Bot.: 158. 23 Mai 1823, nom. cons.

Abolbodaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov.]: 221. 20 Jul 1943
a. Xyridoideae Kunth ex Arn., Botany: 135.9 Mar 1832
b. Abolbodoideae Suess. \& Beyerle ex Thorne \& Reveal, Phytoneuron 2012-37: 215.23 Apr 2012
98. Mayacaceae Kunth, Abh. Königl. Akad. Wiss. Berlm 1840: 93. 1842, nom. cons.
27. Juncales Bercht. \& J. Presl, Přir. Rostlın: 266. Jan-Apr 1820

Cyperales Juss. ex Bercht. \& J. Presl, Př̈r. Rostlin: 263. Jan-Apr 1820
99. Thurniaceae Engl., Syllabus, ed. 5: 94. 20-22 Jul 1907, nom. cons.

Priontaceae S.L. Munro \& H.P. Linder, Syst. Bot. 23: 51. Mai 1998
a1. Thurnieae Reveal, Phytoneuron 2012-33: 2. 9 Apr 2012
a2. Prionieae Reveal, Phytoneuron 2012-37: 218. 23 Apr 2012
100. Juncaceae Juss., Gen. Pl.: 43. 4 Aug 1789, nom. cons.
101. Cyperaceae Juss., Gen. Pl.: 26. 4 Aug 1789, nom. cons.

Kobrestaceae Gilly, Iowa State Coll. J. Sct. 26: 210. Jan 1952
Mapantaceae Shipunov, Zhurn. Obshchei Bıol. 64: 505. Dec 2003
Papyraceae Burnett, Outlmes Bot.: 761, 1129. Feb 1835
Scırpaceae Batsch ex Borkh., Bot. Wörterb. 2: 340. 1797
Sclertaceae Bercht. \& J. Presl, Přtr. Rostlin: 263. Jan-Apr 1820
a. Mapanioideae C.B. Clarke in W.H. Harvey \& O.W. Sonder (ed. W.T. Thiselton-Dyer), F7. Cap. 7: 150. Dec 1897
a1. Hypolytreae Nees ex Wight \& Arn., Contr. Bot. India: 69. Dec 1834
a2. Chrysitricheae Nees, Linnaea 10: 144. Dec 1835
b. Cyperoideae Beilschm., Flora 16(Beibl. 7): 52, 104. 14 Jun 1833
b1. Trilepideae Goetgh., Taxon 34: 629. 29 Nov 1985
b2. Bisboeckelereae Pax in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr: 48. Jul 1897
b3. Sclerieae Wight \& Arn., Contr. Bot. India: 71. Dec 1834
b4. Cladieae Torr., Ann. Lyceum Nat. Hist. New York 3: 372. Aug-Dec 1836
b5. Cryptangieae Benth., J. Linn. Soc. London, Bot. 18: 366. 21 Feb 1881
b6. Schoeneae Dumort., Fl. Belg.: 145. 1827
b6a. Schoeninae Fenzl in S.F.L. Endlicher, Gen. Pl.: 114. Dee 1836
b6b. Rhynchosporinae Fenzl in S.F.L. Endlicher, Gen. Pl.: 112. Dec 1836
b7. Scirpeae T. Lestib. in B.C.J. Dumortier, Fl. Belg.: 143. 1827
b8. Cariceae Dumort., Fl. Belg.: 145. 1827
b9. Dulichieae W. Schultze-Motel, Willdenowia 2: 173. 14 Mar 1959
b10. Abildgaardieae Lye, Bot. Not. 126:328 1973
b11. Fuireneae Fenzl in S.F.L. Endlicher, Gen. Pl.: 116. Dec 1836
b12. Eleocharideae Goetgh., Taxon 34: 629. 29 Nov 1985
b13. Cypereae Dumort., Anal. Fam. Pl.: 65. 1829
b14. Ficinieae Nees in C.F.P. von Martius, Fl. Bras. 2(1): 69. 1 Apr 1842
28. Restionales R. Br. ex Bercht. \& J. Presl, Přir. Rostlın: 266. Jan-Apr 1820 Centrolepidales R. Dahlgren ex Takht., Divers. Classif. Fl. Pl.: 553. 24 Apr 1997
102. Anarthriaceae D.F. Cutler \& Airy Shaw, Kew Bull. 19: 490. 26 Jul 1965
103. Hopkinsiaceae B.G. Briggs \& L.A.S. Johnson, Telopea 8: 484. Jul 2000
104. Lyginiaceae B.G. Briggs \& L.A.S. Johnson, Telopea 8: 488. Jul 2000
105. Centrolepidaceae Endl., Gen. Pl.: 119. Dec 1836, nom. cons.
106. Restionaceae R. Br., Prodr.: 243. 27 Mar 1810, nom. cons.

Elegraceae Raf., Fl. Tellur. 4: 32, 33. (med.) 1838
a. Restionionoideae Arn., Botany: 135.19 Mar 1832
b. Sporadanthoideae B.G. Briggs \& H.P. Linder, Telopea 12: 338. Oct 2009
c. Leptocar poideae B.G. Briggs \& H.P. Linder, Telopea 12: 339. Oct 2009
29. Poales Small, F7. S.E. U.S.: 48. 22 Jul 1903

Avenales Bromhead, Edinburgh New Phtlos. J. 24: 417. Apr 1838
Flagellariales Takht. ex Reveal \& Doweld, Novon 9: 550. 30 Dec 1999
107. Flagellariaceae Dumort., Anal. Fam. Pl.: 59, 60. 1829, nom. cons. 108. Joinvilleaceae Tolm. \& A.C. Sm., Taxon 19: 888. 30 Dec 1970
109. Ecdeiocoleaceae D.F. Cutler \& Airy Shaw, Kew Bull. 19: 495. 26 Jul 1965
110. Poaceae Barnhart, Bull. Torrey Bot. Club 22: 7. 15 Jan 1895, nom. cons., nom. alt.

Aegilopaceae Martinov, Tekhno-Bot. Slovar: 221. 3 Aug 1820
Agrostıdaceae Bercht. \& J. Presl, Přrr. Rostlin: 264. Jan-Apr 1820
Alopecuraceae Martinov, Tekhno-Bot. Slovar: 19. 3 Aug 1820
Andropogonaceae Martinov, Tekhno-Bot. Slovar: 28. 3 Aug 1820
Anomochloaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov.]: 222. 20 Jul 1943
Anthoxanthaceae Link, Hort. Berol. 1: 271. 1Oct-27 Nov 1827
Arundnaceae Döll, Rhem. Fl.: 60. 24-27 Mai 1843
Arundinellaceae Herter, Revista Sudamer. Bot. 6: 136. Jun 1940
Asperellaceae Link, Hort. Berol. 1: 106, 270. 1 Oct-27 Nov 1827
Avenaceae Martinov, Tekhno-Bot. Slovar: 60. 313 Aug 1820
Bambusaceae Bercht. \& J. Pres1, Přrr. Rostlm: 265. Jan-Apr 1820
Bromaceae Bercht. \& J. Pres1, Přrr. Rostlm: 264. Jan-Apr 1820
Cenchraceae Link, Hort. Berol. 1: 9, 268. 1 Oct-27 Nov 1827
Chaeturaceae Link, Hort. Berol. 1: 106, 269. 1 Oct-27 Nov 1827
Chloridaceae Bercht. \& J. Presl, Přrr. Rostlm: 265. Jan-Apr 1820
Chondrosaceae Link, Hort. Berol. 1: 269. 1 Oct-27 Nov 1827

Coleanthaceae Pfeiff., Nomencl. Bot. 1(2): 818. ante 3 Oct 1873
Cynodontaceae Link, Hort. Berol. 1: 51, 269. 1 Oct-27 Nov 1827
Cynosuraceae Link, Hort. Berol. 1: 271, 272. 1 Oct-27 Nov 1827
Echinariaceae Link, Hort. Berol. 1: 271. 1 Oct-27 Nov 1827
Ehrhartaceae Link, Hort. Berol. 1: 271. 1 Oct-27 Nov 1827
Eragrostidaceae Herter, Revista Sudamer. Bot. 6: 145. Jun 1940
Festucaceae Spreng. in J. Sadler, Fl. Comit. Pest. 1: 28. 27 Jun 1825
Glyceriaceae Link, Hort. Berol. 1: 271. 1 Oct-27 Nov 1827
Gramineae Juss., Gen. Pl.: 28. 4 Aug 1789, nom. cons.
Holcaceae Link, Hort. Berol. 2: 252. Jul-Dec 1833
Hordeaceae Bercht. \& J. Pres1, Prïr. Rostlin: 265. Jan-Apr 1820
Laguraceae Link, Hort. Berol. 2: 250. Jul-Dec 1833
Lepturaceae Herter, Revista Sudamer. Bot. 6: 147. Jun 1940
Loltaceae Link, Hort. Berol. 1: 6, 267. 1 Oct-27 Nov 1827
Melicaceae Martinov, Tekhno-Bot. Slovar: 390. 3 Aug 1820
Miliaceae Link, Hort. Berol. 1: 91, 270. 1 Oct-27 Nov 1827
Nardaceae Martinov, Tekhno-Bot. Slovar: 413. 3 Aug 1820
Olyraceae Bercht. \& J. Presl, Prir. Rostlin: 265. Jan-Apr 1820
Ophturaceae Link, Hort. Berol. 1: 3, 268. 1 Oct-27 Nov 1827
Oryzaceae Bercht. \& J. Pres1, Přır. Rostlın: 265. Jan-Apr 1820
Panicaceae Bercht. \& J. Presl, Přir. Rostlin: 264. Jan-Apr 1820
Pappophoraceae Herter, Revista Sudamer. Bot. 6: 145. Jun 1940
Partanaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov.]: 222. 20 Jul 1943
Paspalaceae Link, Hort. Berol. 1: 47, 269. 1 Oct-27 Nov 1827
Phalaridaceae Link, Hort. Berol. 2: 250. Jul-Dec 1833
Pharaceae Herter, Revtsta Sudamer. Bot. 6: 139. Jun 1940
Phleaceae Link, Hort. Berol. 1: 269. 1 Oct-27 Nov 1827
Saccharaceae Bercht. \& J. Presl, Přir. Rostlin: 265. Jan-Apr 1820
Seslertaceae Döll, Rhein. Fl.: 60. 24-27 Mai 1843
Spartinaceae Link, Hort. Berol. 1: 46, 268. 1 Oct-27 Nov 1827
Stıpaceae Bercht. \& J. Presl, Přir. Rostlin: 264. Jan-Apr 1820
Streptochaetaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov]: 222. 20 Jul 1943
Trittcaceae Link, Hort. Berol. 1: 22, 268. 1 Oct-27 Nov 1827
Zeaceae A. Kern., Pflanzenleben 2: 651. 8 Aug 1891
Zoysiaceae Link, Hort. Berol. 1: 8, 268. 1 Oct-27 Nov 1827
a. Anomochlooideae Pilg. ex Potztal, Willdenowia 1: 772. 1 Mar 1957
a1. Streptochaeteae C.E. Hubb. in J. Hutchinson, Fam. F7. Pl. 2: 205. 20 Jul 1934
a2. Anomochloeae C.E. Hubb. in J. Hutchinson, Fam. Fl. Pl. 2: 219. 20 Jul 1934
b. Pharoideae L.G. Clark \& Judz., Taxon 45: 643. 1996
c. Puelioideae L.G. Clark, M. Kobay, Spangler, S.Y. Mathews \& E.A. Kellogg, Syst. Bot. 25: 184. 5 Jun 2000
cl. Puelieae Soderstr. \& R.P. Ellis in T.R. Soderstrom et al. (eds.), Grass Syst. Evol.: 238. Mar 1988
c2. Guaduelleae Soderstr. \& R.P. Ellis in T.R. Soderstrom et al. (eds.), Grass Syst. Evol:: 238. Mar 1988
d. Panicoideae Link, Hort. Berol. 1: 202. 1 Oct-27 Nov 1827
d1. Steyermarkochloeae Davidse \& R.P. Ellis, Ann. Mtssourt Bot. Gard. 71: 994. 1985
d2. Hubbardieae C.E. Hubb. in N.L. Bor, Grass. Burma, Ceylon, India \& Pakistan: 685. 1960
d3. Isachneae Benth., J. Linn. Soc. London, Bot. 19: 30. 24 Dec 1881
d4. Paniceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 582. 19 Jul 1814
d4a. Arthropogoninae Butzin, Willdenowia 6: 515. Nov 1972
d4b. Cenchrinae Dumort., Anal. Fam. Pl.: 64. 1829
d4c. Digitariinae Stapf in D. Oliver (ed. D. Prain), Fl. Trop. Afr. 9: 12. 1 Jul 1917
d4d. Melinidinae Stapf in D. Oliver (ed. D. Prain), Fl. Trop. Afr. 9: 13. 1 Jul 1917
d4e. Panicinae Fr., F7. Scan.: 195. 1835
d4f. Paspalinae Griseb. in C.F. von Ledebour, Fl. Ross. 4: 466. Jun 1853
d4g. Setariinae Dumort., Anal. Fam. Pl.: 64. 1829
d4h. Neurachninae Clayton \& Renvoize, Kew Bull., Addlt. Ser. 13: 377. 1986
d5. Arundinelleae Stapf in W.H. Harvey \& O.W. Sonder (ed. W.T. Thiselton-Dyer), Fl. Cap. 7: 314. Jul 1898
d6. Andropogoneae Dumort., Observ. Gramin. Belg.: 84. Jul-Sep 1824
d6a. Andropogoninae J. Presl in C. Presl, Reliq. Haenk. 1: 331. Jan-Jun 1830
d6b. Anthisiriinae J. Pres1 in C. Presl, Reliq. Haenk. 1: 347. Jan-Jun 1830
d6c. Coicinae Rchb. ex Clayton \& Renvoize, Kew Bull., Addtt. Ser. 13: 372. 1986
d6d. Germainiinae Clayton, Kew Bull. 27: 465. 1972
d6e. Ischaeminae J. Presl in C. Presl, Reliq. Haenk. 1: 328. Jan-Jun 1830
d6f. Dimeriinae Hack. in A.L.P.P de Candolle \& A.C.P. de Candolle, Monogr. Phan. 6: 76. Apr 1889
d6g. Rottboelliinae J. Presl in C. Presl, Reliq. Haenk. 1: 329. Jan-Jun 1830
d6h. Saccharinae Griseb., Spic. Fl. Rumel. 2: 472. Jan 1846
d6i. Sorghinae Stapf in D. Oliver (ed. D. Prain), Fl. Trop. Aff. 9: 6. 1 Jul 1917
d6j. Tripsacinae Dumort., Anal. Fam. Pl.: 64. 1829
d7. Gynerieae Sánchez-Ken \& L.G. Clark, Novon 11: 350. 21 Sep 2001
d8. Centotheceae Ridl., Mat. Fl. Maley. Pen. 3: 122. 1907
d9. Thysanolaeneae C.E. Hubb. in J. Hutchinson, Fam. Fl. Pl. 2: 222. 20 Jul 1934
e. Danthonioideae N.P. Barker \& H.P. Linder, Ann. Missourl Bot. Gard. 88: 421. 17 Sep 2001
f. Chloridoideae Burmeist., Handb. Naturgesch.: 205. 1837
f1. Triraphideae P.M. Peterson, Molec. Phylogen. Evol. 55(2): 591. May 2010
f2. Eragrostideae Stapf in W.H. Harvey \& O.W. Sonder (ed. W.T. Thiselton-Dyer), Fl. Cap. 7: 316. Jul 1898
f2a. Cotteinae Reeder, Madroño 18: 25. 10 Feb 1965
f2b. Eragrostidinae J. Presl in C. Pres1, Reltq. Haenk. 1: 273. Jan-Jun 1830
f2c. Uniolinae Clayton, Kew Bull. 37: 417. 30 Dec 1982
f3. Zoysieae Benth., J. Linn. Soc. London, Bot. 19: 29. 24 Dec 1881
f3a. Zoysiinae Benth., Fl. Austral. 7: 453, 505. 23-30 Mar 1878
f3b. Sporobolinae Benth., J. Linn. Soc. London, Bot. 19: 30. 24 Dec 1881
f4. Cynodonteae Dumort., Observ. Gramm. Belg.: 83. Jul-Sep 1824
f4a. Aeluropodinae P.M. Peterson, Mol. Phylogen. Evol. 55(2): 591. May 2010
f4b. Triodiinae Benth., J. Linn. Soc. London, Bot. 19: 30. 24 Dec 1881
f4c. Orcuttiinae P.M. Peterson \& Columbus, Aliso 23: 592. Dec 2007
f4d. Gouiniinae P.M Peterson \& Columbus, Aliso 23: 592. Dec 2007
f4e. Eleusininae Dumort., Anal. Fam. Pl.: 63. 1829
f4f. Tripogoninae Stapf in D. Oliver (ed. D. Prain), Fl. Trop. Afr. 9: 22. 1 Jul 1917
f4g. Pappophorinae Dumort., Anal. Fam. Pl.: 63. 1829
f4h. Traginae P.M. Peterson \& Columbus, Aliso 23: 592. Dec 2007
f4i. Hilariinae P.M. Peterson \& Columbus, Altso 23: 592. Dec 2007
f4j. Monanthochloinae Pilg. ex Potztal, Willdenowia 5: 472. Nov 1969
f4k. Boutelouinae Stapf in D. Oliver (ed. D. Prain), Fl. Trop. Afr. 9: 22. 1 Jul 1917
f41. Scleropogoninae Pilg. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 14d: 167. 16 Feb 1956
f4m. Muhlenbergiinae Pilg. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 14d: 168. 16 Feb 1956
g. Micrairoideae Pilg. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 14d: 167. 16 Feb 1956
g1. Micraireae Pilg. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 14d: 167. 16 Feb 1956
g2. Eriachneae Eck-Boorsb., Bhumea 26: 2. 128. 1980
h. Aristidoideae Caro, Dominguezia 4: 16. Feb 1982
i. Arundinoideae Burmeist., Handb. Naturgesch.: 204. 1837
j. Ehrhartoideae Jacq.-Fél. ex Caro, Dominguezia 4: 11. Feb 1982
j1. Ehrharteae Nevski, Trudy Bot. Inst. Akad. Nouk S.S.S.R., ser. 1, Fl. Sist. Wyssh. Rast. 4: 227. 1937
j2. Oryzeae Dumort., Observ. Gramin. Belg.: 83. Jul-Sep 1824
j2a. Luziolinae Terrell \& H. Rob., Bull. Torrey Bot. Club 101: 244. 1974
j2b. Oryzinae Griseb. in C.F. von Ledebour, Fl. Ross. 4: 465. Jun 1853
j2c. Zizaniinae Benth., J. Linn. Soc. London, Bot. 19: 54. 24 Dec 1881
j3. Streptogyneae C.E. Hubb. ex Calderón \& Soderstr., Smithsontan Contr. Bot. 44: 18. 13 Feb 1980
k. Bambusoideae Luerss., Grundz. Bot., ed. 5: 451. Jun 1893
k1. Arundinarieae Hackel in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. II, 2: 92, 93 . Nov 1887
k2. Olyreae Kunth ex Spenn., Fl. Friburg. 1: 172. 1825
k2a. Olyrinae Kromb., F7. Luvembourg: 496. 1875
k2b. Parianinae Hack. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. II, 2: 88. Nov 1887
k3. Bambuseae Kunth ex Dumort., Anal. Fam. Pl.: 63.1829
k3a. Arthrostylidiinae Soderstr. \& R.P. Ellis in T.R. Soderstrom et al. (eds.), Grass Syst. Evol.: 238. Mar 1988
k3b. Chusqueinae Soderstr. \& R.P. Ellis in T.R. Soderstrom et al. (eds.), Grass Syst. Evol.: 238. Mar 1988
k3c. Guaduinae Soderstr. \& R.P. Ellis in T.R. Soderstrom et al. (eds.), Grass Syst. Evol.: 238. Mar 1988
k3d. Bambusinae J. Presl in C. Pres1, Reliq. Haenk. 1: 256. Jan-Jun 1830
k3e. Melocanninae Benth., J. Linn. Soc. London, Bot. 19: 31. 24 Dec 1881

1. Pooideae Benth., Fl. Hongk.: 407. Feb 1861
2. Brachyelytreae Ohwi, Bot. Mag. (Tokyo) 55: 361.1941
3. Nardeae W.D.J. Koch, Syn. Fl. Germ. Helw.: 830. Jan-Oct 1837

12a. Nardinae Kromb., Fl. Luvembourg: 536. 1875
12b. Lygeinae Röser in J. Schneider et al., Taxon 58: 420. 28 Mai 2009
13. Meliceae Link ex Endl., Fl. Poson.: 116. Mai 1830

13a. Brylkiniinae Ohwi, Acta Phytotax. Geobot. 10: 107. 1 Jun 1941
13b. Melicinae Fr., Fl. Scan.: 204, 208. 1835
14. Phaenospermateae Renvoize \& Clayton, Kew Bull. 40: 478. 4 Jul 1985
15. Stipeae Dumort., Observ. Gramin. Belg.: 83. Jul-Sep 1824

15a. Ampelodesminae Conert, Syst. Anat. Arundineae: 145. 1961
15b. Stipinae Griseb., Spic. Fl. Rumel. 2: 470. Jan 1846
16. Diarrheneae Tateoka ex C.S. Campb., J. Arnold Arbor. 66: 188. 8 Apr 1985
17. Brachypodieae Harz, Linnaea 43: 15. 1880
18. Hordeeae Martinov, Tekhno-Bot. Slovar: 314. 3 Aug 1820

18a. Littledaleinae Röser in J. Schneider et al., Taxon 58: 420. 28 Mai 2009
18b. Brominae Dumort., Anal. Fam. Pl.: 63. 1829
18c. Hordeinae Dumort., Anal. Fam. Pl.: 63. 1829
19. Poeae R. Br. in M. Flinders, Voy. Terra Austral. 2: 582. 19 Jul 1814

19a. Torreyochloinae Soreng \& J.I. Davis, Contr. U.S. Natl. Herb. 48: 721. Oct 2003
19b. Aveninae J. Presl in C. Presl, Reliq. Haenk. 1: 246. Jan-Jun 1830
19c. Cinninae Caruel, Epit. Fl. Europ. 1: 69. Jan 1892
19d. Phalaridinae Fr., F7. Scan.: 195. 1835
19e. Brizinae Tzvelev, Bot. Zhurn (Moscow \& Leningrad) 53: 310. 5 Mar 1968
19f. Agrostidinae Fr., Fl. Scan.: 196. 1835
19g. Coleanthinae Rouy, Fl. France 14: 28, 55. Apr 1913
19h. Miborinae Asch. \& Graebn., Syn. Mitteleur. Fl. 2(1): 118. 24 Jan 1899
19i. Scolochloinae Tzvelev, Komarov. Chten. 37: 33. 1987
19j. Airinae Fr., Fl. Scan.: 196, 198. 1835
19k. Ammochloinae Tzvelev, Zlakl SSSR: 535. 1976
191. Cynosurinae Fr., Fl. Scan.: 204. 1835

19m. Dactylidinae Stapf in W.H. Harvey \& O.W. Sonder (ed. W.T. Thiselton-Dyer), Fl. Cap. 7: 317. Jul 1898
19n. Loliinae Dumort., Anal. Fam. Pl.: 63. 1829
19o. Parapholiinae Caro, Dominguezia 4: 41. 1982
19p. Scribneriinae Soreng \& J.I. Davis, Contr. U.S. Natl. Herb. 48: 721. Oct 2003
19q. Sesleriinae Parl., Fl. Palerm.: 127. Mar-Dee 1845
19r. Puccinelliinae Soreng \& J.I. Davis, Contr. U.S. Natl. Herb. 48: 721. Oct 2003
19s. Alopecurinae Dumort., Anal. Fam. Pl.: 64. 1829
19t. Miliinae Dumort., Anal. Fam. Pl.: 64. 1829
19u. Poinae Dumort., Anal. Fam. Pl.: 63. 1829
30. Commelinales Mirb. ex Bercht. \& J. Presl, Pritr. Rostlin: 267. Jan-Apr 1820

Haemodorales Mart., Consp. Regn. Veg.: 9. Sep-Oct 1835
Hanguanales R. Dahlgren ex Reveal, Novon 2: 239. 13 Oct 1992
Philydrales Dumort., Anal. Fam. Pl.: 62. 1829
Pontederiales Mart., Consp. Regn. Veg.: 7. Sep-Oct 1835
30a. Commelinineae Engl., Syllabus, ed. 2: 87. Mai 1898
111. Commelinaceae Mirb., Hist. Nat. Pl. 8: 177. 1804, nom. cons.

Cartonemataceae Pichon, Notul. Syst. (Paris) 12: 219. Feb 1946, nom. cons. Ephemeraceae Batsch, Tab. Affin. Regni Veg.: 125. 2 Mai 1802, nom. rej. Tradescantaceae Salisb., Trans. Linn. Soc. London 8: 9. 1807
a. Cartonematoideae Faden ex G.C. Tucker, J. Arnold Arbor. 70: 99. 10 Jan 1989
a1. Cartonemateae Faden \& D. Hunt, Taxon 40: 23. Feb 1991
a2. Triceratelleae Faden \& D. Hunt, Taxon 40: 23. Feb 1991
b. Commelinoideae Eaton, Bot. Dict., ed. 4: 27. Apr-Mai 1836
b1. Tradescantieae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 406. 17-20 Aug 1842
bla. Palisotinae Faden \& D. Hunt, Taxon 40: 23. Feb 1991
b1b. Streptoliriinae Faden \& D. Hunt, Taxon 40: 25. Feb 1991
b1c. Cyanotinae Faden \& D. Hunt, Taxon 40: 24. Feb 1991
b1d. Coleotrypinae Faden \& D. Hunt, Taxon 40: 25. Feb 1991
ble. Dichorisandrinae Faden \& D. Hunt, Taxon 40: 25. Feb 1991
blf. Thyrsantheminae Faden \& D. Hunt, Taxon 40: 23. Feb 1991
blg. Tradescantiinae Rohw., Abh. Auslandsk. 61, Reihe C, Naturwiss. 18: 144.
b2. Commelineae Dumort., Anal. Fam. Pl.: 55. 1829
112. Hanguanaceae Airy Shaw, Kew Bull. 18: 260. 8 Dec 1965

30b. Pontederiineae Engl., Syllabus, ed. 2: 87. Mai 1898
113. Philydraceae Link, Enum. Hort. Berol. Alt. 1: 5. 16 Mar-30 Jun 1821, nom. cons.
114. Haemodoraceae R. Br., Prodr.: 299. 27 Mar 1810, nom. cons.

Conostylidaceae Takht., Sist. Magnoliof. [Syst. Magnoltoph.]: 313. 24 Jun 1987
Dilatridaceae M. Roem., Handb. Allg. Bot. 3: 476. 1840
Wachendorftaceae Herb., Amaryllidaceae: 48. late Apr 1837 Xiphidiaceae Dumort., Anal. Fam. Pl.: 59, 61. 1829
a. Haemodoroideae Arn., Botany: 133. 9 Mar 1832
b. Conostylidoideae Lindl., Veg. Kingd.: 153. Jan-Mai 1846
b1. Phlebocaryeae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 396, Comm. 299. 17-20 Aug 1842
b2. Tribonantheae T.D. Macfarl. \& Hopper, Fl. Australia 45: 454. 15 Mai 1987
b3. Conostylideae Benth., Fl. Austral. 6: 417, 425. 23 Sep 1873
115. Pontederiaceae Kunth in F.W.H.A von Humboldt, A.J.A. Bonpland \& C.S. Kunth, Nov. Gen. Sp. 1, ed. qu.: 265. 4-11 Mai 1816, nom. cons. Heterantheraceae J. Agardh, Theoria Syst. Pl.: 36. Apr-Sep 1858
a1. Pontederieae Dumort., Anal. Fam. Pl.: 61. 1829
a2. Heteranthereae O. Schwartz, Bot. Jahrb. Syst. 61(Beib1. 139): 35, 50. 15 Jun 1927
31. Cannales R. Br. ex Bercht. \& J. Presl, Přrr. Rostlin: 269. Jan-Apr 1820 Amomales Lind1., Key Bot.: 69. 15-30 Sep 1835 Lowiales Takht. ex Reveal \& Doweld, Novon 9: 551. 30 Dec 1999 Marantales Mart., Consp. Regn. Veg.: 10. Sep-Oct 1835 Musales Juss. ex Bercht. \& J. Pres1, Přir. Rostlin: 269. Jan-Apr 1820 Zingiberales Griseb., Grundr. Syst. Bot.: 167. 1-2 Jun 1854
31a. Musineae W.J. Kress, Ann. Missouri Bot. Gard. 77: 717. 16 Nov 1990
116. Musaceae Juss., Gen. Pl.: 61. 4 Aug 1789, nom. cons.

31b. Heliconiineae W.J. Kress, Ann. Missourt Bot. Gard. 77: 717. 16 Nov 1990
117. Heliconiaceae Vines, Stud. Text-book Bot. 2: 561, 562. Mar 1895

31c. Strelitziineae W.J. Kress, Ann. Missourl Bot. Gard. 77: 717. 16 Nov 1990
118. Strelitziaceae Hutch., Fam. Fl. Pl. 2: 72. 20 Jul 1934, nom. cons.
a 1. Ravenaleae Voigt, Hort. Suburb. Calcutt.: 578. Aug-Dec 1845
a2. Strelitzieae Horan., Prodr. Monogr. Scttam.: 7. Aug-Dec 1862
31d. Lowiineae W.J. Kress, Ann. Missourr Bot. Gard. 77: 717. 16 Nov 1990
119. Lowiaceae Ridl., Fl. Malay Penins. 4: 291. 1 Dec 1924, nom. cons.

31e. Cannineae Link, Handbuch 1: 223. 4-11 Jul 1829
120. Cannaceae Juss., Gen. Pl.: 62. 4 Aug 1789, nom. cons.
121. Marantaceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 575.19 Jul 1814, nom. cons.

31f. Zingiberineae W.J. Kress, Ann. Missourt Bot. Gard. 77: 717. 16 Nov 1990
122. Costaceae Nakai, J. Jap. Bot. 17: 203. Apr 1941
123. Zingiberaceae Martinov, Tekhno-Bot. Slovar: 682. 3 Aug 1820, nom. cons.

Alpinaceae Link, Enum. Hort. Berol. Alt. 1: 2. 16 Mar-30 Jun 1821
Amomaceae J. St.-Hil., Expos. Fam. Nat. 1: 154. Jan-Aug 1805
Curcumaceae Dumort., Anal. Fam. Pl.: 56. 1829
a. Siphonochiloideae W.J. Kress in W.J. Kress, L.M. Prince \& K.J. Williams, Amer. J. Bot. 89: 1691. 2002
b. Tamijioideae W. J. Kress in W.J. Kress, L.M. Prince \& K.J. Williams, Amer. J. Bot. 89: 1691. 2002
c. Alpinioideae Hassk., Cat. Hort. Bot. Bogor.: 51. Oct 1844
c1. Alpinieae Orb., Dict. Univ. Hist. Nat. 1: 299. 18 Dec 1841
c2. Riedelieae W.J. Kress in W.J. Kress, L.M. Prince \& K.J. Williams, Amer. J. Bot. 89: 1691. 2002
d. Zingiberoideae Hassk, Cat. Hort. Bot. Bogor.: 49. Oct 1844
d1. Zingibereae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 388, Comm. 290. 17-20 Aug 1842
d2. Globbeae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 388, Comm. 290. 17-20 Aug 1842
F. Ceratophyllanae Takht. ex Reveal \& Doweld, Novon 9: 549. 30 Dec 1999
32. Ceratophyllales Link, Handbuch 2: 406. 4-11 Jul 1829
124. Ceratophyllaceae Gray, Nat. Arr. Brit. Pl. 2: 395, 554. 10 Jan 1822, nom. cons.
G. Ranunculanae Takht. ex Reveal, Novon 2: 236. 13 Oct 1992

Berberidanae Doweld, Tent. Syst. Pl. Vasc.: xxv, xxvi. 23 Dec 2001
Eupteleanae Doweld, Tent. Syst. Pl. Vasc.: xxv. 23 Dec 2001
Papaveranae Doweld, Tent. Syst. Pl. Vasc.: xxv. 23 Dec 2001
33. Eupteleales Hu ex Reveal, Phytologia 74: 174. 25 Mar 1993
125. Eupteleaceae K. Wilh., Samenpflanzen: 17. 12 Nov 1910, nom. cons.
34. Ranunculales Juss. ex Bercht. \& J. Presl, Přrr. Rostlin: 215. Jan-Apr 1820

Berberidales Bercht. \& J. Pres1, Přir. Rostlm: 226. Jan-Apr 1820
Circaeasterales Takht., Divers. Classif. Fl. Pl.: 97. 24 Apr 1997
Fumartales Link, Handbuch 2: 274. 4-11 Jul 1829
Glaucidiales Takht. ex Reveal, Novon 2: 238. 13 Oct 1992
Helleborales Nakai, J.Jap. Bot. 24: 10. Dec 1949
Hydrastıdales Takht., Divers. Classtf. F7. Pl.: 389. 24 Apr 1997
Lardizabalales Leconte in D.W. Taylor \& L.J. Hickey, Fl. Pl. Orrg. Evol. \& Phylog:: 274. 21 Dec 1995
Menispermales Juss. ex Bercht. \& J. Pres1, Přir. Rostlm: 225. Jan-Apr 1820 Nandinales Doweld, Byull. Mosk. Obshch. Ispyt. Prir., Biol. 105(5): 60.9 Oct 2000 Papaverales Juss. ex Bercht. \& J. Presl, Přrr. Rostlin: 216. Jan-Apr 1820 Podophyllales Dumort., Anal. Fam. Pl.: 45. 1829
34a. Ranunculineae J. Presl, Nowočeská Bibl. [Wšobecný Rostl.] 7: 2, 10. 1846 Lardizabalalineae Shipunov in A. Shipunov \& J.L. Reveal, Phytotaxa 16: 63. 4 Feb 2011
126. Circaeasteraceae Hutch., Fam. Fl. Pl. 1: 98. 15 Jan 1926, nom. cons. Kingdonaceae A.S. Foster ex Airy Shaw, Kew Bull. 18: 262. 8 Dec 1965
a. Circaeasteroideae Thome \& Reveal, Bot. Rev. (Lancaster) 73: 90. 29 Jun 2007
b. Kingdonioideae Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 90. 29 Jun 2007
127. Lardizabalaceae R. Br., Trans. Linn. Soc. London 13: 212. 23 Mai-21 Jun 1821, nom. cons.
Decaisneaceae Loconte, Pl. Syst. Evol. 9(Suppl): S105. Dec 1995 Sargentodoxaceae Stapf ex Hutch., Fam. Fl. Pl. 1: 100. 15 Jan 1926, nom. cons. Smofranchettaceae Doweld, Byull. Mosk. Obshch. Ispyt. Prir., Biol. 105(5): 60.9 Oct 2000
a. Sargentodoxoideae Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 89. 29 Jun 2007
b. Lardizabaloideae Burnett, Outlines Bot.: 830. Feb 1835 b1. Decaisneeae Takht. ex H.N. Qin \& Y.C. Tang, Cathaya 1: 80. Oct 1989
b2. Akebieae Lemaire, Jard. Fleur. 2: ad pl. 144. 1852
b3. Lardizabaleae DC., Prodr. 1: 95. medio Jan 1824
128. Menispermaceae Juss., Gen. Pl.: 284. 4 Aug 1789, nom. cons. Pseltaceae Raf., New Fl. N. Amer. 4: 8. (med.) 1838
a. Tinosporoideae W. Wang \& Z.D. Chen in W. Wang et al., Perspect. Pl. Ecol., Evol. Syst. 11: 100. 2009
a1. Tinosporeae Hook.f. \& Thomson, Fl. Ind. 1: 176, 179. 1-19 Jul 1855
a2. Coscinieae Hookf. \& Thomson, Fl. Ind. 1: 176, 177. 1-19 Jul 1855
b. Menispermoideae Arn. in R. Wight \& GA.W. Arnott, Prodr. Fl. Ind. Orient.: 11.10 Oct 1834
b1. Menispermeae DC., Syst. Nat. 1: 510, 511. 1-15 Nov 1817
b2. Pachygoneae Miers ex Hook.f. \& Thomson, Fl. Ind. 1: 176, 202. 1-19 Jul 1855
b3. Anomospermeae Miers, Ann. Mag. Nat. Hist., ser. 2, 7: 36. Jan 1851
129. Berberidaceae Juss., Gen. Pl.: 286. 4 Aug 1789, nom. cons.

Diphylleiaceae Schultz Sch., Nat. Syst. Pflanzenr:: 328. 30 Jan-10 Feb 1832
Epimediaceae Menge, Cat. Pl. Grudent. Gedan.: 122. 1839
Leonticaceae Airy Shaw, Kew Bull. 18: 263. 8 Dec 1965
Nandinaceae Horan., Prim. Lin. Syst. Nat: 90.2 Nov 1834
Podophyllaceae DC., Syst. Nat. 1: 126. 1-15 Nov 1817, nom. cons. Ranzantaceae Takht., Bot. Zhurn. (Moscow \& Leningrad) 79(1): 96. Jan 1994
a. Podophylloideae Eaton, Bot. Dict., ed. 4: 38. Apr-Mai 1836
a 1. Leonticoideae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov]: 239. 20 Jul 1943
a2. Achlydeae Bernh., Linnaea 8: 452. post Jul 1833
a3. Podophylleae DC., Syst. Nat. 2: 32, 33. late Mai 1821
b. Nandinoideae Heintze, Cormofyt. Fylog.: 101. 1 Jun 1927
c. Berberidoideae Eaton, Bot. Dtct., ed. 4: 41. Apr-Mai 1836
130. Ranunculaceae Juss., Gen. Pl.: 231. 4 Aug 1789, nom. cons. Aconitaceae Bercht. \& J. Presl, Přir. Rostlin: 216. Jan-Apr 1820
Actaeaceae Bercht. \& J. Presl, Přrr. Rostlin 1(16*-53): 2, 140. 1823
Anemonaceae Vest, Anleit. Stud. Bot.: 264, 275. 1818
Aqualegtaceae Lilja, Skånes Fl., ed. 2: 375, 861, 979. Apr-Dec 1870
Calthaceae Martinov, Tekhno-Bot. Slovar: 92. 3 Aug 1820
Cimicifugaceae Bromhead, Mag. Nat. Hist., n.s., 4: 336, 338. Jul 1840
Clematidaceae Martinov, Tekhno-Bot. Slovar: 134. 3 Aug 1820
Delphintaceae Brenner, Florist. Handb.: 52. 1886
Glaucidtaceae Tamura, Bot. Mag. (Tokyo) 85: 40. Mar 1972
Helleboraceae Vest, Anlett. Stud. Bot.: 264, 274. 1818
Hydrast daceae Martinov, Tekhno-Bot. Slovar: 318. 3 Aug 1820
Nigellaceae J. Agardh, Theorta Syst. Pl.: 76. Apr-Sep 1858
Thallctraceae Raf., Anal. Nat.: 176. Apr-Jul 1815
Xanthorhzaceae Bercht. \& J. Pres1, Přır. Rostlın 1(16*-53): 2, 145. 1823
a. Glaucidioideae Loconte, Pl. Syst. Evol. 9(Supp.): S 105. 29 Dec 1995
b. Hydrastidoideae Raf., Anal. Nat.: 177. Apr-Jul 1815
c. Coptidoideae Tamura, Sci. Rep. Coll. N. Coll. Osaka Untv. 17: 52. 1 Feb 1968
c1. Coptideae Langlet ex Tamura \& K. Kosuge, Acta Phytotax. Geobot. 40: 33. 1989
c2. Xanthorhizeae Small, Man. S.E. Fl.: 510. 30 Nov 1933
d. Thalictroideae Raf., Anal. Nat.: 176. Apr-Jul 1815
d1. Aquilegieae Arcang., Comp. Fl. Ital.: 2. Jan-Apr 1882
d2. Thalictreae Langlet ex D.Z. Fu, Cathaya 2: 188. 1990
d3. Dichocarpeae W.T. Wang \& D.Z. Fu, Cathaya 2: 188. 1990
e. Ranunculoideae Arn., Botany: 94. 9 Mar 1832
e1. Actaeeae Spach, Hist. Nat. Vég. 7: 292, 383. 4 Mai 1838
e2. Caltheae J. Presl, Fl. Sicula: 20. 1826
e3. Aconiteae Horan., Char. Ess. Fam.: 174. 17 Jun 1847
e4. Helleboreae DC., Syst. Nat. 1: 130, 306. 1-15 Nov 1817
e5. Anemoneae DC., Syst. Nat. 1: 130, 306. 1-15 Nov 1817
e6. Ranunculeae DC., Syst. Nat. 1: 129, 168. 1-15 Nov 1817
34b. Papaverineae Thorne \& Reveal, Bot. Rev. (Lancaster) 73:91. 29 Jun 2007
131. Pteridophyllaceae Sugiura ex Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov.]: 240. 20 Jul 1943
132. Papaveraceae Juss., Gen. Pl.: 235. 4 Aug 1789, nom. cons. Chelidoniaceae Martinov, Tekhno-Bot. Slovar: 124. 3 Aug 1820 Eschscholziaceae Ser., Fl. Jard. 2: 106. Apr 1847 Fumariaceae Marquis, Esq. Règne Vég.: 50. 15-22 Jul 1820, nom. cons. Hypecoaceae Willk. \& Lange, Prodr. Fl. Hispan. 3: 875. Apr-Mai 1880 Platystemonaceae Lilja, Skånes Fl., ed. 2: 862, 979. Apr-Dec 1870
a. Papaveroideae Eaton, Bot. Dict., ed. 4: 38. Apr-Mai 1836 a 1. Papavereae Dumort., Fl. Belg.: 130. 1827 a2. Romneyeae Benth., J. Proc. Linn. Soc., Bot. 5: 73. 14 Nov 1860
b. Eschscholzioideae Luerss., Handb. Syst. Bot. 2: 608. Nov 1880 b 1. Eschscholzieae Baill., Hist. Pl. 3: 130, 142. 1871
b2. Platystemoneae Spach, Hist. Nat. Vég. 7: 7, 50. 10 Mai 1838
c. Chelidonioideae W.R. Ernst, J. Arnold Arbor. 43: 316. 10 Jul 1962
c1. Chelidonieae Dumort., Fl. Belg.: 130. 1827
c2. Bocconieae Bernh., Linnaea 8: 459, 472. post Jul 1833
d. Hypecoideae Prantl \& Kündig in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 2: 137. Mar 1889
e. Fumarioideae Eaton, Bot. Dict., ed. 4: 46. Apr-Mai 1836 e1. Fumarieae Dumort., Anal. Fam. Pl.: 51. 1829 e2. Corydaleae Dumort., Anal. Fam. Pl.: 51. 1829
H. Proteanae Takht., Sist. Filog. Cvetk. Rast.: 401. 4 Feb 1967 Nelumbonanae Takht. ex Reveal, Novon 2: 236. 13 Oct 1992 Sabianae Doweld, Tent. Syst. Pl. Vasc.: xxvii. 23 Dec 2001 Trochodendranae Takht. ex Reveal, Phytologia 79: 71. 29 Apr 1996
35. Sabiales Takht., Divers. Classif. Fl. Pl.: 304. 24 Apr 1997 Meliosmales C. Y. Wu et al., Acta Phytotax. Sm. 40: 312. 2002
133. Sabiaceae Blume, Mus. Bot. 1:368. 1851, nom. cons. Melıosmaceae Meisn., Pl. Vasc. Gen.: Comm. 346. 2-4 Nov 1843 Wellingtontaceae Meisn., Pl. Vasc. Gen.: Comm. 207, 346. 25-31 Oct 1840
a. Meliosmoideae Masters in A. Henfrey, Elem. Course Bot. 2: 233. 1870
b. Sabioideae Y.W. Law \& Y.F. Wu, Acta Phytotax. Sin. 20: 425.1982
36. Proteales Juss. ex Bercht. \& J. Presl, Přir. Rostlin: 234. Jan-Apr 1820 Nelumbonales Mart., Consp. Regn. Veg.: 38. Sep-Oct 1835 Platanales Mart., Consp. Regn. Veg.: 12. Sep-Oct 1835
36a. Nelumbonineae Shipunov in A. Shipunov \& J.L. Reveal, Phytotaxa 16: 64. 4 Feb 2011
134. Nelumbonaceae A. Rich. in J.B.G.M. Bory de Saint-Vincent, Dict. Class. Hist. Nat. 11: 493. 10 Feb 1827, nom. cons.
36b. Platanineae J. Presl, Nowočeská Bibl. [Wšobecný Rostl.] 7: 1359 ['1258'], 1379. 1846
135. Platanaceae T. Lestib., Botanogr. Elém.: 526. 12-19 Jun 1826, nom. cons.
36c. Proteineae Reveal, Kew Bull. 66: 47. Aug 2011
136. Proteaceae Juss., Gen. Pl.: 78. 4 Aug 1789, nom. cons. Banksiaceae Bercht. \& J. Presl, Přir. Rostlin: 235. Jan-Apr 1820 Lepidocarpaceae Schultz Sch., Nat. Syst. Pflanzenr.: 374. 30 Jan-10 Feb 1832
a. Bellendenoideae P.H. Weston, Fl. Austral. 16: 472. 30 Nov 1995
b. Persoonioideae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 1: 128. Mai 1892
b1. Placospermeae C.T. White \& W.D. Francis, Proc. Roy. Soc. Queensland 35: 79. 1924
b2. Persoonieae Endl., Gen. Pl.: 339. Dee 1837
c. Symphionematoideae P.H. Weston \& N.P. Barker, Telopea 11: 330.13 Nov 2006
d. Proteoideae Eaton, Bot. Dict., ed. 4: 30. Apr-Mai 1836
d1. Conospermeae Endl., Gen. Pl.: 338. Dec 1837
d1a. Stirlingiinae L.A.S. Johnson \& B.G. Briggs, Bot. J. Linn. Soc. 70: 171. 3 Sep 1975
dlb. Conosperminae L.A.S. Johnson \& B.G. Briggs, Bot. J. Linn. Soc. 70: 171. 3 Sep 1975
d2. Petrophileae P.H. Weston \& N.P. Barker, Telopea 11: 331. 13 Nov 2006
d3. Proteeae Dumort., Anal. Fam. Pl.: 18. 1829
d4. Leucadendreae P.H. Weston \& N.P. Barker, Telopea 11: 332. 13 Nov 2006
d4a. Isopogoninae P.H. Weston \& N.P. Barker, Telopea 11: 332. 13 Nov 2006
d4b. Adenanthinae L.A.S. Johnson \& B.G. Briggs, Bot. J. Linn. Soc. 70: 171.3 Sep 1975
d4c. Leucadendrinae P.H. Weston \& N.P. Barker, Telopea 11: 333. 13 Nov 2006
e. Sphalmioideae L.A.S. Johnson \& B.G. Briggs, Bot. J. Linn. Soc. 70: 172. 3 Sep 1975
f. Grevilleoideae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 1: 128. Mai 1892
f1. Carnarvonieae Reveal, Phytoneuron 2012-37: 216. 23 Apr 2012
f2. Roupaleae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 332, Comm. 245. 18-24 Jul 1841
f2a. Knightiinae L.A.S. Johnson \& B.G. Briggs, Bot. J. Linn. Soc. 70: 172. 3 Sep 1975
f2b. Roupalinae L.A.S. Johnson \& B.G. Briggs, Bot. J. Linn. Soc. 70: 174. 3 Sep 1975
f2c. Lambertiinae L.A.S. Johnson \& B.G. Briggs, Bot. J. Linn. Soc. 70: 174. 3 Sep 1975
f2d. Heliciinae L.A.S. Johnson \& B.G. Briggs, Bot. J. Linn. Soc. 70: 173. 3 Sep 1975
f2e. Floydiinae L.A.S. Johns on \& B.G. Briggs, Bot. J. Linn. Soc. 70: 174. 3 Sep 1975
f4. Banksieae Dumort., Anal. Fam. Pl.: 18. 1829
f4a. Musgraveinae L.A.S. Johnson \& B.G. Briggs, Bot. J. Linn. Soc. 70: 174. 3 Sep 1975
f4b. Banksiinae L.A.S. Johnson \& B.G. Briggs, Bot. J. Linn. Soc. 70: 174. 3 Sep 1975
f5. Grevilleeae Endl., Gen. Pl.: 340. Dec 1837
f5a. Lomatiinae L.A.S. Johnson \& B.G. Briggs, Bot. J. Linn. Soc. 70: 173. 3 Sep 1975
f5b. Embothriinae Endl., Gen. Pl.: 342. Dec 1837
f5c. Stenocarpinae L.A.S. Johnson \& B.G. Briggs, Bot. J. Linn. Soc. 70: 172. 3 Sep 1975
f5d. Hakeinae Endl., Gen. Pl.: 340. Dec 1837
f6. Macadamieae Venkata Rao, Proc. Indian Acad. Sct. 48B: 23. 1968
f6a. Macadamiinae L.A.S. Johns on \& B.G. Briggs, Bot. J. Linn. Soc. 70: 174.3 Sep 1975
f6b. Malagasiinae P.H. Weston \& N.P. Barker, Telopea 11: 337. 13 Nov 2006
f6c. Virotiinae P.H. Weston \& N.P. Barker, Telopea 11: 337. 13 Nov 2006
f6d. Gevuininae L.A.S. Johnson \& B.G. Briggs, Bot. J. Linn. Soc. 70: 173. 3 Sep 1975
37. Trochodendrales Takht. ex Cronquist, Integr. Syst. Class. Fl. Pl.: 157. 10 Aug 1981
137. Trochodendraceae Eichler, Flora 48: 14. 18 Jan 1865, nom. cons.

Tetracentraceae A.C. Sm., J. Arnold Arbor. 26: 135. 16 Apr 1945, nom. cons.
a. Trochodendroideae Luerss., Handb. Syst. Bot. 2: 584. Nov 1880
b. Tetracentroideae Harms, Ber. Deutsch. Bot. Ges. 15: 359. 27 Jul 1897
I. Buxanae Takht. ex Reveal \& Doweld, Novon 9: 549. 30 Dec 1999
38. Buxales Takht. ex Reveal, Phytologia 79: 72. 29 Apr 1996 Didymelales Takht., Sist. Filog. Cvetk. Rast.: 118. 4 Feb 1967
138. Haptanthaceae C. Nelson, Ceiba 42: 33. Mai 2002
139. Didymelaceae Leandri, Ann. Sct. Nat. Bot., sér. 10, 19: 316. Mai 1937
140. Buxaceae Dumort., Comment. Bot.: 54. Nov-Dec 1822, nom. cons. Pachysandraceae J. Agardh, Theoria Syst. Pl.: 358. Apr-Sep 1858 Stylocerataceae Takht. ex Reveal \& Hoogland, Bull. Mus. Natl. Hist. Nat., ser. 4, sect. B Adansonta 12: 206. 24 Nov 1990
a. Buxoideae Beilschm., Flora 16(Beibl. 7): 61, 105. 14 Jun 1833
b. Pachysandroideae Record \& Garratt, Bull. Yale Univ., School Forest. 14: 12. 1925 b1. Stylocerateae Pax in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 5: 132, 134. Jun 1892
b2. Pachysandreae Reveal, Phytoneuron 2012-37: 218. 23 Apr 2012
J. Myrothamnanae Takht., Divers. Classif. Fl. Pl.: 134. 24 Apr 1997
39. Gunnerales Takht. ex Reveal, Novon 2: 239.13 Oct 1992 Myrothamnales Nakai ex Reveal, Phytologia 74: 176. 25 Mar 1993
141. Gunneraceae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 345, 346, Comm. 257. 13-15 Feb 1842, nom. cons.
142. Myrothamnaceae Nied. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 2a: 103. 9 Mar 1891, nom. cons.
K. Dillenianae Takht. ex Doweld, Tent. Syst. Pl. Vasc.: xxviii. 23 Dec 2001
40. Dilleniales DC. ex Bercht. \& J. Presl, Přir. Rostlin: 223. Jan-Apr 1820
143. Dilleniaceae Salisb., Parad. Lond. 2: ad t. 73. 1 Jun 1807, nom. cons.

Delmaceae Mart., Consp. Regn. Veg.: 39. Sep-Oct 1835
Hibbertiaceae J. Agardh, Theoria Syst. Pl.: 200. Apr-Sep 1858
Soramiaceae Martinov, Tekhno-Bot. Slovar: 586. 3 Aug 1820
a. Delimoideae Burnett, Outlines Bot.: 836. Feb 1835
b. Doliocar poideae J.W. Horn, Int. J. Pl. Sci. 170: 809. 2009
c. Hibbertoideae J.W. Horn, Int. J. Pl. Sci. 170: 809. 2009
d. Dillenioideae Burnett, Outlmes Bot.: 836. Feb 1835
L. Saxifraganae Reveal, Phytologia 76: 4. 2 Mai 1994

Daphniphyllanae Takht., Divers. Classif. Fl. Pl.: 140. 24 Apr 1997
Hamamelidanae Takht., Sist. Filog. Cvetk. Rast.: 113. 4 Feb 1967
Paeonianae Doweld, Tent. Syst. Pl. Vasc.: xxvii. 23 Dec 2001
41. Peridiscales Doweld in A. Doweld \& J.L. Reveal, Phytologia 90: 416. 1 Dec 2008

Medusandrales Brenan, Kew Bull. 7: 228. 25 Jul 1952
144. Peridiscaceae Kuhlm., Arq. Serv. Florest. 3: 4. 1950, nom. cons. Medusandraceae Brenan, Kew Bull. 7: 228. 25 Jul 1952, nom. cons.
42. Hamamelidales Link, Handbuch 2: 4. 4-11 Jul 1829

Altungtales Doweld, Ann. Bot. (London) 82: 435. Oct 1998
Cercidiphyllales Hu ex Reveal, Phytologia 74: 174. 25 Mar 1993
Daphniphyllales Hurus., J. Fac. Sci. Univ. Tokyo, ser. 3, Bot. 6: 215. 15 Aug 1954
Fothergillales Link, Handbuch 2: 445. 4-11 Jul 1829
Paeoniales Heintze, Cormofyt. Fylog.: 12. 1 Jun 1927

42a. Paeoniineae Mart, Consp. Regn. Veg.: 40. Sep-Oct
145. Paeoniaceae Raf., Anal. Nat.: 176. Apr-Jul 1815, nom. cons.

42b. Hamamelidineae Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 91. 29 Jun 2007
146. Altingiaceae Horan., Osnov. Bot.: 271. 1841, nom. cons.
147. Hamamelidaceae R. Br. in C. Abel, Narr. Journey China: 374. 15 Aug 1818, nom. cons.
Disanthaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov.]: 246. 20 Jul 1943
Exbucklandiaceae Reveal \& Doweld, Novon 9: 552. 30 Dec 1999
Fothergillaceae Nutt., Gen. N.Amer. Pl. 1: 108. 14 Jul 1818
Parrotraceae Horan., Prim. Lin. Syst. Nat.: 79. 2 Nov 1834
Rhodoleiaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov]: 246. 20 Jul 1943
a. Exbucklandioideae H.T. Chang, Acta Sct. Nat. Unvv. Sunyatseni 1973(1): 54. Nov 1973
b. Disanthoideae Harms in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 18a: 314. 3 Mai 1930
c. Hamamelidoideae Burnett, Outlines Bot.: 733, 1132. Feb 1835
c1. Hamamelideae DC., Prodr. 4: 268. late Sep 183
c2. Corylopsideae Harms in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 18a: 325. 3 Mai 1930
c3. Eustigmateae Harms in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 18a: 314. 3 Mai 1930
c4. Fothergilleae DC., Prodr. 4: 269. late Sep 1830
d. Rhodoleioideae Harms in H.GA. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 18a: 315. 3 Mai 1930
148. Cercidiphyllaceae Engl., Syllabus, ed. 5: 126. 20-22 Jul 1907, nom. cons.
149. Daphniphyllaceae Müll.-Arg. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 16(1): 1. med. Nov 1869, nom. cons.
43. Saxifragales Bercht. \& J. Pres1, Přır. Rostlin: 259. Jan-Apr 1820

Crassulales Link, Handbuch 2: 18. 4-11 Jul 1829
Grossulariales DC. ex Bercht. \& J. Presl, Přir. Rostlin: 236. Jan-Apr 1820
Haloragales Link, Handbuch 2: 52. 4-11 Jul 1829
Iteales Doweld, Tent. Syst. Pl. Vasc.: xxviii. 23 Dec 2001
Sedales Rchb., Bot. Damen: 462. 1856
Sempervivales Juss. ex Bercht. \& J. Pres1, Přir. Rostlin: 238. Jan-Apr 1820
150. Crassulaceae J. St.-Hil., Expos. Fam. Nat. 2: 123. Feb-Apr 1805, nom. cons.

Cotyledonaceae Martinov, Tekhno-Bot. Slovar: 168. 3 Aug 1820
Rhodiolaceae Martinov, Tekhno-Bot. Slovar: 546. 3 Aug 1820
Sedaceae Roussel, Fl. Calvados, ed. 2: 291. 30 Mai 1806
Sempervivaceae Juss., Gen. Pl.: 207. 4 Aug 1789
Tillaeaceae Martinov, Tekhno-Bot. Slovar: 635. 3 Aug 1820
a. Crassuloideae Burnett, Outlines Bot.: 736, 1092, 1131. Feb 1835
a 1. Umbiliceae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 134, Comm. 98. 8-14 Apr 1838
a2. Semperviveae Dumort., Fl. Belg.: 85. 1827
a3. Aeonieae Thiede ex Reveal, Phytoneuron 2012-37: 215. 23 Apr 2012
a4. Sedeae Fr., Fl. Scan.: 97. 1835
b. Kalanchoideae A. Berger in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 18a: 383. 3 Mai 1930
c. Sempervivoideae Arn., Botany: 112. 9 Mar 1832
151. Aphanopetalaceae Doweld, Tent. Syst. Pl. Vasc.: xxvii. 23 Dec 2001
152. Tetracarpaeaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov.]: 244. 20 Jul 1943
153. Haloragaceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 549. 19 Jul 1814, nom. cons.
Cercodiaceae Juss. in F. Cuvier, Dict. Sci. Nat. 7: 441. 24 Mai 1817 Myriophyllaceae Schultz Sch., Nat. Syst. Pflanzenr.: 324. 30 Jan-10 Feb 1832
a1. Myriophylleae Rehb., Fl. Germ. Excurs. 2(2): 632. 1832
a2. Halorageae Bartl., Ord. Nat. Pl.: 315. Sep 1830
154. Penthoraceae Rydb. ex Britton, Man. Fl. N. States: 475. Oct 1901, nom. cons.
155. Iteaceae J. Agardh, Theorta Syst. Pl.: 151. Apr-Sep 1858, nom. cons.
156. Pterostemonaceae Small in N.L. Britton, N. Amer. Fl. 22(1): 2. 22 Mai 1905, nom. cons.
157. Grossulariaceae DC. in J.B.A.P.M. de Lamarck \& A.P. de Candolle, Fl. Franc., ed. 3, 4(2): 405. 17 Sep 1805, nom. cons.
Ribestaceae Marquis, Esq. Règne Vég.: 66. 15-22 Jul 1820
158. Saxifragaceae Juss., Gen. Pl.: 308. 4 Aug 1789, nom. cons. Brachycaulaceae Panigrahi \& Dikshit in G. Panigrahi, Proc. 90 Oth Indıan ScI. Congr. Part III (Advance Abstr.): 54. 2003 Chrysospleniaceae Bercht. \& J. Presl, Přrr. Rostlin: 259. Jan-Apr 1820 Pectiantiaceae Raf., Fl. Tellur. 2: 73. Jan-Mar 1837
a. Saxifragoideae Beilschm., Flora 16(Beibl. 7): 94. 14 Jun 1833
a1. Saxifrageae Dumort., Fl. Belg.: 84. 1827
a2. Saniculiphylleae C.Y. Wu \& T.C. Ku, Acta Phytotax. Sin. 30: 193. Jun 1992
b. Heucheroideae Burnett, Outlmes Bot.: 734, 1132. Feb 1835
b1. Chrysosplenieae Dumort., Fl. Belg.: 84. 1827
b2. Heuchereae Bartl., Ord. Nat. Pl.: 312. Sep 1830
44. Cynomoriales Burnett, Outlines Bot.: 1090, 1100. Feb 1835
159. Cynomoriaceae Endl. ex Lindl., Nix. Pl.: 23.17 Sep 1833, nom. cons.
M. Rosanae Takht., Sist. Filog. Cvetk. Rast.: 264. 4 Feb 1967

Barbeyanae Takht. ex Reveal \& Doweld, Novon 9: 549. 30 Dee 1999
Begontanae Doweld, Tent. Syst. Pl. Vasc.: xxxix. 23 Dec 2001
Casuarinanae Takht. ex Reveal \& Doweld, Novon 9: 549. 30 Dec 1999
Celastranae Takht., Sist. Filog. Cvetk. Rast.: 371. 4 Feb 1967
Corynocarpanae Takht., Divers. Classif. Fl. Pl.: 340. 24 Apr 1997
Cucurbitanae Reveal, Phytologia 76: 4. 2 Mai 1994
Euphorbtanae Takht. ex Reveal, Novon 2: 236. 13 Oct 1992
Fabanae R. Dahlgren ex Reveal, Phytologta 74: 179. 25 Mar 1993
Faganae Takht., Divers. Classif. Fl. Pl.: 146. 24 Apr 1997
Geranianae Thorne ex Reveal, Novon 2: 236. 13 Oct 1992
Juglandanae Takht. ex Reveal, Novon 2: 236. 13 Oct 1992
Ochnanae Doweld, Tent. Syst. Pl. Vasc.: xxxiii. 23 Dec 2001
Oxalidanae Doweld, Tent. Syst. Pl. Vasc.: xxx. 23 Dec 2001
Polygalanae Doweld, Tent. Syst. Pl. Vasc.: xxxviii. 23 Dec 2001
Podostemanae R. Dahlgren ex Reveal, Novon 2: 236. 13 Oct 1992
Rafflestanae Thorne ex Reveal, Phytologia 79: 71. 29 Apr 1996
Rhamnanae Takht. ex Reveal, Novon 2: 236. 13 Oct 1992
Rhizophoranae Takht. ex Reveal \& Doweld, Novon 9: 550. 30 Dec 1999
Uritcanae Takht. ex Reveal, Novon 2: 237. 13 Oct 1992
Volanae R. Dahlgren ex Reveal, Novon 2: 237. 13 Oct 1992
Vitanae Takht. ex Reveal, Novon 2: 237. 13 Oct 1992
Zygophyllanae Doweld, Tent. Syst. Pl. Vasc.: xxxviii. 23 Dec 2001
45. Vitales Juss. ex Bercht. \& J. Pres1, Přir. Rostlin: 225. Jan-Apr 1820

Leeales Mart., Consp. Regn. Veg.: 26. Sep-Oct 1835
160. Vitaceae Juss., Gen. Pl.: 267. 4 Aug 1789, nom. cons.

Ampelopsidaceae Kostel., Allg. Med.-Pharm. Fl.: 1194. Jan-Oct 1835
Cissaceae Drejer, Comp.Medic. Bot.: 45.1840
Leeaceae Dumort., Anal. Fam. Pl.: 21, 27. 1829, nom. cons. Pterisanthaceae J. Agardh, Theoria Syst. Pl.: 268. Apr-Sep 1858
a. Vitoideae Eaton, Bot. Dict., ed. 4: 40. Apr-Mai 1836
b. Leeoideae Burmeist., Handb. Naturgesch.: 338. 1837
46. ZyGophyllales Link, Handbuch 2: 228. 4-11 Jul 1829 Balanitales C.Y. Wu, Acta Phytotax. Sin. 40: 314. 2002 Krameriales Mart., Consp. Regn. Veg.: 44. Sep-Oct 1835
161. Krameriaceae Dumort., Anal. Fam. Pl.: 20, 23. 1829, nom. cons.
162. Zygophyllaceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 545.19 Jul 1814, nom. cons.
Balanitaceae M. Roem., Fam. Nat. Syn. Monogr. 1: 26. 14 Sep-15 Oct 1846, nom. cons.
Tribulaceae Trautv., Estestv. Istor. Gub. Kievsk. Uchebn. Okr. Bot. Sist.: 28. 1853
a. Morkillioideae Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 106. 29 Jun 2007
b. Balanitoideae Engl. in H.G.A. Engler \& K.AE. Prantl, Nat. Pflanzenfam. III, 4: 354, 355. Jul 1896
c. Tribuloideae D.M. Porter ex Reveal, Phytoneuron 2012-37: 219. 23 Apr 2012
cl. Sisynditeae Hadidi, Publ. Cairo Univ. Herb. 7/8: 107. 1977
c2. Neoluederitzieae Hadidi, Publ. Catro Unv. Herb. 7/8: 107. 1977
c3. Tribuleae Dumort., Anal. Fam. Pl.: 45. 1829
d. Seetzenioideae Sheahan \& M.W. Chase, Bot. J. Linn. Soc. 122: 299. 18 Dec 1996
e. Larreoideae Sheahan \& M.W. Chase, Bot. J. Linn. Soc. 122: 299. 18 Dec 1996
f. Zygophylloideae Arn., Botany: 104. 9 Mar 1832
47. Fabales Bromhead, Edinburgh New Philos. J. 25: 126. Jul 1838

Caesalpintales Mart., Consp. Regn. Veg.: 34. Sep-Oct 1835
Cassiales Link, Handbuch 2: 135. 4-11 Jul 1829
Mimosales Link, Handbuch 2: 131. 4-11 Jul 1829
Polygalales Juss. ex Bercht. \& J. Presl, Přir. Rostlin: 228. Jan-Apr 1820
Quillajales Doweld, Tent. Syst.Pl. Vasc.: xxxviii. 23 Dec 2001
Surtanales Doweld, Tent. Syst. Pl. Vasc.: xxxviii. 23 Dec 2001
163. Quillajaceae D. Don, Edinburgh New Philos. J. 10: 229. 1831
164. Fabaceae Lindl., Edwards's Bot. Reg. 22: ad t. 1845. 1 Apr 1836, nom. cons., nom. alt. Acaciaceae E. Mey., Comm. Pl. Afr. Austr. 1: 164. 14 Feb-5 Jun 1836 Aspalathaceae Martinov, Tekhno-Bot. Slovar: 51. 3 Aug 1820
Astragalaceae Bercht. \& J. Presl, Přtr. Rostlin: 229. Jan-Apr 1820
Bauhniaceae Martinov, Tekhno-Bot. Slovar: 67.3 Aug 1820
Caesalpintaceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 551. 19 Jul 1814, nom. cons.
Casstaceae Vest, Anleit. Stud. Bot.: 270, 291. 1818
Ciceraceae Steele, Handb. Field Bot.: xx, 63. 1847
Coronillaceae Martinov, Tekhno-Bot. Slovar: 162. 3 Aug 1820
Cytisaceae Bercht. \& J. Presl, Přir. Rostlın: 229. Jan-Apr 1820
Dalbergtaceae Mart., Consp. Regn. Veg.: 34. Sep-Oct 1835
Daleaceae Bercht. \& J. Presl, Přrr. Rostlm: 230. Jan-Apr 1820
Detariaceae J. Hess, Uebers. Phan. Nat. Pfl.-Fam.: 46. 11-16 Aug 1832
Galedupaceae Martinov, Tekhno-Bot. Slovar: 277. 3 Aug 1820

Geoffroeaceae Mart., Consp. Regn. Veg.: 34. Sep-Oct 1835
Hedysaraceae Bercht. \& J. Presl, Přir. Rostlin: 230. Jan-Apr 1820
Inocarpaceae Zoll., Syst. Verz. 2: 117. 1854-1855
Lathyraceae Burnett, Outlines Bot:: 660, 1092, 1138. Feb 1835
Leguminosae Juss., Gen. Pl.: 345. 4 Aug 1789, nom. cons.
Lotaceae Oken, Lehrb. Naturgesch. 2(2.2): xv, 727. 1826
Mimosaceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 551. 19 Jul 1814, nom. cons.
Papilionaceae Giseke, Prael. Ord. Nat. Pl.: 415. Apr 1792, nom. cons., nom. alt.
Phaseolaceae Mart., Consp. Regn. Veg.: 34. Sep-Oct 1835
Robmiaceae Vest, Anlett. Stud. Bot.: 270, 291. 1818
Sophoraceae Bercht. \& J. Presl, Přir. Rostlin: 229. Jan-Apr 1820
Swartziaceae Bartl., Ord. Nat. Pl.: 231, 413. Sep 1830
Tamarindaceae Martinov, Tekhno-Bot. Slovar: 622. 3 Aug 1820
Trifolıaceae Bercht. \& J. Pres1, Prir. Rostlin: 230. Jan-Apr 1820
Viciaceae Oken, Lehrb. Naturgesch. 2(2.2): xv. 1826
a. Brachystegioideae Hutch., Gen. Fl. Pl. 1: 225. 3 Dec 1964
a1. Cercideae Bronn, Form. Pl. Legumin.: ad Sect. 134, 131. 1822
a2. Detarieae DC., Prodr. 2: 521. medio Nov 1825
a3. Macrolobieae Breteler in M.D. Crisp \& J.J. Doyle, Adv. Legzme Syst. 7: 59. 1995
b. Faboideae Rudd, Rhodora 70: 496. 31 Dec 1968
b1. Swartzieae DC., Prodr. 2: 422. medio Nov 1825
b2. Dipterygeae Polhill in R.M. Polhill \& P.H. Raven, Adv. Legume System. 1: 231. 1981
b3. Sophoreae Spreng. ex DC., Prodr. 2: 94. medio Nov 1825
b4. Brongniartieae Hutch., Gen. Fl. Pl. 1: 393. 3 Dec 1964
b5. Euchresteae H. Ohashi, J. Jap. Bot. 48: 229. Aug 1973
b6. Thermopsideae Yakovlev, Bot. Zhurn. (Moscow \& Leningrad) 57: 592. 26 Jun 1972
b7. Podalyrieae Benth. in S.F.L. Endlicher, E. Fenzl, G. Bentham \& H.W.Schott, Enum. Pl.: 27. Apr 1837
b8. Crotalarieae Hutch., Gen. Fl. Pl. 1:364. 3 Dec 1964
b9. Genisteae Bronn in B.C.J. Dumortier, Fl. Belg.: 98. 1827
b10. Amorpheae Boriss., Novt. Syst. Pl. Vasc. 1964: 224. 14 Oct 1964
b11. Dalbergieae DC., Prodr. 2: 415. medio Nov 1825
b12. Hypocalypteae A.L. Schutte in A.L. Schutte \& B.-E. van Wyk, Novon 8: 180. 1998
b13. Mirbelieae Polhill in R.M. Polhill \& P.H. Raven, Adv. Legume System. 1: 391. 1981
b14. Bossiaeeae Hutch., Gen. Fl. Pl. 1: 347. 3 Dec 1964
b15. Indigofereae Benth. in C.F. von Martius, S. Endlicher \& I. Urban, F7. Bras. 15(1): 5-6, 35-36. 30 Jul 1859
b 16. Millettieae Miq., F7. Ned. Ind. 1(1): 137. 2 Aug 1855
b17. Abreae Hutch., Gen. Fl. Pl. 1: 451. 3 Dec 1964
b18. Phaseoleae DC., Prodr. 2: 381. medio Nov 1825
b19. Desmodieae Hutch., Gen. F7. Pl. 1: 477. 3 Dec 1964
b20. Psoraleeae Benth. in C.F. von Martius, S. Endlicher \& I. Urban, Fl. Bras. 15(1): 3-4, 31-34. 1859
b21. Sesbanieae Hutch., Gen. Fl. Pl. 1: 401. 3 Dec 1964
b22. Loteae DC., Prodr'. 2: 115. medio Nov 1825
b23. Robinieae Hutch., Gen. Fl. Pl. 1: 366. 3 Dec 1964
b24. Galegeae Bronn in B.C.J. Dumortier, Fl. Belg.: 101. 1827
b25. Hedysareae DC., Prodr. 2: 307. medio Nov 1825
b26. Cicereae Alef., Bot. Zeitung (Berlin) 9: 353-354. 1859
b27. Trifolieae Endl., Fl. Poson.: 452. Mai 1830
b28. Fabeae Rchb., F7. Germ. Excurs. 2(2): 525. 1832
c. Caesalpinoideae DC., Prodr. 2: 473. medio Nov 1825
cl. Cassieae Bronn, Form. Pl. Legumin.: 78, 127, 130. 1822
c1a. Cassiinae Wight \& Arn., Prodr. Fl. Ind. Orient:: 280. 10 Oct 1834
clb. Storckiellinae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov.]: 254.20 Jul 1943c1c. Duparquetiinae H.S. Irwin \& Barneby in R.M. Polhill \& P.H. Raven, Adv.Legume System. 1: 102. 1981
c2. Caesalpinieae Rchb., Fl. Germ. Excurs. 2(2): 544. 1832
d. Mimosoideae DC., Prodr. 2: 424. medio Nov 1825
d1. Mimoseae Bronn, Form. Pl. Legumin.: 78, 127, 130. 1822
d2. Parkieae End1., Gen. Pl.: 1323. Oct 1840
d3. Mimozygantheae Burkart, Darwiniana 3: 447. 15 Dec 1939
d4. Acacieae Dumort., Anal. Fam. Pl.: 40. 1829
d5. Ingeae Benth. \& Hook.f., Gen. Pl. 1: 437. 19 Oct 1865
165. Surianaceae Arn. in R. Wight \& C.A.W. Arnott, Prodr. F7. Ind. Ortent.: 1:360. 22 Sep1834, nom. cons.Stylobasiaceae J. Agardh, Theoria Syst. Pl.: 169. Apr-Sep 1858
a1. Rigiostachydeae Loes. \& Solered., Verh. Bot. Ver. Prov. Brandenburg 47: 60. 1905
a2. Surianeae Baill., Hist. Pl. 4: 432, 511. Jul-Sep 1873
a3. Stylobasieae Bonne, Res. Pédic. Fl. Rosacées: 356. 28 Jun 1928
166. Polygalaceae Hoffmanns. \& Link, Fl. Portug. 1: 62. 1 Sep 1809, nom. cons.
Diclıdantheraceae J. Agardh, Theoria Syst. Pl.: 195. Apr-Sep 1858, nom. cons.Moutabeaceae Pfeiff., Nomencl. Bot. 2: 364. 24 Jan 1873
Xanthophyllaceae Gagnep. ex Reveal \& Hoogland, Bull. Mus. Natl. Hist. Nat., ser.4, sect. B Adansonia 12: 206. 24 Nov 1990
a1. X anthophylleae Baill., HLst. Pl. 5: 81, 91. Dec 1874
a2. Diclidanthereae Reveal, Phytoneuron 2012-33: 2. 9 Apr 2012
a3. Carpolobieae B. Eriksen, Pl. Syst. Evol. 186: 47. 1993
a4. Polygaleae Fr., Fl. Scan.: 35, 38.1835
48. Rosales Bercht. \& J. Presl, Přtr. Rostlm: 231. Jan-Apr 1820
Amygdalales Link, Handbuch 2: 72. 4-11 Jul 1829
Dryadales Link, Handbuch 2: 98. 4-11 Jul 1829
Sanguisorbales Link, Handbuch 2: 113. 4-11 Jul 1829
Spiraeales Link, Handbuch 2: 94. 4-11 Jul 1829
167. Rosaceae Juss., Gen. Pl.: 334. 4 Aug 1789, nom. cons.
Agrimontaceae Gray, Nat. Arr. Brit. Pl. 2: 395, 574. 10 Jan 1822
Alchemillaceae Martinov, Tekhno-Bot. Slovar: 17. 3 Aug 1820
Amygdalaceae Marquis, Esq. Règne Vég.: 49. 15-22 Jul 1820, nom. cons.
Cercocarpaceae J. Agardh, Theorta Syst. Pl.: 287. Apr-Sep 1858
Chamaemoraceae Lilja, Skånes Fl., ed. 2: 349, 980. Apr-Dec 1870
Coleogynaceae J. Agardh, Theoria Syst. Pl.: 171. Apr-Sep 1858
Cydontaceae Schnizl., Anal. Nat. Ordn. Gew.: 14. 1856
Dryadaceae Gray, Nat. Arr. Brit. Pl. 2: 395, 577. 10 Jan 1822
Fragartaceae Nestl., Monogr. Potentilla: 14. Jun 1816
Lindleyaceae J. Agardh, Theoria Syst. Pl.: 166. Apr-Sep 1858
Malaceae Small, Fl. S.E. U.S.: 529. 22 Jul 1903, nom. cons.

Mespilaceae Schultz Sch., Nat. Syst. Pflanzenr.: 509. 30 Jan-10 Feb 1832
Neilltaceae Miq., Fl. Ned. Ind. 1: 390. 20 Dec 1855
Potentillaceae Bercht. \& J. Pres1, Přtr. Rostlnn: 231. Jan-Apr 1820
Potertaceae Raf., Anal. Nat.: 173. Apr-Jul 1815
Prunaceae Martinov, Tekhno-Bot. Slovar: 511. 3 Aug 1820
Pyraceae Vest, Anlett. Stud. Bot.: 268, 286. 1818
Rhodotypaceae J. Agardh, Theoria Syst. Pl.: 172. Apr-Sep 1858
Sangusorbaceae Bercht. \& J. Presl, Přir. Rostlin: 231. Jan-Apr 1820
Sorbaceae Brenner, Florist. Handb.: 94. 1886
Spiraeaceae Bertuch, Taf. Allg. Naturgesch. Gewächs-Reıch: Enum. 10, Syn. Tab. 3. 1801

Tormentillaceae Martinov, Tekhno-Bot. Slovar: 636. 3 Aug 1820
Ulmariaceae Gray, Nat. Arr. Brtt. Pl. 2: 395, 588. 10 Jan 1822
a. Maloideae C. Weber, J. Arnold Arbor. 45: 164. 15 Apr 1964
a 1. Lyonothamneae Brouillet, J. Bot. Res. Inst. Texas 2: 385. 24 Jul 2008
a2. Neillieae Maxim., Trudy Imp. S.-Pterburgsk. Bot. Sada 6: 164, 216. Jul-Aug 1879
a3. Amygdaleae DC., Prodr. 2: 529. medio Nov 1825
a4. Exochordeae Schulze-Mentz ex Reveal, J. Bot. Res. Inst. Texas 4: 215. 29 Jul 2010
a5. Kerrieae Focke in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 3: 12, 27. Dec 1888
a6. Sorbarieae Rydb., N.Amer. Fl. 22: 239, 256. 12 Jun 1908
a7. Spiraeeae DC., Prodr. 2: 541. medio Nov 1825
a8. Gillenieae Maxim., Trudy Imp. S.-Pterburgsk. Bot. Sada 6: 164, 222. Jul-Dec 1879
a9. Maleae Small, Man. S.E. Fl.: 632. 30 Nov 1933
a9a. Lindleyinae Reveal, Phytoneuron 2012-37: 217. 23 Apr 2012
a9b. Malinae Reveal, Phytoneuron 2012-33: 2. 9 Apr 2012
b. Rosoideae Arn., Botany: 107. 9 Mar 1832
b1. Ulmarieae Lam. \& DC., Syn. Pl. Fl. Gall.: 338. 30 Jun 1806
b2. Rubeae Dumort., Anal. Fam. Pl.: 39. 1829
b3. Colurieae Rydb., N. Amer. F7. 22: 240. 12 Jun 1908
b4. Roseae Lam. \& DC., Syn. Pl. Fl. Gall.: 331. 30 Jun 1806
b5. Potentilleae Sweet, Brit. Fl. Gard. 2: 124. 1 Sep 1825
b5a. Fragariinae Torr. \& A. Gray, Fl. N. Amer. 1: 435. Jun 1840
b5b. Alchemillinae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 105, Comm. 74. 8-14 Apr 1838
b6. Agrimonieae Lam. \& DC., Syn. Pl. Fl. Gall.: 333. 30 Jun 1806
b6a. Agrimoniinae J. Presl, Nowočeská Bibl. [Wšobecný Rostl.] 7: 502. 1846
b6b. Sanguisorbinae Torr. \& A. Gray, FI. N. Amer. 1: 428. Jun 1840
c. Dryadoideae Sweet, Brit. Fl. Gard. 1: ad t. 43. Apr 1830
c1. Cercocarpeae Pfeiff., Nomencl. Bot. 1(1): 671. ante 24 Jan 1873
c2. Dryadeae Lam. \& DC., Syn. Pl. Fl. Gall.: 334. 30 Jun 1806
49. Rhamnales Link, Handbuch 2: 118. 4-11 Jul 1829

Barbeyales Takht. \& Reveal, Phytologia 74: 172. 25 Mar 1993
Elaeagnales R. Br. ex Bercht. \& J. Presl, Přtr. Rostlin: 234. Jan-Apr 1820
Frangulales Wirtg., Pflanzenfunde: 2: 36. 17-18 Sep 1860
168. Barbeyaceae Rendle in D. Oliver (ed. D. Prain), Fl. Trop. Afr. 6(2): 14. Mar 1916, nom. cons.
169. Dirachmaceae Hutch., Fam. Fl. Pl., ed. 2: 248. 4 Jun 1959
170. Rhamnaceae Juss., Gen. Pl.: 376. 4 Aug 1789, nom. cons.

Frangulaceae DC. in J.B.A.P.M. de Lamarck \& AP. de Candolle, Fl. Franç., ed. 3, 4(2): 619. 17 Sep 1805

Gouantaceae Raf., Fl. Tellur. 2: 73. Jan-Mar 1837
Phylicaceae J. Agardh, Theoria Syst. Pl.: 186. Apr-Sep 1858
Ziziphaceae Adans. in T.E. von Post \& C.E.O. Kuntze, Lex. Gen. Phan.: 665, 714. 20-30 Nov 1903
a. Rhamnoideae Eaton, Bot. Dict., ed. 4: 46. Apr-Mai 1836
a1. Rhamneae Horan., Char. Ess. Fam.: 138. 17 Jun 1847
a2. Maesopsideae Engl. \& Weberb. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr: 229. 4 Oct 1897
a3. Ventilagineae Benth. \& Hookf., Gen. Pl. 1:372. 7 Aug 1862
a4. Ampelozizipheae J.E. Richardson, Kew Bull. 55: 335. 15 Aug 2000
a5. Doerpfeldieae J.E. Richardson, Kew Bull. 55: 335. 15 Aug 2000
a6. Bathiorhamneae J.E. Richardson, Kew Bull. 55: 335. 15 Aug 2000
b. Ziziphoideae Luerss., Handb. Syst. Bot. 2: 731. Aug 1881
b1. Paliureae Reissek ex Endl., Gen. Pl.: 1095. Apr 1840
b2. Colletieae Reissek ex Endl., Gen. Pl.: 1099. Apr 1840
b3. Phyliceae Reissek ex Endl., Gen. Pl.: 1100. Apr 1840
b4. Gouanieae Rchb., Handb. Nat. Pfl.-Syst.: 222. 1-7 Oct 1837
b5. Pomaderreae Reissek ex Endl., Gen. Pl.: 1101. Apr 1840
171. Elaeagnaceae Juss., Gen. Pl.: 74. 4 Aug 1789, nom. cons. Hippophaeaceae G. Mey., Chloris Han: 456, 460. Jul-Aug 1836
50. Urticales Juss. ex Bercht. \& J. Presl, Přir. Rostlm: 260. Jan-Apr 1820

Artocarpales Mart., Consp. Regn. Veg.: 14. Sep-Oct 1835
Cannabales Döll, Rhein. Fl.: 253. 24-27 Mai 1843
Ficales Dumort., Anal. Fam. Pl.: 15. 1829
Morales Mart., Consp. Regn. Veg.: 13. Sep-Oct 1835
Ulmales Link, Handbuch 2: 445. 4-11 Jul 1829
172. Ulmaceae Mirb., Elém. Phystol. Vég. Bot. 2: 905. 24-30 Jun 1815, nom. cons.
173. Celtidaceae Endl., Ench. Bot.: 171. 15-21 Aug 1841
174. Cannabaceae Martinov, Tekhno-Bot. Slovar: 99.3 Aug 1820, nom. cons.

Humulaceae Bercht. \& J. Presl, Přir. Rostlin: 258. Jan-Apr 1820
Lupulaceae Schultz Sch., Nat. Syst. Pflanzenr.: 370. 30 Jan-10 Feb 1832
175. Moraceae Gaudich. in C.B. Trinius, Gen. Pl.: 13. 1835, nom. cons.

Artocarpaceae Bercht. \& J. Presl, Přir. Rostlm: 260. Jan-Apr 1820
Dorstentaceae Chevall., Fl. Gén. Env. Parıs 2: 376.1827
Ficaceae Bercht. \& J. Presl, Přrr. Rostlin: 260. Jan-Apr 1820
a1. Artocarpeae Lam. \& DC., Syn. Pl. Fl. Gall.: 183. 30 Jun 1806
a2. Moreae Dumort., Anal. Fam. Pl.: 17. 1829
a3. Maclureae W.L. Clement \& Weiblen, Syst. Bot. 34: 545. 2 Sep 2009
a4. Dorstenieae Dumort., Anal. Fam. Pl.: 16. 1829
a5. Ficeae Dumort., Fl. Belg.: 24. 1827
a6. Castilleae C.C. Berg, Acta Bot. Neerl. 26: 78. 15 Feb 1977
176. Urticaceae Juss., Gen. Pl.: 400. 4 Aug 1789, nom. cons.

Cecroptaceae C.C. Berg, Taxon 27: 39. 23 Mar 1978
Parietartaceae Bercht. \& J. Presl, Přir. Rostlin: 261. Jan-Apr 1820
a. Urticoideae Arn., Botany: 129.9 Mar 1832
a1. Urticeae Lam. \& DC., Syn. Pl. Fl. Gall.: 184. 30 Jun 1806
a2. Lecantheae Wedd., Ann. Sci. Nat. Bot., sér. 4, 1: 174. Jan-Mar 1854
a3. Boehmerieae Gaudich. in H.L.C. de Saulces de Freycinet, Voy. Urante, Bot.: 499.6 Mar 1830
a4. Parietarieae Gaudich. in H.L.C. de Saulces de Freycinet, Voy. Uranie, Bot.: 501.6 Mar 1830
a5. Forsskaoleeae Gaudich. in H.L.C. de Saulces de Freycinet, Voy. Urante, Bot.: 504. 6 Mar 1830
b. Cecropioideae Romaniuc, Albertoa, n.s., 4: 13. Aug 1999
51. Juglandales Bercht. \& J. Presl, Přir. Rostlm: 227. Jan-Apr 1820

Betulales Mart., Consp. Regn. Veg.: 17. Sep-Oct 1835
Carpinales Döll, Fl. Baden 2: 536. med. 1858
Casuarinales Bercht. \& J. Presl, Přir. Rostlin: 261. Jan-Apr 1820
Corylales Dumort., Anal. Fam. Pl.: 11. 1829
Fagales Eng1., Syllabus, ed. 1: 94. Apr 1892
Myricales Mart., Consp. Regn. Veg.: 12. Sep-Oct 1835
Nothofagales Doweld, Tent. Syst. Pl. Vasc.: xl. 23 Dec 2001
Quercales Burnett, Outlines Bot.: 523, 1090, 1141. Feb 1835
Rhoipteleales Novák ex Reveal, Novon 2: 239. 13 Oct 1992
177. Nothofagaceae Kuprian. in A.N. Sladkov (ed.), First Intern. Conf. Palinol. Reports Soviet Palinol.: 21. 28 Dec 1962
178. Fagaceae Dumort., Anal. Fam. Pl.: 11, 12. 1829, nom. cons. Castaneaceae Brenner, Florist. Handb.: 167. 1886 Quercaceae Martinov, Tekhno-Bot. Slovar: 525. 3 Aug 1820
a. Quercoideae Irvine, London Fl.: 45. Sep-Dec 1838
b. Trigonobalanoideae Lozano, Hern.-Cam. \& Henao, Caldasia 12: 535. 1979
c. Castaneoideae Örst., Vidensk. Meddel. Dansk. Naturhist. Foren. Kjøbenhavn 1866: 53, 71. 5 Jul 1867
d. Fagoideae K. Koch, Dendrologie 2(2): 16. Nov 1873
179. Myricaceae Rich. ex Kunth in F.W.H.A. von Humboldt, A.J.A. Bonpland \& C.S.

Kunth, Nov. Gen. Sp. 2: ed. qu.: 16. 28 Apr 1817, nom. cons.
Canacomyricaceae Baum.-Bod. ex Doweld, Byull. Mosk. Obshch. Ispyt. Prir., Biol. 105(5): 59. 9 Oct 2000
a. Myrcieae Small, Man. S.E. Fl.: 934. 30 Nov 1933
b. Canacomyriceae Reveal, Phytoneuron 2012-37: 216. 23 Apr 2012
180. Juglandaceae DC. ex Perleb, Vers. Arzneikr. Pfl: 143. Mai 1818, nom. cons.

Engelhardtiaceae Reveal \& Doweld, Novon 9: 552. 30 Dec 1999
Platycaryaceae Nakai ex Doweld, Byull. Mosk. Obshch. Ispyt. Prir., Biol. 105(5): 59. 9 Oct 2000
a. Platycaryoideae W.E. Manning, Ann. Missourt Bot. Gard. 65: 1068. 1979
b. Engelhardtioideae Iljinsk., Bot. Zhurn. (Moscow \& Leningrad) 75: 793. 11-30 Jun 1990
c. Juglandoideae Eaton, Bot. Dict., ed. 4: 46. Apr-Mai 1836
cl. Juglandeae Rchb., Fl. Germ. Excurs. 2(2): 488, 490. 1832
c2. Caryeae Koidz., Acta Phytotax. Geobot. 6: 10. 15 Jan 1937
181. Rhoipteleaceae Hand.-Mazz., Repert. Spec. Nov. Regni Veg. 30: 75. 15 Feb 1932, nom. cons.
182. Casuarinaceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 571.19 Jul 1814, nom. cons.
183. Ticodendraceae Gómez-Laur. \& L.D. Gómez, Ann. Missourt Bot. Gard. 78: 87. 26 Feb 1991
184. Betulaceae Gray, Nat. Arr. Brit. Pl. 2: 222, 243.10 Jan 1822, nom. cons.

Carpinaceae Vest, Anleit. Stud. Bot.: 265, 280. 1818
Corylaceae Mirb., Elém. Physiol. Vég. Bot. 2: 906. 24-30 Jun 1815, nom. cons.
a. Betuloideae Rich. ex Arn., Botany: 131. 9 Mar 1832
b. Coryloideae Hook.f., Stud. Fl. Brit. Isl.: 343. 1870
b1. Carpineae A. DC. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 16(2): 124. late Dec 1864
b2. Coryleae Dumort., Fl. Belg.: 14. 1827
52. Cucurbitales Juss. ex Bercht. \& J. Presl, Přrr. Rostlin: 236. Jan-Apr 1820 Anisophylleales Takht. ex Reveal \& Doweld, Novon 9: 550. 30 Dec 1999
Begontales Link, Handbuch 1: 309. 4-11 Jul 1829
Coriariales Lindl., Nix. Pl.: 11. 17 Sep 1833
Corynocarpales Takht., Divers. Classif. Fl. Pl.: 340. 24 Apr 1997
Datiscales Dumort., Anal. Fam. Pl.: 13. 1829
52a. Cucurbitineae J. Presl, Nowočeská Bibl. [Wšobecný Rostl.] 7: 614, 615. 1846
185. Anisophylleaceae Ridl., Fl. Malay Penins. 1: xxviii, 700. 13-22 Jul 1922

Polygonanthaceae Croizat, Cact. Succ. J. (Los Angeles) 15: 64. Mai 1943
186. Corynocarpaceae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr:
215. 4 Oct 1897, nom. cons.
187. Coriariaceae DC., Prodr. 1: 739. medio Jan 1824, nom. cons.
188. Cucurbitaceae Juss., Gen. Pl.: 393. 4 Aug 1789, nom. cons.

Bryoniaceae G. Mey., Chloris Han.: 6, 112. Jul-Aug 1836
Cyclantheraceae Lilja, Skaines Fl., ed. 2: 716, 980. Apr-Dec 1870
Nhandirobaceae T. Lestib., Botanogr. Elém.: 515. 12-19 Jun 1826
Zanontaceae Dumort., Anal. Fam. Pl.: 28, 29. 1829
a1. Gomphogyneae Benth. \& Hookf., Gen. Pl. 1: 820. Sep 1867
a2. Triceratieae A. Rich. in R. de la Sagra, Hist. Fis. Cuba, Bot. 10: 298. 1845
a3. Zanonieae Benth. \& Hook.f., Gen. Pl. 1: 820. Sep 1867
a4. Actinostemmateae H. Schaef. \& S.S. Renner, Taxon 60: 130. 8 Apr 2011
a5. Indofevilleae H. Schaef. \& S.S. Renner, Taxon 60: 130. 8 Apr 2011
a6. Thladiantheae H. Schaef. \& S.S. Renner, Taxon 60: 130. 8 Apr 2011
a7. Siraitieae H. Schaef. \& S.S. Renner, Taxon 60: 130. 8 Apr 2011
a8. Momordiceae H. Schaef. \& S.S. Renner, Taxon 60: 130. 8 Apr 2011
a9. Joliffieae Schrad., Linnaea 12: 402. Apr-Sep 1838
a 10. Bryonieae Dumort., Fl. Belg.: 54. 1827
a11. Schizopeponeae C. Jeffrey, Kew Bull. 17: 475. 9 Apr 1964
a12. Sicyoeae Schrad., Linnaea 12: 407. Apr-Sep 1838
a 13. Coniandreae Endl. ex M. Roem., Fam. Nat. Syn. Monogr. 2: 6. Dec 1846
a 14. Benincaseae Ser., Mém. Soc. Phys. Genève 3(1): 25.1825
a15. Cucurbiteae Dumort., Fl. Belg.: 54. 1827
189. Tetramelaceae Airy Shaw, Kew Bull. 18: 267. 8 Dec 1965

52b. Begoniineae Engl., Syllabus, ed. 2: 156. Mai 1898
190. Datiscaceae Dumort., Anal. Fam. Pl.: 13, 14. 1829, nom. cons.
191. Begoniaceae C. Agardh, Aphor. Bot:: 200. 13 Jun 1824, nom. cons.
192. Apodanthaceae Tiegh. ex Takht., Sist. Magnoliof. [Syst. Magnolioph.]: 42.24 Jun 1987
53. Celastrales Link, Handbuch 2: 115. 4-11 Jul 1829

Brexiales Lindl., Nox. Pl.: 18. 17 Sep 1833
Hippocrateales Juss. ex Bercht. \& J. Presl, Přir. Rostlin: 225. Jan-Apr 1820
Parnasstales J. Presl, Nowočeská Bibl. [WŠobecný Rostl.] 7: 110. 1846
Stackhoustales Mart., Consp. Regn. Veg.: 55. Sep-Oct 1835
193. Lepidobotryaceae J. Léonard, Bull. Jard. Bot. Etat 20: 38. Jun 1950, nom. cons.
194. Parnassiaceae Martinov, Tekhno-Bot. Slovar: 456. 3 Aug 1820, nom. cons.

Lepuropetalaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov]: 243. 20 Jul 1943
a. Lepuropetaloideae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 18a: 108. 3 Mai 1930
b. Parnassioideae Arn., Botany: 98. 9 Mar 1832
195. Celastraceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 554. 19 Jul 1814, nom. cons. Brexiaceae Loudon, Hort. Brit.: 524. 30 Aug 1830 Canotiaceae Airy Shaw, Kew Bull. 18: 255. 8 Dec 1965 Chingithamnaceae Hand.-Mazz., Sinensia 2: 126. Apr-Mai 1932 Euonymaceae Juss. ex Bercht. \& J. Presl, Přir. Rostlin: 2(110): 438, 439. 1825 Hippocrateaceae Juss., Ann. Mus. Natl. Hist. Nat. 18: 486. Jul-Aug 1811, nom. cons.
Plagiopteraceae Airy Shaw, Kew Bull. 18: 266. 8 Dee 1965
Salactaceae Raf., F7. Tellur. 4: 101. (med.) 1838
Siphonodontaceae Gagnep. \& Tardieu, Notul. Syst. (Paris) 14: 102. 25 Jul 1951, nom. cons.
Stackhousiaceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 555. 19 Jul 1814, nom. cons.
a. Celastroideae Burnett, Outlmes Bot.: 621, 1140. Feb 1835
b. Siphonodontoideae Croizat, Lilloa 13: 41. 1947
c. Hippocrateoideae Lindl., Intr. Nat. Syst. Bot.: 120. 27 Sep 1830
d. Sarawakodendroideae Savinov \& Melikyan, Bot. Zhurn. (Moscow \& Leningrad) 87(7): 109. 29 Jul 2002
e. Salacioideae N. Halle ex Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 181. 1 Apr 2007
f. Stackhousioideae Burnett, Outlines Bot.: 618, 1092, 1140. Feb 1835
196. Pottingeriaceae Takht., Sist. Magnollof. [Syst. Magnolioph.]: 212. 24 Jun 1987
54. OXALIDALES Bercht. \& J. Pres1, Přir. Rostlin: 221. Jan-Apr 1820

Bauerales Mart., Consp. Regn. Veg.: 48. Sep-Oct 1835 Cephalotales Mart., Consp. Regn. Veg.: 37. Sep-Oct 1835 Connarales Link, Handbuch 2: 129. 4-11 Jul 1829 Cunoniales Mart., Consp. Regn. Veg.: 48. Sep-Oct 1835 Elaeocarpales Juss. ex Bercht. \& J. Presl, Přtr. Rostlin: 223. Jan-Apr 1820 Huales Doweld, Tent. Syst. Pl. Vasc.: xxx. 23 Dec 2001 Tremandrales Mart., Consp. Regn. Veg.: 43. Sep-Oct 1835
197. Huaceae A. Chev., Rev. Int. Bot. Appl. Agric. Trop. 27: 28. Jan-Feb 1947
198. Connaraceae R. Br. in J.H. Tuckey, Narr. Exped. Zatre: 431. 5 Mar 1818, nom. cons. Cnestidaceae Raf., Med. Fl. 2: 113. Mai-Dec 1830
a. Connaroideae Gilg in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr:: 190. 2 Aug 1897
b. Jollydoroideae Gilg in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr: 189. 2 Aug 1897
b 1. Jollydoreae Lemmens, Agric. Unv. Wageningen Pap. 89: 116. 1989
b2. Manoteae Lemmens, Agric. Univ. Wageningen Pap. 89: 116. 1989
b3. Cnestideae Planch., Linnaea 23: 438. Aug 1850
199. Oxalidaceae R. Br. in J.H. Tuckey, Narr. Exped. Zaire: 433. 5 Mar 1818, nom. cons. Averrhoaceae Hutch., Fam. Fl. Pl., ed. 2: 356. 4 Jun 1959
200. Cunoniaceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 548.19 Jul 1814, nom. cons. Baueraceae Lindl., Intr. Nat. Syst. Bot.: 50. 27 Sep 1830 Belangeraceae J. Agardh, Theoria Syst. Pl.: 337. Apr-Sep 1858 Callicomaceae J. Agardh, Theoria Syst. Pl:: 146. Apr-Sep 1858 Davidsoniaceae Bange, Blumea 7: 294. 1 Sep 1952 Eucryphiaceae Gay, Bot. Zeitung (Berlin) 6: 130. 18 Feb 1848, nom. cons. Spirceanthemaceae Doweld, Tent. Syst. Pl. Vasc.: xxxi. 23 Dec 2001
a. Spiraeanthemoideae Reveal, Phytoneuron 2012-37: 219. 23 Apr 2012
b. Davidsonioideae Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 106. 29 Jun 2007
c. Baueroideae Burnett, Outlmes Bot.: 734, 1132. Feb 1835
cl. Schizomerieae J.C. Bradford \& R.W. Barnes, Syst. Bot. 26: 373. 2001
c2. Bauereae DC., Prodr. 4: 13. late Sep 1830
d. Eucryphioideae Burnett, Outlines Bot.: 797. Feb 1835
d1. Eucryphieae Cambess. ex G. Don, Gen. Hist. 1: 599, 613. prim. Aug 1831
d2. Geissoieae Endl. ex Meisn., Pl. Vasc. Gen.: Tab. Diagn. 138, Comm. 101. 16-22
Sep 1838
d3. Caldcluvieae J.C. Bradford \& R.W. Barnes, Syst. Bot. 26: 372. 8 Jun 2001
e. Cunonioideae Beilschm., Flora 16(Beibl. 5): 94, 106. 14 Jun 1833
el. Codieae G. Don, Gen. Hist. 3: 197, 202. 8-15 Nov 1834
e2. Cunonieae Schrank \& Mart., Hort. Reg. Monac.: 125. 1829
201. Elaeocarpaceae Juss. in A.P. de Candolle, Essaı Propr. Méd. Pl., ed. 2: 87. 11 Mai

1816, nom. cons.
Aristoteliaceae Dumort., Anal. Fam. Pl.: 37, 41. 1829
Tetrathecaceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 544. 19 Jul 1814
al. Sloaneeae Endl., Gen. Pl.: 1005. 1-14 Feb 1840
a2. Elaeocarpeae Bartl., Ord. Nat. Pl.: 340. Sep 1830
202. Tremandraceae R. Br. ex DC., Prodr. 1: 343. medio Jan 1824, nom. cons.
203. Brunelliaceae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr: 182.

Aug1897, nom. cons.
204. Cephalotaceae Dumort., Anal. Fam. Pl.: 59, 61. 1829, nom. cons.
55. Violales Vent. ex Bercht. \& J. Presl, Přtr. Rostlm: 220. Jan-Apr 1820

Flacourtıales Mart., Consp. Regn. Veg.: 58. Sep-Oct 1835
Homaliales Mart., Consp. Regn. Veg.: 63. Sep-Oct 1835
Lacistematales Mart., Consp. Regn. Veg.: 49. Sep-Oct 1835
Malesherbiales Mart., Consp. Regn. Veg.: 50. Sep-Oct 1835
Passiflorales Juss. ex Bercht. \& J. Pres1, Přtr. Rostlin: 237. Jan-Apr 1820
Salicales Lindl., Nix. Pl.: 17. 17 Sep 1833
Samydales Vent. ex Bercht. \& J. Presl, Přir. Rostlin: 227. Jan-Apr 1820
Scyphostegiales Croizat, Kirkia 15: 137. Sep 1994
Turnerales Link, Handbuch 2: 47. 4-11 Jul 1829
205. Achariaceae Harms in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr: 256.

4 Oct 1897, nom. cons. Erythrospermaceae Doweld, Tent. Syst. Pl. Vasc.: xxxii. 23 Dec 2001
Pangiaceae Hassk., Cat. Hort. Bot. Bogor.: 186. Oct 1844
a1. Acharieae Benth. \& Hook.f., Gen. Pl. 1: 809. Sep 1867
a2. Kiggelarieae DC., Prodr. 1: 257. medio Jan 1824
a3. Lindackerieae Zmarzty in M. W. Chase et al., Kew Bull. 57: 172. 2002
a4. Erythrospermeae DC., Prodr. 1: 257. medio Jan 1824
206. Goupiaceae Miers, Ann. Mag. Nat. Htst., ser. 3, 9: 292. Apr 1862
207. Violaceae Batsch, Tab. Affin. Regnt Veg.: 57. 2 Mai 1802, nom. cons. Alsodetaceae J. Agardh, Theorla Syst. Pl.: 197. Apr-Sep 1858 Leontaceae A. DC. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 8: 668. med. Mar 1844
a. Fusispermoideae Hekking, Proc. Kon. Ned. Akad. Wetensch, ser. C, 7: 128. 18 Jun 1984
b. Violoideae Beilschm., Flora 16(Beibl. 7): 88. 14 Jun 1833
b1. Violeae DC., Prodr. 1: 288. medio Jan 1824
b2. Leonieae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 253, Comm. 162. 5-11 Apr 1840
208. Turneraceae Kunth ex DC., Prodr. 3: 345. med. Mar 1828, nom. cons.

Piriquetaceae Martinov, Tekhno-Bot. Slovar: 484. 3 Aug 1820
209. Malesherbiaceae D. Don, Edinburgh New Philos. J. 2: 321. 1827, nom. cons.
210. Passifloraceae Juss. ex Roussel, Fl. Calvados, ed. 2: 334. 30 Mai 1806, nom. cons.

Modeccaceae Horan., Char. Ess. Fam.: 146. 17 Jun 1847
Paropstaceae Dumort., Anal. Fam. Pl.: 37, 42. 1829
Smeathmanntaceae Mart. ex Perleb, Clav. Class.: 33. Jan-Mar 1838
a1. Passifloreae DC., Prodr. 3: 322. medio Mar 1828
a2. Paropsieae DC., Prodr. 3: 322. medio Mar 1828
211. Lacistemataceae Mart., Nov. Gen. Sp. Pl. 1: 154, 158. Jan-Mar 1826, nom. cons.
212. Salicaceae Mirb., Elém. Phystol. Vég. Bot. 2: 905. 24-30 Jun 1815, nom. cons.

Bembicraceae R.C. Keating \& Takht., Bot. Zhurn. (Moscow \& Leningrad) 81(2): 85. Mai-Jun 1996

Flacourttaceae Rich. ex DC., Prodr. 1: 255. Jan (med.) 1824, nom. cons.
Homaliaceae R. Br. in J.H. Tuckey, Narr. Exped. Zarre: 438. 5 Mar 1818
Poliothyrsidaceae Doweld, Tent. Syst. Pl. Vasc.: xxxi. 23 Dec 2001
Prockzaceae Bertuch, Taf. Allg. Naturgesch. Gewächs-Reich: Enum. 5, Syn. Tab. 3. 1801
Samydaceae Vent., Mém. Cl. Sci. Math. Inst. Natl. France 1807(2): 149. 1808, nom. cons.
Scyphostegiaceae Hutch., Fam. Fl. Pl. 1: 229. 15 Jan 1926, nom. cons.
a. Samydoideae Reveal, Phytoneuron 2012-33: 2. 9 Apr 2012
a1. Samydeae Vent. in B.C.J. Dumortier, Anal. Fam. Pl.: 18. 1829
a2. Homalieae Dumort., Anal. Fam. Pl.: 18. 1829
a3. Scolopieae Warb. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 6a: 13. 28 Dec 1893
a4. Trichostephaneae Gilg in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 21:390, 417. 30 Jul 1925
b. Scyphostegioideae Reveal, Phytoneuron 2012-33: 3. 9 Apr 2012
c. Prockioideae Reveal, Phytoneuron 2012-37: 218. 23 Apr 2012
cl. Prockieae Endl., Gen. Pl.: 918. Nov 1839
c2. Abatieae Benth. \& Hook.f., Gen. Pl. 1: 795. Sep 1867
c3. Bembicieae Warb. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 6a: 13, 52. 28 Dec 1893
d. Flacourtioideae Beilschm., Flora 16(Beibl. 7): 88, 107. 14 Jun 1833
d1. Flacourtieae DC., Prodr. 1: 256. medio Jan 1824
d2. Oncobeae Benth., Proc. Linn. Soc., Bot. 5(Suppl. 2): 77. 1861
e. Salicoideae Rich. ex Arn., Botany: 130.9 Mar 1832
56. Rhizophorales Pers. ex Bercht. \& J. Presl, Prir. Rostlin: 257. Jan-Apr 1820 Erythroxylales Link, Handbuch 2: 339. 4-11 Jul 1829
213. Lophopyxidaceae H. Pfeiff., Revista Sudamer. Bot. 10: 4. 1951
214. Putranjivaceae Meisn., Pl. Vasc. Gen., Tab. Diagn. 345, Comm. 258. 13-15 Feb 1842
215. Ctenolophonaceae Exell \& Mendonça, Consp. Fl. Angol. 1: 248, 392. 20 Aug 1951
216. Erythroxylaceae Kunth in F.W.H.A. von Humboldt, A.J.A. Bonpland \& C.S. Kunth,

Nov. Gen. Sp. 5: ed. fol.: 135, ed. qu.: 175. 25 Feb 1822, nom. cons. Nectaropetalaceae Exell \& Mendonça, Bol. Soc. Brot., ser. 2, 25: 105. 1951
217. Rhizophoraceae Pers., Syn. Pl. 2: 2. Nov 1806, nom. cons.

Cassipoureaceae J. Agardh, Theorta Syst. Pl.: 246. Apr-Sep 1858
Macarisiaceae J. Agardh, Theoria Syst. Pl.: 295. Apr-Sep 1858
Mangtaceae Raf., Fl. Tellur. 2: 73. Jan-Mar 1837
a. Cassipoureoideae Burnett, Outlmes Bot.: 725, 1134. Feb 1835
b. Rhizophoroideae Burnett, Outlines Bot.: 725, 1134. Feb 1835
b1. Gynotrocheae Engl., Syllabus, ed. 1: 147. Apr 1892
b2. Rhizophoreae Bartl., Ord. Nat. Pl.: 320. Sep 1830
57. LiNales Bercht. \& J. Presl, Přir. Rostlin: 239. Jan-Apr 1820

Irvingiales Doweld, Tent. Syst. Pl. Vasc.: xxxi. 23 Dec 2001
Pandales Engl. \& Gilg in H.G.A. Engler, Syllabus, ed. 7: 223. Oct 1912-Mar 1913
218. Linaceae DC. ex Perleb, Vers. Arzneikr. Pfl.: 107. Mai 1818, nom. cons.

Hugontaceae Arn. in R. Wight \& C.A.W. Arnott, Prodr. Fl. Ind. Orient.: 1: 71. 22 Sep 1834
a. Linoideae Arn., Botany: 103. 9 Mar 1832 a1. Lineae Rchb., Fl. Germ. Excurs. 2(2): 830, 831. 1832
a2. Anisadenieae H.J.P. Winkl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 19a: 105, 110. 2 Sep 1931
b. Hugonioideae Mabberley ex Reveal, Phytoneuron 2012-37: 217. 23 Apr 2012
219. Irvingiaceae Tiegh. in C.K. Schneider, Just's Bot. Jahresber. 33(2): 566. Mai-Dec 1907, nom. cons.
220. Ixonanthaceae Planch. ex Miq., F7. Ned. Ind. 1(2): viii, 494. 30 Sep 1858, nom. cons.
221. Humiriaceae A. Juss. in A. St-Hilaire, Fl. Bras. Mertd. 2: 87. 10 Oct 1829, nom. cons.
222. Pandaceae Engl. \& Gilg in H.G.A. Engler, Syllabus, ed. 7: 223. Oct 1912-Mar 1913, nom. cons.
58. Ochnales DC. ex Bercht. \& J. Pres1, Přir. Rostlın: 224. Jan-Apr 1820

Medusagynales Takht. ex Reveal \& Doweld, Novon 9: 551. 30 Dec 1999 Sauvagesiales Mart., Consp. Regn. Veg.: 50. Sep-Oct 1835
223. Ochnaceae DC., Nouv. Bull. Sct. Soc. Philom. Parts 2: 209. Jan 1811, nom. cons. Euthemidaceae Tiegh. in K. Krause, Just's Bot. Jahresber. 32(1): 816. 19 Apr 1905 Gomphiaceae DC. ex Schnizl., Iconogr. Fam. Regn. Veg. 4: ad t. 248. 1843-1870 Lophiraceae Loudon, Hort. Brit.: 513. 30 Aug 1830 Luxemburgiaceae Tiegh. in K. Krause, Bot. Jahresber. (Just) 32(1): 815. 19 Apr 1905
Sauvagestaceae Dumort., Anal. Fam. Pl.: 44, 49. 1829 Wallaceaceae Tiegh. in K. Krause, Just's Bot. Jahresber. 32(1): 816. 19 Apr 1905
a. Luxemburgioideae Planch. ex Endl., Gen. Pl. Suppl. 5: 98. 1850
b. Ochnoideae Burnett, Outlines Bot.: 886, 1093, 1125. Feb 1835
b1. Lophireae Baill., Htst. Pl. 4: 210, 218. 1872
b2. Ochneae Bartl., Ord. Nat. Pl.: 384. Sep 1830
c. Sauvagesioideae Beilschm., Flora 16(Beibl. 7): 88, 110. 14 Jun 1833
c1. Sauvagesieae Ging. ex DC., Prodr. 1: 315. medio Jan 1824
c2. Euthemideae Benth. \& Hook.f., Gen. Pl. 1: 317. 7 Aug 1862
224. Medusagynaceae Engl. \& Gilg, Syllabus, ed. 9-10: 280. 6 Nov 1924, nom. cons.
225. Quiinaceae Choisy ex Engl. in C.F.P. von Martius, Fl. Bras. 12(1): 475, 476. 1 Apr 1888, nom. cons.
59. Hypericales Juss. ex Bercht. \& J. Presl, Přir. Rostln: 218. Jan-Apr 1820

Garciniales Mart., Consp. Regn. Veg.: 60. Sep-Oct 1835
Marathrales Dumort., Anal. Fam. Pl.: 60. 1829
Podostemales Lindl., Nzx. Pl.: 17. 17 Sep 1833
226. Bonnetiaceae L. Beauvis. ex Nakai, Bull. Natl. Scı. Mus. Tokyo 22: 25. 1948
227. Clusiaceae Lind1., Nat. Syst. Bot., ed. 2: 74. 13 Jun 1836, nom. cons., nom. alt. Cambograceae Horan., Prmm. Lin. Syst. Nat.: 98. 2 Nov 1834
Garcmiaceae Bartl., Ord. Nat. Pl.: 222, 292. Sep 1830
Guttiferae Juss., Gen. Pl.: 255. 4 Aug 1789, nom. cons.
a. Clusioideae Burnett, Outlines Bot.: 794. Feb 1835
a1. Garcinieae Choisy in A.P. de Candolle, Prodr. 1: 560. medio Jan 1824
a2. Clusieae Choisy in A.P. de Candolle, Prodr. 1: 557. medio Jan 1824
a3. Tovomiteae Mabberley ex Reveal, Phytoneuron 2012-37: 219. 23 Apr 2012
b. Chrysopioideae Burnett, Outlines Bot.: 794. Feb 1835
c. Lorostemonoideae Ducke, Arq. Inst. Biol. Veg. 1: 210. Aug 1935
228. Calophyllaceae J. Agardh, Theoria Syst. Pl.: 121. Apr-Sep 1858
a 1. Kielmeyereae Engl. in C.F.P. von Martius, Fl. Bras. 12(1): 391. 1 Apr 1888
a2. Calophylleae Choisy in A.P. de Candolle, Prodr. 1: 561. medio Jan 1824
a3. Endodesmieae Engl. in H.G.A. Engler \& C.G.O. Drude, Veg. Erde 9(2): 496. JulNov 1921
a4. Caraipeae Engl. in C.F.P. von Martius, Fl. Bras. 12(1): 391. 1 Apr 1888
229. Hypericaceae Juss., Gen. Pl.: 254. 4 Aug 1789, nom. cons.

Ascyraceae Plenck, Elem. Termin. Bot.: 162.1796
a1. Vismieae Choisy, Prodr. Monogr. Hypéric.: 32, 33. 9 Mar 1821
a2. Hypericeae Choisy, Prodr. Monogr. Hypéric.: 32, 37. 9 Mar 1821
a3. Cratoxyleae Benth. \& Hookf., Gen. Pl. 1: 164. 7 Aug 1862
230. Podostemaceae Rich. ex Kunth in F.W.H.A. von Humboldt, A.J.A. Bonpland \& C.S. Kunth, Nov. Gen. Sp. 1: ed. qu.: 246. 4-11 Mai 1816, nom. cons.
Marathraceae Dumort., Anal. Fam. Pl.: 60, 62. 1829
Philocrenaceae Bong., Mém. Acad. Imp. Sci. St. Pétersboug, ser. 6, Math. Nat. 3(2): 87. 13 Jun-13 Jul 1834
Tristichaceae Willis, J. Linn. Soc. London, Bot. 43: 51. 15 Mai 1915
a. Tristichoideae Warm., Kong. Danske Vidensk. Natur. Math. Afl. 6(11). 53. 1901
b. Weddellinoideae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 18a: 28. 3 Mai 1930
c. Podostemoideae Warm. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 17: 39, 43. 16 Oct 1873
231. Centroplacaceae Doweld \& Reveal in J.L. Reveal, Bot. Rev. (Lancaster) 71: 48. 20 Mai 2005
a. Centroplacoideae Reveal, Phytoneuron 2012-37: 216. 23 Apr 2012
b. Bhesoideae Reveal, Phytoneuron 2012-37: 216. 23 Apr 2012
60. Malpighiales Juss. ex Bercht. \& J. Presl, Přir. Rostlin: 225. Jan-Apr 1820 Elatinales Mart., Consp. Regn. Veg.: 54. Sep-Oct 1835
232. Elatinaceae Dumort., Anal. Fam. Pl.: 44, 49. 1829, nom. cons. Cryptaceae Raf., Ann. Gén. Scı. Phys. Bruxelles 5: 349. Jul-Sep 1820
233. Malpighiaceae Juss., Gen. Pl.: 252. 4 Aug 1789, nom. cons. a. Byrsonimoideae W.R. Anderson, Leandra 7(6): 6. Aug 1978
b. Malpighioideae Burnett, Outlines Bot.: 894, 1093, 1126. Feb 1835
b1. Tricomarieae Nied. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 4: 52, 66. Dec 1890
b2. Hiraeeae Griseb. in C.F.P. von Martius, Fl. Bras. 12(1): 4, 75. 1 Jun 1858
b3. Rhynchophoreae Arènes, Notul. Syst. (Paris) 12: 135. Feb 1946
b4. Banisterieae DC., Prodr. 1: 584. medio Jan 1824
b5. Gaudichaudieae Horan., Char. Ess. Fam.: 182. 17 Jun 1847
61. Euphorbiales Juss. ex Bercht. \& J. Pres1, Pritr. Rostlin: 237. Jan-Apr 1820

Phyllanthales Doweld, Tent. Syst. Pl. Vasc.: xxxiii. 23 Dec 2001
Rafflesiales Mart., Consp. Regn. Veg.: 18. Sep-Oct 1835
Sttlaginales Mart., Consp. Regn. Veg.: 14. Sep-Oct 1835
234. Peraceae Klotzsch, Monatsber. Könıgl. Preuss. Akad. Wiss. Berlin 1859: 241, 246. 1030 Mar 1859
a 1. Clutieae Pax in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 5: 14. Mai 1890
a2. Pogonophoreae G.L. Webster, Taxon 24: 595. 19 Dec 1975
a3. Chaetocarpeae GL. Webster, Taxon 24: 595. 19 Dec 1975
a4. Pereae Pax \& K.Hoffm. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenr. 68: 1.6 Jun 1919
235. Rafflesiaceae Dumort., Anal. Fam. Pl.: 13, 14. 1829, nom. cons.
236. Euphorbiaceae Juss., Gen. Pl.: 384. 4 Aug 1789, nom. cons.

Acalyphaceae Juss. ex Menge, Cat. Pl. Grudent. Gedan.: 172. 1839
Bertyaceae J. Agardh, Theoria Syst. Pl.: 190. Apr-Sep 1858
Cheilosaceae Doweld, Tent. Syst. Pl. Vasc.: xxxi. 23 Dec 2001
Crotonaceae J. Agardh, Theoria Syst. Pl.: 258. Spr-Sep 1858
Hippomanaceae J. Agardh, Theoria Syst. Pl.: 244. Apr-Sep 1858
Mercurialaceae Bercht. \& J. Presl, Přrr. Rostlm: 237. Jan-Apr 1820
Ricinaceae Martinov, Tekhno-Bot. Slovar: 547. 3 Aug 1820
Ricinocarpaceae Hurus., J. Fac. Sci. Unv. Tokyo, ser. 3, Bot., 6: 224. 15 Aug 1954
Tithymalaceae Vent., Tabl. Règne Vég. 3: 483. 5 Mai 1799
Tragiaceae Raf., F7. Tellur. 4: 111. (med.) 1838
Trewtaceae Lindl., Nat. Syst. Bot., ed. 2: 174. 13 Jun 1836
a. Cheilosoideae K. Wurdack \& Petra Hoffm., Amer. J. Bot. 92: 1413. 27 July 2005
a 1. Cheiloseae Airy Shaw \& G.L. Webster in GL. Webster, Taxon 24: 595. 19 Dec 1975
b. Acalyphoideae Beilschm., Flora 16(Beibl. 7): 61, 104. 14 Jun 1833
b1. Erismantheae GL. Webster, Taxon 24: 595. 19 Dec 1975
b2. Ampereae Müll.-Arg., Bot. Zeitung (Berlin) 22: 324. 14 Oct 1864
b3. Agrostistachydeae G.L. Webster, Taxon 24: 596. 19 Dec 1975
b4. Sphyranthereae Radcl.-Sm., Gen. Euphorbtacearum: 135. 2001
b5. Chrozophoreae Pax \& K.Hoffm. in H.G.A. Engler, Nat. Pflanzenr. 68(Addit. VI): 2. 6 Jun 1919
b5a. Speranskiinae G.L. Webster, Taxon 24: 596. 19 Dec 1975
b5b. Ditaxidinae Griseb., Fl. Brit. W. I.: 43. Dee 1859
b5c. Doryxylinae G.L. Webster, Taxon 24: 596. 19 Dec 1975
b5d. Chrozophorinae Müll.-Arg., Linnaea 34: 143. Mar 1865
b6. Caryodendreae GL. Webster, Taxon 24: 596. 19 Dec 1975
b7. Bernardieae GL. Webster, Taxon 24: 596. 19 Dec 1975
b8. Pycnocomeae Hutch. ex Reveal, Phytoneuron 2012-37: 218. 23 Apr 2012
b8a. Pyenocominae G.L. Webster, Ann. Missouri Bot. Gard. 81: 76. 21 Mar 1994
b8b. Blumeodendrinae G.L. Webster, Taxon 24: 596. 19 Dec 1975
b9. Epiprineae Hurus., J. Fac. Sci. Univ. Tokyo, Sect. 3, Bot. 6: 309. 1954
b9a. Epiprininae Müll.-Arg., Linnaea 34: 144. Mar 1865
b9b. Cephalomappinae G.L. Webster, Taxon 24: 597. 19 Dee 1975
b10. Adelieae G.L. Webster, Taxon 24: 597. 19 Dec 1975
b11. Alchornieae Hutch., Amer. J. Bot. 56: 752. Aug 1969
b11a. Alchorniinae Hurus., J. Fac. Sct. Univ. Tokyo, ser. 3, Bot., 6: 295. 15 Aug 1954
b11b. Conceveibinae GL. Webster, Taxon 24: 597. 19 Dec 1975
b12. Acalypheae Dumort., Anal. Fam. Pl.: 45.1829
b12a. Ricininae Griseb., Fl. Brit. W. I.: 37. Dec 1859
b12b. Adrianinae Benth., J. Linn. Soc. London, Bot. 17: 228. 31 Dec 1878
b12c. Mercurialinae Pax in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 5: 42, 46. Mai 1890
b12d. Cleidiinae G.L. Webster, Taxon 24: 597. 19 Dec 1975
b12e. Macaranginae G.L. Webster ex Reveal, Phytoneuron 2012-37: 217. 23 Apr 2012
b12f. Claoxylinae Hurus., J. Fac. Sct. Univ. Tokyo, ser. 3, Bot., 6: 295, 301. 15 Aug 1954
b12g. Lobaniliinae Radcl.-Sm., Kew Bull. 44: 339. 1989
b12h. Mareyinae Radcl.-Sm. ex Reveal, Phytoneuron 2012-37: 217. 23 Apr 2012
b12i. Coelodiscinae Müll.-Arg., Linnaea 34: 143. Mar 1865
b12j. Acalyphinae Griseb., Fl. Brit. W. I.: 45. Dec 1859
b12k Lasiococcinae G.L. Webster, Taxon 24: 597. 19 Dec 1975
b13. Dalechampieae Müll.-Arg., Bot. Zeitung (Berlin) 22: 324. 14 Oct 1864 bl3a. Plukenetiinae Benth., J. Linn. Soc. London, Bot. 17: 236. 31 Dec 1878
b13b. Tragiinae GL. Webster, Taxon 24: 598. 19 Dec 1975
b13c. Dalechampiinae G.L. Webster, Ann. Missourt Bot. Gard. 81: 95. 21 Mar 1994
b14. Omphaleae G.L. Webster, Taxon 24: 598. 19 Dec 1975
c. Crotonoideae Beilschm., Flora 16(Beibl. 7): 61, 106. 14 Jun 1833
c1. Micrandreae G.L. Webster, Taxon 24: 598. 19 Dec 1975
c1a. Micrandrinae Müll-Arg. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 15(2): 512, 709. late Aug 1866
c1b. Heveinae Müll.-Arg., Linnaea 34: 202. Jul 1865
c2. Manihoteae Pax in H.GA. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 5: 14. Mai 1890
c3. Adenoclineae G.L. Webster, Taxon 24: 598. 19 Dec 1975
c3a. Adenoclininae Müll.-Arg., Linnaea 34: 203. Jul 1865
c3b. Endosperminae Pax \& K.Hoffm. in H.G.A. Engler, Nat. Pflanzenr. 68(Addit. VI): 4. 6 Jun 1919
c4. Suregadeae Reveal, Phytoneuron 2012-37: 219. 23 Apr 2012
c5. Elateriospermeae G.L. Webster, Taxon 24: 599. 19 Dec 1975
c6. Jatropheae Baill., Hist. Pl. 5: 156, 179. Jan-Apr 1874
c7. Codiaeeae Hutch., Amer. J. Bot. 56: 747. Aug 1969
c8. Trigonostemoneae G.L. Webster, Taxon 24: 599. 19 Dec 1975
c9. Ricinocarpeae Müll.-Arg., Bot. Zettung (Berlin) 22: 324. 14 Oct 1864
c9a. Ricinocarpinae GL. Webster, Taxon 24: 599. 19 Dec 1975
c9b. Bertyinae Müll. -Arg., Linnaea 34: 56. Mar 1865
c10. Crotoneae Dumort., Anal. Fam. Pl.: 45. 1829
c11. Ricinodendreae Hutch., Amer. J. Bot. 56: 749. Aug 1969
c12. Aleuritideae Hurus., J. Fac. Scl. Unv. Tokyo, Ser. 3, Bot., 6: 309. 15 Aug 1954 cl2a. Aleuritidineae G.L. Webster, Taxon 24: 599. 19 Dec 1975
c12b. Garciinae Müll.-Arg., Linnaea 34: 143. Mar 1865
c12c. Grosserinae GL. Webster, Taxon 24: 600. 19 Dec 1975
c12d. Crotonogyninae GL. Webster, Taxon 24: 600. 19 Dec 1975
c12e. Neoboutoninae G.L. Webster, Taxon 24: 600. 19 Dec 1975
c12f. Benoistiinae Radcl.-Sm., Gen. Euphorbtacearum: 345. 2001
d. Euphorbioideae Beilschm., Flora 16(Beibl. 7): 61, 105. 14 Jun 1833
d1. Stomatocalyceae G.L. Webster, Taxon 24: 600. 19 Dec 1975
dla. Stomatocalycinae Müll.-Arg. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 15(2): 1034, 1142. late Aug 1866
dlb. Hamilcoinae Pax in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenr. 63(Addit. 5): 419. 10 Nov 1914
d2. Hippomaneeae Bartl., Ord. Nat. Pl.: 372. Sep 1830
d2a. Carumbiinae Müll.-Arg., Linnaea 34: 203. Jul 1865
d2b. Hippomaneinae Griseb., Fl. Brit. W. I.: 49. Dec 1859
d3. Pachystromateae Reveal, Phytoneuron 2012-37: 218. 23 Apr 2012
d4. Hureae Dumort., Anal. Fam. Pl.: 45. 1829
d5. Euphorbieae Dumort., Anal. Fam. P1.: 45. 1829
d5a. Anthosteminae G.L. Webster, Taxon 24: 600. 19 Dec 1975
d5b. Neoguillauminiinae Croizat, Philipp. J. Scl. 64: 408. 1938
d5c. Euphorbiinae Griseb., Fl. Brit. W. I.: 51. Dec 1859
237. Phyllanthaceae Martinov, Tekhno-Bot. Slovar: 369. 3 Aug 1820, nom. cons.
Antidesmataceae Loudon, Hort. Brit.: 534. 30 Aug 1830
Aporosaceae Lindl. ex Planch., Ann. Sci. Nat. Bot., sér. 4, 2: 265. 1854
Bischofiaceae Airy Shaw, Kew Bull. 18: 252. 8 Dec 1965
Hymenocardiaceae Airy Shaw, Kew Bull. 18: 261. 8 Dec 1965
Porantheraceae Hurus., J. Fac. Sci. Univ. Tokyo, ser. 3, Bot., 6: 224. 15 Aug 1954
Scepaceae Lindl., Nat. Syst. Bot., ed. 2: 171. 13 Jun 1836
Sttlaginaceae C. Agardh, Aphor. Bot:: 199. 13 Jun 1824
Uapacaceae Airy Shaw, Kew Bull. 18: 270. 8 Dec 1965
a. Phyllanthoideae Beilschm., Flora 16(Beibl. 7): 61, 109. 14 Jun 1833
a1. Poranthereae Müll.-Arg. ex Grüning in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 147: 13. 15 Apr 1913
a2. Bridelieae Müll.-Arg., Bot. Zeitung (Berlin) 22: 324. 14 Oct 1864
a2a. Amanoinae Pax in H.G.A. Engler \& C.G.O. Drude, Veg. Erde 9(2): 13. JulNov 1921
a2b. Saviinae Müll.-Arg., Linnaea 34: 63. Mar 1865
a2c. Keayodendrinae Petra Hoffm. in P. Hoffmann, H. Kathriarachchi \& K.J. Wurdack, Kew Bull. 61: 42. 2006
a2d. Pseudolachnostylidinae Pax in H.G.A. Engler \& C.G.O. Drude, Veg. Erde 9(2): 13, 31. Jul-Nov 1921
a2e. Securineginae Müll.-Arg. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 15(2): 217, 446. late Aug 1866
a3. Wielandieae Baill. ex Hurus., J. Fac. Sci. Unv. Tokyo, ser. 3, Bot., 6: 339. 15 Aug 1954
a3a. Asterocasiinae G.L. Webster, Syst. Bot. 17: 315. 1992
a3b. Wielandiinae Pax in H.G.A. Engler \& C.G.O. Drude, Veg. Erde 9(2): 13, 30. Jul-Nov 1921
a4. Phyllantheae Dumort., Anal. Fam. Pl.: 45. 1829
b. Antidesmatoideae Hurus., J. Fac. Scl. Unvv. Tokyo, ser. 3, Bot., 6: 321, 340. 15 Aug 1954
b1. Antidesmateae Benth., Fl. Austral. 6: 42, 84. 23 Sep 1873
b1a. Antidesmatinae Müll.-Arg., Linnaea 34: 64. Mar 1865
b1b. Hymenocardiinae Petra Hoffm. in P. Hoffmann, H. Kathriarachchi \& K.J. Wurdack, Kew Bull. 61: 46.2006
blc. Martretiinae Petra Hoffim. in P. Hoffmann, H. Kathriarachchi \& K.J. Wurdack, Kew Bull. 61: 47. 2006
b1d. Hieronyminae Müll.-Arg., Linnaea 34: 64. Mar 1865
ble. Leptonematinae Müll.-Arg., Linnaea 34: 64. Mar 1865
b2. Scepeae Horan., Char. Ess. Fam.: 80. 17 Jun 1847
b3. Jablonskieae Petra Hoffim. in P. Hoffmann, H. Kathriarachchi \& K.J. Wurdack, Kew Bull. 61: 48.2006
b4. Spondiantheae G.L. Webster, Taxon 24: 594. 19 Dec 1975
b5. Uapaceae Hutch., Amer. J. Bot. 56: 747. Aug 1969
b6. Bischofieae Hurus., J. Fac. Sci. Untv. Tokyo, ser. 3, Bot., 6: 339. 15 Aug 1954
238. Picrodendraceae Small, J. New York Bot. Gard. 18: 184. Aug 1917, nom. cons.

Androstachyaceae Airy Shaw, Kew Bull. 18: 250. 8 Dec 1965
Micrantheaceae J. Agardh, Theoria Syst. Pl.: 182. Apr-Sep 1858
Patvaensaceae A.Meeuse, Euphorbraceae: 30. 1990
Pseudanthaceae Pfeiffer, Nomencl. Bot. 2: 852. 3 Oct 1873
a1. Podocalyceae G.L. Webster, Ann. Missourl Bot. Gard. 81: 55. 21 Mar 1994 a1a. Podocalycinae G.L. Webster, Ann. Missouri Bot. Gard. 81: 55. 21 Mar 1994 alb. Tetraciccinae G.A. Levin in G.L. Webster, Ann. Missourl Bot. Gard. 81: 56. 21 Mar 1994
alc. Paradrypetinae G.A. Levin, Syst. Bot. 17: 78. 24 Jan 1992
a2. Caletieae Müll.-Arg., Bot. Zeitung (Berlin) 22: 324. 14 Oct 1864
a2a. Hyaenachinae Müll.-Arg., Linnaea 34: 64. Mar 1865
a2b. Dissiliariinae Pax \& K.Hoffm. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenr. 81: 2, 288. 19 Sep 1922
a2c. Petalostigmatinae Pax \& K.Hoffm. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzent. 81: 2, 281. 19 Sep 1922
a2d. Pseudanthinae Müll.-Arg., Linnaea 34: 55. Mar 1865
a3. Picrodendreae Fawc. \& Rendle, Fl. Jamatca 4(2): 249. Jul 1920
a3a. Picrodendrinae G.L. Webster, Ann. Missourl Bot. Gard. 81: 60. 21 Mar 1994
a3b. Paivaeusinae Pax in H.G.A. Engler \& C.G.O. Drude, Veg. Erde 9(2): 13. JulNov 1921
a3c. Mischodontinae Müll.-Arg., Linnaea 34: 202. Jul 1865
62. Chrysobalanales Link, Handbuch 2: 72. 4-11 Jul 1829

Balanopales Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr.: 345. Dec 1897

Chailletiales Link, Handbuch 2: 123. 4-11 Jul 1829
239. Balanopaceae Benth. \& Hook.f., Gen. Pl. 3: v, 341. 7 Feb 1880, nom. cons.
240. Trigoniaceae A. Juss. in V.V.D. d'Orbigny, Dict. Untv. Hist. Nat. 12: 670. 7 Jul 1849, nom. cons.
241. Dichapetalaceae Baill. in C.F.P. von Martius, Fl. Bras. 12(1): 365. 1 Apr 1886, nom. cons.
Chatlettaceae R. Br. in J.H. Tuckey, Narr. Exped. Zaire: 442, 443. 5 Mar 1818
242. Chrysobalanaceae R. Br. in J.H. Tuckey, Narr. Exped. Zarre: 433. 5 Mar 1818, nom. cons.
Hirtellaceae Horan., Char. Ess. Fam.: 152. 17 Jun 1847
Licaniaceae Martinov, Tekhno-Bot. Slovar: 336. 3 Aug 1820
a 1. Chrysobalaneae DC., Prodr. 2: 525. medio Nov 1825
a2. Parinarieae Prance \& F. White, Phil. Trans. Roy. Soc. Lond., Ser. B, 320: 78. 13 Jul 1988
a3. Couepieae Prance \& F. White, Phil. Trans. Roy. Soc. Lond., Ser. B, 320: 78. 13 Jul 1988
a3. Hirtelleae Bonne, Res. Pédic. Fl. Rosacées: 356. 28 Jun 1928
243. Euphroniaceae Marc.-Berti, Pittieria 18: 16. Nov 1989
244. Caryocaraceae Voigt, Hort. Suburb. Calcutt.: 88. Aug-Dec 1845, nom. cons.
63. Geraniales Juss. ex Bercht. \& J. Presl, Prír. Rostlin: 221. Jan-Apr 1820

Francoales Mart., Consp. Regn. Veg.: 48. Sep-Oct 1835
Greyiales Takht., Divers. Classif. Fl. Pl.: 377. 24 Apr 1997
Ledocarpales Doweld, Tent. Syst. Pl. Vasc.: xxxvii. 23 Dec 2001
Melianthales Doweld, Pl. Syst. Evol. 227: 98. 7 Mai 2001
245. Hypseocharitaceae Wedd., Chlor. Andina 2: 288. Nov 1861
246. Geraniaceae Juss., Gen. Pt.: 268. 4 Aug 1789, nom. cons. Erodtaceae Horan., Char. Ess. Fam.: 192. 17 Jun 1847
247. Melianthaceae Horan., Prim. Lin. Syst. Nat.: 100. 2 Nov 1834, nom. cons. Bersamaceae Doweld, Pl. Syst. Evol. 227: 83. 7 Mai 2001 Greyiaceae Hutch., Fam. Fl. Pl. 1: 202. 15 Jan 1926, nom. cons.
a. Greyioideae Harv. in Harv. \& Sond., Fl. Cap. 2: 306. 15-31 Oct 1862
b. Melianthoideae Benth. \& Hook.f., Gen. Pl. 1:392, 411. 7 Aug 1862
c. Bersamoideae Reveal, Phytoneuron 2012-37: 216. 23 Apr 2012
248. Francoaceae A. Juss., Ann. Sci. Nat. (Paris) 25: 9. Jan 1832, nom. cons.
249. Vivianiaceae Klotzsch, Linnaea 10: 433. Mai 1836, nom. cons.
250. Ledocarpaceae Meyen, Reise 1: 308. 25-31 Mai 1834 Rhynchothecaceae Juss. in V.V.D. d’Orbigny, Dict. Univ. Hist. Nat. 11: 131. 9 Sep 1848
a. Ledocarpoideae Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 107. 29 Jun 2007
b. Rhynchothecoideae Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 107. 29 Jun 2007

Myrtanae Takht., Sist. Filog. Cvetk. Rast.: 295. 4 Feb 1967
Burseranae Doweld, Tent. Syst. Pl. Vasc.: xxxiv. 23 Dec 2001
Capparanae Reveal, Phytologia 76: 3. 2 Mai 1994
Crossosomatanae Doweld, Tent. Syst. Pl. Vasc.: xxxiv. 23 Dec 2001
Gyrostemonanae Takht., Divers. Classif. Fl. Pl.: 123. 24 Apr 1997
Huerteanae Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 116. 29 Jun 2007
Malvanae Takht., Sist. Filog. Cvetk. Rast.: 242. 4 Feb 1967
Rutanae Takht., Sist. Filog. Cvetk. Rast.: 311. 4 Feb 1967
Sapindanae Doweld, Tent. Syst. Pl. Vasc.: xxxiv. 23 Dec 2001
64. Myrtales Juss. ex Bercht. \& J. Presl, Přir. Rostlin: 233. Jan-Apr 1820

Circaeales Mart., Consp. Regn. Veg.: 48. Sep-Oct 1835
Combretales R. Br. ex Bercht. \& J. Presl, Přir. Rostlin: 234. Jan-Apr 1820
Epilobiales Mart., Consp. Regn. Veg.: 48. Sep-Oct 1835
Henslowiales Mart., Consp. Regn. Veg.: 14. Sep-Oct 1835
Lythrales Link, Handbuch 2: 47. 4-11 Jul 1829
Melastomatales Juss. ex Bercht. \& J. Pres1, Přir. Rostlin: 233. Jan-Apr 1820
Memecylales Mart., Consp. Regn. Veg.: 65. Sep-Oct 1835
Myrobalanales Link, Handbuch 2: 440. 4-11 Jul 1829
Oenotherales Bromhead, Edinburgh New Philos. J. 24: 409. Apr 1838
Onagrales Juss. ex Bercht. \& J. Presl, Přir. Rostlin: 232. Jan-Apr 1820
Penaeales Lindl., Nix. Pl.: 15. 17 Sep 1833
Trapales J. Presl, Nowočeská Bibl. [Ws̆obecný Rostl.] 7: 549. 1846
Vochysiales Link, Handbuch 2: 60. 4-11 Jul 1829
64a. Onagrineae Rchb., Deut. Bot. Herb.-Buch: lxviii. Jul 1841
251. Combretaceae R. Br., Prodr.: 351. 27 Mar 1810, nom. cons.

Bucidaceae Spreng., Syst. Veg. 2: 282. Jan-Mar 1825
Myrobalanaceae Martinov, Tekhno-Bot. Slovar: 396. 3 Aug 1820
Terminaltaceae J. St.-Hil., Expos. Fam. Nat. 1: 178. Feb-Apr 1805
a. Strephonematoideae Engl. \& Diels in H.G.A. Engler, Monogr. Afr. Pflanzen-Fam. 3: 2. Nov 1899
b. Combretoideae Beilschm., Flora 16(Beibl. 7): 97. 14 Jun 1833
b1. Laguncularieae Engl. \& Diels in H.G.A. Engler, Monogr. Afr. Pflanzen-Fam. 3: 3.
Nov 1899
b2. Combreteae DC., Prodr. 3: 18. medio Mar 1828
252. Onagraceae Juss., Gen. Pl.: 317. 4 Aug 1789, nom. cons.

Circaeaceae Bercht. \& J. Presl, Přır. Rostlin: 232. Jan-Apr 1820
Epilobiaceae Vent., Tabl. Règne Vég. 3: 307. 5 Mai 1799
Fuchstaceae Lilja, Skånes Fl., ed. 2: 846, 980. Apr-Dec 1870
Isnardiaceae Martinov, Tekhno-Bot. Slovar: 348. 3 Aug 1820
Jusstaeaceae Martinov, Tekhno-Bot. Slovar: 350. 3 Aug 1820
Lopeziaceae Lilja, Skånes Fl., ed. 2: 980. Apr-Dec 1870
Oenotheraceae C.C. Robin, Voy. Int. Louistane 3: 490. 14-21 Dec 1807
a. Ludwigioideae W.L. Wagner \& Hoch, Syst. Bot. Monogr. 83: 20. 17 Sep 2007
b. Onagroideae Beilschm., Flora 16(Beibl. 7): 96.14 Jun 1833
b1. Hauyeae Raim. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 7: 205. 24 Oct 1893
b2. Circaeeae Dumort., Fl. Belg.: 88. 1827
b3. Lopezieae Spach, Ann. Sci. Nat. Bot., sér. 2, 4: 162. Sep 1835
b4. Gongylocar peae Donn. Sm. \& Rose, Contr. U.S. Natl. Herb. 16: 296. 23 Aug 1913
b5. Epilobieae Endl., Fl. Poson.: 366. Mai 1830
b6. Onagreae Dumort., Fl. Belg.: 89. 1827
253. Lythraceae J. St.-Hil., Expos. Fam. Nat. 2: 175. Feb-Apr 1805, nom. cons. Ammanniaceae Horan., Prtm. Lin. Syst. Nat.: 86. 2 Nov 1834
Blattiaceae Eng1., Syllabus, ed. 1: 156. Apr 1892 Duabangaceae Takht., Florist. Reg. World: 332. 27 Apr 1986
Lagerstroemiaceae J. Agardh, Theoria Syst. Pl.: 338. Apr-Sep 1858
Lawsoniaceae J. Agardh, Theoria Syst. Pl.: 338. Apr-Sep 1858
Puntcaceae Bercht. \& J. Presl, Přtr. Rostlm 2(94*): 378. 1825, nom. cons.
Sonneratraceae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr: 261. 4 Oct 1897, nom. cons.

Trapaceae Dumort., Anal. Fam. Pl.: 36, 39. 1829, nom. cons.
a. Lagerstroemioideae Beilschm., Flora 16(Beibl. 7): 99, 108. 14 Jun 1833
b. Punicoideae Luerss., Handb. Syst. Bot. 2: 822. Oct 1881
c. Lythroideae Juss. ex Arn., Botany: 108. 9 Mar 1832

64b. Myrtineae Burnett, Outlines Bot.: 616, 617, 1092, 1128. Feb 1835
254. Vochysiaceae A.St.-Hil., Mém. Mus. Hist. Nat. 6: 265. 1820, nom. cons.
a. Vochysioideae Takht., Fl. Pl.: 343. 2009
b. Erismoideae Takht., Fl. Pl.: 343. 2009
255. Myrtaceae Juss., Gen. Pl.: 322. 4 Aug 1789, nom. cons.

Baeckeaceae Bercht. \& J. Presl, Pritr. Rostlin: 233. Jan-Apr 1820
Chamelauctaceae DC. ex F. Rudolphi, Syst. Orb. Veg.: 55. 5-12 Jul 1830
Eugeniaceae Bercht. \& J. Presl, Přir. Rostlın 2: 378.1820
Heteropyxidaceae Engl. \& Gilg in H.G.A. Engler, Syllabus, ed. 8: 281. Jan-Feb 1920, nom. cons.
Kaniaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov]: 245. 20 Jul 1943
Leptospermaceae Bercht. \& J. Presl, Prir. Rostlin 2: 378.1825
Melaleucaceae Vest, Anlett. Stud. Bot.: 268, 286. 1818
Myrrhtntaceae Arn., Ann. Mag. Nat. Htst. 3: 154. 1839
Psiloxylaceae Croizat, Principia Bot.: 604, 1161, 1164. Jun 1960
a. Heteropyxidoideae Reveal, Phytoneuron 2012-33: 2. 9 Apr 2012
a1. Heteropyxideae Harv., Gen. S. Afr. Pl., ed. 2: 116. Oct 1868
a2. Psiloxyleae A.J. Scott, Kew Bull. 34: 496. 1980
b. Myrtoideae Sweet, Fl. Australas.: ad t. 10. 1 Aug 1827
b1. Xanthostemoneae Peter G. Wilson in P.G. Wils on et al., Pl. Syst. Evol. 25 1: 14. 16 Mar 2005
b2. Lophostemoneae Peter G. Wilson in P.G. Wilson et al., Pl. Syst. Evol. 251: 14. 16 Mar 2005
b3. Osbornieae Peter G. Wilson in P.G. Wilson et al., Pl. Syst. Evol. 251: 14. 16 Mar 2005
b4. Melaleuceae Burnett, Outlines Bot.: 712. Feb 1835
b5. Kanieae Peter G. Wilson ex Reveal, Phytoneuron 2012-37: 217. 23 Apr 2012
b6. Backhousieae Peter G. Wilson in P.G. Wilson et al., Pl. Syst. Evol. 251: 15. 16 Mar 2005
b7. Metrosidereae Peter G. Wilson in P.G. Wilson et al., Pl. Syst. Evol. 251: 15. 16 Mar 2005
b8. Tristanieae Peter G. Wilson in P.G. Wilson et al., Pl. Syst. Evol. 251: 15. 16 Mar 2005
b9. Syzygieae Peter G. Wilson in P.G. Wilson et al., Pl. Syst. Evol. 251: 15. 16 Mar 2005
b10. Myrteae DC. in D.F.L. von Schlechtendal, Linnaea 2: 504. Jul 1827
b11. Eucalypteae Peter G. Wilson in P.G. Wilson et al., Pl. Syst. Evol. 251: 16. 16 Mar 2005
b12. Syncarpieae Peter G. Wilson in P.G. Wilson et al., Pl. Syst. Evol. 251: 16. 16 Mar 2005
b13. Lindsayomyrteae Peter G. Wilson in P.G. Wilson et al., Pl. Syst. Evol. 251: 16. 16 Mar 2005
b14. Leptospermeae DC. in D.F.L. von Schlechtendal, Linnaea 2: 504. Jul 1827
b15. Chamelaucieae DC. in D.F.L. von Schlechtendal, Linnaea 2: 504. Jul 1827
64c. Melastomatineae J. Pres1, Nowočeská Bibl. [Wsobecný Rostl.] 7: 566. 1846
256. Melastomataceae Juss., Gen. Pl.: 328.4 Aug 1789, nom. cons.

Blakeaceae Rchb. ex Barnhart, Bull. Torrey Bot. Club 22: 19. 15 Jan 1895
Memecylaceae DC. in D.F.L. von Schlechtendal, Linnaea 2: 505. Aug-Oct 1827
Micontaceae Mart., Consp. Regn. Veg.: 64. Sep-Oct 1835
Mourtriaceae Gardner, J. Bot. (Hooker) 2: 22. Feb 1840
Rhexiaceae Dumort., Comment. Bot.: 59. Nov-Dec 1822
a. Olisbeoideae Burnett, Outlines Bot.: 725. Feb 1835
b. Melastomatoideae Ser. ex DC., Prodr. 3: 100. medio Mar 1828
b1. Kibessieae Krasser in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 7: 143. Aug 1893
b2. Astronieae Triana, Bull. Cong. Int. Bot. Hort Amsterdam 1865: 457. 1866
b3. Sonerileae Triana, Bull. Cong. Int. Bot. Hort Amsterdam 1865: 457. 1866
b4. Melastomateae Bartl., Ord. Nat. Pl.: 329. Sep 1830
b4a. Merianiinae Baill., Hist. Pl. 7: 32. Dec 1877
b4b. Rhexinae Baill., Hist. Pl. 7: 13. Dee 1877
b4c. Melastomatinae Baill., Htst. Pl. 7: 31, 37. Dec 1877
b4d. Microliciinae Baill., Hist. Pl. 7: 31. Dec 1877
b4e. Miconinae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 111, Comm. 80. 8-14 Apr 1838
b4f. Blakeinae Gilg, Bot. Jahrb. Syst. 16(Litt.): 40.27 Jun 1893
257. Crypteroniaceae A. DC. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 16(2):
677. Jul 1868, nom. cons.
258. Alzateaceae S.A. Graham, Ann. Missourt Bot. Gard. 71: 775. 19 Apr 1985
259. Rhynchocalycaceae L.A.S. Johnson \& B.G. Briggs, Ann. Missourl Bot. Gard. 71:
732. 19 Apr 1985
260. Penaeaceae Sweet ex Guill. in J.B.G.M. Bory de Saint-Vincent, Dict. Class. Hist. Nat. 13: 171. 1 Mar 1828, nom. cons.
261. Oliniaceae Harv. \& Sond., Fl. Cap. 2: ix. 15-31 Oct 1862, nom. cons.

Henslowiaceae Lindl., Key Bot.: 57. 15-30 Sep 1835
Plectronaceae Hiern, Cat. Afr. Pl.: 369. Mar 1898
65. Crossosomatales Takht. ex Reveal, Phytologia 74: 174. 25 Mar 1993

Geissolomatales Takht. ex Reveal, Novon 2: 238. 13 Oct 1992
Staphyleales Mart., Consp. Regn. Veg.: 51. Sep-Oct 1835
65a. Crossosomatineae Reveal, Kew Bull. 66: 47. Aug 2011
262. Staphyleaceae Martinov, Tekhno-Bot. Slovar: 598. 3 Aug 1820, nom. cons. Ochranthaceae A. Juss. in V.V.D. d'Orbigny, Dict. Univ. Hist. Nat. 8: 713. 1846
263. Guamatelaceae S. Oh \& D. Potter, Syst. Bot. 31: 736. 15 Dec 2006
264. Stachyuraceae J. Agardh, Theoria Syst. Pl.: 152. Apr-Sep 1858, nom. cons.
265. Crossosomataceae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr.: 185. 2 Aug 1897, nom. cons.
65b. Geissolomatineae Reveal, Kew Bull. 66: 47. Aug 2011
266. Aphloiaceae Takht., Bot. Zhurn. (Moscow \& Leningrad) 70: 1691. 13 Dec 1985
267. Geissolomataceae A. DC. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 14: 491. med. Oct 1856 , nom. cons.
268. Strasburgeriaceae Tiegh. in H. Solereder, Syst. Anat. Dicot. Ergänz.: 45. Mai 1908, nom. cons.
269. Ixerbaceae Griseb. ex Doweld \& Reveal, Phytologia 90: 416. 1 Dec 2008
66. Picramniales Doweld, Tent. Syst. Pl. Vasc.: xxxviii. 23 Dec 2001
270. Picramniaceae Fernando \& Quinn, Taxon 44: 177. 15 Mai 1995
a. Alvaradooideae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 4: 208, 229. Apr 1896
b. Picramnioideae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 4: 208, 228. Apr 1896
67. Sapindales Juss. ex Bercht. \& J. Presl, Přtr. Rostlin: 224. Jan-Apr 1820 Acerales Bercht. \& J. Presl, Přrr. Rostlm: 225. Jan-Apr 1820
Aesculales Bromhead, Mag. Nat. Hist., ser. 2, 2: 213. Apr 1838
Amyrıdales J. Presl, Nowočeská Bıbl. [Wšobecný Rostl.] 7: 335. 1846
Aurantiales Link, Handbuch 2: 345. 4-11 Jul 1829
Bieberstemtales Takht,, Divers. Classif. Fl. Pl.: 327. 24 Apr 1997
Burserales Mart., Consp. Regn. Veg.: 55. Sep-Oct 1835
Cedrelales Mart., Consp. Regn. Veg.: 61. Sep-Oct 1835
Citrales Dumort., Anal. Fam. Pl.: 43. 1829
Cneorales Link, Handbuch 2: 440. 4-11 Jul 1829
Diosmales J. Presl, Nowočeská Bıbl. [Wšobecný Rostl.] 7: 271. 1846
Hippocastanales Link, Handbuch 2: 335. 4-11 Jul 1829
Jultantales Engl., Syllabus, ed. 5: 111. 20-22 Jul 1907
Leitneriales Engl., Nat. Pflanzenfam. Nachtr: 345. Dec 1897
Meliales Juss. ex Bercht. \& J. Presl, Přır. Rostlın: 219. Jan-Apr 1820
Nitrariales Mart., Consp. Regn. Veg.: 52. Sep-Oct 1835
Pteleales Link, Handbuch 2: 118. 4-11 Jul 1829
Rutales Juss. ex Bercht. \& J. Presl, Přrr. Rostlm: 220. Jan-Apr 1820
Simaroubales Bercht. \& J. Presl, Přrr. Rostlın: 224. Jan-Apr 1820
Spondiadales Mart., Consp. Regn. Veg.: 56. Sep-Oct 1835 Zanthoxylales J. Presl, Nowočeská Bibl. [Wšobecný Rostl.] 7: 279, 280. 1846
67a. Sapindineae J. Presl, Nowočeská Bıbl. [Wšobecný Rostl.] 7: 222.1846
271. Biebersteiniaceae Schnizl., Anal. Nat. Ordn. Gew.: 14. 1856
272. Nitrariaceae Lindl., Intr. Nat. Syst. Bot.: 149. 27 Sep 1830
273. Tetradiclidaceae Takht., Florist. Reg. World: 333. 27 Apr 1986

Peganaceae Tiegh. ex Takht., Sist. Magnolıof. [Syst. Magnolioph.]: 178. 24 Jun 1987
274. Kirkiaceae Takht., Sist. Filog. Cvetk. Rast.: 321. 4 Feb 1967
275. Anacardiaceae R. Br. in J.H. Tuckey, Narr. Exped. Zaire: 431.5 Mar 1818, nom. cons.

Blepharocaryaceae Airy Shaw, Kew Bull. 18: 254. 8 Dec 1965
Comocladiaceae Martinov, Tekhno-Bot. Slovar: 144. 3 Aug 1820
Jultantaceae Hems1., J. Bot. 44: 379. Oct 1906, nom. cons.
Lentiscaceae Horan., Tetractys: 25. Jun-Dec 1843
Pistactaceae Martinov, Tekhno-Bot. Slovar: 485. 3 Aug 1820
Podoaceae Baill. ex Franch. Pl. Delav.: 145. Mai 1889
Rhoaceae Spreng. ex Sadler, Fl. Comit. Pest. 2: 135. 30 Mai 1826
Schmaceae Raf., Fl. Tellur. 3: 55. Nov-Dec 1837
Spondiadaceae Martinov, Tekhno-Bot. Slovar: 594. 3 Aug 1820
Vernicaceae Schultz Sch., Nat. Syst. Pflanzenr.: 488. 30 Jan-10 Feb 1832
a. Spondiadoideae Kunth ex Arn., Botany: 106. 19 Mar 1832
a1. Spondiadeae Kunth ex DC., Prodr. 2: 74. medio Nov 1825
a2. Rhoeae Voigt, Hort. Suburb. Calcutt.: 274. Aug-Dec 1845
a3. Semecarpeae Marchand, Rév. Anacardiac.: 168. Jan-Jun 1869
a4. Pistacieae Marchand, Rév. Anacarduac.: 184. Jan-Jun 1869
a5. Dobineeae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 5: 144. Jun 1892
b. Anacardioideae Arn., Botany: 106. 9 Mar 1832
b1. Buchananieae Marchand, Rév. Anacardtac.: 191. Jan-Jun 1869
b2. Julianieae Reveal, Phytoneuron 2012-33: 2. 9 Apr 2012
b3. Anacardieae DC., Prodr. 2: 62. medio Nov 1825
276. Burseraceae Kunth, Ann. Scr. Nat. (Paris) 2: 346. Jul 1824, nom. cons.

Balsameaceae Dumort., Anal. Fam. Pl.: 36, 41. 1829
a 1. Beiselieae Thulin, Beier \& Razafim., Nordtc J. Bot. 26: 226. 22 Dec 2008
a2. Protieae Marchand, Adansonia 8: 62. Oct 1867
a3. Bursereae DC., Prodr. 2: 75. medio Nov 1825
a4. Canarineae Webb \& Berthel., Hist. Nat. Iles Canarres 3(2,3): 1. Apr 1844
a4a. Canarininae Eddie ex Reveal, Phytoneuron 2012-37: 216. 23 Apr 2012
a4b. Garuginae Engl. in C.F.P. von Martius, Fl. Bras. 12(2): 251. 1 Sep 1874
277. Xanthoceraceae Buerki, Callm. \& Lowry, Pl. Ecol. Evol. 143: 155. 2010
278. Hippocastanaceae A. Rich., Bot. Méd.: 680. Jun 1823, nom. cons.

Aesculaceae Burnett, Outlines Bot.: 891, 1093, 1126. Feb 1835
279. Aceraceae Juss., Gen. Pl.: 250. 4 Aug 1789, nom. cons.
280. Sapindaceae Juss., Gen. Pl.: 246. 4 Aug 1789, nom. cons.

Allophylaceae Martinov, Tekhno-Bot. Slovar: 19. 3 Aug 1820
Dodonaeaceae Kunth ex Small, Fl. S.E. U.S.: 724, 737. 22 Jul 1903, nom. cons.
Koelreuteriaceae J. Agardh, Theoria Syst. Pl.: 227. Apr-Sep 1858
Ornitrophaceae Martinov, Tekhno-Bot. Slovar: 443. 3 Aug 1820
Pavtaceae Horan., Prim. Lin. Syst. Nat.: 100. 2 Nov 1834
a. Dodonaeoideae Burnett, Outlmes Bot.: 889. Feb 1835
a1. Doratoxyleae Radlk., Sitzungsber. Math.-Phys. Cl. Könıgl. Bayer. Akad. Wiss. München 20: 255. Jun 1890
a2. Dodonaeeae Kunth ex DC., Prodr. 1: 615. medio Jan 1824
b. Sapindoideae Burnett, Outlines Bot.: 889. Feb 1835
b1. Delavayeae Reveal, Phytoneuron 2012-37: 216. 23 Apr 2012
b2. Koelreuterieae Radlk., Sitzungsber. Math.-Phys. Cl. Könıgl. Bayer. Akad. Wiss. München 20: 254. Jun 1890
b3. Schleichereae Radlk., Sitzungsber. Math.-Phys. Cl. Köntgl. Bayer. Akad. Wiss. München 20: 253, 287. Jun 1890
b4. Sapindeae Kunth ex DC., Prodr. 1: 607. medio Jan 1824
b5. Cupanieae Blume, Rumphia 3: 157. Jun 1847
b6. Melicocceae Blume, Rumphia 3: 142. Jun 1847
b7. Paullinieae Kunth ex DC., Prodr. 1: 601. medio Jan 1824
67b. Rutineae Doweld ex Reveal, Kew Bull. 66: 48. Aug 2011
281. Rutaceae Juss., Gen. Pl.: 296. 4 Aug 1789, nom. cons.

Amyridaceae Kunth, Ann. Sci. Nat. (Paris) 2: 353. Jul 1824
Aurantiaceae Juss., Gen. Pl.: 259. 4 Aug 1789
Borontaceae J. Agardh, Theorta Syst. Pl.: 229. Apr-Sep 1858
Citraceae Roussel, Fl. Calvados, ed. 2: 271. 30 Mai 1806
Cneoraceae Vest, Anleit. Stud. Bot.: 267, 285. 1818, nom. cons.
Dictamnaceae Vest, Anlett. Stud. Bot.: 269, 287. 1818
Diosmaceae R. Br. ex Bartl., Ord. Nat. Pl.: 229, 386. Sep 1830
Diplolaenaceae J. Agardh, Theoria Syst. Pl.: 229. Apr-Sep 1858
Flinderstaceae C.T. White ex Airy Shaw, Kew Bull. 18: 257. 8 Dec 1965
Fraxinellaceae Nees. \& Mart., Nova Acta Phys.-Med. Acad. Caes. Leop.-Carol. Nat. Cur. 11: 147, 183. 3 Oct 1823
Jamboliferaceae Martinov, Tekhno-Bot. Slovar: 324. 3 Aug 1820
Pilocarpaceae J. Agardh, Theoria Syst. Pl.: 221. Apr-Sep 1858
Ptaeroxylaceae J.-F. Leroy, J. Agrtc. Trop. Bot. Appl. 7: 456. 1960
Pteleaceae Kunth, Ann. Sci. Nat. (Paris) 2: 354. Jul 1824
Spatheluaceae J. Agardh, Theoria Syst. Pl.: 280. Apr-Sep 1858
Zanthoxylaceae Martinov, Tekhno-Bot. Slovar: 682. 3 Aug 1820
a. Rutoideae Arn., Botany: 104. 9 Mar 1832
b. Amyridoideae Arn., Botany: 105. 9 Mar 1832
b1. Dictamneae Bartl., Ord. Nat. Pl.: 389. Sep 1830
b2. Amyrideae DC., Prodr. 2: 81. medio Nov 1825
b3. Diosmeae DC., Prodr. 1: 709. medio Jan 1824
b4. Zanthoxyleae Dumort., Anal. Fam. Pl.: 45. 1829
b5. Boronieae Bartl., Ord. Nat. Pl.: 388. Sep 1830
b6. Galipeeae Kallunki, Kew Bull. 53: 257. 1998
c. Aurantioideae Eaton, Bot. Dict., ed. 4: 39. Apr-Mai 1836
c1. Pteleeae DC., Prodr. 2: 82. medio Nov 1825
c2. Clauseneae Wight \& Arn., Prodr. Fl. Ind. Ortent.: 90. 10 Oct 1834
c3. Aurantieae Rchb., Fl. Germ. Excurs. 2(2): 840.1832
d. Cneoroideae Webb, London J. Bot. 1: 257. 1 Mai 1842
d1. Spathelieae Planch., London J. Bot. 5: 580. 1846
d2. Cneoreae Baill., Hist. Pl. 4: 431, 503. Jul-Sep 1873
282. Meliaceae Juss., Gen. Pl.: 263. 4 Aug 1789, nom. cons.

Cedrelaceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 595, 596. 19 Jul 1814 Swetentaceae E.D.M. Kirchn., Schul-Bot.: 415. 13-20 Oct 1831
a. Melioideae Arn., Botany: 103. 9 Mar 1932
a1. Turraeeae Harms in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 4: 267, 280. Mai 1896
a2. Melieae DC., Prodr. 1: 619. medio Jan 1824
a3. Quivisiantheae Reveal, Phytoneuron 2012-37: 218. 23 Apr 2012
a4. Trichilieae DC., Prodr. 1: 622. medio Jan 1824
a5. Vavaeeae Harms in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 4: 267, 286. Mai 1896
a6. Aglaieae Blume, Bydr. 4: 169. $20 \mathrm{Sep}-7 \mathrm{Dec} 1825$
a7. Guareeae T.D. Penn. \& Styles, Bhumea 22: 490. 24 Sep 1975
a8. Sandoriceae T.D. Penn. \& Styles, Blumea 22: 507. 24 Sep 1975
b. Cedreloideae Arn., Botany: 103. 9 Mar 1832
b1. Capuroniantheae Mabberley ex Reveal, Phytoneuron 2012-37: 216. 23 Apr 2012
b2. Swietenieae A. Juss., Bull. Sct. Nat. Geol. 23: 236. 1830
b3. Cedreleae DC., Prodr. 1: 624. medio Jan 1824
b4. Xylocarpeae Blume, Bydr. 4: 178. 20 Sep-7 Dee 1825
283. Simaroubaceae DC., Nouv. Bull. Sct. Soc. Phtlom. Paris 2: 209. Jan 1811, nom. cons. Ailanthaceae J. Agardh, Theoria Syst. Pl.: 223. Apr-Sep 1858 Castelaceae J. Agardh, Theoria Syst. Pl.: 181. Apr-Sep 1858 Leitneriaceae Benth. \& Hook.f., Gen. Pl. 3: vi, 396. 7 Feb 1880, nom. cons. Quassiaceae Bertol., Prael. Rei Herb.: 262. Mar 1827
Simabaceae Horan., Char. Ess. Fam.: 179. 17 Jun 1847
Soulameaceae Pfeiff., Nomencl. Bot. 2: 1202. 8 Mai 1874
a1. Casteleae Bartl., Ord. Nat. Pl.: 384. Sep 1830
a2. Ailantheae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 65, Comm. 47. 21-27 Mai 1837
a3. Leitnerieae Baill., Hist. Pl. 6: 245, 258. Jan-Mai 1876
a4. Quassieae Baill., Hist. Pl. 4: 430, 490. Jul-Sep 1873
a5. Simaroubeae Dumort., Anal. Fam. Pl.: 45. 1829
68. Huerteales Doweld, Tent. Syst. Pl. Vasc.: xxxv. 23 Dec 2001

Dipentodontales C.Y. Wu et al., Acta Phytotax. Sm. 40: 305. 2002
284. Petenaeaceae Christh., M.W. Chase \& M.F. Fay, Bot. J. Linn. Soc. 164: 23. 16 Sep 2010
285. Gerrardinaceae M.H. Alford, Taxon 55: 962. 20 Dec 2006
286. Tapisciaceae Takht., Ssst. Magnohof. [Syst. Magnolıoph.]: 171. 24 Jun 1987

Huerteaceae Doweld, Byill. Mosk. Obshch. Ispyt. Prir., Biol. 105(5): 59. 9 Oct 2000
287. Dipentodontaceae Merr., Brittonia 4: 69, 73. 16 Dec 1941, nom. cons. 69. Malvales Juss. ex Bercht. \& J. Pres1, Přir. Rostlin: 221. Jan-Apr 1820

Aquilariales Link, Handbuch 2: 123.4-11 Jul 1829
Bombacales Link, Handbuch 2: 353. 4-11 Jul 1829
Btxales Link, Handbuch 2: 371. 4-11 Jul 1829
Bytneriales Link, Handbuch 2: 350. 4-11 Jul 1829
Cistales DC. ex Bercht. \& J. Presl, Přir. Rostiln: 220. Jan-Apr 1820
Cytinales Dumort., Anal. Fam. Pl.: 13. 1829
Daphnales Lindl., Nix. Pl.: 15. 17 Sep 1833
Dipterocarpales Mart., Consp. Regn. Veg.: 60. Sep-Oct 1835
Neuradales Mart., Consp. Regn. Veg.: 64. Sep-Oct 1835
Stercultales Vent. ex Bercht. \& J. Presl, Přır. Rostlin: 222. Jan-Apr 1820
Thymelaeales R. Br. ex Bercht. \& J. Presl, Prirr. Rostlen: 234. Jan-Apr 1820
Tillales Juss. ex Bercht. \& J. Pres1, Přir. Rostlin: 222. Jan-Apr 1820
69a. Thymelaeineae Engl., Syllabus, ed. 2: 158. Mai 1898
288. Neuradaceae Kostel., Allg. Med.-Pharm. Fl. 4: 1496. Jan-Oct 1835, nom. cons.

Grielaceae Martinov, Tekhno-Bot. Slovar: 294. 3 Aug 1820
289. Thymelaeaceae Juss., Gen. Pl.: 76. 4 Aug 1789, nom. cons.

Aquilariaceae R. Br. ex DC., Prodr. 2: 59. Nov 1825
Daphnaceae Vent., Tabl. Règne Vég. 2: 235. 5 Mai 1799
Gnidiaceae Bercht. \& J. Pres1, Přir. Rostlin 1(116*-120): 1, 2.1823

Gonystylaceae Tiegh., Just's Bot. Jahresber. 21(2): 389, 390. Jul-Dec 1896, nom. cons.
Phalertaceae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 323, 329, Comm. 241. 18-24 Jul 1841
Tepuianthaceae Maguire \& Steyerm., Mem. New York Bot. Gard. 32: 8. 20 Mai 1981
a. Tepuianthoideae Reveal, Phytoneuron 2012-37: 219. 23 Apr 2012
b. Gonystyloideae Domke, Biblioth. Bot. 111: 33.31 Dec 1934
b1. Octolepideae Thonner, Bl.-pfl. Afr.: 405. Oct 1908
b2. Gonystyleae Reveal, Phytoneuron 2012-33: 2. 9 Apr 2012
c. Thymelaeoideae Burnett, Outlines Bot.: 570, 1091, 1145. Feb 1835
cl. Synandrodaphneae Herber in K. Kubitzki \& C. Bayer, Fam. \& Gen. Vasc. Pl. 5: 385. 2002
c2. Aquilarieae Horan., Char. Ess. Fam.: 75. 17 Jun 1847
c3. Thymelaeeae Endl., Gen. Pl. Suppl. 4(2): 59, 61. Aug-Oct 1848
69b. Cochlospermineae Engl., Syllabus, ed. 2: 154. Mai 1898
290. Sphaerosepalaceae Tiegh. in A.A. Bullock, Taxon 8: 200. 24 Jul 1959

Rhopalocarpaceae Hemsl. ex Takht., Sist. Magnoliof. [Syst. Magnolioph.]: 130.24 Jun 1987
291. Cochlospermaceae Planch., London J. Bot. 6: 305. Jun-Jul 1847, nom. cons.
292. Bixaceae Kunth, Malvac., Büther., Tiliac.: 17. 20 Apr 1822, nom. cons.
293. Diegodendraceae Capuron, Adansonia, ser. 2, 3: 392. Oct-Dec 1964

69c. Cistineae Rchb., Deut. Bot. Herb.-Buch: Ixxvi. Jul 1841
294. Cistaceae Juss., Gen. Pl.: 294. 4 Aug 1789, nom. cons.

Heltanthemaceae G. Mey., Chlorts Han.: 9, 185. Jul-Aug 1836
295. Sarcolaenaceae Caruel, Atti Reale Accad. Lincei, Mem. Cl. Sci. Fis., ser. 3, 10: 226, 248. 5 Jun 1881, nom. cons.

Rhodolaenaceae Bullock, Kew Bull. 12: 410. 1958
Schizolaenaceae Barnhart, Bull. Torrey Bot. Club 22: 17. 15 Jan 1895
296. Dipterocarpaceae Blume, Btjdr. 4: 222. 20 Sep-7 Dec 1825, nom. cons. Monotaceae Kosterm., Taxon 38: 123. 27 Feb 1989
a. Pakaramaeoideae Maguire, P.S. Ashton \& de Zeeuw in B. Maguire \& P.S. Ashton, Taxon 26: 353. 23 Sep 1977
b. Monotoideae Thonner, Bl.-pfl. Afr:: 386. Oct 1908
c. Dipterocarpoideae Burnett, Outlmes Bot.: 824, 1094, 1120. Feb 1835
cl. Dipterocar peae Rchb., Handb. Nat. Pfl.-Syst.: 304. 1-7 Oct 1837
c2. Shoreeae Miq., Fl. Ned. Ind. 1(2): 503. 6 Oct 1859
297. Cytinaceae A. Rich. in J.B.G.M. Bory de Saint-Vincent, Dict. Class. Hist. Nat. 5: 301. 15 Mai 1824
298. Muntingiaceae C. Bayer, M.W. Chase \& M.F. Fay, Taxon 47: 38. 13 Feb 1998
a. Muntingioideae Reveal, Phytoneuron 2012-37: 218. 23 Apr 2012
b. Neotessmannioideae Burett, Notizbl. Bot. Gart. Berlin 9: 126. 1 Oct 1924

69d. Malvineae Rchb., Deut. Bot. Herb.-Buch: lxxxi. Jul 1841
299. Sparmanniaceae J. Agardh, Theoria Syst. Pl.: 260. Apr-Sep 1858

Grewiaceae Doweld \& Reveal in J.L. Reveal, Bot. Rev. (Lancaster) 71: 100. 20 Mai 2005
a1. Grewieae Endl., Gen. Pl.: 1006. 1-14 Feb 1840
a2. Sparmannieae Burett, Notizbl. Bot. Gart. Berlin-Dahlem 9: 604, 862. 22 Jul 1926
300. Byttneriaceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 540.19 Jul 1814, nom. cons.
Hermanntaceae Marquis, Esq. Règne Vég.: 52. 15-22 Jul 1820

Lasıopetalaceae Rchb., Mag. Aesth. Bot. 1(2): ad t. 37. 1823
Melochtaceae J. Agardh, Theoria Syst. Pl.: 271. Apr-Sep 1858
Theobromataceae J. Agardh, Theorta Syst. Pl.: 264. Apr-Sep 1858
a 1. Lasiopetaleae DC., Prodr. 1: 488 . medio Jan 1824
a2. Hermannieae DC., Prodr. 1: 490 . medio Jan 1824
a3. Byttnerieae DC., Prodr. 1: 484. medio Jan 1824
a4. Theobromateae A. Stahl, Estud. Fl. Puerto-Rico 2: 103. 1884
301. Sterculiaceae Vent. in R. Salisbury, Parad. Lond. 2: ad t. 69.1 Mai 1807, nom. cons.
302. Tiliaceae Juss., Gen. Pl.: 289. 4 Aug 1789, nom. cons.
a1. Tilieae Bartl., Ord. Nat. Pl.: 339. Sep 1830
a2. Craigieae H.T. Chang \& R.H. Miau, Acta Sci. Nat. Univ. Sunyatseni 1978(2): 20.
Aug 1978
303. Dombeyaceae Desf., Tabl. Ecole Bot., ed. 3: 252. 15-21 Mar 1829, nom. cons.

Pentapetaceae Bercht. \& J. Presl, Přır. Rostlm: 222. Jan-Apr 1820
304. Berryaceae Doweld, Tent. Syst. Pl. Vasc.: xxxvii. 23 Dec 2001

Brownlowiaceae Cheek, Kew Bull. 61: 443. 8 Dec 2006
a1. Berryeae Burett, Notizbl. Bot. Gart. Berlm-Dahlem 9: 599, 605. 22 Jul 1926
a2. Brownlowieae Benth., J. Proc. Linn. Soc., Bot. 5(Suppl. 2): 54. 1861
305. Helicteraceae J. Agardh, Theorta Syst. Pl.: 264. Apr-Sep 1858

Durionaceae Cheek, Kew Bull. 61: 443. 8 Dec 2006
Mansoniaceae A. Chev., Just's Bot. Jahreber. 38(1): 852. 1913
a1. Durioneae Becc., Malesia 3: 206. Sep 1889
a2. Helictereae Schott \& Endl., Melet. Bot.: 30. 1831
a3. Eriolaeneae Arn. in R. Wight \& G.A.W. Arnott, Prodr. Fl. Ind. Ortent.: 70. 10 Oct 1834
a4. Mansonieae Prain, J. Linn. Soc. London 37: 260. 30 Sep 1905
306. Bombacaceae Kunth, Malvac., Büttner., Tiliac.: 5. 20 Apr 1822, nom. cons.

Chiranthodendraceae A. Gray, Proc. Amer. Acad. Arts 22: 303. 4 Mar 1887
a1. Chiranthodendreae Baill., Hist. Pl. 4: 103, 127. 1872
a2. Ochromeae Horan., Char. Ess. Fam.: 192. 17 Jun 1847
a3. Bombaceae Kunth, Syn. Pl. 3: 258. 28 Feb 1824
307. Malvaceae Juss., Gen. Pl.: 271. 4 Aug 1789, nom. cons.

Hibiscaceae J. Agardh, Theoria Syst. Pl.: 275. Apr-Sep 1858
Philippodendraceae A. Juss. in V.V.D. d'Orbigny, Dict. Untv. Hist. Nat. 9: 735. 1847
Plagianthaceae J. Agardh, Theorla Syst. Pl.: 272. Apr-Sep 1858
Sidaceae Bercht. \& J. Presl, Přtr: Rostlm: 222. Jan-Apr 1820
a1. Kydieae Bates, Gentes Herb. 10: 118. 26 Jun 1968
a2. Hibisceae Rchb., Fl. Germ. Excurs. 2(2): 770, 774. 1832
a3. Gossypieae Alef. in Bot. Zeitung (Berlin) 19:301. 11 Oct 1861
a4. Malveae J. Presl, F7. Stcula: 173. 1826
a4a. Corynabutilinae Kearney, Leafl. W. Bot. 5: 189. 5 Dec 1949
a4b. Malvinae K. Schum. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 6a: 36. 18 Apr 1894
a5. Sideae J. Presl, Fl. Sicula: 182. 1826
a5a. Abutilinae A. Gray, Gen. Amer. Bot. 2: 47. Jun-Oct 1849
a5b. Sidinae A. Gray, Gen. Amer: Bot. 2: 47. Jun-Oct 1849
70. Capparales Juss. ex Bercht. \& J. Presl, Přir. Rostlin: 218. Jan-Apr 1820

Akaniales Doweld, Byull. Mosk. Obshch. Ispyt. Prir., Biol. 105(5): 60. 9 Oet 2000
Batales Engl., Syllabus, ed. 5: 111. 20-22 Jul 1907
Brassicales Bromhead, Edinburgh New Philos. J. 24: 416. Apr 1838

Caricales L.D. Benson, Pl. Classif:: 648. 1957
Gyrostemonales Takht., Divers. Classif. Fl. Pl.: 123. 24 Apr 1997
Limnanthales Mart., Consp. Regn. Veg.: 56. Sep-Oct 1835
Moringales Mart., Consp. Regn. Veg.: 51. Sep-Oct 1835
Resedales Link, Handbuch 2:322. 4-11 Jul 1829
Salvadorales R. Dahlgren ex Reveal, Phytologia 74: 174. 25 Mar 1993
Tovariales Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov]: 239. 20 Jul 1943
Tropaeolales Mart., Consp. Regn. Veg.: 49. Sep-Oct 1835
308. Akaniaceae Stapf, Bull. Misc. Inform. 1912: 380. 13 Dec 1912, nom. cons.
309. Bretschneideraceae Engl. \& Gilg, Syllabus, ed. 9-10: 218. 6 Nov 1924, nom. cons.
310. Tropaeolaceae Juss. ex DC., Prodr. 1: 683. med. Jan 1824, nom. cons.
311. Moringaceae Martinov, Tekhno-Bot. Slovar: 404. 3 Aug 1820, nom. cons.
312. Caricaceae Dumort., Anal. Fam. Pl.: 37, 42. 1829, nom. cons.
313. Setchellanthaceae Iltis, Taxon 48: 260. 17 Mai 1999
314. Limnanthaceae R. Br., London Edinburgh Phtlos. Mag. \&. J. Sci. 3: 70. Jul 1833, nom. cons.
315. Koeberliniaceae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 6: 319. 14 Mai 1895, nom. cons.
316. Bataceae Mart. ex Perleb, Clav. Class.: 17. Jan-Mar 1838, nom. cons.
317. Salvadoraceae Lindl., Nat. Syst. Bot., ed. 2: 269. 13 Jun 1836, nom. cons. Azimaceae Wight \& Gardner, Calcutta J. Nat. Hist. 6: 52. Apr 1845
318. Emblingiaceae Airy Shaw, Kew Bull. 18: 257. 8 Dec 1965
319. Pentadiplandraceae Hutch. \& Dalziel, Fl. W. Trop. Afr. 1: 461. Jul 1928
320. Stixaceae Doweld in A. Doweld \& J.L. Reveal, Phytologia 90: 417. 1 Dec. 2008
321. Gyrostemonaceae A. Juss. in V. V.D. d'Orbigny, Dict. Univ. Hist. Nat. 6: 450. 1845, nom. cons.
322. Resedaceae Martinov, Tekhno-Bot. Slovar: 541. 3 Aug 1820, nom. cons. Astrocarpaceae A. Kern., Pflanzenleben 2: 688. 6-13 Jun 1891
a 1. Cayluseeae Müll.-Arg. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 16(2): 550. late Jul 1868
a2. Astrocarpeae Müll.-Arg. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 16(2): 550, 552. late Jul 1868
a3. Resedeae Rchb., Fl. Germ. Excurr. 2(2): 695. 1832
323. Tovariaceae Pax in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 2: 207.9 Mar 1891, nom. cons.
324. Capparaceae Juss., Gen. Pl.: 242. 4 Aug 1789, nom. cons.
a1. Cappareae DC., Prodr. 1: 242. medio Jan 1824
a2. Maerueae Baill., Hist. Pl. 3: 167, 178. 1871
a3. Cadabeae Horan., Char. Ess. Fam.: 171. 17 Jun 1847
325. Cleomaceae Bercht. \& J. Presl, Přir. Rostlın 2(64): 253. 1825

Oxystylıdaceae Hutch., Evol. Phylog. Fl. Pl.: 516. 28 Aug 1969
a. Dipterygioideae Pax in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 2: 220, 225. 9 Mar 1891
b. Cleomoideae Burnett, Outlines Bot:: 867. Feb 1835
326. Brassicaceae Burnett, Outlines Bot.: 854, 1093, 1123. Feb 1835, nom. cons., nom. alt. Arabidaceae Döll, Rhem. Fl.: 573. 24-27 Mai 1843
Cructferae Juss., Gen. Pl.: 237. 4 Aug 1789, nom. cons.
Drabaceae Martinov, Tekhno-Bot. Slovar: 215. 3 Aug 1820
Erysimaceae Martinov, Tekhno-Bot. Slovar: 238. 3 Aug 1820
Isatıdaceae Döll, Fl. Baden 3: 1310.30-31 Dec 1861

Raphanaceae Horan., Char. Ess. Fam.: 169. 17 Jun 1847
Schizopetalaceae A. Juss. in V.V.D. d'Orbigny, Dict. Untv. Hist. Nat. 11: 419. 9 Sep 1848
Sisymbriaceae Martinov, Tekhno-Bot. Slovar: 583. 3 Aug 1820
Stanleyaceae Nutt., J. Acad. Nat. Sci. Philadelphia 7: 85. 28 Oct 1834
Thlaspiaceae Martinov, Tekhno-Bot. Slovar: 633. 3 Aug 1820
a1. Aethionemeae Al-Shehbaz, Beilstein \& E.A. Kellogg, Pl. Syst. Evol. 259: 110. 19 Jul 2006
a2. Camelineae DC., Mém. Mus. Hist. Nat. 7(1): 239. 20 Apr 1821
a3. Boechereae Al-Shehbaz, Beilstein \& E.A. Kellogg, Pl. Syst. Evol. 259: 111. 19 Jul 2006
a4. Halimolobeae Al-Shehbaz, Beilstein \& E.A. Kellogg, Pl. Syst. Evol. 259: 111. 19 Jul 2006
a5. Physarieae B.L. Rob., Syn. Fl. N. Amer. 1: 100. 1895
a6. Cardamineae Dumort., Fl. Belg.: 124. 1827
a7. Lepidieae DC., Mém. Mus. Hist. Nat. 7(1): 240. 20 Apr 1821
a8. Alysseae DC., Mém. Mus. Hist. Nat. 7(1): 231. 20 Apr 1821
a9. Descurainieae Al-Shehbaz, Beilstein \& E.A. Kellogg, Pl. Syst. Evol. 259: 111. 19 Jul 2006
a 10. Smelowskieae Al-Shehbaz, Beilstein \& E.A. Kellogg, Pl. Syst. Evol. 259: 111. 19 Jul 2006
a11. Arabideae DC., Mém. Mus. Hist. Nat. 7(1): 229. 20 Apr 1821
a12. Brassiceae DC., Mém. Mus. Htst. Nat. 7(1): 242. 20 Apr 1821
a 13. Schizopetaleae R. Br. ex Barnéoud, Ann. Mag. Nat. Hist., ser. 1, 16: 68. Jul 1845
a14. Sisymbrieae DC., Mém. Mus. Hist. Nat. 7(1): 237. 20 Apr 1821
a15. Isatideae DC., Mém. Mus. Hist. Nat. 7(1): 241. 20 Apr 1821
a16. Eutremeae Al-Shehbaz, Beilstein \& E.A. Kellogg, Pl. Syst. Evol. 259: 112. 19 Jul 2006
a17. Bivonaeae M. Koch \& Warwick, Taxon 61: 89. 26 Feb 2012
a 18. Thlaspieae DC., Mém. Mus. Hist. Nat. 7(1): 234. 20 Apr 1821
a19. Noccaeeae Al-Shehbaz, Beilstein \& E.A. Kellogg, Pl. Syst. Evol. 259: 112. 19 Jul 2006
a20. Hesperideae Prantl in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 2: 154. 9 Mar 1891
a21. Anchonieae DC., Mém. Mus. Htst. Nat. 7(1): 242. 20 Apr 1821
a22. Euclidieae DC., Mém. Mus. Hist. Nat. 7(1): 236. 20 Apr 1821
a23. Chorisporeae Ledeb., C.A. Mey. \& Bunge, Fl. Altaic. 3: 104. Jul-Dec 1831
a24. Heliophileae DC., Mém. Mus. Hist. Nat. 7(1): 256. 20 Apr 1821
a25. Cochlearieae Buchenau, Fl. Nordwestdent. Tiefebene: 245. 28 Apr 1894
a26. Lunarieae Dumort., Fl. Belg.: 119. 1827
a27. Iberideae Webb \& Berthel., Hist. Nat. Iles Canaries 3(2.1): 92 . Nov 1837
O. Berberidopsidanae Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 93. 29 Jun 2007
71. Berberidopsidales Doweld, Tent. Syst. Pl. Vasc.: xxviii. 23 Dec 2001
327. Aextoxicaceae Engl. \& Gilg in H.G.A. Engler, Syllabus, ed. 8: 250. Jan-Feb 1920, nom. cons.
328. Berberidopsidaceae Takht., Bot. Zhurn. (Moscow \& Leningrad) 70: 1691. 13 Dec 1985
P. Santalanae Thorne ex Reveal, Novon 2: 236. 13 Oct 1992

Balanophoranae R. Dahlgren ex Reveal, Novon 2: 235. 13 Oct 1992
72. Santalales R. Br. ex Bercht. \& J. Pres1, Přır. Rostlm: 234. Jan-Apr 1820

Anthobolales Dumort., Anal. Fam. Pl.: 15. 1829

Erythropalales Tiegh., Just's Bot. Jahresber. 25(2): 406. 19 Jan 1899
Heisteriales Tiegh., Just's Bot. Jahresber. 25(2): 406. 19 Jan 1900
Loranthales Link, Handbuch 2: 1. 4-11 Jul 1829
Olacales Mart., Consp. Regn. Veg.: 40. Sep-Oct. 1835
Osyridales Link, Handbuch 1: 371. 4-11 Jul 1829
Viscales Bercht. \& J. Presl, Pr̈ir. Rostlin: 257. Jan-Apr 1820
Ximeniales Tiegh., Just's Bot. Jahresber. 25(2): 406.19 Jan 1900
329. Erythropalaceae Planch. ex Miq., Fl. Ned. Ind. 1: 704. 10 Jul 1856, nom. cons.

Heisteriaceae Tiegh., Just's Bot. Jahresber. 25(2): 406. 19 Jan 1900
Scorodocarpaceae Tiegh., Just's Bot. Jahresber. 25(2): 406. 19 Jan 1900
330. Strombosiaceae Tiegh., Just's Bot. Jahresber. 25(2): 406. 19 Jan 1900 Tetrastylidiaceae Tiegh., Just's Bot. Jahresber. 25(2): 406. 19 Jan 1900
331. Coulaceae Tiegh., Just's Bot. Jahresber: 23(2): 311 ["313"]. Oct-Dec 1897
332. Ximeniaceae Horan., Prim. Lin. Syst. Nat:: 72. 2 Nov 1834
333. Aptandraceae Miers in J. Lindley, Veg. Kingd., ed. 3: 447a. 30 Jul-15 Aug 1853

Cathedraceae Tiegh., Just's Bot. Jahresber. 25(2): 406. 19 Jan 1900
Chaunochitonaceae Tiegh., Just's Bot. Jahresber: 25(2): 406. 19 Jan 1900
Harmandtaceae Tiegh., Just's Bot. Jahresber: 24(2): 279. 1898
334. Olacaceae Juss. ex R. Br. in J.H. Tuckey, Narr. Exped. Zaire: 452. 5 Mar 1818, nom. cons.
335. Octoknemaceae Tiegh. in C.K. Schneider, Just's Bot. Jahresber. 33(2): 519. 1907, nom. cons.
336. Schoepfiaceae Blume, Mus. Bot. 1: 175. 1850 Arjonaceae Tiegh., Just's Bot. Jahresber. 24(2): 279. 1898
337. Misodendraceae J. Agardh, Theoria Syst. Pl.: 236. Apr-Sep 1858, nom. cons.
338. Loranthaceae Juss., Ann. Mus. Natl. Hist. Nat. 12: 292. 1808, nom. cons.

Elytranthaceae Tiegh., Oesterr. Bot. Z. 46: 368. Oct 1896
Dendrophthoaceae Tiegh., Just's Bot. Jahresber. 24(2): 291. 1898
Gatadendraceae Tiegh. ex Nakai, Bull. Natl. Sci. Mus. Tokyo 31: 45. Mar 1952 Nuytstaceae Tiegh., Oesterr. Bot. Z. 46: 368. Oct 1896
Psittacanthaceae Nakai, Bull. Natl. Scl. Mus. Tokyo 31: 46. Mar 1952
a 1. Nuytsieae Tiegh., Just's Bot. Jahresber. 21(2): 358. Jul-Dec 1896
a2. Gaiadendreae Tiegh., Bot. Centralbl. 62: 294. 1895
a3. Elytrantheae Danser, Verh. Kon. Ned. Akad. Wetensch., Afd. Natuurk., Tweede Sect. 29(6): 4. 1933
a4. Psittacantheae Horan., Char. Ess. Fam.: 86. 17 Jun 1847 a4a. Tupeinae Nickrent \& Vidal-Russell in D.L. Nickrent et al., Taxon 59: 546.4 Apr 2010
a4b. Notantherinae Nickrent \& Vidal-Russell in D.L. Nickrent et al., Taxon 59: 547. 4 Apr 2010
a4c. Ligarinae Nickrent \& Vidal-Russell in D.L. Nickrent et al., Taxon 59: 547. 4 Apr 2010
a4d. Psittacanthinae Engl. in H.GA. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr.: 125, 135. 2 Aug 1897
a5. Lorantheae Rchb., Fl. Germ. Excurs. 1(3): 203. Jul-Dec 1831
a5a. Ileostylinae Nickrent \& Vidal-Russell in D.L. Nickrent et al., Taxon 59: 548.4
Apr 2010
a5b. Loranthinae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam.
Nachtr.: 125, 127. 2 Aug 1897
a5c. Amyeminae Nickrent \& Vidal-Russell in D.L. Nickrent et al., Taxon 59: 548.
4 Apr 2010
a5d. Scurrulinae Nickrent \& Vidal-Russell in D.L. Nickrent et al., Taxon 59: 549. 4 Apr 2010
a5e. Dendrophthoinae Nickrent \& Vidal-Russell in D.L. Nickrent et al., Taxon 59: 549. 4 Apr 2010
a5f. Emelianthinae Nickrent \& Vidal-Russell in D.L. Nickrent et al., Taxon 59: 549. 4 Apr 2010
a5g. Tapinanthinae Nickrent \& Vidal-Russell in D.L. Nickrent et al., Taxon 59: 550. 4 Apr 2010
339. Opiliaceae Valeton, Crit. Overz. Olacin.: 136. 7 Jul 1886, nom. cons.

Anthobolaceae Dumort., Anal. Fam. Pl.: 15, 17. 1829
Cansjeraceae J. Agardh, Theoria Syst. Pl.: 238. Apr-Sep 1858
a 1. Anthoboleae Bartl. ex Spach, Hist. Nat. Vég. 10: 461. 20 Mar 1841
a2. Opilieae Benth., Ann. Mag. Nat. Hist., ser. 1, 7: 215. ante 25 Mai 1841
a3. Agonandreae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 1: 233. Mai 1889
340. Comandraceae Nickrent \& Vidal-Russell in D.L. Nickrent et al., Taxon 59: 550. 4 Apr 2010
341. Thesiaceae Vest, Anleit. Stud. Bot.: 270, 289. 1818
342. Cervantesiaceae Nickrent \& Vidal-Russell in D.L. Nickrent et al., Taxon 59: 551. 4 Apr 2010
343. Nanodeaceae Nickrent \& Vidal-Russell in D.L. Nickrent et al., Taxon 59: 552. 4 Apr 2010
344. Santalaceae R. Br., Prodr.: 350. 27 Mar 1810, nom. cons.

Canopodaceae C. Presl, [Epmel. Bot.: 248], Abh. Köntgl. Böhm. Ges. Wiss., ser. 5, 6: 608. ante Oct 1851
Eremolepidaceae Tiegh. ex Nakai, Bull. Natl. Sci.Mus. Tokyo 31: 48. Mar 1952
Exocarpaceae J. Agardh, Theoria Syst. Pl.: 317. Apr-Sep 1858
Lepidocerataceae Nakai, Bull. Natl. Sci. Mus. Tokyo 31: 45. Mar 1952
Osyridaceae Raf., Ann. Gén. Scı. Phys. Bruxelles 5: 348. Jul-Sep 1820
345. Amphorogynaceae Nickrent \& Der in D.L. Nickrent et al., Taxon 59: 552. 4 Apr 2010
346. Viscaceae Batsch, Tab. Affin. Regni Veg.: 240. 2 Mai 1802

Arceuthobiaceae Tiegh., Just's Bot. Jahresber: 23(2): 290. Oct-Dec 1897
Bifariaceae Nakai, Bull. Natl. Sci. Mus. Tokyo 31: 46. Mar 1952
Ginalloaceae Tiegh., Just's Bot. Jahresber. 25(2): 405. 19 Jan 1900
Phoradendraceae H. Karst., Fl. Columb. 1: 73. 13 Feb 1860
73. Balanophorales Dumort., Anal. Fam. Pl.: 65.1829
347. Balanophoraceae Rich., Mém. Mus. Hist. Nat. 8: 429.18 Nov 1822, nom. cons.

Dactylanthaceae Takht., Sist. Magnoliof. [Syst. Magnolioph.]: 43. 24 Jun 1987
Hachetteaceae Doweld, Tent. Syst. Pl. Vasc.: xxv. 23 Dec 2001
Helosidaceae Bromhead, Mag. Nat. Hist., n.s., 4: 336, 338. Jul 1840
Langsdorffiaceae Tiegh. ex Pilg. in H.G.A. Engler \& K.A.E. Prantl, Nat.
Pflanzenfam. Nachtr. 3: 76. Apr 1914
Lophophytaceae Bromhead, Mag. Nat. Hist., n.s., 4: 336, 338. Jul 1840
Mystropetalaceae Hookf. in J. Lindley, Veg. Kingd., ed. 3: 94. 30 Jul-15 Aug 1853
Sarcophytaceae A. Kern., Pflanzenleben 2: 708, 709. 8 Aug 1891
Scybaliaceae A. Kern., Pflanzenleben 2: 708, 709. 8 Aug 1891
a. Mystropetaloideae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 1: 250, 252. Aug 1889
b. Dactylanthoideae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 1: 250, 252. Aug 1889
c. Sarcophytoideae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 1: 250, 252. Aug 1889
d. Scybalioideae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 1: 250, 253. Aug 1889
e. Lophophytoideae Engl., Syllabus, ed. 3: 115. 16 Jan 1903
f. Balanophoroideae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 1: 250, 260. Aug 1889
f1. Balanophoreae Eng1. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 1: 250, 260. Aug 1889
f2. Langsdorffieae Schott \& End1., Melet. Bot.: 12. 1832
Q. Caryophyllanae Takht., Sist. Fitog. Cvetk. Rast.: 144. 4 Feb 1967 Nepenthanae Takht. ex Reveal, Phytologia 79: 71. 29 Apr 1996
Plumbagmanae Takht. ex Reveal, Novon 2: 236. 13 Oct 1992 Polygonanae Takht. ex Reveal, Novon 2: 236. 13 Oct 1992 Rhabdodendranae Doweld, Tent. Syst. Pl. Vasc.: xli. 23 Dec 2001 Smmondstanae Doweld, Tent. Syst. Pl. Vasc.: xliii. 23 Dec 2001
74. Polygonales Juss. ex Bercht. \& J. Presl, Přrr. Rostlin: 240. Jan-Apr 1820 Plumbaginales Juss. ex Bercht. \& J. Presl, Pritr. Rostlin: 241. Jan-Apr 1820 Statıcales Link, Handbuch 2: 262. 4-11 Jul 1829
348. Plumbaginaceae Juss., Gen. Pl.: 92. 4 Aug 1789, nom. cons. Aegialitidaceae Lincz., Novostt Sist. IJssh. Rast. 1968: 173. 18 Dec 1968 Armeriaceae Horan., Prim. Lin. Syst. Nat:: 68. 2 Nov 1834 Limoniaceae Ser., Fl. Pharm.: 456. 1851, nom. cons. Staticaceae Cassel, Lehrb. Nat. Pflanzenord.: 215. Apr-Mai 1817
a. Plumbaginoideae Burnett, Outlines Bot.: 1028, 1095, 1101. Feb 1835
b. Limonioideae Reveal, Phytoneuron 2012-33: 2. 9 Apr 2012
b1. Aegialitideae T.H. Peng, Fl. Reipubl. Popularis Sm. 60(1): 1. 1987
b2. Limonieae Reveal, Phytoneuron 2012-33: 2. 9 Apr 2012
349. Polygonaceae Juss., Gen. Pl.: 82. 4 Aug 1789, nom. cons.

Callıgonaceae Khalk., Dokl. Akad. Nouk. Uzbeksk. SSR 1985(11): 45. Nov 1985 Eriogonaceae G. Don in R. Sweet, Hort. Brit., ed. 3: 580. 23 Oct 1839 Persicartaceae Martinov, Tekhno-Bot. Slovar: 473. 3 Aug 1820 Rumicaceae Martinov, Tekhno-Bot. Slovar: 554. 3 Aug 1820
a. Symmerioideae Meisn. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 14: 4, 185. medio Oct 1856
b. Polygonoideae Eaton, Bot. Dict., ed. 4: 30. Apr-Mai 1836
b1. Fagopyreae Yonek. in I. Kunio, D.E. Boufford \& H. Ohba, Fl. Jap. 2a: 132. 2006
b2. Calligoneae C.A. Mey., Mém. Acad. Imp. Sci. Saint-Pétersbourg, ser. 6, Sci. Math., Seconde Pt. Sci. Nat. 6(2): 142. 25 Oct 1840
b3. Rumiceae Dumort., Fl. Belg.: 17. 1827
b4. Persicarieae Dumort., Fl. Belg.: 17. 1827
b5. Polygoneae Rchb., Fl. Germ. Excurs. 2(2): 563, 568. 1832
c. Eriogonoideae Arn., Botany: 126. 9 Mar 1832
c1. Brunnichieae C.A. Mey., Mém. Acad. Imp. Sci. Saint-Pétersbourg, ser. 6, Scl. Math., Seconde Pt. Sct. Nat. 6(2): 150. 25 Oct 1840
c2. Coccolobeae Dumort., Anal. Fam. Pl.: 18. 1829
c3. Leptogeneae Jan. M. Burke \& Adr. Sanchez, Brittonia 63: 517. 2011
c4. Triplarideae C.A. Mey., Mém. Acad. Imp. Scı. Samt-Pétersbourg, ser. 6, Sct. Math., Seconde Pt. Scl. Nat. 6(2): 147. 25 Oct 1840
c5. Gymnopodieae Jan. M. Burke \& Adr. Sanchez, Brittonia 63: 518. 2011
c6. Eriogoneae Dumort., Anal. Fam. Pl.: 17. 1829
75. Nepenthales Dumort., Anal. Fam. Pl.: 14. 1829

Ancistrocladales Takht. ex Reveal, Novon 2: 238. 13 Oct 1992
Dtoncophyllales Takht. ex Reveal, Phytologta 74: 174. 25 Mar 1993
Droserales Bercht. \& J. Pres1, Prır. Rostlin: 217. Jan-Apr 1820
350. Droseraceae Salisb., Parad. Lond. 2: ad t. 95. 1 Feb 1808, nom. cons. Aldrovandaceae Nakai, J. Jap. Bot. 24: 10. Dec 1949 Dionaeaceae Raf., Fl. Tellur. 3: 35. Nov-Dec 1837
351. Nepenthaceae Dumort., Anal. Fam. Pl.: 14, 16. 1829, nom. cons.
352. Drosophyllaceae Chrtek, Slaviková \& Studnička, Prestia 61: 122. 10 Apr 1989
353. Ancistrocladaceae Planch. ex Walp., Ann. Bot. Syst. 2: 175. 15-16 Dee 1851, nom. cons.
354. Dioncophyllaceae Airy Shaw, Kew Bull. 6: 333. 26 Jan 1952, nom. cons.
76. TAMARICALES Link, Handbuch 2: 46. 4-11 Jul 1829

Frankentales Link, Handbuch 2: 229. 4-11 Jul 1829 Reaumuriales Mart., Consp. Regn. Veg.: 61. Sep-Oct 1835
355. Frankeniaceae Desv. in S. Gérardin de Mirecourt \& N.A. Desvaux, Dict. Rais. Bot.: 188. 12-19 Apr 1817, nom. cons.
356. Tamaricaceae Link, Enum. Hort. Berol. Alt. 1: 291. 16 Mar-30 Jun 1821, nom. cons.

Reaumuriaceae Ehrenb. ex Lindl., Intr. Nat. Syst. Bot.: 48. 27 Sep 1830
a1. Reaumurieae Horan., Char. Ess. Fam.: 198. 17 Jun 1847
a2. Tamariceae Rchb., Handb. Nat. Pfl.-Syst.: 240. 1-7 Oct 1837
77. CaRyophyllales Juss. ex Bercht. \& J. Pres1, Přir. Rostlin: 239. Jan-Apr 1820 Aizoales Boerl., Handl. Fl. Nederl. Ind. 1: li. 2 Aug 1890 Alsmales J. Presl, Nowočeská Bıbl. [Wšobecný Rostl.] 7: 125. 1846
Amaranthales R. Br. ex Bercht. \& J. Presl, Přtr. Rostlı: 240. Jan-Apr 1820
Atriplicales Horan., Char. Ess. Fam.: 63. 17 Jun 1847
Cactales Juss. ex Bercht. \& J. Pres1, Pr̆ır. Rostlin: 238. Jan-Apr 1820
Chenopodtales Juss. ex Bercht. \& J. Presl, Přrr. Rostlin: 240. Jan-Apr 1820
Illecebrales R. Br. ex Bercht. \& J. Presl, Přır. Rostlin: 239. Jan-Apr 1820
Mesembryanthemales Link, Handbuch 2: 12. 4-11 Jul 1829
Nyctaginales Juss. ex Bercht. \& J. Pres1, Přir. Rostlin: 241. Jan-Apr 1820
Opuntıales Willk., Anleit. Stud. Bot.: 2: 295. 19-20 Jan 1854
Paronychiales Link, Handbuch 2: 420. 4-11 Jul 1829
Petiveriales Link, Handbuch 1: 392. 4-11 Jul 1829
Physenales Takht., Divers. Classif. Fl. Pl.: 168. 24 Apr 1997
Phytolaccales Link, Handbuch 1: 390. 4-11 Jul 1829
Portulacales Juss. ex Bercht. \& J. Presl, Prir. Rostlin: 238. Jan-Apr 1820
Rhabdodendrales Doweld, Tent. Syst. Pl. Vasc.: xli. 23 Dec 2001
Rivinales Mart., Consp. Regn. Veg.: 16. Sep-Oct 1835
Scleranthales Link, Handbuch 2: 424. 4-11 Jul 1829
Silenales Lindl., Nix. Pl.: 14. 17 Sep 1833
Smmondstales Reveal, Novon 2: 239. 13 Oct 1992
Stellariales Dumort., Anal. Fam. Pl.: 44. 1829
Telephales Link, Handbuch 2: 45. 4-11 Jul 1829
77a. Rhabdodendrineae Shipunov in A. Shipunov \& J.L. Reveal, Phytotaxa 16: 64. 4 Feb 2011
357. Rhabdodendraceae Prance, Bull. Jard. Bot. Etat 38: 141. 30 Jun 1968

77b. Simmondsiineae Reveal, Kew Bull. 66: 48. Aug 2011
358. Simmondsiaceae Tiegh., Just's Bot. Jahresber: 25(2): 422. 19 Jan 1900
359. Asteropeiaceae Takht. ex Reveal \& Hoogland, Bull. Mus. Natl. Hist. Nat., ser. 4, sect. B Adansonta 12: 205. 24 Nov 1990
360. Physenaceae Takht., Bot. Zhurn. (Moscow \& Leningrad) 70: 1692. 13 Dec 1985
361. Microteaceae Schäferhoff \& Borsch, Willdenowia 39: 223. 4 Jan 2010

77c. Stegnospermatineae Nakai, J. Jap. Bot. 18: 108. 10 Mar 1942
362. Stegnospermataceae Nakai, J. Jap. Bot. 18: 108. 10 Mar 1942

77d. Caryophyllineae Bessey in C.K. Adams, Johnson's Unversal Cyclop. 8: 461. 15 Nov 1895
363. Caryophyllaceae Juss., Gen. Pl.: 299. 4 Aug 1789, nom. cons.

Alsinaceae Bartl. in F.G. Bartling \& H.L. Wendland, Beitr. Bot. 2: 159. Dec 1825, nom. cons.
Cerastiaceae Vest, Anleit. Stud. Bot.: 271, 292. 1818
Corrigiolaceae Dumort., Anal. Fam. Pl.: 44, 49. 1829
Dianthaceae Vest, Anleit. Stud. Bot.: 271, 293. 1818
Herniariaceae Martinov, Tekhno-Bot. Slovar: 307. 3 Aug 1820
Illecebraceae R. Br., Prodr.: 413. 27 Mar 1810, nom. cons.
Lychnidaceae Döll, Rhem. Fl.: 638. 24-27 Mai 1843
Minuarttaceae Mart., Consp. Regn. Veg.: 49. Sep-Oct 1835
Ortegaceae Martinov, Tekhno-Bot. Slovar: 443. 3 Aug 1820
Paronychiaceae Juss., Mém. Mus. Hist. Nat. 2: 386. 1815
Polycarpaeaceae Mart., Consp. Regn. Veg.: 49. Sep-Oct 1835
Sabulinaceae Döll, Rhein. Fl.: 623. 24-27 Mai 1843
Saginaceae Bercht. \& J. Pres1, Přır. Rostlin: 239. Jan-Apr 1820
Scleranthaceae J. Pres1 \& C. Pres1, Dehtc. Prag.: 66. Jul 1822
Silenaceae Bartl. in F.G. Bartling \& H.L. Wendland, Beitr. Bot. 2: 160. Dee 1825
Spergulaceae Bartl. in F.G. Bartling \& H.L. Wendland, Beitr. Bot. 2: 158. Dec 1825
Stellariaceae Bercht. \& J. Presl, Přir. Rostlin: 239. Jan-Apr 1820
a. Illecebroideae Arn., Botany: 112. 9 Mar 1832
a1. Corrigioleae Dumort., Fl. Belg.: 86. 1827
a2. Paronychieae Dumort., Fl. Belg.: 86. 1827
a3. Polycar paeae DC., Prodr. 3: 373. medio Mar 1828
a4. Sperguleae Dumort., Anal. Fam. Pl.: 49. 1829
b. Caryophylloideae Arn., Botany: 99.9 Mar 1832
b1. Sileneae DC., Prodr. 1: 351. medio Jan 1824
b2. Caryophylleae Lam. \& DC., Syn. Pl. F7. Gall.: 386. 30 Jun 1806
c. Alsinoideae Beilschm., Flora 16(Beibl. 7): 92, 110. 14 Jun 1833
cl. Eremogoneae Rabeler \& W.L. Wagner in D.T. Harbaugh et al., Int. J. Pl. Sci. 171: 196. 14 Jan 2010
c2. Arenarieae Kitt., Taschenb. F7. Deutsch1., ed. 2, 2: 981.1844
c3. Alsineae Lam. \& DC., Syn. Pl. Fl. Gall.: 392. 30 Jun 1806
c4. Sagineae J. Presl, Nowočeská Bibl. [Wšobecný Rostl.] 7: 1609, 1621. 1846
c5. Sclerantheae Link ex DC., Prodr. 3: 377. medio Mar 1828
77e. Chenopodiineae J. Pres1, Nowočeská Bıbl. [Wšobecný Rostl.] 7: 1272, 1274. 1846
364. Achatocarpaceae Heimerl in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 16c: 174. Jan-Apr 1934, nom. cons.
365. Chenopodiaceae Vent., Tabl. Règne Vég. 2: 253. 5 Mai 1799, nom. cons.

Atriplicaceae Juss., Gen. Pl.: 83. 4 Aug 1789
Betaceae Burnett, Outlines Bot.: 591, 1091, 1142. Feb 1835
Blitaceae Kuntze in T.E. von Post \& C.E.O. Kuntze, Lex. Gen. Phan.: 637, 710. 20-30 Nov 1903
Dysphaniaceae Pax, Bot. Jahrb. Syst. 61: 230. 15 Jun 1927, nom. cons.
Salicorntaceae Martinov, Tekhno-Bot. Slovar: 558. 3 Aug 1820
Salsolaceae Menge, Cat. Pl. Grudent. Gedan.: 165. 1839
Spinaciaceae Menge, Cat. Pl. Grudent. Gedan.: 166. 1839
a. Betoideae Ulbr. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 16c: 455. 28 Apr 1934
b. Chenopodioideae Burnett, Outlines Bot.: 591, 1091, 1142. Feb 1835
b1. Axyrideae G. Kadereit \& A. Sukhor in G Kadereit et al., Amer. J. Bot. 97: 1682. Oct 2010
b2. Chenopodieae Dumort., Anal. Fam. Pl.: 17. 1829
b3. Dysphanieae Pax in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 1b: 69, 92. Mai 1889
b4. Atripliceae Duby, Bot. Gall. 1: 394. 12-14 Apr 1828
b5. Sclerolaeneae AJ. Scott, Feddes Repert. 89: 109. 9 Jun 1978
c. Salicornioideae Luerss., Handb. Syst. Bot. 2: 547. Nov 1880
c1. Halopeplideae Ulbr. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 16c: 444, 543. Jan-Apr 1934
c2. Salicornieae Dumort., F7. Belg.: 23. 1827
d. Corispermoideae Raf., Fl. Tellur. 3: 45. Nov-Dec 1837
e. Salsoloideae Raf., Fl. Tellur. 3: 45. Nov-Dec 1837
e1. Suaedeae Moq., Ann. Sci. Nat. Bot., sér. 2, 4: 215. Oct 1835
e2. Salsoleae Dumort., Fl. Belg.: 22. 1827
366. Amaranthaceae Juss., Gen. Pl.: 87. 4 Aug 1789, nom. cons. Achyranthaceae Raf., Fl. Tellur. 3: 35. Nov-Dec 1837
Celosiaceae Martinov, Tekhno-Bot. Slovar: 117. 3 Aug 1820
Deeringiaceae J. Agardh, Theoria Syst. Pl.: 369. Apr-Sep 1858
Gomphrenaceae Raf., Fl. Tellur. 3: 38. Nov-Dec 1837
Polycnemaceae Menge, Cat. Pl. Grudent. Gedan.: 161. 1839
a. Polycnemoideae Raf., Fl. Tellur. 3: 44. Nov-Dec 1837
b. Gomphogynoideae Luerss., Handb. Syst. Bot. 2: 1080. Nov 1882
b1. Pseudoplantageae Covas, Revista Argent. Agron. 6: 291. Dec 1939
b2. Gomphreneae Fenzl in S.F.L. Endlicher, Gen. Pl.: 301. Oct 1837
c. Amaranthoideae Burnett, Outlines Bot.: 591, 593, 1091, 1142. Feb 1835
c1. Celosieae Fenzl in S.F.L. Endlicher, Gen. Pl.: 303. Oct 1837
c2. Amarantheae Rchb., Fl. Germ. Excurs. 2(2): 575, 583. 1832
77f. Nyctaginineae Nakai, J. Jap. Bot. 18: 98. 10 Mar 1942
367. Limeaceae Shipunov ex Reveal, Bot. Rev. (Lancaster) 71: 128. 20 Mai 2005
368. Lophiocarpaceae Doweld \& Reveal, Phytologia 90: 416. 1 Dec 2008
369. Barbeuiaceae Nakai, J. Jap. Bot. 18: 105. 10 Mar 1942
370. Aizoaceae Martinov, Tekhno-Bot. Slovar: 15. 3 Aug 1820, nom. cons.

Galeniaceae Raf., Amer. J. Sci. 1: 376. Mai-Dec 1819
Mesembryaceae Dumort., Anal. Fam. Pl.: 37, 41. 1829
Mesembryanthemaceae Philib., Intr. Bot., ed. 2, 3: 268. 20 Dec 1801, nom. cons.
Sesuviaceae Horan., Prmm. Lin. Syst. Nat.: 83. 2 Nov 1834
Tetragontaceae Lindl., Nat. Syst. Bot., ed. 2: 209. 13 Jun 1836, nom. cons.
a. Tetragonioideae Lindl., Veg. Kingd.: 527. 14-28 Mar 1846
b. Aizooideae Spreng. ex Arn., Botany: 112. 9 Mar 1832
c. Mesembryanthemoideae Burnett, Outlmes Bot.: 736, 1092, 1131. Feb 1835
d. Ruschioideae Schwantes in H.D. Ihlenfeldt, G. Schwantes \& H. Straka, Taxon 11: 54. 28 Feb 1962
d1. Apatesieae Schwantes in H.D. Ihlenfeldt, G. Schwantes \& H. Straka, Taxon 11: 55. 28 Feb 1962
d2. Dorotheantheae Chesselet, G.F. Sm. \& AE. van Wyk, Taxon 51:306. 12 Jun 2002
d3. Ruschieae Schwantes in H.D. Ihlenfeldt, G. Schwantes \& H. Straka, Taxon 11: 54. 28 Feb 1962
371. Gisekiaceae Nakai, J. Jap. Bot. 18: 102. 10 Mar 1942
372. Sarcobataceae Behnke, Taxon 46: 503. 15 Aug 1997
373. Agdestidaceae Nakai, J. Jap. Bot. 18: 104. 10 Mar 1942
374. Nyctaginaceae Juss., Gen. Pl.: 90.4 Aug 1789, nom. cons.

Allioniaceae Horan., Prim. Lin. Syst. Nat.: 68. 2 Nov 1834
Bouganvilleaceae J. Agardh, Theoria Syst. Pl.: 364. Apr-Sep 1858
Mirabilidaceae W.R.B. Oliv., Trans. Roy. Soc. New Zealand 66: 294. 1936
Pisoniaceae J. Agardh, Theoria Syst. Pl.: 363. Apr-Sep 1858
a1. Leucastereae Benth. \& Hook.f., Gen. Pl. 3: 3. 7 Apr 1880
a2. Boldoeae Heimerl in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 1b: 21, 31. Apr 1889
a3. Colignonieae Heimerl, Bettr. Syst. Nyctag.: 15. Mai-Jul 1897
a4. Bougainvilleeae Choisy in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 13(2): 427, 436. 5 Mai 1849
a5. Pisonieae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 318, Comm. 230. 18-24 Jul 1841
a6. Nyctagineae Horan., Char. Ess. Fam.: 106. 17 Jun 1847
a7. Caribeeae Douglas \& Spellenb., Faxon 59: 909. Jun 2010
375. Phytolaccaceae R. Br. in J.H. Tuckey, Narr. Exped. Zaire: 454. 5 Mar 1818, nom. cons.
Sarcocaceae Raf., Fl. Tellur. 3: 55. Nov-Dec 1837
376. Petiveriaceae C. Agardh, Aphor. Bot.: 221. 13 Jun 1824

Hilleriaceae Nakai, J. Jap. Bot. 18: 99. 10 Mar 1942
Rivinaceae C. Agardh, Aphor. Bot.: 218. 13 Jun 1824
Segutertaceae Nakai, J. Jap. Bot. 18: 99. 10 Mar 1942
77 g . Portulacineae Eng1., Syllabus, ed. 2: 113. Mai 1898
377. Molluginaceae Bartl. in F.G Bartling \& H.L. Wendland, Bettr. Bot. 2: 158. Dec 1825, nom. cons.
Adenogrammaceae Nakai, J. Jap. Bot. 18: 101. 10 Mar 1942
Glinaceae Mart., Consp. Regn. Veg.: 64. Sep-Oct 1835
Pharnaceaceae Martinov, Tekhno-Bot. Slovar: 477. 3 Aug 1820
Polpodaceae Nakai, J. Jap. Bot. 18: 102. 10 Mar 1942
Telephaceae Martinov, Tekhno-Bot. Slovar: 633.3 Aug 1820
378. Montiaceae Raf., Ann. Gén. Sci. Phys. Bruxelles 5: 349. Jul-Sep 1820 Hectorellaceae Philipson \& Skipw., Trans. Roy. Soc. New Zealand, Bot. 1:31. 20 Sep 1961
379. Halophytaceae A. Soriano, Bol. Soc. Argent. Bot. 23: 161. 29 Aug 1984
380. Basellaceae Raf., Fl. Tellur. 3: 44. Nov-Dec 1837, nom. cons.

Anrederaceae J. Agardh, Theoria Syst. Pl.: 357. Apr-Sep 1858
Ullucaceae Nakai, J. Jap. Bot. 18: 109. 10 Mar 1942
381. Didiereaceae Radlk. in H.G.A. Engler \& K. A.E. Prantl, Nat. Pflanzenfam. III, 5: 462.

23 Apr 1896, nom. cons.
Portulacartaceae Doweld, Tent. Syst. Pl. Vasc.: xlii. 23 Dec 2001
a. Didiereoideae Appleq. \& R.S. Wallace, Adansonia 25: 15. 8 Jul 2003
b. Portulacarioideae Appleq. \& R.S. Wallace, Adansonia 25: 15.8 Jul 2003
c. Calyptrothecoideae Pax \& Gilg in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr.: 177, 178. 2 Aug 1897
382. Talinaceae Doweld, Tent. Syst. Pl. Vasc.: xlii. 23 Dec 2001
383. Portulacaceae Juss., Gen. Pl.: 312. 4 Aug 1789, nom. cons.
384. Anacampserotaceae Eggli \& Nyffeler, Taxon 59: 232. 5 Feb 2010
385. Cactaceae Juss., Gen. Pl.: 310. 4 Aug 1789, nom. cons.

Cereaceae DC. \& Spreng. [transl. Jameson], Elem. Philos. Pl.: 142. Jul 1821

Nopaleaceae Schmid \& Curtman, Pflanzenr. 2: 135. 10-11 Jun 1856 Opuntiaceae Desv. in S. Gérardin de Mirecourt \& N.A. Desvaux, Dict. Rais. Bot.: 52, 385. 12-19 Apr 1817
a. Pereskioideae Engelm. in W.H. Brewer et al., Bot. Californta 1: 243. 1876
b. Opuntioideae Burnett, Outlines Bot.: 742, 1130. Feb 1835
b1. Austrocylindropuntieae R.S. Wallace \& S.L. Dickie, Succ. Pl. Res. 6: 20. 2002
b2. Cylindropuntieae Doweld, Sukkulenty 1(2): 25. 25 Jul 1999
b3. Opuntieae DC., Prodr. 3: 458. medio Mar 1828
b4. Pterocacteae Kuntze in T.E. von Post \& C.E.O. Kuntze, Lex. Gen. Phan.: 672. 2030 Nov 1903
b5. Tephrocacteae Doweld, Sukkulenty 1(2): 26. 25 Jul 1999
c. Maihuenioideae P. Fearn, Rev. Orig. Cactus Fam.: unpaged. [53]. 10 Mar 1996
d. Blossfeldioideae Crozier, Phytologia 86: 55. 24 Sep 2004
d1. Blossfeldieae Crozier, Phytologia 86: 55. 24 Sep 2004
d2. Copiapoeae Doweld, Sukkulenty 4(1-2): 47. 15 Sep 2001
e. Cactoideae Eaton, Bot. Dict., ed. 4: 43. Apr-Mai 1836
e1. Browningieae Buxb., Kakteen Leff. 33: CIV/1. 1 Jul 1966
e2. Cereeae Salm-Dyck, Allg. Gartenzeitung 8: 58.22 Feb 1840
e3. Trichocereeae Buxb., Madroño 14: 189. 2 May 1958
e4. Notocacteae Buxb., Madroño 14: 191. 2 May 1958
e5. Rhipsalideae DC., Prodr. 3: 475. medio Mar 1828
e6. Lymanbensonieae N. Korotkova \& Barthlott, Willdenowia 40: 166.9 Dec 2010
e7. Hylocereeae Buxb., Madroño 14: 179. 2 May 1958
e8. Pachycereeae Buxb., Madroño 14: 186. 2 May 1958
e9. Cacteae Rchb., Fl. Germ. Excurs. 2(2): 561. 1832
R. Cornanae Thorne ex Reveal, Phytologia 79: 71. 29 Apr 1996

Loasanae R. Dahlgren ex Reveal, Phytologia 79: 71. 29 Apr 1996
78. Corvales Link, Handbuch 2: 2. 4-11 Jul 1829

Alangiales Mart., Consp. Regn. Veg.: 47. Sep-Oct 1835
Grubbiales Doweld, Tent. Syst. Pl. Vasc.: li. 23 Dec 2001
Hydrangeales Mart., Consp. Regn. Veg.: 63. Sep-Oct 1835
Hydrostachyales Diels ex Reveal, Phytologia 74: 174. 25 Mar 1993
Hortensiales J. Presl, Nowočeská Bibl. [Wšobecný Rostl.] 7: 690. 1846
Loasales Juss. ex Bercht. \& J. Presl, Přir. Rostlin: 232. Jan-Apr 1820
Nyssales Mart., Consp. Regn. Veg.: 15. Sep-Oct 1835
Philadelphales Link, Handbuch 2: 70. 4-11 Jul 1829
386. Cornaceae Bercht. \& J. Pres1, Přır. Rostlın 2(23*): 91, 92.1825 , nom. cons. Alangtaceae DC., Prodr. 3: 203. med. Mar 1828, nom. cons. Davidiaceae H.L. Li, Lloydia 17: 330. 18 Mar 1955 Mastxxiaceae Calest., Webbia 1:94. 10 Mai 1905 Nyssaceae Juss. ex Dumort., Anal. Fam. Pl.: 13. 1829, nom. cons.
a. Alangioideae Burnett, Outlines Bot.: 723, 1092, 1134. Feb 1835
b. Cornoideae Endl., Gen. Pl. Suppl. 5: 17. 1850
c. Davidioideae Harms in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 8: 255. 1897
d. Nyssoideae Arn., Botany: 128. 9 Mar 1832
e. Mastixioideae Harms, Ber. Deutsch. Bot. Ges. 15: 28. 25 Feb 1897
387. Hydrangeaceae Dumort., Anal. Fam. Pl.: 36, 38. 1829, nom. cons. Hortensiaceae Martinov, Tekhno-Bot. Slovar: 315. 3 Aug 1820 Kirengeshomaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov]]: 245. 20 Jul 1943

Philadelphaceae Martinov, Tekhno-Bot. Slovar: 478. 3 Aug 1820
a. Jamesioideae L. Hufford, Int. J. Pl. Sci. 162: 844. 18 Jun 2001
b. Hydrangeoideae Burnett, Outlines Bot.: 732, 1092, 1135. Feb 1835
b1. Philadelpheae DC. ex Duby, Bot. Gall. 1: 184. 12-14 Apr 1828
bla. Philadelphinae Reveal, Phytoneuron 2012-37: 218. 23 Apr 2012
b1b. Kirengeshominae Reveal, Phytoneuron 2012-37: 217. 23 Apr 2012
b2. Hydrangeeae DC., Prodr. 4: 13. late Sep 1830
388. Loasaceae Juss., Ann. Mus. Natl. Hist. Nat. 5: 21. 1804, nom. cons.

Cevalliaceae Griseb., Grundr. Syst. Bot.: 136. 1-2 Jun 1854
Gronovaaceae A Juss. in V.V.D. d'Orbigny, Dict. Univ. Hist. Nat. 6: 340.1845
a. Mentzelioideae Gilg in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 6а: 107. 27 Feb 1894
b. Petalonychoideae Weigend, Taxon 55: 467. 22 Jun 2006
c. Gronovioideae M. Roem., Fam. Nat. Syn. Monogr. 2: 6. Dec 1846
d. Loasoideae Gilg in H.G.A. Engler \& K.AE. Prantl, Nat. Pflanzenfam. III, 6a: 107. 27 Feb 1894
d1. Loaseae Rchb., Handb. Nat. Pfl.-Syst.: 232. 1-7 Oct 1837
d2. Klaprothieae Gilg in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 6a: 107, 112. 27 Feb 1894
389. Hydrostachyaceae Engl., Bot. Jahrb. Syst. 20: 136. 16 Nov 1894, nom. cons.
390. Grubbiaceae Endl. ex Meisn., Pl. Vasc. Gen.: Tab Diagn. 323, Comm. 239. 18-24 Jul 1841, nom. cons.
Ophiraceae Arn., J. Bot. (Hooker) 3: 266. Feb 1841
391. Curtisiaceae Takht., Sist. Magnolhof. [Syst. Magnoltoph.]: 214. 24 Jun 1987
S. Ericanae Takht., Sist. Filog. Cvetk. Rast.: 221. 4 Feb 1967

Balsammanae Doweld, Tent. Syst. Pl. Vasc.: xliv. 23 Dec 2001
Dtapenstanae Doweld, Tent. Syst. Pl. Vasc.: xlv. 23 Dec 2001
Lecythidanae Takht. ex Reveal, Novon 2: 236. 13 Oct 1992
Primulanae R. Dahlgren ex Reveal, Phytologia 79: 71. 29 Apr 1996
Sarracenianae Thorne ex Reveal, Phytologia 79: 71. 29 Apr 1996
Theanae R. Dahlgren ex Reveal, Phytologia 74: 179. 25 Mar 1993
79. Ericales Bercht. \& J. Presl, Přir. Rostlin: 251. Jan-Apr 1820

Actinidiales Takht. ex Reveal, Phytologıa 74: 174. 25 Mar 1993
Aegiceratales Mart., Consp. Regn. Veg.: 25. Sep-Oct 1835
Ardisiales J. Presl, Nowočeská Bibl. [W šobecný Rostl.] 7: 1025. 1846
Balsammales Link, Handbuch 2: 325. 4-11 Jul 1829
Barrmgtonales Mart., Consp. Regn. Veg.: 65. Sep-Oct 1835
Camellales Link, Handbuch 2: 346. 4-11 Jul 1829
Cyrillales Doweld, Tent. Syst. Pl. Vasc.: xliv. 23 Dec 2001
Diapensiales Engl. \& Gilg, Syllabus, ed. 9-10:314. Nov-Dec. 1924
Diospyrales Prantl, Lehrb. Bot.: 216. 20 Apr 1874
Ebenales Engl., Syllabus, ed. 1: 155. Apr 1892
Empetrales Mart., Consp. Regn. Veg.: 55. Sep-Oct 1835
Epacridales R. Br. ex Bercht. \& J. Presl, Přir. Rostlin: 251. Jan-Apr 1820
Fouquieriales Mart., Consp. Regn. Veg.: 50. Sep-Oct 1835
Gordoniales J. Presl, Nowočeská Bibl. [Wšobecný Rostl.] 7: 180. 1846
Halesiales Link, Handbuch 1: 667. 4-11 Jul 1829
Lecythtdales Mart., Consp. Regn. Veg.: 65. Sep-Oct 1835
Lysimachiales Döll, Rhein. Fl.: 385. 24-27 Mai 1843
Marcgraviales Mart., Consp. Regn. Veg.: 61. Sep-Oct 1835
Mitrastemonales Makino, Bot. Mag. (Tokyo) 25: 252. Dec 1911

Monotropales Bercht. \& J. Presl, Přır. Rostlın: 252. Jan-Apr 1820
Myrsinales R. Br. ex Bercht. \& J. Presl, Přir. Rostlin: 251. Jan-Apr 1820
Polemoniales Juss. ex Bercht. \& J. Pres 1, Přtr. Rostltn: 248. Jan-Apr 1820
Primulales Juss. ex Bercht. \& J. Presl, Přir. Rostlın: 241. Jan-Apr 1820
Rhodorales Horan., Char. Ess. Fam.: 105. 17 Jun 1847
Roridulales Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov.]: 241. 20 Jul 1943
Samolales Dumort., Anal. Fam. Pl.: 29. 1829
Sapotales Juss. ex Bercht. \& J. Presl, Přtr. Rostltn: 250. Jan-Apr 1820
Sarraceniales Mart., Consp. Regn. Veg.: 61. Sep-Oct 1835
Styracales Mart., Consp. Regn. Veg.: 26. Sep-Oct 1835
Ternstroemiales Mart., Consp. Regn. Veg.: 52. Sep-Oct 1835
Theales Bercht. \& J. Presl, Přtr. Rostlin: 219. Jan-Apr 1820
Vacciniales Dumort., Anal. Fam. Pl.: 28. 1829
79a. Balsaminineae Engl., Syllabus, ed. 2: 146. Mai 1898
392. Balsaminaceae A. Rich. in J.B.G.M. Bory de Saint-Vincent, Dict. Class. Hist. Nat. 2: 173. 31 Dec 1822 , nom. cons.

Hydroceraceae Wilbr., Nat. Pflanzenfam.: 26. Jun-Dec 1834
Impatientaceae Lem., Ill. Hort. 1: ad t. 9. Mar 1854
393. Marcgraviaceae Bercht. \& J. Pres1, Přir. Rostlin: 218. Jan-Apr 1820, nom. cons. Noranteaceae DC. ex Mart., Consp. Regn. Veg.: 61. Sep-Oct 1835
a. Marcgravioideae Choisy in A.P. de Candolle, Prodr. 1: 565. medio Jan 1824
b. Norantioideae Choisy in A.P. de Candolle, Prodr. 1: 566. medio Jan 1824
394. Tetrameristaceae Hutch., Fam. Fl. Pl., ed. 2: 277. 4 Jun 1959

Pellicteraceae Bullock, Taxon 8: 192. 24 Jul 1959
79b. Polemoniineae Bessey in C.K. Adams, Johnson's Universal Cyclop. 8: 463 . 15 Nov 1895
395. Polemoniaceae Juss., Gen. Pl.: 136. 4 Aug 1789, nom. cons.

Cobaeaceae D. Don, Edinburgh Philos. J. 10: 111. Jan 1824
a. Polemonioideae Arn., Botany: 121. 9 Mar 1832
a1. Polemonieae Dumort., Anal. Fam. Pl.: 25. 1829
a2. Phlocideae Dumort., Anal. Fam. Pl.: 25.1829
a3. Gilieae V.E. Grant, Nat. Hist. Phlox Fam.: 120. 1959
a4. Loeselieae J.M. Porter \& L.A. Johnson, Aliso 17: 84. 8 Jun 1998
b. Cobaeoideae Arn., Botany: 121. 9 Mar 1832
b1. Cobaeeae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 273, Comm. 180. 5-11 Apr 1840
b2. Cantueae Peter in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 3a: 44, 45. Dec 1891
b3. Bonplandieae Baill., Hist. Pl. 10: 338, 342. Jul-Aug 1890
c. Acanthogilioideae J.M. Porter \& L.A. Johnson, Aliso 19: 60. 28 Jul 2000
396. Fouquieriaceae DC., Prodr. 3: 349. med. Mar 1828, nom. cons.

79c. Scytopetalineae Engl., Syllabus, ed. 2: 150. Mai 1898
397. Napoleonaeaceae A. Rich. in J.B.G.M. Bory de Saint-Vincent, Dict. Class. Hist. Nat. 11: 432. 10 Feb 1827
398. Scytopetalaceae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr: : 242. 4 Oct 1897 , nom. cons.
399. Lecythidaceae A. Rich. in J.B.G.M. Bory de Saint-Vincent, Dict. Class. Hist. Nat. 9: 269. 25 Feb 1825 , nom. cons.

Asteranthaceae R. Knuth in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenr. IV, $219 b$ (105): 1. 22 Aug 1939, nom. cons.
Barringtontaceae F. Rudolphi, Syst. Orb. Veg.: 56. 5-12 Jul 1830, nom. cons.
Foetidiaceae Airy Shaw, Kew Bull. 18: 258. 8 Dec 1965

Gustaviaceae Burnett, Outlines Bot.: 717, 1092, 1135. Feb 1835
Rhaptopetalaceae Tiegh. in C.K. Schneider, Bot. Jahresber. (Just) 33(2): 564. 1907
a. Asteranthoideae Reveal, Phytoneuron 2012-33: 1. 9 Apr 2012
b. Barringtonioideae Beilschm., Flora 16(Beibl.7): 98, 104. 14 Jun 1833
c. Lecythidoideae Beilschm., Flora 16(Beibl. 7): 98, 108. 14 Jun 1833

79d. Primulineae Burnett, Outlines Bot.: 901, 1101. Feb 1835
400. Sladeniaceae Airy Shaw, Kew Bull. 18:267. 8 Dec 1965
401. Pentaphylacaceae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam.

Nachtr:: 214. 4 Oct 1897, nom. cons.
Ternstroemaceae Mirb. ex DC., Essal Propr. Méd. Pl., ed. 2: 203. 11 Mai 1816
a1. Pentaphylaceae P.F. Stevens \& A.L. Weitzman in K. Kubitzki (ed.), Fam. \& Gen.
Vasc. Pl. 6: 455. 2004
a2. Ternstroemieae DC., Prodr. 1: 523. medio Jan 1824
a3. Freziereae DC., Prodr. 1: 524. medio Jan 1824
402. Sapotaceae Juss., Gen. Pl.: 151. 4 Aug 1789, nom. cons.

Achradaceae Vest, Anleit. Stud. Bot.: 273, 299. 1818
Boerlagellaceae H.J. Lam, Bull. Jard. Bot. Buitenzorg, ser. 3, 7: 250. Feb 1925 Bumeliaceae Barnhart, Bull. Torrey Bot. Club 22: 21. 15 Jan 1895 Sarcospermataceae H.J. Lam, Bull. Jard. Bot. Buitenzorg, ser. 3, 7: 248. Feb 1925 1925, nom. cons.
a. Sarcospermatoideae Swenson \& Anderb., Cladistics 21: 120. Apr 2005
b. Sapotoideae Eaton, Bot. Dict., ed. 4: 35. Apr-Mai 1836
bl. Sapoteae Rchb., Handb. Nat. Pff.-Syst.: 214. 1-7 Oct 1837
b2. Palaquieae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 1: 131. Jun 1890
b3. Sideroxyleae Small, Man. S.E. F7.: 1031. 30 Nov 1933
c. Chrysophylloideae Luerss., Handb. Syst. Bot. 2: 946. Jul 1882
c1. Chrysophylleae Small, Man. S.E. Fl.: 1031. 30 Nov 1933
c2. Omphalocarpeae Duband ex Aubrév., Adansonia, sér. 2, 4:38. 8 Apr 1964
403. Ebenaceae Gürke in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 1: 153. Dec 1892, nom. cons.
Diospyraceae Vest, Anleit. Stud. Bot:: 271, 294. 1818 Lissocarpaceae Gilg in H.G.A. Engler \& E.F. Gilg, Syllabus, ed. 9-10: 324. 6 Nov 1924, nom. cons.
a. Lissocarpoideae B. Walln., Ann. Naturhtst. Mus. Wten, ser. B, 105: 523. 22 Apr 2004
b. Ebenoideae Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 121. 29 Jun 2007
404. Maesaceae Anderb., B. Ståhl \& Källersjö, Taxon 49: 185. 16 Mai 2000
405. Theophrastaceae G. Don, Edwards's Bot. Reg. 21: ad t. 1764. 1 Jun 1835, nom. cons.
406. Myrsinaceae R. Br., Prodr.: 532. 27 Mar 1810, nom. cons.

Aegicerataceae Blume, Nov. Pl. Expos.: 17. Aug-Dec 1833
Ardisiaceae Juss., Ann. Mus. Natl. Hist. Nat. 15: 350. 1810
Embeliaceae J. Agardh, Theorra Syst. Pl.: 140. Apr-Sep 1858
407. Samolaceae Raf., Ann. Gén. Sci. Phys. Bruxelles 5: 349. Jul-Sep 1820
408. Primulaceae Batsch ex Borkh., Bot. Wörterb. 2: 240. 1797, nom. cons.

Hottontaceae Döll, Fl. Baden 2: 641. med. 1858
a1. Primuleae Dumort., Fl. Belg.: 30. 1827
a2. Androsaceeae Rchb. ex Pax in H.G.A. Engler, Nat. Pflanzenr. 22: 16, 17. 14 Nov 1905
a3. Ardisiandreae O. Schwarz, Feddes Repert 67: 35. 1963
409. Lysimachiaceae Juss., Gen. Pl.: 95. 4 Aug 1789

Anagallidaceae Batsch ex Borkh., Bot. Wörterb. 1: 19. 1797

Coridaceae J. Agardh, Theorta Syst. Pl.: 332. Apr-Sep 1858
a1. Lysimachieae Rchb., Handb. Nat. Pfl.-Syst.: 204 ["191"]. 1-7 Oct 1837
a2. Corideae Dumort., Anal. Fam. Pl.: 27. 1829
79e. Theineae Engl., Syllabus, ed. 2: 150. Mai 1898
410. Mitrastemonaceae Makino, Bot. Mag. (Tokyo) 25: 252. Dec 1911, nom. cons.
411. Theaceae Mirb. ex Ker Gawl., Bot. Reg. 2: ad t. 112. 1 Mai 1816, nom. cons.

Camelliaceae DC., Essail Propr. Méd. Pl., ed. 2: 97. 11 Mai 1816
Gordontaceae Spreng., Syst. Veg. 3: 12. Jan-Mar 1826
a 1. Theeae Szyszyl. in H.G.A. Engler \& K.AE. Prantl, Nat. Pflanzenfam. III, 6: 180, 181. Mai 1893
a2. Gordonieae DC., Prodr. 1: 527. medio Jan 1824
a3. Stewartieae Choisy in D.F.L. von Schlechtendal, Bot. Zeitung 31: 773. 31 Oct 1856
412. Symplocaceae Desf., Mém. Mus. Hist. Nat. 6: 9. 1820, nom. cons.
413. Styracaceae DC. \& Spreng. [transl. Jameson], Elem. Phllos. Pl.: 140. Jul 1821, nom. cons.
Alniphyllaceae Hayata in J. Matsumura \& B. Hayata, J. Coll. Sci. Unvv. Tokyo 22: 234. 25 Sep 1906

Halestaceae D. Don, Edinburgh New Phtlos. J. 6: 49. Oct-Dec 1828
414. Diapensiaceae Lindl., Nat. Syst. Bot., ed. 2: 233. 13 Jun 1836, nom. cons.

Galacinaceae D. Don, Edinburgh New Philos. J. 6: 53. Oct-Dec 1828
79f. Sarraceniineae Reveal, Kew Bull. 66: 48. Aug 2011
415. Sarraceniaceae Dumort., Anal. Fam. Pl.: 53. 1829, nom. cons.

Heltamphoraceae Chrtek, Slaviková \& Studnička, Preshta 64: 8. 10 Feb 1992
416. Actinidiaceae Engl. \& Gilg, Syllabus, ed. 9-10: 279. 6 Nov 1924, nom. cons. Sauraulaceae Griseb., Grundr. Syst. Bot.: 98. 1-2 Jun 1854, nom. cons.
a. Actinidioideae Gilg in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 6: 110. Mar 1893
b. Saurauioideae Gilg in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 6: 110. Mar 1893
c. Clematoclethroideae Gilg in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr: 44. Jul 1897
417. Roridulaceae Martinov, Tekhno-Bot. Slovar: 549. 3 Aug 1820, nom. cons.

79g. Ericineae Link, Handbuch 1: 601. 4-11 Jul 1829
418. Clethraceae Klotzsch, Linnaea 24: 12. Mai 1851, nom. cons.
419. Cyrillaceae Lindl., Veg. Kingd.: 445. 14-28 Mar 1846, nom. cons.
420. Ericaceae Juss., Gen. Pl.: 159. 4 Aug 1789, nom. cons.

Andromedaceae Döll, Rhein. Fl.: 428. 24-27 Mai 1843
Arbutaceae Bromhead, Mag. Nat. Hist., n.s., 4: 337, 338. Jul 1840
Arctostaphylaceae J. Agardh, Theoria Syst. Pl.: 106. Apr-Sep 1858
Azaleaceae Vest, Anleit. Stud. Bot.: 272, 294. 1818
Diplarchaceae Klotzsch, Allgem. Deutsch. Nat. Hist. Zett. 3: 230. 1857
Empetraceae Hook. \& Lindl. in W.J. Hooker, Fl. Scot.: 297. 10 Mai 1821, nom. cons.
Epacridaceae R. Br., Prodr.: 535. 27 Mar 1810, nom. cons.
Hypopityaceae Klotzsch, Linnaea 24: 11. Mai 1851
Ledaceae J.F. Gmel., Allg. Gesch. Pflanzengifte, ed. 2: 404. Jun 1803
Menziesiaceae Klotzsch, Linnaea 24: 11. Mai 1851
Monotropaceae Nutt., Gen. N. Amer. Pl. 1: 272. 14 Jul 1818, nom. cons.
Oxycoccaceae A. Kern., Pflanzenleben 2: 713, 714. 8 Aug 1891
Prionotaceae Hutch., Evol. Phylog. Fl. Pl.: 306. 28 Aug 1969

Pyrolaceae Lindl., Syn. Brit. Fl.: 175. 16 Mar 1829, nom. cons.
Rhododendraceae Juss., Gen. Pl.: 158. 4 Aug 1789
Rhodoraceae Vent., Tabl. Règne Vég. 2: 449. 5 Mai 1799
Salaxtdaceae J. Agardh, Theoria Syst. Pl.: 104. Apr-Sep 1858
Stypheliaceae Horan., Prim. Lin. Syst. Nat.: 72. 2 Nov 1834
Vaccintaceae DC. ex Perleb, Vers. Arznetkr. Pfl.: 228. Mai 1818, nom. cons.
a. Enkianthoideae Kron, Judd \& Anderb. in K.A. Kron et al., Bot. Rev. (Lancaster) 68: 401. 23 Oct 2002
b. Monotropoideae Arn., Botany: 118.9 Mar 1832
b1. Pyroleae Dumort., Anal. Fam. Pl.: 47. 1829
b2. Monotropeae Dumort., Anal. Fam. Pl.: 47. 1829
b3. Pterosporeae Baill., Hist. Pl. 11: 161, 206. Jun-Jul 1891
c. Arbutoideae Nied., Bot. Jahrb. Syst. 11: 135. 18 Jun 1899
d. Cassiopoideae Kron \& Judd in K.A. Kron et al., Bot. Rev. (Lancaster) 68: 404. 23 Oct 2002
e. Harrimanelloideae Kron \& Judd in K.A. Kron et al., Bot. Rev. (Lancaster) 68: 409. 23 Oct 2002
f. Ericoideae Arn., Botany: 118. 19 Mar 1832
f1. Phyllodoceae Drude in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 1:31, 38. Oct 1889
f2. Bryantheae Gillespie \& Kron, Brittonia 64: 75. Mar 2012
f3. Ericeae DC. ex Duby, Bot. Gall. 1: 316. 12-14 Apr 1828
f4. Empetreae Horan., Char. Ess. Fam.: 109. 17 Jun 1847
f5. Rhodoreae DC. ex Duby, Bot. Gall. 1: 318. 12-14 Apr 1828
g. Empetroideae Sweet, Hort. Brit.: 491. Sep-Oct 1826
h. Epacridoideae Arn., Botany: 118. 9 Mar 1832
h1. Prionoteae Drude in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 1: 72. Dec 1889
h2. Archerieae Crayn \& Quinn, Austral. Syst. Bot. 11: 23. 31 Mar 1998
h3. Oligarrheneae Crayn \& Quinn in K.A. Kron et al., Bot. Rev. (Lancaster) 68: 412. 23 Oct 2002
h4. Richeeae Crayn \& Quinn in K.A. Kron et al., Bot. Rev. (Lancaster) 68: 412. 23 Oct 2002
h5. Epacrideae Dumort., Anal. Fam. Pl.: 28. 1829
h6. Cosmelieae Crayn \& Quinn in K.A. Kron et al., Bot. Rev. (Lancaster) 68: 413.23 Oct 2002
h7. Stenanthereae Dumort., Anal. Fam. Pl.: 28. 1829. 1829
i. Vaccinioideae Arn., Botany: 118. 9 Mar 1832
il. Oxydendreae Cox ex Reveal, Phytoneuron 2012-37: 218. 23 Apr 2012
i2. Lyonieae Kron \& Judd in K.A. Kron et al., Amer. J. Bot. 86: 1298. 15 Sep 1999
i3. Andromedeae Klotzsch, Pfl.-Abbild. Beschr.: 16. 1838
i4. Gaultherieae Nied., Bot. Jahrb. Syst. 11: 145. 18 Jun 1889
i5. Vaccinieae Rchb., Fl. Germ. Excurs. 1(3): 203. Jul-Dec 1831
T. Lamianae Takht., Sist. Filog. Cvetk. Rast.: 405.4 Feb 1967

Boraginanae Doweld, Tent. Syst. Pl. Vasc.: xlvii. 23 Dec 2001
Eucommianae Takht. ex Reveal, Phytologia 74: 179. 25 Mar 1993
Gentiananae Thorne ex Reveal, Novon 2: 236. 13 Oct 1992
Icacmanae Doweld, Tent. Syst. Pl. Vasc.: li. 23 Dec 2001
Oleanae Takht., Divers. Classif. Fl. Pl.: 449. 24 Apr 1997
Solananae R. Dahlgren ex Reveal, Novon 2: 236. 13 Oct 1992
Vahtanae Doweld, Tent. Syst. Pl. Vasc.: xlviii. 23 Dec 2001
80. Garryales Mart., Consp. Regn. Veg.: 16. Sep-Oct 1835

Aucubales Takht., Divers. Classif. Fl. Pl.: 385. 24 Apr 1997
Eucommtales Nèmejc ex Cronquist, Integr. Syst. Class. Fl. Pl.: 182. 10 Aug 1981
421. Garryaceae Lindl., Edwards's Bot. Reg. 20: ad t. 1686. 1 Jul 1834, nom. cons.
422. Aucubaceae Bercht. \& J. Presl, Přir. Rostlın: 2: 91.1825
423. Eucommiaceae Engl., Syllabus, ed. 5: 139. 20-22 Jul 1907, nom. cons.
81. ICacinales Tiegh., Just's Bot. Jahresber. 25(2): 406. 19 Jan 1900

Emmotales Doweld, Tent. Syst. Pl. Vasc.: li. 23 Dec 2001
Metteniusales Takht., Divers. Classif. Fl. Pl.: 352. 24 Apr 1997
Oncothecales Doweld, Tent. Syst. Pl. Vasc.: li. 23 Dec 2001
424. Oncothecaceae Kobuski ex Airy Shaw, Kew Bull. 18: 264. 8 Dec 1965
425. Metteniusaceae H. Karst. ex Schnizl., Iconogr. Fam. Regni Veg. 2: ad t. 142*. 18601870
426. Icacinaceae Miers, Ann. Mag. Nat. Hist., ser. 2, 8: 174. Sep 1851, nom. cons.

Emmotaceae Tiegh., Just's Bot. Jahresber. 25(2): 406.19 Jan 1900
Iodaceae Tiegh., Just's Bot. Jahresber. 25(2): 406. 19 Jan 1900
Phytocrenaceae Arn. ex R. Br. in J. J. Bennett \& R. Brown, Pl. Jav. Rar.: 244.13
Mai 1852
Pleurtsanthaceae Tiegh., Just's Bot. Jahresber. 25(2): 406.19 Jan 1900
Sarcostigmataceae Tiegh., Just's Bot. Jahresber: 25(2): 406. 19 Jan 1900
al. Emmoteae Miers, Ann. Mag. Nat. Hist., ser. 2, 9: 223. Mar 1852
a2. Icacineae Benth., Ann. Mag. Nat. Hist., ser. 1, 7: 215. ante 25 Mai 1841
a3. Iodeae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 5: 242, 252. Mai 1893
a4. Phytocreneae Benth. \& Hookf., Gen. Pl. 1: 345. 7 Aug 1862
a5. Sarcostigmateae Miers, Ann. Mag. Nat. Hist., ser. 2, 9: 223. Mar 1852
82. Gentianales Juss. ex Bercht. \& J. Pres1, Přir. Rostlin: 248. Jan-Apr 1820

Apocynales R. Br. ex Bercht. \& J. Presl, Přrr. Rostlin: 249. Jan-Apr 1820
Ascleptadales R. Br. ex Bercht. \& J. Presl, Přtr. Rostlin: 249. Jan-Apr 1820
Chtrontales Griseb., Grundr. Syst. Bot.: 144. 1-2 Jun 1854
Cinchonales Lindl., Nix. Pl.: 18. 17 Sep 1835
Galtales Bromhead, Edmburgh New Philos. J. 24: 414. Apr 1838
Loganiales Lindl., Nix. Pl.: 19. 17 Sep 1833
Lygodisodeales Mart., Consp. Regn. Veg.: 31. Sep-Oct 1835
Rubiales Juss. ex Bercht. \& J. Pres1, Přrr. Rostlm: 256. Jan-Apr 1820
Strychnales Link, Handbuch 1: 439. 4-11 Jul 1829
Theligonales Nakai, J. Jap. Bot. 18: 92, 94. 10 Mar 1942
Vincales Horan., Char. Ess. Fam.: 111. 17 Jun 1847
427. Rubiaceae Juss., Gen. Pl.: 196. 4 Aug 1789, nom. cons.

Aparmaceae Hoffmanns. \& Link, Fl. Portug. 2: 3, 38. 1813-1829
Asperulaceae Cham. ex Spenn., Handb. Angew. Bot. 2: 493. 1835
Catesbaeaceae Martinov, Tekhno-Bot. Slovar: 111. 3 Aug 1820
Cephalanthaceae Raf., Ann. Gén. Sci. Phys. Bruxelles 6: 86. Oct-Dec 1820
Cinchonaceae Batsch, Tab. Affin. Regni Veg.: 234. 2 Mai 1802
Coffeaceae Batsch, Tab. Affin. Regni Veg.: 233. 2 Mai 1802
Contareaceae Martinov, Tekhno-Bot. Slovar: 168.3 Aug 1820
Dialypetalanthaceae Rizzini \& Occhioni, Lilloa 17: 253. 30 Dec 1948, nom. cons.
Galtaceae Lindl., Nat. Syst. Bot., ed. 2: 249. 13 Jun 1836
Gardentaceae Dumort., Anal. Fam. Pl.: 29, 32. 1829
Guettardaceae Batsch, Tab. Affin. Regni Veg.: 235. 2 Mai 1802
Hameliaceae Mart., Consp. Regn. Veg.: 31. Sep-Oct 1835

Hedyotidaceae Dumort., Comment. Bot.: 57. Nov-Dec 1822
Henriqueziaceae Bremek., Acta Bot. Neerl. 6 [Meded. Bot. Mus. Herb. Ryksuntv. Utrecht 141]: 371. Aug 1957
Houstoniaceae Raf., Good Book: 21. Jan 1840
Hydrophylacaceae Martinov, Tekhno-Bot. Slovar: 318. 3 Aug 1820
Lippayaceae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 156, Comm. 112. 16-22 Sep 1838
Lygodisodeaceae Bartl., Ord. Nat. Pl.: 123, 207. Sep 1830
Naucleaceae Wernh., New Phytol. 11: 225. 30 Jul 1912
Nonateliaceae Martinov, Tekhno-Bot. Slovar: 420.3 Aug 1820
Operculariaceae Juss. ex Perleb, Vers. Arznelkr. Pfl.: 207. Mai 1818
Pagamaeaceae Martinov, Tekhno-Bot. Slovar: 447. 3 Aug 1820
Psychotriaceae F. Rudolphi, Syst. Orb. Veg.: 49. 5-12 Jul 1830
Randtaceae Martinov, Tekhno-Bot. Slovar: 534. 3 Aug 1820
Sabiceaceae Martinov, Tekhno-Bot. Slovar: 555. 3 Aug 1820
Spermacoceaceae Bercht. \& J. Presl, Přir. Rostlin: 256. Jan-Apr 1820
Theligonaceae Dumort., Anal. Fam. Pl.: 15, 17. 1829, nom. cons.
a. Cinchonoideae Raf., Ann. Gén. Scl. Phys. Bruxelles 6: 81. Oct-Dec 1820
a1. Chiococceae Benth. \& Hook.f., Gen. Pl. 2: 9, 21. 7-9 Apr 1873
a2. Cinchoneae DC., Ann. Mus. Natl. Hist. Nat. 9: 217. 1807
a3. Coptosapelteae Bremek. ex S.P. Darwin, Taxon 25: 598. 26 Nov 1976
a4. Guettardeae DC., Ann. Muls. Natl. Hist. Nat. 9: 217. 1807
a5. Hamelieae A. Rich. ex DC., Prodr. 4: 342, 438. late Sep 1830
a6. Hillieae Bremek. ex S.P. Darwin, Taxon 25: 603. 26 Nov 1976
a7. Hymenodictyoneae Razafim. \& B. Bremer, Syst. \& Geogr. Pl. 71: 535. 2002
a8. Isertieae A. Rich. ex DC., Prodr. 4: 342, 435. late Sep 1830
a9. Naucleeae Burnett, Outlines Bot.: 906. Feb 1835
a10. Rondeletieae Burnett, Outlines Bot.: 906. Feb 1835
b. Dialypetalanthoideae Reveal, Phytoneuron 2012-33: 2. 9 Apr 2012
b1. Alberteae Sond. in W.H. Harvey \& O.W. Sonder, Fl. Cap. 3: 1. 24 Feb-30 Jun 1865
b2. Bertiereae Bridson, F1. Zambes. 5(3): 386. 2003
b3. Coffeeae DC., Ann. Mus. Natl. Hist. Nat. 9: 217. 1807
b4. Dialypetalantheae Reveal, Phytoneuron 2012-33: 2.9 Apr 2012
b5. Cremasporeae Bremek. ex S.P. Darwin, Taxon 25: 601. 26 Nov 1976
b6. Gardenieae A. Rich. ex DC., Prodr. 4: 342, 367. late Sep 1830
b7. Ixoreae Benth. \& Hook.f., Gen. Pl. 2: 9, 22. 7-9 Apr 1873
b8. Mussaendeae Benth. \& Hook.f., Gen. Pl. 2: 8, 15. 7-9 Apr 1873
b9. Octotropideae Bedd., Fl. Sylv. S. India 28: cxxvi. 1874
b10. Pavetteae Dumort., Anal. Fam. Pl.: 32. 1829
b11. Posoquerieae Delprete in P.G. Delprete et al., Fl. Ilustr. Catarin. Rubiaceas 1: 23. 27 Dec 2004
b12. Retiniphylleae Benth. \& Hook.f., Gen. Pl. 2: 9, 20. 7-9 Apr 1873
b13. Sabiceeae A. Stahl, Estud. Fl. Puerto-Rico 5: 32. 1887
b14. Sipaneeae Bremek., Recuet Trav. Bot. Néerl. 31: 252. 1934
b15. Vanguerieae Dumort., Anal. Fam. Pl.: 32. 1829
c. Rubioideae Bremek. ex Verdc., Bull. Jard. Bot. Etat Bruxelles 28: 280. 30 Sep 1958 c1. Colletoecemateae Rydin \& B. Bremer in C. Rydin et al., Pl. Syst. Evol. 278: 120. Mar 2009
c2. Urophylleae Bremek ex Verdc., Bull. Jard. Bot. Etat Bruxelles 28: 281. 30 Sep 1958
c3. Ophiorrhizeae Bremek. ex Verdc., Bull. Jard. Bot. Etat Bruxelles 28: 281. 30 Sep 1958
c4. Lasiantheae B. Bremer \& Manen, Pl. Syst. Evol. 225: 57. 10 Jan 2001
c5. Coussareeae Benth. \& Hook.f., Gen. Pl. 2: 9, 24. 7-9 Apr 1873
c6. Psychotrieae Cham. \& Schltd1., Linnaea 4: 4. Jan 1829
c7. Schradereae Bremek., Recueil Trav. Bot. Néerl. 31: 253. 1934
c8. Mitchelleae Razafim. \& B. Bremer in S.G. Razafimandimbison, C. Rydin \& B. Bremer, Molec. Phylogen. Evol. 48: 221. Jul 2008
c9. Craterispermeae Verdc., Bull. Jard. Bot. Bruxelles 28: 281. 30 Sep 1958
c10. Gaertnereae Endl., Gen. Pl.: 577. Aug 1838
c11. Morindeae Burnett, Outlines Bot.: 906. Feb 1835
c12. Schizocoleeae Rydin \& B. Bremer in C. Rydin et al., Pl. Syst. Evol. 278: 120. Mar 2009
c13. Spermacoceae Cham. \& Schltdl. ex DC., Prodr. 4: 343, 538. late Sep 1830
c14. Knoxieae Benth. \& Hookf., Gen. Pl. 2: 9, 21. 7-9 Apr 1873
c15. Danaideae B. Bremer \& Manen, Pl. Syst. Evol. 225: 60. 10 Jan 2001
c16. Dunnieae Rydin \& B. Bremer in C. Rydin et al., Pl. Syst. Evol. 278: 121. Mar 2009
c17. Theligoneae Baill., Hist. Pl. 4: 46, 55. 1872
c18. Rubieae Baill., Htst. Pl. 7: 365, 390. Feb 1880 c18a. Theligoninae Robbr. \& Manen, Syst. \& Geogr. Pl. 76: 138. 7 Jul 2006 c18b. Kelloggiinae Robbr. \& Manen, Syst. \& Geogr. Pl. 76: 138. 7 Jul 2006 c18c. Rubiinae Robbr. \& Manen, Syst. \& Geogr. Pl. 76: 138.7 Jul 2006
c19. Paederieae DC., Prodr. 4: 342, 470. late Sep 1830
c20. Argostemmateae Bremek. ex Verdc., Bull. Jard. Bot. État Bruxelles 28: 281. 30 Sep 1958
c21. Anthospermeae Cham. \& Schltdl., Linnaea 3: 309. Oct 1828 c21a. Anthosperminae Benth., Fl. Austral. 3: 401, 429. 5 Jan 1867 c21b. Coprosminae Fosb., Acta Phytotax. Geobot. 33: 75. 20 Apr 1982 c21c. Operculariinae Benth., Fl. Austral. 3: 401, 431. 5 Jan 1867
428. Gentianaceae Juss., Gen. Pl.: 141. 4 Aug 1789, nom. cons.

Chirontaceae Bercht. \& J. Pres1, Prír. Rostlin 1(104-114): 1, 36. 1823
Coutoubeaceae Martinov, Tekhno-Bot. Slovar: 168. 3 Aug 1820
Obolariaceae Martinov, Tekhno-Bot. Slovar: 427. 3 Aug 1820
Potahaceae Mart., Nov. Gen. Sp. Pl. 2: 89, 91, 133. Jan-Jun 1827
Saccifoliaceae Maguire \& Pires, Mem. New York Bot. Gard. 29: 242. 14 Jun 1978
a1. Saccifolieae Struwe, Thiv, V.A. Albert \& Kadereit in L. Struwe \& V.A. Albert, Genttanac.: Syst. \& Nat. Hist.: 48. 2002
a2. Exaceae Colla, Herb. Pedem. 4: 174. 15-31 Aug 1835
a3. Chironieae Dumort., Fl. Belg.: 51. 1827
a3a. Chironiinae G. Don, Gen. Hist. 4: 174, 202. 1837-8 Apr 1838
a3b. Canscorinae Thiv \& Kadereit in L. Struwe \& V.A. Albert, Gentianac.: Syst. \& Nat. Hist.: 50. 2002
a3c. Coutoubeinae G. Don, Gen. Hist. 4: 174, 200. 1837-8 Apr 1838
a4. Potalieae Endl., Gen. Pl.: 576. Aug 1838
a4a. Potaliinae Progel in C.F.P. von Martius, Fl. Bras. 6(1): 251, 267. 1 Dec 1865
a4b. Faroinae Struwe \& V.A. Albert, Gentianac.: Syst. \& Nat. Hist.: 52. 2002
a4c. Lisianthiinae G. Don, Gen. Hist. 4: 175, 207. 1837-8 Apr 1838
a5. Helieae Gilg in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 2: 62, 95. Jun 1895
a6. Gentianeae Dumort., Anal. Fam. Pl.: 25. 1829
a6a. Gentianinae G. Don, Gen. Hist. 4: 173, 175. 1837-8 Apr 1838
a6b. Swertiinae Griseb. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 9: 86. 1 Jan 1845
a7. Voyrieae Gilg in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 2: 62, 102. Jun 1895
429. Loganiaceae R. Br. ex Mart., Nov. Gen. Sp. Pl. 2: 133. Jan-Jun 1827, nom. cons.

Antontaceae Hutch., Fam. Fl. Pl., ed. 2: 375. 4 Jun 1959
Gardnertaceae Wall. ex Perleb, Clav. Class.: 23. Jan-Mar 1838
Gentostomataceae L. Struwe \& V.A. Albert, Cladistics 10: 206. Jun 1995
Spigelıaceae Bercht. \& J. Presl, Přir. Rostlin 1: 40.1823
Strychnaceae DC. ex Perleb, Vers. Arzneikr. Pfl.: 244. Mai 1818
a1. Loganieae Kitt. in A. Richard, Nouv. Elém. Bot., ed. 3, Germ. trans1.: 817. 1840
a2. Strychneae Soler. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 2: 28, 37. Aug 1892
a3. Antonieae Endl., Gen. Pl.: 575. Aug 1838
a4. Spigelieae Dumort., Anal. Fam. Pl.: 26. 1829
430. Gelsemiaceae L. Struwe \& V.A. Albert, Cladistics 10: 206. Jun 1995
431. Pteleocarpaceae Brummitt, Kew Bull. 66: 3. Aug 2011
432. Apocynaceae Juss., Gen. Pl.: 143. 4 Aug 1789, nom. cons.

Asclepıadaceae Borkh., Bot. Wörterb. 1:31. 1797, nom. cons.
Carissaceae Bertol, Nuevo Giorn. Bot. Ital. 23: 212. 8 Jan 1891
Cerberaceae Martinov, Tekhno-Bot. Slovar: 119. 3 Aug 1820
Cynanchaceae G. Mey., Chloris Han.: 245, 251. Jul-Aug 1836
Ophoxylaceae Mart., Consp. Regn. Veg.: 24. Sep-Oct 1835
Pacouriaceae Martinov, Tekhno-Bot. Slovar: 447. 3 Aug 1820
Periplocaceae Schltr. in K. Schumann \& C.A. G. Lauterbach, Nachtr. Fl. Schutzgeb. Südsee: 351. 16 Nov 1905, nom. cons.
Phumeriaceae Horan., Prim. Lin. Syst. Nat.: 70. 2 Nov 1834
Stapeltaceae Horan., Prim. Lin. Syst. Nat.: 70. 2 Nov 1834
Vincaceae Vest, Anleit. Stud. Bot.: 273, 299. 1818
Willughbeaceae J. Agardh, Theoria Syst. Pl.: 256. Apr-Sep 1858
a. Carissoideae Endl., Gen. Pl.: 578. Feb 1838
a 1. Alstonieae G. Don, Gen. Htst. 4: 70, 86. 1837-8 Apr 1838
a2. Vinceae Duby, Bot. Gall. 1: 324. 12-14 Apr 1828
a3. Willughbeeae A. DC. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 8: 318. medio Mar 1844
a4. Tabernaemontaneae G. Don, Gen. Hist. 4: 70, 87. 1837-8 Apr 1838
a5. Melodineae G. Don, Gen. Hist. 4: 71, 101. 1837-8 Apr 1838
a6. Hunterieae Miers, Apocyn. S.Amer.: 6. Mai-Jun 1878
a7. Plumerieae E. Mey., Comm. Pl. Afr. Austr. 2: 188. 1-8 Jan 1838
a8. Carisseae Dumort., Anal. Fam. Pl.: 26. 1829
a9. Alyxieae G. Don, Gen. Htst. 4: 71, 96. 1837-8 Apr 1838
b. Apocynoideae Burnett, Outlines Bot.: 1012, 1095, 1104. Feb 1835
b1. Wrightieae G. Don, Gen. Hist. 4: 70, 85. 1837-8 Apr 1838
b2. Malouetieae Müll.-Arg. in C.F.P. von Martius, Fl. Bras. 6(1): 5, 89. 30 Jul 1866
b3. Apocyneae Rchb., Fl. Germ. Excurs. 1(3): 410, 429. Jul-Dec 1831
b4. Mesechiteae Miers, Apocyn. S. Amer.: 10. Mai-Jun 1878
b5. Echiteae Bartl., Ord. Nat. Pl.: 204. Sep 1830
c. Periplocoideae Endl., Gen. Pl.: 587. Aug 1838
d. Secamonoideae Endl., Gen. Pl.: 589. Aug 1838

[^3]437. Solanaceae Juss., Gen. Pl.: 124. 4 Aug 1789, nom. cons.
Atropaceae Martinov, Tekhno-Bot. Slovar: 57. 3 Aug 1820
Browalltaceae Bercht. \& J. Pres1, Přtr. Rostlin: 243. Jan-Apr 1820
Cestraceae Schltdl., Lmnaea 8: 250. Jan-Jul 1833
Daturaceae Bercht. \& J. Presl, Přir. Rostlin: 243. Jan-Apr 1820
Duckeodendraceae Kuhlm., Arq. Serv. Florest. 3: 7. 1950
Goetzeaceae Miers, Trans. Linn. Soc. London 27: 191. 1870
Hyoscyamaceae Vest, Anleit. Stud. Bot.: 272, 294. 1818
Lyctaceae Raf., Autik. Bot. 1: 15. 1840
Nicotianaceae Martinov, Tekhno-Bot. Slovar: 416. 3 Aug 1820
Nolanaceae Bercht. \& J. Presl, Přir. Rostlin: 244. Jan-Apr 1820, nom. cons.
Salpiglossidaceae Hutch., Evol. Phylog. Fl. Pl.: 631. 28 Aug 1969
Sclerophylacaceae Miers, London J. Bot. 7: 58. Feb 1848
a. Schizanthoideae Hunz., Kurtziana 28: 56. Jul 2000
b. Goetzeoideae Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 132. 29 Jun 2007
c. Duckeodendroideae Reveal, Phytoneuron 2012-37: 216. 23 Apr 2012
d. Cestroideae Burnett, Outllnes Bot.: 985, 1095, 1106. Feb 1835
d1. Benthamielleae Hunz., Kurtziana 28: 61. Jul 2000
d2. Browallieae Hunz., Lorentzia 8: 6. 31 Mai 1995
d3. Cestreae Dumort., Anal. Fam. Pl.: 24. 1829
d4. Salpiglossideae Benth., Edwards's Bot. Reg. 21: ad t. 1770. 1 Feb 1835
e. Schwenckioideae Reveal, Phytoneuron 2012-37: 219. 23 Apr 2012
f. Petunioideae Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 132. 29 Jun 2007
g. Nicotianoideae Miers, London J. Bot. 7: 58. 1848
g1. Anthocercideae G. Don, Gen. Hist. 4: 399, 478. 1837-8 Apr 1838
g2. Nicotianeae Dumort., Fl. Belg.: 38. 1827
h. Solanoideae Burnett, Outlmes Bot.: 985, 1095, 1106. Feb 1835
h1. Nicandreae Lowe, Man. Fl. Maderra 2: 98. Jan-Apr 1872
h2. Mandragoreae Rchb., Handb. Nat. Pfl.-Syst.: 201. 1-7 Oct 1837
h3. Hyoscyameae Endl., Gen. Pl.: 664. Jan 1839
h3a. Hyoscyaminae Kitt. in A. Richard, Nowv. Elém. Bot., ed. 3, Germ. transl.: 796. 1840
h3b. Lyciinae Hogg, Veg. Kingd: 545. 1858
h3c. Jaborosinae Reveal, Phytoneuron 2012-37: 217. 23 Apr 2012
h4. Nolaneae Rchb., Handb. Nat. Pfl.-Syst.: 200. 1-7 Oct 1837
h5. Capsiceae Dumort., Fl. Belg.: 38. 1827
h6. Datureae Dumort., Anal. Fam. Pl.: 24. 1829
h7. Physalideae Miers, Ann. Mag. Nat. Hist., ser. 2, 3: 179. Mar 1849
h7a. Iochrominae Reveal, Phytoneuron 2012-37: 217. 23 Apr 2012
h7b. Physalidinae Reveal, Phytoneuron 2012-37: 218. 23 Apr 2012
h7c. Witheringiinae Reveal, Phytoneuron 2012-37: 220. 23 Apr 2012
h7d. Salpichroinae Reveal, Phytoneuron 2012-37: 219. 23 Apr 2012
h8. Solaneae Dumort., Anal. Fam. Pl.: 24. 1829
h9. Juanulloeae Hunz., Kurtziana 10: 29. 2 Mai 1977
i. Sclerophylacoideae Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 132. 29 Jun 2007
83b. Boraginineae Engl., Syllabus, ed. 2: 192. Mai 1898
438. Boraginaceae Juss., Gen. Pl.: 128. 4 Aug 1789, nom. cons.
Anchusaceae Vest, Anleit. Stud. Bot.: 274, 302. 1818
Cerinthaceae Bercht. \& J. Presl, Přrr. Rostlın: 244. Jan-Apr 1820
Codonaceae Weigend \& Hilger, Phytotaxa 10: 27. 28 Oct 2010
Cordtaceae R. Br. ex Dumort., Anal. Fam. Pl.: 20, 25. 1829, nom. cons.

Cynoglossaceae Döll, Rhem. Fl.: 406. 24-27 Mai 1843
Echiaceae Raf., Fl. Tellur. 2: 61. Jan-Mar 1837
Ehretiaceae Mart., Nov. Gen. Sp. Pl. 2: 136, 138. Jan-Jun 1827, nom. cons.
Eutocaceae Horan., Char. Ess. Fam.: 124. 17 Jun 1847
Helıotropiaceae Schrad., Commentat. Soc. Regiae Sci. Gott. Recent. 4: 192 [Asperifol. Linnet Comm.: 22]. Dec 1819, nom. cons.
Hoplestigmataceae Gilg in H.G.A. Engler \& E.F. Gilg, Syllabus, ed. 9-10: 322.6 Nov 1924, nom. cons.
Hydrophyllaceae R. Br., Bot. Reg. 3: ad t. 242. 1 Dec 1817, nom. cons. Lennoaceae Solms, Abh. Naturf. Ges. Halle 11: 174. 7 Jan 1870, nom. cons. Onosmaceae Martinov, Tekhno-Bot. Slovar: 437. 3 Aug 1820
Sagoneaceae Martinov, Tekhno-Bot. Slovar: 557.3 Aug 1820
Wellstectaceae Novák in S. Prát (ed.), Rostlmopts 9: 530. 1943
a. Boraginoideae Arn., Botany: 122. 9 Mar 1832
a1. Trigonotideae H. Riedl in K.H. Rechinger, Fl. Iran. 48: 53. 15 Apr 1967
a2. Rochelieae A. DC. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 10: 175.8 Apr 1846
a3. Boragineae Rchb., Fl. Germ. Excurs. 1(3): 340. Jul-Dec 1831
a4. Cynoglosseae W.D.J. Koch, Syn. Fl. Germ. Helv.: 496. Jan-Oct 1837
a5. Echiochileae Långström \& M.W. Chase in E. Långström, Syst. Echochtlon \& Ogastemma (Boraginac.), Phylogeny Boraginoideae Paper 2: 5. 2002
a6. Lithospermeae Dumort., Fl. Belg.: 39. 1827
b. Codonoideae Retief \& AE. van Wyk, Bothalta 35: 79. Mai 2005
c. Wellstedioideae Pilg., Bot. Jahrb. Syst. 46: 558. ante Oct 1912
d. Hydrophylloideae Burnett, Outlines Bot.: 1006, 1095, 1105. Feb 1835
d1. Hydrophylleae Rchb., Fl. Germ. Excurs. 1(3): 347. Jul-Dec 1831
d1a. Phaceliinae Reveal, Phytoneuron 2012-37: 218. 23 Apr 2012
d1b. Hydrophyllinae Reveal, Phytoneuron 2012-33: 2. 9 Apr 2012
d1c. Romanzoffiinae Reveal, Phytoneuron 2012-37: 218. 23 Apr 2012
e. Heliotro poideae Arn., Botany: 122. 9 Mar 1832
f. Ehretioideae Arn., Botany: 122. 9 Mar 1832
g. Cordioideae Beilschm., Flora 16(Beibl. 7): 69, 106. 14 Jun 1833
g1. Hoplestigmateae Reveal, Phytoneuron 2012-33: 2. 9 Apr 2012
g2. Cordieae Dumort., Anal. Fam. Pl.: 25. 1829
h. Lennooideae Craven, Bhumea 50: 378. 14 Jul 2005
84. Vahliales Doweld, Tent. Syst. Pl. Vasc.: xlviii. 23 Dec 2001
439. Vahliaceae Dandy in J. Hutchinson, Fam. Fl. Pl., ed. 2: 461. 4 Jun 1959
85. Lamiales Bromhead, Mag. Nat. Hist., ser. 2, 2: 210. Apr 1838

Acanthales Juss. ex Bercht. \& J. Pres1, Přtr. Rostlin: 246. Jan-Apr 1820
Antirrhinales Döll, Fl. Baden 2: 723. med. 1858
Bignomales Juss. ex Bercht. \& J. Presl, Přrr. Rostlin: 246. Jan-Apr 1820
Byblıdales Nakai ex Reveal, Phytologıa 74: 175. 25 Mar 1993
Callitrichales Link, Handbuch 2: 407. 4-11 Jul 1829
Carlemanniales Doweld, Tent. Syst. Pl. Vasc.: xlviii. 23 Dec 2001
Fraxinales Bercht. \& J. Presl, Přir. Rostlın: 224. Jan-Apr 1820
Gesneriales Rich. ex Bercht. \& J. Presl, Přir. Rostlin: 252. Jan-Apr 1820
Globulariales Dumort., Anal. Fam. Pl.: 19. 1829
Hippuridales Link, Handbuch 1: 288. 4-11 Jul 1829
Jasmmales R. Br. ex Bercht. \& J. Presl, Přir. Rostlin: 248. Jan-Apr 1820
Lentibulariales Rich. ex Bercht. \& J. Pres1, Přir. Rostlin: 242. Jan-Apr 1820
Ligustrales Bartl. ex Bisch., Lehrb. Bot.: 2(2): 529. 1839

Myoporales R. Br. ex Bercht. \& J. Pres1, Přır. Rostlin: 245. Jan-Apr 1820
Oleales R. Br. ex Bercht. \& J. Presl, Přrr. Rostlin: 248. Jan-Apr 1820
Orobanchales Vent. ex Bercht. \& J. Presl, Prir. Rostlin: 242. Jan-Apr 1820
Pedaltales R. Br. ex Bercht. \& J. Pres1, Přtr. Rostlın: 246. Jan-Apr 1820
Pinguiculales Dumort., Anal. Fam. Pl.: 19. 1829
Plantaginales Juss. ex Bercht. \& J. Pres1, Přtr. Rostlın: 241. Jan-Apr 1820
Rhinanthales Dumort., Anal. Fam. Pl.: 20. 1829
Scrophulariales Lindl., Nix. Pl.: 20. 17 Sep 1833
Selaginales Mart., Consp. Regn. Veg.: 19. Sep-Oct 1835
Stilbales Mart., Consp. Regn. Veg.: 19. Sep-Oct 1835
Utricularıales Döll, Rhein. Fl.: 283. 24-27 Mai 1843
Verbascales Döll, Fl. Baden 2: 750. med. 1858
Verbenales Juss. ex Bercht. \& J. Pres1, Přmr. Rostlın: 245. Jan-Apr 1820
85a. Oleineae J. Pres1, Nowočeská Bibl. [Wšobecný Rostl.] 7: 1031. 1846
440. Plocospermataceae Hutch., Fam. Fl. Pl., ed. 3: 469. Jan-Jul 1973
441. Carlemanniaceae Airy Shaw, Kew Bull. 19: 511. 26 Jul 1965
442. Oleaceae Hoffmanns. \& Link, Fl. Portug. 1: 62. 1 Sep 1809, nom. cons.

Bolivarıaceae Griseb., Gen. Sp. Gent.: 20. Oct 1838
Forestieraceae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 345, Comm. 257. 13-15 Feb 1842
Fraxinaceae Vest, Anleit. Stud. Bot.: 269, 288. 1818
Jasminaceae Juss., Gen. Pl.: 104. 4 Aug 1789
Ligustraceae G. Mey., Chloris Han.: 245, 254. Jul-Aug 1836
Nyctanthaceae J. Agardh, Theorta Syst. Pl.: 284. Apr-Sep 1858
Schreberaceae Schnizl., Iconogr. Fam. Regni Veg. 2: ad t. 151*. 1857-1870
Syringaceae Horan., Char. Ess. Fam.: 115. 17 Jun 1847
a1. Fontanesieae H. Taylor ex L.A.S. Johnson, Contr. N.S.W. Natl. Herb. 2: 397. 18 Nov 1957
a2. Forsythieae H. Taylor ex L.A.S. Johnson, Contr. N.S.W. Natl. Herb. 2: 397. 18 Nov 1957
a3. Myxopyreae Boerl., Handl. F7. Nederl. Ind. 2: 324. 1 Jan 1899
a4. Jasmineae Lam. \& DC., Syn. Pl. Fl. Gall.: 216. 30 Jun 1806
a5. Oleeae Hoffmanns. \& Link ex Dumort., F7. Belg.: 52. 1827
a5a. Fraxininae E. Wallander \& V.A. Albert, Amer.J. Bot. 87: 1841. 15 Dec 2000
a5b. Schreberinae E. Wallander \& V.A. Albert, Amer.J. Bot. 87: 1841. 15 Dec 2000
a5c. Ligustrinae Koehne, Deut. Dendrol.: 500. Mai 1893
a5d. Oleinae E. Wallander \& V.A. Albert, Amer. J. Bot. 88: 390. 2001
85b. Gesneriineae Link, Handbuch 1: 505. 4-11 Jul 1829
443. Tetrachondraceae Wettst., Handb. Syst. Bot., ed. 3, (2:) 807. Jun-Sep 1924
444. Calceolariaceae Olmstead in R.G. Olmstead et al., Amer. J. Bot. 88: 357. 23 Feb 2001
445. Gesneriaceae Rich. \& Juss. in A.P. de Candolle, Essaı Propr. Méd. Pl., ed. 2: 192.11

Mai 1816, nom. cons.
Belloniaceae Martinov, Tekno-Bot. Slovar: 67. 3 Aug 1820
Beslertaceae Raf., Sylva Tellur.: 70. Oct-Dec 1838
Cyrtandraceae Jack, Trans. Linn. Soc. London 14: 23. 1823
Didymocarpaceae D. Don, Edinburgh Philos.J. 7: 83. 1822
Ramondaceae Godr. in J.C.M. Grenier \& D.A. Godron, Fl. France 2: 506. 1850
a. Didymocar poideae Arn., Botany: 121. 9 Mar 1832
a1. Didymocarpeae Endl., Gen. Pl.: 716. Jan 1839
a2. Epithemateae Reveal, Phytoneuron 2012-37: 216. 23 Apr 2012
b. Gesnerioideae Burnett, Outlmes Bot.: 959, 1095, 1108. Feb 1835
b1. Napeantheae Wiehler, Selbyana 6: 151. 31 Aug 1983
b2. Coronanthereae Fritsch in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 3b: 143. Mai 1893
b3. Beslerieae Bartl., Ord. Nat. Pl.: 175. Sep 1830
b4. Gloxinieae Sweet, Hort. Brit., ed. 3: 526. late 1839
b5. Gesnerieae Dumort., Anal. Fam. Pl.: 30. 1829
b6. Sinningieae Fritsch in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 3b: 144. Mai 1893
b7. Episcieae Endl., Gen. Pl.: 720. Jan 1839
85c. Lamiineae Bessey in C.K. Adams, Johnson's Universal Cyclop. 8: 464. 15 Nov 1895
446. Plantaginaceae Juss., Gen. Pl.: 89. 4 Aug 1789, nom. cons.

Antirrhinaceae Pers., Syn. Pl. 2: 154, 640. Sep 1807
Aragoaceae D. Don, Edinburgh New Phlos. J. 19: 109, 113. Jul 1835
Callitrichaceae Link, Emum. Hort. Berol. Alt. 1: 7. 16 Mar-30 Jun 1821, nom. cons.
Chelonaceae Martinov, Tekhno-Bot. Slovar: 124. 3 Aug 1820
Digitaludaceae Martinov, Tekhno-Bot. Slovar: 202. 3 Aug 1820
Ellisiophyllaceae Honda in M. Honda \& M. Sakisaka, Daikou Nippon Shokubutsu Bunratgaku [Syst. Pl. Japon.]: 372. 25 Apr 1930
Erinaceae Pfeiff., Nomencl. Bot. 1: 1236. 16 Jan 1874
Globulariaceae DC. in J.B.A.P.M. de Lamarck \& A.P. de Candolle, Fl. Franç., ed. 3,3:427. 17 Sep 1805 , nom. cons.
Gratiolaceae Martinov, Tekhno-Bot. Slovar: 294. 3 Aug 1820
Htppundaceae Vest, Anlett. Stud. Bot.: 265, 278. 1818, nom. cons.
Linartaceae Bercht. \& J. Presl, Pritr. Rostlin: 243. Jan-Apr 1820
Littorellaceae Gray, Nat. Arr. Brit. Pl. 2: 290, 294. 10 Jan 1822
Oxycladaceae Schnizl., Iconogr. Fam. Regnt Veg. 2: ad t. 151**. 1857-1870
Psylliaceae Horan., Prim. Lin. Syst. Nat.: 69. 2 Nov 1834
Sibthorpiaceae D. Don, Edinburgh New Philos. J. 19: 114. Jul 1835
Veronicaceae Cassel, Lehrb. Nat. Pflanzenord.: 366. Apr-Mai 1817
a1. Gratioleae Benth., Edwards's Bot. Reg. 21: ad t. 1770. 1 Feb 1835
a2. Stemodieae Reveal, Phytoneuron 2012-37: 219. 23 Apr 2012
a3. Angelonieae Pennell, Proc. Acad. Nat. Sci. Philadelpha 71: 227. 11 Mar 1920
a4. Cheloneae Benth. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 10: 188, 298.
8 Apr 1846
a5. Russelieae Pennell, Proc. Acad. Nat. Sci. Philadelphia 71: 226. 11 Mar 1920
a6. Antirrhineae Dumort., Fl. Belg.: 34. 1827
a7. Callitricheae Dumort., Fl. Belg.: 90. 1827
a8. Sibthor pieae Benth. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 10: 189, 424. 8 Apr 1846
a9. Globularieae Rchb., Handb. Nat. Pfl.-Syst.: 195. 1-7 Oct 1837
a10. Hemiphragmateae Rouy, Consp. Fl. France: 172. 15 Aug 1927
a11. Digitalideae Dumort., Anal. Fam. Pl.: 24. 1829
a12. Veroniceae Duby, Bot. Gall. 1: 355. 12-14 Apr 1828
a13. Plantagineae Dumort., Anal. Fam. Pl.: 25. 1829
447. Scrophulariaceae Juss., Gen. Pl.: 117. 4 Aug 1789, nom. cons.

Bontiaceae Horan., Prim. Lin. Syst. Nat.: 77. 2 Nov 1834
Buddlejaceae K. Wilh., Samenpflanzen: 90. Oct 1910, nom. cons.
Caprariaceae Martinov, Tekhno-Bot. Slovar: 102. 3 Aug 1820
Hebenstretiaceae Horan., Prim. Lin. Syst. Nat.: 76. 2 Nov 1834
Hemimeridaceae Doweld, Tent. Syst. Pl. Vasc.: xlix. 23 Dec 2001

Limosellaceae J. Agardh, Theoria Syst. Pl.: 340. Apr-Sep 1858
Myoporaceae R. Br., Prodr.: 514. 27 Mar 1810, nom. cons.
Oftiaceae Takht. \& Reveal, Phytologta 74: 284. 28 Apr 1993
Polypremaceae Takht. ex Reveal, Kew Bull. 66: 47. Aug 2011
Selaginaceae Choisy, Mém. Soc. Phys. Genève [Mém. Sélag.: 19] 2: 89. 1823, nom. cons.
Verbascaceae Bercht. \& J. Presl, Přır. Rostlin: 243. Jan-Apr 1820
a. Hemimeridoideae Reveal, Phytoneuron 2012-37: 217. 23 Apr 2012
a1. Hemimerideae Benth., Edwards's Bot. Reg. 21: ad t. 1770. 1 Feb 1835
ala. Alonsoinae Reveal, Phytoneuron 2012-37: 215. 23 Apr 2012
alb. Hemimeridinae Reveal, Phytoneuron 2012-37: 217. 23 Apr 2012
b. Myoporoideae Arn., Botany: 123.9 Mar 1832
b1. Aptosimeae Benth. \& Hook.f., Gen. Pl. 2: 915, 916. 1-16 Mai 1876
b2. Myoporeae Rchb., Handb. Nat. Pfl.-Syst.: 196. 1-7 Oct 1837
b3. Leucophylleae Miers, Ann. Mag. Nat. Hist., ser. 2, 5: 252. Apr 1850
c. Scrophularioideae Beilschm., Flora 16(Beibl. 7): 67, 104. 7 Mai 1833
c1. Scrophularieae Dumort., Fl. Belg: 35. 1827
c2. Limoselleae Dumort., Fl. Belg.: 32. 1827
d. Buddlejoideae Engl., Syllabus, ed. 1: 157. Apr 1892
d1. Teedieae Benth., Edwards's Bot. Reg. 21: ad t. 1770. 1 Feb 1835
d2. Buddlejeae Bartl., Ord. Nat. Pl.: 172. Sep 1830
448. Stilbaceae Kunth, Handb. Bot.: 393. 21-28 Sep 1831, nom. cons.

Retziaceae Choisy, Mém. Soc. Phys. Hist. Nat. Genève 6: 400. 11 Aug 1834
a1. Hallerieae G. Don, Gen. Hist. 4: 503, 617. 1837-8 Apr 1838
a2. Bowkerieae Barringer, Novon 3: 15. 19 Mar 1993
a3. Stilbeae Hogg, Veg. Kingd.: 583. 1858
449. Lamiaceae Martinov, Tekhno-Bot. Slovar: 355. 3 Aug 1820, nom. cons., nom. alt.

Aegiphllaceae Raf., Sylva Tellur:: 161. Oct-Dec 1838
Ajugaceae Döll, Rhem. Fl.: 375. 24-27 Mai 1843
Chloanthaceae Hutch., Fam. Fl. Pl., ed. 2: 396. 4 Jun 1959
Glechomaceae Martinov, Tekhno-Bot. Slovar: 288. 3 Aug 1820
Labiatae Juss., Gen. Pl.: 110. 4 Aug 1789, nom. cons.
Melissaceae Bercht. \& J. Presl, Přir. Rostlin: 245. Jan-Apr 1820
Melittidaceae Martinov, Tekhno-Bot. Slovar: 390. 3 Aug 1820
Menthaceae Burnett, Outlmes Bot.: 969, 1095, 1106. Feb 1835
Monardaceae Döll, Fl. Baden 2: 661. (med.) 1858
Nepetaceae Bercht. \& J. Presl, Pritr. Rostlin: 245. Jan-Apr 1820
Salazartaceae F.A. Barkley, Phytologia 32: 304. 29 Oct 1975
Salvaceae Bercht. \& J. Presl, Přir. Rostlin: 245. Jan-Apr 1820
Saturejaceae Döll, Fl. Baden 2: 664. med. 1858
Scutellartaceae Döll, Rhem. Fl.: 373. 24-27 Mai 1843
Siphonanthaceae Raf., Fl. Tellur. 4: 87. (med.) 1838
Stachydaceae Döll, Rhem. Fl.: 366. 24-27 Mai 1843
Symphoremataceae Wight, Icon. Pl. Ind. Orient. 4(3): 13. Apr 1849
Viticaceae Juss., Gen. Pl.: 106. 4 Aug 1789
a. Symphorematoideae Briq. in H.G.A. Engler \& K. A.E. Prantl, Nat. Pflanzenfam. IV, 3a: 144. 26 Feb 1895
b. Caryopteridoideae Briq. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 3a: 144. 26 Feb 1895
b1. Callicarpeae Briq. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 3a: 144, 164. 26 Feb 1895
b2. Tectoneae Briq. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 3a: 144, 167. 26 Feb 1895
c. Viticoideae Briq. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 3a: 144. 26 Feb 1895
d. Ajugoideae Luerss., Handb. Syst. Bot. 2: 1016. Sep 1882
d1. Clerodendreae Briq. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 3a: 144, 173. 26 Feb 1895
d2. Ajugeae Benth., Edwards's Bot. Reg. 15: ad t. 1829
d3. Monochileae Briq. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 3a: 144, 156. 26 Feb 1895
d4. Teucrieae Dumort., Fl. Belg.: 42. 1827
d5. Caryopterideae Benth. \& Hook.f., Gen. Pl. 2: 1136. 1-16 Mai 1876
e. Wenchengioideae C.Y. Wu \& S. Chow, Acta Phytotax. Sm. 10: 249. Jul 1965
f. Prostantheroideae Luerss., Handb. Syst. Bot. 2: 1014, 1016. Sep 1882
f1. Chloantheae Benth. \& Hook.f., Gen. Pl. 2: 1132. 1-16 Mai 1876
f2. Westringieae Bartl., Ord. Nat. Pl.: 182. Sep 1830
g. Scutellarioideae Prantl, Text-book Bot.: 293. 1 Mar-15 Apr 1880
h. Lamioideae Harley, Kew Bull. 58: 765. 26 Nov 2003
h1. Pogostemoneae Briq. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 3a: 208. Dec 1895
h2. Prasieae Benth., Edwards's Bot. Reg. 15: ad t. 1292. 1 Jan 1830
h3. Marrubieae Vis., Fl. Dalmat. 2: 214. 1847
h4. Lamieae Coss. \& Germ., Fl. Desc. Anal. Parts: 311, 324. 22 Feb 1845
i. Nepetoideae Burnett, Outlmes Bot.: 971. Feb 1835
i1. Elsholtzieae Burnett, Outlines Bot.: 971. Feb 1835
i2. Saturejeae Benth., Edwards's Bot. Reg. 15: ad t. 1282. 1 Nov 1829
i3. Prunelleae Raf., Fl. Tellur. 3: 84. Nov-Dec 1837
i4. Meriandreae Briq. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 3a: 298. Dec 1895
i5. Lepechinieae Briq. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 3a: 208. Dec 1895
i6. Hormineae Engl., Syllabus, ed. 1: 164. Apr 1892
i7. Mentheae Dumort., Fl. Belg.: 47. 1827
i7a. Salviinae Endl., Gen. Pl.: 614. Aug 1838
i7b. Clinopodiinae Dumort., F7. Belg.: 46. 1827
i7c. Nepetinae Coss. \& Germ., Fl. Desc. Anal. Paris: 311, 324. 22 Feb 1845
i7d. Melissinae Dumort., Fl. Belg.: 47. 1827
j8. Ocimeae Dumort., Anal. Fam. Pl.: 22. 1829
j8a. Lavandulinae Endl., Gen. Pl.: 611. Aug 1838
j8b. Hanceolinae A.J. Paton, Ryding \& Harley, Kew Bull. 58: 487. 2003
j8c. Hyptidinae Endl., Gen. Pl.: 610. Aug 1838
j8d. Ociminae J.A. Schmidt in C.F.P. von Martius, Fl. Bras. 8(1): 67, 69. 1858
j8e. Plectranthinae Endl., Gen. Pl.: 609. Aug 1838
450. Mazaceae Reveal, Kew Bull. 66: 47. Aug 2011
451. Phrymaceae Schauer in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 11: 520. 25

Nov 1847, nom. cons.
a1. Leucocarpeae Conzatti in L.C. Smith, Fl. Smop. Mex., ed. 2: 170. 1910
a2. Mimuleae Dumort., Anal. Fam. Pl.: 23. 1829
a3. Phrymeae Hogg, Veg. Kingd.: 584. 1858
452. Paulowniaceae Nakai, J. Jap. Bot. 24: 13. Dec 1949
453. Rehmanniaceae Reveal, Kew Buill. 66: 000. Aug 2011
454. Orobanchaceae Vent., Tabl. Règne Vég. 2: 292. 5 Mai 1799, nom. cons.

Aeginetiaceae Livera, Ann. Roy. Bot. Gard. (Peradeniya) 10: 153. 31 Mai 1927
Buchneraceae Lilja, Skånes Fl., ed. 2: 979. Apr-Dec 1870
Cyclocheilaceae Marais, Kew Bull. 35: 805. 28 Apr 1981
Euphrastaceae Martinov, Tekhno-Bot. Slovar: 239. 3 Aug 1820
Lindenbergtaceae Doweld, Tent. Syst. P1. Vasc.: xlix. 23 Dec 2001
Melampyraceae Rich. ex Hook. \& Lindl. in W.J. Hooker, Fl. Scot.: 2: 213. 10 Mar 1821
Nesogenaceae Marais, Kew Bull. 35: 798. 28 Apr 1981
Pedicularidaceae Juss., Gen. Pl.: 99. 4 Aug 1789
Phelypaeaceae Horan., Prim. Lin. Syst. Nat.: 73. 2 Nov 1834
Rhinanthaceae Vent., Tabl. Règne Vég. 2: 295. 5 Mai 1799
a. Rhinanthoideae Beilschm., Flora 16(Beibl. 7): 67, 104. 14 Jun 1833
a1. Pedicularideae Duby, Bot. Gall. 1:351. 12-14 Apr 1828
a2. Rhinantheae Lam. \& DC., Syn. Pl. Fl. Gall.: 208. 30 Jun 1806
a3. Aeginetieae Dumort., Anal. Fam. Pl.: 23. 1829
b. Orobanchoideae Eaton, Bot. Dict., ed. 4: 32. Apr-Mai 1836
b1. Gerardieae Benth., Edwards's Bot. Reg. 21: ad t. 1770. 1 Jun 1835
b2. Orobancheae Lam. \& DC., Syn. Pl. Fl. Gall.: 214. 30 Jun 1806
b3. Escobedieae Benth. in A.P. de Candolle \& AL.P.P. de Candolle, Prodr. 10: 189, 336. 8 Apr 1846
b4. Buchnereae Benth., Edwards's Bot. Reg. 21: ad t. 1770. 1 Feb 1835
b4a. Sopubiinae Hogg, Veg. Kingd.: 562. 1858
b4b. Buchnerinae Benth. \& Hook.f., Gen. Pl. 2: 923. 1-16 Mai 1876
b5. Cymbarieae D. Don, Edinburgh New Philos. J. 19: 112. Jul 1835
b6. Castillejeae Reveal, Phytoneuron 2012-37: 216. 23 Apr 2012
455. Thomandersiaceae Sreem., Phytologia 37: 412. 22 Oct 1977
456. Verbenaceae J. St.-Hil., Expos. Fam. Nat. 1: 245. Feb-Apr 1805, nom. cons.

Durantaceae J. Agardh, Theoria Syst. Pl.: 295. Apr-Sep 1858
Lantanaceae Martinov, Tekhno-Bot. Slovar: 357. 3 Aug 1820
a1. Petreeae Briq. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 3a: 144, 157. 26 Feb 1895
a2. Duranteae Benth., Ann. Mag. Nat. Hist., ser. 1, 2: 448. Feb 1839
a3. Casselieae Troncoso, Darwintana 18: 385. Mar 1974
a4. Citharexyleae Briq. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 3a: 144, 158. 26 Feb 1895
a5. Priveae Briq. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 3a: 144, 155. 26 Feb 1895
a6. Neospartoneae Olmstead \& O'Leary in H.E. Mark et al., Amer: J. Bot. 1653. Oct 2010
a7. Verbeneae Dumort., Anal. Fam. Pl.: 22. 1829
a8. Lantaneae Endl., Gen. Pl.: 635. Aug 1838
457. Pedaliaceae R. Br., Prodr.: 519. 27 Mar 1810, nom. cons.

Petreaceae J. Agardh, Theorta Syst. Pl.: 364. Apr-Sep 1858
Sesamaceae Horan., Prm. Lin. Syst. Nat.: 74. 2 Nov 1834
Trapellaceae Honda \& Sakis., Daikou Nippon Shokubutsu Bunrargaku [Syst.Pl. Japon.]: 378. 25 Apr 1930
a. Pedalioideae Arn., Botany: 121. 9 Mar 1832
a 1. Sesamothamneae Ihlenf., Mitt. Stactsinst. Allg. Bot. Hamburg 12: 119. 1967
a2. Pedalieae Dumort., Anal. Fam. Pl.: 22. 1829
a3. Sesameae Dumort., Anal. Fam. Pl.: 22. 1829
a4. Dicerocaryeae Reveal, Phytoneuron 2012-37: 216. 23 Apr 2012
b. Trapelloideae Stapf in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 3b: 260, 265. Mai 1893
458. Martyniaceae Horan., Char. Ess. Fam.: 130. 17 Jun 1847, nom. cons.
459. Linderniaceae Borsch, K.Müll. \& Eb.Fisch., Pl. Biol. (Stuttgart) 7: 76. 28 Jan 2005
a1. Microcarpaeae Miq., F7. Ned. Ind. 2: 700. 31 Dec 1857
a2. Lindernieae Rchb., F7. Germ. Excurs. 1(3): 385. Ju1-Dec 1831
460. Bignoniaceae Juss., Gen. Pl.: 137. 4 Aug 1789, nom. cons.
Crescentiaceae Dumort., Anal. Fam. Pl.: 20, 24. 1829
a1. Jacarandeae Seem., Ann. Mag. Nat. Hist., ser. 3, 10: 31. Jul 1862
a2. Tourrettieae G. Don, Gen. Hist. 4: 215, 231. 1837-8 Apr 1838
a3. Tecomeae Endl., Gen. Pl.: 711. Jan 1839
a4. Bignonieae Dumort., Anal. Fam. Pl.: 23. 1829
a5. Catalpeae DC. ex Meisn., Pl. Vasc. Gen.: Tab. Diagn. 300, Comm. 208. 25-31 Oct 1840
a6. Oroxyleae A.H. Gentry ex Reveal \& L.G. Lohmann, Phytoneuron 2012-37: 218. 23 Apr 2012
a7. Crescentieae G. Don, Gen. Hist. 4: 216, 232. 1837-8 Apr 1838
a8. Coleeae Bojer ex Reveal, Phytoneuron 2012-37: 216. 23 Apr 2012
461. Schlegeliaceae Reveal, Phytologia 79: 74. 29 Apr 1996
462. Acanthaceae Juss., Gen. Pl.: 102. 4 Aug 1789, nom. cons.
Avicenniaceae Miq. in J.G.C. Lehmann, Pl. Preiss. 1: 353. 14-16 Aug 1845, nom. cons.
Justictaceae Raf., Fl. Tellur. 4: 60. (med.) 1838
Mendonctaceae Bremek, Proc. Kon. Ned. Akad. Wetensch., ser. C, 56: 540. 27 Apr 1954
Meyeniaceae Sreem., Phytologıa 37: 412. 22 Oct 1977
Nelsonlaceae Sreem., Phytologia 37: 412. 22 Oct 1977
Thunbergtaceae Lilja, Skånes Fl., ed. 2: 979. Apr-Dec 1870
a. Nelsonioideae Pfeiff., Nomencl. Bot. 1(1): 10. ante 8 Dec 1871
b. Thunbergioideae T. Anderson in GH.K. Thwaites, Enum. Pl. Zeyl.: 223. Oct-Nov 1860
b1. Thunbergieae Dumort., Anal. Fam. Pl.: 23. 1829
b2. Mendoncieae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 293, Comm. 292. 25-31 Oct 1840
c. Avicennioideae Miers, London J. Bot. 7: 58. 1848
d. Acanthoideae Eaton, Bot. Dict., ed. 4: 33. Apr-Mai 1836
d1. Acantheae Dumort., Anal. Fam. Pl.: 23. 1829
d2. Ruellieae Dumort., Anal. Fam. Pl.: 23. 1829
d3. Justicieae Dumort., Anal. Fam. Pl.: 23. 1829
d4. Neuracantheae Reveal, Phytoneuron 2012-37: 219. 23 Apr 2012
d5. Barlerieae Nees in C.F.P. von Martius, Fl. Bras. 9: 7, 65. 1 Jun 1847
d6. Andrographideae Endl., Gen. Pl.: 707. Jan 1839
d7. Whitfieldieae Bremek. ex Reveal, Phytoneuron 2012-37: 220. 23 Apr 2012
463. Byblidaceae Domin, Acta Bot. Bohem. 1:3. 1922, nom. cons.
464. Lentibulariaceae Rich. in P.A. Poiteau \& P.J.F. Turpin, Fl. Paris 1: ed. fol.: 23, ed.
qu.: 26. 18 Jan 1808, nom. cons.
Pinguiculaceae Dumort., Anal. Fam. Pt.: 19, 23. 1829
Utriculariaceae Hoffmanns. \& Link, Fl. Portug. 1: 62. 1 Sep 1809
U. Asteranae Takht., Stst. Filog. Cvetk. Rast.: 451. 4 Feb 1967
Aquifolianae Doweld, Tent. Syst. Pl. Vasc.: lii. 23 Dec 2001

Aralianae Takht., Sist. Filog. Cvetk. Rast.: 357. 4 Feb 1967
Brumianae Doweld, Tent. Syst. Pl. Vasc.: liii. 23 Dec 2001
Campamilanae Takht. ex Reveal, Novon 2: 235. 13 Oct 1992
Dipsacanae Takht., Divers. Classif. Fl. Pl.: 396. 24 Apr 1997
Escallonianae Doweld, Tent. Syst. Pl. Vasc.: li. 23 Dec 2001
Phellinanae Doweld, Tent. Syst. P1. Vasc.: liv. 23 Dec 2001
86. Aquifoliales Senft, Lehrb. Forstl. Bot.: 2: 118. 1856

Cardopteridales Takht., Divers. Classif. Fl. Pl.: 352. 24 Apr 1997
Hetwingiales Takht., Divers. Classif. Fl. Pl.: 389. 24 Apr 1997
Ilicales Mart., Consp. Regn. Veg.: 26. Sep-Oct 1835
465. Cardiopteridaceae Blume, Rumphia 3: 205. Jun 1847, nom. cons.

Leptaulaceae Tiegh., Just's Bot. Jahresber: 25(2): 406. 19 Jan 1900
Perpterygiaceae G. King, Mat. Fl. Malay Penins.: 620. Apr 1895
466. Stemonuraceae Kårehed, Amer. J. Bot. 88: 2267. 14 Dec 2001
467. Aquifoliaceae Bercht. \& J. Presl, Přir. Rostlm: 2(110): 438, 440. 1825, nom. cons. Ilicaceae Dumort., Comment. Bot.: 59. Nov-Dec 1822
468. Phyllonomaceae Small in N.L. Britton, N. Amer. Fl. 22(1): 2. 22 Mai 1905
469. Helwingiaceae Decne., Ann. Sct. Nat. Bot., sér. 2, 6: 69. Aug 1836
87. Asterales Link, Handbuch 1: 731. 4-11 Jul 1829

Alseuosmiales Doweld, Tent. Syst. Pl. Vasc.: liv. 23 Dec 2001
Ambrostales Dumort., Anal. Fam. Pl.: 15. 1829
Anthemidales Link, Handbuch 1: 752. 4-11 Jul 1829
Boopidales Cass. ex Bercht. \& J. Presl, Přir. Rostlin: 255. Jan-Apr 1820
Brunonales Lindl., Nox. Pl.: 20. 17 Sep 1833
Calenculales Link, Handbuch 1: 776. 4-11 Jul 1829
Calycerales Link, Handbuch 1: 815. 4-11 Jul 1829
Campanulales Juss. ex Bercht. \& J. Presl, Přir. Rostlin: 253. Jan-Apr 1820
Carduales Small, Fl. S.E. U.S.: 1148. 22 Jul 1903
Cichoriales Link, Handbuch 1: 779. 4-11 Jul 1829
Cynarales Raf., Fl. Tellur. 1: 65. 1837
Echinopales Link, Handbuch 1: 814. 4-11 Jul 1829
Goodeniales R. Br. ex Bercht. \& J. Pres1, Pritr. Rostlin: 252. Jan-Apr 1820
Lobeliales Link, Handbuch 1: 636. 4-11 Jul 1829
Menyanthales J. Presl, Nowočeská Bibl. [Wšobecný Rostl.] 7: 1082. 1846
Pentaphragmatales Doweld, Tent. Syst. Pl. Vasc.: liv. 23 Dec 2001
Phellinales Doweld, Tent. Syst. Pl. Vasc.: liv. 23 Dec 2001
Rousseales Doweld, Tent. Syst. Pt. Vasc.: liii. 23 Dec 2001
Scaevolales Mart., Consp. Regn. Veg.: 32. Sep-Oct 1835
Stylidiales R. Br. ex Bercht. \& J. Presl, Přır. Rostlın: 253. Jan-Apr 1820
87a. Campanulineae Raf., Anal. Nat.: 194. Apr-Jul 1815
470. Rousseaceae DC., Prodr. 7(2): 521. late Dec 1839

Abrophyllaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov.]: 243. 20 Jul 1943
Carpodetaceae Fenzl, Denkschr. Köntgl.-Bater. Bot. Ges. Regensburg 3: 155.28 Nov 1841
a. Carpodetoideae J. Lundb., Bot. J. Linn. Soc. 137: 276. 3 Dec 2001
b. Rousseoideae Horan., Char. Ess. Fam.: 110. 17 Jun 1847
471. Campanulaceae Juss., Gen. Pl.: 163. 4 Aug 1789, nom. cons.

Cyananthaceae J. Agardh, Theoria Syst. Pl.: 384. Apr-Sep 1858
Cyphiaceae A. DC. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 7(2): 497. late Dec 1839

Cyphocarpaceae Reveal \& Hoogland, Phytologia 79: 74. 29 Apr 1996
Dortmannaceae Rupr., Fl. Ingr.: 649. Mai 1856
Jastonaceae Dumort., Anal. Fam. Pl.: 28, 30. 1829
Lobeltaceae Juss. in A.J.A. Bonplond, Descr. Pl. Malmaison: 19, t. 7. 17-24 Sep 1813, nom. cons.
Nemacladaceae Nutt., Trans. Amer. Philos. Soc., ser. 2, 8: 254. 15 Dec 1842
a. Nemacladoideae M.H.G. Gust., Phylogen. Stud. Asterales sensu lato: 34. 1996
b. Campanuloideae Burnett, Outlmes Bot.: 942, 1094, 1110. Feb 1835 b1. Cyanantheae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 273, Comm. 180. 5-11 Apr 1840
b2. Campanuleae Dumort., Fl. Belg.: 58.1827
c. Cyphioideae Walp., Ann. Bot. Syst. 2: 1037. 12-15 Mai 1852
d. Lobelioideae Burnett, Outlines Bot.: 942, 1094, 1110. Feb 1835
d1. Lobelieae Rchb., Fl. Germ. Excurs. 1(3): 296. Jul-Dec 1831
d2. Delisseeae C. Pres1, Prodr. Monogr. Lobel.: 46. Jul-Aug 1836
e. Cyphocar poideae Miers, London J. Bot. 7: 61. 1848

87b. Alseuosmiineae Shipunov in A. Shipunov \& J.L. Reveal, Phytotaxa 16: 63. 4 Feb 2011
472. Pentaphragmataceae J. Agardh, Theoria Syst. Pl.: 95. Apr-Sep 1858, nom. cons.
473. Alseuosmiaceae Airy Shaw, Kew Bull. 18: 249. 8 Dec 1965

Platyspermatiaceae Doweld, Tent. Syst. Pl. Vasc.: liv. 23 Dec 2001
474. Phellinaceae Takht., Sist. Filog. Cvetk. Rast.: 374. 4 Feb 1967
475. Argophyllaceae Takht., Sist. Magnoliof. [Syst. Magnolioph.]: 208. 24 Jun 1987 Corokiaceae Kapil ex Takht., Divers. Classif. Fl. Pl.: 374. 24 Apr 1997
476. Stylidiaceae R. Br., Prodr.: 565. 27 Mar 1810, nom. cons.

Donattaceae B. Chandler, Notes Roy. Bot. Gard. Edmburgh 5: 44. Nov 1911, nom. cons.
a. Donatioideae Mildbr. in H.G.A. Engler, Nat. Pflanzenr. 35: 18. 26 Mai 1908
b. Stylidioideae Kitt. in A. Richard, Nouv. Elém. Bot., ed. 3, Germ. trans1.: 827. 1840
b 1. Phyllachneae Baill., Hist. Pl. 8: 349, 372. Nov 1885
b2. Stylidieae Rchb., Handb. Nat. Pfl.-Syst.: 186. 1-7 Oct 1837
87c. Asterineae Burnett, Outlines Bot.: 901, 1111. Feb 1835
477. Menyanthaceae Dumort., Anal. Fam. Pl.: 20, 25. 1829, nom. cons.
478. Goodeniaceae R. Br., Prodr.: 573. 27 Mar 1810, nom. cons.

Brunonaceae Dumort., Anal. Fam. Pl.: 19, 21. 1829, nom. cons. Scaevolaceae Lindl., Intr. Nat. Syst. Bot.: 189. 27 Sep 1830
a. Goodenioideae Burnett, Outlmes Bot.: 939, 1094, 1110. Feb 1835
b. Dampieroideae Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 128. 29 Jun 2007
c. Brunonioideae Burnett, Outlines Bot.: 939, 1094, 1111. Feb 1835
479. Calyceraceae R. Br. ex Rich., Mém. Mus. Hist. Nat. 6: 74. Nov 1820, nom. cons. Boopidaceae Cass., Bull. Sct. Soc. Phulom. Parıs 1816: 160. 12 Oct 1816
480. Asteraceae Bercht. \& J. Presl, Přir. Rostlin: 254. Jan-Apr 1820, nom. cons., nom. alt. Ambrostaceae Bercht. \& J. Pres1, Přrr. Rostlin: 254. Jan-Apr 1820, nom. cons. Anthemidaceae Bercht. \& J. Presl, Přir. Rostln: 254. Jan-Apr 1820
Aposeridaceae Raf., New Fl. N. Amer. 4: 106. (med.) 1838 Arctotidaceae Bercht. \& J. Presl, Přır. Rostlın: 255. Jan-Apr 1820 Artemisiaceae Martinov, Tekhno-Bot. Slovar: 48. 3 Aug 1820 Athanastaceae Martinov, Tekhno-Bot. Slovar: 56. 3 Aug 1820 Calendulaceae Bercht. \& J. Presl, Přrr. Rostlin: 254. Jan-Apr 1820 Carduaceae Bercht. \& J. Pres1, Pritr. Rostlin: 255. Jan-Apr 1820 Carlnaceae Bercht. \& J. Presl, Přir. Rostlin: 255. Jan-Apr 1820 Centaureaceae Bercht. \& J. Presl, Přtr. Rostlin: 255. Jan-Apr 1820 Cichoriaceae Juss., Gen. Pl.: 168. 4 Aug 1789, nom. cons.

Cnicaceae Vest, Anlett. Stud. Bot.: 273, 297. 1818
Compositae Giseke, Prael. Ord. Nat. P1.: 538. Apr 1792, nom. cons. Cynaraceae Burnett, Outlmes Bot.: 926, 931, 1094, 1111. Jun 1835 Echinopaceae Bercht. \& J. Pres1, Přrr. Rostlın: 255. Jan-Apr 1820 Eupatoriaceae Bercht. \& J. Presl, Přir. Rostlin: 253. Jan-Apr 1820 Gnaphaltaceae Link ex F. Rudolphi, Syst. Orb. Veg.: 46. 5-12 Jul 1830 Grindeliaceae Rchb. ex A. Heller, Muhlenbergia 2: 330. 30 Dee 1907 Heleniaceae Raf., Cmcinnati Lit. Gaz. 2: 28. 24 Jul 1824 Heltanthaceae Bercht. \& J. Presl, Přir. Rostlin: 254. Jan-Apr 1820 Inulaceae Bercht. \& J. Pres1, Přir. Rostlm: 254. Jan-Apr 1820 Ivaceae Raf., Fl. Tellur. 1:31. 1837
Lactucaceae Drude in J.A. Schenk, Handb. Bot. 3(2): 369. 1886
Madtaceae A. Heller, Muhlenbergia 2: 332. 30 Dec 1907
Matricartaceae Voigt, Hort. Suburb. Calcutt.: 400. Aug-Dec 1845
Mutisiaceae Burnett, Outlines Bot.: 934, 935, 1094, 1111. Feb 1835
Nassauviaceae Burmeist., Handb. Naturgesch.: 290. 12-17 Dec 1836
Picridaceae Martinov, Tekhno-Bot. Slovar: 482. 3 Aug 1820
Santolinaceae Martinov, Tekhno-Bot. Slovar: 560. 3 Aug 1820
Senectonaceae Bercht. \& J. Presl, Přtr. Rostlm: 254. Jan-Apr 1820
Serratulaceae Martinov, Tekhno-Bot. Slovar: 577. 3 Aug 1820
Tanacetaceae Vest, Anleit. Stud. Bot.: 273, 298. 1818
Tussilagaceae Bercht. \& J. Pres1, Přrr. Rostlın: 254. Jan-Apr 1820
Vernontaceae Burmeist., Handb. Naturgesch.: 296. 12-17 Dec 1837
Xanthraceae Vest, Anlett. Stud. Bot.: 273, 298. 1818
Xeranthemaceae Döll, Rhein. Fl.: 498. 24-27 Mai 1843
a. Barnadesioideae K. Bremer \& R.K. Jansen, Ann. Missourt Bot. Gard. 79: 415. 6 Mai 1992
a 1. Barnadesieae D. Don, Trans. Linn. Soc. London 16: 273. 27 Mai 1830
b. Stifftioideae Panero in J.L. Panero \& V.A. Funk, Phytologta 89: 356. Dec 2007
b1. Stifftieae D. Don, Trans. Linn. Soc. London 16: 291. 27 Mai 1830
c. Mutisioideae Lindl. in J.C. Loudon, Encycl. Pl.: 1074. 1829
c1. Mutisieae Cass., J. Phys. Chim. Hist. Nat. Arts 88: 199. Mar 1819
c2. Onoserideae Solbrig, Taxon 12: 231. Jul 1963
c3. Nassauvieae Cass., J. Phys. Chim. Hist. Nat. Arts 88: 198. Mar 1819
d. Wunderlichioideae Panero \& V.A. Funk, Phytologta 89: 357. Dec 2007
d1. Wunderlichieae Panero \& V.A. Funk, Phytologia 91: 570. 1 Dec 2009
d2. Hyalideae Panero in J.L. Panero \& V.A. Funk, Phytologia 89: 358. Dec 2007
e. Gochnatioideae Panero \& V.A. Funk, Proc. Bıol. Soc. Wash. 115: 913. 30 Dec 2002 el. Gochnatieae Rydb., N. Amer. Fl. 33: 46. 15 Sep 1922
f. Hecastocleoideae Panero \& V.A. Funk, Proc. Biol. Soc. Wash. 115: 914. 30 Dec 2002
f1. Hecastocleeae Panero \& V.A. Funk, Phytologia 91: 569. 1 Dec 2009
g. Carduoideae Sweet, Hort. Brit.: 213. Jul-Aug 1826
g1. Dicomeae Panero \& V.A. Funk, Proc. Biol. Soc. Wash. 115: 916. 30 Dec 2002
g2. Oldenburgieae S. Ortiz, Compositae Newslett. 47: 2. 15 Apr 2009
g3. Tarchonantheae Vis., Fl. Dalmat. 2: 24, 60. 10 Nov 1847
g4. Cardueae Cass., J. Phys. Chim. Hist. Nat. Arts 88: 155. Feb 1819
g4a. Carlininae Dumort., Fl. Belg.: 72. 1827
g4b. Cardopatiinae Less., Syn. Gen. Compos.: 14. Jul-Aug 1832
g4c. Echinopsinae Dumort., Anal. Fam. Pl.: 32. 1829
g4d. Carduinae Dumort., Fl. Belg.: 73. 1827
g4e. Centaureinae Dumort., Fl. Belg.: 72. 1827
h. Pertyoideae Panero \& V.A. Funk, Proc. Biol. Soc. Wash. 115: 915. 30 Dec 2002 h1. Pertyeae Panero \& V.A. Funk, Phytologia 91: 569. 1 Dec 2009
i. Gymnarrhenoideae Panero \& V.A. Funk, Proc. Biol. Soc. Wash. 115: 912. 30 Dec 2002
i1. Gymnarrheneae Panero \& V.A. Funk, Phytologia 91: 569. 1 Dec 2009
j. Cichorioideae Chevall., Fl. Gén. Env. Paris 2: 531. 5 Jan 1828
j1. Cichorieae Lam. \& DC., Syn. Pl. F7. Gall.: 255. 30 Jun 1806
j1a. Warioniinae Gemeinholzer \& H. Kilian in V.A. Funk et al., Syst. Evol. Blogeogr. Compositae: 380. 25 Aug 2009
j1b. Scorzonerinae Dumort., Fl. Belg.: 63. 1827
j1c. Scolyminae Less., Syn. Gen. Compos.: 126. Jul-Aug 1832
jld. Lactucinae Dumort., Fl. Belg.: 59. 1827
j1e. Hyoseridinae Less., Syn. Gen. Compos.: 127. Jul-Aug 1832
j1f. Crepidinae Dumort., Fl. Belg.: 60. 1827
j1g. Chondrillinae Lamotte, Cat. Pl. Eur. Centr.: 56. Jul-Dec 1847
j1h. Hypochaeridinae Less., Syn. Gen. Compos.: 130. Jul-Aug 1832
j11. Hieraciinae Dumort., Fl. Belg.: 62. 1827
j1j. Microseridinae Stebbins in O.T. Solbrig, Taxon 12: 234. Jul 1963
j1k. Cichoriinae Dumort., Anal. Fam. Pl.: 30. 1829
j2. Arctotideae Cass., J. Phys. Chmm. Hist. Nat. Arts 88: 159. Feb 1819
j2a. Arctotidinae Dumort., Anal. Fam. Pl.: 32. 1829
j2b. Gorteriinae Benth. \& Hook.f., Gen. Pl. 2: 167, 211. 7-9 Apr 1873
j3. Eremothamneae H. Rob. \& Brettell, Phytologla 26: 164. 16 Jul 1973
j4. Liabeae Rydb., N. Amer. Fl. 33: 46. 15 Sep 1922
j4a. Munnoziinae H. Rob., Smtthsoman Contr. Bot. 54: 49. 28 Apr 1983
j4b. Liabinae Dumort., Anal. Fam. Pl.: 31. 1829
j4c. Paranepheliinae H. Rob., Smithsoman Contr. Bot. 54: 44. 28 Apr 1983
j4d. Sinclariinae H. Rob. in V.A. Funk et al., Syst. Evol. Blogeogr. Compositae: 437. 25 Aug 2009
j5. Vernonieae Cass., J. Phys. Chmm. Hist. Nat. Arts 88: 203. Mar 1819
j5a. Distephaninae S.C. Kelley \& H. Rob. in V.A. Funk et al., Syst. Evol. Biogeogr. Compositae: 448. 25 Aug 2009
j5b. Linziinae S.C. Kelley \& H. Rob. in V.A. Funk et al., Syst. Evol. Biogeogr. Compositae: 448. 25 Aug 2009
j5c. Gymnantheminae H. Rob., Proc. Brol. Soc. Wash. 112: 224. 23 Mar 1999
j5d. Hesperomanniinae S.C. Kelley \& H. Rob. in V.A. Funk et al., Syst. Evol. Biogeogr. Compositae: 450. 25 Aug 2009
j5e. Centrapalinae H. Rob., Proc. Bıol. Soc. Wash. 112: 223. 23 Mar 1999
j5f. Stokesiinae H. Rob., Proc. Biol. Soc. Wash. 112: 216. 23 Mar 1999
j5g. Leiboldiinae H. Rob., Smithsonian Contr. Bot. 89: 8. 15 Oct 1999
j5h. Piptocarphinae H. Rob., R.M. King \& F. Bohlmann, Phytologia 46: 426.12 Sep 1980
j5i. Elephantopinae Less., Linnaea 5: 135. Jan 1830
j5j. Rolandrinae Dumort., Anal. Fam. Pl.: 313. 1829
j5k. Pacourininae H. Rob., Proc. Biol. Soc. Wash. 112: 218. 23 Mar 1999
j51. Mesanthophorinae S.C. Kelley \& H. Rob. in V.A. Funk et al., Syst. Evol. Biogeogr. Compositae: 451. 25 Aug 2009
j5m. Erlangeinae H. Rob., Proc. Biol. Soc. Wash. 112: 222. 23 Mar 1999
j5n. Lepidaploinae S.C. Kelley \& H. Rob. in V.A. Funk et al., Syst. Evol. Biogeogr. Compositae: 450. 25 Aug 2009
j5o. Centratherinae H. Rob., R.M. King \& F. Bohlmann, Phytologia 46: 425. 12 Sep 1980
j5p. Lychnophorinae Benth. \& Hook.f., Gen. Pl. 2: 165, 171. 7-9 Apr 1873
j5q. Sipolisiinae H. Rob., Smithsonian Contr. Bot. 89: 13. 15 Oct 1999
j5r. Chrestinae H. Rob., Smithsonian Contr. Bot. 89: 11. 15 Oct 1999
j5s. Vernoniinae Dumort., Anal. Fam. Pl.: 31. 1829
j5t. Dipterocypselinae S.C. Kelley \& H. Rob. in V.A. Funk et al., Syst. Evol. Biogeogr. Compositae: 448. 25 Aug 2009
j5u. Trichospirinae Less., Linnaea 6: 690. Jul-Dec 1831
j6. Platycarpheae V.A. Funk \& H. Rob., Compositae Newslett. 47: 25. 15 Apr 2009
j7. Moquinieae H. Rob., Taxon 43: 39. 8 Feb 1994
k. Corymbioideae Panero \& V.A. Funk, Proc. Biol. Soc. Wash. 115: 910. 30 Dec 2002
k1. Corymbieae Panero \& V.A. Funk, Phytologia 91: 568. 1 Dec 2009

1. Asteroideae Lindl. in J.C. Loudon, Encycl. Pl.: 1074. 1829
2. Senecioneae Cass., J. Phys. Chim. Hist. Nat. Arts 88: 195. Mar 1819

11a. Abrotanellinae H. Rob., G.D. Carr, R.M. King \& A.M. Powell, Ann. Missourt Bot. Gard. 84: 896. 1998
11b. Tussilagininae Dumort., Fl. Belg.: 64. 1827
11c. Othonninae Less., Linnaea 6: 93. post Mar 1831
11d. Senecioninae Dumort., Fl. Belg.: 65. 1827
12. Calenduleae Cass., J. Phys. Chim. Hist. Nat. Arts 88: 161. Feb 1819
13. Doroniceae Panero, Phytologia 87: 1. 5 Apr 2005
14. Gnaphalieae Lecoq \& Juill., Dict. Rats. Term. Bot.: 296. 1831
15. Astereae Cass., J. Phys. Chrm. Hist. Nat. Arts 88: 195. Mar 1819

15a. Amellinae Schultz-Bip. in W.G. Walpers, Repert. Bot. Syst. 2: 954. 28-30 Dec 1843
15b. Hinterhuberinae Cuatrec., Webbta 24: 5. Dec 1969
15c. Brachyscominae G.L. Nesom, Phytologia 76: 203. 18 Jul 1994
15d. Bellidinae Willk. in H.M. Willkomm \& J.M.C. Lange, Prodr. Fl. Hispan. 2: 30. 1870

15e. Grangeinae Benth. \& Hook.f., Gen. Pl. 2: 166, 176. 7-9 Apr 1873
15f. Lageniferinae GL. Nesom, Phytologia 76: 207. 18 Jul 1994
15 g . Baccharidinae Less., Linnaea 5: 145. Jan 1830
15h. Podocomatinae G.L. Nesom, Phytologia 76: 209. 18 Jul 1994
15i. Asterinae Dumort., Fl. Belg.: 66. 1827
15j. Solidagininae O. Hoffm. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 5: 144, 145. Mai 1890
15k. Pentachaetinae G.L. Nesom, Sida 19: 264. 20 Dec 2000
151. Boltoniinae G.L. Nesom, Sida 19: 266. 20 Dec 2000

15m. Machaerantherinae GL. Nesom, Phytologia 76: 208. 18 Jul 1994
15n. Symphyotrichinae G.L. Nesom, Phytologia 76: 211. 18 Jul 1994
15o. Chaetopappinae G.L. Nesom, Sida 19: 264. 20 Dec 2000
15p. Astranthiinae G.L. Nesom, Sida 19: 265. 20 Dec 2000
15q. Chrysopsidinae G.L. Nes om, Phytologia 76: 203. 18 Jul 1994
15r. Conyzinae Schultz-Bip. in P.B. Webb \& S. Berthelot, Hist. Nat. Iles Canaries 3(2,2): 217. Feb 1844
16. Anthemideae Cass., J. Phys. Chim. Hist. Nat. Arts 88: 192. Mar 1819

16a. Osmitopsidinae Oberpr. \& Himmelr. in C. Oberprieler, S. Himmelreich \& R. Vogt, Willdenowta 37: 94. 31 Aug 2007
16b. Cotulinae Kitt., Taschenb. Fl. Deutschl., ed. 2, 2: 609. 1844

16c. Ursiniinae K. Bremer \& Humphries, Bull. Nat. Hist. Mus. London, Bot. 23: 91. 25 Nov 1993
16d. Athanasinae Pfeiff., Nomencl. Bot. 1(1): 323. ante 12 Jul 1872
16e. Plymasperminae Oberpr. \& Himmelr. in C. Oberprieler, S. Himmelreich \& R. Vogt, Willdenowia 37: 99. 31 Aug 2007
16f. Pentziinae Oberpr. \& Himmelr. in C. Oberprieler, S. Himmelreich \& R. Vogt, Willdenowia 37: 99. 31 Aug 2007
16g. Handeliinae K. Bremer \& Humphries, Bull. Nat. Hist. Mus. London, Bot. 23 : 108. 25 Nov 1993

16h. Artemisiinae Less., Linnaea 5: 163. Jan 1830
16i. Matricariinae Willk. in H.M. Willkomm \& J.M.C. Lange, Prodr. F7. Hispan. 2: 92. 1870
16j. Anthemidinae Dumort., Fl. Belg.: 69. 1827
16k. Leucanthemopsidinae Oberpr. \& Himmelr. in C. Oberprieler, S. Himmelreich \& R. Vogt, Willdenowia 37: 104. 31 Aug 2007
161. Leucantheminae K. Bremer \& Humphries, Bull. Nat. Hist. Mus. London, Bot. 23: 136. 25 Nov 1993
16m. Santolininae Willk. in H.M. Willkomm \& J.M.C. Lange, Prodr. Fl. Hispan. 2: 76. 1870

16n. Glebionidinae Oberpr. \& Himmelr. in C. Oberprieler, S. Himmelreich \& R. Vogt, Willdenowia 37: 106. 31 Aug 2007
17. Inuleae Cass., J. Phys. Chim. Hist. Nat. Arts 88: 193. Mar 1819

17a. Inulinae Dumort., Fl. Belg.: 67. 1827
17b. Plucheinae Dumort., Anal. Fam. Pl.: 31. 1829
18. Athroismeae Panero in J.L. Panero \& V.A. Funk, Proc. Bıol. Soc. Wash. 115: 917. 20 Dec 2002
18a. Athroisminae Panero, Phytologia 87: 2. 5 Apr 2005
18b. Anisopappinae Panero, Phytologia 87: 5. 5 Apr 2005
18c. Centipedinae Panero, Phytologia 87: 3. 5 Apr 2005
19. Feddeeae Pruski, Herrera, Anderb. \& Franc.-Ort., Syst. Bot. 33: 199. 26 Feb 2008
110. Helenieae Lindl. in J.C. Loudon, Encycl. Pl.: 1074. 1829

110a. Heleniinae Dumort., Anal. Fam. Pl.: 31. 1829
110b. Tetraneuridinae Rydb., N. Amer. Fl. 34: 1. 31 Dec 1914
110c. Psathyrotinae B.G. Baldwin, Syst. Bot. 25: 535. 28 Sep 2000
110d. Plateileminae B.G Baldwin, Syst. Bot. 25: 536. 28 Sep 2000
110e. Marshalliinae H. Rob., Phytologia 41: 42. 4 Dec 1978
111. Coreopsideae Lindl. in J.C. Loudon, Encycl. Pl.: 1074. 1829

111a. Chrysanthellinae O. Ryding \& K. Bremer, Syst. Bot. 17: 650. 27 Oct 1992
111b. Petrobiinae Benth. \& Hook f., Gen. Pl. 2: 166, 192. 7-9 Apr 1873
111c. Coreopsidinae Dumort., Anal. Fam. Pl.: 31. 1829
111d. Pinillosiinae H. Rob., Phytologıa 41: 42. 4 Dec 1978
112. Neurolaeneae Rydb., N. Amer. Fl. 33: 46. 15 Sep 1922

112a. Enydrinae H. Rob., Phytologia 41: 398. 16 Feb 1979
112b. Heptanthinae H. Rob., Phytologia 41: 41. 4 Dec 1978
112c. Neurolaeninae Stuessy, B.L. Turner \& AM. Powell in V.H. Heywood, J.B. Harborne \& B.L. Turner, Biol. Chem. Comp. 2: 645. Mar 1978
113. Tageteae Cass., J. Phys. Chim. Hist. Nat. Arts 88: 162. Feb 1819

113a. Coulterellinae H. Rob., Phytologia 41: 40.4 Dec 1978
113b. Varillinae B.L. Turner \& AM. Powell in V.H. Heywood, J.B. Harborne \& B.L. Turner, Biol. Chem. Comp. 2: 719. Mar 1978

113c. Jaumeinae Benth. \& Hook.f., Gen. Pl. 2: 167, 199. 7-9 Apr 1873

113d. Flaverinae Less., Syn. Gen. Compos.: 235. Jul-Aug 1832
113e. Tagetinae Dumort., Anal. Fam. Pl.: 31. 1829
114. Chaenactideae B.G. Baldwin in B.G. Baldwin, B.L. Wessa \& J.L. Panero, Syst. Bot. 27: 192. 4 Mar 2002
115. Bahieae B.G. Baldwin in B.G. Baldwin, B.L. Wessa \& J.L. Panero, Syst. Bot. 27: 192. 4 Mar 2002
116. Polymnieae Panero, Proc. Biol. Soc. Wash. 115: 919. 20 Dec 2002
117. Ambrosieae Cass., J. Phys. Chm. Hist. Nat. Arts 88: 191. Mar 1819

117a. Ambrosiinae Less., Linnaea 5: 151. Jan 1830
117b. Chromolepidinae Panero, Phytologia 87: 5. 5 Apr 2005
117c. Dugesiinae Panero, Phytologia 87: 7. 5 Apr 2005
117d. Ecliptinae Less., Linnaea 6: 153. post Mar 1831
117e. Enceliinae Panero, Phytologia 87: 8. 5 Apr 2005
117f. Engelmanniinae Stuessy in V.H. Heywood, J.B. Harborne \& B.L. Turner, Biol. Chem. Comp. 2: 645. Mar 1978
117g. Helianthinae Dumort., Fl. Belg.: 71. 1827
117h. Montanoinae H. Rob., Phytologia 41: 42. 4 Dec 1978
117i. Rojasianthinae Panero in J.L Panero \& V.A. Funk, Proc. Biol. Soc. Wash. 115: 920. 20 Dec 2002
117j. Rudbeckiinae Dumort., Anal. Fam. Pl.: 31. 1829. 1829
117k. Spilanthinae Panero, Phytologia 87: 9. 5 Apr 2005
1171. Verbesininae Benth. \& Hook.f., Gen. Pl. 2: 166, 193. 7-9 Apr 1873

117m. Zaluzaniinae H. Rob., Phytologia 41: 44. 4 Dec 1978
117n. Zinniinae Benth. \& Hook.f., Gen. Pl. 2: 166, 193. 7-9 Apr 1873
118. Millerieae Lindl. in J.C. Loudon, Encycl. Pl.: 1074. 1829

118a. Desmanthodiinae H. Rob., Phytologia 41: 40. 4 Dec 1978
118b. Dyscritothamninae Panero, Phytologia 87: 10. 5 Apr 2005
118c. Espeletiinae Cuatrec., Phytologia 35: 48. 23 Nov 1976
118d. Galinsoginae Benth. \& Hook.f., Gen. Pl. 2: 167, 198. 7-9 Apr 1873
118e. Guardiolinae H. Rob., Phytologia 41: 41. 4 Dec 1978
118f. Jaegeriinae Panero, Phytologia 87: 11. 5 Apr 2005
118 g . Melampodiinae Less., Linnaea 5: 149. Jan 1830
118h. Milleriinae Dumort., Anal. Fam. Pl.: 31. 1829
119. Madieae Jeps., F7. W. Middle Calif.: 483, 486. 1901

119a. Arnicinae B.G. Baldwin in B.G. Baldwin, B.L. Wessa \& J.L. Panero, Syst. Bot. 27: 193. 4 Mar 2002
119b. Baeriinae Benth. \& Hook.f., Gen. Pl. 2: 167, 200. 7-9 Apr 1873
119 c . Hulseinae B.G. Baldwin in B.G. Baldwin, B.L. Wessa \& J.L. Panero, Syst. Bot. 27: 194. 4 Mar 2002
119d. Madiinae Benth. \& Hook.f., Gen. Pl. 2: 167, 198. 7-9 Apr 1873
119e. Venegasiinae B.G. Baldwin in B.G. Baldwin, B.L. Wessa \& J.L. Panero, Syst. Bot. 27: 194. 4 Mar 2002
120. Perityleae B.G. Baldwin in B.G. Baldwin, B.L. Wessa \& J.L. Panero, Syst. Bot. 27. 192. 4 Mar 2002

120a. Galeaninae Panero \& B.G. Baldwin in K. Kubitzki, Fam. Gen. Vasc. Pl. 8: 508. 2007

120b. Lycapsinae H. Rob., Phytologia 46: 120. 4 Jun 1980
120c. Peritylinae A. Gray, Syn. Fl. N. Amer. 1(2): 71. Jul 1884
121. Eupatorieae Cass., J. Phys. Chim. Htst. Nat. Arts 88: 202. Mar 1819 121a. Oaxacaniinae R.M. King \& H. Rob., Phytologia 46: 449. 12 Sep 1980
121b. Hofmeisteriinae R.M. King \& H. Rob., Phytologia 46: 449. 12 Sep 1980

121c. Neomirandeinae R.M. King \& H. Rob., Phytologia 46: 448. 12 Sep 1980
121d. Trichocoroninae R.M. King \& H. Rob., Phytologia 46: 446. 12 Sep 1980
121e. Oxylobinae R.M. King \& H. Rob., Phytologia 38: 323. 18 Feb 1978
121f. Piqueriinae Benth. \& Hook.f., Gen. Pl. 2: 165, 172. 7-9 Apr 1873
121g. Mikaniinae R.M. King \& H. Rob., Phytologia 46: 448. 12 Sep 1980
121h. Hebecliniinae R.M. King \& H. Rob., Phytologia 46: 448.12 Sep 1980
121i. Alomiinae Less., Syn. Gen. Compos.: 154. Jul-Aug 1832
121j. Ayapaninae R.M. King \& H. Rob., Phytologia 46: 446. 12 Sep 1980
121k. Adenostemmatinae B.L. Rob., Proc. Amer. Acad. Arts 49: 435. 1913
1211. Critoniinae R.M. King \& H. Rob., Phytologia 46: 447. 12 Sep 1980

121m. Fleischmanniinae R.M. King \& H. Rob., Phytologia 46: 447. 12 Sep 1980
121n. Ageratinae Less., Syn. Gen. Compos.: 155. Jul-Aug 1832
1210. Gyptidinae R.M. King \& H. Rob., Phytologia 46: 446. 12 Sep 1980

121p. Disynaphiinae R.M. King \& H. Rob., Phytologia 39: 133. 24 Mai 1978
121q. Liatridinae Dumort., Anal. Fam. Pl.: 31. 1829
121r. Praxelinae R.M. King \& H. Rob., Phytologia 46: 448. 12 Sep 1980
121s. Eupatoriinae Dumort., Anal. Fam. Pl.: 31. 1829
88. Escalloniales Mart., Consp. Regn. Veg.: 47. Sep-Oct 1835

Tribelales Doweld, Tent. Syst. Pl. Vasc.: li. 23 Dec 2001
481. Escalloniaceae R. Br. ex Dumort., Anal. Fam. Pl.: 35, 37. 1829, nom. cons.

Anopteraceae Doweld, Tent. Syst. Pl. Vasc.: li. 23 Dec 2001
Eremosynaceae Dandy in J. Hutchinson, Fam. Fl. Pl., ed. 2: 460. 4 Jun 1959
Polyosmaceae Blume, Mus. Bot. 1: 258. 1851
Tribelaceae Airy Shaw, Kew Bull. 18: 269. 8 Dec 1965
a. Anopteroideae Reveal, Phytoneuron 2012-37: 215. 23 Apr 2012
b. Eremosynoideae Dandy in J. Hutchinson, Bull. Misc. Inf. 1927: 108. 12 Apr 1927
c. Tribeloideae Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 120. 29 Jun 2007
d. Escallonioideae Burnett, Outlines Bot.: 734, 1132. Feb 1835
e. Polyosmoideae Le Maout \& Decne., Traité Général Bot.: 262. Jan-Apr 1868
89. Bruniales Dumort., Anal. Fam. Pl.: 34. 1829

Cohumellates Mart., Consp. Regn. Veg.: 27. Sep-Oct 1835
Desfontantales Takht., Divers. Classif. Fl. Pl.: 377. 24 Apr 1997
482. Columelliaceae D. Don, Edinburgh New Philos. J. 6: 46, 49. Oct-Dec 1828, nom. cons.
483. Desfontainiaceae Endl. ex Pfeiff., Nomencl. Bot. 1: 1037. 3 Oct 1873, nom. cons.
484. Bruniaceae R. Br. ex DC., Prodr. 2: 43. Nov 1825, nom. cons.

Berzeliaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov]: 241. 20 Jul 1943
a1. Linconieae Reveal, Phytoneuron 2012-37: 217. 23 Apr 2012
a2. Audouinieae Nied. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 2a: 133. 9 Mar 1891
a3. Brunieae Rchb., F7. Germ. Excurs. 2(2): 546. 1832
90. APIALes Nakai, Hisi-Shokubutsu: 58. 1930

Ammiales Small, Fl. S.E. U.S.: 851. 22 Jul 1903
Araltales Juss. ex Bercht. \& J. Presl, Přr. Rostlin: 258. Jan-Apr 1820
Aralidiales Takht. ex Reveal, Novon 2: 238. 13 Oct 1992
Griselniales Takht. ex Reveal \& Doweld, Novon 9: 550. 30 Dec 1999
Hederales Link, Handbuch 2: 5. 4-11 Jul 1829
Pennantales Doweld, Tent. Syst. Pl. Vasc.: lii. 23 Dec 2001
Pittosporales Link, Handbuch 2: 222. 4-11 Jul 1829
Torricelliales Takht. ex Reveal \& Doweld, Novon 9: 550. 30 Dec 1999

90a. Aralidiineae Thome \& Reveal, Bot. Rev. (Lancaster) 73: 125. 29 Jun 2007
485. Pennantiaceae J. Agardh, Theoria Syst. Pl.: 301. Apr-Sep 1858
486. Torricelliaceae Hu, Bull. Fan Mem. Inst. Btol., Bot. Ser. 5: 311. 20 Jul 1934
487. Aralidiaceae Philipson \& B.C. Stone, Taxon 29: 402. 25 Aug 1980

Melanophyllaceae Takht. ex Airy Shaw, Kew Bull. 26: 493. 1972
488. Griseliniaceae J.R. Forst. \& G. Forst. ex A.Cunn., Ann. Mag. Nat. Hist. 3: 261. Dec 1839
489. Pittosporaceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 542. 19 Jul 1814, nom. cons.
90b. Apiineae G.M. Plunkett \& Lowry in G.M. Plunkett et al., S. African J. Bot. 70: 379. 7 Oct 2004
490. Araliaceae Juss., Gen. Pl.: 217. 4 Aug 1789, nom. cons.

Botryodendraceae J. Agardh, Theoria Syst. Pl.: 231. Apr-Sep 1858
Hederaceae Giseke, Prael. Ord. Nat. Pl.: 519. Apr 1792
Hydrocotylaceae Bercht. \& J. Pres1, Prir. Rostlin: 258. Jan-Apr 1820, nom. cons.
a. Aralioideae Eaton, Bot. Dict., ed. 4: 37. Apr-Mai 1836
a1. Cussonieae Seem., J. Bot. 6: 163. 1 Jun 1868
a2. Meryteae Viguier, Bot. Jahrb. Syst. 40(Litt.): 23.21 Mai 1907
a3. Hedereae Dumort., Fl. Belg.: 83. 1827
a4. Aralieae Rchb., F7. Germ. Excurs. 2(2): 484. 1832
a5. Panaceae Hook.f. in J.E.M. Le Maout \& J. Decaisne, General Syst. Bot.: 474. 25 Apr 1873
b. Hydrocotyloideae Burmeist., Handb. Naturgesch.: 308. 1837
491. Myodocarpaceae Doweld, Tent. Syst. Pl. Vasc.: lii. 23 Dec 2001
492. Apiaceae Lindl., Nat. Syst. Bot., ed. 2: 21.13 Jun 1836, nom. cons., nom. alt.

Actinotaceae Konstant. \& Melikjan, Bot. Zhurn. (Moscow \& Leningrad) 90: 1763. Dec 2005
Ammiaceae Bercht. \& C. Presl, Přtr. Rostlın: 259. Jan-Apr 1820
Angelicaceae Martinov, Tekhno-Bot. Slovar: 29. 3 Aug 1820
Bupleuraceae Bercht. \& J. Pres1, Přtr. Rostlm: 258. Jan-Apr 1820
Caucalıdaceae Bercht. \& J. Pres1, Prir. Rostlin: 259. Jan-Apr 1820
Coriandraceae Burnett, Outlines Bot.: 773, 783, 1093, 1128. Feb 1835
Daucaceae Martinov, Tekhno-Bot. Slovar: 183. 3 Aug 1820
Eryngiaceae Bercht. \& J. Presl, Přir. Rostlin: 259. Jan-Apr 1820
Ferulaceae Sacc., Nowvo Giorn. Bot. Ital. 4: 214. 31 Jul 1872
Imperatortaceae Martinov, Tekhno-Bot. Slovar: 328. 3 Aug 1820
Lagoeciaceae Bercht. \& J. Presl, Přir. Rostlm: 259. Jan-Apr 1820
Mackmlayaceae Doweld, Tent. Syst. Pl. Vasc.: lii. 23 Dec 2001
Pastinacaceae Martinov, Tekhno-Bot. Slovar: 457. 3 Aug 1820
Pimpinellaceae Bercht. \& J. Pres1, Přir. Rostlin: 258. Jan-Apr 1820
Santculaceae Bercht. \& J. Presl, Přir. Rosilin: 259. Jan-Apr 1820
Scandıcaceae Bercht. \& J. Presl, Přır. Rostlın: 259. Jan-Apr 1820
Selnaceae Bercht. \& J. Pres1, Přır. Rostlın: 259. Jan-Apr 1820
Slleraceae Bercht. \& J. Presl, Přtr. Rostlin: 259. Jan-Apr 1820
Smyrntaceae Burnett, Outlines Bot.: 773, 1093, 1128. Feb 1835
Umbelliferae Juss., Gen. Pl.: 218. 4 Aug 1789, nom. cons.
a. Mackinlayoideae G.M. Plunkett \& Lowry, J. S. African Bot. 70: 379. 7 Oct 2004 a1. Mackinlayeae Hook.f. in J.E.M. Le Maout \& J. Decaisne, General Syst. Bot.: 474. 25 Apr 1873
a2. Xanthosieae Reveal, Phytoneuron 2012-37: 220. 23 Apr 2012
a2a. Xanthosinae Tausch, Flora 17(1): ad t. 340. 14 Jun 1834
a2b. Centellinae Calest., Webbia 1: 101, 117. 10 Mai 1905
b. Azorelloideae G.M. Plunkett \& Lowry, J. S. African Bot. 70: 379. 7 Oct 2004
b1. Mulineae DC., Prodr. 4: 57, 78. late Sep 1830
b2. Azorelleae Reveal, Phytoneuron 2012-37: 215. 23 Apr 2012
b3. Bowlesieae Small, Man. S.E. Fl.: 961 . 30 Nov 1933
c. Saniculoideae Burnett, Outlmes Bot.: 774. Feb 1835
c1. Phlyctidocar peae Magee, C.I. Calviño, M. Lie, S.R. Downie, P.M. Tilney \& B.-E. van Wyk, Taxon 59: 578. 4 Apr 2010
c2. Steganotaenieae C.I. Calviño \& S.R. Downie, Molec. Phylogen. Evol. 44: 187. Jul 2007
c3. Saniculeae W.D.J. Koch, Nova Acta Phys.-Med. Acad. Caes. Leop--Carol. Nat. Cur. 12(1): 66, 138. 1824
d. Apioideae Seem., Fl. Vit.: 112. Jan 1866
d1. Lichtensteinieae Magee, C.I. Calviño, M. Lie, S.R. Downie, P.M. Tilney \& B.-E. van Wyk, Taxon 59: 578. 4 Apr 2010
d2. Marlothielleae Magee, C.I. Calviño, M. Lie, S.R. Downie, P.M. Tilney \& B.-E. van Wyk, Taxon 59: 578. 4 Apr 2010
d3. Choritaenieae Magee, C.I. Calviño, M. Lie, S.R. Downie, P.M. Tilney \& B.-E. van Wyk, Taxon 59: 578. 4 Apr 2010
d4. Annesorhizeae Magee, C.I. Calviño, M. Lie, S.R. Downie, P.M. Tilney \& B.-E. van Wyk, Taxon 59: 577. 4 Apr 2010
d5. Heteromorpheae M.F. Watson \& S.R. Downie, Amer. J. Bot. 87: 289. 15 Feb 2000
d6. Bupleureae Spreng. in J.J. Roemer \& J.A. Schultes, Syst. Veg. 6: xxxiii. Aug-Dec 1820
d7. Pleurospermeae M.F. Watson \& S.R. Downie, Amer. J. Bot. 87: 289. 15 Feb 2000
d8. Oenantheae Dumort., Fl. Belg.: 79. 1827
d9. Smyrnieae Spreng. in J.J. Roemer \& J.A. Schultes, Syst. Veg. 6: xxxvii. Aug-Dec 1820
d10. Aciphylleae M.F. Watson \& S.R. Downie, Amer. J. Bot. 87: 288. 15 Feb 2000
d11. Scandiceae Spreng. in J.J. Roemer \& J.A. Schultes, Syst. Veg. 6: xliii. Aug-Dec 1820
d11a. Daucinae Dumort., Fl. Belg.: 81. 1827
d11b. Ferulinae Drude in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 8: 115. Dee 1897
d11c. Scandicinae Tausch, Flora 17: 342, ad t. 340, 342. 14 Jun 1834
d11d. Torilidinae Dumort., Fl. Belg.: 81. 1827
d12. Careae Baill., Hist. Pl. 7: 174, 219. Apr 1879
d13. Pyramidoptereae Boissier, Fl. Ortent. 2: 1089. 1872
d14. Pimpinelleae Spreng. in J.J. Roemer \& J.A. Schultes, Syst. Veg. 6: xxxiv. AugDec 1820
d15. Echinophoreae Benth. \& Hook.f., Gen. Pl. 1: 862, 865. Sep 1867
d16. Caucalideae Spreng. in J.J. Roemer \& J.A. Schultes, Syst. Veg. 6: xl. Aug-Dec 1820
d17. Coriandreae W.D.J. Koch, Nova Acta Phys.-Med. Acad. Caes. Leop.-Carol. Nat. Cur. 12(1): 65, 82. 1824
d18. Hohenackerieae Calest., Webbia 1: 102, 133. 10 Mai 1905
d19. Apieae Takht. ex V.M. Vinogr., Fl. Vostochnoй Evropy 11: 339. 2004
d20. Angeliceae W.D.J. Koch, Nova Acta Phys.-Med. Acad. Caes. Leop.-Carol. Nat. Cur. 12(1): 65, 98. 1824
d21. Peucedaneae Dumort., Fl. Belg.: 82. 1827
d22. Tordylieae W.D.J. Koch, Nova Acta Phys-Med. Acad. Caes. Leop--Carol. Nat. Cur. 12(1): 65, 85. 1824
d23. Laser pitieae Coss. \& Germ., Fl. Desc. Anal. Paris: 197, 220. 22 Feb 1845
d24. Selineae Spreng. in J.J. Roemer \& J.A. Schultes, Syst. Veg. 6: xlvi. Aug-Dec 1820
91. Paracryphiales Takht. ex Reveal, Novon 2: 239. 13 Oct 1992

Quintintales Doweld, Tent. Syst. Pl. Vasc.: lii. 23 Dec 2001
Sphenostemonales Doweld, Tent. Syst. Pl. Vasc.: li. 23 Dec 2001
493. Paracryphiaceae Airy Shaw, Kew Bull. 18: 265. 8 Dec 1965

Sphenostemonaceae P. Royen \& Airy Shaw, Kew Bull. 27: 325. 23 Oct 1972
494. Quintiniaceae Doweld, Tent. Syst. Pl. Vasc.: lii. 23 Dec 2001
92. Dipsacales Juss. ex Bercht. \& J. Presl, Přtr. Rostlin: 255. Jan-Apr 1820

Adoxales Nakai, J. Jap. Bot. 24: 14. Dee 1949
Caprifoltales Bercht. \& J. Presl, Přır. Rostlin: 257. Jan-Apr 1820
Lonicerales T. Liebe, Grund. Spec. Bot.: 71. 31 Jan-1 Feb 1866
Sambucales Bercht. \& J. Presl, Přir. Rostlm: 258. Jan-Apr 1820
Valerianales DC. ex Bercht. \& J. Presl, Přir. Rostlin: 256. Jan-Apr 1820
Viburnales Dumort., Anal. Fam. Pl.: 29. 1829
495. Adoxaceae E. Mey., Preuss. Pfl.-Gatt.: 198. 1-7 Sep 1839, nom. cons.

Sambucaceae Batsch ex Borkh., Bot. Wörterb. 2: 322. 1797, nom. cons. prop.
Tinaceae Martinov, Tekhno-Bot. Slovar: 635. 3 Aug 1820.
Viburnaceae Raf., Ann. Gén. Sci. Phys. Bruxelles 6: 87. Oct-Dee 1820, nom. cons. prop.
a. Opuloideae Raf., Ann. Gén. Sci. Phys. Bruxelles 6: 87. Oct-Dec 1820
a 1. Viburneae O.Berg, Pharm. Bot., ed. 5: 305. 1866
a2. Sambuceae A. Rich. ex Duby, Bot. Gall. 1: 244. 12-14 Apr 1828
b. Adoxoideae Syme in J.E. Smith \& J. Soweby, Engl. Bot., ed. 3(B), 4: 197. 1865
496. Diervillaceae Pyck in A. Backlund \& N. Pyck, Taxon 47: 658. 13 Aug 1998
497. Caprifoliaceae Juss., Gen. Pl.: 210. 4 Aug 1789, nom. cons.

Loniceraceae Vest, Anleit. Stud. Bot.: 272, 296.1818
a1. Triosteeae Reveal, Phytoneuron 2012-37: 219. 23 Apr 2012
a2. Caprifolieae Dumort., Fl. Belg.: 55. 1827
498. Linnaeaceae Backlund in A. Backlund \& N. Pyck, Taxon 47: 658. 13 Aug 1998
499. Morinaceae Raf., Ann. Gén. Sci. Phys. Bruxelles 6: 88. Oct-Dec 1820
500. Dipsacaceae Juss., Gen. Pl.: 194. 4 Aug 1789, nom. cons.

Scabiosaceae Martinov, Tekhno-Bot. Slovar: 563. 3 Aug 1820
501. Valerianaceae Batsch, Tab. Afin. Regni Veg.: 227. 2 Mai 1802, nom. cons.

Triplostegiaceae AE. Bobrov ex Airy Shaw, Kew Bull. 18: 269. 8 Dee 1965
a. Triplostegioideae Reveal, Phytoneuron 2012-37: 219. 23 Apr 2012
b. Valerianoideae Raf., Ann. Gén. Scr. Phys. Bruxelles 6: 88. Oct-Dec 1820

## Summary arrangement of Magnoliddae Novák ex Takht.

A. Amborellanae M.W. Chase \& Reveal

1. Amborellales Melikyan, A.V. Bobrov \& Zaytzeva
2. Amborellaceae Pichon
B. Nymphaeanae Thorne ex Reveal
3. Nymphaeales Salisb. ex Bercht. \& J. Pres1
4. Hydatellaceae U. Hamann
5. Cabombaceae Rich. ex A. Rich.
a. Hydropeltoideae Eaton
b. Cabomboideae Burnett
6. Nymphaeaceae Salisb.
a. Nupharoideae M. Ito
b. Nymphaeoideae Arn.
b1. Cabombeae Gardner
b2. Nymphaeeae DC.
b2a. Nymphaeinae Engl.
b2b. Ondineinae Reveal
b3. Euryaleae Endl.
C. Austrobaileyanae M. W. Chase \& Reveal
7. Austrobaileyales Takht. ex Reveal
8. Austrobaileyaceae Croizat
9. Trimeniaceae Gibbs
10. Schisandraceae Blume
11. Illiciaceae Bercht. \& J. Presl
12. Chloranthales Mart.
13. Chloranthaceae R. Br. ex Sims
D. Magnolianae Takht.
14. Magnoliales Juss. ex Bercht. \& J. Presl
15. Myristicaceae R. Br.
16. Magnoliaceae Juss.
a. Magnolioideae Arn.
b. Liriodendroideae Y.W. Law
17. Degeneriaceae I.W. Bailey \& AC. Sm.
18. Himantandraceae Diels
19. Eupomatiaceae Orb.
20. Annonaceae Juss.
a. Annonoideae Raf.
b. Monodoroideae Hutch.
21. Laurales Juss. ex Bercht. \& J. Presl
6a. Atherospermatineae J. Pres1
22. Calycanthaceae Lindl.
a. Idiospermoideae Thorne
b. Calycanthoideae Burnett
23. Siparunaceae Schodde
a. Siparunoideae Money, I.W. Bailey \& Swamy ex Thorne \& Reveal
b. Glossocalycoideae Thorne ex Philipson
24. Gomortegaceae Reiche
25. Atherospermataceae R . Br .a 1. Atherospermateae Bartl.
a2. Laurelieae Pax
6b. Monimiineae J. Pres1
26. Hernandiaceae Blume
a. Hernandioideae Endl. ex Miq.
b. Gyrocarpoideae J. Williams
c. Sparattanthelioideae Thorne \& Reveal
27. Monimiaceae Juss.
a. Hortonioideae Thorne \& Reveal
b. Monimioideae Raf.
b1. Palmerieae Philipson
b2. Monimieae Rchb.
b3. Peumieae Philipson
c. Mollinedioideae Thorne
c1. Hedycaryeae A. DC.
c2. Mollinedieae Janet R. Perkins
c3. Hennecartieae Philipson
28. Lauraceae Juss.
a. Cassythoideae Burnett
a 1. Hypodaphnideae Kostermans ex Reveal
a2. Cassytheae Dumort.
a3. Cryptocaryeae Nees
a4. Perseeae Nees
b. Lauroideae Burnett
29. Canellales Cronquist
30. Winteraceae R. Br. ex Lindl.
a1. Takhtajanieae Takht. ex Reveal
a2. Tasmannieae Takht. ex Reveal
a3. Wintereae Meisn.
31. Canellaceae Mart.
32. Piperales Bercht. \& J. Presl
33. Saururaceae F. Voigt
34. Piperaceae Giseke
a. Verhuellioideae Trel. ex Samain \& Wanke
b. Zippelioideae Samain \& Wanke
c. Piperoideae Arn.
d. Peperomioideae Miq.
35. Lactoridaceae Engl.
36. Hydnoraceae C. Agardh
37. Aristolochiaceae Juss.
a. Asaroideae Burnett
a1. Sarumeae O.C. Schmidt ex Reveal
a2. Asareae Rchb.
b. Aristolochioideae Burnett
b1. Apameae Soler.
b2. Aristolochieae Dumort. ex Spach
E. Lilianae Takht.
38. Acorales Mart.
39. Acoraceae Martinov
40. ARales Juss. ex Bercht. \& J. Pres1
41. Araceae Juss.
a. Gymnostachyoideae Bogner \& Nicolson
b. Orontioideae R. Br. ex Müll. Berol.
b1. Orontieae Dumort.
b2. Symplocarpeae Engl.
c. Lemnoideae Bab.
d. Pothoideae Engl.
d1. Anthericeae Bartl.
d2. Potheae Bartl.
e. Monsteroideae Engl.
el. Heteropsideae Engl.
e2. Anadendreae Bogner \& J. French
e3. Monstereae Engl.
f. Lasioideae Engl.
g. Zamioculcadoideae Bogner \& Hesse
g1. Stylochaetoneae Schott
g2. Zamioculcadeae Schott ex Engl.
h. Aroideae Arn.
h1. Calleae Bartl.
h2. Philonotieae S.Y. Wong \& P.C. Boyce
h3. Cryptocoryneae Blume
h4. Schismatoglottideae Nakai
h5. Anubiadeae Engl.
h6. Callopsideae Engl.
h7. Culcasieae Engl.
h8. Montrichardieae Engl.
h9. Philodendreae Schott
h10. Homalomeneae M. Hotta
h11. Aglaonemateae Engl.
h12. Nephthytideae Engl.
h13. Zantedeschieae Engl.
h14. Dieffenbachieae Engl.
h15. Spathicarpeae Schott
h16. Thomsonieae Blume
h17. Caladieae Schott
h18. Ambrosineae Schott
h19. Arisareae Dumort.
h20. Peltrandreae Engl.
h21. Arophyteae A. Lemee ex Bogner
h22. Protareae Engl.
h23. Pistieae Lecoq \& Juill.
42. Colocasieae Brongn.
h25. Arisaemateae Nakai
h26. Areae R. Br. ex Duby
43. Tofieldiales Reveal \& Zomlefer
44. Tofieldiaceae Takht.
45. Alismatales R. Br. ex Bercht. \& J. Pres1
46. Alismataceae Vent.
47. Limnocharitaceae Takht. ex Cronquist
48. Butomaceae Mirb.
49. Hydrocharitaceae Juss.
a. Hydrocharitoideae Eaton
b. Stratiotoideae Luerss.
c. Anacharidoideae Thomé
d. Najadoideae Luerss.
d1. Najadeae Dumort.
d2. Vallisnerieae Dumort.
d3. Halophileae Aschers.
50. Potamogetonales Dumort.
51. Scheuchzeriaceae F. Rudolphi
52. Aponogetonaceae Planch.
53. Juncaginaceae Rich.
a. Juncaginoideae Arn.
b. Lilaeoideae Thorne \& Reveal
54. Maundiaceae Nakai
55. Zosteraceae Dumort.
56. Cymodoceaceae Vines
57. Zannichelliaceae Chevall.
58. Potamogetonaceae Bercht. \& J. Pres1
59. Posidoniaceae Vines
60. Ruppiaceae Horan.
61. Petrosaviales Takht.
62. Petrosaviaceae Hutch.
a. Japonolirioideae M.N. Tamura
b. Petrosavioideae Reveal
63. Nartheciales Reveal \& Zomlefer
64. Nartheciaceae Fr. ex Bjurzon
65. Dioscoreales Mart.
66. Taccaceae Dumort.
67. Thismiaceae J. Agardh
68. Burmanniaceae Blume
69. Dioscoreaceae R. Br.
a. Stenomeridoideae Reveal
b. Trichopoideae Reveal
c. Dioscoreoideae Arn.
70. Pandanales R. Br. ex Bercht. \& J. Presl
71. Triuridaceae Gardner
a 1. Sciaphileae Hook.f.
a2. Triurideae Miers
a3. Kupeeae Cheek
72. Velloziaceae J. Agardh
a. Velloziodeae Rendle
b. Xerophytoideae Herb.
c. Acanthochlamydoideae P.C. Kao
73. Stemonaceae Caruel
a. Stemonoideae Reveal
a1. Stemoneae Voigt
a2. Croomieae Reveal
b. Pentastemonoideae Reveal
74. Cyclanthaceae Poit. ex A. Rich.
a. Carludovicoideae Harling
b. Cyclanthoideae Burnett
75. Pandanaceae R. Br.
a. Pandanoideae Burnett
b. Freycinetioideae Kurz
76. Liliales Perleb
77. Campynematineae Reveal
78. Corsiaceae Becc.
79. Campynemataceae Dumort.
18b. Alstroemeriineae J. Pres1
80. Petermanniaceae Hutch.
81. Colchicaceae DC.
a. Colchicoideae Burmeist.
a1. Burchardieae J.C. Manning \& Vinn.
a2. Uvularieae A. Gray ex Meisn.
a3. Tripladenieae Vinn. \& J.C. Manning
b. Uvularioideae A. Gray
b1. Colchiceae T. Nees \& C.H. Eberm. ex Endl.
b2. Iphigenieae Hutch.
b3. Anguillarieae Pfeiff.
82. Luzuriagaceae Lotsy
83. Alstroemeriaceae Dumort.
84. Melanthiaceae Batsch ex Borkh.
al. Meliantheae Dumort.
a2. Heloniadeae Fr.
a3. Chionographideae Nakai
a4. Parideae Bartl.
a5. Xerophylleae S. Watson
18c. Smilacineae Reveal
85. Philesiaceae Dumort.
86. Rhipogonaceae Conran \& Clifford
87. Smilacaceae Vent.
18d. Liliineae Rchb.
88. Liliaceae Juss.
a. Medeoloideae M.N. Tamura
b. Lilioideae Eaton
b1. Tulipeae Duby
b2. Lilieae Lam. \& DC.
c. Streptopoideae Mabberley ex Reveal
d. Tricyrtidoideae Thorne \& Reveal
e. Calochortoideae Thorne \& Reveal ex Reveal
89. Orchidales Raf.
90. Orchidaceae Juss.
a. Apostasioideae Horan.
b. Vanilloideae Szlach.
b1. Pogonieae Pfetzer ex Garay \& Dunsterv.
b2. Vanilleae Blume
c. Cypripedioideae Lindl. ex Endl.
d. Limodoroideae Burnett
d1. Vandeae Lindl.
d2. Neottieae Lindl.
d3. Epipogonieae Parl.
d3a. Nerviliinae Schltr.
d3b. Epipogoniinae Schltr.
d4. Triphoreae Dressler
d4a. Triphorinae Szlach.
d4b. Diceratostelinae Szlach.
d5. Tropidieae Dressler
d6. Sobralieae Pfitzer
d7. Xerorchideae P.J. Cribb
d8. Gastrodieae Lindl.
d9. Arethuseae Lindl.
d9a. Coelogyninae Benth.
d9b. Arethusinae Benth.
d10. Malaxideae Lindl.
d11. Dendrobieae Lindl. ex Endl.
d12. Maxillarieae Pfitzer
d12a. Eriopsidinae Szlach.
d12b. Coeliopsidinae Szlach.
d12c. Stanhopeinae Benth.
d12d. Maxillariinae Benth.
d12e. Oncidiinae Benth.
d12f. Zygopetalinae Schltr.
d12g. Vargasiellinae C. Schweinf. ex G.A. Romero \& Carnevali
d12h. Cymbidiinae Benth.
d12i. Cyrtopodiinae Benth.
d12j. Catasetinae Schltr.
d12k. Eulophiinae Benth.
d13. Corallorrhizeae Fr.
d14. Epidendreae Lindl.
d14a. Coeliinae Dressler
d14b. Chysidinae Schltr.
d14c. Ponerinae Pfitzer
d14d. Bletiinae Benth.
d14e. Laeliinae Benth.
d14f. Pleurothallidinae Lindl. ex G. Don
d15. Collabieae Pfitzer
d16. Podochileae Pfitzer
d16a. Thelasinae Ridl.
d16b. Eriinae Benth.
f. Orchidoideae Eaton
f1. Codonorchideae P.J. Cribb
f2. Satyrieae Fr.
f2a. Brownleeinae H.P. Linder \& H. Kurzweil
f 2 b . Coryciinae Benth.
f2c. Disinae Benth.
f2d. Huttonaeinae Schltr.
f2e. Satyriinae Pfitzer
f3. Orchideae Small
f3a. Habenariinae Benth.
f3b. Orchidinae Dressler \& Dodson ex Reveal
f4. Chloraeeae Pfeiff.
f5. Pterostylideae P. Royen
f6. Cranichideae Pfeiff.
f6a. Pterostylidinae Pfitzer
f6b. Physurinae Lindl. ex Meisn.
f6c. Galeottiellinae Salazar \& M.W. Chase
f6d. Manniellinae Schltr.
f6e. Cranichidinae Lindl. ex Meisn.
f6f. Spiranthinae Lindl. ex Meisn.
f6g. Chlor aeinae Pfitzer
f6h. Achlydosinae M.A. Clem. \& D.L. Jones
f7. Diurideae Endl. ex Butzin
f7a. Rhizanthellinae R.S. Rogers
f7b. Prasophyllinae Schltr.
f7c. Cryptostylidinae Schltr.
f7d. Drakaeinae Schltr.
f7e. Thelymitrinae Lindl. ex Meisn.
f7f. Megastylidinae Schltr.
f7g. Eriochilinae M.A. Clem. \& D.L. Jones
f7h. Spuricianthinae M.A. Clem. \& D.L. Jones
f7i. Townsoniinae M.A. Clem. \& D.L. Jones
f7j. Acianthinae Schltr.
f7k. Diuridinae Lindl. ex Meisn.
f71. Adenochilidinae M.A. Clem. \& D.L. Jones
f7m. Caladeniinae Pfitzer
f7n. Coilochilideae M.A. Clem. \& D.L. Jones
91. Boryaceae M.W. Chase, Rudall \& Conran
92. Blandfordiaceae R. Dahlgren \& Clifford
93. Lanariaceae H. Huber ex R. Dahlgren
94. Asteliaceae Dumort.
95. Hypoxidaceae R. Br.
96. Iridales Raf.
20a. Iridineae Engl.
97. Tecophilaeaceae Leyb.
a. Wallerioideae R. Dahlgren
b. Tecophilaeoideae Reveal
c. Cyanastroideae Engl. ex Reveal
98. Ixiolirionaceae Nakai
99. Doryanthaceae R. Dahlgren \& Clifford
100. Iridaceae Juss.
a. Isophysidoideae Takht. ex Thorne \& Reveal
b. Iridoideae Eaton
b1. Irideae Kitt.
b2. Trimezieae Ravenna
b3. Tigridieae Kitt.
b4. Sisyrinchieae Klatt
c. Patersonioideae Goldblatt
d. Geosiridoideae Goldblatt \& J.C. Manning
e. Aristeoideae Vines
f. Nivenioideae Schulze ex Goldblatt
g. Crocoideae Burnett
g1. Tritoniopsideae Goldblatt \& J.C. Manning
g2. Ixieae Dumort.
g3. Freesieae Goldblatt \& J.C. Manning
g4. Gladioleae Dumort.
g5. Watsonieae Klatt
20b. Asphodelineae Thorne \& Reveal
101. Xeronemataceae M.W. Chase, Rudall \& M.F. Fay
102. Hemerocallidaceae R . Br .
a. Hemerocallidoideae Lindl.
a1. Phormieae Nakai
a2. Dianelleae Baker
a3. Hemerocallideae Duby
a4. Johnsonieae Benth.
b. Xanthorrhoeoideae Reveal
c. Asphodeloideae Burnett
c1. Asphodeleae Lam. \& DC.
cla. Asphodelinae Bakerc1b. Kniphofiinae Engl.
c2. Aloeae A. Rich.
20c. Hyacinthineae Link
103. Agapanthaceae F. Voigt
104. Alliaceae Borkh.
a. Allioideae Herb.
b. Tulbaghioideae M.F. Fay \& M.W. Chase
c. Gilliesioideae Arn.
105. Amaryllidaceae J. St.-Hil.
a1. Amaryllideae Dumort.
a2. Cyrtantheae Traub
a3. Haemantheae Hutch.
a4. Calostemmateae D. Müll.-Doblies \& U. Müll.-Doblies
a5. Gethyllideae Dumort.
a6. Lycorideae Nakai
a7. Pancratieae Dumort.
a8. Narcisseae Lam. \& DC.
a9. Galantheae Parl.
a10. Hippeastreae Herb. ex Sweet
a11. Eucharideae Hutch.
a12. Hymenocallideae Small
a13. Stenomesseae Traub
a14. Clinantheae Meerow
a15. Eustephieae Hutch.
106. Hyacinthaceae Batsch ex Borkh.
a. Oziroëoideae Speta
b. Urgineoideae Speta
b1. Oziroëeae M.W. Chase, Reveal \& M.F. Fay
b2. Urgineeae Rouy
c. Ornithogaloideae Speta
cl. Ornithogaleae Rouy
c2. Dipcadieae Rouy
d. Hyacinthoideae Speta
d1. Massonieae Baker
d2. Hyacintheae Dumort.
107. Aphyllanthaceae Burnett
108. Themidaceae Salisb.
109. Agavaceae Dumort.
a. Chlorogaloideae Lotsy
b. Agavoideae Herb.
b1. Anemarrheneae Reveal
b2. Agaveae Dumort.
b3. Behnieae Reveal
b4. Herrerieae Baill.
c. Hesperocallidoideae Thorne \& Reveal
d. Anthericoideae Irvine
20d. Asparagineae J. Pres1
110. Laxmanniaceae Bubani
a. Lomandroideae Thorne \& Reveal
b. Laxmannioideae Thorne \& Reveal ex Reveal
111. Asparagaceae Juss.
112. Ruscaceae M. Roem.
a. Eriospermoideae Reveal
b. Convallarioideae Herb.
b1. Polygonateae Benth. \& Hook.f.
b2. Convallarieae Dumort.
b3. Aspidistreae Endl. ex Meisn.
c. Ruscoideae Dippel
d. Dracaenoideae Engl.
e. Nolinoideae Burnett
113. DASYPOGONALES Doweld
114. Dasypogonaceae Dumort.
a. Dasypogonoideae Thorne \& Reveal
b. Kingioideae Meisn.
115. Arecales Bromhead
116. Arecaceae Bercht. \& J. Pres1
a. Calamoideae Beilschm.
a 1. Eugeissoneae W.J. Baker \& J. Dransf.
a2. Lepidocaryeae Dumort.
a2a. Ancistrophyllinae Bece.
a2b. Raphiinae Wendl.
a2c. Mauritiinae Meisn.
a3. Calameae Lecoq \& Juill.
a3a. Korthalsiinae Bece.
a3b. Salaccinae Becc.
a3c. Metroxylinae Blume
a3d. Pigafettinae J. Dransf. \& N.W. Uhl
a3e. Plectocomiinae J. Dransf. \& N.W. Uhl
a3f. Calaminae Meisn.
b. Nypoideae Griff.
c. Coryphoideae Burnett
c1. Sabaleae Dumort.
c2. Cryosophileae J. Dransf., N.W. Uhl, Rasmussen, W.J. Baker, M.M. Harley \& C.Lewis
c3. Phoeniceae Horan.
c4. Trachycar peae Satake
c4a. Rhapidinae J. Dransf., N.W. Uhl, Rasmussen, W.J. Baker, M.M. Harley \& C.Lewis
c4b. Livistoninae Saakov
c5. Chuniophoeniceae J. Dransf., N.W. Uhl, Rasmussen, W.J. Baker, M.M. Harley \&C. Lewis
c6. Caryoteae Scheff.
c7. Corypheae Martinov
c8. Borasseae Dumort.
c8a. Hyphaeninae Becc. ex J. Dransf. \& N.W. Uh1
c8b. Lataniinae Meisn.
d. Ceroxyloideae Drude
d1. Cyclospatheae O.F. Cook
d2. Ceroxyleae Blatter
d3. Phytelephanteae Horan.
e. Arecoideae Burnett
el. Iriarteeae Drude
e2. Chamaedoreeae Drude
e3. Podococceae J. Dransf. \& N. W. Uhl
e4. Oranieae Becc.
e5. Sclerospermateae J. Dransf., N.W. Uhl, Rasmussen, W.J. Baker, M.M. Harley \& C. Lewis
e6. Roystoneeae J. Dransf., N.W. Uhl, Rasmussen, W.J. Baker, M.M. Harley \& C. Lewis
e7. Reinhardtieae J. Dransf., N.W. Uhl, Rasmussen, W.J. Baker, M.M. Harley \& C. Lewis
e8. Cocoseae Dumort.
e8a. Attaleinae Drude
e8b. Bactridinae Drude
e8c. Elaeidinae Drude
e9. Manicarieae J. Dransf., N.W. Uhl, Rasmussen, W.J. Baker, M.M. Harley \& C. Lewis
e10. Euterpeae J. Dransf., N.W. Uhl, Rasmussen, W.J. Baker, M.M. Harley \& C. Lewis
e11. Geonomateae Luerss.
e12. Leopoldinieae J. Dransf., N. W. Uhl, Rasmussen, W.J. Baker, M.M. Harley \& C. Lewis
e13. Pelagodoxeae J. Dransf., N.W. Uhl, Rasmussen, W.J. Baker, M.M. Harley \& C. Lewis
e14. Areceae Dumort.
e14a. Archontophoenicinae J. Dransf. \& N.W. Uhl
e14b. Arecinae Engl.
e14c. Basseliniinae J. Dransf., N.W. Uh1, Rasmussen, W.J. Baker, M.M. Harley \& C. Lewis
e14d. Car poxylinae J. Dransf., N. W. Uhl, Rasmussen, W.J. Baker, M.M. Harley \& C. Lewis
e14e. Clinospermatinae J. Dransf., N.W. Uhl, Rasmussen, W.J. Baker, M.M. Harley \& C. Lewis
e14f. Dypsidinae Becc.
e14g. Laccospadicinae J. Dransf., N.W. Uhl, Asmussen, W.J. Baker, M.M. Harley \& C. Lewis
e14h. Oncospermatinae Benth. \& Hook.f.
e14i. Ptychospermatinae Benth. \& Hook.f.
e14j. Rhopalostylidinae J. Dransf., N.W. Uhl, Rasmussen, W.J. Baker, M.M. Harley \& C. Lewis
e14k. Verschaffeltiinae J. Dransf., N.W. Uhl, Rasmussen, W.J. Baker, MM. Harley \& C. Lewis
117. TyPhales Juss. ex Bercht. \& J. Presl
118. Typhaceae Juss.
a. Sparganioideae Rouy
b. Typhoideae DC. ex Arn.
119. BROMELIALES Link
120. Bromeliaceae Juss.
a. Brocchinioideae Givnish
b. Lindmanioideae Givnish
c. Hechtioideae Givnish
d. Tillandsioideae Burnett
d1. Catopsideae Harms
d2. Glomeropitcairnieae Harms
d3. Vrieseeae Beer
d4. Tillandsieae Dumort.
e. Navioideae Harms
f. Pitcairnioideae Harms
g. Puyoideae Givnish
h. Bromelioideae Burnett
121. Rapateales Colella ex Reveal \& Doweld
122. Rapateaceae Dumort.
a. Rapateoideae Meisn.
b. Monotremoideae Givnish \& P.E. Berry
c. Saxofridericioideae Maguire
c1. Saxofridericieae Maguire
c2. Schoenocephalieae Maguire
123. Xyridales Lindl.
26a. Eriocaulineae Thorne \& Reveal
124. Eriocaulaceae Martinov
a. Eriocauloideae Burnett
b. Paepalanthoideae Ruhland
26b. Xyridineae Thorne \& Reveal
125. Xyridaceae C. Agardh
a. Xyridoideae Kunth ex Arn.
b. Abolbodoideae Suess. \& Beyerle ex Thorne \& Reveal
126. Mayacaceae Kunth
127. Juncales Bercht. \& J. Pres1
128. Thurniaceae Engl.
a1. Thurnieae Reveal
a2. Prionieae Reveal
129. Juncaceae Juss.
130. Cyperaceae Juss.
a. Mapanioideae C.B. Clarke
a 1. Hypolytreae Nees ex Wight \& Arn.
a2. Chrysitricheae Nees
b. Cyperoideae Beilschm.
b1. Trilepideae Goetgh.
b2. Bisboeckelereae Pax
b3. Sclerieae Wight \& Arn.
b4. Cladieae Torr.
b5. Cryptangieae Benth.
b6. Schoeneae Dumort.
b6a. Schoeninae Fenzl
b6b. Rhynchosporinae Fenzl
b7. Scirpeae T. Lestib.
b8. Cariceae Dumort.
b9. Dulichieae W. Schultze-Motel
b10. Abildgaardieae Lye
b11. Fuireneae Fenzl
b12. Eleocharideae Goetgh.
b13. Cypereae Dumort.
b14. Ficinieae Nees
131. Restionales R. Br. ex Bercht. \& J. Presl
132. Anarthriaceae D.F. Cutler \& Airy Shaw
133. Hopkinsiaceae B.G. Briggs \& L.A.S. Johnson
134. Lyginiaceae B.G. Briggs \& L.A.S. Johnson
135. Centrolepidaceae Endl.
136. Restionaceae R. Br.
a. Restionionoideae Arn.
b. Sporadanthoideae B.G. Briggs \& H.P. Linder
c. Leptocar poideae B.G. Briggs \& H.P. Linder
137. PoALES Small
138. Flagellariaceae Dumort.
139. Joinvilleaceae Tolm. \& A.C. Sm.
140. Ecdeiocoleaceae D.F. Cutler \& Airy Shaw
141. Poaceae Barnhart
a. Anomochlooideae Pilg. ex Potztal
a 1. Streptochaeteae C.E. Hubb.
a2. Anomochloeae C.E. Hubb.
b. Pharoideae L.G. Clark \& Judz.
c. Puelioideae L.G Clark, M. Kobay, Spangler, S.Y. Mathews \& E.A. Kellogg
cl. Puelieae Soderstr. \& R.P. Ellis
c2. Guaduelleae Soderstr. \& R.P. Ellis
d. Panicoideae Link
d1. Steyermarkochloeae Davidse \& R.P. Ellis
d2. Hubbardieae C.E. Hubb.
d3. Isachneae Benth.
d4. Paniceae R. Br.
d4a. Arthropogoninae Butzin
d4b. Cenchrinae Dumort.
d4c. Digitariinae Stapf
d4d. Melinidinae Stapf
d4e. Panicinae Fr.
d4f. Paspalinae Griseb.
d4g. Setariinae Dumort.
d4h. Neurachninae Clayton \& Renvoize
d5. Arundinelleae Stapf
d6. Andropogoneae Dumort.
d6a. Andropogoninae J. Presl
d6b. Anthisiriinae J. Pres1
d6c. Coicinae Rchb. ex Clayton \& Renvoize
d6d. Germainiinae Clayton
d6e. Ischaeminae J. Presl
d6f. Dimeriinae Hack.
d6g. Rottboelliinae J. Pres1
d6h. Saccharinae Griseb.
d6i. Sorghinae Stapf
d6j. Tripsacinae Dumort.
d7. Gynerieae Sánchez-Ken \& L.G. Clark
d8. Centotheceae Ridl.
d9. Thysanolaeneae C.E. Hubb.
e. Danthonioideae N.P. Barker \& H.P. Linder
f. Chloridoideae Burmeist.
f1. Triraphideae P.M. Peterson
f2. Eragrostideae Stapf
f2a. Cotteinae Reeder
f2b. Eragrostidinae J. Presl
f2c. Uniolinae Clayton
f3. Zoysieae Benth.
f3a. Zoysiinae Benth.
f3b. Sporobolinae Benth.
f4. Cynodonteae Dumort.
f4a. Aeluropodinae P.M. Peterson
f4b. Triodiinae Benth.
f4c. Orcuttiinae P.M. Peterson \& Columbus
f4d. Gouiniinae P.M. Peterson \& Columbus
f4e. Eleusininae Dumort.
f4f. Tripogoninae Stapf
f4g. Pappophorinae Dumort.
f4h. Traginae P.M. Peterson \& Columbus
f4i. Hilariinae P.M. Peterson \& Columbus
f4j. Monanthochloinae Pilg. ex Potztal
f4k. Boutelouinae Stapf
f4l. Scleropogoninae Pilg.
f 4 m . Muhlenbergiinae Pilg.
g. Micrairoideae Pilg.
g1. Micraireae Pilg.
g2. Eriachneae Eck-Boorsb.
h. Aristidoideae Caro
i. Arundinoideae Burmeist.
j. Ehrhartoideae Jacq.-Fél. ex Caro
j1. Ehrharteae Nevski
j2. Oryzeae Dumort.
j2a. Luziolinae Terrell \& H. Rob.
j2b. Oryzinae Griseb.
j2c. Zizaniinae Benth.
j3. Streptogyneae C.E. Hubb. ex Calderón \& Soderstr.
k. Bambusoideae Luerss.
k1. Arundinarieae Hackel
k2. Olyreae Kunth ex Spenn.
k2a. Olyrinae Kromb.
k2b. Parianinae Hack.
k3. Bambuseae Kunth ex Dumort.
k3a. Arthrostylidiinae Soderstr. \& R.P. Ellis
k3b. Chusqueinae Soderstr. \& R.P. Ellis
k3c. Guaduinae Soderstr. \& R.P. Ellis
k3d. Bambusinae J. Pres1
k3e. Melocanninae Benth.
142. Pooideae Benth.
143. Brachyelytreae Ohwi
144. Nardeae W.D.J. Koch
12a. Nardinae Kromb.
12b. Lygeinae Röser
145. Meliceae Link ex Endl.
13a. Brylkiniinae Ohwi
13b. Melicinae Fr
146. Phaenospermateae Renvoize \& Clayton
147. Stipeae Dumort.
15a. Ampelodesminae Conert
15b. Stipinae Griseb.
148. Diarrheneae Tateoka ex C.S. Campb.
149. Brachypodieae Harz
150. Hordeeae Martinov
18a. Littledaleinae Röser
18b. Brominae Dumort.
18c. Hordeinae Dumort.
151. Poeae R. Br.
19a. Torreyochloinae Soreng \& J.I. Davis
19b. Aveninae J. Presl
19c. Cinninae Caruel
19d. Phalaridinae Fr.
19e. Brizinae Tzvelev
19f. Agrostidinae Fr.
19g. Coleanthinae Rouy
19h. Miborinae Asch. \& Graebn.
19i. Scolochloinae Tzvelev
19j. Airinae Fr.
19k. Ammochloinae Tzvelev
152. Cynosurinae Fr.
19m. Dactylidinae Stapf
19n. Loliinae Dumort.
153. Parapholinae Caro
19p. Scribneriinae Soreng \& J.I. Davis
19q. Sesleriinae Parl.
19r. Puccinelliinae Soreng \& J.I. Davis
19s. Alopecurinae Dumort.
19t. Miliinae Dumort.
19u. Poinae Dumort.
154. Commelinales Mirb. ex Bercht. \& J. Presl
30a. Commelinineae Engl.
155. Commelinaceae Mirb.
a. Cartonematoideae Faden ex G.C. Tucker
a1. Cartonemateae Faden \& D. Hunt
a2. Triceratelleae Faden \& D. Hunt
b. Commelinoideae Eaton
b1. Tradescantieae Meisn.
b1a. Palisotinae Faden \& D. Hunt
blb. Streptoliriinae Faden \& D. Hunt
blc. Cyanotinae Faden \& D. Hunt
b1d. Coleotrypinae Faden \& D. Hunt
ble. Dichorisandrinae Faden \& D. Hunt
blf. Thyrsantheminae Faden \& D. Hunt
blg. Tradescantiinae Rohw.
b2. Commelineae Dumort.
156. Hanguanaceae Airy Shaw
30b. Pontederiineae Engl.
157. Philydraceae Link
158. Haemodoraceae R. Br .
a. Haemodoroideae Arn.
b. Conostylidoideae Lindl.
b1. Phlebocaryeae Meisn.
b2. Tribonantheae T.D. Macfarl. \& Hopper
b3. Conostylideae Benth.
159. Pontederiaceae Kunth
a1. Pontederieae Dumort.
a2. Heteranthereae O. Schwartz
160. Cannales R. Br. ex Bercht. \& J. Presl
31a. Musineae W.J. Kress
161. Musaceae Juss.
31b. Heliconiineae W.J. Kress
162. Heliconiaceae Vines
31c. Strelitziineae W.J. Kress
163. Strelitziaceae Hutch.
a1. Ravenaleae Voigt
a2. Strelitzieae Horan.
31d. Lowiineae W.J. Kress
164. Lowiaceae Ridl.
31e. Cannineae Link
165. Cannaceae Juss.
166. Marantaceae R. Br.
31f. Zingiberineae W.J. Kress
167. Costaceae Nakai
168. Zingiberaceae Martinov
a. Siphonochiloideae W.J. Kress
b. Tamijioideae W. J. Kress
c. Alpinioideae Hassk.
cl. Alpinieae Orb.
c2. Riedelieae W.J. Kress
d. Zingiberoideae Hassk.
d1. Zingibereae Meisn.
d2. Globbeae Meisn.
F. Ceratophyllanae Takht. ex Reveal \& Doweld
169. Ceratophyllales Link
170. Ceratophyllaceae Gray
G. Ranunculanae Takht. ex Reveal
171. Eupteleales Hu ex Reveal
172. Eupteleaceae K. Wilh.
173. Ranunculales Juss. ex Bercht. \& J. Presl
34a. Ranunculineae J. Pres
174. Circaeasteraceae Hutch.
a. Circaeasteroideae Thorne \& Reveal
b. Kingdonioideae Thorne \& Reveal
175. Lardizabalaceae R . Br .
a. Sargentodoxoideae Thorne \& Reveal
b. Lardizabaloideae Burnett
b1. Decaisneeae Takht. ex H.N. Qin \& Y.C. Tang
b2. Akebieae Lemaire
b3. Lardizabaleae DC.
176. Menispermaceae Juss.
a. Tinosporoideae W. Wang \& Z.D. Chen
a1. Tinosporeae Hook.f. \& Thomson
a2. Coscinieae Hook.f. \& Thomson
b. Menispermoideae Arn.
b1. Menispermeae DC.
b2. Pachygoneae Miers ex Hook.f. \& Thomson
b3. Anomospermeae Miers
177. Berberidaceae Juss.
a. Podophylloideae Eaton
a1. Leonticoideae Nakai
a2. Achlydeae Bernh.
a3. Podophylleae DC.
b. Nandinoideae Heintze
c. Berberidoideae Eaton
178. Ranunculaceae Juss.
a. Glaucidioideae Loconte
b. Hydrastidoideae Raf.
c. Coptidoideae Tamura
c1. Coptideae Langlet ex Tamura \& K. Kosuge
c2. X anthorhizeae Small
d. Thalictroideae Raf.
d1. Aquilegieae Arcang.
d2. Thalictreae Langlet ex D.Z. Fu
d3. Dichocarpeae W.T. Wang \& D.Z. Fu
e. Ranunculoideae Arn.
el. Actaeeae Spach
e2. Caltheae J. Pres1
e3. Aconiteae Horan.
e4. Helleboreae DC.
e5. Anemoneae
e6. Ranunculeae DC.
34b. Papaverineae Thorne \& Reveal
179. Pteridophyllaceae Sugiura ex Nakai
180. Papaveraceae Juss.
a. Papaveroideae Eaton
a 1. Papavereae Dumort.
a2. Romneyeae Benth.
b. Eschscholzioideae Luerss.
b1. Eschscholzieae Baill.
b2. Platystemoneae Spach
c. Chelidonioideae W.R. Ernst
c1. Chelidonieae Dumort.
c2. Bocconieae Bernh.
d. Hypecoideae Prantl \& Kündig
e. Fumarioideae Eaton
el. Fumarieae Dumort.
e2. Corydaleae Dumort.
H. Proteanae Takht.
181. Sablales Takht.
182. Sabiaceae Blume
a. Meliosmoideae Masters
b. Sabioideae Y.W. Law \& Y.F. Wu
183. Proteales Juss. ex Bercht. \& J. Presl
36a. Nelumbonineae Shipunov
184. Nelumbonaceae A. Rich.
36b. Platanineae J. Presl
185. Platanaceae T. Lestib.
36c. Proteineae Reveal
186. Proteaceae Juss.
a. Bellendenoideae P.H. Weston
b. Persoonioideae Engl.
b1. Placospermeae C.T. White \& W.D. Francis
b2. Persoonieae Endl.
c. Symphionematoideae P.H. Weston \& N.P. Barker
d. Proteoideae Eaton
d1. Conospermeae Endl.
d1a. Stirlingiinae L.A.S. Johnson \& B.G. Briggs
dlb. Conosperminae L.A.S. Johnson \& B.G. Briggs
d2. Petrophileae P.H. Weston \& N.P. Barker
d3. Proteeae Dumort.
d4. Leucadendreae P.H. Weston \& N.P. Barker
d4a. Isopogoninae P.H. Weston \& N.P. Barker
d4b. Adenanthinae L.A.S. Johnson \& B.G. Briggs
d4c. Leucadendrinae P.H. Weston \& N.P. Barker
e. Sphalmioideae L.A.S. Johnson \& B.G. Briggs
f. Grevilleoideae Engl.
f1. Carnarvonieae Reveal
f2. Roupaleae Meisn.
f2a. Knightiinae L.A.S. Johnson \& B.G. Briggs
f2b. Roupalinae L.A.S. Johnson \& B.G. Briggs
f2c. Lambertiinae L.A.S. Johnson \& B.G. Briggs
f2d. Heliciinae L.A.S. Johnson \& B.G. Briggs
f2e. Floydiinae L.A.S. Johnson \& B.G. Briggs
f4. Banksieae Dumort.
f4a. Musgraveinae L.A.S. Johnson \& B.G. Briggs
f4b. Banksiinae L.A.S. Johnson \& B.G. Briggs
f5. Grevilleeae Endl.
f5a. Lomatiinae L.A.S. Johnson \& B.G Briggs
f5b. Embothriinae Endl.
f5c. Stenocar pinae L.A.S. Johns on \& B.G. Briggs
f5d. Hakeinae Endl.
f6. Macadamieae Venkata Rao
f6a. Macadamiinae L.A.S. Johnson \& B.G. Briggs
f6b. Malagasiinae P.H. Weston \& N.P. Barker
f6c. Virotiinae P.H. Weston \& N.P. Barker
f6d. Gevuininae L.A.S. Johnson \& B.G. Briggs
187. Trochodendrales Takht. ex Cronquist
188. Trochodendraceae Eichler
a. Trochodendroideae Luerss.
b. Tetracentroideae Harms
I. Buxanae Takht. ex Reveal \& Doweld
189. Buxales Takht. ex Reveal
190. Haptanthaceae C. Nelson
191. Didymelaceae Leandri
192. Buxaceae Dumort.
a. Buxoideae Beilschm.
b. Pachysandroideae Record \& Garratt
b1. Stylocerateae Pax
b2. Pachysandreae Reveal
J. Myrothamnanae Takht.
193. Gunnerales Takht. ex Reveal
194. Gunneraceae Meisn.
195. Myrothamnaceae Nied.
K. Dillenianae Takht. ex Doweld
196. Dilleniales DC. ex Bercht. \& J. Presl
197. Dilleniaceae Salisb.
a. Delimoideae Burnett
b. Doliocar poideae J.W. Horn
c. Hibbertoideae J. W. Horn
d. Dillenioideae Burnett
L. Saxifraganae Reveal
198. Peridiscales Doweld
199. Peridiscaceae Kuhlm.
200. Hamamelidales Link
42a. Paeoniineae Mart.
201. Paeoniaceae Raf.
42b. Hamamelidineae Thorne \& Reveal
202. Altingiaceae Horan.
203. Hamamelidaceae R. Br:
a. Exbucklandioideae H.T. Chang
b. Disanthoideae Harms
c. Hamamelidoideae Burnett
c1. Hamamelideae DC.
c2. Corylopsideae Harms
c3. Eustigmateae Harms
c4. Fothergilleae DC.
d. Rhodoleioideae Harms
204. Cercidiphyllaceae Engl.
205. Daphniphyllaceae Müll.-Arg.
206. Saxifragales Bercht. \& J. Presl
207. Crassulaceae J. St.-Hil.
a. Crassuloideae Burnett
al. Umbiliceae Meisn.
a2. Semperviveae Dumort.
a3. Aeonieae Thiede ex Reveal
a4. Sedeae Fr.
b. Kalanchoideae A. Berger
c. Sempervivoideae Arn.
208. Aphanopetalaceae Doweld
209. Tetracarpaeaceae Nakai
210. Haloragaceae R. Br.
a1. Myriophylleae Rchb.
a2. Halorageae Bartl.
211. Penthoraceae Rydb. ex Britton
212. Iteaceae J. Agardh
213. Pterostemonaceae Small
214. Grossulariaceae DC.
215. Saxifragaceae Juss.
a. Saxifragoideae Beilschm.
a 1. Saxifrageae Dumort.
a2. Saniculiphylleae C.Y. Wu \& T.C. Ku
b. Heucheroideae Burnett
bl. Chrysosplenieae Dumort.
b2. Heuchereae Bartl.
216. Cynomoriales Burnett
217. Cynomoriaceae Endl. ex Lindl.
M. Rosanae Takht.
218. Vitales Juss. ex Bercht. \& J. Pres 1
219. Vitaceae Juss.
a. Vitoideae Eaton
b. Leeoideae Burmeist.
220. ZyGOPHYLLALES Link
221. Krameriaceae Dumort.
222. Zygophyllaceae R. Br.
a. Morkillioideae Thorne \& Reveal
b. Balanitoideae Engl.
c. Tribuloideae D.M. Porter ex Reveal
c1. Sisynditeae Hadidi
c2. Neoluederitzieae Hadidi
c3. Tribuleae Dumort.
d. Seetzenioideae Sheahan \& M.W. Chase
e. Larreoideae Sheahan \& M.W. Chase
f. Zygophylloideae Arn.
223. Fabales Bromhead
224. Quillajaceae D. Don
225. Fabaceae Lindl.
a. Brachystegioideae Hutch.
a1. Cercideae Bronn
a2. Detarieae DC.
a3. Macrolobieae Breteler
b. Faboideae Rudd
bl. Swartzieae DC.
b2. Dipterygeae Polhill
b3. Sophoreae Spreng. ex DC.
b4. Brongniartieae Hutch.
b5. Euchresteae H. Ohashi
b6. Thermopsideae Yakovlev
b7. Podalyrieae Benth.
b8. Crotalarieae Hutch.
b9. Genisteae Bronn
b10. Amorpheae Boriss.
b11. Dalbergieae DC.
b12. Hypocalypteae A.L. Schutte
b13. Mirbelieae Polhill
b14. Bossiaeeae Hutch.
b15. Indigofereae Benth.
b16. Millettieae Miq
b17. Abreae Hutch.
b18. Phaseoleae DC.
b19. Desmodieae Hutch.
b20. Psoraleeae Benth.
b21. Sesbanieae Hutch.
b22. Loteae DC.
b23. Robinieae Hutch.
b24. Galegeae Bronn
b25. Hedysareae DC.
b26. Cicereae Alef.
b27. Trifolieae Endl.
b28. Fabeae Rchb.
c. Caesalpinoideae DC.
c1. Cassieae Bronn
c1a. Cassiinae Wight \& Arn.
clb. Storckiellinae Nakai
c1c. Duparquetiinae H.S. Irwin \& Barneby
c2. Caesalpinieae Rchb.
d. Mimosoideae DC.
d1. Mimoseae Bronn
d2. Parkieae Endl.
d3. Mimozygantheae Burkart
d4. Acacieae Dumort.
d5. Ingeae Benth. \& Hook.f.
226. Surianaceae Arn.
a 1. Rigiostachydeae Loes. \& Solered.
a2. Surianeae Baill.
a3. Stylobasieae Bonne
227. Polygalaceae Hoffmanns. \& Link
a1. Xanthophylleae Baill.
a2. Diclidanthereae Reveal
a3. Carpolobieae B. Eriksen
a4. Polygaleae Fr.
228. Rosales Bercht. \& J. Pres1
229. Rosaceae Juss.
a. Maloideae C. Weber
al. Lyonothamneae Brouillet
a2. Neillieae Maxim.
a3. Amygdaleae DC.
a4. Exochordeae Schulze-Mentz ex Reveal
a5. Kerrieae Focke
a6. Sorbarieae Rydb.
a7. Spiraceae DC.
a8. Gillenieae Maxim.
a9. Maleae Small
a9a. Lindleyinae Reveal
a9b. Malinae Reveal
b. Rosoideae Arn.
b1. Ulmarieae Lam. \& DC.
b2. Rubeae Dumort.
b3. Colurieae Rydb.
b4. Roseae Lam. \& DC.
b5. Potentilleae Sweet
b5a. Fragariinae Torr. \& A. Gray
b5b. Alchemillinae Meisn.
b6. Agrimonieae Lam. \& DC.
b6a. Agrimoniinae J. Pres1
b6b. Sanguisorbinae Torr. \& A. Gray
c. Dryadoideae Sweet
cl. Cercocarpeae Pfeiff.
c2. Dryadeae Lam. \& DC.
230. Rhamnales Link
231. Barbeyaceae Rendle
232. Dirachmaceae Hutch.
233. Rhamnaceae Juss.
a. Rhamnoideae Eaton
al. Rhamneae Horan.
a2. Maesopsideae Engl. \& Weberb.
a3. Ventilagineae Benth. \& Hook.f.
a4. Ampelozizipheae J.E. Richardson
a5. Doerpfeldieae J.E. Richardson
a6. Bathiorhamneae J.E. Richardson
b. Ziziphoideae Luerss.
b1. Paliureae Reissek ex Endl.
b2. Colletieae Reissek ex Endl.
b3. Phyliceae Reissek ex Endl.
b4. Gouanieae Rchb.
b5. Pomaderreae Reissek ex Endl.
234. Elaeagnaceae Juss.
235. Urticales Juss. ex Bercht. \& J. Pres1
236. Ulmaceae Mirb.
237. Celtidaceae Endl.
238. Cannabaceae Martinov
239. Moraceae Gaudich.
a1. Artocarpeae Lam. \& DC.
a2. Moreae Dumort.
a3. Maclureae W.L. Clement \& Weiblen
a4. Dorstenieae Dumort.
a5. Ficeae Dumort.
a6. Castilleae C.C. Berg
240. Urticaceae Juss.
a. Urticoideae Arn.
a 1. Urticeae Lam. \& DC.
a2. Lecantheae Wedd.
a3. Boehmerieae Gaudich.
a4. Parietarieae Gaudich.
a5. Forsskaoleeae Gaudich.
b. Cecropioideae Romaniuc
241. Juglandales Bercht. \& J. Presl
242. Nothofagaceae Kuprian.
243. Fagaceae Dumort.
a. Quercoideae Irvine
b. Trigonobalanoideae Lozano
c. Castaneoideae Örst.
d. Fagoideae K. Koch
244. Myricaceae Rich. ex Kunth
a. Myrcieae Small
b. Canacomyriceae Reveal
245. Juglandaceae DC. ex Perleb
a. Platycaryoideae W.E. Manning
b. Engelhardtioideae Iljinsk
c. Juglandoideae Eaton
c1. Juglandeae Rchb.
c2. Caryeae Koidz.
246. Rhoipteleaceae Hand.-Mazz.
247. Casuarinaceae R. Br.
248. Ticodendraceae Gómez-Laur. \& L.D. Gómez
249. Betulaceae Gray
a. Betuloideae Rich. ex Arn.
b. Coryloideae Hook.f.
b1. Carpineae A. DC.
b2. Coryleae Dumort.
250. Cucurbitales Juss. ex Bercht. \& J. Presl
52a. Cucurbitineae J. Presl
251. Anisophylleaceae Ridl.
252. Corynocarpaceae Engl.
253. Coriariaceae DC.
254. Cucurbitaceae Juss.
a1. Gomphogyneae Benth. \& Hook.f.
a2. Triceratieae A. Rich.
a3. Zanonieae Benth. \& Hookf.
a4. Actinostemmateae H. Schaef. \& S.S. Renner
a5. Indofevilleae H. Schaef. \& S.S. Renner
a6. Thladiantheae H. Schaef. \& S.S. Renner
a7. Siraitieae H. Schaef. \& S.S. Renner
a8. Momordiceae H. Schaef. \& S.S. Renner
a9. Joliffieae Schrad.
a10. Bryonieae Dumort.
a11. Schizopeponeae C. Jeffrey
a12. Sicyoeae Schrad.
a13. Coniandreae Endl. ex M. Roem.
a14. Benincaseae Ser.
a15. Cucurbiteae Dumort.
255. Tetramelaceae Airy Shaw
52b. Begoniineae Engl.
256. Datiscaceae Dumort.
257. Begoniaceae C. Agardh
258. Apodanthaceae Tiegh. ex Takht.
259. Celastrales Link
260. Lepidobotryaceae J. Léonard
261. Parnassiaceae Martinov
a. Lepuropetaloideae Engl.
b. Parnassioideae Arn.
262. Celastraceae R. Br.
a. Celastroideae Burnett
b. Siphonodontoideae Croizat
c. Hippocrateoideae Lindl.
d. Sarawakodendroideae Savinov \& Melikyan
e. Salacioideae N. Halle ex Thorne \& Reveal
f. Stackhousioideae Burnett
263. Pottingeriaceae Takht.
264. Oxalidales Bercht. \& J. Presl
265. Huaceae A. Chev.
266. Connaraceae R. Br.
a. Connaroideae Gilg
b. Jollydoroideae Gilg
b1. Jollydoreae Lemmens
b2. Manoteae Lemmens
b3. Cnestideae Planch.
267. Oxalidaceae R. Br.
268. Cunoniaceae R. Br.
a. Spiraeanthemoideae Reveal
b. Davidsonioideae Thorne \& Reveal
c. Baueroideae Burnett
c1. Schizomerieae J.C. Bradford \& R.W. Barnes
c2. Bauereae DC.
d. Eucryphioideae Burnett
d1. Eucryphieae Cambess. ex G. Don
d2. Geissoieae Endl. ex Meisn.
d3. Caldcluvieae J.C. Bradford \& R.W. Barnes
e. Cunonioideae Beilschm.
el. Codieae G. Don
e2. Cunonieae Schrank \& Mart.
269. Elaeocarpaceae Juss.
a 1. Sloaneeae Endl.
a2. Elaeocarpeae Bartl.
270. Tremandraceae R. Br. ex DC.
271. Brunelliaceae Engl.
272. Cephalotaceae Dumort.
273. Violales Vent. ex Bercht. \& J. Presl
274. Achariaceae Harms
a1. Acharieae Benth. \& Hook.f.
a2. Kiggelarieae DC.
a3. Lindackerieae Zmarzty
a4. Erythrospermeae DC.
275. Goupiaceae Miers
276. Violaceae Batsch
a. Fusispermoideae Hekking
b. Violoideae Beilschm.
b1. Violeae DC.
b2. Leonieae Meisn.
277. Turneraceae Kunth ex DC.
278. Malesherbiaceae D. Don
279. Passifloraceae Juss. ex Roussel
a1. Passifloreae DC.
a2. Paropsieae DC.
280. Lacistemataceae Mart.
281. Salicaceae Mirb.
a. Samydoideae Reveal
a1. Samydeae Vent.
a2. Homalieae Dumort.
a3. Scolopieae Warb.
a4. Trichostephaneae Gilg
b. Scyphostegioideae Reveal
c. Prockioideae Reveal
c1. Prockieae Endl.
c2. Abatieae Benth. \& Hookf.
c3. Bembicieae Warb.
d. Flacourtioideae Beilschm.
d1. Flacourtieae DC.
d2. Oncobeae Benth.
e. Salicoideae Rich. ex Arn.
282. Rhizophorales Pers. ex Bercht. \& J. Pres1
283. Lophopyxidaceae H. Pfeiff.
284. Putranjivaceae Meisn.
285. Ctenolophonaceae Exell \& Mendonça
286. Erythroxylaceae Kunth
287. Rhizophoraceae Pers.
a. Cassipoureoideae Burnett
b. Rhizophoroideae Burnett
b1. Gynotrocheae Engl.
b2. Rhizophoreae Bartl.
288. Linales Bercht. \& J. Presl
289. Linaceae DC. ex Perleb
a. Linoideae Arn.
a 1. Lineae Rchb.
a2. Anisadenieae H.J.P. Winkl.
b. Hugonioideae Mabberley ex Reveal
290. Irvingiaceae Tiegh.
291. Ixonanthaceae Planch. ex Miq.
292. Humiriaceae A. Juss.
293. Pandaceae Engl. \& Gilg
294. Ochnales DC. ex Bercht. \& J. Pres1
295. Ochnaceae DC.
a. Luxemburgioideae Planch. ex Endl.
b. Ochnoideae Burnett
b1. Lophireae Baill.
b2. Ochneae Bartl.
c. Sauvagesioideae Beilschm.
cl. Sauvagesieae Ging. ex DC.
c2. Euthemideae Benth. \& Hook.f.
296. Medusagynaceae Eng1. \& Gilg
297. Quiinaceae Choisy ex Engl.
298. Hypericales Juss. ex Bercht. \& J. Pres1
299. Bonnetiaceae L. Beauvis. ex Nakai
300. Clusiaceae Lindl.
a. Clusioideae Burnett
al. Garcinieae Choisy
a2. Clusieae Choisy
a3. Tovomiteae Mabberley ex Reveal
b. Chrysopioideae Burnett
c. Lorostemonoideae Ducke
301. Calophyllaceae J. Agardh
a1. Kielmeyereae Engl.
a2. Calophylleae Choisy
a3. Endodesmieae Engl.
a4. Caraipeae Engl.
302. Hypericaceae Juss.
a1. Vismieae Choisy
a2. Hypericeae Choisy
a3. Cratoxyleae Benth. \& Hook.f.
303. Podostemaceae Rich. ex Kunth
a. Tristichoideae Warm.
b. Weddellinoideae Engl.
c. Podostemoideae Warm.
304. Centroplacaceae Doweld \& Reveal
a. Centroplacoideae Reveal
b. Bhesoideae Reveal
305. Malpighiales Juss. ex Bercht. \& J. Presl
306. Elatinaceae Dumort.
307. Malpighiaceae Juss.
a. Byrsonimoideae W.R. Anderson
b. Malpighioideae Burnett
b1. Tricomarieae Nied.
b2. Hiraeeae Griseb.
b3. Rhynchophoreae Arènes
b4. Banisterieae DC.
b5. Gaudichaudieae Horan.
308. Euphorbiales Juss. ex Bercht. \& J. Presl
309. Peraceae Klotzsch
a1. Clutieae Pax
a2. Pogonophoreae G.L. Webster
a3. Chaetocar peae G.L. Webster
a4. Pereae Pax \& K.Hoffm.
310. Rafflesiaceae Dumort.
311. Euphorbiaceae Juss.a. Cheilosoideae K. Wurdack \& Petra Hoffm.a 1. Cheiloseae Airy Shaw \& G.L. Webster
b. Acalyphoideae Beilschm.
b1. Erismantheae GL. Webster
b2. Ampereae Müll.-Arg.
b3. Agrostistachydeae G.L. Webster
b4. Sphyranthereae Radcl.-Sm.
b5. Chrozophoreae Pax \& K.Hoffm.
b5a. Speranskiinae G.L. Webster
b5b. Ditaxidinae Griseb.
bsc. Doryxylinae G.L. Webster
b5d. Chrozophorinae Müll.-Arg.
b6. Caryodendreae G.L. Webster
b7. Bernardieae GL. Webster
b8. Pycnocomeae Hutch. ex Reveal
b8a. Pycnocominae G.L. Webster
b8b. Blumeodendrinae GL. Webster
b9. Epiprineae Hurus.
b9a. Epiprininae Müll.-Arg.
b9b. Cephalomappinae G.L. Webster
b10. Adelieae G.L. Webster
b11. Alchornieae Hutch.
b11a. Alchorniinae Hurus.
b11b. Conceveibinae G.L. Webster
b12. Acalypheae Dumort.
b12a. Ricininae Griseb.
b12b. Adrianinae Benth.
b12c. Mercurialinae Pax
b12d. Cleidiinae G.L. Webster
b12e. Macaranginae G.L. Webster ex Reveal
b12f. Claoxylinae Hurus.
b12g. Lobaniliinae Radcl.-Sm.
b12h. Mareyinae Radcl.-Sm. ex Reveal
b12i. Coelodiscinae Müll.-Arg.
b12j. Acalyphinae Griseb.
b12k. Lasiococcinae GL. Webster
b13. Dalechampieae Müll.-Arg.
b13a. Plukenetiinae Benth.
b13b. Tragiinae G.L. Webster
b13c. Dalechampiinae G.L. Webster
b14. Omphaleae GL. Webster
c. Crotonoideae Beilschm.
c1. Micrandreae G.L. Webster
c1a. Micrandrinae Müll.-Arg.
clb. Heveinae Müll.-Arg.
c2. Manihoteae Pax
c3. Adenoclineae G.L. Webster
c3a. Adenoclininae Müll.-Arg.
c3b. Endosperminae Pax \& K.Hoffm.
c4. Suregadeae Reveal
c5. Elateriospermeae G.L. Webster
c6. Jatropheae Baill.
c7. Codiaeeae Hutch.
c8. Trigonostemoneae G.L. Webster
c9. Ricinocarpeae Müll.-Arg.c9a. Ricinocarpinae GL. Websterc9b. Bertyinae Müll.-Arg.
c10. Crotoneae Dumort.
cl1. Ricinodendreae Hutch.
c12. Aleuritideae Hurus.c12a. Aleuritidineae G.L. Websterc12b. Garciinae Müll.-Arg.
cl2c. Grosserinae GL. Webster
c12d. Crotonogyninae GL. Webster
c12e. Neoboutoninae G.L. Webster
c12f. Benoistiinae Radel.-Sm.
d. Euphorbioideae Beilschm.
d1. Stomatocalyceae G.L. Webster
d1a. Stomatocalycinae Müll.-Arg.
dlb. Hamilcoinae Pax
d2. Hippomaneeae Bartl.
d2a. Carumbiinae Müll.-Arg.
d2b. Hippomaneinae Griseb.
d3. Pachystromateae Reveal
d4. Hureae Dumort.
d5. Euphor bieae Dumort.
d5a. Anthosteminae GL. Webster
d5b. Neoguillauminiinae Croizat
d5c. Euphorbiinae Griseb.
312. Phyllanthaceae Martinov
a. Phyllanthoideae Beilschm.
a1. Poranthereae Müll.-Arg. ex Grüning
a2. Bridelieae Müll.-Arg.
a2a. Amanoinae Pax
a2b. Saviinae Müll.-Arg.
a2c. Keayodendrinae Petra Hoffm.
a2d. Pseudolachnostylidinae Pax
a2e. Securineginae Müll.-Arg.
a3. Wielandieae Baill. ex Hurus.
a3a. Asterocasiinae G.L. Webster
a3b. Wielandiinae Pax
a4. Phyllantheae Dumort.
b. Antidesmatoideae Hurus.
b1. Antidesmateae Benth.
bla. Antidesmatinae Müll.-Arg.
b1b. Hymenocardiinae Petra Hoffm.
b1c. Martretiinae Petra Hoffm.
bld. Hieronyminae Müll.-Arg.
ble. Leptonematinae Müll.-Arg.
b2. Scepeae Horan.
b3. Jablonskieae Petra Hoffm.
b4. Spondiantheae G.L. Webster
b5. Uapaceae Hutch.
b6. Bischofieae Hurus.
313. Picrodendraceae Small
a 1. Podocalyceae G.L. Webstera 1a. Podocalycinae G.L. Webstera1b. Tetraciccinae G.A. Levinalc. Paradrypetinae G.A. Levin
a2. Caletieae Müll.-Arg.
a2a. Hyaenachinae Müll.-Arg.
a2b. Dissiliariinae Pax \& K.Hoffm.
a2c. Petalostigmatinae Pax \& K.Hoffm.
a2d. Pseudanthinae Müll.-Arg.
a3. Picrodendreae Fawc. \& Rendle
a3a. Picrodendrinae G.L. Webster
a3b. Paivaeusinae Pax
a3c. Mischodontinae Müll.-Arg.
314. Chrysobalanales Link
315. Balanopaceae Benth. \& Hook.f.
316. Trigoniaceae A Juss.
317. Dichapetalaceae Baill.
318. Chrysobalanaceae R . Br .
a 1. Chrysobalaneae DC.
a2. Parinarieae Prance \& F. White
a3. Couepieae Prance \& F. White
a3. Hirtelleae Bonne
319. Euphroniaceae Marc.-Berti
320. Caryocaraceae Voigt
321. Geraniales Juss. ex Bercht. \& J. Pres1
322. Hypseocharitaceae Wedd
323. Geraniaceae Juss.
324. Melianthaceae Horan.
a. Greyioideae Harv.
b. Melianthoideae Benth. \& Hookf.
c. Bersamoideae Reveal
325. Francoaceae A. Juss.
326. Vivianiaceae Klotzsch
327. Ledocarpaceae Meyen
a. Ledocarpoideae Thorne \& Reveal
b. Rhynchothecoideae Thorne \& Reveal
N. Myrtanae Takht.
328. Myrtales Juss. ex Bercht. \& J. Pres1
64a. Onagrineae Rchb.
329. Combretaceae R. Br.
a. Strephonematoideae Engl. \& Diels
b. Combretoideae Beilschm.
bl. Laguncularieae Engl. \& Diels
b2. Combreteae DC.
330. Onagraceae Juss.
a. Ludwigioideae W.L. Wagner \& Hoch
b. Onagroideae Beilschm.
b1. Hauyeae Raim.
b2. Circaeeae Dumort.
b3. Lopezieae Spach
b4. Gongylocar peae Donn. Sm. \& Rose
b5. Epilobieae Endl.
b6. Onagreae Dumort.
331. Lythraceae J. St.-Hil.
a. Lagerstroemioideae Beilschm.
b. Punicoideae Luerss.
c. Lythroideae Juss. ex Arn.
64b. Myrtineae Burnett
332. Vochysiaceae A.St.-Hil.
a. Vochysioideae Takht.
b. Erismoideae Takht.
333. Myrtaceae Juss.
a. Heteropyxidoideae Reveal
a1. Heteropyxideae Harv.
a2. Psiloxyleae A.J. Scott
b. Myrtoideae Sweet
b1. Xanthostemoneae Peter G. Wilson
b2. Lophostemoneae Peter G. Wilson
b3. Osbornieae Peter G. Wilson
b4. Melaleuceae Burnett
b5. Kanieae Peter G. Wilson ex Reveal
b6. Backhousieae Peter G. Wilson
b7. Metrosidereae Peter G. Wilson
b8. Tristanieae Peter G. Wilson
b9. Syzygieae Peter G. Wilson
b10. Myrteae DC.
b11. Eucalypteae Peter G. Wilson
b12. Syncarpieae Peter G. Wilson
b13. Lindsayomyrteae Peter G. Wilson
b14. Leptospermeae DC.
b15. Chamelaucieae DC.
64c. Melastomatineae J. Pres1
334. Melastomataceae Juss.
a. Olisbeoideae Burnett
b. Melastomatoideae Ser. ex DC.
b1. Kibessieae Krasser
b2. Astronieae Triana
b3. Sonerileae Triana
b4. Melastomateae Bartl.
b4a. Merianiinae Baill.
b4b. Rhexinae Baill.
b4c. Melastomatinae Baill.
b4d. Microliciinae Baill.
b4e. Miconinae Meisn.
b4f. Blakeinae Gilg
335. Crypteroniaceae A. DC.
336. Alzateaceae S.A. Graham
337. Rhynchocalycaceae L.A.S. Johnson \& B.G. Briggs
338. Penaeaceae Sweet ex Guill.
339. Oliniaceae Harv. \& Sond.
340. Crossosomatales Takht. ex Reveal
65a. Crossosomatineae Reveal
341. Staphyleaceae Martinov
342. Guamatelaceae S. Oh \& D. Potter
343. Stachyuraceae J. Agardh
344. Crossosomataceae Engl.
65b. Geissolomatineae Reveal
345. Aphloiaceae Takht.
346. Geissolomataceae A. DC.
347. Strasburgeriaceae Tiegh.
348. Ixerbaceae Griseb. ex Doweld \& Reveal
349. Picraminiales Doweld
350. Picramniaceae Fernando \& Quinn
a. Alvaradooideae Engl.
b. Picramnioideae Engl.
351. Sapindales Juss. ex Bercht. \& J. Pres1
67a. Sapindineae J. Presl
352. Biebersteiniaceae Schnizl.
353. Nitrariaceae Lindl.
354. Tetradiclidaceae Takht.
355. Kirkiaceae Takht.
356. Anacardiaceae R. Br.
a. Spondiadoideae Kunth ex Arn.
a1. Spondiadeae Kunth ex DC.
a2. Rhoeae Voigt
a3. Semecarpeae Marchand
a4. Pistacieae Marchand
a5. Dobinceae Engl.
b. Anacardioideae Arn.
b1. Buchananieae Marchand
b2. Julianieae Reveal
b3. Anacardieae DC.
357. Burseraceae Kunth
a 1. Beiselieae Thulin, Beier \& Razafim.
a2. Protieae Marchand
a3. Bursereae DC.
a4. Canarineae Webb \& Berthel.
a4a. Canarininae Eddie ex Reveala4b. Garuginae Engl.
358. Xanthoceraceae Buerki, Callm. \& Lowry
359. Hippocastanaceae A. Rich.
360. Aceraceae Juss.
361. Sapindaceae Juss.
a. Dodonaeoideae Burnett
a1. Doratoxyleae Radlk.
a2. Dodonaeeae Kunth ex DC.
b. Sapindoideae Burnett
b1. Delavayeae Reveal
b2. Koelreuterieae Radlk.
b3. Schleichereae Radlk.
b4. Sapindeae Kunth ex DC.
b5. Cupanieae Blume
b6. Melicocceae Blume
b7. Paullinieae Kunth ex DC.
67b. Rutineae Doweld ex Reveal
362. Rutaceae Juss.
a. Rutoideae Arn.
b. Amyridoideae Arn.
b1. Dictamneae Bartl.
b2. Amyrideae DC.
b3. Diosmeae DC.
b4. Zanthoxyleae Dumort.
b5. Boronieae Bartl.
b6. Galipeeae Kallunki
c. Aurantioideae Eaton
cl. Pteleeae DC.
c2. Clauseneae Wight \& Arn.
c3. Aurantieae Rchb.
d. Cneoroideae Webb
d1. Spathelieae Planch.
d2. Cneoreae Baill.
363. Meliaceae Juss.
a. Melioideae Arn.
a1. Turraeeae Harms
a2. Melieae DC.
a3. Quivisiantheae Reveal
a4. Trichilieae DC.
a5. Vavaeeae Harms
a6. Aglaieae Blume
a7. Guareeae T.D. Penn. \& Styles
a8. Sandoriceae T.D. Penn. \& Styles
b. Cedreloideae Arn.
b1. Capuroniantheae Mabberley ex Reveal
b2. Swietenieae A. Juss.
b3. Cedreleae DC.
b4. Xylocar peae Blume
364. Simaroubaceae DC.
a1. Casteleae Bartl.
a2. Ailantheae Meisn.
a3. Leitnerieae Baill.
a4. Quassieae Baill.
a5. Simaroubeae Dumort.
365. Huerteales Doweld
366. Petenaeaceae Christh., M.W. Chase \& M.F. Fay
367. Gerrardinaceae M.H. Alford
368. Tapisciaceae Takht.
369. Dipentodontaceae Merr.
370. Malvales Juss. ex Bercht. \& J. Pres1
69a. Thymelaeineae Engl.
371. Neuradaceae Kostel.
372. Thymelaeaceae Juss.
a. Tepuianthoideae Reveal
b. Gonystyloideae Domke
b1. Octolepideae Thonner
b2. Gonystyleae Reveal
c. Thymelaeoideae Burnettc1. Synandrodaphneae Herber
c2. Aquilarieae Horan.
c3. Thymelaeeae Endl.
69b. Cochlospermineae Engl.
373. Sphaerosepalaceae Tiegh.
374. Cochlospermaceae Planch.
375. Bixaceae Kunth
376. Diegodendraceae Capuron
69c. Cistineae Rchb.
377. Cistaceae Juss.
378. Sarcolaenaceae Caruel
379. Dipterocarpaceae Blume
a. Pakaramaeoideae Maguire, P.S. Ashton \& de Zeeuw
b. Monotoideae Thonner
c. Dipterocarpoideae Burnett
c1. Dipterocar peae Rchb.
c2. Shoreeae Miq.
380. Cytinaceae A. Rich.
381. Muntingiaceae C. Bayer, MW. Chase \& M.F. Fay
a. Muntingioideae Reveal
b. Neotessmannioideae Burett
69d. Malvineae Rchb.
382. Sparmanniaceae J. Agardh
al. Grewieae Endl.
a2. Sparmannieae Burett
383. Byttneriaceae R. Br.
a 1. Lasiopetaleae DC.
a2. Hermannieae DC.
a3. Byttnerieae DC.
a4. Theobromateae A. Stahl
384. Sterculiaceae Vent.
385. Tiliaceae Juss.
a 1 . Tilieae Bartl.
a2. Craigieae H.T. Chang \& R.H. Miau
386. Dombeyaceae Desf.
387. Berryaceae Doweld
a1. Berryeae Burett
a2. Brownlowieae Benth.
388. Helicteraceae J. Agardh
a1. Durioneae Bece.
a2. Helictereae Schott \& Endl.
a3. Eriolaeneae Arn.
a4. Mansonieae Prain
389. Bombacaceae Kunth
a1. Chiranthodendreae Baill.
a2. Ochromeae Horan.
a3. Bombaceae Kunth
390. Malvaceae Juss.
al. Kydieae Bates
a2. Hibisceae Rchb.
a3. Gossypieae Alef.
a4. Malveae J. Pres1
a4a. Corynabutilinae Kearney
a4b. Malvinae K. Schum.
a5. Sideae J. Presl
a5a. Abutilinae A. Gray
a5b. Sidinae A. Gray
391. Capparales Juss. ex Bercht. \& J. Pres1
392. Akaniaceae Stapf
393. Bretschneideraceae Engl. \& Gilg
394. Tropaeolaceae Juss. ex DC.
395. Moringaceae Martinov
396. Caricaceae Dumort.
397. Setchellanthaceae Iltis
398. Limnanthaceae R. Br.
399. Koeberliniaceae Engl.
400. Bataceae Mart. ex Perleb
401. Salvadoraceae Lindl.
402. Emblingiaceae Airy Shaw
403. Pentadiplandraceae Hutch. \& Dalziel
404. Stixaceae Doweld
405. Gyrostemonaceae A. Juss.
406. Resedaceae Martinov
a1. Cayluseeae Müll.-Arg.
a2. Astrocarpeae Müll-Arg.
a3. Resedeae Rchb.
407. Tovariaceae Pax
408. Capparaceae Juss.
a 1. Cappareae DC.
a2. Maerueae Baill.
a3. Cadabeae Horan.
409. Cleomaceae Bercht. \& J. Pres1
a. Dipterygioideae Pax
b. Cleomoideae Burnett
410. Brassicaceae Burnett
a1. Aethionemeae Al-Shehbaz, Beilstein \& E.A. Kellogg
a2. Camelineae DC.
a3. Boechereae Al-Shehbaz, Beilstein \& E.A. Kellogg
a4. Halimolobeae Al-Shehbaz, Beilstein \& E.A. Kellogg
a5. Physarieae B.L. Rob.
a6. Cardamineae Dumort.
a7. Lepidieae DC.
a8. Alysseae DC.
a9. Descurainieae Al-Shehbaz, Beilstein \& E.A. Kellogg
a 10. Smelowskieae Al-Shehbaz, Beilstein \& E.A. Kellogg
a11. Arabideae DC.
a12. Brassiceae DC.
a13. Schizopetaleae R. Br. ex Barnéoud
a14. Sisymbrieae DC.
a15. Isatideae DC.
a 16. Eutremeae Al-Shehbaz, Beilstein \& E.A. Kellogg
a17. Bivonaeae M. Koch \& Warwick
a18. Thlaspieae DC.
a19. Noccaeeae Al-Shehbaz, Beilstein \& E.A. Kellogg
a20. Hesperideae Prantl
a21. Anchonieae DC.
a22. Euclidieae DC.
a23. Chorisporeae Ledeb., C.A. Mey. \& Bunge
a24. Heliophileae DC.
a25. Cochlearieae Buchenau
a26. Lunarieae Dumort.
a27. Iberideae Webb \& Berthel.
O. Berberidopsidanae Thorne \& Reveal
411. Berberidopsidales Doweld
412. Aextoxicaceae Engl. \& Gilg
413. Berberidopsidaceae Takht.
P. Santalanae Thorne ex Reveal
414. Santalales R. Br. ex Bercht. \& J. Presl
415. Erythropalaceae Planch. ex Miq.
416. Strombosiaceae Tiegh.
417. Coulaceae Tiegh.
418. Ximeniaceae Horan.
419. Aptandraceae Miers
420. Olacaceae Juss. ex R. Br.
421. Octoknemaceae Tiegh.
422. Schoepfiaceae Blume
423. Misodendraceae J. Agardh
424. Loranthaceae Juss.
a1. Nuytsieae Tiegh.
a2. Gaiadendreae Tiegh.
a3. Elytrantheae Danser
a4. Psittacantheae Horan.
a4a. Tupeinae Nickrent \& Vidal-Russell
a4b. Notantherinae Nickrent \& Vidal-Russell
a4c. Ligarinae Nickrent \& Vidal-Russell
a4d. Psittacanthinae Engl.
a5. Lorantheae Rchb.
a5a. Ileostylinae Nickrent \& Vidal-Russell
a5b. Loranthinae Engl.
a5c. Amyeminae Nickrent \& Vidal-Russell
a5d. Scurrulinae Nickrent \& Vidal-Russell
a5e. Dendrophthoinae Nickrent \& Vidal-Russell
a5f. Emelianthinae Nickrent \& Vidal-Russell
a5g. Tapinanthinae Nickrent \& Vidal-Russell
425. Opiliaceae Valeton
a1. Anthoboleae Bartl. ex Spach
a2. Opilieae Benth.
a3. Agonandreae Engl.
426. Comandraceae Nickrent \& Vidal-Russell
427. Thesiaceae Vest
428. Cervantesiaceae Nickrent \& Vidal-Russell
429. Nanodeaceae Nickrent \& Vidal-Russell
430. Santalaceae R. Br.
431. Amphorogynaceae Nickrent \& Der
432. Viscaceae Batsch
433. Balanophorales Dumort.
434. Balanophoraceae Rich.
a. Mystropetaloideae Engl.
b. Dactylanthoideae Engl.
c. Sarcophytoideae Engl.
d. Scybalioideae Engl.
e. Lophophytoideae Engl.
f. Balanophoroideae Engl.
f1. Balanophoreae Engl.
f2. Langsdorffieae Schott \& Endl.
Q. Caryophyllanae Takht.
435. Polygonales Juss. ex Bercht. \& J. Presl
436. Plumbaginaceae Juss.
a. Plumbaginoideae Burnett
b. Limonioideae Reveal
b1. Aegialitideae T.H. Peng
b2. Limonieae Reveal
437. Polygonaceae Juss.
a. Symmerioideae Meisn.
b. Polygonoideae Eaton
bl. Fagopyreae Yonek.
b2. Calligoneae C.A. Mey.
b3. Rumiceae Dumort.
b4. Persicarieae Dumort.
b5. Polygoneae Rchb.
c. Eriogonoideae Arn.
c1. Brunnichieae C.A. Mey.
c2. Coccolobeae Dumort.
c3. Leptogeneae Jan. M. Burke \& Adr. Sanchez
c4. Triplarideae C.A. Mey.
c5. Gymnopodieae Jan. M. Burke \& Adr. Sanchez
c6. Eriogoneae Dumort.
438. Nepenthales Dumort.
439. Droseraceae Salisb.
440. Nepenthaceae Dumort.
441. Drosophyllaceae Chrtek, Slavíková \& Studnička
442. Ancistrocladaceae Planch. ex Walp.
443. Dioncophyllaceae Airy Shaw
444. Tamaricales Link
445. Frankeniaceae Desv.
446. Tamaricaceae Link
a1. Reaumurieae Horan.
a2. Tamariceae Rchb.
447. Caryophyllales Juss. ex Bercht. \& J. Pres1
77a. Rhabdodendrineae Shipunov
448. Rhabdodendraceae Prance
77b. Simmondsiineae Reveal
449. Simmondsiaceae Tiegh.
450. Asteropeiaceae Takht. ex Reveal \& Hoogland
451. Physenaceae Takht.
452. Microteaceae Schäferhoff \& Borsch
77c. Stegnospermatineae Nakai
453. Stegnospermataceae Nakai
77d. Caryophyllineae Bessey
454. Caryophyllaceae Juss.
a. Illecebroideae Arn.
al. Corrigioleae Dumort.
a2. Paronychieae Dumort.
a3. Polycarpaeae DC.
a4. Sperguleae Dumort.
b. Caryophylloideae Arn.
b1. Sileneae DC.
b2. Caryophylleae Lam. \& DC.
c. Alsinoideae Beilschm.
c1. Eremogoneae Rabeler \& W.L. Wagner
c2. Arenarieae Kitt.
c3. Alsineae Lam. \& DC.
c4. Sagineae J. Presl
c5. Sclerantheae Link ex DC.
77e. Chenopodiineae J. Presl
455. Achatocarpaceae Heimerl
456. Chenopodiaceae Vent.
a. Betoideae Ulbr.
b. Chenopodioideae Burnett
b1. Axyrideae G. Kadereit \& A. Sukhor
b2. Chenopodieae Dumort.
b3. Dysphanieae Pax
b4. Atripliceae Duby
b5. Sclerolaeneae AJ. Scott
c. Salicornioideae Luerss.
c1. Halopeplideae Ulbr.
c2. Salicornieae Dumort.
d. Corispermoideae Raf.
e. Salsoloideae Raf.
el. Suaedeae Moq.
e2. Salsoleae Dumort.
457. Amaranthaceae Juss.
a. Polycnemoideae Raf.
b. Gomphogynoideae Luerss.
b1. Pseudoplantageae Covas
b2. Gomphreneae Fenzl
c. Amaranthoideae Burnett
c1. Celosieae Fenzl
c2. Amarantheae Rchb.
77f. Nyctaginineae Nakai
458. Limeaceae Shipunov ex Reveal
459. Lophiocarpaceae Doweld \& Reveal
460. Barbeuiaceae Nakai
461. Aizoaceae Martinov
a. Tetragonioideae Lindl.
b. Aizooideae Spreng. ex Arn.
c. Mesembryanthemoideae Burnett
d. Ruschioideae Schwantes
d1. Apatesieae Schwantes
d2. Dorotheantheae Chesselet, G.F. Sm. \& A.E. van Wyk
d3. Ruschieae Schwantes
462. Gisekiaceae Nakai
463. Sarcobataceae Behnke
464. Agdestidaceae Nakai
465. Nyctaginaceae Juss.
a1. Leucastereae Benth. \& Hook.f.
a2. Boldoeae Heimerl
a3. Colignonieae Heimerl
a4. Bougainvilleeae Choisy
a5. Pisonieae Meisn.
a6. Nyctagineae Horan.
a7. Caribeeae Douglas \& Spellenb.
466. Phytolaccaceae R. Br.
467. Petiveriaceae C. Agardh
77 g . Portulacineae Engl.
468. Molluginaceae Bartl.
469. Montiaceae Raf.
470. Halophytaceae A.Soriano
471. Basellaceae Raf.
472. Didiereaceae Radlk.
a. Didiereoideae Appleq. \& R.S. Wallace
b. Portulacarioideae Appleq. \& R.S. Wallace
c. Calyptrothecoideae Pax \& Gilg
473. Talinaceae Doweld
474. Portulacaceae Juss.
475. Anacampserotaceae Eggli \& Nyffeler
476. Cactaceae Juss.
a. Pereskioideae Engelm.
b. Opuntioideae Burnett
b1. Austrocylindropuntieae R.S. Wallace \& S.L. Dickie
b2. Cylindropuntieae Doweld
b3. Opuntieae DC.
b4. Pterocacteae Kuntze
b5. Tephrocacteae Doweld
c. Maihuenioideae P. Fearn
d. Blossfeldioideae Crozier
d1. Blossfeldieae Crozier
d2. Copiapoeae Doweld
e. Cactoideae Eaton
el. Browningieae Buxb.
e2. Cereeae Salm-Dyck
e3. Trichocereeae Buxb.
e4. Notocacteae Buxb.
e5. Rhipsalideae DC.
e6. Lymanbensonieae N. Korotkova \& Barthlott
e7. Hylocereeae Buxb.
e8. Pachycereeae Buxb.
e9. Cacteae Rchb.
R. Cornanae Thorne ex Reveal
477. Cornales Link
478. Cornaceae Bercht. \& J. Presl
a. Alangioideae Burnett
b. Cornoideae Endl.
c. Davidioideae Harms
d. Nyssoideae Arn.
e. Mastixioideae Harms
479. Hydrangeaceae Dumort.
a. Jamesioideae L. Hufford
b. Hydrangeoideae Burnett
b1. Philadelpheae DC. ex Duby
bla. Philadelphinae Reveal
b1b. Kirengeshominae Reveal
b2. Hydrangeeae DC.
480. Loasaceae Juss.
a. Mentzelioideae Gilg
b. Petalonychoideae Weigend
c. Gronovioideae M. Roem.
d. Loasoideae Gilg
d1. Loaseae Rchb.
d2. Klaprothieae Gilg
481. Hydrostachyaceae Engl.
482. Grubbiaceae Endl. ex Meisn.
483. Curtisiaceae Takht.
S. Ericanae Takht.
484. Ericales Bercht. \& J. Pres1
79a. Balsaminineae Engl.
485. Balsaminaceae A. Rich.
486. Marcgraviaceae Bercht. \& J. Pres1
a. Marcgravioideae Choisy
b. Norantioideae Choisy
487. Tetrameristaceae Hutch.
79b. Polemoniineae Bessey
488. Polemoniaceae Juss.
a. Polemonioideae Arn.
a1. Polemonieae Dumort.
a2. Phlocideae Dumort.
a3. Gilieae V.E. Grant
a4. Loeselieae J.M. Porter \& L.A. Johnson
b. Cobaeoideae Arn.
b1. Cobaeeae Meisn.
b2. Cantueae Peter
b3. Bonplandieae Baill.
c. Acanthogilioideae J.M. Porter \& L.A. Johnson
489. Fouquieriaceae DC.
79c. Scytopetalineae Engl.
490. Napoleonaeaceae A. Rich.
491. Scytopetalaceae Engl.
492. Lecythidaceae A. Rich.
a. Asteranthoideae Reveal
b. Barringtonioideae Beilschm.
c. Lecythidoideae Beilschm.
79d. Primulineae Burnett
493. Sladeniaceae Airy Shaw
494. Pentaphylacaceae Engl.
al. Pentaphylaceae P.F. Stevens \& A.L. Weitzman
a2. Ternstroemieae DC.
a3. Freziereae DC.
495. Sapotaceae Juss.
a. Sarcospermatoideae Swenson \& Anderb.
b. Sapotoideae Eaton
b1. Sapoteae Rchb.
b2. Palaquieae Engl.
b3. Sideroxyleae Small
c. Chrysophylloideae Luerss.
cl. Chrysophylleae Small
c2. Omphalocarpeae Duband ex Aubrév.
496. Ebenaceae Gürke
a. Lissocarpoideae $B$. Walln.
b. Ebenoideae Thorne \& Reveal
497. Maesaceae Anderb., B. Ståhl \& Källersjö
498. Theophrastaceae G. Don
499. Myrsinaceae R. Br.
500. Samolaceae Raf.
501. Primulaceae Batsch ex Borkh.
a1. Primuleae Dumort.
a2. Androsaceeae Rchb. ex Pax
a3. Ardisiandreae O. Schwarz
502. Lysimachiaceae Juss.
a1. Lysimachieae Rchb.
a2. Corideae Dumort.
79e. Theineae Engl.
503. Mitrastemonaceae Makino
504. Theaceae Mirb. ex Ker Gawl.
a1. Theeae Szyszyl.
a2. Gordonieae DC.
a3. Stewartieae Choisy
505. Symplocaceae Desf.
506. Styracaceae DC. \& Spreng
507. Diapensiaceae Lindl.
79f. Sarraceniineae Reveal
508. Sarraceniaceae Dumort.
509. Actinidiaceae Engl. \& Gilg
a. Actinidioideae Gilg
b. Saurauioideae Gilg
c. Clematoclethroideae Gilg
510. Roridulaceae Martinov
79g. Ericineae Link
511. Clethraceae Klotzsch
512. Cyrillaceae Lindl.
513. Ericaceae Juss.
a. Enkianthoideae Kron, Judd \& Anderb.
b. Monotropoideae Arn.
b1. Pyroleae Dumort.
b2. Monotropeae Dumort.
b3. Pterosporeae Baill.
c. Arbutoideae Nied.
d. Cassiopoideae Kron \& Judd
e. Harrimanelloideae Kron \& Judd
f. Ericoideae Arn.
f1. Phyllodoceae Drude
f2. Bryantheae Gillespie \& Kron
f3. Ericeae DC. ex Duby
f4. Empetreae Horan.
f5. Rhodoreae DC. ex Duby
g. Empetroideae Sweet
h. Epacridoideae Arn.
h1. Prionoteae Drude
h2. Archerieae Crayn \& Quinn
h3. Oligarrheneae Crayn \& Quinn
h4. Richeeae Crayn \& Quinn
h5. Epacrideae Dumort.
h6. Cosmelieae Crayn \& Quinn
h7. Stenanthereae Dumort.
i. Vaccinioideae Arn.
i1. Oxydendreae Cox ex Reveal
i2. Lyonieae Kron \& Judd
i3. Andromedeae Klotzsch
i4. Gaultherieae Nied.
i5. Vaccinieae Rchb.
Lamianae Takht.
514. Garryales Mart.
515. Garryaceae Lindl.
516. Aucubaceae Bercht. \& J. Pres1
517. Eucommiaceae Engl.
518. Icacinales Tiegh.
519. Oncothecaceae Kobuski ex Airy Shaw
520. Metteniusaceae H. Karst. ex Schnizl.
521. Icacinaceae Miers
a 1. Emmoteae Miers
a2. Icacineae Benth.
a3. Iodeae Engl.
a4. Phytocreneae Benth. \& Hook.f.
a5. Sarcostigmateae Miers
522. Gentianales Juss. ex Bercht. \& J. Pres1
523. Rubiaceae Juss.
a. Cinchonoideae Raf.
a1. Chiococceae Benth. \& Hook.f.
a2. Cinchoneae DC.
a3. Coptosapelteae Bremek. ex S.P. Darwin
a4. Guettardeae DC.
a5. Hamelieae A. Rich. ex DC.
a6. Hillieae Bremek. ex S.P. Darwin
a7. Hymenodictyoneae Razafim. \& B. Bremer
a8. Isertieae A. Rich. ex DC.
a9. Naucleeae Burnett
a 10. Rondeletieae Burnett
b. Dialypetalanthoideae Reveal
b1. Alberteae Sond.
b2. Bertiereae Bridson
b3. Coffeeae DC.
b4. Dialypetalantheae Reveal
b5. Cremasporeae Bremek. ex S.P. Darwin
b6. Gardenieae A. Rich. ex DC.
b7. Ixoreae Benth. \& Hook.f.
b8. Mussaendeae Benth. \& Hook.f.
b9. Octotropideae Bedd.
b10. Pavetteae Dumort.
b11. Posoquerieae Delprete
b12. Retiniphylleae Benth. \& Hook.f.
b13. Sabiceeae A. Stahl
b14. Sipaneeae Bremek.
b15. Vanguerieae Dumort.
c. Rubioideae Bremek. ex Verdc.
c1. Colletoecemateae Rydin \& B. Bremer
c2. Urophylleae Bremek. ex Verde.
c3. Ophiorrhizeae Bremek. ex Verdc.
c4. Lasiantheae B. Bremer \& Manen
c5. Coussareeae Benth. \& Hook.f.
c6. Psychotrieae Cham. \& Schltdl.
c7. Schradereae Bremek.
c8. Mitchelleae Razafim. \& B. Bremer
c9. Craterispermeae Verdc.
c10. Gaertnereae Endl.
c11. Morindeae Burnett
c12. Schizocoleeae Rydin \& B. Bremer
c13. Spermacoceae Cham. \& Schltdl. ex DC.
c14. Knoxieae Benth. \& Hook.f.
c15. Danaideae B. Bremer \& Manen
c16. Dunnieae Rydin \& B. Bremer
c17. Theligoneae Baill.
c18. Rubieae Baill.
c18a. Theligoninae Robbr. \& Manen
c18b. Kelloggiinae Robbr. \& Manen
c18c. Rubiinae Robbr. \& Manen
c19. Paederieae DC.
c20. Argostemmateae Bremek. ex Verde.
c21. Anthospermeae Cham. \& Schltdl.c21a. Anthosperminae Benth.
c21b. Coprosminae Fosb.c21c. Operculariinae Benth.
524. Gentianaceae Juss.
a1. Saccifolieae Struwe, Thiv, V.A. Albert \& Kadereit
a2. Exaceae Colla
a3. Chironieae Dumort.
a3a. Chironiinae G. Don
a3b. Canscorinae Thiv \& Kadereit
a3c. Coutoubeinae G. Don
a4. Potalieae Endl.
a4a. Potaliinae Progel
a4b. Faroinae Struwe \& V.A. Albert
a4c. Lisianthiinae G. Don
a5. Helieae Gilg
a6. Gentianeae Dumort.
a6a. Gentianinae G. Don
a6b. Swertiinae Griseb.
a7. Voyrieae Gilg
525. Loganiaceae R. Br. ex Mart.
a1. Loganieae Kitt.
a2. Strychneae Soler:
a3. Antonieae Endl.
a4. Spigelieae Dumort.
526. Gelsemiaceae L. Struwe \& V.A. Albert
527. Pteleocarpaceae Brummitt
528. Apocynaceae Juss.
a. Carissoideae Endl.
a1. Alstonieae G. Don
a2. Vinceae Duby
a3. Willughbeeae A. DC.
a4. Tabernaemontaneae G. Don
a5. Melodineae G. Don
a6. Hunterieae Miers
a7. Plumerieae E. Mey.
a8. Carisseae Dumort.
a9. Alyxieae G. Don
b. Apocynoideae Burnett
b1. Wrightieae G. Don
b2. Malouetieae Müll.-Arg.
b3. Apocyneae Rchb.
b4. Mesechiteae Miers
b5. Echiteae Bartl.
c. Periplocoideae Endl.
d. Secamonoideae Endl.
e. Asclepiadoideae Burnett
e1. Fockeeae H. Kunze, Meve \& Liede
e2. Marsdenieae Benth.
e3. Ceropegieae Orb.
e4. Asclepiadeae Duby
529. Solanales Juss. ex Bercht. \& J. Presl
83a. Solanineae J. Pres1
530. Montiniaceae Nakai
a1. Montinieae DC
a2. Kaliphoreae Reveal
531. Sphenocleaceae T. Baskerv.
532. Hydroleaceae R. Br. ex Edwards
533. Convolvulaceae Juss.
a. Humbertioideae Roberty
b. Convolvuloideae Burnett
b1. Aniseieae Stefanović \& D.F. Austin
b2. Poraneae Hallier f.
b3. Convolvuleae Dumort.
b4. Cresseae C.B. Clarke
b5. Dichondreae Choisy ex G Don
b6. Erycibeae Hogg
b7. Ipomoeeae Hallier f.
b8. Jacquemontieae Stefanović \& D.F. Austin
b9. Maripeae Webb \& Berthel.
b10. Merremieae D.F. Austin
c. Cuscutoideae Burnett
534. Solanaceae Juss.
a. Schizanthoideae Hunz.
b. Goetzeoideae Thorne \& Reveal
c. Duckeodendroideae Reveal
d. Cestroideae Burnett
d1. Benthamielleae Hunz.
d2. Browallieae Hunz.
d3. Cestreae Dumort.
d4. Salpiglossideae Benth.
e. Schwenckioideae Reveal
f. Petunioideae Thorne \& Reveal
g. Nicotianoideae Miers
g1. Anthocercideae G. Don
g2. Nicotianeae Dumort.
h. Solanoideae Burnett
h1. Nicandreae Lowe
h2. Mandragoreae Rchb.
h3. Hyoscyameae Endl.
h3a. Hyoscyaminae Kitt.
h3b. Lyciinae Hogg
h3c. Jaborosinae Reveal
h4. Nolaneae Rchb.
h5. Capsiceae Dumort.
h6. Datureae Dumort.
h7. Physalideae Miers
h7a. Iochrominae Reveal
h7b. Physalidinae Reveal
h7c. Witheringiinae Reveal
h7d. Salpichroinae Reveal
h8. Solaneae Dumort.
h9. Juanulloeae Hunz.
i. Sclerophylacoideae Thorne \& Reveal
83b. Boraginineae Engl.
535. Boraginaceae Juss.
a. Boraginoideae Arn.
al. Trigonotideae H. Riedl
a2. Rochelieae A. DC.
a3. Boragineae Rchb.
a4. Cynoglosseae W.D.J. Koch
a5. Echiochileae Långström \& M.W. Chase
a6. Lithospermeae Dumort.
b. Codonoideae Retief \& A.E. van Wyk
c. Wellstedioideae Pilg.
d. Hydrophylloideae Burnett
d1. Hydrophylleae Rchb.
d1a. Phaceliinae Reveal
d1b. Hydrophyllinae Reveal
d1c. Romanzoffiinae Reveal
e. Heliotropoideae Arn.
f. Ehretioideae Arn.
g. Cordioideae Beilschm.
g1. Hoplestigmateae Reveal
g2. Cordieae Dumort.
h. Lennooideae Craven
536. Vahliales Doweld
537. Vahliaceae Dandy
538. Lamiales Bromhead
85a. Oleineae J. Pres1
539. Plocospermataceae Hutch.
540. Carlemanniaceae Airy Shaw
541. Oleaceae Hoffmanns. \& Link
a1. Fontanesieae H. Taylor ex L.A.S. Johnson
a2. Forsythieae H. Taylor ex L.A.S. Johnson
a3. Myxopyreae Boerl.
a4. Jasmineae Lam. \& DC.
a5. Oleeae Hoffmanns. \& Link ex Dumort.
a5a. Fraxininae E. Wallander \& V.A. Albert
a5b. Schreberinae E. Wallander \& V.A. Albert
a5c. Ligustrinae Koehne
a5d. Oleinae E. Wallander \& V.A. Albert
85b. Gesneriineae Link
542. Tetrachondraceae Wettst.
543. Calceolariaceae Olmstead
544. Gesneriaceae Rich. \& Juss.
a. Didymocar poideae Am.
a1. Didymocar peae Endl.
a2. Epithemateae Reveal
b. Gesnerioideae Burnett
b1. Napeantheae Wiehler
b2. Coronanthereae Fritsch
b3. Beslerieae Bartl.
b4. Gloxinieae Sweet
b5. Gesnerieae Dumort.
b6. Sinningieae Fritsch
b7. Episcieae Endl.
85c. Lamiineae Bessey
545. Plantaginaceae Juss.
a1. Gratioleae Benth.
a2. Stemodieae Reveal
a3. Angelonieae Pennell
a4. Cheloneae Benth.
a5. Russelieae Pennell
a6. Antirrhineae Dumort.
a7. Callitricheae Dumort.
a8. Sibthor pieae Benth.
a9. Globularieae Rchb.
a10. Hemiphragmateae Rouy
a11. Digitalideae Dumort.
a12. Veroniceae Duby
a13. Plantagineae Dumort.
546. Scrophulariaceae Juss.
a. Hemimeridoideae Reveal
a1. Hemimerideae Benth.
a1a. Alonsoinae Reveal
a 1b. Hemimeridinae Reveal
b. Myoporoideae Arn.
b1. Aptosimeae Benth. \& Hook.f.
b2. Myoporeae Rchb.
b3. Leucophylleae Miers
c. Scrophularioideae Beilschm.
cl. Scrophularieae Dumort.
c2. Limoselleae Dumort.
d. Buddlejoideae Engl.
d1. Teedieae Benth.
d2. Buddlejeae Bartl.
547. Stilbaceae Kunth
a 1. Hallerieae G. Don
a2. Bowkerieae Barringer
a3. Stilbeae Hogg
548. Lamiaceae Martinov
a. Symphorematoideae Briq.
b. Caryopteridoideae Briq.
b1. Callicarpeae Briq.
b2. Tectoneae Briq.
c. Viticoideae Briq.
d. Ajugoideae Luerss.
d1. Clerodendreae Briq.
d2. Ajugeae Benth.
d3. Monochileae Briq.
d4. Teucrieae Dumort.
d5. Caryopterideae Benth. \& Hook.f.
e. Wenchengioideae C.Y. Wu \& S. Chow
f. Prostantheroideae Luerss.
f1. Chloantheae Benth. \& Hook.f.
f2. Westringieae Bartl.
g. Scutellarioideae Prantl
h. Lamioideae Harley
h1. Pogostemoneae Briq.
h2. Prasieae Benth.
h3. Marrubieae Vis.
h4. Lamieae Coss. \& Germ.
i. Nepetoideae Burnett
il. Elsholtzieae Burnett
i2. Saturejeae Benth.
i3. Prunelleae Raf.
i4. Meriandreae Briq.
i5. Lepechinieae Briq.
i6. Hormineae Engl.
i7. Mentheae Dumort.
i7a. Salvinae Endl.
i7b. Clinopodiinae Dumort.
i7c. Nepetinae Coss. \& Germ.
i7d. Melissinae Dumort.
j8. Ocimeae Dumort.
j8a. Lavandulinae Endl.
j8b. Hanceolinae A.J. Paton, Ryding \& Harley
j8c. Hyptidinae Endl.
j8d. Ociminae J.A. Schmidt
j8e. Plectranthinae Endl.
549. Mazaceae Reveal
550. Phrymaceae Schauer
a 1. Leucocar peae Conzatti
a2. Mimuleae Dumort.
a3. Phrymeae Hogg
551. Paulowniaceae Nakai
552. Rehmanniaceae Reveal
553. Orobanchaceae Vent.
a. Rhinanthoideae Beilschm.
a1. Pedicularideae Duby
a2. Rhinantheae Lam. \& DC.
a3. Aeginetieae Dumort.
b. Orobanchoideae Eaton
b1. Gerardieae Benth.
b2. Orobancheae Lam. \& DC.
b3. Escobedieae Benth.
b4. Buchnereae Benth.
b4a. Sopubiinae Hogg
b4b. Buchnerinae Benth. \& Hook.f.
b5. Cymbarieae D. Don
b6. Castillejeae Reveal
554. Thomandersiaceae Sreem.
555. Verbenaceae J. St.-Hil.
a 1. Petreeae Briq.
a2. Duranteae Benth.
a3. Casselieae Troncoso
a4. Citharexyleae Briq.
a5. Priveae Briq.
a6. Neospartoneae Olmstead \& O'Leary
a7. Verbeneae Dumort.
a8. Lantaneae Endl.
556. Pedaliaceae R. Br.
a. Pedalioideae Arn.
a 1. Sesamothamneae Ihlenf.
a2. Pedalieae Dumort.
a3. Sesameae Dumort.
a4. Dicerocaryeae Reveal
b. Trapelloideae Stapf
557. Martyniaceae Horan.
558. Linderniaceae Borsch, K.Müll. \& Eb.Fisch.
a1. Microcarpaeae Miq.
a2. Lindernieae Rchb.
559. Bignoniaceae Juss.
a1. Jacarandeae Seem.
a2. Tourrettieae G. Don
a3. Tecomeae Endl.
a4. Bignonieae Dumort.
a5. Catalpeae DC. ex Meisn.
a6. Oroxyleae A.H. Gentry ex Reveal \& L.G. Lohmann
a7. Crescentieae G Don
a8. Coleeae Bojer ex Reveal
560. Schlegeliaceae Reveal
561. Acanthaceae Juss.
a. Nelsonioideae Pfeiff.
b. Thunbergioideae T. Anderson
b1. Thunbergieae Dumort.
b2. Mendoncieae Meisn.
c. Avicennioideae Miers
d. Acanthoideae Eaton
d1. Acantheae Dumort.
d2. Ruellieae Dumort.
d3. Justicieae Dumort.
d4. Neuracantheae Reveal
d5. Barlerieae Nees
d6. Andrographideae Endl.
d7. Whitfieldieae Bremek. ex Reveal
562. Byblidaceae Domin
563. Lentibulariaceae Rich.
U. Asteranae Takht.
564. AQUIFOLIALES Senft
565. Cardiopteridaceae Blume
566. Stemonuraceae Kårehed
567. Aquifoliaceae Bercht. \& J. PresI
568. Phyllonomaceae Small
569. Helwingiaceae Decne.
570. Asterales Link
87a. Campanulineae Raf.
571. Rousseaceae DC.
a. Carpodetoideae J. Lundb.
b. Rousseoideae Horan.
572. Campanulaceae Juss.
a. Nemacladoideae M.H.G. Gust.
b. Campanuloideae Burnett
b1. Cyanantheae Meisn.
b2. Campanuleae Dumort.
c. Cyphioideae Walp.
d. Lobelioideae Burnett
d1. Lobelieae Rchb.
d2. Delisseeae C. Pres1
e. Cyphocarpoideae Miers
87b. Alseuosmiineae Shipunov
573. Pentaphragmataceae J. Agardh
574. Alsenosmiaceae Airy Shaw
575. Phellinaceae Takht.
576. Argophyllaceae Takht.
577. Stylidiaceae R. Br.
a. Donatioideae Mildbr.
b. Stylidioideae Kitt.
b1. Phyllachneae Baill.
b2. Stylidieae Rchb.
87 c . Asterineae Burnett
578. Menyanthaceae Dumort.
579. Goodeniaceae R. Br.
a. Goodenioideae Burnett
b. Dampieroideae Thorne \& Reveal
c. Brunonioideae Burnett
580. Calyceraceae R. Br. ex Rich.
581. Asteraceae Bercht. \& J. Presl
a. Barnadesioideae K. Bremer \& R.K. Jansen
al. Barnadesieae D. Don
b. Stifftioideae Panero
b1. Stifftieae D. Don
c. Mutisioideae Lindl.
cl. Mutisieae Cass.
c2. Onoserideae Solbrig
c3. Nassauvieae Cass.
d. Wunderlichioideae Panero \& V.A. Funk
d1. Wunderlichieae Panero \& V.A. Funk
d2. Hyalideae Panero
e. Gochnatioideae Panero \& V.A. Funk
el. Gochnatieae Rydb.
f. Hecastocleoideae Panero \& V.A. Funk
f1. Hecastocleeae Panero \& V.A. Funk
g. Carduoideae Sweet
g1. Dicomeae Pancro \& V.A. Funk
g2. Oldenburgieae S. Ortiz
g3. Tarchonantheae Vis.
g4. Cardueae Cass.
g4a. Carlininae Dumort.
g4b. Cardopatiinae Less.
g4c. Echinopsinae Dumort.
g4d. Carduinae Dumort.
g4e. Centaureinae Dumort.
h. Pertyoideae Panero \& V.A. Funk
h1. Pertyeae Panero \& V.A. Funk
i. Gymnarrhenoideae Panero \& V.A. Funk
il. Gymnarrheneae Panero \& V.A. Funk
j. Cichorioideae Chevall.
j1. Cichorieae Lam. \& DC.
j1a. Warioniinae Gemeinholzer \& H. Kilian
j1b. Scorzonerinae Dumort.
j1c. Scolyminae Less.
jld. Lactucinae Dumort.
jle. Hyoseridinae Less.
j1f. Crepidinae Dumort.
j1g. Chondrillinae Lamotte
j1h. Hypochaeridinae Less.
j1i. Hieraciinae Dumort.
j1j. Microseridinae Stebbins
j1k. Cichoriinae Dumort.
j2. Arctotideae Cass.
j2a. Arctotidinae Dumort.
j2b. Gorteriinae Benth. \& Hook.f.
j3. Eremothamneae H. Rob. \& Brettell
j4. Liabeae Rydb.
j4a. Munnoziinae H. Rob.
j4b. Liabinae Dumort.
j4c. Paranepheliinae H. Rob.
j4d. Sinclariinae H. Rob.
j5. Vernonieae Cass.
j5a. Distephaninae S.C. Kelley \& H. Rob.
j5b. Linziinae S.C. Kelley \& H. Rob.
j5c. Gymnantheminae H. Rob.
j5d. Hesperomanniinae S.C. Kelley \& H. Rob.
j5e. Centrapalinae H. Rob.
j5f. Stokesiinae H. Rob.
j5g. Leiboldiinae H. Rob.
j5h. Piptocarphinae H. Rob., R.M. King \& F. Bohlmann
j5i. Elephantopinae Less.
j5j. Rolandrinae Dumort.
j5k. Pacourininae H. Rob.
j5l. Mesanthophorinae S.C. Kelley \& H. Rob.
j5m. Erlangeinae H. Rob.
j5n. Lepidaploinae S.C. Kelley \& H. Rob.
j5o. Centratherinae H. Rob., R.M. King \& F. Bohlmann
j5p. Lychnophorinae Benth. \& Hook.f.
j5q. Sipolisinae H. Rob.
j5r. Chrestinae H. Rob.
j5s. Vernoniinae Dumort.
j5t. Dipterocypselinae S.C. Kelley \& H. Rob.j5u. Trichospirinae Less.
j6. Platycarpheae V.A. Funk \& H. Rob.
j7. Moquinieae H. Rob.
k. Corymbioideae Panero \& V.A. Funk
k1. Corymbieae Panero \& V.A. Funk
582. Asteroideae Lindl.
583. Senecioneae Cass.
11a. Abrotanellinae H. Rob., G.D. Carr, R.M. King \& A.M. Powell
11b. Tussilagininae Dumort.
11c. Othonninae Less.
11d. Senecioninae Dumort.
584. Calenduleae Cass.
585. Doroniceae Panero
586. Gnaphalieae Lecoq \& Juill.
587. Astereae Cass.
15a. Amellinae Schultz-Bip.
15b. Hinterhuberinae Cuatrec.
15c. Brachyscominae G.L. Nesom
15d. Bellidinae Willk.
15e. Grangeinae Benth. \& Hook.f.
15f. Lageniferinae GL. Nesom
15 g . Baccharidinae Less.
15h. Podocomatinae GL. Nesom
15i. Asterinae Dumort.
15j. Solidagininae O. Hoffm.
15k. Pentachaetinae G.L. Nesom
588. Boltoniinae G.L. Nesom
15 m . Machaerantherinae GL. Nesom
15n. Symphyotrichinae GL. Nesom
150 . Chaetopappinae G.L. Nesom
15p. Astranthiinae G.L. Nesom
15q. Chrysopsidinae G.L. Nesom
15r. Conyzinae Schultz-Bip.
589. Anthemideae Cass.
16a. Osmitopsidinae Oberpr. \& Himmelr.
16b. Cotulinae Kitt.
16c. Ursiniinae K. Bremer \& Humphries
16d. Athanasinae Pfeiff.
16e. Plymasperminae Oberpr. \& Himmelr.
16f. Pentziinae Oberpr. \& Himmelr.
16g. Handeliinae K. Bremer \& Humphries
16h. Artemisiinae Less.
16i. Matricariinae Willk.
16j. Anthemidinae Dumort.
16k. Leucanthemopsidinae Oberpr. \& Himmelr.
590. Leucantheminae K. Bremer \& Humphries
16 m . Santolininae Willk.
16n. Glebionidinae Oberpr. \& Himmelr.
591. Inuleae Cass.
17a. Inulinae Dumort.
17b. Plucheinae Dumort.
592. Athroismeae Panero
18a. Athroisminae Panero
18b. Anisopappinae Panero
18c. Centipedinae Panero
593. Feddeeae Pruski, Herrera, Anderb. \& Franc.-Ort.
594. Helenieae Lindl.
110a. Heleniinae Dumort.
110b. Tetr aneuridinae Rydb.
110c. Psathyrotinae B.G. Baldwin
110d. Plateileminae B.G. Baldwin
110e. Marshalliinae H. Rob.
595. Coreopsideae Lindl.
111a. Chrysanthellinae O. Ryding \& K. Bremer
111b. Petrobiinae Benth. \& Hook f.
111c. Coreopsidinae Dumort.
111d. Pinillosiinae H. Rob.
596. Neurolaeneae Rydb.
112a. Enydrinae H. Rob.
112b. Heptanthinae H. Rob.
112c. Neurolaeninae Stuessy, B.L. Turner \& A.M. Powell
597. Tageteae Cass.
113a. Coulterellinae H. Rob.
113b. Varillinae B.L. Turner \& A.M. Powell
113c. Jaumeinae Benth. \& Hook.f.
113d. Flaveriinae Less.
113e. Tagetinae Dumort.
598. Chaenactideae B.G. Baldwin
599. Bahieae B.G Baldwin
600. Polymnieae Panero
601. Ambrosieae Cass.
117a. Ambrosiinae Less.
117b. Chromolepidinae Panero
117c. Dugesiinae Panero
117d. Ecliptinae Less.
117e. Enceliinae Panero
117f. Engelmanniinae Stuessy
117 g . Helianthinae Dumort.
117h. Montanoinae H. Rob.
117i. Rojasianthinae Panero
602. Rudbeckiinae Dumort.
117k. Spilanthinae Panero
603. Verbesininae Benth. \& Hook.f.
117 m . Zaluzaniinae H . Rob.
117n. Zinniinae Benth. \& Hook.f.
604. Millerieae Lindl.
118a. Desmanthodiinae H. Rob.
118b. Dyscritothamninae Panero
118c. Espeletiinae Cuatrec.
118d. Galinsoginae Benth. \& Hook.f.
118e. Guardiolinae H. Rob.
118f. Jaegeriinae Panero
118 g . Melampodiinae Less.
118h. Milleriinae Dumort.
605. Madieae Jeps.
119a. Arnicinae B.G. Baldwin
119b. Baeriinae Benth. \& Hook.f.
119c. Hulseinae B.G. Baldwin
119d. Madiinae Benth. \& Hook.f.
119e. Venegasiinae B.G. Baldwin
606. Perityleae B.G. Baldwin
120a. Galeaninae Panero \& B.G. Baldwin
120b. Lycapsinae H. Rob.
120c. Peritylinae A. Gray
607. Eupatorieae Cass.
121a. Oaxacaniinae R.M. King \& H. Rob.
121b. Hofmeisteriinae R.M. King \& H. Rob.
121c. Neomirandeinae R.M. King \& H. Rob.
121d. Trichocoroninae R.M. King \& H. Rob.
121e. Oxylobinae R.M. King \& H. Rob.
121f. Piqueriinae Benth. \& Hook.f.
121g. Mikaniinae R.M. King \& H. Rob.
121h. Hebecliniinae R.M. King \& H. Rob.
121i. Alomiinae Less.
121j. Ayapaninae R.M. King \& H. Rob.
121k. Adenostemmatinae B.L. Rob.
608. Critoniinae R.M. King \& H. Rob.
121m. Fleischmanniinae R.M. King \& H. Rob.
121n. Ageratinae Less.
609. Gyptidinae R.M. King \& H. Rob.
121p. Disynaphiinae R.M. King \& H. Rob.
121q. Liatridinae Dumort.
121r. Praxelinae R.M. King \& H. Rob.
121s. Eupatoriinae Dumort.
610. EsCalloniales Mart.
611. Escalloniaceae R. Br. ex Dumort.
a. Anopteroideae Reveal
b. Eremosynoideae Dandy
c. Tribeloideae Thorne \& Reveal
d. Escallonioideae Burnett
e. Polyosmoideae Le Maout \& Decne.
612. BRUNIALES Dumort.
613. Columelliaceae D. Don
614. Desfontainiaceae Endl. ex Pfeiff.
615. Bruniaceae R. Br. ex DC.
a1. Linconieae Reveal
a2. Audouinieae Nied.
a3. Brunieae Rchb.
616. APIALES Nakai
90a. Aralidiineae Thorne \& Reveal
617. Pennantiaceae J. Agardh
618. Torricelliaceae Hu
619. Aralidiaceae Philipson \& B.C. Stone
620. Griseliniaceae J.R. Forst. \& G. Forst. ex A.Cunn.
621. Pittosporaceae R. Br.
90b. Apiineae G.M. Plunkett \& Lowry
622. Araliaceae Juss.
a. Aralioideae Eaton
a1. Cussonieae Seem.
a2. Meryteae Viguier
a3. Hedereae Dumort.
a4. Aralieae Rchb.
a5. Panaceae Hook.f.
b. Hydrocotyloideae Burmeist.
623. Myodocarpaceae Doweld
624. Apiaceae Lindl.
a. Mackinlayoideae G.M. Plunkett \& Lowry
a1. Mackinlayeae Hook.f.
a2. Xanthosieae Reveal
a2a. Xanthosiinae Tausch
a2b. Centellinae Calest.
b. Azorelloideae GM. Plunkett \& Lowry
b1. Mulineae DC.
b2. Azorelleae Reveal
b3. Bowlesieae Small
c. Saniculoideae Burnett
c1. Phlyctidocar peae Magee, C.I. Calviño, M. Lie, S.R. Downie, P.M. Tilney \& B.-E. van Wyk
c2. Steganotaenieae C.I. Calviño \& S.R. Downie, Molec.
c3. Saniculeae W.D.J. Koch
d. Apioideae Seem.
d1. Lichtensteinieae Magee, C.I. Calviño, M. Lie, S.R. Downie, P.M. Tilney \& B.-E.van Wyk
d2. Marlothielleae Magee, C.I. Calviño, M. Lie, S.R. Downie, P.M. Tilney \& B.-E. van Wyk
d3. Choritaenieae Magee, C.I. Calviño, M. Lie, S.R. Downie, P.M. Tilney \& B.-E. van Wyk
d4. Annesorhizeae Magee, C.I. Calviño, M. Lie, S.R. Downie, P.M. Tilney \& B.-E.van Wyk
d5. Heteromorpheae M.F. Watson \& S.R. Downie
d6. Bupleureae Spreng.
d7. Pleurospermeae M.F. Watson \& S.R. Downie
d8. Oenantheae Dumort.
d9. Smyrnieae Spreng.
d10. Aciphylleae M.F. Watson \& S.R. Downie
d11. Scandiceae Spreng.
d11a. Daucinae Dumort.
d11b. Ferulinae Drude
d11c. Scandicinae Tausch
d11d. Torilidinae Dumort.
d12. Careae Baill.
d13. Pyramidoptereae Boissier
d14. Pimpinelleae Spreng.
d15. Echinophoreae Benth. \& Hook.f.
d16. Caucalideae Spreng.
d17. Coriandreae W.D.J. Koch
d18. Hohenackerieae Calest.
d19. Apieae Takht. ex V.M. Vinogr.
d20. Angeliceae W.D.J. Koch
d21. Peucedaneae Dumort.
d22. Tordylieae W.D.J. Koch
d23. Laserpitieae Coss. \& Germ.
d24. Selineae Spreng.
625. Paracryphiales Takht. ex Reveal
626. Paracryphiaceae Airy Shaw
627. Quintiniaceae Doweld
628. Dipsacales Juss. ex Bercht. \& J. Pres1 495. Adoxaceae E. Mey.
a. Opuloideae Raf.
a1. Viburneae O.Berg
a2. Sambuceae A. Rich. ex Duby
b. Adoxoideae Syme
629. Diervillaceae Pyck
630. Caprifoliaceae Juss.
a1. Triosteeae Reveal
a2. Caprifolieae Dumort.
631. Linnaeaceae Backlund
632. Morinaceae Raf.
633. Dipsacaceae Juss.
634. Valerianaceae Batsch
a. Triplostegioideae Reveal
b. Valerianoideae Raf.

## Notes and Comments

Acanthaceae: In addition to the tribes noted above, Takhtajan (2009) also mentioned Aphelandreae Nees in C.F.P. von Martius, Fl. Bras. 9: 7, 73. 1 Jun 1847 and Lepidagathideae Bremek., Blumea 10: 155. 1960 (misspelled as 'Lepidagathidae').

Aizoaceae: Delospermeae Chesselet, G.F. Sm. \& A.E. van Wyk, Taxon 51: 306. 2002 is assigned here to Ruschieae. The name Sesuvioideae Lindl., Veg. Kingd.: 527. Jan-Mai 1846 must now be replaced by Tetragonioideae.

Alstroemeriaceae: Stevens (2001-onward) recognized a broadly defined family accepting both Alstroemerieae Bernh., Flora 23: 425. 21 Jul 1840 and Luzuriageae Benth. \& Hook.f., Gen. Pl. 3: 749, 751. 14 Apr 1883.

Amaranthaceae: Culham (in Heywood et al. 2007), Thorne \& Reveal (2007) and Takhtajan (2009) circumscribed this family narrowly with the latter two sets of authors recognizing Polycnemoideae, Gomphogynoideae and Amaranthoideae. In Chenopodiaceae, Thorne \& Reveal accepted five subfamilies whereas both Culham and Takhtajan, recognized only four, assigning Suaedoideae Ulbr. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 16c: 445, 554. Jan-Apr 1934 to synonymy under Salsoloideae. Also, Betoideae is accepted here rather than assigning Beteae Volkens
in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 1a: 52, 54. 1893 to Chenopodioideae. Schäferhoff, Müller \& Borsch (Willdenowia 39: 209-228. 2010) also recognized Chenopodiaceae in their summary of Caryophyllales.

Anacardiaceae: Takhtajan (2009) recognized four subfamilies while Thorne \& Reveal (2007) accepted only the two given above, placing Julianioideae Takht., Stst. Magnoliof. [Syst. Magnolioph.]: 180. 24 Jun 1987 in Anacardioideae and Pistacioideae Burnett, Outlines Bot.: 629, 1092, 1139. Feb 1835 in Spondiadoideae. This reduction is also seen in Stevens (2001-onward).

Annonaceae: Recognition of infrafamilial taxa within this family remains unresolved and aside from the two subfamilies mentioned above (taken from Thome \& Reveal 2007), no attempt is made to distinguish tribes although several, including one validated here, seem appropriate. Takhtajan (2009) recognized several but it seems prudent at this point to mention all available names to provide the nomenclature for those engaged in exploring the family: Annoneae Endl., Gen. Pl.: 833. Jun 1839; Annoninae Engl. \& Diels in H.G.A. Engler, Monogr. Afr. Pflanzen-Fam. 6: 7. Nov 1901; Asimineae Small, Man. S.E. Fl.: 529. 30 Nov 1933; Bocageeae Endl., Gen. Pl.: 830. Jun 1839; Bocageoideae Pfeiff., Nomencl. Bot. 1(1): 427. ante 12 Jul 1872; Guatterieae Hook.f. \& Thomson, Fl. Ind. 1: 92, 126. 1-19 Jul 1855; Hexalobeae Engl. \& Diels in H.GA. Engler, Monogr. Afr. Pflanzen-Fam. 6: 6. Nov 1901; Laurelieae Pax in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 2: 97. Mar 1889; Limacieae Prantl in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 2: 83. Jul 1888; Melodoreae Prantl in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 2: 28. Feb 1888; Miliuseae Hook.f. \& Thomson, Fl. Ind. 1: 147. 1-19 Jul 1855; Miliusinae Engl. \& Diels in H.G.A. Engler, Monogr. Afr. Pflanzen-Fam. 6: 6. Nov 1901; Mitrephoreae Hook.f. \& Thomson, Fl. Ind. 1: 92, 104. 1-19 Jul 1855; Mitrephorinae Engl. \& Diels in H.G.A. Engler, Monogr. Afr. Pflanzen-Fam. 6: 6. Nov 1901; Monodoreae Baill., Hist. Pl. 1: 263, 288. Aug-Dec 1868; Phaeanthinae Benth. \& Hookf., Gen. Pl. 1: 22. 7 Aug 1862; Rolliniinae Baill., Hist. Pl. 1: 256, 285. Aug Dee 1868; Saccopetaleae Hook.f. \& Thomson, FI. Ind. 1: 92. 1-19 Jul 1855; Unoneae Benth. \& Hook.f., Gen. Pl. 1: 21. 7 Aug 1862; Unoninae Benth. \& Hook.f. in H.E. Baillon, Hlst. Pl. 1: 264, 283. Aug-Dec 1868; Uvarieae Hook.f. \& Thomson, Fl. Ind. 1: 91, 92. 1-19 Jul 1855; Uvariinae Benth. \& Hook.f. in H.E. Baillon, Htst. Pl. 1: 264, 281. Aug-Dec 1868; Uvarioideae Raf., Anal. Nat.: 175. Apr-Jul 1815; Xylopieae Endl., Gen. Pl.: 831. Jun 1839, Xylopiinae Baill., Hist. Pl. 1: 264, 284. Aug-Dec 1868; and Xylopioideae Raf., Anal. Nat.: 175. Apr-Jul 1815. An oft-used name, Tetramerantheae R.E. Fr. ex Reveal, Phytoneuron 2012-37: 219. 23 Apr 2012, mentioned by Fries (in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 17A: 44, 166. 1959), is now validated (see below).

Apocynaceae: It is uncertain whether Allamandeae G. Don, Gen. Hist. 4: 71, 102. 1837-8 Apr 1838 or Plumerieae E. Mey., Comm. Pl. Afr. Austr. 2: 188. 1-8 Jan 1838 has priority; here I have given priority to the Meyer name which can be more narrowly dated awaiting a more exact date of publication for the Don volume. The unpublished name "Rauvolficoideae" has come into use recently, but Plumerioideae Luerss. (Handb. Syst. Bot. 2: 1061. Nov 1882) has priority. Even so, it now seems Plumerioideae should be assigned to Carissoideae Endl. (1838) with Rauvolfieae Bartl., Ord. Nat. Pl.: 205. Sep 1830 placed in Vinceae Duby (1828).

Araceae: Takhtajan (2009) combined Pothoideae and Monsteroideae under the former and recognized Monstereae and Potheae. He also maintained Zamioculcadoideae in Philodendroideae as Zamioculcadeae. As here defined, Caladieae is circumscribed so as to include Zomicarpeae Schott, Syn. Aroid.: 33. Mar 1856, a name with equal priority. Takhtajan also accepted Pistiaceae and Lemnaceae as distinct families, dividing the latter into Lemnoideae and Wolffioideae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. II, 3: 163, 164. Mar 1889. Mabberley (2007) considered Calloideae Endl., Gen. Pl.: 239. Jun 1837 to be distinct from Aroideae.

Araliaceae: The name Cussonieae is here declared to have priority over Plerandreae Seem., J. Bot. 6: 165. 1 Jun 1868, and is an earlier name for Schefflereae Harms in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 8: 23. 28 Dec 1894. Mackinlayeae was retained in Araliaceae by Mabberley; the taxon is here assigned to Apiaceae.

Arecaceae: Livistoneae J. Dransf., N.W. Uhl, Rasmussen, W.J. Baker, M.M. Harley \& C. Lewis, Kew Bull. 60: 561. 2006 is included in Trachycarpeae. The name "Linospadicinae", adopted by some, is not based on a legitimate name and John Dransfield and colleagues proposed Laccospadicinae as a substitute name.

Asparagaceae: APG III (2009) defined this family broadly whereas here the segregate families, recognized as "optional" families in APG II (2003), are retained with some modification from the expanded arrangement of Stevens (2001-onward), Takhtajan (2009), and Thorne \& Reveal (2007). Details of a broadly defined Amaryllidaceae, Asparagaceae and Xanthorrhoeaceae are provided by Chase et al. (2009) with the subfamilies and tribes they accepted provided there with full bibliographic information.

Balanophoraceae: In addition to the five subfamilies recognized here, Takhtajan (2009) had two more: Helosoideae Tiegh., Just's Bot. Jahresber. 24(2): 297. 1898 (=Scybalioideae) and Langsdorffioideae Takht., Bot. Zhurn (Moscow \& Leningrad) 75: 698. 11-30 Jun 1990 (=Balanophoroideae). Stevens (2001-onward) mentioned "Lathraeophyllaceae" seemingly as the correct name for Helosidaceae, but no such name is known to me. Mabberley (2007) mentioned five tribes within his non-typical branch of Balanophoraceae; of the four Englerian subfamilies published in 1889 mentioned above, Mabberley did not select one. Names at the rank of tribe include Dactylantheae Benth. \& Hook.f., Gen. Pl. 3: 233. 7 Apr 1880, Lophophyteae Schott \& Endl., Melet. Bot.: 11. 1832, Mystropetaleae Eichler in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 17: 123. 16 Oct 1873, Sarcophyteae Endl., Gen. Pl.: 73. Aug 1836, and Heloseae Schott \& Endl., Melet. Bot.: 11. 1832 (including Scybalieae Eichler in E.P.N. Fournier, Act. Congr. Intern. Bot.: 152. Nov 1867).

Basellaceae: Takhtajan (2009) recognized two tribes: Baselleae Fenzl in S.F.L. Endlicher, Gen. Pl.: 297. Oct 1837 and Boussingaultieae Benth. \& Hook.f., Gen. Pl. 3: 48. 7 Apr 1880. The latter is a later name for Anredereae Pfeiff., Nomencl. Bot. 1(1): 373. ante 12 Jul 1872.

Berberidaceae: Mabberley (2007) reduced Podophylloideae to Berberideae.
Berryaceae: APGIII (2009; see Malvaceae) recognized Berryaceae as Brownlowioideae Burett, Notizbl. Bot. Gart. Berlin-Dahlem 9: 599, 605. 22 Jul 1926. Takhtajan (2009) assigned the taxon to Tiliaceae and recognized three tribes therein: Brownlowieae, Berryeae, and "Diplodisceae", a name that has not been validly published.

Betulaceae: Takhtajan (2009) recognized both Carpinoideae Rouy, Fl. France 12: 301. Nov 1910 and Coryloideae which are here combined with the two subfamilies recognized at the rank of tribe.

Bignoniaceae: The oft-recognized Eccremocarpeae Hogg, Veg. Kingd.: 526. 1858 (e.g., Mabberley 2007) is here included in Tourrettieae.

Bombacaceae: APGIII (2009; see Malvaceae) recognized Bombacoideae Burnett, Outlmes Bot.: 816, 818, 1094, 1119. Feb 1835.

Boraginaceae: Mabberley (2007) maintained Echieae Dumort., Fl. Belg.: 42. 1827, here it is assigned to Lithospermeae. Likewise, here Eritrichieae Gürke in H.G.A. Engler \& K.A.E. Prantl, Nat.

Pflanzenfam. IV, 3a: 81. Jun 1893 is placed in Cynoglosseae. The generic name Trigonotts Steven is not legitimate, being a later name than Endogonia (Turcz.) Lindl. However, as the Lindley name has never been adopted, Trigonotis has been proposed for conservation by Cohen and Reveal (Taxon 60: 598-599. 2011) so as to maintain Trigonotideae.

Brassicaceae: In addition to the tribes mentioned above, Takhtajan (2009) also accepted the following: "Macropodieae" (=Arabieae), Pringleeae Hayek, Beih. Bot. Zentralbl. 27(1): 315, 329. 1911 (= Schizopetaleae), "Megadenieae", Megacarpaeeae Kamelin ex German, Komarovia 6: 86. 2009 (unplaced), Chamireae Sond., Abh. Naturwiss. Naturwiss. Verein Hamburg 1: 267. 1846 (unplaced but perhaps Heliophileae); "Stenopetaleae" (an invalid name, =Camelineae), and "Lyrocarpieae" (=Physarieae).

Bromeliaceae: Takhtajan (2009) retained three tribes in Pitcairnioideae, namely Brocchinieae G.S. Varad. \& Gilmartin, Syst. Bot. 13: 295. 19 Apr 1988, Pitcairnieae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 395, Comm. 298. 17-20 Aug 1842, and Puyeae Beer, Fam. Bromel.: 9, 19. Sep-Oct 1856.

Burseraceae: As here defined, Canarieae includes Garugeae Marchand, Adansonia 8: 66. Nov 1867.
Buxaceae: Takhtajan (2009) recognized four tribes, the three mentioned here and Buxeae Dumort., Anal. Fam. Pl.: 45. 1829. Stevens (2001-onward) recognized only Stylocerateae (as "Sarcococceae") and Buxeae. The recently proposed name, Styloceratoideae Thorne \& Reveal, Bot. Rev. (Lancaster) 73: 89. 29 Jun 2007, is a taxonomic synonym of the overlooked Pachysandroideae.

Byttneriaceae: APGIII (2009; see Malvaceae) recognized Byttnerioideae Burnett, Outlmes Bot.: 821, 1119. Feb 1835. Takhtajan (2009) retained the subfamily in his Sterculiaceae and recognized eight tribes: Lasiopetaleae, Hermannieae, "Helmiopsideae", Byttnerieae, and Theobromateae (as "Theobromeae"); these are here assigned to Byttneriaceae. As for Helictereae (misspelled as "Helictereteae"), Eriolaeneae, and "Triplochitoneae" (for which the name Mansonieae is available), are assigned here to Helicteraceae. Fremontodendreae Airy Shaw, Kew Bull. 18: 257. 8 Dec 1965 (a later name for Chiranthodendreae) is here assigned to Bombacaceae.

Cactaceae: Mabberley (2007) and Takhtajan (2009) recognized Echinocereeae Buxb., Madroño 14: 193. 2 May 1958, which is assigned here to Pachycereeae. Echinopsideae K. Friedrich \& G.D. Rowley, Repert. Pl. Succ. (I.O.S.) 25: 6. 1976 is included in Trichocereeae and Monvilleeae F. Ritter, Kakteen Südamertka 1: 230. 1979 in Cereeae; both were unnecessarily proposed as new names for Trichocereeae and Cereeae respectively. The name Maihuenieae Doweld, Sukkulenty 1(2): 25. 25 Jul 1999 is available whereas the invalid "Calymmanthieae" is now termed Lymanbensonieae. No attempt has been made to account for the numerous subtribes that have been proposed for this family.

Campanulaceae: Takhtajan (2009) recognized eight subfamilies. In addition to the five accepted above, he recognized Cyananthoideae Takht. ex Reveal, Phytoneuron 2012-33: 2. 9 Apr 2012, Canarinoideae Kolak., Bot. Zhurn. (Moscow \& Leningrad) 72: 1574. Dec 1987, and Ostrowskioideae Takht., Divers. Classif. Ft. Pl.: 408. 24 Apr 1997; all are included here in Campanuloideae. Under Cyananthoideae, Takhtajan accepted Cyanantheae, "Codonopsideae", and Platycodoneae Yeo, Taxon 42: 109. 12 Feb 1993. In Campanuloideae he recognized Wahlenbergieae Endl., Gen. Pl.: 514. Jun 1838, Azorineae Kolak., Bot. Zhurn. (Moscow \& Leningrad) 72: 1575. Dec 1987, Echinocodonieae Kolak., Bot. Zhurn. (Moscow \& Leningrad) 79(1): 114. 72: 1575. Dec 1987 (misspelled "Echinocodoneae"), Peracarpeae Fed., Fl. URSS 24: 471. 1957, Phyteumateae Dumort., Fl. Belg.: 59. 1827, Edraiantheae Fed., Fl. URSS 24: 475. 1957, Jasioneae Dumort., Fl. Belg.: 59. 1827, Prismatocarpeae Lindl. ex Pfeiffer, Nomencl. Bot. 2: 839. Dec 1872, "Siphocodoneae", and Merciereae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 238, 242, Comm. 150. 18-24 Aug 1839. Future work
will undoubtly show that some of these tribes are worthy of recognition, although most perhaps more appropriately at the rank of subtribe.

Capparaceae: Takhtajan (2009) placed Stixeae Hallier, Beth. Bot. Centralbl. 39: 35. 15 Dec 1921 and Hutchinson's (Gen. Fl. Pl.: 305, 316. 1967) invalid "Apophylleae" in this family; these genera are treated here in Stixaceae.

Caprifoliaceae: APG III (2009) defined Caprifoliaceae broadly so as to include Dievvillaceae, Dipsacaceae, Linnaeaceae, Morinaceae, and Valerianaceae. If such a view is taken all of these families could be recognized at the rank of subfamily for which the following names are available: Diervilloideae Raf., Ann. Gén. Scl. Phys. Bruxelles 6: 82. Oct-Dec 1820, Dipsacoideae Eaton, Bot. Dict., ed. 4: 36. Apr-Mai 1836, Linnaeoideae Raf., Ann. Gén. Sci. Phys. Bruxelles 6: 83. Oct-Dee 1820, Morinoideae Burnett, Outlmes Bot.: 918. Feb 1835, and Valerianoideae.

Caryophyllaceae: Takhtajan (2009) recognized three subfamilies, each subdivided into tribes. In addition to the tribes mentioned above, Takhtajan also accepted: Telephieae DC., Prodr. 3: 366. medio Mar 1828, Xerotieae Pax, Bot. Jahrb. Syst. 61: 231. 15 Jun 1927, Pycnophylleae Mattf., Repert. Spec. Nov. Regni Veg. 18: 167. 1922, Geocarpeae E.J. Palmer \& Steyerm., Bull. Torrey Bot. Club 77: 272. 1950, Habrosieae Endl., Gen. Pl. Suppl. 3: 91. Oct 1843, and Drypideae Fenzl in S.F.L. Endlicher, Gen. Pl.: 974. 1-14 Feb 1840. Mabberley (2007) maintained Paronychioideae A.St.-Hil. ex Fenzl in S.F.L. Endlicher, Gen. Pl.: 956. Nov 1839 rather than the nomenclaturally correct Illecebroideae. Likewise, Mabberley subdivided Caryophylloideae, as outlined here, into Alsinoideae Burnett, Outlines Bot:: 807, 1094, 1117. Feb 1835 wherein he assigned Pycnophylleae, Geocarpeae, Habrosieae, and Sclerantheae; the first three are reduced here to Sclerantheae whereas in the present treatment a distinction is made between Alsineae and Arenarieae, the latter being assigned to the former by Mabberley.

Celastraceae: Takhtajan (2009) recognized Pottingerioideae Airy Shaw, Kew Bull. 28: 100 1973, a taxon here recognized at the family level, adopting Airy Shaw's original conclusion that the family is allied with Celastraceae. Unlike Stevens (2001-onward) and APG III (2009), Parnassiaceae is maintained at the family rank. Resolution of the tribal taxonomy for Celastraceae is not yet at hand. The following names are available: Brexieae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 67, Comm. 48. 2127 Mai 1837, Cassineae G. Don, Gen. Hist. 2: 2, 12. Oct 1832, Celastreae Rchb., Handb. Nat. Pfl.Syst.: 301. 1-7 Oct 1837, Elacodendeae Endl., Gen. Pl.: 1087. Apr 1840, Euonymeae DC., Prodr. 2: 3. medio Nov 1825, Hippocrateeae Rchb., Handb. Nat. Pfl.-Syst.: 301. 1-7 Oct 1837, Lophopetaleae Loes ex Reveal, Phytoneuron 2012-37: 217. 23 Apr 2012, Perrottetieae Loes. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 5: 214, 220. Dec 1892, Rhacomeae Small, Man. S.E. Fl.: 817.30 Nov 1933, Stackhousieae Baill., Hist. Pl. 6: 22, 43. Jan-Apr 1875, Tonteleeae Miers, Trans. Linn. Soc. London 28: 330. 8 Jun 1872, and Tripterygieae Kuntze in T.E. von Post \& C.E.O. Kuntze, Lex. Gen. Phan.: 662. 20-30 Nov 1903. Takhtajan recognized Euonymeae, Celastreae, Lophopetaleae, Cassineae (including Elaeodendeae), and Perrottetieae in his Celastroideae. Tripterygieae was included in Tripterygioideae Loes. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfarn. III, 5: 199, 212. Dec 1892 (a subfamily here retained in Celastroideae). Takhtajan defined Hippocrateoideae to include "Salacieae" (for which the name Tonteleeae probably has priority), two invalid names, "Campylostemoneae" and "Helictonemeae", and Hippocrateeae. Within his Stackhousiaceae, Takhtajan recognized "Macgregorioideae" and Stackhousioideae. The name "Campylostemoideae", which is often cited in the literature, is not validly published.

Celtidaceae: This family is often included within Ulmaceae as Celtidoideae A. Rich. ex Darl., Agrtc. Bot.: 151. 1847.

Centroplacaceae: Takhtajan (2009) included the taxon in Pandaceae as Centroplaceae Radcl.-Sm., Gen. Euphorb.: 78. 2001.

Cistaceae: Takhtajan (2009) recognized three tribes: Cisteae Rchb., Fl. Germ. Excurs. 2(2): 710, 711. 1832, Hudsonieae Janch. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 21: 301. 30 Jul 1925, and Lecheeae Spach, Ann. Scı. Nat. Bot., sér. 2, 6: 371. Dec 1836. Also available is Fumaneae Willk. in H.M. Willkomm \& J.M.C. Lange, Prodr. F7. Hispan. 3: 706. Apr-Mai 1880.

Cleomaceae: Takhtajan (2009) recognized three tribes in Cleomoideae: Cleomeae DC., Prodr. 1: 237. medio Jan 1824, "Oxystylideae", and "Podandrogyneae".

Clusiaceae: Takhtajan (2009) recognized four subfamilies with two further subdivided into tribes. Stevens (2001-onward), as here, recognized Calophylloideae Burnett, Outlmes Bot.: 794, 1114. Feb 1835 at the rank of family. Takhtajan recognized two tribes in his Calophylloideae: Calophylleae (including Kielmeyereae) and Endodesmieae. The other adopted subfamilies were Clusioideae, Moronobeoideae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 6: 205. 7 Nov 1893 (a later name for Chrysopioideae), and Lorostemonoideae with the first subdivided into two tribes: Clusieae and Garcinieae. Thorne \& Reveal (2007) retained both Calophyllaceae and Hypericaceae in Clusiaceae, the latter as Hypericoideae Choisy in A.P. de Candolle, Prodr. 1: 541. medio Jan 1824. In addition, Thorne \& Reveal recognized Kielmeyeroideae Engl. in C.F.P. von Martius, Fl. Bras. 12(1): 391-392. 1 Apr 1878. As done by Takhtajan, three tribes are recognized here but in Calophyllaceae rather than Calophylloideae. Mabberley (2007) broadly defined Clusiaceae under the name Guttiferae, adopting "Bonnetioideae", an invalid name that, if proposed, would be a synonym of Kielmeyeroideae. The name Chrysopioideae (1835) has priority over Symphonioideae Luerss., Handb. Syst. Bot. 2: 648. Jun 1881, and Symphonieae Choisy in A.P. de Candolle, Prodr. 1: 563. medio Jan 1824 has priority over Moronobeeae Endl., Gen. Pl.: 1026. 1-14 Feb 1840, although the latter was adopted (as "Moronobeae") by Mabberley.

Colchicaceae: Takhtajan (2009) recognized two additional tribes: Streptopeae Baker, J. Linn. Soc. London, Bot. 14: 522. 24 Apr 1875 and Glorioseae Baill., Hist. Pl. 12: 484, 583. Apr 1894. Takhtajan used the name "Wurmbeeae" instead of the validly published Anguillarieae. Glorioseae is considered here to be a synonym of Colchiceae, and the tribe Streptopeae, and Takhtajan's family Scoliopaceae, here are placed in Liliaceae as Streptopoideae.

Convolvulaceae: Mabberley (2007) recognized Cardiochlamyeae Stefanović \& D.F. Austin in S. Stefanović, D.F. Austin \& R.G. Olmstead, Syst. Bot. 28: 796. 13 Nov. 2003; it is here considered a synonym of Poraneae.

Crassulaceae: As here defined, Umbiliceae includes all of the "Thelephium clade." Use of the name "Thelephieae" by various authors is not correct nomenclaturally as the name was not based on an included genus. Various authors have also used "Echeverieae", a name, to my knowledge, yet to be validly published.

Cucurbitaceae: Takhtajan (2009) adopted the 2005 classification of the family proposed by Jeffrey recognizing several more tribes than recorded above. Thus he (as well as Mabberley 2007) used the later Nhandiroboideae A.St.-Hil. ex Voigt, Hort. Suburb. Calcutt.: 51. Aug-Dec 1845 instead of Fevilleoideae Burnett, Outlines Bot.: 756, 1092, 1129. Feb 1835 to go along with Cucurbitoideae Eaton, Bot. Dtct., ed. 4: 47. Apr-Mai 1836. Joliffieae is an earlier name for Telfairieae Arn., J. Bot. (Hooker) 3: 273. Feb 1841, and Cyclanthereae Schrad., Linnaea 12: 408. Apr-Sep 1838 is here treated as a synonym of Sicyoeae. Among the validly published names not accounted for above but used by Takhtajan are Trichosantheae C. Jeffrey, Kew Bull. 15: 341. 19 Mar 1962 (= Sicyoeae),

Herpetospermeae C. Jeffrey, Bot. Zhurn. (Moscow \& Leningrad) 90: 333. 13 Apr 2005 (= Schizopeponeae), and Luffinae C. Jeffrey, Kew Buill. 15: 340. 19 Mar 1962 (= Sicyoeae).

Cyperaceae: Mabberley (2007) divided the family into four subfamilies, adding Caricoideae Beilschm, Flora 16(Beibl. 7): 52, 105. 14 Jun 1833 and Sclerioideae Beilschm, Flora 16(Beibl. 7): 52, 110. 14 Jun 1833. In the latter he assigned Bisboeckelereae, Cryptangieae, Sclerieae, and Trilepideae.

Dilleniaceae: Takhtajan (2009) recognized two tribes which he assigned to Dillenioideae: Dillenieae DC., Syst. Nat. 1: 397, 411. 1-15 Nov 1817 and Hibbertieae Spach, Hist. Nat. Vég. 7: 413, 419. 4 Mai 1838. The latter is treated here as a subfamily.

Dipterocar paceae: Takhtajan (2009) recognized four subfamilies, the three recognized above and the invalid "Pseudomonotoideae" which here is included in Monotoideae. In Dipterocarpoideae, Takhtajan recognized "Parashoreae" and Dryobalanopseae Baill., Hist. Pl. 4: 210, 213. 1872 (misspelled Dryobalaneae), both are included in Shoreeae.

Dombeyaceae: APGIII (2009; see Malvaceae) recognized Dombeyoideae Beilschm., Flora 16(Beibl. 7): 86, 106. 14 Jun 1833. Takhtajan (2009) retained the subfamily in his Sterculiaceae. Cheek in Heywood et al. (2007) used Pentapetaceae, but Dombeyaceae is now a conserved name so it has priority.

Elaeocarpaceae: APGIII (2009) and Stevens (2001-onward) include Tremandraceae in Elaeocarpaceae. If done, two names at the rank of subfamily would be appropriate although presently only Elaeocarpoideae Arn., Botany: 100. 9 Mar 1832 is available.

Ericaceae: Takhtajan (2009) recognized three additional subfamilies beyond those cited above: Pyroloideae Beilschm., Flora 16(Beibl. 7): 72, 109. 14 Jun 1833, "Epigaeoideae", and Rhododendroideae Sweet, Brit. Fl. Gard. 3: 263. Aug 1828. Here the first is included within Monotropoideae and the latter two are retained in a broadly defined Ericoideae. Takhtajan also recognized several additional tribes: Pleuricosporeae A. Gray, Proc. Amer. Acad. Arts 7: 370. Jul 1868 and Hemitomeae Domin, Fichtenspargel: 101. 25 Feb 1915 (Monotropoideae); Calluneae Klotzsch, Monatsber. Königl. Preuss. Akad. Wiss. Berlin 1857: 3. Jan 1857 (Ericoideae); Rhododendreae Colla, Herb. Pedem. 4: 82. 15-31 Aug 1835, Cladothamneae Copel., Amer. Midl. Naturalist 30: 548. 1943, Daboecieae Kuntze in T.E. von Post \& C.E.O. Kuntze, Lex. Gen. Phan.: 679. 20-30 Nov 1903, and Diplarcheae Airy Shaw, Kew Bull. 17: 508. 1964 (Rhodordendroideae). The earlier Styphelioideae Sweet, Fl. Australas.: ad t. 47. 1 Mai 1828 must now fall into synonymy under Epacridoideae (Reveal 2012) while Styphelieae Bartl., Ord. Nat. Pt.: 158. Sep 1830 remains a later name for Stenanthereae. With recognition of Bryantheae, the long-recognized Bejarieae Copel., Amer. Midl. Naturalist 30: 547. 1943, is now assigned to synonymy under Phyllodoceae.

Escalloniaceae: Takhtajan (2009) recognized Anopteraceae, Eremosynaceae, and Tribelaceae, whereas here all are retained in Escalloniaceae. As for Escalloniaceae he further subdivided that into Forgesieae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 18a: 111. 3 Mai 1930, Escallonieae R. Br. ex DC., Prodr. 4: 2. late Sep 1830, and "Polyosmeae" along with Anoptereae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 18a: 110. 3 Mai 1930. The latter two tribes are here retained at the rank of subfamily. Baillon (Adansonia 12:337. 1880) proposed the unranked "Polyosmées" and gave a description in French; the orthography was corrected by Koehne (Just's Bot. Jahresbr. 6(2): 528. 1883) but the name was still unranked. I am not aware of the name being validated formally at the rank of tribe

Euphorbiaceae: The name Plukenetieae Hutch., Amer. J. Bot. 56: 753. Aug 1969, is a synonym of Dalechampieae, the former being adopted by Takhtajan (2009). I am grateful for the help I received from Dr. Kenneth Wurdack (US) in resolving the nomenclature in this and its related families.

Fabaceae: In addition to the tribes mentioned above, Takhtajan (2009) recognized Adesmieae Hutch., Gen. Fl. Pl. 1: 466. 3 Dec 1964, Aeschynomeneae Hutch., Gen. Fl. Pl. 1: 470. 3 Dec 1964, Carmichaelieae Hutch., Gen. Fl. Pl. 1: 372. 3 Dec 1964, and Vicieae DC., Prodr. 2: 353. medio Nov 1825, the latter a synonym of the required name Fabeae.

Fagaceae: Stevens (2001-onward) presented evidence which suggested that recognition of four subfamilies, as done here (following Thorne \& Reveal 2007 and Takhtajan 2009), might be better treated as just two subfamilies Quercoideae and a monogeneric Fagoideae. In that case the names Castaneeae Dumort., Fl. Belg.: 15. 1827, Querceae Dumort., Fl. Belg.: 15. 1827 and Trigonobalaneae Menitsky, Duby Azit: 13. 1984 are available for a more broadly defined Quercoideae.

Gesneriaceae: Takhtajan (2009) recognized additional tribes: Bellonieae Fritsch in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 3b: 143. Mai 1893, Championieae Fritsch in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 3b: 143. Mai 1893, Ramondeae Fritsch in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 3b: 143, 144. Mai 1893, and Streptocarpeae Fritsch in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 3b: 142. Mai 1893. Mabberley (2007) accepted Coronantheroideae Wiehler, Selbyana 6: 156. 31 Aug 1983, here assigned to Gesnerioideae. The type of the tribe Titanotricheae T.Yamaz ex W.T. Wang, Fl. Reıpubl. Popularis Sin. 69: 577. 1990, sometimes referred to Gesneriaceae, is placed here in Rehmanniaceae (Reveal 2011).

Hyacinthaceae: APG III (2009) assigned this family to a broadly defined Asparagaceae which was subsequently parsed by Chase et al. (2009) into subfamilies and tribes. Here, a more narrowly defined Asparagaceae is maintained akin to that suggested by APG II (2003) and, where appropriate, the subfamilies and tribes also are maintained. Pellmyr (Ann. Missourl Bot. Gard. 90: 35-55. 2003), Seberg (in Heywood et al. 2009), and Shipunov (2012) have mentioned "Camassiaceae", an unpublished name seemingly first suggested in passing by Chupov (Bot. Zhurn. (Moscow \& Leningrad) 79(3): 7. Mar-Sep 1994), but instead of placing Camassia in Hyacinthaceae, that taxon is here assigned to Agavaceae. If one were to use a family name then Chlorogalaceae is available.

Hydrangeaceae: Takhtajan (2009) recognized three subfamilies, Hydrangeoideae, Philadelphoideae Burnett, Outlines Bot.: 732, 1092, 1135. Feb 1835 and Kirengeshomoideae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 18a: 109, 3 Mai 1930; the latter is recognized here as a subtribe of Philadelpheae.

Hydrocharitaceae: In addition to the subfamilies recognized above, Takhtajan (2009) also accepted Thalassioideae Asch. \& Gürke in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. II, 1: 247. Mar 1889; the members of this subfamily are assigned here to Halophileae. The name Najadoideae is now mandated over Hydrilloideae Luerss., Handb. Syst. Bot. 2: 308. Dec 1879 (Reveal 2012).

Icacinaceae: The tribal classification is unsettled and what is given above is just an alphabetical listing of those units seemingly worthy of recognition and does not reflect their linear relationships. In addition to these, Takhtajan (2009) also recognized "Discophoreae" and "Metteniuseae", the latter here recognized as Metteniusaceae.

Iridaceae: Both Mabberley (2005) and Takhtajan (2009) recognized most of the above mentioned tribes but adopted an effectively published but not legitimate name Maricieae Hutch. (Fam. Fl. Pl.: 239. 1934) instead of the nomenclaturally correct Trimezieae. Pillansieae Goldblatt, Ann. Missourt

Bot. Gard. 77: 621. 16 Nov 1990, is now considered a synonym of Watsonieae. Ixieae has priority over Croceae Dumort., Fl. Belg.: 137. 1827, the latter being used by Goldblatt and Manning (Iris Family: 14, 85, 113, 186, 284. 2008).

Juglandaceae: Takhtajan (2009) recognized two tribes in Juglandoideae as suggested here but adopted Hicorieae W.E. Manning, Ann. Missourt Bot. Gard. 65: 1079. 1979, a later name for Caryeae.

Lamiaceae: Takhtajan (2009) recognized Symphoremataceae as distinct from Lamiaceae and retained, as done traditionally, Viticoideae in Verbenaceae. The tribal classification adopted here, and followed by most recent authors, is based largely on that of Harley et al. (in K. Kubitzki, ed., Fam. Gen. Fl. Pl. 7: 167-275. 2004). However, Pogostemonoideae P.D. Cantino, Harley \& S.J. Wagstaff in R.M. Harley \& T. Reynolds (eds.), Adv. Labiate Sci.: 512. Nov 1992 is retained within Lamioideae. Both Mentheae and Nepeteae Dumort., Fl. Belg.: 47. 1827 were proposed in 1827; Mentheae is adopted here following Harley et al. but this is almost certainly not correct nomenclaturally (e.g., see Wegelin, Enum. Stirp. Fl. Helv.: 29. 1838 who assigned Mentha to Nepeteae); also Clinopodiinae has priority over the name Menthinae Endl., Gen. Pl.: 612. Aug 1838 adopted by Harley et al. Takhtajan recognized Glechoneae Engl., Syllabus, ed. 1: 164. Apr 1892, Salvieae Dumort., Fl. Belg.: 43. 1827, Rosmarineae K. Schum., Lehrb. Syst. Bot.: 486. Jun 1894, and Catopherieae Kuntze in T.E. von Post \& C.E.O. Kuntze, Lex. Gen. Phan.: 690. 20-30 Nov 1903, all here assigned to Mentheae. In addition, Lavanduleae Caruel in F. Parlatore, Fl. Ital. 6: 53. Sep 1884 is here retained in Ocimeae. Placement of Callicarpeae and Tectoneae in Caryopteridoideae seems reasonable given the current lack of resolution among the basal members of the family, but if assigned to Viticoideae, then Viticeae Bartl., Ord. Nat. Pl.: 180. Sep 1830, is available.

Lardizabalaceae: Takhtajan (2009) recognized three tribes: Sinofranchetieae Loconte \& J.R. Estes, Syst. Bot. 14: 575. 11 Oct 1989, Stauntonieae H.N. Qin \& Y.C. Tang, Cathaya 1: 80. Oct 1989, and Lardizabaleae, although the name Akebieae has priority over Stauntonieae. Thorne \& Reveal also recognized Decaisneoideae Loconte \& J.R. Estes, Syst. Bot. 14: 574. 11 Oct 1989.

Lauraceae: Recognition of two subfamilies, as done by Thorne \& Reveal (2007) and by Takhtajan (2009), seems justified, with the majority of tribes assigned to Cassythoideae rather than Lauroideae. If the unplaced Cinnamomeae Nees, Syst. Laur.: 19, 28bis, 29. 30 Oct -5 Nov 1836 proves to be a member of Lauroideae, then Laureae Le Maout \& Decne., Traité Général Bot.: 461. Jan-Apr 1868 is available. None of the new suprageneric names proposed by Kostermans (Reinwardtia 4: 193-256. 1957) is validly published.

Lecythidaceae: Most authors recognized Planchonioideae Engl., Syllabus, ed. 1: 146. Apr 1892 instead of the nomenclaturally correct Barringtonioideae adopted here and by Thorne \& Reveal (2007). The nomenclaturally correct name, Asteranthoideae, was recently proposed (Reveal 2012); it replaces Foetidoideae Engl., Syllabus, ed. 1: 146. Apr 1892. Only Lecythidoideae is subdivided by Takhtajan into tribes: Griadeae Pichon, Notul. Syst. 12: 3-4. 1946, Couroupiteae Pichon, Notul. Syst. 12: 3-4. 1946, Lecythideae DC. in D.F.L. von Schlechtendal, Linnaea 2: 505. Jul 1827, Couratarieae Pichon, Notul. Syst. 12: 3-4. 1946, and Bertholetieae Pichon, Notul. Syst. 12: 3-4. 1946. Final resolution of the tribal classification is being worked on presently by Scott A. Mori (NY).

Liliaceae: In addition to the two tribes mentioned above, Takhtajan (2009) also recognized "Lloydieae" which is included here in Lilieae seemingly unaware that Lloydiinae S. Watson, Proc. Amer: Acad. Arts 14: 220. 2 Aug 1879 (Lloydeae) was proposed as a lower rank.

Loasaceae : In addition to the taxa accepted above, Takhtajan (2009) also recognized Kissenieae Gilg in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 6a: 107, 113. 27 Feb 1894 which here is retained in Loaseae.

Loganiaceae: Mabberley (2007) defined the family broadly, recognizing seven tribes that are included here in other families: Plocospermateae Leeuwenberg, Acta Bot. Néerl. 16(2): 57. 1967 (misspelled "Plocospermeae" = Plocospermataceae), Gelsemieae G. Don, Gen. Hist. 4: 70, 87. 18378 Apr 1838 (= Gelsemiaceae), Buddlejeae (= Scrophulariaceae), Retzieae (= Stilbaceae), Potalieae (= Gentianaceae), and Desfontainieae G. Don, Gen. Hist. 4: 175, 213. 1837-8 Apr 1838 (= Desfontainiaceae).

Lythraceae: Takhtajan (2009) recognized two additional subfamilies, Duabangoideae S.A. Graham, Thorne \& Reveal, Taxon 47: 436. 15 Mar 1998 and Sonneratioideae S.A. Graham, Thorne \& Reveal, Taxon 47: 436. 15 Mar 1998; both are referred here to Lagerstroemioideae. In addition the following tribes were also accepted by Takhtajan: Lythreae Dumort., Anal. Fam. Pl.: 39. 1829, Nesaeeae Koehne, Bot. Jahrb. Syst. 1: 144. 30 Jul 1880, and Lagerstroemieae DC., Prodr. 3: 92. medio Mar 1828.

Magnoliaceae: Takhtajan (2009) recognized two tribes within Magnolioideae: Magnolieae DC., Prodr. 1: 79. medio Jan 1824 and Michelieae Y.W. Law, Acta Phytotax. Sin. 22: 106. Apr 1984.

Malesher biaceae: Stevens (2001-onward) and APGIII (2009) assigned this family to Passifloraceae as Malesherbioideae Burnett, Outlines Bot.: 750, 1092, 1129. Feb 1835.

Malpighiaceae: Takhtajan (2009) recognized three subfamilies. In addition to Malpighioideae, he also accepted "Hiraeoideae" and Gaudichaudioideae C.V. Morton, Taxon 17: 318. 18 Jun 1968. The former name has been used off and on in the literature since mentioned by Scholz in Melchior's 1964 Syllabus, but the name has yet to be validly published.

Malvaceae: Stevens (2001-onward), APG II 2003; APG III 2009, Mabberley (2007) and others have adopted the expansion of Malvaceae generally with the following subfamilies recognized: Bombacoideae Burnett, Outlines Bot: : 816, 818, 1094, 1119. Feb 1835; Brownlowioideae Burett, Notizbl. Bot. Gart. Berlin-Dahlem 9: 599, 605. 22 Jul 1926, Byttnerioideae Burnett, Outlines Bot.: 821, 1119. Feb 1835; Dombeyoideae Beilschm., Flora 16(Beibl. 7): 86, 106. 14 Jun 1833; Grewioideae Dippel, Handb. Laubholzk. 3: 56. Oct-Nov 1893; Helicteroideae Meisn., P1. Vasc. Gen.: Tab. Diagn. 29, Comm. 25. 26 Mar-1 Apr 1837, Malvoideae Burnett, Outlines Bot.: 816, 1094, 1118. Feb 1835; Sterculioideae Beilschm., Flora 16(Beibl. 7): 86. 14 Jun 1833; and, Tilioideae Arn., Botany: 100. 9 Mar 1832. Cheek (in Heywood 2007) rejected this arrangement and recognized ten families. This latter opinion is largely followed here with some correction as to the nomenclature (see Malvineae, p. 58).

Melastomataceae: Some authors recognize, at the rank of tribe, the subtribes here assigned to Melastomateae: Blakeeae Benth. \& Hook.f., Gen. Pl. 1: 727, 735. Sep 1867, Merianieae Triana, Bull. Cong. Int. Bot. Hort Amsterdam 1865: 457. 1866, Miconieae DC., Prodr. 3: 152. medio Mar 1828, Microlicieae Naudin, Ann. Sct. Nat. Bot., sér. 3, 12: 203. Oct 1849, and Rhexieae DC., Prodr. 3: 114. medio Mar 1828.

Meliaceae: Takhtajan (2009) recognized four subfamilies with Quivisianthoideae T.D. Penn. \& Styles, Blumea 22: 508. 24 Sep 1975 here assigned to Melioideae and Capuronianthoideae T.D. Penn. \& Styles, Blumea 22: 509. 24 Sep 1975 placed in Cedreloideae. As noted by Thorne \& Reveal
(2007), Cedreloideae is an earlier name for the commonly used Swietenioideae Luerss., Hand. Syst. Bot. 2: 693. Jun 1881.

Menispermaceae: Mabberley (2007) and Culham (in Heywood et al. 2007) adopted Fibraureeae Diels in H.G.A. Engler, Nat. Pflanzenr. 46: 46, 115. 6 Dec 1910 (misspelled as Fibraureae) instead of the earlier Coscinieae.

Myricaceae: Takhtajan (2009) recognized two subfamilies, only one of which has been validly published: "Canacomyricoideae" and Myrcioideae Kausel, Lilloa 32: 346. Jun 1967.

Nyctaginaceae: Other available names allied to Nyctagineae at the rank of tribe are: Abronieae S . Watson in W.H. Brewer et al., Bot. Calfornaa 2: 1. 1880, Acleisantheae S. Watson in W.H. Brewer et al., Bot. Calforna 2: 2. 1880, Allionieae Rchb., Handb. Nat. Pfl.-Syst.: 174. 1-7 Oct 1837 (an earlier name for Abronieae), Phaeoptilinae Heimerl in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam., ed. 2, 16c: 106, 123. Jan-Apr 1934, and Pisonieae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 318, Comm. 230. 18-24 Jul 1841.

Nymphaeaceae: Thorne \& Reveal (2007) recognized four subfamilies, but both Heywood (in Heywood et al. 2007) and Stevens (2001-onward), like here, accept only two with both Barclayoideae Weberb., Bot. Jahrb. Syst. 18: 248. 13 Apr 1894 and Euryaloideae Thorne, Aliso 8: 194. 9 Sep 1974 included in Nymphaeoideae. Takhtajan (2009) retained Cabombaceae as distinct and mentioned Ondineeae Tamura, Acta Phytotax. Geobot. 33: 344. 1982.

Ochnaceae: Takhtajan (2009) retained Sauvagesiaceae which he subdivided into two subfamilies: Sauvagesioideae and Euthemidoideae Planch. ex Endl., Gen. Pl. Suppl. 5: 99. 1850; here both are reduced to the rank of tribe within Sauvagesioideae and retained in Ochnaceae. Thorne \& Reveal (2009) did not accept Luxemburgioideae. Stevens (2001-onward) recognized the three subfamilies at the rank of tribe, adding the name Luxemburgieae Horan., Char. Ess. Fam.: 180. 17 Jun 1847. Takhtajan also accepted Lophiraceae.

Olacaceae: Takhtajan (2009) defined this family more broadly that seen above, assigning Erythropalaceae and Schoepfiaceae to Olacaceae, the latter as Schoepfioideae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr.: 145. 2 Aug 1897. Within his Anacolosoideae Sleumer ex Reveal, Phytoneuron 2012-37: 215. 23 Apr 2012, he recognized four tribes: Couleae Engl. in H.G.A Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr.: 145, 149. 2 Aug 1897, Heisterieae Dumort., Anal. Fam. Pl.: 47. 1829, Ximenieae Engl. in H.GA. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr.: 145, 147. 2 Aug 1897, and Anacoloseae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 1: 233, 234. Mai 1889. Thorne \& Reveal (2007) also defined Olacaceae broadly, recognizing both Octoknemoideae and Erythropaloideae along with Olacoideae. Stevens (2001-online) largely rejected the newly proposed classification of Olacaceae (Nickeret, et al., Taxon 59: 538-558. 2010) which has been adopted here.

Oleaceae: Thorne \& Reveal (2007) divided the family into two subfamilies, Jasminoideae Arn., Botany: 119. 9 Mar 1832 and Oleoideae Arn., Botany: 119. 9 Mar 1832. Takhtajan (2009) also recognized Fraxineae Bartl., Ord. Nat. Pl.: 218. Sep 1830 and Schrebereae L.A.S. Johnson, Contr. N.S.W. Natl. Herb. 2: 397. 18 Nov 1957; both are here referred to Oleeae.

Onagraceae: Onagradoideae was validly published by Beilschmied who stated (p. 104) that names in italics in his index were at the rank of subfamily (establishing a rank) and then gave a page number where he provided, in the case of Onagradoideae, a description in Latin associated with an effectively published but not valid name.

Orchidaceae: The placement of Pycnanthaceae, in synonymy under Orchidaceae, is provisional subject to a more detailed examination of the type species of Pycnanthus. Ravenna published the genus and family without any discussion or critical details of the taxa. Aside from an online image of the holotype (e.g., http://plants.jstor.org/specimen/baa00000196), no material is available for study. Stevens (2001, onward) has suggested the specimen may be teratological, and vegetatively the specimen is similar to Malixis according to Mark Chase (pers. comm.), being, in my opinion, most similar to M. excavata Kuntze.

Papaveraceae: In addition to the above mentioned subfamilies, Takhtajan (2009) also recognized Platystemonoideae Luerss., Handb. Syst. Bot. 2: 602. Nov 1880.

Peraceae: If this family is included within Euphorbiaceae, as done by Takhtajan (2009), the name Peroideae Baill. ex Hassk., Flora 42: 649. 7 Nov 1859, is available.

Phytolaccaceae: Shipunov (2012), Stevens (2001-onward), and Takhtajan (2009) define this family broadly, including therein both Petiveriaceae, as Petiverioideae Amn., Botany: 125.9 Mar 1832 (the later name Rivinoideae Nowicke in Ann. Missouri Bot. Gard. 55: 320. 30 Apr 1969 was adopted by Takhtajan), and Agdestidaceae, as Agdestidoideae Nowicke, Ann. Missouri Bot. Gard. 55: 355. 30 Apr 1969. Mabberley (2007) tentatively also included Microteoideae Eckardt ex Nowicke in Ann. Missouri Bot. Gard. 55: 346. 30 Apr 1969 (=Microteaceae) and Barbeuioideae Nowicke, Ann. Missourt Bot. Gard. 55: 356. 30 Apr 1969 (=Barbeuiaceae).

Picrodendraceae: If this family is included within Euphorbiaceae, as done by Takhtajan (2009), the name Hyaenanchoideae Baill. ex Hassk., Flora 42: 653. 7 Nov 1859, adopted by Thorne \& Reveal (2007), has priority over Stachystemonoideae Baill. ex Hassk, Flora 42: 653. 7 Nov 1859 adopted by Takhtajan (2009). Both have priority over Oldfieldioideae Eg. Köhler \& GL. Webster in GL. Webster, J. Arnold Arbor. 48: 308. Jul 1967.

Pittosporaceae: Takhtajan (2009) recognized two tribes: Pittosporeae Rchb., Handb. Nat. Pfl.-Syst.: 270. 1-7 Oct 1837 and Billardiereae Pax in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 2a: 109. 9 Mar 1891.

Plantaginaceae: Thorne \& Reveal (2007) recognized five subfamilies: Veronicoideae Horan., Char. Ess. Fam.: 120. 17 Jun 1847, Globularioideae Luerss., Handb. Syst. Bot. 2: 1038. Sep 1882, Plantaginoideae Eaton, Bot. Dict., ed. 4: 31. Apr-Mai 1836, Hippuridoideae Burnett, Outlines Bot.: 577, 1091, 1144. Feb 1835, and Callitrichoideae Arn., Botany: 110. 9 Mar 1832. Takhtajan (2009) assigned some members of Veronicoideae to Rhinanthoideae, retaining at the family level Globulariaceae, Plantaginaceae, Callitrichaceae, and Hippuridaceae; none of these families was subdivided into tribes. Recent work by Tank et al. (Austral. Syst. Bot. 19: 289-307. 2006) demonstrate that subfamilies should not be recognized in Plantaginaceae. Takhtajan retained both Mazaceae and Rehmanniaceae in his Rhinanthoideae.

Plumbaginaceae: The traditional use of Staticoideae Burnett, Outlines Bot: 1028, 1095, 1101. Feb 1835, and that of Armerieae Dumort., Anal. Fam. Pl.: 27. 1829 or Staticeae Bartl., Ord. Nat. Pl.: 127. Sep 1830 must now be superceded by the mandated Limonioideae and Limonieae (Reveal 2012).

Poaceae: A few names, here maintained at the rank of subtribe, are considered by others to be at the rank of tribe or are here assigned to synonymy: Aveneae Dumort., Observ. Gramin. Belg.: 82. Jul-Sep 1824, Brylkinieae Tateoka, Canad. J. Bot. 38: 962. 1960, Hainardieae Greuter in W. Greuter \& K.H. Rechinger, Boisstera 13: 178. 1967, Leptaspideae Tzvelev, Komarov. Chten. 37: 25. 19 Mar 1987,

Orcuttieae Reeder, Madroño 18: 20. 10 Feb 1965, Parianeae C.E. Hubb. in J. Hutchinson, Fam. Fl. Pl. 2: 219. 20 Jul 1934, Phyllorachideae C.E. Hubb., Hooker's Icon. Pl. 34: t. 3386, p. 5. Mar 1939. Importantly, the name Hordeeae (1820) has priority over Triticeae Dumort., Observ. Gramin. Belg.: 82. Jul-Sep 1824.

Podostemaceae: Takhtajan (2009) recognized two tribes in Podostemoideae: Podostemeae Dumort., Anal. Fam. Pl.: 62. 1829 and Mourereae Benth. \& Hook.f., Gen. Pl. 3: 107. 7 Apr 1880.

Polygalaceae: Takhtajan (2009) grouped Moutabeeae and Xanthophylleae under Moutabeoideae Takht., Sist. Magnoliof. [Syst. Magnoloph.]: 192. 24 Jun 1987 and recognized Polygaloideae Eaton, Bot. Dict., ed. 4: 46. Apr-Mai 1836. The name Diclidanthereae now has priority over Moutabeeae Chodat in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 4: 329. Jul 1896 (Reveal 2012).

Polygonaceae: The oft recognized Atraphaxideae Dammer in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 1a: 8, 23. Mar 1892 is here included in Polygoneae.

Pontederiaceae: In addition to the two tribes noted here, Takhtajan (2009) also recognized Eichhornieae O. Schwartz, Bot. Jahrb. Syst. 61(Beibl. 139): 32, 50. 15 Jun 1927 which is included here in Pontederieae.

Primulaceae: APGIII (2009) and Stevens (2001-onward) define this family broadly including Maesaceae (as Maesoideae A. DC. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 8: 76. medio Mar 1844), Theophrastaceae (as Theophrastoideae A. DC. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 8: 145. medio Mar 1844) which was defined to include Samolaceae (as Samoleae Rchb., Fl. Germ. Excurs. 1(3): 398, 411. Jul-Dec 1831), and both Lysimachiaceae and Myrsinaceae (as Myrsinoideae Burnett, Outlines Bot.: 1025, 1095, 1102. Feb 1835). Takhtajan (2009) and Thorne \& Reveal (2007) retains all but Lysimachiaceae as families which they placed in Primulaceae. Takhtajan also recognized Coridaceae, treated here as a tribe of Lysimachiaceae. Finally, Takhtajan also considered the genus Cyclamen to be the only member of "Cycaminoideae", a name not yet validly published; the genus is here assigned to Myrsinaceae.

Proteaceae: Takhtajan (2009) recognized some additional tribes. In Proteoideae: Franklandieae Endl., Gen. Pl.: 339. Dec 1837; in Grevilleoideae he accepted seven tribes: Oriteae L.A.S. Johnson \& B.G. Briggs, Bot. J. Linn. Soc. 70: 172. 3 Sep 1975, Knightieae L.A.S. Johnson \& B.G. Briggs, Bot. J. Linn. Soc. 70: 172. 3 Sep 1975, and "Helicieae". Weston (in Heywood et al. 2007) defined Embothrieae Meisn. in A.P. de Candolle \& A.L.P.P. de Candolle., Prodr. 14: 211, 443. medio Oct 1856 to include the type of Grevilleeae, an earlier name. Carnarvonioideae L.A.S. Johnson \& B.G. Briggs, Bot. J. Linn. Soc. 70: 172. 3 Sep 1975 is here assigned to Grevilleoideae as Carnarvonieae.

Ranunculaceae: Takhtajan (2009) recognized several additional subfamilies and tribes here included in Ranunculoideae: Cimicifugoideae Arn., Botany: 95. 9 Mar 1832 with Cimicifugeae Torr. \& A. Gray, Fl. N. Amer. 1(1): 34. Jul 1838 (a later name for Actaeeae), and Eranthideae T. Duncan \& Keener, Phytologia 70: 26. 1991; Trollioideae Raf., Anal. Nat.: 177. Apr-Jul 1815 with Trollieae Schrödinger, Abh. K. K. Zool.-Bot. Ges. Wien 4(5): 58. 1909; Aconitoideae Raf., Anal. Nat.: 176. Apr-Jul 1815 with Delphinieae Schrödinger, Abh. K. K. Zool.-Bot. Ges. Wien 4(5): 58. 1909 (a later name for Aconiteae); and Helleboroideae Beilschm., Flora 16(Beibl. 7): 77, 107. 14 Jun 1833. Nigellieae Schrödinger, Abh. K. K. Zool.-Bot. Ges. Wien 4(5): 59. 1909 is assigned here to Aconiteae. Within Ranunculoideae Takhtajan also accepted Trautvetterieae T. Duncan \& Keener, Phytologta 70: 25. 1991 as distinct from Ranunculeae. Isopyroideae Schrödinger, Abh. K. K. Zool.-Bot. Ges. Wien 4: 59. 22 Sep 1909 was mentioned by Mabberley (2007) who assigned the taxon to Thalictroideae but
maintained Isopyreae Schrödinger, Abh. K. K. Zool.-Bot. Ges. Wien 4(5): 59. 1909, a later name for Aquilegieae.

Rapateaceae: Takhtajan (2009) misspelled Schoenocephalieae as "Sphoenocephaleae". Both he and Mabberley (2007) recognized the other two subfamilies adopted here but at the rank of tribe: Monotremateae Maguire in B. Maguire et al., Mem. New York Bot. Gard. 10: 21. 1 Jul 1958 and Rapateeae M. Gómez, Noc. Bot. Sist.: 52. Apr-Dec 1893.

Rhizophoraceae: Thorne \& Reveal (2009) recognized the two subfamilies recognized above; most other recent authors distinguish only tribes. When that is done Cassipoureeae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 119, Comm. 84. 8-14 Apr 1838 has priority of over Macarisieae Baill., Hist. Pl. 6: 295, 302. Jan-Mai 1876. Apparently the name Crossostylideae has not been validly published; Crossostylts J.R. Forst. \& G. Forst. is here considered to be a member of Gynotrocheae.

Rosaceae: Takhtajan (2009) recognized more subfamilies than accepted above: Filipenduloideae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov]: 250. 20 Jul 1943; Kerrioideae Schneid., Illustr. Handb. Laubholzk. 1: 500. 15 Jun 1905; Coleogynoideae E.I. Golubk., Nauchnye Dokl. Vysshei Shkoly Brol. Nauki 1991(3): 107. Mar 1991; Ruboideae Thomé, Fl. Deutschl. 3: 166. 1888; Potentilloideae Sweet, Hort. Brit.: 144. Aug-Sep 1826; Dichotomanthoideae Gladkova, Bot. Zhurn. (Moscow \& Leningrad) 54: 436. 7-31 Mar 1969; Pyroideae Burnett, Outlmes Bot.: 695, 1137. Feb 1835 (including the now nomenclaturally correct Maloideae C. Weber), and Amygdaloideae Arn., Botany: 107.9 Mar 1832 (including Prunoideae Horan., Char. Ess. Fam.: 158. 17 Jun 1847). He also adopted "Lyonothamnoideae", an unpublished name. In addition to the tribes accepted above, the following additional tribes were recognized by Takhtajan: Holodisceae Focke in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 3: 12, 18. Dec 1888, Adenostomateae Rydb., N. Amer. Fl. 22: 240. 12 Jun 1908, "Rhodotypeae", "Purshieae" (neither this name nor "Purshiinae" has been validly published), Geeae Juel, Kongl. Svenska Vetensk. Akad. Handl. 58(5): 77. 1918, a later name for Colurieae, Alchemilleae Dumort., Fl. Belg.: 26. 1827, Sanguisorbeae DC., Prodr. 2: 588. medio Nov 1825, and "Potaninieae". Tribes recognized by Takhtajan in his Pyroideae and Amgdaloideae, not accounted for above are: "Kageneckieae", Crataegeae Koehne, Gatt. Pomac.: 8. 6 Apr 1890, Osmaronieae Rydb., N. Amer. Fl. 22(1): 482. 1918, nom. illeg. (here assigned to Exochordeae), and Prinsepieae Sterling, Amer. J. Bot. 50: 698. Aug 1963 ("Prinsepioideae"). Many authors use Pruneae Benth. \& Hook.f., Gen. Pl. 1: 601, 602. 19 Oct 1865, a later name for Amygdaleae DC. (1825). A change made in 2011 to the code of nomenclature governing plants resulted in Maloideae having priority over Spiraeoideae Arn., Botany: 107. 9 Mar 1832 and Amygdaloideae as well as Malinae having priority over Pyrinae Dumort., Fl. Belg.: 92.1827 (Reveal 2012).

Rubiaceae: The arrangement of taxa presented here within the first two subfamilies of Rubiaceae is alphabetical. In addition to the above mentioned tribes, Takhtajan (2009) also recognized, Cruckshanksieae Benth. \& Hook.f., Gen. Pl. 2: 9, 20. 7-9 Apr 1873 and Hedyotideae Cham. \& Schltdl. ex DC., Prodr. 4: 342, 401. late Sep 1830 ( $=$ Rubioideae), Virectarieae Verdc., Kew Bull. 30: 366. 1975 and Henriquezieae Benth. \& Hook.f., Gen. Pl. 2: 8, 12. 7-9 Apr 1873 (=Ixoroideae), and Catesbaeeae Benth. \& Hook.f., Gen. Pl. 2: 8, 17. 7-9 Apr 1873 (=Cinchonoideae). He maintained Theligonaceae as distinct from Rubiaceae. Mabberley recognized Cephalantheae Bartl., Ord. Nat. Pl.: 212. Sep 1830, Coccocypseleae Bremek., Recuell Trav. Bot. Néerl. 31: 253. 1934, Lathraeocarpeae Bremek., Bull. Jard. Bot. Etat Bruxelles 27: 165. 1975, and Triainolepideae Bremek., Proc. Kon. Ned. Akad. Wetensch., ser. C, 59:3. Jan-Apr 1956 (= Rubioideae).

Rutaceae: In addition to the four subfamilies recognized here, authors also frequently accept Dictyolomoideae Engl. in H.GA. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 4: 111. Mar 1896, Flindersioideae Luerss., Handb. Syst. Bot. 2: 681. Jun 1881, and Spathelioideae Engl. in H.G.A.

Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 4: 111. Mar 1896. Thorne \& Reveal (2009) referred Dictyolomoideae and Spathelioideae to Cneoroideae with the other two going to Rutoideae. Recent work suggests that Rutoideae should be restricted to just two genera with the remainder falling into Amylidoideae, an earlier name than Toddalioideae K. Koch, Dendrologte 1: 564. 1869; thus within Rutoideae is Ruteae Dumort., Anal. Fam. Pl.: 45. 1829. Recognition of tribes is in flux and which, if any, subtribes ought to be accepted is unsettled and no attempt is made here to present any suggestions on this matter. Galipeae is the correct name for the effectively published but not legitimate Cusparieae DC., Mém. Mus. Hist. Nat. 9: 141. 1822, a name frequently seen in the literature. Dictyolomeae Engl. in H.G.A Engler \& K.AE. Prantl, Nat. Pflanzenfam. III, 4: 169. Mar 1896 and Harrisonieae Planch., London J. Bot. 5: 569. 1846 are here included within Spathelieae, and Ptaeroxyleae Harms in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 4: 267, 270. Mai 1896 is assigned to Cneoreae.

Salicaceae: In addition to the above tribes, Stevens (2001-onward) also recognized Saliceae Rchb., Fl. Germ. Excurs. 1(2): 165. Jan-Apr 1831 whereas Mabberley (2007) accepted Scyphostegieae Zmarzty in M.W. Chase et al., Kew Bull. 57: 170. 2002; neither recognized subfamilies.

Sapindaceae: In addition to the tribes mentioned above the following also are used occasionally: Lepisantheae Radlk., Sitzingsber. Math.-Phys. Cl. Königl. Bayer. Akad. Wiss. München 8: 269. JulDec 1878 (=Sapindeae); Nephelieae Radlk., Sitzungsber. Math.-Phys. Cl. Köntgl. Bayer. Akad. Wiss. München 20: 253, 288. Jun 1890 (=Sapindeae); and, Thouinieae Blume, Rumphia 3: 186. Jun 1847 (=Paullinieae).

Sapotaceae: Takhtajan (2009) and numerous other recent authors assigned the type of the family to Mimusopeae Hartog, J. Bot. 17: 356. ante 17 Dec 1879 rather than adopt the nomenclaturally correct Sapoteae. Likewise, the carliest available name for the widely used Isonandreae T.D. Penn., Gen. Sapotac.: 147. 1991, is Palaquieae. Harthog published Isonandreae without a rank, and so did H.J. Lam (Bull. Jard. Bot. Butenzorg, sér. 3, 8: 384. 1927) who, under Palaquieae, proposed "Eupalaquieae", a name that is not valid. Lam's names are associated with a description in English and said to be "nov. div." so that if taken literately, his remark would also mean his names were published at a misplaced rank. The first author who seems to have validated Isonandreae is Pennington, but it is possible this was done earlier. In a long paper otherwise devoid of validly published names, Baehni (Boissiera 11: 78. Jun 1965) managed to establish Isonandrinae.

Scrophulariaceae: Resolution of this family is as outlined above, or if one wishes to abandon subfamilies (as used here), then the linear sequence of tribes is the same. An alternative view is to define the family broadly as done by Takhtajan (2009), although even he did not reduce as many families as necessary to reflect the phylogeny of Lamiales as now understood. In addition to the tribes mentioned above, Takhtajan also recognized Verbasceae Dumort., Anal. Fam. Pl.: 24. 1829, Alonsoeae Baill., Hist. Pl. 9: 407, 425. Feb-Mar 1888, Freylinieae Barringer, Novon 3: 16. 19 Mar 1993, Manuleeae Benth. \& Hook.f., Gen. Pl. 2: 915, 919. 1-16 Mai 1876, Schlegelieae A.H. Gentry, Fl. Neotrop. Monogr. 25: 48. 19 Sep 1980, Paulownieae Pennel, Proc. Acad. Nat. Scl Philadelpha 71: 226. Dee 1920, "Wightieae", Collinsieae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 304, Comm. 216. 25-31 Oct 1840, Melospermeae Rossow, Parodtana 3: 373. Aug 1985, Aragoeae D.Y. Hong \& S. Nilsson, Opera Bot. 121: 278. 13 Oct 1993, and Rehmannieae Rouy, Consp. Fl. France: 199. 15 Aug 1927 (the last now assigned to Rehmanniaceae).

Simaroubaceae: Both Heywood et al. (2007) and Takhtajan (2009) retained Leitneriaceae although the evidence suggests that in spite of its unique (for the family) morphological features and distribution the taxon is situated well within Simaroubaceae.

Solanaceae: In addition to the names mentioned above, Takhtajan (2009) accepted Brownlowioideae Burett, Notizbl. Bot. Gart. Berlin-Dahlem 9: 599, 605. 22 Jul 1926, a later name for Cestroideae, and included Metternichieae Miers, London J. Bot. 5: 148. Mar-Mai 1846, Latueae Hunz. \& Barboza, Lorentzia 8: 6. 31 Mai 1995, Francisceeae G. Don, Gen. Hist. 4: 399, 476. 1837-8 Apr 1838 (given as "Francisceae"), and Schwenckieae Hunz., Kurtziana 10: 42. 25 Apr 1977 (here included in Schwenchioideae). He also considered Juanullooideae Hunz., Kurtziana 28: 59. 15 Aug 2000 (as "Juanulloideae"), Salpiglossidoideae Benth. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 10: 190. 8 Apr 1846, and Anthocercidoideae Tétényi, Ann. Missourl Bot. Gard. 74: 607. 22 Dec 1987 to be distinct from Solanoideae where they are treated here. In Solanoideae, Takhtajan also recognized Lycieae Lowe, Man. Fl. Maderra 2: 96. Jan-Apr 1872 and Jaboroseae Miers, Ann. Mag. Nat. Hist., ser. 2, 3: 178. Mar 1849.

Staphyleaceae: Mabberley mentioned both Staphyleoideae Arn., Botany: 105. 9 Mar 1832 and Tapiscioideae Pax in H.G.A. Engler \& K.A.E. Prant1, Nat. Pflanzenfam. III, 5: 259, 262. Mai 1893 when he recognized Staphyleaceae and Tapisciaceae.

Stilbaceae: Following Thorne (Bot. Rev. (Lancaster) 66: 441-647. 2000) and Rourke (Bothalla 30: 915. 2000), Takhtajan (2009) recognized "Nuxioideae" and "Retzioideae;" both unpublished names whose type genera are included here in Stilbeae. He also mentioned Bowkerieae but as defined by him the earlier name is Hallerieae. Both tribes are recognized here and assigned to Stilbaceae.

Theaceae: Mabberley (2007) mentioned Theoideae, a name in widespread use in the literature since 1964, having replaced the long-used Camellioideae Burnett, Outlines Bot:: 827, 1120. Feb 1835. Only recently was Theoideae validly published (Reveal 2012).

Themidaceae: If included within another family, as in Asparagaceae as suggested by APG III (2009), the name Brodiaeoideae Traub, Pl. Life 28: 131. 22 Feb 1972, is available.

Thymelaeaceae: Takhtajan (2009) recognized just Octolepidoideae Engl. \& Gilg in H.G.A. Engler, Syllabus, ed. 7: 275. Oct 1912-Mar 1913 (now mandated to be Gonystyloideae, fide Reveal 2012) and Thymelaeoideae, retaining Tepuianthaceae at the family level. He subdivided Octolepidoideae into Octolepideae, Solmsieae Domke, Biblioth. Bot. 111: 103. 31 Dec 1934, and the recently published Gonystyleae (Reveal 2012). Thymelaeoideae are subdivided into Synandrodaphneae and Aqularieae, as above, and then Takhtajan (and Mabberley 2007) adopted Daphneae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 330, Comm. 242. 18-24 Jul 1841 instead of the now nomenclaturally required Thymelaeeae. In addition Takhtajan also recognized Phalerieae Benth. \& Hook.f., Gen. Pl. 3: 188. 7 Apr 1880 and Dicranolepideae Gilg in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 6a: 222. 10 Jul 1894; both are included here in Thymelaeeae. Mabberley accepted both Aquilarioideae Meisn. in A.P. de Candolle \& A.L.P.P. de Candolle, Prodr. 14: 495, 601. medio Oct 1856 and Aqularieae in Thymelaeoideae as well as Synandrodaphnoideae Gilg, Bot. Jahrb. Syst. 53: 365. 19 Oct 1915 and Synandrodaphneae.

Tiliaceae: APGIII (2009, see Malvaceae) recognized Tilioideae Arn., Botany: 100. 9 Mar 1832. Within his circumscription of Tiliaceae, Takhtajan (2009) included several families accepted by Doweld (2001) and by Cheek in Heywood et al. (2007), all at the rank of tribe: Apeibeae Benth., J. Proc. Linn. Soc., Bot. 5(Suppl. 2): 55. 1861, "Enteleeae", Corchoreae Burett, Notizbl. Bot. Gart. Berlm-Dahlem 9: 604, 864. 22 Jul 1926, Lueheeae Burett, Notizbl. Bot. Gart. Berlm-Dahlem 9: 602, 822. 22 Jul 1926, Tilieae, Duboscieae Burett, Notizbl. Bot. Gart. Berlin-Dahlem 9: 602, 817. 22 Jul 1926, "Desplatsieae", Grewieae, Coloneae Burett, Notizbl. Bot. Gart. Berlm-Dahlem 9: 602, 796. 22 Jul 1926, Triumfetteae Burett, Notizbl. Bot. Gart. Berlin-Dahlem 9: 603, 861. 22 Jul 1926, and

Craigieae. Of these, only Tilieae and Craigieae are assigned here to Tiliaceae as the rest are placed in Sparmanniaceae.

Turneraceae: Stevens (2001-onward) and APGIII (2009) assigned this family to Passifloraceae as Turneroideae Eaton, Bot. Dict., ed. 4: 44. Apr-Mai 1836.

Urticaceae: The above arrangement is a reasonable classification but may well be altered once the placement of Poikilospermum Zipp. ex Miq. is resolved.

Verbenaceae: In addition to the tribes recognized above, Mabberley (2007) and Takhtajan (2009) also accepted Priveae Briq. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. IV, 3a: 144, 155. 26 Feb 1895. Takhtajan also retained Viticoideae in this family (assigned here to Lamiaceae) and as a result recognized Verbenoideae Arn., Botany: 124. 9 Mar 1832.

Violaceae: Takhtajan (2009) and Thorne \& Reveal (2007) recognized Leonioideae Melch. in H.G.A Engler \& K.AE. Prantl, Nat. Pflanzenfam., ed. 2, 21: 348, 376. 30 Jul 1925, here included in Violoideae.

Viscaceae: Takhtajan (2009) recognized three tribes: Phoradendreae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 1: 190. Mar 1889, Arceuthobieae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. Nachtr.: 125, 137. 2 Aug 1897, and Visceae Horan., Char. Ess. Fam.: 86.17 Jun 1847. Another available tribal name in Viscaceae is Ginalloeae Tiegh., Just's Bot. Jahresber. 24(2): 319. 1898.

Winteraceae: Mabberley (2007) suggested recognition of Takhtajanioideae J.-F. Leroy, Adansonta, sér. 2, 17: 393. 1978 and Winteroideae Arn., Botany: 95. 9 Mar 1832. Here, however, Takhtajan's (2009) view is adopted.

Zygophyllaceae: Takhtajan (2009) recognized five subfamilies, two of which, Tribuloideae and Zygophylloideae are accepted here as he defined them. Balanitoideae is adopted here and not included in Tribuloideae as done by Stevens (2001-onward) and by Thorne \& Reveal (2007) or recognized as a distinct family, Balanitaceae. If the two subfamilies are combined, Balanitoideae has priority. Takhtajan retained three of the subfamilies accepted here as tribes in Zygophylloideae as well as suggesting several other unique names that seemingly are not validly published: "Seetzenieae", Sericodeae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 4: 78, 89. Dec 1890 (here included in Morkillioideae), Zygophylleae Bartl., Ord. Nat. Pl.: 391. Sep 1830, "Larreeae" (misspelled "Larreae"), and "Morkillieae". The Augeoideae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 4: 354. Jul 1896 are referred here to Zygophylloideae.

## Index

Names in bold are accepted and followed by a family, subfamily, tribe or subtribe number or a combination of numbers and letters. Thus Adenochilidinae is family 69 (Orichidaceae), subfamily f (Orchidoideae), in the seventh tribe of that subfamily (Diurideae) where it is listed in the twelfth subtribe and assigned the letter " 1 ". Order and family names are numbered consecutively; subordinal names bear the number of the order followed by a letter. Thus Monimiineae in the second ("b") suborder of the sixth order (Laurales). Superordinal names are assigned capital letters. Synonyms are in italics followed by a letter or number. Those at the rank of subclass are listed on pages 2 and 3 and are indicated by the Roman numeral XIII. Although synonym is given only for names at the ranks of family and above, some synonymy is given for lower ranks in the Notes and Comment section (p. 152). Such names are listed under the family name given after an equals sign. Only names
associated with a full citation are noted. Thus, Aconitoideae is fully cited under the entry entitled Ranunculaceae in that section. Names in quotes are not known to be validly published.

Abatieae, 212c2<br>Abildgaardieae, 101b10<br>Abolbodaceae, 97<br>Abolbodoideae, 97b<br>Abreae, 164b17<br>Abronicae $=$ Nyctaginaceae<br>Abrophyllaceae, 470<br>Abrotanellinae, 48011a<br>Abutilinae, 307a5a<br>Acactaceae, 164<br>Acacieae, 164d6<br>Acalyphaceae, 236<br>Acalypheae, 236b12<br>Acalyphinae, 236b12j<br>Acalyphoideae, 236b<br>Acanthaceae, 462<br>Acanthales, 85<br>Acantheae, 462d1<br>Acanthochlamydaceae, 54<br>Acanthochlamydoideae, 54c<br>Acanthogilioideae, 395c<br>Acanthoideae, 462d<br>Aceraceae, 279<br>Acerales, 67<br>Achariaceae, 205<br>Acharieae, 205al<br>Achatocarpaceae, 364<br>Achlydeae, 129a2<br>Achlydosinae, 69f6h<br>Achradaceae, 402<br>Achyranthaceae, 366<br>Acianthinae, 69f7j<br>Aciphylleae, 492d10<br>Acleisantheae $=$ Nyctaginaceae<br>Aconitaceae, 130<br>Aconiteae, 130e3<br>Aconitoideae = Ranunculaceae<br>Acoraceae, 30<br>ACorales, 9<br>Acoranae, E<br>Acristaceae, 92<br>Actaeaceae, 130<br>Actaceae, 130el<br>Actinidiaceae, 416<br>Actmidtales, 79<br>Actinidioideae, 416a<br>Actinostemmateae, 188a4<br>Actmotaceae, 491<br>Adelieae, 236b10<br>Adenanthinae, 136d4b<br>Adenochilidinae, 69 f 71<br>Adenoclineae, 236c3<br>Adenoclininae, 236c3a<br>Adenogrammaceae, 377<br>Adenostemmatinae, 480121 k<br>Adenostomateae $=$ Rosaceae<br>Adesmieae $=$ Fabaceae<br>Adoxaceae, 495<br>Adoxales, 92<br>Adoxoideae, 495b<br>Adrianinae, 236b12b<br>Aegıalittdaceae, 348<br>Aegialitideae, 348b1<br>Aegicerataceae, 406<br>Aegiceratales, 79<br>Aegilopaceae, 110<br>Aeginetiaceae, 454<br>Aeginetieae, 454a3<br>Aegiphilaceae, 449<br>Aeluropodinae, 110f4a<br>Aconieae, 150a3<br>Aeschynomeneae = Fabaceae<br>Aesculaceae, 278<br>Aesculales, 67<br>Aethionemeae, 326a1<br>Aextoxicaceae, 327<br>Agapanthaceae, 81<br>Agavaceae, 87<br>Agavales, 20<br>Agaveae, 87b2<br>Agavoideae, 87b<br>Agdestidaceae, 373<br>Agdestidoideae $=$ Phytolaccaceae<br>Ageratinae, 48012 1 n<br>Aglaieae, 282a6<br>Aglaonemateae, 31h11<br>Agonandreae, 339a3<br>Agrimoniaceae, 167<br>Agrimonieae, 167 b 6<br>Agrimoniinae, 167b6a<br>Agrostidaceae, 110<br>Agrostidinae, 11019f<br>Agrostistachydeae, 236 b 3<br>Allanthaceae, 283<br>Ailantheae, 283a2<br>Airinae, 11019j

Aizoaceae, 370
Aizoales, 77
Aizooideae, 370b
Ajugaceae, 449
Ajugeae, 449d2
Ajugoideae, 449d
Akaniaceae, 308
Akaniales, 70
Akebieae, 127 b 2
Alangiaceae, 386
Alangiales, 78
Alangioideae, 386a
Alberteae, 427b1
Alchemillaceae, 167
Alchemilleae $=$ Rosaceae
Alchemillinae, $167 b 5 b$
Alchornieae, 236b11
Alchorniinae, 236b11a
Aldrovandaceae, 350
Aleuritideae, 236c12
Aleuritidineae, 236c12a
Alismataceae, 33
Alismatales, 12
Alismatanae, E
Alismatidae, XIII
Allamandeae $=$ Apocynaceae
Alliaceae, 82
Alliales, 20
Allioideae, 82a
Allioniaceae, 374
Allionieae $=$ Nyctaginaceae
Allophylaceae, 280
Alniphyllaceae, 413
Aloaceae, 80
Aloeae, 80c2
Alomiinae, 480121i
Alonsocae $=$ Scrophulariaceae
Alonsoinae, 447a1a
Alopecuraceae, 110
Alopecurinae, 11019s
Alpiniaceae, 123
Alpinieae, 123c1
Alpinioideae, 123c
Alseuosmiaceae, 473
Alseuosmiales, 87
Alseuosmiineae, 87b
Alsinaceae, 363
Alsinales, 77
Alsineae, 363c3
Alsinoideae $=$ Caryophyllaceae
Alsinoideae, 363c

Alsodeiaceae, 207
Alstonieae, 432a1
Alstroemeriaceae, 63
Alstroemeriales, 18
Alstroemerieae $=$ Alstroemeriaceae
Alstroemeriineae, 18b
Altingiaceae, 146
Altingiales, 42
Alvaradooideae, 270a
Alysseae, 326a8
Alyxieae, 432a9
Alzateaceae, 258
Amanoinae, 237a2a
Amaranthaceae, 366
Amaranthales, 77
Amarantheae, 366c2
Amaranthoideae, 366c
Amaryllidaceae, 83
Amaryllidales, 20
Amaryllideae, 83a1
Amborellaceae, 1
Amborellales, 1
Amborellanae, A
Ambrosiaceae, 480
Ambrosiales, 87
Ambrosieae, 480117
Ambrosiinae, 480117a
Ambrosineae, 31h18
Amellinae, 48015a
Ammanniaceae, 253
Ammiaceae, 491
Ammiales, 90
Ammochloinae, 11019k
Amomaceae, 123
Amomales, 31
Amorpheae, 164b10
Ampelodesminae, 11015a
Ampelopsidaceae, 160
Ampelozizipheae, 170a4
Ampereae, 236b2
Amphorogynaceae, 345
Amyeminae, 338a5c
Amygdalaceae, 167
Amygdalales, 48
Amygdaleae, 167a3
Amygdaloideae $=$ Rosaceae
Amyrıdaceae, 281
Amyrıdales, 67
Amyrideae, 281b2
Amyridoideae, 281b
Anacampserotaceae, 384

Anacardiaceae, 275
Anacardieae, 275b3
Anacardioideae, 275b
Anacharidoideae, 36c
Anacoloseae = Olacaceae
Anadendreae, 31e2
Anagallidaceae, 409
Anarthriaceae, 102
Anchonieae, 326a21
Anchusaceae, 438
Ancistrocladaceae, 349
Ancistrocladales, 74
Ancistrophyllinae, 92a2a
Andrographideae, 462d6
Andromedaceae, 420
Andromedeae, 420i3
Andropogonaceae, 110
Andropogoneae, 110d6
Andropogoninae, 110d6a
Androsaceeae, 408a2
Androstachyaceae, 238
Androsynaceae, 75
Anemarrhenaceae, 87
Anemarrheneae, 87b1
Anemonaceae, 130
Anemoneae, 130e5
Angelicaceae, 491
Angeliceae, 492d20
Angelonieae, 446a3
Anguillarieae, 61 b 3
Anisadenieae, 218a2
Aniseieae, 436bl
Anisopappinae, 48018b
Anisophylleaceae, 185
Antsophylleales, 52
Annesorhizeae, 492d4
Annonaceae, 15
Annonales, 5
Annonanae, D
Annoneae $=$ Annonaceae
Annoninae $=$ Annonaceae
Annonoideae, 15a
Anomochloaceae, 110
Anomochloeae, 110a2
Anomochlooideae, 110a
Anomospermeae, 128b3
Anopteraceae, 481
Anoptereae = Escalloniaceae
Anopteroideae, 481a
Anrederaceae, 380
Anredereae = Basellaceae

Anthemidaceae, 480
Anthermidales, 87
Anthemideae, 48016
Anthemidinae, 48016j
Anthericaceae, 87
Anthericeae, 31d1
Anthericoideae, 87d
Anthisiriinae, 110d6b
Anthobolaceae, 339
Anthobolales, 72
Anthoboleae, 339a1
Anthocercideae, 437 g 1
Anthocercidoideae = Solanaceae
Anthospermeae, 427 c 21
Anthosperminae, 427c21a
Anthosteminae, 236d5a
Anthoxanthaceae, 110
Antıdesmataceae, 237
Antidesmateae, 237b1
Antidesmatinae, 237b1a
Antidesmatoideae, 237b
Anturrhinaceae, 446
Anturrhinales, 85
Antirrhineae, 446a6
Antontaceae, 429
Antonieae, 429a3
Anubiadeae, 31h5
Apameae, 29b1
Aparinaceae, 427
Apatesieae, 370d1
Apeibeae $=$ Tiliaceae
Aphanopetalaceae, 151
Aphelandreae = Acanthaceae
Aphloiaceae, 266
Aphyllanthaceae, 85
Apiaceae, 491
APIALES, 90
Apieae, 492d19
Apiineae, 90b
Apioideae, 492d
Apocynaceae, 432
Apocynales, 82
Apocyneae, 432b3
Apocynoideae, 432b
Apodanthaceae, 192
Aponogetonaceae, 38
Aponogetonales, 13
"Apophylleae" = Capparaceae
Aporosaceae, 237
Aposeridaceae, 480
Apostasiaceae, 69

Apostasiales, 19
Apostasioideae, 69 a
Aptandraceae, 333
Aptosimeae, 447bl
Aquifoliaceae, 467
AQUIFOLIALES, 86
Aquifolianae, U
Aquilariaceae, 289
Aquilariales, 69
Aquilarieae, 289c2
Aquilarioideae $=$ Thymelaeaceae
Aquilegiaceae, 130
Aquilegieae, 130d1
Aqularieae $=$ Thymelaeaceae
Arabidaceae, 326
Arabideae, 326a11
Araceae, 31
Aragoaceae, 446
Aragoeae $=$ Scrophulariaceae
ARALES, 10
Araliaceae, 490
Araliales, 90
Arallanae, U
Aralidiaceae, 487
Aralidiales, 90
Aralidiineae, 90a
Aralieae, 490a4
Aralioideae, 490a
Aranae, E
Arbutaceae, 420
Arbutoideae, 420c
Arceuthobiaceae, 346
Arceuthobieae $=$ Viscaceae
Archerieae, 420h2
Archontophoenicinae, 92e14a
Arctostaphylaceae, 420
Arctotidaceae, 480
Arctotideae, 480 j 2
Arctotidinae, 480 j 2 a
Ardisiaceae, 406
Ardisiales, 79
Ardisiandreae, 408a3
Areae, 31h26
Arecaceae, 92
ARECALES, 22
Arecanae, E
Areceae, 92 e 14
Arecidae, XIII
Arecinae, 92el4b
Arecoideae, 92e
Arenarieae, 363c2

Arethuseae, 69 d 9
Arethusinae, 69d9b
Argophyllaceae, 475
Argostemmateae, 427 c 20
Arıdae, XIII
Arisaemateae, 31h25
Arlsaraceae, 31
Arisareae, 31h19
Aristeoideae, 78e
Aristidoideae, 110h
Aristolochiaceae, 29
Aristolochiales, 8
Aristolochtanae, D
Aristolochieae, 29b2
Aristolochioideae, 29b
Aristoteliaceae, 201
Arjonaceae, 336
Armeriaceae, 348
Armerieae $=$ Plumbaginaceae
Arnicinae, 480119a
Aroideae, 31h
Arophyteae, 31 h 21
Artemistaceae, 480
Artemisiinae, 48016h
Arthropogoninae, 110d4a
Arthrostylidiinae, 110k3a
Artocarpaceae, 175
Artocarpales, 50
Artocarpeae, 175 a 1
Arundinaceae, 110
Arundinarieae, 110k1
Arundinellaceae, 110
Arundinelleae, 110d5
Arundinoideae, 110i
Asaraceae, 29
Asarales, 8
Asareae, 29a2
Asaroideae, 29a
Asclepiadaceae, 432
Asclepiadales, 82
Asclepiadeae, 432e4
Asclepiadoideae, 432e
Ascyraceae, 229
Asimineae $=$ Annonaceae
Aspalathaceae, 164
Asparagaceae, 89
Asparagales, 20
Asparagineae, 20d
Asperellaceae, 110
Asperulaceae, 427
Asphodelaceae, 80

Asphodelales, 20
Asphodeleae, 80 cl
Asphodelinae, 80c1a
Asphodelineae, 20b
Asphodeloideae, 80c
Aspidistraceae, 90
Aspidistreae, 90b3
Asteliaceae, 73
Asteliales, 19
Asteraceae, 480
Asterales, 87
Asteranae, U
Asteranthaceae, 399
Asteranthoideae, 399a
Astereae, 48015
Asteridae, XIII
Asterinae, 48015i
Asterineae, 87c
Asterocasiinae, 237a3a
Asteroideae, 4801
Asteropeiaceae, 359
Astragalaceae, 164
Astranthinae, 48015p
Astrocarpaceae, 322
Astrocarpeae, 322a2
Astronieae, 256 b 2
Athanastaceae, 480
Athanasinae, 48016d
Atherospermataceae, 19
Atherospermatales, 6
Atherospermateae, 19a1
Atherospermatineae, 6a
Athroismeae, 48018
Athroisminae, 48018a
Atraphaxideae $=$ Polygonaceae
Atriplicaceae, 365
Atriplicales, 77
Atripliceae, 365b4
Atropaceae, 437
Attaleinae, 92e8a
Aucubaceae, 422
Aucubales, 80
Audouinieae, 484a2
Augeoideae $=$ Zygophyllaceae
Aurantiaceae, 281
Aurantiales, 67
Aurantieae, 281c3
Aurantioideae, 281c
Austrobaileyaceae, 5
Austrobaileyales, 3
Austrobaileyanae, C

Austrocylindropuntieae, 385b1
Avenaceae, 110
Avenales, 29
Aveneae $=$ Poaceae
Aveninae, 11019b
Averrhoaceae, 199
Avetraceae, 52
Avicenntaceae, 462
Avicennioideae, 462c
Axyrideae, 365b1
Ayapaninae, 480121 j
Azaleaceae, 420
Azmaceae, 317
Azorelleae, 492b2
Azorelloideae, 492b
Azorineae = Campanulaceae
Baccharidinae, 48015g
Backhousieae, 255 b 6
Bactridinae, 92e8b
Baeckeaceae, 255
Baeriinae, 480119b
Bahieae, 480115
Balantaceae, 162
Balantales, 46
Balanitoideae, 162b
Balanopaceae, 237
Balanopales, 62
Balanophoraceae, 347
Balanophorales, 73
Balanophoranae, P
Balanophoreae, 347f1
Balanophoroideae, 347f
Balsameaceae, 276
Balsaminaceae, 392
Balsaminales, 79
Balsaminanae, S
Balsaminineae, 79a
Bambusaceae, 110
Bambuseae, 110k3
Bambusinae, 110k3d
Bambusoideae, 110k
Banisterieae, 233b4
Banksiaceae, 136
Banksieae, 136f4
Banksiinae, 136f4b
Barbaceniaceae, 54
Barbeuiaceae, 369
Barbeuioideae = Phytolaccaceae
Barbeyaceae, 168
Barbeyales, 49
Barbeyanae, M

Barclayaceae, 4
Barclayales, 2
Barclayoideae $=$ Nymphaeaceae
Barlerieae, 462d5
Barnadesieae, 480al
Barnadesioideae, 480a
Barringtoniaceae, 399
Barringtomales, 79
Barringtonioideae, 399b
Basellaceae, 380
Baselleae $=$ Basellaceae
Basseliniinae, 92e14c
Bataceae, 316
Batales, 70
Bathiorhamneae, 170a6
Baueraceae, 200
Bauerales, 54
Bauereae, 200c2
Baueroideae, 200c
Bauhmiaceae, 164
Baxteriaceae, 91
Begoniaceae, 191
Begontales, 52
Begontanae, M
Begoniineae, 52b
Behniaceae, 87
Behnieae, 87 b 3
Beiselieae, 276a1
Bejarieae $=$ Ericaceae
Belangeraceae, 200
Bellendenoideae, 136a
Bellidinae, 48015d
Bellonaceae, 445
Bellonicae $=$ Gesneriaceae
Bembictaceae, 212
Bembicieae, 212c3
Benincaseae, 188 a 14
Benoistiinae, 236c12f
Benthamielleae, 437 d 1
Berberidaceae, 129
Berberidales, 34
Berberidanae, G
Berberidoideae, 129c
Berberidopsidaceae, 328
BERBERIDOPSIDALES, 71
Berberidopsidanae, O
Bernardieae, 236b7
Berryaceae, 304
Berryeae, 304a
Bersamaceae, 247
Bersamoideae, 247c

Bertholetieae $=$ Lecythidaceae
Bertiereae, 427b2
Bertyaceae, 236
Bertyinae, 236cb
Berzeliaceae, 484
Beslertaceae, 445
Beslerieae, 445b3
Betaceae, 365
Beteae $=$ Amaranthaceae
Betoideae, 365a
Betulaceae, 184
Betulales, 51
Betuloideae, 184a
Bhesoideae, 231b
Biebersteiniaceae, 271
Bieberstemiales, 67
Bifariaceae, 346
Bignoniaceae, 460
Bignontales, 85
Bignonieae, 460a4
Billardiereae $=$ Pittosporaceae
Bisboeckelereae, 101b2
Bischofiaceae, 237
Bischofieae, 237b6
Bivonaeae, $326 a 17$
Bixaceae, 292
Butales, 69
Blakeaceae, 256
Blakeeae $=$ Melastomataceae
Blakeinae, 256b4f
Bland fordiaceae, 71
Blattiaceae, 253
Blepharocaryaceae, 275
Bletiinae, 69d14d
Blitaceae, 365
Blossfeldieae, 385 d 1
Blossfeldioideae, 385 d
Blumeodendrinae, 236b8b
Blyxaceae, 36
Bocageeae $=$ Annonaceae
Bocageoideae $=$ Annonaceae
Bocconieae, 132c2
Boechereae, 326a3
Boehmerieae, 176a3
Boerlagellaceae, 402
Boldoeae, 374a2
Bolvariaceae, 442
Boltoniinae, 480151
Bombacaceae, 306
Bombacales, 69
Bombaceae, 306a3

Bombacoideae $=$ Malvaceae
Bonnetiaceae, 226
"Bonnetioideae" = Clusiaceae
Bonplandieae, 395b3
Bontiaceae, 447
Booptdaceae, 479
Boopidales, 87
Boraginaceae, 438
Boragtnales, 83
Boraginanae, T
Boragineae, 438a3
Boraginineae, 83b
Boraginoideae, 438a
Borassaceae, 92
Borasseae, 92c8
Boroniaceae, 281
Boronieae, 281b5
Boryaceae, 70
Bossiaeeae, 164b14
Botryodendraceae, 490
Bougainvilleaceae, 374
Bougainvilleeae, 374a4
Bouss ingaultieae = Basellaceae
Boutelouinae, 110f4k
Bowkerieae, 448a2
Bowlesieae, 492b3
Brachycaulaceae, 158
Brachyelytreae, 11011
Brachypodieae, 11017
Brachyscominae, 48015c
Brachystegioideae, 164a
Brassicaceae, 326
Brassicales, 70
Brassiceae, 326a 12
Bretschneideraceae, 309
Brexiaceae, 195
Brexiales, 53
Brexieae $=$ Celastraceae
Bridelieae, 237a2
Brizinae, 11019e
Brocchinieae $=$ Bromeliaceae
Brocchinioideae, 94a
Brodiaeoideae $=$ Themidaceae
Bromaceae, 110
Bromeliaceae, 94
Bromeliales, 24
Bromeltanae, E
Bromelitdae, XIII
Bromelioideae, 94h
Brominae, 11018b
Brongniartieae, 164b4

Browallaceae, 437
Browallieae, 437d2
Browningieae, 385el
Brownleeinae, 69f2a
Brownlowlaceae, 304
Brownlowieae, 304b
Brownlowioideae $=$ Berryaceae
Brunelliaceae, 203
Bruniaceae, 484
Bruniales, 89
Brunianae, U
Brunieae, 484a3
Brunnichieae, 349c1
Brunoniaceae, 478
Brunoniales, 87
Brunonioideae, 478c
Brunsviglaceae, 83
Bryantheae, 420f2
Brylkinieae $=$ Poaceae
Brylkiniinae, 11013a
Bryoniaceae, 188
Bryonieae, 188a10
Buchananieae, 275bl
Buchneraceae, 454
Buchnereae, 454b4
Buchnerinae, 454b4b
Bucıdaceae, 251
Buddlejaceae, 447
Buddlejeae, 447d2
Buddlejoideae, 447d
Bulbocodiaceae, 61
Bumeltaceae, 402
Bupleuraceae, 491
Bupleureae, 492d6
Burchardraceae, 61
Burchardieae, 61a1
Burmanniaceae, 51
Burmannales, 16
Burmannidae, XIII
Burseraceae, 276
Burserales, 67
Burseranae, N
Bursereae, 276a3
Butneriaceae, 16
Butomaceae, 35
Butomales, 12
Butomanae, E
Buxaceae, 140
Buxales, 38
Buxanae, I
Buxeae $=$ Buxaceae

Buxoideae, 140a
Byblidaceae, 463
Bybludales, 85
Byrsonimoideae, 233a
Byttneriaceae, 300
Byitnertales, 69
Byttnerieae, 300a3
Byttnerioideae $=$ Malvaceae
Cabombaceae, 3
Cabombales, 2
Cabombeae, 4bl
Cabomboideae, 3 b
Cactaceae, 385
Cactales, 77
Cacteae, 385e9
Cactoideae, 385 e
Cadabeae, 324 a 3
Caesalpiniaceae, 164
Caesalpintales, 47
Caesalpinieae, 164c2
Caesalpinoideae, 164c
Caladeniinae, 69 f 7 m
Caladiaceae, 31
Caladieae, 31 h 17
Calamaceae, 92
Calameae, 92 a 3
Calaminae, 92 a 3 f
Calamoideae, 92 a
Calceolariaceae, 444
Caldcluvieae, 200d3
Calectastaceae, 91
Calendulaceae, 480
Calendulales, 87
Calenduleae, 48012
Caletieae, 238a2
Callaceae, 31
Calleae, 31h1
Callicarpeae, 449b1
Callicomaceae, 200
Calligonaceae, 349
Calligoneae, 349b2
Callitrichaceae, 446
Callitrichales, 85
Callitricheae, 446a7
Callitrichoideae $=$ Plant aginaceae
Callopsideae, 31 h 6
Calluneae $=$ Ericaceae
Calochortaceae, 68
Calochortoideae, 68e
Calophyllaceae, 228
Calophylleae, 228a2

Calophylloideae $=$ Clusiaceae
Calostemmateae, 83 a 4
Calthaceae, 130
Caltheae, 130 e 2
Calycanthaceae, 16
Calycanthales, 6
Calycanthidae, XIII
Calycanthoideae, 16b
Calycer aceae, 479
Calycerales, 87
"Calymmanthieae" = Cactaceae
Calyptrothecoideae, 381c
Cambogtaceae, 227
Camelineae, $326 a 2$
Camelliaceae, 411
Camelliales, 79
Camellioideae $=$ Theaceae
Campanulaceae, 471
Campanulales, 87
Campanulanae, U
Campanuleae, 471b2
Campanulineae, 87a
Campanuloideae, 471b
"Campylostemoideae" = Celastraceae
"Campylostemoneae" = Celastraceae
Campynemataceae, 59
Campynematales, 18
Campynematineae, 18a
Canacomyricaceae, 179
Canacomyriceae, 179b
"Canacomyricoideae" = Myricaceae
Canarineae, 276a4
Canarininae, 276a4a
Canarinoideae $=$ Campanulaceae
Canellaceae, 24
CANELLALES, 7
Cannabaceae, 174
Cannabales, 50
Cannaceae, 120
Cannales, 31
Cannineae, 31e
Canopodaceae, 344
Canotiaceae, 195
Canscorinae, 428a3b
Cansjeraceae, 339
Cantueae, $395 b 2$
Capparaceae, 324
Capparales, 70
Capparanae, N
Cappareae, 324al
Caprariaceae, 447

Caprifoliaceae, 497
Caprifoliales, 92
Caprifolieae, 497a2
Capsiceae, 437h 5
Capuroniantheae, 282bl
Capuronianthoideae $=$ Meliaceae
Caraipeae, 228a4
Cardamineae, 326a6
Cardiochlamyeae $=$ Convolvulaceae
Cardiopteridaceae, 465
Cardıopteridales, 86
Cardopatiinae, 480 g 4 b
Carduaceae, 480
Carduales, 87
Cardueae, 480g4
Carduinae, 480 g 4 d
Carduoideae, 480 g
Careae, 492d12
Caribeeae, 374a7
Caricaceae, 312
Caricales, 70
Cariceae, 101 b 8
Caricoideae $=$ Cyperaceae
Carissaceae, 432
Carisseae, 432a8
Carissoideae, 432a
Carlemanniaceae, 441
Carlemanniales, 85
Carlinaceae, 480
Carlininae, 480 g 4 a
Carludovicoideae, 56a
Carmichaelieae $=$ Fabaceae
Carnarvonieae, 136f1
Carnarvonioideae $=$ Proteaceae
Carpinaceae, 184
Carpinales, 51
Carpineae, 184b1
Carpinoideae $=$ Betulaceae
Carpodetaceae, 470
Carpodetoideae, 470a
Carpolobieae, 166a3
Carpoxylinae, 92e14d
Cartonemataceae, 111
Cartonemateae, 111al
Cartonematoideae, 111a
Carumbiinae, 236d2a
Caryeae, 180c2
Caryocaraceae, 244
Caryodendreae, 23666
Caryophyllaceae, 363
CaRyophyllales, 77

## Caryophyllanae, Q

Caryophylleae, 363b2
Caryophyllidae, XIII
Caryophyllineae, 77d
Caryophylloideae, 363b
Caryopterideae, 449d5
Caryopteridoideae, 449b
Caryoteae, 92c6
Casselieae, 456a3
Cassiaceae, 164
Cassiales, 47
Cassieae, 164c1
Cassiinae, 164c 1a
Cassineae $=$ Celastraceae
Cassiopoideae, 420d
Cassipoureaceae, 217
Cassipoureeae $=$ Rhizophoraceae
Cassipoureoideae, 217a
Cassythaceae, 22
Cassytheae, 22a2
Cassythoideae, 22a
Castaneaceae, 178
Castaneae = Fagaceae
Castaneoideae, 178 c
Castelaceae, 283
Casteleae, 283a1
Castilleae, 175 a6
Castillejeae, 454b6
Casuarinaceae, 182
Casuarinales, 51
Casuarmanae, M
Catalpeae, 460a5
Catasetinae, 69 d 12 j
Catesbaeaceae, 427
Catesbaeeae $=$ Rubiaceae
Cathedraceae, 333
Catopherieae $=$ Lamiaceae
Catopsideae, 94 d 1
Cancalidaceae, 491
Caucalideae, 492 d 16
Cayluseeae, 322a1
Cecroptaceae, 176
Cecropioideae, 176b
Cedrelaceae, 282
Cedrelales, 67
Cedreleae, 282b3
Cedreloideae, 282b
Celastraceae, 195
Celastrales, 190
Celastranae, M
Celastreae $=$ Celastraceae

Celastroideae, 195a
Celostaceae, 366
Celosieae, 366 c 1
Celtidaceae, 173
Celtidoideae $=$ Celtidaceae
Cenchraceae, 110
Cenchrinae, 110d4b
Centaureaceae, 480
Centaureinae, 480 g 4 e
Centellinae, 492a2b
Centipedinae, 48018c
Centotheceae, 110 d 8
Centrapalinae, 480 j 5 e
Centratherinae, 480j5o
Centrolepidaceae, 105
Centrolepidales, 28
Centroplacaceae, 231
Centroplaceae $=$ Centroplacaceae
Centroplacoideae, 231a
Cepaceae, 82
Cephalanthaceae, 427
Cephalantheae $=$ Rubiaceae
Cephalomappinae, 23669 b
Cephalotaceae, 204
Cephalotales, 54
Cerastiaceae, 363
Ceratophyllaceae, 124
Ceratophyllales, 32
Ceratophyllanae, F
Ceratophyllıdae, XIII
Cerberaceae, 432
Cercideae, 164a1
Cercidiphyllaceae, 148
Cercidiphyllales, 42
Cercocarpaceae, 167
Cercocarpeae, 167c1
Cercodtaceae, 153
Cereaceae, 385
Cereeae, 385e2
Cerinthaceae, 438
Ceropegieae, 432e3
Ceroxylaceae, 92
Ceroxyleae, 92d2
Ceroxyloideae, 92d
Cervantesiaceae, 342
Cestraceae, 437
Cestrales, 83
Cestreae, 437 d 3
Cestroideae, 437d
Cevalliaceae, 388
Chaenactideae, 480114

Chaetocarpeae, 234a3
Chaetopappinae, 480150
Chaeturaceae, 110
Chailletiaceae, 241
Chailletiales, 62
Chamaedoreaceae, 92
Chamaedoreeae, 92 e 2
Chamaemoraceae, 167
Chamelauctaceae, 255
Chamelaucieae, 255 b15
Chamireae $=$ Brassicaceae
Championieae $=$ Gesneriaceae
Chaunochitonaceae, 333
Chetlosaceae, 236
Cheiloseae, 236a1
Cheilosoideae, 236a
Chelidoniaceae, 132
Chelidonieae, 132cl
Chelidonioideae, 132c
Chelonaceae, 446
Cheloneae, 446a4
Chenopodiaceae, 365
Chenopodiales, 77
Chenopodieae, 365 b 2
Chenopodiineae, 77e
Chenopodioideae, 365b
Chmonanthaceae, 16
Chingithamnaceae, 195
Chiococceae, 427al
Chionographidaceae, 64
Chionographideae, 64 a 3
Chiranthodendraceae, 306
Chiranthodendreae, 306a1
Chironiaceae, 428
Chrontales, 82
Chironieae, 428 a 3
Chironiinae, 428a3a
Chloanthaceae, 449
Chloantheae, 449 fl
Chloraeeae, $69 f 4$
Chloraeinae, $69 f 6 \mathrm{~g}$
Chloranthaceae, 9
CHLORANTHALES, 4
Chloranthanae, C
Chloranthidae, XIII
Chloridaceae, 110
Chloridoideae, 110f
Chlorogalaceae, 87
Chlorogaloideae, 87a
Chondrillinae, 480 j 1 g
Chondrosaceae, 110

Chorisporeae, 326a23
Choritaenieae, 492d3
Chrestinae, 480 j 5 r
Chromolepidinae, 480117b
Chrozophoreae, 236b5
Chrozophorinae, 236b5d
Chrysanthellinae, 480111a
Chrysitricheae, 101a2
Chrysobalanaceae, 242
Chrysobalanales, 62
Chrysobalaneae, 242a1
Chrysophylleae, 402cl
Chrysophylloideae, 402c
Chrysopioideae, 227b
Chrysopsidinae, 48015q
Chrysospleniaceae, 158
Chrysosplenieae, 158b1
Chuniophoeniceae, 92 c 5
Chusqueinae, 110k3b
Chysidinae, 69d14b
Ciceraceae, 164
Cicereae, 164b26
Cichortaceae, 480
Cichortales, 87
Cichorieae, 480 j 1
Cichoriinae, 480j1k
Cichorioideae, 480 j
Cimicifugaceae, 130
Cimicifugeae $=$ Ranunculaceae
Cimicifugoideae $=$ Ranunculaceae
Cinchonaceae, 427
Cinchonales, 82
Cinchoneae, 427a2
Cinchonoideae, 427a
Cinnamomeae $=$ Lauraceae
Cinninae, 11019c
Circaeaceae, 252
Circaeales, 64
Circaeasteraceae, 126
Circaeasterales, 34
Circaeasteroideae, 126a
Circaeeae, 252b2
Cissaceae, 160
Cistaceae, 294
Cistales, 69
Cisteae $=$ Cistaceae
Cistineae, 69c
Citharexyleae, 456a4
Citraceae, 281
Citrales, 67
Cladieae, 101b4

Cladothamneae $=$ Ericaceae
Claoxylinae, 236b12f
Clauseneae, 281c2
Cleidiinae, 236b12d
Clematidaceae, 130
Clematoclethroideae, 416 c
Cleomaceae, 325
Cleomeae $=$ Cleomaceae
Cleomoideae, 325b
Clerodendreae, 449d1
Clethraceae, 418
Clinantheae, 83 a 14
Clinopodiinae, 449i7b
Clinospermatinae, 92e14e
Clusiaceae, 227
Clusieae, 227a2
Clusioideae, 227a
Clutieae, 234al
Cneoraceae, 281
Cneorales, 67
Cneoreae, 281d2
Cneoroideae, 281d
Cnestidaceae, 198
Cnestideae, 198b3
Cnicaceae, 480
Cobaeaceae, 395
Cobaeeae, 395b1
Cobaeoideae, 395b
Coccocypseleae $=$ Rubiaceae
Coccolobeae, 349c2
Cochlearieae, 326a25
Cochlospermaceae, 291
Cochlospermineae, 69b
Cocosaceae, 92
Cocosales, 22
Cocoseae, 92 e 8
Codiaeeae, 236 c 7
Codieae, 200el
Codonoideae, 438b
"Codonopsideae" = Campanulaceae
Codonorchideae, 69f1
Coeliinae, 69d14a
Coeliopsidinae, 69d12b
Coelodiscinae, 236b 12 i
Coelogyninae, 69d9a
Coffeaceae, 427
Coffeeae, 427b3
Coicinae, 110d6c
Coilochilideae, 69f7n
Colchicaceae, 61
Colchicales, 18

Colchiceae, 61b1
Colchicoideae, 61a
Coleanthaceae, 110
Coleanthinae, 11019 g
Coleeae, 460a8
Coleogynaceae, 167
Coleogynoideae $=$ Rosaceae
Coleotrypinae, 111b1d
Colignonieae, 374 a 3
Collabieae, 69 d 15
Colletieae, 170 b 2
Colletoecemateae, 427c1
Collinsieae $=$ Scrophulariaceae
Colocastaceae, 31
Colocasieae, 31 h 24
Coloneae $=$ Tiliaceae
Columelliaceae, 482
Columelluales, 89
Colurieae, 167b3
Comandraceae, 340
Combretaceae, 251
Combretales, 64
Combreteae, 251 b2
Combretoideae, 251b
Commelinaceae, 111
Commelinales, 30
Commelinanae, E
Commelineae, 111b2
Commelinidae, XIII
Commelinineae, 30a
Commelinoideae, 111b
Comocladiaceae, 275
Compositae, 480
Compsoaceae, 68
Conantheraceae, 75
Conceveibinae, 236b11b
Coniandreae, 188a 13
Connaraceae, 198
Connarales, 54
Connaroideae, 198a
Conospermeae, 136d1
Conosperminae, 136d1b
Conostylidaceae, 114
Conostylideae, 114b3
Conostylidoideae, 114b
Convallartaceae, 90
Convallarieae, 90b2
Convallarioideae, 90b
Convolvulaceae, 436
Convolvilales, 83
Convolvuleae, 436 b 3

Convolvuloideae, 436b
Conyzinae, 48015 r
Copiapoeae, 385d2
Coprosminae, 427c21b
Coptideae, 130c1
Coptidoideae, 130c
Coptosapelteae, 427a3
Corallorrhizeae, 69 d 13
Corchoreae $=$ Tiliaceae
Cordiaceae, 438
Cordiales, 83
Cordieae, 438 g 2
Cordioideae, 438 g
Coreopsideae, 480111
Coreopsidinae, 480111c
Cortandraceae, 491
Coriandreae, 492d17
Coriariaceae, 187
Cortariales, 52
Cortdaceae, 409
Corideae, 409a2
Corispermoideae, 365d
Cornaceae, 386
Cornales, 78
Cornanae, R
Cornidae, XIII
Cornoideae, 386b
Corokiaceae, 475
Coronanthereae, 445 b 2
Coronantheroideae $=$ Gesneriaceae
Coronillaceae, 164
Corrigiolaceae, 363
Corrigioleae, 363a1
Corsiaceae, 58
Coryciinae, 69f2b
Corydaleae, 132e2
Corylaceae, 184
Corylales, 51
Coryleae, 184b2
Coryloideae, 184b
Corylopsideae, 147 c 2
Corymbieae, 480 k 1
Corymbioideae, 480 k
Corynabutilinae, 307a4a
Corynocarpaceae, 186
Corynocarpales, 52
Corynocarpanae, M
Coryphaceae, 92
Corypheae, 92c7
Coryphoideae, 92c
Coscinieae, 128a2

Cosmelieae, 420 h 6
Costaceae, 122
Cotteinae, 110f2a
Cotulinae, 48016b
Cotyledonaceae, 150
Couepieae, 242a3
Coulaceae, 331
Couleae = Olacaceae
Coulterellinae, 480113a
Couratarieae = Lecythidaceae
Couroupiteae $=$ Lecythidaceae
Coussareeae, 427 c 5
Coutareaceae, 427
Coutoubeaceae, 428
Coutoubeinae, 428 a 3 c
Craigieae, 302a2
Cranichideae, $69 f 6$
Cranichidinae, 69f6e
Crassulaceae, 150
Crassulales, 43
Crassuloideae, 150a
Crataegeae $=$ Rosaceae
Craterispermeae, 427c9
Cratoxyleae, 229a3
Cremasporeae, 427b5
Crepidinae, 480j1f
Crescentraceae, 460
Crescentieae, 460a7
Cressaceae, 436
Cresseae, 436b4
Crinaceae, 83
Critoniinae, 4801211
Crocaceae, 78
Croceae $=$ Iridaceae
Crocoideae, 78 g
Croomiaceae, 55
Croomieae, 55a2
Crossosomataceae, 265
Crossosomatales, 65
Crossosomatanae, N
Crossosomatineae, 65a
Crotalarieae, 164b8
Crotonaceae, 236
Crotoneae, 236c10
Crotonogyninae, 236c12d
Crotonoideae, 236c
Cruciferae, 326
Cruckshanksieae $=$ Rubiaceae
Cryosophileae, 92 c 2
Cryptaceae, 232
Cryptangieae, 101b5

Crypteroniaceae, 257
Cryptocaryeae, 22a3
Cryptocorynaceae, 31
Cryptocoryneae, 31 h 3
Cryptostylidinae, 6917c
Ctenolophonaceae, 215
Cucurbitaceae, 188
Cucurbitales, 52
Cucurbitanae, M
Cucurbiteae, 188a15
Cucurbitineae, 52a
Cucurbitoideae $=$ Cucur bitaceae
Culcasieae, 31h7
Cunoniaceae, 200
Cunoniales, 54
Cunonieae, 200e2
Cunonioideae, 200e
Cupanieae, 280b5
Curcumaceae, 123
Curtisiaceae, 391
Cuscutaceae, 436
Cuscutales, 83
Cuscutoideae, 436c
Cusparieae $=$ Rutaceae
Cussonieae, 490al
Cyananthaceae, 471
Cyanantheae, 471b1
Cyananthoideae $=$ Campanulaceae
Cyanastraceae, 75
Cyanastroideae, 75 c
Cyanellaceae, 75
Cyanotinae, 111b1c
Cyclanthaceae, 56
Cyclanthales, 17
Cyclanthanae, E
Cyclantheraceae, 188
Cyclanthereae $=$ Cucurbitaceae
Cyclanthoideae, 56b
Cyclocheilaceae, 454
Cyclospatheae, 92 d 1
Cydontaceae, 167
Cylindropuntieae, 385 b 2
Cymbarieae, 454b5
Cymbidiinae, 69 d 12 h
Cymodoceaceae, 42
Cymodoceales, 13
Cynanchaceae, 432
Cynaraceae, 480
Cynarales, 87
Cynodontaceae, 110
Cynodonteae, 110f4

Cynoglossaceae, 438
Cynoglosseae, 438 a 4
Cynomoriaceae, 159
Cynomoriales, 44
Cynosuraceae, 110
Cynosurinae, 110191
Cyperaceae, 101
Cyperales, 27
Cypereae, 101b13
Cyperoideae, 101b
Cyphaceae, 471
Cyphioideae, 471c
Cyphocarpaceae, 471
Cyphocarpoideae, 471e
Cypripediaceae, 69
Cypripedioideae, 69c
Cyrillaceae, 419
Cyrillales, 79
Cyrtandraceae, 445
Cyrtanthaceae, 83
Cyrtantheae, 83 a 2
Cyrtopodiinae, 69 d 12 i
Cytinaceae, 297
Cytmales, 69
Cytisaceae, 164
Daboecieae $=$ Ericaceae
Dactylanthaceae, 347
Dactylantheae $=$ Balanophoraceae
Dactylanthoideae, 347b
Dactylidinae, 11019 m
Dalbergiaceae, 164
Dalbergieae, 164b11
Daleaceae, 164
Dalechampieae, 236b13
Dalechampiinae, 236b 13c
Damasoniaceae, 33
Dampieroideae, 478b
Danaideae, 427 c 15
Danthonioideae, 110e
Daphnaceae, 289
Daphnales, 69
Daphneae $=$ Thymelaeaceae
Daphniphyllaceae, 149
Daphniphyllales, 42
Daphniphyllanae, L
Dasypogonaceae, 91
DASYPOGONALES, 21
Dasypogonoideae, 91a
Datiscaceae, 190
Datiscales, 52
Daturaceae, 437

Datureae, 437h6
Daucaceae, 491
Daucinae, 492d11a
Davidiaceae, 386
Davidioideae, 386c
Davidsontaceae, 200
Davidsonioideae, 200b
Decatsneaceae, 127
Decaisneeae, 127b1
Decaisneoideae $=$ Lardizabalaceae
Deeringlaceae, 366
Degeneriaceae, 12
Degenertales, 5
Delavayeae, 280 b 1
Delimaceae, 143
Delimoideae, 143a
Delisseeae, 471d2
Delospermeae $=$ Aizoaceae
Delphintaceae, 130
Delphinicae $=$ Ranunculaceae
Dendrobieae, 69d11
Dendrophthoaceae, 338
Dendrophthoinae, 338a5e
Descurainieae, 326 a 9
Desfontainiaceae, 483
Desfontainiales, 89
Desfontainieae $=$ Loganiaceae
Desmanthodiinae, 480118a
Desmodieae, 164b 19
"Desplatsieae" = Tiliaceae
Detartaceae, 164
Detarieae, 164a2
Dialypetalanthaceae, 427
Dialypetalantheae, 427b4
Dialypetalanthoideae, 427 b
Dianellaceae, 80
Dianelleae, 80 a 2
Dtanthaceae, 363
Diapensiaceae, 414
Diapensiales, 79
Diapenstanae, S
Diarrheneae, 11016
Diceratostelinae, 69d4b
Dicerocaryeae, 457a4
Dichapetalaceae, 241
Dichocar peae, 130d3
Dichondraceae, 436
Dichondreae, 436b5
Dichorisandrinae, 111ble
Dichotomanthoideae $=$ Rosaceae
Diclidantheraceae, 166

Diclidanthereae, 166a2
Dicomeae, 480 g 1
Dicranolepideae $=$ Thymelaeaceae
Dictamnaceae, 281
Dictamneae, 281b1
Dictyolomeae $=$ Rutaceae
Dictyolomoideae $=$ Rutaceae
Didiereaceae, 381
Didiereoideae, 381a
Didymelaceae, 139
Didymelales, 38
Didymocarpaceae, 445
Didymocarpeae, 445a1
Didymocar poideae, 445a
Dieffenbachieae, 31h14
Diegodendraceae, 293
Diervillaceae, 496
Diervilloideae $=$ Caprifoliaceae
Digitalidaceae, 446
Digitalideae, 446a 11
Digitariinae, 110d4c
Dilatridaceae, 114
Dilleniaceae, 143
Dilleniales, 40
Dillenianae, K
Dillenieae $=$ Dilleniaceae
Dilleniidae, XIII
Dillenioideae, 143d
Dimeriinae, 110d6f
Dionaeaceae, 350
Dioncophyllaceae, 354
Dioncophyllales, 74
Dioscoreaceae, 52
Dioscoreales, 16
Dioscoreanae, E
Dioscoreoideae, 52c
Diosmaceae, 281
Diosmales, 67
Diosmeae, 281b3
Diospyraceae, 403
Diospyrales, 79
Dipcadieae, 84c2
Dipentodontaceae, 287
Dipentodontales, 68
Diphylletaceae, 129
Diplarchaceae, 420
Diplarcheae $=$ Ericaceae
"Diplodisceae" = Berryaceae
Diplolaenaceae, 281
Dipsacaceae, 500
DIPSACALES, 92

Dipsacanae, U
Dipsacoideae $=$ Caprifoliaceae
Dipterocarpaceae, 296
Dipterocarpales, 69
Dipterocarpeae, 296cl
Dipterocarpoideae, 296c
Dipterocypselinae, 480j5t
Dipterygeae, 164b2
Dipterygioideae, 325a
Dirachmaceae, 169
Disanthaceae, 147
Disanthoideae, 147b
"Discophoreae" = Icacinaceae
Disinae, 69f2c
Dissiliariinae, 238a2b
Distephaninae, 480j5a
Disynaphiinae, 480121p
Ditaxidinae, 236b5b
Diurideae, 69 f 7
Diuridinae, 6977 k
Dobineeae, 275a5
Dodonaeaceae, 280
Dodonaeeae, 280a2
Dodonaeoideae, 280a
Doerpfeldieae, 170a5
Doliocarpoideae, 143b
Dombeyaceae, 303
Dombeyoideae $=$ Malvaceae
Donatraceae, 476
Donatioideae, 476a
Doratoxyleae, 280a1
Doroniceae, 48013
Dorotheantheae, 370d2
Dorsteniaceae, 175
Dorstenieae, 175a4
Dortmannaceae, 471
Doryanthaceae, 77
Doryxylinae, 236b5c
Drabaceae, 326
Dracaenaceae, 90
Dracaenoideae, 90 d
Dracontuceae, 31
Drakaeinae, 69 f 7 d
Drimyidaceae, 23
Droseraceae, 350
Droserales, 74
Drosophyllaceae, 348
Dryadaceae, 167
Dryadales, 48
Dryadeae, 167c2
Dryadoideae, 167c
Dryobalanopseae $=$ Dipterocarpaceae
Drypideae $=$ Caryophyllaceae
Duabangaceae, 253
Duabangoideae $=$ Lythraceae
Duboscieae $=$ Tiliaceae
Duckeodendraceae, 437
Duckeodendroideae, 437c
Dugesinae, 480117c
Dulichieae, 101 b 9
Dunnieae, 427 cl 6
Duparquetiinae, 164 c 1 c
Durantaceae, 456
Duranteae, 456a2
Durionaceae, 307
Durioneae, 307a1
Dypsidinae, 92 e 14 f
Dyscritothamninae, 480118b
Dysphaniaceae, 365
Dysphanieae, 365b3
Ebenaceae, 403
Ebenales, 79
Ebenoideae, 403a
Eccremocarpeae $=$ Bignoniaceae
Ecdeiocoleaceae, 109
"Echeverieae" = Crassulaceae
Echiaceae, 438
Echrales, 83
Echieae $=$ Boraginaceae
Echinariaceae, 110
Echinocerecae $=$ Cactaceae
Echinocodonieae $=$ Campanulaceae
Echinopaceae, 480
Echinopales, 87
Echinophoreae, 492d15
Echinopsideae $=$ Cactaceae
Echinopsinae, 480g4c
Echiochileae, 438a5
Echiteae, 432b5
Ecliptinae, 480117d
Edraiantheae $=$ Campanulaceae
Ehretiaceae, 438
Ehretiales, 83
Ehretioideae, 438 f
Ehrhartaceae, 110
Ehrharteae, 110j1
Ehrhartoideae, 110j
Eichhornieae $=$ Pontederiaceae
Elaeagnaceae, 171
Elaeagnales, 49
Elaeidinae, 92e8c
Elaeocarpaceae, 201

Elaeocarpales, 54
Elaeocarpeae, 201a2
Elaeocarpoideae = Elaeocarpaceae
Elaeodendeae $=$ Celastraceae
Elateriospermeae, 236c5
Elatinaceae, 232
Elatinales, 60
Elegiaceae, 106
Eleocharideae, $101 b 12$
Elephantopinae, 480j5i
Eleusininae, 110f4e
Ellisiophyllaceae, 446
Elodeaceae, 36
Elodeales, 12
Elsholtzieae, 449il
Elytranthaceae, 338
Elytrantheae, 338a3
Embeliaceae, 406
Emblingiaceae, 318
Embothrieae = Proteaceae
Embothriinae, 136f5b
Emelianthinae, 338a5f
Emmotaceae, 426
Emmotales, 81
Emmoteae, 426a1
Empetraceae, 420
Empetrales, 79
Empetreae, 420 f 4
Empetroideae, 420g
Enceliinae, 480117e
Endodesmieae, 228a3
Endosperminae, 236c3b
Engelhardioideae, 180b
Engelhardtraceae, 180
Engelmanniinae, 480117f
Enhalaceae, 36
Enkianthoideae, 420a
"Enteleeae" = Tiliaceae
Enydrinae, 480112a
Epacridaceae, 420
Epacridales, 79
Epacrideae, 420h5
Epacridoideae, 420h
Ephemeraceae, 111
Epidendreae, 69d14
"Epigaeoideae"= Ericaceae
Epilobiaceae, 252
Epilobiales, 64
Epilobieae, 252b5
Epimedraceae, 129
Epipogonieae, 69d3

Epipogoniinae, 69d3b
Epiprineae, 236b9
Epiprininae, 236b9a
Episcieae, 445b7
Epithemateae, 445 a 2
Eragrostidaceae, 110
Eragrostideae, 110f2
Eragrostidinae, 110f2b
Eranthideae $=$ Ranunculaceae
Eremogoneae, 363c1
Eremolepidaceae, 344
Eremosynaceae, 481
Eremosynoideae, 481b
Eremothamneae, 480 j 3
Eriachneae, 110g2
Ericaceae, 420
Ericales, 79
Ericanae, S
Ericeae, 420f3
Ericıdae, XIII
Ericineae, 79g
Ericoideae, 420 f
Eriinae, 69d16b
Erinaceae, 446
Eriocaulaceae, 96
Eriocaulales, 26
Eriocaulineae, 26a
Eriocauloideae, 96a
Eriochilinae, 6977 g
Eriogonaceae, 349
Eriogoneae, 349c6
Eriogonoideae, 349c
Eriolaeneae, 307a3
Eriopsidinae, 69d12a
Eriospermaceae, 90
Eriospermoideae, 90a
Erismantheae, 236b1
Erismoideae, 254b
Eritrichieae $=$ Boraginaceae
Erlangeinae, 480 j 5 m
Erodiaceae, 246
Erycibaceae, 436
Erycibeae, 436b6
Eryngiaceae, 491
Erysimaceae, 326
Erythrontaceae, 68
Erythropalaceae, 329
Erythropalales, 72
Erythrospermaceae, 205
Erythrospermeae, 205a4
Erythroxylaceae, 216

Erythroxylales, 56
Escalloniaceae, 481
Escalloniales, 88
Escallonianae, U
Escallonieae = Escalloniaceae
Escallonioideae, 481d
Eschscholziaceae, 132
Eschscholzieae, 132b1
Eschscholzioideae, 132b
Escobedieae, 454b3
Espeletiinae, 480118c
Eucalypteae, 255b11
Eucharideae, 83a11
Euchresteae, 164b5
Euclidieae, 326a22
Eucomidaceae, 84
Eucommiaceae, 423
Eucommiales, 80
Eucommianae, T
Eucryphraceae, 200
Eucryphieae, 200d1
Eucryphioideae, 200d
Eugeissoneae, 92a1
Eugentaceae, 255
Eulophiinae, 69d12k
Euonymaceae, 195
Euonymeae = Celastraceae
Eupatoriaceae, 480
Eupatorieae, 480121
Eupatoriinae, 480121s
Euphorbiaceae, 236
Euphorbiales, 61
Euphorbianae, M
Euphorbieae, 236d5
Euphorbiinae, 236d5c
Euphorbioideae, 236d
Euphrastaceae, 454
Euphroniaceae, 243
Eupomatiaceae, 14
Eupomatiales, 5
Eupteleaceae, 125
Eupteleales, 33
Eupteleanae, G
Euryalaceae, 4
Euryalales, 2
Euryaleae, 4b3
Euryaloideae $=$ Nymphaeaceae
Eustephieae, 83a 15
Eustigmateae, 147c3
Eustrephaceae, 88
Euterpeae, 92e10

Euthemidaceae, 223
Euthemideae, 223c2
Euthemidoideae $=$ Ochnaceae
Eutocaceae, 438
Eutremeae, 326a16
Evolvilaceae, 436
Exaceae, 428a2
Exbucklandiaceae, 147
Exbucklandioideae, 147a
Exocarpaceae, 344
Exochordeae, 167a4
Fabaceae, 164
Fabales, 47
Fabanae, M
Fabeae, 164b28
Faboideae, 164b
Fagaceae, 178
Fagales, 51
Faganae, M
Fagoideae, 178d
Fagopyreae, 349b1
Faroinae, 428a4b
Feddeeae, 48019
Ferulaceae, 491
Ferulinae, 492d11b
Festucaceae, 110
Fevilleoideae = Cucurbitaceae
Fibraureeae $=$ Menispermaceae
Ficaceae, 175
Ftcales, 50
Ficeae, 175a5
Ficinieae, 101 b 14
Filipenduloideae $=$ Rosaceae
Flacourtraceae, 212
Flacourtrales, 55
Flacourtieae, 212d1
Flacourtioideae, 212d
Flagellariaceae, 107
Flagellartales, 29
Flaveriinae, 480113d
Fleischmanniinae, 480121 m
Finderstaceae, 281
Flindersioideae $=$ Rutaceae
Floydiinae, 136f2e
Fockeeae, 432e1
Foetidiaceae, 399
Fontanesieae, 442al
Forestieraceae, 442
Forgesieae = Escalloniaceae
Forsskaoleeae, 176a5
Forsythieae, 442a2

Fothergillaceae, 147
Fothergillales, 42
Fothergilleae, 147c4
Fouquieriaceae, 396
Fouqueriales, 79
Fragartaceae, 167
Fragariinae, 167b5a
Francisceeae $=$ Solanaceae
Francoaceae, 248
Francoales, 63
Frangulaceae, 170
Frangulales, 49
Frankeniaceae, 355
Frankeniales, 75
Franklandieae = Proteaceae
Fraxinaceae, 442
Fraxinales, 85
Fraxineae $=$ Oleaceae
Fraxinellaceae, 281
Fraxininae, 442a5a
Freesieae, 78 g 3
Fremontodendreae $=$ Byttneriaceae
Freycmettaceae, 57
Freycinetioideae, 57b
Freylinieae $=$ Scrophulariaceae
Freziereae, 401a3
Fritillartaceae, 68
Fuchsiaceae, 252
Fuireneae, 101b11
Fumaneae $=$ Cistaceae
Fumariaceae, 132
Fumariales, 34
Fumarieae, 132e1
Fumarioideae, 132e
Fusispermoideae, 207a
Gaertnereae, 427c10
Gaiadendraceae, 338
Gaiadendreae, 338a2
Galacinaceae, 414
Galanthaceae, 83
Galantheae, 83 a 9
Galaxiaceae, 78
Galeaninae, 480120a
Galedupaceae, 164
Galegeae, 164b24
Galeniaceae, 370
Galeottiellinae, 69f6c
Galtaceae, 427
Galtales, 82
Galinsoginae, 480118d
Galipeeae, 281 b6

Garciinae, 236c12b
Garciniaceae, 227
Garcintales, 59
Garcinieae, 227al
Gardeniaceae, 427
Gardenieae, 427b6
Gardneriaceae, 429
Garryaceae, 421
Garryales, 80
Garugeae $=$ Burseraceae
Garuginae, 276a4b
Gastrodieae, 698d8
Gaudichaudieae, 233b5
Gaudichaudioideae $=$ Malpighiaceae
Gaultherieae, 420i4
Geeae $=$ Rosaceae
Geissoieae, 200d2
Geissolomataceae, 267
Getssolomatales, 65
Geissolomatineae, 64b
Getionoplesiaceae, 80
Gelsemiaceae, 430
Gelsemicae $=$ Loganiaceae
Gentostomataceae, 429
Genisteae, 164b9
Gentianaceae, 428
Gentianales, 82
Gentiananae, T
Gentianeae, 428a6
Gentianinae, 428а6a
Geocarpeae $=$ Caryophyllaceae
Geoffroeaceae, 164
Geonomataceae, 92
Geonomateae, 92 e 11
Geostridaceae, 78
Geosiridoideae, 78d
Geraniaceae, 246
Geraniales, 63
Geranianae, M
Gerardieae, 454b1
Germainiinae, 110d6d
Gerrardinaceae, 285
Gesneriaceae, 445
Gesneriales, 85
Gesnerieae, 445b5
Gesneriineae, 85b
Gesnerioideae, 445b
Gethyllidaceae, 83
Gethyllideae, 83a5
Gevuininae, 136f6d
Gilieae, 395a3

Gillenieae, 167a8
Gilliestaceae, 82
Gilltestales, 20
Gilliesioideae, 82c
Ginalloaceae, 346
Ginalloeae $=$ Viscaceae
Gisekiaceae, 371
Gladiolaceae, 78
Gladioleae, 78 g 4
Glaucidiaceae, 130
Glaucidiales, 34
Glaucidioideae, 130a
Glebionidinae, 48016n
Glechomaceae, 449
Glechoneae = Lamiaceae
Glinaceae, 377
Globbeae, 123d2
Globulariaceae, 446
Globulariales, 85
Globularieae, 446a9
Globularioideae = Plantaginaceae
Glomeropitcairnieae, 94d2
Glorioseae $=$ Colchicaceae
Glossocalycoideae, 17b
Gloxinieae, 445b4
Glyceriaceae, 110
Gnaphataceae, 480
Gnaphalieae, 48014
Gnidtaceae, 289
Gochnatieae, 480e1
Gochnatioideae, 480e
Goetzeaceae, 437
Goetzeoideae, 437b
Gomortegaceae, 18
Gomphaceae, 223
Gomphogyneae, 188a1
Gomphogynoideae, 366b
Gomphrenaceae, 366
Gomphreneae, 366b2
Gongylocar peae, 252b4
Gonystylaceae, 289
Gonystyleae, 289b2
Gonystyloideae, 289b
Goodeniaceae, 478
Goodeniales, 87
Goodenioideae, 478a
Gordoniaceae, 411
Gordontales, 79
Gordonieae, 411a2
Gorteriinae, 480j2b
Gossypieae, 307a3

Gouaniaceae, 170
Gouanieae, 170b4
Gouiniinae, 110f4d
Goupiaceae, 206
Gramineae, 110
Grangeinae, 48015e
Gratiolaceae, 446
Gratioleae, 446al
Grevilleeae, 136f5
Grevilleoideae, 136 f
Grewiaceae, 299
Grewieae, 299a1
Grewioideae $=$ Malvaceae
Greynaceae, 247
Greyiales, 63
Greyioideae, 247a
Griadeae $=$ Lecythidaceae
Grielaceae, 288
Grindeliaceae, 480
Griseliniaceae, 488
Griseltniales, 90
Gronoviaceae, 388
Gronovioideae, 388c
Grosserinae, 236c12c
Grossulariaceae, 157
Grossulariales, 43
Grubbiaceae, 390
Grubbiales, 78
Guaduelleae, 110c2
Guaduinae, 110k3c
Guamatelaceae, 263
Guardiolinae, 480118e
Guareeae, 282a7
Guatterieae $=$ Annonaceae
Guettardaceae, 427
Guettardeae, 427a4
Gunneraceae, 141
Gunnerales, 39
Gustaviaceae, 399
Guttiferae, 227
Gymnantheminae, 480 j 5 c
Gymnarrheneae, 480i1
Gymnarrhenoideae, 480i
Gymnopodieae, 349c3
Gymnostachyoideae, 31a
Gynerieae, 110d7
Gynotrocheae, 217b1
Gyptidinae, 480121o
Gyrocarpaceae, 20
Gyrocarpales, 6
Gyrocarpoideae, 20b

Gyrostemonaceae, 321
Gyrostemonales, 70
Gyrostemonanae, N
Habenariinae, 69f3a
Habrosieae = Caryophyllaceae
Hachetteaceae, 347
Haemanthaceae, 83
Haemantheae, 83a3
Haemodoraceae, 114
Haemodorales, 30
Haemodoroideae, 114a
Hainardieae $=$ Poaceae
Hakeinae, 136f5d
Halesiaceae, 413
Halesiales, 79
Halimolobeae, 326a4
Hallerieae, 448al
Halopeplideae, 365c1
Halophilaceae, 36
Halophileae, 36d3
Halophytaceae, 379
Haloragaceae, 153
Haloragales, 43
Halorageae, 153a2
Hamamelidaceae, 147
Hamamelidales, 42
Hamamelıdanae, L
Hamamelideae, 147c1
Hamamelididae, XIII
Hamamelidineae, 42b
Hamamelidoideae, 147c
Hameliaceae, 427
Hamelieae, 427a5
Hamilcoinae, 236d1b
Hanceolinae, 449j8b
Handeliinae, 48016 g
Hanguanaceae, 112
Hanguanales, 30
Haptanthaceae, 138
Harmandiaceae, 333
Harrimanelloideae, 420e
Harrisonieae $=$ Rutaceae
Hauyeae, 252b1
Hebecliniinae, 480121h
Hebenstrettaceae, 447
Hecastocleeae, 480f1
Hecastocleoideae, 480f
Hechtioideae, 94 c
Hectorellaceae, 378
Hederaceae, 490
Hederales, 90

Hedereae, 490a3
Hedycaryeae, 21c1
Hedyosmaceae, 9
Hedyotidaceae, 427
Hedyotideae = Rubiaceae
Hedysaraceae, 164
Hedysareae, 164b25
Hetstertaceae, 329
Heistertales, 72
Heisterieae = Olacaceae
Heleniaceae, 480
Helenieae, 480110
Heleniinae, 480110a
Heltamphoraceae, 415
Helianthaceae, 480
Helianthemaceae, 294
Helianthinae, 480117g
"Helicieae" = Proteaceae
Helicinae, 136f2d
Heliconiaceae, 117
Heliconiineae, 31b
Helicteraceae, 307
Helictereae, 307a2
Helicteroideae = Malvaceae
"Helictonemeae" = Celastraceae
Helieae, 428a5
Heliophileae, 326a24
Helotroplaceae, 438
Heliotropoideae, 438e
Helleboraceae, 130
Helleborales, 34
Helleboreae, 130e4
Helleboroideae $=$ Ranunculaceae
Helmiopsideae", = Byttneriaceae
Heloniadaceae, 64
Heloniadeae, 64a2
Heloseae = Balanophoraceae
Helosidaceae, 347
Helosoideae $=$ Balanophoraceae
Helwingiaceae, 469
Helwingiales, 86
Hemerocallidaceae, 80
Hemerocallideae, 80a3
Hemerocallidoideae, 80a
Hemmeridaceae, 447
Hemimerideae, 447a1
Hemimeridinae, 447alb
Hemimeridoideae, 447a
Hemiphragmateae, 446a10
Hemitomeae $=$ Ericaceae
Hennecartieae, 21c3

Henriqueztaceae, 427
Henriquezieae = Rubiaceae
Henslowraceae, 261
Henslowiales, 64
Heptanthinae, 480112b
Hermanntaceae, 300
Hermannieae, 300a2
Hernandiaceae, 20
Hernandtales, 6
Hernandioideae, 20a
Herniariaceae, 363
Herpetospermeae $=$ Cucurbitaceae
Herrertaceae, 87
Herrerieae, 87b4
Hesperideae, 326a20
Hesperocallidaceae, 87
Hesperocallidoideae, 87c
Hesperomaniinae, 480j5d
Heterantheraceae, 115
Heteranthereae, 115 a 2
Heteromor pheae, 492 d 5
Heteropsideae, 31e1
Heteropyxidaceae, 255
Heteropyxideae, 255a1
Heteropyxidoideae, 255a
Heterostylaceae, 39
Heuchereae, 158 b 2
Heucheroideae, 158b
Heveinae, 236clb
Hexalobeae $=$ Annonaceae
Hibberttaceae, 143
Hibbertieae $=$ Dilleniaceae
Hibbertoideae, 143c
Hibuscaceae, 307
Hibisceae, 307a2
Hicorieae $=$ Juglandaceae
Hieraciinae, 480jli
Hieronyminae, 237bld
Hilariinae, 110f4i
Hillertaceae, 376
Hillieae, 427a6
Himantandraceae, 13
Himantandrales, 5
Hinterhuberinae, 48015b
Hippeastreae, 83a10
Hippocastanaceae, 278
Hippocastanales, 67
Htppocrateaceae, 195
Hippocrateales, 53
Hippocrateeae $=$ Celastraceae
Hippocrateoideae, 195c

Hippomanaceae, 236
Hippomaneeae, 236 d 2
Hippomaneinae, 236d2b
Hippophaeaceae, 171
Hippuridaceae, 446
Hippuridales, 85
Hippuridoideae $=$ Plantaginaceae
Hiraeeae, 233b2
"Hiraeoideae" = Malpighiaceae
Hirtellaceae, 242
Hirtelleae, 242a4
Hofmeisteriinae, 480121b
Hohenackerieae, 492 d 18
Holcaceae, 110
Holodisceae $=$ Rosaceae
Homaliaceae, 212
Homaliales, 55
Homalieae, 212a2
Homalomeneae, 3lh10
Hopkinsiaceae, 103
Hoplestigmataceae, 438
Hoplestigmateae, 438 g 1
Hordeaceae, 110
Hordeeae, 11018
Hordeinae, 11018c
Hormineae, 449 i6
Hornschuchtaceae, 15
Hortenslaceae, 387
Hortensiales, 78
Hortontaceae, 21
Hortonioideae, 21a
Hostaceae, 87
Hottoniaceae, 408
Houstonaceae, 427
Huaceae, 197
Huales, 54
Hubbardieae, 110d2
Hudsonieae $=$ Cistaceae
Huerteaceae, 286
Huerteales, 68
Huerteanae, N
Hugonaceae, 218
Hugonioideae, 218b
Hulseinae, 480119c
Humbertiaceae, 436
Humbertioideae, 436a
Humiriaceae, 221
Humulaceae, 174
Hunterieae, 432 a 6
Hureae, 236d4
Huttonaeinae, 69f2d

Hyacinthaceae, 84
Hyacintheae, 84 d 2
Hyacinthineae, 20c
Hyacinthoideae, 84d
Hyaenachinae, 238a2a
Hyaenanchoideae $=$ Picrodendraceae
Hyalideae, 480d2
Hydatellaceae, 2
Hydatellales, 2
Hydatellanae, B
Hydnoraceae, 28
Hydnorales, 8
Hydrangeaceae, 387
Hydrangeales, 78
Hydrangeeae, 387b2
Hydrangeoideae, 387b
Hydrastidaceae, 130
Hydrastidales, 34
Hydrastidoideae, 130b
Hydrillaceae, 36
Hydrilloideae $=$ Hydrocharitaceae
Hydroceraceae, 392
Hydrocharitaceae, 36
Hydrocharttales, 12
Hydrocharitoideae, 36a
Hydrocotylaceae, 490
Hydrocotyloideae, 490b
Hydroleaceae, 435
Hydroleales, 83
Hydropeltidaceae, 3
Hydropeltidales, 2
Hydropeltoideae, 3a
Hydrophylacaceae, 427
Hydrophyllaceae, 438
Hydrophyllales, 83
Hydrophylleae, 438d1
Hydrophyllinae, 438d1b
Hydrophylloideae, 438d
Hydrostachyaceae, 389
Hydrostachyales, 78
Hylocer eeae, 385 e 7
Hymenocallideae, 83a 12
Hymenocardiaceae, 237
Hymenocardiinae, 237b1b
Hymenodictyoneae, 427a7
Hyoscyamaceae, 437
Hyoscyameae, 437h3
Hyoscyaminae, 437h3a
Hyoseridinae, 480jle
Hypecoaceae, 132
Hypecoideae, 132d

Hypericaceae, 229
Hypericales, 59
Hypericeae, 229a2
Hypericoideae $=$ Clusiaceae
Hyphaeninae, 92c8a
Hypocalypteae, 164b12
Hypochaeridinae, 480j1h
Hypodaphnideae, 22a1
Hypolytreae, 101a1
Hypopityaceae, 420
Hypoxidaceae, 74
Hypoxidales, 19
Hypseocharitaceae, 245
Hyptidinae, 449j8c
Iberideae, 326a27
Icacinaceae, 426
ICacinales, 81
Icacinanae, T
Icacineae, 426a2
Idtospermaceae, 16
Idiospermoideae, 16a
Ileostylinae, 338a5a
Ilicaceae, 467
Ilicales, 86
Illecebraceae, 363
Illecebrales, 77
Illecebroideae, 363a
Illiciaceae, 8
Illictales, 3
Illictanae, C
Illicildae, XIII
Illigeraceae, 20
Illigerales, 6
Impatientaceae, 392
Imperatortaceae, 491
Indigofereae, 164b15
Indofevilleae, 188a5
Ingeae, 164d5
Inocarpaceae, 164
Inulaceae, 480
Inuleae, 48017
Inulinae, 48017a
Iochrominae, 437h7a
Iodaceae, 426
Iodeae, 426a3
Iphigenieae, 61b2
Ipomoeeae, 436b7
Iriarteaceae, 92
Iriarteeae, 92el
Iridaceae, 78
Iridales, 20

Iridanae, E
Irideae, 78b1
Iridineae, 20a
Iridoideae, 78b
Irvingiaceae, 219
Irvingiales, 57
Isachneae, 110d3
Isatidaceae, 326
Isatideae, 326al5
Ischaeminae, 110d6e
Isertieae, 427a8
Isnardiaceae, 252
Isonandreae $=$ Sapotaceae
Isophysidaceae, 78
Isophysidoideae, 78a
Isopogoninae, 136d4a
Isopyreae $=$ Ranunculaceae
Isopyroideae $=$ Ranunculaceae
Iteaceae, 155
Iteales, 43
Ivaceae, 480
Ixer baceae, 269
Ixtaceae, 78
Ixtales, 20
Ixieae, 78 g 2
Ixiolirionaceae, 76
Ixonanthaceae, 220
Ixoreae, 427b7
Jablonskieae, 237 b 3
Jaboroseae $=$ Solanaceae
Jaborosinae, 437h3c
Jacarandeae, 460a1
Jacquemontieae, 436b8
Jaegeriinae, 480118f
Jambolyferaceae, 281
Jamesioideae, 387a
Japonoliriaceae, 47
Japonolirioideae, 47a
Jastonaceae, 471
Jasioneae = Campanulaceae
Jasminaceae, 442
Jasminales, 85
Jasmineae, 442a4
Jasminoideae = Oleaceae
Jatropheae, 236c6
Jaumeinae, 480113c
Johnsoniaceae, 80
Johnsonieae, 80a4
Joinvilleaceae, 108
Joliffieae, 188a9
Jollydoreae, 198b1

Jollydoroideae, 198b
Juanulloeae, 437h9
Juanullooideae $=$ Solanaceae
Juglandaceae, 180
Juglandales, 51
Juglandanae, M
Juglandeae, 180c1
Juglandoideae, 180c
Jultantaceae, 275
Juluaniales, 67
Julianieae, 275b2
Julianioideae $=$ Anacardiaceae
Juncaceae, 100
Juncaginaceae, 39
Juncaginales, 13
Juncaginoideae, 39a
Juncales, 27
Juncanae, E
Juncidae, XIII
Jusstaeaceae, 252
Justiciaceae, 462
Justicieae, 462d3
"Kageneckieae" = Rosaceae
Kalanchoideae, 150b
Kaltphoraceae, 433
Kaliphoreae, 433a2
Kantaceae, 255
Kanieae, $255 b 5$
Keayodendrinae, 237a2c
Kelloggiinae, 427c18b
Kerrieae, 167a5
Kerrioideae $=$ Rosaceae
Kibessieae, 256b1
Kielmeyereae, 228a1
Kielmeyeroideae $=$ Clusiaceae
Kiggelarieae, 205a2
Kingdoniaceae, 126
Kingdonioideae, 126b
Kingiaceae, 91
Kingioideae, 91b
Kurengeshomaceae, 387
Kirengeshominae, 387b 1b
Kirengeshomoideae $=$ Hydrangeaceae
Kirkiaceae, 274
Kissenieae = Liliaceae
Klaprothieae, 388d2
Knightieae $=$ Proteaceae
Knightiinae, 136f2a
Kniphofiinae, 80clb
Knoxieae, 427c14
Kobresiaceae, 101

Koeberliniaceae, 315
Koelrenteriaceae, 280
Koelreuterieae, 280b2
Korthalsiinae, 92a3a
Krameriaceae, 161
Krameriales, 46
Kupeeae, 53a3
Kydieae, 307a1
Labiatae, 449
Lacandoniaceae, 53
Laccospadicinae, 92 e 14 g
Lachenaliaceae, 84
Lacistemataceae, 211
Lactstematales, 55
Lactoridaceae, 27
Lactoridales, 8
Lactoridanae, D
Lactucaceae, 480
Lactucinae, 480j1d
Laeliinae, 69 d 14 e
Lageniferinae, 48015f
Lagerstroemiaceae, 253
Lagerstroemicae = Lythraceae
Lagerstroemioideae, 253a
Lagoeciaceae, 491
Laguncularieae, 251b1
Laguraceae, 110
Lambertiinae, 136f2c
Lamiaceae, 449
Lamiales, 85
Lamianae, T
Lamieae, 449h4
Lamidae, XIII
Lamiineae, 85c
Lamioideae, 449h
Lanariaceae, 72
Langsdorffiaceae, 347
Langsdorffieae, 347f2
Langsdorffioideae = Balanophoraceae
Lantanaceae, 456
Lantaneae, 456a8
Lapageriaceae, 65
Lardizabalaceae, 127
Lardizabalales, 34
Lardizabaleae, 127b3
Lardizabaloideae, 127b
"Larreeae" = Zygophyllaceae
Larreoideae, 162e
Laserpitieae, 492 d 23
Lastaceae, 31
Lasiantheae, 427 c 4

Lasiococcinae, 236b12k
Lasioideae, 31 f
Lastopetalaceae, 300
Lasiopetaleae, 300al
Lataniinae, 92 c 8 b
Lathraeocarpeae $=$ Rubiaceae
"Lathraeophyllaceae" = Balanophoraceae
Lathyraceae, 164
Latueae $=$ Solanaceae
Lauraceae, 22
Laurales, 6
Lauranae, D
Laureae $=$ Lauraceae
Laurelieae, 19 a 2
Lauridae, XIII
Lauroideae, 22b
Lavanduleae $=$ Lamiaceae
Lavandulinae, 449j8a
Lawsontaceae, 253
Laxmanniaceae, 88
Laxmannioideae, 88b
Lecantheae, 176a2
Lecheeae $=$ Cistaceae
Lecythidaceae, 399
Lecythidales, 79
Lecythidanae, S
Lecythideae $=$ Lecythid aceae
Lecythidoideae, 399c
Ledaceae, 420
Ledocarpaceae, 250
Ledocarpales, 63
Ledocarpoideae, 250a
Leeaceae, 160
Leeales, 45
Leeoideae, 160b
Leguminosae, 164
Leiboldiinae, 480 j 5 g
Leitneriaceae, 283
Leitneriales, 67
Leitnerieae, 283a3
Lemnaceae, 31
Lemnales, 10
Lemnoideae, 31c
Lennoaceae, 438
Lennooideae, 438h
Lentibulariaceae, 464
Lentibulariales, 85
Lentiscaceae, 275
Leontaceae, 207
Leonieae, 207b2
Leonioideae $=$ Violaceae

Leonticaceae, 129
Leonticoideae, 129a1
Leopoldinieae, 92e12
Lepechinieae, 449i5
Lepidagathideae $=$ Acanthaceae
Lepidaploinae, 480 j 5 n
Lepidieae, 326a7
Lepidobotryaceae, 193
Lepidocarpaceae, 136
Lepidocaryaceae, 92
Lepidocaryeae, 92 a 2
Lepidocerataceae, 344
Lepisantheae $=$ Sapindaceae
Leptaspideae $=$ Poaceae
Leptaulaceae, 465
Leptocar poideae, 106c
Leptogeneae, 349c3
Leptonematinae, 237ble
Leptospermaceae, 255
Leptospermeae, 255b 14
Lepturaceae, 110
Lepuropetalaceae, 194
Lepuropetaloideae, 194a
Leucadendreae, 136d4
Leucadendrinae, 136d4c
Leucantheminae, 480161
Leucanthemopsidinae, 48016k
Leucastereae, 374a1
Leucastereae, 374a2
Leucocarpeae, 451a1
Leucojaceae, 83
Leucophylleae, 447b3
Liabeae, 480j4
Liabinae, 480j4b
Liatridinae, 480121q
Licaniaceae, 242
Lichtensteinieae, 492d1
Ligarinae, 338a4c
Ligustraceae, 442
Ligustrales, 85
Ligustrinae, 442a5c
Lilaeaceae, 39
Lilaeoideae, 39b
Liliaceae, 68
Liliales, 18
Lilianae, E
Lilieae, 68b2
Liludae, XIII
Liliineae, 18d
Lilioideae, 68b
Limacieae $=$ Annonaceae

Limeaceae, 367
Limnanthaceae, 311
Limnanthales, 70
Limnocharitaceae, 34
Limodoraceae, 69
Limodoroideae, 69d
Limoniaceae, 348
Limonieae, 348b2
Limonioideae, 348b
Limosellaceae, 447
Limoselleae, 447c2
Linaceae, 218
Linales, 57
Linariaceae, 446
Linconieae, 484al
Lindackerieae, 205a3
Lindenbergiaceae, 454
Linderniaceae, 459
Lindernieae $=$ Scrophulariaceae
Lindernieae, 459a2
Lindleyaceae, 167
Lindleyinae, 167a9a
Lindmanioideae, 94b
Lindsayomyrteae, 255b13
Lineae, 218a1
Linnaeaceae, 498
Linnaeoideae $=$ Caprifoliaceae
Linoideae, 218a
Linospadicinae"= Arecaceae
Linziinae, 480j5b
Liparidaceae, 69
Lippayaceae, 427
Lirlaceae, 68
Liriales, 18
Liriodendraceae, 11
Liriodendroideae, 11b
Lisianthiinae, 428a4c
Lissocarpaceae, 403
Lissocarpoideae, 403a
Lithospermeae, 438a6
Littledaleinae, 11018a
Littorellaceae, 446
Livistoneae $=$ Arecaceae
Livistoninae, 92c4b
"Lloydieae" = Liliaceae
Lloydiinae = Liliaceae
Loasaceae, 388
Loasales, 78
Loasanae, R
Loaseae, 388d1
Loasoideae, 388d

Lobaniliinae, 236b12g
Lobeliaceae, 471
Lobeltales, 87
Lobelieae, 471d1
Lobelioideae, 471d
Loeselieae, 395a4
Loganiaceae, 429
Logantales, 82
Loganieae, 429al
Loluaceae, 110
Loliinae, 11019n
Lomandraceae, 88
Lomandroideae, 88a
Lomatiinae, 136 f 5 a
Loniceraceae, 497
Lonicerales, 92
Lopeztaceae, 252
Lopezieae, 252 b 3
Lophiocarpaceae, 368
Lopholaceae, 48
Lophiraceae, 223
Lophireae, 223b1
Lophopetaleae $=$ Celastraceae
Lophophytaceae, 347
Lophophyteae = Balanophoraceae
Lophophytoideae, 347e
Lophopyxidaceae, 213
Lophostemoneae, 255b2
Loranthaceae, 338
Loranthales, 72
Lorantheae, 338a5
Loranthidae, XIII
Loranthinae, 338a5b
Lorostemonoideae, 227c
Lotaceae, 164
Loteae, 164b22
Lowiaceae, 119
Lowiales, 31
Lowiineae, 31d
Ludwigioideae, 252a
Lueheeae $=$ Tiliaceae
Luffinae $=$ Cucurbitaceae
Lunarieae, 326a26
Lupulaceae, 174
Luxemburglaceae, 223
Luxemburgieae = Ochnaceae
Luxemburgioideae, 223a
Luziolinae, 110 j 2 a
Luzuriagaceae, 62
Luzuriageae = Alstroemeriaceae
Lycapsinae, 480120b

Lychnidaceae, 363
Lychnophorinae, 480j5p
Lyciaceae, 437
Lycieae $=$ Solanaceae
Lyciinae, 437h3b
Lycorideae, 83a6
Lygeinae, 11012b
Lyginiaceae, 104
Lygodisodeaceae, 427
Lygodisodeales, 82
Lymanbensonieae, 385 e6
Lyonieae, 420i2
Lyonothamneae, 167a1
"Lyonothamnoideae" = Rosaceae
"Lyrocarpieae" = Brassicaceae
Lysimachiaceae, 409
Lysimachiales, 79
Lysimachieae, 409al
Lythraceae, 253
Lythrales, 64
Lythreae $=$ Lythraceae
Lythroideae, 253c
Macadamieae, 136f6
Macadamiinae, 136f6a
Macaranginae, 236b12e
Macarisiaceae, 217
Macarisieae = Rhizophoraceae
"Macgregorioideae" = Celastraceae
Machaerantherinae, 48015 m
Mackinlayaceae, 491
Mackinlayeae, 492a1
Mackinlayoideae, 492a
Maclureae, 175a3
Macrolobieae, 164a3
"Macropodieae" = Brassicaceae
Madiaceae, 480
Madieae, 480119
Madiinae, 480119d
Maerueae, 324a2
Maesaceae, 404
Maesoideae $=$ Primulaceae
Maesopsideae, 170a2
Magnoliaceae, 11
Magnoliales, 5
Magnolianae, D
Magnolieae = Magnoliaceae
Magnoliidae, XIII
Magnolioideae, 11a
Maihuenieae $=$ Cactaceae
Maihuenioideae, 385c
Malaceae, 167

Malagasiinae, 136f6b
Malaxideae, 69d10
Maleae, 167a9
Malesherbiaceae, 209
Malesherbiales, 55
Malesherbioideae $=$ Malesherbiaceae
Malinae, 167a9b
Maloideae, 167a
Malortreaceae, 92
Malouetieae, 432b2
Malpighiaceae, 233
Malpighiales, 60
Malpighioideae, 233b
Malvaceae, 307
MalvaKles, 69
Malvanae, N
Malveae, 307a4
Malvidae, XIII
Malvinae, 307a4b
Malvineae, 69 d
Malvoideae = Malvaceae
Mandragoreae, 437h2
Mangtaceae, 217
Mantcartaceae, 92
Manicarieae, 92 e 9
Manihoteae, 236c2
Manniellinae, 69f6d
Manoteae, 198b2
Mansontaceae, 305
Mansonieae, 305a4
Manuleeae $=$ Scrophulariaceae
Mapaniaceae, 101
Mapanioideae, 101a
Marantaceae, 121
Marantales, 31
Marathraceae, 230
Marathrales, 59
Marcgraviaceae, 393
Marcgravales, 79
Marcgravioideae, 393a
Mareyinae, 236b 12 h
Maricieae $=$ Iridaceae
Maripeae, 436b9
Marlothielleae, 492d2
Marrubieae, 449h3
Marsdenieae, 432e2
Marshalliinae, 480110e
Martretiinae, 237blc
Martyniaceae, 458
Massonieae, 84d1
Mastixiaceae, 386

Mastixioideae, 386e
Matricariaceae, 480
Matricariinae, 48016i
Maundiaceae, 40
Mauritiinae, 92a2c
Maxillarieae, 69 d 12
Maxillariinae, 69d12d
Mayacaceae, 98
Mayacales, 26
Mazaceae, 450
Medeolaceae, 68
Medeoloideae, 68a
Medusagynaceae, 224
Medusagynales, 58
Medusandraceae, 144
Medusandrales, 41
Megacarpaeeae $=$ Brassicaceae
"Megadenieae" = Brassicaceae
Megastylidinae, 6977f
Melaleucaceae, 255
Melaleuceae, 255b4
Melampodiinae, 480118 g
Melampyraceae, 454
Melanophyllaceae, 487
Melanthiaceae, 64
Melanthiales, 18
Melanthianae, E
Melastomataceae, 256
Melastomatales, 64
Melastomateae, 256b4
Melastomatinae, 256b4c
Melastomatineae, 63 c
Melastomatoideae, 256b
Meliaceae, 282
Meltales, 67
Melianthaceae, 247
Melianthales, 63
Meliantheae, 64a1
Melianthoideae, 247b
Melicaceae, 110
Meliceae, 11013
Melicinae, 11013b
Melicocceae, 280b6
Melieae, 282a2
Melinidinae, 110d4d
Melioideae, 282a
Meliosmaceae, 133
Meliosmales, 35
Meliosmoideae, 133a
Melissaceae, 449
Melissinae, 449i7d

Melittudaceae, 449
Melocanninae, 110k3e
Melochtaceae, 300
Melodineae, 432a5
Melodoreae $=$ Annonaceae
Melospermeae $=$ Scrophulariaceae
Memecylaceae, 256
Memecylales, 64
Mendonciaceae, 462
Mendoncieae, 462b2
Menispermaceae, 128
Menispermales, 34
Menispermeae, 128b1
Menispermoideae, 128b
Menthaceae, 449
Mentheae, 449i7
Menthinae = Lamiaceae
Mentzelioideae, 388a
Menyanthaceae, 477
Menyanthales, 87
Menziestaceae, 420
Merciereae $=$ Campanulaceae
Mercurtalaceae, 236
Mercurialinae, 236b12c
Merenderaceae, 61
Meriandreae, 449i4
Merianieae $=$ Melastomataceae
Merianiinae, 256b4a
Merremieae, 436b10
Meryteae, 490a2
Mesanthophorinae, 480j51
Mesechiteae, 432b4
Mesembryaceae, 370
Mesembryanthemaceae, 370
Mesembryanthemales, 77
Mesembryanthemoideae, 370c
Mespilaceae, 167
Metrosidereae, 255b7
Metroxylinae, 92a3c
Metteniusaceae, 425
Metteniusales, 81
"Metteniuseae" = Icacinaceae
"Metternichieae = Solanaceae
Meyentaceae, 462
Miborinae, 11019 h
Michelieae = Magnoliaceae
Miconiaceae, 256
Miconieae $=$ Melastomataceae
Miconinae, 256b4e
Micraireae, 110 g 1
Micrairoideae, 110 g

Micrandreae, 236c1
Micrandrinae, 236c1a
Micrantheaceae, 238
Microcar paeae, 459al
Microlicieae $=$ Melastomataceae
Microlicinae, 256b4d
Microseridinae, 480j1j
Microteaceae, 361
Microteoideae $=$ Phytolaccaceae
Mikaniinae, 480121 g
Miliaceae, 110
Miliinae, 11019 t
Miliuseae $=$ Annonaceae
Miliusinae $=$ Annonaceae
Millerieae, 480118
Milleriinae, 480118h
Millettieae, 164 b16
Milulaceae, 82
Mimosaceae, 164
Mimosales, 47
Mimoseae, 164 dl
Mimosoideae, 164d
Mimozygantheae, 164d3
Mimuleae, 451a2
Mimusopeae $=$ Sapotaceae
Minuartiaceae, 363
Mirabilidaceae, 374
Mirbelieae, 164b 13
Mischodontinae, 238a3c
Misodendraceae, 337
Mitchelleae, 427c8
Mitrastemonaceae, 410
Mitrastemonales, 79
Mitrephoreae = Annonaceae
Mitrephorinae $=$ Annonaceae
Miyoshiaceae, 47
Miyoshiales, 14
Modeccaceae, 210
Mollinedieae, 21c2
Mollinedioideae, 21c
Molluginaceae, 377
Momordiceae, 188a8
Monanthochloinae, 110f4j
Monimiaceae, 21
Monimiales, 6
Monimieae, 2lb2
Monimiineae, 6 b
Monimioideae, 21b
Monochileae, 449d3
Monodoraceae, 15
Monodoreae $=$ Annonaceae

Monodoroideae, 15b
Monotaceae, 296
Monotoideae, 296b
Monotremateae $=$ Rapateaceae
Monotremoideae, 95 b
Monotropaceae, 420
Monotropales, 79
Monotropeae, 420b2
Monotropoideae, 420b
Monsteraceae, 31
Monstereae, 31e3
Monsteroideae, 31e
Montanoinae, 480117h
Montiaceae, 378
Montiniaceae, 433
Montinieae, 433al
Montrichardieae, 31h8
Monvilleeae $=$ Cactaceae
Moquinieae, 480j7
Moraceae, 175
Morales, 50
Moreae, 175a2
Morentaceae, 92
Morinaceae, 499
Morindeae, 427 c 11
Moringaceae, 311
Mormgales, 70
Morinoideae $=$ Caprifoliaceae
"Morkillieae" = Zygophyllaceae
Morkillioideae, 162a
Moronobeeae $=$ Clusiaceae
Moronobeoideae $=$ Clusiaceae
Mourereae $=$ Podostemaceae
Mouririaceae, 256
Moutabeaceae, 166
Moutabeeae $=$ Polygalaceae
Moutabeoideae $=$ Polygalaceae
Muhlenbergiinae, 110 f 4 m
Mulineae, 492bl
Munnoziinae, 480j4a
Muntingiaceae, 298
Muntingioideae, 298a
Musaceae, 116
Musales, 31
Musgraveinae, 136f4a
Musineae, 31a
Mussaendeae, 427b8
Muttstaceae, 480
Mutisieae, 480 cl
Mutisioideae, 480c
Myodocar paceae, 490

Myoporaceae, 447
Myoporales, 85
Myoporeae, 447b2
Myoporoideae, 447b
Myrcieae, 179a
Myrcioideae = Myricaceae
Myricaceae, 179
Myricales, 51
Myriophyllaceae, 153
Myriophylleae, 153a1
Myristicaceae, 10
Myristicales, 5
Myrobalanaceae, 251
Myrobalanales, 64
Myrothamnaceae, 142
Myrothamnales, J
Myrothamnanae, J
Myrrhiniaceae, 255
Myrsinaceae, 406
Myrsinales, 79
Myrsinoideae $=$ Primulaceae
Myrtaceae, 255
Myrtales, 64
Myrtanae, N
Myrteae, 255b10
Myrttdae, XIII
Myrtineae, 63b
Myrtoideae, 255b
Mystropetalaceae, 347
Mystropetaleae $=$ Balanophoraceae
Mystropetaloideae, 347a
Myxopyreae, 442a3
Najadaceae, 36
Najadales, 12
Najadanae, E
Najadeae, 36d1
Najadoideae, 36a
Nandinaceae, 129
Nandmales, 34
Nandinoideae, 129b
Nanodeaceae, 343
Napeantheae, 445 b 1
Napoleonaeaceae, 397
Narcissaceae, 83
Narcissales, 20
Narcisseae, 83a8
Nardaceae, 110
Nardeae, 11012
Nardinae, 11012a
Nartheciaceae, 48
Nartheciales, 15

Nassauviaceae, 480
Nassauvieae, 480c3
Naucleaceae, 427
Naucleeae, 427a9
Navioideae, 94e
Nectaropetalaceae, 216
Neilliaceae, 167
Neillieae, 167a2
Nelsontaceae, 462
Nelsonioideae, 462a
Nelumbonaceae, 134
Nelumbonales, 36
Nelumbonanae, H
Nelumbontdae, XIII
Nelumbonineae, 36a
Nemacladaceae, 471
Nemacladoideae, 471a
Neoboutoninae, 236c12e
Neoguillauminiinae, 236d5b
Neoluederitzieae, 162c2
Neomirandeinae, 480121c
Neospartoneae, 456 a6
Neotessmannioideae, 298b
Neottaceae, 69
Neottieae, 69d2
Nepenthaceae, 351
Nepenthales, 74
Nepenthanae, Q
Nepetaceae, 449
Nepeteae = Lamiaceae
Nepetinae, 449i7c
Nepetoideae, 449i
Nephelieae $=$ Sapindaceae
Nephthytideae, 31h12
Nerviliinae, 69d3a
Nesaeeae $=$ Lythraceae
Nesogenaceae, 454
Neuracantheae, 462d4
Neurachninae, 110d4h
Neuradaceae, 288
Neuradales, 69
Neurolaeneae, 480112
Neurolaeninae, 480112c
Netwiedtaceae, 69
Nhandirobaceae, 188
Nhandiroboideae $=$ Cucurbitaceae
Nicandreae, 437h1
Nicottanaceae, 437
Nicotianeae, 437 g 2
Nicotianoideae, 437 g
Nigellaceae, 130

Nitrariaceae, 272
Nitrariales, 67
Nivenioideae, 78 f
Noccaeeae, 326a19
Nolanaceae, 437
Nolanales, 83
Nolaneae, 437h4
Nolinaceae, 90
Nolinoideae, 90e
Nonatelaceae, 427
Nopaleaceae, 385
Noranteaceae, 393
Norantioideae, 393b
Notantherinae, 338a4b
Nothofagaceae, 177
Nothofagales, 51
Notocacteae, 385e4
Nupharaceae, 4
Nupharoideae, 4 a
"Nuxioideae" = Stilbaceae
Nuytstaceae, 338
Nuytsieae, 338a1
Nyctaginaceae, 374
Nyctagmales, 77
Nyctagineae, 374a6
Nyctaginineae, 77f
Nyctanthaceae, 442
Nymphaeaceae, 4
Nymphaeales, 2
Nymphaeanae, B
Nymphaeeae, 4b2
Nymphaetdae, XIII
Nymphaeinae, 4b2a
Nymphaeoideae, 4 b
Nypaceae, 92
Nypoideae, 92b
Nyssaceae, 386
Nyssales, 78
Nyssoideae, 386d
Oaxacaniinae, 480121a
Obolartaceae, 428
Ochnaceae, 223
Ochnales, 58
Ochnanae, M
Ochneae, 223b2
Ochnoideae, 223b
Ochranthaceae, 262
Ochromeae, 306a2
Ocimeae, 449j8
Ociminae, 449j8d
Octoknemaceae, 335

Octolepideae, 289b1
Octolepidoideae $=$ Thymelaeaceae
Octotropideae, 427b9
Oenantheae, 492d8
Oenotheraceae, 252
Oenotherales, 64
Oftiaceae, 447
Olacaceae, 334
Olacales, 72
Oldenburgieae, 480g2
Oldfieldioideae $=$ Picrodendraceae
Oleaceae, 442
Oleales, 85
Oleanae, T
Oleeae, 442a5
Oleinae, 442a5d
Oleineae, 85a
Oleoideae $=$ Oleaceae
Oligarrheneae, 420h3
Oliniaceae, 261
Olisbeoideae, 256a
Olyraceae, 110
Olyreae, 110k2
Olyrinae, 110k2a
Omphaleae, 236b14
Omphalocarpeae, 402c2
Onagraceae, 252
Onagrales, 64
Onagreae, 252b6
Onagrineae, 63a
Onagroideae, 252b
Oncidiinae, 69d12e
Oncobeae, 212d2
Oncospermatinae, 92e14h
Oncothecaceae, 424
Oncothecales, 81
Ondineeae $=$ Nymphaeaceae
Ondineinae, 4b2a
Onoserideae, 480c2
Onosmaceae, 438
Operculariaceae, 427
Operculariinae, 427c21c
Ophtopogonaceae, 90
Ophiorrhizeae, 427c3
Ophoxylaceae, 432
Ophiraceae, 390
Ophturaceae, 110
Ophrydaceae, 69
Opiliaceae, 339
Opilieae, 339a2
Oporanthaceae, 83

Opuloideae, 495a
Opuntiaceae, 385
Opuntiales, 77
Opuntieae, 385b3
Opuntioideae, 385b
Oranieae, 92e4
Orchidaceae, 69
ORCHIDALES, 19
Orchidanae, E
Orchideae, 69 f 3
Orchididae, XIII
Orchidinae, 69f3b
Orchidoideae, 69f
Orcuttieae $=$ Poaceae
Orcuttiinae, 110f4c
Oriteae $=$ Proteaceae
Ornithogalaceae, 84
Ornithogaleae, 84c1
Ornithogaloideae, 84c
Ornitrophaceae, 280
Orobanchaceae, 454
Orobanchales, 85
Orobancheae, 454b2
Orobanchoideae, 454b
Orontiaceae, 31
Orontiales, 10
Orontieae, 31bl
Orontioideae, 31b
Oroxyleae, 460a6
Ortegaceae, 363
Oryzaceae, 110
Oryzeae, $110 j 2$
Oryzinae, 110 j 2 b
Osbornieae, 255 b 3
Osmaronieae $=$ Rosaceae
Osmitopsidinae, 48016a
Ostrowskioideae $=$ Campanulaceae
Osyrudaceae, 344
Osyridales, 72
Othonninae, 480lle
Oxalidaceae, 199
OXALIDALES, 54
Oxalidanae, M
Oxycladaceae, 446
Oxycoccaceae, 420
Oxydendreae, 420i1
Oxylobinae, 480121e
Oxystylidaceae, 325
"Oxystylideae" = Cleomaceae
Oziroëeae, 84bl
Oziroëoideae, 84a

Pachycereeae, 385e7
Pachygoneae, 128 b 2
Pachysandraceae, 140
Pachysandreae, 140 b 2
Pachysandroideae, 140b
Pachystromateae, 236d3
Pacouriaceae, 432
Pacourininae, 480j5k
Paederieae, 427 c 19
Paeoniaceae, 145
Paeoniales, 42
Paeonianae, L
Paeoniineae, 42a
Paepalanthoideae, 96b
Pagamaeaceae, 427
Paivaeusaceae, 238
Paivaeusinae, 238a3b
Pakaramaeoideae, 296a
Palaquieae, 402b2
Palisotinae, 111b1a
Paliureae, 170b1
Palmae, 92
Palmerieae, 21bl
Panaceae, 490a5
Pancratiaceae, 83
Pancratieae, 83 a 7
Pandaceae, 222
Pandales, 57
Pandanaceae, 57
Pandanales, 17
Pandananae, E
Pandanoideae, 57a
Pangraceae, 205
Panicaceae, 110
Paniceae, 110d4
Panicinae, 110d4e
Panicoideae, 110d
Papaveraceae, 132
Papaverales, 34
Papaveranae, G
Papavereae, 132al
Papaverineae, 34b
Papaveroideae, 132a
Papilionaceae, 164
Pappophoraceae, 110
Pappophorinae, $110 f 4 \mathrm{~g}$
Papyraceae, 101
Paracryphiaceae, 493
PARACRYPHIALES, 90
Paradrypetinae, 238a1c
Paranepheliinae, 480j4c

Parapholiinae, 11019o
"Parashoreae" = Dipterocarpaceae
Parianaceae, 110
Pariancae $=$ Poaceae
Parianinae, 110k2b
Paridaceae, 68
Paridales, 18
Parideae, 64a4
Parietariaceae, 176
Parietarieae, 176a4
Parinarieae, 242 a 2
Parkieae, 164d2
Parnassiaceae, 194
Parnassiales, 53
Parnassioideae, 194b
Paronychiaceae, 363
Paronychiales, 77
Paronychieae, 363a2
Paronychioideae $=$ Caryophyllaceae
Paropstaceae, 210
Paropsieae, 210a2
Parrotiaceae, 147
Paspalaceae, 110
Paspalinae, 110 d 4 f
Passifloraceae, 210
Passiflorales, 55
Passifloreae, 210a1
Pastinacaceae, 491
Patersonioideae, 78c
Paullinieae, 280b7
Paulowniaceae, 452
Paulownieae $=$ Scrophulariaceae
Pavetteae, 427b10
Paviaceae, 280
Pectiantiaceae, 158
Pedaliaceae, 457
Pedaliales, 85
Pedalieae, 457a2
Pedalioideae, 457a
Pedicularidaceae, 454
Pedicularideae, 454a 1
Peganaceae, 273
Pelagodoxeae, 92 e13
Peliosanthaceae, 90
Pellicieraceae, 394
Peltrandreae, 31h20
Penaeaceae, 260
Penaeales, 64
Pennantiaceae, 485
Pennantiales, 90
Pentachaetinae, 48015 k

Pentadiplandraceae, 319
Pentapetaceae, 303
Pentaphragmataceae, 472
Pentaphragmatales, 87
Pentaphylacaceae, 401
Pentaphylaceae, 401a1
Pentastemonaceae, 55
Pentastemonoideae, 55b
Penthoraceae, 154
Pentziinae, 48016f
Peperomiaceae, 26
Peperomioideae, 26d
Peracarpeae $=$ Campanulaceae
Peraceae, 234
Pereae, 234a4
Pereskioideae, 385a
Peridiscaceae, 144
Peridiscales, 41
Pertplocaceae, 432
Periplocoideae, 432c
Peripterygiaceae, 465
Perityleae, 480120
Peritylinae, 480120c
Peroideae $=$ Peraceae
Perrottetieae $=$ Celastraceae
Perseaceae, 22
Perseeae, 22a4
Persicartaceae, 349
Persicarieae, 349b4
Persoonieae, 136b2
Persoonioideae, 136b
Pertyeae, 480 h 1
Pertyoideae, 480h
Petalonychoideae, 388b
Petalostigmatinae, 238a2c
Petenaeaceae, 284
Petermanniaceae, 60
Petiveriaceae, 376
Petweriales, 77
Petiverioideae $=$ Phytolaccaceae
Petreaceae, 457
Petreeae, 456a1
Petrobiinae, 480111b
Petrophileae, 136d2
Petrosaviaceae, 47
Petrosaviales, 14
Petrosavianae, E
Petrosavioideae, 47b
Petunioideae, 437 f
Peucedaneae, 492d21
Peumieae, 21b3

Phaceliinae, 438d1a
Phaeanthinae = Annonaceae
Phaenospermateae, 11014
Phacoptilinae $=$ Nyctaginaceae
Phalaridaceae, 110
Phalaridinae, 11019d
Phaleriaceae, 289
Phalerieae = Thymelaeaceae
Pharaceae, 110
Pharnaceaceae, 377
Pharoideae, 110b
Phaseolaceae, 164
Phaseoleae, 164b18
Phellinaceae, 474
Phellinales, 87
Phellinanae, U
Phelypaeaceae, 454
Philadelphaceae, 387
Philadelphales, 78
Philadelpheae, 387 b 1
Philadelphinae, 387b1a
Philadelphoideae $=$ Hydrangeaceae
Philesiaceae, 65
Philppodendraceae, 307
Philocrenaceae, 230
Philodendraceae, 31
Philodendreae, 31h9
Philonotieae, 31h2
Philydraceae, 113
Philydrales, 30
Phleaceae, 110
Phlebocaryeae, 114b1
Phlocideae, 395a2
Phlyctidocar peae, 492c1
Phoentcaceae, 92
Phoeniceae, 92c3
Phoradendraceae, 346
Phoradendreae $=$ Viscaceae
Phormiaceae, 80
Phormieae, 80al
Phrymaceae, 451
Phrymeae, 451a3
Phylicaceae, 170
Phyliceae, 17063
Phyllachneae, 476b1
Phyllanthaceae, 237
Phyllanthales, 61
Phyllantheae, 237a4
Phyllanthoideae, 237a
Phyllodoceae, $420 \mathrm{f1}$
Phyllonomaceae, 468

Phyllorachideae $=$ Poaceae
Physalideae, 437h7
Physalidinae, 437h7b
Physarieae, 326a5
Physenaceae, 360
Physenales, 77
Physurinae, 69f6b
Phytelephantaceae, 92
Phytelephanteae, 92d3
Phyteumateae $=$ Campanulaceae
Phytocrenaceae, 426
Phytocreneae, 426a4
Phytolaccaceae, 375
Phytolaccales, 77
Picramniaceae, 270
Picraminiales, 66
Picramnioideae, 270b
Picridaceae, 480
Picrodendraceae, 238
Picrodendreae, 238a3
Picrodendrinae, 238a3a
Pigafettinae, 92a3d
Pillansieae = Iridaceae
Ptlocarpaceae, 281
Pimpinellaceae, 491
Pimpinelleae, 492d14
Pingutuculaceae, 464
Pinguiculales, 85
Pinillosiinae, 480111d
Piperaceae, 26
Piperales, 8
Piperanae, D
Piperidae, XIII
Piperoideae, 26c
Piptocarphinae, 480j5h
Piqueriinae, 480121f
Piriquetaceae, 208
Pisontaceae, 374
Pisonieae, 374a5
Pistactaceae, 275
Pistacieae, 275a4
Pistacioideae = Anacardiaceae
Pistiaceae, 31
Pistiales, 10
Pistieae, 31h23
Pitcairnieae = Bromeliaceae
Pitcairnioideae, 94 f
Pittosporaceae, 489
Pittosporales, 90
Pittosporeae = Pittosporaceae
Placospermeae, 136b1

Plagianthaceae, 307
Plagiopteraceae, 195
Planchonioideae $=$ Lecythidaceae
Plantaginaceae, 446
Plantaginales, 85
Plantagineae, 446a13
Plantaginoideae $=$ Plantaginaceae
Platanaceae, 135
Platanales, 36
Platanineae, 36b
Plateileminae, 480110d
Platycarpheae, 480j6
Platycaryaceae, 180
Platycaryoideae, 180a
Platycodoneae $=$ Campanulaceae
Platyspermatiaceae, 473
Platystemonaceae, 132
Platystemoneae, 132b2
Platystemonoideae $=$ Papaveraceae
Plectocomiinae, 92 a 3 e
Plectranthinae, 449j8e
Plectroniaceae, 261
Plerandreae $=$ Araliaceae
Pleuricosporeae $=$ Ericaceae
Pleurisanthaceae, 426
Pleurospermeae, 492d7
Pleurothallidinae, 69d14f
Plocospermataceae, 440
Plocospermateae $=$ Loganiaceae
Plucheinae, 48017 b
Plukenetieae $=$ Euphorbiaceae
Plukenetiinae, 236b13a
Plumbaginaceae, 348
Plumbaginales, 74
Plumbaginanae, Q
Plumbaginidae, XIII
Plumbaginoideae, 348a
Plumertaceae, 432
Plumerieae, 432 a 7
Plumerioideae $=$ Apocynaceae
Plymasperminae, 48016e
Poaceae, 110
PoAles, 29
Poance, E
Podalyrieae, 164b7
"Podandrobyneae" = Cleomaceae
Podoaceae, 275
Podocalyceae, 238a1
Podocalycinae, 238a1a
Podochileae, 69d16
Podococceae, 92 e 3

Podocomatinae, 48015h
Podophyllaceae, 129
Podophyllales, 34
Podophylleae, 129a3
Podophylloideae, 129a
Podostemaceae, 230
Podostemales, 59
Podostemanae, M
Podostemeae $=$ Podostemaceae
Podostemoideae, 230c
Poeae, 11019
Pogonieae, 69b1
Pogonophoreae, 234a2
Pogostemoneae, 449 h 1
Pogostemonoideae $=$ Lamiaceae
Poinae, 11019u
Polemoniaceae, 395
Polemoniales, 79
Polemonieae, 395a1
Polemoniineae, 79b
Polemonioideae, 395a
Polıothyrsidaceae, 212
Polpodaceae, 377
Polycarpaeaceae, 363
Polycarpaeae, 363 a 3
Polycnemaceae, 366
Polycnemoideae, 366f
Polygalaceae, 166
Polygalales, 47
Polygalanae, M
Polygaleae, 166a4
Polygaloideae $=$ Polygalaceae
Polygonaceae, 349
Polygonales, 74
Polygonanae, Q
Polygonanthaceae, 185
Polygonataceae, 90
Polygonateae, 90b1
Polygoneae, 349b5
Polygonidae, XIII
Polygonoideae, 349b
Polymnieae, 480116
Polyosmaceae, 481
"Polyosmeae" = Escalloniaceae
Polyosmoideae, 481e
Polypremaceae, 447
Pomaderreae, 170b5
Ponerinae, 69d14c
Pontederiaceae, 115
Pontederiales, 30
Pontederianae, E

Pontederieae, 115a1
Pontederiineae, 30b
Pooideae, 1101
Poranaceae, 436
Poraneae, 436b2
Porantheraceae, 237
Poranthereae, 237al
Portulacaceae, 383
Portulacales, 77
Portulacarnaceae, 381
Portulacarioideae, 381b
Portulacineae, 77 g
Posidoniaceae, 45
Posidoniales, 13
Posoquerieae, 427 b 11
Potaliaceae, 428
Potalieae, 428 a 4
Potaliinae, 428a4a
Potamogetonaceae, 44
Potamogetonales, 13
"Potaninieae" = Rosaceae
Potentillaceae, 167
Potentilleae, 167 b 5
Potentilloideae $=$ Rosaceae
Poteriaceae, 167
Pothaceae, 31
Potheae, 31d2
Pothoideae, 31d
Pottingeriaceae, 196
Pottingerioideae $=$ Celastraceae
Prasieae, 449h2
Prasophyllinae, 69f7b
Praxelinae, 480121r
Primulaceae, 408
Primulales, 79
Primulanae, S
Primuleae, 408a1
Primulineae, 77d
Pringleeae $=$ Brassicaceae
Prinsepieae $=$ Rosaceae
Prioniaceae, 99
Prionieae, 99 a 2
Prionotaceae, 420
Prionoteae, 420 hl
Prismatocarpeae $=$ Campanulaceae
Priveae $=$ Verbenaceae
Priveae, 456a5
Prockiaceae, 212
Prockieae, 212c1
Prockioideae, 212c
Prostantheroideae, 449f

Protareae, 31 h 22
Proteaceae, 136
Proteales, 36
Proteanae, H
Proteeae, 136d3
Proteineae, 36c
Proteoideae, 136d
Protieae, 276a2
Prunaceae, 167
Pruneae $=$ Rosaceae
Prunelleae, 449i3
Prunoideae $=$ Rosaceae
Psathyrotinae, 480110c
Pselnaceae, 128
Pseudanthaceae, 238
Pseudanthinae, 238a2d
Pseudolachnostylidinae, 237a2d
Pseudophoenicaceae, 92
Pseudoplantageae, 366b1
Psiloxylaceae, 255
Psiloxyleae, 255a2
Psittacanthaceae, 338
Psittacantheae, 338a4
Psittacanthinae, 338a4d
Psoraleeae, 164b20
Psychotriaceae, 427
Psychotrieae, 427c6
Psylliaceae, 446
Ptaeroxylaceae, 281
Ptaeroxyleae $=$ Rutaceae
Pteleaceae, 281
Pteleales, 67
Pteleeae, 281c1
Pteleocarpaceae, 431
Pteridophyllaceae, 131
Pterlsanthaceae, 160
Pterocacteae, 385b4
Pterosporeae, 420 b 3
Pterostemonaceae, 156
Pterostylideae, 69f5
Pterostylidinae, 69f6a
Ptychospermatinae, 92e14i
Puccinelliinae, 11019r
Puelieae, 110c1
Puelioideae, 110c
Punicaceae, 253
Punicoideae, 253b
"Purshieae" = Rosaceae
"Purshiinae" = Rosaceae
Putranjivaceae, 214
Puyeae $=$ Bromeliaceae

Puyoideae, 94 g
Pycnocomeae, 236 b 8
Pycnocominae, 236b8a
Pycnophylleae $=$ Caryophyllaceae
Pyraceae, 167
Pyramidoptereae, 492d13
Pyrinae = Rosaceae
Pyroideae $=$ Rosaceae
Pyrolaceae, 420
Pyroleae, 420b1
Pyroloideae $=$ Ericaceae
Quassiaceae, 283
Quassieae, 283a4
Quercaceae, 178
Quercales, 51
Querceae = Fagaceae
Quercoideae, 178a
Quiinaceae, 225
Quillajaceae, 163
Qutllajales, 47
Quintiniaceae, 494
Quintiniales, 91
Quivisiantheae, 282 a 3
Quivisianthoideae $=$ Meliaceae
Rafflesiaceae, 235
Rafflesiales, 61
Rafflestanae, M
Ramondaceae, 445
Ramondeae $=$ Gesneriaceae
Randtaceae, 427
Ranunculaceae, 130
Ranunculales, 34
Ranunculanae, $G$
Ranunculeae, 130e6
Ranunculidae, XIII
Ranunculineae, 34a
Ranunculoideae, 130e
Ranzantaceae, 129
Rapateaceae, 95
Rapateales, 25
Rapateanae, E
Rapateeae $=$ Rapateaceae
Rapateoideae, 95 a
Raphanaceae, 326
Raphiinae, 92a2b
Rauvolfieae = Apocynaceae
Rauvolfieoideae = Apocynaceae
Ravenaleae, 118al
Reaumuriaceae, 356
Reaumuriales, 75
Reaumurieae, 356a1

Rehmanniaceae, 453
Rehmannieae $=$ Scrophulariaceae
Reinhardtieae, 92 e 7
Resedaceae, 322
Resedales, 70
Resedeae, 322a3
Restionaceae, 106
RESTIONALES, 28
Restionionoideae, 106a
Retiniphylleae, 427b12
Retziaceae, 448
"Retzioideae" = Stilbaceae
Rhabdodendraceae, 357
Rhabdodendrales, 77
Rhabdodendranae, Q
Rhabdodendrineae, 77a
Rhacomeae $=$ Celastraceae
Rhamnaceae, 170
Rhaminales, 49
Rhamnanae, M
Rhamneae, 170al
Rhamnoideae, 170a
Rhapidaceae, 92
Rhapidinae, 92c4a
Rhaptopetalaceae, 399
Rhexiaceae, 256
Rhexicae $=$ Melastomataceae
Rhexinae, 256b4b
Rhinanthaceae, 454
Rhinanthales, 85
Rhinantheae, 454 a 2
Rhinanthoideae, 454a
Rhipogonaceae, 66
Rhipsalideae, 385 e 5
Rhizanthellinae, 69f7a
Rhizophoraceae, 217
RHIZOPHORALES, 56
Rhizophoranae, M
Rhizophoreae, 217b2
Rhizophoroideae, 217b
Rhoaceae, 275
Rhodiolaceae, 150
Rhododendraceae, 420
Rhododendreae = Ericaceae
Rhododendroideae $=$ Ericaceae
Rhodolaenaceae, 295
Rhodoleiaceae, 147
Rhodoleioideae, 147d
Rhodoraceae, 420
Rhodorales, 79
Rhodoreae, $420 f 5$

Rhodotypaceae, 167
"Rhodotypeae"= Rosaceae
Rhoeae, 275a2
Rhoipteleaceae, 181
Rhoipteleales, 51
Rhopalocarpaceae, 290
Rhopalostylidinae, 92e14j
Rhynchocalycaceae, 259
Rhynchophoreae, 23363
Rhynchosporinae, 101b6b
Rhynchothecaceae, 250
Rhynchothecoideae, 250b
Ribestaceae, 157
Richeeae, 420h4
Ricmaceae, 236
Ricininae, 236b12a
Ricmocarpaceae, 236
Ricinocarpeae, 236 c 9
Ricinocarpinae, 236c9a
Ricinodendreae, 236c11
Riedelieae, 123 c 2
Rigiostachydeae, 165a1
Rivmaceae, 376
Rivinales, 77
Rivinoideae $=$ Phytolaccaceae
Robiniaceae, 164
Robinieae, 164b23
Rochelieae, 438a2
Rojasianthinae, 480117i
Rolandrinae, 480 j 5 j
Rolliniinae $=$ Annonaceae
Romanzoffiinae, 438d1c
Romneyeae, 132a2
Rondeletieae, 427a10
Roridulaceae, 417
Roridulales, 79
Rosaceae, 167
Rosales, 48
Rosanae, M
Roseae, 167b4
Rosidae, XIII
Rosmarineae $=$ Lamiaceae
Rosoideae, 167b
Rottboelliinae, 110d6g
Roupaleae, 136f2
Roupalinae, 136f2b
Rousseaceae, 470
Rousseales, 87
Rousseoideae, 470b
Roxburghiaceae, 55
Roxburghales, 17

Roystoneeae, 92e6
Rubeae, 167 b 2
Rubiaceae, 427
Rubtales, 82
Rubieae, 427c18
Rubiinae, 427c18c
Rubioideae, 427c
Ruboideae $=$ Rosaceae
Rudbeckiinae, 480117j
Ruellieae, 462 d 2
Rumicaceae, 349
Rumiceae, 349b3
Ruppiaceae, 46
Ruppiales, 13
Ruscaceae, 90
Ruschieae, 370d3
Ruschioideae, 370d
Ruscoideae, 90c
Russelieae, 446a5
Rutaceae, 281
Rutales, 67
Rutanae, N
Ruteae $=$ Rutaceae
Ruttaae, XIII
Rutineae, 67b
Rutoideae, 281a
Sabalaceae, 92
Sabaleae, 92c1
Sabiaceae, 133
Sablales, 35
Sabtanae, H
Sabrceaceae, 427
Sabiceeae, 427bl3
Sabioideae, 133b
Sabulmaceae, 363
Saccharaceae, 110
Saccharinae, 110d6h
Saccifoliaceae, 428
Saccifolieae, 428al
Saccopetaleae $=$ Annonaceae
Sagaceae, 92
Saginaceae, 363
Sagineae, 363c4
Sagoneaceae, 438
Salaccinae, 92a3b
Salaciaceae, 195
Salacioideae, 195e
Salaxidaceae, 420
Salazartaceae, 449
Salicaceae, 212
Salicales, 55

Saliceae $=$ Salicaceae
Salicoideae, 212e
Salicornaceae, 365
Salicornieae, 365 c 2
Salicornioideae, 365c
Salpichroinae, 437h7d
Salpiglossidaceae, 437
Salpiglossideae, 437d4
Salpiglossidoideae $=$ Solanaceae
Salsolaceae, 365
Salsoleae, 365e2
Salsoloideae, 365e
Salvadoraceae, 317
Salvadorales, 70
Salviaceae, 449
Salvieae = Lamiaceae
Salviinae, 449i7a
Sambucaceae, 495
Sambucales, 92
Sambuceae, 495 a 2
Samolaceae, 407
Samolales, 79
Samoleae $=$ Primulaceae
Samydaceae, 212
Samydales, 55
Samydeae, 212al
Samydoideae, 212a
Sandoriceae, 282a8
Sangutsorbaceae, 167
Sangutsorbales, 48
Sanguisorbeae $=$ Rosaceae
Sanguisorbinae, 167b6b
Saniculaceae, 491
Saniculeae, 492c3
Saniculiphylleae, 158 a 2
Saniculoideae, 492c
Sansevieriaceae, 90
Santalaceae, 344
SANTALALES, 72
Santalanae, P
Santolinaceae, 480
Santolininae, 48016 m
Sapindaceae, 280
SAPINDALES, 67
Sapindanae, N
Sapindeae, 280b4
Sapindineae, 66a
Sapindoideae, 280b
Sapotaceae, 402
Sapotales, 79
Sapoteae, 402b1

Sapotoideae, 402b
Sarawakodendroideae, 195d
Sarcobataceae, 372
Sarcocaceae, 375
Sarcolaenaceae, 295
Sarcophytaceae, 347
Sarcophyteae $=$ Balanophoraceae
Sarcophytoideae, 347c
Sarcospermataceae, 402
Sarcospermatoideae, 402a
Sarcostigmataceae, 426
Sarcostigmateae, 426a5
Sargentodoxaceae, 127
Sargentodoxoideae, 127a
Sarraceniaceae, 415
Sarraceniales, 79
Sarracentanae, S
Sarraceniineae, 79f
Sarumeae, 29al
Saturejaceae, 449
Saturejeae, $449{ }^{2} 2$
Satyrieae, 69f
Satyriinae, 69f2e
Saurautaceae, 416
Saurauioideae, 416b
Saururaceae, 25
Saururales, 8
Sauvagestaceae, 223
Sauvagestales, 58
Sauvagesieae, 223 c 1
Sauvagesioideae, 223c
Saviinae, 237a2b
Saxifragaceae, 158
SAXIFRAGALES, 43
Saxifraganae, L
Saxifrageae, 158al
Saxifragoideae, 158a
Saxofridericieae, 95 c 1
Saxofridericioideae, 95c
Scabiosaceae, 500
Scaevolaceae, 478
Scaevolales, 87
Scandicaceae, 491
Scandiceae, 492 d 11
Scandicinae, 492d11c
Scepaceae, 237
Scepeae, 237b2
Schefflereae $=$ Araliaceae
Scheuchzeriaceae, 37
Scheuchzeriales, 13
Schmaceae, 275

Schisandraceae, 7
Schisandrales, 3
Schismatoglottideae, 31h4
Schizanthoideae, 437a
Schizocoleeae, 427 c 12
Schtzolaenaceae, 295
Schizomerieae, 200cl
Schizopeponeae, 188a11
Schizopetalaceae, 326
Schizopetaleae, 326a13
Schlegeliaceae, 461
Schlegelieae $=$ Scrophulariaceae
Schleichereae, 280 b3
Schoeneae, 101 b 6
Schoeninae, 101b6a
Schoenocephalieae, 95 c 2
Schoepfiaceae, 336
Schoepfioideae = Olacaceae
Schradereae, 427c7
Schreberaceae, 442
Schrebereae = Oleaceae
Schreberinae, 442a5b
Schwenckieae $=$ Solanaceae
Schwenckioideae, 437e
Sciaphileae, 53al
Scillaceae, 84
Scurpaceae, 101
Scirpeae, 101b7
Scleranthaceae, 363
Scleranthales, 77
Scler antheae, 363c5
Scleriaceae, 101
Sclerieae, $101 \mathrm{b3}$
Sclerioideae $=$ Cyperaceae
Sclerolaeneae, 365b5
Sclerophylacaceae, 437
Sclerophylacoideae, 437i
Scleropogoninae, 110 f 41
Sclerospermateae, 92e5
Scollopaceae, 68
Scolochloinae, 11019i
Scolopieae, 212 a 3
Scolyminae, 480j1c
Scorodocarpaceae, 329
Scorzonerinae, 480 jlb
Scribneriinae, 11019p
Scrophulariaceae, 447
Scrophulariales, 85
Scrophularieae, 447 cl
Scrophularioideae, 447c
Scurrulinae, 338a5d

Scutellariaceae, 449
Scutellarioideae, 449g
Scybaliaceae, 347
Scybalieae $=$ Balanophoraceae
Scybalioideae, 347d
Scyphostegiaceae, 212
Scyphostegiales, 55
Scyphostegieae = Salicaceae
Scyphostegioideae, 212b
Scytopetalaceae, 398
Scytopetalineae, 79c
Secamonoideae, 432d
Securineginae, 237a2e
Sedaceae, 150
Sedales, 43
Sedeae, 150a4
"Sectzenieae" = Zygophyllaceae
Seetzenioideae, 162d
Seguieriaceae, 376
Selaginaceae, 447
Selaginales, 85
Selinaceae, 491
Selineae, 492d25
Semecarpeae, 275a3
Sempervivaceae, 150
Sempervivales, 43
Semperviveae, 150a2
Sempervivoideae, 150 c
Senecionaceae, 480
Senecioneae, 4801
Senecioninae, 480lld
Sericodeae = Zygophyllaceae
Serratulaceae, 480
Sesamaceae, 457
Sesameae, 457a3
Sesamothamneae, 457a1
Sesbanieae, 164b21
Sesteriaceae, 110
Sesleriinae, 11019q
Sesuviaceae, 370
Sesuvioideae $=$ Aizoaceae
Setariinae, 110 d 4 g
Setchellanthaceae, 313
Shoreeae, 296c2
Sibthorpiaceae, 446
Sibthorpieae, 446 a 8
Sicyoeae, 188a12
Sidaceae, 307
Sideae, 307a5
Sideroxyleae, 402 b 3
Sidinae, 307a5b

Silenaceae, 363
Silenales, 77
Sileneae, 363b1
Sileraceae, 491
Simabaceae, 283
Simaroubaceae, 283
Simaroubales, 67
Simaroubeae, 283a5
Simmondsiaceae, 358
Simmondsiales, 77
Simmondsianae, Q
Simmondsiineae, 77b
Sinclariinae, 480j4d
Sinningieae, 445b6
Sinofranchetiaceae, 127
Sinofranchetieae = Lardizabalaceae
Sipaneeae, 427b 14
Siparunaceae, 17
Siparunoideae, 17a
"Siphocodoneae" = Campanulaceae
Siphonanthaceae, 449
Siphonochiloideae, 123a
Stphonodontaceae, 195
Siphonodontoideae, 195b
Sipolisiinae, 480j5q
Siraitieae, 188a7
Sisymbriaceae, 326
Sisymbrieae, 326a14
Sisynditeae, 162c1
Sisyrinchieae, 78b4
Sladeniaceae, 400
Sloaneeae, 201a1
Smeathmanniaceae, 210
Smelowskieae, 326 a 10
Smilacaceae, 67
Smilacales, 18
Smilacineae, 18c
Smyrniaceae, 491
Smyrnieae, 492d9
Sobralieae, 69d6
Solanaceae, 437
Solanales, 83
Solananae, T
Solaneae, 437h8
Solanineae, 83a
Solanoideae, 437 h
Solidagininae, 48015j
Solmsieae $=$ Thymelaeaceae
Sonerileae, 256 b 3
Sonneratiaceae, 253
Sonneratioideae $=$ Lythraceae

Sophoraceae, 164
Sophoreae, 164b3
Sopubiinae, 454b4a
Soramiaceae, 143
Sorbaceae, 167
Sorbarieae, 167a6
Sorghinae, 110d6i
Soulameaceae, 283
Sparattanthelioideae, 20c
Sparganiaceae, 93
Sparganioideae, 93a
Sparmanniaceae, 299
Sparmannieae, 299a2
Spartmaceae, 110
Spatheliaceae, 281
Spathelieae, 281d1
Spathelioideae $=$ Rutaceae
Spathicar peae, 31h15
Speranskiinae, 236b5a
Spergulaceae, 363
Sperguleae, 363a4
Spermacoceaceae, 427
Spermacoceae, 427c13
Sphaerosepalaceae, 290
Sphalmioideae, 136e
Sphenocleaceae, 434
Sphenocleales, 83
Sphenostemonaceae, 493
Sphenostemonales, 90
Sphyranthereae, 236b4
Sptgeltaceae, 429
Spigelieae, 429a4
Spilanthinae, 480117k
Spinactaceae, 365
Spiraeaceae, 167
Spiraeales, 48
Spiraeanthemaceae, 200
Spiraeanthemoideae, 200a
Spiraeeae, 167a7
Spiraeoideae = Rosaceae
Spiranthinae, 69f6f
Spondtadaceae, 275
Spondtadales, 67
Spondiadeae, 275al
Spondiadoideae, 275a
Spondiantheae, 237b4
Sporadanthoideae, 106b
Sporobolinae, 110f3b
Spuricianthinae, 69f7h
Stachydaceae, 449
Stachystemonoideae $=$ Picrodendraceae

Stachyuraceae, 264
Stackhousiaceae, 195
Stackhousiales, 53
Stackhousicae $=$ Celastraceae
Stackhousioideae, 195f
Stanhopeinae, 69d12c
Stanleyaceae, 326
Stapeliaceae, 432
Staphyleaceae, 262
Staphyleales, 65
Staphyleoideae $=$ Staphyleaceae
Staticaceae, 348
Statucales, 74
Staticeae $=$ Plumbaginaceae
Staticoideae $=$ Plumbaginaceae
Stauntonieae = Lardizabalaceae
Steganotaenieae, 491c2
Stegnospermataceae, 362
Stegnospermatineae, 77 c
Stellariaceae, 363
Stellariales, 77
Stemodieae, 446a2
Stemonaceae, 55
Stemonales, 17
Stemoneae, 55al
Stemonoideae, 55a
Stemonuraceae, 466
Stenanthereae, 420h7
Stenocar pinae, 136f5c
Stenomeridaceae, 52
Stenomeridoideae, 52a
Stenomesseae, 83a13
"Stenopetaleae" = Brassicaceae
Sterculiaceae, 301
Stercultales, 69
Sterculioideae $=$ Malvaceae
Stewartieae, 411a3
Steyermarkochloeae, 110d1
Stifftieae, 480bl
Stifftioideae, 480b
Stilaginaceae, 237
Stilaginales, 61
Stilbaceae, 448
Stilbales, 85
Stilbeae, 448a3
Stipaceae, 110
Stipeae, 11015
Stipinae, 11015b
Stirlingiinae, 136d1a
Stixaceae, 320
Stixeae $=$ Capparaceae

Stokesiinae, 480 j 5 f
Stomatocalyceae, 236d1
Stomatocalycinae, 236d1a
Storckiellinae, 164clb
Strasburgeriaceae, 268
Stratiotaceae, 36
Stratiotoideae, 36b
Strelitziaceae, 118
Strelitzieae, 118a2
Strelitziineae, 31c
Strephonematoideae, 251a
Streptocarpeae $=$ Gesneriaceae
Streptochaetaceae, 110
Streptochaeteae, 110a1
Streptogyneae, 110j3
Streptoliriinae, 111b1b
Streptopeae $=$ Colchicaceae
Streptopoideae, 68c
Strombosiaceae, 330
Strumartaceae, 83
Strychnaceae, 429
Strychnales, 82
Strychneae, 429a2
Stylidiaceae, 476
Stylidiales, 87
Stylidieae, 476b2
Stylidioideae, 476b
Stylobaslaceae, 165
Stylobasieae, 165 a 3
Stylocerataceae, 140
Stylocerateae, 140b2
Styloceratoideae $=$ Buxaceae
Stylochaetoneae, 31 gl
Styphelraceae, 420
Styphelieae $=$ Ericaceae
Styphelioideae = Ericaceae
Styracaceae, 413
Styracales, 79
Suaedeae, 365el
Suaedoideae $=$ Amaranthaceae
Suregadeae, 236c4
Surianaceae, 165
Surianales, 47
Surianeae, 165a2
Swartziaceae, 164
Swartzieae, 164b1
Swertiinae, 428a6b
Swieteniaceae, 282
Swietenieae, 282 b 2
Swietenioideae $=$ Meliaceae
Symmerioideae, 349a

Symphionematoideae, 136c
Symphonieae $=$ Clusiaceae
Symphonioideae $=$ Clusiaceae
Symphoremataceae, 449
Symphorematoideae, 449a
Symphyotrichinae, 48015n
Symplocaceae, 412
Symplocarpeae, 31b2
Synandrodaphneae, 289c1
Synandrodaphnoideae $=$ Thymelaeaceae
Syncar pieae, 255b12
Synechanthaceae, 92
Syringaceae, 442
Syzygieae, 255b9
Tabernaemontaneae, 432a4
Taccaceae, 49
Taccales, 16
Tageteae, 480113
Tagetinae, 480113 e
Takhtajantaceae, 23
Takhtajanieae, 23a1
Takhtajanioideae $=$ Winteraceae
Talinaceae, 382
Tamaceae, 52
Tamales, 16
Tamaricaceae, 356
Tamaricales, 75
Tamariceae, 356a2
Tamarindaceae, 164
Tamijioideae, 123b
Tamnaceae, 52
Tanacetaceae, 480
Tapinanthinae, 338a5g
Tapisciaceae, 286
Tapiscioideae $=$ Staphyleaceae
Tarchonantheae, 480 g 3
Tasmannieae, 23 a 2
Tecomeae, 460a3
Tecophilaeaceae, 75
Tecophilaeales, 20
Tecophilaeoideae, 75b
Tectoneae, 449b2
Teedieae, 447d1
Telephiaceae, 377
Telephiales, 77
Telephieae = Caryophyllaceae
Telfairieae $=$ Cucurbitaceae
Tephrocacteae, 385b5
Teputanthaceae, 289
Tepuianthoideae, 289a
Terminaliaceae, 251

Ternstroemiaceae, 401
Ternstroemiales, 79
Ternstroemieae, 401a2
Tetracarpaeaceae, 152
Tetracentraceae, 137
Tetracentroideae, 137b
Tetrachondraceae, 443
Tetraciccinae, 238alb
Tetradiclidaceae, 273
Tetragoniaceae, 370
Tetragonioideae, 370a
Tetramelaceae, 189
Tetramerantheae $=$ Annonaceae
Tetrameristaceae, 394
Tetraneuridinae, 480110 b
Tetrastylidiaceae, 330
Tetrathecaceae, 201
Teucrieae, 449d4
Thalasstaceae, 36
Thalassioideae $=$ Hydrocharitaceae
Thalictraceae, 130
Thalictreae, 130d2
Thalictroideae, 130d
Theaceae, 411
Theales, 79
Theanae, S
Theeae, 411a1
Theidae, XIII
Theineae, 79e
Thelasinae, 69d16a
Thelıgonaceae, 427
Theligonales, 82
Theligoneae, 427 c 17
Theligoninae, 427c18a
Thelymitrinae, $69 \mathrm{f7} 7$
Themidaceae, 86
Theobromataceae, 300
Theobromateae, 300a4
Theophrastaceae, 405
Theophrastoideae $=$ Primulaceae
Thermopsideae, 164b6
Thesiaceae, 341
Thismiaceae, 50
Thladiantheae, 188a6
Thlaspiaceae, 326
Thlaspieae, 326 a 18
Thomandersiaceae, 455
Thomsonieae, 31h16
Thouinieae $=$ Sapindaceae
Thunbergiaceae, 462
Thunbergieae, 462b1

Thunbergioideae, 462b
Thurniaceae, 99
Thurnieae, 99a1
Thymelaeaceae, 289
Thymelaeales, 69
Thymelaeeae, 289c3
Thymelaeineae, 69a
Thymelaeoideae, 289c
Thyrsantheminae, 111blf
Thysanolaeneae, 110d9
Ticodendraceae, 183
Tigridieae, 78b3
Tiliaceae, 302
Tiltales, 69
Tilieae, 302a1
Tilioideae $=$ Malvaceae
Tillaeaceae, 150
Tillandsiaceae, 94
Tillandsieae, 94d4
Tillandsioideae, 94d
Tinaceae, 495
Tinosporeae, 128a1
Tinosporoideae, 128a
Titanotricheae $=$ Gesneriaceae
Tithymalaceae, 236
Toddalioideae $=$ Rutaceae
Tofieldiaceae, 32
Tofieldiales, 11
Tonteleeae $=$ Celastraceae
Tordylieae, 492d22
Torilidinae, 492d11d
Tormentillaceae, 167
Torreyochloinae, 11019a
Torricelliaceae, 486
Torricellhales, 90
Tourrettieae, 460a2
Tovariaceae, 323
Tovariales, 70
Tovomiteae, 227a3
Townsoniinae, 69f7i
Trachycarpeae, 92 c 4
Tradescantiaceae, 111
Tradescantieae, 111b1
Tradescantiinae, 111 blg
Tragiaceae, 236
Tragiinae, 236b13b
Traginae, 110f4h
Trapaceae, 253
Trapales, 64
Trapellaceae, 457
Trapelloideae, 457b

Trautvetterieae $=$ Ranunculaceae
Tremandraceae, 202
Tremandrales, 54
Trewiaceae, 236
Triainolepideae $=$ Rubiaceae
Tribelaceae, 481
Tribelales, 88
Tribeloideae, 481c
Tribonantheae, 114b2
Tribulaceae, 162
Tribuleae, 162c3
Tribuloideae, 162c
Triceratelleae, 111a2
Triceratieae, 188a2
Trichilieae, 282a4
Trichocerceae, 385e3
Trichocoroninae, 480121d
Trichopodaceae, 52
Trichopoideae, 52b
Trichosantheae $=$ Cucurbitaceae
Trichospirinae, 480j5u
Trichostephaneae, 212a4
Tricomarieae, 233b1
Tricyrtdaceae, 68
Tricyrtidoideae, 68d
Trifoliaceae, 164
Trifolieae, 164b27
Triglochinaceae, 39
Trigoniaceae, 240
Trigonobalaneae $=$ Fagaceae
Trigonobalanoideae, 178b
Trigonostemoneae, 236c8
Trigonotideae, 438al
Trilepideae, 101b1
Trilltaceae, 68
Trilliales, 18
Trimeniaceae, 6
Trimentales, 3
Trimenianae, C
Trimezieae, 78b2
Triodiinae, 110f4b
Triosteeae, 497al
Triphoreae, 69d4
Triphorinae, 69d4a
Tripladenieae, 61a3
Triplarideae, 349c4
"Triplochitoneae" = Byttneriaceae
Triplosteglaceae, 501
Triplostegioideae, 501a
Tripogoninae, 110f4f
Tripsacinae, 110d6j

| Tripterygieae $=$ Celastraceae | Unoninae $=$ Annonaceae |
| :---: | :---: |
| Tripterygioideae $=$ Celastraceae | Urgineeae, 84b2 |
| Triraphideae, 110f1 | Urgineoideae, 84b |
| Tristanieae, 255 bs | Urophylleae, 427c2 |
| Tristichaceae, 230 | Ursiniinae, 48016c |
| Tristichoideae, 230a | Urticaceae, 176 |
| Triticaceae, 110 | Urticales, 50 |
| Triticeae $=$ Poaceae | Urticanae, M |
| Tritoniopsideae, 78 gl | Urticeae, 176al |
| Triumfetteae $=$ Tiliaceae | Urticoideae, 176a |
| Triuridaceae, 53 | Utriculariaceae, 464 |
| Triuridales, 17 | Utriculariales, 85 |
| Triurtdanae, E | Uvarieae $=$ Annonaceae |
| Triurideae, 53a2 | Uvariinae $=$ Annonaceae |
| Triurididae, XIII | Uvarioideae $=$ Annonaceae |
| Trochodendraceae, 137 | Uvilariaceae, 61 |
| Trochodendrales, 37 | Uvularieae, 61a2 |
| Trochodendranae, H | Uvularioideae, 61b |
| Trochodendroideae, 137a | Vaccintaceae, 420 |
| Trollieae $=$ Ranunculaceae | Vaccintales, 79 |
| Trollioideae $=$ Ranunculaceae | Vaccinieae, $420{ }^{5}$ |
| Tropaeolaceae, 310 | Vaccinioideae, 420 i |
| Tropaeolales, 70 | Vahliaceae, 439 |
| Tropidieae, 69d5 | Vahliales, 84 |
| Tulbaghtaceae, 82 | Vahlianae, T |
| Tulbaghioideae, 82b | Valerianaceae, 501 |
| Tulipaceae, 68 | Valertanales, 92 |
| Tulipeae, 68b1 | Valerianoideae, 501b |
| Tupeinae, 338a4a | Vallisneriaceae, 36 |
| Tupistraceae, 90 | Vallisneriales, 12 |
| Turneraceae, 208 | Vallisnerieae, 36d2 |
| Turnerales, 55 | Vandeae, 69d1 |
| Turneroideae $=$ Turneraceae | Vanguerieae, 427b15 |
| Turraeeae, 282al | Vanillaceae, 69 |
| Tussilagaceae, 480 | Vanilleae, 69b2 |
| Tussilagininae, 48011b | Vanilloideae, 69b |
| Typhaceae, 93 | Vargasiellinae, 69d12g |
| Typhales, 23 | Varillinae, 480113b |
| Typhanae, E | Vavaeeae, 282a5 |
| Typhoideae, 93b | Velloziaceae, 54 |
| Uapacaceae, 237 | Velloziales, 17 |
| Uapaceae, 237b5 | Velloziodeae, 54a |
| Ullucaceae, 380 | Venegasiinae, 480119e |
| Ulmaceae, 172 | Ventilagineae, 170a3 |
| Ulmales, 50 | Veratraceae, 64 |
| Ulmariaceae, 167 | Veratrales, 18 |
| Ulmarieae, 167b1 | Verbascaceae, 447 |
| Umbelliferae, 491 | Verbascales, 85 |
| Umbiliceae, 150al | Verbasceae $=$ Scrophulariaceae |
| Uniolinae, 110f2c | Verbenaceae, 456 |
| Unoneae $=$ Annonaceae | Verbenales, 85 |

Verbeneae, 456a7
Verbenoideae $=$ Verbenaceae
Verbesininae, 4801171
Verhuellioideae, 26a
Vernicaceae, 275
Vernontaceae, 480
Vernonieae, 480j5
Vernoniinae, 480 j 5 s
Veronicaceae, 446
Veroniceae, 446 a 12
Veronicoideae $=$ Plantaginaceae
Verschaffeltiinae, 92 e 14 k
Viburnaceae, 495
Viburnales, 92
Viburneae, 495a1
Viclaceae, 164
Vicieae $=$ Fabaceae
Vincaceae, 432
Vincales, 82
Vinceae, 432 a 2
Violaceae, 207
Violales, 55
Violanae, M
Violeae, 207b1
Violoideae, 207b
Virectarieae $=$ Rubiaceae
Virotiinae, 136f6c
Viscaceae, 346
Viscales, 72
Visceae $=$ Viscaceae
Vismieae, 229a1
Vitaceae, 160
Vitales, 45
Vitanae, M
Viticaceae, 449
Viticeae $=$ Lamiaceae
Viticoideae, 449c
Vitoideae, 160a
Vivianiaceae, 249
Vochysiaceae, 254
Vochysiales, 64
Vochysioideae, 254a
Voyrieae, 428 a 7
Vrieseeae, 94 d 3
Wachendorfiaceae, 114
Wahlenbergicae = Campanulaceae
Walleriaceae, 75
Wallerioideae, 75a
Warioniinae, 480j1a
Watsonieae, 78g5
Weddellinoideae, 230b

Wellingtoniaceae, 133
Wellstediaceae, 438
Wellstedioideae, 438c
Wenchengioideae, 449e
Westringieae, 449f2
Whitfieldieae, 462d7
Wielandieae, 237a3
Wielandiinae, 237a3b
"Wightieac" = Scrophulariaceae
Willughbeaceae, 432
Willughbeeae, 432 a 3
Winteraceae, 23
Winterales, 7
Winteranae, D
Wintereae, 23a3
Winteridae, XIII
Winteroideae $=$ Winteraceae
Witheringiinae, 437h7c
Wolffiaceae, 31
Wolffioideae $=$ Araceae
Wrightieae, 432b1
Wunderlichieae, 480d1
Wunderlichioideae, 480d
"Wurmbeeae" $=$ Colchicaceae
Xanthtaceae, 480
X anthoceraceae, 277
Xanthophyllaceae, 166
X anthophylleae, 166a1
Xanthorhtzaceae, 130
Xanthorhizeae, 130 c 2
Xanthorrhoeaceae, 80
Xanthorrhoeales, 20
X anthorrhoeoideae, 80b
Xanthosieae, 492a2
Xanthosiinae, 492a2a
Xanthostemoneae, 255b1
Xeranthemaceae, 480
Xeronemataceae, 79
Xerophyllaceae, 64
Xerophylleae, 64a5
Xerophytoideae, 54b
Xerorchideae, 69d7
Xeroticae $=$ Caryophyllaceae
Ximeniaceae, 332
Ximeniales, 72
Ximenieae $=$ Olacaceae
Xiphidiaceae, 114
Xylocarpeae, 282 b 4
Xylopicae = Annonaceae
Xylopiinae = Annonaceae
Xylopioideae $=$ Annonaceae

Xyridaceae, 97
Xyridales, 26
Xyridineae, 26b
Xyridoideae, 97a
Yuccaceae, 87
Zaluzaniinae, 480117 m
Zamioculcadeae, 31g2
Zamioculcadoideae, 31 g
Zannichelliaceae, 43
Zanoniaceae, 188
Zanonieae, 188a3
Zantedeschieae, 31h13
Zanthoxylaceae, 281
Zanthoxylales, 67
Zanthoxyleae, 281b4
Zeaceae, 110
Zephyranthaceae, 83
Zingiberaceae, 123
Zingiberales, 31
Zingtberanae, E
Zingibereae, 123d1

Zingiberidae, XIII
Zingiberineae, 31f
Zingiberoideae, 123d
Zinniinae, 480117n
Zippelioideae, 26b
Zizaniinae, 110j2c
Ziziphaceae, 170
Ziziphoideae, 170b
Zomicarpeae $=$ Araceae
Zosteraceae, 41
Zosterales, 13
Zosteranae, E
Zoystaceae, 110
Zoysieae, 110f3
Zoysiinae, 110f3a
Zygopetalinae, 69d12f
Zygophyllaceae, 162
ZyGophyllales, 46
Zygophyllanae, M
Zygophylleae = Zygophyllaceae
Zygophylloideae, 162

## Validation of new names

The following new names are established primarily because the names have been used or implied without formal validation, or the names themselves, long in use, proved not to have been validly published due mainly to a lack of a validating a description or diagnosis. Several name that are not legitimate, but in current use, are replaced here with names that are legitimate.

Abolbodoideae Suess. \& Beyerle ex Thorne \& Reveal, subfam. nov., based on Abolbodaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov]: 221. 20 Jul 1943, associated with a description in Latin. - Type: Abolboda Humb. (1813). - Xyridaceae
Aeonieae Thiede ex Reveal, trib. nov. Plantis glanduosis; foliis rosulatis crassis; floribus polymeris; carpidia follicularis indehiscentis aut demum basi receptaculo diruptionem; seminibus costatis. Type: Aeonnum Webb \& Berthel. - Crassulaceae
Alonsoinae Reveal, subtrib. nov., based on Alonsoeae Baill., Hist. Pl. 9: 407, 425. Feb-Mar 1888, associated with a diagnos is in French. - Type: Alonsoa Ruiz \& Pav. (1798). - Scrophulariaceae
Anacolosoideae Sleumer ex Reveal, subfam. nov., based on Anacoloseae Engl. in H.G.A. Engler \& K.A.E. Prantl, Nat. Pflanzenfam. III, 1: 233, 234. Mai 1889, associated with diagnoses in German. - Type: Anacolosa (Blume) Blume (1851). - Olacaceae. (The name was proposed by Takhtajan in 2009 but not validly published. It is here accepted as an subfamily name for purposes of validation.)
Anemarrheneae Reveal, trib. nov., based on Anemarrhenaceae Conran, M.W. Chase \& Rudall, Kew Bull. 52: 995. Dec 1997, associated with a description in Latin. - Type: Anemarrhena Bunge (1831). - Agavaceae

Anopteroideae Reveal, subfam. nov., based on Anopteraceae Doweld, Tent. Syst. Pl. Vasc.: 1i. 23 Dec 2001, associated with a description in Latin. - Type: Anopterus Labill. (1805). - Escalloniaceae
Azorelleae Reveal, trib. nov., based on Azorelloideae G.M. Plunkett \& Lowry, J. S. African Bot. 70: 379. 7 Oct 2004, associated with a description in Latin. - Type: Azorella Lam. (1783). Apiaceae

Behnieae Reveal, trib. nov., based on Behniaceae Conran, M.W. Chase \& Rudall, Kew Bull. 52: 996. Dec 1997, associated with a description in Latin. - Type: Behnia Didr. (1855). - Agavaceae
Bersamoideae Reveal, subfam. nov., based on Bersameae Planch., Trans. Linn. Soc. London 20: 416. 1851, associated with a description in Latin. - Type: Bersama Fresen. (1837). - Melianthaceae
Bhesoideae Reveal, subfam. nov. Arbores glaberrimae; stipules magnis, deciduae; folia glabra, alternate, integerrima; raceme axillares; flores breviter pedicellati, parvi; calyx 5-fidus, segmentis recurvis; petala 5 , torus discoideus, carnosus; stamina 5 ; ovarium sessile vel basi, globosum, liberum 2-loculare, loculis 2-ovulatis; ovula basi affixa, erect, collataeralia; styli duo cum stigmata parva, capitata; capsula 1-locularis, bivalvis, 1-2-locularis, coriacea; semina lineari-oblonga, erecta, arillo carnoso; testa membrancea; embryo axilis. - Type: Bhesa Ham. ex Arn. (1834). - Celastraceae
Calochortoideae Thorne \& Reveal ex Reveal, subfam. nov., based on Calochortaceae Dumort., Anal. Fam. Pl.: 53. 1829 (Calocorthineae), associated with a diagnosis in French. - Type: Calochortus Pursh (1813). - Liliaceae
Canacomyriceae Reveal, trib. nov., based on Canacomyricaceae Baum.-Bod. ex Doweld, Byull. Mosk. Obshch. Ispyt. Prir., Biol. 105(5): 59. 9 Oct 2000, associated with a description in Latin. Type: Canacomyrica Guillaumin (1940). - Myricaceae
Canarininae Eddie ex Reveal, subtrib. nov., based on Canarineae Webb \& Berthel., Hist. Nat. Iles Canaries 3(2,3): 1. Apr 1844, associated with a diagnosis in Latin. - Type: Canarina L., nom. cons. (1771). - Campanulaceae
Capuroniantheae Mabberley ex Reveal, trib. nov, based on Capuronianthoideae T.D. Penn. \& Styles, Blumea 22: 509. 24 Sep 1975, associated with a description in Latin. - Type: Capuromanthus Leroy (1958). - Meliaceae
Carnarvonieae Reveal, trib. nov., based on Carnarvonioideae L.A.S. Johnson \& B.G. Briggs, Bot. J. Linn. Soc. 70: 172. 3 Sep 1975, associated with a description in Latin. - Type: Carnarvonia F. Muell. (1867). - Proteaceae
Castillejeae Reveal, trib. nov., based on Castillejinae G. Don, Gen. Hist. 4: 614. 1837-8 Apr 1838, associated with a diagnosis in English. - Type: Castilleja Mutis ex L.f. (1782). - Orobanchaceae
Centroplacoideae Reveal, subfam. nov., based on Centroplaceae Radcl.-Sm., Gen. Euphorb.: 78. 2001, associated with a diagnosis in Latin. - Type: Centroplacus Pierre (1899). Centropliacaceae
Coleeae Bojer ex Reveal, trib. nov. Frutices vel arbusculae cum foliis pinnatis; cymae pedunculatae; calyx truncates vel breviter 5-dentatus; ovarium 2-loculare; capsula indehiscens. - Type: Colea Bojer ex Meisn., nom. cons. (1840). - Bignoniaceae
Croomieae Reveal, trib. nov., based on Croomiaceae Nakai, Iconogr. Pl. As. Ortent. 2: 159. Nov 1937, associated with a description in Latin. - Type: Croomia Torr. (1840). - Stemonaceae
Delavayeae Reveal, trib. nov. Arbor, foliis alternis trifoliolatis; raceme axillares, saepius abbreviate. Flores hermaphroditi, 5 -meri, regulars; sepala inaequalia, exterior minore, interior sensim majore; petala cum sepalis alternatia, infra discus inserta, intus basi squamulata; discus evolutus, cupularis; stamina 8, hypogyna, antheris introrsis; ovarium triluclare cum loculis biovulatis; capsula lignose, inflate, compressa, biloba; semen in loculo solitarium, subglobosum. - Type: Delavaya Franch. (1886) - Sapindaceae
Dicerocaryeae Reveal, trib. nov., based on an effectively published but not legitimate Pretreeae Benth. \& Hook.f., Gen. Pl. 2: 1055. 1-16 Mar 1876, associated with a diagnosis in Latin. Type: Dicerocaryum Bojer ( $1835 \equiv$ Pretrea J. Gay ex Meisn., nom. Illeg.) - Pedaliaceae
Duckeodendroideae Reveal, subfam. nov., based on Duckeodendraceae Kuhlm., Arq. Serv. Florest. 3: 7. 1950, associated with a description in Latin. - Type: Duckeodendron Kuhlm. (1925). Solanaceae
Epithemateae Reveal, trib. nov., based on Epithematinae DC. ex Meisn., Pl. Vasc. Gen.: Tab. Diagn. 303, Comm. 212. 25-31 Oct 1840, associated with a diagnosis in Latin. - Type: Epithema Blume (1826). - Gesneriaceae

Eriospermoideae Reveal, subfam. nov., based on Eriospermeae Endl. ex Meisn., Pl. Vasc. Gen.: Tab. Diagn. 397, 400, Comm. 304. 17-20 Aug 1842, associated with diagnoses in Latin. - Type: Eriospermum Jacq. ex Willd. (1799). - Ruscaceae
Hemimeridinae Reveal, subtrib. nov., based on Hemimerideae Benth., Edwards's Bot. Reg. 21: ad t. 1770. 1 Feb 1835, associated with a diagnosis in Latin. - Type: Hemimeris L.f., nom. cons. (1782). - Scrophulariaceae

Hemimeridoideae Reveal, subfam. nov., based on Hemimeridaceae Doweld, Tent. Syst. Pl. Vasc.: xlix. 23 Dec 2001, associated with a diagnosis in Latin. - Type: Hemtmeris L.f., nom. cons. (1782). - Scrophulariaceae

Hugonioideae Mabberley ex Reveal, subfam. nov., based on Hugonieae Meisn., Pl. Vasc. Gen.: Tab. Diagn. 35, Comm. 27. 21-27 Mai 1837, associated with a diagnosis in Latin. - Type: Hugonaa L. (1753). - Linaceae

Hypodaphnideae Kostermans ex Reveal, trib. nov. A Lauraceae ceteris ovariis inferioribus differt. Type: Hypodaphnis Stapf (1909). - Lauraceae
Iochrominae Reveal, subtrib. nov., based on Iochromeae Miers, Ann. Mag. Nat. Hist., ser. 2, 3: 178. Mar 1849, associated with a diagnosis in English. - Type: Iochroma Benth., nom. cons. (1845). Solanaceae
Jaborosinae Reveal, subtrib. nov., based on Jaboroseae Miers, Ann. Mag. Nat. Hist., ser. 2, 3: 178. Mar 1849, associated with a diagnosis in English. - Type: Jaborosa Juss. (1789). - Solanaceae
Kaliphoreae Reveal, trib. nov., based on Kaliphoraceae Takht., Bot. Zhurn. (Moscow \& Leningrad) 81(2): 86. Mai-Jun 1996, associated with a diagnosis in Latin. - Type: Kadsura Juss. (1810). Montiniaceae
Kanieae Peter G. Wilson ex Reveal, trib. nov., based on Kanioideae Engl. in H.G.A. Engler \& K.AE. Prantl, Nat. Pflanzenfam., ed. 2, 18a: 109. 3 Mai 1930, associated with a diagnosis in German. Type: Kanta Schltr. (1914). - Myrtaceae
Kirengeshominae Reveal, subtrib. nov., based on Kirengeshomaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov]: 245. 20 Jul 1943, associated with a description in Latin. Type: Kirengeshoma Yatabe (1890). - Hydrangeaceae
Laxmannioideae Thorne \& Reveal ex Reveal, subfam. nov., based on Laxmanniaceae Bubani, Fl. Pyren. 4: 111. 15-28 Feb 1902, associated with a poorly organized diagnosis in Latin. - Type: Laxmannia R. Br. (1810). - Laxmanniaceae
Linconieae Reveal, trib. nov., based on Linconioideae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov]: 242. 20 Jul 1943, associated with a description in Latin. - Type: Linconia L. (1771). -Bruniaceae
Lindleyinae Reveal, subtrib. nov., based on Lindleyaceae J. Agardh, Theorta Syst. Pl.: 166. Apr-Sep 1858, associated with diagnoses in Latin. - Type: Lindleya Kunth, nom. cons. (1824). Rosaceae
Lophopetaleae Loes. ex Reveal, trib. nov. Arbores et frutices glaberrimi; folia opposite vel alterna, petiolate, exstipulata; cymosae axillares; flores saepe majuscule; calyx scutelliformis, lobis 5, rotundatis; petala $4-5$, cristata, cum disco continua et din persistentis; stamina $4-5$, disco inserta, filamentis subulatis; antherae oblongae; dicus planus, 4-5-lobus, crassus; ovarium parvum, cum disco continuum et eo immersum,trigonum vel pyramidatum, 3-4-loculare, cum stylum brevem, contractum, stigamte capitato; ovula in loculis 4; capsula coriacea, 3-4-angularis,dehiscens, loculis subdispermis; semina exalata, arillata. - Type: Lophopetalum Wight ex Arn. (1839). Buxaceae. (The name was adopted by Takhtajan in 2009, and others before him, so the name is now validly published. It is here accepted as a new tribe for purposes of validation.)
Macaranginae G.L. Webster ex Reveal, subtrib. nov. A Cleidiinae antheris 3-4-thecis, stylis simplex, testis pulpis differt. - Type: Macaranga Thouars (1806). - Euphorbiaceae
Mareyinae Radel.-Sm. ex Reveal, subtrib. nov. A. Claoxylinae et Lobaniliinae exotestis nec pulpis differt. - Type: Mareya Baill. (1860). - Euphorbiaceae

Muntingioideae Reveal, subfam. nov., based on Muntingiaceae C.Bayer, M.W. Chase \& M.F. Fay, Taxon 47: 38. 13 Feb 1998, associated with a description in Latin. - Type: Muntingia L. (1753). - Muntingiaceae

Neuracantheae Reveal, trib. nov. Herbae suffruticesve; folia integerrima; flores parvuli, ad axillas bractearum oppositarum solitarii, sessiles, dense spicati; bracteae imbricate cum bracteoles 0 ; calyx 2-partitus, 3-dentato vel lobo postico, 2-dentato vel partito antico; corolla tubus superne parum ampliatus; stamina 4, didynama cum filamentis brevibus discretis et anther is 2-locularis cum loculis ovoideis distinctis parallelis altero paullo majore dorse ciliato; stylus apice dilatatus; $2-4$-ovulati; capsula oblonga; semina $2-4$, orbiculata compressa. - T.: Neuracanthus Nees (1832). - Acanthaceae

Ondineinae Reveal, subtrib. nov., based on Ondineeae Tamura, Acta Phytotax. Geobot. 33: 344. 1982, associated with a description in Latin. - Type: Ondinea Hartog (1970). - Nymphaeaceae
Oroxyleae A.H. Gentry ex Reveal \& L.G. Lohmann, trib. nov. A Tecomeae capsula elongate, lata, septo parallele plano-compressa, septifrage dehiscens et placentae axilis differt. - Type: Oroxylum Vent. (1808). - Bignoniaceae
Oxydendreae Cox ex Reveal, trib. nov. Arbor; calyx 5-partitus, lobis acuminates; corolla 5-dentata; stamina 10, filamentis crassis pilosiusculis, antheris oblongis, loculis apice discretis acuminates sed muticis; stylus crassiusculus pentagonus; capsula pyramidata pentagona, 5-locularis, 5valvis, valvis medio septiferis, suturis indistinctis. - Type: Oxydendrum DC. (1839) - Ericaceae
Pachysandreae Reveal, trib nov., based on Pachysandraceae J. Agardh, Theoria Syst. Pl.: 358. AprSep 1858, associated with diagnoses in Latin. - T.: Pachysandra Michx. (1803) - Buxaceae
Pachystromateae Reveal, trib. nov., based on Pachystromatinae Pax \& K.Hoffm. in H.G.A. Engler, Nat. Pflanzenr. 68(Addit. VI): 3. 6 Jun 1919, associated with a diagnosis in German. - Type: Pachystroma Müll. Arg. (1865). - Euphorbiaceae
Pentastemonoideae Reveal, subfam. nov., based on Pentastemonaceae Duyfjes, Blumea 36: 552. 9 Jun 1992, associated with a description in Latin. - Type: Pentastemona Steenis (1982). Stemonaceae
Phaceliinae Reveal, subtrib. nov., based on Phacelieae Benth. ex A. Gray, Proc. Amer. Acad. Arts 10: 312. 1875, associated with a diagnosis in Latin. - Type: Phacelia Juss. (1789). - Boraginaceae

Philadelphinae Reveal, subtrib. nov., based on Philadelpheae DC. ex Duby, Bot. Gall. 1: 184. 12-14 Apr 1828, associated with a diagnosis in Latin. - Type: Phtladelphus L. (1753). Hydrangeaceae
Physalidinae Reveal, subtrib. nov., based on Physalideae Miers, Ann. Mag. Nat. Hist., ser. 2, 3: 179. Mar 1849, associated with a diagnosis in English. - Type: Physalls L. (1753). - Solanaceae
Prionieae Reveal, trib. nov., based on Prioniaceae S.L. Munro \& H.P. Linder, Syst. Bot. 23: 51. Mai 1998, associated with a diagnosis in Latin. - Type: Priontum E. Mey. (1832). - Juncaceae
Prockioideae Reveal, subfam. nov., based on Prockieae Endl., Gen. Pl.: 918. Nov 1839, associated with a diagnosis in Latin. - Type: Prockra P. Browne ex L. (1759). - Salicaceae
Pyenocomeae Hutch. ex Reveal, trib. nov., based on Pyenocominae G.L. Webster, Ann. Missourl Bot. Gard. 81: 76. 21 Mar 1994, associated with a description in Latin. - Type: Pycnocoma Benth. (1849). - Euphorbiaceae

Quivisiantheae Reveal, trib. nov., based on Quivisianthoideae T.D. Penn. \& Styles, Blumea 22: 508. 24 Sep 1975, associated with a description in Latin. - Type: Quivistanthe Baill. (1893). Meliaceae
Romanzoffiinae Reveal, subtrib. nov., based on Romanzoffieae Dumort., Anal. Fam. Pl.: 26. 1829, associated with a diagnosis in French. - Type: Romanzoffia Cham. (1820). - Boraginaceae
Salpichroinae Reveal, subtrib. nov. Herbae suffrutices vel frutices; folia integra; pedicelli solitarii; flores albi vel flavi; calyx tubulosus vel brevis, 5-fidus vel 5-partitus; corolla longe tubulosa vel urceolata, lobi 5, valvati; stamina supra medium tubum affixa, inclusa vel breviter exserta cum filamentis filiformibus et antheris cum connective tenui, longitudinem dehiscentibus; discus
carnosus, saepe crassus; ovarium 2-loculare cum stylis filiformis et stigmatis dilalatis; bacca ovoidea vel oblonga; semina compressa. - Type: Salpichroa Miers (1845). - Solanaceae
Sarumeae O.C.Schmidt ex Reveal, trib. nov., based on Sarumaceae Nakai, Fl. Sylv. Koreana 21: 17. 1936 (Sarumataceae), associated with diagnoses in Japanese and in English. - Type: Saruma Oliv. (1889). - Aristolochiaceae
Schwenckioideae Reveal, subfam. nov., based on Schwenckieae Hunz., Kurtziana 10: 42. 25 Apr 1977, associated with a description in Latm. - Type: Schwenckia L. (1764). - Solanaceae
Spiraeanthemoideae Reveal, subfam. nov., based on Spiraeanthemaceae Doweld, Tent. Syst. Pl. Vasc.: xxxi. 23 Dec 2001, associated with a description in Latin. - Type: Sptraeanthemum A Gray (1854). - Cunoniaceae
Stemodieae Reveal, trib. nov., based on Stemodiinae Benth. \& Hook.f., Gen. Pl. 2: 919. 1-16 Mai 1876 (Stemodıeae), associated with a diagnosis in Latin. - T: Stemodia L., nom. cons. (1759). - Plantaginaceae
Stenomeridoideae Reveal, subfam. nov., based on Stenomeridaceae J. Agardh, Theoria Syst. Pl.: 66. Apr-Sep 1858. - Type: Stenomeris Planch. (1852). - Dioscoreaceae
Streptopoideae Mabberley ex Reveal, subfam. nov., based on Streptopeae Baker, J. Linn. Soc. London, Bot. 14: 522. 24 Apr 1875, associated with a diagnosis in Latin. - Type: Streptopus Michx. (1803). - Liliaceae
Suregadeae Reveal, trib. et nom. nov., validated by a full and direct reference to the diagnosis in Latin associated with a validly published but not legitimate J. Müller Argoviensis (in Linnaea 34: 202. Mar 1865, as Gelonieae) subtribe name. - Type: Suregada Roxb. ex Rottl. (1803). Euphorbiaceae
Takhtajanieae Takht. ex Reveal, trib. nov., based on Takhtajanioideae J.-F. Leroy, Adansonia, sér. 2, 17: 393. 1978, associated with a diagnosis in Latin. - Type: Takhtajania Baranova \& J.-F. Leroy (1978). - Winteraceae

Tasmannieae Takht. ex Reveal, trib. nov., based on [unranked] Tasmannieae Rchb., Handb. Nat. Pfl.Syst.: 278. 1-7 Oct 1837, associated with a diagnosis in Latin. - Tasmannia R. Br. (1810). Winteraceae
Tepuianthoideae Reveal, subfam. nov., based on Tepuianthaceae Maguire \& Steyerm., Mem. New York Bot. Gard. 32: 8. 20 Mai 1981, associated with a description in Latin. - Type: Tepuianthus Maguire \& Steyerm. (1981). - Thymelacaceae
Tetramerantheae R.E. Fr. ex Reveal, trib. nov. Arbor; folia spiraliter disposita. Indumentis pilis stellatis; flores hermaphroditi, axillares, solitarii; sepala 4, petala 8, biserialia, imbricata; torus semiglobosus; stamina numerosa; carpella numerosa, stigmata trilobato adpresso sessili coronata cum ovulis 2. - Type: Tetrameranthus R.E. Fr. (1939). - Annonaceae. (The name was adopted by Takhtajan in 2009, and others before him, so the name is now validly published. It is here accepted as a new tribe for purposes of validation.)
Tovomiteae Mabberley ex Reveal, trib. nov., based on Tovomitinae Planch. \& Triana, Ann. Scl. Nat. Bot., sér. 4, 13:315. Jan-Jun 1860, associated with a diagnosis in Latin. - Type: Tovomita Aubl. (1775). - Clusiaceae

Tribuloideae D.M. Porter ex Reveal, trib. nov., based on Tribuleae Dumort., Anal. Fam. Pl.: 45. 1829, associated with a diagnosis in French. - Type: Tribulus L. (1753). - Zygophyllaceae
Triosteeae Reveal, trib. nov., based on Triosteoideae Raf., Ann. Gén. Sci. Phys. Bruxelles 6: 88. OctDec 1820 (Triostinia), associated with a diagnosis in French. - Type: Triosteum L. (1753). Caprifoliaceae
Triplostegioideae Reveal, trib. nov., based on Triplostegiaceae A.E. Bobrov ex Airy Shaw, Kew Bull. 18: 269 . 8 Dec 1965 , associated with a description in Latin. - Type: Triplostegia Wall. ex DC. (1830). - Valerianaceae

Whitfieldieae Bremek. ex Reveal, trib. nov. Racemi terminales; calyx amplus membranceus vel coloratus; corolla campanulata subaequaliter 5-loba; ovula in quoque loculo 2. - Type: Whitfieldta Hook.f. (1845). - Acanthaceae
Witheringiinae Reveal, subtrib. nov., based on Witheringieae Miers, Ann. Mag. Nat. Hist., ser. 2, 3: 179. Mar 1849 (Witheringeae), associated with a diagnosis in English. - Type: Witheringia L'Hér. (1789). - Solanaceae
Xanthosieae Reveal, trib. nov., based on Xanthosiinae Tausch, Flora 17: 354. 21 Jun 1834 (Xanthosieae), associated with a diagnosis in Latin. - Type: Xanthosia Rudge (1811). - Apiaceae

## ACKNOWLEDGMENTS

A work of this nature is not done in a vacuum and the numbers of individuals who have contributed ideas, opinion, comments, corrections and encouragement are numerous and it would require pages just to record their names. The same is true of institutions. Considering that this effort began in the early 1980s, this is not surprising. Therefore, speaking only of this moment in time I must acknowledge my Angiosperm Phylogeny Group colleagues, those who belong to an informal email-group that deals with nomenclature, numerous librarians for without their help this type of summary is not possible, and to the reviewers of this paper who found things I overlooked or failed to discover. My thanks to all.

## LITERATURE CITED

Angiosperm Phylogeny Group [Bremer, B., K. Bremer, M.W. Chase, J.L. Reveal, D.E. Soltis, P.S. Soltis, and P.F. Stevens, comps.]. 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 141: 399-436.
Angiosperm Phylogeny Group [Bremer, B., K. Bremer, M.W. Chase, M.F. Fay, J.L. Reveal, D.E. Soltis, P.S. Soltis, and P.F. Stevens (comps.)]. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161: 105-121.
Chase, M.W. \& J.L. Reveal. 2009. A phylogenetic classification of the land plants to accompany APG III. Bot. J. Linn. Soc. 161: 122-127.
Chase, M.W., J.L. Reveal, and M.F. Fay. 2009. A subfamilial classification for the expanded asparagalean families Amaryllidaceae, Asparagaceae and Xanthorrhocaceae. Bot. J. Linn. Soc. 161: 132-136.
Doweld, A. 2001. Prosyllabus Tracheophytorum, Tentamen Systematis Plantarum Vascularium (Tracheophyta). Moscow: GEOS.
Haston, E., J.E. Richardson, P.F. Stevens, M.W. Chase, and D.J. Harris. 2009. The Linear Angiosperms Phylogeny Group (LAPG) III: A linear sequence of the families in APG III. Bot. J. Linn. Soc. 161: 128-131.
Heywood, V.H., R.K. Brummitt, A. Culham, and O. Seberg. 2007. Flowering Plant Families of the World. Royal Botanic Garden, Kew.
Mabberley, D.J. 2008. Mabberley's Plant-book. APortable Dictionary of Plants, their Classifications, and Uses (ed. 3). Cambridge Univ. Press, London.
Reveal, J.L. 2010. A checklist of family and suprafamilial names for extant vascular plants. Phytotaxa 5: 1-402.
Reveal, J.L. 2011. Summary of recent systems of angiosperm classification. Kew Bull. 66: 5-48.
Reveal, J.L. 2012. Newly required infrafamilial names mandated by changes in the Code of nomenclature for algae, fungi and plants. Phytoneuron 2012-33: 1-31.
Reveal, J.L. and M.W. Chase. 2010. APG III: Bibliographical information and synonymy of Magnoliidae. Phytotaxa 1-64.

Shipunov, A.B. 2012. Systema angiospermarum. Version 5.6, 23 Feb 2012.
http:/herba.msu.ru/shipunov/ang/current/syang.pdf>Accessed 20 Apr 2012.
Stevens, P.F. 2001 (onward). Angiosperm phylogeny website, version 9, June 2008 - onward. दhttp://www.mobot.org/MOBOT/research/APweb/> Accessed 20 Apr 2012.
Takhtajan, A. 2009. Flowering Plants. Springer Verlag, Berlin,
Thorne, R.F. and J.L. Reveal. 2007. An updated classification of the class Magnoliophyta ("Angiospermae"). Bot. Rev. (Lancaster) 73: 67-181.

# COMPOSITAE OF CENTRAL AMERICA-I. THE TUSSILAGINOID GENUS ROBINSONECIO (SENECIONEAE), MICROCHARACTERS, GENERIC DELIMITATION, AND EXCLUSION OF SENECIOID SENECIO CUCHUMATANENSIS 

John F. Pruski<br>Missouri Botanical Garden<br>PO Box 299<br>St Louis, Missouri 63166


#### Abstract

Robinsonecio has tussilaginoid microcharacters and is represented in Central America by a single species, the generitype Robinsonecto gerberifolnus. A lectotype is designated for Senecto gerberifolius. Senecio cuchumatanensis of Guatemala has been suggested to be a congener of $R$. gerberifolius, but its senecioid microcharacters are found here to exclude it from Robinsonecio.


KEY WORDS: Asteraceae, Central America, Compositae, Guatemala, Mexico, Robinsonecio, Robinsonecto gerberifolius, Senecto cuchumatanensis, Senecio gerbertfolius, Senecioneae.

Robinsonecio T.M. Barkley \& Janovec (Compositae: Senecioneae: Tussilagininae) was segregated from the Lugentes subgroup (Barkley 1985) of Senecto L. (Senecioninae) based on its tussilaginoid microcharacters (often called "cacalioid" microcharacters, e.g., Robinson \& Brettell 1973b, 1973b; Wetter 1983). The genus includes 2 species - R. gerberifolius (Sch. Bip. ex Hemsl.) T.M. Barkley \& Janovec (alpine areas in southeastern Mexico and western Guatemala) and $R$. porphyresthes (T.M. Barkley) T.M. Barkley \& Janovec (Tamaulipas, Mexico). Barkley and Janovec (1996) noted that in Robinsonecto each style branch has a continuous stigmatic surface and that its anther collars are cylindrical, each character a tussilaginoid trait (Koyama 1967; Robinson \& Brettell 1973b; Nordenstam 1978; Wetter 1983). While many tussilaginoid Senecioneae have polarized endothecial cell wall thickenings (Dormer 1962; Robinson \& Brettell 1973b; Nordenstam 1978; Wetter 1983), Barkley and Janovec (1996) characterized the endothecium of R. gerberifolus as polarized and that of $R$. porphyresthes as radial.

Hemsley (1881) described Robinsonecio gerberifolus (sub Senecio) as having pubescent cypselae, whereas Barkley and Janovec (1996) gave the cypselae as glabrous. Williams (1975) allied R. gerberifolus (sub Senecto) with S. cuchumatanensts, and indeed these two species are subscapose herbs known only from similar montane habitats. Barkley and Janovec (1996) noted that $S$. cuchumatanensis is similar in "gross aspect" to Robmsonecto, but they did not provide a nomenclatural transfer commenting that this must "await further information." Subsequently, Barkley (en schedula MO) annotated the type and paratype material of $S$. cuchumatanensts as Robinsonecio using a non-published binomial based on S. cuchumatanensts.

The present study supports Robinsonecio as belonging to the tussilaginoid generic alliance (subtribe Tussilagininae), evidenced by its cylindrical anther collars (fig. 1A-B) that are no broader than the filaments and by its style branches (fig. 1E) each with a continuous stigmatic surface. However, I find R. gerberifolnis to have adaxial endothecial tissue composed of elongate cells each with a radial cell wall thickening pattern (fig. 1C), and with only a thin line of elongate cells of the non-polliniferous connate zone between adjacent anther thecae as having polar thickenings (fig. 1D). It should be noted that while, for example, Jeffrey and Chen (1984) characterized the Tussilagininae


Figure 1 Microcharacters of Robinsonecio gerberfolwe A Individual anther theca showing abaxial face of anther collar-filament functure (arrow) and apically acute anther appendage B Abaxial close-up of the cylindrical tussilagmond anther collars with arrow pointing to (basal portion of) connate zone between two adjacent anther thecae C Medial adaxial endothecial tissue with radially theckened (transversely ribbed) cell walls D Medial adaxial border of individual anther showing connate zone eells whth thekerings at ther poles E. Style showng slightly dulated stipitate base stthing atop the basal neetary rather than mmersed within nectary F. Close-up of style base, nectary, and apical portion of a pilose ovary G Glabrous cypsela (A-D, G from Pruski \& Ortiz 4163, MO, E-F from Garcia et al 190 , MO). [Scale bars A $03 \mathrm{~mm}, \mathrm{~B} 01 \mathrm{~mm}, \mathrm{C}, \mathrm{D} 20$ $\mu \mathrm{m}, \mathrm{E} 2 \mathrm{~mm}, \mathrm{~F} 02 \mathrm{~mm}, \mathrm{G} 1 \mathrm{~mm}$ ]
as having polanzed endothecial tissue composed of nearly isodiametric cells (as indeed is a tendency, especially in Astan genera of the subtribe), both Dormer (1962) and Wetter (1983) noted some intraspecific vanation in this character Although Robinsonecto, by radiate capitula and yellow disk corollas with lobes shorter than the throats, does not match the "cacalold condition" (Pippen 1968), several Central American genera subsequently accepted as tussilaginord (Barkley et al 1996) have radate captula, yellow corollas, and short disk corolla lobes The disk corolla lobes of $R$ gerberifolius are triangular-lanceolate to lanceolate and its anther appendages are acute apically (fig 1A) The styles of $k$ gerberifoluus are only slightly dilated at the base This basal stylar node is not immersed in the nectary, but rather sits on a stipe atop the nectary (fig 1E-F) as in the free stylopodium type 1 in Wetter (1983 figs 14 and 17). The ovanes and cypselae of $R$ gerberifoltus have carpopodia that, as noted by Barkley and Janovec (1996), are moderately developed (fig 1G) As described by Garcia-Peréz (2001), the ovaries and cypselae of $R$ gerberifolius vary from being glabrous to pilose (fig $1 \mathrm{~F}-\mathrm{G}$ ) Elsewhere, for example, Koyama (1967) noted similar intraspecific cypselae indumentum variation in Asian taxa


Figure 2 Microcharacters of Senecio cuchumatanenisis A Balusterform (senecioid) anther collars showing on the anther on the left the abaxial junction (arrow) with the narrower filaments B Medial adaxial endothecial tissue with radially thickened cell walls C Broadly rounded anther appendage apices D Style showing abruptly dilated style base (not showing nectary) (all from Steyermark 50117 , MO, a paratype) [Scale bars A, C 02 mm, B $30 \mu \mathrm{~m}, \mathrm{D} 2 \mathrm{~mm}$ ]

These microcharacters of Robinsonecto contrast with those of $S$ cuchumanomensts, which has the senecioid microcharacters of (1) moderately balusterform (distal cells somewhat quadrangular and basal cells isoduametric, with shght cell wall thickenung basally) anther collars broader than the filaments (fig 2A) and (2) each style branch (fig 2D) with a 2-banded stigmatic surface with clear "morphological distunction between the cells" (Wetter 1983) of the stigmatic surfaces and those of the medral groove Senecio cuchumatanensis differs further from Robinsonecio by triangular disk corolla lobes, apically broadly rounded anther appendages (fig 2 C ), and by its abruptly dilated large-celled style bases (fig 2D) that arise within the low annular (slightly darker colored, slightly wider) nectaries Thus stylopodium type more or less matches the "partially immersed" configuration seen in Wetter (1983: fig 16), but the style base in $S$ cuchumatanensis is much more dilated than in any of the six tussilaginoid photographs in Wetter (1983 figs 14-19). Although Wetter (1983) notes stylopodial features as notonously vaniable, here it appears to be useful taxonomically Senecto cuchumatanensus may thus be safely excluded from Robinsonecto and retained in Senecio Although S cuchumatanensis has a radal endothecial pattern (fig 2B) sumular to that typical for Robinsonecto (fig 1C), nearly all seneciold genera and most Amencan tussilagnond genera share this radhal endothecial condition.

The purpose of the present account is to illustrate the microcharacters used to circumscribe Robmsonecio, to provide an expanded description of $R$ gerberifolius that may be inserted into Williams (1976), and to show that on the basis of merocharacters $S$ cuchumatanensis should not contime to be aligned with Robmsonecto While both $R$ gerberffolus and $S$ cuchumatanensis are subscapose herbs occurring in the Sierra de los Cuchumatanes, with $S$ cuchumatanensis endermic to ths range, the smulanties between these two species are basically incidental


Figure 3 Robinsonecio gerbenfolius, showing the subscapose habit, the prominent basal rosette, and radical leaves adaxaally nutdous with impressed midribs (Pruska \&o Ortiz 4163)

ROBINSONECIO T.M. Barkley \& Janovec, Sida 17: 79. 1996. Type: Senecio gerberifolus Sch. Bip. ex Hemsl. [ $\equiv$ Robinsonecio gerberifoltus (Sch. Bip. ex Hemsl.) T.M. Barkley \& Janovec].

Small subscapose perennial rosulate herbs, caudex thick, root fibrous; scapes $1(-2)$ per plant, basally copiously floccose to lanate, sometimes glabrate distally, rosette prominent (Fig. 3), cauline leaves remote and reduced; herbage lanate to glabrate, eglandular. Rosette leaves spirally alternate; blade secondary venation indistinct, base gradually attenuate onto narrowly winged petiolar base that is dilated near caudex, margins entire to remotely denticulate, sometimes revolute, surfaces often discolorous. Cauline leaves sessile, margins entire. Capitulescence erect or ascending, laxly cymose, 1-6-capitulate. Capitula radiate; involucre campanulate, irregularly and loosely calyculate; phyllaries 13-20, imbricate, arachnoid or villous at least proximally, often glabrate distally, margins of inner phyllaries sometimes broadly scarious; receptacle solid. Ray florets pistillate; corolla yellow or golden-yellow, limb well-exserted. Disk florets bisexual, slightly exserted from involucre; corolla narrowly funnelform, yellow, glabrous, tube and limb subequal, lobes triangular-lanceolate to lanceolate, ascending to sometimes slightly spreading, with or without a medial resin duct; anthers mostly included, collar cylindrical, equal in diameter to filaments, thecae base obtuse, not caudate, endothecial tissue typically radial, apical appendage triangular, acute apically; style base cylindrical to slightly dilated and sitting atop the basal nectary rather than immersed within nectary, branches weakly exserted, slightly recurved, apex obtuse to truncate, papillose in a subapical-abaxial semicircle below apex, stigmatic surface continuous. Cypselae cylindrical, 10 -nerved, base gradually narrowed, carpopodium prominent; pappus bristles of rays and disks similar, white, barbellate, about as long as the disk corollas. $x=30$.

Robinsonecio is defined primarily by the tussilaginoid microcharacters of cylindrical anther collars and continuous stigmatic surfaces, and secondarily by subscapose habit, radiate capitula, yellow disk corollas with triangular-lanceolate lobes, and acute anther appendage apices. The genus consists of two species and is centered in Mexico, but the following species is disjunct from Pico de Orizaba to the Sierra de los Cuchumatanes in Guatemala.

ROBINSONECIO GERBERIFOLIUS (Sch. Bip. ex Hems1.) T.M. Barkley \& Janovec, Sida 17: 79. 1996. Senecto gerberifolius Sch. Bip. ex Hems1., Biol. Cent.-Amer., Bot. 2: 240. 1881, as "gerberaefolius." Lectotype (designated here): MEXICO. Veracruz-Puebla border. Pico de Orizaba, 3500 m (as " 11500 ft "), Apr 1838, Linden 487 (lectotype: K, left-hand side, photo in MO ; isolectotype: GH). (Figs. 1, 3-4).

Herbs $15-33 \mathrm{~cm}$ tall, scapes usually 1-3-leaved. Rosette leaves long-petiolariform, spreading to patent; blade $2-15 \times 0.7-2.5(-3.5) \mathrm{cm}$, narrowly oblanceolate or oblong to spatulate or obovate, subcoriaceous, midrib sometimes impressed adaxially, apex acute to less commonly obtuse, slightly to obviously discolorous, adaxial surface gray-green to green, sometimes nitidous, arachnoid-floccose to glabrate, abaxial surface grayish-white, tomentose to lanate; petiolar base $1-8 \mathrm{~cm}$ long. Cauline leaves 1-3; blade 2-7 cm long, lanceolate or infrequently oblanceolate, semiamplexicaule. Capitulescence scape $14-31.2 \mathrm{~cm}$ long, striate or few-angled, densely floccose or lanate to sometimes arachnoid or glabrate in patches; peduncles (when pluricephalous) $1-8(-10) \mathrm{cm}$ long. Capitula $10-18 \mathrm{~mm}$ tall; involucre $10-15 \mathrm{~mm}$ diam., loosely arachnoid-floccose in bud; phyllaries ca. 13, 8-13 $\times 2-3.5 \mathrm{~mm}$, elliptic-lanceolate to narrowly ovate, typically greenish-yellow throughout, pluristriate, arachnoid proximally and glabrate distally, apex acute, sometimes purplish; calycular bracteoles $1-5(-7), 7-12 \times 0.7-1.1 \mathrm{~mm}$, about $3 / 4$ as long as the phyllaries, linear-lanceolate, green; receptacle convex, foveolate. Ray florets usually 13(11-15); corolla tube 5-6 mm long, limb 11-15 $\times 3-4 \mathrm{~mm}$, elliptic-lanceolate, 4-9-nerved, 3-denticulate, apical teeth $0.1-0.3 \mathrm{~mm}$ long. Disk florets 35-65; corolla $8-10 \mathrm{~mm}$ long, lobes $1-1.6 \mathrm{~mm}$ long, typically with a medial resin duct; anthers $2.5-3$
mm long, endothecial tissue radial or sometimes polarized, non-polliniferous connate zone between anthers usual with cells thickened at poles; style branches $1.2-1.5 \mathrm{~mm}$ long. Cypselae $3-4 \mathrm{~mm}$ long, brown, glabrous to pilose, trichomes to $0.5+\mathrm{mm}$ long; pappus $6.5-8.5 \mathrm{~mm}$ long. $2 n=60$.

Representative specimens examined. MEXICO. Mexico. Telapón, 4000 m, Dec 1928 , Lyonnet 395 (MO, NY); Ixtaccíhuatl, subalpine region, Oct 1905, Purpus 1516 (F, MO, NY). Puebla. Slopes of Ixtaccíhuatl above Huejotzingo, $4260 \mathrm{~m}, 21$ Oct 1945, Hernández \& Sharp X-154 (MO). Veracruz. Cerca de la Roca del Cofre Perote, $4000 \mathrm{~m}, 28$ Aug 1971, Dorantes 324 (MO, XAL); Cima del Volcán Cofre de Perote, $4180 \mathrm{~m}, 2$ Oct 1984, Garcia et al. 1901 (MO). VeracruzPuebla border. Pico de Orizaba, 3048-4552 m (as 10000-15300 ft.), Liebmann 8853 (species number 140) (C [photograph sub Macbride negative \#22623 in MO], K); Pico de Orizaba, volcanic ash, ca. 4 km N of summit, $3925 \mathrm{~m}, 15$ Feb 2007, Pruski \& Ortiz 4163 (MO). GUATEMALA. Huehuetenango. Cumbre de la Sierra de los Cuchumatanes, 28 Dec 1940, Standley 81489 (F); On high limestone bluff of Caxin, between Tojquiá and Caxin bluff, summit of Sierra de los Cuchumatanes, $3700 \mathrm{~m}, 6$ Aug 1942, Steyermark 50181 (F, MO).

Distribution and ecology. Robinsoneclo gerberifolus is known from alpine and subalpine pine forests, rocky areas, and meadows where it flowers sporadically throughout the year, but with a peak seemingly between July-December. The species is typified by material from Pico de Orizaba, the highest mountain in Mexico, and also occurs on Nevado de Toluca (García-Peréz 2001), a very few other high summits in the Trans Mexican Volcanic Belt, and the Sierra de los Cuchumatanes range in Guatemala. Although it does not seem to be known in Chiapas (Breedlove 1986), it should be looked for on Volcán Tacaná along the Chiapas-Guatemala border.

Typology. Barkley and Janovec (1996) listed Linden 487 in GH as an isotype. Although Linden 487 is mechanically the first of three syntypes and the typology of Barkley and Janovec (1996) indicates basically that they saw authentic material of one of the three syntypes, it nevertheless seems appropriate to formally designate $\operatorname{Linden} 487$ in K as the lectotype of this name.

Although Robinsonecio gerberifolus has cypselae that vary from glabrous to pilose (fig. 1FG), capitula with $1-5(-7)$ calycular bracts, and the Guatemalan plants are very narrow-leaved, I too circumscribe R. gerberifolus broadly and apply this name to material from Guatemala as per the Jesse Greenman determination (albeit within "Senecio sect. Tomentosi Rydb." sensu Greenman 1901, 1902) of Steyermark 50178 ( $\mathrm{F}, \mathrm{MO}$ ) and as treated in the specimens examined section by Barkley and Janovec (1996).

Excluded species: Senecio cuchumatanensis L.O. Williams \& Ant. Molina, Phytologia 31: 438. 1975. TyPE: GUATEMALA. Huehuetenango. On high limestone bluff of Caxín, between Tojquiá and Caxín bluff, summit of Sierra de los Cuchumatanes, $3700 \mathrm{~m}, 6$ Aug 1942, Steyermark 50170 [as "50107"] (holotype: F, photograph in MO; isotype: MO). (Fig. 2).

Senecio cuchumatanensis was noted by Williams (1975) as resembling R. gerberifolius, suggested by Barkley and Janovec (1996) as a possible species of Robinsonecto, and type material of this name was subsequently annotated by Barkley (en schedula MO) as a species of Robinsonecio. Although the species is know to me from only two badly bug-damaged collections, its technical features are intact. This species is shown here as having senecioid microcharacters and is retained in Senecio.


Figure 4. Robinsonecio gerberifolius, showing a few pine needles embedded in the basal rosette. (Pruski \& Ortiz 4163, MO).

## ACKNOWLEDGEMENTS

I thank Craig C. Freeman (KANU), Guy Nesom, and Rosa Ortiz (MO) for reviewing the manuscript, and Craig for his determinations and helpful discussions. Mike Blomberg (MO), Stephanie Keil (MO), Fred Keusenkothen (MO), and Rosa Ortiz (MO) kindly prepared the photograph of the herbarium specimen for publication. Appreciation is extended to Jeremias López C. (HEM), Francisco (Paco) Lorea H. (XAL), Jorge Martínez M. (HEM), Manuel Martínez M. (HEM), Nayely Martínez M. (HEM), Ruben Martinez C. (HEM), Rosa Ortiz (MO), and Miguel Angel Pérez F. (HEM), for helping with field work in Mexico.

## LITERATURE CITED

Barkley, T.M. 1985. Infrageneric groups in Senecto, s.1., and Cacalia, s.1. (Asteraceae: Senecioneae) in Mexico and Central America. Brittonia 37: 211-218.
Barkley, T.M., B.L. Clark, and A.M. Funston. 1996. The segregate genera of Senecto sensu lato and Cacalia sensu lato in Mexico and Central America. Pp. 613-620 in D.J.N. Hind et al. (eds.), Compositae: Systematics. Proceedings of the International Compositae Conference, Kew, 1994, Vol. 1. The Royal Botanic Gardens, Kew.
Barkley, T.M. and J.P. Janovec. 1996. Robinsonecio (Asteraceae: Senecioneae) a new genus from Mexico and Guatemala. Sida 17: 77-81.
Breedlove, D.E. 1986. Flora de Chiapas. Listados Floríst. México 4: v + 1-246.
Dormer, K.J. 1962. The fibrous layer in the anthers of Compositae. New Phytol. 61: 150-153.
García-Pérez, J. 2001. Senecio L. Pp. 933-949 in G. Calderón de Rzedowski and J. Rzedowski, Flora fanerogamica del Valle de Mexico, Ed. 2. Instituto de Ecología, A.C., Xalapa, and Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Pátzcuaro, Michoacán.
Greenman, J.M. 1901. Monographie der nord- und centralamerikanischen arten der gattung Senecto, I. Teil Allgemeines und Morphologie. W. Engelmann, Leipzig.

Greenman, J.M. 1902. Monographie der nord- und centralamerikanischen arten der gattung Senecio. Bot. Jahrb. Syst. 32: 1-33.
Hemsley, W.B. 1881. Compositae. Pp. 69-262 m E.D. Godman and O. Salvin (eds.), Biologia Centrali-Americana, Botany, Vol. 2(7-10). Porter, Dulau, \& Co., London.
Jeffrey, C. and Y.L. Chen. 1984. Taxonomic studies on tribe Senecioneae (Compositae) of eastern Asia. Kew Bull. 39: 205-446.
Koyama, H. 1967. Taxonomic studies on the tribe Senecioneae of Eastern Asia. I. General part. Mem. Coll. Sci. Kyoto Imp. Univ., Ser. B, Biol. 33: 181-209.
Nordenstam, B. 1978. Taxonomic studies in the tribe Senecioneae (Compositae). Opera Bot. 44: 183.

Pippen, R.W. 1968. Mexican "cacalioid" genera allied to Senecio (Compositae). Contr. U.S. Natl. Herb. 34: 365-447.
Robinson, H. and R.D. Brettell. 1973a. Studies in the Senecioneae (Asteraceae). III. The genus Psacalium. Phytologia 27: 254-264.
Robinson, H. and R.D. Brettell. 1973b. Studies in the Senecioneae (Asteraceae). IV. The genera Mesadenta, Synetlesıs, Miricacalıa, Koyamacalia and Sinacalia. Phytologia 27: 265-276.
Wetter, M.A. 1983. Micromorphological characters and generic delimitation of some New World Senecioneae. Brittonia 35: 1-22.
Williams, L.O. 1975. Tropical American plants, XVIII. Phytologia 31: 435-447.
Williams, L.O. 1976. Flora of Guatemala: tribe VIII. Senecioneae. Fieldiana, Bot. 24(12): 392-423, 585-589.

# A TAXONOMIC CONSPECTUS OF PHRYMACEAE: A NARROWED CIRCUMSCRIPTION FOR MIMULUS, NEW AND RESURRECTED GENERA, AND NEW NAMES AND COMBINATIONS 

W.R. (Bill) Barker<br>State Herbarıum of South Australia, Kent Town SA 5071, AUSTRALIA, and Australian Centre for Evolutionary Biology and Biodiversity University of Adelaide Adelarde SA 5000, AUSTRALIA<br>bill barker@sa gov au<br>Guy L. Nesom<br>2925 Hartwood Drive<br>Fort Worth, Texas 76109, USA<br>guynesom@sbcglobal net

Paul M. Beardsley
Biological Sciences Department California State Polytechnic University Pomona, California 91768, USA
pmbeardsley@csupomona edu
Naomi S. Fraga
Rancho Santa Ana Botanic Garden
Claremont, Califormia 91711-3157, USA
naomı fraga@cgu edu


#### Abstract

A revised taxonomic classification of Phrymaceae down to species level is presented, based on molecular-phylogenetic and morpho-taxonomic studies, setting a framework for ongoing work. In the concept adopted, the family includes 188 species divided into 13 genera. All species as currently understood are listed and assigned to genera and sections which in several cases have new circumscriptions requiring many new combinations. Four main clades are recognized. Clade A. An Asian-African-Australasian-centered clade of 7 genera: Mtmulus L. sensu stricto (7 species) of North America, Asia to Africa, and Australasia is sister to an Australian-centered group that comprises Elacholoma (2 species), Glossostigma ( 5 species), Microcarpaea ( 2 species), Peplidium ( 4 species), Uvedalia (2 species) and a new monotypic genus Thyridia, described here. The remaining three clades are largely American, with a few east Asian species. Clade B. Monotypic Phryma forms its own clade. Clade C. Hemichaena ( 5 species), Mimetanthe ( 1 species), and Diplacus ( 46 species). Clade D. Leucocarpus ( 1 species) and Erythranthe ( 111 species). A new infrageneric classification is constructed for the two largest genera - Diplacus with six sections, and Erythranthe with 12. The sessile to subsessile flowers and parietal placentation of Diplacus distinguish it from Erythranthe, which has long-pedicellate flowers and axile placentation. Descriptions are provided for all inframilial, generic, and infrageneric taxa and full synonymies enable a comparison with previous classifications.


KEY WORDS: Mimulus, Uvedalia, Microcarpaea, Elacholoma, Peplidium, Glossostigma, Thyridia, Diplacus, Erythranthe, Mmetanthe, Hemichaena, Leucocarpus, Phryma, Phrymaceae, Mazaceae, sections, typification

## TAXONOMIC SUMMARY

Mimulus L. sensu stricto includes only two primarily eastern North American species, M. ringens L. (the type) and $M$. alatus Sol. ex Ait., and five species from Asia and the Southern Hemisphere: M. gractlts R. Br. (here confined to Australia), M. strictus Benth. (resurrected for Old World plants previously identified mostly as M. gracilis), M. madagascariensis Benth, M. aquatilis A.R. Bean, and $M$. orbrcularis Wall. ex Benth. The sister clade is Australian-centered, including the long-recognized genera Elacholoma F.Muell. \& Tate ( 2 named species, one formerly M. prostratus Benth.), Glossostigma Wight \& Arn. (5 species), Microcarpaea R. Br. (2 species), Pephiduum Delile ( 4 species), Uvedalia R. Br. ( 2 species, removed from traditional Mimulus), and monotypic Thyridia W.R. Barker \& Beardsley, gen. nov. (type T. repens, formerly Mimulus repens R. Br.). Monotypic Phryma L. forms its own clade. The remaining two clades are largely American, with a few east Asian species: one includes Hemichaena Benth. ( 5 species), Mimetanthe Greene ( 1 species), and Diplacus Nutt. ( 46 species); the other includes Lewcocarpus D. Don (1 species), and Erythranthe Spach (111 named species). Diplacus includes species segregated by A.L. Grant as subg. Schizoplacus and by Nuttall, Bentham, Greene, and others as the genera Diplacus and Eunanus. Mimetanthe was recognized as a monotypic section by Bentham and Asa Gray and then at generic rank by Greene in 1886. Erythranthe comprises species mostly segregated by A.L. Grant as subg. Synplacus, including the group of species closely related to the type, E. cardinalis (sect. Erythranthe). In a sister relationship to Erythranthe is the monotypic genus Leucocarpus; sister to Diplacus is Mimetanthe, and sister to that pair is Hemichaena. Sister to the combined Hemichaena-MmetantheDiplacus and Leucocarpus-Erythranthe clade is Phryma. Diplacus is divided into 6 sections (types in parenthesis): (1) sect. Erimimimulus G.L. Nesom \& N.S. Fraga, sect. nov. (D. parryi), (2) sect. Eunanus (Benth.) G.L. Nesom \& N.S. Fraga, comb. nov. (D. nanus), (3) sect. Pseudoenoe (A.L. Grant) G.L. Nesom \& N.S. Fraga, comb. nov. (D. pictus), (4) sect. Oenoe (A. Gray) G.L. Nesom \& N.S. Fraga, comb. nov. (D. tricolor), (5) sect. Cleisanthus (J.T. Howell) G.L. Nesom \& N.S. Fraga, comb. nov. (D. douglasii), and (6) sect. Diplacus (D. aurantiacus). Erythranthe is divided into 12 sections (types in parenthesis): Erythranthe is divided into 12 sections (types in parenthesis): (1) sect. Achlyopitheca G.L. Nesom \& N.S. Fraga, sect. nov. (E. inconspicua), (2) sect. Paradantha (A.L. Grant) G.L. Nes om \& N.S. Fraga, comb. nov. (E. rubella), (3) sect. Monantha G.L. Nesom \& N.S. Fraga, sect. nov. (E. primuloides), (4) sect. Monimanthe (Pennell) G.L. Nesom \& N.S. Fraga, comb. nov. (E. brewert), (5) sect. Erythranthe (E. cardinalis), (6) sect. Alsinimimulus G.L. Nesom \& N.S. Fraga, sect. nov. (E. alsinoides), (7) sect. Sinopitheca G.L. Nesom \& N.S. Fraga, sect. nov. (E. sessilifolia), (8) sect. Simigemma G.L. Nesom \& N.S. Fraga, sect. nov. (E. gemmipara), (9) sect. Mimulasia G.L. Nesom \& N.S. Fraga, sect. nov. (E. tenella), (10) sect. Mimulosma G.L. Nesom \& N.S. Fraga, sect. nov. (E. moschata), (11) sect. Exigua G.L. Nesom \& N.S. Fraga, sect. nov. (E. exigua), and (12) sect. Simiola (Greene) G.L. Nesom \& N.S. Fraga, comb. nov. (E. guttata). Lectotypes are designated for Mimulus subg. Synplacus, Erythranthe sect. Paradantha, Erythranthe sect. Simıola, and four unranked but validly published species groups named by Bentham: § Erectl, § Prostrati, § Speciosi, and § Teneri.

Recent molecular-phylogenetic studies have greatly altered concepts of families of the traditional Scrophulariaceae (e.g., Olmstead and Reeves 1995; Oxelman et al. 2005; Tank et al. 2006; Beardsley \& Olmstead 2002; Beardsley et al. 2004; Beardsley \& Barker 2005). Surprisingly, Mimulus L. sensu lato is indicated to be closely related to the monotypic genus Phryma L., which usually has been placed in Verbenaceae or Lamiaceae (e.g., Whipple 1972). Also closely related to Phryma and Mmulus are the American genera Hemichaena Benth., Leucocarpus D. Don, and a group of small Australian-centered genera: Elacholoma F. Muell. \& Tate, Glossostigma Wight \& Arn., Microcarpaea R. Br. and Peplidium Delile. The correct family name for this group of 188
species is Phrymaceae (see below). Recent phylogenetic studies have centered on Phrymaceae and its close relatives (Beardsley \& Olmstead 2002; Beardsley et al. 2004; Beardsley \& Barker 2005).

The study by Beardsley et al. (2004) included about 105 species that are maintained in the current account and provides a useful guide toward understanding the taxonomy and systematics of American Mimulus sensu lato. It strongly supports the hypothesis that a broadly conceived Mrmulus is not monophyletic. Beardsley and Barker (2005) concentrated on providing a phylogenetic hypothesis for the Australian species, confirming Barker's $(1982,1986)$ view that the highly modified semiaquatic Australian-centered genera had close relationships with Mimulus in the Mimulinae (Wettstein 1891) or Mimuleae (Bentham \& Hooker 1876) of the traditional Scrophulariaceae. To that time these genera had been placed with other genera of small aquatics or semi-aquatics in the Gratioleae (Bentham \& Hooker 1876) or in subtrib. Limosellinae of the Gratioleae (Wettstein 1891); they were not listed close to Mimulus, Phryma and Mazus Lour., reflecting their obscure relationships. More recently, Fischer (2004) resurrected Trib. Microcarpaeeae Miq. (as "Microcarpeae") for such small, often aquatic or semi-aquatic plant groups of "uncertain placement in Digitaloideae" (as "Digitalioideae").

The genera Mazus Lour. (ca. 25-30 species) and Lancea J.D. Hook. \& T. Thomson (2 species) were weakly supported as forming a clade sister to Mimulus sensu lato in Beardsley and Olmstead (2002) and were tentatively included in the Phrymaceae at the rank of subfamily ("Mazoideae" ined.). Later studies have placed these two genera apart from Phrymaceae sensu stricto (Oxelman et al. 2005; Albach et al. 2009; Schäferhoff et al. 2010) and essentially agreed that the family is most appropriately constituted as treated here. Mazaceae, as now formally described (Reveal 2011), is available to include both Mazus and Lancea. Plants of the latter two genera, however, have bilamellate, sensitive stigmas like the Phrymaceae and Reveal's brief description of Mazaceae does not distinguish it morphologically from Phrymaceae. We are unable to find apomorphies to distinguish Phrymaceae, but it seems likely that further morphological study will corroborate the distinction between Mazaceae and Phrymaceae. The broader phylogenetic patterns underlying the taxonomy of the present treatment are derived primarily from molecular analyses, as also apparently with Reveal's implicit assumption.

## Phylogenetic relationships within Phrymaceae

Molecular-phylogenetic studies in the Phrymaceae over the last decade, notably by Beardsley and Olmstead (2002), Beardsley et al. (2004), and Beardsley and Barker (2005), are summarized in a phylogeny of the family shown in Figure 1. This diagram shows that species of Phrymaceae are divided into four major clades, denoted as Clade A, the "Australasian-Old World lineage," Clade B, the monotypic Phryma (its phylogenetic position not well-resolved), and Clades C and D, constituting an "American-Asian lineage." The phylogenetic diagram is based on a subset of species in most taxa. To complete a comprehensive taxonomic account of the family, additional taxa have been interpolated based on morphological features. We note under the genera and infrageneric taxa where there are doubts about traditional infrageneric placement of species.

The "Australasian-Old World lineage" includes 23 named species (with about 17 yet to be named; Table 1) from Australia, New Zealand, southeastern Asia, eastern North America, India, Madagascar, and South Africa. In the earliest divergence within this lineage, Mmulus sensu stricto, based on DNA sequences from the type M. ringens, M. alatus and M. gracills is sister to a lineage that includes Australian-centered genera. The six genera are these: Elacholoma, Glossostigma, Microcarpaea, and Peplidium, which have long been recognized, and two groups that have been been previously placed in Mimulus in its traditionally broad circumscription - one of these groups is recognized here by the resurrected generic name Uvedalia R. Br., the other in the new genus Thyridia.


Figure 1 Summary/hypothesis of phylogenetic relationships of Phrymaceae essentially as defined by Oxelman et al (2005), pmmarily from data from Beardsley et al (2004) and Beardsley and Barker (2005), showing the generic and infrageneric classification adopted here Nodes with less than $50 \%$ bootstrap support are collapsed Thyradia has a $59 \%$ bootstrap value but that node was collapsed in the strict consensus tree, so it is collapsed here Bolded branches indicate greater than $80 \%$ bootstrap support The position of Phryma is based on a maximum likelhood tree inferred using combined data (Beardsley \& Olmstead 2002), alternatively, the ML tree resulting from the analyss of nrDNA ITS and ETS sequence data places Phryma at the base of the tree and sister to the remaing Phrymaceae A is the Australasian-Old World lineage, B-C-D the AmericanAstan lineage Genera are in bold italic and sections in nomal font. Sectional names in Diplacus and Erythranthe include those newly proposed here

The "American-Asian lineage" includes 165 species (Table 1) from North, Central, and South America, and southeast Asia. This lineage includes two genera from Mexico and Central America (1) Hemichaena, which is sister to the monotypic North American Mimetanthe and a resurrected North American genus Diplacus, and (2) Leucocarpus, which is sister to a group of North American and Asian species here placed in a resurrected genus Erythranthe. These clades, designated Clade C and Clade D, respectively in Figure 1, are interpretated as indicating two distinct radiations of Mimulus sensu lato in western North America..

Phryma is divided between eastern North America and eastern Asia. Molecular data provide two alternative relationships of the genus to the two major clades. A maximum likelihood tree inferred using combined data (Beardsley \& Olmstead 2002) places it as sister to the "American-Asian lineage." Alternatively, the ML tree resulting from the analysis of nrDNA ITS and ETS sequence data positions Phryma as sister to the remaining genera of Phrymaceae. In view of its morphological disparity, the latter position seems most probable for Phryma, which could ultimately return to its status as a monotypic family.

## Taxonomic options

The phylogenetic placement of Mimulus sensu stricto, separate from other species included in Mimulus in North America, Central America, South America, and Southeast Asia, leads to consideration of how the group might be best treated taxonomically and nomenclaturally to provide an informative and stable taxonomic framework. Four general options are outlined below, accompanied by our evaluation of each. Relative merits of taxonomic approaches to the same problem also have been discussed by Beardsley and Olmstead (2002) and Beardsley and Barker (2005).

1. A phenetic, polyphyletic or paraphyletic approach, enabling retention of current generic circumscriptions with minimal name changes for species.

Maintain the taxonomic and nomenclatural status quo, recognizing Mimulus either as polyphyletic following the Grant's (1924) broad circumscription of the genus, adopted also by later authors (represented by Mimulus sensu stricto, Diplacus and Erythranthe in Fig. 1), or as biphyletic (if Leucocarpus and Hemichaena are incorporated within Mimulus).

We prefer to recognize monophyletic taxa, especially because the clades are strongly supported by molecular data and most are morphologically distinctive. Where morphological differences appear to be minimal (see notes below on Mimulus s. str. vs. Erythranthe), we suspect that further study will provide better discrimination.
2. A phyletic approach with minimal species name changes, minimally informative at generic level.

Treat Phrymaceae as comprising the single genus Mimulus L. Uvedalia, Thyridia, Elacholoma partly, Hemichaena, and Lewcocarpus already have names in Mumulus. This would require fewer than 13 new combinations for species in Australian-centered genera and the one in Phryma.

Maximally enlarging Mimulus results in the loss of much useful information in the taxonomic hierarchy that recognizes the Australian-centered genera as well as Phryma, Leucocarpus, Hemichaena, Diplacus, Mimetanthe, and Erythranthe, each of which has apparent apomorphic features that justify treatment at generic rank.
3. A phyletic approach, highly informative at generic level, with minimal species name changes through conservation of Mimulus L. with a new type.

Retaining Mimulus for a large number of species under this scenario would require conserving the name Mimulus L. with a different type species chosen from one of the two American
generic-level groups Diplacus or Erythranthe. This would enable Phryma and the Australiancentered genera to be maintained at generic level. A new name (Cynorrhynchium) would apply to the species separated here as Mimulus sensu stricto.

The least nomenclaturally disruptive course under this scenario is to maintain the 164 species (excluding Phryma) of North America, Central America, South America, and Asia in a single genus with the name Mimulus, though it would require combining five genera in the American-Asian lineage recognized in the current account (Fig. 1) into Mimulus, requiring the exclusion of Leucocarpus, Mimetanthe and Hemichaena. This option was one suggested by Beardsley and Barker (2005) and was the rationale for formally bringing Leucocarpus and Hemichaena into Mrmulus (Nesom 2011a). Grant (1924) already had included one of the Hemıchaena species within Mimulus (as sect. Tropanthus).

A second alternative under this approach would be to maintain Leucocarpus, Mimetanthe, and Hemichaena, as well as Diplacus and Erythranthe, as distinct genera. The name Mimulus L. would be maintained for the larger group, Erythranthe, by conserving it with a new type chosen from among those 111 species, where the few species of Mmulus in the traditional sense that are significant in horticulture and genetic studies belong, as discussed below. About 35 further name changes would be required for recognition of Diplacus as a distinct genus, but this would need to happen whether or not the name Mmulus is conserved.

This option requires use of a different name for the group of eight species currently treated as Mimulus L, including M. ringens L. and M. alatus Ait., widespread species mostly in the eastern USA, as well as for others of Asia and the Southern Hemisphere. The option that prompts the fewest name changes at species rank submerges Hemichaena and Leucocarpus, both of which are justifiably treated as distinct genera, as are Diplacus and Erythranthe. Alternatively, by recognizing all American genera in the current account but conserving Mimulus with a new type chosen from within Erythranthe, about 43 name changes still would be required for recognition of Diplacus and to accomodate the species formerly of Mimulus sensu stricto.
4. A phyletic approach highly informative at generic level, retaining Mimulus with its Linnaean type, requiring many name changes for species of Diplacus and Erythranthe.

Treat Mimulus sensu stricto as seven species, maintaining the currently recognized Australian-centered genera (adding the new monotypic genus Thyridia and resurrected Uvedalia) and the Asian-American Phryma, Leucocarpus, Mimetanthe and Hemichaena. Under this option the remainder of the two American clades would be segregated at generic rank. The resurrected segregates (Erythranthe and Diplacus) are two credible genera, immediately discernable by a conspicuous feature of relative pedicel length (long-pedicellate vs. short-pedicellate flowers), and they have different placentation and modes of capsule dehiscence. Species of Hemichaena, Mimetanthe, Leucocarpus, and some species of the two resurrected genera already have species names in those genera, reflecting traditions of separation from Mimulus. About 136 new combinations are needed for American-Asian species; a much smaller set of combinations is required in Australasia.

This is the option followed here. It maximally incorporates and reflects phylogenetic information now available from recent molecular studies, particularly the recognition of two distinct major radiations in western North America and the relationship of the eastern USA species to the Asian-African-Australasian lineage. This option is essentially similar to the second alternative of option 3, but it requires more name changes (adding those necessary for Erythranthe). While requiring the greatest number of name changes, option 4 is based on simple priority and normal typification. It avoids a need to invoke conservation under the ICN,
thus retaining the original Linnaean genus and species (Mimulus L., Mimulus ringens L.) in their original conception, without the necessity of making new combinations in Cynorrhynchium J. Mitchell for M. ringens and others of Mimulus L. sensu stricto described by Bentham, Aiton, and Robert Brown. It also avoids the peculiar situation of recognizing one of the major groups of western American species (Diplacus) by a segregate name while maintaining the other group (Erythranthe) as Mimulus. Not required is a wait of six years for a formal decision on conservation by the IBC.

In relation to our decision to maintain Mmulus as a small genus, we note that a recent proposal (OKane et al. 1999) to conserve the name Lesquerella ( 88 species) for the genus formed by the merger of Lesquerella with the older Physaria (22 species) was rejected (Brummitt 2000). Eupatornum has been reduced from a huge genus (ca. 800 species) to one of about 40 species (King \& Robinson 1987), with a number of the segregates considerably larger than the remaining Eupatortum sensu stricto. On the other hand, names were recently conserved for Centaurea (Greuter et al. 2001; Brummitt 2004) and Acacia (Orchard \& Maslin 2005; Brummitt 2004; Luckow et al. 2005; McNeill et al. 2011) - but these involved potential name changes in 5 and 10 times more species than is the case in the Mtmulus example. Decisions on Acacta at two international congresses were made narrowly, and the controversy is not over, perhaps not even settled (Smith \& Figuieredo 2011; Brummitt 2011; Turland 2011). Where endorsement is sought for changing long-established names primarily on the grounds of reduced number of nomenclatural changes, future IBC nomenclatural sessions may not be so much in agreement with the nomenclatural committee's recommendations.

Other rationale for conserving Mimulus with a new type is not so strong. While popular horticultural species known as Mimulus appear exclusively to belong to American-centered generic elements that do not include the generic type, they are relatively few in number. In Erythranthe, they include the subshrubby E. cardinalis, herbaceous E. guttata, and the South American E. lutea and E. cuprea, and in Diplacus D. bigelovit and the woody D. aurantiacus and D. puniceus of sect. Diplacus). Genetic studies have focused intensely on species of Erythranthe, but relatively few species are involved - E. cardnalis and E. lewisu of sect. Erythranthe and E. guttata and E. nasuta plus a few others of sect. Simiola.

## Taxonomic comparisons and synonymy

Selected taxonomic works dealing at a family level or with the genus Mrmulus are summarized in Table 1, but detailed comparison of classifications is set out in the synonymies and misapplications presented in the Appendix to the taxonomic treatment. Synonymies are confined to key publications for each group. Thompson (2005) gives a complete synonymy for Diplacus. Details of synonymy for much of Erythranthe are presented in studies published simultaneously with the present one (Nesom) and submitted (Fraga). Revisions are in progress in the Australasian-Old World lineage (Barker).

Summary of current classification compared with those of the past
Circumscription of some genera recognized in this study has been consistent for more than 150 years, namely Microcarpaea, Peplidium, Glossostigma, Phryma, Mimetanthe, and Leucocarpus (see Table 1). These long perceived distinctions, confirmed by molecular data, are maintained in our classification.

Mimulus previously has been defined with an alternatively narrow or broad circumscription, but it has consistently included Mimulus sensu stricto (in the sense adopted here) and the Australasian Thyridia, Uvedalia, and Elacholoma prostrata. Erythranthe of Asia and the Americas has also been previously consistently placed in Mimulus, apart from Greene's (1885) inclusion of some species in Eunanus. This group (our Erythranthe) is Grant's (1924) subgenus Synplacus of Mmulus.
Table 1. Genera of Phrymaceae adopted, with numbers of named and unnamed species and new species combinations, together with the historic application of generic and infrageneric names to them in selected significant global and regional taxonomic works. Bracketed are their infrafamilial placements in Scrophulariaceae ("S."), including Brown's "sections." Works in grey are regional or not covering all representatives known at time.

| $\begin{aligned} & \hline \text { Our genera } \\ & 2012 \\ & \text { Phrymaceae } \\ & \text { (world) } \end{aligned}$ | New combinations | Total species (named, unnamed) | Brown 1810 Scrophularinae (Australia) | Bentham 1835 Scrophularineae (India; also world Mimulus) | Bentham 1846 <br> Scrophulariaceae; <br> Schauer 1847 <br> Phrymaceae (world) |  <br> Hooker 1876 <br> (May) <br> Scrophularineae, <br> Verbenaceae <br> (world) | $\begin{aligned} & \hline \text { A. Gray } \\ & \text { 1876a (Dec) } \\ & \overrightarrow{7} 1876 \mathrm{~b} \\ & \text { (Dec) } \\ & \text { Mimulus } \\ & \text { (N. Amer.) } \\ & \hline \end{aligned}$ | Greene 1885 $\rightarrow$ <br> Mimulus and allies <br> (N. Amer.) | $\begin{aligned} & \hline \text { A. Gray 1886a } \\ & \rightarrow \text { 1886b) } \\ & \text { Scrophulariaceae } \\ & \text { (N. Amer.) } \end{aligned}$ | Wettstein $1891 \rightarrow$ <br> 1897 <br> Scrophulariaceae; <br> Briquet 1895 <br> Phrymaceae <br> (world) | A.L. Grant 1924 Mimulus (Scroph.) (world) | Barker 1982, etc. <br> $\rightarrow$ Barker \& Harden 1999 Scrophulariaceae (Australasia) | Fischer 2004 <br> Scrophulariaceae <br> ("alternative <br> family") <br> (world; no spp. <br> listed) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \hline \text { Mimulus } \\ \text { s. str. } \end{gathered}$ | - | 7 (7, -) | Mimulus (S. Sect. II. <br> Stamina 4 antherifera) | Mimulus (S. Gratioleae) | Mimulus § Erecti, § Prostrati (S. . Antirhinideae Gratioleae Eugratioleae) | Mimulus sect. Eumimulus (S. Gratioleae Mimuleae) | Mimulus § Eumimulus | Mimulus § Eumimulus | Mimulus § <br> Eumimulus (S. - <br> Antirhhinideae - <br> Gratioleae) | Mimulus sect. Eumimulus (S. -Anthirhinoideae-GratioleaeMimulinae) | Mimulus (subg. <br> Synplacus) sect. <br> Eumimulus, sect. Paradanthus | Mimulus (S. - <br> Anthirrhinoideae- <br> Gratioleae- <br> Mimulinae) | Mimulus (S. - <br> "Phrymaceae" - <br> Mimuleae) |
| $\begin{aligned} & \text { Thyridia } \\ & \text { gen. nov. } \end{aligned}$ | 1 | $1(1,-)$ | Mimulus (S. - <br> Sect. II. <br> Stamina 4 <br> antherifera) | Mimulus (S. Gratioleae) | Mimulus § Prostrati (S. - <br> Antirhinideae - <br> Gratioleae - <br> Eugratioleae) | Mimulus sect. Eumimulus (S. Gratioleae Mimuleae) by citation "Benth. in DC." | - | - | - | Mimulus sect. Eumimulus (S. -Anthirthinoideae-GratioleaeMimulinae) | Mimulus (subg. <br> Synplacus) <br> sect. <br> Paradanthus | Mimutus (S. - <br> Anthirrhinoideae- <br> Gratioleae- <br> Mimulnae) | ? Mimulus \{S. "Phrymaceae" Mimuleae) |
| Microcarpaea | - | $2(2,-)$ | Microcarpaea <br> (S. - Sect. I. <br> Stamina duo <br> antherifera. <br> Capsula <br> bilocularis) | Microcarpaea (S. <br> - Gratioleae) | Microcarpaea (S. Rhinanthideae Buddieae) | Microcarpaea (S. - Gratioleae Limoselleae) | - | - | - | Microcarpaea (S. -Anthirthinoideae-GratioleaeLimosellinae) | - | Peplidium/ <br> Microcarpaea $\rightarrow$ <br> Microcarpaea (S. - <br> Anthirrhinoideae- <br> Gratioleae- <br> Mimulnae) | Microcarpaea (S. "Phrymaceae" Microcarpeae) |
| Uvedalia | 1 | $4(2,2)$ | Uvedalia (S. Sect. II. Stamina 4 antherifera) | Uvedalia (S.Gratioleae) | Mimulus § Erecti (S. - Antirrhinideae - Gratioleae Eugratioleae) | Mimulus sect. Eumimulus (S. Gratioleae Mimuleae) by citation "Benth. in DC." | - | - | - | Mimulus sect. Eumimulus (S. -Anthirhinoideae-GratioleaeMimulinae) | Mimulus (subg. Synplacus) sect. Eumimulus | Mimulus (S. - <br> Anthirrhinoideae- <br> Gratioleae- <br> Mimulnae) | ? Mimutus (S. "Phrymaceae" Mimuleae) |
| Peplidium |  | $\begin{array}{r} 14 \\ (4,10) \end{array}$ | - | $\begin{aligned} & \text { Peplidium(S. - } \\ & \text { Gratioleae) } \end{aligned}$ | Peplidium (S. Antirrhinideae Gratioleae Lindemieae) | Peplidium (S. Gratioleae Limoselleae) | - | - | - | Peplidium (S. -Anthirthinoideae-GratioleaeLimosellinae) |  | Peplidium/ <br> Microcarpaea $\rightarrow$ <br> Peplidium (S. - <br> Anthirrhinoideae- <br> Gratioleae- <br> Mimulnae) | Pepidium (S. "Phrymaceae" Microcarpeae) |
| Elacholoma (E. hornii) | 1 | $3(2,1)$ | - | $\cdot$ | $\cdot$ |  | - | - | $\cdot$ | - | $\cdot$ | Elacholoma (S. . Anthirrhinoideae-GratioleaeMimulnae) | Elacholoma (S. "Phrymaceae" Microcarpeae) |
| Elacholoma (E. prostrata) | - | $\begin{array}{r} \text { see } \\ \text { above } \end{array}$ | - | - | Mimulus § Erecti, § Prostrati (S. . Antirminideae Gratioleae Eugratioleae) | Mimulus sect. Eumimulus (S. Gratioleae Mimuleae) by citation "Benth. in DC." | - | - | - | Mimulus sect. Eummulus (S. -Anthirchinoideae-GratioleaeMimulinae), partly | Mimulus (subg. Synplacus) sect. Paradanthus | Mimulus (S. -Anthirrhinoideae-GratioleaeMimulinae) | Mimulus (S. . "Phrymaceae" Mimuleae) |

Table 1, continued

| Our genen 2012 <br> Phrymeces (world) | New conbr nations | Tolal species (numed, Unir named) | Brown 1910 Scrophularinse (Australia) | Bentham 1605 Scrophularinete (india; wiso world Mumerius) | Benithan 1848 \$crophuluriacene. Schaust $10-17$ Phrymaceag (world) | Benthimin <br> Hooker 1070 <br> (May) <br> Scrophulorinetes. <br> Verbensoeat <br> (wortd) | A. (owy 1070R(D.0) <br> $\rightarrow 1876 \mathrm{~b}$ <br> (Dac) alonvius <br> (N Amer) | Gueene 1805 $\rightarrow$ Minnulus and allios (N. Arner.) |  | Wellosein $1897 \rightarrow$ 1597 <br> Scrophulviactan: <br> Briquat 1895 <br> Phrymicese <br> (worid) | AL. Grant <br> 1924 <br> Numalus <br> (Scroph) <br> (wartd) | Barker 19a2, etc. <br> $\rightarrow$ Berkar 5 <br> Harden 19*9 <br> Scrophulanionas <br> (Austra) | Fischer 2004 Scrophuloriacese ("atternative family") (world: no spp (isslec) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| O10350stigma | * | 8 (3.3) | 1 | * | Gbswasigyma Tichotevna Batth [non (F) Slaude] \|8 - Firinaritibleve - Sithorpeae) | Gibssawhyria \{S <br> -Brandeas. <br> Incrabloas) |  |  | * | Olaspstigna \|3. <br> Anthotrinateses <br> (Grantas: <br> Limoseinnas) | \% | Glossosigyma [5] - <br> Avtiritmontane: <br> Quatiolose <br> Mmulnae) | Giossowdyres (S - <br> "Ptrymaceas" - <br> Mkrocanpere) |
| Phryme | - | 1(1,-*) | . | * | Pinme (Phyanaceve) | Pryyma (V)bibnacesa Phyraile | , | - | Phryind (Yetbonacalas) | Fhoma (Phrymaceao) |  | - | "Ftrymacones' in nole no intal phosneub |
| Henuchashis | * | $5(6.9)$ | - | - | Dpesusus Leucocarmis (S Anilrinindesto Cheoneas) | Hemelvaria (s Chelonone) | " |  | * | Sorendiv: $\rightarrow$ Bericherela, Hemcheons Monules 006 Dphect (S Nontinonemes. Crebnane) | Eloninhtis, <br> Mrowts <br> (30) <br> Soneoguacus) <br> and <br> riopanitan | - | Homuchaena (sym Berentho. <br>  <br> 'Frymnecese - <br> Levederiposes |
| Menathande (M. plosa) | - | 1(1..) | - | $\cdots$ | Horpastos Momulodet (S . Anibrinidose Onitiolose Eudramean | Mrowisa baci Mmutordes is Gallobee Mimuctap) | Montin \& Mriohades | Mrouks if Monutades $\rightarrow$ Mimsainthe | Mineies of Mumindos (S Ansirhinisoos : Ontioceo) |  AthatneideasGrmions: Hoppothinie) | Mansterifice | - | Minviantio is = "P年ymacae" Mimulsac) |
| Diplicus | 34 | $\begin{array}{r} 46 \\ (46,-) \end{array}$ | - | Mradols. Brablonae) | Dphacus ElTMIL Mracius f Spedossi 15-Arlutinadede - BratcloneEvgrabione) | Mrruba gact Enarius, soof baynous ( $8=$ Gratideet Mruveae) | Anmoter E Ename Goyhcos abso SOenoe | Dplicus, Emens lonat Onnoce, Ennevis. Mhulastuant | Munules <br> 5 Opiscus. <br> 5 Einatues <br> ato 8 O Croen. <br> 5 3 Mralastion <br> (S - Antuhnt <br> deae - (Analioneme | Simuis peat Dplisus seet Cences seot Euntus tor Kenulastiva (s Artuntincideat(iralobut Meruhae) | Mncins <br> faby <br> Schazadacus) <br> 304 <br> Eunaws <br> 806 Oinos. <br> sact <br> Droctas <br> sect Mand <br> lashusn act. <br> Patudoence | - | Manciks (S. "Prymuocae" Nimulose) |
| Leucoowpus | - | 1(1.--) | . | $\cdots$ | Lanocarave ( $\$$ Aritrthnidean Cheogene | Lennocarpes is Chelmane) |  | 1 | $\cdots$ | bancocrpus is. Altatimonicen Colloneae | Luzcompno | - | Lavecmpus (S - <br> "Ptrymiocies" - <br> Leucosappase) |
| Enythrantion | 104 | $\begin{array}{r} 1111 \\ (111,-) \end{array}$ |  | Mrrave/S Brimbocy theow | Morubus Spocioelis 8 tener/(S. Anterhnones-GrobevedeEvgrationene | Norutes spor Eyrmoter (S Gratione Mimuena) | Writules Elammuite | Evawni sect Eunenas Myuike (5 Eyurratio. 8 Snapates) | Munies Eurmiutig 18 Anlutiniseas Oniticees) | Momiles Bect Enaryatios is Antritincideas Grainent Mrrebite) | AMmubo <br> leuby <br> Sypdarus) <br> sede <br> Eryflimitic. <br> soct <br> Sorankes, <br> act <br> Ayadratis |  | Mouks (S "Preymoceas" Mimulase) |
| Toual | 139 | $\begin{array}{r} 138 \\ (188,4) \\ \hline \end{array}$ |  |  |  |  |  |  |  |  |  |  |  |

Our classification diverges most radically in the two largest genera, Diplacus and Erythranthe. Diplacus has been subject to varied interpretations, ranging from an infrageneric group within Mimulhis to 2-4 groups sometimes recognized within a broader Mimulus, at other times in major part recognized as three genera - a narrower Mimulus, Diplacus, and Eunanus Benth. Diplacus corresponds largely to Grant's (1924) subgenus Schizoplacus of Mimulus. Erythranthe has generally been narrowly circumscribed as the group of mostly red-flowered species including Mimulus cardinalis and its close relatives.

Hemichaena historically has been poorly known and sometimes included in Mimulus. The genus Berendttella was merged with it by Thieret (1972b). Apart from Berendtella, only two other genera described in the past 150 years are not recognized here: Eunanus Benth. (1846) in its original concept only, which is our section of that name in Diplacus, and Tricholoma Benth, here merged into Glossosttgma.

At a family level Phryma and Elacholoma have been doubtfully placed since their discovery. The relationship of Phryma with Mimulus in the Scrophulariaceae was established by recent molecular study (Beardsley \& Olmstead 2002), that of Elacholoma with the work of Barker (1982).

In terms of tribal placements of genera in Scrophulariaceae, Mimulus and its sometimes recognized generic relatives Uvedalia, Mimetanthe, Diplacus, and Eunamus have been consistently placed in the tribe Mimuleae (or Gratioleae subtribe Mimulinae). The genera Microcarpaea, Peplidium, and Glossostigma were traditionally separated tribally in the Scrophulariaceae in the Limoselleae (or Gratioleae subtrib. Limosellinae), a repository for often small semi-aquatics of obscure relationships, until the work of Barker (1982). Leucocarpus and Hemichaena were generally placed in the tribe Cheloneae until the work of Grant (1924).

## Rank and typification of genera and sections

Several species groups at sectional rank in Mimulus have been recognized in previous studies (e.g., Grant 1924; Pennell 1947; Vickery 1966a, 1966b, 1969, 1974, 1997; Beardsley 2003; Beardsley et al. 2004; Thompson 2005; Whittall et al. 2006) and are clearly typified. Some sections have been named but never typified and are provided here with lectotypes. Some of the species groups are provided here for the first time with formal names at sectional rank.

The § symbol was used for infrageneric groups in all the key historic works dealt with here, with varying clarity as to whether they had a consistent and specified rank. Infrageneric ranks were not or rarely clearly specified in the works of the $19^{\text {th }}$ Century. These names of uncertain rank are validly published under Rule 35.3 of the ICN and are available as basionyms for their use with specified rank.

Within Mmulus, Bentham (1846) named four species groups using plural adjectives preceded by the § symbol. In the genera Linaria (loc.cit., pp. 266-288) and Herpestts (loc.cit., pp. 392-401), Bentham explicitly designated sections using substantives and, using the same convention (the § symbol and plural adjective), delineated subsidiary species groups that could justifiably be regarded either as subsections or series. In the absence of clarity as to which rank Bentham intended, the names are lectotypified but maintained without rank.

Bentham and Hooker (1876) clearly specify that their groups were sections, but Gray (1876a, $1876 \mathrm{~b}, 1884,1886 \mathrm{a}, 1886 \mathrm{~b}$ ) and Greene (1885) rarely applied a rank term. When they used a term it was generally section and only in discusson. Gray uses the term section in notes in his second publication, and it was used by Lemmon in publishing Gray's sect. Mimulastrum (Gray 1884), but Gray (1886b) also used subgenera in discussion (describing Mimulus as "Polymorphous, but better
retained entire under five subgenera"). Greene indicated that his infrageneric groups were sections in discussion under only one of his genera, Eunanus. Grant (1924) clearly and consistently applied the ranks (subgenus and section) to each of her infrageneric taxa, a convention followed for example by Pennell (1935, 1947, 1951) and made mandatory from 1953 (ICN Art. 35).

## Species delimitation

The authors of this paper have adopted convergent approaches to species delimitation in studies of various parts of the family, basing their decisions on herbarium and field studies and specimen sampling of variation within and between populations and observations of sympatric and parapatric interactions among taxa.

The species of Diplacus have received recent detailed taxonomic study (McMinn 1951; Beeks 1962; Ezell 1970; Waayers 1996; Tulig 2000; Tulig \& Clark 2000; Thompson 2005; Tulig \& Nesom 2012). Within Diplacus sensu lato, the mostly shrubby or semi-shrubby entities (sect. Diplacus or sometimes segregated as the separate genus Diplacus sensu stricto) clearly arose from ancestors of annual duration. These entities have been treated taxonomically in widely varying ways; the concepts here are those of Tulig (2000; formally summarized by Tulig and Nesom (2012). Also within Diplacus, Eunanus has previously been segregrated as a genus but is treated here at sectional rank.

Species concepts in Erythranthe have remained more controversial or poorly understood, despite a treatment by Thompson (1993). The present overview is accompanied by detailed studies of the Mimulus moschatus alliance (sect. Mimulosma, sensu Nesom 2012b), the Mmulus guttatus group (sect. Simtolus, Nesom 2012a), and the Mimulus inconsptcuus group (sect. Achylopitheca, Nesom 2012c). A detailed study of the Mimulus palmeri lineage (Erythranthe sect. Paradantha sensu stricto) is being conducted by Fraga (2011 and in prep.).

For precise reference to species and species groups in taxonomic treatments for the Flora of North America North of Mexico (FNANM; Nesom with Fraga and Tulig, in prep.) as well as in further detailed studies in various species groups, the species of Diplacus and Erythranthe in the classification presented here are divided into groups that primarily reflect the phylogenetic hypothes is of Beardsley et al. (2004, Figs. $1 / 5$ and $2 / 4$ ). Species not included in the molecular analys is are interpolated in the classification on the basis of morphological features.

Pennell (1951) treated 107 species of Mimulus from the Pacific States, but other treatments, particularly including those by Thompson $(1993,2005)$, have placed a number of earlier-accepted taxa in synonymy, thus considerably reducing the number of species. Many recent studies of evolutionary processes in Mimulus, however, emphasize that reproductive isolating mechanisms may sometimes evolve relatively quickly among populations (e.g., Wu et al. 2007), and our own studies have confirmed that recognition of conservative numbers of species in some groups do not accurately represent the variation patterns of Mimulus sensu lato. In the Mimulus palmert lineage (here as Erythranthe sect. Paradantha) (Fraga 2011 and in prep.), studies in field and lab have shown that at least five species remain to be described. In the Mimulus guttatus group (here as Erythranthe sect. Simiola), the M. floribunchus group (here as Erythranthe sect. Mimulosma), and the M. moonsptcuus group (here as Erythranthe sect. Achlyopitheca), narrower species concepts of earlier studies by E.L. Greene, A.L. Grant, and F.W. Pennell have been corroborated in some cases (Nesom 2012b, 2012a, 2012c).

A revision of the the Australasian-centered genera and Mmulus sensu stricto (Barker in prep.) will adopt the generic concepts in this paper and will result in formal description of species denoted by informal phrase-names in Beardsley and Barker (2005), further unnamed species, confirmation of
generic placement, and erection of infrageneric taxa, particularly in Peplidum. To date genera and species have been described in a series of regional and state floras and associated publications (Barker 1981, 1982, 1983, 1986, 1990, 1992a, 1992b; Barker \& Harden 1992, 1999). Bean (1997, 2003) has also described single species in Microcarpaea and Mimulus sensu stricto. The species numbers for the Australasian-centered genera are those given in the account of Beardsley and Barker (2005).

Further work under way is investigating the basis of significant homoplasy in striking synapomporphies of the seed surface and reduction of stigma lobes and anther cells (cf. Beardsley \& Barker 2005).

## Ovary and fruit variation

The morphological distinction of Hemichaena, Mimetanthe, and Diplacus within Phrymaceae is remarkable - parietal placentation in this lineage (clade C) apparently is a specialization arising directly from axile placentation characteristic of the rest of the family (Fig. 2). These differences were described by Grant (1924) and Thompson (2005) and confirmed here. Presumably the development of parietal placentation has happened by (a) adnation of placentae to lateral walls, (b) loss of the septum, and (c) a shift in position of dehiscence. In distinguishing between Erythranthe and Diplacus, the difference in placentation provides an easily observed and unequivocal distinction.

In addition to the radical gynoecial modification in the Diplacus lineage, another has occurred in Phryma, which has a unilocular ovary (pseudo-monomerous, 2-carpellate with 1 carpel reduced developmentally) with a single ovule with basal placentation.

Two of the three main variants are shown in Figure 2.
A Placentation axile, placentae fused in the basal half or for the whole length, remaining fused in fruit dehiscence, capsule dehiscent to base along outer suture or both sutures

B1 Placentation parietal, placentae separate (sometimes appressed but not fused), remaining attached to the walls and spread apart in fruit dehiscence, capsule dehiscent along the distal half of the inner (upper) suture to only distally along the outer (lower) suture
B2 Placentation parietal, placentae fused and also remaining attached to the walls, not spread apart in fruit dehiscence, capsule dehiscent along distal third of both sutures
C Placentation basal, fruit indehiscent (achene)


Figure 2 Representative ovary cross-sections (diagrammatic) Phrymaceae, not including Phryma Arrows mark locations of dehiscence in capsules A Placentation axile Mimulus, Thyradia, Microcarpaea, Uvedaha, Pephdum, Elacholoma, Glossostigma, Leucocarpus, and Erythranthe B1 Placentation parietal Hemichaena and Diplacus B2 Placentation panetal (placentae fused at least proximally). Mimetanthe In Phryma, the ovary is unilocular and placentation of the single ovule is basal


Figure 3. Leaf venation in Phrymaceae. A. Mixed craspedodromous: (a) Phryma leptostachya. B. Weak brochidodromous: (b) Mimulus alatus, (c)Mimulus ringens. Examples are not at the same size scale.


Figure 4 Leaf venation in Phrymaceae Eucamptodromous (d) Hemuchaena fruticosa, (e) Leucocarpus perfoliatus, (f) Erythranhe bracteosa Examples are not at the same size scale


Figure 5. Leaf venation in Phrymaceae. Basal to near-basal acrodromous: (g) Erythranthe decora, (j) Erythranthe nelsonil (3-nerved). Suprabasal acrodromous to eucamptodromous: (h) Erythranthe dentata, (i) Erythranthe sinoalba. Examples are not at the same size scale.

## Leaf venation

Leaf venation in Phryma (Fig. 3a) seems best described as mixed craspedodromous (see Hickey 1973 for terms and definitions). It does not appear to be closely matched by any other Phrymaceae - rather it is more similar to the pattern often seen in mints and verbenas, where Phryma has traditionally been placed.

Venation is acrodromous in Erythranthe, Diplacus, and Mimetanthe and eucamptodromous (with more numerous suprabasal secondary veins, thus appearing pinnate) in Leucocarpus and Hemichaena, both patterns with the secondary veins arching convergently toward the apex and essentially remaining distinct their whole length. Acrodromous variants in Erythranthe and Diplacus have veins all basal (thus appearing palmate, Fig. 4e) or reduced to 1 -nerved (hyphodromous) or 3-nerved in species with smaller leaves and even in larger leaves, as in Fig. 4f. When some veins tend to be suprabasal, venation appears to vary between palmate and subpinnate to pinnate (Figs. $5 \mathrm{~g}, \mathrm{~h}, \mathrm{i}$ ). Even in the largest and longest leaves, secondary veins usually remain distinct, although an occasional connecting vein may develop.

The two North American species of Mimulus can be separated from Erythranthe and from Southern Hemisphere Mimulus sensu stricto by their weak brochidodromous leaf venation (Fig. 3b, c), with secondary veins weakly joining at the apices. It seems likely that this pattern is homologous with the essentially acrodromous/eucamptodromous pattern found in the rest of the family (except Phryma).

## Ecological terminology

The family occupies substrates that are permanently, seasonally, or briefly inundated in fresh water. Aquatic indicates that the plant begins and largely completes its life cycle in water. Semiaquatic is used here to mean that a plant occupies seasonally or ephemerally aquatic habitats but persists on dried-out substrates where it completes its life cycle. Terrestrial means that the plant is not dependent on an initial submerged phase of the life cycle but may occur on moist exposed substrate.

## Treatments of the genera and sections

Descriptions of genera are consistent within the main lineages but may differ slightly between them where measurements are lacking for features not traditionally used diagnostically. However, we have tried to be consistent in important diagnostic characters.

Lists of species included for each section are separated by geography using traditional widely used geographical regions, but the boundaries of the Flora of North America North of Mexico are specially adopted.

Genera and infrageneric groups of former classifications often have a very different circumscription from the genera and sections of our classification (see above). As well as citing the protologue reference, in many instances we also cite literature in which other taxonomic circumscriptions were adopted (see Appendix).

PHRYMACEAE Schauer in DC. Prod. 11: 520. 1847, nom. cons
Annual or perennial herbs, secondarily woody; iridoids absent, possibly sometimes present. Leaves opposite with margins entire or toothed, gland-dotted (punctate) or not. Flowers with hypogyous parts, in racemes, rarely solitary or in axillary clusters of 2-3; bracteoles absent. Calyx tubular, toothed, the tube ribbed or winged below teeth, rarely smooth. Corolla zygomorphic, rarely secondarily sub-actinomorphic, the limb with two upper lobes and 3 lower lobes or 5 equal lobes, rarely reduced to 3-4 lobes, sometimes with palate of variable form and color. Stamens 4, didynamous, rarely reduced to 2 , with straight filaments arising from corolla tube, the anthers subreniform, with 2 confluent cells, rarely reduced by fusion to 1 , with pollen trinucleate; $<10$ colpate; each colpus with 2 orae, or irregularly synaperturate ( $\pm$ spiraperturate, sect. Stmiola, see Argue 1980). Gynoecium: nectary sometimes present; carpels 2, many-ovulate developing equally, rarely 1 , single ovulate, the other vestigial, placentiation axile, less often parietal, rarely sub-basal, the style terminal, the stigma 2-lobed, with lobes laminate, often sensitive, rarely (Elacholoma hornit) linear and probably not sensitive), sometimes the adaxial lobe shorter, sometimes reduced to a vestige. Fruit a loculicidal capsule, dehiscent, rarely fracturing, rarely a berry, borne in a persistent calyx. Seeds small, many, rarely 1 (in Phryma), surface reticulate and sometimes ribbed or winged, smooth, or tessellate; endosperm present or almost absent, cotyledons convolute. $n=7-10,14,22$, etc. Native to the Americas, Asia, Africa, and Australasia.

Pollen, wood, chemical, seed anatomy, cotyledon, and chromosome details are taken from the family description in APG II (Stevens 2001 onwards).

In the main section, the statements of synonymy give only homotypic synonyms. In the Appendix, summaries of taxonomic usage of generic and infrageneric names in previous literature are provided.

## Key to the genera of Phrymaceae

1 Fruit a unilocular, 1 -seeded achene, ovary 2 -carpellate with 1 carpel reduced developmentally (pseudomonomerous)
8 Phryma

1. Fruit a bilocular, many-seeded capsule or (Leucocarpus) a berry, ovary 2 -carpellate
2 Stigma 1-lamellate with a vestige of a second flap on the adaxial side of the style, anthers 1-celled
3 Calyx not ribbed, 3-4-lobed, lobes unequal 7 Glossostigma
2. Calyx 5 -angled, 5 -lobed, lobes equal
4 Leaves linear, sessile, blades herbaceous, not fleshy, calyx not fleshy, lobes recurved, sharply acute, ciliolate, capsules loculicidal, seeds reticulate
3 Microcarpaea 4 Leaves ovate to obovate to broadly obovate or spathulate, short-petiolate, the blade fleshy, calyx fleshy, lobes erect, bluntly acute to obtuse, glabrous or ciliolate, capsules loculicidal or tardily dehiscent by fracturing irregularly, seeds reticulate or ribbed with the ribs longitudinally rugose and with a row of areolae on each side
5 Peplidium
3. Stigma 2-lamellate or 2-fid (sometmes one flap reduced), anthers 2-celled
4. Placentation parietal, fruits apically attenuate
[^4]7 Fruit walls densely pustulate-glandular, placentae fused at least in proximal half, pedicels longer
than the calyx, calyces with midveins low-rounded (not angled or winged) 10 Mimetanthe
7 Fruit walls glabrous or at least eglandular, placentae distinct, not fused, pedicels shorter than the
calyx or essentially absent, calyces with midveins angled or wing-angled. ............... 11. Diplacus
5. Placentation axile, fruts apically rounded to truncate

8 Fruit a berry
12 Leucocarpus
8 Fruit a loculidical capsule.

> 9 Corollas subactinomorphic, pedicels shorter than the calyx, plants prostrate, stigma 2-flapped or 2-terete 9 Corollas bilabiate (sometimes secondarily subactinomorphic), pedicels mostly usually distinctly longer than the calyx, plants prostrate to erect, stigma usually 2 -flapped

10 Leaves glandular-punctate, seeds ribbed, the ribs thick, longitudinally rugose, with a row of areolae along each side, plants sem1-aquatic, prostrate or rarely erect herbs, capsules thickwalled, tardily dehiscent ........................................................................... 2 Thyridia 10 Leaves not glandular-punctate, seeds reticulate or tessellate, lacking ribs, plants terrestrial to semi-aquatic, mostly erect herbs, capsules thin-walled, readily dehiscent

11 Leaves 1-nerved
4 Uvedalia
11 Leaves palmately veined to pinnately veined
12 Leaf venation weak brochidodromous (N. America) or basal acrodromous (S Hemısphere), base chromosome number, $\mathrm{x}=8,11,12$..................... 1 Mimulus 12 Leaf venation basal acrodromous to suprabasal-acrodromous, base chromosome number, $x=14,15,16$
13. Erythranthe
I. MIMULUS L., Sp. Pl. Sp. 2: 634. 1753. Type: Mimulus ringens L. The genus as originally described by Linnaeus included only a single species.
Monavia Adans., Fam. Plant. 2: 211. 1763, nom. illeg. Superfluous when published, intended by Adanson as a replacement name for Mimulus $L$., which was listed as a synonym. Not Mimulus of Plinius, which was treated by Adanson as the name for Rhinanthus of Linnaeus. Type: Mimulus ringens L .
Cynorrhynchtum J. Mitchell, Diss. Brevis. Princ. Bot. Zool. 29. 1769, nom. illeg. (includes type of an existing genus: ICN Art. 52.1). Neotype (designated here): Mtmulus ringens L. Although Pennell (1935, p. 112) wrote that the 1769 protologue "exactly repeated Mitchell's previous description in Acta Phys.-Med. Acad. Caes. Leop.-Francisc. Nat. Cur. 8: 207. 1748; only the genus was described, but by Linnaeus' reference in the Genera Plantarum [1754 (ed. 5), p. 283] to Cynorrhynchium as a synonym of Mimulus, Mitchell's plant was correctly identified with $M$. ringens L .," he did not effectively designate a neotype. The description by Linnaeus also incorporated much of the original by Mitchell.

Most of Mitchell's herbarium and types are in BM-Banks, with others in G, LINN, and OXF but a collection of Mimulus by Mitchell apparently is not among them.
Mimulus § Erecti Benth. in DC., Prodr. 10: 369. 1846, without indication of rank Lectotype (designated here): Mimulus ringens L. Bentham included, in part, M. ringens, M. alatus, M. madagascariensis, M. gracilis, M. pusillus, and M. uvedaliae in his taxon. There is no clear choice for lectotype; the species selected.here is one that Bentham had studied from adequate material.
Mimulus § Prostrati Benth. in DC., Prodr. 10: 373. 1846, without clear indication of rank. Lectotype (designated here): Mimulus orbicularis Wall. ex Benth. Bentham included M. orbicularis, M. repens, and M. prostratus. He noted that these comprised "Species Asiatica
vel Australasice." This taxon has not been adopted subsequently or assigned a definite rank, and in global works these species have been consistently treated together. There is no clear choice for lectotype; the species selected here is one that Bentham had studied from adequate material.
Mimulus subg. Synplacus A.L. Grant, Ann. Missouri Bot. Gard. 11: 126. 1925 ("1924"). Lectotype (designated here): Mimulus ringens $L$. Grant did not specify a type from among the four sections she included in subg. Synplacus. Typification of subg. Synplacus has not subsequently been made explicit and the subgenus has not been used to the exclusion of any sections or species among those with axile placentation. What species Grant may have had in mind as the type of subg. Synplacus is not clear - the choice here simply places the taxon as a synonym of Mimulus sensu stricto.

Perennial, rhizomatous, terrestrial or semi-aquatic. Vestiture: glabrous. Stems herbaceous, erect, 4-angled, winged in M. alatus. Leaves petiolate and thin-herbaceous (M. alatus) or fleshy (M. orbicularts), or sessile and semi-succulent, usually glandular-punctate, venation brochidodromous (M. alatus, M. ringens) or basal acrodromous (M. aquatills, M. strictus) margins toothed. Flowers single, axillary at medial to distal nodes. Fruiting pedicels shorter or longer than calyces. Fruiting calyces erect, tube midveins angled to winged-angled. Corollas blue to violet, purplish, light pink, nearly white, or (M. bracteosus) yellow, deciduous, limbs strongly bilabiate and sagitally compressed. Stamens 4, anthers 2-celled. Ovaries 2-locular; placentation axile; stigmas bilamellate. Fruits many-seeded capsules with blunt or rounded to slighty emarginate apices, loosely enclosed in persistent calyx, included, bilocular, loculicidally dehiscent to base along outer suture or both sutures; placentae fused in the basal half or for the whole length, remaining fused in fruit dehiscence. Seed surface reticulate. Chromosome numbers, $2 n=16,22,24$. Species 7 .
(FNANM)

1. Mimulus alatus Sol ex Alt, Hort Kew 23611789
2. Mimulus ringens L, Sp Pl 26341753
a. Mimulus ringens var ringens
b. Mimulus ringens var colpophilus Fernald, Rhodora 341191932
(Australia)
3. Mimulus gracilis R Br, Prodr Fl Nov Holland 4391810
4. Mimulus aquatilis A R Bean, Austrobaileya 65502003 (See comments below )
(Africa, Madagascar, India)
5. Mimulus strictus Benth, Scroph Ind 281835 India, Africa

Mimulus angustıfolius Hochst ex A Rich, Tent Fl Abyss 21191850
6. Mimulus madagascariensis Benth in DC, Prodr 103691846 Madagascar

Limnophila toremotdes Baker, J Bot 202211882
(ASIA)
7. Mimulus orbicularis Wall ex Benth, Scroph Ind, 291835 Vietnam Cambodia, Laos, Thailand, Myanmar See comments below, under Peplidum

Material of Mimulus gracilis from Australia differs from the dozen African and Indian specimens seen in its finer stems, finer roots, smaller, narrower, entire or almost entire leaves with a cuneate base, and its calyces densely pubescent inside and shortly lobed (Barker pers. obs.). This coincides with Pennell's (1943) observations. Pennell considered that the African-Indian plant might differ by its white or pale blue corollas from the blue-purple corollas of the Australian species, but it is based on limited observation. Pennell's resurrection of M. strictus for African and Indian
occurrences of M. gracilis has generally gone unrecognized but was followed by Yamazaki (1985) for Indo-China.

Only Mimulus ringens and M. gracilis have been subject to molecular analysis and they form the basis for the phyletic position of this group. The morphological and molecular attributes of the other species retained in Mimulus sensu stricto are being reviewed as they show quite different leaf and/or floral attributes. Mimulus madagascariensis is very different in leaf morphology, while the floating aquatic M. orbicularis has ecological and morphological aspects of Peplidnum (Barker pers. obs.). Bean (2003) hypothesized that M. aquatilis of northeastern Australia is closely related to M. gracilss, but while included here, its sessile, palmately veined leaves seem out of place in narrowly defined Mimulus (Nesom pers. obs.). A relationship of M. aquatills with Erythranthe sect. Sinopitheca might be suspected, but the Australian geography and punctate leaves of M. aquatilis are out of place in Erythranthe.

Despite the different chromosome numbers of the two American species (Mimulus ringens, $2 n=16,24 ; M$. alatus, $2 n=22$ ) and strikingly different morphology, these two have been reported to form natural hybrids (Windler et al. 1976).

## II. THYRIDIA W.R. Barker \& Beardsley, gen. nov. Type: Thyridia repens (R. Br.) W.R. Barker \& Beardsley

Validating diagnosis. A new genus differing from Mimulus sensu stricto by its ribbed seeds with a row of window-like areolae on each side of the ribs and from species of Pepldtum with similar seeds by its bilabiate corolla with closed palate, its 2-celled anthers, and its bilamellate stigma.

Annual or perennial, semi-aquatic herbs, not rhizomatous. Vestiture: glabrous. Stems usually prostrate, rooting at nodes and forming mats, when submerged erect to 20 cm high and/or with erect branches arising from prostrate parts. Leaves semi-succulent, ovate to ellipticoblanceolate, $2-6 \mathrm{~mm}$, hyphodromous (1-nerved), sessile to subsessile, often cordate, distinctly glandular-punctate, margins entire. Flowers single, axillary in sporadic nodes, subsessile to pedicellate. Fruiting pedicels short to long. Calyces $3-5 \mathrm{~mm}$ long, ribbed, lobes shortly deltate. Corollas blue-purple, with a white and yellow palate; tube-throats funnelform, 5-7(-10) mm , limbs bilabiate, mouth closed by palate. Stamens 4; anthers 2-celled. Ovaries 2-locular; placentation axile; stigma bilamellate. Fruits loculicidally dehiscent, thick-walled capsules. Seed surface thickribbed, the ribs with a row of areolae along each side. Chromosome number, $2 n=20$. Species 1 . Australia, New Zealand.

1. Thyridia repens ( R Br) WR Barker \& Beardsley, comb. nov. Mimulus repens R Br, Prodr Fl Nov. Holland 4321810.
Mimulus colensoi Kirk, Trans \& Proc New Zealand Inst 31791871
The generic name is derived from the Greek thyrıs (diminutive thyridios, denoting small door or window; Brown 1956), alluding to the row of window-like areolae along either side of the longitudinal ribs of the seed surface.

Thyridia has the floral parts of Mimulus sensu stricto, with a 5 ribbed tubular calyx, bilabiate corolla with a closed palate, didynamous anthers with 2 confluent cells, and a bilobed stigma. Separating it, however, are its gland-dotted fleshy leaves and its distinctive seed that has broad ribs with fine longitudinal lines on the outer face; these ribs have a row of areolae each side. These seed features are surely highly derived compared with the reticulate seed of Mimulus sensu stricto and Microcarpaea, Elacholoma, Glossostigma and elsewhere in the family. Similar seeds are also found
in some species of Peplidrum, including P. foecundum W.R. Barker and several unnamed species. Gland-dotted fleshy leaves are found in other unnamed Peplidtum species.
III. MICROCARPAEA R. Br., Prodr. Fl. Nov. Holland., 435. 1810. Type: Microcarpaea muscosa R. Br., nom. illeg. (=Microcarpaea minima (K.D. Koenig ex Retz.) Merrill), the only species in the protologue.

Semi-aquatic, annual, not rhizomatous, glabrous herbs. Vestiture: glabrous to sparsely eglandular hairy. Stems prostrate to procumbent, to over 10 cm long. Leaves sessile, hyphodromous or suprabasal acrodromous (3-nerved), not glandular-punctate, margins entire. Flowers axillary at medial to distal nodes, sessile to subsessile, rarely long pedicellate. Fruiting pedicels short to long. Calyces $2-3 \mathrm{~mm}$, 5 -ribbed, with 5 lobes spreading-reflexing at maturity. Corollas tiny, tube-throats cylindric, $1.5-2.3 \mathrm{~mm}$, barely or not at all exserted from calyx. Stamens 2; anthers 1-celled. Ovaries 2-locular; placentation axile; stigma unilamellate through reduction of adaxial lobe to a vestige. Fruits bilocular, loculicidally dehiscent, thin-walled capsules; septum splitting down midline, each part attached to the valve. Seed surface reticulate. Chromosome number unknown. Species 2.

Microcarpaea minima is widespread - occurring in China, Taiwan, India, Indonesia, Japan, Korea, Malaysia, Thailand, Vietnam, and Australia - while Microcarpaea agonss is endemic to Queensland, Australia.

1. Microcarpaea minima (K D. Koenig ex Retz) Merrıll, Phılipp J. Sci 7: 100. 1912 Paederota mmima K D Koenıg ex Retz, Obs Bot 5101788
Microcarpaea muscosa R Br, Prodr Fl Nov Holland 435 1810, nom illeg
2. Microcarpaea agonis A R Bean, Austroballeya 5: 149. 1997.
IV. UVEDALIA R. Br., Prodr., 440. 1810. Type: Uvedala linearis R. Br., the only species in the protologue.

Terrestrial, annual herbs, not rhizomatous. Vestiture: stems, pedicels, and calyces glabrous or sparsely to densely hispidulous. Stems erect, $5-30 \mathrm{~cm}$ tall. Leaves herbaceous to semi-succulent, linear-lanceolate, 5-11 mm, sessile, hyphodromous or basal acrodromous, not glandular-punctate, sometimes sparsely hispidulous, margins entire. Flowers single, axillary in distal nodes, pedicellate. Fruiting pedicels $15-40 \mathrm{~mm}$. Calyces semi-succulent, 5-7 mm, lobes shortly deltate-apiculate. Corollas yellow or blue with a yellow throat, sometimes red-dotted, tube-throats $4-7 \mathrm{~mm}$, limbs bilabiate, throat open or closed by palate. Stamens 4, anthers 2-celled. Ovaries 2-locular; placentation axile; stigma bilamellate. Fruits loculicidally dehiscent, thin-walled capsules. Seed surface tessellate. Chromosome number unknown. Species 2. Australia, ?Papua New Guinea, Timor.

1. Uvedalia linearis R Br , Prodr Fl Nov Holland, 4401810 Mimulus linearis ( R Br ) Wettst, Nat Pflanzenfam [Engl \& Prantl] 4(3b): 721891 [non Mimulus lmeans Benth 1835]
M. uvedaliae Benth in DC , Prodr 103691846
a. Uvedalia linearis var linearis

Mimulus uvedaliae var uvedaliae: Benth, Fl Austral 4, 4821869
b. Uvedalia linearis var lutea (Benth) WR Barker \& Beardsley, comb. nov. Mimulus uvedatiae var lutea Benth, Fl Austral 4, 4821869
M. debilis F. Muell, Trans Phil Soc Vict 3, 621859.
2. Uvedalia clementii (Domin) WR Barker \& Beardsley, comb. nov. Mimulus clementii Bibliot Bot Heft 89, 5951929.
The plant tentatively recognized by Beardsley and Barker (2005) as "Mimulus sp. Pilbara" (W.R. Barker 7335) is identified here as Uvedalia clementiz

This group of species has not been distinguished as a genus separate from Mimulus for almost 200 years. Uvedalia, well-defined on vegetative, floral and seed characters, is under revision by Barker and contains new species, two of which (Beardsley \& Barker 2005) he has given informal phrase names: U. sp. Open papillose throat (W.R. Barker 8004) and U. sp. Small white flower (W.R. Barker 8001).
V. PEPLIDIUM Delile, Fl. Égypte [Edn. 1]: 148. 1813 [Delile, Descr. Égypte, Hist. Nat. 2: 50. 148. 1813 ("1812"), nomen nudum]. TyPE: Peplidium humifusum Delile ( $=$ Peplidium maritimum (L.f.) Asch.), the only species in the protologue.

Terrestrial or semi-aquatic, perennial or annual herbs, not rhizomatous. Vestiture: glabrous or sparsely to densely eglandular hairy. Stems prostrate. Leaves semi-succulent, ovate to circular, 3-12 mm, sessile, subsessile or petiolate, the blade floating, fleshy, glandular-punctate, basal or suprabasal acrodromous or hyphodromous. Flowers $1-3$, axillary in medial to distal nodes, subsessile to pedicellate. Fruiting pedicels short to long. Calyces tubular, ribbed, ca. $3-5 \mathrm{~mm}$, lobes acute or sub-acute. Corollas white to blue-purple, tube-throats cylindric, angled upwards or erect, the limb, the mouth open, sometimes with a palate; limb spreading, prominent, rarely short and suberect, 2-lipped or sub-actinomorphic. Stamens 4 or 2, anthers 1-celled. Ovaries 2-locular; placentation axile; stigma unilamellate, through reduction of adaxial lobe to a vestige, usually irritable, covering the front of the corolla tube. Fruits bilocular, loculicidally dehiscent or tardily dehiscent capsules. Seed surface reticulate or thick-ribbed, the ribs with a row of areolae on each side, sometimes some ribs wing-like. Chromosome number unknown. Species 4. Mostly subtropical, arid and semi-arid Australia, with $P$. marttmum extending to North Africa, India.

1. Peplidium aithocheilum W R Barker, J Adel Bot Gard 13881990
2. Peplidium foecundum W R Barker, J Adel Bot Gard 15711992
3. Peplidium maritimum (L f) Asch, Betrag Fl Aethiop 2753061867 Hedyotis mantima L f, Suppl Pl 119 1781[1782]
P. humifusum Delle, Fl Egypte [Edn 1] 148 1813, [Delıle, Descr Egypte, Hist Nat 50. 1813 ("1812"), nomen nudum].
4. Peplidium muelleri Benth, Fl Austral 45001868

Peplidium shares with Microcarpaea and Glossostigma single-celled anthers and a unilamellate stigma derived by the reduction of the adaxial lamella to a small vestige. The single lamella is generally irritable except in the very small flowered species which from the low pollen-ovule ratios are apparently obligately autogamous (Barker 1982). Revisional studies (Barker in prep.) indicate at least 14 species, with a number of phrase names designated by Barker for interim use (Beardsley \& Barker 2005): P. sp. Tanami (W.R. Barker 2819), P. sp. Yelma (R.J. Chinnock 4620), P. sp. Harding Dam (W.R. Barker 7357), P. sp. Marla (W.R. Barker 3535), P. sp. Banjawarn (R...J. Chimnock 745), P. sp. Pilbara W.R. Barker 7285), P. sp. Recurved limb (W.R. Barker 7246) and P. sp. Closed lips (W.R. Barker 7324).
VI. ELACHOLOMA F. Muell. \& Tate ex F. Muell., Vict. Naturalist 12: 14. May 1895 [F. Muell. \& Tate ex Tate, Trans. Roy. Soc. S. Austral. 19: 79. July 1895, nomen nudum]. TyPE: Elacholoma hornit F. Muell. \& Tate, the only species in the protologue.

Terrestrial or semi-aquatic, annual herbs, not rhizomatous. Vestiture: leaves sparsely to densely minutely scabrous-hispidulous to hispid with eglandular hairs along the margins or all over. Stems prostrate. Leaves semi-succulent, linear-oblong to linear-oblanceolate, $3-12 \mathrm{~mm}$, sessile, not glandular-punctate, hyphodromous. Flowers single, axillary at medial to distal nodes, subsessile to pedicellate. Fruiting pedicels to ca. $10-15 \mathrm{~mm}$ long. Calyces tubular, $1-3 \mathrm{~mm}$., ribbed, lobes
deltoid. Corollas white or blue-purple, tube-throats cylindric, limb expanded or not. Stamens 4 or 2; anthers with 2 confluent cells. Ovaries 2-locular; placentation axile; stigma bilobed, the lobes lamellate or filiform. Fruits bilocular, loculicidally dehiscent capsules. Seed surface reticulate. Chromosome number unknown. Species 2. Arid Australia.

1. Elacholoma hornii F Muell \& Tate, Vict Naturalist 12141895
2. Elacholoma prostrata (Benth) WR Barker \& Beardsley, comb. nov. Mimulus prostratus Benth in DC, Prodr 103731846
M. pustlus Benth in DC, Prodr 103691846

The genus also contains an undescribed species. Elacholoma sp. Showy flowers (C.P. Campbell 1762) (fide Beardsley \& Barker 2005) will be formally described by W.R. Barker and M. Hislop now that generic placement is finalized.

The flowers of this genus furnish synapomporphies, notably the actinomorphic corolla and a forward-directed bilobed stigma centrally positioned in the corolla. Elacholoma prostrata retains the bilamellate stigma of Mimulus sensu stricto, Thyridia, and the American-Asian clade, but E. hornit and E. sp. Showy flowers differ by their filiform exserted stigmas, which are unique in Phrymaceae and across families now segregated from the traditional Scrophulariaceae. This presumably reflects a shift to lepidopteran pollination evident also in the long corolla tube in the latter species. These two species are better combined as a single monophyletic genus, emphasizing their close monophyletic relationship (Beardsley \& Barker 2005).
VII. GLOSSOSTIGMA Wight \& Arn., Nova Acta Phys.-Med. Acad. Caes. Leop.-Carol. Nat. Cur. 18: 355. 1836, nom. cons. TyPE: Glossostrgma spathulatum Arn., nom. illeg. (Limosella diandra L. = Glossostigma diandrum (L.) Kuntze), the only species in the protologue.
Tricholoma Benth. in DC., Prodr. 10: 426. 1846, nom. rejic. Type: T. elatmoides Benth. = G. elatnoides (Benth.) Benth. ex J.D. Hook, non Tricholoma (Fr.) Staude, nom. cons. (Fungi: Agaricaceae), the only species in the protologue.

Semi-aquatic or aquatic small to tiny, annual herbs, sometimes rhizomatous, sometimes forming mats. Vestiture: glabrous. Stems repent, on wet mud, often rooting at nodes. Leaves linear-oblong to spatulate, blades obovate to elliptic, fleshy, 2-8 mm, not glandular-punctate, hyphodromous, margins entire, base attentuate to subpetiolate. Flowers single, axillary, in medial to distal nodes, subsessile to pedicellate. Fruiting pedicels 0 to ca. 100 mm long. Calyces $1-2.5 \mathrm{~mm}$, zygomorphic, not ribbed or winged, lobes 3-4, unequal, obutse. Corollas white or blue- or redpurple, with a white or yellow mouth, tube-throats $1-1.5 \mathrm{~mm}$, stamens inserted near mouth, limb 2lipped or sub-rotate. Stamens 4 or 2, 1-celled. Ovaries 2-locular, placentation axile; stigma unilamellate through adaxial lobe reduced to vestige, usually irritable. Fruits bilocular, loculicidally dehiscent capsules, sometimes (G. cleistanthum) when plant aquatic thick-walled and indehiscent, becoming thin on drying of substrate. Seed surface reticulate. Chromosome number unknown. Species 5. Mainly Australia and New Zealand, with G. diandrum extended into India, Indochina, and apparently southern Africa (though it is only known from the type of G. diandrum purported to come from the Cape of Good Hope), and since 1992 recorded as naturalized in eastern North America (e.g., Les et al. 2006; G. cleistanthum).

1. Glossostigma cleistanthum W R Barker, J Adel Bot Gard 15. 721992
2. Glossostigma diandrum (L) Kuntze, Rev Gen Plant 1 461. 1891. Limosella diandrum L, Mant Plant 1. 2521767.
G. submersum Petrie, Trans \& Proc N Zeal Inst 234011891
3. Glossostgma drummondii Benth in DC, Prodr 10.426.1846. Limosella drummondit (Benth) F. Muell, Fragm Phyt Austral 6:104 1868
4. Glossostigma elatinoides (Benth ) Benth ex JD Hook, Bot Antarct Voy II (Fl Nov-Zel) 189. 1853 Tricholoma elatinoides Benth in DC. Prodr 104261846
5. Glossostigma trichodes F Muell, Vict Nat 91281893

Revisionary studies (Barker in prep.) define at least eight species, with two given phrase names: G. sp. Large flowered (W.R. Barker 7277) and G. Long stout pedicelled (W.R. Barker 2481) (cf. Beardsley \& Barker 2005).
VIII. PHRYMA L., Sp. Pl. 2: 601. 1753. Leptostachia Adans., Fam. 2: 201. 1763 (superfluous replacement name for Phryma L.). TyPE: Phryma leptostachya L., the sole species in the protologue.

Perennial, rhizomatous, terrestrial. Vestiture: glabrous to minutely puberulent, eglandular. Stems herbaceous, erect, 4 -angled. Leaves petiolate, herbaceous, not glandular-punctate venation brochidodromous. Flowers ca. 20-40, subopposite, sessile to subsessile in terminal and axillary spikes, bracts and bracteoles greatly reduced and inconspicuous. Fruiting pedicels absent or nearly so. Fruiting calyces strongly reflexed and appressed to the inflorescence axis, tube midveins ribbed. Corollas white to pinkish or reddish to violet, tardily marcescent, limbs bilabiate. Stamens 4, anthers 2 -celled. Ovaries 1-locular (pseudomonomerous, 2-carpellate with 1 carpel reduced developmentally); placentation basal; stigmas bilamellate. Fruits 1 -seeded achenes, enclosed in persistent calyx, unilocular, indehiscent. Seed surface not evident (the integument breaks down during fruit maturation, finally reduced to a cuticular layer within the mature fruit ). Chromosome number, $2 n=28$. Species 1 .

Whipple (1972) has a brief summary of the classification history of Phryma. It was first segregated at the rank of family by Schauer (1847), who emphasized the distinctive gynoecial features in distinguishing it from Verbenaceae. Fruit development suggested to Whipple that the uniovulate, uniloculate gynoecium is derived from a similar fruit type found in VerbenaceaeLantaneae - as in Phryma, the abaxial carpel is suppressed in Lantana, Lippia, and Stachytarpheta. She also observed that floral vascularization in Phryma and these three genera is basically alike.

## (FNANM, ASIA)

1. Phryma leptostachya L, Sp Pl 6011753

Phryma leptostachya var asiatnca H Hara, Enum. Spermatoph Jap 1: 297 1948. Phryma leptostachya subsp asiatica (H Hara) Kıtam, Acta Phytotax Geobot 1771957 Phryma asiatica (H Hara) O Deg \& I Deg, Phytologia 222121971.

Phryma includes populations disjunct between eastern North America and southeastern Asia. These have been variously treated as two races, varieties, or separate species (Thieret 1972; Whipple 1972; Lee et al. 1996; Cantino 2004; Deyuan \& Wen 2011). The disjunct plants show distinct molecular divergence but no morpho-geographic groups at the intercontinental level (Nie et al. 2006).
IX. HEMICHAENA Benth., Pl. Hartw., 78. 1841. TyPE: Hemichaena fruttcosa Benth. (=Mimulus fruticosus).
Mimulus sect. Tropanthus AL. Grant, Ann. Missouri Bot. Gard. 11: 324. 1925 ("1924"). Type: Mimulus treleasei A.L. Grant (= Mimulus levigatus), the only species in the protologue.
Berendtia A. Gray, Proc. Amer. Acad. Arts 7: 379. 1868 (non Goeppert 1845). Berendtrella Wettst. \& Harms in Engl. \& Prantl, Pflanzenfam. II.-IV: 459. 1899. [a replacement name for Berendtia A. Gray]. Lectotype (Thieret 1972b, p. 92): Berendtia ghiesbrechtil A. Gray (= Mimulus rugosus). Gray did not cite a type for his new genus, in which he included $B$. ghiesbrechtit, B. coultert, and B. rugosa.

Plants perennial, rhizomatous or woody-taprooted. Vestiture: viscid-pilose or glabrous. Stems woody, terete, erect or prostrate-creeping, terete. Leaves petiolate, herbaceous, not glandularpunctate, venation eucamptodromous. Flowers 1-5(-12) in bracteolate axillary cymes. Fruiting pedicels shorter to about equal or slightly longer than the calyces. Fruiting calyces erect, lowplicate. Corollas red or yellow, marcescent, limbs bilabiate. Stamens 4, anthers 2-celled. Ovaries 2-locular; placentation parietal; stigmas bilamellate. Fruits many-seeded capsules with rounded apices, stipitate-glandular, loosely enclosed in persistent calyx, included, bilocular, loculicidally dehiscent along both sutures to the base. Seed surface tesselate. Chromosome number unknown. Species 5.

## (Mexico, Central America)

1 Hemichaena coulteri (A Gray) Thieret, Fieldiana, Bot 34941972 Berendtia coulteri A Gray, Proc Amer Acad Arts 7, 3801868 Berendtiella coulteri (A Gray) Thieret, Ceiba 4 305 1955 Mimulus coultern (A Gray) G L Nesom, Phytoneuron 2011-28 7. 2011
2. Hemichaena fruticosa Benth, Pl Hartw, 781841 Leucocarpus fruticosus (Benth) Benth in DC, Prodr 10. 336. 1846 Mimulus fruticosus (Benth) G L Nesom, Phytoneuron 2011-28 52011.
3. Hemichaena levigata (B L Rob \& Greenm.) Thieret, Fieldiana, Bot 34:96 1972 Berendta levigata B L Rob \& Greenm, Proc Amer Acad Arts 32391897 Berendtiella levigata (B L Rob \& Greenm ) Thieret, Cerba 43051955 Mimulus levgatus (BL. Rob \& Greenm) G L Nesom, Phytoneuron 2011-28 62011.
Mimulus treleaser A L Grant, Ann Missourı Bot Gard 11 3251925 ("1924")
4. Hemichaena spinulosa (S Watson) Theret, Fieldana, Bot 3498.1972 Berendtia spinulosa S. Watson, Proc Amer Acad Arts 25: 1591890 Berendhella spinulosa (S Watson) Thieret, Ceiba 43051955 Mimulus spinulosus (S Watson) G L Nesom, Phytoneuron 2011-28 62011
5. Hemichaena rugosa (Benth) Thieret, Fieldiana, Bot 34961972 Diplacus rugosus Benth in DC, Prodr. 10. 3681846 Berendtua rugosa (Benth) A Gray, Proc Amer Acad Arts 73801868 Berendtella rugosa (Benth) Thieret, Cerba 43051955 Mimulus rugosus (Benth) GL Nesom, Phytoneuron 2011-28 7.2011

In uniting the 5 species of Berendtella and Hemichaena (all as Hemichaena), Thieret (1972b, p. 89) observed that "The genera Leucocarpus, Berendtiella, and Hemichaena possess floral characteristics that indicate their alliance with Mimulus and so have been transferred to the Gratioleae. These three genera are rather similar in certain vegetative features and in inflorescence, suggesting close affinity." Leucocarpus and Hemichaena were formally brought into Mimulus (Nesom 2011) with the intent of using Mimulhus as the name for the western North American and Central American species, an idea relinquished here.

The woody-stemmed, shrubby habit of Hemtchaena has developed in parallel in Diplacus sect. Diplacus, and the mix of red and yellow corolla colors also is encountered within other sections of Diplacus. The axillary cymoid inflorescences of Hemichaena also are produced by Leucocarpus perfoliatus. In the context of the phylogeny shown in Figure 1, these complex structures are hypothesized to be specialized and developed in parallel within Phrymaceae.
X. MIMETANTHE Greene, Bull. Calif. Acad. Sci. 1: 181. 1886[1885]. Type: Mimetanthe pilosa (Benth.) Greene
Herpestis sect. Mimuloides Benth. in DC., Prodr. 10: 394. 1846. Mimulus § Mimulordes (Benth.) Benth. \& J.D. Hook, Gen. Pl. 2(2): 947. 1876. Type: Herpestis pillosa Benth. [= Mmetanthe pilosa] Watson (1871) noted that the species had been recognized as Herpestis sect. Mimulordes but he did not formally transfer the section to Mimulus.

Annual, fibrous-rooted or taprooted, terrestrial. Vestiture: stems, leaves, and calyces prominently glandular-villous. Stems herbaceous, terete, erect. Leaves sessile, herbaceous, not
glandular-punctate 1 -veined (hyphodromous) or weakly 3 -veined (basal acrodromous). Flowers single, axillary, usually racemose. Fruiting pedicels about equal to the calyces in length or slightly longer. Fruiting calyces erect, becoming swollen-ovoid in fruit, midveins low-rounded (not angled or winged), lobes strongly unequal Corollas yellow with 2 purple spots on ventral lip, marcescent to quickly deciduous, limbs slightly to strongly bilabiate. Stamens 4, anthers 2-celled. Ovaries 2locular; placentation parietal; stigmas bilamellate. Fruits many-seeded capsules with attenuate apices, minutely and densely pustulate-glandular, loosely enclosed in persistent calyx, included or slightly exserted, bilocular, loculicidally dehiscent along the distal $1 / 3-1 / 2$ of both sutures, placentae fused and also remaining attached to the walls or sometimes dividing in the distal $1 / 3-1 / 2$, both valves in dehiscence spreading-reflexing in so far as separated. Seed surface reticulate, minutely glandular. Chromosome number apparently unknown. Species 1.

## (FNANM, MEXICO)

1. Mimetanthe pilosa (Benth) Greene, Bull Calıf Acad Sci 1: 1811885 Herpestis pilosa Benth, Companion Bot Mag 2 571836 Mimulus pilosus (Benth) S Watson, Bot 40th Parallel, 2251871
Mimulus exilis Durand \& Hilg, Pl Heermannianae 43. 1854 [Nov 1854], J. Acad Nat Sci Philadelphia, n.s, 343 May 1855

This species has been segregated in the past as the monotypic genus Mimetanthe Greene and has been treated as such by Grant (1924) and other botanists (e.g., Holmgren 1984) but not by Pennell (1951), Munz (1959), or Thompson (1993, 2005). Bentham originally described Mimulus pilosus in the genus Herpestis Gaertn. (1807), but Herpestis is now regarded as a synonym of Bacopa Aubl.

Parietal placentation and apically attenuate fruits without prismatic or angled walls are synapomorphic within Diplacus. As a result the species could justifiably be included within Diplacus as sister to the rest of the genus. The decision to maintain it as a separate genus is subjective, but the species has unique specializations in pollen morphology (Argue 1980, 1984) and floral morphology that have been emphasized by previous botanists; the fusion of its parietal placentae is another specialization apparently not encountered in any species of Diplacus. Gray $(1886$, p. 279 ) noted this: "Annual, with corolla of Eummulus, capsule with the divided placentae of Eunanus, but the calyx campanulate and 5 -cleft; its tube not prismatic nor even carinate-angled, but almost nerveless; its lobes plane."

Greene (1885, p. 122) included the species within Mimulus, describing it thus: "A soft-hairy, pale-green, Californian annual, uniting the characters partly of Herpestis and partly of Eunanus, with a habit which is not that of either of those genera, nor yet of Mimulus. Very likely it were better disposed of as a generic type, as was long ago suggested, but not carried into effect, by Durand \& Hilgard." Very shortly thereafter, Greene (1885) formally segregated it as Mimetanthe, with these comments (p. 181): "The peculiar dehiscence, with the singular bending back of the valves, will hardly be observable in herbarium specimens, which are almost always too young to show it; but in autumn or midwinter, when the foliage and calyces are decayed, and the capsules alone persist upon the dead stems and branches, this character becomes conspicuous."

The isolated taxonomic position of this species is recognized here but it is clear that further morphological and molecular work needs to be done to confirm its sister relationship to Diplacus. The current position is not supported based on the analysis presented in Beadsley et al. (2004, Fig. 1).
XI. DIPLACUS Nutt., Ann. Nat. Hist. 1: 137. 1838. Mimulus [unranked] Diplacus (Nutt.) A. Gray, Proc. Amer. Acad. Arts 11: 97. 1876 [Mimulus sect. Diplacus (Nutt.) Benth. \& J.D. Hook, Gen. Pl. 2(2): 947. 1876]. LectotyPe (Thompson 2005): Diplacus glutinosus (J.C.Wendl.) Nutt. [= Diplacus aurantracus].

Mimulus subg. Schizoplacus A.L. Grant, Ann. Missouri Bot. Gard. 11: 268. 1925 ("1924"). Lectotype: (Thompson 2005, p. 26): Mimulus nanus Hook. \& Arn. [= Diplacus nanus].

Annual (fibrous-rooted or slender taprooted) or perennial (taprooted or, in one species, rhizomatous), terrestrial. Vestiture: puberulent-glandular to villous-glandular or puberulent to softly hirsute or villous and non-glandular, less commonly glabrous. Stems herbaceous or woody, erect, terete. Leaves petiolate or sessile, herbaceous, not glandular-punctate, venation acrodromous (suprabasal basal) to hyphodromous. Flowers single, axillary, often appearing sessile from the basal rosette because of foreshortened nodes. Fruiting pedicels absent or at least usually distinctly shorter than the calyx. Fruiting calyces erect, tube midveins plicate-raised or angle- to rounded-ridged. Corollas yellow, white, white with purple patterning, pink, purple to light violet, red, orange, marcescent (sometimes deciduous in D. pictus and D. mohavensis), limbs bilabiate to regular. Stamens 4, anthers 2-celled. Ovaries 2-locular; placentation parietal; stigmas bilamellate. Fruits many-seeded capsules with attenuate apices, glabrous, loosely enclosed in persistent calyx, often slightly exserted, bilocular, loculicidally dehiscent (initially indehiscent in sect. Oenoe) along the distal half of the inner (upper) suture to only distally along the outer (lower) suture. Seed surface reticulate to nearly smooth. Chromosome numbers $2 n=16,18,20$. Species 46.

The attenuate tips of the capsule valves are usually exserted from the calyx and often form a chute-like passage for the seeds during dispersal. In sect. Oenoe, the initially indehiscent fruits open along the inner suture after being wet by fall or winter rains, long after senescence.

## 1. Diplacus sect. Eremimimulus G.L. Nesom \& N.S. Fraga, sect. nov. Type: Diplacus parryt (A. Gray) G.L. Nesom \& N.S. Fraga

Annual (D. parryi) or perennial (D. rupicola), puberulent to softly hirsute, glandular; leaves mostly basal or near-basal on short stems, blades narrowly lanceolate to lanceolate or oblanceolate, pinnately to subpinnately veined; flowers usually 2 per node; pedicels usually shorter than calyces, sometimes nearly subequal; corollas rotate and nearly radial, persistent, lobes whitish to pink ( $D$. rupicola) or purple to yellow ( $D$. parryi) with yellow ventral ridges; anthers glabrous; styles glandular pubescent, stigma lobes equal; fruits dehiscent (tardily in D. rupicola). $x=8$.

```
(FNANM)
1. Diplacus parryi (A Gray) GL Nesom \& NS Fraga, comb. nov. Mimulus parryi A Gray, Proc Amer. Acad Arts 11:97 1876
2 Diplacus rupicola (Coville \& A L Grant) G L Nesom \& N S Fraga, comb. nov. Mimulus rupicola Coville \& AL Grant, J Wash Acad Scı 26991936
Diplacus rupicola is endemic to Inyo County, California; D. parryi also occurs there as well as in nearby regions of Nevada, Utah, and Arizona.
```

These two species are placed as sister species ( $100 \%$ bootstrap confidence) in the molecular analysis by Beardsley et al. (2004) and very weakly supported as sister to the rest of the genus Diplacus (Fig. 1). They differ in a number of striking features, as in the couplet below, but both are species of Mojave Desert habitats and both have unequal stigma lobes, 2-flowered nodes, and a base chromosome number of $x=8$. Unequal stigma lobes and 2 -flowered nodes occur in other species of Diplacus and $\mathrm{x}=8$ apparently is plesiomorphic, but their association in these two species may indicate a degree of genetic coherence.

[^5]Because of its indurate capsule walls and hypogeous hypocotyls, Diplacus rupicola was included by Thompson (2005) in sect. Oenoe (among the species treated here as sect. Cleisanthus), but those species have 1 -flowered nodes and a base chromosome number of $\mathrm{x}=9$. Diplacus parryi was included in sect. Eunanus because of its 2 -flowered nodes and fragile-walled, promptly dehiscent capsules.

Treatment here of Diplacus rupicola and D. parryi as sister species weights the molecular data. Additional sequence data, however, or further morphological study presumably might support the positioning of D. parry in sect. Eunanus (or at least not contradict it), leaving Erimmmtmulus as a monotypic section. Alternatively, unequivocal synapomorphies might be found to link the two. The hypothesis of close relationship tentatively adopted here appeals to further study. The name of the section (from Greek, eremos, desert, solitude) alludes to the habitat of the species and to their juxtaposed-but-isolated taxonomic position.
2. Diplacus sect. Eunanus (Benth.) G.L. Nesom \& N.S. Fraga, comb. nov. Eunanus Benth. in DC., Prodr. 10: 374. 1846. Mimulus § Eunanus (Benth.) A. Gray, Proc. Amer. Acad. Arts 11: 95. 1876. Lectotype (Thompson 2005): Eunanus tolmıeı Benth. [ $=$ Diplacus nanus (Hook. \& Arn.) G.L. Nesom \& N.S. Fraga]
Mimulus sect. Mimulastrum A. Gray in Lemmon, Bot. Gaz. (Crawfordsville) 9: 141. 1884. Eunanus § Mimulastrum (A. Gray) Greene, Bull. Calif. Acad. Sci. 1: 105. 1885. Type: Mimulus mohavensis Lemmon. Gray (in Lemmon) included only M. mohavensis in the new section. See comments below under sect. Pseudonoe.

Annual, puberulent-glandular; leaf blades narrowly elliptic, lanceolate, oblanceolate or oblong-obovate; flowers 1 per node ( $D$. fremontii, D. rattanii, D. visctdus) or 2 per node; corollas yellow (D. brevipes, D. whitneyi, D. mephiticus) or purple to light violet, bilabiate, persistent, throat not strongly developed; styles glandular-pubescent; stigma lobes subequal to unequal; capsules fragile, symmetric at base, usually promptly dehiscent along both sutures distally (if not promptly dehiscent then straight and nearly fusiform). $x=8$.

[^6]Mmilus subsecundus A Gray, Syn Fl N Amer (ed 2) 2(1): 445 1886. Eunanus subsecundus (A Gray) Greene, Pittonia 1 371887
9. Diplacus jepsonii (A L. Grant) G L Nesom, comb. nov. Mimulus jepsonit A L. Grant, Ann Missourı Bot Gard 11 306. 1925 ("1924")
10 Diplacus johnstonii (A L Grant) G L Nesom, comb. nov. Mimulus johnstomit A L Grant, Ann Missourı Bot Gard 11 280. 1925 ("1924")
11 Diplacus layneae (Greene) G L Nesom, comb. nov. Eunanus layneae Greene, Bull Calif Acad Scı 1 104 1885. Mimulus loyneae (Greene) Jeps , Fl W Calif 405. 1901
12 Diplacus leptaleus (A Gray) GL Nesom, comb. nov. Mimulus leptaleus A Gray, Proc Amer Acad Arts 11961876 Eunanus leptateus (A Gray) Greene, Bull Callf Acad Sc1 l 1011885
13 Diplacus mephiticus (Greene) G.L Nesom, comb. nov. Mimulus mephiticus Greene, Bull Calif Acad Sci 1:9 1884 Eunanus mephttcus (Greene) Greene, Bull Calif Acad Sc1 11021885
Mimulus coccineus Congdon, Erythea 71871900
Mimulus angustifolius (Greene) A L. Grant, Ann Missour1 Bot Gard 11.2981925 ("1924").
Mimulus densus A L Grant, Ann Missouni Bot Gard 11: 2981925 ("1924")
14 Diplacus mohavensis (Lemmon) GL Nesom, comb. nov. Mimulus mohovensis Lemmon, Bot Gaz 9 142 1884. Eunanus mohavensts (Lemmon) Greene, Bull Calif Acad Sci 11061885

Diplacus mohavensis is similar to D. pictus in features of corolla morphology and color patterning, and the pair sometimes has been segregated as a ditypic Mimulus sect Mimulastrum (e g, Thompson 2005) Molecular data, however, indicate that D. mohavensis arose from within sect Eunanus It is distinct from other species of the section (and similar to D. pictus) in its radially symmetric, salverform-rotate corollas with an abrupt tube-throat transition and vein-patterned limb In D. mohavensis, the limb is purplish brown basally with red, irregularly patterned veins fading into a wide, whitish distal border, in D. pictus, the limb is all white and the vein patterning is more regular and not fading distally
15 Diplacus nanus (Hook \& Arn) G L Nesom, comb. nov. Mimulus namus Hook \& Arn, Bot Beechey Voy 3781839 Eunanus nanus (Hook \& Arn) Holz, Contr. US Natl Herb 3244 1895. Eunanus tolmiei Benth in DC Prodr was the name used by Bentham and Greene for this sp, Grant treated it as a syn Bentham and Green spelled it tolmiaet, but Bentham cited the collector as Tolmie

In the molecular phylogeny by Beardsley et al (2004), samples of Diplacus nanus are placed in three disparate positions within the cladistic topology of the section
16 Diplacus ovatus (A Gray) G.L Nesom, Phytoneuron 2012-47. 3.2012 Mimulus bigelovit A Gray var ovatus A Gray, Syn Fl N Amer (ed 2) 2(1) 4451886 Mimulus ovatus (A Gray) N H Holmgren, Intermount Fl 4. 3621984
17 Diplacus rattanii (A Gray) GL Nesom, comb. nov. Mimulus rattantt A Gray, Proc. Amer Acad Arts 203071885 Eunanus rattanit (A Gray) Greene, Bull Calif Acad Scı 1 1051885
Mimulus decurtatus AL. Grant, Ann Missour1 Bot Gard 112881925 ("1924") Mimulus rattani var. decurtatus (A L Grant) Pennell, Notul Nat Acad Nat. Sci Philadelphia 23611951.
18 Diplacus vandenbergensis (D M Thomps) GL. Nesom, Phytoneuron 2012-47 22012 Mimulus fremonti var vandenbergensts D M Thomps, Syst Bot Monogr 75. 1342005
19 Diplacus viscidus (Congdon) G L. Nesom, comb. nov. Mimulus viscidus Congdon, Erythea 71871900 Mimulus fremontit var viscidus (Congdon) Jeps, Man Fl Pl Calif 9241925 Mimulus subsecundus var viscidus (Congdon) A L Grant, Ann Missouri Bot Gard 112861925 ("1924")
20 Diplacus whitneyi (A Gray) G L. Nesom, comb. nov. Mimulus whtneyt A Gray, Syn Fl N Amer 2(1, Suppl) 4451886
Eunanus bicolor A Gray, Proc Amer Acad Arts 7.3811868 Mimulus nanus var bicolor (A Gray) A Gray, Bot California 1:564 1876

The status of some of these taxa, including synonyms, is discussed by Nesom (2012f).
3. Diplacus sect. Pseudoenoe (A.L. Grant) G.L. Nesom \& N.S. Fraga, comb. nov. Mimulus sect. Pseudoenoe AL. Grant, Ann. Missouri Bot. Gard. 11: 323. 1925 ["1924"]. Type: Mimulus pictus (Curran ex Greene) A. Gray [= Diplacus pictus]. Gray (in Lemmon 1884) included only M. mohavensis in sect. Mimulastrum but Greene (1885) added M. pictus (as Eunanus pictus) to the section, and Gray (1886) also included both species in sect. Mimulastrum. With

Grant's (1924) creation of sect. Pseudoenoe for M. pictus, each species thus constituted a monotypic section in her treatment.

Annual; pedicels shorter than calyces; corollas radially symmetric, salverform, throat not strongly developed, lobes white with an intricate weblike purple- or burgundy-veined pattern; lower stigma lobe 6-8 times longer than upper; styles glandular pubescent; flowers sometimes cleistogamous. $\mathrm{x}=8$.

## (FNANM)

1. Diplacus pictus (Curran ex Greene) G L Nesom, comb. nov. Eunanus pictus Curran ex Greene, Bull Calif Acad Sci 1: 106 1885. Mmulus pictus (Curran ex Greene) A Gray, Syn Fl N Amer (ed 2) 2(1, Suppl) 4461886

On occasions Diplacus pictus and D. mohavensts have been treated together as Mimulus sect. Mimulastrum (A. Gray) Wettst. (M. mohavensis the type) (e.g., Wettstein 1891, Thompson 2005). Grant (1924) separated them as monotypic sections. Despite their remarkable similarity in corolla morphology and color patterning, molecular data show D. mohavensis to be separately derived from within sect. Eunanus. Argue (1980) found that D. pictus has microreticulate tricolpate pollen grains while those of D. mohavenszs are perforate tricolpate.
4. Diplacus sect. Oenoe (A. Gray) G.L. Nesom \& N.S. Fraga, comb. nov. Mimulus § Oenoe A. Gray in W.H. Brewer, S. Watson, and A. Gray, Bot. California (ed. 1): 563. 1876. Eunanus sect. Oenoe (A. Gray) Greene, Bull. Calif. Acad. Sci 1: 98. 1885. Lectotype (Thompson 2005): Mimulus tritolor Hartweg ex Lindley [= Diplacus tricolor] Bentham (Pl. Hartw. 329. 1849) appears to suggest that, instead of within Eunanus, Eunanus douglasif would be better considered within Gray's genus Oenoe, but in 1849 the name Oenoe had not yet been published at any rank.
Mimulus sect. Microphyton Pennell, Proc. Acad. Nat. Sci. Philadelphia 99: 170. 1947. Type: Mimulus pygmaens A.L. Grant, the only species included in the protologue.

Annual, pedicels shorter than calyces; glandular-puberulent or (D. angustatus) villousnonglandular; leaves narrowly lanceolate to oblanceolate; corollas yellow (D. pygmaeus) or bicolored to tricolored, bilabiate to subbilabiate, broadly funnelform-rotate, tube-throats narrowly cylindric, much longer than the calyx to barely longer, persistent; anthers hairy; styles glandular-pubescent; capsules indurate, often basally asymmetric, indehiscent. $x=9,10$.

## (FNANM)

1. Diplacus angustatus (A Gray) G L Nesom, comb. nov. Eunanus coulter Harvey \& A Gray ex Bentham var angustatus A Gray, Proc Amer Acad Arts 73811868 Mimulus tricolor var angustatus (A Gray) A Gray, Proc Amer Acad Arts 11951876 Eunanus angustatus (A Gray) Greene, Bull Calif Acad Sci 1991885 Mimulus angustatus (A Gray) A Gray, Syn Fl N Amer (ed 2) 2(1, Suppl) 4431886
2 Diplacus pulchellus (Drew ex Greene) G L. Nesom, comb. nov. Eunanus pulchellus Drew ex Greene, Pittonia 21041890 Mimulus pulchellus (Drew ex Greene) AL Grant, Ann Missouri Bot Gard 11 3161925 ("1924")
2. Diplacus pygmaeus (AL Grant) G.L Nesom, comb. nov. Mimulus pygmaeus A L Grant, Ann Missouri Bot Gard 11 312. 1925 ("1924")
3. Diplacus tricolor (Hartweg ex Lindl) G L. Nesom, comb. nov. Mimulus tncolor Hartweg ex Lindl, J. Hort Soc London 4. 2221849 Eunanus tricolor (Hartweg ex Lindl) Greene, Bull Calif Acad Sci 1991885
Eunanus coulten Harvey \& A Gray ex Benth, Pl Hartw, 3291849

Thompson (2005, p. 29) noted that this group of species is characterized by subequal stigma lobes, linear cotyledons, hypogeous hypocotyls, and one flower per node and that they are restricted in habitat to vernally wet depressions or seepages (contrast with sect. Cleisanthus). Thompson (2005) included all ten species with indehiscent fruits in sect. Oenoe - these are divided here among sects. Oenoe and Cleisanthus. "The indehiscent fruits of sect. Oenoe readily open along the inner (upper) suture after fall or winter rains wet them, long after the plant has died" (p. 29).

Diplacus pygmaeus was segregated by Pennell as Mimilus sect. Microphyton on the basis of its highly reduced habit and the anthers of one pair smaller or lacking.

## 5. Diplacus sect. Diplacus

Perennial herbs from a woody caudex, subshrubs, or shrubs; leaf axils of main shoots often bearing tufts of narrower leaves; leaves often with revolute margins, commonly with a glutinous exudate; pedicels shorter than calyces; calyces prismatic $20-40 \mathrm{~mm}$ long; corolla persistent, $30-65$ mm long; capsules linear-oblong, investing, styles glandular pubescent. $\mathrm{x}=9$.

## (FNANM)

1 Diplacus aridus Abrams, Bull Torrey Bot Club 325401905 Mimulus aridus (Abrams) A L Grant, Ann Missour1 Bot Gard 11.3361925 ("1924")
2. Diplacus aurantiacus (Curtis) Jeps, Man Fl Pl Calif 919.1925 Mimulus auranttacus Curtis, Bot Mag 10 plate 354 1796, non M. aurantiacus Renıfo 1884, Diplacus glutmosus var aurantiacus (Curtis) Lindl, Paxt Fl Gard 3 pl 921851.
Diplacus glutmosus (J C Wendl) Nutt, Ann Nat Hist 11381838 Mimulus glutinosus J C Wendl, Bot Beob, 511798
3. Diplacus x australis (McMinn ex Munz) Tulig, Phytoneuron 2012-45 162012 Diplacus australis McMinn, Madroño 1158,60 , plate 121951 (as species), nom llleg (without Latin diagnosis) Mimulus aurantiacus subsp. austratis McMinn ex Munz, Aliso 4.981958 Diplacus aurantiacus subsp australis (McMinn ex Munz) Beeks ex Thorne, Aliso 9.1941978 . [= Diplacus longiflorus x D. puniceus?
4. Diplacus calycinus Eastw, Bot Gaz 412871906 Mimulus longiflorus var calycinus (Eastw) A L Grant, Ann Missourı Bot Gard 11 3311925 ("1924") Diplacus longiflorus var calycmus (Eastw) Jeps, Man Fl Pl Calif, 919. 1925 Mimulus longiflorus subsp calycinus (Eastw.) Munz, Aliso 499 1958
5 Diplacus clevelandii (Brandegee) Greene, Erythea 4221896 Mimulus clevelandu Brandegee, Gard \& Forest 8.134 , plate 20. 1895
6. Diplacus grandiflorus Groenland, Rev Hort [Paris] ser. 4, 6402 , fig 1361857 (not Diplacus grandiflorus Greene, 1890). Diplacus longiflonus var grandiflorus (Groenland) Jepson, Man Fl Pl Calif 919 1925. Mimulus brfidus Pennell, Proc Acad Nat Sci. Philadelphia 99.168 1947, nom nov (based on D. grandiflorus Groenland, blocked in Mimulus by M. grandflorus Howell $1901=$ Erythranthe guttata)
Diplacus glutnosus var grandflorus Lindl \& Paxton, Paxt Fl Gard 396 , plate 921852 Mmulus aurantiacus var grandiflorus (Lindl \& Paxton) D M Thompson, Monogr Syst Bot 751582005
Diplacus grandiflorus Greene, Pittonia 2. 156 1890, nom 1lleg (not Diplacus grandiflonus Groenland 1857)

7 Diplacus x linearis (Benth) Greene, Pittonia 21561890 (as species) Mimulus lineanis Benth, Scroph Ind, 27 1835. Mimulus glutinosus var linearts (Benth) A Gray, Proc Amer Acad Arts 1197. 1876 Mimulus longiflorus var Inearis (Benth) AL Grant, Ann Missourn Bot Gard 11 3341925 ["1924"] Diplacus longiflorus var Iinearis (Benth) McMinn, Man Calif, shrubs (ed 1) 4981939. [= Diplacus aurantiacus $\times$ D. calycmus?]
Mimulus bifidus subsp fasciculatus Pennell, Proc Acad Nat Ser Phıladelphia 991681947 Diplacus fasciculatus (Pennell) McMinn, Madroño 11: 70. 1951.
8 Diplacus x lompocensis McMinn, Madroño 11 - 621951 (as species) Mimulus aurantiacus subsp lompocensis (McMinn) Munz, Aliso 4991958 [= Diplacus aurantiacus x D. longiflorus]
9. Diplacus longiflorus Nuttall, Ann Nat Hist 1: 139. 1838 Mimulus longiflorus (Nutt) A L Grant, Gentes Herb 1: 1361923
Mimulus longiflorus var nutlius AL. Grant, Ann Missouri Bot Gard 11. 3331925 ("1924") Diplacus longtflorus var rutlus (A L Grant) McMinn, Man Calif Shrubs, 4981939 Diplacus ruttlus (A L Grant) McMinn, Madroño 11.831951
10 Diplacus parviflorus Greene, Pittonia 1 361887 Mimulus parviflorus (Greene) AL Grant, Ann Missourı Bot Gard 113441925 ("1924") (not Mimulus panvflonus Lindley 1825) Mimulus flemungil Munz, nom nov, Man S Calif Bot , 477, 6011935 Mimulus aurantiacus var parviflorus (Greene) D M Thomps, Syst Bot Monogr 75 157. 2005
11 Diplacus puniceus Nutt, Ann Nat Hist l- 1371838 Mimulus puntceus (Nutt) Steud, Nomencl Bot (ed 2) 2150 1841. Diplacus glutinosus var puniceus (Nutt) Benth in DC, Prodr 10 3681846 Mimulus glutmosus var puntceus (Nutt) A Gray, Bot Californa l 5661876 Mimulus auranttacus var puniceus (Nutt) D M Thomps, Syst Bot Monogr 751562005
12 Diplacus rutilus (AL. Grant) McMinn, Madroño 11831951 Mimulus longiflorus var rutilus A L Grant, Ann Missourn Bot Gard 11: 333. 1925 ("1924") Diplacus longtflorus var rutilus (A L Grant) McMinn, Man Calif Shrubs, 4981939
(Mexico)
13 Diplacus stellatus Kellogg, Proc Calif Acad Sci 2181863 Diplacus ghutnosus var. stellatus (Kellogg) Greene, Pittona 2 155 1890. Mimulus stellatus (Kellogg) AL Grant, Ann Missouri Bot Gard 11: 3371925 ("1924")

Taxonomy of sect. Diplacus is discussed in detail by McMinn (1951), Beeks (1962), Waayers (1996), Tulig (2000), Thompson (2005), and most recently by Tulig and Nesom (2012). The taxa indicated to be hybrid in origin appear to behave essentially as species.
6. Diplacus sect. Cleisanthus (J.T. Howell) G.L. Nesom \& N.S. Fraga, comb. nov. Mmulus sect. Cleisanthus J.T. Howell, Leafl. W. Bot. 2: 80. 1938. Type: Mmulus cleistogamus J.T. Howell [= Diplacus douglasin]. The original circumscription of the section included only $M$. cleistogamus.

Annual, puberulent-glandular to pilose-glandular; flowers 2 per node; pedicels shorter than calyces; corollas purple to violet, bilabiate to subbilabiate or nearly radial, broadly funnelform-rotate, tube-throats narrowly cylindric, much longer than the calyx to barely longer, persistent; anthers hairy; styles glandular-pubescent; stigmas unequal, the lower longer; capsules indurate, often basally asymmetric, indehiscent. $x=9$.

## (FNANM)

1. Diplacus congdonii (BL. Rob) G L Nesom, comb. nov. Mimulus congdonii B L Rob, Proc Amer Acad Arts 26175.1891 . Eunanus congdoni (B L Rob) Greene, Erythea 1: 247. 1893
2 Diplacus douglasii (Benth) GL Nesom, comb. nov. Eunanus douglasit Benth in DC, Prodr 10. 374 1846 Mimulus douglasti (Benth) A Gray, Proc. Amer Acad Arts 11 95. 1876
Mimulus cleistogamus J T Howell, Leafl West Bot 2791938
2. Diplacus kelloggii (Curran ex Greene) G.L. Nesom, comb. nov. Eunanus kelloggit Curran ex Greene, Bull Calif Acad Sc1 $1 \quad 1001885$ Mimulus kelloggnt (Curran ex Greene) Curran ex A Gray, Syn Fl N Amer (ed 2) 2(1, Suppl) 4431886
3. Diplacus latifolius (A Gray) G L. Nesom, comb. nov. Mimulus latifolius A Gray, Proc Amer Acad Arts 11:95 1876
5 Diplacus torreyi (A Gray) GL Nesom, comb. nov. Mmulus torreyı A Gray, Proc Amer Acad Arts 11 97. 1876 Eunanus torreyt (A Gray) Greene, Bull Calif Acad Sc1 11041885.
4. Diplacus traskiae (A L Grant) G L Nesom, comb. nov. Mimulus trasktae A L Grant, Freld Mus Nat Hist, Bot Ser 52261923

Sect. Cleisanthus is supported (bootstrap value $=84$ ) in the molecular analysis of Beardsley et al. (2004) as sister to sect. Diplacus. Thompson (2005) placed Diplacus torreyi in Mimulus sect. Eunanus apparently because of its promptly dehiscent capsules with fragile walls (vs. tardily dehiscent with indurate walls), but molecular data indicate that it is sister to species $1-5$ (above) of sect. Cleisanthus. Diplacus torreyi also differs from the other five species in chromosome number ( $2 n=20$ in $D$. torreyi vs. $2 n=18$ in the others). In their combination of 2 -flowered nodes and unequal stigma lobes, however, the six species of sect. Cleisanthus are morphologically coherent.

Thompson (2005, p. 29) noted that this group of species (he did not include Mimulus torreyi in his discussion) is characterized by unequal stigma lobes, ovate to rounded cotyledons, epigeous hypocotyls, two flowers per node, and their variety of habitats but never including vernally wet depressions or seepages. Also as observed by Thompson, the pedicel often twists $180^{\circ}$ after anthesis in $D$. congdonil and $D$. kellogglu, inverting the developing fruit.
XII. LEUCOCARPUS D. Don in Sweet, Brit. Flower Gard. ser. 2, 2: pl. 124. 1831. Mimulus sect. Leucocarpus (D. Don) G.L. Nesom, Phytoneuron 2011-36: 4. 2011. Type: Leucocarpus alatus (Graham) Benth. [ $=$ Leucocarpus perfoliatus]

Plants shrubs or suffrutescent perennial herbs, Vestiture: glabrous or subglabrous, eglandular. Stems lignescent, strongly 4 -angled to shallowly winged, erect. Leaves sessile (auriculate-clasping and perfoliate), thickened, not glandular-punctate, venation eucamptodromous. Flowers in axillary, pedunculate cymes of (1-)2-7(-14), on short, bracteate pedicels. Fruiting pedicels shorter to about equal to slightly longer than the calyces. Fruiting calyces erect, tube midveins strongly rounded-winged in the distal $2 / 3$. Corollas yellow or white with a yellow throat, deciduous, limbs bilabiate. Stamens 4, anthers 2-celled. Ovaries 2-locular; placentation axile; stigmas bilamellate. Fruits white berries with thin skin and with most of the substance derived from the fleshy placenta, glabrous, septicidally sulcate, indehiscent. Seed surface reticulate. Chromosome number unknown. Species 1.

```
(Mexico, Central America, South America)
1. Leucocarpus perfoliatus (Kunth) Benth. in DC, Prodr 10 335 1846 Mimulus perfoliatus Kunth, Nov
    Gen Sp (quarto ed)2 371. 1817 [1818]
    Conobea alata J Graham, Edmburgh New Philos J 10 168 1830 Leucocarpus alatus (J Graham) Benth,
        Brit Flower Gard ser 2,2 pl 124 1833[1831]
```

Leucocarpus perfohatus ranges from Mexico (Chiapas, Guerrero, Hidalgo, Jalisco, [Michoacan?], Oaxaca, Puebla, Querétaro, San Luis Potosí, Veracruz) and Central America (Panama, Nicaragua, Honduras, Guatemala) southward to South America (Bolivia, Colombia, Ecuador, Peru, Venezuela). It occurs at elevations of $450-3100$ meters. The distinct habit (erect, up to 2.5 m tall), large and thickened-succulent leaves, pedunculate cymes, large flowers, baccate fruits, and subtropical distribution of Leucocarpus perfoliatus are specialized within American Phrymaceae.
XIII. ERYTHRANTHE Spach, Hist. Nat. Veg. Phan. 9: 312. 1838 ["1840"]. Mimulus § Erythranthe (Spach) Greene, Bull. Calif. Acad. Sci. 1: 108. 1885. Type: Erythranthe cardinalis (Douglas ex Benth.) Spach, the only species in the protologue.

Annual (fibrous-rooted or taprooted) or perennial (rhizomatous), terrestrial or semi-aquatic. Vestiture: glabrous, puberulent-glandular or villous-glandular, or hirtellous to hirsute, or a combination. Stems herbaceous, prostrate to decumbent or erect, terete or 4 -angled. Leaves petiolate or sessile, herbaceous, often glandular-punctate, venation basal to suprabasal acrodromous. Flowers apparently solitary or axillary in bracteate, corymboid or racemose groupings. Fruiting
pedicels usually distinctly longer than calyces. Fruiting calyces erect or nodding, tube midveins weakly to strongly angled or wing-angled. Corollas deciduous (marcescent only in E. breweri and a few species of sect. Simtola), limbs strongly to weakly bilabiate or nearly regular. Stamens 4, anthers 2-celled. Ovaries 2-locular; placentation axile; stigmas bilamellate. Fruits many-seeded capsules and blunt or rounded to slighty emarginate apices, glabrous, loosely enclosed in persistent calyx, included, bilocular, loculicidally dehiscent to base along outer suture or both sutures, placentae fused in the basal half or for the whole length, remaining fused in fruit dehiscence. Seed surface reticulate to nearly smooth. Chromosome numbers $2 n=26,28,30,32,48,56,60,62,64,92(\mathrm{x}=$ $14,15)$. Species 111.

In adapting to the new generic name, audial memories will need to adjust in some cases to feminine forms of epithets (versus masculine in Mimulus). Mimetanthe Greene is similar, as is Eremanthe Spach (Clusiaceae).

Three revisionary treatments of Erythranthe sections, published simultaneous with this conspectus, provide full and detailed synonymy for complex groups (Nesom 2012b, 2012a, 2012c).

1. Erythranthe sect. Achlyopitheca N.S. Fraga \& G.L. Nesom, sect. nov. Type: Erythranthe inconspicua (A. Gray) G.L. Nesom \& N.S. Fraga

Annual, usually glabrous; basal leaves in rosette or absent, cauline sessile, blades broadly elliptic to ovate or broadly ovate; fruiting pedicels usually longer than calyces; calyx swollen in fruit; corollas usually rose to light lavender, less commonly yellowish, caducous, limbs weakly bilabiate, lobes oblong-obovate to oblong with prominently notched apices, ventral ridges yellow-lined; anthers pubescent. x unknown.

(FNANM)<br>1. Erythranthe inconspicua (A Gray) G L Nesom, comb. nov. Mimulus inconspicuus A Gray, Pacif Railr Rep 4120.1857<br>2 Erythranthe acutidens (A Gray) GL Nesom, comb. nov. Mimulus acutidens Greene, Bull Calif Acad Sci 1. 1171885 Mimulus inconspicuus var acutidens (Greene) A Gray, Syn Fl N. Amer (ed 2) 2(1) 4501886<br>3 Erythranthe grayi (A L Grant) G L Nesom, comb. nov. Mimulus grayi A L Grant, Ann Missour1 Bot Gard 11: 203. 1925 ("1924")

Mimulus acutidens and $M$. grayl have recently been included as synonyms of $M$. inconspicuus (e.g. Thompson 1993) but the three species are distinct and non-intergrading (Nesom 2012c).
2. Erythranthe sect. Paradantha (A.L. Grant) G.L. Nesom \& N.S. Fraga, comb. nov. Mimulus sect. Paradanthus AL. Grant, Ann. Missouri Bot. Gard. 11: 195. 1925 ("1924"). Lectotype (designated here): Mimulus rubellus A. Gray [= Erythranthe rubella]. Grant specified only that sect. Paradanthus comprised "Sp. 26-69" but observed that "M. rubellus is at the center of the section" and is closely allied with members of the Mimulus palmert group.

Annual, stems and leaves glabrous, sessile to subsessile, sometimes clasping and fused; leaf blades linear-oblong to narrowly oblong-lanceolate or narrowly oblanceolate, entire or sometimes toothed, palmately 3 -veined or sometimes pinnately veined (E. barbata, E. montioides); fruiting pedicels longer than calyces; calyces with sharp, definite angles and flat sides (except $E$. monttoides and E. discolor); corollas pink to purplish, yellow, white, or bicolored, throats and ventral ridges
contrasting or same color, deciduous, limbs strongly to weakly bilabiate or nearly radial, lobes deeply to shallowly notched to entire. $x=8$.

## (FNANM)

1 Erythranthe androsacea (Curran ex Greene) NS Fraga, comb. nov. Mmulus androsaceus Curran ex Greene, Bull Calif Acad Sci 1. 121. 1885. Mimulus palmert var androsaceus (Curran ex Greene) A Gray, Syn Fl N Amer (ed 2) 2(1): 451. 1886
2 Erythranthe barbata (Greene) N S Fraga, comb. nov. Mimulus barbatus Greene, Bull Calif Acad Sci 1 9. 1884
3. Erythranthe diffusa (A L Grant) N S. Fraga, comb. nov. Mimulus diffisus A L. Grant, Ann Missouri Bot Gard 112541925 ("1924")
4. Erythranthe discolor (A L. Grant) N S Fraga, comb. nov. Mimulus discolor A L. Grant, Ann Missouri Bot Gard 11-257. 1925 ("1924")
5 Erythranthe gracilipes (B L Rob) NS Fraga, comb. nov. Mimulus gracilipes B L Rob, Proc Amer Acad Arts 26.176. 1891
6. Erythranthe montioides (A Gray) NS. Fraga, comb. nov. Mmulus montiondes A Gray, Proc Amer. Acad Arts 73801868
7. Erythranthe palmeri (A Gray) N.S Fraga, comb. nov. Mimulus palmeri A Gray, Proc Amer Acad Arts 12:82 1876
8 Erythranthe purpurea (A L Grant) NS Fraga, comb. nov. Mimulus purpureus A L Grant, Ann Missourı Bot Gard 11255.1925 ("1924")
9. Erythranthe rubella (A Gray) N S Fraga, comb. nov. Mimulus rubellus A Gray, Rep U.S Mex Bound 2(1) $116 \quad 1859$.
10 Erythranthe shevockii (Heckard \& Bacig) N S. Fraga, comb. nov. Mimulus shevocku Heckard \& Bacıg, Madroño 322711986
11 Erythranthe suksdorfii (A. Gray) N S Fraga, comb. nov. Mimulus suksdorfii A Gray, Syn Fl N Amer. (ed 2) 2(1, Suppl) 450.1886

Erythranthe rubella is placed in sect. Montmanthe in the molecular phylogeny by Beardsley et al. (2004), but four samples of the species - a yellow form and a pink form, geographically separated - in a preliminary analysis by Fraga (in prep.) place it among the species of sect. Paradantha, elosely related to E. suksdorfil. At least five species of sect. Paradantha remain to be described (Fraga 2011 and in prep.). The single author of the combinations is deliberate.
3. Erythranthe sect. Monantha G.L. Nesom \& N.S. Fraga, sect. nov. Type: Erythranthe primuloides (Benth.) G.L. Nesom \& N.S. Fraga

Perennial, rhizomatous, glabrous; leaves all basal or near-basal on stems with short internodes, sessile, blades oblanceolate-oblong, palmately veined, fleshy-coriaceous; fruiting pedicels erect, much longer than calyces, 1-flowered; corollas yellow, limbs weakly to strongly bilabiate, each of the three ventral lobes usually red-spotted. $x=9$.

[^7]4. Erythranthe sect. Monimanthe (Pennell) G.L. Nesom \& N.S. Fraga, comb. nov. Mimulus sect. Monimanthe Pennell, Proc. Acad. Nat. Sci. Philadelphia 99: 167. 1947. TypE: Mimulus brewert (Greene) Coville [= Erythranthe brewert]

Annual; stems and leaves glandular-puberulent; leaves sessile to subsessile, blades oblanceolate to narrowly oblanceolate; fruiting pedicels as long or longer than calyces; calyx eciliate at apex, ribs corky (a distinctive feature of this group), teeth $1-2 \mathrm{~mm}$ long; corollas violet to purple with darker throat and yellow ventral ridges (M. brewert and $M$. filicaulis) or yellow and white ( $M$. bicolor), limbs strongly to weakly bilabiate (M. bicolor, M. brewert) to nearly radially symmetric (M. fillcaulis); anthers hairy. $x=8$.
(FNANM)
1 Erythranthe bicolor (Hartweg ex Benth) GL Nesom \& NS Fraga, comb. nov. Mimulus bicolor Hartweg ex Benth, Pl Hartw 3281849
2 Erythranthe breweri (Greene) G L Nesom \& N S Fraga, comb. nov. Eunanus breweri Greene, Bull Calif Acad Sci 11011885 Mimulus breweri (Greene) Coville, Contr US Natl Herb 4. 171 1893 Mimulus rubellus var brewen (Greene) Jeps, Man Fl Pl Calif, 9271925
3 Erythranthe filicaulis (S Watson) G L Nesom \& NS Fraga, comb. nov. Mimulus fiticaults S Watson, Proc Amer Acad Arts 261251891
Mimulus biolettu Eastw, Proc Calif Acad Sc1, ser 3, 22901902
In the original description of sect. Montmanthe, which included only the type, Mimulus brewert, Pennell (1947, pp. 167-168) noted that it was "midway between the subgenera Synplacus and Schizoplacus of Grant; as already explained, it has the unsplit septum of the capsule of the former, but the corollas are only tardily deciduous [marcescent] as in the latter." Molecular data show the gynoecial character to be of stronger predictive value, and the relatively long pedicels also are indicative of its placement among the species of Erythranthe.

## 5. Erythranthe sect. Erythranthe

Perennial or (in E. parishit) annual, stems and leaves glabrous to puberulent or hirsute, sometimes glandular; leaf blades oblanceolate to narrowly lanceolate, shallowly toothed, palmately veined; fruiting pedicels longer than calyces; calyces with sharp, definite angles and flat sides; corollas deciduous, large ( $40-50 \mathrm{~mm}$ long), strongly red or magenta to pink, purplish, or (in $E$. parishii) nearly white, limbs bilabiate, lobes shallowly notched to slightly retuse or entire. $\mathrm{x}=8$.
(FNANM)
1 Erythranthe cardinalis (Douglas ex Benth) Spach, Hist Nat Veg 93131840 Mimulus cardinahs Douglas ex Benth, Scroph Ind 281835
2. Erythranthe eastwoodiae (Rydb) G L Nesom \& NS Fraga, comb. nov. Mimulus eastwoodiae Rydb, Bull Torrey Bot Club 404831913
3 Erythranthe lewisii (Pursh) G. Nesom \& N S Fraga, comb. nov. Mimulus lewisii Pursh, Fl Amer Sept 2427.1814

Mimulus lewisil var tetonensis A Nelson, Bot Gaz $3431 \quad 1902$ Mimulus lewisil forma tetonensis (A Nelson) JF Macbr \& Payson, Contr Gray Herb 49671917

Various botanists have observed a difference in corolla color between the Sierra Nevada populations in California (mostly whitish to pink) of Erythranthe lewisu and those of the rest of the range (mostly purplish, including var. tetonensis). The type, from the "head springs of the Missouri," is described and illustrated by Pursh with a "beautiful pale purple" corolla. This pattern and an appropriate nomenclature remain to be worked out and documented.
4. Erythranthe parishii (Greene) G L. Nesom \& N.S Fraga, comb. nov. Mimulus parnshn Greene, Bull Calif Acad Sc1 11081885

Greene (1885) placed Erythranthe parishis with E. cardinalis and E. lewisit (constituting Mimulus sect. Erythranthe) but the evolutionary position of this annual, white-flowered species among the otherwise perennial, red- and purple-flowered species was first unequivocally demonstrated by Beardsley et al. $(2003,2004)$.
5. Erythranthe verbenacea (Greene) G L Nesom \& N.S Fraga, comb. nov. Mimulus verbenaceus Greene, Leafl Bot Observ. Crit 2: 21909 Mimulus cardnalis var verbenaceus (Greene) Kearney \& Peebles, J Wash Acad Scı 294911939
(North AMEricA-Mexico)
6 Erythranthe nelsonii (A L Grant) GL Nesom \& NS Fraga, comb. nov. Mimulus nelsonin AL Grant, Ann Missouri Bot Gard 11 144. 1925 ("1924")
7. Erythranthe rupestris (Greene) GL Nesom \& N.S Fraga, comb. nov. Mimulus rupestris Greene, Leafl Bot Obs Crit 231909

## 6. Erythranthe sect. Alsinimimulus G.L. Nesom \& N.S. Fraga, sect. nov. Type: Erythranthe alsinoides (Douglas ex Benth.) G.L. Nesom \& N.S. Fraga

Annual, villous-hirsute to puberulent, often glandular, leaf blades palmately veined, broadly ovate to subrotund, margins shallowly serrate-dentate to denticulate; fruiting pedicels longer than calyces; calyx margins nearly truncate; corollas tiny, yellow, palate usually with a single, large redpurple spot, each of the upper lobes medially purple-striped, limbs strongly bilabiate, throats open; stamens exserted. x unknown.

## (FNANM)

1. Erythranthe alsinoides (Douglas ex Benth) G L Nesom \& NS Fraga, comb. nov. Mimulus alstnotdes Douglas ex Benth, Scroph Ind, 291835 Mimulus alsinoides var minmus Benth, Scroph Ind, 291835

Erythranthe alsinotdes, according to the molecular analysis, has a sister relationship to the clade comprising sect. Sinopitheca and sect. Mimulasta, but this relationship has weak support and $E$. alsinoides is very different in morphology. Gray (1886, p. 449) described the calyx as "campanulateoblong, hardly at all unequal-sided at maturity or ventricose, but nearly filled by the oblong capsule; the short-toothed orifice as if truncate and moderately oblique." Grant (1924, p. 234) noted that "M. alsinoides is most closely related to M. pulsiferae [placed here in sect. Mimulosma] with which it has often been confused. The unequal calyx-teeth, 2 of which are truncate and longer than the 3 triangular-acute upper ones, distinguish this species from any other Mimulus except M. pachystylus [here identified as Erythranthe orizabae, sect. Mimulasia]."
7. Erythranthe sect. Simigemma G.L. Nesom \& N.S. Fraga, sect. nov. Type: Erythranthe gemmipara (W.A. Weber) G.L. Nesom \& N.S. Fraga

Annual; glabrous; petioles laterally compressed and deeply saccate at the base, usually containing a lenticular propagule; fruiting pedicels slightly longer than calyces; calyx strongly angled, weakly inflated; corollas yellow, not spotted or striped, limbs weakly bilabiate, throats open. $\mathrm{x}=8$.

## (FNANM)

1. Erythranthe gemmipara (W. A Weber) G L Nesom \& N S Fraga, comb. nov. Mimulus gemmipanis W A Weber, Madroño 21 4231972

Production of bulbils enclosed within a saccate petiole is unique within the genus (Moody et al. 1999). Flowers are uncommon. Seed production has been documented in the greenhouse, but seed formation has not been documented in nature. Erythranthe gemmipara is known only from eight populations in north-central Colorado.
8. Erythranthe sect. Mimulosma G.L. Nesom \& N.S. Fraga, sect. nov. Type: Erythranthe moschata (Douglas ex Lindl.) G.L. Nesom \& N.S. Fraga

Annual or perennial; vestiture of viscid or gland-tipped hairs, sometimes aromatic; leaves palmately or subpinnately veined (weakly suprabasal-acrodromous); fruiting pedicels longer than calyces; calyx teeth usually small and usually of equal or subequal length; corollas yellow, rarely white, commonly red-spotted in the throat, limbs strongly to weakly bilabiate or nearly regular. $\mathrm{x}=$ 8.
(FNANM)
1 Erythranthe ampliata (A L Grant) G L Nesom, comb. nov. Mimulus ampliatus A L Grant, Ann Missouri Bot Gard 11.2141925 ("1924")
2. Erythranthe arenaria (A L Grant) G L Nesom, comb. nov. Mimulus arenarnus A L Grant, Ann Missourı Bot Gard 112151925 ("1924")
Mimulus multtfforus Pennell, Proc. Acad Nat Sci Philad 991611947
Mimulus trisulcatus Pennell, Proc Acad Nat Scı Philad 99 1611947
Mimulus floribundus var subulatus A L Grant, Ann Missouri Bot Gard 112221925 ("1924")
3. Erythranthe breviflora (Piper) G L Nesom, comb. nov. Mimulus brevfflorus Piper, Bull Torrey Bot Club 28451901
4 Erythranthe floribunda (Douglas ex Lindl) GL. Nesom, comb. nov. Mimulus floribundus Douglas ex Lindl, Bot Reg 13 pl 1125. 1828
Mimulus pubescens Benth in DC, Prodr. 10: 372 1846. Placed here tentatively in synonymy but perhaps to be recognized as a good species - see Nesom (2012b)
5. Erythranthe geniculata (Greene) G. L. Nesom, comb. nov. Mimulus geniculatus Greene, Bull Calif Acad Sci 1:280 1885.
Mimulus dudleyt AL Grant, Ann Missouri Bot Gard 11. 2351925 ("1924"),
6. Erythranthe hymenophylla (Memke) G L Nesom, comb. nov. Mimulus hymenophyllus Meinke, Madroño $30-1471983$
7 Erythranthe inflatula (Suksd) GL. Nesom, comb. nov. Mimulus inflatulus Suksd, Werdenda 1381927 Mimulus evanescens Meinke, Great Basin Naturalist $55 \quad 250.1995$
8 Erythranthe inodora (Greene) G L Nesom, comb. nov. Mimulus modorus Greene, Bull Calif Acad Sci 11191885
Mimulus moschatus var sessllifolus A Gray, Syn Fl N. Amer (ed 2) 2(1) 4471886
9 Erythranthe jungermannioides (Suksd) GL Nesom, comb. nov. Mimulus jungermannioides Suksd, Deutsche Bot Monatsschr 18. 1541900
10 Erythranthe latidens (A Gray) G L Nesom, comb. nov. Mimulus inconspictuus A Gray var lattdens A Gray, Syn Fl N Amer (ed 2) 2(1, Suppl) 4501886 Mimulus latidens (A Gray) Greene, Man Bot San Francisco, 2781894
11 Erythranthe moniliformis (Greene) G L Nesom, comb. nov. Mimulus moniliformis Greene, Bull Calif Acad Sci 1. 10 1884 Mimulus moschatus var moniliformis (Greene) Munz, Aliso 4991958
Mimulus dentatus var gracilis A Gray, Bot Gaz 71121882
Mimulus leibergii A L Grant, Ann Missourı Bot Gard 11 231, pl 6, f 1 1925 ("1924")
Mimulus macranthus Pennell, Proc Acad Philad 99. 1601947
Mimulus moschatus var longiflorus A Gray, Synopt F1 N. Amer (ed 2) 2278 1886, 2(1) 447. 1886
12 Erythranthe moschata (Douglas ex Lindl) G L Nesom, comb. nov. Mimulus moschatus Douglas ex Lindl, Bot Reg 13 plate 11181828
Mimulus crinitus A L Grant, Ann Missouri Bot Gard 11. 186. 1925 ("1924") Mimulus acutidens Reiche, Fl Chile 6631911 (non M. acutidens Greene 1885

13 Erythranthe norrisii (Heckard \& Shevock) GL Nesom, comb. nov. Mmulus nomsti Heckard \& Shevock, Madroño 321791985
14 Erythranthe patula (Pennell) G.L. Nesom, comb. nov. Mimulus patulus Pennell, Proc Acad Nat Sci. Philadelphia 99: 1621947
15 Erythranthe pulsiferae (A Gray) GL Nesom, comb. nov. Mimulus pulstferae A Gray, Proc Amer Acad Arts 11.981876.
16 Erythranthe washingtoniensis (Gand) G L Nesom, comb. nov. Mimulus washingtontensts Gand, Bull Soc Bot France 662181919

## (North America -Mexico)

17 Erythranthe austrolatidens G L Nesom, Phytoneuron 2012-41 232012

## (AsIA-southeastern Russia)

18 Erythranthe stolonifera (Novopokr) G L. Nesom, comb. nov. Mimulus stolonifer Novopokr, Bot MaterGerb Bot Inst Komarova Akad Nauk S. S S R 11: 158. 1949

Pennell (1935) noted that the Chilean Mimulus acuttdens Reiche of 1911 (not Greene 1885) is the same species as the North American M. moschatus. Von Bohlen (1995b) maintained the Chilean entity as a distinct species - M. crintus (incl. M. acutidens Reiche as a synonym) - but noted that a closer analysis of North American material of M. moschatus is necessary for a better judgement. Present studies (Nesom 2011b) corroborate Pennell's assessment. Von Bohlen also placed the Chilean Mimulus bridgesii in this relationship (sect. Mimulosma), especially based on similarities in calyx and pollen morphology, but that species is placed here in the otherwise Asian Erythranthe sect. Sinopitheca.

Sect. Mimulosma (as considered here) has been studied recently by Argue (1986) and Whittall et al. (2006). Erythranthe latidens is portrayed in the molecular analysis as phylogenetically basal to the whole section, and evidence suggests that $E$. mflatula is of hybrid origin between $E$. latidens and E. breviflora. Erythranthe arenaria was not included in the molecular samples of Whittall et al. - pollen and leaf morphology as well as geography place it in the Sierra Nevada clade. Erythranthe macrantha and E. moniliformis have recently been treated as conspecific with $E$. moschata but are considered here to be distinct taxa. The extra-North American species have not yet been included in a molecular study.

Two pollen types were recognized among species of the "Mumulus moschatus alliance" by Argue (1986). Most of the species, including M. moschata, have the sexine 2 configuration, predominantly microreticulate with supramurial granules or spinules, known as type IIc. The pollen of $E$. arenaria, E. geniculata, E. floribunda, and E. moniliformis is type IIb, lacking supramurial granules or spinules. Argue noted that the segregation of E. moniliformis and E. inodora from E. moschata is supported by these observations

A detailed study of sect. Mimulosma (Nesom 2012b), published simultaneously with the present manuscript, includes maps, typifications, synonymy, descriptions, and a key to the species.
9. Erythranthe sect. Mimulasia G.L. Nesom \& N.S. Fraga, sect. nov. Type: Erythranthe tenella (Bunge) G.L. Nesom \& N.S. Fraga
Mimulus § Tenert Benth. in DC., Prodr. 10: 372. 1846. Lectotype (designated here): Mimulus tenellus Bunge. In addition to M. nepalensis, M. tenellus and M. dentatus, Bentham also included M. alsinotdes, M. floribundus, M. pubescens, M. moschatus, and M. orizabae in § Tenert. The last five species are placed here into three other sections, thus Bentham's group was polyphyletic. The choice of type must be from among M. nepalensts, M. tenellus, and M.
dentatus, and because the position of $M$. dentatus is not unequivocal, an Asian species is chosen.

Perennial, rhizomatous; glabrous to sparsely villous or villous-hirsute, eglandular (or in $E$. karakormiana) glandular, stems quadrangular, sometimes narrowly winged; leaves petiolate, blades ovate to ovate-triangular, ovate-oblong, or suborbicular, pinnately to subpinnately veined (strongly suprabasal-acrodromous), margins coarsely serrate; fruiting pedicels usually slightly longer than calyces; corollas yellow to golden yellow, sometimes red-spotted or with a purple patch, tube-throat barely or slightly exserted from the calyx (more so in $E$. dentata), limbs strongly bilabiate, throats open; style exserted. $\mathrm{x}=8(2 n=32$ reported for E. nepalensis by Probatova and Sokolovskaya 1986).

## (ASIA-Himalayas)

1. Erythranthe bhutanica (Yamazak1) GL. Nesom, comb. nov. Mimulus bhutancus Yamazakı, J Jap Bot 68231993
2 Erythranthe bodinieri (Vaniot) G. L. Nesom, comb. nov. Mimulus bodmeni Vaniot, Bull Acad Int Géogr. Bot 15(185-186) 861905.
3 Erythranthe inflata (M1q) GL Nesom, comb. nov Torena inflata Miq, Ann Mus Bot Lugd Bat 3 192 1867. Mimulus inflatus (Miq) Naka1, Bot Mag (Tokyo) 33 209. 1919
Mimulus nepalensts forma japontcus Miq, Prolusio Fl Japon, 48. 1866 Mimulus nepalensts var. japonicus Miq, Mél Biol 94011874
2. Erythranthe karakormiana (Yamazaki) G L Nesom, comb. nov. Mimulus karakormianus Yamazak1, J. Jap Bot 68261993
5 Erythranthe nepalensis (Benth) G L Nesom, comb. nov. Mimulus nepalensis Benth, Scroph Ind, 29 1835. Mimulus tenellus var nepalensis (Benth.) P.C.Tsoong ex H. P. Yang, Fl Reipubl Popularis Sin 67(2) 1711979
Mimulus formosanus Hayata, Icon Pl Formosan 9791920
Mimulus assamicus Griff, Madras I Lit Sci 4. 375. 1836
3. Erythranthe procera (AL. Grant) G L Nesom, comb. nov. Mimulus nepalensts Benth var procerus AL Grant, Ann Missour1 Bot Gard 112071925 ("1924") Mimulus tenellus var procerus (A L Grant) Hand-Mazz, Symb Sin 7.832 1936
4. Erythranthe szechuanensis (Y. Y Pa1) G L Nesom, comb. nov. Mimulus szechuanenszs Y Y. Pa1, Contr. Inst Bot Natl Acad Perping 21191934
5. Erythranthe tenella (Bunge) G.L. Nesom, comb. nov. Mimulus tenellus Bunge, Enum. Pl China Bor, 49. 1833
6. Erythranthe sinoalba G.L. Nesom, Phytoneuron 2012-44 1. 2012

Molecular data (Beardsley \& Olmstead 2002; Beardsley et al. 2004) indicate that Erythranthe bodintert, E. nepalensts, and E. tenella constitute a monophyletic group. Mimulus tenellus was treated by Hong et al. (1998) as having three varieties, nepalensts, platyphyllus, and procerus, in addition to var. tenellus. Differences between the taxa, however, are generally characteristic of those between different species, and based on the limited observations in the present study, intermediates do not occur. Erythranthe szechuanensts, E. karakormtana, and $E$. bhutanensts are similar to these in morphology and geography and are included in sect. Mimulasia on that basis. This whole group appears to be most closely related to the North American Erythranthe sect. Mimulosma (fide Beardsley et al. 2004). The Asian species are strongly erect and have sharply toothed leaves with acute apices; they also are distinct from sect. Momulosma in vestiture but the characteristic glandularity of the American species is mirrored in E. karakormiana and to a lesser extent in $E$. sinoalba.

Mimulus platyphyllus and M. tibeticus, which have previously been allied with Mimulus nepalensis, have palmate (basal acrodromous) leaf venation and are placed here in Erythranthe sect. Sinopitheca.
(FNANM)
10 Erythranthe dentata (Nutt ex Benth) GL Nesom, comb. nov. Mimulus dentatus Nutt ex Benth in DC, Prodr 103721846

Molecular data place Erythranthe dentata as sister to E. sessilffolia (sect. Sinopitheca) but the two species are different in leaf morphology. The sessile, palmately veined leaves of $E$. sessilifolta are a feature of two other Asian species (not included in the molecular analysis), which are placed here in its closer relationship. Erythranthe dentata may indeed prove to be most closely related to sect. Sinopitheca but the phylogeny needs to be re-examined in the context of additional species. At least, like E. bridgesil in South America and E. orizabae in Mexico and Central America, E. dentata appears to be phyletically isolated in its geographical area, with its closest relatives in Asia, either in sect. Sinopitheca or in sect. Mimulasta, plus one in Mexico and Central America (E. orizabae).
(North AMErica-Mexico and Central America)

```
11 Erythranthe orizabae (Benth) GL Nesom, comb. nov. Mimulus onizabae Benth in DC, Prodr 10372 1846
Mimulus pachystylus A L Grant, Ann Missourı Bot Gard 112341925 ("1924")
```

Erythranthe orizabae is characterized by herbaceous, prostrate stems rooting at the nodes; young stems and adaxial leaf surfaces are arachnoid-villous with long, viscid, crinkly hairs sometimes with colored cross walls; leaf blades are ovate with serrate margins, bicolored with a lighter abaxial surface, and pinnately veined (strongly suprabasal-acrodromous). It is at least superficially similar to E. moschata, which usually has ascending-erect stems and concolorous leaves, but the vestiture of $E$. orizabae is only of relatively coarse eglandular hairs and in this respect (as well as leaf ventation) the species is more similar to sect. Mimulasta, which otherwise is strictly Asian. Collections of E. orizabae have been made from from Guatemala, Chiapas, Oaxaca, Hidalgo, and Veracruz (whence the type: K, photo MO!). See Nesom (2011d) for typification and other details.

## 10. Erythranthe sect. Sinopitheca G.L. Nesom \& N.S. Fraga, sect. nov. Type: Erythranthe sessilifolia (Maxim.) G.L. Nesom \& N.S. Fraga

Perennial, rhizomatous; stems, pedicels, calyces, and leaves glabrous to subglabrous; leaves sessile, blades palmately veined, margins dentate; fruiting pedicels about equal to the subtending leaves or a little longer; calyces with shallowly lobed to subtruncate margins; corollas yellow, limbs bilabiate, broadly expanded with open throats. x unknown.

## (Asia-Himalayas and Japan)

1. Erythranthe bracteosa (PC Tsoong) GL Nesom, comb. nov. Mimulus bracteosus PC Tsoong, Acta Phytotax Sin 34151955
2 Erythranthe platyphylla (Franch) G L Nesom, comb. nov. Mimulus nepalensts var platyphyllus Franch, Nouv Arch Mus Hist Nat 101031888 Mimulus tenellus var platyphyllus (Franch) PC Tsoong ex HP.Yang, Fl Reipubl Popularis Sin 67. 1711979
3 Erythranthe sessilifolia (Maxim.) GL. Nesom, comb. nov. Mimulus sessilffolius Maxim, Bull Acad Petersb 204361874
2. Erythranthe tibetica (PC. Tsoong \& HP Yang) GL Nesom, comb. nov. Mimulus tibeticus PC Tsoong \& H P Yang, Fl Republ Popularis Sin 67. 166, 399 (addenda), fig 45. 1979

Erythranthe bracteosa is differs from the other of these Himalayan species in its distinctly suprabasal-acrodromous venation (veins relatively few in number; Fig. 2) and linear calyx lobes, but it seems better placed here than in sect. Mimulasia. Venation in the Japanese E. sessilifolia also occasionally is weakly suprabasal.

## (South America-Chile)

5 Erythranthe bridgesii (Benth) GL Nesom, comb. nov Mimulus parviflorus Lindl var bridgesit Benth in DC., Prodr 10 371. 1846. Mimulus bridgesit (Benth) Clos, Fl Chil [Gay] 5 141. 1849 Type. CHILE The protologue has this "In Chili australi (Bridges! n 686), in ins. Chiloe (Darwin')." Holotype K?

Erythranthe bridgesil is characterized by its apparently annual duration, decumbent-erect to ascending-erect stems rooting at proximal nodes, glabrous and eglandular herbage, sessile, ovate to lanceolate leaves, long fruiting pedicels ( $16-60 \mathrm{~mm}$, often longest distally), calyces with barely differentiated lobes and subtruncate margins, and yellow, red-spotted corollas (throat, palate, and lobes) with tube-throats $6-8 \mathrm{~mm}$ and limbs distinctly expanded but weakly bilabiate, the lobes deeply notched. Von Bohlen (1995) placed the species in the relationship of Mimulus moschatus (as synonym M. crinitus AL. Grant) and M. floribundus Douglas ex Lindl., especially based on similarities in pollen morphology (or its lack of similarity to sect. Simiolus), but its placement within sect. Mimulosma is problematic.

The nearly plicate calyx angles and the sessile, semisucculent, 3-5-palmately nerved leaves of Erythranthe bridgesit are similar to those of Erythranthe sect. Simiolus, which has radiated in Andean South America, but pollen morphology excludes it from that group (Argue 1981). The species is tentatively placed here as a continentally disjunct member of sect. Sinopitheca, with which it shares glabrous vestiture, sessile (cauline) and palmately veined leaves, calyces with shallowly lobed to subtruncate margins, and broadly spreading, weakly bilabiate to nearly regular limbs. Pollen of $E$. bridgesil is tetracolpate or pentacolpate in contrast to the tricolporate pollen of its putative Asian relatives, but this was viewed by Argue as a derived feature and does not negate the hypothesis of relationship offered here.

## 11. Erythranthe sect. Exigua G.L. Nesom \& N.S. Fraga, sect. nov. Type: Erythranthe exigua (A. Gray) G.L. Nesom \& N.S. Fraga

Annual; glandular-puberulent; leaf blades oblong-lanceolate; fruiting pedicels longer than calyces; calyces $2-3 \mathrm{~mm}$ long, corollas lavender, tube-throats $2-2.5 \mathrm{~mm}$ long, limbs bilabiate with an open throat; capsules mostly $3-3.5 \mathrm{~mm}$ long, longer than the calyces. x unknown.

## (FNANM)

1. Erythranthe exigua (A Gray) G.L Nesom \& NS Fraga, comb. nov. Mimulus extguus A Gray, Proc Amer Acad Arts 203071885

Erythranthe exigua in the molecular analysis of Beardsley et al. (2004) is placed sister to sect. Simiola with poor support and is on a long branch. Plants of Mimulus exiguus are diminutive annuals with few nodes and greatly reduced leaves, corollas, and calyces. The corollas are lavender, the calyces do not have upcurving lower lips (as in sect. Simiola), and the mature capsules usually are distinctly exserted from the calyces.
12. Erythranthe sect. Simiola (Greene) G.L. Nesom \& N.S. Fraga, comb. nov. Mimulus § Simiolus Greene, Bull. Calif. Acad. Sci. 1: 109. 1885. Lectotype (designated here): Mimulus guttatus Fisch. ex DC. [= Erythranthe guttata] Mumulus guttatus is chosen as the type because it often is considered the "central" species of the section, often regarded as inclusive of many of the other species or regarded as directly ancestral to them.
Mimulus § Speciosi Benth. in DC., Prodr. 10: 369. 1846. Lectotype (designated here): Mimulus luteus L. Mimulus luteus is chosen here as lectotype because it is the "showiest" of the species listed by Bentham, corresponding to his epithet "speciosi."

Annual to short-lived perennial; hirtellous to hirsute or stipitate- to villous-glandular, sometimes a mixture; cauline leaf blades generally sessile and ovate (fused in E. glaucescens, dissected in E. laciniata), palmately veined; fruiting pedicels longer than calyces; fruiting calyx inflated and sagittally compressed with lower lobes characteristically turning up and folding over the lateral teeth, nearly closing the throat; corollas yellow (cream to pink or red in some Chilean species) commonly with with red spots along the throat, limbs strongly bilabiate, throat compressed and oceluded by swollen ventral ridges of the lower lip. $x=8$.

## (FNANM)

1. Erythranthe arenicola (Pennell) G L Nesom, comb. et stat. nov. Mimulus guttatus subsp arenicola Pennell, Proc Acad Nat Sci Philadelphia 991661947
2 Erythranthe arvensis (Greene) G L Nesom, comb. nov. Mimulus arvensis Greene, Pittonia 1371887 Mimulus langsdorffii var arvensis (Greene) Jeps, Fl W Mid Calif, 407. 1901 Mimulus guttatus var arvensis (Greene) A. Grant, Ann Missouri Bot Gard 111741925 ("1924") Mimulus guttatus subsp arvensis (Greene) Munz, Aliso 4991958
Mimulus micranthus A Heller, Muhlenbergia 8. 1321912 Mimulus nasutus Greene var micranthus (A Heller) A L Grant, Ann Missourı Bot Gard 11331 1925 ("1924") Mimulus guttatus var micranthus (A Heller) GR Campbell, Aliso 23321950 Mimulus guttatus subsp micranthus (A Heller) Munz, Aliso 4991958
3 Erythranthe brachystylis (Edwin) G L Nesom, comb. nov. Mimulus brachystylis Edwin, Leafl W Bot 7 1371954
4 Erythranthe brevinasuta G. L. Nesom, Phytoneuron 2012-40 702012
5 Erythranthe caespitosa (Greene) GL Nesom, comb. nov. Mmulus scoulen var caespitosus Greene, Pittonia 2.221889 Mimulus caesptosus (Greene) Greene, J Bot (Brit \& Foreign) 3381895 Mimulus thlingn var caespitosus (Greene) AL. Grant, Ann Missouri Bot Gard 111541925 ("1924")
6 Erythranthe calciphila (Gentry) G.L. Nesom, comb. nov. Mimulus calciphilus Gentry, Madroño 92 1947
7 Erythranthe charlestonensis G L Nesom, Phytoneuron 2012-40-80 2012
8 Erythranthe chinatiensis G.L. Nesom, Phytoneuron 2012-40. 862012
2. Erythranthe cordata (Greene) G.L. Nesom, comb. nov. Mimulus cordatus Greene, Leafl Bot Observ. Cnt 261909
10 Erythranthe decora (A L Grant) GL Nesom, comb. nov. Mimulus guttatus var decorus A L Grant, Ann Missouri Bot Gard 11173.1925 ("1924") Mimulus deconus (A L. Grant) Suksd, Werdenda 1: 371927
11 Erythranthe geyeri (Torr) GL. Nesom, comb. nov. Mimulus geyen Torr in Nicollet, Rep Hydrogr Upper Mississippi, 1571843
Mimulus famesit Torr \& A Gray ex Benth in DC, Prodr 103711846 Mimulus p var jamesti (Torr \& A Gray) A Gray, Synopt Fl N Amer ed 2, 2(1) Suppl 4471886
Mimulus jamesn var fremontn Benth in DC, Prodr 103711846 Mimulus glabratus var fremontn (Benth) AL Grant, Ann Missourı Bot Gard 111901925 ("1924") Mimulus glabratus subsp fremontti (Benth) Pennell, Proc Acad Nat Sci Philadelpha 1. 1201935
12 Erythranthe glaucescens (Greene) G.L. Nesom, comb. nov. Mimulus glaucescens Greene, Bull Calif Acad Sci 1-113 1885 Mimulus guttatus var glatucescens (Greene) Jeps, Man Fl Pl Calif, 928 1925
13 Erythranthe grandis (Greene) G L Nesom, comb. nov. Mimulus guttatus var grandas Greene, Man Bot San Francisco Bay, 2771894 Mimulus granass (Greene) A Heller, Muhlenbergia 11101904 Mimulus langsdorffiz var grands (Greene) Greene, J Bot (Brit \& Foreign) 33.71895 See South American taxa
14 Erythranthe guttata (Fisch ex DC) G L Nesom, comb. nov. Mimulus guttatus Fisch ex DC, Cat Pl Horti Monsp , 127 1813 Mimuhis langsdorffil var guttatus (Fisch ex DC) Jeps, F1 W Mid Calif, 4061901
15 Erythranthe hallii (Greene) G L Nesom, comb. nov. Mimulus halhi Greene, Bull Calıf Acad Sci 1 1131885 Mimuhus guttatus var hallu (Greene) AL Grant Ann Missouri Bot Gard 11:172 1924

16 Erythranthe inamoena (Greene) GL Nesom, comb. nov. Mimulus inamoenus Greene, Pittonia 5137. 1903
Mimulus famesti var texensts A Gray, Syn Fl N Amer 2(2) 2771878
17 Erythranthe laciniata (A Gray) G L Nesom, comb. nov. Mimulus lacinatus A Gray, Proc Amer Acad Arts 11981876
18 Erythranthe marmorata (Greene) G L. Nesom, comb. nov. Mimulus marmoratus Greene, Erythea 3. 73 1895
Mimulus whipplei A L Grant, Ann Missouri Bot Gard 111841925 ("1924")
19 Erythranthe michiganensis (Pennell) GL Nesom, comb. nov. Mimulus glabratus subsp michuganensts Pennell, Acad Nat Scı Philadelphia Monogr l 1191935 Mimulus glabratus var michiganensts (Pennell) Fassett, Rhodora 415241939 Mimulus michiganensts (Pennell) Posto \& Prather, Syst Bot 281772003.
20 Erythranthe microphylla (Benth ) G L Nesom, comb. nov. Mimulus mcrophyllus Benth in DC, Prodr 10. 3711846 Mimulus langsdorffii var microphyllus (Benth) A Nelson \& J F Macbr, Bot Gaz 61 441916 Mimulus guttatus var microphyllus (Benth) Pennell ex MPeck, Man Pl Oregon, 654 1941
Mimulus platycalyx Pennell, Proc Acad Nat Sci Philadelphia 99 1671947
21 Erythranthe minor (A Nelson) GL Nesom, comb. nov. Mimulus minor A Nelson, Proc. Biol Soc. Wash 171781904
22 Erythranthe corallina (Greene) G L Nesom, comb. nov. Mimulus corallmus Greene, Erythea 421 1896
Mimulus minusculus Greene, Leafl Bot Observ Crit 251909
23 Erythranthe nasuta (Greene) G.L. Nesom, comb. nov. Mimulus nasutus Greene, Bull Calif Acad Sci 1 1121885 Mimulus langsdorffi var nasutus (Greene) Jeps, F1 W Calif, 4071901 Mimulus guttatus var nasutus (Greene) Jeps, Man Fl Pl Calif, 9281925
Mimulus halli Greene, Bull Calif Acad Sci 11131885 Mimulus guttatus var hallii (Greene) A L Grant Ann Missouri Bot Gard 11:172 1925 ("1924")
24 Erythranthe nudata (Curran ex Greene) G L Nesom, comb. nov. Mimulus nudatus Curran ex Greene, Bull Calif Acad Sci 1.1141885
25 Erythranthe pardalis (Pennell) G L Nesom, comb. nov. Mimulus pardalis Pennell, Proc Acad Nat Scı Philadelphia 991641947
Mimulus cuprphtus Macnair, Bot I Linn Soc 10031989
26 Erythranthe parvula (Wooton \& Standley) G L Nesom, comb. nov. Mimulus parvulus Wooton \& Standley, Contr U.S Natl Herb 16.171 .1913
27 Erythranthe regni G L Nesom, Phytoneuron 2012-40; 242012
28 Erythranthe scouleri (Hook) G L Nesom, comb. nov. Mimulus scoulen Hook, Fl Bor -Amer 2100 1838 Mimulus guttatus subsp scouleri (Hook) Pennell, Proc Acad Nat Scı Philadelphia 99 166 1947
29 Erythranthe thermalis (A Nelson) G L Nesom, comb. nov. Mimulus thermalis A Nelson, Bull Torrey Bot Club 272691900
30 Erythranthe tilingii (Regel) GL Nesom, comb. nov. Mimulus tilngu Regel, Gartenflora 18 321, plate 6311869 Mimulus langsdorffit var tilingit (Regel) Greene, J Bot (Brtt \& Foremgn) 3381895
31. Erythranthe unimaculata (Pennell) G L Nesom, comb. nov. Mimulus unimaculatus Pennell, Notul Nat Acad Nat Scı Philadelphia 4351940
32 Erythranthe utahensis (Pennell) G L Nesom, comb. et stat. nov. Mimulus glabratus var utahensis Pennell, Acad Nat Scı Philadelphia Monogr 1. 123, map 231935

## (NORTH AMERICA-Mexico)

33 Erythranthe brevinasuta G L Nesom, Phytoneuron 2012-40 702012
34 Erythranthe dentiloba (BL. Rob \& Fernald) G L Nesom, comb. nov. Mimulus dentilobus B L Rob \& Fernald, Proc Amer Acad Arts 301201894
35 Erythranthe glabrata (Kunth) GL Nesom, comb. nov. Mimulus glabratus Kunth, Nov Gen Sp (quarto ed ) 23701817 Authorship of M. glabratus sometimes is attributed meorrectly to A Gray
36 Erythranthe madrensis (Seem) GL Nesom, comb. nov. Mimulus madrensis Seem, Bot Voy Herald 9. 322, plate 581856
Mimulus wiensn R K Vickery, Madroño 221611973

Mimulus yecorensts R K Vickery, Madroño 44: 3911997 [publ 1998].
37 Erythranthe pallens (Greene) GL Nesom, comb. nov. Mimulus pallens Greene, Leafl Bot Observ Crit 2.41909.

38 Erythranthe pennellii (Gentry) G.L. Nesom, comb. nov. Mimulus pennellu Gentry, Madroño 9 24. 1947.
39 Erythranthe visibilis G L Nesom, Phytoneuron 2012-40 972012

## (South Averica-Chile)

40 Erythranthe andicola (Kunth) G L Nesom, comb. nov. Mimulus ancticola Kunth, Nov. Gen Sp (quarto ed ) 2: $370 \quad 1817$ [publ 1818].
41 Erythranthe cuprea (Dombram) G L Nesom, comb. nov. Mimulus cupreus Dombran, Fl Mag (London) 2 t 701862
42 Erythranthe depressa (Phil) G L Nesom, comb. nov. Mimulus depressus Phil, Fl Atacam., 45. 1860
43 Erythranthe lacerata (Pennell) G L Nesom, comb. nov. Mimulus laceratus Pennell, Physis (Buenos Aires) $9320 \quad 1929$.
44 Erythranthe lutea (L) G L Nesom, comb. nov. Mimulus luteus L., Sp Pl (ed 2), 8841763 Included as synonyms are M. nummulans Gay, M. smithit Lind1, and others)
Erythranthe lutea var variegata (Lodd) G L Nesom, comb. nov. Mimulus variegatus Lodd, Bot Cab. 16: t 18721832 Mimulus luteus var. vanegatus (Lodd) Hook in Curtis, Bot Mag 61 tab 3336 1834
45 Erythranthe acaulis (Phıl) G L Nesom, comb. nov. Mimulus acaulis Phil, Anales Univ. Chile 91. 112 1895 Mimulus depressus var acaulis (Phil) Reiche, Fl Chile 6621911.
Mimulus namus Phil, Fl Atacam, 451860 (not M. nanus Hook \& Arn 1839) Mimulus depressus var nanus (Phil) Reiche, Fl Chile 6.621911.
Mimulus minmus C. von Bohlen, Gayana, Bot 52131995.
46 Erythranthe naiandina (J M Watson \& C von Bohlen) G L Nesom, comb. nov. Mimulus naiandinus JM Watson \& C von Bohlen, Curtis's Bot Mag 171992000
47 Erythranthe parviflora (Lind1) G L Nesom, comb. nov. Mimulus parvflorus Lindl, Bot Reg 11, pl 8741825 [not Mimulus parviflorus (Greene) A L Grant 1925 ("1924")]
48 Erythranthe pilosiuscula (Kunth) GL. Nesom, comb. nov. Mimulus plosiusculus Kunth, Nov. Gen Sp. (quarto ed) 23701817 [publ 1818]

Erythranthe glabrata sensu lato includes various South American taxa that may prove to be discrete biological entities, e.g., Mimulus kingii Phil., M. sylvaticus Phil,, M. tener Phil., and others). In the sense adopted here and in a study of the section (Nesom 2012a), typical E. glabrata (typified by a Mexican plant) is known in South America only from a population system in Colombia.

Erythranthe lutea var. lutea has yellow corollas like those of western North America, while E. lutea var. vartegata has purplish corolla lobes with a white to pale-yellow throat. Erythranthe naiandina has a purplish-pink corollas white on the distal half of the lower three lobes. Erythranthe cuprea has two color forms: orange-red and yellow (Cooley et al. 2008).

A detailed study of sect. Simiola (Nesom 2012a), published simultaneously with the present manuscript, includes maps, typifications, complete synonymy, descriptions, and a key to the species.

## ACKNOWLEDGEMENTS

Thanks to Barney Lipscomb, John Pruski, Billie Turner, and Tom Wendt for help in securing pertinent literature, George Yatskievych and Jim Zarucchi for a germinal conversation about generic concepts in the group, Kanchi Gandhi for comments on the system of nomenclature in Bentham's treatment of Mimulus in De Candolle's Prodromus, Rich Rabeler and Jim Reveal for helpful comments, Robyn Barker and Tony Orchard for review and comments on a late draft, and staffs of BRIT-SMU-VDB, DAV, MO, TEX-LL, UC-JEPS, and UT for help with herbarium and library study there. This study was supported (Nesom) in part by the Flora of North America Association.

## LITERATURE CITED

Albach, D.C., K. Yan, S.R. Jensen, and H.Q. Li. 2009. Phylogenetic placement of Triaenophora (formerly Scrophulariaceae) with some implications for the phylogeny of Lamiales. Taxon 58: 749-756.
Argue, C.L. 1980. Pollen morphology in the genus Mimulus (Scrophulariaceae) and its taxonomic significance. Amer. J. Bot. 67: 68-87.
Argue, C.L. 1981. The taxonomic implications of pollen morphology in some South American species of Mimulus (Scrophulariaceae). Amer. J. Bot. 68: 200-205.
Argue, C.L. 1986. Some taxonomic implications of pollen and seed morphology in Mimulus hymenophyllus and M. Jungermannioldes and comparisons with other putative members of the M. moschatus alliance (Scrophulariaceae). Canad. J. Bot. 64: 1331-1337.
Barker, W.R. 1981. Scrophulariaceae. Pp. 326-334, in J.P. Jessop (ed.). Flora of Central Australia. A.H. \& A.W.; Reed, Sydney.

Barker, W.R. 1982. Evolution and biogeography of arid Australian Scrophulariaceae. Pp. 286-287, 341-350, in W.R. Barker and P.J.M. Greenslade (eds.). Evolution of the Flora and Fauna of Arid Australia. Peacock Publications, Adelaide.
Barker, W.R. 1983. Scrophulariaceae. Pp. 268-272, in B.D.Morley and H.R Toelken (eds). Flowering Plants in Australia. Rigby Publishers, Adelaide.
Barker, W.R. 1986. Scrophulariaceae. Pp. 1275-1313, in J.P. Jessop and H.R. Toelken (eds.). Flora of South Australia (ed. 4). Government Printer, Adelaide.
Barker, W.R. 1990. New taxa, names and combinations in Lindernia, Peplidnum, Stemodia and Striga (Scrophulariaceae), mainly of the Kimberley Region, Western Australia. J. Adelaide Bot. Gard. 13: 79-93.
Barker, W.R. 1992a. New Australian species of Pepltdum and Glossosttgma (Scrophulariaceae). J. Adelaide Bot. Gard. 15: 71-74.
Barker, W.R. 1992b. Scrophulariaceae. Pp. 811-839, in J.R. Wheeler (ed.), B.L. Rye, B.L. Koch and A.J.G. Wilson. Flora of the Kimberley Region. Western Australian Herbarium, Dept of Conservation and Land Management, Como. (Limnophlla written by B.S. Wannan).
Barker, W.R. and G.J. Harden 1992. Scrophulariaceae, Mazus, Mmulus, Elacholoma, Peplidum, Glossostigma. Vol. 3, pp. 552-555, 559-563, in G.J. Harden (ed.), Flora of New South Wales. New South Wales Univ. Press, Kensington.
Barker, W.R. and G.J. Harden 1999. Scrophulariaceae, Mazus, Mimulus, Glossostigma. Vol. 4, pp. 483-486, 491-497, in N. Walsh and T. Entwisle (eds.). Flora of Victoria. Inkata Press, Port Melbourne.
Bean, A.R. 1997. Microcarpaea agonis (Scrophulariaceae), a new species from south-eastern Queensland. Austrobaileya 5: 149-151.
Bean, A.R. 2003. A new species of Mmulus L. (Scrophulariaceae) from Queensland, Australia. Austrobaileya 6: 549-552.
Beardsley, P.M., A. Yen, and R.G. Olmstead. 2003. AFLP phylogeny of Mtmulus section Erythranthe and the evolution of hummingbird pollination. Evolution 57: 1397-1410.
Beardsley, P.M. and W.R. Barker. 2005. Patterns of evolution in Australian Mumulus and related genera (Phrymaceae ~ Scrophulariaceae): A molecular phylogeny using chloroplast and nuelear sequence data. Austral. Syst. Bot. 18: 61-73.
Beardsley, P.M and R.G. Olmstead. 2002. Redefining Phrymaceae: The placement of Mimulus, tribe Mimuleae, and Phryma. Amer. J. Bot. 89: 1093-1102.
Beardsley, P.M., S.E. Schoenig, J.B. Whittall, and R.G. Olmstead. 2004. Patterns of evolution in western North American Mimulus (Phrymaceae). Amer. J. Bot. 91: 474-489.
Beeks, R.M. 1962. Variation and hybridization in southern California populations of Diplacus (Scrophulariaceae). Aliso 5: 83-122.
Bentham, G. 1835. Scrophularineae Indicae. A synopsis of the East Indian Scrophulariaceae. Ridgway, London.

Bentham, G. 1846. Diplacus, Mimulus, Eunamus. Pp. 368-374, in A. De Candolle, Prodromus systematis naturalis regni vegetabilis, vol. 10. Paris.
Bentham, G. \& J.D. Hooker 1876. Genera plantarum, vol. 2, pars 2. Sistens Dicotyledonum Gamopetalarum Orines 39. Stylidieas-Plantagineas. Reeve, London.
Bohlen von, C. 1995a. Mimulus crintus AL. Grant (Scrophulariaceae-Gratioleae), transferido de la sección Simiolus Greene a la sección Paradanthus A.L. Grant. Gayana, Bot. 52: 1-5.
Bohlen von, C. 1995b. El género Mimulus L. (Scrophulariaceae) en Chile. Gayana Bot. 52: 7-28.
Briquet, J. 1895. Phrymaceae. Pp. 361-362, in A. Engler \& K. Prantl, Die natürlichen pflanzenfamilien, ser. IV, vol. 3, part b. Engelmann, Leipzig.
Brown, R. 1810. Prodromus florae Novae Hollandiae et Insulae Van Diemen. Johnson, St Pauls Churchyard, London.
Brown, R.W. 1956. Composition of Scientific Words. Smithsonian Inst. Press, Washington.
Brummitt, R.K.. 2000. Report of the Committee for Spermatophyta: 50. Taxon 49: 799-808.
Brummitt, R.K. 2004. Report of the Committee for Spermatophyta: 54. Taxon 53: 818
Brummitt, R.K. 2004. Report of the Committee for Spermatophyta: 55. Proposal 1584 on Acacia. Taxon 53: 826-829.
Brummitt, R.K. 2011. Acacia: do we want stability or total change? Taxon 60: 915.
Cantino, P.D. 2004. Phrymaceae. Pp. 323-326 in J.W. Kadereit (ed.), The Families and Genera of Vascular Plants, Vol. 7. Springer-Verlag, Heidelberg.
Chadwell, T.B., S.J. Wagstaff, and P.D. Cantino. 1992. Pollen morphology of Phryma and some putative relatives. Syst. Bot. 17: 210-219.
Cronquist, A. 1981. The evolution and classification of higher plants. Houghton Mifflin, Boston, Massachusetts.
Deyuan, H. and J. Wen. 2011. Phrymaceae. Flora of China 19: 494-494.
Ezell, W.L. 1970. Biosystematics of the Mimulus nanus complex in Oregon. Ph.D. dissertation, Oregon State Univ., Corvallis.
Fischer, E. 2004. Scrophulariaceae. Pp. 333-432, in J. Kadereit (ed.), The Families and Genera of Vascular Plants. VII. Flowering Plants. Dicotyledons. Lamiales (except Acanthaceae including Avicenniaceae). Springer, Berlin.
Fraga, N. 2011. Examining diversity in Western Mimulus (Phrymaceae): Evidence from morphological and molecular data reveals hidden species. Abstract, Botany 2011. <http //2011 botanyconference org/engne/search/index php $?$ func=detail\&aid=260>
Grant, A.L. 1924 [published 1925]. A monograph of the genus Mimulus. Ann. Missouri Bot. Gard. 11: 99-388.
Gray, A. 1876a. Miscellaneous botanical contributions. Proc Amer Acad Arts Sci. 11: 71-104
Gray, A. 1876b. Mmulus. Pp. 562-569, in W.H. Brewer, S. Watson, and S. Watson. Botany Vol. 1. Geol. Surv. California. Welch, Bigelow \& Co., Univ Press, Cambridge, Mass.
Gray, A. (in J.G. Lemmon). 1884. On a new Mimulus of a peculiar seetion of the genus. Bot. Gaz. (Crawfordsville) 9: 141-143.
Gray, A. 1886a. Synoptical Flora of North America. Vol. II. - Part I. Gamopetalae after Compositae (ed. 2). Ivison, Blakeman, Taylor, and Co., New York.
Gray, A. 1886b. Supplement to Vol. II. Part I. Additions and corrections. Pp. 393-462 (plus common index with Gray 1886a) in Synoptical Flora of North America: The Gamopetalae. Ed. 2 of Vol. I. Part II., and Vol. II. Part I, collected. Ivison, Blakeman, Taylor, and Co., New York.
Greene, E.L. 1885. Studies in the botany of California, etc. Bull. Calif. Acad. Sci. 1: (I) 66-178; (II) 179-275.
Greuter, W., G. Wagenitz, M. Agababian, and F.H. Hellwig. 2001. (1509) Proposal to conserve the name Centaurea (Compositae) with a conserved type. Taxon 50: 1201-1205.
Hickey, L.J. 1973. Classification of the architecture of dicotyledonous leaves. Amer. J. Bot. 60:1733.

Holmgren, N.H. 1984. Scrophulariaceae. Pp. 344-506, in A. Cronquist et al. (eds.), Intermountain Flora, Vol. 4. New York Botanical Garden Press, Bronx, New York.
Hong, D.Y., H. Yang, C.-l. Jin, M.A. Fischer, N.H. Holmgren, and R.R. Mill. 1998. Scrophulariaceae. Flora of China 18: 1-212 [Mimulus, D.Y. Hong \& N.H. Holmgren, pp. 40-41].
King, R.M. and H. Robinson. 1987. The genera of the Eupatorieae ( Asteraceae). Monogr. Syst. Bot., Missouri Bot. Gard. 22: 1-581.
Lee, N.S., T. Sang, D.J. Crawford, S.H. Yeau, and S.-C. Kim. 1996. Molecular divergence between disjunct taxa in eastern Asia and eastern North America. Amer. J. Bot. 83: 1373-1378.
Les, D.H., Capers, R.S. \& Tippery, N.P. 2006. Introduction of Glossostigma (Phrymaceae) to North America: a taxonomic and ecological overview. Amer. J. Bot. 93: 927-939.
Lu, A. 1990. A preliminary cladistic study of the families of the superorder Lamiiflorae. Bot. J. Linn. Soc. 103: 39-57.
Luckow, M. and 36 coauthors. 2005. Acacia: The case against moving the type to Australia. Taxon 54: 513-519.
McMinn, H.E. 1951. Studies in the genus Diplacus (Scrophulariaceae). Madroño 11: 33-128.
McNeill, J., N.J. Turland, A. Monro, and B.J. Lepschi. 2011. XVIII International Botanical Congress: Preliminary mail vote and report of Congress action on nomenclature proposals. Taxon 60: 1507-1520.
Moldenke, H.N. 1971. A fifth summary of the Verbenaceae, Avicenniaceae, Stilbaceae, Dicrastylidaceae, Symphoremaceae, Nyctanthaceae, and Eriocaulaceae of the world as to the valid taxa, geographic distribution and synonomy. The William Paterson College of New Jersey, Wayne.
Moody, A., P.K. Diggle, and D.A. Steingraeber. 1999. Developmental analysis of the evolutionary origin of vegetative propagules in Mimulus gemmiparus. Amer. J. Bot. 86: 1512-1522.
Munz, P.A. 1959. A California Flora. In collaboration with D.D. Keck. Univ. of California Press, Berkeley.
Nie, Z.L., H. Sun, P.M. Beardsley, R.G. Olmstead, and J. Wen. 2006. Evolution of biogeographic disjunction between eastern Asia and eastern North America in Phryma (Phrymaceae). Amer. J. Bot. 93: 1343-1356.

Nesom, G.L. 2011a. Recognition and synopsis of Mimulus sect. Tropanthus and sect. Leucocarpus (Phrymaceae). Phytoneuron 2011-28: 1-8.
Nesom, G.L. 2012a. Taxonomy of Erythranthe sect. Simiola (Phrymaceae) in the USA and Mexico. Phytoneuron 2012-40: 1-123.
Nesom, G.L. 2012b. Taxonomy of Erythranthe sect. Mimulosma (Phrymaceae). Phytoneuron 201241: 1-36.
Nesom, G.L. 2012c. Taxonomy summary of Erythranthe sect. Achlyopitheca (Phrymaceae). Phytoneuron 2012-42: 1-4.
Nesom, G.L. 2012d. Notes on Erythranthe ortzabae (Phrymaceae). Phytoneuron 2012-43: 1-4.
Nesom, G.L. 2012e. A new species of Erythranthe (Phrymaceae) from China. Phytoneuron 201244: 1-3.
Nesom, G.L. 2012f. Three varieties raised to specific rank in Diplacus (Phrymaceae). Phytoneuron 2012-47: 1-6.
O'Kane, S.L., I.A Al Shehbaz, and N.J. Turland. 1999. 1393. Proposal to conserve the name Lesquerella against Physaria (Cruciferae). Taxon 48: 163-164.
Olmstead, R.G. and P.A. Reeves. 1995. Evidence for the polyphyly of the Scrophulariaceae based on chloroplast rbcL and ndhF sequences. Ann. Missouri Bot. Gard. 82: 176-193.
Orchard, A.E. and B.R. Maslin. 2005. The case for conserving Acacia with a new type. Taxon 54: 509-512.
Oxelman, B., P. Kornhall, R.G. Olmstead, and B. Bremer. 2005. Further disintegration of Scrophulariaceae. Taxon 54: 411-425.

Pennell, F.W. 1935. Mimulus Linnaeus. The Scrophulariaceae of eastern temperate North America. Proc. Acad. Nat. Sci. Philadelphia 1: 112-136.
Pennell, F.W. 1943. Mimulus Linnaeus. The Scrophulariaceae of the western Himalayas. Proc. Acad. Nat. Sci. Philadelphia 5: 32-33.
Pennell, F.W. 1947. Some hitherto undescribed Scrophulariaceae of the Pacific states. Proc. Acad. Nat. Sci. Philadelphia 99: 155-171.
Pennell, F.W. 1951. Scrophulariaceae. Pp. 686-859, in L. Abrams. Illustrated Flora of the Pacific States, Vol. III. Stanford Univ. Press, Stanford, California.
Reveal, J.L. 2011. Summary of recent systems of angiosperm classification. Kew Bull. 66: 5-48.
Schäferhoff, B., A. Fleischmann, E. Fischer, D.C. Albach, T. Borsch, G. Heubl, and K.F Müller. 2010. Towards resolving Lamiales relationships: Insights from rapidly evolving chloroplast sequences. BMC Evol. Biol. 10: 352 (1-22).
Schauer, J.C. 1847. Phrymaceae. Prodr. (DC.) 11: 520-521.
Smith, G.F. and E. Figuieredo. 2011. Conserving Acacia Mill. with a conserved type: What happened in Melbourne? Taxon 60: 1504-1506.
Stevens, P. F. (2001 onwards). Angiosperm Phylogeny Website. Version 9, June 2008 [and more or less continuously updated since]. http//www mobot org/MOBOT/research/APweb/ (Phrymaceae description used in text sourced on $16^{\text {th }} \mathrm{Feb}$ 2012).
Tank, D.C., P.M. Beardsley, S.A. Kelchner, and R.G. Olmstead. 2006. L.A.S. Johnson Review No. 7. Review of the systematics of Scrophulariaceae s.1. and its current disposition. Austral. Syst. Bot. 19: 289-307.
Thieret, J.W. 1972a. The Phrymaceae in the southeastern United States. J. Arnold Arb. 53: 226-233.
Thieret, J.W. 1972b. Synopsis of Hemichaena, including Berendttella (Scrophulariaceae). Fieldiana Bot. 34: 89-99.
Thompson, D.M. 1993. Mimulus. Pp. 1037-1046, in J.C. Hickman (ed.), The Jepson Manual: Higher Plants of California. Univ. of California Press, Berkeley.
Thompson, D.M. 2005. Systematics of Mimulus subgenus Schizoplacus (Scrophulariaceae). Syst. Bot. Monogr. 75: 1-213.
Tulig, M.C. 2000. Morphological variation in Mimulus section Diplacus (Scrophulariaceae). M.S. thes is, California State Polytechnic Univ., Pomona. <www csupomona edu/ joclark/students/tulig/tulg_thesis pdf>
Tulig, M.C. and C. Clark 2000. Morphological variation in Mimulus section Diplacus (Scrophulariaceae). Biological Sciences, California State Polytechnic Univ., Pomona. Poster, internet pdf.
Tulig, M.C. and G.L. Nesom. 2012. Taxonomic overview of Diplacus sect. Diplacus (Phrymaceae). Phytoneuron 2012-45: 1-20.
Turland, N.J. 2011. A suggested compromise on the nomenclature of Acacia. Taxon 60: 913-914.
Vickery, R.K., Jr. 1966a. Experimental hybridizations in the genus Mimulus (Scrophulariceae). V. Barriers to gene exchange between sect. Simolus and the other main sections of the genus. Utah Acad. Sci. Proc. 44: 316-320.
Vickery, R.K., Jr. 1966b. Speciation and isolation in section Smiolus of the genus Mimulus. Taxon 15: 55-63.
Vickery, R.K., Jr. 1969. Crossing barriers in Mimulus. Jap. J. Genet. 44: 325-336.
Vickery, R.K., Jr. 1974. Crossing barriers in the yellow monkey flowers of the genus Mimulus (Scrophulariaceae). Genet. Lect. 3: 33-82. Oregon State University, Corvallis,
Vickery, R.K., Jr. 1997. A systematic study of the Mimulus wiensii complex (Scrophulariaceae: Mimulus section Simiolus), including M. minutiflorus, new species from western Mexico. Madroño 44: 384-393.
Vickery, R.K., Jr., K.W. Crook, D.W. Lindsay, MM. Mia, and W. Tai. 1968. Chromosome counts in the section Simiolus of the genus Mimulus (Scrophulariaceae). VII. New numbers for M. guttatus, M. cupreus, and M. tilingil. Madrono 19: 211-218.

Waayers, G.M. 1996. Hybridization, introgression, and selection in Mimulus aurantaicus ssp. australts and Mimulus puntceus. M.S. thesis, San Diego State Univ., San Diego, California.
Watson, J.M. and C. von Bohlen. 2000. Mimulus naiandinus: Scrophulariaceae. Curtis's Bot. Mag. 17: 195-201.
Watson, S. 1871. Botany. Pp. 1-525, in C. King. United States geological exploration of the fortieth parallel. Vol. 5. Govt. Printing Office, Washington, D.C.
Wettstein, R. von 1891. Scrophulariaceae. Pp. 39-107, in A. Engler \& K. Prantl, Die natürlichen pflanzenfamilien, ser. IV, vol. 3, part b. Engelmann, Leipzig.
Wettstein, R. von 1897. Scrophulariaceae. Pp. 293-299, in A. Engler \& K. Prantl, Die natürlichen pflanzenfamilien. Nachtrag und Register zu Teil II-IV. Engelmann, Leipzig.
Whipple, H.L. 1972. Structure and systematics of Phryma leptostachya. J. Elisha Mitchell Sci. Soc. 88: 1-17.
Whittall, J.B., C.B. Matthew, P.M. Beardsley, R.J. Meinke, and A. Liston. 2006. The Mmulus moschatus alliance (Phrymaceae): Molecular and morphological phylogenetics and their conservation implications. Syst. Bot. 31: 380-397.
Windler, D.R., B.E. Wofford, and M.W Bierner. 1976. Evidence of natural hybridization between Mimulus ringens and Mimulus alatus (Scrophulariaceae). Rhodora 78: 641-649.
Wu, C.A., D.B. Lowry, A.M. Cooley, K.M. Wright, Y.-W. Lee, and J.H. Willis. 2008. Mimulus is an emerging model system for the integration of ecological and genomic studies. Heredity 100: 220-230.
Yamazaki, T. 1985. Scrophulariacées. Flore du Cambodge du Laos et du Viêt-nam 21: 1-217.

## APPENDIX: HOMOTYPIC SYNONYMY AND TAXONOMIC USAGE

I. MIMULUS L., Sp. Pl. Sp. 2: 634. 1753; L., Gen. Pl. 283. 1754; Benth., Scroph. Indicae 29 (1835), partly (as to M. ringens, M. alatus, M. strictus, M. orbicularts, M. gracilis); Eb. Fisch., Fam. Gen. Vasc. Pl. 7: 405. 2004, partly; and other authors below. TyPE: Mimulus ringens L. The genus as originally described by Linnaeus included only a single species.
Monavia Adans., Fam. Plant. 2: 211. 1763, nom. illeg. (superfluous name: ICN Art. 52.1). Superfluous when published, intended by Adanson as a replacement name for Mtmulus L., which was listed as a synonym. Not Mimulus of Plinius, which was treated by Adanson as the name for Rhinanthus of Linnaeus. Type: Mimulus ringens L.
Cynorrhynchtum J. Mitchell, Diss. Brevis. Princ. Bot. Zool. 29. 1769, nom. illeg. (includes type of an existing genus: ICN Art. 52.1). TyPE: Mimulus ringens L. The 1769 protologue "exactly repeated Mitchell's previous description in Acta Phys-Med Acad Caes Leop-Francisc Nat Cur. 8: 207. 1748; only the genus was described, but by Linnaeus' reference in the Genera Plantarum [1754 (ed. 5), p. 283] to Cynorrhynchium as a synonym of Mimulus, Mitchell's plant was correctly identified with M. ringens L." (Pennell 1935, p. 112). The description by Linnaeus also incorporated much of the original by Mitchell.

Most of Mitchell's herbarium and types are in BM-Banks, with others in G, LINN, and OXF but a collection of Mimulus by Mitchell apparently is not among them.
Mimulus § Erectı Benth. in DC., Prodr. 10: 369. 1846, without indication of rank, partly (as to M. ringens, M. alatus, M. madagascariensis, M. gracilts. Lectotype: Mimulus ringens L. Bentham included M. ringens, M. alatus, M. madagascariensis, M. gracilis, M. pusillus, and M. wedalue in ser. Erectr. There is no clear choice for lectotype; the species selected.here is one that Bentham had studied from adequate material.
Mimulus § Prostrati Benth. in DC., Prodr. 10: 373. 1846, without clear indication of rank, partly (as to M. orbicularis). Lectotype: Mimulus orbicularis Wall. ex Benth. Bentham included M. orbicularis, M. repens, and M. prostratus. He noted that these comprised "Species Asiaticæ vel Australasicer." This section has not been adopted subsequently and in global works these species have been consistently treated together. There is no clear choice for lectotype; the species selected here is one that Bentham had studied from adequate material.
Mimulus subg. Synplacus auct. non A.L. Grant: A.L. Grant, Ann. Missouri Bot. Gard. 11: 126, partly. Mimulus subg. Synplacus A.L. Grant, Ann. Missouri Bot. Gard. 11: 126. 1925 ("1924"). Lectotype: Mimulus ringens $L$. Grant did not specify a type from among the four sections she included in subg. Synplacus. Typification of subg. Synplacus has not subsequently been made explicit and the subgenus has not been used to the exclusion of any sections or species among those with axile placentation. What species Grant may have had in mind as the type of subg. Synplacus is not clear - the choice here simply places the taxon as a synonym of Mmulus sensu stricto.
Mimulus § Mimulus (as "Eumimulhs"): A Gray, Proc. Amer. Acad. 11: 97 1876, partly,(as to M. ringens and M. alatus); Greene, Bull. Calif. Acad. Sci. 1: 108. 1885, partly (as to M. ringens and M. alatus); A. Gray, Syn. Fl. N. Amer. (ed. 2) 2: 276. 1886, partly, 2(1): 446. 1886, partly (idem). - Mmulus sect. Mimulus (as "Eumimulus"): Benth. \& J.D. Hook., Gen. Pl. 2(2): 947 (1876), partly; Wettst., Nat. Pfl. IV 3b: 72 (1891), partly (as to M. gracilts, M. madagascartensis); AL. Grant, Ann. Missouri Bot. Gard. 11: 126. 1925 ("1924"), partly (to spp. listed under our sect. "Eumimulus" except M. linearts).
Mimulus sect. Paradanthus auct. non A.L. Grant: A.L. Grant, Ann. Missouri Bot. Gard. 11: 195. 1925 ("1924"), partly (as to M. orbicularis).
II. THYRIDIA W.R. Barker \& Beardsley, in text above. TyPE: Thyridia repens (R. Br.) W.R. Barker \& Beardsley.
Mimulus § Prostratt auct. non Benth.: Benth. in DC., Prodr. 10: 369. 1846, name without rank, partly (as to M. repens).
Mimulus sect. Mimulus (as "Eumimulus") [auct. non Benth. \& J.D. Hook]: Benth. \& J.D. Hook., Gen. Pl. 2(2): 947 (1876), partly.
Mimulus subg. Synplacus auct. non A.L. Grant: A.L. Grant, Ann. Missouri Bot. Gard. 11: 126, partly, Mimulus sect. Paradanthus auct. non A.L. Grant: A.L. Grant, Ann. Missouri Bot. Gard. 11: 195. 1925 ("1924"), partly (as to M. repens).
Mimulus auct. non L. (partly, as to M. repens): Benth., Scroph. Indicae 29 (1835); Wettst., Nat. Pfl. IV 3b: 72 (1891); ?Eb. Fisch., Fam. Gen. Vasc. Pl. 7: 405. 2004.
III. MICROCARPAEA R. Br., Prodr. Fl. Nov. Holland., 435. 1810; Benth. in DC., Prodr. 10: 432. 1846; Benth. \& J.D. Hook., Gen. Pl. 2(2): 957 (1876); Wettst., Nat. Pfl. IV 3b: 77 (1891) ; Eb. Fisch., Fam. Gen. Vasc. Pl. 7: 402. 2004. Type: Microcarpaea muscosa R. Br., nom. illeg. (= Microcarpaea minima (K.D. Koenig ex Retz.) Merrill), the only species in the protologue.
IV. UVEDALIA R. Br., Prodr. Fl. Nov. Holland., 440. 1810; Benth., Scroph. Indicae 8 (1835). TYPE: Uvedalta lmearts R . Br ., the only species in the protologue.
Mimulus § Erecti auct. non Benth.: Benth. in DC., Prodr. 10: 369. 1846, name without rank, partly (as to M. uvedaliae),
Mimulus subg. Synplacus auct. non AL. Grant: AL. Grant, Ann. Missouri Bot. Gard. 11: 126, partly. (as to M. lmearis.).
Mimulus §Mimulus (as "Eumimulus") [auct. non A. Gray]: A. Gray, Proc. Amer. Acad. 11: 97. 1876, partly, (as to M. linearis). - Mimulus sect. Mimulus (as "Eumimulus") [auct. non Benth. \& J.D. Hook.]: Benth. \& J.D. Hook., Gen. Pl. 2(2): 947 (1876), partly; Wettst., Nat. Pfl. IV 3 b: 72 (1891), partly (as to M. linearis (R. Br.) Wettst.); AL. Grant, Ann. Missouri Bot. Gard. 11: 126. 1925 ("1924"), partly (as to M. linearis and its var. lutea).

Mimulus auctt. non L., partly: authors since R. Br., Benth. (1835), and D. Don.
V. PEPLIDIUM Delile, Fl. Egypte [Edn. 1]: 148. 1813; [Delile, Descr. Egypte, Hist. Nat. 50, 148. 1813 ("1812"), nomen nudum]; Benth. in DC., Prodr. 10: 422. 1846; Benth. \& J.D. Hook, Gen. Pl. 2(2): 957 (1876); Wettst., Nat. Pfl. IV 3b: 77. 1891; Eb. Fisch., Fam. Gen. Vase. Pl. 7: 402. 2004. TYPE: Peplidnum humifisum Delile (= Pepltdum maritmum (L.f.) Asch.), the only species in the protologue.
VI. ELACHOLOMA F. Muell. \& Tate ex F. Muell., Vict. Naturalist 12: 14. May 1895 ('genus of Sesameae"); F. Muell. \& Tate ex Tate, Trans. Roy. Soc. S. Austral. 19: 79. July 1895, nomen nudum ("Or. Pedalineae"); S.T. Blake, Proc. Roy. Soc. Queens1. 70: 45. 1959 (Scrophulariaceae); N.T. Burb., Dict. Austral. Pl. Gen. (Pedaliaceae or Scrophulariaceae); W.R. Barker, Fl. Cent. Austral. 329. 1981 (Scrophulariaceae); W.R. Barker, Evol. Fl. Fauna Arid Austral. 342. 1982 (Scrophulariaceae trib. Gratioleae subtrib. Mimulinae); Eb. Fisch., Fam. Gen. Vasc. Pl. 7: 402. 2004 (Scrophulariaceae "Phrymaceae" trib. Microcarpaeeae (as "Microcarpeae"). Type: Elacholoma hornit F. Muell. \& Tate, the only species in the protologue.
Mimulus § Prostrati auct. non Benth.: Benth. in DC., Prodr. 10: 373. 1846, without clear indication of rank, partly (excl. M. orbicularts, M. repens).
Mimulus § Erecti auct. non Benth.: Benth. in DC., Prodr. 10: 369. 1846, name without rank, partly (as to M. pusillus),

Mimulus sect. Mimulus (as "Eumimulus") [auct. non Benth. \& J.D. Hook.]: ?Benth. \& J.D. Hook., Gen. Pl. 2(2): 947 (1876), partly (as to Benth. in DC. citation).
Mimulus subg. Synplacus A.L. Grant, Ann. Missouri Bot. Gard. 11: 126, partly (as to M. prostratus).
Mimulus sect. Paradanthus auct. non AL. Grant: A.L. Grant, Ann. Missouri Bot. Gard. 11: 195. 1925 ("1924"), partly (as to M. prostratus and M. pusillus).
Mimulus auctt. non L.(partly, as to M. prostratus and/or M. pusillus): e.g. Benth., Fl. Austral. 4: 483. 1868; W.R. Barker, Fl. Cent. Austral. 329. 1981
VII. GLOSSOSTIGMA Wight \& Arn., Nova Acta Phys.-Med. Acad. Caes. Leop.-Carol. Nat. Cur. 18: 355. 1836, nom. conserv.; Benth. in DC., Prodr. 10: 426. 1846; Benth. \& J.D. Hook., Gen. Pl. 2(2): 958 (1876); Wettst., Nat. Pfl. IV 3b: 78. 1891; Eb. Fisch., Fam. Gen. Vasc. Pl. 7: 403. 2004. Type: Glossostigma spathulatum Arn., nom. illeg. (Limosella diandra L. $=$ Glossostigma drandrum (L.) Kuntze), the only species in the protologue.
Tricholoma Benth. in DC., Prodr 10 426. 1846, nom. rejic. TyPE: T. elatinotdes Benth. $=G$. elatinoides (Benth.) Benth. ex J.D. Hook, non Tricholoma (Fr.) Staude, nom. cons. (Fungi: Agaricaceae), the sole species in the protologue.
Mimulus sect. Mimulus (as "Eumimulus") [auct. non Benth. \& J.D. Hook.]: Benth. \& J.D. Hook., Gen. Pl. 2(2): 958 (1876), partly.
VIII. PHRYMA L., Sp. Pl. 2: 601. 1753; Schauer in DC. Prod. 11: 520. 1847 (in monotypic Phrymaceae); Benth. \& J.D. Hook., Gen. Pl. 2(2): 1132 (1876) (as Verbenaceae trib. Phrymeae); Briq., Nat. Pfl. IV 3b: 361 (in monotypic Phrymaceae). 1891; Thieret, J. Arnold Arb. 53: 226. 1972; Eb. Fisch., Fam. Gen. Vasc. Pl. 7: 402. 2004 (in Scrophulariaceae "Phrymaceae", in note only). Type: Phryma leptostachya L., the sole species in the protologue.
Leptostachia Adans., Fam. 2: 201. 1763. A superfluous replacement name for Phryma L.
IX. HEMICHAENA Benth., Pl. Hartw., 78. 1841; Benth. \& J.D. Hook., Gen. Pl. 2(2): 943 (1876); Wettst., Nat. Pfl. IV 3b: 67. 1891; Thieret, Fieldiana Bot. 34: 92. 1972; Eb. Fisch., Fam. Gen. Vasc. Pl. 7: 404. 2004. TyPE: Hemtchaena fruttcosa Benth. (= Mmulus fruttcosus).
Mimulus (subg. Schizoplacus) sect. Tropanthus A.L. Grant, Ann. Missouri Bot. Gard. 11: 324. 1925 ("1924"). Type: Mimulus treleaset A.L. Grant (= Mimulus levigatus). This is the sole species in the protologue.
Berendtia A. Gray, Proc. Amer. Acad. Arts 7: 379. 1868 (non Goeppert 1845); Wettst., Nat. Pfl. IV 3b: 67. 1891; A.L. Grant, Ann. Missouri Bot. Gard. 11: 350. 1925 ("1924") (in note). Berendtiella Wettst. \& Harms in Engl. et Prantl, I Pflanzenf., Gesamtregister zum II. bis IV. Teil: 459. 1899 [a replacement name for Berendtia A. Gray]. Lectotype (Thieret 1972b, p. 92): Berendtia ghiesbrechtil A. Gray (= Mmulus rugosus). Gray did not cite a type for his new genus, in which he included $B$. gheesbrechtil, B. coulteri, and $B$. rugosa.
Leucocarpus auct. non D. Don: Benth in DC., Prodr. 10: 335. 1846, partly (as to L. fruticosus).
Diplacus auct. non Nutt.: Benth in DC., Prodr. 10: 335. 1846, partly (as to D. rugosus). - Mimulus sect. Diplacus auct. non (Nutt.) Wettst.: Wettst., Nat. Pfl. IV 3b: 72 (1891), partly (as to M. rugosus).
X. MIMETANTHE Greene, Bull. Calif. Acad. Sci. 1: 181. 1886[1885]; AL. Grant, Ann. Missouri Bot. Gard. 11: 350. 1925 ("1924"); Wettst., Nat. Pfl. IV 3b: 67. 1891 (as "Mimelanthe"; AL. Grant, Ann. Missouri Bot. Gard. 11: 350. 1925 ("1924") (in note). Eb. Fisch., Fam. Gen. Vasc. Pl. 7: 405. 2004. Type: Mmetanthe ptlosa (Benth.) Greene
Herpestis sect. Mimuloides Benth. in DC., Prodr. 10: 394. 1846. - Mimulus § Mimulordes (Benth.) Benth. \& J.D. Hook., Gen. Pl. 2(2): 947. 1876; A. Gray, Proc. Amer. Acad. Arts 11: 95. 1876; Greene, Bull. Calif. Acad. Sci. 1: 122. 1885; A. Gray, Syn. Fl. N. Amer. (ed. 2) 2 :
279. 1886; 2(1): 446. 1886. Type: Herpestis pilosa Benth. [=Mimetanthe pilosa] Watson (1871) noted that the species had been recognized as Herpestis sect. Mimuloides but he did not formally transfer the section to Mimulus.
XI. DIPLACUS Nutt., Ann. Nat. Hist. 1: 137. 1838; Benth. in DC., Prodr. 10: 368. 1848, partly (excl. D. rugosus); Greene, Bull. Calif. Acad. Sci. 1: 94. 1885. - Mimulus § Diplacus (Nutt.) A. Gray, Proc. Amer. Acad. Arts 11: 97. 1876 (as to spp. in our sect. Diplacus); A. Gray, Syn. Fl. N. Amer. (ed. 2) 2: 275. 1886 (as to spp. listed under our sect. Diplacus), 2(1): 442. 1886. - Mimulus sect. Diplacus (Nutt.) Benth. \& J.D. Hook., Gen. Pl. 2(2): 947 (1876); Wettst., Nat. Pfl. IV 3b: 71 (1891), partly (as to spp. listed under our sect. Diplacus). Mimulus (subg. Schizoplacus) sect. Diplacus (Nutt.) AL. Grant, Ann. Missouri Bot. Gard. 11: 326. 1925 ("1924") (as to spp. in our sect. Diplacus). Lectotype (Thompson 2005): Diplacus glutnosus (J.C.Wend1.) Nutt. [= Diplacus aurantzacus]
Eunanus Benth. in DC., Prodr. 10: 374. 1846; Greene, Bull. Calif. Acad. Sci. 1: 94. 1885, partly. Mimulus § Eunanus (Benth.) A. Gray, Proc. Amer. Acad. Arts 11:95. 1876 (as to spp. in our sects. Erimimimulus, Eunanus, Oenoe, Cleisanthus); A. Gray, Syn. Fl. N. Amer. (ed. 2) 2: 273. 1886 (as to spp. listed under our sects. Erimimimulus, Eunanus, Oenoe, Cleisanthus), 2(1): 444. 1886 (as to spp. listed under our sects. Erimimimulus, Eunanus, Cleisanthus). Mimulus sect. Eunanus (Benth.) Wettst.: Wettst., Nat. Pfl. IV 3b: 71 (1891) (no spp. listed). - Mimulus (subg. Schizoplacus) sect. Eunanus (Benth.) A.L. Grant, Ann. Missouri Bot. Gard. 11: 268. 1925 ("1924") (as to spp. listed under our sects. Ertmimmulus, Eunanus, Pseudoenoe, Cleisanthus). Lectotype (see under Diplacus sect. Eunanus).
Mimulus subg. Schizoplacus A.L. Grant, Ann. Missouri Bot. Gard. 11: 268. 1925 ("1924"). Lectotype: (Thompson 2005, p. 26):Mimulus nanus Hook \& Arn.[= Diplacus nanus]
Mimulus § Oenoe A. Gray in W.H. Brewer, S. Watson, and A. Gray, Bot. California (ed. 1): 563. 1876; A. Gray, Syn. Fl. N. Amer. (ed. 2) 2(1): 443.1886 (as to spp. listed under our sects. Oenoe, Cleisanthus). - Eunanus sect. Oenoe (A. Gray) Greene, Bull. Calif. Acad. Sci 1: 98. 1885 (rank specified on p. 97), partly (as to E. angustatus, E. tricolor). - Mimulus sect. Oenoe (A. Gray) Wettst., Nat. Pfl. IV 3b: 71 (1891) (no spp. listed). - Mimulus seet. Oenoe (A. Gray.) A.L. Grant, Ann. Missouri Bot. Gard. 11: 309. 1925 ("1924"), partly (as to spp. listed under our sects. Oenoe, Cletsanthus). Typification (see under sect. Oenoe).
Mimulus §Mimulastrum A. Gray in Lemmon, Bot. Gaz. (Crawfordsville) 9: 141. 1884; A. Gray, Syn. Fl. N. Amer. (ed. 2) 2(1): 446. 1886, partly (as to M. mohavensts). - Eunamus § Mimulastrum (A. Gray) Greene, Bull. Calif. Acad. Sci. 1: 105. 1885 (as to M. pictus, M. mohavensis). - Mmulus sect. Mimulastrum (A. Gray) Wettst., Nat. Pfl. IV 3b: 71 (1891). Mimulus sect. Mrmulastrum (A. Gray) A.L. Grant, Ann. Missouri Bot. Gard. 11: 308. 1925 ("1924") (as to spp. listed under our sect. Eunamus). Typification (see under sect. Mimulastrum).
Mimulus sect. Pseudoenoe A.L. Grant, Ann. Missouri Bot. Gard. 11: 323. 1925 ("1924") (as to our sect. Pseudoenoe). TyPification (see under sect. Pseudoenoe).
Mimulus § Speciosi auct. non Benth.: Benth. in DC., Prodr. 10: 369. 1846, partly (as to M. brevipes).
Mimulus auct. non L.: Eb. Fisch., Fam. Gen. Vasc. Pl. 7: 405 2004, partly.

1. Diplacus sect. Eremimimulus G.L. Nesom \& N.S. Fraga, in text above. Type: Diplacus parryi (A Gray) G.L. Nesom \& N.S. Fraga
Mimulus (subg. Schizoplacus) sect. Eunanus auct. non (Benth.) A.L. Grant: A.L. Grant, Ann. Missouri Bot. Gard. 11: 126. 1925 ("1924"), partly (as to M. parryi).
Eunanus sect. Eunanus [auct. non Greene]: Greene, Bull. Calif. Acad. Sci 1:98. 1885 (rank specified on p. 97), partly (as to E. parryi). - Mimulus § Eunanus auct. non (Benth.) A. Gray: A. Gray, Proc. Amer. Acad. 11: 97 1876, partly (as to M. parry); A. Gray, Syn. Fl. N. Amer. (ed. 2) 2(1): 445.1886 , partly (as to M. parryi).
2. Diplacus sect. Eunanus (Benth.) G.L. Nesom \& N.S. Fraga, in text above. Eunanus Benth. in DC., Prodr. 10: 374. 1846, partly (as to E. fremontil, E. tolmiet). - Mimulus § Eunanus (Benth.) A. Gray, Proc. Amer. Acad. Arts 11: 95. 1876, partly (as to M. leptaleus, M. bigelovii, M. nanus, M., fremontii, M. bolanderi, M. brevipes); A. Gray, Syn. Fl. N. Amer. (ed. 2) 2(1): 444. 1886 (as to M.bigelovit, M. bolanderi, M brevipes, E. fremontil, E. leptaleus, M. mephiticus, M. nanus, M. rattanti, M. whitneyi). - Eunanus sect. Eunanus: Greene, Bull. Calif. Acad. Sci 1: 98. 1885 (rank specified on p. 97), partly (as to E. leptaleus, E. bigelovii, E. mephiticus, E. tolmiael, E. fremontu, E. layneae, E. torreyi, E. rattanil, E. bolanderi, E. brevipes). - Mimulus sect. Eunanus (Benth.) Wettst., Nat. Pfl. IV 3b: 71 (1891). - Mimulus (subg. Schizoplacus) sect. Eunamus (Benth.) AL. Grant, Ann. Missouri Bot. Gard. 11: 268. 1925 ("1924"), partly (as to M. brevipes, M. spissus, M. bigelovi, M. johnstonil, M. cusickii, M. fremontil, M. subsecundus and vars., M. decurtatus, M. rattanil, M. layneae, M. nanus, M. clivicola, M. angustfolus, M. mephttcus, M. leptaleus, M. jepsonu, M. whitneyt) Lectotype (Thompson 2005): Eunanus tolmiei Benth. [= Diplacus nanus (Hook. \& Arn.) G.L. Nesom \& N.S. Fraga]
Mimulus § Mimulastrum A. Gray in Lemmon, Bot. Gaz. (Crawfordsville) 9: 141. 1884, partly (as to M. mohavensis); A. Gray, Syn. Fl. N. Amer. (ed. 2) 2(1): 446. 1886, partly (idem). Eunanus § Mimulastrum (A. Gray) Greene, Bull. Calif. Acad. Sci. 1: 105. 1885, partly (idem). - Mrmulus sect. Mimulastrum (A. Gray) Wettst., Nat. Pfl. IV 3b: 71 (1891), partly (idem). - Mrmulus (subg. Schizoplacus) sect. Mimulastrum (A. Gray) A.L. Grant, Ann. Missouri Bot. Gard. 11: 308. 1925 ("1924"). TyPE: Mimulus mohavensts Lemmon. Gray (in Lemmon) included only $M$. mohavensis in the new section. See comments below under sect. Pseudonoe.
Mimulus § Spectost auct. non Benth.: Benth. in DC., Prodr. 10: 369. 1846, partly (as to M. brevipes).
Mimulus auct. non L.: Benth., Scroph. Indicae 29 (1835), partly (as to M. brevpes).
3. Diplacus sect. Pseudoenoe (A.L. Grant) G.L. Nesom \& N.S. Fraga, in text above. Mimulus sect. Pseudoenoe A.L. Grant, Ann. Missouri Bot. Gard. 11: 323. 1925 ["1924"]. Type: Mimulus pictus (Curran ex Greene) A. Gray [= Diplacus pictus]. Gray (in Lemmon 1884) included only M. mohavensts in sect. Mimulastrum but Greene (1885) added M. pictus (as Eunanus pictus) to the section, and Gray (1886) also included both species in sect. Mimulastrum. With Grant's (1924) creation of sect. Pseudoenoe for M. pictus, each species thus constituted a monotypic section in her treatment.
Mimulus § Mimulastrum auct. non A. Gray (partly, as to M. pictus, see note below): Greene, Bull. Calif. Acad. Sci. 1: 105. 1885; A. Gray, Syn. Fl. N. Amer. (ed. 2) 2(1): 446. 1886. Mimulus sect. Mimulastrum auct. non (A. Gray) Wettst.: Wettst., Nat. Pfl. IV 3b: 71 (1891), partly (as to M. pictus);
4. Diplacus sect. Oenoe (A. Gray) G.L. Nesom \& N.S. Fraga, in text above. Mimulus § Oenoe A. Gray in W.H.Brewer, S.Watson, and A. Gray, Bot. California (ed. 1): 563. 1876; A. Gray, Syn. Fl. N. Amer. (ed. 2) 2(1): 445. 1886, partly (as to M. angustatus, M. tricolor). - [Oenoe A. Gray in Benth., Pl. Hartw. 329. 1849, nom. inval. (under Eunanus douglasu, Bentham appears to suggest that, instead of within Eunanus, the species would be better considered within Gray's genus Oenoe, but in 1849 the name Oenoe apparently had not yet been published at any rank] - Eunanus sect. Oenoe (A. Gray) Greene, Bull. Calif. Acad. Sci 1: 98. 1885 (rank specified on p. 97), partly (as to E. angustatus, E. tricolor). - Mimulus sect. Oenoe (A. Gray) Wettst., Nat. Pfl. IV 3b: 71 (1891). —Mimulus (subg. Schizoplacus) sect. Oenoe (A. Gray.) A.L. Grant, Ann. Missouri Bot. Gard. 11: 309. 1925 ("1924"), partly (as to M. pygmaens, M. tricolor, M. angustatus. LECTOTYPE (Thompson 2005): Mimulus tricolor Hartweg ex Lindley [= Diplacus tricolor]

Mimulus sect. Microphyton Pennell, Proc. Acad. Nat. Sci. Philadelphia 99: 170. 1947. Type: Mimulus pygmaeus A.L. Grant, the only species included in the protologue.
Mimulus § Eunanus auct. non (Benth.) A. Gray: A. Gray, Proc. Amer. Acad. Arts 11: 95. 1876, partly (as to M. tricolor and its var. angustatus); A. Gray, Syn. Fl. N. Amer. (ed. 2) 2: 274. 1886, partly (as to M. angustatus, M. tricolor).

## 5. Diplacus sect. Diplacus

Mimulus § Diplacus (Nutt.) A. Gray, Proc. Amer. Acad. Arts 11: 97. 1876; A. Gray, Syn. Fl. N. Amer. (ed. 2) 2: 275. 1886, 2(1): 442. 1886. - Dtplacus Nutt., Ann. Nat. Hist. 1: 137. 1838; Benth. in DC., Prodr. 10: 368. 1846, partly (as to D. glutmosus, D. leptanthus, D. longiflorus). - Mimulus sect. Diplacus (Nutt.) Wettst., Nat. Pfl. IV 3b: 71 (1891), partly (as to M. glutnosus, M. puniceus). - Mimulus (subg. Schizoplacus) sect. Diplacus (Nutt.) A.L. Grant, Ann. Missouri Bot. Gard. 11: 326. 1925 ("1924") (as to M. clevelandtt, M. longiflorus and vars. calycimus and linearis, M. leptanthus, M. aridus, M. stellatus, M. curantiacus, M. puniceus, M. parvflorus). Lectotype (Thompson 2005): Diplacus glutinosus (J.C.Wendl.) Nutt. [= Diplacus aurantiacus]
Mimulus auct. non L.: Benth., Scroph. Indicae 29 (1835), partly (as to M. linearis, M. glutnosıs)
6. Diplacus sect. Cleisanthus (J.T. Howell) G.L. Nesom \& N.S. Fraga, in text above. Mimulus sect. Cletsanthus J.T. Howell, Leafl. W. Bot. 2: 80. 1938. TyPE: Mimulus cleistogamus J.T.Howell [= Diplacus douglasii]. The original circumscription of the section included only M. cleistogamus.

Eunanus Benth. in DC., Prodr. 10: 374. 1846, partly (as to E. douglastr). - Mimulus § Eunamus auct. non (Benth.) A. Gray: A. Gray, Proc. Amer. Acad. Arts 11: 95. 1876, partly (as to M. torreyl, M. douglasti and M. latifolnus); A. Gray, Syn. F1. N. Amer. (ed. 2) 2: 274. 1886 (as to M. douglasil, M. kelloggit, M. latifolius, M. torreyi), 2(1): 443. 1886, partly (as to M. torreyi). Mimulus (subg. Schizoplacus) sect. Eunamus auct. non (Benth.) A.L. Grant: A.L. Grant, Ann. Missouri Bot. Gard. 11: 268. 1925 ("1924"), partly (as to M. torreyl). - Eunanus sect. Eunanus [auct. non Greene]: Greene, Bull. Calif. Acad. Sci 1: 98.1885 (rank specified on p. 97), partly (as to E. kelloggı, E. torreyt).

Eunanus sect. Oenoe auct. non (A. Gray.) Greene: Greene, Bull. Calif. Acad. Sci 1: 98.1885 (rank specified on p. 97), partly (as to E. douglasit, E. latifoluus). - Eunanus § Oenoe auct. non A. Gray: A, Gray, Syn. Fl. N. Amer. (ed. 2) 2(1): 443. 1886, partly (as to M. douglasil, M. kelloggil, M. latifolius). - Mimulus (subg. Schizoplacus) sect. Oenoe auct. non (A. Gray) A.L. Grant: A.L. Grant, Ann. Missouri Bot. Gard. 11: 268.1925 ("1924"), partly (as to M. latifolius, M. congdonil, M. kelloggil, M. douglasil, M. traskiae).
XII. LEUCOCARPUS D.Don in Sweet, Brit. Flower Gard. ser. 2, 2: pl. 124. 1831; Benth. in DC., Prodr. 10: 335. 1846, partly (excl. L. fruticosus); Benth. \& J.D. Hook., Gen. Pl. 2(2): 943 (1876); Wettst., Nat. Pfl. IV 3b: 63 (1891); A.L. Grant, Ann. Missouri Bot. Gard. 11: 350. 1925 ("1924") (in note); Eb. Fisch., Fam. Gen. Vasc. Pl. 7: 404. 2004. - Mimulus sect. Leucocarpus (D.Don) G.L. Nesom, Phytoneuron 2011-36: 4. 2011. Type: Leucocarpus alatus (Graham) Benth. [= Leucocarpus perfoliatus]
XIII. ERYTHRANTHE Spach, Hist. Nat. Veg. Phan. 9: 312. 1838 ["1840"]. - Mimulus §. Erythranthe (Spach) Greene, Bull. Calif. Acad. Sci. 1: 108. 1885. - Mimulus (subg. Synplacus) sect. Erythranthe (Greene) A.L. Grant, Ann. Missouri Bot. Gard. 11: 137. 1925 ("1924) (as to ssp. in our sect. Erythranthe). Type: Erythranthe cardinalis (Douglas ex Benth.) Spach, the only species in the protologue.

Mimulus (subg. Synplacus) sect. Paradanthus AL. Grant, Ann. Missouri Bot. Gard. 11: 126. 1925 ("1924"), partly (see spp. listed under our sects. except Semigemma, Simiola). TyPE (see under sect. Paradantha)
Eunanus Benth. sect. Eunamus [auct. non Greene]: Greene, Bull. Calif. Acad. Sci 1: 98.1885 (rank specified on p .97 ), partly (as to species in sect. Monimanthe).
Mimulus § Simiolus Greene, Bull. Calif. Acad. Sci. 1: 109. 1885, partly (as to spp. in all sects. bar Erythranthe, Sinopitheca). - Mimulus (subg. Synplacus) sect. Simiolus (Greene) A.L. Grant, Ann. Missouri Bot. Gard. 11: 126. 1925 ("1924") (as to spp. listed under our sects. Mimulosma, Stmiola). TYPE (see under sect. Simiola)
Mimulus § Speciosı auct. non Benth.: Benth. in DC., Prodr. 10: 369. 1846, partly (as to spp. listed under our sects. Monanthe, Erythranthe, Simiola)
Mimulus § Teneri auct. non Benth.: Benth. in DC., Prodr. 10: 372. 1846, partly (as to spp. listed under our sects. Alsinimimulus, Mimulosma, Mimulasta).
Mimulus § Mimulus (as "Evimimulus") [auct. non A. Gray]: A. Gray, Proc. Amer. Acad. Arts 11: 95. 1876, partly (as to spp. listed under our sect. Achlyopitheca, Paradantha, Monantha, Erythrantha, Alsinimimula, Mimulosma, Mimulasia, Simiola); A Gray, Syn. F1. N. Amer. (ed. 2) 2: 276. 1886, partly (as to spp. in all sections but Mimulasta, Sinoptheca, Extgua), 2(1): 446. 1886, partly (as to spp. in all sections but Mimulasia, Sinopitheca). - Mimulus sect. Mimulus (as "Eumtmulus") [auct .non Benth. \& J.D. Hook.]: Benth. \& J.D. Hook., Gen. Pl. 2(2): 947 (1876), partly; Wettst., Nat. Pfl. IV 3b: 72 (1891), partly (as to spp. listed under our sects. Mimulosma, Mimulasia, Simiola).
Mimulus auct. non L.: Benth., Scroph. Indicae 29 (1835), partly (as to species listed under our sects. Erythranthe, Simiola, Mimulosma, Alsmimimula, Monantha, Mimulasta); Benth. in DC., Prodr. 10: 368. 1846, partly; Greene, Bull. Calif. Acad. Sci 1:98. 1885, partly (see under sect. Simiola); Eb. Fisch., Fam. Gen. Vasc. Pl. 7: 405. 2004, partly.

1. Erythranthe sect. Achlyopitheca N.S. Fraga \& G.L. Nesom, in text above. Type: Erythranthe inconspicua (A. Gray) G.L. Nesom \& N.S. Fraga
Mimulus § Mimilus (as "Eximimulus") [auct. non A. Gray]: A. Gray, Proc. Amer. Acad. Arts 11: 95. 1876, partly (as to M. inconspicuus); A. Gray, Syn. Fl. N. Amer. (ed. 2) 2: 276. 1886, partly (as to M. inconspicuus), 2(1): 449. 1886, partly (as to M. mconspicuus and its var. acutdens).
Mimulus § Simiohs auct. non Greene: Greene, Bull. Calif. Acad. Sci. 1: 109. 1885, partly (as to M. inconspicua).
Mimulus (subg. Synplacus) sect. Paradanthus auct. non A.L. Grant: AL. Grant, Ann. Missouri Bot. Gard. 11: 126. 1925 ("1924"), partly (as to M. acutidens Greene, M. grayt, M. inconspicuus, M. acutidens, ).
2. Erythranthe sect. Paradantha (A.L. Grant) G.L. Nesom \& N.S. Fraga, in text above. Mimulus (subg. Synplacus) sect. Paradanthus A.L. Grant, Ann. Missouri Bot. Gard. 11: 195. 1925 ("1924"), partly (as to M. palmeri, M. gracilipes,M. androsaceus, M. diffusus, M. purpureus, M. discolor, M. montoodes, M. deflexus , M. suksdorfil, M. rubellus, ). Lectotype: Mirnulus rubellus A. Gray [= Erythranthe rubella]. Grant specified only that sect. Paradanthus comprised "Sp. 26-69" but observed that "M. rubellus is at the center of the section" and is closely allied with members of the Mimulus palmeri group.
Mimulus § Mimulus (as "Eumimulus") [auct. non A. Gray]: A. Gray, Proc. Amer. Acad. Arts 11: 95. 1876, partly (as to M. rubellus); A. Gray, Syn. Fl. N. Amer. (ed. 2) 2: 278. 1886, partly (as to M. montioides, M. palmeri, M. rubellus), 2(1): 450. 1886, partly (also as to M. suksdorfin).

Mimulus § Simiohus auct. non Greene: Greene, Bull. Calif. Acad. Sci. 1: 109. 1885, partly (as to M. montootdes, M. rubellus, M. palmert, M. androsaceus).
3. Erythranthe sect. Monantha G.L. Nesom \& N.S. Fraga, in text above. Type: Erythranthe primuloides (Benth.) G.L. Nesom \& N.S. Fraga
Mimulus auct. non L.: Benth., Scroph. Indicae 29 (1835), partly (as to M. primuloides).
Mimulus § Spectost auct. non Benth.: Benth. in DC., Prodr. 10: 369. 1846, partly (as to M. primuloides)
Mimulus § Mimulus (as "Eummulus") [auct. non A. Gray]: A. Gray, Proc. Amer. Acad. Arts 11: 95. 1876, partly (as to M. primuloides): A. Gray, Syn. F1. N. Amer. (ed. 2) 2: 278. 1886, partly (as to M. primuloides), 2(1): 450. 1886, partly (also as to M. lineartfolia)
Mimulus § Simiohus auct. non Greene: Greene, Bull. Calif. Acad. Sci. 1: 109. 1885, partly (as to M. primuloides).
Mimulus (subg. Synplacus) sect. Paradanthus auct. non A.L. Grant: A.L. Grant, Ann. Missouri Bot. Gard. 11: 195. 1925 ("1924"), partly (as to M. primulordes).
4. Erythranthe sect. Monimanthe (Pennell) G.L. Nesom \& N.S. Fraga, in text above. Mimulus sect. Monimanthe Pennell, Proc. Acad. Nat. Sci. Philadelphia 99: 167. 1947. Type: Mimulus brewert (Greene) Coville [= Erythranthe breweri]
Mimulus (subg. Synplacus) sect. Paradanthus auct. non A.L. Grant: A.L. Grant, Ann. Missouri Bot. Gard. 11: 195. 1925 ("1924"), partly (as to M. bicolor, M. bioletil, M. filicaulis, M. breweri).
Eunamus sect. Eunamus [auct. non Greene]: Greene: Greene, Bull. Calif. Acad. Sci 1: 98.1885 (rank specified on p . 97), partly (as to E. brewert, E. bicolor).
Mimulus § Simiolus auct. non Greene: Greene, Bull. Calif. Acad. Sci. 1: 109. 1885, partly (as to M. bicolor).
Mimulus § Mimulus (as "Eumimulus") [auct. non A. Gray] (partly, as to M. bicolor): A. Gray, Syn. Fl. N. Amer. (ed. 2) 2: 278. 1886, 2(1): 450.1886.
5. Erythranthe sect. Erythranthe

Mimulus § Erythranthe (Spach) Greene, Bull. Calif. Acad. Sci. 1: 108.1885 (as to M. cardinalis, M. lewisil, M. parishit) . - Mimulus (subg. Synplacus) sect. Erythranthe (Spach) A.L. Grant, Ann. Missouri Bot. Gard. 11: 126. 1925 ("1924") (as to M. cardinalis, M. rupestris, M. verbenaceus, M. nelsonit). Type (see under genus).
Mimulus auct. non L.: Benth., Scroph. Indicae 29 (1835), partly (as to M. lewisin, 7 M. roseus, M. cardinalis).
Mimulus § Speciosi auct. non Benth.: Benth. in DC., Prodr. 10:369. 1846, partly (as to M. cardinalis, M. lewisti).

Mimulus § Mimilus (as "Eummilus") [auct. non A. Gray]: A. Gray, Proc. Amer. Acad. Arts 11: 95. 1876, partly (as to M. cardinalis, M. lewisii); Gray, Syn. Fl. N. Amer. (ed. 2) 2: 276. 1886, partly (as to M. cardinalis, M. lewisit), 2(1): 446. 1886, partly (as to M. cardinalis).
Mimulus (subg. Synplacus) sect. Paradanthus auct. non A.L. Grant: A.L. Grant, Ann. Missouri Bot. Gard. 11: 126. 1925 ("1924"), partly (as to M. eastwoodiae, M. lewisii, M. parishii).
6. Erythranthe sect. Alsinimimulus G.L. Nesom \& N.S. Fraga, in text above. Type: Erythranthe alstnotdes (Douglas ex Benth.) G.L. Nesom \& N.S. Fraga
Mimulus auct. non L.: Benth., Scroph. Indicae 29 (1835), partly (as to M. alsinotdes)
Mimulus § Tenert auct. non Benth.: Benth. in DC., Prodr. 10: 372. 1846, partly (as to M. alstnoides).
Mimulus § Mimulus (as "Eumimulus") [auct. non A. Gray] (partly, as to M. alsinordes): A Gray, Proc. Amer. Acad. Arts 11: 95. 1876; A. Gray, Syn. Fl. N. Amer. (ed. 2) 2: 277. 1886, 2 (1): 449. 1886.

Mimulus § Simiohus auct. non Greene: Greene, Bull. Calif. Acad. Sci. 1: 109. 1885, partly (as to M. alsmotdes).
Mimulus (subg. Synplacus) sect. Paradanthus auct. non A.L. Grant: A.L. Grant, Ann. Missouri Bot. Gard. 11: 195. 1925 ("1924") partly (as to M. alsinoides).
8. Erythranthe sect. Mimulosma G.L. Nesom \& N.S. Fraga, in text above. Type: Erythranthe moschata (Douglas ex Lindl.) G.L. Nesom \& N.S. Fraga
Mimulus auct. non L.: Benth., Scroph. Indicae 29 (1835), partly (as to M. moschatus, M. floribundus, M. peduncularts).

Mimulus § Teneri auct. non Benth.: Benth. in DC., Prodr. 10: 372. 1846, partly (as to M. floribundus, M. pubescens, M. moschatus).

Mimulus § Simiolus auct. non Greene: Greene, Bull. Calif. Acad. Sci. 1: 109. 1885, partly (as to M. pulsiferae, M. floribunda, M. moschatus, M. inodoris, M. moniliformis). - Mimulus (subg. Synplacus) sect. Simiolus auct. non (Greene) A.L. Grant: A.L. Grant, Ann. Missouri Bot. Gard. 11: 145. 1925 ("1924"), partly (as to M. crinitus).
Mimulus (subg. Synplacus) sect. Paradanthus auct. non A.L. Grant: A.L. Grant, Ann. Missouri Bot. Gard. 11: 195. 1925 ("1924"), partly (as to M. breviflorus, M. latidens, M. pulsiferae, M. washingtonensts, M. ampltatus, M. arenartus, M. flortbundus, M. jungermannotdes, M. moschatus, M. letbergit, M. dudleyn).
Mimulus § Mimulus (as "Eumimulus") [auct. non A. Gray]: A Gray, Proc. Amer. Acad. Arts 11: 95. 1876, partly (as to M. pulsfferae, M. flortbundus, M. moschatus); A Gray, Syn. F1. N. Amer. (ed. 2) 2: 277. 1886, partly (as to M. floribundus, M. moschatus and its var. longfflorus, M. pulsiferae), 2(1): 446. 1886, partly (idem). - Mimulus sect. Mimulus (as "Eumimulus") [auct. non Benth. \& J.D. Hook.]: Wettst., Nat. Pfl. IV 3b: 72 (1891), partly (as to M. moschatus).
9. Erythranthe sect. Mimulasia G.L. Nesom \& N.S. Fraga, in text above. Type: Erythranthe tenella (Bunge) G.L. Nesom \& N.S. Fraga
Mimulus § Tenert Benth. in DC., Prodr. 10: 372. 1846, partly (as to M. tenellus, M. dentatus, M. nepalensts). Lectotype: Mimulus tenellus Bunge. In addition to M. nepalensis, M. tenellus and M. dentatus, Bentham also included M. alsinoides, M. floribundus, M. pubescens, M. moschatus, and $M$. orizabae in $\S$ Tenert. The last five species are placed here into three other sections, thus Bentham's group was polyphyletic. The choice of type must be from among $M$. nepalensts, M. tenellus, and M. dentatus, and because the position of M. dentatus is not unequivocal, an Asian species is chosen. As Bentham's group names as plural adjectives are not clearly ranked (see comments above), a new, substantive name is chosen for the group.
Mimulus §Mimulus (as "Eummulus") [auct. non A. Gray]: A. Gray, Proc. Amer. Acad. Arts 11: 95. 1876, partly (as to M. dentatus). - Mimulus sect. Mimulus (as "Eumimulus") [auct. non Benth. \& J.D. Hook.]: Wettst., Nat. Pfl. IV 3b: 72 (1891), partly (as to M. tenellus, M. nepalensts)
Mimulus § Simiolus auct. non Greene: Greene, Bull. Calif. Acad. Sci. 1: 109. 1885, partly (as to M. dentatus).
Mimulus (subg. Synplacus) sect. Paradanthus auct. non A.L. Grant: A.L. Grant, Ann. Missouri Bot. Gard. 11: 195. 1925 ("1924"), partly (as to M. nepalensis, M. bridgesit).
Mimulus auct. non L.: Benth., Scroph. Indicae 29 (1835), partly (as to M. nepalensis).
10. Erythranthe sect. Sinopitheca G.L. Nesom \& N.S. Fraga, in text above. Type: Erythranthe sesstlifolia (Maxim.) G.L. Nesom \& N.S. Fraga
Mimulus (subg. Synplacus) sect. Paradanthus auct. non A.L. Grant: AL. Grant, Ann. Missouri Bot. Gard. 11: 195. 1925 ("1924"), partly (as to M. sessilifolus, M. bridgesil).
11. Erythranthe sect. Exigua G.L. Nesom \& N.S. Fraga, in text above. Type: Erythranthe exigua (A. Gray) G.L. Nesom \& N.S. Fraga
Mimulus (subg. Synplacus) sect. Paradanthus auct. non AL. Grant: A.L. Grant, Ann. Missouri Bot. Gard. 11: 195. 1925 ("1924"), partly (as to M. extguus).

Mimulus § Stmiolus auct. non Greene: Greene, Bull. Calif. Acad. Sci. 1: 109. 1885, partly (as to M. exigutus).
Mimulus §Mtmulus (as "Eumtmulus") [auct. non A. Gray]: A. Gray, Syn. Fl. N. Amer. (ed. 2) 2(1): 451. 1886, partly (as to M. extguus).
12. Erythranthe sect. Simiola (Greene) G.L. Nesom \& N.S. Fraga, in text above. Mimulus § Stmolus Greene, Bull. Calif. Acad. Sci. 1: 109. 1885, partly (as to M. tilingit, M. guttatus, M. microphyllus, M. nasutus, M. hallit, M. glaucescens, M. nudatus, M. laciniatus, M. jamesil). - Mimulus (subg. Synplacus) sect. Simiolus (Greene) A.L. Grant, Ann. Missouri Bot. Gard. 11: 145. 1925 ("1924"), partly (excl. M. crinitus). Lectotype: Mimulus guttatus Fisch. ex DC. [= Erythranthe guttata] Mimulus guttatus is chosen as the type because it often is considered the "central" species of the section, often regarded as inclusive of many of the other species or regarded as directly ancestral to them.
Mimulus § Spectost Benth. in DC., Prodr. 10: 369. 1846, partly (as to M. huteus, M. scoulert, M. glabratus, M. pilostusculus, M. parvflonus, M. propinquus, M. jamesit, M. microphylhus). Lectotype (designated here): Mimulus luteus L. Mimulus luteus is chosen here as lectotype because it is the "showiest" of the species listed by Bentham, corresponding to his epithet "speciosi."
Mimulus § Mimulus (as "Eumimulus") [auct. non A. Gray]: A. Gray, Proc. Amer. Acad. Arts 11: 95. 1876, partly (as to M. luteus, M. jamesn, M. lacintatus), A. Gray, Syn. F1. N. Amer. (ed. 2) 2 : 276. 1886, partly (as to M. jamestr, syn. M. guttatus, M. lacmitus, M. luteus, syn. M. scouleri), 2(1): 448. 1886, partly (also as to M. glaucescens, M. nasutus, M. nudatus). Mimulus sect. Mimulus (as "Eumimulhus") [auct. non Benth. \& J.D. Hook.]: Wettst., Nat. Pfl. IV 3b: 72 (1891), partly (as to M. parvflonus Lindl., M. luteus).
Mimulus auct. non L.: Benth., Scroph. Indicae 29 (1835), partly (as to M. luteus, M. lyratus, M. guttatus, M. parviflorus, M. glabratus, M. andicolus, M. pilosiusculus).

# TAXONOMY OF ERYTHRANTHE SECT. SIMIOLA (PHRYMACEAE) IN THE USA AND MEXICO 

Guy L. Nesom<br>2925 Hartwood Drive<br>Fort Worth, Texas 76109<br>www guynesom com


#### Abstract

Erythranthe sect. Simiola includes 31 species from North America north of Mexico (some of them also occur in Mexico): E. arenicola, E. arvensts, E. brachystylis, E. caespitosa, E. calciphila, Erythranthe charlestonensis Nesom, sp. nov., Erythranthe chinatiensis Nesom, sp. nov., E. corallina, E. cordata, E. decora, E. geyeri, E. glaucescens, E. grandts, E. guttata, E. hallit, E. inamoena, E. laciniata, E. marmorata (including Mimulus whipplei), E. michiganensis, E. microphylla, E. minor, E. nasuta, E. nudata, E. pardalss (including Mimulus cupriphilus), E. parvula, Erythranthe regni Nesom, sp. nov., E. scoulert, E. thermalis, E. tilmgil, E. unimaculata, and $E$. utahensis. Seven additional species, Erythranthe brevinasuta Nesom, sp. nov., E. dentloba, Erythranthe lagunensis Nesom, sp. nov., E. madrensis, E. pallens, E. pennellii, and Erythranthe visibilis Nesom, sp. nov., are endemic to Mexico, while E. glabrata sensu stricto occurs only in Mexico, Central America, and South America. Erythranthe geyeri, E. inamoena, and E. utahensis have previously been treated within M. glabratus. The species are divided into 6 informal groups, several including subgroups. Provided here are a key to species, a description and distribution map for each species, and details of typification for all names, including synonyms. Lectotypes are designated for Mimulus bakert Gandoger and ten taxa named by E.L. Greene: M. arvensts, M. implexus, M. lucens, M. scouleri var. caespitosus, M. puberulus, Mimulus guttatus var. grandis, M. guttatus var. instgnts, M. marmoratus, M. longulus, and M. subreniformis. KEY WORDS: Mimulus sect. Simiolus, Mimulus guttatus, Erythranthe sect. Simiola, Erythranthe guttata, Erythranthe glabrata


The species of Erythranthe sect. Simiola constitute a distinctive group in vegetative and floral morphology (Grant 1924) and in pollen morphology (Argue 1980). Molecular data indicate that the group is monophyletic (Beardsley et al. 2004) though relatively few species have been sampled. The species have previously been treated as Mimulus sect. Simiolus (see rationale for altered taxonomic concepts and nomenclature in Barker et al. 2012). The present study provides a taxonomic account of this group that differs substantially from most previous ones. The one closest in concept is that of Pennell (1951).

A number of the species of sect. Simiola currently serve as experimental organisms for various laboratories studying evolutionary processes (Dudash et al. 2005; Wu et al. 2008; and see further comments below), and sect. Stmola was the object of intensive investigation from about 1950 until the 1990s by R.K. Vickery and his students, who made hundreds of chromosome counts and interspecific and infraspecific crosses and from these data drew corresponding inferences about isolating mechanisms. Vickery, however, never provided a synthesis that correlated taxonomic concepts with data from biological studies and his only incursion into formal taxonomy involved the naming of several Mexican species. In what might be considered a summary of his studies (1978), he noted that Mimulus guttatus is "highly polytypic which has led many authors to propose one or another of its forms as distinct species or varieties. The segregant taxa include such distinct species as M. glaucescens, M. laciniatus, M. nasutus, M. platycalyx, and at least 20 other less clear-cut forms (Grant 1924; Pennell 1951)."

Because of ambiguous identifications and an emphasis on species concepts defined primarily by crossing relationships, many of Vickery's studies are difficult to interpret. Further, many of his evolutionary scenarios were predicated on a priori concepts of relationship that are not supported here.

Various botanists have studied the systematics of sect. Simiola, including Grant (1924), Campbell $(1950)$, and Pennell $(1935,1947)$ and parts of the group have been considered in floristic treatments. Taxonomic assessments, however, have been variable in the ways they apportioned the variation and today there is little agreement on anything except for the status of a few seemingly clearly defined and mostly narrowly endemic species: E. glaucescens, E. laciniata, E. michiganensis, and $E$. nudata. Erythranthe glabrata, E. guttata, and E. tilingll are generally recognized, but varieties and subspecies have been recognized within each and there has been no agreement on patterns of variation or infraspecific nomenclature. Many superfluous names have been proposed for variants within sect. Simtola and significant disagreement exists in the placement of many names even as synonyms. Beardsley et al. (2004) remarked that "the species making up this section display a high degree of environmental plasticity," which is generally true, but such observations are likely also based in part on morphological variation across more than one species.

Grant (1924) recognized 10 species of Mimulus sect. Simiolus in North America (including extra-California regions) and 8 varieties ( 3 in M. tilingit, 5 in M. guttatus). Campbell (1950) recognized 4 species (excluding M. glabratus) and divided M. guttatus into 4 varieties. In the only broad treatment to recognize more narrowly defined variants, Pennell (1951) treated 20 species in sect. Simiolus, including M. guttatus with 4 varieties. For California, Munz (1959) recognized 7 species (including M. guttatus with 4 subspecies) and Thompson (1993) in the Jepson Manual - in the most recent overview of Mimulus sect. Stmolus - recognized only 5 species. Mimulus guttatus was described by Thompson (1993, p. 1043) as "Exceedingly complex; local populations may be unique but their forms intergrade over geog or elevation; variants not distinguished here." Thompson even reached across traditional boundaries to include M. glabratus var. utahensts as a synonym within his broadly interpreted M. guttatus.

## Mimulus as a model study organism

Evolutionary studies in Mimulus have emphasized isolating mechanisms and differentiation that can be documented at populational levels and small geographic scales. Evidence for the species status of Mimulus michiganensis (Posto \& Prather 2003) and M. cupriphilus (Macnair 1989; Macnair \& Cumbes 1989) has been provided along this avenue, and other segregates, especially from within $M$. guttatus in the broad sense, have been similarly recognized, though usually more tentatively. Evidence from biological studies suggests that isolating mechanisms among these plants are readily developed in local populations, thus it seems reasonable, at least as a working assumption, that some of such formally named variants might indeed be justifiably recognized at specific rank.

Darwin's investigation (1876) of inbreeding depression and development of self-fertility in Mimulus luteus L. was the forerunner of monkeyflower biology. More recent studies of evolutionary processes have centered primarily on populations identified simply as Mimulus guttatus (usually without varietal designation or formal qualification) and as Mimulus nasutus (e.g., Kiang \& Hamrick 1978; Sweigart \& Willis 2003; Hall et al. 2006; Martin \& Willis 2007, 2010; Swiegart et al. 2008; Wu et al. 2010). The California endemics M. glaucescens, M. laciniatus, and M. nudatus, which are generally recognized in floristic accounts, also have sometimes been included as well as a few other taxa that are often treated as synonyms in these kinds of detailed studies, e.g., M. caespitosus, $M$. cupriphilus, M. micranthus, M. platycalyx, and M. guttatus var. depauperutus (e.g., Macnair 1989; Macnair \& Cumbes 1989; Ritland 1989; Ritland \& Ritland 1989; Fenster \& Ritland 1992; Carr \& Dudash 1996; Awadalla \& Ritland 1997; Lin \& Ritland 1997; Fenster \& Carr 1997; Ritland \& LeBlanc 2004).

The basis on which taxa in these evolutionary studies have been identified has rarely if ever been specified. Fenster and Carr (1997) referred to Munz and Keck (1968) for the identification of Mimulus micranthus. Ritland \& Ritland (1989) provided line drawings of taxa as guides to the identity of the experimental plants (these drawings do show some diagnostic features, but that of Mimulus nasutus shows large, chasmogamous, long-styled flowers, which evidently are of some other species). Sweigart and Willis (2003) noted that "taxonomic classifications were verified using morphological characteristics as described by Abrams (1951)" (i.e., the treatment contributed by Pennell). Studies of "coastal perennial M. guttatus" by Lowry et al. (2008) apparently refer at least in large part (as established in pers. communication with Lowry) to Erythranthe grandis as treated in the present overview; the contrasting "inland annual M. guttatus" apparently is Erythranthe microphylla. Further, although most of these kinds of studies have indicated at least the general localities from which the plants were obtained, not a single one surveyed in the current taxonomic study has cited vouchers in documentation.

A clearer understanding of evolutionary patterns of variation in sect. Simiola, particularly including a knowledge of what discrete entities actually exist, surely would be valuable as these plants are being used in evolutionary studies in various labs in the USA and elsewhere (Phytozome 2011; mimulusevolution.org 2011; Mimulus Community 2011). Even with the barest taxonomic background, a group of these researchers recently received a five million dollar grant (NSF 2003) to study how new species arise by elucidating the molecular genetic basis of speciation mechanisms, concentrating on Mimulus guttatus and M. nasutus (sect. Simiolus) and M. lewisil and M. cardinalis (sect. Erythranthe).

Mimulus is used as a study organism because it provides "an excellent system for determining the genetic and genomic basis of adaptation and speciation," and [in Mimulus] "the integration of ecology and genetics with bioinformatics and genome technology offers great promise for exploring the mechanistic basis of adaptive evolution and the genetics of speciation" (Wu et al. 2008). As noted by Phytozome (2011), "Mimulus is uniquely suited for ecological and evolutionary studies because of its tremendous range of floral morphology (and associated pollinators), mating systems (selfing to outcrossing), growth forms (annual herbs to perennial woody shrubs), and habitat preference (desert to riparian to aquatic)."

As overstated by Phytozome, however, at least as regards sect. Simiola, "Unlike most plant genetic model systems, the ecology of Mimulus is known in great detail." Contrasting observations have been made. Meinke (1995, p. 7) referred to all populations of sect. Stmtola in the Columbia River Basin of Oregon and Washington simply as the "Mimulus guttatus/Mimulus nasutus ecotype complex," noting that "Various ecotypes of M. guttatus occur throughout the entire CRB at most elevations and in virtually all mesic to aquatic habitats below high montane." Lowry and Willis (2010, p. 11) noted that "The M. guttatus species complex occurs across western North America as a mosaic of patchily distributed annual and perennial populations." If evolutionary patterns and species boundaries are not known, then the "ecology" surely cannot be known in a meaningful way. While it is clear, for example, that Mimulus pardalis and M. nudatus are adapted to serpentine substrates and are mostly restricted to them, hardly any generalization about the ecology of $M$. guttatus (in the broad sense of the authors noted above) can be made except that its relationship with the environment may differ greatly from one population to the next.

## Phylogenetic hypotheses for the species of sect. Simiola

Little is known about phylogenetic relationships among entities of Erythranthe sect. Simiola. The molecular analys is by Beardsley et al. (2004) included only a few North American species: Mimulus dentllobus (probably E. parvula as identified here), Mimulus glabratus (probably the same as identified here), Mimulus glaucescens, Mimulus guttatus (sensu lato, otherwise unspecified), Mimulus micranthus (an ambiguous identification), Mimulus nudatus, Mimulus tilingnt (sensu lato), Mimulus wiensıl (presumably E. madrensis as identified here), and Mimulus yecorensis (E. pallens as identified here) and concluded essentially that "the relatively low genetic distances amongst taxa indicate that this clade is relatively young and that its constituent species are very closely related."

A study by Sweigart and Willis (2003) was aimed in part toward an understanding of relationships among a small group of species. The authors sampled various numbers of individuals from " 39 Mimulus guttatus and 21 M . nasutus populations" as well as a few others (as identified in the study) of M. lacintatus, M. nudatus, M. platycalys, and M. tilingit. DNA sequence variation at two nuclear loci was examined, the analysis shown in a neighbor-joining tree for each of the genes (Fig. 2, mCYCA; Fig. 3, mAP3). Nearly identical trees were shown by Sweigart et al. (2008), with the addition of tetraploid populations. A fuller phylogenetic value of these studies, however, perhaps awaits a reanalysis of the data based on accurate identification of the populations sampled. A subjective interpretation is offered here, based on the geographic locations of the sample populations, cross-references between populations included in the study, and cross-references by acronym to some of the same populations included in other studies from the Willis lab.

* Five populations of Eythranthe grandis show as a phylogenetically coherent group in Fig 3
* The middle, unresolved cluster of populations in Fig 2 probably represents E. mucrophylla
* The upper, weakly monophyletic cluster/clade (" 66 ") in Fig 2 probably is mostly $E$. guttata apparently intermixed with a few populations of E. microphylla, suggesting that introgression may be occurring (or that misidentifications are involved)
* Populations identified as Erythranthe nasuta (Figs 2 and 3) show as strongly monophyletic Erythranthe lacintata clusters with E. nasuta in Fig 2 but not in Fig 3 Populations identified as E. nasuta with "divergent sequences" are perhaps misidentifications of E. microphylla, hybrids/ introgressants between E. nasuta and E. morophylla, or some of each
* The population of "Mimulus platycalyx" (Douglas Co, Oregon) does not cluster in Fig 2 with any of Erythranthe grandis, E. microphylla, E. guttata, or E. nasuta It perhaps is $E$. avensis as identified in the current account, as Sweigart and Willis refer to M. platycalyx (= Erythranthe microphylla) as "highly selfing" (which it is not, but Erythranthe arvensis is).

Assumptions or hypotheses in a number of the evolutionary studies regarding progenitorderivative relationships (particularly that one or another species is directly derived from Mimulus guttatus), sister relationships, or any other kind of relationship among taxa of sect. Stmiola have been largely or completely speculative or else based on unwarranted assumptions. It has commonly been assumed (explicitly and implicitly) that M. guttatus is a primitive element of the section. This perhaps has been based on its relatively wide geographic range, wide variability, and perhaps its apparent perennial duration, but none of these justifies the assumption. Fishman and Willis (2008, p. 803) noted that "M. guttatus [is] the putative progenitor of other taxa in the complex," referring to Fenster and Ritland (1994). The cpDNA analysis of Fenster and Ritland compared populations identified as M. laciniatus, M. micranthus, M. nasutus, (obviously misidentified, from their illustration and description of it as herkogamous and outcrossing), and five populations of M. guttatus (surely misidentified at least in part, as they noted that "most populations of M. guttatus are annual.").

In their unrooted Wagner tree, M. guttatus appears as terminal taxon on four separate branches and on one of the branches it is indistinguishable from M. nasutus. The study concluded that M. micranthus and M. laciniatus evolved from diffent ancestors, which probably is true, but no vouchers were cited and the small number of taxa and the misidentifications render their study hardly meaningful.

## Evolutionary processes and relationships

Many generalizations have been made about evolution within what has been presumed to be a single species. Hall and Willis (2006) documented "divergent natural selection for flowering time and local adaptation between two distinct populations of Mimulus guttatus." These two populations ("DUN" and "IM") are identified here with some certainty as Erythranthe grandss and E. microphylla. It is fair to say that these two species are "locally adapted" in the sense that their flowering time tracks conditions of moisture availability under which each grows, and flowering time may have been a significant factor in the evolutionary divergence of the clades of which two entities are members, but E. grandis and E. microphylla are not each other's closest relative in the hypothesis of relationships proposed below - they almost certainly arose from separate ancestors. Hall and Willis noted (p. 2474-2475) that "The extent to which local adaptation via flowering time divergence contributes to incipient ecological isolation or even speciation among M. guttatus populations is yet unknown, but our results suggest that it may be substantial. Under this scenario, much of the tremendous phenotypic diversity within this taxonomic species ["Mimulus guttatus"] is either directly caused or indirectly maintained by divergent, habitat dependent natural selection." At least in this instance, the distinction between $E$. grandis and $E$. microphylla appears to be indirectly maintained.

In a study using the same two populations (DUN and IM), Hall et al. (2006) posed this question: "Does life history divergence between these two populations have a genetic basis or is it completely environmentally dependent?" In the same perspective as in the Hall and Willis (2006) study, the question seems to be immediately answered by recognition that each population belongs to a different species and clade.

In the hypothesis here, the closest relatives of Erythranthe grandis, including E. guttata sensu stricto, share an essentially similar flowering regime and may occur in similar habitats. The same is true for E. microphylla and its closest relatives. This may help explain results that Hall et al. (2010) found surprising, i.e., that local adaptation in the same two populations of these species (DUN-E. grandis and IM-E. microphylla) is largely controlled by non-overlapping loci and that native genotypes were not uniformly locally adaptive. The perspective of still other studies using the DUN and IM populations (e.g., Arathi et al. 2002; Baker \& Diggle 2011) may also be altered with the recognition that non-sister species are involved.

Other generalizations have been made about evolution within a broadly construed Mimulus guttatus. For example, Lowry et al. (2008) concluded that "the coast and inland populations collectively comprise distinct ecological races [of Mimulus guttatus]" and that "adaptations to widespread habitats can lead to the formation of reproductively isolated species." Again, what they considered ecological races are here regarded as distinct, non-sister species (Erythranthe grandis and E. microphylla).

Lowry and Willis (2010) observed that a chromosomal inversion polymorphism contributes to "adaptive divergence and reproductive isolation between annual and perennial ecotypes" of Mimulus guttatus. Most of the study populations were the perennial Erythranthe grandis and the annual E. microphylla (including the DUN and IM populations noted above). As interpreted in the present study, northernmost coastal perennial populations (BOB, TSG, BOB) and inland perennial populations (ANR, BOG, FAL, QNT) in the Lowry and Willis study probably were E. guttata (in the narrowed sense). One population of E. nasuta (SF), an inland annual, was included. They found that
all annual populations had one inversion arrangement while all perennials had another, suggesting to them that the distribution of the two arrangements is "a function of the availability of soil moisture during summer months."

In a simpler perspective, in the Lowry and Willis study the distribution of the inversion arrangements is explained by common ancestry. Their study does not contradict a morphologicallybased hypothesis that their "ecotypes" are instead better represented as four species and that among the four, the annuals Mimulus microphyllus and M. nasutus are related as a pair and the perennials $M$. grandis and M. guttatus are related as a pair. The data are better first interpreted outside of the assumption that all populations involved were of a single species.

Especially with the increased number of species in sect. Simiola recognized in the present study and different criteria for their identification, hypotheses of relationship should be reassessed based on objective criteria, and conclusions and generalizations in evolutionary studies should be reconsidered.

## Duration and environmental modification

Species of Erythranthe sect. Simıola are commonly described as "perennial" or "annual" but what is meant by those descriptors is rarely explicit. The nature of the plant base at least sometimes appears to underlie the interpretation - perennials produce rhizomes or stolons and annuals are consistently fibrous-rooted or slenderly taprooted. Or, a shift in "annual/perennial life-history" in some cases appears to nearly equated with timing of flowering (van Kleunen 2007; Lowry \& Willis 2010). Morphological features and timing of flowering associated with duration are closely tied to the adoption of narrower species concepts in the present study.

Mimulus guttatus has been described as variable in duration.
"Plants annual and fibrous-rooted, or perennial by stout stolons, only rarely perennial from well-developed rhizomes, very variable in stature and vigor, sometimes dwarf and smallleaved, sometimes robust and nearly a meter high, and with the leaf blades up to nearly 1 dm long" Cronquist (1959, p. 344-345).

Vickery (1973) distinguished "obligate annual forms" and "obligate perennal forms" of $M$. guttatus He also (1974) characterized the species as comprising "facultative perennial or obligate annual plants "
"While many inland populations of $M$. guttatus are annual, numerous inland perennial populations are found in areas of year-round soil morsture, such as on the edge of lakes or in nivers, hot springs, and alpine habitats (Lowry \& Willis 2010, p 4)

Others have viewed $M$. guttatus as perennial in duration.
'Mimulus guttatus is a nparian species which maintans its populations largely by long life span and by growing profuse stolons as propagules in nature" (Kiang 1973)

Variation in duration within Mimulus guttatus has been described as occurring among "ecotypes" (e.g., Meinke 1995; Lowry \& Willis 2010), "ecomorphs" (Wu et al. 2007), or "ecological races" (e.g., Lowry et al. 2008; Lowry \& Willis 2010), and it commonly has been attributed to phenotypic response to environmental variation, for example as described below.
"This species is the most common and the most polymorphic in the genus It varies greatly with environmental conditions, especially in relation to the size of the stem, leaves, and
flowers .. The variety grandis of Greene is therefore considered to be a direct response to environment, the size of the parts being dependent on the amount of water avalable or on the vitality of the plant" (Grant 1924, p 169)

Dole (1992) characterized sites themselves as "perennial" (persistently wet) or "annual" (summer drying) "Plants [of M. guttatus] in annual sites die each summer due to lack of moisture (although they are occasionally facultative perennials, Vickery 1959), while those in perennial sites usually persist through the summer into the fall rainy season, hence continuing growth and reproduction (J. Dole, unpublished data)" (Dole 1992, p 651)
"In its native range where moisture is seasonally ephemeral, $M$. guttatus acts as a common annual However, in areas where water is continuously available particularly in coastal areas, perennial individuals can be found (Dudash et al 2005, p 38)

Using the number of stolons per plant as a possible response to varying conditions of water availability, Murren et al (2006) observed "significant plasticity to water availability, with generally taller plants, larger stem diameters, lower leaf perimeter to area ratios, and greater stolon and sexual production in our wet treatment" (pp 2599-2600) They noted that stolons were produced later in the season, "consistent with wet sites in the field where plants have a longer flowering season" (p. 2600)

Van Kleunen (2007) regarded his study as documentation of adaptive evolution in life history traits, which he viewed as "plastic," connected with duration withm the single species M. guttatus He compared "plants of Mimulus guttatus orignating from temporanly wet populations where the species has an enforced annual life-cycle" with "plants from permanently wet populations where the species has a perennial life-cycle" and found that the annuals invested significantly more in sexual reproduction and significantly less in vegetative reproduction, concluding that "natural watering conditions . determme the life span of the species "
"Members of the section Simiolus are hydrophilic plants growing by springs, bogs, lakes and small streams Mimulus guttatus will grow in such habitats ether as an annual, particularly is water is seasonal, or as a perennial where conditions are suitable In some more and places it also grows as a small unbranched annual when there is a lack of competition from better adapted species This form flowers more quickly than conspecifics in a damper environment, and dies after producing only a few flowers" (Macnair 1989, p 3)

Macnair, in the same publication (1989), noted that the duration of some species is genetically constrained.

Mimulus guttatus, M. nasutus, M. cuprophlus, M. nudatus, and M. lacinatus "are probably functional annuals in many Califorman populations However, all M. guttatus populations studied have been only facultatively annual since in the glasshouse they will normally survive flowering This is also true of M. nasutus. Although Vickery (1964) and Kıang (1973) describe this species as an annual, I have been able to mantan it as a perennial The other three species appear to be obligate annuals Since the annual/perennial distmetion represents a fundamental difference in plant reproductive biology, this difference between $M$. cupnphlus [annual] and M. guttatus [perennial] is of considerable importance" (Macnar 1989, p 11) [Author's note M. cupriphilus, M. lactniatus, M. nudatus, and M. nasutus always are fibrous-rooted, never producing rhizomes or stolons or rooting at basal nodes ]

Hall et al. (2006) made a similar observation about "inland annual Mimulus guttatus" (presumably identified as Eryfhranthe microphylla in the current study).
"Plants from these populations are facultative annuals due to seasonally dry environmental conditions, and they can be maintained indefinitely in standard greenhouse conditions" (p 1831)

Presumably the fibrous-rooted plants maintained as "perennial" by Macnair and by Hall et al. did not develop rhizomes or stolons, thus the biological nature of this extended duration would not be homologous with that of $E$. guttata. It would be interesting to know if the potential of $E$. microphylla to be maintained "indefinitely" in the greenhouse also is found in other non-rhizomatous species of annual duration in nature.

It may be that some plants of Erythranthe guttata sensu stricto flower before developing rhizomes, thus appearing to be annual, but even the smallest flowering plants of this species (as regarded here) almost always have rhizomes or stolons. Further, I have not encountered a single published study that unequivocally documents the existence of variation in duration (rhizomatous vs. non-rhizomatous) among plants of any one Mimulus species, even though such an assumption has been made implicitly and explicitly in many studies.

In interpretation of the present study, there is a consistent distinction between species of fibrous-rooted or slenderly taprooted plants and species of rhizomatous plants. Various population systems of consistently fibrous-rooted or taprooted plants can be identified by syndromes of other morphological features and geography and are considered here as distinct evolutionary lineages, these for the most part identified as species. Potential for production of rhizomes, as in Erythranthe guttata, E. grandts, and E. ttlingtr, for example, also appears to be genetically controlled. It is not demonstrated, however, that rhizomes are consistently correlated with an ability in these herbs to persist in nature for more than a single season. The single explicit reference to this I have encountered in literature is this: "in perennial [persistently wet] sites, clones often appear several years old (as judged upon the size of genets with many stolons)" (Dole 1992, p. 651). By inference, E. michiganensts apparently perennates through rhizomes as all but one of its known populations are seed-sterile.

Ritland (1989) published observations of reproduction in Erythranthe caespitosa, where plants characteristically produce a mass of filiform rhizomes: "In the winter of 1983-1984, plants left outside in Vancouver were subject to subfreezing tempatures for a week. Most of the plants died except for a small ( $1-2 \mathrm{~mm}$ ) nucleus of the vegetative meristem at the tip of each of the several branches of the plant. These small turions fragmented from the branch very easily and in spring grew into new plants."

Some consistently fibrous-rooted non-rhizomatous species (referred to in the present study as "annual") produce decumbent stems that characteristically root at the basal nodes (e.g., Erythranthe arvensis, E. cordata, E. inamoena). Whether this behavior makes them potentially similar in duration to rhizomatous species is not known. In E. glaucescens (as discussed below), which always is fibrous-rooted, plants from at least one locality have produced leafy runners from basal cauline nodes - the latter should be investigated toward the possibility that they are genetically different from the more characteristic expression without runners. In some plants of $E$. guttata, particularly in Colorado, and in E. decora, plants often produce numerous long, leafy runners from basalmost nodes, apparently in addition to rhizomes - whether these runners are strictly homologous (developmentally) to rhizomes produced elsewhere in the species also is an open question.

Murren et al. (2006) used eight populations of "Mimulus guttatus" from Lake and Napa counties, California, to study effects of $\mathrm{Ca} / \mathrm{Mg}$ ratio and water on trait expression. Through field observations, they confirmed that all of the study populations "senesced at the end of the season and
ultimately acted as annuals." Plants in some of the study populations were described as stoloniferous, apparently indicating that stolon production is not consistently correlated with perennial duration.

Production of rhizomes as a primitive feature in Phrymaceae may be a reasonable hypothesis, as some basal phyletic elements (Beardsley et al. 2004; Barker et al. 2012) are rhizomatous or otherwise perennial (e.g., Mimulus ringens and Mimulus gractlis are rhizomatous; Leucocarpus perfoltatus and species of Hemichaena are perennial but ligneous-taprooted). On the other hand, duration appears to be evolutionarily labile among (but not within) species of the family. It appears that the woodiness and perenniality of plants in Diplacus sect. Diplacus are derived from annual ancestors and such also may be the case in Leucocarpus and Hemichaena. Rhizome production in Erythranthe occurs in scattered species and species groups and may be derived in each of the instances. In sect. Simiola, rhizomes are produced in about half of the species and those species may all have arisen from annual, non-rhizomatous ancestors. In fact, it seems likely that the rhizomes of $E$. tiltngit and those of $E$. guttata are not homologous.

## Variation in flower size and morphology

Corolla size in some annual species of Erythranthe varies greatly. Especially notable in sect. Simiola are E. arvensis, E. cordata, E. laciniata, and E. nasuta. In these species flowers in the smaller range are cleistogamous but even the larger flowers, producing short but apparently chasmogamous corollas, are consistently autogamous in their arrangements of stamens and stigma.

Plants of Erythranthe nasuta vary greatly in stature and flowers of smaller plants are accordingly reduced in scale. Some plants produce only cleistogamous flowers, and even on a single plant short basal branches may bear numerous flowers consistently much smaller than those of the main branches. Kiang (1973, p. 229) observed that "flowers [of $E$. nasuta] are progressively reduced in size on a plant, and after ten nodes or so on the main stem, flowers often become so small [cleistogamous] as to be inconspicuous." Benedict (1993) noted that environmental stress resulted in production of cleistogamous flowers in $E$. nasuta.

Species in sect. Stmiola that apparently produce only cleistogamous flowers are Erythranthe brachystylis, E. brevmasuta, E. calciphila, E. hallil, and E. vistbilis. Species of the section with consistently autogamous pollination but apparently without cleistogamous corolla forms are $E$. pardalis, E. geyeri, and E. inamoena. Species with autogamous breeding and both corolla forms are E. nasuta, E. laciniata, E. arvensis, and E. cordata.

Corollas of some perennial species of Erythranthe sect. Simiola are highly variable in size. Some of the variation in E. guttata appears to be between populations, but plants sampled by collections often are relatively large and infrapopulational variation rarely is documented by herbarium collections. Grant (1924, p. 169) observed variation in single plants of E. guttata: "In several experiments, plants were marked early in the season which had corollas $3.5-4.5 \mathrm{~cm}$. long, late in the summer, flowers produced on these same plants were less than half that length." Dole (1992, p. 655 ) observed that $E$. guttata populations "seemed to harbor relatively more genetic variation in stigma-anther distance [a common correlate of corolla length], as well as vegetative reproduction, stigma curl, corolla drop, and flowering date" than E. microphylla and E. nasuta. He speculated that high levels of self pollination resulting from anther-stigma contact in one population of E. guttata might reflect introgression of selfing features from E. microphylla at the same site. [The species identified by Dole as E. microphylla may have been the autogamous $E$. arvensis.]

Erythranthe guttata shows wide variation among populations in corolla size and anther/ stigma separation, but all appear to be essentially allogamous in nature. By growing experimental populations of $E$. guttata over five generations without pollinators, Bodbyl Roels and Kelly (2011)
were able to induce pronounced changes in reduction of anther/stigma separation and in increased autogamous seed set. Similarly, in a population of E. microphylla, Fishman and Willis (2008) observed decreases in corolla width/length ratio and stigma-anther separation as a result of extreme pollen limitation. And at least in some populations of E. guttata, seed set in the absence of pollinators also may occur through delayed self pollination via corolla abscission. "Self pollination can occur as stamens, which are adnate to the corolla, drag anthers past the stigma as the corolla drops" (Dole 1992, p. 651).

In the annual Erythranthe microphylla, flowers as well as plants are highly variable in size. Dole's study (1992) suggests that variation in floral morphology in this species includes correlated variation in biology, the smaller flowers autogamous through stigma-anther contact prior to corolla abscission; larger flowers have separated stigmas and anthers and presumably are allogamous. In contrast, no unambiguous evidence of obligate autogamy in E. microphylla (in the sense of the present study) has been observed in the present study, even in the smaller corollas. In the smaller and narrower corollas, however, crowding of anthers and stigma, even when herkogamous, may lead to a higher incidence of self-pollination.

Lowry et al. (2012) studied "the genetic basis of variation in five anthocyanin phenotypes including calyx, corolla, and leaf coloration patterns that vary within and among populations of Mimulus guttatus," concluding that variation in calyx spotting is primarily controlled from a tandem array of three R2R3-MYB genes at a single major locus. They examined plants from over the whole geographic range of the species (identified without qualification in their study as M. guttatus; the genetic analysis included plants of Erythranthe grandts and E. microphylla) and found that the spotting was nonrandomly distributed - it is "most common in the Mediterranean regions of California [as mapped in their Fig. 3]. In the field, we have most commonly observed calyx spotting in populations that dry out quickly due to the onset of summer drought in California" (p. 90). Monthly precipitation was the climate variable most strongly correlated with the variation in spotting. An alternative explanation, however, for the non-random geographic distribution may simply be that the sampling of plants from California was biased toward E. microphylla, which, with its closest relatives, has a stronger tendency to produce anthocyanin pigments than E. guttata in the strict sense (pers. observ.). A realistic interpretation awaits accurate identifications.

## Chromosome numbers

Chromosome numbers have been reported for North American populations of sect. Simiola in many studies and communications (see separate listing under Literature Cited) and Vickery has made generalizations regarding evolutionary and geographic trends. The most common chromosome number in the genus Erythranthe, $2 n=32$, is indicated by the molecular-phylogenetic study by Beardsley et al. (2004) to be the primitive one. Among sections of the genus, the greatest variation in chromosome number occurs in sect. Simiola, and $2 n=32$ characterizes some of those species as well. Many counts reported by Vickery et al. need to be verified because of problems in the initial identifications and inconsistent reporting of putative B -chromosomes.

No consistent attempt is made here to align each of the various chromosome counts with the publication in which it appeared. I have, however, studied vouchers for sect. Stmiola deposited at UT by Vickery and students, and a number of these are cited where pertinent in the discussions.

A significant taxonomic insight from studies related to chromosome variation is the observation that crosses between different polyploid levels nearly always fail. Crosses between different dysploid levels produce hybrids that sometimes are sterile (Alam \& Vickery 1973; Sweigart et al. 2008) but sometimes fertile. In a review of crossing relationships (Vickery 1974), one of two dysploid populations ( $n=13$ from New Mexico) of Erythranthe nasuta was almost completely
genetically isolated from M. guttatus, but the other $n=13$ population (from California) was more similar to $n=14 E$. nasuta in its crossability. Identification of the seemingly aberrant population needs to be reassessed.

## South American species

Six species of Mimulus sect. Simiolus were recognized by von Bohlen (1995) as native to Chile: (1) M. cupreus Dombrain, (2) M. depressus Phil., (3) M. glabratus Kunth sensu lato (including M. andicola, M. externus, M. kingil, M. parviflorus, M. pilosiusculus, M. sylvaticus, M. tener, and others), (4) M. luteus L. (including M. nummularis, M. smithit, M. variegatus, and others), (5) M. acaults Phil. (= M. minmus von Bohlen = M. namus Phil.), and (6) M. natandimus Watson \& von Bohlen. The species occur northward from Chile along the Andes to Columbia and others are recognized (Barker et al. 2012), apparently including some represented by synomyms as treated by von Bohlen: M. andicola Kunth, M. laceratus Pennell, M. parviflorus Lindl., and M. pilosusculus Kunth. In view of the taxonomy proposed here for the North American species and the apparent ease with which isolating mechanisms are developed, it seems likely that further South American segregates will be recognized at specific rank

Vickery divided the South American species between two subgroups (see further details below). Those of the Mimulus glabratus complex have a chromosome number of $2 n=92$, presumably derived from a hexaploid ancestor on the base of $\mathrm{x}=15$. Those of the Mimulus luteus complex known cytologically have a chromosome number of $2 n=60,62$, and 64 , the variation outside of $\mathrm{x}=15$ perhaps reflecting the presence of B chromosomes.

## Species concepts

The approach and process of the present taxonomic study have been similar to those made by the author in many other genera of various families. Coherent morpho-geographical patterns have been sought and, once found, it is hypothesized that population systems showing such coherence reflect real evolutionary entities. Many of the perceived taxonomic problems in sect. Simiola apparently have largely been because of wide variability within species rather than variation within broadly intergrading complexes and most of the species in the present account are recognized with a strong degree of confidence. Interspecific hybrids apparently do occur but do not blur taxonomic boundaries to the extent where species cannot be recognized. For example, as noted by Sweigart and Willis (2003, p. 2491), "when populations of M. guttatus and M. nasutus live in sympatry, hybrids are frequently observed (Vickery 1964, 1974; Kiang and Hamrick 1978; Ritland 1991; Fenster and Ritland 1992). Nevertheless, the two species seem to maintain their phenotypic differences even in these sympatric sites, suggesting that the effects of hybridization may be limited."

Vickery (1978, p. 425-426), noted that "The Mimulus guttatus complex appears to be a large assemblage of more or less well-marked semispecies ... that has characteristics of both a superspecies, i.e., a series of allopatric semispecies toward the periphery of its range, and of a syngameon, i.e., of a cluster of sympatric semispecies toward the center of its range." An emphasis on crossing relationships in defining species such that much of this group becomes essentially a single species, the "Mimulus guttatus complex," or a superspecies or syngameon, does not fairly represent some of the apparently discrete patterns of variation that exist among these plants.

In a study of coastal perennial and inland annual "races of Mimulus guttatus" (as identified in the study), Lowry et al. (2008) concluded that the two population systems comprise distinct "ecological races." They perhaps were not considered species because F2 hybrids were successfully produced in all intercrosses among F1 progeny between the two races. On the other hand, they concluded (p. 2209) that they studied "two distinct morphologically and molecular genetically diverged groups [and that] "Nearly complete prezygotic isolation through a combination of geography,
selection against immigrants, and flowering time isolation likely maintains the genetic differentiation of these coast and inland groups." "Striking morphological differences were found between coast and inland populations in the common garden greenhouse experiment" (p. 2202). "Geographically distant coastal populations ( $>1000 \mathrm{~km}$ apart from each other) are more closely related to each other than they are to adjacent inland populations" (p. 2209) and that "the coastal populations may be the result of a single evolutionary origin" (p. 2211).

In the perspective of the current account, the Lowry et al. (2008) study supports treatment of the coastal and inland population systems as distinct species. The difference in interpretation may simply reflect a difference in concept about the nature of species, but it seems more than semantic, as the authors noted (p. 2211) that "Although the coastal and inland races of $M$. guttatus appear to show approximately complete reproductive isolation, the process by which ecological races become good species remains unclear" (p. 2211) but that "adaptations to widespread habitats can lead to the formation of reproductively isolated species" (p. 2196). From the comments and photos in the publication, the two entities are identified here with strong probability as Erythranthe grandis (coastal perennial) and E. microphylla (inland annual). It is unlikely that they are in the process of evolutionary species divergence since they apparently are not each other's closest relative.

Lowry and Willis (2010) observed that a chromosomal inversion polymorphism contributes to "adaptive divergence and reproductive isolation between annual and perennial ecotypes" of Mimulus guttatus. Most of the study populations were the perennial Erythranthe grandis and the annual E. microphylla (including the DUN and IM populations noted above). As interpreted in the present study, northernmost coastal perennial populations (BOB, TSG, ALA) and inland perennial populations (ANR, BOG, FAL, QNT) in the Lowry and Willis study probably were E. guttata (in the strict sense). One population of E. nasuta (SF), an inland annual, was included. They found that all annual populations had one inversion arrangement while all perennials had another, suggesting to them that the distribution of the two arrangements is "a function of the availability of soil moisture during summer months."

In a simpler perspective, the distribution of the inversion arrangements is explained by common ancestry. The Lowry and Willis study does not contradict a morphologically-based hypothesis that their "ecotypes" are instead better represented as four species and that among the four, the annuals M. microphyllus and M. nasutus are related as a pair and the perennials M. grandis and M. guttatus are related as a pair. The data are better interpreted outside of the initial assumption that all populations involved were of a single species.

## Scope of this study

The present study has been undertaken to provide a basis for the briefer account of sect. Simiola to be included in the taxonomic treatment of Erythranthe for the Flora of North America North of Mexico (Nesom \& Fraga in prep.). Because geographic ranges of some of the mainly USA species include portions of Mexico and relatively few of the species appear to be endemic to Mexico, Mexican taxa and collections are reviewed here as well.

An attempt is made here to provide a complete account, with details of typification, of all the names proposed in sect. Simiola of North America. Online databases and digital images of type specimens (as cited here) have been helpful in this.

This account is based primarily on study of collections from ARIZ, BRIT-SMU-VDB, DAVAHUC, MO, NMC, PH, SD, SRSC, TEX-LL, UC-JEPS, and UT. Further detailed study of additional collections, especially from Pacific Coast herbaria, surely will be able to improve interpretations and hypotheses presented here and likely even recognize additional taxa. All aspects
of the present account warrant further study in both herbarium and field. Specimens are cited only for new species, some of the previously described ones that have not been generally recognized, and to clarify aspects of variation. Collections at herbaria above can be consulted in further documentation of the concepts.

Erythranthe sect. Simiola (Greene) Nesom \& Fraga, Phytoneuron 2012-40: 00. 2012. Mimulus sect. Simiolus Greene, Bull. Calif. Acad. Sci. 1: 109. 1885. Lectotype (Nesom \& Fraga 2011): Mimulus guttatus Fischer ex DC.

Annuals (fibrous-rooted or taprooted) or short-lived herbaceous perennials (rhizomatous or producing stolons or runners), glabrous to hirtellous, hirsute, or puberulent-glandular to villousglandular with gland-tipped hairs. Leaf blades generally petiolate (especially proximally) and becoming sessile distally, ovate or elliptic to rotund (perfoliate in M. glaucescens, lyrate-dissected to pinnatifid in M. lacmiatus), palmately veined. Fruiting pedicels usually longer than subtending leaves or bracts (shorter in E. brachystylis). Fruiting calyces commonly accrescent, lobes subequal to unequal, upper usually about 1.2-2 times longer than the others, in most species the lower lobes turning upward ca. $90^{\circ}$ and folding over the lateral teeth, closing the throat. Corollas yellow (cream to pink or red in some South American species), commonly red-dotted along the throat and palate, strongly to weakly bilabiate or nearly symmetric, throat and palate usually with prominent ventral ridges. Anthers glabrous; anther pairs didynamous or equal in length, stigma above anthers (herkogamous) or at the same level (plesiogamous). Placentation axile, placentae fused in the basal half or for the whole length, remaining fused in fruit dehiscence; capsule dehiscent to base along outer suture or both sutures. $x=8$, presumably $(2 n=26,28,30,32,56,62$, and other dysploid numbers). Capsules included, generally short-stipitate, surfaces often transversly rugulose-ridged.

Fruiting calyx length is measured from the calyx base to the tip of the longest lobe. Corolla tube length is measured from the corolla base to the opening (sinus bases) of the lobes. Mature capsule lengths include the stipe.

The positions of stamen pairs and stigma often can be observed from within a pressed flower if it was pressed in an appropriate plane. If not, it is relatively simple to lift the upper corolla surface (as pressed) and make the observation. Flowers with didynamous stamens and the stigma above the upper stamens (herkogamous) are assumed in the present study to be allogamous. Those with both of the stamen pairs and the stigma at essentially the same level (plesiogamous; see Nesom 2012b) are assumed to be autogamous or at least partly so.

## An informal infrasectional classification

Vickery (1974) observed that Mmulus sect. Simolus "consists of at least five subgroups: (1) the M. guttatus complex (M. guttatus, M. nasutus, M. lacmiatus, M. platycalyx, M. glaucescens); (2) the M. dentilobus complex (M. dentilobus, M. madrensis, M. pennellit, and several others later described by Vickery as new species); (3) the M. tilingii complex (M. tilmgnt var. tilmgu, M. tılingu var. corallimus, M. implexus, M. caespitosts); (4) the M. glabratus complex (M. glabratus var. glabratus, M. glabratus var. fremontil, M. glabratus var. utahensis, and South American taxa M. glabratus var. externus, M. pilostusculus, M. andicola); and (5) the M. luteus complex (South American: M. luteus "and its five varieties," M. cupreus, M. acaulis, M. laceratus).

A contrasting infrasectional classification is provided here as a guide to the North American species of Erythranthe sect. Simola recognized in the current study, dividing them into six informal groups. The dentilobus, tilingii, and glabratus complexes of Vickery have analogs in the classification presented here. Placement of South American taxa is uncertain (see comments above) and they are not included.

The present arrangement is admittedly subjective, based on morphological similarity (main characters emphasized in defining the groups are listed) and personal experience with variability in each of the species. Plants are allogamous and perennial unless otherwise noted: $*=$ autogamous; ${ }^{A}$ = annual duration.

The classification here may be helpful in further investigating relationships. It also is offered partly as a potential balance to the exuberant postulation of ancestor-derivative relationships, sister relationships, and adaptive evolution within a single species often encountered in evolutionary studies of sect. Stmiola. Based on the arrangement hypothesized here, the following correlates appear to be reasonable.

* The suite of characters associated with autogamous fertility is heritable (subgroups B and C of the Microphylla group) as well as evolutionarily derivative (Guttata group, Madrensis group)
* The closest relatives of Erythranthe nasuta apparently are E. brevnasuta, E. lacintata, and E. pardahs, species next most closely related to E. nasuta are those of the Microphylla group
* Annual duration is heritable (Microphylla group, subgroups A, B, and C) as well as evolutionarily derivative (Guttata group, Madrensis group)
* Prolific rhizome production is heritable (Tilingi1 group and possibly the Decorus group, if the two are distinct)
* Non-closing calyces are heritable (Glabrata group), variable within a species (Madrensis group, subgroup C of the Microphylla group), and evolutionarily derivative (Tilingi1 group)

1. Glabrata group (E. glabrata, E. muchtganensts, E. geyeri*, E. regni** ${ }^{*}$, E. mamoena*). Perennial and annual, rhizomatous or rooting at proximal nodes, fibrous-rooted in E. regnt; calyces not closing; flowers small and autogamous or (E. michiganensts) larger, chasmogamous and allogamous; central USA, Mexico, and South America. $x=15$.
2. Tilingii group (E. tilingı, E. minor, E. caespitosa, E. corallina, E. utahensis). Perennial; flowers large, chasmogamous and allogamous; filiform rhizomes profusely produced; mostly high elevation (except for E. utahensis); western USA. $\mathrm{x}=12$ ?, $14,15$.
3. Decora group (E. decora, E. scoulerl). Perennial; flowers large; rhizomes numerous; leaf margins closely toothed; styles densely hairy; Washington and Oregon. $x=$ ?
4. Guttata group (E. guttata, E. grandts, E. lagunensts ${ }^{A}$, E. unmaculata ${ }^{A}$, E. thermalis ${ }^{*{ }^{4}}$, E. arenicola ${ }^{A}$ ). Perennial and annual; leaves oblong or elliptic to obovate, margins remotely toothed; flowers relatively large and chasmogamous and allogamous; western USA and northwestern Mexico. $x=14$.

## 5. Microphylla group.

Subgroup A. (E. microphylla ${ }^{\mathbf{A}}$, E. glaucescens ${ }^{\text {A }}$, E. marmorata ${ }^{\mathbf{A}}$, E. nudata ${ }^{\text {A }}$ ). Annual; flowers large or variable in size, chasmogamous and allogamous; basal and proximal cauline leaves often purplish on one or both surfaces; central California northward. $x=14$.

Subgroup B. (E. nasuta ${ }^{* \mathrm{~A}}$, E. brevmasuta*A , E. laciniata ${ }^{* \mathrm{~A}}$, E. pardalus ${ }^{* \mathbf{A}}$ ). Annual; flowers small (cleistogamous or slightly open, autogamous; basal and proximal cauline leaves often purplish ( $E$. nasuta, E. laciniata); flowers often produced at all nodes, proximal to distal; Sierra Nevada of USA
(E. laciniata, E. pardalis) and broader (E. nasuta). $\mathrm{x}=14$. Perhaps arbitrarily separated from subgroup C.

Subgroup C. (E. arvensts ${ }^{* A}$, E. brachystylis ${ }^{* A}$, E. charlestonensts $s^{* A}$, E. cordata ${ }^{* A}$ ). Annual, often rooting at lower nodes; flowers often cleistogamous, all autogamous, produced from distal nodes; western USA. $\mathrm{x}=14,15$.

Subgroup D. (E. hallit ${ }^{* A}$ ). Annual; flowers small, cleistogamous, produced from distal nodes; Northcentral Colorado. $\mathrm{x}=16$.

## 6. Madrensis group.

Subgroup A. (E. madrensis, E. pallens, E. calciphild ${ }^{* \boldsymbol{*}}$, E. pennellin, E. visibilis ${ }^{* \mathbf{A}}$ ). Perennial or annual; calyces 5 -lobed or mostly 3-lobed; flowers small (allogamous or autogamous); western Mexico into southwestern USA. $\mathrm{x}=16$.

Subgroup B. (E. chmatiensts*, E. dentiloba, E. parvula*). Perennial, mat-forming; calyces 5-lobed or with tendency toward 3-lobed; flowers relatively small, allogamous or autogamous; corolla lobes laciniate to fimbriate; southwestern USA and northwestern Mexico. $x=16$.

## Key to species of sect. Simiola in the USA and Canada

1. Fruiting calyces open at the throat, lateral calyx lobes mostly shallowly deltate to merely apiculate or absent, sometimes obscure or obsolete, not turned upward to close the throat.
2. Perennial, arising from profusely produced, branching, filiform rhizomes; stems erect or basally decumbent-ascending and becoming erect distally; fruiting calyces (10-)11-17(-20) mm
3. Erythranthe utahensis
4. Annual, fibrous-rooted, usually rooting freely at least at the proximal cauline nodes; stems ereet, basally decumbent-ascending and becoming erect distally, or stems all prostrate; fruiting calyces $7-14 \mathrm{~mm}$.
5. Stems more or less quadrangular; distal and bracteal leaves densely villous on abaxial surfaces with vitreous, flattened, multicellular, eglandular hairs; flowers autogamous; western USA $\qquad$ 27. Erythranthe arvensis 3. Stems subterete; distal and bracteal leaves glabrous or villous-glandular; flowers allogamous or autogamous; eastern and central USA.
6. Flowers herkogamous, corolla limb expanded $10-15 \mathrm{~mm}$ (pressed); Michigan
7. Flowers plesiogamous, corolla limbs expanded 5-8 mm or $1-1.5 \mathrm{~mm}$ (pressed); southwestern USA.
8. Fruiting calyces minutely hirtellous; stems often prostrate to decumbent but becoming fully erect at least in the inflorescence, commonly distinctly fistulose
9. Erythranthe inamoena
10. Fruiting calyces glabrous to sparsely villous-glandular; stems prostrate to erect, not fistulose.
11. Stems prostrate and forming floating mats to decumbent-ascending to ascending or
erect-ascending distally; calyces and pedicels glabrous or sparsely villous-glandular;
calyces without purple-dots; tube-throats $6-8 \mathrm{~mm}$, exserted $1-3 \mathrm{~mm}$ beyond calyx
margins, limb expanded $5-8 \mathrm{~mm}$ (pressed) .............................. 2. Erythranthe geyeri
12. Stems erect to ascending-erect; calyces and pedicels glabrous; calyces purple-dotted;
corolla tube-throats $9-12 \mathrm{~mm}$, exserted 3-5 mm beyond calyx margins, limb expanded
$1-1.5 \mathrm{~mm}$ (pressed)
13. Erythranthe regni
14. Fruiting ealyces closed at the throat, lower lobes turned upward against the upper lobe.
15. Producing rhizomes or stolons.
16. Corolla lobes laciniate to fimbriate; plants procumbent and mat-forming.
17. Leaves densely villous-hirsute on both surfaces with thickened and flattened, stiff, whitish, gland-tipped hairs, calyces villous-hirsute, pedicels and distal stems stipitateglandular; lower lip of corolla spreading $\qquad$ 33. Erythranthe parvula 9. Leaves glabrous to moderately villosulous adaxially, glabrous abaxially, calyces glabrous to sparsely villosulous, pedicels and stems glabrous; lower lip of corolla strongly reflexing ..
18. Erythranthe chinatiensis
19. Corolla lobes entire or apically notched; plants procumbent to decumbent or erect to suberect.
20. Rhizomes filiform, usually branching, prolifically produced and forming a mass.
21. Leaves distinctly hirsutulous to softly hirsute on both surfaces with sharp-pointed, thick-walled, eglandular, and dull gray hairs 9. Erythranthe corallina 11. Leaves glabrous to sparsely villous-glandular or stipitate-glandular on both surfaces with blunt-tipped, thin-walled, minutely gland-tipped, and vitreous hairs.
22. Flowers 6-16, from proximal to distal nodes; corolla tube-throats $10-13 \mathrm{~mm}$; fruiting pedicels ( $25-$ ) $40-75 \mathrm{~mm}$; stems erect, $20-50 \mathrm{~cm} \quad 10$. Erythranthe utahensis 12. Flowers $1-3(-5)$ from distal nodes; corolla tube-throats $9-11$ or $15-25 \mathrm{~mm}$; fruiting pedicels $10-35(-40) \mathrm{mm}$; stems erect to erect-ascending or procumbent to decumbent or decumbent-ascending, 2-35 cm .
23. Stems procumbent or decumbent to decumbent-ascending, $3-10 \mathrm{~cm}$, forming matted colonies; leaf blades $3-12 \mathrm{~mm}$ long, margins entire to mucronulate or barely denticulate; corolla tube-throats $15-18 \mathrm{~mm} \ldots .7$. Erythranthe caespitosa 13. Stems erect to erect-ascending, (2-)5-35 cm, plants solitary to weakly colonial; leaf blades mostly $5-35(-55) \mathrm{mm}$ long, margins distinctly serrate to serratedentate or denticulate; corolla tube-throats $9-11$ or $15-25 \mathrm{~mm}$.
24. Corolla tube-throats $15-25 \mathrm{~mm}$, exserted $5-10 \mathrm{~mm}$ beyond the calyx margin 6. Erythranthe tilingii 14. Corolla tube-throats $9-11 \mathrm{~mm}$, exserted $1(-2) \mathrm{mm}$ beyond the calyx margin 8. Erythranthe minor
25. Rhizomes broader than filiform, usually 1-few, not highly branched and forming a mass.
26. Lower cauline leaves narrowly oblong-obovate or oblong-elliptic to oblong-lanceolate, usually 3-4 times longer than wide, bases attenuate, margins shallowly and evenly callous-dentate; plants completely glabrous throughout; Columbia River region of Oregon
27. Erythranthe scouleri
28. Lower cauline leaves ovate to ovate-elliptic or broadly elliptic, usually $1-2$ times longer than wide, bases rounded to truncate, margins shallowly and evenly callous-dentate (E. decora) or prominently and often irregularly dentate; plants glabrate to hirtellous or glandular-villous.
29. Leaf blades uniformly ovate-triangular to ovate-lanceolate with truncate bases, palmately (3-)5-7-veined; corolla tube-throats $18-26 \mathrm{~mm}$; stems, pedicels, calyces, and leaf surfaces minutely hirtellous $\qquad$ 17. Erythranthe decora 16. Leaf blades ovate-elliptic to ovate or suborbicular, with cuneate to rounded bases, subpinnately veined; corolla tube-throats ( $10-$ ) $12-20 \mathrm{~mm}$ or (14-) $16-24 \mathrm{~mm}$; vestiture of stems, pedicels, calyces, and leaf surfaces variable.
30. Stems (6-)15-65(-80) cm; pedicels, calyces, and distal stems variable in vestiture but not puberulent-glandular; corolla tube-throats ( $10-$ ) $12-20 \mathrm{~mm}$, exserted $3-5 \mathrm{~mm}$ beyond the calyx margin; fruiting calyees $11-17(-20) \mathrm{mm}$ 11. Erythranthe guttata
31. Stems (25-) $50-120(-160) \mathrm{cm}$; pedicels, calyces, and distal stems densely puberulent with a mix of crinkly hairs and minutely stipitate-glandular hairs; corolla tube-throats (14-)16-24 mm, exserted ( $8-$ ) $10-15 \mathrm{~mm}$ beyond the calyx margin; fruiting calyces $15-22(-25) \mathrm{mm} . . . . . . . . . . . . . . . . . . . . ~ 12 . ~ E r y t h r a n t h e ~ g r a n d i s ~$
32. Fibrous-rooted or taprooted, without rhizomes or stolons.
33. Corollas relatively large, chamogamous, tube-throats (6-)8-23 mm, exserted ( $2-$ ) $3-8 \mathrm{~mm}$ (sometimes 1 mm in smallest corollas of E. microphylla) beyond the fruiting calyx margin; fertilization allogamous (anther pairs at different level, stigma above upper anther pair) or (in $E$. thermalis) autogamous.
34. Stems moderately to densely villous-glandular, at least proximally
35. Taprooted; stems, leaves, calyces, and pedicels moderately villous-glandular, without eglandular hairs; fruiting pedicels $15-45 \mathrm{~mm}$; corolla tube-throats narrowly cylindric-funnelform
36. Erythranthe marmorata
37. Fibrous-rooted; stems, leaves, calyces, and pedicels moderately villous-glandular with gland-tipped hairs or mixed hirtellous and stipitate-glandular; fruiting pedicels 717 mm ; corolla tube-throats infundibular.
38. Corollas tube-throats $11-20 \mathrm{~mm}$, exserted $4-8 \mathrm{~mm}$ beyond the calyx margin; allogamous; coastal and near-coastal localities in Monterey, San Luis Obispo, and Santa Cruz cos., California 13. Erythranthe arenicola
39. Corollas tube-throats $8-12 \mathrm{~mm}$, exserted $1-2 \mathrm{~mm}$ beyond the calyx margin; autogamous; Yellowstone Natl. Park, Wyoming 14. Erythranthe thermalis
40. Stems delicately and minutely stipitate-glandular or glabrous to glabrate.
41. Corollas pale yellow to nearly white, palate dense-dark yellow, drying blue-green, tube-throats $9-14 \mathrm{~mm}$; southern Arizona, New Mexico, Mexico
42. Erythranthe unimaculata
43. Corollas, including the palate, usually nearly evenly yellow, tube-throats (6-)8-23 mm ; California, Nevada, Oregon, Washington, British Columbia.
44. Basal and proximal cauline leaves with blades lanceolate or oblong-lanceolate to ovate, distal narrower, narrowly spatulate to oblanceolate, $5-15(-30) \mathrm{mm} \times 1-5$ mm ; plants glabrous or stems, leaves, and pedicels minutely stipitate-glandular with hairs $0.05-0.1 \mathrm{~mm}$, at least just above the nodes; Colusa, Glenn, Lake, Mendocino, Napa, and Sonoma cos., California ............. 22. Erythranthe nudata
45. Basal and proximal cauline leaves with blades ovate or ovate-lanceolate to elliptic-ovate, orbicular-ovate, suborbicular, or depresssed-ovate, (3-) $10-45 \mathrm{~mm} \mathrm{x}$ $3-35 \mathrm{~mm}$; plants glabrous and glaucous to hirtellous-glandular; distribution various.
46. Distal cauline leaves distinct, petioled or subelasping to narrowly perfoliate; stems and leaf surfaces not at all glaucous, stems and pedicels hirtellous or mixed hirtellous and stipitate-glandular, sometimes only short villous-glandular with gland-tipped hairs, sometimes completely glabrous below the inflorescence; corolla tube-throats ( $6-) 8-16(-20) \mathrm{mm}$; California, Nevada, Oregon, Washington, British Columbia 19. Erythranthe microphylla 24. Distal cauline leaves distinctly connate-perfoliate and forming a flat disc; stems and leaf surfaces glabrous and glaucous; corolla tube-throats $12-23 \mathrm{~mm}$; Butte and Tehama cos., California
47. Erythranthe glaucescens
48. Corollas relatively small, sometimes cleistogamous, tube-throats $4-14 \mathrm{~mm}$, exserted $1-3 \mathrm{~mm}$ beyond the fruiting calyx margin; fertilization autogamous (anther pairs and stigma at about the same level).
49. Corolla tube-throats $7-14 \mathrm{~mm}$, limb expanded 6-16 mm, apparently chasmogamous.
50. Distal leaves strongly auriculate-clasping and closely paired; flowers produced at distal nodes; stems glabrous.
51. Stems glabrous or sometimes minutely hirtellous in the inflorescence with deflexed hairs, eglandular; flowers 3-8(-16), from remote distal nodes; fruiting calyces (7-)9-14 mm; California, Nevada, Oregon, Washington, Idaho
52. Erythranthe arvensis
53. Stems sparsely and minutely stipitate-glandular; flowers (5-)12-16 in bracteate racemes; fruiting calyces ( $8-$ ) $15-18(-20) \mathrm{mm}$; Arizona, New Mexico, Texas, Colorado, Utah, Nevada; Mexico .................................... 29. Erythranthe cordata
54. Distal leaves not distinctly auriculate-clasping; flowers commonly from distal to proximal nodes; stems glabrous to sparsely hirtellous and/or finely villosulous-glandular.

[^8]33. Stems glabrous to sparsely hirtellous, finely villosulous-glandular above the nodes but not elsewhere; leaves eglandular.
> 34. Leaves as long as wide or wider than long (blades elliptic-ovate to broadly ovate, suborbicular, or depressed ovate), margins irregularly dentate to dentateserrate or nearly lacerate-dentate, commonly doubly toothed; plants commonly producing tiny cleistogamous flowers on branches separate from those with larger flowers, corolla tube-throats ( $5-$ ) $8-12 \mathrm{~mm}$ 23. Erythranthe nasuta 34. Leaves longer than wide (blades elliptic to elliptic-obovate, oblanceolate, or oblong), margins commonly narrowly pinnately lobed or dissected, sometimes merely shallowly toothed; plants producing flowers of only one size, corolla tubethroats $4-6 \mathrm{~mm}$ 24. Erythranthe laciniata
25. Corolla tube-throats 4-10 mm, limb barely expanded or only 3-4 mm, clearly cleistogamous.
26. Fruiting calyces $6-10 \mathrm{~mm}$, lobes usually 3 or $3-5$ on the same plant, if 5 then with the 2 middle lobes much smaller than the lower pair
38. Erythranthe calciphila
26. Fruiting calyces mostly ( $7-$ ) $10-15 \mathrm{~mm}$, lobes 5 , all about equal size or the upper slightly longer.
27. Flowers and fruits subsessile to sessile, pedicels shorter than subtending leaves or essentially absent; Nye Co., Nevada $\qquad$ 28. Erythranthe brachystylis 27. Flowers and fruits distinctly pedicellate, pedicels longer than subtending leaves; more widely distributed.
28. Distal leaves short-petiolate, hirsute to hirsutulous at least on adaxial surface; stems villous-glandular area at each axil, sometimes hirtellous distally; fruiting calyces with upper lobe usually distinctly longer than the lower and slightly falcate
23. Erythranthe nasuta
28. Distal leaves sessile or short-petiolate, glabrous or villous on one or both surfaces; stems usually glabrous; fruiting calyces with upper lobe not distinctly longer or falcate.
29. Fruiting calyces glabrous; (5-)7-10 mm 31. Erythranthe hallii
29. Fruiting calyces minutely hirtellous, (7-)9-14 mm.
30. abaxial surfaces of distal and bracteal leaves densely villous with long, vitreous, flattened, eglandular, multicellular hairs; middle and upper cauline leaves depressed-ovate to nearly reniform, distal sessile; stems, leaves, and calyces usually green; fruiting calyces commonly remaining open; stems erect to ascending, often rooting at lower nodes
27. Erythranthe arvensis
30. leaves glabrous or proximal leaves sometimes sparsely villous; middle and upper cauline leaves ovate to ovate-lanceolate, distal short-petiolate; stems, leaves, and calyces commonly dark purplish; fruing calyces closing; stems erect or ascending-erect, not rooting at lower nodes
30. Erythranthe charlestonensis

## Key to species of sect. Simiola in Mexico

1. Fruiting calyces open at the throat, lateral calyx lobes mostly shallowly deltate to lacking or merely apiculate, sometimes obscure or obsolete, lower lobes not curving upward in fruit.
2. Fruiting calyces $10-13 \mathrm{~mm}$, corolla tube-throats ( $7-$ ) $12-16 \mathrm{~mm}$...... 1. Erythranthe glabratus
3. Fruiting calyces $4-12 \mathrm{~mm}$, corolla tube-throats $5-11 \mathrm{~mm}$.
4. Fruiting calyces $4-6 \mathrm{~mm}$, corolla tube-throats $5-6 \mathrm{~mm}$; leaf surfaces puberulent-glandular 39. Erythranthe visibilis
5. Fruiting calyces $7-14 \mathrm{~mm}$, corolla tube-throats $6-12 \mathrm{~mm}$; leaf surfaces glabrous.
6. Stems more or less quadrangular
7. Erythranthe arvensis
8. Stems subterete.
9. Stems usually prostrate in flower, forming floating mats, occasionally becoming distally ascending-erect to erect, not distinctly fistulose; flowers 2-8(-12), usually from distal nodes but sometimes from most of them, very loosely racemose; corolla tubethroats $6-8 \mathrm{~mm}$; fruiting pedicels $18-30 \mathrm{~mm}$; fruiting calyces obtriangular to broadly obtriangular or deeply cupulate, glabrous to sparsely villous-glandular 2 . Erythranthe geyeri 5. Stems often prostrate to decumbent but becoming fully erect at least in the inflorescence, commonly distinctly fistulose, flowers (6-)8-18(-24), loosely to densely racemose, usually from distal nodes but sometimes from all nodes; corolla tube-throats $7-11 \mathrm{~mm}$; fruiting pedicels $9-20 \mathrm{~mm}$; fruiting calyces broadly cylindric-campanulate, minutely hirtellous
10. Erythranthe inamoena
11. Fruiting calyces closed at the throat, lateral lobes present or absent, lower lobes curving upward in fruit against the upper lobe.
12. Stems mostly erect or ascending-erect from the base.
13. Stems $4-30 \mathrm{~cm}$; calyces 3 -lobed; corolla tube-throats $5-7 \mathrm{~mm}$.. 38 . Erythranthe calciphila
14. Stems 2-65(-100) cm ; calyces 5 -lobed; corolla tube-throats (in E. nasuta $5-) 8-20(-26) \mathrm{mm}$.
15. Rhizomatous or consistently rooting from proximal nodes.
16. Rhizomatous; corolla tube-throats ( $10-$ ) $12-20(-26) \mathrm{mm}$, exserted $3-5$ beyond calyx margin, limb expanded 12-24(-25) mm (pressed); styles $15-20 \mathrm{~mm}$, exserted 6-9 mm beyond fruiting calyx margin; stigma above level of anthers, allogamous 11. Erythranthe guttata 9. Rooting from proximal nodes; corolla tube-throats $8-14 \mathrm{~mm}$, exserted $1-3 \mathrm{~mm}$ beyond calyx margin, limb expanded 9-14 mm (pressed); styles 7-10 mm, exserted 1-3 beyond fruiting calyx margin; stigma at same level as anthers, autogamous 29. Erythranthe cordata
17. Fibrous-rooted.
18. Corolla limb distinctly bilabiate, $7-17 \mathrm{~mm}$ wide (pressed); flowers herkogamousallogamous; blade margins relatively evenly shallowly serrate-dentate to serrate, 1 toothed; pedicels villous glandular along whole length.
19. Corolla tube-throats exserted $3-4 \mathrm{~mm}$ beyond the calyx margin, palate and lower throat densely and dark yellow, drying blue-green, limbs expanded $8-17 \mathrm{~mm}$ wide (pressed); Arizona, New Mexico, Chihuahua Sonora . 16. Erythranthe unimaculata 11. Corolla tube-throats exserted $4-6(-7) \mathrm{mm}$ beyond calyx margin, palate and lower throat not of a different color or hue, limbs expanded $7-10 \mathrm{~mm}$ wide (pressed); Baja California Sur .......................................................... 15. Erythranthe lagunensis
20. Corolla limb weakly bilabiate, $4-12 \mathrm{~mm}$ wide (pressed); flowers plesiogamousautogamous; blade margins irregularly dentate to dentate-serrate or nearly laceratedentate, commonly doubly toothed; pedicels sparsely glandular-villous just above the nodes, otherwise glabrous.
21. Stems quadrangular; upper calyx lobe characteristically elongate, beaklike, margins entire; corolla lobe margins entire ......................... 23. Erythranthe nasuta 12. Stems terete; upper calyx lobe relatively short, often with 1-2 pairs of tiny teeth on the distal margins; corolla lobe margins sparsely denticulate
22. Erythranthe brevinasuta
23. Stems mostly procumbent, often rooting at the nodes, becoming erect in the inflorescence.
24. Corolla lobes fimbriate.
25. Leaves glabrous or rarely sparsely villosulous adaxially; stamen pairs at different levels, stigma above upper anther pair, allogamous 32. Erythranthe dentiloba 14. Leaves densely villous-hirsute to glabrous; both stamen pairs and the stigma at essentially the same level, autogamous.
26. Leaves densely villous-hirsute on both surfaces with thickened and flattened, stiff, whitish, gland-tipped hairs, calyces villous-hirsute, pedicels and distal stems stipitateglandular, lower lip of corolla spreading $\qquad$ 33. Erythranthe parvula 15. Leaves glabrous to moderately villosulous adaxially, glabrous abaxially, calyces glabrous to sparsely villosulous, pedicels and stems glabrous; lower lip of corolla strongly reflexing
27. Erythranthe chinatiensis
28. Corolla lobes entire or emarginate.
29. Stems, pedicels, calyces, and leaf surfaces moderately to densely villous-glandular to villosulous-glandular with hairs mostly $1-3 \mathrm{~mm}$ long; calyces 5 -lobed
30. Erythr anthe pennellii
31. Stems, pedicels, calyces, and leaf surfaces glabrous, or if glandular (E. visibilis) hairs mostly 0.2-0.8 mm long; calyces 3-lobed or essentially 3-lobed.
32. Fruiting calyces 4-6 mm ; corolla tube-throats $5-6 \mathrm{~mm}$; leaf surfaces puberulentglandular
33. Erythranthe visibilis
34. Fruiting calyces $5-10 \mathrm{~mm}$; corolla tube-throats $5-12 \mathrm{~mm}$; leaf surfaces glabrous.
35. Fruiting pedicels $5-30 \mathrm{~mm}$; fruiting calyces $5-8 \mathrm{~mm}$; corolla tube-throats $5-9$ mm, limbs $6-10 \mathrm{~mm}$ broad (pressed); autogamous ....... 35. Erythranthe madrensis 18. Fruiting pedicels $25-60 \mathrm{~mm}$; fruiting calyces $6-10 \mathrm{~mm}$; corolla tube-throats $8-12$ mm , limbs $8-12$ broad (pressed); allogamous
36. Erythranthe pallens
37. Erythranthe glabrata (Kunth) Nesom, Phytoneuron 2012-40; 44. 2012. Mimulus glabratus Kunth, Nov. Gen. Sp. (quarto ed.) 2: 370. 1817. Type: MEXICO. [Hidalgo]. "Crescit prope Moran Mexicanorum, alt. 1330 hex. Floret Majo," Humboldt and Bonpland s.n. (holotype: B? or P?). "Type collection apparently not represented at the Museum d'Histoire Naturelle at Paris, France, and actual type at the Berlin Botanical Garden in Germany not verified."

Perennials, rhizomatous, all parts glabrous. Stems erect to decumbent-ascending, commonly emergent, ( $10-$ )25-50( -60 ) cm , commonly slightly fistulose, rooting at the nodes. Leaves cauline, basal usually absent at flowering, lower cauline or proximal to midcauline petiolate, petioles 5-20 mm , distal sessile, not connate, blades palmately $5-7$ veined or proximal sometimes subpinnate, proximal broadly ovate, $25-50 \mathrm{~mm}$, medial and distal orbicular to depressed-ovate, $10-40 \mathrm{~mm}$, apices rounded, bases cuneate to rounded or subtruncate, margins shallowly dentate or dentate-serrate to merely mucronulate, with 8-12 teeth per side, rarely subentire. Flowers (4-)6-12, mostly from distal nodes. Fruiting pedicels $10-30(-40) \mathrm{mm}$. Fruiting calyces broadly campanulate-cylindric, $10-16$ mm , not closing, sometimes purple-spotted or purple-tinged, lobes 5 , the upper longest, apices rounded or rounded-mucronate. Corollas yellow, red-dotted, tube-throats narrowly funnelform, 9-13 mm , exserted 1-3 beyond the calyx margin, limb bilabiate, expanded. Plesiogamous; anther pairs at about the same level, stigma at or slightly below the anthers. Capsules $8-10 \mathrm{~mm} .2 \mathrm{n}=62$.

Flowering (Jan-)Apr-Jul (-Aug, -Nov). Inundated places, lake and river sides, marshy areas, shallow ditches, moist gravel, steep arroyo banks, disturbed forest, roadsides; (500-, 1300-)1700-$2800(-3200) \mathrm{m}$; Mexico, Guatemala, Nicaragua, South America (Colombia). Apparently completely absent between Guatemala and Colombia except for a single known locality in north-central Nicaragua (Sutton \& Hampshire 2001). Map 1.

A detailed allozyme study of the Mimulus glabratus complex (Vickery 1990) indicates that four distinct groups can be recognized within what is identified here as Erythranthe glabrata, all with $2 n=62$. As termed by Vickery, the (1) "Sierra Madre Oceidental group" and the (2) "ChiapasGuatemala group" have a sister relationship and together are sister to the (3) "Colombia group." Although the (4) "Sierra Madre del Sur group" is seemingly geographically interposed between 1 and 2, it is sister to the "Rio Grande group," which has a chromosome number of $2 n=60$ and is the primarily Texan taxon recognized here as Erythranthe inamoena. The type of M. glabratus Kunth was collected in Hidalgo in south-central Mexico, thus that name in its strictest sense refers to the Sierra Madre del Sur group. These subgroups have not been distinguished in the present study.

The correct name for the most of the South American plants (south of Columbia) sometimes identified as Mmmilus glabratus is M. andicola Kunth (= Erythranthe andicola). Mimulus andicola Kunth (1817) and M. tener Phil. (1891) were treated as synonyms of M. glabratus var. glabratus by Grant (1924). Mimulus glabratus var. parviflorus (Lindl.) AL. Grant, M. glabratus var. micranthus (Phil.) B. Boivin, and M. glabratus var. externus Skottsb. are typified by South American plants.
2. Erythranthe geyeri (Torrey) Nesom, Phytoneuron 2012-40: 43. 2012. Minulus geyeri Torrey in Nicollet, Rep. Hydrogr. Upper Mississippi, 157. 1843. Type: USA. North Dakota. [Ramsey Co.:] Fresh water springs about Devil's Lake, 1 Aug 1839, C.A. Geyer 119 (holotype: NY digital image! photo-PH!; isotypes: MO digital image!, PH!, US digital image!).
Mimulus jamesin Torrey \& Gray ex Benth., Prodr. (DC.) 10: 371. 1846. Mimulus glabratus var. jamesti (Torrey \& Gray) Gray, Synopt. Fl. N. Amer. ed. 2, 2(1): Suppl. 447. 1886. Lectotype (Pennell 1935): USA. Iowa. [Pottawatamie Co.:] "Ad fontes planitiorum Missouriensium," along the Missouri River, 27 May 1820, James s.n. (NY digital image! photo-PH!; isolectotype: MO digital image!). Three collections were cited in the protologue:
"Ad fontes planitiorum Missouriensium (James!, Engelmann!), ad Devils Lake (iter Nicollet)." Pennell (1935, p. 120) noted that "Type, a specimen collected by Edwin James (according to his journal) in the present Pottawatomie County, Iowa, seen in Herb. New York Botanical Garden." At varietal rank within M. glabratus, the autonym var. jamest has priority over var. fremontii.
Mimulus reniformis Engelm. ex Benth., Prodr. (DC.) 10: 371. 1846 [name only, included by Bentham in synonymy of Mimulus jamesil: "M. reniformis Engelm. mss."].
Mimulus jamesti var. fremontil Benth., Prodr. (DC.) 10: 371 . 1846. Mimulus glabratus var. fremontit (Benth.) AL. Grant, Ann. Missouri Bot. Gard. 11: 190. 1924. TyPE: USA. Wyoming. [Laramie Co.:] "In montium Windriver praeruptis," Rocky Mountains, 14 Jul 1842, J.C. Fremont s.n. (holotype: NY digital image! photo-PH!). Pennell (1935, p. 120) noted "Type, dated July 14, 1842, seen in Herb. New York Botanical Garden; from a manuseript also at that institution it appears that on that day Fremont was not in the Wind River Mountains, but actually on the high plains of what is now Laramie County, Wyoming."
Mimulus glabratus var. oklahomensis Fassett, Rhodora 41: 525. 1939. TypE: USA. Oklahoma. Caddo Co.: Hinton, in Caddo Canyon, 26 Apr 1936, D. Demaree 12338 (holotype: GH; isotype: MO!).

Perennials, rhizomatous, vestiture (in the northern part of the range, USA) of calyces, pedicels, and adaxial surfaces of distal leaves sparsely short-villous-glandular or (in New Mexico and Mexico) completely glabrous. Stems usually prostrate and forming floating mats, sometimes decumbent-ascending to ascending or erect-ascending distally, (3-)10-40 cm , rooting at the nodes. Leaves cauline, basal absent at flowering, blades palmately 3-5-veined, suborbicular to depressedovate or broadly elliptic-ovate to reniform, $6-25 \mathrm{~mm} \times 5-30 \mathrm{~mm}$, relatively even-sized or largest often at midstem, bracteal reduced, margins shallowly dentate to crenate-dentate with 3-7(-10) teeth per side, apex rounded, base cuneate to truncate or subcordate, all leaves short-petiolate or the distal sessile, petioles $3-10(-20) \mathrm{mm}$. Flowers $2-8(-12)$, usually from distal nodes but sometimes from most of them, very loosely racemose. Fruiting pedicels $18-30 \mathrm{~mm}$. Fruiting calyces obtriangular to broadly obtriangular or deeply cupulate, (7-)8-12 mm, lateral lobes shallowly convex-mucronulate, not closing the throat, upper lobe ovate with rounded apex. Corollas yellow, sparsely red dotted or without red dots, tube-throats cylindric-funneform, $6-8 \mathrm{~mm}$, exserted $1-3 \mathrm{~mm}$ beyond calyx margins, limb barely bilabiate, expanded $5-8 \mathrm{~mm}$ (pressed). Styles glabrous. Plesiogamous; anther pairs at about the same level, stigma at or slightly below the anthers. Capsules ( $4.5-5 \mathrm{~mm}$ in New Mexico) $5-8 \mathrm{~mm}$, stipitate, included. $2 n=30$.

Flowering May-Aug(-Oct). Edges of flowing streams, marsh edges, drainage ditches, seepage areas, springs, muddy or moist banks; 200-2500 m (1500-2500 m in Arizona and New Mexico); USA, Mexico. Maps 2, 3.

Collections examined from the southwestern corner of the USA range. Arizona. Apache Co.: 2.5 mi NW of Fort Defiance, edges of water in small creek, 8 Oct 1965, Crutchfield 921 (LL); road crossing of Chinle Creek between Dinnehotso and Mexican Water, 4900 ft , moist sand along stream, 17 Jul 1948, Gould \& Phtllips 4797 (ARIZ); Canyon de Chelly Natl. Monument, sandy soil alongside stream in upper Canyon de Chelly, $6500 \mathrm{ft}, 25$ Jul 1971, Halse 526 (ARIZ); 1 mi W of Tsaile Peak, 7500 ft, wet sites, 23 Aug 1934, Howell 33 (ARIZ). Pinal Co.: Sacaton, "Little Gila," 2 Jun 1927, Harrison 4201 (ARIZ).

Collections examined from Texas: Grayson Co.: at Carpenters Bluff, in spring, 23 Apr 1951, Gentry 5l-1382 (TEX). Hemphill Co.: Gene Howe Wildlife Management Area, 7 mi NE of Canadian, locally frequent in standing water of Persimmon Creek, 4 Jun 1957, Rowell 5305 (TEX).

Erythranthe geyeri has commonly been regarded as conspecific with E. glabrata (as Mimulus glabratus var. jamesii), but typical E. glabrata has a different chromosome number and is sharply
distinct in morphology, and the two are broadly sympatric in Mexico without intermediates. The allozyme study of the Mimulus glabratus complex (Vickery 1990) indicates that the USA Great Plains populations of E. geyer are distinct from those in New Mexico and Mexico. Such a distinction is not made here but a study is needed to see if morphological evidence parallels the allozyme data.

Fassett distinguished Mimulus glabratus var. oklahomensis on the basis of its "flowers sometimes as large as those of var. michiganensis, with leaves like those of var. Fremontii (Benth.) Grant, and with pedicels more than twice as long as the subtending leaves." Besides the type collection in Caddo County, several other distinctly large-flowered collections of Erythranthe geyert have been encountered among Oklahoma collections: Adair Co.: 1 mi SW of Watts on US 59, seepage area in a shaded bluff on Ballard Creek, 6 May 1958, Wallis 6605 (SMU, TEX); Major Co.: near Cleo, edge of spring, 8 Jun 1913, Stevens 782 (MO). Woodward Co.: Woodward, small, effluent stream from Boiling Springs, $2600 \mathrm{ft}, 9$ Aug 1964, Vickery 2659, cult. 7132, voucher for $2 n=30$ (UT).

These Oklahoma variants have flowers only at distalmost nodes and corolla tubes $10-11 \mathrm{~mm}$ long with limbs expanded $6-8 \mathrm{~mm}$ (pressed). The plants from Major County were collected past flower but the fruiting calyces are $12-13 \mathrm{~mm}$ long. The stems are erect from the base and produce rhizome-like runners from basal nodes. Large flowers suggest that these plants could be polyploid and their seemingly clustered geographic occurrence, apparently sympatric with typical Erythranthe geyeri, further suggests that they may represent an evolutionarily distinct entity. On the other hand, a chromosome count from a Woodward County collection is diploid and the relatively larger flowers apparently are autogamous, with anthers and stigma at the same level. Two other collections from the Boiling Springs area have smaller corollas of typical $E$. geyer but have stigmas slightly above (ca. 1.5 mm ) the level of upper anthers: Woodward Co.: Boiling Springs State Park: common in spring fed stream, 2 May 1953, Goodman 5639 (SMU, UC); in stream below the spring-house, 1 May 1953, Waterfall 11410 (SMU, TEX, UC).

In 1976, Vickery identified var. oklahomensts as the Great Plains variant of Mmulus glabratus (Hsu \& Vickery 1976), and he later (Vickery 1984) cited collections that he identified as var. oklahomensts from Reno and Scott counties, Kansas, and from Custer and Thomas counties, Nebraska. He did not provide the criteria he used in identification of var. oklahomensis.
3. Erythranthe regni Nesom, sp. nov. Type: USA. Arizona. Yuma Co.: Kofa Mountains, ca. 50 mi N of Yuma, SE of Stone Cabin on Kofa Game Range at Horse Tank, wet soil surrounding pool, 16 Mar 1975, W.E. Booth A-142 (holotype: ARIZ!).

Similar to Erythranthe geyert in its open mature calyces, cleistogamous flowers, (in part in its) glabrous vestiture but different in its erect habit, apparently annual duration, larger leaves, purpledotted calyces, and corollas with longer tube-throats and barely bilabiate limb.

Similar to Erythranthe glabrata in its open mature calyces, cleistogamous flowers, erect habit, prominently punctate leaves, and glabrous vestiture but different in its smaller calyces and corollas, flowers from all nodes, broader leaves (ratio) with fewer teeth, and annual duration.

Similar to Erythranthe arvensis in its erect habit, annual duration, open mature calyces, cleistogamous flowers but different in its glabrous vestiture and punctate leaves.

Similar to Erythranthe cordata in its erect habit and cleistogamous flowers but different in it glabrous vestiture, open mature calyces, and punctate leaves.

Annuals, fibrous-rooted, sometimes rooting at proximal nodes, completely glabrous. Stems erect to ascending-erect, $15-45 \mathrm{~cm}$, sometimes becomes slightly fistulose. Leaves basal and cauline, basal petiolate, petioles $5-25(-30) \mathrm{mm}$, midcauline and distal sessile, not connate, blades palmately 5-7-veined or proximal sometimes subpinnate, largest basal or at midstem with distal slightly reduced, proximal ovate to depressed-orbicular, $15-20(-50) \mathrm{mm} \times 15-25(-50) \mathrm{mm}$, in size, medial and distal broadly depressed-ovate to obtriangular or flabellate, $15-35 \times 15-40 \mathrm{~mm}$, margins shallowly serratedentate, sometimes irregularly, to mucronulate or apiculate with (3-)5-7 teeth per side, rarely subentire, apices rounded, bases attenuate-cuneate. Flowers 6-16, from all nodes or from medial to distal. Fruiting pedicels $15-30 \mathrm{~mm}$. Fruiting calyces broadly campanulate-cylindric, $7-9 \mathrm{~mm}$, sparsely purple-dotted, lobe apices acute to obtuse-mucronulate, not closing the throat, upper lobe longest. Corollas yellow, apparently without red dots, tube-throats cylindric-funneform, 9-12 mm , exserted $3-5 \mathrm{~mm}$ beyond calyx margins, limb barely bilabiate or not at all, expanded $1-1.5 \mathrm{~mm}$ (pressed). Styles glabrous. Plesiogamous; anther pairs and stigma at about the same level. Capsules 4-5 mm, sessile, included.

Flowering Mar-May. Moist to wet, sandy loam soil; ca. 2800-3200 ft; Ariz.
Additional collections examined. Arizona. Yuma Co.: Kofa Mts., Kofa Game Range, in extremely moist, sandy loam soil, $2800 \mathrm{ft}, 15$ Apr 1953, Crandall 150 (ARIZ); Kofa Mts., Kofa Game Refuge, High Tank 8, Upper Burro Canyon, $3200 \mathrm{ft}, 31$ Mar 1970, Furlow 24 (ARIZ).

Erythranthe regnt is endemic to the Kofa Mountains of Yuma County - all collections have been made from the Kofa Game Refuge. The epithet (genitive of regnum, kingdom) alludes to the Kofa Mountains, which are arid, volcanic remnants of Tertiary age. "Kofa" is a near acronym for the old King of Arizona gold mine, which stamped its property "K of A." The monkeyflower localities apparently are at higher elevations in the mountains - the three highest peaks in the area at about 1500 meters, 1350 meters, and 1100 meters.
4. Erythranthe inamoena (Greene) Nesom, Phytoneuron 2012-40: 44. 2012. Mimulus inamoenus Greene, Pittonia 5: 137. 1903. TypE: USA. Texas. [Jeff Davis Co.:] Limpia Canyon, 25 Apr 1902, S.M. Tracy \& F.S. Earle 220 (holotype: ND-Greene!, photo-PH!; isotypes: MO!, PH!, TEX!, US digital image!).
Mimulus jamesn var. texensts A. Gray, Syn. Fl. N. Amer. 2(2): 277. 1878. Lectotype (Pennell 1935, p. 118): USA. Texas. [Travis Co.:] Austin, Apr 1843, C. Wright s.n. (GH; isolectotype: NY digital image!). The protologue noted only "Texas, Wright, Lindheimer, \&c." - Pennell noted "Type, collected by Charles Wright at Austin, Texas in April, 1843, seen in Gray Herbarium of Harvard University."

Annuals, fibrous-rooted, rooting at proximal nodes and sometimes forming matlike colonies; stems, leaves, pedicels and calyx glabrous or the calyx hirtellous. Stems decumbent to decumbentascending at the base, becoming fully erect at least in the inflorescence, $10-30 \mathrm{~cm}$, commonly distinctly fistulose (fleshy and hollow), mostly simple or few-branched from proximal nodes. Leaves basal and cauline or sometimes the basal deciduous by flowering, basal and lower to mid cauline petiolate, subsessile to sessile distally, blades ovate to broadly ovate or elliptic-ovate, (5-)15-35(-60) $\mathrm{x}(4-) 10-35(-50) \mathrm{mm}$, becoming subreniform distally, margins dentate-serrate to shallowly dentate, 5-11 teeth per side, apex obtuse to rounded, base truncate to subcordate, petioles $10-70 \mathrm{~mm}$. Flowers (6-)8-18(-24), loosely to densely racemose, sometimes produced from all nodes. Fruiting pedicels $9-20 \mathrm{~mm}$, straight. Fruiting calyces broadly cylindric-campanulate, $7-11 \mathrm{~mm}, 5-9 \mathrm{~mm}$ wide (pressed), greenish or commonly purple-spotted, minutely hirtellous and scabrous, broadly cylindric, lobes deltate to shallowly deltate, lower slightly upturned ( $10^{\circ}-45^{\circ}$ ) but not closing the throat, spreading ca. $45^{\circ}$, or sometimes deflexed $40^{\circ}$. Corollas yellow, red-spotted, tube-throats cylindric, $7-11 \mathrm{~mm}$, exserted (1-)2-3(-4) mm beyond calyx margins, limb bilabiate, slightly
expanded. Styles glabrous. Plesiogamous; anther pairs at about the same level, stigma at or slightly below the anthers. Capsules $4.5-6 \mathrm{~mm}$, stipitate, included. $2 \mathrm{n}=60$.

Flowering Jan-Apr(-May). Edge of seeps and creeks, mud or gravel, shallow running water, wet crevices, canyon drainages; $800-2200 \mathrm{~m}$ in the trans-Pecos region and adjacent Mexico, $100-400$ m in the Edwards Plateau. Texas; Mexico (Chihuahua, Coahuila). Map 3.

Chromosome vouchers. USA. Texas. Llano Co.: base of Enchanted Rock, sandy and rocky soil along spring fed stream, $1500 \mathrm{ft}, 8$ Jul 1960, Vickery 2626, cult 6278, voucher for $n=30$ (UT); Enchanted Rock State Park, sand along stream, 1300 ft, 9 Apr 1966, Vickery 2709, cult. "7326 = 6278 ," voucher for $n=30$ (UT).

Collections examined. USA. Texas. Numerous collections from almost every county indicated on Map 3. MEXICO. Chihuahua. Sierra de Hechiceros, Canon Encampanado, below (E) of Rancho Encampanado and above (W) of jct with Canon de Indio Felipe, canyon bottom woods with perennial stream, dry igneous mountains, along stream, 1300-1400 m, 27 Jul 1974, Wendt \& Adamcewicz 418 (TEX); Arroyo La Cristina, 0.3 mi up (E) from Mina Cerro Verde along road to Falomir, N of W part of Sierra Chorreras, 1200 m , arroyo with perennial water, general area of desert scrub, 22 Mar 1975, Wendt \& Lott 752 (TEX). Coahuila. Mpio. Zaragoza, Serranias del Burro, upper reaches of Cañon El Bonito, ca. 2.5 km above dam, 1700 m , in accumulations of soil in bed of drainage flowing over metamorphosed limestone in oak-pine woodland, 11 Apr 1976, Rtskind \& Patterson 1946 (TEX); Sierra Maderas del Carmen, Cañon El Dos, ca. 1 mi below (SE) of Campo Dos, small moist meadow along stream in general area of coniferous forest, rhyolitic area, $2200 \mathrm{~m}, 3$ Apr 1974, Wendt et al. 129 (TEX); 1.6 mi S of El Club-Piedra Blanca-Huerfanita road that leaves the latter 6.2 mi W of Huerfanito, heading up limestone valley E of Sierra Maderas del Carmen, along small but apparently perennial stream in general area of desert scrub/grassland, $1325 \mathrm{~m}, 4 \mathrm{Apr}$ 1974, Wendt et al. 134 (TEX).

Erythranthe mamoena is distinctive in its lack of vestiture (usually completely glabrous), short corollas, flowers in racemes with reduced bracts and mostly at distal nodes, short and openthoated fruiting calyces, erect and fistulose stems, and its apparent annual duration (fibrous-rooted but usually rooting at lower cauline nodes).

Pennell (1935) placed Erythranthe inamoena (as Mimulus jamesil var. texensis) as a synonym of typical E. glabrata, but the calyces $(9-10 \mathrm{~mm})$ and the corollas of the Texas plants are small, more like typical E. geyert (as noted by Greene in the protologue of Mimulus mamoenus). Greene also correctly observed the difference in habit between E. geyeri (prostrate) and E. inamoena (at least flowering axes erect). Erythranthe inamoena is tetraploid, in contrast to the diploid E. geyeri.

Presumably because of its small corollas with autogamous fertility, Erythranthe mamoena has often been confused in identification with $E$. cordata, especially in the trans-Pecos region of Texas where the two are sympatric. The two usually can be distinguished by the following contrasts.

1. Calyces closed at maturity; flowering at distal nodes; pedicels and calyces minutely stipitateglandular; fruiting calyces (8-)14-18(-20) mm ; corolla tube-throats $8-14 \mathrm{~mm}$

Erythranthe cordata

1. Calyces open at maturity; flowering often at all nodes; pedicels and calyces glabrous; fruiting calyces ( $7-$ ) $8-11 \mathrm{~mm}$; corolla tube-throats $7-11 \mathrm{~mm}$ Erythranthe inamoena

In Brewster, Presidio, and ValVerde counties, however, there are populations identified here as E. inamoena (based on proximal-to-distal distribution of flowers and the short mature calyces with open throats) that have sparsely stipitate-glandular pedicels and calyces. These might reflect
introgression from E. cordata - typical populations of both species occur in Brewster and Presidio counties, but $E$. cordata has not been recorded from Val Verde County. Collections examined. Texas. Brewster Co.: along Calamity Creek, ca. 24 mi S of Alpine, in damp soil beneath bridge, 4500 ft, 2 Apr 1949, Turner 459 (SRSC); Warnock \& Johnston 17698 (SRSC). Presidio Co.: Hinckley 3547 (SRSC); Henrickson 11280 (TEX); Warnock 18200 (SRSC-2 sheets); Warnock 435 (SRSC); Warnock \& Powell 17767 (SRSC). Val Verde Co.: Indian Springs, formerly inundated SW-facing slope of large limestone blocks and boulders with large spring, 28 Jun 2002, Poole 4606 (SRSC); 2030 mi up Devil's River, along river at falls below Tawcett Lodge, frequent in mud, $2450 \mathrm{ft}, 3 \mathrm{Apr}$ 1953, Warnock 11268 (SRSC).
5. Erythranthe michiganensis (Pennell) Nesom, Phytoneuron 2012-40: 44. 2012. Mimulus michiganensis (Pennell) Posto \& Prather, Syst. Bot. 28: 177. 2003. Mimulus glabratus subsp. michiganensts Pennell, Acad. Nat. Sci. Philadelphia Monogr. 1: 119. 1935. Mimulus glabratus var. michiganensis (Pennell) Fassett, Rhodora 41: 524. 1939. TyPE: USA. Michigan. Cheboygan Co.: banks of Niger Creek near Topinabee, 13 Jul 1925, J.H. Ehlers 3240 (holotype: MICH digital image!; isotype: PH!).

Perennial, rhizomatous, commonly producing numerous leafy stolons from basal nodes, rooting at distal nodes, sometimes forming mats. Stems ascending-erect or basally decumbent, becoming erect in the inflorescence, $12-50(-70) \mathrm{cm}$, glabrous or minutely hirtellous and stipitateglandular. Leaves cauline, basal absent at flowering, blades palmately $3-5$-veined, broadly ovate to broadly ovate-elliptic or suborbicular, $8-30 \mathrm{~mm} \times 7-30 \mathrm{~mm}$, relatively even-sized or diminishing in size distally, bracteal reduced and slightly falcate (as pressed), margins evenly or unevenly dentateserrate to dentate with 3-8 pairs of teeth per side, apices mostly rounded, bases truncate to cuneate, petioles $1-5(-15) \mathrm{mm}$, sessile at midstem and distally. Flowers 2-14, mostly from distal nodes or from medial to distal nodes. Fruiting pedicels $10-25 \mathrm{~mm}$, spreading, villous-glandular to minutely villosulous-glandular. Fruiting calyces cylindric-campanulate, $7-10 \mathrm{~mm}$, not closing, upper lobe ca. 2 x longer than others and slightly upcurving, puberulous to softly hirtellous, mixed with longer stipitate-glandular hairs. Corollas yellow, sometimes faintly red-spotted, tube-throats cylindriccampanulate, $10-14 \mathrm{~mm}$, exserted $5-8 \mathrm{~mm}$ beyond the calyx margin, limb bilabiate, expanded $10-15$ mm (pressed). Styles glabrous. Herkogamous; anther pairs distinctly separated in level, stigma 0.52 mm above the upper anther pair. Mature capsules not observed. $2 n=30$ or rarely $2 n=28$ (Bliss 1986).

Flowering Jun-Aug(-Oct). Cold calcareous springs, seeps, depressions, streams, alkaline shorelines at the mouth of small drainages, steep moraine slopes, bluff bases, commonly within northern white cedar swamps; $500-900 \mathrm{~m}$; Michigan (Benzie, Cheboygan, Emmet, Leelanau, Mackinac cos.). Map 3.

Erythranthe michiganensis is endemic to a small area in the Mackinac Straits and Grand Traverse regions of Michigan - known as extant from 15 sites and from 3 sites where now apparently extinct. Plants of all but one of the populations are essentially pollen-sterile and reproduce through rhizomes; those from the single partially fertile population have only $27-52 \%$ pollen stainability and regularly set selfed-fruits in the greenhouse. In interpopulational crosses between pollen-sterile individuals and pollen donor individuals from the partially fertile population, all the flowers survived to fruiting and all set fruit (Posto 2001).

Based on data from allozyme and RAPD studies, morphology, and crossing studies, Posto and Prather (2003) provided evidence in justification of treating Erythranthe [Mimulus] michiganensts at spocific rank. It is "distinguished from the only other member of the Mmulus glabratus complex in the Upper Midwest, M. glabratus var. jamesil $[=$ E. geyeri], by its relatively short pedicels (less than twice as long as the bracts), relatively large ( $17-27 \mathrm{~mm}$ ) and irregularly
spotted corolla, long style ( $6-14 \mathrm{~mm}$ ), and large pistil ( $13-21 \mathrm{~mm}$ )." Differences between $E$. geyert and $E$. michiganensis in the couplet below are as summarized by Posto and Prather.

1. Pedicels usually more than twice as long as the bracts; corollas $8-18 \mathrm{~mm}$, sparsely spotted on tube; styles $2-6 \mathrm{~mm}$; pistils $5-10 \mathrm{~mm}$ $\qquad$ Erythranthe geyeri 1. Pedicels less than twice as long as the bracts; corollas $17-27 \mathrm{~mm}$, irregularly spotted on lip and tube; styles 6-14 mm; pistils $13-21 \mathrm{~mm}$ Erythranthe michiganensis

The didynamous stamens of E. michrganensis and stigma positioned above the upper anther pair, along with the relatively large corollas with broadly expanded limb, are reflective of its allogamous breeding system and provide another contrast to $E$. geyeri, which is autogamous.

In the RAPD study, Posto and Prather found unique genetic markers in Erythranthe michiganensts and that all E. michiganensis individuals grouped in a distinct cluster in the UPGMA phenogram, nested among the individuals of $E$. geyert. This result was consistent with an allozyme analysis by Vickery (1990). The less specialized breeding system of E. michiganensis suggests that it was not derived directly from E. geyerı and no RAPD evidence appeared to indicate that $E$. guttata was involved in the origin of $E$. michrganensis. The narrow geographic distribution of $E$. michiganensts lies within the wider range of $E$. geyeri and the two are known to co-occur at two sites, apparently without hybridization or morphologically intermediate individuals. A phylogenetic assessment of the Michigan endemic needs to be broadened, although similarities in vegetative morphology and calyx morphology suggest that $E$. geyeri surely must be among the closest relatives.
6. Erythranthe tilingii (Regel) Nesom, Phytoneuron 2012-40: 44. 2012. Mimulus tilmgn Regel, Gartenflora 18: 321, plate 631. 1869. Mimulus langsdorffit var. tilmgit (Regel) Greene, J. Bot. (Brit. \& Foreign) 33: 8. 1895. Type: USA. California. [Nevada Co.:] "In der Nahe von Nevada-City im Felsengebirge Californiens sammelte," H.S.T. Tiling s.n. (holotype: LE presumably). Regel grew it from seed sent by Dr. Tiling from the vicinity of Nevada City, California. The illustration seems diagnostic although the foliar vestiture would need to be examined to verify that it is not Erythranthe corallina.
Mimulus mplexus Greene, J. Bot. (Brit. \& Foreign) 33: 8. 1895. Mimulus caespitosus var. mpplexus (Greene) Peck, Man. Pl. Oregon, 655. 1941. Lectotype (designated here): USA. California. [Nevada Co.:] Towards Castle Peak, 27 Jul 1895, E.L. Greene s.n. (ND-Greene $46291!$, photo-PH!, photo-UT!; isolectotypes: ND-Greene!, UC!). The protologue provided only this: "It usually grows in dense masses among rocks along streamlets, but only in the higher Sierra Nevada of California." Greene noted that he had earlier (Bull. Calif. Acad. 1: 110. 1885) and mistakenly identified these plants as M. tilingil. He regarded M. implexus distinct particularly in the leaves, which are "not only of unusual thickness and fleshiness of texture; they are entirely covered by translucent dewy-looking particles, so that upon being handled, especially with moist hands, these particles burst, and cover the leaf surface at once with a thick albuminous slime."
Mimulus veronciffolmus Greene, Leafl. Bot. Observ. Crit. 2: 7. 1909. TyPE: USA. Washington. [Clallam Co.:] Olympic Mountains, along rivulets, 5000 ft , Aug 1895, C.V. Piper 2177 (holotype: ND-Greene!, photo-PH!, photo-UT!). The protologue noted "near implexus, excessively large corollas, 2 inches long and nearly 1.5 inches wide at the orifice." Plants of the type collection are relatively tall and suberect but have the very large corollas and intricately branched system of thin rhizomes characteristic of the species. Calyces and pedicels are minutely hirtellous.
Mimulus hucens Greene, Leafl. Bot. Observ. Crit. 2: 7. 1909. Lectotype (designated here): USA. Oregon. [Baker Co.:] Along rivulets in deep woods, Powder River Mts., Aug 1896, C.V. Piper 2518 (ND-Greene 43316!, photo-PH!, photo-UT!; isolectotype: ND-Greene!). "Akin
to $M$. implexus, differing by much more slender stems which are weak and decumbent; leaves exactly ovate, truncate or subcordate at base, of such delicately succulent texture as to be clearly transparent when dried under pressure; calyx sparsely and finely villous." In the protologue, Greene cited Piper 2518 and 2519; the ND-Greene sheets (Piper 2518) have "Type" and "M. lucens Greene" in Greene's handwriting.
Mimulus implicatus Greene, Leafl. Bot. Observ. Crit. 1: 189. 1909. TypE: USA. California. San Bernadino Co.: Mill Creek Falls, in the mountains back of San Bernadino, $5500 \mathrm{ft}, 20$ Jun 1901, S.B. Parish 5063 (holotype: US digital image! Photo-JEPS!, photo-PH!; isotypes: NY digital image!, PH!). The PH label says " $5,000 \mathrm{ft}$ " but otherwise has the same collection data.

Perennial, rhizomatous from a mass of yellowish, branching rhizomes. Stems $2-35 \mathrm{~cm}$, ascending-erect, usually freely branched, glabrous to sparsely stipitate-glandular or short glandularvillous. Leaves: blades $5-35 \mathrm{~mm}$ ( $30-55 \mathrm{~mm}$ in large-leaved forms), ovate to lanceolate-triangular or narrowly lanceolate (broadly ovate in large-leaved forms), glabrate to sparsely or moderately villous with thick-vitreous eglandular hairs, apex acute to obtuse or rounded, margins irregularly denticulate, palmately $3-5$-veined, $1.5-3 \mathrm{~cm}$, upper sessile, not perfoliate; petioles $0-25 \mathrm{~mm}$. Flowers $1-3(-5)$, in distal axils. Fruiting pedicels $15-35(-40) \mathrm{mm}$, sparsely stipitate-glandular to short glandular-villous. Fruiting calyces broadly campanulate, $11-15 \mathrm{~mm}$, closing, glabrous to sparsely stipitate-glandular or short glandular-villous, villous at the sinuses, generally purple-tinged and purple-dotted, lobes broadly ovate, blunt, unequal, the lower ones usually longer than the lateral, the upper at least twice as long as the others. Corollas yellow, red-dotted, tube-throats $15-28 \mathrm{~mm}$, exserted $5-10 \mathrm{~mm}$ past calyx margin, limb bilabiate, expanded $14-30 \mathrm{~mm}$ across (pressed). Styles hirtellous. Herkogamous; anther pairs at different levels, stigma above upper anther pair. Capsules $5-7 \mathrm{~mm}$, stipitate, included. $2 n=28,56$.

Vouchers at UT for chromosome counts by Vickery: $\mathbf{2 n}=\mathbf{2 8}$ (California, El Dorado Co., Mono Co.; Utah, Salt Lake Co.); $\mathbf{2 n = 5 6}$ (Utah, Utah Co., Vickery 2714, cult. 7493).

Flowering Jul-Sep. Seeps, springs, streambanks, shallow rivulets, cliff bases, ledges and crevices, steep gravelly slopes, wet meadows; $6200-11,400 \mathrm{ft}[1400-3400 \mathrm{~m}]$. Alberta (Sheep Mountain, Waterton Lake, 28-31 Jul 1895, Macoun 11,889, ND-Greene); Ariz., Calif., Idaho, Mont., Nev., Wyo. Map 4.

The assertion that introgression has occurred between Erythranthe tilingu and E. guttata (Lindsay \& Vickery 1967) is based on observations from northern Utah. Plants of the putative introgressants, from "the subalpine population from the Big Cottonwood Canyon," were noted by Lindsay and Vickery (1967, p. 453) as "typical of M. guttatus for the presence of underground stems which appears to be a residual M. tilingil trait from an ancient hybridization." In the UT herbarium, I identified a voucher as a plant of $E$. utahensis, for which $2 n=30$ and prolific rhizome production is characteristic. Utah. Utah Co.: Mount Timpanogos, $7800 \mathrm{ft}, 6$ Aug 1956, Wtens s.n., $n=15$ (UT), see Mukherjee and Vickery (1962). Also reported McArthur et al. (1972) as $\mathrm{n}=15$ for E. thlingit in Utah Co. are these (vouchers not seen): Mt. Timpanogos Trail, $2650 \mathrm{~m}, 1968$, Vickery cult. 7714; Mt. Timpanogos Trail, 2745 m, 1968, Vickery cult. 7717; Emerald Lake, 3050 m, Vickery cult. 7716.

Erythranthe tilingit has generally been regarded as a widespread species of relatively high elevations, the plants arising from a system of thin rhizomes and producing mostly 1-3 large flowers per stem. It is sometimes considered to include one or several infraspecific entities. The present study divides this "complex" into four distinct entities, without unambiguous intergrades, each of which is treated at specific rank. One other species, E. utahensis, also is included - it has not previously been associated with this group of species.
(1) Erythranthe tilingil sensu stricto is relatively widespread over the western USA and is sympatric with $E$. corallina and $E$. caespitosa. Leaves are variable in size in E. tilingll, and particularly in Idaho
they may approach the small size of those of E. caespitosa but the leaf margins of E. tilingil are distinctly toothed and the stems are taller and more erect. Across the range of the species, plants sometimes produce very large leaves but these often can be seen to occur on plants with characteristically smaller leaves. This wide variability in size apparently does not occur in $M$. caespitosus.
(2) Erythranthe minor is characterized by very short corollas with relatively narrowly expanded limbs. Corollas of E. tilingil rarely may be equally as short but are produced on plants that are depauperate in other ways as well (e.g., Oregon. Klamath Co., Epling 5555, MO; Washington, Thurston Co., Meyer 1590, MO) - these scattered, small-flowered individuals are perhaps the reason Pennell regarded the range of $E$. minor to be wider than recognized here. The nodding calyces of $E$. minor also distinguish the species. Overall, the distinction of E. minor appears to be subtle but real, especially in view of its geographic coherence.
(3) Erythranthe caespitosa is endemic to northwestern and central Washington and the Selkirk Range of British Columbia - the plants have consistently small leaves with subentire margins and the stems are consistently procumbent to decumbent-ascending, usually forming matted colonies. Erythranthe caespitosa and E. tilingii apparently are sympatric in counties of northwestern Washington.
(4) Erythranthe corallina has hirsutulous to softly hirsute leaf surfaces and occurs only in the Sierra Nevada of California and adjacent Nevada (Washoe Co. and Carson City). Its chromosome number is reported as $2 n=48$ and 56 , compared to $2 n=28$ and 56 in E. tilingii. Compared to E. tilingii sensu stricto, the leaf blades of $E$. corallina are relatively broader, the shape broadly ovate to orbicularovate, the plants are generally taller, and long-pedicellate flowers occasionally are produced from midstem or even proximal nodes. The hirsutulous to hirsute vestiture of eglandular hairs on both leaf surfaces is a reliably diagnostic feature and usually easily observed with a lens.
7. Erythranthe caespitosa (Greene) Nesom, Phytoneuron 2012-40: 43. 2012. Mimulus caespitosus (Greene) Greene, J. Bot. (Brit. \& Foreign) 33: 8. 1895. Mtmulus tilingn var. caespitosus (Greene) A.L. Grant, Ann. Missouri Bot. Gard. 11: 154. 1924. Mimulus scoulert var. caespitosus Greene, Pittonia 2: 22. 1889. Lectotype (designated here): USA. Washington. [Pierce Co.:] Lake Shore, on Mt. Rainier, 20 Aug 1889, E.L. Greene s.n. (NDGreene 046468 photo-PH!, photo-UT!; isolectotypes: DS digital image!, ND-Greene-2 sheets!, NY digital image, PH!, UC! [with "TYPE" handwritten], US digital image!, WTU). Treated as a distinct species by Pennell (1951). When Greene raised this entity to specific rank in Mimulus, he intended only to reflect its disconnection from M. scouleri - he did not mention a relationship or similarity with $M$. tilingli.

Perennials, with slender rhizomes. Stems delicate, 3-10 cm, glabrous, minutely hirtellous, or stipitate-glandular, usually in masses, terete or flattish, decumbent at base, rooting at the lower nodes sometimes producing creeping, small-leaved runners. Leaves: blades orbicular to narrowly elliptic or ovate, $5-12 \mathrm{~mm}$ long, becoming larger distally, palmately 3 -veined, often purple beneath, sparsely to moderately puberulent with minute stipitate-glandular hairs, margins denticulate to entire, apex obtuse, base cuneate to a short petiole, proximal leaves usually sublyrate, distal sessile to subsessile. Flowers $1-3$, commonly solitary. Fruiting pedicels $10-30(-40) \mathrm{mm}$, sparsely to moderately villous with short, gland-tipped hairs, sometimes with an admixture of hirtellous hairs. Fruiting calyces broadly campanulate, $7-15 \mathrm{~mm}$, closing, the short lobes obtuse to acute or mucronulate, lower pair upcurved, uppermost $3-5 \mathrm{~mm}$ and prominently protruding. Corollas yellow, dark red-spotted, tube-throats broadly funnelform to cylindric-funnelform, $15-18 \mathrm{~mm}$, palate partially closed, lower lip deflexed-spreading lobes, upper lip with ascending lobes. Styles minutely hirtellous.

Herkogamous; anther pairs at different levels, stigma above upper anther pair. Capsules 4-5 mm, stipitate, included.

Flowering Jul-Sep. Alpine meadows and slopes, stream banks, wet rocks in streams, wet crevices, talus; 1100-2000(-2300) m. British Columbia (Selkirk Mts., Chilliwack Valley); Washington (Cascade and Olympic Mts.). Map 5.
8. Erythranthe minor (A. Nelson) Nesom, Phytoneuron 2012-40: 44. 2012. Mimulus minor A.

Nelson, Proc. Biol. Soc. Wash. 17: 178. 1904. Mimulus langsdorffit var. minor (A. Nelson) Cockerell in Daniel, Fl. Boulder, Colorado, 213. 1911. TyPE: USA. Colorado. [Boulder Co.:] Arapahoe Pass (near Boulder), timberline, 1904, D.M. Andrews 8 (holotype: RM fide Grant 1924, photo-PH!). Treated by Pennell (1951) as a distinct species occurring in the Hudsonian Zone from Oregon and Idaho south to Utah and New Mexico.
Mimulus luteus var. alpinus A. Gray, Proc. Acad. Philadelphia 15: 71. 1863 (non Lindley 1827). Mimulus alpinus (A. Gray) Piper, Contrib. U.S. Natl. Herb. 11: 510. 1906. Mtmulus langsdorffil var. alpinus (A. Gray) Piper, Mazama 2: 99. 1901. Mimulus langsdorffil var. alpmus (A. Gray) Blankinship, Montana Agric. College Sci. Bull. 1: 98. 1905. Type: USA. Colorado Territory. Alpine and subalpine, $39-41^{\circ} \mathrm{N}, 1862$, C.C. Parry $135 a$ (holotype: GH photo-PH!). The protologue entry: "caulibus 3-pollicaribus e basi decumbente vel repente 1 -3-floris; foliis plerisque sessilibus subintegerrimis. Alpine region, 135a coll. Parry, 1862. Very glabrous." The PH photo has a label of Parry 235a, 1862.

Perennial, rhizomatous. Stems, pedicels, and calyces densely minutely hirtellous and eglandular or with a mixture of hirtellous and gland-tipped hairs. Stems erect to erect-ascending, 520 cm . Leaves: blades broadly ovate to elliptic-ovate or lanceolate, $8-25 \times 5-15 \mathrm{~mm}$, palmately 3veined, both surfaces glabrous, margins shallowly dentate to denticulate, apex acute to obtuse, base cuneate to truncate, sessile to subsessile or proximal with petioles $1-3 \mathrm{~mm}$. Flowers 1-3, from distal nodes. Fruiting pedicels $10-20 \mathrm{~mm}$. Fruiting calyces $10-13 \mathrm{~mm}$, closing, nodding $80^{\circ}-100^{\circ}$, without purple dots. Corollas yellow, apparently without red dots, tube-throats tubular-funnelform, 9-11 mm, exserted from the calyx $0-1(-2) \mathrm{mm}$. Styles sparsely hirtellous. Herkogamous; anther pairs at different levels, stigma above upper anther pair. Capsules 5-8 mm, stipitate, included.

Flowering Jul-Aug(-Sep). Stream edges, lake edges, intermittent water courses, subalpine rill, roadside ditches, subalpine to alpine; $3000-3700 \mathrm{~m}$; Colorado, New Mexico, Utah. Map 6.

The corollas of Erythranthe mmor are distinctly shorter than those of typical E. tllingll and the geographic range of the species is set apart from E. ttlingn. The morphological difference between the two is especially apparent by comparison of a set of specimens of one with the other. The range of E. minor is primarily in Colorado apparently extends into Utah (La Sal Mountains of Grand and San Juan counties) and into New Mexico (the Wheeler Peak area of Taos County).

The only collection seen from New Mexico is this: Taos Co.: Carson Natl. Forest, 8 mi from Red River town, bank of Goose Lake, 11,650 ft, 23 Aug 1968, Correll \& Correll 36261 (NMC).
9. Erythranthe corallina (Greene) Nesom, Phytoneuron 2012-40: 43. 2012. Mimulus corallimus Greene, Erythea 4: 21. 1896. Mimulus tilingil var. corallmus (Greene) A.L. Grant, Ann. Missouri Bot. Gard. 11: 155. 1924. TyPE: USA. California. [Nevada Co.:] Washoe Mts., [protologue: "Plentiful along the western base of the Washoe Mountains beyond Truckee,"] 25 Jul 1895, E.L. Greene s.n. (holotype: ND-Greene, photo-UT!; isotype, as labeled: NY digital image!). The protologue (p. 21) noted "Plentiful along the western base of the Washoe Mountains beyond Truckee, but also near Summit Station, from the latter district it has been distributed by me under the name of M. Tilingii." Pennell (by annotation) identified this as Mimulus ttlingii.

Mimulus mimusculus Greene, Leafl. Bot. Observ. Crit. 2: 5. 1909. Type: USA. California. [Tulare Co.:] South Fork of Kern River, 8200 ft 1875, J.T. Rothrock 312 (holotype: US fide Greene in the protologue, but not included in US type database). Greene noted that "the whole plant is sparsely and minutely hispid-hirtellous."

Perennials, prolifically rhizomatous, rhizomes thin. Stems mostly erect to ascending-erect, $6-25(-38) \mathrm{cm}$, moderately hirsute to hirsutulous with deflexed hairs. Leaves basal and cauline, becoming larger distally or even-sized, blades ovate to broadly ovate, $15-45 \mathrm{~mm}$, palmately 5 -veined, hirsutulous on both surfaces with ascending hairs, eglandular, margins sharply dentate-serrate, apex obtuse, base mostly truncate to shallowly cordate, sessile or subsessile or proximal with petioles 1-15 mm . Flowers $1-3(-6)$, commonly solitary or mostly from distal nodes. Fruiting pedicels (10-)2575 mm , glabrous or puberulent proximally with stipitate-glandular hairs. Fruiting calyces broadly cylindric-campanulate, $11-15 \mathrm{~mm}$, not closing, sometimes purple-spotted, lobes shallowly deltate, lower pair slightly upcurved. Corollas yellow, red-spotted, tube-throats narrowly funnelform to broadly cylindric, $13-20 \mathrm{~mm}$, limb expanded $12-22 \mathrm{~mm}$ (pressed). Styles sparsely hirtellous. Herkogamous; anther pairs at different levels, stigma above upper anther pair. Capsules $7-10 \mathrm{~mm}$, stipitate, included. $2 n=48,56$ ?.

Flowering (May-)Jun-Aug. Creek banks, moraine water courses, bogs, marshes, wet meadows, roadside ditches; $4800-) 5700-9000(-10,000) \mathrm{ft}$; California, Nevada. Map 7.

Before learning that Erythranthe corallna is the correct name for this species, I annotated various collections of it as Erythranthe mimuscula.

For Erythranthe corallna, Vickery made chromosome counts of $2 n=48$ from Tuolumne Co. (Porcupine Flats, $8000 \mathrm{ft}, 17$ Sep 1958, Heisey 576 (UC, UT) and $2 n=56$ from E1 Dorado Co. ( 8 mi from Calif. checking station along US Hwy $89,7200 \mathrm{ft}$, summer 1963, Wilson s.n. (UT), identifying the vouchers as Mimulus tilingit var. corallmus. How the $2 n=48$ population might have arisen in $E$. corallina is obscure, since its putative relatives apparently are $2 \mathrm{n}=28$ and $2 \mathrm{n}=30$. The species appears to be relatively uniform and it seems likely that it had but a single evolutionary origin. The voucher for the count of $2 n=56$ needs to be reexamined on the possibility that it may be $E$. utahensts, and the count of $2 n=48$ needs to be verified.

Two collections from the southern part of the range are of very low plants with decumbentascending stems ( $4-10 \mathrm{~cm}$ ) and tiny ovate-triangular leaves (blades $5-10 \mathrm{~mm} \times 3-6 \mathrm{~mm}$ ) but the dense system of filiform rhizomes, flowers $1-3$, and hirtellous foliar vestiture identify them as Erythranthe corallnna. San Bernadino Co.: San Bernadino Mts., Bluff Lake, $7400 \mathrm{ft}, 21-27$ Jun 1895, Parish 3606 (JEPS); eastern San Gabriel Hills, Lost Creek, W-facing canyon, on W-facing wet cliff face, $6800 \mathrm{ft}, 22$ Jul 1994, Swnney 3088 (DAV). Other collections of E. corallina from Bluff Lake are typical in habit (e.g., Clokey 5301 and $5305, \mathrm{UC}$; Grinnell $80, \mathrm{UC}$ ) and similar compaction of the basal parts occurs sporadically elsewhere in the range of the species as well as in E. tilingil.
10. Erythranthe utahensis (Pennell) Nesom, Phytoneuron 2012-40: 44. 2012. Mimulus glabratus subsp. utahensis Pennell, Acad. Nat. Sci. Philadelphia Monogr. 1: 123, map 23. 1935. TyPE: USA. Utah. Millard Co.: along brook, Preuss Lake, near Clay's Ranch, 29 Aug 1919, I. Tidestrom 11180 (holotype: PH!).

Perennial, prolifically rhizomatous, thin rhizomes. Stems erect or proximally decumbentascending and rooting at the nodes, $20-50 \mathrm{~cm}$, glabrous or sparsely stipitate-glandular in the inflorescence. Leaves basal and cauline, even-sized or largest near midstem, sessile to subsessile except for proximal-most, blades orbicular or suborbicular to broadly elliptic, broadly ovate, or depressed ovate, $20-40(-75) \mathrm{mm} \times 12-35(-40) \mathrm{mm}$, both surfaces glabrous to glabrate or commonly
sparsely stipitate-glandular and sparsely pilose with thin-walled hairs, often glaucous abaxially, margins entire or subentire to mucronulate or shallowly dentate or denticulate, apex rounded, base usually truncate to broadly cuneate, petioles absent or $2-10 \mathrm{~mm}$. Flowers $6-16$ in a loose raceme, distal bracts becoming much reduced. Fruiting pedicels ( $25-$ - $40-75 \mathrm{~mm}$, straight, stipitate-glandular to short villous with gland-tipped hairs. Fruiting calyces (10-)11-17(-20) mm, not closing, lobes convex-mucronulate, upper lobe slightly longer and triangular-blunt, stipitate-glandular or minutely hirtellous or a mixture, sometimes also with longer, thin-walled eglandular or glandular hairs. Corollas yellow, lower lip prominently darker yellow and sparsely purple-spotted, tube-throats narrowly funnelform to broadly cylindric, $10-15 \mathrm{~mm}$, exserted $5-8 \mathrm{~mm}$ beyond calyx margin, limb weakly bilabiate, expanded $12-20 \mathrm{~mm}$ (pressed). Styles hirtellous. Herkogamous; anther pairs at different levels, stigma above upper anther pair. Capsules $5-8 \mathrm{~mm}$, stipitate, included. $2 n=28,30$.

Vouchers at UT for chromosome counts by Vickery: $2 n=28$ (California, Mono Co.; Nevada, Mineral Co.; Utah, Juab Co.); $\mathbf{2 n = 3 0}$ (Nevada, Elko Co. and White Pine Co.; Utah, Tooele Co. and Wayne Co.).

Flowering (Feb-)May-Aug(-Oct). Drainage ditches, springs, seeps, wet meadows, margins of ponds and small streams, marshy areas; $1400-2500 \mathrm{~m}$; California (Fresno, Mono, Tuolumne), Colorado, Nevada, Utah. Map 7.

Colorado records as mapped from Delta, Montrose, and Saguache counties are from the database of collections from CU Museum-COLO (2009); collections from Montrose Co. were cited for subsp. utahensts by Pennell. California records for Fresno, Mono, and Tuolumne counties are vouchered by these: Fresno Co.: $6500 \mathrm{ft}, 8$ Jul 1949, Bean 516, Vickery cult. 5047 (UT). Mono Co.: Mono Lake, Rush Creek, 4 Sep 1948, Mason 13646 (UC); by Mono Lake, 6440 ft Jul 1948, Stebbins 714 (UC). Tuolumne C0.: near the middle Fork of the Tuolumne River, 6000 ft , Stebbins s.n., Vickery cult. 5047 (UT).

Erythranthe utahensis was treated as a distinct entity (as Mimulus glabratus subsp. utahensts) by Welsh et al. (2003). Holmgren (1983, p. 354) noted that "Subspecies utahensis Pennell is easily distinguished from the other subspecies of M. glabratus, but it can be too easily accomodated within the broad range of variability of M. guttatus DC." - he cited collections from Pennell's original documentation in recognizing at least the potential existence of subsp. utahensis. Mimulus glabratus subsp. utahensis was placed without comment as synonym of M. guttatus by Thompson (1993).

Erythranthe utahensis is characterized by its erect stems, prolifically produced filiform rhizomes, basal leaves short-petiolate to subsessile and cauline sessile, blades suborbicular to broadly ovate or depressed ovate with thin-walled villous-glandular hairs on both surfaces, margins subentire, proximal pedicels elongating to 75 mm , and calyces open at maturity. The species most closely similar to E. utahensts is E. corallina - both species have a dense system of thin rhizomes, thin and suborbicular leaf blades, long pedicels, open calyces, and large corollas. The two are sympatric where $E$. utahensis apparently touches into the Sierra Nevada of California. Plants of one collection have the taller habit of $E$. utahensis but with fewer flowers as in E. corallina and an apparently intermediate vestiture: Tuolumne Co.: Ackerson Creek, $4710 \mathrm{ft}, 26$ Aug 1949, Vickery 191 (UT). The two species are distinguished by the following contrasts.

1. Flowers 1-6, from distal nodes only; corolla tubes $14-20 \mathrm{~mm}$; fruiting pedicels $15-75 \mathrm{~mm}$ long; stems $6-25(-38) \mathrm{cm}$; leaf blades prominently dentate with sharp teeth, hairs of surfaces short, sharp-pointed, eglandular, thick-walled, and dull gray ................. Erythranthe corallina 1. Flowers $6-16$, from proximal to distal nodes; corolla tubes $10-13 \mathrm{~mm}$; fruiting pedicels ( $25-$ ) $40-75 \mathrm{~mm}$; stems $20-50 \mathrm{~cm}$, leaf blades subentire to shallowly dentate, hairs of surfaces longer, apically blunt, gland-tipped, thin-walled and vitreous

Erythranthe utahensis

Erythranthe utahensis previously has been regarded as a member of the Mimulus glabratus complex' because of its similar chromosome number and presumably because of its calyx, which usually remains open at maturity. The distinctive rhizome system, however, as well as its foliar vestiture and its western USA geography, indicate that it belongs with the E. tilinglt group. The allozyme analysis by Vickery (1990) places Erythranthe utahensis as more similar to Andean groups with $n=46$ than to any other North American groups previously identified as E. glabrata, but the analysis did not include any other species of the $E$. tilinglı group.
11. Erythranthe guttata (Fischer ex DC.) Nesom, Phytoneuron 2012-40: 43. 2012. Mimulus guttatus Fischer ex DC., Cat. Pl. Horti Monsp., 127. 1813. Mimulus langsdorffil var. guttatus (Fischer ex DC.) Jepson, Fl. W. Mid. Calif., 406. 1901. Type material: USA. Alaska. No other data, ca. 1803-1805, G.H. Langsdorff s.n. (CGE?; LE fide Tokarska-Guzik and Dajdok 2010; NY fide Pennell 1935). Figure 1.

The 1813 protologue is reproduced here:
"(141) MIMULUS GUTTATUS. M. foliis ovatis multinerviis denticulatis, inferioribus petiolatis, caulibus basi repentibus adscendentibus pilosiusculis projectura foliorum subtetragonis, pedicellis folio florali brevioribus. DC. hort monsp. Ined. t. 60.
Hab. ..... Species affinis M. luteo cujus icon adest in Feuill. periw., sed differt: 1. ${ }^{\circ}$ caule petiolique pilosis nee laevibus; $2 .^{\circ}$ foliis inferioribus longe petiolatis nee subsessilibus; $3 .{ }^{\circ}$ dentibus foliorum inaequalibus nee regularibus; $4^{\circ}$ pedicellis folio brevioribus nee duplo longioribus; $5 .{ }^{\circ}$ flore fere duplo minore; $6 .{ }^{\circ}$ fauce piloso nee ut in icone Fewilleana glabro."

As a synonym of Mimulus luteus L., Bentham (1846, p. 370) listed "M. guttatus DC.! cat. hort. monsp. p. 127" and also cited the discussion and illustration of Langsforff's Mimulus (see notes below for M. langsdorfit J. Donn ex Greene 1895). Gray (Synopt. Fl., p. 448) also regarded the South American and western North American plants as conspecific, as M. Luteus.

Grant (1924) did not specify a type for M. guttatus. Pennell (1935) noted that "Quite certainly the seeds of these garden plants were obtained from the same source as those of the plant figured in the Botanical Magazine 36: t .1501 .1812 as $M$. luteus, being from Langsdorff who collected the plant, between 1806 and 1810, on Unalaska, one of the Fox Islands, Alaska. A probable duplicate of Langsdorff's specimen, or else its progeny in a Russian garden, as in Herb. New York Botanical Garden, labeled Mimulus guttatus F. Unalaschka. Fishcher." Pennell (1947) and Campbell (1950) essentially repeated Pennell's earlier account of the provenance.

The nature of Pennell's "certainty" about the source of the seeds is at least ambiguous, but he perhaps assumed that it was no coincidence that the Montpellier garden catalog and the Botanical Magazine article were published at essentially the same time and that Russian botanist F.E.L. Fischer also had access to the gatherings of Langsdorff. The plant illustrated in the Botanical Magazine of 1812 was said to be grown from seeds collected in Alaska by Langsdorff and initially sent to John Hunneman in England in about 1811. Tokarska-Guzik and Dajdok (2010) observed that Langsdorff collected the seeds during his voyage in 1805 to Marquis Island (1804-1808).
Mimulus rivilaris Nutt., J. Philadelphia Acad. Nat. Sci. 7: 47. 1834. Type: USA. Idaho or Oregon. Head of Colum[bia River], [probably 1832], N.J. Wyeth s.n (holotype: PH!; probable isotype: MO! see comments below). Protologue: "Stoloniferous; very smooth. Root leaves round oval, sharply crenate, petiolate, stem leaves similar, sessile. Flowers large, bright yellow. Hab. In the valleys of the Rocky Mountains."

The PH sheet hold four branches, all of which were identified by Pennell (by annotation) first as Mimulus guttatus and then as M. puberulus. Grant (1924) also apparently regarded all as equally pertinent to the type concept. Two separate collections and two separate labels, however, are mounted and the collections are not of the same entity.

The one longer and thicker stem has pedicels and calyces sparsely villous with glandtipped hairs - it matches Nuttall's protologue and is the actual type. Immediately below this
branch is mounted a small handwritten label (by Nuttall): "Mimulus luteus rivularis, Head of Colum. (Nutt f?? Wyeth)."

The three shorter and relatively thin stems have pedicels densely hirsutulous mixed with a few gland-tipped hairs. The accompanying label has a printed header: "US Geological and Geographical Survey of the Territories, SECOND DIVISION. J.W. Powell, in charge" with collection data as "Utah. [Sevier Co.:] Glenwood, 23 May 1875, L.F. Ward 90."

The collection at MO is labeled L.F. Ward 90, but it closely matches the morphology of the PH Nuttall collection - not those from Utah on the PH sheet - and it seems probable that the MO label was distributed with the wrong collection of plants. The MO sheet probably is part of the Wyeth-Nuttall collection and, if so, is thus an isotype.
Mimulus lyratus Benth., Scroph. Indicae, 28. 1835. Mimulus guttatus var. lyratus (Benth.) Pennell ex Peck, Man. Pl. Oregon, 654. 1941. Type: USA. California. The protologue notes only "California, Douglas" (holotype: K photo-MO!).
Mimulus glabratus var. adscendens A. Gray, Synopt. Fl. N. Am. ed. 2, 2, Suppl. 448. 1886. Type: USA. Arizona. [Coconino Co.:] Grand Canyon of the Colorado, 4 May 1885, A. Gray s.n. (holotype: GH photo-PH!). Protologue: "A large and robust form (as sometimes in Mexico), rising a foot or two high from the creeping base; branches freely racemosely flowered at summit; the upper and sometimes connate rounded leaves being much reduced and bracteiform. - M. glabratus (chiefly), Gray, Bot. Mex. Bound. 116. M. halli, Greene, Bull. Calif. Acad. 113, but species not truly annual, nor calyx-teeth acute. The specimen of Hall described from [sic] was a cultivated one - Colorado and west to the Grand Cañon in N.W. Arizona, south to Mexico." *Hirtellous vestiture, eglandular.
Mimulus langsdorffit var. argutus Greene, J. Bot. (Brit. \& For.) 33: 7. 1895. TyPE: USA. Alaska. The protologue cited "Sitka, Barclay, also Oregon, Tolmie, Nuttall, and others."
Mimulus langsdorffit var. platyphyllus Greene, J. Bot. 33: 7. 1895. TyPE: CANADA. British Columbia. Near Vancouver. "Collected long ago, on the shores of Nutka Sound, by Barclay."
Mimulus langsdorffí J. Donn ex Greene, J. Bot. (Brit. \& Foreign) 33: 6. 1895. Type: USA. Alaska. ca. 1803-1805 or 1804-1808, G.H. Langsdorff s.n. (holotype: CGE?). Homotypic with Mimulus guttatus. Greene (1895) noted that "M. langsdorffit is an older name than M. guttatus for the North American type of this group," but Donn (J. Donn ex Sims, Bot. Mag. 36: sub pl. 1501. 1812) referred to the plant as "Langsdorff's Mimulus" - identifying it as $M$. luteus of Linnaeus, thus not validating a new epithet. Greene in 1895 attributed the earlier publication to "Donn in Sims."

As written by Sims in the protologue: "This beautiful species of Mimulus was found by Dr. LANGSDORFF, who was attached, as naturalist, to the Russian embassy to China. He brought it, as we are informed, from Unashka, one of the Fox Islands, and seeds were transmitted to Mr. Hunnemann last spring, and through him to Mr. Donn, curator of the Botanical Garden at Cambridge, who kindly communicated to us in July last the specimen from which our drawing was made, under the name of Mimulus Langsdorfil, which we should have adopted, had it proved, as was supposed, a new discovery. But the same species was found in Chili, by Father Feuillee, and has been long ago described and figured in his work, as above quoted. From him LivnaEus inserted it in his Species Plantarum, with the specific name of luteus. It was found also in California and at Nootka, by Mr. ARCHIBALD Menzies."
Mimulus grandiflorus J.T. Howell, Fl. N.W. Amer. 5: 520. 1901. Type: USA. Oregon. [Clackamas Co.:] Wet places along the Tualatin River near its mouth, Jul 1900, T. Howell s.n. (holotype: ORE digital image! photo-PH!). No type was cited, the protologue giving only this: "Growing in wet places along streams, western Oregon and Washington: beginning to flower early in May." Described as "stolons; stems 1-4 feet high; lower leaves sublyrate; calyx red-
dotted, closed; infl. sparsely hairy; corolla 2 inches [ 5 cm$].$." The ORE[OSC] sheet has "Type specimen" handwritten on the label.
Mimulus hirsutus J.T. Howell, Fl. N.W. Amer. 5: 520. 1901 [non Blume 1826]. Type: USA. Oregon. [Clackamas Co.:] In the Tualitin River near its mouth, Jul 1900, T. Howell s.n. (holotype: ORE digital image!). No type was cited, the protologue giving only this: On wet rocks in the Tualatin and Willamette rivers Oregon: beginning to flower about the first of July." Described as 'stems stoutish, 1-2 feet high, stolons; calyx red-dotted, closed; lower leaves often laciniately lobed or lyrate; infl. hirsute; corolla 1 inch." The ORE[OSC] sheet has "Type specimen" handwritten on the original label and has been annotated later as "holotype."
Mimulus prionophyllus Greene, Leafl. Bot. Observ. Crit. 1: 190. 1905. Type: USA. Arizona. [Coconino Co.:] Willow Spring, 10 Jun 1890, E. Palmer 527 (holotype: US digital image! photo-PH! photo-UC!).
Mimulus paniculatus Greene, Leaflets Bot. Observ. Crit. 1: 190. 1906. TyPE: USA. California. San Diego Co.: Witch Creek, May 1894, R.D. Alderson s.n. (holotype: ND-Greene!, photo-PH!, photo-UT!). The plant has fistulose stems like M. petiolaris.
Mimulus puberulus Greene ex Rydberg, Fl. Colorado, 311. 1906 [Greene, Leafl. Bot. Observ. Crit. 2: 4. 1909]. Mimulus guttatus var. puberulus (Greene ex Rydberg) A.L. Grant, Ann. Missouri Bot. Gard. 11: 170. 1924. LectotyPe (designated here): USA. Colorado. [Archuleta Co.:] Pagosa Springs, 27 Jul 1899, C.F. Baker 587 (ND-Greene 046404!, photo-UT!; isolectotypes: F digital image!, MO! digital image!, ND-Greene!, NY digital image! photo-PH!; POM, RM, UC!, US digital image!). Greene (1909) cited Baker 587, "in my own herbarium," as the type. Grant (1924) referred to the name as published by Rydberg as a "nom. nud." and Rydberg apparently did not intend to publish the name as an innovation, perhaps assuming that Greene had already published it, but his key to species provides a morphological diagnosis. Rydberg's use of the name in 1906 can be taken as a valid publication.
Mimulus equinus Greene, Leafl. Bot. Observ. Crit. 1: 189. 1906. Type: USA. California. Lake Co.: In the "Horse Pasture," near the summit of Mt. Sanhedrin, 20 Jul 1902, A.A. Heller 5924 (holotype: US digital image!; isotypes: CAS digital image!, NY digital image!, PH!).

Grant (1924) treated Mimulus equinus as a variety of M. guttatus (as M. guttatus var. puberulus), noting that it was distributed "in wet places in southern Colorado and northern New Mexico," and characterized by "stems densely pubescent above, often freely branched from the base; leaves puberulent or pubescent, usually grayish-green; pedicels shorter than the flowers, sometimes recurved in fruit; and corolla $2-3 \mathrm{~cm}$. long." Pennell (1947, p. 166) noted that it "does not seem to me actually distinguishable from the common plant so widespread through the Rocky Mountain and Intermontane states, a plant distinguishable from true $M$. guttatus by its habitually smaller flowers. Were one to consider the two as separate species there are a number of names available for the common plant of the western United States, but as a subspecies the earliest trinomial is puberulus, which Dr. Grant intended to apply only to its pubescent extreme." "Hirtellous vestiture, eglandular.
Mimulus clementmus Greene, Leafl. Bot. Observ. Crit. 2: 5. 1909. Type: USA. California. [Los Angeles Co.:] San Clemente Island, off the coast of southern California, Jun 1903, B. Trask s.n. (holotype: US digital image! photo-PH!; isotype: NY digital image!).

Mimulus petiolarts Greene, Leafl. Bot. Observ. Crit. 2: 7. 1909. TYPE: USA. California. [Inyo Co..] Argus Mountains, Shepherd Cañon, 800-2000 m, 28 Apr 1891, F.V. Coville 740 with F. Funston (holotype: US digital image! photo-PH!; isotypes: MO!, NY digital image!, PH!).
Mimulus langsdorffit var. mintmus J.K. Henry, Fl. S. Brit. Columbia, 268. 1915. Type: CANADA. British Columbia. Paisley Island, near Vancouver. The protologue: "Glabrous, stems 6-10 cm . high, corolla [ $20-40 \mathrm{~mm}$ ] with one very large, light brown-purple spot on the lower lip. Paisley Island."

Mimulus guttatus subsp. haidensis Calder \& Taylor, Canad. J. Bot. 43: 1398. 1965. Type: CANADA. British Columbia. Queen Charlotte Islands, Moresby Island, about 3 mi W of head of Cumshewa Inlet below north face of the Mt. Moresby, common along rocky-gravelly margins of steep facing runnel between 700 and $1300 \mathrm{ft}, 31$ July 1964, J.A. Calder \& R.L. Taylor 36391 (holotype: DAO; isotype: NY digital image!).

A collection identified and distributed as Mimulus guttatus subsp. hatdensts is this: Queen Charlotte Islands, [Moresby Island,] ca. 20 mi S of Moresby Logging Camp, 29 Jul-2 Aug 1957, Calder, Savile, and Taylor 23063 (UC!). Stems, pedicels, and calyces minutely hirtellous, eglandular.

Perennial, rhizomatous; stems, pedicels, and calyces villous-glandular or moderately to densely hirtellous with eglandular hairs or with a combination of glandular and eglandular hairs. Stems erect to ascending-erect, (6-)15-65(-80) cm , sometimes fistulose (up to 10 mm wide, pressed), sometimes rooting at proximal nodes. Leaves basal and cauline or basal absent at flowering, palmately or usually subpinnately $5-7$-veined, proximal long-petiolate, blades $4-125 \mathrm{~mm}$, ovateelliptic to ovate or suborbicular, gradually or abruptly reduced in size distally, margins crenate to coarsely dentate, proximally shallowly toothed to irregularly small-lobed or lyrate-dissected, apices rounded to obtuse, bases rounded to cuneate to truncate, petioles absent or $1-95 \mathrm{~mm}$. Flowers ( $1-$ )3-$20(-28)$, mostly from distal nodes, sometimes in relatively compact racemes with reduced bracts. Fruiting pedicels $15-40(-60) \mathrm{mm}$. Fruiting calyces ovate-campanulate, $11-17(-20) \mathrm{mm}$, closing, nodding, usually without red markings. Corollas yellow, red-dotted, tube-throats infundibular, (10) $12-20 \mathrm{~mm}$, exserted $3-5 \mathrm{~mm}$ beyond the calyx margin, limb bilabiate, expanded $12-24(-24) \mathrm{mm}$ (pressed). Styles minutely hirsutulous to villosulous. Herkogamous; anther pairs at different levels, stigma above upper anther pair. Capsules 7-11(-12) mm, stipitate (stipes $1-1.5 \mathrm{~mm}$ ), included. $2 n=$ 28, 56.

Flowering Apr-Sep. Springs and seeps, marshes, beaver dams, along rivers, streams, and irrigation canals, loamy soil in conifer forest, wet and damp meadows, wet roadsides; 20-3200(-3700) m; British Columbia, Saskatchewan (Cypress Hills), Alberta (Cypress Hills); Alaska, Arizona, California, Colorado, Idaho, Montana, Nebraska, Nevada, Oregon, New Mexico, South Dakota, Texas, Washington, Wyoming; Mexico (Baja California, Chihuahua, Coahuila, Sonora); introduced in ne USA (Connecticut) and e Canada. Introduced in Europe (the introduction and spread of Erythranthe guttata in Europe is documented in detail by Tokarska-Guzik and Dajdok 2010). Map 9.

An eastern outlyer of Erythranthe guttata: Nebraska. Keith Co.: 2 mi W of Lemoyne, N side of Lake McConaughy, swampy springy flat along prairie creek, sandy soil, 11 Jun 1967, Stephens 11540 (SMU). The leaf shape is suggestive of $E$. geyert but the plants are erect and the corollas are relatively large (tubes $13-15 \mathrm{~mm}$ ) with the stigma 2 mm above the longest anther pair.

A single collection is known from Texas: Presidio Co.: Chinati Mountains State Natural Area, Pelillos Canyon, at fork of Tinaja Prieta Canyon, riparian vegetation, in igneous gravel and bedrock, $4047 \mathrm{ft}, 18 \mathrm{Sep}$ 2004, Lott et al. 5343 (TEX).

Even as more narrowly defined in the present study, Erythranthe guttata is markedly variable in morphology - particularly in stature, leaf shape, vestiture, flower size, and the distance of separation between anthers and stigma, and it ranges from subalpine and near-alpine habitats into desert situations where water is available. It seems probable that further study will distinguish distinct variants.

Sweigart and Willis (2003) found that nuclear DNA variation within populations of Erythranthe guttata (including E. microphylla in their concept) is exceptionally high compared to $E$. nasuta, where sequence similarity is high among (vs. within) populations.

## Morphological variants.

Plants of Erythranthe guttata with extremely large corollas have been abundantly collected on the Aleutian Islands and Kokiak Island as well as in other Alaskan localities (e.g., Juneau, Amakuk, Yakutat Bay, Admiralty Island). Corolla tubes are $19-26 \mathrm{~mm}$ long and the limbs are expanded to $18-25 \mathrm{~mm}$ (pressed). The type collection by Langsdorff is one of these plants, as is the plant of Mimulus langsdorffit illustrated in the 1812 Botanical Magazine (Fig. 1). The plants are glabrous and relatively low in stature and perhaps represent an extreme in a continuum of variability, but patterns of variation in the species need to be investigated in detail (see further comments below under "Reported variation in ploidy level." The name Erythranthe guttata may prove to apply most appropriately only to Alaskan populations. Vickery et al. (1968) also observed that the tetraploid appeared to match the type of the species, based on their study of a "photograph of the De Candolle herbarium specimen of $M$. guttatus." A diploid also has been reported from the Aleutian Islands (see notes below), thus it appears that diploids and tetraploids may be sympatric in this area.

In scattered localities in California, both arid and more mesic, plants of Erythranthe guttata may become extremely tall (over 1 meter) with greatly expanded, fistulose stems and correspondingly large leaves (the type of Mimulus petiolaris, from Inyo Co., is like this) and similar plants have been collected in other states). Despite their striking appearance and a suspicion that such plants might be polyploid, their scattered and relatively common occurrence suggests that they are phenotypic variants within the morphological range of the diploid species.

In the area of El Dorado and Placer counties, California, plants of Erythranthe guttata are consistently relatively small and are commonly collected without rhizomes. When rhizomes do show, they are filiform. Corollas of these plants are relatively short and appear to be whitish or pale yellow with a darker palate. Further study in field and lab presumably would show whether such plants represent a distinct race.

Mimulus guttatus subsp. hatdensts was described as "an endemic subalpine race" that occurs in and along the flanks of the Queen Charlotte Ranges on Graham Island and Moresby Island. It was distinguished on the basis of its hirtellous vestiture, but plants of similar hirtellous vestiture occur over the whole range of the species. A tetraploid chromosome number $(2 n=56)$ was reported for subsp. haidensis from a total of five localities on Graham Island and Moresby Island (Calder \& Mulligan 1968) and diploids ( $2 n=28$ ) were documented from one locality on each of the two islands. At least one of the diploids has densely hirtellous stems, pedicels, and calyces - matching the morphology of subsp. hatdensts: British Columbia. Queen Charlotte Islands, Graham Island, outskirts of Queen Charlotte City, 13 Jul 1957, Calder et al. 22481 (MO, TEX). A duplicate of Calder et al. 22481 (UC) has a mix of hirtellous and glandular hairs. Calder et al. 36535 (UC) from Moresby Island has hirtellous pedicels but is otherwise completely glabrous. Without more documentation, the hypothesis that tetraploids represent a distinct morphological race in this area can be received only with low confidence.

Variation in vestiture does suggest, however, that regional differentiation has oceurred within Erythranthe guttata. In all of Colorado, the Four Corners area, and north-central New Mexico, particularly, the vestiture of stems and calyces is consistently densely hirsute-hirtellous, without glandular hairs. Plants with similar vestiture also occur in Oregon, Washington, and British Columbia and in scattered localities elsewhere. In southern Oregon, California, and into Nevada and northwestern Arizona, vestiture is consistent in its villous-glandular nature, without eglandular hairs. Elsewhere in the geographic range the vestiture is a mix of hirsute-hirtellous (eglandular) and villousglandular hairs. In this quick study, I have not been able to consistently correlate the pattern of vestiture with variation in other features.

The type of Mimulus puberulus Greene (Hinsdale Co., southern Colorado) has densely hirtellous-hirsutulous, eglandular vestiture on the stems, leaves, pedicels, and calyces and basal runners similar to the species in the rest of Colorado and northern New Mexico, but the plants produce relatively short corollas (but apparently herkogamous and allogamous) and the calyces have a relatively long upper lobe suggestive of $E$. nasuta. Plants of this region may come to be recognized as evolutionarily distinct, particularly if they should prove to be consistently tetraploid (see further comments below).

A collection similar to "Mimulus puberulus" also has been made from southeastern Arizona. These are small plants like those from northern New Mexico, with densely hirtellous-subvillous vestiture, but the corollas are very short and appear to be autogamous (plesiogamous) though they have an expanded limb. Arizona. Greenlee Co.: Hannagan Meadow area, 8900-9300 ft, 21 Jun 1962, Schmidt 170 (ARIZ).

Lindsay and Vickery (1967) and Vickery et al. (1968) reported a chromosome count of $2 n=$ 30 for a population of Mimulus guttatus from Cache Co., Utah ("Logan drainage," [Cache Valley,] Providence, 4500 ft , Vickery cult. 6177, UT), noting (1968, p. 213) that "the population is relatively uniform morphologically although its leaves are rounder and its calyces are blunter than is usual in $M$. guttatus. These traits suggest to us that this population may be showing the residual effects of previous introgression from M. glabratus var. utahensts Pennell." They also noted that because of pairing irregularities, the number might actually be $2 n=28$ with a pair of B chromsomes. The voucher for the $2 n=30$ count, however, seems better identified simply as Erythranthe utahensis. Claims by Vickery that hybridization and introgression also have occurred between E. utahensts and E. guttata in the Big Cottonwood and Provo drainages of Utah County are minimally and obliquely documented and need to be critically examined.

## Reported variation in ploidy level.

Map 8 shows the USA localities of diploid and tetraploid chromosome numbers reported for plants identified as Mimulus guttotus. An account of most of the tetraploid counts is provided here.

* Arizona (Cochise Co.: [Huachuca Mts.,] Ramsey Canyon, 1646 m, Vickery cult. 7558, voucher not seen. Yavapai Co.: Verde Valley, 3 mi S of Camp Verde, by larger of 2 springs along the cliffs on the E edge of the river at Ward Ranch, 3010 ft , no date, Vickery 2593 , cult. 6250 , UT-2 sheets, cult. 6290, UT; Mia et al. 1964 and Vickery et al. 1968). Figure 2 in Vickery et al. shows 14 loosely paired quadrivalents.
* New Mexico (Grant Co.: Gila River, 4400 ft , Vickery cult. 6615 , voucher not seen). The voucher for a tetraploid count of $2 n=56$ from Catron Co. (Reserve, 5770 ft , Vickery \& Tat 7, Vickery cult. 6613 ) is identified here as Erythranthe cordata, which otherwise is known as $2 n=30$ from 6 separate counts. This count needs to be reassessed and is not mapped.
* Arizona. Mohave Co. As reported by McArthur et al. (1972): " $n=14,28$ : Ariz., Mohave, Moccasin, $1525 \mathrm{~m}, 7555$." No voucher was located at UT for this collection; see comments below for Kane Co., Utah.
* Colorado (La Plata Co.: Bayfield, Los Pinos River, 6750 ft, Tai \& Vickery 21, Vickery cult. 6627, UT) and New Mexico (Rio Arriba Co.: Rio Chama, near bridge along Hwy 84, between river gravel bars and river-worn rocks on bars by the river, 7500 ft , Tat \& Vickery 16, Vickery cult. 6622, UT); Tat \& Vickery 17 (cult. 6623, UT) was collected at the same locality, Tat \& Vickery 18 (cult. 6624, UT) was collected from the same vicinity, "near bridge on gravel bars, 6900 ft ." The chromosome counts are from adjacent counties and this is the immedate region of plants noted above as possibly
representing an entity evolutionarily distinct from $E$. guttata (see comments above regarding $E$. puberula).
* Color ado. Grand Co.: Along the Rollins Pass road just above the Moffitt Tunnel, 10,000 ft, 1967, Foreman s.n., McArthur cult. 7693-221 (UT). Another collection from Grand Co. is reported as diploid ( $2 n=28$ ): Little Yellowstone Canyon, Shadow Mt. area, 14.5 miN of Grand Lake, gravel at streamside, $9560 \mathrm{ft}, 10$ Aug 1966, Douglas 61-488, Vickery cult. 7139 (UT). Plants of both collections both have densely hirtellous vestiture and are very similar in other respects as well. It is not unreasonable to suppose that this is an instance of autotetraploidy, if the chromosome counts are correct.
* Utah. Kane Co. Two specimens at UT are vouchers for populations from which mixed diploidtetraploid counts were obtained: Kane Co.: "Hundreds of plants growing in Sand Spring stream, [ $36^{\circ}$ $51 \mathrm{~N}, 112^{\circ} 46 \mathrm{~W}$, 5100 ft , many very large one (up to 5 ft ); cytology indicates mixed diploidtetraploid population," 23 Jun 1969, McArthur 25, culture number "9554 $=7555, " n=14,28$. Kane Co.: "Thousands of plants growing in a ditch between lower two lakes at Three Lakes near Kanab. On a previous year I found no plants at this location, 5400 ft ; cytology indicates mixed diploid-tetraploid population," 24 Jun 1969, McArthur 26, cult. 9555, $\mathrm{n}=14,28$. Both voucher plants have thickfistulose stems about 8 dm tall. These may represent instances of autotetraploidy. Sand Spring and Three Lakes are within ca. 12 kilometers of each other in Kane County. Moccasin, Arizona, in Mohave County, where diploids and tetraploids also were reported from a single population (see comments above), is near the Utah state line and only about 20 kilometers from these two Utah localities. The occurrence of these three, closely adjacent populations with variation in ploidy seems more than coincidental, or perhaps the phenomenon is more common than reported because of lack of sampling.
* British Columbia. Plants from the Queen Charlotte Islands apparently exist at diploid and tetraploid levels. It has been claimed that the tetraploids are morphologically distinct in having hirtellous, eglandular vestiture but they apparently are not different from some diploids in the Queen Charlotte Islands or from diploids in some other parts of the geographic range of the species. See comments above regarding E. guttata subsp. haidensis.

[^9]

Figure 1. Erythranthe guttata. Illustration of Mimulus langsdorffl from Botanical Magazine (J. Donn ex Sims, Bot. Mag. 36: plate 1501. 1812). A large-flowered plant from Alaska, perhaps representing a tetraploid individual (see text).
12. Erythranthe grandis (Greene) Nesom, Phytoneuron 2012-40: 43. 2012. Mimulus grandis (Greene) Heller, Muhlenbergia 1: 110. 1904. Mimulus langsdorffil var. grandis (Greene) Greene, J. Bot. (Brit. \& Foreign) 33: 7: 1895. Mimulus guttatus var. grandis Greene, Man. Bot. San Francisco Bay, 277. 1894. Lectotype (designated here): USA. California. [Solano Co.:] Rocky hills 5 mi E from Vallejo, 10 Apr 1874, E.L. Greene s.n. (ND-Greene! photo-PH!). No type was cited in 1894 protologue, which noted only "a conspicuous perennial of stream banks and some boggy places among the hills near the Bay."

Another collection of type material at ND-Greene is this: [Alameda Co.:] Berkeley, 20 Aug 1887, E.L. Greene s.n.; the label has handwritten "Mimulus grandis Greene." The label for the Solano County collection has "Mimulus luteus grandis" in Greene's handwriting.
Mimulus procerus Greene, Leafl. Bot. Observ. Crit. 2: 6. 1909. Type: USA. California. Monterey Co.: Santa Lucia Mountains, Jun 1898, R.A. Plaskett 156 (holotype: ND-Greene! photo-PH!; isotypes: NY digital image!, US digital image!). Greene noted that the plant is "in every part hirtellous-puberulent."
Mimulus guttatus subsp. litoralis Pennell, Proc. Acad. Nat. Sci. Philadelphia 99: 165. 1947. TyPe: USA. Oregon. Lincoln Co.: Sea beach vic. Otter Rock, wet place, bluffs, 19 Jul 1939, B. Magure 17304 (holotype: PH!). Pennell noted that this is a "characteristic and magnificent plant that grows in masses along the rocky coast of Oregon and northern Cal[ifornia], where it replaces subspecies typicus."

Perennial, rhizomatous, sometimes rooting at lower nodes. Stems, pedicels, calyces, and distal leaves densely hirsutulous to softly hirtellous-puberulent to pilose-hirsutulous (hairs usually crinkly) and eglandular or with a mixture of hirtellous-puberulent and stipitate-glandular hairs, less commonly sparsely to densely stipitate-glandular or glandular-villous without hirtellous-puberulent vestiture. Stems erect, sometimes decumbent at the very base, (25-)50-120(-160) cm , usually fistulose (succulent-thickened and hollow). Leaves: basal and lower cauline petiolate, blades ovate to broadly elliptic, $25-60 \times 20-40(-60) \mathrm{mm}$, margins crenulate to dentate, proximally sometimes sublyrate, apex rounded to obtuse, base truncate or truncate-cuneate to subcordate, petioles $10-80$ mm , gradually reduced in size distally and becoming subsessile to sessile, bracteate in the inflorescence. Flowers $8-26$, usually in bracteate racemes. Fruiting pedicels $10-35 \mathrm{~mm}$. Fruiting calyces $15-22(-25) \mathrm{mm}, 10-14 \mathrm{~mm}$ wide (pressed), closing, straight or nodding ca. $45^{\circ}-100^{\circ}$. Corollas yellow, red-dotted within, tube-throats (14-)16-24 mm, long-exserted from calyx, limb broadly expanded. Styles hirtellous. Herkogamous; anther pairs at different levels, stigma above upper anther pair. Capsules $8-12 \mathrm{~mm}$, stipitate, included. $2 n=28$.

Chromosome vouchers. California. Monterey Co.: Pacific Grove, Vickery 5001, voucher for $n=14$ (UT). San Mateo Co.: Piscadero, 30 ft , Clausen 2083, voucher for $n=14$ (UT).

Flowering (Apr-)May-Jul(-Sep). Beaches, dunes, coastal bluffs, wet cliff faces, mud flats and seeps, marshes, drainage ditches, creeks, rarely in coastal sage scrub; $0-200(-800) \mathrm{m}$. California, Oregon. Map 10.

The densely puberulent vestiture of pedicels, calyces, and distal stems usually is diagnostic, especially in combination with the extra-sized flowers (corollas and mature calyces) and tall stature. Scattered collections are much shorter than normal but have large corollas and characteristic vestiture (e.g., San Mateo Co., Crystal Springs Lake, Apr 1903, Elmer 4857 (MO); Santa Clara Co., along Cheboya Road W of Joseph Grant County Park, 6 May 1995, Doo s.n. (DAV). Erythranthe grandis characteristically occurs in coastal localities but it also is found in inland localities and habitats near the coast but well away from salt spray.

Large-flowered plants in coastal regions of Washington, British Columbia, and Alaska have a different vestiture and the corollas do not reach the size of Erythranthe grandts - these plants are an expression of $E$. guttata, as considered here.

Pennell (1951) placed Mimulus grandis in synonymy under typical M. guttatus.
13. Erythranthe arenicola (Pennell) Nesom, Phytoneuron 2012-40: 43. 2012. Mimulus guttatus subsp. arenicola Pennell, Proc. Acad. Nat. Sci. Philadelphia 99: 166. 1947. TyPE: USA. California. Monterey Co.: Pacific Grove, sandy clay flat, $0-10 \mathrm{ft}, 28$ Jun 1940, F.W. Pennell 26020 (holotype: PH!; isotypes: CAS digital image!, F digital image!, MICH digital image!, MO!, NY-2 sheets digital images!, UC!, US digital image!). Plants of the type collection are nearly glabrous except for minutely hirtellous calyces.

Annual, fibrous-rooted or slender taprooted. Stems $3-17 \mathrm{~cm}$, erect, rarely prostrate to prostrate-ascending and rooting at the nodes (Parish 11528). Stems, leaves, calyces, and pedicels moderately glandular-villous with gland-tipped hairs or mixed hirtellous and stipitate-glandular. Leaves basal and cauline, basal short-petiole, cauline sessile, blades suborbicular to broadly ovate or depressed-ovate, $5-17 \mathrm{~mm} \times 6-15 \mathrm{~mm}$, palmately $3-5$-nerved. Flowers $1-6$, at distal nodes. Fruiting pedicels $9-17 \mathrm{~mm}$. Fruiting calyces ovoid-campanulate, $9-16 \mathrm{~mm}$, closing, nodding. Corollas yellow, red-dotted, tube-throats infundibular, $11-20 \mathrm{~mm}$, exserted $4-8 \mathrm{~mm}$ beyond the calyx rim, limb expanded $10-18 \mathrm{~mm}$ (pressed). Styles hirtellous. Herkogamous; anther pairs at different levels, stigma above the upper anther pair. Capsules ca. $5-12 \mathrm{~mm}$, stipitate, included

Flowering Apr-Aug. Sandy beaches, especially in moist hollows among dunes, sea cliff bases, chaparral near beaches, mudstone outcrops; 0-100 m. California (Monterey, San Luis Obispo, Santa Cruz cos.). Map 11.

Pennell $(1947,1951)$ considered Erythranthe arenicola an endemic of Monterey County, but plants from adjacent San Luis Obispo and Santa Cruz counties also belong here. In addition to the Monterey Co. specimen (cited below), Vickery made collections of E. guttata and E. grandis at essentially the same locality. Most of the localities are at sea side but some are more than a mile inland.

California. Monterey Co.: along the coast, Monterey Peninsula, 30 Jul 1929, Mathias 743 (MO); Monterey Peninsula, moist seeps in the dunes, Asilomar, Aug 1917, Parish 11528 (MO); Monterey Peninsula, wet sand among dunes, 29 Aug 1957, Thorne 18949 (UC); Pacific Grove, seep at high tide mark at the base of cliffs, in a moist pocket of rich soil, ca. $1 / 2 \mathrm{mi} \mathrm{W}$ of Lover's Point, 5 ft elevation, 13 Apr 1956, Vickery 1, cult. 5001 (UC, UT). San Luis Obispo Co.: Upper Prefumo Canyon Road, grassy area with scattered patches of chaparral, locally abundant on rock outcrop, flowers yellow with red dots, 29 Apr 1979, Kell K13058 (TEX). Santa Cruz Co.: Plants of H-H Ranch, ca. 17 mi NW of Santa Cruz, on seasonal waterfall face in S fork of "Gulch \#1," in sparse N coastal scrub, slope near vertical, 280 ft , on Santa Cruz mudstone outcrop with small pockets of soil, 800-1000 plants on waterfall face, all plants in population annual, 5 Jun 1983, Buck 325 (JEPS); between Calif. 1 (Cabrillo Hwy) and Swanton Road, SE of Greyhound Rock and W and NW of old Seaside School (Swanton), no date or collector (JEPS).

Erythranthe arenicola is hypothesized here to be a derivative of E. guttata or E. grandis, retaining the allogamous breeding system of its putative ancestor but becoming reduced in size and duration.
14. Erythranthe thermalis (A. Nelson) Nesom, Phytoneuron 2012-40: 44. 2012. Mimulus thermalts A. Nelson, Bull. Torrey Bot. Club 27: 269. 1900. Type: USA. Wyoming. [Park Co.:] Upper Geyser Basin, on geyser formations, 3 Aug 1899, A. Nelson and E. Nelson 6285 (holotype: RM photo-PH!; isotypes: MO!, NY-2 sheets digital images!).

Annual, without rhizomes or stolons, very occasionally with a basal, runner-like stem. Stems $1.5-10(-15) \mathrm{cm}$, erect, simple or branched from basal nodes. Stems, pedicels, and calyces moderately to densely stipitate-glandular to (less commonly) hirtellous and eglandular. Leaves basal and cauline, cauline 2-5 pairs, blades suborbicular to ovate, depressed-ovate, ovate-deltate or reniform, $4-15(-20) \mathrm{mm} \times 4-20 \mathrm{~mm}$, palmately $3-5$-nerved, basal and lower cauline short-petiolate, cauline subsessile to sessile, mostly $5-10 \mathrm{~mm}$, margins evenly crenate-dentate to subentire, apices acute to obtuse or rounded, base cuneate to truncate or subcordate, petioles (basal and lower cauline) $3-20 \mathrm{~mm}$. Flowers $1-5(-9)$, mostly at distal nodes. Fruiting pedicels $7-12 \mathrm{~mm}$. Fruiting calyces ovate-campanulate $8-11 \mathrm{~mm}$, closing, lobes unequal, deltate-triangular, upper longer than the others, ciliate or glabrous. Corollas yellow, red-dotted or apparently sometimes without red markings, tubethroats funnelform, 8-12 mm, exserted $1-2 \mathrm{~mm}$ beyond the calyx margin, strongly bilabiate, expanded $12-15 \mathrm{~mm}$ (pressed), throats open, palate villous. Styles hirtellous. Plesiogamous; anther pairs at about the same level, stigma at the level of the anthers. Capsules $5-6 \mathrm{~mm}$, stipitate, included. $2 n=28$.

Flowering Mar-Aug. Hot, shallow, quick-drying soils around thermal pools and vents; $2200-2600 \mathrm{~m}$; Wyoming (Park Co.). Not mapped.

Additional collections examined. Wyoming. Park Co.: Yellowstone National Park, on the "Formations" and frequent in YNP, 16 Jul 1912, Churchill 723 (MO-2 sheets, mixed collection of $E$. thermalts and E. guttata); Yellowstone National Park, on volcanic soil, Jul 1930, Demdas s.n. (DAV); Yellowstone National Park, Firehole Lake (thermal spring), almost in water, 31 May 1958, Haminechen s.n., voucher for $n=14$ (UT); Yellowstone Park, Upper Geyser Basin, 24 Jul 1906, Jepson 2531 (JEPS); Yellowstone Park, Upper Geyser Basin, on formations, 9 Sep 1887, Kearney s.n. (ND-Greene); Yellowstone Park, Gibbon Geyser basin, wet banks of hot streams, 10 Jun 1934, Nelson \& Nelson 1073 (MO, UC); Lower Geyser Basin, moist bank, 30 Jul 1951, Sargent s.n. (SMU); Firehole River, 3 mi SW of Old Faithful, West Thumb Road, growing next to hot spring, geyserite, $7800 \mathrm{ft}, 26$ Jun 1960, Venrick 193 (MO) and Venrick 194 (MO).

Erythranthe thermalis is recognized by its annual duration (without rhizomes), reduced stature and leaf size, and short but broad-limbed corollas with autogamous fertilization. It is endemic to Yellowstone National Park where it grows in hot, shallow, quick-drying soils around thermal pools and vents (not in thermally-influenced waters or creek edges; fide Margaret Kendrick, pers. comm.). Typical E. guttata (rhizomatous, allogamous) also grows in the immediately surrounding areas but apparently not in the hot soils.

After I had seen and annotated a number of these plants as Mimulus thermals, the Fishman Lab website (2011) came to my attention - an informal discussion there of these thermal-soil plants appears to provide evidence supporting their treatment at specific rank. In addition to the reduced size, annual duration, and autogamy, adaptive differentiation among Yellowstone plants has produced a difference in phenology that apparently reinforces the autogamy in reducing gene flow. In the interpretation here, autogamy in these plants (as in many other examples in other genera and families) produces effective reproductive isolation, at least in the direction of outcrossing to selfing plants. A fuller assessment will be possible with eventual publication of studies conducted by the Fishman lab.

So interpreted, the Yellowstone situation is the only known example of sympatric speciation in Erythranthe. Evolutionary derivation of E. thermalis from E. guttata seems to be a secure hypothesis, given their morphological similarity and because the latter is the only species of sect. Simiola in northwestern Wyoming besides E. tilingit and E. geyert, both of which are unlikely progenitors. Among the species of sect. Smiola in Wyoming, only E. geyert, E. guttata, and E. tilingll have been recognized (Nelson \& Hartman 1997; Dorn 2001). Erythranthe thermalus (as a species of Mimulus) has not been included even as a synonym.

A collection of Erythranthe aff. guttata from a hot springs area in Idaho is rhizomatous but the flowers are very small, outside the range of size for E. guttata but still allogamous, and it would be interesting to make further observations of these plants. Corolla tubes ca. 7 mm , styles $9-10 \mathrm{~mm}$, the stigma exserted from the tube and beyond the anthers. Idaho. Blaine Co.: Ketchum and Guyer Hot Springs, margins of hot sulphur spring bogs, $5887 \mathrm{ft}, 22 \mathrm{Jul}$ 1911, Nelson and Macbride 1278 (MO, UC).
15. Erythranthe lagunensis Nesom, sp. nov. Type: MEXICO. Baja California Sur. Arroyo San Bernardo ca. 3 km above Boca de la Sierra, near $23^{\circ} 23,109^{\circ} 49,500 \mathrm{~m}$, in wet sand by stream, 19 Jan 1959, R.V. Moran 7080 (holotype: SD; isotype: TEX).

Similar to Erythranthe gultata in overall habit, inflorescence, and vestiture but different in its annual duration (lacking rhizomes), stems apparently more commonly approaching decumbent, leaves broadly ovate to orbicular-ovate, and calyx lobes with denticulate margins.

Annual herbs, fibrous-rooted, without rhizomes but sometimes rooting at proximal nodes. Stems terete, erect to ascending-erect or decumbent-ascending, $12-40 \mathrm{~cm}$. Pedicels, calyces, distal leaves, and distal portions of stems moderately to densely short-villous-glandular with gland-tipped hairs $0.2-1.0 \mathrm{~mm}$, rarely mixed with short, sharp-pointed, eglandular hairs (hirtellous-hirsute). Leaves basal and cauline, basal usually largest, very gradually or very little reduced in size distally until an extended inflorescence, cauline blades mostly broadly ovate to orbicular-ovate, (7-)15-40 $\mathrm{mm} \times(5-) 10-35 \mathrm{~mm}$, sessile or basal and proximal with petioles $2-15 \mathrm{~mm}$, usually not punctate (see comments below), palmately (3-)5-7 veined, veins basal to suprabasal, margins shallowly serratedentate, 5-10 pairs of teeth per side, sometimes doubly toothed. Flowers 3-15(-26), from mid to distal nodes. Fruiting pedicels $7-20(-30) \mathrm{mm}$, nodding $30^{\circ}-90^{\circ}$. Fruiting calyces $7-14 \mathrm{~mm}$, ovoid, sometimes red-spotted, closing, lobes 5 , triangular-acute, upper lobe slightly longer, upper lobe sometimes denticulate with 1-2 pairs of small teeth distally. Corollas yellow, red-spotted on palate and base of lower lip, tube-throats funnelform-tubular, 7-12(-14) mm, exserted 4-6(-7) mm beyond calyx margin, limbs bilabiate, $7-10 \mathrm{~mm}$ wide (pressed). Styles hirtellous with ascending hairs. Herkogamous; stamen pairs usually separated but stigma barely above the upper pair, sometimes apparently plesiogamous. Capsules $5-7 \mathrm{~mm}$, stipitate, included.

Flowering Jan-Apr(-May). Along streams, arroyos, springs, oak and oak-pine woods, riparian woods, dry subtropical deciduous woods, dry washes; (200-) $500-2000 \mathrm{~m}$; Mexico (Baja California Sur). Map 12.

Additional collections examined. MEXICO. Baja California Sur. From San Jorge to San Francisquito and La Chuparosa, E side of Sierra de la Victoria, Arroyo Santa Rita, 23 ${ }^{\circ}$ 29-31' N, $109^{\circ}$ 47-55' W, in granitic sand, with Popuhus brandegeet, Quercus devia, Lystloma microphylla, and Dodonea viscosa, 840 m, 11 Apr 1955, Carter \& Ferris 3316 (SD); from San Jorge to San Francisquito and La Chuparosa, E side of Sierra de la Victoria, La Chuparosa, open rolling ridge tops with Pinus edulls, Nolina beldingı, Quercus devia, Arbutus peninsularis, and Lepechinia hastata, 1800 m , at spring, $23^{\circ} 29-32^{\prime} \mathrm{N}, 109^{\circ} 47-55^{\prime} \mathrm{W}, 12$ Apr 1955, Carter \& Ferris 3353 (SD, TEX); Sierra de la Laguna, Camp. Palo Extrano, $23^{\circ} 31^{\prime} \mathrm{N}, 109^{\circ} 56^{\prime} \mathrm{W}$, arroyo con agua, bosque de pino y encino, $1850 \mathrm{~m}, 15 \mathrm{Mar}$ 1987, Dominguez 440 (SD); Mpio. La Paz, Sierra de la Victoria, Paraje de Cano "El Chalete," $23^{\circ} 36^{\prime} \mathrm{N}, 109^{\circ} 55^{\prime} \mathrm{W}$, bosque de encinos, $1670 \mathrm{~m}, 12$ Feb 1997, Dominguez $L$. 1758 (SD), Dominguez L. 1759 (SD); Rancho Santo Domingo (Arroyo), 23.43532 ${ }^{\circ}$ N, 110.02034 ${ }^{\circ} \mathrm{W}$, 497 m, 16 Apr 2008, Dominguez L. 4027 (SD); Sierra La Laguna, Agua El Saltito, Rancho La Burrera, $23.512268^{\circ} \mathrm{N}, 110.041275^{\circ} \mathrm{W}$, selva baja caducifolia, $514 \mathrm{~m}, 30 \mathrm{May} 2008$, Dominguez $L$. 4096 (SD); Sierra Laguna, La Laguna, granitic gravel of dry wash, oak-pine forest, $6000 \mathrm{ft}, 24 \mathrm{Mar}$ 1939, Gentry 4405a (ARIZ); Sierra La Laguna, Reserva de la Biosfera, El Saltito de La Burrera, $23.51109^{\circ} \mathrm{N}, 110.04442^{\circ} \mathrm{W}$, arroyo, selva baja caducifolia, $535 \mathrm{~m}, 28$ Mar 2008, Leon de la Luz

8073 (SD); Cape region, E1 Chorro, near $23^{\circ} 26^{\prime} \mathrm{N}, 109^{\circ} 48^{\prime} \mathrm{W}$, near canyon mouth, wet sand by stream, $200 \mathrm{~m}, 30 \mathrm{Apr} 1959$, Moran 7285 (SD); Cape region, La Laguna, $23^{\circ} 33^{\prime} \mathrm{N}, 109^{\circ} 58^{\prime} \mathrm{W}, 1700$ m, 27 May 1965, Sloan s.n. (SD); Cape region, E slopes of the Sierra de la Victoria, El Reparito, W from Caduaño, along stream in moist sand, ca. $2300 \mathrm{ft}, 8$ May 1959, Thomas 7810 (SD); southern outskirts of Miraflores, in wet sand at margin of arroyo, [ $\left.23^{\circ} 21^{\prime} \mathrm{N}, 109^{\circ} 45^{\prime} \mathrm{W}\right], 8$ Jan 1959, Wiggins 14735 (ARIZ).

Most of these plants previously have been identified as Erythranthe guttata but the annual duration is distinctive and they are far disjunct from the nearest populations of typical E. guttata in Baja California (the northern state). The toothing of the calyx margins is seen elsewhere in the genus only in E. brevinasuta, suggesting that ancestry of these two endemics of Baja California Sur may be close.

Gentry $4403 a$ from La Laguna is distinctive in its low, procumbent habit, hirtellous vestiture, tiny leaves, relatively small calyces and corollas, and punctate leaves, but it is regarded here as a depauperate individual of Erythranthe lagunensis. Sloan s.n., also from La Laguna, has an ascending habit with longer stems and larger leaves and corollas, but it has hirtellous vestiture and punctate leaves. Dominguez 4027 has minutely hirtellous calyces; Thomas 7810 has pedicels mixed hirtellous and villous-glandular; Moran 7080 (the type) has calyces mixed hirtellous and villous-glandular. This mirrors the variability in vestiture found in E. guttata.
16. Erythranthe unimaculata (Pennel1) Nesom, Phytoneuron 2012-40: 44. 2012. Mimulus unmaculatus Pennell, Notul. Nat. Acad. Nat. Sci. Philadelphia 43: 5. 1940. Type: USA. Arizona. [Gila Co.:] Sierra Ancha, rim of Pueblo Canyon, 13 May 1931, G.J. Harrison 7892 (holotype: PH!; isotype: ARIZ!).

Annual, shallowly fibrous-rooted or slender taprooted. Stems erect or basally ascendingerect, sometimes rooting at proximal nodes, $(2-, 8-) 10-30(-50,-100) \mathrm{cm}$, terete, becoming fistulose in larger plants, stems and pedicels delicately short glandular-villous to stipitate-glandular, often glabrous below the inflorescence. Leaves mostly cauline or basal sometimes persistent, proximal short-petiolate, sessile above, connate-perfoliate distally, blades ovate-lanceolate to ovate or broadly ovate-elliptic, midcauline $12-40(-50) \times 10-25(-45) \mathrm{mm}$, proximal sometimes subpinnately nerved, usually with (1-)2 pairs arising from the midvein above the blade base, becoming palmately nerved distally, vestiture a mix of 3 kinds of hairs: sharp-pointed hirtellous, vitreous-flattened, and glandtipped, margins shallowly dentate-serrate to serrate with 7-12 teeth per side, apex rounded to obtuse, base rounded to truncate or cuneate, petioles $4-10(-15) \mathrm{mm}$, reduced and bractlike in the inflorescence. Flowers (1-)3-14, mostly from midstem and above. Fruiting pedicels $10-40 \mathrm{~mm}$, straight. Fruiting calyces broadly campanulate, $9-13(-15) \mathrm{mm}$, closing, nodding $30^{\circ}-90^{\circ}$, sparsely glandular-villous to stipitate-glandular, lobes triangular-ovate to broadly triangular, upper distinctly longest. Corollas pale yellow to nearly white, palate and lower throat densely and dark yellow, drying blue-green, red-spotted, tube-throats funnelform to subinfundibular, (7-)9-14 mm, exserted 34 mm beyond the calyx margin, limbs bilabiate, broadly expanded ( $8-17 \mathrm{~mm}$ pressed), palate densely bearded. Styles hirtellous. Herkogamous; anther pairs at different levels, stigma above upper anther pair. Capsules $5-8 \mathrm{~mm}$, stipitate, included. $2 \mathrm{n}=28$.

Flowering Jan-Jun. Stream and canal sides, pool edges, canyon bottoms, sand, gravel, and mud, tropical deciduous, riparian, and pine-oak forests; 200-2000 m. Arizona (Cochise, Gila, Pima, Santa Cruz cos.), New Mexico (Dona Ana Co.); Mexico (Chihuahua, Sonora). Map 13.

Erythranthe unimaculata is recognized by its annual duration (fibrous-rooted, without stolons or rhizomes), delicate-glandular vestiture, mostly sessile to subsessile, often widely spaced leaves,


Figure 2 Erythranthe unimaculata, isotype ARIZ
closed fruiting calyces, and relatively large, pale yellow to nearly white corollas with a dark yellow palate that dries blue-green (Fig. 3). The breeding system is allogamous. The plants commonly are single-stemmed but sometimes produce decumbent-ascending stems branching from the very base of the plant, these sometimes rooting at proximal nodes (e.g., Pringle 889, Palmer 16 and 17, Ward \& Soreng 82-008; Vickery's greenhouse cultures of Gentry 8078 from Chihuahua). Plants of Blumer $3433 a$ from the Rincon Mts. are unusually small ( $1.5-3 \mathrm{~cm}$ tall, with 1-2 flowers). Without the basal parts, plants of $E$. unimaculata sometimes may be difficult to distinguish from $E$. guttata.


Figure 3. Flowers of Erythranthe unimaculata, from the ARIZ isotype
Additional collections examined. USA. Arizona. Cochise Co.: Chiricahua Mts.: S. Fork of Cave Creek Canyon, $5300 \mathrm{ft}, 31$ Mar 1962, Barr 62-185 (ARIZ); Blumer 162 (ARIZ); Price Canyon, cold springs, 22 Jul 1907, Goodding 2299 (MO); Cave Creek Recreation Park, in running water, 5000 ft, 18-19 Jun 1930, Goodman \& Hitchcock 1224 (MO); marginal aquatic in Cave Creek, South Fork Road, 0.5 mi from jct of Road 42 and S. Fork Road, $5200 \mathrm{ft}, 20$ Apr 1989, Holloway \& Cowley 41 (MO); Cave Creek area, $3500 \mathrm{ft}, 1$ Apr 1941, Kimball s.n. (ARIZ); 1 mi below Rustler Park cattle guard, near water, $7900 \mathrm{ft}, 7$ Jun 1960, McCormick 116 (ARIZ); Cave Creek Canyon, stream bed, 31 May 1929, Peebles \& Loomis 5860 (ARIZ); Rucker Canyon, along stream near upper road crossing, ca. $6300 \mathrm{ft}, 8$ Jun 1980, Toolin 793 (ARIZ). Dragoon Mts.: West Cochise Stronghold, drainage among high boulders, 22 Apr 1962, Goodding 60-63 (ARIZ). Huachuca Mts.: roadside in Scotia Canyon, wet soil by stream, $5900 \mathrm{ft}, 2$ Jun 1991, Bowers 3503 (ARIZ); Miller Canyon, along old trail in canyon bottom in pine-oak forest, $7300 \mathrm{ft}, 30$ May 1992, Fishbein 372 (ARIZ); along stream, May 1912, Goodding 1321 (ARIZ); Ft. Huachuca Military Reservation, head of Garden Canyon, along shallow soil water courses, 13 May 1958, Goodding 116-58 (ARIZ); canyon above Sunnyside, near
edge of charco, 13 May 1958, Goodding 132-58 (ARIZ). Gila Co.: Sierra Ancha Wilderness Area, Tonto Natl. Forest: Hunt Spring, at top of Devils' Chasm, off trail 140 ca .1 .5 mi from trailhead, $6500 \mathrm{ft}, 13$ Jun 1992, Imdorf 800 (ARIZ); along Trail 139 at Trailside Spring, moist soil, with Juglans major, Vitis arizonica, Rhus radicans, and mixed conifer forest upland, $6800 \mathrm{ft}, 22 \mathrm{May} 1993$, Imdorf 1243 (ARIZ). Pima Co.: Baboquivari Mts.: Brown Canyon, E slope of the Buenos Aires National Wildlife Refuge, Platanus racemosa-Celtis reticulata riparian forest in canyon bottom in oak woodland-desert grassland transition, ca. 1220 m , common annual in water in streambed, 6 May 1999, Rema G. 99-101 et al. (UT). Rincon Mts.: Manning Camp, springy soils on rocks, 1 Oct 1909, Blumer $3433 a$ (UC). Santa Catalina Mts.: Upper Sabino Creek, 1 mi W of Summerhorn, ca. 8000 ft , 27 Jun 1960, Barr $60-70$ (ARIZ); Molino Creek, along creek bank in shade, 10 Apr 1985, Bennett 8744 (ARIZ); ca. 5 mi N of Mt. Lemmon lodge, dirt road above Peppersauce, seeping sandy bank, small spring, 7 Jul 1967, Crutchfield 3323 (LL); Mt. Lemmon Road, 7000 ft, 6 May 1925, Nichol s.n. (ARIZ); Mt. Lemmon, 30 May 1927, Peebles 4081 (ARIZ); Jun 1907, Thornber \& Lloyd 4334 (ARIZ); Sabino Canyon, 1 Apr 1894, Toumey 103 (UC); Sabino Canyon, 3 Apr 1894, Toumey 104 (UC). Santa Cruz Co.: Tumacacori Natl. Historic Park/Guevavi Unit, semi-desert grassland, dry benches E off Santa Cruz River, ca. $3400 \mathrm{ft}, 20$ Mar 2001, Guertin 142 (ARIZ); Cottonwood Canyon SW of the Santa Rita Mts., moist soil below dam, 16 Mar 1975, Kaiser 550 (ARIZ); White House Canyon, along streams, $5200 \mathrm{ft}, 22$ Apr 1917, Shreve 5176 (ARIZ); Santa Rita Mts., Cave Creek Canyon, streambed, $6200-6800 \mathrm{ft}, 3-4$ May 1975, Van Devender s.n. (ARIZ). New Mexico. Dona Ana Co.: W base of Organ Mts., Dripping Springs Canyon, 11 mi E of northern Las Cruces, slowmoving water of a constantly moist, N-facing depression of an unbroken quartz monzonite outcrop, with Preissia, Aquilegia chrysantha, and mosses, $6000 \mathrm{ft}, 25 \mathrm{Apr} 1982$, Ward \& Soreng 82-008, voucher for $2 n=28$ (MO); Organ Mts., 16 Apr 1893, Wooton s.n. (MO). MEXICO. Chihuahua. Sierra Charuco, Arroyo Hondo, igneous rocky canyon slope in pine-oak forest, riparian, 4500-5500 ft, 16-30 Apr 1948, Gentry 7995 (ARIZ) and 8078 (ARIZ); Sierra Charuco, Gentry 8078 [Vickery greenhouse cults. 5322, 5323, 28 Jan 1950] (UT); Ricardo Flores Magón, side of isolated pool in sandy soil, 21 Jun 1964, Miller M64-9 (UT); 14 mi S of Nueva Casa Grandes, wet sand and gravel by Rio Casas Grandes, 21 Jun 1964, Miller M64-10 (UT); vicinity of Chihuahua, ca. $1300 \mathrm{~m}, 8$-27 Apr 1908, Palmer 16 (MO) and Palmer 17 (MO); river gravel, Chihuahua, 14 Apr 1886, Pringle 889 (MO); Mpio. Ocampo, Parque Nac. Cascada Basaseachic, in the box canyon at the base of the fall, ca. $1700 \mathrm{~m}, 26$ Apr 1985, Spellenberg et al. 8021 (NMC); Mpio. Ocampo, Parque Nac. Cascada Basaseachic, in the barranca at the base of the falls, wet clayey soil near base of falls, $1570 \mathrm{~m}, 25 \mathrm{Apr}$ 1987, Spellenberg et al. 9054 (NMC); Mpio. Ocampo, Parque Nac. Cascada Basaseachic, moist sandy soil along river between top of falls and campground area, $2000 \mathrm{~m}, 17$ Jun 1993, Spellenberg et al. 11862 (NMC); Mpio. Ocampo, S-facing igneous cliff with waterfall in pine and oak woods, in most grass on cliff, $2190 \mathrm{~m}, 17$ Jun 1993, Spellenberg et al. 11905 (NMC); near Colonia Garcia in the Sierra Madres, $7500 \mathrm{ft}, 9$ Jun 1899, Townsend \& Barber 28 (MO); Mpio. Ocampo, Cascada de Basaseachic, Rio Basaseachic, pine-oak forest, 1800 m , very common herb in water in stream, flrs yellow, 4 Jun 1999, Van Devender 99-219 et al. (NMC, UT); 2 blocks N of the plaza in old Casas Grandes, $4800 \mathrm{ft}, 29$ Apr 1976, Vickery greenhouse cult. 12,181 (UT); willow-shaded stream near Janos, KM 196 on Mexico Rte 2, between Janos and La Ascension, 4250 ft, 29 Apr 1976, Vickery 2863 (UT); KM 92, Mexico 28 at Fcoindera bus stop, in drying sandy areas of stream in partial shade, 10 Jun 1976, Vickery 2917 (UT); Colonia Pacheco, S part of town, "Townsite Pasture," at the Marion Wilson Ranch and adjoining pastures, gravelly, grussy, and sandy soil derived from extrusive igneous rock, creekS and a river, $2000 \mathrm{~m}, 1-2$ Aug 1972, Wilson et al. 8579 (ARIZ). Sonora. 37 mi NE of Cajeme, on road to Tesopaco, 4 Mar 1933, Mallery 18 (ARIZ); Mpio. Yecora, Arroyo Los Garambullos, 0.5 km SE of Tonichi, 180 m , uncommon annual in mud at edge of river, flrs white, 30 May 1999, Reina G. 99-114 et al. (UT); Arroyo El Pilladito, near Tepoca, stream canyon in tropical deciduous forest, 500 m , very common annual in moist soil along canal, "possibly small plants of larger M. guttatus types," 2 Apr 2000, Reina G. 2000-198 et al. [Vickery greenhouse cult. no. 14356] (UT); 13 mi (by road) N of Arizpe, 31 Mar 1959, Turner 59-51 (ARIZ); Cienega ca. 1 mi E of

Rancho Agua Fria on Rio Saracachi (E of Cucurpe), 9 Apr 1977, Van Devender s.n. (ARIZ); upper end of bend in Rio Cuchujaqui at Rancho El Conejo, 12.4 km (by air) S of Alamos, 240 m , uncommon annual under Taxodium in moist soil at edge of river, 7 May 1992, Van Devender 92-581 (ARIZ); below village of Guajaray on Arroyo Guajaray, 6.5 km (by air) NNW of jct with Rio Mayo, tropical deciduous forest in rocky stream canyon, 270 m , scattered in cobbles near arroyo, 18 Mar 1993, Van Devender 93-450 (ARIZ-2 sheets); Rio Cuchujaqui at El Paso, 150 m , uncommon annual on bank of river, 25 Feb 1995, Van Devender $95-92$ (ARIZ), Arroyo Los Huerigos (tributary of Arroyo San Nicolas) at Mexico 16, 9.3 km E of Tepoca, 3.5 km WNW (by air) of San Nicolas, Populus brandeget riparian gallery forest, 650 m , very common annual at edge of stream, 9 Mar 1996, Van Devender $96-53$ (ARIZ); 1.5 km SW of Santa Ana on road to Guadalupe Tayopa, rocky canyon with Populus brandegei, tropical deciduous forest on slopes, 775 m , common annual in moist gravel along stream, 21 Feb 1997, Van Devender 97-210 (TEX); Arroyo Los Huerigos ( $=$ A. El Moro, A. San Nicolas), 9.3 km E of Tepoca on Mex 16, 3.5 km (by air) WNW of San Nicolas, Populus monticola riparian gallery forest, 650 m , locally common annual in mud at edge of stream, 13 Apr 1999, Van Devender 99-73 (UT) and Van Devender 99-78 (UT); Arroyo Tepoca, ca. 1.7 km (by air) NW of Curea, 420 m , locally very common annual in moist soil along stream, 31 May 1999, Van Devender 99-139 et al. (UT); along Rio Yecora, ca. 1 km (by air) NW of Yecora, 1530 m , solitary herb in moist soil at edge of stream, 2 Jun 1999, Van Devender 99-186 et al. (UT). Mpio. Onavas, Arroyo de la Uvalamita, Rancho La Mula, 25.5 km SE of Rio Yaqui on Mex. 16, palm-Bursera canyon in tropical deciduous forest, 685 m , locally common annual in water at canyon bottom, 1 Apr 2000, Van Devender 2000-187 et al. (UT); Mpio. de Imuris, 5 km N of Mesa del Romero, 19 km N of Imuris on Mex. 15, Arroyo, Bambuto drainage, cottonwood-willow forest, $980 \mathrm{~m}, 25$ May 2009, Van Devender 2009-246 (NMC).

## 17. Erythranthe decora (A.L. Grant) Nesom, Phytoneuron 2012-40: 43. 2012. Mimulus decorus (A.L. Grant) Suksdorf, Werdenda 1: 37. 1927. Mimulus guttatus var. decorus AL. Grant, Ann. Missouri Bot. Gard. 11: 173. 1924. TyPE: USA. Oregon. [Clackamas Co.:] Vicinity of Oregon City, wet meadow, 11 Jun 1905, M.W. Lyon, Jr. 59 (holotype: MO! digital image! photo-PH!; isotypes: CAS digital image!, NY digital image!, US digital image!).

Perennial, rhizomatous (perhaps prolifically so), sometimes producing numerous, long, remotely leafy runners from basal cauline nodes; distal stems, pedicels, calyces, and both leaf surfaces densely and minutely hirtellous (or leaf surfaces sometimes glabrate), pedicel vestiture often slightly deflexed. Stems erect, $20-100 \mathrm{~cm}$, simple. Leaves cauline, basal mostly absent by flowering, all except distalmost petiolate, blades broadly ovate-triangular to ovate-lanceolate, 20-50(-60) $\times 10-$ $30(-40) \mathrm{mm}$, palmately (3-)5-7-veined, apices acute, bases rounded to truncate to shallowly cuneate, petioles $8-25 \mathrm{~mm}$ (proximal) to $3-5 \mathrm{~mm}$ (distal). Flowers (1-)2-7(-14), from distal nodes. Fruiting pedicels $18-35(-40) \mathrm{mm}$. Fruiting calyces ovoid, 15-19 mm, green or sometimes red-spotted, closing, lobes deltate to shallowly ovate, apiculate, $1-3 \mathrm{~mm}$, sinuses villous. Corollas yellow to chrome yellow, usually red-spotted on floor of throat and tube, tube-throats broadly funnelforminfundibular, $18-26 \mathrm{~mm}$, exserted ( $8-$ ) $10-15 \mathrm{~mm}$ beyond calyx margin, limb bilabiate, expanded $22-$ 30 mm (pressed). Styles minutely and prominently hirsutulous to villosulous with ascending to spreading hairs. Herkogamous; anther pairs at different levels, stigma above upper anther pair. Capsules 8-10 mm, stipitate, included.

Flowering May-Aug. River banks, stream sides, dripping banks, moist meadows; 1000-1600 m. Idaho, Oregon, Washington. Map 14.

Erythranthe decora is distinct in its uniformly ovate to ovate-lanceolate leaf blades with truncate bases and regularly toothed margins, relatively long internodes, rhizomatous habit, mostly unbranched stems, often with with leafy runners from basal nodes, large corollas, hairy styles, and
minutely hirtellous stems, pedicels, calyces, and leaf surfaces. The thin, densely produced rhizomes suggest a relationship with the $E$. tilingil group.

Plants of a collection from Idaho appear to be widely disjunct but they are a good match for those of Erythranthe decora in Washington. Idaho. Clearwater Co.: Morris Creek drainage, near headwaters of Morris Creek and Old Growth Cedar Grove, along FR 1969d, 0.5 mi from jct of FR 1969 , ca. 1.3 air mi N of Shattuck Butte, 12.2 mi NNE of Elk River by road, riparian area along Morris Creek dominated by Carex sp., Phalaris arundmacea, and Alnus sp., 4300 ft , plants occasional along wet stream banks, 21 Jul 1996, Richardson 478 (UC).

Two collections are mapped (Map 14) from citations by Grant (1924): Oregon. Multnomah Co.: Portland, along a mountain stream, 3 Jul 1903, Lunnell s. $n$. (RM); LLinn Co.:] Calapooya Valley, swampy ground, $3500 \mathrm{ft}, 17 \mathrm{Jul} 1899$, Barber s.n. (RM).
18. Erythranthe scouleri (W.J. Hooker) Nesom, Phytoneuron 2012-40: 44. 2012. Mimulus scoulerl W.J. Hooker, Fl. Bor.-Amer. 2: 100. 1838. Mimulus guttatus subsp. scoulerl (W.J. Hooker) Pennell, Proc. Acad. Nat. Sci. Philadelphia 99: 166. 1947. TyPE: USA. Oregon. Columbia River, no date, Dr. Scouler s.n. (holotype: K, apparently seen by Pennell, photoPH!). The photo at PH is of a plant collected by Douglas in 1825 . The protologue noted that "There are no flowers to these specimens ..." and provided only a brief description: "glaberrimus, caule erecto basi ramoso, foliis petiolatis lanceolatis dentatis 5 -nerviis floralibus brevioribus subovatis, pedunculis folio brevioribus, calycibus demum inflatis."

Perennial (presumably rhizomatous, full base not seen), completely glabrous throughout. Stems erect, $15-80 \mathrm{~cm}$, simple, producing long, sparsely leafy runners from basal nodes. Leaves cauline, basal mostly absent at flowering, blades (basal to medial) oblong-elliptic to oblonglanceolate, $25-60 \mathrm{~mm} \times 8-18 \mathrm{~mm}$, palmately (3-)5-7 veined to subpinnate, margins evenly and very shallowly dentate or crenate to mucronate or mucronulate with $10-20$ teeth per side, sometimes more deeply toothed at the very base, proximal and medial petiolate with bases attenuate to a petiolar region $10-25 \mathrm{~mm}$, distal sessile. Fruiting pedicels $20-25 \mathrm{~mm}$. Fruiting calyces $13-14 \mathrm{~mm}$, closing, lobes deltate-acuminate, subequal. Corollas yellow, apparently without red markings, tube-throats infundibular, $20-24 \mathrm{~mm}$, exserted ca. $10-15 \mathrm{~mm}$ beyond calyx margin, limb bilabiate, expanded $22-$ 30 mm (pressed). Styles minutely and prominently hirsutulous to villosulous with ascending to spreading hairs. Herkogamous; anther pairs at different levels, stigma above upper anther pair. Capsules not seen.

Flowering May-Aug. Seeps, river and creek banks; ca. 1000 m . Oregon. (John Day River, a tributary of the Columbia River, in Clatsop, Grant, Wheeler, Sherman, and Gilliam cos.). Map 14.

Additional collections examined. Oregon. [Clatsop Co.:] S shore of Columbia River, above Astoria, 1883, Meehan 15739 (MO); John Day, 20 Aug 1902, Sheldon 10181 (UC); John Day, near Tongue Point, 20 Aug 1902, Sheldon 11136 (MO).

Erythranthe scoulert is distinctive in its oblong-elliptic leaves with long-tapering bases and closely toothed margins, completely glabrous vestiture, long, leafy runners from basal cauline nodes, large corollas with broad limbs, and prominently hairy styles. Several features of the species are interpreted here as suggestive of a close relationship to $E$. decora, particularly its very large corollas, hairy styles, closely toothed leaf margins, tall, simple, and erect stems, numerous runners, and its geographic range.

Erythranthe scouleri was treated as a distinct species by Howell, (Fl. N.W. Amer. 5: 520. 1901) and by Pennell (1951), but it was subsequently recognized as a synonym or infraspecific entity
within Mimulus guttatus - or sometimes not recognized even as a synonym. Pennell (1947, p. 166) noted this: "We need to know whether the narrow-leaved Mimulus scouleri Hook., from along the Columbia River, be actually a local subspecies of M. guttatus, or if it pertain to abnormally narrowleaved individual plants. The Academy's herbarium shows specimens resembling Scouler's type from near Astoria in Clatsop County, Oregon, where they were gathered by Thomas Meehan in 1883, not far from Scouler's locality of a half century earlier; and from the John Day valley farther east in Oregon, gathered by E.P. Sheldon in 1902 (his number 10181)."

Erythranthe scouler is not represented among Oregon's formally listed RTE species (Oregon Biodiversity Information Center 2010), but perhaps this is at least in part because of the current encompassing concept of $E$. guttata.
19. Erythranthe microphylla (Benth.) Nesom, Phytoneuron 2012-40: 44. 2012. Mimulus microphyllus Benth., Prodr. (DC.) 10: 371. 1846. Mimulus langsdorffii var. microphyillus (Benth.) A. Nels. \& Macbride, Bot. Gaz. 61: 44. 1916. Mimulus guttatus var. microphyllus (Benth.) Pennell ex Peck, Man. Pl. Oregon, 654. 1941. Type: USA. Washington. [Wahkiakum Co.:] "In rupibus ad flum. Oregon, (Douglas!)" (holotype: K). Pennell (1951, p. 710) noted that the locality visited by Douglas is "Tongue Point, in the present Wahkiakum County, Washington." Treated as a distinct species by Pennell (1951), who noted that its range is "Cascade Mountains and coastal forests from northern Washington to northern California, east to central Idaho."
Mimulus luteus var. depauperatus A. Gray, Geol. Surv. Calif., Botany 1: 567. 1876. Mimulus guttatus var. depauperatus (A Gray) A.L. Grant, Ann. Missouri Bot. Gard. 11: 170. 1924. Type: USA. California. [Mendocino Co.:] banks of Navarro River, under moist rocks, [Apr] 1865, H.N. Bolander 4516 (GH photo-PH!). In the protologue synonymy Gray cited M. microphyllus and "M. tenellus, Nutt. herb., not of Bunge" and some have interpreted M. microphyllus and var. depauperatus as homotypic (e.g., Holmgren 1984). In the Synoptical Flora, Gray noted (p. 448) that this is "an extreme depauperate form, either seedling or showing the creeping stolons; ... Grows with the larger forms on Columbia River, specimens exactly like those of Douglas from the same district (except that some show the stoloniferous base) were received from Mrs. Barrett." Gray may have included M. longulus, with extremely reduced corollas, in his concept of var. depauperatus, but the GH type appears to show the larger corollas of $M$. microphyllus.
Mimulus tenellus Nutt. ex A. Gray [in synonymy under M. luteus var. depauperatus], Geol. Surv. Calif., Botany 1: 567. 1876; Proc. Amer. Acad. Arts 11: 98.1876 [not M. tenellus Bunge, Enum. Pl. Chin. Bor. 49. 1833].
Mimulus laxus Pennell ex Peck, Man. Pl. Oregon, 655. 1941. Type: USA. Oregon. Deschutes Co.: Elk Lake, gravelly shore, 27 Jul 1931, F.W. Pennell 15547 (holotype: PH!; isotypes; CAS digital image!, F digital image!, MO!, NY digital image!, UC!, US digital image!).
Mimulus glareosus Greene, Pittonia 1: 282. 1889. Type: USA. California. Lake Co.: Gravelly margins of moutain streams, 30 Aug 1888, E.L. Greene s.n. (holotype: ND-Greene! photoPH!; isotype: UC). The protologue noted 'Most related to M. lactnatus of the Sierra Nevada; the calyx like that of M. nasutus."
Mimulus guttatus var. insignis Greene, Man. Bot. San Francisco Bay, 277. 1894. Mimulus langsdorfil var. insignis (Greene) Greene, J. Bot. (Brit. \& Foreign) 33: 7. 1895. Mimulus nasutus var. instgnis (Greene) A.L. Grant, Ann. Missouri Bot. Gard. 11: 181. 1924. Lectotype(designated here): USA. California. [Napa Co.:] Napa River Basin, low meadows near La Lomita, 26 Apr 1893, W.L. Jepson s.n. (ND-Greene 46297!; isolectotype: ND-Greene!; probable isolectotypes: JEPS, UC-3 sheets). The ND-Greene label has handwritten by Greene "Mimulus guttatus D.C. var. insignis Greene."

The protologue noted only "of Napa and Sonoma counties, and the most beautiful Mimulus in our flora." Besides the collection designated here as lectotype, other collections from Sonoma County are at ND-Greene and identified as var. instgnts. The JEPS collection has been referred to as the holotype, as the label (apparently written by Jepson) notes that it is "The very type": La Lomita, near Yountville, 26 Apr 1893, W.L. Jepson $8 m$ (JEPS!; duplicates: UC-3 sheets!).

Mimulus nasutus var. insignis was inadvertently and incorrectly referred to as "var. eximus (Greene) Grant" by J.T. Howell (Marin Fl., 242. 1949).
Mimulus langsdorffi var. californicus Jepson, Fl. W. Mid. Calif., 407. 1901. TyPE: USA. California. [Solano Co.:] Vacaville, 20 Mar 1901, W.L. Jepson 1198 a (holotype: JEPS digital image! photo-PH!). An annotation by Thomas Robbins in 1953 notes this: "The original description states only that this variety is 'Common in the Sacramento and Coast Range Valleys. AprMay.' This collection is cited as the type ... by Jepson in Fl. Calif. ined. ms." As described by Pennell (1951): "[blade base] rounded or cordate to petiole (often obscured by extra lobules on petiole)."
Mimulus platycalyx Pennell, Proc. Acad. Nat. Sci. Philadelphia 99: 167. 1947. Type: USA. California. Mariposa Co.: Yosemite National Park, 1 mi . S of Wawona, mossy soil over granitic rock, $4500 \mathrm{ft}, 28$ May 1940, F.W. Pennell 25580 (holotype: PH!; isotypes: CAS digital image!, NY digital image!, UC, US digital image!). On the holotype, some plants have a hirtellous vestiture of stiff, sharp-pointed hairs mixed with a few gland-tipped hairs; others have calyces and pedicels moderately villous with loose, gland-tipped hairs. Otherwise, they are similar in morphology and all would appear to be from the same population.

Annual, fibrous-rooted. Distal stems and pedicels hirtellous (hairs commonly deflexed) or mixed hirtellous and stipitate-glandular, sometimes only short villous-glandular with gland-tipped hairs, stems commonly completely glabrous below the inflorescence. Stems erect, (3-)5-30(-45) cm , usually simple, sometimes with numerous branches from basal cauline nodes, sometimes distinctly 4 angled. Leaves usually basal and cauline or basal sometimes absent at flowering, basal or proximal to medial petiolate, becoming sessile distally, blades ovate or ovate-lanceolate to elliptic-ovate, suborbicular, or depresssed-ovate, (3-) $10-35 \mathrm{~mm} \times 3-25 \mathrm{~mm}$, palmately $3-5$-veined, often purplish, glabrous to sparsely or moderately hirtellous, eglandular, margins shallowly crenate to sharply crenate-serrate, with 5-10 teeth per side, basal and proximal often irregularly incised near the petiole and sublyrate, apices acute to obtuse-rounded, bases rounded to truncate or subcordate, petioles 3-$25(-35) \mathrm{mm}$. Flowers $1-8(-14)$, mostly from distal nodes. Fruiting pedicels $8-30(-50) \mathrm{mm}$. Fruiting calyces ovoid-campanulate to broadly cylindric-campanulate, (7-)9-16(-20) mm, strongly to weakly closing, nodding $30^{\circ}-90^{\circ}$, sometimes red-tinged or red-dotted, minutely hirtellous, hairs sometimes reduced to the basal cells or altogether absent and the calyx glabrous. Corollas yellow to golden-yellow or orangish-yellow, commonly red-spotted, sometimes with a large red blotch on the lower lip (Napa and Sonoma counties), tube-throats broadly funnelform to infundibular, (6-)8-16(20) mm , exserted (1-)2-6(-8) mm beyond the calyx margin, limb bilabiate, expanded $8-25 \mathrm{~mm}$ (pressed), palate villous. Styles sparsely hirtellous. Herkogamous; anther pairs at different levels, stigma above upper anther pair. Capsules $6-9(-11) \mathrm{mm}$, stipitate, included. $2 n=28,56$.

Flowering Mar-Jul. Rock depressions, rocky ridges, cliff faces, road cuts, wet meadows, seeps, stream banks, drying ponds and ephemeral stream channels, vernal springs over serpentine, roadsides and roadside ditches, dry banks, lava soil, loam, clay, gravel, yellow pine, oak-pine, mixed oak, oak-chaparral; $20-1700(-2200,-2600) \mathrm{m}$; California, Idaho, Nevada, Oregon, Washington; British Columbia. Map 17.

A tetraploid population identified as Erythranthe microphylla was discovered in San Luis Obispo Co., California (Lowry et al. 2008). Upon finding that plants of the SLO population
(identified in the study as the "inland annual race of Mimulus guttatus") had more than two alleles at multiple loci, an analysis with flow cytometry revealed the tetraploidy.

A report of $2 n=15$ for this species (Vickery et al. 1968, as Mimulus platycalyx, from San Mateo Co., California) is regarded here as $2 n=14$, as the authors originally surmised might be the case. Vickery (1974, p. 69) noted that "the 15th pair of chromosomes [may be] B chromosomes. Actually the present crossing results strengthen that hypothesis considerably" and in that publication (p. 43), he reported the number as " $\mathrm{n}=14+1 \mathrm{~B}$ chromosome."

Erythranthe microphylla is characterized by its annual duration (fibrous-rooted), usually simple stems, relatively widely spaced leaves, glabrous to hirtellous vestiture, open corollas, and calyces closing at the throat. Even in the smallest corollas, the stigma is positioned above the upper anther pair, indicating that all are primarily allogamous. Some plants have basal and lower cauline leaves with exaggeratedly and irregularly toothed-incised margins, especially in Lake and Napa counties (whence the types of Mimulus glareosus and M. guttatus var. insignis, respectively), but a similar tendency can be seen over most of the geographic range.

Plants of Erythranthe microphylla vary greatly in height, leaf size, and flower size (the larger flowers approaching the size of those in $E$. grandss and $E$. decora) yet all seem to be within the expression of a single species. Some collections have been made to show this striking range of size within a population, multiple collections from a single county or general locality show the wide variability, and an observant collector made this label observation "Flowers varying in size and number with the vigor of the plant" (Coos Co., Oregon, Cronquist 6853, MO). Plants of the Sierra Nevada, mostly south of El Dorado County, commonly are in the smaller size range and are those identified by Pennell as Mimulus platycalyx. The type of Mimulus mucrophyillus also was described from smaller plants.

Problems in identification can be encountered when small plants of Erythranthe microphylla and $E$. guttata are collected without the base. Without a clear indication that rhizomes are part of the plant, small individuals of $E$. guitata can be very similar to $E$. microphylla but the latter contrasts in its 4 -angled stems, different branching pattern (see Baker and Diggle 2011, who studied E. microphylla and $E$. grandis), pedicels glabrous or sometimes sparsely glandular, never hirtellous, and corollas often more golden yellow (with slightly added orange).
20. Erythranthe marmorata (Greene) Nesom, Phytoneuron 2012-40: 44. 2012. Mimulus marmoratus Greene, Erythea 3: 73. 1895. Lectotype (designated here): USA. California. Stanislaus Co.: Knight's Ferry, [moist rocks,] 9 Apr 1895, F.W. Bancroft s.n. (ND-Greene 046328!, photo-PH!, photo UT!; isolectotype: ND-Greene 046329!). Fig. 4 (lectotype).
Mimulus whipplei A.L. Grant, Ann. Missouri Bot. Gard. 11: 184. 1924. Type: USA. California. [Calaveras Co.:] Hillsides and rocky places, Murphy's, 14 May 1854, J.M. Bigelow s.n. (holotype: GH digital image!, photo-PH!; isotype: US digital image!). Fig. 3 (holotype and isotype).

Annual, taprooted; stems, pedicels, leaves, and calyces commonly densely villous-glandular, sometimes less densely so. Stems erect, 7-28 cm, unbranched or branched from the base. Leaves mostly cauline or the basal persistent, blades ovate or broadly ovate to elliptic-ovate or depressedovate, ( $10-$ ) $15-30 \mathrm{~mm} \times 6-15 \mathrm{~mm}$, palmately (3-)5-veined, margins shallowly to coarsely dentate, apices acute, bases truncate to shallowly cuneate, proximal to medial petiolate, petioles $7-15 \mathrm{~mm}$. Flowers axillary from middle to distal nodes. Fruiting pedicels $15-45 \mathrm{~mm}$. Fruiting calyces broadly campanulate, 9-12 mm, sharply nodding, often densely purple-spotted, densely hirtellous or less commonly to sparsely stipitate-glandular, densely villous at the sinuses, closed, teeth broadly triangular-acute, unequal, the upper scarcely twice the length of the others. Corollas yellow, red-
spotted in throat with a large red blotch at base of lower lip, tube-throats narrowly cylindricfunnelform, $10-12 \mathrm{~mm}$, exserted 4-5 mm beyond calyx margin, limbs bilabiate, abruptly expanded $14-20 \mathrm{~mm}$. Styles glabrous to sparsely hirtellous. Herkogamous; anther pairs at different levels, stigma above upper anther pair. Capsules $6-9 \mathrm{~mm}$, stipitate, included.

Flowering Mar-May. Not known but apparently not over serpentine; ca. $100-900 \mathrm{~m}$. California, Stanislaus and Calaveras cos. (Stanislaus River drainage) and Amador Co. (Mokelumne River drainage). Map 20. Figs. 3, 4, 5, and 6.

Additional collections examined. California. Amador Co.: Mokelumne River, 1892, Hansen s.n. (ND-Greene); Mokelumne River, 1892, Hansen s.n. (ND-Greene); Mokelumne River and immediate tributaries, Fischer's Cabin, $1200 \mathrm{ft}, 13$ May 1896, Hansen 473 (ND-Greene).

The label for Hansen 473 specifies "Amador and Calaveras Counties," but Hansen's 1892 and 1893 collections give only "Mokelumne River" as the locality. The Mokelumne River crosses or forms the border of five California counties: Alpine, Amador, Calaveras, San Joaquin, and Sacramento, and placement of the Amador County symbol on Map 20 assumes that all three Hansen collections were made at or near the same place.

Erythranthe marmorata is recognized by its erect, taprooted habit and annual duration, villous-glandular vestiture, ovate-petiolate leaves; flowers from middle to distal nodes, long, narrow corolla tubes abruptly flaring into a broad limb, lower middle corolla lobe with a large red bloteh, and fruiting calyces dark-spotted and sharply nodding. On two of the five plants of the lectotype sheet, the lower nodes have produced adventitious roots, but this perhaps was in response to partial burial of the stem, because the other three plants, as well as the two on the isolectotype and those of the other collections (Figs. 5 and 6), have slender taproots.

The species most similar to Erythranthe marmorata are E. mocrophylla, E. pardals, and E. nasuta - all three are annuals and placed here in the E. microphylla group (subgroups A and B). Erythranthe pardalis is partially sympatric with E. marmorata in Calaveras and Amador counties and the range of $E$. marmorata is completely within the ranges of both $E$. microphylla and $E$. nasuta. Contrasting features of E. marmorata with these three species are given here.

Erythranthe microphylla roots consistently fibrous, cauline vestiture usually glabrous below the inflorescence, leaves glabrous to sparsely or moderately hurtellous, eglandular, flowers commonly produced mostly from distal nodes, corolla tubes usually broadly funnelform to infundibular, lower corolla lobe without a prominent red blotch

Erythranthe pardalss cauline vestiture sparsely and more delicately glandular, flowers usually produced at all nodes, meluding the basal, corolla tubes shorter and the flowers autogamous, lower corolla lobe without a prominent red blotch

Erythranthe nasuta cauline vestiture usually glabrous except at the nodes, leaves characteristically hirtellous on one or both surfaces, flowers often chasmogamous and cleistogamous on a single plant, corollas short-tubed, barely chasmogamous to clestogamous and the flowers autogamous, calyces with a longish, protruding upper lobe

In the present study, a realistic concept of Erythranthe marmorata was not formed until after study of the type material at ND-Greene in January 2012. It seems likely that collections of $E$. marmorata may be present among the large number of specimens examined earlier at UC-JEPS, where they presumably would have been identified as E. microphylla. The likelihood that I identified them as either E. nasuta or E. pardalts is small.

Grant (1924) treated Mimulus marmoratus as a synonym of $M$. guttatus var. arvensis. Pennell (1951) treated it as a synonym of M. nasutus, apparently basing his assessment on examination of a photo at PH of the ND-Greene type. Beyond that, M. marmoratus has been treated variously in synonymy except, apparently, in two places.

* The Mcnair website (The Mimulus Page 1996), notes that Mimulus marmoratus "appears to be restricted to a small area of Calaveras County, California. It is obligately annual and appears to be self-fertilising. We found it growing on the basalt and conglomerate at the top of Table Mountain, Calaveras Co, in a situation M. guttatus would be unable to grow." An accompanying photo shows a plant identified as M. marmoratus from Knight's Ferry (near Table Mountain) an unequivocal identification is not possible from the photo but the seemingly procumbent habit, subpinnately multi-veined leaves, and the very small (see lens cap for comparative size) and relatively small-limbed corollas without prominent red markings on the lobes strongly suggest that it is Erythranthe flortbunda (Douglas ex. Lindl.) Nesom of sect. Mimulosma (Nesom 2012a). This also would be consistent with Mcnair's description of the species as "self-fertilizing," which E. marmorata certainly is not.
* The CalPhotos website (2010) provides photos by Dean Wm. Taylor of plants identified as Mimulus marmoratus from Mariposa County. The ovate-lanceolate, subpinnately multi-veined leaf blades and the relatively large and relatively broad-limbed corollas with prominently massed red dots at the base of the lower three lobes indicate that these plants are Erythranthe geniculata (Greene) Nesom of sect. Mimulosma.

The identity of Mimulus whipplet has long been problematic. According to CNPS (2011), "many recent searches have not rediscovered this plant" and it has remained known only from the type collection. Within Erythranthe, the lack of mature calyces on the type has prevented an unequivocal decision even regarding its position in the genus. Grant (1924) placed it among the species of Mimulus sect. Simiolus, while Pennell (1951) placed it in sect. Paradanthus, keying it among the smaller set of species now regarded as Erythranthe sect. Mimulosma (Nesom 2012a). Grant's protologue did not compare M. whipplet with any other species nor did she provide any comments in distinction - her key to species seemingly identifies it as closer to South American species than to those of sect. Simola in the western USA, emphasizing the glandular-villous stems and open corolla throats of $M$. whippler. Nor did Pennell comment on his placement of the species.

Remarkably, the type of Mimulus whipplet was collected from a locality only about 15 miles northeast of the type locality of $M$. marmoratus, and the two taxa are similar in general aspect and especially in their long-tubed corollas with broadly flaring limbs. Examination of the type of $M$. marmoratus in the Greene herbarium confirmed that both taxa are villous-glandular, taprooted annuals. Argue (1980, p. 83) noted that an examination of the pollen of M. whipplei "should quickly resolve the disagreement over its proper placement" since species of sect. Simiolus have irregularly synaperturate (usually $\pm$ spiraperturate) pollen, a type unique within all of Mimulus sensu lato. In sum, it is clear that the names M. marmoratus and M. whipplet apply to the same species.


Figure 4 Mmulus whipplei, holotype (GH) and isotype (US)


Figure 5 Lectotype (ND-Greene) of Mimulus marmoratus.


Figure 6 Erythranthe marmorata from Calaveras Co, California (see comments in text)


Figure 7 Erythranthe marmorata from "Mokelumne River," probably in Calaveras Co, California (see comments in text)
21. Erythranthe glaucescens (Greene) Nesom, Phytoneuron 2012-40: 43. 2012. Mimulus glaucescens Greene, Bull. Calif. Acad. Sci. 1: 113. 1885. Mumulus guttatus var. glaucescens (Greene) Jepson, Man. Fl. Pl. Calif., 928. 1925. Type: USA. California. Butte Co.: 1883, Mrs. R.M. Austin s.n. (holotype: ND-Greene! photo-PH!, photo-UT!; isotype: CAS digital image!).

Annual, slender taprooted or fibrous-rooted, mostly glabrous and more or less conspicuously glaucous. Stems erect, (5-)30-60(-80) cm , simple or branched, terete, occasionally quadrangular above, rarely with runners from basal nodes. Leaves basal and cauline, proximal ovate to ovateelliptic or orbicular-ovate, sometimes subcordate, $10-50 \mathrm{~mm}$, palmately 3 - 5 -veined, margins denticulate to dentate or coarsely and irregularly toothed, occasionally lobed at the base, petioles slender, as long as or much longer than the blade, sometimes pubescent or villous, distal leaves few, sessile, orbicular, 5-45 mm wide, connate-perfoliate below the inflorescence and disc-like, margins nearly entire or with small scattered teeth. Flowers 1-16, commonly from distal nodes, sometimes from nearly all. Fruiting pedicels $10-50 \mathrm{~mm}$. Fruiting calyces broadly campanulate, $7-16 \mathrm{~mm}$ long, closing, lobes short, broadly triangular, blunt to acute, the upper slightly longer. Corollas yellow, lower lip densely dark yellow, others much lighter, red-dotted on floor of throat and tube, sometimes with a median blotch, tube-throats $12-23 \mathrm{~mm}$, exserted $4-8 \mathrm{~mm}$ beyond the calyx margin, bilabiate, limb expanded $14-36 \mathrm{~mm}$ (pressed). Styles minutely hirtellous-puberulent. Herkogamous; anther pairs at different levels, stigma above upper anther pair. Capsules ca. $5-11 \mathrm{~mm}$, stipitate, included. $2 n=28$.

Flowering Mar-May(-Jun). Seepage areas, wet rocks, moist cliffs, pool edges, gravelly stream banks, serpentine outcrops, roadsides and roadcuts, low pastures, riparian woodland, blue oak woodland, chaparral, grassland; $80-900(-1100) \mathrm{m}$; California (Butte and Tehama cos.). Map 18.

The basal leaves of Erythranthe glaucescens are very similar to those of E. microphylla often nearly round in outline, with irregularly toothed margins, and often puplish. Corollas of $E$. glaucescens are widely variable in size, also similar to the situation in E. microphylla.

The Menair website (Macnair 1996) makes this observation regarding Erythranthe glaucescens: "Pennell [1951] suggests that it is annual, but it behaves as a perennial in the glasshouse, unlike the obligate annual segregants of $M$. guttatus." In the present study, all collections seen of $E$. glaucescens except two (both from a single locality) have been fibrous-rooted or slenderly taprooted and clearly annual. Plants from one locality produced filiform, small-leaved runners from basal cauline nodes: California. Butte Co.: Canon of Big Chico Creek, 26 Mar 1914, Heller s.n. (MO) and 2 Jul 1914, Heller s.n. (MO). Menair did not say what observations led him to interpret the duration of $E$. glaucescens as perennial.
22. Erythranthe nudata (Curran ex Greene) Nesom, Phytoneuron 2012-40: 44. 2012. Mimulus nudatus Curran ex Greene, Bull. Calif. Acad. Sci. 1: 114. 1885. Type: USA. California. Lake Co.: Kelsey Mountain, Jun 1894, Mrs. Curran s.n. (CAS?; not located at ND-Greene).

Annuals, glabrous or stems, leaves, and pedicels minutely stipitate-glandular with hairs $0.05-$ 0.1 mm , at least just above the nodes. Stems erect or ascending, ( $5-$ ) $9-30 \mathrm{~cm}$, terete, simple or branched from basal nodes, branches mostly reddish-purple. Leaves scattered, proximal blades lanceolate or oblong-lanceolate to ovate, distal narrower, narrowly spatulate to oblanceolate, 5-15(30) $\mathrm{mm} \times 1-5 \mathrm{~mm}$, margins denticulate to proximally dentate-lobed, bases attenuate, long-petioled (petioles mostly $5-30 \mathrm{~mm}$ ), the upper sessile and mostly linear, not perfoliate. Flowers $1-8$, often in proximal or medial to distal axils. Fruiting pedicels $10-35 \mathrm{~mm}$, erect in flower, spreading to divaricate or rarely recurved in fruit. Fruiting calyces ovate-campanulate, $6-13 \mathrm{~mm}$, closing, lobes nearly equal, obtuse to acute, lower upcurved over the lateral ones and nearly closing the orifice.

Corollas yellow, red-spotted on floor of the throat and tube, tube-throats cylindric-funnelform, 8-12 mm , exserted 2-4 mm beyond calyx margin, bilabiate, limb expanded $8-12 \mathrm{~mm}$ (pressed). Styles glabrous. Herkogamous; anther pairs at different levels, stigma above upper anther pair. Capsules 6-7 mm, stipitate, included.

Flowering Apr-Jun. Open gravelly seeps on serpentine outcrops, serpentine crevices, springs, stream sides, gravelly creek beds, roadside drainages and swales; $250-700 \mathrm{~m}$; California (Colusa, Glenn, Lake, Mendocino, Napa, and Sonoma cos.). Map 18.

Erythranthe nudata is distinct in its annual duration, few, inconspicuous, and narrow leaves, long and spreading-divaricate pedicels, and large corollas. The plants apparently are true to serpentine substrate. A presumption that E. guttata is its "progenitor" (Gardner \& Maenair 2000) is without documentation or any other kind of justification.
23. Erythranthe nasuta (Greene) Nesom, Phytoneuron 2012-40: 44. 2012. Mimulus nasutus Greene, Bull. Calif. Acad. Sci. 1: 112. 1885. Mimulus langsdorffil var. nasutus (Greene) Jepson, Fl. W. Calif., 407. 1901. Mimulus guttatus var. nasutus (Greene) Jepson, Man. Fl. Pl. Calif., 928. 1925. Lectotype (Grant 1924, p. 179): USA. California. Sonoma Co.: Knights Valley, Apr 1877, H.T. Edwards s.n. (GH; isolectotype: NY digital image!). The lectotype selection was made from collections noted in the protologue: "Our earliest specimens were collected in 1877, in Sonoma County, Cal. at Knight's Valley and Skaggs' Springs, by Mr. Henry Edwards. Mrs. R.M. Austin sent it from Butte County in 1883; while Mrs. Curran obtained fine specimens last year in localities as far apart as Lake and Kern counties." No specimen matching any of these possible collections was located at NDGreene.

Greene (1885) made these observations about the new species: "Its calyx is more uniformly spotted than in the true M. guttatus, from which it is most obviously distinct by its quadrangular winged stem, its inflorescence, racemose almost from the very base, and its small corolla, but especially by the peculiar calyx, the upper tooth of which not only almost equals the tube in length but is rendered singularly conspicuous by the enfolding about it, of the lower ones; which latter thus disappear entirely from the profile, if we may so speak, thus suggesting the specific name." Latin, nasutus, large-nosed.
Mimulus luteus var. gracilis A. Gray ex Torrey, Rep. U.S. Mex. Bound., Botany 2(1): 115. 1859. Mimulus guttatus var. gracilis (A. Gray ex Torrey) G.R. Campbell, Aliso 2: 328. 1950. Lectotype (Campbell 1950, p. 336): USA. California. Napa Co.: on rocks, Mar 1852, G. Thurber 498 (GH, photo! in Campbell 1950). Protologue: "Copper Mines, New Mexico, and near Cruces; Bigelow. Gila valley; Schott. Napa county, California; Thurber. San Luis Obispo; Parry."
Mimulus subrentormis Greene, Erythea 3: 67. 1895. Lectotype (designated here): USA. California. Shasta Co.: Burney Falls, 30 May 1894, M.S. Baker and F. Nutting s.n. (NDGreene 46422! photo-PH!, photo-UT!; isolectotypes: ND-Greene!, UC!).
Mimulus cuspidatus Greene, Leafl. Bot. Observ. Crit. 2: 6. 1909. Type: USA. California. [Stanislaus or Tuolumne Co.:] [protologue: "wet shades among rocks along the upper Stanislaus River, ... late June, 1889," E.L. Greene s.n. (holotype: NG-Greene! photo-PH!; isotype: DS digital image!). The ND-Greene sheet has no label but is marked in Greene's hand as "Type!"
Mimulus erosus Greene, Leafl. Bot. Observ. Crit. 2: 4. 1909. Type: MEXICO. Baja California. Santa Agueda, 4 Mar 1890, E. Palmer 233 (holotype: US digital image! photo-PH!).
Mimulus bakeri Gandoger, Bull. Soc. Bot. Fr. 66: 219. 1919. Lectotype (designated here): USA. California. Napa Co.: Mt. St. Helena, colonies common among streamlets, 20 Apr 1903, C.F. Baker 2608 (CAS digital image!; isolectotypes: LY?, ND-Greene!, NY digital image!). Gandoger also cited "Amer. occid. Oregon (Cusick n. 1627!)." Regarding his set of four new
species, M. bakeri, M. puncticalyx, M. parishit, and M. puberulus, Gandoger noted that "Sequentes e polymorpho Mimulo nasuto Greene desumptae sunt." Two sheets at UC are labeled "Eastern Oregon Plants, wet rocks, not rare, 15 Jun 1897, W.C. Custck 1627" thus they apparently are not duplicates of the holotype nor do they match the protologue, even though Cusick's collection number is the same.
Mimulus parishit Gandoger, Bull. Soc. Bot. Fr. 66: 219. 1919 [non Greene 1885]. Type: USA. California. [San Bernadino Co.:] "California ad S. Bernadino," S.B. Parish 4741 (holotype: LY?). A possible isotype is at MO: San Bernadino Co.: Vicinity of San Bernadino, 10002500 ft Apr 1897, S.B. Parish s.n. (MO!).
Mimulus puberulus Gandoger, Bull. Soc. Bot. Fr. 66: 219. 1919 [non Greene ex Rydb. 1906]. Type: USA. Washington. Klickitat Co.: Bingen, riverbank, 17 Apr 1905, W.N. Suksdorf 5016 (holotype: LY?; isotypes: US digital image!, WS photo-PH!). The WS sheet was photographed at the 'home of W.N. Suksdorf."
Mimulus puncticalyx Gandoger, Bull. Soc. Bot. Fr. 66: 219. 1919. TYPE: USA. Washington. [Klickitat Co.:] Ad Bingen, no date, W.N. Suksdorf 2775 (holotype: LY?; isotypes: PH-2 sheets!, WS photo-PH!).

Annual, fibrous-rooted or slender taprooted. Stems erect to ascending-erect or decumbent, $2-35(-100) \mathrm{cm}$, usually 4 -angled or sometimes shallowly 4 -winged, usually thin-wiry but sometimes fistulose, simple or branched from proximal nodes, glabrous except for a consistently small, villousglandular area just above the nodes, sometimes hirtellous distally. Leaves basal and cauline or basal absent at flowering, proximal to medial petiolate, sessile distally, petioles $3-35 \mathrm{~mm}$, narrowly flanged at the base, blades elliptic-ovate to broadly ovate, suborbicular, or depressed ovate, (5-)10-49(-80) $\mathrm{mm} \times(3-) 10-25(-60) \mathrm{mm}$, palmately $3-5$-nerved, proximal largest and persistent, apices acute to obtuse, bases cuneate to truncate or subcordate, margins irregularly dentate to dentate-serrate or nearly lacerate-dentate, commonly doubly toothed, 4-9 main teeth per side, sometimes sublacerate to sublyrate basally, more or less tinged with red on the lower surface or purple-spotted, glabrous or often hirtellous on one or both surfaces with dull, terete, sharp-pointed, eglandular hairs. Flowers ( $1-$ )2-12(-20), usually from distal nodes but sometimes from medial to distal. Fruiting pedicels (3-)7-$20(-40) \mathrm{mm}$, glandular-villous on upper side at the axils, otherwise nearly glabrous. Fruiting calyces ovoid-campanulate, ( $5-$ ) $10-15(-19) \mathrm{mm}$, nodding $30^{\circ}-180^{\circ}$, closing, upper lobe prominently elongate $1.5-3 \mathrm{x}$ beyond the lower and nose-like, glabrous to minutely hirtellous or appressed-hirtellous, minutely short-ciliate at the sinuses, frequently purple-tinged or purple-spotted. Corollas yellow, usually with a red-spotted throat and a red blotch at the base of the lower lip, tube-throats broadly cylindric, ( $5-$ ) $8-12 \mathrm{~mm}$, exserted ( $0-$ ) $1-2 \mathrm{~mm}$ beyond calyx margin, limb weakly bilabiate, expanded ca. 6-12 mm (pressed). Styles minutely scabrous to glabrous. Plesiogamous; anther pairs and stigma at the same level. Capsules (4-)5-9(-10) mm, stipitate, included. $2 n=28$ (various localities), $2 n=26$ (California, Tuolumne Co.; New Mexico, Dona Ana Co.: San Augustine Pass, $4500 \mathrm{ft}, 30$ Oct 1946, Norwell s.n., Vickery cult. 5018, voucher for $2 n=26$, UT).

Flowering (Mar-)Apr-Jun(-Jul). Cliff faces, ledges, crevices, and bases, wet rocks in rivers, stream sides, sand bars, mossy seeps, wet clay banks, moist fields, sandy soil, depressions over granite, roadsides; (30-)600-2300(-3200) m; California, Nevada, Oregon, Washington, Idaho, Arizona, New Mexico; Canada (British Columbia); Mexico (Baja California, Sonora). Map 21.

Erythranthe nasuta is characterized by its annual duration (fibrous-rooted), 4-angled stems, broadly ovate leaves commonly with irregularly toothed margins, calyces with longish, protruding upper lobe, short corollas (autogamous - chasmogamous or cleistogamous), and glandular vestiture only in the axils. At least the distal and bracteal leaves consistently have hirtellous to hirsutulous adaxial surfaces, even in the smallest of plants. Erythranthe nasuta has been abundantly collected in Arizona, particularly in Pima County, where the variability in plant size nearly matches that found in California.

Collections examined from Mexico. Baja California. San Juanico ( 8 mi ) , rocky arroyo margin, 8 Mar 1939, Gentry 4305 (ARIZ). Sonora. Canyon of the Rio Magdalena, 12 mi above Imuris, 22 Mar 1934, Shreve 6565 (ARIZ).

As observed in the introduction, plants of Erythranthe nasuta produce flowers that vary significantly in size, even on a single plant. Plants with only the tiny cleistogamous flowers (mature calyces $5-7 \mathrm{~mm}$ ) are so distinctive that upon encountering what appeared to be a population system of them, with tiny leaves and decumbent to procumbent, filiform stems, I first thought they perhaps represented a distinct species. Here it is tentatively concluded that they are variants within the morphological range of the species. Collections examined. California. Kern Co.: Greenhorn Mts., ca. 2 mi from Alta Sierra, along old road from Alta Sierra to Wofford Heights, 18 May 1976, Howell 51729 (MO); Greenhorn Range, 2.4 mi W of Wofford, mossy seep, 4300 ft , with Juncus kellogii, etc. 12 May 1969, Howell and True 45586A (MO). Kings/Kern Co.: Mt. Stanford, wet ground, Jul 1890, Sonne 263 (MO). Mono Co.: White Mts., along N fork of Cottonwood Creek, 0.1 mi above its confluence with Tres Plumas Creek, 2.8 mi S 88 E of Eva Belle Mine, moist granite crevices facing 20 WSW above creek with Rosa, Artemisia, and Holodiscus, 11 Jul 1987, Morefield 4603 (MO). Tulare Co.: White Chief, Mineral King, $9700 \mathrm{ft}, 1$ Jul 1966, Rice 242 (DAV); Cherry Hill Road, 2.1 mi above Dry Creek, chaparral, 5000 ft , dense colony growing on a recently moist sheet of decomposed granite, 2 Aug 1969, Twisselman 15914 (JEPS, MO).

Similarly, plants of Erythranthe nasuta sometimes encountered with thick-fistulose stems up to one meter tall and and with very large fruiting calyces ( $16-19 \mathrm{~mm}$ ) appear remarkably distinct and might be considered 'gigas' forms reflecting the influence of polyploidy. Regarding his collection 8158 from Madera Co., cited below, Heller (1906, p. 249) made this observation: "growing about large flat granite rocks on the edge of a stream. The plants were large and robust, many of them fully three feet high and much branched. Ordinarily it is of rather low growth." These phenotypically gigas forms, however, appear to grade into the range of variation more characteristic of the species. Representative collections of the "gigas" form. California. Butte Co.: ca. 2 mi SE of Jarbo Gap, W side of the North Fork of the Feather River, sand bar, near the Poe Power House, 9 Jun 1987, Ahart 5735 (MO). Calaveras Co.: Camp Nine Road, NE of Vallecito, 1100-2000 ft, 5 Apr 1978, Howell 52778 (VDB). Madera Co.: hills about 5 mi above Pollasky, 12 Apr 1906, Heller 8158 (MO). Napa Co.: Mt. St. Helena, colonies common along streamlets, 20 Apr 1903 , Baker 2608 (LL, MO). Sonoma Co.: on a wet bank in clay soil in Knight's Valley, upper Sonoran Life Zone, 20 Apr 1940, Heller 15545 (MO). Ventura Co.: North Fork Ventura River, wet rocks, $750 \mathrm{~m}, 2$ May 1935, Clokey 6916 (MO).

## Erythranthe nasuta and E. guttata.

A number of evolutionary studies have focused on differentiation and isolation between outcrossing Erythranthe guttata and self-fertilizing E. nasuta, but whether the plants involved were identified by the same criteria as in the present study is not known. Mating system and pollen pistil interactions are said to cause most of the isolation between the two (Kiang \& Hamrick, 1978; Diaz \& Macnair, 1999; Martin \& Willis 2007). Sweigart et al. (2006) found that one incompatibility allele (at $h \mathrm{~ms} 2$ ) appears to be widespread and perhaps fixed throughout the geographic range of $E$. nasuta. Another allele (hmsl) is restricted to some Oregon populations (Linn Co.) of $E$. guttata (the identity ambiguous by reference to the present study).

Fishman et al. (2002) identified in Erythranthe nasuta more than 20 loci of small to moderate effects underlying species differences in floral morphology related to mating system divergence. Most of those loci appeared to influence variation in aspects of floral size and shape.

Several populations of small-flowered, autogamous tetraploids that resemble Erythranthe nasuta were discovered on Vancouver Island and the Gulf Islands of southwestern Canada as well as in southwestern Oregon (Benedict 1986). On Vancouver Island these plants were growing sympatrically with diploid E. nasuta and diploid "Mimulus guttatus" (as identified in the study) and Benedict hypothesized that these two species were the parents of the tetraploid. Sweigart et al. (2008) extended the study and found the tetraploid to be "widespread and common from northern California to British Columbia." Fixed heterozygosity at allozyme loci was further evidence for Benedict of an alloploid origin for the tetraploids, and patterns of molecular variation supported the hypothesis that they were two independent alloploid origins of the tetraploids (Sweigart et al. 2008).

Two distinct haplotypes occur at each of the nuclear genes $m C Y C A$ and $m A P 3$ in each of the tetraploids (Sweigart et al. 2008). One haplotype shares near-identity with sequences from $M$. nasutus; the second is similar to but does not exactly match any members of the M. guttatus complex sampled by Sweigart et al. Populations of the tetraploid commonly have individuals with "M. nasutus-like haplotypes" mixed with those of "M. guttatus-like haplotypes."

The tetraploids resemble Mimulus nasutus at least in being annual, small-flowered obligate selfers. As noted by Benedict (p. 122), they are "Very similar to M. nasutus. All characters overlap to a degree with M. nasuitus but, under favorable growth conditions, the following structures tend to be more enlarged in M. nasutus: [height, stem width, calyx length, leaves, pedicel length, stipe length]." Benedict and Sweigart et al. found that the tetraploids are nearly completely reproductively isolated from their putative parents - E. nasuta and some expression of $E$. guttata in the broad sense. Benedict provided the following key couplet.

1 Pistil included within or equal to calyx, corolla tube-throat nearly cylindrical, plants $5-50 \mathrm{~cm}$ tall, large ones with quadrangular winged stem; diploid Mimulus nasutus
1 Pistıl usually exserted from calyx (up to 3 mm ), corolla tube-throat narrowly funnel-shaped (infundibular); plants $5-25 \mathrm{~cm}$ tall, stems tending to quadrangular but not winged, tetraploid Mimulus sp.

The species identified in these studies as Mimulus guttatus perhaps is Erythranthe microphylla as identified in the present account, as Benedict indicated that these plants are annual, which excludes E. guttata in the present sense. On the other hand, she referred to Mimulus platycalyx (here placed as a synonym of E. microphylla) and distinguished it from "annual Mimulus guttatus," even noting that she found "Mmulus platycalyx" growing close to populations of the tetraploid in Oregon. An understanding of the biology and taxonomy in this situation remains incomplete.

The tetraploid has not been distinguished in the current study (with one possible exception, below), but I have examined relatively little material from Oregon and Washington, and it is possible that I simply overlooked the variants before becoming aware of the differences noted by Benedict, which is the only place its morphology has been characterized.

I have examined one collection from northern Oregon that perhaps are similar in origin to the tetraploids above. Multnomah Co.: Base of Multnomah Falls in damp area, $280 \mathrm{ft}, 22$ Aug 1969, McArthur 33, Vickery cult. 9562, voucher for $n=28$ (UT). These plants have erect stems apparently from a rhizomatous base, the stems, pedicels, calyces, and leaves are minutely hirtellous and eglandular, the fruiting calyces are $8-11 \mathrm{~mm}$ long and apparently not closing, and the corollas are light yellow with a dark yellow palate, sparsely spotted throat, and tubes $10-12 \mathrm{~mm}$ long, little at all exserted beyond the calyx margin. If the rhizomatous morphology and tetraploid chromosome number within this population are correct as observed and consistent, it would justifiably be treated as a distinct species (a previously undescribed one, and different from the plants discussed by Benedict).

The chromosome number was reported by McArthur et al. (1972), who identified it as Mimulus guttatus, but the the tiny, autogamous flowers immediately remove it from that species.
24. Erythranthe laciniata (A Gray) Nesom, Phytoneuron 2012-40: 44. 2012. Mimulus laciniatus A Gray, Proc. Amer. Acad. Arts 11:98. 1876 [January]. Type: USA. California. [Mariposa Co.:] On the South Fork of the Merced at Clark's Ranch, 1872, C. Sulivan and A. Gray s.n. (holotype: GH).
Mimulus etsenil Kellogg, Proc. Calif. Acad. Sci., ser. 1, 7: 89. 1876 [August or later]. TyPE: USA. California. [Fresno Co.:] Near Fresno, no date, Dr. G. Etsen s.n. (holotype: CAS digital image! photo-PH!, fragment UC!).

Annual, slender taprooted or fibrous-rooted. Stems erect, $3-38 \mathrm{~cm}$, simple or branched from the base, glabrous to sparsely hirtellous, finely villosulous glandular above the nodes but not elsewhere. Leaves cauline, basal deciduous by flowering, blades elliptic to elliptic-obovate, oblanceolate, or oblong, $3-55 \mathrm{~mm}$, margins commonly narrowly pinnately lobed or dissected, sometimes merely shallowly toothed, all petiolate or distally subsessile, petioles absent or $1-35 \mathrm{~mm}$. Flowers 2-8, from medial to distal nodes. Fruiting pedicels $5-25 \mathrm{~mm}$, nodding $30^{\circ}-140^{\circ}$ at the calyx base. Fruiting calyces cylindric-campanulate, $8-10 \mathrm{~mm}$, closing, red-spotted $\pm$ glabrous, upper lobe slightly longer than the others. Corollas yellow, red-spotted in the throat and the larger usually with a single large red blotch on the lower lip, tube-throats $4-6 \mathrm{~mm}$, exserted $1-2$ beyond the calyx margin, limb weakly to strongly bilabiate, expanded ca. $5-6 \mathrm{~mm}$ (pressed). Styles glabrous. Plesiogamous; anther pairs and stigma at the same level. Capsules 5-7 mm, stipitate, included. $2 n=$ 28.

Flowering Apr-Jul(-Aug). Cracks, depressions, and seeps in granite outcrops, ledges, talus and scree, rocky stream sides, rocky slopes, roadsides, intermittent drainages; 900-2300(-2900, 3300 ) m; California (Amador, Butte, Fresno, Madera, Mariposa, Tulare, Tuolumne cos.). Map 18.

As in Erythranthe nasuta, the upper calyx lobe in E. lacinaata tends to be narrowly lanceolate to triangular (nose-like) and perceptibly falcate, curving slightly upward both in flower and in fruit. The upper lobe is not so prominently protrusive as it often is in $E$. nasuta.

Corollas size is variable in Erythranthe laciniata but size of those with open throats (vs. much reduced in size and apparently cleistogamous) is not strongly correlated with size of the individual plant. Those on some plants, however, are all or nearly all greatly reduced and apparently cleistogamous. Even the larger corollas apparently are autogamous - the anther pairs are slightly separated or equal in level and the stigma is in the middle of the anthers or at the level of the upper pair.

Plants from Butte County identified here as Erythranthe laciniata are disjunct from the main range and have much larger and more highly dissected leaves.
25. Erythranthe pardalis (Pennell) Nesom, Phytoneuron 2012-40: 44. 2012. Mumulus pardalis Pennell, Proc. Acad. Nat. Sci. Philadelphia 99: 164. 1947. TyPE: USA. California. Tuolumne Co.: Red Hills above Peoria Flat, crevices of serpentine rock, 1600 ft , 11-16 Apr 1919, R.S. Ferrus 1602 (holotype: DS digital image!; isotypes: JEPS, PH!, POM).
Mimulus cupriphilus M. Macnair, Bot. J. Linn. Soc. 100: 3. 1989. Type: USA. California. Calaveras Co.: McNulty mine, copper-contaminated soil, "April 13-20th 1987," M. McNair s.n. (holotype: BM as cited; isotype: JEPS as cited in the protologue but not located at JEPS). Menair perhaps intended the JEPS specimen cited below (identified by Mcnair as $M$. cupriphilus) as an isotype but it is not a duplicate of the cited holotype. In any case, the Menair collection at JEPS is unequivocally identified as Erythranthe pardalis.

Annual, fibrous-rooted or taprooted; stems, calyx, and pedicels short and delicately stipitateglandular; distal stems and pedicels minutely puberulent-glandular with gland-tipped hairs $0.1-0.4$ mm (to 1 mm on proximal portions of stems). Stems decumbent-ascending with distal portion erect, $5-30 \mathrm{~cm}$, simple or sometimes branched from proximal to medial nodes. Leaves mostly cauline, basal usually absent at flowering, all petiolate or distal-most becoming subsessile, proximal and medial petioles $8-20 \mathrm{~mm}$, distal $1-2 \mathrm{~mm}$, blades mostly ovate or broadly ovate to depressed-ovate, palmately 3 -veined, proximal and medial $7-22 \mathrm{~mm} \times 6-18 \mathrm{~mm}$, sometimes largest at midstem, sparsely villous to puberulent-glandular with vitreous, gland-tipped hairs, less commonly glabrous, apices obtuse to obtuse-acuminate, margins shallowly dentate-serrate with $2-3(-5)$ teeth per side mostly distally, bases rounded or cuneate to a gradually attenuate petioles $1-12 \mathrm{~mm}$. Flowers 2-12, usually evenly distributed from proximal to distal nodes. Fruiting pedicels $10-35 \mathrm{~mm}$. Fruiting calyces cylindric-campanulate, $8-11 \mathrm{~mm}$, nodding $45^{\circ}-180^{\circ}$, consistently dark purple-spotted, glabrous to sparsely puberulent-glandular, sometimes minutely hirtellous, lobes triangular-acute, uppermost longest, lower two closing upward against the upper. Corollas yellow, without prominent red spots or sometimes sparsely red-spotted on floor of throat, tube-throats narrowly funnelform to cylindric, $7-10(-12) \mathrm{mm}$, exserted $1-3 \mathrm{~mm}$ beyond calyx margin, limb bilabiate, expanded $8-12 \mathrm{~mm}$ (pressed), palate villous. Styles glabrous. Plesiogamous; anther pairs in larger corollas slightly separated and stigma at level of upper pair or both anther pairs and stigma at the same level; in smaller corollas (without expanded limb and barely exserted beyond calyx margin) both anther pairs and stigma at the same level. Capsules $4-6 \mathrm{~mm}$, stipitate, included. $2 n=28$.

Flowering (Mar-)Apr-May. Crevices of serpentine rock, stony red soils, red clay, among boulders, along streams, ditches, tailings at copper mines; $100-700 \mathrm{~m}$. California (Amador, Calaveras, El Dorado, Placer, Tehama, Tuolumne cos.). Map 19.

Erythranthe pardalis (Fig. 8) is recognized by its annual duration (fibrous-rooted or taprooted) and relatively delicate habit, ovate to depressed-ovate leaves toothed mostly on the distal margins, small, autogamous flowers produced from all nodes (proximal to distal), dark-spotted calyces, and glandular cauline and foliar vestiture. The plants occur primarily on serpentine rocks and soil but also grow on copper tailings at mine sites. The plants in Tehama County, disjunct from the main range, perhaps are not on serpentine.

Mimulus cupriphtlus was viewed by Menair (1989; Menair et al. 1989; Mcnair \& Cumbes 1989) as a narrow endemic restricted to copper-contaminated substrates - he knew it only from three populations at two closely situated copper mines near Copperopolis in Calaveras County and was unable to find it on nearby copper outcrops or mine sites. He hypothesized that M. cupruphlus is an immediate derivative of M. guttatus - 'It is probable that this species [M. cupriphilus] evolved on one or both of these copper mines from copper tolerant M. guttatus" (Menair \& Cumbes 1989, p. 219). Mcnair (1989, p. 13) suggested that M. cupriphilus probably evolved "within the last 150 years, and most probably within the last $50^{\prime \prime}$ - corresponding to the time period in which copper mines in central California were intensively worked.

The reasoning upon which this hypothesis was based is quoted here (Menair \& Cumbes 1989, p. 212): "The origin of this form [Mmulus cupriphilus] is unknown, but it is not unlikely that it evolved in the recent past close to its present location. It is very improbable that a widespread species could have gone previously undescribed in California. It is possible that it is a rare undescribed species, which evolved a tolerant race only on these two mines: however, rare species are unlikely to evolve tolerance simply because they will not have the genetic resources to do so (Menair, 1987). Also, despite a diligent search of the surrounding area, no nontolerant populations of this form have been found. It is not an unreasonable hypothesis to suggest therefore that this form represents a recent evolutionary event."

It remains possible that populations of Erythranthe pardalis on copper substrate are physiologically specialized from the more widespread serpenture plants (though the same gene may not responsible for both tolerances (eg, Mcnatr \& Smth 1987) The "copper" populations of E cupriphta, however, appear to ufilize the same gene (genetic locus) for copper tolerance as the local copper tolerant populations of $E$ guttata, an observation emphasized by Mcnair and Cumbes in their speculative scenario for the evolutionary derivation of Mimulus cupriphilus In view of the broader perspective of species relationships hypothesized here, however, the hypothesis that $E$ pardalts evolved dreetly from $E$ guttata was in part a correlate of the absence of taxonomic perspective And given the discovery that Mimulus cupriphilus is a synonym of Mimulus pardalis, there 18 no reason to beheve that the evolutionary age of this species differs significantly from its relatives


Figure 8 Erythranthe pardalis Isotype DS
Using progeny from expermentally produced reciprocal crosses and backerosses between Mimulus guttatus and $M$ cupriphitus, Mcnair and Cumbes (1989) studied genetic systems goverrung flowering tume, floral morphology, plant szze, and duration The observation by Mcnair of putative natural cupriphulus-guttatus hybrids at one site needs to be confirmed and, if confirmed, documented, as only anecdotal observation was provided

Erythranthe pardalis and its putative close relative E. nasuta occur sympatrically and it is possible that some plants in Tuolumne and Calaveras counties might even be pardalis-nasuta hybrids, but they produce the tiny flowers on short stems from basal nodes that are characteristic of $E$. nasuta but not E. pardalts: e.g., Calaveras Co.: Heckard 5507 (UC) and Robbins 3524 (UC); Tuolumne Co.: Ferris 1626 (UC) and Hoover 1336 (UC).

Additional collections examined. California. Amador Co.: Jackson, 1892, Hansen s.n. (NDGreene); Silver Lake, 20 Sep 1892, Hansen s.n. (ND-Greene); Middle Fork, 1500 ft , Apr 1893, Hansen 135 (MO); Fisher's Cabin, 2000 ft, Apr 1892, Hansen 473 (MO, ND-Greene, UC); New York Falls, 2000 ft, Apr 1892, Hansen 1286 (MO, UC); Middle Fork, 1500 ft, Apr 1892, Hansen 1288 (MO); Ione, $300 \mathrm{ft}, 25$ Mar 1896, Hansen 1517 (MO, ND-Greene); Elsie's Creek, 2700 ft , May 1896, Hansen 1626 (ND-Greene); N of Falls, $2000 \mathrm{ft}, 18$ Jul 1896, Hansen 1795 (ND-Greene); N face of steep canyon and rocky places near stream, in foothill woodland, in red clay, 4 mi E of Plymouth, on road to Fiddletown, 30 Mar 1961, Ramsey 29 (JEPS-2 sheets). Calaveras Co.: Table Top Mt., SE face, 700 ft , Copperopolis Quad, 16 Apr 1936, Belshaw 1896 (UC); 5 mi NE of Valley Springs on road to Fosteria, in moist ditch on slope with Pinus sabiniana, 3 May 1963, Breedlove 4788 (SMU); Pardee Reservoir, Pardee Lake, W of McAfee gulch at S end of the gulch, W of the Coast to Crest Trail just before it heads down into the gulch, burned ca. 5 years ago, $1032 \mathrm{ft}, 17$ May 2005, CNPS SN Foothill Team SNFN0249b (DAV); Table Mt., 7 mi S of Copperopolis on road to State Hwys 108 and 120, on top of old lava flow, $1100 \mathrm{ft}, 27$ Apr 1963, Lloyd 2444 (JEPS); McNulty Mine, coppercontaminated stream, [greenhouse grown], "seeds collected from dead plants, May 1985; plants grown August 1986,"Mcnair s.n. (JEPS); ca. 7 air mi SW of Copperopolis, Star \& Excelsior Mine, tailings pile from copper mine, $800 \mathrm{ft}, 7$ Apr 1998, Taylor 16283 (JEPS), 16285 (JEPS-2 sheets), and 16286 (JEPS-2 sheets). El Dorado Co.: 2 mi NW of Clarksville, SE slope of Bass Lake, under and along edge of serpentine rocks, 5 May 1967, Crampton 7859 (AHUC); near San Andreas, 24 Apr 1941, Eastwood and Howell 8710 (UC); along Rose Creek at its mouth on the Stanislaus River, 12 Apr 1981, Heckard 5505 (JEPS); along Stanislaus River (E side), ca. 3 air mi NNW of Columbia, ca. $880 \mathrm{ft}, 12 \mathrm{Apr}$ 1981, Heckard 5507 (JEPS). Placer Co.: Iowa Creek Road ca. 2 mi from I-80 near entrance to Auburn State Recreation Area, at creek crossing, ca. 1700 ft , boulders at base of open Sfacing slope, only at edge of boulder, herbage $\pm$ slimy, 8 Apr 1989, Ertter 8173 (MO, TEX, UC). Tehama Co.: Dales Lake Ecological Reserve, W side of Manton Rd (A6) ca. 2 mi N of Dales Station on Hwy 36, ca. 14 mi NE of Red Bluff, localized population in crevices on a shaded outcrop on the S edge of the basalt ridge crossing the NE corner of the reservoir, blue oak woodland, $740 \mathrm{ft}, 10 \mathrm{Apr}$ 1995, Oswald \& A hart 6642 (JEPS). Tuolumne Co.: 1.8 mi N of the Tuolumne-Mariposa county line, moist rocky serpentine soil along the large rock outcrops above Hwy 49, 19 Mar 1974, McNeal 1383 (UT); Red Hills area, W of Chinese Camp, along Minnow Gulch, moist crevices of ultrabasic rock, $1000 \mathrm{ft}, 8$ Apr 1973, Stebbins 9033 and 9039 (JEPS); Peoria Pass, Peoria Pass Road, 2.5 road mi N of Hwy 120, low relief serpentine hills E from the roadway, deep red, weathered serpentine clay in open Ceanothus cuneatus chaparral burned the previous summer, 26 Mar 1998, Taylor 16268 (JEPS-2 sheets); Peoria Basin, slopes at SE edge of basin ca. 1 mi E of Peoria Pass Rd, stony red weathered serpentine soils dominated by Ceanothus cuneatus chaparral, $900 \mathrm{ft}, 15$ Apr 1998, Taylor 16328 (UC); Stanislaus River 2 mi downstream from Tulloch Lake dam, shaded northerly slopes at base of Table Mt., in stony red soils dominated by Quercus douglasit-Aesculus californica, $490 \mathrm{ft}, 15$ Apr 1998, Taylor 16313 (MO, UC).
26. Erythranthe brevinasuta Nesom, sp. nov. Type: MEXICO. Baja California Sur. Sierra Guadalupe, W of Mulege, S of Rancho San Sebastian, near Ranchos San Fernando, El Cochí, Gueribo, and San Andrés, $26^{\circ} 59^{\prime} 20^{\prime \prime} \mathrm{N}, 112^{\circ} 27^{\prime} 33^{\prime \prime} \mathrm{W}$, volcanic slopes and canyon, Lysiloma divaricata, ca. 900 m, 27 Oct 1997, J.P. Rebman 4592 (holotype: SD!).

Similar to Erythranthe nasuta in its flowers produced from basal to distal nodes, small corollas and autogamous flowers, relatively broad leaf blades with irregularly serrate margins, hirtellous vestiture of bracteal leaves, pedicels sparsely glandular-villous just above the nodes; different in its terete stems, short upper calyx lobe and tendency for tiny teeth on the calyx lobes, denticulate corolla lobes, stems decumbent-ascending to ascending from the base, lack of basal branches that produce tiny cleistogamous flowers, and southern distribution disjunct from the range of $E$. nasuta.

Annual herbs, fibrous-rooted. Stems decumbent-ascending to ascending from the base, sometimes rooting a lower nodes, $6-30 \mathrm{~cm}$, thin to thickened, simple or branched from proximal nodes, glabrous except for a small glandular-villous area on the pedicels just above the nodes. Leaves cauline, basal absent by flowering, largest proximally, gradually reduced in size distally, proximal petiolate, petioles $5-20 \mathrm{~mm}$, distal sessile, basal to medial blades ovate to elliptic-ovate or depressed ovate, $10-45 \mathrm{~mm} \times 12-40 \mathrm{~mm}$, palmately 3-5 veined, margins irregularly serrate-dentate, usually doubly toothed with 3-6 main teeth per side, uppermost bracts usually sparsely to densely hirtellous on both surfaces, other leaves glabrous. Flowers 3-15, from medial to distal nodes or sometimes from proximal to distal. Fruiting pedicels $7-30 \mathrm{~mm}$, sparsely villous-glandular just above the nodes, otherwise glabrous. Fruiting calyces ovoid-campanulate, $7-9 \mathrm{~mm}$, nodding $45-90$, closing, upper lobe slightly longer, not nose-like, glabrous or less commonly minutely hirtellous, margins prominently villous at the sinuses, usually sparsely purple-dotted, upper lobe commonly with a pair of distal, shallowly dentate teeth. Corollas yellow, red-dotted in throat, usually with a larger red splotch on the lower lip, tube-throats narrowly funnelform, $8-10 \mathrm{~mm}$, exserted $3-5 \mathrm{~mm}$ beyond the calyx margin, limb weakly bilabiate, expanded 4-7 mm (pressed), each lateral lobe margin with 1-3 shallow denticles or apiculae. Styles glabrous. Plesiogamous. Capsules 4-5 mm, stipitate.

Flowering (Oct-)Dec-Mar. Volcanic slopes and canyon bottoms, sandy stream and pond edges, seepy slopes; 30-900 m; Mexico (Baja California, Baja California Sur). Map 12.

Additional collections examined. MEXICO. Baja California. Arroyo San Pedro, near San Pedro, occasional in wet sand, ca. $350 \mathrm{~m}, 28^{\circ} 30^{\prime} \mathrm{N}, 113^{\circ} 30^{\prime} \mathrm{W}, 11$ Mar 1966, Moran 12525 (SD). Baja California Sur. Canyon below La Victoria, W of Notri, $25^{\circ} 52.5^{\prime} \mathrm{N}, 111^{\circ} 25^{\prime} \mathrm{W}$, small hanging valley, $540 \mathrm{~m}, 21$ Mar 1960, Carter 3929 with Ferris (SD); [Mpio. Loreto], 15 mi SSW of San Javier, Arroyo Santo Domingo, along stream bed of Arroyo Santo Domingo, 29 Mar 1970, Crutchfield \& Turner 3639 (TEX); Sierra Giganta, Arroyo Hondo [ N of Cerro Giganta], riparian in canyon bottom, 14 Dec 1938, Gentry 4138 (ARIZ); 8 mi N of San Juanico, rocky arroyo margin, 8 Mar 1939, Gentry 4305 (ARIZ); Arroyo San Juan, $26^{\circ} 26^{\prime} \mathrm{N}, 112^{\circ} 44^{\prime} \mathrm{W}$, ca. 30 m , by seepage-fed pond (with ducks), 14 Feb 1973, Moran 20115 (SD).

These plants might be treated as a geographic outlyer within Erythranthe nasuta, but their formal segregation here emphasizes the differences in stem and corolla morphology and stem orientation. Also, the tendency to produce calyx lobes with toothed margins suggests that $E$. brevinasuta may share genetic background with the even more southern E. lagunensts. Lack of a prominent "beaked" calyx also is a distinctive difference, but there is variability in this feature within the range of typical E. nasuta. The choice of epithet is intended to point to the short calyx beak while alluding to the possible close relationship of the two species, although it perhaps is likely that $E$. brevinasuta is closer to E. lagunensis and thence to E. guttata.

The terete stems of Erythranthe brevinasuta contrast sharply with those of E. nasuta. The latter has 4 -angled stems (to narrowly 4 -winged on thicker stems) - a distinctive and consistent diagnostic feature in combination with the cleistogamous flowers, annual duration, and characteristic leaf shape and vestiture. Even on the smallest plants of E. nasuta, the 4 -angled morphology can be seen by looking just above the nodes.

The shallowly denticulate corolla margins of Erythranthe brevinasuta suggest that the species might share ancestry with $E$. dentiloba and its relatives, since this feature is not encountered elsewhere in the genus, but the overall morphology is much more similar to $E$. nasuta.
27. Erythranthe arvensis (Greene) Nesom, Phytoneuron 2012-40: 43. 2012. Mimulus arvensis Greene, Pittonia 1: 37. 1887. Mimulus langsdorffil var. arvensis (Greene) Jepson, FI. W. Mid. Calif., 407. 1901. Mimulus guttatus var. arvensts (Greene) Grant, Ann. Missouri Bot. Gard. 11: 174. 1924. Mimulhs guttatus subsp. arvensis (Greene) Munz, Aliso 4: 99. 1958. Lectotype (designated here): USA. California. [San Mateo Co.:] Belmont, May 1886, E.L. Greene s.n. (ND-Greene! photo-PH!; isolectotypes: PH 2 sheets!).

In the protologue, Greene noted that "This plant was first known to me in a specimen or two brought from Lake County in 1884 by Mrs. Curran. I have mentioned it on page 112 of the first volume of California Academy Bulletin, under M. microphyllus. In the spring of 1886 I was surprised to find it common in wheat fields among the growing grain, in both San Mateo and Marin counties, not far from San Francisco. It is strictly annual and very unlike the common $M$. guttatus to which, under the name of $M$. luteus, a large number of our species and subspecies were until recently referred. In the districts named the large perennial will be met with in the same field with the annual, if a streamlet or springy place exist; and this not rarely 5 feet high, bearing a truly magnificent panicle of racemes, sometimes the whole cluster nearly 2 feet long, and half as broad; and the annual here defined will be in seed and dying while its neighbor of the streamlets is not yet in full flower toward the end of April."

In addition to the collection from San Mateo Co, there is another relevant sheet at PH: California. [Marin Co.:] Pt. Reyes, 15 Apr 1886, E.L. Greene s.n. (PH!). Each of the three sheets has a label with handwritten identification by Greene as "Mimulus arvensts Greene." The PH sheets from Belmont were annotated by Pennell as isotypes of $M$. arvensis.

In the protologue Greene speculated that Mimulus arvensts might be the same as $M$. lyratus. Both taxa were treated as distinct species by Pennell (1951); Grant (1924) treated M. arvensis as $M$. guttatus var. arvensis but $M$. lyratus as a synonym of typical $M$. guttatus. Mmulus lyratus is regarded here as a synonym of $M$. guttatus.
Mimulus longulus Greene, Leafl. Bot. Observ. Crit. 2: 4. 1909. Lectotype (designated here): USA. Nevada. [Elko Co.:] Deeth, in low meadows along the Humboldt River, [protologue: "margins of spring pools that in summer have gone dry,"] 26 Jul 1896, E.L. Greene s.n. (NDGreene 46314!, photo-PH!; isolectotype: NG-Greene!). "The species can only be compared with my M. Hallii of Colorado; and that is low, with rather crowded leaves and flowers; has also a calyx with much more unequal teeth and these closely connivent." Treated as a distinct species by Pennell (1951), who noted that it occurs on the "Columbia Plateau of eastern Washington and Oregon eastward and southward to Montana, Utah, and Arizona." The bracts have little or no villous vestiture.
Mimulus micranthus Heller, Muhlenbergia 8: 132. 1912. Mimulus nasutus Greene var. micranthus (Heller) A.L. Grant, Ann. Missouri Bot. Gard. 11: 182. 1924. Mimulus guttatus var. micranthus (Heller) G.R. Campbell, Aliso 2: 332. 1950. Mimulus guttatus subsp. micranthus (Heller) Munz, Aliso 4: 99. 1958. Type: USA. California. Santa Clara Co.: Twenty-seven Mile Drive near Congress Springs, 13 May 1904, A.A. Heller 7410 (holotype: BKL?; isotypes: CAS digital image!, MO!, MSC, NY digital image!, PH!, UC!, US digital image!).

Mimulus hallii var. alvordensis Pennell ex Peck, Man. Pl. Oregon, 655. 1941. Type: USA. Oregon. [Harney Co.:] Alvord Ranch, lower flanks of Steins Mts., 2 Jul 1927, L.F. Henderson 7129 (holotype: PH!). Annotated by Pennell in 1945 as "TYPE" of var. alvordensis then in 1939 as "Mimulus longulus Greene." The protologue gives only this: "Wet, somewhat alkaline soil, Harney and Malheur cos."

Annual, taprooted or fibrous-rooted, sometimes rooting at proximal cauline nodes if decumbent. Stems ereet to decumbent-ascending, $5-70 \mathrm{~cm}$, simple or branched from proximal to medial nodes, usually 4 -angled, fistulose to very narrow, glabrous or sometimes minutely hirtellous in the inflorescence with deflexed hairs, eglandular. Leaves basal and cauline or basal absent by flowering, often largest at midstem or above, reduced in size distally, blades ovate to orbicular, orbicular-ovate, oblong-ovate, or (midddle and upper cauline) depressed-ovate to nearly reniform, (5) $10-35(-45) \mathrm{mm} \times 6-26(-50) \mathrm{mm}$, palmately 3-5-veined, glabrous except for bracts densely villous abaxially or sometimes on both surfaces with vitreous eglandular hairs (completely glabrous in Baja California), margins denticulate or subentire to distinctly dentate, on larger plants the proximal characteristically lacerate-lobed to pinnatifid at the margin base, apex rounded, base rounded to truncate, subcordate, or shallowly cordate, distal broadly orbicular to depressed-ovate, sessile, petioles 3-20(-90) mm. Flowers 3-8(-16), from remote distal nodes. Fruiting pedicels 5-40(-90) mm , glabrous. Fruiting calyces ovate-campanulate, (7-)9-14, lobes turning up and closing the throat or not and the throat remaining open, with or without red dots, faces minutely hirtellous. Corollas yellow, usually red-spotted, tube-throats cylindric-funnelform, (7-)8-12 mm, exserted (0-)1-2(-)3 mm beyond calyx margin, limb weakly bilabiate to subcylindric and nearly regular, expanded 5-10 mm (pressed). Styles glabrous. Plesiogamous; anther pairs not separated in level, stigma at the same level. Capsules ( $5-$ ) $6-7 \mathrm{~mm}$, stipitate, included. $2 n=28$.

Flowering Apr-Jun(-Jul). Hills, ridges, clay banks, stream banks, moist woods; 30-1900(2300 in Nevada) m; California, Nevada, Oregon; Mexico (Baja California). Map 15.

Additional collections examined. MEXICO. Baja California. 2 km SE of El Chocolate, $31^{\circ}$ $30.5^{\prime} \mathrm{N}, 116^{\circ} 23.5^{\prime} \mathrm{W}$, local in wet soil, $275 \mathrm{~m}, 11$ Mar 1979, Moran 26692 (SD); Sierra La Asamblea, NE of El Crucero (jet of Hwy 1 and road to Bahia de Los Angeles), riparian zone in the vicinity of Rancho San Luis, $29^{\circ} 16^{\prime} 35^{\prime \prime}$ N, $114^{\circ} 02^{\prime} 41^{\prime \prime}$ W, Vizcaino desert, 1000 m, 20 Apr 2004, Rebman 9872 (SD); Sierra La Libertad, vicinity of the abandoned Rancho El Paraiso, along the riparian area of Arroyo El Paraiso, $28.5424^{\circ}$ N, $113.631^{\circ}$ W, Sonoran desert, $745 \mathrm{~m}, 25$ Apr 2009, Rebman 17265 (SD); Canyon del Diablo, E slope of Sierra San Pedro Martir, reached via Santa Clara, $4200 \mathrm{ft}, 31$ Mar 1973, Taylor 2306 (UC). CANADA. British Columbia. [Chilliwack-Fraser Canyon Co.:] Aspen Grove along edge of shallow lake in rich humus, $3500 \mathrm{ft}, 26$ Jun 1934, Went 43 (UC). USA. California. Alameda Co.: Berkeley, Apr 1893, Michener \& Bioletti s.n. (ND-Greene); "Boswell's" damp rocky places, $300 \mathrm{ft}, 10$ Feb 1900, Tracy 513 (TEX). Humboldt Co.: Alder Point on Eel River, shady wet ground around spring, 500 ft , corolla yellow, not spotted, 22 May 1903, Tracy 1883 (TEX); 2 mi N of Laytonville, moist clay bank in shade, 7 Jun 1937, Heller 15892 (MO); Alton, 100-300 ft, 9 Jun 1912, Tracy 3688 (MO). Lake Co.: Hough's Springs, 7 May 1928, Abrams 12530 (MO). Marin Co.: Tiburon, Jun 1886, Greene s.n. (ND-Greene); Mendocino Co.: N of Cahto Peak ca 5 airmiles W of Laytonville, Stoten Opening at head of Elder Creek on W side of Signal Peak, moist ground along streamlet, ca. 3800 ft , flrs yellow, appearing cleistogamous, 14 May 1989, Ertter 8467 (TEX); 6.3 mi E of Dos Rios, along Poonbiurry Road between Dos Rios and Covelo, along small stream in wet soil, 28 May 1949, Wiggins 12145 (SMU, UT). Modoc Co.: Davis Creek, Jun 1895, Austm s.n. (NDGreene); Napa Co.: hills E of St. Helena, 23 Apr 1915, Jepson 6238 (UC). San Mateo Co.: San Mateo, 21 Apr 1894, Burnham s.n. (BH, as cited by Grant 1924). Santa Clara Co.: Stanford University, 25 Apr 1902, Abrams 2370 (MO); foothills near Stanford University, 2 May 1902, Baker 881 (ND-Greene); Alviso, 1892, Bioletti s.n. (ND-Greene); summit of the first ridge west of Los Gatos, 9 May 1904, Heller 7393 (MO); Smith Creek, foot of Mt. Hamilton, 10 May 1907, Heller

8517 (MO); hills west of Los Gatos, ca. $7000 \mathrm{ft}, 30$ Apr 1980, Heller 8936 (MO). Sonoma Co.: near Windsor, 18 Apr 1902, Heller \& Brown s.n. (MO); Shellville, May 1892, Michener \& Bioletti s.n. (ND-Greene). Siskyou Co.: Metcalf's ranch, NE base of Mt. Eddy, open places in the forest, ca. 3800 ft, 20 Jun 1919, Heller 13256 (MO). Idaho. Bear Lake Co.: Georgetown Canyon, 8 air mi NE of Georgetown, in cold spring water, 13 Jul 1978, Shultz 2753 (UT). Canyon Co.: Squaw Butte, gravelly wet places, $3500 \mathrm{ft}, 29$ May 1910, Macbride 143 (MO). Cassia Co.: Raft River Geothermal Area, 17 mi S of Malta, along lower Cottonwood Creek, $5000 \mathrm{ft}, 22$ Jun 1976, Allan 796 (UT); Basin, 7 Jul 1964, Harper 1157 (UT). Owyhee Co.: Hot Hole, East Fork Bruneau, wet woods, 3 Jul 1912, Nelson \& Macbride 1908 (MO, SMU). Nevada. Elko Co.: Star Canyon, SE of Deeth, $5600 \mathrm{ft}, 10 \mathrm{Jul}$ 1912, Heller 10569 (MO, UC); Jarbridge, by a spring, 7000 ft, 6 Jul 1912, Nelson \& Macbride 1959 (MO, SMU); Route 40, 2-3 miles SE of Deeth, slow-flowing brook in meadow, $5400-5500 \mathrm{ft}, 22 \mathrm{Jul}$ 1938, Pennell and Schaeffer 23430 (PH 2 sheets!). Humboldt Co.: Paradise Valley, NE of Winnemuca, irrigated meadow, 4700 ft , 24 Jun 1967, Gentry 1633 (UC). White Pine Co.: 2 miNE of Hamilton, moist spring, $8000 \mathrm{ft}, 8 \mathrm{Jul}$ 1946, McMillan et al. 80 (UT). Oregon. Grant Co.: 3 mi above Prairie, wet sunny places along W Fork of Dixie Creek, 18 Jun 1925, Henderson 5493 (MO-2 sheets). Harney Co.: damp ground 5 mi N of Wagontire, 22 Jun 1941, Peck 20858 (UC). Jackson Co.: Queen's Branch, 18 Jun 1892, Hammond 311 (MO). Klamath Co.: along Hwy 66 ca. 10.5 mi E of Klamath River crossing at Boyles Reservoir, moist to wet meadow area, Juncus dominant, bordered by Pinus ponderosa forest, ca. $4400 \mathrm{ft}, 25$ Jun 1995, Taylor 15134 (UC). Linn Co.: Big Meadows, springy places, $1370 \mathrm{~m}, 26 \mathrm{Jul}$ 1894, Leiberg 533 (UC). Utah. Box Elder Co.: Raft River Mts., Dunn Canyon, Middle Fork, moist loam soil in seeps under aspen, frequent, $7000 \mathrm{ft}, 31 \mathrm{Jul}$ 1943, Maguire \& Holmgren 22188 (UC). Washington. Stevens Co.: Loon Lake, wet meadows, common, 23 Jun 1903, Beattie \& Chapman 2101 (UC).

Erythranthe arvensis is characterized by its annual duration (fibrous-rooted or taprooted) but commonly rooting at proximal cauline nodes, glabrous, fistulose stems with nodes few and remotely spaced, depressed-ovate leaves with margins often sublyrate (lacerate-lobed to subpinnatifid) at the base, distal leaves and bracts densely villous with vitreous eglandular hairs, other leaves (proximally) glabrous, and corollas varying in size from relatively small but perhaps chasmogamous (the type of Mimulus arvensis) to even smaller (cleistogamous; the type of Mimulus micranthus). The breeding system is consistently autogamous - in larger to smaller corollas.

The plants in Baja California are considerably disjunct from the main range and they are completely glabrous, lacking the vitreous hairs on the bracts. The calyces are consistently open at maturity. More detailed study may show them to be distinct in other ways.

A diagnostic feature of Mimulus arvensis has been described as its relatively short and even-sized calyx lobes that do not turn upward to close the orifice, and this commonly is an evident feature. In fact, however, even among collections cited by Grant, some plants have a longer upper calyx lobe and lower lobes that turn upward in variable degrees.

Leaf morphology of Erythranthe arvensts often is very similar to that of E. microphylla and the two perhaps hybridize. An example of a possible hybrid is this: California. Lake Co.: 27 mi from Montcello, boggy ground along roadside, 25 Apr 1943, Ensign 337 (DAV). This is a tall plant with racemes on side branches, large, closed fruiting calyces ( $13-18 \mathrm{~mm}$ ), densely villous distal bracts, and relatively short corolla tubes ( $12-14 \mathrm{~mm}$ ) with the stigma only very slightly above the upper anther pair.

Some plants from the Cosumnes River Preserve in Sacramento Co. (e.g., PeBenito et al. 31, Popp $17 n a$, DAV) have overall morphology of Erythranthe arvensis, including villous bracts, but the corollas are slightly longer than typical and the anther pairs are separated with the stigma at or
slightly above the upper pair. This might reflect genetic influence from typical E. microphylla, which occurs in the same area. In Cold Canyon, Solano County, plants (DAV) identified here as E. arvensis have hirtellous stems and leaves, perhaps indicating genetic influence of some other species.

A collection from the Stanislaus River shows plants with the vegetative morphology of Erythranthe arvensis and with non-closing calyces but the corollas are longer with expanded limbs and the stigma well above both pairs of stamens. A hybrid with E. guttata or E. microphylla?, but more than a single plant apparently is represented on the two sheets. California. Tuolumne/ Stanislaus/ San Joaquin Co.: Stanislaus River, [no other locality data,] 17 Jun 1889, Greene s.n. (ND-Greene-2 sheets).

A series of plants from southeastern Oregon, may well warrant recognition at specific rank if they further prove to be consistent in morphology. A total of 25 individuals on two sheets have the aspect of Erythranthe arvensts but the stems of all are consistently sparsely retrorse-hirtellous. The plants are 2-14 cm tall. Harney Co.: 12 mi W of Vale, seepage slope, 21 Jun 1948, Peck 25313 (UC); 5 mi E of Harper, seepage slope, 21 Jun 1948, Peck 25313 (UC). The two collections are labeled with the same collection number but apparently are from slightly different locations: the distance between Vale and Harper is about 21 miles.

Plants of Leiberg 533 from Linn Co., Oregon, are large and have the typical vegetative aspect of Erythranthe arvensis, but the pedicels, bracts, and calyces have a mix of eglandular-hirtellous and glandular hairs, atypical of the species. Plants from Stevens Co., Washington, are typical; those from British Columbia have a typical aspect and vestiture except for a slight admixture of hirtellous hairs.

Identification of Utah and southern Idaho populations as Erythranthe arvensis is a tentative hypothesis, as there appears to be little difference between them and the Colorado system of E. hallu, which is tightly coherent morphologically and geographically, but these plants need to be studied in the context of the larger group of annuals with autogamous flowers, as discussed under $E$. charlestonensts.
28. Erythranthe brachystylis (Edwin) Nesom, Phytoneuron 2012-40: 43. 2012. Mimulus brachystylis Edwin, Leafl. W. Bot. 7: 137. 1954. Type: USA. Nevada. Nye Co.: Moist loam around a spring on a steep north slope in Sunnyside Canyon about 5 miN of Ione, $7000 \mathrm{ft}, 14$ Jul 1930, K.H. Beach and L.E. Mills 881 (holotype: US digital image!, Fig. 9; isotype: UC!). The holotype includes about 10 plants, the isotype 7 plants.

Annuals, fibrous-rooted, less commonly taprooted, apparently sometimes producing thin runners from basal nodes. Stems erect, 6-22 $\mathrm{cm}, 4$-angled, filiform to slightly thickened but not distinctly fistulose, glabrous. Leaves basal and cauline, blades ovate to depressed-ovate or suborbicular, margins undulate to subentire or weakly and irregularly dentate, apices rounded, bases truncate to subcordate, proximal petiolate, distal subsessile to sessile, proximal and medial glabrous, distal villous with thin-walled, flattened, vitreous hairs, with an admixture of eglandular, sharppointed hairs. Flowers 4-10, from medial to distal nodes. Fruiting pedicels $5-10 \mathrm{~mm}$ in proximal axils, shorter than or equalling subtending leaves, $1-5 \mathrm{~mm}$ distally and the calyces appearing sessile or subsessile, glabrous. Fruiting calyces broadly elliptic-ovoid, $10-13 \mathrm{~mm}$, apparently not closing at the throat or only slightly so, red-tinged to sparsely purple-dotted or without dots, minutely hirtellous, lobes subequal, upper slightly longer than the others. Corollas yellow, apparently without red markings, tube-throats narrowly cylindric, $7-9 \mathrm{~mm}$, exserted $0-1 \mathrm{~mm}$ beyond the calyx margin, limb weakly bilabiate or hardly at all, expanded ca. 3 mm (pressed). Styles glabrous. Plesiogamous; anther pairs and stigma at the same level. Capsules $4-5 \mathrm{~mm}$, stipitate, included.

Known only from the type collection in Nye Co., Nevada. Map 15.


Figure 9 Erythranthe brachystylts Holotype of Mimulus brachystyhs, US

Erythranthe brachystylis is very similar to E. arvensis. Both are annual in duration and produce depressed-ovate leaves, the distal with vitreous-villous surfaces, and tiny corollas barely exserted from the calyx and probably cleistogamous (the protologue of Mimulus brachystylis notes "style much shorter than the shorter pair of stamens, scarcely $3-3.5 \mathrm{~mm}$ long"). The vestiture of the distal leaves includes an admixture of eglandular sharp-pointed hairs, sometimes encountered in $E$. arvensis, though not typical, perhaps reflecting introgression from E. nasuta.

The distinction of Erythranthe brachystylhs from E. arvensts is primarily in its foreshortened pedicels and more inflated fruiting calyces. The fruiting calyces appear to be subsessile or on pedicels shorter or only equalling the subtending leaves. The difference is qualitative but produces a distinctive aspect.
29. Erythranthe cordata (Greene) Nesom, Phytoneuron 2012-40: 43. 2012. Mimulus cordatus Greene, Leafl. Bot. Observ. Crit. 2: 5. 1909. Lectotype (Pennell by annotation in 1941, formally designated here): USA. New Mexico. [Grant Co.:] Bear Mountain, near Silver City, about $5000 \mathrm{ft}, 24$ Apr 1903, O.B. Metcalfe 28 (US digital image! photo-PH!; isolectotypes: DS digital image!, MO-2 sheets!, ND-Greene!, NY digital image!, PH!, UC!). Noted in the protologue: "part of [O.B. Metcalfe's] n. 28 as in U.S. Herb., the other specimens under that distribution number being of a very different species." The US sheet has a fruiting plant of $E$. cordata and four separate flowering branches of E. geyerr; Pennell in 1941 annotated the sheet to indicate that the single plant of $E$. cordata is the "TYPE." All plants on the DS, MO, ND-Greene, NY, PH, and UC sheets are E. cordata. Treated as a distinct species by Pennell (1951), who described the range as "southern California and northern Lower California, east to southern New Mexico."
Mimulus maguiret Pennell, Notul. Nat. Acad. Sci. Philadelphia 43: 6. 1940. Type: USA. Arizona. Coconino Co.: 2 mi W of Williams, Mt. Spring Ranch, among sedges under Pinus ponderosa in small swamp, $6500 \mathrm{ft}, 26$ Jun 1935, B. Magure et al. 12214 (holotype: PH!). Annotated by F.W. Pennell in 1945 as Mimulus longulus Greene (a synonym of Erythranthe arvensis).
Annual, fibrous-rooted, sometimes producing leafy runners from basal nodes, stems often rooting at proximal nodes and appearing rhizome-like. Stems mostly erect, 12-40 cm , very rarely apparently greater than 100 cm , mostly simple, commonly fistulose, distinctly stipitate-glandular with fine, minute, gland-tipped hairs. Leaves basal and cauline, basal persistent, basal and lower cauline petiolate, petioles $6-20(-40) \mathrm{mm}$, blades orbicular to broadly elliptic-ovate or oblong-elliptic, basal largest, basal and midcauline $15-30(-50) \mathrm{mm}$, gradually reduced in size distally to as small as 6 mm , cauline mostly sessile, not connate, becoming broadly ovate to narrowly reniform, palmately 3-5(-7)veined, margins shallowly and evenly to unevenly dentate, apex obtuse to rounded, base cuneate to truncate or shallowly cordate. Flowers (5-)10-16 in bracteate racemes. Fruiting pedicels $10-30$ (45) mm , minutely stipitate-glandular. Fruiting calyces (8-)14-18(-20) mm, nodding $45^{\circ}-90^{\circ}$, closing, apparently without red dots, upper lobe longest, $1.5-2 \mathrm{~mm}$, sparsely stipitate-glandular to hirsutulous (or mixed glandular-hirsutulous), or glabrous. Corollas yellow, red-spotted, lower lip deeper yellow, tube-throats $8-14 \mathrm{~mm}$, exserted $1-3 \mathrm{~mm}$ beyond calyx margin, limb weakly to strongly bilabiate, expanded $9-14 \mathrm{~mm}$ across (pressed). Styles glabrous. Plesiogamous; anther pairs and stigma at the same level. Capsules $5-7 \mathrm{~mm}$, stipitate, included. $2 n=60$.

Flowering (Jan-)Mar-Jun. Springs, seeps, stream edges, muddy banks, flood plains, marshes and swamps, wash bottoms, wet depressions, wet places among boulders; ( $600-$ )800-2400(-ca. 3000) m. Arizona, California, Colorado, Nevada, New Mexico, Texas, Utah. Map 16.

A collection identified as Erythranthe cordata by the present author, voucher for $n=28$ (Catron Co., N.M., as cited below), needs to be rechecked for identity since six other chromosome counts for $E$. cordata have been $2 n=60$ (San Bernadino Co., Calif.; Grant Co., N.Mex.; Brewster,

Culberson, Jeff Davis, and Presidio cos., Tex.). The chromosome number of $E$. cordata may indicate that it is not as closely related to $E$. arvensis $(2 n=28)$ as hypothesized here.

Collections examined. MEXICO. Chihuahua. 5 mi SW of Rancho Los Nogales along Piedras Verdes River, riparian, $5350 \mathrm{ft}, 9$ Jul 1997, Spencer et al. 393 (TEX). Coahuila. Mpio. Ocampo, Sierra del Carmen, Rcho. Morteros y Rcho. San Isidro, ca. 178 km de Musquiz por la brecha Muzquiz-Boquillas del Carmen (carr. 53), 1300 m , matorral rosetofilo, 27 Mar 1992, Carranza et al. 1327 (ARIZ); Mpio. Ocampo, Sierra Maderas del Carmen, moist zone along creek below Campo 5 in Oso Canyon, 29 May 1975, Riskind \& Patterson 1836 g (LL). Sonora. Palm Canyon, Sierra Baviso, 17 mi SE of Magdalena on road to Cucurpe, seep on N-facing slope, 19 Mar 1978, McCarten 2725 (ARIZ); Dead Bull Canyon, near Arizpe, riparian, 17 Mar 1982, Thompson \& Davis 82-31 (ARIZ); ca. 5 mi E of Esqueda along road to reservoir, in canyon, ca. $4000 \mathrm{ft}, 6 \mathrm{Apr}$ 11979, Toolin 259 (ARIZ); Rio de los Alisos (Rio Magdalena), 28.6 m S of Nogales along Mex Rte 15, in wet sandy mud, with Populus fremontit and Platanus wrightit, 14 Mar 1980, Toolin 543 (ARIZ); Palm Canyon, Sierra Baviso, 17 mi SE of Magdalena, streamside, 13 Feb 1977, Van Devender s.n. (ARIZ); Rio Moctezuma, Moctezuma, Barisómari, 27 Jun 1938, White 341 (ARIZ); Rio Bavispe, Colonia Oaxaca, at water's edge, 7 Jul 1938, White 456 (ARIZ); Aguaje de Bacatejaca, between Granados and Bacadéhuachi, grassland, 7 Jul 1940, White 2917 (ARIZ).

Representative collections examined. USA. Arizona. Cochise Co.: Chiricahua Mts., E of Onion Saddle, 7200 ft, 31 Mar 1962, Barr 62-190 (ARIZ); Chiricahua Mts., Barfoot Park, 8000-8250 $\mathrm{ft}, 19$ Sep 1906, Blumer 1399 (ARIZ); Mule Mts., Bisbee, wet places, Apr 1909, Goodding 53 (UT), Goodding 60 (ARIZ); Huachuca Game Preserve, Tinker Canyon, in edge of water, 14 Apr 1950, Goodding 123-50 (ARIZ); Dragoon Mts., canyon below Van Horn Mine Cabin, 5 May 1953, Goodding 58-53 (ARIZ); Ft. Huachuca Military Reservation, Kino Spring, 22 Apr 1961, Goodding 17-61 (ARIZ-2 sheets). Coconino Co.: lower part of Oak Creek Canyon, wet area, ca. $5000 \mathrm{ft}, 8$ May 1934, Ferguson \& Ottley 5046 (UC). Gila Co.: $2 \mathrm{mi} N$ of Greenback Creek at Bouquet Ranch, ca. 5 mi N of Theodore Roosevelt Lake, cattle tank/spring, bank's edge, 3 Apr 1991, Baker 8161 (ARIZ); Fort Apache Indian Reservation, Rock Creek crossing of Canyon Inn-Medicine trail, on and adjacent to seeps-wet soils, ca. $4000 \mathrm{ft}, 26$ Apr 1967, Granfelt $67-58$ (ARIZ). Graham Co.: Turkey Creek, 6 mi W of Point of Pines, 70 mi E of San Carlos, flood plain of creek, ponderosa pine, $6200 \mathrm{ft}, 24 \mathrm{Jul}$ 1952, Bohrer 436 (ARIZ); Graham Mts., Tripp Canyon, 15 mi S of Pima, along water course, 9 Apr 1935, Moeller 10573 (ARIZ). Maricopa Co.: 4 mi S of Wickenburg, Palm Lake, marsh, 12 May 1966, Crutchfield 1526 (LL); Sauceda Mts., 1500 ft, 27 Mar 1960, Johnson s.n. (ARIZ); Lake Pleasant Regional Park, area \#6, Cottonwood Creek, in creek, 27 Mar 1965, Lehto 4729 (ARIZ); Route 88, Apache Trail, Tortilla Flats, muddy bank of pool, 29 Mar 1940, Pennell \& Gibson 24968 (ARIZ); Sierra Estrella above Santa Cruz Village, small plants on N -facing slope of wet cliff base, $570 \mathrm{~m}, 2$ Apr 1985, Rea 608 (ARIZ). Mohave Co.: Black Mts., 3 mi E of Sitgreaves Pass, spring, 26 Mar 1967, Barr $67-97$ (ARIZ); Cerbat Mts., 2 mi E of Chloride, 4500 ft , in mats in seep on cliff, 20 Apr 1979, Bowers 1659 (ARIZ); Outer Gorge, Toroweap, Saddle Horse Canyon, Devils's Bathtub, under juniper, $4500 \mathrm{ft}, 10$ May 1952, Cottam 13251 (UT); along Trout Creek ca. 6 km downstream of Ash Creek [ca $34.88^{\circ} \mathrm{N}, 113.65^{\circ} \mathrm{W}$ ], grus and granite substrate, with Fraximus velutina and Acacta greggil, $3600 \mathrm{ft}, 18$ Apr 2006, Rink 4727 (ARIZ). Pima Co.: Organ Pipe Cactus Natl. Monument area, Dripping Spring, 15 Apr 1952, Cottam 12817 (ARIZ, UT); Puerto Blanco Mts., Dripping Springs, moist soil near spring, $2300 \mathrm{ft}, 18$ Mar 1945, Darrow 2443 (ARIZ); Ajo Mts., Alamo Canyon, $2500 \mathrm{ft}, 14$ Mar 1939, Nichol s.n. (ARIZ); northern Santa Rita Mts., moist wash bottom in desert grassland, $4450 \mathrm{ft}, 5$ Apr 1986, McLaughlm 3334 (ARIZ); along Arivaca Creek, 5.5 mi NW of Arivaca, walnut, ash, cottonwood, Sambucus mexicana, Vitts arizonica, $3450 \mathrm{ft}, 3 \mathrm{Apr}$ 1988, McLaughlin 4498 (ARIZ); Buenos Aires Natl. Wildlife Refuge, unnamed canyon on S side of Las Guijas Mts., moist face of Mesquite Root Dam, $3600 \mathrm{ft}, 23$ Mar 1989, McLaughlm 5476 (ARIZ); Saguaro Natl. Monument, canyon near Sweetwater Trail, wet depression in limestone bedrock, 3499
ft, 7 Mar 1989, Rondeau 89-57 (ARIZ); Fort Lowell, Rillito River, 25 Apr 1903, Thornber 5386 (ARIZ); Sabino Canyon, Santa Catalina Mts, 2 May 1903, Thornber 5498 (TEX); Santa Catalina Mts., Sabino Canyon, common along water courses, 3000-5000 ft, 5 Apr 1913, Thornber s.n. (ARIZ); Tucson, 1 May 1894, Toumey s.n. (UC). Pinal Co.: Sacaton, Gila River bottom, 25 Mar 1932, Harrison \& Kearney 8383 (ARIZ). Santa Cruz Co.: Pajarito Mts., Sycamore Canyon, ca. $1 / 4 \mathrm{mi}$ below Hank \& Yank Spring, in water of stream in narrow canyon, oak woodland, ca. $4000 \mathrm{ft}, 7 \mathrm{Apr}$ 1974, Longwell s.n. (ARIZ); San Rafael State Park, Parker Canyon, wash in sandy soil with Chilopsis linearis, Chrysothamnus nouseosus, 28 Mar 2001, McLaughlm 9096 (ARIZ); Santa Rita Mts., 6 Apr 1935, Nelson 1398 (UC); mountains between Ruby and the Tucson-Nogales hwy, "Massacre Camp," rocky stream banks, 12 Apr 1935, Nelson \& Nelson 1478 (MO); Sonoita River, near Patagonia, 4000 $\mathrm{ft}, 22$ Mar 1925, Shreve s.n. (ARIZ); mts. near Patagonia, Apr 1908, Thornber 2905 (ARIZ-2 sheets). Yavapai Co.: Prescott Natl. Forest, Milk Creek, 7 mi N of Wagoner, riparian, $3900 \mathrm{ft}, 28$ Apr 1968, Carpenter s.n. (SMU); Bradshaw Mts., 22 Jun 1892, Toumey s.n. (UC). California. San Bernadino Co.: Deet[?] Canyon between Whipple Mts., and Black Meadows Wash, Power Line Rd, Parker Dam, marshy ground, bottom of canyon, 21 Apr 1940, Alexander \& Kellogg 1186 (UC 667449); Whipple Mts., sandy wash, in seep, 25 Apr 1940, Alexander \& Kellogg 1220 (UC); Whipple Mts., marshy meadow in a deep canyon, Vickery cult. 5063 , seeds from UC 667449, " 1 to 3 ft in nature but only 6 inches to 1 ft in greenhouse," voucher for $n=30$ (UC, UT-3 sheets); Mohave Desert, W slope of Providence Mts., 6 airline mi E of Kelso in Cornfield Spring Canyon, Larrea-Yucca schidigera, wet gravel along stream banks, $3400 \mathrm{ft}, 28$ May 1941, Wolf 10818 (UC). Nevada. Clark Co.: Pintwater Range, Tim Spring, $4800 \mathrm{ft}, 22$ Jul 1978, Ackerman 31231 (UC); Opal Mts., Delaney Canyon, 2 mi S of Nelson, $4200 \mathrm{ft}, 27 \mathrm{Apr}$ 1938, Train 1512 (UC). Nye Co.: W Frenchman, exclosure above Cane Springs pond, $4000 \mathrm{ft}, 2$ Jun 1967, Beatley 3999 (JEPS); NW Yucca Flat, Whiterock Spring, seepage area, $5000 \mathrm{ft}, 16$ Jun 1967, Beatley \& Bostick 4109 (JEPS). New Mexico. Catron Co.: Blue River, Apache Natl. Forest, growing on gravel at edge of water, 25 Aug 1966, Crutchfield 2084 (LL); 10 mi S of Reserve, S of jet of NM Hwy 12 with US 80 , shallow rocky stream, open sunny area, $5800 \mathrm{ft}, 28$ Jun 1963, Vickery \& Tat 7, cult. no. 6613, voucher for $n=28$ (UT); Gila Cliff Dwellings Natl. Monument, 15 May 2001, West 448 (ARIZ). Dona Ana Co.: Organ Mts., May 1891, Wooton s.n. (NMC); Organ Mts., Filmore Canyon, 15 May 1899, Wooton s.n. (NMC); Organ Mts., Filmore Cañon, 26 May 1905, Wooton s.n. (NMC); Organ Mts., 28 May 1905, Wooton s.n. (UC). Grant Co.: Foxtail Canyon on Gila River, wet granitic sand, 27 Apr 1966, Crutchfield 1381 (LL); Burro Mts, W.C. Silby's Range, Gila Forest, $1880-2180 \mathrm{~m}, 22$ Oct 1919, Eggleston $16440(\mathrm{PH}) ; 4.5 \mathrm{mi} \mathrm{N}$ of 516 Ranch, Mogollon Creek, with Quercus, Juniperus, Juglans, Rhus, Platanus, 11 Jun 1935, Maguire et al. 11936 (MO); 2.5 mi N of Pinos Altos, wet shaded hillside about spring in canyon, 24 Apr 1947, McVaugh 8043 (TEX); mountains near Pinos Altos, 26 Jun 1936, Stewart s.n. (MO); Mangus Springs, 17 road mi NW of Silver City, growing in Mangus Spring at its intersection with the sandy arroyo of Mangus Creek, which passes under US-180, $4800 \mathrm{ft}, 12$ May 1981, Ward \& Salazar 82-013, voucher for $n=30$ (NMC). Hidalgo Co.: Guadalupe Canyon, 15 mi E of jct with road to Douglas, Arizona, Juntper-Agave-Yucca zone, sandy soil along edge of creek, $4200 \mathrm{ft}, 20$ Apr 1968, Hess 1776 (NMC); Peloncillo Mts., Hwy 80 at Granite Gap, sandy wash, $4500 \mathrm{ft}, 30$ Apr 1983, Worthington 10, 133 (UT). Luna Co.: wet places in old creek bed, canyon E of road, foothills E of Cook's Peak, 12 mi NW of Florida Station, 29 Apr 1947, McVaugh 8130 (TEX-2 sheets); Florida Mts., NW side of mts., SE of Capitol Dome, $5300 \mathrm{ft}, 30$ Apr 1983, Worthington 10133 (UT). San Juan Co: 10 mi W of Farmington, seep area, 27 Jun 1963, Tat \& Vickery $l$ (UT). Sierra Co.: 1 mi W of Hillsboro, 5600 ft , 1 May 1905, Metcalfe 1537 (MO-2 sheets, NMC, TEX-2 sheets). Socorro Co.: Water Canyon, Cibola Natl. Forest, in S Baldy area, small spring in canyon, pine-oak-juniper, 3 Jun 1965, Crutchfield 112 (LL, NMC); mountains SE of Patterson, $5800 \mathrm{ft}, 16$ Aug 1900, Wooton s.n. (NMC). Texas. Brewster Co.: Alpine Creek below Kokernut Springs, 18 May 1946, Cory 53186, Vickery cult. 5373, voucher for $n=30$ (UT); Big Bend Natl. Park, Tornillo Creek near Hot Springs, 20 Apr 1948, Whitehouse 19715 (SRSC). Culberson Co.: W side of Beach Mt., ca. 7 mi NW of Van Horn, edge of seep, 7 Sep 1963, no collector cited, Vickery cult. 6296, voucher for $n=30$ (UT). E1 Paso Co.:
ca. 20 mi E of El Paso, frequent in wet places among boulders at Hueco Tanks, $4000 \mathrm{ft}, 5 \mathrm{Apr}$ 1958, Warnock \& Johnston 16158 (MO, SRSC, TEX); Hueco Mts., Hueco Tanks, dried bottom and edges of pond, silty soil, 20 Aug 1946, Waterfall 6606 (MO); Franklin Mts., Ash Canyon, 0.5 mi SE top N Franklin Mt., in mesic canyon among rhyolite boulders at springs and seeps, 29 Apr 1978, Worthington 2711 (TEX). Jeff Davis Co.: near Ft. Davis, Limpia Creek, in shallow pools, 10 Oct 1926, Palmer 32152 (TEX); Davis Mts., wet ground about spring, 8 Jun 1928, Palmer 34402 (MO); Limpia Canyon, $5000 \mathrm{ft}, 30$ Jun 1962, Tai \& VIckery 12, cult. 6618, voucher for $n=30$ (UT); Davis Mts., frequent along Limpia Canyon, Wild Rose Pass, $4700 \mathrm{ft}, 24$ May 1949, Warnock 8652 (SRSC). Presidio Co.: Tapia Canyon, 12.4 mi E of Redford, in wet sand and seepage, 16 Apr 1965, Correll 30859 (LL); Pinto Canyon near Ruidosa, abundant in spring water, 13 Apr 1919, Hanson 590 (MO); Fresno Creek, 5 mi upstream from road to Lajitas, 12 Jul 1982, Johnston \& Warnock 3682, Vickery cult 6294, voucher for $n=30$ (UT); W side of Chinati Mts., infrequent in moist areas below dam in lower Tinaja Prieta Canyon, $3900 \mathrm{ft}, 10$ Nov 1988, Warnock 275 (SRSC). Utah. Kane Co.: Cottonwood Wash Canyon, 26.5 mi SE of the jct of the Cottonwood Wash road and Utah Hwy 54 at Cannonville, at Cottonwood Wash Spring, $5100 \mathrm{ft}, 7$ Jun 1967, Reveal 819 (TEX). Washington Co.: Zion Natl. Park, Horse Pasture Plateau, where Potato Hollow ends at cliffs edge, wet marsh below small reservoir, $6750 \mathrm{ft}, 22$ Jun 1965, Holmgren 1995 (TEX); Zion Natl. Park, Emerald Pool Trail, $4000 \mathrm{ft}, 6$ May 1935, Weight $838 z$ (UT).

Erythranthe cordata is characterized by its fibrous-rooted habit (annual in duration, without rhizomes but commonly rooting at the lower nodes), short corollas and autogamous fertility (anthers and stigma at the same level), closed calyces, sparsely villous-glandular vestiture (lacking hirtellous, eglandular hairs), and stems commonly fistulose in larger plants. The abbreviated corollas with autogamous fertility of $E$. cordata are diagnostic and separate it from E. guttata. The difference in chromosome number also points to their evolutionary distinction.

The following contrasts, using style length even when corollas are absent, usually provide a distinction between the two species.

1. Corolla tubes $8-14 \mathrm{~mm}$, exserted $1-3 \mathrm{~mm}$ beyond calyx margin, limb expanded $9-14 \mathrm{~mm}$ (pressed); styles $7-10 \mathrm{~mm}$, exserted $1-3$ beyond fruiting calyx margin; plesiogamous

Erythranthe cordata

1. Corolla tubes ( $10-) 12-20(-26) \mathrm{mm}$, exserted $3-5$ beyond calyx margin, limb expanded $12-$ $24(-25) \mathrm{mm}$ (pressed); styles $15-20 \mathrm{~mm}$, exserted $6-9 \mathrm{~mm}$ beyond fruiting calyx margin; herkogamous

Erythranthe guttata
In the interpretation here, plants of Erythranthe cordata are highly variable in size - from tiny fibrous-rooted plants with nearly filiform stems to much larger individuals with fistulose stems rooting at proximal nodes. Label comments for a Kane Co., Utah, population of E. cordata (Reveal 819 ) are congruent with the observations of the present study over the whole range of the species: "This population is exceedingly variable as the plants range from less than 1 cm high to over 8 dm high; growing both in seeps where the plants are large to sandy flats along the stream where the plants are $1-4 \mathrm{dm}$ high, to grassy flats where the same plants were as small as 1 cm ."

Erythranthe cordata and E. nasuta are sympatric in Arizona and southeastern New Mexico and small plants of each species may be very similar in aspect, both with cleistogamous corollas and both with reduced vestiture. Those of E. nasuta can be recognized by the distal and bracteal leaves with hirtellous to hirsutulous adaxial surfaces - a lens usually is required to see this feature and it sometimes is most obvious around the leaf margins. A possible hybrid between the two, with the aspect of $E$. cordata but leaves, pedicels, and calyces with a mixture of stipitate-glandular and
eglandular-hirtellous hairs, is this: Arizona. Yavapai Co.: Black Canyon, $2000 \mathrm{ft}, 14$ Apr 1960, Demaree 42259 (ARIZ).
30. Erythranthe charlestonensis Nesom, sp. nov. Type: USA. Nevada. Clark Co.: Charleston Mts., Griffith's Mine, moist sloping rock, $2400 \mathrm{~m}, 25$ Jun 1938, I.W. Clokey 8116 (holotype: UC!; isotypes: MO-2 sheets!, TEX-2 sheets!).

Annual, fibrous-rooted; stems, leaves, calyces commonly dark purplish. Stems erect, 4-16(24) cm , simple, slender, weakly 4 -angled, glabrous. Leaves basal and cauline or basal deciduous, largest at midstem or above, cauline relatively few on long internodes, blades regularly ovate to ovate-lanceolate, $5-16(-20) \times 3-11 \mathrm{~mm}$, palmately 3 -veined, proximal glabrous to sparsely villous on both surfaces, distal and bracteal sparsely villous adaxially with vitreous, flattened, eglandular hairs, sparsely hirtellous to glabrous abaxially, margins shallowly and evenly crenulate to serrate-dentate or denticulate, apices acute to obtuse, bases truncate to subcordate, proximal to distal all short-petiolate ( $1-3 \mathrm{~mm}$ ). Flowers ( $1-) 4-7$, often from all nodes but commonly beginning about midstem. Fruiting pedicels $6-19 \mathrm{~mm}$, deflexed $45^{\circ}-90^{\circ}$ at the calyx glabrous or villous-glandular near the nodes. Fruiting calyces $10-13 \mathrm{~mm}$, closing, sometimes purple-dotted, minutely hirtellous, sometimes also sparsely glandular, margin villous at the sinuses, upper lobe not prominently protruding or only slightly so. Corollas yellow, sparsely red-dotted, tube-throats narrowly cylindric, $4-6 \mathrm{~mm}$, exserted $0.5-1 \mathrm{~mm}$ beyond calyx margin, limb barely expanded, nearly regular. Styles glabrous.
Plesiogamous; anther pairs and stigma at the same level. Capsules 6-8 mm, stipitate, included.
Flowering Apr-Jul(-Aug). Grassy slopes, damp soil, moist rocks; (900-)1700-2400(-2800) m. Arizona, Nevada. Map 15.

Additional collections examined. Arizona. Mohave Co.: 20 mi from Kingman, Union Pass, [ca. 2600 ft ], 30 May 1893, Wilson 25 (UC). Nevada. Clark Co.: Charleston Mts., McFarland Springs, grassy slope, $2425 \mathrm{~m}, 4$ Jul 1938, Clokey 8115 (SMU, UC); Charleston Mts., Fletcher Canyon, damp soil with Pinus scopulorum, $2250 \mathrm{~m}, 20$ Jul 1939, Clokey 8493 (UC); Charleston Mts., Griffith's Mine, moist sloping rock, $2400 \mathrm{~m}, 12$ Jul 1939, Clokey 8494 (UC); Charleston Mts., Vic Wilson's Ranch, Right Hand Canyon, 3 May 1939, Maguire 16603 (UC); Timber Mt., Highland Spring, 15 mi NW of Bell Ranch, $5000 \mathrm{ft}, 25$ Apr 1938, Train 1487 (UC). Elko Co.: Ruby Mts., Terrace Guard Station, $8500 \mathrm{ft}, 13-18$ Aug 1941, Mills \& Beach 1460 (UC).

The epithet of the new species refers to the Charleston Mountains (a.k.a. Spring Mountains) of Clark County, where the plants have been most abundantly collected. This population system is recognized here at specific rank because it is relatively constant in morphology and it cannot be definitely associated with any of the other annuals with autogamous flowers that occur in the region -- Erythranthe arvensts, E. brachystylls, E. cordata, E. nasuta, and E. hallu. The species is characterized by its annual duration, autogamous flowers, small stature and commonly purplish color of stems and leaves, regularly ovate, short-petiolate leaves with shallowly crenate margins and (distal leaves) sparsely villous to glabrous adaxial surfaces, hirtellous calyces without a prominently longer upper lobe, and lack of glandular hairs.

Individuals of all of these six species may flower when as small as $2-5$ centimeters high, and the distinctions among them at such small sizes commonly are subtle. There is no feature of $E$. charlestonensts without overlap in the other species, but the same is essentially true of all of the species. Each has its own distinctive and relatively consistent constellation of characters and distinctive geographical range. Overlap in morphology may reflect hybridization and introgression, or it might be reflective of the ancestral genome from which they all probably arose - or both.

Erythranthe hallu has a relatively more northern distribution (Map 15) and its leaves and calyces and very thin and greenish; plants often are completely glabrous or the distal leaves and bracts are slightly villous adaxially. The chromosome number has been reported as $2 n=32$, distinct from the $2 n=28$ of $E$. nasuta and $2 n=30$ of $E$. cordata.

Erythranthe arvensts has a more western and northern distribution (Map 15) and rarely develops purple coloration. The plants, including the calyces, usually are glabrous except for the distal leaves and bracts, which are prominently and diagnostically silvery-villous adaxially. At least the middle and upper cauline leaves typically are depressed-ovate to nearly reniform in outline, and the calyces of $E$. arvensis tend to remain open at maturity. The narrow endemic E. brachystylls (Map 15 ) is most similar to $E$. arvensis.

Erythranthe nasuta (Map 21) occurs sympatrically with E. charlestonensis. Even in smallest sizes, it is characterized by a noticeably longer upper calyx lobe and by distal leaves and bracts that are moderately to densely hirsutulous-hirtellous on both surfaces at least around the proximal margins. Leaf margins are variable but often, as in the larger plants, unevenly and shallowly dentate with sharp teeth.

Erythranthe cordata (Map 16) in a characteristically larger growth expression occurs sympatrically with $E$. charlestonensts. Pedicels and calyces of $E$. cordata are sparsely to moderately villous-glandular. The presence of hirtellous vestiture distinguishes it from small individuals of $E$. cordata.
31. Erythranthe hallit (Greene) Nesom, Phytoneuron 2012-40: 43. 2010. Mimulus hallu Greene, Bull. Calif. Acad. Sci. 1: 113. 1885. Mimulus guttatus var. hallii (Greene) AL. Grant. Ann. Missouri Bot. Gard. 11: 172. 1924. Lectotype (Grant 1924, p. 173): USA. Colorado. [Jefferson Co.:] about Golden City, in shady ravines, at lower altitudes only, 1871, E. Hall and J.P. Harbour 398 (MO!). Protologue: "Collected by Hall \& Harbour apparently, and also later by the writer, in 1871.... It is remarkable for having, for the size of the plant, the smallest corollas of any of the species." Identified by Weber and Wittmann (1992) as "a very depauperate modification" of Mimulus guttatus.

Annual, fibrous-rooted. Stems erect, 2-8 cm, simple, slender, 4-angled, sometimes apparently rooting at lower nodes if proximally decumbent, glabrous. Leaves basal and cauline or basal deciduous, largest at midstem or above, cauline relatively few on long internodes, blades ovate to ovate-lanceolate, 5-11 x 3-9 mm, palmately 3-veined, glabrous or the distal and bracteal leaves sparsely villous with vitreous, flattened, eglandular, multicellular hairs, margins very shallowly dentate or denticulate, apices acute to obtuse, bases truncate to cuneate, basal and lower to mid cauline with petioles $1-4 \mathrm{~mm}$, sessile distally. Flowers ( $1-$ ) 4 ca. 10 , sometimes from all nodes but usually beginning about midstem. Fruiting pedicels 6-14 mm, usually deflexed ca. $90^{\circ}$ at the calyx. Fruiting calyces (5-)7-10 mm, closing, sometimes red-dotted, glabrous, margin villous at the sinuses, upper lobe not prominently protruding or only slightly so Corollas yellow, often red-dotted, tubethroats narrowly cylindric, $4-6 \mathrm{~mm}$, exserted $0.5-1 \mathrm{~mm}$ beyond calyx margin, limb barely expanded, nearly regular. Styles glabrous. Plesiogamous; anther pairs and stigma at the same level. Capsules 46 mm , stipitate, included $2 n=32$ (voucher from Grand Co., Douglas 61-480, UT).

Flowering May-Aug. Ledges, seeps, along streams, wet meadows; 1900-3200 m; Colorado (Boulder, Clear Creek, Grand, Jefferson, Larimer counties). Map 15.

Additional collections examined. Colorado. Boulder Co.: Boulder, stream, $5700 \mathrm{ft}, 20$ Jun 1906, Daniels 25 (MO); along trail from Buckingham campground to Fourth of July Mine, wet meadows, $9500 \mathrm{ft}, 13$ Aug 1979, Teare and Taylor 1339 (DAV); seepage over granite slabs at base of

S-facing slope in Pinus ponderosa woodland along Boulder Creek, $5600 \mathrm{ft}, 21$ Jun 1979, Taylor and Teare 7396 A (DAV); beside a spring near summit of Flagstaff Mt., just W of Boulder, $7000 \mathrm{ft}, 18$ May 1949, Weber 4653 (TEX, UC); 8 mi W of Lyons, South St. Vrain Canyon, $6300 \mathrm{ft}, 12$ Jun 1922, Wtegand \& Upton 4257 (MO). Clear Creek Co.: Georgetown, damp places, 18 Jul 1892, Patterson 294 (MO, UC). Grand Co.: Devil's Staircase, East Inlet, 3.5 mi E of Grand Lake, Shadow Mt. area, moss banks on cliff in temporary seep areas, ca. $9000 \mathrm{ft}, 20$ Jul 1961, Douglas $61-315$ (UT); North Inlet $1 / 4 \mathrm{mi}$ below Cascade Fall, 3 mi NE of Grand Lake, shaded ledge, under overhanging, S-facing cliffs, $8800 \mathrm{ft}, 7$ Aug 1961, Douglas 61-480, voucher for $n=16$ (UT); Little Yellowstone Canyon, 14.5 mi N of Grand Lake, Rocky Mt. Natl. Park, gravel at streamside, $9560 \mathrm{ft}, 10 \mathrm{Aug}$ 1961, Douglas $61-488$ (UT). Jefferson Co.: Morrison, moist soil, $1970 \mathrm{~m}, 3$ Jun 1921, Clokey 4287 (UC); Morrison, 27 Jul 1889, Greene s.n. (ND-Greene). Larimer Co.: Estes Park, moist ground, 29 Jun 1912, Churchill s.n. (MO); Loveland, 55 mi above dam in Big Thompson Canyon, in seep on rocky ledge, no date, Vickery cult 7313 (UT).

Erythranthe hallil may be an eastern vicariant of E. arvensis. - both have a tendency to root at basal nodes and distal and both have bracteal leaves villous with vitreous, flattened, eglandular, multicellular hairs although this vestiture is barely developed and often absent in E. halli. The only reported chromosome number from the Colorado plants, $2 n=32$, also appears to be distinct among possible relatives of $E$. hallit, and if the count is correct, the species perhaps is not so closely related to others of the Microphylla group.

Erythranthe hallit is endemic to the same area of Colorado and has the same chromosome number as E. gemmpara. The latter, however, is different in calyx morphology and molecular data (Beardsley et al. 2004) indicate that it is distantly related to sect. Stmolous. Erythranthe gemmipara is treated by Barker et al. (2012) as a monotypic section of the genus.
32. Erythranthe dentiloba (B. Rob. \& Fernald) Nesom, Phytoneuron 2012-40: 44. 2012. Mimulus dentlobus B. Rob. \& Fernald, Proc. Amer. Acad. Arts 30: 120. 1894. Type: MEXICO. Sonora. Nacori, $3750 \mathrm{ft}, 4$ Dec 1890, C.V. Hartman 288 (holotype: GH photoPH!; isotypes: NY digital image!, US digital image!). Fig. 8.

Perennial, rhizomatous, mat-forming. Stems prostrate, $5-15 \mathrm{~cm}$, rooting at the nodes, glabrous to very sparsely glandular. Leaves cauline, petiolate, blades ovate to braodly ovate or orbicular, depressed-ovate, $2-10(-17) \times 2-10(-20) \mathrm{mm}$, palmately 3 -veined, surfaces glabrous or rarely sparsely villosulous-glandular adaxially with vitreous flattened hairs, commonly punctate adaxially, margins dentate to dentate-serrate with $3-5$ teeth per side, apices mostly obtuse, bases truncate to cuneate, petioles $1-4 \mathrm{~mm}$. Flowers axillary, usually 1 per stem at distal nodes. Fruiting pedicels $5-25 \mathrm{~mm}$, glabrous. Fruiting calyces cylindric-ovoid, 5-7 mm, lobes 5 or $3(+2)$, closing, nodding $45^{\circ}-90^{\circ}$. Corollas yellow, red-dotted, tube-throats funnelform, $5-7 \mathrm{~mm}$, exserted $2-3 \mathrm{~mm}$ beyond calyx margin, limb bilabiate, expanded $6-9 \mathrm{~mm}$ (pressed), lobes fimbriate. Herkogamous; anther pairs at different levels, stigma above upper anther pair. $2 n=32$.

Flowering Mar-Sep(-Oct). Springs, seeps, canyon bottoms, cliff faces, rocks in water, moist banks; $500-2300 \mathrm{~m}$; Mexico (Baja California, Chihuahua, Sinaloa, Sonora). Map 22.

Additional collections examined. MEXICO. Baja California Sur. N side of Cerro de la Giganta, western branch of Arroyo Hondo, near spring, ca. 700-800 m, 28 Nov 1947, Carter et al. 2077 (ARIZ); Sierra Giganta, above Pto. Escondido, moist rocks in canyon bottom, $2000 \mathrm{ft}, 22 \mathrm{Apr}$ 1938, Gentry 3772 (ARIZ, MO); Sierra de las Palmas, La Champagna, S of Santa Rosalia, in seeps, Nolma grassland over undulating broken terrain of volcanic mountain top, 27-29 Apr 1952, Gentry \& Fox 11792 (ARIZ); canyon above Puerto Escondido, 13 Mar 1937, Rempel 161 (ARIZ). Chihuahua. S slope, Barranca del Cobre, in arroyo, short tree forest, $4200 \mathrm{ft}, 11 \mathrm{Apr} 1963$, Caddell 1062 (BRIT);


Figure 10. Erythranthe dentıloba, photo by Mark Egger, used by permission. Sonora, Mexico, along Mex. Hwy 16 between Trigo Colon and Maycoba, 17 Aug 1998.

Sierra Charuco, Arroyo Hondo, pine forest spring, on moist rocks, 11 Sep 1935, Gentry 1765 (ARIZ); Guicorichi, Rio Mayo, meadow spring, on rocks at water edge, 8 Oct 1935, Gentry 1990 (ARIZ, UC); Sierra Charuco, Rancho Byerly, rocky igneous slopes, pine-oak forest, $5000-5800 \mathrm{ft}, 17-25 \mathrm{Apr} 1948$, Gentry 8085 (ARIZ, UC); Sierra Charuco, Arroyo Hondo, igneous rocky canyon slope in pine-oak forest, aquatic, $4500-5500 \mathrm{ft}, 16-30$ Apr 1948, Gentry 8073 (ARIZ, UC); Mpio. Temosachi, Nabogame, pine-oak-cypress forest, $1800 \mathrm{~m}, 12$ Oct 1988, Laferriere 1946 (ARIZ); Mpio. Temosachi, Nabogame, arroyo, $1800 \mathrm{~m}, 24$ Apr 1987, Laferriere 372 (ARIZ); Parque Nacional de Cascada Basaseachic, in the barranca at the base of the falls, wet, bare, slick rock at the base of the trail on steep N slope, shaded with Abies, Ostrya, Acer, 1600 m , forming dense mats on the rocks where moist, 11 Nov 1989, Mahrt \& Spellenberg 79 (NMC); Sierra Obscura, spring seep, $1600 \mathrm{~m}, 26$ Mar 1985, Martin s.n. (ARIZ); Sierra Obscura between Rancho El Oso and Sawmill at El Serrichito, basaltic soils, $2000 \mathrm{~m}, 7-9$ Nov 1986, Martin et al. s.n. (ARIZ); Canon de Lopez, $1350 \mathrm{~m}, 17 \mathrm{Mar}$ 1988, Martin s.n. (ARIZ); Mpio. Ocampo, Parque Nacional de Cascada Basaseachic, barranca to W of falls, at base of dry cliffs in more or less open, dry Pinus durangensis-Quercus hypoleucoides woods, ca. $1800 \mathrm{~m}, 26$ Apr 1985, Spellenberg et al. 8030 (NMC); near Chuichupa in the Sierra Madres, 31 Aug 1899, Townsend \& Barber 388 (NMC); Cascada de Basaseachic, Rio Basaseachic, pine-oak forest, common herb in moist soil at edge of stream, 4 Jun 1999, Van Devender 99-215 (NMC); Cascada de Basaseachic, Rio Basaseachic, pine-oak forest, abundant herb on wet rock surface under waterfall, $1800 \mathrm{~m}, 4$ Jun 1999, Van Devender 99-220 (NMC). Sinaloa. 5 mi N of El Palmito, slopes and ledges of barranca with Pinus and Quercus, $2300 \mathrm{~m}, 28$ Oct 1973, Breedlove 35728 (MO); Sierra Surotato, Los Pucheros, Penasco, pine-oak-madrono forest, in seep of cavern on calcareous cliff, 5500-6500 ft, 17-24 Mar 1945, Gentry 7220 (ARIZ). Sonora. Rio Mayo region, KM 196 on Hwy 16, Tithonia stop W of Tepoca, 950 m, 14 Mar 1988, Ferguson s.n. (ARIZ); Agua Salado, 15 mi NE of Los Tanques by road, below seep in small side canyon along road from Los Tanques to Las Chinacas, tropical deciduous forest, $500 \mathrm{~m}, 15 \mathrm{Mar} 1992$, Fishbein et al. 87 (ARIZ);
along Hwy 16, 3.6 mi E of Rio Maycoba crossing, N-facing cliff with seeps in oak woods, 1400 m , mat-forming herb, 7 Sep 1995, Fishbein et al. 2516 (ARIZ); Rio Mayo, San Bernadino, arroyo, water in rocks, Toiwe, 25 Feb 1935, Gentry 1353 (ARIZ, UC); Los Tepalcates on old road to Bermudez, $1450 \mathrm{~m}, 15$ Mar 1988, Martin s.n. (ARIZ); Los Cien Pinos, $1700 \mathrm{~m}, 16$ Mar 1988, Martin s.n. (ARIZ); Sahuarivo to Coroqui, upper short tree forest, $900 \mathrm{~m}, 18$ Mar 1992, Martin et al. s.n. (ARIZ); 18.3 mi E of the Rio Yaqui bridge near Tonichi, on the road to Carrizal and Santa Rosa, canyon with many palms, 3200 ft , locally common perennial herb along a stream, mat-forming, 27 Mar 1983, Sanders 3717 (UC); Mpio. de Alamos, Arroyo El Cobre, ca. 9 km (by air) N of Guirocoba below (just W of) Choquincahui (El Cobre), among mosses and liverworts in the moistened soil of a seep along the arroyo bank, riparian tropical deciduous forest, $520 \mathrm{~m}, 17$ Mar 1995, Stemmann et al. 621 (ARIZ).

All plants of sect. Simiola with laciniate-lobed corollas (Mexico, Arizona, New Mexico, and Texas) have generally been identified as Mimulus dentlobus, but these oceur as three, morphologically distinct, widely allopatric population systems, each of which is treated here as a separate species. There is no evidence of intermediacy. Erythranthe dentiloba is the only one of the three with an allogamous breeding system.
33. Erythranthe parvula (Woot. \& Standl.) Nesom, Phytoneuron 2012-40: 44. 2012. Mimulus parvilus Woot. \& Standl., Contr. U.S. Natl. Herb. 16: 171. 1913. Type: USA. New Mexico. Grant Co.: "vicinity of Silver City, Fort Bayard, Santa Rita, Fierro, the Mimbres Valley and East Canyon tributary to it, and on the G.O.S. Ranch, in canyons withing 10 miles of the ranch house," Rocky Canyon, 29 Aug 1911, J.M. Holzinger s.n. (holotype: US digital image!; isotype: MO!). The US sheet has the date "9 August" handwritten on the label, but the MO sheet has "Aug 29." Because the printed label gives the range of collection dates as "Aug. 27 to Sept. 12, 1911" presumably the handwritten date on the US label was in error and the correct date is August 29.

Perennial, rhizomatous, mat-forming. Stems prostrate, $5-15 \mathrm{~cm}$, sometimes rooting at the nodes, stipitate-glandular distally. Leaves cauline, petiolate, blades ovate to orbicular-ovate or depressed-ovate, 3-11 mm x 3-9 mm, palmately 3-veined, villous-hirsute on both surfaces, densely so adaxially, margins shallowly denticulate to dentate with 3-5 teeth per side, apices acute to obtuse, bases truncate to cuneate, petioles $1-4 \mathrm{~mm}$. Flowers axillary, few and scattered at distal nodes. Fruiting pedicels $7-15 \mathrm{~mm}$, minutely stipitate-glandular. Fruiting calyces cylindric-ovoid, $4-5 \mathrm{~mm}$, closing, nodding $45^{\circ}-90^{\circ}$, 5 -lobed, moderately to densely villous-glandular. Corollas yellow, reddotted, tube-throats funnelform, $6-8 \mathrm{~mm}$, exserted $4-5 \mathrm{~mm}$ beyond calyx margin, limb bilabiate, expanded $4-6 \mathrm{~mm}$ (pressed), lobes fimbriate. Plesiogamous; anther pairs barely separated in level and essentially contiguous, stigma even with upper anther pair. $2 \mathrm{n}=32$ (Arizona. Maricopa Co.: along Eagle Creek, Vickery 13007, UT). Fig. 9.

Flowering Apr-Sep. Wet vertical rock faces, ledges, and rocky slopes, seepy wash banks; 500-2400(-3400) m. Arizona, New Mexico; Mexico (Sonora). Map 23.

Additional collections examined (ASU fide SEINet). MEXICO. Sonora. 4 mi E of Rancho Diablo in Cajón Bonito, on the SW-facing bare rock, 1 May 1976, Mason 3199 (ARIZ). USA. Arizona. Graham Co.: Upper Gila River drainage, on Bonita Creek, near mouth of Midnight Canyon, in mats on rocky W-facing canyon wall, a few inches to 1 ft above water, ca. $3800 \mathrm{ft}, 21 \mathrm{Jun}$ 1978, McGill 2391 (ARIZ, ARIZ digital image!); Aravaipa Canyon, east end, near confluence with Turkey Creek, S-facing seepage cliffs above creek, vertical cliffs and ledges (rhyolite?), riparian vegetation, $3000 \mathrm{ft}, 2$ Apr 1977, Reeves 5456 (ARIZ). Greenlee Co.: 5 or 6 mi SE of Morenci, Eagle Creek Hot Springs, canyon, $5000 \mathrm{ft}, 29$ Jan 1977, Bissonette 7460 (ARIZ); Eagle Creek above confluence with Gila river, upstream from pump station, vertical conglomerate canyon walls, 6 Sep 1998, McGill 7003 (ARIZ); Eagle Creek, narrow riparian canyon and hillside, $3700 \mathrm{ft}, 29$ Jun 1977, Minckley s.n.
(ARIZ). Maricopa Co.: Lower Camp Creek, seep spring in face of cliff, N slope, silt on rock cliff, $1600 \mathrm{ft}, 14$ Sep 1952, Blakley B-1597 (ARIZ); Superstition Mountains, Le Barge Canyon, along stream $2340 \mathrm{ft}, 7 \mathrm{Apr} 1963$, Lehto 1719 (ARIZ) and 1719-b (ARIZ): Camp Creek, 2.1 road mi W of confluence with Verde River, wash bank with seeps, 7 Jun 1977, McGill 1415 (ARIZ, ASU). Pinal Co.: Peralta Canyon in Superstition Mountains foothills $1900 \mathrm{ft}, 21$ Mar 1965, Lehto 4631 (ARIZ). Yavapai Co.: Tangle Creek; ca 2 km SE of Tangle Peak and ca. 5 km NW of the Verde River, SEfacing seep, prostrate annual in wet soil at base of small, shallow caves, 762 meters, 12 April 1992, Baker 8815 (ARIZ). New Mexico. Catron Co.: Little Creek, 4 mi S of Gila Cliff Dwellings, Gila Natl. Forest, attached to rock cliff in dripping wet area, 6 Jun 1965, Crutchfield 139 (LL); Mogollon Mountains at Whitewater Spring, 10,200 ft, 9 Sep 1980, Fletcher 4879 (UNM, fide SEINet); upper end of Snow Lake in the Gila National Forest, gravel and silty loam of mud flats, 7300 ft , 12 Sep 1990 , Hutchins 12740 (UNM, fide SEINet). Grant Co.: Bear Canyon, 6 mi E of Gila, forming dense mats on moist vertical sides of overhanging cliffs, $5000 \mathrm{ft}, 23$ May 1935, Maguire et al. 11662 (UC).


Figure 11. Erythranthe parvula, habit, flower, and leaf. Photos by Russ Kleinman, Bill Norris, and Kelly Kindscher, Western New Mexico Univ. Dept. of Natural Sciences and the Dale A. Zimmerman Herbarium. Vascular plants of the Gila Wilderness. New Mexico, Grant Co., Black Range, Rocky Canyon, 4 Jun 2009.
34. Erythranthe chinatiensis Nesom, sp. nov. Type: USA. Texas. Presidio Co.: Chinati Mtns.

State Natural Area, Pelillos Canyon, deep pool at foot of dam, Boulder Canyon, a large steep, bowl-shaped igneous area N side of Chinati draining off Chinati Peak, tiparian area and seeps from crevices in igneous rock face of canyon wall, 3775 ft , associates include Salix gooddingit, Cephalanthus, Juglans microcarpa, Tecoma stans, Brickellia, Perityle dissecta, Mtmulus dentitobus, and small frogs, mat-forming, flrs yellow, upper lobes paler than middle lower lobe, reddish maroon spots in throat, 17 Sep 2004, Lott et al. 5316 (holotype: TEX). Fig. 10.

Different from Erythranthe dentiloba in its autogamous flowers and strongly reflexed lower corolla lip. Different from Erythranthe parvula in its nearly glabrous leaves and its strongly reflexed lower corolla lip. Similar to both species in its prostrate habit, 5 -lobed calyces, and fimbriate corolla lobes.

Perennial, rhizomatous, mat-forming. Stems prostrate, $5-20 \mathrm{~cm}$, sometimes rooting at the nodes, glabrous. Leaves cauline, petiolate, blades ovate to broadly ovate or orbicular-ovate, 4-15(22) $\mathrm{mm} \times 4-15(-18) \mathrm{mm}$, palmately $3-5(-7)$ veined, glabrous to moderately villosulous adaxially with vitreous, flattened, eglandular or minutely gland-tipped hairs, glabrous abaxially, margins shallowly denticulate or merely mucronate to mucronulate with 3-6 teeth per side, apices acute to obtuse, bases truncate to cuneate, petioles $2-10(-20) \mathrm{mm}$. Flowers axillary, few and scattered at distal nodes. Fruiting pedicels $10-20 \mathrm{~mm}$, glabrous. Fruiting calyces ellipsoid, $5-6 \mathrm{~mm}$, closing, nodding $45^{\circ}-90^{\circ}$, 5 -lobed, glabrous to sparsely villosulous-glandular. Corollas yellow, red-dotted, tube-throats funnelform 7-8 mm, exserted 4-5 mm beyond calyx margin, limb bilabiate, expanded 67 mm (pressed), lobes fimbriate. Plesiogamous; anther pairs barely separated in level and essentially contiguous, stigma even with upper anther pair.

Flowering Mar-Sep. Seeps in vertical cliff faces, wet bluffs; 900-2300 m; Texas (Presidio Co.). Map 23.

Additional collections examined. USA. Texas. Presidio Co.: S side of Chinati Peak, locally common perennial herb in moist shaded area near seep spring, igneous soils, ca. $6900 \mathrm{ft}, 7 \mathrm{Jun}$ 1977, Butterwick \& Lott 3784 (TEX); near falls in Mexican Canyon, 27 Nov 1942, Hinckley 2645 (SRSC); S side of Bofecillos Mts., under overhanging rock where water drips continually in Tapada Creek, ca. $2700 \mathrm{ft}, 4$ Mar 1944, Hinckley 2918 (SRSC); S Chinati Mts., right fork of Tinaja Prieta Canyon, in moist soil of perennially wet seep, with mosses and Aquilegia, 15 Apr 1978 , Lott 58 (SRSC); Chinati Mountains State Natural Area, Pelillos Canyon, deep pool at foot of dam, riparian area and seeps from crevices in igneous rock face of canyon wall, 3775 ft , mat-forming, 17 Sep 2004, Lott 5316 (SRSC); Chinati Mountains State Natural Area, Pelillos Canyon, between the dam and Tinaja Prieta fork, canyon bottom woodland of Salix, Juglans, Cephalanthus, and Quercus, $3910 \mathrm{ft}, 25$ Mar 2005, Lott et al. 5449 (TEX); near head of trail between Barnett Bros. ranch on Horse Creek and S side of Chinati Mts., hanging in mats vertically permanently wet cliffs, ca. 2000 m , flrs apparently 4-lobed, the upper lobe broad, 21 Jul 1945, McVaugh 7472 (LL, SMU); Big Bend State Park, Tapado Canyon, $2963 \mathrm{ft}, 6$ Mar 2009, Morey color photo (SRSC); Mexicano Falls and 0.5 air mi SE in Arroyo Segundo, Big Bend Ranch, wet, mossy cliff face, locally common decumbent perennial, corolla yellow, 27 Aug 1984, Poole 2568 (TEX); Chinati Peak and canyons N and E of the peak, overhanging and seeping bluffs, mat-forming subsucculent, flowers yellow with red spot on lower, larger petal, 7 Jun 1977, Powell \& Powell 3095 (LL, SRSC); Tapado Canyon below Redford, limestone soil, sparse on slopes, 5 Feb 1960, Warnock 19100 (SRSC); midslopes of Chinati Peak, rare at limestone seep, $5700 \mathrm{ft}, 27$ Mar 1959, Warnock \& Powell 17779 (SRSC).

The leaves of the type collection are at the upper range of variation in size measured for the species.


Figure 12 Erythranthe chinatiensts, holotype TEX


Figure 13 Erythranthe chmattensts, Butterwick \& Lott 3784, TEX


Figure 14. Erythranthe chinatiensis. Big Bend Ranch State Park, Tapado Canyon, $2963 \mathrm{ft}, 6$ Mar 2009. Photograph by Roy Morey, mounted on herbarium sheet at TEX.
35. Erythranthe madrensis (Seem.) Nesom, Phytoneuron 2012-40: 44. 2012. Mimulus madrensis Seem., Bot. Voy. Herald 9: 322, plate 58. 1856. Type: MEXICO. [Durango]. In swamps, on the road from Durango to Tepic," 1850, B. Seemann 2110 (holotype: K, fide Pennell 1935; apparent isotype: BM fide Vickery 1973). The illustration in the protologue (Fig. 11 in the present account) shows the diagnostic features, including the 3-lobed calyx. The relatively long corollas and protruding style, suggestive of allogamy, are similar to $E$. pallens, but the narrowly expanded limb, short pedicels, and small leaves are those of $E$. madrensis as described here. Fig. 11.

Mimulus wlensii Vickery, Madroño 22: 161. 1973. Type: MEXICO. Durango. W of E1 Salto, on wet banks near KM 1155 on the Durango-Mazatlan road, $2615 \mathrm{~m}, 24$ Aug 1959, D. Wiens 2643 , voucher for $n=16$ (holotype: UT digital image, isotype: UT digital image!).

Perennial, rhizomatous, mat-forming, all parts glabrous, stems and leaves (abaxially) commonly purplish. Stems prostrate to decumbent, rooting at the nodes, $5-12 \mathrm{~cm}$, often ascending to ascending-erect or erect in the inflorescence. Leaves mostly cauline, broadly ovate to orbicular-ovate, blades $2-10 \times 2-8 \mathrm{~mm}$, palmately $3-5$-veined, bases cuneate to truncate, apices mostly obtuse, margins shallowly dentate to mucronate, 2-6 teeth per side, adaxial surfaces minutely punctate, all petiolate, petioles $1-6 \mathrm{~mm}$. Flowers $1-5(-7)$, mostly at distal nodes. Fruiting pedicels $5-30 \mathrm{~mm}$. Fruiting calyces ovoid, $5-8 \mathrm{~mm}$, closing, nodding, lobes usually 3 , sometime the 2 middle lobes slightly developed or represented by a mucro at veins end, apices mostly rounded. Corollas yellow, red-dotted, tube-throats narrowly funnelform, 5-9 mm, exserted 2-4 mm beyond calyx margin, limb bilabiate, expanded $6-10 \mathrm{~mm}$ (pressed). Plesiogamous; anther pairs barely separated in level and contiguous, stigma at same level as upper anther pair. Capsules $2.5-3 \mathrm{~mm} .2 \mathrm{n}=16$.

Flowering Mar-Aug. Wet crevices, ledges, cliff faces, seepage in road cuts, rocks at waterfalls and in streams, stream banks, moist banks and ditches; ( $1000-$ ) $1500-2800(-3300) \mathrm{m}$. Mexico (Chihuahua, Durango, Jalisco, Michoacan, Sinaloa, Sonora). Map 24.

Additional collections examined. MEXICO. Chihuahua. Mpio. Batopilas-Mpio. Urique, between Basogochic and Quirare in pine-oak forest near small stand of Abies durangensis, small clumps in rock crevices along arroyo, $6870 \mathrm{ft}, 3$ Jun 1978, Bye 8570 (TEX); Mpio Guachochi-Mpio Urique, S side of Barranca del Cobre between Napuchi and Rio Urique near KM 69.6 of CreelGuachochi road in open pine-oak forest, along moist seepage area of road cut, forming mat on perpendicular moist soil surface, 31 May 1980, Bye 9725 (TEX); shallow canyon (Arroyo E1 Revention?), below Saguaribo, just below cascada, on rocks under cascada, $1600 \mathrm{~m}, 17$ Mar 1992, Fishbein 158 (ARIZ); Sierra des Papas, Son-Chi, rock in flowing water, 20 Oct 1933, Gentry 641M (ARIZ); Sierra Charuco, Arroyo Hondo, igneous rocky canyon slope in pine-oak forest, seep, 4500$5500 \mathrm{ft}, 16-30$ Apr 1948, Gentry 8159 (ARIZ, UC); Mpio. Temosachi, Nabogame, 12 km NW of Yepachic, in stream, $1800 \mathrm{~m}, 1$ Nov 1986, Laferrtere 347 (ARIZ); Mpio. Temosachi, Nabogame, trailing, pine-oak-cypress forest, arroyo, $1800 \mathrm{~m}, 21$ Mar 1988, Laferriere 2262 (ARIZ, TEX); Cascada Basaseachic, top of falls, ashy volcanic rocks, $1900 \mathrm{~m}, 17$ Mar 1986, Martm et al. s.n. (ARIZ); 80 km SW of El Vergel on road to Guadalupe y Calvo, 3.2 km S of bridge in Turuachi, deep canyon, area of pines and oaks, abundant on wet rocks around seepage, ca. $2600 \mathrm{~m}, 26$ Aug 1983, Nesom 4971 (TEX); Barranca del Cobre, ca. 54 mi S of Creel and 6 mi SW of the road intersection at Cafe La Casita on the road to La Bufa, vicinity of Basigochi, pine-oak woodland on mountain slope of volcanic ash, 7500 ft , locally common perennial, 22 Mar 1984, Sanders 4772 (UC-2 sheets); Mpio. Ocampo, canyon to $S$ of fall, thin soil over wet, slick rock along river, 26 Apr 1985, Spellenberg et al. 8007 (NMC); Parque Nacional de Cascada Basaseachic, in the box canyon at the base of the falls, matted on river bank at base of falls, ca. $1700 \mathrm{~m}, 26$ Apr 1986, Spellenberg et al. 8448 (NMC); Parque Nacional de Cascada Basaseachic, in the barranca at the base of the falls, in wet clayey soil near base of cliffs, 1570 m, 25 Apr 1987, Spellenberg et al. 9058 (NMC). Durango. Sierra Madre Occidental, between Mazatlan and Durango, 2 mi E of El Espinazo, $8600 \mathrm{ft}, 8$ Jun 1962, Hutchinson 2507 (UC); 12.5 mi W of La Ciudad, rocky seepage bluff, $8050 \mathrm{ft}, 22 \mathrm{Jul}$ 1975, LeDoux et al. 2032 (LL); 39 road mi SW of El Salto on Hwy 40, dripping wet granitic seepage cliff ca. 50 mi high, ca. $2400 \mathrm{~m}, 21$ Jul 1969, Marcks \& Marcks 1204 (LL); 21.7 mi NE of El Paraiso, Sinaloa, on road between Villa Union and El Salto, wet ledge in seepage, 8400 ft 29 Sep 1953, Ownbey 1982 (UC); 3.4 mi E of El Palmito, 2 Apr 1970, Powell \& Turner 1866 (TEX); along Mex Hwy 40, 2 mi W of Las Bancos and 22 mi E of El Palmito, 13 mi W of La Ciudad, steep dripping cliffs and slopes along and above road, 27 Sep 1973, Reveal 3548 (TEX); 111 road mi N of Santiago Papasquiaro on road to Topia, 5 mi W of Cienega Nuestra Senora, pine-oak-madrone-juniper woods, 2420 m , shaded creek


Figure 15. Erythranthe madrensis, line drawing from the 1856 protologue.
bank and gravelly creek bed, 18 Sep 1982, Spellenberg 6711 (NMC); Mpio. Mezquital, 37 km SW de Mezquital, en lugares con mucha humedad, bosque de encino-pino con Arbutus, $2450 \mathrm{~m}, 6$ Mar 1985, Tenorio L. 8078 (ARIZ); crest of the Sierra Madre, ca. KM 177 on Hwy 40, ca. 32 km W of La Ciudad, wet roadside ditch, ca. $2185 \mathrm{~m}, 12$ May 1976, Vickery 2903, cult. 12,220 (SRSC, UC); roadcuts on steep mountainside, Hwy 40 just W of La Fraguita, 1.1 mi E of turnout to El Indio (13.2 mi E of the Sinaloa border, ca. $2400 \mathrm{~m}, 16$ Mar 1983, Whittemore 83-023 (TEX). Jalisco. Mpio. Mezquitic, 15 km despues de bajio del Tule hacia Bolanos, postrada, in colonias donde escurre el agua de un manantia, 12 Mar 1991, Chazaro \& Sorensen 6574 (TEX); NE slopes of Nevado de Colima, above Canoas de Leoncito, steep mountain sides in alder-zacaton zone, 3100-3300 m, 13 Sep 1952, McVaugh 12896 (MICH, SMU!, US). Michoacan. Distr. Coalcoman, Barroloso, bank of stream, 2250 m, 20 Oct 1939, Hinton 15349 (ARIZ, LL, MO, TEX); near E1 Barroloso, McVaugh 22835 (MICH, US); Mpio. Tzitzio, 3 km al S de Mil Cumbres camino a Villa Longin, 2500 m , hierba postrada sobre rocas, en ladera humeda, 11 Oct 1983, Martmez S. 4811 (MO); just E of Morelia along hwy (KM 212.3), dense patch on vertical, mossy, dripping bank, 23 Aug 1976, Wonderly 347 (NMC). Sinaloa. Sierra Monterey, Quebrada de Platano, moist cliffs by waterfall, canyon in oak forest, 3000 $\mathrm{ft}, 12$ Mar 1940, Gentry 5909 (ARIZ); Sierra Surotato, Los Pucheros, rocky stream bank, openly forested slope of pine-oak-madrono, $5500-6500 \mathrm{ft}, 17-24$ Mar 1945, Gentry 7213 (ARIZ, UC); Sierra Suotato, above La Jolla, riparian, pine-oak zone, 5000-6000 ft, 17-24 Mar 1945, Gentry 7285 (ARIZ). Sonora. Canada La Ventana (Arroyo El Otro Lado), 2.5 km (by air) ESE of Yecora, rocky stream canyon in pine-oak forest, 1520 m , moist bank above stream, 1 Oct 1998, Rema G. 98-1991 (ARIZ).

Erythranthe madrensis is distinct in its prostrate stems forming mats, small, petiolate leaves with minutely punctate adaxial surfaces and usually purplish abaxially, glabrous vestiture, 3-lobed calyces, and small, bilabiate but autogamous flowers.
36. Erythranthe pallens (Greene) Nesom, Phytoneuron 2012-40: 45. 2012. Mmulus pallens Greene, Leafl. Bot. Observ. Crit. 2: 4. 1909. TyPE: MEXICO. Durango. Santiago Papasquiaro, Apr-Aug 1896, E. Palmer 55 (holotype: US digital image! photo-PH!, photoUC!; isotypes: MO!, NY digital image!, UC!).
Mimulus yecorensis Vickery, Madroño 44: 391. 1997 [publ. 1998]. Type: MEXICO. Sonora. 17 km E of Yecora on Mexico Hwy 16, mossy banks of small stream in pine forest, 26 Apr 1982, D.A. Polhemos s.n. [Vickery culture no. 13257] (holotype: UT!; isotypes: CAS digital image!, GH, MICH digital image!, MO!, NY digital image!, SRSC!, UC!, US digital image!). Voucher for chromosome count of $\mathrm{n}=32$. Vickery $(1973,1997)$ studied the type of Mimulus madrensis (he stated that he borrowed material from K) and placed it as a synonym of $M$. glabratus var. fremontii.

Annual, fibrous-rooted, rhizomatous, sometimes mat-forming, all parts glabrous, stems and leaves (abaxially) sometimes purplish. Stems procumbent to decumbent, $3-18 \mathrm{~cm}$ commonly rooting at the nodes, ascending to ascending-erect in the inflorescence. Leaves basal and cauline, 1-3(-4) pairs, basal short-petiolate (petioles $1-2 \mathrm{~mm}$ ), sessile distally, blades broadly elliptic to ovate-elliptic or suborbicular, 4-12 $\times 3-9 \mathrm{~mm}$, adaxial surfaces minutely punctate, bases cuneate to truncaterounded, apices rounded, margins shallowly crenate to dentate with 2-6 teeth per side. Flowers 1-$6(-8)$, from all nodes to mostly distal nodes. Fruiting pedicels $25-50 \mathrm{~mm}$. Fruiting calyces campanulate-ovoid, $6-10 \mathrm{~mm}$, closing, nodding $30-90^{\circ}$, lobes 3, apices, rounded. Corollas yellow, red-spotted in the floor of throat and tube, tube-throats narrowly funnelform, 8-12 mm, exserted 3-5 mm beyond the calyx margin, limb bilabiate, expanded $8-12 \mathrm{~mm}$ (pressed). Herkogamous; anther pairs at different levels, stigma above the upper anther pair. Capsules $2.5-3.5 \mathrm{~mm} .2 n=32$.

Flowering Mar-Sep. Wet rocks at waterfalls and in streams, stream banks, springs, shady wet ravines; $1250-2700 \mathrm{~m}$. Mexico (Chihuahua, Durango, Sinaloa, Sonora). Map 24.

Additional collections examined. MEXICO. Chihuahua. NE slope of Sierra Mohinora, in wet soil along stream (tributary of Rio del Soldado) in gorge of conifer forest, near La Rocha, 7500 ft , 14-15 Oct 1959, Correll \& Gentry 23097 (LL); Mpio. Temosachi, Nabogame, pine-oak-Cupressus arizonica forest, $1800 \mathrm{~m}, 3$ Dec 1987, Laferrtere 1288 (NMC); Mpio. Ocampo, area of Cascada de Basaseachic, steep-sided canyon of Rio Durazno, S of parking area and campground, ca. 1950-2000 m , edge of pool along riverbank with cover of other herbs, 17-20 Oct 1986, Nesom \& Vorobtk 5618 (TEX); Barranca del Cobre, ca. 54 mi S of Creel and 6 mi SW of the road intersection at Cafe La Casita on the road to La Bufa, vicinity of Basigochi, pine-oak woodland on mountain slope of volcanic ash, 7500 ft , locally common perennial, 22 Mar 1984, Sanders 4772 (UC-2 sheets); 24 km from Creel and along roadside to and at the Cascadas de Cusarare, on wet rocks at the base of a waterfall, $7140 \mathrm{ft}, 26$ Aug 1990, Swagel 253 (MO); near Colonia Garcia in the Sierra Madres, 7400 ft , 12 Sep 1899, Townsend and Barber 324 (MO); Mpio. Ocampo, Cascada de Basaseachic, bosque de pino-encino, $1250 \mathrm{~m}, 14 \mathrm{Apr} 1995$, Yen \& Estrada 4119 (BRIT) and 4129 (BRIT). Durango. Distr. Santiago Papasquiaro, NE of Ataes, on rocks in brook, pine forest, $8000 \mathrm{ft}, 20$ Apr 1943, Lundell 13019 (LL-2 sheets); San Ramón, Apr 21-May 18 1906, Palmer 87 (MO, UC); 111 road mi N of Santiago Papasquiaro on road to Topia, 5 mi W of Cienega Nuestra Senora, pine-oak-madronejuniper woods, 2420 m , shaded creek bank and gravelly creek bed, 18 Sep 1982, Spellenberg 6712 (NMC). Sinaloa. Sierra Surotato, Los Pucheros, riparian in pine-oak-madrono forest, 5500-6500 ft, 17-24 Mar 1945, Gentry 7232 (ARIZ, UC). Sonora. 11 mi E of Yecora, along road between Yecora and Maicova, on bank of small stream, with Pimus latfolta and Pinus chthuahuana, $5200 \mathrm{ft}, 27 \mathrm{Mar}$ 1975, Karpiscak 75-16 (ARIZ); Hwy 16 to Yecora, Platanus spring, $1700 \mathrm{~m}, 13$ Mar 1990, Martin \& Ferguson s.n. (ARIZ); 5.2 km W of Yecora on Mex 16, pine-oak forest, 1720 m , in moist soil near stream, 11 Mar 1996, Van Devender 96-93 (ARIZ).

Erythranthe pallens (tetraploid) is similar to E. madrensis (diploid) in its mat-forming habit, glabrous vestiture, and punctate adaxial leaf surfaces but differs in its longer pedicels, larger calyces, longer corollas with broader limbs, and its allogamous fertility. The two have nearly congruent geographic distributions except that $E$. madrensis is mapped here further south (but see comments below). A hypothesis of autoploid origin for $E$. pallens is plausible except for the presumably more specialized autogamous fertility of the putative ancestor ( $E$. madrensis).

Apparently closely adjacent colonies of Erythranthe pallens and E. madrensts were recognized in the field as distinct by Spellenberg in north-central Durango. His 6712 (E. pallens) was described as "corollas yellow" and has fruiting pedicels $15-30 \mathrm{~mm}$ and corolla tubes $9-10 \mathrm{~mm}$ with limbs expanded $10-12 \mathrm{~mm}$; the flowers are allogamous. His 6711 (E. madrensis) was described as "corollas yellow, red-spotted within" and has fruiting pedicels $12-25 \mathrm{~mm}$ and corolla tubes $6-7 \mathrm{~mm}$ with limbs expanded 6-8 mm ; the flowers are autogamous.

The close similarity of these entities is emphasized by variability in Erythranthe madrensis that approaches E. pallens. A greenhouse-grown plant of E. madrensis from seeds collected along Hwy 40 west of La Ciudad, Durango (Vickery 2903, UC!), has nearly the same aspect as E. pallens (large leaves, long pedicels, and relatively larger) but still has autogamous corollas. McVaugh 12896 from Nevado de Colima in Jalisco is identified here as E. madrensis but is larger than normal (fruiting calyces 8 mm , fruiting pedicels $15-30 \mathrm{~mm}$, corolla tubes 9-10 mm, exserted $4-5 \mathrm{~mm}$ ). Wonderly 347 from Michoacan also is identified as E. madrensis but has larger corollas and slightly didynamous stamens, the mode of fertility ambiguous from the specimen. The distinction and relationship between the Jalisco and Michoacan collections need further study.
37. Erythranthe pennelli (Gentry) Nesom, Phytoneuron 2012-40: 45. 2012. Mimulus pennellit Gentry, Madroño 9: 24. 1947. Type: MEXICO. Sinaloa. Africa, Sierra Tacuichamona, on rocks in water, 2000-3000 ft, 19 Feb 1940, H.S. Gentry 5691 (holotype: MCH digital image!; isotypes: ARIZ-2 sheets!, MO!, PH!). The physiography and vegetation in the region of the type locality of Mimulus pennellin (Sierra Tacuichamona) were described in detail by Gentry (1946).

Perennial, rhizomatous, often mat-forming; stems, pedicels, calyces, and leaf surfaces moderately to densely villous with vitreous, multicellular, flattened hairs mostly $1-3 \mathrm{~mm}$ long with minute, dark-colored gland at the tip of each. Stems ascending-erect to decubent-ascending, 10-30 cm , rooting at proximal nodes, finely villosulous-glandular to densely villous-glandular. Leaves mostly cauline, blades orbicular to suborbicular, broadly ovate, or depressed-ovate, mostly $5-15(-30)$ $\mathrm{mm} \times 6-17(-35) \mathrm{mm}$, largest at the base or near midstem, gradually or slightly reduced in size up to uppermost nodes, moderately to densely villous on both surfaces, proximal sharply cuneate to a petiolar base $1-5(-10) \mathrm{mm}$, distal becoming sessile, primarily palmately 5 -veined with secondary reticulum evident, margins shallowly and regularly dentate to dentate-serrate with 3-6(-10) thick, mucronate-tipped teeth per side, apices mostly rounded. Flowers 2-6, mostly at distal nodes. Fruiting pedicels $15-25 \mathrm{~mm}$, spreading-ascending. Fruiting calyces ovoid, $6-8 \mathrm{~mm}$, closing, nodding lobes 5 , triangular-acute, the upper ca. 1-2 times longer. Corollas yellow, red-spotted, tubethroats funnelform, 6-8 mm, exserted $2-3 \mathrm{~mm}$ beyond calyx margin, limb bilabiate, expanded $6-8$ mm (pressed). Plesiogamous; anther pairs and stigma at essentially the same level. Capsules ca. 3 mm .

Flowering Jan-May. Wet places in canyons, cliff faces, rocks in water, flood plains, riparian forest, oak forest; $300-1500 \mathrm{~m}$. Mexico (Sinaloa, Sonora). Map 25.

Additional collections examined. MEXICO. Sinaloa. [Mpio. Badiraguato], Puerto a Tamiapa, moist bank in canyon bottom, oak forest, $4500 \mathrm{ft}, 5$ May 1940, Gentry 5866 (ARIZ). Sonora. Arroyo Guajaráy, Cajón del Ardilla, growing in wet place near mouth of canyon in riparian forest with Eupatornum collmum, Heliocarpus, Celtis tguanea, Montanoa rosel, $375 \mathrm{~m}, 15 \mathrm{Mar}$ 1994, Fishbein et al. 1569 (ARIZ); Los Conejos, Rio Mayo, Saluchi W, small arroyo, growing in rocks out of which water seeping, 25 Oct 1934, Gentry 1111 (ARIZ); 10 mi W of Nuri by old road to Texopaco, on small cliff above perennial stream, 24 Mar 1975, Goldberg s.n. (ARIZ); 5 km SW of Santa Barbara by road, at the entrance to a cave in El Palmarito canyon, $1000 \mathrm{~m}, 16$ Mar 1990, Martin s.n. (ARIZ); ca. 5 km S of Santa Barbara, cave next to Mesa Redonda, $900 \mathrm{~m}, 14$ May 1990, Martin s.n. (ARIZ); 1 mi N of Nuri, flood plain of the Rio Nuri, in sand in recent flood channel, 25 Mar 1975, Spaulding 75-3-41 (ARIZ); below the village of Guajaráy on Arroyo Guajaráy, 6.5 km (by air) WNW of jet with Rio Mayo, tropical deciduous forest in rocky stream canyon, 270 m , in cobbles near stream, 19 Mar 1993, VanDevender 93-476 (ARIZ); ca. 1 km (by air) NW of Yecora, along Rio Yecora, 1530 m , in moist soil or recently dried rocky stream beds, 2 Jun 1999, Van Devender 99-181 (ARIZ).

Among the species of sect. Simiola, Erythranthe pennellu is distinctive in its combination of decumbent stems rooting at the nodes and forming mats, stipitate-glandular to villosulous-glandular or villous-glandular vestiture of vitreous, flattened hairs, orbicular to broadly ovate leaves with regularly dentate margins and short petioles, consistently 5 -lobed calyces with middle lobes often reduced in size, and small corollas and autogamous fertilization.

In its habit, leaf morphology, and geography Erythranthe pennellii is most similar to E. pallens and E. calciphila, moreso to E. calciphtla in its glandular vestiture and small corollas (autogamous). It is distinct from E. calciphila in its mostly decumbent stems with adventitious roots, deciduous basal leaves, and consistently 5-lobed calyces.
38. Erythranthe calciphila (Gentry) Nesom, Phytoneuron 2012-40: 43. 2012. Mimulus calciphilus Gentry, Madroño 9: 2. 1947. TyPE: MEXICO. Sinaloa. Sierra Surotato, Los Pucheros, pine-oak-madrono, openly forested slope, $5500-6500 \mathrm{ft}$, calcareous peñasco, shady slope, 17-24 Mar 1945, H.S. Gentry 7217 (holotype: MICH digital image!; isotypes: ARIZ!, F digital image!, PH!).
Mimulus minutiflorus Vickery, Madroño 44: 392. 1997. Type: MEXICO. Durango. Km 165.5 on Mexico Hwy 40, in ephemerally moist, sunny areas in the pine forest, $2220 \mathrm{~m}, 12$ May 1976, R.K. Vickery, Jr. 2901 [Vickery culture no. 12,218] (holotype: UT!; isotypes: CAS digital image!, GH, MICH digital image!, MO! digital image!, SRSC!, UC!, UT!). Voucher for $n=$ 32. Types distributed by Vickery were from greenhouse-grown plants that were rooting at lower nodes -- atypical in nature but seen in a few other collections besides the type.

Annual, usually fibrous-rooted, without rhizomes or stolons; stems, pedicels, and calyces minutely stipitate-glandular. Stems usually erect, sometimes decumbent-ascending, $4-30 \mathrm{~cm}$, rarely rooting at proximal nodes, delicately villosulous-glandular along the whole length. Leaves basal and cauline, all petiolate, palmately 3(-5)-veined, blades orbicular-ovate to oblong-ovate, $7-28 \mathrm{~mm} \times 5-$ 22 mm , margins shallowly dentate to denticulate with 3-6 teeth per side, apices rounded to obtuse, base truncate to shallowly cuneate; petioles $1-3 \mathrm{~mm}$, cauline blades slightly or hardly reduced in size from the basal but becoming subsessile to sessile (1-3 pairs of cauline leaves), surfaces villous with thin-walled, vitreous, eglandular or minutely gland-tipped hairs, commonly also minutely stipitateglandular. Flowers $1-6(-10)$, axillary at all nodes. Fruiting pedicels $15-30(-55) \mathrm{mm}$, sometimes minutely hirtellous and minutely stipitate-glandular, sometimes short glandular-villous. Fruiting calyx ovoid, $5-6 \mathrm{~mm}$ in flower, $6-10 \mathrm{~mm}$ in fruit, thin, usually $3(-5)$-nerved, closing, nodding ca. $90^{\circ}$ at maturity, lobes usually 3 or 3 and 5 on the same plant, if 5 then with the 2 interpolated lobes much smaller than the lower pair. Corollas light yellow, red-spotted, tube-throats narrowly funnelform, 57 mm , exserted 1-2 mm beyond calyx margin, limb barely bilabiate, expanded $2-4 \mathrm{~mm}$. Styles glabrous. Plesiogamous; anther pairs and stigma at essentially the same level. Capsules $2-4 \mathrm{~mm}$, stipitate, included. $2 n=30,32$. Figs. 12, 13.

Flowering Mar-Sep(-Nov). Rocky knobs, moist boulders, wet rock faces, road cuts, seepage, springs, usually in pine or pine-oak woods; $1800-2500 \mathrm{~m}$; Arizona; Mexico (Chihuahua, Durango, Sinaloa, Sonora). Map 25.

Additional collections examined. USA. Arizona. Cochise Co.: Mule Mts., Bisbee, wet places, Apr 1909, Goodding 52 (ARIZ); Huachuca Mts., Glance Canyon, moist spot under rock ledges, 29 Sep 1949, Goodding 874-49 (ARIZ); Bisbee, in creeks, Apr 1909, Harrts 21 (ARIZ); Chiricahua Mts., Cave Creek Canyon, 22 Sep 1929, Harrison et al. 6186 (ARIZ); Chiricahua Mts., Coronado Natl. Forest, $1 / 8 \mathrm{mi}$ W of Rustler Park Ranger Station, along Bootlegger Trail (USFS Trail 257) to Long Park, on moist rock faces of granite boulders, continual water supply from seepage, nearly total shade of Pinus ponderosa, assoc. flora of Douglas fir, gambel oak, aspen, Salvia, Artemisia, Senecio, Bromus, $8400 \mathrm{ft}, 11$ Sep 1986, Ward 86-062, voucher for chromosome count of $n$ $=15(\mathrm{MO})$. MEXICO. Chihuahua. Cerro Quicorichi, Rio Mayo, riparian, on moist rocks above water, $6000 \mathrm{ft}, 6$ Oct 1935, Gentry 1941 (ARIZ); canyon E of Hidalgo del Parral, seepage at foot of dam, 12 Nov 1957, Knobloch 749 (LL); Mpio. Temosachi, Nabogame, pine-oak-Cupressus arizonica forest, $1800 \mathrm{~m}, 21$ Mar 1988, Laferriere 1394 (TEX); Mpio. Guadalupe y Calvo, meadow on S side of village of Turuachi, 0.4 mi NW of bridge crossing in Turuachi, SW of Rio Verde 46 mi SW of El Vergel, area of pine and scattered oaks, 22 Aug 1988, McDonald \& Nesom 2526 (TEX); Sierra Obscura, 1 mi W of Rancho El Oso, $2000 \mathrm{~m}, 26$ Mar 1985, Martin s.n. (ARIZ); 49.9 mi SW of El Vergel on Hwy 24, in Turuachi Canyon, $0.7 \mathrm{mi} S$ of bridge at Turuachi, area of oak-pine, base of Nfacing slope'seepage area, scattered on vertical, wet rock face of road cut below seepage area, 2200 m , 24 Aug 1984, Nesom \& Lewis 5141 (TEX); Santa Rosa, 30 May 1960, Pennington 256 (TEX); Sierra Madre, springy places, 29 Sep 1887, Pringle 1347 (ND-Greene); Mpio. Ocampo, 8 mi toward San

Juanito from jet of Tomochic-Yepachic road, 7 mi NW of Yoquiva, steep N slope, igneous, with Quercus sideroxyla, Q. mugosa, doug fir, ca. $8000 \mathrm{ft}, 27$ Apr 1985, Spellenberg et al. 8061 (NMC); Mpio. Ocampo, ca. 1 km W of W boundary of Parque Nacional Cascada de Basaseachic, 21 km from the Cahuisori-Ocampo road on the road to Candameña, 10.5 km below Cruz Verde at the crossing of the Rio Candameña, ca. 1.6 air mi N of Candameña, among Platamus, Acacia, 965 m , two plants only on a sand bar, 25 May 1994, Spellenberg \& Miller 12062 (NMC); Mpio. Ocampo, ca. 1 km W of W boundary of Parque Nacional Cascada de Basaseachic, 11 km from the Cahuisori-Ocampo road on the road to Candameña, 0.3 km below Cruz Verde, steep SE-facing canyon at the top of Barranca Composante, oaks, 1900 m , in seep in cleft in rock, 23 Sep 1994, Spellenberg et al. 12125 (NMC); 18 air km SSE of Cuahtemoc, above Cuisuiriachic at mine, on La Bufa, vertical rock face, among wet moss, $6800 \mathrm{ft}, 14$ Apr 1984, Spellenberg \& Soreng 7704 (NMC); Sierra La Brena, 13 mi SW of Altamirano, just W of Los Azules on high rocky knob in pine-oak woodland, $7200-7400 \mathrm{ft}$, 26 Sep 1998, Spencer \& Atwood 1244 (TEX); Mpio. Ocampo, road to Candameña, 5 km before Cruz Verde, open, rocky, NE-facing slope, $6000 \mathrm{ft}, 23$ Sep 1994, Todsen s.n. (NMC); 5 mi SE of Colonia Garcia, 12 Sep 1899, [Townsend \& Barber] 324 (ND-Greene); 20 mi SW of Chuichupa, 31 Aug 1899, [Townsend \& Barber] 388 (ND-Greene). Durango. 25 km E of El Palmito, along highway, steep moist cliff, ca. 2300 m , Mar 1965, Breedlove 7231, Vickery cult. 7169, voucher for $n=" 32^{ \pm}, 48^{ \pm}$, $64^{ \pm "}$ (SRSC, UC); Santiago Papasquiaro and vicinity, Apr and Aug 1896, Palmer 55 (UC); 111 road mi N of Santiago Papasquiaro on road to Topia, 5 mi W of Cienega Nuestra Senora, steep, rocky W face, of mesic canyon bottom next to stream, pine-fir-oak-madrone-juniper woods, 2420 m , on mossy rock, 18 Sep 1892, Spellenberg \& Zimmerman 6741 (NMC); KM 165.5 on Mex Hwy 40, in ephemerally moist sunny areas in the pine forest, $2220 \mathrm{~m}, 12$ May 1976, Vickery 2901, cult. 12,218, greenhouse grown, voucher for $\mathrm{n}=32$ (UC); 2 km W of Los Bancos, Hwy 40 at KM 165.5, in moss all over the wet cliffs, $7550 \mathrm{ft}, 12$ May 1976, Vickery [2901], field-collected (UC-2 sheets). Sinaloa. Along Hwy 40, 1.5-3 mi below El Palmito, ca. 45 mi NE of Concordia and ca. 3 mi S of the Durango state line, locally common beside a seep, $6400 \mathrm{ft}, 30 \mathrm{Dec} 1983$, Sanders et al. 4463 (ARIZ). Sonora. Sierra de los Ajos, W-facing slope, spring at head of Hoya del Packard, 2300 m , 10 Oct 1992, Felger et al. 92-893 (ARIZ); Mesa El Campanero, along road between Puerto de la Cruz and microwave station, ca. 0.4 miN of microwave tower, 2100 m , seep in side of cliff in pine-oak forest, 9 Sep 1995, Fishbetn et al. 2603 (ARIZ); Mesa El Campanero W of Yecora, headwaters of El Reparo (Yaqui River), fir-Cupressus-Pinus ravine, $2100 \mathrm{~m}, 2$ Jul 1992, Martin \& Barber s.n. (ARIZ).


Figure 16. Erythranthe calciphila, Spencer \& Atwood 1244, from northwestern Chihuahua.

Erythranthe calciphila is recognized by its annual duration (fibrous-rooted), short, erect stems with few, even-sized leaves (the basal often persistent), delicate stipitate-glandular vestiture, 3lobed calyces relatively large in fruit, and very small corollas with autogamous fertilization. Plants rarely root at proximal nodes - an example from Sierra Obscura, Chihuahua (Martin s.n.) has the basal portion of the stem rooting at nodes; these plants also have lateral calyx lobes more prominently developed than characteristic for the species.


Figure 18. Erythranthe calciphila in natural habitat. Photo by Mark Egger, used by permission. Sinaloa, Mexico, along Mex. Hwy 40, below (and W of) El Palmito, on barranca cliffs, 1 Sep 1997.
39. Erythranthe visibilis Nesom, sp. nov. Type. MEXICO. Michoacan. Vicinity of Morelia, Cerros San Miguel, 2200 m, Dec 1910, G. Arsene 5310 (holotype: MO). Figure 19.

Distinct among species of sect. Simıola in its combination of terrestrial habitat, prostrate stems rooting at the nodes, small, villosulous-glandular leaves, glandular pedicels, tendency for 3lobed calyces, and tiny, autogamous flowers on short pedicels.

Annual (probably; basal parts not observed), mat-forming. Stems procumbent, $2-10 \mathrm{~cm}$, rooting at the nodes, glabrous. Leaves drying very thin and translucent, cauline, petiolate to subpetiolate, petioles $1-3 \mathrm{~mm}$, blades ovate or ovate-elliptic to depressed-ovate, $5-14 \mathrm{~mm} \times 5-14 \mathrm{~mm}$, palmately 3 -5-veined, adaxial surfaces sparsely to moderately puberulous with vitreous, thin-walled, gland-tipped hairs ca. $0.2-0.8 \mathrm{~mm}$, not punctate, margins subentire to barely mucronulate or
shallowly but sharply dentate-serrate, 3-5 teeth per side, aprces obtuse to rounded, bases cuneate to subcordate Flowers $1-3$, apparently mostly at distal nodes. Fruiting pedicels $4-11 \mathrm{~mm}$, munutely stipitate-glandular with hars ca 01 mm . Fruiting calyces broadly obovate-campanulate, 4-6 mm , variably closing or not at all, nodding, lobes $3-5$, the middle sometimes much reduced, upper lobe longest Corollas yellow, apparently wthout red markings, tube-throats cylindric, ca $5-6 \mathrm{~mm}$, barely exserted of at all beyond the calyx margin Plesiogamous, anther pairs and stigma at essentially the same level Capsules 2-3 mm, included

Known only from the type collection and one other from the same locality Map 24
Additional collection examined MEXICO Michoacan Vicinity of Morelia, Cerros San Miguel, $2200 \mathrm{~m}, 10$ Feb 1912, Arsene 9936 (MO)


Figure 19 Erythranthe visibtlis, type collection Insets contrast mature calyx morphology, closed vs open

The epithet is an affirmation of the existence of these plants, despite their dimumshungly small size and delicate aspect Erythranthe visibilis has the smallest flowers of any species in sect Simola The two collections cited here were annotated by AL Grant and by F W Pennell as "Mimulus glabrata var jamesii" (that entity identified here as Erythranthe geyerr) Habitat information is lacking for the collections but the plants are prostrate and mat-forming and in a terrestrial habit, growng intermixed with two species of delicate moss The calyces are variably 5 -lobed to 3-lobed, sometimes with reduced muddle lobes (thus tending toward 3 -lobed) and the throat also is vanable from closed to open, the two lower lobes turning sharply upward or not (Fig 19)

Erythranthe visibilts is a member of the primarily Mexican $E$ madrensis group, particularly in view of the calyx morphology, relatively reduced size, and geography The range of $E$ madrensis reaches Michoacan (Map 23) and depauperate plants of that species rarely may approach the approximate small size of $E$ visibilis, but nowhere in the range of $E$ madrensis does it produce glandular pedicels or leaves, which are charactenstic of $E$ vistbilts.

## ACKNOWLEDGEMENTS

I am grateful to Tom Wendt and Barney Lipscomb for help in obtaining literature, Robert George for Photoshop advice, to staff at DAV, MO, ND-Greene, PH, SMU-BRIT-VDB, TEX-LL, UC-JEPS, and UT for their help and hospitality during visits there, and to ARIZ, NMC, SD, SRSC, UC-JEPS, and UT for loans to TEX. I am grateful to Emily Wood (GH), Alina Freire-Fierro (PH), and Barbara Hellenthal (ND-Greene) for photos of types, Margaret Hendrick for comments on Yellowstone populations, Genevieve Nesom for comments on the introductory section, Mark Egger for permission to use photos, and David Lowry and John Willis for conversation and comments toward understanding perspectives of the Mimulus genetics community. Time to conduct this study has been made possible by the Flora of North America Association.

## LITERATURE CITED

Alam, M.T. and R.K. Vickery, Jr. 1973. Crossing relationships in the Mmulus glabratus heteroploid complex. Amer. Midl. Naturalist 90: 449-454.
Awadalla, P. and K. Ritland. 1997. Microsatellite variation and evolution in the Mimulus guttatus species complex with contrasting mating systems. Molec. Biol. Evol. 14: 1023-1034.
Baker, R.K. and P.K. Diggle. 2011. Node-specific branching and heterochronic changes underlie population-level differences in Mimulus guttatus (Phrymaceae) shoot architecture. Amer. J. Bot. 98: 1924-1934.
Barker, W.R., P.M. Beardsley, N.S. Fraga, and G.L. Nesom. 2012. Taxonomic conspectus of Phrymaceae: A narrowed circumscription for Mimulus, new and resurrected genera, and new names and combinations. Phytoneuron 2012-39: 1-60.
Beardsley, P.M., S.E. Schoenig, J.B. Whittall, and R.G. Olmstead. 2004. Patterns of evolution in western North American Mimulus (Phrymaceae). Amer. J. Bot. 91: 474-489.
Benedict, B.B. 1986. Biosystematics of the annual species of the Mimulus guttatus species complex in British Columbia, Canada. Master's thesis. Univ. of British Columbia, Vancouver, Canada.
Bentham, G. 1846. Diplacus, Mimulus, Eunamus. Prodr. 10: 368-374.
Bliss, M. 1986. The morphology, fertility and chromosomes of Mimulus glabratus var. michiganensis and M. glabratus var. fremontn (Scrophulariaceae). Amer. Midl. Naturalist 116: 125-131.
Bodbyl Roels, S.A. and J.K. Kelly. 2011. Rapid evolution caused by pollinator loss in Mimulus guttatus. Evolution 65: 2541-2552.
Bohlen von, C. 1995. El género Mimulus L. (Scrophulariaceae) en Chile. Gayana Bot. 52: 7-28.
Calder, J.A. and R.L. Taylor. 1965. New taxa and nomenclatural changes with respect to the flora of the Queen Charlotte Islands, British Columbia. Canad. J. Bot. 43: 1387-1399.
Calder, J.A. and G.A. Mulligan. 1968. Flora of the Queen Charlotte Islands. Part 2. Cytological Aspects of the Vascular Plants. Queen's Printer, Ottawa.
California Native Plant Society (CNPS). 2011. Inventory of Rare and Endangered Plants (online edition, v8-01a). California Native Plant Society. Sacramento. shttp//www rareplants cnps org/detail/1101 html> Accessed December 2011.
CalPhotos. 2010. Biodiversity Sciences Technology group (BSCIT), part of the Berkeley Natural History Museums. University of California, Berkeley. <http//calphotos berkeley edu/cgi/mg_query? enlarge $=0000+0000+0309+1490>$
Carr, D.E. and M.R. Dudash. 1996. Inbreeding depression in two species of Mimulus (Scrophulariaceae). Amer. J. Bot. 83: 586-593.
Cronquist, A. 1959. Mimetanthe and Mimulus. Pp. 336-350, in Vascular Plants of the Pacific Northwest, Vol. 4.
CU Museum-COLO. 2009. Specimen Database of Colorado Vascular Plants. Univ. of Colorado Museum of Natural History, Boulder.
<http//cumuseum colorado edu/Research/Botany/Databases/>

Darwin, C. 1876. The Effects of Cross and Self Fertilization in the Vegetable Kingdom. John Murray, London.
Diaz A and M.R. MacNair. 1999. Pollen tube competition as a mechanism of prezygotic reproductive isolation between Mimulus nasutus and its presumed progenitor M. guttatus. New Phytol 144: 471-478.
Dole, J.A. 1992. Reproductive assurance mechanisms in three taxa of the Mmulus guitatus complex. Amer. J. Bot. 79: 650-659.
Dorn, R.D. 2001. Vascular Plants of Wyoming (ed. 3). Mountain West Publishing, Cheyenne, Wyoming.
Dudash. M.R., C.J. Murren, and D.E. Carr. 2005. Using Mimulus as a model system to understand the role of inbreeding in conservation and ecological approaches. Ann. Missouri Bot. Gard.. 92: 36-51.
Edwin, G. 1955. Scrophulariaceae of Nevada : Part I. - Mmulus. Contr. Fl. Nevada 37. Plant Industry Station, Beltsville, Md.
Evert, E.F. 2010. Vascular Plants of the Greater Yellowstone Area: Annotated Catalog and Atlas. Published by the author, Park Ridge, Illinois.
Fedorov, A.A. (ed.). 2001. Flora of Russia. The European part and bordering regions. 5. A.A. Balkema, India.
Fenster, C.B. and D.E. Carr. 1997. Genetics of sex allocation in Mimulus (Scrophulariaceae). J. Evol. Biol. 10: 641-661.
Fenster, C.B. and K. Ritland 1992. Chloroplast DNA and isozyme diversity in two Mimulus species (Scrophulariaceae) with contrasting mating systems. Amer. J. Bot. 79: 1440-1447.
Fenster, C.B. and K. Ritland. 1994. Evidence for natural selection on mating system in Mmulus (Scrophulariaceae). Interntl. J. Pl. Sci. 155: 588-596.
Fishman Lab website. 2011. Division of Biological Sciences, Univ. of Montana, Missoula. <http//dbs umt edu/research_labs/fishmanlab/index html>
Fishman, L. and J.H. Willis. 2001. Evidence for Dobzhansky-Muller incompatibilites contributing to the sterility of hybrids between Mimulus guttatus and M. nasutus. Evolution 55: 1932-1942.
Fishman, L., A.J. Kelly, and J.H. Willis. 2002. Minor quantitative trait loci underlie floral traits associated with mating system divergence in Mimulus. Evolution 56: 2138-2155.
Fishman, L. and J.H. Willis. 2008. Pollen limitation and natural selection on floral characters in the yellow monkeyflower, Mimulus guttatus. New Phytologist 177: 802-810.
Gardner, M. and M. Macnair. 2000. Factors affecting the co-existence of the serpentine endemic Mmulus nudatus Curran and its presumed progenitor, Momulus guttatus Fischer ex DC. Biol. J. Linn. Soc. 69: 443-459.

Gentry, H.S. 1946. Sierra Tacuichamona-a Sinaloa plant locale. Bull. Torrey Bot. Club 73: 356362.

Grant, A.L. 1924. A monograph of the genus Mimulus. Ann. Missouri Bot. Gard. 11: 99-388 [sect. Simiolus, pp. 145-195].
Greene, E.L. 1885. Studies in the botany of California and parts adjacent. I. Bull. Calif. Acad. Sci. 1: 66-127.
Greene, E.L. 1895. Mimulus luteus and some of its allies. J. Bot. (Brit. \& Foreign) 33: 4-8.
Greene, E.L. 1909. New species of the genus Mimulus. Leafl. Bot. Observ. Crit. 2: 1-8.
Hall, M.C. and J.H. Willis. 2006. Divergent selection on flowering time contributes to local adaptation in Mimulus guttatus populations. Evolution 60: 2466-2477
Hall, M.C., C.J. Basten, and J.H. Willis. 2006. Pleiotropic quantitative trait loci contribute to population divergence in traits associated with life history variation in Mimulus guttatus. Genetics 172: 1829-1844.
Holmgren, N.H. 1984. Scrophulariaceae. Pp. $344-506$, in A. Cronquist et al. (eds.), Intermountain Flora, Vol. 4. New York Botanical Garden Press, Bronx, New York.

Hsu, S.S. and R.K. Vickery, Jr. 1976. The pattern of esterase variation in the Mimulus glabratus complex (Scrophulariaceae). Great Basin Naturalist 36: 81-85.
Kiang, Y.T. 1973. Floral structure, hybridization and evolutionary relationship of two species of Mimulus. Rhodora 75: 225-238.
Kiang Y.T. and J.L. Hamrick. 1978. Reproductive isolation in the Mimulus guttatus - M. nasutus complex. Amer. Midl Naturalist 100: 269-276.
Lin, J.-Z. and K. Ritland. 1997. Quantitative trait loci differentiating the outbreeding Mimulus guttatus from the inbreeding Mmulus platycalyx. Genetics 146: 1115-1121.
Lindsay, D.W. and R.K. Vickery, Jr. 1967. Comparative evolution in Mimulus guttatus of the Bonneville Basin. Evolution 21: 439 456.
Lowry, D.B., R.C. Rockwood, and J.H. Willis. 2008. Ecological reproductive isolation of coast and inland races of Mimulus guttatus. Evolution 62: 2196-2214.
Lowry, D.B., C.C. Sheng, J.R. Lasky, and J.H. Willis. 2012. Five anthocyanin polymorphisms are associated with an R2R3-MYB cluster in Mimulus guttatus (Phrymaceae). Amer. J. Bot. 99: 82-91.
Lowry, D.B. and J.H. Willis. 2010. A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. PLoS Biology 8: el000500.
Macnair, M.R. 1996. The Mimulus page. Pictures of Mimulus species. Mimulus guttatus complex. <http//people exeter ac-uk/MRMacnai/mimulus html> Accessed Jan 2012.
Macnair, M.R. 1989. A new species of Mimulus endemic to copper mines in California. Bot. J. Linn. Soc. 100: 1-14.
Macnair, M.R. and Q.J. Cumbes. 1989. The genetic architecture of interspecific variation in Mimulus. Genetics 122: 211-222.
Macnair, M.R. and S.E. Smith. 1997. Does copper tolerance give cadmium tolerance in Mimulus guttatus. Heredity 79: 445-452.
Macnair, M.R., V.E. Macnair, and B.E. Martin. 1989. Adaptive speciation in Mimulus: an ecological comparison of $M$. cupriphilus with its presumed progenitor, M. guttatus. New Phytol. 112: 269-279.
Martin N.H. and J.H. Willis. 2007. Ecological divergence associated with mating system causes nearly complete reproductive isolation between sympatric Mimulus species. Evolution 61: 68-82.
Mimulus Community. 2011. Announcements, The Genus Mimulus, Mimulus Genome, People, Seed Collections, Techniques. OpenWetWare. http//openwetware org/wik//Mimulus_Communty>
mimulusevolution.org. 2011. A collaboration between Duke University, the Clemson University Genome Institute, Michigan State University, the University of Montana, the University of North Carolina at Chapel Hill, and the University of Washington. Principal investigator: J.H. Willis. Supported by a grant from the NSF's Frontiers Integrated Biological Research (FIBR) program (EF-0328636). दhttp//www mimulusevolution org/index php>
Munz, P.A. 1959. A California Flora. In collaboration with D.D. Keck. Univ. of California Press, Berkeley.
Munz, P.A and D.D. Keck 1968. A Californian Flora and Supplement. Univ. of California Press, Berkeley.
Murren, C.J., L. Douglass, A. Gibson, and M.R. Dudash. 2006. Individual and combined effects of $\mathrm{Ca} / \mathrm{Mg}$ ratio and water on trait expression in Mumulus guttatus. Ecology 87: 2591-2602.
National Science Foundation. 2003[2011]. Integrated Ecological and Genomic Analysis of Speciation in Mimulus. Lead principal investigator, John Willis (Duke Univ.). NSF Award Abstract \#0328636. كttp//www-nsf gov/awardsearch/showAward do?AwardNumber=0328636>
Nelson B.E. and R.L. Hartman. 1997. Checklist with Recent Synonymy of the Vascular Plants of Wyoming (revised). \&http//www rmh uwyo edu/data/wy_checklist_synonym pdf-

Nesom, G.L. 2012a. Taxonomy of Erythranthe sect. Mimulosma (Phrymaceae). Phytoneuron 201241: 1-36.
Nesom, G.L. 2012b. Plesiogamy, a term contrasting with herkogamy. Phytoneuron 2012-46: 1-2.
Oregon Biodiversity Information Center. 2010. Rare, Threatened and Endangered Species of Oregon. Oregon Biodiversity Information Center, Institute for Natural Resources, Portland State Univ., Portland.
Peck, M.E. 1951. A Manual of the Higher Plants of Oregon (ed. 2). Binfords \& Mort, Portland, Oregon.
Pennell, F.W. 1935. Mimulus Linnaeus. The Scrophulariaceae of eastern temperate North America. Proc. Acad. Nat. Sci. Philadelphia 1: 112-136.
Pennell, F.W. 1940. New species of Scrophulariaceae from Arizona. Notul. Nat. Acad. Sci. Philadelphia 43: 5-10.
Pennell, F.W. 1947. Some hitherto undescribed Scrophulariaceae of the Pacific states. Proc. Acad. Nat. Sci. Philadelphia 99: 155-171.
Pennell, F.W. 1951. Scrophulariaceae. Pp. 686-859, in L. Abrams. Illustrated Flora of the Pacific States, Vol. III. Stanford Univ. Press, Stanford, California.
Phytozome. 2011. Mimulhs guttatus. Joint Genome Institute, Center for Integrative Genomics, Univ. of California. <http//www.phytozome net/mimulus>
Posto, A.L. and L.A. Prather. 2003. The evolutionary and taxonomic implications of RAPD data on the genetic relationships of Mimulus michiganensts (comb. et stat. nov.: Scrophulariaceae). Syst. Bot. 28: 172-178.
Ritland, K. 1989. Genetic differentiation, diversity, and inbreeding in the mountain monkeyflower (Mimulus caespitosus) of the Washington Cascades. Canad. J. Bot. 67: 2017-2024.
Ritland, C. and K. Ritland. 1989. Variation of sex allocation among eight species of the Mmulus guttatus complex. Amer. J. Bot. 76: 1731-1739.
Sutton, D.A. and R.J. Hampshire. 2001. Scrophulariaceae. Pp. 2354-2368, in W.D. Stevens et al. (eds.). Flora de Nicaragua, Tomo III. Missouri Bot. Garden Press, St. Louis.
Sweigart, A.L. and J.H. Willis. 2003. Patterns of nucleotide diversity are affected by mating system and asymmetric introgression in two species of Mimulus. Evolution 57: 2490-2506.
Sweigart A.L., L. Fishman, and J.H. Willis. 2006. A simple genetic incompatibility causes hybrid male sterility in Mimulus. Genetics 172: 2465-2479.
Sweigart, A.L., N.H. Martin, and J.H. Willis. 2008. Patterns of nucleotide variation and reproductive isolation between a Mimulus allotetraploid and its progenitor species. Molec. Ecol. 17: 2089-2100.
Thompson, D.M. 1993. Mmulus. Pp. 1037-1046, in J.C. Hickman (ed.), The Jepson Manual: Higher Plants of California. Univ. of California Press, Berkeley.
Tokarska-Guzik, B. and Z. Dajdok. 2010. NOBANIS - Invasive Alien Species Fact Sheet Mmulus guttatus. Online Database of the North European and Baltic Network on Invasive Alien Species - NOBANIS. <www nobanis org>
van Kleunen, M. 2007. Adaptive genetic differentiation in life-history traits between populations of Mimulus guttatus with annual and perennial life-cycles. Evol. Ecol. 21: 185-199.
Vickery, R.K., Jr. 1956. Data on intersectional hybridizations in the genus Mrmulus (Scrophulariaceae). Proc. Utah Acad. Sci. 33: 65-71.
Vickery, R.K., Jr. 1959. Barriers to gene exchange within Mimulus guttatus (Scrophulariaceae). Evolution 13: 300-310.
Vickery, R.K., Jr. 1966. Experimental hybridizations in the genus Mimulus. IV: Barriers to gene exchange between the main sections. Proc. Utah Acad. Sci. 43: 115-118.
Vickery, R.K., Jr. 1969. Crossing barriers in Mimulus. Jap. J. Genet. 44: 325-336.
Vickery, R.K., Jr. 1966. Speciation and isolation in section Stmiohus of the genus Mimulus. Taxon 15: 55-63.

Vickery, R.K., Jr. 1964. Barriers to gene exchange between members of the Mimulus guttatus complex (Scrophulariaceae). Evolution 18: 52-69.
Vickery, R.K., Jr. 1973. Mimulhis wiensit (Scrophulariaceae), a new species from western Mexico. Madroño 22: 161-168.
Vickery, R.K., Jr. 1974. Crossing barriers in the yellow monkey flowers in the genus Mimulus (Scrophulariaceae). Genet. Lect. 3: 33-82.
Vickery, R.K., Jr. 1978. Case studies in the evolution of species complexes in Mimulus. Evol. Biol. 11: 404-506.
Vickery, R.K., Jr., and S.S. Hsu. 1978. Esterase variation associated with elevation, latititude and ploidy level in populations of the Mimulus glabratus complex. Amer. Midl. Naturalist 111: 96-104.
Vickery, R.K., Jr. 1990. Close correspondence of allozyme groups to geographic races in the Mimulus glabratus complex (Scrophulariaceae). Syst. Bot. 15: 481-496.
Vickery, R.K., Jr. 1991. Crossing relationships of Mimulus glabratus var. michiganensis (Scrophulariaceae). Amer. Mid1. Naturalist 125: 368-371.
Vickery, R.K., Jr. 1995. Speciation in Mimulus, or, can a simple flower color mutant lead to species divergence? Great Basin Nat. 55: 177-180.
Vickery, R.K., Jr. 1995. Speciation by aneuploidy and polyploidy in Mimulus (Scrophulariaceae). Great Basin Nat. 55: 174-176.
Vickery, R.K., Jr. 1997. A systematic study of the Mimulus wienstt complex (Scrophulariaceae: Mimulus section Simiolus), including M. minutiflorus, new species from western Mexico. Madroño 44: 384-393.
Vickery, R.K., Jr., F.A. Eldredge, II, and E.D. McArthur. 1976. Cytogenetic patterns of evolutionary divergence in the Mimulus glabratus complex. Amer. Midland Naturalist 95: 377-389.
Weber, W.A. and R.C. Wittman. 1992. Catalog of the Colorado Flora: A Biodiversity Baseline. University of Colorado Museum, Univ. Press of Colorado, Boulder.
Weber, W.R., W.T. Corcoran, M.S. Brunnell, and P.L. Redfearn. 2000. Atlas of Missouri Vascular Plants. Dept. of Biology, Southwest Missouri State Univ., Springfield.
Wu, C.A., D.B. Lowry, A.M. Cooley, K.M. Wright, Y.-W. Lee, and J.H. Willis. 2008. Mimuluss is an emerging model system for the integration of ecological and genomic studies. Heredity 100: 220-230.
Wu , C.A., D.B. Lowry, L.I. Nutter, and J.H. Willis. 2010. Natural variation for drought-response traits in the Mimulus guttatus species complex. Decologia 162: 23-33.

Chromosome counts for sect. Stmiola (some not cited in text)
Chuang, T.I., and L.R. Heckard. 1992. Chromosome numbers of some North American Scrophulariaceae, mostly Californian. Madroño 39: 137-149.
Mia, M.M., B.B. Mukherjee and R.K. Vickery, Jr. 1964. Chromosome counts in section Simiohs of the genus Mimulus (Scrophulariaceae). VI. New numbers in M. guttatus, M. tigrinus, and M. glabratus. Madrono 17: 156-160.
Mia, M.M., B.B. Mukherjee and R.K. Vickery, Jr. 1964. Chromosome counts in section Simiolus of the genus Mimulus (Scrophulariaceae). VI. New numbers in M. guttatus, M. tigrinus, and M. glabratus. Madrono 17: 156-160.
Mia, M.M. and R.K. Vickery, Jr. 1968. Chromosome counts in section Simiolus of the genus Mimulus (Scrophulariaceae). VIII. Chromosome homologies of M. glabratus and its allied species and varieties. Madrono 19: 250-256.
McArthur, E.D., H.T. Alum, F.A. Eldredge, W. Tai, and R.K. Vickery. 1972. Chromosome counts in section Simiolus of the genus Mimulus (Scrophulariaceae). IX. Polyploid and aneuploid patterns of evolution. Madrono 21: 417-420.
Mukherjee, B.B., D. Wiens, and R.K. Vickery, Jr. 1957. Chromosome counts in the section Simiolus of the genus Mimulus (Scrophulariaceae). II. Madrono 14: 128-131.

Mukherjee, B.B. and R.K. Vickery, Jr. 1959. Chromosome counts in the section Simiolus of the genus Mimulus (Scrophulariaceae). III. Madrono 15: 57-62.
Mukherjee, B.B. and R.K. Vickery, Jr. 1960. Chromosome counts in the section Simiohus of the genus Mimulus (Scrophulariaceae). IV. Madrono 15: 239-245.
Mukherjee, B.B. and R.K. Vickery, Jr. 1961. Chromosome counts in the section Simiolus of the genus Mimulus (Scrophulariaceae). Madrono 16: 104-105.
Mukherjee, B.B. and R.K. Vickery, Jr. 1962. Chromosome counts in the section Simiolus of the genus Mimulus (Scrophulariaceae). V. The chromosomal homologies of M. guttatus and its allied species and varieties. Madrono 16: 141-172.
Sweigart, AL., N.H. Martin, and J.H. Willis. 2008. Patterns of nucleotide variation and reproductive isolation between a Mimulus allotetraploid and its progenitor species. Molec. Ecol. 17: 2089-2100.
Vickery, R.K., Jr. 1955. Chromosome counts in the section Smmolus of the genus Mimulus (Scrophulariaceae). Madrono 13: 107-110.
Vickery, R.K., Jr., K.W. Crook, D.W. Lindsay, MM. Mia, and W. Tai. 1968. Chromosome counts in section Simiolus of the genus Mimulus (Scrophulariaceae). VII. New numbers for M. guttatus, M. cupreus, and M. ttlingil. Madrono 19: 211-218.
Vickery, R.K., J.., S.A. Werner, D.R. Phillips, and S.R. Pack. 1985. Chromosome counts in section Stmolus of the genus Mimilus. X. The M. glabratus complex. Madrono 32: 91-94.
Vickery, R.K., Jr., F. Rahmen, S.R. Pack, and T. Mac. 1990. Chromosome counts in section Simiolus of the genus Mimulus (Scrophulariaceae). XI. M. glabratus complex (cont.). Madrono 37: 141-144.
Vickery, R.K., Y.E. Chu, K. Fineman, \& S. Purcell. 1981. Scrophulariaceae. In Chromosome number reports LXX. Taxon 30: 68.
Vickery, R.K., M Simpson, and M. Nellestein. 1981. Scrophulariaceae. In Chromosome number reports LXX. Taxon 30: 68-69.
Vickery, R.K., S.A. Werner, and E.D. MacArthur. 1982. Scrophulariaceae. In Chromosome number reports LXX. Taxon 31: 360.


Map 1. Distribution of Erythranthe glabrata.


Map 2. Distribution of Erythranthe geyeri in Mexico.


Map 3. Distribution of Erythranthe mamoena, $E$ geyeri in the USA, and $E$ michiganensws Hollow symbols are records from literature Missouri distribution records for $E$ geyeri added from Weber et al (2000)


Map 4 Distribution of Erythranthe tilingil Symbols without dots are records from literature


Map 5. Distribution of Erythranthe caespitosa.


Map 6. Distribution of Erythranthe minor. Symbols without dots are records from literature.


Map 7 Distribution of Erythranthe utahensts and $E$ corallina


Map 8 Chromosome counts reported from the USA for plants identified as Mimulus guttatus Open circles are diploid, dotted blue circles are tetraploid, Overlapping symbols in Mohave Co, Arizona, and Kane Co, Utah, denote single populations with both ploidy levels Tetraploids also are reported from Canadian coastal localities (British Columbia) and Alaska See text for further comments


Map 9 Distribution of Erythranthe guttata (in the sense of the present study) in the USA and Mexico The complete distribution in Mexico is shown


Map 10. Distribution of Erythranthe grandis.


Map 12. Erythranthe brevinasuta and E. lagunensis.


Map 13. Distribution of Erythranthe unimaculata.


Map 14 Distribution of Erythranthe decora and $E$ scouleri


Map 15 Distribution of Erythranthe arvensis, $E$ brachystylis, and $E$ hallit Study of herbaria in Oregon and Washington (under-represented in the current study) may show that $E$ arvensis is more common in that region


Map 16 Distribution of Erythranthe cordata


Map 17. Distribution of Erythranthe mtcrophylla.


Map 18. Distribution of Erythranthe laciniata, E. glaucescens, and E. nudata.


Map 19. Distribution of Erythranthe pardalis.



Map 21 Distribution of Erythranthe nasuta


Map 22 Distribution of Erythranthe dentiloba


Map 23 Distribution of Erythranthe parvula and E. chnatiensts


Map 24 Distribution of Erythranthe madrensis, $E$ pallens, and $E$ visibilus


Map 25. Distribution of Erythranthe calciphila and E. pennellii. In the USA, E. calciphila occurs in the Chiricahua, Dragoon, and Huachuca Mountains of Cochise Co., Arizona.

# TAXONOMY OF ERYTHRANTHE SECT. MIMULOSMA (PHRYMACEAE) 

Guy L. Nesom<br>2925 Hartwood Drive<br>Fort Worth, Texas 76109<br>guynesom@sbcglobal net


#### Abstract

Seventeen species are treated as members of Erythranthe sect. Mimulosma in North America north of Mexico: E. ampliata, E. arenaria, Erythranthe austrolatidens Nesom, sp. nov. (Baja California Sur), E. breviflora, E. floribunda, E. geniculata (synonym: Mimulus dudleyl), E. hymenophylla, E. inflatula (synonym: Mimulus evanescens), E. inodora, E. jungermannioides, E. lattdens, E. moniliformis, E. moschata, E. norrisit, E. patula, E. pulstferae, and E. washingtonensts. The section also is hypothesized also to include one Russian species ( $E$. stolonifera) for a total of 18 species. Descriptions, typifications, a key to species, and distribution maps are provided.


KEY WORDS: Mimulus moschatus, Mimulus floribundus, Erythranthe sect. Mimulosma, Mimulus moschatus alliance, Phrymaceae

Sect. Mimulosma of the genus Erythranthe (formerly part of Mimulus; Barker et al. 2012) includes 19 species as treated here, including the widespread E. moschata and E. floribunda, primarily centered in their native ranges to the western USA. The group has often been referred to as the "Mimulus moschatus alliance." Grant (1924) placed these species within her more broadly encompassing Mimulus sect. Paradanthus.

North American species added here since study of the group by Whittall (1999), Carlson (2002), and Whittall et al. (2006) are Erythranthe moniliformis, E. inodora, E. arenaria, and E. plotocalyx. Mimulus evanescens proves to have been earlier named as M. inflatulus and an earlier name for Mimulus dudleyi is M. gentculatus. The group also includes one species endemic to southeastern Russia.

The taxonomy of sect. Mimulosma (as "the Mimulus moschatus alliance") has been studied using pollen morphology (Argue 1980, 1986), vegetative and reproductive morphology (Carlson 2002), and molecular data (Whittall 1999; Whittall et al. 2006). Molecular data show the group to be distinct, but Carlson was unable to find any morphological synapomorphies for it and described it as a "morphologically cryptic clade." Within Erythranthe, species of the group are generally recognized by their herbaceous habit, yellow corollas, equal to subequal calyx lobes, and glandular vestiture. Carlson (2002) noted that "traits ... associated with most ingroup species include a tetraploid chromosome number ( $\mathrm{N}=16$ ), progressively bifurcated stem architecture, viscid herbage, anthers that open completely, and unequal theca."

Most resolutions of molecular and morphological phylogenies divide the species of Erythranthe sect. Mimulosma between two main groups - a northern group (the "Columbia River clade"; see Maps 1 and 2) and a more southern group (the "Sierra Nevada clade). The latter includes E. floribunda, E. gentculata, E. norrsth, E. arenarta, E. moschata, E. inodora, and E. monilformis. The Columbia River clade includes $E$. amphata, E. patula, E. hymenophylla, E. jungermannotdes, $E$. washingtonensis, and E. breviflora. Erythranthe ampliata, E. patula, and E. hymenophylla are a subgroup, the "Snake River clade," within the northern group. The positions of E. latidens and E. pulsiferae are equivocal; E. plotocalyx, first described here, appears to be similar to E. latidens.

Erythranthe inflatula is hypothesized to be of hybrid origin between E. latidens and E. brevflora. The Russian E. stolonifera apparently is most closely related to E. moschata-moniliformis-inodora. Species not included in earlier studies are interpolated here on the basis of morphology and geography.

This account is based primarily on study of collections from ARIZ, BRIT-SMU-VDB, DAV, MO, ND-Greene, NMC, PH, SRSC, TEX-LL, UC-JEPS, and UT. Specimens are cited only for some of the species or variants that have not been generally recognized, but collections at herbaria above have been annotated in documentation of the concepts.

Erythranthe sect. Mimulosma Nesom \& Fraga, Phytoneuron 2012-n: 0. 2012.
TyPE: Erythranthe moschata (Douglas ex Lindl.) Nesom
Annuals and fibrous-rooted or taprooted or perennials from rhizomes; vestiture of glandtipped hairs, varying from minutely stipitate-glandular to villous-glandular, sometimes aromatic. Leaves pinnately or subpinnately to palmately veined. Calyces strongly ridge-angled to wing-angled at maturity, lobes mostly of equal or subequal length. Corollas yellow or white to pinkish or fleshcolored, strongly bilabiate to weakly bilabiate or nearly regular; palate puberulent to short-villous with stiff, usually clavate hairs. Anthers included. Capsules included (often slightly exserted in $E$. norristr). Base chromosome number, $\mathrm{x}=8$.

Two pollen types were recognized by Argue (1980, 1986) among species of sect. Mimulosma. All pollen is tricolporate with multiple, elongate endoapertures. Those with the sexine 2 configuration predominantly microreticulate without supramurial granules or spinules are type IIb : Erythranthe arenaria, E. geniculata, E. floribunda, and E. moniliformis (presumably E. norristt, which was not sampled, also has type IIb). The others (including E. moschata), with supramurial granules or spinules, are type IIc.

An autogamous mating system has evolved independently several times within Erythranthe sect. Mimulosma. Floral characters associated with a shift from allogamy to autogamy include decreased bilateral symmetry, less reflexed upper corolla lobes, and reduced overall corolla length (with corresponding reduction of anther/stigma separation). Carlson (2002) and Whittall et al. (2006) discussed the evolution of this syndrome and observed that it characterizes E. floribunda, E. patula, E. brevflora, E. inflatula, and $E$. latidens and it is noted here that similar features characterize $E$. plotocalyx.

## Key to the American species

1. Plants from rhizomes and/or stolons.
2. Calyx lobes 1-2 mm, apices rounded to mucronate; anthers glabrous; styles scabrous; stolons forming overwintering turions; plants characteristically of cliff faces.
3. Erythranthe jungermannioides
4. Calyx lobes 2-9 mm, apices acute or acuminate; anthers glabrous or pubescent; styles glabrous; stolons without turions; plants usually of habitats other than cliff faces.
5. Stems erect to ascending-erect; leaves often congested
6. Erythranthe moniliformis 3. Stems procumbent to decumbent or decumbent-ascending; leaves distinctly separated.
7. Cauline leaves all petiolate, blades ( $10-$ )15-40(-50); fruiting pedicels (7-)10-25(-40) mm ; calyx lobes triangular to linear-lanceolate or narrowly triangular-acuminate, $2-4 \mathrm{~mm}$; corolla tube-throats $11-16 \mathrm{~mm}$; anthers glabrous to subglabrous . 9. Erythranthe moschata 4. Cauline leaves usually sessile (proximal sometimes short-petiolate or subpetiolate), blades generally oblong-lanceolate, $30-70 \mathrm{~mm}$; fruiting pedicels ( $15-$ )22-50 mm ; calyx lobes linearlanceolate to narrowly triangular with linear-acuminate apices, $5-9 \mathrm{~mm}$; corolla tube-throats $15-18 \mathrm{~mm}$; anthers strongly to weakly hirsute-hirtellous
8. Erythranthe inodora
9. Plants fibrous-rooted or taprooted, without rhizomes or stolons.
10. Cauline leaves gradually petiolate to sessile or subsessile, blades generally elliptic to lanceolateelliptic or ovate-elliptic with an attenuate base, palmately $3-5$-veined.
11. Stems and pedicels villous-glandular with gland-tipped hairs $0.2-1(-1.5) \mathrm{mm}$.
12. Corolla tube-throats $9-12(-14) \mathrm{mm}$, red spots of lower lip conspicuous; calyx prominently red-dotted 13. Erythranthe arenaria 7. Corolla tube-throats $5-6 \mathrm{~mm}$, red spots of lower lip small and indistinct; calyx commonly without red dots
13. All leaves petiolate; erect to decumbent, sometimes procumbent-trailing, branching at proximal to distal nodes
14. Erythranthe floribunda (in part, in Arizona) 8. Medial to distal cauline leaves sessile; stems erect to erect-ascending, mostly branched at the base
15. Erythranthe austrolatidens
16. Stems and pedicels subglabrous to sessile-glandular or minutely stipitate-glandular with gland-tipped hairs $0.1-0.3 \mathrm{~mm}$, without villous hairs.
17. Petioles $2-9 \mathrm{~mm}$, distinctly 3 -nerved (winged); fruiting pedicels $12-38 \mathrm{~mm}$, divergentarcuate
18. Erythranthe pulsiferae
19. Petioles absent or $1-3 \mathrm{~mm}$, 1 -nerved; fruiting pedicels $5-28 \mathrm{~mm}$, straight.
20. Fruiting calyces minutely stipitate-glandular, $8-12 \mathrm{~mm}$; fruiting pedicels $11-28 \mathrm{~mm}$; corolla tube-throats $5-6(-8) \mathrm{mm}$; leaves basal and cauline $\qquad$ 8. Erythranthe latidens 10. Fruiting calyces sparsely and minutely hirtellous, eglandular or sparsely sessileglandular, $5-6 \mathrm{~mm}$ or $7-11 \mathrm{~mm}$; fruiting pedicels $5-11 \mathrm{~mm}$ or $7-18 \mathrm{~mm}$; leaves mostly cauline (basal deciduous by flowering).
21. Fruiting calyces $5-6 \mathrm{~mm}$; fruiting pedicels $5-11 \mathrm{~mm}$; corolla tube-throats $3.5-5$ mm , not exserted beyond the calyx margin; all leaves short-petiolate
22. Erythranthe breviflora
23. Fruiting calyces $7-11 \mathrm{~mm}$; fruiting pedicels $7-18 \mathrm{~mm}$; corolla tube-throats $5-6(-$ 8) mm , exserted $1-3 \mathrm{~mm}$ beyond calyx margin; midcauline and distal leaves subpetiolate to subsessile
24. Erythranthe inflatula
25. Cauline leaves abruptly and distinctly petiolate, blades generally ovate with a rounded to truncate or cordate base; palmately or pinnately veined.
26. Stems prostrate to ascending-erect, sharply bent at the basal nodes; fruiting pedicels divergent at ca. right angles from the stem, often closely paired; calyx lobes ovate-rounded
27. Erythranthe hymenophylla
28. Stems erect to prostrate, decumbent, or ascending, straight (if erect) or geniculate at nodes; fruiting pedicels suberect to ascending-erect, not paired; calyx lobes acute to deltate or shallowly deltate-subulate.
29. Stems and pedicels stipitate-glandular (gland-tipped trichomes unicellular, 0.05-0.2 mm long); leaf blades palmately veined.
30. Corollas regular to weakly bilabiate, tube-throats $7-8 \mathrm{~mm}$ 4. Erythranthe patula 14. Corollas strongly bilabiate, tube-throats $8-12(-14) \mathrm{mm}$.
31. Stems, leaves, and calyces villous-glandular with vitreous, flattened, multicellular, gland-tipped hairs $0.1-0.8 \mathrm{~mm}$ long, leaves densely hairy; stems terete; styles hispid-hirtellous $\qquad$ 2. Erythranthe washingtonensis 15. Stems, leaves, and calyces minutely sessile to subsessile glandular with glandtipped hairs $0.05-0.2 \mathrm{~mm}$ long, leaves very sparsely glandular; styles glabrous; stems 4 -angled
32. Erythranthe ampliata
33. Stems and pedicels villous-glandular (gland-tipped trichomes multicellular, mostly $0.5-$ $1.2(-2) \mathrm{mm}$ long); leaf blades pinnately to subpinnately veined.
34. Plants mostly erect to ascending-erect; calyces greenish; styles hispid-hirtellous; Oregon and Washington
35. Erythranthe washingtonensis
36. Plants erect to prostrate, decumbent, or ascending, calyces commonly red-spotted; styles glabrous; widespread (15) or California $(16,17)$.
37. Corolla tube-throats (4-5-10 mm, limbs expanded 3-4 mm across (pressed)
38. Erythranthe floribunda
39. Corolla tube-throats $9-11 \mathrm{~mm}$ or $12-16 \mathrm{~mm}$, limbs expanded $8-16 \mathrm{~mm}$ across (pressed).
40. Calyces with shallowly wing-angled ribs, lobes triangular-acute and erect to spreading or recurving-spreading in fruit; corollas without white patches, tube-throats $9-12 \mathrm{~mm}$, expanded limb ca. $10-18 \mathrm{~mm}$ across
41. Erythranthe geniculata 18. Calyces with rounded-thickened ribs, lobes linear-oblong and incurved in fruit; corollas with white patches on the lower lip, tube-throats $12-16 \mathrm{~mm}$, expanded limb $15-30 \mathrm{~mm}$ across
42. Erythranthe norrisii
43. Erythranthe jungermannioides (Suksdorf) Nesom, Phytoneuron 2012-39: 38. 2012. Mimulus jungermannoodes Suksdorf, Deutsche Bot. Monatsschr. 18: 154. 1900. TyPE: USA. Washington. Klickitat Co.: steep, overhanging, damp cliffs near Bingen, Aug-Nov 1892, W.N. Suksdorf 1470 (holotype: MO!; is otypes: F, NY digital image!, UC!, US digital image!, WTU).

Perennial, from thin, above-ground stolons or runners that form terminal bud-like structures (overwintering turions). Stems decumbent to procumbent, $5-38(-60) \mathrm{cm}$, simple or branching near the base. Stems and pedicels densely glandular-villous with gland-tipped hairs $0.5-1.2(-1.5) \mathrm{mm}$. Leaves cauline, basal not persistent, blades broadly ovate to broadly lanceolate, $7-35(-40) \mathrm{mm} \times 8-$ 25 mm , subpalmately to pinnately veined, margins sharply and irregularly dentate to denticulate, apex acute to obtuse, base rounded; petioles mostly 2-5(-20) mm. Fruiting calyces cylindric-urceolate, 6-12 mm, plicate-angled, weakly inflated, glandular-villous, lobes subequal, $1-1.5 \mathrm{~mm}$, rounded-
acuminate, suberect, ciliate. Fruiting pedicels $15-35 \mathrm{~mm}$. Corollas yellow with scattered red spots and two white patches at the tips of the palate ridges, strongly bilabiate, tube-throats funnelform, (12-) $16-20(-24) \mathrm{mm}$, limbs expanded $8-10 \mathrm{~mm}$ (pressed), lobes obovate-oblong, apex rounded to truncate. Styles scabrous. Anthers glabrous. Capsules elliptic-lanceolate, $5-9 \mathrm{~mm} .2 n=32$. Map 1.

Flowering May-Jul(-Aug). Basalt crevices in seepage zones in vertical cliff faces and canyon walls, within xeric sagebrush communities; $100-400(-1200) \mathrm{m}$; Oreg., Wash. The record on Map 1 for Jefferson Co., Oregon, is added from OBIC (2011). The Klickitat Co., Washington, occurrence is termed "historical" by WNHP (2005), which also notes that "A sighting of the plant on the WA side was made in the early 1990s, but the location and presence of the species need to be confirmed."

Molecular data place Erythranthe jungermanntotdes and E. washingtonensts as sister species.
2. Erythranthe washingtonensis (Gandoger) Nesom, Phytoneuron 2012-39: 39. 2012. Mimulus washingtonensis Gandoger, Bull. Soc. Bot. France 66: 218. 1919. TyPE: USA. Washington. Klickitat Co.: low sandy banks of the Columbia, Bingen, Oct-Nov 1885, W.N. Suksdorf 560 (holotype: LY; isotypes: CAS digital image!, CU, DS digital image!, GH, MO 2 sheets!, NDGreene!, NY 2 sheets digital images!, ORE digital image!, OS digital image!, PH!, UC 2 sheets!, US digital image!, WS, WTU).

Printed labels by Meinke in 1987 on type specimens give this: "ISOTYPE of Mimulus washingtonensis Gandoger, according to number only; ... The numerous sheets distributed under no 560 collectively represent a hybrid swarm of undetermined parentage, probably involving $M$. washingtonensis, M. patulus, and M. floribundus." Meinke did not provide document to substantiate his observation. Among the plants I have studied of the type collection, density of villous hairs near the stem bases and on the leaf blades varies, and one of the 16 individual plants on the two UC sheets has minutely hirtellous lower cauline vestiture, but all plants I have seen of the type collection have villous-glandular leaf surfaces, which distinguishes them from E. ampliata. Matt Carlson (pers. comm.) also notes that he finds the vestiture of the type collection uncharacteristic of the species in its wider occurrence, but whether this has resulted from hybridization is not evident.

Annuals, fibrous-rooted or filiform-taprooted. Stems erect to ascending, 5-25 cm, often many-branched, terete. Stems and pedicels puberulent-glandular to villous-glandular with glandtipped hairs $0.1-0.8 \mathrm{~mm}$, hairs sometimes vitreous, flattened, and distinctly multicellular. Leaves cauline, basal not persistent, blades deltate or ovate to ovate-lanceolate, $4-16(-23) \mathrm{mm} \times 2-11(-16)$ mm , palmately veined, margins denticulate to entire, apex acute, base rounded to cuneate or truncate, petioles 2-14 mm. Fruiting calyces tubular, 6-8 mm, ridge-angled, weakly inflated, densely and minutely stipitate-glandular, lobes subequal, $0.8-1.2 \mathrm{~mm}$, shallowly deltate, suberect, ciliate. Fruiting pedicels $20-50 \mathrm{~mm}$, divergent at nearly right angles. Corollas yellow with small reddish brown dots and two white patches on the lower lip, strongly bilabiate, tube-throats funnelform, 8-10 mm , limbs spreading $7-10 \mathrm{~mm}$ (pressed), lobes obovate-oblong, apex rounded to rounded-cuneate. Styles hispid-hirtellous. Anthers glabrous. Capsules ellipsoid to ellipsoid-fusiform, $5-8.5 \mathrm{~mm} .2 n$ $=32$. Map 1 .

Flowering May-Sep. Shallow basalt gravels in narrow channels and intermittent streams, sandy stream banks, open slopes, rocky shelves near seeps; 700-1300 m; Oreg., Wash.

Despite the implication of the epithet, except for the type collection Erythranthe washingtonensts occurs most abundantly in the John Day River drainage of eastern Oregon.
3. Erythranthe hymenophylla (Meinke) Nesom, Phytoneuron 2012-39: 38. 2012. Mimulus hymenophyllus Meinke, Madroño 30: 147, plate 1. 1983. Type: USA. Oregon. Wallowa Co.: E side of Horse Creek, ca. 12 km S of the Imnaha River and ca. 21 km W of the Snake River, $1075 \mathrm{~m}, 2 \mathrm{Jul}$ 1980, R.J. Menke \& Kennison 2656 (holotype: OS digital image!; isotypes: ID, NY digital image!, ORE digital image!, UC!, US digital image!, WS, WTU).

Annual, filiform-taprooted. Stems prostrate to ascending-erect, $5-25 \mathrm{~cm}$, simple or fewbranched. Stems and pedicels glandular-puberulent to glandular-villous with vitreous, flattened, multicellular, gland-tipped hairs $0.1-0.8 \mathrm{~mm}$, all hairs glandular. Leaves basal and cauline, largest at midstem, blades broadly lanceolate to ovate, $10-35 \mathrm{~mm} \times 10-30 \mathrm{~mm}$, pinnately veined, distinctly membranous, margins coarsely dentate to shallowly denticulate or entire, apex acute to obtuse, base cuneate to shallowly cordate, petioles $6-30 \mathrm{~mm}$. Fruiting calyces tubular-campanulate, angled, 5-7 mm , slightly inflated, sparsely stipitate-glandular, lobes subequal, $0.5-1.2 \mathrm{~mm}$, ovate-rounded, suberect, ciliate. Fruiting pedicels $10-45 \mathrm{~mm}$, negatively phototropic, causing the capsules to be pressed against the cliff face or into a crevice by the time of dehiscence. Corollas light yellow with red or purple spots on the throat and lower lobes, sometimes with small white patches, weakly bilabiate, tube-throats funmelform, $10-14 \mathrm{~mm}$, lobes obovate-oblong, apex rounded to truncate or notched. Styles glabrous. Anthers glabrous. Capsules ovoid, 3-6 mm. $2 n=32$. Map 1.

Flowering Apr -Aug(-Sep). Steep, seasonally moist basalt cliffs with W or SW exposure, within mes ic coniferous forests; $800-1300 \mathrm{~m}$; Idaho, Mont., Oreg.

Until recently, Erythranthe hymenophylla has been thought to be restricted to deep canyons of Horse Creek and Cow Creek in southeast Wallowa County, Oregon. The Oregon Biodiversity Information Center (2010) notes that the species also is known in Idaho and Montana - county records are added from BONAP (2011).

Meinke (1983) observed that plants of E. hymenophylla have reflexed ("strongly negatively phototropic") fruiting pedicels that increase seed dispersal back onto the vertical cliff wall, the characteristic habitat of the species. The "hanging" habit of E. hymenophylla is reflected in a sharp $\left(90^{\circ}-180^{\circ}\right)$ bend in the basal nodes and the long pedicels that are closely paired and divergent in parallel at about right angles from the stem. The species also is characterized by it very short calyx to corolla length, relatively short capsules, and very large seeds.
4. Erythranthe patula (Pennell) Nesom, Phytoneuron 2012-39: 39. 2012. Mimulus patulus Pennell, Proc. Acad. Natl Sci. Philadelphia 99: 162. 1947. TyPE: USA. Washington. Whitman Co.: Wawawai, along irrigation ditches, May 1897, A.D.E. Elmer 752 (holotype: PH!; isotypes: MO-2 sheets!, SMU!, US digital image!).
Annuals, fibrous-rooted or filiform-taprooted. Stems erect to ascending, (3-)5-15(-24) cm, usually simple. Stems and pedicels stipitate-glandular with gland-tipped hairs $0.2-0.5 \mathrm{~mm}$. Leaves cauline, basal not persistent, blades deltate or ovate to ovate-lanceolate, $4-12(-17) \mathrm{mm} \times 3-10(-14)$ mm , palmately 3 -veined, margins usually denticulate, apex acute to obtuse, base rounded to cuneatetruncate, petioles (5-)8-25 mm. Fruiting calyces tubular, 5-6(-7) mm, not inflated or weakly so, sparsely stipitate-glandular to sparsely hirtellous, lobes subequal, $0.7-1.1 \mathrm{~mm}$, deltate, suberect, ciliate. Fruiting pedicels $10-25(-38) \mathrm{mm}$. Corollas yellow, usually with a few red or brownish dots on lower lip, regular to very weakly bilabiate, tube-throats fumnelform, $7-8 \mathrm{~mm}$, lobes oblong, apex rounded to truncate. Styles glabrous. Anthers glabrous. Capsules ellipsoid to narrowly obovoid, 4$6 \mathrm{~mm} .2 n=32$. Map 1 .

Flowering Apr-May(-Jul, -Aug). Ephemeral seeps, springs, rocky stream banks, moist basalt, fine gravel on top of bedrock, muddy hillside seeps, crevices; 200-1900 m ( -2900 m in Montana and Wyoming); Alberta; Idaho, Mont., Oreg., Wash., Wyo.

Erythranthe patula is distinctive in its long-petiolate leaves with ovate blades and its small, weakly bilabiate to nearly regular corollas.

In his dissertation, Meinke (1992) proposed to recognize Mimulus patulus "var. montanus," characterized by a cauline vestiture of a mixture of stipitate-glandular hairs and minute ( $0.1-0.2 \mathrm{~mm}$ ), sharp-pointed eglandular hairs and with a geographic distribution considerably beyond the typical expression in its range of two or three counties at the corner of eastern Oregon and Washington. The vestiture of typical Mmulus patulus is constituted only by minute, stipitate-glandular hairs. "Var. montanus" was not mentioned again in later publications of which Meinke was author or coauthor (Meinke 1995; Whittall et al. 2006) and the MO specimen cited as an isotype of "var. montamus" cannot be located at MO or UC.

In any case, intergrades between the two vestiture types appear to indicate that the vestiture is variable within a single species. Meinke (1992) noted that a collection from Wallowa Co., Oregon (Peck 18282, NY, WILLU) included plants of both var. patulus and var. montanus. A collection from Idaho Co., Idaho (Gray 5571, MO), might also be interpreted as a mixed collection in the same way. Plants of other collections in 2009 by Karen Gray (MO) from Nez Perce and Idaho counties, Idaho, have stipitate-glandular pedicels but hirtellous, eglandular stems. Collections from Teton Co., Wyoming, have stipitate-glandular stems and pedicels but hirtellous calyces (Payson \& Payson 2226; Witlams 875; Williams 992; all MO) and would strictly be identified as var. patula. Anderson 366 (UC) from Teton Co. has sparsely glandular calyces. Analogous variation in vestiture occurs among populations of Erythranthe breviflora as well as in E. guttata (Fischer ex DC.) Nesom of sect. Simolus (Nesom 2012).
5. Erythranthe ampliata (A.L. Grant) Nesom, Phytoneuron 2012-39: 38. 2012. Mimulus ampliatus A. L. Grant, Ann. Missouri Bot. Gard. 11: 214. 1924. Type: USA. Idaho. Nez Perce Co.: about Lake Waha, 2000-3500 ft, 27 Jun 1896, A.A. and E.G. Heller 3330 (holotype: MO!; isotypes: JEPS, MO!, ND-Greene!, UC). The original labels were distributed with a handwritten identification of "Mimulus longipedunculatus Heller, n. sp.," but that name was never published.

Annuals, fibrous-rooted or filiform-taprooted. Stems erect to ascending, 5-17 cm, often many-branched, 4-angled. Stems and pedicels sessile- to subsessile-glandular with gland-tipped hairs $0.05-0.2 \mathrm{~mm}$. Leaves cauline, basal not persistent, blades broadly ovate to lanceolate, 8-25 $\mathrm{mm} \times 5-19 \mathrm{~mm}$, palmately veined, margins dentate to coarsely denticulate, apex acute to obtuse, base cuneate, petioles $8-20 \mathrm{~mm}$. Fruiting calyces tubular-campanulate, $6-8 \mathrm{~mm}$, not inflated or weakly so, minutely sparsely stipitate-glandular to glabrous, lobes subequal, triangular-acute, suberect, ciliate. Fruiting pedicels $10-22 \mathrm{~mm}$. Corollas deep yellow with a few brownish dots on the lower lip, sometimes with small white patches, strongly bilabiate, tube-throats broadly funnelform, 8-12(14) mm, lobes obovate-oblong, apex rounded to truncate. Styles glabrous. Anthers glabrous. Capsules fusiform to narrowly ellipsoid, 5-6 mm. Chromosome number unknown. Map 1.

Flowering Jun-Jul. Basalt outcrops, seepy roadcuts, grassland seeps; $900-1700 \mathrm{~m}$; Idaho (Nez Perce and Idaho counties).

Meinke referred to Mimulus ampliatus as a variety (1992) or subspecies (1995) of M. washingtonensis, but he apparently never made the formal combination. As understood here, Erythranthe ampliata and E. washingtonensis have disjunct geographic distributions and are nonintergrading in morphology (as in the key). The geography and vestiture of E. ampliata are more similar to E. patula than to E. washingtonensis.
6. Erythranthe breviflora (Piper) Nesom, Phytoneuron 2012-39: 38. 2012. Mimulus breviflorus Piper, Bull. Torrey Bot. Club 28: 45. 1901. Type: USA. Washington. Whitman Co.: Pullman, 3 Jul 1894, C.V. Ptper 1858 (holotype: WS; isotypes: OS digital image!, UC, US digital image!).

Annuals, shallowly fibrous-rooted. Stems ascending, 4-15 cm, branched at lower and middle nodes. Stems and pedicels (and leaves) minutely stipitate-glandular with gland-tipped hairs $0.1-0.3 \mathrm{~mm}$, without villous hairs, sometimes minutely hirtellous with minute-sharp-pointed eglandular hairs (as in E. patula). Leaves mostly cauline (basal mostly deciduous by flowering), blades narrowly ovate or narrowly lanceolate to elliptic or elliptic-lanceolate, largest mostly $5-15 \mathrm{~mm}$ x 2-6 mm, relatively even-sized, or slightly reduced distally, palmately 3-veined, margins entire to mucronulate or denticulate, apex acute to obtuse, base attenuate, narrowed to short ( $1-3 \mathrm{~mm}$ ) petiolar regions or subpetiolate to subsessile. Fruiting calyces campanulate becoming ovoid-ellipsoid to campanulate, $5-6 \mathrm{~mm} \times 3.5-6 \mathrm{~mm}$, winged and plicate-angled, distinctly inflated, sparsely and minutely hirtellous, eglandular or sometimes sparsely sessile-glandular, lobes subequal, $0.5-1 \mathrm{~mm}$, ovate-deltate, suberect, ciliate. Fruiting pedicels $5-11 \mathrm{~mm}$, straight. Corollas yellow, spotted or striped, tube-throats cylindric to narrowly funnelform, $3.5-5 \mathrm{~mm}$, not exserted beyond the calyx rim, limb weakly bilabiate, barely widened, lobes broadly obovate, apex rounded. Styles glabrous. Anthers glabrous. Capsules oblong-ovoid to ovoid-cylindric, 4-6 mm. Chromosome number unknown. Map 2.

Flowering May-Jul. Stream and lake sides, gravel bars, springs, moist slopes, damp swales between dunes, along trails; $1000-2300 \mathrm{~m}$; British Columbia; Calif., Idaho, Mont., Nev., Oreg., Wash.

Voucher specimens for range extremities. British Columbia. 21.5 mi by road on RosslandCascade road from junction near Rossland, occasional on rocky, grassy, S-facing slopes, $4250 \mathrm{ft}, 5$ Aug 1953, Calder and Saville 11483 (UC). Nevada. Humboldt Co.: Santa Rosa Mts., Martin Creek, moist seep under Veratrum, $7500 \mathrm{ft}, 25$ Jul 1940, Munz 16152 (UC).
7. Erythranthe inflatula (Suksdorf) Nesom, Phytoneuron 2012-39: 38. 2012. Mimulus inflatulus Suksdorf, Werdenda 1:38. 1927. TyPE: USA. Washington. Klickitat Co.: In cultivation at Bingen, "25 May 1901-10 Jun 1903," W. Suksdorf 9916 (possible holotype: WS; duplicates: MO!, UC!). MO and UC sheets were annotated as 'isolectotype' by R.J. Meinke in 1987.

The type sheet of Mimulus inflatulus at MO was identified by annotation by R.J. Meinke in 1987 as Mimulus breviflorus subsp. robustus Meinke (an unpublished name). He annotated a collection from Harney Co., Oregon (M.E. Peck 21389, NY digital image!) as "isotype" of Mimulus brevifolius var. robustus. Neither M. inflatulus nor the name "subsp. robustus" was mentioned in subsequent publications by Meinke (1995a, 1995b, 2007).
Mimulus evanescens Meinke, Great Basin Naturalist 55: 250, plate 1. 1995. TyPE: USA. California. Lassen Co.: 20.5 km E of Adin, N side of Ash Valley Rd., ca 0.1 km E of the Lassen National Forest boundary, in broken boulders and heavy gravel abutting Moll Reservoir, ca $1500 \mathrm{~m}, 27$ Jun 1990, R.J. Meinke \& T. Kaye 5900 (holotype: OS; isotypes: MO, NY, RM, UC, US, UTC). Deposition of types is as cited by Meinke but judging from their absence on online databases associated with those herbaria, it would seem that none of the specimens have been distributed. Close study of North American Mimulus sensu lato at MO and UC did not bring a duplicate of 5900 to light. A topotype has been studied (Schoenig 98-70), as cited below).

Annuals, fibrous-rooted or filiform-taprooted. Stems erect to ascending, 6-20(-25) cm , simple or branched at lower and middle nodes. Stems and pedicels (and leaves) minutely stipitateglandular with gland-tipped hairs $0.1-0.3 \mathrm{~mm}$, without villous hairs. Leaves mostly cauline (basal mostly deciduous by flowering), blades narrowly ovate or narrowly lanceolate to elliptic or elliptic-
lanceolate, largest $8-18(-30) \mathrm{mm} \times(1-) 3-7 \mathrm{~mm}$, relatively even-sized, or slightly reduced distally, palmately $3-5$-veined, margins entire to mucronulate or denticulate, apex acute to obtuse, base attenuate to obtuse or rounded, narrowed to short ( $1-3 \mathrm{~mm}$ ) petiolar regions on proximal, mostly subpetiolate to subsessile distally. Fruiting calyces campanulate, maturing ovoid-ellipsoid to campanulate or broadly urceolate, $7-11 \mathrm{~mm} \times 5-6 \mathrm{~mm}$, winged and plicate-angled, distinctly inflated, sparsely and minutely hirtellous, eglandular, lobes subequal, $0.5-1.5 \mathrm{~mm}$, ovate-deltate to broadly triangular, suberect, ciliate. Fruiting pedicels $7-18 \mathrm{~mm}$, straight. Corollas yellow to pale yellow, sparsely red-spotted or not, tube-throats cylindric, 5-8 mm, exserted 1-2 mm beyond the calyx apex, limb weakly bilabiate, barely widened, lobes broadly obovate, apex rounded or mucronate. Styles glabrous. Anthers glabrous. Capsules oblong-ovoid to ovoid-cylindric or broadly ellipsoid, 5-9 mm . Chromosome number unknown. Map 2. A fuller description is available in Meinke (1995a).

Flowering Jun-Jul. Drying edges, banks, and beds of summer-dry watercourses, near drying edges of small lakes or impoundments, often among rocks and shoreline detritus, occasionally in moist protected areas beneath low shrubs (generally Artemisia tridentata), apparently restricted to the ecotone between the upslope edge of the sagebrush-juniper dominated shrub zone and the semiaquatic graminoids near the water's edge (Meinke 1995a, b); 1200-1700 m. Calif., Idaho, Nev., Oreg. The type collection from Klickitat Co., Washington, was from a cultivated plant - no natural occurrences are known from Washington.

Morphological and molecular data (Meinke 1995a; Beardsley et al. 2004) indicate that Erythranthe inflatula originated as a hybrid between E. breviflora and E. latrdens. If so, its geography and biology suggest that it is reproductively stable. The putative parents are geographically and ecologically separated for the most part and the range of E. inflatula is considerably broader than the relatively small region where the parents are sympatric. In this region, however, E. inflatula may be difficult to distinguish from one or both of its putative parents.

Collections of Erythranthe inflatula are these, as cited by Meinke (2007) and with additions from the present study. California. Lassen Co.: 7.0 mi N of Madeline, ca. 1 mi N of Sage Hen siding on Southern Pacific RR, ca. $5500 \mathrm{ft}, 28$ Jun 1957, Bactgalupt 5989 (JEPS); 3.1 mi S of Madeline, ditches along US Hwy 395, on Madeline Plains, rich, black, peaty soil, $5300 \mathrm{ft}, 28$ Jun 1957, Bactgalupi 5998 (JEPS); 10 miles S of Ravendale, 9 Jun 1940, Pennell 25763 (P); 4.8 miles S of Madeline, 17 Jun 1958, Raven \& Solbrtg 13298 (JEPS). Modoc Co.: along Willow Creek, Jun 1894, Austin s.n. (UC); SW shore of Moll Reservoir, 2 meters from water's edge, $4920 \mathrm{ft}, 5 \mathrm{Jul} 1998$, Schoenig 98-70 (DAV, JEPS); Damons Butte, ca. 2.6 mi W of Hwy 139, 4400 ft , cinder cone in a recent lava flow, in Pinus jeffreyi woodland with Artemista tridentata understory, site recently burned, dominated by Ceanothus velutinus, 4 Jun 1988, Taylor 9745 (UC). Shasta Co.: ca. 1 mi W of Warner Grade Reservoir, on margins of N-most of four small seasonally inundated ponds, 3030 ft , 14 Jun 1991, Taylor 11886 (UC). Siskyou Co.: 0.8 mi E of Tennant Rd, NE of Weed, E of Grass Lake and W of Bray on Old State Hwy, ca. 1000 plants in scatteerd groups on a vernally wet, meadowy flat of low scrub, Oswald \& Ahart 9359 (UC). Idaho. Owhyee Co.: meadow, 3 mi S of Riddle, 1 Jul 1949, Holmgren \& Holmgren 7973 (CAS, UC, WS, WTU). Nevada. Washoe Co.: near CA-NV state line in S end of Coppersmith Hills, clay-loam vernal area with silver sage, Plagıobothrys, tansyleaf suncup, $6100 \mathrm{ft}, 23$ Jun 1986, Schoolcraft 1635 (UC). Oregon. Crook Co.: Grizzly Butte, 18 Jun 1894, Leiberg 275 (NY, ORE, US). Gilliam Co.: forks of Cottonwood Canyon, 6 Jun 1894, Letberg 156 (NY, ORE, P, US). Grant Co.: Ochoco National Forest, Graylock Butte, 6 Jul 1912, Ingram s.n. (RM). Harney Co.: dry watercourse near Frenchglen, 26 Jun 1942, Peck 21389 (CAS, NY, P, UC, WILLU) - probably on Burns BLM. Klamath Co.: along the E banks of Dog Hollow Reservoir, 12 Jun 2003, Meinke s.n. (OSC); shallow, stony drainage at SE edge of Campbell Reservoir, near culvert, Meinke s.n. (OSC) (both sites on Lakeview BLM). Lake Co.: along Dog Creek, W of Drews Reservoir, T. 40. S., R. 17. E., Sec. 11 (NE 1/4), 3 Jul 1999, Meinke s.n. (donated to Lakeview BLM herbarium; OSC); Sagehen Creek bed, just N of Road 4017 (west of Drews

Reservoir), T. 40. S., R. 17. E., Sec. 1 (SE 1/4), 4 Jul 1999, Memke s.n. (donated to Lakeview BLM herbarium; OSC); Whiskey Creek bed, above and below Road 4017 (just W of Drews Reservoir dam and pienic area), T. 40. S., R. 18. E., Sec. 8 (NE 1/4), 4 Jul 1999, Mernke s.n. (donated to Lakeview BLM herbarium; OSC); along Wool Lake drainage, SE margin of lake, along drying edges and banks of seasonal stream (mixed population with M. latidens), T. 38. S., R. 25. E., Sec. 12 (NW 1/4), 26 Jun 1999, Meinke s.n. (donated to Lakeview BLM herbarium; OSC). Wasco Co.: Near Dalles City, 18 Jun 1901, Suksdorf 1029 (MO). Washington. The collection mapped from Klickitat Co. is the type.

Meinke (2007) knew Erythranthe inflatula as represented by only five extant populations or population complexes - in Lassen Co., California, and Klamath and Lake cos., Oregon, but recent collections have substantiated its existence elsewhere and older localities should be revisited toward the possibility that the species persists there. The account of RTE species of Oregon (Oregon Biodiversity Information Center 2010) lists Malheur County in the distribution of the species. Oswald (1992) cited additional collections from Lassen Co., California: pool along base of RR, paralleling Poison Lake adjacent to Pittville Rd, Oswald 5652, 9263 (CHSC).
8. Erythranthe latidens (A. Gray) Nesom, Phytoneuron 2012-39: 38. 2012. Mumulus latidens (A. Gray) Greene, Man. Bot. San Francisco Bay, 278. 1894. Mimulus inconspicuus var. latidens A. Gray, Synopt. Fl. N. Amer. (ed. 2) (1, Suppl.): 450. 1886. Lectotype: (cited by Grant 1924, p. 202, as "TYPE"): USA. California. [Contra Costa Co.:] Near Monte Diablo, 26 May 1862, W.H. Brewer 1161 (GH?; isotypes: UC!, US digital image!). The protologue gives "On the flanks of Monte Diablo, Brewer, Greene, and Chollas Valley, San Diego Co., Orcutt." The UC sheet is annotated as "Isotype!" by Grant.

Grant (1924) indicated that she saw the Brewer collection at GH but it is not listed on the Harvard University Herbaria website. The specimen currently listed on the website as the type of Mmulus inconspicuus var. latidens is this: California. San Diego Co.: Chollas Valley, San Diego, 20 Jun 1884, C.R. Orcutt 679 (GH, MO!). An apparent duplicate of the Orcutt collection is at PH , although it has only incomplete collection data. On the Brewer 1161 sheet at UC sheet, Pennell made the following annotation in 1941: "As type of $M$. inconspicuus latidens Gray I take C.R. Orcutt's 479, collected June 20, 1884 at Chollas Valley, San Diego, Calif., since it supplied Gray with most ample material and was his only collection accompanied by dissected flowers in a packet, thus showing its special study by him."

Annuals, fibrous-rooted or filiform-taprooted. Stems ascending to ascending-erect, 3-10($25) \mathrm{cm}$, usually multiply branched from the base. Stems and pedicels (and leaves) short-stipitateglandular to sessile-glandular with gland-tipped hairs $0.1-0.3 \mathrm{~mm}$, without villous hairs. Leaves basal and cauline, largest at base or near midstem, sometimes unreduced in size up to the uppermost nodes, cauline blades ovate to ovate-lanceolate, $8-26(-35) \mathrm{mm}$, palmately $3(-5)$-veined, margins entire or barely mucronulate to shallowly dentate-mucronulate, $1-3$ teeth or mucronulae per side, apex acute to rounded, base abruptly cuneate to rounded, sometimes subauriculate, petioles absent. Flowers (1-)3-12. Fruiiting calyces tubular-campanulate, ovoid-ellipsoid, prominently 5 -angled, purplish, $8-12 \mathrm{~mm} \times 4-7 \mathrm{~mm}$, strongly inflated, mostly minutely stipitate-glandular, lobes subequal, triangular-acute, suberect, ciliate. Fruiting pedicels 11-28 mm. Corollas white to pinkish or fleshcolored, rarely yellowish, red-spotted on throat and lower lobes, tube-throats cylindric, $5-6(-8) \mathrm{mm}$, exserted $1-2 \mathrm{~mm}$ beyond calyx margin, limbs nearly actinomorphic, barely widened, lobes broadly obovate, rounded. Styles glabrous. Anthers glabrous. Capsules oblong to oblong-obovoid, 6-7 mm . Chromosome number unknown. Map 2.

Flowering Apr-Jun. Drained flats or slopes subject to vernal inundation, depressions in open fields, bare clay soil, vacant lots, roadsides; $10-800 \mathrm{~m}$; Calif., Oreg.; Mexico (Baja California).

A collection of Erythranthe latidens from Madera Co., California, has fruiting calyces 8-12 mm long and variably inflated. The distinction between $E$. latidens and $E$. inflatula sometimes seems arbitrary in northwestern California, where they are sympatric.
9. Erythranthe moschata (Douglas ex Lindley) Nesom, Phytoneuron 2012-39: 38. 2012. Mimulus moschatus Douglas ex Lindley, Bot. Reg. 13: plate 1118. 1828 [1827?]. Mumulus guttatus var. moschatus (Douglas ex Lindley) Prov., Fl. Canada 1: 439. 1862. Type: USA. Oregon. [Multnomah Co.:] Garden specimens grown from seeds collected in moist rocks on the Multnomah and the Columbia at the falls of both, 23 May 1825, D. Douglas s.n. (holotype: BM?). A specimen at BM (Canada, 1826, D. Douglas s.n., BM digital image!) may prove to be the type but the collection data, as given by BM, do not appear to match the protologue. Lindley wrote that Douglas found it "growing sparingly on the margins of springs in the country about the river Columbia, in North-West America."
Mimulus crintus A.L. Grant, Ann. Missouri Bot. Gard. 11: 186. 1924. Mimulus acutidens Reiche, Fl. Chile 6: 63. 1911 (not M. acutidens Greene 1885). Type: CHILE. Prov. Valdivia, en pantanos, O. Buchtien 159 (holotype: SGO).
Mimulus leibergil A.L. Grant, Ann. Missouri Bot. Gard. 11: 231, pl. 6, f. 1. 1924. Type: USA. California. [Plumas Co.:] Mt. Pleasant, Spanish Peak Range, wet soil along creek, 6500 ft , 16 Jul 1900, J.B. Leiberg 5171 (holotype: US digital image! photo-MO! photo-UC!).

Perennials, rhizomatous, rooting at lower nodes. Stems ascending to decumbent or prostrate, $2-30(-40) \mathrm{cm}$, simple or branched. Stems and pedicels glandular-villous with glandtipped hairs $1-2 \mathrm{~mm}$. Leaves cauline, basal not persistent, blades oblong-ovate, ( $10-$ ) $15-40(-50$ ) $\mathrm{mm} \times 5-25 \mathrm{~mm}$, pinnately veined, margins coarsely serrate-dentate to denticulate or subentire, apex acute, base truncate to rounded or subcordate, petioles (1-)2-5(-10) mm. Fruiting calyces campanulate, $6-13 \mathrm{~mm}$, weakly inflated or not at all, villous to glandular-villous, plicate-angled, lobes lobes strongly unequal to subequal, $2-4 \mathrm{~mm}$, triangular to linear-lanceolate or narrowly triangular-acuminate, erect to spreading-recurving, ciliate. Fruiting pedicels ( $7-$ ) $10-25(-40) \mathrm{mm}$. Corollas mostly yellow with red to blackish or brown lines or red dots or both in the throat on the lobes, weakly bilabiate to nearly regular, tube-throats narrowly funnelform, $11-16 \mathrm{~mm}$, lobes oblong-obovate, apex usually notched. Styles glabrous. Anthers glabrous to very slightly hirtellous or scabrous. Capsules ovoid, $3-7(10$ ? $) \mathrm{mm} .2 n=32$. Map 4.

Flowering May-Aug. Shaded and wet places in sagebrush, aspen, spruce-fir, lodgepole pine, and meadows; $1200-3100 \mathrm{~m}$; B.C., Alta., N.B., Nfdl., N.S., Ont., Que., P.E.I.; S.P.M.; [western USA] Calif., Colo., Idaho, Mont., Nev., Oreg., Utah, Wash., Wyo., [eastern USA] Conn., Maine, Mass., Minn., N.H., N.J., N.Y., Penn., R.I., Vt., Va., W.Va., Wis.; introduced: South America (Chile), Europe, Australia, New Zealand, Asia (Japan).

Pennell (1935) noted that the Chilean Mimulus acuttdens Reiche is the same species as the North American M. moschatus and indeed plants from Peru and Chile appear to be inseparable from M. moschatus in habit, vestiture, and calyx morphology. Pennell's assessment is corrobated in the present study, based on study of numerous South American collections at MO and UT. Fruiting calyces of the Chilean plants are $6-8 \mathrm{~mm}$, barely expanded from flower; corolla tube-throats $10-12$ mm . Von Bohlen (1995b) maintained Mimulus crinitus as a distinct species (including M. acuttdens Reiche as a synonym) but noted that a closer analysis of North American material of M. moschatus would be necessary for a better judgement. Mrmulus acutidens and M. moschatus sensu stricto are conspecific.

Erythranthe moschata as treated here, recognizing the segregates E. moniliformis and $E$. inodora, is narrower in concept than those of recent decades (e.g., Thompson 1993; Carlson 2002; Whittall et al. 2006), where only the single broad species was recognized. Whittall et al. (2006) noted
that "the Mimulus moschatus alliance is a group of 13 closely related species with uncertain species boundaries and interspecific relationships (Grant 1924; Pennell 1951; Argue 1986; Meinke 1992; Whittall 1999; Carlson 2002)," but this seems unfair particularly to Pennell, who recognized the two segregates of M. moschatus (he also recognized M. macranthus as distinct, but it is here regarded as conspecific with M. moniliformus). Studies of pollen morphology (Argue 1980, 1986) also explicitly support the segregation of M. monilfformis (which has unormamented muri) from M. moschatus. Argue's tentative distinction (1980) of the pollen of M. modorus from that of M. moschatus was not confirmed in the 1986 study.

In contrast, it seems that neither Meinke nor Whittall nor Carlson has even mentioned the potential existence of the segregates. Munz and Keck (1959) recognized Mimulus moschatus var. moniliformis as distinct but treated M. modorus as a synonym of M. moschatus var. moschatus. The only synonym included by Thompson (1993) as a synonym of the broadly conceived M. moschatus was "M. moschatus var. moniliformis."

Each of the three species recognized here (Erythranthe moschata, E. moniliformis, $E$. inodora, using criteria similar to those of Pennell) has a distinct range but each overlaps with the other two (Maps 3 and 4), and while there are indications that hybrids may be formed, all three apparently maintain their morphological distinction. Zones of intergradation in the areas of overlap are not evident but field studies are needed to examine this more closely.
10. Erythranthe moniliformis (Greene) Nesom, Phytoneuron 2012-39: 38. 2012. Mimulus monilformus Greene, Bull. Calif. Acad. Sci. 1: 10. 1884. Mimulus moschatus var. monilforms (Greene) Munz, Aliso 4: 99. 1958. Type: USA. California. [Kern Co.:] Summit Station, Aug 1883, E.L. Greene s.n. (holotype: CAS?; isotypes: GH, MO!). Not located at ND-Greene. Protologue: "Common in dry rocky places of the Sierra, from 4,000 to $8,000 \mathrm{ft}$. In the collections of Bolander, Kellogg and others, this species occurs abundantly, and is named ' M . moschatus,' being confounded with the last species."
Mimulus dentatus var. gracilts A. Gray, Bot. Gaz. 7: 112. 1882. Type: USA. California. [Shasta Co.:] Lassen's Peak, 1882, Mrs. R.M. Austm s.n. (holotype: GH). Not located at ND-Greene.
Mimulus moschatus var. sessilifolus A. Gray, Synopt. F1. N. Amer. (ed. 2) 2(1): 447. 1886. Gray noted as a synonym "M. inodorus Greene, l.c., but the plant as strongly musk-scented as the ordinary species, at least in some cases." Gray also noted "Not rare in wet places, from San Bernardino Co., California, northward, and passing into the ordinary form in Oregon." Syntypes: USA. California: Butte Co.: Chico, Apr 1885, A. Gray s.n. (GH). California. Alameda Co.: Temescal, Tule swamps, Jun 1885, W.S. Lyon 6 (GH).
Mimulus moschatus var. longiflorus A. Gray, Synopt. Fl. N. Amer. (ed. 2) 2(1): 278. 1886. Gray noted only "The usual form in California, also in Oregon." In a later citation (p. 447), he noted "M. moniliformis, in part (the villous- and more or less viscous-pubescent plant), Greene, Bull. Calif. Acad. i. 119. Common especially in the Sierra Nevada." Syntypes: USA. California. Mariposa Co.: Yosemite Valley, 1886, H.N. Bolander 6306 and 6307 (GH).
Mimulus macranthus Pennell, Proc. Acad. Philad. 99: 160. 1947 TyPE: USA. California. Shasta Co.: Hatchet Mountain, 6 to 8 mi W of Burney, along stream in coniferous (Pseudotsuga) forest, $3900 \mathrm{ft}, 7$ Jun 1940, F.W. Pennell 25710 (holotype: PH!).

Perennials, rhizomatous. Stems erect to ascending, $10-30 \mathrm{~cm}$, simple or usually branched. Stems and pedicels (and leaves) densely villous with eglandular or weakly gland-tipped hairs 0.5-2 mm , very rarely glabrate. Leaves mostly cauline, basal not persistent, blades oblong-ovate to ovate, $18-40 \mathrm{~mm} \times 7-13 \mathrm{~mm}$, pinnately veined, margins dentate to denticulate, apex acute to obtuse, base rounded to subcordate, subclasping to sessile, petioles absent or $0.5-1 \mathrm{~mm}$. Fruiting calyces
cylindric-campanuate, $10-11(-13) \mathrm{mm}$, weakly inflated, ridged-angled to winged-angled, villousglandular, lobes subequal, $2-3 \mathrm{~mm}$, lanceolate to triangular-subulate, spreading-recurving, ciliate. Fruiting pedicels $10-40 \mathrm{~mm}$. Corollas yellow with fine blackish or brownish lines on all sides of the throat, red to brown spots present or not, tube-throats cylindric-funnelform, $12-18 \mathrm{~mm}$, limbs weakly bilabiate to nearly regular, apex rounded. Styles glabrous. Anthers glabrous, rarely hirtellous. Capsules narrowly elliptic-ovoid, $6-8 \mathrm{~mm}$. Chromosome number unknown. Map 4.

Flowering Jun-Aug. Around springs and seeps, creek edges, moist meadows, ditches, along trails, roadsides, rocky ridges, granite outcrops, serpentine talus, fir and pine forests; (1000-)15002800 ft ; Calif., Oreg.

In his description of Mimulus macranthus, Pennell (1947, p. 160-161) noted that "This comprises the major part of the material that has been called Mimulus moschatus longfforus Gray (not M. longiflorus (Nutt.) Grant), the remainder being mostly M. modorus Greene. These plants, especially developed in the Cascade Range, and including M. moniliformts Greene, have been usually treated as forms of the Musk Flower, M. moschatus Dougl., but they seem better considered as distinct species ... ." He recognized both M. macranthus and M. monilfformis, distinguishing the latter by its "finely pubescent to glabrous leaves" and petiolate leaves. The vestiture proves to be more variable than allowed in Pennell's concept, thus Greene's older epithet has priority for this Sierra Nevada-centered species.

Mimulus monilfformis was described by Greene as "Near M. moschatus, wholly scentless, villous but scarcely viscid, $3-8$ inches high from a perennial root, with subterranean shoots bearing moniliform strings of small tubers." Production of odor has been noted by various collectors and authors to vary in Erythranthe moschata and slender "moniliform" rhizomes also are variably produced within the species - neither feature separates E. moniliformis from E. moschata.

Erythranthe monilformis is distinct from E. moschata in its erect habit (vs. decumbent to procumbent in E. moschata) and characteristically sessile to subsessile cauline leaves (vs. usually petiolate in $E$. moschata), lending an easily recognizable aspect to the plants. Pedicels of $E$. moniliformis are ascending-erect, while in E. modora and E. moschata, both of which are essentially prostrate, pedicels are characteristically spreading at about 90 degrees. Leaves of E. moniliformis sometimes are short-petiolate and the distinctions in vestiture and corolla size noted by Pennell (1947) are not consistent. In spite of what may appear to be subtle differences, the two are distinct in geography.
11. Erythranthe inodora (Greene) Nesom, Phytoneuron 2012-39: 38. 2012. Mimulus inodorus Greene, Bull. Calif. Acad. Sci. 1: 119. 1885. Greene did not cite a type; he referred to " $M$. moschatus, Gray, Bot. Cal. I. 569, not of Dougl. M. moschatus, var. longiflorus, Gray, Syn. Fl. 278" and noted "Common in both the Coast Range and the Sierra Nevada, throughout California, and also in Oregon." In the Synoptical Flora, Gray noted only "The usual form in California, also in Oregon."

Grant (1924) recognized this entity as Mimulus moschatus var. sessilifolius A. Gray (with M. modorus as a synonym), here placed as a synonym of Erythranthe moniliformis, and noted that it occurs from British Columbia to southern California. She cited numerous specimens but not a type. Pennell (1951) treated it at specific rank, describing its range in California as only in northern counties.
Mimulus moschatus var. pallidiflorus Suksdorf, Deutsche Bot. Monatsschr. 18: 154. 1900. Type: USA. Washington. Skamania Co.: Springs near Chenowith, 7 Jul 1894, W.N. Suksdorf 2320 (holotype: ?; isotypes: ORE digital image!, UC, US digital image!).

Perennials, rhizomatous, sometimes rooting at lower nodes. Stems usually prostrate, sometimes decumbent to ascending, $20-80 \mathrm{~cm}$, few-branched. Stems and pedicels (and leaves) villous with eglandular hairs $1-2 \mathrm{~mm}$, sometimes mixed with much shorter stipitate-glandular hairs. Leaves cauline, basal not persistent, blades oblong-lanceolate, $30-70 \mathrm{~mm} \times 10-22 \mathrm{~mm}$, pinnately veined, margins denticulate to dentate, apex acute, base rounded, petioles absent or uncommonly with petioles $1-2(-3) \mathrm{mm}$. Fruiting calyces cylindric-campanulate, $10-12 \mathrm{~mm}$, weakly inflated, wingangled or plicate-angled, glandular-villous with gland-tipped hairs, lobes strongly unequal, $5-9 \mathrm{~mm}$, linear-lanceolate to narrowly triangular with long-acuminate-apiculate apices, spreading, ciliate. Fruiting pedicels ( $15-$ )22-50 mm. Corollas yellow with fine blackish or brownish lines on all sides of the throat, tube-throats narrowly campanulate, $15-18 \mathrm{~mm}$, limbs weakly bilabiate and often nearly regular, apex rounded. Styles glabrous. Anthers consistently finely hirtellous to hispidulous. Capsules 6-8 mm. Chromosome number unknown. Map 5.

Flowering Jun-Sep. Creek banks, gravel bars, flood plains, shallow ditches, swales, damp banks, moist soil in coniferous woods, marshes, bogs, wet sand; $0-1900 \mathrm{~m}$; British Columbia; Calif., Oreg., Wash.

Greene (1885) characterized the species as "Quite distinct from the true musk plant, being of more than twice the size, scentless, and possibly only annual; certainly never rooting at the joints," further noting "villous and slimy but wholly scentless; stems $1-3$ feet long, weak and decumbent, but not creeping or rooting; leaves ... closely sessile by a broad base." In contrast to Greene's observation, several collections examined in the present study show that it indeed may root adventitiously at lower nodes.

Erythranthe modora is recognized by its prostrate to decumbent or decumbent-ascending habit, large, mostly sessile leaves, dense villous vestiture, long pedicels, large calyces and corollas, hispid-hirtellous anthers, and particularly by its very long, strongly unequal, linear-triangular calyx lobes. The leaves typically and characteristically are sessile with truncate to rounded or subcordate bases but some are short-petiolate (e.g.: California: Lake Co., Heller 5923; Siskyou Co., Heller 7960 and Oettinger 478. Oregon: Gilliam Co., Jones 28831; Jackson Co., Hammond 312. Washington: Skamania Co., the type of Mimulus moschatus var. palldifforus). In these cases, the distinctive leaf bases, vestiture, calyx morphology, and pubescent anthers are generally diagnostic.

A population system of Erythranthe inodora-like plants from counties in southern California probably was the basis for Pennell's attribution (1951) of the species to that area, apparently about 300 miles disjunct from the main range of the species. These plants have the prostrate habit, large leaves, long pedicels, and large corollas of E. modora but the calyx lobes are variable in length and usually do not show the attentuate-apiculate apices characteristic of the latter. Representative specimens: California. Los Angeles Co.: Verdugo Canyon, damp woods, 11 Aug 1910, Blake 1639 (LL); Oak Knoll, Aug 1902, Braunton 656 (UC). San Bernardino Co., San Bernadino Mts.: marsh, $4000 \mathrm{ft}, 21$ Jul 1897, Chandler s.n. (UC); Lower South Fork Meadow, San Gorgonia Wilderness Area, grassy montane meadow in mixed conifer forest, mostly Pimus jeffreyl and Ables concolor, ca. $7600-8000 \mathrm{ft}, 15$ Aug 1976, Davidson 4713 (UC); 1.2 mi E of Running Springs (town) on Calif. 18, common along seepage in road cut, sandy soil, $6100 \mathrm{ft}, 19$ Jun 1969, Holmgren 3596 (UC); Bluff Lake, shade of willows, $7400 \mathrm{ft}, 13$ Jul 1926, Munz 10690 (UC); Little Bear Valley, Aug 1884, Parish 1463 (UC-2 sheets); 1 mi ESE of Jenks Lake, Santa Ana R. drainage, shady creek bed, 7000 $\mathrm{ft}, 20$ Aug 1932, Wheeler 1158 (UC). San Diego Co.: Palomar Mt., $5500 \mathrm{ft}, 7$ Apr 1928, Meyer 504 (UC); Palomar Mt., near Palomar Hotel, 4 Jul 1928, Meyer 504 (JEPS). Riverside Co.: San Jacinto Mts., Tauquitz Valley, wet meadow, $7500 \mathrm{ft}, 8$ Aug 1903, Jepson 2300 (JEPS); Hannah's Sawmill, $1 / 2 \mathrm{mi} \mathrm{E}$ of Dutch Flat, edge of stream, ca. $6000 \mathrm{ft}, 26 \mathrm{Jul} \mathrm{1928}$,Meyer 524 (UC 2 sheets); San Jacinto Mts., Tahquitz Valley, on a stream bank, 3 Jul 1928, Meyer 601 (JEPS, UC).

Plants seemingly disjunct inland in Butte Co., California, are otherwise typical of the species. Examples: Butte Co.: Damp sand at S edge of Butte Creek, ca. 2.1 mi S of Skyway and ca. $1 / 4 \mathrm{mi} \mathrm{E}$ of Hwy 99 bridge, 29 Aug 1987, Castro 213 (DAV); Chico, 28 Jul 1916, Hazeltine s.n. (DAV).
12. Erythranthe pulsiferae (A. Gray) Nesom, Phytoneuron 2012-39: 38. 2012. Mimulus pulsiferae A. Gray, Proc. Amer. Acad. Arts 11: 98. 1876. Lectotype (Grant 1924, p. 212): USA. California. [Plumas Co.:] Indian Valley, 1873, Mrs. Pulsifer-Ames 21 (GH). Gray cited "California, in the Sierra and Indian Valleys of the Sierra Nevada, Bolander, Mrs. PulsiferAmes." Grant (1924) cited Ames 21 as the "Type."

Annuals, shallowly fibrous-rooted. Stems erect, $5-12(-18) \mathrm{cm}$, simple or sparingly branched at the base. Stems and pedicels minutely stipitate-glandular with gland-tipped hairs 0.10.3 mm . Leaves basal and cauline, blades elliptic-oblong to ovate or oblanceolate, $3-14(-23) \mathrm{mm} \mathrm{x}$ $2-9(-15) \mathrm{mm}$, palmately 3 -veined, margins denticulate to entire, apex acute to obtuse, base cuneate to attenuate, petioles 2-9 mm. Flowers 1-5. Fruiting calyces cylindric, $7-10 \mathrm{~mm}$, weakly to strongly inflated, stipitate-glandular, lobes subequal, $0.9-1.1 \mathrm{~mm}$, triangular-acute, suberect, ciliate. Fruiting pedicels $12-38 \mathrm{~mm}$, divergent-arcuate. Corollas yellowish, "limb pale yellow with pink edges, throat yellow," "white with yellow throat and pink border to the expanded limb," reddish dots present or not on the lower lip, tube-throats funnelform, $6-9 \mathrm{~mm}$, limbs weakly bilabiate, lobes broadly obovate-suborbicular, apex rounded. Styles glabrous. Anthers glabrous. Capsules fusiformcylindric, $5-8 \mathrm{~mm} .2 n=32$. Map 6.

Flowering Apr-Jul. Damp depressions, moist gravel, rocky flats, granite outcrops, wet meadows, lava beds, vernal pools, forest openings, commonly in or near coniferous forest, also chaparral-live oak, 50-1300(-2500) m; Calif., Oreg., Wash.

Erythranthe pulsiferae is characterized by its minutely stipitate-glandular vestiture (lacking villous hairs), elongate internodes, persistent basal leaves, small, palmately veined, short-petiolate cauline leaves with elliptic-oblong to ovate or oblanceolate blades, divergent-arcuate pedicels, and small, weakly bilabiate corollas. Erythranthe floribunda is distinct from E. pulsiferae in its multicellular vestiture, urceolate fruiting calyces, and pinnately veined leaves with generally deltate to ovate blades and more strongly toothed leaf margins. The vestiture of $E$. pulsiferae is generally more similar to that of the Columbia River clade.

The anther pairs and stigma of Erythranthe pulsfferae are at essentially the same level and the species appears to be consistently autogamous over its range. Rare plants in Humboldt County (e.g., Tracy 7616 and 12838 , JEPS) have slightly longer corolla tube-throats and broader limbs - in these the anther pairs are slightly separated and the stigma is at or slightly above the upper anther pair.
13. Erythranthe arenaria (A.L. Grant) Nesom, Phytoneuron 2012-39: 38. 2012. Mimulus arenarius A.L. Grant, Ann. Missouri Bot. Gard. 11: 215. 1924 [1925]. Type: USA. California. Fresno Co.: moist sandy places near Huntingdon Lake, $7000 \mathrm{ft}, 5$ Jul 1917, A.L Grant 1032 (holotype: MO!; isotypes: DS, GH, BH, JEPS!, OS digital image!, PH!, POM, RM, US digital image!).
Mimulus subulatus (A.L. Grant) Pennell, Proc. Acad. Nat. Sci. Philad. 99: 162. 1947. Mimulus floribundus var. subulatus AL. Grant, Ann. Missouri Bot. Gard. 11: 222. 1924. Type: USA. California. [Tuolumne Co.:] between Hog Ranch and Hetch-Hetchy Valley, $4200 \mathrm{ft}, 16$ Jun 1917, A.L. Grant 970 (holotype MO!; isotypes: GH, JEPS!, US digital image!).
Mimulus multiflorus Pennell, Proc. Acad. Nat. Sci. Philad. 99: 161. 1947. Type: USA. California. Fresno Co.: 4 mi E of Dunlop, moist granitic gravelly sand, 3700-3800 ft, 9 Aug 1940, F.W. Pennell 26451 (holotype: PH!; isotypes: MO!, NY 2 sheets digital images!, US digital image!).

Mimulus trisulcatus Pennell, Proc. Acad. Nat. Sci. Philad. 99: 161. 1947. Type: USA. California. [Tulare Co.:] below Mineral King [western slope], moist gravelly granitic soil, 7000-7600 ft, 6 Aug 1940, F.W. Pennell 26421 with A. Cronquist (holotype: PH!; isotypes: MO!, NY 2 sheets digital images!, UC!, US digital image!).
Annuals, fibrous-rooted or filiform-taprooted. Stems erect to ascending, 5-20 cm, simple or branched. Stems and pedicels villous-glandular with gland-tipped hairs $0.2-0.8 \mathrm{~mm}$. Leaves basal and cauline, blades elliptic to narrowly elliptic, ovate-elliptic, or ovate-lanceolate, $5-12(-17) \mathrm{mm} \mathrm{x}$ 3-7 mm, 1-veined or palmately 3 -veined, margins entire to sparsely dentate to serrate, apex acuminate to acute or obtuse, base rounded to cuneate-attenuate, petioles essentially absent or proximally $1-3(-5) \mathrm{mm}$ on proximal leaves. Fruiting calyces narrowly campanulate $5-7(-9) \mathrm{mm}$, not inflated or weakly so, often red-dotted, villous-glandular, lobes subequal, ca 1 mm , deltatesubulate to broadly triangular, suberect, ciliate. Fruiting pedicels $10-23 \mathrm{~mm}$, divergent-arcuate. Corollas yellow with red-mottled lower lip, tube-throats funnelform, 9-12(-14) mm, limbs weakly bilabiate, lobes broadly obovate, apex rounded. Styles glabrous. Anthers glabrous. Capsules elliptic, $4-7 \mathrm{~mm} .2 n=32$ (Heckard 4067, JEPS). Map 6.

Flowering May-Sep. Sandy flats, bars, gullies, washes, trails, and road cuts, seasonal creek beds and drainages, rocky slopes, seepy loam, ditches, lake edges, meadows, openings in pine-fir and pine-oak woodlands; (100-)500-2600(-2800) m; Calif. (Fresno, Los Angeles, Madera, Mariposa, Tulare, Tulomne).

Most plants of Erythranthe arenaria have relatively even-sized cauline leaves, all sessile to subsessile. Some, however, have persistent basal leaves that are short-petiolate, ovate with a cuneate base, and relatively larger than the more distal cauline ones. Such plants are those named by Grant as Mimulus floribundus var. subulatus. These might be construed as showing influence of $E$. geniculata, but the latter occurs only at the lower range of elevation for E. arenaria and the "subulata" variants occur at least up to 2300 meters. The "subulata" variants also have the erect habit characteristic of E. arenaria. In any case, these variants should be investigated, especially in the Yosemite area where they appear to be relatively common, toward the possibility that they represent a distinct entity.

It is remarkable that Pennell described two species, based on his own collections and field observations, that appear to be essentially segregates from Erythranthe arenaria. Yet there do not appear to be discontinuities in corolla size or morphology, features he emphasized in descriptions of Mimulus multfflorus and Mimulus trisulcatus. Variability in overall size perhaps contributed toward recognition of M. multiflorus. California botanists perhaps will be able to corroborate Pennell's field observations of corolla variation and partition the variation more precisely.

Plants of a collection of Erythranthe arenaria from Mariposa County ( N of Fish Camp, 49005100 m , Pennell 26392, UC) have mature calyces conspicuously longer ( $8-9 \mathrm{~mm}$ vs $5-7 \mathrm{~mm}$ ) and more inflated than characteristic for the species and the corollas are slightly longer. Otherwise, they seem securely identified as $E$. arenaria.

Plants of the apparently disjunct collection from Los Angeles County are similar to those in counties further north: Los Angeles Co.: San Gabriel Mts., upper slopes of Little Rock Creek Canyon, ca. 1 mi W of Cedar Spring, sandy base of scree slope on N face of Kratke Ridge, $6800 \mathrm{ft}, 20 \mathrm{Jul}$ 1958, Bacigalupı 6416 (JEPS).
14. Erythranthe floribunda (Douglas ex Lindley) Nesom, Phytoneuron 2012-39: 38. 2012. Mimulus flortbundus Douglas ex Lindley, Bot. Reg. 13: plate 1125. 1827. TyPE: USA. Washington. Protologue: "A neat hardy annual, found by Mr. Douglas on moist rocks in the interior of the districts of the river Columbia" (holotype: K?). Grant (p. 218) noted "on
limestone rocks on dry sandy soils in the interior of the Columbia, 1826, Douglas (G, probably part of the type collection)."
Mimulus peduncularis Douglas ex Bentham, Scroph. Ind., 29. 1835. Type: USA. "America borealioccident," 1826, Douglas s.n. (holotype: K, sketch and fragment of type at MO!). The full entry of the protologue is this "21. M. PEDUNCULARIS (Dougl. MSS.), pubescens, humilis, foliis petiolaris ovatis acutis subdentatis basi cuneatis rotundatisve, calycibus (parvis) ovatotubulosis, dentibus brevibus acutis subqequalibus.- America boreali-oceident. Douglas." Collected in 1826 , D. Douglas s.n. (holotype: K, sketch of type at MO).
Mimulus deltotdeus Gandoger, Bull. Soc. Bot. France 66: 218. 1919. Type: USA. Oregon. [Lake Co.:] North Pine Creek, near Snake River, moist situations, 13 Jul 1899, W.C. Cusick 2237 (holotype: ?; isotypes: BH, MO!, OS digital image!, UC!).
Mimulus serotinus Suksdorf, Deutsche Bot. Monatsschr. 18:154. 1900. Type: USA. Washington. Klickitat Co.: damp sandy banks of the Columbia River, Oct-Dec 1892, W.N. Suksdorf 2185 (holotype: WS; isotypes: DS, MO!, NY digital image!, ORE digital image!, UC 2 sheets!, US digital image!; possible isotype: NY digital image!).
Mimulus membranaceus A. Nelson, Bot. Gaz. 34: 30. 1902. Mimulus floribundus var. membranaceus (A. Nelson) A. L. Grant, Ann. Missouri Bot. Gard. 11: 221. 1924. Type: USA. Wyoming. [Albany Co.:] Centennial Hills, 16 Jul 1894, A. Nelson 1683 (holotype: RM; isotypes: BH, GH, MO!, NY digital image!).

Annuals, fibrous-rooted or filiform-taprooted. Stems 3-22(-40) cm, erect to decumbent, sometimes procumbent-trailing, simple to many-branched. Stems and pedicels villous-glandular with gland-tipped hairs greatly variable in length and density, sometimes reduced to sparsely stipitate-glandular with hairs $0.2-0.5 \mathrm{~mm}$. Leaves cauline, basal mostly deciduous by flowering, blades ovate, (3-)8-25(-35) $\mathrm{mm} \times(1-) 5-18(-26) \mathrm{mm}$, pinnately to subpalmately veined, margins serrate to sparsely dentate, apex acute, base cuneate to truncate or cordate, petioles $1-12 \mathrm{~mm}$. Fruiting calyces cylindric, $4-7 \mathrm{~mm}$, weakly to strongly inflated, greenish or purplish to red-dotted, villous-glandular, lobes subequal, $(0.5-) 0.8-1.6(-2) \mathrm{mm}$, triangular-acuminate, suberect, ciliate. Fruiting pedicels $5-20(-26) \mathrm{mm}$. Corollas yellow with red-dotted lower lip, tube-throats funnelform-cylindric, (4-)5-10 mm , limbs weakly bilabiate, expanded $3-4 \mathrm{~mm}$ across (pressed), lobes mostly oblong, apically notched. Styles glabrous. Anthers glabrous. Capsules obovoid to elliptic, $3.5-7 \mathrm{~mm} .2 n=32$. Map 7.

Flowering (Apr- in Arizona, May-)Jun-Aug(-Sep). Under overhangs, moist roofs of cave ruins, wet rock crevices, cliff faces and wet cliff bases, below waterfalls, seeps, springs, humus and moist soil over rocks and slabs, moist slopes, along ditches and pond edges, wet edges of creeks and rivers, drying mud on margins of wetland depressions, creek beds, wet or swampy meadows, along trails, in lodgepole pine, ponderosa pine, ponderosa pine-douglas fir, and spruce-fir woodlands; ( $1000-$ ) $1800-1600(-3100) \mathrm{m}$ (ca. 300-500 m in Arkansas); Alta., B.C.; Ariz., Ark., Calif., Colo., Idaho, Mont., Nev., N.Mex., Oreg., Wash., Utah, S.Dak., Wyo.; Mexico (Baja California, Baja California Sur, Chihuahua, Sinaloa, Sonora).

Collections have been made of plants much reduced in size - in leaves, flowers, and overall stature - so strikingly so that one might suspect that they are evolutionarily distinct, but the sizes appear to be at the lower limits of the species (as in the description above) and such plants are identified here as Erythranthe flortbunda. The following is an example: Nevada. Nye Co.: Toquima Range, Toiyabe National Forest, Pine Creek Canyon, ca. 8500 ft , abundant along small stream, 13 Jul 1964, Holmgren and Reveal 1444 (TEX).

Erythranthe floribunda has been recognized from northern Arkansas (e.g., Moore 1958), where documented from a number of counties (Carroll, Cleburne, Crawford, Franklin, Izzard, Johnson, Logan, Newton, Pope, Searcy, Stone, and Washington). The unpublished name "Mimulus floribundus subsp. moorei Iltis" has appeared in various checklists in reference to the Arkansas plants,
but observations in the current study of populations in the herbarium and field indicate that they are not distinct from the rest of the species The disjunction in geography appears to be analogous to that in E. moschata

Some plants identified here as Erythranthe floribunda in Arizona and southwestern New Mexico (eg, Figs 1-3) are distinctive in their prominently inflated calyces, sessile to subsessile leaves with attenuate bases and palmately 3-5-nerved venation, and much-elongated pedicels (20-43 mm ), but intermediates in Arizona make it difficult to conclude that the variants represent an entity discontmous from plants of typical morphology This variant morphology has not been observed among Mexican populations


Figure 1 Enythranthe floribunda variant from Hidalgo Co, New Mexico (one of several plants from Worthington 32511 , SRSC)


Figure 2 Erythranthe floribunda variant from Hidalgo Co, New Mexico (Todsen sn, NMC)


Figure 3 Erythranthe floribunda vanant from Willams, Coconno Co (Greene sn, ND-Greene)

1. Cauline leaves basally attenuate to sessile or subsessile, epetiolate, blades oblanceolate to elliptic or ellipticlanceolate, primarily palmately 3-5-nerved, sometimes with an additional 1-2 smaller lateral pars, fruiting pedicels $20-43 \mathrm{~mm}$, corolla tube-throats $5-6 \mathrm{~mm}$, fruiting calyces $5-8 \mathrm{~mm}$

Arizona/New Mexico variant
1 Cauline leaves abruptly and distinctly petiolate, blades generally ovate with a rounded to truncate or cordate base, mostly pinnately to subpalmately veined, fruiting pedicels $5-15(-26) \mathrm{mm}$, corolla tube-throats (4-)5-10 mm , fruiting calyces $4-7 \mathrm{~mm}$

Erythranthe floribunda
Collections examined of the Erythranthe floribunda variant. Arizona. Coconino Co.: Williams, wet meadow, 6 Jul 1889, Greene s.n. (ND-Greene 2 sheets). Pima Co: S end of Baboquivari Mts., in sand along edge of Presumido Wash near Buenos Aires, ca. $3000 \mathrm{ft}, 3$ Apr 1966, Mason 2559 (ARIZ). Santa Cruz Co.: Meadow Hills Country Club, 4.5 mi N of Nogales, wet soil in marsh, [ca. 3900 ft ]] 5 May 1966, Crutchfield 1460 (LL); Santa Rita Mts., $4500 \mathrm{ft}, 17$ Apr 1903, Thornber 505 (UC). New Mexico. Hidalgo Co.: 30 mi S of Animas, edges of ponds near Gray's Ranch and sandy banks of Animas Creek, $5000 \mathrm{ft}, 19$ Jun 1973, Todsen s.n. (NMC). Peloncillo Mts., Clanton Draw, 3.0 mi E of the [Coronado] National Forest, E side property line, 5480 ft , annual at edge of stream, 9 May 2004, R.D. Worthington 32511 (NMC, SRSC, UNM, UTEP).

Previous tentative identifications on the three Hidalgo County sheets include Mimulus floribundus, M. "probably floribundus," M. primuloides, and M. rubellus. Similar ambiguity in identification of New Mexico collections recently confirmed as Erythranthe suksdorfit was noted by Keller (2010), but the New Mexico distribution of this species is north of Hidalgo County and the collections cited by Keller seem securely identified as E. suksdorfil (fide Phil Tonne, UNM).

A collection from southwestern Mexico is similar to Erythranthe flortbunda but it is fardisjunct from other populations of that species, completely prostrate, and has very short pedicels: Jalisco. W of San Sebastian, Hacienda del Ototal, wet sand of stream bottom, 1500 m, Mexia 1853 (UC). Fig. 4. It perhaps belongs with plants named by Bentham as Mimulus pubescens, which may prove to be a distinct species.

Mimulus pubescens Bentham, Prodr. (DC.) 10: 372. 1835. Type: MEXICO. Jalisco. "In Mexico prope Talisco," Beechey s.n. (holotype: K, photo MO!). The only information on the specimen is "Mexico, Beechey." See comments below.


Figure 4 Erythranthe from Jalisco, Mexico Possibly what Bentham meant by Mimulus pubescens Benth See comments below
15. Erythranthe austrolatidens Nesom, sp. nov. Type: MEXICO. Baja California Sur. Sierra Guadalupe, W of Mulege, W side of the mountain range, vicinity of Rancho El Tule, E of San Martin and La Vinorama, $26^{\circ} 81^{\prime} \mathrm{N}, 112^{\circ} 72^{\prime} \mathrm{W}$, rocky volcanic substrate, with Lysiloma candida, Opuntia cholla, Pachycereus pringlei, ca. $260 \mathrm{~m}, 26$ Apr 1998, Rebman 5170 (SD!).

Similar to Erythranthe latidens in its annual duration, fibrous roots, yellow, cleistogamous/ autogamous flowers, sessile leaves, tubular campanulate calyces with 5 equal, deltate lobes; different in its short villous-glandular vestiture of stems, leaves, pedicels, and calyces, petiolate proximal leaves, consistently serrulate-denticulate leaf margins, generally smaller fruiting calyces, and disjunct geography in Baja California Sur.

Additional collections examined. MEXICO. Baja California Sur. Mpio. Comondú, La Laguna, al norte de San José de Comondú, matorral sarcocaule, $443 \mathrm{~m}, 26^{\circ} 06^{\prime} 48.2^{\prime \prime} \mathrm{N}, 111^{\circ} 46^{\prime}$ 38.2" W, 14 Mar 2002, Dominguez L. 3136 (ARIZ-2 sheets, SD). Mpio. Comondú, Sierra La Giganta, Llanos de San Julio, 5 km al E de San José de Comondú, matorral xerófilo, $432 \mathrm{~m}, 19 \mathrm{Feb}$ 2003 , Dominguez L. 3399 (ARIZ). Mpio. de La Paz, Mison de Los Dolores, 3 km al SW del Rancho Los Dolores, $25^{\circ} 03^{\prime} 20.8^{\prime \prime} \mathrm{N}, 110^{\circ} 53^{\prime} 28.1^{\prime \prime} \mathrm{W}$, matorral xerófilo, $85 \mathrm{~m}, 15 \mathrm{Mar} 2003$, Dominguez $L$. 3448 (SD).

Annuals, fibrous-rooted. Stems terete, 6-22 cm, nodes 3-5, branched mostly at the base, erect to erect-ascending. Stems, leaves, pedicels, and calyces short-villous-glandular with glandtipped hairs $0.1-1.0 \mathrm{~mm}$, without eglandular hairs. Leaves basal and cauline, basal often deciduous by flowering, largest at base or near midstem, cauline blades ovate to elliptic or obovate, 5-25 x 2-11 mm , basal blades to 30 mm long, 15 mm wide, palmately 3-6-veined, often suprabasal, margins consistently serrulate-mucronulate to -denticulate, (2-)4-6 teeth per side, apex sharply acute, base acute to cuneate, basal and lower cauline petiolate with petioles $1-6 \mathrm{~mm}$. Flowers 5-13, from basal to distal nodes. Fruiting calyces tubular-campanulate, ovoid-ellipsoid, 5 angled, greenish with purple ribs, $8-9 \mathrm{~mm} \times 3-5 \mathrm{~mm}$, slightly inflated, lobes subequal, deltate-rounded, apex apiculate, margins weakly ciliate. Fruiting pedicels $5-30 \mathrm{~mm}$. Corollas yellow, apparently without red markings, tube-throats cylindric, $7-8 \mathrm{~mm}$, exserted $2(-3) \mathrm{mm}$ beyond calyx margin, limbs nearly actinomorphic, barely widened, lobes obovate, apices rounded. Styles glabrous. Anthers glabrous. Capsules $4-6 \mathrm{~mm}$, oblong to oblong-obovoid, stipitate. Map 3 .

Flowering (Jan-)Feb-Apr. Xeric shrubland; ca. 100-250 m; Baja California Sur.
Erythranthe austrolatidens is similar to E. latudens in its overall aspect, but the differences in vestiture and leaf margins and base are readily apparent. These plants have mostly been identified as E. floribunda, to which it may be most closely related, but typical E. floribunda occurs all the way south in Baja California to the Cape Region. The new species is directly contrasted with both in the couplets below.

1 Vestiture villous-glandular, hars $01-10 \mathrm{~mm}$, basal and lower cauline leaves petiolate, margins consistently serrulate-mucronulate to serrulate-denticulate, (2-)4-6 teeth per side, fruiting calyces $8-9 \mathrm{~mm} \times 3-5 \mathrm{~mm}$

Erythranthe austrolatidens
1 Vestiture stipitate glandular, hars $01-03 \mathrm{~mm}$, all leaves sessile, margms entire or barely mucronulate to shallowly dentate-mucronulate, fruiting calyces $8-12 \mathrm{~mm} \times 4-7 \mathrm{~mm}$

Erythranthe latidens
1 Medial to distal cauline leaves sessile, stems erect to erect-ascending, mostly branched at the base
Erythranthe austrolatidens
1 All leaves petiolate, erect to decumbent, sometmes procumbent-trailing, branching at proximal to distal nodes

Erythranthe floribunda
16. Erythranthe geniculata (Greene) Nesom, Phytoneuron 2011-39: 38. 2011. Mimulus geniculatus Greene, Bull. Calif. Acad. Sci. 1: 280. 1885. Mimulus floribundus var. geniculatus (Greene) A.L. Grant, Ann. Missouri Bot. Gard. 11: 220. 1924. Type: USA. California. Kern Co.: Tehachapi, 1884, Mrs. Curran s.n. (holotype: CAS, fragment CAS 290198, fragment MO!; isotype: US digital image!). The CAS website provides this information: "Probably the holotype was lost in the 1906 fire. This [CAS 290198] is a fragment of that HT, returned by Pennell." The MO label (ex CAS) has handwritten "Part of the type."
Mimulus dudleyt A.L. Grant, Ann. Missouri Bot. Gard. 11: 235. 1924. Type: USA. California. Tulare Co.: rocky cliffs E of the Tule River, 27 Mar 1897, W.R. Dudley s.n. (holotype: DS digital image!).

Annuals, fibrous-rooted or filiform-taprooted. Stems ascending to decumbent or prostrate, $5-60 \mathrm{~cm}$, simple to diffusely branched. Stems and pedicels moderately villous with multicellular eglandular hairs $0.8-2 \mathrm{~mm}$ and stipitate-glandular hairs $0.1-0.3 \mathrm{~mm}$. Leaves basal and cauline or basal mostly deciduous by flowering, blades broadly ovate or elliptic-ovate to triangular, 8-35 x 5-30 mm , pinnately to subpinnately veined, margins serrate or dentate with 3-10 teeth per side, apex acute to obtuse or rounded, base cuneate to rounded or subcordate, petioles $2-10(-35) \mathrm{mm}$. Fruiting calyces campanulate-cylindric, (5-) $6-8 \mathrm{~mm}$, weakly inflated, ridged-angled, red-spotted, sparsely to moderately villous-glandular, lobes subequal, $1-3 \mathrm{~mm}$, deltate to narrowly triangular or triangularacuminate, usually apiculate or indurate, suberect to spreading-recurving, ciliate. Fruiting pedicels $12-26(-55) \mathrm{mm}$. Corollas yellow, red-spotted in throat, spots concentrated or becoming coalescent into a somewhat discrete blotch at the base of each of the 3 lower lobes and sometimes the 2 upper as well, tube-throats cylindric, $9-11 \mathrm{~mm}$, limbs strongly to weakly bilabiate, expanded $8-14 \mathrm{~mm}$ across (pressed). Styles glabrous. Anthers glabrous. Capsules obovoid to elliptic, 4-6(-7) mm. $2 \mathrm{n}=32$ (reported as Mimulus dudleyi; Heckard 4003 , UC). Figs. 5 and 6. Map 8.

Flowering (Mar-)Apr-Jul. Granite crevices, canyon slopes, and talus, crevices in volcanic outcrops (Butte and Tulare cos.), edge of boulders, roadsides, damp sandy soil, sandy water edges, gravelly soil and creek bottoms; 200-900(-1200) m; Calif.

Only a single collection of Erythranthe geniculata has been seen in the current study from each of Butte and Stanislaus counties: Butte Co.: North Table Mt., ca. 7 mi N of Oroville, face of basal cliffs on the $S$ side of a small stream, ca. 100 yds S of the fence, ca. 1 mi NW of the parking area, cow chute, and Cherokee Road, basalt grassland, $1241 \mathrm{ft}, 3$ May 2006, Ahart 12,563 (UC). Stanislaus Co.: along Hwy 132 ca. 200 yards E of Basso Bridge, 2 mi SW of La Grange, wet soil beside pond, 27 May 1969, Allen 355 (DAV).

Erythranthe geniculata, like E. arenaria, has recently been treated as synonymous with E. flortbunda. The latter, however, has much smaller corollas and is autogamous, while the flowers of E. geniculata and E. arenaria are larger, chasmogamous, and allogamous. In the original description of Mimulus geniculatus, Greene noted that it had corollas twice the size of M. floribundus. The anther pairs of $E$. geniculata and $E$. arenaria are at different levels and the stigma is slightly above the upper anther pair, while in E. floribunda both anther pairs and the stigma are at the same level.

Erythranthe geniculata, E. arenaria, and E. norrisit constitute a group of apparently closely related species endemic along the Sierra Nevada. All have ovate-petiolate leaves (only the basal are sometimes ovate in $E$. arenaria) with pinnate to subpinnate venation. The more widespread $E$. floribunda, which is part of the group, also is similar but the three endemics have larger corollas with the tube-throats exserted at greater length beyond the calyx margin.


Figure 5. Erythranthe geniculata. Granite-Woody Rd., Kern Co., California. Photo by Mark Egger, 3 April 2010.


Figure 6. Enythranthe geniculata. Indian Wells Canyon, Kern Co., California. Photo by Naomi Fraga, 15 April 2011
17. Erythranthe norrisii (Heckard \& Shevock) Nesom, Phytoneuron 2012-39: 39. 2012. Mimulus norrisii Heckard \& Shevock, Madroño 32: 179. 1985. TyPE: USA. California. Tulare Co.: Comb Rocks above Washburn Cove, 2 mi N of Three Rivers, $2800 \mathrm{ft}, 1$ May 1983, L.L. Norris 389 (holotype: JEPS!; isotypes: CAS, FSC, K, MO, NY digital image!, RSA).

Annuals, fibrous-rooted or filiform-taprooted. Stems ascending to erect-ascending, 2-15($25) \mathrm{cm}$, commonly branched from lower nodes. Stems and pedicels villous-glandular. Leaves basal and cauline, blades elliptic to elliptic-obovate, $20-35 \mathrm{~mm} \times 10-20 \mathrm{~mm}, 3-5$-palmately veined, sometimes with $1-3$ distal vein pairs diverging pinnately, surfaces minutely villous-glandular, margins subentire to distally denticulate, apex acute to obtuse, base mostly attenuate, petioles 5-10(15) mm . Fruiting calyces campanulate, $4-6 \mathrm{~mm}$, weakly inflated, villous-glandular, sulcate between rounded and thickened ribs, lobes subequal, $1.5-2 \mathrm{~mm}$, linear-oblong to oblong-lanceolate with rounded to blunt apices, often incurved, villous. Fruiting pedicels $20-35(-50) \mathrm{mm}$, villousglandular. Corollas yellow with a prominent maroon blotch at the base of each lobe and white patch at the 2 sinus bases of the lower lip, weakly bilabiate to regular, sometimes nearly rotate, tube-throats cylindric-funnelform, $12-16 \mathrm{~mm}$, limbs bilabiate, expanded $15-30 \mathrm{~mm}$ (pressed), lobes oblongobovate to obicular-obovate, apex rounded-truncate. Styles glabrous. Anthers glabrous. Capsules narrowly ovoid, $4-6 \mathrm{~mm}$, often slightly exserted. $2 n=32$. Map 8 .

Flowering Mar-May. Steep marble outcrops in soil pockets, moss covered marble and quartzite ledges, cracks, fractures, and weathered faces, chamise chaparral or blue oak woodland; $300-1300 \mathrm{~m}$; Calif. (Tulare and Fresno counties).

Erythranthe norrist is known only from the Kaweah River drainage and most populations are in Sequoia National Park. The species is characterized by its short-petiolate leaves with attenuate bases, very large corollas with red blotches at the base of each lobe and two white patches on the lower lip, very short, purple-dotted calyces with rounded-thickened ribs and with linear-oblong lobes incurved in fruit. The capsules often extend beyond the apex of the mature calyces.

## Species of Asia.

18. Erythranthe stolonifera (Novopokr.) Nesom, Phytoneuron 2012-39: 39. 2012. Mmulus stolonifer Novopokr., Bot. Mater. Gerb. Bot. Inst. Komarova Akad. Nauk S.S.S.R. 11: 158 [with Latin] and 155 [Russian only]. 1949. Type. RUSSIA. Province Primoskaja, sinus Nachtau [Gulf of Nakhtau], 28 Jun 1911, Dessulavi 1599 (holotype: LE).

Erythranthe stolonifera (Fig. 6) is endemic to the Ussuri region of Russia (Cape Olympiad, Gulf of Nakhtau, Nelka Bay, fide Novopokrovsky 1949), a coastal extension that is essentially opposite the is lands of Sakhalin (Russia) and Hokkaido (Japan), bordered on the west by northeastern China and on the south by North Korea. Plants produce procumbent stems rooting at the nodes and arising from a system of lignescent rhizomes. As noted in the protologue, the plants also produce distally small-leaved runners from basal cauline nodes. The species is characterized by glandularvillous vestiture, essentially ovate, petiolate, pinnately to subpinnately veined leaves with dentate margins, long pedicels, and yellow corollas with infundibular tube-throats. It seems likely that its closest relative is the North American Erythranthe moschata group (E. moschata, E. moniliformis, $E$. modora).


Figure 7 Collection of Erythranthe stolonifera from Primoski Province, Russia

## Excluded species.

Erythranthe bridgesil (Benth.) Nexom (Phytoneuron 2012-n: 0. 2012) was placed by Von Bohlen (1995) in the relationship of Mimulus moschatus and M. floribundus, especially based on similarities in pollen morphology and perhaps with a tacit assumption that it was related to $M$. moschatus. The placement of E. bridgesil within sect. Mimulosma, however, is problematic, especially in view of its glabrous vestiture, strongly palmately veined leaves, and truncate calyx margins. The species is tentatively placed as a continentally disjunct member of Erythranthe sect. Sinopithecus (Barker et al. 2012), with which it shares glabrous vestiture, sessile, palmately veined leaves, calyces with shallowly lobed to subtruncate margins, and broadly spreading, nearly regular corolla limbs.

## ACKNOWLEDGEMENTS

Many thanks to ARIZ, NMC, SD, SRSC, and UC-JEPS for loans of Mimulus sensu lato to TEX (where studied), TEX staff for arranging and handling the loans, Amber Schoeneman at TEX for the photos of Erythranthe plotocalyx, Phil Tonne at UNM for checking the identity of UNM collections filed as Mimulus suksdorfil, Mark Egger and Naomi Fraga for permission to publish photos from their web pages, Theo Witsell for company and guidance on a field trip to see Erythranthe floribunda in Arkansas, and to DAV, MO, ND-Greene, PH, SMU-BRIT-VDB, TEX-LL, UC-JEPS, and UT for help and hospitality during study there. I'm grateful to Naomi Fraga for comments on the manuscript and particularly to Matt Carlson sending his dissertation and providing a detailed commentary as well as various suggested extensions and modifications. Citations of herbaria for duplicates of some types not seen in the present study are from Meinke (1992). This study has been supported in part by the Flora of North America Association.

## LITERATURE CITED

Argue, C.L. 1980. Pollen morphology in the genus Mmulus (Scrophulariaceae) and its taxonomic significance. Amer. J. Bot. 67: 68-87.
Argue, C.L. 1981. The taxonomic implications of pollen morphology in some South American species of Mimulus (Scrophulariaceae). Amer. J. Bot. 68: 200-205.
Argue, C.L. 1986. Some taxonomic implications of pollen and seed morphology in Mrmulus hymenophyllus and M. jungermannioides and comparisons with other putative members of the M. moschatus alliance (Scrophulariaceae). Canad. J. Bot. 64: 1331-1337.
Barker, W.R., P.M. Beardsley, N.S. Fraga, and G.L. Nesom. 2012. A taxonomic conspectus of Phrymaceae: A narrowed circumscription for Mmulus, new and resurrected genera, and new names and combinations. Phytoneuron 2012-39: 1-60.
Beardsley, P.M., S.E. Schoenig, J.B. Whittall, and R.G. Olmstead. 2004. Patterns of evolution in western North American Mimulus (Phrymaceae). Amer. J. Bot. 91: 474-489.
Bentham, G. 1846. Diplacus, Mimulus, Eunanus. Prodr. 10: 368-374.
Bohlen von, C. 1995. El género Mimulus L. (Scrophulariaceae) en Chile. Gayana Bot. 52: 7-28.
BONAP. 2011. North American Plant Atlas (USA county-level species maps). Biota of North America Program, Chapel Hill, North Carolina. Shtp//www bonap org/genera-list html 1 HM >
California Native Plant Society (CNPS). 2011. Inventory of Rare and Endangered Plants (online edition, v8-01a). California Native Plant Society. Sacramento.
<http//www rareplants cnps org/detal//101 html> Accessed August 2011.
Carlson, M.L. 2002. Evolution of mating system and inbreeding depression in the Mimulus moschatus (Scrophulariaceae) alliance. Ph.D. dissertation, Univ. of Alaska, Fairbanks.
Cronquist, A. 1959. Mimetanthe and Mimulus. Pp. 336-350, in Vascular Plants of the Pacific Northwest, Vol. 4.
Grant, A.L. 1924. A monograph of the genus Mimulus. Ann. Missouri Bot. Gard. 11: 99-388 [sect. Simiolus, pp. 145-195].

Gray, A. 1888. Synoptical Flora of North America: the Gamopetalae. Vol. 1, pt. 2 and vol. 2, pt. 1 (ed. 2). sect. Eunanus, pp. 273-275; sect. Diplacus, pp. 275-276; sect. Eumimulus, pp. 276279; sect. Mimulordes, p. 279; Mimulus [revised], pp. 442-451.
Greene, E.L. 1885. Studies in the botany of California and parts adjacent. I. Bull. Calif. Acad. Sci. 1: 66-127.
Hitchcock, C.L., A. Cronquist, M. Ownbey and J.S. Thompson. 1959. Vascular Plants of the Pacific Northwest, Part 4. Univ. of Washington Press, Seattle.
Holmgren, N.H. 1984. Scrophulariaceae. Pp. 344-506, in A. Cronquist et al. (eds.), Intermountain Flora, Vol. 4. New York Botanical Garden Press, Bronx, New York.
Keller, C. 2010. Verification of Mimulus suksdorfil in New Mexico. New Mexico Botanist 51: 1. <http//aces nmsu edu/academics/rangescienceherbarium/documents/51 pdf• Accessed November 2011.

Meinke, R.J. 1992. Systematic and reproductive studies of Mimulus (Scrophulariaceae) in the Pacific Northwest: Implications for conservation biology. Ph.D. thesis, Oregon State Univ., Corvallis, Oregon.
Meinke, R.J. 1995a. Mimulus evanescens (Scrophulariaceae): A new annual species from the northern Great Basin. Great Basin Naturalist 55: 249-257.
Meinke, R.J. 1995b. Assessment of the genus Mimulus (Scrophulariaceae) within the interior Columbia River Basin of Oregon and Washington. Dept. of Botany and Plant Pathology, Oregon State Univ., Corvallis. ¢http//www icbempgov/science/menkel pdf> Accessed November 2011.
Meinke, R. J. 2007. Site management plan for Mmulus evanescens (disappearing monkeyflower). Submitted to Lakeview BLM District, Klamath Falls Resource Area.
<http//www fs fed us/r6/sfpnw/issssp/documents/plannng-docs/cp-smp-va-miev-kfra-dog-hollow-reservorr-2007 pdf> Accessed November 2011.
Moore, D.M. 1958. Mimulus floribundus Dougl. (Scrophulariaceae) in Arkansas. Southwest. Naturalist 3: 217-219.
Munz, P.A. (in collaboration with D.D. Keck). 1959. A California Flora. Univ. of California Press, Berkeley.
Nesom, G.L. 2012a. Taxonomy of Erythranthe sect. Smmola (Phrymaceae) in the USA and Mexico. Phytoneuron 2012-40: 1-123.
Nesom, G.L. 2012b. A new species of Erythranthe (Phrymaceae) from China. Phytoneuron 201244: 1-3.
Novopokrovsky, I.V. 1949 (translated from Russian, 1997). Mimulus. Pp. 275-280, m Flora of the USSR. Vol. 22, Solanaceae and Scrophulariaceae (B.K. Schischkin and E.G. Bobrov, vol. eds.). Smithsonian Institution Libraries, Washington, D.C.
Oregon Biodiversity Information Center (OBIC). 2010. Rare, Threatened and Endangered Species of Oregon. Institute for Natural Resources, Portland State University, Portland. chttp//orbic pdx edu/documents/2010-rte-book pdf> Accessed January 2012.
Oswald, V.H. 2002. Selected Plants of Northern California and Adjacent Nevada. Studies from the Herbarium, No. 11. California State Univ., Chico.
Pennell, F.W. 1935. The Scrophulariaceae of eastern temperate North America. Proc. Acad. Nat. Sci. Philadelphia 1: 1-650 [Mimulus, pp. 112-136].
Pennell, F.W. 1940. New species of Scrophulariaceae from Arizona. Notul. Nat. Acad. Sci. Philadelphia 43: 5-10.
Pennell, F.W. 1947. Some hitherto undescribed Scrophulariaceae of the Pacific states. Proc. Acad. Nat. Sci. Philadelphia 99: 155-171.
Pennell, F.W. 1951. Scrophulariaceae. Pp. 686-859, in L. Abrams. Illustrated Flora of the Pacific States, Vol. III. Stanford Univ. Press, Stanford, California.
SEINet. 2011. Southwest Environmental Information Network. Managed at Arizona State Univ., Tempe. http //swbiodiversity org/semet/index php> Accessed November 2011.

Thompsorl, D M 1993 Mimulus Pp 1037-1046, in J C Hickman (ed), The Jepson Manual Higher Plants of Cahforma Unvv of Califorma Press, Berkeley
USDA, NRCS 2011 The PLANTS Database National Plant Data Team, Greensboro, North Carolna chttp //plants usda gov> Accessed June 2011
von Bohlen V, C 1995 Mmulus crmitus A L Grant (Scrophulanaceae), transfendo de la sección Smmotus Green a la sección Paradanthus A L Grant Gayana Bot 52 1-5
Washnngton Natural Hentage Program (WNHP) 2005 Field Guide to Selected Rare Plants of Washungton Washungton Natural Heritage Program (Washungton State Department of Natural Resources) and U S D I Bureau of Land Management chttp//www1 dnr wa gow/nhp/refdesk/fguidehtm/fgmain htm> Aceessed January 2012
Whittall, JB 1999 A molecular phylogeny for the Mimulus moschatus allanice (Scrophulanaceae) and its conservation implications MS Thesis Oregon State Univ, Corvallis.
Whuttall, J B, M L Carlson, P M Beardsley, R J Meinke, and A Liston 2006 The Minulus moschatus allance (Phrymaceae) Molecular and morphological phylogenetics and their conservation mphications. Syst Bot 31: 380-397


Map 1 Erythranthe jungermannoides, $E$ washingtonensss, $E$ hymenophylla, $E$ amphata, and $E$ patula


Map 2. Erythranthe latidens, E. breviflorus, and E. inflatula. Undotted symbols are reports from literature, vouchers not seen in present study.


Map 4 Erythranthe moschata and E. monilformis Undotted circles are reports from literature, vouchers not seen in present study


Map 5 Erythranthe inodora


Map 6 Erythranthe pulsiferae and $E$ arenaria Undotted symbols are reports from literature, vouchers not seen in present study


Map 7 Distribution of Erythranthe floribunda Inset show disjunct distribution in Arkansas Dotted crrcles in Arizona and New Mexico are variant discussed in text The distribution in Baja Califorma Sur continues to the Cape Region Califormia records from UC-JEPS, Arizona and Mexico records are from ARIZ TEX-LL, and SD. Other records are from various sources, vouchers seen for some but not all


Map 8. Erythranthe norrisii and E. geniculata.

# TAXONOMIC SUMMARY OF ERYTHRANTHE SECT. ACHLYOPITHECA (PHRYMACEAE) 

Guy L. Nesom<br>2925 Hartwood Drive<br>Fort Worth, Texas 76109


#### Abstract

Mimulus acuttdens and M. grayt have recently been treated as synonyms of M. inconspicuus, but all three species are amply distinct and non-intergrading while broadly sympatric. Each is treated here within the genus Erythranthe and together constitute sect. Achlyopitheca. Typifications, descriptions, county distributions, and a key to the species are provided. KEY WORDS: Mimulus, Erythranthe sect. Achlyopitheca, Erythranthe acutidens, Erythranthe grayl, Erythranthe inconspicua


Grant (1924) described Mimulus grayi A.L. Grant and placed it in sequence between M. acuituens and M. meonspicuus. She noted (p. 205-206) that the latter "is the most common species in a closely related group of plants consisting of M. mconspicuus, acutıdens, latıdens, and Grayı. They all have ovate leaves closely sessile by a broad, 3-5-nerved base, strongly plicate, inflated mature calyces with short broad teeth, subglobose villous anthers, and stipitate capsules." All are annuals with purplish (to yellowish in M. mconspicuus) corollas. Mimulus latidens differs from the others in its glandular vestiture (vs. essentially glabrous) and is placed in a different relationship in an infrageneric classification (Barker et al. 2012, primarily following the phylogenetic hypothesis in Beardsley et al. 2004). In the classification of Barker et al., M. inconspicuus, M. acuttdens, and M. grayn are treated in the genus Erythranthe Spach, where they constitute sect. Achlyopttheca.

Pennell (1951) and Munz (1959) recognized all three species of sect. Achlyopitheca. Thompson (1993), however, without comment, included Mimulus acutidens and M. grayn as synonyms of M. inconspicuus. Beardsley et al. (2004) observed that all three are distinct on the basis of molecular data and the present study confirms that observation on the basis of morphology. Differences among them might appear to be relatively subtle but they nevertheless are consistent. The geographic range of each of the three species is essentially restricted to the Sierra Nevada of California and all three occur in Fresno, Kern, Madera, Mariposa, and Tulare counties (Fig. 1). Mimulus acutidens and M. grayi have essentially congruent ranges and both are sympatric with the more broadly distributed M. inconspicuus.

Erythranthe sect. Achlyopitheca Nesom \& Fraga, Phytoneuron 2012-n: 0. 2012. Type: Erythranthe inconspicua (A. Gray) Nesom

Annuals, stems, pedicels, leaves, and calyces usually glabrous, eglandular. Leaves: basal persistent as a rosette, cauline sessile to subsessile (proximal rarely short-petiolate), blades broadly elliptic to ovate or broadly ovate; fruiting pedicels usually longer than calyces. Calyx inflated in fruit, lobes shallowly deltate-mucronulate to deltate-apiculate, the apical calyx margin appearing subtruncate. Corollas usually rose to light lavender, less commonly yellowish, caducous, weakly bilabiate, lobes broadly obovate to oblong with deeply notched apices, ventral ridges yellow-lined. Anthers included, stamens minutely villous-hirsute, hairs sometimes reduced and papilliform. Capsules stipitate. Base chromosome number unknown.

1. Corolla tubes $5-9 \mathrm{~mm}$, limbs expanded $5-6 \mathrm{~mm}$ (pressed); both anther pairs and the stigma at the same level (autogamous); fruiting pedicels $5-15 \mathrm{~mm}$ $\qquad$ Erythranthe inconspicua 1. Corolla tubes $8-12 \mathrm{~mm}$, limbs expanded $7-12 \mathrm{~mm}$ (pressed); anther pairs at different levels, stigma slightly or well above upper anther pair (herkogamous); fruiting pedicels $6-7 \mathrm{~mm}$ or $10-23 \mathrm{~mm}$.
2. Fruiting pedicels $6-7 \mathrm{~mm}$, shorter than the subtending leaves $\qquad$ Erythranthe grayi
3. Fruiting pedicels $10-23 \mathrm{~mm}$, longer than the subtending leaves $\qquad$ Erythranthe acutidens

Based on his field experience, Pennell (1951) provided further distinctions among them the contrasts below are extracted from his key, with slight augmentation from Grant (1924).

1. Corollas yellowish to purple Erythranthe inconspicua
2. Corollas purple.
3. Ventral ridges within corolla sharp, yellow against rosy background, finely pubescent Erythranthe grayi
4. Ventral ridges of corolla less pronounced, the whole platform of the lower lip yellow and pilose
$\qquad$


Figure 1. Distribution of Erythranthe sect. Achlyopitheca.

1. Erythranthe inconspicua (A. Gray) Nesom, Phytoneuron 2012-39: 34. 2012. Mimulus inconspiciuus A. Gray, Pacific Railr. Rep. 4, Pt. 5, No. 4 (Whipple), 120. 1857. Type: USA. California. Los Angeles Co.: Los Angeles, damp hillsides, 14 May 1854, J.M. Bigelow s.n. (holotype: GH; isotype: US digital image!).

Annuals, fibrous-rooted. Stems erect to ascending, $3-16 \mathrm{~cm}$, simple or branched from the base, 4 -angled. Leaves: blades broadly elliptic to ovate or broadly ovate, $6-20 \mathrm{~mm} \times 6-12 \mathrm{~mm}$, palmately 3 -veined, sparsely villous, apex obtuse to acute or acuminate, base rounded to cordate, margins subentire to denticulate; petioles (proximal leaves) $1-5 \mathrm{~mm}$, midcauline and distal leaves epetiolate and sessile. Fruiting pedicels $5-15 \mathrm{~mm}$, usually longer than subtending leaves. Fruiting calyces campanulate, $6-9 \mathrm{~mm} \times 3-3.5 \mathrm{~mm}$, lobes unequal to subequal, $0.5-1 \mathrm{~mm}$, broadly deltate, ciliolate. Corollas pale pink to rose pink or purple to magenta, throat sometimes yellow, lobes sometimes yellowish with pale rose spots, tubes cylindric, $5-9 \mathrm{~mm}$, exserted $1-3 \mathrm{~mm}$ beyond calyx margin, limb expanded to $5-6 \mathrm{~mm}$ (pressed). Anther pairs at essentially the same level, stigma at same level or below both anther pairs or in between them.

Flowering Apr-Jun(-Jul). Steep, N- or NW-facing slopes, canyon walls, moist talus, granitic sand on outcrops, moist gravelly open spots, sandy lake shores, hillside streams or seeps riparian woodland, grassy slopes, digger pine, yellow pine, yellow pine-Kellogg oak, chaparral, Pseudotsuga-Pinus-Cornus, canyon live oak; 200-2100 m; California (Amador, Butte, Calaveras, Eldorado, Fresno, Inyo, Kern, Los Angeles, Madera, Mariposa, Tulare, and Tuolumne counties).

The floral morphology of Erythranthe inconspicua indicates that it is autogamous; at least the smallest corollas appear to be cleistogamous.
2. Erythranthe grayi (A.L. Grant) Nesom, Phytoneuron 2012-39: 34. 2012. Mimulus grayi A.L. Lewis, Ann. Missouri Bot. Gard. 11: 203. 1924. Type: USA. California. Mariposa Co.: Mariposa, May 1882, J.W. Congdon s.n. (holotype: GH; isotype: PH!).

Annual, fibrous-rooted. Stems erect, $8-20 \mathrm{~cm}$, simple or branched from the base, slightly 4angled. Leaves: blades broadly ovate, $7-18 \mathrm{~mm} \times 5-12 \mathrm{~mm}$, palmately $3-5$-nerved, margins denticulate, apex acute, base rounded, sessile, glabrous or rarely sparsely puberulent. Fruiting pedicels $6-7 \mathrm{~mm}$, shorter than subtending leaves. Fruiting calyces campanulate, $9-11 \mathrm{~mm} \times 5-6$ mm , sometimes densely papillate at flowering with tiny, 1 -celled, eglandular hairs, these apparently deciduous by fruiting, lobes deltate-apiculate, ciliolate. Corollas rose red with pink throat lined with rose-red and with a yellow patch, ventral ridges yellow, tubes cylindric-funnelform, $8-11 \mathrm{~mm}$, exserted 3-5 mm beyond calyx margin, limb expanded 7-10 mm (pressed). Anther pairs separated; stigma slightly above or at same level as upper anther pair.

Flowering May-Jul(-Oct). Drying pond beds, creek banks, yellow pine, yellow pinelibocedrus; 1000-1900 m. California (Fresno, Kern, Madera, Mariposa, Tulare, and Tuolumne counties).

In addition to features noted in the key and descriptions, the fruiting calyces of Erythranthe grayi are distinctly more inflated than those of $E$. acutidens and $E$. inconspicua.
3. Erythranthe acutidens (Greene) Nesom, Phytoneuron 2012-39: 34. 2012. Mmulus acutdens Greene, Bull. Calif. Acad. Sci. 1: 117. 1885. Mimulus inconspicuus var. acutıdens (Greene) A. Gray, Syn. Fl. N. Amer. (ed. 2) 2(1): 450. 1886. Type: USA. California. [Fresno Co.:] King's River Mountains, 4000 ft , Apr 1877, Dr. G.A. Etsen s.n. (holotype: GH).

Annuals, fibrous-rooted. Stems erect to ascending-erect, $7-20 \mathrm{~cm}$, simple to diffusely branched, 4 -angled. Leaves: blades ovate to broadly ovate, $10-20 \mathrm{~mm} \times 7-11 \mathrm{~mm}$, palmately $3-5$
nerved, margins serrate denticulate, apices acute, base rounded to truncate, sessile. Fruiting pedicels $10-23 \mathrm{~mm}$, divergent-arcuate, sometimes becoming deflexed, longer than subtending leaves. Fruiting calyces campanulate, $7-9 \mathrm{~mm} \times 3-4 \mathrm{~mm}$, lobes subequal to unequal, $0.5-1 \mathrm{~mm}$, deltate, ciliate. Corollas pale pink to rose purple, tubes cylindric-funnelform, 9-12 mm, exserted 4-5 mm beyond calyx margin, throat yellow or "deep pink on the outside with two yellow spots below the lower lip," limbs expanded $9-12 \mathrm{~mm}$ (pressed). Anther pairs separated; stigma slightly to well above level of upper anther pair.

Flowering Apr-Jul. grassy slopes, sandy terraces, marshy places, lake shores, creek sides, seep edges, shaded canyon slopes, road cuts and roadsides, woodlands of Pseudotsuga menziestiQuercus chrysolepss, oak-digger pine, interior live oak; 200-2000 m; California (Fresno, Kern, Madera, Mariposa, and Tulare counties).

## ACKNOWLEDGEMENTS

Thanks to the staff of DAV, MO, TEX-LL, and UC-JEPS for help with herbarium and library study. This study was supported by the Flora of North America Association.

## LITERATURE CITED

Barker, W.R., G.L. Nesom, P.M. Beardsley, and N.S. Fraga. 2012. A. taxonomic conspectus of Phrymaceae: A narrowed circumscription for Mitmulus, new and resurrected genera, and new names and combinations. Phytoneuron 2012-39: 1-60.
Beardsley, P.M., S.E. Schoenig, J.B. Whittall, and R.G. Olmstead. 2004. Patterns of evolution in western North American Mimulus (Phrymaceae). Amer. J. Bot. 91: 474-489.
Munz, P.A. 1959. A California Flora. In collaboration with D.D. Keck. Univ. of California Press, Berkeley.
Pennell, F.W. 1951. Scrophulariaceae. Pp. 686-859, in L. Abrams. Illustrated Flora of the Pacific States, Vol. III. Stanford Univ. Press, Stanford, California.
Thompson, D.M. 1993. Mimulus. Pp. 1037-1046, in J.C. Hickman (ed.), The Jepson Manual: Higher Plants of California. Univ. of California Press, Berkeley.

# NOTES ON ERYTHRANTHE ORIZABAE (PHRYMACEAE) 

Guy L. Nesom<br>2925 Hartwood Drive<br>Fort Worth, Texas 76109


#### Abstract

Erythranthe orizabae (synonyms: Mimulus pachystylus, Mimulus orizabae) occurs from Guatemala north in Mexico to Veracruz and Hidalgo. Its closest relatives are hypothesized to be a group of six species of southeastern Asia, from Japan through China to the Himalayas. Typification and a description of $E$. orizabae are provided and citation of representative specimens documents its known geographic distribution. KEY WORDS: Mimulus pachystylus, Mimulus orizabae, Erythranthe orizabae, Mexico


Study of Mumulus in the broad sense, in preparation of the FNANM treatment and in anticipation of recognizing segregate genera, has resulted in a better understanding of a species endemic to Guatemala and southern Mexico. Mtmulus pachystylus, as treated by Grant (1924) and generally recognized as such elsewhere (e.g., Standley \& Williams 1973) proves to have an earlier name and has been treated by Barker et al. (2012) within the genus Erythranthe Spach.

Erythranthe orizabae (Benth.) Nesom, Phytoneuron 2011-39: 41. 2012. Mimulus orrzabae Benth., Prodr. (DC.) 10: 372. 1846. TyPE: MEXICO. [Veracruz, presumably:] "In monte Orizabae Mexicanorum," April 1838, J. Linden 1092 (holotype: K digital image! photo-MO!).
Mimulus pachystylus AL. Grant, Ann. Missouri Bot. Gard. 11: 234. 1924. Type: MEXICO. Chiapas. Cerro del Boqueron, Aug 1913, C.A. Purpus 7015 (holotype: MO!; is otypes: BM, F digital image!, UC, US digital image!).

Perennial, rhizomatous and rooting at the nodes. Stems prostrate, $10-30 \mathrm{~cm}$, mostly simple, lignescent. Stems and pedicels arachnoid-villous with multicellular hairs with colored crosswalls, eglandular. Leaves: basal not persistent; blades ovate to broadly ovate, $10-30 \mathrm{~mm} \times 5-20 \mathrm{~mm}$, venation suprabasal-acrodromous (pinnate) with slight tendency to appear brochidodromous (Fig. 3), glabrous on both surfaces or coarsely pilose abaxially along veins, eglandular, margins coarsely dentate to serrate, apex acute to obtuse, base rounded, petioles $3-9 \mathrm{~mm}$. Calyces in flower 9-12 mm and campanulate, in fruit $12-16 \mathrm{~mm}$ and cylindric-campanulate, weakly inflated, crinkly villous on the angles with long hairs with colored crosswalls, lobes subequal, erect, convex to deltate-subulate or nearly obsolete and represented only by a mucro, the calyx apex then nearly truncate except for the slightly longer upper lobe. Fruiting pedicels $10-20(-60) \mathrm{mm}$. Corollas yellow, with 2 lines of red dots along the bottom of the tube, tube cylindric-funnelform, $12-16 \mathrm{~mm}$, strongly bilabiate and sagittally compressed, throats open, ventral ridges prominent. Anthers included, glabrous. Capsule included, narrowly elliptic-ovoid, $7-9 \mathrm{~mm}$; placentation axile. Chromosome number not reported.

Flowering Mar-Aug. Cloud forest, oak woods; 1700-3100 m; Guatemala, Mexico (Chiapas, Hidalgo, Oaxaca, Veracruz).

Representative collections. GUATEMALA. Mpio. San Mateo Ixatatán, cloud forest near the place called Kurus Lemun, 4 mi E of San Mateo Ixatatán along road to Barillas, $8500 \mathrm{ft}, 7$ Aug 1965, Breedlove 11642 (MO); [Depto. Escuintla,] Santa Rosa, near Escuintla, in virgin forest, 1600 m, 20 Jun 1941, Matuda 4246 (LL, MO). MEXICO. Chiapas. Mpio. San Cristobal las Casas, steep NE slope of Zonehuitz, heavily wooded, $9300 \mathrm{ft}, 11 \mathrm{Jul}$ 1966, Breedlove 14525 (MO); [Mpio. Siltepec,] [Santa Isabel Zijan] Fraylesca, near Siltepec, 11 Mar 1945, Matuda 5234 (LL-2 sheets);


Figure 1. Isotype collection of Momulus pachystylus AL. Grant (US).


Figure 2 Leaf of Erythranthe onzabae (from US isotype of Mimuhus pachystyks shown in Fig 1)

Cerro del Boqueron, Aug 1913, Purpus 7075 (UC) Hidalgo Mpio de Tenango de Doria, 10 km al W de Tenango de Dona, bosque de encinos, ailes y Liquadambar prinempalmente, 1700-1800 m, 10 May 1980, Hernandez Magaña and Hemandez $V 43 / 1$ (MO) Oaxaca Mpıo San Felipe Usila, cuenca del Rio Perfume (ladera), 75 km en linea recta al S de Santa Cruz Tepetotutla, en un arroyo, bos que mesófilo de montaina, $2230 \mathrm{~m}, 3$ Apr 1994, Gallardo H et al 1044 (MO)

Grant (1924) included a brief description of Nimuilus orizabae, essentially translated from Bentham's protologue, and placed it among a group of "doubtful and little-known species" Her description of Mamadis pachystylus was much fuller She knew the species only from Chiapas but collections are recorded here from Guatemala, Chapas, Oaxaca, Puebla, Veracruz (whence the type of $M$ imulus orizabie), and Hidalgo No species of Mimudus, however, has apparently been previously meluded in accounts of the Veracruz flora (see comments by Durán-Espinosa 2006), nor was Mimulus orizabue reported by Rodriguez J (2001) for the Valley of Mexico

The generic placement of Eyphranthe orzabiae is mdicated by its parietal placentation, relatively long pedicels, and suprabasal-acrodromous leaf venation As a species, it is characterized by herbaceous, prostrate stems rooting at the nodes, young stems and adaxial leaf surfaces arachnordvillous with long, viscid, crinkly hars sometimes with colored cross walls, leaves petiolate with ovate, pinnately vemed, serrate-margined blades, sometimes bicolored with a lighter abaxial surface, and yellow, bilabiate and strongly sagitally compressed corollas with an open throat

Erythranthe orizabae is superficially similar to E. moschata (Douglas ex Lind1.) Nesom, which has prostrate to ascending stems and petiolate leaves, but the latter occurs in the northern USA and Canada and E. moschata and its closest relatives (Erythranthe sect. Mimulosma, Nesom 2011) are characterized by a vestiture that includes stipitate-glandular hairs. The closest evolutionary relationship of $E$. orizabae is hypothesized here to be with a group of species otherwise similar to sect. Mimulosma but mostly without glandular hairs and with more pronounced suprabasal-acrodromous venation - Erythranthe sect. Mimulasia (see Barker et al. 2012), species mostly of southeastern Asia from Japan through China to the Himalayas but also including E. dentata (Nutt. ex Benth.) Nesom of the Pacific Northwest.

## ACKNOWLEDGEMENTS

Many thanks to the staff of MO, TEX, and UC-JEPS for help with herbarium and library studies there. This study was supported in part by the Flora of North America Association.

## LITERATURE CITED

Barker, W.R., P.M. Beardsley, N.S. Fraga, and G.L. Nesom. 2012. A taxonomic conspectus of Phrymaceae: A narrowed circumscription for Mimulus, new and resurrected genera, and new names and combinations. Phytoneuron 2012-39: 1-60.
Durán-Espinosa, C. 2006. Scrophulariaceae. Flora of Veracruz 139: 1-47.
Grant, A.L. 1924. A monograph of the genus Mimulus. Ann. Missouri Bot. Gard. 11: 99-388.
Nesom, G.L. 2012. Taxonomy of Erythranthe sect. Mimulosma (Phrymaceae). Phytoneuron 201241: 1-36.
Rodríguez Jiménez, C. 2001. Scrophulariaceae. Pp. 674-699, $m$ Rzedowski, G.C. de, J. Rzedowski, y colaboradores. Flora Fanerogámica del Valle de México (ed. 2). Instituto de Ecología, A.C. y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Pátzcuaro, Michoacán.
Standley, P.C. and L.O. Williams. 1973. Scrophulariaceae. Flora of Guatemala. Fieldiana, Bot. 24(9): 319-416.

# A NEW SPECIES OF ERYTHRANTHE (PHRYMACEAE) FROM CHINA 

Guy L. Nesom<br>2925 Hartwood Drive<br>Fort Worth, Texas 76109


#### Abstract

Erythranthe sinoalba Nesom, sp. nov., is described from Yunnan, China. It is an erect, rhizomatous perennial with large, white, red-dotted corollas, ovate, petiolate leaves, relatively long pedicels, and puberulent-glandular pedicels and petiole margins. Its closest relatives are hypothesized to be Asian species of Erythranthe sect. Mimulasia.


KEY WORDS: Erythranthe smoalba, Mimulus, Phrymaceae, China

While studying Asian and Southern Hemisphere species of Mimulus sensu lato in preparation for recognition of generic segregates, a new and distinctive species has come to light. The collection was made on a botanical expedition to Gaoligongshan sponsored by the Kunming Institute of Botany and supported by the National Geographic Society (KUN-NGS). With parietal placentation, flowers on long pedicels, and suprabasal-acrodromous venation, it is placed in the genus Erythranthe (Barker et al. 2012).

Erythranthe sinoalba Nesom, sp. nov. Fig. 1. Type: CHINA. Yunnan. Gongshan. Cikai Zheng. E side of Gaoligong Shan, along the Danzhu He on the road from Nu Jiang at Danzhu to the Myanmar border, $27^{\circ} 37^{\prime} 49^{\prime \prime} \mathrm{N}, 98^{\circ} 37^{\prime} 18^{\prime \prime} \mathrm{E}, 2650 \mathrm{~m}$ altitude, mixed broad-leaved evergreen and coniferous forest with most of the conifers recently cut and removed; growing on wet rock faces above road, flowers white with reddish specks at base of throat, 1 Jul 2000, Li Heng 11827 (MO). Eight duplicates were collected, as noted on the label.

Similar to Erythranthe procera (A.L. Grant) Nesom of southeast Asia in its tall, erect, singlestemmed habit but the leaves larger with more coarsely serrate margins, pedicels and nodal regions puberulent-glandular with gland-tipped hairs, longer pedicels, and corollas white with longer tubes.

Perennial herbs, rhizomatous. Stems erect to ascending-erect, $30-40 \mathrm{~cm}$, simple with branches beginning to develop at flowering, glabrous. Leaves mostly cauline, largest distally, basal greatly reduced in size, petiolate, blades ovate to elliptic-ovate, venation suprabasal-acrodromous (pinnate) with 2-7 veins per side, margins coarsely serrate with 3-9 teeth per side, apex acute, base cuneate, petioles $3-10 \mathrm{~mm}$ long, margins of petiole bases sparsely glandular-puberulent. Fruiting pedicels ca. 25 mm long, straight, erect to erect-ascending, sparsely glandular-puberulent with glandtipped multicellular hairs $0.1-0.6 \mathrm{~mm}$ long. Calyces green, tube 12 mm long, obtriangular, 5 -angled but not distinctly ridged or winged, in fruit elongating to $12-14 \mathrm{~mm}$ and becoming broadly ellipsoidinflated, lobes narrowly triangular with caudate-attenuate apices, 2 mm long. Corollas white, drying slightly yellowish, with reddish dots at base of throat, bilabiate, tube narrowly funnelform, $32-34 \mathrm{~mm}$ long, lobes orbicular-obovate with retuse apices, the limb expanded and ca. $20-25 \mathrm{~mm}$ wide. Stamens glabrous, included, shorter than the style. Style pubescent, included. Fruit broadly ellipsoid, 10 mm long.


Figure 1. Erythranthe sinoalba Nesom (holotype).

Erythranthe sinoalba is similar in its tall, erect, single-stemmed habit and pinnately veined (suprabasal-acrodromous) leaves to the species of Erythranthe sect. Mimulasia, which includes nine southeast Asian species (see Barker et al. 2012) as well as the Mexican-Central American E. orizabae (Nesom 2011b), and E. dentata (Nutt. ex Benth.) Nesom of the Pacific Northwest. It differs from all of these, however, in its larger and white corollas (the others have yellow corollas) and particularly in its pedicels and petiole margins distinctly puberulent with gland-tipped hairs (all of the other species of sect. Mimulasia are eglandular).

Molecular analyses indicate that Erythranthe sect. Mimulosma, which is primarily American and characterized by glandular vestiture, has a sister relationship to sect. Mimulasia. The glandularity of $E$. sinoalba is interpreted here as further evidence of the close relationship of sect. Mimulasia to sect. Mimulosma. The only other Asian species of sect. Mimulosma is the Russian E. stolonffera (Novopokr.) Nesom, which has prostrate-creeping stems similar to those of E. moschata (Douglas ex Lindl.) Nesom of the northern USA and Canada.

Other species of Mmulus sensu lato in southeastern Asia (e.g., Deyuan \& Wen 2011; Ohwi 1984) are of different relationships and distinctly different from Erythranthe sects. Mimulosma and Mimulasia in various morphological aspects: Mimulus bracteosus (treated by Barker et al. 2012 as Mimulus sensu stricto); Mimulus tibeticus and M. platyphylhus (placed by Barker et al. 2012 in Erythranthe sect. Smopitheca).

## ACKNOWLEDGEMENTS

Many thanks to the staff of MO for help with herbarium and library studies there. This study was supported by the Flora of North America Association.

## LITERATURE CITED

Barker, W.R., P.M. Beardsley, N.S. Fraga, and G.L. Nesom. 2012. A taxonomic conspectus of Phrymaceae: A narrowed circumscription for Mimulus, new and resurrected genera, and new names and combinations. Phytoneuron 2012-39: 1-123.
Deyuan, H. and J. Wen. 2011. Phrymaceae. Flora of China 19: 494-494.
Grant, A.L. 1924. A monograph of the genus Mimulus. Ann. Missouri Bot. Gard. 11: 99-388.
Nesom, G.L. 2011a. Taxonomy of Erythranthe sect. Mimulosma (Phrymaceae). Phytoneuron 201141: 1-36.
Nesom, G.L. 2011b. Notes on Erythranthe orizabae (Phrymaceae). Phytoneuron 2011-43: 1-4.
Ohwi, J. 1984. Flora of Japan (English), F.G. Meyer and E.H. Walker (eds.). Smithsonian Institution Press, Washington, D.C.

# TAXONOMIC OVERVIEW OF DIPLACUS SECT. DIPLACUS (PHRYMACEAE) 

Melissa C. Tulig<br>The New York Botanical Garden<br>Bronx, New York 10458<br>mtulig@nybg.org<br>Guy L. Nesom<br>2925 Hartwood Drive<br>Fort Worth, Texas 76109<br>guynesom@sbcglobal net


#### Abstract

A study of Diplacus sect. Diplacus recognizes twelve taxa of the USA at specific rank: D. aridus, D. aurantiacus, Diplacus x australis (MeMinn ex Munz) Tulig, comb. nov., D. calycinus, $D$. clevelandil, D. grandiflorus, D. x linearis (Benth.) Greene, $D$. $\times$ lompocensis McMinn D. longıflorus, D. parviflorus, D. puniceus, and D. ruttlus. A thirteenth species, D. stellatus, is an endemic of Cedros Island, Baja California. The hypothesized hybrid taxa appear to function in the same way as others recognized at specific rank. A key to the taxa, distribution maps, and formal nomenclatural summaries are included.


KEY WORDS: Diplacus, Mimulus sect. Diplacus, Diplacus aurantiacus, Phrymaceae

Various botanists have studied the primarily Californian group of Mimuhus species characterized by sessile to subsessile flowers, parietal placentation, a mostly shrubby or subshrubby habit and perennial duration, and distribution from northern Baja California to southern Oregon. All are at diploid level, $n=10$. This group has sometimes been treated at generic rank (as Diplacus Nutt.) but recent molecular-phylogenetic studies (Beardsley et al. 2004) indicate that they are derived from species of annual duration and nested within the cladistic topology of a more broadly conceived Diplacus - they are appropriately regarded as sect. Diplacus. Formal nomenclature for the whole genus and rationale for its separation from Mimilus L. sensu stricto are presented by Barker et al. (2012). Thompson (2005) treated the whole group (Diplacus, including sect. Diplacus) as Mimulus subg. Schizoplacus A.L. Grant.

The taxonomy of sect. Diplacus at species and infraspecific rank has been controversial. McMinn (1951a) retained the group at generic rank and recognized fourteen species. Beeks (1962) had similar concepts of species, noting that they were distinct morphologically and ecologically. At another extreme, Thompson $(1993,2005,2012)$ has recognized only two species (as Mimulus clevelandit and M. aurantracus, monotypic and with 6 infraspecific taxa, respectively), emphasizing high crossability of all taxa and perceived hybridization and intergradation. The present account, which recognizes thirteen species or species-like entities (three of them may be hybrid in origin), is closer in concept to those of McMinn and Beeks, as well as to those of Grant (1924), Pennell (1951), and Munz $(1973,1974)$, who treated the species within Mimulus.

The first author of the present account studied sect. Diplacus (Tulig 2000; Tulig \& Clark 2000; using nomenclature within Mimulus, modified here to Diplacus), using 953 plants sampled from 155 locations in California (Fig. 1; see Tulig 2000 for precise localities) chosen to represent the essential geographic range of all named taxa (except for $D$. stellatus from Baja California). A fuller extent of populations representing sect. Diplacus is shown by Thompson (2005), although some taxa recognized here are not shown by him as separate entities, and by McMinn (1951a). Plant
identification was based primarily on the keys of Munz (1973), with additional reference to McMinn (1951a) and specimens at RSA Measurements of floral and fohar characters using digital calipers were made on the uppermost mature flower and subtending leaf of a randomly chosen branch Three flowers per plant were measured during the 1999 season to address withim-plant variation, and one flower per plant was measured during the 2000 season Vouchers of populations are deposited at RSA and pressed specimens of each plant sampled are at CSPU


Figure 1 Location of collection sites for the 1999 and 2000 field seasons (Tulig 2000) Dark purple circles-D awantacus, light blue circles-D x ingeans, purple circles-D grandffons, green circles$D \times$ lompocensis, orange crcles- $D$ longgforus, red circles- $D$ punceus, red trangles-D paradionks, yellow circles- $D$ oaljocius, blue triangles- $D$ x custrolis, yellow triangles- $-D$ ardise, green star- $D$ clevelatadr, black $X$-hybrid or undetermmed population Also see Figs 4 and 5

Data were analyzed by priticipal components analysis (Fig 2) and discriminant finction analysis (Fig 3) Both analyses distingushed four major groups (1) Dpplacus clevelondu, (2) D andus, (3) taxa with large corollas - D grandflonus, D longeforisi, and D calychus, and (4) taxa
with relatively small corollas - $D$ pumceas, $D$ parvifons, and $D$ awrantiacils Within each group, geographic ranges further distuggush the taxa and clear separations can be made between most taxa based on quantitative and qualitative morphological characters. Dyplacus stellatus is an endemic of Cedros Island in Baja California, Mexico, and was not included in the Tulig studies but is included here in the fourth group on the basis of morphology - Thompson (2005) treated $D$ stollatus as a synonym of Minmilus cupantacus var ouranatiols


I PUN IPAR EAUS LIN LOM I AUR ECAL ■GRA AARI IICLON $\triangle$ CLE $\times H Y B$
Figure 2 Plot of first two prmerpal components of population mears, representing $75.8 \%$ of the variation HYB refers to populations that could not be assigned to a single tax

The first three proncipal components ( PCs ) account for $85.8 \%$ of the total variance of the data ( 596,162 , and $97 \%$ respectively for PC1, PC2, and PC3) PC1 has the highest loadings for all of the corolla features, especially "length across bottom lobes," "apex of upper corolla lobe to outer smus," and "opening of throat," and high negative loadings for filament lengths PC2 has the highest loadings for corolla tube length, calyx measurements, and style length and high negative loadings for numerous corolla features PC3 has the highest loadngs for filament lengths and style length


Figure 3 Plot of first two canonical variables of individual plants from the discrimmant function analysis

The first three canonical variables (CVs) account for $909 \%$ of the varnance of the data ( 641 , 226 , and $69 \%$ respectively) Corolla tube length accounts for most of the variation in CV1 separating the same small and large flowered groups as th the PCA Corolla tube length was also high on CV2, as well as the corolla features "width of lower center lobe" and "opening of throat," and calyx height Characters loading highest on CV3 were both calyx features and style length The scatter plot of the first two canonical variables is similar to that of the PCA except for the position of Mardus which is placed high on both CV1 and CV2 because of its long corolla tube length

## Species concepts and hybridization in sect. Diplacus

In discussing the rationale for his taxonomic concepts regarding sect Diplacus, Thompson (2005, p 150), noted this "Mimulus aurantacus shows the most complex variation patterns found in subg Schizoplacus, hybridization occurs wherever any two varieties come together I have attempted to summarize some of these patterns with as much detail as possible on the distribution maps (Figs 63-65) A large propertion of specimens are intermediate to some degree and some of these may not
easily key to a recognized variety. Hybrids seem to be sufficiently fertile to allow considerable backerossing to occur within each hybrid zone, commonly resulting in a complete range of intermediates. The hybrid intermediates have no distinguishing features of their own and very few characters separate the varieties. None of the varieties are geographically isolated from the others, and all have produced naturally occurring intermediates with at least one other variety. I have therefore chosen to accommodate the minimal diversity of this complex among varieties, rather than among species."

In addition to Thompson's view of the variation patterns, he emphasized practical aspects of producing a classification (p.25). "The intermediates recognized in this work (which often show highly variable or clinal morphological variation between the putative parents) are geographically where we would expect them to be; recognizing them as intermediates or hybrids, rather than as new taxa, increases our understanding of this group and strengthens the classification by making the keys and descriptions work easily for the vast majority of material. The intermediates have very few, if any, unique characteristics, a situation that would cause serious difficulties in writing keys and descriptions, if they were to be recognized as distinct taxa. I must embrace a practical morphological species concept, if this monograph is to be favorably received."

In accounting for his divergence earlier taxonomic concepts (presumably alluding to Munz and others), Thompson observed that earlier studies were "based on little or no original work beyond that provided by Grant (1925)." He did credit McMinn, however, with original work but noted (p. 3) that "unfortunately, the distribution maps provided in MeMinn's paper did not show adequately the intricate patterns of hybridization and introgression linking most of the taxa; the same is true of the maps in later work by Beeks (1962)." Thompson also pointed out an ambiguity in McMinn's application of species concept that appears to have linked their two treatments.

McMinn (1951a, p. 34) observed the following: "I have chosen to treat all these field entities (taxa) simply as binomials. Inasmuch as binomials to most botanists indicate species, I have endeavored not to use the word species when writing of these various entities. I must point out, however, that if sterility and geographical distribution tests were the main criteria applied in delimiting species and subspecies, then the field entities of the genus Diplacus probably would be classified as two taxonomic species [D. aurantiacus and D. clevelandii], eleven subspecies, and numerous hybrids." Except for this caveat, however, he treated 14 taxa exactly in the format of species, even describing "4. Diplacus lompocensis sp. nov." - thus it appears that McMinn (1951a and also in 1951b) was not satisfied with simply "sterility and geographical distribution tests" in his working and practical concept of Diplacus species.

The studies of Tulig, which were not cited or alluded to by Thompson, conclude with a different perspective, more similar (in recognizing more than two species) to those of previous students of the group. Each of the taxa of sect. Diplacus has a distinct geographic range and for the most part is clearly defined (Fig. 4), and throughout most of the range of seet. Diplacus, hybridization appears to be limited. Much of the taxonomic confusion in the group can be attributed to introgression and hybridization in southern California, occurring mostly at the overlap in distribution of D. aurantiacus, D. puniceus, D. australts, D. longiflorus, and D. calycinus (Fig. 5). These hybrid introgressive populations are often characterized by a wide range of corolla colors within and between plants and floral features intermediate to their putative parents.


Figure 4. Geographic chstribution of Diplacus species in Cahforma (representing populations studed by Tulig, see Fig 1) Dpizacus rowiaj is not included in Figure 4 but is treated here as distunct

Sect Duplacus is well adapted to dy environments and rock crevices, and the expansion of roads into inner mountain regions has increased the frequency of hybridzation Hybnd populations are repeatedly found along road cuts, as noted here and by others (McMinn 1951a, Beeks 1963, Waayers 1996 ) and in some areas, hybrids seem to be restricted to road cuts, where they frequently have been collected. The view here emphasizes that blurred boundanes between species have arisen in large part because of zones of sympatry created by human disturbance. The entities are recognized as morphologically distinct and with distinct geographic ranges and as producing intermedates through hybridization only in relatively narrow boundary regions

 by Twig sec Fig ])

In the analyses of Tulig (2000) in addetion to the entities interpected as species three otbers were consstently disbigushed Daplacus lompocenses (Binsulus winantiacus var lompacensas)
 faserculatue) Each of these appears to be of hybnd ongin oud $1 s$ fermally treated below Duplacus 8 lampoeenss and D $\times$ australs are utermed ate between the lauge flowered taxa and snall flowered tama $D$ imeare te mece surntar to the large flowered tasa

MalMinn recognzed essentally the same species as here but meluded as spones those treated
 dastact entity) He also recognized $D$ rualis as distanet - it is tentatively placed here withan $D$ jargeflaras (see comments belsw) Fis spady moluded intensve field and herbanum and garden stady as well as a broad songe of artifical arosecs

Beeka (1962) atuched orily mantland spectes of southem California recognazing Doplacwe
 concept be probably al so would have recognized specie generally consstent wnth the tax onomy of McMinn and Tulig He uoted (p 120) that "When compared reggoally populations of unform Deplocses exbibut consplctacus discontanuties that justriably allow theis recogntion as taxoniomic unts The breakdown of ecological isolation sad the ocourrence of untrogreestue hybndsatica are


Figure 6 Deplacus flowersin face and side view a_b $D$ bagiforws e_d $D$ aunantacwis ef $D$


important causes of populational variability. Interspecific hybridization along the zone of species contact is followed by introgression into the populations. Ecologically open habitats allow extreme recombinants to succeed."

## Differences in coadapted pollination systems

In a study of floral isolation between ornithophilous and sphingophilous species, Verne Grant (1993) recognized eight species of Diplacus - D. parviflorus, D. puniceus, D. longiflorus, and D. aurantiacus are hummingbird-pollinated, while D. calycinus and D. arichs and hawkmoth-pollinated. Diplacus clevelandit, which he interpreted as the most primitive member of the group, is beepollinated. He did not have information about D. stellatus or D. grandfflorus, but the latter appears to be hawkmoth-pollinated, based on its morphology (many good photos available on the internet). Diplacus stellatus is closely similar to D. aurantracus and perhaps also is hummingbird -pollinated.

The ornithophilous flowers have red to orangish corollas, daytime nectar production, and relatively shorter and broader corolla tubes (corresponding to hummingbird mouthparts). The sphingophilous flowers have pale-colored corollas, vespertine and nocturnal nectar production, and long and narrow floral tubes (suitable for a long slender proboscis) (Fig. 6). The flowers are structurally adapted for one or the other pollinator type, and foraging behavior of the pollinators is correspondingly adjusted to recognize the interspecific floral differences.

Hummingbirds, however, sometimes visit sphingophilous flowers, hawkmoths sometimes visit ornithophilous flowers, and bees often visit both types of flowers. Thus, secondary pollinators may cross-pollinate the contrasting species, and hybrids and hybrid populations have flowers of intermediate structure that can be visited and pollinated successfully by both hummingbirds and hawkmoths.

The ornithophilous taxa of Diplacus are, among themselves, mostly allopatric, as also are the sphingophilous taxa, and Grant surmised that the species of each group arose through allopatric speciation that includes a stage of geographical isolation. "It seems likely that the ancestral species in each plant group developed an ornithophilous pollination race in one geographical area that was favorable for hummingbird pollination and a sphingophilous pollination race in another geographically isolated area that was favorable for sphingophily. Continued divergence with respect to pollination and secular ecological conditions led the divergent branches to the level of externally isolated species, and range expansions brought about sympatric overlap" (Grant 1993, p. 7732).

Streisfeld and Kohn $(2005,2006)$ studied pollination of Diplacus in San Diego County and concluded, in contrast to Grant, at least in this instance, that selection may have caused divergence in flower color in the absence of geographic barriers to gene flow. They found a sharp geographic transition between the coastal red-flowered plants (D. puniceus) and the inland yellow-orangeflowered plants (identified here as $D$. longitlorus, see detailed comments below, but by Streisfeld and Kohn as $D . \times$ australls), with a narrow zone of transition (ca. 20 kilometers wide) at their parapatric boundary. The inland and coastal plants also are distinct in corolla tube length and width and volume of nectar production, but corolla color is the most highly divergent feature. Yellow-flowered plants are absent from the western (coastal) region and red-flowered plants are absent from the eastern side of the cline. Pure phenotypes occur in the transition area but intermediate flower colors through hybridization occur there and not elsewhere.

In contrast, however, to the sharp differentiation in corolla color between Diplacus punteus and $D$. x longtflorus, genetic differentiation between the two entities at neutral marker loci is far less pronounced - consistent with the hypothesis that current or recent natural selection maintains the steep cline in flower color despite gene flow (Streisfeld \& Kohn 2005). The apparent weak neutral
divergence argues against recent secondary contact after a long period of allopatry. Still, in a significant caveat, (p. 2558), they allowed that "Grant's (1993b) contention that red and yellow floral races of $M$. aurantracus diverged in allopatry may still be accurate, but either the time in allopatry was too short for much neutral divergence to arise, or secondary contact is old, and the cline in flower color has been maintained after secondary contact by selection."

## Conservation implications

Recognition of the morphological geographical boundaries of evolutionary entities and the rank at which the taxa are treated are significant in conservation of this group. The only species currently listed as rare by the California Native Plant Society (2012) are Diplacus aridus and D. parvflorus (and at species rank, in contrast to Thompson's taxonomy) and D. clevelandil. Diplacus aridus is ecologically distinct and has a limited distribution in San Diego county and northern Baja California. Diplacus parviflorus is restricted to the Channel Islands, where ecosystems have been heavily damaged by feral animals.

Plants of sect. Diplacus are widely and relatively easily cultivated. Accurate identifications plants already in cultivation will be significant and also may better inform appropriate plantings for species needing attention for conservation.

## Diplacus sect. Diplacus

Diplacus Nutt., Ann. Nat. Hist. 1: 137. Apr 1838. Mimulus sect. Diplacus (Nutt.) A. Gray, Proc. Amer. Acad. Arts 11: 97. 1876. Lectotype species (Thompson 2005, p. 25): Diplacus glutinosus (Wendland) Nutt. = Diplacus aurantacus (Curtis) Jeps.

In the nomenclatural citations below, distribution of types is mostly according to McMinn (1951a) and Thompson (2005). A few types (depositions) have been added and all confirmations of observation (e.g., "digital image!") are from the present study.

## KEY TO THE SPECIES

1 Rhizomatous subshrubs, stems basally woody, distally herbaceous, plants villous-glandular, leaf blades irregularly dentate, finely pubescent-glandular on both surfaces, corollas deep yellow, lobes all about equally jomed, capsules 9-12 mm

1 Diplacus clevelandii
1 Taprooted shrubs, stems extensively woody, plants glutinous, often with evident stipitate-glandular harrs, leaf blades dentate to entire, not glandular-pubescent on upper surface, corollas red to pale yellow or orange, upper lobes united $1 / 3-1 / 2$ their length; capsules $12-25 \mathrm{~mm}$.

2 Corollas red to scarlet, throats nearly cylindric and decurved, stigmas and anthers of the longer filaments exserted

3 Calyces villous to hirsute-villous
11 Diplacus rutilus
3. Calyces glabrous

4 Leaf blades ovate-oblong, apically rounded, corollas strongly decurved, lobes subequal, only slightly if at all notched, Channel Islands 8 Diplacus parviflorus 4 Leaf blades linear-lanceolate, apically acute, corollas slightly decurved, lobes unequal and notched, mainland 9. Diplacus puniceus

2 Corollas yellow to salmon-colored or orange, throats campanulate, straight to slightly curved, anthers and usually the stigmas included
5. Calyces $35-40 \mathrm{~mm}$ at maturity, tubes distinctly broadened-inflated distally, corolla throats broadly campanulate, ca half as long as the narrow tube, plants mostly $2-4 \mathrm{dm}$

2 Diplacus aridus
5. Calyces $20-30 \mathrm{~mm}$ at maturity, tubes only slightly broadened distally, corolla throats narrowly campanulate, ca as long as the narrow tube, plants mostly $4-30 \mathrm{dm}$
6. Upper corolla lobes deeply notched and appearing bilobed
7. Leaf blades elliptic-oblong, $8-15 \mathrm{~mm}$ wide, apically obtuse to rounded, glabrous abaxially, corolla tube-throat $50-65 \mathrm{~mm}$, lobes notched $1 / 4-1 / 2$ therr depth, central Sierra Nevada

5 Diplacus grandiflorus
7. Leaf blades linear-lanceolate, $3-5 \mathrm{~mm}$ wide, apically acute, stellate-pubescent to glabrous abaxially, corolla tube-throat mostly $45-55 \mathrm{~mm}$, lobes notched less than $1 / 4$ their depth, coastal ranges

6 Diplacus X linearis
6. Upper corolla lobes retuse or shallowly notched to entire or nearly so

8 Calyces villous to hirsute-villous, leaf blades abaxially villous with a mix of stellate hairs and relatively longer unbranched hairs

9 Corollas cream to light yellow, tube-throat $48-55 \mathrm{~mm}$, styles $38-46 \mathrm{~mm} 7$ Diplacus calycinus
9. Corollas salmon, tube-throat $40-48 \mathrm{~mm}$, styles $28-37 \mathrm{~mm} \ldots \ldots . .10$ Diplacus longiflorus

8 Calyces glandular-puberulent to glabrate or glabrous, leaf blades abaxially glabrous or stellatepubescent, mostly without unbranched hairs

10 Corollas orange to orange-yellow, pedicels $3-17(-25) \mathrm{mm}$, leaves $7-115 \mathrm{~mm}$ wide
11 Pedicels 4-17(-25) mm, attached asymmetrically to calyx base (offset to one side), foliage not densely congested (internodes relatively elongate), southwestern Oregon to southwestern California

3 Diplacus aurantiacus 11 Pedicels $3-5(-8) \mathrm{mm}$, attached symmetrically to calyx base, foliage densely congested (internodes relatively short), Cedros Island, Baja Califorma …...... 4 Diplacus stellatus

10 Corollas pale yellow to orange-yellow or light orange, pedicels $4-6 \mathrm{~mm}$, leaves $35-8 \mathrm{~mm}$ wide

12 Orange, Riverside, and San Diego cos
12 Santa Barbara Co. and extremes San Luis Obispo Co -... 13 Diplacus x lompocensis

1. Diplacus clevelandii (Brandegee) Greene, Erythea 4: 22. 1896. Mimulus clevelandit Brandegee, Gard. \& Forest 8: 134, plate 20. 1895. TyPE: USA. California. San Diego Co.: Cuyamaca Peak [protologue: "on the south side ... not far from the signal station on its summit. .. elevation over 6000 feet"], 7 Jul 1894, T.S. Brandegee s.n. (holotype: UC digital image!, photo PH ; isotypes: DS digital image!, $\mathrm{GH}, \mathrm{POM}, \mathrm{SD}$, US digital image!).

Distribution. Orange, Riverside, and San Diego cos.; Baja California.
2. Diplacus aridus Abrams, Bull. Torrey Bot. Club 32: 540. 1905. Mimulus aridus (Abrams) A.L. Grant, Ann. Missouri Bot. Gard. 11: 336. 1924. Type: USA. California. San Diego Co.: dry ridges, Jacumba, near the monument, 31 May 1903, L. Abrams 3656 (holotype: NY digital image!; isotypes: BM, CAS digital image!, E, F digital image!, GH 2 sheets, K, MO digital image!, NY digital image!, PH digital image!, POM, RSA, UC-2 sheets, US digital image!).

Distribution. Imperial and San Diego cos.; Baja California.
3. Diplacus aurantiacus (Curtis) Jeps., Man. Fl. Pl. Calif. 919. 1925. Mimulus aurantiacus Curtis, Bot. Mag. 10: plate 354. 1796 (not M. aurantiacus Renjifo; see Grant 1924, p. 146). Diplacus glutinosus var. curantracus (Curtis) Lindl., Paxt. Fl. Gard. 3: plate 92. 1851. Neotype (Thompson 2005, p. 149): USA. California. "Hort. Kew, 1795, ex California," without collector or number (BM!, photo UC!). In selecting the neotype, Thompson noted this: "In the protologue Curtis does not describe or mention fruits or seeds and states 'flowered this Summer with Mr. Covill, Nurseryman, King's-Rd. [...] We know not with certainty of what country it is a native.' The neotype I have selected for Mimulus aurantiacus is appropriate, because it is cultivated material preserved in 1795. Even if it is not Covill's material and Curtis never saw this specimen, it probably came from the same wild-collected seed source as his material, given the difficulties of acquiring material from California at the time."
Mimulus glutmosus J.C. Wendland, Bot. Beob., 51. 1798. Diplacus glutmosus (J.C. Wendland) Nutt., Ann. Nat. Hist. 1: 138. 1838. TyPE: USA. California. According to Thompson (2005. p. 151), "a collection taken from cultivated material in the Wendland Herbarium, without collector or date (neotype: GOET, scanned image!)."
Diplacus leptanthus Nutt., Ann. Nat. Hist. 1: 138. Apr 1838, 'leptantha? [also: Bot. Mag. 65: plate 3655. 1 May 1838]. Mimulus leptanthus (Nutt.) A.L. Grant in L.H. Bailey, Gentes Herb. 1: 136. 1923. Type: USA. California. "herb. Schw. sub nom. 'M. glutinosus Mendoza-Hook.,' Diplacus leptantha Nutt.," [protologue: at PH; "communicated to the late Mr. Schweinitz by Sir William Jackson Hooker, and marked 'Mimulus glutinosus from Mr. Menzies'"] (holotype: PH digital image!, photo UC). Synonym of Diplacus aurantiacus, fide Thompson (2005, p. 152); = Mimulus linearts Benth., fide Bentham (1868, p. 368); = Mimulus longtflorus var. linearis, fide Grant (1924, p. 334).
Diplacus latifolus Nutt., Ann. Nat. Hist. 1: 138. April 1838 [also Bot. Mag. 65: plate 3655. May 1838]. Diplacus glutnosus var. latifolius (Nutt.) Greene, Pittonia 2: 155. 1890. Type: USA. California. [Monterey Co.:] [protologue]: "round Montersey [Monterey], Upper California, in April," [BM sheet]: "Santa Barbara," T. Nuttall s.n. (holotype: BM photo PH!; ;sotype: K).

Distribution. Oregon: Curry Co. California: Del Norte, Humboldt, Mendocino, Lake, Colusa, Sonoma, Napa, Yolo, Sacramento, Marin, Solano, Contra Costa, Alameda, San Francisco, San Mateo, Santa Cruz, Santa Clara, Monterey, Stanislaus, Merced, Eldorado, Amador, Calaveras, Tuolumne, San Luis Obispo, and Santa Barbara cos.
4. Diplacus stellatus Kellogg, Proc. Calif. Acad. Sci. 2: 18. 1863. Diplacus ghitmosus var. stellatus (Kellogg) Greene, Pittonia 2: 155. 1890. Mimulus stellatus (Kellogg) A.L. Grant, Ann. Missouri Bot. Gard. 11: 337. 1924. Lectotype (Thompson 2005, p. 152): MEXICO. Baja California. Cedros Island, J.A Veatch s.n. (GH; isolectotype: CAS). The holotype at CAS was destroyed.

Distribution. Baja California, known only from Cedros Island.
Dtplacus stellatus is characterized by relatively small, orange-yellow corollas, nearly glabrous calyces, and short, nearly glabrous pedicels. McMinn distinguished it from D. aurantacus in his key by corollas [limbs] less than $3 / 4$ inch broad (vs. corollas $3 / 4$ to $11 / 8$ inches broad in $D$. aurantiacus). He noted that the epithet is a misnomer, as the stellate hairs on the abaxial leaf surfaces of the type specimen apparently are from other species, but the present study confirms the presence of stellate hairs in both $D$. stellatus and $D$. curantiacus.

Thompson (2005) treated Diplacus stellatus simply as a synonym of $D$. aurantiacus var. aurantiacus, and morphological differences between them indeed are hardly pronounced. The far geographic disjunction of $D$. stellatus, however, and its proximity instead to other species suggests that similarities with $D$. aurantiacus may be convergent. The differences in internode and pedicels lengths and pedicel insertion (as in the key) provide a morphological basis for maintaining $D$. aurantiacus and D. stellatus as distinct.
5. Diplacus grandiflorus Groenland, Rev. Hort. [Paris] ser. 4, 6: 402, fig. 136. 1857 (not Diplacus grandiflorus Greene, 1890). Diplacus longiflorus var. grandiflorus (Groenland) Jepson, Man. F1. Pl. Calif. 919. 1925. Mimulus bifidus Pennell, Proc Acad. Nat. Sci. Philadelphia 99: 168. 1947, nom. nov. (based on D. grandiflorus Groenland, blocked in Mimulus by M. grandiflorus Howell 1901 = Erythranthe guttata). Neotype (Thompson 2005, p. 159): Hort. Muhlenpfordt, Hannover, G. Engelmann, 4 Jun 1857, collector not indicated (MO).

Thompson's choice of a neotype is justified and accompanied by the following comments (p. 161): "The protologue for Diplacus grandiflorus Groenland was published on 16 August 1857, according to printers notations (p 389) for Vol 6, No 16 (pp 389-416). The neotype I have selected for this name is dated 4 Jun 1857 ..The specimen seems to have come from Hannover, Germany, perhaps sent from Muehlenpfordt to Engelmann Groenland mentions only unspecified cultivated material, and the neotype is cultivated material Although there is no direct connection between this specimen and the protologue, it seems to be an appropriate neotype for Groenland's name. Even if Groenland never saw it, there is a good chance that it grew from the same seed source as his material, given the difficulties of acquiring seeds from California at that time "

Unfortunately, however, the origin of the cultivated plants represented by the specimen is likely to have been from Monterey Co. or San Luis Obispo Co., where various early collectors made visits - that is, the range of Diplacus x lmearis (typified by a Douglas collection from a coastal locality in this area). If this can be shown to be the case, then $D$. grandiflorus Groenland would be recognized as a synonym of $D$. x lmearts and the Sierran species would be without a name.
Diplacus glutinosus var. grandiflorus Lindl. \& Paxton, Paxt. Fl. Gard. 3: 96, plate 92. 1852. Mimulus aurantiacus var. grandiflorus (Lindl. \& Paxton) D.M. Thompson, Monogr. Syst. Bot. 75: 158. 2005. Neotype (Thompson 2005, p. 158): USA. California. Butte Co.: Between Chico and Forest Ranch, elev. 2000 ft ., 18 May 1914, A.A. Heller 11407 (UC; isoneotypes: A, CAS, CU, DS, E, F, GH, MO, ND-G, NY, OSC, PENN, PH).
Diplacus grandiflorus Greene, Pittonia 2: 156. 1890, nom. illeg. (not Diplacus grandiflorus Groenland 1857). Lectotype (Thompson 2005, p. 159): USA. California. [Nevada Co.:] On Yuba River, 5 Jul 1884, E.L. Greene s.n. (ND-G-1714; isolectotype: ND-G-1721). A photo of one or the other of the ND-G sheets is at PH!.

Distribution. Tehama, Butte, Plumas, Yuba, Sierra, Nevada, El Dorado, and Placer cos.
6. Diplacus $x$ linearis (Benth.) Greene, Pittonia 2: 156. 1890. Mimulus linearis Benth., Scroph. Ind. 27. 1835 (as species). Mimulus glutinosus var. linearis (Benth.) A. Gray, Proc. Amer. Acad. Arts 11: 97. 1876. Mimulus glutinosus forma linearis (Benth.) Voss in Vilmorin, Vilm. Blumengartn. (ed. 3) 1: 762. 1895. Mimulus longtflorus var. lmearts (Benth.) A.L. Grant, Ann. Missouri Bot. Gard. 11: 334. 1924. Diplacus longiflorus var. linearts (Benth.) McMinn, Man. Calif, shrubs (ed. 1) 498. 1939. Type: USA. California. No other collection data, Douglas s.n. (holotype: K-herb. Bentham; isotypes: BM, E, GH, K-herb. Hooker, NY digital image!, OXF). Douglas's itinerary in 1832 included localities in Santa Cruz, Monterey, San Luis Obispo, and Santa Barbara counties.

Mimulus bifictus subsp. fasciculatus Pennell, Proc. Acad. Nat. Sci. Philadelphia 99: 168. 1947. Diplacus fasciculatus (Pennell) McMinn, Madroño 11: 70, 73. 1951. Type: USA. California: Monterey Co.: Rocky hills, Santa Lucia Park, Arroyo Seco, alt. $2500 \mathrm{ft}, 10$ May 1936, L.S. Rose 36278 (holotype: PH; isotype: US).

Distribution. Monterey, San Benito, and San Luis Obispo cos.
These plants were allied by Pennell (1947, p. 168) with the Sierran Diplacus grandiflorus Groenland (= Mimulus byficuis Pennell), as "a narrower-leaved and smaller-flowered subspecies," and they were considered synonymous by Thompson (2005), but the two are disjunct in geography (Figs. 3 and 4) and ecology. The molecular analysis by Beardsley et al. (2004) suggests that D. grandiflorus is related as a sister to $D$. currantiacus.

Diplacus grandiflorus and D. x linearis appear to be distinct as a pair particularly in the notching of the upper corolla lobes, but morphology and geography suggest that the parents of Diplacus x linearis are D. calycinus and D. aurantiacus, thus D. grandiflorus and D. x linearis are not each other's closest relatives. McMinn (1951a) regarded Diplacus x linearis as a hybrid between D. aurantiacus and D. fasciculatus, the latter treated by him as a distinct species and separate from the Sierran D. grandifforus.
7. Diplacus calycinus Eastw., Bot. Gaz. (Crawfordsville) 41: 287. 1906. Mmulus longflorus var. calycmus (Eastw.) A.L. Grant, Ann. Missouri Bot. Gard. 11: 331. 1924. Diplacus longiflorus var. calycinus (Eastw.) Jeps., Man. Fl. Pl. Calif. 919. 1925. Mimulus longiflorus (subsp. calycinus (Eastw.) Munz, Aliso 4: 99. 1958. TyPE: USA. California. Tulare Co.: South Fork Kaweah River, 6000 ft, 22 Jul 1904, G.N. Culbertson 4407 [distributed by C.F. Baker, No. 4407] (holotype: CAS digital image!; isotypes: CAS digital image!, GH, K, MO digital image!, NY digital image!, PH digital image!, POM, UC, US digital image!).

Distribution. San Luis Obispo, Los Angeles, San Bernadino, and Riverside cos., separated from a Sierran population system in Fresno, Tulare, and Kern cos.

Although first described as a separate species, Diplacus calycinus has more recently been treated at subspecific or varietal rank within D. longyflorus (Grant 1924; Pennell 1951; Munz 1973). Thompson (2005) went even further in including D. calyctnus simply as a synonym within his concept of Mimulus aurantiacus var. pubescens ( $=$ D. longiflorus), but results from the Tulig PCA and DFA indicate that $D$. calycimus is distinct from D. longfflorus, especially in corolla length, corolla tube length, and style length. Corolla color is cream to pale yellow in D. calycinus and salmon in $D$. longiflorus.

Diplacus calyctnus and D. longtflorus are essentially allopatric to parapatric. Particularly in Fresno, Tulare, and Kern cos., where D. calycimus occurs completely separated from D. longiflomis (see Thompson's Fig. 63), it appears to be clearly distinct especially in abaxial leaf vestiture - the hairs are unbranched, broad, and vitreous, compared to the branched, thinner, and dull hairs of $D$. longiflorus. The type of $D$. calycinus is a Sierran plant from Tulare County.

Overlap between the two taxa occurs only in southern California, especially in the region (in San Bernadino Co.) connecting the San Gabriel and San Bernardino mountains. In that area, flower color of individuals of $D$. calycmus ranges from light to dark orange, and corolla length is shorter.
10. Diplacus longiflorus Nutt., Ann. Nat. Hist. 1: 139. 1838. Mimulus longiflorus (Nutt.) A.L. Grant, Gentes Herb. 1: 136. 1923. TyPE: USA. California. [Santa Barbara Co.:] [protologue]: "in rocky places by small streams, in the vicinity of Sta. Barbara," Apr [1836], T. Nuttall s.n. (holotype: BM photo PH!; isotypes: GH, K). Noted by Nuttall as "A species remarkable for the width and very oblique emargination of the lobes of the corolla, which is of a paler yellow than in any other species, and inclining to a fawn color. The stems are very leafy, pubescent, and the leaves elongated and acuminate. The base of the calyx is also almost lanuginous."
Diplacus glutinosus var. pubescens Torrey, Pacif. Railr. Rep. 7(3): 15. 1857. Mimulus aurantiacus var. pubescens (Torrey) D.M. Thompson, Syst. Bot. Monogr. 75: 161. 2005. Type: USA. California. Lieut. Parke's Expedition, between San Bernardino and San Diego, Apr 185455, Dr. Antisell 176 (holotype: NY digital image!).
Mimulus ghitnosus var. brachypus A. Gray in W.H. Brewer, S. Watson, \& A. Gray, Bot. California 1 (ed. 1): 566. 1876. Lectotype (Thompson 2005, p. 162): USA. California. "California," J.N. Coulter 639 (GH; isolectotypes: E, K-2 sheets).

Diplacus arachnoideus Greene, Calif. Acad. Sci. 1: 210. 1885. Lectotype (Thompson 2005, p. 000): MEXICO. Baja California. All Saints' Bay [Bahia de Todos Santos], 16 Apr 1885, E.L. Greene s.n. (UC digital image!; isolectotypes: BM, GH, ND-G photo PH!). The holotype at CAS was destroyed.
Diplacus spectosus Davy, Erythea 2: 101. 1894. Type: USA. California. Cultivated at Berkeley ["Botanic Garden of the University of California"], Jun 1894, J. Burt Davy s.n. (holotype: UC digital image!; isotypes: ND-G, US digital image!). According to the protologue, the plants originally came from Humboldt County, but the loosely villous calyx vestiture indicates, in contrast, that its origin was much further south.

Distribution. San Luis Obispo, Santa Barbara, Ventura, Los Angeles, Orange, San Bernadino, Riverside, San Diego cos.; Baja California. Plants cited and mapped as Mimulus aurantracus var. pubescens by Thompson (2005) from Fresno, Tulare, and Kern cos. are identified here as Dtplacus calycinus (see comments above).
11. Diplacus rutilus (A.L. Grant) McMinn, Madroño 11: 83. 1951. Mimulus longiflorus var. rutthus A.L. Grant, Ann. Missouri Bot. Gard. 11: 333. 1924. Diplacus longifloris var. rutlus (A.L. Grant) McMinn, Man. Calif. Shrubs, 498. 1939. Type: USA. California. Ventura Co.: Santa Susanna Pass, dry hillsides, 10 Jun 1920, A.L. Grant 1650 (holotype: MO digital image!; isotypes: CAS, CU, GH, JEPS, K, NY-2 sheets digital images!, OSC, PH, POM, UC, US digital image!).

Distribution. Ventura, Los Angeles, and Riverside cos.
Diplacus rutilus was treated by McMinn (1951a) as a distinct species, one among three redflowered species in the genus (corolla lobe margins tinged with yellow in $D$. rutilus). It was distinguished in his key by pedicels less than $3 / 8$ inches long and glandular-hairy (vs. pedicels $3 / 8-1$ inch long and glabrous in D. puniceus and D. parviflorus). He cited collections of $D$. rutilus from Ventura, Los Angeles, and Riverside counties. Beeks (1962, p. 120) noted that "the Santa Susanna Pass population in northeastern Ventura county ... with their deep velvety red flowers, are considered to constitute only a form of $D$. longiflorus." Munz 1973 treated these plants as a variety of $D$. longiflorus, noting that they occur "with the sp. particularly in interior Los Angeles Co., less so in Ventura and Riverside cos." Thompson (2005) described the corolla color of [D.] longiflorus as "pale yellow" but placed $D$. rutlus as a synonym of that species without comment.

Diplacus rutilus is similar to typical D. longiflorus with respect to quantitative characters but was located infrequently in the field by Tulig. Measurements of populations with these red variants were not treated with M. longiflonus as a whole in the statistical analyses. Here, however, we hypothesize that these plants, surely distinct also in biology from yellow-flowered D. longiflorus and with a coherent albeit limited geographical distribution, appear to be justifiably treated at specific rank. They obviously need urgently to be studied and evaluated from the perspective of conservation.
12. Diplacus x australis (McMinn ex Munz) Tulig, comb. nov. Diplacus australts McMinn, Madroño 11: 58, 60, plate 12. 1951 (as species), nom. illeg. (without Latin diagnosis). Mimulus aurantiacus subsp. australis MeMinn ex Munz, Aliso 4: 98. 1958. Diplacus aurantiacus subsp. australis (McMinn ex Munz) Beeks ex Thorne, Aliso 9: 194. 1978. Type: USA. California: San Diego Co.: Descanso Grade, Jun 1906, K. Brandegee s.n. (holotype: UC digital image!). McMinn cited a type (as above) but gave no Latin diagnosis, as he explicitly intended the epithet "australis" to be a nomen novzm for Mimulus linearis Benth. (and its combined forms, see below), which he noted had been misapplied to the plants he was now referring to as $D$. australts. Munz, in recognizing the lack of a Latin diagnosis, provided one of his own, but he (Munz), in turn, cited no type - crediting McMinn for the basionym and providing the full citation for McMinn's attempt to validate the name.

Distribution. Orange, Riverside, and San Diego cos.; Baja California.
The placement of Diplacus $\times$ australs among hybrid/intermediate populations in both the PCA and DFA indicate that it is likely of hybrid origin. It is similar to D. longiflorus in overall flower morphology, including color, and its geographic distribution in southern California between D. longiflorus and D. puniceus suggests that Thompson's hypothesis (2005) that those two are the parents is reasonable (Mimulus aurantuacus var. pubescens $\times$ M. aurantracus var. puniceus in his taxonomy, or M. longıflorus $\times$ M. puniceus).

Beeks (1962) noted that there is a pubescent race (the "San Gabriel race") of Diplacus longiflorus and a glabrous race (the "San Diego race") - the latter is interpreted here as essentially D. x australis. Calyx, pedicel, cauline, and leaf vestiture of $D . \mathrm{x}$ custralis varies from glabrous to sparsely puberulent or short-villous. Corollas tend to have a narrower tube and limb. On the other hand, corolla color is longiflorus-like in almost all of these variants, including most plants identified by Thompson as intermediate between D. longflorus and D. punteus. A very small percentage appear (from herbarium collections) to have intermediate color. Munz (1973) described the corolla color of "subsp. australis" as orange-yellow to light apricot or buff or white."

Diplacus x australts and $D . \mathrm{x}$ lompocensis can be generally separated from $D$. longiflorus by their smaller corolla features and by much-reduced calyx (and other) pubescence, but the two putative hybrids are similar to each other in most other features. There are no obvious qualitative morphological distinctions between the two putative hybrids and they are only easily separated by geographic range.

As discussed above, Streisfeld and Kohn (2005) found that in San Diego County, Diplacus longiflorus (as identified here) and D. puniceus are discrete in morphology and separate in geography, separated by a narrow zone of hybrids and putative introgressants, among which $D . \mathrm{x}$ australis is included.

In the Tulig studies, hybrid populations in San Diego Co. show intermediate features on PC1 between puniceus and longiflorus. They also show a range of flower color from the red of puniceus to the orange of australis with various shades in between. These results confirm the findings of Waayers (1996) and that a zone of introgression exists between the coastal and inland populations and are in agreement with those of Streisfeld and Kohn (2005).

Thompson's Figure 65 (p. 163), which maps 126 herbarium specimens of these plants in San Diego County, shows a much broader zone of intermediates with the few yellow-flowered nonintermediates restricted mostly to the eastern extremity of the range and identified as Diplacus longiflorus (Mimulus aurantiacus var. pubescens in Thompson's taxonomy). Diplacus puniceus is shown as distributed in a broad and relatively discrete band in the west (near-coastal), corresponding to the observations of Waayers, Tulig, and Streisfeld and Kohn.

The same pattern, however, does not appear to hold for Diplacus puniceus and D. longiflorus in Baja California, either as mapped by Thompson (Fig. 65) or as mapped in the present account (Fig. 7, based on collections from SD, ARIZ, and TEX). Instead, based on Thompson's criteria and using many SD specimens annotated by him, D. puniceus, D. longiflorus, and putative intermediates ( $D . \mathrm{x}$ australis) appear to be broadly sympatric. Most of the putative intermediates have both corolla color and morphology similar to typical D. longiflorus - Thompson's assessments of intermediacy apparently were weighted toward reduction in leaf width and in vestiture.

Only two Baja California collections were encountered that have the vegetative and floral morphology of Diplacus x australis but with red or reddish corollas, clearly suggesting the genetic influence of D. puniceus: S of San Vicente, Pennell \& Epling 25240 (SD) and 2 mi NW of San Antonio [ $32^{\circ} 00^{\prime} \mathrm{N}, 116^{\circ} 40.5^{\prime} \mathrm{W}$ ], Moran 13954 (SD). Otherwise, collector's notes for specimens mapped here as D. x australis describe corolla color as salmon, salmon yellow, pale yellow, pale orange-yellow, light orange, and pale orange.

Among the most significant problems needing further study in sect. Diplacus is the degree of variability in vestiture in $D$. longiflorus as related to the definition of $D$. x australis. Are yellowflowered plants with reduced vestiture more accurately regarded as populational variants of D . longiflorus?


Figure 7. Distribution of Diplacus puniceus, D. x australis, and D. longiflorus in Baja California.
13. Diplacus $\times$ lompocensis McMinn, Madroño 11: 62. 1951 (as species). Mimulus aurantiacus subsp. lompocensis (McMinn) Munz, Aliso 4: 99. 1958. Type: USA. California: Santa Barbara Co.: edge of open woods along Highway between Lompoc and Las Cruces, Santa Inez Mountains, 7 Jun 1949, H.E. McMinn 5601 (holotype: UC digital ima ge!).

Distribution. Santa Barbara Co. and extreme southern San Luis Obispo Co. (see Thompson's Fig. 64, p. 160).

Diplacus $\times$ lompocensis, which occurs essentially between the geographic ranges of $D$. aurantiacus and D. longiflorus in southern Santa Barbara County, is perhaps the result of hybridization between these species (this also was Thompson's interpretation). It has intermediate floral features between these species on PC1. Stable populations of the putative hybrid are found throughout this region, although at either end of its distribution, populations may more closely resemble the nearer parent. Considering that both $D$. aurantiacus and D. longiflorus are morphologically consistent across broad regions, $D . \times$ lompocensts is perhaps best interpreted as a stable zone of introgression.

Although the origin of Diplacus $\times$ lompocensis is different, its difference from $D . \times$ australis is quantitative and much-overlapping, mostly in corolla features. The two are only easily separated by geographic range.
0. Diplacus puniceus Nutt., Ann. Nat. Hist. 1: 137. 1838. Mimulus puniceus (Nutt.) Steud., Nomencl. Bot. (ed. 2) 2: 150. 1841. Diplacus glutmosus var. puniceus (Nutt.) Benth. in DC., Prodr. 10: 368. 1846. Mimulus glutmosus var. puntceus (Nutt.) A. Gray, Bot. California 1: 566. 1876. Mimulus aurantiacus var. puniceus (Nutt.) D.M. Thompson, Syst. Bot. Monogr. 75: 156. 2005. TyPE: USA. California: San Diego Co.: St. Diego [San Diego, 1836], T. Nuttall s.n. (holotype: BM; isotypes: K, PH digital image!).

Distribution. Los Angeles, San Bernadino, Orange, Riverside, and San Diego cos.; Baja California. A red-flowered plant from Sierra Co., apparently from a natural habitat, annotated by D.M. Thompson as Mimulus curantiacus var. puniceus needs to be studied further ( 28 May 1988, Pitzer, Morgan, and Soldan 903, UCR).
0. Diplacus parviflorus Greene, Pittonia 1:36. 1887. Mimulus parviflorus (Greene) A.L. Grant, Ann. Missouri Bot. Gard. 11: 344. 1925 (not Mimulus parvfflorus Lindley 1825). Mimulus aurantiacus var. parviflorus (Greene) D.M. Thompson, Syst. Bot. Monogr. 75: 157. 2005. Mimulus flemingtt Munz, Man. S. Calif. Bot., 477, 601. 1935, nom. nov. (blocked by Mimulus parviflorus Lindley). Lectotype (Thompson 2005, p. 157): USA. California. Santa Barbara Co.: [protologue: "north side of] Santa Cruz Island, Jul and Aug, 1886, E.L. Greene s.n. (UC digital image!; isolectotypes: A, BM, DS digital image!, F digital image!, possible type GH, MO, ND-G-2 sheets, NY-3 sheets digital images!, PENN, PH digital image!, UC-2 sheets digital images!, US).

Distribution. (Channel Islands) in Santa Barbara, Ventura, and Los Angeles cos.

## ACKNOWLEDGEMENTS

Funding for study of sect. Diplacus was provided by grants from Southern California Botanists, Inc., Rancho Santa Ana Botanic Garden, and California State Polytechnic University, Pomona. The first author is grateful to the Santa Cruz Island Reserve (Channel Islands National Park) and the Catalina Island Conservancy for their assistance in collecting taxa on the islands. A special thanks to Dr. David Moriarty for guidance with the statistical analyses, Paul Beardsley for
instrumental discussions, Jonathan Muss for assistance in the field, and Curtis Clark for guidance in graduate studies (MT). We are grateful to the staffs of ARIZ and SD for a loan of pertinent specimens (to TEX, for study by GN), Naomi Fraga and Steve Schoenig for comments on the manuscript, and John Pruski for help in securing literature. Work of GN was supported by the Flora of North America Association.

## LITERATURE CITED

Barker, W.R., G.L. Nesom, P.M. Beardsley, and N.S. Fraga. 2012. A taxonomic conspectus of Phrymaceae: A narrowed circumscription for Mimulus, new and resurrected genera, and new names and combinations. Phytoneuron 2012-39: 1-60.
Beardsley, P.M., S.E. Schoenig, J.B. Whittall, and R.G. Olmstead. 2004. Patterns of evolution in western North American Mimulus (Phrymaceae). Amer. J. Bot. 91: 474-489.
Beeks, R.M. 1962. Variation and hybridization in southern California populations of Diplacus (Scrophulariaceae). Aliso 5: 83-122.
Calflora. 2012. The Calflora Database. Information on California plants for education, research and conservation, based on data contributed by dozens of public and private institutions and individuals, including the Consortium of Calif. Herbaria. Berkeley. दhttp//www calflora org/> Accessed Apr 2012.
California Native Plant Society (CNPS). 2012. Inventory of Rare and Endangered Plants (online edition, v8-01a). California Native Plant Society. Sacramento. Accessed 12 Apr 2012.
Grant, A.L. 1924 [publ. 1925]. A monograph of the genus Mimulus. Ann. Missouri Bot. Gard. 11: 99-388.
Grant, V.A. 1993. Origin of floral isolation between ornithophilous and sphingophilous plant species. Proc. Natl. Acad. Sci. 90: 7729-7733.
McMinn, H.E. 1951a. Studies in the genus Diplacus, Scrophulariaceae. Madroño. 11: 33-128.
McMinn, H.E. 1951b. An Illustrated Manual of California Shrubs. Univ. of California Press, Berkeley.
Munz, P.A. 1958. California miscellany IV. Aliso 4: 87-100.
Munz, P.A. 1973. A California Flora and Supplement. Univ. of California Press, Berkeley.
Munz, P.A. 1974. A Flora of Southern California. Univ. of California Press, Berkeley.
Pennell, F.W. 1947. Some hitherto undescribed Scrophulariaceae of the Pacific states. Proc. Acad. Nat. Sci. Philadelphia 99: 155-171.
Pennell, F.W. 1951. Mimulus. Ill. F1. Pacific States 3: 688-731.
Skinner, M.W. and B.M. Pavlik (eds.). 1994. Inventory of rare and endangered vascular plants of California. CNPS Special Publication No. 1 (ed. 5). Sacramento.
Streisfeld, M.A. and J.R. Kohn. 2005. Contrasting patterns of floral and molecular variation across a cline in Mimulus curantiacus. Evolution 59: 2548-2559.
Streisfeld, M.A. and J.R. Kohn. 2007. Environment and pollinator-mediated selection on parapatric floral races of Mimulus aurantiacus. J. Evol. Biol. 20: 122-132.
Thompson, D.M. 1993. Mimulus. Pp. 1037-1046, in J.C. Hickman (ed.), The Jepson Manual: Higher Plants of California. Univ. of California Press, Berkeley.
Thompson, D.M. 2005. Systematics of Mimulus subgenus Schizoplacus (Scrophulariaceae). Syst. Bot. Monogr. 75: 1-213.
Thompson, D.M. 2012. Mimulus. Pp. 988-998, in B.G. Baldwin, D.H. Goldman, D.J. Keil, R. Patterson, and T.J. Rosatti (eds.), The Jepson Manual: Vascular Plants of California (ed. 2). Univ. of California Press, Berkeley.
Thorne, R.F. 1978. New subspecific combinations for Southern California plants. Aliso 9: 189-196.
Tulig, M.C. 2000. Morphological variation in Mimulus section Diplacus (Scrophulariaceae). M.S. thes is, California State Polytechnic Univ., Pomona.
<www csupomona edu/-jcclark/students/tulig/tulig_thesis pdf Accessed Apr 2012

Tulig, M.C. and C. Clark. 2000. Morphological variation in Mimulus section Diplacus (Scrophulariaceae). Poster. Biological Sciences, California State Polytechnic Univ., Pomona. chttp //www.csupomona edu/jeclark/pdf/p2000aspt pdf>
Waayers, G.M. 1996. Hybridization, introgression, and selection in Mimulus aurantatcus ssp. australts and Mimulus puntceus. M.S. thesis, San Diego State Univ., San Diego, California.

# PLESIOGAMY, A TERM CONTRASTING WITH HERKOGAMY 

Guy L. Nesom<br>2925 Hartwood Drive<br>Fort Worth, Texas 76109<br>guynesom@sbcglobal net


#### Abstract

Plesiogamy is proposed for use as the term referring to a close positioning of stigma and anthers, which usually leads to autogamy. Herkogamy, the contrasting term, refers to a spatial separation of the stigma and anthers, thus increasing the likelihood of outcrossing.


KEY WORDS: herkogamy and allogamy, plesiogamy and autogamy, dichogamy, synchronogamy

Herkogamy (Greek, herkos, wall or fence, and gamos, marriage; Brown 1956) refers to a spatial separation of the stigma and anthers, thus increasing the likelihood of outcrossing and production of genetically variable offspring. In "approach herkogamy," the most common form of herkogamy, the stigma is above the level of the anthers; in "reverse herkogamy" the stigma is below the anthers.

No term appears to exist, however, in reference to the contrasting situation, where stamens and stigma of a single flower are at the same level, in essentially the same position, thus making it likely that self-pollination occurs. The term plesiogamy (Greek, plestos, near, alluding to the proximity of the stamens and stigma) is proposed here for this arrangement and is used in several studies dealing with the taxonomy of Mmulus sensu lato (e.g., Nesom 2012). Plesiomorphic refers to an unspecialized condition (in contrast to plesiogamy, which usually is interpreted as a specialization), but the word itself (Greek, plestos, near, morphe, form) intends to convey the sense of nearness to the original morphological form, i.e., primitive.

Perhaps "non-herkogamy" would serve just as well as a contrasting term to herkogamy, but a positive term (vs. one that simply negates the opposing condition) seems useful. We prefer electron to "non-proton," past to "non-future," yang to "non-yin," etc, and the contrasting autogamy/allogamy and chasmogamy/cleistogamy have long been in use.

Autogamy (self-pollination, from anthers to stigma of a single individual, commonly within the same flower) is the mode implied by plesiogamous arrangment of anthers and stigma. Allogamy (cross-pollination, pollination between flowers of different individuals; synonyms or near-synonyms exogamy, xenogamy) is the usual mode of pollination and fertilization implied by herkogamous arrangement of anthers and stigma.

Dichogamy (in plants) refers to a temporal separation of pollen shedding and stigma receptivity. Protandry and protogyny describe conditions when anthers or stigmas mature first. Apparently no contrasting term exists for dichogamy, and it's suggested that, if necessary or desirable, synchronogamy (Greek, syn, same or together, chronos, time) could be used to indicate that pollen shedding and stigma receptivity occur simultaneously.

To complete the brief survey of opposing "-gamy" terms, chasmogamy refers to the condition in which corollas are open at anthesis, exposing the anthers and stigma and usually leading
to outcrossing. Cleistogamy refers to corollas that are closed at anthesis, strongly correlated with self-pollination.

Geitonogamy (Greek, geiton, neighbor) is another related term. It refers to the pollination by insects or by wind - of a flower with the pollen from another flower on the same plant. The result of geitonogamy is genetically similar to autogamy.

## ACKNOWLEDGEMENTS

Many thanks to Beryl Simpson, Steve Weller, and Michelle Dudash for helpful comments.
LITERATURE CITED
Brown, R.W. 1956. Composition of Scientific Words (rev. ed.). Smithsonian Institution Press, Washington, DC.
Nesom, G.L. 2012. Taxonomy of Erythranthe sect. Simiola (Phrymaceae) in the USA and Mexico. Phytoneuron 2012-40: 1-123.

# THREE VARIETIES RAISED TO SPECIFIC RANK IN DIPLACUS (PHRYMACEAE) 

Guy L. Nesom<br>2925 Hartwood Drive<br>Fort Worth, Texas 76109<br>guynesom@sbcglobal net


#### Abstract

Two taxa treated as varieties by Thompson (2005) and one treated by him as a synonym are here elevated to specific rank: Mimulus viscidus var. compactus to Diplacus compactus (Thompson) Nesom, comb. et stat. nov., Mimulus fremontii var. vandenbergensis to Diplacus vandenbergensis (Thompson) Nesom, comb. et stat. nov., and Mimulus bigelovit var. ovatus to Diplacus ovatus (A. Gray) Nesom. The first two are endemic to California, the third endemic to Nevada. Attention is called to several other taxa recognized by Holmgren in 1984 (Intermountain Flora) as distinct species but later treated as synonyms by Thompson - Mimulus spissus, Mimulus angustifolnus, Mimulus densus, and Mimulhus coccineus - these apparently need further study.


KEY WORDS: Mimulus, Diplacus, California, species concepts

The study of Mimulus subg. Schizoplacus by David Thompson (2005) provides detailed descriptions, chromosome counts, distribution maps, typifications, illustrations, and discussions of variation in each taxon as well as morphological background for the whole group - in short a huge amount of useful information toward understanding the patterns of diversity in this group.

In preparation of the FNANM taxonomic treatment of subg. Schizoplacus, the group is recognized as the genus Diplacus Nutt. (Barker et al. 2012) and several divergences from the specieslevel taxonomy of Thompson are accounted for. First, thirteen taxa (vs. two) of sect. Diplacus at specific rank are recognized to occur in the USA (Tulig \& Nesom 2012); second, in sect. Eunanus, two varieties named and described by Thompson and one variety described by Asa Gray are treated in the present account at specific rank. The greater number of species recognized in sect. Diplacus reflects differences in species concept as well as in perception and interpretation of variation patterns. In sect. Eunanus (the present account), varietal vs. species rank is mostly a matter of difference in species concept, as noted below.

Diplacus compactus (D.M. Thompson) Nesom, comb. et stat. nov. Mimulus visctdus var. compactus D.M Thompson, Syst. Bot. Monogr. 75: 129. 2005. TyPE: USA. California. Fresno Co.: 4.2 mi E of Auberry (at Powerhouse Rd junction) along Auberry Rd, 950 m , abundant in openings among chaparral shrubs; often growing with $M$. bolandert but more often growing alone; thousands of plants seen; corolla magenta, becoming dark red-purple in outer throat and adjacent limb, the throat floor ridges yellowish proximally but white at mouth, 12 May 1988, D.M. Thompson 891 (holotype: RSA digital image!; isotypes: BM, CHSC, E, F, FSC, HSC, JEPS digital image!, MO, NY, US). Distribution of types as cited by Thompson. Voucher for chromosome count of $n=8$, from one plant.

Thompson noted that Mimulus viscidus var. viscidus and var. compactus have parapatric ranges, possibly intergrading (but not documented as so) in the vicinity of Mariposa in central Mariposa County, where the ranges are contiguous. "Both varieties have highly variable corolla markings, even within a single population. The two varieties are nevertheless easy to distinguish, even on most herbarium specimens, by the presence or absence of dark stripes on the corolla lobe
midveins. Plants of the two varieties remained distinctly different when grown together in the greenhouse."

The morphological differences, separate geographical ranges, and apparent lack of intergrading populations support recognition of these two taxa at specific rank. Perhaps Thompson viewed the degree of difference between his var. viscidus and var. compactus as smaller than that separating other closely related taxa held at specific rank, as he noted (p. 24) that "I have tried to hold the maximum level of morphological diversity among species, rather than among varieties in this difficult group." On the other hand, "The species concept used in this monograph is morphological and geographical. ... A species should be morphologically distinct from other species and intermediates must occur in geographical areas where we would expect hybrids to occur" - the latter concept appears to coincide with that used in the present account in justification of distinguishing the two taxa at species rank.

1. Corolla limb without radiating dark lines on lobes, although lobes may be dark at base, throat ceiling pubescent, limb glabrous on face, style glabrous or with sparse eglandular puberulence, lower stigma lobe 3-4 times longer than the upper, stems $2-28 \mathrm{~cm}$, habit relatively condensed, nodes 2-3(-4), Fresno, Madera, Mariposa, and Tulare cos

Diplacus compactus 1. Corolla with dark red-purple midvens on lobes, extending from throat, throat celling glabrous, limb usually pubescent on face, style glandular-puberulent; lower stigma lobe 15 times longer than upper, stems (3-)6-37 cm, habit relatively open, nodes 2-7, Amador, Calaveras, Eldorado, Mariposa, Merced, and Tuolumne cos

Diplacus viscidus
Diplacus vandenbergensis (D.M. Thompson) Nesom, comb. et stat. nov. Mimulus fremontit var. vandenbergensis D.M. Thompson, Syst. Bot. Monogr. 75: 134. 2005. Type: USA. California. Santa Barbara Co.: Burton Mesa, where the Casmalia Rd crosses Santa Lucia Canyon north of Lompoc, 250 ft , scattered annual, open sandy banks in sun with Monardella, to 9 in. tall, fls yellow, 15 Jun 1960, E.R. Blakley 3486 (holotype: JEPS; isotypes: CAS, RSA, SBBG). Distribution of types as cited by Thompson.

Diplacus vandenbergensis is endemic to Santa Barbara Co., mostly on the north side of the city of Lompoc (La Purisima Mission State Historic Park; on and near Vandenberg Air Force Base) plus one other locality about 10 kilometers further west (Santa Ynez Valley, 8 mi W of Buellton, sandy slope, 6 Jun 1931, R. Hoffman s.n., SBBG fide Consortium of California Herbaria 2012). Flowering Apr-Jun. Sandy open or disturbed areas among shrubs; $80-130 \mathrm{~m}$; California.

Thompson (2005) described Mimulus fremontil var. vandenbergensis as a yellow-flowered variant (its existence earlier noted by Smith 1998) of the otherwise magenta-flowered M. fremontii. He summarized (p. 134) his taxonomic view of the variant as follows: "Red pigments seem to be absent from the flowers and leaves of [var. vandenbergensis], which occurs in a somewhat isolated area of Santa Barbara Co. where M. fremonth grows at the lowest point of its altitudinal range. Since yellow-flowered plants are not known from other parts of the range of this common species, it seems appropriate to recognize these populations as a variety. Aside from the lack of red pigments in their leaves and flowers, these plants are indistinguishable from plants of M. fremontil var. fremontii from adjoining regions."

Thompson also noted that "Yellow and magenta floral morphs are found in [Diplacus mephiticus, D. parryi, and D. whitneyl]. Both morphs are found through most of the geographic ranges of these taxa and the morphs are often found mixed together, although magenta morphs tend to predominate at higher altitudes. The two varieties of $M$. fremonth are different, however, for they have corolla colors that are unique to each, and they are geographically separated." Diplacus
vandenbergensis and $D$. fremontil may prove to have a sister relationship, but as in the rationale above for $D$. compactus, the discontinuous morphological difference, allopatric/parapatric geographical distribution, and lack of intergrading populations support recognition of the yellowflowering plants at specific rank.

A series of photos and accompanying observations made by naturalist Don Tate in 2005 (CalPhotos 2012) at La Purisima Mission State Historic Park further support treatment of Diplacus vandenbergensts as specifically distinct. Tate noted that "Apparently, two varieties [of D. fremontii] grow in a very restricted area, but almost perfectly segregated by variety - populations separated by about 100 meters. ... To have two varieties segregated within that area suggests a LOT of ecological fine-tuning." "They both key out (Munz) to M[imulus] fremontii due to short pedicels, 25 mm corollas (in yellow-only population, anyway) and glabrous anthers." "[The] Red variety is smaller in height, fewer-flowered and smaller-flowered than yellow. Most plants had dropped their corollas by June 3, while yellows were still in full bloom. [The red variety] grew on a ridgetop about 100 meters from yellow variety ... [and] there were a few yellow-flowered plants among the reds (under 10 percent). ... [The] Yellow variety was found on open, sandy slopes, below Salvia thickets (within about 6 meters). No red-flowered plants were found with them. Yellow-flowered plants were generally taller, with more flowers, and the flowers were distinctly larger than in red variety."

Two of the Tate photos (possibly of the same plant) are identified as var. fremonttu presumably because of the magenta lobes, but they possibly show intermediate coloration - the corolla lobes are magenta while the tubes and throat are yellow to orangish with red mottling. Other CalPhoto images of Diplacus fremontu from various Calilfornia localities show consistent corolla coloration. But even if the limited color variation at La Purisima Park reflects gene flow, the occurrence of hybridization does not suggest that the divergent population systems should be considered conspecific, since hybrids in Mimulus sensu lato are formed in many instances where closely related species occur together.

1. Corolla lobes, tube, and throat yellow, palate ridges with reddish-brown spots and mottling on the ridges and adjacent lateral areas; SW Santa Barbara Co

Diplacus vandenbergensis
1 Corolla lobes and tube magenta (or palate sometimes yellow in Baja California), throat completely dark purple or with broad, irregular, dark purple stripes, palate ridges yellow, sharply demarcated in color from magenta lateral areas; Monterey and San Benito cos, S to San Diego Co (and W to Kern Co and adjacent Inyo Co.) and Baja California

Diplacus ovatus (A. Gray) Nesom, comb. et stat. nov. Mtmulus bigelovit A. Gray var. ovatus A. Gray, Syn. F1. N. Amer. (ed. 2) 2(1): 445. 1886. Mimulus ovatus (A. Gray) N. Holmgren, Intermount. Fl. 4: 362. 1984. Lectotype (Grant 1924, p. 282): USA. Nevada. Washoe Co.: Lake Washoe ["Steamboat Springs" on one of the NY sheets], 1865, J. Torrey 372 (GH; isolectotypes: NY-2 sheets digital images!).

Thompson rejected Grant's lectotype (2005, p. 87; annotations in 1992 on Torrey 372 at GH and NY) "because it is a hybrid between M. cusicknt and M. nanus var. mephiticus" and because his choice as a replacement (p. 82) best reflected Gray's original intent, since significant elements of his morphological description came from Oregon specimens: USA. Oregon. Int. of Oregon, mountains, 1875, R.D. Nevius s.n. (GH). On the other hand, Grant's choice does not appear to have been in conflict with the protologue, even though it is clear that the syntypes included heterogeneous elements.

In fact, a resolution of the situation here appears to correspond closely to Recommendation 9A.5 of the ICBN: "When two or more heterogeneous elements were
included in or cited with the original description or diagnosis, the lectotype should be so selected as to preserve current usage In particular, if another author has already segregated one or more elements as other taxa, one of the remaining elements should be designated as the lectotype provided that this element is not in conflict with the original description or diagnosis." Grant's lectotype preserves current usage of the name Mimulus ovatus (and would have done so in 2005) and there is no compelling reason to reject it, especially since plants of the Nevada collection are not regarded as hybrids here or by Nevada biologists.

Thompson (2005) placed Mimulus bigelovii var. ovatus as a synonym of M. cusickii (Greene) Rattan, as did Grant (1924), but it was treated as distinct and raised to specific rank by Holmgren (1984). Holmgren noted the following: "Some collections of $M$. ovatus have been treated as a northern extension of M. bigelovit by some and as a southern extension of M. cusickit by others. However, the taxon appears to be more closely allied to the M. mephiticus-M. coccineus-M. densus complex." He described the range of Mimulus ovatus as southern Washoe, Ormsby [Carson City], and Douglas counties, Nevada, distinct from M. cusicknl, which he treated as a more widespread and more northern species, not reaching Nevada and not overlapping in distribution with M. ovatus.

Thompson mapped essentially the same distribution for Mmulus cusickt as Holmgren described, moving the lectotype of var. ovatus to a collection from Oregon, rejecting the earlier lectotype designation by Grant (see comments above) and leaving the Nevada plants without a name. He cited a collection of the Nevada plants as intermediate between M. cusickii and M. nanus var. mephiticus: Washoe Co.: 2.8 mi E of Hwy 395 along Geiger Grade (Hwy 341), T18N, R20E, S35, Thompson 970 (ID, ORE, OSC, RENO, RSA, UC). Neither Holmgren nor Thompson, however, regarded M. cusickit as occurring in the vicinity of southern Washoe, Ormsby, and Douglas cos., Nevada, thus it is unlikely that plants from that area show genetic influence of M. custckit.

In fact, the Nevada plants identified as Mimulus ovatus (including Thompson 970, cited above) are tracked by the Nevada Natural Heritage Program and the taxon is on the state's Plant and Animal At-Risk Tracking List of 2010, listed as G1G2Q S1S2 (NNHP 2012). A "Rare Plant Fact Sheet" for M. ovatus and a number of excellent photos (James Morefield and Gary Monroe; localities in Washoe Co. - Geiger Grade and the Carson City area - Eagle Valley) of the plants are provided on the same website.

Distinctions between Diplacus ovatus and D. cusickii are tentatively summarized in the following couplet.

1. Stems $2-14 \mathrm{~cm}$, usually highly branched, leaf apices acute to obtuse, calyces $7-9(-10) \mathrm{mm}$; corolla tube-throats (14-) $17-21 \mathrm{~mm}$, capsules $6-8 \mathrm{~mm}$, not exceeding the calyx ... Diplacus ovatus 1 Stems (1-)3-24(-35) cm, usually simple or few-branched, leaf apices sharply acuminate or cuspidate, calyces (9-)10-17 mm , corolla tube-throats (15-) $20-28 \mathrm{~mm}$, capsules $10-17 \mathrm{~mm}$, usually exceeding calyx

Diplacus cusickii

## Status of Mimulus spissus

Thompson treated Mimulus spissus as a synonym of M. bigelovil var. cuspidatus, but Holmgren (1984, p. 361-362) regarded it as a distinct species, comparing it directly to var. cuspidatus. "The broadly obovate, cuspidate leaves resemble those of M. spissus, but are larger. The main leaves of var. cuspidatus are $20-42 \mathrm{~mm}$ long and $10-20 \mathrm{~mm}$ wide, whereas in M. spissus the leaves are $8-18(-22) \mathrm{mm}$ long and $4-10(-14) \mathrm{mm}$ wide. Plants identifiable to var. cuspidatus may have arisen more than once through hybridization with $M$. spissus which would account for its sporadic distribution across the geographic contact of M. bigelovil and M. spissus."

As illustrated and described by Holmgren, and as alluded to by Grant's choice of epithet (Latin, spissus, thick, dense, crowded) and her choice of a type specimen, the leaves and flowers of Mimulus spissus characteristically are densely crowded. Thompson did not comment directly on Holmgren's view, but he did note that internodes of var. cuspidatus are "sometimes more congested near stem tips under conditions of severe drought stress," this condition accompanied by scorched basal leaves. Leaf dimensions given by Thompson for var. cuspidatus essentially encompass the total range for var. cuspidatus and $M$. spissus given by Holmgren.

Mimulus spissus AL. Grant, Ann. Missouri Bot. Gard. 11: 277. 1924. Type: USA. Nevada. [Esmeralda Co.:] Silver Peak Mts., 5000 ft ., 29 Sep 1915, E.A. Goldman 2548 (holotype: US digital image!, photo MO).

## Status of Mimulus angustifolius, Mimulus densus, and Mimulus coccineus

Thompson (2005) treated Mimulus angustifolius simply as a synonym of Mimulus nanus var. mephiticus (Greene) Thompson, but Holmgren (1984) noted that it may be a high elevation ecotype of M. densus AL. Grant. Mimulus angustffolus is listed on Nevada's Plant and Animal Watch List of 2010 (NNHP 2012) and is said to be known only from the vicinity of Mt. Rose in the Carson Range of Washoe County.

Holmgren treated Mrmulus coccmeus Congdon and Mimulus densus A.L. Grant as distinct species but Thompson considered both (along with M. angustifolius) as synonyms of M. nanus var. mephiticus. Holmgren noted that "so close are the members of this complex [M. coccineus, M. densus, and M. mephiticus] that they are probably best treated as varieties under the oldest name M. mephiticus." This whole group of plants need further study.

Mimulus coccineus Congdon, Erythea 7: 187. 1900. Type: USA. California. [Madera Co.:] mountain side east of Minarets, in volcanic land, 19 Aug 1899, J.W. Congdon s.n. (holotype: UC digital image!; isotypes: DS digital image!, MIN).

Mimulus densus A.L. Grant, Ann. Missouri Bot. Gard. 11: 298. 1924. TyPE: USA. Nevada. Lander Co.: Toiyabe Range, hills around Austin, $6400 \mathrm{ft}, 21-24 \mathrm{Jul}$ 1913, P.B. Kennedy 4401 (holotype: MO digital image!; isotypes: DS digital image!, PH ).

Mimulus angustfolus (Greene) A.L. Grant, Ann. Missouri Bot. Gard. 11: 298. 1924. Eunanus angustifolius Greene, Pittonia 2: 23. 1889. Type: USA. Nevada. [Washoe Co.:] on trail from Bronco to Mt. Rose, western slope of Washoe Mts., Jul 1889, C.F. Sonne 14 (holotype: NDGreene; isotypes: PH, UC); not Mimulus angustifoltus Hochst. ex A. Rich., Tent. Fl. Abyss. 2: 119. 1850 ( = Mimulus gracilis R . Br.).

## ACKNOWLEDGEMENTS

I'm grateful to Joy England (RSA) for sending an image of the holotype of Mimulus viscidus var. compactus from RSA, John Pruski for help with literature, and Naomi Fraga for very helpful comments on the manuscript.

## LITERATURE CITED

Barker, W.R., G.L. Nesom, P.M. Beardsley, and N.S. Fraga. 2012. A taxonomic conspectus of Phrymaceae: A narrowed circumscription for Mimulus, new and resurrected genera, and new names and combinations. Phytoneuron 2012-39: 1-60.
CalPhotos. 2012. A project of BSCIT (Biodiversity Sciences Technology), Univ. of California, Berkeley. http//calphotos berkeley edu/>

Consortium of California Herbaria. 2012. Consortium database: Data provided by the participants of the Consortium. uucjeps berkeley edu/consortium/>
Grant, A.L. 1924 [publ. 1925]. A monograph of the genus Mimulus. Ann. Missouri Bot. Gard. 11: 99-388.
Holmgren, N.H. 1984. Mimulus (Scrophulariaceae). Pp. 350-364, in A. Cronquist, A.H. Holmgren, N.H. Holmgren, J.L. Reveal, and P.K. Holmgren (eds.). Vascular Plants of the Intermountain West, Vol. 4. New York Botanical Garden Press, Bronx.
NNHP (Nevada Natural Heritage Program). 2012. Plant and Animal At-Risk Tracking List, 2010. chttp/hertage nv gov/sensanum htm> Mimulus ovatus. Rare Plant Fact Sheet, compiled 25 Jun 2001. <http/heritagenv gov/atlas/mmulovatupdf> Images of Nevada Vascular Plants (F-Z). shttp/heritagenv gov/imagpf-zhtm\#vascplants> Nevada Natural Heritage Program, Dept. of Conservation and Natural Resources, Carson City.
Smith, C.F. 1998. A Flora of the Santa Barbara Region, California: An Annotated Catalogue of the Native and Naturalized Vascular Plants of the Santa Barbara County Mainland and Nearby Channel Islands (ed. 2). Santa Barbara Botanic Garden \& Capra Press, Santa Barbara.
Thompson, D.M. 2005. Systematics of Mimulus subgenus Schizoplacus (Scrophulariaceae). Syst. Bot. Monogr. 75: 1-213.
Tulig, M.C. and G.L. Nesom. 2012. Taxonomic overview of Diplacus sect. Diplacus (Phrymaceae). Phytoneuron 2012-45: 1-17.

# TAXONOMIC REVISION OF DRESSLERIA (ORCHIDACEAE, CATASETINAE) 

Harold G. Hills<br>50 Shrewsbury Green Drive, Unit F<br>Shrewsbury, Massachusetts 01545-3619<br>halhills@gmal com


#### Abstract

A taxonomic revision of the neotropical orchid genus Dressleria Dodson is presented. A total of 12 species are included, a key to identification is given, and all species are illustrated with photographs or line drawings. Dressleria williamsiana H.G. Hills, sp. nov., is deseribed.

KEY WORDS: Dressleria allenil, Dressleria aurorae, Dressleria bennetiti, Dressleria dilecta, Dressleria dodsoniana, Dressleria eburnea, Dressleria fragrans, Dressleria helleri, Dressleria kalbryeri, Dressleria kerryae. Dressleria severmiana, Dressleria williamsiana, Orchidaceae, Catasetinae


The genus Dressleria was established by Dodson (1975) for a group of species previously included in a broadly defined Catasetum L.C. Rich. Dressleria is distinguished from Catasetum by having consistently bisexual flowers, persistent leaves, and large inflorescence bracts (Fig. 1). Dressleria differs from a second segregate from Catasetum with bisexual flowers, Clowesta Lindl. by having the lip adnate to the column, fleshy flowers, and pollinia under pressure but lacking a trigger. Dressleria plants are characteristically pale green and bear white to greenish or yellowish flowers noted for their strong fragrances. Unlike Catasetum and Clowesta, pollinia of Dressleria become attached to the underside of the pollinator rather than onto the back of the pollinator.

Subtribe Catasetmae Schlechter comprises five genera: Catasetum, Clowesia, Cycnoches, Dressleria, and Mormodes. Phylogenetic analysis by Pridgeon and Chase (1998) demonstrated that all five genera of Catasetinae are monophyletic and fall into two clades. In one clade Clowesta is sister to Catasetum. In the second clade Cycnoches is sister to Mormodes and Dressleria sister to them both. These results as well as those from chloroplast DNA studies by Chase and Hills (1992) suggest that bisexuality with protandry has arisen twice in the evolution of the subtribe. This was first proposed by Chase and Pippen (1990) in a study of seed coat morphology.

Several problems are apparent in previous studies of Dressleria. First, as is true of many other groups of fleshy flowered orchids, it is helpful to work from fresh or liquid preserved material. Second, there are few preserved specimens. This is probably partially due to the difficulty of maintaining plants in greenhouse culture where they are often treated as being like the ecologically very different catasetums. The flowers last only 5-7 days; therefore field collections of pressed flowers are rare. Finally many of the published illustrations do not show the size and shape of the opening to the sac of the lip that is one of the more diagnostic characters in separating species. Some published illustrations have been made from previously dried and inadequately hydrated flowers and lack critical details.

When studying the fragrances of Dressleria flowers (Hills unpublished), some undescribed entities were noted. When Dodson (1975) proposed Dressleria, he suggested that the plants from western Ecuador might well be a distinct but similar species to what he then referred to as D. eburnea from eastern Ecuador. Examination of the type specimens of Catasetum eburneum, C. suave, Dressleria helleri, and drawings and photographs of the type of Catasetum dilectum has led to the
reduction of $D$. suave as a valid species to a synonym of $D$. eburnea and publication of nine additional species (Hills 1993, 2000, 2005; Bennett \& Christenson 1995; Dodson 1998).

Dressleria species are most easily identified from flowers that have been allowed to mature before being photographed, drawn or preserved because the position of sepals and petals is useful in distinguishing species. The final position of the segments is not fixed until 2-3 days after the flowers open, at which time floral fragrance is evident. Fragrance too is a useful character but unfortunately it is available only on fresh flowers. It is essential to view the opening to the saccate portion of the lip to distinguish species.

Much of the material cited here has been prepared from cultivation. In some instances multiple specimens have been prepared from the same cultivated plant. When known, the source of living material is listed first, followed by a listing of all specimens that have been made from that living clone. These are indicated as "ex hort." and include living collection accession number, date, and the name and number of the person who prepared the specimen. Accession numbers for living material are assigned by the following institutions: CA, K, MO, SEL (MSBG), and UF.

Dressleria Dodson, Selbyana 1: 131. 1975. Type: Catasetum dlectum Rehb. f. $=$ Dressleria dilecta (Rchb. f.) Dodson.

Plants epiphytic with basal vermiform roots. Pseudobulbs fusiform-cylindrical, approximate, fleshy, fibrous, concealed by persistent leaf bases with new growth arising near base of pseudobulb. Leaves oblong-lanceolate, apically acute, membranaceous, persistent, alternate, distichous; leaf-blade prominently veined abaxially. Inflorescences basal, suberect, subcapitate or few-flowered racemes, with prominent, inflated bracts (Fig. 1). Flowers nonresupinate, white, greenish white, or pale yellow, fleshy, strongly fragrant when fresh. Sepals and petals subsimilar, linear-lanceolate to elliptic, often reflexed and recurved or spreading. Lip unlobed, saccate, basally adnate to column, often with a callus ridge surrounding the opening. Column short, stout, fleshy. Pollinia 2, borne on a common stipe with a viscidium. Capsule elliptic.


Figure 1 Dressleria plant showing large bracts on the developing inflorescence, a distinguishing characteristic for the genus

## Key to the species of Dressleria

1. Lip adnate to column more than half its height.
2. Inflorescence loosely flowered raceme.

3. Inflorescence subcapitate.

4. Lip adnate to column less than half its height.
5. Petals strongly reflexed, appressed to ovary; callus prominent distally of "M-shaped" opening of sac; Costa Rica and Nicaragua. Dressleria eburnea 5. Petals not reflexed, or if reflexed then not tightly appressed to ovary, Panama, Columbia, Ecuador, Venezuela, or Peru.

6 . Lip less than 1.5 cm long.
7. Sepals 5.5 mm wide, narrower than petals; northeastern Columbia and Andean Venezuela Dressleria kalbreyeri
7. Sepals 9 mm wide, nearly as wide as petals; Panama or Peru.
8. Lateral sepals reflexed nearly to ovary; lip rounded apically with a well-defined callus surrounding a cordate opening of sac; Panama Dressleria allenii 8. Lateral sepals spreading; lip acute apically without a callus surrounding a throat like rectangular opening of sac; Peru. Dressleria aurorae
6. Lip more than 1.5 cm long.
9. Lip with prominent callus;
10. Callus triangular, prominent partially obscuring the opening of sac; south eastern Peru.

Dressleria bennettii
10. Callus tongue-like, extending from the tooth in opening of sac to tip of lip; northwestern Ecuador and southwestern Colombia.

Dressleria williamsiana
9. Lip callus not prominent;
11. Opening of sac rectangular; western Ecuador
.Dressleria fragrans
11. Opening of sac "X-shaped"; Amazonian Ecuador and Peru ....... Dressleria dodsoniana

1. Dressleria allenii H G Hills, Lindleyana 151712000 Type PANAMA without locality, 1976, N H Willams, ex hort MSBG 1976-5619, 18 Sep 1978, J D Ackerman 1336 (holotype SEL) Figs $2 \& 3$

Pseudobulbs fusiform, to 10 cm tall, $2-3 \mathrm{~cm}$ wide. Leaves to 35 cm long, to 5 cm wide Inflorescence basal, loosely flowered raceme to 25 cm . Pedicels to 3 cm long, Flowers white, nonresupinate, saccate Sepaks $17-18 \mathrm{~mm}$ long, $8-9 \mathrm{~mm}$ wide, reflexed along the ovary Petaks 14 15 mm long, $11-12 \mathrm{~mm}$ wide, spreading Lip nearly round, apex not beaked, $16-17 \mathrm{~mm}$ long, $13-14$ mm wide Opening to the sac cordate $50-65 \mathrm{~mm}$ wide $\times 40-45 \mathrm{~mm}$ high, callus thin not prominent Column 6-7 mm long, 6-7 mm wide at base Fruit not seen


Figure 2. Dressieria alleni H G Hills Photo of clonotype MSBG 1976-5619 by Mark W Chase The plant is still growing at MSBG

Dressleria allemis similar to D ebumea Allen (1949) correctly noted that the flowers agreed in nearly every detail with the description of Catasetum eburneum except that the flowers were smaller Figure 3 drawn to scale, shows the difference in size between the two species A good field character is that the sepals and petals of $D$ ebumea reflex fully along the ovary while only the sepals of $D$ allenit reflex while the petals are in the same plane as the lip

## Distribution Panama

Additonal specmens exammed PANAMA Prov Cocle, Cerro Campana, PH Allen 4559 (AMES spint \#P2722, photo SEL), All of the following specmens are collected from the same cultivated plant as the holotype Panama without locality, 1976, N H Willams, ex hort MSBG 1976-5619, without collectorsn (SEL), Aug 1985, EA Christenson sn (SEL), 13 Aug 1987, HG

Hills 87183 (AMES spirit); 15 Aug 1989, H.G. Hills 89031 (SEL spirit); 30 Aug 1990, H. G. Hills 90024 (NCU, K spirit); 14 Sep 91, H.G. Hills 91023 (NCU, AMES spirit); 30 Jul 1991, S.W. Ingram 1082 (SEL, NCU, AMES spirit); 19 Aug 1994, W.M. Whitten 94068 (FLAS).

Etymology: Named in honor of the late Paul Hamilton Allen (1911-1963), coauthor of the Orchidaceae for the Flora of Panama, who had a long-time interest in the Catasetinae.

Fragrance: Methyl benzoate, methyl salicylate and eugenol
Illustration: Allen (1949) as Catasetum eburneum. The Allen illustration was apparently done on an immature flower and does not show the reflexed sepals.


Figure 3. Size comparison of Dressleria ebumea (Rolfe) Dodson (M.W. Whitten 1022) with D. allemi HG Hills (H.G. Hills 89031) Each species produces a unique fragrance Drawing by Omar E Rocha G
2. Dressleria aurorae H G Hills \& D E Bemin, Brittona 47 ; 1841995 Type PERU Depto de Huanuce, Tinga Maria, without exact locality, E Jara, ex hort, 15 Jul 1989, H G Hills 89030 (holotype AMES [not yet sent], isotype SEL spint) Figs 4 \& 5

Pseudobulbs fusiform, to 10 cm tall, $2-3 \mathrm{~cm}$ wide Leaves to $35 \mathrm{~cm} \times 6 \mathrm{~cm}$ wide Inflorescence basal, arching, loosely flowered raceme, to 35 cm long Pedicels to 3.0 cm long Flowers pale white tinted with green, nonresupinate, saccate Sepals dorsal sepal linear, acute apically, $16-18 \mathrm{~mm}$ long, $6.5-7 \mathrm{~mm}$ wide, reflexed along the ovary, lateral sepals linear acute apically, strongly divergent, $16-18 \mathrm{~mm}$ long, $65-7 \mathrm{~mm}$ wide Petals ovate, acute apically, $15-16$ mm long, $8-10 \mathrm{~mm}$ wide Lip elliptic-ovate, acute apically, adnate to basal third of column, 14-15 mm long, $12-14 \mathrm{~mm}$ wide, sac transverse, obscurely 2 -lobed with a throat like entrance to the rectangular opening Column $55-6 \mathrm{~mm}$ long, $55-6 \mathrm{~mm}$ wide at base. Fruit not seen.

Dresslerza aurorae with very small flowers is simular to $D$ dodsoniana but has been confused with $D$ eburnea. Dresslerta aurorae differs from $D$ eburnea by lacking reflexed sepals and petals, lacking a callus around the opering to the sac, and by possessing a different array of floral fragrances. Dressleria aurorae differs from $D$ bennettut because of its smaller flowers with relatively wider sepals and lack of promment callus The opening to the sac is at the base of the throat-like lip lacking prominent lateral projections found in $D$ dodsoniana

The description and illustration given in the onginal description (Christenson and Bennett 1995) refers to a specimen of Dressleria dodsoniana and not to $D$ aurorae


Figure 4 Dresslerta curorae HG Hills \& D E Benn Photo of holotype HG Hills 89030 by Bart Schutzman


Figure 5 Dressleria aurorae H G Hills \& DE Benn Drawing of holotype $H G$ Hills 89030 by Bobbi Angell

## Distribution: Pern

Additional specimens exammed PERU Depto de Huanuco, Leonio Prado, Caseno Clonnda Matos, 780 m 15 Dec 1995, E Jara P ex Bennett 7424 (MOL)

Etymology Named in honor of Aurora Pastorelli de Bennett (1925-), wife of David E Bennett, Jr
Fragrance methyl salicylate with trace of methyl benzoate
Illustrations: The illustration of Bennett and Chnistenson (1995) and used again in (1998) is not drawn from the holotype and is in fact an illustration of Dressleria dodsomana. The leaf with a midvein is in error and does not represent Dressleria leaves.
3. Dressleria bennettii H G Hills \& Christenson, Brittona 471861995 Type PERU Depto De Junin, Chanchamayo, Ubiriki Valley, north side of Roo Perene, Oliveras, 6 June 1991, ex hort 23 June 1991, DE Bennett Jr 5064-2 (holotype NCU, 1sotypes NY, K spint) Fig 6

Pseudobulbs fusiform to 12 cm tall, 2-4 cm wide Leaves to 40 cm long, 6 cm wide Inflorescence basal, arching, loosely flowered raceme, to 30 cm Pedicels to 3 cm long Flowers yellow to orange, nonresupinate, saccate Sepals: dorsal sepal linear reflexed along the ovary $25-30$ mm long, $7-8 \mathrm{~mm}$ wide, lateral sepals spreading, $23-25$ long, $7-8 \mathrm{~mm}$ wide Petals ovate $20-23 \mathrm{~mm}$ long, $11-14 \mathrm{~mm}$ wide Lip ovate $22-23 \mathrm{~mm}$ long 17 mm wide with pronounced triangular callus to each side of the openung Operning of the sac 4-5 mm wide at base of column, 4 mm high with a prominent tooth Column $7-8 \mathrm{~mm}$ long, $10-11 \mathrm{~mm}$ wide at base Fruit not seen

## Distribution Peru

Additional specimens examined PERU Depto De Junin, Chanchamayo Ubiriki Valley, north side of Rio Perene, Oliveras 06 June 1991, D,E Bennett 5064-2 ex hort same plant as the holotype, 09 Jul 1992, H G Fills 92009 (AMES, SEL), Chanchamayo, Ubiriku Valley, north side of Rio Perene, Oliveras 06 June 1991, D E Bennett 5064-1 ex hort same field collection as the holotype, 03 Jul 1992, H G Hills 92008 (NCU, SEL spurit)

Etymology Named in honor of David E Bennett, Jr (1923-2009), major contributor to our knowledge of Peruvian orchids

Fragrance: methyl salucylate with trace of methyl benzoate
Illustrations: A color photograph of the type plant of Dressleria bennettif was published by Chustenson (1994) Bennett and Christenson (1995 \& 1998) used the same illustration drawn from the holotype plant


Figure 6 Dnessleria bennethi H G Hills \& Christenson. Holotype (D E Bernett Jr 5064-2) Photo by Benjamin Collantes
4. Dressleria dilecta (Rchb f) Dodson, Selbyana 11321975 Catasehum dilectum Rchb f, Betr Orchid-K C Amer 731866 Type COSTA RICA Prov Heredia, Canblanco, 10 May 1857, Wendland 833 (holotype W, photos of holotype AMES, SEL) Figs 7 \& 11

Pseudobulbs fusiform to 10 cm tall, 2-3 cm wide Leaves to 45 cm , to 6 cm wide Inflorescence basal, erect, densely flowered, subcapitate to 20 cm Pedicels to 3 cm long Flowers white, nonresupinate appearing nearly round Sepals $17-19 \mathrm{~mm}$ long, $65-7 \mathrm{~mm}$ wide strongly reflexed aganst the ovary Petals $14-15 \mathrm{~mm}$ long, $10-11 \mathrm{~mm}$ wide strongly reflexed to the ovary Lip 15-16 mm long, 12-13 mm wide Apical half of the lip flat or slightly reflexed Callus of the lpp elevated $2-3 \mathrm{~mm}$ to make the lip enturely adnate to the column Margin of opening erose distally, opening rhombic, $55-6 \mathrm{~mm}$ at the widest point, $25-3 \mathrm{~mm}$ high Column $7-8 \mathrm{~mm}$ long, $8-9 \mathrm{~mm}$ wide at the base Fruit not seen


Figure 7 Dressleria dilecta (Rchb f) Dodson. Photo by Calaway H Dodson

Dressleria dilecta is similar to and has been confused with the sometimes sympatric $D$. helleri with which it shares a subcapitate inflorescence. The inflorescences of $D$. dilecta are usually more densely flowered than those of $D$. hellert. The opening to the sac of $D$. dilecta is rhombic whereas that of $D$. helleri is cordate. The two species differ by their floral fragrances. There is gradation in floral form between $D$. dilecta and $D$. helleri and it is conceivable that the species hybridize in nature despite the fragrance differences. In addition, the flowers of both $D$. dilecta and $D$. helleri in the Cariblanco area of Costa Rica show some variation where the two species are sympatric with $D$. eburnea.

The Lankester 1181 specimen of Dressleria dilecta is enclosed in the folder with the isotype specimen of $D$. suave and has probably added to the confusion when samples were sent to AMES for identification. There is also a spirit specimen of Lankester 1181 at AMES.

Distribution: Costa Rica
Additional specimens. COSTA RICA: Prov. of Alejuela, Virgen, 1984, M.W. Chase 84205 A (K). Many plants were collected in Prov. of Heredia, Rt 9 at km 47 , Sarapiqui River Valley, Mar 1986, Hills, Whitten \& Ballestara ex hort. F1085, Il Jun 1986, H.G. Hills 1019 (FLAS, SEL spirit); 26 Jun 1989, W.M. Whitten 1021 (FLAS); 24 Jun 1991, S.W. Ingram 971 (SEL); ex hort. F1048, 21 May 1987, H.G Hylls 87179 (SEL spirit); ex hort. F1050, 11 Nov 1987, H.G. Hills 87144 (FLAS, SEL spirit); 03 Jun 1991, S.W. Ingram \& Uguccioni s.n. (SEL); ex hort. F1086, 22 May 1987, H.G Hills 87182 (SEL spirit); [unstated University of Florida accession], 21 Jun 1989, WM. Whitten 1019 (FLAS); ex hort. F1084, 29 Jun 1989, WM. Whitten 1020 (FLAS); near San Carlos, Laguna de Maria Alguilar, 800 m , March 1986, C. Horich, ex hort. 1987, R. Jenny s.n. (AMES spirit); Cariblanco, A. Delgado, ex hort 7 Jun 1957, C. Lankester 1695 (SEL); Prov. of Limon, lower Rio Reventazón near Pascuas, 350 m , C. Horich, ex hort MO 60-7-53, without collector (MO, SEL spirit \#4182); without location, ex hort., Apr 1955, C. Lankester s.n. (SEL); without location, ex hort. H. Teuscher s.n. (SEL spirit \#4186); without location, Carrillo, ex hort. May 1928, C. Lankester 1181 (AMES).

Etymology: From Latin dilectus, beloved.
Fragrance: alpha pinene, beta ocimene. 1,8 cineole and p-dimethoxybenzene. The 1,8 -cineole should be easily detected early morning.

Ilustrations: Teuscher (1972) as Catasetum dilectum; Bechtel and Cribb (1980) as Dressleroa dilecta; Jenny (1981) as Dressleria dilecta; Batchelor (1983) as Catasetum eburneum; Rodrigues C. et al. (1986) as Dressleria dilecta; Dressler (1993) as D. dilecta.

Pollination: Lankester (1960) observed pollination by Euglossa spectes. Dodson (1975) reported pollination by Euglossa hansoni at San Vito de Java, Costa Rica.
5. Dressleria dodsoniana H.G. Hills, Orquideología 24: 133. 2005 (published 2006). Type: ECUADOR. Amazonia without location, D. Delasandro. ex hort. 23 Sep 2003, H.G. Hills 20030919 (holotype: FLAS; isotypes: AMES spirit, SEL spirit). Fig. 8.

Pseudobulbs fusiform to 12 cm tall, 2-4 cm wide. Leaves to 35 cm long, to 6 cm wide. Inflorescence basal, arching, loosely flowered raceme, to 35 cm . Pedicels to 4 cm long. Flowers whitish green, nonresupinate, saccate. Sepal: dorsal sepal linear, 24-26 mm long, 6-6.5 mm wide, reflexed along the ovary; lateral sepals linear-oblong, obtuse apically, strongly divergent, $23-25 \mathrm{~mm}$ long, $6-6.5 \mathrm{~mm}$ wide. Petals obliquely ovate, obtuse apically, $21-23 \mathrm{~mm}$ long, $10-12 \mathrm{~mm}$ wide. Lip elliptic-ovate, acute apically, adnate to basal third of column, $20-22 \mathrm{~mm}$ long, $12-14 \mathrm{~mm}$ wide; sac
transverse, obscurely 2 -lobed with an "X-shaped" openng wider distally than at base of column Column $55-6 \mathrm{~mm}$ long, $75-8 \mathrm{~mm}$ wide at base Fruit not seen


Figure 8 Dressleria dodsomana H G Hills Holotype (HG Hills 20030919)
Dressleria dodsomiona is allied to $D$ fragrans but dffers by having a narrower opening to the sac with prominent lateral projections creating an X-Iike opening unlike the rectangular opening of $D$ fragrans The floral fragrance of $D$ dodsomana is prmarily methyl salicylate with a menor component of methyl benzoate while the floral fragrance of $D$ fragrons is wholly eugenol

Dodson once considered everythung in South Amenca to be Dressteria eburnea even though he humself mentioned that the material from eastern Ecuador was probably a different species from the western Ecuador maternal

Distribution Amazonan Ecuador, and northern Peru

Additional specimens examined. ECUADOR: Prov. Napo-Pastaza, Mera, 16 Feb 1956, Asplund 19404 (AMES, K, NY); without location, 8 Mar 1940, Lugo 34 (Herb. Garay); Hacienda San Antonio Baron von Humboldt, 2.5 km north of Mera on road from Baños to Puyo, 14 Mar 1985, C.H. Dodson \& L.M. Bermeo 15679 (MO); Motolo, 11 Mar 1969, Lugo 694 (GB); without location, 20 Jul 1972, Lugo 1933 (GB); Lumbaqui, road from Baeza to Lago Agrio 9 Feb 1986, A Hirtz et al. 2713 (MO); Prov. of Tunguragua, San Francisco on road from Baños to Puyo, 12 Mar 1963, C.H. Dodson \& L. Thien 2366 (SEL); Prov. of Morona-Santiago, Rio Upano near Macas, 29 Aug 1987, de K. G Lacerda et al. ex hort. F87031, 27 Dec 1987, H.G Hills 87143 (FLAS); W.M. Whitten s.n. (FLAS). Amazonian Ecuador without exact location, ex hort. 13 Dec 2002, H.G Hills 20021201 (SEL spirit). PERU: Depto. San Martin, Tarapoto, at km 30 on road from Tarapoto to Yurimaguas, $650 \mathrm{~m}, 10$ April 1965, D.E. Bennett \& A. Bennett 1699 (MOL, illustration only).

Etymology: The species name honors Calaway H. Dodson (1928- ), whose lifetime contributions to orchid biology and taxonomy are both legendary and too numerous to list.

Fragrance: methyl salicylate with a trace of methyl benzoate.

## Illustration: L.C. Vieira (1990), as Dressleria eburnea.

Pollination: Eufrtesta concave observed by Dodson 1996 (pers. comm.). This observation was of a plant collected in eastern Ecuador being grown on the Pacific side. It is not known if the same species of bee pollinates Dressleria dodsomiana in its native habitat.
6. Dressleria eburnea (Rolfe) Dodson, Selbyana 1: 132. 1975. Catasetum eburneum Rolfe, Kew Bull. 1906: 86. 1906. LECTOYPE (designated here): COLOMBIA. near Pamplona, ex hort. 19 Sep 1901, Charlesworth \& Co. s.n. (K); two other collections on the same sheet are dated Sep 1900 and Aug 1903 respectively. Figs. 3 \& 9.
Dressleria suavis (Ames \& C. Schweinf.) Dodson, Selbyana 1: 132. 1975. Catasetum suavis. Ames \& C. Schweinf., Sched. Orchid. 10: 81. 1930. Type: COSTA RICA. Prov. of Heredia, La Fuente, $1200 \mathrm{~m}, 16$ Aug 1925, A. Alfaro 162. (holotype: US; isotype: AMES).

Pseudobulbs fusiform to $12 \mathrm{~cm}, 2-3 \mathrm{~cm}$ wide. Leaves to 40 cm , to 7 cm wide.
Inflorescence basal, loosely flowered raceme, to 35 cm . Pedicels to 4 cm long. Flowers ivory white, nonresupinate, saccate. Sepals $22-30 \mathrm{~mm}$ long, $11-12 \mathrm{~mm}$ wide strongly reflex along the ovary. Petals $22-24 \mathrm{~mm}$ long, $14-16 \mathrm{~mm}$ wide strongly reflex along the ovary. Lip longer than broad, $20-22 \mathrm{~mm} \times 12-16 \mathrm{~mm}$. Top half of the lip beaked. Callus very prominent on sides and top of opening elevated 2 mm . Opening to the sac large nearly $8-9 \mathrm{~mm}$ wide at the base of the column, 5-6 mm high. Lip adnate to the bottom half of the column. Column $9-10 \mathrm{~mm}$ long, $8-9 \mathrm{~mm}$ wide at the base. Fruit not seen.

The type sheet of Catasetum eburnea at K includes three collections of the species. One of these, dated 1901, was transmitted by the firm of Charlesworth \& Co. and is here designated as the lectotype. The collection reportedly came from the Pamplona District of Colombia. No subsequent specimens of $D$. eburnea are known from South America and the type locality almost certainly is erroneous.

Dressleria collections from east of Pamplona have been identified as D. kalbreyerr. A source of confusion regarding application of $C$. sauve initially was caused because of an unpublished illustration associated with the protologue. The drawing, attached to a specimen of $D$. dilecta Lankester 1181, (AMES), is that of D. eburnea. Ames and C. Schweinfurth stated specifically that "the description was drawn from dried specimens supplemented by flowers preserved in formalin".

The flowers preserved in formalin are those of $D$ dilecta obtamed by Lankester when he prepared his dried specimen 1181 This combining of material from two different species likely hindered the recogntion of additional species when additional material was sent to AMES for identification

Dodson annotated the type specimen of Catasetum suave as Catasetum eburneum but chose to maintain C suave when he proposed the genus Dressleria Mansfeld (1932) noted that he chd not see the material at AMES when he reduced all the material to Catasetum dilectum Mansfeld did anmotate the specimen at Kew. The description of both Cataseum eburnea and C sonve state that the sepals and petals are reflexed unlike the spreading segments of most of the South American species that have been called $D$ eburnea


Figure 9 Dressleria ebirnea. (Rolfe) Dodson Photos by Calaway H Dodson
Distribution: Costa Rica and Nicaragua
Additional specimens examined COSTA RICA Prov of Alejuela, Fortuna-Palma Road, North Slope Volcan Arenal, Luther, Skotat \& Bak 25 Jun 1990 ex hort MSBG 1990-0738, 16 Jun 1997, HE Luther sn (SEL), Prov of Heredra, La Fuente, $1100 \mathrm{~m}, 7 \mathrm{Sep} 1924$, A Alfaro sn (US), Rt 9 at km 47, Sarapıquı Rıver Valley, Mar 1986, Hılls, Whitten \& Ballestara, ex hort F1045, 26 June 1989, WM Whtten 1022 (FLAS,), without localiton, ex hort MO 64-98-3 (SEL spint \# 4532), without location, ex hort MSBG 1991-0327, 8 Jun 1992, SW Ingram 1040 (SEL, AMES spint, K spint) NICARAGUA Prov of Zelaya Cerro Musín, $915 \mathrm{~m}, ~ A ~ H$ Heller 5081 (SEL, drawing only), without location, ex hort Montreal 2175-16, H Teuscher sn (AMES spirit P3258)

Etymology From Latin eburneus, lvory white
Fragrance 1,8 -cineole, methyl benzoate and methyl salicylate
Illustrations: Hamer (1982c) as Dresslerta suavs, redrawn from Heller's illustration of Heller 5081, Dresslena suavs (Ames \& C Schwenf) Dodson, Selbyana 1132 1975, figure 1c, Herrera, C \& N Zamora (2003) as Dressleria dlecta
7. Dressleria fragrans Dodson, Orquideologia 2131998 Type ECUADOR Prov of Bolivar, 7 km east of Balzapamba on road to San Jose de Chmbo, region of El Torneado, $1400 \mathrm{~m}, 16$ Jun 1960, CH Dodson 100 (holotype SEL, 1sotype AMES spint) Fig 10

Pseudobulbs fusiform to 15 cm tall, $2-3 \mathrm{~cm}$ wide Leaves to 45 cm , to 7 cm wide Inflorescence basal, archung, raceme, to $25-35 \mathrm{~cm}$ Pedicels to 4 cm Flowers greemsh yellow, nonresupinate, saccate Sepals dorsal sepal oblong-lanceolate, acuminate to 23 mm long, 9 mm wide, the lateral sepals subsmilar and subequal to the dorsal sepal Petals elliptic, acute, to 20 mm long, 13 mm wide Lip broadly ovate-suborbicular, acute, globose-saccate, fused to the basal thurd of the column, to 22 mm long, to 15 mm wide, the opening to the sac transversely rectangular, 8 mm wide, 4 mm high, the front edge with a small central tooth, without well-defined lateral callus Column $7-8 \mathrm{~mm}$ long, $10-11 \mathrm{~mm}$ wide at base Capsule elliptical


Figure 10 Dressleria fragrans Dodson Dodson 8555 (MSBG 1979-1310) Photo by Willam C Whitehill The illustration for the description of $D$ fragrans was drawn from this plant

Dresslena fragrans is smmlar to $D$ dodsonuana, although authors erroneously have considered this species to be $D$ eburnea In addition to sharp differences in floral fragrances, $D$ fragrans differs from $D$ eburnea by having non-reflexed lateral sepals and petals and virtually no callus associated with the opening to the sac The photographs in the envelope attached to the type specimen of $D$ fragrans are those of $D$ dodsontana a species that oceurs in eastern Eeuador Dodson (pers comm ) sald the photos were attached when he considered everything in South America to be D ebumea

Distribution Pacific slope Ecuador
Additional specimens examined ECUADOR Prov of Cafiar, region Cochencay, km 85 , Guayaqui-Tambo, alt $400 \mathrm{~m}, \mathrm{C}$ Horich, ex hort, Univ Califorma Botanncal Garden, Berkeley

Accession No. 60.1152-1, 60.1152-2 \& 60.1152-3, 01 Jan 1961, C.H. Dodson 357 (SEL); 7 Nov 1960, P.C. Hutchison s.n. (AMES); 15 May 1963, P.C. Hutchison s.n. (NY); 28 Oct 1962, P.C. Hutchison s.n. (MO); 21 Sep 1963, P.C. Hutchison s.n. (US); 29 Sep 1962, P.C. Hutchison s.n. (AMES); 7 Dec 1961, M. Kimnach s.n. (MO, UC); Ecuador without location, ex hort., 19 Oct 1978, M. Powers s.n. (SEL); Prov. of Pichincha, forest of the Cooperative Sta. Marta \# 2 at km 3 west of bypass around Santo Domingo, $530 \mathrm{~m}, 22 \mathrm{Jul} 79$, C.H. Dodson, Morgan \& T. Dodson 8555 (MO, SEL; both sterile); forest of the Cooperative Sta. Marta \# 2 at km 3 west of bypass around Santo Domingo, $530 \mathrm{~m}, 22 \mathrm{Jul} 79$, Dodson, Morgan \& T. Dodson 8555 ex hort. MSBG 1979-1310, 7 Sep 1986, H.G. Hills 86204 (AMES, FLAS, K spirit, MO, SEL,); 29 Nov 1987, H.G. Hills 87141 (FLAS); 6 Sep 1991, S.W. Ingram 1112 (NCU); Centinella, ex hort. Perry 304 (SEL spirit \#5920); Centinella, 12 km east of Patricia Pilar, $700 \mathrm{~m}, 2$ Feb 1987, C.H. Dodson 17103 (MO).

Etymology: From Latin fragrans, smelling agreeably.
Fragrance: 100\% eugenol (oil of cloves).

Illustrations: Dodson \& Dodson (1980) as Dressleria eburnea; Arosemena G. et al. (1988) as D. eburnea.

Pollination: Dodson (1962) observed pollination by Eulaema cingulata and described the mechanism. He made a second observation of pollination by Eulaema cingulata in 1996 (per. comm.) where he describes $D$. dodsoniana blooming at the same time being pollinated by Eufriesia concave. The bees never made a mistake of visiting the other species.
8. Dressleria helleri Dodson, Selbyana $1: 132$. 1975. Type: NICARAGUA. Dept. Jinotega: coffee plantation at the base of Peñas Blancas, $915 \mathrm{~m}, 1$ Jun 1965, A.H. Heller 8422 (holotype: SEL). Fig. 11

Pseudobulbs fusiform to 10 cm tall, $2-3 \mathrm{~cm}$ wide. Leaves to 45 cm , to 6 cm wide. Inflorescence basal, erect, subcapitate or somewhat racemose to 20 cm . Pedicels to 3 cm . Flowers ivory white, nonresupinate, appearing nearly round. Sepals $17-19 \mathrm{~mm}$ long, $6.5-7 \mathrm{~mm}$ wide strongly reflexed along the ovary. Petals $14-15 \mathrm{~mm}$ long, $10-11 \mathrm{~mm}$ wide, strongly appressed to the ovary. Lip $15-16 \mathrm{~mm}$ long, $12-13 \mathrm{~mm}$ wide. Apical half of the lip flat or slightly cupped. Callus of the lip elevated $2-3 \mathrm{~mm}$ to make the lip entirely adnate to the column. Margin of opening erose distally, opening cordate, $4-4.5 \mathrm{~mm}$ at the widest point, $4-4.5 \mathrm{~mm}$ high. Column $7-8 \mathrm{~mm}$ long, $8-9 \mathrm{~mm}$ wide at the base. Fruit not seen.

Dresslerta hellert is most similar to D. dilecta and primarily differs by its shape of the opening to the sac that is cordate and a floral fragrance dominated by beta ocimene and p dimethoxybenzene. Dressleria dilecta has a floral fragrance with alpha pinene, 1,8 cineole and lesser amounts of p-dimethoxybenzene and a more rectangular opening to the sac.

Interpretation of this species has been problematic because the illustration used by Dodson (1975) as well as one of the paratypes cited actually represents Dresslerta kerryae and not $D$. hellert. By the Rules of Botanical Nomenclature the type material, Heller 8422 represents the species and is so interpreted here. Figure 11 illustrates the differences between D. dilecta and D. helleri and compares their size to D. eburnea. Hamer's (1982a) illustration of D. helleri is a redrawing of Heller's unpublished illustration based on Heller 7094; this is the true D. helleri. Hamer's (1982b) illustration of D. dilecta is based on Heller 8422, the holotype of D. hellert.


Figure 11 Dressienaebumea (Rolfe) Dodson (WM Witten 1022), D dilecta (Rchb f) Dodson (HG Hills 87179), and D hellen Dodson (HG Hills 87178) These three species are sympatric in the Sarapiqui River Valley, Costa Ruca Each produces a unique fragrance Drawing by Omar E Rocha G

Distribution: Nicaragua and Costa Rica.
Additional specimens examined. NICARAGUA: Dept. of Jinotega, coffee plantation at the base of Peñas Blancas, alt. 915 m , Jun 1965, A. H. Heller 7094 (SEL); Dept. of Chontales, Babilonia Mine, 570 m , Sept (without year), A. H. Heller 6972 (SEL); Dept. of Zelaya, Cerro Saslaya, cloud forest, $1100 \mathrm{~m}, 3$ May 1978, D.A. Neill 3838 (MO). COSTA RICA: Many plants were collected Prov. of Heredia, along Rt 9 at km 47, Sarapiqui River Valley, Mar 1986, Hills, Whitten \& Ballestara, ex hort. F1044, 20 Feb 1987, H.G. Hills 87178 (AMES); 29 Oct 1987, H.G Hflls 87145 (FLAS); 10 Jun 1990, H.G. Hills 90018 (NCU, K in spirit); 09 Jun 1991, H.G. Hills 91707 (AMES); 09 Jun 1992, W.M. Whitten sn (FLAS); ex hort F1047, 29 Nov 1987, H.G Hills 87181 (SEL); ex hort. F1046, 5 Jul 1988, W.M. Whitten s.n. (SEL); ex hort. F1087, 1 Jul 1988, W.M. Whitten 1018 (FLAS, ); 03 Jun 1991, S.W. Ingram and Uguccioni 967; without location, ex hort., F.L. Stevenson 61069 (SEL spirit \#4526); without location, ex hort. MO 60-9-77 (SEL spirit \#4184); without location, Lankester, ex hort. K 434-1959 (K).

The flower buds of Neill 3838 are so immature as to render a positive identification impossible. Because of the proximity in collection locale to the other Nicaraguan material, and characteristics of the inflorescence, the collection has been annotated as Dressleria hellert. Given this interpretation, there are no authenticated specimens of $D$. dilecta known from Nicaragua.

Etymology: The species honors the late Alfonce Henry Heller (1894-1993), an avid orchid enthusiast who contributed substantially to our knowledge of Nicaraguan orchids.

Fragrance: Dominated by beta ocimene and p-dimethoxybenzene.
Pollination: The pollination observations of Dressler, cited by Dodson (1975), are actually those for Dresslenta kerryae.
9. Dressleria kalbreyeri H.G. Hills, Lindleyana 15:173. 2000. Type: COLOMBIA. Norte de Santandar, vicinity of Ocana, Jan 1878, Kalbreyer 504 (holotype: W; isotype: AMES). Fig. 12.

Pseudobulbs fusiform to 10 cm tall, $2-3 \mathrm{~cm}$ wide. Leaves to $45 \mathrm{~cm} \times 6 \mathrm{~cm}$. Inflorescence basal, loosely flowered raceme, to 30 cm . Pedicels to 4 cm . Flowers nonresupinate, saccate. Sepals 18 mm long, 5.5 mm wide. Petals 17 mm long, 10 mm wide. Lip 15 mm long, 10 mm wide, adnate to the bottom third of the column. Apex half of the lip flat or slightly reflexed, Entrance to the saccate portion of the lip a slit partially hidden behind the column, 3.5 mm wide at the base of column, 7 mm wide at the top, 2 mm high. Callus not well defined, a low mound. Column 6 mm long, $6-7 \mathrm{~mm}$ wide at base. Fruit not seen.

Dressleria kalbreyerl may be distinguished by its narrow, transverse opening to the sac that is partially concealed by the column and by the small flowers with narrow sepals.

Distribution: Northeastern Colombia and western most Venezuela.
Additional specimens examined. COLOMBIA: Dept. of Meta, near Villa Vicencio, $G$ Escobar 496 (AMES); near Villa Vicencio, G. Escobar 532 (AMES). VENEZUELA: Edo. Tachira, Quebrada La Blanquita, near La Fundación, R. Mejia C. ex hort., Oct 1973, Dunsterville 1295 (SEL spirit).

Etymology The species is named for the collector of the type, Wilhelm (Gullermo) Kalbreyer (1847-1912)

Fragrance Unknown
Illustrations Garay (1969) as Catasetum dilectum, Dunsterville and Garay (1976, 1979) as Dressiera dilecta, Romero and Carnevalı (2000) as Dresslerta dilecta


Figure 12 D kalbreyert H Gills ( $R$ MejaC $s n$ ) Drawing by GC K Dunsterville
10. Dressleria kerryae H G Hills, Lindleyana 151732000 Type Panama Ptov Panama Cerro Jefe, 27 May 1968, R. L. Dressler 3515 (holotype FLAS) Fig 13

Pseudobulbs fusiform to $10 \mathrm{~cm}, 2-3 \mathrm{~cm}$ wide Leaves to 45 cm , to 6 cm wide Inflorescence basal, arching, loosely flowered raceme to 35 cm Pedicel to 4 cm Flowers nonresupinate, longer than broad Sepals $19-21 \mathrm{~mm}$ long, $6-7 \mathrm{~mm}$ wide strongly reflexed against the ovary Petals $16-17 \mathrm{~mm}$ long, $10-11 \mathrm{~mm}$ wide strongly reflexed against the ovary Lip $16-17 \mathrm{~mm}$ long, $10-11 \mathrm{~mm}$ wide Top half of the l l f flat or slightly reflexed Callus of the hp elevated $3-4 \mathrm{~mm}$ to make the lip entirely adnate to the column Opening to the sac is small and nearly rectangular, $20-$ 35 mm high, $15-20 \mathrm{~mm}$ wide Margin of the openng entire. Column $8-85 \mathrm{~mm}$ long, $8-8.5 \mathrm{~mm}$ wide at base Fruit not seen


Figure 13 Dresslena kerryae H G Hills (A Niessen sn) Photo by Juan Carlos Uribe

Dressleria kerryae has been confused with D. helleri (e.g., the illustration in Dodson [1975] is $D$. kerryae and not $D$. helleri) and differs from the latter by having an entire opening to the lip unlike the erose margin of $D$. hellerv. Dressleria kerryae is most similar to D. severiniana, differing by the shape and size of the opening to the sac. In $D$. kerryae the opening is elongate and nearly twice as long as broad. In D. severiniana the opening is nearly square. The elevation of the callus from the plane of the lip is more than twice that of $D$. severmiana.

I have annotated Cuatrecasas 14981 as Dressleria kerryae although the flowers are not fully developed. In addition, G. Gerlach (pers. comm.) has material of D. kerryae collected in the province of Choco, Colombia (cultivated at HEID, acc. \#0-19206). Additional collections from the Pacific slope of Colombia will help to clarify the range of the species.

Distribution: Eastern Panama and Pacific slope of Colombia.
Additional specimens examined. PANAMA: Prov. Panama, Cerro Jefe, 1968, Dodson \& Dressler, same field collection as the holotype, ex hort. UM 12-68-1, 11 June 1968, H.G. Hills 68101 (AMES spirit, K spirit, SEL spirit \#4531); E1 Llano-Carti Road, 1976, N.H. Williams, ex hort. MSBG 1976-56-8, 10 May 1978, Pridgeon s.n. (SEL); 10 km north of Margarita on road to Madroço, 550 m , 31 Jan 1979, Hammel 6017 (MO). COLOMBIA: Dept. Valle del Cauca, Cordillera Occidental, Hoya del Rio Digua, Piedra de Moler, 19-28 Aug 1953, Cuatrecasas 14981 (AMES); west of Calima Lake near Rio Bravo, 2001, A. Niessen s.n. (SEL spirit).

Etymology: The species name honors Kerry Dressler (1947-), wife of Robert Dressler.
Fragrance: 1,8 cineole and $p$-dimethyoxy benzene.
Illustrations: Dodson (1975) figure 1D as Dressleria hellert; Misas Ureta (2006) as D. hellert.
Pollination: Dodson (1975) reported that Dressler observed flower visitation on Cerro Jefe, type locality of the species. Dressler (pers. comm.) has updated the information and reports Eufriesia anisoclora, Eufriesia schmidtuana, Euglossa asarophora and Euglossa champion with Dressleria pollinaria. Dressler (pers. comm.) has collected Euglossa ignita from Bahia Solano, Choco, Colombia with Dressleria pollinaria that presumably are of this species.

## 11. Dressleria severiniana H.G. Hills, Amer. Orchid Soc. Bull. 60:616. 1993. Type: PANAMA. Prov. Coclé, El Valle de Anton, R. L. Dressler, sin. dat., ex hort. F1757, 12 May 1990, H.G Hills 90015 (holotype: AMES [not yet sent]; isotype: K spirit). Figs. 14 \& 15.

Pseudobulbs fusiform to 12 cm . Leaves to 45 cm , to 6 cm wide. Inflorescence basal, loosely flowered raceme to 30 cm . Pedicel to 3.5 cm . Flowers non-resupinate, elongate. Sepals 2123 mm long, $5-6 \mathrm{~mm}$ wide strongly reflexed against the ovary. Petals $17-18 \mathrm{~mm}$ long, $10-12 \mathrm{~mm}$ wide strongly reflexed against the ovary. Lip $17-18 \mathrm{~mm}$ long, $11-12 \mathrm{~mm}$ wide, apical half of lip flat or slightly reflexed; callus of lip elevated 1.5 mm making the lip entirely adnate to column; opening to the sac nearly square, 4.5 mm high, 4.5 mm wide; margin of opening to the sac a thin flap of tissue. Column $7.5-8 \mathrm{~mm}$ long, $8-9 \mathrm{~mm}$ wide at base. Fruit not seen.

Dressleria severiniana has been consistently misidentified as $D$. dilecta that differs by the shape of the lip opening and inflorescence. In $D$. severmana the opening is nearly square with an almost entire margin whereas $D$. dilecta lip opening has an erose margin. The inflorescence of $D$. severimiana is a loosely flowered raceme, unlike the densely flowered, subcapitate inflorescence of $D$. dilecta with overlapping flowers.


Figure 14. Dressteria severiniana $\mathrm{H} G \mathrm{H} 1 \mathrm{ll}$. Drawing of the holotype (ex hort F1757 H.G. Hills 90015) by Bobbi Angell


Figure 15. Dressleria severiniana $H$ G Hills (ABG 20020113) Photo by Danny Lentz The plant is growing at the Atlanta Botanical Garden

The placement of Allen 4565 , consisting solely of flowers in spirit and a photograph, is problematic and it may represent a hybrid with Dressleria dilecta or else is an undescribed species. No additional material is known. It is hoped with publication of the photo (Fig. 19), that addition material will be found. Allen's description in the Orchids of Panama appears to have been taken from the description of Catasetum suave and not a description of his specimen 4565. Allen (1949) clearly states that neither of his specimens agrees with C. dilectum.

Distribution: Panama.
Additional specimens examined. PANAMA: Prov. Cocle, El Valle de Anton, R.L. Dressler, ex hort. F1756, 28 May 1987, H.G Hills 87180 (AMES, SEL); E1 Valle de Anton, R. L. Dressler, ex hort. F1757 same plant as holotype, 10 May 1990, H.G Hills 90015 (K in spirit); 09 May 1991, H.G. Hills 91014 (NCU) 30 May 1992, H.G. Hills 92004 (AMES, SEL): 07 May 1996, W.M. Whitten 3603 (FLAS); El Valle de Anton, César Barsallo ex hort. Dressler s.n. (FLAS); El Valle de Anton, 9 Jan 1972, A. Gentry \& J. Dwyer 3681 (MO): Prov. Veraguas, Cerro Tuté region west of Santa Fe, 915 m , P.H. Allen 4565 (AMES spirit \#P2723).

Etymology: The species name honors Lil Severin (1905-1998), who had been a long term AOS judge from Cupertino, California.

Fragrance: 1,8 -cineole, phenyl ethyl alcohol, methyl salicylate and phenylethyl acetate.

## 12. Dressleria williamsiana H.G. Hills, sp. nov. Type ECUADOR. Prov. Esmeraldas; Agave

 plantation off road from Lita to Cachaco Aug. 1987, Whitten et. al. ex hort. F87038, 6 Feb 1989, W.M. Whitten s.n. (holotype: MO). Figs. 16, 17 \& 18.Dresslerta willtamstana is most similar to $D$. bennettu but differs by the location and the shape of the callus. In D. williamsiana the callus is tongue like extending from the tooth of the transverse narrow opening of the lip to the apex of the lip unlike the triangular callus of $D$. bennettit. Callus on the sides of the opening not prominent as with $D$. bennettit. The presence of the tonguelike callus and narrow transverse opening distinguishes $D$. williamstana from $D$. fragrans.

Epiphyte with basal thickly vermiform roots. Pseudobulbs fusiform-cylindric, $6-12 \mathrm{~cm}$ tall, $2-4 \mathrm{~cm}$ wide, fleshy, concealed by persistent leaf bases. Leaves oblong-lanceolate, up to 35 cm long, 6 cm wide, acute, persistent, alternate, distichous, prominently veined abaxially. Inflorescence a basal arching loosely flowered raceme to 35 cm long. Pedicels to 4 cm long, Flowers nonresupinate, greenish white turning yellow with age, fleshy, strongly fragrant. Sepals lanceolate, acute, dorsal sepal to 26 mm long, 6.5 mm wide, reflexed along the ovary; lateral sepals lanceolate, obtuse, strongly divergent, to 25 mm long, 6.5 mm wide. Petals ovate, acute, to 23 mm long, 12 mm wide. Lip uppermost, elliptic-ovate, acute, saccate, adnate to the basal third of the column, to 20 mm long, 14 mm wide; sac transverse, obscurely 2-lobed, opening of the sac transverse, narrow hidden by the column. Tongue like callus extending from tooth in the opening of the sac to the apex of the lip. Column to 6 mm long, to 9 mm wide at base. Pollinia 2, borne on a common stipe and viscidium. Fruit not seen.

Distribution: Known only from northwestern Ecuador but likely occurs in southwestern Colombia.
Additional specimens examined. ECUADOR: Prov. Esmeraldas; Agave plantation off road from Lita to Cachaco Aug. 1987, Whitten et al., same field collection as the holotype, flowered at Harvard, 1 Oct 1989, G Romero 2031 (AMES photo \& spirit); Cristal, 10 km southwest of road from

Lita to Alto Tambo beginning at km 4. 1400-1500 m. ex hort. Rio Palenque Science Center, 10 July 1989, C.H. Dodson \& A. Gentry 17655 (MO).


Figure 16. Dressleria williamsiana H.G. Hills (Whitten et al.). Plant from the same field collection as the holotype, flowered at Harvard. Photo by Gustavo A. Romero.


Figure 17. Dressleria williamsiana H.G. Hills. Close view showing narrow opening of the sac. Photo by Gustavo A. Romero.


Figure 18 Dressieria wilhamsiona $\mathrm{H} G$ Hills Drawing by Alfonso Doucette
Etymology The species name honors Norris H Williams, who has spent much of his professional career in the study of Orchudaceae His work spans a multutude of disciplines, from floral fragrance analysis to molecular systematics to field biology He was an important part of the field team that discovered this species

Fragrance methyl salicylate
Dressleria williamsiama should not be confused with " $D$ willamsin," an unpublished name assigned to speciments of $D$ kerryae

## Summaryand conclusions

Like many people who have submitted a revision, I can assure you this is not the last word There is considerable variation in what I have called Dressleria dodsomana There have been no recent collections of $D$ eburnea in South America and since the holotype was made from a cultivated plant, the ongin of the plant beng from Colombia probably is in error None of the collections from South America matches the descnption of Dressleria eburnea and six new species have been named They are $D$ aurorae, $D$ bennetth, $D$ dodsonana, $D$ fragrans, $D$ kalbryert, and D wilhamstana None of the matenal onginating from Panama has been shown to be Dressleria dllecta or $D$ hellern and three new species have been named $D$ severimana, $D$ kerryae, and $D$ allemi There is also a plant collected once in western Panama by Paul H Allen (Fig 19) that may be a hybrid or a new species that does not represent Dressleria dilecta or D severmana The material from west of Cali, Colombia (Fig 20) is clearly a new species but no herbanum matenal exists and no recent collections have been made


Figure 19 Dressleria sp or a natural hybrid? Allen 4565 Photo by Paul H Allen


Figure 20 Dressiena spectes Pacific slope of Colombia west of Cah Photo by Juan Carlos Uribe

## ACKNOWLEDGEMENTS

I wish to thank the curators of AMES, UC, F, FLAS, GB, K, MO, NY, and SEL for loans of specimens In addition, facilities were graciously provided during vists at AMES, BH, FLAS, ISC, K, MO, NY, SEL, and US I also thank D. Bermett and G Gerlach for providing additional matenal and documentation Field work in Ecuador was funded in part by an NSF grant to N.H Williams and faclitated by CH Dodson. Field work in Costa Rica and Peru was at personal expense I thank the late Enc Chnstenson for help on an earler draft of thus manuscript, Mark Chase for reviewing an earler draft, and James L Reveal for help with nomenclatural issues, providing research space, and editing several drafts of the manuseript I thank Allan Kershaw at the University of Illinors, Chicago, for Latin descriptions previously used

## LITERATURE CITED

Allen, PH 1949 Flora of Panama (Orchidaceae) Ann Missoun Bot Gard 36 22-32
Allen, PH 1953 The Orchuds of Panama Annotated Check-list of Genera and Species Orchid J 2 181-185
Ames, O and C Schweinfiurth 1930 New and Noteworthy Orchids Sched Orchid 1081 Arosemena G, A C De Jurado, R Estrada G and M Konanz M 1988 Orquideas de la Costa del Ecuador Guayaquil Asociacion Ecuatoriana de Orquideologia
Batchelor, S R 1983 Catasetum and Cycnoches Part 1 -Catasetums with "Perfect flowers" Beginners Sentes - 25 Amer Orchid Soc Bull 52 605-611
Bechtel, H and PC Cnbb 1981 The Manual of Cultivated Orchud Speeres The MIT Press, Cambndge, Massachusetts

Bennett, D.E. and E.A. Christenson. 1995. New species of Peruvian Orchidaceae. 3. Brittonia 47: 182-209.
Bennett, D. E. and E. A. Christenson. 1998. Dressleria aurorae H.G. Hills and D. E. Benn. Icon. Orchid. Peruv. pl. 436.
Bennett, D. E. and E. A. Christenson. 1998. Dressleria bennettil H.G. Hills and Christenson. Icon. Orchid. Peruv. pl. 437.
Chase, M.W. and H.G. Hills. 1992. Orchid phylogeny, flower sexuality and fragrance-seeking: Evidence from variation in chloroplast DNA among subtribes Catasetinae and Cyrtopodiinae. Bioscience 42: 43-49.
Chase, M.W. and J.S. Pippen. 1990. Seed morphology and phylogeny in subtribe Catasetinae (Orchidaceae). Lindleyana. 5: 126-133.
Christenson, E.A. 1994. A.O.S. visits: David E. Bennett Jr. Amer. Orchid Soc. Bull. 63: 423.
Dodson, C.H. 1975. Dresslerta and Clowesta: a new genus and an old one revived in the Catasetmae (Orchidaceae). Selbyana 1: 130-137
Dodson, C.H. 1998. New orchid species and combinations from Ecuador. - Fascicle 6. Orquideología 21:3
Dodson, C.H. and P.M. Dodson. 1980. Dressleria eburnea (Rolfe) Dodson. Icon. Pl. Trop. Ser. 1,
Dressler, R.L. 1993. Field Guide to the Orchids of Costa Rica and Panama. Ithaca, New York: Comstock Publishing Associates.
Dunsterville, GC.K. and L.A. Garay. 1976. Venezuelan Orchids Illustrated. Vol. VI. London: Andre Deutsch, Ltd.
Dunsterville, G.C.K. and L.A. Garay. 1979. Orchids of Venezuela: An Illustrated Field Guide. Botanical Museum of Harvard University Cambridge, Massachusetts.
Garay, L.A. 1969. Orquideas Colombianas Nuevas o Criticas. Decena III. Orquideologia 4:153-163.
Hamer, F. 1982a. Dressleria helleri Dodson. Icon. Pl. Trop., ser. 1, Plate 667.
Hamer, F. 1982b. Dressleria dllecta (Reichb.f.) Dodson. Icon. Pl. Trop. Ser. 1, Plate 666.
Hamer, F. 1982c. Dressleria suavis (Ames and C. Schweinf.) Dodson. Icon. Pl. Trop. ser. 1, Plate 668.

Herrera, C. and N. Zamora (eds.). 2003. Manual de Plantas de Costa Rica. Vol. III. Monocotiledóneas (Orchidaceae-Zingiberaceae). Monogr. Syst. Bot. Missouri Bot. Gard. 93: 1-884.
Hills, H.G 1993. The genus Dressteria. Amer. Orchid Soc. Bull 60: 614-619.
Hills, H.G 2000. New species of Dressleria (Orchidaceae: Catasetinae) from Central and South America. Lindleyana 15: 171-175.
Hills, H.G 2005. Dressleria dodsontana (Orchidaceae: Catasetinae), a new species from Ecuador, Colombia, and Peru. Orquideologia 24: 133-140.
Jenny, R. 1981. Dressleria dilecta. Die Orchidee (Hamburg) 32: 195-196.
Lankester, C.H. 1960. A reminiscence and its cause. Orchid Rev. 68:354.
Mansfeld, R. 1932. Die Gattung Catasetum L.C. Rich. Repert. Spec. Nov. Regni Veg. 30: 257-275
Misas Urreta, G. 2006. Orchids from the Serrania del Baudo Choco-Colombia. Corporation Capitalina de Orquideologia, Colombia.
Pridgeon A.M. and M.W. Chase. 1998. Phylogenetics of subtribe Catasetinae (Orchidaceae) from nuclear and cloroplast DNA sequences. In C. E. B. Pereira [ed.], Proceedings of the 15 th World Orchid Conference, 275-281. Naturalia Publications, Turriers, France.
Reichenbach, H.G. 1866. Beitr. Orchid-K. C. Amer. Druck von Th.G. Meissner, Hamburg. Rodrigues C., R.L., D.E. Mora, M.E. Barahona, and N.H. Williams. 1986. Generos de Orquideas de Costa Rica. Univ. de Costa Rica, San Jose.
Rolfe, R.A. 1906. Catasetum eburneum. Bull. Mise. Inform. Kew 1906: 86.
Romero, G.A. and G. Carnevali. 2000. Orchids of Venezuela: AField Guide (ed. 2). Armitano Editores, Caracas.

Teuscher, H. 1972. Catasetum atratum and C. dilectum with its var suave. Amer. Orchid Soc. Bull. 41: 1081-1085.
Vieira, L.C. 1990. Dresslerta Dodson, In R. Escobar R., Native Colombian Orchids. Vol. 1. Editorial Colina: Compañía Litográfica Nacional, Medellin

# A NEW SPECIES OF CARDAMINE (BRASSICACEAE) FROM SOUTH-CENTRAL TEXAS 

Billie L. Turner<br>Plant Resources Center<br>The University of Texas<br>Austin, TX 78712


#### Abstract

A novel taxon, Cardamine carrii B.L.Turner, sp. nov., is described from the Edwards Plateau of south-central Texas (Uvalde and Kinney counties). It appears to belong to the $C$. auriculata complex (sensu Rollins 1940, 1993), having the fractiflex capitulescences of that assemblage, within which it most resembles C. macrocarpa, a species of trans-Pecos Texas and Coahuila.


KEY WORDS: Cardamine macrocarpa, Brassicaceae, Texas, Kinney County, Uvalde County, Kickapoo Cavern State Park

Identification of new collections of various taxa, especially in attempts to keep up-to-date my Atlas of Texas Plants (Turner et al. 2003), has occasioned the present paper.

Cardamine carrii B.L. Turner, sp. nov. Fig 1. Type: USA. Texas. Kinney Co.: Kickapoo Cavern State Park, ca. 400 ft NW of BM 1822, ca. 1700 ft SE of windmill at BM 1717, SW 1/4 of park, $29^{\circ} 35^{\prime} 48^{\prime \prime} \mathrm{N}, 100^{\circ} 27^{\prime} 25^{\prime \prime} \mathrm{W}$, clay loam and duff over rock rubble on slope at shaded base of NW-facing limestone bluff, 1700-1720 ft, 20 Apr 1990, W.R. Carr 10,458 (holotype: TEX; isotype TEX).

Annual herbs, glabrous, $10-20 \mathrm{~cm}$ high. Taproots slender, delicate. Basal leaves glabrous, mostly $3-6 \mathrm{~cm}$ long, not persisting; petioles 2-4 cm long; segments broadly ovate in outline, the terminal segment mostly $1.5-2.0 \mathrm{~cm}$ long, and as wide, 3-nervate from the very base, their margins irregularly lobate. Cauline leaves mostly 3-8, 5-8-foliate, $6-10 \mathrm{~cm}$ long, $4-5 \mathrm{~cm}$ wide; petioles 3-4 cm long. Inflorescence mostly a weakly ebracteate, divaricately branched, terminal raceme $6-10 \mathrm{~cm}$ long. Sepals 4 , lanceolate, glabrous, ca 2 mm long, 0.5 mm wide. Petals 4 , white, linear, ca 2 mm long, 0.5 mm wide. Stamens 6 ( 4 long, 2 short); filaments (longer) ca 2 mm long, their anthers ca 0.75 mm long. Capsules glabrous, $3-4 \mathrm{~cm}$ long, $1.0-1.5 \mathrm{~mm}$ wide; pedicels $3-5 \mathrm{~mm}$ long. Seeds 20-25 per capsule, ovoid, tan, minutely rugose, ca 1.5 mm long, 1.0 mm wide.

Additional specimens examined. USA. Texas. Kinney Co.: Kickapoo Cavern State Park, E facing limestone slope in Pine Canyon, ca 2800 ft E of BM 1914 near S boundary of park, locally common, with Poa bigelovit and Parietaria obtusa in shallow clay loam and leaf litter under guajillo and pinyon pine, ca $1840 \mathrm{ft}, 19 \mathrm{Apr}$ 1990, Carr 10,445 (TEX). Uvalde Co.: ca. 1.7 airmiles W of FM 2690 bridge, on the Annandale Ranch, $29^{\circ} 26^{\prime} 49^{\prime \prime} \mathrm{N}, 99^{\circ} 41^{\prime} 33^{\prime \prime} \mathrm{W}, 1260-1270 \mathrm{ft} 9 \mathrm{Apr} 1997$, Carr 16050 (TEX); 3.4 airmiles $S$ of low water crossing at Concan, 2.2 airmiles W to WSW of jet. FM 2759 and State Rte. $127,29^{\circ} 26^{\prime} 48.4^{\prime \prime} \mathrm{N}, 99^{\circ} 41^{\prime} 57.2^{\prime \prime} \mathrm{W}, 1260 \mathrm{ft}, 11$ Apr 2007, Carr 25737 (TEX); 0.2 mi past the entrance to the Wittig Ranch on the left side of road, 2 Feb 1987, Wittig 7509 (TEX).

The species is named for the exceptional Texas botanist, William [Bill] R. Carr, well known for his carefully assembled specimens from throughout the state, including four of the five known collections of the new species.


Figure 1. Cardamine carrii (isotype, TEX).


Figure 2 Distribution of the Cardomme aunzulata complex


Figure 3 Distribution of Cardomine carril and C macrocarpa in Texas

Cardamine carrii presumably belongs to the C. auriculata complex of species (Fig. 3), all of which have fractiflex branching (sensu Rollins 1940). The following key to the complex should serve to identify the novelty:

1. Terminal leaflet much larger than the lateral leaflets; stems hirsute with trichomes $1-2 \mathrm{~mm}$ long

Cardamine mexicana

1. Terminal leaflet about equal to the lateral leaflets; stems glabrous, or nearly so.
2. Petals emarginate; pedicels $1-2 \mathrm{~cm}$ long ..................................... Cardamine longipedicellata
3. Petals entire, not emarginate; pedicels less than 1 cm long.
4. Petals strap-shaped, 5-8 mm long, ca 1 mm wide; siliques ca 1.5 mm wide; pedicels $5-8 \mathrm{~mm}$ long

Cardamine macrocarpa
3. Petals linear, ca 2 mm long, 0.5 mm wide; siliques $1.0-1.4 \mathrm{~mm}$ wide; pedicels $3-5 \mathrm{~mm}$ long

Cardamine carrii
Previous botanistis, including Rollins (1993) and Turner et al. (2003), have identified Cardamine carril as C. macrocarpa Brandegee var. texana Rollins (the type from Brewster Co., Texas). Al-Shehbaz et al. (2010) noted that "The characters by which var. texana is said to differ from var. macrocarpa are artificially drawn, and the style length, presence or absence of indumentum on the pedicels, and degree of flexuosity of the raceme rachises do not correlate and can vary within a given area. For these reasons, we do not recognize infraspecific taxa in Cardamine macrocarpa."

Al-Shehbaz et al. (2010) also noted that in the USA "Cardamme macrocarpa is known from the Chisos Mountains, Brewster County." A recent collection of the taxon, however, presumably not examined by the authors, has been collected from eastern Jeff Davis County, as indicated in Figure 2.

Jeff Davis Co : on Nations Ranch, ca $08-10$ armiles SSW of summit of Bear Cave Mountain, rare in gravel and on rock outcrops ... rhyolite canyon at NE tip of Bear Mountain, ca $5600-6000 \mathrm{ft}, 31$ Aug 1997, Carr 1492 (TEX)

Branching of the inflorescence of Cardamine carrii in early flower is not as fractiflex as occurs in C. macrocarpa, but more aged racemes are often considerably so (e.g., Carr 10445, 10458). At least one reviewer of the present paper suggested that the novelty might best be treated as but a variety of $C$. macrocarpa, but the distinctions of $C$. carrin from the latter are as distinct as those of yet other specific taxa of the C. auriculata complex, and I find no suggestion that the two taxa intergrade, much less grow together. In short, C.carrn is easily recognized by its distinctive foliage (larger leaves with fewer broader segments), fruits (slender, on short pedicels) and flowers (very small, the petals ca 2 mm long), and the distinctive soil and habitat of the Edwards Plateau.

So far as known, Al-Shehbaz et al. (2010) did not examine material of Cardamine carrit, none of the sheets on file at TEX having been annotated by the workers concerned.

Cardamine carrll is unlikely to be a weedy or introduced taxon (as the possibility occurred to me in my ignorance of the genus as a whole), since it occurs in natural habitats in association with the rare pine tree, Pinus remota (Little) Bailey \& Hawksworth [Texas pinyon]. As noted by Little (1966), "the pinyons of Edwards Plateau [Edwards and Kinney counties] are relics of a more widespread pinyon-juniper woodland" dating back to Pleistocene times, and perhaps earlier. In the company of Jana Kos, I attempted to locate the novelty anew, but was unable to, largely because of its apparent rarity and my inability to negotiate the terrain sampled by Carr. Nevertheless, it was obvious from our field observations that $C$. carru was nearly always associated with Pimus remota or its habitat.

## ACKNOWLEDGEMENTS

I am grateful to my colleagues Ihsan Al-Shehbaz and Mike Powell for helpful comments. Jana Kos helped in the field studies and edited the paper. Distribution maps (Figs. 2 and 3) are based upon specimens on file at SRSC and TEX.

## LITERATURE CITED

Al-Shehbaz, I.A., K. Marhold, and J. Lihová. 2010. Cardamne. Pp. 464 484, in Flora of North America North of Mexico, Vol. 7. Oxford Univ. Press, New York and Oxford.
Little, E.L. 1966. A new pinyon variety from Texas. Wrightia 3: 181-187.
Rollins, R.C. 1940. Notes on some crucifers of Texas, Mexico and South America. J. Arnold. Arb. 21: 392-394.
Rollins, R.C. 1993. The Cruciferae of Continental North America. Stanford Univ. Press, Stanford, California.
Turner, B.L., H. Nichols, G. Denny, and O. Doron. 2003. Atlas of the Vascular Plants of Texas. Vol. I-Dicots. Sida, Bot. Misc. 24.

# COMPOSIT AE OF CENTRAL AMERICA-II. ORTIZACALIA (SENECIONEAE: SENECIONINAE), A NEW GENUS OF LIANAS WITH COMOSE STYLE BRANCHES 

John F. Pruski<br>Missourı Botanical Garden<br>P. O Box 299<br>St Louis, Missouri 63166


#### Abstract

Ortizacalia Pruski (Compositae: Senecioneae) is described as a new monotypic genus from Costa Rica and the combination Ortizacalia austin-smithii (Standl.) Pruski is made. Ortrzacalia is diagnosed by its densely long-comose style branch apices with $15-20$ penicellate papillae in a tuft twice the length of the branch diameter. Ortizacalia is placed in subtribe Senecioninae and compared to other regional genera of lianas of the subtribe.


KEY WORDS: Asteraceae, Compositae, Central America, Costa Rica, Dresslerothammus, lianas, Ortizacalta, Pentacalia, Senecioneae, Senecioninae.

The new genus Ortizacalia Pruski (Compositae: Senecioneae: Senecioninae) from Costa Rica is described and compared to Dresslerothamnus H. Rob. and Pentacalia Cass., its close congeners. Ortizacalta keys to or near Pentacalia or species now referred to Pentacalia in the keys in Barkley (1975, 1985), Barkley et al. (1996), Cuatrecasas (1986), Díaz-Piedrahita and Cuatrecasas (1999), Janovec and Robinson (1997), Nordenstam (2007), Standley (1938), and Williams (1984). However, upon seeing an image of the comose style branches of Ortizacalia, Harold Robinson (pers. comm. IV2012) commented that "nothing that looks like that has been called Pentacalia by either Nordenstam or myself." Ortizacaha is superficially similar to several of the vining West Indian senecioid genera treated by Nordenstam (1978, 2006, 2007), but in technical features matches none of them. Dresslerothammus, Ortizacalta, and Pentacalia are each lianas with caudate anthers (Fig. 1) and senecioid microfeatures (Figs. 1-2) typical of subtribe Senecioninae (Nordenstam 1978; Wetter 1983; Pelser et al. 2007; Pruski 2012), but Ortizacalia differs from the two others by densely long-comose style branch apices with penicellate papillae twice the length of the branch diameter (Fig. 2). Style branch characters have been used traditionally to distinguish genera of Senecioneae, and generally seem to be a reliable taxonomic character. For more than half a century Ortizacalia, by virtue of its cryptic early budding type collection, has flown under the taxonomic radar, but the recent rediscovery of this rare liana has allowed its distinctive characters to step to the fore.

## ANATOMICAL AND SEM METHODS

The wet slide mounts were viewed on an Olympus compound microscope and photographed with a Canon A640 camera. SEM mounts were sputter-coated with Au/Pd on a Denton Desk V Cold Sputter Coater operating at 35 mAmps for 120 seconds and micrographed on a JEOL NeoScope $J C M-5000$ scanning electron microscope operating under high vacuum from $5-10 \mathrm{kV}$.

ORTIZACALIA Pruski, gen. nov. Figs. 1-5. Type: Senecto austm-smithti Standl. [ $\equiv$ Ortzacalta austin-smithin (Standl.) Pruski].

Suffrutex volubilis, caules glabri vel distale puberuli, folia smplicia alterna petiolata, petiolo $08-25 \mathrm{~cm}$ longo, lamina 4-9 $\times 1-25 \mathrm{~cm}$ oblanceolata vel oblonga subcarnosa pmnatim venosa basi cuneata vel attenuata
margme integra, capitulescentia $8-25 \times 6-18 \mathrm{~cm}$ terminalis corymboso-paniculata, pedunculi 4-15 mm longi, capitula radiata 10-12 mm alta, involucrum $35-5(-6) \mathrm{mm}$ diam cylindricum, phyllaria 8, 6-75 $\times 08-13 \mathrm{~mm}$ lanceolata glabra vel distale puberuli, flosculi radiatı $(0-) 2-5$, corolla huteola vel aurantiaca glabra, tubo $4-55$ mm longo, limbo $5-8 \times 08-12 \mathrm{~mm}$ longo 4 -nervio, flosculi disei $10-16$, corolla $8-95 \mathrm{~mm}$ longa infundibuliforma luteola glabra, tubo et limbo subaequalia, lobis circiter 15 mm longıs lanceolatis, antherae criciter 25 mm longae caudatae, collum basi dilatatum, styl rami $13-17 \mathrm{~mm}$ longi valde et longe comosi, areıs stigmaticis discretis, cypselae $13-2 \mathrm{~mm}$ longae circiter 5-costatae glabrae, setae pappo $75-85 \mathrm{~mm}$ longo


Figure 1. Anthers of Ortizacalia austin-smithn showing balusterform (dilated) anther collars that are a diagnostic subtribal feature of subtribe Senecioninae A Individual anther abaxial face showing ovate anther appendage, caudate theca, and balusterform anther collar B Abaxial close-up showing caudate anther thecae and balusterform anther collars C Medial adaxial endothecial tissue with transitional cell wall thickenings (Haber \& Zuchowski 9847, MO) [Scale bars A, $05 \mathrm{~mm}, \mathrm{~B}, 01 \mathrm{~mm}, \mathrm{C}, 20 \mu \mathrm{~m}$ ]

Scandent to climbing subglabrous woody vines, flowering branches pendent, stems subterete, few-branched distally, griseous-ochraceous, glabrous proximally, puberulent distally, leafy distally, distal internodes shorter than leaves, bark smooth, pith solid, herbage when pubescent with simple trichomes Leaves simple, alternate, petiolate, petiole slender, exalate, blade oblanceolate to oblong, subcarnose, venation pinnate, secondary veins nether impressed nor prominent, margins entire, surfaces glabrous, eglandular Capitulescence (Fig 4) corymbiform-paniculate, pluricapitulate, terminal on main axis or on elongated lateral branches much longer than subtending leaves, branch axis nether foreshortened below nor within capitulescence, proximal and midcapitulescence branches typically subtended by subsessile leafy bracts, distal branchlets fewbracteolate, thinly crisped-puberulent, ultimate clusters of capitula rounded, peduncles erect, thinly crisped-puberulent, l-few-bracteolate Capitula (Fig 5) short-radiate, usually 12-21-flowered, involucre cylindrical, irregularly and loosely calyculate, phyllaries 8, 1-seriate, free, indistinctly imbricate, venation of green midzone indistinct, mostly glabrous but apex usually puberulent, phoranthium (receptacle) flat, epaleate, crestate, solid (Fig 3A) Ray florets pistıllate, corolla yellow to orange, glabrous, limb slightly exserted, lanceolate to elliptic-lanceolate, 4-nerved, apex 3denticulate, style rarely trifid, but when trifid each of the three branches equally comose Disk florets bisexual, longer than to much longer than involucre, corolla funnelform, yellow, glabrous, 5lobed, tube and limb subequal, lobes triangular-lanceolate, shorter than throat, spreading to recurved,
apex papillose, anthers (Fig 1) yellow to orangısh, collar balusterform (distal cells somewhat quadrangular and basal cells bulbous to nearly isodiametric), theca base caudate, talls shorter than collar, endothecial tissue transitional with both vertical and horizontal cell walls irregularly thickened, apical appendage ovate, rounded apically, style base abruptly dilated, branches (Fig 2) spreading to recurved, distal half of abaxial surface rough and densely papillose with ovoid-obovoid apically obtuse-rounded papillae, subapically with dense semicircle of long papillae spreading at about $45^{\circ}$, branch apex rounded, densely long-comose with $15-20$ pencellate whitish papillae in a tuft about twice as long as branch diam, penicellate papillae stiffly erect with acute apex, stigmatic surface 2banded Cypselae (Fig 3B) tardlly maturing, subcylindrical, subprismatic, ca 5 -ribbed, glabrous, carpopodium distinct, with a distal nm, pappus bristles of rays and disks similar, 1-senate, white, barbellate, reaching to about the base of the disk corolla lobes


Figure 2 Apically comose style branches of Ortizacalia austin-smithit showng 2-banded stgmate surfaces charactenstic of subtribe Senecionmae A Branches showing the strongly papillose abaxial distal half of branch (left center) and apical comae B Close-up of abaxial surface (left) showing the densely penicellatepapillose apical coma, the subapical semicircle of long papillae, and at the bottom of the image the dense papillae of the distal half of branch, and adaxal branch surface (right) showing the perucellate-papillose apical coma, the lateral margms of the subapical-abaxial semicircle of long papillae, and at the bottom of the image the distal portion of the 2-banded stigmatic surfaces. (Haber \& Zuchowski 9847, MO)

Etymology. I am very pleased to dedicate Otizacafac to my fiancée, Dra Rosa del Carmen Ortiz, in recegnition of her keen eye and helping hand in the field, herbarium, and lab Although whule collecting Rosita is mvanably in a mernsperm hana mand-set, she has ponted out to me many composites, including Pensacala vining in the forest of Peru, where she is most at home Ortizacalia is so named also to draw attention to its relations to Pentacalza, and follows a string of generic names of Seneeioneac using the suffix of Cacalia, which includes Digitacalia Pipper, Kgamacalia H Rob \& Brettell, Mincacolia Kitam. Montoodia C Jeffrey, Smacaba H Rob \& Brettell, and Talamancaina H Rob \& Cuatrec


Figure 3 Orisacaia anabin amathe A Lengituinal section through a capitulum (whth ail phyllanes removed except for the base of one phyllary on the left) showng the solid (tion Eistulose) phorantlanm (foreground) whth urest on top The peduncle se towards the lower right B. Dide cocolla base and cypsela showng the 1 seriate pappus ad the dstally nmmed capopodum (A Kaber 11046 MO. B Haber \& Zachanek 9847 MO)

Ortzacalia, by its vining habit, smyle leaves, caudate anthers ( $\mathrm{F}_{1 \underline{ }}$ 1A-B), crestate solnd phorantha (Fig 3A), and senecioid merofeatures (Figs 1-2), is sumiar to Dressierathomnus and especially to Pertacaha Dresderathommes differs from Orizacalia and Pentacalra by branched (vs simple) trichomes, fincly ca 10 - (vs ca 5-) ribbed tardily maturing eypselac, and when radiate by fihform (vs usually lanceolate to elliptic) ray cor olla lumbs Ortizacolio and Pentacaiza have sumlar ca 5 -nbbed cypselac with well-defined carpopoda ( $\mathrm{F}_{12} 3 \mathrm{~B}$ ), but in therr style branch ornamentation (Fig 2) they differ by an order of magnitude Robinson and Cuatrecasas (1978) deseribe the style branches of Pentacabar as "without distinct central coma of haurs" and commented that $P$ matagcipensis H Rob has unusually promnent distal style papillae However, the stylar papillac of $B$ matagalpersss are about 01 mm long and very much shorter than the branch diameter Pelser et al (2007) found Pentacalia s str to be monophyletic and sister to shrubby Sorobsoana Cass and the Montrcalta vaccimotodes (Kunth) C Jeffrey group, but nether Central American species of Pentacalia nor Dresslercthanmes was not sanpled by them

Ornzacalia differs from Dresslerothonmus, Pertacolia, and other neotropical seneciods by its rounded style branches that (1) in their abaxial distal half are markedly roughened and densely papillose with oved-obovotd apically obtuse-rounded papillac and (2) are dens cly long-comose tufted apically with 15-20 stiffly erect narrowly pencellate acute-tipped papillae about twece as long as branch diameter (Fig 2) The apieal style branch papillac in Crizacafza (along with those of the otherwise dissimilar southem South American Graphstyples B Nord and Jocenes B Nord s str) are proportionally among the longest in the Senecioneae Other regional genera with apically ponted


Figure 4. Ortizacalia austin-smithii showing stems straight to slightly curved distally and some budding capitula that match those of the type collection. (Unmounted duplicate of Estrada et al. 372).
styles are ether filiform-style branched (e g, Crassocephahm Moench and Gymara Cass ), herbs or shrubs with a moderate apical style branch coma (eg, Arbelaezaster Cuatree, Garcibarrigoa Cuatree, Jacmaia B Nord, Jessea H Rob \& Cuatree, and Talamancalia H Rob \& Cuatrec ), or have styles triangular-tipped and only moderately papillose (eg, Oldfeltia B Nord \& Lundin and Pseudognnoxys (Greenm ) Cabrera) None of these genera with ponted styles compnse woody vmes with tailed anthers as do Dresslerothammus, Ortzacalia, and Pentacalta A few other regional Senecioneae have elongate-tipped styles (eg, Gyoxys Cass), but are members of subtribe Tussilagininae


Figure 5 Ontzacalia austin-smulhu Close-up of capitula at anthesis (Haber 11046, MO) [Scale bar 5 mm ]

ORTIZACALIA AUSTIN-SMITHII (Standl) Prusk, comb nov Figs 1-5 Senecio austimsmithi Standl, Publ Field Mus Nat Hist, Bot Ser 221281940 Type: COSTA RICA. Alajuela. Palmira, 1890 m [as 6200 feet], 9 Feb 1938, Austin Smth H299 (holotype F, photo in MO, isotype MO)

Liana clmbing 16-5+ m into tree crowns, with $1-3 \mathrm{~m}$ long pendant flowering branches, stems stranght to slightly curved distally (Fig 4), leaf scars ca 2 mm diam, rased Leaves pehole $08-25 \mathrm{~cm}$ long, blade $4-9 \times 1-25 \mathrm{~cm}$, secondary vens usually $3-4$, thin, straght, at ca $45^{\circ}$ to mudrib, third order veins indistunct, base cuneate to attenuate, margus sometume slightly revolute, apex usually obtuse to rounded, adaxally subnitidous Capitulescence 8-25 $\times 6-18 \mathrm{~cm}, 30-100+-$ capitulate, proximal and mid-capitulescence leafy bracts $2-3 \times 04-1 \mathrm{~cm}$, narrowly oblanceolate, glabrous, distal branchlet bracteoles $05-1 \mathrm{~cm}$ long, lanceolate, sessile, subglabrous to thunly puberulent, peduncles 4-15 mm long, bracteoles 1-2 mm long, linear-lanceolate, sessile Capitula
$10-12 \mathrm{~mm}$ tall ( $\mathrm{F}_{\mathrm{gg}} 5$ ), involucre 35-5(-6) mm diam, phyllaries 6-75 $\times 0.0-13 \mathrm{~mm}$, lanceolate, mner ones with narrowly scarious margins $02-04+\mathrm{mm}$ daam, narrower than green midzone, cristae on phoranthum (receptacle) $02-04 \mathrm{~mm}$ long Ray florets ( $0-$ ) $2-5$, corolla tube $4-55 \mathrm{~mm}$ long, fimb 5-8 $\times 0.8-12 \mathrm{~mm}$, subequal to or shighty longer than tube Disk florets $10-16$, corolla 8-9 5 mm long, tube 4-5 mm long, throat $25-3 \mathrm{~mm}$ long, lobes ca 15 mm long, anthers (including appendage but not collar) ca. 25 mm long, collar $04-05 \mathrm{~mm}$ long, tails $02-03 \mathrm{~mm}$ long, apical appendage $0.4-0.5 \mathrm{~mm}$ long, style basal node $0.4-0.5 \times \mathrm{ca} .03 \mathrm{~mm}$, branches $13-17 \mathrm{~mm}$ long. apical coma papillae $15-20,03-04 \mathrm{~mm}$ long Cypselae (immature) $13-2 \mathrm{~mm}$ long, glabrous, carpopodum ca 02 mm , pappus bristles $7.5-8.5 \mathrm{~mm}$ long

Specimens examined: COSTA RICA. Alajuela. Palmira, 1890 m, 9 Feb 1938, Austrn Smith F2S9 (holotype, F, isotype MO) Heredia Cordillera Central, San Jose de la Montaña, Paso Llano, $10^{\circ} 04^{\prime} 48^{\prime \prime} \mathrm{N}, 84^{\circ} 06^{\prime} 36^{\prime \prime} \mathrm{W}, 1900 \mathrm{~m}, 11$ Feb 1995, Estrada ot al 372 (INB, MO +1 unmounted duplicate, Fig 4) Puntarenas. Monteverde, Pacfic slope, mosst forest patches and farms, $10^{\circ} 18^{\prime} \mathrm{N}, 84^{\circ} 48^{\prime} \mathrm{W}, 1300-1400 \mathrm{~m}, 5$ Apr 1990, Haber \& Zuchowski 9847 (MO), Cordillera de Tîlarán, Monteverde, Pacific slope, farms and forest patches around community, $10^{\circ} 18^{\prime} \mathrm{N}, 84^{\circ} 48^{\prime}$ W, $1400 \mathrm{~m}, 7$ Mar 1992, Haber /I046 (CR, MO)


Figure 6 Distribution of Ortizacalra austin-smathn
Distribution and ecology Ontracaiki auston-shather is a rare Costa Rican forest liana occurring mamly in the northwestern Pacific slope portion of the Cordillera de Tilarán near Monteverde (Prov Puntarenas), eastwards into the Cordillera Central in Prov Alajuela near Palmra about 15 km west of Volcán Poás, and in Prov Heredua where its southeastern-most known station is about 8 kilometers south of Volcán Barva (Fig 6) Ortwacaha austin-smithin occurs from 1300-1900 meters elevation at four localities withm about 80 km of each other, and the four collections known to me show that this taxon is in bud and early flower in February and reaches anthesis in March and April

The type collection is mostly in bud with few florets approaching anthesis, and for a long time I simply presumed this liana was a Pentacalia. The more recent collections afford sufficient material for comparative dissections, which show that the budding type, through the linking, early flowering Estrada et al. 372 (Fig. 4), can be matched satisfactorily to the two mature collections cited here that voucher the plates of microcharacters of flowering capitula.

## ACKNOWLEDGEMENTS

I thank Harold Robinson (US) for confirming that Ortizacalia falls outside of Pentacalia, Michael H. Grayum (MO), Guy Nesom, Rosa Ortiz (MO), and Harold Robinson (US) for reviewing the manuscript, and Rosa Ortiz (MO) for preparing the map.

## LITERATURE CITED

Barkley, T.M. 1975[1976]. Flora of Panama, Part IX. Family 184. Compositae. VIII. Senecioneae. Ann. Missouri Bot. Gard. 6: 1244-1272.
Barkley, T.M 1985. Infrageneric groups in Senecio, s.1., and Cacalia, s.1. (Asteraceae: Senecioneae) in Mexico and Central America. Brittonia 37: 211-218.
Barkley, T.M., B.L. Clark, and A.M. Funston. 1996. The segregate genera of Senecio sensu lato and Cacalia sensu lato in Mexico and Central America. Pp. 613-620 in D.J.N. Hind et al. (eds.), Compositae: Systematics. Proceedings of the International Compositae Conference, Kew, 1994, Vol. 1. The Royal Botanic Gardens, Kew.
Cuatrecasas, J. 1986. Dos géneros nuevos de Compositae de Colombia. Caldasia 15(71-75): 1-14.
Díaz-Piedrahita, S. and J. Cuatrecasas. 1999. Asteraceas de la Flora de Colombia. Senecioneae-I, géneros Dendrophorbum y Pentacalta. Acad. Col. Ci. Exact. Fis. Nat. Colecc. Jorge Alvarez Lleras 12: viii + 1-389.
Janovec, J.P. and H. Robinson. 1997. Charadranaetes, a new genus of the Senecioneae (Asteraceae) from Costa Rica. Novon 7: 162-168.
Nordenstam, B. 1978. Taxonomic studies in the tribe Senecioneae (Compositae). Opera Bot. 44: 183.

Nordenstam, B. 2006. New genera and combinations in the Senecioneae of the Greater Antilles. Compositae Newslett. 44: 50-73.
Nordenstam, B. 2007[2006]. XII. Tribe Senecioneae Cass. (1819). Pp. 208-241 m K. Kubitzki (ed.), The Families and Genera of Vascular Plants, Vol. 8. Springer Verlag, Berlin.
Pelser, P.B., B. Nordenstam, J.W. Kadereit, and L.E. Watson. 2007. An ITS phylogeny of tribe Senecioneae (Asteraceae) and a new delimitation of Senecto L. Taxon 56: 1077-1104.
Pruski, J.F. 2012. Compositae of Central America-I. The tussilaginoid genus Robinsonecto (Senecioneae), microcharacters, generic delimitation, and exclusion of senecioid Senecto cuchumatanensis. Phytoneuron 2012-38: 1-8.
Robinson, H. and J. Cuatrecasas. 1978. A review of the Central American species of Pentacalia (Asteraceae: Senecioneae). Phytologra 40: 37-47.
Standley, P.C. 1938. Compositae. Composite Family. Pp. 1418-1538 in Flora of Costa Rica. Publ. Field Mus. Nat. Hist., Bot. Ser. 18(4): 1137-1571.
Wetter, M.A. 1983. Micromorphological characters and generic delimitation of some New World Senecioneae. Brittonia 35: 1-22.
Williams, L.O. 1984. Senecto (Compositae) in Honduras, Nicaragua and El Salvador: a synopsis. Ceiba 25: 134-139.

# JUSTIFICATION FOR SUBSPECIES IN ARCEUTHOBIUM CAMPYLOPODUM (VISCACEAE) 

Daniel L. Nickrent<br>Department of Plant Bıology<br>Southern Illinois University<br>Carbondale, Illinois 62901-6509<br>nickrent@plant slu edu


#### Abstract

In the dwarf mistletoes (Arceuthobium, Viscaceae), sect. Campylopoda was previously considered to include entities treated at the rank of species: A. abretmum, A. apachecum, A. blumert, A. californicum, A. campylopodum, A. cyanocarpum, A. laricis, A. littorum, A. microcarpum, A. monticola, A. occidentale, A. sisktyouense, and A. tsugense. Morphology, host associations, levels of sympatry and genetic evidence are reviewed here and, in contrast, it is concluded that these taxa are best viewed as ecotypes of a single variable species. Formal nomenclature treating these taxa at the rank of subspecies is presented, following previous conventions for recognizing infraspecific taxa in dwarf mistletoes.


KEY WORDS: Arceuthobnum campylopodum, dwarf mistletoe, ecotype, subspecies, Viscaceae

Arceuthobtum (dwarf mistletoes, Viscaceae) has been of great interest to American plant morphologists, pathologists, and systematists since the late 1800s. This is the only genus in Viscaceae that naturally occurs in both the Old and New World. In contrast to most viscaceous mistletoes such as Viscum and Phoradendron, Arceuthobium is morphologically reduced with scale leaves (squamate habit) and small monochlamydeous flowers whose morphology varies little between species. The explosively dehiscent fruits are unique in the family and allow population expansion without requiring bird vectors. The adult shoots produce only a small amount of carbohydrate through photosynthesis, thus these mistletoes approach the holoparasitic condition (Nickrent \& García 2009).

Dwarf mistletoes are often referred to as being host specific. In reality, host specificity varies tremendously among different species. In a broad sense, all New World dwarf mistletoes are more specific than their Old World counterparts because they occur only on Pinaceae whereas the latter parasitize both Pinaceae and Cupressaceae.

The taxonomy of American dwarf mistletoes has experienced many changes since the early 1900s. Gill (1935) applied a host form concept such that Arceuthobrum names were determined by the host being parasitized. That method introduced problems when one dwarf mistletoe species occurred on several hosts and had to be given different names. The first comprehensive monograph of Arceuthobium was by Hawksworth and Wiens (1972). They rejected the host form concept, stating that the morphological integrity of mistletoe species was maintained even when it was found on nonprincipal hosts. This basic tenet was retained in the newer monograph (Hawksworth \& Wiens 1996), which included descriptions of several new species.

Certainly one of the more taxonomically difficult groups in the genus Arceuthobnum is a complex centered around A. campylopodum. In the 1972 monograph (Hawksworth \& Wiens 1972), sect. Campylopoda Hawksw. \& Wiens included 16 species in three Series. In the later monograph, a revised classification of the genus was proposed based upon DNA evidence (Chapter 15, Molecular

Systematics, Nickrent 1996). Here, taxa in series Rubra and Stricta from Hawksworth and Wiens (1972) were removed from sect. Campylopoda and placed in sect. Vaginata. This move was supported by molecular as well as morphological and biogeographic data. The newly constituted sect. Campylopoda was then essentially the same as series Campylopoda from Hawksworth and Wiens (1972) and included the following ten species: A. abretinum, A. apachecum, A. blumeri, A. californtcum, A. campylopodum, A. cyanocarpum, A. laricts, A. microcarpum, A. occidentale, and A. tsugense as well as three more recently named species: $A$. liftonum, $A$. monticola, and $A$. siskiyouense.

Although the above classification utilized data from nuclear ribosomal ITS sequences, sampling was incomplete (no Old World taxa were sampled) and included only four species from sect. Campylopoda (A. abietinum, A. apachecum, A. campylopodum, and A. microcarpum). This situation was rectified by Nickrent et al. (2004), where ITS sequences were obtained from all species in the genus as well as chloroplast $t r n L$ region sequences from New World species. The resulting ITS maximum parsimony tree showed that all but one of the 13 species of sect. Campylopoda had identical to nearly identical ITS sequences. The most genetically divergent member, A. blumeri, was considered to be a "transitional" species between the mainly USA sect. Campylopoda species and the mainly Mexican and central American subg. Vaginata species (Nickrent et al. 2004). The results from analyzing the chloroplast sequences were the same as with ITS. The high genetic similarity seen between species in sect. Campylopoda contrasted with values seen between other species in the genus where a greater number of substitutions was observed (longer branches on phylograms). For these reasons, a phylogenetic classification was proposed where all 13 species were considered to be part of a more broadly defined A. campylopodum.

## Species concepts and Arceuthobium sect. Campylopoda

The species problem has been the focus of much discussion and conflict in the biological and philosophical literature. Species concepts include the biological, morphological, evolutionary, phylogenetic, and ecological, where each focuses upon different aspects of a broad spectrum of interrelated attributes and processes. Proponents of one or another concept often have specific requirements and objectives. From a philosophical perspective, Pigliucci (2003) discusses how "species" is a family resemblance (cluster) concept that can only be defined by a series of characteristics. Hawksworth and Wiens $(1972,1996)$ maintained that species of sect. Campylopoda could be distinguished by morphological characters (e.g. shoot dimensions, shoot color, width of the staminate flower, etc.), physiological characters (flowering and fruiting times), as well as principal host species. The purpose of this article is to examine some of the empirical evidence that bears upon a meaningful species concept for the Arceuthobnum campylopodum complex.

Morphological differentiation. The monograph by Hawksworth and Wiens (1996) reported quantitative (continuous) morphological characters for all 13 members of sect. Campylopoda, and five of the characters used are depicted graphically in Figure 1. It should be stated that no sample sizes nor variances in the measurements were reported. Looking at the first four characters, although the mean values differ between some taxa, there is much overlap in the numerical ranges. There appears to be very little variation in staminate flower width between the taxa. To date no multivariate studies have been conducted to determine whether the characters used to differentiate species in sect. Campylopoda are statistically valid.

Reproductive isolation. The biological species concept (Mayr 1942) emphasizes reproductive isolation. In plants, reproductive isolating mechanisms may evolve because of geographical isolation, ecological niche segregation, temporal variation in flowering times, behavioral traits of pollinators (ethological differences), and genetic (e.g. interspecific incompatibility) factors. Hawksworth and Wiens (1972, 1996) indicated that there is no evidence of hybridization between any species of Arceuthobrum. But detecting hybridization would be difficult because all members of the genus have
shoot
height

[^10]the same chromosome number $(\mathrm{n}=14)$ and similar chromosome morphology. Moreover, given the overlap in the ranges of morphological characters among members of sect. Campylopoda, it would be difficult to identify a hybrid individual based on intermediate morphology. Many nonparasitic angiosperm species have been tested for reproductive isolation by conducting artificial crosspollinations, either under field, common garden, or laboratory conditions. Such crossing experiments usually document a range of outcomes for the next generations, from complete genetic barriers (no successful crosses) to partially fertile or fully fertile $\mathrm{F}_{1}$ or $\mathrm{F}_{2}$ progeny. Unfortunately, very few interspecific cross-pollination experiments have been conducted with Arceuthobum. Mathiasen (1982) crossed staminate $A$. blumert with carpellate $A$. apachecum and obtained no fruits; however, the control pollinations also had low fruit set. No study involving cross-pollination of all taxa of Arceuthobum sect. Campylopoda has been published, thus compatibility data are generally lacking.

Geographical isolation and sympatry. The degree of sympatry present among species of dwarf mistletoe was discussed in Hawksworth and Wiens (1996), with proximity categories set at within 30 $\mathrm{m}, 400 \mathrm{~m}$, and 2 km . Comparing subspecies of sect. Campylopoda (Table 1) using these criteria, all but two are sympatric with at least one other member of the section (the exceptions being $A$. campylopodum subsp. blumerl and subsp. littorum). Arceuthobrum pollen is dispersed by both insects and wind, and the latter may account for long-range pollen dispersal. For example, Leopold (1967) found dwarf mistletoe pollen in traps where the nearest population was 16 km away. Given that distance, the number of sympatric species in sect. Campylopoda would increase. The two taxa with the highest number of sympatric species are A. campylopodum subsp. abietmum and subsp. campylopodum, with eight and seven species, respectively. For A. campylopodum subsp. campylopodum and subsp. occidentale, a number of populations exist where both principal hosts ( $P$. ponderosa and $P$. sabmiana, respectively) are being parasitized, and here the mistletoes are morphologically and genetically indistinguishable (Nickrent 1987).

Table 1. Degree of sympatry among subspecies of Arceuthobum campylopodum. ${ }^{1}$

| Taxon (abbreviation) | 30, 400 m | $\mathbf{2 ~ k m}$ | \# 30, <br> $\mathbf{4 0 0} \mathbf{~ m}$ | \#2 <br> $\mathbf{k m}$ | Total |
| :--- | :--- | :--- | :---: | :---: | :---: |
| subsp. abietinum (ABI) | CAL, CAM, <br> CYA, OCC, <br> TSU | LAR, MIC, <br> TSU | 5 | 3 | 8 |
| subsp. apachecum (APA) | MIC |  | 1 | 0 | 1 |
| subsp. blumeri (BLU) |  |  | 0 | 0 | 0 |
| subsp. californicum (CAL) | ABI | CAM | 1 | 1 | 2 |
| subsp. campylopodum (CAM) | ABI, CYA, <br> LAR, MON, | CAL | 6 | 1 | 7 |
| OCC, SIS |  |  |  |  |  |
| subsp. cyanocarpum (CYA) | ABI, CAM |  | 2 | 0 | 2 |
| subsp. lartcis (LAR) | CAM | ABI | 1 | 1 | 2 |
| subsp. littorum (LIT) |  |  | 0 | 0 | 0 |
| subsp. microcarpum (MIC) | APA | ABI | 1 | 1 | 2 |
| subsp. monticola (MON) | CAM, SIS |  | 2 | 0 | 2 |
| subsp. occidentale (OCC) | ABI, CAM |  | 2 | 0 | 2 |
| subsp. siskiyouense (SIS) | CAM, MON |  | 2 | 0 | 2 |
| subsp. tsugense (TSU) | ABI |  | 1 | 0 | 1 |

${ }^{1}$ Data derived from Hawksworth and Wiens (1996)

Table 2. Hosts of the subspecies of Arceuthobium campylopodum ${ }^{1}$

| Host | subsp. <br> abietinum | subsp. apachecum | subsp. <br> blumeri | subsp. <br> californicum | subsp. <br> campylopodum | subsp. cyanocarpum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ables amabilis | $0.33{ }^{2}$ |  |  |  |  |  |
| Abtes concolor | 1 |  |  |  |  |  |
| Ables durangenses | 1 |  |  |  |  |  |
| Abtes grandis | 1 |  |  |  |  |  |
| Ables lastocarpa | 05 |  |  |  |  |  |
| Abies magmifica | 1 |  |  |  |  |  |
| Abies procera |  |  |  |  |  |  |
| Lanx occidentalis |  |  |  |  |  |  |
| Picea brewertana | 05 |  |  |  |  |  |
| Picea engelmanni |  |  |  |  |  | 0.25 |
| Picea pungens |  |  |  |  |  |  |
| Picea sitchensis |  |  |  |  |  |  |
| Pinus atbicaulis |  |  |  |  |  | 1 |
| Pinus aristata |  |  |  |  |  | 1 |
| $\begin{gathered} \text { Pinus } \\ \text { ayacahuite } \end{gathered}$ | 033 |  | 1 |  |  |  |
| Pinus attenuata |  |  |  |  | 05 |  |
| Pinus balfouriana |  |  |  |  |  | 0.33 |
| Pimus contorta | 033 |  |  |  | 033 | 0.25 |
| Pinus coulteri |  |  |  |  | 05 |  |
| Pinus flexilis |  |  |  |  |  | 1 |
| Pimus jeffreyi |  |  |  |  | 1 |  |
| Pinus lambertiana | 033 |  |  | 1 | 025 |  |
| Pimus longaeva |  |  |  |  |  | 1 |
| Pinus monticola | 033 |  |  | 05 |  | 05 |
| Pinus municata |  |  |  |  |  |  |
| Pimus ponderosa |  |  |  |  | 1 | 025 |
| Pinus radiata |  |  |  |  |  |  |
| Pimus sabimana |  |  |  |  | 033 |  |
| Pinus strobiformis |  | 1 | 1 |  |  |  |
| Pseudotsuga menzlesil |  |  |  |  |  |  |
| Tsuga heterophylla |  |  |  |  |  |  |
| Tsuga mertensiana |  |  |  |  |  | 05 |
| Inverse specificity | 665 | 1 | 2 | 15 | 391 | 608 |
| Number of principal hosts | 4 | 1 | 2 | 1 | 2 | 4 |

Table 2, cont.

| Host | subsp. <br> laricis | subsp. littorum | subsp. microcarpum | subsp. monticola | subsp. occidentale | subsp. siskayouense | subsp. tsugense |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Abres amabrlis |  |  |  |  |  |  | 1 |
| Abies concolor |  |  |  |  |  |  |  |
| Abres durangensts |  |  |  |  |  |  |  |
| Abies grandis | 025 |  |  |  |  |  | 033 |
| Ables lastocarpa | 033 |  | 025 |  |  |  | 1 |
| Ables magnifica |  |  |  |  |  |  |  |
| Abies procera |  |  |  |  |  |  | 1 |
| Larxx occidentalis | 1 |  |  |  |  |  |  |
| Picea breweriana |  |  |  | 033 |  |  | 025 |
| Picea engelmanmt | 025 |  | 1 |  |  |  | 025 |
| Picea pungens |  |  | 1 |  |  |  |  |
| Picea sitchensis |  |  |  |  |  |  | 0.25 |
| Pinus albicaulis | 025 |  |  |  |  |  | 05 |
| Pinus aristata |  |  | 1 |  |  |  |  |
| Pinus ayacahute |  |  |  |  |  |  |  |
| Pinus attenuata |  |  |  |  | 05 | 1 |  |
| Pinus balfounana |  |  |  |  |  |  |  |
| Pinus contorta | 0.5 | 033 |  |  |  | 025 | 1 |
| Pinus coulteri |  |  |  |  | 05 |  |  |
| Pinus flexilis |  |  |  |  |  |  |  |
| Pimus jeffreyi |  |  |  | 025 | 033 | 025 |  |
| Pinus lambertiana |  |  |  | 05 |  |  |  |
| Pinus longaeva |  |  |  |  |  |  |  |
| Pinus monticola | 025 |  |  | 1 |  |  | 033 |
| Pinus muncata |  | 1 |  |  |  |  |  |
| Ptnus ponderosa | 033 |  |  |  | 033 | 025 |  |
| Pinus radiata |  | 1 |  |  | $*^{3}$ |  |  |
| Pimus sabimana |  |  |  |  | 1 |  |  |
| Pinus strobiformis |  |  | 025 |  |  |  |  |
| Pseudotsuga menzlesti |  |  |  |  |  |  | 025 |
| Tsuga heterophylla |  |  |  |  |  |  | 1 |
| Tsuga mertenstana | 1 |  |  |  |  |  | 1 |
| Inverse specificity | 416 | 233 | 35 | 208 | 266 | 175 | 816 |
| Number of principal hosts | 1 | 2 | 3 | 1 | 1 | 1 | 6 |

${ }^{1}$ Data denved from Hawksworth and Wiens $(1996),{ }^{2} 1=$ principal host, $0.5=$ secondary, $0.33=$ occasional, $0.25=$ rare
${ }^{3}$ A campylopodum subsp occidentale parasitizes cultivated Pinus radiata

Host relationships. Looking at specificity from the host perspective, nearly all Pinaceae species are principal host for just one Arceuthobrum taxon (Table 2). Exceptions include Pinus strobiformis and Tsuga mertenstana, which serve as principal hosts for two dwarf mistletoe taxa. When viewed from the parasite perspective, 7 of the 13 subspecies of sect. Campylopoda have more than one principal host (Table 2). Some taxa, such as A. campylopodum subsp. abietinum, subsp. cyanocarpum, and subsp. tsugense have four or more principal hosts and broad host ranges overall. The latter is recorded from five different genera of conifers: Abies, Picea, Pinus, Pseudotsuga, and Tsuga. Although occasional or rare occurrences could be dismissed as insignificant when viewing the preponderance of mistletoes found on principal hosts, these occurrences likely provide some evidence that these species at least have the genetic propensity for being generalists. A measure of generality ("inverse specificity") is shown in Table 2, calculated as the sum of successively down-weighted secondary, occasional, and rare hosts. Although phylogenetic data do not yet allow inference on this matter, the ancestor to all species of sect. Campylopoda could have been a generalist (the plesiomorphic state). From that ancestor, capable of parasitizing a number of host species, populations evolved with greater specialization along host lines.

Genetic divergence. Given the absence of empirical cross-pollination data testing interspecific compatibility in Arceuthobium, the next best approach is to directly measure genetic divergence among the species. The first tests of interspecific genetic differences between species of sect. Campylopoda utilized isozymes, where all members of the section had greater than $80 \%$ Nei's unbiased genetic identity values (Nickrent et al. 1984; Nickrent 1986). Moreover, these isozyme analyses did not result in clusters corresponding to species in sect. Campylopoda as defined by Hawksworth and Wiens (1972) or with similarity values consistent with other members of the genus. A more detailed isozyme analysis conducted using 500 individuals of $A$. campylopodum and $A$. occidentale showed no consistent difference between these two taxa (Nickrent 1987).

As stated above, both ITS and $\operatorname{trnT-L}$ region DNA sequences showed identity to near identity among all species of sect. Campylopoda. Moreover, all these species share a unique 156 bp deletion in the $t r n T-L$ spacer. Both of these spacers have been used with many other angiosperms in studies of species relationships. Although ITS may not be ideal for some taxonomic groups or biological situations (Alvarez \& Wendel 2003), it continues to be a useful phylogenetic marker for a vast array of plants and it cannot be discounted as being too problematic. Along with chloroplast $r b c L$ and matK, it can be used as a barcode sequence for seed plants (China Plant BOL Group 2011) and indeed among the markers tested showed the greatest ability to discriminate species ( $67.2 \%$ ).

## The concept of ecotype and Arceuthobium sect. Campylopoda

As used by ecological geneticists, ecotypes represents populations that have fixed genotypic adaptations to particular ecological niches. The work on ecotypes by Clausen et al. (1940) has been supported and extended into the modern genomic era by work on model plants such as Arabidopsis (Park et al. 2009). That study compared protein patterns among three Arabidopsis ecotypes and showed that their genetic diversity was reflected in quantitative differences in the protein expression patterns. A more explicit enumeration of terms describing microevolutionary units took place with the development of the "deme" concept (Briggs \& Block 1981). For both ecotypes and demes, the names assigned to these units were not intended to be ranks within formal botanical nomenclature. That said, infraspecific variation in plants is frequently documented using the ranks "variety" and "subspecies." For example, the classic study of ecotypes in Potentilla glandulosa (Clausen et al. 1940) involved four subspecies: glandulosa (typica), reflexa, hanseni, and nevadensis.

In the case of Arceuthobrum, the most important environmental component is the host tree. As with Potentilla glandulosa, native to Stanford but succumbing when grown at Timberline, seeds of Arceuthobium campylopodum derived from parasites on one particular host species may not
survive as seedlings on a host tree of another species. It seems that taxa within the $A$. campylopodum complex conform to the concept of ecotype. In addition to the host, whose distribution is correlated with elevation, such a correlation may also exist in Arceuthobium. The 13 taxa of sect. Campylopoda were arranged according to shoot height (Fig. 1), and it appears that the tallest shoots are at lower elevations and the smaller shoots at higher elevations. It is also likely that flowering and fruiting times have a strong elevational component. The exception seems to be A. blumert, which is the most dissimilar genetically within the entire section.

## Subspecific ranks for Arceuthobium campylopodum

In plants, the ranks of variety and subspecies have approximately equal, albeit somewhat regional, usage (variety favored in the USA, subspecies elsewhere). Attempts to arrive at a consensus as to what conditions can be used to precisely define these two ranks have mostly failed (Hamilton \& Reichard 1992). It is often assumed that subspecies is more associated with biogeographically separate population clusters, but this usage appears more consistent among animal as opposed to plant taxonomists. As stated by Raven (1974) "it is clearly not possible to assume from the fact the category 'subspecies' or 'variety' has been applied within a given species that a certain pattern of variation is present; only, in either case, that the species has been subdivided."

The phylogenetic classification of Arceuthobium campylopodum (Nickrent et al. 2004) did not specify subspecific ranks within this species. Given that these 13 taxa have been recognized as species in previous classifications and the importance of these mistletoes in North American forestry, these infraspecific taxa within sect. Campylopoda will be formally recognized here at the rank of subspecies. This rank is already being used for A. vaginatum subsp. vaginatum and A. vaginatum subsp. cryptopodum. The former is widespread in Mexico whereas the latter is most common in the western USA. The two subspecies are parapatric, coming into contact in Sinaloa, Mexico. The rank of subspecies has also been used in $A$. tsugense. Thus, to retain consistency within the genus, subspecies will be used instead of the rank of variety.

In terms of geographic distributions, the 13 subspecies of $A$. campylopodum show varying associations with each other, these ranging from complete allopatry to parapatry and finally sympatry. If one translates the data shown in Table 1 to a 13 X 13 matrix, 78 cells result as possible cases of sympatry. Of these, 15 cells are occupied, thus less than $20 \%$ of the time are cases reported for sympatry among these subspecies. The two taxa that show the highest levels of sympatry are $A$. campylopodum subsp. abrettrum and A. campylopodum subsp. campylopodum. Looking at the overall distributions, one could suggest four general categories based on geography that could be used to define four subspecies: California (subspecies californicum, campylopodum, littonum, monticola, occidentale, and siskyouense), Northwest (subspecies laricis and tsugense), Southwest (subspecies apachecum, blumerr, and microcarpum) and Western USA (abletinum and cyanocarpum). This approach will not be recommended here because (1) there is no phylogenetic evidence that the subspecies placed in these categories are more similar to one another than to other subspecies of $A$. campylopodum, (2) the members of these categories do not appear to have any morphologically coherent features, and (3) these categories do not have any correlation with ecological conditions or host species. For these reasons, and to retain some connection to the species names currently being used by various applied fields (such as forestry, which follows the Hawksworth and Wiens system), 13 subspecific names will be used.

## Nomenclature

For the taxa in sect. Campylopoda, a number of species of Hawksworth and Wiens (1972, 1996) had previously been recognized as varieties of A. campylopodum. These are here being recognized at the rank of subspecies (stat. nov.).

Arceuthobium campylopodum Engelm. in A. Gray, Boston J. Nat. Hist. 6: 214. 1850.

## 1. Arceuthobium campylopodum subsp. campylopodum.

Arceuthobum campylopodum Engelm. forma typicum L.S. Gill, Trans. Connecticut Acad. Arts 32: 185. 1935.

Arceuthobum campylopodum Engelm. var. brachyarthron Engelm. in A. Gray, Boston J. Nat. Hist. (Pl. Lindheim. pt. 2) 6: 214. 1850.
Arceuthobum campylopodum Engelm. var. macrarthron Engelm. in A. Gray, Boston J. Nat. Hist. (Pl. Lindheim. pt. 2) 6: 214. 1850.
Razoumofskya campylopoda (Engelm.) Kuntze, Revis. Gen. Pl. 2: 587. 1891.
2. Arceuthobium campylopodum subsp. abietinum (Engelm.) Nickrent, comb. \& stat. nov. Arceuthobtum douglasti Engelm. var. abtetmum Engelm. in S. Wats., Bot. California 2: 106. 1880.

Arceuthobrum abiettmum (Engelm.) Hawksw. \& Wiens, Brittonia 22: 68. 1970.
Arceuthobrum abretinum (Engelm.) Hawksw. \& Wiens forma speciales concoloris Hawksw. \& Wiens, Brittonia 22: 267. 1970.
Arceuthobium abietinum (Engelm.) Hawksw. \& Wiens forma speciales magnificae Hawksw. \& Wiens, Brittonia 22: 268. 1970.
Arceuthobum campylopodum Engelm. forma abtetmam L.S. Gill, Trans. Connecticut Acad. Arts 32: 195. 1935.

Razoumofskya abietina (Engelm.) Abrams, Ill. F1. Pacific States 1: 530. 1923.
Razoumofskya abietna (Engelm.) Abrams forma parvula Tubeuf [nomen nudum], Naturwiss. Z. Forst Landw. 17: 219. 1919. .
Razoumofskya abietina (Engelm.) Abrams forma magna Tubeuf [nomen nudum], Naturwiss. Z. Forst Landw. 17: 220. 1919.
Razoumofskya douglastu (Engelm.) Kuntze var. abtetina (Engelm.) Greene, Fl. Francisc. 3: 341. 1892. Arceuthobum occidentale Engelm. var. abretimum Engelm. in S. Watson, Bot. California 2: 107. 1880.
3. Arceuthobium campylopodum subsp. blumeri (A. Nelson) Nickrent, comb. \& stat. nov. Arceuthobum blumeri A. Nelson, Bot. Gaz.56: 65. 1913.
Arceuthobum campylopodum Engelm. forma blumert (Engelm.) L.S. Gill, Trans. Connecticut Acad. Arts 32: 207. 1935.
Razoumofskya blumerı (A. Nelson) Standley, Proc. Biol. Soc. Washington 29: 86. 1916.
The argument could be made that this taxon should be recognized as a distinct species ( $A$. blumert) because it differs genetically from others in sect. Campylopoda and is completely allopatric from all of them. But given its high morphological similarity to other members of the section, it is here considered one of the 13 subspecies of $A$. campylopodum.
4. Arceuthobium campylopodum subsp. cyanocarpum (A. Nelson ex Rydb.) Nickrent, comb. \& stat. nov. Razoumofskya cyanocarpa A. Nelson ex Rydb., Fl. Colorado 100, 101. 1906.
Arceuthobum campylopodum Engelm. forma cyanocarpum L.S. Gill, Trans. Connecticut Acad. Arts 32: 204. 1935.
Arceuthobum cyanocarpum (A. Nelson ex Rydb.) J.M. Coult. \& A. Nelson, New Man. Bot. Centr. Rocky Mts. 146. 1909.
5. Arceuthobium campylopodum subsp. laricis (M.E. Jones) Nickrent, comb. \& stat. nov. Arceuthobium douglasil Engelm. var. laricis M.E. Jones, Bull. Montana Univ., Biol. Ser. 15: 25. 1910.

Arceuthobium laricis (Piper) H. St. John, F1. Southeastern Washington 115. 1936.
Arceuthobum campylopodum Engelm. forma laricts (Piper) L.S. Gill, Trans. Connecticut Acad. Arts. 32: 202. 1935.
Razoumofskya douglasn (Engelm.) Kuntze subsp. laricis Piper [nomen nudum], Contr. U.S. Natl. Herb. 11: 223. 1906.
Razoumofskya lartcts Piper in Piper and Beattie, Fl. Southeast. Washington 80. 1914.
6. Arceuthobium campylopodum subsp. microcarpum (Engelm.) Nickrent, comb. \& stat. nov. Arceuthobium douglasil Engelm. "var.?" microcarpum Engelm. in Rothrock, Rep. U.S. Geogr. Surv., Wheeler 6: 253. 1878.
Arceuthobnum microcarpum (Engelm.) Hawksw. \& Wiens, Brittonia 22: 268. 1970.
Arceuthobum campylopodum Engelm. forma microcarpum (Engelm.) L.S. Gill, Trans. Connecticut Acad. Arts 32: 209. 1935.
Razoumofskya douglasti (Engelm.) Kuntze var. microcarpa (Engelm.) Tubeuf [nomen nudum?], Naturwiss. Z. Forst Landw. 17: 216. 1919.
Razoumofskya microcarpa (Engelm.) Wooton \& Standley, Contr. U.S. Natl. Herb. 19: 179. 1915.
7. Arceuthobium campylopodum subsp. tsugense (Rosend.) Nickrent, comb. \& stat. nov. Razoumofskya tsugensis Rosend., Minnesota Bot. Stud. 3: 272, pl. 27, 28.1903.
Arceuthobrum tsugense (Rosend.) G.N. Jones subsp. amabilae Mathiasen \& C.M. Daugherty, Novon 17: 223.2007.
Arceuthobum tsugense (Rosend.) G.N. Jones subsp. contortae Wass \& Mathiasen, Novon 13: 269. 2003.

Arceuthobum tsugense (Rosend.) G.N. Jones subsp. mertenstanae Hawksw. \& Nickrent, Novon 2: 209. 1992.

Arceuthobium tsugense (Rosend.) G.N. Jones, Univ. Wash. Publ. Biol. 5: 139. 1936.
Arceuthobum campylopodum forma tsugensis L.S. Gill, Trans. Connecticut Acad. Arts 32: 200. 1935.
8. Arceuthobium campylopodum subsp. apachecum (Hawksw. \& Wiens) Nickrent, comb. \& stat. nov. Arceuthobuum apachecum Hawksw. \& Wiens, Brittonia 22: 266. 1970.
9. Arceuthobium campylopodum subsp. californicum (Hawksw. \& Wiens) Nickrent, comb. \& stat. nov. Arceuthobrum calffornicum Hawksw. \& Wiens, Brittonia 22: 266. 1970.
Arceuthobum campylopodum Engelm. var. cryptopodum (Engelm.) Jepson, Man. Fl. Pl. Calif. 284. 1925.
10. Arceuthobium campylopodum subsp. littorum (Hawksw, Wiens \& Nickrent) Nickrent, comb. \& stat. nov. Arceuthobium littorum Hawksw., Wiens \& Nickrent, Novon 2: 206. 1992.
11. Arceuthobium campylopodum subsp. monticola (Hawksw., Wiens \& Nickrent) Nickrent, comb. \& stat. nov. Arceuthobrum monticola Hawksw., Wiens \& Nickrent, Novon 2: 205. 1992.
12. Arceuthobium campylopodum subsp. occidentale (Engelm.) Nickrent, comb. \& stat. nov. Arceuthobrum occidentale Engelm., U.S. Geographical Survey West of 100th Meridian (Wheeler Report) 6: 375. 1878.
Razoumofskya occidentale (Engelm.) Kuntze, Revis. Gen. Pl. 2: 587. 1891.
13. Arceuthobium campylopodum subsp. siskiyouense (Hawksw., Wiens \& Nickrent) Nickrent, comb. \& stat. nov. Arceuthobium sisktyouense Hawksw., Wiens \& Nickrent, Novon 2: 204. 1992.

## ACKNOWLEDGEMENTS

I would like to thank Dr. Robert Mathiasen whose comments on a different but related manuscript stimulated me to delve deeper into taxonomic issues surrounding Arceuthobnum campylopodum. I am grateful to Drs. Ray Stotler and David Boufford for help with the nomenclature and the editor for prompting me to clarify the text in several places.

## LITERATURE CITED

Alvarez, I. and J.F. Wendel. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Molec. Phylogen. Evol. 29: 417-434.
Briggs, D. and M. Block 1981. An investigation into the use of the '-deme' terminology. New Phytologist 89: 729-735.
Clausen, J., D.D. Keck, and W.W. Hiesey. 1940. Experimental studies on the nature of species. Carnegie Inst. Washington Publications.
Gill, LS. 1935. Arceuthobrum in the United States. Trans. Connecticut Acad. Arts. 32: 111-245.
Hawksworth, F.G. and D. Wiens. 1972. Biology and Classification of Dwarf Mistletoes (Arceuthobnum). USDA Forest Service, Agric. Handbook 401. Washington, D.C.
Hawksworth, F.G. and D. Wiens. 1996. Dwarf Mistletoes: Biology, Pathology, and Systematics. USDA Forest Service, Agric. Handbook 709. Washington D.C.
Leopold, E.B. 1967. Late-Cenozoic patterns of plant extinction. Pp. 203-246 in P.S. Martin and H.E. Wright (eds.). Pleistocene Extinctions: The Search For a Cause. Yale Univ. Press, New Haven, Connecticut.
Chinese Plant Barcode of Life Group (China Plant BOL Group), including D.-Z. Li and 19 coauthors. 2011. Comparative analys is of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Nat1. Acad. Sci. USA 108: 19641-19646.
Hamilton, C.W. and S.H. Reichard. 1992. Current practice in the use of subspecies, variety, and forma in the classification of wild plants. Taxon 41: 485-498.
Mathiasen, R. 1982. Taxonomic studies of dwarf mistletoes (Arceuthobrum spp.) parasitizing Ponus strobiformis. Great Basin Naturalist 42: 120-127.
Mayr, E. 1942. Systematics and the Origin of Species From the Viewpoint of a Zoologist. Columbia Univ. Press. New York.
Nickrent, D.L. 1986. Genetic polymorphism in the morphologically reduced dwarf mistletoes (Arceuthobium, Viscaceae): an electrophoretic study. Amer. J. Bot. 73: 1492-1502.
Nickrent, D.L. 1987. Systematics and population biology of two sibling species of Arceuthobrum (dwarf mistletoes, Viscaceae). Pp. 597-611 m H.C. Weber and W. Forstreuter (eds.). Proc. 4th Interntl. Symposium on Parasitic Flowering Plants. Philipps-Univ., Marburg, West Germany.
Nickrent, D.L., S.I. Guttman, and W.H. Eshbaugh. 1984. Biosystematic and evolutionary relationships among selected taxa of Arceuthobtum. Pp. 20-35 in F.G. Hawksworth and R. Scharpf (techn. coords.). Biology of Dwarf Mistletoes: Proceedings of the Symposium. USDA Forest Service, General Tech. Report RM-111. Ft. Collins, Colorado.
Nickrent, D.L. and M.A. Garcia. 2009. On the brink of holoparasitism: plastome evolution in dwarf mistletoes (Arceuthobrum, Viscaceae). J. Molec. Evol. 68: 603-615.
Nickrent, D.L., M.A García, M.P. Martín and R.L. Mathiasen. 2004. A phylogeny of all species of Arceuthobrum (Viscaceae) using nuclear and chloroplast DNA sequences. Amer. J. Bot. 91: 125-138.
Park, K.M., Y.H. Choi, W.M. Park, H.J. Na, Y.J. Na, D.H. Lee, W.I. Chung, and D.S. Kim. 2009. Proteomic pattern-based identification of molecular phenotypes from Arabidopsis thaliana ecotypes. Pl. Sci. 177: 7-18.
Pigliucei, M. 2003. Species as family resemblance concepts: the (dis-)solution of the species problem? BioEssays 25: 596-602.

# GAMOCHAETA ARGYRINEA (ASTERACEAE) NATURALIZED IN CALIFORNIA 

JOHN L. STROTHER<br>University Herbarıum University of California<br>Berkeley, Califormia 94720-2465<br>strother@berkeley edu

RICHARD L. MoE<br>University Herbanıum University of California<br>Berkeley, California 94720-2465<br>rlmoe@berkeley edu

Guy L. Nesom
2925 Hartwood Drive Fort Worth, Texas 76109
guynesom@sbcglobal net


#### Abstract

Gamochaeta argyrinea is naturalized in the Lake Oroville area of Butte Co., California, first documented there in 1990 and again in 2000, its persistent presence confirmed in 2012. It probably arrived there from a locality in the southeastern USA.


Curation of UC and JEPS Asteraceae collections has brought attention to a previously unreported non-native species naturalized in the California flora.

Gamochaeta argyrinea G.L. Nesom, Sida. 21: 718, figs. 1-4. 2004.
California. Butte Co.: ca. $1 / 8 \mathrm{mi}$ NW of the Enterprise Bridge across Lake Oroville, E of the Enterprise Boat Launch Area, growing on fine damp bare disturbed granite soil, below the high water line of Lake Oroville, Foothill Woodland (destroyed), 850 ft , normal size plants, uncommon, scattered, 25 May 1990, Lowell Ahart 6481 (UC, Figure 1); ca. $1 / 2 \mathrm{mi}$ SW of the Enterprise Bridge across Lake Oroville, below the high water line of Lake Oroville, Foothill Woodland (destroyed), 850 ft , growing on dry bare white disturbed granite soil, large size plants, few plants seen, 16 Jun 1990, Lowell Ahart 6523 (UC); ca. 5 mi (air) SW of Oroville, W of Larkin Road, ca. $11 / 4 \mathrm{mi}$ S of the Oroville Airport, on the margin of the Thermalito Afterbay, on the $W$ side of the access road to the boat ramp at the Thermalito Afterbay, damp red disturbed gravelly soil, freshwater marsh, 140 ft , common, normal size plants, 13 May 2000, Lowell Ahart 8345 (JEPS; Figure 2).

Species collected by Ahart on the same day at each of the three Lake Oroville localities are characteristic of disturbed habitats and nearly half of them are not native to California. In 1990, with Ahart 6481: Agrostis avenacea, Chorizanthe membranacea, Fllago calformca, Juncus acummatus, Juncus bufonius, Juncus tenuis, Lindernia dubia, Leontodon saxatlils, Polygonum hydropiper, Polypogon interruptus, Rumex acetosella, Silene antırfhina, Tortlis arvensis, and Vicia americana. In 1990, with Ahart 6523: Agoserts heterophylla, Alopecurus carolmanus, Apocynum cannabinum, Centaurum muehlenbergu, Centaurum tenuflorum, Digitaria sangunalts, Eragrostis cilhanensis, Eriodictyon calfornicum, Pseudonaphalium stramineum, Herniaria hirsuta, Kickxia elatine, Lonicera interrupta, Polygonum hydropıper, Rorıppa palustris, Scleranthus annuus, Uropappus lindleyl, and Veronica peregrina subsp. xalapensis. In 2000, with Ahart 8345: Castilleja attenuata,


Figure 1 Gamochaeta argymea from Butte County (UC), northwest of the Enterprise Bridge, 25 May 1990


Figure 2 Gamochaeta argymnea from Butte County (JEPS), margin of the Thermalito Afterbay, 13 May 2000

Centunculus minmus, Crucianella angustifolta, Eleocharis macrostachya, Galtum tricornutum, Gastrdum phleordes, Gastridum ventricosum, Juncus acumnatus, Lathyrus angulatus, Plagıobothrys stuptatus, Plantago coronopus, Plantago virgmica, Pseudognaphalnum strammeum, Ranunculus pusillus, Rorippa curvisiliqua, Trifolum cernuum, Trifolnum dubuum, and Trodams biflora Records for these collections are from the Consortium of Califorma Herbaria (2012)


Figure 3 Gamochaeta argyrinea at Thermalito Afterbay site, 17 May 2012
On 17 May 2012, Strother and Moe found the Ahart 6481 ste to be under water and collected Gamochaeta argyrtnea at the Ahart 8345 ste (Figure 3, Thermalito Afterbay, Strother 1373, UC, duplicates to MO and TEX) They scanned and searched roadsides along minor roads but saw no other gamochaetas

The Enterprise Bridge localities are about 20 miles from the Thermalito Afterbay - boat ramps are at both places Perhaps cypselae in mud on tires and'or tralers account for the transport from one bcat ramp area to another as well as the original dispersal to Califorma The popularity of Lake Oroville for bass fishing makes this a plausible scenario

Gamochaeta argyrinea has previously been known only from the southeastern USA (the type from North Carolma, Nesom 2004, 2006, 2007), where it reaches eastern Texas and Oklahoma at the westernmost extension of its range It is essentially restricted to disturbed habitats and appears to have become widespread in the USA only recently

The species most similar to Gamochaeta argyrinea appears to be G. ustulata (Nutt) Holub, which is native to the Pacific Coast of the USA and southern British Columbia. Most of the other close relatives of G. argyrinea are from South America and it is perhaps native there, even though its occurrence has not been reported (Freire \& Iharlegui 1997). In any case, it is likely that the Butte County plants are adventive from a locality in the southeastern USA.

## ACKNOWLEDGEMENTS

We and the botanical community are indebted to Lowell Ahart and other collectors who have contributed (and continue to contribute) over the years and decades to documentation of plant distributions and introductions in California and beyond.

LITERATURE CITED
Consortium of California Herbaria. 2012. Consortium database. Data provided by the participants of the Consortium. \&ucjeps berkeley edu/consortium/>
Freire, S.E. and L. Iharlegui. 1997. Sinopsis preliminar del género Gamochaeta (Asteraceae, Gnaphalieae). Bol. Soc. Argent. Bot. 33: 23-35.
Nesom, G.L. 2004. New species of Gamochaeta (Asteraceae: Gnaphalieae) from the eastern United States and comments on similar species. Sida 21: 717-742.
Nesom, G.L. 2006. Gamochaeta (Gnaphalieae). Pp. 431-438, In: Flora of North America Editorial Committee, eds. Flora of North America North of Mexico. Vol. 19. Oxford Univ. Press, New York and Oxford.
Nesom, G.L. 2007. Distribution of Gamochaeta (Asteraceae: Gnaphalieae) in Texas, Oklahoma, Arkansas, and Louisiana. J. Bot. Res. Inst. Texas 1: 1125-1130.

# PHYSARIA IVEYANA (BRASSICACEAE), A NEW SPECIES FROM THE SANDIA MOUNTAINS, NEW MEXICO 

Steve L. O'Kane, Jr. *, Kelly N. Smith, and Katie A. Arp<br>Department of Biology<br>University of Northern Iowa<br>Cedar Falls, Iowa 50614-0421<br>*author for correspondence: steve.okane@uni.edu


#### Abstract

Physaria iveyana (Brassicaceae), a new species from the summit of the Sandia Crest, Sandia Mountains, New Mexico, is described and illustrated. This entity has long been known as distinctive and has been recognized as deviating from typical $P$. pinetorum in that it has subumbellate infructescences that do not elongate and that do not or only barely exceed the basal leaves, forms dense rock-hugging tufts, and occurs at a higher elevation and in a more extreme wind-swept habitat.


KEY WORDS: Physaria iveyana, Physaria pinetorum, Brassicaceae, Sandia Mountains

In their treatment of the genus Lesquerella S. Watson - now mainly included in Physaria (Nuttall) A. Gray - Rollins and Shaw (1993) noted that at high elevations in the Sandia Mountains of New Mexico some populations of Physarta pinetorum (Wooton \& Standley) O'Kane \& AlShehbaz are strongly reduced. They stated (p. 132) that these plants ". . . are small and matted and tend to have spathulate to oblanceolate basal leaves, often less than 2 cm . long, with a short slender petiole. The stems are greatly reduced, frequently not extending beyond the leaves, and the infructescences are subcorymbose." Rollins and Shaw concluded that this unusual form was simply a morphological response to edaphic conditions and high elevation. To the best of our knowledge, no similar plants are found in harsh, high-elevation habitats elsewhere. Where P. pinetorum is elsewhere found growing in these conditions, the plants are smaller but are otherwise typical for the species. Julyan and Stuever (2005) indicated that other species of Physaria in the Sandia Mountains typically grow in the dry foothills but that $P$. pinetorum, while growing there, also grows on the crest of the mountains.

In his early monograph of Lesquerella, Payson (1921) implied that there was considerable variation among the few specimens of Physaria pinetorum at his disposal and wondered if two or more varieties should be recognized (p. 194). One of the specimens he examined, Herrick 204 (US), came from the crest of the Sandias. An annotation on this specimen indicates that Wooton and Standley considered naming this form "Lesquerella parva," although they did not publish the name (Rollins \& Shaw 1973). O'Kane (2010) previously opined that the dwarfed, high-elevation specimens from the crest of the Sandias should be recognized as a separate taxon. We here describe this new taxon at specific rank.

Physaria iveyana O'Kane, K.N. Smith, and K.A. Arp, sp. nov. Type: USA. New Mexico. Bernalillo Co.: Sandia Mountains, The Sandia Crest. $35^{\circ} 12.609^{\prime} \mathrm{N}, 10626.981^{\prime} \mathrm{W}, 10,700 \mathrm{ft}$ ( 3723 m ) elev. 9 Jul 2009, S.L. O'Kane, Jr. 9197 (holotype, MO; isotypes, ARIZ, BRY, COLO, GH, ISTC, K, NMC, NY, UNM).


F1gure 1 A Habit B Above and below-ground phenotype C Limestone habitat D SEM micrograph of trichome detail E Basal leaf variation. F Replum and septum variation

Physaria iveyana differs from $P$. pinetorum in that it has subumbellate infructescences (rather than obviously racemose) that do not elongate (rather than elongate) and that do not or only barely exceed (rather than exceed) the basal leaves, forms dense rock-hugging tufts (rather than forming looser tufts), and occurs at a higher elevation and in a more extreme wind-swept habitat (rather than occurring generally below 2900 m elevation in more protected spots).

Herbs, long-lived perennials from a taproot, forming small densely cespitose ground-hugging tufts from a simple or usually sparsely and closely branched underground caudex, caudex branches 28 mm long $\times 0.5-4.3 \mathrm{~mm}$ wide, elongating slightly with age, old leaf bases mostly deciduous. Stems $2-10(-18)$ per plant, $(0.2-) 0.5-5.5(-6.5) \mathrm{cm}$ long, unbranched, ascending to erect, arising from within the $3.5-12.0 \mathrm{~cm}$ wide tuft of erect or ascending basal leaves. Herbage pale-green to gray-green, densely covered with overlapping stellate trichomes, the herbage silvery gray-green, sometimes tinged purple, the silver color due to a dense, covering of overlapping stellate trichomes, these $250-$ $375 \mu \mathrm{~m}$ in diameter from tip to tip, with 7-9 main rays, each bifurcating, and sometimes bifurcating again, sometimes incompletely, ray tips (14-)17-23 per trichome, main rays webbed at the very base (visible at high magnification), trichome center slightly-mounded and tuberculate. Leaves: basal mainly entire, larger leaves often undulate, or lyrate, or with 2 -few weak teeth, blades mainly spatulate, some rhombic or elliptic, flat, tapering to a slightly winged petiole, apex curved-obtuse to slightly rounded-acute, including the petiole $12-50(-64) \mathrm{mm} \times 1-8(-11) \mathrm{mm}$, encrusted with trichomes; cauline entire, narrowly spatulate to nearly elliptic, flat, attenuate at base and tapering to a slightly winged petiole, ( $0-$ )2-6 per stem, including the petiole $5-26(-31) \mathrm{mm} \times 1-5 \mathrm{~mm}$. Infructescence not elongating, not exceeding or barely exceeding the basal leaves, a condensed nearly umbellate raceme with $3-16, \pm$ crowded fruits, on ultimately sigmoid (some ascending) pedicels $4.5-15(-20) \mathrm{mm}$ long. Flowers with sepals $4.3-5 \mathrm{~mm}$ long, elliptic to narrowly triangular, rounded on back, lateral sepals often keeled at the base; petals entire, yellow, $5.5-8.1 \mathrm{~mm}$ long, blade $2.2-3.6 \mathrm{~mm}$ wide, claw $0.7-1.3 \mathrm{~mm}$ wide, spatulate or the blade somewhat wider. Stamens 6 , the median ones with filaments $3.4-4.1 \mathrm{~mm}$ long, lateral ones $2.3-3.8 \mathrm{~mm}$ long, anthers $0.9-1.1 \mathrm{~mm}$ long, oblong to narrowly triangular in outline, basal lobes usually flaring, these $0.2-0.5 \mathrm{~mm}$ long. Silicles on stipes $0.2-0.7 \mathrm{~mm}$, ovoid to nearly spherical, apex rounded; base rounded-obtuse; mostly longer than wide, $3.4-6.2 \times 2.0-4.6 \mathrm{~mm}$; valves glabrous within and on the exterior, becoming purple-coppery at maturity. Ovules (10-)12-16(-20) per ovary, these attached to the upper $1 / 2-2 / 3$ of the replum; false septum mostly entire to less frequently perforate basally in the center; replum obovate to subovate, rounded at the apex. Styles fine, glabrous, linear to curved apically, (1-)2.5-4.0 mm , including the capitate stigma, which is slightly wider than the style. Seeds, flattened, lenticular, brown to dark brown, oval to suborbicular, wider than long, $1.4-2.0 \times 1.3-1.9 \mathrm{~mm}$, wingless, slightly mucilaginous when wetted; cotyledons accumbent. Figure 1.

Paratype. USA. New Mexico. Bernalillo Co.: Sandia Crest, Sandia Mountains. $35^{\circ} 12.641^{\prime} \mathrm{N}$, $10626.983^{\prime} \mathrm{W}, 10,690 \mathrm{ft}(3258 \mathrm{~m})$ elev, 23 July 2008, S.L. O'Kane, Jr. \& K.D. Hell 9056 (ISTC, SJNM).

Etymology. The species is named for Robert DeWitt Ivey, outstanding New Mexico naturalist. Raised in Jacksonville, Florida, he graduated from the University of Florida in 1945 as class valedictorian with a double major in English and biology. He continued his studies there specializing in mammalogy under Dr. Harley Sherman. In 1947 he became an instructor at the University of New Mexico. In 1949 he did more graduate work at the University of Michigan and then spent a year teaching at the College of Charleston in South Carolina. In 1951 he felt the need to return to the wide-open skies of New Mexico and started teaching biology for the Albuquerque Public Schools. He and his students continued his work on mammals until the threat of bubonic plague and Hantavirus became a problem. He then turned his attention to botany and in 1983 published the first edition of his manual of botanical illustrations, Flowering Plants of New Mexico, which had hundreds
of drawing of species which cleverly focused in on the most important characters for identification In 2008 the greatly expanded fifth edition was published, illustrating more than one third of the species known for the state Flowermg Plants of New Mexzco is likely the most consulted plant identification reference in the state and is used as a text in the Flora of New Mexico course at the University of New Mexico Ivey has given numerous talks, workshops, and field trips throughout the state His work has done much, perhaps more than any other, to stimulate interest in the plants of New Mexico and their appreciation and preservation


Figure 2 Locality of type collection and addtional local area searched Image from Google Earth
Ecology Physaria weyana (Ivey's bladderpod) inhabits the wind-swept, relatively high-elevation, barren grey Madera Formation limestone escarpment on the west-facing summt of Sandra Peak (Read et al 2000) (Fig 2) It grows from fractures in the exposed limestone or in nearly barren limestone rubble with nearby individuals of the trees Pinus strobiformis, Pseudotsuga menziesin, and stunted individuals of Populus tremuloides Scattered herbaceous plants include species of Altum,

Pedicularis, Poa, Erigeron, Achillea, Cerastum, Cymopterus, Hymenoxys, Penstemon, and Oxytropis.

Physaria iveyana is another example of a new, high elevation, narrowly endemic species in a genus that otherwise is mainly limited to lower montane areas, grasslands, pygmy forests, and deserts. High elevation species are few, e.g., P. alpina Rollins, P. humilis (Rollins) O'Kane \& Al-Shehbaz, P. eriocarpa Grady \& O'Kane, P. scrotiformis O'Kane all grow from barren or nearly barren outcrops of limestone or dolomite, and most of these were only recently named (Grady \& O'Kane 2007; O'Kane 2007; Rollins 1981). The endemic and rare Heuchera pulchella Wooton \& Standley occupies immediately adjacent habitat of the same limestone on the Sandia Crest but back from the very edge of the escarpment, where it grows from rock cracks (New Mexico Rare Plant Technical Council 2012).

Similar habitat was searched in the Manzano Mountains, but Physaria iveyana was not found there. Smaller but otherwise typical individuals of $P$. pinetorum (Wooton \& Standl.) O'Kane \& AlShehbaz were found.

IUCN Red List category. Physaria iveyana is currently known only from one narrow, approximately $4.5-15$ meters wide metapopulation of the Sandia Crest west-facing escarpment. This metapopulation is immediately adjacent to a parking lot, a radio tower facility, and a hiking trail. It is probable that portions of this population have already been lost to activities related to the construction and development of these facilities. Based on the limited aerial extent of the known (and perhaps only) metapopulation of this species, it could be listed according to IUCN Red List criteria (2001) as EN (Endangered) under Criteria B2a and C2a(i).

Taxonomy. Physaria iveyana is clearly related to P. pinetorum, both morphologically and based on preliminary molecular analyses (O'Kane unpublished). In the recent key to Physarta of North America (O'Kane 2010, p. 620), P. iveyana and P. pinetorum can be distinguished by replacing couplet 49 with the following.
49. Stems prostrate; cauline leaves densely overlapping 36. Physaria gordonii (in part)
49. Stems ascending to erect; cauline leaves (relatively few), not or loosely overlapping.

49a. Infructescences subumbellate, barely (or not at all) exceeding the basal leaves; plants forming dense mat-like tufts $\qquad$ 68. Physaria pinetorum 49b. Infructescences racemose, elongate and evidently exceeding the basal leaves; plants cespitose, but not forming dense tufts

Physaria iveyana

## ACKNOWLEDGEMENTS

O'Kane thanks Ken Heil for his unflagging support and friendship, for his long-term botanical field work in New Mexico, and for being along when he first encountered this unnamed species in the field. We thank Gene Jercinovic who supplied the biographical details for Robert DeWitt Ivey.

## LITERATURE CITED

Grady, B.A and O'Kane, S.L., Jr. 2007. New species and combinations in Physaria (Brassicaceae) from western North America. Novon 17: 182-192.
IUCN. 2001. IUCN Red List Categories and Criteria Version 3.1. IUCN Species Survival Commission. IUCN, Gland, Switzerland, and Cambridge, United Kingdom.
Julyan, R. and M. Stuever (eds.). 2005. Field Guide to the Sandia Mountains. Univ. New Mexico Press, Albuquerque.

New Mexico Rare Plant Technical Council. 2012. New Mexico Rare Plants website. thttp//nmrareplants unm edu/index html> Accessed 28 May 2011
O’Kane, S.L., Jr. 2010. Physaria. Pp. 616-665, m Flora of North America Editorial Committee, Flora of North America, Vol. 7. Oxford Univ. Press, New York and London.
O'Kane, S.L., Jr. 2007. Physaria scrotiformus (Brassicaceae), a new high-elevation species from southwestern Colorado and new combinations in Physaria. Novon 17: 376-382.
Payson, E. B. 1921 [1922]. A monograph of the genus Lesquerella. Ann. Missouri Bot. Gard. 8: 103-236.
Read, A.S., K.E. Karlstrom, S. Connell, E. Kirby, C.A. Ferguson, B. Ilg, G.R. Osburn, D. Van Hart, and F.J. Pazzaglia. 2000. Geology of Sandia Crest Quadrangle, Bernalillo and Sandoval Counties, New Mexico. New Mexico Bureau of Mines and Mineral Resources.
Rollins, R.C. 1981. Studies in the genus Physaria (Cruciferae). Brittonia 33: 332-341.
Rollins, R.C. and E.A. Shaw. 1973. The Genus Lesquerella (Cruciferae) in North America. Harvard Univ. Press., Cambridge, Mass.

# DIPLACUS BRANDEGEEI (PENNELL) NESOM (PHRYMACEAE) IS THE CORRECT NAMEFOR THE INSULAR ENDEMIC, NOT DIPLACUS LATIFOLIUS (A. GRAY) NESOM 

Guy L. Nesom<br>2925 Hartwood Drive<br>Fort Worth, Texas 76109<br>guynesom@sbcglobal net


#### Abstract

Dtplacus lattfolus (A. Gray) Nesom 2012 is a later homonym of D. latifolius Nutt. 1838 and is replaced here by Diplacus brandegeei (Pennell) Nesom, comb. nov. The species is a member of Diplacus sect. Cleisanthus and is endemic to islands off the coast of California and Mexico.


In the recent taxonomic overview of Phrymaceae (Barker et al. 2012), one of the new combinations in the genus Diplacus was illegitimate, a later homonym. As noted by Dr. James Zarucchi, "Diplacus latifolius Nuttall [1838] and now ... (A. Gray) G.L. Nesom [2012]." That error is remedied here with a new, legitimate-name-producing combination.

Diplacus brandegeei (Pennell) Nesom, comb. nov. Mimulus brandegeet Pennell, Proc. Acad. Nat. Sci. Philadelphia 99: 170. 1947 (as "brandegei"). TyPE: USA. California. Santa Barbara Co.: Santa Cruz Island, 1888, T.S. Brandegee s.n. (holotype: PH; isotypes: CAS digital image!, GH, MIN, MO digital image!, PH, RSA, SD, UC).
Diplacus latifolius (A Gray) Nesom, Phytoneuron 2012-39: 32. 2012, nom. illeg. (not Diplacus latifolus Nutt. 1838, see below). Mimulus lattfolnis A. Gray, Proc. Amer. Acad. Arts 11:95. 1876. Eunanus latifolius (A. Gray) Greene, Bull. Calif. Acad. Sci. 1: 99. 1885. TyPE: MEXICO. Baja California. Guadalupe Island, 1875, E. Palmer 58 (holotype: GH; isotypes: BM, K, MO-2 sheets digital images!, NY-2 sheets, PH).

Diplacus brandegeet is known only from two of the Channel Islands of California (Santa Catalina Island and Santa Cruz Island) and from Guadalupe Island (Baja California in adjacent Mexico). It is a member of Diplacus sect. Cleisanthus (Barker et al. 2012).

Diplacus latifolms Nutt. (Ann. Hist. Nat. 1: 138. 1838) is a synonym of D. curanticus (Curtis) Jepson, a member of Diplacus sect. Diplacus (Tulig \& Nesom 2012).

## ACKNOWLEDGEMENTS

I'm grateful to Jim Zarucchi for pointing out the nomenclatural error. Citations of types not seen here are from Thompson (2005).

## LITERATURE CITED

Barker, W.R., G.L. Nesom, P.M. Beardsley, and N.S. Fraga. 2012. A taxonomic conspectus of Phrymaceae: A narrowed circumscription for Mimulus, new and resurrected genera, and new names and combinations. Phytoneuron 2012-39: 1-60.
Tulig, M.C. and G.L. Nesom. 2012. Taxonomic overview of Dtplacus sect. Diplacus (Phrymaceae). Phytoneuron 2012-45: 1-20.
Thompson, D.M. 2005. Systematics of Mimulus subgenus Schizoplacus (Scrophulariaceae). Syst. Bot. Monogr. 75: 1-213.

# NEOTYPIFICATION OF SOLIDAGO SALICINA (ASTERACEAE: ASTEREAE) AND A MULTIVARIATE COMPARISON WITH S. PATULA 

John C. Semple*, Lan Tong, and Paul Pastolero<br>Department of Brology<br>University of Waterloo<br>Waterloo, Ontario Canada N2L 3G1<br>*author for correspondence jcsemple@uwaterlooca


#### Abstract

A neotype specimen is designated for Solldago salicina Ell., due to the likely loss or destruction of original material in CHARL. The species was treated as Solidago patula Muhl. subsp. strictula (Torr. \& A. Gray) Semple in Flora North America. Multivariate morphometric analyses of all taxa in Solidago subsect. Argutae and a comparison of just $S$. patula and $S$. salicina indicate that species rank is warranted for the latter taxon.


KEY WORDS: Solidago salicina, Solidago patula, neotypification, multivariate morphometrics

Weatherby (1942) did not list a type collection for Solidago salicina Elliott as occurring in CHARL. A neotype is needed for the species name. Elliott (1824) described the species as having lanceolate scabrous leaves and a racemose inflorescence. He noted it occurred in Georgia and flowered in September and October. The name has been used in floras at the species level (e.g. Small 1903) or as a synonym of Solidago patula Muhl var. strictula Torr. \& A. Gray or S. patula Muhl. subsp. strictula (Torr. \& A. Gray) Semple, e.g., Cronquist (1980) and Semple and Cook (2006), respectively. Both species differ from other taxa in subsect. Argutae (Mackenzie in Small) G.L. Nesom in having very small scabrous hairs on the upper leaf surfaces. The results of a multivariate morphometric study of Solddago subsect. Argutae summarized below clearly indicate that this southeastern USA endemic taxon should be recognized at the species level.

## Neotypification

Solidago salicina E11., Sketch. Bot. S. Carolina 2: 389. 1824. Type: USA. Georgia. "Very common in the the oak land in the western districts," Sep-Oct; not listed by Weatherby (1942) as present in CHARL. NEOTYPE (designated here): USA. Georgia. Laurens Co.: swampy places 15 mi E of Dublin, $450 \mathrm{ft}, 19$ Oct 1947, Cronquist 4880 (GH!). Figure 1.

## Multivariate Analysis

A complete presentation of a multivariate analysis of all taxa in Solddago subsect. Argutae will be presented elsewhere. Pertinent to this publication are the results of a comparison of $S$. patula and S. salicma to each other. The methods followed were those summarized in several other publications on Solidago and Symphyotrichmm (Heard \& Semple 1988; Owen, Semple \& Baum 2006; Cook, Semple \& Baum 2009). In total, more than 200 specimens of taxa in subsect. Argutae were scored for 35 vegetative and floral traits. Specimens were obtained from GH, LSU, MO, NCU, NY, USF, and WAT (Thiers, continuously updated).

Discriminant analyses including Stepwise Discriminant Analysis (STEPDISC); Classificatory Discriminant Analysis and Canonical Analysis were performed using SYSTAT ver. 10 (SPSS Inc. 2000) on a data matrix.


Figure 1. Neotype of Solidago salicina Ell., Cronquist 4880 (GH).

Two analyses were carried out involving 14 specimens of Solidago patula and 13 specimens of $S$. salucina. First, an analysis involving specimens of $S$. arguta (including var. arguta, var. boottil, var. caroliniana), S. auriculata, S. brachyphylla, S. fouctbus, S. harrisit, S. ludovictana, S. patula, S. salicina, S. sphacelata, S. tarda, and S. verna was carried out to assess the relative differences between S. patula and S. salicina compared to other species in the subsection. The full details of this first analys is will be presented elsewhere. Second, an analysis including just specimens of $S$. patula and S. salicina was carried out and the results are presented here. Specimens were assigned to two species level a priort groups (patula, salicina) on the basis of geographic location; northern and upland specimens were assigned to the patula group, while southern, lower elevation specimens were assigned to the salicina group. Specimens of $S$. patula came from Michigan, New York, North Carolina, Ontario, Tennessee, and Virginia. Specimens of S. salicina came from Alabama, Florida, Georgia, Louisiana, Mississippi, and North Carolina.

In a STEPDISC analysis of just Soltdago patula and S. salicma, characters were selected as being most useful in separating the two species level a priorl groups. In a subsequent complete analysis the following characters in order of descending F-to-remove value were used in the discriminant function: upper leaf length, dise floret number, upper leaf width, involucre height, and dise floret pappus length. The null hypothesis that there was only one group was tested using Wilks' lambda, Pillai's Trace and Lawley-Hotelling trace methods, and the null hypothesis was rejected (in each method $p=0.0000$, indicating that the two groups were most likely not samples of the same group).

In the Classificatory Discriminant Analysis, all specimens of Soludago patula were placed a posteriorl in the linear classification analysis into the patula group with $98-100 \%$ probability for 10 of the 14 specimens. Placement probabilities for three of the specimens ranged from $80-85 \%$. One specimen was placed into the patula group with a probability of $69 \%$ - Semple 11576 (WAT) from Polk Co., Tennessee. In the more rigorous Jackknife analysis, 12 of the 14 specimens of of $S$. patula were assigned a posteriori to the patula group.

In the Classificatory Discriminant Analysis, 12 of the 13 specimens of Solidago salicina were placed a posteriort in the linear classification analysis into the salicina group with $97-100 \%$ probability for 11 specimens. One specimen was placed into the salicina group with a probability of $82 \%$. One specimen was placed into the patula group with a probability of $85 \%$ - Godfrey s.n. (GH) was collected in 1937 from Lead Mines, Raleigh, Wake Co., North Carolina. The specimen had mid stem damage and upper leaf traits were atypical. In the more rigorous Jackknife analysis, 1 of the 14 specimens of $S$. patula were assigned a posteriori to the patula group, i.e., there was no change from the linear analysis.

## Morphological comparisons

Solidago patula and S. salicina are similar in being the only two species in subsect. Argutae having scabrous upper leaf surfaces with very short hairs, but they differ to varying degrees in other traits. Specimens of S. salicina are often more slender and can have more and smaller upper stem leaves than $S$. patula. Both species vary greatly in stem height, which can be as much as 1.3 m . Basal rosette and lower stem leaves are generally longer and have more marginal serrations in $S$. patula than $S$. salicina, but the ranges overlap and the differences are not diagnostic. The difference in lower stem leaf widths is more pronounced with $S$. salicina often having more linear lanceolate leaves. Mid leaf length is similar in the two species, but the leaves are generally shorter and narrower in $S$. salicina. Upper leaves of $S$. salicina can be much smaller than those of $S$. patula, but stem height significantly influences the size of upper leaves, which thus reduces the value of upper leaf size as a diagnostic trait by itself. There is little difference in the numbers of marginal serrations of the middle and upper leaves between the two species.

Involucre height is significantly different although the ranges overlap; mean involucre height in Solidago patula is 3.86 mm (range $2.5-6.5 \mathrm{~mm}$ ); mean involucre height in $S$. salicina is 6.14 mm (range $3.5-8.8 \mathrm{~mm}$ ). The difference in involucre height is clear in Fig. 2. The phyllaries of $S$. patula are often more obtuse and oblong than those of $S$. salicina. There is little difference in the number of rays, while $S$. patula has an average of 11.8 disc florets per head versus 9.3 disc florets per head in $S$. salicina.


Figure 2. Heads of (A) Solidago patula (Semple 10589 WAT) and (B) Solidago salicina (Thomas et al. 108382 WAT ). Scale bars equal 1 mm .

The ranges in numbers and sizes of leaf and floral traits in the treatment of Solidago patula in Flora North America (Semple \& Cook 2006) included data on both species. The ranges in character size and number overlap considerably, reducing the value of any character by itself, but in combination with other characters the multivariate analysis shows that two species differ significantly.

## Chromosome numbers

Ploidy level is not a factor in this particular situation. All chromosome counts reported for both Solidago patula (Beaudry \& Chabot 1959; Beaudry 1963, 1969; Jones 1968; Semple et al. 1981; Morton 1981; Semple et al. 1993; Semple \& Cook 2004) and S. salicina (Beaudry 1963; Semple et al. 1984, Semple et al. 1993) were diploid, $2 n=18$ or $2 n=9_{\text {II }}$. Thus, the difference in involucre height is not a consequence of the ploidy level gigas effect.

## Conclusion

These results support treating Solidago salicina as a species separate from S. patula. This fits with the allopatric distribution of the two species (Fig. 3). Also, in the larger subsectional analysis, the specimens of $S$. patula that were assigned a posteriori to other species groups were placed in different taxa than those specimens of $S$. salicina that were assigned to other species groups. This indicates that the two species differ in their technical similarities shared with other species in the subsection. Overall within subsect. Argutae, species differences are based more on leaf traits than
floral traits other than numbers of ray florets, e.g., few or no rays in $S$. sphacelata and $S$. brachyphylla.


Figure 3. County dot distributions of Solidago patula and S. salicina based on collections seen and data available online at plants. usda.gov.

## ACKNOWLEDGEMENTS

This work was supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant to JCS. Joan Venn is thanked for her curatorial assistance with loans. The following herbaria are thanked for loaning specimens of subsect. Argutae: GH, LSU, MO, NCU, NY, and USF.

## LITERATURE CITED

Beaudry, J.R. 1963. Studies on Solidago L. VI. Additional chromosome numbers of taxa of the genus. Canad. J. Genet. Cytol. 5: 150-174.
Beaudry, J.R. 1969. Études sur les Solidago L. IX. Une troisième liste de nombres chromosomiques des taxons du genre Solidago et de certains genres voisins. Naturaliste Can. 96: 103-122.
Beaudry, J.R. and D.L. Chabot. 1959. Studies on Solidago IV. The chromosome numbers of certain taxa of the genus. Canad. J. Bot. 37: 209-288.
Cook, R.E., J.C. Semple, and B. Baum. 2009. A multivariate morphometric study of Solidago subsect. Glomeruliflorae (Asteraceae: Astereae). Botany. 87:97-111.
Heard, S.B. and J.C. Semple. 1988. The Solidago riglda complex (Compositae: Astereae): a multivariate morphometric analysis and chromosome numbers. Can. J. Bot. 66: 1800-1807.
Jones, S.B. 1968. Chromosome numbers in southeastern United States Compositae. Bull. Torrey Bot. Club 95: 488-489.
Morton, J.K. 1981. Chromosome numbers in Compositae from Canada and the U.S.A. Bot. J. Linn. Soc. 82: 357-368.
Owen, E., J.C. Semple, and B. Baum. 2006. A multivariate morphometric analysis of the Symphyotrichum boreale - S. nahannense $-S$. welshil complex (Asteraceae: Astereae). Canad. J. Bot 84: 1282-1297.
Semple, J.C. and R.E. Cook. 2004. Chromosome number determinations in fam. Compositae, Tribe Astereae. VII. Mostly eastern North American and some Eurasian taxa. Rhodora 106: 253272.

Semple, J.C. and R.E. Cook 2006. Solidago Linnaeus. Pp. 107-166, in Flora North America Editorial Committee (eds.). Flora of North America. Vol. 20. Asteraceae, Part 2. Astereae and Senecioneae. Oxford Univ. Press, New York.
Semple, J.C., R.A. Brammall, and J. Chmielewski. 1981. Chromosome numbers of goldenrods, Euthamia and Solidago, (Compositae-Astereae) Canad. J. Bot. 59: 1167-1173.
Semple, J.C., Jie Zhang, and Chunsheng Xiang. 1993. Chromosome numbers in Fam. Compositae, Tribe Astereae. V. Eastern North American taxa. Rhodora 95: 234-253.
Semple, J.C., G. S. Ringius, C. Leeder, and G. Morton. 1984. Chromosome numbers of goldenrods, Euthamia and Soltdago (Compositae: Astereae). II. Additional counts with comments on cytogeography. Brittonia 36: 280-292.
Small, J.K. 1903. Flora of the Southeastern United States. Published by the author, New York.
SPSS Inc. 2000. SYSTAT Version 10 for Windows. Chicago, Illinois.
Thiers, B. [continuously updated]. Index Herbariorum: A global directory of public herbaria and associated staff. Virtual Herbarium, New York Botanical Garden. <http//sciweb nybg org/science2/IndexHerbariorum asp>
Weatherby, C.A. 1942. A list of type specimens in Elliott's herbarium. Rhodora 44: 243-262.

# TAXONOMY AND DISTRIBUTION OF SENECIO HUACHUCANUS AND S. MULTIDENTATUS (ASTERACEAE) 

Billie L. Turner<br>Plant Resources Center<br>The University of Texas<br>Austin, Texas 78712


#### Abstract

The taxonomic status and distribution of Senecio huachucanus and S. multidentatus is reviewed, largely to determine if the former is properly treated as a variety of the latter, as proposed by Barkley (2006). It is concluded that $S$. huachucanus is a well-demarcated species, represented in at least one herbarium (ARIZ) by numerous collections, all assembled from the Huachuca and Santa Rita Mountains of southeasternmost Arizona. Intergradation between the two species was not detected nor do the two taxa occur together. Surprisingly, a single collection (ASU) of the rare but widespread $S$. multidentatus was discovered, this from the Chiricahua Mountains of Cochise Co., the only known collection from the USA, although the latter occurs sporadically at higher elevations in Mexico. Descriptions of the two taxa are provided along with maps showing their distribution.


KEY WORDS: Asteraceae, Senecio huachucanus, Senecio multidentatus, Arizona, Mexico

Senecio huachucanus was first described by Asa Gray in 1883 and typified by a Lemmon collection from high bluffs near Fort Huachuca in southeastern Arizona. Most subsequent workers maintained the species until Barkley (2006) reduced it to varietal rank under his broad circumscription of S. multidentatus, this typified by collections from Mount Orizaba (Vera Cruz) in central Mexico. The following key serves to distinguish the two taxa.

1. Involucral bracts 8, 4-5 mm long; disc florets $10-20$; USA (Huachuca and Santa Rita Mts., Arizona) and Mexico (Sonora) $\qquad$ Senecio huachucanus
2. Involucral bracts $13-21,6-8 \mathrm{~mm}$ long; disc florets 30 -numerous; USA (Chiricahua Mts., Arizona) and Mexico (Chihuahua and eastern mountains) Senecio multidentatus

Senecio huachucanus A. Gray, Proc. Amer. Acad. Arts 9: 54. 1883. Senecio multidentatus var. huachucanus (A. Gray) T.M. Barkley, Phytologia 67: 238. 1987. Type: USA. Arizona. Cochise Co., near Ft. Huachuca, Lemmon s.n. (holotype: GH).

Perennial herbs $0.5-1.0 \mathrm{~m}$ high. Mid-stem leaves mostly $10-20 \mathrm{~cm}$ long, $2-7 \mathrm{~cm}$ wide, glabrous, petiolate along the lower stems, clasping above; petioles winged, 3-6 cm long, margins irregularly dentate. Capitulescence a terminal corymbose panicle ca 10 cm high, and as wide, the ultimate peduncles glabrous, $5-15 \mathrm{~mm}$ long. Heads narrowly campanulate, $5-6 \mathrm{~mm}$ high, $3-4 \mathrm{~mm}$ across; involucral bracts 8 (rarely ca 11), united, linear-lanceolate, their apices acute to obtuse, minutely pubescent. Receptacle convex, $1-2 \mathrm{~mm}$ across, glabrous, epaleate. Ray florets 3-8, pistillate, fertile; ligules yellow, 3-9 mm long, 2-3 mm wide, 4-5 nervate. Disc florets yellow, glabrous, $10-20$ to a head; tubes ca 3 mm long, enlarged at base; throats ca 3 mm long, lobes 5 . Achenes ca 1.5 mm long, glabrous; pappus of numerous, readily deciduous, white bristles, $4-6 \mathrm{~mm}$ long. Chromosome number not determined.


Speamens examoned (all of the followng sheets on file at ARJZ) Anzona Cochuse Co Huatruca Mts W ade of DGille Peak, 900 H, 26 Aug 1990 Bowers de Matioughion 3308 W slope of Miller Peak, 9200 f. 1 Sep 1991 Fisfown 570 of facme slope of Remasep Ceny on antrall Erom Cer Canyon, 7200 th 30 Sap 1945 Goadd \& Haskeil 3382. Huachuca Mts Schoclite Canjoct 7500 th 15 Sep 1993 Mownts $n$ Diller Peak, 900 it, 20 Det 1990 Warren de Andersan $3 R$ Puma Co

Santa Rita Mts., below Baldy Saddle and above junction with Super Trail, $8500 \mathrm{ft}, 17$ Nov 1990, Stallcup s. n.; Santa Cruz Co.: Santa Rita Mts., 8000 ft, 23 Aug 1936, Darrow \& Arnold s.n.; near summit of Mt. Hopkins, 17 Sep 1980, Fletcher 5050 (TEX); Santa Rita Mts., 23 Aug 1960, Goodding 247a-60; trail from Madera Canyon to Mt. Wrightson (Baldy), $9400 \mathrm{ft}, 12$ Aug 1945, Parker 5856; NW slopes of Mt. Wrightson, along trail about $1 / 8$ mile below Bellow's Spring, 8300 ft , at least 500 plants in the area, 3 Oct 1981, Toolin 1728; Mt. Wrightson, steep NW-facing slope below Bellow's Spring, at least 500 plants, confined to an area less than $1 / 4$ square mile, $8000-8200 \mathrm{ft}, 26$ Sep 1987, Toolin 2216; Santa Rita Mts., Mt. Hopkins, a few dozen plants on slopes below road, N of Common Building of observatory, $2800 \mathrm{~m}, 19$ Oct 1990, Toolin \& Mc Hargue 2328.

Senecio huachucanus was treated as a good species by Barkley (1978) and listed, early on, as an imperiled species by Toole (1982), this later retracted following additional studies (Gries 1992), presumably, in part, because of Barkley's reassessment (per annotations, and Barkley 2006) that it was but a variety of the widespread S. multidentatus. A better candidate for "imperiled status" in Arizona would be the newly discovered $S$. multidentatus population in the Chiricahuas, discussed below, this being a relatively rare taxon throughout its range.


Figure 2. Distribution of Senecto huachucanus and S. multidentatus in the USA.

Senecio multidentatus Sch. Bip. ex Hems1., Biol. Centr. Amer. Bot. 2: 243.1881. Type: MEXICO. Veracruz [or Puebla]. Mt. Orizaba. (at least 4 syntypes at K, various collectors). Senecio multidentatus var. minor Hemsl., Biol. Centr. Amer. Bot. 2: 243. 1881. Type: MEXICO. Veracruz [or Puebla]. Mt. Orizaba (several syntypes at K, 3 collectors).
Senecio heterodontus Greenm., Field Columb. Mus. Bot. 2: 277. 1907. TyPE: MEXICO. San Luis Potosí. Alvarez, Palmer $23 l(\mathrm{GH})$.
Senecio potosinus Greenm., Monogr. Senecio 1: 25: 1901. TyPE: MEXICO: San Luis Potosí. Mts. near San Miguelita, Schaffer $280(\mathrm{GH})$.

Perennial herbs $0.5-2.0 \mathrm{~m}$ high. Midstem leaves mostly $15-30 \mathrm{~cm}$ long, $3-10 \mathrm{~cm}$ wide, closely tomentose to irregularly glabrescent, petiolate along the lower stems, clasping above; petioles winged, $6-20 \mathrm{~cm}$ long, margins irregularly dentate. Capitulescence a terminal corymbose panicle $20-30 \mathrm{~cm}$ high, $10-20 \mathrm{~cm}$ wide, tomentose like the stems, the ultimate peduncles $10-25 \mathrm{~mm}$ long, to some degree tomentose. Heads narrowly campanulate, $8-10 \mathrm{~mm}$ high, $6-9 \mathrm{~mm}$ across; involucral
bracts 13-21, 5-6 mm long, united, linear-lanceolate, their apices acute to obtuse, minutely pubescent. Receptacle convex, 2-4 mm across, glabrous, epaleate. Ray florets 8-11, pistillate, fertile; ligules yellow, $6-9 \mathrm{~mm}$ long, $2-3 \mathrm{~mm}$ wide, $4-5$ nervate. Disc florets yellow, glabrous, $30-$ numerous per head; tubes ca 3 mm long, enlarged at base; throats ca 3 mm long, lobes 5. Achenes ca 3 mm long, glabrous; pappus of numerous, readily deciduous, white bristles, 46 mm long. Chromosome number not determined.

The only collection of Senecto multudentatus from the USA known to me is from Cochise Co., Chiricahua Mts., Chiricahua Wilderness Area, Snowshed Trail; coniferous forest, $8750 \mathrm{ft}, 18$ Sep 1976 , Lethliter 829 (ASU). This collection also was mentioned by ARPC (2001) but referred to as var. huachucanus. Barkley annotated the sheet in 1998 as S. multidentatus var. huachucanus, but to me it is much closer to typical $S$. multidentatus.

Senecio multidentatus is similar to $S$. huachucanus but is readily distinguished by features given in the above key. So far as known, the two taxa do not grow together, although $S$. multidentatus does occur in the Chiricahua Mountains of Cochise Co. northeast of those in which $S$. huachucanus occurs (Fig. 2). Interestingly, the closest populations of S. multadentatus to the Chiricahuan site are those from subalpine areas of pine-fir forests ( $3000-3200 \mathrm{~m}$ ) on Mt. Mohinora, Chihuahua (e.g., Nesom 6453, TEX). Nor has evidence of intergradation been noted.

In short, Senecio multidentatus is known only from sporadic, high elevational sites throughout northern Mexico (Fig. 2) and from a single known locality from the USA. It is interesting to speculate that the ancestral populations of $S$. multidentatus that might have given rise to $S$. huachucanus are still represented in Arizona by relic populations in the Chiricahua Mountains. DNA should ultimately help resolve the problem.


Figure 3 Distribution of Senecio multrdentaus in Mexico

## ACKNOWLEDGEMENTS

Thanks to ARIZ and ASU for the loan of specimens and to Jana Kos, Tina Ayers, and my constant colleagues Mike Powell and Guy Nesom for helpful suggestions on the paper. The dot maps are based upon specimens on file at ARIZ, ASU, and LL-TEX.

LITERATURE CITED
Arizona Rare Plant Committee (ARPC). 2001. Arizona Rare Plant Field Guide: A collaboration of agencies and organizations. U.S. Govt. Printing Office, Washington Online version. http //www aznps com/rareplants php>
Barkley, T.M. 1978. Senecto huachucanus, in North Amer. Fl. 47: ser. 2., part 10: 50-139.
Barkley, T.M. 2006. Senecio, in Fl. North America 20: 215-270.
Gries, C. 1992. Conservation Page. The Plant Press 16: 10.
Toolin, L.J. 1982. Status Report: Senecio huachucanus Gray. Prepared for U.S. Fish and Wildlife Service, Albuquerque, New Mexico.

# CHECKLIST OF TEXAS GRASS SPECIES AND A KEY TO THE GENERA 

Stephan L. Hatch and Kelly C. Haile<br>S M Tracy Herbarium<br>Department of Ecosystem Science and Management<br>Texas A\&M University<br>College Station, Texas 77843-2138


#### Abstract

The grass famlly (Poaceae) is the second largest vascular plant famuly in Texas Thus checklist was created to provide information on the currently known grass spectes and their distribution in Texas using the 10 vegetational areas for the state The list provides current scientific names and synonyms as well as common names and an indication of the geographic distribution The ongm (native versus introduced), longevity (perenmal versus anmal), and season of growth (cool versus warm) are also given for each spectes A dichotomous key to the Texas grass genera follows the checkhst


KEY WORDS Poaceae, Texas, species checklist, synonyms, vegetational areas, key to genera


The need for identification and classification of organisms, like grasses, is fundamental to the study of ecology, ecological restoration, forages, and wetlands as well as our immedate surroundings Communication with other people regarding plants requires more then a sumple, "This is buffalograss", with a specimen or image Plant names, be they common or scientific, are highly important to accurately and quickly communicate knowledge to other people, written or verbally Checklists have been developed to show species occurrence within certain boundaries or variation within a taxon eg. "All these are grama grasses "

Texas has about 638 species (Table 1), and about 150 genera of grasses Table 1 shows a comparison of Gould (1975), Shaw et al (2011), with our data Table 2 is a synopsis of our classification, giving the numbers of subfamiles, tribes, genera, and species in the state

Grass species distributions use the map (Fig 1) with 10 vegetation areas. These areas are numbered 1-10 and have specific names The numbers following species in the checklist indicates the distribution of each taxon For additional information see the following publications and discussions (Cory \& Parks 1937, Gould 1962, 1975, Correll \& Johnston 1970, Hatch et al 1990, Powell 1994, Jones et al 1997, Turner et al 2003, Shaw et al 2011)

## Vegetational Areas of Texas



Figure 1. Vegetational areas of Texas.

The current checklist and key are based primarily on the large collection of grasses housed in the S.M. Tracy Herbarium (TAES) and thus reflect a larger base of data than in previous summary accounts of the Texas Poaceae. Although we have attempted to provide relevant data on Texas grasses, this publication obviously will be incomplete in various respects. We emphasize the importance of expanding and refining the understanding of the Texas flora. Thus, we welcome and encourage all interested persons to comment and make additions to the database used for this list. We encourage the documentation of new records by specimen vouchers and expect to add many new records as a result of your collections and our verification.

Table 1. Comparison of selected treatments of Texas Grasses

|  | Goulds (1975) | Shaw et al 2011 | This Checklist |
| :--- | :--- | :--- | :--- |
| Subfamılies | 6 | 8 | 9 |
| Tribes | 21 | 19 | 23 |
| Genera | 122 | 181 | 150 |
| Species | 523 | 721 | 638 |

Table 2. Synopsis of this grass classification

| Subfamilies | Tribes | Genus/Genera | Species |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
| Aristıdoideae | 1 | 1 | 18 |
| Arundinordeae | 1 | 3 | 4 |
| Bambusordeae | 2 | 3 | 3 |
| Centothecoideae | 1 | 1 | 2 |
| Chloridordeae | 4 | 45 | 215 |
| Danthoniordeae | 1 | 2 | 4 |
| Ehrhartoideae | 2 | 6 | 11 |
| Panicordeae | 2 | 42 | 239 |
| Pooideae | 9 | $\mathbf{1 5 0}$ | 142 |
| Total | $\mathbf{2 3}$ |  | $\mathbf{6 3 8}$ |

This Checklist of Texas Grasses summarizes species and distribution data that includes the following information:

1. All species names are in alphabetical order.
2. The distribution for each taxon is summarized by the numbers $\mathbf{1 - 1 0}$, representing the 10 vegtational areas of Texas (Fig. 1). In addition to this see the six areas of the data below.
3. Correct names are in italics and boldface. Appropriate synonyms are not in italics or bold and underlined. Synonyms are included in the alphabetical list. The synonyms are followed by parentheses that include an equal ( $=$ ) sign and where that synonym is now treated as a taxon.
4. Authorities are given for genera, species, subspecies, and varieties (typical subspecies and varieties, called autonyms, do not have authorities).
5. Scientific names and authorities are followed by common names (if available). The first common name of a species is shown in all capital letters, and additional common names appear in lowercase letters. The initial letters of common names for genera, if any, are capitalized. If the common name of a genus is used, the name is abbreviated to its first letter.
6. The codes for origin, longevity, phenology, distribution, and cultivation are given to the right of the accepted species.

Origin<br>$\mathrm{N}=$ Native $\mathrm{I}=$ Introduced<br>Longevity<br>$\mathrm{A}=$ Annual $\mathrm{B}=$ Biennial $\quad \mathrm{P}=$ Perennial<br>Season of Growth<br>$\mathrm{W}=$ Warm season $\mathrm{C}=$ Cool season<br>Cultivated<br>CUL

7. Cultivated crops or ornamental taxa are designated with CUL.

The following codes denote plant origin, longevity, season of growth and wetland classification.
Origin: $\mathbf{N}=$ Native, $\mathbf{I}=$ Introduced
Longevity: $\mathbf{A}=$ Annual, $\mathbf{B}=$ Biennial, $\mathbf{P}=$ Perennial
Season of growth: $\mathbf{W}=$ Warm season growth, $\mathbf{C}=$ Cool season growth
Cultivated $=\mathbf{C U L}$

## 2012 Grasses of Texas Checklist

ACHNATHERUM (=STIPA)
A arıdum (=Stipa arida)
A clandestınum (=Stipa clandestina)
A, curvifolium (=Stipa curvifolia)
A emmens (=Stipa eminens)
A hymenoides (=Stipa hymenoides)
A lobatum (=Stipa lobata)
A nelson11 (=Stipa perplexa)
A perplexum (=Stipa perplexa)
A robustum (=Stipa robusta)
A. scribneri (=Stipa scribneri)
AEGILOPS ( $=$ TRITICUM)
A cylindrica ( $=$ Triticum cylindricum)
AGROPOGON
A littoralis (Sm ) C E Hubbard
(Agrostis stolonifera $\times$ Polypogon monospeliensis) IPW ..... 10
AGROPYRON Gaertn, Wheatgrass
A arızonicum ( $=$ Elymus arizonicus)
A. cristatum (L) Gaertn, CRESTED W ..... IPC
89 10CUL
A desertorum ( $=$ A. cristatum)
A elongatum (=Elymus pontica)
A intermedium ( $=$ Elymus hispidus)
A smith11 (=Elymus smithii)
A spicatum (=Elymus spicatus)
A subsecundum (=Elymus trachycaulus)
A trachycaulum (=Elymus trachycaulus)
AGROSTIS L , Bentgrass
A. avenacea J Gmel, PACIFIC B ..... IPC ..... 10
A. elliottiana Schult, ELLIOTT B, annual NAC $\begin{array}{llll}1 & 2 & 3 & 4\end{array}$ ..... 7 ticklegrass
A. exarata Trin SPIKE B ..... NPC10
A gigantea ( $=$ A. stolonifera)
A. hyemalis (Walt ) B S P, WINTER B, fly- $\quad$ NPC $\quad 1 \begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$ ..... 10away grass, ticklegrass, spring $b$.
A. perennans (Walt) Tuckerm, AUTUMN B , ..... NPC
13
perennial bA scabra ( $=$ A. hyemalis)
A semiverticillata (=Polypogon viridis)

```
A. stolonifera L, REDTOP, creeping b
IPC
2
7 810
```

AIRA L, Harrgrass
A. caryophyllea L, ANNUAL H IAC 1
A elegans (=A. caryophyllea)
ALLOLEPIS Soder \& H F Deck
A. texana (Vasey) Soder \& H F Deck ..... NPW

```10
```

ALOPECURUS L, Foxtail
A. carolinianus Walt, CAROLINA F ..... NAC
IAC ..... 2
AMELICHLOA (= STIPA)
A clandestina (= Stipa clandestina)
ANDROPOGONL, Bluestem
A annulatus (=Dichanthium annulatum)
A altus (= Bothriochloa alta)
A aristatus (= Dichanthium aristatum)
A barbinodis (= Bothriochloa barbinodis var. barbinodis)
A bladh11 (= Bothriochloa bladhii)
A caucasicus ( $=$ Bothriochloa bladhii)
A cirratus (= Schizachyrium cirratum)
A divergens (= Schizachyrium scoparium var. divergens)
A edwardsianus (= Bothriochloa edwardsiana)
A ellott11 of Texas auth, not Chapm (=A. gyrans)
A exaristatus (= Bothriochloa exaristata)
A frequens (=Schizachyrium scoparium var.

```scoparium)
```

A. gerardii Vitman, BIG B
var chrysocomus (Nash) Fern, BIG B ..... NPW ..... 89 ..... 10
NPW
NPW var gerardii BIG B, turkey-foot

```NPW
```

A. glomeratus (Walt) B S P , BUSHY B , bushy ..... NPW

```beardgrass
```

A. gyrans Ashe ELLIOTT'S B., Ellott beardgrass ..... NPW ..... 23
A hallii (=A. gerardii var. paucipilus)
A hirtiflorus (= Schizachyrium sanguineum var. hirtiflorum)
A hybridus (= Bothriochloa hybrida)
A intermedia (= Bothriochloa bladhii)
A ischaemum var songaricus ( $=$ Bothriochloa ischaemum)
A. littoralis (=Schizachyrium scoparium var. littoralis)
A longipaniculata (=Bothriochloa laguroides subsp. torreyana)
A neomexicanum (=Schizachyrium neomexicanum)
A nodosus (= Dichanthium aristatum)
A. perforatus (= Bothriochloa barbinodis)
A pertusus (=Bothriochloa pertusa)
A saccharondes var torreyanus (=Bothriochloa laguroides subsp. torreyana)
A scoparius var divergens (=Schizachyrium scoparium var. divergens)
A scoparius var virilis (=Schizachyrium scopariumvar. divergens)
A sericeus ( $=$ Dichanthium sericeum)
A spadiceus (=Schizachyrium spadiceum)
A springfield11 (= Bothriochloa springfieldii)
A. ternarius Michx SPLITBEARD B, splitbeardNPW$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$10
beardgrass, sllvery beardgrass, feather $b$
A. virginicus L , BROOMSEDGE B , yellowsedge $b$, Virginia $b$, broomsedgeNPW
A virginicus var abbreviatus ( $=$ A. glomeratus)
A wrightil (= Bothriochloa wrightii)
ANISTANTHA (= BROMUS)
A diandrus (=Bromus diandrus)
A rubens (-Bromus rubens)
A sterilis (=Bromus sterilis)
A tectorum (=Bromus tectorum)
ANTHAENANTIA P Beauv, Silkyscale
A. rufa (Ell) Schult, PURPLE SNPW12
A. villosa (Michx) P Beauv, GREEN S, purple ..... NPW ..... 23
ANTHOXANTHUM L, Vernalgrass
A. aristatum Boiss, SMALL SWEET V, v. ..... IAC
A. odoratum L, SWEET V ..... IPC
APERA Adans
A. spica-venti (L) P Beauv, LOOSE ..... IAC ..... 4
ARISTIDA L, Threeawn
A. adscensionis L , SLXWEEKS T ..... NAW
$\begin{array}{llll}6 & 7 & 8 & 9\end{array}$ ..... 10
A affinus ( $=A$, palustris)
A. arizonica Vasey, ARIZONA T ..... NPW ..... 10
A barbata ( $=$ A. havardii)
A. basiramea Engelm ex Vasey, FORKTIP T. NAW
A. brownii ( $=$ A. purpurea)
A. desmantha Trin \& Rupr., CURLY T, western NAW trıpleawn grass, western t
A. dichotoma Michx , CHURCHMOUSE T., NAW 1 ..... 34povertygrass
A. divaricata Humb \& Bonpl ex Willd, ..... NPW POVERTY T
A fendlenana (=A. purpurea var. fendleriana)
A glauca (=A. purpurea var, nealleyi)
A. gypsophila Beetle, GYP T ..... NPW ..... 10
A hamulosa ( $=$ A. ternipes)
A. havardii Vasey, HAVARD T NPW ..... $9 \quad 10$
A intermedia (=A. longespica var. geniculata)
A. lanosa Muhl ex Ell, WOOLLYSHEATH T, ..... NPW
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$woolly tripleawn grass, woolly t
A longiseta ( $=$ A. purpurea var. longiseta)
A longiseta var rariflora ( $=$ A. purpurea var. longiseta)
A longiseta var robusta ( $=$ A. purpurea var. longiseta)
A. longespica Porr, SLIMSPIKE T
var geniculata (Raf) Fern, KEARNEY NAW NAW $1 \begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$T, plains t
var. longespica, SLIMSPIKE T,slender t
A. oligantha Michx, OLDFIELD T, prarie t, NAW $1 \begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$ ..... 10
few-flowered arıstida A orcuttiana ( $=A$. schiediana)
A. palustris (Chapm ) Vasey, LONGLEAF T NPW ..... 1
A. pansa Woot \& Standl, WOOTEN T ..... NPW
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$ ..... 10

$$
7
$$

A. purpurascens Porr,
ARROWFEATHER T, broomsedge, arrowgrass
A. purpurea Nutt ..... NPW10
var fendleriana (Steud) Vasey,FENDLER T
var laxuflora ( $=A$. purpurea var.purpurea)
var. longiseta (Steud ) Vasey, RED T, NPWdogtown-grass,
var nealleyi (Vasey) Allred, NEALLEY ..... NPWT
var purpurea, PURPLE T, purple NPWneedlegrass
var wrightii (Nash) Allred, WRIGHT"S NPWT.
A. ramosissima Engelm ex A Gray, S-CURVE T NAW 1
A roemeriana ( $=$ A. purpurea var. purpurea)
A. schiedeana Trın \& Rupr, SINGLEAWN NPW ARISTIDA, beggarstick t , Orcutt's t ..... 10 ..... NPW
A. ternipes Cav ..... 10

var gentilis (Henr.) Allred, HOOK T. NPW

var gentilis (Henr.) Allred, HOOK T. NPW
var ternipes, SPIDERGRASS ..... NPW ..... 10
A virgata ( $=$ A. purpurascens)
A wnightı1 (=A. purpurea var wrightii)
ARTHRAXON P. Beauv
A. hispidus (Thunb) Makino, JOINTHEAD ..... IAW I ..... 5
$\begin{array}{lllllll}2 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$ ..... 10
$\begin{array}{llllll}4 & 5 & 6 & 7 & 8 & 9\end{array}$ ..... 10
7 ..... 7
ARUNDINARIA Michx
A. gigantea (Walt) Muhl, GIANTCANE, NPC 2345 7 ..... 10
A tecta (=A. gigantea)
$A R U N D O$ L
A. donax L , GIANTREED IPW $\begin{array}{llllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$ ..... 10CUL
AVENA L, Oat
A. fatua L
var fatua, WILD O. ..... IAC 23
var sativa (L) Hausskn, O, cultivated IAC ..... $\begin{array}{lllllllllll}\text { IAC } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$o
A satıva (=A. fatua var. sativa)
AXONOPUS P Beauv, Carpetgrass
A affinis $(=A$. fissifolius)
A. compressus (Sw) P Beauv, BROADLEAF C ..... NPW ..... 2
A. fissifolius (Raddı) Kuhlman, COMMON C ..... NPW ..... 123
A. furcatus (Flugge) A Hitchc, BIG C , flat ..... NPW ..... 23
BLEPHARIDACHNE Hack
B. bigelovii (S Wats) Hack, BIGELOW ..... NPW ..... 10DESERTGRASS

## BLEPHARONEURON Nash

B. tricholepis (Torr) Nash, PINE DROPSEED, harry dropseed ..... 10
NPWBOTHRIOCHLOA Kuntze, Bluestem
B. alta (A Hitchc) Henr, TALL B ..... NPW
B. barbinodis (Lag) Hert, CANE Bvar barbinodis, CANE B, cane NPWNPWbeardgrass, bristlejoint $b$
var perforata (Fourn) Gould,

| NPW | 2 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |PINHOLE B. pinhole beardgrass,perforated $b$

B. bladhii (Retz) S T. Blake, AUSTRALIAN B IPW2310
B caucasica ( $=$ B. bladhii)
B. edwardsiana (Gould) L R Parodı, MERRILL'S NPWB
B. exaristata (Nash) Henr, AWNLESS B ..... NPW
B. hybrida (Gould) Gould, HYBRID B ..... NPW
B intermedia ( $=$ B. bladhii)
B. ischaemum (L) Keng, KNNG RANCH B IPW
B. laguroides (DC) Hert
subsp torreyana (Steud) Allred \&NPW
Gould, SILVER B, silver beardgrass
B longipaniculata ( $=$ B. laguroides subsp.
torreyana)
B. pertusa (L.) A Camus, PITTED B ..... IPW6
B sachharoides var torreyana ( $=$ B. laguroides subsp. torreyana)
B. springfieldii (Gould) L R Parodi, NPW7
SPRINGFIELD B
B. wrightii (Hack) Henr, WRIGHT'S B NPW10
BOUTELOUA Lag mut. Lag, Grama
B. aristidoides (Kunth) Griesb ..... NAW
$6 \quad 7$10
var aristidoides, NEEDLE G, sixweekgvar arizonica (M E. Jones) Allred
B. barbata Lag, SLXWEEKS G$\begin{array}{lllllllllll}\text { NAW } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
B. breviseta Vasey, GYPG NPW ..... 10
B. chondrosioides (Kunth) Benth ex S Wats, NPWSPRUCETOP G.B. curtipendula (Michx) Torr
var caespitosa Gould \& Kapadia, NPW SIDEOATS G
var curtipendula, SIDEOATS G ..... NPWvar tenuis Gould \& Kapadia,IPW
CREEPING SIDEOATS G
B dactyloides ( $=$ Buchloe dactyloides)
B. eriopoda (Torr) Torr, BLACK G, woollyfoot NPW g
B. gracilis (Kunth) Lag, ex Griffiths, BLUE G. ..... NPW
B. hirsuta Lag, HAIRY G NPW
NPW
B. kayii Warnock, KAY G
NPW
B. pectinata Featherly, TALL G
NPW
B. ramosa Scribn ex Vasey, CHINO G
NPW B. repens (Kunth) Scribn, \& Merr, SLENDER
G., large-mesquite g
B. rigidiseta (Steud) A Hitchc
var rigidiseta, TEXAS G., ..... NPWmesquitegrass
B. simplex Lag, MAT G ..... NAW
B. trifida Thurb ex S Wats, RED G, threeawn g ..... NPW
var trifida
B. uniflora Vasey, NEALLEY G, one-flowered ..... NPW
g
B. warnockii Gould \& Kapadıa, WARNOCK G NPW710
$\begin{array}{lllllll}2 & 3 & 5 & 6 & 7 & 8 & 9\end{array}$ ..... 1010
BRACHIARIA (Trin) A Griseb, Signalgrass
B arizonica (=Urochloa arizonica)
B brizantha ( $=$ U. brizantha)
B cillatissima ( $=$ U. ciliatissima)
B. eruciformis (J E Smuth) A Griseb ..... IAW ..... 7
B fasciculata ( $=$ U. fusca)
B mutica ( $=$ U. mutica)
B plantaginea ( $=$ U. platyphylla)
B platyphylla ( $=$ U. platyphylla)
B ramosa (=U. fasciculata)
B reptans ( $=U$. reptans)
B texana ( $=$ U. texana)
BRACH YEL YTRUM P Beauv
B. erectum (Schreb ex Spreng) P Beauv, ..... NPC ..... 1
SOUTHERN SHORTHUSK
BRACHYPODIUM P Beauv
B. distachyon (L) P Beauv, PURPLE ..... IAC
$5 \quad 7$
FALSEBROME
BRIZA L, Quakmggrass
B. maxima L, BIG QIAC $1 \quad 2$
B. minor L, LITTLE Q ..... IAC ..... $\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
BROMOPSIS (=BROMUS)
B anomalus (=Bromus anomalus)
B cllatus (= Bromus ciliatus)
B inermis ( $=$ Bromus inermis)
B lanatıpes (= Bromus lanatipes)
B pubescens (=Bromus pubescens)
B texensis (=Bromus texensis)
BROMUS L, Brome
B. anomalus Rupr ex Fourn, NODDING B, ..... NPC anomalous $b$
B. arizonicus (Shear) Stebbins, ARIZONA B NPC ..... 10710
B. carinatus Hook \& Arn, CALIFORNIA B ..... NPC
B. catharticus M A Vahl, RESCUEGRASS, ..... IAC
NPC B. ciliatus L, FRINGED B ..... NPC
B. diandrus Roth, RIPGUT B, ripgut grass ..... IAC
B frondosus ( $=$ B. porteri)
B. hordeaceus L, SOFT B, soft chessIAC
B. inermis Leyss, SMOOTH B, bromo ..... IPC
B. japonicus Thunb ex Murray, JAPANESE B , ..... IACJapanese chess, spreading $b$
B. lanatipes (Shear) Rydb, WOOLY B ..... NPC
B. lanceolatus Roth, MEDITERRANEAN B ..... IAC
B madritensis subsp rubens ( $=B$. rubens)
B macrostachys ( $=$ B. lanceolatus)
$B$ marginatus ( $=B$. carinatus)
B mollis ( $=$ B. hordeaceus)
B. polyanthus Scribn, GREAT BASIN B NPC ..... 10
B. porteri (Coult ) Nash, PORTER'S B ..... NPC
NPC 134 ..... 7
B. pubescens Muhl ex Willd, CANADA BIAC
B. racemosa L , SMOOTH B
B richardsonin ( $=$ B. ciliatus)
B rigidus ( $=$ B. diandrus)
B. rubens L, RED B, foxtail b ..... IAC
B. secalinus L, RYE B
B. sterilis L, STERILE BIACB. tectorum L , JNEGRASS, cheatgrass b ,IACdowny bB. texensis (Shear) A Hitchc, TEXAS BNPCIAC
B unioloides ( $=$ B. catharticus)
B willdenow11 (=B. catharticus)
BUCHLOË Engelm
B. dactyloides (Nutt) Engelm.NPW
BUFFALOGRASS
CALAMOVILFA (A Gray) Hack
C. gigantea (Nutt) Scribn \& Merr BIG ..... NPW 89 ..... 10
SANDREED, glant reedgrass
CATAPODIUM Lnt (=DESMAZERIA)
C, rigidum (=Desmazeria rigida)
CATHESTECUM J Presl
C. erectum Vasey \& Hack, FALSE GRAMA ..... NPW ..... 7 ..... 10
CENCHRUS L , Sandbur, Cenchrus
C. brownii Roem \& Schult, GREEN S IPW6
C. ciliaris (=Pennisetum ciliare)
C. echinatus L, SOUTHERN S ,, hedge-hog NAW $1 \begin{array}{llll}1 & 3 & 4\end{array}$ ..... 6 ..... grass
C incertus ( $=$ C. spinifex)
C. longespinus (Hack) Fern, LONGSPINE S ..... NAW
345
NPW ..... 2
67 ..... 10C. myosuroides Kunth, BIG C, big sandbur,
cadıllo
C pauciflorus ( $=$ C. spinifex )
C. setigerus ( $=$ Pennisetum setigerum)
C. spinifex A Cav, COMMON S$\begin{array}{lllllllllll}\text { NPW } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
CERATOCHLOA (=BROMUS)
C carinata (=Bromus carinatus)
C catharticus (=Bromus catharticus)
C polyantha (=Bromus polyanthus)
CHASMANTHIUM Lmk, Woodoats
C. latifolium (Michx) H Yates, BROADLEAF ..... NPW W.
C. laxum (L.) H Yates, NARROWLEAF W NPW ..... $1 \begin{array}{lll}1 & 3 & 4\end{array}$
C sessiliflorum (=C. laxum)
CHLORIS Sw, Windmillgrass, Chlons
C. andropogonoides E Fourn, SLIMSPIKE W ..... NPW ..... 7C. barbata (L) Sw, SWOLLEN WNAW2
C. $\times$ brevispica (C. $\times$ subdolichostachya)
C. canterae Arechav., PARAGUAYAN W ..... IPW
23
C, chloridea (=Enteropogon chlorideus)
C. ciliata Sw, FRINGED CNPW267
C. crinita ( $=$ Trichloris crinita)
C. cucullata Bisch, HOODED W., hooded ..... NPW fingergrass
C. divaricata R Br., SPREADING W IPW
C. gayana Kunth, RHODESGRASS ..... IPW
2 ..... 102
C. inflata (=C. barbata)
C petraea (=Eustachys petraea)
C pilosa Schumach (not collected for several IAPW2
years)
C. pluriflora ( $=$ Trichloris pluriflora)
C. polydactyla (misapplied= C. elata of FL)
C. x subdolichostachya Muell, SHORTSPIKE ..... NPW
$\begin{array}{llllll}2 & 3 & 4 & 5 & 6 & 7\end{array}$
C. submutica Kunth, MEXICAN W ..... IPW
C. texensis Nash, TEXAS W ..... NPWC. verticillata Nutt, TUMBLE WNPW
C. virgata Sw, SHOWY C., feather fingergrass ..... NAW
CHONDROSUM (= BOUTELOUA)
C barbatum (= Bouteloua barbata)
C. brevisetum (= Bouteloua breviseta)
C e eriopodum (= Bouteloua eriopoda)
C gracile (= Bouteloua gracilis)
$\mathrm{C}_{\mathrm{C}}$ hirsutum (= Bouteloua hirsuta)
C, kayi (= Bouteloua kayi)
C. ramosum (= Bouteloua ramosa)
C. simplex (= Bouteloua simplex)
C trifidum (= Bouteloua trifida)
CHRYSOPOGON Trin
C. pauciflorus (Chapm ) Benth ex Vasey, FALSE NAW ..... 2
BEARDGRASS
C. zizanioides (L) Roberty, VITIVER IPW ..... 3
CUL
CINNA L
C. arundinacea L, STOUT WOODREED, wood NPC ..... 1
COELORACHIS (=MNESITHEA)
C cylindrıca (=Mnesithea cylindrica)
C. rugosa ( $=$ Mnesithea rugosa)
COIX L
C. lacryma-jobi L, JOBS-TEARS ..... IPW
CORTADERIA Stapf
C. jubata (Lemoine ex Camere) Stapf, PURPLE ..... IPW
PAMPUSGRASS
C. selloana (Schult \& Schult f) Asch \& Graebn, IPW PAMPASGRASS
COTTEA Kunth
C. pappophoroides Kunth, COTTAGRASS ..... NPW710
CRITESION (=HORDEUM)
C jubatum (=Hordeum ju batum)
C. murinum (=Hordeum murinum)
C. pusillum (=Hordeum pusillum)
CTENIUM Panz, TOOTHACHEGRASS
C. aromaticum (Walt) A Wood,NPW1
TOOTHACHEGRASSS, orangegrass
CYNODON L Rich, Bermudagrass
C. aethiopicus Clayton \& Harlan, ETHIOPIAN ..... IPW
DOGTOOTHGRASS
C. dactylon (L) Pers, B, pata del gallo, common IPW ..... PW
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$ ..... b. ..... CULCUL
C. x magennisii Hurcombe, MAGENNIS IPW
DOGTOOTH GRASS
C. nlemfuensis Vanderyst, AFRICA B IPW ..... 2 ..... 6
CUL
C. plectostachyus (K Schum ) Pilg, ..... IPW ..... 6 ..... CUL
STARGRASS
CYNOSURUS L
C. echinatus L, BRISTLY DOGTAIL IAC ..... 3
DACTYLIS L
D. glomerata L, ORCHARDGRASS ..... IPC 12 ..... $7 \quad 9 \quad 10$
DACTYLOCTENIUM Willd
D. aegyptium (L) Willd, DURBAN
CROWFOOTGRASS, Egyptian crowfootgrassIAW
DANTHONIA DC, Danthonia, Oatgrass
D. sericea Nutt, DOWNY ONPC1
D. spicata (L) P Beauv ex Roem \& Schult, NPC 135POVERTY O, poverty d
DASYOCHLOA Willd ex Rydb
D. pulchella (Kunth) Willd ex Rydb, ..... NPW
$\begin{array}{llll}7 & 8 & 9 & 10\end{array}$
DESMAZERIA Dumort
D. rigida (L.) T. Tutin, STIFFGRASS IAC $\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$ ..... 7
DIARRHENA P Beauv
D americana of TX authors (=D. obovata)
D. obovata (Gleason) A Brandenburg, NPC ..... 1
AMERICAN BEAKGRAIN
DICHANTHELIUM (A Hitchc \& Chase) Gould, Rosettegrass
D. aciculare (Desv ex Porr) Gould \& C Clark
var. aciculare, NARROW-LEAF R ..... $\begin{array}{lllll}\text { NPC } & 1 & 2 & 3 & 4\end{array}$
var angustifolium (Ell) Freckmann \& ..... NPC
Lelong
D. acuminatum (Sw ) Gould \& C Clark
var acuminatum, _WOOLLY R ..... NPC
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$ ..... 10
var densiflorum (Rand \& Redf) Gould ..... NPC
\& C. Clark
var lindheimeri (Nash) Gould \& C NPC2
Clark, LINDHEIMER R
var longiligulatum (Nash) Gould \& C NPC1
Clark
var villosum (Sw ) Gould \& C ..... NPC 1
Clark, WHITEHAIRED R
D angustifolum (=D. aciculare)
D. boscii (Por ) Gould \& C Clark, BOSC'S R ..... $\begin{array}{llll}\text { NPC } & 1 & 2 & 3\end{array}$
D. clandestinum (L) Gould, DEERTONGUE R ..... NPC 1 ..... 3
D. commutatum (Schult) Gould, VARIABLE R ..... NPC ..... 12
D. consanguineum (Kunth) Gould \& C Clark, NPC ..... 12
KUNTH"S R
D. depauperatum (Muhl ) Gould, STARVED R NPC ..... 1
D. dichotomum (L.) Gould, FORKED R
var dichotomum ..... $\begin{array}{llllll}\mathrm{NPC} & 1 & 2 & 3 & 4 & 5\end{array}$
var ensifolum ( $=$ D. ensifolium)
var lucidum (Ashe) Freckmann \& ..... NPC
Lelong
var nitidum (Lam ) Freckmann \& Lelong ..... NPC
var ramulosum (Torr.) LeBlond ..... NPC
var uncephylum (Trin ) Davidse ..... NPC
D. ensifolium (Baldw ex Ell) Gould BOG R ..... NPC ..... 1
D. lanuginosum (= D. acuminatum var acuminatum)
D. latifolium (L. ) Harvil, BROADLEAF R ..... NPC
D. laxifforum (Lam ) Gould, OPENFLOWER R ..... NPC
D leucoblepharis (=D. strigosum)
D lindhermerı ( $=$ D. acuminatum var lindheimeri)
D. linearifolium (Scribn) Gould, SLIMLEAF R ..... NPC
D. malacophyllum (Nash) Gould, SOFTLEAF R ..... NPC
D. nodatum (A Hitchc \& M A Chase) Gould, NPC ..... NPCSARITA R
D. oligosanthes(Schult ) Gould, SCRIBNER'S R ..... NPC
D. ovale (Ell) Gould \& C. Clark, EGG-LEAF R ..... NPC
D. pericellatum (Vasey) Gould, CEDAR R ..... NPC
NP
D polyanthes ( $=$ D. sphaerocarpon)
D. portoricense (Desv ex Hamilt ) B Hansen \& R ..... NPC
Wunderlin, BLUNTGLUME R
D. ravenelii (Scribn \& Merr) Gould,NPCRAVENEL'S R
D. scabriusculum (Ell) Gould \& C Clark, NPC SWAMP R
D. scoparium (Lam ) Gould, VELVET R ..... NPC12
12$\begin{array}{lll}4 & 5 & 7\end{array}$
D scribnerianum ( $=$ D. oligosanthes)
D. sphaerocarpon (Ell) Gould \& C Clark,ROUNDSEED R
var isophyllum (Scribn ) Gould \& C ..... NPC
Clark, LEAFY R
var sphaerocarpon, ROUNDSEED R NPC
NPC
D. strigosum (Muhl ex Ell) Freckmann
var strigosum, CUSHION R
D tenue (hybrid see FNA)
D. wrightianum Scribn, WRIGHT'S R ..... NPC
DICHANTHIUM Willem, Bluestem
D. annulatum (Forssk) Stapf, KLEBERG B ..... IPW
D. aristatum (Por ) C E Hubb, ANGLETONB ..... IPW
D. sericeum ( R Br) A Camus, SILKY B ..... IPW1
$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$ ..... 10
$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$ ..... 7
1
12
5
6
1
1 ..... 3
1 ..... 3
5 ..... 710
DIGITARIA Haller, Crabgrass, Cottontop
D adscendens ( $=D$. sanguinalis)
D. arenicola (Swallen) Beetle, SAND ..... NPW ..... 2
WITCHGRASS
WITCHGRASS
D. bicornis (Lam.) Roem \& Schult,IAW2
CRABGRASS, tropical crabgrassD. californica (Benth) Henr, ARIZONANPW
2 ..... 61
COTTONTOP, Californa cottontop
D. cilaris ( $=$ D. sanguinalis)
D. cognata (Schult ) Pilger
subsp cognata, FALL WITCHGRASS,$\begin{array}{llllllll}\text { NPW } & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
diffuse crabgrasssubsp pubiflora [Vasey ex L H Dewey]
Wipff, FALL WITCHGRASS, diffusecrabgrass
D diversiflora ( $=$ D. bicornis)
D. filiformis (L) Koel, SLENDER ..... NPW ..... 23
CRABGRASS, slender fingergrass
D filiformis var. villosa ( $=$ D. villosa)
D. hitchcockii (Chase) Stuck, SHORTLEAF NPW COTTONTOP
D. insularis (L) Mez ex Ekman, SOURGRASSNPW
D. ischaemum (Schreb) Schreb ex Muhl, IAW SMOOTH CRABGRASS
D. patens (Swallen) Henr, TEXAS COTTONTOP ..... NPW
2 ..... 67
D pubiflorum ( $=$ D. cognata)
D. runyons ( $=$ D. texana)
D. sanguinalis (L) Scop, HAIRY CRABGRASSIAW
D. texana A Hitchc, TEXAS CRABGRASS,NPW$\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$Texas fingergrass, dune crabgrass
D. villosa (Walt) Pers, SHAGGY CRABGRASSNPW
2
6 ..... 10
23 671023
D. violescens Link, VIOLET CRABGRASS ..... IAW ..... 1
DISTICHLIS Raf, Saltgrass
D. spicata (L.) Greene
var spicata, S, spicata s. NPW 12 $7 \quad 8 \quad 9$ ..... 10
D stricta (D. spicata)
D texana (=Allolepis texana)
ECHINOCHLOA P Beauv, Cockspur,BarnyardgrassE. colona (L) Link, JUNGLERICEIAW
E. crus-galli (L) P Beauv,
var crus-galli BARNYARDGRASSIAW
$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$ $7 \quad 89$ ..... 10
var frumentacea (Link) W F Wight ..... IAW ..... 2$\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
E. crus-pavonis (Kunth) Schultvar. crus-pavonis, GULF CNAWvar macera (Wieg) Gould$\begin{array}{llllllllll}\text { NAW } & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
E. esculenta (A Braun) H Scholtz, JAPANESE ..... IAW
MILLETCUL
E. muricata (P Beauv ) Fernvar microstachya Wieg$\begin{array}{lllllllllll}\text { NAW } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$var muricata, ROUGH B$\begin{array}{lllllllll}\text { NAW } & 1 & 2 & 3 & 4 & 5 & 7 & 10\end{array}$
E. polystachya (Kunth) A Hitchc, CREEPINGNPW2
RIVERGRASS
E paludigena (Turner et al, not verıfied)
E. walteri (Pursh) Heller, WATER MILLETNAW $\begin{array}{lllll}1 & 2 & 3 & 4\end{array}$7
EHRHARTA Thunb
E. calycina I E Smith, SOUTHERN IPC ..... 34
CUL
ELEUSINE Gaertn, Goosegrass
E. indica (L) Gaertn, G, yardgrass, zacate IAW ..... IAW
E. tristachya (Lam ) Lam., THREESPIKE G ..... 3ELIONURUS Humb \& Bonpl ex Willd,Balsamscale
E. barbiculmis Hack, WOOLSPIKE B, NPWbristlenode b
E. tripsacoides Humb \& Bonpl ex Willd, PANNPWAMERICAN B,b
EL YMUSL, Wildrye, Wheatgrass
E. arizonicus (Scribn \& J G Sm1th) Gould, NPC ..... 10
ARIZONA WHEATGRASS
E. canadensis L.
var canadensis, CANADA WILDRYE, NPCnodding wildrye
E curvatus (=E. virginicus)
E elymoides ( $=E$. longifolius)
E elongatus ( $=$ E. ponticus) ..... IPCE glabriflorus ( $=$ E. virginicus)
E. hispidus (P Opiz) Melderis, INTERMEDIATE IPC 10WHEATGRASS
E interruptus ( $=$ E. canadensis)
E junceus (=Psathrostachys juncea)
E macgregori1 ( $=$ E. virginicus)
E. longifolius (J. G. Smith) Gould, LONGLEAF NPC ..... NPC
SQUIRRELTAIL
E. ponticus (Podp) Melderis ,TALL ..... IPC
WHEATGRASS
E pringle1 (=E. canadensis)
E. repens (L.) Gould, QUACKGRASS ..... IPC
789 ..... 10CUL
E. smithii (Rydb) Gould, WESTERN NPCWHEATGRASS
E. spicatus (Pursh) Gould, BLUEBUNCH NPC
WHEATGRASS
E texensis (? hybrid)
E. trachycaulus (Link) Gould ex Shinners, NPC
SLENDER WHEATGRASS$8 \quad 9 \quad 10$
E triticoides (=Leymus triticoides)
E. villosus Muhl ex Willd, DOWNY WILDRYE ..... NPC
E. virginicus L, VIRGINLA WILDRYE ..... NPCTAW10
ELYTRIGIA (=EL YMUS)
E arızonıca (=Elymus arizonicus)
E intermedia (=Elymus hispidus)
E pontica (=Elymus elongatus)
E sm1th11 (=Elymus smithii)
ENNEAPOGON Desv ex P Beauv, Pappusgrass
E. desvauxii P Beauv, FEATHER P, spike p, NPW ..... $\begin{array}{llll}7 & 8 & 9 & 10\end{array}$Wright's p
ENTEROPOGON Nees, Umbrellagrass
E. chlorideus (I Presl) W. Clayton, BURYSEED NPW ..... 24 ..... 6U.
ERAGROSTIS Wolf, Lovegrass
E. airoides Nees, LLLUSIONGRASS ..... IPW ..... 3
E. amabilis (L) Wight \& Arnolt ex Nees, ..... IAW ..... 12
JAPANESE L
E arida ( $=$ E. pectinacea var miserrima)
E. barrelieri Daveau, MEDITERRANEAN L ..... IAW
E beyrichin ( $=$ E. secundiflora)
E. capillaris (L.) Nees, LACEGRASS, tiny l ..... NAW 238
E. cilianensis (All) Vignola ex Janchen,STINKGRASSE. ciliaris (L) R Br, GOPHERTAIL LE. curtipedicellata Buckl, GUMMY L,shortstalked 1E. curvula (Schrad) Nees, WEEPING L$\begin{array}{lllllllll}\text { IPW } & 2 & 3 & 4 & 5 & 7 & 8 & 9 & 10\end{array}$
E diffusa (=E. pectinacea var pectinacea)
E. elliottii S Wats, ELLIOTT L ..... NPW ..... 123
E. erosa Scribn, CHIHUAHUA L ..... NPWNAW 2
NPW ..... $\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$ ..... 10
E glomerata (=E. japonica)
E. hirsuta (Michx) Nees, BIGTOP L
E. hypnoides (Lam ) Britt, TEAL L, smoothNPW $12 \begin{array}{lll}1 & 3\end{array}$creeping grassNAW $\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 7\end{array}$
E. intermedia A Hitchc NPW
var intermedia, PLAINS L
E. japonica (Thunb) Trin, POND L ..... NAW
E. lehmanniana Nees, LEHMANN L ..... IPW
E. lugens Nees, MOURNING L ..... NPW
E megastachya ( $=$ E. cilianensis)
E. mexicana (Hornem) Link
subsp mexicana, MEXICAN L ..... NAW10
E. minor Host, LITTLE L NAW ..... 10
E neomexicana ( $=$ E. mexicana var mexicana)
E oxylepis ( $=$ E. secundiffora var oxylepis)
E. palmeri S Wats, RIO GRANDE LNPWE. pectinacea (Michx ) Nees, SPREADING Lvar. miserrima (E Fourn) J Reeder IAW$\begin{array}{lllllll}\text { IAW } & 2 & 4 & 6 & 7 & 9 & 10\end{array}$
var pectinacea, SPREADING L ..... IAW
2 5E perplexa ( $=$ E. pilosa)E pilifera ( $=$ E. trichodes)
E. pilosa (L) P Beauv, INDIA L ..... IAW
E poaeoides (= E. minor)
E. refracta (Muhl ex Ell) Scribn, COASTAL L, NPW ..... NPW
NAW $1 \begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$ E. reptans (Michx ) Nees, CREEPING L.
E. secundiflora J Presl, RED L
subsp. oxylepis (Torr ) S. D Koch, ..... NPW RED L
E. sessilispica Buckl, TUMBLEL ..... NPW
E. silveana Swallen, SLLVEUS L. ..... NPW
NPW
NPWE. spectabilis (Pursh) Steud, PURPLE LIPWE. superba Peyt, WILLMANNL
E. swallenii A Hitche, SWALLEN LNPW
E. tef(Zuce) Trotter, TEFF ..... IPW
E tenella (=E. amabilis)
E tephrosanthes ( $=$ E. pectinacea var miserrima)
E. trichodes (Nutt) Wood, SAND L ..... NPW
E trichodes var pilifera ( $=$ E. tnchodes)
EREMOCHLOA Buse
E. ophiuroides (Munro) Hack, IPW 13CUL
ERIANTHUS (=SACCHARUM)
E alopecurordes ( $=S$. alopecuroideum)
E contortus ( $=S$. brevibarbe var contortum)
E giganteus $(=S$. giganteum)
E strictus ( $=S$. baldwinii)
ERIOCHLOA Kunth, CupgrassE. acuminata (I Presl) Kunth
var acuminata, SOUTHWESTERN C NAW ..... 7 ..... 10
var minor (Vasey) R B. Shaw, SMALL NAW ..... 10
E. contracta A Hitchc, PRAIRIE C. ..... NAW $\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
E gracilis ( $=$ E. acuminata var. acuminata)
E gracilss var munor ( $=$ E acuminata var. minor)
E. polystachya Kunth, CARIBBEAN C IPW ..... 2
E. pseudoacrotricha (Stapf ex Thell) J M Blake, IPW26
VERNAL C
E. punctata (L) Desv ex Hamilton, LOUISIANA NPW26
C, everlasting-grass
E. sericea (Scheele) Munro ex Vasey, TEXAS C. NPW silky c ..... 2
$\begin{array}{lllll}4 & 5 & 6 & 7 & 8\end{array}$ ..... 10
ERIONEURON Nash, Erioneuron, Woollygrass
E. avenaceum (Kunth) Tateoka, ..... NPW LARGEFLOWERED E
E grandiflora ( $=$ E. avenaceum)
E. nealleyi (Vasey) Tateoka, NEALLEY"S E ..... NPW ..... 2
EUCHLAENA ( $=Z E A$ )
E perennis (=Zea perennis) ..... IPW
EUSTACHYS Desv, Fingergrass
E. caribea (Spreng) Herter, CHICKENFOOTGRASS
E. neglecta (Nash) Nash, FOURSPIKE F ..... IPWE. petraea (Sw) Desv, STIFFLEAF FNPW
E. retusa (Lag) Kunth, FNPW
FESTUCA L., Fescue
F. arizonica Vasey, ARIZONA F., canuela ..... NPC borreguera ..... 10
F arundinacea ( $=$ Schedonorus arundinaceus)
F dertonensis ( $=$ Vulpia bromoides)
F. ligulata Swallen, GUADALUPE F ..... NPC
F megalura (=Vulpia myuros var hirsuta)
F myuros (=Vulpia myuros var myuros)
F obtusa ( $=F$. subverticillata)
F octoflora (=Vulpia octoflora var octoflora)
F. paradoxa Desv, CLUSTER F ..... NPC 1
3
IPW
NPW
NPW tridens
E. pilosum (Buckl) Nash, HAIRY E, hary ..... NPW ..... NPW71010
E pulchellum (=Dasyochloa pulchella)
2
F pratensis ( $=$ Schedonorus arundinaceus)
F. rubra L, RED F ..... NPC10
F sciurea ( $=V$. sciurea)
F. subverticillata (Pers) E Alexeev, NODDING ..... NPC ..... 23
F. versuta Beal, TEXAS F NPC ..... 7
GASTRIDIUM P Beauv
G. phleoides (Nees \& Meyer) C E Hubb, IACNITGRASS
G. ventricosum ( $=$ G. phleoides)
GL YCERIA R Br, Mannagrass
$G$ arkansana ( $=G$. septentrionalis var. arkansana)
G. declinata Breb, LOW M ..... IPC
G. grandis S Wats, NOT VERIFIED
G. notata Chevall, NOT VERIFIED
G. septentrionalis A Hitchc, EASTERN M,floating m
var arkansana (Fern) Steyerm \& NPCKucera, ARKANSAS Mvar septentrionalis, EASTERN M, NPC$\begin{array}{llll}\text { NPC } & 1 & 2 & 3\end{array}$
floating m
G. striata (Lam ) A Hitchc, FOWL M, nerved m. NPC ..... 34
GYMNOPOGON P Beauv, Skeletongrass
G. ambiguus (Michx ) B S P , BEARDED S , ..... NPW
NPW ..... 3
HACKELOCHLOA (=MNESITHEA)
H granularis (=Mnesithea granularis)
HAINARDIA Greuter
H. cylindrica (Willd) W Greuter THINTAIL ..... IAC ..... 2
HEMARTHRIA R Br
H. altissima (Poir) Stapf \& C E Hubb, IPW ..... 2 ..... 6 ..... 10 ..... LIMPOGRASS
HESPEROSTIPA (Elas) Barkworth, Needlegrass
H. comata (Trm \& Rupr) M Barkworth, ..... NPW ..... 89 ..... 10NEEDLE-AND-THREAD
H. neomexicana (Thurb) M Barkworth, NEW ..... NPWMEXICO FEATHERGRASS, New Mexico n
HETEROPOGON Pers, Tanglehead
H. contortus (L) P Beauv ex Roem \& Schult, NPW ..... 2negra
H. melanocarpus (Ell) Benth, SWEET ..... IAW ..... 2
TANGLEHEADCUL
HILARIA Kunth
H. belangeri (Steud) Nash, COMMON CURLY- NPW MESQUITE, creeping mesquite
H. jamesii (Torr.) Benth, GALLETA ..... NPW
H. mutica (Buckl) Benth, TOBOSA, tobosagrass NPW ..... $\begin{array}{lllll}6 & 7 & 8 & 9 & 10\end{array}$
H. swallenii Cory, SWALLEN CURLY - ..... NPW MESQUTE ..... 10
HOLCUS L
H. lanatus L, COMMON VELVETGRASS IPC $1 \quad 2$ ..... CUL
HOPIA (=PANICUM)
H obtusa (-Panicum obtusum)
HORDEUM L, Barley
H. jubatum L ,FOXTAIL B, squirreltall grass NPC ..... $\begin{array}{llll}7 & 8 & 9 & 10\end{array}$
H leporium (=H. murinum subsp leporinum)
H. murinum L
subsp glaucum (Steud) Tzvelev ..... IAC ..... 10
subsp leporinum, MOUSE B ..... IAC ..... $\begin{array}{llll}7 & 8 & 9 & 10\end{array}$ .....
H. pusillum Nutt, LITTLE B, mouse b
H. vulgare L, BARLEY
NAC ..... 12 ..... 10IAC
$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$ ..... 10
HYDROCHLOA (=LUZIOLA)
H caroliniensis (=Luziola fluitans)
HYPARRHENIA Andersson ex E Fourm, Thatchingrass
H. hirta (L) Stapf, THATCHINGRASS ..... IPW
234 ..... 7
CUL
H. rufa (L) Stapf JARAGUAGRASS IAPW ..... 23
CUL
IMPERATA Cirillo
I. brevifolia Vasey, SATINTAIL, congograss ..... NPW ..... $7 \quad 10$I. cylindrica (L.) Raeusch, CONGONGRASS IPW 23CUL
KOELERIA Pers, Junegrass
K cristata ( $=$ K. macrantha)
K gerardı (=Rostraria cristata)
K. macrantha (Ledeb ) Schult, JNEGRASS, NPC ..... $\begin{array}{llll}7 & 8 & 9 & 10\end{array}$ prairie junegrass
K phleoides (=Rostraria cristata)
K pyramidata ( $=$ K. macrantha)
LAMARCK1A Moench
L. aurea (L.) Moench, GOLDENTOP ..... IAC
LEERSIA Sw, Cutgrass
L. hexandra Sw, CLUBHEAD C ..... NPW ..... $2 \quad 6$
L. lenticularis Michx, CATCHFLYGRASS ..... NPW ..... 12
L. monandra Sw, BUNCH C ..... NPW$2 \quad 6$
L. oryzoides (L) Sw, RICE C$\begin{array}{lllllllll}\text { NPW } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$10
L. virginica Willd, WHITEGRASS, Virgina c
NPW
1234 ..... 4
NPW
LEPTOCHLOA P Beauv, Sprangletop
L. chloridiformis (Hack ) Parodi, ARGENTINE NPW ..... NPW ..... 2
S
L. dubia (Kunth) Nees, GREEN S, Texas crowfoot
L. fascicularis( $=$ L. fusca subsp fascicularis)
L. fillformis (=L.panicea subsp. mucronata)
L. fusca (L) Kunthsubsp fascicularis (Lam.) N Snow,BEARDED Ssubsp uninervia (J Presl) N Snow,MEXICAN. S
L. panicea (Retz) Ohw1 subsp mucronata (Michx ) Nowack, RED S, slendergrass
L. nealleyi Vasey, NEALLEY SNPW
2 456 ..... 78 ..... 1010

都

L. arkansana (Nutt) L. H Dewey, OZARKGRASS
NAC
LOLIUM L, Ryegrass
L. arundnaceum (=Festua arundinacea)
L italicum (=L. perenne)
L multuflorum (=L. perenne)
L. perenne L, PERENNIAL R, English r, IPC ryegrass
L. rigidum ( $=$ L. perenne)
L. temulentum L
var temulentum, DARNEL R, poison ..... IAC
$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$ ..... $7 \quad 8 \quad 9$ darnelLUZIOLA Juss
L. fluitans (Michx) Terrell \& Robinson, ..... NPW1
WATERGRASS
L. peruviana Gmel, PERUVIAN WATERGRASS IPW ..... 2
LYCURUS Kunth, Wolftail
L. phleoides Kunth, WOLFTAIL, Texas tmothy ..... NPW
L. setosus (Nutt ) C Reeder, BRISTLY W NPW
MANISURIS (=HEMARTHRIA \& MNESITHEA)
M altissima (=Hemarthria altissima)
M cylindrica (=Mnesithea cylindrica)
M rugosa (=Mnesithea rugosa)
MELICA L, Melic
M. bulbosa Geyer ex Porter \& Coult, NPC ..... 10
ONIONGRASS
M. montezumae Piper, MONTEZUMA M ..... NPCM. mutica Walt, TWO-FLOWERED M, narrow NPCm
M. nitens (Scribn ) Nutt ex Piper, NPC $5 \quad 7 \quad 8 \quad 9$ ..... 10
THREEFLOWER M, tall m.
M. porteri Scribn, PORTER'S M NPC ..... 7 ..... 10
MELINIS P Beauy
M. repens (Willd) Zizka, NAT ALGRASS ..... IPW ..... 6
MICROCHLOA R Br
M. kunthii Desv, KUNTH'S SMALLGRASS ..... NPW10

## MICROSTEGIUM Nees

## BROWNTOP <br> MISCANTHUS Anderss

M. vimineum (Trin) A Camas, NEPALESE

IAW
M. sinensis Anderss, EULALIA, Silvergrass IPW
M. cylindrica (Michx) Koning \& Sosef, CAROLINA J.
M. granularis (L.) Koning \& Sosef, IAW PITSCALEGRASS
M. rugosa (Michx ) Koning \& Sosef, WRINKLED J

MONANTHOCHLOË Engelm
M. littoralis Engelm , SHOREGRAS dwarfstand saltgrass, keygrass
MONERMA (=HAINARDIA)
M cylindrıca (=Hainardia cylindrica)

MOOROCHLOA (-BRACHIARIA)
M eruciformis (-Brachiaria eruciformis) Shaw et al 2011

MUHLENBERGIA Schreb, Muhly
M. andina (Nutt) A Hitche, FOXTAIL M NPW
M. arenacea (Buckl) A Hitchc, EAR M, sand m NPW
M. arenicola Buckl, SAND M NPW
M. asperifolia (Trin) Parod, SCRATCHGRASS,
alkalı m , rough-leaved dropseed, rough-leaved m
M. brevis C O. Gooding, SHORT M NAW
M. bushii R W Pohl, NODDING M NPW
M. capillaris (Lam ) Trın, HAIRYAWN M, NPW long-awned hargrass, slender $m$.
M. crispiseta A Hitchc, MEXICAN M

IAW
M. cuspidata (Torr.) Rydb, PLANNS M

NPW
NAW
IAW
NPW
NAW
NPW
NPW
M. filiformis (Thurb ex S Wats) Rydb, PULL-UP IAW

NPW 2

NPW

NPW 123
4
M. depauperata Scribn, SIXWEEKS M
M. diversiglumis Trin
M. dubia E Fourn, PINE M
M. eludens C Reeder, GRAVELBAR M
M. emersleyi Vasey, BULLGRASS, bluegrass
M. expansa (Poir) Trin, CUTOVER M M
M. fragilis Swallen, DELICATE M NAW ..... 10
M. frondosa (Poir) Fern, WIRESTEM M ..... NPW ..... 4
M. glabrifloris Scribn, INLAND M NPW ..... 4
M. glauca (Nees) J D Jacks, DESERT M ..... NPW
M. x involuta Swallen, CANYON M ..... NPW
M. lindheimeri A Hitchc, LINDHEIMER MNPW
M. metcalfei M E Jones, METCALF M ..... NPW
M. mexicana (L.) Trin , MEXICAN M ..... NPW
M. minutissima (Steud) Swallen, LEAST M, NAWsixweeks m
M. montana (Nutt) A Hitchc, MOUNTADN M
$\begin{array}{lll}4 & 5 & 7\end{array}$
$\begin{array}{llll}4 & 5 & 6 & 7\end{array}$
M monticola ( $=$ M. tenuifolia)
M. parviglumis Vasey, LONGAWN M, small NPW ..... 10glume m
M. pauciflora Buckl, NEW MEXICO M NPW
M. polycaulis Scribn, CLIFF M, many-stemmed NPW ..... 10m
M. porteri Scribn ex Beal, BUSH M ..... NPW
M. pungens Thurb ex A Gray, PUNGENT M, NPW sandhill m ..... 9$\begin{array}{lll}7 & 9 & 10\end{array}$
M. racemosa (Michx) B S P, GREEN M, NPW
satingrass
9 ..... 10
M. repens (Presl) A Hitchc, CREEPING M, red NPW
m
M. reverchonii Vasey \& Scribn, SEEP M, NPWReverchon's m.
M. rigens (Benth) A Hitchc, DEERGRASS ..... NPW
M. rigida (Kunth) Kunth, PURPLE M, stıff $m$ ..... NPW
M. schreberi J F Gmel, NIMBLEWILL, NPWsatingrass, Schreber's m
M sericea ( $=$ M. capillaris)
M. setifolia Vasey, CURLYLEAF M, bristle- NPWleaved m7
45 ..... 78
5
NPW
NPW ..... 10$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$7
M. sobolifera (Muhl ex Willd) Trin, ROCK M, NPW rock dropseed
M. spiciformis Trnn, LONGAWN M ..... NPW
M. straminea A Hitchc, SCREWLEAF M NPW
M. sylvatica (Torr) Torr ex A Gray, FOREST M ..... NPW
M. tenuifolia (Kunth) Trin, MESA M ..... NAPW 3
M. texana_Buckl, TEXAS M NAW
M. thurberi (Scribn) Rydb, THURBER M ..... NPW
M. torreyi (Kunth) A Hitche ex Bush, RING M, ..... NPWringgrass
M. uniflora (Muhl) Fern, BOG M IPW101010
M villosa (=M. villiflora var. villosa)
M. villiflora A Hitchc. var villosa (Swallen) NPW ..... 7 ..... $9 \quad 10$
Morden, HAIRY M
M. wrightii Vasey ex J. M Coult, SPIKE M NPW ..... \#
MUNROA Torr
M. squarrosa (Nutt) Torr, FALSE ..... NAW
789 ..... 10
BUFALOGRASS, Munro's grass
NASSELLA Desv, Needlegrass
N. leucotricha (Trin \& Rupr.) W R Pohl, NPC ..... NPW ..... 10
N. wiry speargrass, wiry n
N. viridula (Trin) M Barkworth, GREENN ..... NPC ..... 7
NEERAGROSTIS (=ERAGROSTIS)
N reptans (=Eragrostis reptans)
OPLISMENUS P Beauv
O. hirtellus (L.) P. Beauv, BASKETGRASS
$\begin{array}{lllll}\text { IPW } & 1 & 2 & 3 & 4\end{array}$ ..... 6
ORYZA L
O. sativa L, RICEIAW 1236
CUL
ORYZOPSIS Michx , Rucegrass
O hymenoides (=Stipa hymenoides)
O. micrantha (Trin \& Rupr) Thurb, ..... NPC ..... 9 LITTLESEED R
PANICUM L, Panicum
$P$ acıculare
var aciculare (=Dichanthelium aciculare var aciculare)var angustıfolium (=Dichantheliumaciculare var angustifolia)
P acuminatum
var acummatum (=Dichantheliumacuminatum var acuminatum)var densiflorum (=Dichantheliumacuminatum var. densiflorum)var lindhemerı (=Dichantheliumacuminatum var. lindheimeri)
$P$ agrostoides ( $=P$. rigidulum)
$P$ amarulum ( $=P$. amarum)
P. amarum Ell, BITTER P.NPW2
P. anceps Michx, BEAKED P.
$P$ angustifolium (=Dichanthelium aciculare)
P. antidotale Retz, BLUE P
P arizonicum (= Urochloa arizonica)
P. bergii Arechav
P. brachyanthum Steud, PIMPLE P
P brizanthum (= Urochloa brizantha)
P. bulbosum Kunth, BULB PP. capillare L, COMMON WITCHGRASSP. capillarioides Vasey, SOUTHERN
WITCHGRASS, slender panicgrass
P ciliatissimum ( $=$ Urochtoa ciliatissina)
P clandestinum ( $=$ Dichanthelium clandestinum)
P. coloratum L, KLEINGRASS
P commutatum ( $=$ Dichanthelium commutatum)
$P$ condensum ( $-P$. rigidulum)
P depauperatum ( $=$ Dichantheliumdepauperatum)
P dichotomum ( $=$ Dichanthelium dichotomumvar dichotomum)
P. dichotomiflorum Michx, FALL P, spreading witchgrass
P. diffusum Sw, SPREADING P ..... NPW $\quad \begin{array}{llllllll}2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$ ..... 10
P ensifolium (= Dichanthelium ensifolium)
P fasciculatum (= Urochloa fasciculata)
P filipes ( $=$ P. hallii var. filipes)
P firmulum (=Setaria reverchonii subsp firmula)
P. flexile (Gatt) Scribn in Keamey, WIRYWITCHGRASS
P gemmatum (-Paspalidium geminatum)
P. ghiesbreghtii E Foum, GHIESBREGHT P NPW 2 ..... 6
P. gymnocarpon Ell, SAVANNAH P
P. hallii Vasey
var filipes (Scribn) Waller, FILLY Pvar hallii, HALLS P
NPWNPW
P. havardii Vasey, HARVARD P ..... NPW$P$ helleri (= Dichanthelium oligosanthes var-scribnerianum)
P. hemitomon Schult, MAIDENCANE,
NPWSimpson's grass
P. hians Ell, GAPING P
P. hillmanii Chase, HILLMAN P
P. hirsutum Sw, HAIRY WITCHGRASS, glant123
NPW ..... NAWNPWwitchgrass, hary p .NPWIPW
NPW ..... 123

NAW 34$\begin{array}{llll}3 & 4 & 5 & 7\end{array}$
CUL ..... 都
10
NPW ..... 77
IPW ..... 234
$\begin{array}{llll}6 & 7 & 8 & 9\end{array}$ CUL
IPW ..... $\begin{array}{lll}2 & 3 & 4\end{array}$
NPW ..... 123
NAW ..... $\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$
$7 \quad 8 \quad 9$ ..... 10
NPW 2 ..... 6
頻
12347)PW


P. hirticaule J. Presl, ROUGHSTACK NAW WITCHGRASS10
P huachucae (= Dichanthelium acuminatum varacuminatum)
P lanuginosum (= Dichanthelium acuminatum var. acuminatum)
P laxiflorum (= Dichanthelium Iaxiflorum)
P lindheimeri (= Dichanthelium acuminatum var.lindheimeri)
P linearifolium (= Dichanthelium linearifolium)
P malacophyllum ( $=$ Dichanthelium malacophyllum)
P maximum (= Urochloa maxima) ..... IPW
P. miliaceum L, BROOMCORN MILLET, proso ..... IAW
P muticum (= Urochloa mutica)
P notatum (= Dichanthelium notatum)
$P$. obtusum Kunth, VINE MESQUITE, grapevine-mesquite, wrregrass ..... $\begin{array}{llllllllll}\text { NPW } & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
P oligosanthes var olggosanthes (= Dichantheliumoligosanthes var oligosanthes)
P olgosanthes var scribnerianum ( $=$Dichanthelium oligosanthes varscribnerianum)
P paludıvagum (=Paspalidium geminatum)
P pedicellatum (= Dichanthelium pedicellatum)
P perlongum (= Dichanthelium linearifolium)
P. philadelphium Bernh ex Trin,
PHILADELPHIA WTCHGRASS, woodNAW $1 \begin{array}{llll} & 3 & 4 & 5\end{array}$witchgrass
P pilcomayense ( $P$. bergii)
P platyphyllum (= Urochloa platyphylla)
P. plenum A Hitchc \& Chase, CANYON P ..... NPW ..... 7 ..... 10
2 ..... 6$5 \quad 8 \quad 9$
CUL
P polyanthes (= Dichanthelium sphaerocarponvar isophyllum)
P purpurascens (=Urochloa mutica)
$P$ ramisetum ( $=$ Setaria ramiseta)
P ramosum (= Urochloa ramosa)
P raveneli1 (= Dichanthelium ravenelii)
P. repens L, TORPEDOGRASSIPW2Preptans (= Urochloa reptans)P reverchoni1 (=Setaria reverchonii)P. rigidulum Bosc ex Nees, REDTOP P.NPW $\begin{array}{lllll}1 & 2 & 3 & 4\end{array}$7
P scoparium (= Dichanthelium scoparium)
$P$ scribnerianum ( $=$ Dichanthelium oligosanthesvar scribnerianum)
P sphaerocarpon (= Dichanthelium
sphaerocarpon
var sphaerocarpon)
P. tentrum Beyr ex Trin
NPW ..... 2
$P$ tennesseense (= Dichanthelium acuminatumvar acuminatum)
P texanum (= Urochloa texana)
P. trichoides Sw
$P$. verrucosum Muhl, WARTY PNAW 2
P villosissima (= Dichanthelium acuminatum var villosum)P. virgatum L , SWITCHGRASS$\begin{array}{lllllllllll}\text { NPW } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
$P$ werner1 ( $=$ Dichanthelium linearifolium)
$\underline{P}$ xalapense (= Dichanthelium laxiflorum)
PAPPOPHORUM Schreb, Pappusgrass
P. bicolor E Fourn, PINK P, two-colored p ..... NPW 2
P. vaginatum Buck1, WHIPLASH P,mucronulate p
P wrightı (=Enneapogon desvauxii)
PARAPHOLIS C E Hubb
P. incurva (L) C E Hubb, SICKLEGRASS ..... IAC ..... 2
PASCOPYRUM (= ELYMUS)
P smithn ( $=$ E. smithii)
PASPALIDIUM StapfP. geminatum (Forssk) Stapf, EGYPTIAN$\begin{array}{llllll}\text { IPW } & 1 & 2 & 3 & 5 & 6\end{array}$
PASPALIDIUM
PASPALUML, Paspalum
P. acuminatum Raddı, BROOK $P$
P. almum M A. Chase, COMBS P
P. bifidum (Bertol ) Nash, PITCHFORK P.
NPW 12
P. boscianum Flugge, ..... BULL $P$
NPW ..... 123
$P$ circulare ( $=P$. laeve var. circulare)
P. conjugatum P J Bergius, SOUR P
P. conspersum Schrad, SCATTERED PNPW 2
$P$. convexum Humb \& Bonpl ex Flugge, ..... 1IPW2
MEXICAN P
P. dilatatum Poir, DALLISGRASS, paspalum IPW grassP. dissectum (L) L, MUDBANK PNPW 123

```
P. distichum L, KNOTGRASS, jontgrass, Ft NPW 1
    Thompsongrass
P. floridanum Michx, FLORIDA P, big Florida p,
        big p,
P. fluitans (Ell ) Kunth, WATER P
P. hartwegianum E Fourn, HARTWEG P NPW
P hydrophlum (=P. modestum)
P. intermedium Munro ex Morong & Britt, IPW
    INTERMEDIATE P.
P. laeve Michx, ROUND-SEED P, field p smooth NPW 1
        p.
P. laeve var circulare ( }=P\mathrm{ . laeve)
P laeve var pilosum ( }=P\mathrm{ . laeve)
P. langei (E Fourn) Nash, RUSTYSEED P, NPW 1 2 3
        Lange'sp
P lentiferum (=P. praecox)
P. lividum Trne ex Schltal, LONGTOM, pull- NPW 1 2
        and- be- damned
P longyplum ( }=\mathrm{ P. laeve var. pilosum)
P. malacophyllum Trın, RIBBED P.
IPW
3
P. minus E Fourn, MAT P.
NPW 1 2
6
P. modestum Mez, WATER P
IPW 2
P. monostachyum Vasey, GULFDUNE P, single- NPW 2
spike p
P.notatum Flugge, BAHIAGRASS IPW 1PW
P paspalodes ( }=P\mathrm{ . distichum)
P. plicatulum Michx, BROWNSEED P, plated NPW 1
    p
P. praecox Walt, EARLY P
NPW
P. pubiflorum Rupr ex E. Fourn, HAIRYSEED P, NPW (1)
        smoothseed p, haryflowered p
P pubiflorum var glabrum ( }=P\mathrm{ . pubiflorum)
P}\mathrm{ repens(= P. fluitans)
P. scrobiculatum L, INDIA P
IPW 3
P. separatum Shinners NPW
3
P. setaceum Michx
    var ciliatifolium (Michx) Vasey, NPW 1
FRINGELEAF P
    var muhlenbergii (Nash) D Banks
NPW 1
    var. setaceum, THIN P.
    var. stramineum (Nash) D Banks
P stramneum ( }=P\mathrm{ . setaceum var. stramineum)
P texanum ( }=P\mathrm{ . plicatulum)
P. unispicatum (Scribn & Merr ) Nash,
NPW 2
6
    ONESPIKE P
P. urvillei Steud, VASEYGRASS, Urvill's p IPW 1P 1 2 3 4 4, 5
```

P. vaginatum Sw, SEASHORE P , sand ..... NPW knotgrass ..... 2P. virgatum L, TALQUEZAL
NPW ..... 6
IPW P. wrightii A Hitchc, WRIGHT'S P ..... 2
PENNISETUM Rich, Fountaingrass
P. alopecuroides (L) Sprenge, FOXTALL F ..... IPW ..... 3
P. ciliare (L) Link, BUFFELGRASS
P. flaccidum Griseb, HIMALAYAN F
P. glaucum (L) R Br, PEARL MILLET ..... IAW ..... 23P. macrostachys (Brongn) Trin, PURPLE FIAW
P. nervosum (Nees) Trin, BENTSPIKE P IPW IPW 2
IPW
IPW 234 67 ..... 10
CUL
CUL
CUL
P. orientale Willd ex Rich, LAURISAGRASS IPW ..... 23
P. polystachion (L) Schult, MISSIONGRASS IAPW
P. purpureum Schumach, NAPIERGRASS, IPW ..... 23
elephantgrass
P. setaceum (Forssk) Chiov, F IPW23
P. setigerum (Vahl) Wipff, IPW BIRDWOODGRASS
$\begin{array}{llll}\text { NAC } & 1 & 2 & 3\end{array}$ ..... 67 ..... 10
P. angusta Nees ex Trin, TIMOTHY C
IPC
PHALARIS L, Canarygrass67
P. villosum R Br ex Fresen, FEATHERTOP IPW ..... IPW
NPC P. arundinacea L, REED C
P. brachystachys Lmk, SHORTSPIKE C ..... IAC
P. canariensis L, C ..... IACP. caroliniana Walt, CAROLINA C, southern c NACNAC
P. minor Retz, LITTLESEED C. ..... IACP stenoptera ( $=$ P. aquatica)
PHLEUM L
P. pratense L, TIMOTHY ..... IPC 1
CUL
PHRAGMITES Adans
P. australis (Cav.) Trin ex Steud, COMMON ..... NPWREED
P communis ( $=P$. australis)
PHYLLOSTACHYS Sieb \& Zucc
P. aurea A \& C Riv, GOLDEN BAMBOO ..... IPC
3 ..... 7
Paurosulcata, NOT VERIFIED ..... IPC
P nigra, NOT VERIFIED ..... IPC
PIPTANTHERA (=ORYZOPSIS)
P micranthum (=Oryzopsis micrantha)
PIPTOCHAETIUM J Presl, Needlegrass
P. avenaceum (L) Parodi BLACKSEED N, black NPC ..... 23
oatgrass, oats $n$
P. fimbriatum (Kunth) A Hitchc, PINYON ..... NPW ..... 10
RICEGRASS
P. pringlei (Scribn) Parod, PRINGLE N ..... NPW ..... 10
PLEURAPHIS (=HILARIA)
P jamesin (=Hilaria jamesii)
P muticus (=Hilaria muticus)
POA L, Bluegrass
P. annua L, ANNUAL B, low speargrass, dwarf IAC meadowgrass
P. arachnifera Torr, TEXAS B ..... NPC ..... $\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 7 & 8\end{array}$
NPC ..... $\begin{array}{llll}\mathrm{NPC} & 1 & 2\end{array}$
P. autumnalis Muhl ex Ell, AUTUMN B, flexuous speargrass
P. bigelovii (Vasey) Scribn, BIGELOW B ..... NAC
P. bulbosa L, BULBOUS B ..... IPC
789 ..... 10P. chapmaniana Scribn, CHAPMANN BNAC
P. compressa L, CANADA B ..... IPC
$P$ fendleriana (Steud) Vasey, MUTTONGRASS, NPCmutton $b$, fendler $b$
$P$. interior Rydb, INLAND B NPC ..... 10
P. occidentalis Vasey, NEW MEXICANB NPC ..... 10
P. pratensis L, KENTUCKY B , junegrass N/IPC 1 5 ..... $9 \quad 10$
P. strictiramea A Hitchc, CHISOS B NPC ..... 10
P. sylvestris Gray, WOODLAND B, Sylvan NPC ..... 1
speargrass
P. trivialis L., ROUGH B. ..... IPC
POLYPOGON Desf, Polypogon, Beardgrass
P. elongatus Kunth, SOUTHERN B NPC10
P. interruptus H B K, DITCH B ..... IPC ..... 7
P. monspeliensis ( L ) Desf, RABBITFOOT P,IACannual beardgrass, rabbitfoot-grass
$P$ semverticillatus ( $=P$. viridis)
P. viridis (A Gouan) M Breistroffer, WATER ..... IPC BENTGRASS
PSATH YROSTACH YS Nevski, Wildrye
$P$.juncea (Fischer) Nevsk1, RUSSIAN W ..... IPC
PSEUDOROEGRERIA (=ELYMUS)
$P$ arizonica (=Elymus arizoncus)
P spicata (=Elymus spicatus)
PUCCINELLIA Parl, Alkalıgrass
P. fasciculata (Torr) E Bickn, SALTMARSH A IPC ..... 8
REDFIELDIA Vasey
R. flexuosa (Thurb ex A Gray) Vasey, ..... NPW ..... 9
BLOWOUT GRASS
RHYNCHELYTRUM (=MELINIS)
R repens (=Melinis repens)
ROSTRARIA Trin
R. cristata (L.) Tzvelev, ANNUAL JUNEGRASS IAC ..... 23
ROTTBOELLIA L f
R. cochinchinensis (Lour) W Clayton, ..... IAW ..... 2ITCHGRASS
SACCHARUM L, Plumegrass
S. alopecuroides (L) Nutt, SIL VER P ..... NPW ..... 12
S. baldwinii Spreng, NARROW P ..... NPW ..... 12
S. bengalense Retz, TALL P ..... IPW
S. brevibarbe (Michx ) Pers
Srevibare(Mrc)
var brevibarbe, SHORTBEARD P ..... NPW ..... 12
var contortum (Ell ) R D Webster, NPW ..... 23CUL
S. coarctatum (Fern) R D. Webster, NPW ..... 1
COMPRESSED P
S. giganteum (Walt) Pers, SUGARCANE PNPW$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
S. officinarum L, SUGARCANE ..... IPW ..... 1
S. ravennae (L) L , RAVENNAGRASS IPWCUL
CUL
SACCIOLEPIS Nash, Cupscale
S indica (L) M A Chase
IPW ..... 1
$S$ striata (L) Nash, AMERICAN CUPSCALE ..... NPW 123
SCHEDONNARDUS Steud
S. paniculatus (Nutt) Trel, TUMBLEGRASS NPW$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$10
SCHEDONORUS P Beauv, Festuca
S. arundinaceus (Schreb) Dumort $\begin{array}{lllllllll}\text { IPC } & 1 & 3 & 4 & 5 & 7 & 8 & 9 & 10\end{array}$ ..... CUL
SCHISMUS P Beauy
$S$ arabicus Nees, ARABIAN SCHISMUS ..... IAC ..... 10
S. barbatus (Loefl ex L ) Thell, COMMON IAC ..... 10
MEDITERRANEANGRASS
SCHIZACHYRIUM Nees, Bluestem
S. cirratum (Hack) Woot \& Standl, TEXAS B, NPW ..... 7 ..... 10
Texas beardgrass
$S \underline{\text { littorale ( } S . \text { scoparium var littorale) }}$
S. neomexicanum (Nash) Nash, NEW MEXICO NPW ..... 10
LITTLE B
S sanguineum (Retz) Alst
var hirtiflorum (Nees) S L Hatch, NPWHAIRY CRIMSON B
S. scoparium (Michx ) Nashvar divergens (Hack) Gould,NPW12
EASTERN LITTLE B
var littorale (Nash) Gould, SEACOAST ..... NPW$B$, seacoast beardgrassvar. scoparium, LITTLE BNPW
$\begin{array}{llllllll}2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$ ..... 10
NPW ..... 10
S. spadiceum (Swallen) Wipff, HONEY BNPW
S. tenerum Nees, SLENDER B1
SCLEROCHLOA P Beauv
S. dura (L) P Beauv, HARDGRASS ..... IAC ..... 345

| SCLEROPOA (=DESMAZERIA) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S rigida ( $=$ D. rigida) |  |  |  |  |  |  |  |  |  |  |  |
| SCLEROPOGON Phılıppı |  |  |  |  |  |  |  |  |  |  |  |
| S. brevifolius Phılippı, BURROGRASS | NPW |  |  |  |  |  |  |  | 8 | 9 | 10 |
| SECALE L, Rye |  |  |  |  |  |  |  |  |  |  |  |
| S. cereale L, RYE | IAC |  | 2 | 3 | 4 | 5 |  | 7 | 8 | 9 | $\begin{aligned} & 10 \\ & \text { CUL } \end{aligned}$ |
| SETARIA P. Beauv, Bristlegrass, Millet |  |  |  |  |  |  |  |  |  |  |  |
| S. adhaerans (Forssk) Chiov, TROPICAL BARBED B | IAC |  | 2 | 3 |  |  |  |  |  |  |  |
| S. corrugata (Ell) Schult, COASTAL B | NPW | 1 | 2 |  |  |  |  |  |  |  |  |
| S firmula ( $=$ S. reverchonii subsp firmula) |  |  |  |  |  |  |  |  |  |  |  |
| S geniculata ( $=$ S. parviflora) |  |  |  |  |  |  |  |  |  |  |  |
| S glauca ( $=$ S. pumila) |  |  |  |  |  |  |  |  |  |  |  |
| S. griesbachii E Fourn, GRIESBACH B | NAW |  |  |  |  |  | 6 | 7 |  |  | 10 |
| S. italica (L) P. Beauv., FOXTAIL M, Italıan m. | IAW |  |  |  | 4 |  |  | 7 | 8 |  |  |
| S. leucopila (Scribn \& Merr.) K Schum , PLAINS B | NPW |  | 2 |  |  | 5 | 6 | 7 | 8 | 9 | $\begin{aligned} & \text { CUL } \\ & 10 \end{aligned}$ |
| S lutescens ( $=$ S. pumila) |  |  |  |  |  |  |  |  |  |  |  |
| S. macrostachya Kunth, PLAINS B | NPW |  | 2 |  |  |  | 6 | 7 |  |  |  |
| S. magna Griseb, GIANT B, glant foxtall grass | NAW |  | 2 |  |  |  |  |  |  |  |  |
| S. palmifolia (J Konig) Stapf, PALMGRASS | IPW |  | 2 |  |  |  |  |  |  |  |  |
| S. parviflora (Porr) Kerguel, KNOTROOT B | NPW | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | $\begin{aligned} & \text { CUL } \\ & 10 \end{aligned}$ |
| S. pumila (Porr) Roem \& Schult, YELLOW B | IAW | 1 | 2 | 3 | 4 | 5 |  | 7 | 8 | 9 | 10 |
| S. reverchonii (Vasey) Pilger |  |  |  |  |  |  |  |  |  |  |  |
| subsp firmula (A Hitchc \& Chase) W E Fox, KNOTGRASS | NPW |  | 2 |  |  |  | 6 |  |  |  |  |
| subsp ramiseta (Scribn) W E Fox, RIO GRAND BRISTLEGRASS | NPW |  | 2 |  |  | 5 | 6 | 7 | 8 |  |  |
| subsp reverchonii, REVERCHON B | NPW |  | 2 | 3 |  | 5 | 6 | 7 | 8 | 9 | 10 |
| S. scheelei (Steud) A Hitchc, SOUTHWESTERN B, Scheele's b | NPW |  | 2 |  | 4 |  | 6 | 7 | 8 | 9 | 10 |
| S. texana Emery, TEXAS B | NPW |  |  |  |  |  | 6 | 7 |  |  | 10 |
| S. verticillata (L)P. Beauv, HOOKED B , bur b, foxtal grass | IAW |  |  | 3 | 4 | 5 | 6 | 7 |  |  | 10 |
| S. villosissima (Scribn \& Merr) K Schum, HAIRYLEAF B. | NPW |  |  |  |  |  | 6 | 7 |  |  | 10 |
| S. viridis (L) P Beauv, GREEN B, green foxtal grass | IAW |  |  |  | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

```
SITANION (=ELYMUS)
    S hystrix (=E. longifolius)
SORGHASTRUM Nash, Indlangrass
    S}\mathrm{ avenaceum (=S. nutans)
    S. elliottii (C Mohr) Nash, SLENDER I, long-
        bristled i
    S. nutans (L) Nash, YELLOW I, mdaanreed NPW (1)
SORGHUM Moench, Sorghum
    S. bicolor (L) Moench, GRAIN
    S. x drummondii (Steud) Mills & M A Chase, IAW
        SUDANSGRASS
    S. halepense (L) Pers, JOHNSONGRASS (IPW ( 
    S sudanense ( }=S\mathrm{ . x drummondii)
    S vulgare ( }=S\mathrm{ S. bicolor)
SPARTINA Schreb, Cordgrass
    S. alterniflora Loisel var glabra (Muhl) Fern, NPW 2
        SMOOTH C, salt-marshgrass
    S. bakeri Merr, SAND C NPW 2
    S. cynosuroides (L ) Roth, BIG C, salt-reedgrass NPW 2
    S juncea (=S. patens)
    S. densiflora Brongn, DENSEFLOWERED C. IPW
    S. patens (Alt) Muhl, MARSHHAY C, rush NPW 2
        saltgrass
    S. pectinata Lmk, PRAIRIE C , tall marshgrass, 
        sloughgrass
    S. spartinae (Trin ) Merr ex A Hitchc, GULF C, NPW
        coastal sacahuista, sacahuista
SPHENOPHOLIS Scribn, Wedgescale
    S. filiformis (Chapm.) Scribn, LONGLEAF W NPC 1
    S intermedia (=S. obtusa var. major)
    S. interrupta (Buckl) Scribn, PRAIRIE W IAC (
    S. Iongiflora (Vasey ex L H Dewey) A Hitchc, NAC 
        BAYOUW
    S. nitida (Brehl) Scribn, SHINY W.
    S. obtusata (Michx ) Scribn, PRAIRIE W
NAC 
SPOROBOLUSR Br, Dropseed
    S. airoides (Torr) Torr, ALKALI SACATON NPW 
    S arroides var wrightı ( }=\mathrm{ S. wrightii)
```

S asper ( $-S$. compositus)
var asper ( $=S$. compositus var compositus)var clandestinus ( $=S$. compositus varclandestinus)var drummondit ( $=S$. compositus vardrummondii)
var macer ( $=$ S. compositus var macer)
S. buckleyi Vasey, BUCKLEY D ..... NPW ..... 2
$S$ canoviren ( $=S$. compositus var. clandestinus)
$S$ clandestinus ( $=S$. compositus var. clandestinus)
S. coahuilensis Valdes-Reyna, COAHUILA D. ..... IAW10
S. compositus (Porr) Merr
var clandestinus (Biehl) Wipff \& S D. NPW ..... NPW
Jones
var composites, TALL D, longleaved NPW ..... $\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$rushgrass, rough rushgrassvar drummondii (Trin) Kartesz \& NPWGandh1, MEADOW D
var macer (Trin ) Kartesz \& Gandhi, NPWMISSISSIPPI D
S. contractus A Hitchc, SPIKE D NPW
S. coromandelianus (Retz) Kunth, WHORLED NPWD
S. cryptandrus (Torr) A Gray, SAND D, covered-spike d
S. diandrus (Retz) P. Beauv IPW
$S$ dontingensis (Trin) Kunth, CORAL D ..... IPW
S. flexuosus (Thurb ex Vasey) Rydb , MESA D ..... NPW
S. giganteus Nash, GIANT D ..... NPW
$\underline{S}$ heterolepis (Not in TX see Brown 1993)
$S$ indicus (L) R Br, SMUTGRASSNPW $1 \begin{array}{llll}1 & 2 & 3 & 4\end{array}$7
S. jacquentontii Kunth, RATSTAIL ..... IPW
$S$ junceus ( P Beauv) Kunth, PINEYWOODSD., purple d
S macer (S. compositus var. macer)
$S$ nealleyi Vasey, GYPGRASS, Nealley d ..... NPW ..... 7 ..... 10
S. neglectus Nash, PUFFSHEATH D. NAW ..... 7
S ozarkanus ( $=$ S, vaginiflorus)
S patens ( $=S$. coromandelianus)
$S$ poirettı ( $=S$ indicus)
$S$ pulvinatus ( $=S$. coromandelianus)
S. purpurascens (Sw.) Hamilt, PURPLE D ..... NPW
2 ..... 67
$S$ pyramidatus ( $=S$. coromandelianus)
S. silveanus Swallen, SILVEUS D NPW 123 ..... 5
S. texanus Vasey, TEXAS D. NPW ..... 89 ..... 10
S. tharpii_A Hitche, PADRE ISLAND D. NPW
S. vaginiflorus (Torr ex A Gray) Torr ex A
Wood

var ozarkanus (Fern) Shinners, OZARK

var ozarkanus (Fern) Shinners, OZARK

var ozarkanus (Fern) Shinners, OZARK .....  ..... NAW .....  ..... NAW .....  ..... NAW .....  ..... D .....  ..... D .....  ..... D
var vaginiflorus, POVERTY D ,
var vaginiflorus, POVERTY D ,
var vaginiflorus, POVERTY D , southern povertygrass southern povertygrass southern povertygrass
S. virginicus (L) Kunth, SEASHORE D,
S. virginicus (L) Kunth, SEASHORE D,
S. virginicus (L) Kunth, SEASHORE D, NPW NPW NPW
NAW
NAW
NAW
seashore rushgrass26
S. wrightii Munro ex Scribn, BIG SACATON, ..... NPW
Wright's sacaton
STEINCHISMA (=PANICUM)
S hians (Panicum hians) - hians (Panicum hians)
STENOTAPHRUM Trin
$S$ secutdatum (Walt) O Ktze, ST $\begin{array}{lllllll}\text { IPW } & 1 & 2 & 3 & 4 & 6 & 7\end{array}$
AUGUSTINEGRASS
STIPA L., Needlegrass
S. arida M E Jones, MORMON N, desert n ..... NPW
$6 \quad 7$10
45 ..... 7
1
3 5678
2
$S$ avenacea (= Piptochaetium avenaceum)
S. clandestina Hack, SHARPLEAF N, mexıcan n IPW ..... IPW
S columbiana ( $=S$. perplexa)
S comata (=Hesperostipa comata)
S. curvifolia Swallen, GUADALUPE N NPC ..... 10
S. eminens Cav, SOUTHWESTERN N, tall n NPC ..... 10
S. hymenoides Roem. \& Schult, INDIAN NPC ..... $9 \quad 10$
RICEGRASS
S leucotricha (=Nassella leucotricha)
S. lobata Swallen, LITTLEAWN N, lobed n NPC ..... $9 \quad 10$
S nelsonin (=S. perplexa)
S neomexicana (Hesperostipa neomexicana)
S. perplexa (P Hoge \& M Barkworth) Wipff \& NPC 7 ..... 10
Jones, COLUMBIA N , alpine n
S pringlei ( $=$ Piptochaetium pringlei)
S. robusta (Vasey) Scribn, SLEEPYGRASS NPC ..... $9 \quad 10$
S tenuissima (=Nassella tenuissima)
S. scribneri Vasey, SCRIBNER'S N. ..... NPC10
THEMEDA Forrsk
T. triandra Forrsk, RED OATGRASS IPW7
CUL
THINOPYRUM ( $=$ EL YMUS)
I. hispidum (=Elymus hispidus)
T ponticum (-Elymus ponticum)
TRACH YPOGON Nees
T. secundus (I Presl) Scribn, CRINKLEAWN NPW ..... 2
6 ..... 10
T. montufarı of Hitchcock's Manual Of U S Grasses, ed I (=T. secundus)
TRAGUS Haller, Burgrass
T. berteronianus Schult, SPIKE B, prıcklegrass, IAW ..... 2
67 ..... 10 goatgrass
TRICHACNE (=DIGITARIA)
T californica (=Digitaria californica)
T hitchcock11 (=Digitaria hitchcockii)
T insularıs (=Digitaria insularis)
T. patens (=Digitaria patens)
TRICHLORIS E. Fourn ex Benth, Rhodesgrass
T. crinata (Lag ) Parodi, FALSE R, multiflowered NPW
NPW ..... 2 ..... 6
T. pluriflora E Fourn, MULTIFLOWERED ..... 7 ..... 10
FALSE R, four-flowered chloris
TRICHONEURA Anders
T. elegans Swallen, SILVEUSGRASS, hary- ..... NAW
2 ..... 6 nerve grass
TRIDENS Roem \& Schult, Tridens
T. albescens (Vasey) Woot \& Standl, WHITE T NPW ..... $\begin{array}{llllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$ ..... 10
T. ambiguus (Ell) Schult, PINEBARREN T ..... NPW ..... 12
I avenaceus (=Erioneuron avenaceum var avenaceum)
T. buckleyanus (L H Dewey) Nash, BUCKLEY ..... NPWT.
T. congestus (L H Dewey) Nash, PINK TNPW24T. eragrostoides (Vasey \& Scribn) Nash, NPWOVEGRASS T.
T. flavus (L) A Hitchc
var chapmanii (Small) Shinners, ..... NPW1CHAPMAN T.var flavus, PURPLETOP, redtop NPWNPW
$\mathrm{T}_{1}$ grandiflora (=Erioneuron avenaceum var grandiflorum)
T. muticus (Torr) Nash

| var elongatus (Buckl) ) Shmners, <br> ROUGH T. <br> var muticus, SLIM T. | NPW |  | 3 | 4 | 5 |  | 7 | 8 | 9 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

T, nealleyi (=Erioneuron avenaceum var nealleyi)
T. pilosus (=Erioneuron pilosum)
T. pulchellum (=Dasyochloa pulch ella)
T. strictus (Nutt) Nash, LONGSPIKE T
T. texanus (S Wats ) Nash, TEXAS T
NPW ..... $\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$ ..... 7
NPW ..... 2 ..... 67
TRIODIA of Hitchcock's Manual of U S Grasses,
ed I ( $=$ TRIDENS )
TRIPLASIS P. Beauv
T. purpurea (Walt) Chapm, PURPLENAW $1 \begin{array}{llllllllll} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
SANDGRASS
TRIPOGON Roem. \& Schult, Tripogon
T. spicatus (Nees) Ekman, AMERICAN T NPW7
TRIPSACUM L
T. dactyloides (L) L, EASTERN GAMAGRASS NPW ..... $\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$ ..... 10
TRIRAPHIS R Br
T. mollis R Br , PURPLE PLUMEGRASS IPC ..... 6
TRISETUM (=SPHENOPHOLIS in Texas)
T. interruptum (=Sphenopholis interrupta)
TRITICUM L
T. aestivum L. WHEAT ..... $\begin{array}{lllllllllll}\mathrm{IAC} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
T. cylindricum (Host) Ces, Pass \& Gib, JOINTED ..... LAC 1CULGOATGRASS
UNIOLA L
U, latifolia (=Chasmanthium latifolium)
U, laxum (=Chasmanthium laxum)
U. paniculata L, SEA-OATS, beachgrass ..... NPW 2
U, sessiliflora (=Chasmanthium Iaxum)
UROCHLOA P Beauv, Signalgrass
NAW10
U. brizantha (Hochst ex A Rich.) R D. Webster, IPW ..... 6 PALISADE SIGNALGRASS
U. ciliatissima (Buckl) R D Webster, FRINGED NPW
NAW $\begin{array}{llllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$ ..... 10 BROWNTOP S, fieldgrass, browntop
U. maxima (Jacq) R D Webster, IPW ..... 2 ..... 6 GIUNEAGRASS
U. mosambicensis (Hack ) Dandy, MOSAMBIC S IPW2
U. mutica (Forssk) T Q Nguyen, PARAGRASS IPW ..... 2 ..... 6
U. panicoides P. Beauv, LIVERSEED GRASS ..... IAW
2
U. plantaginea (Lunk) R D Webster PLANTAIN ..... IAW
U. platyphylla (Munro ex C. Wright) R D. NAWWebster, BROADLEAF S
U. subquadripara (Trin ) A Hitchc, TROPICAL ..... IACW
IAW $\begin{array}{llll}2 & 3 & 4 & 5\end{array}$ ..... $\begin{array}{lllllll}\text { IAW } & 1 & 2 & 3 & 4 & 6\end{array}$
U. texana (Buckl) R D Webster, TEXAS S, ..... NAW $\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$ Texas millet, Colorado grass
VASEYOCHLOA A Hitchc
V. multinervosa (Vasey) A Hitchc, ..... NPW
2 ..... 6 TEXASGRASS
VETIVERIA (= CHRYSOPOGON)
V zizaniodies (=Chrysopogon zizanioides)
VULPIA C Gmel, Sixweeksgrass
V. bromoides (L) S F Gray, BROME S ..... IAC 1
V. myuros (L) K C Gmel, RATTALL S ..... $\begin{array}{llll}\text { IAC } & 1 & 3 & 4\end{array}$7
V. octoflora (Walt) Rydb, SIXWEEKSGRASSvar glauca (Nutt) Fernvar hirtella (Piper) Henr, HAIR S.var octoflora, COMMON SV. sciurea (Nutt) Henr, SQUIRREL S

| NAC | 1 | 3 | 4 | 5 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllllllll}\text { NAC } & 1 & 2 & 3 & 4 & 5 & 7 & 8 & 9\end{array}$ ..... 10
$\begin{array}{lllll}\text { NAC } & 1 & 2 & 3 & 4\end{array}$ ..... 7$\begin{array}{llllll}\text { NAC } & 1 & 3 & 4 & 5 & 7\end{array}$
WILLKOMMIA Hack
W. texana A Hitche
var texana, TEXAS WILLKOMMIANPC 23
ZEA L , Corn
Z. mays L, CORN
Z. perennis (A Hitchc) Reeves \& Mangeld, TEOSINTE
ZIZANIA L, Wildrice
Z. texana A Hitche, TEXAS WNPW
IAW $\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$ 78 8 ..... 10CUL
IPW ..... 2
ZIZANIOPSIS Doell \& Aschers.
Z. miliacea (Michx) Doell \& Aschers, MARSHMILLET, water millet, giant cutgrass, southern wildriceNPW123467
ZO YSIA Willd, Zoysiagrass
Z. japonica Steud, JAPANESE LAWNGRASS, ..... IPW
$z$, Korean lawngrass
Z. matrella (L.) Merr, MANILAGRASS ..... IPW
Z. pacifica (Goudswaard) M Hotta \& Kuro1, IPW
KOREAN VELVETGRASS, mascarenegra ..... IPW ..... CUL
ZULOAGAEA (= Panicum in part)
Z bulbosa (=Panicum bulbosum)

## GRASSES OF TEXAS

GENERIC KEY TO GROUPS OR SELECTED GENERA

1. Culms woody (bamboo), perennal, flowering irregularly (not every year) .................... 2 1 Culms herbaceous, annual (somewhat woody in Arundo), flowerng yearly or more frequently 3

2(1) Primary culms internodes cylindrical, primary culm branches 1, pseudopetioles usually less than 2 mm long

Arundinaria
2 Primary culms internodes strongly flattened on 1 side (D-shaped), primary culm branches typically 2 , pseudopetiole usually $2-3 \mathrm{~mm}$ long

Phyllostachys

3(1) Leaf blades less than 1 cm long, leaves in fascicles, spikelets unisexual, inconspicuous in axils of fascicled leaves

Monanthochloë
3 Leaf blades more than 1 cm long, leaves not in fascicles, spikelets perfect or unisexual, usually conspicuous
4(3) Second glumes with 5 rows of hooked spines on abaxial surface ..... Tragus
4 Second glumes without hooked spines on abaxial surface. ..... 5
5(4) Spikelets with unisexual florets only, stammate and pistillate spikelets conspicuouslydifferentGroup A
5. Spikelets at least some with one or more perfect florets, if unisexual, then staminate and pistillate spikelets not conspicuously different ..... 6
6(5) Florets 1 per spikelet ..... 7
6 Florets 2 or more per spikelet on at least some spikelets ..... 9
Inflorescence a spike or spicate raceme or raceme (Aristida oligantha) ..... Group B
7. a raceme, e g some Bromus and Vulpia) ..... 8
8(7) Panicles open, contracted, or with racemose branches, but without spicate primary unilateral branches Group C
8 Panicles with spicate primary unilateral branches ..... Group D
9(6) Reduced florets below perfect florets (both above and below in Uniola, C Chasmanthuim, Phragmites, and tenium) ..... 10
9 Reduced florets above perfect floret or all florets perfect ..... 17
10(9) Reduced florets both above and below fertile florets ..... 11
10. Reduced florets below fertile floret, or both florets reduced/stammate ..... 14
11(10) Second glumes dorsally awned ..... Ctenium
11 Second glumes awnless or rarely mucronate from apex ..... 12
12(11) Plants $1-4 \mathrm{~m}$ tall, inflorescences plumose ..... Phragmites
12 Plants about 1-2 5 m tall, inflorescences not plumose ..... 13
13(12) Disarticulation above glumes, plants of inland or woodland sites Chasmanthium
13 Disarticulation below glumes, plants of coastal dunes ..... Uniola

14(10). Glumes both absent, spikelets appear to have 1 floret (also see Paspalum malacophyllum) 14 Glumes at least one present, spikelets have 2-3 florets $\quad 16$

15(14) Plants perennial, native, upper florets less than 6 mm long $\quad$ Leersia 15 Plants annual, introduced (cultivated), upper florets $7-12 \mathrm{~mm}$ long. $\quad$ Oryza

16(14) Spikelets paired (except at rame or inflorescence or spicate raceme apex where spikelets are in 3's), one sessile or subsessile and perfect, one pedicellate and sterile (Saccharum both spikelets perfect), upper floret usually membranous or leaf-like, first glume nearly as long as spikelet (Andropogoneae tribe) Group E
Spikelets not paired or paired, when pared spikelets both perfect, upper floret dissimilar from lower floret or florets; first glume usually reduced or absent (except in Phalaris and some Panicum species) (Paniceae tribe Ehrharta, and Phalaris)

Group F
17(9) Inflorescence a spike or spicate raceme or raceme Group G
Inflorescence a panicle (depauperate specimens may be reduced to a raceme) ..... 18
18(17) Panıcles of spicate primary unilateral branches ..... Group H
18 Panicles of open, contracted, or rames but without spicate prmary unilateral branches
Group I
Group A
(unisexual spikelets only, staminate and pistillate spikelets conspicuously different)
1 Plants dioecious ..... 2
Plants monoecious ..... 7
2(1) Plants ascending to erect ..... 3
2. Plants mat-forming, not ascending or erect ..... 6
3(2) Plant height $1-3 \mathrm{~m}$ tall, thizomes absent Cortaderia
3. Plant height $35-60 \mathrm{~cm}$ tall; thizomes present or absent ..... 4
4(3) Lemmas 5-veined ..... Poa
4 Lemmas strongly 3-veined ..... 5
5(4) Ligules a ciliate membrane 0.5-1.4 mm long, inflorescences a panicle, lemmasawnless.Allolepis
5 Ligules a minute fringe of hatrs, inflorescences a spicate raceme or narrow panicle, Lemmas awnless (stamınate spikelet) or with twisted awn (pistillate spikelet)
Scleropogon
6(2) Pistillate and staminate inflorescences similar in appearance, lemmas 3-veined
Eragrostis
6 Pistillate inflorescences in bur-like clusters and staminate spikelets in clusters on spicateprimary unilateral branches, lemmas 3-venedBuchloé
7(1) Staminate and pistillate spikelets borne on separate inflorescences ..... 8
7 Stamınate and pistillate spikelets borne on the same inflorescence ..... 9
8(7) Glumes absent, stamens 6 Luziola
8. Glumes present, stamens 3 ..... Zea
9(7) Pistillate spikelets below staminate spikelets on the inflorescence branch, glumes chartaceus ..... 10
9. Pistillate spikelets above staminate spikelets on the inflorescence branch, glume textureleaf like.11
10(9) Pistillate spikelets occurring singly in a hard bead-like structures (white to pale blue) (cultivated) ..... Coix
10 Pistillate spikelets occur in cobs and no sungly Tripsacum
11(9) Staminate spikelets on lower panicle branches, pistillate spikelets on stiffly erect upper branches ..... Zizania
11. Staminate spikelets on base of branch, pistillate spikelets at apex of same branch
Zizaniopsis
Group B
(1 floret/spikelet; spike or spicate raceme)

1. Lemmas 3-awned, spikelets more than 15 mm long Aristida
1 Lemmas awnless or with 1 awn, spikelets less than 15 mm long ..... 2
2(1) Spikelets in capitate clusters, usually within the leafy part of plant, spikelets unisexualBuchloë
2 Spikelets elevated above leaves in elongated inflorescences not in capitate clusters, spikelets with at least 1 perfect floret ..... 3
3(2) Inflorescences with spikelets unilateral (on one side) on rachis3 Inflorescences with spikelets bilateral on rachis4
4(3) Spikelets solitary, 1 per inflorescence node ..... 5
4 Spikelets 3 per inflorescence node ..... 7
5(4) Plants rhizomatous, perennial, inflorescence a raceme ..... Zoysia
5 Plants caespitose, annual, inflorescence a spike ..... 6
6(5) First glumes present Parapholis
6 First glumes absent Hainardia
7(4) Glumes reduced to awns; inflorescence a spicate raceme (except Hordeum vulgare a spike) . ..... Hordeum
2. Glumes not reduced to awns but rather obvious bracts, inflorescence a spike
3. Glumes not reduced to awns but rather obvious bracts, inflorescence a spike ..... Hilaria ..... Hilaria
Group C
(1 floret/spikelet; panicles without spicate primary unilateral branches)
4. Panicle spike-like, lemmas 3-veined ..... Hilaria
1 Panicles open or contracted but not appearmg as a spike, lemmas 3-or 5-veined ..... 2
2(1) Spikelets dimorphic (fertile spikelets mixed with and usually concealed by sterile spikelets, lemma 5-vemed, venns obscure Cynosurus
2 Spikelets of similar morphology, lemmas 3 or 5 veined, veins distinct or obscure ..... 3
3(2) Lemmas 3-veined ..... 4
5. Lemmas not conspicuously 3-veined, either 1-or 5-or more veined or veins inconspicuous ..... 10
4(3) Lemma awn branched to 3-awns, sometimes the lateral awns greatly reduced (e g 1 mm long) ..... Aristida
6. Lemma awn unbranched or lemma awnless ..... 5
5(4) Glumes both as long or longer than lemma (excluding awns) ..... 6
5 Glumes, at least the first, shorter than lemma ..... 7
6(5) Lemmas awnless or awned from back, base, or cleft apex, glumes exceeding length of lemma ..... Agrostis
6 Lemmas awnless or awned from entire apex, glumes nearly equal to lemma length ..... Muhlenbergia
7(5) Spikelet disarticulation below the glumes, rachilla extending above floret as a minute bristle7 Spikelet disarticulation above the glumes, rachilla not extended above the perfect floret8
8(7) First glumes with 2 awns, glume veins 2 (even-numbered) Lycurus
8 First glumes awnless or with 1 awn, glume veins odd-numbered ..... 9
$9(8) \quad$ Vens of lemmas densely pubescent, lemmas awnless Blepharoneuron
9 Vems of lemmas glabrous to scabrous, lemmas awned or awnless ..... Muhlenbergia
10(3) Lemmas indurate and completely enclosing palea for most of its length ..... 11
10 Lemmas coriaceous, membranous or leaf-like, but not obviously indurate, usually not enclosing the palea for entire length ..... 15
11(10) Paleas longer than lemmas, grooved longitudinally, lemma margns involute
Piptochaetium
11 Paleas shorter than or equal to lemmas, flat, lemma margins flat ..... 12
12(11) Lemma margins greatly overlapping, paleas less than one-third lemma length ..... Nassella
12 Lemma margns not or slightly overlapping, paleas one-third or more lemma length ..... 13
13(12) Palea apex flat, usually pubescent, shorter or equal to lemma length, veins usually terminate below palea apex ..... Stipa
7. Palea apex keeled, usually glabrous, as long as lemma, veins terminating at palea apex ..... 14
14(13) Lemmas more than 75 mm long, callus sharp Hesperostipa
8. Lemmas less than 75 mm long, callus blunt Oryzopsis
15(10) Glumes absent ..... Leersia
9. Glumes present, at least the second ..... 16
16(15) Glumes, at least the first, shorter than floret ..... 17
10. Glumes both longer than or equal to floret ..... 21
17(16) Lemmas 5-veined, plants of wet habitats or mesic habitats ..... 18
11. Lemmas 1 -veined, plants of mesic or xeric habitats ..... 20
18(17) Rachilla terminating at upper floret, not becoming a bristle, plants of wet area ..... Oryza
12. Rachilla extending above perfect(usually upper) floret into a bristle, plants of mestc areas
19(18) First glumes $0.1-1.1 \mathrm{~mm}$ long, plants perennıal, lemmas acute Brachyelytrum
19 First glumes $14-26 \mathrm{~mm}$ long, plant annual, lemmas bidentate ..... Apera
20(17). Lemmas with a tuft of hair at base Calamovilfa
13. Lemmas without a tuft of hair at base ..... Sporobolus
21(16) Glumes and lemmas awnless ..... 22
14. Glumes or lemmas awned. ..... 24
22(21) Lemmas l-veined, ligules a dense ring of hairs or cillate membrane Sporobolus
22 Lemmas 5-vened or veins inconspicuous, ligules membranous. ..... 23
23(22) Panicle branches in verticels of dense whorls, panicles contracted Polypogon
15. Panicle branches in verticels or not in verticels but not dense, panicles open or contracted.Agrostis
24(21). Glumes awned ..... 25
24 Glumes awnless (awn-tıpped in Gastridium) ..... 26
25(24). Disarticulation above the glumes, glumes generally 3-vemed Phleum
25 Disarticulation below the glumes, glumes 1-veined ..... Polypogon
26(24). Disarticulation of spikelet above glumes ..... 27
26 Disarticulation of spikelet below glumes ..... 28
27(26). Second glumes $4-5$ times longer than lemmaGastridium
27 Second glumes shorter to longer than lemma but not more than twice as long Agrostis
28(26) Lemmas awned from below middle, inflorescence a tightly contracted cylindrical panicle
Alopecurus
16. Lemmas awned from near apex, inflorescence contracted but not tightly cylindricalLimnodea
Group D( 1 floret/spikelet;panicle with spicate primary unilateral branches)
17. Panicle branches digitate, sub-digitate or rarely verticillate Cynodon
18. Panicle branches generally alternate but definitely not digitate ..... 2
2(1) Spikelets borne on central axis of inflorescence as well as the branches.....Schedonnardus2 Spikelets not borne on central axis of inflorescence, occurring only on the branches3
3(2) Lemmas 5-veined, paleas 3-vened Leersia
19. Lemmas conspicuously $1-3$-vened, paleas 2 -veined ..... 4
4(3) Plants 50 cm or more in height, larger spikelets $6-25 \mathrm{~mm}$ long Spartina
20. Plants 49 cm or less tall, larger spikelets $4-5 \mathrm{~mm}$ long ..... Willkommia

## Group E <br> ANDROPOGONEAE TRIBE <br> (2 florets/spikelet; spikelets paired, some pedicels without spikelets; reduced floret below perfect floret)

1 Inflorescence a spicate raceme, several to many per culm. ..... 2
1 Inflorescence a panicle of rames (rarely a panicle with a single branch) ..... 11
2(1) Upper lemmas awned ..... 3
2 Upper lemmas awnless ..... 6
3(2) Lemma awn less than 3 cm long Schizachyrium
3 Lemma awn more than 35 cm long ..... 4
4(3) Inflorescences more than 9 cm long (excluding awns) Trachypogon
4 Inflorescences less than 8 cm long (excluding awns) ..... 5
5(4) Spicate racemes composed of many spikelet pairs, inflorescences elongated not fan Shaped5. Spicate racemes composed of a single spikelet (rarely more) and 2 pedicellate spikelets,inflorescences appear fan shapedThemeda
6(2) Inflorescences pubescent Elionurus
$6 . \quad$ Inflorescences glabrous to scabrous ..... 7
7(6) Basal leaf sheaths with stiff, sharp, papilla-based hairs to 3 mm long that irritate the skin, plants annual Rottboellia
7 Basal leaf sheaths glabrous or with a tuft of pilose hair at apex, plants perennial or annual ..... 8
8(7) Sessile spikelets not sunken into thickened rachis, rachis slender ..... 9
8. Sessile spikelets sunken into thickened rachis ..... 10
9(8) Plants annual, culms much branched Microstegium
9. Plants perennial, culms not branching above base ..... Eremochloa
10(8) First glume of sessile spikelets smooth on back, inflorescence axis flattened .... Hemarthria10 First glume of sessile spikelets with pits or ridges, inflorescence axis cylindrical or angledbut not flattenedMnesithia
11(1) Rame reduces to a triad of spikelets, lemma awn 10 cm or more long Chrysopogon
11. Rame not a triad of spikelets, lemma awn less than 5 cm long or awnless. ..... 12
12(11). Leaf blades with cordate clasping base, plants annual Arthraxon
12 Leaf blades without cordate clasping base, plants perennial or annual ..... 13
13(12) Spikelets, both sessile and pedicellate fertile ..... 14
13. Spikelets not both fertile, sessile spikelet fertile and pedicellate sterile or pedicellate spikeletabsent17
14(13) Panicles subdigitate, central axis short, branches seldom rebranch, plants less than 0.5 m tall
.Microstegium
14 Panicles with elongated central axis, branches may rebranch several times, plants more than 1 m tall ..... 15
15(14). Spikelets falling in pairs (sessile and pedicellate with inflorescence branch) ..... Saccharum
15. Spikelets falling separate from the inflorescence branch ..... 16
16(15). Inflorescences greater than 7 cm long; sheath margins connate, spikelets mostly awnedMiscanthus
16 Inflorescence less than 6.9 cm long, sheath margins open, spikelets awnless ..... Imperata
17(15) Panicles of 2 to 7 parred or digitate or subdigitate rames, a spathe subtending inflorescence bases can be present or absent, pedicels of upper spikelets without central groove or membranous area ..... 18
17. Panicles of more than 7 rames (occasionally reduced to 3 branches in Bothriochloa ischaemum), spathe not subtending inflorescences, pedicels of upper spikelet with or without a central or membranous area ..... 20
18 (17) Sessile spikelet at base of rames staminate and awnless ..... Hyparrhenia
18 Sessile spikelets at base of rames bisexual and awned ..... 19
19(17). Pedicellate spikelets about as large as sessile spikelets, apex broadly rounded, speciesintroducedDichanthium
19 Pedicellate spikelets shorter and narrower than sessile spikelets or apex narrow and tapering or absent, species native Andropogon
20(17) Glume margins setose, the hairs almost appear like spmes Chrysopogon
20 Glume margins not setose, any hairs not appearing like spines. ..... 21
21(20) Pedicels and usually upper branch internodes on the upper part of inflorescence with a central groove or membranous area Bothriochloa
21 Pedicels and upper branch internodes on the upper part of inflorescence without a central groove or membranous area ..... 22
22(21) Pedicellate spikelets absent, only hary pedicel remaining Sorghastrum
22 Pedicellate spikelets present ..... Sorghum
Group $F$
ANTHOXANTHUM, EHRHARTA, PHALARIS and PANICEAE TRIBE [2 or 3 florets/spikelet; reduced floret or florets below perfect floret; panicle inflorescences (some spicate racames or racemes)]
1 Ear-like appendages at the margins of second lemma, disarticulation above the gulmes ..... Ehrharta

1. Ear-like appendages absent from the base of the second lemma, disarticulation above or below the glumes ..... 2
2(1) Glumes equal, 1 mm or more longer than fertile floret, 2 (occasionally 1) scale-like rudimentary florets below fertile floret, disarticulation above glumes, upper floret corlaceous Phalaris
2. Glumes unequal (rarely equal, eg Panicum obtusum) or only second glume present(in some species of Axonopus, Digitaria and Paspalum), if equal then reduced floretas long as spikelet, disarticulation below or above the glumes, upper floret usuallyfirm to indurate (except in Pennisetum and Cenchrus)3
3(2) Florets 3 per spikelet, disarticulation above glumes, fertile floret with dorsal awn 
3 Florets 2 per spikelet, disarticulation below glumes ..... 4
4(3) Inflorescence a spike or spicate raceme or raceme; spikelets embedded or not embedded in inflorescence ..... 5
3. Inflorescence a panicle, spikelets not embedded into cavities of inflorescence branches ..... 6
5(4) Spikelets appear embedded in cavities of rachis Stenotaphrum
4. Spikelets not appearing embedded in rachis Paspalum
6(4) Panicles of spicate (or racemose) primary unilateral branches ..... 7
5. Panicles open or contracted but not having spicate primary unilateral branches ..... 20
7(6) First glumes absent or reduced to a cup-like structure on all or some spikelets ..... 8
6. First glumes present on all spikelets ..... 12
8(7) Spikelets subtended by a cup-like or disk-like ring, upper lemma mucronate ..... Eriochloa
7. Spikelets not subtended by a cup-like or disk-like ring, upper lemma awnless ..... 9
9(8) Apex of upper lemma margins folded over palea, not clasping, appearmg thin Digitaria
8. Apex of upper lemma margins clasping the palea, appearing thick ..... 10
10(9) Lemma of the fertile florets with rounded surface facing away from inflorescence branch axis Axonopus
10 Lemma of fertile florets with rounded surface facing inflorescence branch axis ..... 11 ..... 11
11(9) Lemma of lower florets awned, upper florets mucronate Echinochloa
11 Lemma of lower florets awnless, upper florets rounded to obtuse to acute, not mucronate
12(7) Ligules absent, plants annual Echinochloa
12 Ligules present, plants annual and perennial ..... 13
13(12). Glumes both awned ..... 14
13 Glumes both awnless ..... 16
14(13). First glumes rudimentary, lower lemmas and second glumes silky villous ..... Melinis
14 First ghumes well-develop
but both not silky villous ..... 15
15(14) Awn of first glumes mucronate or shorter than glume body, plants not stoloniferous
9. Awn of first glumes 6 mm or more long, plants stoloniferous Oplismenus
16(13) Upper lemma margins folded over palea, not clasping, appearing thin ..... Digitaria
16 Upper lemma margins clasping palea, appearing thick ..... 17
17(16) First glumes adjacent to primary branch axis, upper lemmas smooth ..... Brachiaria
10. First glumes away from primary branch axis, upper lemmas smooth or rugose ..... 18
18(17) Prımary branch extending beyond spikelet as a point or bristle Paspalidium
11. Primary branch not extending beyond spikelet as a point or bristle ..... 19
19(18) Panicle branches appressed, upper lemmas smooth Panicum
12. Panicle branches ascending to divergent, upper lemmas rugose ..... Urochloa
20(6) First glumes reduced to a cup-like structure subtending spikelet ..... Eriochloa
13. First glumes bractlike, not reduced to a cup-like structure (minute in Melinis) ..... 21
21(20). Spikelets subtended by 1 to many bristles or flattened spines, bristles or spines formingan involucre, or not fused22
14. Spikelets not subtended by bristles or flattened spines, bristles or flattened spines not present24
22(21). Spikelets disarticulate above bristles or spines, bristles persistent on inflorescence (see Pennisetum glaucum) Setaria
22 Spikelets disarticulate with the bristles or spines, bristles not persistent on inflorescence ..... 23
23(22) Bristles antrorsely barbed Pennisetum
23 Bristles or spines retrorsely barbed Cenchrus
24(21) Upper lemma margms folded over palea margms, relatively thin and flexible ..... 25
24 Upper lemma margins inrolled (appearing to clasp) over palea margins, relatively thick and rigid (except immature Panicum brachyanthum) ..... 27
25(24) Rachilla pronounced between florets, first glume present ..... Melinis
15. Rachilla not pronounced between florets, first glume absent ..... 26
26(25) Pedicels shorter than spikelet. Anthaenantia
26 Pedicels 2 to several times longer than spikelet ..... Digitaria
27(24) Second glumes gibbous at base, fertile florets on a short stipe Sacciolepis
16. Second glumes not gibbous at base, fertile florets without stipe ..... 28
28(27) Ligules absent Echinochloa
28 Ligules present ..... 29
29(28) Inflorescences of spicate unbranched primary branches Urochloa
29 Inflorescences with branches that rebranch ..... 30
30(29) Plants forming a basal rosette of leaves different from cauline leaves; culm simple in cool season with a primary panicle inflorescence per culm, later becoming much branched with small axillary inflorescences in summer and fall Dichanthelium
30 Plants not forming a basal rosette of leaves, leaves at base sumilar to cauline leave pedicellatum) ..... 31
31(30) Lemma of perfect florets transversely rugose Urochloa
17. Lemma of perfect florets smooth or muricate not transversely rugose
18. Lemma of perfect florets smooth or muricate not transversely rugose Panicum Panicum
Group G
(2 or more florets/spikelet; spike or spicate raceme or racemes)
1 Spikelets in capitate clusters, usually within the leafy part of plant ..... 2
19. Spikelets elevated above leaves, in elongated inflorescences not in capitate clusters ..... 4
2(1) Lemmas 3-awned, awns cilate Blepharidachne
2 Lemmas 1-awned, awns not cilate. ..... 3
3(2) Lemmas acuminate, not bific, florets 2-3, ligules a ring of hairs Munroa
3 Lemmas bifid, florets 6-12, ligule a ciliate membrane Dasyochloa
4(1) Inflorescences unilateral spikes Bouteloua
4 Inflorescences bilateral spikes or spicate racemes or racemes ..... 5
5(4) Inflorescences a spike with 1 sessile spikelet per node (occasionally 2 spikelets per node in (Elymus smithii) ..... 6
20. Inflorescences a spike with 2 or more sessile spikelets per node (rarely 1 spikelet per node in(Leymus triticoides) or a raceme (Bromus).13
6(5) Inflorescence a raceme ..... 7
6 Inflorescence a spike or spicate raceme ..... 8
7(6) Lemmas bifid, awned from between the lobes of the bifid apex Bromus
7 Lemmas entire, awn terminal Brachypodium
8(7) First glume absent on all except the terminal spikelet Lolium
8 First glume present on all spikelets ..... 9
9(8) Plants annual, culm bases soft ..... 10
9 Plants perennial; culm bases firm ..... 11
10(9) Glumes l-vened ..... Secale
10 Glumes 5-11-vemed Triticum
11(9) Spikelets spreading from rachis at 40E angle Agropyron
21. Spikelets appressed to rachis (less than 30 degree angle) ..... 12
12(11) Ligules a cilate membrane, lemmas 3-vemed Tripogon
12 Ligules membraneous, lemmas 5-several-veined or veins inconspicuous ..... Elymus
13(5) Spikelets disarticulate in clusters as a complete unit, lemmas 3-veined, veins distinct, stolons or rhizomes present. ..... Hilaria
13 Spikelets disarticulate above or below the glumes but not in clusters, lemmas 5-7-veined, veins indistinct, stolons not present ..... 14
14(13) Disarticulation of spikelets below glumes ..... Psathyrostachys
14 Disarticulation of spikelets above the glumes ..... 15
15(14) Rhizomes present Leymus
22. Rhizomes absent ..... 16
16(15) Glumes 2-5-venned Elymus
16 Glumes 1-veined Psathyrostachys
Group H
(2 or more florets/spikelet; inflorescencea panicle of spicate primary unilateral branches)
1 Inflorescence a unilateral panicle appearing like a raceme, prımary branches short, appearing subsessile to central axis Schlerochloa
23. Inflorescence with 2 or more spicate primary unilateral branches, primary branches not short and not appearing subsessile to central axis ..... 2
2 (1) Inflorescence branches digitate, subdigitate, or verticillate ..... 3
24. Inflorescence branches alternate or occasionally paired (Eleusine occasionally reduced to 1-2 branches per inflorescence) ..... 10
3(2) Fertule florets 3 or more per spikelet ..... 4
25. Fertle florets 1 or 2 per spikelet ..... 6
4(3) Inflorescence primary branches terminating in a bare point Dactyloctenium
4 Inflorescence primary branches termmating in a spikelet ..... 5
5(4) Lemmas 3-awned, panicle branches in verticels, second glumes 1-veined Trichloris
5 Lemmas awnless to mucronate, panicle branches digitate or subdigitate, second glumes 3-7- veined ..... Eleusine
6(3) Leaf blades without a midvein usually conspicuously distichous, second glumes (excluding awn) equal to or longer than spikelet Gymnopogon
6 Leaf blades with midvein, not conspicuously distichous, second glumes (excluding awn) shorter than spikelet ..... 7
7 (6) Lower lemmas laterally compressed, caryopses triangular or subterete in cross section ..... 8
26. Lower lemmas dorsally compressed, caryopses dorsally compressed ..... 10
8(7) Second glume awned Eustachys
8 Second glume awnless ..... 9
9(8) Lowermost lemma awned ..... Chloris
9 Lowermost lemma awnless ..... Cynodon
10(7) Lowermost lemmas 1-awned Enteropogon
27. Lowermost lemmas 3-awned Trichloris
11(2) Lemmas obscurely 5-veined; plants annual11. Lemmas conspicuously 3-veined, plants perennial or annual12
12(11) Fertule florets 1 per spikelet ..... 13
28. Fertıle florets 2 or more per spikelet ..... 14
13(12) Spikelets in clusters of 3 per primary branch, upper spikelet with one perfect floret, lower spikelets neuter or staminate ..... Cathestecum
13 Spikelets not in clusters of 3 per primary branch, all spikelets with a perfect floret
Bouteloua
14(12) Glumes 8 mm or more long, lemma veins ciliate Trichoneura14. Glumes less than 78 mm long, lemma vens glabrous or puberulent but not with spreadingciliate harrs15
15(14) Lemmas glabrous, acute, awnless, spikelets not overlapping on inflorescence Branches Eragrostis
15 Lemmas glabrous or pubescent on vens or near the base, apex acute to obtuse or notched,awned or awnless, when lemmas awnless spikelets overlapping on branches.Leptochloa
Group I
(2 or more florets/spikelet; reduced floret at spikelet apex or absent; panicle inflorescence)
1 Plants with unilateral panicles ..... 2
1 Plants with rebranched panicles or multiple spikelets per primary branch ..... 3
2(1) Spikelets dimorphic (fertıle spikelets mixed with and usually concealed by sterile spikelets),disarticulation below the glumes, glumes 3-9 veined, lemmas 3-veinedSclerochloa
2 Spikelets of similar morphology, disarticulation above the glumes, glumes 1-vemed, lemmas 5-vemed Cynosurus
3(1) Plants $2-6 \mathrm{~m}$ tall ..... 4
3 Plants less than 2 m tall ..... 7
4(3) Spikelets 3. $5-7 \mathrm{~cm}$ long, inflorescences not plumose Arundinaria
4 Spıkelets less than 35 cm long, inflorescences a plume-like panicle ..... 5
5(4) Plants without rhizomes (caespitose), glumes l-vemed Cortaderia
5 Plants rhizomatous, glumes 3-to many-veined ..... 6
6(5) Lemmas densely pubescent, rachilla glabrous Arundo
6 Lemmas glabrous, rachilla villous ..... Phragmites
7(3) Lemmas conspicuously 3-vemed ..... 8
29. Lemmas 1 ar 5 -many-veined, or veins obscure (midvein may be conspicuous) ..... 16
8(7) Vems of lemma glabrous or minutely scabrous, lemma base without long hairs ..... 9
8 Vems of lemma pubescent (occasionally puberulent) to long hairy or lemma base with long hairs ..... 11
9(8) Lemma apex with a slight notch, midvein extending into a mucro, panicles contracted
Tridens
9 Lemma apex without a notch, midvein not extending into an awn, panicles open or narrow ..... 10
10(9) Second glumes l-vemed, caryopses not beaked Eragrostis
30. Second glumes 3-5-vemed, caryopses beaked ..... Diarrhena
11(8) Rhizomes present, well developed Redfieldia
31. Rhizomes absent ..... 12
12(11) Paleas densely long-ciliate on upper half, plants annual Triplasis
32. Paleas not densely long-ciliate on upper half, plants annual or perennial ..... 13
13(12) Leaf blades with thick white margins, inflorescences usually less than 4 cm long
Erioneuron
13 Leaf blades without thick white margms, inflorescences longer than 5 cm ..... 14
14(13) Lemmas with 3 awns, these 4 mm long or longer ..... Triraphis
14 Lemmas awnless or with single awns, if 3 awns then awns mucronate ..... 15
15(14) Inflorescence a panicle of spicate primary branches. Leptochloa
15 Inflorescence a panicle without spicate primary branches ..... Tridens
16 (7) Lemmas 9-or more awned ..... 17
16 Lemmas 0-3-awned ..... 19
17(16). Glumes 1-veined Pappophorum
17 Glumes 5-or more-veined ..... 18
19(16) Ligules a line of hairs or ciliate membrane ..... 20
19 Ligules membranous for most or all its length ..... 23
20(19). Lemmas 1-veined, apex entire Eragrostis
20 Lemmas strongly 7-9-veined, apex slightly bifid ..... 21
21(20) Caryopsis apex with 2 persistent horn-like style bases, outline orbicular21 Caryopsis apex without persistent horn-like style bases, outline linear to narrowlyelliptical22
22(21) Plants annual, lemmas awnless or nearly so Schismus
22 Plants perennial, lemmas awned. Danthonia
23(21) Glumes or lemmas awned ..... 24
23 Glumes and lemmas awnless ..... 36
24(23) Lemmas awned from back with a dorsal attached awn (see also immature Bromus lanceolatus) ..... 25
24 Lemmas awned from apex or from between the lobes of bifid apex ..... 29
25(24). Glumes 1.5 cm long or longer ..... Avena
25 Glumes less than 15 cm long ..... 26
26(25). Fertile spikelets more than 4 mm long, upper lemmas with a hooked awn ..... Holcus
26 Fertile spikelets less than 26 mm long (excluding the awns, upper lemmas without a hooked awn) ..... 27
27(26) Spikelets dissimilar, plants with stamınate spikelets and fertile spikelets, fertile spikelet lemmas awned from near apex ..... Lamarckia
27 Spikelets all similar, plant without both staminate spikelets and fertile spikelets, fertile spikelet lemmas awned from below the middle ..... 28
28(27) Lemma awn attached dorsally below midlength of the lemma ..... Aira
33. Lemma awn attached dorsally just below the lemma apex ..... Apera
29(24) Lemmas bifid, awned from between teeth ..... 30
34. Lemmas acute, not bifid, awned from apex ..... 33
30(29) Glumes and lemmas papillose or papillose hispid on back ..... Rostraria
30 Glumes and lemmas glabrous to harry but not papillose or papillose hispid ..... 31
31(30) Paleas adnate to caryopsis, lemma apices usually bifid Bromus
35. Paleas not adnate to caryopsis, lemma apices, entire (or bifid in Sphenopholis interrupta)32
32(31) Spikelets less than 8 mm long, plants annual, lemma apices entire (bifid in Sphenopholis interupta) Sphenopholis
32 Spikelets more than 8 mm long, plants annual or perennial, lemma apices bifid ..... Bromus
33(29) Plants annual, stamen 1 (rarely 3) per floret, leaves less than 2 mm wide, lemmas inconspicuously 5-veined
33 Plants perennial, stamen 3 per floret, leaves more than 4 mm wide, lemmas conspicuously 5-veined ..... 34
34(33). Spikelets strongly compressed, on dense 1-sided panicle branches, leaf sheaths keeled Dactyis
34 Spikelets not strongly compressed, not on dense 1-sided panicle branches, leaf sheaths rounded, or not keeled ..... 35
35 (34) Basal leaves with auricles, blades flat Schedonnorus
35 Basal leaves without auricles, blades flat or involute or conduplicate Festuca
$36(23)$. Glumes longer than 17 cm ..... Avena
36 Glumes less than 17 cm long ..... 37
37(36). Glumes and lemmas spreading at right angles to rachilla, appearing inflated, pedicels slender ..... Briza
36. Glumes and lemmas ascending, not close to a right angle to rachilla, not appearing obviously inflated, pedicels various ..... 38
38(37) Sheath margins connate at least one-fourth the length ..... 39
38 Sheath margins free for more than three-fourths the length ..... 42
39(38) Lemma veins uniformly developed and equally spaced (some prominent, some mconspicuous except at apex) ..... Glyceria
39 Lemma veins uniformly developed and not equally spaced (most veins inconspicuous at apex) ..... 40
40(39) Spikelets strongly compressed on dense l-sided panicle branches, leaf sheaths keeled and laterally compressed ..... Dactylis
40 Spikelets not strongly compressed on dense l-sided panicle branches, leaf sheaths terete
41(40) Paleas usually adnate to caryopsis, lemma usually awned from between the lobes of a bifid apex, some species awnless, caryopsis with tuft of hair at apex ..... Bromus
37. Paleas free from caryopsis, lemma awnless (Texas species), apex entire, caryopsis without apical tuft of hair ..... Melica
42(38) Spikelets dissimilar, plants with stamınate spikelets and fertile spikelet, fertile spikelets awned Lamarckia
38. Spikelets all similar, plants without both staminate and fertile spikelets, fertile spikelets awnless ..... 43
43(42) Paleas colorless throughout ..... 44
43 Paleas yellow, green, or brown, at least on veins ..... 45
44(43) Second glumes obovate, widest above the middle, apex obtuse Sphenopholis
44 Second glumes lanceolate, widest below the middle, apex acute Koeleria
45(43) Lemma apex bifid ..... 46
45 Lemma apex acute or obtuse, not bifid ..... 47
46(43). Rachilla extended beyond upper floret, panicles narrow, congested Sphenopholis
46 Rachilla not extended beyond upper floret, panicles open, diffuse ..... Aira
47(45) Lemma apex obtuse to broadly acute, lemma veins 5 , distinct or indistinct ..... 48
47 Lemma apex attenuate to narrowly acute, lemma veins 5 or more, often mdistinct ..... 50
48(47). Panicles of stiff spicate primary branches, plants annual Desmazeria
48 Panicles of rebranched primary branches, branches not appearing stiff, plants annual orperennial49
49(48) Lemmas keeled on back (abaxial surface) ..... Poa
39. Lemmas rounded on back (abaxial surface) ..... Puccinellia
50(47) Spikelets with all unisexual florets, ligules a ciliate membrane ..... Distichlis
50 Spikelets with 2 or more perfect florets, ligules membranous ..... 51
51(50) Plants annual, stamen 1 (rarely 3) per floret ..... Vulpia
40. Plants perennial, stamens 3 per floret ..... 52
52(51) Basal leaves with auricles, blades flat Schedonorus
52 Basal leaves without auricles, blades flat or involute or conduplicate ..... Festuca
LITERATURE CITED

Barkworth, M.E., K.M. Capels, S. Long, and M.B. Piep. 2003. Flora of North America. Volume 25. Magnoliophyta: Commelinideae (in part): Poaceae, part 2. Oxford Univ. Press, New York.
Barkworth, M.E., K.M. Capels, S. Long, and M.B. Piep. 2007. Flora of North America. Volume 24. Magnoliophyta: Commelinideae (in part): Poaceae, part 1. Oxford Univ. Press, New York.
Correll, D.S. and M.C. Johnston. 1970. Manual of the Vascular Plants of Texas. Texas Research Foundation, Renner.
Cory, V.L., and H.B. Parks. 1937. Catalogue of the Flora of Texas. Agriculture and Mechanical College of Texas, College Station.
Gould, F.W. 1962. Texas Plants a Checklist and Ecological Summary. Texas Agr. Expt. Station, College Station.
Gould, F.W. 1975. The Grasses of Texas. Texas A\&M Univ. Press, College Station.
Hatch, S.L., K.N. Gandhi, and L.E. Brown. 1990. A Checklist of the Vascular Plants of Texas. MP1655. Texas Agr. Expt. Station, College Station.

Hitchcock, A.S. 1951. Manual of the grasses of the United States (ed. 2, rev. A. Chase). Misc. Publ. 200, United States Department of Agriculture, Washington, D.C.
Jones, S.P., J.K. Wipff, and P.M. Montgomery. 1997. Vascular Plants of Texas. Univ. of Texas Press, Austin.
Powell, A.M. 1994. Grasses of the Trans-Pecos and adjacent areas. Univ. of Texas Press, Austin.
Shaw, R.B., B.S. Rector, and A.M. Dube. 2011. Distribution of Grasses in Texas. Sida, Bot. Misc. 33.

Turner, B.L., H. Nichols, G. Denny, and O. Doron. 2003. Atlas of the Vascular Plants of Texas. Volume 2. Ferns, gymnosperms, and monocots. Sida, Bot. Misc. 24.

# AN UPDATE OF SALVADORAN ACANTHACEAE 

Thomas F. Daniel<br>Department of Botany, California Academy of Sciences<br>Golden Gate Park, 55 Music Concourse Drive<br>San Francisco, California 94118<br>tdaniel@calacademy org


#### Abstract

New distribution records for 18 species of Acanthaceae are reported for departments within El Salvador. One of these, Justicia calliantha, is newly reported for the country as well. Forty-four native species in 17 genera are currently known from E1 Salvador. Regional differences in species richness of Salvadoran Acanthaceae are discussed and mapped.


KEY WORDS: Acanthaceae, El Salvador, species richness, Justicia calliantha.

Daniel (2001) documented 67 species in 31 genera of Acanthaceae from El Salvador. Fortythree acanthaceous species were treated as native to the country. It was shown that $34(79 \%)$ of the native species had been collected since 1960, and thus, in spite of extensive alteration of biotic communities in that Central American nation, the acanthaceous flora of E1 Salvador remains relatively rich and intact.

Among the major political divisions (departments) of El Salvador, Daniel (2001) noted an unequal distribution of species. Some departments in the western portion of the country (e.g., Ahuachapán [27] and Santa Ana [25]) had a disproportionately high number of species compared with several departments in north-central El Salvador (e.g., Chalatenango [2], Cuscatlán [1], and Cabañas [1]). Neither sizes of departments nor numbers of biotic communities in them appear to correlate with the numbers of species per department. Daniel (2001) noted possible reasons, including accessibility and thoroughness of collecting activities, for the apparent geographic discrepancies in species richness. Indeed, recent collections from throughout El Salvador that have become available since 2001 reveal the presence of at least 10 and seven species of Acanthaceae in Chalatenango and Cabañas, respectively. It appears that under-collection, at least in these two departments, may account for some of the perceived geographic differences in species richness within the country.

New distribution records for Acanthaceae of El Salvador, which update the distributions reported in Daniel (2001), are noted below by species and department. These include one species, Justicia calliantha Leonard, newly reported for the country, and new departmental records for 18 species. Forty-four native species in 17 genera are currently known from the country. Figure 1 shows the political departments of El Salvador and the numbers of native species of Acanthaceae now known for each. Considering the nation's small size, high human population density, and extensive alteration of natural habitats (Williams et al. 2002), the relative richness of Salvadoran Acanthaceae is likely due to the weedy tendencies of many species in the family (cf. Daniel 2004a: 701).


Figure 1. Map of El Salvador showing departments and numbers of native species of Acanthaceae in each.

Aphelandra heydeana Donn. Sm.
Chalatenango: San Francisco del Túnel, $1100 \mathrm{~m}, 23-\mathrm{X}-1957$, L. González 1724 (USF).
Aphelandra scabra (Vahl) Sm.
Chalatenango: Nuevo Concepción, area protegida Pañanalapa, Los Chorros, 500 m , $14^{\circ} 05^{\prime} \mathrm{N}, 89^{\circ} 25^{\circ} \mathrm{W}, 18-\mathrm{X}-2000$ (flr), K. King \& $J$. Chávez 113 (MO). Cuscatlán: a la orilla del Cerrón Grande, $250 \mathrm{~m}, 13^{\circ} 85^{\prime} \mathrm{N}, 89^{\circ} 2^{\prime} \mathrm{W}$, "antorcha," 9-XII-1997 (flr), M. Renderos 353 (CAS, MO).

Barleria oenotheroides Dum. Cours.
Cabañas: Cinquera, Zona Protegida, camino a Río San Benito, $13^{\circ} 53^{\circ} \mathrm{N}, 88^{\circ} 57^{\circ} \mathrm{W}, 374 \mathrm{~m}$, 23-I-2003 (flr), R. Carballo \& F. Medrano 596 (CAS, MO). Morazán: A.P. Río Sapo, puente abajo, $636 \mathrm{~m}, 13^{\circ} 55^{\prime} \mathrm{N}, 8^{\circ} 06^{\circ} \mathrm{W}$, 19-I-2005 (flr), R. Carballo 1243 (MO). Sonsonate: Santa Isabel Ishuatán, propriedad de M. Castillo, $13^{\circ} 41^{\circ} \mathrm{N}, 89^{\circ} 33^{\prime} \mathrm{W}, 430 \mathrm{~m}$, bosque de galería, 5 -II-2006 (flr), $D$. Rodriguez \& G. Trejo 201 (MO).

Elytraria imbricata (Vahl) Pers.
Chalatenango: El Paraíso, Santa Barbara, $330 \mathrm{~m}, 14^{\circ} 05^{\prime} \mathrm{N}, 89^{\circ} 05^{\circ} \mathrm{W}, 1-\mathrm{XII}-1997$ (flr, frt), J. González \& Serrano 479 (CAS, MO)[local name: "coquillo"]; La Palma area, Caballero, $14^{\circ} 18.425^{\prime} \mathrm{N}, 89^{\circ} 08.322^{\prime} \mathrm{W}, 900-1500 \mathrm{~m}, ~ 8-11-2001$, D. Sloot \& D. Reina 322 (U). Usulután: Laguna de Alegría, $1070 \mathrm{~m}, 13^{\circ} 29^{\circ} \mathrm{N}, 88^{\circ} 32^{\circ} \mathrm{W}, 23-\mathrm{I}-1999$, D. Wilhams 65 (MO).

This species was reported from Usulután by Williams et al. (2002), and the specimen cited above from that department confirms their identification.

Henrya insularis Nees ex Benth.
Santa Ana: Mpio. Metapán, entrada al área protegida San Diego-La Barra (KM 106 carr. Santa Ana-Metapán), $14^{\circ} 16^{\prime} 22^{\prime} \mathrm{N}, 88^{\circ} 27^{\prime} 28^{\prime} \mathrm{W}, 650 \mathrm{~m}$, selva baja caducifolia, 3-I-2004, J. Linares \& C. Martinez 7251 (MEXU). Usulután: Laguna de Alegría, $1070 \mathrm{~m}, 13^{\circ} 29^{\circ} \mathrm{N}, 88^{\circ} 32^{\prime} \mathrm{W}, 18-\mathrm{II}-1999$, D. Williams 153 (MO).

This species was reported from Usulután by Williams et al. (2002), and the specimen cited above from that department confirms their identification.

Hypoestes phyllostachya Baker
Ahuachapán: San Francisco Menéndez, El Corozo, Mariposario, xona alta "Los Peralta," $13^{\circ} 49^{\prime} \mathrm{N}, 89^{\circ} 59^{\circ} \mathrm{W}, 325 \mathrm{~m}, 23$-VIII-2000 (flr), J. Rosales 1324 (LAGU, MO). Chalatenango: La Montañona, CORBELAM, la cadena, $14^{\circ} 23^{\prime} \mathrm{N}, 88^{\circ} 91^{\prime} \mathrm{W}, 1400 \mathrm{~m}, 18-\mathrm{X}-2002$ (flr), R. Cristobal 4677 (MO). La Unión: cantón Monteca, Nueva Esparta, alrededores del Cacerio Upire, $13^{\circ} 8^{\circ} \mathrm{N}$, $87^{\circ} 86^{\prime} \mathrm{W}, 900 \mathrm{~m}, 16-\mathrm{XII}-2007$, R. Ibarra et al. s.n. (MO).

This species is native to Madagascar but naturalized in numerous warm-temperate and tropical regions worldwide. In E1 Salvador it is both cultivated and naturalized. The collection from Ahuachapán noted above was undoubtedly cultivated, but those from Chalatenango and La Unión possibly represent naturalized plants.

Justicia aurea Schlecht.
Chalatenango: El Paraiso, $330 \mathrm{~m}, 14^{\circ} 5^{\circ} \mathrm{N}, 89^{\circ} 5^{\prime} \mathrm{W}$, 13-VIII-1989 (flr), J. Gonzalez 526 (CAS) [local name: "antorcha,"].

Justicia breviflora (Nees) Rusby
Cabañas: Cinquera, ruta El Obrajón-El Tule, $13^{\circ} 53^{\prime} \mathrm{N}, 88^{\circ} 56^{\prime} \mathrm{W}, 560 \mathrm{~m}$, vegetación secundaria en regeneración, 22-VIII-2006 (frt), J. Monterrosa et al. 1103 (CAS).

These Salvadoran plants have a single flower per node above the proximalmost node.

## Justicia calliantha Leonard

Morazán: A.P. Río Sapo, Cuenca de quebrada seca, $13^{\circ} 55^{\circ} \mathrm{N}, 88^{\circ} 06^{\prime} \mathrm{W}, 689 \mathrm{~m}, 5-\mathrm{II}-2004, R$. Carballo et al. 1029 (MO).

This species is newly reported from El Salvador. It was described and treated by Daniel (2005) as endemic to Honduras, where it is known from the south-central portion of that nation. A related species, J. sulfurea (Donn. Sm.) D.N. Gibson, occurs in western E1 Salvador. These species of Justicia sect. Mesoamericanae (Daniel 2004b) can be distinguished by the following couplet:

1. Corolla red, $29-34 \mathrm{~mm}$ long, externally pubescent with glandular and eglandular trichomes; leaves ovate to broadly ovate to cordate, $1.1-1.9$ times longer than wide $\qquad$ Justicia calliantha 1. Corolla yellow, $17-29 \mathrm{~mm}$ long, externally pubescent with eglandular trichomes only; leaves lance-ovate to ovate, $2.5-4.5$ times longer than wide $\qquad$ Justicia sulfurea

Justicia colorifera V.A.W. Graham
Chalatenango: Nueva Concepción, area protegida Pañanalapa, Los Chorros/Montecillo, 500 $\mathrm{m}, 14^{\circ} 05^{\circ} \mathrm{N}, 89^{\circ} 25^{\prime} \mathrm{W}$, bosque seco, 16-III-2000, K. King \& J. Chávez 9 (MO).

Justicia comata (L.) Lam.
Ahuachapán: A.P. Santa Rita, sector 3, montaña Santa Rita, $13^{\circ} 48^{\prime} \mathrm{N}, 90^{\circ} 04$ ' W, $20 \mathrm{~m}, 14-\mathrm{I}-$ 2004 (flr), J. Rosales 1867 (CAS, MO) [local name: "coyuntura"]. La Libertad: bed of nearly extinct Laguna de Zapotitan, shore of pool, 9-IX-1951 (flr, frt), N. Fassett 29349 (WIS).

Nelsonia canescens (Lam.) Spreng.
Cabañas: Cinquera, Zona Protegida, Campamento el Niño, $13^{\circ} 52^{\prime} \mathrm{N}, 88^{\circ} 58^{\prime} \mathrm{W}, 479 \mathrm{~m}, 19$-II2003 (flr), R. Carballo \& R. Medrano 624 (CAS).

This species was tentatively treated as native in Central America by Daniel (2001). Although it is similarly treated here, it appears increasingly likely that the Central American, and probably the South American, representatives of $N$. canescens are not native in the New World (cf. Franck \& Daniel 2011).

## Ruellia blechum L.

Cabañas: Cinquera, Zona Protegida, camino a Río San Benito, $13^{\circ} 53^{\prime} \mathrm{N}, 88^{\circ} 57^{\prime} \mathrm{W}, 374 \mathrm{~m}$, 23-I-2003 (flr, frt), R. Carballo \& F. Medrano 593 (CAS, MO); Cerro el Ujushte, 450 m , J. Morales 2110 (USCG). Chalatenango: El Paraiso, Santa Barbara, $330 \mathrm{~m}, 14^{\circ} 5^{\prime} \mathrm{N}, 89^{\circ} 5^{\prime} \mathrm{W}$, vegetación secundaria, 1-XII-1997 (flr), J. Gonzalez \& Serrano 489 (CAS). San Miguel: Canton San Antonio Chavez, 30-XII-1978 (flr), R. Setler 805 (F). Santa Ana: Metapán, P.N. San Diego-La Barra, sector 12, Bosque La Barra, $14^{\circ} 18^{\prime} \mathrm{N}, 89^{\circ} 32^{\prime} \mathrm{W}, 470 \mathrm{~m}$, orillas de veredas en bosque tropical siempre verde, 17-I-2011 (flr, frt), D. Rodriguez et al. 2232 (CAS). Usulután: Laguna de Alegría, $13^{\circ} 2^{\circ} \mathrm{N}$, $88^{\circ} 32^{\prime} \mathrm{W}, 1070 \mathrm{~m}, 23-\mathrm{I}-1999$ (flr), $D$. Willtams 19 (LAGU).

This species, treated by Daniel (2001) under the synonym Blechum pyramidatum (Lam.) Urb., has been shown to pertain to Ruellia (Tripp et al. 2009). The collection from Usulután was noted by Williams et al. (2002), and I confirm the determination based on an image of the specimen at LAGU.

## Ruellia donnell-smithii Leonard

Santa Ana: Santa Ana, Weedland 406(C).
Ruellia geminiflora Kunth
Ahuachapán: San Benito, El Casco, $780 \mathrm{~m}, 13^{\circ} 49^{\circ} \mathrm{N}, 89^{\circ} 56^{\circ} \mathrm{W}, 20-\mathrm{IX}-1997$ (frt), E. Sandoval 1673 (CAS).

## Ruellia inund ata Kunth

Cabañas: Cinquera, Zona Protegida, Campamento el Niño, $13^{\circ} 52^{\prime} \mathrm{N}, 88^{\circ} 58^{\circ} \mathrm{W}, 479 \mathrm{~m}, 19$-II2003 (flr), R. Carballo \& F. Medrano 631 (CAS, MO). Chalatenango: Arcatao, Río Zazalapa, $14^{\circ} 06^{\circ} \mathrm{N}, 88^{\circ} 45^{\prime} \mathrm{W}, 360 \mathrm{~m}$, bosque de galería, 20-I-2008 (flr, frt), R. Ibarra s.n. (JBL 05145 ) (MO). La Paz: cantón Amulungo, San Pedro Nonualco, $13^{\circ} 36^{\prime} \mathrm{N}, 88^{\circ} 56^{\circ} \mathrm{W}$, orilla de la calle, 1-II-1998 (flr, frt), J. González \& M. Hernández 513 (CAS, LAGU, MO). Morazán: A.P. Río Sapo, por puente, $13^{\circ} 56^{\circ} \mathrm{N}, 8^{\circ} 06^{\prime} \mathrm{W}, 688 \mathrm{~m}, 11$-III-2004 (flr, fit), R. Carballo 1135 (MO).

Ruellia metallica Leonard
Santa Ana: Hacienda "Las Lajas," 1500 m, 23-X-1957 (frt), A.C. del Crd 1734 (USF).
Tetramerium tenuissimum Rose
Cabañas: Cinquera, Zona Protegida, cuenca de Río Cutumayo, $13^{\circ} 52^{\prime} \mathrm{N}, 88^{\circ} 58^{\prime} \mathrm{W}, 421 \mathrm{~m}$, 20-III-2003 (flr), R. Carballo \& M. Carrillo 660 (CAS, MO).

## ACKNOWLEDGEMENTS

I am grateful for the assistance of Dagoberto Rodriguez Delcid (LAGU), Nancy Hensold (F), and Mark Allen Wetter (WIS) for sending information about collections. For loans and other courtesies I am grateful to the curators of the following herbaria: C, CAS, F, LAGU, MEXU, MO, USCG, USF, WIS. Visits to herbaria were funded by the National Science Foundation (DEB0743273 ), the Flora of North America Project ( 2010 microgrant), the National Geographic Society (Research Award 8570-08), and the California Academy of Sciences (In-House Research Fund).

## LITERATURE CITED

Daniel, T.F. 2001. Catalog of Acanthaceae in El Salvador. Contr. Univ. Michigan Herb. 23: 115137.

Daniel, T.F. 2004a. Acanthaceae of Sonora: taxonomy and phytogeography. Proc. Calif. Acad. Sci. 55: 690-805.
Daniel, T.F. 2004b. A synopsis of Justicta section Mesoamericanae (Acanthaceae). Proc. Calif. Acad. Sci 55: 174-183.
Daniel, T.F. 2005. Catalog of Honduran Acanthaceae with taxonomic and phytogeographic notes. Contr. Univ. Michigan Herb. 24: 51-108.
Franck, A.R. and T.F. Daniel. 2011. Nelsonia canescens, a genus and species new to the adventive flora of the United States. Castanea 76: 429-431.
Tripp, E.A., T.F. Daniel, J.C. Lendemer, and L.A. McDade. 2009. New molecular and morphological insights prompt transfer of Blechum to Ruellia (Acanthaceae). Taxon 58: 893-906.
Williams, D., R.W. Herrera, and J.L. Linares. 2002. The vascular flora of the Laguna de Alegria, a national monument in the crater of Tecapa Volcano, El Salvador. Sida 20: 675-690.

# ANTILLANTHUS DISCOLOR, THE CORRECT NAME FOR ANTILLANTHUS ALMIRONCILLO (M. GOMEZ) B. NORD. (ASTERACEAE: SENECIONEAE) 

Jean-Sébastien Girard<br>6650, Darlington, app. 304<br>Montreal, Quebec, H3S 2 J5<br>j s girard@live ca<br>John F. Pruski<br>Missourı Botanical Garden<br>PO. Box 299<br>St Louis, Missouri 63166-0299


#### Abstract

The name Antillanthus almironcillo (M. Gómez) B. Nord. is shown to be illegitimate, and the correct combination Antillanthus discolor (Griseb.) J. Girard. is proposed to replace it. A lectotype is also designated for the basionym Cacalia discolor Griseb.


KEY WORDS: Antillanthus, Asteraceae, Caribbean, Compositae, Cuba, lectotypification, nomenclature, Senecioneae.

Collection and entry of data in 2010 for tribe Senecioneae in Wikispecies revealed that the name Antillantus almironcillo (M. Gómez) B. Nord. seemed illegitimate.

The oldest name for Antillanthus almironcillo is Grisebach's (1866: 157) Cacalia discolor. Replacement names were twice proposed in Senecto for C. discolor, because the heterotypic Senecto discolor (Sw.) DC. [ $\equiv$ Zemista discolor (Sw.) B. Nord.] blocked its transfer to that genus. Gómez de la Maza (1890: 277) proposed the name S. almironcillo, while Greenman (1912: 323), unaware of Gómez de la Maza's name, coined for it another name, S. brittonil. When Nordenstam (2006: 52) moved the species to his new genus Antillanthus, he cited in synonymy "Cacalia discolor Griseb., non DC." to explain his use of Gómez de la Maza's name as his basionym, seemingly misinterpreting the legitimate C. discolor Griseb. as an illegitimate homonym of Senecio discolor DC.

Grisebach's protologue included the mention of "Senecio discolor Rich. cub. ex descr., non DC." thus directly linking Grisbach's endemic Cuban novelty and the Cuban plants Richard (1850:66) mistakenly confused with the endemic Jamaican taxon treated subsequently by Nordenstam (2006) as Zemista discolor. It is clear that Grisebach is not citing de Candolle's name as a synonym of his new species. Bibliographic confusion among these two species continued, however, as may be inferred from Jackson (1893) who gave the current taxonomic name of both Cuban Cacalia discolor Griseb. (Jackson 1893: 365) and of Jamaican Cineraria discolor Sw. (Jackson 1893: 537) as S. discolor.

Cacalia discolor Griseb. is thus the oldest validly published and legitimate name for the species. The name Antillanthus almironcillo is illegitimate under ICBN article 52.1 (McNeil \& al. 2006), and a correct combination is provided here.

Grisebach (1866) cited both Wright 2870 and Linden 2052, which Richard (1850) had also cited, in his protologue. Cacalia discolor appears not to have been formally typified, although

Greenman (1912) and Nordenstam (2006) cited only Wright 2870. Nordenstam (2006) went so far as to cite Wrught 2870 as type (but without a herbarium citation) of Antillanthus almuroncillo. Because two well-known Senecioneae specialists (Greenman and Nordenstam) based their concepts of this Cuban endemic upon the Wright collection(s), it seems best to formally cite Wright 2870 in GOET as lectotype.

ANTILLANTHUS DISCOLOR (Griseb.) J. Girard, comb. nov. Basionym: Cacalia discolor Griseb., Cat. Pl. Cub.: 157. 1866. Senecio almironctllo M. Gómez, Anales Soc. Esp. Hist. Nat. 19(2): 277. 1890, non Senecio discolor (Sw.) DC., Prodr. 6: 412. 1837 [1838]. Senecto brittonit Greenm., Publ. Field Mus. Nat. Hist., Bot. Ser. 2(8): 323. 1912, nom. superfl. Pentacalia almironcillo (M.Gómez) Proctor, J. Arnold Arbor. 63(3): 312. 1982, non Pentacalia discolor (Sw.) H. Rob., J. Arnold Arbor. 63(3): 311. 1982. Antillantus almironcillo (M. Gómez) B. Nord., Compos. Newslett. 44: 52. 2006. Lectotype: Cuba. "Cuba occ.", Wright 2870 (lectotype, designated here: GOET, photo MO; presumed isolectotypes: GH, MO).

## ACKNOWLEDGEMENTS

Thanks go to Christina Flann (TICA) for indirectly encouraging the eventual writing of this paper.

## LITERATURE CITED

Gómez de la Maza, M. 1890. Catalógo de las periantiadas cubanas, espontáneas y cultivadas. Anales Soc. Esp. Hist. Nat. 19(2): 213-278.
Greenman, J.M. 1912. New species of Cuban Senecioneae. Publ. Field Mus. Nat. Hist., Bot. Ser. 2(8): 323-328.
Grisebach, A 1866. Catalogus plantarum cubensium exhibens collectionem Wrightianam aliasque minores ex insula Cuba missas. Engelmann, Leipzig.
Jackson, B.D. (editor). 1893. Index Kewensis plantarum phanerogamarum. Vol. 1. Clarendon, Oxford.
McNeil, J. et al. (eds). 2006. International Code of Botanical Nomenclature (Vienna Code). Regnum Vegetabile 146. A.R.G. Gantner Verlag, Koenigstein.
Nordenstam, B. 2006. New genera and combinations in the Senecioneae of the Greater Antilles. Compos. Newslett. 44: 50-73.
Richard, A. 1850. Fanerogamta o plantas vasculares (pt. 2) in R. de la Sagra, Historia fisica politica y natural de la Isla de Cuba. Vol. 11. Arthus Bertrand, Paris.
Wikispecies. June 2, 2012. Antillanthus almironcillo. Wikispecies, free species directory. Wikimedia Foundation.
Chttp.//species wikimedia org/w/index php?title=Antıllanthus_almironcillo\&oldid=1500526>
Accessed 22 Jun 2012.

# NABALUS ASPERA (ASTERACEAE) IN LOUISIANA 

Walter C. Holmes<br>Department of Biology<br>Baylor Unıversity<br>Waco, Texas 76798-7388 U S A. walter_holmes@baylor edu<br>Jason R. Singhurst<br>Wildlife Diversity Program<br>Texas Parks and Wildlife Department<br>4200 Smith School Road<br>Austin, Texas 78704 U.S A<br>Jason Singhurst $@$ tpwd state tx us


#### Abstract

The occurrence of Nabalus (Prenanthes) asper (Asteraceae) is documented in Louisiana. It was collected by Josiah Hale sometime before 1843, probably in Rapides Parish in some isolated prairie that no longer exists.


KEY WORDS: Asteraceae, Compositae, Nabalus, Prenanthes, Louisiana, Josiah Hale, isolated prairies

In the course of studying the vascular flora of Texas, we occasionally discover information concerning the flora of adjoining states. In this instance, a historic collection of Nabalus asper (Michx.) Torrey \& A. Gray from Louisiana permits documentation of the species in that state, something, until now, never done. This particular study originated with our discovery, study, and report of the species in Texas, under the name Prenanthes aspera Michx. (Singhurst \& Holmes 2010).

Following is a short history, with commentary, of Nabalus asper in Louisiana.
The initial report of the species in Louisiana was by Torrey and Gray (1843), who proposed the new combination Nabalus asper, based upon Michaux's Prenanthes aspera (spelling of the epithet varies by gender). In this work, Torrey and Gray used the exclamation point (!) "after the manner in which it is employed by De Candolle and other modern botanists, to indicate that we have seen an authentic specimen of the author, or from the location cited." Thus the distribution was given as this: "Dry barrens and prairies of Ohio! Indiana! Louisiana! and upper Missouri!" No other data was presented.

Riddell, in Catalogus florae Ludovicianae (1852), published a list of the vascular flora of Louisiana, the Cyperaceae and Gramineae not included. Nabalus asper is included on page 754, but without further comment. The list is based on the results of a great many years of observation by Dr. Josiah Hale, by the late Prof. W.M. Carpenter, and by J.L. Riddell. The work was abridged from a manuscript work, "Plants of Louisiana," submitted to and rejected for publication by the Smithsonian Institution. Reportedly, nearly all of the species are represented by specimens in the author's herbarium [see entry 94 in Ewan (1967) for a brief description of the Riddell Herbarium].

Gray included Nabalus asper in the Synoptical Flora of North America (1884). Louisiana is mentioned there only as part of the distribution. Various other authors - Small (1933), Fernald
(1950), and Steyermark (1963) - have included Louisiana within the distribution of the species, under either Nabalus or Prenanthes.

Cronquist (1980) included Louisiana in the distribution of the species, but without further comment. This reference is most often cited by Louisiana authors as the basis for including the species as part of the flora of the state. MacRoberts (1984) referenced Riddell (1852) for including Nabalus asper in his checklist. MacRoberts (1988) and Thomas and Allen (1996) both cited Cronquist as the source for inclusion of $N$. asper in their checklists of the Louisiana flora. Gandhi and Thomas, in Asteraceae of Louisiana (1989), included the species in their treatment, based upon Cronquist (1980) and commented "but we located no LA specimens."

Finally, Bolger (2006) cited Louisiana within the distribution of the species, without additional comment.

In summary, the species has been cited many times as occurring in Louisiana but has never been documented by reference to a collection. Only one citation (Torrey and Gray 1843) has claimed to be supported by an actual specimen, but it did not include any additional information.

An inquiry to the Gray Herbarium resulted in location of a specimen of Nabalus asper from Louisiana. The specimen was made available for study through an e-loan (high definition digital photograph) and is reproduced here with permission (Fig. 1).

Two different collections are mounted on the sheet. David E. Boufford, Senior Research Scientist at GH, quoted in Singhurst et al. (1998) commented "it was his [Gray's] practice, to save paper I suppose, to mount two or more plants [i.e., different collections] on a sheet." The two specimens can be distinguished by the age/condition of the plant at time of collection and the differences in the stem cuts. The three stems on the left side of the sheet make up a specimen of Nabalus asper collected in Kentucky. These were collected by C.W. Short (or possibly were only part of his herbarium) and are not part of this study. The three stems on the right are also N. asper, as is written on the label. The location is given as "Louisiana." (in type) followed by the name of the collector, "Hale" (in script) [quotes added]. The collector is Josiah Hale, a student of Rafinesque, physician, and botanist (Ewan 1977). There is no further location or date. Ewan mentioned that problems persist in fixing collecting localities of Hale's specimens. It is, however, possible to determine an approximate time and place of collection.

The following brief account of Hale's life is extracted from Ewan (1977). In 1825, Hale settled on the Red River in Rapides Parish, 20 miles south of Alexandria. In 1828, he moved to Alexandria, where in 1830 he reported on the yellow fever epidemic in Alexandria in the Transylvania Journal of Medicine. He retired from medical practice in 1834 to devote full time to botany and the pursuit of natural history. In 1838, Torrey and Gray acknowledged "Dr. Hale of Alexandria" with citations that were followed by the exclamation mark (!), meaning they had seen his collections. In 1849, because of financial crisis, Hale returned to practicing medicine. In 1850, he moved to New Orleans.

Apparently a large portion, or possibly most, of Hale's collections from Louisiana were made during his tenure in Alexandria and Rapides Parish. His collection of Nabalus asper was cited by Torrey and Gray (1843), thus was collected prior to that date. The collection year could be from 1825 to 1842 but would seem more likely to be after 1834 , when he supposedly devoted full time to botany. The most likely location would be in or near Alexandria, Rapides Parish, but almost certainly in central Louisiana.


Figure 1. Nabalus aspera (Hale s.n., GH), the three stems on the right. The three stems on the left are Nabalus aspera from Kentucky (Short s.n., GH). This image belongs to the Digital Collection of the Harvard University Herbaria [http://www.huh.harvard.edu/collections/digital_coll.html](http://www.huh.harvard.edu/collections/digital_coll.html)

There has been skepticism, at least among the authors, as to the occurrence and collection of Nabalus asper in Louisiana, which just does not seem to be a favorable location. The species has a distribution that closely matches the tall grass prairie (Bolger 2006), resulting in it being considered as a tall grass prairie species. However, there are in Louisiana about 16,000 ha of isolated prairies (MacRoberts et al. 2003), mostly in the northern half of the state (Rapides Parish and northward). Generally, these isolated prairies are less than 5 ha and are most similar to "true prairie" and "central Texas" types. Several such prairies occurred in Rapides Parish and would appear to be a likely place of occurrence for the Nabalus species. MacRoberts et al. (2003) mentioned that $99 \%$ of the isolated prairies have been destroyed, which would suggest that $N$. asper has been extirpated from the state, should it have occurred in this type of area. The Louisiana record is best considered to be historical.

## ACKNOWLEDGEMENT

We are thankful to the Gray Herbarium of Harvard University for use of the digital photograph and for permission to include the photograph in this publication.

## LITERATURE CITED

Bolger, D.J. 2006. Prenanthes. Pp. 264-271, in Flora of North America Editorial Committee. Flora of North America, Vol. 19, Magnoliophyta: Asteridae, Part 6, Asteraceae, Part 1.
Cronquist, A. 1980. Vascular Flora of the Southeastern United States. Vol.1, Asteraceae. Univ. North Carolina Press, Chapel Hill.
Ewan, J. 1967. A bibliography of Louisiana botany. Southwestern Louisiana J., 7: 1-83.
Ewan, J. 1977. Josiah Hale, M.D., Louisiana botanist, Rafinesque's pupil. J. Soc. Bibliogr. Nat. Hist. 8: 235-243.
Fernald, ML. 1950. Gray's Manual of Botany. American Book Company, New York.
Gandhi, K.N. and R.D. Thomas. 1989. Asteraceae of Louisiana. Sida, Bot. Misc. 4, Botanical Research Institution of Texas, Fort Worth.
Gray, A. 1884. Synoptical Flora of North America. Vol. 1, Part II. Caprifoliacae - Compositae. American Book Company, New York.
JSTOR Plant Science. 2012. Riddell, John Leonard (1807-1865). hittp//plants jstor org/person/BM 000330781> Accessed 29 June 2012.
MacRoberts, D.T. 1984. The Vascular Plants of Louisiana. Bull. Mus. Life Sci. 6: 1-165.
MacRoberts, D.T. 1988. A Documented Checklist and Atlas of the Vascular Flora of Louisiana; three parts. Published by the author, Shreveport.
MacRoberts, M.H., B.R. MacRoberts, and L.S. Jackson. 2003. Louisiana Prairies. Pp. 80-93, in E. Peacock and T. Schauwecker (eds), Blackland Prairies of the Gulf Coastal Plain. Univ. of Alabama Press, Tuscaloosa.
Riddell, J.L. 1852. Catalogus florae ludovicianae. New Orleans Medical and Surgical J., 8: 743764.

Singhurst, J.R. and W.C. Holmes. 2010. Prenanthes aspera (Asteraceae: (Cichorieae): New to Texas. Phytoneuron 2010-52: 1-4.
Singhurst, J.R, J.W. Smith, and W.C. Holmes. 1998 [2000]. Enemion biternatum Raf. in Texas. Phytologia 85: 130-134.
Small, J.K. 1933. Flora of the Southeastern States. Univ. of North Carolina Press, Chapel Hill.
Steyermark, J.A. 1963. Flora of Missouri. Iowa State Univ. Press, Ames.
Thomas, R.D. and C.M. Allen. 1996. Atlas of the Flora of Louisiana. Vol II: Dicotyledons, Acanthaceae - Euphorbiaceae. Louisiana Dept. of Wildlife and Fisheries, Baton Rouge.
Torrey, J. and A. Gray. 1838. Flora of North America. Vol. I. Wiley \& Putnam, New York.
Torrey, J. and A. Gray. 1843. Flora of North America. Vol. II, Part III. Wiley and Putnam, New York

# A NEW COMBINATION IN DITHRIX (ORCHIDACEAE) 

Kanchi Gandhi<br>Harvard Unıversity Herbaria<br>22 Divinity Avenue<br>Cambridge, Massachusetts 02138<br>gandhi@oeb harvard edu<br>Paul Ormerod<br>PO Box 8210<br>Cairns 4870, Queensland, Australıa<br>wsandave@bigpond net au


#### Abstract

The orchid genus name Dithrix, which was validated by R.K. Brummitt in 1993 and typified with Habenaria griffithil Hook. f., renders superfluity and illegitimacy to the recently published genus name Nujiangia X.H. Jin \& D.Z. Li, which is also typified with $H$. griffithil. The new combination Dithrix griffithii (Hook. f.) Ormerod \& Gandhi is made.


KEY WORDS: Dithrix, "Habenaria dectpens," Habenaria griffithit, Habenaria sect. Dithrix, Nuilangia, Nujiangia griffithu

Hooker (1890: 133, 165) validly published the name Habenaria sect. Dithrix Hook.f. and included a single species "H. dectptens Hook.f." He referred to "Hook.f., Ic. Plant. ined. Herminum, Griff. Notul. iii. 270; Ic. Plant. Asiat. t. 285 f. 1" and cited the following type information: North-West India; Edgeworth s.n., alt. 3000 ft ; Lahul (India), alt. 4-5000 ft., Thomson s.n. - Distrb. Afghanistan, Griffith, (Kew Distrib., 5326) Kurrum Valley (Pakistan), Attchmson No. 322.

Had Hooker (1890: 165) published his new species name " $H$. decipiens," it would be a later homonym and illegitimate (non Wight 1851). He (p. 197), however, realized his mistake and renamed his " $H$. dectptens" as $H$. griffithin Hook. f. Since both "H. decipiens Hook. f." and $H$. griffithil were proposed within the same publication and since " $H$. decipiens Hook. f." was rejected, " $H$. dectptens Hook. f." was not validly published and does not have any nomenclatural standing. The International Plant Name Index (2012), however, had indexed H. decipiens Hook. f. but had not indexed $H$. griffithit.

In his orchid treatment, Renz (in Rechinger 1978: 64) cited "Griffith 5326" from Afghanistan as the type. Since Hooker (1890: 165) cited syntypes, Renz's citation "Griffith 5326" as the type amounts to an inadvertent lectotypification. As Hooker mentioned, " 5326 " is not Griffith's collection number but is Kew's distribution number. Although Renz did not cite the herbarium housing the type, it is reasonable to assume that the type is at K . In a personal communication, Andre Schuiteman (K) informed us that Griffith's collection number is 424 and that there are 2 specimen sheets of this number. Upon our request, Schuiteman provided digitized images of the 2 sheets for our study.

Since there are 2 sheets of Griffith's collection at $K$ and since Renz did not cite the name of the herbarium housing the lectotype, his (1978:64) inadvertent lectotypification is treated here as the first-step of the lectotypification process. Of the 2 sheets, one (barcode K000796944) bears a label showing the no. " $5326, " 6$ specimens, and Hooker's penciled floral drawings, and the other (barcode K000796945) bears 2 specimens. We here select the sheet (barcode K000796944) as the lectotype
(second-step).
Kraenzlin (1899), within his orchid treatment, placed Diphylax Hook. f. (a genus (including Tsaiorchts Tang \& F.T. Wang) of 3 or 4 species with a distribution range Himalaya to South China; Mabberley, 2008: 278)) and Platanthera Rich. (a genus of 200 species (including Plperia Rydb.), predominantly Northern Hemispheric; Mabberley, 2008: 676) next each other; he transferred Habenaria griffithii to Diphylax and made the new combination D. griffithis (Hook. f.) Kraenzl.

Jin \& al. (2012), based on molecular data and morphological evidence, found that Habenaria griffithul is also close to Gennaria Parl. (a monospecific genus restricted to the western Mediterranean and Macaronesia; Mabberley 2008: 354) and Peristylus Blume (a genus of 70 species distributed in China to the Pacific (Mabberley 2008: 648) and that $H$. griffithii is closest to Gennaria. Their finding supports placing $H$. griffithit in its own genus.

Schlechter (1926: 583) listed "Dithrix Schltr." He neither provided a description/diagnosis nor referred to Hooker (1.c.) even indirectly. Therefore, "Dithrix Schltr." was not validly published.

Soó von Bere (1929: 369) used "Dithrix Schlecht." and "D. decipiens Hook.f. Fl. Brit. Ind. VI. 1890. 165." and referred to "(Habenaria deciptens Hook f. 1.c. - Hermium deciptens Griff. Notul. III. 370.) - non Wight, H. Griffithtt Hook. f. 1.c. 197" (sic). He did not provide a description/ diagnosis for "Dithrix Schlecht." or refer to H. sect. Dithrix. Therefore, he did not validate "Dithrix Schlecht." Because of the invalidity of "Dithrix Schlecht.," " $D$. decipiens" was also not validly published. Furthermore, "Herminuum dectitens Griff." does not exist. Griffith (posthumously) published "Herminnt sp." (Griffith, 1851a: 270; 1851b: t. 285).

In spite of their invalid status, both "Dithrix Schltr." and "Habenaria decipiens Hook. f." were indexed by the Index Nominum Genericorum (Plantarum) (2012), and the Names in Current Use for Extant Plant Genera (2012) indexed both as follows:

Dithrix (J.D. Hooker) Schlechter, Notizbl. Bot. Gart. Berlin-Dahlem 9: 583. 22 Jul 1926.
Habenaria sect. Dithrix J.D. Hooker, Fl. Brit. Ind. 6: 133. Dec 1890.
Type: Habenaria decipiens J.D. Hooker 1890, non R. Wight 1851
The above data are included in the printed version of the Names in Current Use for Extant Plant Genera (Greuter \& al. 1993: 366). The inclusion of Dithrix as an accepted generic name and the citation of a full reference to the basionym validate the generic name. On preface page XIII, R.K. Brummitt is credited for the data on vascular plant generic names. Therefore, Brummitt is author of the orchid genus Dithrix. The citation of "Habenarta decipiens J.D. Hooker" as the type species is treated as a correctable error for $H$. griffithin Hook. f. [In contrast, the International Plant Names Index (2012), had not indexed "Dithrix Schltr.'"]

Unaware of the inadvertent validation of Dithrix in 1993, Jin and Li (in Jin \& al. 2012: 68-69) published the genus name Nifiangia X.H. Jin \& D.Z. Li and typified it with Habenaria griffithtl. They also made the new combination N. griffithtt (Hook. f.) X.H. Jin \& D.Z. Li. Besides the localities cited by Hooker, they added Yunnan, China to the range of this species. Since Dithrix and Nujiangia are typified by the same species, Nujiangia is superfluous and illegitimate.

We hereby transfer Habenaria griffithil to Dithrix and make the new combination Dithrix griffithu. A summary is provided below.

Dithrix (Hook. f.) Schltr. ex Brummitt, Regnum Veg. 129: 366. 1993. Basionym: Habenaria sect. Dithrix Hook.f., Fl. Brit. Ind. 6: 133, 165. Dec 1890. Nufiangia X. H. Jin \& D. Z. Li, J. Syst. Evol. 50(1): 68. 2012, nom. superfl. \& illegit. Type species: D. griffithit (Hook.f.) Ormerod \& Gandhi (H. griffithu Hook.f.)

Dithrix griffithii (Hook. f.) Ormerod \& Gandhi, comb.nov. BASIONYM: Habenaria griffithit Hook.f., Fl. Brit. Ind. 6: 197. Dee 1890. Diphylax griffithu (Hook. f.) Kraenzl., Orchid. Gen. Sp. 1(10): 599. 1899; Nujiangia griffithu (Hook. f.) X.H. Jin \& D.Z. Li, J. Syst. Evol. 50: 68. 2012. Lectotype: Afghanistan. 1862-63, W. Griffith 424 (= Kew distribution no. 5326) (K) (first-step by J. Renz in K. H. Rechinger, Fl. Iran. 126: 64. 1978); K barcode no. K000796944 (second-step designated here).

Distribution: Afghanistan, China, India, and Pakistan.

## ACKNOWLEDGEMENTS

We thank Drs. Werner Greuter (B) and James L. Reveal (CU) for a discussion on the validity of the genus name Dithrıx, Dr. Andre Schuiteman (K) for providing digitized images of the Griffith collection, and Dr. Anthony R. Brach (MO c/o A, GH) for helpful comments.

## LITERATURE CITED

Greuter, W. \& al. 1993. Names in current use for extant plant genera. Regnum vegetabile, Vol. 129. Published for the International Association for Plant Taxonomy by Koeltz Scientific Books. Königstein, Germany.
Griffith, W. 1851a. Posthumous papers bequeathed to the East India company, and printed by order of the government of Bengal: Notulæ ad Plantas Asiaticas / by the late William Griffith ... arranged by John M'Clelland, Vol. 3. Bishop's College Press, Calcutta.
Griffith, W. 1851b. Posthumous papers bequeathed to the honorable the East India Company, and printed by order of the government of Bengal: Icones Plantarum Asiaticarum / by the late William Griffith ... arranged by John MrClelland, Vol. 3. Bishop's College Press, Calcutta.
Hooker, J.D. 1890-1894. Flora of British India, Vol. 6. L. Reeve \& Co., London.
Jin, X.H., D.Z. Li, X.G. Xiang, Y.J. Lai \& X.C. Shi. 2012. Nujiangia (Orchidaceae: Orchideae): A new genus from the Himalayas. J. Syst. Evol. 50: 64-71.
Kraenzelin, F. W. L. 1897-1901. Orchidacearum genera et species, vol. 1 (parts 1-16). Mayer \& Müller, Berlin.
Mabberley, D.J. 2008. Plant-Book: A Portable Dictionary of Plants, Their Classification and Uses, 3rd ed., completely rev. Cambridge Univ. Press, Cambridge, U.K.
Rechinger, K.H. 1978. Flora Iranica: Flora des iranischen Hochlandes und der umrahmenden Gebirge, Vol. 126. Graz, Austria.
Schlechter, F.R.R. 1926. Das system der Orchidacee. Notizbl. Bot. Gart. Berlin-Dahlem 9(88): 563-591.
Soó von Bere, K.R. 1929. Revision der Orchideae-Ophrydineae von Ostasien und dem Himalaya. Ann. Hist.-Nat. Mus. Natl. Hung. 26: 339-384.
Index Nominum Genericorum (Plantarum). 2012. Published on the Internet hhttp//botany st edu/ing/ingform cfm> [accessed 24 Jun 2012]
International Plant Names Index. 2012. Published on the Internet. shttp//www ipni org> [accessed 24 Jun 2012].
Names in current use for extant plant genera. Electronic version 1.0. <http//www bgbm org/apt/ncu/genera/NCUGQuery htm> Published on the Internet [accessed 24 Jun 2012].

# SELENLA AUREA NUTTALL (BRASSICACEAE) IN TEXAS: A REVIEW 

Walter C. Holmes<br>Department of Biology<br>Baylor University<br>Waco, Texas 76798-7388<br>Jason R. Singhurst<br>Wildlife Diversity Program<br>Texas Parks and Wildife Department<br>4200 Smith School Road<br>Austin, Texas 78704<br>Jason Singhurst $@$ tpwd state tx us<br>Jeffrey N. Mink<br>Department of Biology<br>Baylor University<br>Waco, Texas 76798-7388

Matt White
882 Hwy 24
Campbell, Texas 75422


#### Abstract

The occurrence of Selenia curea in Texas is fully documented. The species is thus considered a part of the flora of Texas, at least in a historical sense. Photographs of documenting specimens, circumstances involving the time and place of collection, and commentary on the history of the species in the state are included.


KEY WORDS: Brassicaceae, Cruciferae, Selenta, Texas, San Augustine County, San Augustine, Ayish [Irish] Bayou Settlement, Weches Formation, glades and outcrops, Melines C. Leavenworth.

Selenia is a genus of five species, four occurring in the southwestern USA and one in northeast Mexico (Al-Shehbaz 2010). Four species are recorded in Texas, two being endemic to the state, another also occurring in New Mexico, and the fourth species, S. aurea Nuttall, mainly distributed in the Ozark and Ouachita highlands of the southcentral USA, is considered to be of questionable occurrence in Texas. The later species was cited by Torrey and Gray (1838) and Watson (1895) as occurring in Texas and, more recently by Martin (1940), Correll and Johnston (1970), Rollins (1993), and Al-Shehbaz (2010) as probably occurring in Texas. Turner et al. (2003) excluded the species from the state. The purpose of the study is to determine if $S$. aurea can be documented in Texas and thus clarify the southwestern distribution of the species.

The major references, with commentary, concerning Selenta aurea in Texas include the following.

The first mention of the occurrence of Selenia aurea in Texas was by Torrey and Gray (1838), where it is treated as $S$. aurea var. $\beta$. The following specimen is cited: "Near St. (sic) Augustine, Texas, Dr. Leavenworth." There are irregularities associated with the citation. Martin (1940), in citing the specimen, writes that "No sheet has been seen that corresponds to these data. There is in the herbarium of the New York Botanical Garden (from the Torrey Herbarium) a collection labeled "Selenta aurea. -(?) Prairies, Texas." The question mark is in place for a word unreadable by Martin. No specific location is
given. Additionally, the St. (English or French, saint) should be San (Spanish, San, masculine of saint), as there is a San Augustine but no St. Augustine in Texas. These items will be addressed further in the discussion of the herbarium specimens cited below.

In 1895, Sereno Watson (in Gray 1895) cited the above specimen in proposing the name Selenia aurea var. aperta for var. $\beta$ of Torrey and Gray. He also cited the specimen data as "Near St. Augustine, Texas, Leavenworth," indicating that the transaction was based solely on literature.

Martin (1940) presents an excellent account of the species, which includes a summary of the circumstances of the Leavenworth specimen mentioned above. He concludes with saying that the species is "probably in Texas." This disposition is likely the result of the inconsistencies of the Leavenworth specimen.

By inclusion in their manual, Correll and Johnston (1970) treated Selenia ourrea as part of the flora of Texas. The distribution was given as "probably n.e. Tex." This distribution may be taken in two ways. A northeast Texas distribution would be contiguous with the distribution (which included eastern Oklahoma and in particular, Choctaw County, which borders Texas) mapped by Martin (1940). Or possibly it may only be an expression of uncertainty, since the Texas record may not be supported by a specimen. Thus the species was included in the flora in deference to the citations by Torrey and Gray (1838), Watson (1895), and possibly Martin (1940).

Rollins (1993) questioned the exact southwest limits of the species, having not seen specimens from Texas or Louisiana. [Rollins' mention of Louisiana has nothing to do with the present paper and was dismissed as extraterritorial (not from present day Louisiana, but from the Louisiana Purchase territory).]

The species was included as part of the flora of Texas in various checklists of the vascular flora of the state. Included here are the works of Cory and Parks (1937), Gould (1962), Johnston (1990), Hatch et al (1990), and Jones et al. (1997). There are presumably based upon literature reports, hence specimens are not cited.

Turner et al. (2003) did not map the species as part of the flora of the state in the Atlas of the Vascular Plants of Texas (Vol. 1), thereby excluding the species as part of the Texas flora.

Al-Shehbaz (2010) mentioned that "Although R.C. Rollins (1993) and R.F. Martin (1940) suggested that Selenia aurea probably occurs in southeastern Texas, I have not seen any material from that state."

In summary, the question still remains. Only one specimen of Selenia aurea has been cited from the state, but the record cannot be verified because there is no specimen that corresponds to the data given (see Torrey and Gray 1838, above). In essence, the location cited by Torrey and Gray does not accompany the specimen. A specimen from Texas cited by Martin (1940) appears to be the same sheet mentioned by Torrey and Gray (1838) but with accurate label data that does not give a specific location.

The purpose of this paper is to determine if Selenia aurea should be considered part of the flora of Texas and thus resolve the question of the southwestern limit of distribution of the species. The research included field searches for the species in two areas of the state. This included San Augustine and Sabine counties of east central Texas, the area collected by M.L. Leavenworth in the 1830s. The second area was northeast Texas (particularly Lamar and Fannin counties), which is continuous with the distribution cited by Martin (1940) and cited as the part of the state where the species is most likely to be expected. The species was not relocated. The second part of the study was to locate and study herbarium specimens of $S$. curea from Texas. Four specimens were located and accessed via ultra definition digital
 and are undaded inthes paper The otben tw o apeinems are fiagrents lecking ouganal labal data

Figue 1. from the Amdemy of Natural Saneace at Phelodelphe (PH) providad the mort


 herbenom of C W Short, waspeaended to the Aucademy of Watuat Scietices by Shert sestate in 1864

Folloming is an enilarged de getal copy of the Label (see Fig 1)


The lahel in the hand of Leaveturoth, 撴s

## Thas a veny (ac) angilar pland

of the clame Tolr udyenamis
Cirperilea much implatad
Lush B agouSettlemed Tox es'





 thete as no such nomed place in Tesas Thas $2 s$ bovever Loqvenvonth siendoning of the place named Aysh Bryou Settemext The word Aysh seems to be the Engrich adapiation of the nume of the






















 1833 is probable


 uadgral copyof the libul(fow $\mathrm{F}_{4}$ ?









 moten Sulure Bladite be












 Bohoucal Gaden

There are two additional specimens at the New York Botanical Garden (NY Specimen ID 1477275 and 1477276 ). These sheets, both containing fragments of a fruiting branch, have "C.W. Short M. D." labels identifying the specimens as being from Texas. This may be in the hand of C.W. Short, but is definitely not in the hand of Leavenworth. This seems to support that these fragments were part of the original Leavenworth collection and were distributed as follows. New York Specimen ID: 1477275 was originally given to Princeton University and incorporated into NY in 1945 while NY Specimen No. 1477276 was given to Wesleyan University and deposited in NY in 1981.

In summarizing the findings obtained through study of the digital photographs, we consider the following to be important.

1. Four specimens were located, two having original data important to the study, while the other two had no original information.
2. In our opinion, all specimens are duplicates of the same collection (unicate) made between 1831 and 1833. The specimens were sent to C.W. Short, who distributed fragments to other herbaria.
3. The collection was made at or near Ayish Bayou Settlement (now San Augustine, San Augustine County), Texas. The collection was split as noted.
4. The specific habitat was a rock outcrop/glade of the Weches Formation.

The one specimen from the Academy of Natural Sciences (PH), which has been historically documented in this paper, verifies the historical occurrence of Selenta curea in Texas. The Torrey specimen (NY Specimen ID: 1477274) provides corroborative information. Thus, the southwestern limits of the species include central deep east Texas.

Finally, comments on the possibility of rediscovery of the species in Texas are appropriate. In short, this is highly unlikely, largely because of habitat loss, the rock outcrops/glades of this part of Texas having been mined for rock used on local roads. Those remaining intact are in less than pristine condition, largely due to invasion by non-native woody plants such as Rosa bracteata (Rosaceae), Ligustrum sinense (Oleaceae), and Lonicera japonica (Caprifoliaceae) or are privately held, thus have limited or no access. However, the hope remains that the species may still be found in the state, probably in northeast Texas.

## ACKNOWLEDGEMENTS

We thank the Herbarium, Academy of Natural Sciences (PH) and the New York Botanical Garden (NY) for the eloans that made this study possible. We are also indebted to C. Donovan Bailey and Lillis Urban of New Mexico State University (NMC) for their advice and assistance.

## LITERATURE CITED

Al-Shehbaz, I.A. 2010. Selenta. Pp. 506-509, in Flora of North America Editorial Committee. Flora of North America, Vol. 7. Magnoliophyta: Saliucaceae to Brassicaceae. Oxford Univ. Press, New York.
Correll, D.S. and M.C. Johnston. 1970. Manual of the Vascular Plants of Texas, Texas Research Foundation, Renner.
Cory, V.L. and H.B. Parks. 1937. Catalog of the Flora of Texas. Texas Agriculture Experiment Station Bulletin 550, College Station.
Goins, C.R. and J.M. Caldwell. 1995. Historical Atlas of Louisiana. Univ. of Oklahoma Press, Norman.
Gould, F.W. 1962. Texas Plants - A Checklist and Ecological Summary. MP-585. Texas Agricultural Experiment Station, Agricultural and Mechanical College of Texas, College Station.
Gray, A. 1895. Synoptical Flora of North America. American Book Company, New York.

Hateh, S.L., K.N. Gandhi, and L.E. Brown. 1990. Checklist of the Vascular Plants of Texas. MP-1655, Texas Agricultural Experiment Station, Texas A\&M Univ., College Station.
Johnston, M.C. 1990. The Vascular Plants of Texas. A List, Up-dating the Manual of the Vascular Plants of Texas, $2^{\text {nd }}$ ed. Published by the author, Austin.
Jones, S.D., J.K. Wipff, and P.M. Montgomery. 1997. Vascular plants of Texas. A Comprehensive Checklist Including Synonymy, Bibliography, and Index. Univ. of Texas Press, Austin.
Martin, R.F. 1940. A review of the cruciferous genus Selenia. Amer. Midland Naturalist 23: 455-462.
McCroskey, V.K. 2012. San Augustine, Texas (San Augustine County). Handbook of Texas online <http//tshaonline org/handbook/online/articleshgs01> Texas State Historical Association. Accessed 6 April 2012.
McVaugh, R. 1947. The travels and botanical collections of Dr. Melines Conkling Leavenworth. Field and Lab. 15: 57-70.
Rollins, R.C. 1993. The Cruciferae of Continental North America. Stanford Univ. Press, Stanford, California.
Torrey, J. and A. Gray. 1838. A Flora of North America. Vol. 1. Wiley \& Putnam, New York.
Turner B.L., H. Nichols, G. Denny, and O. Doron. 2003. Atlas of the Vascular Plants of Texas. Vol. 1. Sida, Botanical Miscellany 24. Bot. Res. Inst. of Texas, Fort Worth.
Watson, S. 1895. Selenia. P. 151, in A. Gray, Synoptical Flora of North America. American Book Company, New York.

# NOTES ON TWO RARE SOLIDAGO (ASTERACEAE) IN TENNESSEE: S. ARENICOLA AND S. SIMPLEX 

Aaron Floden<br>Herbarıum TENN<br>Department of Ecology and Evolutionary Biology<br>University of Tennessee<br>Knoxville, Tennessee 37996<br>afloden@utk edu


#### Abstract

Solidago simplex subsp. randiu var. racemosa is reconfirmed as a member of the Tennessee flora. Solidago arenicola is similarly confirmed although there are minor morphological differences between the Tennessee plants and typical plants from Alabama. Soltdago arentcola in Tennessee is disjunct by about 300 kilometers from the type locality in Alabama and by about 370 kilometers from a reported occurrence in Kentucky, the only other known areas of distribution for the species. Solddago simplex and S. arenicola in Tennessee are distributed on two separate river systems of the Cumberland Plateau.


KEYWORDS: Solidago arentcola, Solidago racemosa, Tennessee, Obed River, Big South Fork

The recent floristic checklist of Tennessee (Chester et al. 2009) reported Solidago aremtcola Keener \& Kral based on material from two counties, Morgan and Scott, both of the Cumberland Plateau physiographic province where they grow along river-scoured rocky margins or on cobble bars. The present report of $S$. arenicola in Tennessee is due to the referral of the Tennessee populations to that species by Semple and Cook (2006) and their suggestion that the identity of the plants needs confirmation.

Specimens at TENN were annotated to Soltdago arenicola by Dwayne Estes based on a presumption of their identity fide Semple and $\operatorname{Cook}$ (2006) and their comparison to an isotype at TENN. Peirson et al. (2012) confirm the presence of $S$. arenicola in Tennessee based on cytological data that shows the Tennessee and Alabama populations are tetraploid ( $2 n=36$ ) and morphologically similar. Formerly, all of these specimens had been annotated as $S$. erecta Pursh, S. spathulata DC., a variety or subspecies of S. simplex Kunth., or as S. ultgmosa Nutt. Chester et al. (1997) treated all as S. simplex. For both Scott and Morgan counties, other accounts include either S. stmplex (USDA, NRCS, 2012) or S. arenicola (Semple \& Cook 2006; BONAP 2011).

Examination of Tennessee material annotated as Solidago arentcola indicates that two distinct taxa are represented by these collections - one tentatively identified as S. arenicola (having glabrous cypselae), the other as $S$. simplex Kunth subsp. randiI (Porter) Ringius var. racemosa (Greene) Ringius (with strigose to shortly pubescent cypselae).

Soltdago arentcola was described from a single population in Alabama (Keener \& Kral 2003). Its habitat is sandy alluvium of the Locust Fork River shore, where inundation and drought both are frequent during summer. Solidago arenicola, S. kralli Semple, and S. plumosa Small (all of subsect. Humiles (Ryd.) Semple) have glabrous cypselae (Keener \& Kral 2003). Solidago arenicola is distinguished from $S$. plumosa by its small capitula and longer cypselae and from $S$. krall which has leaves and arrays abundantly viscid.

In Tennessee, Solidago arenicola occurs in Morgan County along the Obed River and tributaries, which drain to the Emory River. It is disjunct to sandy bottoms of Whites Creek in Roane County which is downstream from where the Emory and Clinch Rivers drain into Watts Bar Lake, a reservoir damming the aforementioned rivers and the Little Tennessee which eventually reaches the Mississippi drainage via a circuitous route through Alabama. It is in Alabama that this river system approaches the Alabama populations of S. arentcola. It is likely that this route assisted the species migration and evidence of this may be recovered from molecular phylogeographic work. In contrast, S. simplex var. racemosa occurs along a limited area of the Big South Fork of Scott County which drains northward into the Cumberland River and thence to the Mississippi drainage.

Recognition of Solidago arenicola in Tennessee remains problematic, however, due to morphology outside the ranges of the original species description. Although the Tennessee plants key to S. arenicola and share the larger capitula with fewer per inflorescence following Keener \& Kral (2003), they differ in several morphological features (Table 1). Significantly, the involucres in the specimens examined are never longer than $7-8 \mathrm{~mm}$, whereas in typical $S$. arenicola they can reach 12 mm . Moreover, the dise floret number is consistently less $(6-10)$ than in $S$. arenicola (11-16) from the type locality. Glandular vestiture in the inflorescence of $S$. arenicola was noted by Keener and Kral (2003) but an isotype (TENN) does not show minute glands at 40x magnification. Glandular vestiture is not discernible on live plants (cultivated) of the Tennessee plants. Nonetheless, S. arenicola from Alabama and Tennessee are cytologically similar (Peirson et al., 2012).

The distinction of the Tennessee plants from Solidago erecta (subsect. Squarrosae A. Gray) is unambiguous. Plants of S. arenicola in Alabama and Tennessee are rhizomatous, forming numerous basal rosettes from slender rhizomes terminating in caudiciform growth; those of $S$. erecta have an erect, non-rhizomatous root. Both the Tennessee plants and typical $S$. arenicola have glabrous leaf margins, while $S$. erecta has scabrellous margins. Also, compared to $S$. erecta, $S$. arenicola has fewer heads per stem, longer involucres, and more dise flowers per head (Table 1). Solidago erecta occurs in dry uplands while the others occur in wet, sandy bottoms.

|  | arenicola (Tenn.) | arenicola (Ala.) | erecta |
| :--- | :--- | :--- | :--- |
| rhizome | horizontal | horizontal | erect |
| heads per stem | $15-95$ | $10-50$ | $15-350$ |
| leaf margin | glabrous | glabrous | ciliate-scabrellous |
| inflorescence vestiture | eglandular | glandular | eglandular |
| involuere length (mm) | $7-8$ | $7-12$ | $3.5-6.5$ |
| ray florets | $8-10$ | $6-10$ | $5-9$ |
| disk florets | $6-10$ | $11-16$ | $6-10$ |
| corolla length $(\mathrm{mm})$ | $4-5$ | $5-6$ | $3-4$ |
| cypselae $(\mathrm{mm})$ | $3-4$ | $1.5-4$ | 2.5 |

Table 1 Companson of relevant morphological features between Solidago arenicola in Tennessee, typical $S$ aremicola from Alabama, and $S$ erecta. Data are taken from specimens at TENN and from Semple and Cook (2006) and Keener and Kral (2003)

Dissimilarities place the Tennessee plants outside of the circumscription of Soldago erecta, but ecology and morphology suggest that they are closely related to $S$. arenicola and they are included here in a broadened taxonomic concept of $S$. arenicola. Alternatively, the taxonomic
status of these plants in Tennessee should be further investigated toward the possibility that they have arisen independently of $S$. arenicola in Alabama.

Collections examined. Solidago arentola. USA. Alabama. Blount Co.: 1.5 air mi WNW of Cleveland, 7 Sep 2002 , Kral 93190 (isotypes: image MO, image NCU, TENN). Tennessee. Morgan Co.: Obed National Wild and Scenic River Park. 4.2 air mi SW of Wartburg, where Catoosa Rd crosses Emory River at Nemo Bridge, N of Bridge on W side of river, sandy cobble bar, $36^{\circ} 04^{\prime} 10^{\prime \prime} \mathrm{N}, 84^{\circ} 39^{\prime} 47^{\prime \prime} \mathrm{W}, 12$ Oct 2005, Estes, Wofford, and Beck 08551 (TENN); same location and date, Estes, Wofford, and Beck 08552 (TENN); same location and date, Estes, Wofford, and Beck 08548 (TENN); common boulder bar element along N bank of Obed River just upstream from McMilligan Branch, Lancing Quad (1967), 29 Sep 1980, Patrick \& Schmalzer 1607 (TENN); gravel bar with shrub-herb community on S of Clear Creek about 0.4 mi downstream from bridge on St. Rt. 4252 (Jett Bridge), Lancing Quad, 20 Aug 1980, Schmalzer 1615 (TENN); Clear Creek at Lilly Bridge, mesic slopes, 17 Sep 1989, McNetlus 89-1038 (TENN); sandy soil along Emory River at Camp Austin N of Oakdale, 16 Sep 1970, Somers., Bowers, and Wofford 46460 (TENN); sandy soil along Clear Creek, just SW of bridge along Hwy 4252, ca. 5 mi W of Lancing, 29 Aug 1977, Webb, Wofford, and Patrick 1069 (TENN); gravel bar with shrub-herb community on E side of Emory River just upstream from Nemo Bridge, Lancing Quad, 1 Oct 1980, Schmalzer 1617 (TENN). Roane Co.: sandy bottoms along Whites Creek, 13 Oct 2010, Pounds s.n. (TENN).

Solidago simplex. USA. Tennessee. Scott Co.: Big South Fork National River and Recreation Area, growing along sandy shore on E bank of BSFR, near Angel Falls, 15 Sep 2001, Durr s.n. (TENN); BSFR, 0.5 mi downstream from Leatherwood Ford, 14 Oct 1988, Schell s.n. (TENN); BSFNRRA, bank of the Clear Fork of the Cumberland River, $36^{\circ} 24^{\prime} 48^{\prime \prime} \mathrm{N} 84^{\circ} 37^{\prime} 24^{\prime \prime}$ W, 1 Sep 1999, Beck 478 (TENN); open, gravel and boulder areas along the BSF, Honey Creek Pocket Wilderness area, 12 Sep 1984, Wofford 84-57 (TENN); BSF 2 mi up from Leatherwood Ford at O\&W RR trestle, rocky bars and banks, bracts yellow-green, 14 Oct 1978, Somers 1577 (TENN).


Figure 1. Distribution of Solddago aremcola (triangles) (KY site not seen, J Peirson, pers comm ) and $S$. simplex (circles) in Tennessee, Alabama, and Kentucky Map created using http //www simplemappr net/

## ACKNOWLEDGEMENTS

I thank Larry Pounds for his 2010 collections of Solidago arenicola from Roane County, which spurred the investigation and comparison of specimens at TENN, in turn leading to the examination of specimens discussed representing two distinct taxa. I also thank Guy Nesom for his comments on the manuscript.

## LITERATURE CITED

BONAP. 2012. North American Plant Atlas (US county-level species maps). Biota of North America Program, Chapel Hill, NC. Last update: Oct 2011 <http//www bonap org/generalist html>
Chester, E.W., B.E. Wofford, R. Kral. 1997. Atlas of Tennessee Vascular Plants. Vol. 2. Angiosperms: Dicots. Misc. Publ. No. 13, Center for Field Biology, Austin Peay State Univ., Clarksville, Tennessee.
Chester, E.W., B.E. Wofford, D. Estes, and C. Bailey. 2009. A Fifth Checklist of Tennessee Vascular Plants. Sida, Botanical Miscellany 31. Bot. Res. Inst. of Texas, Fort Worth.
Keener, B.R. and R. Kral. 2003. A new species of Solidago (Asteraceae: Asterae) from North Central Alabama. Sida 20: 1589-1593.
Peirson, J.A., A.A.Reznicek, and J.C. Semple. 2012. Polyploidy, infraspecific cytotype variation, and speciation in goldenrods: the cytogeography of Solidago subsect. Humiles (Asteraceae) in North America. Taxon 197-210.
Semple, J.C. and R.E. Cook. 2006. Soltdago. Pp. 107-166, in Flora of North America Editorial Committee (eds.). Flora of North America North of Mexico. Vol. 20. Magnoliophyta: Asteridae, Part 7: Asteraceae, Part 2. Oxford Univ. Press, New York.
USDA, NRCS. 2012. The PLANTS Database. National Plant Data Team, Greensboro, North Carolina. \&http//plants usda gov> Accessed May 2012.

# MONTANOA SERBOANA (ASTERACEAE: HELIANTHEAE), A NEW SPECIES FROM OAXACA, MEXICO 

Billie L. Turner<br>Plant Resources Center<br>The University of Texas<br>Austin, TX 78712


#### Abstract

A novel taxon, Montanoa serboana B.L. Turner sp. nov., is described from Distrito Pochutla in Oaxaca, Mexico. It is reportedly a tree to 8 meters high, possessing characters of sect. Montanoa but differing in numerous traits, including few-flowered, rayless heads and glabrous leaves with entire margins. A photograph of the type is provided, along with maps showing its distribution in comparison to other species of Montanoa growing in the state of Oaxaca.


KEY WORDS: Asteraceae, Heliantheae, Montanoa, Mexico, Oaxaca

Identification of Mexican Asteraceae received at herbarium TEX-LL has occasioned the present paper.

MONTANOA SERBOANA B.L. Turner, sp. nov. Figure. 1 Type: MEXICO. Oaxaca. Distrito Pochutla, Mpio. San Miguel del Puerto: En la vereda que va al cafetal Arroyo Arena, ca 150 degrees and 1.47 km from Rancho "Dioon," selva mediana subperennifolia con café, ca 600 m, "11/12/2003," Arturo Nava Zafra 243 [with Sanchez, Salas, and Pascual] (holotype: TEX).

Similar to Montanoa tomentosa Cerv. but arborescent, heads eradiate, disk florets 3-5 per head (vs 6 or more), corollas minutely glandular-pubescent, and leaves glabrous with entire margins (vs variously pubescent and usually trilobed').

Tree up to " 8 m " tall. Stems (uppermost) rounded, glabrous. Leaves glabrous; petioles 3-4 cm long; blades broadly lanceolate to somewhat elliptic, mostly $12-20 \mathrm{~cm}$ long, 46 cm wide, grading into the petioles, 3-nervate from ca 1 cm above the base, margins entire. Capitulescence a terminal or axillary cymose panicle, $10-12 \mathrm{~cm}$ long, $5-8 \mathrm{~cm}$ wide; primary peduncles $2-4 \mathrm{~cm}$ long, ultimate peduncles mostly $2-4 \mathrm{~mm}$ long, pubescent with spreading hairs $0.5-1.0 \mathrm{~mm}$ long. Heads 4 5 mm high; involucres $1-2$ seriate, ca 2.5 mm long, 2-3 mm wide (at anthesis), composed of ca 5 subequal bracts; pales ovate, apiculate, ca 2.5 mm long, villous with white hairs $1-2 \mathrm{~mm}$ long. Ray florets absent. Disk florets 3-5 per head; corollas reportedly "white," ca 2 mm long; minutely glandular-pubescent, the hairs intermixed with sessile atomiferous glands; corolla tubes ca 1 mm long, throat abruptly campanulate, ca 1.5 mm long, lobes ca 0.7 mm long. Anthers yellow, appendages ca 0.5 mm long. Achenes (immature) epappose, glabrous. Known only from the type collection.

The name of the species is an acronym derived from Sociedad para el Estudio de los Recursos Biotecos de Oaxaca (SERBO), which supported the collection of the type of Montanoa serboana.

This is a remarkable and unexpected novelty in Montanoa, considering the relatively recent systematic treatment of the genus by Funk (1982). By characters of the pales and florets, it appears


Figure 1. Holotype of Montanoa serboana B. L. Turner
to belong to the sect Montanoa, differing by having different foliage (blades broadly lanceolate, glabrous and entire) and few flowered, rayless heads Within the section, $M$ serboana presumably relates to $M$ tomentosa Cerv Few-flowered rayless heads were reported in reduced individuals of $M$ tomentosa by Funk ( 1982, p 39), such plants having previonsly been described (based only upon their types), as species ( $M$ gentryt, $M$ hemsleyana, and $M$ rekot) The present novelty differs from all such vanants of $M$ tomentosa in having different leaves and florets Additionally, it is reportedly a tree up to 8 m tall, while most members of sect Montanoa are described as "Much branched shrubs 1-3 m tall" (Funk 1982)


Figure 2 Distribution of Montanoa species in Oaxaca, Mexico

With the description of Montanoa serboana, nine species of the genus are known to occur in the state of Oaxaca (Maps 1 and 2), one of these endemic (M. serboana) and two nearly so (M. liebmannii and M. standleyi), making the state a "Montanoan Paradise," no other state or area of Mexico possessing such a spectacular display of taxa.

## ACKNOWLEDGEMENTS

I am grateful to my field companion Jana Kos for editorial assistance and to my colleague Jose Panero for his professional input. Distribution maps are based upon specimens on file at LLTEX and those cited by Funk (1982).

LITERATURE CITED
Funk, V.A. 1982. The systematics of Montanoa (Asteraceae, Heliantheae). Mem. N.Y. Bot. Gard. 36: 1-133.

# GLANDULARIA MALPAISANA (VERBENACEAE), A NEW SPECIES FROM SONORA, MEXICO 

Thomas R. Van Devender<br>Sky Island Alliance PO Box 41165<br>Tucson, AZ 85717<br>yecora4@comcast net

Guy L. Nesom
2925 Hartwood Drive
Fort Worth, TX 76109
www guynesom com


#### Abstract

Glandularia malpaisana Van Devender \& Nesom, sp. nov., is described from basalt flows west of Moctezuma in east-central Sonora, where it apparently is endemic. It is distinct in its annual duration, small stature, stipitate-glandular stems and leaves, ovate leaf blades with toothed to shallowly lobed margins, short inflorescences, calyces $5-6 \mathrm{~mm}$ with shallowly deltate to subtruncate lobes, corolla tubes $3-5 \mathrm{~mm}$ long and limbs $4-5 \mathrm{~mm}$ wide, and nutlets $2.5-2.8 \mathrm{~mm}$, with a flanged, stipe-like base and with commissure reaching the apex. Color photos and comparisons to $G$. gooddingit, G. pumila, and G. delticola are provided.


KEY WORDS: Glandularia malpasana, Glandularia gooddngit, Glandularta pumila, Glandularia delticola, Verbenaceae, Sonora, Mexico

The taxonomy of Glandularia in North America has been considered in detail in recent studies (Umber 1979; Turner 1998, 1999; Nesom 2010a, 2010b) following the broader study of Verbena sensu lato by Perry (1933). The new species described here was discovered in the malpats, an extensive basalt lava flow near Moctezuma, Mexico (Fig. 4), in February 2012.

Glandularia malpaisana T.R. Van Devender \& Nesom, sp. nov. Figures 1-3. Type: MEXICO. Sonora. Mpio. de Divisaderos: 10 km (by air) N of Tepache, 23.9 km (by air) SSE of Moctezuma, $29^{\circ} 37^{\prime} 29^{\prime \prime} \mathrm{N}, 109^{\circ} 31^{\prime} 53^{\prime \prime} \mathrm{W}$, sparsely open foothills thornscrub on basalt cobble plain, 728 m elev., locally common annual, flowers pink, 15 Feb 2012, T.R. Van Devender 2012-195 with A.L. Reina-G. (holotype: ARIZ; isotypes: MEXU, TEX, others).

Distinct in its small stature, stipitate-glandular stems and leaves, ovate leaves with toothed to shallowly lobed margins, short inflorescences, calyces $5-6 \mathrm{~mm}$ with shallowly deltate to subtruncate lobes, corolla tubes $3-5 \mathrm{~mm}$ long and limbs $4-5 \mathrm{~mm}$ wide, and nutlets $2.5-2.8 \mathrm{~mm}$ with commissure reaching the apex and with a flanged, stipe-like base. Similar to Glandularia gooddingı (Briq.) Solbrig in its lobed to coarsely toothed leaves (vs.pinnatifid), stipitate-glandular stems, and distribution in western North America but different in its annual, slender-taprooted duration and habit with stems ereet from the base, smaller leaves, and much smaller inflorescences, flowers, and fruits.

Plants annual, slender-taprooted. Stems erect to ascending from the base, 9-25 cm, simple or branching from the base, pilose-hirsute with stiff, sharp-pointed, eglandular hairs $0.2-1.2 \mathrm{~mm}$, stipitate-glandular along the whole length with gland-tipped hairs $0.1-0.2 \mathrm{~mm}$. Leaves: blades deltate to ovate or broadly ovate in outline, membranaceous, $1.5-2$ times longer than wide, midstem


Figure 1. Glandularia malpaisana, habit and habitat. Photo by T.R. Van Devender, 15 Feb 2012.


Figure 2. Glandularia malpaisana, stem apices. Photo by T.R. Van Devender, 15 Feb 2012.


Figure 3. Glandularia malpaisana, inflorescence. Photo by T.R. Van Devender, 15 Feb 2012.

10-18 mm, hirsute-strigose to strigose adaxially, hirsute abaxially, sparsely stipitate-glandular on both surfaces, margins toothed to shallowly lobed, deepest lobes $1 / 3-1 / 2$ to midrib, ultimate segments ovate to ovate-lanceolate, apices rounded; petioles $3-10 \mathrm{~mm}$. Inflorescence $5-20 \mathrm{~cm}$ in flower, mostly remaining compact, elongating to ca. $10-25 \mathrm{~mm}$ in fruit; flowers $9-18$; floral bracts half the length of the calyces. Calyces $5-6 \mathrm{~mm}$, pilose-hirsute and minutely stipitate-glandular, lobes very shallowly deltate to subtruncate-mucronulate. Corollas pink, tubes $3-5 \mathrm{~mm}$, sparsely pilose, limbs $4-5 \mathrm{~mm}$ in diam. Nutlets cylindric, $2.5-2.8 \mathrm{~mm}$, not broadened at the base, mature color not seen, commissure reaching the apex, $3 / 4-4 / 5$ as wide as the nutlet apex, apical appendage absent, base with thin-flanged stipe-like appendage.

The new species is only known from the extensive (ca. $275 \mathrm{~km}^{2}$ ) basalt flows south of the Sierra de la Madera and west of Moctezuma in east-central Sonora. The habitat is unique with regularly spaced black stones emerging from a dark, clay-rich soil derived from the eroding basalt. This soil becomes very sticky when wet and contracts when dry. The vegetation is foothills thornscrub, which occupies a broad area between Sonoran desertscrub to the west, tropical deciduous forest to the southeast, and oak woodland in the Sky Island mountain ranges and the Sierra Madre Occidental to the east. On the Moctezuma lava plain, foothills thornscrub is of short stature and the trees are small and widely spaced.

The Sierra la Madera, a Sky Island mountain range in east-central Sonora, Mexico, is an area of floristic interest for the Madrean Archipelago Biodiversity Assessment (MABA) program at Sky Island Alliance in Tucson, Arizona, and the Universidad de la Sierra (UNISIEERA) in Moctezuma, Sonora. Floristic observations and collections, including a MABA Expedition in August 2010, from the Municipio (= County) of Moctezuma are available online in the MABA database (Madrean. org), which is a node of the Southwestern Environmental Information Network (SEINet) database of herbarium collections.


Figure 4. Basalt lava flow west of Moctezuma, Sonora. Habitat of Glandularia malpaisana.

Other plants of interest from the lava plain include disjunct populations of Viguiera purisimae Brandegee, a species of Asteraceae common in Baja California and southern California, and Croton lindhermerianus Scheele, a Chihuahuan Desert species found from Texas west to Arizona. The holotypes of Melampodium moctezumum B.L. Turner and Verbena moctezumae Nesom \& Van Devender (2010) were collected in the same habitat.

In Sonora, Mexico, Glandularia gooddingit (Nesom 2010b) might be postulated as a close relative of Glandularia malpatsana, chiefly because of their non-pinnatifid leaves, but the two are distinguished by a number of unambiguous features, including the following.

1. Annual; midstem blades $10-18 \mathrm{~mm}$; inflorescence elongating to $10-25 \mathrm{~mm}$ in fruit; corolla tubes 3-5 mm, limb 4-5 mm in diam; nutlet commissure reaching the apex ........ Glandularia malpaisana 1. Perennial; midstem leaf blades $20-50 \mathrm{~mm}$; inflorescence elongating to $20-50(-80,-100) \mathrm{mm}$ in fruit; corolla tubes $8-9(-10) \mathrm{mm}$, limb $10-14 \mathrm{~mm}$ in diam; nutlet commissure not reaching the apex

Glandularia gooddingii (Briq.) Solbrig
Glandularia pumila and G. malpaisana are similar in their small stature, small flowers, and ovate, non-pinnatifid leaves, but the two perhaps are not very closely related within the genus. They are easily separated by the following contrasts.

1. Stems erect to ascending-erect from the base; calyx lobes shallowly deltate to subtruncate; corolla tubes $3-5 \mathrm{~mm}$; nutlet commissure reaching the apex $\qquad$ Glandularia malpaisana 1. Stems mostly prostrate or decumbent-ascending; calyx lobes filiform; corolla tubes $5-7 \mathrm{~mm}$; nutlet commissure not reaching the apex Glandularia pumila (Rydb.) Umber

Close in morphology to Glandularia malpaisana is G. delticola of the Rio Grande Valley of southeastern Texas and southward through eastern Mexico to Chiapas. The two are similar in leaf shape and margin, very small flowers, and nutlet morphology (commissure reaching the apex). In addition to the wide geographic disjunction, however, the two differ in various features.

1. Stems erect, consistently stipitate-glandular; midstem leaf blades $30-50(-60) \mathrm{mm}$; calyx lobes shallowly deltate to subtruncate; corolla tubes 3-5 mm, limbs $4-5 \mathrm{~mm}$ in diam; nutlets $2.5-2.8 \mathrm{~mm}$

Glandularia malpaisana

1. Stems procumbent to ascending, eglandular or very sparsely stipitate-glandular; midstem leaf blades $30-50(-60) \mathrm{mm}$; calyx lobes filiform; corolla tubes $7-10 \mathrm{~mm}$, limbs $5-7 \mathrm{~mm}$ in diam; nutlets $2.1-2.5 \mathrm{~mm}$ $\qquad$ Glandularia delticola (Small ex Perry) Umber

## ACKNOWLEDGEMENTS

We thank Ana Lilia Reina-Guerrero for her help in the field and special interest in the malpass. We greatly appreciate the support of natural history studies and active fieldwork of Gertrudis Yanes-Arveyo, María de la Paz Montañez-Armenta, Hugo Silva-Kurumiya, and their students in this important Sky Island region.

## LITERATURE CITED

Nesom, G.L. 2010a. Taxonomy of the Glandularia bipmnatifida group (Verbenaceae) in the USA Phytoneuron 2010-46: 1-19.
Nesom, G.L. 2010b. Glandularia gooddingil (Verbenaceae): Notes on distribution and variation. Phytoneuron 2010-54: 1-9.
Nesom, G.L. and T.R. VanDevender. 2010. Verbena moctezumae (Verbenaceae), a new species from Sonora, Mexico. Phytoneuron 2010-20: 1-4.

Perry, L. M. 1933. A revision of the North American species of Verbena. Ann. Missouri Bot. Gard. 20: 239-356.
Turner, B. L. 1998. Texas species of Glandularia. Lundellia 1: 3-16.
Turner, B. L. 1999. A reevaluation of the Mexican species of Glandularia (Verbenaceae). Lundellia 2: 55-71.
Umber, R.E. 1979. The genus Glandularia (Verbenaceae) in North America. Syst. Bot. 4: 72-102.

# TAXONOMY OF POLYTAENIA (APIACEAE): <br> P. NUTTALLII AND P. TEXANA 

Guy L. Nesom<br>2925 Hartwood Drive<br>Fort Worth, Texas 76109<br>guynesom@sbcglobal net


#### Abstract

The two species of Polytaenia appear to be nearly identical in vegetative and floral features, but fruit morphology shows a distinct and unequivocal difference. Polytaenta texana is the species in most of Texas and in southern Oklahoma. Polytaenia nuttallii is widespread, from Oklahoma, a few counties in northeastern Texas, and Louisiana, north to Minnesota and Michigan (historically), and east to Kentucky, Tennessee, and Alabama. The two species are mapped by county and distinguished by a key, descriptions, and illustrations.


KEY WORDS: Polytaenta nuttallu, Polytaenta texana, Apiaceae

Polytaenia texana has been a generally accepted member of the Texas flora since Mathias and Constance treated it at specific rank (first in 1941, then 1945, 1961) and later contributed the treatment of Umbelliferae to the Texas Manual (Mathias \& Constance 1970). Coulter and Rose $(1900,1909)$ had treated it as a variety of $P$. nuttallu. Diggs et al. (1999) included $P$. texana using the species key by Mathias and Constance, and it has been listed in recent Texas floristic summaries (Hatch et al. 1990; Johnston 1990; Jones et al 1997). Thus the genus Polytaenia has comprised the supposedly Texas near-endemic as well as the $P$. nuttallit, which ranges more broadly.

Coulter and Rose and Mathias and Constance also saw the distinction of Polytaenia texana mostly in the fruit morphology (Figure 1 shows the distinction as observed by Mathias and Constance). The couplet first provided by Mathias and Constance (and repeated in subsequent publications) is below; geography is from the Texas Manual treatment.
> 1. Fruit $5-11 \mathrm{~mm} \times 4-7 \mathrm{~mm}$, lateral wings narrower and thicker than the body, oll ducts indistinct, several in the intervals; in sandy soil in the Timber Belt and the Blackland Prairies, from Texas and Loursiana, north to Kentucky, Michigan, and Iowa

> Polytaenia nuttallii
> 1 Fruit 9-11 $\times 6-7 \mathrm{~mm}$, lateral wings broader and thinner than the body, oll ducts distinct, solitary in the intervals, abundant on the Blackland and Coastal prairies and the Edwards Plateau, endemic to Texas

## Polytaenia texana

In the most extreme affirmation of the distinctiveness of Polytaenta nuttallit var. texana from typical P. nuttallil, St. John (1919) was so impressed by the fruit differences that he raised var. texana to specific rank and placed it in the new genus Phanerotaenia, (Greek, phaneros, visible, evident, tainia, ribbon, alluding to the oil ducts), distinct from Polytaenta (many oil ducts, as evident in $P$. nuttallit).

On the other hand, ambiguity in the identification of Polytaenia texana surely has been underlain by lack of specificity regarding its geographic distribution. The most explicit description of its geography has been by BONAP (2012), which maps $P$. texana mostly in central Texas counties, sympatric with the broadly distributed $P$. nuttallii. Inclusion of $P$. texana by Diggs et al. places it in the region of north-central Texas (including a few counties of the Edwards Plateau). The description in the 1970 Manual (as in the couplet above) positions P. texana as widely distributed in Texas and sympatric with $P$. nuttallit.


Figure 1 Polytaenta muttallu (1) and representative mencarps $P$ texana $(2,3)$ and $P$ muttallu $(4,5)$ From Mathus and Constance 1961

Outside of Texas, Polytaenia texana has been included in the Oklahoma flora on the basis of a collection from Oklahoma Co. (OVPD 2012), in the central part of the state.

The recent Texas Atlas (Turner et al. 2003) mapped only Polytaenia nuttallit in Texas, tacitly acknowledging the apparent difficulty of distinguishing the two species there. Turner (pers. comm. 2012) considered $P$. texana to be a synonym of $P$. nuttallit, though it was not listed as such.

The present study confirms the existence of two species of Polytaenta and their distinction based on fruit morphology (Figs. 2, 3,4; key couplet below). Differences between the two species are seen most clearly in fully mature fruits, but the distinctions begin to be evident earlier in maturation. A unequivocal means of distinguishing plants in early flower is not evident, but with the map provided here (Fig. 5), this now will be critical only along the zone where the two are contiguous in range or nearly so. Within the range of $P$. texana in extreme northeastern Texas, fruits of some populations have relatively thickened lateral wings, seemingly approaching the morphology of $P$. nuttallir, but the commissural faces are those of P. texana (e.g., Henderson Co., Correll 38924, LL; Smith Co., Cory 56364, SMU).

Molecular studies (Downie et al. 2002; Sun et al. 2004; Sun \& Downie 2010a; Sun \& Downie 2010b) indicate that the two species of Polytaenia ally as a strongly supported monophyletic group with molecular (nucleotide substitution) differences between them. In Downie et al. (2002) the voucher for $P$. nutallii is from Illinois, but in Sun and Downie (2010a) the voucher for $P$. nuttallil is from Grayson Co., Texas (along the Oklahoma border), and probably represents a population of $P$. texana (see distribution map, Fig. 5). The only voucher for P. texana has been from Burnet Co. (in the central part of the state). Thus, in the later study (Sun \& Downie 2010a) both samples are almost certainly of the same species.

The difficulty in distinguishing the two taxa in Texas probably has been because two species have been sought where essentially only a single species occurs. The widespread species in Texas and the one most Texas botanists are familiar with is $P$. texana, but it has usually been identified as $P$. nuttallit. True Polytaenta muttallit occurs only in a few northeastern counties and the geographic relationship between the two species (Fig. 5) has previously been undetermined. Polytaenia texana also occurs across the southern third of Oklahoma. The distribution of the two species apparently is essentially parapatric.

The Texas and Oklahoma plants, as well as some from Oklahoma, Kansas, and Arkansas (including Nuttall's type, Fig. 6), tend to have wider leaf segments than elsewhere in the range (Fig. 8). Eastern outlyers in Alabama often have very narrow segments. There does not appear to be a clear break in the pattern of leaf variation nor is it correlated with the distinction in fruit morphology.


Figure 2. Representative variation in mericarps of Polytaenia texana. Dorsal faces. The large fruit at upper left is from a collection from Kaufman Co., Texas (Cory 53280 , SMU); the longest fruits on this plant are 15 mm .


Figure 3. Representative variation in mericarps of Polytaenia nuttallii. Dorsal faces.


Figure 4 Commissural faces of mericarps A Polytaenia texana B Polytaenia nuttalli.
Polytaenia DC., Coll. Mém. Ombellif. 5: 53, plate 13. 1829. Type: Polytaenta nuttallu DC.
Pleiotaenia Coulter \& Rose, Contr. U.S. Natl. Herb. 12: 448. 1909. Type: Pleiotaenia nuttallin (DC.) Coulter \& Rose Coulter and Rose proposed the substitute name for Polytaenta because of the slightly earlier Polytaennum Desv. (Mem. Soc. Linn. Paris 6: 218. 1827). The current Code, however (ICBN 2006, Article 53.3, Ex. 10) would regard these as " Names not likely to be confused," as did even the 1906 Rules, albeit on a more mechanical basis, as pointed out by St. John (1919).
Phanerotaenta H. St. John, Rhodora 21: 182. 1919. Type: Phanerotaenia texana (Coulter \& Rose) H. St. John

Perennial herbs, without odor, moderately to densely scabrous in the inflorescence with minute, conic, papillate hairs, otherwise glabrous; taproot thickened. Stems 5-15 dm. Leaves: basal 1-2-pinnately compound, cauline 1-pinnately compound, blades oblong to ovate in outline, 8-18 cm x $8-15 \mathrm{~cm}$, herbaceous and slightly thickened; leaflets $3-5$, pinnately to subpinnately divided, lobes ovate or oblanceolate to narrowly oblong, $2-4 \mathrm{~cm} \times 1-2.5 \mathrm{~cm}$, bases rounded to cuneate, sessile to petiolulate, margins coarsely serrate; petioles with dilated sheaths. Inflorescence: peduncles terminal and axillary, $1-10 \mathrm{~cm}$; rays $1-2.5(-4) \mathrm{cm}$, subequal to unequal. Umbels compound; umbellets $6-25$; involucral bracts absent or 1 and ca. 1 mm , involucel bracts linear. Pedicels $2-6 \mathrm{~mm}$. Flowers protogynous; sepals lanceolate-subulate, persistent; petals yellow to yellow-green or greenish yellow, rarely yellow-orange, apices extended into an appendage half as long as the petal and folded under and adnate to the abaxial surface; stylopodium absent. Schizocarps broadly oval to orbicular or obovate, strongly flattened dorsally, $5-11(-15) \mathrm{mm} \times 4-7 \mathrm{~mm}$, splitting into 2 mericarps, narrowly to broadly corky-winged, wings variable in width and thickness, dorsal ribs 3 , oil ducts 3 dorsally, 1 in the intervals, usually 2 or 4 on the commissural face, surface smooth, glabrous; carpophore completely divided the whole length. Base chromosome number, $\mathbf{x}=11$.

The closest relatives of Polytaenia according to molecular analyses apparently are Thasputum and Zizia (Sun \& Downie 2010a), all of subfamily Apioideae.

1. Mature mericarps with lateral wings distinctly thickened, thicker than the face; oil tubes of dorsal face (6-)8-10, laterally contiguous, covered by epidermis and pericarp and indistinct; oil tubes of commissural face 4 , raised and distinct, a contiguous pair on each side of the midrib

Polytaenia nuttallii 1. Mature mericarps with lateral wings relatively thin, same thickness as the face; oil tubes of dorsal face usually 4 , raised and distinct; oil tubes of commissural face 2 , raised and distinct, one on each side of the midrib

Polytaenia texana

1. Polytaenia nuttallii DC., Coll. Mém. Ombellif. 5: 54, plate 13. 1829. Pleiotaenia muttallu (DC.) Coulter \& Rose, Contr. U.S. Natl. Herb. 12: 448. 1909. Type: USA. Arkansas. "Arkansa," 1825, T. Nuttall s.n. (holotype: G-DC; isotype: PH digital image!). Illustration from de Candolle's protologue, Fig. 7.

Stems $5-10 \mathrm{dm}$. Leaves: 8-18 $\mathrm{cm} \times 8-15 \mathrm{~cm}$ in outline; leaflets $2-4 \mathrm{~cm} \times 1-2.5 \mathrm{~cm}$; petioles $4-16 \mathrm{~cm}$. Inflorescence: rays ( $10-$ )20-40 mm . Umbellets ( $6-$ ) $10-25$, ( $6-$ ) $12-22(-42$ )flowered. Pedicels $2-6 \mathrm{~mm}$. Mature mericarps $6-9 \mathrm{~mm} \times 4-6 \mathrm{~mm}$, dorsal ribs not evident; lateral wings distinctly thickened, thicker than the face; oil tubes of dorsal face ( $6-$ ) $8-10$, laterally contiguous (apparently connate at the edges), covered by epidermis and pericarp and indistinct, oil tubes of commissural face 4 , raised and distinct, a contiguous pair on each side of the midrib. $2 n=22$ (Ahles 7974, VDB!, Jefferson Co., Missouri; Bell \& Constance 1957).

Flowering Apr-Jun. Blackland prairies, chalk prairies and outcrops, limestone glades, barrens, open rocky woods, rocky hillsides and barrens, rock crevices, sandy pine and pine-oak woodland, roadsides, old fields; 100-300(-900) m; Ala., Ark., Iowa, Ill., Ind., Kan., Ky., La., Mich., Minn., Miss., Mo., Neb., N.Dak., N.Mex., Okla., Tenn., Tex., Wis. Polytaenia nuttallu is presumed extirpated in Kentucky (Chester \& Wofford 1992), Michigan (Voss 1985), and Minnesota (MDNR 2012). Ecological summaries by states are given by Heikens (2002).

Polytaenia nuttallit in Texas. Bowie Co.: just W of New Boston, along pond off Hwy 82, 6 Jun 1965, Correll \& Correll 31169 (BRIT); 6 mi W of Hooks, 1.4 mi W of exit Red River Army Depot, sandy clay of clearcut in oak-pine flats by I-30, 4 May 1998, Kral 87550 (VDB); 4.4 mi W of Hooks, open pine-oak woodland, sandy soil, 1 Apr 1949, Whitehouse 21090 (SMU). Harrison Co.: along Hatley Creek, between Red Oak Rd and Shreveport-Camden Rd, ca. 5 mi SE of Hallsville, 14 May 1977, Ajllusgi 4031 (BRIT); beside I-20, 2 mi E of Farm Rd 2015, 6 May 1967, Weston 66 (VDB).

Both species occur primarily in blackland soil and over limestone substrate but both also grow abundantly in sandy habitats. The sandy habitats of Polytaenta nuttallti apparently are mostly in the Texas counties at the southwestern corner of its range.
2. Polytaenia texana (Coulter \& Rose) Mathias \& Constance, Bull. Torrey Bot. Club 68: 123. 1941. Polytaema muttalliu DC. var. texana Coulter \& Rose, Contr. U.S. Natl. Herb. 7: 192. 1900. Pletotaenta muttallin var. texana (Coulter \& Rose) Coulter \& Rose, Contr. U.S. Natl. Herb. 12: 448. 1909. Phanerotaenia texana (Coulter \& Rose) H. St. John, Rhodora 21: 182. 1919 (by type but not by description). TyPE: USA. Texas. [Austin Co.:] Near Industry, 1895, H. Wurzlow s.n. (holotype: US digital image!).

Stems 5-15 dm. Leaves: 8-18 $\mathrm{cm} \times 8-15 \mathrm{~cm}$ in outline; leaflets $2-4 \mathrm{~cm} \times 1-2.5 \mathrm{~cm}$; petioles 4-13 cm. Inflorescence: rays ( $10-$ )15-35 mm. Umbellets 8-17, (7-)12-20-flowered. Pedicels 2-6 mm . Mature mericarps $5-11(-15) \mathrm{mm} \times 4-7 \mathrm{~mm}$, dorsal ribs distinct, 3 , thin, orange; lateral wings relatively thin, same thickness as the face; oil tubes of dorsal face usually 4 , sometimes 6 (the outer 2 doubled), raised and distinct; oil tubes of commissural face 2 , raised and distinct, one on each side of the midrib. Chromosome number not reported.

Flowering Apr-Jun. Blackland prairies, coastal prairies, mesquite prairies, oak-pine woods, sandy oak woods, sandy alluvium along rivers, ditches, rocky hillsides, oak-juniper slopes, roadsides, fencerows, old fields; $10-350 \mathrm{~m}$; Okla., Tex.


Figure 5. County distribution of Polytaenia nuttallii and P. texana. Based on records from SMU-BRIT-VDB and TEX-LL. Hollow symbols are from literature, vouchers not seen. Identifications of collections not seen from the Oklahoma zone of parapatry are speculative.


Figure 6 Polytaenia nuttallil - isotype collection (PH) by Thomas Nuttall from Arkansas.


Figure 7 Polytaenta mattallr Plate 13 from DC. Coll Mén Ombellif 51829 Detal 7 shows the abaxial view of a petal, with the apex extended into an appendage and sharply folded under The appendages on a par of petals clasp an anther and hold it to the outside


Figure 8. Representative variation in leaf morphology. Polytaenia nuttallii (A, B) and P. texana (C, D).

## ACKNOWLEDGEMENTS

I am grateful to the staff of BRIT-SMU-VDB staff for help while working there, expecially to Sam Kieschnick for help with photos, and to Eric Keith for comments. I also am grateful to Don Pullen and Frank Vignola for guidance during this project.

## LITERATURE CITED

Bell, C.R. and L. Constance. 1957. Chromosome numbers in Umbelliferae. Amer. J. Bot. 44: 565572.

BONAP. 2012. North American Plant Atlas (US county-level species maps). Biota of North America Program, Chapel Hill, NC. Last update: Oct 2011 http //www bonap org/genera-list html>
Chester, E.W. and B.E. Wofford. 1992. Distribution and status of Polytaenia nuttallii DC., prairieparsley, in Tennessee and Kentucky. J. Tenn. Acad. Sci. 67: 51-54.
Correll, D.S. and M.C. Johnston. 1970. Manual of the Vascular Plants of Texas. Texas Research Foundation, Renner, Texas. [Umbelliferae, pp. 1139-1169, by Mathias \& Constance]
Coulter and Rose. 1900. Polytaenia. Monograph of the North American Umbelliferae. Contr. US Natl. Herb. 7: 191-192.
Coulter, J.M. and J.N. Rose. 1909. Supplement to the monograph of North American Umbelliferae. Contr. U.S. Natl. Herb. 12: 441-451.
Diggs, G.M., B.L. Lipscomb, and R.J. O'Kennon. 1999. Illustrated Flora of North Central Texas. Sida Bot. Misc. 16.
Downie, S.R., R.L. Hartman, F.-J. Sun, and D.S. Katz-Downie. 2002. Polyphyly of the springparsleys (Cymopterus): Molecular and morphological evidence suggests complex relationships among the perennial endemic taxa of western North American Apiaceae. Canad. J. Bot. 80: 1295-1324.
Hatch, S.L., K.N. Gandhi, and L.E. Brown. 1990. Checklist of the vascular plants of Texas. Texas Agric. Expt. Station Misc. Pub. 1655:1-158.
Heikens, A.L. 2002. Conservation Assessment for Prairie Parsley (Polytaenta nuttalltr). USDA Forest Service, Eastern Region. Threatened and Endangered Species Program, Milwaukee, Wisconsin. <http//www fs fed us/r9/wildlife/tes/ca-overview/docs/Plants/PolytaenianuttalliiPrairie_Parsley pdf>
Johnston, M.C. 1990. The Vascular Plants of Texas: A List, Up-dating the Manual of the Vascular Plants of Texas (ed. 2). Published by author, Austin, Texas.
Jones, S.D., J.K. Wipff, and P.M. Montgomery. 1997. Vascular Plants of Texas: A Comprehensive Checklist Including Synonymy, Bibliography, and Index. Univ. of Texas Press, Austin.
Mathias, M.E. and L. Constance. 1941. New combinations and new names in the Umbelliferae. Bull. Torrey Bot. Club 68: 121-124.
Mathias, M.E. and L. Constance. 1945. Polytaema. Genus 88. N. Amer. F1. 28B: 258-259.
Mathias, M.E. and L. Constance. 1961 [issued separately in 1951]. Umbelliferae. Pp. 263-329, plates 1-54, m C.L. Lundell and collaborators. Flora of Texas, Vol. 3. Texas Research Foundation, Renner.
Minnesota Dept. of Natural Resources (MDNR). 2012. Polytaenia nuttalli. Species Profile. दhttp //www dnr state mn us/isg/profile html?acton=elementDetail\&selectedElement=PDAPI1U010>
Oklahoma Vascular Plants Database (OVPD). 2012. Oklahoma Biological Survey, Biodiversity information and data. http //www brosurvey ou edu/atlasdesc html>
St. John, H. 1919. Phanerotaenta, a new genus of Umbelliferae. Rhodora 21: 181-183.
Sun, F-J., S.R, Downie, and R.L. Hartman. 2004. An ITS-based phylogenetic analysis of the perennial, endemic Apiaceae subfamily Apioideae of western North America. Syst. Bot. 29: 419-431.

Sun, F.-J. and S.R. Downie. 2010a. Phylogenetic relationships among the perennial, endemic Apiaceae subfamily Apioideae of western North America: additional data from the cpDNA $\operatorname{trnF}-\operatorname{trnL}-\operatorname{trn} T$ region continue to support a highly polyphyletic Cymopterus. Pl. Divers. Evol. 128: 151-172.
Sun, F.-J. and S.R. Downie. 2010b. Phylogenetic analyses of morphological and molecular data reveal major clades within the perennial, endemic western North American Apiaceae subfamily Apioideae. J. Torrey Bot. Soc. 137: 133-156.
Turner, B.L., H. Nichols, G. Denny, and O. Doron. 2003. Atlas of the Vascular Plants of Texas. Vol. I-Dicots. Sida, Bot. Misc. 24.
Voss, E.G. 1985. Michigan Flora. Part II. Dicots (Saururaceae-Cornaceae). Cranbrook Institute of Science Bulletin 59 and Univ. of Michigan Herbarium, Ann Arbor.

# TAXONOMY OF EURYTAENIA (APIACEAE) 

Guy L. Nesom<br>2925 Hartwood Drive<br>Fort Worth, Texas 76109<br>guynesom@sbcglobal net


#### Abstract

Eurytaenta comprises two species, E. texana and E. hinckleyt, essentially distinguished in morphology only by differences in fruit. Eurytaenia hinckleyi is known only from six counties in southwestern Texas and adjacent New Mexico, while E. texana is more widespread in Texas and western Oklahoma. A key, descriptions, distribution map, and illustrations of fruits and plants are provided.


KEY WORDS: Eurytaenia texana, Eurytaenia hinckleyl, Apiaceae, fruit morphology

Eurytaenta has interesting features of morphology and geography. Observations of a taxonomic study of Eurytaenta are put on record here in a synopsis of the genus.

EURYTAENIA Torrey \& A. Gray, F1. N. Amer. 1: 633. 1840. Type: Eurytaenia texana Torrey \&
A. Gray

Annual herbs, aromatic with parsley odor; slender-taprooted. Stems 3-12 dm, simple or branching mostly from the base, scabrous-papillate in the inflorescence or completely glabrous or glabrate. Leaves: basal 1-pinnate, segments lanceolate to ovate-lanceolate with coarsely serrate margins, cauline 2-pinnate ( -3 -pinnate) blades ovate in outline, ultimate segments linear to filiform with entire margins; glabrous. Peduncles terminal and lateral. Umbels once-compound; involucral bracts 3 -cleft; involucel bracts entire or 3-cleft, distinctly scarious-margined toward the base. Flowers: peripheral and central similar, protandrous; sepals distinct, linear to triangular; petals white, margins entire, apex inflexed; stylopodium depressed-conic, nearly flat. Schizocarps splitting, ellipsoid or oblong-ellipsoid to broadly ellipsoid or suborbicular, strongly flattened laterally, dorsal ribs 3, filiform, lateral wings thickened and abruptly or gradually thinning, oil tubes large and flattened, solitary in the intervals, 2 on the commissural face, mericarp dorsal surfaces usually scabrous-papillate; carpophore divided completely to the base along the whole length. $\mathbf{x}=7$. Derivation of name: Greek, eury, wide, tamta, ribbon or band, alluding to the broad oil tubes, especially those on the commissural faces of $E$. texana mericarps.

In addition to the annual duration and distinctive fruit morphology (Figs. 1, 2), plants of Eurytaenia can easily be recognized by their leaf morphology (Figs. 4, 5). The basal are oncecompound with the segments lanceolate to ovate-lanceolate and coarsely serrate margined. The cauline become 2-(-3)-pinnate and the segments much narrower with entire margins, the medial and distal with filiform to linear segments. All leaves are usually persistent and the transition in morphology usually is evident on a single plant.

As surely did Coulter \& Rose, Mathias, and Constance, I searched for any other feature outside of mature fruit morphology that would distinguish the two species but found none. Eurytaenia hinckley is distinct in its mature mericarps that are relatively narrower in shape with relatively narrower bodies, thickened lateral wings, and a thin dermal covering over the dorsal oil tubes; the commissural oil tubes are narrower, differently shaped, and sparsely papillate (Fig. 1). The difference between the two species is remarkably parallel to the difference between Polytaenia texana and P. nuttallii (Nesom 2012).

Although the mericarp differences show only relatively late in ontogeny, it often is possible to see the developing distinction soon after anthesis. In Eurytaena texana development of the lateral wings is simultaneous at all points from the base to apex In Eurytaema hnokleyn the thickening begins at the apex (at the mericarp shoulders) and proceeds basipetally.


Figure 1 Mericarps of Eurytaenia hinckleyn (A) and $E$ texama (B), dorsal and commissural faces


Figure 2 Umbellule of schizocarps of Eurytaenia hinckleyi From MO isotype.


Figure 3. Geographic distribution of Eurytaenia hinckleyi and E. texana. Symbols without inner dots are from literature records, vouchers not seen. See text (E. texana) for documentation of the counties in the two isolated clusters.

1. Mericarps broadly elliptic to suborbicular, thickened near the body but becoming thinner than the body toward the margins; oil tubes not covered by pericarp or epidermis, those of commissural face completely glabrous, depressed semi-circular in outline $\qquad$ Eurytaenia texana 1. Mericarps ellipsoid to oblong-ellipsoid, thickened to the abruptly narrowed-rounded margins, thicker than the body; oil tubes of both surfaces lightly covered by pericarp or epidermis and papillate, those of commissural face narrowly lenticular in outline $\qquad$ Eurytaenia hinckleyi


Figure 4. Representative plant of Eurytaenia texama. Garza County, Texas.


Figure 5. Representative plant of Eurytaenia hinckleyi. Ward County, Texas.

1. Eurytaenia texana Torrey \& A. Gray, Fl. N. Amer. 1: 633. 1840. Type: USA. Texas. Austin Co.: San Felipe, 1835, T. Drummond s.n. (holotype: GH).
Eurytaenza macrophylla Buckley, Proc. Acad. Nat. Sci. Philadelphia 13: 455. 1861. TyPE: USA. Texas. Washington Co.: no other collection data, ["Dr. Linsecom" fide protologue] Lincecum s.n. (holotype: PH).

Leaves: blades 4-10 $\mathrm{cm} \times 2-5 \mathrm{~cm}$, lobed or pinnatifid with obtuse, crenate, to serrate lobes, petioles $2-5 \mathrm{~cm}$, cauline pinnately or 3 -pinnately dissected, divisions oblong-lanceolate to linear or filiform, margins sharply serrate to entire, terminal often elongate. Peduncles $4-15 \mathrm{~cm}$. Umbels: involucre of ca. 5 usually 3 -cleft bracts $5-10 \mathrm{~mm}$; umbellules $10-26$, rays $20-80 \mathrm{~mm}$, strongly unequal; flowers $10-22$ per umbellule. Pedicels $4-8 \mathrm{~mm}$. Mericarps broadly elliptic to suborbicular, 4-6 mm x 4-5 mm, scabrous-papillate dorsally, glabrous on the commissure, lateral wings often purplish, thickened near the body but becoming thinner than the body toward the margins; oil tubes not covered by pericarp or epidermis, dorsal usually papillate, commissural completely glabrous, those of commissural face depressed semi-circular in outline. $2 n=14$ (Bell \& Constance 1957).

Flowering (Mar-)Apr-Jul(-Aug). Sand and sandy loam, loose alluvial sand over granite, dune-like deposits, abandoned fields, pastures, roadsides, sandy prairies, mesquite savannas, floodplains, oak-juniper woodlands, live oak-post oak woodlands; (20-) $50-900 \mathrm{~m}$; Oklahoma, Texas.

There appears to be a hiatus in distribution of Eurytaenia texana between populations of the Coastal Bend area and those of central Texas and western Oklahoma (Fig. 2), and the habitats are generally different between the two areas. No differences in morphology are apparent, however, and all plants are identified as $E$. texana.

Documentation for the seeming disjunct cluster of three eastern counties is by the types of Eurytaenia texana (Austin Co.), E. macrophylla (Washington Co.), and a citation by Coulter and Rose (1900) - Hall 256 from Waller Co. (the specimen presumably at US). Records for Hood and Tarrant counties also are documented by citations from Coulter and Rose (1900) - Reverchon in June 1882 and Reverchon in June 1879, respectively.
2. Eurytaenia hinckleyi Mathias \& Constance, Contr. Texas Res. Found., Bot. Stud. 1: 2. 1950. Type: USA. Texas. Andrews Co.: Shafter Lake, 10 Jul 1941, B.C. Tharp s.n. (holotype: MO digital image!; isotype: SMU!).

Leaves: blades 4-10 $\mathrm{cm} \times 2-5 \mathrm{~cm}$, lobed or pinnatifid with obtuse, crenate, to serrate lobes, petioles $2-5 \mathrm{~cm}$, cauline pinnately or 3-pinnately dissected, divisions oblong-lanceolate to linear or filiform, margins sharply serrate to entire, terminal often elongate. Peduncles $4-15 \mathrm{~cm}$. Umbels: involucral bracts ca. $5,5-10 \mathrm{~mm}$; umbellules $4-14$, rays $12-45 \mathrm{~mm}$, strongly unequal; flowers ( $4-$ $)^{8-22}$ per umbellule. Pedicels $3-4 \mathrm{~mm}$. Mericarps ellipsoid to oblong-ellipsoid, $5-8 \mathrm{~mm} \times 4-5$ mm , scabrous-papillate dorsally, mostly glabrous on the commissure, lateral wings not purplish, thickened to the abruptly narrowed-rounded margins, thicker than the body; oil tubes of both surfaces lightly covered by pericarp or epidermis and papillate, those of commissural face narrowly lenticular in outline. $2 n=14$ (Bell \& Constance 1957).

Flowering May-Jun(-Jul). Loose sand, sandy soil, dunes, openings in sandy mesquite woodland, sandy roadsides, less commonly gravelly soil of limestone hills; $800-1000 \mathrm{~m}$; New Mexico (Chaves, Eddy, and Lea cos.), Texas (Andrews, Reeves, Ward, and Winkler cos.)

All collections of Eurytaenta hinckleyt except one have been made from habitats of loose sand - the record from Reeves Co. seems anomalous in habitat but it perhaps demonstrates an
ecological breadth analogous to that of $E$. texana, as noted above. Reeves Co.: near Pecos, abundant in gravelly soil of limestone hills, 1 Jun 1932, Whitehouse 8371 (SMU).

## LITERATURE CITED

Bell, C.R. and L. Constance. 1957. Chromosome numbers in Umbelliferae. Amer. J. Bot 44: 565572.

Correll, D.S. and M.C. Johnston. 1970. Manual of the Vascular Plants of Texas. Texas Research Foundation, Renner, Texas. [Umbelliferae, pp. 1139-1169, by Mathias \& Constance]
Coulter and Rose. 1900. Monograph of the North American Umbelliferae. Contr. US Natl. Herb. 7: 9-422. Eurytaena, pp. 126-127.
Diggs, G.M., B.L. Lipscomb, and R.J. O'Kennon. 1999. Illustrated Flora of North Central Texas. Sida Bot. Misc. 16.
Jones, S.D., J.K. Wipff, and P.M. Montgomery. 1997. Vascular Plants of Texas: A Comprehensive Checklist Including Synonymy, Bibliography, and Index. Univ. of Texas Press, Austin.
Mathias, M.E. and L. Constance. 1945. Eurytaenia. Genus 80. N. Amer. Fl. 28B: 203-204.
Mathias, M.E. and L. Constance. 1961 [issued separately in 1951]. Umbelliferae. Pp. 263-329, plates 1-54, m C.L. Lundell and collaborators. Flora of Texas, Vol. 3. Texas Research Foundation, Renner.
Nesom, G.L. 2012. Taxonomy of Polytaenia (Apiaceae): P. nuttallit and P. texana. Phytoneuron 2012-n: 1-11.
Oklahoma Vascular Plants Database (OVPD). 2012. Oklahoma Biological Survey, Biodiversity information and data. <http//www biosurvey ou edu/atlasdesc html>
Turner, B.L., H. Nichols, G. Denny, and O. Doron. 2003. Atlas of the Vascular Plants of Texas. Vol. I-Dicots. Sida, Bot. Mise. 24.

# CASTILLEJA AMBIGUA VAR. MEADII (OROBANCHACEAE): A NEW VARIETY FROM NAPA COUNTY, CALIFORNIA 

J. Mark Egger<br>Herbarium, Burke Museum of Natural History and Culture University of Washington<br>Seattle, Washington 98195-5325<br>m egger@comcast net<br>Jake A. Ruygt<br>Napa Botanical Survey<br>3549 Willis Drive<br>Napa, Californua 94558<br>jruygt(a)com cast net<br>David C. Tank<br>Stillinger Herbarium<br>University of Idaho<br>Moscow, Idaho 83844-1130<br>dtank@udaho edu


#### Abstract

Castilleja ambigua var. meadï is described from Napa County, California. It is included within Castilleja ambrgua based on the strong resemblance of the morphology, coloration, and markings of the corollas, as well as the coloration of the bracts. It is distinguished from the other named varieties of C. ambigua by its erect, typically unbranched stems and by its linear, often unlobed leaves and bracts with linear lobes. The new variety occurs in low relief, fresh water, vernally wet meadow associations on volcanically derived substrates. The new variety is an uncommon, very localized endemic whose conservation status is in need of prompt evaluation.


KEY WORDS: Orobanchaceae, Castillejinae, Castilleja ambigua var. meadti, new species, endangered species, chromosome numbers, Napa County, California

In 1986, Ruygt first encountered an unfamiliar annual Castillefa near Atlas Peak Road, northeast of the city of Napa, California, while conducting an inventory of native plants for a private landowner. The landowner previously recognized the unique character of the natural landscape in the Atlas Peak area and contacted Ruygt to find out more about the diverse selection of species on the property. A search of a small wetland complex on this property brought to light species not previously known to occur in Napa County, including the federally listed species Navarretta leucocephala Benth. subsp. pauciflora (H. Mason) Day, as well as the novelty described here. In 1987, Ruygt visited the original Atlas Peak site with L.R. Heckard (UC/JEPS). This site contains a seasonally wet meadow, a few small vernal pools, and upland grasslands. Heckard, an authority on the Castillejinae, tentatively identified the new form as Orthocarpus lacerus Benth., a species now known as Castilleja lacera (Benth.) Chuang \& Heckard. Heckard deposited a voucher collection (Heckard \& Ruygt 6661) at JEPS, which was apparently recently annotated as a genetic cross "between C. attenuata (A. Gray) Chuang \& Heckard and C. rubrcundula (Jeps.) Chuang \& Heckard subsp. lithospermoides (Benth.) Chuang \& Heckard, of hybrid parentage." No rationale was included with this annotation to justify the hybrid determination. Two additional populations of the new Castilleja were discovered in wetlands on the nearby Mead Ranch in 1990.

While working on a manuscript for a new flora for Napa County (in prep.), Ruygt decided to more closely compare the similarities of plant specimens of the putative disjunct populations of Castilleja lacera from Napa and Marin Counties with herbarium specimens from populations within the primary range of the species. This study revealed that the Marin County (Escuu s.n., UCD) and Napa County (Esau s.n., JEPS, UCR) specimens were misidentified Castilleja rubicundula var. lithospermoides and that specimens of $C$. lacera from the main part of its range differed markedly in a number of characters from the Napa County novelty. This information prompted a field investigation, and in 2009 Ruygt visited a population of Castillefa lacera in McArthur-Burney Falls State Park, Shasta County, California. Photographs were taken along with a specimen collection (Ruygt 5420a, JEPS) for purposes of comparison in a "green" state of that species with the Napa County plants. This comparison convinced Ruygt that the Atlas Peak populations did not compare well morphologically with typical C. lacera and that they did not pertain to that species. In addition, the morphological uniformity of the Atlas Peak populations suggested that recent or current hybridization was not at play in this case.

After some futile attempts by Ruygt to obtain a satisfactory identification of the Atlas Peak populations based on studies at local herbaria, a photograph of a live plant taken by a participant on a California Native Plant Society wildflower hike on the Mead Ranch passed through e-mail channels, eventually connecting Ruygt with Egger in 2010. Egger recognized the unique features of the plants in question, and, after studying close-up digital images and a voucher collection (Ruygt 5575, JEPS, WTU) supplied by Ruygt, he also became convinced that the Atlas Peak populations represented an undescribed form of Castilleja ambigua Hook. \& Arn. In May 2011, Egger and Ruygt visited two populations of C. ambigua var. meadtr, including the type locality, confirming Egger's preliminary determination of the new variety, as described below.

Castilleja ambigua Hook \& Arn. var. meadii J.M. Egger \& J.A. Ruygt, var. nov. Figures 1, 37. Type: USA. California. Napa Co.: Mead Ranch, west of Atlas Peak Road, 2.4 km SW of Foss Valley, E 564639, N4250064, vernal pools in rocky meadow in shallow clay soil, with Eryngium, Eleocharis, on volcanic (Sonoma Formation) substrate surrounded by chamise-Ceanothus-oak chaparral, elevation $475 \mathrm{~m}, 28$ May 2011, J. Ruygt 5793 (holotype: WTU; isotypes: CAS, GH, MO, NY, US).

Similar to typical Castlleya ambigua Hook. \& Arn. in the morphology, coloration, and markings of the corollas as well as the coloration of the bracts but differing from it in its erect, typically unbranched stems, its linear, often unlobed leaves, and its bracts with linear lobes. The new variety also differs in its preference for low relief, fresh water, and vernally wet meadow habitat on shallow, gravelly, volcanically derived substrates.

Plants annual, 6-22 cm tall, with thin, fibrous roots. Stems unbranched or less commonly with a few divaricate-ascending branches from the proximal half of the stem but above the base, purplish-brown, sparsely pilosulous with mix of shorter, stipitate-glandular hairs and longer, nonglandular hairs, both becoming longer, more often glandular, and more numerous distally, approaching the inflorescence. Leaves $1-5 \mathrm{~cm}$ long, linear, $<1 \mathrm{~mm}$ wide at the base, entire or with 1 (2) pairs of linear lobes, $2-8 \mathrm{~mm}$ long; pilosulous to hispidulous and often stipitate-glandular, especially abaxially. Inflorescences $1.5-6.0 \mathrm{~cm}$ long, with few to many, densely ranked, sessile to short-pedicillate flowers. Bracts $5-15 \mathrm{~mm}$ long, divided from near the base into $3-5$ divaricateascending lobes, the central lobe linear to very narrowly linear-lanceolate, the lateral lobes linear; pilosulous to hispidulous and often stipulate-glandular, pale greenish proximally, often with a darker midvein, distal tips pale white, becoming greenish with age. Calyces $8-14 \mathrm{~mm}$ long, divided subequally into four linear lobes, each 5-9 mm long; pilosulous to hispidulous and stipitate-glandular, pale greenish proximally, often becoming pale yellowish distally. Corollas pale yellow, 14-21 mm
long, lower lip 3-4 mm wide, with three divergent, saccate pouches 2-2.5 mm wide, each with a dark reddish-purple spot near the tip at the base of the short, whitish, distal tooth, and often with a similar spot located near the base of each pouch; beaks $1-4 \mathrm{~mm}$ long, pale, densely puberulent. Stigmas exserted, ca. 2 mm wide, obscurely bilobed, stramineous when receptive, becoming darker with age. Anthers 0.8 mm long, exserted at full anthesis. Capsules $5-6 \mathrm{~mm}$ long, ovoid with a curved, acuminate tip, glabrous, stramineous. Seeds many, ca. 0.8 mm long, short-ovoid, brownish; coat tight-fitting, reticulate, cells mostly polygonal-ovate, radial walls moderately deep and horizontally striated, inner tangential walls membranous and apparently unruptured at maturity. Chromosome number: $\mathrm{n}=12$, based on counts made by Tank from the type gathering, Ruygt 5793 (Fig. 8).

Four of the five known populations of Castilleja ambigua var. meadil occur on the Mead Ranch and are protected under a Conservation Easement with the Land Trust of Napa County. The Mead Family has set aside 1100 acres as "Forever Wild," and it is in recognition of the exemplary land conservation ethic of this family that the new variety is named.

Additional specimens examined. USA. California. Napa Co.: Population 1 (type locality): Giles Mead Ranch, 8.8 km E of Yountville, large meadow surrounded by Live Oak Woodland/ Chamise-Ceanothus Chaparral, 0.85 km WNW of main residence, 21 Apr 1990, Ruygt 2489 (JEPS); Atlas Peak Road, S of Foss Valley, Yountville Quad. (7.5'), 6N 4W, S2, SE $1 / 4$ of NE $1 / 4,31$ May 2010, Ruygt 5575 (JEPS, WTU, tissue sampled for DNA sequencing by D. Tank, ID), 15 May 2011, Egger 1468 (WTU). Population 2: Giles Mead Ranch, surrounded by Live Oak Woodland, ca. 0.3 km NW of main residence, live plants examined by Ruygt but population unvouchered and now apparently extirpated. Population 3: Giles Mead Ranch, surrounded by Live Oak Woodland, ca. 0.4 km W of main residence, live plants examined by Ruygt but unvouchered. Population 4: Giles Mead Ranch, surrounded by Black Oak Woodland, ca. 0.7 km NE of main residence, 28 May 2011, Ruygt 5796 (JEPS). Population 5: 4.5 mi N of Westgate Dr. on Atlas Peak Rd., upper end of Milliken Canyon, 18 May 1986, Ruygt 1777 (JEPS); 6.5 mi up Atlas Peak Rd. from Monticello Rd., 10 May 1987, Heckard \& Ruygt 6661 (JEPS).

## Distribution and range

All populations of var. meadn occur within a highly localized district of the Atlas Peak plateau on a single site type characterized by very gradual slopes, shallow clay soils of volcanic origin, and numerous surface rock outcrops (rubble). Populations are known from 5 locations (Fig. 2), four that occur on the Mead Ranch, a 1300 -acre property, largely under conservation easement with the Land Trust of Napa County (LTNC). One population on the Mead Ranch is now apparently extirpated, probably due to competitive pressure from invasive weed species including perennial grasses. The fifth population is partially protected by a conservation easement between a past landowner and the LTNC and now honored by the present owner. Additional populations may occur nearby on adjacent properties and in the Howell Mountain area to the northwest.

## Phenology, ecology, and associated species

Castilleja ambigua var. meadu flowers from April through June in seasonally wet meadows, shallow vernal pools, and along the margins of ephemeral streams. The elevation of the known populations ranges between $450-475 \mathrm{~m}$. The meadows in which this variety is found are typically small ( $<10$ acres) and surrounded by chamise-Ceanothus chaparral, mixed oak-foothill pine woodland, or black oak forest. It occurs in thin clay soils of the Aiken Series (Lambert \& Kashiwagi, 1978), of volcanic origin. The bedrock is basic, of the Sonoma Volcanic Formation ( $<5$ million y.o.). Some sites are seasonally inundated and are classified as Northern Basalt Flow Vernal Pools, a Department of Fish and Game designated rare plant community (Holland 1986). Common associate species include Eleocharis macrostachya Britton, Eryngium aristulatum Jeps. var. aristulatum, Holozonia filipes (Hook. \& Arn.) Greene, Allium amplectans Torr., Downingia concolor Greene, and

Isoetes spp. This is a diverse wetland community, including over 25 vascular plant species documented as near neighbors to C. ambigua var. meadii.

In at least one population (the type locality), Castilleja attenuata is a common associate of the new variety, often growing within centimeters of it. No evidence of any kind of hybridization or genetic introgression between these closely related annual Castilleja forms has been observed. The same is also true of Castilleja densiflora (Benth.) Chuang and Heckard, which occurs around the drier margins of some populations of C. ambigua var. meadii.


Figure 1. Castilleja ambigua var. meadii J.M. Egger \& J.A. Ruygt. A. Habit with proximal stem pubescence detail and inflorescences. B. Proximal leaf with pubescence detail. C. Distal leaf. D. Seed coat. E. Calyx and corolla with calyx pubescence detail. F. Floral bract. Illustration by J. A. Ruygt.


Figure 2. Range of Castilleja ambigua var. meadii within California and within Napa County. Populations of the new variety are indicated by + symbols on the Napa County map.


Figure 3. Holotype collection of Castilleja ambigua var. meadii (Ruygt 5793, WTU).


Figure 4. Castilleja ambigua var. meadii, cluster of plants in habitat. Photo by Mark Egger.


Figures 5-6. Castilleja ambigua var. meadii, inflorescence (L) and whole plant (R). Photos by Mark Egger.


Figure 7. Castilleja ambigua var. meadii, inflorescences and upper stem. Photo by Mark Egger.

Methods for chromosome counts. Immature floral buds were fixed in Carnoy's solution (3 part $100 \% \mathrm{EtOH}: 1$ part glacial acetic acid $\mathrm{v} / \mathrm{v}$; Chuang \& Heckard 1993). Anther sacs were dissected from floral buds ca. $1.6-2.0 \mathrm{~mm}$ long and stained with aceto-carmine on a microscope slide. Microspore mother cells were released from the anthers, anther walls were removed, a glass coverslip was added, and the slide was then gently heated to just before boiling. To insure accuracy, chromosomes were counted from approximately 12 cells using 100x magnification on a Zeiss phase contrast microscope.


Figure 8 Photographs of two pollen mother cells of Casthlefa ambugua var moadus from Rwygt 5703 showing numbered chrom osome locations Photos by David Tank

## Relationships and identification

Castilleja ambigua is a complex and polymorphic species endemic to the west coast region of North America, from southern California north to extreme southwestern British Columbia, Canada It was previously placed in the formerly paraphyletic genus Orthocappus Nutt as $O$ casfillejoldes Benth Jepson (1925) described O castillejordes var msalutatus Jeps, and Keck (1927, in his revision of Orthocarpus) added another infraspecific segregate, $O$ castillejoides var humboldfiensis D D Keck Later, O castllejordes and the other species of the former Onthocarpus sect Castillejordes A Gray and sect. Cordylanthoides Keck were moved into Castilleja in Chuang and Heckard's revision of the Castillejmae (Chuang \& Heckard 1991) At that time, Chuang and Heckard adopted the previously published name, C ambrgua Hook \& Arn for $O$ castillegoudes and changed the rank of the infraspecific groupings from variety to subspecies Subsequently, Egger (2008) reestablished the use of varieties for the infraspecific categories within $C$ ambigua, as part of a broader attempt to provide a standardzed nomenclature with the entire gemus

Castilleja ambigua var humboldtensts (D D Keck) J M Egger and C ambigua var msalutata (Jeps) J M Egger are both strictly coastal, occurring in estuarine salt marshes and on sandy dunes and bluffs. The typical form of $C$ ambigua is more adaptable and far more widespread, occurring in a number of complex and variable forms both along the coast and somewhat sporadically in grasslands and meadow situations some miles in from the immediate coast

We place the new variety within Castilleja ambigua due primarily to the morphology, coloration, and markings of the corollas which are virtually identical to those found in many individuals of the nominate variety, as well as the whitish tips on the distal portion of the bracts Indeed, the corollas of var, meadir could likely be exchanged with those of the typical variety without being noticed, even under magnification Points of congruty include pale yellow background coloration, a single reddish-purple marking at the base of each distal tooth of the each lobe of the lower lip of corollas, and, in many plants, a sumular set of markings near the base of each inflated sae of the lower lip of the corolla. However, var meadu is immediately and with ease separated from the other forms of $C$ ambrgua by the characters noted in the key below, and the somewhat wispy plants are quite distinctive in the field (Fig 9) It should also be noted that populations of the typical inland form of the nominate variety of Castillefa ambigua occur in the Foss Valley (Rugg 4432), ca 3 km
northwest of the nearest population of var. meadii, with no signs of intergradation between the two entities.

Phylogenetic research now underway at the University of Idaho will eventually clarify the relationships between Castilleja ambigua var. meadii and the other varieties of C. ambigua, as well as its placement within the genus as a whole.


Figure 9. The named varieties of Castilleja ambigua in the field. From left to right, var. meadii, var. ambigua, var. humboldtiensis, and var. insalutata. Photos by Mark Egger.

As noted above, an annotation of the collection Heckard and Ruygt 6661 (JEPS) proposes that the new variety is of hybrid origin between Castilleja attenuata and C. rubicundula var. lithospermoides. While such a conjecture is not unreasonable based on a presumed intermediate morphology between these two species, there is little evidence to support this concept in the field. While this combination might reasonably apply to an $F_{1}$ hybrid between the two putative parent species, the populations of C. ambigua var. meadii are all quite uniform in morphology and show none of the wide variation of characters in typical hybrid swarms found regularly in Castilleja (Egger 1994 and unpubl. data). In fact, the plants both within and between the populations of var. meadii are more uniform in morphology than are those of many other widely accepted species within the genus.

Moreover, the meiotic chromosome number of $\mathrm{n}=12$ presented here is the base number for Castilleja (Chuang and Heckard 1991), indicating that the new variety is clearly not of allopolyploid hybrid origin. Both C. ambigua var. ambigua (Atsatt 1966; Chuang and Heckard 1982) and var. humboldtiensis (Anderson 1965) are also known only from counts of $\mathrm{n}=12$. While a homoploid hybrid origin for the new variety cannot be conclusively ruled out at this time, such a scenario seems unlikely, due to the lack of significant variation within and between the different populations. DNA analysis now underway by Tank should resolve the details of the relationships of var. meadii in the near future.

## A simplified key for separating Castilleja ambigua var. meadii from other annual species of Castilleja occurring from the San Francisco Bay Region northward in California.

1. Bracts distally colored red to very occasionally yellow, lower lip of corollas rudimentary, greenish or reddish and not at all inflated C. minor 1. Bracts distally colored rarely if ever as above, lower lip of corollas petaloid and slightly to strongly pouched.
2. Bracts colored uniformly greenish throughout ................... C. lacera, C. rubicundula, C. tenuis 2. Bracts proximally colored dully and more or less uniformly, but distally colored brightly and contrastingly, at least when emergent.
3. Bracts distally colored purplish to magenta or pink, rarely white and then mixed into populations of typically colored plants and greatly outnumbered by them
C. densiflora, C. exserta
4. Bracts distally colored white to rarely pale yellowish.
5. Inflorescences slender, $10-20 \mathrm{~mm}$ wide; corollas more or less linear, the inconspicuous pouches about 2 mm wide; stigmas included within the corolla beaks C. attenuata
6. Inflorescences broadened, $20-40 \mathrm{~mm}$ wide; corollas widened distally, the conspicuous pouches usually $3-5 \mathrm{~mm}$ wide; mature stigmas usually exserted from the corolla beaks.
7. Leaves and bracts entire and more or less lanceolate $\qquad$ C. campestris 5. Leaves usually divided or less commonly a mixture of divided and undivided leaves, bracts always divided and not as above.
8. Plants stems more or less decumbent, at least proximally, usually branched, often profusely; lobes of leaves and bracts lanceolate to broadly lanceolate and often distally rounded; plants of various habitats, including coastal salt marshes, the margins of brackish estuaries, coastal sandy bluffs, and mesic to somewhat xeric inland grasslands
................................................C. ambigua, incl. var. humboldtiensis and var. insalutata 6. Plants stems upright, usually unbranced, uncommonly with a few ascending branches, lobes of leaves and bracts linear; plants of gravelly, vernally moist, inland meadows in volcanically derived soils $\qquad$ C. ambigua var. meadii

## ACKNOWLEDGEMENTS

We thank the curatorial staff at UC/JEPS and WTU for assistance with loans and processing of specimens and Eric Hunt, Doreen Smith, and Celia Zavatsky for bringing the authors into contact.

## LITERATURE CITED

Anderson, D.E. 1965. In: Documented chromosome numbers of plants. Madroño 18: 122-126.
Atsatt, P.R. 1966. The population biology of annual grassland hemiparasites. II. Reproductive patterns in Orthocarpus. Evolution 24: 598-612.
Chuang, T.I. and L.R. Heckard. 1982. Chromosome numbers of Orthocarpus and related monotypic genera (Scrophulariaceae: subtribe Castillejinae). Brittonia 34: 89-101.
Chuang, T.I. and L.R. Heckard. 1991. Generic realignment and synopsis of subtribe Castillejinae (Scrophulariaceae - Tribe Pedicularieae). Syst. Bot. 16: 644-666.
Chuang, T.I. and L.R. Heckard. 1993. Chromosome numbers of neotropical Castilleja (Scrophulariaceae: Tribe Pediculareae) and their taxonomic implications. Ann. Missouri Bot. Gard. 80: 974-986.
Egger, J.M. 1994. New natural hybrid combinations and comments on interpretation of hybrid
populations in Castlleja (Scrophulariaceae). Phytologia 77: 381-389.
Egger, J.M. 2008. Nomenclatural changes and selected lectotypifications in Castilleja (Orobanchaceae). Phytologia 90: 63-82.
Keck, D.D. 1927. A revision of the genus Orthocarpus. Proc. Calif. Acad. Sci. IV 16: 517-571.
Jepson, W.L. 1925. A Manual of the Flowering Plants of California. Univ. Calif. Press, Berkeley and Los Angeles.
Holland, R. 1986. Preliminary Descriptions of the Terrestrial Natural Communities of California. California Department of Fish and Game, Sacramento.
Lambert, G. and J. Kashiwagi. 1978. Soil Survey of Napa County, California. United States Department of Agriculture, Washington, D.C.

# CONTRIBUTIONS TOWARD A REVISION OF HECHTIA (BROMELIACEAE, PITCAIRNIOIDEAE) II. NEW AND NOTEWORTHY HECHTIA SPECIES FROM OAXACA, MÉXICO 

Kathleen Burt-Utley<br>Institute for Systematic Botany<br>Department of Cell Biology, Microbiology, and Molecular Biology<br>University of South Florida<br>Tampa, Florida 33620-5150<br>kburtut1@uno edu


#### Abstract

Three new Hechtia species from Oaxaca, México are described, discussed, and illustrated: H. complanata Burt-Utley, H. wxtlanensis Burt-Utley, and H. isthmusiana Burt-Utley.


KEY WORDS. Bromeliaceae, Hechtia, México, Oaxaca

Hechtia, a genus of over 60 species, is widely distributed in México, ranging from the northern Mexican states that border the United States to the southernmost state of Chiapas where it borders Guatemala. Although widespread in México, this genus is most abundant in the state of Oaxaca, where at least 21 species are known, including the three described herein. Moreover, all but a few of these species are apparently endemic to Oaxaca and those that have slightly broader distributions occur in adjacent states. The greatest diversity of Hechtia in the state occurs in central Oaxaca near and north of the city of Oaxaca and south and southeast to the Isthmus of Tehuantepec. In this typically seasonally dry region with thorn-scrub vegetation and deciduous trees, but pine and oak at higher elevations, there are at least 11 species of Hechtia known, including the three species described herein.

1. HECHTIA IXTLANENSIS Burt-Utley, sp. nov. Type. MÉXICO. Oaxaca. 39.6 mi N of MEX 195 E of the city of Oaxaca along MEX 175 to Ixtlán de Juarez and Tuxtepec, $5600 \mathrm{ft}, 28 \mathrm{Jul}$ 1987, J. Utley \& K. Utley 7961 (holotype: MEXU; isotypes: B, C, CAS, GH, M, MICH, MO, NY, US, USF, XAL). Figures 1, 2, and 3.

Plants in flower with rosettes to 8 dm diam and inflorescences $1.5-2.7 \mathrm{dm}$ high. Leaves very numerous, spreading to subspreading above the sheath, $39-64 \mathrm{~cm}$ long; sheaths hemiorbicular to broadly transversely elliptic, $5-8.5 \mathrm{~cm}$ long, $8-12 \mathrm{~cm}$ wide, the margins finely spinose and distally floccose, both surfaces glabrous and lustrous becoming densely lepidote distally to half their length, stramineous but oldest bases brunneus to castaneous distally; blades straight to subfalcate, narrowly triangular, 32-56 cm long and 2-3.5(-4.5) cm wide above the base, terminally spinose, the margins aggressively armed with antrorse to retrorse red-brown spines $1.5-4.5 \mathrm{~cm}$ apart and (1.5-)3-6(-8) mm long, above and below typically covered with appressed cinereous scales but occasionally appearing glabrescent. Inflorescences terminal, in staminate individuals twice compound or rarely once compound with $(0-) 5-9(-11)$ ascending secondary branches, but in pistillate individuals once or rarely twice compound with $0-2$ secondary branches, both sexes usually with secondary branches in the lower half to third of primary branches, lepidote; scape similar and stout in both sexes, to 11.8 dm , and $2-3 \mathrm{~cm}$ diam at the base, lepidote; internodes short, $0.6-2.7 \mathrm{~cm}$, lepidote; lowermost scape bracts foliaceous, $25-36 \mathrm{~cm}$ with short, triangular bases and long linear finely spinose and spinose tipped blades; mid- and upper scape bracts longer than the internodes, ovate-triangular with appressed linear-triangular blades but reflexed with age, $1.5-13.5(-21) \mathrm{cm}$, rachis $6.6-12.6 \mathrm{dm}$ and $27-41 \mathrm{~cm}$ diam; primary bracts $1.5-9.5 \mathrm{~cm}$ long, longer than to shorter than the sterile bases of the branches;
primary branches of staminate inflorescences $16-25 \mathrm{~cm}$ long, lepidote, the sterile flattened bases $(0.3-) 1.5-7 \mathrm{~cm}$, secondary branches $0.5-9.5 \mathrm{~cm}$; but in pistillate inflorescences primary branches $6-$ 22 cm long, the sterile flattened bases $0-2.5 \mathrm{~cm}$, lepidote; secondary branches when present $3-6 \mathrm{~cm}$ long. Staminate flowers very numerous, spreading; floral bracts borne on sulcate ridges of branches, chartaceous, ovate-triangular to broadly ovate, convex, $1.2-3 \times 0.8-1.8 \mathrm{~mm}$, finely spinuloseserrulate, lepidote; pedicels articulated with the axis, conical, stout, $0.7-1.8 \mathrm{~cm}$ long, glabrous to sparingly lepidote; sepals 3 -nerved, ovate-triangular to triangular, $1-1.6 \mathrm{X} 0.8-1.8 \mathrm{~mm}$, often conspicuously 3-nerved, cucullate distally, apiculate, marginally even to erose or very finely serrulate, glabrous to sparingly lepidote; petals ovate to elliptic, (2-) $2.5-3.2 \mathrm{X} \quad 1.5-2 \mathrm{~mm}$, cucullate distally, apically rounded to praemorse, glabrous, cream-colored; rudimentary ovaries present. Pistillate flowers very numerous, sometimes in whorls, ascending; floral bracts borne on sulcate ridges of branches, chartaceous, flat to convex, ovate-triangular, $1.3-2.5 \times 1-1.6 \mathrm{~mm}$, proximally irregularly finely serrulate-spinulose, apiculate, glabrous to sparingly lepidote; pedicels stout, $0.5-1.5 \mathrm{~mm}$ long, glabrous to lepidote; sepals often conspicuously 1 -nerved, ovate-triangular, $1-1.5 \mathrm{X} 0.7-1.5$, occasionally cucullate distally, apiculate, erose distally, glabrous to lepidote; petals triangular, (1.5${ }^{2} 2-3 \times 1-1.5 \mathrm{~mm}$, rounded to acute, glabrous, greenish yellow. Capsules with pedicels $1.5-2.8 \mathrm{~mm}$ long, bodies ovate-elliptic, 6.5-8 X $2.8-4 \mathrm{~mm}$, smooth but sparingly finely ridged, greenish brown, glossy.

Distribution and habitat. Hechtia vxtlanensts is known only from central Oaxaca, where it has been collected in the Sierra Madre north of the city of Oaxaca at elevations between 5500 to 5600 ft on moist steep forested slopes with Quercus, Pinus, and low shrubs.

Hechtia ixtlanensts is a large species with rosettes to 8 dm and leaves to 64 cm long. Its leaves are densely lepidote but appear more conspicuous in some individuals than in others within the type population. Hechtra ixtlanensts shares a similar rosette and leaf form with H. pringle, which is known from central Oaxaca near the city of Oaxaca. The species differ immediately in inflorescence characters as well as floral characters. Inflorescences of staminate individuals of H. ixtlanensis are twice compound like those of $H$. pringlet, but differ in their longer primary branches ( $16-25 \mathrm{~cm}$ vs $4-$ 15 cm ) and up to 11 secondary branches while staminate inflorescences of $H$. pringlei typically have two or rarely no secondary branches (pers. obs.). Similar differences are observed in the lengths of primary branches of pistillate inflorescences, with those of $H$. ixtlanensis generally longer than those of $H$. pringlei ( $6-22 \mathrm{~cm}$ vs $3-9.5 \mathrm{~cm}$ ). There are also differences in flower color between these species, with petals of staminate flowers of $H$. ixtlanensts cream colored while those of H . pringlet are very pale yellow. Pistillate petals are greenish yellow in $H$. nxtlanensts, but are distinctly green in H. pringlet. The sexual dimorphisms observed in both H. ixtlanensis and H. pringlei are relatively common in Hechtia and have been observed in other species (Burt-Utley \& Utley, 1993; 2011). Since the ovaries are partially inferior in both taxa and the length of the inferior portion cannot be accurately measured on dry specimens, sepal lengths were measured from sepal apices to the middle of their bases, while pedicel length was measured from the rachis of the lateral branches to the middle of the sepal bases.

Additional specimens examined. MÉXICO. Oaxaca. 5.8 mi E of Ixtlán de Juarez on new road to Xiacui and ca 34 mi N of city of Oaxaca, 4 Aug 1981, Utley \& Utley 6691 (CAS, GH, MEXU, MICH, US, USF).


Figure 1. Hechtia ixtlanensis. Isotype of leaves (from Utley \& Utley 7961, USF).


Figure 2. Hechtia ixtlanensis. Isotype of part of staminate inflorescence (from Utley \& Utley 7961, USF).


Figure 3. Hechtia ixtlanensis. Isotype of part of pistillate inflorescence (from Utley \& Utley 7961, USF).
2. HECHTIA COMPLANATA Burt-Utley, sp. nov. Type. MÉXICO. Oaxaca. MEX 190 between Totolapan and Las Margaritas, ca 3.2 mi NW of Las Margaritas or 34.8 mi SE of turnoff to Mitla, 3500-3700 ft or $1100 \mathrm{~m}, 7$ Aug 1992, J. Utley \& K. Utley 8823 (holotype: MEXU; isotypes: BM, CAS, GH, MICH, MO, US, USF). Figures 4, 5, and 6.

Plants solitary, with rosettes $1-1.2 \mathrm{~m}$ diam and inflorescences to 2.3 dm high; new individuals developing in leaf axils of parent plant. Leaves numerous, subspreading to ascending, $51-79 \mathrm{~cm}$ long; sheaths on older leaves hemiorbicular to transversely elliptic, $6-7.5 \mathrm{~cm}$ long, $9.5-16$ cm wide, marginally finely spinulose and distally floccose, both surfaces glabrous and lustrous becoming densely lepidote distally to a third their length, stramineous to castaneous, but older bases brunneus throughout above and below, but pale castaneous near their margins; blades straight to weakly falcate, narrowly triangular, ( $45-$ ) $51-74 \mathrm{~cm}$ long and $2.5-4.5 \mathrm{~cm}$ wide about $5-6 \mathrm{~cm}$ above the sheath, spinose tipped, the margins armed with antrorse and retrorse, or rarely straight, castaneous to dark brown spines $2.7-5.3 \mathrm{~cm}$ apart and (3-)4-7.5 mm long, above and below covered with appressed cinereous scales, but these most conspicuous on the lower third of the blade, blades becoming glabrescent with age, green occasionally flushing pink. Inflorescences terminal, in staminate individuals twice compound with 1-14 secondary branches and only rarely thrice compound with one or more secondary branches with very short branchlets, but in pistillate individuals once compound or infrequently twice compound with $1(-2)$ secondary branches, both sexes usually with secondary branches in the lower half to third of primary branches, lepidote to glabrous; scape in staminate individuals, to $76+\mathrm{cm}$ high, $1.2-3 \mathrm{~cm}$ diam, finely lepidote; in pistillate individuals to $118 \times 2.2-3 \mathrm{~cm}$, finely lepidote to glabrous; lowermost scape bracts foliaceous, ascending, $31-33+\mathrm{cm}$ long, spinose and spinose tipped; the remaining scape bracts ascending, becoming progressively reduced distally and exceeding the short, $0.4-5 \mathrm{~cm}$ long, usually minutely lepidote internodes, bracts basally triangular with linear, finely striate spinose and spinose tipped blades, lepidote; primary bracts of staminate inflorescences (1.2-)3-11.5 cm long, those of pistillate inflorescences (1.4-)3-5 cm long, spinulose and spinose tipped, lepidote, shorter than the lateral branches and shorter than to longer than the sterile bases of the branches; lateral branches complanate basally and sometimes throughout, appearing elliptic in cross-section, ascending, striate and sulcate, those of staminate inflorescences ( $8-$-) $11.5-32 \mathrm{~cm}$ long, those of pistillate inflorescences (8.5-) 1323.5 cm long, subascending, both densely many-flowered, finely lepidote to apparently glabrous. Staminate flowers spreading, occasionally in verticils; floral bracts shorter than to equaling the sepals, chartaceous, flat to navicular, ovate to narrowly triangular, $0.9-2 \times 0.3-0.8 \mathrm{~mm}$, finely spinulose-serrulate, attenuate-acuminate, lepidote; pedicels articulated with the rachis, stout, conical, $0.3-1.5 \mathrm{~mm}$ long to the center of the base of the sepals, lepidote; sepals somewhat imbricate, subequal, chartaceous, convex and ovate to deltoid, $1.2-1.6 \times 1-1.6 \mathrm{~mm}$, cucullate distally, apiculate, occasionally finely serrulate-spinulose or erose especially distally, lepidote; petals spreading, ovate, drying spathulate to elliptic, $2.5-4.5 \times 1.3-2.2 \mathrm{~mm}$, apiculate, glabrous, pale yellow. Pistillate flowers subascending, occasionally in verticils; floral bracts chartaceous, convex and triangular, 11.5 mm X 0.40 .7 mm , apiculate, finely serrulate-spinulose, lepidote to occasionally glabrous; pedicels articulated with the rachis, stout, conical, $0.5-1 \mathrm{~mm}$ long to the center of the base of the sepals, lepidote to occasionally glabrous; sepals convex, triangular, $0.8-1.2 \times 0.8-1.2 \mathrm{~mm}$, to the center of the base of the sepals, praemorse, entire to irregularly finely serrulate, lepidote to occasionally glabrous; petals triangular, 2.1-2.9 X $1-1.8 \mathrm{~mm}$, apiculate to acute, glabrous, green; ovaries lepidote. Capsules with stout conical pedicels $1.5-2 \mathrm{~mm}$ long; bodies loculicidally and septicidally dehiscent, cylindric to narrowly elliptic, $7.5-8.5 \times 3-4 \mathrm{~mm}$, finely lepidote, when immature dark brown but drying olive green.


Figure 4 Hechtia complonata. Isctype of leaves (fromJ Utley \& $K$ UHey 8823, USF)


Figure 5 Hechtia complanata. Isotype of part of stammate inflorescence (from J. Utley \& K. Utley 8823, USF)


Figure 6. Hechtia complanata. Isotype of part of pistillate inflorescence (from J. Utley \& K. Utley 8823, USF).

Etymology. The specific epithet complanata refers to the horizontally flattened or subflattened branches of Hechtia complanata on the type series. Although it is not uncommon to find species with flat sterile bases of branches, the vast majority of species examined have most of the fertile part of their branches rounded.

Distribution and habitat. Hechtta complanata is known only from central Oaxaca, where it grows on cutover slopes with low deciduous forests and thorn-scrub vegetation between 3500 and 4000 ft .

Discussion. Hechtra complanata is a robust, aggressively spinose species that stands apart from most other Hechtia species in its inflorescence branches that are often horizontally complanate for much of their length and in its staminate individuals with frequently very numerous secondary branches. Within the type series, most inflorescences were lepidote, but at least one lacked significant pubescence. Hechtia complanata is distinct from other Hechtia species with terminal inflorescence in its sparingly lepidote ovaries, since lepidote ovaries have only been consistently observed in species with lateral inflorescences, including H. glomerata Zuce. and H. texensis S. Watson.

As in many other Hechtra species, staminate flowers of $H$. complanata are small, with staminate sepals only $1.2-1.6 \times 1-1.6 \mathrm{~mm}$ and pistillate sepals $0.8-1.2 \times 0.8-1.2 \mathrm{~mm}$. It should be noted that sepal lengths were measured from the sepal apices to the middle of their bases, while pedicel length was measured from the rachis of the lateral branches to the middle of the sepal bases to standardize measurements. Hechtia complanata is similar to H. atlanensts in its articulated pedicels, twice compound staminate inflorescences with numerous secondary branches and shorter staminate pedicels, but it differs from $H$. ixtlanensis in its often larger leaves [ $(45-) 51-74 \mathrm{~cm}$ vs $32-56 \mathrm{~cm}$ ] and pale yellow staminate petals and green pistillate petals. From H. pringlet, the staminate inflorescences of $H$. complanata are immediately distinguished by their longer primary branches [( $8-$ ) $11.5-32 \mathrm{~cm}$ vs. $4.3-15 \mathrm{~cm}$ ] with numerous secondary branches [ $1-14 \mathrm{vs} .0$ or 2 )].

Additional specimens examined. MÉXICO. Oaxaca. Ca. 60.4 mi NW of Río Hondo on MEX 190 to Oaxaca, $4000 \mathrm{ft}, 1$ Jan 1987, J. Utley \& K. Utley 7691 (MEXU, US, USF).
3. HECHTIA ISTHMUSIANA Burt-Utley, sp. nov. Type. MÉXICO. Oaxaca. 12.4 km N of La Ventosa junction on MEX 185 (Transisthmian Hwy), $800 \mathrm{ft}, 24$ May 1990, J. Uttey \& K. Uttey 8491 (holotype, MEXU, isotypes, CAS, GH, MO, NY, US, USF, XAL). Figures 7 and 8.

Plants caulescent to $0.6-1 \mathrm{~m}$ with rosettes $2.5-5 \mathrm{dm}$ diam and inflorescences $3.5-9.4 \mathrm{dm}$ high. Leaves several to many, spreading to strongly reflexed, $14-36 \mathrm{~cm}$ long; sheaths on oldest leaves often completely encircling the plant base, $2-4 X(2.8-) 4-8 \mathrm{~cm}$, marginally finely spinulose and floccose, both surfaces glabrous and lustrous becoming lepidote distally, pale to dark castaneous; blades straight to subfalcate, narrowly triangular, $1.5-2.4 \mathrm{~cm}$ wide about 3 cm above the sheath, spinose tipped, marginally armed with generally antrorse spines ( $0.6-$ ) $0.8-1.8 \mathrm{~cm}$ apart and ( $0.5-$ ) $1.8-2.5 \mathrm{~mm}$ long, above and below covered with appressed cincreous trichomes, bright green to pale dusty rose. Inflorescences terminal, similar in both staminate and pistillate individuals, ellipsoid, typically once compound; scape (17-)23-38(-46) $\mathrm{cm}, 0.4-1 \mathrm{~cm}$ diam, glabrous; internodes ( $0.7-$ )1.5-4.5(-7) cm ; lowermost scape bracts foliaceous, (9-)11-22 cm , exceeding the internodes or rarely shorter than the internodes; internodes ( $0.5-$ ) $1.5-4 \mathrm{~cm}$; mid- and upper scape bracts exceeding the internodes, reflexed with age above the sheath, the blades very narrowly triangular to linear (1-)3-10 cm , apically spinose tipped, lepidote; primary bracts $0.8-5 \mathrm{~cm}$; in staminate individuals the rachis $17-$ 55 cm and $4.5-12 \mathrm{~cm}$ diam midway up the rachis; lateral branches subascending, straight or
becoming arcuate distally, weakly sulcate, subdensely flowered throughout, (1.8-) $2.5-7.5 \mathrm{~cm}$; in pistillate individuals at or post-anthesis, the rachis $25-61 \mathrm{~cm}$ and (1.5-)4.5-7 cm diam midway up the rachis, glabrous throughout; lateral branches subascending, straight or becoming arcuate distally, subdensely to densely flowered, ( $0.1-) 1.5-3.5(-4.5) \mathrm{cm}$, glabrous. Staminate flowers spreading to subascending, floral bracts chartaceous, navicular, ovate to oblong, $2-3.5(-5) \mathrm{X} 1-2.5(-3) \mathrm{mm}$, apically attenuate-acuminate to apiculate, marginally finely denticulate to serrulate or erose distally, glabrous; pedicels weakly articulated with the rachis, conical, $1.2-3.5 \mathrm{~mm}$ long to the center of the base of the sepals, glabrous; sepals subequal, basally overlapping, flat to navicular, ovate to ovatetriangular, $1.5-2.7 \times 1-1.8 \mathrm{~mm}$, apically praemorse, marginally hyaline, glabrous; petals spreading, elliptic to ovate-elliptic, $3.5-4.5 \times 1.9-3.3 \mathrm{~mm}$, glabrous, cream-colored but often tipped rose. Pistillate flowers secund to ascending; floral bracts chartaceous, flat, ovate-triangular to oblong, 2$3.5 \times 1.2-2 \mathrm{~mm}$, apically apiculate to acuminate, marginally erose to very finely serrulatedenticulate, hyaline, glabrous; pedicels articulated with the rachis, $1.5-2.5 \mathrm{~cm}$ to the center of the base of the sepals, glabrous; sepals chartaceous, triangular, $1.8-2.5 \times 1.2-1.5 \mathrm{~mm}$, apically acuminate to apiculate, praemorse, glabrous, cream-colored; petals spreading at anthesis, triangular, 4-5 X 1.52.5 cm , marginally hyaline, glabrous, cream-colored but often tipped rose. Capsules with pedicels 24.5 mm ; loculicidally and septicidally dehiscent, narrowly ovoid, (6-)7.5-11 X 3-4.5 mm, dark castaneous.

Distribution and habitat. Hechtia tsthmustana is known only from the vicinity of the Isthmus of Tehuantepec where it grows terrestrially or epilithically on low rocky hillsides in full sun on boulders or areas shaded with thorn-scrub vegetation and tropical deciduous forests including Plumerta and Bursera at elevations between $200-600 \mathrm{ft}$.

Discussion. Hechtta isthmustana is a species with relatively small rosettes that stands apart from most other Hechtia species in its long, caulescent, leafy stems. In growth habit, H. isthmusiana is most similar to H. mooreana L.B. Sm. from Guerrero but differs in many other characters, including its significantly larger flowers and capsules (pers. obs.). Hechtia isthmusiana appears most similar to $H$. caudata, which also occurs in southeastern Oaxaca. Both species have relatively large staminate and pistillate flowers and similar pedicel lengths, with those of pistillate flowers of $H$. isthmusiana $1.5-2.5 \mathrm{~mm}$, while those of $H$. caudata range from 2-3 mm. Pistillate sepals of both species are similar in length, but those of $H$. caudata are slightly broader ( $1.2-1.5 \mathrm{~mm}$ vs $2-2.5 \mathrm{~mm}$ ). Pistillate petal size is virtually the same in both taxa, $4-5 \mathrm{~mm}$. Capsules of both species are ovoid and have similar lengths [H. sthmustana: (6-)7.5-11 mm vs $H$. caudata: $6.5-12.3 \mathrm{~mm}$ ], but those of $H$. isthmusiana are slightly narrower than those of $H$. caudata ( $3-4.5 \mathrm{~mm}$ vs $4.5-5.5 \mathrm{~mm}$ ). Staminate flower measurements are similar in both species, but the species do differ in vegetative and certain inflorescence characters.

With respect to vegetative characters, caulescence has only been observed in Hechtia isthmusiana. Moreover, rosettes of $H$. isthmusiana are smaller than those of $H$. caudata $(2.5-5 \mathrm{dm}$ vs $5-8 \mathrm{dm}$ ), and their leaves are much shorter than the those of $H$. caudata $[14-36 \mathrm{~cm}$ vs (39-)45-77 cm ] and their blades are narrowly triangular ( $1.5-2.4 \mathrm{~cm}$ wide) and have shorter spines and are less aggressively spinose than those of the broader triangular blades ( $3.8-8 \mathrm{~cm}$ wide) of $H$. caudata [spines ( $0.5-$ ) $1.8-2.5 \mathrm{~mm}$ vs $2.5-4 \mathrm{~mm}$ long].

The flowering rachises of Hechtia isthmusiana are generally shorter than those of H. caudata ( 6 : $17-55 \mathrm{~cm}$ vs $80-93 \mathrm{~cm}$; ; : : $25-61 \mathrm{~cm}$ vs 47-75 cm). Both staminate and pistillate inflorescences of $H$. isthmustana are once compound, but those of staminate inflorescences of $H$. caudata are once to occasionally twice compound. When lateral branches of both species are compared, those of both staminate and pistillate inflorescences of $H$. isthmusiana are only slightly shorter those of $H$. caudata


Figure 7 Hechtia isthmustana Isotype of staminate plant (from Utley \& Utley 8491, USF)


Figure 8 Hechtia isfimusiana Isotype of pistillate plant (from Uttey \& Uttey 8491, USF)
[ $6^{\prime}:(1.8-) 2.5-7.5 \mathrm{~cm}$ vs ( $\left.3.5-\right) 6-15.5 \mathrm{~cm}$; 우: $(0.1-) 1.5-3.5(-4.5) \mathrm{cm}$ vs $\left.(2.3-) 4-12 \mathrm{~cm}\right]$. It should be noted that Smith $(1961,1974)$ characterized the inflorescences of $H$. caudata as lateral, but they are terminal like those of $H$. isthmusiana and most other Hechtia species.

Additional specimens examined. MÉXICO. Oaxaca. Isthmus of Tehuantepec 6.6 miN of La Ventosa along MEX 185, Transisthmean Hwy, $600 \mathrm{ft}, 29$ Dec. 1988 (MEXU, USF); Utley \& Uttey 8327, along MEX 185 ca 6.5 mi N of La Ventosa, $600 \mathrm{ft}, 19 \mathrm{Jul}$ 1989, Utley \& Utley 8404 (MEXU, USF); ca 4.1 mi E of La Ventosa on MEX 190, 200-300 ft, 18 Jul 1989, Uttey \& Uttey 8403 (MEXU, USF, USF); 6.5 km E of La Ventosa on MEX 190, $300 \mathrm{ft}, 24$ May 1990, Utley \& Uttey 8493 (MEXU, USF).

## ACKNOWLEDGEMENTS

Field work was made possible in part from grants from the Standley Smith Horticultural Trust. I would like to thank Mr. Alan Franck for photographing our type illustrations and specimens. We also thank the curators of the following herbaria for loans of specimens or use of facilities essential to study: MEXU, US, and USF.

## LITERATURE CITED

Burt-Utley, K. and J.F. Utley. 2011. Contributions toward a revision of Hechtta (Bromeliaceae, Pitcairnioideae) I. New and noteworthy species of Hechtra from Mexico. Phytoneuron 201159: 1-17.
Burt-Utley, K. and J.F. Utley. 1993. Two new species of Hechtia (Bromeliaceae, Pitcairnioideae) from western Mexico. Brittonia 45: 219-225.
Smith, L.B. 1961. Notes on the Bromeliaceae, XVII. Phytologia 8: 5.
Smith, L.B. and R.J. Downs. 1974. Pitcairnioideae (Bromeliaceae). Fl. Neotrop. Monogr. 14: 1658.

# THE GENUS ELODIUM (BRYOPHYTA, HELODIACEAE): A HISTORY AND NEW COMBINATIONS 

Patricia M. Eckel<br>Missour1 Botanical Garden<br>PO Box 299<br>St Louis, Missouri 63166<br>patricia eckel@mobot org


#### Abstract

The Code does not recognize as orthographic variants names only differing by an initial "h" representing the spiritus asper, thus Elodium (Sull.) Austin and Helodumm Warnst. (conserved against Helodium Dumort.) are both legitimate names as they have different types. If included in the same genus, Elodtum takes precedence by Art. 14.5. The complex history of treatment of the spelling in the literature is summarized. Thuidium elodiordes Renauld \& Cardot ex Roell, usually recognized as a variety, is transferred to Elodum at the species level on the basis of new traits. New combinations are Elodium elodioides (Renauld \& Cardot ex Roell) Eckel and Elodium blandowii (F. Weber \& D. Mohr) Eckel.


KEY WORDS: Elodum, Helodium, Elodium elodiotdes, Helodium blandownt, spiritus asper

In the 2006 Vienna Code of Botanical Nomenclature, recommendations 60 Al and 2 state that transliteration of Greek words into Latin for new taxonomic names and epithets should conform to classical usage. The rough breathing sign, or spiritus asper, provided for Greek vowels and diphthongs and the letter " r " that begin a word should be transcribed in Latin as the letter "h." Note that this recommendation is not an authorization to change all generic names derived from Greek words beginning with a spiritus asper (h-sound), as Robert Brown's generic name Eleocharis (also derived from the Greek word for swampy ground (h)elos) has not been altered since its publication (Stearn 1983), and the Code (Art. 10.3, ex. 3) remarks that the protologue of Elodes Adans. (1763) included references to "Elodes" of Clusius (1601), without changing either to Helodes.

In 1856, W.S. Sullivant published section Elodrum under the genus Hypnum, which would accommodate his new species "Hypnum paludosum, Sulliv." from North America-a plant that does not occur in Europe (Hill et al. 2006). The name is derived from the Greek adjective (h)elödēs,-es, 'marshy, fenny,' the adjective derived from the noun (h)elos,-eos (s.n.III) "the low ground by rivers, a marsh-meadow, marsh" (Liddell \& Scott 1997), descriptive of the habitat of this moss. In Greek, the initial epsilon (e) often has the spiritus asper, hence taxonomic names derived from this Greek word should be preceded by an " $h$ ": helodes, or helos,-eos.

It is curious that Sullivant did not spell the section with an initial "h," as he appears to have been proficient in classical languages, but he is not alone in preparing generic names this way. The spiritus asper and spiritus lenis (smooth breathing, absence of an $h$ sound) often are accompanied by an accent at the begimning of a Greek word. It is easy to see this as a type-setter's nightmare, especially in small, cheap, and popular versions of classical Greek dictionaries of the nineteenth century wherein smudgy inks and poor paper may make these marks ambiguous. That, coupled with the use of candles, poorly ground eye-glasses, and weak eyes played the devil with then contemporary taxonomists. It might be safer to assume a Greek word has no spiritus asper than to put one in when (hastily) preparing a manuscript for the printer.

## Sullivant, 1864

Apparently Sullivant knew of a moss species in North America (whether Hypnum or Thuidium) with blandown as an epithet, but such did not appear in his 1856 text. In 1864, however, Sullivant remarked that Hypnum paludosum Sull. "Resembles H Blandowit, with which it is not unfrequently confounded: but that species is a Thuidium, Bryol. Europ. ..." (Sullivant 1864). So it was known to Sullivant that Hypnum blandowit occurred in North America, but he did not place it in his section Elodium or anywhere else.

## Austin, 1870

Austin (1870) treated Elodum as a genus when he identified number 306 of his Musci Appalachiani exsiccat as "Elodium paludosum," citing Sullivant's 1864 treatment in the Icones Muscorum (on page 157, as Hypnum paludosum Sull.). Previously, the name of Austin's taxon was Hypmum paludosum Sull. Austin apparently did not know that the name Hypnum paludosum Sull. was an illegitimate name, being a later homonym of Hypnum paludosum (Hedw.) P. Beauv., and had to be rejected. That left Elodnum paludosum Austin as the accepted name.

Austin included a note in Latin intended to credibly establish his genus: "Folus saepe papillosis: an Thuidii species?" It perhaps should be noted that Austin was not sure whether "Elodium" would not better be subsumed under the genus Thuidium. Elodium paludosum Austin is then the type species of the genus Elodrum. Austin also added a description in Latin for his new variety Fontinalis lescurii var. cymbifolia Austin (number 248), a name still in use today. Also note that in Austin's volume the genus Omalia by Bridel existed, for which the orthography was later conserved as Homalia, from another Greek adjective (h)omalos, referring to the flat leaves, with an initial spiritus asper.

## Lind berg, 1879

In Europe, Lindberg (1879) in his checklist of the Scandinavian flora, transferred Sullivant's sectional name "Elodium" to a subgenus of Thuidium. The species Thuidium blandowil, occurring in both North America and Europe, was the only species he recognized in the section.

Lesquereux and James, 1895
Lesquereux and James (1895), in the United States, persisted in the use of Thudtum and Elodium as subgenera of the genus Hypnum, with Hypnum blandowil F. Weber \& D. Mohr under the former section, and Hypnum paludosum Sull. under the latter. These authors cited Sullivant's exsiccat specimen no. 7 from the Musci Alleghenienses (Sullivant 1845), the Mosses of the United States (Sullivant 1856: 68), and the Icones Muscorum (Sullivant 1864: 157). There is no indication that they were aware of Austin's generic name (Elodrum).

## Warnstorf, 1905

Warnstorf (1905) then used the name Helodium for a genus using the authorities (Sull.) Lindb. Lindberg earlier (1879) had used Elodum as a subgenus of the genus Thuidum. Both of the cited authorities used the name "Eloduum" and Warnstorf would have also, but he changed the orthography, as he wrote in a footnote, because of the spiritus asper with which the Greek word (h)elos was spelled. Helodum was to be pronounced that way, and transliterated into Latin that way. So, apparently, bibliographically, Austin's name preceded Warnstorf's name and Warnstorf's name was considered by Warnstorf as only an orthographic variant of Austin's, which Warnstorf corrected. The genus was cited by Warnstorf as Helodium (Sull.) Lindb. Also, when Warnstorf changed the spelling, he created a later homonym for a vascular plant genus Helodtum Dumort., an issue that resulted later in the conservation of Warnstorf's name over Dumort's. Through conservation, the generic name became Helodium Warnst. Also, through conservation, the type species was made

Helodium blandowit (F. Weber \& D. Mohr) Warnst. The generitype of Elodium remained E. paludosum Austin.

Grout, 1934
Grout (1934), in a footnote to his treatment of the moss genus Helodium in North America, also corrected Elodium to Helodium, for he wrote "The Greek-derived elodes demands the aspirate in Latin according to classical authorities." Grout mistakenly cited Sullivant's Elodium as a subgenus, rather than a section. His footnote seems redundant, as Warnstorf, cited by Grout as the author of the genus name Helodtum, had already established the corrected spelling. It is more likely, however, that Grout's footnote applied more to correcting the spelling of another taxon, for which he made the combination in his paper Helodrum blandowii var. helodioides (Renauld \& Cardot) Grout.

This variety was originally published as Thuidum elodiotdes by Renauld and Cardot (in Roell 1893), based on specimens from North America. In the protologue to that species, the authors make clear that their new species is similar to (Austin's) Elodum paludosum, and so the epithet of the new species was intended to allude to a resemblance to a species with the genus name Elodium. At that time, the only person to recognize Elodum as a generic name was Austin. The authority of the species Elodnum paludosum was not given by the authors, had they known of Austin's genus, the authorities would have been (Sull.) Austin.

Thuidium elodioides was subsequently reduced to a variety of Thuidium paludosum by Best (1896), retaining the initial "e" in the varietal epithet. Later, Grout (1929) transferred the variety Helodum paludosum, mistakenly attributing the authority to Best, when it was Grout himself that was the authority. Grout republished the corrected authorial citation in a subsequent publication as Helodium paludosum var. helodiodes (Renauld \& Cardot) Grout, with an initial "h" (Grout 1934).

Grout's corrected citation in 1934 also included attaching the initial " $h$ " to the spelling of the varietal name, which he justified as based on classical usage (the spiritus asper before the epsilon of elōdess) -essentially a reiteration of Warnstorf's correction of the generic name (from Elodum to Helodium) (Warnstorf 1905). However, the correct citation of this variety, whose changed status was authored by Grout, is Helodium paludosum var. elodiondes (Renauld \& Cardot) Grout.

## Little, 1943

Little (1943) discussed the genus Helodum as a possible later homonym of Austin's generic name Elodum when Austin established Elodum paludosum as a new combination (Austin 1870). Little determined that "There is no indication that a new genus was intended" by Austin when Austin made his short citation in "this book" being "just a printed copy of the labels of Austin's specimens of mosses ... ." Little suggested that Austin's name was "improperly published" and he questioned whether Austin created a "new monotypic genus with a species transfer," i.e. from Sullivant's Hypnum paludosum to Austin's Elodium paludosum. It was because Grout (1934) cited Warnstorf's rendition "Helodium" as validly published that Little rejected Austin's contribution as an "irregularly published name." Little stated that "the genus was not considered [by Grout] as validly published until 1905." It seems unfair to attribute irregularity to Austin's publication when other taxa have been and are still recognized from the same book (Austin 1870), such as the variety cymbifolia of Fontinalis lescuri mentioned above. Other authors, such as Sullivant, used Austin's exsiccat to publish new combinations, such as Anoectangium peckii (Sull.) Sull. ex Austin, a combination accompanied by a Latin description. As to this, Grout's transfer, mentioned above, of Bext's Thuidium paludosum var. elodıotdes (Renauld \& Cardot) Best to Helodium paludosum var. elodiotdes (Renauld \& Cardot) Grout was not considered invalid and Grout's 1929 publication was not "irregular" even though the text was a simple list of names and the nomenclature was somewhat informal.

## Crum, Steere, Anderson, 1965, 1981

In 1965, Crum, Steere and Anderson published a continuation of nomenclatural changes in preparation for their checklist of North American mosses. In it Thuiduum elodtotdes Renauld \& Cardot ex Roell was transferred to another species as a variety: Helodium blandowit (F. Weber \& D. Mohr) Warnst. var. "helodioides" (Renauld \& Cardot ex Roell). The epithet Renauld and Carot used was "elodiotdes" and so one would think the new varietal epithet would be spelled the same way. For some reason it was not. Also, when Crum and Anderson presented the variety in 1981 in their Mosses of Eastern North America, the varietal epithet was spelled "elodioides." The authors remarked that "The original spelling of the epithet "elodioides" is the correct form, and very likely the generic name should be spelled Elodum, except for conservation of Helodum Warnst. against the earlier Elodtum (Sull.) Aust. and Hypnum sect. Elodnom Sull." The authors perhaps had taken the view that the intention of the authors of taxonomic names took precedence over classical usage, or classical orthography. Whether Sullivant intended to omit the initial " $h$ " in his sectional name "Elodium," it appears to be assumed that this was not an error on Sullivant's part. Certainly when Austin created the genus Elodrum, the generic orthography was not based on classical usage but on Sullivant's sectional name. Renauld and Cardot's epithet for Thuidum elodioides makes clear reference to the generic name Elodum associated with Sullivant's section Elodum of Hypnum and Austin's genus Elodnom and subsequent species Elodium paludosum. In other words, the choice of whether to spell with an " h " seemed to Crum and Anderson to reside in the author's citation of nomenclature, not classical words. Crum and Anderson lent weight to a presumed intention of Sullivant to create a name that ignored the spiritus asper of the Greek orthography.

However, as Crum and Anderson related, it is the conservation of Warnstorf's name Helodum that settled the issue. The conservation of Helodnm Warnst., however, was not "against the earlier Elodium (Sull.) Aust. and Hypmum sect. Elodium Sull." but rather against another generic name with the identical spelling, Helodium Dumort. This genus was not a bryophyte but a dicotyledonous vascular plant in the Umbelliferae described in 1827 (now Helosctadrum; MeNeill 2006). According to the Code, the type of Helodium Warnst. is Helodum blandown (F. Weber \& D. Mohr) Warnst., which totally removes Austin's name Elodium and its type (Elodrum paludosum Aust.).

If Warnstorf had not altered the spelling of Elodium to Helodium, there would have been no later homonym issue with Dumortier's earlier name of the same spelling and no need for conservation. Warnstorf, then, would have used Elodium as the generic name, and it would have been recognized at some point that Austin already had coined that name. Austin would then have been the authority, and Elodium paludosum the type species for it. Even though Helodium and Elodium are philologically identical names, in the context of the Code they are not homotypic synonyms and both names are now based on different types.

## Conservation of Helodium Warst.

Whether one agrees with the above summation or not, the issue was closed when Warnstorf's genus Helodium was conserved against an earlier homonym by Dumortier for a species of vascular plant. Two more taxonomic authorities added to their views on the genus Helodium and its preferred spelling (with an initial "h") and the matter appeared to be closed. However, the entire issue was raised again by Crum and Anderson in 1981, who suggested the correct form for the epithet of Helodium blandowil var. elodiodes was to be spelled without the initial "h" and that the generic name should be spelled Elodnum except for the conservation of Warnstorf's corrected name as "Helodrum." The authors, however, did not raise this issue again in subsequent publications. Crum et al. (1965) transferred the var. "elodiotdes" from a variety of Helodium paludosum to a variety of $H$. blandowit. For this transfer they spelled the epithet "helodioldes." In their 1981 publication they wrote it "elodioides" with their justification. However, in the two checklists of the mosses of North

America to which these authors contributed (Crum et al. 1973; Anderson et al. 1990), both times the epithet was spelled "helodioides" (in both the main catalogue and the synonym list), and the issue of the alternate spellings was not revisited.

According to ICBN Art. 14.5, "When a conserved name competes with one or more names based on different types and against which it is not explicitly conserved, the earliest of the competing names is adopted. ... " Given that the two generic names are considered different by the Code (e.g., Homalum is conserved against Omalnum) and that they have different types, the two generic names Elodium (Sull.) Austin and Helodum Warnst. are legitimate.

## The complex history of Thuidium elodioides Ren. \& Card. ex Roell

Thuidium elodioides Renauld \& Cardot ex Roell was originally published by Renauld and Cardot in 1893. The new species was assigned to the genus Thuidum, not Elodrum although it shared characteristics of both genera (hence the epithet "elodiotdes" in the genus Thuidtum). The authors indicated that the habit of Thuidium elodioides is similar to that of Elodium paludosum, but that the new species differed by the leaves more shortly acuminate, by the cauline leaves fimbriate at the base, and by the shorter cells, which are elliptic and oval and papillose (Roell 1893). Helodurm paludosum (Aust.) Broth. essentially does not have fimbriations along the basal margins of the leaves and where they appear to have them, it is generally due to stem cells covered with paraphyllia that strip off with the leaves at the insertion but are not a part of the leaf itself.

Renault and Cardot indicated that the new species in turn is distinguished from Thuidum blandown by the habit more slender, the stems [branches] more remote and less regularly pinnate, the cauline leaves narrower, the cells more lax, the paraphyllia shorter, and the perichaetial leaves narrower, entire, very long-subulate. The type specimen was sterile, but a specimen had been very recently found in Ohio, around New-Bremen, with old and younger pedicels (setae) but apparently without capsules. They declared that Thuidum elodiotdes was an excellent (ausgezeichnete) species right in the morphological middle between Elodum paludosum and Thuidum blandowi.

Three years later, Best (1896) in his treatment of Thuidum reduced Thuidrum elotdiotdes to a variety. The genus Helodtum in North America was not recognized by this author, and both species (H. paludosum and T. blandowit) were placed in a subgeneric category of Thuidium named Heterothuidium, perhaps to emphasize the rather strong differences between the two species in it and the rest of the genus (Euthuidum). The author obviously thought to align Thuidum elodioldes with T. paludosum, rather than T. blandown although his description of the variety does not give the reason he used to suggest it to be nearly within the variation of Thuidum paludosum. The author found the variety "with the type," i.e. the typical variety of Thuidium paludosum, and estimated, at that time, the variety to be "more common from New York (E.G. Britton) westward. Indiana (Schuh)." The original locality was from Hobart, Indiana, along the Calumet River, with mention of a specimen from Ohio (Roell 1893).

Crum et al. (1965) published a continuation of nomenclatural changes in preparation for their checklist of North American mosses and in it the variety helodiotdes [sic] was transferred to the species Helodtum blandowit (F. Weber \& D. Mohr) Warnst. as Helodium blandowit var. helodiotdes (Renauld \& Cardot ex Roell) H.A. Crum, Steere, \& L.E. Anderson. When the variety was subsequently cited by Crum and Anderson (1981) in their Mosses of Eastern North America, the authors decided to remove the initial " h " in the orthography of both the variety and, erroneously, in the 1965 new combination. In the treatment of the new variety by Crum and Anderson (1981), there is no discussion regarding evidence used to associate the variety (h)elodiotdes with Helodum blandowil rather than H. paludosum. The distribution of the variety seems to overlap more with the south-ranging $H$. paludosum in its east-central, Great Lakes, and eastern seaboard area rather than
with the more widespread northern-boreal to southwestern North American distribution of $H$. blandowil. There is no such variety noted in the European variation of that species (Hill et al. 2006).

## The taxonomic placement of Thuidium elodioides

Superficially, the var. (h)elodioides does have characters resembling Helodum blandowil as originally discussed in 1893 by Renauld and Cardot. But it also has many of the characters of $H$. paludosum. While preparing a treatment of the genus for the Flora of North America, two additional characters quite conservative in other, related taxa were identified for the variety: it possessed a stem central strand as does H. paludosum (but not $H$. blandown) and the seta and capsule dimensions are also only consistent with those of $H$. palusodum. These characters make this taxon unlikely to be part of the variation of $H$. blandowil nor is there intergradation. The characters of var. eloidioides mentioned above that it shares with Helodium blandowii clearly distinguish it from H. paludosum. All three species belong in the genus Elodum (Sull.) Austin, of which the later Helodrum Warnst. is a taxonomic synonym following Art. 14.5.

## Needed new combinations

Elodium elodioides (Renauld \& Cardot ex Roell) Eckel, comb. nov. Basionym: Thuadum elodiotdes Renauld \& Cardot ex Roell, Hedwigia 32: 308. 1893. Thutdum plaudosum var. elodiordes (Renauld \& Cardot ex Roell) Best, Bull. Torrey Bot. Club 23: 90. 1896. Elodrum paludosum var. elodioides (Renauld \& Cardot ex Roell) Best, Man. Mosses W. Pennsylvania 262. 1913. Helodium paludosum var. elodioides (Renauld \& Cardot ex Roell) Grout, Cheek List Pleuroc. Moss. N. Amer. 23. 1929. Helodum blandown var. elodıordes (Renauld \& Cardot ex Roell) H.A. Crum, Steere, \& L.E. Anderson, Bryologist 68: 432. 1965 (1966) as "helodiotdes."

Elodium blandowii (F. Weber \& D. Mohr) Eckel, comb. nov. Basionym: Hypnum blandown F. Weber \& D. Mohr, Bot. Taschenbuch 332. 1807. Leskea blandown (F. Weber \& D. Mohr) Mitt., J. Proc. Linn. Soc., Bot. 8: 44. 1864. Thuidum blandowit (F. Weber \& D. Mohr) Schimp., Bryol. Eur. 5: 166. 486 (Fasc. 49-51 Mon. 10. 6). 1852. Helodum blandowti (F. Weber \& D. Mohr) Warnst., Krypt.-Fl. Brandenburg, Laubm. 692. 1905.

## ACKNOWLEDGEMENTS

I thank Richard H. Zander and Robert Magill for assistance with the forensic complexities of the Code. In addition the support of the Missouri Botanical Garden for this research is much appreciated.

## LITERATURE CITED

Anderson, L.E., H.A. Crum, and W.R. Buck. 1990. List of the mosses of North America north of Mexico. Bryologist 93: 448-499.
Austin, C.F. 1870. Musci Appalachiani: Tickets or Specimens of Mosses Collected Mostly in the Eastern Part of North America. Closter, New Jersey.
Best, G.N. 1896. Revision of the North American Thuidums. Bull. Torrey Bot. Club 23: 78-90.
Crum, H.A., W.C. Stecre, and L.E. Anderson. 1965(1966). Some additional new names for North American mosses. Bryologist 68: 432-434.
Crum, H.A., W.C. Steere, and L.E. Anderson. 1973. A new list of mosses of North America north of Mexico. Bryologist 76: 85-130.
Crum, H.A. and L.E. Anderson. 1981. Mosses of Eastern North America, 2 vols. Columbia Univ. Press. New York.
Grout, AJ. 1929. Check List of the Pleurocarpous Mosses of North America. New Brighton, New York.

Grout, A.J. 1934. Helodium. In A.J. Grout (ed.). Moss Flora of North American North of Mexico. Newfane, Vermont. 3: 179-180.
Hill, M.O., N. Bell, M.A. Bruggeman-Nannenga, M. Grugues, M.J. Cano, J. Enroth, K.I. Flatberg, J.P. Frahm, M.T. Gallego, R. Garilleti, J. Guerra, L.Hedenäs, D.T. Holyoak, J. Hyvönen, M.S. Ignatov, F. Lara, V. Maximpaka, J. Munoz, and L. Söderström. 2006. An annotated checklist of the mosses of Europe and Macaronesia. J. Bryol. 28: 198-267.
Lesquereux, L. and T.P. James. 1895. Manual of the Mosses of North America. Bradless Whidden. Boston.
Liddell, H.G. and R. Scott. 1897. A Lexicon Abridged from Liddell and Scott's Greek-English Lexicon. Oxford Univ. Press, Oxford, New York.
Lindberg, S.O. 1879. Musci Scandinavici. Officina Iesaiae. Upsala.
Little, E.L. 1843. Later generic homonyms among North American mosses. Bryologist 46: 105125.

McNeill, J. et al. 2006. International Code of Botanical Nomenclature (Vienna Code). A.R.G. Gantner Verlag KG, Ruggell, Liechtenstein.
Roell, J. 1893. Nordamerikanische Laubmoose, Torfmoose und Lebermoose, gesammelt von D. Julius Roell in Darmstadt. Hedwigia 32: 181-203, 260-309, 334-402.
Stearn, W.T. 1983. Botanical Latin. David \& Charles, London.
Sullivant, W.S. 1845. Musci alleghanienses, sive enumeratio muscorum atque hepaticarum quos in itinere a Marylandia usque ad Georgiam per tractus montium a.d. mdecexliii decerpserunt Asa Gray et W.S. Sullivant (interjectis nonnullis aliunde collectis). Concinnavit et exposuit W. S. Sullivant. Columbus, Ohio.

Sullivant, W.S. 1856. Musci and Hepaticae of the United States east of the Mississippi River. Pp. 607-702. In A. Gray, Manual of Botany (ed.2). George Putnam \& Co., New York.
Sullivant, W.S. 1864. Icones Muscorum, or figures and description of most of those mosses peculiar to eastern North America which have not been heretofore figured. Sever and Francis, Cambridge, Mass.
Warnstorf, C. 1904-1906. Kryptogamenflora der Mark Brandenburg, Laubmoose. 1905: Vol. IV: 673-832. Gebrueder Borntraeger, Leipzig.

# NOMENCLATURAL NOTES ON DINEBRA, DIPLACHNE, DISAKISPERMA AND LEPTOCHLOA (POACEAE: CHLORIDOIDEAE) 

NEIL SNOW<br>527 S Oakes St<br>Helena, Montana, 59601 USA<br>nwiltonsnow@gmail com

## Paul.M. Peterson

Smithsonian Institution
Department of Botany MRC-166
National Museum of Natural History
Washington, D C , 20013-7012 USA


#### Abstract

This paper provides several nomenclatural modifications based on a recent molecular study of Leptochloa. One generic transfer and four new varietal combinations are proposed for Dinebra Jacq. One orthographic correction and three new varietal combinations are provided in Diplachne P. Beauv. Two corrections are made for the specific epithets of Disakisperma. One orthographic correction is provided for Leptochloa. KEY WORDS: Chloridoideae, Dinebra, Diplachne, Disakisperma, Leptochloa, nomenclature, Poaceae


A recent study proposed splitting the grass genus Leptochloa P. Beauv. into five genera, based on molecular data from five plastid markers and the nuclear ITS regions (Peterson et al. 2012). The present paper corrects some orthographic errors in Peterson et al. (2012) for Diplachne, Disakisperma, and Leptochloa and proposes new combinations in Dinebra and Diplachne.

Dinebra decipiens var. asthenes (Roem. \& Schult.) P.M. Peterson \& N. Snow, comb. nov. Basionym: Poa asthenes Roem. \& Schult., Syst. Veg. 2: 574. 1817.

Dinebra decipiens var. peacockii (Maiden \& Betche) P.M. Peterson \& N. Snow, comb. nov. Basionym: Diplachne peacocku Maiden \& Betche, Agric. Gaz. New South Wales 15: 925. 1904.

Dinebra divaricatissima (Blake) P.M. Peterson \& N. Snow, comb. nov. Basionym: Leptochloa divaricatissima Blake, Contrib. Queens1. Herb. 14: 8. 1972. This combination was not made in Peterson et al. (2012) but we feel the species is sufficiently similar in overall morphology to confidently place in Dinebra, given the wide taxonomic sampling of that study and previous monographic work (Snow 1997).

Dinebra panicea var. brachiata (Steud.) P.M. Peterson \& N. Snow, comb. nov. Basionym: Leptochloa brachiata Steud., Syn Pl. Glumac. 1: 209. 1854.

Dinebra panicea var. mucronata (Michx.) P.M. Peterson \& N. Snow, comb. nov. Basionym: Eleusme mucronata Michx., Fl. Bor.-Amer. 1: 65. 1803.

Diplachne fusca subsp. fascicularis (Lam.) P.M. Peterson \& N. Snow, Ann. Bot. 109: 1327, an orthographic correction for the incorrectly formed epithet fasciculata. Basionym: Festuca fascicularis Lam., Tabl. Encyel. 1: 189. 1791.

Diplachne fusca var. fascicularis (Lam.). P.M. Peterson \& N. Snow, comb. nov. Basionym: Festuca fascicularis Lam., Tabl. Encyel. 1: 189. 1791.

Diplachne fusca var. muelleri (Benth.) P.M. Peterson \& N. Snow, comb. nov. Basionym: Diplachne muelleri Benth., Fl. Austral. 7: 619. 1878.

Diplachne fusca var. uninervia (J. Presl) P.M. Peterson \& N. Snow, comb. nov. Basionym: Megastachya uninervia J. Presl, Reliq. Haenk. 1(4-5): 283. 1830.

Disakisperma dubium (Kunth) P.M. Peterson \& N. Snow, Ann. Bot. 109: 1327, an orthographic correction from dubia to accommodate the neuter generic name.

Disakisperma obtustflorum (Kunth) P.M. Peterson \& N. Snow, Ann. Bot. 109: 1327, an orthographic correction from obtusiflora to accommodate the neuter generic name.

Leptochloa crinta (Lag.) P.M. Peterson \& N. Snow, Ann. Bot. 109: 1327, an orthographic correction for the incorrectly published epithet crinata (Peterson et al. 2012: 1327).

## ACKNOWLEDGMENTS

We thank Dr. Kanchi Gandhi (GH) for nomenclatural assistance and Guy Nesom for reviewing the paper.

## LITERATURE CITED

Peterson, P.M, K. Romaschenko, N. Snow, and G. Johnson. 2012. A molecular phylogeny of Leptochloa (Poaceae: Chloridoideae: Chlorideae). Ann. Bot. 109: 1317-1329.
Snow, N. 1997. Phylogeny and systematics of Leptochloa P. Beauv. sensu lato (Poaceae, Chloridoideae). Ph.D. dissertation, Washington University, St. Louis.

# THE STATUS OF CASTILLEJA TOMENTOSA A. GRAY (OROBANCHACEAE) AND FIRST RECORDS FOR THIS SPECIES FROM THE UNITED STATES 

J. Mark Egger<br>Herbarium, Burke Museum of Natural History and Culture<br>University of Washıngton<br>Seattle, Washington 98195-5325<br>m egger@comcast net


#### Abstract

Castilleja tomentosa A. Gray, described from Sonora, Mexico, appears to be a bona fide species readily distinguished from several morphologically similar and presumably related Castilleja species of the southwestern USA and northwestern Mexico. First records of this rare species for the USA are presented, along with a key and photographs for separating it from species with which it might be confused. Comments on its conservation status are provided. KEY WORDS: Orobanchaceae, Castilleja mtegra, Castilleja lanata, Castilleja stenophylla, Castilleja tomentosa, endangered species, rare species, Animas Valley, Hidalgo County, Sonora


Castilleja tomentosa A. Gray was first published in 1859 in the Botany of the Boundary Survey (A. Gray 1858), wherein Gray also described Castilleja lanata A. Gray and Castilleja integra A. Gray, two of the three species of the inland southwestern United States and northwestern Mexico with which it might be confused. The third is Castilleja stenophylla M.E. Jones, a species of northwestern Mexico described much later (Jones 1908). Aside from the Latin diagnosis, Gray remarked in the protologue that C. tomentosa was distinguished from C. lanata and from the Californian species Castilleja foltolosa Hook. \& Arn. by its pubescence, with "the wool less dense and floccose than in C. lanata" and in the calyx being "... different, and apparently fully as long as the galea." In the Latin diagnosis, Gray mentioned several features key to its identification, "...floralibus (=bracts) trifidis superne coloratis..." and "calycis sunequaliter bifidi lobis semibifidid lanceolatis acutis...." Gray based his description of C. tomentosa on two herbarium sheets from a single collection obtained by George Thurber on "dry hillsides" near Mabibi, Sonora in June 1851. Mabibi is a small community located in the eastern Sierra Madre Occidental in northeastern Sonora about 40 km south of the USA-Mexico border. Four years later Gray (1862) changed his mind and reduced $C$. tomentosa to synonymy under $C$. integra, noting that the later should include "my $C$. tomentosa, from Mabibi, Arizona (sic), Thurber, appears to be a more tomentose state of the same species, the flowers of the specimen not well developed." While Gray was correct in rejecting his original diagnosis of the calyces being "apparently fully as long as the galea," he missed completely an important and consistent difference between C. tomentosa and C. integra, the characteristics of the distal leaves and especially the floral bracts.

Following Gray's reduction of Castilleja tomentosa to synonymy under C. integra, this entity and Thurber's collection of it were almost completely forgotten in the botanical literature or were routinely listed or annotated in synonymy, as in Eastwood's revision of Castilleja in Mexican (1909). T.I. Chuang (1993-1994) annotated the GH sheets of Thurber 438 as C. lanata, which is clearly incorrect in the structure of the calyces alone. G.L. Nesom, who worked with Mexican Castilleja species in the early 1990's, was undecided about C. tomentosa and annotated the holotype (1992) only with the type name, not referring it to another species. Boufford and Nesom (1993) designated the holotype (Fig. 1) and an isotype for C. tomentosa, based on the two sheets of Thurber 438 at GH. Neither in this paper nor in Nesom's several subsequent papers on Mexican Castilleja species was the


Figure 1. Holotype of Castilleja tomentosa A. Gray, GH. My annotation agreeing with the identification of the specimen as C. lanata from 1996-1997 is incorrect.
identity of C. tomentosa discussed in print. However, in a personal communication to me in the late 1990's Nesom mentioned that the type material of C. tomentosa seemed very close to C. stenophylla.

On 26 August 1994, while conducting fieldwork in the Animas Valley of Hidalgo Co., New Mexico, I encountered several plants of an unusual Castilleja near the headquarters building of the Animas Ranch. I documented these plants with photos and a unicate collection (Egger 677, WTU, Fig. 2), but I dismissed them at the time as variant C. integra. Though I continued to wonder about this population for a number of years, I did not pursue the matter further, likely since I had not yet seen any material from the type collection of C. tomentosa.

Then, starting around 2007, I became involved in the writing of a Castilleja treatment for the Flora of the Four Corners Region, Vascular Plants of the San Juan River Drainage. (in press) and corresponded with Ken Heil of SJNM, the editor and a primary author of the flora. He brought my attention to a collection of C. tomentosa he made in 1997 (Heil 11,249 SJNM). Eventually, I compared this and later collections by Heil and associates with the type of C. tomentosa and realized their congruity as well as the fact that they also matched the characters of the plants I encountered in 1994 (Fig. 3).


Figure 2. Castilleja tomentosa, Egger 667, WTU, live plants and specimens, first USA collection.

## Conservation status

Castilleja tomentosa is only known from the type locality in Mexico and from four collection sites in and near the Animas Valley in southern Hidalgo Co., New Mexico, in the USA. The known collection sites are all within $40-50$ straight-line km of each other. I have not conducted an
exhaustive search of southwestern herbaria for mislabeled specimens, though there may well be such collections to be identified. In any case, C. tomentosa should be regarded as a globally endangered species, at least until further research can be conducted to evaluate its true abundance. It is also interesting to note that C. tomentosa closely shares the distribution of another very rare Castilleja species, C. ornata Eastw., which is also known only from a handful of sites in Mexico and from small populations in the southern Animas Valley, New Mexico (McIntosh, 1994), and which is similarly endangered.


Figure 3. Isotype of Castilleja tomentosa A. Gray, NY (L); C. tomentosa, Egger 667, WTU (R).

## Verified collections of Castilleja tomentosa

MEXICO: Sonora. Dry hillside, Mabibi, Jun 1851, Thurber 438 (holotype: GH!; isotypes: F!, GH!, NY!). USA: New Mexico. Hidalgo Co.: Animas Valley, dry, grassy meadow along NM Hwy 338, ca. 1/4 mi. S of Animas Ranch headquarters, 26 Aug 1994, Egger 677 (WTU); North of Fitzpatrick's Ranch House, Gray Ranch, Alkali sacaton community; $31^{\circ} 21.354^{\prime} \mathrm{N}, 108^{\circ} 51.928^{\prime} \mathrm{W}$, T32S, R20W, S.27, SE1/4, SW1/4, 4990', 7 Aug 1997, Heil 11,294 (SJNM); Diamond A Ranch (Gray Ranch), 0.7 mi . SW of Fitzpatrick's Camp, $31^{\circ} 23.479^{\prime} \mathrm{N}, 108^{\circ} 52.040^{\prime} \mathrm{W}, 5220^{\prime}, 30$ Jul 2010 , Heil \& O'Kane 32664 (GH, SJNM, TEX, US, WTU[2]); Clanton Draw Road, side road just W of Forest Service boundary, $31.52630^{\circ}$ N, $108.9774^{\circ}$ W, 5430', 16 Sep 2010, Heil \& Penn 33070 (SJNM, WTU).

## Identificaton of Castilleja tomentosa

Castilleja tomentosa is readily separated from other similar Castilleja species of the region in which it occurs by the following key. A visual guide to representative live specimens of each species addressed in the keys is also presented below (Figs. 4-7). A full description of $C$. tomentosa will be provided in the Castilleja treatment in the Flora of North America (in prep).

## A key to the Castilleja species of southern Arizona and New Mexico and adjacent Sonora and Chihuahua having lanate to tomentose stems

1. Bracts usually entire to less often with one pair of short, lanceolate lateral lobes, almost always originating from the middle of the blade or above; bracts proximally greenish.
2. Bracts almost always entire, clearly lanceolate and distally acute; leaves usually linear and strongly differentiated from the bracts; not known to occur north of the Mexican border

Castilleja stenophylla
2. Bracts usually entire and distally broadly rounded but often some with a pair of short, lanceolate lateral lobes; leaves linear to linear-lanceolate and not as strongly differentiated from the floral bracts; common in appropriate habitats north of the USA-Mexico border, extending into extreme NE Sonora and northern Chihuahua, Mexico

Castilleja integra

1. Bracts usually deeply divided with one pair of much longer, narrowly oblanceolate to less often lanceolate to linear-lanceolate lobes, usually originating from well below the middle of the blade; bracts proximally grey-green to greenish tinged with pale root-beer brown
2. Primary lobes of calyces entire and rounded, emarginate, or shallowly cleft into obtuse to rounded lobes; stem pubescence usually densely lanate, with branched or unbranched hairs

Castilleja lanata
3. Primary lobes of calyces much more deeply cleft into linear-lanceolate secondary lobes; stem pubescence usually less dense and tomentose with unbranched hairs $\qquad$ Castilleja tomentosa


Figure 4. Castilleja stenophylla. Woodland shade form, Sierra La Raspadura, Chihuahua, Mexico, 18 Aug 1998, Egger 1050 (L); open meadow form, SW of La Junta, Chihuahua, Mexico, 18 Aug 1998, Egger 1044 (R).


Figure 5. Castilleja integra. Form with entire bracts, NW of Flagstaff, Coconino Co., Arizona, 27 Aug 1994, Egger 674 (L); form with lobed bracts, near Elizabethtown, Colfax Co., NM, 31 Jul 2001, Egger 1173 (R)


Figure 6. Castilleja lanata. E of Van Horn, Pecos Co., Texas, 19 Apr 1997, Egger 842.


Figure 7. Castilleja tomentosa. Mature plant, near Animas Ranch Headquarters, Animas Valley, Hidalgo Co., New Mexico, 26 Aug 1994, Egger 677 (L); young plant and different color form, SW of Fitzpatrick's Camp, Animas Valley, Hidalgo Co., New Mexico, 30 Jul 2010, Heil \& O'Kane 32664 (R).

## ACKNOWLEDGEMENTS

I thank Ken Heil and Steve O'Kane of SJNM for photographs and for the loans and gifts of specimens from their collections, and I appreciate Ken's encouragement, feedback, and support in pursuit of the identity of the Animas Valley plants as well as his review of this paper. I also thank Laird McIntosh for first introducing me to the botanical wonders of the Animas Valley, Guy Nesom for timely correspondence and for sharing his notes concerning the type collection of $C$. tomentosa, and the personnel of GH, NY, and WTU for assistance with loans, type photos, and other matters. I also thank the Animas Foundation and the Diamond A Ranch for permission to conduct fieldwork on their lands. Finally, I thank The Nature Conservancy, the Animas Foundation, ranchers of the Malpai Borderlands Group, botanists, and others involved in first drawing attention to the importance of Hidalgo County in general and the Animas Valley and Animas Mountains in particular to the preservation and appreciation of the biodiversity of southwestern North America.

## LITERATURE CITED

Boufford, D.E. and G.L. Nesom. 1993. Comments on selected types of Mexican Castilleja (Scrophulariaceae). Harvard Papers Bot. 4: 57-58.
Eastwood, A. 1909. Synopsis of the Mexican and Central American species of Castilleja. Contr. Gray Herb., n. ser. 36: 563-591.
Gray, A. 1858. Botany of the Boundary, in Emory, Report on the United States and Mexico Boundary Survey 2(1). U.S. Govt. Printing Office, Washington, D.C.
Gray, A. 1862. Revision of the genus Castilleja. Amer. J. Sci. Arts, Ser. II, 34: 335-339.
Jones, M.E. 1908. New species and notes. Contr. W. Bot. 12: 1-81.
McIntosh, L. 1994. First report of Castilleja ornata (Scrophulariaceae) from the United States. Phytologia 76: 329-332.

# THREE NON-NATIVE VASCULAR PLANT SPECIES NEW TO ALABAMA 

Brian R. Keener<br>Department of Biology and Environmental Sciences<br>The University of West Alabama<br>Livingston, Alabama 35470<br>bkeener@uwa edu


#### Abstract

Allium neapolitanum (Amaryllidaceae), Arachis glabrata (Fabaceae), and Ornithogalum nutans (Hyacinthaceae) are reported new for Alabama from recent collections.


KEY WORDS: Alabama, non-native, Allum neapolitamm, Arachis glabrata, Ornithogalum nutans

Continued botanical explorations in Alabama have yielded three recent collections of exotic species by the author that are deemed noteworthy. In reviewing pertinent literature, including the recently published checklist of vascular plants for Alabama, as well as web based resources, including the Alabama Plant Atlas (Kral et al. 2012), it is believed that these collections represent the first vouchers from Alabama for each of the three species (Mohr 1901; Kral et al. 2011; Kral et al. 2012; USDA, NRCS 2012).

Allium neapolitanum Cirillo (Amaryllidaceae) - is a native of the Mediterranean region of southern Europe, where it frequents pastures and cultivated grounds as well as dry open places (Stearn 1980). The naturalized occurrences in North America have been attributed to garden escapes (McNeal \& Jacobsen 2002). Before this current report, the species had been documented as naturalized in California, Florida, Georgia, and Louisiana (USDA, NRCS 2012). The addition of Alabama seems to continue a trend of the occurrence in states with warmer climates. From this, discoveries of other naturalized populations may continue to be made in other southern states.

The population vouchered below was growing in a vacant disturbed lot in an older part of town. About 25 individuals in three stands were observed at this locality, but it is unclear how many of these were the result of clonal divisions in the substrate. In addition to the vouchered collection, the species was also observed growing naturalized at two additional localities in the same town on the same day the voucher was collected.

Voucher specimens: Alabama. Marengo Co.: Demopolis, area just SW of jct. between E Franklin St. and S Strawberry Ave., $32.51575^{\circ},-87.83685^{\circ}$, 24 Feb 2012, Keener 6855 (UWAL, duplicates TROY, VDB).

ARACHIS GLABRATA Bentham (Fabaceae) - is a native of southern Brazil, Paraguay, and extreme northeastern Argentina (Krapovikas \& Gregory 2007). It has been introduced into the USA, particularly Florida, where it has been used as a forage plant (Krapovikas \& Gregory 2007). Since its introduction into Florida, it has been documented as naturalized at several localities along roadsides and adjacent fields (Isely 1998).

In fairly recent time, there has been a bit of taxonomic discrepancy regarding the naturalized material of Arachts in Florida. This may be partly due to Wunderlin and Hansen (2003), who treated the naturalized material as $A$. prostrata, noting that $A$. glabrata had been previously "misapplied". However, in a more recent revision of their publication, Wunderlin and Hansen (2011) have changed the taxon to Arachis glabrata, which also matches their treatment for the species found in the Atlas of

Florida Vascular Plants (2012). This also seems to be congruent with the generic monograph work of Krapovikas and Gregory (2007). However, the USDA PLANTS database (USDA, NRCS 2012) maintains that A. prostrata is the commonly escaped Arachis in Florida, while A. glabrata is "excluded" from the USA flora.

The population vouchered below was found along a rural roadside and adjacent moist roadside ditch. It was growing with Xyrts sp . and several species of Carex and Rhyncospora. It was also observed in a nearby field, where an interview with the landowner revealed that he had planted "Perennial Peanut" in his field "years ago" and that it is surviving without aid other than grazing. The vouchered plants were collected some distance away from his field, well away from the cultivated area. From this it was clear that the species is spreading from cultivation.

Voucher specimens: Alabama. Baldwin Co.: 6.1 air mi. SW of Seminole, along Co. Rd. 91 (Gardner Rd.) ca. 0.4 mi . W of Le Frank Rd., 30.46570 , -87.50154 ${ }^{\circ}$, 3 Jul 2011, Keener 6596 (UWAL, duplicates TROY, VDB).

Ornithogalum nutans Linnaeus (Hyacinthaceae) - is native to the southeastern portion of the Balkan Peninsula, including Greece, Bulgaria, and Turkey (Zahariadi 1980). Often grown as a garden flower, it has become widely naturalized as an escape from cultivation in Europe and other parts of the world including North America (Zahariadi 1980; Straley \& Utech 2002). In the USA, it has specifically been documented from several northeastern and midwestern states, reaching south to Arkansas and North Carolina. It has also been documented in northwestern states such as Oregon and Washington (Straley \& Utech 2002; USDA, NRCS 2012).

The population vouchered below was found in an approximately 0.5 acre row-crop garden area. The population contained about 30 plants growing among many other early spring exotic weeds often seen in similar fallow situations. The plants were randomly distributed throughout the plot with no evidence of persistence from cultivation.

Voucher specimens: Alabama. Greene Co.: 0.6 air mi. E of Eutaw, along US Hwy 11 (Tuscaloosa St.) just W of jet with 4th Ave., $32.84050^{\circ},-87.88132^{\circ}, 6$ Mar 2012, Keener 6886 (UWAL, duplicates TROY, VDB).

## ACKNOWLEDGEMENTS

I thank Alvin Diamond and Bruce Hansen for taxonomic consultation. I also thank Joan Rundles for proofreading the manuscript.

## LITERATURE CITED

Isely, D. 1998. Native and Naturalized Leguminosae (Fabaceae) of the United States (Exclusive of Alaska and Hawaii). Monte L. Bean Life Science Museum, Brigham Young Univ., Provo, Utah.
Kral R., A.R. Diamond Jr., S.L. Ginzbarg, C.J. Hansen, R.R. Haynes, B.R. Keener, M.G. Lelong, D.D. Spaulding and M. Woods. 2011. Annotated Checklist of the Vascular Plants of Alabama. Botanical Res. Inst. of Texas, Fort Worth.
Kral, R., A.R. Diamond Jr., S.L. Ginzbarg, C.J. Hansen, R.R. Haynes, B.R. Keener, M.G. Lelong, D.D. Spaulding, and M. Woods. 2012. Alabama Plant Atlas. [S.M. Landry and K.N. Campbell (original application development), Florida Center for Community Design and Research. Univ. of South Florida]. Univ. of West Alabama, Livingston. http //www floraofalabama org>
Krapovikas, A and W.C. Gregory. 2007. Taxonomy of the genus Arachis (Leguminosae). Bonplandia 16 (Sup1.): 1-205. [Translated by D.E. Williams and C.E. Simpson].

Mohr, C.T. 1901. Plant life of Alabama: An account of the distribution, modes of association, and adaptations of the flora of Alabama, together with a systematic catalogue of the plants growing in the state. Contr. U.S. Natl. Herb. 6.
Stearn, W.T. 1980. Allium. Pp 49-69 in T.G. Tutin, V.H. Heywood, N.A. Burges, D.M. Moore, D.H. Valentine, S.M. Walters, and D.A. Webb. Flora Europaea. Volume 5. Cambridge Univ. Press, Cambridge, United Kingdom.
Straley, G.B. and F.H. Utech. 2002. Ornithogalum. Pp. 318-319 in Flora of North America Editoral Committee. Flora of North America, Vol. 26, Magnoliophyta: Liliidae: Liliales and Orchidales.
USDA, NRCS. 2012. The PLANTS Database. National Plant Data Team, Greensboro, North Carolina. Shttp//plants usda gov> Accessed February 2012.
Wunderlin, R.P., and B.F. Hansen. 2003. Guide to the Vascular Plants of Florida (ed. 2). Univ. Press of Florida, Gainesville.
Wunderlin, R.P., and B.F. Hansen. 2011. Guide to the Vascular Plants of Florida (ed. 3). Univ. Press of Florida, Gainesville.
Wunderlin, R.P. and B.F. Hansen. 2012. Atlas of Florida Vascular Plants. [S.M. Landry and K.N. Campbell (application development), Florida Center for Community Design and Research] Inst. for Systematic Botany, Univ. of South Florida, Tampa. 大http //www plantatlas usf edu/>
Zahariadi, C. 1980. Ornithogalum. Pp. 35-40 in T.G. Tutin, V.H. Heywood, N.A. Burges, D.M. Moore, D.H. Valentine, S.M. Walters, and D.A. Webb. Flora Europaea. Volume 5. Cambridge Univ. Press, Cambridge, United Kingdom.

Wunderlin, R.P. and B.F. Hansen. 2012. Atlas of Florida Vascular Plants. [S.M. Landry and K.N. Campbell (application development), Florida Center for Community Design and Research] Inst. for Systematic Botany, Univ. of South Florida, Tampa. <http //www plantatlas usf edu/>

# NEW SPECIES AND NOTES ON BEGONIA (BEGONIACEAE) FROM MÉXICO AND CENTRAL AMERICA 

KATHLEEN BURT-UTLEY and JOHN F. UTLEY<br>Institute for Systematic Botany<br>Department of Cell Biology, Microbiology, and Molecular Biology<br>University of South Florida<br>Tampa, Flonda 33620-5150<br>kburtut1@uno edu, jutley@uno edu


#### Abstract

Ten new species of Begonia are described, discussed, and illustrated: Begonia wilburi BurtUtley \& Utley, Begonia gentryi Burt-Utley \& Utley, Begonia liesneri Burt-Utley \& Utley, Begonia mcphersonii Burt-Utley \& Utley, Begonia pseudopeltata Burt-Utley \& Utley, Begonia aguabuenensis Burt-Utley \& Utley, Begonia sukutensis Burt-Utley \& Utley, Begonia panamensis Burt-Utley \& Utley, Begonia gracilioides Burt-Utley \& Utley, and Begonia tenuis Burt-Utley \& Utley. Begonia militaris L.B. Sm. \& B.G. Schub. is evaluated and B. sciadophora L.B. Sm. \& B.G. Schub. is synonymized with it, while $B$. pustulata Liebm. and B. ludicra A. DC. are recognized as species endemic to México.


KEY WORDS: Begoniaceae, Begonta, México, Central America, Colombia

Continuing research with the Begoniaceae and preparation of the Begoniaceae for the Flora Mesoamericana has resulted in the recognition of a number of new species (Burt-Utley \& Utley 1999; 2011), including the 10 that are described herein. One of these species, $B$. wilburi, is unique in Central America because of its potential dioecy and is only one of two species in the Flora with turbinate capsules. The other known obligate dioecious species in México and Central America are from México, B. extranea L.B. Sm. \& B.G. Schub. (Guerrero, México, Michoacán, and Jalisco), and B. nemoralts L.B. Sm. \& B.G Schub. (Michoacán), both of which are tuberous. Another tuberous species from México and Central America, B. biserrata Lindl., is either monoecious or dioecious (Burt-Utley \& McVaugh 2001). Two other species also stand apart from other Begonia in Chiapas and Central America, B. gracilioides and B. temuis, because they are tuberous and also produce bulbils in their leaf axils that can then develop into new individuals. In Central America, similar bulbils have been observed only on B. weberling $t$ Irmsch. and B. ignea (K1.) A. DC. In contrast, in México, 17 of the 37 known tuberous taxa are known to produce bulbils and are most common in central and western México (Burt-Utley, pers. obs.). The species described represent diverse phenetic groups including sect. Casparya (K1.) A. DC., sect. Gtreoudia (K1.) A. DC., sect. Wetlbachta (K1. \& Oerst.) A. DC., and sect. Knesebeckia (Kl.) A. DC.

1. BEGONIA WILBURI Burt-Utley and Utley, sp. nov. Type. COSTA RICA. San José. Ca 26 km S of La Georgina on Interamerican Hwy to San Isidro de El General, 1600-1800 m, 19 Oct 1974, J. Utley \& K. Utley 1470 of (holotype: DUKE; isotypes: CR, USF). Figure 1.

Suffrutescent herbs to at least 1.5 m , frequently branching, potentially dioecious, upper internodes slender, $3.5-7.5 \mathrm{~cm}, 1.5-4.5(-6) \mathrm{mm}$ diam, densely hirtellous to tomentose with short ferrugineous villi to 0.4 mm . Stipules persistent to deciduous, asymmetric, unequal, the larger appearing hemi-ovate to hemi-orbicular with an oblique acute apex, $4-5.5 \times 8-11 \mathrm{~mm}$, the smaller, oblong to triangular, $1.2-8 \times 1-4 \mathrm{~mm}$, apically acute, marginally ciliate and denticulate to serrulate, hirtellous above and beneath with villi to 0.3 mm ; petioles $0.7-5.4 \mathrm{~cm}$, densely hirtellous with villi to 0.5 mm ; leaf blades oblique or rarely straight, asymmetrically elliptic to oblong, (5.5-)8.5-18+ x
(3.6-) $4.8-8.1 \mathrm{~cm}$, basally unequal-sided, apically attenuate-acuminate, marginally doubly ciliatecrenate to doubly ciliate-serrate and serrulate, above and below densely hirtellous; ( $6-$ ) 11 to 14 pinnately nerved on the broad side of the blade. Staminate inflorescences appearing subumbelliferous with perhaps occasionally than 2 branches at the lowermost node, 3-10 or moreflowered; peduncles $1-6.7 \mathrm{~cm}$, densely hirtellous with villi to 1 mm ; bracts deciduous, elliptic, to $6.5-$ $11 \times 3.5-5.5 \mathrm{~mm}$, marginally ciliate-serrulate to ciliate-laciniate. Pistillate inflorescences 1flowered; peduncles ( $1.5-$ )3.5-4.5 cm , densely hirtellous with villi to 1 mm ; bracts minute, $1-4 \mathrm{~mm}$, apically lobed. Staminate flowers with pedicels $6-13 \mathrm{~mm}$, hirtellous; sepals 2 , elliptic to ovate, $8.5-$ $13 \times 8-10 \mathrm{~mm}$, marginally occasionally ciliate distally, glabrous to pilose, translucent white to white suffused pink, petals 2 , narrowly obovate, $7.5-8.5 \times 3.5-5.5 \mathrm{~mm}$, translucent white or white mottled pink; stamens $40-59$, appearing monadelphous; filaments $1-1.5 \mathrm{~mm}$; anthers narrowly oblong to obovate, $1.5-2 \times 0.4-0.6(-0.8) \mathrm{mm}$. Pistillate flowers with pedicels $1-4 \mathrm{~mm}$, densely hirtellous; bracteoles wanting; tepals 5, subequal, ovate, $12.5-15 \times 4-10 \mathrm{~mm}$, pilose without, white or white suffused pink; ovaries trilocular with bipartite placentae, 11 mm , densely hirtellous; styles multibranched to 2 mm ; stigmas at tips of stylar branches. Capsules with pedicels ( $5-) 8-14 \mathrm{~mm}$; bodies turbinate, unbeaked, $15-20 \mathrm{~mm}$; wings or horns 3 , subequal, oblong to obovate, marginally entire to undulate or denticulate distally.

Etymology. It is a great pleasure to name this distinctive species in honor of Dr. Robert L. Wilbur at Duke University who collected extensively in Costa Rica and Panama and has been particularly dedicated to their montane floras. Dr. Wilbur devoted much of his career to developing the fine vascular plant collection in the Duke Herbarium. He was a fine dissertation advisor and mentor for my research with Begoniaceae.

Distribution and habitat. Begonia wilburi occurs at elevations between 1600 m and 3350 m in montane cloud forests and wet secondary forests on steep mountainsides in the Cordillera Talamancas with Alnus and other vegetation in Costa Rica and western Panama.

Begona wilburi is characterized by its apparent dioecy and 1-flowered pistillate inflorescences, immediately standing apart from other known Mesoamerican taxa, except occasionally B. biserrata in its dioecy (Burt-Utley \& McVaugh 2001). While it is unclear if $B$. wilburi is dioecious, branches of specimens examined either had only staminate inflorescences or pistillate inflorescences at each node, and no branches had both staminate and pistillate inflorescences. In all species studied from México and Central America, only the tuberous $B$. cebadillensts Houghton ex L.B. Sm. \& B.G. Schub. was observed with separate staminate and pistillate inflorescences on the same stem or on the same individual (Burt-Utley pers. obs.). Although there are a number of collections of B. wilburi, only two examined (Picado \& Gamboa 251, MO; Utley \& Burt-Utley 9033, USF) consist of a branch with staminate inflorescence and a branch with pistillate material, and it is unclear if they came from the same individual. It is not surprising that only two collections of $B$. wilburi have both staminate and pistillate material because staminate stems or individuals of this species are inconspicuous when flowering, and this is even more true of pistillate stems with their short peduncles with one flower (Burt-Utley pers. obs.).

Begonia wilburi was first collected by Adolph Tonduz in April 1898 ("Herb. Instit. physicogeogr. nat. costaricensis" \#12274) and subsequently annotated by C. de Candolle as B. coopert C. DC., a vegetatively similar species. Begonia wilburi, however, appears dioecious with "horned" or turbinate capsules and ovaries, an unusual character that immediately places it in the predominantly South American section Casparya (K1.) Warb. Within Central America, the remaining Begonta species have ovaries, capsules, or rarely berries with wings and are all monoccious (pers. obs.). The only other species in this section known from Costa Rica and Panama is B. urticae L. f. and B. wilburi is easily separated from it by vegetative and floral characters, including its larger leaf blades


Figure 1 Begonia wilbui Isotype (Utley \& Utiey 1470, USF)
[( $5.5-) 8.5-18 \times(3.6-) 4.8-8 \mathrm{~cm}$ vs. $0.9-7.5 \times 0.5-3 \mathrm{~cm}]$, its dioecy, larger staminate sepals ( $8.5-13 \mathrm{x}$ $8-10 \mathrm{~mm}$ vs. $3-5 \times 3-4 \mathrm{~mm}$ ), more numerous stamens ( $40-59 \mathrm{vs} .5-16$ ), and unbeaked ovaries and capsules.

Begonia wilburi appears most closely related to the Colombian endemic, B. ursina L.B. Sm. \& B.G Schub., described from fragments, which also is presumably dioecious, with similar fewflowered male inflorescences and one-flowered female inflorescences on separate stems. Moreover, both species are reported from a high elevations $(3100 \mathrm{~m})$ and have hirsute to hirtellous stems, leaves, sepals, petals, tepals, and ovaries (pers. obs.; L.B. Sm. \& B.G. Schub. 1946). Leaf blades of $B$. wilburi are larger than those of $B$. ursina $[(5.5-) 8.5-18+x(3.6-) 4.8-8.1 \mathrm{~cm} \mathrm{vs} .5-5.7 \times 1.6-2.4 \mathrm{~cm}]$. Stipules also differ in form between these two species, with those of $B$. wilburl having two different shapes at each node (the larger hemiorbicular and the smaller oblong to triangular) while those of $B$. ursina are ovate. Bracts are large and elliptic in staminate inflorescences ( $6.5-11 \times 3.5-5.5 \mathrm{~mm}$ ) of $B$. wilburi but much smaller to minute ( $1-4 \mathrm{~mm}$ ) in their pistillate inflorescences. In B. ursina, staminate bracts are described as ovate ( 10 mm ), and apparently are equal in size to the "bracteoles" of its pistillate flowers. It seems very likely that the authors actually were describing the pistillate bracts of B. ursma rather than bracteoles. Begonia wilburt is also distinguished from B. ursma in its subequal 5 -tepaled pistillate flowers, in contrast to the 6 -tepaled pistillate flowers of B. ursina with three subequal outer tepals and three smaller inner subequal tepals. Six-tepaled pistillate flowers are not unique to $B$. ursina and have been observed in other species in sect. Casparya (L.B. Sm. \& B.G Schub. 1946). While both species have unbeaked capsules, the horns of $B$. wilburl are straight, broad, and oblong to obovate, in contrast to those of $B$. ursina which are narrow and falcate.

Specimens examined. COSTA RICA. San José. Bords du Río de la Mala, Via au Copey, Apr 1898, Tonduz 12274 (CR); Cantón Perez Zeledon, P.N. Chirripó, cordillera de Talamanca, sendero al Mirador, $9^{\circ} 33^{\prime} 20^{\prime} \mathrm{N}, 83^{\circ} 40^{\prime} 15^{\prime \prime} \mathrm{W}, 18$ Aug 1995, Picado \& Gamboa 251 ( $0^{\circ} \&$ 우 MO, ठठ USF); Cantón Perez Zeledon, 1 km de Division a la par de Carr. Interamericana, 9 Dec 1996, Hammel \& Hodel 20575 (MO); slopes of Cordillera de Talamanca near la Division, N of San Isidro de El General, 6 Feb 1963, Williams, Jiménez M., \& Williams 24385 of (F). 10.8 km S of La Georgina on Interamerican Hwy to San Isidro, 25 Jun 1995, 8000 ft , Utley \& Utley 9031 ठ' (USF); 9.8 km S of La Georgina, 25 Jun 1995, 8000 ft , Utley \& Utley 9033 (ठ MO, US, ठे \& $q$ USF). Puntarenas. N of San Isidro del General, 12 Aug 1971, 7000-11000 ft, Vaughan, Dwyer, Spellman, \& Wunderlin 679 of (MO). PANAMA. Chiriqui. Vic. of Cerro Punta, 0.5 mi SE of Entre Ríos, 1 mi by rd from town of Cerro Punta, 25 Nov 1979, 2000 m , Croat $48573 \not \subset$ (MO); Volcán Barú (E slope), deep draw W of Finca Yen, 17 Mar 1979, 8000 ft , Hammel, D'Arcy, \& Averett 6452 (MO).
2. BEGONIA GENTRYI Burt-Utley \& Utley, sp. nov. TYPE. COLOMBIA. Chocó. Alto de Buey, $500-1200 \mathrm{~m}, 8$ Jan 1973, A. Gentry \& E. Forero 7262 (holotype MO; isotypes MO, US). Figure 2.

Rhizomatous herbs; internodes very short, to $9 \mathrm{~mm}, 7-9.5 \mathrm{~mm}$ diam, glandular and villoussquamose with trichomes $2-4(-6) \mathrm{mm}$. Stipules apparently persistent, narrowly triangular, $13-21 \mathrm{x}$ 3-9 mm, marginally entire, villous, strongly keeled, with the keel fimbriate-laciniate; petioles 9-21 cm , villous with stout trichomes $2-5 \mathrm{~mm}$ intermixed with minute glandular hairs; leaf blades asymmetric, oblique to transversely elliptic, reniform or ovate, $12-28 \times 8.5-19 \mathrm{~cm}$, basally cordate, apically acute to short acuminate, marginally eciliate and somewhat undulate, glabrous to minutely glandular above and glandular to very sparingly villous below, especially on nerves, with trichomes $0.3-2 \mathrm{~mm} ; 10-12$-palmatinerved. Inflorescences asymmetrically cymose, greatly exceeding the foliage, ca 14-flowered; peduncles $40-70 \mathrm{~cm}$, sparingly villous with trichomes $1.5-6 \mathrm{~mm}$; bracts caducous, oblong-elliptic, $20 \times 11-12 \mathrm{~mm}$, apically truncate, marginally entire. Staminate flowers with pedicels (11-)15-20 mm, glabrous; sepals 2 , suborbicular to broadly oblong, $11-14 \times 13-14$ mm , glabrous, light orange; petals 2 , obovate, $10-12 \times 7 \mathrm{~mm}$; stamens $25-32$; filaments appearing free, less than 0.1 mm ; anthers elliptic to obovate, $2-2.2 \times 0.4-0.6 \mathrm{~mm}$. Pistillate flowers with pedicels $12-13 \mathrm{~mm}$, glabrous; bracteoles wanting; sepals 2 , transversely elliptic, $11-15 \times 10-14 \mathrm{~mm}$, glabrous, light orange; petals 2 , obovate, $10 \times 8 \mathrm{~mm}$; ovary trilocular with bipartite placentae, 6.6 .5

mm , glabrous to sparingly glandular; styles $1.7-2 \mathrm{~mm}$, free to the base; stigmas bicornute. Capsules with pedicels $19-27 \mathrm{~mm}$; bodies $9-11 \mathrm{~mm}$; locule chambers externally appearing broadly ovate, $7.5-$ $8.5 \times 6.5-8 \mathrm{~mm}$; wings 3 , unequal, the largest wing ovate to elliptic, $19-23 \times(9-) 13-18 \mathrm{~mm}$, apically rounded to subacute, the other 2 marginiform and triangular to lunate.

Etymology. Begonta gentryi is named in honor of the late Dr. Alwyn H. Gentry (19451993), who was a Curator at the Missouri Botanical Garden before his untimely death in an airplane crash in Ecuador.

Distribution and habitat. Begonia gentryl is known from the Choco in Colombia in tropical wet forests at elevations between 500 and 1200 m and has been collected in the Darién in Panama. According to Whiteford and Eddy, B. gentryi is common above 900 m in the Serrania de Jungorodo in Panama.

Begonia gentryl is distinguished by its rhizomatous habit, eciliate leaf margins, and pistillate flowers with two sepals and two petals. It is one of about four rhizomatous species occurring in Colombia and is readily distinguished from them by its staminate and pistillate flowers consistently with two sepals and two petals, in contrast to two of the remaining three species that have apetalous flowers (B. nelumbiifolta Schlecht. \& Cham. and B. urophylla Hook.) and B. sericoneura Liebm. with apetalous staminate flowers but pistillate flowers that are either apetalous or have a single petal (BurtUtley 1985). Begonia gentryi stands apart from known Mesoamerican rhizomatous taxa in its orange pistillate and staminate flowers and, with the exception of B. mucronistipula C. DC., pistillate flowers with two sepals and two petals. Flowers of species from the region of the Flora characteristically have sepals, petals, or tepals that range from white to deep pink or rarely yellow-green (Burt-Utley, pers. obs.). Begonta gentryi is also notable for the small but conspicuous cystospheres, which are evident on all plant parts except the petals and roots. It appears most closely related to the Panamanian endemic, B. mucronistipula, with which it shares its rhizomatous habit and similar pistillate flowers (Burt-Utley \& Utley 2011). Other rhizomatous Central American taxa have pistillate flowers that are apetalous or have one petal or five subequal tepals. Begonia gentryt is readily distinguished from B. mucronistipula by a number of characters, including its internodes with a villous-squamose indument (vs. glabrous), villous stipules and petioles (vs. glabrous), larger anthers (2-2.5 mm vs. 1-1. 6 mm ), and its large primary wings [19-23 x (9-) $13-18 \mathrm{~mm}$ vs. (11-)15-17 x $7-$ 9.5 mm . Begonia gentryi also occurs in tropical wet forests at a lower elevations than those reported for the montane $B$. mucronostipula ( $500-1200 \mathrm{~m}$ vs. $1500-2100 \mathrm{~m}$ ). Although B. gentryl shares characters with B. mucronostipula, which was tentatively included in sect. Gireoudia (Doorenbos et al. 1998), the sectional affiliations of both species are unclear (pers. obs.).

Additional specimens examined. PANAMA. Darién. Serrania de Jungorodo, Mamey, 900 m, 10 Mar 1982, Whiteford \& Eddy 460 (BM). COLOMBIA. Chocó. S ridge of Cerro Mecana, $6^{\circ} 16^{\circ} \mathrm{N}, 77^{\circ} 18^{\prime} \mathrm{W}, 500-700 \mathrm{~m} 7$ Jan 1984, Juncosa 1758 (MO, USF); Río Mutatá ca 3 km above its junction with Rio El Valle NW of Alto de Buey, $850 \mathrm{~m}, 7 \mathrm{Feb}$ 1971, Lellinger \& de la Sota 182 (US).
3. BEGONIA LIESNERI Burt-Utley \& Utley, sp. nov. TyPE. COSTA RICA. Cartago. Cerro Doán, 3 km E of Cachí, 23 Apr 1969, R.W. Lent 1601 (holotype: F; isotypes: NY, US). Figure 3.

Suffrutescent herbs to 80 cm tall; upper internodes (1.5-) $4-6 \mathrm{~cm}, 2-4 \mathrm{~mm}$ diam, glabrous, cystospheres abundant. Stipules deciduous, asymmetrically ovate to oblong-ovate, $15-18 \times 7-8 \mathrm{~mm}$, marginally entire, glabrous, keeled, with only the keel villous; petioles $1.5-3.5 \mathrm{~cm}$, glabrous to very sparingly villous, with the stout villi $0.1-0.7 \mathrm{~mm}$; leaf blades straight to weakly arcuate, asymmetrically narrowly elliptic to ovate, $7-13 \times 1.8-4.3 \mathrm{~cm}$, basally unequally sided, apically
attenuate-acuminate, marginally ciliate-serrulate and ciliate-serrate, glabrous throughout above, villous beneath only on principal nerves with stout villi to $0.7 \mathrm{~mm} ;(10-) 12-15$ pinnately nerved on the broad side of the blade. Inflorescences shorter than the leaves, laxly cymose, ca $+/-7$-flowered; peduncles $3.5-6.5 \mathrm{~cm}$, glabrous to villous with few villi to 0.7 mm ; bracts deciduous, ovate to obovate, $9-12 \times 5-7 \mathrm{~mm}$, marginally serrulate, glabrous to sparingly villous, keeled, or the keel only villous. Staminate flowers with pedicels $10-15 \mathrm{~mm}$, sparingly short villous; sepals 2 , ovate to oblong or elliptic, $9-16 \times 6-9.5 \mathrm{~mm}$, glabrous to glandular and sparingly short villous; petals 2 , obovate, $9-13.5 \times 4.5-6.5 \mathrm{~mm}$, distally shallowly lobed, glabrous; stamens $+/-23$, appearing somewhat monadelphous; filaments $0.8-1.3 \mathrm{~mm}$; anthers narrowly obovate to elliptic, $1.8-2 \times 0.5-$ 0.7 mm . Pistillate flowers with pedicels to 15 mm , villous; bracteoles present, deciduous, obovate, $8-9 \times 6-7 \mathrm{~mm}$, apically ciliate-laciniate, marginally ciliate-serrulate, sparingly villous; sepals at anthesis unknown; petals/tepals unknown; ovary trilocular with bipartite placentae, $8-10 \mathrm{~mm}$, hirtellous and minutely glandular; styles and stigmas unknown. Capsules with pedicels to 24 mm ; bodies $11-14 \mathrm{~mm}$; externally locule chambers elliptic, $8-11 \times 6-7 \mathrm{~mm}$; wings subequal to unequal, the largest one asymmetrically triangular, $5-12 \times 11-15 \mathrm{~mm}$, the others asymmetrically triangular.

Etymology. Begonia liesnert is named in honor of Mr. Ronald Liesner at the Missouri Botanical Garden. who first recognized this as a new species.

Distribution and habitat. Begonta liesnert is known only from Cartago Province where it occurs in cloud forests or rainforests at bases of cliffs between 1400 and 1450 m .

Begonta hesnert is characterized by a suite of characters including its suffrutescent habit, glabrous internodes, pinnately nerved leaf blades, large bracteoles, ca 7 -flowered inflorescences, and large capsules with subequal to unequal capsule wings. With its several-flowered inflorescences that are shorter than the foliage, $B$. liesneri is potentially an inconspicuous component of the vegetation and easily overlooked by collectors. Without pistillate flowers available, it is difficult to determine the relationships of $B$. liesnerl with other Central American taxa because caulescent species with similar staminate flowers could have pistillate flowers with two sepals and one or two petals or four to five subequal tepals (Burt-Utley, pers. obs.). Begonia hesnert is distinguished from suffrutescent, pinnately nerved Begonia species found in Costa Rica by its several-flowered inflorescences, large, marginally serrulate bracts, and, in all but $B$. tonduzit C. DC., its subequal capsule wings. With the exceptions of B. tonduzii, B. wilburl (described herein), and the Costa Rican endemic B. cooperi C. DC., it is the only other pinnately nerved, pubescent, suffrutescent taxon from Central America (pers. obs.). From B. tonduzut it is readily distinguished by its larger bracts [ $9-12 \times 5-7 \mathrm{~mm}$ vs. $1.3-3(-5) \mathrm{x}$ $1-3(-4) \mathrm{mm}]$, larger staminate sepals ( $9-16 \times 5-10.5 \mathrm{~mm}$ vs. $5-10.5 \times 4.5-9 \mathrm{~mm}$ ), and larger capsules ( $11-14 \mathrm{~mm}$ vs. $6-11 \mathrm{~mm}$ ) (Burt-Utley, pers. obs.). It differs from $B$. cooperi C. DC. in its much larger staminate sepals [ $9-16 \times 6-9.5 \mathrm{~mm}$ vs. (3-)4-6(-8) $\times 3.5-5(-8) \mathrm{mm}$ ], large, conspicuously bracteolate pistillate flowers (vs. ebracteolate), persistent petals, and larger capsules [11-14 mm vs. (4-)6-8.5 (-9.5) mm] (Burt-Utley, pers. obs.). The only other pinnately nerved suffrutescent species bearing several flowers is $B$. wilburi, but $B$. liesnerl differs immediately from this potentially dioecious species in its monoecy and non-turbinate capsules.

Additional specimens examined. COSTA RICA. Cartago. Tapanti, Orosi, $1400 \mathrm{~m}, 29$ Jan 1983, I. A. Chacón 259 (USF).


Figure 3 Begonia hesneri Holotype (Lent 1601, F)

## 4. BEGONIA MCPHERSONII Burt-Utley \& Utley, sp. nov. TyPE. PANAMA. Bocas del Toro.

 Vic. of Cerro Colorado mine above San Felix, trails N of road on continental divide, $8^{\circ} 35^{\prime} \mathrm{N}$, $81^{\circ} 50^{\circ} \mathrm{W}, 1500 \mathrm{~m}, 26$ Jan 1988, G. McPherson 12019 (holotype: MO; isotypes: PMA, USF). Figure 4.Rhizomatous herbs; internodes $0.5-1.6 \mathrm{~cm}, 0.4-1.3 \mathrm{~cm}$ diam, lanate with fine sericeous trichomes $1.5-5 \mathrm{~mm}$. Stipules persistent, coriaceous, asymmetrically ovate, $1.2-2.7 \times 1-1.1+\mathrm{cm}$, marginally entire, glabrous keeled, or the keel only pilose, cystospheres abundant; petioles (10.5-)1323 cm , tomentose with fine sericeous villi $1.5-4 \mathrm{~mm}$; leaf blades oblique to transverse, symmetric to asymmetric, elliptic to oblong in outline, $10.5-18 \times 8-17.5 \mathrm{~cm}$, basally cordate, apically with no distinct apex, marginally ciliate-serrate and ciliate-serrulate, deeply asymmetrically palmately lobed usually with 4 to 5 major attenuate-acuminate lobes to $1 / 2$ the blade length, sparingly pilose above especially above the petiole-blade junction, lanate on primary nerves below but pubescence less dense in intercostal regions; 10-11-palmatinerved. Inflorescences greatly exceeding the foliage, weakly asymmetric, densely to laxly cymose with elongate branches, many-flowered; peduncles (21-)30-49 cm , lanate to pilose; bracts caducous, the lowermost apparently completely encircling the inner in bud, subequal, broadly navicular, broadly ovate, $1.7 \times 1.4 \mathrm{~cm}$, pilose, cystospheres abundant. Staminate flowers with pedicels 9-10.5 mm, pilose; sepals ovate, $5-7 \times 7-9 \mathrm{~mm}$, pilose, pink-white; petals $0-2$, narrowly obovate to ovate, $4.5-6 \times 1.2-1.5 \mathrm{~mm}$; stamens $23-35$; filaments $0.5-0.8 \mathrm{~mm}$, on a raised torus and appearing somewhat monadelphous; anthers obovate to elliptic, $1-1.4 \times 0.4-0.5$ mm . Pistillate flowers with pedicels $6-8 \mathrm{~mm}$, pilose; bracteoles wanting; sepals suborbicular to transversely broadly elliptic, ( $5.5-$ )8-9 x $8-9.5 \mathrm{~mm}$, pilose, pink-white; petals $0-1$, obovate, $6 \times 2.5-3$ mm ; ovary trilocular with bipartite placentae, $3.5-4.5 \mathrm{~mm}$, pilose, cystospheres present; styles 3, 1.52 mm , connate over $1 / 2$ their length; stigmas bicornute. Capsules with pedicels $13-19 \mathrm{~mm}$; bodies 67.5 mm with conspicuous cystospheres; locule chambers externally ovate, $5-6.5 \times 3.5-5.5 \mathrm{~mm}$; wings 3 , unequal, the largest wing asymmetrically elliptic, $11-14.5 \times 8-10.5 \mathrm{~mm}$, the second one asymmetrically triangular, $5-7 \times 5-6 \mathrm{~mm}$ and the third marginiform.

Etymology. It is a pleasure to name this species in honor of Dr. Gordon McPherson at the Missouri Botanical Garden, who collected this species. Gordon was our field companion and guide in Panama when we collected Begonta and Bromeliaceae in 1988.

Distribution. Begonia maphersonil is known only from the provinces of Bocas del Toro and Chiriquí in Panama near the continental divide between (800-) $1200-1500 \mathrm{~m}$.

Begonia mophersonit appears most similar and closely related to other two species in sect. Gireoudia (K1.) A. DC., B. involucrata Liebm. and B. broussonetilfolia A. DC., because of its deeply lobed leaves, tomentose indument, and its lowermost bracts with the outer apparently encircling the inner. This latter character is unusual among Central American Begonia and has only been observed in the suffrutescent taxa in sect. Gireoudia, B. involucrata and $B$. broussonetifolia A. DC. (BurtUtley 1985). From $B$. broussonetitfolia, $B$. mophersonii is readily distinguished by its rhizomatous habit, shorter and stouter internodes [0.5-1.6 $\mathrm{cm}, 0.4-1.3 \mathrm{~cm}$ diam vs. ( $0.9-) 1.8-4.4 \mathrm{~cm},(2-) 3-6 \mathrm{~mm}$ diam], palmately multilobed blades (4-5 major lobes vs. 1-2 lobes), and longer peduncles [(21-)3049 cm vs. (14.6-)17.5-27.5(-29) cm. Begonia mophersonii stands apart from B. involucrata in a number of characters including its habit and elongate inflorescence internodes. Upper branches and frequently the lower branches of $B$. involucrata inflorescences are greatly reduced in length, resulting in inflorescences that are strongly congested distally (Burt-Utley 1985). Because of these differences in branch length, there are conspicuous differences in pedicel length between these two species. Pedicels of staminate flowers, pistillate flowers, and capsules of B. mcphersonil are much shorter than those of $B$. involucrata [ 6 : 9-10.5 mm vs. (9-)12-23 mm; ㅇ: : 6-8 mm vs. (6-) $16-25 \mathrm{~mm}(-30) \mathrm{mm}$; capsules: $13-19 \mathrm{~mm}$ vs. ( $15-$ )21-36( -60 ) mm].


Figure 4. Begona mophersonit Holotype (McPherson I2019, MO)

Additional specimens examined. PANAMA. Chiriquí. Above San Felix on mining rd. 1827 mi off the Pan Am Hwy above Chame or turnoff to Escopeta, 12 Mar 1976, T. B. Croat 33075 (MO, USF); vic. of Cerro Colorado mine development, 28 mi above San Felix, 9-10 mi above turnoff to Escopeta, 13 Mar 1978, Croat 33206 (MO); on rd in vic. of branch in rd. to Cerro Colorado and Escopeta, above Río San Felix ca 13 mi N of Río San Felix bridge, 15 Mar 1976, Croat 33444 (MO).

## 5. BEGONIA PSEUDOPELTATA Burt-Utley \& Utley, sp. nov. TyPE. HONDURAS. Lempira. Trail from old electricity generation plant to Camp Don Tómas ca. "10 straight line" WSW of Gracias, Parque Nacional Celaque, $14^{\circ} 33^{\circ} \mathrm{N}, 88^{\circ} 40^{\circ} \mathrm{W}, 1850 \mathrm{~m}, 11 \mathrm{Feb} 1993$, R. Evans 1154 (holotype: MO; isotype: USF). Figure 5.

Suffrutescent herbs with branching stems to 1.5 m tall; upper internodes $1-2.9(-5.3) \mathrm{cm}, 4-$ 8 mm diam, sparingly to densely tomentose with uniseriate whiplash trichomes to 4 mm , intermixed with stout multiseriate whiplash trichomes to 8 mm . Stipules persistent, asymmetrically oblong to oblong-ovate, $12-14.5 \times 7.5-12 \mathrm{~mm}$, apically obtuse to truncate, marginally entire, glabrous to sparingly tomentose, weakly keeled distally with the keel excurrent apically; petioles (0.6-)2.5-9.5 cm , sparingly to densely tomentose with fine sericeous trichomes to 4 mm ; leaf blades oblique, asymmetric, ovate to lance-ovate, $1.8-11.8 \times 0.6-8.1 \mathrm{~cm}$, basally peltate, apically acuminate to attenuate-acuminate, marginally ciliate-denticulate to ciliate-crenulate and undulate, occasionally dentate at ends of major nerves; sparingly hirsute above, becoming glabrate, sparingly to moderately tomentose below with trichomes most dense on major nerves; 7-9-peltinerved. Inflorescences shorter than to exceeding the leaves, symmetric to asymmetric, densely cymose, ca 40 or moreflowered; peduncles $3.8-14.3(-22.5) \mathrm{cm}$, sparingly to moderately tomentose; bracts deciduous, the lowermost oblong, $4-11 \times 2-3 \mathrm{~mm}$, apically ciliate-lacerate, marginally distally ciliate-lacerate, hirsute. Staminate flowers with pedicels $6-14 \mathrm{~mm}$; sepals 2 , obovate to elliptic, $7-10.5 \times 3.5-6.5$ mm , glabrous; petals 2 , narrowly elliptic to oblanceolate, (4.5-)7.5-8.5 $\times 1.6-2.8 \mathrm{~mm}$; stamens $7-13$; filaments $0.8-2 \mathrm{~mm}$, borne on a raised torus; anthers oblong to oblong-obovate, $1.1-1.7 \times 0.6-0.9$ mm . Pistillate flowers with pedicels ( $4.5-$ )9-11 mm; bracteoles wanting, sepals 2, obovate, $7-8 \times 4-$ 5.5 mm , glabrous; petals 1 , oblanceolate, $5.5-7 \times 1.5-2 \mathrm{~mm}$; ovary trilocular with bipartite placentae, $5.5-7.5 \mathrm{~mm}$, glabrous; styles $3,2-2.5 \mathrm{~mm}$, fused basally; stigmas lunate. Capsules with pedicels $11-$ 18 mm ; bodies 7-9 mm; locules externally appearing broadly elliptic to suborbicular, 4.5-6.5 x 4-7 mm ; wings 3 , subequal to somewhat unequal, the largest wing weakly asymmetric, broadly triangular to lunate-triangular, $5-6.5 \times 5.5-8 \mathrm{~mm}$, the second and third wings shallowly lunate to asymmetrically triangular.

Distribution and habitat. Begonia pseudopeltata is known from Guatemala, Honduras, and Nicaragua at elevations between 600 and 2000 m , where it has been collected in mixed pine and hardwood secondary growth.

Begonia pseudopeltata is an attractive suffrutescent species with abundant small flowers and capsules. It resembles $B$. peltata Otto \& Dietr. in its peltate leaves and is potentially closely related to this taxon. Although B. peltata (syn. B. mncana Lindl.) was included in sect. Rachia (K1.) A. DC., this species was most recently placed in sect. Gireoudia (Doorenbos et al. 1998). Begonia pseudopeltata is readily distinguished from this latter taxon by its oblong to oblong-ovate stipules (vs. ovate to triangular) and floral characters, including its more narrow staminate sepals ( $3.5-6.5 \mathrm{~mm}$ vs. $7-11$ mm ), fewer stamens ( $7-13 \mathrm{vs} .14-27$ ), longer styles ( $2-2.5 \mathrm{~mm}$ vs. $1.3-2 \mathrm{~mm}$ ), smaller ovaries ( $5.5-$ 7.5 mm vs. $6.5-12 \mathrm{~mm}$ ), and smaller capsules ( $7-9 \mathrm{~mm}$ vs. $10.5-18 \mathrm{~mm}$ ). Although these species share somewhat overlapping distributions, with both occurring in Guatemala and Honduras, B. pseudopeltata has not been reported from México and B. peltata is not known to occur in Nicaragua. Moreover, there is no evidence that these species have been collected from the same general localities in either Guatemala or Honduras.


Figure 5 Begona pseudopeltata Isotype (Evans 1154, USF)

Additional specimens examined. GUATEMALA. Chiquimula. Cerro Brujo, in vic. of Rio Negro, below Montaña Montenegro, near village of Brujo, 1500-2000 m, 1 Nov 1939, Steyermark 30937 (F). HONDURAS. Copán. ca Dulce Nombre, $1200 \mathrm{~m}, 30$ Mar 1963, Molina R. 11748 (F, LL, NY). Lempira. Sendero entre La Planta Eléctrica y las primera casa (abandonada) de Don Tómas Parque Nac. de Celaque, $14^{\circ} 36^{\circ} \mathrm{N}, 88^{\circ} 40^{\circ} \mathrm{W}, 18$ Mar 1991, 1800 m , House 892 (MO, USF); Cuyamel, without further locality, 30 Mar 1923 , Carleton 474 (US). NICARAGUA. Jinotega. Las Alturas de Kilambé, "Filas el Portal" NE del Cerro Kilambé, $13^{\circ} 37$ 'N, $85^{\circ} 40^{\prime}$ W, $600-900 \mathrm{~m}, 26$ Mar 1981, Moreno \& Sandino 7594 (MO).

## 6. BEGONIAAGUABUENENSIS Burt-Utley \& Utley, sp. nov. Type: COSTA RICA. San José.

 Cantón León Cortés, Z.P. Caraigres, Cuenca del Pirres-Damas, Cerro Caraigres, Falda SE Fila Aguabuena, entre Quebrada Pilas y Quebrada Ceniza, $9^{\circ} 42^{\prime} 45^{\prime} \mathrm{N}, 84^{\circ} 06^{\prime} 21^{\prime \prime} \mathrm{W}, 1000-$ 1200 m, 26 Dec 1996, J.F. Morales 5945 (holotype: MO). Figure 6.Rhizomatous herbs; internodes short and stout, $0.9-1 \mathrm{~cm}$ long, $1.3-1.8 \mathrm{~cm}$ diam, squamose with very broad lacerate and laciniate trichomes 3-5 mm. Stipules persistent, reflexed and revolute with age, asymmetrically ovate, $13-23 \times 9-13 \mathrm{~mm}$, marginally entire, glabrous, strongly keeled with the keel fimbriate; petioles $8.5-18.5+\mathrm{cm}$, glabrous except for a ring of lacerate scales $4-5(-6.5) \mathrm{mm}$ just beneath the petiole-blade junction; leaf blades ovate, $14-21 \times 6.5-18 \mathrm{~cm}$, apically attenuateacuminate, basally peltate, marginally ciliate and weakly undulate, but denticulate at ends of major nerves, above glabrous to minutely glandular, below sparingly squamose on major nerves with trichomes $1.5-3 \mathrm{~mm}, 6-7$-peltinerved. Inflorescences exceeding the foliage, asymmetrically cymose, many-flowered; bracts caducous, not seen; peduncles $22-59 \mathrm{~cm}$, glabrous. Staminate flowers with pedicels $10-12 \mathrm{~mm}$, glabrous; sepals obovate, $5.5-6.5 \times 3.5-5.5 \mathrm{~mm}$, glabrous, white-pink; petals wanting; stamens 7-11, borne on a raised torus; filaments $0.3-0.6 \mathrm{~mm}$; anthers obovate, $1.1-1.3 \mathrm{x}$ $0.5-0.7 \mathrm{~mm}$. Pistillate flowers with pedicels $6-8 \mathrm{~mm}$, glabrous; bracteoles wanting; sepals $7.5-10 \mathrm{x}$ $5.5-8 \mathrm{~mm}$, glabrous, white-pink; petals wanting; ovaries trilocular with bipartite placentae, $7-8 \mathrm{~mm}$, glabrous; styles 3, 2-2.5 mm; stigmas lunate. Capsules with pedicels $8-11 \mathrm{~mm}$; bodies $11-14 \mathrm{~mm}$, locule chambers externally appearing obovate, $9 \times 7 \mathrm{~mm}$; wings subequal, the primary wing asymmetrically lunate-triangular, $5-7 \times 9-11 \mathrm{~mm}$; the other wings lunate, $4.5-6 \times 8-9 \mathrm{~mm}$.

Distribution and habitat. Begonia aguabuenensis is known only from central Costa Rica in San José province between $1000-1300 \mathrm{~m}$.

Begonta aguabuenensts (sect. Gireoudia Kl. A. DC.) is distinguished by its stout rhizomes, peltate leaf blades, squamose petioles, apetalous staminate and pistillate flowers, and subequal ovary and capsule wings. It appears most similar to Begonia manicata var peltata L.B. Sm. \& B.G. Schub. from Guatemala. Both taxa share similar rhizomatous habits, leaf blade size, peltate leaf blades, squamose petiolar trichomes, apetalous flowers, staminate sepals within the size observed for $B$. manicata var peltata, ebracteolate pistillate flowers, and similar capsule size and subequal capsule wings. The petiolar indument of both taxa is squamose, but that of $B$. aguabuenensts is restricted to a band just below the blade, while in B. manicata var peltata it is distributed throughout the petioles but is most dense just beneath the blade. Begonia manicata var peltata is known only from its type and one additional collection from Guatemala (Burt-Utley 1985). There are no known collections of $B$. manicata var peltata from Honduras or Nicaragua, while B. aguabuenensis appears restricted to Costa Rica. Ideally, more collections of $B$. manicata var peltata are needed before its synonymy with Begonia aguabuenensis is made.

Additional specimens examined. COSTA RICA. San José. Cantón de Acosta. Cuenca del Pirris-Damas, Fila Bustamante, Fila Aguabuena, Aserrí, entre Quebrada Chilamate y Quebrada Pilas, camino, $9^{\circ} 43^{\prime} 35^{\prime \prime} \times 84^{\circ} 11^{\prime} 20^{\prime \prime} \mathrm{W}, 1300 \mathrm{~m}, 12$ Dec 1996, Morales 5921 (MO).


Figure 6 Begoha aguabienensas Holotype (Morales 5945, MO)
7. BEGONLA SUKUTENSIS Burt-Utley \& Utley, sp. nov. TyPE: COSTA RICA. Limón. Reserva Indígena Talamanca, Sukut, desembocadura del Río Sukut en el Río Urén, camino al SE hacia Purisqui. $9^{\circ} 24^{\prime} 15^{\prime} \mathrm{N}, 82^{\circ} 58^{\prime} 10 \mathrm{~W}, 350-550 \mathrm{~m}, 6$ Jul 1989, B. Hammel, I.A. Chacón, \& G Herrera 17750 (holotype: MO; isotype: USF). Figure 7.

Herbaceous perennials with stout repent rhizomes; internodes $2-3.8 \mathrm{~cm}$ long, $7-1.6 \mathrm{~cm}$ diam, densely tomentose with whiplash trichomes $2-3 \mathrm{~mm}$. Stipules broadly ovate to ovatetriangular, $18-22 \times 14-22+\mathrm{mm}$, marginally entire, densely villous or the keel only villous; petioles $25.5-43 \mathrm{~cm}$, minutely glandular and tomentose with whiplash trichomes $1-3 \mathrm{~mm}$; leaf blades oblique, asymmetrically broadly elliptic to oblong or obovate, 24-32 $\times 18-24 \mathrm{~cm}$, basally cordate with lobes occasionally overlapping, apically acuminate, marginally ciliate, finely denticulate, and occasionally dentate at ends of major nerves; glabrous above except villous above the petiole insertion, villous on nerves below but only sparingly so in intercostal regions; 14-15-palmatinerved. Inflorescences exceeding the foliage, asymmetrically cymose, many-flowered; peduncles $1-1.2 \mathrm{~m}$, sparingly pilose with trichomes $0.3-2 \mathrm{~mm}$ and minutely glandular; lowermost floral bracts unknown, but the upper convex, marginally entire and villous medially. Staminate flowers with pedicels $2-4 \mathrm{~mm}$, villous and glandular; sepals 2 , transversely elliptic, 2-5 x $3-3.5 \mathrm{~mm}$, glabrous to very sparingly villous and glandular, cystospheres present, white, petals wanting; stamens on a raised torus and occasionally appearing submonadelphous, $64-75$; filaments $0.5-0.7 \mathrm{~mm}$, maroon; anthers broadly obovate to oblong, $0.3-0.7 \times 0.30 .4 \mathrm{~mm}$, connective maroon. Pistillate flowers with pedicels $1-4 \mathrm{~mm}$, villous and glandular, sepals 2, broadly transversely elliptic to obovate or suborbicular, 4-6 x $3.5-6 \mathrm{~mm}$, glabrous to sparingly villous and glandular, white, cystospheres present; petals wanting; ovary 2-3 mm , glabrous, cystospheres abundant; styles $3,0.5-1.2 \mathrm{~mm}$; stigmas bicornute, appearing maroon when dry. Capsules with pedicels to 2 mm ; bodies often beaked, $4.5-5.5 \mathrm{~mm}$; locule chambers externally appearing suborbicular to broadly ovate, $3-3.5 \times 3.5-4 \mathrm{~mm}$; wings 3 , unequal, the largest wing asymmetrically ovate, $7-10 \times 5-5.5 \mathrm{~mm}$; the other two wings marginiform, lunate to lunatetriangular.

Etymology. Begonia sukutensts is named for the region where this species was collected, Sukut, Reserva Indígena Talamanca, desembocadura del Río Sukut en el Rio Urén.

Distribution. Begonia sukutensis is known only from the type locality between $350-550 \mathrm{~m}$, but certainly it is expected elsewhere in Costa Rica and possibly Panama in the appropriate environments.

Begonia sukutensis stands apart from almost all other Mesoamerican species in sect. Gireoudia (K1.) A. DC. in its very long peduncles, very short pedicels, and very small sepals and capsules. It is also the only species of Mesoamerican Begoma that has filaments, anthers, stigmas and styles that appear maroon; in all other species they are yellow (Burt-Utley, pers. obs.). This unique maroon pigmentation also has not been observed in flowers of western South American taxa (BurtUtley, pers. obs.). The only other taxa in the section in Costa Rica and Panama with sometimes small sepals and submonadelphous stamens like those of B. sukutensts are B. corredorana C. DC., a suffirutescent species, and the rhizomatous B. quaternata Smith \& Schubert (Burt-Utley 1985). Begonia sukutensis appears most closely related to $B$. corredorana and occurs at similar elevations, but the latter species is found in evergreen forests and cloud forests on Costa Rica's and Panama's Pacific slopes between $20-900 \mathrm{~m}$, while B. sukutensis colonizes Costa Rica's Caribbean slopes. Both taxa have similar villous-tomentose pubescence but differ in plant habit (rhizomatous vs. caulescent), stipule form and size, with those of B. sukutensts broadly ovate to ovate-triangular 18-22 x 14-22+ mm (vs. lanceolate, $18-25 \times 6-8 \mathrm{~mm}$ ), glabrous adaxial leaf surfaces (vs. hirsute), more numerous leaf blade nerves ( 14 to 15 vs .10 tol3), elongate peduncles [to 1.2 m vs. ( $12-$ ) $18-36 \mathrm{~cm}$ ], more numerous stamens [ $64-75 \mathrm{vs} .16-41$ ], and its smaller large capsule wings [ $7-10 \times 5-6 \mathrm{~mm}$ vs. ( $12-$
)14-19(-22) x (7-)9-11 mm]. From B. quaternata, B. sukutensis is immediately distinguished by its tomentose petioles (vs. squamose) and its dichotomously branching inflorescences, in contrast to the typically 3-6-branched inflorescences characteristic of B. quaternata.


Figure 7 Begonia sukutensis Isotype (Hammel, Chacón, \& Herrera 17750, USF)
8. BEGONIA PANAMENSIS Burt-Utley \& Utley, sp. nov. TyPE. PANAMA. Chiriquí. Trail between $N$ fork of Río Palo Alto and Cerro Pato Macho, 6 km NE of Boquete, $1800-2200 \mathrm{~m}$, 7 Feb 1986, M. Grayum 6418 (holotype: MO; isotypes: PMA, USF). Figure 8.

Herbaceous perennials with slender rhizomes; internodes short to occasionally elongate, $0.7-2(-4.2) \mathrm{cm}, 4-9(-14) \mathrm{mm}$ diam, glabrous to very sparingly villous with stout trichomes to 1 mm . Stipules caducous to fugacious, ovate to oblong, $11 \times 7 \mathrm{~mm}$, marginally entire, glabrous, only rarely very sparingly villous, keeled; petioles ( $4.5-$ ) $11-35 \mathrm{~cm}$, glandular and sparingly pilose at maturity with fine sericeous villi $1-3(-3.5) \mathrm{mm}$; leaf blades oblique to transversely elliptic or ovate, (6.5-)9-16.8 x (4-)7.2-11 cm, basally cordate, apically acuminate, marginally eciliate, weakly undulate, glabrous above and sparingly pilose below, especially on major nerves; 10-12palmatinerved. Inflorescences asymmetric, shorter than to exceeding the foliage, ca 8 or fewerflowered; peduncles ( $11-$ ) $16.5-38 \mathrm{~cm}$, sparingly pilose with trichomes $1-3 \mathrm{~mm}$; bracts caducous, broadly obovate, $17-18 \times 20-22 \mathrm{~mm}$, apically retuse, marginally entire, glabrous. Staminate flowers with pedicels $23-46 \mathrm{~mm}$, glabrous to very sparingly pilose; sepals often coriaceous when dry, transversely elliptic, $15-21 \times 23-30 \mathrm{~mm}$, glabrous to sparingly glandular and pilose proximally; petals wanting; stamens very numerous, in excess of 100 ; filaments $0.8-3 \mathrm{~mm}$, appearing free or on a slightly raised torus; anthers narrowly oblong to obovate, (1.3-)1.8-2.5 $\times 0.4-0.7 \mathrm{~mm}$. Pistillate flowers with pedicels $10-15 \mathrm{~mm}$, pilose; bracteoles wanting, sepals transversely elliptic, $10-18 \times 17-$ 27 mm , glabrous to sparingly glandular or very sparingly pilose; petals wanting; ovaries fleshy, bilocular with bipartite placentae, $11-15 \mathrm{~mm}$, glandular and pilose; styles $3,4 \mathrm{~mm}$, fused briefly basally; stigmas bicornute. Capsules with pedicels $19-27 \mathrm{~mm}$; bodies when dry coriaceous before dehiscence, strongly nutant, weakly to strongly beaked, rarely unbeaked, ( $15-$ ) $17-23 \mathrm{~mm}$; wings 3 , unequal, the largest wing oblong, $14-16 \times 15-17 \mathrm{~mm}$; the second and third wings lunate-triangular.

Distribution and habitat. Begonia panamensis occurs in montane rainforests and cloud forests between 1700 and 2300 m . Although all collections are from Panama, it would not be surprising to find $B$. panamensis in adjacent western Costa Rica.

Begonta panamensis is a striking rhizomatous species with few flowers and very large sepals. It has the characteristic fleshy, bilocular ovaries and nutant capsules that dehisce only after their outer covering has eroded like other species in sect. Weilbachia (Burt-Utley \& Utley 1999), a section known only from Central America and México. Only two other species in this section are known to occur in Panama, B. carletonil Standl. and B. vestita C. DC. Begona panamensis is readily distinguished from these taxa by its apetalous staminate and pistillate flowers, large sepals, and very numerous stamens. Begonia panamensis is most similar to B. copeyana, a Costa Rican endemic, with which it shares its apetalous flowers, a similar but less dense indument, and bicornute stigmas. However, it stands apart from this latter taxon in both vegetative and floral characters, including its glabrous to very sparingly villous internodes, more numerous primary blade veins ( $10-12 \mathrm{vs} .7-10$ ), more numerous stamens [100+ vs. $24-33(-52)$ ], broader staminate sepals ( $23-30 \mathrm{~mm}$ vs. $10.5-20$ mm ), larger pistillate sepals ( $10-18 \times 17-27 \mathrm{~mm}$ vs. $7.5-8 \times 10-12 \mathrm{~mm}$ ), and larger capsules [( $15-$ ) $17-23 \mathrm{~mm}$ vs. $13-16 \mathrm{~mm}$ ).

Additional specimens examined. PANAMA. Chiriquí. E slopes of Cerro Pando, $8^{\circ} 55^{\prime} \mathrm{N}$ x $82^{\circ} 44^{\prime}$ W, 15 Oct 1981, Knapp 1666 (USF); 8 km W of Cerro Pando in vicinity of Las Nubes on trail above stream, 11 Feb 1978, Utley 5669 (DUKE); Cerro Pate de Macho, ca 5 mi NE of Boquete, on trail to continental divide leading to Finca Serrano, Pacific slopes, 23 Nov 1979, Croat 48559 (MO, USF); vicinity of Boquete, Cerro Pate de Macho SW slope, $8^{\circ} 46^{\prime} \mathrm{N}, 82^{\circ} 25^{\circ} \mathrm{W}$, 19 June 1987, Croat 66418 (MO, USF); trail to top of Cerro Pate de Macho, $8^{\circ} 40^{\prime} \mathrm{N}, 82^{\circ} 28^{\circ} \mathrm{W}$, Hoover 557 (MO, USF); end of rd past Palo Alto to Bocas, Hammel, D'Arcy, \& Averett 6506 (MO); SE slopes and summit of Cerro Pato Macho, trail from Río Palo Alto, 4 km NE of Boquete, 27 May 1981, Sytsma, Knapp, \&

Andersson 4975 (MO), Distr Bugaba, Santa Clara to Cerro Pando, 28 Feb 1985, wan der Werff \& Herrera 7180 (MO, USF)


Figure 8 Begonia panamensis Holotype (from Grayum 6418, MO)

## 9. BEGONIA GRACILIOIDES Burt-Utley \& Utley, sp. nov. TYPE. GUATEMALA. Sololá. Volcán San Pedro, $2150 \mathrm{~m}, 20$ Sep 1971, A. Molina R. \& A.R. Molina 26652 (holotype: F; isotype: MICH). Figure 9.

Monoecious herbs presumably with underground tubers; leafy stems erect, freely branching, $0.5-1 \mathrm{~m}$ tall; often producing clusters of small bulbils $0.4-1.5 \mathrm{~mm}$ diam at the nodes; internodes $3.5-$ $8.5 \mathrm{~cm}, 3-6.5 \mathrm{~mm}$ diam, but the slender branches to 1 mm diam, glabrous to minutely sparingly glandular. Stipules persistent, asymmetrically broadly ovate, $5.5-8 \times 6-9.5 \mathrm{~mm}$, marginally glandular and ciliate-serrulate, glabrous; petioles ( $0.6-$ )2.1-6.5 cm , hirtellous with trichomes to 1 mm ; lower leaf blades oblique to occasionally straight, asymmetrically ovate to deltoid, 4.4-10.3 x 36 cm , basally cordate, apically acute to acuminate, marginally serrate to doubly serrate or dentate, sparingly ciliate, hirtellous above and below; 6-8-palmatinerved; upper leaf blades asymmetric, much reduced in size. Inflorescences borne in the axils of upper leaves and terminating the stem, symmetric, 3-7-flowered; peduncles $2.2-3.8 \mathrm{~cm}$, sparingly minutely glandular; bracts deciduous, hemiorbicular to obovate, (6-)7-8.5 x $4.5-11 \mathrm{~mm}$, marginally glandular-ciliate-denticulate. Staminate flowers with pedicels 13 mm , glabrous to minutely glandular; sepals 2, ovate to elliptic, $19-21 \times 11-13 \mathrm{~mm}$, apically acute to acuminate, marginally glandular-serrulate to denticulate or crenulate, glabrous; petals 2 , obovate to elliptic, $13 \times 8 \mathrm{~mm}$ distally glandular-crenulate to denticulate with short stalked glandular hairs; stamens numerous; filaments to 2 mm , appearing monadelphous; anthers obovoid to subglobose, inserted at an angle, $0.8-0.9 \mathrm{~mm}$. Pistillate flowers at anthesis unknown: ebracteolate; tepals presumably 5 , elliptic to narrowly ovate, marginally glandular-serrulate with short stalked glandular hairs, externally glabrous to minutely glandular; ovaries trilocular with bipartite placentae, $7-10 \mathrm{~mm}$, immediately post-anthesis, glabrous; styles 3 , to 1 mm , fused basally; stigmas bicornute. Capsules with pedicels to $16-18 \mathrm{~mm}$, glabrous to minutely glandular, bodies $17-$ 18 mm ; locules externally elliptic, $14-15 \times 7-8 \mathrm{~mm}$; wings 3 , unequal, the largest wing asymmetrically triangular, $11-12 \times 16 \mathrm{~mm}$, the second and third wings asymmetrically lunate to lunate-triangular.

Distribution and habitat. Begonia gractlozdes is known only from Guatemala, where it occurs on moist banks and in thickets between 1800 and 3000 m . This species might actually be distributed more widely but, because it presumably will die back to its tubers after flowering, will not be a conspicuous component of the vegetation during part of the year.

Begonta gractlotdes (sect. Knesebeckta) is characterized by its branching, leafy erect stems, bulbils, several-flowered inflorescences, and marginally denticulate to serrulate staminate sepals. Because bulbils have only been observed on tuberous species from México and Central America, their presence in leaf axils of $B$. gracilioides strongly suggests that this species also develops from underground tubers like the Mexican endemic B. gracills H.B.K. (pers. obs.). Three other species known from Central America with bulbils are also tuberous, B. weberling 1 Irmsch. (E1 Salvador and Oaxaca, México), B. biserrata Lindl. (Guatemala and Honduras), and B. 1gnea (K1.) A. DC. (Costa Rica) (pers. obs.). Although the type and paratype of B. gracilioides were identified previously as $B$. gracilis and the species was illustrated in the Flora of Guatemala (Smith \& Schubert 1961), this species differs from $B$. gracilis in several characters including its several-flowered inflorescences. In contrast, those of B. gracilts are typically 2 -flowered, bearing one staminate and one pistillate flower (Burt-Utley \& McVaugh 2001). Moreover, peduncles are longer in B. gracilioides than they are in B. gracilts ( $2.2-3.8$ vs. $0.5-1.5 \mathrm{~cm}$ ), while inflorescence bracts are deciduous in $B$. gractlootdes but persistent in B. gracilis. In B. graciliotdes, staminate sepals are acute to acuminate and more narrow than those of B. gracilis ( $11-13 \mathrm{~mm}$ vs. $15-22 \mathrm{~mm}$ ) and are conspicuously glandular-ciliate and denticulate, unlike those of $B$. gracilts, which are simply denticulate to crenulate. Capsules of $B$. graciltordes are also smaller than those of B. gracilts ( $17-18 \mathrm{~mm} \mathrm{vs} .17-25 \mathrm{~mm}$ ). These species also differ in their distributions with B. gracilioides apparently endemic to Guatemala, while B. gracilis is
very widely distributed in Mexico and has been collected in central Oaxaca, but it is unknown from Chapas

Additional specimens examined. GUATEMALA. Escuintla. Volcán Pacaya, 28 Sep 1972, Molina \& Molina 27652 (F, MICH) Sololá. Volcán Tolımán (slopes above San Lucas Tolimán), 13 Jun 1942, Steyermark 47605 (F).


Figure 9 Begonia gractioties Holotype (MolnaR \& Mohna 26652, F)

## 10. BEGONIA TENUIS Burt-Utley \& Utley, sp. nov. Type. MÉXICO. Chiapas. Cerro del Boquerón, Aug 1913, C.A. Purpus 6937 (holotype: NY). Figure 10.

Herbs presumably developing from underground tubers annually, leafy stems erect to sprawling, branching weakly distally, $17-40+\mathrm{cm}$ tall; often producing clusters of small bulbils to 1 mm diam at the nodes; internodes $2.5-7.5 \mathrm{~cm}, 1-4 \mathrm{~mm}$ diam, hirtellous with short villi $0.4-1 \mathrm{~mm}$. Stipules persistent, ascending to spreading, asymmetrically hemiorbicular to broadly ovate, 2-6 x $3.5-7 \mathrm{~mm}$, marginally ciliate-serrulate to ciliate denticulate, sparingly hirtellous; petioles $1.1-4.7 \mathrm{~cm}$, hirtellous with short villous trichomes $0.3-0.5 \mathrm{~mm}$; lower leaf blades asymmetric, obliquely narrowly ovate, $3.3-11 \times 1.5-4.5 \mathrm{~cm}$, basally very shallowly cordate to appearing almost cuneate, apically attenuate-acuminate, hirtellous throughout above and beneath but trichomes most dense on major nerves below; 7-8-palmatinerved; upper blades reduced in size. Inflorescences borne in axils of reduced upper leaves and terminal, 1-2 or more-flowered; peduncles 1.1-3.0 cm , sparingly hirtellous; bracts obovate to suborbicular, $2-3 \times 3-4 \mathrm{~mm}$, marginally ciliate-denticulate to ciliate serrulate, glabrous to very sparingly hirtellous. Staminate flowers with pedicels 10 mm ; sepals ovate, $12-14 \mathrm{x}$ 8-10 mm, marginally ciliate-denticulate to ciliate-serrulate, apparently glabrous; petals 2 , elliptic, $12.5-15 \times 5.5-7 \mathrm{~mm}$; stamens very numerous, borne on a stout torus, anthers to 1 mm . Pistillate flowers with pedicels to $14-18 \mathrm{~mm}$; bracteoles wanting, tepals 5 , variable in shape, elliptic to ovate or obovate, $7.5-13 \times 5-8 \mathrm{~mm}$, marginally the outer 3 ciliate-denticulate to ciliate-serrulate, glabrous; ovary $8-10 \mathrm{~mm}$, presumably trilocular with bipartite placentae, glabrous; styles $3,1-1.3 \mathrm{~mm}$ fused briefly basally; stigmas bicornute. Capsules when immature with pedicels to 20 mm ; bodies to 1.5 cm ; wings 3 , apparently subequal.

Etymology. The specific epithet, tenuts, refers to the slender stems of this species.
Distribution and habitat. Begonia tenuis is known only from eastern Chiapas in México, between $1000-2000 \mathrm{~m}$, but this species should occur in adjacent parts of Guatemala and possibly El Salvador. Like B. graclloordes, this species would be expected to die back to its tubers after flowering and therefore may not be evident many months of the year.

Begona tenuis (sect. Knesebeckia) is characterized by its slender hirtellous stems, bulbils in its leaf axils, hemiorbicular to broadly ovate stipules and ciliate-denticulate to ciliate-serrulate staminate sepals. Like B. gracillordes, the presence of bulbils strongly suggests that this species also develops from underground tubers, since all species that produce bulbils within México and the region delimited by the Flora Mesoamericana also are tuberous (pers. obs.). In Arthur Houghton's thesis on the Begoniaceae of North America (Houghton 1924), B. tenuts was described as B. gracilis var. chiapensis Houghton, but it was never published. This species is most similar to the tuberous species B. dealbata Liebm. (Oaxaca, México, and Guerrero) in its slender habit, and B. gracills, also a Mexican endemic widely distributed through northern, central, and western México. Begonia tenuis differs from both $B$. dealbata and $B$. gracills in its hemiorbicular to broadly ovate stipules, in contrast to the unusual basally cuneate and distally lobed, foliaceous stipules characteristic $B$. dealbata and the ovate to triangular stipules of $B$. gracills. Ovaries of $B$. tenuts are generally much larger than those of B. dealbata ( $8-10 \mathrm{~mm}$ vs. $3.5-7 \mathrm{~mm}$ ) and smaller than those of B. gracilis ( $8-10 \mathrm{~mm}$ vs. $10-21$ mm ), while $B$. tenuis has subequal capsule wings, unlike the unequal capsule wings of both $B$. gracills and $B$. dealbata (pers. obs.).

Additional specimens examined. MÉXICO. Chiapas. Volcán Tacaná, Aug 1938, Matuda 6039 (LL, MEXU).


Figure 10 Begonia tenwis Holotype (from Purpui 6937, NY)

## Taxonomic Notes

BEGONIA MILITARIS L.B. Sm. \& B.G. Schub., Contr. Gray Herb. 154: 24, fig. 2. 1945. TyPE. GUATEMALA. Alta Verapaz. Chamá, 270 m, 15 May 1920, H. Johnson 178 (holotype: US!; isotype: F !).
Begonia sciadophora L.B. Sm. \& B.G. Schub., Contr. Gray Herb. 161: 28. 1946. TYPE. gUATEMALA. Alta Verapaz. Dense wet limestone forest near Chirriacté on Petén Hwy, ca $900 \mathrm{~m}, 9$ Apr 1941. P. Standley 91967 (holotype: F!).

Begonia mulitaris is unique among Mesoamerican Begonia in having 5-tepaled pistillate flowers with bilocular ovaries. Bracteole form, ovary shape, and the species bipartite placentae were described, and the illustration in Plate II (Smith \& Schubert 1945) is clearly of a nutant capsule; however, only bilocular ovaries and nutant capsules without bracteoles or bracteole scars were observed on the specimens examined. These characters together with its creeping rhizomatous habit, pilose petioles, and peltate leaves easily distinguish B. militaris from all other Mesoamerican Begonia except $B$. calderonit Standl. From B. calderonit, B. militaris is readily distinguished by its staminate flowers with two sepals and two petals (vs. petals wanting) and pistillate flowers with five tepals (vs. two sepals and no petals). Within México and Central America, other species with bilocular ovaries and nutant capsules have pistillate flowers with two sepals and $0-1$ petals, which is characteristic of sect. Weilbachta (Burt-Utley \& Utley 1999). The affiliation of B. milttaris with either a section or other species remains unclear. Begonia sciadophora is indistinguishable from B. militaris in both vegetative and floral characters, including its 5 -tepaled pistillate flowers with bilocular ovaries and is synonymized here with $B$. militarts.

Additional specimens examined. GUATEMALA. Alta Verapaz. Chapultepec Farm, 62 km from Cobán on Sebol road, 22 May 1964, Contreras 4763 (DS, US); near Chirriacté on Petén Hwy, 900 m, 9 Apr 1941, Standley 91953 (F).

BEGONIA LUDICRA A. DC., Ann. Sci Nat. Bot. IV, 11: 133. 1859. Lectotype (designated here): MÉXICO. Veracruz. Cordillera, marais de xalapa, 4000 ft , Jun 1840, Galeotti 189 (G!' isolectotypes: BR!, K!, P!).
Begonia hebmannit A. DC., Prodr. 15: 345. 1864. Lectotype (designated here): MÉXICO. Oaxaca. Tonaguia, Aug 1842, Liebmann s.n. (B!; isolectotypes: C[2]!).

Begonta ludtcra was described by A. DC (1859) without the benefit of capsules and included in sect. Gireoudia, a section with typically trilocular ovaries. In the Flora of Guatemala (Smith \& Schubert 1961), B. ludicra was also characterized as having "3-celled" ovaries and nutant to very sharply reflexed capsules. Examination of available collections of $B$. ludicra establish that the pistillate flowers have bilocular, nutant, or reflexed ovaries and capsules that must have their outer coverings erode before dehiscence. These traits are consistent with species in sect. Wellbachia (BurtUtley \& Utley 1999) and, with the exception of $B$. militaris, have not been observed in other taxa in from México and Central America.

Begonta ludicra has been considered variable in vegetative and floral characters and thought to be distributed from southern México to Guatemala and Panama (Smith \& Schubert 1961). However, its description and inclusion in the Flora of Guatemala were based primarily on a vegetatively similar species, B. purpusil Ziesenh. Specimens of this latter taxon consistently were misidentified as B. Iudicra, a species with similar bilocular ovaries and capsules. Begonta hudicra is readily distinguished from $B$. purpustt in a number of characters, including its habit and staminate and pistillate flowers. Begonia ludicra has rhizomes with short to elongate internodes that root at the nodes and are repent or attached to an upright substrate, where they can form dense masses or mats of
individuals, while B. purpusii has elongate stems that may be upright to inclined. Begonia ludicra is also distinguished from $B$. purpusti by its staminate flowers with an inner perianth of two petals and pistillate flowers with one petal. In contrast, staminate and pistillate flowers of B. purpusin have two sepals and no petals. Begonia ludicra is endemic to México, distributed from the states of Veracruz and adjacent Puebla to the wet Caribbean slopes of the Sierra Madre in central Oaxaca, while $B$. purpusil occurs in eastern Chiapas and Guatemala.

Representative specimens examined. MÉXICO. Veracruz. Mpio. Huatusco, Ventura, 3 km NE de Huatusco, 1300 m, 31 May 1979, Avendaño \& Benavides M. 301 (F); Mpio. Yecuatla, Lomas de Santa Rita, 3 Jul 1971, Ventura 3621 (MEXU, MICH); near Jalapa, Schrede 733-734 (B); Jalapa, Jun 1838, Linden 31 (K, MICH). Puebla. Cascada de Oligui, entre Teziutlán y Tlapacoyan, 1550 m, 2 Jun 1968, García Saucedo 76 (MEXU). Oaxaca. Mpio. Sta. María Chilchotla, NE de Agua de Gancho, Agencia Municipal María Luisa ( 8 km del Puente de Fierro, por la terracería a Sta. María Chilchotla, $18^{\circ} 12^{\prime 2} 21.6^{\prime \prime} \mathrm{N}, 96^{\circ} 49^{\prime} 28.4^{\prime \prime} \mathrm{W}, 1474 \mathrm{~m}, 8$ Jun 2001, Munn-Estrada \& Juárez 1283 (USF); 6 mi S of Puente Nacional on MEX 175 from Tuxtepec to Oaxaca, 2200-2300 ft, 1 Jun 1987, Utley \& Utley 7878 (MEXU, USF); 15.1 mi S of Puente at Valle Nacional or 2 mi N of Vista Hermosa, 4600 ft ., 2 Jun 1987, Utley \& Utley 7882 (USF); 3.1 miN of La Esperanza or 16.1 mi S of bridge at Valle Nacional on Mex 175, $4300 \mathrm{ft}, 28$ May 1992, Uttey \& Utley 8777 (MEXU, USF), Dto. Ixtlán, Puerto San Antonio entre Metates \& La Esperanza, 1250 m, 4 Aug 1985 García M., Lorence, \& Allen 1835 (MEXU); 5 km N de Vista Hermosa, km 175 carr. Oaxaca-Tuxtepec, $1260 \mathrm{~m}, 14 \mathrm{Apr}$ 1982, Torres C. \& Lorence 295 (MEXU).

BEGONIA PUSTULATA Liebm., Vid. Meddel. Dansk Naturh. Foren. Kjöbenhavn 1852: 6. 1853. Lectotype (designated here): MÉXICO. Oaxaca. Lacoba, Distr. Chinantla, Ltebmann 202 (C!; isolectotypes: B!, C[2]!).

Begonta pustulata is endemic to México, occurring in eastern Veracruz and the lower northern slopes of the Sierra Madre in Oaxaca. Its inclusion in the Flora of Guatemala was based on collections of B. mpertalls Lem. that were misidentified as B. pustulata and illustrated there (Smith \& Schubert 1961). This illustration, identified as B. pustulata, was used most recently in a synopsis of sect. Weilbachia (Doorenbos et al. 1998). Begonia imperialis is more widely distributed than B. pustulata, ranging from the Isthmus of Tehuantepec to Guatemala between 100 to 1130 m . Although both species have similar bilocular ovaries, they are readily distinguished from each other vegetatively and when in flower. Begonia pustulata has larger leaf blades [(7.7-)14-23.3 $\times(4.6-) 8-$ 16.7 cm vs. $5-14(-16) \times 3.5-8(-10.6) \mathrm{cm}$ ], generally more nerves [(9-)12-14 vs. (8-)9-10 ( -11 )], and longer peduncles $[(8.5-) 15-39 \mathrm{~cm}$ vs. (4-)6.2-13.5(-17.3)] than B. imperiahts. Floral characters also separate these species: B. pustulata has both staminate and pistillate flowers with two sepals and an inner perianth of petals, while flowers of B. imperialis lack petals. Although petals occasionally may abscise from flowers of $B$. pustulata, all specimens examined and populations visited in Oaxaca had flowers with an inner perianth series (Burt-Utley, pers. obs.).

Begonta faustinot Burt-Utley \& Utley from Chiapas, México also has been confused with $B$. pustulata, with which it shares certain vegetative and floral characters, including a similar villous indument, staminate and pistillate flowers with both sepals and petals, as well as nutant, bilocular ovaries and capsules. Begonia pustulata can be distinguished from B. faustinoi by its consistently pustulate or bullate upper leaf surfaces, unlike the even upper surfaces of $B$. foustmot, as well as its more numerous nerves $[(9-) 11-14 \mathrm{vs} .(8-) 9-10(-11)]$ and longer peduncles $[8.5-) 15-39 \mathrm{vs}$. (4-)6.2-$13.5(-15.5) \mathrm{cm}$ ] (Burt-Utley \& Utley 1999).

Representative specimens examined. MÉXICO. Veracruz. Mpio. Catemaco, Dos Amantes entre Catemaco y Sontecomapan, $400 \mathrm{~m}, 17$ Jun 1972, Beaman \& Alvarez del Castillo 6199 (F,

XAL). Oaxaca. 6 mi above Valle Nacional on Hwy 175 to Oaxaca, 23 Aug 1977, Croat 43924 (MO); $17^{\circ} 30^{\prime} \mathrm{N} \times 86^{\circ} 30^{\prime} \mathrm{W}, 100 \mathrm{~m}, 2$ Jul 1981, Hahn 626 (USF); 5.7 mi S of bridge at Valle Nacional on Mex 175 from Tuxtepec to Oaxaca, 2100 ft, 5 Aug 1987, Utley \& Utley 8042 (MEXU, USF); 5.8 mi S of bridge at Valle Nacional on Mex 175, $2300 \mathrm{ft}, 28$ May 1992, Utley \& Utley 8775 (MEXU, USF); 6 mi above Valle Nacional on Hwy 175 to Oaxaca, $660 \mathrm{~m}, 23$ Aug 1977, Croat 43924 (MO); 6.2 mi S of Valle Nacional on Mex 175, $2400 \mathrm{ft}, 30$ Dec 1985, Utley \& Utley 7525 (USF); 6.2 mi S of Valle Nacional on Mex 175, $2400 \mathrm{ft}, 23$ Dec 1986, Utley \& Utley 7649 (MEXU, USF); 6.8 mi S of bridge at Valle Nacional on Mex 175 from Tuxtepec to Oaxaca, $2600 \mathrm{ft}, 1$ Jun 1987, Utley \& Utley 7873 (MEXU, USF); 12 mi S of bridge at Valle Nacional on Mex 175 from Tuxtepec to Oaxaca, $100-200 \mathrm{~m} \mathrm{~N}$ of km 68 marker, 3200 ft 5 Aug 1987, Utley \& Utley 8038 (MEXU, USF); 4.5 mi N of Vista Hermosa on Mex 175, $3600 \mathrm{ft}, 12$ July 1982, Utley \& Utley 7046 (USF); near Santiago Zacatepec, 1500 m, 24 May 1939, Schultes 493 (MEXU).

## ACKNOWLEDGEMENTS

Field work was made possible by grants from the Standley Smith Horticultural Trust and the American Philosophical Society. We are grateful to Dr. Gerrit Davidse for locating additional Begonia specimens for us, Dr. Carmen Ulloa for providing essential literature, and Dr. Richard Wunderlin and Dr. Bruce Hansen for their continued support of our research. We thank Mr. Alan Franck for the digital images of the type specimens, and we especially thank the curators of the following herbaria for the loan of specimens or use of facilities that made this research possible: B, BM, BR, C, CAS, CR, F, GH, K, LL, MEXU, MICH, MO, NY, P, US, USF, and XAL.

## LITERATURE CITED

Burt-Utley, K. and J.F. Utley. 2011. New species and notes on Begonia (Begoniaceae) from Middle America, I. Novon 21:393-401.
Burt-Utley, K. and J.F. Utley. 1999. Contributions toward a revision of Begonia section Weilbachia (Begoniaceae). Novon 9: 483-489.
Burt-Utley, K. and R. McVaugh. 2001. Begoniaceae. In R. McVaugh and W.R. Anderson (eds.), Flora Novo- Galiciana 3: 653-695.
Burt-Utley, K. 1985. A revision of the Central American species of Begonia section Gireoudta (Begoniaceae). Tulane Stud. Zool. and Bot. 25: 1-131.
Doorenbos, J., M.S.M. Sosef, and J.J.F.E. de Wilde. 1998. The sections of Begonia including descriptions, keys and species lists. (Studies in Begoniaceae VI). Wageningen Agric. Univ. Pap. 98(2): 1-266.
Houghton, A.D. 1924. A Monograph of the Begoniaceae of North America. Ph.D. thes is. Univ. of California, Berkeley.
Smith, L.B. and B.G. Schubert. 1946. Begoniaceae. Flora of Colombia. Caldasia 4, 16: 3-38.
Smith, L.B. and B.G. Schubert. 1961. Begoniaceae. Flora of Guatemala. Fieldiana Bot. 24: 157-185.

# LECTOTYPIFICATION OF CASTILLEJA BREVIFLORA A. GRAY NON BENTH. AND ITS IMPORTANCE TO THE NOMENCLATURE OF CASTILLEJA PUBERULA RYDB. (OROBANCHACEAE) 

J. Mark Egger<br>Herbarium, Burke Museum of Natural History and Culture<br>University of Washington<br>Seattle, Washington 98195-5325<br>m egger@comcast net


#### Abstract

Lectotypification of the illegitimate name Castilleja brevffllora A. Gray 1862 (non Benth. 1846) is proposed in order to maintain Castilleja puberula Rydb. and to resolve the heterotypy of $C$. breviflora A. Gray. Castilleja brevflora A. Gray is then formally placed in synonymy under Castilleja flava S. Wats.

KEY WORDS: Orobanchaceae, Castillejinae, Castilleja, Castllleja brachyantha Rydb., Castilleja breviflora A. Gray, Castilleja puberula Rydb., Castilleja flava S. Wats., lectotypification, nomenclature, heterotype


When A. Gray first published Castilleja breviflora A. Gray (in 1862), he was unaware that G. Bentham (in 1846) applied this name in Castilleja to a species of Andean South America. Rydberg later realized this and in 1900 published the name Castilleja brachyantha Rydb. to replace Gray's name. Still later, in 1905, Rydberg described the morphologically similar Castilleja puberula Rydb., clearly implying that he regarded the two as different species. Eventually, C. brachyantha was reduced to synonymy under Castilleja flava S. Wats. by Harrington (1954), while C. puberula continues to be recognized as a bona fide species (e.g., Nelson \& Harmon 1997; Seagrist \& Taylor 1998; Beidleman et al 2000; Hartman \& Nelson 2001; Weber \& Wittmann 2012). Castilleja flava is a widespread species of moderately xeric habitats at middle elevations throughout much of the Intermountain West and is often associated with sagebrush communities. Castilleja puberula is an uncommon to rare alpine species endemic to four counties in the central Rocky Mountains of Colorado and likely evolved as a high elevation isolate of C. flava.

When Gray established his Castilleja brevfflora, he cited two elements, Pl. Parry, No. 243 (1861, headwaters of Clear Creek and the alpine ridges lying east of Middle Park, Colorado Territory, duplicates at DUKE!, GH!, IA-ISC!, NY!, P!) and an unpublished T. Nuttall name, "Euchroma breviflora, Nutt. in herb. Philad." Based on the known range of the plant in question, Nuttall gathered his specimens in Idaho or Wyoming in 1834. Sheets bearing this name in Nuttall's hand (BM!, PH!) are clearly referable to C. flava, while sheets of Parry 243 all bear plants identical to what is now recognized as $C$. puberula. This case of heterotypy complicates the modern usage of the name $C$. puberula, necessitating the lectotypification proposed below.

Based on the fact that only Parry 243 is located at GH and is annotated by Gray as his Castilleja breviflora, it is likely the meager description in the protologue was based primarily on the Parry collection (Fig. 1). While most of the description could apply to either C. flava or C. puberula, Gray does mention that the plants are "spithamæa" or only one "hand-span" in height, the typical height of most flowering C. puberula plants (Fig. 2) but shorter than most C. flawa plants of similar development (Fig. 3). However, we know that Gray studied at least the BM specimen of Nuttall s.n., because it bears an annotation in his hand, "Castilleja. Euchroma brevflora, Nutt., ined." (Fig. 4). That sheet contains one large, typical stem of C. flava but also several, much shorter, poorly
developed or trimmed stems that may have influenced Gray's description as well. Also, according to Pennell (1936) it is likely Gray saw the PH specimen of Nuttall s.n., though it lacks his annotation (Fig. 5).

Until now Gray's Castilleja brevflora has not been lectotypified. Apparently, Harrington (1954) was the first to assign C. brachyantha to synonymy under C. flava, even though that species only partially corresponds to Gray's description of C. breviflora. Most authors working with the Rocky Mountain flora later adopted Harrington's synonymy. The isolectotype designated below was also annotated as C. flava by Castillefa authority F.W. Pennell in 1920.

It should be noted that Rydberg's application of Castllleja brachyantha is somewhat different from that intended by Gray when he proposed his $C$. breviflora. Aside from linking his new name $C$. brachyantha with Gray's illegitimate C. brevflora, Rydberg (1900) cited only a single collection ( $P$. Koch 10, Hoodoo Peak, Yellowstone National Park, Wyoming). This collection does not appear to be present at RM at this time, and its true identity has yet to be determined. However, I know of no verified specimens of C. puberula from either Montana or Wyoming, and the region in which Koch 10 was collected is well within the known range of C. flava (Holmgren 1984). In Rydberg's works published prior to the description of C. puberula, C. brachyantha was distinguished from C. flava by minor variations in the lower corolla lip. Following the publication of C. puberula, Rydberg (1906, 1917) distinguished C. brachyantha from both C. puberula and C. flava based on stature and differences in the structure of the beak and lower lip of the corolla, but his application of the name $C$. brachyantha appears to most closely match plants now treated as C. flava.

Typification of Gray's Castillja brevflora with Nuttall's collection will assure that $C$. puberula, a name in current use, will remain available for this rare Rocky Mountain plant, as $C$. puberula was described after both Gray's name and Rydberg's replacement name. This is not a concern with C. flava, which was described in 1871, well before Rydberg's C. brachyantha.

Castilleja flava S. Wats. in King, Rep. Geol. Explor. 40th Parallel [Botany] 5: 230. 1871. Type: Utah. [Rich Co.:] Upper Bear River Valley, 7000 ft , Jul 1869, S. Watson 813 (holotype: GH!, isotypes : NY!, US!, YU!).

Castilleja breviflora A. Gray, Amer. J. Sci. 34: 338. 1862. Castilleja brachyantha Rydb., Mem. N.Y. Bot. Gard. 1: 360.1900 (replacement name, not Castilleja breviflora Benth. in DC., Prodr. 10: 534. 1846). Lectotype (designated here): USA. [Idaho or Wyoming]. Rocky Mts., 1834, T. Nuttall s.n. (BM!, isolectotype: PH!).

Castilleja puberula Rydb., Bull. Torrey Bot. Club 31: 644. 1905. Type: Colorado. "Colorado Territory," 1872, C.C. Parry s.n. (holotype: NY!, isotypes: GH!, P!, PH!),

## ACKNOWLEDGEMENTS

I thank Kanchi Gandhi, John McNeill, James L. Reveal, and John H. Wiersema for consultation and advice concerning the disposition of these nomenclatural matters. I also thank Reveal in particular for assistance in earlier drafts of this paper, for his extensive comments in review of the present paper, and for his always timely and gracious assistance on matters botanical. Guy Nesom also provided very useful comments on the manuscript. I also thank the personnel of the herbaria cited in this paper for assistance with loans and BM, GH, and PH for permission to use images from their type collections.


Figure 1. Mixed sheet at GH containing several collection of Castilleja puberula, including both an isotype of C. puberula Rydb. and a syntype of C. breviflora A. Gray. Note that both my annotation from 1996 and some of those by others are not fully accurate and that only the stems in the lower left obtained by Parry in 1861 actually represent Parry 243.


Figure 2 Castillefa puberula Rydb, Mt Goliath Natural Area, Mt Evans, Clear Creek Co, CO, 11 July 1989, M. Egger 272, WTU


Figure 3. Castilleja flava var. flava, Angel Lake Road, East Humboldt Range, Elko Co., NV, 27 Jun 1995, M. Egger 688, WTU.


Figure 4. Proposed hololectotype of Castilleja breviflora A. Gray, Nuttall s.n., BM. The collection is of the entity now known as C. flava S. Watson. Note Gray's faint annotation in pencil near the bottom edge of the sheet.


Figure 5. Isolectotype of Castilleja breviflora A. Gray, Nuttall s.n., PH. The collection is of the entity now known as C. flava S. Watson, as annotated in Pennell in 1921.

## LITERATURE CITED

Beidleman, L.H., R.G. Beidleman, and B.E. Willard. 2000. Plants of Rocky Mountain National Park. Falcon Publishing, Helena, Montana.
Harrington, H.D. 1954. Manual of the Plants of Colorado. Sage Books, Denver, Colorado. Hartman, R.L. and B.E. Nelson. 2001. A Checklist of the Vascular Plants of Colorado. Rocky Mountain Herbarium, Univ. of Wyoming, Laramie.
Holmgren, N.H. 1984. Scrophulariaceae. Pp. 344-506 in A. Cronquist, A.H. Holmgren, N.H. Holmgren, and J.L. Reveal (eds.). Intermountain Flora, Vol. 4. New York Botanical Garden Press, New York.
Nelson, J.K. and W.E. Harmon. 1997. The subalpine and vascular flora of the Neota Wilderness Area in the northern Never Summer Range of north-central Colorado. Phytologia 83: 286301.

Pennell, F.P. 1936. Travels and scientific collections of Thomas Nuttall. Bartonia 18: 1-51. Rydberg, P.A. 1900. Catalogue of the flora of Montana and the Yellowstone National Park. Mem. New York Bot. Gard. 1: 1-492.
Rydberg, P.A. 1906. Flora of Colorado. Bull. Colorado State Univ. Exp. Sta. 100: 1-447.
Rydberg. P.A. 1917. Flora of the Rocky Mountains and adjacent plains. Published by the author, New York.
Seagrist, R.V. and J.K.Taylor. 1998. Alpine vascular flora of Hasley Basin, Elk Mountains, Colorado, USA. Madroño 45: 310-318.
Weber, W.A. and R.C. Wittmann. 2012. Colorado Flora, Eastern Slope: A Field Guide to the Vascular Plants (ed. 4). University Press of Colorado, Boulder.

# IDENTIFICATION, DISTRIBUTION, AND HABITAT <br> OF NEEDLE-LEAVED HYPERICUM (HYPERICACEAE) <br> IN THE SOUTHEASTERN UNITED STATES 

Bruce A. Sorrie<br>North Carolma Natural Heritage Program and<br>University of North Carolina Herbarium<br>North Carolina Botanical Garden<br>Chapel Hill, North Carolina 27599-3280<br>bruce sorrie@ncdenr gov


#### Abstract

Shrub species of Hypericum with needle-like leaves continue to present identification challenges, despite stable taxonomy since the 1960s. Here I provide an improved key, identification notes, habitats, and range maps for nine species of the North American coastal plain.


KEY WORDS: Hypericum, Hypericaceae, identification, distribution, habitat.

The "needle-leaved" Hypericum shrub species have been problematic for two centuries. Many of the species treated in this paper were not recognized or had been synonymized under $H$. fasciculatum Lam. or H. galioides Lam. until W.P. Adams' groundbreaking publication (Adams 1962). Prior to then, there was abundant misinformation regarding species limits, morphology, habitat, and distribution. Adams borrowed specimens from 36 herbaria, so there are a large number of correctly identified specimens that serve as a reference base. Nonetheless, botanists continue to have difficulty with the group, in part due to the large percent of incorrectly determined specimens in herbaria. Adams' summary of southeastern USA Hypericum (1973) and Robson's treatment of section Myriandra (1996) are derivative from the 1962 work and incorporate updated information. Godfrey and Wooten (1981) and Godfrey (1988) made significant improvements to species descriptions and habitat statements; Godfrey (1988) illustrated eight of the nine species. The most recent taxonomic treatment is that of Crockett (2000), which recognizes the same species as Adams (1962).

## METHODS

The current study was conducted over a period of twenty five years while gathering specimen information on endemic species of the North American coastal plain. Specimens annotated by W.P. Adams served as a baseline for my research, augmented by several iterations of newly constructed keys and my own annotations. I examined specimens at DUKE, FLAS, FSU, GA, GH, MISSA, NCSC, NCU, TEX-LL, USCH, USF, and VDB. Leaf measurements were made of the longest leaves on individual plants; normally these occur at branch nodes. Only mature plants were used in this study; sprouts and seedlings produce elliptical, blunt-tipped leaves strikingly divergent from adult plants.

## RESULTS AND DISCUSSION

## Leaf morphology

The linear leaves of this group of species are needle-like; that is, they are flattened in crosssection similar to a conifer needle, with the adaxial surface plane. The leaf margins are parallel until the abruptly pointed tip. These species have margins that are termed "revolute" by authors; however, they are revolute to an extreme degree, unlike the normal meaning of the term as "rolled under" or "curved towards the midrib." In this group, margins are abruptly bent under and form an angle with the adaxial surface such that the margins nearly or actually touch the midrib (see illustrations in

Godfrey 1988). Normally, only the midrib and the margins (each with several round punctations) are visible on the abaxial side, with none of the true abaxial leaf surface visible. Moreover, the margins are fused to the abaxial surface, making it virtually impossible to "unroll" the margins. In $H$. fasciculatum and H. tenuifolitum Pursh (and to a lesser extent in other species) the midrib is raised such that the narrow space between the leaf margins and the midrib forms two elongate grooves. However, these grooves are often very shallow-a situation which has caused some confusion when botanists try to understand what authors mean by "groove" when there appears to be none. In other species, such as H. nitidum Lam., H. brachyphylhum (Spach) Steudel, and H. exile P. Adams, the midrib is slightly raised or not at all, such that the two-grooved aspect is lost; there appears to be a single broad groove or trough with the midrib at the bottom. Note: on any given specimen there may be a few leaves that show a narrow strip of abaxial surface on either side of the midrib; it is not known whether this is caused by pressing/drying or whether it occurs naturally in life. When attempting to identify specimens of needle-leaved Hypericum, it is imperative to examine a number of leaves before deciding on morphological characters.

One apparently unrelated species, Hypericum galioides, is included in this paper because its normally flat (or slightly revolute) leaves often become strongly revolute in pressing, such that they take on the appearance of needle-leaved species. Slender-leaved populations of the widespread H . galioides have been the cause of many misidentifications and misattributions of range within the needle-leaved complex (e.g., Brown \& Gandhi 1989). However, in every slender-leaved $H$. galtordes specimen examined, many leaves clearly showed the abaxial surface. In addition, leaves of $H$. galioides are oblanceolate or oblinear, contrary to the parallel sides of true members of the needleleaved complex. Finally, the adaxial surface of the leaves of $H$. galotdes is convex, whereas it is plane in H. brachyphyllum, H. fasctculatum, and other potentially confounding species.

## Plant height

Needle-leaved hypericums conveniently fall into two groups: short species normally less than 0.5 meters tall (H. lloydil (Svenson) P. Adams, H. tenuffolum) and tall species normally 1-2+ meters tall (H. chapmanit P. Adams, H. fasciculatum, H. galootdes, H. lissophloeus P. Adams, H. nittdum). Two species are intermediate in height: $H$. brachyphyllum ranges from 0.5 to 1.0 m tall, with occasional individuals to 1.5 m (fide Adams 1962 and Godfrey \& Wooten 1981); H. exile ranges from about 0.4 to 1 m tall, or a bit more.

## Key to the species

In the key I offer more than one character in each couplet, in part because the variability of each species is such that a single character may not distinguish one species from another and in part to facilitate identification whether vegetative, fruiting, or flowering. In the key "nodes" refers to flowers in axillary nodes as well as the terminal cyme.

1. Longest leaves $5-16 \mathrm{~mm}$.
2. Adaxial leaf surface convex, merging gradually with revolute margin; leaf shape oblanceolate or linear-oblanceolate Hypericum galioides 2. Adaxial leaf surface plane, abruptly angled to revolute portion; leaf shape linear.
3. Capsules $6-9 \mathrm{~mm}$ long; longest leaves $5-10(-11) \mathrm{mm}$; corollas $13-15 \mathrm{~mm}$ diameter; plants of spodosol flatwoods and interdunes $\qquad$ Hypericum tenuifolium
4. Capsules 3-4.5 mm long; longest leaves $7-16 \mathrm{~mm}$; corollas $13-17 \mathrm{~mm}$ diameter; plants of alfisols and ultisols of wet pine savannas, flatwoods, seepage bogs Hypericum brachyphyllum
5. Longest leaves $13-30 \mathrm{~mm}$.
6. Plant a shrublet or low shrub $<4 \mathrm{dm}$ tall, more or less decumbent, forming dense patches; inflorescence elongate (flowers at up to 5 nodes); corollas $10-12 \mathrm{~mm}$ diameter; dry to mesic soils of lower piedmont and inner coastal plain of se VA-NC-SC-GA-c AL; disjunct to rock outcrops of s GA Hypericum Iloydii
7. Plant an erect shrub $0.5-4 \mathrm{~m}$ tall, with single main stem branched above; inflorescence elongate (3-7 nodes) or short ( $1-3$ nodes in H. fasciculatum and H. chapmanit); corollas $13-26 \mathrm{~mm}$ diameter, wet soils of coastal plain.
8. Abaxial surface of most leaves easily seen on both sides of midrib, veins usually obvious on undersurface, leaves oblanceolate to oblinear, ( $1.0-$ )1.5-5(-7) mm wide; inflorescence elongate (3-7 nodes) Hypericum galioides
9. Abaxial surface usually not seen except for midrib (leaf margins nearly touch midrib along its whole length), if undersurface visible then no veins visible, leaves linear, needle-like, parallelsided, $0.5-1.5 \mathrm{~mm}$ wide; inflorescence elongate or short.
10. Plant short, $<1 \mathrm{~m}$ tall; stem $<1 \mathrm{~cm}$ wide at base; plant unbranched or few-branched, wandlike with narrow crown; restricted to FL panhandle

Hypericum exile 6. Plant tall, normally $>0.8 \mathrm{~m}$; stem 1 -several cm wide at base; crown broader with many ascending to spreading branches.
7. Young branches, leaves, and sepals strongly glaucous; bark of upper stem and branches silvery gray and smooth; mature plant $2-4 \mathrm{~m}$ tall with ascending branches imparting tree-like or vase-like aspect; restricted to shores of sinkhole ponds in Bay and Washington cos., FL

Hypericum lissophloeus
7. Young branches, leaves, and sepals not glaucous; bark of upper stem and branches not silvery gray and smooth (except some H. chapmanu); mature plants variously shaped.
8. Inflorescence elongate (3-7 nodes); stem bark tight, thin, not exfoliating or exfoliating in narrow strips, not revealing buff or pale cinnamon color; if leaf undersurface is exposed it is distinctly paler than upper surface, usually associated with flowing water (blackwater streams and impoundments) Hypericum nitidum 8. Inflorescence short ( $1-3$ nodes). Stem bark corky-thickened to spongy, exfoliating in broad strips or sheets revealing buff or pale cinnamon color; if leaf undersurface is exposed it is about the same color as upper surface; usually associated with static water (Carolina bays, impoundments, beaver ponds, borrow pits, flatwoods depressions, cypress-gum ponds).
9. Mature plant 2-3(-4) m tall; branches ascending and imparting a tree-like or vase-like aspect (younger plants may be bushy); youngest internodes terete; restricted to flatwoods depressions and cypress-gum ponds of FL panhandle $\qquad$ Hypericum chapmanii 9. Mature plant $0.8-1.5 \mathrm{~m}$ tall; branches spreading and imparting a bushy or gumdrop aspect; youngest internodes with distinct winged ridge on either side; Carolina bays, impoundments, beaver ponds, borrow pits, widespread

Hypericum fasciculatum

## SPECIES NOTES

1. Hypericum brachyphyllum (Spach) Steud. is intermediate in stature, but its leaves average shorter than all species except H. tenuffolum. North Carolina plants are shorter in height than elsewhere, normally less than 5 dm . Flowers are produced at $3-5$ nodes. Unusually tall individuals
may be told from $H$. fasciculatum and $H$. nitidum by characters in the key, plus its later flowering period (July-August vs. late May-early July).

Recently Hypericum brachyphyllum has been reported from western Louisiana (Robson 1996: Vernon Par.: Anacoco, Demaree 50849 (BM). There are specimens at NCU, USF, TEX-LL, and VDB that appear to be this species, collected from more than a dozen sites in eastern Texas and western Louisiana. However, all of these specimens prove to be $H$. galioides, including a duplicate of Demaree 50849 at NCU. These specimens have unusually slender leaves, but the abaxial side of some to many leaves show exposed leaf surface rather than merely a groove on either side of the midrib. See H. galoodes text for additional identification criteria. H. brachyphyllum inhabits wet pine flatwoods and pitcher plant seepage bogs. Range map 1.

Adams (1962) thought that Hypericum limosum Griseb. of western Cuba might be synonymous with $H$. brachyphyllum, but opted to wait for better specimens; Robson (1996) treated $H$. limosum as a good species. I have not seen enough specimens to make an informed decision.
2. Hypericum chapmanii P . Adams and $H$. lissophloeus are by far the tallest of the group, reaching 3-4 meters. Both usually look like small slender scruffy trees, although some $H$. chapmanir can be as short as $H$. fasciculatum and have a bushy-branched aspect. Hypericum chapmanii and $H$. fasciculatum have flowers in a terminal cyme plus $1-2(-3)$ axillary nodes, unlike the rest of the group, which have flowers in 3-7 nodes. From H. fasciculatum, H. chapmanit can be distinguished by the greater development of thick corky bark, which has large, vertical, pale lactifers that stand out in contrast to the bark color. From H. Itssophloeus, H. chapmanit can be distinguished by green, nonglaucous leaves (but beware that some H. ltssophloeus leaves are merely glaucescent), smaller flowers ( $15-16 \mathrm{~mm}$ diameter vs. $20-22 \mathrm{~mm}$ ), and lack of metallic silver-gray color of upper stems and branches (occasional plants of $H$. chapmanil show some of this color).

It inhabits cypress-gum ponds, small lakes, natural depressions, and borrow pits in eleven counties in the Florida panhandle. Range map 2.
3. Hypericum exile P. Adams has an odd looking gestalt: a wand-like aspect with a few short branches, or unbranched. The sepals and capsules are long ( $6-7 \mathrm{~mm}$ and about 7 mm , respectively, according to Godfrey and Wooten 1981) in contrast with the much shorter sepals and capsules of $H$. fasciculatum and H. nitdum. The leaf midrib is pale green or pale greenish tan, unlike the darker color in H. fasciculatum and H. nttidum. This pale color hardly contrasts with the color of the abaxial surface.

Hypericum extle is restricted to five counties in the Florida panhandle, where it inhabits periodically wet flatwoods and savannas. Range map 3.

Robson (1996) treated Hypericum exile as $H$. nttdum subsp. extle (P. Adams) N. Robson. He also attributes this taxon to western Cuba, citing several specimens. He states that it is more variable in Cuba than in Florida, but gives no data to support his decision to consider Cuban material identical with Florida material. Adams (1962) considered all plants of the H. fasciculatum complex occurring in Cuba to be "closest to H. nttidum" and places them in H. nittdum without additional comment. Adams (1973) repeated this course of action. I have not examined Cuban specimens.
4. Hypericum fasciculatum Lam., H. nitidum, and H. galioides have the same gestalt: a single main trunk with many branches forming a roughly rounded crown, long leaves, and wetland habitats. The trunk and oldest branches of $H$. fasciculatum have thickened bark with a spongy or corky texture; the outer layers peel off in thin sheets to reveal a pale cinnamon or pinkish-tan color, in marked contrast
to the bark of H. nitidum and H. galioides, which is thin and dark and which peels off in small narrow strips or not at all. Although all species of this group of Hypericum have fascicled leaves, in H . fasciculatum they are generally more numerous and densely packed than in other species; this comparative character can be used with caution in separating vegetative $H$. fasciculatum from $H$. nitidum. Another gestalt character is the more or less cut-off leaves of $H$. fasciculatum, as if someone clipped the fascicles with scissors. The clipped fascicles often give a "neat" appearance to the branches, and expose a good bit of the twig between nodes. Some specimens show this character well; others do not, so caution is advised. Populations in the Sandhills of the Carolinas have shorter leaves on average than elsewhere; otherwise I find no differences among populations rangewide. A crucial character of H . fasciculatum is the short inflorescence with flowers at only $1-3$ nodes, in marked contrast to all other needle-leaved species except $H$. chapmani. This inflorescence character becomes critical when other characters of a plant are equivocal.

Pre-Adams determinations of specimens of this and other members of the needle-leaved group were often "Hypericum fasciculatum," without recognizing the diversity actually represented. Thus situation contributed to significant errors in range statements and morphology.

Hypericum fasciculatum inhabits static wetlands, such as Carolina bays, cypress-gum ponds, natural lakes, impoundments, depressions in flatwoods, borrow pits, and roadside ditches; this is in contrast with $H$. nittdum which see. Occasional populations occur in wet streamheads, cypress stringers, and apparently along blackwater streams (Godfrey \& Wooten 1981). Records from western Louisiana and eastern Texas are all misidentifications involving H. galioides or H. brachyphyllum. Range map 4.
5. Hypericum galioides Lam., although not a true member of the needle-leaved group, often produces narrow-leaved forms; in fact, populations west of the Mississippi River almost always produce slender leaves. Leaves of these plants become strongly revolute in drying and many specimens were originally determined as $H$. fasciculatum or H. nitidum. However, H. galloodes can be told by these features: leaves oblanceolate or oblinear (vs. parallel sides), most or all leaves (vs. few or none) showing exposed abaxial surface, abaxial surface usually with obvious venation (vs. none), and elongate inflorescence with flowers at 3-7 nodes (vs. 1-3 in H. fasciculatum). Slenderleaved plants of $H$. galioides are vexingly similar to $H$. brachyphylhum, which has similar-sized leaves, corollas, and fruits. From H. brachyphyllum, H. galioides differs in its linear-oblanceolate leaf shape (slightly broadened distally, vs. linear and with completely parallel sides), in its convex adaxial leaf surface (vs. plane), and in in the exposure of abaxial leaf surface in at least several leaves (vs. few or none). Due to its variable size, wide distribution, and broad range of habitats, familiarity with H. galioides is fundamental to understanding the true needle-leaved species.

Habitats include ponded depressions, cypress-gum ponds, beaver ponds, impoundments, floodplain swamps, wet savannas, flatwoods, and ditches. Range map 5.
6. Hypericum lissophloeus P. Adams is not likely to be confused with any other species, due to its very tall stature (2-4 meters), narrow crown, and tree-like aspect. Hypericum chapmant occasionally produces similar-looking plants, but $H$. lissophloeus differs in its pronounced metallic silver-gray color to upper trunk and limbs, glaucous or glaucescent leaves, and large corollas (at $20-22 \mathrm{~mm}$ the largest in the group).

Hypericum ltssophloens inhabits sinkhole ponds in deep sand deposits of Bay and Washington Counties, Florida. Range map 6.
7. Hypericum Iloydii (Svenson) W.P. Adams and H. tenuifolum are the only species in the needleleaved group that normally inhabit dry soils. Moreover, they are the smallest in stature, never exceeding 0.5 m tall. Hypericum lloydit is a compact, bushy-branched shrublet. Among the short species of the group (H. brachyphyllum, H. lloydii, H. tenuifoltum) H. lloydii has the smallest corollas ( $10-12 \mathrm{~mm}$ diameter) and longest leaves ( $13-25 \mathrm{~mm}$ ).

Hypericum lloydiu inhabits dry to mesic roadsides, powerlines, semi-shaded rocky or sandy slopes, and openings in oak-hickory-pine woodlands. Its distribution is unique within the needleleaved group in that it occupies a narrow band of the lower piedmont and inner coastal plain (Sandhills region). Disjunct populations occur on outcrops of Altamaha Grit sandstone in Turner and Coffee counties in southern Georgia. While numerous in the Carolinas, H. lloydil is apparently rare elesewhere. Range map 7.
8. Hypericum nitidum Lam. resembles H. fasciculatum, with which it has been much confounded, but differs in a number of features. The leaf fascicles never look clipped like those of H . fasciculatum and are more widely distributed and expose less of the twig between nodes, thus giving H . nitidum's branches an unkempt appearance. If on a few leaves the abaxial surface may be seen, the surface is much paler than the inrolled margins, in contrast to $H$. fasciculatum. Two excellent characters are the number of flowering nodes ( $3-7$ for $H$. nittdum, 1-3 for H. fasciculatum) and dark, thin (not corky) bark that does not flake off in large sheets or strips to reveal a pale cinnamon color as in $H$. fasciculatum.

Hypericum nitidum normally inhabits the margins of blackwater rivers, streams, and flatwoods drainageways, in contrast with the usually static waters inhabited by $H$. fasciculatum. On the East Gulf Coastal Plain, H. nitidum is often a dominant where blackwater streams meet estuaries (i.e., fresh-tidal zones), in the company of Sarracenia leucophylla, Eriocaulon decangulare, Macranthera flammea, and other seepage bog plants. Locally, H. nittdum inhabits borrow pits and roadside ditches.

Reports of Hypericum nitidum from Brunswick County, North Carolina (Adams 1962; Godfrey \& Wooten 1981) are not supported by vouchers that I have seen and likely pertain to specimens of H. brachyphyllum. All "nittdum" specimens examined from Louisiana, Mississippi, and from west of Mobile Bay in Alabama prove to be misidentified; thus, H. nitidum does not range west of the Alabama-Tensaw River estuary. I have seen one specimen from central Florida: "Salt Springs, Ocala NF", 3 Jun 1929, Ashe s.n. (NCU), and S. Crockett (pers. comm.) has seen a specimen from adjacent Lake County. Range map 8.

Hypericum nitidum was attributed to Cuba and Belize by Robson (1996), as H. nittchum subsp. cubense (Turcz.) N. Robson. One of the specimens he cited is Howard 5201 (many herbaria). Two duplicates are at NCU. The general aspect of the branches is like nitidum - fascicles not dense, leaves without the "clipped" look of $H$. fasciculatum, unkempt appearance, longest leaves up to 16 mm-but other aspects contradict identity with $H$. nttudum (and with $H$. exile): (1) The abaxial leaf surface is barely or not paler than inrolled margins, contra $H$. nitidum and H. extle. (2) The inflorescence consists of $1-3$ nodes, contra H. nitidum and H. exile (both with 3-7 nodes). (3) Plants are extremely short for $H$. nitidum: Howard's labels state "low woody herb seldom to $11 / 2$ feet." This is short even for H. exile. (4) The habitat is dry: Howard's labels state "dry open grassy meadow," in marked contrast with $H$. nitidum and $H$. exile. Based on this admittedly small sample, I am of the opinion that taxon cubense does not belong with H. nitichum.
9. Hypericum tenuifolium Pursh ( $=H$. reductum P. Adams) has the shortest leaves of any of the needle-leaved group. Godfrey and Wooten (1981) stated that leaves do not exceed 5 mm , but plants
in the Carohnas routnely have leaves 4-10 mm long A key character is the long capsule, 6-9 mm, much longer than other short statured species

In North and South Carolina Hypericum tenuifolium inhabits moist to dry sandy flatwoods, sandrims of Carolina bays, and ecotones of depression ponds, southward it also inhabits maritime interdune swales, pine-scrub cak sandhills on inland or "fossil" dunes, and pond ecotones

On the Gulf Coast of Florida there is a gap in distribution between Pasco and Franklin Counties, with the exception of Dixie County Apparently this gap reflects a lack of dune and sand ridge habitats Range map 9

## LITERATURE CITED

Adams, [W ]P 1962 Studies in the Guttiferae I A synopsis of Hypericum section Myntandra Contr Gray Herb 189 1-51.
Adams, [W.]P. 1973 Clusiaceae of the southeastern United States I Elisha Mitchell Sc1 Soc 89 62-71
Brown, L E and K N Gandhı 1989 Notes on the flora of Texas Phytologia 67 394-399
Crockett, S L 2000 Taxonomy and medicinal chamistry of the Hypertcum fasctoulatum alliance (Clusiaceae Hypericum section Myrandra) Unpublished Masters thes is, Univ of Georgia, Athens
Godfrey, R K 1988 Trees, Shrubs, and Woody Vines of Northern Florida and Adjacent Georgia and Alabama Unıv Georgıa Press Athens
Godfrey, R K and J W Wooten 1981 Aquatic and Wetland Plants of Southeastern United States Unv Georgia Press, Athens
Robson, N K B 1996 Studies in the genus Hypertoum L (Guttiferae) 6 Sections 20 Myrandra to 28 Elodes Bull Nat Hist Mus London (Bot) 26 75-217


Figure 1 Distribution of Hypertesm brachyphyllam


Figure 2 Distribution of Hypericum chapmanu


Figure 3 Distribution of Hypencum exie


Figure 4 Distribution of Hypertcum fasciculatum


Figure 5 Distribution of Hypericum gahordes


Figure 6 Distribution of Hypericum lissophloeus


Figure 7 Distribution of Hypericum lloydn


Figure 8 Distribution of Hypericum nitidum


Figure 9 Distribution of Hypericum tenuifolium

## APPENDIX 1

Selected Specimen records

1. Hypericum brachyphyllum. Alabama. Baldwin Co.: sand dunes, Ft. Morgan peninsula, 28 Jul 1954, Demaree 59903 (NCU); Conecuh Co.: hillside seepage bog $3-4 \mathrm{mi}$ W of Castleberry, 11 Sep 1989, Orzell \& Bridges 11731 (NCU, TEX); Geneva Co.: pond cypress depression by County Road 4, 12 Sep 1995, Sorrie 8589 (AUA, NCU). Florida. Collier Co.: grassy prairie surrounded by pond cypress swamp, 20 Sep 1965, Ward 5233 (NCU); Citrus Co.: hardwood swamp, Chassahowitzka, 7 Oct 1972, Genella \& Fleming 1601 (NCU); Duval Co.: near Jacksonville, 3 Jul 1891, Sudworth 888 (NCU); Wakulla Co.: wetland limestone savanna E of St. Marks Refuge, 14 Sep 1989, Orzell \& Bridges 12099 (TEX). Georgia. Calhoun Co.: edge of low pine woods, 26 May 1961, Adams 793 (USF); Pierce Co.: borrow pit 0.2 miN of Alapaha River, 9 Jun 1967, Bozeman 9404 (NCU); Taylor Co.: Little Whitewater Creek by Georgia 137, 12 Aug 2002, Kral 93044 (TEX). Louisiana. St. Tammany Par.: roadside ditch S of Talisheek, 20 Oct 1990, Brown 15023 (TEX); Tangipahoa Par.: near Hammond, 15 Jun 1929, Ashe s.n. (TEX). Mississippi. Hancock Co.: acid savanna 1 mi N of Necaise, 6 Jul 1967, Jones 14122 (USF); Jackson Co.: pine meadows about halfway between Pascagoula and Fontainebleu, 22 Aug 1962, Harper 4532 (NCU); Wayne Co.: 5 mi N of State Line, low wet grassy flat in open pineland, 18 Jul 1956, Ray, Jr. 7046 (USF). North Carolina. Brunswick Co.: Camp Branch Savanna, 23 Sep 1994, LeBlond 4115 (NCU); Columbus Co.: Schulkens Savanna on S.R. 1928, 6 Aug 1994, LeBlond 3999 (NCU); Onslow Co.: Haws Run Mitigation Site, 14 Jun 2003, LeBlond 5771 (NCU); Pender Co.: Shaken Creek Savanna, 9 Oet 2002, LeBlond $5736 a$ (NCU).
2. Hypericum chapmanii. Florida. Franklin Co.: shallow ponds near Apalachicola, 1893, Chapman $5735 a$ (GH, NCU); Holmes Co.: pond margin near Bonifay, 23 May 1930, Blanton 6560 (GH); Liberty Co.: Taxodium ascendens stringer in wet savanna, 3 mi sw of Kern, Apalachicola National Forest, 1989 , Orzell \& Bridges 12061 (GH, NCU); Walton Co.: Grayton Beach, boggy area by stream running into Deer Lake, 31 Jul 1983, Godfrey 80824 (FSU).
3. Hypericum exile. Florida. Gulf Co.: 2.5 mi SE of Port St. Joe, pine flatwoods, 18 Jun 1958, Adams 456 (DUKE, FSU, GH); Liberty Co.: sandy-peaty shallow ditch by forest road 123C, Apalachicola National Forest, 18 Aug 1989, Godfrey (GH). Cuba. Prov. Pinar del Rio, Britton \& Crowell 9618 ( $\mathrm{F}, \mathrm{GH}, \mathrm{K}, \mathrm{MO}, \mathrm{NY}$ ).
4. Hypericum fasciculatum. Alabama. Covington Co.: Conecuh National Forest, Forest Service road 96, seepage bog, 12 Jul 1995, LeBlond 4319 (NCU); Geneva Co.: seepage bog in longleaf pine sandhills W of Geneva, 25 Jul 1968, Kral 31994 (NCU); Mobile Co.: pine barren flats, hwy 163 between Mobile and Dauphin Island, 3 Jun 1967, Lelong 3210.1 (NCU). Florida. Alachua Co.: 1 mile E of hwy 24 on 232, 8 May 1965, Wiggins 20014 (NCU); Hernando Co.: wet prairie, section 11 \& 12, 19 Sep 1959, Cooley 7040 (NCU); Polk Co.: Tiger Creek Preserve, ephemeral pond edges, 28 January 2008, Corogin TC624 (TEX); Wakulla Co.: wet thickets, January 1929, Ashe s.n. (TEX). Georgia. Charlton Co.: powerline right-of-way, east side of Folkston and just north of GA 40, 25 May 1999, Nelson 20452 (GA, USCH); MeIntosh Co.: wet depression along GA 99 S of Eulonia, 20 Oct 1987, Angerman s.n. (NCU); Worth Co.: Cypress-Ilex-Hypericum pond on Ga. 32, 15 Jun 1967, Bozeman 9987 (NCU). Louisiana. St. Tammany Par.: wet pine savanna, 11 November 1990, Urbatsch 6929 (NCU); Washington Par.: wet hardwood forest, 1 Oct 1982, Taylor 2227 (USF). Mississippi. Forrest Co.: Shelby State Park, 7 Jun 1964, Jones, Jr. 1864 (NCU); Harrison Co.: De Soto National Forest, Forest Service road 426, seepage bog, 15 Aug 1996, Sorrie 9010 (NCU); Jackson Co.: Orange Grove, 2 May 1954, Demaree 35057 (GH). North Carolina. Cumberland Co.: wet sandy soil, 15 mi S of Fayetteville, 11 Feb 1940, Totten s.n. (NCU); Hoke/Moore Co.: Fort Bragg, boggy margin of Johnsons Millpond, 9 Oct 1991, Sorrie 5967 (NCU). South Carolina. Allendale Co.: swamp 1.2 mi SSW of Barton, 30 Jun 1956, Bell 4001 (NCU); Berkeley Co.: Francis

Marion National Forest, limesink depression SE of route 654, Jun 1997, McMillan 2636 (NCU); Orangeburg Co.: Branchville Bay e of US 21, 1 Sep 1994, Nifong 541 (NCU).
5. Hypericum galioides. Alabama. Baldwin Co.: low woods bordering Tensaw River, 26 Oct 1967, Lelong 3868 (NCU); Clarke Co.: low roadside ca. 4 mi N of Choctaw Bluff, 4 Oct 1966, Clark 9078 (NCU; Washington Co.: stream margin, Bassetts Creek near hwy 43, 3 Oct 1966, Clark 8716 (NCU). Florida. Columbia Co.: along Fla. 2, halfway between GA state line and Baker County line, roadside ditch in weedy, recently logged pine flatwoods, 11 Jul 1984, Hansen 10147 (USCH); Levy Co.: highwater mark at edge of floodplain forest, Suwanee River, 22 November 1974, Godfrey 74133 (NCU); Okaloosa Co.: wet roadside with Macranthera flammea, S side hwy $90,1.8 \mathrm{mi} \mathrm{E}$ of 85,20 Aug 1971, Musselman 4375 (NCU). Georgia. Brooks Co.: margins of slough on Withlacoochee River, 14 Jul 1965, Faircloth 2195 (NCU); Chatham Co.: mixed woodland on hwy 21, S of St. Augine Creek, 14 Jul 1966, Bozeman 6149 (NCU); Tattnall Co.: cleared floodplain of Altamaha River, NE of Lane's Bridge, hwy 169, 12 Jul 1966, Bozeman 5923 (NCU). Louisiana. Allen Par.: pine flatwood along hwy 26, 5 mi WNW of Oberlin, 25 Jul 1975, Allen 6681 (NCU); Calcasieu Par.: moist pine woods, 6 Jul 1950, Webster \& Wilbur 3217 (GA, NCU, TEX); Sabine Co.: pine woods on Peason Ridge Military Reservation, 4 Oct 1980, Thomas 73842 (TEX); Tangipahoa Par.: wet roadside ditch along LA 1067, 3 mi SW of Robert, 12 Jun 1978, Allen 8171 (NCU). Mississippi. George Co.: swamp forest along Escatawpa River, hwy 612, 24 Jul 1969, Lelong 5209 (NCU); Hancock Co.: Mississippi Test Facility (NASA), along canal, 7 Aug 1970, Rogers 4001-A (NCU); Lawrence Co.: $3 \mathrm{mi} S W$ of Silver Creek, secondary deciduous wood bordering small stream, foot of pine coverered slope, 24 Jun 1957, Ray, Jr. 8283 (USF). North Carolina. Columbus Co.: low cypress savanna SE of Old Dock, Leonard 1754 (NCU, TEX); Hoke Co.: Redwing Pond, boggy shrub margin, 21 Jul 2002, Sorrte 10963 (NCU); Pender Co.: swamp forest on Black River, 3 mi W of Montague, 26 Jul 1953, Radford 7387 (NCU). South Carolina. Chesterfield Co.: open, savannalike hillside bog adjacent to Oxpen Lake in Carolina Sandhills NWR, 5 Jul 1985, Rayner 2324 (USCH); Dorchester Co.: Givhans Ferry State Park, bottomland below marl bluffs, banks of Edisto River, 14 Jun 1988, Hill 19588 (USCH, USF); Jasper Co.: flatwoods just north of S-94, ca. 1/3 mile E of I-95; NE of Hardeeville, 15 Jul 1984, Aulbach-Smith 3136 (USCH). Texas. Chambers Co.: freshwater marsh, 1.1 mi S of FM 1985, Anahuac NWR, 14 Jun 2000, Carr 19031 (TEX); Hardin Co.: cut-over longleaf pine, 5 Sep 1924, Tharp 3152 (TEX); Montgomery Co.: Lake Houston State Park, utility easement on alluvial terraces, 21 Oct 2003, Sanders 6261 (TEX); Newton Co.: junction of Big Cow Creek and FM 1416, 24 Sep 2000, Holmes \& Singhurst 11059 (TEX).
6. Hypericum lissophloeus. Florida. Bay Co.: Lake Merial, 15 mi N of Panama City, 1966, Ward 5958 (NCU); Washington Co.: in sand along margin and in shallow water of Parish Pond, 8 Jun 1990, Anderson 12882 (FSU).
7. Hypericum Iloydii. Alabama. Randolph Co.: 2.8 mi SE of Rock Mills, 1.6 mi E of Bacon Level, large relatively undisturbed granite flatrock above Wehadkee Creek and W of quarry, 31 Aug 1985, Allison 2518 (GA); Tallapoosa Co.: Harper 3691 (GH, PH, US). Georgia. Coffee Co.: sandstone outcrop on Rocky Creek about 3 mi S of Ocmulgee, 20 Jun 1966, Bozeman 4591 (NCU); Richmond Co.: Auga, 29 May 1918, Harbison 14393 (NCU); Turner Co.: Altamaha Grit outcrops, 4 mi N of route 112, 25 Jun 1969, Fatrcloth 5855 (NCU). North Carolina. Pitt Co.: no data, 9 Jul 1956, Boyette s.n. (NCU); Scotland Co.: margin of sand road through moist pine flatwoods, Sandhills Game Land, 25 Jul 1998, Sorrie 9875 (NCU); Union Co.: roadside powerline by Austin Road, 12 Jul 2010, Sorrie 12623 (NCU). South Carolina. Aiken Co.: Graniteville, 1898, Eggert s.n. (MO, NY, US); Chesterfield Co.: Sugar Loaf Mountain, 14 Jun 1918, Coker s.n. (NCU); Greenwood Co.: roadside bank on rte. 25, 5.3 mi S of Cuffytown Creek, 24 Jun 1987, Htll 18124 (NCU). Virginia. Mecklenburg Co.: roadside of route 58, 7 Jul 1967 , Seaman 7460 (NCU).
8. Hypericum nitidum. Alabama. Baldwin Co.: Jack 3004 (GH). Florida. Gulf Co.: flatwoods between Panama City and Wewahitchka, 4 May 1926, Small 12823 (TEX); Marion Co.: Salt Springs, Ocala National Forest, 3 Jun 1929, Ashe s.n. (NCU); Santa Rosa Co.: swamp along U.S. 90 , Blackwater River e of Milton, 22 November 1966, Bozeman 8761 (NCU). Georgia. Berrien Co.: creek swamp on U.S. 82, E of Enigma, Bozeman 9932 (NCU); Brooks Co.: road excavation area, 2.8 mi E of Barney, 21 November 1959, Adams 376 (USF); Dooly Co.: swale in longleaf pineland, Kral 51607 (TEX); Tattnall Co.: pocosin 1.9 mi NW of Reidsville, 11 Jun 1961, Ahles 54258 (NCU).
South Carolina. Darlington Co.: edge of Black Creek near Darlington Country Club, 7 Jul 1940, Smith 1122 (USCH); Lexington Co.: Black Creek w of Pelion, Rayner 2569 a (USCH); Richland: Fort Jackson, sand and much of small islands in Colonel's Creek, 16 Jun 1994, Nelson 15611 (USCH, VDB).
9. Hypericum tenuifolium. Alabama. Baldwin Co.: hwy 182 near Romar Beach, 1 Jun 1977, Davenport 96 (USF). Florida. Lake Co.: dry sand of scrub, Ocala National Forest service road 71, 2 Aug 1962, Ward 3048 (NCU); Manatee Co.: 1845, Rugel s.n. (NCU); Martin Co.: pineland, Jonathan Dickinson State Park, 21 May 1977, Correll 48587 (NCU); Volusia Co.: scrub near dry pond, road to Benson Spring, 14 April 1953, Prichard 583 (NCU). Georgia. Bryan Co.: fossil dunes, Canoochee River, Adams 541 (GH, USF); Clinch Co.: low exposed area along rte. 84, 6 mi SW of Homerville, 30 Jun 1998, McNethus $98-476$ (TEX); Irwin Co.: pine savanna on U.S. 319, 0.7 mile E of Alapaha River, 13 Jun 1967, Bozeman 9608 (NCU). North Carolina. Carteret Co.: recently burned longleaf pine stand about 13 mi W of Morehead City, 9 Jul 1963, Wilbur 6922 (DUKE, USF); Cumberland Co.: flat pine woods 5.7 mi N of Bladen County line on N.C. 53, 27 Jun 1953, Ahles 29873 (NCU, USF); New Hanover Co.: Carolina Beach, dry sterile white sand ridge among Pinus palustris and Quercus catesbaet, Godfrey, Pl. Exs. Gr. 1260 (GH, NCU, USF). South Carolina. Beaufort Co.: Bluffton, 1874, Mellichamp s.n. (GH); Horry Co.: savanna, Conway, 1 Sep 1940, Schallert s.n. (GH); Jasper Co.: savannah 2.3 mi SW of Ridgeland on U.S. 17, 26 Jun 1956, Ahles 15529 (NCU).

# NOMENCLATURAL STATUS OF UNRANKED NAMES PUBLISHED BY TRELEASE (1911) IN BEAUCARNEA, DASYLIRION, AND NOLINA (ASPARAGACEAE-NOLINOIDEAE) 

Joachim Thiede<br>Schenefelder Holt 3<br>22589 Hamburg, Germany<br>joachim_thiede@gmx de


#### Abstract

The nomenclatural status of eight infrageneric and five infraspecific names published by Trelease (1911) in Beaucarnea Lem., Dasylirion Zucc., and Nolina Michx. (AsparagaceaeNolinoideae) is evaluated. Nearly all later authors treated these names as if they were published at sectional or varietal rank, but they were in fact published without rank assignment. For all names except one, new combinations at sectional or varietal rank were subsequently published by Trelease himself or later authors; these combinations are listed. Typifications for infrageneric names are provided. For one infrageneric name without combination at sectional rank, the new combination Beaucarnea sect. Papillatae (Trel.) Thiede is proposed.


KEY WORDS: Asparagaceae, Beaucarnea, Dasylirion, infrageneric classification, new combination, Nolina, Nolinaceae, nomenclature, unranked names.

In his treatment of "The desert group Nolineae", Trelease (1911) published new infrageneric names in Beaucarnea Lem., Dasylirion Zucc., and Nolina Michx. as well as new infraspecific names in Dasylirion and Nolina. Trelease gave a short characterization for all names but did not apply any formal rank to them, so that all names are unranked: e.g., Beaucarnea [unranked] Papillatae Trel. or Nolma palmert [unranked] brandegeen Trel. With the sole exception of Ullrich (1992), virtually all other authors (e.g., Krause 1930; Bogler 1998; Walker 2001; Hess 2002; Hochstätter 2010, 2011; IPNI 2012; Govaerts \& al. 2012) wrongly treated Trelease's names as being published at sectional or varietal rank as, e.g., Beaucarnea sect. Papillatae Trel. or Nolina palmert var. brandegeet Trel.

Three of Trelease's infrageneric names are invalid according to the autonym rule (see below), whereas all other infrageneric and all infraspecific names are valid but inoperative in questions of priority (Art. 35.3 ICBN, McNeill \& al. 2006). Trelease himself and later authors (see below) published new combinations at sectional or varietal rank for all names except one, for which a new combination is proposed here.

In the following, the nomenclatural status of all unranked infrageneric and infraspecific names published by Trelease (1911) in Beaucarnea, Dasylirton, and Nolma is evaluated, the new combinations based on these names are enumerated, and typifications for all infrageneric names are provided.

BEAUCARNEA Lem., Ill. Hort. 8: Misc. 59. 1861). Type: Beaucarnea recurvata Lem.
Trelease (1911) classified the genus into Beaucarnea [unranked] Eubeaucarnea Trel. (nom. inval.) and Beaucarnea [unranked] Papillatae Trel. For the latter, no combination at infrageneric level was found, so that a new combination at sectional rank is proposed here following ICBN Art. $35.3 \&$ Ex. 4 (McNeill \& al. 2006).

Beaucarnea sect. Beaucarnea. Type: Beoucarnea recurvata Lem. (= type of Beaucarnea). $\equiv$ Beaucarnea [unranked] Eubeaucarnea Trel., Proc. Amer. Phil. Soc. 50: 427. 1911 (nom. inval., ICBN Arts. 21.3, 22.1 \& 22.2; McNeill \& al., 2006). TyPE: [not indicated].

Further species: B. goldmanti Rose, B. guatemalensts Rose, B. plabills (Baker) Rose, B. sanctomariana L. Hern.

Beaucarnea sect. Papillatae (Trel.) Thiede, comb. nov. Lectotype (selected here): Beaucarnea stricta Lem. $\equiv$ Beaucarnea [unranked] Papillatae Trel., Proc. Amer. Phil. Soc. 50: 429. 1911. TYPE: [not indicated].

Further species: B. compacta L. Hern. \& Zamudio, B. gracilis Lem., B. hirtartıae L. Hern.
Hernández-Sandoval (1993, cited in Bogler 1998) suggested that these two sections may not be clearly distinguished.

DASYLIRION Zuce., Allg. Gartenzeitung (Otto \& Dietrich) 6: 258. 1838. Type: Dasylirion graminifolnum (Zuce.) Zucc.

Trelease (1911) classified the genus into Dasyltion [unranked] Eudasyltion Trel. (nom. inval.) and Dasyltrion [unranked] Quadrangulatae Trel. In his treatment of the Liliaceae, Krause (1930) cited "Dasylirion Sekt. II Quadrangulatae Trelease" with full reference including page number from Trelease (1911) which is treated here as valid, albeit unintended, new combination. In his synopsis of Dasylirton, Hochstätter (2011) published an additional sect. Glaucophyllum, which accommodates some of the species previously placed in sect. Dasyltrion.

Dasylirion sect. Dasylirion. Type: Dasyltrion graminifolium (Zuce.) Zuce. (= type of Dasyliron). $\equiv$ Dasyltrion [unranked] Eudasyltrion Trel., Proc. Amer. Phil. Soc. 50: 431. 1911 (nom. mval., ICBN Arts. $21.3,22.1 \& 22.2 ;$ McNeill \& al. 2006). TyPE: [not indicated].

Further species: D. acrotrichum (Schiede) Zuce., D. gentryi Bogler, D. leiophyllum Engelm. ex Trel., D. luctdum Rose, D. parryanum Trel., D. serratifolum (Karw. ex Schult. \& Schult. f.) Zuce., D. smplex Trel., D. texanum Scheele.

Dasylirion sect. Quadrangulatae (Trel.) K. Krause in H.G.A. Engler, Nat. Pflanzenfam. ed. 2, 15a: 356. 1930 [repeated by Ullrich in Kakt. and. Sukk. 43(8): centre page pull-out 1992/25. 1992]. ミDasylirion [unranked] Quadrangulatae Trel., Proc. Amer. Phil. Soc. 50: 440. 1911. Type: Dasylirion longlssimum Lem. (typification by inference; only species included).

Further species: D. miquthuanense Bogler, D. quadrangulatum S. Watson, D. treleaset (Bogler) Hochstätter.

Dasylirion sect. Glaucophyllum Hochstätter, Piante Grasse 31(1): 28. 2011. TyPE: Dasylirion glaucophyllum Hook.

Further species: D. berlandieri S. Watson, D. cedrosanum Trel., D. durangense Trel., D. longistylum J.F. Macbr., D. occidentalis Bogler ex Hochstätter, D. palaciosu Rzed., D. sereke Bogler, $D$. wheeleri S. Watson ex Rothr.

NOLINA Michx., Fl. Bor.-Amer. 1: 207. 1803. Type: Nolina georgiana Michx.
Trelease (1911) classified the genus into Nolina [unranked] Graminifoltae Trel. (nom. inval.), N. [unranked] Erumpentes Trel., N. [unranked] Microcarpae Trel. and N. [unranked] Arborescentes Trel.

In a synopsis of Nolma, Hochstätter (2010) cited these names as being published at sectional rank. Since Hochstätter also cited the full reference including page number from Trelease (1911), Hochstätter's sectional names are treated here as valid, albeit unintended, new combinations.

Nolina sect. Nolina. Type: Nolina georgiana Michx. (= type of Nolna). $\equiv$ Nolna [unranked] Gramintfoltae Trel., Proc. Amer. Phil. Soc. 50: 413. 1911 (nom. inval., ICBN Art. 22.1; McNeill \& al. 2006). TyPE: [not indicated].

Further species: N. atopocarpa Bartlett, N. brittontana Nash, N. humlis S. Watson, N. Indhetmeriana (Scheele) S. Watson, N. pumila Rose.

Nolina sect. Erumpentes (Trel.) Hochstätter, Piante Grasse 30(Suppl.): 14. 2010. TyPE: Nolina erumpens (Torr.) S. Watson. $\equiv$ Nolina [unranked] Erumpentes Trel., Proc. Amer. Phil. Soc. 50: 416. 1911. Type: [not indicated].

Further species: N. aremcola Correll, N. cespittfera Trel., N. greenei S. Watson ex Wooton \& Standl., N. micrantha I.M. Johnst., N. texana S. Watson.

Nolina sect. Microcarpae (Trel.) Hochstätter, Piante Grasse 30(Suppl): 23. 2010. Type: Nolina microcarpa S. Watson. $\equiv$ Nolina [unranked] Microcarpae Trel., Proc. Amer. Phil. Soc. 50: 420. 1911. TYPE: [not indicated].

Further species: N. durangensts Trel., N. elegans Rose, N. palmerı S. Watson, N. rtgtda Trel.
Hochstätter (2010: 2) considered Nolma rigida as an unclear species.
Nolina sect. Arborescentes (Trel.) Hochstätter, Piante Grasse 30(Suppl.): 29. 2010. Lectotype (selected here): N. longrfolia (Karw. ex Schult. \& Schult. f.) Hemsl. $\equiv$ Nolina [unranked] Arborescentes Trel., Proc. Amer. Phil. Soc. 50: 422. 1911. TyPE: [not indicated].

Further species: N. azureogladiata D. Donati, N. beldingil Brandegee, N. bigelovil (Torr.) S. Watson, N. cismontana Dice, N. hibernica Hochstätter \& D. Donati, N. interrata Gentry, N. juncea (Zuce.) J.F. Macbr., N. matapensis Wiggins, N. nelsonil Rose, N. parryl S. Watson; N. parviflora (Kunth) Hemsl.

Hochstätter (2010:2) considered Nolma juncea as an unclear species.

## UnRANKED INFRASPECIFIC NAMES

Trelease (1911) published 2 unranked infraspecific names in Dasylirion and 3 in Nolina. In an excerpt published the following year (Trelease 1912), Trelease assigned varietal rank to these names which are treated here as valid new combinations.

Dasylirion texanum var. aberrans (Trel.) Trel., Feddes Repert. 11: 52. 1912. $\equiv$ D. texamum [unranked] aberrans Trel., Proc. Amer. Philos. Soc. 50: 434. 1911. Accepted name: D. texamum Scheele (Hochstätter 2011, Govaerts \& al. 2012).

Dasylirion wheeleri var. wislizenii (Trel.) Trel., Feddes Repert. 11: 53. 1912. $\equiv$ D. wheeleri [unranked] wisltzenn Trel., Proc. Amer. Philos. Soc. 50: 439. 1911. Accepted name: D. wheelert S. Watson ex Rothr. (Walker 2001, Hochstätter 2011, Govaerts \& al. 2012).

Nolina palmeri var. brandegeei (Trel.) Trel., Feddes Repert. 11: 50. 1912. $\equiv$ N. palmert [unranked] brandegeet Trel., Proc. Amer. Philos. Soc. 50: 420. 1911. Accepted name: N. palmert S. Watson (Hochstätter 2010, Govaerts \& al. 2012).

Nolina beldingii var. deserticola (Trel.) Trel., Feddes Repert. 11: 50. 1912. $\equiv$ N. beldngnt [unranked] deserticola Trel., Proc. Amer. Philos. Soc. 50: 424. 1911. Accepted name: N. beldingit Brandegee (Hochstätter 2010, Govaerts \& al. 2012).

Nolina texana var. compacta (Trel.) I.M. Johnst., J. Arnold Arbor. 24: 90. 1943. $\equiv$ N . erumpens var. compacta (Trel.) Trel., Feddes Repert. 11: 49. 1912. $\equiv$ N. erumpens [unranked] compacta Trel., Proc. Amer. Philos. Soc. 50: 418. 1911. Accepted name: N. texana S. Watson (Hess 2002, Hochstätter 2010, Govaerts \& al. 2012).

## ACKNOWLEDGEMENT

The author is indebted to Dr. Urs Eggli (Zürich [ZSS], Switzerland) for valuable comments.

## LITERATURE CITED

Bogler, D.J. 1998. Nolinaceae. Pp. 392-397, in K. Kubitzki \& al. (eds.). Families and Genera of Vascular Plants. III. Flowering Plants. Monocotyledons. Lilianae (except Orchidaceae). Springer, Wien.
Govaerts, R., B.J.M. Zonneveld, and S.A. Zona. 2012. World Checklist of Asparagaceae. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet at http://apps.kew.org/wesp/. Accessed 5 Jun 2012.
Hernández-Sandoval, L.G. 1993. Cladistic analysis of the American genera of Asparagales and the systematic study of Beaucarnea (Nolinaceae) and the taxonomic revision of Hemphylacus (Hyacinthaceae). Ph.D. dissertation, Univ. of Texas, Austin.
Hess, W.J. 2002. Nolina. Pp. 413-421, in Flora of North America Editorial Committee (ed.). Vol. 26. Magnoliophyta: Liliidae: Liliales and Orchidales. Oxford Univ. Press, New York.

Hochstätter, F. 2010. Il genere/the genus Nolina (Nolinaceae). Piante Grasse 30(Suppl. al n ${ }^{\circ}$ 1): 150.

Hochstätter, F. 2011. Dasylirion Zucc. (Nolinaceae) Revisione del genere/Revision of the genus. 1-3. Piante Grasse 31(1): 21-26, (3): 106-122, (4): 147, 162-181.
IPNI. 2012. The International Plant Names Index. Published on the Internet at http://www.ipni.org. Accessed 5 Jun 2012.
Krause, K. 1930. Dasylirion. Pp. 355-356, in A. Engler (ed.). Die natürlichen Pflanzenfamilien, ed. 2, 15a. W. Engelmann, Leipzig,
McNeill, J., F.M. Barrie, H.M. Burdet, V. Demoulin, D.L. Hawksworth, K. Marhold, D.H. Nicolson, J. Prado, P.C. Silva, J.E. Skog, J.H. Wiersema, and N.J. Turland (eds.). 2006. International Code of Botanical Nomenclature (Vienna Code) adopted by the Seventeenth International Botanical Congress Vienna, Austria, July 2005. Gantner Verlag, Ruggell.
Trelease, W. 1911. The desert group Nolineae. Proc. Amer. Philos. Soc. 50:404-443 + pls. i-xvii.
Trelease, W. 1912. Nolineae novae. Feddes Repert. 11: 49-53.
Ullrich, B. 1992. Dasyliron longissimum Lemaire (Nolinaceae). Kakt. and. Sukk. 43: centre page pullout 1992/25.
Walker, C.C. 2001. Nolinaceae. Pp. 286-292, in U. Eggli (ed.). Illustrated Handbook of Succulent Plants Vol. I. Monocotyledons. Springer, Heidelberg,

# CRITICAL TAXA IN CRATAEGUS SERIES MOLLES (ROSACEAE): TYPIFICATIONS, NEW COMBINATIONS, AND TAXONOMIC REVIEW 

J.B. PHIPPS<br>The Unıversity of Western Ontario<br>Department of Biology<br>1151 Richmond St N<br>London, Ontario, N6A 5B7, CANADA<br>jphipps@uwo.ca


#### Abstract

Ten specific or varietal epithets attributed to Crataegus series Molles are typified or their types commented on. Those typified are C. arkansana Sargent, C. brazoria Sargent, C. canadensis Sargent, C. cocctnea L. var. mollis Torrey \& Gray, C. gravida Beadle, C. lanuginosa Sargent, C. mertdonalts Sargent, C. mollis (Torrey \& Gray) Scheele var. mnctsifolta Kruschke, and C. submollis Sargent. There is also a minor issue with the type of Crataegus texana Buckley, which is commented on. The new combinations Crataegus mollis var. meridionalis and C. texana var. dasyphylla are made. This is followed by a taxonomic review of ser. Molles with emphasis on the 20 -stamen taxa.

KEY WORDS: Crataegus (Rosaceae) series Molles, typifications, taxonomic review, Crataegus arkansana Sargent, C. brazoria Sargent, C. canadensts Sargent, C. coccmea L. var. molls Torrey \& Gray, C. dasyphylla, C. gravida Beadle, C. lanuginosa Sargent, C. meridionalis Sargent, C. mollis (Torrey \& Gray) Scheele, C. mollis var. incisifolia Kruschke, C. submollis Sargent, C. texana Buckley, new combinations, Crataegus mollis var. meridionalis (Sargent) J.B. Phipps, and C. texana var. dasyphylla (Sargent) J.B. Phipps


Numerous species in Crataegus series Molles (Sargent ex C.K. Schneider) Rehder were described around a century ago, primarily by Sargent and Ashe and the relevant epithets were collated by Palmer (1925). Many of these names have never been typified and the present paper rectifies this for most of the critical names. I also present a brief review of the taxa accepted with particular attention to the 20 -stamen species C. mollis, C. texana, and C. brazorza in order to support the author's forthcoming treatment of Crataegus in Flora of North America, Vol. 9. Questions related to the predominantly northern, 10 -stamen taxa will be addressed in another paper.

Typification problems are legion and are characteristic of a period when botanists were feeling their way to the more precise notions of holotype and isotype. As most of the names are by Sargent, some familiar issues of interpretation were encountered. For instance, notations of 'type' may be repeated on different specimens, thus they do not automatically imply a holotype. This may even be so when the word 'type' in the protologue is explicitly placed next to a particular date and collection number because duplicates may exist. Likewise the protologue may be ambiguous as to whether a single specimen or 'type tree' is being cited. It is therefore helpful to understand that Sargent's, Beadle's, and even Kruschke's view of 'type' is commonly that of the 'type tree.' In such cases Sargent and his collectors, such as B.F. Bush, often gave the type tree a number separate from the collection number (which varied with date and collector) and this 'type tree' number may be used by various collectors on different dates when collecting from a single marked tree. Beadle, however, usually used different field numbers for collections on different dates and designated 'co-types' commonly from the same tree, while Kruschke used one collection number for all collections of whatever date from the type tree. Label data must be interpreted with this in mind. The type tree concept is very helpful in interpreting these author's taxa, though in the case of Sargent one does need to be aware of occasional apparent discrepancies among specimens having the same number. As
well, Sargent's rather notorious apparent carelessness in citing specimens in the protologue (alternatively viewed as errors in the label) can result in probable syntypes with some element at variance cited with protologue. In addition, there may sometimes be considerable variation among different syntypes, as in Crataegus gravida Beadle in this paper. Sargent's protologues are usually more detailed than Beadle's.

A different problem confronting taxonomists of North American Crataegus is the difficulty of being absolutely sure of the application of a name, because specimens collected only at one season may not be adequately diagnostic. For this reason, in some cases I designate an epitype collected at another season. The ability to do this is, in fact, aided by the 'type tree' practice as it provides a high level of confidence that flowering and fruiting specimens match.

## ILLUSTRATIONS

This account illustrates all the 20 -stamen taxa mentioned plus Crataegus submollis and C. canadensts. The source materials are herbarium specimens, most of which have been seen by the author. The sources of images are Harvard University (A and GH), Philadelphia Academy of Sciences (PH), Missouri Botanic Garden (MO/Tropicos), New York Botanic Garden (NY), and Royal Ontario Museum (TRT). It should be noted that sometimes only partial sheets are illustrated and thus label data may be omitted from the figures. In such cases, elements are selected are those that are in better condition, that are more typical or to avoid repetition. In doing so composites (from the same sheet) have been created to generate more visually helpful images.

TYPE DESIGNATIONS
Type designations are arranged alphabetically by species.
Crataegus arkansana Sargent, Bot. Gaz. 31: 223. 1901. Lectotype (designated here): USA. Massachusetts. Jamaica Plain (cult.), 18 May1900, C.S. Sargent* 482-2 (A barcode 18257). Figure 1.

Comment. The lectotype is an entirely characteristic, richly flowering, cultivated specimen of the C. mollts group with distinctively shaped leaves. It is selected from the syntypes because of its high quality and similarity to the protologue, critically in leaf shape. The lectotype lacks the seed provenance data on the label but I am assured by J. Damery at the Arnold Aboretum (pers. comm.) that the collection number 482-2 does match one for a Letterman specimen of 1883 Arkansas provenance. On the other hand, the fruiting syntype (MASS, cult., collector unnamed 4177, 8.xi.1898, A barcode 18256), although possessing seed provenance data (annotation "from seed lot 484.2 collected by G.W. Letterman, Newport, [Jackson Co.] Ark, in $1883^{\prime \prime}$ ) was rejected as lectotype because it appeared sufficiently different in leaf shape characters, particularly in the lobing, and this casts doubt on it being from the same seed accession. Comparison with Faxon's illustration (tab. 660 in Sargent, 1902) emphasizes this. It is also worth noting that the description of leaf shape in the Silva differs slightly from that in the protologue. Also, according to Damery, 484.2 is not a possible number for a Letterman 1883 Arkansas accession.

Crataegus arkansana as interpreted here has leaves of an unusual shape for the 20 -stamen, ivory-anthered forms of the C. molls complex, these being of a $+/$ - narrow-ovate to ovate form with cuneate bases and having relatively deep and sharp lobes. However, they are somewhat like var. incisifolia. Jennifer Ogle (pers. comm.) was not able to turn up any unambiguous arkansana types from the holdings at UARK. Recent material from Arkansas, or elsewhere, for that matter, matching the lectotype would therefore be welcome.
*The label is in Sargent's handwriting but no collector is named, therefore there has to be some doubt as to whether he was the collector.

Crataegus brazoria Sargent, Bot. Gaz. 31: 233. 1901. Lectotype (designated here): USA. Texas. Brazoria Co.: Columbia, 25 Mar 1900, Wm. Canby, C.S. Sargent, Wm. Trelease 102 ("C.n. $3^{\prime \prime}$ ) (DOV 4899; isolectotype: GH 21409). Also on same sheet is B.F. Bush 911 (tree 3) 25 Sep 1901, DOV 4898, with packaged fruit (latter absent from 'photoshopped' image). Figure 2.

Comment. The lectotype is an extremely fine specimen with elliptic leaves, sharp marginal teeth and acute lobes reduced to apiculi. It is in full flower and has conspicuous bracteoles. Sargent said that only one tree was known, presumably 'tree 3', found on most syntype labels. The isolectotype at Harvard is credited only to Sargent. There is also a vegetative Bush specimen at A (B.F. Bush 170, 27 Mar1900).

Crataegus canadensis Sargent, Bot. Gaz. 31:7. 1901. Lectotype (designated here): CANADA:
Quebec. Chateauguay, 29 May 1887, J.G. Jack 79 (A18297). Figure 3.
Comment. A flowering specimen was selected for lectotype that clearly showed 20 stamens when imaged. Crataegus canadensis has many syntypes.

Crataegus dasyphylla Sargent, Ann. Rep. Missouri Bot. Gdn. 22: 80. 1911. Lectotype: designated in Phipps et al. (2007). Figure 4.

Crataegus dumetosa Sargent, Ann. Rep. Missouri Bot. Gdn. 19: 109. 1908. Lectotype: designated in Phipps et al. (2007). Figure 5.

Crataegus gravida Beadle, Biltmore Bot. Stud. 1(2): 119. 1902 [30 Apr]. Lectotype (designated here): USA. Tennessee. Davidson Co.: Nashville, flowering specimen, no date but Beadle says 'early May' in protologue, T.G. Harbison 2142 (A). Possible isolectotype: US 97593, but see comment. Figure 6.

Comment. The lectotype at A (label in Beadle's hand) and the putative syntypes, H2142 and H2736 at US (both on the same sheet), are sufficiently dissimilar as to appear to be from different entities. However, one cannot be sure of this and H2142 at both A and US have the rather small (ca. 15 mm ) flowers for the species. Beadle described the leaf margins as 'shallowly incised' which seems a truer reflection of the US specimens though I do not understand his limit to 'shallow.' There are a number of specimens from this area at TRT and they lie between the extremes of the syntypes.

As I have observed it, a tallish mollis-group Crataegus with smallish ( $3-5 \mathrm{~cm}$ ), quite strongly lobed short-shoot leaves, proportionately somewhat narrower than any of the type material but more like the A lectotype in lobing, appears to be a characteristic form of C. mollis in southeastern woodlands on limestone.

Crataegus lanuginosa Sargent, Trees \& Shrubs 1(3): 113, plate 57. 1903. Lectotype: designated in Phipps et al. (2007). Figure 7.

Crataegus meridionalis Sargent, J. Arnold Arbor. 1: 252. 1920. Lectotype (designated here): USA. Alabama. Hale Co.: Gallion, 17 Apr 1915, T.G. Harbison 11833 (TENN 3345a; isolectotype: A). Figures 8, 9.

Comment. A possible isotype is T.G. Harbison 7 (A), same notes as lectotype, except with a tree number rather than a collection number. Also, there are two fruiting syntypes at A .

Crataegus mollis (Torrey \& Gray) Scheele, Linnaea 21: 569. 1848. Crataegus coccmea Linnaeus $\varepsilon$ mollis Torrey \& A. Gray, Fl. N. Amer. 1: 465. 1840. Lectotype (designated here): USA. Ohio. Hamilton Co.: Cincinnati, May, no year, T.G. Lea s.n. (NY 532807). Figure 10.

Comment. The lectotype contains a short flowering shoot plus a young extension shoot, plausibly from the same plant. Two syntypes have a mix of fruiting and vegetative shoots apparently also of Crataegus mollis but of a different leaf type from the lectotype. The flowering specimen is chosen as lectotype as it is the only specimen reliably referable to the current concept of C. mollhs var. mollis (leaves with shallow subacute to obtuse lobes; ca. 20 stamens in undamaged flowers). The two syntypes, both A. Clapp s.n., have label data "April 20 1839" and " 21 May 1839 " but are obviously late season and lack provenance.

Crataegus mollis var. incisifolia Kruschke ex J.B. Phipps, J. Bot. Res. Inst. Texas 1: 1012. 2007. Lectotype: designated in Phipps (2007b). Figure 11.

Comment. Figure 11 is a composite from figs. 103-105 in Kruschke (1965), which show specimens made from the type tree at various growth stages. The shape of mature short-shoot leaves (Fig. 11c) is not unlike those of Crataegus arkansana (Fig. 1) but the latter lacks the deeply incised extension shoot leaves of the current variety.

Crataegus submollis Sargent, Bot. Gaz. 31: 7--9. 1901. Lectotype (designated here): USA. Maine. Penobscot Co.: Orono, 27 May 1887, M.L. Fernald s.n. (GH 273975). Figures 12, 13.

Comment. The two flowering specimens on GH 273975 are very similar and display large leaves and flowers, very villous inflorescences, and large herbaceous bracteoles. Both GH fruiting syntypes, collected by J.G. Jack from Gerrish I., Maine, have the accrescent sepals characteristic of the series.

Crataegus texana Buckley, Proc. Acad. Nat. Sci. Philadelphia 1861: 454. 1862. Type: USA. Texas. Columbia Co.: along Brazos and Columbia Rivers, common, flowering specimen, without date, S.B. Buckley s.n. (holotype: part of PH 1020965). Figure 14.

Comment. Lance (2011) has called the holotype Buckley I61 but this seems dubious as Buckley's little label has no number, nor is there a collection number in the protologue. In fact, the ' 161 ' is on a separate label supplied by Gideon Lincecum that comments on fruiting plants and notes that he has not seen the 'large red haw' in flower. Neither does Lincecum's note make any reference to Buckley's specimen. Although only a fragment, the type specimen displays a fine inflorescence at full anthesis surrounded by angular-lobed leaves. The leaf form of the texana holotype is quite common in south Texas and matches the prevailing concept of this important species. On the very crowded PH 1020965 sheet there are also two specimens of Crataegus punctata Jacquin plus a very large late summer leaf, shown in Fig. 14, possibly belonging to C. brazoria.

Crataegus viburnifolia Sargent, Trees and Shrubs 2: 145. 1911. Lectotype (designated in Phipps 2007a): USA. Texas. Brazoria Co.: Columbia, B.F. Bush \& C.S. Sargent 11, 23 Mar. 1909 (A). EPITYPE (designated here): USA. Texas. Brazoria Co.: Columbia, Sep 1909, B.F. Bush $912=$ tree 11, 25. (A). Figure 15.

Comment. The diagnostic canary yellow color of the fruit is associated with the epitype.

## NEW COMBINATIONS

Crataegus mollis (Torrey \& Gray) Scheele var. meridionalis (Sargent) J.B. Phipps, comb. et var. nov. Crataegus meridionalis Sargent, J. Arnold Arbor. 1: 252. 1920. Lectotype (designated above): USA. Alabama. Hale Co.: Gallion, 17 Apr 1915, T.G. Harbison 11833 (TENN 3345a; isolectotype: A). Figure 8, 9.

It should be noted that Crataegus meridionalis was not lectotypified by Lance (2011), so his combination is invalid. Crataegus meridionalus is a thorny local race of C. mollis of blackland soils which has slightly zigzag twigs, elliptic to narrow-ovate, shallowly but acutely lobed, strongly toothed leaves that are very tomentose abaxially at anthesis.

Crataegus texana Buckley var. dasyphylla (Sargent) J.B. Phipps, comb. et var. nov. Crataegus dasyphylla Sargent, Rep. (Annual) Missouri Bot. Gard. 22: 80. 1912. Lectotype (designated in Phipps et al. 2007): USA. Missouri. Jasper Co.: Joplin, 23 Apr. 1909, E.J. Palmer 34 (A). Figure 4.

Crataegus dasyphylla is an ovate-leaved, rose-anthered form. The leaves are shallowly and subacutely or sometimes obtusely lobed and white-tomentose abaxially at anthesis with long marginal teeth. This considerably extends the concept of the C. texana complex to include the other southwestern pink-anthered forms except for those of the brazoria complex.

## TAXONOMIC REVIEW

Crataegus ser. Molles is a coherent set of species with a wide range throughout the hawthorn-rich regions of North America to the east of the central Great Plains except for the southeastern piedmont and coastal plain. Series Molles are large hawthorns with large leaves, dense indumentum at least in the early stages (often densely white-villous even on the bracteoles), are earlyflowering relative to their congeners, have large flowers, and at least the larger bracteoles are large, $+/-$ herbaceous, green, and somewhat persistent. Fruit is commonly large, suborbicular, red, persistently hairy, and commonly with erecto-patent, accrescent sepals.

In the present view there are five species in the series. The primary focus of this review are the Crataegus mollis group (two species) and the C. texana group (three species), sometimes broadly treated as one species, e.g., Lance (2011), sometimes as several species as here and by Palmer (1950, 1952). They have in common eglandular petioles, 20 stamens, ivory or pink to red anthers, and are trans-Appalachian. They collectively have an extensive synonymy. The other two species are $C$. submollts and C. pennsylvanica. This pair have glandular petioles, $5-10$ stamens, ivory or palest pink anthers and are nearly perfectly allopatric with the first group, occurring to the north and northeast of them (Wisconsin to Nova Scotia south to North Carolina). A local taxon with 10 stamens, $C$. transmississippiensis, will be evaluated later with the 10 -stamen taxa.

I tend to place considerable weight on anther color (basically anthocyanic vs. nonanthocyanic) especially if it can be correlated with other characteristics, even distribution. This derives from discussions with the bee pollination expert, T. Laverty, now deceased, who pointed out the significance of color faithfulness in pollen gathering. This provides a plausible narrative, unfortunately still unchecked as so much else in the adaptive ecology of hawthorns. Anthocyanic anthers in series Molles are restricted to a region to the southwest of southern Missouri but nonanthocyanic anthers occur throughout. Other helpful characters in the series are leaf shape and size, thominess, and in a special case, fruit color. Brilliant yellow fruit is restricted to a few counties of
southeastern Texas while a high level of thorniness, unusual in the eglandular-petiole Molles, and is predominantly Ozarkian and in the Gulf states.

## KEY TO TAXA

Occasional interserial hybrids with similarities to the following taxa may normally be distinguished by their lack of larger herbaceous bracteoles.

1. Pomes yellow, gold or orange; se Texas.

> 2. Most leaves + - elliptic, not lobed, at maturity abaxially glabrous; anthers rose; pomes $8-10 \mathrm{~mm}$ diam.
> 2. Crataegus brazoria (in part)
> 2. Most leaves +/- broad ovate, evidently lobed, at maturity abaxially rough-hairy, anthers ivory, pomes $15-20 \mathrm{~mm}$ diam.
> 4. Crataegus mollis (in part)

1. Pomes reddish; range of series.
2. Stamens 5-10; northern or Ozarkian taxa.
3. Petioles eglandular; styles and nutlets 3-5; Ozarks, ? elsewhere

Crataegus transmississippiensis
4. Petioles $+/$ - eglandular, at least when young; styles and nutlets 4-5; Great Lakes to Nova Scotia and Maine, south to Pennsylvania and Delaware, ? elsewhere.
5. Anthers white to cream, stamens ca. 10; 2-year-old thorns numerous, shiny black; leaves broadest about one third of the way from the base; usually a bush 5. Crataegus submollts (in part) 5. Anthers white to palest pink, stamens 5-10; 2-year-old thorns usually sparse to none, shiny brown; leaves usually broadest near base; commonly tree-like at maturity
6. Crataegus pennsylvanica
3. Stamens 20; trans-Appalachian taxa (Minnesota to sw Ontario south to Texas to Alabama).
6. Anthers non-anthocyanic (white to cream).
7. Petioles eglandular..............................................................................................................................$a e g u s ~ s u b m o l l i s ~(i n ~ p a r t) ~$
6. Anthers anthocyanic (pink to purple).
8. Mature leaf blades broad-ovate to $+/$ - isodiametric, $4-5 \mathrm{~cm}$, lobeless or with few shallow obtuse lobes per side, rather bluish at maturity; bushes $20-40 \mathrm{dm}$ on drier sites ( -80 ) dm, very thorny; sw Missouri, n Arkansas 3. Crataegus lanuginosa
8. Mature leaf blades $+/$ ovate, $4-8 \mathrm{~cm}$, deeply to shallowly 2-4 lobed per side, or $+/$ - elliptic, unlobed or with 1-2 apiculi per side, green at maturity, bushes $40-80 \mathrm{dm}$, thorns none to few; Missouri to Texas.
9. Mature leaf blades $+/$-ovate, deeply to shallowly 2-4 lobed per side; Missouri to Texas 1. Crataegus texana
9. Mature leaf blades $+/$ - elliptic, $4--8 \mathrm{~cm}$, unlobed or with $1-2$ apiculi per side; sc and se Texas 2. Crataegus brazoria (in part)

## 1. Crataegus texana Buckley

Crataegus texana is the principal pink- to red-anthered member of the series and ranges from southern Misssouri to southeastern Texas. Variation in leaf shape is considerable and may lead to reassessment of this taxonomy.

1. Leaves with 2-4 deep, $+/$ - angular lobes per side

1a. C. texana var. texana

1. Leaves with $1-2(-3)$ shallow, $+/$ - obtuse to subacute lobes per side $\quad \mathrm{lb}$. C. texana var. dasyphylla

1a. C. texana var. texana (Fig. 14)
This variety is common from the eastern Gulf coast of Texas inland along the I-35 corridor to about halfway to Dallas.

1b. C. texana var. dasyphylla (Sargent) J.B. Phipps (Fig. 4)
The distribution of this variety is still poorly known but it extends from at least southern Arkansas to southern Missouri. Very similar is C. brachyphylla Sargent, with only 3 styles and nutlets, but from dry hills in southwestern Arkansas

## 2. Crataegus brazoria Sargent (Fig. 2)

Crataegus brazoria has a similar range to $C$. texana var. texana but is maintained as a distinct species primarily on account of its distinct leaf shape and paucity of intermediates. The elliptic, barely lobed, acute-tipped leaves are very distinctive. The type form, which has not been seen in recent years, has bright yellow fruit and comes from the same area as C. viburnifolia. By far the most numerous, though unnamed, form has red fruit. The poorly understood, red-fruited Crataegus dallastana may be the same as this. If the typical form is proven to be a hybrid with the viburnifolta form of $C$. mollis, which seems possible, the red-fruited from will require naming.

## 3. Crataegus lanuginosa Sargent (Fig. 7)

Crataegus lanuginosa comes from the Ozarks, a rich area of endemism for Crataegus, at least at the infra-specific level. It resembles C. texana var. dasyphylla in a general way but has smaller leaves, reported as bluish in summer, and is particularly thorny, an uncommon trait in the 20stamen group. It occurs on dry hills in which a number of other Ozarkian hawthorn endemics are found.

## 4. Crataegus mollis (Torrey \& Gray) Scheele

Crataegus molls is treated as a wide-ranging and very variable species found from South Dakota and Minnesota, east to southwestern Ontario and northwest Pennsylvania thence south to Texas and Alabama. It is a basically a 20 -stamen, eglandular-petioled, ivory-anthered species. A significant variant, var. viburnifolia, has yellow fruit, two of the varieties are markedly thorny while the whole complex has a considerable variety of leaf shape. Crataegus transmississippiensis, an Ozarkian form with 10 stamens, is much like some forms of $C$. mollss and will be evaluated in another paper.

1. Thorns on twigs of mature plants us. few to plentiful; twigs slightly flexuous; blades elliptic to oblong-ovate, lobes, if present, acute, shallow; Mississippi to Tennessee

4e. C. mollis var. meridionalis 1. Thorns on twigs of mature plants us. sparse or none; twigs $+/-$ straight or only irregularly or slightly flexuous; leaves $+/$ - ovate to broad-elliptic, lobes, if present, obtuse to acute, shallow to deeper; throughout region of species.
2. Leaves with 4-6 sharp and deep lobes per side (max LII 20-40 \%) 4c. C. mollis var. incisifolia 2. Leaves lobeless or with $2-4+/$ shallow, subacute to obtuse lobes per side (max LII $0-20 \%$ ).
4. Fruit yellow; south Texas

4d. C. mollis var. viburnifolia.
4. Fruit red; throughout.
5. Leaves with $2-4$ subacute to obtuse distinct lobes per side, sinuses evident; throughout range of species except northern Minnesota and Manitoba ............................. 4a. C. mollis var. mollis
5. Leaves with lobes lacking or obscure, sinuses lacking or shallow; n Arkansas to sw Missouri

4b. C. mollis var. dumetosa

4a. C. mollis var. mollis Figure 10.
This variety is found almost throughout the range of the species. It is thornless to slightly thorny and has shallowly, subacutely to obtusely lobed leaves. Crataegus gravida (Fig. 6) is a woodland form from limestone hills in Tennesee and perhaps elsewhere. It is characterized by somewhat small, subacutely lobed leaves and small flowers (ca. 15 mm diam.). If better known it might warrant varietal recognition.

4b. C. mollis var. dumetosa (Sargent) Kruschke Figure 5.
This variety has unlobed to only slightly lobed leaves, is quite thorny, and is Ozarkian in range. It merges into var. mollis.

4c. C. mollis var. incisifolia Kruschke ex J.B. Phipps Figure 11.
Variety incisifolia has deeply and sharply lobed leaves and seems to have a wide distribution but is inadequately documented. The poorly understood C. arkansana (Fig. 1), described from cultivated material but lacking the deeply dissected extension shoot leaves of var. incistfolia, may well prove to be the same.

4d. C. mollis var. viburnifolia (Sargent) R.W. Lance Figure 15.
Crataegus brazorta var. viburnfolia (Sargent) J.B. Phipps
This variety is very similar to var. mollis but is restricted to southeast coastal Texas. It has canary-yellow fruit. Yellow-fruited forms with deeply lobed leaves and often slightly anthocyanic anthers are probable hybrids with $C$. texana var. texana.

4e. C. mollis var. meridionalis (Sargent) J.B. Phipps Figures 8, 9.
Variety meridionalis is found in several southeastern states on blackland soils. It is characterized by thorniness, somewhat zigzag twigs, and elliptic to narrow-ovate leaves rather chartaceous at maturity. The characteristic narrow leaves of the flowering lectotype show clearly in Fig. 8, but in the fruiting specimen (fig. 9) the leaves are broader.

## 5. Crataegus submollis Sargent Figures 12, 13.

Crataegus submollis is characterized by $+/-$ glandular petioles, 10 stamens (except in a local Montreal form), ivory anthers, and a particularly thorny habit. There is some variation in leaf shape. The flowering lectotype (Fig. 12) has broad-based, sometimes subcordate leaves while the fruiting syntype (Fig. 13) has broad-cuneate to subtruncate leaf bases. Crataegus canadensis, the 20 -stamen form, except for stamen number, is well within the range of variation of C. submollts, its leaf shape being very similar to the fruiting syntype (Fig. 13). Crataegus submollts has a large northeastern range presently documented as from Wisconsin to Nova Scotia south to northern Ohio and northern Pennsylvania and is particularly common on limestone.

## 6. Crataegus pennsylvanica Ashe

Crataegus pennsylvanica is broadly similar to $C$. submollts, differing as indicated in the key. It has a smaller and more southerly range than the latter species, being moderately common only in
southern Ontario, New York, and Pennsylvania and sporadic in Ohio, Delaware, and North Carolina. This species will be typified and illustrated in a forthcoming paper J.A. Macklin and myself.

Crataegus transmississippiensis Sargent
Crataegus transmississippiensis, an Ozarkian form with10 stamens, is much like some forms of $C$. mollis and will be evaluated in another paper.

## ACKNOWLEDGEMENTS

My thanks finally go to Dave Boufford at Harvard (GH, A) as he has not been sufficiently acknowledged in earlier papers of mine. Boufford, in the 1980s, undertook the massive task of sorting out Sargent's syntypes and types from among many thousands of specimens. Lectotypification of Sargent names is made far easier by his endeavors. I must also thank Melinda Peters, Harvard (GH), who provided type images of most of the syntypes discussed for this paper and sent specimens of others. Alina Freire-Fierro, Philadelphia Academy of Natural Sciences (PH) unearthed the fragmentary type of Crataegus texana and J.A Macklin kindly studied the fruiting syntype of Crataegus arkansana for residual indumentum. Jennifer Ogle (UARK) kindly imaged their holdings of the C. mollss group for comparison with C. arkansana.

## LITERATURE CITED

Kruschke, E.P. 1965. Contributions to the taxonomy of Crataegus. Milwaukee Public Museums Publ. Bot. 3: 11-273.
Lance, R.W. 2011. New alignments in North American Crataegus (Rosaceae). Phytoneuron 20113: 1-8.
Palmer, E.J. 1925. Synopsis of North American Crataeg. J. Arnold Arbor. 6: 5-128.
Palmer, E.J. 1950. Crataegus. Pp. 767-801 m M.L. Fernald. Gray's Manual of Botany (ed. 8). American Book Co., New York
Palmer, E.J. 1952. Crataegus. Pp. 338-375 in H.A. Gleason. New Britton and Brown Illustrated Flora, Vol. 2. New York Botanic Garden, Bronx.
Phipps, J.B. 2007a. Miscellaneous typifications, new combinations and one new variety in North American Crataegus (Rosaceae). J. Bot. Res. Inst. Texas. 1: 1005-1010.
Phipps, J.B. 2007b. Typification of Kruschke names in Crataegus (Rosaceae). J. Bot. Res. Inst. Texas. 1: 1011-1014.
Phipps, J.B., G. Yatskievych, and K. Wood. 2007. Typification of Crataegus names from the Missouri flora. Harvard Pap. Bot. 11: 179-198.
Sargent, C.A. 1902. Silva of North America, Vol. 13, suppl. Murray Printing Co., Massachusetts.


Figure 1 Crataegus arkansana. Flowering lectotype Massachussets Arnold Arboretum, cult, 18 May 1900, CS Sargent (7) 482-2 (A barcode 18257)


Figure 2 Crataegus brazorza Flowerng isolectotype Texas Brazona Co, Columbia, 25 Mar 1900, Wm Canby, CS Sargent, Wm Trelease 102 (DOV 4899). There is also a sterile specimen on the same sheet


Figure 3 Crataegus canadensis. Flowering lectotype Quebec Chateauguay, 29 May 1900, J.G. Jack 79 (A 18297)


Figure 4 Crataegus dasyphylla. Flowering lectotype Missouri Jasper Co, 23 Apr 1909, E.J. Palmer 34 (A 3132).


Figure 5 Cralaegus chmetosa Flowering lectotype Missour1 Neck City, 31 Mar 1907, Palmer 2 (A 16331)


Figure 6 Crataegus gravida. Flowering lectotype Tennessee Davidson Co, 'early May' no year, TG Harbuson 2142 (A 214400)


Figure 7 Crataegus lanugumsar Fruting syntype Missouri Jasper Co, nr Webb City, CS Sargent 4, 2 Oct 1901 (A16746) Flowermg ?syntype Mrsouri Jasper Co, ar Carterville, 26 Apr 1903, Ef Paimer 1239 (MO 747738)


Figure 8. Crataegus meridionalts. Possible isolectotype. Alabama: Hale Co., 17 Apr 1915, T.G. Harbison tree 7 (A 16920).


Figure 9 Crataegus mertdonalis. Fruiting specmen Alabama Hale Co, 24 Sep 1999, O'Kennon 14465 \& Lance (TRT)


Figure 10 Crataegus cocconea var mollis. Flowering lectotype Ohio Hamilton Co, Cincinnatt, May, no year, T.G. Leasn (NY 532807)


Figure 11. Crataegus mollis var. incisifolia. Fragments from type tree (Wisconsin: Rock Co., Kruschke K-47-8). Collage from figs 103-105 in Kruschke (1965): (a) flowering specimen; (b) vegetative specimen at about anthesis; (c) mature short-shoot leaves (September).


Figure 12 Crataegus submolls. Flowering lectotype Maine Penobscot Co, Orono, 27 May 1887M.L. Fernald s.n. (GH 273975)


Figure 13 Crataegus submoltts. Fruting syntype Maine York Co, Gerrish I, 17 Sep 1899, J.G. Jack 2 (A 58615)
fig. 14
PTo 161. Sarge Ted, apple Haw
Corataequs cancitc 2 Ya, of do mot recollect of having dean this how anyivtere out of texas. There is another large, haw here with yellow fruit, which I have found
 - hey. does not grow tall. Id id prot fining this beautiful, and quite delicious, eatable, ned haw winnie tostog (29 Orr) consogsingly can sat give the timur op it blomencing. 25.30 fe.



Figure 14 Crataegus texana. Holotype Texas Columbia Co, along Brazos and Columbia Rivers, without date, S.B. Buckley sin, flowering specimen (PH 1020965)


Figure 15 Crataegus viburnfolia Flowerng syntype Texas Brazona Co, Columbia, 27 Mar 1902 B F Bush 1219, treell (TRT, CM 245998)

# NEW DISTRIBUTION RECORDS OF ACANTHACEAE IN GUATEMALA 

Thomas F.Daniel<br>Department of Botany, California Academy of Sciences Golden Gate Park<br>San Francisco, California 94118<br>tdaniel@calacademy org<br>Mario Estéban Véliz P.<br>Herbarı BIGU, Escuela de Bıología Facultad de Ciencias Químicas y Farmacia Universidad de San Carlos de Guatemala<br>Zona 12, Guatemala<br>marioveliz@yahoocom<br>Ricardo Kriebel<br>The New York Botanical Garden<br>Bronx New York 10458<br>rkriebel@nybg org


#### Abstract

New occurrence records for 11 species of Acanthaceae are reported for Guatemala. Four species, Justicia breedlovet, Justicia ensiflora, Loutertdum mexicanum, and Stenostephanus gracilis are newly reported for the country, and departmental records are noted for seven additional species. One hundred twenty-eight native species of Acanthaceae have been documented from Guatemala to date. KEY WORDS: Acanthaceae, Guatemala, Justicia breedlovei, Justicia ensiflora, Louteridum mextcanum, Stenostephamus gractls


## RESUMEN

Nuevos registros de ocurrencia de 11 especies de Acanthaceae se reportan en Guatemala. Se registraron cuatro especies, Justicia breedlovet, Justicia ensfflora, Louteridium mexicanum y Stenostephanus gracilts, en el país por primera vez, y se destacan nuevos registros departamentales por siete especies adicionales. Ciento veintiocho especies nativas de Acanthaceae son conocidas desde Guatemala hasta la actualidad.

PALABRAS CLAVES: Acanthaceae, Guatemala, Justicia breedlovei, Justicia ensiflora, Louteridum mexicanum, Stenostephanus gracilhs

Taxonomic, ecological, and conservation data of Guatemalan Acanthaceae were recently reviewed and revised (Daniel 2010). Daniel (2010) documented 124 species of the family from Guatemala. Ongoing collecting, primarily by local botanists, as well as continuing studies of historical collections have resulted in 11 new occurrence records of species of Acanthaceae either for the country or for departments within Guatemala. For example, recent collections made in the undercollected departments of Jutiapa and Santa Rosa document the occurrences of six species new to those departments and one species new to the country.

In this update of Guatemala's acanthaceous flora, four species are newly reported for the country: Justicia breedlovei, Justicia ensiflora, Louteridium mexicamum, and Stenostephanus gracilis. Thus, 128 native species of Acanthaceae are currently known from Guatemala. This is the highest
number of native species for the family among the seven nations of Central America. Collections of seven additional species represent new departmental records within Guatemala: Aphelandra speciosa (Santa Rosa), Dicliptera unguiculata (Santa Rosa), Hypoestes phyllostachya (Jutiapa), Lepidagathis guatemalensts (Jutiapa), Odontonema tubaeforme (Baja Verapaz and Jutiapa), Ruella blechum (Jutiapa), Spathacanthus hahnianus (Quiché). Collections noted for Spathacanthus hahnianus, previously known only from a single collection in Guatemala, are the first in more than 125 years and confirm the persistence of that species in the country.

Descriptions of most Guatemalan Acanthaceae that incorporate taxonomic changes and collections since Gibson's (1974) account of the family in the Flora of Guatemala can be found in either Daniel (1995) or Daniel (2010). The following distribution records provide collection information, geographic ranges, and pertinent taxonomic notes (where appropriate).

## Aphelandra speciosa Brandegee

Santa Rosa: Pueblo Nuevo Viñas, Finca Santa Isabel, $14^{\circ} 12^{\prime} 17.7^{\prime} \mathrm{N}, 90^{\circ} 27^{\prime} 33.7^{\prime \prime} \mathrm{W}, 1044 \mathrm{~m}$, cultivo de café, 22 II 2010 (flr), L. Velásquez \& E. Morales 672 (BIGU, CAS).

This species is endemic to the mountains of southeastern Chiapas and southwestern Guatemala, where it was previously known from Quezaltenango, San Marcos, and Suchitepéquez (Daniel 2010).

## Dicliptera unguiculata Nees

Santa Rosa: Pueblo Nuevo Viñas, Finca Santa Isabel, $14^{\circ} 12^{\prime} 44.7^{\prime \prime} \mathrm{N}, 90^{\circ} 26^{\prime} 46.8^{\prime} \mathrm{W}, 1055 \mathrm{~m}$, cultivo de café, 23 II 2010 (flr, frt), L. Velásquez \& E. Morales 732 (BIGU, CAS).

This widespread species occurs from southern Mexico to Peru. It has been documented previously from seven departments in Guatemala: Alta Verapaz, Chimaltenango, Guatemala, Jalapa, Quetzaltenango, Sacatepéquez, and Sololá (Daniel 2010). Because the species often occurs in disturbed habitats, it will likely be found in additional departments as well.

Hypoestes phyllostachya Baker
Jutiapa, Moyuta, Finca Los Ausoles, $14^{\circ} 03^{\circ} 07.32^{\prime} \mathrm{N}, 90^{\circ} 05^{\prime} 43.63^{\prime} \mathrm{W}, 1019 \mathrm{~m}$, cultivo de café, 6 IV 2010 (flr, frt), L. Velásquez \& J. García 870 (BIGU, CAS).

This commonly cultivated species is native to Madagascar. Daniel (2010) noted that it has become naturalized in at least six departments of Guatemala: Alta Verapaz, Baja Verapaz, Escuintla, Guatemala, Sacatepéquez, and San Marcos. The species, which sometimes forms an extensive ground cover, continues to increase its range in the American tropics.

## Justicia breedlovei T.F. Daniel

Huehuetenango: Nentón, orillas del Río Salchilá, $15^{\circ} 59^{\circ} 05^{\circ} \mathrm{N}, 91^{\circ} 33^{\prime} 34.3^{\circ} \mathrm{W}, 1588 \mathrm{~m}, 7 \mathrm{II}$ 2011 (flr, frt), L. Velásquez \& M. Véliz 1656 (BIGU, CAS), M. Véliz \& L. Velásquez 22572 (BIGU, CAS), 22576 (BIGU, CAS), 22603 (BIGU, CAS).

The collections cited above from northern Huehuetenango, near the Chiapan border, are the first from Guatemala. The species was previously known from a nearby region of Chiapas in southern Mexico (Daniel 1995). These collections extend its known flowering and fruiting season from December to February, elevational range from 1170 to 1588 m , height of the shrubs from 1.2 to 2.5 m , petiole length from 25 to 30 mm , capsules length from 9.5 to 11 mm , stipe length from 3 to 4 mm , seed length from 2.5 to 3 mm , and seed width from 2 to 2.3 mm . Seeds of the Guatemalan plants appear to lack the superficial and inconspicuous trichomes evident on those from Chiapas;
however, sparse eglandular trichomes less than 0.05 mm are evident on portions of their margin Figure 1 shows the striking mflorescences, with maroon bracts and orange flowers, of this species


Figwe 1 Photographs of mflorescences A Justicia breedllovei (photo by L Velásquez) B Justicaa ensfflora (photo by R Kriebel)

Justicia ensiflora (Stand1) D N Gibson
Izabal Morales, Sterra Caral, hacia la cima, $1538749^{\circ},-8869357^{\circ}, 1000 \mathrm{~m}, 14$ Jun 2011 (flr), R. Krebel et al. 5596 (CAS, NY, USCG)

Justcta ensiflora was previously known from Belize and Honduras (Gibson 1974, Dannel 2005, 2010 373) It is distunctive among Guatemalan Acanthaceae by the long ( $12-185 \mathrm{~cm}$ ) peduncles of the inflorescence, purplish rachis, bright orange calyx and corollas, corollas $56-65 \mathrm{~mm}$ long, and anther thecae 4-5 mm long (Figure 1) Capsules and seeds, which are not present on the single known Guatemalan collection, have not been described previously for the species Based on collections from Honduras (cited in Daniel 2005), they can be described as follows capsules 14-16 mm long, pubescent with flexuose eglandular trichomes $0.1-03 \mathrm{~mm}$ long, stipe $5-7 \mathrm{~mm}$ long, head subellipsord, 9 mm long, seeds lenticular, 3 mm long, 22 mm wide, rugose

Lepidagathis guatemalensis (Donn Sm ) Kameyama
Jutiapa Moyuta, Finca Los Ausoles, $14^{\circ} 02^{\prime} 46.13^{\prime} \mathrm{N}, 90^{\circ} 05^{\prime} 3420^{\circ} \mathrm{W}, 1180 \mathrm{~m}$, lade de un arroyo, 14 IV 2010 (flr), L. Velásquez \& J. Garcia 919 (BIGU, CAS).

This species, previously known as Lophostachys guatemalensis Donn Sm, has been recorded from El Salvador, southern Mexico (Chiapas and Oaxaca), and the following departments of Guatemala Escuintla, Guatemala, and Santa Rosa (Daniel 2010).

Louteridium mexicanum (Baill) Standl
Alta Verapaz Mpıo Rubeltem, Montaña Sacranix, Wegstrecke zwischen der Finca Xalcata (= Saqmoc) und der Filnca Sacté, S des Rio Sachuchaj (W der Strasse Cobán-Chusec), ca 500 m , Kalkkarst, Reste von halbimmergrunen Wald, 25 III 2001 (flr, fit), H. Foerther et al. 10940 (BM)

Thus is the first record of thus species from Guatemala It can be distingushed from Louteridtum donnell-smithtt, which also occurs in Alta Verapaz, by the pubescence of young stems, leaves, inflorescence rachis, dichasial peduncles, and pedicels In L. mexicanum, these are glabrous
or pubescent with eglandular trichomes to $0.8(-1) \mathrm{mm}$ long; in L. donnell-smithin they are pubescent with glandular and eglandular trichomes up to 2.8 mm long). Louteridium mexicamm was previously known only from southern Mexico (Chiapas, Oaxaca, Tabasco, Veracruz; Daniel 1995). As noted by Daniel (2010), plants from Guatemala previously attributed to $L$. mexicanum are L. purpusit Brandegee. Label data of Foerther et al. 10940 note that Guatemalan plants grow on karst limestone in semievergreen forest remnants and that they had brownish violet corollas.

## Odontonema tubaeforme (Bertol.) Kuntze

Baja Verapaz: Pauzal, 1200 m, H. von Tuerckheim II 1752 (BP). Jutiapa, Moyuta, Finca Los Ausoles, $14^{\circ} 03^{\prime} 07.32^{\prime \prime} \mathrm{N}, 90^{\circ} 05^{\prime} 43.63^{\prime \prime} \mathrm{W}, 1019 \mathrm{~m}$, cultivo de café, 6 IV 2010 (flr), L. Velásquez \& J. Garcia 867 (BIGU, CAS).

Odontonema tubaeforme occurs from southern Mexico to Panama. Daniel (2010) noted its occurrence in thirteen departments of Guatemala. Von Tuerckheim's locality "Pauzal" in Baja Verapaz has not been located with certainty. However, ca. 12-13 (air) km to the northeast of Purulhá $\left(15^{\circ} 14^{\prime} 7.62^{\prime \prime} \mathrm{N}, 90^{\circ} 14^{\prime} 6.07^{\prime \prime} \mathrm{W}\right.$ ) there is a "Pansal" (Hoa and Hong 2005) with elevations in the nearby the mountains up to 2000 m . Von Tuerckheim also collected other plants "between Purulka and Pauzal" (e.g., Diplazum prominulum Maxon).

## Ruellia blechum L.

Jutiapa: Moyuta, Finca Los Ausoles, $14^{\circ} 03^{\circ} 07.32^{\prime \prime} \mathrm{N}, 90^{\circ} 05^{\circ} 43.63^{\prime} \mathrm{W}, 1019 \mathrm{~m}$, cultivo de café, 6 IV 2010 (flr), L. Velásquez \& J. Garciáa 869 (BIGU, CAS).

This widely distributed and weedy species, previously known as Blechum pyramidatum (Lam.) Urb., occurs from Mexico to Peru. It has been introduced and become naturalized in the southern United States (Florida) and the Paleotropics (e.g., Papua New Guinea). Daniel (2010) noted its occurrence in 14 of Guatemala's 22 departments, and it will likely be found in most of the remaining ones.

## Spathacanthus hahnianus Baill.

Quiché: Chajul, bosque de Finca la Perla, $15.6083724^{\circ} \mathrm{N}, 91.1041225^{\circ} \mathrm{W}, 1400 \mathrm{~m}$, bosque de Vochysia, Gordonia, Magnolta, e Hieronyma, 15 XI 2009 (flr, fit), E. Tribouillier \& I. Pedro 409 (BIGU); Chajul, bosque de Finca la Perla, $15^{\circ} 36^{\prime} 19.22^{\prime \prime} \mathrm{N}, 91^{\circ} 6^{\prime} 12.09^{\prime} \mathrm{W}, 1500 \mathrm{~m}$, bosque mesófilo con Magnolia mexicana y Pseudolmedıa, 28 XI 2009 (frt), E. Triboullier \& I. Pedro 436 (BIGU); Chajul, bosque de aldea Chel, $15.6157966^{\circ} \mathrm{N}, 91.0439035^{\circ} \mathrm{W}, 1800 \mathrm{~m}$, bosque de Billta, Hedyosmum, Ocotea, Oreopanax, y Elaeagia, 7 XI 2010 (flr), E. Tribouilliter \& I. Pedro 469 (BIGU).

This species was previously known from Mexico, Honduras, and Alta Verapaz, Guatemala (Daniel 2005, 2010). Because the sole collection from Guatemala, von Tuerckherm 1030 - the type of Spathacanthus simplicifolius (Donn. Sm.) Lindau, was collected more than 125 years ago, Daniel (2010) indicated that the species was likely rare or possibly extirpated in Guatemala. The collections noted above from Quiché reveal that the species persists in mes ophytic montane forests and extend its known fruiting period to November.

Stenostephanus gracilis (Oerst.) T.F. Daniel.
Santa Rosa: Pueblo Nuevo Viñas, Finca Santa Isabel, $14^{\circ} 12^{\prime} 44.7^{\prime \prime} \mathrm{N}, 90^{\circ} 26^{\prime} 46.9^{\prime} \mathrm{W}, 1061 \mathrm{~m}$, 24 II 2010 (flr), L. Velásquez \& E. Morales 804 (BIGU, CAS).

This is the first record of the species for Guatemala and for any species of Stenostephanus in the department of Santa Rosa. Although known only from plants bearing flowers, this collection has all of the characteristics of S. gracilis in Chiapas and Costa Rica (Daniel 1999). Indeed, the
occurrence in southeastern Guatemala provides a geographic link from the previously known occurrences in southern Mexico to those in southern Central America.

## ACKNOWLEDGMENTS

For loans and other courtesies, we are grateful to the curators of the following herbaria: BIGU, BM, BP, and CAS. We thank the collectors noted above, especially Luis Velásquez and Erick Triboullier, for making their collections available to us. We are grateful to Jorge Jimenez, Rosario Rodas, and Monica Barrientos for planning the trip and figuring out the logistics to visit Sierra Caral. Funding for Daniel's studies of Guatemalan Acanthaceae was provided by the National Geographic Society (Research Award 8570-08) and the National Science Foundation (DEB-0743273).

## LITERATURE CITED

Daniel, T.F. 1995. Acanthaceae. Pp. 1-158 m D.E. Breedlove (ed.). Flora of Chiapas, pt. 4. California Academy of Sciences, San Francisco.
Daniel, T.F. 1999. Revision of Stenostephamus (Acanthaceae) in Mexico. Contr. Univ. Michigan Herb. 22: 47-93.
Daniel, T.F. 2005. Catalog of Honduran Acanthaceae with taxonomic and phytogeographic notes. Contr. Univ. Michigan Herb. 24: 51-108.
Daniel, T.F. 2010. Catalog of Guatemalan Acanthaceae: taxonomy, ecology, and conservation. Proc. Calif. Acad. Sci. 61: 291-379.
Gibson, D.N. 1974. Acanthaceae. Pp. 328-461 in P.C. Standley et al. (eds.). Flora of Guatemala, Fieldiana, Bot. 24, pt. 10. Field Museum of Natural History, Chicago.
Hoa, P.V. and P.V. Hong. 2005. International Travel Maps, Guatemala [map]. ITBM Publishing, Vancouver.

# PREMNA WUII (VERBENACEAE), A NEW NAME FOR PREMNA VELUTINA C.Y. WU 

David E. Boufford<br>Harvard University Herbaria<br>22 Divinity Avenue<br>Cambridge, Massachussetts 02138-2020<br>david_boufford@harvard edu<br>BRUCE BARTHOLOMEW<br>Department of Botany California Academy of Sciences<br>55 Music Concourse Drive<br>San Francisco, California 94118<br>bruce batholomew@yahoocom


#### Abstract

A new name, Premna wuii Boufford \& B.M. Barthol. (Verbenaceae), is proposed to replace $P$. velutina C.Y. Wu, a later homonym of $P$. velutina Gürke. Premna wuil is known only from western Yunnan Province, China.


KEY WORDS: Premna, Verbenaceae, Flora of China, new name, Yunnan

The appropriately named and distinctive Premna velutina C.Y. Wu (see also Wu and Raven, 1998) was, unfortunately, not recognized as a later homonym of $P$. velutina Gürke in the treatment published in the Flora of Chrna (Chen \& Gilbert 1994) nor in the earlier published treatment in Flora Reipublicae Popularis Sinicae (Chen 1982) and only recently came to light during routine identifications of specimens of Premna collected in western Yunnan. Because it is such a distinct species and easily separated from its apparent closest relative, P. mekongensis W. Smith, we therefore propose the following new name as a replacement.

PREMNA WUII Boufford \& B.M. Barthol., nom. nov., based on Premna velutina C.Y. Wu, Fl.
Yunnan. 1: 428, pl. 102, f. 8-10. 1977. Not Gürke, Pflanzenw. Ost-Afrikas 100: 338. 1895.
We are pleased to name this species for Professor Wu Zhengyi (Wu Cheng-Yi), who has devoted his life to the study of Chinese plants and whose knowledge of the Chinese flora is beyond comparison.

## ACKNOWLEDGMENTS

We thank Professor Li Heng for examining the type specimen of Premna velutina C.Y. Wu in the herbarium of the Kunming Institute of Botany (KUN) and comparing it with recent collections made in the Gaoligong Shan region of Yumnan, China.

## LITERATURE CITED

Chen, S.L. 1982. Premna L. In C. Pei and S.L. Chen (eds.). Flora of China 65(1): 81-119.
Chen, S.L and M.G. Gilbert. 1994. Verbenaceae. In Z.Y. Wu and P. H. Raven (eds.). Flora of China 17: 1-49.
Wu, Z.Y. and P.H. Raven (eds.). 1998. Flora of China Illustrations 17: fig. 61, 4-7.

# ATLAS OF THE FLORA OF NEW ENGLAND: ROSACEAE 

RAY ANGELO ${ }^{1}$ and DAVID E. BOUFFORD ${ }^{2}$<br>Harvard University Herbaria<br>22 Divmity Avenue<br>Cambridge, MA 02138-2020<br>${ }^{1}$ rangelo@oeb harvard edu<br>${ }^{2}$ davıd_boufford@harvard edu


#### Abstract

Dot maps are provided to depict the distribution at the county level of the taxa of Magnoliophyta: Rosaceae growing outside of cultivation in the six New England states of the northeastern United States. The maps treat 270 taxa (species, subspecies, varieties, and hybrids, but not forms) based primarily on specimens in the major herbaria of Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, and Connecticut, with most data derived from the holdings of the New England Botanical Club Herbarium (NEBC). Brief synonymy (to account for names used in standard manuals and floras for the area and on herbarium specimens), habitat, chromosome information, and common names are also provided.


KEY WORDS: flora, New England, atlas, distribution, Rosaceae

This article is the tenth in a series (Angelo \& Boufford 1996, 1998, 2000, 2007, 2010, 2011a, 2011b, 2012a, 2012b) that presents the distributions of the vascular flora of New England in the form of dot distribution maps at the county level (Figure 1). The atlas is posted on the internet at $\mathrm{http}: / /$ neatlas.org, where it will be updated as new information becomes available.

This project encompasses all vascular plants (lycophytes, pteridophytes and spermatophytes) at the rank of species, subspecies, and variety growing independent of cultivation in the six New England states. Hybrids are also included, but forms and other ranks below the level of variety are not. The dots are based on voucher specimens primarily in New England herbaria (of colleges, universities, botanical gardens, and public museums) representing reproducing populations outside of cultivated habitats. This tenth installment includes the family Rosaceae (Magnoliophyta). Of the 283 taxa treated (270 mapped), 95 are not native to the region. Future accounts will treat the distribution of additional non-monocot angiosperms.

The habitat data are distillations from a variety of sources augmented by our own field observations. An attempt was made to indicate habitat information as it applies to a particular taxon in New England rather than to the entire range of the taxon. Habitat information is not provided for hybrid taxa.

It is our hope that these articles will stimulate additional field work to supplement the distributions portrayed in the maps. The New England Botanical Club herbarium has proven to be the most important resource for this project. We are eager to receive information on voucher specimens in public herbaria documenting range extensions and filling county gaps in distributions. Similarly, because the atlas of the New England flora will be continuously updated as new information becomes available, we are eager to receive notification of published corrections of cytological information and new, documented chromosome counts for taxa in the New England flora.

## MATERIALS AND METHODS

Materials and methods are as outlined in Angelo and Boufford (1996) and in a web version (Angelo \& Boufford 2011c) and are not repeated here.

## TAXONOMY AND FORMAT

The taxonomy and nomenclature adopted for this work essentially follow that of draft treatments for the Flora of North America project, except for Crataegus and Rubus (as explained in the sections for those genera) and except that families, genera, and species are arranged alphabetically. The families and their circumscription do not necessarily reflect current views on relationships or composition. The Angiosperm Phylogeny Website (Stevens 2001 onwards) should be consulted for a continuously updated treatment of families and their inclusive genera. Named and unnamed hybrid taxa are placed alphabetically at the end of the genus in which they occur. Unnamed hybrids combine the names of the progenitors alphabetically by epithet. Taxa that are not native to New England are indicated by uppercase text. Unpublished names are not used, even if publication is pending.

Chromosome numbers are taken primarily from draft treatments for the Flora of North America project and from Goldblatt and Johnson (1979-).

Synonymy is provided primarily with respect to names accepted in standard manuals covering New England published from 1950 onward, including Fernald (1950), Gleason and Cronquist (1991), and Seymour (1982) and on herbarium labels in New England herbaria. Synonyms have not been provided where the distribution for the synonymized name does not include New England.

The following list (which includes excluded taxa) will aid readers in finding familiar names that have been transferred to other taxa:

| Cydoma (in part) | => | Chaenomeles |
| :---: | :---: | :---: |
| Dalibarda | => | Rubus |
| Potentilla (in part) | => | Comarum |
| Potentilla (in part) | => | Dasiphora |
| Potentilla (in part) | => | Drymocallis |
| Potentilla (in part) | => | Duchesnea |
| Potentilla (in part) | => | Stbbaldtopsis |
| Pyrus (in part) | => | Aronia |
| Pyrus (in part) | => | Malus |
| Pyrus (in part) | => | Sorbus |
| Sanguisorba (in part) | => | Poteridum |

The following species have been reported from our area but are excluded for the reasons noted:
ARUNCUS DIOICUS (Walter) Fernald var. VULGARIS (Maximowicz) H. Hara [no voucher found; reported from Maine]

MALUS HUPEHENSIS (Pampanini) Rehder [no voucher found; reported from Massachusetts]
MALUS MANDSHURICA (Maximowicz) Komarov ex Juzepczuk [no voucher found; reported from Massachusetts]

POTENTILLA ALBA Linnaeus [no voucher of wild occurrence found; reported from Comnecticut and Massachusetts]

POTENTILLA COLLINA Wibel [no voucher found; reported from Massachusetts]
POTENTILLA ERECTA (Linnaeus) Raeuschel [no voucher found; reported from Massachusetts]

PRUNUS SPECIOSA (Koidzumi) Nakai [no voucher found; reported from Massachusetts]
ROSA CAROLINA Limnaeus subsp. SUBSERRULATA (Rydberg) W.H. Lewis (R. CAROLINA Linnaeus var. SETIGERA Crépin) [no voucher found; reported from Maine, New Hampshire and Vermont]

ROSA MULTIFLORA Thunberg var. CALVA Franchet \& Savatier [voucher has been reidentified as R. MULTIFLORA var. MULTIFLORA; reported from Massachusetts]

ROSA SEMPERVIRENS Linnaeus [no voucher found; reported from Massachusetts]
ROSA TOMENTOSA Smith [no voucher found; reported from Vermont]
Rosa $\times$ palustriformis Rydberg (pro spectes), (R. blanda Aiton $\times$ R. palustris Marshall) [no voucher found; reported from Maine]

Rubus arcticus Linnaeus subsp. acaulis (Michaux) Focke (R. acaults Michaux) [no voucher found; reported from Maine]

RUBUS PARIIFLORUS Nuttall [no voucher found; reported from Massachusetts]
SORBUS ALNIFOLIA (Siebold \& Zuccarini) K. Koch [no voucher found; reported from Massachusetts]

SORBUS HYBRIDA Linnaeus (Pyrus hybrida (Linnaeus) Smith) [no voucher of wild occurrence found; reported from Maine, New Hampshire and Vermont]

SORBUS $\times$ THURINGIACA (Nyman) Schönach ( $S$. ARIA (Linnaeus) Crantz $\times S$. AUCUPARIA Linnaeus) [no voucher found; reported from New Hampshire and Vermont]

SPIRAEA CORYMBOSA Rafinesque [no voucher of wild occurrence found; reported from Massachusetts]

SPIRAEA SALICIFOLIA Linnaeus [no voucher found; reported from Vermont]

## ANGIOSPERMAE (MAGNOLIOPHYTA) - ANGIOSPERMS

## ROSACEAE

AGRIMONIA EUPATORIA Linnaeus-Church Steeples (Figure 2). $2 n=28,56$. Waste places, fields. From Eurasia, northern Africa.

Agrimona gryposepala Wallroth-(Figure 2). $2 n=56$. Thickets, deciduous or mixed woods, roadsides.

Agrimoma microcarpa Wallroth-(Figure 2). $2 n=$ ? Rocky woods.
Agrimonia parviflora Aiton-(Figure 2). $2 n=28$. Calcareous river thickets, riverbanks, meadows, moist woods in circumneutral soil, moist, sandy roadsides.

Agrimona pubescens Wallroth-(Figure 2). $2 n=28$. Rich, open, deciduous or mixed woods, swamps. [A. bicknellu (Kearney) Rydberg; A. mollis (Torrey \& A. Gray) Britton; A. mollis var. bicknellii Kearney]

Agrimonia rostellata Wallroth-Woodland Agrimony (Figure 2). $2 n=28$. Dry, open, rocky woods.
Agrimonta striata Michaux-(Figure 2). $2 n=56$. Thickets, woodland borders, woods.
ALCHEMILLA FILICAULIS Buser subsp. VESTITA (Buser) M.E. Bradshaw-(Figure 2). $2 n=\mathrm{ca}$. 101-109. Wool waste. From Europe. [A. IULGARIS Linnaeus var. VESTITA (Buser) Fernald \& Wiegand]

ALCHEMILLA MONTICOLA Opiz-(Figure 2). $2 n=101-104,106-110$. Woods, fields, roadsides. From Eurasia. [A. PRATENSIS - misapplied; A. IULGARIS - misapplied]

Amelancher arborea (F. Michaux) Fernald-Downy Shadbush (Figure 3). $2 n=34,68$. Rocky, upland or dry, rich woods, thickets.

Amelanchter bartramiana (Tausch) M. Roemer-Mountain Shadbush (Figure 3). $2 n=34,68$. Cold swamps, bogs, moist thickets, cool woods, bushy slopes, mountain summits.

Amelancher canadensis (Linnaeus) Medikus var. canadensis-Eastern Shadbush (Figure 3). $2 n=34$, 51, 68. Woods, moist thickets, swamps, marsh borders. [A. oblongifolia (Torrey \& A. Gray) M. Roemer var. oblongifolia]

Amelancher gaspensts (Wiegand) Fernald \& Weatherby-(Figure 3). $2 n=$ ? River shores and their outcrops.

Amelanchter humilis Wiegand-(Figure 3). $2 n=34,68$. Calcareous ledges.
Amelanchter interior E.L. Nielsen-(Figure 3). $2 n=68$. Rocky slopes, stream banks, sandy areas. [A. weegandn E.L. Nielson]

Amelanchier intermedia Spach-(Figure 3). $2 n=68$. Swamps, bogs, thickets, shores.

Amelanchier laevis Wiegand-Smooth Shadbush (Figure 3). $2 n=34,68$. Woodland borders, damp thickets, fields, roadsides.

Amelancher nantucketensis E.P. Bicknell-(Figure 3). $2 n=28$. Dry fields, sandy grasslands, heaths, pine barrens, pond and river shores among rocks or in sand. [A. canadensts (Linnaeus) Medikus var. micropetala (B.L. Robinson) Rehder; A. oblongifolta (Torrey \& A. Gray) M. Roemer var. micropetala B.L. Robinson]

Amelancher sangunea (Pursh) de Candolle-Red-twigged Shadbush (Figure 4). $2 n=34,51,68$. Riverbanks, ledges, woodland borders.

Amelancher spicata (Lamarck) K. Koch-Thicket Shadbush (Figure 4). $2 n=51,68$. Rocky or sandy, open habitats, typically in acidic soil. [A. stolontfera Wiegand]

- Amelanchter hybrids -

Amelanchter arborea (F. Michaux) Fernald $\times A$. bartramiana (Tausch) M. Roemer-(Figure 4).
Amelanchter arborea (F. Michaux) Fernald $\times$ A. canadensts (Linnaeus) Medikus var. canadensts(Figure 4).

Amelanchter arborea (F. Michaux) Fernald $\times$ A. laevts Wiegand-(Figure 4).
Amelancher arborea (F. Michaux) Fernald $\times$ A. spicata (Lamarck) K. Koch-(Figure 4).
Amelancher bartramtana (Tausch) M. Roemer $\times$ A. canadensts (Linnaeus) Medikus var. canadensis-(Figure 4).

Amelanchier bartramiana (Tausch) M. Roemer $\times$ A. spicata (Lamarck) K. Koch-(Figure 4).
Amelanchter canadensis (Linnaeus) Medikus var. canadensis $\times$ A. laevis Wiegand-(Figure 4).
Amelancher canadensis (Linnaeus) Medikus var. canadensis $\times$ A. spicata (Lamarck) K. Koch(Figure 5).

Amelancher humilis Wiegand $\times$ A. laevis Wiegand-(Figure 5).
Amelancher laevis Wiegand $\times$ A. sanguinea (Pursh) de Candolle-(Figure 5).
Amelanchter laevis Wiegand $\times$ A. spicata (Lamarck) K. Koch-(Figure 5).
Amelanchter $\times$ neglecta Eggleston ex G.N. Jones (pro species)-(Figure 5). [A. bartramtana (Tausch) M. Roemer $\times$ A. laevis Wiegand]

Amelanchter sangumea (Pursh) de Candolle $\times$ A. spicata (Lamarck) K. Koch-(Figure 5).
Aronia arbutifolia (Linnaeus) Persoon-Red Chokeberry (Figure 5). $2 n=34,68$ (New England). Low woods, thickets, swamps, shores. [Photinia pyrifolia (Lamarck) K.R. Robinson \& J.B. Phipps; Pyrus arbutifolia (Linnaeus) Linnaeus f.]

Aronia melanocarpa (Michaux) Elliott-Black Chokeberry (Figure 5). $2 n=34$ (New England), 68 (outside New England). Low woods, thickets, swamps, shores, sand dunes, dry, rocky slopes, bluffs, clearings, roadsides. [A. arbutifolia (Linnaeus) Persoon var. nigra (Willdenow) F. Seymour; Photinia melanocarpa (Michaux) K.R. Robinson \& J.B. Phipps; Pyrus melanocarpa (Michaux) Willdenow]

- Aronia hybrid -

Aronia $\times$ prunifolia (Marshall) Rehder (pro spectes)—Purple Chokeberry (Figure 5). Swamps, shores, low thickets, clearings. [A. arbutifolia (Linnaeus) Persoon $\times$ A. melanocarpa (Michaux) Elliott; A. arbutifolia (Linnaeus) Persoon var. atropurpurea (Britton) F. Seymour; A. atropurpurea Britton; A. flortbunda (Lindley) Sweet; Photinta flortbunda (Lindley) K.R. Robinson \& J.B. Phipps; Pyrus flortbunda Lindley]

ARUNCUS DIOICUS (Walter) Fernald var. DIOICUS-Buck's-beard (Figure 6). $2 n=18$. Waste places, roadsides, openings and borders of mixed woods. From farther west and south.

CHAENOMELES JAPONICA (Thunberg) Lindley ex Spach—Japanese Flowering-quince (Figure 6). $2 n=34$ (India). Railroad ditches, moist woods. From Japan. [CYDONLA JAPONICA (Thunberg) Persoon]

CHAENOMELES SPECIOSA (Sweet) Nakai-Chinese Flowering-quince (Figure 6). $2 n=34$. Woods by pond shore, roadsides, thickets. From China, southeastern Asia. [CYDONIA SPECIOSA Sweet]

Comarum palustre Linnaeus-Marsh Cinquefoil (Figure 6). $2 n=28,42$. Pond and lake shores, meadows, marshes, bogs, swamps. [Potentilla palustris (Limnaeus) Scopoli var. palustris; $P$. palustris var. villosa (Persoon) Lehmann]

COTONEASTER DIVARICATUS Rehder \& E.H. Wilson-(Figure 6). $2 n=$ ? Shady thickets, epiphyte in fork of maple tree. From China.

## Crataegus taxonomy

Due to the significant diversity of taxonomic treatments for this genus over the years and the complicated reproductive mechanisms known to occur (hybridization, polyploidy, aneuploidy, apomixis), the listing here largely follows that of Gleason and Cronquist (1991) which groups many species considered separate by others. The works of Phipps and Muniyamma (1980) and of Kruschke (1965) have been used to place some names in synonymy. Certain obscure taxa collected only a few times in limited locations are listed here without mapping. The reforestation of New England since the early $20^{\text {th }}$ century has greatly reduced the open habitat and fencerows preferred by members of this genus, making it likely that obscure taxa and many hybrids will never be seen again.

Crataegus baccata Sargent - obscure taxon known only from historic collections in Worcester County, Massachusetts.

Crataegus brainerdui Sargent-(Figure 6). $2 n=$ ? Thickets, fields, woodland margins, roadsides. [C. bramerdii var. asperffolia (Sargent) Eggleston; C. brainerdii var. cyclophylla (Sargent) E.J. Palmer; C. brainerdtt var. egglestonit (Sargent) B.L. Robinson; C. bratnerdit var. scabrida Eggleston; C. asperifolia Sargent; C. cyclophylla Sargent; C. egglestoniu Sargent; C. scabrida

Sargent var. scabrida; C. scabrida var. asperifolia (Sargent) Kruschke; C. scabrida var. cyclophylla (Sargent) Kruschke; C. scabrida var. egglestonit (Sargent) Kruschke]

Crataegus bristolensis Sargent obscure taxon known only from historic collections in Bristol County, Massachusetts.

Crataegus calpodendron (Ehrhart) Medikus-Pear Hawthom (Figure 6). $2 n=34$. Thickets, open woods, woodland margins.

Crataegus chrysocarpa Ashe-Round-leaved Hawthom (Figure 6). $2 n=34,68$. Thickets, fields, woodland margins, roadsides. [C. chrysocarpa var. blanchardin (Sargent) J.B. Phipps; C. chrysocarpa var. faxonil (Sargent) Eggleston; C. chrysocarpa var. phoenicea E.J. Palmer ex J.B. Phipps; C. chrysocarpa var. praecox (Sargent) J.B. Phipps; C. brunetiana Sargent var. brunetiana; C. brunetiana var. fernaldn (Sargent) E.J. Palmer; C. dodget Ashe; C. faxonn Sargent var. faxonii; C. faxonu var. praetermissa (Sargent) E.J. Palmer; C. fernaldil Sargent; C. flavida Sargent; C. irrasa Sargent var. irrasa; C. irrasa var. blanchardii (Sargent) Eggleston; C. jonesae Sargent; C. keepu Sargent; C. laurentiana Sargent var. brunetiana (Sargent) Kruschke; C. lumaria Ashe; C. oakestana Eggleston; C. praecoqua Sargent illegitimate name; C. rotundata Sargent; C. rotundifolla - misapplied]

Crataegus coccinea Linnaeus-Scarlet Hawthorn (Figure 6). $2 n=34,68$. Thickets, fields, woodland margins, roadsides. [C. coccmea var. pringlet (Sargent) J.A. Macklin \& J.B. Phipps; C. corusca - misapplied; $C$. eamesil Sargent; $C$. holmestana Ashe var. holmesiana; $C$. holmesiana var. magniflora (Sargent) E.J. Palmer; C. holmestana var. villipes Ashe; C. magniflora Sargent; C. pedicellata Sargent var. pedicellata; C. pedicellata var. robesontana (Sargent) E. J. Palmer; C. polita Sargent; C. pringlet Sargent var. pringler; C. pringlei var. exclusa (Sargent) Eggleston; C. pringlel var. lobulata (Sargent) Eggleston; C. sejuncta Sargent]

Crataegus coccinioides Ashe-Kansas Hawthorn (Figure 7). $2 n=$ ? Thickets, fields, woodland margins, roadsides. [C. dilatata Sargent]

Crataegus crus-galli Linnaeus-Cockspur Hawthorn (Figure 7). $2 n=24,51,64,68$. Thickets, fields, woodland margins, early successional woodlands. roadsides. [C. crus-galli var. extgua (Sargent) Eggleston; C. crus-galli var. pyracanthifolia Aiton; C. persmilis Sargent; C. schuzophylla Eggleston]

Crataegus emersoniana Sargent-obscure taxon known only from historic collections in Bristol County, Massachusetts.

Crataegus forbesae Sargent-obscure taxon known only from historic collections in Worcester County, Massachusetts and New London County, Connecticut.

Crataegus fulgens Sargent - obscure taxon known only from historic collections in Fairfield County, Connecticut.

Crataegus hystricina Ashe - obscure taxon known only from historic collections in Fairfield County, Connecticut and New York state.

Crataegus intricata Lange-Biltmore Hawthorn (Figure 7). $2 n=$ ? Woodland openings and margins, thickets, fields, roadsides. [C. intricata var. boyntonit (Beadle) Kruschke; C. intricata var. straminea (Beadle) E.J. Palmer, C. biltmoreana Beadle var. biltmoreana; C. biltmoreana var. stoneı (Sargent) Kruschke; C. bissellı Sargent; C. boyntonil Beadle; C. foetıda Ashe; C. modesta Sargent; C. stonet Sargent]

Crataegus macrosperma Ashe-Variable Hawthorn (Figure 7). $2 n=68$. Open woods, early successional woods, thickets, fields, woodland margins, roadsides. [C. macrosperma var. acuttloba (Sargent) Eggleston; C. macrosperma var. demussa (Sargent) Eggleston; C. macrosperma var. matura (Sargent) Eggleston; C. macrosperma var. pastorum (Sargent) Eggleston; C. macrosperma var. pentandra (Sargent) Eggleston; C. macrosperma var. roanensts (Ashe) E. J. Palmer; C. basilica Beadle; C. beckwithae Sargent; C. brumalis Ashe; C. comata Sargent; C. compta Sargent; C. diffusa Sargent; C. edsonı Sargent; C. flabellata (Bose ex Spach) K. Koch var. flabellata; C. flabellata var. grayana (Eggleston) E.J. Palmer; C. fluviatilis Sargent; C. glaucophylla Sargent; C. grayana Eggleston; C. Iracunda Beadle var. iracunda; C. iracunda var. brumalis (Ashe) Kruschke; C. iracunda var. diffusa (Sargent) Kruschke; C. lemingtonensis Sargent; C. levis Sargent; C. matura Sargent; C. pastorum Sargent; C. populnea Ashe; C. randıana Sargent; C. roanensts Ashe; C. robbinstana Sargent; C. schuettei Ashe var. schuetter, C. schuettei Ashe var. basilica (Beadle) J.B. Phipps]

Crataegus mollis (Torrey \& A. Gray) Scheele-Downy Hawthorn (Figure 7). $2 n=34,68$. Thickets, fields, woodland margins, roadsides. [C. arnoldiana Sargent; C. champlamensis Sargent; C. pedicellata Sargent var. albicans (Ashe) E.J. Palmer; C. submollis Sargent]

CRATAEGUS MONOGYNA Jacquin-English Hawthorn (Figure 7). $2 n=34,51$. Roadsides, woodland margins, open, moist woods, fields. From Eurasia, northern Africa.

Crataegus napaea Sargent-obscure taxon known only from historic collections in Litchfield County, Connecticut.

Crataegus neolondinensis Sargent - obscure taxon known only from historic collections in New London County, Connecticut.

Crataegus paddockeae Sargent - obscure taxon known only from historic collections in Caledonia and Essex Counties, Vermont.

CRATAEGUS PHAENOPYRUM (Linnaeus f.) Medikus—Washington Hawthorn (Figure 7). $2 n=$ ? Thickets, roadsides. From farther south. [C. cordata (Miller) Aiton]

Crataegus pruinosa (H.L. Wendland) K. Koch-Frosted Hawthorn (Figure 7). $2 n=51,68,72$. Thickets, fields, woodland margins, roadsides. [C. prumosa var. dissona (Sargent) Eggleston; C. pruinosa var. latisepala (Ashe) Eggleston; C. pruinosa var. porteri (Britton) Eggleston; C. bellula Sargent; C. cognata Sargent; C. conjuncta Sargent; C. deltordes Ashe; C. dissona Sargent var. dissona; C. dissona var. bellula (Sargent) Kruschke; C. fusca Sargent; C. incisa Sargent; C. jesuptl Sargent; C. littoralts Sargent; C. pequotorum Sargent; C. portert Britton var. caerulescens (Sargent) E.J. Palmer; C. rugosa Ashe]

Crataegus punctata Jacquin-(Figure 7). $2 n=34,68$. Thickets, fields, woodland margins, roadsides. [C. punctata var. aurea Aiton; C. suborbiculata Sargent; C. tomentosa Linnaeus var. punctata (Jacquin) A. Gray]

Crataegus quinebaugensts Sargent-obscure taxon known only from historic collections in New London County, Connecticut.

Crataegus stratfordensts Sargent obscure taxon known only from historic collections in Fairfield County, Connecticut.

Crataegus succulenta Schrader ex Link-Long-spined Hawthorn (Figure 8). $2 n=34,51$. Thickets, fields, woodland margins, roadsides. [C. succulenta var. macracantha (Loddiges ex Loudon) Eggleston; C. succulenta var. neofluvialts (Ashe) E.J. Palmer; C. succulenta var. pisifera (Sargent) Kruschke; C. ferentarta Sargent; C. fertilts Sargent; C. florifera Sargent var. shirleyensis (Sargent) Kruschke; C. macracantha Loddiges ex Loudon var. macracantha, C. macracantha var. occidentalis (Britton) Eggleston; C. pisifera Sargent; C. shirleyensis Sargent]

Crataegus thayeri Sargent-obscure taxon known only from historic collections in Middlesex and Worcester Counties, Massachusetts.

Crataegus umbratults Sargent-obscure taxon known only from historic collections at one site in Litchfield County, Connecticut, and one town in Pennsylvania.

- Crataegus hybrids -

Crataegus $\times$ anomala Sargent (pro spectes)-(Figure 8). [C. mollis (Torrey \& A. Gray) Scheele $\times C$. pedicellata Sargent]

Crataegus $\times$ haemacarpa Ashe (pro spectes) (Figure 8). [C. macrosperma Ashe $\times$ C. prumosa (H.L. Wendland) K. Koch; C. media Sargent]

Crataegus $\times$ hudsonica Sargent (pro spectes)-(Figure 8). [C. pruinosa (H.L. Wendland) K. Koch $\times$ C. punctata Jacquin; ?C. bicknellii (Eggleston) Eggleston; ?C. chrysocarpa Ashe var. bicknellul (Eggleston) E.J. Palmer]

Crataegus $\times$ ideae Sargent (pro spectes)-(Figure 8). [C. brainerdii Sargent $\times$ C. chrysocarpa Ashe]

Crataegus $\times$ kennedyl Sargent (pro species)-(Figure 8). [C. brainerdil Sargent $\times$ C. pruinosa (H.L. Wendland) K. Koch]

Crataegus $\times$ hucorum Sargent (pro spectes)-(Figure 8). [C. macrosperma Ashe $\times$ C. pedicellata Sargent; C. fretalis Sargent; C. insolens Sargent; C. knieskerniana Sargent]

Crataegus $\times$ pilosa Sargent (pro spectes)-(Figure 8). [C. intricata Lange $\times$ C. prumosa (H.L. Wendland) K. Koch]

Crataegus $\times$ spatiosa Sargent (pro species)-(Figure 8). [C. pruinosa (H.L. Wendland) K. Koch $\times$ C. succulenta Schrader ex Link; C. chadsfordiana Sargent; C. handyae Sargent; C. membranacea Sargent]

Crataegus $\times$ websteri Sargent (pro species)—(Figure 9). [C. brainerdit Sargent $\times$ C. calpodendron (Ehrhart) Medikus]

CYDONIA OBLONGA Miller-Quince (Figure 9). $2 n=34$. Roadsides, railroads. From central and western Asia.

Dasiphora fruticosa (Linnaeus) Rydberg-Shrubby Cinquefoil (Figure 9). $2 n=14,28$. Meadows, swamps, fields, ledges, usually in calcareous soil. [D. fruttcosa subsp. floribunda (Pursh) Kartesz; Pentaphylloides floribunda (Pursh) A. Löve; Potentilla fruticosa Linnaeus]

Drymocalls arguta (Pursh) Rydberg-Tall Cinquefoil (Figure 9). $2 n=14$. Dry fields, open rocky woods, ledges, usually in calcareous soil. [Potentilla arguta Pursh]

DUCHESNEA INDICA (Andrews) Focke var. INDICA-Mock Strawberry (Figure 9). $2 n=84$. Waste places, railroads. From Asia. [POTENTILLA INDICA (Andrews) Th. Wolf]

EXOCHORDA RACEMOSA (Lindley) Rehder-Common Pearlbush (Figure 9). $2 n=16,18$. Roadsides, thickets. From Asia.

FILIPENDULA RUBRA (Hill) B.L. Robinson-Queen-of-the-prairie (Figure 9). $2 n=$ ? Roadsides, meadows. Probably from farther south and west.

FILIPENDULA ULMARIA (Linnaeus) Maximowicz-Queen-of-the-meadow (Figure 9). $2 n=14,16$, 24. Roadsides, riverbanks. From Eurasia. [F. ULMARIA var. DENUDATA (J. Pres1 \& C. Presl) Maximowicz]

FILIPENDULA VULGARIS Moench-Dropwort (Figure 9). $2 n=14,15-16$. Roadsides, waste places. From Eurasia, northern Africa. [ $F$. HEXAPETALA Gilibert ex Maximowicz - illegitimate name]

FRAGARIA IESCA Linnaeus subsp. IESCA-European Strawberry (Figure 10). $2 n=14$. Rocky woods, woodland margins, openings. From Eurasia.

Fragaria vesca Linnaeus subsp. americana (Porter) Staudt-Woodland Strawberry (Figure 10). $2 n=$ 14. Wooded slopes, rocky banks, openings, roadsides.

Fragaria virginiana Miller subsp. virgmana-Wild Strawberry (Figure 10). $2 n=56$. Fields, woodland borders, open slopes, roadsides, railroads.

Fragaria virgintana Miller subsp. glauca (S. Watson) Staudt-(Figure 10). $2 n=56$. Fields, woodland borders, open slopes, roadsides, railroads. [F. virgintana var. terra-novae (Rydberg) Fernald \& Wiegand]

FRAGARIA VIRGINIANA Miller subsp. GRAYANA (E. Vilmorin ex J. Gay) Staudt-(Figure 10). $2 n=$ 56. Roadsides. From farther west. [F. VIRGINIANA var. ILLINOENSIS A. Gray]

- Fragaria hybrid -

FRAGARIA $\times$ ANANASSA (Weston) Duchesne ex Grozier (pro spectes) Garden Strawberry (Figure 10). [F. CHILOENSIS (Linnaeus) Miller $\times F$. virginiana Miller]

Geum aleppicum Jacquin-Yellow Avens (Figure 10). $2 n=42$. Thickets, woods, meadows, clearings. [G. aleppicum var. strictum (Aiton) Fernald]

Geum canadense Jacquin-White Avens (Figure 10). $2 n=42$. Rich thickets, open woods, woodland margins, fields, roadsides. [G. canadense var. camporum (Rydberg) Fernald \& Weatherby]

Geum laciniatum Murray-Rough Avens (Figure 10). $2 n=42$. Moist thickets, meadows, roadsides. [G. lacmiatum var. trichocarpum Fernald]

Geum macrophyllum Willdenow var. macrophyllum-(Figure 11). $2 n=42$. Wet woods, thickets, fields, roadsides.

Geum peckit Pursh-Mountain Avens (Figure 11). $2 n=42$. Wet ledges, alpine meadows.
Geum rivale Linnaeus-Purple Avens (Figure 11). $2 n=42$. Swamps, wet meadows, bogs, wet woods, low fields, wet ditches.

GEUM URBANUM Linnaeus-Wood Avens (Figure 11). $2 \mathrm{n}=21,42$. Fields, roadsides. From Eurasia, northern Africa.

GEUM VERNUM (Rafinesque) Torrey \& A. Gray-Spring Avens (Figure 11). $2 n=42$. Rich woods. From farther west.

Geum virgintanum Linnaeus-Cream Avens (Figure 11). $2 n=42$. Open, rich woods, thickets, rocky banks. [G. flanum (Porter) E.P. Bicknell]
-Geum hybrid-
Geum $\times$ pulchrum Fernald (pro species)-(Figure 11). [G. macrophyllum Willdenow var. macrophyllum $\times$ G. rivale Linnaeus]

GILLENIA TRIFOLIATA (Linnaeus) Moench-Bowman's-root (Figure 11). $2 n=18$. Dry woods. From farther west and south. [PORTERANTHUS TRIFOLIATUS (Linnaeus) Britton]

KERRIA JAPONICA (Linnaeus) de Candolle-Japanese Rose (Figure 11). $2 n=18$. Roadsides. From eastern Asia.

MALUS BACCATA (Linnaeus) Borkhausen-Siberian Crabapple (Figure 12). $2 n=34$. Roadsides, woodland margins, thickets, clearings, sandy, waste areas. From eastern and southern Asia. [PYRUS BACCATA Linnaeus]

MALUS FLORIBUNDA Siebold ex Van Houtte-Japanese Flowering Crabapple (Figure 12). $2 \mathrm{n}=34$. Fields, woodland margins. From Asia.

MALUS PRUNIFOLIA (Willdenow) Borkhausen-Chinese Apple (Figure 12). $2 n=34,51$. Waste places, roadsides, thickets, wooded terraces. From China. [PYRUS PRUNIFOLIA Willdenow]

MALUS PUMILA Miller-Common Apple (Figure 12). $2 n=24,34,51,68$. Open woods, thickets, fields, roadsides, woodland margins, clearings. From Eurasia. [M. DOMESTICA misapplied; M. SYLVESTRIS Miller; PYRUS MALUS Linnaeus]

MALUS SIEBOLDII (Regel) Rehder-Toringo Crabapple (Figure 12). $2 n=51$. Rich woods, railroads, thickets, swampy woodland margins, open, rocky knolls. From eastern Asia. [M. SARGENTII Rehder; M. TORINGO (K. Koch) Carrière; PYRUS SIEBOLDII Regel]
-Malus hybrids-
MALUS $\times$ ADSTRINGENS Zabel (Figure 12). [M. BACCATA (Linnaeus) Borkhausen $\times M$. PUMILA Miller]

MALUS $\times$ ARNOLDIANA (Rehder) Sargent ex Rehder-(Figure 12). [M. BACCATA (Linnaeus) Borkhausen $\times$ M. FLORIBUNDA Siebold ex Van Houtte; PYRUS ARNOLDIANA (Rehder) Bean]

MALUS $\times$ MAGDEBURGENSIS Hartwig (Figure 12). [M. PUMILA Miller $\times$ M. SPECTABILIS (Aiton) Borkhausen]

MALUS $\times$ MICROMALUS Makino (pro species)-(Figure 12). [? M. BACCATA (Linnaeus) Borkhausen $\times$ M. SPECTABILIS (Aiton) Borkhausen]

MALUS $\times$ SOULARDII (L.H. Bailey) Britton (pro species)-(Figure 13). [? M. IOENSIS (Alph. Wood) Britton $\times$ M. PUMILA Miller; PYRUS $\times$ SOULARDII L.H. Bailey]

PHOTINLA VILLOSA (Thunberg) de Candolle Oriental Photinia (Figure 13). $2 n=68$. Swamps. From eastern Asia.

PHYSOCARPUS OPULIFOLIUS (Linnaeus) Maximowicz - Eastern Ninebark (Figure 13). $2 n=18$. Rocky banks, shores, thickets, fields, roadsides, waste places. From farther west and south.

POTENTILLA ANGLICA Laicharding-Trailing Tormentil (Figure 13). $2 n=28,56$. Fields. From Europe.

Potentilla anserma Linnaeus subsp. anserina-Common Silverweed (Figure 13). $2 n=28,35,42$. Shores. [P. egedet Wormskjöld ex Hornemann var. groenlandica (Trattinnick) Polunin [in part]]

Potentilla anserina Linnaeus subsp. pacifica (Howell) Rousi-Coastal Silverweed (Figure 13). $2 n=$ 28. Salt marshes, coastal seashores. [P. egedet Wormskjöld ex Hornemann var. groenlandica (Trattimnick) Polunin [in part]; P. pacifica Howell]

POTENTILLA ARGENTEA Linnaeus-Silvery Cinquefoil (Figure 13). $2 n=14,28,42,56$. Dry fields, roadsides, dry, open ground. From Eurasia. [P. ARGENTEA var. PSEUDOCALABRA Th. Wolf]

Potentilla canadensis Linnaeus-Dwarf Cinquefoil (Figure 13). $2 n=28$. Dry, sandy fields, roadsides, dry, open ground, often in acidic soil. [P. canadensts var. villostssima Fernald]

POTENTILLA GRACILIS Douglas ex Hooker var. GRACILIS (Figure 13). $2 n=84$. Dry meadows. From farther west.

POTENTILLA INCLINATA Villars-Grey Cinquefoil (Figure 14). $2 n=14,28,35,42,84$. Dry fields, roadsides, waste places. From Eurasia. [P. CANESCENS Besser]

POTENTILLA INTERMEDIA Linnaeus-Downy Cinquefoil (Figure 14). $2 n=28,42,56$. Dry fields, roadsides, waste places. From farther Eurasia.

Potentilla litoralis Rydberg-(Figure 14). $2 n=28,56$. Dry fields, rocky outcrops, rocky shores, near coast. [P. pectinata Rafinesque - illegitimate name; P. pensylvantca Linnaeus var. litoralis (Rydberg) B. Boivin; P. pensylvanica var. pectinata Lepage]

Potentilla norvegica Linnaeus-Rough Cinquefoil (Figure 14). $2 n=42,56,63,70$. Fields, thickets, roadsides, waste places. [P. norvegica var. labradorica (Lehmann) Fernald]

POTENTILLA PULCHERRIMA Lehmann-(Figure 14). $2 n=42$, ca. 70, 71, ca. 108. Meadows. From farther west. [P. GRACILIS Douglas ex Hooker var. PULCHERRIMA (Lehmann) Fernald]

POTENTILLA RECTA Linnaeus-Sulphur Cinquefoil (Figure 14). $2 n=14,28,42,35,56$. Dry fields, roadsides, waste places. From Eurasia, northern Africa.

POTENTILLA REPTANS Linnaeus-Creeping Cinquefoil (Figure 14). $2 n=28$. Waste places. From Eurasia, northern Africa.

POTENTILLA RIVALIS Nuttall-(Figure 14). $2 n=14,70$. Waste places. From farther west.
Potentilla robbinstana (Lehmann) Oakes ex Rydberg-(Figure 14). $2 n=49$. Alpine rocky slopes and flats.

Potentilla simplex Michaux-Old-field Cinquefoil (Figure 15). $2 n=$ ? Fields, open woods, thickets, roadsides. [ $P$. simplex var. calvescens Fernald]

POTENTILLA THURINGIACA Bernhardi ex Link-(Figure 15). $2 n=42,56$. Waste places, roadsides. From Eurasia.

POTENTILLA VERNA Linnaeus-(Figure 15). $2 n=28,35,42,49,56,63,70,80$. Grassy roadsides and banks. From Europe. [P. TABERNAEMONTANI Ascherson]

POTERIDIUM ANNULM (Nuttall) Spach—Western Burnet (Figure 15). $2 n=14$. Disturbed soil. From farther west. [SANGUISORBA ANNUA (Nuttall) Nuttall]

Prunus americana Marshall—Wild Plum (Figure 15). $2 n=16$. Fields, Roadsides, thickets, woodland margins. [P. americana var. lanata Sudworth; P. americana var. mollts (Torrey) Torrey \& A. Gray]

PRUNUS AVIUM (Linnaeus) Linnaeus-Sweet Cherry (Figure 15). $2 n=16$. Roadsides, woods, woodland margins, thickets. From Eurasia.

PRUNUS CERASIFERA Ehrhart-Cherry Plum (Figure 15). $2 n=16,24$. Roadsides, riverbanks, shores. From Eurasia.

PRUNUS CERASUS Linnaeus-Sour Cherry (Figure 15). $2 n=32$. Roadsides, thickets, woodland margins. From Eurasia.

PRUNUS DOMESTICA Linnaeus-Garden Plum (Figure 15). $2 n=16,32,48$. Roadsides, thickets. Probably from Eurasia.

PRUNUS HORTULANA L.H. Bailey-Wild Goose Plum (Figure 16). $2 n=16$. Woodland margins. From farther west.

PRUNUS INSITITIA Linnaeus-Bullace Plum (Figure 16). $2 n=16$. Thickets, woodland margins, roadsides, fields. From Europe. [P. DOMESTICA Linnaeus subsp. INSITITIA (Linnaeus) C.K. Schneider]

PRUNUS MAHALEB Linnaeus-Perfumed Cherry (Figure 16). $2 n=16$. Railroads, roadsides, woodland borders, fields. From Eurasia, northern Africa.

Prunus maritima Marshall-Beach Plum (Figure 16). $2 n=16$. Roadsides, dunes, sandy fields, other sandy sites, near seacoast. [P. maritima var. gravestı (Small) G.J. Anderson; P. gravest Small]

Prunus nigra Aiton-Canada Plum (Figure 16). $2 n=16$. Roadsides, thickets, waste places, woodland margins, stream banks.

Prunus pensylvanica Limaeus f.-Pin Cherry (Figure 16). $2 n=16$. Dry, open sandy soil, recent burns, dry, open woods and clearings.

PRUNUS PERSICA (Linnaeus) Batsch-Peach (Figure 16). $2 n=16$. Roadsides, thickets. From China.

Prunus pumila Linnaeus var. depressa (Pursh) Bean-Dwarf Sand Cherry (Figure 16). $2 n=16$. Sandy, gravelly or rocky river shores, beaches. [P. depressa Pursh]

Prunus pumila Linnaeus var. susquehanae (Willdenow) H. Jaeger-Appalachian Sand Cherry (Figure 16). $2 n=16$. Sandy barrens, beaches, clearings, roadsides and fields, dry woods and ledges. [ $P$. pumila var. cuneata (Rafinesque) L.H. Bailey; $P$. susquehanae Willdenow]

Prunus serotina Ehrhart var. serotina-Black Cherry (Figure 17). $2 n=32$. Thickets, roadsides, wood margins, dry woods, waste places.

PRUNUS SERRULATA Lindley-Japanese Flowering Cherry (Figure 17). $2 n=16$. Mixed woods, roadsides. From Eurasia.

PRUNUS SPINOSA Linnaeus-Blackthorn (Figure 17). $2 n=32,40,48$. Fields, pond shores. From Eurasia.

Prunus umbellata Elliott—Sloe Plum (Figure 17). $2 n=$ ? Roadsides, sandy bottoms, river terraces, fields, rocky copses. [P. alleghaniensis Porter]

Prunus virginiana Linnaeus var. virginiana-Choke Cherry (Figure 17). $2 n=16,26,32$. Thickets, roadsides, woodland margins.
-Prumus hybrid-
Prunus serotina Ehrhart var. serotina $\times P$. virginiana Linnaeus var. virginiana-(Figure 17).
PYRUS CALLERYANA Decaisne-Callery Pear (Figure 17). $2 n=34$. Shrubby thickets, ditches. From eastern Asia.

PYRUS COMMUNIS Linnaeus-Common Pear (Figure 17). $2 n=34$. Roadsides, fields, thickets, woodland margins. Probably from Eurasia.

RHODOTYPOS SCANDENS (Thunberg) Makino-Jetbead (Figure 17). $2 n=18$. Waste places, dry, oak-hickory woods, roadsides. From eastern Asia.

Rosa acıcularis Lindley subsp. sayı (Schweinitz) W.H. Lewis-(Figure 18). $2 n=42,49,56$. Railroads, shores, thickets, rocky slopes. [R. acicularis var. bourgeauiana Crépin]

ROSA ARKANSANA Porter-Prairie Rose (Figure 18). $2 n=28$. Railroads. From farther west.
Rosa blanda Aiton-Smooth Rose (Figure 18). $2 n=14$. Shores, riverbanks, meadows, thickets, railroads. [R. blanda var. glabra Crépin; R. johannensis Fernald]

ROSA CANINA Linnaeus-Dog Rose (Figure 18). $2 n=28,35$. Roadsides, thickets, fields, dry banks.
Rosa carolina Linnaeus subsp. carolina-Pasture Rose (Figure 18). $2 n=28$. Dry pastures, thickets, thin woods, roadsides, other dry, sandy, rocky or open habitats. [ $R$. carolina var. grandiflora (Baker) Rehder, R. carolina var. villosa (Best) Rehder; R. humilis Marshall]

ROSA CINNAMOMEA Linnaeus-Cinnamon Rose (Figure 18). $2 n=14$. Roadsides, fields, fencerows, clearings. From Eurasia. [R. MAJALIS Herrmann]

ROSA GALLICA Linnaeus - French Rose (Figure 18). $2 n=28$. Roadside thickets, waste places. From Eurasia.

ROSA GLAUCA Pourret-(Figure 18). $2 n=28$. Roadsides, thickets. From Europe. $[R$. FERRUGINEA Villars; R. RUBRIFOLIA Villars]

ROSA LUCIAE Franchet \& Rochebrune ex Crépin-Memorial Rose (Figure 18). $2 n=14$. Thickets, woodland margins. From eastern Asia. [R. WICHURAIANA Crépin]

ROSA MOLLIS Smith-(Figure 19). $2 n=28$. Roadsides. From Eurasia.
ROSA MULTIFLORA Thunberg-(Figure 19). $2 n=14,21$. Roadsides, woodland margins, clearings, thickets, waste places. From eastern Asia.

Rosa nittda Willdenow-Northeastern Rose (Figure 19). $2 n=14$. Swamps, bogs, pond shores, wet thickets, in acid soil.

Rosa palustris Marshall—Swamp Rose (Figure 19). $2 n=14$. Swamps, meadows, pastures, wet thickets, shores.

ROSA RUBIGINOSA Linnaeus var. RUBIGINOSA—Sweetbrier (Figure 19). $2 n=35$. Roadsides, fields, thickets, clearings. From Eurasia. [R. EGLANTERIA Linnaeus - ambiguous name; $R$. MICRANTHA Borrer ex Smith]

ROSA RUGOSA Thunberg-Beach Rose (Figure 19). $2 n=14,28$. Sandy, open soil, often near salt water, roadsides, dunes. From eastern Asia.

ROSA SETIGERA Michaux-Climbing Rose (Figure 19). $2 n=14$. Roadsides, fields, woods, hillsides. From farther west and south. [R. SETIGERA var. TOMENTOSA Torrey \& A. Gray]

ROSA SHERARDII Davies-(Figure 19). $2 n=28,35,42$. Roadsides, pastures. From Europe.
ROSA SPINOSISSIMA Linnaeus-Burnet Rose (Figure 19). $2 n=28$. Roadsides, thickets, fields. From Eurasia. [R. PIMPINELLIFOLIA Linnaeus]

Rosa virginiana Miller-(Figure 20). $2 n=28$. Thickets, meadows, swamps, shores, clearings, roadsides. [R. virgintana var. lamprophylla Rehder, R. lucida Ehrhart]
-Rosa hybrids-
Rosa carolina Linnaeus subsp. carolina $\times$ R. palustris Marshall-(Figure 20).
Rosa carolina Linnaeus subsp. carolna $\times$ R. RUBIGINOSA Linnaeus var. RUBIGINOSA-(Figure 20).

ROSA $\times$ CENTIFOLIA Linnaeus (pro spectes)-(Figure 20). [R. GALLICA Linnaeus $\times$ ?]
ROSA $\times$ FRANCOFURTANA Münchhausen (pro spectes)-(Figure 20). [R. CINNAMOMEA Linnaeus $\times$ R. GALLICA Linnaeus]

Rosa nitida Willdenow $\times$ R. palustris Marshall-(Figure 20).
Rosa nitida Willdenow $\times$ R. virginana Miller-(Figure 20).
Rosa $\times$ novae-angliae W.H. Lewis-(Figure 20). [R. carolina Linnaeus subsp. carolina $\times R$. virgimana Miller]

Rosa palustris Marshall $\times$ R. virginiana Miller-(Figure 20).

## Rubus taxonomy

Due to the significant diversity of taxonomic treatments for this genus over the years, particularly for the large subgenus Eubatus, and the complicated reproductive mechanisms known to occur (hybridization, polyploidy, apomixis), the listing here largely follows the intensive New England study for subgenus Eubatus of Hodgdon and Steele $(1966,1970)$. The work of H. Davis, A. Fuller and T. Davis (1967, 1968a, 1968b, 1969a, 1969b, 1970, 1982), H. Davis (1990), Gleason and Cronquist (1991), and an unpublished 2009 draft by L.A. Alice, D.H. Goldman, G. Moore and J.A. Macklin for the Flora of North America have been used to help place some names in synonymy.

Rubus alleghemensts Porter-Common Highbush Blackberry (Figure 21). $2 n=14,21,28$. Roadsides, fields, clearings, woodland margins, thickets. [R. allegheniensis var. gravesii (Fernald) Fernald; R. allegheniensis var. plausus L.H. Bailey; R. allegheniensis var. popullfolius Fernald; R. fernaldıanus L.H. Bailey; ?R. floricomus Blanchard; R. pugnax L.H. Bailey; R. saltuensts L.H. Bailey]

Rubus amicalis Blanchard-(Figure 21). $2 n=$ ? Fields, thickets, waste places, woods, bases of ledges, moist, sphagnous soil. [R. amabilis Blanchard not Focke - illegitimate name; R. elegantulus Blanchard not Forster - illegitimate name]

Rubus arenicola Blanchard-Sand Dewberry (Figure 21). $2 n=$ ? Dry fields, roadsides, open plains, ledges, especially in dry, open, sandy soil. [ $R$. bramerdit Rydberg; $R$. curtipes L.H. Bailey; ?R. fraternalts L.H. Bailey; R. janssonn L.H. Bailey; R. obsessus L.H. Bailey; R. pauper L.H. Bailey, R. perpauper L.H. Bailey; R. prosper L.H. Bailey]

Rubus argutus Link - Southern Blackberry (Figure 21). $2 n=14,21$. Thickets, woodland and bog margins. [R. blaket L.H. Bailey; R. jugosus L.H. Bailey; R. paludivagus Fernald]

RUBUS BIFRONS Vest-Armenian Blackberry (Figure 21). $2 n=28$. Roadsides, waste places. From Eurasia. [R. ARMENLACUS Focke; R. DISCOLOR - misapplied]

Rubus canadensts Linnaeus-Smooth Blackberry (Figure 21). $2 n=14,21$. Moist thickets, clearings in northern hardwood forests, woodland margins, cliff bases.

Rubus chamaemorus Linnaeus-Cloudberry (Figure 21). $2 n=56$. Sphagmum bogs, heaths, often at high elevation.

Rubus cunelfolus Pursh-Sand Blackberry (Figure 21). $2 n=14,21,28$. Sandy or rocky, dry open soil on coastal plain. [R. cunetfolius var. spiniceps L.H. Bailey]

Rubus enslenit Trattinnick-(Figure 21). $2 n=$ ? Dry, open, mostly oak-hickory woods, ledges, thickets. [R. batleyanus Britton]

Rubus flagellaris Willdenow-Common Dewberry (Figure 22). $2 n=28,56,63$. Dry fields, sandy areas, openings, ledges, thicket borders, roadsides. [?R. eflagellaris L.H. Bailey; R. felix L.H. Bailey; ?R. thacamus L.H. Bailey; R. maniseesensts L.H. Bailey; ?R. particeps L.H. Bailey; R. villosus - misapplied]

Rubus frondosus Bigelow-Yankee Blackberry (Figure 22). $2 n=14,21,42$. Thickets, fields, roadsides, woodland borders. [R. bellobatus L.H. Bailey; R. insulamus L.H. Bailey; R. multtspmus Blanchard; R. recurvans Blanchard; R. rossbergıanus Blanchard]

Rubus hispidus Linnaeus-Swamp Dewberry (Figure 22). $2 n=14,21,28,35,56$. Fields, open woods (specially pine), gravel pits, ditches, swamps, sphagnous soil, Sphagnum bogs, meadows. [R. hisptdus var. obovalts (Michaux) Fernald; R. cubitans Blanchard; ?R. novanglicus L.H. Bailey; R. pervartus (L.H. Bailey) L.H. Bailey; R. spiculosus Fernald]

RUBUS IDAEUS Linnaeus subsp. IDAEUS-European Red Raspberry (Figure 22). $2 n=14,21,28$, 42. Roadsides, fields, thickets. From Eurasia.

Rubus idaeus Linnaeus subsp. strigosus (Michaux) Focke-Wild Red Raspberry (Figure 22). 2n=14, 21, 28. Clearings, fields, roadsides, dry, open woods, damp thickets, woodland borders. [ $R$. idaeus var. canadensis Richardson ex Fernald; R. idaeus var. egglestonit (Blanchard) Fernald; R. idaeus var. heterolasius Fernald]

RUBUS ILLECEBROSUS Focke-Strawberry Raspberry (Figure 22). $2 n=14$. Woods, disturbed sites. From Japan.

Rubus jaysmithu L.H. Bailey-(Figure 22). $2 n=$ ? Dry fields, sandy areas, openings, ledges, thicket borders, roadsides. [R. multifer L.H. Bailey; R. scambens L.H. Bailey; R. tetricus L.H. Bailey]

RUBUS LACINIATUS Willdenow-Cut-leaved Blackberry (Figure 22). $2 n=28$. Roadsides, sandy soil near beaches, railroads, fields, waste places. Probably from Europe.

Rubus occidentalis Linnaeus-Black Raspberry (Figure 22). $2 n=14$. Clearings, thickets, woodland borders, fields.

Rubus odoratus Linnaeus-Purple-flowering Raspberry (Figure 23). $2 n=14$. Woodland borders, open woods, thickets, roadsides, rocky slopes.

RUBUS PARVIFOLIUS Linnaeus-Japanese Raspberry (Figure 23). $2 n=14$. Waste places. From eastern Asia, Australia. [R. TRIPHYLLUS Thunberg]

Rubus pensilvanicus Poiret-(Figure 23). $2 n=28$. Thickets, roadsides, swamps, woods, woodland borders, clearings. [R. amnicola Blanchard; R. andrewsianus Blanchard; R. avipes L.H. Bailey; R. barbarus L.H. Bailey; R. conanicutensts L.H. Bailey, R. facetus L.H. Bailey; ?R. gnarus L.H. Bailey; R. msons L.H. Bailey; ?R. latens L.H. Bailey; R. oraruus Blanchard; $R$. ostryifolus Rydberg not Gandoger - illegitimate name; $R$. pergratus Blanchard; $R$. philadelphicus Blanchard]

RUBUS PHOENICOLASIUS Maximowicz-Wineberry (Figure 23). $2 n=14$. Roadsides, thickets, open woods, disturbed, open areas. From eastern Asia.

Rubus pubescens Rafinesque-Dwarf Raspberry (Figure 23). $2 n=14$. Damp woods and slopes, swamps, low thickets, rocky shores, sandy banks. [R. pubescens var. pllosifolus A.F. Hill]

Rubus recurvicaulis Blanchard-Arching Dewberry (Figure 23). $2 n=14,35,42$. Fields, railroads, roadsides, other dry or gravelly, open soil. [R. aptatus L.H. Bailey; R. arundelanus Blanchard var. arundelamus; R. arundelanus var. jeckylamus (Blanchard) L.H. Bailey; R. plicatifolus Blanchard; R. positivus L.H. Bailey; R. usus L.H. Bailey]

Rubus repens (Linnaeus) Kuntze - Dewdrop (Figure 23). $2 n=14$. Rich, moist woods, swamps. [ $R$. dalibarda Linnaeus - illegitimate name; Dalibarda repens Linnaeus]

RUBUS RORIBACCUS (L.H. Bailey) Rydberg-Lucretia Dewberry (Figure 23). $2 n=49$. Dry woods. From farther west.

Rubus semisetosus Blanchard—Swamp Blackberry (Figure 23). $2 n=$ ? Swales, swampy thickets, dryish meadows. [R. ascendens Blanchard; R. bigelovianus L.H. Bailey; R. hispidoides L.H. Bailey; R. ortivus (L.H. Bailey) L.H. Bailey; R. perinvisus L.H. Bailey]

Rubus setosus Bigelow-Bristly Blackberry (Figure 24). $2 n=14,21$. Alluvial plains, grassy swamps, swales, damp thickets, waste places. $[R$. dissimills L.H. Bailey, R. groutianus Blanchard; $R$. lawrencei L.H. Bailey; R. notatus L.H. Bailey]

Rubus vermontanus Blanchard-(Figure 24). $2 n=$ ? Clearings, sterile fields, thickets, cliff bases. [ $R$. abbrevians Blanchard; $R$. junceus Blanchard; R. miscix L.H. Bailey, $R$. navis L.H. Bailey; $R$. regionalis (L.H. Bailey) L.H. Bailey; R. tardatus Blanchard]

> —Rubus hybrids-

Rubus allegheniensis Porter $\times R$. amicalis Blanchard-(Figure 24).
Rubus alleghentensis Porter $\times$ R. canadensis Linnaeus-(Figure 24).
Rubus alleghemiensts Porter $\times$ R. flagellaris Willdenow-(Figure 24).
Rubus alleghemensis Porter $\times$ R. frondosus Bigelow-(Figure 24).
Rubus alleghentensts Porter $\times$ R. hispidus Linnaeus-(Figure 24). [R. biformispinus Blanchard; $R$. invisus (L.H. Bailey) Britton; R. jactus L.H. Bailey; R. laevior (L.H. Bailey) Fernald; R. permixtus Blanchard; R. sanfordit L.H. Bailey]

Rubus alleghemensts Porter $\times$ R. pensilvanicus Poiret-(Figure 24). [R. alumnus L.H. Bailey, $R$. paulus L.H. Bailey; R. rosa L.H. Bailey]

Rubus allegheniensis Porter $\times$ R. recurvicaulis Blanchard-(Figure 24).
Rubus alleghentensts Porter $\times R$. setosus Bigelow-(Figure 25). $\quad[R$. acullferus Fernald; $R$. frondisentis Blanchard; R. glandicaults Blanchard; R. montpelierensis Blanchard ex L.H. Bailey; R. sceleratus Brainerd ex Fernald]

Rubus alleghentensis Porter $\times R$. vermontanus Blanchard-(Figure 25). [R. flavmamus Blanchard; $R$. ravus L.H. Bailey]

Rubus amtcalis Blanchard $\times$ R. frondosus Bigelow-(Figure 25).
Rubus amtcalis Blanchard $\times$ R. jaysmthnt L.H. Bailey-(Figure 25).
Rubus amicalis Blanchard $\times$ R. recurvicaulss Blanchard-(Figure 25).
Rubus amicalis Blanchard $\times$ R. setosus Bigelow-(Figure 25).
Rubus amicalis Blanchard $\times$ R. vermontanus Blanchard—(Figure 25). [R. multticicius L.H. Bailey]
Rubus canadensts Linnaeus $\times$ R. amicalis Blanchard-(Figure 25).

Rubus canadensis Linnaeus $\times$ R. frondosus Bigelow-(Figure 25).
Rubus canadensis Linnaeus $\times$ R. pensilvanicus Poiret-(Figure 26).
Rubus canadensts Linnaeus $\times$ R. setosus Bigelow-(Figure 26).
Rubus canadensis Linnaeus $\times$ R. vermontanus Blanchard-(Figure 26).
Rubus enslentt Trattinnick $\times$ R. frondosus Bigelow-(Figure 26).
Rubus enslenit Trattinnick $\times$ R. pensilvanicus Poiret-(Figure 26).
Rubus enslent Trattinnick $\times$ R. recurvicaults Blanchard-(Figure 26).
Rubus flagellaris Willdenow $\times$ R. frondosus Bigelow-(Figure 26).
Rubus flagellaris Willdenow $\times$ R. hispidus Linnaeus-(Figure 26). [R. matnensis L.H. Bailey]
Rubus flagellaris Willdenow $\times$ R. recurvicaulis Blanchard-(Figure 26).
Rubus frondosus Bigelow $\times$ R. hispidus Linnaeus-(Figure 27).
Rubus frondosus Bigelow $\times$ R. Jaysmithn L.H. Bailey-(Figure 27).
Rubus frondosus Bigelow $\times$ R. recurvicaulis Blanchard-(Figure 27).
Rubus frondosus Bigelow $\times$ R. semisetosus Blanchard-(Figure 27).
Rubus frondosus Bigelow $\times$ R. setosus Bigelow-(Figure 27).
Rubus frondosus Bigelow $\times$ R. vermontanus Blanchard-(Figure 27).
Rubus hispidus Linnaeus $\times$ R. jaysmithil L.H. Bailey-(Figure 27).
Rubus hispidus Linnaeus $\times$ R. recurvicaulis Blanchard-(Figure 27).
Rubus hispidus Linnaeus $\times$ R. semisetosus Blanchard-(Figure 27).
Rubus hispidus Linnaeus $\times$ R. setosus Bigelow-(Figure 28). [R. adjacens Fernald; R. alter L.H. Bailey; R. blanchardtanus (L.H. Bailey) L.H. Bailey; R. harmontcus L.H. Bailey; R. jacens Blanchard; R. pudens L.H. Bailey; R. segnts L.H. Bailey; R. tholtformts Fernald; R. tryfrons Blanchard; R. vigoratus L.H. Bailey]

Rubus hispidus Linnaeus $\times$. setosus Bigelow $\times$ R. vermontanus Blanchard-(Figure 28).
Rubus hispidus Linnaeus $\times$ R. vermontanus Blanchard-(Figure 28).
Rubus $\times$ neglectus Peck (pro spectes)-(Figure 28). [R. idaeus Linnaeus subsp. strigosus (Michaux) Focke $\times R$. occidentalls Linnaeus]

Rubus pensilvanicus Poiret $\times R$. recurvicaulis Blanchard-(Figure 28).
Rubus recurvicaulss Blanchard $\times$ R. setosus Bigelow-(Figure 28). [R. arcuans Fernald \& H. St. John; R. bicknellu L.H. Bailey; R. multfformis Blanchard; R. provincials L.H. Bailey]

Rubus recurvicaulis Blanchard $\times$ R. vermontanus Blanchard-(Figure 28). [R. severus Brainerd ex Fernald]

Rubus semisetosus Blanchard $\times$ R. setosus Bigelow-(Figure 28).
Rubus setosus Bigelow $\times$ R. vermontamus Blanchard-(Figure 28). [?R. gulosus L.H. Bailey; $R$. parlinti L.H. Bailey; R. unvocus L.H. Bailey]

Sangusorba canadensis Linnaeus-American Burnet (Figure 29). $2 n=28$. Meadows, swamps, low ground, sphagnous soils.

SANGUISORBA MINOR Scopoli subsp. MURICATA (Spach ex Bonnier \& Layens) Briquet—Fodder Burnet (Figure 29). $2 n=28,56$. Old fields, roadsides, quarry ledges, waste places. From Eurasia, northern Africa. [S. MINOR Scopoli subsp. BALEARICA (Bourgeau ex Nyman) Muñoz Garmendia \& C. Navarro]

SANGUISORBA OFFICINALIS Linnaeus-Great Burnet (Figure 29). $2 n=28,42,56$. Roadsides, fields, thickets. From Eurasia, northwestern North America.

Stbbaldia procumbens Linnaeus-(Figure 29). $2 n=14$. Headwalls of alpine ravines.
Sibbaldlopsis tridentata (Aiton) Rydberg-Three-toothed Cinquefoil (Figure 29). $2 n=28$. Dry, open, rocky, gravelly or sandy, sterile soil, clefts in ledges, often at high altitudes. [Potentilla tridentata Aiton]

SORBARIA SORBIFOLLA (Linnaeus) A. Braun-False Spiraea (Figure 29). $2 n=36$. Roadsides, waste places. From eastern Asia.

> -Sorbaronia hybrids-
$\times$ SORBARONIA FALLAX (C.K. Schneider) C.K. Schneider-(Figure 29). [Aronia melanocarpa (Michaux) Elliott $\times$ SORBUS AUCUPARIA Linnaeus; PYRUS $\times$ FALLAX (C.K. Schneider) Fernald]

## $\times$ SORBARONIA HYBRIDA (Moench) C.K. Schneider-(Figure 29). [Aronia arbutifolia (Linnaeus) Persoon $\times$ SORBUS AUCUPARIA Linnaeus; ARONIA HYBRIDA (Moench) Zabel; PYRUS HYBRIDA Moench; SORBUS $\times$ HYBRIDA (Moench) C.K. Schneider not Linnaeus illegitimate name]

$\times$ Sorbaronta jackn Rehder-(Figure 29). [Aronta $\times$ pruntfola (Marshall) Rehder $\times$ Sorbus americana Marshall; Pyrus $\times$ jacku (Rehder) Fernald]
$\times$ Sorbaronia monstrosa (Zabel) C.K. Schneider-(Figure 30). [Aronia $\times$ arbutifolia (Linnaeus) Persoon $\times$ Sorbus americana Marshall]
$\times$ Sorbaronia sorbifolia (Poiret) C.K. Schneider-(Figure 30). [Aronta melanocarpa (Michaux) Elliott $\times$ Sorbus americana Marshall; Aronia sargentii (Dippel) Zabel; Pyrus $\times$ muxta Fernald; Sorbus $\times$ sargentii Dippel; Sorbus $\times$ sorbifolia (Poiret) Hedlund]

Sorbus americana Marshall—American Mountain-ash (Figure 30). $2 n=34$. Cool, moist woods, mountain slopes. [Pyrus americana (Marshall) Sprengel]

SORBUS AUCUPARIA Linnaeus-European Mountain-ash (Figure 30). $2 n=34$. Woods, fields, roadsides, woodland borders, thickets. From Eurasia. [PYRUS AUCUPARIA (Linnaeus) Gaertner]

Sorbuis decora (Sargent) C.K. Schneider-Northern Mountain-ash (Figure 30). $2 n=34$. Wet woods, high mountain slopes, freshwater shores. [S. decora var. groenlandica (C.K. Schneider) G.N. Jones; Pyrus decora (Sargent) Hyland; P. decora var. groenlandica (C.K. Schneider) Fernald]

SORBUS INTERMEDIA (Ehrhart) Persoon -Swedish Whitebeam (Figure 30). $2 n=68$. Roadsides. From Europe. [PYRUS INTERMEDIA Ehrhart]

Spiraea alba Du Roi-Hairy Meadowsweet (Figure 30). $2 n=36$. Swamps, low, moist, open ground.
SPIRAEA CHAMAEDRYFOLIA Linnaeus-Germander Meadowsweet (Figure 30). $2 n=18,32,36$. Roadsides. From Eurasia. [S. CHAMAEDRYFOLIA var. ULMIFOLIA (Scopoli) Maximowicz]

SPIRAEA HYPERICIFOLIA Linnaeus subsp. OBOVATA (Waldstein \& Kitaibel ex Willdenow) Dostál-Iberian Spiraea (Figure 30). $2 n=$ ? Roadside in dry calcareous, sandy soil. From Europe.

SPIRAEA JAPONICA Linnaeus f. var. FORTUNEI (Planchon) Rehder- Japanese Spiraea (Figure $31) .2 n=36$. Roadsides, railroads, thickets. From eastern Asia.

Spiraea latifolta (Aiton) Borkhausen-Smooth Meadowsweet (Figure 31). $2 n=36$. Low, open ground. [S. alba Du Roi var. lattfolia (Aiton) H. E. Ahles]

SPIRAEA NIPPONICA Maximowicz-(Figure 31). $2 n=$ ? Shrubland at edge of lowland plain. From Japan.

SPIRAEA PRUNIFOLIA Siebold \& Zuccarini-Bridalwreath Spiraea (Figure 31). $2 n=18$. Roadsides, waste places, rocky knolls. From eastern Asia.

Spiraea septentronalts (Fernald) Á. Löve \& D. Löve-Alpine Meadowsweet (Figure 31). $2 n=54$. Alpine areas. [S. alba Du Roi var. septentrionalis (Fernald) Fosberg; S. lattfolia (Aiton) Borkhausen var. septentrionalis Fernald]

SPIRAEA THUNBERGII Siebold ex Blume-Baby's-breath Spiraea (Figure 31). $2 n=18$. Dry, sandy, fields, open woods, clearings, roadsides, shores. From China.

Spiraea tomentos $a$ Linnaeus-Hardhack (Figure 31). $2 n=24,36$. Low, open, often moist, acidic soil, fields. [S. tomentosa var. rosea (Rafinesque) Fernald]

## - Spiraea hybrid-

SPIRAEA $\times$ VANHOUTTEI (Briot) Carrière (pro species)—(Figure 31). [parentage uncertain; origin from cultivation]

Waldsteinia fragariotdes (Michaux) Trattinnick-Barren Strawberry (Figure 31). $2 n=14,21,42$. Rich, usually dry, woods, thickets, clearings, fields, roadsides. [Geum fragarioides (Michaux) Smedmark]

## ACKNOWLEDGMENTS

We thank the curators and directors of the herbaria of the New England Botanical Club, the Harvard University Herbaria, the University of Massachusetts, and the University of Vermont for allowing access to their collections. For the University of Maine and University of Connecticut herbaria we used their exceptional online databases of specimens. We are grateful also to Karen Searcy for facilitating access to the herbarium and to the notebooks of Harry E. Ahles at the University of Massachusetts (Amherst) and to Roberta Lombardi for kindly answering requests for information after our visit. David Barrington assisted with our access to the Pringle Herbarium of the University of Vermont. James Hinds generously checked information on voucher specimens at the University of Maine (Orono). The following persons also checked certain records for us at their respective institutions: Janet Sullivan, Lauren Sopher, Robert Capers, Patrick Sweeney, and Craig D. Layne. John T. Kartesz and Misako Nishino generously provided the latest draft version of the Floristic Synthesis of North America, which was consulted for reports of occurrence and the sources of such reports. Erika Sonder kindly assisted with reviewing specimens at the Harvard University Herbaria. We thank Kanchi Gandhi for nomenclatural advice.

## LITERATURE CITED \& CONSULTED <br> (general references listed in our previous articles are not repeated here)

Angelo, R. 1994. A computer method for producing dot distribution maps. Rhodora 96: 190-194.
Angelo, R. and D.E. Boufford. 1996. Atlas of the flora of New England: Pteridophytes and gymnosperms. Rhodora 98: 1-79.
Angelo, R. and D.E. Boufford. 1998. Atlas of the flora of New England: Poaceae. Rhodora 100: 101-233.
Angelo, R. and D.E. Boufford. 2000. Atlas of the flora of New England: Monocots except Poaceae and Cyperaceae. Rhodora 102: 1-119.
Angelo, R. and D.E. Boufford. 2007. Atlas of the flora of New England: Cyperaceae. Rhodora 109: 237-360.
Angelo, R. and D.E. Boufford. 2010. Atlas of the flora of New England: Magnoliidae \& Hamamelidae. Rhodora 112: 244-326.
Angelo, R. and D.E. Boufford. 2011a. Atlas of the flora of New England: Salicaceae to Brassicaceae. Phytoneuron 2011-12: 1-12 + figs. 1-53 (maps).
Angelo, R. and D.E. Boufford. 2011b. Atlas of the flora of New England: Paeoniaceae to Ericaceae. Phytoneuron 2011-53: 1-13 + figs. 1-18 (maps).
Angelo, R. and D.E. Boufford. 2011c. Atlas of the flora of New England: Pteridophytes and Gymnosperms: Introduction. http//neatlas org/Intro-Pterid\&Gym html>
Angelo, R. and D.E. Boufford. 2012a. Atlas of the flora of New England: Caryophyllidae. Rhodora 113: 419-513.
Angelo, R. and D.E. Boufford. 2012b. Atlas of the flora of New England: Asteraceae. Phytoneuron 2012-34: 1-39 + figs. 1-56 (maps).

Campbell, C.S. and E. Doucette. 2010. Amelanchier Systematics and Evolution Website, Shttp //sbe umaine edu/amelanchier>
Chung, K.S. 2008. A Systematic Study of the Genus Agrimonia (Rosaceae). Ph.D. thesis. University of Oklahoma, Norman, Oklahoma.
Cullina, M.D., B. Connolly, B. Sorrie, and P. Somers. 2011. The Vascular Plants of Massachusetts: A County Checklist (rev. 1). Massachusetts Natural Heritage \& Endangered Species Program, Massachusetts Division of Fisheries \& Wildlife, Westborough, Massachusetts.
Davis, H.A. 1990. Studies in Rubus. Castanea 55: 22-30.
Davis, H.A., A.M. Fuller and T. Davis. 1967. Contributions toward the revision of the Eubatt of Eastern North America. Castanea 32: 20-37.
Davis, H.A., A.M. Fuller and T. Davis. 1968a. Contributions toward the revision of the Eubati of Eastern North America. II. Setost. Castanea 33: 50-76.
Davis, H.A., A.M. Fuller and T. Davis. 1968b. Contributions toward the revision of the Eubatr of Eastern North America. III. Flagellares. Castanea 33: 206-241.
Davis, H.A., A.M. Fuller and T. Davis. 1969a. Contributions toward the revision of the Eubati of Eastern North America. IV. Castanea 34: 157-179.
Davis, H.A., A.M. Fuller and T. Davis. 1969b. Contributions toward the revision of the Eubati of Eastern North America. V. Arguti. Castanea 34: 235-266.
Davis, H.A. A.M. Fuller and T. Davis. 1970. Contributions toward the revision of the Eubatı of Eastern North America. VI. Cunetfolit. Castanea 35: 176-194.
Davis, H.A., A.M. Fuller, and T. Davis. 1982. Some comments on Rubus. Castanea 47: 216-219.
Dickinson, T.A., E. Lo, and N. Talent. 2007. Polyploidy, reproductive biology, and Rosaceae: understanding evolution and making classifications. Plant Systematics and Evolution 266: 5978.

Fernald, M.L. 1950. Gray's Manual of Botany (ed. 8). American Book Company, New York.
Gleason, H.A. and A. Cronquist. 1991. Manual of Vascular Plants of Northeastern United States and Adjacent Canada 2nd ed. The New York Botanical Garden, Bronx, New York.
Goldblatt, P. and D.E. Johnson (eds.). 1979-. Index to Plant Chromosome Numbers (IPCN). Missouri Botanical Garden, St. Louis. Chttp//www tropicos org/Project/IPCN>
Hodgdon, A.R. and F.L. Steele. 1966. Rubus Subgenus Eubatus in New England. Rhodora 68:474513.

Kline, G.J. and P. Sorensen. 2008. A revision of Agrimonta (Rosaceae) in North and Central America. Brittonia 60: 11-33.
Kruschke, E.P. 1965. Contributions to the Taxonomy of Crataegus. Milwaukee Public Museum, Publications in Botany (Number 3), Milwaukee, Wisconsin.
Lewis, W.H. 2008. Rosa carolina (Rosaceae) subspecies and hybrids in eastern and midwestern United States, Canada, and Mexico. Novon 18: 192-198.
Phipps, J.B. and M. Muniyamma. 1980. A taxonomic revision of Crataegus (Rosaceae) in Ontario. Canad. J. of Bot. 58: 1621-1699.
Potter, D., T. Eriksson, R.C. Evans, S. Oh, J.E.E. Smedmark, D.R. Morgan, M. Kerr, K.R. Robertson, M. Arsenault, T.A. Dickinson, and C.S. Campbell. 2007. Phylogeny and classification of Rosaceae. Pl. Syst. Evol. 266: 5-43.
Rehder, A. 1940. Manual of Cultivated Trees and Shrubs (ed. 2). Macmillan Publishing Co., Inc., New York
Seymour, F.C. 1982. The Flora of New England, 2nd ed. Phytologia Mem. V. Plainfield, New Jersey.
Steele, F.L. and AR. Hodgdon. 1970. Hybrids in Rubus Subgenus Eubatus in New England. Rhodora 72: 240-250.
Stevens, P.F. 2001 onwards. Angiosperm Phylogeny Website, version 9, June 2008 [and more or less continuously updated since]. <http //www mobot org/MOBOT/research/APweb/>

Thompson, M.M. 1997. Survey of chromosome numbers in Rubus (Rosaceae: Rosoideae). Ann. of Missouri Bot. Gard. 84: 128-164.


Figure 1. Key map for counties of the New England states (and Mt Desert Island, Maine, Block Island, Rhode Island, arbitrary divisions of larger Maine counties and of Coos County, New Hampshire)


AGRIMONA EUPATORLA


Agrimonia parvifiora


Agrimonia striata


Agrmonia gryposepala


Agnmona microcarpa


Agrmona pubescens


ALCHEMILLA MONTICOLA

Figure 2 Distribution maps


Amelancher arborea

Amelancher gaspensus



Amelancher bartramana


Amelancher mtermedia



Amelanchier canadensis vat canadensrs


Amelanchier laevis


Amelanchier rantucketensis

Figure 3 Distribution maps


Figure 4 Distribution maps


Amelanchrer canadensis var canadensis XA spicata


Amelanchier laevis
$X A$ spicata



Aroma melanocarpa


Arona arbutifolia


Aronia $\times$ prunifolia

Figure 5 Distribution maps


Figure 6 Distribution maps


Crataegus coccinioldes


Grataegus crus-gals


Crataegus mollis



Crataegus mitricata


Crataegus macrosperma


CRATAEGUS PHAENOPYRUM


Figure 7 Distribution maps


Crataegus succulenta


Crataegus X anomala


Crataegus X haemacarpa



Crataegus $\times$ lucorum


Figure 8 Distribution maps


Figure 9 Distribution maps


FRAGARLA VESCA
subsp VESCA


Fragaria virgmiana subsp glauca


Fragana vesca subsp americana

FRAGARIA VIRGINIANA
subsp GRAYANA



Fragara vrgmiana
subsp virgmana


FRAGARIA XANANASSA


Geum aleppicum


Geum canadense


Geum lacinatum

Figure 10 Distribution maps


Figure 11 Distribution maps


Figure 12 Distribution maps


MALUS X SOULARDII


PHOTINTA VLLLOSA



POTENTILLA ARGENTEA


Potentilla canadensis


PHYSOCARPUS OPULIFOLIUS


POTENTILLA GRACILIS var GRACILSS

Figure 13 Distribution maps


POTENTILLA NCLINATA


Potentilla norvegica


POTENTILLA REPTANS


POTENTLLLA INTERMEDIA


Potentilla htoralts


POTENTILLA PULCHERRIMA


POTENTILLA RECTA


POTENTILLA RVALIS


Figure 14 Distribution maps


Figure 15 Distribution maps


PRUNUS HORTULANA


Prunus mantima

PRUNUS PERSICA



PRUNUS RNSITITLA


Prunis afigra


Prunus pumila
var depressa


Prunus pensylvanica


Figure 16 Distribution maps


Figure 17 Distribution maps


Figure 18 Distribution maps


Figure 19 Distribution maps


Figure 20 Distribution maps


Figure 21 Distribution maps


Figure 22 Distribution maps


Rubus odoratus


RUBUS PARVIFOLUUS


Rubuspubescens

RUIBUS RORIBACCUS




Rubus repens


RUBUS PHOENICOLASIUS


Rubus semisetosus

Figure 23 Distribution maps


Figure 24 Distribution maps


Figure 25 Distribution maps


Figure 26 Distribution maps


Figure 27 Distribution maps


Figure 28 Distribution maps


Figure 29 Distribution maps


X Sorbaronia monstrosa

SORBUS AUCUPARIA



X Sorbarona sorbyfolua

Sorbus decora



Sorbus americana



Spiraeaalba


SPIRAEA CHAMAEDR YFOLIA


Figure 30 Distribution maps


Figure 31 Distribution maps

# GERANIUM PUSILLUM (GERANIACEAE): NEW TO TEXAS 

Jason R. Singhurst<br>Wildlife Diversity Program<br>Texas Parks and Wildlife Department<br>4200 Smith School Road<br>Austin, Texas 78704<br>jason singhurst@tpwd state tx us<br>Walter C. Holmes<br>Department of Biology<br>Baylor University<br>Waco, Texas 76798-7388<br>walter_holmes@baylor.edu


#### Abstract

Geranium pustllum, a native of Eurasia, is reported as adventive in the state of Texas. It is documented from Denton County, in the north central part of the state.


KEY WORDS: Geranium, Geraniaceae, Texas, USA

Geranum is a genus of about 350 species of worldwide distribution, with 137 species occurring in the New World. Aedo (2012) reports that 30 species occur in the USA, 16 introduced.

The genus is poorly represented in Texas. Correll and Johnston (1970) treated six species but one of these, G. lentum Wooton and Standley, has been determined to be based upon a mis determination (Aedo 2012, p. 69). Turner et al. (2003) mapped five species as occurring in the state: G. carolinianum L., G. texanum (Trelease) A. Heller, G. caespitosum E. James, G. seemannii Peyritsch, and G. dissectum L. (which is cited as introduced). In his study of the genus in the New World, Aedo includes these same five species as occurring in Texas but treats $G$. seemannit as $G$. seemannut subsp. seemannit, conspecific with G. seemannil subsp. repens (H.E. Moore) Aedo of southern Mexico and Central America.

A sixth species is added here to the Texas flora, with documentation of its occurrence.
Geranium pusillum L. Texas. Denton Co:. 1.1 mi W of jet of Boss Range Rd. and Co. Rd. 407 on Co. Rd. 404, then N 6.0 mi from jet of Starder Ln. and Co. Rd. 407 on Starder Ln., 8 May 2012, J. Singhurst 19308 (BAYLU). Figure 1.

About 120 plants of Geranium pusillum were found in scattered bare spots among small patches of Aegilops cylindrica in clay-loam soils along a periodically maintained electrical transmission line right-of-way that bisects a high quality tallgrass prairie. Associated species included Andropogon gerardu, Sorghastrum mutans, Salva azurea, Delphnnum virens, Liatris mucronata, Tridens muticus, Asclepias asperula, Carex microdonta, Sporobolus sp., Hymenopappus scabiosaeus, Camassia scilloides, Desmanthus illinoensis, Penstemon cobaea, Pediomelum sp., Echnacea atrorubens, Callirhoe Thelesperma filifolum, Stenaria nigricans, and Dalea multiflora.


Figure 1 Gerannum pusillum L. (Singhurst 19308, BAYLU) Photo by Darrell Vodopich

The following comments are largely based upon Aedo (2012), except as otherwise cited. Geranium pusillum is a native of Eurasia that has been introduced to Australia, North America, and South America (Argentina and Chile). In North America, the species is known from the northern two-thirds of the USA (Virginia-Tennessee west to California, north to southern Canada. It is an early introduction to the USA, being cited by Torrey (1826) in Pennsylvania. This persistence perhaps indicates that the species will become a permanent resident in the state. The distribution nearest to Texas is northwest Arkansas (Carroll and Madison counties) and northeast Oklahoma (Adair and Sequoyah counties).

Geranium pusillum is an annual characterized by having only five anther bearing stamens (Aedo 2012). All other species of Geranium known in Texas have ten stamens.

## ACKNOWLEDGMENTS

We would like to acknowledge Mrs. Anne Smith for access to the Smith Ranch and the opportunity to study the ecology and flora of her tall grass prairie. We also are grateful to Darrell Vodopich, Department of Biology, Baylor University, for taking and processing the photograph of the Gerantum pusillum specimen.

## LITERATURE CITED

Aedo, C. 2012. Revision of Gerantum (Geraniaceae) in the New World. Syst. Bot. Monogr. 95: 1550.

Correll, D.S. and M.C. Johnston. 1970. Manual of the Vascular Plants of Texas. Texas Research Foundation, Renner.
Torrey, J. 1826. A Compendium of the Flora of the Northern and Middle States. Vol. 1. Stacy B. Collins, New York.
Turner, B.L., H. Nichols, G. Denny, and O. Doron. 2003. Atlas of the Vascular Plants of Texas. Sida Bot. Misc. 24. Bot. Res. Inst. Texas, Fort Worth.

# A NEW SPECIES OF ACHYROPAPPUS (ASTERACEAE: BAHIEAE) FROM QUERÉTARO, MEXICO 

Billie L. Turner<br>Plant Resources Center<br>The University of Texas<br>Austin, Texas 78712


#### Abstract

A novel species is removed from the fabric of Achyropappus anthemoides (H.B.K.) A. Gray and described as Achyropappus queretarensis B.L. Turner, sp. nov. With the new addition and recognition of the Guatemalan endemic, A. depauperatus (S.F. Blake) B.L. Turner, the genus now contains three species. A key to the species is provided, along with a photograph and line drawings of the novelty concerned; a map showing their distribution of the three species also is provided.


KEY WORDS: Asteraceae, Bahieae, Achyropappus, Achyropappus anthemoides, Achyropappus depauperatus, Mexico, Guatemala

Preparation of an upcoming treatment of the tribe Bahieae of Mexico in my ongoing Comps of Mexico (cf. Turner 2012) has occasioned the present paper. The novelty described here in Achyropappus, along with previously known taxa, now provides three names for the genus, as follows:

1. Ligules of ray florets white, 4-8 mm long; plants mostly $20-80 \mathrm{~cm}$ high Achyropappus anthemoides 1. Ligules of ray florets yellow, 1-3 mm long; plants mostly 6-20 cm high.
2. Involucral bracts ca. 3 mm long, widest near apex; pappus scales ca. 0.2 mm long; Guatemala Achyropappus depauperatus
3. Involucral bracts ca. 4 mm long, widest near middle; pappus scales $1-2 \mathrm{~mm}$ long; Mexico Achyropappus queretarensis

ACHYROPAPPUS QUERETARENSIS B.L. Turner, sp. nov. Figure 1 Type: MEXICO. Querétaro. Mpio. de Colón: sobre el camino al Cerro Zamorano, matorral xerófilo, abundante in lugares perturbados, $2600 \mathrm{~m}, 30$ Sep 2002, J. Rzedowskt 54056 (holotype: TEX)

Resembling A. anthemordes H.B.K. but a smaller, more delicate plant having smaller leaves ( $1-2 \mathrm{~cm}$ long vs 2-4 cm), ray florets yellow and 3 to a head (vs white and mostly 4-5 to a head), and stems and foliage sparsely glandular pubescent (vs densely so).

Annual herbs $5-18 \mathrm{~cm}$ high. Mid-stems much-branched below, sparsely pubescent with both glandular and/or eglandular hairs. Leaves (mid-stem) tripartite, mostly $1-2 \mathrm{~cm}$ long, the lowermost opposite, the upper alternate; petioles winged, $2-10 \mathrm{~mm}$ long, ciliate with spreading eglandular hairs. Capitulescence a terminal array of 1-5 heads forming a loose panicle 2-6 cm across, the ultimate peduncles $1-5 \mathrm{~cm}$ long. Heads ca 10 mm wide (rays excluded), $4-5 \mathrm{~mm}$ high; outer involucral bracts 5 , ca 4 mm long, 3 mm wide, broadest near the middle, the margins scarious. Receptacle epaleate, plane, ca 1.2 mm across. Ray florets 3, pistillate, fertile; ligules yellow, 2-3 mm long. Disc florets yellow, $20-30$ per head; corollas 5 -lobed, ca 2 mm long, the throat ca 0.5 mm


Figure 1. Achyropappus queretarensis (holotype, TEX).
long. Achenes black, smooth, 3-4-sided, 2-3 mm long, the outer series to some extent pubescent with villous hairs, the inner series mostly glabrous; pappus of ca 8 ribless scales, $1.0-2.0 \mathrm{~mm}$ long.

Additional specimens examined: MEXICO. Guanajuato. Mpio. De San Luis de la Paz: 9 km al NE de Chupaderos, sobre el camino a Mesas de Jesus, $2250 \mathrm{~m}, ~ 8 / 11 / 92$, Rzedowski 51869 (TEX). Hidalgo. Mpio Zimapan: on felsitic ledges in open thorn scrub area at Puerto de la Estancia ca 53 km NW of Ixmiquilpan, ca $2000 \mathrm{~m}, 21$ Oct 1974, Cronquist 11267 (LL).

The species name derives from the state of Querétaro, whence the type.
When originally discerned I considered the idea of describing the novelty as but a variety of A. anthemoides, but their allopatric distribution and lack of intermediates swayed my thinking to that expressed here.

ACHYROPAPPUS ANTHEMOIDES H.B.K., Nov. Gen. \& Sp. (folio ed.) 4: 203, pl. 390. 1820[1818]. Schkuhria anthemoides (Kunth) Wedd., Chlor. Andina 1: 74. 1855[1856]. Bahia anthemordes (H.B.K.) A. Gray, Proc. Amer. Acad. Arts 15: 40. 1879. Type: MEXICO. Edo. Mexico. "Crescit in agro frigido Tolucensi, prope pagum Islahuaca, alt. 1380 hex.," Sep, Humboldt \& Bonpland s.n. (holotype: P).

The type of this species was described from near Toluca in considerable detail by H.B.K. and illustrated by a full page plate. A detailed description (including the present Achyropappus queretaranus) and full page illustration (presumably of $A$. anthemodes, sensu the present author) was provided by Villareal et al (2006). Chromosome number, $2 n=20$. Figure 2 .

Hidalgo, Tlaxcala, and Edo. Mexico; oak-juniper woodlands, 2600-3000 m; Aug-Sep.
Achyropappus anthemoides reportedly grows at somewhat higher elevations than $A$. queretaramus ( $2600-3000 \mathrm{~m}$ vs. $2200-2600 \mathrm{~m}$ ). The species superficially resembles Villanova achtllaeoides (tribe Perityleae, sensu Panero 2007) but is readily distinguished by its larger rays and pappose achenes.

ACHYROPAPPUS DEPAUPERATUS (S.F. Blake) B.L. Turner, Phytologia 92: 349. 2010. Bahia depauperata S.F. Blake, Brittonia 2: 352. 1937. Type: GUATEMALA. Dept. Huehuetenango. Heavily grazed alpine pasture, S side of the Sierra Cuchumatanes, along trail between Huetenango and Soloma, $3200 \mathrm{~m}, 16$ Sep 1934, A. Skutch 1271 (holotype: GH!). Figure 2.

Known to me only by the type.
Blake, in his original, very detailed description, reckoned the present taxon to be better positioned in the genus Baha, comparing it to B. anthemoides ( $=$ Achyropappus anthemordes) but Baldwin et al. (2002), using DNA data, retained both genera. Strangely, Nash and Williams (1976), in their account of Asteraceae for the Flora of Guatemala, failed to account for the taxon concerned.

In short, Bahia depauperata seems best positioned in the genus Achyropappus, along with its presumed closest relative, $A$. anthemoides (if not $A$. depauperatus), an affinity suggested by the characters given in the above key.


Figure 2 Sketches of $A$. depauperatus (from holotype, GH) (a) habit [ 6 cm high], (b) head [4 mm high], (c) ray floret [ 35 mm high], (d) disc floret [ 35 mm high]; (e) stamens and style branches [0 03 mm long], (f) pappus scale [ 002 mm long] Produced by the well-known illustrator, K. Douthet of the University of Michigan, from NSF funds provided to the author many years ago now


Figure 3 Distribution of Achyropappus species

## ACKNOWLEDGEMENTS

My research companon, Jana Kos, edited the paper, providing constructive input Thanks to Dr José Panero for his comments in review and to GH for the loan of appropriate material

## LITERATURE CITED

Baldwin, B G, B L Wessa and JL Panero 2002 Nuclear rDNA evidence for major lineages of Helenioid Heliantheae (Compositae) Syst, Bot 27: 161-198
Nash, D L and L O Williams 1976 Asteraceae Flora of Guatemala Fieldiana Botany 24 (12) 1-603
Panero, J L 2007 Bahieae, in Kadereit and Jeffrey, The Families and Genera of Vascular Plants 8 433-439
Turner, B L 2012 (in prep) Helenieae, in Comps of Mexico Phytologia Memoirs 16 Villareal, Q, J A Villasenor, and R Medina L 2006. Helenteae, in Flora del Bajı 140 1-54.

# POLYTAENIA ALBIFLORA (APIACEAE), A NEW SPECIES FROM THE BALCONES CANYONLANDS IN THE EDWARDS PLATEAU OF TEXAS 

Eric L. Keith<br>Raven Environmental Services Inc<br>PO Box 6482<br>Huntsville, Texas 77342<br>kerth@ravenenvironmental com


#### Abstract

A new species of Polytaenia is described from the Balcones Canyonlands Subregion of the Edwards Plateau of Texas. Polytaenia albiflora E.L. Keith, sp. nov., is described, illustrated, and distinguished from Polytaenta muttallit and Polytaenta texana. The combined characteristics of white flowers, lack or reduction of involucel bracts, larger schizocarps, and unique habitat distinguish this species from the other two species of Polytaenia. The apparent rarity of $P$. albiflora warrants its consideration as a candidate for state and federal regulatory protection. Included is a species key and distribution map for the genus in Texas.


KEY WORDS: Apiaceae, Apioideae, Polytaenia albiflora, Polytaenta muttallit, Polytaenia texana, Balcones Canyonlands

In April 2012, an unusual population of Polytaenta DC. was discovered near the base of a mature forested bluff approximately 30 meters from the Frio River on a recent land acquisition in Garner State Park (McKorkle 2010). This discovery was made while conducting vegetation and fuel model assessments for the park as part of a multi-year research project to acquire baseline data and conduct long-term monitoring of the natural vegetation communities in all of the state parks in Texas (TPWD 2010).

With an extensive search, only fifteen plants (ten in flower) were observed in the Garner State Park location. Only one plant (the type) was collected in April because of the small population size. Nearly mature fruit and fully mature fruit from two adjacent plants were subsequently collected by Mike Lloyd, Texas Parks and Wildlife Department (TPWD) State Parks Wildland Fire Management Specialist, at two different times in May and June 2012.

The plants appeared distinctive because of the white flowers and unique habitat in the shade of a mature forest canopy. After examination of numerous herbarium specimens of potentially close relatives and literature study of Apiaceae, the plant aspect, leaf structure, floral structure, and schizocarp morphology revealed that this novelty represented a new species in Polytaenia (Correll \& Johnston 1970; Coulter \& Rose 1900, 1909; Diggs et al. 1999; Hatch et al. 1990; Jones et al. 1997; Kartesz 2012; Menglan et al. 2005; Michigan Flora Online 2011; Nesom 2012; St. John 1919; Turner et al. 2003; USDA 2012; and Tutin et al. 2010).

Polytaenia albiflora E.L. Keith, sp. nov. (Figs. 1 and 2) Type: USA. Texas. Uvalde Co.: Wooded slope at base of Old Baldy, ca. 30 meters S of Frio River just above normal flood zone; associates Celtis reticulata, Tilia carolmtana, Juniperus ashei, Fraxinus texensis, Ungnadia spectosa, Aesculus pavia var. flavescens, Sophora affinis, Tinantra anomala, Carex edwardensis, Dichanthelium pedicellatum, Parietaria pennsylvanica, Viguera dentata, and Salvia roemeriana; UTM NAD 83: 3272091.776 E, 429492.465 N; 19 Apr 2012, Eric L. Keith 1028 (holotype: TEX).

Polytaenia albiflora is similar to P. texana (Coult. \& Rose) Mathias \& Constance in overall aspect, leaf arrangement, similar floral structure, dorsally flattened schizocarp with lateral ribs corky thickened into wings, four distinct and raised oil tubes on the dorsal surface of the mericarp, and two distinct and raised oil tubes on the commissural face. It differs in its white flowers, shorter stature, usually larger schizocarps, less dissected leaves, generally wider cauline leaflets, and reduced lanceolate involucel bracts or bracts often absent.

Perennial herbs, without odor, moderately to densely scabrous in the inflorescence with minute, conic, papillate hairs, otherwise glabrous; taproot apparently thickened. Stems 6-8 dm. Leaves: basal 1-2-pinnately compound, cauline 1-pinnately compound, blades oblong to ovate in outline, $8-17 \mathrm{~cm} \times 8-12 \mathrm{~cm}$, herbaceous and slightly thickened; leaflets $3-5$, pinnately to subpinnately divided, lobes ovate or oblanceolate to narrowly oblong, $2-3 \mathrm{~cm} \times 1-2 \mathrm{~cm}$, cauline leaves smaller than basal leaves; bases rounded to cuneate, sessile to petiolulate, margins coarsely serrate; petioles with dilated and densely hispid, scabrous sheaths. Inflorescence: peduncles terminal and axillary, $1-6 \mathrm{~cm}$; rays $1-2 \mathrm{~cm}$, subequal to unequal. Umbels compound; umbellets $6-15$; involucral bracts absent, involucel bracts often absent, but occasionally with 1 to 3 lanceolate bractlets to 3 mm long with slightly keeled, green to yellowish-green dorsal stripes and white hyaline margins. Pedicels $1-4 \mathrm{~mm}$. Flowers protogynous; sepals lanceolate-subulate, persistent; petals white, apices extended into an appendage half as long as the petal and folded under and often adnate to the abaxial surface, deciduous; stylopodium absent. Schizocarps oval to slightly obovate, strongly flattened dorsally, (9-)11-15 $\mathrm{mm} \times(6-) 7-9.5 \mathrm{~mm}$, splitting into 2 mericarps, narrowly to broadly corky-winged, dorsal ribs distinct, 3 , thin, orange or tan; lateral ribs developing into wings that are relatively thin and same thickness as the face; oil tubes of dorsal face 4, raised and distinct; oil tubes of commissural face 2, slightly raised and less distinct that dorsal oil tubes, one on each side of the midrib, surface smooth, glabrous; carpophore bifid.

Additional collections examined: USA. Texas. Bandera Co.: Rock crevice, roots fleshy and brittle, head of Sabinal Canyon, 21 Jun 1946, Correll \& Correll 12828 (BRIT); Hill Country State Natural Area: Southeast area of park, near Chapa's group camp site, banks of West Verde Creek, 16 Apr 1994, Lackey 457 (BRIT). Comal Co.: Honey Creek Preserve, ca. 100 mS of the confluence of the Guadalupe River and Honey Creek, limestone cliff above creek with Diospyros texana and Forestiera, rare perennial to 1 m , corolla white, 17 May 1984, Poole 2555 (TEX). Gillespie Co.: Enchanted Rock, [no date], Jermy s.n. (BRIT). Kendall Co.: In moderately dry shady soil below Edge Falls, 3 May 1947, Tharp, Webster, \& Barkley 17 T158 (TEX); $83 / 4 \mathrm{mi}$ NW of Boerne, 24 May 1935, Parks \& Cory 14013 (BRIT, TEX, TAES); Uvalde Co.: Wooded slope at base of Old Baldy ca. 30 meters S of Frio River just above normal flood zone, [immature schizocarps and inflorescence], 18 May 2012, Lloyd s.n. (TEX), [mature schizocarps], 21 Jun 2012, Lloyd s.n. (TEX).

Etymology. The epithet refers to the white flowers, a unique feature of the genus. The other two species have yellow flowers.

Distribution and habitat. Polytaenia albiflora is currently known from the Balcones Canyonlands Subregion of the Edwards Plateau Natural Region in Texas (Diamond et al. 1987) (Figs. 3 \& 4). The Gillespie Co. collection is from an unspecified location (Enchanted Rock) and date; therefore, it may represent a labeling error (Figures 3 and 4). If the collection was actually made at Enchanted Rock, then the species may be found in similar habitats in the Llano Uplift Subregion (Diamond et al. 1987). This species is apparently another of the approximately 36 endemic species restricted to the Edwards Plateau, including several that have been discovered recently. Recent discoveries include Cardamme carru B.L. Turner, Prenanthes carru Singhurst, O'Kennon, and W.C. Holmes, Phaseolus texensis A. Delgado \& W.R. Carr, and Galactia watsoniana W.C. Holmes \& Singhurst (Delgado-Salinas \& Carr 2007; Diamond et al. 1987; Holmes \& Singhurst 2008; Poole et
al. 2007; Turner et al. 2003; Turner 2012). This new species does occur with several endemic species and in close proximity to (but not with) Cardamine carrii in Garner State Park (Turner et al. 2003; personal observation).

At the type locality, the following species were closely associated with Polytaenia albiflora: Celtis reticulata Torr., Tilia caroliniana Mill., Juniperus ashei J. Buchholz, Fraxinus albicans Buckley, Ungnadia speciosa Endl., Aesculus pavia var. flavescens (Sarg.) Correll, Sophora affinis Torr. \& A. Gray, Tinantia anomala (Torr.) C.B. Clarke, Carex edwardsiana Bridges \& Orzell, Dichanthelium pedicellatum (Vasey) Gould, Parietaria pensylvanica Muhl. ex Willd., Viguiera dentata (Cav.) Spreng., and Salvia roemeriana Scheele.


Figure 1. Polytaenia albiflora. Clockwise from top left: Habit. Inflorescence. Mature schizocarps (photo by Mike Lloyd). Immature schizocarps.







 Dishagas Pleza Onime 2011)
 and cecasonally sumar hobitats especially in the veeken portion of tor isage of P boana The too








Figure 3 County distribution of Polytaenta albyflora, $P$ texana, and $P$ matiallin in Texas, based on map in Nesom (2012) and collections from SHST, SMU-BRIT-VDB, TAES, TAMU, and TEX-LL

A key to all three species of Polytaenia is derived from Nesom (2012) and personal observations

1 Flowers whte, plants to 8 dm in height, involucel absent or of $1-3$ reduced lancedate bractlets to 3 mm long, frut (9-) $11-15 \mathrm{~mm} \times(6-) 7-95 \mathrm{~mm}$, forested rocky slopes, enderme to Edwards Plateau of Texas

Polytaenia albiflora
1 Flowers yellow, plants to 15 dm in height, involucel of lineat or filiform bractlets usually $>4 \mathrm{~mm}$ long, frut 5-11(-15) x 4-7 min, mostly open habitats, wdely distributed in Texas, north to Kentucky, Michugan, and Iowa

2 Frut 5-11 mm x 4-7 mm, lateral wings narrower and theker than the body, oll ducts indistinct, several in the intervals, in sandy soil in the Timber Belt and the Blackland Prairies from Texas and Lousiana, north to Kentucky, Michigan, and Iowa

Polytaenia nuttallii
2 Frut 9-11(-15) x 6-7 mm, lateral wings broader and thinner than the body, ol ducts distinct, solitary in the intervals, abundant on the Blackland and Coastal praries and the Edwards Plateau, endernuc to Texas and southern OHAhoma

Polytaenia texana

As currently understood, Polytaenta albiflora is endemic to the Balcones Canyonlands Subregion (or possibly including Llano Uplift Subregion) of the Edwards Plateau in Texas and is farly uncommon (Diamond et al 1987) (Fig 4) Fortunately, at least two populations of $P$ albiflora are relatively protected in Garner State Park and Honey Creek State Natural Area However, since this species appears to have a restricted distribution, it should be considered as a candidate for federal and state protected species status Additional populations should be sought in simular habitats throughout the Edwards Plateau


Figure 4 County distribution of Polytaenta albiflora and $P$ texana in Balcones Canyonlands Subregion and surrounding area, based on map in Nesom (2012) and collections from SHST, SMU-BRIT-VDB, TAES, TAMU, and TEX-LL

## ACKNOWLEDGEMENTS

The work that led to this discovery was funded in part through a wildlife grant from U S Fish and Wildlife Service and was provided by the Natural Resources Program of the Texas Parks and Wildlife Department in a contract with Raven Environmental Services Inc I would like to thank Ross Carrie, Raven President, David Riskind, TPWD Natural Resources Director, Jeff Sparks, TPWD State Wildland Fire Coordnator, Mike Lloyd, State Parks Widland Fire Management Specialist, and Greg Creacy, TPWD Natural Resources Coordinator, for their friendship and support throughout the years Many thanks also to the staff of Garner State Park, moluding Rick Meyers, Park Superintendent, who provided lodging and much needed assistance when my transportation ignited and needed repair I would also like to thank Guy Nesom, Phytoneuron, and James Vankley at Stephen F Austin State University for their help and advice and Bill Carr for his mamuscript review Tom Wendt (TEX/LL), Amanda Neill (BRIT), Tiana Franklin Rehman (BRIT), Stephen Hatch
(TAES), Dale Kruse (TAES), Monique Reed (TAMU ), and Justin Williams (SHST) all kindly allowed me to use the collections and were very helpful. I would also like to thank my wife Elizabeth Keith, my mom Lou Ann Barnes of Richmond, Virginia; and my dad William Keith of Lufkin, Texas, for their love and support and for critical review of the paper.

## LITERATURE CITED

Bentham, G. and J.D. Hooker. 1867. Polytaenia. Genera Plantarum 1:922.
de Candolle, A.P. 1829. Observations sur la famille des Ombellifères. Collection de Mémoires 5: 53, pl. 13.
Mathias, M.E. and L. Constance. 1970. Umbelliferae. Pp. 1139-1169, in D.S. Correll and M.C. Johnston. Manual of the Vascular Plants of Texas. Texas Research Foundation, Renner.
Coulter, J.M. and J.N. Rose. 1900. Monograph of the North American Umbelliferae. Contr. U.S. Natl. Herb. 7: 191-192.
Coulter, J.M. and J.N. Rose. 1909. Supplement to the monograph of the North American Umbelliferae. Contr. U.S. Natl. Herb. 12: 447-448.
Delgado-Salinas, A and W.R. Carr. 2007. Phaseolus texensis (Leguminosae: Phaseolinae): A new species from the Edwards Plateau of Central Texas. Lundellia 10: 11-17.
Diamond, D.D., D.H. Riskind, and S.L. Orzell. 1987. A framework for plant community classification in Texas. Texas J. Sci. 39: 203-222.
Diggs, G.M., B.L. Lipscomb, and R.J. O'Kennon. 1999. Shinner's and Mahler's Illustrated Flora of North Central Texas. Sida, Bot. Misc., Vol. 16.
Hatch, S.L., K.N. Gandhi, and L.E. Brown. 1990. Checklist of the Vascular Plants of Texas. MP1655, Texas Agric. Exp. Station, College Station.
Holmes, W.C. and J.R. Singhurst. 2008. A new species of Galactia (Fabaceae, Papilionoideae) from central Texas, U.S.A. Novon 18: 347-350.
Jones, S.D., J.K. Wipff, and P.M. Montgomery. 1997. Vascular Plants of Texas. A Comprehensive Checklist Including Synonomy, Bibliography, and Index. Univ. of Texas Press. Austin.
Kartesz, J.T., The Biota of North America Program (BONAP). 2011. North American Plant Atlas (http://www.bonap.org/MapSwitchboard.html). Chapel Hill, N.C. [maps generated from Kartesz, J.T. 2010. Floristic Synthesis of North America, Version 1.0. Biota of North America Program (BONAP). (in press)].
Mathias, M.E. and L. Constance. 1941. New combinations and new names in the Umbelliferae. Bull. Torrey Bot. Club 68: 121-124.
McKorkle, R. 2010. Garner State Park to add 177 acres in land purchase. TPWD media release. <http //www tpwd state tx us/newsmedia/releases/ $/$ req $=20100128 \mathrm{~b}>$
Menglan, S., P. Fading, P. Zehui, M.F. Watson, J.F.M. Cannon, I.Holmes-Smith, E.V. Kljuykov, L.R. Phillippe, and M.G. Pimenov. 2005. Flora of China, Vol. 14, Apiaceae (Umbelliferae).
Michigan Flora Online. 2011. A.A. Reznicek, E.G. Voss, \& B.S. Walters. Univ. of Michigan, Ann Arbor. [http://www.michiganflora.net/home.aspx](http://www.michiganflora.net/home.aspx) Accessed 6 Jul 2012.
Nesom, G.L. 2012. Taxonomy of Polytaenia (Apiaceae): P. nuttallit and P. texana. Phytoneuron 2012-66: 1-12.
Plant Resources Center. 2012. Flora of Texas database. Plant Resources Center, Univ. of Texas, Austin. दhttp//www biosci utexas edu/pre/Tex html>
Poole, J.M., W.R. Carr, D.M. Price, and J.R. Singhurst. 2007. Rare Plants of Texas. Texas A \& M Univ. Press, College Station.
St. John, H. 1919. Phanerotaenia, a new genus of Umbelliferae. Rhodora 21: 181-183.
Sun, F.J. and S.R. Downie. 2010. Phylogenetic analyses of morphological and molecular data reveal major clades within the perennial, endemic western North American Apiaceae subfamily Apioideae. J. Torrey Bot. Soc. 137: 133-156.
TPWD. 2010. Standards and Protocols for Baseline Vegetation Studies on Texas State Parks. Texas Parks and Wildlife Department, Natural Resources, Wildland Fire Management Program,
unpublished document.
Turner, B.L., H. Nichols, G. Denny, and O. Doron. 2003. Atlas of the Vascular Plants of Texas. Vols. 1 \& 2. Sida, Bot. Misc. 24.
Turner, B.L. 2012. A new species of Cardamme (Brassicaceae) from south-central Texas. Phytoneuron 2012-49: 1-5.
Tutin, T.G., V.H. Heywood, N.A. Burges, D.M. Moore, D.H. Valentine, S.M. Walters, D.A. Webb, P.W. Ball, A.O. Chater, I.K. Ferguson. 2010. Flora Europaea, Vol. 2. Cambridge Univ. Press.
USDA, NRCS. 2012. The PLANTS Database. National Plant Data Team, Greensboro, North Carolina. htttp //plants usda gov > Accessed 6 Jul 2012.

# VILLARREALIA (APIACEAE), A NEW GENUS FROM NORTHERN MEXICO 

Guy L. Nesom<br>2925 Hartwood Drive<br>Fort Worth, Texas 76109<br>guynesom@sbcglobal net


#### Abstract

Villarrealia Nesom, gen. nov., is described primarily to include Villarrealia (Aletes) calcicola (Mathias \& Constance) Nesom, comb. nov., of Coahuila and western Nuevo León, Mexico. Its close relatives have been indicated by molecular data to be the essentially eastern USA genera Polytaenia, Thaspinm, and Zizia, and a set of floral features provides a synapomorphy for the group of four genera. Illustrations and distribution maps are provided for both species.


KEY WORDS: Villarrealia, Polytaenta, Thaspium, Zizia, Coahuila, Nuevo León, Mexico

Recent molecular-morphological study of endemic western North American Apiaceae subfamily Apioideae (Downie et al. 2002; Sun et al. 2004; Sun \& Downie 2010) opens perspectives toward understanding relationships among those genera and species. Morphological study of the group by R.L. Hartman and G.L. Nesom (in prep., in connection with taxonomic treatments for the developing Flora of North America) brings additional insights.

In particular for the present study, a strongly supported monophyletic subgroup (fide Sun \& Downie 2010) within the American Apioideae comprises the mostly eastern and central North American genera Polytaenia DC. (Keith 2012; Nesom 2012), Thaspium Nutt., and Zizia Koch (e.g., Cooperrider 1985; Lindsey \& Bell 1985) as well as the single species Aletes calctcola Mathias \& Constance of north-central Mexico. The "Thaspium group" arises from within Clade 3 (see Fig. 2 of Sun and Downie, a strict consensus tree based on molecular and morphological characters), which is strongly supported by molecular data, less so morphologically. Cladistic relationships within the group are this: (Aletes calcicola (Polytaenia (Thaspium, Zizia) )).

The Thaspium group, however, in the Sun \& Downie analysis, is defined by a nonhomoplasious synapomorphy - erect and only slightly divergent style branches - as well as a homoplasious one - distally hirtellous rays. The present study adds another apparently nonhomoplasious synapomorphy (within American Apioideae) for the Thaspium group - the distal half of each petal is permanently sharply folded down to the inside (induplicate) (see Fig. 2c; Bell 1971; Lindsey \& Bell 1985). In Polytaenta, the induplicate portion is like a narrowed appendage and is adnate near its apex to the erect proximal portion; in Thasprum and Zizia, the induplicate portion is free. In other genera, the petals may be rolled inward, but they are not sharply bent.

As in the other species of the group, Aletes calcicola has erect style branches and hirtellous rays and the petals are permanently induplicate. It differs from the other species in having 3 oil tubes per dorsal interval (vs. 1 per interval in Polytaenia, Thaspium, and Zizia) as well as an accessory oil tube at the apex of each rib. Thaspium and Zizia are distinct within the endemic Apioideae in their fascicled roots and they also share (as homoplasious) entirely scarious involucel bractlets. Polytaenta is distinct in its much taller, caulescent habit and larger leaves. All of the species, including $A$. calcicola, have non-winged fruitis.

In the orginal description of Aletes calcicola, the authors noted that they had previously "attempted to refer it the genera Aletes, Musenion, Ligusticum, and Tauschia" before settling on

Aletes, where it still did not fit unambiguously. Subsequent to the publication of a study of Aletes (Theobald et al. 1963), the addition of the caulescent (though inconsistently) Aletes filifoltus Mathias, Constance, \& W.L. Theob. to Aletes (Mathias et al. 1969) made it possible to consider A. calcicola, which is similar in habit to A. filifolius. Like most other Aletes and Cymopterus, however, A. filifolius has winged fruits.

Weber (1984) broadened the concept of Aletes, apparently accepting the species of Theobald et al. (1963) and adding 14 more, including Neoparrya. He did not mention either $A$. calcicola or $A$. filfolius but both apparently could have been included in his Aletes circumscription, judging from his account of a constellation of diagnostic morphological characters, especially including these: pseudoscape lacking; plants strongly scented; flowers yellow, white, or purple; mericarps trapezoidal (x.s.), not or variably dorsally compressed; oil tube variable in number, size, and disposition; and lack of stylopodium. Weber's recognition of a densely caespitose, strictly acaulescent habit as diagnostic presumably would have weighed against his acceptance of $A$. calctcola.

Cronquist (1997) suggested informally that Aletes and Musineon might be considered congeneric, further broadening the concept of the potentially resultant genus-Musineon divaricatum (Pursh) Nutt. (the type of Musineon) is caulescent and commonly produces a pseudoscape, and Musenton species have non-winged fruits. The molecular study by Sun and Downie (2010) indicates that a weakly supported monophyletic group is indeed formed by Aletes (fairly close to the concept of Theobald et al.), though it also includes Pseudocymopterus and other species. The species of Musineon are not phyletically coherent and the broader group does not include those species added by Weber. Nor, as implied above, does this "Aletes group" include $A$. calcicola.

In view of its molecular and morphological distinction, Aletes calcicola is recognized here as a distinct genus. The new genus is named for José A. Villarreal-Quintanilla of the Universidad Autónoma Agraria Antonio Narro in Saltillo, Mexico an excellent botanist in the field and herbarium and in documentation of his studies through publications.

Villarrealia G.L. Nesom, gen. nov. Type: Villarrealia calcicola (Mathias \& Constance) Nesom
Similar to Polytaenia, Thasptum, and Zizia in its staminate and bisexual flowers within an umbellet, lack of a stylopodium, style branches filiform, flexuous and erect to ascending-erect, dorsally compressed (slightly) and non-winged schizocarps, and permanently sharply induplicate petal apices. Distinct in its combination of taprooted habit and 3 oil tubes per dorsal interval as well as an accessory oil tube at the apex of each rib.

Villarrealia calcicola (Mathias \& Constance) Nesom, comb. nov. Aletes calcicola Mathias \& Constance, Brittonia 33: 342, fig. 1. 1981. Type: MEXICO. Coahuila. Sierra de la Gloria, SE of Monclova, steep, gravelly limestone slopes in pine-oak woodland and chaparral, 12503000 m , Jul 1939, E.G. Marsh 1895 (holotype: GH, photo-UC; isotype: TEX!).

Plants perennial from a thick taproot, caespitose from a branching root crown bearing old leaf sheaths, acaulescent or with 1-2 cauline leaves on a short stem (e.g., Fig. 1); stems and leaves slightly scaberulous; "whole plant with flavor and smell of celery" (Johnston et al. 10305A) or "odor like chuchupastle mixed with celery" (Johnston et al. 12059A). Stems ( $0-$ )1-4 dm, erect. Leaves: blades ovate to ovate-lanceolate in outline, $3-12 \mathrm{~cm} \times 3-15 \mathrm{~cm}$, ternately pinnately compound; leaflets ovate to lanceolate, $5-40 \mathrm{~mm} \times 2-40 \mathrm{~mm}$, usually pinnately lobed to pinnatifid with oblong to lanceolate, mucronulate ultimate divisions, scaberulous on veins beneath; petioles $3-15 \mathrm{~cm}$ long, scarious-sheathing at base. Peduncles $6-15 \mathrm{~cm}$, longer than leaves, scaberulous at base of umbel. Involucre bracts absent. Rays 4-7, $1.5-3 \mathrm{~cm}$, unequal, spreading ascending, scaberulous. Involucel
bractlets 2-8, linear-lanceolate, $1.5-3 \mathrm{~mm}$, sometimes with very narrow scarious margins proximally, distinct to slightly connate at base. Umbellets $10-20$-flowered, pistillate flowers 2-6; pedicels $3-5 \mathrm{~mm}$, unequal. Sepals triangular-ovate. Petals narrowly ovate, apices extended into an appendage half as long as the petal and folded under and adnate near the apex to the abaxial surface, yellowish to light yellow-cream or greenish-white. Styles ca 2 mm , filiform, flexuous and essentially erect. Stylopodium absent. Carpophore divided in distal 1/3. Schizocarps oblong to oblong-oval, $5-6 \mathrm{~mm}$, ribs subequally prominent and corky but unwinged; mericarps with oil tubes mostly 3 per dorsal interval, 1 at the apex of each rib, 2 on the commissure. Seeds subterete in transection, face plane.


Figure 1. Representative collection of Villarrealia calcicola. Note variation in habit, caulescent (left) and acaulescent (right).



Figure 3. Distribution of Vlllarreatia calcicola.
Additional collections. MEXICO. Coahuila. Ca. 30 km WNW of Cuatro Cienegas on the N side of Sierra de la Madera, at the mouth of Cañon Desiderio, ca. 8-10 mi W of Rancho Cerro de la Madera, in Pinus arizonica, Quercus, Arbutus, Fraxinus woodland with Garrya, Rhamnus, etc., $2000-2600 \mathrm{~m}, 27^{\circ} 07^{\prime} \mathrm{N}, 102^{\circ} 31^{\prime} \mathrm{W}, 2$ May 1977, Henrickson 16009 a (TEX); E slope of the Sierra de San Marcos, ca. 6 km S of Ejido La Noria, $26^{\circ} 28^{\prime} 30^{\prime \prime}-26^{\circ} 26^{\prime} \mathrm{N}, 101^{\circ} 35^{\prime} \mathrm{W}$, steep limestone slopes, Dasylirion, Agave lechuguilla, Agave asperrima, Yucca carnerosana, Quercus, Pinus, 14002275 m, 20 Mar 1973, Johnston et al. 10305 a (TEX); Sierra de la Madera, middle and upper reaches of Cañon de la Hacienda, $27^{\circ} 02^{\prime} 30^{\prime \prime}-27^{\circ} 03^{\prime} 30^{\prime \prime} \mathrm{N}, 102^{\circ} 26^{\prime} 30^{\prime \prime} \mathrm{W}$, steep limestone and shaly limestone slopes, Pinus spp., Pseudotsuga, Quercus spp., Cercocarpus, Arctostaphylos, 1850-2550 m, 10 May 1973, Johnston et al. 10952 a (TEX); Cañon de la Gavia above (S of) Rancho de la Gavia, $26^{\circ} 18^{\prime} 30^{\prime \prime}-26^{\circ} 20^{\prime} \mathrm{N}, 101^{\circ} 15^{\prime}-101^{\circ} 18^{\prime} \mathrm{W}$, steep-sided limestone mountain, Quercus sp., Dasylirion, Agave lechuguilla, Cercocarpus, Fraxinus greggit, Pinus cembroides, 1250-2200 m, 2-3 Aug 1973, Johnston et al. 12059 (TEX); Cuatro Cienegas Basin, Sierra de San Marcos, opposite Los Fresnos, NE-facing slope, 4 Apr 1969, Pinkava et al. P-6117 (ASU digital image!, UC); Cañon de la Hacienda, Sierra la Madera, NW of Cuatro Cienegas, conifer-oak forest above log-cutter's camp, 23 Jun 1976, Pinkava et al. P-13638 (ASU digital image!, UC); Sierra de Arteaga, Las Vigas, Cañon de Jamé, $25^{\circ} 20^{\prime}$ N, $100^{\circ} 39^{\prime}$ W, bosque de Pimus, Pseudotsuga, Ables, Quercus, y Ceanothus, vegetacion subalpina con Pinus culminicola, 2600-3300 m, 16 Sep 1989, Villarreal \& Carranza VQ5166 (TEX); Sierra de la Madera, Cañon de la Hacienda (N-draining) S of upper woodcutters' camp along E-fork
trail on first level "bench" on ridge between E and W fork, $27^{\circ} 02^{\prime} 41^{\prime \prime} \mathrm{N} 102^{\circ} 25^{\prime} 25^{\prime \prime} \mathrm{W}$, woods with Cupressus artzonica, Quercus spp., Arbutus, Garrya, Ceanothus coeruleus, Pimus arizonica, 2200 m , 16 Aug 1975, Wendt 1148 (LL). Nuevo León. Sierra Madre Mts., Monterrey, 29 Jul 1933, Mueller 216 (TEX).

## ACKNOWLEDGEMENTS

Thanks to Joy Runyon, Managing Editor of The New York Botanical Garden Press, for permission to use the line drawing (by "CMH") from the original publication of Aletes calcicola and to Ron Hartman for review comments. This study was supported in part by the Flora of North America Association.

## LITERATURE CITED

Bell, C.R. 1971. Breeding systems and floral biology of the Umbelliferae or evidence for specialization in unspecialized flowers. In V.H. Heywood (ed.), The Biology and Chemistry of the Umbelliferae, Supplement 1. Bot. J. Linn. Soc. 64: 93-108.
Cooperrider, T.S. 1985. Thaspium and Zizia (Umbelliferae) in Ohio. Castanea 50: 116-119.
Cronquist, A. 1997. Apiaceae. Pp. 340-427, in A. Cronquist, N.H. Holmgren, and P.K. Holmgren (eds.). Intermountain Flora: Vascular Plants of the Intermountain West, USA, Vol. 3, Part A. The New York Botanical Garden, Bronx, New York.

Downie, S.R., R.L. Hartman, F.-J. Sun, and D.S. Katz-Downie. 2002. Polyphyly of the springparsleys (Cymopterus): molecular and morphological evidence suggests complex relationships among the perennial endemic genera of western North American Apiaceae. Canad. J. Bot. 80: 1295-1324.
Keith, E.L. 2012. Polytaenta albiflora (Apiaceae), a new species from the Balcones Canyonlands in the Edwards Plateau of Texas. Phytoneuron 2012-84: 1-8.
Lindsey, A.H. and C.R. Bell. 1985. Reproductive biology of Apiaceae. II. Cryptic specialization and floral evolution in Thaspum and Zızıa. Amer. J. Bot. 72: 231-247.
Mathias, M.E. and L. Constance. 1981. Two new Umbelliferae of the Chihuahuan Desert. Brittonia 33: 342-346.
Mathias, M.E., L. Constance, and W.L. Theobald. 1969. Two new species of Umbelliferae from the southwestern United States. Madrono 20: 214-219.
Nesom, G.L. 2012. Taxonomy of Polytaenia (Apiaceae): P. nuttallit and P. texana. Phytoneuron 2012-66: 1-12.
Sun F.-J., S.R. Downie, and R.L. Hartman. 2004. An ITS-based phylogenetic analysis of the perennial, endemic Apiaceae subfamily Apioideae of western North America. Syst. Bot. 29: 419-431.
Sun, F.-J. and S.R. Downie. 2010. Phylogenetic analyses of morphological and molecular data reveal major clades within the perennial, endemic western North American Apiaceae subfamily Apioideae. J. Torrey Bot. Soc. 137: 133-156.
Theobald, W.L., C.C. Tseng, and M.E. Mathias. 1963. A revision of Aletes and Neoparrya (Umbelliferae). Brittonia 16: 296-315.
Weber, W.A. 1984. New names and combinations, principally in the Rocky Mountain flora-IV. Phytologia 00: 1-11. [Aletes (Apiaceae): An expanded concept. Pp. 3-6]

# SALVIA VIRGATA (LAMIACEAE) NATURALIZED IN TEXAS 

Jason R. Singhurst<br>Wildlife Diversity Program<br>Texas Parks and Wildlife Department<br>4200 Smith School Road<br>Austin, Texas 78704<br>jason singhurst@tpwd texas state us

## Susan Sander

500 Josephne Street
Kerrville, Texas 78028
Jeffrey N. Mink
Department of Biology
Baylor Unıversity
Waco, Texas 76798-7388
Walter C. Holmes
Department of Biology
Baylor University
Waco, Texas 76798-7388


#### Abstract

Salvia virgata, a native of Asia and Europe, is documented from two populations as adventive in Kerr County, Texas. This mint is also known to be naturalized in California, where it is included in the state noxious weeds list.


Key Words: Lamiaceae, Labiatae, Salvia, Kerr County, Texas, United States.

Salva virgata Jacq. (Lamiaceae), commonly known as wand sage or southern meadow sage (Fig. 1), is a perennial plant native to southeast Europe and southwest Asia, the distribution being essentially from Italy east to Pakistan (USDA, ARS (GRIN) 2012). In the United States, S. virgata has been documented in California, where it is included in the California State Noxious Weeds List (fide USDA, NRCS 2012). The species also is considered to be a weed by USDA, ARS (GRIN) (2012), apparently based upon the California disposition and the potential of the plant to become a seed contaminant. The species occurs at elevations between $270-830 \mathrm{~m}$ in the eastern Klamath Range, Cascade Range, and northern Sierra Nevada Range of California (Jepson Flora Project 2012).

In Texas, Salva virgata was discovered in two locations in Kerr County, which is located in the Edwards Plateau vegetational area of the state (Gould 1962). These two locations, ultimately part of the Guadalupe River drainage, are about 3.4 km distant from each other. Both Texas populations presumably represent escapes from cultivation.

Voucher specimens: USA. Texas. Kerr Co.: 1.8 mi . NW of Ingram, 0.2 miles E of the jct. of Texas Hwy 27 and Ingram Hills Road, along right of way of Ingram Hills Road, 13 Apr 2012, Susan Sanders s.n. (BAYLU); 0.7 mi . W of Ingram, 0.1 mi . S of jet. of Texas Hwy 39 and Point Theatre Road on Point Theatre Road, on a 9 m bluff along Johnson Creek at confluence with the Guadalupe River, 12 Jul 2012, Susan Sanders s.n. (BAYLU).


Figure 1 Salvia vergata Jacq from Kerr County, Texas (photo by Susan Sanders)

The first site (Ingram Hill Road), where plants were discovered but not collected in 2002, is in the flood plain of Henderson Branch Creek on Ingram Hills Road When the plants were first discovered, the population comprised an estimated of 20-25 individuals On 16 April 2012, the location was revisited and the number of individuals estimated to be slightly over 100, spaced 06-2 4 meters between individuals Associated flora included Bothriochloa ischaemum Thymophylla pentachaeta, Stenaria migricans, Solanum elaeagnifolum, Gaura sp, and Phyla sp

The Point Theatre Road site is adjacent to Johnson Creek and covers an area of about 37 square miles Between 300-400 individuals were at this site. Associated flora included Elymus virgimcus, Nassella leucotnchia, Calyptocarpus valts, Lepidum virginucum, and Quercus buckley

The plants, which are rosulate, had taproots averaging about 152 cm in length This may indicate that Salva virgata has access to deeper soil moisture during dry weather events, thereby increasing survivability in this area that averages about 64 cm of rain per year (value from Map 3,

Correll \& Johnston 1970). Survivability should be furthered at both sites because of the alluvial soils, which should hold moisture for a longer period after rain events than does the surrounding, more elevated landscape.

Turner et al. (2003) included distribution maps for 23 species of Salvia in Texas, with no species being included in the list of adventives. Correll and Johnston (1970) treated 22 species of Salvia in the state, with one species, S. hispanica L., not considered native.

## ACKNOWLEDGEMENTS

We thank Daniel Gluesenkamp with Calflora for providing information on the distribution of Salvia virgata in California.

## LITERATURE CITED

Calflora: Information on California plants for education, research and conservation. 2012. The Calflora Database [web application]. Berkeley, California. <http//www calflora org/> Accessed: June 2012.
Correll, D.S. and M.C. Johnston. 1970. Manual of the Vascular Plants of Texas. Texas Research Foundation, Renner.
Gould, F. 1962. Texas Plants-A Checklist and Ecological Summary. MP-585, Texas Agricultural Experimental Station, College Station.
Jepson Flora Project. 2012 (v. 1.0). Jepson eFlora [Salvia virgata], [D.H. Wilken \& M. Wetherwax, Salvia]. <http //ucjeps berkeley edu/IJM html> Accessed June 2012.
Turner, B.L., H. Nichols, G. Denny, and O. Doron. 2003. Atlas of the Vascular Plants of Texas. Vol. 2. Sida, Bot. Misc. 24.

USDA, NRCS. 2012. The PLANTS Database. National Plant Data Team, Greensboro, North Carolina. <http //plants usda gov> Accessed June 2012.
USDA, ARS (GRIN). 2012. Germplasm Resources Information Network -[Online Database]. National Germplasm Resources Laboratory, Beltsville, Maryland. <http//www-ars-grin gov/cgi-bin/npgshtml/index pl> Accessed September 2012.

# TAXONOMY OF APIASTRUM, AMMOSELINUM, AND SPERMOLEPIS (APIACEAE) 

Guy L. Nesom<br>2925 Hartwood Drive<br>Fort Worth, Texas 76109<br>guynesom(a)sbcglobal net


#### Abstract

A taxonomic summary is given for the three closely related and primarily North American genera Apiastrum ( 1 species), Ammoselmum (3 species), and Spermolepis ( 11 species). Apiastrum includes the single species A. angustfolum, which occurs in California, Baja California, and Baja California Sur. Ammoselinum includes $A$. rosengurtu (endemic to Uruguay) and the North American A. butleri and $A$. popet. Spermolepis includes one species endemic to the Hawaiian Islands- $S$. hawattensts, one species endemic to Argentina-S. castellanosit, and nine species native to North America: S. echinata, S. inermis, Spermolepis organensis Nesom, sp. nov. (Dona Ana Co., New Mexico), Spermolepis laevis Nesom, sp. nov. (central Texas to south-central Oklahoma), $S$. divaricata, Spermolepis (Leptocaulis) diffusa (Nutt. ex DC.) Nesom, comb. nov., Spermolepis (Ammoselinum) gigantea (Coulter \& Rose) Nesom, comb. nov., Spermolepis lateriflora Nesom, sp. nov. (California, Arizona, New Mexico, Texas, Chihuahua, and Sonora), and Spermolepis infernensis Nesom, sp. nov. (San Diego Co., California). Species descriptions and keys to the genera and species are provided and a discussion of inflorescence architecture points out distinctions within and among the genera; most of the species are illustrated by photos of specimens. An epitype is designated for Spermolepis hawailensis; lectotypes are designated for Apiastrum latifolum (a synonym of Aprastrum angustifolium), Ammoselinum popet, Ammoselinum castellanosil, Ammoselinum sect. Hesperoseltnum, the genus Leptocaults (a synonym of Spermolepis), and Spermolepts (Leptocaulis) diffiusa.


KEY WORDS: Apiastrum, Ammoselimum, Spermolepis, Apiaceae, inflorescence architecture

The genera Aptastrum, Ammoselinum, and Spermolepts are very similar among themselves and are all placed in tribe Selineae (Downie et al. 2010) of subfamily Apioideae. The species are primarily North American but Ammoselinum and Spermolepis each include a South American species and Spermolepts hawanensts is endemic to Hawaii. The monospecific Aptastrum is restricted to Pacific coastal region of Mexico (Baja California and Baja California Sur) and California. Plants of Ammoselinum and Spermolepts are annuals with narrow, characteristically linear to filiform leaf segments, narrow involucel bractlets but lacking an involucre, white petals with straight apices, laterally compressed fruits, narrowly conical stylopodium, and styles absent, the sigmas divergent. Aprastrum is similar but apparently is specialized in its lack of sepals, stylopodium, and involucel bractlets and its branching-inflorescence architecture. Loss of peduncles has occurred in some species of all three genera.

1. Medial and distal leaves appearing opposite; schizocarps depressed-ovoid, $1-1.5 \mathrm{~mm}$; sepals absent; stylopodium obsolete, styles filiform; involucel bractlets absent ......................... Apiastrum 1. Leaves alternate; schizocarps broadly ovoid to ovoid-oblong, urceolate-ovoid, or urceolate-oblong, $1.5-5 \mathrm{~mm}$; sepals small but present; stylopodium present, styles obsolete; involucel bractlets present.
2. Schizocarp ovoid-oblong to urceolate-ovoid or broadly ellipsoid, ribs sparsely to densely
scaberulous with single-celled papilla-like projections .................................... Ammoselinum 2. Schizocarp broadly ovoid to ellipsoid or elliptic-ovoid, ribs and intervals variously hairy or at least tuberculate Spermolepis

In maintaining Ammoselinum and Spermolepis as separate genera in the present manner, the definition of Ammoselinum is narrowed to only the three species with mericarps scabrous-ribbed, otherwise glabrous, and with corky-expanded, appendage-like lateral ribs (Fig 1). Those species without expanded lateral ribs and with hairs or at least tubercles on both the ribs and intervals are referred to Spermolepis.

Considerable variation in fruit shape and vestiture also exists among the species of Spermolepis as accepted here (Fig. la-q). Spermolepis gigantea and S. castellanosii appear to be distinct as a pair on the basis of the relatively elongate fruits (compared to other species of Spermolepis), but $S$. gigantea is unique in its hispid-hirsutulous fruit vestiture with long, sharppointed hairs without tuberculate bases; hairs of $S$. castellanosii are similar to those of $S$. infernensis. Spermolepis divaricata and $S$. diffusa are distinct as a pair on the basis of their short-ellipsoid fruits with tiny upcurved hairs; they also are distinct from the rest of the genus in their relatively smooth epidermis (vs. minutely "bubbly" in the others). Spermolepis echinata, S. hawaiiensis, S. lateriflora, $S$. infernensis, and $S$. inermis are similar in their broadly ovoid fruits with multicellular, tuberculate trichome bases and the first three species are echinate-bristly with apically hooked hairs.


Figure 1a-u. Mature or near-mature fruits of Apiastrum, Ammoselinum, and Spermolepis. At approximately but not exactly the same scale (see descriptions for measurements). (a) Aplastrum angustifolium, (b) Ammoselinum popel, (c) Ammoselinum rosengurtu, (d) Ammoselinum butlerı.


Figure 1e, f, g, h. (e) Spermolepis echinata, (f) S. lateriflora, (g, h) variants of S. hawaiiensis.


Figure 11, $\mathbf{j}, \mathrm{k}, 1, \mathrm{~m}, \mathrm{n}$ (1) Spermolepis echinata vanant, possibly mutant, Whatehouse 9828, from Wilbarger Co Tex, see text (1) $S$ echnata $\mathrm{x} S$ inermis?, Cory 48795 , from Wilson Co Tex, see text, (k) $S$ infernensis, (1) $S$ organensts, (m) $S$ mermis, (n) $S$ laevis


Figure $10, \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t}$. (o) Spermolepis laevis variant with slightly rugulate ribs and intervals - Wolff 2102, (p) S. laevis variant with a few tubercles, some with short, blunt-tipped hairs - Whitehouse 18439, (q) S. divaricata, (r) S. diffusa, ( $\mathrm{s}, \mathrm{t}$ ) S. castellanosii.



Armong the genera of tribe Selneae in the account by Downe et a (2010), Oigocladio Cbodat \& Wtlezed is the anly other Amencen gems in the tribe outside of the Arracacsa Clade and the Perenasal Endemo North Amencan Clade - ezcept for Ammovelumw and Sourwolepes all uthe genera are Euracian Ofegoclates undudes only the single speres O patagoneras (Speg)
 Mainly becase of its dorasly compressed fints (iantened parallel wath the plane of the commasure) wath numerous oal tubes on the broad commussural fare Mathas and Constance (1950) elumated Oligoclads as a possible congeter or eren close relative when considenng the getenc placement of
 1902 pp $527-528$ us lateral compression in the Apasithim Amwasebamen Spermolepos group flatened papendicular to the plane of the commassare)
 appears to be $\mathrm{z}=11$ an it appears wh all the ee genera, whth reductions to $\mathrm{z}=10$ and $\mathrm{z}=8$ Among the unanate bnaty spoces of Sperwobons twee dysplad levels east $2 n=22$ ( 5 kowaremas) $2 n=20$ ( $S$ echnata), and $2 n=16$ ( 5 laterplaca) If the unanare bnitly cpecte represent a sngle dade then the dysploid changes afper to be more indicatuve of individual specish on everits that consstent
indicators of cladistic relationships. Interesting research remains to be done with regard to chromosome numbers (see comments following $S$. divaricata).

A close relationship among the 13 species of Apiastrum, Ammoselinum, and Spermolepts is suggested by morphological similarities as well as their general geographic coherence in a broad region (North America, South America) where other potentially related species apparently do not exist. It would not be indefensible to treat all 13 species within a single genus.

## Branching pattern and umbel architecture

In all species of Ammoselmum except one and in two species of Spermolepis, umbels are borne on ebracteate peduncles that appear to originate only at leaf axils (Fig. 2A). Growth is indeterminate, as upward vegetative growth is continued even at the distalmost node. In these plants, however, the peduncle appears to be the extension of the primary ("pr") stem axis. Continued upward stem growth and production of additional umbels continues from growth of the axillary ("ax") bud. In this interpretation, the umbels actually are produced as terminal structures, rather than axillary ones.

In Ammoselinum butlert, Spermolepis latertfora, and S. mfernensis, the peduncle is absent (presumably suppressed) and the umbellet rays appear to arise from the leaf axils (Fig. 2C). The axillary bud in these plants apparently is suppressed at the distalmost node, so that growth may be characterized as determinate. Peduncle suppression is complete in $A$. butter but in $S$. lateriflora, apparently over its whole geographic range, some plants produce pedunculate umbels from nodes below the distalmost (see Figures 7 and 8 and examples cited below, under the species).

In Spermolepts divartcata, $S$. diffusa, and S. mermis, the primary axis at each node forms a peduncle and compound umbel, but on the branch arising from the distalmost axillary bud, both the terminal leaf and the axillary bud are suppressed (Fig. 2B). In effect, each branch terminates in two compound umbels and growth may be characterized as determinate.

In Aptastrum angustfoltum, leaves appear to be opposite and two branches and two sessile (compound) umbels arise at each node (Fig. 2D). In the interpretation here, this arises from (a) suppression of the peduncles, (b) complete foreshortening of the distal internode that would constitute the axillary axis, and (c) duplication of the axillary bud in order that growth continues from two upward branches. Axillary buds apparently are suppressed at the distalmost node and growth may be characterized as determinate.


Figure 2. Vantation in inflorescence architecture in Ammoselinum, Apıastrum, and Spermolepis A Pedunculate-axillary-indetermmate Ammoselinum popet, Ammoselumm rosengurtu, Spermolepis echnata, $S$ hawanensts, $S$ castellanosn B Pedunculate-axillary-determinate Spermolepus divazicata, $S$ difinsa, $S$ mermus $S$ laevs, $S$ orgonensis, $S$ ggantea $C$ Sessile-axillary-determinate Ammoselinum butlert, Spernolepis latervflora, $S$ infermensts D Sessile-dichotomous-determinate Apiastrum angustufohum "ax" = axillary branch, arising from the axillary bud "pr" = primary branch, continuing from the main branch from below In determinate arrangements, the axillary bud is suppressed at the distalmost node

APIASTRUM Nutt. ex Torr. \& A. Gray, F1. N. Amer. 1: 643. 1840. TyPE: Apiastrum angustifolum Nutt. ex Torr. \& A. Gray

Herbs, annual, with odor, 0.4-5 dm, glabrous; taproot slender. Leaves appearing opposite to subopposite medially and distally; basal and cauline 3-4 ternately compound; blades broadly ovate to ovate in outline, herbaceous; leaflets divided, ultimate divisions linear to narrowly oblong, margins entire; petioles scarious margined at base, distal petioles foreshortened and scarious-margined along whole length. Umbels compound, loosely convex, axillary, sessile (rays appearing to arise from leaf axils), peripheral flowers not different; involucral bracts absent; involucel bractlets absent. Pedicels present. Flowers bisexual; sepals absent; petals white, margins, entire, apices slightly inflexed; stylopodium depressed-reduced, nearly obsolete; styles evident, filiform, 0.2 mm , arching-divergent. Schizocarps depressed-ovoid [mericarps reniform], laterally compressed, not beaked, splitting, ribs 3, barely raised, mostly delimited by line of papillae, oil tubes 1 per interval, filiform not filling the interval, surface shallowly tuberculate, otherwise glabrous; carpophore bifid the whole length. Base chromosome number, $\mathrm{x}=11$.

1. Apiastrum angustifolium Nutt. ex Torr. \& A. Gray, Fl. N. Amer. 1(4): 644. 1840. Type: USA. California. [San Diego Co.:] St. Diego, N Cal, April, T. Nuttall s.n. (probable holotype: GH 00075076; isotypes: K digital image!, PH 01015720 digital image!).
Aptastrum angustfoltum var. tenellum Nutt. ex Torr. \& A. Gray, F1. N. Amer. 1(4): 644. 1840. Type: MEXICO. Baja California. Cerro [Cedros] Island, Mar 1889, E. Palmer s.n. (probable holotype: PH 743994 digital image!).

Torrey and Gray did not indicate that they saw a collection; therr concept of the taxon was from Nuttall's manuscript The plant in the PH collection matches Torrey and Gray's brief description ("stem dichotomous from the base, leaves less divided, rays of the umbel very slender, umbellets 1-2flowered, seed more rugulose")
Apiastrum latifolum Nutt. ex Torr. \& A. Gray, Fl. N. Amer. 1(4): 644. 1840. Lectotype (designated here): USA. California. [Santa Barbara Co.:] "St. Barbara, N Cal." [on PH sheet], no other collection data, T. Nuttall s.n. (GH 00075075; isolectotype: PH 01044838 digital image!). Torrey and Gray cited "Nuttall! Douglas!"
Helosciadtum leptophyllum var. ? latifolium Hook. \& Arn., Bot. Beechey Voy., 347. 1838. No collection was cited (pp. 347-348). The protologue gave only this: "The specimens are only in young fruit, and the segments of the upper leaves are considerably broader than in any form we have yet seen, while even the lower ones are broader than in H. lacintatum, DC., which we consider a mere variety of this species." As synonym of Apiastrum fide Mathias and Constance (1945).

Stems 4-50 cm. Leaves: blades $1-5 \mathrm{~cm}$, ultimate segments $5-25 \mathrm{~mm}$; petioles $20-40 \mathrm{~mm}$. Peduncles absent. Umbels axillary only: involucre bracts absent; involucel bractlets absent; fruiting rays $2-5$ per node ( 2 umbels per node), ( $0-$ ) $7-25(-50) \mathrm{mm}$ (central umbellet sessile); umbellets 3-7 flowered; fruiting pedicels ( $0-$ )2-8( -15 ) mm (central $1-2(-3)$ flowers sessile), unequal, spreading. Schizocarps 1-1.5 mm. $2 n=22$ (San Diego Co. -2 counts, Bell \& Constance 1957; Baja California, Constance et al. 1976). Map 1. Figure 3.

Flowering Mar-Apr. Chaparral, coastal sage scrub, blue oak savanna, rock outcrops, granite slopes, shale slopes, serpentine soil, steep slopes, recently burned areas, grassy openings, roadsides; $0-400(-1500) \mathrm{m}$. Calif.; Mexico (Baja California, Baja California Sur).


Map 1 Distribution of Aprastrum angustifothum

AMMOSELINUM Torrey \& A. Gray, Pacif. Railr. Rep. 2(4): 165. 1855 [1857]. Type: Ammoseltnum popet Torrey \& A. Gray

Herbs, annual, odorless or "faintly Pastmaca-scented" in A. giganteum, 0.4-3.5 dm, glabrous but stem ridges distally scaberulous; taprooted. Leaves all alternate; basal 3-ternately compound, cauline 2-3-ternately compound; blades broadly ovate to obovate, herbaceous; leaflets lobed or divided, leaflets and ultimate divisions linear to oblanceolate or subspatulate, margins entire; petioles scarious margined at base, distal petioles foreshortened and scarious-margined along whole length. Umbels compound, loosely convex, axillary, pedunculate (rays borne on an ebracteate portion of stem) or sessile (rays appearing to arise from leaf axils), peripheral flowers not different; involucral bracts absent; involucel bractlets distinct, linear, entire or less commonly 2-3-fid, herbaceous. Pedicels present. Flowers bisexual; sepals obsolete or greatly reduced and barely evident; petals white, margins entire; stylopodium narrowly conical; styles obsolete, stigmas directly atop stylopodium and divergent. Schizocarps ovoid-oblong to urceolate-ovoid or broadly ellipsoid, 2-5.3 mm , laterally flattened, base shallowly rounded to truncate, apex not beaked, mericarps splitting, dorsal ribs 3, corky-thickened or thin, lateral corky-thickened with an appendage-like growth incurving over the commissure, dorsal oil ducts 1 or 3 per interval, 1 or 2 on the commissure, ribs scaberulous with rounded to blunt single-celled, irregular, papilla-like projections; commissure sulcate; carpophore bifid only distally or along the whole length. Base chromosome number, $\mathrm{x}=11$.

## Key to the species

1. Umbels epedunculate (sessile, rays appearing to arise from leaf axils); schizocarps $2-2.2 \mathrm{~mm}$, dorsal ribs acute
2. Ammoselinum butleri 1. Umbels pedunculate (rays borne on an ebracteate portion of stem); schizocarps $3-4(-5) \mathrm{mm}$, dorsal ribs rounded or acute.
3. Mature fruits tan; ribs usually corky-thickened, not thin and wing-like; North America 2. Ammoselinum popei
4. Mature fruits blackish; ribs thin, wing-like; South America ......... 3. Ammoselinum rosengurtii
5. Ammoselinum butleri (Engelm. ex S. Wats.) Coulter \& Rose, Bot. Gaz. 12: 294. 1887. Apnum butleri Engelm. ex S. Wats., Proc. Amer. Acad. Arts 21: 453. 1886. Lectoype (Coulter \& Rose 1900, p. 90): USA. Texas. Harris Co.: near Houston, 29 Mar 1872, E. Hall 244 (GH; isolectotypes: BM digital image!, K digital image!).

Watson cited three collections. (1) "Texas, in wet grounds near Houston, E. Hall (n 244), March, 1872", (2) "near Dallas, J. Reverchon[s.n.], March and April 1874", and (3) "Indian territory, south of the Arkansas, G.D. Butler [s.n], 1876 " Coulter and Rose (1900) noted that "The type here given is the first specimen cited" but they clearly referred to it as the type and to the Reverchon and Butler collections as "associated with it in the orignal description "

Stems $4-10 \mathrm{~cm}$, branching from the base. Leaves: blades oblong to oblong-ovate in outline, $10-25 \mathrm{~mm}$, ultimate divisions $1-8 \mathrm{~mm}$; leaflet and bractlet margins and midrib smooth to very sparsely scaberulous; petioles $5-30 \mathrm{~mm}$, clasping to auriculate-clasping, scarious-margined at the base. Inflorescence axillary, indeterminate. Peduncles absent (rays appearing to emerge from the leaf axils). Rays (1-)2-4, (0-)0.5-4(-7, very rarely to 15 ) mm. Umbellets (1-)3-5-flowered (central umbellet often 1-flowered); pedicels ( $0.5-$ )1-3(-4) mm (central flower sessile). Involucel bractlets $1-4$, linear, rarely $2-\mathrm{fid}, 0.5-2 \mathrm{~mm}$, without scarious margins. Schizocar ps ovoid-oblong, 2-2.2 mm, dorsal ribs acute, sparsely papillate-scaberulous with minute, translucent, apparently 1 -celled, conical, apically acute, papilla-like hairs, lateral ribs slightly corky-thickened, barely raised; oil tubes 1 per interval, filiform but usually clearly evident, 2 on the commissure; carpophore bifid in distal $1 / 4$. Chromosome number not reported.

Flowering Mar-Apr. Sandy and sandy clay soil, gravel piles, lawns, old fields, roadsides, cultivated fields, pastures, fencerows, stream and pond edges, shell banks, oak-juniper glades, limestone prairies; 100-300 m; Ala., Ark., Kans., La., Miss., Mo., N.C., Okla., Tenn., Tex.

Almost all habitats recorded for Ammoselinum butleri have been described in some sense as "disturbed" - some of those in Texas (glades and prairies) apparently are undisturbed. The species has only recently expanded into Alabama, Mississippi, and North Carolina (Boufford 1977; Bryson 1991; Keener 2007).
2. Ammoselinum popei Torrey \& A. Gray, Pacif. Railr. Rep. 2(4): 165. 1855 [1857]. Apium popet (Torrey \& A. Gray) A. Gray, Proc. Amer. Acad. Arts 7: 343. 1868. Lectoype (designated here): USA. Texas. Headwaters of the Colorado, 13 Apr 1854, J. Pope s.n. (NY digital image!). At GH is another Pope specimen, labeled "Mar-Apr, Llano Estacado;" this may be a duplicate of the NY sheet, but it is not clear.

The protologue has this "Sandy soil, Llano Estacado, and head-waters of the Colorado [collections by 'Captain Pope'], March and April Mr Wright found it in Western Texas, but he collected only a few specimens, and it was not distributed with his plants Some ripe seeds that he collected were cultivated in the Cambridge Botanic Garden, and arrived at perfection Dr. Parry, while engaged on the Mexican boundary survey, under Major Emery, sent home a smgle flowering specimen of the plant, found at Eagle Pass in January, 1853. From no other sources have we recenved any specimens of this apparently new genus "

Stems 8-35(-60) cm, branching from the base. Leaves: blades oblong-ovate in outline, 1040 mm , ultimate divisions $2-10 \mathrm{~mm}$; leaflet and bractlet margins and midrib prominently scabrous. petioles $5-60 \mathrm{~mm}$, clasping to auriculate-clasping, scarious-margined at the base. Inflorescence axillary, indeterminate. Peduncles $25-75 \mathrm{~mm}$. Rays (5-)6-10, (0-) $6-25 \mathrm{~mm}$ (inner umbellet sessile). Umbellets 4-9 flowered; pedicels ( $0-$ ) $2-5 \mathrm{~mm}$ (inner flower sessile to subsessile). Involucel bractlets 1-6, linear and entire or less commonly $2-3$-fid, $2-12 \mathrm{~mm}$, usually scariousmargined at the base. Schizocarps urceolate-oblong, 3-4(-5) mm, dorsal ribs rounded, densely and coarsely papillate-scaberulous with translucent, multicelled, convex, apically rounded, papilla-like hairs, lateral ribs corky-thickened and raised and obscuring the commissural face; oil tubes 1 per interval, barely evident between the thickened ribs, commissural usually not evident; carpophore bifid along whole length. Chromosome number not reported.

Flowering (Mar-)Apr-May. Sandy soil, rocky soil, rock outcrops, roadsides, pastures, lake edges, dunes, gypsum flats, limestone barrens, cedar glades, mesquite savannas, gypsiferous, calcareous, and black clay prairies; $0-800(-1300) \mathrm{m}$; Kans., N.Mex., Okla., Tenn., Tex.; Mexico (Coahuila, Nuevo León, Tamaulipas).

The disjunct populations in central Tennessee ( 5 counties, see TENN 2012) are typical in morphology and apparently native there.

An epetiolate leaf rarely is produced at the base of a cluster of rays. This is a consistent feature in the plants of Tolstead 7015 (SMU) from Taylor Co., Texas.

Collections examined. USA. New Mexico. Eddy Co.: Carlsbad Cavern Natl. Park, road to sewage lagoon just across E boundary of park, SW of Whites City, bajada below escarpment, xeric shrubland, Larrea-Gutierrezia community, ca. $3640 \mathrm{ft}, 19$ Apr 1977, Burgess 4449 (TEX); Carlsbad City Lake and park on the Pecos River, wet sandy loam, 20 Apr 1966, Crutchfield 1336(LL); Lincoln Natl. Forest, Sitting Bull Falls, growing in lawn at picnic site near trail to falls, $4595 \mathrm{ft}, 21 \mathrm{Apr} 2011$, Hetl 33359A (SJC). Lea Co.: City of Hobbs, jet of US 62-180 and the hwy to Lovington, lawn of convenience store, $3670 \mathrm{ft}, 23$ May 2011, Heil \& O'Kane 33424 (SJC); Hobbs, near Humble City,
entrance to Ocotillo Golf Course, weedy sites, disturbed sites, $3700 \mathrm{ft}, 20$ Apr 2011, Herl 33347 (SJC). Otero Co.: Escarpment and canyon in limestone plateau ca. 11 air mi NE of Dell City, 3.3 road mi N and then NE from the TXNM state line and E from hwy up canyon for 0.75 mi , on alluvium below limestone slopes, 3706 ft , roadside plants, 2 May 1999, Worthington 28247 (UCR, fide SEINET).

Collections examined. MEXICO. Coahuila. Musquiz, 12 Apr 1936, Marsh 2097 (TEX); Musquiz, Apr 1938, Marsh 1132 (TEX); 56 mi S of Eagle Pass, Texas, rocky slope, 3 April 1969, Pinkava 15576 (ASU digital image!); Rio Grande valley, near Diaz, $700 \mathrm{ft}, 15$ Apr 1900, Pringle 8314 (MO digital image!). Nuevo León. 2 mi N of Sabinas Hidalgo, sandy loam bottom, 26 Mar 1944, Barkley 14521 B (TEX); 23 mi N of Sabinas Hidalgo, limy clay hillside, 26 Mar 1944, Barkley 14592 (TEX); 5 km N of Sabinas Hidalgo on Hwy 85, dry but verdant wash leading from apparently irrigated field, surrounding vegetation of Acacta-Prosopis, $310 \mathrm{~m}, 23$ Mar 1986, Nesom 5350 (TEX); Mpio. Higueras, Cuesta Mamulique, ca. 40 km S of Sabinas Hidalgo on Mex 85, W side of "Libre" Hwy, near top of ridge of dirt road toward microwave tower, area of Acacia and other genera of shrubs, ca. $540 \mathrm{~m}, 26$ Mar 1993, Nesom 7553 (TEX); fields near Monterrey, $1800 \mathrm{ft}, 6$ Apr 1906, Pringle 13747 (LL, TEX). Tamaulipas. 10 mi S of Nuevo Laredo, dry flat, 26 Feb 1944, Barkley 14322 (TEX); 3 mi SW of El Canelo at lat. $25^{\circ} 09^{\prime}$ on the Matamoros-Victoria hwy, clay roadside ditch, $50 \mathrm{ft}, 9$ Feb 1960 , Johnston 5077 C (TEX).
3. Ammoselinum rosengurtii Mathias \& Constance, Bull. Torrey Bot. Club 77: 133, fig. 1. 1950. Type: URUGUAY. Depto. Florida, Estancia Rincon de Santa Elena, Picada Castro, Arroyo Mansavillagra, 8 Nov 1946, B. Rosengurtt Gallmal 5753 (holotype: UC! digital image!; isotype: LA).

Stems ca. $48(-10) \mathrm{cm}$ tall, simple or few-branched mostly at 1 or 2 nodes above the base; "from a Daucus-scented taproot" (Rosengurtt in 1969) Leaves: blades broadly ovate in outline, 2540 mm , ultimate divisions $4-8 \mathrm{~mm}$, scaberulous on margins and nerves; petioles $7-10 \mathrm{~mm}$, scariousmargined along whole length. Peduncles $20-50 \mathrm{~mm}$. Rays $2-5,1-20 \mathrm{~mm}$ (inner $1-2$ umbellets short-pedicellate). Umbellets (1-)3-5-flowered, pedicels $2-7(-10) \mathrm{mm}$ (central flower shortpedicellate). Involucel bractlets 3-4, linear-lanceolate, entire, $1.5-7 \mathrm{~mm}$, unequal, without scarious margins. Schizocarps ellipsoid, attenuate toward the apex, 3.2-5.3 mm, densely scabrous on the angles with thick, sharp-pointed, pustulate-based hairs, dorsal ribs 3, rounded, lateral ribs; oil tubes 3 per interval, 2 on the commissural face; carpophore bifid along whole length. $2 n=44$ (from Rosengurtt s.n., 1969, see citation below; Constance et al. 1976). Figures 4, 5.

Flowering Oct-Dec. Habitat?; ca. $100-200 \mathrm{~m}$; South America (Uruguay).
Additional collection examined. Uruguay. Depto. Rocha, Sta. Teresa, Dec 1969, Rosengurtt s.n. (TEX), chromosome voucher cultivated in Univ. of California Botanical Garden C-1721. Also see photos on Flickr (González 2010).

Ammoseltnum rosengurtil apparently is known only from Uruguay (Mathias \& Constance 1950); the protologue cited collections from provs. Artigas, Cerro Largo, Florida, Paysandú, Río Negro, Salto, and Soriana. Photos by Andrés González were taken "al margen del Río Negro cerca al dique de la Represa Constitución, departamento de Río Negro."

Ammoselinum rosengurtii is similar to $A$. popel especially in its papillate-scabrous vestiture, urceolate-oblong fruits with expanded lateral ribs, and carpophore divided along the whole length. It differs from A. popet in its dark fruits, thin-winged fruit ribs, and three oil tubes per dorsal interval.

SPERMOLEPIS Raf., Neogenyton, 2. 1825. TyPE: Spermolepis divaricata (Walt.) Raf. ex Seringe In the protologue, Rafinesque noted "Type, a plant put in four genera already! Sison pusillum, Mx. Daucus divaricatus, Walt. Ammi do [divaricatum] Pers and Ligusticum pusillum Pers!" The nomenclatural combination in Spermolepts for Daucus divaricatus Walt. was made by Seringe in 1830, attributed by him to Rafinesque.
Leptocaulis Nutt. ex DC., Coll. Mém. 39, plate 10. 1829. Lectotype (designated here): Leptocaulis divaricatus (Walt.) DC. De Candolle's discussion included, in various permutations, Spermolepis divaricata, S. inermis, S. echinata, and various synonyms.
Babiron Raf., New Fl. 4: 23. 1838. Type: Babiron divaricatum (Walt.) Raf. $\equiv$ Spermolepis divaricata Rafinesque included Babiron pusillum, B. divaricatum, and B. dichotomum - all are synonyms of Spermolepis divaricata.
Lepisperma Raf., Act. Soc. Linn. Bordeaux 6: 268. 1834. As synonym of Spermolepis fide Mathias and Constance 1945).
Ammoselinum sect. Hesperoselinum Munz \& Johnston, Bull. Torrey Bot. Club 52: 224. 1925. LECTOTYPE (designated here): Ammoselmum giganteum Coulter \& Rose
After identifying their new species Ammose linum occidentale Munz \& Johnston as congeneric with A. giganteum, the authors placed the two species together in a separate section No type was designated

Annual herbs, slender taprooted, glabrous, not aromatic or sometimes (S. lateriflora) with a "carrot" odor. Stems erect, $5-80 \mathrm{~cm}$, simple or few-branched from basal to medial nodes. Leaves all alternate; basal and cauline or mostly cauline, 3-pinnately compound; blades ovate to oblong to oblong-ovate in outline; leaflets filiform to linear or narrowly oblong, margins entire to weakly scaberulous; proximal petioles scarious margined at base, distal petioles becoming much foreshortened and scarious-margined along whole length. Umbels compound, irregularly and loosely convex, terminal and axillary or axillary only, pedunculate (rays borne on an ebracteate portion of stem) or sessile (rays appearing to arise from leaf axils), peripheral flowers not different; involucre bracts absent or ( $S$. hawattensis) sometimes present; involucel bractlets distinct, filiform or linear to linear-lanceolate, herbaceous, without scarious margins. Pedicels present or reduced to obsolete. Flowers bisexual; sepals obsolete or essentially absent; petals white, oblong or elliptic to ovate, apex not inflexed, margins entire; stylopodium conical; styles obsolete, stigmas directly atop stylopodium and divergent. Schizocarps broadly ovoid to ellipsoid or elliptic-ovoid, sometimes slightly beaked, $1.5-2(-4) \mathrm{mm}$, flattened laterally and slightly constricted at the commissure, mericarps splitting, ribs [number], filiform, oil tubes $1(-3)$ per interval, 2 on the commissure, surface (a) echinate-bristly with apically hooked hairs arising from rounded, multicellular bases, (b) bristly with apically straight hairs arising from rounded, multicellular bases, (c) tuberculate-roughened by rounded, multicellular projections, (tuberculae and multicellular hair bases apparently homologous), or (d) scabrous with minute, upcurved hairs not arising from a tuberculate base; commissural face sulcate; carpophore bifid in distal $1 / 4-1 / 3$. Base chromosome number $=11 ?(\mathrm{n}=8,10,11,19,32)$.

## Key to the species

1. Schizocarps densely echinate-bristly with sharp-pointed, apically hooked hairs.
2. Distal umbels sessile, without a peduncle, proximal umbels sometimes pedunculate; $2 n=16$ 1. Spermolepis lateriflora
3. All umbels distinctly pedunculate.
4. Schizocarps $1.5-2 \mathrm{~mm} ; 2 n=20$................................................... 2. Spermolepis echinata
5. Schizocarps $3-4 \mathrm{~mm} ; 2 n=22$ 3. Spermolepis hawaiiensis
6. Schizocarps with apically straight hairs or lacking hairs.
7. Distal umbels sessile, without a peduncle, proximal umbels sometimes pedunculate, fruit surface tuberculate on ribs and intervals, some tubercles with apically straight hairs, some without hairs
8. Spermolepis infernensis
9. All or most umbels distinctly pedunculate; fruit surfaces variable in vestiture.
10. Schizocarps 3-5 mm, narrowly elliptic-ovate to oblong-ellipsoid or ovoid-oblong, surface hispid-hirsutulous.
11. Hairs blunt-tipped, arising from a tuberculate base; South America
12. Spermolepis castellanosii
13. Hairs sharp-pointed, arising from a non-tuberculate base; North America
14. Spermolepis gigantea
15. Schizocarps $1.2-2 \mathrm{~mm}$, mostly broadly ovate to broadly ellptic, surface either completely smooth, tuberculate but hairless, tuberculate with a few hairs, or sparsely to densely scabrous with minute, upcurved or upturned hairs.
16. Fruit surface ribbed but otherwise completely smooth, lacking even tubercles
17. Spermolepis laevis
18. Fruit surface either tuberculate (with or without straight, erect hairs) or with minute, upcurved or upturned hairs.
19. Fruit surface tuberculate with multicellular trichome bases, but totally lacking hairs
20. Tubercles irregularly scattered, some with short, erect hairs; peduncles $0.9-3.5 \mathrm{~cm}$
21. Spermolepis organensis
22. Tubercles densely arranged, without hairs; peduncles $2-7 \mathrm{~cm}$
23. Spermolepis inermis
24. Schizocarps sparsely to densely scabrous with minute, 1-celled, upcurved or upturned hairs, the hairs not arising from multicellular tubercles.
25. Pedicels ( $0-$ )2-9 mm; rays $5-17 \mathrm{~mm}$; central 1-2 flowers of each umbellet sessile to subsessile $\qquad$ 8. Spermolepis divaricata 10. Pedicels ( $8-$ ) $14-32 \mathrm{~mm}$; rays $15-33 \mathrm{~mm}$; all flowers of each umbellet with subequal pedicels, none sessile or subsessile $\qquad$ 9. Spermolepis diffusa
26. Spermolepis lateriflora G.L. Nesom, sp. nov. TyPE: USA. Arizona. Pima Co.: Rillito Valley, Tucson, 29 Apr 1905, J.J. Thornber 5241 (holotype: TEX!; isotypes: ARIZ!, RSA!, UC!).

Similar to Spermolepis echinata (and previously identified as that species) in its fruits densely echinate-bristly with uncinate hairs but distinct in its epedunculate (sessile) umbels.

Stems $5-35 \mathrm{~cm}$. Leaves: blades broadly ovate in outline, mostly $1-5 \mathrm{~cm}$, finely ternately dissected, ultimate segments linear to oblong, 4-12 mm; petioles $1-3 \mathrm{~cm}$. Peduncles absent or 20-70 mm . Umbels usually axillary only, usually sessile at all nodes, alway sessile at distal nodes, occasionally pedunculate below the distalmost; involucre bracts absent; involucel bractlets 2-4, linear, $1-2 \mathrm{~mm}$; fruiting rays $4-5$ per node, $(0-) 1-14 \mathrm{~mm}$ (central $1-2$ umbellets sessile to subsessile), unequal, spreading; umbellets 3 - 8 -flowered; fruiting pedicels $1-6 \mathrm{~mm}$ (central $1-2$ flowers subsessile). Schizocarps 2-2.2 mm, densely echinate-bristly with apically hooked hairs; oil tubes 1
per dorsal interval $2 n=16$ (reported as Spermolepis echinata, Constance et al 1976, Pima Co, Arizona, Gentry 19933, ARIZI, RSA', UC-2 sheets') Map 2. Figures 6, 7

Flowering Mar-Jun. Sandy, gravelly, and rocky soil, alluvium, nver beds, floodplains, riparian vegetation, desert grassland, desert shrub, creosote bush flats, saltbush flats, cholla forest, mesquite scrub and woodland, oak-mesquite, cak savanna, cak-juniper woodland, (300-)700-2000 m, Ariz, Calif (probably adventive), N-Mex, Tex, Mexico (Chihuahua, Sonora)

Some plants produce pedunculate umbels from nodes below the distal-most, eg, Arizona Pima Co (Gentry 19933, UC, Harnson et al 8000, ARIZ, Shreve 10092, UC), Maricopa Co (Peebles 8475, UC) New Mexico Dona Ana Co (Jones 26257, POM-2 sheets) Sonora Mpio Soyopa, Rema G 2005-56, TEX)


Map 2 Distnbution of Spermolepis laterfflora
Addtional collections exammed USA. California [Alameda Co ] Oakland Hills, May 1877, [JG Lemmon?] sn (UC) Los Angeles Co Verdugo Mountans, Tuna Canyon, shady most banks, 1100 ft , Apr 1930, MacFadden 2441 (MACF digital image)) San Drego Co: due S of

Borrego Valley, rocky terrain on alluvial slopes, $1250 \mathrm{ft}, 30$ Mar 1952, Bacigalupi \& Macbride 3570 A (UC!); lower Box Canyon, 29 Apr 1941, Gander 9194 (SD fide Calif. Consortium); near base of hills S of Vallecito Stage Sta., 30 Apr 1941, Gander 9260 (SD digital image!). Other map points are from specimens studied from ARIZ, BRIT-SMU-VDB, NMC, SRSC, TEX-LL, and UC-JEPS.

Munz and Keck (1959) identified the California plants as Ammoselmum giganteum (with A. occidentale in synonymy) but, following their identification/annotation as Spermolepis echinata in 1948 by Constance, they have been identified as S. echinata in iterations of the Jepson Manual (Constance 1993; Constance \& Wetherwax 2012).

All of the California collections of Spermolepis laterifflora are separated from the main range of the species and all were made near urban areas (Oakland, Los Angeles, San Diego). These occurrences perhaps resulted from inadvertent recent dispersal of the echinate-bristly fruits from Arizona. CalFlora (2012) shows a number of other records (identified as S. echinata, apparently not vouchered) from the southwest region of the Anza-Borrego Desert State Wilderness Park (about 5060 miles east of San Diego) and these may be other occurrences of S. lateryflora. The Vallecito Stage Station (Gander 9260) is on the southern border of the Anza-Borrego park. The type locality of $S$. infernensis (Hellhole Canyon Preserve, as described below), however, is in the close vicinity and the identity of these unvouchered records needs to be verified.

Additional collections examined. USA. Texas. El Paso Co.: E slope of Franklin Mt., N of El Paso, off War Road, bajada, 1 May 1970, Correll 38548 (LL); Franklin Mts. on trail to Cottonwood Springs, E of Canutillo, on bajada, 12 May 1959, Correll \& Johnston 21824 (LL); 0.5 mi W of intersection of Hwy 54 and transmontane hwy, along roadside, red sandy soils, 1 Apr 1998, Turner $98-29$ (TEX); ca. 20 mi E of El Paso, $4000 \mathrm{ft}, 5$ Apr 1958, Warnock \& Johnston 16215 (SRSC); E slopes of Franklin Mountains, gravelly granitic soil, 20 Apr 1975, Warnock 23985 (SRSC); Franklin Mts., below (E) Fusselman Canyon flood control dam, 4450 ft , mixed alluvium, 1 Apr 1979, Worthington 4219 (TEX); Hueco Mts., Hueco Tanks State Park, N end of North Mountain in small canyon, 29 Apr 1979, Worthington 4407 (BRIT); Franklin Mts., E side of mts., 0.2 mi N jet TransMountain Rd and War Rd, granite soil alluvial bajada, desert shrub, $4000 \mathrm{ft}, 9 \mathrm{Apr} 1982$, Worthington 8071 (BRIT).

Representative collections examined (see SEINET 2012 for many others from Arizona and New Mexico). USA. Arizona. Cochise Co.: 19 mi NE of Douglas, desert grassland, $4000 \mathrm{ft}, 17 \mathrm{Apr}$ 1940, Benson 10298 (ARIZ); Mule Mts., waste spots, S-facing slopes, 25 Apr 1952, Goodding 47-52 (ARIZ). Gila Co.: Tonto National Monument, along power line, 26 Jul 2001, 740 meters, West 1099 (ARIZ). Graham Co.: Tanque, $1200 \mathrm{~m}, 8$ May 1924, Eggleston 19889 (ARIZ). Maricopa Co.: Sand Tank Mts., 48 km SE of Gila Bend, small drainage, Sonoran desert scrub, 30 Apr 2003, Baker 15323 (ARIZ); Sonoran Desert Natl. Monument, Sand Tank Mts., summit of small peak 730 m NW of Bender Spring, 17 Apr 2001, Felger 01-362 (ARIZ). Mohave Co.: 7 mi S of Yucca, along sandy wash in Joshua tree-creosote bush area, $2300 \mathrm{ft}, 12 \mathrm{Apr} 1947$, Gould \& Darrow 4318 (ARIZ); Yucca, 14 May 1884, Jones s.n. (POM). Pima Co.: Fresnal Canyon, 23 Apr 1932, Harrison et al. 8600 (ARIZ); Santa Catalina Mts., Lower Sabino Canyon, moist sand along stream, $2800 \mathrm{ft}, 8$ Apr 1946, Gould 3488 (ARIZ); Coronado Natl. Forest, S on State Hwy 83, ca. 13 mi from Interstate 10, open pastures, $1400 \mathrm{~m}, 19$ Apr 1998, Schmidt \& Merello 2670 (BRIT, RSA, DNA sample). Pinal Co.: Gila River bottom near Sacaton, 23 Feb 1926, Porter et al. 863 (ARIZ); Oracle, 12 May 1905, Thornber s.n. (ARIZ). Santa Cruz Co.: Nature Conservancy Patagonia-Sonoita Creek Sanctuary, SW of Patagonia, ca. $4000 \mathrm{ft}, 30 \mathrm{Apr}$ 1977, Fay 241 (ARIZ); 2 mi E of Nogales of Patagonia road, gravel along roadcut, $3800 \mathrm{ft}, 9$ May 1945, Gould \& Pultz 3093 (ARIZ). Yavapai Co.: Bald Hill, mouth of West Cochise Stronghold, flats of mouth of canyon, 11 Apr 1960, Goodding 49-60 (ARIZ); Congress Junction, 3000 ft, 4 May 1903, Jones s.n. (POM). New Mexico. Dona Ana Co.: White Sands Missile

Range, Gate 4, up road ca. 1 mi "Anemone Ridge," ca. 2 mi N of US 70, just E of San Augustin Pass, Chihuahuan Desert Scrub community, monzanite boulders, $4500 \mathrm{ft}, 22$ Mar 2010, Heil \& Anderson 32092 (SJC); W base of Organ Mtns, at the mouth of Dripping Springs Canyon, 11 mi E of northern Las Cruces, about $1 / 4 \mathrm{mi} \mathrm{W}$ of the ruins of an abandoned resort hotel [Van Patten's], plants very common in a flat, unshaded area at the mouth of a rocky arroyo, 6000 ft , with Erigeron nudiflorus, Cercocarpus, Fallugia, Celtis and Opuntia, 25 April 1982, Ward \& Soreng 82-009 (NMC); in the Mesilla Valley; near Las Cruces, ca. $3850 \mathrm{ft}, 8$ April 1907, Wooton \& Standley s.n. (NMC). Grant Co.: 1 mi S of Gila, gravelly mesa slope, 21 May 1935, Maguire et al. 11530 (ARIZ); 1 mi S of Red Rock, gravelly mesa top, assoc. Prosopis and Opuntia, 21 May 1935, Magure et al. 11530 (UC). Hidalgo Co.: State Hwy 92 to Virden, ca. 2.5 mi N of US 70 , roadside alluvial soils, desert grassland with scattered creosote, $4085 \mathrm{ft}, 20 \mathrm{Mar} 2010$, Heil 32041 (SJC); BLM, Gila Lower Box fishing area, along Gila River and rocky hills above river, riparian community and desert grassland, $4000 \mathrm{ft}, 28$ Apr 2010, Hetl \& McClain 32322 (SJC); San Simon Valley between Rodeo and Arizona-New Mexico line, fine textured soils of the valley bottom in desert grasslands, 4100 ft , with Hilaria muttica, Scleropogon brevifolus, Bouteloua eriopoda, Ephedra trifurca, Prosopis, Gutierrezia sarothrae, 10 April 1978, Moir 101 (NMC). Luna Co.: ca. 11 mi NW of Florida Station, among rocks in bed of dry creek, 29 Apr 1947, McVaugh 8128 (SMU, TEX).

Collections examined. MEXICO. Chihuahua. Extreme NW corner [of the state], about 50 m E and 1.5 mi . S of U.S. border, in silty, heavily overgrazed bottom of draw, with Yucca elata, Sporobolus airoides, Astragalus wootonil, 13 May 1980, Spellenberg \& Ward 5525 (NMC). Sonora. 6.7 mi by road (Mexico 15) N of Magdalena, rocky hills, desert shrubs, 7 Apr 1968, Felger 17451 (ARIZ); vicinity of Cerro Pelon, ca. 5 mi SE of Desemboque, 21 Apr 1968, Felger 17894 (ARIZ); near El Guayabo on road 18 km E of Alamos. $27^{\circ} 0^{\prime} 20^{\prime \prime} \mathrm{N}, 108^{\circ} 47^{\prime} 10^{\prime \prime} \mathrm{W}, 250 \mathrm{~m}, 16 \mathrm{Mar} 1989$, Ferguson s.n. (ARIZ); along Hwy 89, 9.2 mi S of Arroyo Los Ajos, 7.4 mi N of Mututucachi, roadside in oak savanna, 212 Apr 1995, Fishbein 2242 (ARIZ); Rio Mayo, San Bernardo, arroyo, Lower Sonoran, margin of a wash, 22 Feb 1935, Gentry 1339 (ARIZ); Carbó, 50 km N of Hermosillo, wash near Mex Hwy 15, 6 Apr 1975, Helmkamp s.n. (UCR); Rancho El Aguilar Noria, N of Ures and Santiago, $29^{\circ} 33^{\prime} \mathrm{N}, 110^{\circ}$ 25-26' W, open, broad drainage, Sonoran desert scrub, on mesic N slopes, ca. 500 m , common, 21 Apr 1991, Joyal 1995 (TEX); Dto. de Altar, Picu Pass, 23 Mar 1926, Long $7 a$ (ARIZ); 18.7 mi W of Rte 19, along turnoff 3.2 mi N of Esqueda, oak grassland, mesquite bottomlands, 27 Mar 1970, McGill 64048 (ASU); 4.6 mi S of Cucurpe, cliff-face along San Miguel River and road, 29 Mar 1970, McGill \& Pinkava 6519 (ASU); Near El Guayabo on road 18 km E of Alamos, $250 \mathrm{~m}, 16$ Mar 1989, Martin \& Ferguson s.n. (ARIZ); Mpio. Soyopa, E side of Mex $16,1 \mathrm{~km} \mathrm{~S}$ of Rio Yaqui Bridge, $28^{\circ} 31^{\prime} 30$ " N $109^{\circ} 32^{\prime}$ W, $180 \mathrm{~m}, 14$ Mar 1988, Martm, Ferguson, \& Moore s.n. (NMC); NE side of Rio Yaqui bridge on Mex 16, just S of Tonichi, 200 m , in sand, 18 Feb 1997, Rema G. 97-44 (ARIZ); Arroyo La Quema, near Tepoca, tropical decid. forest on slopes, rocky stream canyon, $560 \mathrm{~m}, 21$ Mar 1998, Reina G. $98-378$ (ARIZ); Mpio. Benjamin Hill, 3.5 km SW of Benjamin Hill on road to Palo Alto, Sonoran desert scrub, 2408 ft , locally very common annual on disturbed rocky soil, 1 Jan 2003, Rema G. 2003-286-A (ASU); 0.8 km N of Mex 16 on road to San Antonio de la Huerta, $28^{\circ} 34^{\prime} 16^{\prime \prime} \mathrm{N}, 109^{\circ} 34^{\prime} 52^{\prime \prime} \mathrm{W}$, very open thornscrub, 299 m , locally uncommon on flats, 15 Mar 2005, Retna G. 2005-256 (TEX); Agua Prieta, Hwy 2, ca. 26 mi E of Agua Prieta and 24 mi W of the state line at Puerto San Luis, desert scrub of Juntperus, Acacia, Prosopis, Yucca baccata, Gutterrezia, etc. on rocky volcanic hills, 1300 meters, 19 Mar 1984, Sanders 4712 (UCR); Alamos, Rio Mayo Region, Rancho La Huerta, ca. 2 mi NW of Alamos on the road to San Bernardo, north of the Alamos airstrip, weedy disturbed areas near buildings and roads, 420 meters, 15 Mar 1993, Sanders 13152 (UCR); Alamos, Rio Mayo region, roadside c. 12 km W of Alamos on the road to Navojoa, in vicinity of Cañon Agua Marina, at the foot of the Sierra de Alamos, burned roadside in hilly country $1640 \mathrm{ft}, 15$ Mar 1993, Sanders 13180 (UCR); Alamos, Parque Chalaton and along canyon bottom above, SW edge of Alamos in foothills of the Sierra de Alamos, tropical deciduous forest and cleared areas, 420-450 meters, 17 Mar 1993, Sanders 13365
(UCR); Dist. Alamos, near Cerros, 4 Mar 1933, Shreve $6167 b$ (ARIZ); 8 mi S of Estacion Llano, 3 Apr 1935, Shreve 7323 (ARIZ); Palm Canyon, 17 mi SE of Magdalena, in Sierra Babiso, (= Cerro Cinta de Plata), stream bed, 13 Feb 1977, Van Devender s.n. (ARIZ); 4 mi of El Ocuca on Mex 2, 21.4 mi E of Altar, annual in wash, 10 Mar 1977, Van Devender s.n. (ARIZ); 17 mi SE of Magdalena on road to Cucurpe, Palm Canyon, Cerro Cinta de Plata, 15 May 1979, Van Devender et al. s.n. (ARIZ); Alamos, Rio Mayo region; Arroyo Mentidero at the crossing of El Chinal Road, near Rio Cuchujaqui, 11.5 km (by air) S of Alamos, tropical deciduous forest, 240 meters, 10 Mar 1993, Van Devender 93-97 (ARIZ, UCR); Alamos, Rio Mayo region; La Huerta, 1.8 km NNE of Alamos on San Bernardo Road, 410 meters, 9 Mar 1993, Van Devender 93-216 (ARIZ, UCR); La Huerta, 1.8 km NNE of Alamos on San Bernardo Road, common annual in yard, 410 meters, 9 Mar 1993, Van Devender 93-216 (ASU); 0.4 mi E of Punto Cirio, Sierra Bacha, Sonoran Desert desert scrub, 40 m , 24 Mar 1995, Van Devender 95-210 (ARIZ, UCR); El Llano de Curea, foothills thornscrub, locally uncommon annual, 514 meters, 19 Mar 2004, Van Devender 2004-161 (ASU); 2.2 km SE of Rancho Las Borregas headquarters on road to Nogales, SE tributary of Arroyo Planchas de Plata, sycamoreoak canyon, $1187 \mathrm{~m}, 22$ Apr 2004, Van Devender 2004-250A (ARIZ); 7.9 mi N of Esqueda, 11 May 1948, Wiggins 11777 (TEX).
2. Spermolepis echinata (Nutt. ex DC.) A. Heller, Contr. Herb. Frankl. \& Marsh. Coll. 1: 73. 1895. Leptocaulis echinata Nutt. ex DC., Prodr. 4: 107. 1830. Apium echinatum (Nutt. ex DC.) Benth. \& J.D. Hook. ex S. Wats., Bibl. Index N. Amer. Bot., 412. 1878. TyPE: USA. Arkansas. "In Amer. bor. ad Red River" [protologue], T. Nuttall s.n. (holotype: BM digital image! ; isotype: PH digital image!).

De Candolle noted ("v s ") that he had seen the Nuttall collection
Stems 5-40 cm. Leaves: blades broadly ovate in outline, $0.7-2.5 \mathrm{~cm}, 3$-pinnately compound, ultimate divisions filiform, $2-18 \mathrm{~mm} \times 0.5-1 \mathrm{~mm}$; petioles $3-20 \mathrm{~mm}$. Peduncles ( $1-$ )2-5( -6.5 ) cm . Umbels axillary mostly at distal nodes, all pedunculate; involucel bractlets $1-3(-4)$, linear, $1-3 \mathrm{~mm}$, margins scabrous-toothed; fruiting rays $5-9(-12),(0) 1-15 \mathrm{~mm}$ (central umbellet sessile to subsessile), unequal, suberect and evidently clustered; umbellets (1-)3-9-flowered; fruiting pedicels $1-6(-7) \mathrm{mm}$ (central flowers short-pedicellate). Schizocarps $1.5-2 \mathrm{~mm}$, densely echinate-bristly. $2 n=20$ (Constance et al. 1976; Prairie Co., Arkansas, Demaree 61921, duplicate SMU!). Figure 8.

Flowering (Mar-)Apr-May(-Jun). Sand, gravel, silt, sandy clay, sandy roadsides and flats, disturbed areas, ditches, disturbed sites, pastures, rocky slopes, shell banks, sandstone outcrops, beaches, creek bottoms, lake shores, prairies, post oak woods, live oak woods, oak-mesquite woodland, desert shrub; ( $0-) 100-300(-1500)$ m; Ala., Ark., Fla., Ga., Ill., Iowa, Kans., Ky., La., Miss., Mo., N.Y., N.C., Okla., S.C., Tenn., Tex., Va.; Mexico (Coahuila, Tamaulipas).

Specimen examined. MEXICO. Coahuila. Piedras Negras, Pringle 8309 (fide Villarreal 2001, voucher not seen in present study). Tamaulipas. 20 mi W of Reynosa, desert scrub in clayish soil, 28 Feb 1944, Panter \& Barkley 14378 (TEX).

Attributions of Spermolepis echinata to Arizona, California, and New Mexico have been based on collections identified here as $S$. lateriflora. In Texas, typical S. echnata reaches as far west as Brewster, Culberson, Jeff Davis, Pecos, and Presidio counties, but it does not extend to El Paso Co. at the easternmost extension of the distribution of S. lateriflora. No confirmed records of S. echinata exist from New Mexico.

A plant collected in north-central Texas has the habit and inflorescence of Spermolepis echinata and echinata-like fruits (densely tuberculate-hairy) but with the hairs relatively short and without an uncinate apex. Wilbarger Co.: 14.5 mi W of Electra, Waggoner pastures, turn W 0.6 mi S on Hwy 85, tall grass in draw, mes quite savanna, sandy loam, 12 May 1945, Whitehouse 9828 (SMU).
3. Spermolepis hawaiiensis H. Wolff, Repert. Spec. Nov. Regni Veg. 17: 440. 1921. Type: USA. Hawaii. Kauai, Weimea, [no date], Hillebrand s.n. (holotype: probably B, Wolff material at B mostly extant fide HUH online database). Epitype (designated here): USA. Hawaii. Kauai Co. (Kauai Island): Koai`e Canyon, just below "the fingers" near the ridge and above N-facing cliffs W of Lonomea Camp and Kawai iki and E of Hipalau, 704 meters, 21 Apr 2004, N. Tangalin 47 (PTBG 043006, digital image on JSTOR!; Fig. 9). This collection was made near the type locality.

Stems $5-20 \mathrm{~cm}$. Leaves: blades oblong to ovate in outline, $1-4 \mathrm{~cm}, 3$-pinnately compound, becoming sessile, smaller, and less divided distally, ultimate divisions linear to linear-lanceolate, 3-6 mm ; petioles $10-30 \mathrm{~mm}$. Peduncles $1-3 \mathrm{~cm}$. Umbels at distal nodes, axillary, all pedunculate; involucre bracts absent; involucel bractlets ( $0-$ )1-5, linear-lanceolate, 1-6 mm; fruiting rays 2-7, (0) $5-15 \mathrm{~mm}$ (central umbellets sessile to short-pedicellate), unequal, spreading-ascending, umbellets $2-$ 8 -flowered; fruiting pedicels ( $0-$ ) $2-6 \mathrm{~mm}$ (central flower sessile to short-pedicellate), unequal, spreading-ascending to ascending. Schizocarps $3-4 \mathrm{~mm}$, densely echinate-bristly, hairs arising from multicellular tuberculate bases. $2 n=22$ (Wagner et al. 2005). Figure 9.

Flowering (Dec, Feb-)Mar-Apr. Steep mesic forests, gulch slopes and ridge tops in dry forest, shrub lands, steep to vertical cliffs, cliffs bases, ridges in coastal dry cliff vegetation, N -facing slopes, ridges on bare rock, open, rocky, goat-ravaged area, a'a lava; $50-700 \mathrm{~m}$; endemic to the Hawaiian Islands - Hawaii, Kauai, Lanai, Maui, Molokai, Oahu. Information from NTBG (2012) and USFWS (2010).
4. Spermolepis infernensis G.L. Nesom, sp. nov. Type: USA. California. San Diego Co.: Hell Hole Canyon near Borego, 5-7 Apr 1932, C. Epling \& W. Robison s.n. (holotype: RSA!; isotype: UC! digital image!).

Similar to Spermolepis lateriflora in its epedunculate (sessile) umbels but different in its sparse fruit vestiture of apically straight, blunt-tipped hairs.

Stems 7-13 cm, branching from the base. Leaves: blades broadly ovate in outline, mostly 1 2 cm , finely ternately dissected, ultimate divisions linear to oblong, mostly 2-6 mm; petioles $10-20$ mm . Peduncles usually absent, occasionally present and $2-3.5 \mathrm{~cm}$. Umbels axillary, sessile at distal nodes, sometimes pedunculate at proximal nodes; involucre bracts absent; involucel bractlets ( $1-$ )2-4, linear, $1-4 \mathrm{~mm}$, margins entire, herbaceous, without scarious margins; fruiting rays $4-5$ per node, ( $0-$ $)^{3}-10 \mathrm{~mm}$ (inner umbellets sessile or subsessile to short-pedicellate), unequal, spreading; umbellets (2-)4-7 flowered; fruiting pedicels $1-5.5 \mathrm{~mm}$ (inner flowers short-pedicellate). Schizocarps $1.5-2$ mm , ribs rounded, sparsely to moderately tuberculate to hispidulous-spinulose on the angles and intervals with pustulate multicellular mounds, each pustular mound with a straight, erect, blunt-tipped, unicellular, hairlike cell, $0.1-0.2 \mathrm{~mm}$ or some mounds without a hair, lateral ribs not strongly differentiated; oil tubes 3 per interval, barely evident between the thickened ribs. Chromosome number not reported. Map 5. Figures 10, 11.

Flowering Mar-Apr. Desert shrubland; 600-700 m; California (San Diego Co.).
In deriving the concept and description of Spermolepis infernensis, I have seen only the two sheets of the type collection, which include 9 separate plants of consistent morphology. The type collection is from the area of the Hellhole Canyon Preserve, which is northeast of Escondido at elevations of about 1800-2000 feet elevation. The reference by Epling and Robison to "Borego" apparently meant Borrego, since Hellhole Canyon is in the general vicinity of the Borrego Valley and the Anza-Borrego Desert State Wilderness Park (see comments above in connection with S. lateriflora).

Spermolepis infernensis and $S$. lateriflora perhaps are sister species, in view of their similarity in inflorescence structure and distribution in the western USA. It is possible that $S$. infernensts is a recent derivative of $S$. lateriflora, with a reduction in the density of the fruit vestiture and a developmental change that results in truncation of the hairs. The difference in appearance is striking, however, and the effect on dispersal potential surely must be significant.
5. Spermolepis inermis (Nutt. ex DC.) Mathias \& Constance, Bull. Torrey Bot. Club 68: 124. 1941. Leptocaulis inermis Nutt. ex DC., Coll. Mém. 5: 39, plate 10, fig. B. 1829. Spermolepis patens var. inermis (Nutt. ex DC.) Mathias, Brittonia 2: 243. 1936. TyPE: USA. Arkansas. "In Amer. bor. ad Red River" [protologue], T. Nuttall s.n. (holotype: BM digital image!; isotype: PH digital image!).

De Candolle noted ("v s ") that he had seen the Nuttall collection
Leptocaults patens Nutt. ex DC., Prodr. 4: 107. 1830. Apnum patens (Nutt. ex DC.) S. Wats., Bibl. Index N. Amer. Bot., 413. 1878. Aptastrum patens (Nutt. ex DC.) Coulter \& Rose, Rev. N. Amer. Umbell., 110. 1888. Spermolepts patens (Nutt. ex DC.) B.L. Robins., Rhodora 10: 34. 1908. TyPE: USA. Arkansas. "In Amer. bor. ad Red River" [protologue], T. Nuttall s.n. (holotype: BM digital image!; isotypes: NY digital image!, PH digital image!).

De Candolle noted ("v.s ") that he had seen the Nuttall collection
Stems 8-80 cm . Leaves: blades oblong-ovate in outline, 3-5 cm, 3-pinnately compound, ultimate divisions filiform, $3-30 \mathrm{~mm} \times 0.1-1 \mathrm{~mm}$; petioles $4-15 \mathrm{~mm}$. Peduncles $2-7 \mathrm{~cm}$. Umbels terminal and axillary, all pedunculate; involucre bracts absent; involucel bractlets $1-4$, linear to linear-lanceolate, $2-5 \mathrm{~mm}$, margins scabrous-toothed; fruiting rays $5-11$, suberect and evidently clustered, unequal, $1-13 \mathrm{~mm}$ (central umbellet subsessile); umbellets 2-7-flowered; fruiting pedicels ( $0-$ ) $1-6 \mathrm{~mm}$ (central flower sessile to short-pedicellate). Schizocarps $1.2-2 \mathrm{~mm}$, tuberculate, without trichomes; oil tubes 1 per dorsal interval. Chromosome number not known (reported in error as $2 n=22$ by Bell \& Constance 1957; voucher from Florida identified here as $S$. dvaricata). Map 3. Figure 13.

Flowering Apr-May(-Jun). Sand, river silt, gravelly soil, clay loam, sand prairies, blackland prairies, shale glades and barrens, rocky ridges, granite outcrops, limestone crevices, oak-juniper woodland, ditch banks, woods edges, roadsides, fields; $30-200(-900) \mathrm{m}$; Ala., Ark, Ill., Ind., Iowa, Kans., La., Md., Minn., Miss., Mo., Nebr., N.Mex., Okla., Tenn., Tex.; Mexico (Coahuila).

East of the Mississippi River in the southeastern USA, Spermolepis mermis occurs only in widely disjunct localities in Mississippi, Alabama, and Tennessee; in Louisiana and Alabama, the scattered populations occur mostly in prairie patches. Bonafide records seen in the present study are documented here. Mississippi. Monroe Co: ca. 3 mi SSW of Prairie along Hwy 25, 2.4 mi S of jet with Hwy 382, 7 May 1996, McDonald 9364 (VDB); ca. 1.5 mi SW of Aberdeen, remnant prairie roadside at jet state hwys 25 and 382, 23 May 1996, McDonald 9466 (BAYLU). Oktibbeha Co.: Botanic Garden of the South, ca. 1.5 mi S of Sessums on Sessums Rd, Black Prairie region, 21 May 1997, Letdolf 1512 (VDB). Alabama. Sumter Co.: Blackland prairie between Gainesville and Alabama 17, 20 May 1975, Kral 55614 (VDB). Tennessee. Warren Co.: 1 mi NE of Morrison, ballast of railroad adjacent swamp and Hwy 55, 18 May 1987, Patrick \& Wofford 2029 (SMU).

Spermolepis inermis probably is not native in Maryland, where it has been reported (Brown \& Brown 1984). Radford et al. (1968) noted its occurrence in New Hanover Co., North Carolina, but no voucher exists in the NCU herbarium (Alan Weakley, pers. comm.). Some Alabama collections at VDB previously identified as $S$. mermis are instead S. divaricata (Baldwin Co., Lelong 7712; Dallas Co., Sessler 1178; Geneva Co., Kral 90807), and this mistaken identity probably also has been the case for the Maryland and North Carolina reports.

Additional specimens examined (outlying populations). USA. New Mexico. Eddy Co.: Carlsbad Caverns Natl. Park, 1.8 mi WSW of E boundary via sewage lagoon road, 0.7 mi E of sewage lagoons, small arroyo lined with shrubs, on bajada escarpment, $3650 \mathrm{ft}, 19 \mathrm{Apr} 1977$, Burgess 4496 (TEX); Carlsbad Caverns Natl. Park, Walnut Canyon, ca. $0.2 \mathrm{mi} \mathrm{S}, 0.2 \mathrm{mi}$ W of BM 3901, gravel alluvium dominated by Brickellia lacmata, 17 May 1977, Burgess 4556 (ARIZ, TEX). MEXICO. Coahuila. Rio Grande, Tule Canyon, on Coahuila side above Upper Madison Falls, calcareous gravelly soil, Dasylirion, Yucca, Nolina, Rhus, Acacia, 475 m, 10 Apr 1973, Johnston et al. 10615 (LL); San Rosendo Canyon (flows into Rio Grande opposite Brewster Co.), 500-700 m, calcareous gravelly loam, Dasylirion, Yucca, Nolina, Larrea, Acacia, Quercus, Prosopis, 9 Apr 1973, Johnston et al. $10597 B$ (LL); Musquiz, spring 1935, Marsh 113 (TEX); Sierra de Santa Rosa, Canon El Puerto, Rancho E1 Puerto, 2824 N, 10154 W, matorral de Acacia coultert, Pithecellobium pallens, Zanthoxylum fagara, Yucca thompsoniana, y Opuntia lindheimert, 900-1000 m, 6 Jun 1991, Villarreal 5963 (BRIT); Mpio. Musquiz, Hacienda La Rosita, 26 Jun 1936, Wynd \& Mueller 295 (ARIZ).

Fruits of a collection from south-central Texas, identifiable as Spermolepis inermis in every other way, have some tubercles producing very short, blunt-tipped hairs, similar to those of $S$. organensis and S. infernensis. Wilson Co.: 8 mi S of Elmendorf, 4 May 1945, Cory 48795 (SMU).

Spermolepts mermis, S. divartcata, S. diffisa, S. laevis, and S. organensts appear to be closely related among themselves. If the ancestral species of Spermolepis had hairy fruits with (e.g., S. echinata, S. gigantea), then $S$. inermis can be understood as derived through loss of the hairs. Spermolepts laevis probably is a derivative of $S$. mermis, through further loss of the surface ornamentation of the fruits. Spermolepis divaricata and S. diffusa perhaps are sister species, through reduction of the inflorescence from an ancestor shared with $S$. inermis (maintaining the potential to produce fruit hairs). Spermolepis organensis is possibly a peripheral isolate of $S$. inermis; its short, stubby fruit hairs are like those of $S$. infernensts and rare populational forms of $S$. inermis, perhaps through partial derepression of the hair formation.
6. Spermolepis laevis G.L. Nesom, sp. nov. TyPE: USA. Texas. Llano Co.: Enchanted Rock, granitic sandy soil, 15 May 1933, E. Whitehouse 11292 (holotype: SMU)

Similar to Spermolepis inermis in general appearance, especially its strictly pedunculate, terminal and axillary umbels and its relatively short, suberect and evidently clustered fruiting rays; different in its completely smooth fruit surface, with evident ribs but lacking tubercles on the ribs or intervals.

Stems $8-48 \mathrm{~cm}$. Leaves: blades ovate to broadly ovate in outline, $1-4 \mathrm{~cm}, 3$-pinnately compound, ultimate divisions filiform, $4-15(-25) \mathrm{mm}$; petioles $2-15 \mathrm{~mm}$. Peduncles $2-5 \mathrm{~cm}$. Umbels terminal and axillary, all pedunculate; involucre bracts 0 or very rarely $1-2$; involucel bractlets $1-4$, linear to linear-oblong or linear-lanceolate, $1-3(-5) \mathrm{mm}$, margins scabrous-toothed; fruiting rays $3-8$, suberect and evidently clustered, unequal, ( $0-$ ) $2-9(-13) \mathrm{mm}$ (central umbellet sessile to subsessile); umbellets (1-)3-8-flowered; fruiting pedicels ( $0-$ ) $3-5 \mathrm{~mm}$ (central flowers sessile to subsessile). Schizocarps $1-1.2 \mathrm{~mm}$, minutely beaked, surface smooth, dorsal ribs 3 , oil tubes 1 per dorsal interval. Chromosome number not reported. Map 3. Figure 14.

Flowering Apr-May(-Jun). Granite outcrops, granitic gravel, limestone gravel, sandy fields, oak-cedar slopes, live oak savannas; 200-500 m; Okla., Tex.

Additional collections examined. Oklahoma. Johnston Co.: 10 mi N of Tishomingo, near Wapanucka Road jct, grazed prairie along State Hwy 99, sandy granitic soil from nearby granite knobs, 29 May 1948 [fruit], Robbins 3064 (UC). Texas. Bell Co.: nature prairie near Little River, 5

Jun 1930, Wolff 2201 (VDB); near Little River, field, 11 May 1930, Wolff 2102 (BRIT); Temple, from around Substation \#5, 11 May 1930, Wolff 2102 (SMU, perhaps duplicate of the BRIT sheet of same number). Burnet Co.: Granite 'hills'[?], sandy soil, 29 May 1922, Tharp s.n. (TEX); near Burnet, sandy soil, 26 Apr 1931, Whtehouse 11291 (SMU); Inks Lake State Park, ca. 1 mi S of Hwy 29, granite outcrop, 1 May 1947, Whitehouse 18439 (SMU). Gillespie Co.: ca. 12 mi N of Fredericksburg, dry soil on oak-cedar slope, 29 Jun 1957, Correll \& Johnston 17269 (LL). Hamilton Co.: [no other locality data], 12 Jun 1941, Tharp s.n. (TEX). Llano Co.: [no other locality data], 11 Jun 1930, Tharp s.n. (TEX). Mason Co.: Mason Mountain Wildlife Management Area, in Middle Pasture, 0.2 mi N of Mile-O-More Lake, 23 Apr 2001, Sanchez 2355 (BAYLU); MMWMA, in Middle Pasture, near the Lodge, near Una Branta Lake, 19 Apr 2003, Sanchez 3224 (BAYLU); MMWMA, in West Pasture, downstream from Comanche Lake, near the Beaver Dam, sandy soil, 15 Apr 2005, Sanchez 3697 (BAYLU); Mason Mountain Wildlife Management Area, in Middle Pasture, 0.9 mi NE of gate into Headquarters Pasture, sandy soil, 29 May 2005, Sanchez 3879 (BAYLU, BRIT); MMWMA, in Middle Pasture, 0.3 mi NE of Headquarters Bldg., live oak savanna, sandy soil, 17 May 2008, Hansen 5922 (BAYLU, TEX); granite outcrops on S side of RM 1222, 2.6 km E from intersection of US Hwy 87 and RM 1222 at Camp Air, frequent in dry crevice, 17 May 1979, Walters 301 (SMU). Tarrant Co.: near Fort Worth, in old field, 15 Jul 1924, Ruth 1107 (SMU); gravel road N of Crowley under Santa Fe bridge, limestone gravel soil, Grand Prairie, 21 Apr 1946, Whitehouse 15491 (SMU).

The Oklahoma collection (Johnston Co.) consists of 5 plants - 3 are typical Spermolepis echinata but 2 are typical $S$. laevis, the fruits completely glabrous.

From Bell Co., Texas, Wolff 2201 has perfectly smooth fruits; fruits of Wolff 2102 (Fig. 10) are very slightly tuberculate but better identified as Spermolepis laevis than S. inermis; Wolff 657 (BRIT) from Bell Co., however, is clearly S. inermis. Both taxa have been collected in Bell, Burnet, Gillespie, and Tarrant counties. Field study toward a better understanding of the distribution of Spermolepis laevis and its biology, especially its possible interaction with S. mermis, will be interesting and useful.
7. Spermolepis organensis G.L. Nesom, sp. nov. Type: USA. New Mexico. Dona Ana Co.: Organ Mts., Rock Springs Canyon, NWNW Sec 34, T22S, R4E, common on gravelly loamy granitic soil on 5 deg N -facing slope, with Quercus arizonicus, Juniperus deppeana, Garrya wrightu, Cercocarpus montanus, Rhus trilobata, $5400 \mathrm{ft}, 6$ Jun 1995, L. McIntosh 3106 (holotype: NMC !).

Similar to Spermolepis mermis in its strictly pedunculate, terminal and axillary umbels; different in its shorter fruiting peduncles and in its corky fruit surface with vaguely formed tubercles, some tubercles producing short, straight hairs, some without hairs.

Stems ca. 20 cm , purple. Leaves: blades broadly ovate in outline, $1.5-2 \mathrm{~cm}, 2-3$ ternately compound, ultimate divisions filiform, $4-11 \times 0.1 \mathrm{~mm}$; petioles $2-8 \mathrm{~mm}$. Peduncles $0.9-3.5 \mathrm{~cm}$. Umbels terminal and axillary, all pedunculate, indeterminate; involucre bracts absent; involucel bractlets $1-4$, margins smooth, $1-3 \mathrm{~mm}$; fruiting rays 4-7, suberect and clustered, unequal, ( $0-$-) $4-10$ mm (central umbellet sessile); umbellets (3-)4-6-flowered, fruiting pedicels ( $0.2-$ ) $1-4 \mathrm{~mm}$ (central flowers sessile to subsessile). Schizocarps $1.2-1.5 \mathrm{~mm}$, dorsal ribs 3, rounded, often somewhat obscured by the corky epidermis, lateral ribs similar to dorsal, oil tubes 1 per dorsal interval; surface with vaguely formed multicellular tubercles and/or rounded lateral ridges, tubercles sometimes with a straight, erect, blunt-tipped unicellular hairlike cell. Chromosome number not reported. Map 3. Figure 12.

Flowering May-Jun Grantic gravelly loam, oak-juniper slopes, $1800 \mathrm{~m}, \mathrm{~N}$ Mex, known only from the type collection

The distinctive features of Spermolepis organensis might be interpreted as derived from thase of $S$ inermss The pernpheral geographic location of $S$ organensss (Map 3) also suggests that this mught be true but other outlying populations of $S$ inermis exist Recogntion of $S$ organensis as a species, albert it weakly defined, emphasizes the apparent, at least partial derepression of the frut harr formation, the corky fruit surfaces, and the relatively short fruting peduncles

If $S$ organensis were interpreted as of hybrid origin from extant parents, the only other species of Spermolepis currently known from the Organ Mountans is $S$ Iatertfora The nearest known occurrence of $S$ inermis is to the east in Eddy Co, that also somewhat of a geographic isolate


Map 3 Distribution of Spermolepis inermis, $S$ laevis, and $S$ organensis Open symbols are from literature and various sources, vonchers seen for others outside of Texas but not recorded
8. Spermolepis divaricata (Walt.) Raf., Bull. Bot., Genève 1: 217. 1830. Daucus divaricatus Walt., Fl. Carol., 114. 1788. Ammi divaricatum (Walt.) Pers., Syn. Pl. 1: 308. 1805. Aethusa divaricata (Walt.) Spreng., Pl. Umbell. Prodr., 22. 1813. Sison divaricatum (Walt.) Spreng., Sp. Umbell., 113. 1818. Leptocaulls divaricatus (Walt.) DC., Coll. Mem. 5: 39. 1829. Babiron divaricatum (Walt.) Raf., New Fl. 4: 24. 1836. Aprum divaricatum (Walt.) A.W. Wood, Amer. Bot. Fl., 140. 1870. Neotype (Ward 2008, p. 475): USA. South Carolina. Charleston Co.: Wadmalaw Island, S of Charleston, 27 May 1988, D. Boufford \& E. Wood 23862 (GH; isoneotypes: MO, NY).

Walter did not cite a specimen or locality, Ward (2008) noted that "Spm 40-C, a wispy fragment, was labeled "Daucus" by Fraser, and annotated as "divaricatus Walt" by A Gray, though one wonders what he saw that was recognizable "
Sison pusillum Michx., Fl. Bor.-Amer. 1: 168. 1803. Ligusticum pusillum (Michx.) Pers., Syn. P1. 1: 315. 1805. TYPE: USA. [protologue] "In sabulosis aridis Carolinae," A. Michaux? (holotype: P?).
Babiron dichotomum Raf., New Fl. 4: 24. 1838. Type: USA. Florida. Rafinesque did not cite a specimen, noting only "Florida." As synonym of $S$. dwaricata fide Mathias and Constance (1944).

Babiron pusillum Raf., New F1. 4: 23. 1838. Type: USA. Alabama or Georgia. Rafinesque noted "sent me from Alabama, and by Dr. Torrey from Georgia as the Daucus pusillus! see 788." As synonym of $S$. divaricata fide Mathias and Constance (1944).

Stems $7-40 \mathrm{~cm}$. Leaves: blades oblong to oblong-ovate in outline, $0.5-5 \mathrm{~cm}, 3$-pinnately compound, ultimate divisions linear, $3-10(-15) \times 0.2-1 \mathrm{~mm}$; petioles $1-30 \mathrm{~mm}$. Peduncles $17-40(-$ 50) mm . Umbels terminal and axillary, all pedunculate, involucre bracts absent; involucel bractlets $1-3$, narrowly lanceolate, $0.5-1 \mathrm{~mm}$, the margins usually callous-toothed; rays 3-6, divaricately spreading, unequal, $5-17 \mathrm{~mm}$; umbellets (3-)4-6-flowered; fruiting pedicels ( $0-$ ) $2-9 \mathrm{~mm}$ (central $1-2$ flowers subsessile to sessile). Schizocarps $1.5-2 \mathrm{~mm}$, scabrous with minute, upcurved hairs not arising from a tuberculate base. Chromosome number: see comments below. Map 4. Figure 15.

Flowering Mar-Apr(-May). Sandy woodlands (longleaf pine-turkey oak, pine-oak, oak scrub, flatwoods, evergreen scub oak), prairie remnants, sandy peat, sandy roadsides, fields, pastures, and clearings, lawns, abandoned gardens, orange groves, moist ditches, swamp and salt marsh edges, shell mounds, sand ridges, sandhills, sand prairies, sandy peat of bogs; 0-200 m; Ala., Fla., Ga., La., Miss., N.J., N.C., S.C., Tex., Va.

Confusion exists regarding chromosome numbers of Spermolepis divaricata, S. inermis, and S. echinata. Numbers of $2 n=22$ and $2 n=16$ apparently both are based on vouchers both identified as $S$ divartcata. Vouchers for both counts were collected in Florida, so at least it is clear that neither could have been the basis of a count for $S$. mermis. The count of $2 n=20$ for $S$. echnata was made from an Arkansas plant (see description of S. echmata) securely identified as that species. While it seems unlikely that $S$. divaricata has two such distinct dysploid numbers, the possibility opens an interesting evolutionary study.
$2 \boldsymbol{n}=22$ (Bell \& Constance 1957; Florida. Okaloosa Co.: roadside banks just E of bridge 3.6 mi W of Crestview, 17 Apr 1954, Bell 1470, NCU [fide A. Weakley], VDB!, "Voucher for chromosome count of $n=11^{\prime \prime}$ on specimen). Initially identified by Bell as Spermolepts divaricata, annotated as $S$. inermis by Mathias \& Constance and reported in publication as $S$. inermis with $n=11$; later annotated by H.E. Ahles and by Alan Weakley as $S$. dvaricata, confirmed by Weakley (pers. comm.) as $S$. divaricata.
$2 n=16$ (Bell \& Constance 1957, Florida. Escambia Co.: sandy roadside along Fla. Hwy 297, 5 Apr 1955, Bell 1514, NCU [fide A. Weakley], "Voucher for chromosome count of $n=8$ " on specimen).

Initially identified by Bell as Spermolepis echinata and reported in publication as $S$. echinata with $n=$ 8 in the Bell and Constance publication. Specimen later annotated by Mathias \& Constance and by Alan Weakley as $S$. divaricata, confirmed by Weakley, pers. comm., as $S$. divaricata.

Attributions of the species to New Mexico have been based on misidentifications of Cyclospermum leptophyllum. PLANTS Database attributes Spermolepts dvaricata to New Jersey, based on an unpublished "Chrysler Herbarium Checklist" (Rutgers University) by J. Meyer from 1990. The voucher, correctly identified in the checklist, is this: New Jersey. [Camden Co.]: Camden, ballast, 26 Jun 1866, C.F. Parker s.n. (CHRB digital image!). The species is regarded here as a waif in New Jersey and not a permanent member of the state flora.

The plants of Spermolepis divaricata from Acadia Parish, Louisiana, from prairie remnants along a railroad right-of-way, have pedicels in the upper range of length (mostly $5-9 \mathrm{~mm}$ ) for the species but the central flowers of each umbellet are subsessile and fertile. Acadia Par.: along RR ca. 3.5 mi SW of Crowley, 7 May 1966, Lemmon 1168 (LSU digital image!).

Two collections of Spermolepis divaricata are recorded here for Texas. Austin Co.: Industry, 1895, Mr. H. Wurzlow s.n. (BRIT). Liberty Co.: along Co. Rd 2252 W of the Davis Hill Baptist Church and N of Hwy 105 E of Cleveland, 26 Apr 1997, Brown 20285 [without fully mature fruits but the pedicels are short and the umbellets have sessile central flowers with evidently maturing fruits] (NLU).

The difference between Spermolepis divaricata and $S$. mermis can be subtle but is nevertheless real. Before full fruit maturation, outgrowths of the ovary surface of $S$. divaricata can look like developing tubercles of $S$. inermts although they usually have an antrorse orientation. This similarity perhaps was the basis for the Mathias \& Constance annotation of Bell 1470 (as S. inermis; see comments above about chromosome numbers), which has short hairs and some tuberculate bases without hairs. In $S$. inermis, the central rays are consistently very short and there is a relatively small angle of divergence, overall giving the umbels a congested appearance. In $S$. divaricata, the rays (including the central) mostly are equal to subequal in length and diverge at a relatively greater angle, giving the umbels a more open appearance.

Spermolepis divaricata and $S$. diffisa characteristically produce a determinate inflorescence -- the axillary bud and terminal leaf are suppressed at the distalmost node (Fig. 2B). In some plants from Florida, however, this apparent specialization is not expressed (de-repressed?) and the pattern is determinate (Fig. 2A). These apparently are populational variants. Examples: Alachua Co.: Dunn 525 (FLAS), Kabat 488 (FLAS, 9 plants, 2 determinate, 9 indeterminate), Scudder 1491 (FLAS). Baker Co.: West \& Arnold s.n. (FLAS). Hernando Co.: Nee et al. 2798 (FLAS). Highlands Co., Baltzell 1799 (FLAS, 2 plants, 1 determinate, 1 indeterminate).
9. Spermolepis diffusa (Nutt. ex DC.) G.L. Nesom, comb. nov. Leptocauls deffusus Nutt. ex DC., Prodr. 4: 107. 1830. Lectotype (designated here): USA. Arkansas. "In Amer. bor. ad Red-River" [protologue], T. Nuttall s.n. (BM 001042884 digital image!; isolectotypes: BM 001042883 digital image!, NY digital image!, PH-2 sheets digital images!).

De Candolle noted ("v s ") that he had seen the Nuttall collection
Stems $15-75 \mathrm{~cm}$. Leaves: blades oblong to oblong-ovate in outline, $0.5-5 \mathrm{~cm}, 3$-pinnately compound, ultimate divisions linear, 3-15 x 0.2-1 mm; petioles $1-30 \mathrm{~mm}$. Peduncles $20-50 \mathrm{~mm}$. Umbels terminal and axillary, all pedunculate; involucre bracts absent; involucel bractlets $1-3$, linearlanceolate, $0.5-1 \mathrm{~mm}$; fruiting rays $2-4(-6)$, divaricately spreading, subequal, $15-33 \mathrm{~mm}$; umbellets $2-4(-5)$-flowered; fruiting pedicels ( $8-$ )14-32 mm (all flowers of each umbellet with subequal
pedicels, none sessile or subsessile) Schizocarps $15-2 \mathrm{~mm}$, scabrous with minute, upcurved hars not anisng from a tuberculate base Chromosome number not reported Map 4 Figure 16

Flowering Apr-May(-Jun) Sandy clay, sand, roadsides, fencerows, fields, pastures, dunes and sandy hulls, then soll under oak-juruper, sandy soll in longleaf pine, pine, oak-pine, oak-huckory, post oak, and post oak-blackjack oak woods, lake shores, $50-500 \mathrm{mi}$, Ark, Kans, La, Mo, Okla, Tex


Map 4 Distribution of Spermolepis duffusa and $S$ divaricata Completely hollow symbols are from literature and other sources, vouchers not seen in the present study

Aptly named Leptocaulis diffisus has long lain in synonymy of Spermolepis divaricata but its morphological distinction from typical $S$ divaricata is easy to discern The long pedicels and rays of $S$ diffisa usually provide ID-at-a-glance, if the pedicels are in the shorter part of the range, the lack of sessile or subsessile flowers provides a second criterion The range of $S$ diffisa is entirely west of the Mississippi River The two species appear to be sympatnc in central Loussana and southeastern Texas Vouchers documenting the occurrence of both species in Natchtoches and Vernon parishes (Loustana) are at NLU

Plants in a few scattered Texas collections have abnormally short pedicels Anderson Co , pedicels $8-11 \mathrm{~mm}$, Bridges \& Kindscher 13731 (BRIT, TEX), Comanche Co, pedicels $6-10 \mathrm{~mm}$, Shinners 20078 (SMU) In the Anderson Co collection, a low percentage of the umbellets produced a single central, subsessile flower that did not develop a mature fruit These plants are within the geographic range of $S$ deffisa and are regarded here as populational variants of that species, perhaps reflecting ancestal ( $S$ divaricata-like) characteristics

The close similarity and probable sister relationship of Spermolepis diffusa to S. divaricata might be emphasized in treating the two as conspecific varieties. The course here emphasizes their distinction in morphology and geography (and by inference, ecology). Pointed field observations in their region of sympatry would be interesting, and a chromosome count for $S$. diffusa might provide evidence for an internal isolating mechanism, especially in view of the apparent lability in chromosome number within the genus.
10. Spermolepis castellanosii Pérez-Mor., Lilloa 5: 32, fig. 1. 1940. Lectotype (designated here): ARGENTINA. Prov. Rio Negro. San Antonio Este, 21 Nov 1928, A. Castellanos (BA 28/1184). Pérez -Moreau cited three other collections - two from Neuquen (leg. Ragonese, Perez-Moreau) and one from Mendoza (leg. Ruiz Leal).

Stems ca. 4-8 cm tall, simple or few-branched mostly at nodes above the base. Leaves: blades broadly ovate in outline, $25-40 \mathrm{~mm}$, ultimate divisions $4-8 \mathrm{~mm}$, scaberulous on margins and nerves; petioles $7-10 \mathrm{~mm}$, scarious-margined at base. Peduncles $20-50 \mathrm{~mm}$. Umbels axillary, all pedunculate; involucre bracts absent or 1 ; involucel bractlets 3-4, linear-lanceolate, entire, $1.5-7 \mathrm{~mm}$, unequal; fruiting rays $3-5,1-15 \mathrm{~mm}$ (inner $1-2$ umbellets short-pedicellate), spreading, umbellets 35 -flowered; fruiting pedicels (1-)7-9 mm (inner flower short-pedicellate), loosely convex to irregular. Schizocarps oblong-ellipsoid, attenuate toward the apex, $3.2-5.3 \mathrm{~mm}$, hispid-hirsutulous on the angles and intervals with narrowly triangular, straight, blunt-tipped hairs, dorsal ribs 3 , rounded, lateral ribs not expanded; oil tubes 1 (rarely 2-3) per interval, 2 on the commissural face. $2 n=64$ (Constance et al. 1976; Hunzker 12523, Cordoba, Argentina). Figure 17.

Spermolepis castellanosii apparently is endemic to west-central Argentina. Pérez-Moreau (1940) cited collections from the provinces of Rio Negro, Neuquen, and Mendoza. The hexaploid chromosome count by Constance et al. (1976) was from Prov. Cordoba. Photos on Flickr by Joseph Fourier (2009) are from Prov. San Luis.
11. Spermolepis gigantea (Coulter \& Rose) G.L. Nesom, comb. nov. Ammoselinum giganteum Coulter \& Rose, Contr. U.S. Natl. Herb. 7: 89. 1900. Type: USA. Arizona. Maricopa Co.: mesas near Phoenix, 17 Jun 1882, C.G. Pringle 28 (holotype: GH; isotypes: fragment JEPS digital image!, NY digital image!, US digital image!).
Ammoselinum occidentale Munz \& Johnston, Bull. Torrey Bot. Club 52: 224. 1925. TyPE: USA. California. Riverside Co.: "Hayfields" [Hayfield pumping plant locality], Chuckwalla Valley, Colorado Desert, locally abundant in heavy soil of a dry basin under shrubs and in the open, $500 \mathrm{ft}, 13$ Apr 1922, P.A. Munz \& D.D. Keck 4930 (holotype: POM digital image!; ;sotypes: BM digital image!, JEPS!, UC!).

Stems 8-26 cm, simple or branching from the base. Leaves: blades obovate to broadly ovate in outline, $12-25 \mathrm{~mm}$, ultimate divisions linear, (1-)4-13 mm; petioles 3-25(3-0) mm. Peduncles 25.5 cm or penultimate umbel sometimes sessile (see NY isotype, Fig. 19. Umbels terminal and axillary; fruiting rays $4-10,(0-) 2-22 \mathrm{~mm}$ (inner umbellet sessile), unequal, spreading; umbellets $1-$ 10 flowered; pedicels ( $0-$ )2-8 mm (inner flower sessile to subsessile); involucre bracts ( $0-$ ) $1-3$, linear or sometimes 3 -fid; involucel bractlets 1-6, linear to linear-lanceolate, entire or less commonly 2-3-fid, 2-12 mm, sometimes scarious-margined at base. Schizocarps narrowly elliptic-ovate to urceolate-oblong or ovoid-oblong, 3-4 mm, ribs low-rounded, hispid-hirsutulous on the ribs and intervals with sharp-pointed, 1-2-celled hairs arising from a conical, non-pustulate base, dorsal ribs 3 , cordlike and thickened, lateral ribs flattened and broad, nearly obscuring the commissural sulca; dorsal oil tubes 3 per interval, commissural oil tubes 2. $2 n=38$ (from label of McKcy 64: " $n=19$ Chromosome vouchers cultivated in University of California Botanical Garden, C-775"). Map 5. Figures 18, 19, 20.

Flowering Mar-Apr Roadsides, sandy flats, desert shrubland with Larrea, 200-800 m, Ariz, Calif

Spermolepis gtgantea is rare and represented in Arizona only by the collections cited here from Maricopa, Pima, and Pinal countres, in California it is known only from the type of Ammoselinum occidentale, collected in eastern Riverside County (Map 4) Wolff (1927) and Mathias and Constance (1945) identified Pringle 8314 from Coahuila as Ammoseltnum giganteum, but that collection, far-distant from the main range of that spectes, is identified here as typical Ammosetinum popei (see citation above)

Collections examined USA Arizona Maricopa Co 39 mi NW of Wintersburg, sandy flat among Larrea, 22 Mar 1936, Wiggins 8431 (UC) Puma Co ca 10 ml E of Tucson on Nogales Road, On open roadside, $2500 \mathrm{ft}, 27$ Apr 1945, Gould 3064 (ARIZ) Pinal Co near Casa Grande, 3 Apr 1937, Darrow s.n. (ARIZ), Casa Grande, 1400 ft , flrs fantly Pastmaca-scented, 2 May 1965, McKay 64 (ARIZ), Eloy, 25 Mar 1930, Peebles, Harrison, \& Kearney 6496 (ARIZ-2 sheets).

Spermolepis gigantea is characterized by these features umbels terminal and axillary, all pedunculate, involucel bractlets long, scarious-margined on the proximal 1/3-1/2, involucre bracts usually present, often ternate, peduncles, rays, and pedicels munutely huspidulous on the angles, and fruits relatively long, narrowly elliptic-ovate, hispid with non-pustulate-based hairs The broad lateral ribs are perhaps the reason that is has been treated as a species of Ammoselmum


Map 5 Distribution of Spermolepis gigantea and S imfernensis

Munz \& Johnston (1925) included Ammoselinum gıganteum and A. occidentale as the two members of Ammoselimum sect. Hesperoselinum Munz \& Johnston, but Mathias and Constance (1944, p. 104), without comment, placed A. occidentale in the synonymy of A. giganteum, where it has since resided. Munz and Johnston observed that Ammoselinum occidentale differed from A. giganteum in its "lower more compact habit, unbranched stems, smaller more compact umbels, pubescent (rather than conspicuously callous-toothed) smaller carpels, and twice as many commissural oil tubes." In the observation here, however, the fruit vestiture is the same in both taxa, and Mathias and Constance (1944) treated A. occidentale as a synonym of A. giganteum. Mathias and Constance described the lateral fruit ribs of $A$. giganteum as having "corky appendages," but in the observation here, they are elaborated hardly more than the dorsal.

## ACKNOWLEDGEMENTS

I am grateful for loans (to TEX) from ARIZ, FLAS, NMC, RSA, SJC, SRSC, and UC-JEPS and for hospitality at BAYLU, BRIT-SMU-VDB, NLU, and TEX-LL while studying there. Thanks to Mirta Arriaga at BA for providing close-up photos of the fruit of Spermolepis castellanosil, to Liora Spitz at CHRB for providing a digital image of the early collection of Spermolepis divaricata from New Jersey, to Sarah Taylor and Jochen Schenk at MACF for digital images of the McFadden collection of Spermolepis lateriflora from Los Angeles County, to John Pruski for a digital image and close examination of the fruits of Pringle 8314 (MO), to Tim Flynn and David Lorence at NTBG for providing the image of Spermolepis howantensis, to Jon Rebman and Mary Alice Kessler for observations on the fruit vestiture of SD collections (confirming their identity as Spermolepis lateriflora), to Carol Ann McCormick and Alan Weakley for information on NCU specimens, to Sam Kieschnick at BRIT for providing scanned images of several specimens, and to Stephen Downic for early comments on the taxonomy. This research has been supported in large part by the Flora of North America Association.

## LITERATURE CITED

Bell, C.R. and L. Constance. 1957. Chromosome numbers in Umbelliferae. Amer. J. Bot. 44: 565572.

Boufford, D.E. 1977. Ammoselinum butleri (Umbelliferae), new to North Carolina. Sida 7: 220.
Brown, R.G. and M.L. Brown. 1984. Herbaceous Plants of Maryland. Port City Press, Baltimore, Maryland.
Bryson, C.E. 1991. Two weedy species, Ammoselinum butlert (Umbelliferae) and Leptdum austrmum (Cruciferae), new to Mississippi. Sida 14: 506-508.
Calflora. 2012. The Calflora Database. Information on California plants for education, research and conservation, based on data contributed by dozens of public and private institutions and individuals, including the Consortium of Calif. Herbaria. Berkeley. Sttp //www calflora org/>
Chodat, R. and E. Wilczek. 1902. Contributions a la flore de la République Argentine. Bull. Herb. Boissier ser. 2. 2: 281-296, 475-490, 521-544.
Constance, L. 1993. Spermolepts. Pp. 165, in J.C. Hickman (ed.). The Jepson Manual: Higher Plants of California. Univ. of California Press, Berkeley.
Constance, L. and M. Wetherwax. 2012. Spermolepis. Pp. 199, in B.G. Baldwin, D.H. Goldman, D.J. Keil, R. Patterson, and T.J. Rosatti (eds.). The Jepson Manual: Vascular Plants of California (ed. 2). Univ. of California Press, Berkeley.
Constance, L., T.I. Chuang, and C.R. Bell. 1976. Chromosome numbers in Umbelliferae. V. Amer. J. Bot. 63: 608-625.

Coulter, J.M. and J.N. Rose. 1900. Monograph of the North American Umbelliferae. Contr. U.S. Natl. Herb. 7: 5-256.
Coulter, J.M. and J.N. Rose. 1909. Supplement to the monograph of North American Umbelliferae. Contr. U.S. Natl. Herb. 12: 441-451.

Downie, S.R., K. Spalik, D.S. Katz-Downie, and J.-P. Reduron. 2010. Major clades within Apiaceae subfamily Apioideae as inferred by phylogenetic analysis of nrDNA ITS sequences. Pl. Divers. Evol. 128: 111-136.
Fourier, J. 2009. Spermolepis castellanosu. Flickr. Two photos, 1 Nov 2009, from Prov. San Luis, Argentina. *http//www flckr com/photos/stationalpinejosephfourier/4131897242/>
González, A. 2010. Fotos de flora nativa de Uruguay y adventicias. Flickr. <http//floranativadeuruguay blogspot com/2010/12/ammoselinum-rosengurtii-apiaceae html>
Keener, B.R. 2007. Noteworthy collections: Alabama. Castanea 72: 47-48.
Mathias, M.E. and L. Constance. 1944. Apiastrum. Genus 10. North American Flora 28B: 71.
Mathias, M.E. and L. Constance. 1944. Spermolepts. Genus 11. North American Flora 28B: 71-73.
Mathias, M.E. and L. Constance. 1944. Ammoselinum. Genus 21. North American Flora 28B: 103104.

Mathias M.E. and L. Constance. 1950. Four new American Umbelliferae. Bull. Torrey Bot. Club 77: 133-139.
Munz, P.A. and I.M. Johnston. 1925. Miscellaneous notes on plants of southern California - IV. Bull. Torrey Bot. Club 52: 221-228.
Munz, P.A. (in collaboration with D.D. Keck). 1959. A California Flora. Univ. of California Press, Berkeley.
National Tropical Botanic Garden (NTBG). 2012. Herbarium Database. Herbarium PTBG, National Tropical Botanic Garden, Kalaheo, Hawaii. <http //ntbg orgherbarium/>
Pérez-Moreau, R.A. 1940. Una nueva especie de Umbelliferae. Lilloa 5: 31-34.
Radford, A.E., H.A. Ahles, and C.R. Bell. 1968. Manual of the Vascular Flora of the Carolinas. Univ. of North Carolina Press, Chapel Hill.
SEINET. 2012. Southwest Environmental Information Network. Managed at Arizona State Univ., Tempe. <http //swbiodiversity org/seinet/index php>
TENN. 2012. Univ. of Tennessee Herbarium website. $\langle$ http $/ /$ tenn bio utk edu/vascular/vascular shtml>
Torrey, J.G. and A Gray. 1840. Leptocaulls. Fl. N. Amer. 1: 608-609.
USFWS. 2010. Spermolepis hawatiensts, 5-Year Review, Summary and Evaluation. U.S. Fish and Wildlife Service, Pacific Islands Fish and Wildlife Office. Honolulu, Hawaii. <http //ecos fws gov/speciesProfile/profile/speciesProfile actıon'spcode=Q39H>
Villarreal Q., J.A. 2001. Listados florísticos de México. XXIII. Flora de Coahuila. Instituto de Biología, Universidad Nacional Autónoma de México, México, D.F. <http//www scribd com/doc/77962598/Flora-Coahula>
Wagner, W.L., D.R. Herbst, and D.H. Lorence. 2005. Flora of the Hawaiian Islands website. shttp//botany si edu/pacificislandbiodiversity/hawananflora/index htm>
Ward, D.B. 2008. Thomas Walter Typification Project, V: Neotypes and epitypes for 63 Walter names, of genera D through Z. J. Bot. Res. Inst. Texas 2: 475-486.
Wolff, H. 1927. Umbelliferae-Apioideae-Ammineae-Carinae, Ammineae Novemjugatae et Genuinae. Pp. 1-398 in A. Engler (ed.). Das Pflanzenreich, Heft 90 (IV. 228). W. Engelmann. Berlin.


Figure 3 Apiastnum angustifolium, representative plant (ASU)


Figure 4. Ammoselinum rosengurtii, from original illustration (Mathias \& Constance 1950). Used by permission of the Journal of the Torrey Botanical Society.


Figure 5 Ammoselinum rasengurtil (holotype, UC)


Figure 6 Spermolepis lateriflora, representative collection (ARIZ)


Figure 7 Spermolepis latenflora, representative plant, bottom left of F1g 5 (ARIZ)


Figure 8. Spermolepis echinata, representative collection (FSU).


Figure 9. Spermolepis havaitensis, epitype (PTBG) Used by permission of the National Tropical Botancal Garden


Figure 10 Spermolepisinfernensis, holotype (RSA)


Figure 11 Spermolepis infernensis, representative plant (from holotype, RSA)


Figure 12. Spermolepis organensis, holotype (NMC).


Figure 13 Spermolepis inermus, representative plant (SMU)


Figure 14 Spermolepus laevis, representative plant (SMU)


Figure 15. Spermolepis divaricata. representative plant (FSU).


Figure 16 Spermolepıs diffusa representative plant (MO)


Figure 17 Spermolepis castellonosu, from the onginal illustration (Pérez-Moreau 1940)


Figure 18 Spermolepis gigantea, representative plants (ARIZ)


Figure 19 Ammosehman giganteum 1 sotype (NY) $=$ Spermolepis gigantea


Figure 20 Ammoselinum occidentale 1 sotype $(\mathrm{UC})=$ Spermolepis gigantea

# BOERHAVIA COULTERI VAR. COULTERI (NYCTAGINACEE), NEW TO CALIFORNIA 

Richard Spellenberg<br>Department of Biology, MSC 3AF<br>New Mexico State Unıversity<br>Las Cruces, New Mexico 88003


#### Abstract

Boerhavia coultert var. coultert is reported as new to California. The taxon was a major component among a dense population of two other boerhavias, $B$. coulteri var. palmeri and $B$. triquetra var. intermedia, that occurred for several kilometers along Interstate Highway 15 contiguous with the Nevada state line at Primm. The var. coulterl is rather weedy and seems to be spreading from its original range in the Sonoran Desert.


KEY WORDS: Nyctaginaceae, Boerhavia, San Bernardino Co., California, new record

While returning to New Mexico from a family visit to California I noted a dense stand of robust plants of Boerhavia at the edge of the pavement of Interstate Highway 15 on the filled roadbed of the highway that crosses the dry bed of Ivanpah Lake. The population extended for several kilometers west of the Nevada state line. The most westward plants noted were of Boerhavia coultert var. coultert, easily seen to be erect plants with bright green stems. Slightly eastward it was apparent at least one other Boerhavia with spreading, purplish stems occurred with the var. coulteri. My wife and I turned the car around in Primm and went back, quickly stopped on this very busy interstate, took location notes, hastily grabbed samples of each of the species, stuffed them in the back seat, and returned to a vacant parking lot in Primm to press them. Among the three taxa collected was the var. coulteri, a taxon not included in Murdock's excellent treatment of the Nyctaginaceae (Murdock 2012) in the recently revised Jepson Manual. Searches of relevant herbaria websites also reveal no specimens of the taxon collected in California. To my knowledge, this is the first report for California of B. coulteri var. coultert, a Sonoran Desert taxon that seems to be spreading into surrounding areas as a weed in cities and along roadsides.

The record is as follows: Boerhavia coulteri var. coulteri. California. San Bernardino Co.: IH-15 on highway fill across Ivanpah Lake bed, 3 km SW of Nevada state line at Primm, 35 ${ }^{\circ} 34.876^{\prime}$, $115^{\circ} 24.130^{\prime}$; elev. 800 m , road shoulder on S side of interstate in area otherwise nearly barren of vegetation; plants part of a dense, robust, population of 3 taxa of boerhavias intertangled among one another, the population ca. 4 km long, and $1-2 \mathrm{~m}$ wide; with $B$. triquetra var. intermedia ( 14458 ) and B. coultert var. palmert (14459), also with scattered Kallstroemia grandfflora, 12 Sept. 2012, $R$. Spellenberg and N. Zucker 14459 (RSA, to be deposited). Figure 1 shows all three taxa.

The three taxa are distinguished by the characters used in the Nyctaginaceae treatment for the Flora of North America (Spellenberg 2003). At this site they were also distinguished as follows:

Boerhavia coulteri (Hook. f.) S. Wats. var. coulteri - stems bright green, strongly ascending to erect; perianth pale pink; plants well into fruit maturation.

Boerhavia coulteri (Hook. f.) S. Wats. var. palmeri (S. Wats.) Spellenb. - stems purplish, widely spreading to ascending; perianth pink; plants just beginning fruit maturation.

Boer havia triquetra S. Wats. var. intermedia (M.E. Jones) Spellenb. - stems green, stems spreading to erect; perianth pale pink; plants well into fruit maturation.


Figure 1. Photos of Boerhovia from the site at Ivanpah Lake, California, from specimens cited. A. Boerhavia coulteri var. coulter; B. B. coulteri var. palmeri; C. B. triquetra var. intermedia. Fruits of A and B are 3.1 mm long; fruits of C are 2.5 mm long.

The short duration of the stop along this busy freeway did not allow a search for intergradation between the two varieties of Boerhavia coulteri. As noted in Spellenberg (2003), intergradient plants are occasionally encountered in Arizona. In this population the fruits on the specimen of var. palmeri that was collected are larger than indicated in Spellenberg (2003), about the same size as fruits of var. coulteri in this population. There was also little habitat separation noted between the taxa, with the exception that the var. coulteri was the first noted at the western end of the population, the other two species occurring eastward with B. coulteri var. coulteri in the mix. The phenological and morphological differences noted among these sympatric varieties suggest that species level classification may be preferable to varietal level classification within B. coulteri, but that decision should await careful studies among populations of both varieties.

## LITERATURE CITED

Murdock, A. 2012. Nyctaginaceae. Pp. 916-922, in B.G. Baldwin (convening editor). The Jepson Manual, $2^{\text {nd }}$. ed. Univ. of California Press, Berkeley.
Spellenberg, R.W. 2003. Boerhavia. Pp. 17-28, in Flora of North America Editorial Committee, Flora of North America, Vol. 4. Oxford Univ. Press, New York.

# THE AUTHOR AND TYPE OF APIASTRUM ANGUSTIFOLIUM (APIACEAE) 

Guy L. Nesom<br>2925 Hartwood Drive<br>Fort Worth, Texas 76109<br>guynesom@sbcglobal net


#### Abstract

The correct author citation for the genus Apiastrum as well as two species and one variety, all published in 1840 by Torrey and Gray is "Nutt. in Torr. \& Gray." Lectotypes for Aptastrum angustifolium and Apiastrum latifolnm are at PH . The probable holotype of Apiastrum angustifolum var. tenellum is at PH.


KEY WORDS: Apiastrum angustifolum, author citation, type specimen

Within a day of posting of the study of Spermolepts and relatives (Nesom 2012), two scholars from the Harvard University Herbaria contacted me about misinterpretations regarding the authority and type of Apiastrum angustifolum as well as those of its synonyms. Corresponding corrections and other modifications are noted here.

## Authorities

Dr. Kanchi Gandhi observes that while the name of the genus is correct as Apiastrum Nutt. ex Torr. \& Gray, as I had it, author citations for the three species of Apiastrum published in the same work (Flora of North America, Torrey \& Gray 1840) should have been "Nutt. in Torr. \& Gray," not "Nutt. ex Torr. \& Gray, as I had those.

Torrey and Gray were working with a manuscript from Nuttall. For the names involved, they cited "Nutt. mss." for Apiastrum as the genus name (p. 643) and for Apiastrum angustifolium var. tenellum (p. 644). For Aptastrum angustifoltum and Apiastrum latifoltum (p. 644) they cited "Nutt. ! mss."

For each of the species and variety, a short description was given in quotes, evidently taken from Nuttall's manuscript. Additional descriptive notes, not in quotes, were provided for $A$. lattfolnum and the var. tenellum.

For the genus, nothing in the description is in quotes except for the concluding sentence, "Fruit with the taste of Stson amomum." At the very end of the description is "Nutt.," alluding either to the immediately preceding quote or to the whole genus description. Even if the "Nutt." were meant only in reference to the statement about fruit taste, the latter still would constitute part of the validating description and it appears that the authority for Aptastrum as a genus can be correctly cited as "Nutt. in Torr. \& Gray," in the same way as for the species. The authority would be cited as "Nutt. ex Torr. \& Gray" "when only the name but not the validating description or diagnosis was ascribed to a different author or to different authors" [vs. the publishing authors] (MeNeill et al. 2006, ICBN 46.4).

In sum, it appears that authorities for all of these 1840 names in Aprastrum should be cited as as "Nutt. in Torr. \& Gray."

## Type specimen of Apiastrum angustifolium

I cited a Nuttall collection at GH as the "probable holotype" of Aprastrum angustifolum Dr David Boufford, however, notes this "Gray did not go to Harvard until 1842 and Nuttall's specimens at Harvard arrived even later, in 1864 from Elias Durand, so it seems the holotype may not be at Harvard Most likely Torrey or Gray saw the specimen in Phtladelphat, unless they saw specimens in Elias Durand's herbarium" And int any case, the authorship is attributed to Nuttall (in Torrey and Gray), thus recognition of onginal type material should reflect Nuttalls personal study

My error in this went further, as the GH sheet that I cited (GH 00075076 ) was noted to have been collected in "north California" and possibly is not a duplicate of the explicitly labeled San Diego collections The PH lectotype (Fig 1) and the isolectotypes are clearly marked as to locality by Nuttall himself, matching the protologue


Figure 1 Lectotype of Aplastrafir angustifokwen (PH) These two plants are mounted at the upper right of the sheet Three other collections are mounted on the same sheet.

The section on typification of the species is repeated here, incorporating the modifications suggested by Gandhi and Boufford, as well as other changes.

Apiastrum angustifolium Nutt. in Torr. \& Gray, Fl. N. Amer. 1(4): 644. 1840. Lectotype (designated here): USA. California. [San Diego Co.:] St. Diego, N Cal, [April, from protologue], T. Nuttall s.n. (PH barcode 00025008 digital image!, specimen at upper right of sheet; isolectotypes: NY barcode 00405717 digital image!; PH barcode 00025009 digital image!, specimen on right half of sheet). The protologue specifies San Diego as the locality, and labels for all three collections have "Aptastrum angustifoltum, St. Diego, n Cal." in Nuttall's hand. Citation of a duplicate of this at K was in error.
Apiastrum angustifolum var. tenellum Nutt. in Torr. \& Gray, Fl. N. Amer. 1(4): 644. 1840. Type: USA. California.[Los Angeles Co.:] Catalina [Santa Catalina Island], no other collection data (probable holotype: PH bar code 00025006 digital image!, mounted in lower left of sheet with 3 other collections; see below).

Torrey and Gray did not indicate that they saw a collection; their concept of the taxon evidently was from Nuttall's manuscript. No specimen has been located that is marked as "var. tenellum" but a collection labeled in Nuttall's hand as "Aptastrum angustifolum, Catalina" is probably the specimen from which Nuttall's description was drawn. It is on the same sheet that has the lectotype of Apiastrum angustifoltum and isotype of Leptocaulis mermis (each a Nuttall collection) and a J.M. Bigelow collection of A. angustifolum (identified as such in Nuttall's handwriting). The two very small "Catalina" plants, both less than 10 cm high and characteristic of the reduction that commonly occurs in annuals, match aspects of the brief description ("stem dichotomous from the base; leaves less divided; rays of the umbel very slender; umbellets $1-2$-flowered; seed more rugulose"). This supercedes my earlier and illogical estimate that an 1899 collection by E. Palmer was the probable type.
Apiastrum lattfolium Nutt. in Torr. \& Gray, Fl. N. Amer. 1(4): 644. 1840. Lectotype (designated here, superceding the earlier choice of GH 00075075): USA. California. [Santa Barbara Co.:] "St. Barbara, n Cal." [on PH sheet], no other collection data, T. Nuttall s.n. (PH 01044838 digital image!; isolectotypes: BM digital image!; NY barcode 00405718 digital image!, specimen on right half of sheet; possible isolectotypes: GH 00075075, GH 00075076). Torrey and Gray cited "Nuttall! Douglas!" The two sheets at GH were collected by Nuttall in "north California," with no other indication of locality. The PH, NY, and BM labels give Santa Barbara as the locality, although the protologue does not specify a locality, and all three give Nuttall's own identification (in his hand) as Aptastrum latifolum.

The earlier attempt to designate a lectotype (Nesom 2012, 19 September) was incorrect from several perspectives. As pointed out by Dr. Boufford, the GH sheet was unlikely to have been part of the original material studied by Torrey and Gray, nor is it clear that it was part of the material upon which Nuttall based his concept. Only the labels at PH, NY, and BM have the identification of Aptastrum latifolium; those at GH are not identified with any name thus are perhaps or probably not duplicates of the explicitly identified specimens.
Helosctadtum leptophyllum var. ? latifolium Hook. \& Arn., Bot. Beechey Voy., 347. 1838. No collection was cited (pp. 347-348). The protologue gave only this: "The specimens are only in young fruit, and the segments of the upper leaves are considerably broader than in any form we have yet seen, while even the lower ones are broader than in H. laciniatum, DC., which we consider a mere variety of this species." As synonym of Apiastrum fide Mathias and Constance (1945).

## ACKNOWLEDGEMENTS

Thanks to Kanchi Gandhi and Dave Boufford for their pertinent comments.

## LITERATURE CITED

MeNeill, J. et al. 2006. International Code of Botanical Nomenclature (Vienna Code). Regnum Vegetabile 146. A.R.G. Gantner Verlag KG.
Nesom, G.L. 2012. Taxonomy of Aptastrum, Ammoselmum, and Spermolepis (Apiaceae). Phytoneuron 2012-87: 1-49.
Torrey, J. and A. Gray. 1840. A Flora of North America, Vol. 1, part 4. Wiley and Putnam, New York.

# VERNONIA FASCICULATA (ASTERACEAE): NEW TO THE FLORA OF TEXAS 

Matt White<br>882 Hwy 24<br>Campbell, Texas 75422


#### Abstract

Vernonia fasciculata is reported new to the flora of Texas. It was collected on 9 Sep 2012 on a narrow remnant strip of low-lying "pocket prairie" along Hwy 37 in Red River County, Texas. These "pocket prairie" remnants are in dire need of study and conservation.


KEY WORDS: Asteraceae, Vernonia, Vernonta fasciculata, Red River County, Texas, "pocket prairie"

Vernonia fasciculata Michaux, prairie ironweed, is a native species that occurs most abundantly on the northern Great Plains and in the upper Midwest, though it occurs from the Prairie Provinces of Canada east to Ohio south to Colorado, Oklahoma, Arkansas, Mississippi, and Alabama (BONAP 2012). It was not listed for Texas by Correll and Johnson (1970), Jones et al. (1997), Turner et al. (2003), or BONAP (2012).

Vernonia fasctculata is a species of "the cool temperate zone" (Jones 1972), where it grows in a variety of mesic habitats including "bottomlands, ditches, and low prairies" (Strother 2006). It is closely related to V. marginata of west Texas and Oklahoma and Correll and Johnson (1970) suggested they might be treated as conspecific, a notion dispelled by Jones (1972) who treated the duo as the Fasciculatae Group.

On September 9, 2012, a small population of Vernonta fasciculata was found on an unmowed roadside near Negley in Red River County, Texas, five miles south of the Red River on a terrace along Pecan Bayou. Nearly two dozen plants were growing on a narrow remnant strip of high-quality "pocket prairie." This species was confined to a strip no more than 10 yards wide and 30 yards in width. Apparently this small remnant was protected from destruction by the right-of-way of Texas Hwy 37. Associated species included Andropogon gerardit, Verbesina alterniflora, Solidago odora, Symphyotrichum pratense, Helianthus mollis, and Pteridnum aquilmum. A stand of Vernonia baldwint was growing 50 yards away, but plants of that species were not found in the V. fasciculata colony.

Plants of Vernonia fasciculata (Figs. 1-4) were easily distinguished in the field by the corymbose inflorescence and toothed leaves with scabrous adaxial surface and glabrous abaxial leaf surfaces, as well as the fasciculate flowering heads (which were still in bud) in the axils of the upper cauline leaves. The leaf of a freshly collected specimen scanned at 3600 dpi resolution revealed that the abaxial leaf surface contained numerous pits, each containing a tiny awl-shaped hair (Fig. 2). Four North America species of Vernonia have awl-shaped hairs in the pits on the abaxial leaf surface, including V. fasciculata, V. marginata, V. lettermannil, and V. texana (Strother, 2006). Only V. fasciculata, though, has a corymbiform inflorescence and leaves with toothed margins.

Voucher specimen: Texas. Red River Co.: Texas Hwy 37, N of Negley, E side of hwy, 4.9 miles S of Red River bridge, $33^{\circ} 47^{\prime} 32.93 \mathrm{~N}, 95^{\circ} 03^{\prime} 12.16^{\prime} \mathrm{W}, 9$ Sep 2012, M. White s.n. (BAYLU).

The soils at the site are mapped as the Whakana-Elysian complex with $0-1 \%$ slopes. This complex, which formed in alluvial sediment, is a mixture of soil types and contains numerous "pimple" mounds. In Red River County these soils occur on nearly level terraces ranging from 5 to 150 acres in size, with an average of 45 acres. The Whakana is a gray loam about 14 inches thick and makes up the largest surface area of the complex. The circular protruding "pimple" mounds consist of Elysian loam, a fine brown sandy loam about 6 inches thick. The moist depressions in this complex are mapped as Wrightsville soils and range from 5 to 8 acres in size (Thomas 1977).

This site, like the recently discovered Godley and Little Prairies in nearby Bowie County to the east, was originally a "pocket prairie" surrounded by mixed hardwood and shortleaf-pine savannah (Singhurst et al., 2011). However, unlike those two high-quality hay meadows, apparently only a narrow sliver of this "pocket prairie" remains along the narrow right-of-way of Texas Hwy 37. Images in the Soil Survey of Red River County, Texas (Thomas 1977) as well as recent Google Earth reveal the original shape of the part of this "pocket prairie" on private property west of the highway though unfortunately, east of the highway the site has been converted to extensive pine plantations.

Seven species of Vernonia and one putative hybrid are mapped for Texas by Turner et al. (2003). Although Vernonia fasciculata was earlier reported for Texas by Heller (1894), the specimen in question was later determined to be the hybrid Vernonia X guadalupensts-a cross between V . baldwint and V. lindhermert. The discovery of V. fascrculata makes the eighth species in the genus known from Texas. The closest populations to the Red River County plants apparently are in McCurtain County, Oklahoma, immediately north of Red River County.

This discovery underscores the need both to protect and to study the few remaining "pocket prairie" remnants in the Texas, especially those in the northeastern corner of the state, where little botanical field work has been conducted. As recent discoveries in this area have made clear, the prairie flora in this region is influenced by the upper Midwest and the northern Great Plains.

## ACKNOWLEDGEMENTS

I would like to thank my wife, Kristin, and our four daughters for their patience while dad botanized on the side of the road on the way to Beaver's Bend State Park in Oklahoma. Jason Singhurst reviewed the article and Joe Jackson, technical services librarian at Paris Junior College, helped secure literature.

## LITERATURE CITED

BONAP. 2012. North American Plant Atlas (US county-level species maps). Biota of North America Program, Chapel Hill, North Carolina. Last update: Oct 2011 <http//www bonap org/genera-list html>
Correll, D.S. and M.C. Johnson. 1970. Manual of the Vascular Plants of Texas. Texas Research Foundation, Renner, Texas.
Jones, S.B. 1972. A systematic study of the Fasciculatae Group of Vernonia (Compositae). Brittonia 24: 28-45.
Heller, A.A. 1895. Botanical explorations in Southern Texas during the season 1894. Contr. Herb. Franklin and Marshall College, No 1. Lancaster, Pennsylvania.
Jones, S.D., J.K. Wipff, and P.M. Montgomery. 1997. Vascular Plants of Texas: A Comprehensive Cheeklist including Synonomy, Bibliography, and Index. Univ. of Texas Press, Austin.
Singhurst, J.R., M. White, J.N. Mink, and W.C. Holmes. 2011. Castilleja coccinea (Orobanchaceae): New to Texas. Phytoneuron 2011-32: 1-3.
Strother, J.L. 2006. Vernonta. Pp. 206-213, m Flora of North America Editorial Committee (eds.) Flora of North America North of Mexico, Vol. 19. Oxford Univ. Press, New York and Oxford.

Thomas, JR Jr 1977 Soil Survey of Red River County, Texas Texas Agnolltural Expenment Station, College Station
Turner, BL H Nichols, G Dentry, and O Doron 2003 Atlas of Vascular Plants of Texas Vol 1 Sida, Bot Misc 24 1-648
Yatskievych, G 2006 Steyermark's Flora of Missoun Vol 2 Missouri Botanical Garden Press St. Lours


Figure 1 Wemoraa fascrcuiafa Flowenig head at 3600 dpt Note the lance-ovate outer phyllanes and oblong to linear-oblong mner phyilanes with arachno-ciliol ate margins Note al so the phyllaries in four senes Flatbed scan by Matt White


Figure 2 Vernona fasciculata abaxial and adaxial leaf surfaces at 3600 dpi On the abaxial leaf surface, note the numerous pits, each containing a small awl-shaped hair On the adaxial leaf surface note the scabrellous resin dotted glands and the occasional pits. The distinctive toothed margins are clearly visible. Flatbed scan by Matt White


Figure 3. Vernona fasciculata in a remnant "pocket" prairie five miles south the Red River in Red River County, Texas, 9 September 2012. Note the corymboid inflorescence as well as the fasciculate flowering heads in the axils of the upper leaves, for which the species is named. Photo by Matt White.


Figure 4. Vernonia fasciculata. Inflorescence. 15 September 2012.

# A NEW SPECIES OF AGERATINA (ASTERACEAE: EUPATORIEAE) FROM SINALOA, MEXICO 

Billie L. Turner<br>Plant Resources Center<br>The University of Texas<br>Austin, Texas 78712


#### Abstract

A new taxon, Ageratina concordiana B.L. Turner, sp. nov., belonging to the $A$. capillipes complex, is described from southern Sinaloa. Aphotograph of the type is provided, along with a map showing the distribution of the new species and other members of the complex.


KEY WORDS: Asteraceae, Eupatorieae, Ageratina, A. capillipes, Mexico, Sinaloa

Ongoing identification of the Asteraceae from Mexico has occasioned the present paper.
ageratina concordiana b.L. Turner, sp. nov. Figure 1. Type: MEXICO. Sinaloa. Mpio. de Concordia: Transecto de Rancho Coyotes a El Pirame, Comunidad La Guásima, herbácea común localmente en la zona de trompetas-roblar, $23^{\circ} 23.289^{\prime} \mathrm{N}, 105^{\circ} 58.7^{\prime} \mathrm{W}-23^{\circ} 24.911^{\prime}$ N, $105^{\circ} 59.387^{\prime} \mathrm{W}, 411-728 \mathrm{~m}, 3$ Mar 2010, Marcela Ruiz Guerrero 2010-105 [with Albert van der Heiden] (holotype: TEX).

Resembling Ageratina reserva B.L. Turner, differing in having larger, sub-cordate blades, ultimate peduncles minutely glandular pubescent, and smaller heads (ca 4 mm high vs .5 mm ).

Perennial herbs, 50 cm high or more. Midstems sparsely pubescent with minute hairs or glabrate. Leaves (upper), 11-14 cm long, 6-7 cm wide; petioles 4-6 cm long, pubescent like the stems, grading into the blades; blades subcordate, glabrous above and below, or nearly so, 3 -nervate from the very base, margins irregularly serrate. Heads ca 4 mm high, 3 mm wide, numerous and arranged in both lateral and terminal congested cymose panicles, ultimate peduncles $2-5 \mathrm{~mm}$ long, minutely glandular pubescent. Involucral bracts $16-18,2-3 \mathrm{~mm}$ long, glabrous or nearly so, arranged in 2 series. Florets $12-20$ per head; corollas white, ca 2.5 mm long, lobes sparingly pubescent. Achenes (immature) ca 1 mm long, sparsely pubescent; pappus of ca 10 fragile, pinkish, bristles ca 1.5 mm long. Noted by collectors to have "olor dulce a miel."

The epithet is derived from the Mpio. de Concordia, whence the type.
In my treatment of Ageratina for Mexico (Turner 1997), the novelty will key directly to $A$. helenae King \& Rob., a mostly Central American species treated as a synonym of A. capillipes by Williams (1976). I now believe that $A$. helenae is confined to Central America.

Ageratina concordia clearly belongs to the A. capillipes King \& Rob. complex of Mexico (sensu Turner 2012), where it will key to the Chiapasan A. reserva B.L. Turner, differing from the latter in having larger, subcordate blades, ultimate peduncles minutely glandular pubescent and smaller heads (ca 4 mm high vs 5 mm ). With description of the present novelty, the complex in Mexico now includes 5 species (Fig. 2). The following key, modified from that presented by Turner (2012), should help identify the taxa concerned.


Figure 1. Ageratina concordiana (holotype TEX).



1 Loafthales 3-5 memate from dacme the base
2 Leafblades S-7en mude Opara
2 Loafblader 2-4 ra mode Chasper asi Gostemalo
Ageratma nurretephah Agratina capillpes
] Leafblades 3 teraide frow the verytores

Agratura iturn

 pixercent Sunlo

Agratmacencordsum



ACENOMLEDGEMENTS



## LITERATURE CITED

Turner, B.L. 1997. Ageratina, in The Comps of Mexico, Eupatorieae. Phytologia Memoirs 11: $10-$ 50.

Turner, B.L. 2012. Three new species of Ageratma (Asteraceae, Eupatorieae) from Mexico belonging to the A. capillipes complex. Phytologia 94: 228-236.
Williams, L.O. 1976. Eupatorium, in Fl .Guatemala. Fieldiana, Bot. 24: 46-104.

# TWO RECENT PLANT DISCOVERIES IN MISSOURI: CLADIUM MARISCUS SUBSP. JAMAICENSE (CYPERACEAE) AND UTRICULARIA MINOR (LENTIBULARIACEAE) 

Scott A. Namestnik<br>Cardno JFNew<br>708 Roosevelt Road<br>Walkerton, Indiana 46574<br>scott namestnik@cardno.com<br>Justin R. Thomas<br>Institute of Botanical Training, LLC<br>111 County Road 3260<br>Salem, Missourı 65560<br>jthomas@botanytrainung com<br>Bradford S. Slaughter<br>Michigan Natural Features Inventory<br>P O. Box 30444<br>Lansıng, Michıgan 48909<br>slaugh14@msu edu


#### Abstract

Here we report the first Missouri records for Cladum mariscus (L.) Pohl subsp. jamaicense (Crantz) Kük. (Cyperaceae) and Utricularia minor L. (Lentibulariaceae). Both taxa are documented from The Nature Conservancy's Shut-in Mountain Fens Preserve in Shannon County, within the Ozark Highlands ecoregion of southeastern Missouri.


KEY WORDS: Cyperaceae, Lentibulariaceae, Cladium, Utricularia, Missouri, Shannon County

Shut-in Mountain Fens Preserve is a 520 -acre ( 210 ha) Nature Conservancy preserve characterized by rugged igneous knobs of Precambrian rhyolitic ash flows overlain by deep beds of dissected Ordovician dolomite. Below the small exposed igneous glade at the summit of Shut-in Mountain, the site is primarily oak-hickory woodland, with a minor component of shortleaf pine (Pinus echinata). Total relief within the preserve is 100 meters. The geology and topography create several areas of permanent minerotrophic groundwater discharge along Wildcat Hollow, the small, northeast-trending, intermittently flowing drainage that passes through the site. These phreatic discharges range from numerous small seepage areas of a few square meters to three fens ranging up to $1.0 \mathrm{ac}(0.4 \mathrm{ha})$. The vegetation of these fen areas is briefly described below; data on dominant vascular plants are from Ladd (2010).

The central fen in this complex is categorized as Ozark Fen by Nelson (2010), and supports a rich assemblage of plants whose Ozark distribution is restricted to fen systems. Dominant plant species in this fen are Rudbeckia fulgida var. umbrosa, Parnassia grandiflora, Sclerta vertictllata, Vernonia missurica, and Oxypolis rigidior.

A few hundred meters upstream (west) from this fen is an unusual fen area characterized by an expanse of seeping marly gravel over dolomite bedrock. While this site likely supported Ozark fen historically, past land use history of this area has resulted in the loss of virtually all organic substrate, creating an unusual minerotrophic wetland dominated by a sparse cohort of Rhynchospora capillacea, Physostegia virginiana, Silphnum terebinthinaceum, Panicum virgatum, and Furena simplex.

The easternmost fen has strong biological affinities to dolomite glade, and consists of a ca. 0.5 ac ( 0.2 ha) gently sloping open seepage over surfacing flats of dolomite bedrock. Dominant plant species here are Scleria verticillata, Schizachyrium scoparnum, Rudbeckia missouriensis, Rhynchospora capillacea, Linum flortdanum, and Pantum virgatum.

Shortly after The Nature Conservancy acquired the site in 1988, a regime of frequent dormant season fires was implemented in much of the preserve. The drainage containing the three fens has been burned 17 times since its acquisition by the Conservancy. This fire management has increased botanical diversity within the fen. Of particular note, the second-known and largest population of Pogonia ophoglossordes in Missouri emerged following application of prescribed fire. Several plant taxa of conservation concern or taxa previously unknown in the state have been documented at the site including Equisetum $\times$ nelsonii, Ludwigia microcarpa, Scleria verticillata, and Utricularia subulata.

## Cladium mariscus subsp. jamaicense

Since 2007, representatives from The Nature Conservancy have observed a slowly increasing vegetative population of a large sedge along the upper margin of the easternmost fen; this was subsequently identified as Cladium mariscus (L.) Pohl subsp. jamaicense (Crantz) Kük. by the authors. As of 2011, this population had grown to a dense stand of several thousand stems dominating an area measuring approximately $18 \times 7$ meters. In 2010, only two fertile culms from the previous growing season were located; a few fertile stems were also documented in 2011. Associated plant species include: Andropogon gerardit, Apios americana, Eupatornom perfoliatum, Fuirena simplex, Helentum autumnale, Ltatris pycnostachya, Lystmachia quadriflora, Oxypolis rigidior, Pantcum virgatum, Pycnanthemum virgmianum, Rhynchospora capillacea, Rudbeckia fulgida var. umbrosa, Salix caroliniana, Sorghastrum nutans, Symphyotrichum laterfflorum, and Vernonia missurica.

Voucher specimens: MISSOURI. Shannon Co.: The Nature Conservancy's Shut-in Mountain Fens Preserve, along the south side of Shannon County H-522, ca. 1.4 mi NE of the jet of hwys H and NN , ca. 7.5 mi E of Eminence; large, mostly vegetative colony in partial shade along upper side of easternmost fen, in gently sloping gravelly/marly seepage with exposed dolomite bedrock; $37^{\circ} 06^{\prime} 35.82^{\prime \prime} \mathrm{N}, 91^{\circ} 13^{\prime} 39.35^{\prime} \mathrm{W}, 21$ Apr 2010, Thomas 2349 (MO); 24 August 2011. Ladd 32234 (KANU, MO).

This is the northwesternmost, though not westernmost, record of Cladum mariscus subsp. jamaicense, and represents a significant range extension as well as the first record for Missouri. This species is dominant in marshes of the Florida Everglades (Tucker 2002), and it occurs primarily in coastal marshes from Virginia to Texas and also in Hawaii (Tucker 2002; BONAP 2012). Additional inland populations in the United States have been reported from Georgia, Arkansas, Texas, and New Mexico (NatureServe 2010; USDA, NRCS 2010; T. Witsell, personal communication, 15 November 2010; BONAP 2012). Cladium mariscus subsp. Jamaicense is also known from Mexico, the West Indies, Central America, and northern South America (Tucker 2002). The Missouri population of $C$. mariscus subsp. jamaicense is more than 400 km north of the closest documented sites in southern Arkansas (Tucker 2002; T. Witsell personal communication, 15 November 2010; NatureServe 2010; USDA, NRCS 2010; BONAP 2012).


Figure 1. Cladum manzscus ssp jamaicense at Shut-in Mountain Fens Preserve Photograph by Justin Thomas

In North America, Cladum mariscus subsp. jamaicense typically occurs in brackish and freshwater marshes (Tucker 2002). However, the Missouri population occurs on the margin of a marly fen. The precedent to occur in minerotrophic fen wetlands is not unexpected; the Old World counterpart to our taxon, the questionably distinct var. mariscus, is a dominant species in calcareous fens in Europe (EUNIS Biodiversity Database 2012), where the common name for the plant is "Great Fen Sedge."

Only three species of Cladum occur in North America - C. californicum, C. mariscoides, and C. mariscus subsp. jamaicense. Cladum martscus subsp. jamatcense and $C$. californicum differ from C. mariscoides in having taller and broader culms, broader leaves with serrate margins, and taller inflorescences with a greater degree of branching (Tucker 2002). Cladum mariscus subsp. jamaicense is questionably distinct from $C$. californicum, and reportedly differs in having spikelets in smaller groups, inflorescences with third and fourth order branches, and taller culms (Tucker 2002). For a key and a full description of these taxa, see Tucker (2002).

The nativity and ecological status of the Missouri population of Cladum mariscus ssp. jamaicense is uncertain. There is strong reason to suspect that this population is a recent introduction, as evidenced by its occurrence well outside the previously documented range, its recent discovery in a well-investigated site visited annually by botanists, its proximity to a road, and its steadily increasing population at a single locus in the area. On the other hand, the species is not cultivated, and it is not considered to be ecologically opportunistic or weedy. The continued discovery of conservative native vascular plant taxa at Shut-in Mountain Fens Preserve also raises the slight possibility that habitat management at this site has resulted in the resurgence of a relict population of C. martscus ssp. jamaicense.

## Utricularia minor

In April 2010 the authors also documented extensive populations of Utricularia minor L. from shallowly inundated marly substrate in all three fen communities within Shut-in Mountain Fens Preserve. A subsequent survey of the three fen openings revealed 385 flowering stems in both marldominated openings and in the pools of deep muck zones. Plants were common in areas of permanent inundation that lacked visible flow. Though no other species of vascular plants were detected in the immediate microhabitat of the U. minor plants, the tussocks and higher (saturated but
not inundated) ground contained such species as: Rhynchospora capillacea, Carex leptalea, Panicum virgatum, Carex sterilis, and Silphnum terebinthinaceum.

Voucher specimen: MISSOURI. Shannon Co.: The Nature Conservancy's Shut-in Mountain Fens Preserve, along the S side of Shannon County H-522, ca. 1.4 mi NE of the jet of hwys H and NN , ca. 7.5 mi E of Eminence; from marly openings in westernmost fen, $37^{\circ} 06^{\circ} 24.33^{\circ "} \mathrm{~N}, 91^{\circ}$ $14^{\prime} 05.47^{\prime \prime}$ W, 30 Apr 2010, Thomas 2343 (MO).


Figure 2 Utriculania minor at Shut-in Mountam Fens Preserve Photograph by Justin Thomas

Utricularia minor is a circumboreal species, concentrated in the conterminous United States in New England and the northern Great Lakes states, and occurring at scattered localities from the Dakotas and central Nebraska west to Washington, Oregon, and California (Neid 2006; BONAP 2012). This collection represents a significant range extension for this species. The nearest known locations for $U$. minor are two ponds in Saline and Clay counties, Illinois, where the species was collected in 1964 and 1965, respectively (Dolbeare and Ebinger 1974; Herkert and Ebinger, eds., 2002). These southern Illinois collections represent possible introductions or waifs (Herkert and Ebinger, eds., 2002); the species is otherwise concentrated in far northeastern Illinois and, to the west, occurs no closer to Missouri than north-central Iowa (BONAP 2012). The species is also disjunct in the southeastern United States in high-elevation fens and bogs in the Southern Blue Ridge Mountains in western North Carolina (Weakley 2011).

Throughout its range, Utricularia minor typically inhabits low-nutrient, anaerobic wetland habitats. In New England and the Great Lakes states, U. minor inhabits a variety of wetlands, including shallow ponds, peaty lake margins, fens, sedge meadows, and marshes, often in shallow water or disturbed areas such as tire ruts and animal trails (Voss 1996; Chadde 2002; Magee and Ahles 2007). The species generally shows a preference for calcareous soils (Voss 1996; Chadde 2002). In the western United States, the species is scattered and local, and typically occurs in seeps, floating mats, shallow water, and saturated peat in calcareous fens and associated habitats at elevations typically greater than $2,100 \mathrm{~m}(7,000 \mathrm{ft})$ (Neid 2006). In Alaska, U. monor is known from quiet water and mud habitats (Hultén 1968). Although U. minor is considered to be globally secure, the species is rare across much of its North American range, and it is considered critically imperiled in Illinois, Indiana, Iowa, New Jersey, Utah, and Prince Edward Island; imperiled in Colorado, Nebraska, New York, North Dakota, Oregon, Washington, Wyoming, New Brunswick, and Saskatchewan; and vulnerable in California, Ohio, and Manitoba. In addition, U. minor is considered extirpated from Delaware and is known only from historical collections from North Carolina and Rhode Island (Neid 2006).

The genus Utricularia L. is diverse worldwide, but only 20 species are documented from the United States and Canada, and only three species were previously documented from Missouri: $U$. gibba L.; U. macrorhiza J. Le Conte; and U. subulata L. (Steyermark 1963; Neid 2006; BONAP 2012). Utriculara minor can be differentiated from U. subulata, which also occurs at the site, by its numerous, dichotomous or irregularly divided leaves (vs. leaves absent or linear for $U$. subulata) and by its small, cream-colored flowers with the spur approximately half the length of the lower lip (vs. flowers yellow with the spur about equaling the lip in U. subulata) (Gleason and Cronquist 1991). Utricularia minor can be differentiated from U. gibba and U. macrorhiza by its lower corolla lip, which is approximately twice as long as the upper lip (vs. lower corolla lip equaling or slightly longer than the upper lip in $U$. gibba and U. macrorhiza) and its flat ultimate leaf segments (vs. ultimate leaf segments filiform in U. gibba and U. macrorhiza) (Gleason and Cronquist 1991).

Based on its occurrence in a typical habitat (calcareous fen), the rarity and local distribution of calcareous fens in southern Missouri (Nelson 2010), and the documentation of numerous scattered populations in similar wetlands in several western states over the past half-century (Neid 2006), the population of Utricularia minor at Shut-in Mountain Fens Preserve is likely a native occurrence. In addition, U. minor is a very small, inconspicuous, easily overlooked plant, and flowers early in spring when its calcareous fen habitat appears barren of vegetation without close inspection. Systematic inventories of calcareous fens, seeps, and pond shores in the surrounding region in April or early May may reveal additional populations of this locally rare bladderwort species in southern Missouri.

## ACKNOWLEDGEMENTS

Our thanks to George Yatskievych and Garrett Crow for verification of identification of Utricularta mmor, to Doug Ladd for providing background information about Shut-in Mountain Fens Preserve and the Cladum mariscus subsp. jamaicense population, and to Susan Farrington for her assistance with stem counts and collection of additional specimens.

## LITERATURE CITED

BONAP. 2012. North American Plant Atlas (US county-level species maps). Biota of North America Program, Chapel Hill, North Carolina. Last update: Oct 2011 <http//www bonap org/genera-list html>
Chadde, S.W. 2002. A Great Lakes Wetland Flora: A Complete Guide to the Aquatic and Wetland Plants of the Upper Midwest (ed. 2). PocketFlora Press, Laurium, Michigan.
Dolbeare, B.L. and J. Ebinger. 1974. Distribution of the common vascular hydrophytes in Illinois. Transactions of the Illinois State Academy of Science 67: 402-417.
EUNIS Biodiversity Database. 2012. Calcareous fens with Cladtum mariscus and species of the Caricion davallianae (7210). European Environment Agency. Copenhagen, Denmark. <http.//eunis eea europa eu/habitats/10149> Accessed 4 October 2011.
Gleason, H.A. and A. Cronquist. 1991. Manual of Vascular Plants of Northeastern United States and Adjacent Canada (ed. 2). New York Botanical Garden, New York.
Herkert, J.R. and J.E. Ebinger (eds.) 2002. Endangered and threatened species of Illinois: Status and distribution. Volume 1 - Plants. Illinois Endangered Species Protection Board, Springfield, Illinois.
Hultén, E. 1968. Flora of Alaska and Neighboring Territories: A Manual of the Vascular Plants. Stanford Univ. Press, Stanford, California.
Ladd, D. 2010. Vegetation monitoring on selected Nature Conservancy fire-managed sites in the Missouri Ozarks. Nature Conservancy final report to Missouri Department of Conservation, TNC grant 1250163820.
Magee, D.W. and H.E. Ahles. 2007. Flora of the Northeast: A Manual of the Vascular Flora of New England and Adjacent New York (ed. 2). Univ. of Massachusetts Press, Amherst.

NatureServe. 2010. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. <http://www.natureserve org/explorer> Accessed 14 Nov 2010.
Neid, S.L. 2006. Utricularia minor L. (lesser bladderwort): A technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. <http//www fs fed us/r2/projects/scp/assessments/utriculariamınor pdf> Accessed 25 January 2012.
Nelson, P.W. 2010. The terrestrial natural communities of Missouri (ed. 4). Missouri Natural Areas Committee, Jefferson City, Missouri.
Steyermark, J.A. 1963. Flora of Missouri. Iowa State Univ. Press, Ames.
Tucker, G.C. 2002. Cladium (Cyperaceae). Pp. 240-242, m Flora of North America North of Mexico, Vol. 23. Oxford Univ. Press, New York and Oxford.
USDA, NRCS. 2012. The PLANTS Database. National Plant Data Team, Greensboro, North Carolina. \&http//plants usda gov>
Voss, E.G. 1996. Michigan Flora. Part III. Dicots (Pyrolaceae-Compositae). Bull. Cranbrook Inst. Sci. 61 \& Univ. of Michigan Herbarium.
Weakley, A.S. 2011. Flora of the Southern and Mid-Atlantic states. Working draft as of 15 May 2011. Univ. of North Carolina Herbarium, Chapel Hill.
chttp//www herbarium unc edu/FloraArchives/WeakleyFlora_2011-May-print pdf> Accessed 25 January 2012.

# SANGUISORBA MINOR (ROSACEAE) ADVENTIVE IN TEXAS 

Jason R. Singhurst<br>Wildlife Diversity Program<br>Texas Parks and Wildlife Department<br>4200 Smith School Road<br>Austin, Texas 78704<br>Jason singhurst@tpwd texas state us<br>Walter C. Holmes<br>Department of Biology<br>Baylor University<br>Waco, Texas 76798-7388


#### Abstract

Sanguisorba minor is reported as occurring in Texas. A key to the two species of the genus now known in the state and comments on the distribution of each species in the USA are included. The invasive potential of the species is briefly mentioned.


KEY WORDS: Rosaceae, Sanguzsorba, United States, Texas, adventive species.

The following specimen documents the occurrence of Sanguisorba minor as adventive and naturalized in the state of Texas.

TEXAS. Fannin Co.: From Honey Grove, 1.9 mi W of jet of Texas Hwy 34 and Texas Hwy 56 on Hwy 56, then 1.1 mi N of jet of FM 1396 and Hwy 56 on FM 1396, 19 Jun 2012, Singhurst, Womack, Clark, \& Warrmer 19309 (BAYLU). Figure 1.

Sangumsorba minor was located in a seepage transition between an upland prairie and the edge of a small reservoir (tank). Associated flora at the edge of the reservoir included Juncus texanus, Eleocharis montevidensis, Lycopus americanus, Lythrum alatum, Eupatorium sp., Samolus parviflorus, and Pluchea odorata. This aquatic system was located within an upland tallgrass prairie on clay soil over the Gober Chalk Geological Formation. The upland prairie was dominated by Schzachyrnum scoparum, Bouteloua curtipendula, Sporobolus composttis, Silphium lacmtata, Baptisia australts, Dalea purpurea, D. compacta, Liatris squarrosa var. glabrata, and L. aestivalis.

The species is a native or Eurasia (Fernald 1950), with the present Old World distribution being Europe, westward through central Asia to the Himalayas, northwest Africa and Libya (Hortipedia 2012). The species has been introduced to western USA (New Mexico to Montana and westward) and the northeast USA (Tennessee-North Carolina northward) (USDA, NRCS 2012). The origin of the species in Texas is apparently related to the use of the species as forage for livestock and wildlife (Carr \& Smith 2010). In that work, Sanguisorba minor is specifically discussed as an agricultural crop but the article does not provide the standard botanical protocols for reporting additions to the flora of a state.

Sangusorba minor is an early introduction to the United States, being mentioned as such by Torrey and Gray (1840) under the synonym Poternum sangutsorba L. Bailey (1949) described the status of the species as "somewhat nat.[uralized] in N. Amer." Gleason and Cronquist (1963) remarked that the species is "established as a weed along roadsides and in fields and in waste places here and there in our range" (northeast United States and adjacent Canada). Voss (1985), in the

Michigan Flora, mentioned "Despite the common names [Garden or Salad Burnet], this Old World species is apparently not cultivated to any extent in this country, but is a very local weed." As evaluated from the above comments, it does not appear that the species will present ecological problems in the state, other than not being a native part of the flora of Texas.

Several subspecific names are recognized in Sanguisorba minor. The Texas plants are nearest to S. minor subsp. balearica (Bourgeau ex Nyman) Muñoz, Garmendia, \& C. Navarro.


Figure 1. Sanguisorba minor in Fannin County, Texas. Photo by Jason Singhurst, 19 June 2012.
This is the second species of Sanguisorba reported to occur in Texas, the other being $S$. annua (Nutt.) Nutt. The two species may be distinguished by use of the following key, which is modified from Radford et al. (1968).

1. Leaflets pectinately dissected nearly to midrib, segments about 1 mm wide, plants annual
$\qquad$
2. Leaflets merely coarsely toothed, to ca. 7 mm wide; plants perennial Sanguisorba minor

Sanguisorba annua is widely distributed in the western USA but sparingly so in the East, where USDA, NRCS (2012) cites its presence in South Carolina, Maryland, New York, and Massachusetts. In Texas the species exhibits an approximately triangular shaped distribution in the north central portion of the state, basically from Travis County northward to Fannin County, west to Wichita County and also Maverick County of the South Texas Plains (distribution determined from specimens cited in the Flora of Texas Database (2012) and specimens in the Baylor University Herbarium [BAYLU]).

There is no uniformity in the author citation of Sanguisorba anmua. Diggs et al (1999) have used (Nutt. ex Hook.) Torr. \& A.Gray, USDA,NRCS (2012) uses (Nutt. ex Hook) Nutt. ex Torr. \& AGray, and the International Plant Names Index (2012) uses (Nutt.) Nutt., which we followed.

## ACKNOWLEDGEMENTS

We thank Guy Nesom for his review and facilitation of publication of this paper. We also thank Jessica Womack for access to her amazing tallgrass prairie in Fannin County.

## LITERATURE CITED

Bailey, L.H. 1949. Manual of Cultivated Plants. Macmillan Company, New York.
Carr, B. and J.E. Smith. 2010. Sanguisorba minor (small burnet). The Reverchon Naturalist. 5: 1. Diggs, G.M., Jr., B.L. Lipscomb and R.J. O'Kennon. 1999. Illustrated Flora of North Central Texas. Sida, Bot. Misc. 16. Bot. Res. Inst. of Texas, Fort Worth.
Fernald, ML. 1950. Gray's Manual of Botany. American Book Company, New York Flora of Texas Database. 2012. Plant Resources Center, Univ. Texas, Austin. <http//www brosc1 utexas edu/pre/Tex /html> Accessed October 2012.
Gleason, H.A. and A. Cronquist. 1963. Manual of Vascular Plants of Northeastern United States and Adjacent Canada. D. Van Nostrand Company, Princeton, New Jersey.
Hortipedia. 2012. Sangutsorba minor ssp. minor. <http //en hortipedia com/wiki/Sanguisorba_minor_ ssp_minor>Accessed October 2012.
IPNI. 2012. International Plant Names Index. <http//www ipni org> Accessed October 2012.
Radford, A.E., H.E. Ahles, and C.R. Bell. 1968. Manual of the Vascular Flora of the Carolinas. Univ. North Carolina Press, Chapel Hill.
Torrey, J. and A. Gray. 1840. A Flora of North America. Wiley \& Putnam, New York.
USDA, NRCS. 2012. The PLANTS Database. National Plant Data Team, Greensboro, North Carolina. http //plants usda gov> Accessed October 2012.
Voss, E.G. 1985. Michigan flora. Part II, Dicots (Saururaceae-Cornaceae). Cranbrook Institute of Science Bull. 59 and Univ. Michigan Herbarium, Ann Arbor.

# TAXONOMY OF THE GENUS VESPER (APIACEAE) 

Ronald L. Hartman<br>Rocky Mountain Herbarium<br>Department of Botany<br>University of Wyoming<br>Laramie, Wyoming 82071-3165<br>rlhartman@uwyo edu

Guy L. Nesom
2925 Hartwood Drive
Fort Worth, Texas 76109
guynesom@sbcglobal net


#### Abstract

A species group often broadly treated within Cymopterus but historically segregated as the genus Phellopterus Coulter \& Rose 1900 is restored here to generic rank. A new name for the genus, Vesper Hartman \& Nesom, is provided because of the earlier Phellopterus Benth. 1867. Six species are included: Vesper bulbosus (A. Nels.) Hartman \& Nesom, comb. nov., Vesper constancei (Hartman) Hartman \& Nesom, comb. nov., Vesper macrorhizus (Buckley) Hartman \& Nesom, comb. nov., Vesper montanus (Nutt. in Torr. \& Gray) Hartman \& Nesom, comb. nov., Vesper multinervatus (Coulter \& Rose) Hartman \& Nesom, comb. nov., and Vesper purpurascens (A. Gray) Hartman \& Nesom, comb. nov. The genus is distinct in its combination of thick taproots, acaulescent habit but consistent production of pseudoscapes, compact inflorescences, white to cream, pink, or purple petals, dorsally compressed mericarps with $4-5$, thin, broad dorsal and lateral wings and with 3-9 oil tubes per interval, and particularly by its involucel bracts basally connate, prominently nerved, and totally white to purplish-scarious or with broad white-scarious margins.


KEY WORDS: Apiaceae subfamily Apoideae, Cymopterus, Vesper, Sun and Downie

Many generic segregates have been proposed among species of the "perennial, endemic western North American Apiaceae subfamily Apoideae" (sensu Downie et al. 2010) toward describing patterns of diversity within this group. Most of the wing-fruited species and their genericlevel segregates, however, have recently been treated within a relatively inclusive Cymopterus Raf. (e.g., Mathias \& Constance 1944-45; Cronquist 1997; Turner 2003; Welsh et al. 2008), currently including about 40 species. Limits of the genus Aletes were expanded (e.g., Weber 1984) to encompass some of the species.

The present study confirms the morphological and phyletic integrity of one strongly differentiated species group (the Phellopterus group) - it is treated here as a distinct genus, though requiring a new name. Six species are included: Cymopterus bulbosus, C. constancet, C. macrorhizus, C. montanus, C. multnervatus, and $C$. purpurascens.

This species group is monophyletic in recent molecular analyses based on sequence variation in nrDNA ITS and epDNA rps 16 intron and $t r n$ F-L-T (e.g., Sun \& Downie 2010). In a strict consensus tree of 240 minimal length trees derived from MP analysis of combined molecular and morphological characters for 129 accessions of North American Apioideae, the Phellopterus group has values of $100 \%$ for bootstrap estimates and Bayesian posterior probability. The group also is consistently and strongly coherent in morphology, as indicated by the characters in the diagnosis below.

Except for the recent addition of Cymopterus constancei by Hartman (2000), this same species group was first segregated by Coulter and Rose (1900) as the genus Phellopterus and later also recognized by Mathias (1930) at generic rank. Although most recent treatments have placed the Phellopterus group within Cymopterus, species keys consistently separate the species as a group by the same set of earlier-recognized characteristic features.

VESPER R.L. Hartman \& G.L. Nesom, nom. nov. Phellopterus (Nutt. ex Torr. \& A. Gray) Coulter \& Rose, Contr. U.S. Natl. Herb. 7: 166. 1900 (nom. illeg., not Phellopterus Benth. $1867=$ Glehnia F. Schmidt ex Miq.]. Cymopterus sect. Phellopterus Nutt. ex Torr. \& A. Gray, Fl. N. Amer. 1: 623. 1840. TyPE: Cymopterus montanus Nutt. in Torr. \& A. Gray Bentham's Phellopteris comprised the single entity Phellopteris littoralis (A. Gray) Benth. now treated as Glehnia leiocarpa Mathias or Glehnia littoralis var. leiocarpa (Mathias) Boivin.
Cymopterus sect. Leptocnemia Nutt. ex Torr. \& Gray, Fl. N. Amer. 1: 624. 1840. Type: Cymopterus campestris Nutt. in Torr. \& Gray

Distinct in its combination of thick taproots, acaulescent habit but consistent production of pseudoscapes, compact inflorescences, white to cream, pink, or purple petals, dorsally compressed mericarps with $4-5$, thin, broad dorsal wings (3) and lateral wings (2) and with 3-9 oil tubes per interval, and particularly by its involucel bracts basally connate, prominently nerved, and totally white to purplish-scarious or with broad white-scarious margins. Outer umbellets of staminate flowers, inner ones of pistillate or staminate flowers in part; carpophore bifid to base or absent.


Figure 1. Vesper bulbosus from Montezuma Co., Colorado, 27 March 2005. Photo ©Al Schneider, www.swcoloradowildflowers.com.


Figure 2. Vesper bulbosus. Same plant as Fig. 1.


FTG. 50.-Phellopterns montanus: $a, \times 4 ; b, \times 6$.
Figure 3. Representative mericarps of Vesper. a. Dorsal view. b. Cross-section showing dorsal compression, wings, and oil tube. From Coulter and Rose (1900).


Figure 4. Vesper constancei from Dolores Co., Colorado, May 2010. Photo ©Al Schneider, www.swcoloradowildflowers.com.

The new name of the genus is from Latin, vesper, evening or west, sometimes referring to the "evening star" (usually Venus) seen at sunset in the western sky. The name alludes to the team of Sun and Downie, who have provided molecular analyses (Feng-Jie Sun and Stephen R. Downie 2004, 2010; and including Downie et al. 2002) indicating that evolutionary relationships among many of the currently and historically recognized genera of western North American Apioideae are complex, apparently reticulate.

## KEY TO THE SPECIES

1. Fruiting peduncles shorter than or equalling the leaves; mericarp wings conspicuously enlarged at the base $\qquad$ 4. Vesper montanus 1. Fruiting peduncles equalling or longer than the leaves; mericarp wings not conspicuously enlarged at the base.
2. Involucel bractlets with lacerate-fringed distal margins
3. Vesper macrorhizus
4. Involucel bractlets with entire or irregularly toothed or lobed margins.
5. Involucre mostly a low hyaline sheath; involucel bractlets commonly purplish to rosy, 5-8nerved; pedicels $0-1 \mathrm{~mm}$ long $\qquad$ 5. Vesper multinervatus 3. Involucre of 1-8, oblong to obovate, often variously lobed bracts; involucel bracts greenish white to white, $1-3(-5)$-nerved; pedicels $1-12 \mathrm{~mm}$ long.

> 4. Umbels in fruit tightly globose, rays $1-4(-8) \mathrm{mm}$ long, pedicels $1-4 \mathrm{~mm}$ long; carpophores absent; fruit orbicular, $10-12 \mathrm{~mm}$ long ....................................... Vesper purpurascens 4. Umbels in fruit relatively open, more or less flat-topped, rays $10-50 \mathrm{~mm}$ long, pedicels $5-$ 12 mm long; carpophores well-developed; fruit oblong, 8 mm long.
5. Involucel bractlets connate for $1 / 3-2 / 3$ or more of length, the free portion usually abruptly enlarged distally, broadly ovate to orbicular, with mostly 1 vein, occasionally with 1-2 pairs of shorter lateral veins, parallel to divergent or branched

1. Vesper bulbosus
2. Involucel bractlets connate to $1 / 3$ of length, the free portion gradually expanding distally, obovate to spatulate, with mostly 3 veins arising from the base, parallel below, gradually flaring distally, equal or nearly so 2. Vesper constancei
3. Vesper bulbosus (A. Nelson) R.L. Hartman \& G.L. Nesom, comb. nov. Cymopterus bulbosus A. Nelson, Bull. Torrey Bot. Club 26: 241. 1899. Phellopterus bulbosus (A. Nelson) Coulter \& Rose, Contr. U.S. Natl. Herb.7: 168. 1900. TyPE: USA. Wyoming. [Sweetwater Co.:] Green River, 14 Jun 1898, A. Nelson 4709 (holotype: RM digital image!; isotype: MO digital image!, US digital image).
Cymopterus utahensis var. eastwoodae M.E. Jones, Proc. Calif. Acad. Sci., ser. 2, 5: 685. 1895. Phellopterus purpurascens var. eastwoodiae (M.E. Jones) Coulter \& Rose, Contr. U.S. Natl. Herb. 7: 169. 1900. Type: USA. Colorado. La Plata Co.: Durango, no date, A. Eastwood s.n. (holotype: CAS digital image!; isotypes: COLO (mixture of C. bulbosus with a few branches of C. constancet), GH, US digital image!).

Plants acaulescent, tufted, weakly or not aromatic; taproot $8-20$ or more cm long, $0.8-4 \mathrm{~cm}$ in diameter, enlarged variously, especially towards base. STEMS: pseudoscapes usually 1 or 2, often conspicuous, each arising $1-7 \mathrm{~cm}$ below ground ( $1-10 \mathrm{~cm}$ long) among remnants of old leaf sheaths and often 1-2 leaves; scarious sheaths 1-3. LeAves somewhat fleshy, thus often minutely wrinkled on drying, glabrous or margins rarely scaberulous, not viscid, glaucous; petioles $1-8 \mathrm{~cm}$ long; blades lanceolate to broadly ovate in outline, $2-8 \mathrm{~cm}$ long, $1.5-5 \mathrm{~cm}$ wide, pinnate-pinnatifid to bipinnatepinnatifid below, with 3-6 usually opposite pairs of lateral leaflets, leaflets sessile to petiolulate with distinct midribs, ultimate leaf segments $0.3-5 \mathrm{~mm}$ long, mostly $0.1-2.5 \mathrm{~mm}$ wide, oblong to elliptic, often overlapping, terminal leaflet variously pinnatifid to pinnate-pinnatifid into oblong to elliptic segments, apices rounded to apiculate. Inflorescence of 1-8 or more umbels, in fruit loose to somewhat congested, rounded, $1-5 \mathrm{~cm}$ wide; peduncles $3-15 \mathrm{~cm}$, in fruit equalling or longer than the
leaves, glabrous; involucre of 6-8 bracts $3-10 \mathrm{~mm}$ long, bracts ovate to broadly so, often fused into a cup, white, scarious with 1 green to brown vein; rays $5-9,2-10 \mathrm{~mm}$ long, to 35 mm long in fruit; involucel of 6-8 bractlets, ovate to orbicular, usually rounded and notched, 4-6 mm long, fused in lower $30-70 \%$, white, scarious with usually 1 green nerves arising from base, or with 1 or 2 pair of shorter lateral veins, parallel to divergent or branched, margin entire; pedicels $1-3 \mathrm{~mm}$ long, to 10 mm long in fruit. FLowers with calyx teeth $0.2-0.6 \mathrm{~mm}$ long or obsolete, lanceolate to ovate; petals white or cream to purple; styles $1.5-2 \mathrm{~mm}$ long, anthers cream to dark purple, outer umbellets of staminate flowers, the inner of pistillate or some staminate flowerss. Fruit $6-11 \mathrm{~mm}$ long, broadly elliptic to oblong, tan to purplish, wings usually $5,2-4 \mathrm{~mm}$ high, usually straight, smooth, membranous, not conspicuously enlarged at the base; oil tubes 3-4 per interval, 4-7 on commissure; carpophore bifid to base.

Flowering April to early May. Gumbo or clay flats, slopes, and badlands; $1340-2590 \mathrm{~m}$; Arizona, Colorado, New Mexico, Texas, Utah, Wyoming.
2. Vesper constancei (R.L. Hartman) R.L. Hartman \& G.L. Nesom, comb. nov. Cymopterus constancel R.L. Hartman, Brittonia 52: 136, figs. 1-2. 2000. Type: USA. Wyoming. Lincoln Co.: US. Hwy 189, 1.5 mi SW of Diamondville, rolling plains, with Artemisia, Atriplex, etc., $7000 \mathrm{ft}, 11$ May 1981, R.L. Hartman 125222 (holotype: RM!; isotypes: BRY!, COLO!, GH!, KANU!, MO! digital image!, NY! digital image!, UC!, UNM!).

Plants acaulescent, tufted, weakly or not aromatic; taproot 3-11 or more cm long, $0.4-2 \mathrm{~cm}$ in diameter, enlarged towards base. STEMS: pseudoscapes usually 1-3, conspicuous, each arising 2-10 cm below ground ( $3-18 \mathrm{~cm}$ long) among remnants of old leaf sheaths and 1 or 2 leaves; scarious sheaths 1-3. LEAVES somewhat fleshy, thus often minutely wrinkled on drying, usually glabrous or margins sometimes scaberulous, not viscid, often glaucous; petioles $5-10 \mathrm{~cm}$ long; blades lanceolate to broadly ovate in outline, $2.5-8 \mathrm{~cm}$ long, $1.5-3 \mathrm{~cm}$ wide, bipinnate-pinnatifid to tripinnate below, with 3-5 usually opposite pairs of lateral leaflets, leaflets sessile to petiolulate with distinct midribs, ultimate leaf segments $0.2-2.5 \mathrm{~mm}$ long, mostly $0.5-1 \mathrm{~mm}$ wide, oblong to elliptic, often overlapping, terminal leaflet variously pinnatifid to bipinnatifid into oblong to elliptic segments, apices round to obtuse or apiculate. Inflorescence of 1-8 or more umbels, in fruit loose, convex to rounded, $2-5 \mathrm{~cm}$ wide; peduncle $1-12 \mathrm{~cm}$, in fruit equalling or longer than the leaves, glabrous; involucre of $1-8$ bracts $4-10 \mathrm{~mm}$ long, bracts oblong to obovate, often variously lobed, white, scarious with 1-4 purple veins; rays 3-6, 3-5 mm long, to 30 mm long in fruit; involucel of 4-6 bractlets, obovate to spatulate, broadly rounded to truncate, sometimes cleft, $4.5-7 \mathrm{~mm}$ long, fused in lower $20-30 \%$, white, scarious with usually 3 dark green to purple nerves arising from base, parallel below, gradually flaring distally, equal or nearly so or lateral pair somewhat shorter, margin entire or irregularly toothed or lobed; pedicels $1-3 \mathrm{~mm}$ long, to 12 mm long in fruit. Flowers with calyx teeth $0.2-0.7 \mathrm{~mm}$ long or obsolete, triangular to ovate; petals white or cream to purple; styles 2-3 mm long, anthers purple. Fruit $7-14 \mathrm{~mm}$ long, broadly elliptic to suborbicular, tan to purplish, wings $4-$ 5 , mostly 3-4 mm high, usually straight, smooth, membranous, not conspicuously enlarged at the base; oil tubes 2-3 per interval, 4-7 on commissure; carpophore bifid to base.

Flowering early February to late April. Sandy to loamy soils in shrublands and woodlands; $1260-2690 \mathrm{~m}$; Arizona, Colorado, New Mexico, Utah, Wyoming.

Cymopterus constancer and C. purpurascens are similar in their involucel bractlets with 3-5 veins equal or nearly in length, parallel below but partly flaring above, with broadly rounded to truncate apices.
3. Vesper macrorhizus (Buckley) R.L. Hartman \& G.L. Nesom, comb. nov. Cymopterus macrorhizus Buckley, Proc. Acad. Nat. Sci. Philadelphia 1861: 455. 1862. Phellopterus macrorhizus (Buckley) Coulter \& Rose, Contr. U.S. Natl. Herb. 7: 167. 1900. TyPE: USA. Texas. Prairies, N of Austin, Mar 1860, S.B. Buckley s.n. (holotype: PH digital image!).
Cymopterus montanus var. pedunculatus M.E. Jones, Proc. Calif. Acad. Sci., ser. 2, 5: 686. 1895. Lectotype (designated here): USA. Texas. [Dallas Co.:] Dallas, rocky prairies, "Mar, Apr" 1880, J. Reverchon 1031 (US digital image!).

Jones (p.687) noted that "The types of this variety are Woolson's specimen from Dallas, Texas; Reverchon's, same locality, with narrower wings." At US, these are G.C. Woolson 96 from 1873 and $J$. Reverchon 160 from Mar 1880.

Plants acaulescent, tufted, weakly or not aromatic; taproot $2.5-7 \mathrm{~cm}$ long, $1-3(-5) \mathrm{cm}$ in diameter, enlarged variously, subglobose to fusiform. STEMS: pseudoscapes usually 1-3, usually conspicuous, each arising $3-10 \mathrm{~cm}$ below ground ( $3-8 \mathrm{~cm}$ long) among remnants of old leaf sheaths; scarious sheaths 1-4. Leaves somewhat fleshy, thus often minutely wrinkled on drying, glabrous or margins usually scaberulous or roughened, not viscid, usually glaucous; petioles $0.5-10 \mathrm{~cm}$ long; blades lanceolate to broadly ovate in outline, 2-5(-8) cm long, $1.5-3(-5) \mathrm{cm}$ wide, pinnate-pinnatifid to bipinnate-pinnatifid below, with 3-6 usually opposite pairs of lateral leaflets, leaflets sessile or nearly so with distinct midribs, ultimate leaf segments $0.5-2 \mathrm{~mm}$ long, mostly $0.5-1.5 \mathrm{~mm}$ wide, oblong to ovate, often overlapping, terminal leaflet variously pinnatifid to pinnate-pinnatifid into oblong to spatulate segments, apices rounded to apiculate. INFLORESCENCE of 1-4 umbels, in fruit loose to somewhat congested, rounded, $1-4 \mathrm{~cm}$ wide; peduncles $2-20 \mathrm{~cm}$, in fruit equalling or longer than the leaves, glabrous to papillate roughened, especially distally; involucre usually of 1-4 bracts (scarious with green vein) ca. 1 mm , distinct, sometimes absent; rays $5-14(-18), 4-11 \mathrm{~mm}$ long, to 30 mm long in fruit, often papillate-roughened; involucel of 2-4 bractlets, primary bracts ovate to broadly spatulate or widely obtrullate, $2.5-6 \mathrm{~mm}$ long, usually distinct, white, broadly scarious usually with a green patch in lower $1 / 3-1 / 2$ with nerves highly branched (or reticulate) proximally and extending apically (veins $10-16$, often very unequal in length, usually nearly parallel), contrasted against the scarious margin, smaller ones often with a ovoid patch of green (in fruit nerves prominent, often brown or purple), margin lacerate-fringed distally; pedicels $0.5-1 \mathrm{~mm}$ long, to 3 mm in fruit. FLowers with calyx teeth $0.2-0.4 \mathrm{~mm}$ long or obsolete, lanceolate to ovate; petals white; styles 11.5 mm long; anthers purple to purple-black. Fruit $4.5-7 \mathrm{~mm}$ long, broadly elliptic to oblong, tan to purplish, wings usually $5,1.5-2 \mathrm{~mm}$ high, usually straight, smooth, membranous, not conspicuously enlarged at the base; oil tubes 3-4 per interval, 6 on commissure, carpophore bifid to base.

Flowering mid March to early April. Chalk slopes, limestone ridges and hillsides, limestone gravel and silt, red clay, gypsum exposures, rocky and sandy prairies, mesquite-grassland, sandy roadsides; $200-700 \mathrm{~m}$; New Mexico, Oklahoma, Texas.
4. Vesper montanus (Nutt. in Torr. \& A. Gray) R.L. Hartman \& G.L. Nesom, comb. nov. Cymopterus montanus Nutt. in Torr. \& A. Gray, F1. N. Amer. 1: 624. 1840. Type: USA. [protologue: "High bare plains of the Platte, toward the Rocky Mountains"], Platte plains, Rocky Mts, T. Nuttall s.n. (holotype: BM digital image!; isotypes: K digital image!, NY digital image!).
Cymopterus campestris Nutt. in Torr. \& Gray, Fl. N. Amer. 1: 624. 1840. Type: USA. [protologue: "Plains of the Platte, near the Rocky Mountains"], "Rocky Mts., in places inundated in Winter," T. Nuttall s.n. (holotype: BM digital image!; isotype: GH).
Phellopterus camporum Rydb., Bull. Torrey Bot. Club 31: 574. 1904. TyPE: USA. Colorado. [Pueblo Co.:] Mesas near Pueblo, 14 May 1900, P.A. Rydberg and F.K. Vreeland 5825 (holotype: NY digital image!; isotype: US digital image!).

In the protologue, Rydberg cited "Rydberg and Vreeland 5825 (type, in flower) and 5824 (in fruit)."
Phellopterus macrocarpus Osterh., Muhlenbergia 6: 59. 1910. Type: USA. Colorado. Bent Co.: Las Animas, 16 Jun 1909 and 16 Apr 1910, G.E. Osterhout 3906 (holotype: NY digital image!).

Plants acaulescent, tufted, weakly or not aromatic; taproot 7-14 or more cm long, $0.8-3 \mathrm{~cm}$ in diameter, enlarged variously, especially towards base (often rounded). Stems: pseudoscape usually 3-7, congested, each arising $1-2 \mathrm{~cm}$ below ground ( $0.5-6 \mathrm{~cm}$ long) among remnants of old leaf sheaths; scarious sheaths 1-4. Leaves somewhat fleshy, thus often minutly wrinkled on drying, scaberulous on margins and often leaves, not viscid, usually glaucous; petioles $0.5-5(-8) \mathrm{cm}$ long; blades narrowly to broadly ovate in outline, $3-8.5 \mathrm{~cm}$ long, $2-5.5 \mathrm{~cm}$ wide, mostly pinnate-pinnatifid, rarely bipinnate-pinnatifid below, with 4-5 usually opposite pairs of lateral leaflets, leaflets sessile, rarely petiolulate with distinct midribs, ultimate leaf segments $1-4 \mathrm{~mm}$ long, mostly $0.5-1.5 \mathrm{~mm}$ wide, ovate to oblong, mostly overlapping, terminal leaflet variously pinnatifid into oblong to elliptic segments, apicies generally apiculate. INFLORESCENCE of 3-7 or more umbels, in fruit congested, occasional loose, rounded, $1-3 \mathrm{~cm}$ wide; peduncles $1-4(-9) \mathrm{cm}$, in fruit shorter than or equalling the leaves, scaberulous; involucre of rudimentary, bracts or two to four to $2-4(-9) \mathrm{mm}$ long, oblong to obovate, often white to purple rays $5-9,3-10 \mathrm{~mm}$ long, lengthening little in fruit; involucel of 5-7 bractlets, lanceolate to elliptic to broadly orbicular, apiculate to notched, $2-3(-4) \mathrm{mm}$ long, distinct or nearly so, central patch green, lanceolate with lateral nerves decreasing in length laterally, scarious margins equal to 2 x width of patch, margin entire; pedicels $1-2 \mathrm{~mm}$ long, lengthening little in fruit. Flowers with calyx teeth $0.1-0.2 \mathrm{~mm}$ long or obsolete, triangular to obate, petals white to purple; styles 2-2.5 mm long; anthers purplish. Fruit $18-23 \mathrm{~mm}$ long, broadly elliptic to oblong, tan to purplish wings $5,4-5 \mathrm{~mm}$ high, straight to wavy, smooth, membranous, conspicuously enlarged at the base; oil tubes 3-4 per interval, 4-6 on commissure; carpophore absent. Plants in the vicinity of Pueblo, Colorado, are robust with long pedicels and were mistakenly identified by Mathias as Cymopterus bulbosus.

Flowering April to early May. Grassland plains and hillsides in sandy or sandy loam; 9002250 m ; South Dakota, Colorado, Kansas, Nebraska, New Mexico, Oklahoma, Texas, Wyoming.
5. Vesper multinervatus (Coulter \& Rose) R.L. Hartman \& G.L. Nesom, comb. nov. Phellopterus multmervatus Coulter \& Rose, Contr. U.S. Natl. Herb. 7: 169. 1900. Cymopterus multinervatus (Coulter \& Rose) Tidestr., Proc. Biol. Soc. Wash. 48: 41. 1935. TyPE: USA. Arizona. [Mohave Co.:] Peach Springs, May 1884, J.G. Lemmon s.n. (holotype: US digital image!).

Plants acaulescent, tufted, weakly or not aromatic; taproot 8-15 or more em long, 0.8-3.5 or more cm in diameter, enlarged variously, especially towards base (often rounded). Stems: pseudoscapes usually 1 or 2 , often conspicuous, each arising $1-7 \mathrm{~cm}$ below ground ( $1-10 \mathrm{~cm}$ long) among remnants of old leaf sheaths; scarious sheaths 1-3. LEAVES somewhat fleshy, thus often minutely wrinkled on drying, glabrous or margins rarely roughened, not viscid, dull green to glaucous; petioles $1-8 \mathrm{~cm}$ long; blades broadly ovate to triangular in outline, $2-10 \mathrm{~cm}$ long, $1.5-9 \mathrm{~cm}$ wide, pinnate-pinnatifid to bipinnate-pinnatifid below, with 3-6 usually opposite pairs of lateral leaflets, leaflets sessile to petiolulate (petiolules to 1.5 mm long) with distinct midribs, ultimate leaf segments $0.2-5 \mathrm{~mm}$ long, mostly $0.1-2 \mathrm{~mm}$ wide, oblong to elliptic, frequently not overlapping, terminal leaflet variously pinnatifid to pinnate-pinnatifid into oblong to elliptic segments, apices generally rounded (margins and apices curved adaxially). INFLORESCENCE of 1-6 or more umbels, in fruit loose to somewhat congested, rounded, $2-5 \mathrm{~cm}$ wide; peduncles $6-18 \mathrm{~cm}$, in fruit equalling or longer than the leaves, glabrous; involucre of rudimentary, often a collar, or with one or two bracts to
0.8 mm long, oblong to obovate, white to purple, scarious with several near parallel veins; rays 7-19, $3-10 \mathrm{~mm}$ long, lengthening little in fruit; involucel of 5-8 bractlets, obovoid to orbicular, usually apically rounded, $7-9 \mathrm{~mm}$ long, fused in lower $40-65 \%$, mostly purple when mature, scarious margin thin to $1 / 4$ width of fruit, nerves 5-9 or more, primarily parallel, often branched but then branches closely parallel, extending the full length of bractlets, margin entire or distally notched or apiculate; pedicels $1-3 \mathrm{~mm}$ long, some lengthening to 6 mm in fruit. FLowers with calyx teeth $0.2-0.4 \mathrm{~mm}$ long or obsolete, rounded; petals white to purplish; styles 2-2.5; anthers purple. Fruit 18-23 mm long, broadly elliptic, tan to purplish, wings usually $5,4-5 \mathrm{~mm}$ high, usually straight, smooth, membranous, not conspicuously enlarged at the base; oil tubes 3 in intervals, 5-6 on commisure; carpophore absent.

Flowering mid March to early April. Shrublands and woodlands often on sand or loam of rolling plains; $850-1830 \mathrm{~m}$; Arizona, California, Nevada, Utah; n. Mexico.
6. Vesper purpurascens (A. Gray) R.L. Hartman \& G.L. Nesom, comb. nov. Cymopterus montanus var. purpurascens A. Gray, Rep. Colorado River 4: 15. 1861. Cymopterus purpurascens (A Gray) M.E. Jones, Zoë 4: 277. 1893. Phellopterus purpurascens (A. Gray) Coulter \& Rose, Contr. U.S. Natl. Herb. 7: 168. 1900. Lectotype (designated here): USA. Arizona. [Coconino Co.:] San Francisco Mountains, no date, J.S. Newberry[?] s.n. (GH).

In the protologue, Gray noted "Stony hill-sides. Yampai valley (Camp 64; March 28) to San Franciso mountain, New Mexico. ... Oryabe, New Mexico." A specimen at NY is annotated as "isotype:" 1858, Newberry in Ives Colorado [???] (NY digital image!).
Cymopterus utahensis M.E. Jones, Proc. Calif. Acad. Sci., ser. 2, 5: 684. 1895. Phellopterus utahensts (M.E. Jones) Wooton \& Standl., Contr. U.S. Natl. Herb. 16: 158. 1913. Type: USA. On page 684, Jones cited data for the Arizona collections Jones 5098 (US digital image!), Jones 5098 h (US digital image!), and Jones $5098 p$ (US digital image!), but he noted (p. 685) that "This is No. 1685 of my Utah collection, and abounds on the clayey and gravelly plains, valleys and lower hillsides throughout Utah and Nevada."
Cymopterus utahensis var. monocephalus M.E. Jones, Proc. Calif. Acad. Sci., ser. 2, 5: 685. 1895. TyPE: USA. Utah. [Tooele Co.?:] Terminus, Jun-May 1890, M.E. Jones s.n. (isotype: MO digital image!).
Phellopterus fillcinus Wooton \& Stand1., Contr. U.S. Natl. Herb. 16: 158. 1913. Type: USA. New Mexico. Grant Co.: Bear Mountain near Silver City, 17 Jun 1903, O.B. Metcalfe 165 (holotype: US digital image!).

Plants acaulescent, tufted, weakly or not aromatic; taproot 5-18 or more cm long, $0.3-3$ or more cm in diameter, enlarging variously, especially towards base. STEMS: pseudoscapes 1 or 2, sometimes conspicuous, each arising $1-5 \mathrm{~cm}$ below ground ( $1-7 \mathrm{~cm}$ long) among remnants of old leaf sheaths and often 1 to 5 leaves; scarious sheaths 1-3. LEAVES somewhat fleshy, thus often minutely wrinkled on drying, glabrous or margins rarely scaberulous, not viscid, glaucous; petioles 17 cm long; blades lanceolate to broadly ovate in outline, $1.2-7 \mathrm{~cm}$ long, $1.5-5 \mathrm{~cm}$ wide, pinnatepinnatifid to bipinnate-pinnatifid below, with 3-6 opposite pairs of lateral leaflets, leaflets sessile to petiolulate with distinct midribs, ultimate leaf segments $0.1-5 \mathrm{~mm}$ long, mostly $0.1-2.8 \mathrm{~mm}$ wide, oblong to elliptic, often overlapping, terminal leaflet variously pinnatifid to bipinnatifid into lanceolate to ovate segments, apices mostly rounded. INFLORESCENCE of 1-8 or more yet obscurely distinct umbels, in fruit congested, usually globose, mostly $3-6 \mathrm{~cm}$ wide; peduncles $2-14 \mathrm{~cm}$, in fruit equalling or longer than the leaves, glabrous; involucre usually of $8-10$ bracts $8-15 \mathrm{~mm}$ long, bracts fused into a lobed to variously parted cup, white, scarious with $1-4$ purple veins; rays $0-8,1-8 \mathrm{~mm}$ long, lengthening little in fruit; involucels of 4-6 bractlets, often obscured by the involucre or fruit, oblong to elliptic, usually rounded, $4-7 \mathrm{~mm}$ long, fused in lower $30-60 \%$, white, scarious with $1-4$ dark green to purple nerves arising from base, equal or lateral veins to half as long, margin entire;
pedicels $0-5 \mathrm{~mm}$ long, lengthening little in fruit. Flowers with calyx teeth $0.2-0.5 \mathrm{~mm}$ long, lanceolate to rounded; petals white or purplish; styles $1.5-2 \mathrm{~mm}$ long; anthers purple. Fruit $7-15$ mm long, broadly elliptic to suborbicular, tan to purplish, wings 5, 2-4 mm high, straight to wavy, smooth, membranous, not conspicuously enlarged at the base; oil tubes $3-4$ per interval, $4-7$ on commissure; carpophore absent.

Flowering mid March to early June. Shrubland and woodland on sand or loam; 1300-2740 m ; Arizona, California, Idaho, and Utah.

## ACKNOWLEDGEMENTS

We are grateful to Al Schneider for permission to use the color photos of Vesper bulbosus and Vesper constancei. These are from his website, "Wildflowers, ferns, and trees of Colorado, New Mexico, Arizona, and Utah" (http://www.swcoloradowildflowers.com/), which has hundreds of photos and much related information on the flora of that region.

## LITERATURE CITED

Cronquist, A. 1997. Apiaceae. Pp. $340-427$, in A. Cronquist, N.H. Holmgren, and P.K. Holmgren (eds.). Intermountain Flora: Vascular Plants of the Intermountain West, USA., Vol. 3, Part A. The New York Botanical Garden, Bronx, New York.

Coulter, J.M and J.N. Rose. 1900. Monograph of the North American Umbelliferae. Contr. U.S. Natl. Herb. 7: 9-256.
Downie, S.R., Hartman, F.J. Sun, and D.S. Katz-Downie. 2002. Polyphyly of the spring-parsleys (Cymopterus): Molecular and morphological evidence suggests complex relationships among the perennial endemic taxa of western North American Apiaceae. Canad. J. Bot. 80: 12951324.

Downie, S.R., K. Spalik, D.S. Katz-Downie, and J.-P. Reduron. 2010. Major clades within Apiaceae subfamily Apioideae as inferred by phylogenetic analysis of nrDNA ITS sequences. Pl. Divers. Evol. 128: 111-136.
Hartman, R.L. 2000. A new species of Cymopterus (Apiaceae) from the Rocky Mountains, U.S.A. Brittonia 52: 136-141.
Mathias, M.E. 1930. Studies in the Umbelliferae. II. A monograph of Cymopterus including a critical study of related genera. Ann. Missouri Bot. Gard. 17: 213-476.
Mathias. M.E. and L. Constance. 1944-1945. Umbelliferae. Pp. 43-295 (Cymopterus, pp. 170183), in North American Flora, Vol. 28B. New York Botanical Garden, New York.

Sun, F.-J. and S.R. Downie. 2004. A molecular systematic investigation of Cymopterus and its allies (Apiaceae) based on phylogenetic analyses of nuclear (ITS) and plastid (rps 16 intron) DNA sequences. S. Afr. J. Bot. 70: 407-416.
Sun, F.-J. and S.R. Downie. 2010. Phylogenetic analyses of morphological and molecular data reveal major clades within the perennial, endemic western North American Apiaceae subfamily Apioideae. J. Torrey Bot. Soc. 137: 133-156.
Turner, B.L. 1998 [2003]. Cymopteris (Apiaceae) in Trans-Pecos, Texas. Phytologia 85: 331-335.
Weber, W.A. 1984. New names and combinations, principally in the Rocky Mountain flora-IV. Phytologia 55: 1-11. [Aletes (Apiaceae): An expanded concept. Pp. 3-6]
Welsh, S.L., N.D. Atwood, S. Goodrich, and L.C. Higgins [eds]. 2008. A Utah Flora (ed. 4, revised). Brigham Young Univ., Provo, Utah.

# NON-NATIVE SPECIES NEW TO TEXAS WITH COMMENTS ON OTHER SPECIES 

Jed APLACA<br>Superintendent, Greenspace Management<br>COH Parks and Recreation<br>2999 South Wayside Drive<br>Houston, Texas 77023


#### Abstract

Two non-native plant species are first reported here as growing outside of cultivation in Harris Co., Texas, and are additions to the non-native flora of Texas. Gilua tricolor has been introduced as a wildflower along the ditches in parts of the Westchase area of Houston and Macroptilum lathyrotdes has been found growing in landscapes in association with nursery plants originating in Florida. Ludwigia peruviana has been found naturalized in the Houston area, only the second county record from Texas. Manihot grahamin, previously misidentified as M. esculenta, also is a naturalized species in southeast Texas, documented here from Hardin and Harris counties.


Gilia tricolor Benth. (Polemoniaceae) was a very common wildflower species in a ditch near the Westchase area of Houston, apparently growing from seeds sown in late 2009. The site was visited the next two years and seedlings were observed, but it was not visited again to see if the plants were flowering. The species is native to California and also known to be naturalized in Colorado and Massachusetts (BONAP 2012). There are no Gilia species known from southeast Texas (Correll \& Johnston 1970; Hatch et al. 1990). This species is characterized by its tricolor corolla; yellow with purple spots below the blue-violets lobes (Fig. 1). It is the first member of Polemoniaceae to be added to the list of non-native plants of Texas (Nesom et al. 2010; Aplaca 2010).

Harris Co. Houston, Westchase area, growing alongside ditch behind the Robinson Library all the way to and past Walnut Bend; Key Map 489Y, with Lupinus, Bromus, Lolum, Phlox, all possibly seeded, 19 Apr 2010, Aplaca 790 (SBSC, SWT)

Macroptilium lathyroides (L.) Urb. (Fabaceae) (wild bushbean) is growing prolifically in a library landscape in West Houston. The plants have been observed freezing back to the ground in the winter of 2010-11 and new plants sprouted in the summer of 2011. These plants were not planted in the landscape, therefore the seeds must have arrived in the soil on the landscaped plants. This species is native to tropical America and is naturalized in Florida, Georgia, Louisiana, and South Carolina (USDA, NRCS 2012). Many of the landscape plants originated in Florida (pers. comm., K. Asakura, Asakura-Robinson Landscaping), where the seeds were probably stowaways in the soil. Landscape maintenance has tried to control this plant by hand removal but it readily reseeds.

Wild bushbean is a twining herbaceous annual up to 1.5 meters (Fig. 2). The flowers are scarlet to purple red with a spirally twisted keel and the legume is linear, straight and mostly $8-12 \mathrm{~cm}$ long, ca. 3 mm wide (Fig. 3). The spiraled leaves are pinnate trifoliolate, leaflets ovate or elliptical, $2-4 \mathrm{~cm}$ long and $1.5-3.5 \mathrm{~cm}$ wide. The individuals in this population showed variety between ovate and elliptical leaflets. The landscape maintenance has tried to control this plant, but it readily reseeds.

Harris Co Houston, growing in the landscape of the new Kendall Library/Community Center on Eldridge Pkwy just N of Buffalo Bayou, large plants ascending and twining through other vegetation, Key Map 488G, growing near the bases of various grasses and Crnum in the landscape, obviously an introduction from nursery contamnation, 6 Aug 2010, Aplaca 832 (SBSC, SWT)


Figure 1. Gilta tricolor in Harris County.


Figure 2 Macroptilum lathyrodes stem, leaves, and inflorescence.


Figure 3 Macroptllum lathyroides flowers and frut

Ludwigia peruviana (L.) H. Hara (Onagraceae) (Peruvian primrose-willow) is a woody species that has previously only been recorded from Terrell County in west Texas (Ramamoorthy \& Zardmı 1987) In 2008 the author found a population thriving in a wetland area of Hermann Park in Houston There were several shrubs about 25 m tall and the plants were observed spreading over the following several years This is the first record in Texas outside the single collection from Terrell County The area of Hermann Park is generally left to grow naturally with little maintenance by the park staff There has been no attempt to control these plants, but concerns about potential invasiveness have been brought up to the Hermann Park Conservancy and the Houston Parks Department

Harris Co Houston, Hermann Park, Growing at water's edge on swampy part of McGovern Lake, 23 Aug 2008, Aplaca 599 (SWT)


Figure 4 Ludwigia perwiana flower and mmature capsule


Figure 5 Ludwigia penuvana growth habit of an individual 15 meters from the onginal population

Manihot grahamii Hook. (Euphorbiaceae) (Graham's manihot) was collected from sites in Hardin and Harris counties Many of these vouchers were previously identified as M. esculenta Crantz and have been correctly annotated by (pers comm, Dr J Hayden, University of Richmond) The earliest voucher reports this species as cultivated at the Houston Arboretum in Harris County in 1976 It has been reported from Florida, Georgia, and Loussiana (USDA, NRCS 2012, BONAP 2012) but not previously from Texas The vouchers cited here apparently have been the basis for attributions of $M$. esculenta to the Texas flora

Manihot grahamil is a South American species that is known to be more cold tolerant than others The plants become small trees in understory areas and spread regularly from seed and vegetative growth The area in Harris County has been observed for about a year and a half - the plants are behind the city greenhouse spreading into the forested areas of Memorial Park The extent of the invasiveness of this species is not known yet, but when the area was cleared of some of the larger individuals, seedlings and root sprouts were actively growing soon afterwards


Figure 6 - Manihot grahamit individual in Memorial Park, Harris County
Hardin Co near Evadale Bridge E of Silsbee and S of highway, ca 50 plants in garbage dump area W side of Neches River, seemingly well established in wild, 24 Aug 1983, Johnston 12800 (TEX) Harris Co Houston Arboretum, cultivated in Houston, 1976, Vines s.n (SBSC), banks of Buffalo Bayou, across from Houston Arboretum, Houston, Apr 1976, Anderson s.n. (SBSC), Houston, plant grown from seed obtained in Mexico, farly large tree in backyard flowerbed, 25.3" dameter trunk, 10231 Ivy Rudge, home of Mr \& Mrs Doug Williams, 18 May 1992, Tveten L-1498 (SBSC), tall shrub near Cypress Creek in Mercer Arboreturm and Botanical Gardens along Aldine Westfield Rd, N of Hwy 1960 and on S side of Cypress Creek, N of Houston,

25 Oct 1997, Brown 21668 (SBSC), Magnolia Gardens, 24 Oct 2002, Johnson 1193 (SBSC), Houston, behınd HPARD greenhouse at 6502 Memorial Drive, spreading into Memorial Park, 19 Jun 2009, Aplaca 667 (SBSC)

## LITERATURE CITED

Aplaca, J. 2010. The Non-Native Flora of Texas. Theses and Dissertations-Biology. Paper 30. <http//ecommons txstate edu/bioltad/30-
Correll, D.S. and M.C. Johnston. 1970. Manual of the Vascular Plants of Texas. Texas Research Foundation, Renner.
Hatch, S.L., K.N. Gandhi, and L.E. Brown. 1990. Checklist of the Vascular Plants of Texas. Texas Agricultural Experiment Station, College Station.
Jones, S.D., J.K. Wipff, and P.M. Montgomery. 1997. Vascular Plants of Texas: A Comprehensive Checklist Including Synonomy, Bibliography and Index. Univ. of Texas Press, Austin.
BONAP. 2012. North American Plant Atlas (US county-level species maps). Biota of North America Program, Chapel Hill, North Carolina. Last update: Oet 2011 <http//www bonap org/genera-1ist html>
Nesom, G.L., J.L. Aplaca, W.R. Carr, N.L. Fowler, L.L. Hansen, S.L. Hatch, B.W. Hoagland, W.C. Holmes, E.L. Keith, B.L. Lipscomb, B.R. MacRoberts, M.H. MacRoberts, J.A. McDonald, T.F. Patterson, J.M. Poole, A.M. Powell, N. Rich, M.D. Reed, D.J. Rosen, J.R. Singhurst, B.A. Sorrie, B.L. Turner, D.E. Waitt, and J.K. Williams. 2010. Texas non-native plants: Overview of occurrence and invasiveness assessments. http //www texasnonnatives org>
Ramamoorthy, T.P. and E.M. Zardini. 1987. The systematics and evolution of Ludwigla sect. Myrtocarpus sensu lato (Onagraceae). Syst. Bot. Monogr. 19: 1-120.
USDA, NRCS. 2012. The PLANTS Database. National Plant Data Team, Greensboro, North Carolina. Shttp //plants usda gov>

# SYNOPSIS OF AMERICAN CARTREMA (OLEACEAE) 

Guy L. Nesom<br>2925 Hartwood Drive<br>Fort Worth, Texas 76109<br>guynesom@sbcglobal net


#### Abstract

Cartrema Raf. in the USA and Mexico includes two species: Cartrema americana (L.) Nesom, comb. nov., and Cartrema floridana (Chapman) Nesom, comb. nov. (based on Osmanthus floridanus Chapman, an earlier name for Osmanthus megacarpus Small). Cartrema americana occurs in the eastern USA east of the Mississippi River and in Mexico, where it ranges more or less continuously in eastern states from Nuevo León south to Chiapas and in the western states of Sonora, Chihuahua, Durango, and Jalisco. Maps show the distribution in the USA and in Mexico. Osmanthus americanus var. microphyllus P.S. Green and Osmanthus mexicanus Lundell, both from Mexico, are treated here as synonyms of C. americana. Cartrema floridana is endemic to the Florida peninsula. All other taxa indicated by molecular and morphological data to belong in Cartrema are native to southeastern Asia.


KEY WORDS: Cartrema, Osmanthus, Osmanthus sect. Leiolea, Oleaceae

The species of Osmanthus with a paniculate inflorescence have long been recognized as distinct as a group from those with a fasciculate inflorescence. They were treated as sect. Letolea within Olea by Spach (1839) and then within Osmanthus by Green (1958). Rafinesque (1838) placed them in the genus Cartrema; Small (1933) superfluously created the genus Amarolea. In view of accumulating evidence, Weakley et al. (2011) gave notice that the southeastern USA species will be treated within Cartrema in forthcoming state and regional floristic accounts, and that disposition is accepted here.

Molecular evidence (Guo et al. 2011) confirms that the species of Osmanthus sect. Leiolea comprise a monophyletic group. In addition to the American taxa, the group includes five additional species from southeastern Asia - this whole group is more closely related to two Asian species of Olea (sect. Tetrapilus) than to fasciculate-flowered Osmanthus.

The taxonomy of the native American plants of Cartrema Raf. (Osmanthus sect. Letolea) is reviewed here. These plants extend southward though Mexico to southern Chiapas. Because of the proximity of the Chiapas localities, the Flora of Guatemala (Standley \& Williams 1969) included Osmanthus americanus as a potential member of the flora, but apparently the species remains undocumented south of Mexico.

Cartrema Rafinesque, Sylva Tell., 184. 1838. Type: Olea americana L. $=$ Pausta americana (L.) Raf. Rafinesque validated the genus name in 1838 but did not provide a nomenclatural combination for the single species he included (see comments below)
Amarolea Small, Man. S.E. Fl., 1043. 1933. Osmanthus subg. Amarolea (Small) Tzvelev, Novosti Sist. Vyssh. Rast. 34: 146. 2002. Lectotype (Johnson 1957, p. 414): Amarolea americana (L.) Small $\equiv$ Olea americana L. Small did not specify which of the two species of Amarolea (A. amencana, A. megacarpa) was the type
Olea sect. Leiolea Spach, Hist. Nat. Veg. Phan. 8: 266. 1839. Osmanthus sect. Leiolea (Spach) P.S. Green, Notes Roy. Bot. Gard. Edinburgh 22: 454. 1958. TyPE: Olea americana L. $\equiv$ Osmanthus americanus (L.) Benth. \& Hook. f. ex A. Gray

Osmanthus sect. Microsmanthus Nakai, Bot. Mag. Tokyo 44: 14. 1930. Type: Osmanthus marginatus (Champ. ex Benth.) Hemsl.

## KEY TO THE SPECIES

1. Mature drupes (dried) (6-)7-10(-11) mm; se USA and Mexico

## 1. Cartrema americana

1. Mature drupes (dried) 18-25 mm; endemic to Florida................................ 2. Cartrema floridana
2. Cartrema floridana (Chapman) Nesom, comb. nov. Osmanthus floridanus Chapman, Fl. South. U.S., ed. 2, Suppl. 2, 693. 1892. Amarolea floridana (Chapman) L.E. Arnold, J. Elisha Mitchell Sci. Soc. 52: 86. 1936. Type: USA. Florida: [Manatee Co.:] Manatee, [sandy pine barrens, without date, J.H.] Simpson s.n. (holotype: US!, Fig. 1). The specimen has not been previously noted as a type, but the label apparently is in Chapman's hand
Epitype (designated here): USA. Florida: Highlands Co.: Ca .0 .4 mi N of main ranch road at a point ca. 1.4 mi E of US 27 at a point ca. 1.6 mi S of Bald Hill and ca. 7.3 mi S of Bairs Den, ca. 3.4 air mi NE of Venus, Hendrie Ranch, extensive rolling rosemary-scrub oak bald on white sand, dominated by Ceratiola-Quercus inopina-Q. geminata-Q. chapmanit-Sabal etonia-Serenoa repens, soils - St. Lucie (Typic Quartzipsamments), $90-130 \mathrm{ft}, 9$ Nov 1990, S.L. Orzell 15813 with E.L. Bridges (USF digital image!).

Amarolea megacarpa Small, Man. S.E. Fl., 1043, 1507. 1933. Osmanthus megacarpus (Small) Small ex Little, J. Wash. Acad. Sci. 33: 10. 1943. Osmanthus amertcanus var. megacarpus (Small) P.S. Green, Notes Roy. Bot. Gard. Edinburgh 22: 462. 1958. Osmanthus americanus subsp. megacarpus (Small) E. Murray, Kalmia 13: 10. 1983. Cartrema megacarpa (Small) Weakley, J. Bot. Res. Inst. Texas 5: 445. 2011. TyPE: USA. Florida. Highlands Co.: Sandhills near Lake Annie, 8 Jan 1925, J.K. Small \& P. Matthaus 11612 (holotype: NY digital image!; isotypes: GH, US digital image!).

Shrubs, (1-)2-3(-4) m, oceasionally characterized as a "small tree." Stems: usually 2 or more from the base, sometimes branching near the ground, rarely with a single axis; bark gray-brown to light gray or silvery, smooth, becoming finely scaly. Leaves persistent, elliptic to ellipticoblanceolate or oblanceolate, $5.5-12 \mathrm{~cm} \times 20-40(-50) \mathrm{mm}$, base cuneate to attenuate, margins entire, revolute, apex acute to short-acuminate or obtuse, glabrous on both surfaces; petioles $3-10 \mathrm{~mm}$. Inflorescences axillary, $12-20$-flowered. Pedicels $0-1 \mathrm{~mm}$. Flowers unisexual or rarely bisexual; corolla white to yellow, tube $2-3 \mathrm{~mm}$, lobes $1.5-2.5 \mathrm{~mm}$, ca. equal tube length, plane to loosely involute. Drupes dark bluish purple to nearly black, subglobose to broadly ellipsoid or ellipsoidobovate, $18-25 \mathrm{~mm}$ at maturity (dried).

Flowering Feb-May. Sand pine scrub, oak scrub, rosemary balds, dry oak hammocks, turkey oak barrens; 10-100 m; Florida (Map 1).

Floridians have most often treated Cartrema floridana at specific rank (for example, using the epithet "megacarpa," Huck et al. 1989; Christman \& Judd 1990; Wunderlin \& Hansen 2011). Nelson $(1994,1996)$ was equivocal, observing that it might be regarded either as a species or as a variety of Osmanthus americanus, but he later (2010) accepted it at specific rank. Green (1958) treated it at varietal rank, noting that various literature descriptions have given measurements of fruit size that could be interpreted as intermediate. Thus, except for the ambiguity regarding rank, there has been no reluctance in recognizing the existence of the large-fruited entity.


Figure 1. Holotype of Osmanthus floridanus Chapman (US). The specimen has not been previously recorded as a type but the label apparently is in Chapman's hand. The labels reads "Osmanthus Floridanus Chapm., Simpson, Manatee, Florida."

The protologue of Osmanthus floridanus in its entirety is this: "Inflorescence more or less pubescent; style sigmoid; stigma nearly as broad as the ovary; drupe ovoid, yellowish-green, 8"-9" long. Otherwise like O. Americanus. - Sandy pine barrens, Manatee, South Florida. (J. H. Simpson.) - A low shrub." This was essentially repeated in the third edition of Chapman's Flora (1897, p. 352). As noted by Chapman in his "Signs Used In This Work" (1889, p. xxvi), he used the double quotation mark to denote meaurement of a "line" ( $=1 / 12$ of an inch). The equivalents of 8-9 lines are 8/12-9/12 inch $=0.67-0.75$ inch $=17-19 \mathrm{~mm}$. Thus Chapman described drupes characteristic of the large-fiuited Osmanthus as well as its characteristic habitat. His characterization of the fruits as yellowish-green indicates that they were immature.

Small included Osmanthus florıdanus in his "Flora" (1903, 1913), describing it with "drupes yellowish-green, $16-20 \mathrm{~mm}$ long," the color and fruit measurements presumably reflecting Chapman's original description. The contrast in fruit size with O. americanus was shown by Small in the descriptions but not in the key. For his "Manual" (Small 1933), he had decided that $O$. floridanus was not correctly applied, or perhaps not unambiguously applied, to the large-fruited plants and published the name Amarolea megacarpa, treating it along with A. americana to constitute the new genus Amarolea. Osmanthus floridanus was placed in synonymy of Amarolea americana and the fruit dimensions for Amarolea megacarpa were modified to "2-2.5 cm long" (description)/ "2-2.5 cm in diameter" (key); fruit dimensions for Amarolea americana were "10-15 mm long" (description)/ "1 cm in diameter or less" (key).

It is clear, as formalized in the nomenclature here, that Chapman's name was the first to apply to the large-fruited species. The holotype (Fig. 1) is from a plant in flower - designation of an epitype, a specimen with mature fruits, is intended to provide clarity in application of the name.

The large fruit size of Cartrema floridana is the single known morphological feature of distinction from C. americana, but the difference is striking. Unequivocal identifications are best made during fruit maturity, which is generally mid-August through October and November, but developing fruits that already exceed the size range of $C$. americana support a confident identification.

Fruit size for typical Cartrema americana was first determined in the present study by measuring mature fruits from USA localities outside of Florida. The county-level distribution of $C$. americana in Florida (Map 2) was assessed by recording only collections with mature fruits (collected mid-August through fall) - fruits of these plants all were within the measurement range determined from the USA outside of Florida. Similarly, sizes for C. floridana were measured only from presumably mature fruits (see Table 2). The only exception is for Manatee County (whence the type of Osmanthus floridanus), where documentation of $C$. americana is based on a sterile collection from a wet habitat: "Bay-head," 27 Apr 1917, Cuthbert 1452 (FLAS-3 sheets). Several collections from Manatee County document the occurrence there of the large-fruited species in dry habitats.

Ecological differentiation between Cartrema americana and C. floridana is distinct - C. americana occurs in moist habitats while C. floridana is restricted to dry barrens, scrubs, and xeric hammocks. This difference is so consistent, with few exceptions, that it can be considered essentially diagnostic. In fact, a number of collections without mature fruits (e.g., USF; sterile, flowering, or with immature fruits) within the area of sympatry surely have been identified in both species on the basis of habitat. In any case, enough collections with mature fruit are available that Map 2 in the present study is a close match to the distributions shown by Wunderlin and Hansen (2012).


Map 1. County distribution of Cartrema americana and C. floridana in Florida. Symbols are placed only on the basis of unequivocal identification through fruit size (see text). Collections were studied first-hand at SMU-BRIT-VDB and TEX-LL; collections from FLAS, FTG, and USF were studied through digital images available through herbarium databases at high enough resolution to allow accurate measurements at millimeter level.
2. Cartrema americana (L.) Nesom, comb. nov. Olea americana L., Mant. Pl. 1: 24. 1767. Olea laeta Salisb., Prodr. Stirp. Chap. Allerton, 13. 1796 [illegit. substitute name for Olea americana L.]. Pausia americana (L.) Raf., Sylva Tellur., 9. 1838. Pausia odorata Raf., Sylva Tellur., 9. 1838 [illegit. substitute name for Olea americana L.]. Cartema odorata (Raf.) Raf., Autik. Bot., 16. 1840 [nom. illeg. superfl.]. Osmanthus americanus (L.) Benth. \& Hook. f. ex A. Gray, Syn. Fl. N. Amer. 2(1): 78. 1878. Amarolea americana (L.) Small, Man. S.E. Fl., 1043. 1933. Lectotype (Green 1958, p. 462): USA. South Carolina "Habitat in Carolina." (LINN-20.6 digital image!).

Weakley et al. (2011) assumed that Osmanthus (Olea) americana had been transferred to Cartrema by Rafinesque (Sylva Telluriana, 184. 1838), but such is not the case. Rafinesque in 1838 provided Cartrema Raf. as a replacement name for Pausia Raf. (Oleaceae; non Pausia Raf., Fl. Tellur. 4: 105.1836 [publ. 1838], Thymelaeaceae) but he made no mention on page 184 of any species. The very brief entry is at the bottom of the page, at the very end of the book index: "Correction-For Pausia 10 real Cartrema Raf. meaning perforate nut, having already another G.[enus] Pausia in flora telluriana 1139."

The nomenclatural combination in Cartrema also has been cited as "Raf. ex B.D. Jackson, Index Kewensis 1:445. 1893," but Jackson indicated there (p. 445) that the genus Cartrema Raf. is a
synonym of Osmanthus, and the only species in the entry (as [Cartrema] "Americana Raf ") is indicated to be a synonym of Osmanthus americana Thus a valid combination was made nether by Rafinesque nor by Jackson.
Osmanthus americanus var. microphyllus P.S. Green, Notes Roy. Bot. Gard. Edinburgh 22: 463.
1958. Type: MEXICO. Nuevo León. Sierra Madre Oriental, San Francisco Cañon, about 15 mi SW of Pueblo Galeana, scattered shrub on tops of hills near mouth of cañon, $7500-$ $8000 \mathrm{ft}, 14$ May 1934, C.H. Mueller 371 (holotype: NY digital image!; isotypes: A, MICH digital image!, TEX!).
Osmanthus mexicanus Lundell, Phytologia 1: 308. 1939. Type: MEXICO. Chiapas. Cerro ["Cero" on label] Laguna, Mapastepec, arbor 6-7 m, 25 cm diam., Jan 1938, E. Matuda 2023 (holotype: MICH digital image!; isotypes: A, F digital image!, GH, LL!, NY-3 sheets digital images!, US digital image!).

The F and NY isotypes were annotated as Osmanthus americanus by P S Green in 1989.
Trees or shrubs, 1.5-6(-10) m. Stems: trunk single or often branching near ground; bark gray-brown to light gray or silvery, smooth, becoming finely scaly. Leaves persistent or semipersistent, elliptic or oblong-elliptic to oblanceolate or obovate, (5-)8-12(-15) $\mathrm{cm} \times(15-) 20-40(-50)$ mm , base cuneate, margins entire, revolute, apex acute or rarely short-acuminate, obtuse, rounded, or notched, glabrous on both surfaces; petioles (5-) $10-15(-20) \mathrm{mm}$. Inflorescences axillary, 12-20flowered. Pedicels $0-1 \mathrm{~mm}$. Flowers unisexual or rarely bisexual; corolla white to yellow, tube 2-3 mm , lobes $1.5-2.5 \mathrm{~mm}$, ca. equal tube length, plane to loosely involute. Drupes dark bluish purple, globose to globose-ovoid or ellipsoid, (6-)7-10(-11) mm at maturity (dried). $2 \boldsymbol{n}=138$.

USA. Flowering Feb-May. Creek, lake, swamp, and sinkhole margins, shell mounds, moist sand ridges, roadside thickets, mesic hardwoods, beech-magnolia, longleaf pine-bluejack oak savannas, upland mixed woods with Persea, live oak hammocks, hardwood floodplain forests, swamps (gum-white cedar, gum-magnolia-bay), pine flatwoods, evergreen scrub oak, sand pine and oak scrub; 0-150 m; Alabama, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Virginia. Map 2.

Mexico. Flowering Feb-Apr. stream sides, cliff bases, talus, steep banks and hill sides, limestone ridges, juniper matorral, oak, pine-juniper, and pine-oak woodland, mesophytic forests; 1000-2500 m; Chihuahua, Durango [fide Rzed. \& Rzed. 2004], Guanajuato, Hidalgo, Jalisco, Nuevo León, Oaxaca, Puebla, Querétaro, San Luis Potosí [fide Rzed. \& Rzed. 2004], Sonora, Tamaulipas, Veracruz. Map 3.

In the southeastern USA, Cartrema americana is a common tree of coastal hammocks and other moist sites of the Atlantic and Gulf coasts. The distribution ends in eastern Louis iana, skipping over the rest of Louisiana and Texas to reappear in northwestern Mexico. Texas was cited as part of the range of Cartrema americana by Hardin (1974) and this has been repeated in large databases (e.g., BONAP 2012; USDA, NRCS 2012). The basis for the Texas report perhaps is Cooper (1858, p. 253), where "Texas" is listed in a table of geography for Olea americana. No documentation for this record has been found, however, and the species is not known to occur natively in Texas. The westernmost part of the range in the USA is in northeastern Louisiana, where it is known from at least five mostly contiguous parishes. I have not seen a voucher for the record shown in Sabine Parish (Thomas \& Allen 1998; BONAP 2012), disjunct to the west and on the Texas border, and it seems unlikely that the species occurs natively there. The northernmost record known for C. americana is from Virginia Beach County in the southwestern corner of Virginia (Virginia Botanical Associates 2012).


Map 2. Distribution of Cartrema americana in the USA. Records are from literature, internet, and first-hand herbarium sources. Arrow points to Virginia Beach County, the northernmost known site for the species.

In Mexico, Cartrema americana occurs in two widely disjunct north-south bands, following eastern and western sierras (Map 3). Numerous collections have been made in Chihuahua and Sonora, apparently few from Durango and Jalisco (Table 1). The species is relatively more common in the eastern states, judging from the abundance of collections.

Plants described in 1958 as Osmanthus americanus var. microphyllus, the type from a gypseous area in south-central Nuevo León, Mexico, can be seen with more collections now available as continuously variable with the rest of the species, agreeing with the earlier assessment by Rzedowski and Rzedowski (2004). In the description of O. mexicanus from Chiapas, Lundell (1938, p. 308) noted that it differed from previously described American species "by its small narrow caudate-acuminate leaves, blackened when dry, costa impressed above, and large stigma." Green


Map 3. Distribution of Cartrema americana in Mexico. Collections from Durango and San Luis Potosí, alluded to by Rzedowski \& Rzedowski (2004) but not mapped here, allow distributions in both eastern and western sierras to be seen as essentially continuous, though apparently sporadic. Most symbols represent more than one collection. Records are from ARIZ and NMC (via SEINET), XAL (via REMIB), TEX-LL (from the Austin herbarium), and Rzedowski \& Rzedowski (2004).
treated $O$. mexicanus as distinct in 1958, but at least by 1989 Green had changed his mind and annotated the type specimens at F and NY as $O$. americanus. The current study agrees that the Chiapas plants appear to be continuous with the rest of the species as it occurs northward.

Habitats of Mexican Cartrema americana are consistently different (higher elevation, drier sites, in temperate vegetation) from those in the southeastern USA, but no evident differences in morphology exist among Mexican population systems and the species in Mexico is similar to plants of the United States in morphology and range of variability. Fruit size essentially matches that of $C$. americana in the USA; mature fruits on herbarium specimens from Chiapas, Guanajuato, Nuevo León, Querétaro, Sonora, and Tamaulipas measured 7-11 mm. The larger sizes of (10-)12-16 mm
indicated by Rzedowski and Rzedowski (2004) perhaps were from measurements of fresh (vs. dried) fruits.

Rzedowski and Rzedowski (2004) noted that the leaves are produced in a diversity of shape and size - ellíptic or lanceolate to oblanceolate, ovate, or obovate, $1.5-15 \times 1-5 \mathrm{~cm}$. They observed that one collection from Guanajuato identified as Osmanthus americanus might be a different species (presumably undescribed), because of its consistently small ovate to obovate leaves with rounded to emarginate apices: Guanajuato. Mpio. Xichú: Cerro Gordo, 12 km N de Molinitos, Ventura y López 6736 (IEB, MEXU).

## ACKNOWLEDGEMENTS

I am grateful to the staff at SMU-BRIT-VDB and TEX-LL for their hospitality during study there, to Jim Zarucchi for help with literature, Ben Brandt (ARIZ) for information on specimens, to Andrew Clark and Ingrid Lin at US for locating and imaging the type specimen of Osmanthus floridanus, to Walter Judd for additions of data from FLAS, and to Dick Wunderlin and Walter Judd for their reviews. This study was supported by the Flora of North America Association in connection with providing the FNANM treatment of Cartrema.

## LITERATURE CITED

BONAP. 2012. North American Plant Atlas (US county-level species maps). Biota of North America Program, Chapel Hill, North Carolina. Last update: Oct 2011. <http//www bonap org/genera-listhtml> Accessed October 2012.
Chapman, A.W. 1889. Flora of the Southern United States (ed. 2). Second Supplement, 1892. American Book Company, New York.
Chapman, A.W. 1897. Flora of the Southern United States (ed. 3). Cambridge Botanical Supply Co., Cambridge, Massachusetts.
Christman, S.P. and W.S. Judd. 1990. Notes on plants endemic to Florida scrub. Florida Scientist 53: 52-73.
Cooper, J.G. 1859. On the distribution of the forests and trees of North America, with notes on its physical geography. Annual report of the Board of Regents of the Smithsonian Institution for the Year 1858: 246-280.
Green, P.S. 1958. A monographic revision of Osmanthus in Asia and America. Notes Roy. Bot. Gard. Edinburgh 22: 439-542.
Guo, S.-Q., M. Xiong, C.F. Ji, Z.-R. Zhang, D.-Z. Li, and Z.-Y. Zhang. 2011. Molecular phylogenetic reconstruction of Osmanthus Lour. (Oleaceae) and related genera based on three chloroplast intergenic spacers. Plant Syst. Evol. 294: 57-64.
Hardin, J.W. 1974. Studies of the southeastern United States flora. IV. Oleaceae. Sida 5: 274-285.
Huck, R.B., W.S. Judd, W.M. Whitten, J.D. Skean, R.P. Wunderlin, and K.R. DeLaney. 1989. A new Dicerandra (Labiatae) from the Lake Wales Ridge of Florida, with a cladistic analys is and discussion of endemism. Syst. Bot. 14: 197-213.
Johnson, L.A.S. 1957. A review of the family Oleaceae. Contr. New South Wales Natl. Herb. 2: 395-418.
Lundell, C.L. 1938. Six new trees and shrubs from tropical North America (a). Phytologia 1: 305309.

Nelson, G. 1994. The Trees of Florida: A Reference and Field Guide. Pineapple Press, Sarasota, Florida.
Nelson, G. 1996. The Shrubs and Woody Vines of Florida: A Reference and Field Guide. Pineapple Press, Sarasota, Florida.
Nelson, G. 2010. The Trees of Florida (ed. 2). Pincapple Press, Sarasota, Florida.
Rafinesque, C.S. 1838. Sylva Telluriana. Printed for the author and publisher, Philadelphia.

Rzedowski, J. and G.C. Rzedowski. 2004. Oleaceae. Flora del Bají y de Regiones Adyacentes. Fasc. 124: 1-37. Lhttp//www1 mecol edu mx/publicaciones/resumeness/FLOBA/Oleaceae 124 pdf>
Small, J.K. 1903. Flora of the Southeastern States. Published by the author, New York
Small, J.K. 1913. Flora of the Southeastern States (ed. 2). Published by the author, New York
Small, J.K. 1933. Manual of the Southeastern Flora. Univ. of North Carolina Press, Chapel Hill.
Spach, E. 1839. Histoire Naturelle des Végétaux. Phanérogames, Vol. 8. Boret, Libraire-Éditeur, Paris.
Standley, P.C. and L.O. Williams. 1969. Oleaceae. Flora of Guatemala. Fieldiana: Bot. 24 (Part 8, No. 4): 264-275.
Thomas, R.D. and C.M. Allen. 1998. Atlas of the Vascular Flora of Louisiana. Volume III: Dicotyledons, Fabaceae-Zygophyllaceae. Louisiana Dept. of Wildlife and Fisheries, Natural Heritage Program, Baton Rouge, Louisiana.
USDA, NRCS. 2012. The PLANTS Database. National Plant Data Team, Greensboro, North Carolina. /http//plants usda gov> Accessed February 2012.
Virginia Botanical Associates. 2012. Digital Atlas of the Virginia Flora. c/o Virginia Botanical Associates, Blacksburg. <http//www vaplantatlas org> Accessed October 2012.
Weakley, A.S, R.J. LeBlond, B.A. Sorrie, C.T. Witsell, L.D. Estes, K.G. Mathews, A. Ebihara, and K. Gandhi. 2011. New combinations, rank changes, and nomenclatural and taxonomic comments in the vascular flora of the southeastern United States. J. Bot. Res. Inst. Texas 5: 437-455.
Wunderlin, R.P. and B.F. Hansen. 2011. Guide to the Vascular Plants of Central Florida (ed. 3). Univ. Press of Florida, Gainesville.
Wunderlin, R.P. and B.F. Hansen. 2012. Atlas of Florida Vascular Plants. [S.M. Landry and K.N. Campbell (application development), Florida Center for Community Design and Research] Inst. for Systematic Botany, Univ. of South Florida, Tampa. \&http//www plantatlas usf edu/>

TABLE 1. Collections of Cartrema americana from western Mexico; those from ARIZ and NMC from SEINET, not seen.

Chihuahua. Mpio. Batopilas: 3 mi S of Loreto, Rio Mayo Region, along small stream, $5300 \mathrm{ft}, 24$ May 1986, Martin, Salmon, \& Sundt s.n. (ARIZ). Mpio. Temósachi: Nabogame, riverbank, 1800 m , 6 Dec 1987, Laferriére 1320 (ARIZ, TEX). Mpio. Ocampo: Cascada de Basaseachic, base of falls, ashy volcanic rocks, 17 Mar 1986, Donoghue s.n. (ARIZ); Basaseachic, S overview to Rancho San Lorenzo Hotel, Rio Mayo Region, sterile tuff and meadow, 1 Oct 1986, Martm s.n. (ARIZ); Parque Nacional Cascada de Basaseachic, at overlook called the "Divisadero" ca. 1 km airline S of Cascada, in pine-oak woods, steep N bank, 2100 m , shrub 1.5-2 m tall, 3 Oct 1986, Spellenberg, Soreng, Corral-Díaz, \& Lebgue 8700 (NMC); Parque Nacional "Cascada de Basaseachi," along the trail from Divisadero I to Divisidaro II, W slope, open, with pines, 2100 m , shrub ca. 1 m tall, 12 Nov 1989, Spellenberg, Corral-Diaz, Lebgue, \& Mahrt I0087 (BRIT, NMC). Jalisco. Mpio. Talpa de Allende: 6 km sobre la brecha a Talpa de Allende, entrando por la carr. Puerto Vallarta-El Tuito, bosque de pino-encino, 7 Mar 1992, Campos V. 4526 (TEX 2 sheets). Sonora. Mpio. Alamos: ca. Arroyo Verde, Upper Rio Cuchujaqui, base of a rhyolite cliff, 16 May 1990, Rondeau 90-32 (ARIZ). Mpio. Yécora: 21 km E of Yécora, Arroyo Los Pilares, upstream N of México 16, stream canyon forest, on slopes, 12 Mar 1996, Rema G. $96-74$ (ARIZ); 12.4 km NW of Yecora on road to La Trinidad, Arroyo Agua Blanca, Mesa Grande, pine-oak forest, 1700 m , common $1.5-2.5 \mathrm{~m}$ shrub, often with look-alike Garrya laurifolia, 29 Sep 1998, Van Devender 98-1905 (NMC, TEX).

TAble 2. Unequivocal identifications of Cartrema floridana (based on mature or maturing fruits).
Florida. Brevard Co.: Curtiss 5778 (USF). Citrus Co.: Cooley 6479 (USF); Mawhinney 22 (USF); Mawhinney 77 (USF). DeSoto Co.: E side of Cunningham Rd. ca. 2.6 mi N of State Rd. 70 and 0.5 mi E of Horse Creek, 24 Jul 1970, Shuey 2064 (FLAS). Hernando Co.: Davs s.n. (FLAS); Genelle \& Fleming 422 (USF); Godfrey 57248 (USF); vanHoek WW0012 (USF). Highlands Co.: Alcorn 201 (FLAS); Bishop \& Harris LJ0120(USF); Godfrey \& Reinert 61016 (BRIT, FLAS); Judd 5561 (FLAS, FTG); Kral 22891 (VDB); Kral 66203 (VDB); McFarlin 1114 (USF), 11115 (USF); Orzell \& Bridges 15813 (FLAS, FTG, USF); Skean 2151 (FLAS); vanHoek \& Wargo 782 (USF). Hillsborough Co.: Bowman s.n. (USF); Eilers s.n. (USF). Indian River Co.: Kessler s.n. (USF). Lake Co.: Ward \& Will 3050 (FLAS, FSU, USF). Manatee Co.: Becker WCO456 (USF); Gandy LMO185 (USF). Marion Co.: Thorne 57971 (USF). Orange Co.: Christman 1883 (FLAS), Christman 2139 (FLAS), Christman 2140 (FLAS); Wunderlin 5645 (USF); Wunderlin 5327 (USF); Wunderlin 5702 (USF). Osceola Co.: Baltzell s.n. (FLAS); Chrisiman 655 (FLAS), Christman 656 (USF); Grey s.n. (USF); Huck 4171 (FLAS, USF); Kral 64638 (TEX, VDB); Schallert 20855 (SMU). Pasco Co.: vanHoek \& Petty WB252 (USF). Pinellas Co.: Petty s.n. (USF); Ray et al. 10932 (SMU, USF); Ray et al. 10964 (SMU, USF); Thorne 48334 (USF). Polk Co.: Christman 57 (FLAS), Christman 1039 (FLAS), Christman 2017 (USF), Christman 2084 (FLAS), Conard s.n. (FLAS); Corogin TC192 (FLAS); DeLaney 1786 (USF); Lakela 24568 (FLAS, USF); Orzell \& Bridges 16621 (FTG); Small s.n. (USF). Sarasota Co.: Franck 889 (USF); Kruea s.n. (FLAS); Rowe 7290 (USF). Seminole Co.: Ray 10718 (USF). Sumter Co.: Kral 7848 (FLAS, USF). Volusia Co.: Kunzer 439 (USF).

# NOTES ON THE GARRYA OVATA COMPLEX (GARRYACEAE) 

Guy L. Nesom<br>2925 Hartwood Drive<br>Fort Worth, Texas 76109<br>guynesom@sbcglobal net


#### Abstract

Each of the four subspecies of Garrya ovata sensu Dahling 1958 is recognized here at specific rank: Garrya ovata Benth., Garrya lindheimerı Torrey, Garrya goldmanii Woot. \& Standl., and Garrya mexicana (Dahling) Nesom, comb. nov. Garrya lindheimert and G. goldmanii occur in the USA and Mexico; the other two are endemic to Mexico. A lectotype is designated for Garrya lindhermeri.


KEY WORDS: Garrya ovata, Garryaceae, USA, Mexico

Garrya ovata Benth. was treated by Dahling (1958) as comprising four subspecies. All four taxa are treated here at specific rank, as G. goldmanii, G. lindheimert, G. mexicana, and G. ovata in the strict sense. Morphological differences among these four Garrya species appear to be primarily in leaf morphology and vestiture. Rationale for their treatment at specific rank emphasizes aspects of geography, particularly these: (a) G. mexicana is geographically separate from the other three varieties; (b) G. lindhermeri and G. goldmanit have non-overlapping ranges, habitats, and morphologies in Texas; intergradation occurs where they are sympatric in Coahuila, but even where they co-occur they remain distinct for the most part; (c) typical G. ovata is sympatric with $G$. lindhermeri within southern Nuevo León, but they apparently do not intergrade.

The phylogenetic analysis of ITS data by Burge (2011) found that Garrya lindhermern and $G$. mexicana show a sister relationship, but G. ovata and G. goldmanit were not included in the study. The G. ovata complex is part of Garrya subg. Fadyenia - of the other two Garrya species in northeastern Mexico and sympatric with the G. ovata complex, G. glaberrima Wang. is in subg. Fadyenia, G. laurifolia subsp. macrophylla (Benth.) Dahling in subg. Garrya. Neither species is known to hybridize with taxa of the G. ovata complex.

## KEY TO THE SPECIES

1. Leaf blades $16-40(-55) \times 7-25 \mathrm{~mm}$, densely and persistently tomentulose on both surfaces; petioles $3-8 \mathrm{~mm}$ long; leaf margins distinctly undulate, with a more or less muriculate-roughened callose rim especially above the middle 1. Garrya goldmanii 1. Leaf blades $30-85(-95) \times 15-55 \mathrm{~mm}$, glabrous or glabrate to glabrescent adaxially, persistently hairy abaxially; petioles (5-)7-16(-20) mm long; leaf margins flat to slightly undulate, smooth (without a muriculate-roughened callose rim).
2. Vestiture of abaxial leaf surfaces usually densely (less commonly sparsely) sericeous to strigose or strigillose with wavy-straight hairs oriented in a single direction; adaxial surfaces highly glossy, with strongly reticulate-raised venation
3. Garrya ovata 2. Vestiture of abaxial leaf surfaces either densely and persistently puberulent with coiling to recurved hairs -or- sparsely villous with short wavy-straight to curving hairs to glabrescent or glabrous, hairs irregularly oriented; adaxial surfaces glossy to dull, with slightly reticulate-raised venation.
4. Abaxial leaf surfaces densely and persistently puberulent with tightly coiling to strongly recurved hairs $\qquad$
$\qquad$

$$
0
$$ 3. Abaxial leaf surfaces sparsely villous with short wavy-straight to cur or glabrous $\qquad$ 3. Garrya mexicana

1. Garrya goldmanii Woot. \& Standl., Contr. U.S. Natl. Herb. 16: 157. 1913. Garrya ovata subsp. goldmanii (Woot. \& Standl.) Dahling, Contr. Gray Herb. 209: 83. 1978. Garrya ovata var. goldmanii (Woot. \& Standl.) B.L. Turner, Atlas Vasc. Pl. Texas, 7. 2003. Type: USA. New Mexico. Eddy Co.: limestone ledges near Queen, ca. $1770 \mathrm{~m}, 31$ Jul 1909, E.O. Wooton s.n. (holotype: US digital image!; isotype: US digital image!).

In the protologue, Wooton and Standley made this observation: "This is undoubtedly closely related to [Garrya ovata] of central Mexico, but it differs in its lower growth, and small, narrow, more pubescent, crispate leaves. The leaves are much less conspicuously veined than in G. ovata and the fruit is much smaller."

A collection from Veracruz, Mexico, in the arid, karstic hills of Cofre de Perote, has been identified as Garrya ovata subsp. goldmanii (G. Castillo-Campos et al. 1998), but this locality is far disjunct from the range of G. goldmanii, seemingly part of that of G. ovata as mapped here (see Map 3); the identity needs to be studied in a larger context.


Map 1. Distribution of Garrya goldmanii and G. lindheimeri, based primarily on collections at TEX-LL. Records for Dona Ana, Otero, and Sierra counties, New Mexico, are from NMC and UNM, via SEINET.
2. Garrya lindheimeri Torrey in War Department [U.S.], Pacif. Railr. Rep. 4(5): 136. 1857. Garrya ovata var. Indheimert (Torrey) J.M. Coulter \& W.H. Evans, Bot. Gaz. 15: 94. 1890. Garrya ovata subsp. Indheimeri (Torrey) Dahling, Contr. Gray Herb. 209: 81. 1978. Lectotype (designated here): USA. Texas. In expedition from western Texas to El Paso, New Mexico, May 1849-Oct 1849, C. Wright 633 (NY digital image!; isolectotypes: GH 4 specimens).

The label of the NY sheet is annotated, apparently in Torrey's hand, as Garrya lindhemen Torr The protologue also noted that he had seen a Lindhemer collection, 2 sheets of this are at GH (Lindhermer 122, May 1846) and presumably one also exists at NY

In Texas, Garrya lindheimeri occurs on the Edwards Plateau and adjacent Lampasas Cut Plain and within the state is completely separated from the range of G. goldmanit (Map 1). Dahling identified and mapped it as subsp. Indhermert, geographically distinct in Texas but then sympatric with subsp. goldmanil southward through Coahuila. Correll and Johnston (1970) treated G. lindhemeri at specific rank, describing it as endemic to the Edwards Plateau and contrasting it in Texas with subsp. goldmanii. Diggs et al. (1999) treated it as G. ovata subsp. Indheimeri, without comment except for noting that it is a Texas endemic restricted to the Edwards Plateau and Lampasas Cut Plain.

In the assessment here, Garrya lndhemert and G. goldmanin are sympatric in parts of Coahuila, particularly in the Sierra de la Madera, Sierra de San Marcos, and Sierra del Pino. For the most part the two species retain their morphological integrity and many collections of both species in typical form have been made in these mountains, but intermediates suggest that hybridization and perhaps introgression have occurred. Garrya goldmanit occurs in more xeric habitats, as indicated by the differences in distribution and ecology in Texas, and the ecological distinction also apparently exists in Coahuila. Their distinction where sympatric implies a degree of reproductive isolation and provides rationale for maintaining them both at specific rank

The range of Garrya lindheimert continues from Coahuila into south-central Nuevo León. The identity of a collection from northern Nuevo León cited and mapped by Dahling as subsp. Indhetmert is confirmed here as G. Indhemeri: Lampazos [de Naranjo], Salvador Resendez, 26 Jun 1937, Edwards 360 (TEX!). This collection apparently was made at the north end of the Sierra Mamulique. Collections from the Sierra Gomas region slightly to the south of Lampazos all are G. mextcana (Map 1).

A collection from Sierra Rica in east-central Chihuahua, close to the Texas border, is mapped here as Garrya lindhemeri but the vestiture is atypical - abaxial leaf hairs are not tightly coiling but instead loosely wavy and longer. The leaves are relatively large and smooth-margined, thus it is not a variant of G. goldmantl, which occurs in typical form in the Sierra Rica. Chihuahua. Canyon in N face of Sierra Rica, S of Rancho La Consolación, Quercus, Ptelea, Garrya, Juglans, Sageretia, 3 May 1973, Johnston et al. 10771 (TEX).
3. Garrya mexicana (Dahling) Nesom, comb. nov. Garrya ovata subsp. mextcana Dahling, Contr. Gray Herb. 209: 84. 1978. Type: MEXICO. Nuevo León. Small trees on rocky mountain slope above Horse Tail Waterfalls, well above the road which is above Horse Tail Falls, E1 Cercado, 11 Feb 1972, G.V. Dahling 1180 (holotype: GH; isotype: TEX! digital image!).

Garrya mextcana is endemic to montane areas of north-central Nuevo León, where it is morphologically distinct and geographically disjunct from the other three taxa of the G. ovata complex. Its sparse abaxial leaf vestiture of relatively straight hairs contrasts sharply with that of $G$. lindhermert, and leaves of $G$. mexicana are the largest of the species group (largest leaves on a plant are $5-8.5 \mathrm{~cm} \times 2.5-5 \mathrm{~cm}$ ).

Specumens examuned fom TEXLL MEXICO Nuevo Leon Near tops of the mins surrounding Monterrey, about a $1 / 2$ days clumb, steep slopes, Feb 1972, Daiding 128 (TEX), Mpio de Valla Santiago, Cafion Guajuco, Rancho V1sa Hermosa, 24 Jun 1935, Mueller 2031 (TEX), Mip 10 Bustamante, Starra Clomas, Bustamante Canyon, N exposure, in a large arroyo on limestone derived sols, Quercw Vauguelma Pielea palm assconation, $1100 \mathrm{~m}, 13$ Aug 1989 , Potterson 626 (TEX), Mpıo Villaldama, Sierra Gomas, in Canyon El Alamo, N exposed rearian communty of Quercia Ostrya Acer on limestone derved sotl, $1100 \mathrm{~m}, 15$ Alle 1998, Patterson 6720 (TEX), Sterra Madre, near Monteref, 17 Aug 1903, Pruggie 11810 (LL, TEX), Monterrey, at pont tarthest east on Chupinque road in thom oak ecotonal area, Feb 1961. Sind 450 (TEX), Mpio Bustamante, Sterta Lampazos, Rancho Minas Viejas, bosque de Quercis granesis, Tika, Acer, Carpaus, and Myrocpermas. $13001400 \mathrm{~m}, 2 \mathrm{May}$ 2001. Villarreal 9709 (TEX)

Dahling cited duplyates for some of these TEX LL collections as well as other collections from the vicunty of Montercy


Mse 2 Distributicn of Gorrya neacana based on collecte cons at TEX LL
4. Garrya ovata Benth., Pl. Hartw., 14. 1839. Fadyenia ovata (Benth.) Endl., Gen. Pl., Suppl. 4: 38. 1847[1848]. TyPE: MEXICO. [Guanajuato]. Gigante and on the Bufa Guanajuato [near the city of Guanajuato], 1839, K.T. Hartweg 80 (holotype: K; isotypes: BM digital image!, E digital image!, GH, LD digital image!, NY digital image!).

The BM sheet has these collection data: "In rapestibus sterilibus in Monte Gigante alt 9000 ped et in Monte Bufa prope Guanajuato." The protologue has no information about the locality.

Typical Garrya ovata is the most widespread and southern taxon of the group. It is known from Chihuahua, southern Coahuila, Guanajuato, Hidalgo, Jalisco, Puebla, Querétaro, San Luis Potosí, and Zacatecas (Dahling 1958; Carranza González 1996; specimens at TEX-LL; from Hidalgo, a collection from XAL fide REMIB). Two collections cited by Dahling from Chihuahua (not seen in present study) need to be reexamined. Durango is cited as part of the range of the species by Carranza González (1996), but I have not seen a voucher or voucher citation. A collection from Sierra Mojada in western Coahuila is cited by Dahling; a collection from Sierra Rica in northeastern Chihuahua might be interpreted as G. ovata (see citation above, under G. lindheimeri).


Map 3. Distribution of Garrya ovata, based primarily on collections seen at TEX-LL. Records from Guanajuato and Queretaro are added from Carranza (1996); the one from Hidalgo and two from Puebla are added from XAL (fide REMIB). The dotted circle in Veracruz is the locality of the collection identified as $G$. ovata subsp. goldmanii by Castillo-Campos et al. (1998). Presence in "?" regions is not unequivocally established (see text for comments).

Dahling cited two collections from central Nuevo León as typical Garrya ovata, but he did not map them or any others from that state as typical G. ovata. Nuevo León plants identified and mapped here as G. ovata may prove to represent two (or more) separate entities and to be distinct from the typical expression. Fruits in Nuevo León are glabrous, while in the southern segment (typical $G$. ovata) fruits consistently are hairy.

Plants from high elevation localities (ca. 2800 to 3700 meters) in Coahuila and Nuevo León (Sierra La Marta, Sierra La Viga, Sierra Coahuilon, Sierra Arteaga; Cerro Potosí, Cerro Peña Nevada) tend to have abaxial leaf surfaces densely sericeous with relatively long, wavy hairs and adaxial surfaces with strongly reticulate-raised venation. On gypsum outcrops at lower elevations, abaxial vestiture tends to be strigillose with shorter, straight hairs and adaxial surfaces have less strongly raised venation. Field study of population variation and habitat differentiation would be useful toward reaching a better understanding of the variation patterns.

## ACKNOWLEDGEMENTS

I'm grateful to TEX-LL staff for their hospitality during study there. This study was supported by the Flora of North America Association in connection with providing the FNANM treatment of Garrya.

## LITERATURE CITED

Burge, D.O. 2011. Molecular phylogenetics of Garrya (Garryaceae). Madroño 58: 249-255.
Carranza González, E. 1996. Garryaceae. Flora del Bajío y de Regiones Adyacentes. Fasc. 9: 1-16. Shttp//wwwl mecol edu mx/publicaciones/resumeness/FLOBA/Flora\%2049 pdf>
Castillo-Campos, G., A.P. Vovides, and S. Avenaño Reyes. 1998. Garrya ovata Benth. subsp. goldmanit (Wooton \& Standl.) Dahling (Garryaceae) and Beschorneria calcicola (GarcíaMendoza (Agavaceae): Two new reports from Veracruz, Mexico. Polibotánica 8: 65-68.
Correll, D.S. and M.C. Johnston. 1970. Manual of the Vascular Plants of Texas. Texas Research Foundation, Renner, Texas.
Dahling, G.V. 1978. Systematics and evolution of Garrya. Contr. Gray Herb. 209: 1-104.
Diggs, G.M., B.L. Lipscomb, and R.J. O'Kennon. 1999. Illustrated Flora of North Central Texas. Sida Bot. Misc. 16.

# SYNOPSIS OF LEUCOSYRIS, INCLUDING SYNONYMOUS ARIDA (COMPOSITAE: ASTEREAE) 

JOHN F. PRUSKI<br>Missourı Botanical Garden<br>P.O Box 299<br>St Louis, Missouri 63166<br>Ronald L. Hartman<br>Department of Botany<br>University of Wyoming<br>Laramie, Wyoming 82070


#### Abstract

The genus Leucosyris is revived, reviewed, and expanded to include nine species from the southwestern USA and northern Mexico. Arida is reduced to synonymy of Leucosyris, and eight new combinations in Leucosyris are proposed.


KEY WORDS: Arida, Asteraceae, Astereae, Compositae, Leucosyrts, Machaeranthera, Psilacts.

A generic review of the mostly radiate-capitulate Machaeranthera Nees alliance (Morgan and Hartman 2003) recognized the aptly named Artda (R.L. Hartm.) D.R. Morgan \& R.L. Hartm. (Compositae: Astereae: Machaerantherinae), but did not emphasize that included within Arida was the type (Linosyris carnosa A. Gray) of Leucosyris Greene ( 5 Aug 1897). Here, we emend that work by reducing Arida to taxonomic synonymy of a reinstated Leucosyrts, a name which has priority over Arida by more than a century. We also provide a synopsis of Leucosyris and its nine species, abbreviated synonymy and typology, and eight new combinations in Leucosyris. As an aside, the illegitimate later homonym Linosyrus Cass. (1825; non Linosyris Ludw., 1757, Santalaceae) is unavailable nomenclaturally and not congeneric taxonomically with our plants, but rather the Cassini name is typified by European material. It appears that the available name Leucosyris has often stood in the shadows, this perhaps a by-product of its type being described in Linosyris.

Machaeranthera was described by Nees (1832) and accepted by Candolle (1836) and Gray (1852, 1853). Bentham and Hooker (1873) reduced Machaeranthera to Aster sect. Machaeranthera (Nees) Benth. \& Hook. f., in which Gray (1884) recognized seven species. Machaeranthera was reinstated as a genus by Greene (1896), and Greene (1899) recognized about two dozen species, these mostly taprooted and blue-rayed. Shinners (1950) expanded Machaeranthera to include a few yellow-rayed species, but these yellow-rayed species were excluded from Machaeranthera by Cronquist and Keck (1957). Hartman (1976, 1990) reviewed Machaeranthera and recognized 36-38 species spread unequally among two subgenera and eight sections. Most of the species recognized by Hartman (1976, 1990) as Machaeranthera (i.e., M. subg. Machaeranthera) were characterized by having taproots, bristled- or pinnatilobed leaves, ray florets with blue to less commonly white corollas, and base chromosome numbers of $x=4,5$, or 6 , but the handful of species placed in $M$. subg. Sideranthus were yellow-rayed. Hartman $(1976,1990)$ recognized only two species of M. sect. Machaeranthera, and the larger sections he recognized included sect. Blepharodon (with nine species) and the newly described blue-rayed sect. Arida (with eight species).

At about the same time that Greene $(1896,1899)$ resurrected Machaeranthera, he (Greene 1897a) described Leucosyris to accommodate a single discoid species. Leucosyris (or its type, Linosyris carnosa, albeit often as Aster intricatus) was subsequently recognized as including only

Leucosyris (Chloracantha) spinosa (Benth.) Greene by Wooton and Standley (1915), but treated within Aster by Hall (1907), Blake (1925, 1942), Jepson (1925), Tidestrom and Kittell (1941), Munz and Keck (1959), Ferris (1960), Shreve and Wiggins (1964), Munz (1974), Jones (1980), and Semple and Brouillet (1980). More recently, Leucosyris was recognized as monotypic by Sundberg (1986), with two species by Gandhi and Thomas (1989), L. carnosa was placed within Machaeranthera by Hartman (1976, 1990), Nesom (1989), Nesom et al. (1991), Keil et al. (1993), and Felger (2000), but Leucosyris was reinstated by Cronquist (1994), again as monotypic.

Morgan and Hartman (2003) summarized the recent dismantling of Machaeranthera, which they recognized in the narrow sense as containing only the two species of $M$. sect. Machaeranthera sensu Hartman (1976, 1990). Most former Machaeranthera species were treated by Morgan (1993) and Morgan and Hartman (2003) variously among resurrected Dieteria Nutt. ( $x=4 ; 3 \mathrm{spp}$.), Psilactis A. Gray ( $x=3,4,9 ; 6 \mathrm{spp}$ ), Xanthsma DC. $(x=2,3,4,8 ; 17 \mathrm{spp}$. , including yellow-rayed subg. Sideranthus as well as sect. Blepharodon), and the newly elevated Arida. Nesom and Robinson (2007) placed most of these genera into subtribe Machaerantherinae, but by non-bristle tipped leaf teeth and chromosome number they treated Pstlactis as Symphyotrichinae. We recognize Leucosyris ( $x=5 ; 9 \mathrm{spp}$.) in the same sense that Morgan and Hartman (2003), Hartman and Bogler (2006), and Nesom and Robinson (2007) circumscribed Arida, despite the discrepancies between cpDNA and nrDNA studies ( $n r$ DNA studies place L. parviflora and L. riparia in different subclades), which Morgan and Hartman (2003) attributed to reticulate evolution.

LEUCOSYRIS Greene, Fl. Francisc. 384. (5 Aug) 1897. Type: Linosyris carnosa A. Gray ( $\equiv$ Leucosyrts carnosa (A. Gray) Greene).
Machaeranthera sect. Arida R.L. Hartm., Phytologia 68: 446. 1990. Arida (R.L. Hartm.) D.R. Morgan \& R.L. Hartm., Sida 20: 1410. 2003. Type: Machaeranthera arida B.L. Turner \& D.B. Horne ( $\equiv$ Leucosyris arida (B.L. Turner \& D.B. Horne) Pruski \& R.L. Hartm.).

Annual or biennial herbs to short-lived perennial weak subshrubs $10-80(-150) \mathrm{cm}$ tall, usually taprooted, infrequently rhizomatous; stems usually ascending to erect; herbage (when glandular) usually with short stipitate-glands. Leaves alternate, the basal (often withered) often petiolate, the cauline sessile and commonly clasping, entire to bipinnatifid, lobes or teeth often hyaline bristle-tipped, never sharply bristle-tipped, surfaces glabrous or pubescent, sometimes stipitate-glandular. Capitulescence corymbiform to open-cymose, capitula monocephalous on branchlets; peduncles often with bracteoles loosely grading into phyllaries. Capitula radiate (heterochromous) or infrequently discoid; involucre turbinate to hemispherical; phyllaries mostly $40+$, imbricate, graduated, $3-8$-seriate, persistent, linear-lanceolate to narrowly oblong, stiff, base usually indurate and stramineous, apex often with dark green to purplish mid-zone or more commonly patch, abaxial surface glabrous to pubescent or glandular, receptacle epaleate, convex, somewhat alveolate. Ray florets $(0$ or $) 8-50+$, pistillate, 1 -seriate; corolla limb usually pale blue to dark blue (infrequently white), usually drying brownish-yellow, often coiling when old or pressed. Disk florets (5-) $10-100+$, bisexual; corolla gradually narrow-funnelform, 5 -lobed, yellow, lobes triangular; anthers pale, appendage lanceolate; style branch appendage narrowly triangular, papillose. Cypselae weakly dimorphic, those of the rays subtriquetrous, those of the rays disks subcompressed, narrowly oblong, stramineous to pale brownish, faces 7-13-striatulate, sericeous, distal trichomes of disk cypselae often reaching to pappus bristle base; pappus of many stramineous filiform capillary scabrid bristles, bristles contiguous basally, indistinctly ca. 2-seriate, disks always pappose, rays pappose or epappose. $x=5$.

Leucosyris as treated here in the expanded sense basically may be thought of as a segregate of Machaeranthera. Indeed, revisionary treatments of three of its species by Turner and Horne (1964) as sect. Psilactis and of a fourth (L. blepharophylla as M. gypsitherma) by Nesom et al. (1990) as
sect. Arida were each under the umbrella of Machaeranthera. The base chromosome number of Leucosyris is $x=5$ and its species mostly have been reported under names in Machaeranthera (e.g., Arnold and Jackson 1978 and Turner et al. 1975). However, Machaeranthera in the strict sense differs from Leucosyris by a base chromosome number of $x=4$ and by sharply bristle-tipped leaf lobes. Genera in which the basionyms of our nine recognized species were described include Arida (1 sp.), Aster ( 2 spp .), Linosyris ( 1 sp .), Machaeranthera ( 3 spp .), and Psilactis ( 2 spp .). Attempted lectotypifications of a few names based on sheets taken here as Asa Gray holotypes have been hazarded elsewhere, but none affect any species circumscriptions. The nine species of Leucosyris are mostly summer- or late-blooming and occur from sea-level to about 2200 meters elevation in salt flats, scrub lands, dunes, deserts, sulphur pools, limestone hills, cliff faces, or less commonly along streamsides or in flood plains of the southwestern USA and northern Mexico, with only L. riparia (Kunth) Pruski \& R.L. Hartm occurring as far south as Durango and Zacatecas (and perhaps Guanajuato), Mexico, near the Tropic of Cancer.

Etymology: The name Leucosyris Greene is derived from Linosyrus Cass., which is typified by Chrysocoma linosyris L. (now Crintaria linosyris (L.) Less.). The Linnaean epithet alludes to the resemblance of the linear-leaved composite to the subsucculent-leaved European-African Santalaceae genus Osyris L. Indeed, the protologue of C. linosyris cited the pre-Linnaean 1601 Clusius usage of Osyrıs austriaca as an original element of the composite. Jackson (1987) and Hyam and Pankhurst (1995) noted that Osyrts (used by Bauhin, Dioscorides, Pliny, van Royen, etc.) is derived from the Greek ozos, in reference to the dense branching of the Santalaceae genus. The name Leucosyris, derived from ozos, is thus not a homonym of Leucoseris Nutt., wherein the suffix seris (Brown 1956) is a Latin word for "a kind of endive."

## KEY TO SPECIES OF LEUCOSYRIS


2. Ray cypselae pappose.
3. Cauline leaves entire, subsucculent.
4. Caespitose perennials; leaf margins $8-20$-spinulose-ciliate, spinules $0.4-1.5 \mathrm{~mm}$ long; involucres $5-8 \mathrm{~mm}$ diam. ...................................................... Leucosyris blepharophylla
4. Annual leaf-stemmed herbs; leaf margins sometimes soft-ciliate; involucres $10-16 \mathrm{~mm}$ diam.
3. Cauline leaves (mostly) pinnatilobed to 2-pinnatifid, chartaceous.
5. Receptacles $2-7 \mathrm{~mm}$ diam.; phyllary apices mostly appressed

Leucosyris parviflora (in part)
5. Receptacles $8-11 \mathrm{~mm}$ diam.; phyllary apices spreading to reflexed ......Leucosyris turneri
2. Ray cypselae usually epappose.
6. Basal rosette persistent
6. Basal leaves usually absent at anthesis.
7. Herbage densely stipitate-glandular (at least some cauline leaves pinnatilobed).
8. Herbage heterotrichous; involucres $3.5-6 \times 5-9 \mathrm{~mm}$; disk pappus bristles ca. 2 mm long, about half as long as disk corollas $\qquad$ Leucosyris arida
8. Herbage homotrichous; involucres $6-8 \times 10-15 \mathrm{~mm}$; disk pappus bristles $3-3.5 \mathrm{~mm}$ long, more than half as long as disk corollas Leucosyris crispa
7. Herbage essentially glabrous to sparsely glandular.
9. Cauline leaves entire to shallow-toothed $\qquad$ Leucosyris coulteri 9. Cauline leaves usually pinnatilobed to 2-pinnatifid ...... Leucosyris parviflora (in part)

LEUCOSYRIS ARIDA (B.L. Turner \& D.B. Horne) Pruski \& R.L. Hartm., comb. nov. Machaeranthera arida B.L. Turner \& D.B. Horne, Brittonia 16: 324. 1964. Machaeranthera coulteri var. arida (B.L. Turner \& D.B. Horne) B.L. Turner, Phytologia 61: 144. 1986. Type: USA. California. San Bernardino Co.: Mesquite Valley, 15 May 1941, Wolf 10635 (holotype: DS; isotypes: CAS, NY, RSA, TEX-2, UC). Figure 1.

Artda arizontca (R.C. Jacks. \& R.R. Johnson) D.R. Morgan \& R.L. Hartm.; Machaeranthera ammophila Reveal; Machaeranthera arizonica R.C. Jacks. \& R.R. Johnson

Annual low-rounded taprooted herbs $5-30(-40) \mathrm{cm}$ tall; stems $1(-6)$, moderately branched and leafy throughout, branches spreading-ascending; herbage densely short-stipitate-glandular, sometimes heterotrichous and also sparsely pilose-villous. Leaves: basal usually absent at anthesis; cauline $1-5 \mathrm{~cm}$ long, oblong in outline, margins entire to more commonly at least some pinnatilobed, apical mucro of lobes and teeth (usually 2-5 per side) about as long as or slightly longer than the stipitate-glands. Capitula radiate; involucre 3.5-6 $\times 5-9 \mathrm{~mm}$, hemispherical; phyllaries 2-4-seriate. Ray florets $20-40$; corolla limb 5-8 mm long. Disk florets $28-60$; corolla $4-6 \mathrm{~mm}$ long. Cypselae $1.4-2 \mathrm{~mm}$ long, rays epappose, disk pappus bristles ca. 2 mm long, about half as long as disk corollas. $2 n=10$.

Distribution. USA (Arizona, California, Nevada) and Mexico (Sonora); $0-1000$ meters elevation.

Turner and Horne (1964) and Munz (1974) noted that the name Psilactss coulteri was often misapplied to Leucosyris arida (e.g., Hall 1907; Munz and Keck 1959; Ferris 1960). The name Arida arizonica, based on the senior synonym, was used by Morgan and Hartman (2003) for this taxon. Line drawings of Leucosyrts arida were provided by Ferris (1960, as Psilactis coultert), Keil et al. (1993, as M. arida), Felger (2000, as M. coulterl var. arida), Hartman and Bogler (2006, as Arida arizonica), and Keil et al. (2012, as A. arizonica).

LEUCOSYRIS BLEPHAROPHYLLA (A. Gray) Pruski \& R.L. Hartm., comb. nov. Aster blepharophyllus A. Gray, Smithsonian Contr. Knowl. [Plantae Wrightianae II] 5(6): 77. 1853. Machaeranthera gypsitherma Nesom, Vorobik \& Hartman, Syst. Bot. 15: 638. 1990 (non M. blephariphylla (A. Gray) Shinners, basionym in Haplopappus). Arida blepharophylla (A. Gray) D.R. Morgan \& R.L. Hartm., Sida 20: 1413. 2003. Type: USA. New Mexico. Hidalgo Co.: Las Playas Springs, 7 Oct 1851, Wright 1164 (holotype: GH; isotypes, CGE, GH, MO, NY, P, PH, US). Figure 2.

Caespitose perennial rhizomatous herbs $4-35 \mathrm{~cm}$ tall; stems 4-12+ from woody crown, sparingly branched in distal half, branchlets somewhat fastigiate, erect-ascending; herbage glabrous or nearly so. Leaves dimorphic, basal and cauline; basal present at anthesis, in compact persistent rosette, sessile, $1-4 \mathrm{~cm}$ long, linear-spatulate, subsucculent, base clasping, margins entire, 8-20-spinulose-ciliate, spinules $0.4-1.5 \mathrm{~mm}$ long, subequal, sometimes as long as blade width; cauline abruptly reduced and scale-like. Capitula radiate; involucre 7-10 $\times 5-8 \mathrm{~mm}$, turbinate; phyllaries 46 -seriate; receptacle often noticeable alveolate with lacerate borders to 0.5 mm tall. Ray florets 8 14; corolla limb $8-10 \mathrm{~mm}$ long. Disk florets $12-20+$; corolla $4.5-5.5 \mathrm{~mm}$ long. Cypselae 1.7-2.4 mm long, rays pappose. $2 n=10$.


Figure 1. Representative specimen of Leucosyris arida (B.L. Turner \& D.B. Horne) Pruski \& R.L. Hartm. (Parish \& Parish 1252, MO; this collection was cited by Hall 1907 as Psilactis coulteri).


Figure 2. Isotype of Aster blepharophyllus A. Gray ( $\equiv$ Leucosyris blepharophylla (A. Gray) Pruski \& R.L. Hartm.). (Wright 1164, MO).

Distribution. USA (New Mexico, Texas) and Mexico (Chihuahua); 1200-2200 meters elevation.

Leucosyrts blepharophylla was described by Gray (1853) in Aster sect. Oxytripoltum (DC.) Torr. \& A. Gray. The orthography of the epithet is retained as it may refer to the dense cloaking leaf rosettes or to leaves resembling sect. Blepharodon, although as likely it may refer to the leaves with marginal leaf spinules similar to those of African Blepharis Juss. (Acanthaceae). Nesom et al. (1990) provided a line drawing under the name of Machaeranthera gypsitherma.

LEUCOSYRIS CARNOSA (A. Gray) Greene, Fl. Francisc. 384. (5 Aug) 1897. Linosyris carnosa A. Gray, Smithsonian Contr. Knowl. [Plantae Wrightianae II] 5(6): 80. 1853. Brgelowia carnosa (A. Gray) Benth. \& Hook. f., Gen. Pl. 2: 255. 1873. Aster carnosus (A. Gray) A. Gray ex Hemsl., Biol. Cent.-Amer., Bot. 2: 120. 1881 (non Gilib. 1781). Machaeranthera carnosa (A. Gray) G.L. Nesom, Phytologia 67: 439. 1989. Arida carnosa (A. Gray) D.R. Morgan \& R.L. Hartm., Sida 20: 1413. 2003. Type: USA. Arizona. Cochise Co.: south of Willcox Playa [fide Sundberg 1986; protologue locality as "west of the Chiricahua Mts., Sonora" and collection number originally 489], 6 Sep 1851, Wrught 1187 (holotype: GH; isotypes: GH, MO, PH, US-2). Figure 3.

Aster intricatus (A. Gray) S.F. Blake; Btgelowia intricata A. Gray, Leucosyris carnosa var. intricata (A. Gray) Cronquist; Machaeranthera carnosa var. intricata (A. Gray) Nesom

Sparsely leafy to nearly leafless wiry-reedy or rounded and tumbleweed-like perennial rhizomatous subshrubby herbs $0.3-1(-1.4) \mathrm{m}$ tall; stems 1 -several, moderately to intricately divaricate-branched throughout or only so somewhat above base, stiff, inconspicuously leafy distally, distal branches sometimes nearly fastigiate, ascending with branches and branchlets spreading, pale green; herbage glabrous and leaves glaucous. Leaves: basal absent at anthesis; cauline mostly distal, often quickly deciduous, spreading to nearly appressed, inconspicuous, well-spaced and scale-like, $0.3-2 \mathrm{~cm}$ long, narrowly lanceolate or narrowly oblanceolate, subsucculent, margins entire, apex apiculate. Capitula discoid; involucre 5-8 $\times 4-7 \mathrm{~mm}$, turbinate to turbinate-campanulate; phyllaries strongly graduated, 4-6-seriate, dark mid-zone often narrow, some subcuspidate. Ray florets absent. Disk florets (5-)10-30(-40); corolla 5-7mm long. Cypselae 2.5-4 mm long, pappose. $2 n=10$.

Distribution. USA (California, Arizona, Nevada) and Mexico (Sonora), often growing in otherwise basically barren ground; $100-1600$ meters elevation.

Gray $(1852,1853)$ treated eight species in Linosyris (20+ American species have at one time or another been placed in Linosyris), described ours as "L. 3 carnosa," and mentioned that it looked like "a Tripolum without rays." Leucosyris carnosa (the generitype), especially the nearly leafless Bigelowia intricata phase, brings to mind leafless Chloracantha spinosa, also placed by Greene (1897b) into Leucosyris. However, the more widespread Chloracantha Nesom et al. ranges from Louisiana to California and south from Mexico and Guatemala to Costa Rica and western Panama, and differs from Leucosyris by a base chromosome number of $x=9$, thorny stems, short-radiate capitula, and glabrous cypselae. Line drawings of Leucosyris carnosa were provided by Ferris (1960, as Aster intricatus), Sundberg (1986, as L. carnosa), Cronquist (1994, as L. carnosa var. intricata), and Keil et al. (2012, as Arida carnosa).


Figure 3. Isotype of Linosyris carnosa A. Gray ( $=$ Leucosyris carnosa (A. Gray) Greene). (Wright 1187, MO).


Figure 4. Representative specimen of Leucosyris crispa (Brandegee) Pruski \& R.L. Hartm. (Hartman et al. 3524, MO).

LEUCOSYRIS COULTERI (A. Gray) Pruski \& R.L. Hartm., comb, nov. Psilactis coulteri A. Gray, Mem. Amer. Acad. Arts, n.s. [Plantae Fendlerianae] 4(1): 72. 1849. Machaeranthera coulteri (A. Gray) B.L. Turner \& D.B. Horne, Brittonia 16: 322. 1964. Arida coulteri (A. Gray) D.R. Morgan \& R.L. Hartm., Sida 20: 1414. 2003. TyPE: MEXICO. Sonora. Probably near the coast by Guaymas, s.d., Coulter 295 (holotype: GH p.p., right-hand side; mounted on the same sheet towards the left is Gregg 409, which belongs to a different taxon).

Wiry-reedy perennial taprooted herbs $15-45 \mathrm{~cm}$ tall; stems few-branched, weakly ascending to procumbent, nearly leafy throughout or only distally so; herbage sparsely to moderately sessileglandular (homotrichous) or stems nearly glabrous. Leaves: basal usually absent at anthesis; cauline $0.5-3 \mathrm{~cm}$ long, linear-lanceolate, margins entire to shallow-toothed. Capitula radiate; involucre 8-$10(-11) \times 5-8 \mathrm{~mm}$, hemispherical; phyllaries ca. 40, 3-5-seriate. Ray florets ca. 33; corolla limb 58 mm long. Disk florets $40-60$; corolla $3.5-4 \mathrm{~mm}$ long. Cypselae $1-1.5 \mathrm{~mm}$ long, rays (usually) epappose. $2 n=10$.

Distribution. Mexico (Sonora); 0-100 meters elevation.
Leucosyris coulteri was one of the two original species, but not the type, of Psilactis A. Gray (1849).

LEUCOSYRIS CRISPA (Brandegee) Pruski \& R.L. Hartm., comb. nov. Psilactis crispa Brandegee, Proc. Calif. Acad. Sci., ser. 2, 2: 169. 1889. Machaeranthera crispa (Brandegee) B.L. Turner \& D.B. Horne, Brittonia 16: 321. 1964. Artda crispa (Brandegee) D.R. Morgan \& R.L. Hartm., Sida 20: 1414. 2003. Type: MEXICO. Baja California Sur. San Ignacio, 1 Apr 1889, Brandegee s.n. (holotype: UC; isotypes: GH, PH, US). Fig. 4.

Annual or short-lived perennial herbs $20-50 \mathrm{~cm}$ tall, from thick taproot; stems 1 -few from base, ascending to erect, fairly leafy and moderately branched throughout, mid-stems homotrichous with stipitate-glandular trichomes, branches ascending, herbage densely stipitate-glandular, homotrichous. Leaves: basal absent at anthesis; cauline $0.5-4 \mathrm{~cm}$ long, linear-oblong, fewpinnatilobed about halfway to midrib, lobes (teeth) well-spaced. Capitula radiate; involucre 6-8 $\times$ $10-15 \mathrm{~mm}$, hemispherical; phyllaries $3-5$-seriate, apex sometimes spreading. Ray florets $30-40$; corolla limb 6-8 mm long. Disk florets $40-60$; corolla $3.8-6 \mathrm{~mm}$ long. Cypselae 2-2.4 mm long, rays usually epappose, disk pappus bristles $3-3.5 \mathrm{~mm}$ long, more than half as long as disk corollas. $2 n=10$.

Distribution. Mexico (Baja California Sur, Sonora; Leucosyris crispa was given as endemic to Baja California Sur by Shreve and Wiggins (1964) and Wiggins (1980), but Hartman (1976, 1990) and Felger (2000) gave it as also occurring in coastal Sonora; 50-170 meters elevation.

LEUCOSYRIS MATTTURNERI (B.L. Turner \& G.L. Nesom) Pruski \& R.L. Hartm., comb. nov. Artda matturneri B.L. Turner \& G.L. Nesom, Sida 20: 1418. 2003. Type: USA. Texas. Presidio Co.: ca. 2.2 miles NNW of Ruidosa, 20 Jul 2003, Turner 100 (holotype: TEX; isotype: NY).

Perennial subcaespitose taprooted herbs $50-80 \mathrm{~cm}$ tall, from persistent basal rosette; stems several, much-branched, erect or ascending, sparsely leafy, stiff; herbage sessile-glandular or short-stipitate-glandular, viscid. Leaves basal and cauline, surfaces densely glandular, basal rosette leaves persistent, $4-6 \mathrm{~cm}$ long, bipinnatifid, oblanceolate to broadly obovate in outline, basal ones abruptly grading into cauline, these linear-oblanceolate. 1-pinnatilobed to toothed or entire, ultimate ones scale-like. Capitula radiate; involucre 5-6 $\times 6-8 \mathrm{~mm}$, hemispherical; phyllaries 5-6-seriate, oblong-
lanceolate, at least the outer with apices spreading. Ray florets 9-13; corolla $10-12 \mathrm{~mm}$ long, limb $9-10 \mathrm{~mm}$ long. Disk florets $40-100$; corolla $3.5-4.5 \mathrm{~mm}$ long. Cypselae $1-1.5 \mathrm{~mm}$ long, rays epappose. $2 n=10$.

Distribution. USA (Texas) and expected in adjacent Mexico (Chihuahua, Coahuila); 14001500 meters elevation.

Turner and Nesom (2003) provided both habit and floral photographs of Leucosyris mattturneri.

LEUCOSYRIS PARVIFLORA (A. Gray) Pruski \& R.L. Hartm., comb. nov. Machaeranthera parviflora A. Gray, Smithsonian Contr. Knowl. [Plantae Wrightianae I] 3(5): 90. 1852. Aster parvflorus (A. Gray) A. Gray, Bot. California 1:322. 1876 (non A. parvflorus Nees 1832). Aster parvulus S.F. Blake, Contr. U.S. Natl. Herb. 25: 563. 1925 (non A. parviflorus Nees 1832). Arida parviflora (A. Gray) D.R. Morgan \& R.L. Hartm., Sida 20: 1414. 2003. Type: USA. New Mexico. Along the Rio Grande, Sep 1849, Wright 271 (holotype: GH; isotypes: BM, NY, P, US).

Aster tanacetfolius var. pygmaeus (A. Gray) A. Gray; Machaeranthera pygmaea (A. Gray) Woot. \& Standl.; Machaeranthera tanacetifolta var. pygmaea A. Gray

Annual, biennial, or short-lived perennial taprooted herbs $10-30(-40) \mathrm{cm}$ tall; stems $1-$ several from sometimes woody taproot, moderate-branched and leafy throughout, erect or ascending; herbage glabrous to sparsely stipitate-glandular and then somewhat viscid. Leaves: basal absent at anthesis; cauline $1-3 \mathrm{~cm}$ long, lanceolate to oblong, chartaceous, base often clasping, margins usually few-pinnatilobed to 2-pinnatifid (sometimes distal stem leaves nearly entire to shallowly pinnatilobed), the distal ones weakly spreading or more commonly ascending. Capitula radiate; involucre 3-5 $\times 4-6 \mathrm{~mm}$, hemispherical; phyllaries 3-4-seriate, minutely glandular, apices mostly appressed; receptacle $2-7 \mathrm{~mm}$ diam. Ray florets $10-32$; corolla limb 6-8 mm long. Disk florets 18 $40+$; corolla $3.5-4.5(-5) \mathrm{mm}$ long. Cypselae $1.5-2 \mathrm{~mm}$ long, rays pappose or epappose. $2 n=10$.

Distribution. USA (Arizona, Colorado, New Mexico, Texas, Utah) and Mexico (Chihuahua, Coahuila); 1100-1700 meters elevation.

Leucosyrts parvflora was illustrated by Martin and Hutchins (1988), Cronquist (1994), and Ivey (2003) as Machaeranthera parviflora.

LEUCOSYRIS RIPARIA (Kunth) Pruski \& R.L. Hartm., comb. nov. Aster ruparnus Kunth, Nov. Gen. Sp. (folio ed.) 4: 72. 1820[1818]. Machaeranthera riparia (Kunth) AG. Jones, Syst. Bot. 8: 85. 1983. Arida riparia (Kunth) D.R. Morgan \& R.L. Hartm., Sida 20: 1414. 2003. Type: MEXICO. "Crescit in humidis juxta lacum Cuiseo" (given in Stearn 1968 as Cuitzeo and visited in Sep 1803, see below), Humboldt \& Bonpland s.n. (4308) (holotype: P-HBK; isotypes: B-W 15821, P). Figure 5.

## Aster sonorae A. Gray; Machaeranthera sonorae (A. Gray) Stucky

Wiry-reedy annual taprooted herbs $25-60 \mathrm{~cm}$ tall; stems 1 -several, moderately-branched distal in $2 / 3$, erect to sometimes procumbent, leafy throughout, stiff, branches strongly ascending, sometimes striped (costae pale) longitudinally; herbage glabrous or nearly so. Leaves mostly cauline, strongly ascending to distal ones nearly appressed, sessile, $0.5-3 \mathrm{~cm}$ long, oblanceolate, lanceolate to oblong, subsucculent, broad-based, margins entire, sometimes soft-ciliate, apex mucronate. Capitula
radiate; involucre $10-12 \times 10-16 \mathrm{~mm}$, hemispherical; phyllaries $5-8$-seriate, some attenuate. Ray florets $30-50+$; corolla limb $8-11 \mathrm{~mm}$ long, sometimes white. Disk florets (25-)40-80+; corolla $3.5-5 \mathrm{~mm}$ long, lobes sometimes long-triangular. Cypselae $2-3 \mathrm{~mm}$ long, rays pappose. $2 n=10$.


Figure 5. Isotype of Aster sonorae A. Gray (= Leucosyris riparia (Kunth) Pruski \& R.L. Hartm.). (Wright 1163, MO).

Distribution. USA (Arizona and New Mexico, where sometimes hybridizing, fide Stucky 1978 and Hartman 1990, with L. parviflora) and Mexico (Chihuahua, Coahuila, Durango, Zacatecas, ?Guanajuato); 900-2000 meters elevation.

The protologue locality of Cuitzeo (as "Cuiseo") as given by Stearn (1968) was visited by Humboldt and Bonpland in September 1803. Modern gazetteers list place names of Cuitzeo in Guanajuato, Jalisco, and Michoacan. The possible Humboldt and Bonpland type collection locality near Laguna de Cuitzeo seems to be between northern Michoacan and Guanajuato, somewhat south of Durango and Zacatecas, the southern-most distribution of the species known to us. The northwestern-most Mexican localities visited by Humboldt and Bonpland are near Guanajuato (Stearn 1968), and MeVaugh (1984) did not list this species for Novo-Galicia. We cannot place with any degree of certainty the type collection locality of Aster riparius.

Stucky (1978) discussed seven hybrids in the Machaeranthera group and noted that the highest pollen fertility observed was in hybrids between L. parviflora (as M. parvflora) and $L$. riparia (as Aster sonorae), prompting him to propose the combination M. sonorae. As noted by Morgan and Hartman (2003), the Stucky (1978) results strengthen the generic limits based on cpDNA evidence. Aster sonorae is usually treated in synonymy, but was resurrected by Turner et al. (1975), and reduced again by Jones (1983).

LEUCOSYRIS TURNERI (M.L. Arnold \& R.C. Jacks.) Pruski \& R.L. Hartm., comb. nov. Machaeranthera turneri M.L. Arnold \& R.C. Jacks., Syst. Bot. 3: 209. 1978[1979]. Arida turnert (M.L. Arnold \& R.C. Jacks.) D.R. Morgan \& R.L. Hartm., Sida 20: 1414. 2003. Type: MEXICO. Chihuahua. 3.3. miles N of Meoqui, 1 Aug 1964, Jackson 4005 (holotype: TTC).

Annual taprooted herbs to 1.5 m tall; stems branched, proximal stems sometimes decumbent, leafy mostly in distal half; herbage stipitate-glandular. Leaves: basal usually absent at anthesis; cauline usually deeply pinnatilobed and lanceolate in outline, chartaceous. Capitula radiate; involucre $7-10 \times 10-17 \mathrm{~mm}$, hemispherical; phyllaries 64-134, linear-lanceolate, apices spreading to reflexed; receptacle $8-11 \mathrm{~mm}$ diam. Ray florets $40-60$; corolla $11-15 \mathrm{~mm}$ long. Disk florets $80-$ 150+; corolla $4.5-6 \mathrm{~mm}$ long. Cypselae ca. 2.5 mm long, rays pappose. $2 n=10$.

Distribution. Mexico (Chihuahua, Coahuila); 1100-1300 meters elevation.

## EXCLUDED SPECIES

Leucosyris spinosa (Benth.) Greene, Pittonia 3: 244. (9 Dec) 1897. Basionym: Aster spinosus Benth. = Chloracantha spinosa (Benth.) G.L. Nesom, Phytologia 70: 378. 1991.

## ACKNOWLEDGEMENTS

We would like to thank Guy Nesom, Rosa del Carmen Ortiz, George Yatskievych, and James Zarucchi for help and for reading and reviewing the manuscript. We are grateful to Stephanie Keil for taking the specimen photographs.

## LITERATURE CITED

Arnold, M.L. and R.C. Jackson. 1978[1979]. Biochemical, cytogenetic and morphological relationships of a new species of Machaeranthera sect. Arida (Compositae). Syst. Bot. 3: 208-217.
Bentham, G. and J.D. Hooker. 1873. Compositae. Pp. 163-533 m Genera Plantarum, Vol. 2. Reeve and Co., London.

Blake, S.F. 1925. Asteraceae. Aster Family. Pp. 521-632 in I. Tidestrom, Flora of Utah and Nevada. Contr. U.S. Natl. Herb. 25: 1-665 + pl. 1-15.
Blake, S.F. 1942. Compositae. Sunflower Family. Pp. 869-1033 in T.H. Kearney, R.H. Peebles, and collaborators, Flowering Plants and Ferns of Arizona. U.S. Govt. Printing Office, Washington.
Brown, R.W. 1956. Composition of Scientific Words: A Manual of Methods and a Lexicon of Materials for the Practice of Logotechnics (rev. ed.). Smithsonian, Washington.
Candolle, A.P. de. 1836. Prodromus Systematis Naturalis Regni Vegetabilis, Vol. 5. Treuttel and Würtz, Paris.
Cronquist, A. 1994. Asteraceae. Pp. 5-471 in A. Cronquist et al. (eds.), Intermountain Flora. Vascular Plants of the Intermountain West, U.S.A., Vol. 5. New York Botanical Garden, Bronx.
Cronquist, A.J. and D.D. Keck. 1957. A reconstitution of the genus Machaeranthera. Brittonia 9: 231-239.
Felger, R.S. 2000. Flora of the Gran Desierto and Río Colorado of Northwestern Mexico. Univ. of Arizona Press, Tucson.
Ferris, R.S. 1960. Bignoniaceae to Compositae $m$ L. Abrams and R.S. Ferris, Illustrated Flora of the Pacific States: Washington, Oregon, and California, Vol. 4. Stanford Univ. Press, Stanford.
Gandhi, K.N. and R.D. Thomas. 1989. Asteraceae of Louisiana. Sida Bot. Misc. 4: xii $+1-202$.
Gray, A. 1849. Plantae Fendlerianae Novi-Mexicanae. Mem. Amer. Acad. Arts, n.s. 4(1): 1-116.
Gray, A. 1852. Plantae Wrightianae texano-neo-mexicanae: An account of a collection of plants made by Charles Wright. Smithsonian Contr. Knowl. 3(5): 1-146 + pl. 1-10.
Gray, A. 1853. Plantae Wrightianae texano-neo-mexicanae: Part II. An account of a collection of plants made by Charles Wright. Smithsonian Contr. Knowl. 5(6): 1-119 + pl. 11-14.
Gray, A. 1884. Compositae. Pp. 48-444 in Synoptical Flora of North America, Vol. 1. American Book Company, New York.
Greene, E.L. 1896. Studies in the Compositae.-III. Pittonia 3:43-66.
Greene, E.L. 1897a. Flora Franciscana: An Attempt to Classify and Describe the Vascular Plants of Middle California, Part 4. Cubery, San Francisco.
Greene, E.L. 1897b. Studies in the Compositae.-VI. Pittonia 3: 243-246.
Greene, E.L. 1899. Notes on Machaeranthera. Pittonia 4: 22-25.
Hall, H.M. 1907. Compositae of Southern California. Univ. Calif. Publ. Bot. 3: 1-302.
Hartman, R.L. 1976 A conspectus of Machaeranthera (Compositae: Astereae) and a biosystematic study of the section Blepharodon. Ph.D. thesis. Univ. of Texas, Austin.
Hartman, R.L. 1990. A conspectus of Machaeranthera (Asteraceae: Astereae). Phytologia 68: 439465.

Hartman, R.L. and D.J. Bogler. 2006. Arida. Pp. 401-405 m Flora of North America Editorial Committee (eds.), Flora of North America, Vol. 20. Oxford Univ. Press, New York.
Hyam, R. and R. Pankhurst. 1995. Plants and Their Names: A Concise Dictionary. Oxford Univ. Press, Oxford.
Ivey, R.D. 2003. Flowering plants of New Mexico (ed. 4). Ivey Publishers, Albuquerque.
Jackson, W.P.U. 1987. Origins and Meanings of South African Plant Genera. Univ. Cape Town, Cape Town.
Jepson, W.L. 1925. Compositae. Sunflower Family. Pp. 979-1169 in A Manual of the Flowering Plants of California. Associated Student's Store, Berkeley.
Jones, A.G. 1980. A classification of the New World species of Aster (Asteraceae). Brittonia 32: 230-239.
Jones, A.G. 1983. Nomenclatural transfer from Aster to Machaeranthera (Asteraceae). Syst. Bot. 8: 85.

Keil, D.J. et al. 1993. Asteraceae [Compositae] Sunflower Family. Pp. 174-360, 361, 365 m J.C. Hickman (ed.), The Jepson Manual: Higher Plants of California. Univ. of California Press, Berkeley.
Keil, D.J. et al. 2012. Asteraceae (Compositac) Sunflower Family. Pp. 211-443, 445 in B.G. Baldwin et al. (eds.), The Jepson Manual: Vascular Plants of California (ed. 2). Univ. of California Press, Berkeley.
Martin, W.C. and C.R. Hutchins. 1988. Fall Wildflowers of New Mexico. Univ. of New Mexico, Albuquerque.
McVaugh, R. 1984. Compositae. Fl. Novo-Galiciana 12: 1-1157.
Morgan, D.R. 1993. A molecular systematic study and taxonomic revision of Psilactis (Asteraceae: Astereae). Syst. Bot. 18: 290-308.
Morgan, D.R. and R.L. Hartman. 2003. A synops is of Machaeranthera (Asteraceae: Astereae), with recognition of segregate genera. Sida 20: 1837-1416.
Munz, P.A. 1974. A Flora of Southern California. Univ. of California Press, Berkeley.
Munz, P.A. and D.D. Keck. 1959. A California Flora. Univ. of California Press, Berkeley.
Nees ab Esenbeck, C.G. 1832. Genera et Species Asterearum. Nuremberg.
Nesom, G.L. 1989. Aster intricatus (Asteraceae: Astereae) transferred to Machaeranthera. Phytologia 67: 338-440.
Nesom, G.L., L.A. Vorobik, and R.L. Hartman. 1990. The identity of Aster blepharophyllus (Asteraceae: Astereae). Syst. Bot. 15: 638-642.
Nesom, G.L., Y. Suh, D.R. Morgan, S.D. Sundberg, and B.B. Simpson. 1991. Chloracantha, a new genus of North American Astereae (Asteraceae). Phytologia 70: 371-381.
Nesom, G. and H. Robinson. 2007[2006]. Astereae Cass. (1819). Pp. 284-342 m K. Kubitzki (ed.), The Families and Genera of Vascular Plants, Vol. 8. Springer, Berlin.
Semple, J.C. and L. Brouillet. 1980. A synopsis of North American Asters: the subgenera, sections and subsections of Aster and Lasallea. Amer. J. Bot. 67: 1010-1026.
Shinners, L.H. 1950. Notes on Texas Compositae-V. Field \& Lab. 18: 32-42.
Shreve, F. and I.L. Wiggins. 1964. Vegetation and Flora of the Sonoran Desert, Vol. 2. Stanford Univ. Press, Stanford.
Stearn, W.T. 1968. Humboldt, Bonpland, Kunth and Tropical America Botany. Cramer, Stuttgart.
Stucky, J. 1978. Hybridization between Aster and Machaeranthera and its taxonomic significance. Amer. J. Bot. 65: 125-133.
Sundberg, D.S. 1986. The systematics of Aster subg. Oxytripolium (Compositae) and historically allied species. Ph.D. thesis. Univ. of Texas, Austin.
Tidestrom, I. and T. Kittell. 1941. A Flora of Arizona and New Mexico. Catholic Univ., Washington.
Turner, B.L., J. Bacon, and T. Wendt. 1975. Chromosomes and phyletic position of Aster sonorae Gray (Asteraceae-sect. Oxytripolum). Southw. Naturalist 19:361-364.
Turner, B.L. and D.B. Horne. 1964. Taxonomy of Machaeranthera sect. Psilactis (CompositaeAstereae). Brittonia 16: 316-331.
Turner, B.L. and G.L. Nesom. 2003. A new species of Arıda (Machaeranthera sect. ArıdaAsteraceae: Astereae) from Trans-Pecos Texas. Sida 20: 1417-1422.
Wiggins, I.L. 1980. Flora of Baja California. Stanford Univ. Press, Stanford.
Wooton, E.O. and P.C. Standley. 1915. Flora of New Mexico. Contr. U.S. Natl. Herb. 19: 1-794.

# BARCODING THE ASTERACEAE OF TENNESSEE, TRIBES GNAPHALIEAE AND INULEAE 

EDWARD E. SCHILLING and AARON FLODEN<br>Herbarıum TENN<br>Department of Ecology \& Evolutionary Biology<br>University of Tennessee<br>Knoxvılle, Tennessee 37996<br>eschılling@utk edu and afloden@utk edu


#### Abstract

Results from barcoding studies of tribes Gnaphalieae and Inuleae for the Tennessee flora using data from the nuclear ribosomal ITS marker region are presented, and include first complete reports of this marker for 10 of the 13 species of these tribes that occur in the state. Sequence data from the ITS region separated all genera and most species of Gnaphalieae from Tennessee. Species pairs that were not distinguished included Antennaria plantaginifolial A. parlinis and Pseudognaphalum helleri/ P. micradenium. The ITS sequence data provided supporting evidence for recent changes in the classification of the group, most notably segregation of Gamochaeta and Pseudognaphalum from Gnaphalnum, as well as the species-level taxonomy of Gamochaeta. Issues were noted with current GenBank records, including apparent poor quality of some sequence data and possible mistakes in species identifications, which must be taken into account in barcoding efforts and which highlight the need to expand this highly useful database.


KEY WORDS: Asteraceae, Gnaphalieae, Inuleae, molecular barcoding

The Gnaphalieae, generally referred to as "cudweeds", are relatively anonymous yet common and widespread plants. They can be easily be overlooked or passed up by collectors. The major diversification of the tribe has occurred in the southern hemisphere, and the species from southeastern North America have not been well sampled in broad phylogenetic surveys of the tribe (e.g. Ward et al. 2009; Galbany-Casals et al. 2010; Nie et al. 2012). The current study was undertaken as part of a general effort to increase sampling for molecular markers of Asteraceae from southeastern North America in general and the state of Tennessee in particular.

The classification of Gnaphalieae has changed dramatically at several levels in recent years. Gnaphalieae were once included in Inuleae, but more recent studies have shown that the two tribes are clearly distinct (Bremer et al. 1994). Both tribes are characterized by having heads that are often discoid or disciform, but Gnaphalieae is the sister group to Astereae and Anthemidae whereas Invleae is a lineage at the base of the clade that includes the Heliantheae alliance (Funk et al. 2009). The generic level classification has also changed, with a formerly large Gnaphalium retaining the Old World species but the basically New World Gamochaeta and Pseudognaphalum being segregated (Nesom 1990). Species level recognition has also been sharpened through careful studies that have refined circumscriptions and even described several previously unrecognized species in Gamochaeta and Pseudognaphalum (Nesom 1990, 2001a, 2004a). The relatively technical features required to recognize accurately species of the genera of Gnaphalieae make them a logical target that would benefit from a molecular barcoding approach (Kress et al. 2005) to verify identifications.

Gnaphalieae are represented in the state of Tennessee by a total of 12 species (Table 1), most of which were traditionally placed (e.g. Cronquist 1980) in two genera, Gnaphalum and Antennarta, as well as the introduced Facelts. Current classification separates Gnaphalum in Tennessee into
three different genera, including Gamochaeta and Pseudognaphalum (Table 1). Inuleae is represented by a single species, Pluchea camphorata.

Most of the species of Gnaphalieae in Tennessee are currently considered to be native to the flora, although their ruderal nature makes it difficult to be certain in all cases (Nesom 2004b). A species that appears to be clearly introduced is Facelis retusa, a South American weedy species (Cronquist 1980). Gnaphalium uliginosum is considered by Cronquist (1980) to be introduced from Europe, although its probable sister relationship to G exiltfolum A. Nelson suggests that it is likely also to be native, perhaps in part, to North America (Nesom 2001b). One species, Pseudognaphaltum hellert, is listed as a species of special concern for Tennessee with a state ranking of S2, based on its rarity within the state, although its global ranking of G4/G5 indicates that it is common in other parts of its range (Crabtree 2012).

Prior to initiation of this study, GenBank records for the complete nuclear ribosomal ITS region were reported for only three of the thirteen species of Gnaphalieae and Inuleae found in Tennessee. The GenBank records for Antennaria are relatively old and consist of separate ITS-1 and ITS-2 sequences rather than the entire ITS region as a single entity. The purpose of the study was to make a survey of sequence variation for the ITS region across Gnaphalieae and Inuleae that have been collected in the state of Tennessee. The goals included expanding the database of available samples for both barcoding and phylogenetic studies and assessing the value of this marker in identifying members of these tribes to genus or species level.

## MATERIALS AND METHODS

DNA was extracted from leaf samples either collected fresh or taken from herbarium specimens (Table 1). For most samples the DNeasy Plant Mini Kit (Qiagen, Valencia CA) was used, although some freshly collected samples were processed using the CTAB method (Doyle \& Doyle 1987). PCR amplifications and sequencing of the ITS region followed protocols outlined by Schilling et al. (2007). A few samples required the use of the internal primers, "5.8S 79 for" and "ITS 5.8 SR," for sequencing to obtain clean sequence, likely because of fungal contamination (Schilling et al. 2007). GenBank accession numbers are provided in Table 1. Although this study was not designed to undertake a rigorous phylogenetic analysis, parsimony analysis using the PAUP* 4.0 b 10 program (Swofford 2003) was utilized to provide a convenient way to make a comparative visualization of the sequence results and incorporated sequences deposited at GenBank of conspecific or closely related samples. This included a sequence for Anaphalis margaritacea (L.) Benth., which though native to North America has not been clearly documented to occur in Tennessee outside of horticultural settings.

## RESULTS AND DISCUSSION

The complete ITS sequence region (ITS-1, 5.8 S ribosomal DNA, ITS-2) varied in length in the newly reported Gnaphalieae samples from $633-641 \mathrm{bp}$. Sequences of Pseudognaphalium were consistently 633 bp ; those of Gamochaeta $636-637 \mathrm{bp}$, and Antennaria showed the most length variation, with three of the four sampled species having a different length ( $636-638 \mathrm{bp}$ ). The ITS sequences for Gnaphalnum ( 641 bp ) and Phuchea ( 642 bp ) were the longest of those sampled. There was no evidence in the electropherograms that any sample had multiple polymorphisms, either length or at individual sequence sites, which would provide evidence of recent or fixed interspecific hybridization.

Results of a phylogenetic analysis of the ITS sequence data for samples of Gnaphalieae are shown in Figure 1, with the single member of Inuleae used as the outgroup. Each genus was placed as monophyletic with moderate to strong bootstrap support. Gamochaeta, which was once considered to be part of Gnaphalium, was placed sister to Facelts and further sister to Antennaria (Fig. 1).

Pseudognaphalium, also formerly considered part of Gnaphalum, was placed as sister to Anaphalis with strong support.

Table 1 Plant materıal used for ITS barcoding studies of Gnaphalieae and Inuleae All specimens at TENN, collected in Tennessee

| Species | DNA\# | Genbank | Voucher info |
| :---: | :---: | :---: | :---: |
| Antennaria Gaertn. |  |  |  |
| A. howelln subsp. neodioica (Greene) R. Bayer | 3444 | JX524604 | Sharp 26822, Sevier Co. |
| A. parlinu Fernald | 3446 | JX524605 | Murrell 75, Polk Co. |
| A. plantaginifolia (L.) Hook. | 2542 | JX524601 | Schilling 07-2542, Knox Co. |
|  | 3445 | JX524602 | Sharp 26281, Sevier Co. |
| A. solitaria Rydb. | 3082 | JX524603 | Crabtree FSF-07-034, Marion Co. |
| Facelis Cass. <br> F. retusa (Lam.) Sch.Bip. | 3083 | JX524606 | Beck 4671, Marion Co. |
| Gamochaeta Wedd. |  |  |  |
| G argyrmea G.L. Nesom | 2766 | JX524596 | Schtllng 08-2766, Knox Co. |
|  | 3084 | JX524597 | Philltppe 35455, DeKalb Co. |
| G. pensylvanica (Willd.) Cabrera | 3085 | JX524600 | Browne 78, Shelby Co. |
| G purpurea (L.) Cabrera | 3443 | JX524598 | Estes 7859, Moore Co. |
|  | 3086 | JX524599 | Bresowar 122, Knox Co. |
| Gnaphalium L. <br> G. uliginosum L. | 3087 | JX524592 | Henry et al. s.n., Cocke Co. |
| Pseudognaphallum Kirp. P. helleri (Britton) Anderb. | 3089 | JX524593 | DeSelm s.n., Franklin Co. |
| P. micradentum (Weath.) G.L. Nesom | 3442 | JX524594 | Patrick 3813, Roane Co. |
| P. obtusifolum <br> (L.) Hilliard \& B.L.Burtt. | 2566 | JX524595 | Schilling CF-4, Unicoi Co. |
| Pluchea Cass. <br> P. camphorata (L.) DC. | 3088 | JX524607 | McNeilus 00-919, Fentress Co. |



Figure 1 Single shortest tree from parsimony analysis of nuclear ribosomal ITS data showng relationships among species of Gnaphalieae from Tennessee Bootstrap values shown above branches. Samples labeled by DNA number (Tennessee samples, Table 1) or GenBank accession number The sample of Pluchea camphorata (Inuleae) was used as the outgroup

Antennaria Four species of Antennaria are recorded for Tennessee, of about 45 species total for the genus The genus is clearly distingushed from other Gnaphaleae by at least 32 bp changes in the ITS sequences. The two samples of A plantaginifolia were 1dentical - the second sample tested was collected at the exact same site as the sample of $A$ howelli subsp neodiotca and also identical to the sample of $A$ parlinit All of the other species were separated by multiple changes, with 11 differences between $A$ solitama and $A$ plantagimfolia and 25-27 differences between $A$ howellin subsp neodorca and the other species Complete ITS sequences (e g, ITS-1, 5.8 S rDNA, ITS-2) have not been previously deposited in GenBank for A parlimi, A plantaginifolia, or A solitaria Older records include individual ITS-1 and ITS-2 sequences for A plantagimifolia and A solitaria, but these were not retrieved in a BLAST search with standard parameters using newly obtaned complete ITS sequences. The older sequences required several small gaps for alignment, which likely reflects the lower accuracy that was acheved using older technology

Facelis Facelis is represented in Tennessee by a single introduced species, $F$ retusa The current report is the first record for the genus, wheh has 3-4 species total, in GenBank

Gamochaeta The three species of Gamochaeta documented from Tennessee were each distinctive for ITS sequence, with pairwise diferences as follows: $G$ angyninea- $\mathcal{F}$ pensylvanica, 9 differences, $G$ argymnea- $G$ purpurea, 4 differences, $G$ pensyvanica- $G$ purpurea, 5 differences No intraspecific vanation was encountered in the two samples each of $G$ argyrinea and $G$ purpurea (Table 1) Samples from GenBank labeled $G$ purpurea and $G$ affine were identical to our sample of $G$ pensybvanica, raising questions about whether they were accurately identified Also distinct based on a GenBank sequence deposited for it was $G$ coanctata (Willd) Kerguelen, which may be expected
to be found naturalized in western Tennessee (Guy Nesom, pers. comm.) The name for another GenBank sample, G spicata (Lam.) Cabrera, is now considered to be a synonym for G. coarctata (Pruski \& Nesom 2004), and sequences for the two GenBank samples were identical and differed at 3 positions from those of G argyrnea. The distinctiveness of individual species of Gamochaeta is notable, especially considering that $G$. argyrinea was only recently recognized to be distinct from $G$ purpurea (Nesom 2004a). Similar results were obtained with a broader sampling of both species and samples of Gamochaeta by Cameron (2010), and the molecular results are further supported by detailed morphological analysis (Mac Alford and Kree Cameron, pers. comm.) Thus, a barcoding approach can be utilized to confirm the identity of samples of Gamochaeta collected in Tennessee.

Gnaphalium. Gnaphalium as currently interpreted is represented by a single recent collection of the apparently non-native G. uliginosum from eastern Tennessee. The ITS sequence from this sample was almost identical with a GenBank record for the species. It is clearly distinct from all other Gnaphalieae of Tennessee, differing by at least 51 bp changes.

Pseudognaphalium. The amount of interspecific variation for Pseudognaphalum was the least observed for any of the genera of Gnaphalieae in Tennessee. Samples of $P$. hellert and $P$. micradentum were identical to one another and differed by two changes from a sample of $P$. obtusifoltum. A GenBank sequence for $P$. obtusifolum differed at a single position from our sample, and two other Pseudognaphalum sequences at GenBank (P. macountı and P. canescens, identification of the latter determined by G. Nesom) differed at three positions. These results suggested that species level diversification in Pseudognaphallum might be relatively recent, similar to what has been observed for other Asteraceae genera in eastern North America, such as Helianthus and Soltdago.

Pluchea. A single species of Pluchea out of the 40 or more species of the genus is native to Tennessee. The ITS sequence is the first record for the species in GenBank, and it is significantly different (minimum of 45 bp differences and 6 gaps) from other species of the genus represented in GenBank.

## ACKNOWLEDGEMENTS

We thank S. Robertson, J. Schilling, and S. Yoon for laboratory assistance, J. May and V. Brown of the University of Tennessee MBRF for help with DNA sequencing, G Nesom for helpful comments and for examining images of GenBank vouchers of Pseudognaphalium, M. Alford and K. Cameron for sharing unpublished results on Gamochaeta, and the numerous collectors, notably the late H. DeSelm and V. McNeilus, who have helped to assemble a broad and useful herbarium at TENN. Financial support provided by the Hesler Fund of the University of Tennessee Herbarium.

## LITERATURE CITED

Bremer, K., A.A. Anderberg, P.O. Karis, B. Nordenstam, J. Lundberg, and O. Ryding. 1994. Asteraceae: Cladistics and Classification. Timber Press, Portland, Oregon.
Cameron, K. 2010. DNA evidence for the recognition of several species of cudweeds (Gamochaeta, Asteraceae) in the eastern United States. Undergraduate Honors Thesis, Univ. of Southern Mississippi, Hattiesburg.
Crabtree, T. 2012. Tennessee Natural Heritage Program. Rare Plant List. shttp//www tn gov/environment/na/pdf/plant_list pdf> Accessed 23 Aug 2012.
Cronquist, A. 1980. Vascular Flora of the Southeastern United States. Volume I. Asteraceae. Univ. of North Carolina Press, Chapel Hill.
Doyle, J.L. and J.L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15.
Funk, V.A. A. Susanna, T.F. Stuessy, and R.J. Bayer. 2009. Systematics, evolution, and biogeography of the Compositae. Vienna: International Association for Plant Taxonomy.

Galbany, M., S. Andrés-Sánchez, N. Garcia-Jacas, A. Susanna, E. Rico, and M. Martinez-Ortega. 2010. How many Cassini anagrams should there be? Molecular systematics and phylogenetic relationships in the Filago group (Asteraceae, Gnaphalieae), with special focus on the genus Filago. Taxon 50: 1671-1689.
Kress, W.J., K.J.Wurdack, E.A. Zimmer, L.A. Weigt, and D.H. Janzen. 2007. Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sc. U.S. 102: 8369-8374.
Nesom, GL. 1990. Taxonomic status of Gamochaeta (Asteraceae: Inuleae) and the species of the United States. Phytologia 68: 186-198.
Nesom, G.L. 2001a. Notes on variation in Pseudognaphalum obtusifoltum (Asteraceae: Gnaphalieae). Sida 19: 615-619.
Nesom, G.L. 2001b. Gnaphalium exilfolium (Asteraceae: Gnaphalieae) in Colorado and South Dakota. Sida 19: 639-641.
Nesom, GL. 2004a. New species of Gamochaeta (Asteraceae: Gnaphalieae) from the eastern United States and comments on similar species. Sida 21: 717-741.
Nesom, GL. 2004b. New distribution records for Gamochaeta (Asteraceae: Gnaphalieae) in the United States. Sida 21: 1175-1185.
Nie, Z.-L., V. Funk, H. Sung, T. Deng, Y. Meng, and J. Wen. 2012. Molecular phylogeny of Anaphalis (Asteraceae, Gnaphalieae) with biogeographic implications in the Northern Hemisphere. J. PI. Res., DOI 10.1007/s10265-012-0506-6
Pruski, J. and GL. Nesom. 2004. Gamochaeta coarctata, the correct name for Gamochaeta spicata (Asteraceae: Gnaphalieae). Sida 21: 711-716.
Schilling, E.E., R.J. LeBlond, B.A. Sorrie, and A.S. Weakley. 2007. Relationships of the New England boneset, Eupatorium novae-anglae (Asteraceae). Rhodora 109: 137-144.
Swofford, D.L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods), version 4.0b10. Sunderland, Massachusetts: Sinauer.
Ward, J.M., R.J. Bayer, I. Breitwieser, R.D. Smissen, M. Galbany Casals, and M. Unwin. 2009. Gnaphalieae. Pp. 537-585, in V.A. Funk, A. Susanna, T.F. Stuessy, and R.J. Bayer (eds.). Systematics, Evolution, and Biogeography of the Compositae. International Association for Plant Taxonomy, Vienna.

# NEW VASCULAR PLANT COUNTY RECORDS FROM CENTRAL TEXAS 

Danielatha<br>The New York Botanical Garden, Bronx, New York 10458<br>datha@nybg org


#### Abstract

Ten species of vascular plants are reported as new to Williamson, Burnet, Kendall, and/or Bastrop counties, Texas. The species are Sisyrinchuum angustifolium, Erigeron philadelphicus, Castilleja indivisa, Nolina texana, Forestiera pubescens, Parietaria pensylvanica, Zanthoxylum clava-herculis, Papaver somniferum, Ziziphus zizyphus, and Aesculus pavia.


The author and Marie Greener collected 247 herbarium specimens in central Texas counties (Williamson, Burnet, Kendall, and Bastrop) from 26 March to 4 April 2011. Among these were a number of species not previously reported from those counties. A complete set of the specimens is housed at NY and a partial set of duplicates was distributed to TEX/LL. County distributions were determined using the Atlas of the Vascular Plants of Texas (Turner et al. 2003).

Sisyrinchium angustifolium Mill. (Iridaceae)
Williamson Co.: Between Liberty Hill and Leander, along the San Gabriel River, $30.623441 \mathrm{~N}, 97.875048 \mathrm{~W}( \pm 50 \mathrm{~m})$, ca $267 \mathrm{~m}, 26 \mathrm{Mar} 2011$, Atha \& Greener 9514 (NY, TEX). Herbs; flowers purple with yellow center. River bluffs and floodplain.

This native North American species is common from Nova Scotia to Ontario, south to Minnesota, Kansas, Texas, and Florida. It occurs sporadically through east, central, and north Texas (Turner et al. 2003). Its apparent absence from Williamson County is probably a collecting or reporting artifact.

Erigeron philadelphicus L. (Asteraceae)
Williamson Co.: Between Liberty Hill and Leander, along the San Gabriel River, $30.623441 \mathrm{~N}, 97.875048 \mathrm{~W}$ ( $\pm 50 \mathrm{~m}$ ), ca $267 \mathrm{~m}, 26 \mathrm{May} 2011$, Atha \& Greener 9515 (NY). Herbs; rays white. River bluffs and floodplain.

This native species occurs nearly throughout North America; absent only from Greenland, Labrador, Nunavut, Alaska, Arizona and Utah. In Texas it is concentrated around the urban centers of Houston, Austin, Waco, and Dallas-Ft. Worth, with scattered occurrences west to Kimble County (Turner et al. 2003).

Castilleja indivisa Engelm. (Scrophulariaceae)
Burnet Co.: Town of Marble Falls, corner of Ave N and Colorado St., 30.566901N, $98.287053 \mathrm{~W}( \pm 25 \mathrm{~m})$, ca $238 \mathrm{~m}, 30 \mathrm{Mar} 2011$, Atha \& Greener 9586 (NY). Herbs; stems purple; bracts green proximally, orange distally; flowers yellow green. Mown lot with few trees.

This species is endemic to Arkansas, Louisiana, Oklahoma, and Texas. In Texas it occurs nearly throughout the eastern half of the state as far west as Tom Green County (Turner et al., 2003).

Nolina texana S. Watson (Agavaceae)
Burnet Co.: N of Marble Falls along US 281, at intersection with Coach Rd., 30.606326N, $98.267337 \mathrm{~W}( \pm 25 \mathrm{~m})$, ca $268 \mathrm{~m}, 30 \mathrm{Mar} 2011$, Atha \& Greener 9593 (NY, TEX). Herbs; flowers purplish. Rocky outcrop, relatively dry for area.

This is in part a Chihuahuan desert species, ranging from central Texas and southwestern Oklahoma, west to southeastern Arizona and northern Mexico. In Texas is it known from much of the Edwards Plateau and Trans-Pecos but has yet to be collected from several counties (e.g., Bexar, Kendall, Hays, Mason, Kimble).

Forestiera pubescens Nutt. (Oleaceae)
Burnet Co.: E of Granite Shoals, N of Lake LBJ and S of Ranch Road 1431, 30.583122N, $98.363923 \mathrm{~W}( \pm 25 \mathrm{~m})$, ca $271 \mathrm{~m}, 31$ Mar 2011, Atha \& Greener 9601 (NY). Trees. Granite hilltop with savanna-like vegetation.

This species is native throughout much of the Edwards Plateau and northern plains and cross timbers region. Its apparent absence in Burnet and Blanco counties is undoubtedly an artifact of collecting or reporting.

Parietaria pensylvanica Muhl. ex Willd. (Urticaceae)
Kendall Co.: Ca 18 km N of Boerne on Guadeloupe River at Hwy 1376, 29.957312N, $98.717402 \mathrm{~W}( \pm 25 \mathrm{~m}), 374 \mathrm{~m}, 31 \mathrm{Mar}$ 2011, Atha \& Greener 9647 (NY). Herbs, stems reddish. Limestone terraces and alluvium along river.

This species is native throughout much of Texas. Its apparent absence in Kendall county is undoubtedly an artifact of collecting or reporting.

Zanthoxylum clava-herculis L. (Rutaceae)
Bastrop Co.: Ca 10.5 km NW of Bastrop, along the Colorado River at Tx Hwy 71, $30.168058 \mathrm{~N}, 97.403063 \mathrm{~W}( \pm 25 \mathrm{~m}$ ), ca $107 \mathrm{~m}, 2 \mathrm{Apr} 2011$, Atha \& Greener 9673 (NY, TEX). Trees 4 m tall. Floodplain of the Colorado River.

This native species is widespread throughout nearly all of the eastern half of Texas, down to Refugio, but is nowhere abundant. It is not commonly collected, perhaps due to its spiny habit.

Papaver somniferum L. (Papaveraceae)
Bastrop Co.: Ca 10.5 km NW of Bastrop, along the Colorado River at Tx Hwy 71, $30.168058 \mathrm{~N}, 97.403063 \mathrm{~W}( \pm 25 \mathrm{~m})$, ca $107 \mathrm{~m}, 2$ Apr 2011, Atha \& Greener 9674 (NY). Herbs; sap clear. This plant in weedy strip of land near boat ramp. Floodplain of the Colorado River.

This plant was found growing at the edge of a paved road along a public-right-of-way. It probably escaped from cultivation by seed dispersal, perhaps from a nearby RV campground.. No other Papaver plants were seen in the vicinity.

## Ziziphus zizyphus (L.) Karst. (Rhamnaceae)

Bastrop Co.: Town of Bastrop along N Main Street at old railroad crossing over creek, $30.131989 \mathrm{~N}, 97.320977 \mathrm{~W}( \pm 25 \mathrm{~m}), 106 \mathrm{~m}, 3$ Apr 2011, Atha \& Greener 9681 (NY, TEX). Trees ca 2.5 m tall. There are hundreds of these young trees in an area about 100 square meters. Secondary woods along abandoned railroad.

This introduced species is not common in Texas. It is reported from only nineteen counties, these widely scattered from Jeff Davis, Hidalgo, Travis, and Grayson counties. It may be in the process of expanding its range.

## Aesculus pavia L. (Hippocastanaceae)

Bastrop Co.: 6.7 km NW of Smithville along Tx Hwy 71, 30.055529N, 97.202876W ( $\pm 25$ $\mathrm{m}), 112 \mathrm{~m}, 4$ Apr 2011, Atha \& Greener 9734 (MO, MU, NY, TEX, W). Shrubs 1.5 m tall; calyx red; upper petals yellow-orange at the base, pink or salmon at the tips; anthers yellow. Dry secondary woods.

This beautiful native shrub is common throughout the southeastern USA from Virginia to Texas. Its occurrence in Bastrop County is not surprising and it is expected in Burleson, Lee, Caldwell, and Guadalupe counties as well.

## ACKNOWLEDGEMENTS

I am grateful to Billie Turner for reviewing a draft of this manuscript. Marie Greener has a keen eye for interesting plants and a deft collecting hand. Her assistance was both pleasurable and productive.

## LITERATURE CITED

Turner, B.L., H. Nichols, G. Denny, and O. Doron. 2003. Atlas of the Vascular Plants of Texas. Vol. I-Dicots; Vol. II-Monocots. Sida, Bot. Misc. 24, 1 and 2.

# VALIDATION OF A SCIENTIFIC NAME FOR THE TAHITIAN LIME 

Michael H. Grayum, Barry E. Hammel<br>Missouri Botanical Garden<br>PO Box 299<br>St Lours, Missouri 63166-0299, U S A michael grayum@mobot org, barry hammel@mobot org<br>Quirico Jiménez Madrigal<br>Unidad de Gestión Ambiental<br>Empresa de Servicios Publicos de Heredia<br>Heredia, Costa Rica<br>qjimenez@esph-sa com


#### Abstract

The name Citrus latifolia Tanaka, commonly used for the economically important Tahitian lime, is found to have been invalidly published, without a Latin description or citation of any basionym. Likewise, publications referring to a presumed basionym, C. aurantifolia (Christm.) Swingle var. latifolia Tanaka ex Yu. Tanaka, do not effect valid publication for that entity nor reference to any synonym that could be used. A diagnosis and type citation are here provided to validate a scientific name for the Tahitian lime, Cttrus $\times$ latffolta Tanaka ex Q . Jiménez.


KEY WORDS: Citrus latifolia, limón mesino, Persian lime, Rutaceae, Tahitian lime.

Citrus $\times$ latifolıa Tanaka is the name in current use for a species of economic importance commonly known in the English-speaking world as the Persian or Tahitian lime (see, e.g., Mabberley, 2008). However, in the process of editing the Rutaceae treatment for the Manual de Plantas de Costa Rica, we have found that C. latifola Tanaka (1951: 140), often cited as C. latifolia (Tanaka ex Yu. Tanaka) Tanaka, was published without a Latin description or mention of any basionym and, as such, is invalid and cannot be considered as either a new taxon name or a new combination.

The oft-cited parenthetical authorship refers to a presumed basionym, Citrus aurantifolia (Christm.) Swingle var. latifolia Tanaka ex Yu. Tanaka (1948). The ostensible protologue of the varietal name includes extensive Japanese text, a detailed illustration, and a bibliography, but apart from binomials and trinomials, no Latin, which was required at the time (validation by means of illustrations was only permitted before 1908; see McNeill et al., 2006: Art. 42.3). Tanaka (1948: 57, 60) cited a specific page in Tanaka (1938), which act could conceivably have resulted in the validation of the name, but the last-mentioned paper also includes no Latin text, merely the name "Citrus aurantifolia Swingle var. latifolia Tanaka" in a skeletal list, with a few Japanese characters.

Consulting all the other references we could track down that might contain or lead to a validly published version of either of these names (e.g., Tanaka 1932, 1939), we came up emptyhanded. Furthermore, we know of no synonym that could be used in place of Citrus $\times$ latifolta. Therefore, in order to provide a valid name for a species of Citrus to be treated in the Manual de Plantas de Costa Rica and which is an important commercial crop in Costa Rica (where it is commonly known as limón mesino or limón persa) and many other parts of the world, we here provide a diagnosis and cite a type specimen for Citrus $\times$ latifolta (now generally acknowledged as a hybrid involving C. ×aurantifolia), the name first used by Tyôzaburô Tanaka (1885-1976):

CITRUS $\times$ LATIFOLIA Tanaka ex Q. Jiménez, sp. nov. Type: COSTA RICA. Heredia: Cantón de Santo Domingo. Dtto. Tures. Calle La Rinconada, en cafetales y lotes por el Río Tures, $9^{\circ} 60^{\prime} \mathrm{N}, 84^{\circ} 04^{\prime} \mathrm{W}, 1200 \mathrm{~m}, 20 \mathrm{Feb} 2006$, B. Hammel \& I. Pérez 24125 (holotype: MO; isotypes: CR, INB). Figures 1-3.

Similar to Citrus $\times$ aurantiifolia (Christm.) Swingle (Key lime, lime, limón criollo, etc.) but differing by its lack or near lack of thorns and larger fruits ( $5.5-8 \times 6-7.5 \mathrm{~cm}$, vs. $4-6 \times 4-5 \mathrm{~cm}$ ) with a thicker rind ( $3-7 \mathrm{~mm}$, vs. 1-3 mm), lacking seeds, and with less acidic, non-bitter juice.


Figure 1. Citrus $\times$ latifolia. Close-up of flowering branch showing buds, open flower, and young fruit (Hammel \& Pérez 24125); inset showing spines and leaf bases. Scale bar $=2 \mathrm{~cm}$.


Figure 2. Citrus $\times$ latufolia. Flowering and fruiting branches, with fruit sliced longitudinally (Hammel \& Pérez 24125 ); inset showing glandular dots (largest ca. 0.3 mm diam.). Scale bar $=5 \mathrm{~cm}$.


Figure 3. Citrus $\times$ latifolia. Fruiting branch on tree (Hammel \& Pérez 24125). Scale bar $=5 \mathrm{~cm}$.

## LITERATURE CITED

Mabberley, D.J. 2008. Mabberley's Plant-Book (ed. 3). Cambridge Univ. Press, New York. McNeill, J., F.R. Barrie, H.M. Burdet, V. Demoulin, D.L. Hawksworth, K. Marhold, D.H. Nicolson, J. Prado, P.C. Silva, J.E. Skog, J.H. Wiersema \& N.J. Turland (eds.). 2006. International Code of Botanical Nomenclature (Vienna Code). Regnum Veg. 146: 1-568.
Tanaka, T. 1932. Philippine Rutaceae-Aurantioideae (Revisio aurantiacearum VII.). Trans. Nat. Hist. Soc. Formosa 22(123): 418-433.
Tanaka, T. 1938. A report on the Philippine plant industry. J. Soc. Trop. Agric. 10: 348-353.
Tanaka, T. 1939. A report of the investigation of Philippine Citrus. Stud. Citrol. 9(1, 2): 1-34.
Tanaka, T. 1951. Kwaju bunruigaku [Systematic Pomology]. Kawade Shabō, Tokyo.
Tanaka, Y. 1948. An Iconograph of Japanese Citrus Fruits: A Monographic Study of Species and Varieties of Citrus Fruits Grown in Japan, Vol. I. Yôkendô Co. Ltd., Tokyo.

# GUIDE TO AGAVE, CINNAMOMUM, CORYMBIA, EUCALYPTUS, PANDANUS, AND SANSEVIERIA IN THE FLORA OF FLORIDA 

alan R. Franck<br>Dept of Cell Biology, Microbiology, and Molecular Biology<br>University of South Florida<br>Tampa, Florida 33620<br>afranck@mal usf edu


#### Abstract

Several species-rich groups of non-native taxa occur in Florida and can be difficult to identify. This synopsis provides identification keys and brief discussions of the naturalized species of six genera in Florida: Agave, Cinnamomum, Corymbra, Eucalyptus, Pandanus, and Sanseverta. Of the genera treated here, only one taxon is presumed to be a pre-Columbian native, Agave deciptens, and all others are considered exotic. Agave neglecta is treated as a synonym of $A$. weberi. Cinnamomum burmannii, Pandanus odorifer, and Sansevieria trifasciata are here reported for the first time in the flora of Florida. Lectotypes are designated for A. decipiens and A. sisalana var. armata. Many of the genera possess a convoluted taxonomy and are in need of a modern taxonomic revision. Thus, for the most part, heterotypic synonyms are not listed except for two synonyms discussed in Agave. All cited specimens examined are from Florida. All photos are by the author unless indicated otherwise.


KEY WORDS: Agave, Cinnamomum, Corymbia, Eucalyptus, Pandanus, Sansevterta

AGAVE L., Sp. Pl. 1:323. 1753. Type: Agave americana L.
The genus Agave contains ca. 200 species endemic to the Americas with its center of diversity in Mexico (Gentry 1982). Various species of Agave are used (e.g. Gentry 1982; ColungaGarcíaMarín and May-Pat 1993) as a food (cabezas), sweetener (agave nectar), beverage (agua miel, pulque, tequila), fiber (sisal, henequen), medicine (steroidal sapogenins), soap (saponins), and landscape plant. The sap of the tequila agave, $A$. angustifolia Haw. subsp. tequilana (F.A.C. Weber) Valenz.-Zap. \& Nabhan, and the popular ornamental A. americana can cause contact dermatitis due to calcium oxalate crystals (Salinas et al. 2001) which are likely present in other taxa. The use of Agave as a food in Mexico has been documented as early as 7000 B.C. (Callen 1965). There are accounts of Agave in cultivation in Europe as early as the 1500s (Drummond \& Prain 1906).

After flowering, the leaves of Agave wither and the rosette eventually dies. Only the aboveground stem of Agave is strictly semelparous, as the plants are also surculose, sending out underground shoots. Clonal reproduction by the formation of small plantlets, or bulbils, in the inflorescence is also common. Several hundred to thousands of bulbils may be produced from an inflorescence (Szarek et al. 1996). Vegetative reproduction is the only means of spreading for some naturalized taxa of Agave in Florida.

Because plant parts of Agave are typically bulky and succulent, herbarium specimens are often prepared from smaller pieces and fragments which are inadequate for identification. For identification it is necessary to have full-length mature leaves and ideally a photograph of the mature plant as well. The largest plants (and largest leaves) present should be sampled. The abaxial portion of thick, succulent leaves should be gutted leaving the upper epidermis and leaf margins intact (Gentry 1982) to help maintain their shape during drying and pressing. If leaves are not sufficiently
gutted they may split and become misshapen upon drying. Young plants, bulbils, partial leaves, and inflorescence bracts are extremely difficult to identify to species and should only be collected if accompanying specimens with mature leaves are included.

Two subgenera of Agave can be recognized. All species in the Florida flora belong in $A$. subg. Agave, characterized by paniculate, umbellate inflorescences. Spikelike inflorescences characterize Agave subg. Littaea (Tagl.) Baker.

## KEY TO AGAVE IN FLORIDA

Note: Spines are delimited by the darkened, hardened, and sclerified tissue that contrasts with the greener and softer leaf tissue.

1. Terminal spine decurrent (sclerified spine tissue extending down margins of leaf)
2. Leaves with stout marginal spines throughout $\qquad$ Agave americana
3. Leaves entire or with marginal prickles only at the base of the leaves Agave weberi
4. Terminal spine abrupt, truncate
5. Most or all leaves recurved Agave desmettiana
6. Most leaves, and especially young ones, straight, erect

> 4. Leaves entire or with occasional sporadic spines or marginal spines spines weak, usually $\leq 3 \mathrm{~mm}$ long and $<4 \mathrm{~mm}$ wide ......................................................... Agave sisalana 4. Leaves with marginal spines throughout; marginal spines fairly robust, usually $>3 \mathrm{~mm}$ long, to 8 mm wide
5. Leaves virid, bright green and not glaucous Agave decipiens
5. Leaves variegated or blue-green and glaucous Agave angustifolia

Agave americana L., Sp. Pl. 1: 323. 1753. Aloe americana (L.) Crantz, Inst. Rei Herb. 1: 466. 1766. Lectotype (designated by Howard 1979): Herb. Linnaeus, 443.1 (LINN). Figure 1.

Agave americana is the only naturalized Agave in Florida not known to produce bulbils in the inflorescence, although the species still vegetatively spreads by suckers (surculose). Although Small (1933) mentioned that A. americana is found in hammocks and pinelands, the known specimens demonstrate this species spreading only locally from cultivation. Agave amertcana subsp. protoamericana Gentry represents the wild taxon from which the cultivated form $A$. americana subsp. americana putatively arose (Gentry 1982; Reveal \& Hodgson 2002). Two varieties of A. americana subsp. americana were recognized by Reveal and Hodgson (2002). Both are commonly cultivated and may spread locally. One variety is $A$. americana var. americana, which includes a cultivar with reflexed, variegated leaves (Fig. 1) and may produce capsules. The other variety is A. americana var. expansa (Jacobi) Gentry, which has erect, blue-gray leaves and has not been observed to produce capsules (Fig. 1).

Specimens examined: Charlotte Co.: A.R. Franck \& B. Upcavage 1859 (USF). Sarasota Co.: A.R. Franck 1868 (FLAS, USF).


Figure 1 Agave americana $\mathrm{A}, \mathrm{C}$-habit, $\mathrm{B}, \mathrm{D}$ - decurrent terminal leaf spine $\mathrm{A}, \mathrm{B}-\mathrm{A}$ americana var americana, Sarasota Co., Florida, C,D - A americana var expansa, Charlotte Co, Florida

Agave angustifolia Haw, Syn Pl Succ 72. 1812 NeOTYPE (designated by Garcia-Mendoza \& Chrang 2003) MEXICO. Oaxaca Distr. Huajuapan de León, Mun San Andrés, 3 km N of Tutla, 29 Jun 1992, A Garcia-Mendoza \& F Palma 5654 (MEXU). Figures 2-3

Agave angustfoha is a highly variable species from which many other taxa are likely derived, such as $A$ amaniensts Trel \& $W$ Nowell, $A$ angustifolia subsp tequilana, $A$ decipiens, $A$ fourcroydes Lem, and A sisalana


Figure 2 Agave angustifoha A-fruits, B-inflorescence, C-flowers, D-terminal leaf spine A,D. Sarasota Co, Flonida (Franck 1744), B,C - Sarasota Co, Florida (Franck 2261)


Figure 3 Agave angustffolia A -inflorescence, B -termmal leaf spine, C - flowers $\mathrm{A}, \mathrm{B}, \mathrm{C}$-Sarasota Co, Florida (Franck 2263)

The lectotype (perhaps actually a neotype) designated by Gentry has been discounted as incongruent with the protologue (Garcia-Mendoza \& Chang 2003) Agave angustifolta was once erroneously synonymized with $A$ vivipara L of the Leeward and Venezuelan islands (Hummelinck 1938, Garcia-Mendoza \& Chang 2003), a different species with comparably short, wide, recurved leaves possibly related to $A$ karatto Mill of the Lesser Antilles (Trelease 1913, Rogers 2000) Two forms of Agave angustifolia have been found naturalized in Flonda One is a common cultivar which
has variegated leaves and may produce both bulbils and capsules in the inflorescence (Fig 2) Another form has glaucous-green leaves and was observed to produce bulbils only (Fig 3)

Specimens examined Highlands Co. WS Judd \& D W Hall 5044 (FLAS) Miami-Dade Co. GN Avery 1581 (FLAS, FTG) Sarasota Co. AR Franck 1744, 1748, 1861, 1862, 2261 (USF), A R Franck 1747, 2263 (FLAS, USF)

Agave decipiens Baker, Bull Misc Inform Kew 1892 (67-68) 1831892 Lectotype (designated here) USA. Florida Palm Beach Co. Lake Worth, May 1892, CR Dodge sn (K) Fig 4

Agave deciptens is the only native Agave in Florida, usually found in coastal hammocks, "always most abundant in the wilds" (Dodge 1893, p 29) This species seems to only slightly differ from $A$ angustifolia (Zona 2001) Although many species of Agave may produce a noticeable trunk under certain conditions, it is especially common and pronounced in $A$ decipiens (Fig 4)


Figure 4 Agave dectpiens A-habit, B-inflorescence, C -terminal leaf spme, D -margual leaf spmes A, C,D - Lee Co, Florida, B - Santa Barbara Co, Califorma (Fig 72, Berger 1915)

As noted by Zona (2001), Gentry (1982) indicated a later published illustration to be a lectotype, which would actually be a neotype The protologue of $A$ decipiens indicates the study of several specimens ("these and other specimens") including some sent by Dodge from at least two locations, Lake Worth (Palm Beach Co) and Biscayne Bay (Miami-Dade Co) Thus there is no defimtive holotype (cf Zona 2001) Berger (1915) ated material from Dodge at K but only mentioned Biscayne Bay and did not indicate a type Three collections were found at K which were dated before the protologue (Jul-Aug 1892) A two-sheet specimen consisting of a leaf and several
flowers sent to K by Dodge from Lake Worth (dated May 1892) bears an anonymous handwritten note readng "Type specimen" Thas two-sheet specmen of A decipiens from Lake Worth is not known to have been declared as a type in any publication and is here designated as the lectotype The other specimen at K from Dodge (received March 1892) was collected from Coconut Grove which lies on Biscayne Bay The specimens at US from Dodge are dated ether " 1892 " or "Feb 1892 " and cite the location as "Southern Flonda" The US specmens cannot be considered the same gathering nor isolectotypes The other collection at K dated before the protologue was Curtiss 2836, received Aprif 1883

Specmens exammed Charlotte Co. SW Braem DP0078 (USF) Collier Co. E Jensen \& C Olson DW0001 (USF), A Bishop DW0007 (USF), OK Lakela 29446 (USF), PC Standley 12812 (US) Lee Co. A Bishop LK0050 (USF), S Todd 54 (USF), B F Hansen \& J Hansen 5698 (USF), A R Franck \& $S$ W Braem 2611, 2612, 2613, 2614, 2615, 2617, 2619 (USF), $S$ W Braems $n$ (USF), $J$ Bechner 1756 (FLAS), WC Brumbach 6086 (FLAS), T. Humt in (FLAS) Martin Co. J. Popenoe 1152 (FTG) Miami-Dade Co. S Zona 830, 831 (FTG), A H Curtss 2836 (K, P), CR Dodge s $n$ (K) Monroe Co. $R$ W Long et al 2715 (USF), E P Killip 31696 (FLAS, K, P), Dtckson sn (FTG), JK Small 7367 (FLAS) Sarasota Co. OK Lakela \& RW Long 27562 (USF), OK Lakela \& R.W Long 28146 (FLAS, USF), CC Coons sn (FLAS)

Agave desmettiana Jacobi, Hamburger Garten-Blumenzentung 22 217, f 321866 Neotype (designated by Gentry 1982) MEXICO. Sinaloa Gusave, 8 Feb 1952, HS Gentry 11569 (US, sonleotypes, DES, MEXU) Figure 5


Figure 5 Agave desmettiana A-habit, B-inflorescence, C-flowers A,B,C-Sarasota Co, Florida

Agave desmettiana is a diminutive species with relatively short leaves, a short inflorescence, and short suckers (Fig. 5). There are forms that may have marginal spines or entire margins.

Specimens examined: Lee Co.: W.C. Brumbach 7798, 8459 (FLAS). Sarasota Co.: A.R. Franck 1790 (USF).

Agave sisalana Perrine, Congr. Doc. (25th Congr.) 564: 87. 1838. Agave rigida Mill. var. sisalana (Perrine) Engelm., Trans. Acad. Sci. St. Louis 3: 316. 1875. Neotype (designated by Gentry 1982): MEXICO. Chiapas. Ocosocoautla, cultivated as fence row and fiber plant, 22 Mar 1957, H.S. Gentry 16434 (US; isoneotype, DES). Figure 6.
Agave sisalana Perrine var. armata Trel., Mem. Natl. Acad. Sci. 11: 49. 1913, syn. nov. Lectotype (designated here): JAMAICA. St. Andrew Par.: Hope Gardens, May 1907, W. Harris $X$ (MO, accession \#2147690; also shown in plate 111, Trelease 1913).

Agave sisalana is a pentaploid (Doughty 1936) cultivated for its fiber. This species was introduced to Florida in the 1830s by Dr. Henry Perrine (Robinson 1942). Soon, thereafter, this species had spread throughout much of south Florida for use as a fiber and an ornamental (Dodge 1893). In 1892, 5000 plants were exported from Florida to India (Drummond \& Prain 1906). Part of the advantage of using $A$. sisalana for fiber is that it often has entire leaves devoid of marginal spines. Occasionally, a leaf with a few marginal spines can be found on a rosette where all other leaves are entire. Plants with weak marginal spines throughout the margins of all leaves (A. stsalana var. armata) are frequently found and have been documented in Jamaica (Trelease 1913), Florida (Fig. 5), and Spain (Guillot Ortiz \& van der Meer 2006). The bulbils of A. sistana often show weak spines (Pinkerton \& Bock 1969).

Like Agave sisalana, A. fourcroydes is a pentaploid cultivar also used for its fiber (Doughty 1936). These two species can be difficult to distinguish. The traditional view is that $A$. fourcroydes has marginal spines and A. sisalana has entire leaves (Vidal 1925). However, this distinction is not entirely useful because of numerous examples of $A$. sisalana plants with marginal spines throughout all leaves of the plant. Furthermore, an entire-leaved form of $A$. fourcroydes (A. fourcroydes var. espiculata Dewey (1929)) has also been described.

Because Agave sisalana is usually regarded as having only entire leaves, plants with weak marginal spines in Florida have been identified as either $A$. deciplens or $A$. fourcroydes. The leaves of $A$. decipiens have larger marginal spines and appear pure green. The leaves of $A$. stsalana are often lightly glaucous-green.

It seems the only useful character for separating Agave fourcroydes and A. stsalana is the terminal spine. Leaves of $A$. fourcroydes have a rather stout terminal spine with an abrupt point whereas those of A. sisalana have a thinner terminal spine with a long-tapering point. It has also been suggested that $A$. fourcroydes has grayer leaves than A. sisalana (Trelease 1913), though several types of $A$. fourcroydes appear to have similarly green leaves (Colunga-GarcíaMarín et al. 1996; ColungaGarcíaMarín \& May Pat 1997; Colunga-GarcíaMarín et al. 1999).

It is questionable whether Agave fourcroydes and A. sisalana should be treated as species and it may be more appropriate to treat them as varieties or cultivars of $A$. angustifolia. All three species are able to hybridize and have similar geographic origins (Perrine 1838; Vidal 1925; Dewey 1931; Lock 1962). Several forms of A. fourcroydes have been morphologically characterized and distinguished from $A$. angusttfolia (Colunga-GarcíaMarín et al. 1996; Colunga-GarcíaMarín \& May Pat 1997; Colunga-GarcíaMarín et al. 1999; Piven et al. 2001; Robert et al. 2008).


Figure 6 Agave stsalana A - habit (marginally-spined form on the left, enture-leaved form on the right), B sucker inflorescence, C - normal inflorescence, D - margnally-spined leaves, E - base of inflorescence $\mathrm{A}, \mathrm{D}$ Hillsborough Co, Flonda (Franck \& Upcavage 2259), B, C, E - Sarasota Co, Florida (Franck 1746)

Gentry (1982) allied Agave sisalana with $A$ webert because both have only weak marginal spmes However, $A$ weberi appears to be unrelated with its decurrent termmal spme, wider leaves, and closely-spaced basal prickles Agave amantensts, a glaucous, diploid form has been separated from $A$ stisalana (Trelease \& Nowell 1933) It seems probable that $A$ amaniensis is synonymous to or derived from $A$ sisalana as it was described from Tanzania where $A$ sisalana had been cultivated sunce 1893 (Lock 1962)

The marginally-spined Agave sisalana var armata is here recognized as a synonym of $A$ sisalana A leaf specimen of A sisalana var armata at MO is designated as the lectotype A letter with an accompanying photograph from W Harris (MO, accession \#2147681) states that "entre and prickly forms" of $A$ stsalana were intermixed. At Egmont Key, Hillsborough Co in Flonda, a
similar situation was encountered, in which entire-leaved $A$. sisalana was intermixed with marginallyspined forms, without any other noticeable differences (Fig. 6).

The flower specimens of Harris $X$ at MO (accessions \#2147691, \#2147692, \#2147692, and \#3377526), cannot be reliably confirmed to be from the same plant or gathering as the lectotype because one of the sheets (MO, accession \#3377526) contains an illustration which states "flowers of the spine-less leaf Agave rigida var. sisalana". The flower specimens of Harris $X$ at MO are excluded from the lectotype. Trelease (1913) also cited the specimen Britton \& Millspaugh 5936 for A. sisalana var. armata, which has been databased at MO (accession \#2147672) but was unable to be located.

Although Agave sisalana appears to be exclusively bulbiferous without capsules, it is apparently possible to find capsules with viable seeds under certain conditions such as high elevation ( $900-1800 \mathrm{~m}$ ), low night-time temperatures, and a cut-back inflorescence (Lock 1962). A photograph of the capsules and seeds was made by Trelease (1913). This species also has the ability to send up suckers that emerge to form short inflorescences without a rosette of leaves (Dodge 1893; Fig. 6).

Agave sisalana Perrine was sufficiently described with a diagnosis by Perrine to effect valid publication so the authorship citation A. stsalana Perrine ex Engelm. is unnecessary.

Specimens examined: Brevard Co.: W.T. Gillts 6886 (FLAS, FTG), P.L. Howell 917 (USF). Collier Co.: O.K. Lakela et al. 28005 (USF), O.K. Lakela 28529 (FSU, USF), O.K. Lakela 29447 (USF), B.F. Hansen \& R.P. Wunderlin 11851 (FLAS, FTG, USF), B.F. Hansen et al. 11836 (FLAS, FTG, USF). Hillsborough Co.: R.P. Wunderlin et al. 5953 (USF), A.R. Franck \& B. Upcavage 2557, 2558, 2559, 2560, 2561, 2562 (USF), R.W. Long et al. 2946 (USF), E. Jensen \& C. Olson EK0009, EK0010 (USF). Lee Co.: S. Todd 76 (USF), G.R. Cooley 2435 (USF), W.C. Brumbach 9199 (NY, USF), E. Jensen \& C. Olson CC0139 (USF), A.R. Franck \& S.W. Braem 2603, 2618 (USF), W.C. Brumbach 8459, 8954 (NY), E. Jensen et al. MK0044 (USF), A. Bishop \& B.K. Holst CC0044 (USF), A.R. Franck \& S.W. Braem 2620 (USF), S.W. Braem s.n. (USF), E. Gandy \& B. Ochoa LK0102 (USF); S. Brown s.n. (FLAS). Manatee Co.: E. West s.n. (FLAS). Martin Co.: J. Popenoe 1033 (FTG). Miami-Dade Co.: B. Tan \& N. Raymond TP59 (FLAS), W.S. Judd 7087 (FLAS), A.H. Curtiss 5614 (NY). Monroe Co.: R.W. Long et al. 1860 (USF), A.R. Franck 2507 (USF), C.C. Parry s.n. (MO), A.H. Curttss 5644 (FLAS, NY), D.B. Ward \& S.S. Ward 1185 (FLAS, FSU), L. Garbarint s.n., 15 Nov 1967 (FTG), I.A. Badıa s.n. (FTG), B.C. Schmıdt 48 (FTG), Dıckson s.n., 13 Jan 1952 (FTG). Pinellas Co.: C. vanHoek \& B. Fortner CIO243 (USF), A. Schmidt et al. s.n. (USF). Sarasota Co.: E. Jensen \& C. Olson OS0566 (USF), A.R. Franck 1419, 1867 (USF), A.R. Franck 1746 (FLAS, USF), J. Beckner 1717 (FLAS).

Agave weberi F. Cels ex J. Poiss., Bull. Mus. Hist. Nat. (Paris) 7: 231. 1901. Neotype (designated by Gentry 1982): USA. Texas. Webb Co.: between Catarina and Laredo along route 83, 4 Jun 1963, H.S. Gentry et al. 20003 (US; isoneotypes, DES, MEXU). Figure 7.
Agave neglecta Small, Fl. S.E. U.S. 289. 1903, syn. nov. Lectotype (designated by Gentry 1982): USA. Florida. Lake Co.: cultivated at Eustis [U.S. Subtropical Laboratory], Jul 1895, H.J. Webber s.n. (MO; isolectotypes, ASU, NY).

Agave neglecta, long considered an enigmatic endemic of Florida, is here synonymized with A. weberi. With the NY isolectotype of A. neglecta is a note from Gentry dated Feb 1980 stating "may be synonymous with $A$. webert Cels." Gentry (1982) only marginally separated A. neglecta and A. weberl with subtle morphological differences. The protologue of $A$. neglecta describes leaves and capsules very similar to $A$. weberi, "blades glaucous . . . recurved at maturity . . . margins armed with
munute close-set teeth" (Small 1903) It seems A. neglecta was described due to the lack of knowledge of any other sumilar $A$ gave as $A$ weberi was never mentioned by Small $(1903,1933)$

Although Gentry (1982) separated Agave neglecta and $A$ weberi, the characters do not seem to hold up to scrutmy The inflorescence height in the protologue is certamly an estmate, " 13 m tall, panicle about 30 dm high" (Small 1903), later modified to "panicle 3 m long, scape three or four times as long" (Small 1933) Gentry (1982), whose description appears to have been supplemented by a photograph of a plant from Pass-a-Grille, Pinellas Co, distinguished $A$ neglecta with an inflorescence $8-10 \mathrm{~m}$ tall and that of $A$ webern as $3-10 \mathrm{~m}$ tall but noted that both species had tall peduncles that often topple (Fig 7) The flowers of the lectotype specimens of A neglecta are very much withered and appear to have been collected at post-anthesis or at least were not pressed soon after collection The withered lectotype flowers match the measurements of the protologue, " 55 mm long" (Small 1903), but should be regarded as inappropriate measurements for freshly opened flowers. Gentry (1982) distmgushed $A$ weberi as having longer flowers, " $65-80 \mathrm{~mm}$ " The terminal spme of $A$ neglecta was described as 25 cm long (Small 1933, Gentry 1982) and that of $A$ webert as $25-5 \mathrm{~cm}$ long The terminal spine length of $A$ neglecta might only be based on two leaf collections dated before the protologue, that of the lectotype (MO) and perhaps McCarty sn (MO) It is doubtful these two leaves represent the maximal length of the terminal spine


Figure 7 Agave weber A - habit, B-decurrent terminal leaf spine, C - adaxial leaf base with marginal prickles, D - near toppled inflorescence with fruts A,C - Sarasota Co, Flonda (Franck 1864), B - Sarasota. Co, Florida, D - Charlotte Co, Flonda (Franck 2648)


Figure 8 Companison of three inflorescences of Agavaceae A-Agave weberi in Sarasota Co, Flonda, B unknown Agavaceae, "A Map of the East Coast of Flonda" in Bartram (1791), C - Furcraea sp in Santo Domingo, Dommican Republic

Small (1933) later states that Agave neglecta occurs in "pinelands, hammocks, and kitchenmiddens", "is extensively planted for ornament in Florida", and "like $A$ decipiens this century plant thrives on kitchenmiddens and abonginal village sites" The habitat remarks do not appear to constitute evidence for $A$ neglecta being native because $A$ amertcana is also stated as beng naturalized and found in "hammocks, pinelands" (Small 1933) It is not clear what the habitat remarks were based on as I am not aware of any herbarium specimens or published encounters of $A$ neglecta from Small His statements may be based on his assertion that the $A$ vivipara mentioned by Bartram (1791) was A neglecta (Small 1933), though there is no way to make a confident identification based on the description "scapes arose erect near 30 ft high when their seeds are ripe [probably bulbils, not seeds] they vegetate and grow on the branches" (Bartram 1791) The illustration Map of the Coast of East Florida by Bartram (1791) depicts an Agavaceae-like plant
which more resembles the paniculate inflorescence of Furcraea Vent. than the umbellate flower clusters of Agave subg. Agave (Fig. 8). Dodge (1893) also mentioned this species (pp. 16, 38) as occurring on the mainland "at Jupiter, at Lake Worth . . . the Perrine Grant, but I do not recall a specimen on any of the Keys." All of these places were sites of $A$. sisalana cultivation as well (Dodge 1893).

I am unaware of any putatively native populations of Agave weberi ( $=$ A. neglecta) in Florida. All herbarium specimens of $A$. webert appear to have come from cultivation or disturbed coastal areas. Indeed, the lectotype of $A$. neglecta is based on a cultivated specimen which, though never cited by Small, was presumably available to him. With the exception of Gentry's determinations, only the isolectotype at NY was identified as $A$. neglecta. The lectotype (MO) and other isolectotype (ASU), though having the same collector, date, and specimen morphology, were labeled as $A . s p$. or A. rtgtda var. sisalana. Another specimen from Ankona, Florida dated 19 Apr 1895 (McCarty s.n. (MO)) retains an old handwritten determination as $A$. neglecta and so does a plate drawing from a "leaf sent by Kirk Monroe from Cocoanut [Coconut] Grove, Florida" (MO).

Gentry (1982) allied Agave webert with A. sisalana, but these species differ in many respects. Dodge (1893) noted this species (p. 38) to be allied with A. americana, with which it seems to share more characters. Caution should be exerted when working with $A$. webert in Florida as exposure to internal leaf tissue caused severe dermal itching and pustulation to myself.

Specimens examined: Charlotte Co.: A.R. Franck 2648 (USF). Lee Co.: B.F. Hansen \& $J$. Hansen 6130 (USF). Palm Beach Co.: S.W. Woodmansee \& T. Coullard 619 (FTG, USF). St. Lucie Co.: J. Beckner 1986 (FLAS). Sarasota Co.: A.R. Franck 1864, 2260 (FLAS, USF). Cultivated, Alachua Co.: S.B.Davis 1293, 1633, 1634, 1638 (FLAS). Cultivated, Miami-Dade Co.: K. Monroe s.n. (MO). Cultivated, St. Lucie Co.: C.J.McCarty s.n. (MO).

CINNAMOMUM Schaeff., Bot. Exped. 74. 1760. TyPe: Cinnamomum zeylanicum Blume. Fig. 9.
Cinnamomum comprises $\sim 250$ species with its center of diversity lying in the Asia-Pacific region (Ravindran et al. 2004; Li et al. 2008). Several species are aromatic and used in food and medicine. The main source of cinnamon in the USA is C. burmannil from Indonesia with another alternative source being C. cassia (L.) D. Don from China and Vietnam (Ravindran et al. 2004). In contrast with the commercial market of the USA, much of the world distinguishes between different types of cinnamon; for example C. verum J. Presl is characterized by different flavors and a higher price (Ravindran et al. 2004).

## KEY TO CINNAMOMUM IN FLORIDA

1. Buds scaly; leaves pinninerved, often glaucous, with abaxial glands in the basal leaf axils Cinnamomum camphora 1. Buds naked or scales indistinct; leaves trinerved ( 3 nerves arising from base) or triplinerved (lateral nerves arising from midvein above the base), not glaucous, without abaxial glands.

## 2. Leaves triplinerved, lateral veins conspicuous only on basal half of leaf, evanescent near leaf apex

Cinnamomum burmannii
2. Leaves trinerved, lateral veins extending to leaf tip, conspicuous at leaf apex

Cinnamomum iners


Figure 9 Cinnamomum A - C iners, Putrajaya, Malaysia (photo and permission by Mohd Yusoff), B $-C$ camphorum, Sarasota Co, Flonda, C - C iners, St Lucle Co, Flonda (Mejeur \& Park s n), D - C burmamm, Sarasota Co , Flonda (Franck 2973)

Cinnamomum burmannii (Nees \& T Nees) Blume, Bijdr Fl Ned Ind 115691826 Laurus burmanni Nees \& T Nees, Cinnam Disp, fasc 1.571823 LEctoyPe (designated by Wuu-Kuang 2011) West Java C. Blume sin (L, isolectotype, L)

This is the most common species of cimamon spice in the USA (Ravindran et al 2004) Two sterile shrubs were found in a hydnc hammock edge in a county park (Fig 9) No cultivated specimens were located nearby

Specimens exammed Sarasota Co. AR Franck 2973 (USF)
Cinnamomum camphora (L) J. Presl, Prir Rostlin 2. 471825 Laurus camphora L, Sp Pl 1369 1753 Persea camphora (L) Spreng, Syst Veg 22681825 Camphorna camphora (L) Farw, Druggists' Circular 625351918 LECTOTYPE (designated by Kostermans 1978) Herb Linnaeus, 5187 (LINN)

Cinnamomum camphora is said to have arrived in Florida between 1870-75 (Hood and True 1911). It is more common in the northern part of the state, in some cases dominating secondary forests (Clewell \& Tobe 2011). This species is a natural source of camphor, a chemical which also can be synthesized (Ritter 1933).

Specimens examined: Alachua Co.: S.F. Brockington 491 (FLAS), C. Easley 170 (FLAS), S. Malone 35 (FLAS), C. Kabat \& S. Kabat 373 (FLAS). Brevard Co.: A.G. Shuey M0281 (USF). Calhoun Co.: T. MacClendon \& K. MacClendon 937 (USF), L.C. Anderson 21532 (FSU). Citrus Co.: C. vanHoek s.n. (USF), R.A. Hattawy FC0064, FC0109 (USF), J. Scanlon 48 (FLAS). Clay Co.: J.A. Ferguson 55 (FLAS). Columbia Co.: B. Tan 256 (FLAS). DeSoto Co.: A.G. Shuey 2125 (FLAS, USF), R.P. Wunderlin et al. 6343 (USF), A.R. Franck 955 (USF). Duval Co.: R.K. Godfrey 80941 (FSU). Escambia Co.: G. Wilhelm 9440 (USF). Franklin Co.: L.C. Anderson 5469, 6676, 6825, 10566 (FSU). Gilchrist Co.: D.S. Correll \& H.B. Correll 51687 (FTG, USF). Hernando Co.: G.R. Cooley et al. 6319 (USF), D.M. Krofta s.n. (USF), L.M. Baltzell 10134 (FLAS). Highlands Co.: S.P. Christman \& C.V. Iswaran 1773 (FLAS). Hillsborough Co.: S. Landry \& C. Vandaveer s.n. (USF), D. Laker s.n. (USF), O.K. Lakela 32159 (FTG, USF), O.K. Lakela \& F. Almeda 31342 (USF), J. Myers 709 (USF), S. Mortellaro \& W.J. Glesy 179 (USF), A.N. Arcurı 711 (USF). Lake Co.: R.P. Wunderlin et al. 6645 (USF), B.F. Hansen et al. 6493 (FTG, USF). Lee Co.: R. Workman s.n. (USF), R. Clark s.n. (USF), WM. Buswell s.n. (FTG). Leon Co.: K.E. Blum 2712 (USF), D.L. Ftchtner s.n. (FSU), R.K. Godfrey 60691 (FSU), R.K. Godfrey 79567 (FSU, FTG), L.C. Anderson 25406 (FSU). Liberty Co.: R.K. Godfrey 79915 (FLAS, FSU, FTG), S. McDaniel 9012 (FSU), W. Hess et al. 8482 (FLAS). Manatee Co.: P. Benshoff LM0079 (USF). Marion Co.: A.B. Meyer \& A. Townesmith (USF), LM. Baltzell 5668 (FLAS). Osceola Co.: S. Myers 210 (USF). Orange Co.: S. Myers 53 (USF). Pasco Co.: B.F. Hansen \& J. Hansen 9947 (FSU, USF), EM. Ferguson et al. 734 (USF). Pinellas Co.: B.F. Hansen 12642 (USF), G. Fleming 3471, 3845 (USF), G.R. Cooley 979 (USF), P. Genelle \& G. Fleming 2530 (USF), B.F. Hansen et al. 12308 (USF). Polk Co.: P. Genelle \& G. Flemng 2650 (USF), J.M. Kunzer 2728 (USF). Putnam Co.: S. Myers 335 (USF), B. Herring \& G. Schultz 1595 (FLAS), AM. Laessle s.n. (FLAS). Santa Rosa Co.: G. Wilhelm 9131 (USF). Sarasota Co.: A.E. Perkins s.n. (USF). Seminole Co.: W.D. Longbotton \& D.H. Willtams 14451 (USF), D.H. Williams 2731 (USF). Sumter Co.: R.P. Wunderln et al. 9809 (USF), A. Btshop \& K. Alvarez DB0062 (USF). Taylor Co.: W.S. Judd et al. 3327 (FLAS, FSU). Volusia Co.: J.M. Kunzer 1323 (USF), D. Profant 73 (FLAS). Wakulla Co.: L.C. Anderson 23995, 24446 (FSU). Walton Co.: G. Wilhelm 8090 (USF).

Cinnamomum iners Reinw. ex Blume, Bijdr. Fl. Ned. Ind. 570. 1825. Type: Java. Remwardt s.n. (holotype: L; isotype: S).

Cinnamomum iners is a popular landscape tree in the Asia-Pacific region (Wuu-Kuang 2011). The naturalized occurrence in Florida was found on a site called Cloud Grove which had been used by the Coca-Cola Company (Calvert 1969; Bridges \& Youtsey 1972; Gould et al. 1987; Pelosi et al. 1987). Cinnamomum iners may have been cultivated as a cola flavoring ingredient as some cola flavoring recipes have included Cinnamomum (Merory 1968; Pendergast 1993; Glass 2011). The principal volatile component of C. iners, linalool (Phutdhawong et al. 2007), has been detected as an odorant in commercial brands of cola beverages (Lorjaroenphon 2012).

Specimens examined: St. Lucie Co.: R. Mejeur \& S. Park s.n. (FLAS, USF), Peterman s.n. (USF).

CORYMBIA K D Hill \& LA.S Johnson, Telopea 62141995 Type Corymbia gummfera (Gaertn) K D Hill \& L A S Johnson Figure 10

Corymbta has recently been segregated from Eucalpytus as a distinct genus (Hill \& Johnson 1995, Grattapagha et al 2012). Corymbia and Angophora Cav appear to share the synapomorphy of bristle glands with four cap cells and micropapillae (Wilson et al 2001) One species of Corymbia has been recorded as naturalized in Florida

Corymbia torelliana (F Muell) K D Hill \& L A S Johnson, Telopea 6. 3851995 Eucalyptus torellhana F Muell, Fragm 101061877 TyPE AUSTRALLA, Queensland Trinty Bay, 1877, Fitzalan s.n (holotype MEL)

Corymbia torelliana is a common landscape tree in Flonda, partly due to its attractive smooth trunk (Fig 10) The mature leaves and twigs of this species are hirsute and easily distingurshed from the other naturalized species of Eucabyptus, which have glabrous mature leaves and twigs

Specimens exammed Lee Co. JR Abbott 23683 (FLAS), JM Kunzer \& M Hamiton 2272 (USF) Palm Beach Co. R Miller sn (FLAS, USF)


Figure 10 Barks of three eucalypts. A - Corymbia torelluma, Sarasota Co, Flonda, B - Eucalyptus camaldulensts subsp acuat, Charlotte Co, Florida (Franck 1502), C-Eucalypus robusta, Sarasota Co, Florida

## EUCALYPTUS L'Hér, Sert Angl 181789 TyPE Eucalyptus obhqua L'Hér Figure 10

Eucalyptus ss comprises -600 spp (Brooker 2000), most native to Australia. Three species of Eucalyptus subg Symphyomyrtus Schauer have been recorded as naturalized in Flonda A few sterile specimens of Eucalyptus at FTG collected by Buswell are not included because they cannot here be reliably identified and may be from cultivation Confidently assigning specimens to species and infraspecific taxa may rely on several characters such as juvenule and adult leaves, bark, flower bud, and fruit

The earliest record of Eucalyptus in Florida is from 1878 on Merritt Island (Zon \& Briscoe 1911). The first industrial scale planting is said to have occurred in 1972 (Geary et al. 1983). The eucalypts have been utilized for energywood, mulchwood, phytoremediation, and windbreak in Florida (Rockwood \& Peter 1997). Eucalypts are extensively planted in California and 18 species have been recorded as naturalized there (Ritter \& Yost 2009).

## KEY TO EUCALYPTUS IN FLORIDA

1. Bark rough throughout; length from base of pedicel to fruit rim $>1 \mathrm{~cm}$ Eucalyptus robusta 1. Bark shedding, smooth on upper trunk and branches; length from base of pedicel to fruit rim <1 cm

Eucalyptus camaldulensis Dehnh. subsp. acuta Brooker \& M. W. McDonald, Austral. Syst. Bot. 22: 270. 2009. Type: AUSTRALIA. Queensland. Maranoa River at Forest Vale, ca. 63 km N of Mitchell on road to Injune, 27 Jul 2003, M.W. McDonald \& P.A. Butcher 3182 (holotype: CANB; isotypes: BRI, MEL).

Eucalyptus camaldulensis was allegedly the most widely planted eucalypt in Florida (Zon \& Brucoe 1911, as $E$. rostrata Cav.). Mature flower buds are needed for accurate identification to subspecies (McDonald et al. 2009).

Specimens examined: Charlotte Co.: A.R. Franck 1262, 1502 (FLAS, USF), A.R. Franck 1345, 1412 (USF).

Eucalyptus grandis W. Hill, Cat. Nat. Indust. Prod. Queensland 25. 1862. TyPE: AUSTRALIA. Queensland. Queensland woods, W. Htll 74 (holotype: K).

Eucalyptus grandis is commonly grown in south-central Florida for mulch and it occasionally naturalizes. This species is often confused with and difficult to distinguish from E. saligna Sm . (Skolmen 1965; DERM 2006). The authorship and type status follows Bean (2002).

Specimens examined: Glades Co.: B.F. Hansen et al. 11326 (FLAS, USF), K. Kuhlman s.n. (USF), A.R. Franck 1674 (USF). Hardee Co.: M. Scheller s.n. (FLAS). Hendry Co.: A.R. Franck 1752 (USF), G. Nelson 1101 (FSU). Palm Beach Co.: R. Miller s.n. (USF).

Eucalyptus robusta Sm., Spec. Bot. New Holland 39. 1795. Type: AUSTRALIA. New South
Wales. Port Jackson, 1793, J. White s.n. (holotype: LINN; isotypes: BM, G, K).
Eucalyptus robusta was alleged to be the second-most common eucalypt in Florida in the 1900s (Zon \& Briscoe 1911). This species can be quickly separated from other species by its rough bark over the entire trunk (Fig. 10).

Specimens examined: Brevard Co.: B.F. Hansen 12892 (USF), T. MacClendon et al. 225 (USF). Charlotte Co.: A.R. Franck 2866 (USF). Lee Co.: JM. Kunzer 2168 (USF). Martin Co.: M. Bodle s.n. (USF). Pinellas Co.: R. Chtoone 686 (USF). St. Lucie Co.: K.A. Bradley et al. 1221 (USF), C. Lippincott \& D. Garvue s.n. (FTG).

PANDANUS Parkinson, J Voy South Seas 761773 TyPE Pandanus tectortus Parknson
Pandanus includes -600 spectes natıve to the paleotropics (Sun \& DeFilipps 2010) Pandanus tectorius is commonly grown in south Florida as an ornamental

Pandanus odorifer (Forssk) Kuntze, Revis Gen P1 2: 737. 1891. Keura odorifera Forssk, Fl Aegypt-Arab 1721775 TYPE not indicated

A stenile specimen of Pandanus odorifer was collected in the Florida Keys (Big Pine Key) on a roadside in a marl coastal hammock (Fig 11) There was no evidence of cultivation or any nearby cultivated specimens Species of Pandanus are dioecious and the collection from the Flonda Keys probably only represents a waif occurrence Pandanus odorifer can recognized by its conspicuous marginal whitish prickles (St John 1980, Stone 1994, as P odoratissimus)

Pandanus odorifer has been regarded as synonymous with the widely used but illegitimate Pandanus odoratissimus L f. (Nicolson et al 1988, TROPICOS 2012). When Kuntze made the combination for $P$ odorifer the name $P$ odoratissimus was cited in synonymy The name Pandanus odorattssmus L-f has been in widespread usage (eg St John 1980, Stone 1994), though it appears to be illegitimate because Athrodactylis spinosa (Burmf) JR Forst \& G Forst was cited in synonymy, which was superfluous for the earlier valid name Bromeha sylvestris Burmf The protologue of Pandanus odoratissmus L f also cites the pre-Linnaean description of Bromeha syivestris Burm f , which was validly published in 1768

Specimens examined Monroe Co A.R Franck 2518 (USF)


Figure 11 Pandams odorffer, Montoe Co, Flonda (Fronck 2518) A - habit, B - shoot, C - white marginal spines

SANSEVIERIA Thunb, Prodr Pl Cap 1:65 1794 TyPE Sansevieria thyrsiflora Thunb Figure 12

The gemus Sanseveria is native to Africa and India and contains ~60 species (Brown 1915) Two species have been recorded as naturalized in Flonda Only on specimens of $S$ trifasciata have I seen fruits in Flonda

## KEY TO SANSEVIERIA IN FLORIDA

1. Leaf margin orange-red $\qquad$ Sansevieria hyacinthoides 1. Leaf margin green, yellow, or white Sansevieria trifasciata


Figure 12 Sansevieria A, C-leaves, B - leafmargn A, B-S hyacmthoides, Sarasota Co, Flonda, C - S trifasctata, Sarasota Co, Florida

Sansevieria hyacinthoides (L) Druce, Bot Exch Club Soc Brit Isles 34231914 Aloe hyacinthoides L, Sp Pl 1:321 1753 Cordyline hyacinthoides (L) W. Wight, Contr US Natl Herb 92491904 Lectotype (designated by Stearn 1961) GUINEA. C Commelin, Praeludia Bot 84, t 331703

Though Sanseveria hyacinthoides appears to spread vegetatively only, it is widespread in central and south peninsular Florida It can form dense colonies from its thick, bright orange rhizomes. This species was depicted by Dodge in 1893 (as $S$ gunneensis (L) Willd) as a potental fiber crop and may have been mtroduced to Florida much earlier than 1893 (Henley 1982) The earlest specimen I have seen from Florida was collected by Britton in 1903 from "waste places" in Key West (NY) I have not seen any herbarium specimens with fruits in Florida

Specimens examined Brevard Co:AG Shuey \&JE Poppleton sn (USF), OK Lakela 28680 (USF), R Burckhalter 2507 (LSU), LM Baltzell 10612 (FLAS), DB Ward \& RB Huck

10701 (FLAS), B. Herring \& L. Chafin 1211 (FLAS). Broward Co.: B.F. Hansen \& R.P. Sauleda 10565 (USF), G. Gann \& K.A. Bradley 155 (FTG), B. Schuster s.n. (FLAS). Charlotte Co.: A.R. Franck \& B. Upcavage 1858 (USF). Collier Co.: B.F. Hansen et al. 11833 (FTG, USF), O.K. Lakela 31815 (USF). Glades Co.: A.R. Franck 1661 (USF). Highlands Co.: D.W. Hall \& W.S. Judd 1381 (FLAS, USF). Hillsborough Co.: B.F. Hansen 12915 (USF). Indian River Co.: J.R. Abbott \& B.S. Carlsward 24906 (FLAS), W.G. D'Arcy 3012 (FLAS). Lee Co.: S. Todd 77 (USF), D.B. Ward \& S.S. Ward 2842 (FLAS, FSU, USF), B.F. Hansen 4998 (USF), A.R. Franck \& S.W. Braem 2608 (USF), W.C. Brumbach 8162 (NY), J. Beckner 1753 (FLAS). Martin Co.: D.S. Correll \& J. Popenoe 47999 (FTG). Miami-Dade Co.: J.K. Small \& G.K. Small 4835 (NY), R.K. Godfrey 58095 (FSU). Monroe Co.: A.R. Franck 2504 (USF), N.L. Britton s.n. (NY), F.C. Cratghead s.n. (FTG), S.J. Lynch \& S.A.L. Party s.n. (FLAS). Palm Beach Co.: P.M. Cassen 273 (FLAS), G. Gann \& K.A. Bradley 1075 (FTG), O. Winchester s.n. (FLAS). Sarasota Co.: B.K. Holst et al. 6339 (USF), A.R. Franck 1745, 1870 (USF). St. Lucie Co.: J. Beckner 1971 (FLAS).

Sansevieria trifasciata Prain, Bengal Pl. 2: 1054. 1903. TyPE: unknown.
Sansevieria trifasciata is an extremely popular ornamental that tolerates low light and low humidity indoors, is drought resistant, and can be easily propagated from leaf cuttings. This species is less frequently naturalized in Florida and does not appear to spread as vigorously as $S$. hyacmthordes.

Specimens examined: Collier Co.: O.K. Lakela \& D. Laker 29071 (USF). DeSoto Co.: A.R. Franck 1734 (USF). Highlands Co.: J.B. McFarlin 9252 (FLAS). Hillsborough Co.: S.W. Braem EK0038 (USF). Lee Co.: S.W. Braem GIO126 (USF). Martin Co.: R.O. Woodbury \& R. Roberts s.n. (USF). Miami-Dade Co.: F.C. Cratghead s.n. (USF). Sarasota Co.: A.R. Franck 1871 (USF).

## ACKNOWLEDGMENTS

I am indebted to Richard P. Wunderlin and Bruce F. Hansen (USF) for their help and support; also many thanks to Rusty Russell (US), Jim Solomon (MO), Kent Perkins (FLAS), Brett Jestrow (FTG), Austin Mast (FSU), Tony Bean (BRI), Lesley Walsingham (K), and their associated herbaria staff.

## LITERATURE CITED

Bartram, W. 1791. Travels through North and South Carolina, Georgia, East and West Florida [. . .] with Observation on the Manners of the Indians. James \& Johnson, Philadelphia.
Bean, T. 2002. A note on the authorship of Eucalyptus grandis. Newslett. Austral. Syst. Bot. Soc. 112: 2.
Berger, A. 1915. Die Agaven. Verlag von Gustav Fischer, Jena, Germany.
Bridges, G.D. and C.O. Youtsey. 1972. Natural Tristeza infection of Citrus species, relatives and hybrids at one Florida location from 1961-1971. Proc. Florida State Hort. Soc. 85: $44-47$.
Brooker, M.I.H. 2000. A new classification of the genus Eucalyptus L'Hér. (Myrtaceae). Austral. Syst. Bot. 13: 79-148
Brown, N.E. 1915. Sansevieria - A monograph of all known species. Bull. Misc. Inform. Kew. 1915: 185-261.
Callen, E.O. 1965. Food habits of some pre-Columbian Mexican Indians. Econ. Bot. 19: 335-343.
Calvert, D.V. 1969. Effects of rate and frequency of fertilizer applications on growth, yield and quality factors of young 'Valencia' orange trees. Proc. Florida State Hort. Soc. 82: 1-7.
Clewell, A. and J.D. Tobe. 2011. Cinnamomum-Ardisia forest in northern Florida. Castanea 76: 245-254.
Colunga-GarcíaMarín, P. and F. May-Pat. 1993. Agave studies in Yucatan, Mexico. I. Past and present germplasm diversity and uses. Econ. Bot. 47: 312-327.

Colunga-GarciaMarin, P. and F. May-Pat. 1997. Morphological variation of henequén (Agave fourcroydes, Agavaceae) germplasm and its wild ancestor (A. angustifolia) under uniform growth conditions: diversity and domestication. Amer. J. Bot. 84: 1449-1465.
Colunga-GarcíaMarín, P., E. Estrada-Loera, and F. May-Pat. 1996. Patterns of morphological variation, diversity, and domestication of wild and cultivated populations of Agave in Yucatan, Mexico. Amer. J. Bot. 83: 1069-1082.
Colunga-GarcíaMarín, P., J. Coello-Coello, L.E. Eguiarte, and D. Piñero. 1999. Isozymatic variation and phylogenetic relationships between henequén (Agave fourcroydes) and its wild ancestor A. angustifolia (Agavaceae). Amer. J. Bot. 86: 115-123.

DERM (Department of Environment and Resource Management). 2006. Key to Eucalypts of Greater Brisbane (ed. 3). Queensland Herbarium, Brisbane Botanic Gardens.
Dewey, L.H. 1929. A new variety of henequen without prickles. J. Wash. Acad. Sci. 19: 415-416.
Dewey, L.H. 1931. Sisal and henequen, plants yielding fiber for binder twine. Circular No. 186, United States Department of Agriculture, Washington, D.C.
Dodge, C.R. 1893. A Report on the Leaf Fibers of the United States. Government Printing Office, Washington, D.C.
Doughty, L.R. 1936. Chromosome behaviour in relation to genetics of Agave. I. Seven species of fibre Agave. J. Genet. 33:197-205.
Drummond, J.R. and D. Prain. 1906 [1907]. Notes on Agave and Furcraea in India. Agric. Ledger 7: 127-321.
García-Mendoza, A. and F. Chiang. 2003. The confusion of Agave vivipara L. and A. angustifolia Haw., two distinct taxa. Brittonia 55: 82-87.
Geary, T.F., G.F. Meskimen, and E.C. Franklin. 1983. Growing eucalypts in Florida for industrial wood production. USDA, Forest Service, Southeastern Forest Experiment Station, General Techinical Report SE-23. Asheville, NC.
Gentry, H.S. 1982. Agaves of Continental North America. Univ. of Arizona Press, Tucson.
Glass, I. 2011. This American Life, episode 427: Original recipe transcript. Chicago Public Media. <www thisamericanlife org>
Gould, A.B., R.S. Ferriss, M. Cohen, R.R. Pelosia, and R.M. Sonoda. 1987. Relationship of citrus blight to tree size of 'Valencia' orange on rough lemon rootstock. Proc. Florida State Hort. Soc. 100: 68-71.
Grattapaglia, D., R.E. Vaillancourt, M. Shepherd, B.R. Thumma, W. Foley, C. Kühlheim, B.M. Potts, and A.A. Myburg. 2012. Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. Tree Genet. Genomes 8: 463-508.
Guillot Ortiz, D. and P. van der Meer. 2006. Un nuevo taxón alóctono potencialmente invasor para la flora Ibérica, Agave sisalana var. armata Trel. Stud. Bot. 25: 139-141.
Henley, R.W. 1982. Sanseveria in Florida-Past and present. Proc. Florida State Hort. Soc. 95: 295-298.
Hill, K.D. and L.A.S. Johnson. 1995. Systematic studies in the Eucalypts 7. A revision of the bloodwoods, genus Corymbia. Telopea 6: 185-504.
Hood, S.C. and R.H. True. 1911. Camphor cultivation in the United States. Yearbook of the USDA 1910: 449-460.
Howard, R.A. 1979. Flora of the Lesser Antilles, Vol. 3. Harvard University, Massachusetts.
Hummelinck, PW. 1938. Notes on Agave in the Netherlands West Indies and north Venezuela. Recueil Trav. Bot. Néerl. 35: 14-28.
Kostermans, AJ.G.H. 1978. Lauraceae. In: E. Nasir and S.I. Ali (eds.) Flora of West Pakistan. Fakhri Press, Karachi.
Li, X., J. Li, and H. van der Werff. 2008. Cinnamomum. In: Z.Y. Wu, P.H. Raven, and D.Y. Hong (eds.). 1994+. Flora of China. Science Press, Beijing and Missouri Botanical Garden Press, St. Louis. Vol. 7.

Lock, G.W. 1962. Sisal: Twenty-five years' sisal research. Spottiswoode, Ballantyne, and Co. Ltd., London \& Colchester, England.
Lorjaroenphon, Y. 2012. Identification and characterization of potent odorants responsible for typical and storage-induced flavors fo cola-flavored carbonated beverages. Ph.D. dissertation. Univ. of Illinois at Urbana-Champaign.
McDonald, M.W., M.I.H. Brooker, and P.A. Butcher. 2009. A taxonomic revision of Eucalyptus camaldulensis (Myrtaceae). Austral. Syst. Bot. 22: 257-285.
Merory, J. 1968. Food Flavorings: Composition, Manufacture, and Use. The AVI Publishing Company, Inc., Westport, Connecticut.
Mulford, A.I. 1896. A study of the agaves of the United States. Rep. (Annual) Missouri Bot. Gard. 1896: 47-100.
Nicolson, D.H., C.R. Suresh, and K.S. Manilal. 1988. An Interpretation of Van Rheede's Hortus Malabaricus. Koeltz Scientific Books, Königstein, Germany.
Pelosi, R.R., A.B. Gould, M. Cohen, and R.M. Sonoda. 1987. Seed and budwood source effects on the incidence of citrus blight among 14 -year-old 'Valencia' orange trees. Proc. Florida State Hort. Soc. 100: 66-68.
Pendergast, M. 1993. For God, Country and Coca-Cola. Charles Scribner's Sons, New York.
Perrine, H. 1838. Tropical Plants. Rep. No. 564, $25^{\text {th }}$ Congress, $2^{\text {nd }}$ session, House of Representatives.
Phutdhawong, W., R. Kawaree, S. Sanjaiya, W. Sengpracha, and D. Buddhasukh. 2007. Microwaveassisted isolation of essential oil of Cinnamormum mers Reinw. ex B1.: Comparison with conventional hydrodistillation. Molecules 12: 868-877.
Pinkerton, A. and K.R. Bock. 1969. Parallel streak of sisal (Agave sisalana) in Kenya. Exp. Agric. 5: 9-16.
Piven, N.M., F.A. Barredo-Pool, I.C. Broges-Argáez, M.A. Herrer-Alamillo, A. Mayo-Mosqueda, J.L. Herrera-Herrera, and M.L. Robert. 2001. Reproductive biology of henequen (Agave fourcroydes) and its wild ancestor Agve angustifolia (Agavaceae). i. Gametophyte development. Amer. J. Bot. 88: 1966-1976.
Ravindran, P.N., K. Nirmal Babu, and M. Shylaja (eds.). 2004. Cinnamon and Cassia: The genus Cinnamomum. CRC Press, Medicinal and Aromatic Plants - Industrial Profiles, Boca Raton, Florida.
Reveal, J.L and W.C. Hodgson. 2002. Agave. In: Flora of North America Editorial Committee, eds. 1993+. Flora of North America North of Mexico. 16+ vols. New York and Oxford. Vol. 26.
Ritter, J.J. 1933. A new camphor synthesis. J. Amer. Chem. Soc. 55: 3322-3326.
Ritter, M. and J. Yost. 2009. Diversity, reproduction, and potential for invasiveness of Eucalyptus in California. Madroño 56: 155-167.
Robert, M.L., K. Yoong Lim, L. Hanson, F. Sanchez-Teyer, M.D. Bennett, A.R. Leitch, and I.J. Leitch. 2008. Wild and agronomically important Agave species (Asparagaceae) show proportional increases in chromosome number, genome size, and genetic markers with increasing ploidy. Bot. J. Linn. Soc. 158: 215-222.
Robinson, T.R. 1942. Henry Perrine, pioneer horticulturist of Florida. Tequesta 2:16-24.
Rockwood, D.L. and G.F. Peter. 2011 [1997]. Eucalyptus and Corymbia species for pulpwood, mulchwood, energywood, windbreaks, and/or phytoremediation. Univ. of Florida, IFAS Extension, Circular 1194.
Rogers, G.K. 2000. A taxonomic revision of the genus Agave (Agavaceae) in the Lesser Antilles, with an ethnobotanical hypothesis. Brittonia 52: 218-233.
Salinas, M.R., T. Ogura, and L. Soffchi. 2001. Irritant contact dermatitis caused by needle-like calcium oxalate crystals, raphides, in Agave tequilana among workers in tequila distilleries and agave plantations. Contact Dermatitis 44:94-96.
Skolmen, R.G. 1965. Saligna eucalyptus. In: R.M. Burns and B.H. Honkal (technical coordinators), Silvics of North America, Vol. 2. Agriculture Handbook 654. United States Department of Agriculture and U.S. Forest Service, Washington D.C.

Small, J.K. 1903. Flora of the Southeastern United States. The New Era Printing Company, Lancaster, Pennsylvania.
Small, J.K. 1933. Manual of the Southeastern Flora. Univ. of North Carolina Press, Chapel Hill.
St. John, H. 1980. Revision of the genus Pandanus Stickman. Part 42 Pandanus tectorius Parkins. ex Z and Pandanus odoratissimus L.f. Pacific Science 33: 395-401.
Stearn, W.T. 1961. Botanical gardens and botanical literature in the eighteenth century. In: Catalogue of Botanical Books in the Collection of Rachel McMasters Miller Hunt, Vol. 2, pt. 1. Hunt Botanical Library, Pittsburgh.

Stone, B.C. 1994. A note on Pandanus (Pandanaceae) in Taiwan. Bot. Bull. Acad. Sin. 35: 129132.

Sun, K. and R.A. DeFilipps. 2010. Pandanaceae. In: Z.Y. Wu, P.H. Raven, and D.Y. Hong (eds.). 1994+. Flora of China. Science Press, Beijing and Missouri Botanical Garden Press, St. Louis. Vol. 23.
Szarek, S.R., B. Driscoll, C. Shohet, and S. Priebe. 1996. Bulbil production in Agave (Agavaceae) and related genera. Southwestern Naturalist 41: 465-469.
Trelease, W. 1913. Agave in the West Indies. Mem. Natl. Acad. Sci. 11: 1-299.
Trelease, W. and W. Nowell. 1933. Agave amaniensis: A new form of fibre-producing Agave from Amani. Bull. Misc. Inform. Kew 10: 465-467.
TROPICOS. 2012. Pandamus odorifer (Forssk.) Kuntze. Missouri Botanical Garden. <www tropicos org/Name/100238551> Accessed 15 Nov 2012.
Vidal, R. 1925. Breeding work with henequen and sisal. J. Heredity 13: 9-12.
Wilson, P.G., M.M. O'Brien, P.A. Gadek, and C.J. Quinn. 2001. Myrtaceae revisited: A reassessment of infrafamilial groups. Amer. J. Bot. 88: 2013-2025.
Wuu-Kuang, S. 2011. Taxonomic revision of Cmnamomum (Lauraceae) in Borneo. Blumea 56: 241-264.
Zon, R. and J.M. Briscoe. 1911. Eucalypts in Florida. U.S.D.A. Forest Service Bulletin 87. Government Printing Office, Washington.
Zona, S. 2001. Agave decipiens, endemic to Florida. Haseltonia 8: 24-29.

# DRESSLERIA MORENOI (ORCHIDACEAE, CATASETINAE): A NEW SPECIES FROM COLOMBIA 

Harold G. Hills<br>50 Shrewsbury Green Unit F<br>Shrewsbury, Massachusetts 01545-3619<br>halhills@gmailcom<br>Michael H. Weber<br>Dorfstrasse 54 b<br>99438 Bad Berka/Tiefengruben, Germany<br>michaelweber-2@t-onlme de


#### Abstract

Dressleria morenoi H.G. Hills and M.H. Weber, sp.nov. (Orchidaceae, Catasetinae), is described from the Pacific slope west of Cali, Colombia. Color photographs and comparisons to $D$. kalbreyeri, $D$. williamsiana and $D$. kerryae are provided.


KEY WORDS: Dressleria morenoi, Dresslerta kalbreyeri, Dressleria kerryae, Dressleria williamstana, Orchidaceae, Catasetinae, Valle de Cauca, Colombia.

The recent taxonomic revision of Dressleria (Hills 2012) included a photo of an undescribed species from west of Cali, Colombia. Plants of this species became available due to the effort of Andrea Niessen from Orquideas del Valle, Cali, Colombia. The coauthor supplied the necessary herbarium material and the species can now be named.

Dressleria morenoi H.G. Hills and M.H. Weber, sp. nov. Type: COLOMBIA. Prov. Valle de Cauca. Rio Digua Valley, old road from Cali to Buenaventura close to Anchicaya, ex. cult. Aug 2012, M.H. Weber 319/2008 (holotype: K : isotype: K Spirit). Figures 1-4.

Dressleria morenot is most similar to D. kalbreyeri (Hills 2000) but differs in the attachment of the lip to the column. In $D$. morenor the lip is entirely adnate to the column, whereas in $D$. kalbreyert the lip is adnate to the bottom third of the column. The sepals of $D$. morenot are closer to the width of the petals than they are in $D$. kalbreyeri with narrow sepals. The low callus mound and the slit-shaped opening to the saccate portion of the lip are essentially the same in both species. Dressleria morenot differs from D. willtamstana (Hills 2012) by the lack of the tongue-like callus and a lip entirely adnate to the column. It differs from D. kerryae (Hills 2000) by the shape of the opening and by the floral fragrance.

Dresslerta morenot fragrance is dominated by methyl salicylate whereas $D$. kerryae fragrance is 1,8 -cineole and dimethoxy benzene.

Pseudobulbs fusiform to 9 cm tall and $2-3 \mathrm{~cm}$ wide. Leaves to $45 \mathrm{~cm} \times 15 \mathrm{~cm}$. Inflorescence basal, arranged in a loosely flowered raceme, to 45 cm . Pedicels to 4.0 cm . Flowers nonresupinate, saccate. Dorsal sepal 23 mm long and 8 mm wide. Lateral sepals 20 mm long and 8 mm wide. Petals 18 mm long and 10.5 mm wide. Lip entirely adnate to the column, 16 mm long and 11 mm wide, opening to the saccate portion of the lip by a transverse slit to 4.1 mm wide at the base of column, 4.6 mm wide at top, 1.6 mm high. Column 6 mm long, $7-8 \mathrm{~mm}$ wide at the base.

Known only from the Paafic slope west of Call, Colombia The only additional specimen is represented by the photograph (Hills 2012) of a prevous collection from the same area made more than 10 years ago


Figure 1 Dnesslerta morenot Photo by Juan Carlos Uribe


Figure 2. Dressleria morenoi. Close up of flower, note the wide sepals. Photo by Michael H. Weber


Figure 3. Dressleria morenoi. Profile view of the flower showing attachment of the lip to the column. Photo by Michael H. Weber.


Figure 4 Dressleria monenoi. Close up of callus mound Photo by Michael H Weber

Dressleria morenoi is named for Mano Moreno Marin Mano was born 24 November 1973 in the town of Bolivar, Valle del Cauca, Colombia He grew up on the Colombian Pacific coast and went to school with the Chami Indians, where he learned therr language His stepfather, Senen Rendon, was a renowned plant collector and it was from Senen that Mario learned about plants Mano is an excellent tree climber, knows a lot about the Colombian orchods, and has started his own orchid nursery

## AKNOWLEGEMENTS

We thank James L. Reveal for reviewing and editing the manuscript. Thanks to Andrea Niessen from Orquideas del Valle, Cali, Colombia, for supplying the plants and information about Mario Moreno.

LITERATURE CITED
Hills, H.G. 2000. New species of Dressleria (Orchidaceae: Catasetinae) from Central and South America. Lindleyana 15: 171-175.
Hills, H.G. 2012. Taxonomic revision of Dresslerta (Orchidaceae, Catasetinae). Phytoneuron 201248: 1-28.

# STUDIES OF NEOTROPICAL COMPOSITAE-VII. SCHISTOCARPHA EUPATORIOIDES (MILLERIEAE) IN THE DOMINICAN REPUBLIC, A NEW GENERIC RECORD FOR THE WEST INDIES 

John F. PRUSki<br>Missour1 Botanical Garden<br>P.O Box 299<br>St Louis, Missouri 63166


#### Abstract

The genus Schistocarpha is reported as a new record for the West Indies based on a single collection of $S$. eupatorioides from the Dominican Republic. The species occurs natively in Mexico, Central America, and Andean South America.

KEY WORDS: Asteraceae, Compositae, Dominican Republic, Galinsoginae, Hispaniola, Millerieae, Schistocarpha, West Indies.


Schistocarpha Less. (Compositae: Millerieae) was revised by Robinson (1979), who recognized 16 Neotropical species. The genus has been treated traditionally in tribe Senecioneae (e.g., Bentham \& Hooker 1873; D'Arcy 1975) because of its yellow disk corollas with an elongate tube and capillary pappus bristles. Without comment, Rydberg (1927) removed each Neurolaena and Schtstocarpha from Senecioneae, placing them in the newly described tribe Neurolaeneae. By concave anther appendages, paleate clinanthia, and helianthoid corolla trichomes, Robinson and Brettell (1973) treated Neurolaena and Schistocarpha in Heliantheae, where Robinson (1979) correctly aligned Schsstocarpha with subtribe Galinsoginae. More recently, Panero (2007) treated Galinsoginae within tribe Millerieae.

The revision of Robinson was used as the basis for further study by Turner (1986), who recognized ten species. More recently, Strother (1999) estimated as four or five the number of species in Schistocarpha. Examples of newer synonymy in Turner (1986) include his treatment of $S$. longiligula Rydb. as including four names recognized by Robinson, and Strother (1999) furthered this synonymy by treating S. longiltgula Rydb. in synonymy of the generitype $S$. bicolor Less. In each Turner (1986), Strother (1999), and Pruski (2010), S. eupatortoides is circumscribed as the sole species of Schistocarpha with pluriseriate pistillate florets having no or at best a much reduced corolla limb. The genus Schistocarpha was not reported in the West Indies by Liogier (1962, 1996, 1997), Adams (1972), Robinson (1979, 2006), Turner (1986), Howard (1989), or Strother (1999). As treated here, Schistocarpha thus represents a new generic record for the West Indies. The genus ranges from Gulf Coastal northern Mexico through the Isthmus of Tehuantepee, south through the Andes into northern Argentina, and now is known from a single locality in Hispaniola. The generic range mirrors that of $S$. eupatoriordes, the most common species in the genus.

We collected $S$. eupatorioides on the north side of the Sierra de Bahoruco in the Dominican Republic, the same locality as Ortiz \& Pruski 354 (JBSD, MO) cited by Ortiz (2012) as Disciphania domingensis Urb. (Menispermaceae). The plant from the Dominican Republic keys consistently to $S$. eupatorioides in each Robinson (1979, 2006), Turner (1986), and Strother (1999). The purpose of this note is to document $S$. eupatorioides as a genus and species new to the West Indies and to provide generic and specific descriptions of it that may be inserted into the Compositae treatment in the Flora of Hispaniola by Liogier (1996). The present treatment is adapted from those of Fenzl (1849), Robinson (1979, 2006), Turner (1986), Strother (1999), and Pruski (2010).


Figure 1 Voucher of Schistocarpha eupatonoides from the Domminan Republic (Pruski \& Ortiz 4060, MO)

Schistocarpha Less., Linnaea 6:409. 1831. Type: Schistocarpha bicolor Less. Nellretchia Fenzl, Zycona Kuntze

Coarse perennial herbs to shrubs to 5 m tall; stems ascending to scandent, few-branched, subterete, striate, leafy, internodes often elongate; herbage infrequently stipitate-glandular. Leaves opposite or distal ones infrequently alternate, subsessile to long-petiolate; blade lanceolate-deltate to ovate, chartaceous, thinly 3-nerved from near base, surfaces typically without glandular dots, adaxial surface scabrid or sometimes glabrous, abaxial surface glabrous to velutinous or pilosulose, base cuneate to truncate, but usually with acumen decurrent onto petiole, sometimes amplexicaul, margins serrulate to serrate, apex acute to attenuate; petiole typically somewhat winged from decurrent blade. Capitulescence terminal or axillary from the distal nodes, pluricapitulate, corymbiform-paniculate; peduncles slender, typically pubescent, sometimes stipitate-glandular. Capitula 6-13 mm long, $13-$ 145 -flowered, radiate (usually heterochromous) or indistinctly subradiate, sometimes disciform; involucre cylindrical-campanulate to campanulate; phyllaries 16-40, imbricate, graduated, 3-5seriate, usually appressed, scarious-chartaceous, usually (3-)7-11-striate, striations drying dark; clinanthium (receptacle or phoranthium) convex to conical, paleate; paleae shorter than disk florets, lanceolate to elliptic-lanceolate, scarious-stramineous, weakly navicular, striate, usually lacerate or trifid. Ray florets ( $0-) 8-25(-60)$, pistillate, $1(-3)$-seriate; corolla typically white, tube about as long as pappus, limb ovate to oblong, short- to well-exserted, nerves equally-thin, lacking larger support veins, apex 3-denticulate. Marginal florets (when capitula obscurely subradiate or disciform), 4070, 2-4-seriate, pistillate; corolla tubular-filiform and typically obscurely radiate with no or a minute flattened limb. Disk florets 5-75, fewer to more than pistillate florets, bisexual; corolla funnelform, shortly 5-lobed, yellowish, often pubescent, tube slender, generally about as long as limb, lobes triangular, erect, shorter than throat; anthers cream-colored or greenish to brownish, thecae ecaudate, bases short-sagittate, apical appendage ovate-concave, eglandular; style base dilated, partly immersed in nectary, branches short, partly exserted, with a 2 -banded stigmatic surface, apically short-acute, papillose. Cypselae isomorphic, prismatic-obovoid to terete, black, glabrous, carpopodium asymmetric, stramineous; pappus of $25-35$ elongate subequal white somewhat fragile capillary bristles in a single series. $x=8$. About $10-12 \mathrm{spp}$. Mexico to South America, and now a single species in the West Indies.

SChistocarpha eupatorioides (Fenzl) Kuntze, Revis. Gen. Pl. 3(3): 170. 1898. Neilreichia eupatorioides Fenzl, Nov. Gen. Sp. Pl. 6, t. 1. 1849. Type: PERU. 'Subandina prope Cuchero' [Huánuco. Near Cuchero, ca. $4-8 \mathrm{~km}$ SW of the boca del Río Chinchao at the Rio Huallaga, $9^{\circ} 30-31^{\prime} \mathrm{S}, 75^{\circ} 56-59^{\prime} \mathrm{W}$, ca. 800-1000 m, 1829-1830], Poepptg Addendts 74 (holotype: W). The Ruiz \& Pavón and Poeppig locality of 'Cuchero' was abandoned and Poeppig said some decayed huts are the only remains of it. Ruiz (1940) said Cuchero [in July 1780] is situated "in a small plain on a hill surrounded on all sides by other higher and rough hills" and Stephens and Traylor (1983) gave it as along the Río Chinchao. Ruiz (1940) gave Cuchero as 26 leagues NE from Huánuco (in the direction of Chinchao, league 18) and from Cuchero only "two short leagues downhill to the Huánuco river" [i.e., Rio Huallaga] near the mouth of the Río Chinchao. The distance on modern maps from Huánuco to the mouth of the Rio Chinchao at the Rio Huallaga is about 55 kms , placing Cuchero near modern day San Juan and about $4-8 \mathrm{~km}$ SW of the boca del Rio Chinchao at the Rio Huallaga. Figures 1-2.
Schistocarpha hoffmannu Kuntze, ?Schistocarpha margaritensus Cuatrec., Schistocarpha opposittfolia (Kuntze) Rydb., Zycona opposittfolia Kuntze

Perennial herbs to subshrub $0.5-3 \mathrm{~m}$ tall; stems pubescent to less commonly glabrate. Leaves petiolate; blade 4-20 $\times(0.5-) 2.5-13(-17) \mathrm{cm}$, ovate or distal ones lanceolate, surfaces rarely finely gland-dotted, adaxial surface strigillose to sometimes glabrous, abaxial surface pilosulose to strigose, much less commonly glabrous, base obtuse to subcordate or truncate, then abruptly attenuate


Figure 2 Schistocarpha eupatoriondes Close-up of capitula at anthesis showing the 3-4-seriate tubularfiliform pistillate florets with corolla limbs reduced or absent The scale bar at top has increments of 1 cm (Pruskt \& Ortzz 4060, MO)
onto petiole, basal acumen to 3 cm long, apex acuminate to attenuate, petiole $08-7 \mathrm{~cm}$ long Capitulescence usually $2-15 \times 2-15 \mathrm{~cm}$, each branchlet $20-50+$-capitulate with $1-3$ clusters, clusters usually moderately dense-spherical and cymose, infrequently nearly flat-topped and corymbiform, peduncles $2-10(-30) \mathrm{mm}$ long, pubescent to pilose, occasionally also stipitate-glandular, often 1 bracteolate, bracteole 2-4 mm long, linear-lanceolate, typically basal Capitula $7-9 \mathrm{~mm}$ tall, $35-88$ flowered, indistinctly subradiate to disciform, involucre 4-7 mm diam, phyllaries 25-30, $15-8 \mathrm{~mm}$ long, elliptic-lanceolate grading to lanceolate, 3-4-seriate, glabrous or sometimes sparsely ciliate distally, apex commonly obtuse to rounded, paleae $5-6 \mathrm{~mm}$ long, linear-lanceolate, usually persistent, strammeous, apically lacerate, central part sometimes long-attenuate Marginal florets 30-70, indistinctly subradiate or tubular-filiform (often within a single capitulum), 3-4-seriate, corolla white to yellowish, tube 4-5 mm long, laxly pilosulose, limb 0-1 mm long, when present ca $5 \times$ shorter than tube, sometımes faintly 3 -nerved, style sometimes much longer than corolla Disk florets 5-18, corolla 45-55 mm long, yellowish, tube 2-3 mm long, glabrous (in Hispaniola and often in Central American populations) or sparsely setose (often in South American populations), throat ca 2 mm
long, glabrous, lobes ca. 0.5 mm long, commonly setulose; anthers partly exserted; style branches to ca. 0.5 mm long. Cypselae $1-1.5 \mathrm{~mm}$ long; pappus bristles ca. 4.5 mm long. $2 n=16$.

Distribution and ecology. Schistocarpha eupatorioides is reported here as new for the West Indies from a single locality in the Dominican Republic on the island of Hispaniola. It otherwise occurs from Gulf Coastal northern México, throughout much of Central America, into Colombia and Venezuela, and thence south in the Andes through Ecuador, Peru, Bolivia, and ultimately into northern Argentina. Because Turner (1986) gives Schistocarpha margaritensts Cuatrec. as a possible hybrid, it is listed here only as a possible synonym. Schistocarpha eupatorioides flowers throughout most of the year (less so in April and May) and occurs mostly in disturbed, moist, or open areas below 1800 meters elevation. In the Dominican Republic, S. eupatoriordes was seen at the single mid-elevational sunny roadside locality cited below. The Hispaniolan material has glabrous disk corolla tubes as do most populations from Mexico and Central America. However, South American plants may exhibit similar morphology, thus the possible source of plants introduced into Hispaniola cannot be identified on the basis of this feature.

Voucher. DOMINICAN REPUBLIC. Barahona. Sierra de Bahoruco (northern side), entrada of Polo along DR Carretera Ramal 533, ca. 20 km S (uphill) of Cabral, $18^{\circ} 06^{\prime} 42^{\prime \prime} \mathrm{N}$, $71^{\circ} 16^{\prime} 18^{\prime \prime} \mathrm{W}, 822 \mathrm{~m}, 27$ Jun 2006, Pruski \& Ortiz 4060 (JBSD, MO, NY, S, US).

## ACKNOWLEDGEMENTS

I would like to thank Guy Nesom and Rosa Ortiz for reading the manuscript; Teodoro Clase (JBSD) and Ricardo García (JBSD) for helping with collection permits in the Dominican Republic; and Stephanie Keil for taking the photographs.

## LITERATURE CITED

Adams, C.D. 1972. Flowering Plants of Jamaica. University of the West Indies, Mona, Jamaica.
Bentham, G. and J.D. Hooker. 1873. Compositae. Pp. 163-533 in Genera Plantarum, Vol. 2. Reeve and Co., London.
D'Arcy, W.G. (coord.). 1975[1976]. Flora of Panama, Part IX. Family 184. Compositae. Ann. Missouri Bot. Gard. 62: 835-1321.
Fenzl, E. 1849. Nova Quaedam Genera et Species Plantarum Vascularium. Vienna. [preprinted from Denkschr. Kaiserl. Akad. Wiss., Math.-Naturwiss. K1. 1: 253-264 + pl. 29-30. 1850].
Howard, R.A. 1989. Compositae. Pp. 509-620 in Flora of the Lesser Antilles, Leeward and Windward Islands, Vol. 6. Arnold Arboretum \& Harvard Univ., Jamaica Plain.
Liogier, A.H. [as Hermano Alain as well as E.E. Liogier]. 1962. Rubiales-Valerianales-Cucurbitales-Campanulales-Asterales in Flora de Cuba, Vol. 5. Univ. Puerto Rico, Río Piedras.
Liogier, AH. 1996. La Flora de la Española, Vol. VIII. Universidad Central del Este, Vol. 72, Ser. Ci. 29: 1-588. San Pedro de Macorís, República Dominicana.

Liogier, A.H. [as H.A Liogier]. 1997. Descriptive Flora of Puerto Rico and Adjacent Islands, Vol. 5. Univ. Puerto Rico, San Juan.
Ortiz, R.D.C. 2012. Seed diversity in Menispermaceae: Developmental anatomy and insights into the origin of the condyle. Int. J. Pl. Sci. 173: 344-364.
Panero, J.L. 2007[2006]. Millerieae Lindl. (1829). Pp. 477-492 m K. Kubitzki (ed.), The Families and Genera of Vascular Plants, Vol. 8. Springer, Berlin.
Pruski, J.F. 2010. Asteraceae Bercht. \& J. Presl (Compositae Giseke, nom. alt. et cons.). Pp. 339 420 in R. Vasquez M. et al. (eds.), Flora del Río Cenepa, Amazonas, Perú, Vol. 1. Monogr. Syst. Bot. Missouri Bot. Gard. 114.
Robinson, H. 1979. A study of the genus Schistocarpha (Heliantheae: Asteraceae). Smithsonian Contr. Bot. 42: 1-20.

Robinson, H. 2006. 190(6). Compositae-Heliantheae. Flora of Ecuador 77(1): 1-230 and 77(2): 1233.

Robinson, H. and R.D. Brettell. 1973. Tribal revisions in the Asteraceae. IV. The relationships of Neurolaena, Schistocarpha and Alepidocline. Phytologia 25: 439-445.
Ruiz, H. [as translated by B.E. Dahlgren, text prepared originally in 1793]. 1940. Travels of Ruiz, Pavón, and Dombey in Peru and Chile (1777-1788) with an epilogue and official documents added by Agustín Jesús Barreiro. Publ. Field Columb. Mus., Bot. Ser. 21: 1-372 + 2 maps.
Rydberg, P.A. 1927. Carduaceae: Tribe 13. Liabeae, Tribe 14. Neurolaeneae, Tribe 15. Senecioneae [part]. N. Amer. Fl. 34(4): 289-360.
Stephens, L. and M.A. Traylor, Jr. 1983. Ornithological gazetteer of Peru. Harvard Univ., Cambridge.
Strother, J.L. 1999. Compositae-Heliantheae s.l. Pp. 1-232 in T.F. Daniel (ed.), Flora of Chiapas, Part 5. California Academy of Sciences, San Francisco.
Turner, B.L. 1986. An underview of the genus Schistocarpha (Asteraceae-Heliantheae). Phytologia 59: 269-286.

# A NEW SPECIES OF MARSHALLIA (ASTERACEAE, HELENIEAE, MARSHALLIINAE) FROM MAFIC WOODLANDS AND BARRENS <br> OF NORTH CAROLINA AND VIRGINIA 

Alan S. Weakley \& Derick B. Poindexter<br>UNC Herbanum (NCU)<br>North Carolina Botanical Garden Unuversity of North Carolina<br>Chapel Hill, North Carolina 27599-3280<br>weakley(@unc edu


#### Abstract

A new species of Marshallia (Asteraceae, Helenieae, Marshalliinae) is proposed and contrasted with the morphologically most similar and putatively most closely related species, M. grandiflora and $M$. obovata. The new species is known from a few sites in the Piedmont of northcentral North Carolina and south-central Virginia, occurring solely or primarily in remnants of fireand edaphically maintained oak savannas, barrens, and "prairies" developed over cation-rich, shrinkswell clay soils derived from the mafic rocks diabase and greenstone.


KEY WORDS: Marshallia legrandlu, Marshallia obovata, Marshallia grandfflora, Asteraceae, Helenieae, North Carolina, Virginia, Georgia, Florida, southeastern United States, endemic, imperiled

Marshallia Schreber is a small genus (7-11 taxa) endemic to the southeastern USA (interpreted broadly), with species extending as far north as southwestern Pennsylvania and as far west as southeastern Kansas, central Oklahoma, and central Texas. It has long been regarded as distinctive, enigmatic, and "strange" (Baldwin 2009), with contrasting assessments of its closest generic relatives and tribal placement. Beadle \& Boynton (1901) published the first comprehensive account of the genus and established the foundation for an understanding of its component species, naming three species (each of them rare and local: M. grandfflora Beadle \& Boynton, M. mohrn Beadle \& Boynton, and $M$. ramosa Beadle \& Boynton) and recognizing a total of 11 taxa ( 7 species, with 4 additional varieties). Building on this, Channell (1957) monographed the genus, largely agreeing taxonomically with Beadle \& Boynton (1901), recognizing 10 taxa ( 8 species, with 2 additional varieties), by elevating one of Beadle \& Boynton's (1901) varieties to specific rank (M. tenuifolia) and dismissing another (M. graminifolia var. lacinariotdes). In the half-century since Channell (1957), the most notable work on the genus has been by Linda Watson, James Estes, and collaborators, who published a series of publications in the early 1990s exploring the taxonomy of members of the genus and its tribal affinities (Watson \& Estes 1990; Watson, Elisens, \& Estes 1991; Watson, Jansen, \& Estes 1991).

Recent floristic works have generally followed the framework established by Channell (1957), with minor but significant diversity of opinion about the worth of recognition of some varieties or their taxonomic rank. Cronquist (1980) followed Channell exactly ( 8 species, 2 additional varieties). In her Flora of North America treatment, Watson (2006) formally recognized 7 species, providing characters and distributions for three additional varieties, apparently considered them of uncertain or optional taxonomic value. A consensus list of taxa accepted in the genus in the early $21^{\text {st }}$ century would include these: M. caespitosa Nutt. ex DC. var. caespitosa, M. caespitosa Nutt. ex DC. var. stgnata Beadle \& Boynton, M. graminifolta (Walt.) Small, M. temufolta Raf., M. grandiflora Beadle \& Boynton, M. mohril Beadle \& Boynton, M. obovata (Walt.) Beadle \& Boynton var. obovata, M. obovata (Walt.) Beadle \& Boynton var. scaposa Channell, M. ramosa Beadle \& Boynton, and M. trinervia (Walt.) Trel.

In 1986, North Carolina Natural Heritage Program biologist Harry E. LeGrand, Jr. found an unusual population of Marshallia near Butner, Granville County, North Carolina. This Marshallia was found in a dry, mafic barren over diabase in a site since dubbed the Picture Creek Diabase Barren (North Carolina Natural Heritage Program). LeGrand tentatively identified the Picture Creek Marshallia using existing floristic treatments (Radford, Ahles, \& Bell 1968; Cronquist 1980) as M. grandiflora Beadle \& Boynton, but noted that the identification was not definite or satisfying (North Carolina Natural Heritage Program 1986). The mention in Radford, Ahles, \& Bell (1968) of M. grandiflora as occurring in Granville County made this new record seem plausible, though the habitat given ("bogs") was less felicitous. A review of specimens at the University of North Carolina Herbarium (NCU) by the first author revealed the specimen on which this record was based (NCU 225014: Granville County: Bog, 1.5 mi E of Hester, A.E. Radford 43945, 16 Jun 1961), and that this specimen matched the material found by LeGrand at Butner and differed morphologically from M. grandiflora in the same ways. Attempts by the first author in the late 1980s and early 1990s to relocate the Picture Creek population were unsuccessful.

In 1971 and again in 1980, AM. and B.J. Harvill collected what they considered to be Marshallia obovata slightly to the north of the Picture Creek locality in Halifax County of southcentral Virginia (collections cited below). One of the sites where the Marshallia was collected, Difficult Creek, became a land conservation project by the Virginia Department of Conservation, and the populations of the state rare " $M$. obovata" came under greater scrutiny from biologists of the Virginia Division of Natural Heritage, who found that populations of both M. obovata and the putative new species from Picture Creek were present, morphologically distinguishable and phenologically offset from one another (Figure 1). In both North Carolina and Virginia, the undescribed taxon has been informally accepted as a species warranting conservation tracking and monitoring (Buchanan \& Finnegan 2010; Townsend 2009).

Taxonomy. With four known populations (of which two are known to be extant, and two historical and possibly extirpated), this morphologically distinctive entity, associated with a distinctive habitat, phenologically separated from sympatric and syntopic populations of its congener M. obovata, highly imperiled by its rarity and the need for fire management of its habitat, warrants taxonomic recognition.

Marshallia legrandii Weakley, sp. nov. (Figure 2). USA. North Carolina. Granville Co.: Picture Creek Diabase Barren, N of Butner, 22 Jul 2003, A.S. Weakley 7274 with L.M. Giencke and J.P. Perry III (holotype: NCU; isotypes: AUA, MO, NCSC, NCU, NY, US).

Paratypes: USA. North Carolina. Granville Co.: Bog, 1.5 mi E of Hester, Radford 43945, 16 Jun 1961 (NCU 225014). Virginia. Halifax Co.: Oak-pine woods 1 mi S of Difficult Creek on Rt. 719, 25 Jun 1972, Harvill 25539 (FARM [2 sheets], VPI 85782); border of dry, cut-over oak-hickory woods over basic rock, along SE side of Rt. $719,1.1 \mathrm{mi}$ SW of bridge over Difficult Creek, 3.3 mi E of Scottsburg, elev. 490 ft , common, 1 Jun 1995, Fleming 10448 (VPI 90521); Difficult Creek Heritage Preserve, mafic flats E of County Road 719, habitat mafic woodlands, 27 Jun 2003, Weakley 7255 (NCU 568186, NCU 569188); roadside 3 mi E of Halifax, 9 Jun 1980, Harvill 41178 (LYN 42010). Known stations for the species are shown in Figure 3.

Perennial, $60-80(-100) \mathrm{cm}$, fibrous-rooted, from caudices, and forming basal offsets. Stems erect, unbranched, striate, especially immediately below the head. Leaves basal and cauline, alternate; the first basal (most proximal) leaves often withering by anthesis, $1 / 3-1 / 2$ as long as the next most proximal and longest basal and low cauline leaves, these longest leaves $15-25(-32) \mathrm{cm}$ long (including the long petiole-like basal taper) and $7-20 \mathrm{~mm}$ wide, the apex acute to acuminate (rarely narrowly obtuse), the longest leaf on a plant (usually low cauline) $15-30 \mathrm{~cm}$ long, the leaves
gradually reduced upwards, extending $2 / 3$ to $4 / 5$ of the length of the stem; well-developed blades prominently 3 -nerved, lanceolate to oblanceolate (sometimes linear-oblanceolate. Heads strictly single. Involucres hemispheric to obconic, $20-25 \mathrm{~mm}$ in diameter (as measured phyllary tip to phyllary tip). Phyllaries $8-11 \mathrm{~mm}$ long, the broadest (outermost) phyllaries $2.5-3.7 \mathrm{~mm}$ wide, grading into narrower phyllaries inwards (and eventually into paleae), the apices acute to broadly acute, the distal surface densely glandular with both impressed glands and raised res in dots (Figure 4). Paleae acute-acuminate and only gradually and slightly dilated towards the apex, the distal surface glandular with both impressed glands and raised resin dots. Corollas pale to deep pink (Figure 5), lobes $5-7.5 \times 0.7-1.1 \mathrm{~mm}$. Cypselae mostly $3.0-3.2 \mathrm{~mm}$ long $\times$ mostly $1.5-1.6 \mathrm{~mm}$ wide (near the apex) and 0.8 mm wide (near the base), strigose, 5 -angled, 10 -ribbed. Pappus scales $1.1-1.3 \mathrm{~mm}$ long, scarious or hyaline, glabrous to scaberulous on the distal surfaces, the margins entire to scabridulous.

Marshallia legrandit is readily distinguished from most members of the genus by the following features. Plants strictly single-headed (separating it from M. graminifolia, M. tenuifolia, M. ramosa, M. mohril, M. caespitosa var. stgnata), leaves basally disposed (separating it from M. trinervia), stem pubescent at least in the scapose portion below the head(s) (separating it from $M$. trinervia), corollas pale to deep pink (separating it from M. obovata var. obovata, M. obovata var. scaposa, M. ramosa, M. caespitosa var. caespitosa, M. caespitosa var. signata). M. legrandin shows closest similarities to M. obovata var. obovata and M. grandfflora but is readily separable from each.

Marshallia legrandu differs from M. obovata var. obovata in its greater stature (usually 6-9 dm tall vs. usually 3-5 dm tall), its larger heads (Figure 4), its corolla color (pale to deep pink vs. white to very pale pink; Figures $4,5,6,7,8$ ), the greater length of the lower leafy portion of its stem ( $23-50 \mathrm{~cm}$ long vs. $5-30 \mathrm{~cm}$ long, Figures 2, 5, 10), its later flowering (June-July vs. April-early June; Figure 1) even when growing at the same site, the shape of its basal and lower cauline leaves (narrowly oblanceolate, mostly $15-25 \mathrm{~cm}$ long including the petiole, mostly $7-20 \mathrm{~mm}$ wide, averaging about $10-20 \times$ as long as wide including the petiole, the apex acute to acuminate, vs. obovate to oblanceolate, mostly $6-10 \mathrm{~cm}$ long, mostly $8-14 \mathrm{~mm}$ wide, averaging about $6-10 \times$ as long as wide, the apex obtuse to rounded and often emarginated; Figures 2, 5, 10), the reduction upwards of the size of the stem leaves (gradually reduced upwards, several of the uppermost leaves $<1 / 2$ as long and as wide as the largest lower stem leaves, vs. the uppermost stem leaves only slightly smaller than the largest lower stem leaves, excepting sometimes 1-2 greatly reduced bracts; Figures 2, 5, 10), the apex shape of the outer phyllaries (acute or acutish vs. obtuse to rounded; Figure 9), the apex shape of the paleae (acute-acuminate and not or gradually dilated towards the apex vs. acute and distinctly and abruptly dilated; Figure " 7 "), and the glandularity of the outer surface of the phyllaries and paleae (with abundant resin glands vs. with few or no resin glands) (Figures 4, 9).

Marshallia legrandii differs from M. grandiflora in the size and shape of the basal and lower cauline leaves (mostly $15-25 \mathrm{~cm}$ long including the petiole, mostly $7-12 \mathrm{~mm}$ wide, averaging about $20 \times$ as long as wide including the petiole, the apex acute to acuminate, vs. mostly $3-13 \mathrm{~cm}$ long including the petiole, mostly $10-20 \mathrm{~mm}$ wide, averaging about $6 \times$ as long as wide including the petiole, the apex obtuse to rounded; Figures 2, 5, 11), pappus scale size (ca. 1.2 mm long vs. ca. 2 mm long), plant stature (mostly $6-9 \mathrm{dm}$ tall vs. 3-5 dm tall); achene vestiture (with copious resin-dots between the ridges vs. without resin dots between the ridges; Figure 9), and distribution and habitat (of mafic woodlands and barrens of the Piedmont of southcentral Virginia and northcentral North Carolina, vs. of flood-scoured riverbanks, floodplain forests, and bog margins of the Alleghany and Cumberland Plateaus of southwestern Pennsylvania, West Virginia, eastern Kentucky, and eastern Tennessee, rarely east to the Blue Ridge of southwestern North Carolina; Figure 3).


Figure 1 Phenological contrast of Marshalla obovata var obovata and M legrapidu, Difficult Creek, 16 June 2009, photos by Iry Wilson- A. Marahallad obovata var obovata, m early to middle frutimg B Marahalia legrandu, in mid-flower (outer flowers whthering, inter flowers not yet open


Figure 2. Holotype of Marshallta legrandII Weakley.


Figure 3 Documented distribution of Marshallia legrandil
Etymology. The first author chooses to name this species for his colleague Harry E. LeGrand, Jr., for three reasons.

1) LeGrand first found and recognized the unusual morphology and importance of the population at the Picture Creek Diabase Barren, leading ultimately to this re-evaluation. Although the species had been collected thrice before (by Radford in 1961 and by Harvill \& Harvill in 1972 and 1980), it is quite likely that its distinctive features would have gone unnoticed without LeGrand's careful observations from the fourth and by far the largest population known to date.


Figure 4 A Flowering head of Marshalla legrandis Head is 43 cm wide, from flower tip to flower tip Paratype from Difficult Creek B. Closeup of phyllaries of Aorshacha legroudu, showing strongly glandular distal surface Holotype


Figure 5 Flowering specimen of Marshallta legrandn Paratype, from Dificult Creek


Figure 6 Head of Marshalia legrandi from below, showing phyllaries (shape and glandularity) and medium pink corollas Photograph by Curtis Hansen, June 11, 2012, Picture Creek
2) Over the course of his career with the North Carolina Natural Heritage Program (28 years and counting), LeGrand has had an instrumental role in the discovery and protection of momerons natural areas in North Carolina, especially in the Piedmont Perhaps none of hus discovenes have been more mportant than the vanous "drabase natural areas" he discovered and documented in the
course of the Superconducting Supercollider Survey (North Carolina Natural Heritage Program 1986), including the Picture Creek Diabase Barren and the Butner Diabase Glade, from which another new species, Phemeranthus piedmontanus S. Ware, was recently named (Ware 2011)
3) Marshallia legrandit is indeed "le grand" Marshallia, taller than M. obovata, with which it has been confused, and among the tallest species in the genus


Figure 7 Head of Marshallia legrandin from above, showing paleae and medium pink corollas Photograph by Curtis Hansen, June 11, 2012, Picture Creek

Habitat The two known extant sites (Picture Creek Diabase Barren and Difficult Creek Natural Heritage Preserve) for Marshalla legrandin have notable similarities, in being remnants of mafic woodlands, savannas, or prarres that were once relatively common in the southeastern Predmont (Noss 2012) Diabase, greenstone, and other mafic rocks in the southeastern Predmont weather to clay-rich soils with hardpan characteristics, in which extreme fluctuations of soil moisture avalability, cracking of soll during dry periods, flat landscapes creating large natural fire compartments, and occasional fires set by lightning and humans maintained "prarie-like" conditions suitable for calciphilic heliophytes Such sites have been described as "Piedmont prarres" and are of great conservation, ecological, and biogeographic interest, because of ther large numbers of narrowly endemic or highly disjunct and regionally rare plant species (Barden 1997, Davis et al 2002, Noss 2012) The habitats present at the third and fourth sites are more difficult to assess because they lack known extant populations of Marshallia legrandtt, the Hester location is over mafic rocks (diabase),
while Harvill's " 3 miles E of Halifax" collection appears not to be based on coarse-scale geologic mapping, but has not been searched for and the locality is rather vague


Figure 8 Habitat aspect of Marshallia legrandi at Pıcture Creek (type locality) Photograph by Curtis Hansen, June 11, 2012

The Picture Creek Diabase Barren features many narrowly endemic and disjunct species tracked as rare by the North Carolna Natural Heritage Program and listed as Threatened or Endangered by the United States Fish and Wildlife Service and the North Carolina Plant Conservation Program (Buchanan \& Finnegan 2010) Among the notable species co-occurring with the unusual population of Marshallia at the Pıcture Creek Diabase Barren are Soldago ngida var glabrata, Solidago ptarmicoides, Symphyotnchum depauperatum, Echinacea laevigata, Carex meadi1, Silphium terebinthnnaceum, Baptisia australis var aberrans, Ruelha humilhs, Eryngium yuccifolium var yuccifolum (North Carolina Natural Heritage Program 1986, Buchanan \& Finnegan 2010, all nomenclature and taxonomic concepts follow Weakley 2012) This set of species collectively is a mixture of very narrow endemics, broader endemics, and Midwestern disjuncts all associated with the regionally rare (in the Piedmont) combined conditions of 1) circumneutral soils with high base status, 2) frequent fire (at least historically), and open-canopy, sunny conditions

The Picture Creek community type is classified as the Quercus stellata - (Pinus echinata) / Schzachyrrum scopartum - Echinacea laevigata - Oligoneuron album Woodland or Xeric Hardpan Forest (Northern Prairie Barren Subtype), given a G1 conservation rank, the most highly imperiled ranking possible in the NatureServe conservation ranking system (Schafale 2012, NatureServe 2012, Slapcinsky 1994) Highlighting the unusual edaphic conditions at the site is the classification of the
soil at the site as a narrowly endemic series, the Picture series, a fine, smectitic, thermic Vertic Argiaquoll (Natural Resources Conservation Agency 2012).

Similarly, the Difficult Creek Natural Heritage Preserve supports relict communities determined by montmorillonitic soils derived from mafic and ultramafic rock and the historic occurrence of fires maintaining an open canopy. Though much of the site was altered by conversion to loblolly pine plantations in the 1980s, remnant patches of more natural vegetation remained, and some of the heliophytic species were able to persist in these sites and along roadsides, powerline rights-of-way, and a gas line right-of-way through the area. Now, with the area being restored by selective tree removal and prescribed fires, heliophytic taxa are reoccupying suitable habitats. The vegetation at the site is classified as a Quercus stellata - Carya (septentrionalis, glabra) - (Quercus marilandica) / Ulmus alata / (Schizachyrium scoparium - Piptochaetium avenaceum) Woodland [= CEGL003714] (NatureServe 2012) or one of the Piedmont Hardpan Forest types in the Virginia community classification: Quercus stellata - Quercus alba - Carya glabra / Ulmus alata Piptochaetium avenaceum - Scleria oligantha Forest (Southern Piedmont Hardpan Forest) (Fleming \& Patterson 2012).

Among the unusual and at least regionally rare taxa occurring with or near the Marshallia at Difficult Creek are Echinacea laevigata, Eryngium yuccifolium var. yuccifolium, Marshallia obovata var. obovata, Gillenia stipulata, Cirsium carolinianum, Dichanthelium annulum, Anemone berlandieri, Lythrum alatum, Rhynchospora harveyi, Carex meadii, Tragia urticifolia, Ambrosia bidentata, Symphyotrichum laeve var. concinnum, and others (G.P. Fleming, pers. comm. 2012; J.C. Ludwig, pers. comm. 2012; J.R. Townsend, pers. comm. 2012).



Figure 10 Representative example of Marshallia obovata var obovata.


Figure 11. Representative example of Marshallia grandiffora.

A New Key. We offer the following key to Marshallia with single heads and basally disposed leaves. A comprehensive key to the genus Marshallia will be provided in the near future.

1. Leafy portion of the stem $23-50 \mathrm{~cm}$ long, the naked peduncle $0.4-1.2 \times$ as long as the leafy portion of the stem; stem leaves reduced upward, the uppermost $<1 / 3$ as long and wide as the largest leaves on the plant; basal leaves obovate to oblanceolate, the apex obtuse to acute or acuminate; outer well-developed phyllaries with acute to obtuse apex, the outer surface with abundant resin glands; corollas medium pink; flowering early June-July.
2. Basal and lower cauline leaves (2-)3-13(-20) cm long (including the petiole), (5-)10-20(-30) mm wide, averaging about $6 \times$ as long as wide (including the petiole), the apex obtuse to rounded; pappus scales $1.5-2.2 \mathrm{~mm}$ long; plants (2-)3-5(-8.5) dm tall; achenes with absent or scattered resin dots between the ridges; Mountains of sw PA, WV, e KY, e TN and sw NC

Marshallia grandiflora
2. Basal and lower cauline leaves $15-25(-32) \mathrm{cm}$ long (including the petiole), (3-)7-12(-15) mm wide, averaging about $10 \times$ as long as wide (including the petiole), the apex acute to acuminate; pappus scales $1.0-1.3 \mathrm{~mm}$ long; plants (4-) $6-9(-10) \mathrm{dm}$ tall; achenes with copious resin dots between the ridges; Piedmont of nc NC and sc VA

Marshallia legrandii

1. Leafy portion of the stem $0-20(-30) \mathrm{cm}$ long, the naked peduncle $1.5-10 \times$ (or more) as long as the leafy portion of the stem; stem leaves (if present) not reduced upward, the uppermost $>1 / 2$ as long and wide as the largest leaves on the plant; basal leaves obovate to oblanceolate, the apex obtuse to rounded (often emarginate); outer well-developed phyllaries with obtuse to rounded apex, with or without resin glands; corollas white to very pale pink; flowering late April-May(-early June).
2. Outer phyllaries lanceolate, apices both conspicuously tapered and apiculate; shale barrens, hillsides, and rocky limestone slopes, of se TX, w LA, e OK, se KS, nw AR, and sw MO
$\qquad$
3. Outer phyllaries oblong-obovate, apices conspicuously rounded (though often also apiculate); glades, barrens, roadbanks, and mesic longleaf pine savannas of sc VA, NC, SC, GA, AL, and Panhandle FL.
4. Plant with 3-10 leaves on the lower stem, extending (5-)8-20(-30) cm up the stem; pappus scales (0.5-)0.7-1.2(1.5) mm long; plant (2-)3-5(-7) dm tall; outer surface of phyllaries and paleae generally lacking sessile resin glands (occasionally with a few punctate glands); Piedmont and rarely Coastal Plain from se VA southward ... Marshallia obovata var. obovata
5. Plant scapose (all of the leaves basal) or nearly scapose, with $1-5$ leaves extending $1-5(-10)$ cm up the stem; pappus scales (1.0-)1.5-2.5(-3.0) mm long; plant (0.5-)1.5-3.5(-5.0) dm tall; outer surface of phyllaries and paleae with many punctate and sessile resin glands; Coastal Plain and rarely outer Piedmont from NC southward $\qquad$ Marshallia obovata var. scaposa

Future Studies. The authors and collaborators plan additional studies to resolve the appropriate taxonomic ranks of taxa in the "caespitosa," "scaposa," and "graminifolia" complexes. Curtis Hansen (AUA) has initiated molecular phylogenetic studies that should help resolve relationships in the genus and clarify the roles of allopolyploidy, autopolyploidy, and allopatric differentiation and speciation in the genus.

## ACKNOWLEDGMENTS

We wish to thank Curtis Hansen and Irv Wilson for the use of photographs; Rob Evans, Cecil Frost, Marj Boyer, and Lesley Starke (of the Plant Conservation Program, N.C. Department of Agriculture) for their stewardship and management of the Picture Creek Diabase Barren; Chris Ludwig, Johnny Townsend, and Gary Fleming (of the Virginia Division of Conservation) for their knowledge, stewardship, and conservation management of the Difficult Creek Natural Heritage Preserve; Curtis Hansen, Alice Broadhead Wines, Lisa Giencke, Stephanie Seymour, Carol Ann McCormick, Misty Franklin Buchanan, Laura Gadd, and Mike Schafale for discussions about the new species and its habitat; herbaria FARM, LYN, NCU, VPI, and WILLI for access to specimens and specimen data; and Misty Franklin Buchanan, Chris Ludwig, Gary Fleming, Laura Gadd, Curtis Hansen, and Guy Nesom for reviews and suggestions that improved the manuscript.

## LITERATURE CITED

Baldwin, B.G. 2009. Heliantheae alliance. Chapter 41, in V.A. Funk, A. Susanna, T.F. Stuessy, and R.J. Bayer (eds.). Systematics, Evolution, and Biogeography of Compositae. International Association for Plant Taxonomy, Vienna, Austria.
Barden, L. 1997. Historic prairies in the Piedmont of North and South Carolina, USA. Natural Areas J. 17: 149-152.
Beadle, C.D. and F.E. Boynton. 1901. Revision of the species of Marshallia. Biltmore Bot. Studies 1: 3-10.
Buchanan, M.F. and J.T. Finnegan. 2010. Natural Heritage Program list of rare plant species of North Carolina. North Carolina Natural Heritage Program, Raleigh.
Channell, R.B. 1957. A revisional study of the genus Marshallha (Compositae). Contr. Gray Herb. 181: 41-130.
Cronquist, A. 1980. Asteraceae, Volume I, Vascular flora of the Southeastern United States. Univ. of North Carolina Press, Chapel Hill.
Davis, J.E., Jr., C. McRae, B.L. Estep, L.S. Barden, and J.F. Matthews. 2002. Vascular flora of Piedmont prairies: evidence from several prairie remnants. Castanea 67: 1-12.
Fleming, G.P. and K.D. Patterson. 2012. Natural Communities of Virginia: Ecological Groups and Community Types. Natural Heritage Technical Report 12-04. Virginia Department of Conservation and Recreation, Division of Natural Heritage, Richmond.
National Resource Conservation Service. 2012. Official soil series descriptions: Picture series. <https //sollseries sc egov usda gov/OSD_Docs/P/PICTURE html> Accessed Nov 2012.
North Carolina Natural Heritage Program. 1986. Report on the special interest natural areas and endangered species habitats in the general vicinity of the proposed superconducting supercollider in North Carolina (portions of Durham, Granville, Person, and Orange counties). N.C. Natural Heritage Program, Raleigh.
Noss, R.F. 2012. Forgotten Grasslands of the South: Natural History and Conservation. Island Press, Washington.
Radford, A.E., H.E. Ahles, and C.R. Bell. 1968. Manual of the Vascular Flora of the Carolinas. Univ. of North Carolina Press, Chapel Hill.
Schafale, M.P. 2011. Classification of the Natural Communities of North Carolina, 4th Approximation. North Carolina Department of Environment, Health, and Natural Resources, Division of Parks and Recreation, Natural Heritage Program, Raleigh.
Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina. Third approximation. North Carolina Department of Environment, Health, and Natural Resources, Division of Parks and Recreation, Natural Heritage Program, Raleigh.
Slapcinsky, J.L. 1994. The vegetation and soils associated with diabase in Granville and Durham counties, North Carolina. M.S. thesis, North Carolina State Univ., Raleigh.

Townsend, J.F. 2009. Natural Heritage Resources of Virginia: Rare Plants. Natural Heritage Technical Report 09-07. Virginia Department of Conservation and Recreation, Division of Natural Heritage, Richmond.
Ware, S. 2011. A new Phemeranthus (Portulacaceae) from the Piedmont of Virginia and North Carolina. J. Bot. Res. Inst. Texas 5: 1-7.
Watson, L.E. 2006. Marshallia. Pp. 456-458, in Flora of North America Editorial Committee, eds. 1993+, Flora of North America North of Mexico, Volume 21: Magnoliophyta: Asteridae (in part): Asteraceae, Part 3. Oxford Univ. Press, New York
Watson, L.E., W.J. Elisens, and J.R. Estes. 1991. Electrophoretic and cytogenetic evidence for allopolyploid origin of Marshallua mohru (Asteraceae). Amer. J. Bot. 78: 408-416.
Watson, L.E. and J.R. Estes. 1990. Biosystematic and phenetic analysis of Marshallia (Asteraceae). Syst. Bot. 15: 403-414.
Watson, L.E., R.K. Jansen, and J.R. Estes. 1991. Tribal placement of Marshallza (Asteraceae) using chloroplast DNA restriction site mapping. Amer. J. Bot. 78: 1028-1035.
Weakley, A.S. 2012. Flora of the southern and mid-Atlantic states, working draft of September 2012. University of North Carolina Herbarium, North Carolina Botanical Garden, Chapel Hill. http//www herbarium uncedu/flora htm>
Weakley, A.S., J.C. Ludwig, and J.F. Townsend. [In press, 2012]. Flora of Virginia. Botanical Research Institute of Texas, Fort Worth.

# SOLIDAGO PALLIDA (ASTERACEAE: ASTEREAE) NEW TO ONTARIO AND CANADA 

JOHN C. SEMPLE*, LAN TONG,<br>Department of Biology, University of Waterloo<br>Waterloo, Ontarıo Canada N2L 3G1<br>*author for correspondence jesemple@uwaterloo ca

MICHAEL J. OLDHAM and WASYL D. BAKOWSKY<br>Natural Heritage Information Centre<br>Ontano Ministry of Natural Resources<br>Peterborough, Ontario Canada K9J 8M5 michael oldham@ontario ca wasyl bakowsky@ontario ca


#### Abstract

The presence of Solidago pallida is reported for the first time in Canada, from northwestern Ontario. The species is known in Canada from a single population in the Lake of the Woods region near Manitoba. Initially thought to be an unusual marginal population collection of S. speciosa with hairy fruit, the true identify was confirmed by comparing many collections of the two species with those of S. jejunifolia and S. rigidiuscula. The Canadian collections of S. pallida are the northeastern most known population of the species, which is frequent in the Black Hills of South Dakota and occasional in the lower foothills of the Frontal Range of the Rocky Mountains in Wyoming, Colorado, and northern New Mexico. Collections from North Dakota have not yet been seen, but the presence of the species in that state seems likely.


KEY WORDS: Solidago pallida, Solidago speciosa, Solidago rigidtuscula, Solidago jejunifolia, Ontario, Canada, rare plants

A collection of what was thought to possibly be Soltdago spectosa Nutt. subsp. spectosa was made by M.J.O. and W.D.B. on 6 September 2005 from along the Winnipeg River north of Kenora, Kenora District, Ontario, Canada ( $49.78^{\circ} \mathrm{N}, 94.52^{\circ} \mathrm{W}$; Fig. 1). A duplicate of the collection Oldham \& Bakowsky 32123 (MICH, NHIC, WAT; Fig. 2) was sent to J.C.S. for confirmation of identification. The specimen had large lower stem leaves like $S$. speciosa but had sparsely hairy fruits. In 2011, L.T. included the WAT duplicate in her Senior Year Honors Project (Biol499), a multivariate morphometric analysis of the Soltdago spectosa complex. The details of the expanded study on all taxa in Solidago subsect. Squarrosae was completed in the fall of 2012 and will be reported elsewhere. A significant conclusion of the preliminary study was that $S$. spectosa as treated in Flora of North America (Semple \& Cook 2006) should be split into four separate species: S. speciosa, S. jejunifolta Steele, S. pallida (Porter) Rydb., and S. rigidiuscula (Torr. \& A. Gray) Porter. Unexpectedly, Oldham \& Bakowsky 32123 (WAT) was placed a posteriori in the multivariate study into the $S$. palldda a priori group with high probability rather than in the $S$. spectosa group. Either placement would have been significant because neither taxon was previously known from Ontario (Semple et al. 1999).

Solddago pallida in Ontario grows in an open Bur Oak (Quercus macrocarpa) - Jack Pine (Ptmus bankstana) woodland on a south-facing slope with Porcupine Grass (Hesperostipa spartea) and Big Bluestem (Andropogon gerardin) in the understory. The site occupied by S. pallida has shallow soil interspersed with rocks and is steep, sloping down to Palmerston's Channel of the Winnipeg River. Other common associated species include Pennsylvania Sedge (Carex pensylvanica), Poverty Grass (Danthonia spicata), Prairie Onion (Allum stellatum), and Beard


Figure 1. Solidago pallida in the field north of Kenora, Ontario, growing on a Hesperostipa spartea dominated slope above the English River


Figure 2. Solldago pallda voucher: Oldham \& Bakowsky 32123 (WAT).
tongue (Penstemon gracilis). Less abundant associated species include Tickle Grass (Agrostis scabra), Bastard Toadflax (Commandra umbellata), Rusty Woodsia (Woodsia ilvensis), vetch (Vicia sp. ), and Thyme-leaved Spurge (Chamaesyce serpyllifolia). On 15 September 2009 the population was surveyed by M.J.O. and Jane M. Bowles, resulting in a count (with the occasional estimate of plants in larger patches) of 830 vegetative plants and 280 flowering plants totalling $\sim 1110$ mature individuals. The population is not near a road or any human habitations and introduced species are rare at the site. There is no evidence to suggest the population is not native.

Solddago rigidnuscula has been reported from Ontario under the synonym $S$. speciosa var. rigidtuscula Torr. \& A. Gray (Semple et al. 1999; Committee on the Status of Species at Risk in Ontario 2011). It occurs on Walpole Island in southwestern Ontario some 1200 km from the Kenora District site. Solidago rigidiuscula looses its lower stem leaves by the time shoots flower. Rosette leaves and basal stem leaves are similar to those of $S$. spectosa. Basal rosette and stem leaves of $S$. jejunifolia have long narrow petioles and persist into flowering. Rosette leaves and lower stem leaves of $S$. pallida are petiolate but with more tapering winged petioles like those of $S$. speciosa and S. rigidiuscula.

Specimens of $S$. pallida are more likely to be confused with specimens of $S$. jejunifolia and $S$. rigidiuscula than with specimens of $S$. spectosa, at least in terms of upper leaf and floral traits. Solddago spectosa is an east-of-the-Appalachian-Mountains species whose range is extended from the Appalachians to the eastern edge of the Great Plains by tetraploids. The other three species are diploids found in the Great Lakes area and in prairie and savannah habits as far west of the Rocky Mountains. Solddago pallida is the westernmost of the three species. Soltdago jejunfolia is restricted to northern Michigan, Wisconsin, and northern and eastern Minnesota and possibly adjacent areas. Solidago rigidnuscula is the most widely distributed of the three prairie-forest ecotone taxa extending its range from the eastern prairies into the midwestern states in prairie-like and savannah habitats with scattered disjunct populations reaching southwestern Ontario in the north and Tennessee and the Carolinas further to the south and east.

In November 2010 the Committee on the Status of Endangered Wildlife in Canada (COSEWIC 2010) assessed the status of Showy Goldenrod, and the northwestern Ontario Solidago pallida population was assessed as Threatened in Canada (under the name "Showy Goldenrod Boreal population"). The population has also been assessed by the Committee on the Status of Species at Risk in Ontario (2011) as Threatened in Ontario and it is protected under the Ontario Endangered Species Act, 2007.

## ACKNOWLEDGMENTS

This work was supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant to J.C.S. Joan Venn is thanked for her curatorial assistance with loans. The following herbaria are thanked for loaning specimens of subsect. Squarrosae: COLO, GH, MO, MINN, NCU, NMC, NY, and MT (Thiers, continuously updated). Fieldwork by M.J.O. and W.D.B. was supported by the Natural Heritage Information Centre, Ontario Ministry of Natural Resources (OMNR). Jane M. Bowles, Samuel R. Brinker, and Bruce Ranta assisted with fieldwork. Logistical support from the OMNR, Kenora District Office, is much appreciated.

## LITERATURE CITED

COSEWIC. 2010. COSEWIC assessment and status report on the Showy Goldenrod Solidago spectosa (Great Lakes Plains and Boreal Populations) in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xiv +23 pp .
<www sararegistry gc ca/status/status_e cfm>

Committee on the Status of Species at Risk in Ontario. 2011. COSSARO Candidate Species at Risk Evaluation Report for Showy Goldenrod (Solidago speciosa). Ontario Ministry Natural Resources.
Semple, J.C. and R.E. Cook. 2006. Solidago Linnacus. Pp. 107-166. In Flora North America Editorial Committee (eds.). Flora of North America. Vol. 20. Asteraceae, Part 2. Astereae and Senecioneae. Oxford Univ. Press, New York.
Semple, J.C., G.S. Ringius and J.J. Zhang. 1999. The goldenrods of Ontario: Solidago L. and Euthamia Nutt. (ed. 3). Univ. Waterloo Biol. Ser. 36: 1-90.
Thiers, B. [continuously updated]. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium.
chttp//sciweb nybg org/science2/IndexHerbariorum asp>

# TYPIFICATION OF SOLIDAGO GRACILLMA (ASTERACEAE: ASTEREAE) AND APPLICATION OF THE NAME 

JOHN C. SEMPLE<br>Department of Biology<br>University of Waterloo<br>Waterloo, Ontarıo Canada N2L 3G1<br>jesemple@uwaterlooca


#### Abstract

Variations in application of the name Solidago gracillima have compounded confusion over what to include in synonymy under the name. It is regarded here as a species distinct from all those previously included in its synonymy. The holotype shows a diagnostically large inflorescence a few long branches; probable isotypes are variants with smaller, compact inflorescences without elongated lower branches. Morphological features of S. gracillima are discussed and compared with other species in Solidago subsect. Maritimae.


KEY WORDS: Solıdago gracillima, Solidago austrina, Solidago stricta, Solidago subsect. Martimae

Solidago gracillima Torr. \& A. Gray is a goldenrod species native to the outer edge of the piedmount and the Fall Line counties of South Carolina, Georgia, Florida, and possibly North Carolina. It is a member of Solidago subsect. Martimae (Torr. \& A. Gray) G.L. Nesom, a group of bog., marsh, and seasonally wetland goldenrods with lower stem and basal rosette leaves that have petioles sheathing the stem (Semple \& Cook 2006). It has been treated as a relatively narrowly defined species distinct from S. stricta Ait. and S. austrina Small (Small 1903; Cronquist 1968), as a weakly distinct species "perhaps not specifically distinct" from S. stricta" (Radford et al. 1968), as a broadly defined species including S. austrina and S. stmulans Fern. (Jones \& Coile 1988) and S. perlonga Fern. (Cronquist 1980), or as a subspecies within S. stricta Ait. (Semple \& Cook 2006, including S. austrina Small). The confusion is the result of 1) a lack of understanding about inflorescence variation in subsect. Martimae, 2) how many species should be recognized within subsect. Maritimae, and 3) how best to distinguish the species that are recognized with the subsection.

Solidago gracillima Torr. \& A. Gray, Fl. N. Amer. 2(2): 215. 1842. Solidago stricta Ait. subsp. gracillma (Torr. \& Gray) Semple, Sida 20: 1615. 2003. TyPE: USA. Florida. "Middle," Dr. Chapman s.n. (holotype: NY!, Fig. 1; probable isotypes: KEW 2 sheets!, NY 3 sheets!).

The holotype, as recognized here, may be the only collection at NY seen by Torrey and Gray and is the only specimen marked "S. gracillima n. sp." on a Torr. \& Gray, Flora N. Amer. label. It also is the only one with an original, printed annotation of "Syn. Fl. N. Amer." Several other probable duplicates of this collection are now at NY but were originally at Columbia College Herbarium (Fig. 2), Hamilton College Herbarium (Fig. 3), and Columbia University Herbarium (Fig. 4). The latter (as well as the holotype) is annotated as "Solidago gracillima TYPE K.M." (K. MacKenzie).

The exact collection locality in Florida is not indicated on any of the Chapman s.n. specimens. The species occurs in Panhandle Florida. The Atlas of Florida Vascular Plants (Wunderlin \& Hansen 2012) reports collections from Bay, Franklin, Leon, and Wakulla counties, but only collections from Leon County have been seen from Florida by the author.


Figure 1. Holotype of Solidago gracillima Torr. \& A. Gray, Chapman s.n. (NY).


Figure 2 Probable isotype of Solidago gracillma, Chapmanisn. (NY ex Columbia College Herb)


Figure 3. Probable isotype of Solidago gracillima, Chapman s.n. (NY ex Hamilton College Herb.).


Figure 4. Probable isotype of Solidago gracillima, Chapman s.n. (NY ex Herb. Columbia University).

Type material of Solidago gracillima (Chapman s.n. NY, Florida) includes large inflorescences that are very open with a few long branches (holotype NY, Fig. 1; isotype NY, Fig. 2) and smaller compact inflorescences without elongated lower branches (isotypes NY, Figs. 3-4). The same individual can produce different shoots with either large or small inflorescences. Terminal and elongated lateral branches have secund heads on distally arching stems. In comparison, inflorescences of $S$. stricta are elongate and narrow with short usually ascending branches (Fig. 5B). The apex is erect and not secund, unless the entire stem is arching as the infloresence develops. Then, the entire inflorescence may be one-sided with branches growing upward in the same direction. If the secund inflorescence of S. gracillima is pressed and dried so that the arching is flatted out, then a small inflorescence could be easily confused as that of $S$. stricta. Inflorescences of $S$. austrina when large have ascending spreading elongated lower branches (Fig. 5A); the apex is often slightly secund. Small inflorescences can be like those of $S$. stricta. Inflorescences of $S$. perlonga are similar to $S$. austrina, but the lower elongated branches are longer and more widely spaced on the stem (Fig. 5C). Smaller inflorescences even on the same clone can be similar to those $S$. stricta (Fig. 5C).

Other species in the subsection have slightly different to obviously different inflorescences. Those of Solidago uliginosa (Fig. 5D) have short ascending branches and are club-shaped but can be similar to those of S. smulans (Fig. 5E) or even S. austrina. Inflorescences of S. mexicana (Fig. 5F) and S. sempervirens (Fig.. 5G) are more secund-pyramidal in general shape. Those of S. mexticana have small stem leaves near and into the inflorescence, while those of $S$. sempervirens usually have large leaves just below and into the inflorescence. Those of $S$. mexicana can be similar to $S$. stricta, if the secund aspect to the apex is not strongly developed. In all species, size of the inflorescence is critical in determining branching pattern. Strong apical dominance requires lower branches to be relatively distant before the lower branches can elongate into diagnostic patterns. The tendency for botanists to collect specimens that fit on herbarium sheets, i.e., mid to small individual shoots, has resulted in numerous specimens with small inflorescences with non-diagnostic features. This has led to many misidentifications and repeated errors in the literature about the distribution of individual species. Work is underway to accurately map the distributions of all species in the subsection.

Rosette leaves and lower stem leaves of Solidago gractllima are shallowly serrate distally or along much of the margin (Fig. 6). The holotype includes several lower stem leaf fragments that are clearly serrate (Fig. 6A). One of the probable isotypes includes a rosette with rounded-spatulate to acute-lanceolate leaves that are long petiolate and serrate distally (Fig 5D). In the field, lower stem leaves can be similar to the acute, lanceolate rosette leaves and these maintain those traits in cultivated transplants (Fig. 6 B-C respectively, Semple \& Semple 11834). A few herbarium specimens have larger broader rosette leaves, but under cultivation in a growth chamber such leaves are very robust for the species (Fig. 6 E; seedling rosette leaves, Anderson 25350 FSU). Basal leaves of $S$. austrina are similarly serrate but usually larger and oblanceolate, based on observations of lower stem and rosette leaves of herbarium specimens from BRIT, FSU, GA, GH, MO, MT, NY, NCU, USCH, and USF (Thiers, continually undated) and field observations of wild plants in North Carolina, South Carolina, Georgia, and Tennessee. Rosette leaves of $S$. stricta are variable in shape from linear oblanceolate to lanceolate to broadly obovate. However, these are never serrate although sometimes crenate.


Figure 5. Inflorescence variation in Solidago subsect Mantimae A. S austrma, Semple \& Semple 11203 , Alabama B. S stricta, Semple 11777, South Carolna C. S perionga, Semple 11824, New Jersey D. S uhgmosa, Semple 11837, Michgan E. $S$ simulans, Semple 11588, North Carolina F. $S$ mextcana, Semple 11651, North Carolina G. $S$ sempervirens, Nova Scotia


Figure 6 Stem and rosette leaves of Solidago grachlima A. Lower stem leaf fragment, holotype (see Fig. 1), scale bat $=1 \mathrm{~cm} \quad$ B-C. Lower stem leaves of Semple \& Semple 11834 B. Wild plant growing out of vertical road embankment C. Cultivated plant grown from rootstock transplanted to WAT D. Basal rosette leaves of isolectotype (see Fig 2) E. Growth chamber grown base rosette of seedling from Anderson 25350 (FSU)

Wild populations of Solidago gracillma have been seen in South Carolina and southwestern Georgia A small population encountered in Barnwell Co, South Carolina, in 1981 (Semple \& Surpto 9814) grew at the top of a bank around a shallow pool in a mixed pine and broadleaf woods Several populations sampled in southwestern Georgia in 2010 were in habitats that could potentially be wetter in the early season, but were dry in early September Semple \& Semple 11834 (WAT) grew on a sandy clay ridge and on the face of a very steep road cut in an area of mature pme forest and pme plantations (F1g 7A) Semple \& Semple 11836 (WAT) grew in dreer, sandy soil at the top of a roadside ditch, while a few individuals of S. austrina grew at the bottom of the ditch in wet sandy and mucky soll (Fig 7B) All collections of S. austrina seen in North Carolina, South Carolina, Georgia, and Tennessee grew in ditches, seeps, wet prame, and heads of tributaries in usually wetter soils


Figure 7. Habitats of Solidago gracillima A. Semple \& Semple 11834, SE of Quitman, Brooks Co, Georgia B. Semple \& Semple 11836, SE of Caro, Grady Co, Georgia

Overall, the habitats of Solidago gracillima are likely seasonally drier than those of $S$. austrina. Both species can be locally common, but $S$. gracillima is generally less common. I conclude that the tendency to grow in habitats that change from wet to dry over the season is the reason many herbarium collections lack mid and lower stem leaves. The larger leaves become ecologically unsuited to the drier late season conditions and are dropped by the plant. In contrast, most species of subsect. Maritimae grow in habitats that are wet to very moist throughout the season. These tend to have lower stem and rosette leaves present at the time of flowering.

## ACKNOWLEDGEMENTS

This work was supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grants to the author. Joan Venn is thanked for her curatorial assistance with loans. The following herbaria are thanked for loaning specimens of Solddago subsect. Maritimae: BRIT, FSU, GA, GH, MEXU, MO, MT, NY, NCU, TEX, USCH, and USF. The following students assisted in recording location data and collecting morphological data on specimens of subsect. Maritimae: Mahmoud El-Sweisi, Andrew Lam, Yunfei Ma, Hammad Rahman, Andrea Ranson, Troina Shea, Marion Sorour, and Lan Tong.

## LITERATURE CITED

Cronquist, A. 1968. Solidago L. Pp. 413-438, in H.A. Gleason (ed.). The New Britton and Brown Illustrated Flora of the Northeastern United States and Adjacent Canada. Hafner Pub. Co., New York.
Cronquist, A. 1980. Vascular Flora of the Southeastern United States. I. Asteraceae. Univ. North Carolina Press, Chapel Hill.
Jones, S. B. and N.C. Coile. 1988. The Distribution of the Vascular Flora of Georgia. Department of Botany, Univ. of Georgia. Athens.
Radford, AE., H.E. Ahles, and C.R. Bell. 1968. Manual of the Vascular Flora of the Carolinas. Univ. of North Carolina Press, Chapel Hill.
Semple, J.C. and R.E. Cook. 2006. Soldago Linnaeus. Pp. 107-166, in Flora North America Editorial Committee (eds.). Flora of North America. Vol. 20. Asteraceae, Part 2. Astereae and Senecioneae. Oxford Univ. Press, New York.
Small, J.K. 1903. Flora of the Southeastern United States. Published by the author, New York.
Thiers, B. [continuously updated]. Index Herbariorum: A global directory of public herbaria and associated staff. Virtual Herbarium, New York Botanical Garden. http //sclweb nybg org/sclence2/ndexHerbariorum asp
Wunderlin, R.P. and B.F. Hansen. 2012. Atlas of Florida Vascular Plants. [S.M. Landry and K.N. Campbell (application development), Florida Center for Community Design and Research] Inst. for Systematic Botany, Univ. of South Florida, Tampa. <http $/ / \mathrm{www}$ plantatlas usf edu/>

# TERMS FOR SURFACE VESTITURE AND RELIEF OF CUCURBITACEAE FRUITS 

Guy L. Nesom<br>2925 Hartwood Drive<br>Fort Worth, Texas 76109<br>www guynesom com


#### Abstract

Terminology describing fruit surfaces of Cucurbitaceae is reviewed. The terms aculeate, bristly, echinate, muricate, tuberculate, furrowed, and smooth are defined and illustrated. Hispid, hirsute, pubescent, and villous describe vestiture (trichomes); echinate, aculeate, muricate, furrowed, tuberculate, and smooth refer to features of relief (not trichomes).


KEY WORDS: Cucurbitaceae fruits, surface vestiture and relief

In preparation of the taxonomic treatment of Cucurbitaceae for the developing Flora of North America North of Mexico (FNANM) volumes, terminology for describing features of fruit surface in that family was reviewed. Supposing that others might also find it useful toward clarity and consistency, a summary is presented here. Surface feature terms are divided here somewhat arbitrarily into two categories - vestiture (descriptions of trichome cover) and relief (broadly inclusive, including all terms not directly descriptive of trichome cover). The FNA description of fruit surface for the whole family is "glabrous or with trichome cover (hispid, hirsute, pubescent, villous), smooth or with surface relief (echinate, aculeate, muricate, tuberculate, furrowed)."

In general, definitions from the FNA Glossary (Kiger \& Porter 2001) are the most useful for Cucurbitaceae. For each of the terms described below, the etymological derivation is shown and an illustration is provided to show the "typical" (or "lectotypical") condition. The present review draws from glossaries from Asa Gray (1887 = "A. Gray"), Fernald (1950), Lawrence (1955), and Radford et al. (1974), the glossary prepared for FNA authors (Kiger \& Porter 2001 = "FNA"), Composition of Scientific Words (Brown 1956), and other miscellaneous sources.

Ambiguity of interpretation exists in some cases, especially with regard to the term "echinate." When the spinelike structures of an echinate surface are very thin in diameter and trichomelike, the condition might just as well be regarded as one of vestiture - hispid or hirsute. For example, echinate fruit surfaces in Stcyos are covered with trichomelike structures, but these are not clearly homologous with trichomes. In fact, they themselves, individually, may have surficial trichomes or trichomelike features. Fruits of some Sicyos species have both spinules and trichomes.

A correlated ambiguity extends to the terms "bristles" and "bristly," which have sometimes been used at least with reference to Stcyos (e.g., Nesom 2011).
bristly (Anglo-Saxon, byrst, hair) - Beset with bristles, hirsute, hispid, setose, bristles "stiff, sharp hairs, or any very slender bodies of similar appearance" (A Gray), "bearing relatively long and slender, more or less straight, terete, fine-pointed stiff hairs" (FNA)

Because most definitions of bristle equate it with a hair, I have not used the term in the FNA treatment. Instead, a thin spinelike structure is referred to as a "spinule" (diminutive of spine). Because "hair" lacks the technical precision of "trichome," however, bristle and spinule might justifiably be used interchangeably.

VESTITURE Types of trichome cover.
hispid, hirsute, pubescent, villous - Standard terms defined in many botanical glossaries. See illustrations in Lawrence (1955). Thladiantha dubia.

RELIEF Features based on surface topology and epidermal outgrowths or excrescences (excluding trichomes).
echinate (Greek, echmos, sea urchin, hedgehog) Figure 1A. Bristly, prickly, spinulose; "armed with prickles (like a hedgehog)" (A. Gray); "covered with spines; spinose, spiny" (FNA). Brandegea, Cucumis, Cyclanthera, Echinocystis, Echinopepon, Marah, Sicyos.
aculeate (Latin, aculeus, sting, spur) Figure 1B. Having any sharp-pointed structure; prickly, spinose, spiny; "armed with prickles, i.e., aculei; as the Rose and Brier (A. Gray); "having slender, stiff, sharp projections oriented in the general plane of the structure" (FNA). Cucumis.
muricate muriculate (Latin, muricatus, pointed or spiny like the surface of a murex shell (a kind of mollusk)) Figure 1C. "Beset with short and hard or prickly points" (A. Gray); covered with short, sharp points; "rough with short, hard points or protuberances; with short, hard, more or less acute, transversely round protrusions overall" (FNA). Cucumis, Ecballium, Momordica. Ecballium elaterium has short conical tubercles abruptly drawn out apically into a thin, hairlike extension - it seems likely that these structures are homologous with echinate spines common elsewhere in the family, but I have termed the surface as "muricate-hispid to muricate-hirsute." Cucums, Momordica.
furrowed (Middle English, fur (o)we, furgh) Figure 2A. With furrows, "elongate depression[s] that [are] relatively shallow and narrow" (FNA). Cucurbita.
tuberculate (Latin, tuberculum, diminutive of tuber) Figure 2B. With small, rounded projections, swellings, or protuberances; "bearing excrescences or pimples" (A. Gray); "verrucose, warty, covered with small, relatively broad, irregularly shaped, obtuse projections" (FNA). Cucurbita.
smooth (Old English, smōth, akin to Old Saxon, smōthl) Figure 2C. Having a surface free from irregularities, roughness, or projections, even; "even or unrelieved overall. Strictly applied, this term refers only to the surface proper; however, it is often used to mean glabrous as well" (FNA). The smooth condition in Figure 2C at least has minimal surface relief, and it also illustrates the how the term may refer to both vestiture and relief. Species in most genera.

## LITERATURE CITED

Brown, R.W. 1956. Composition of Scientific Words (rev. ed.). Smithsonian Institution Press, Washington, DC.
Fernald, M.L. 1950. Gray's Manual of Botany (ed. 8). American Book Co., New York.
Gray, A. 1887. Elements of Botany: For Beginners and For Schools. Ivison, Blakeman, and Co., New York and Chicago. Project Gutenburg eBook <http//www gutenberg org/files/ 33757/33757-h/33757-h htm>
Kiger, R.W. and D.M. Porter. 2001. Categorical Glossary For the Flora of North America Project. Hunt Institute for Botanical Documentation, Carnegie Mellon Univ., Pittsburgh. Online version <http/huntbot andrew cmu edu/HIBD/Departments/DB-INTRO/IntroFNA shtml>
Lawrence, G.H.M. 1955. An Introduction To Plant Taxonomy. The Macmillan Company, New York
Nesom, G.L. 2011. Taxonomy of Sicyos (Cucurbitaceae) in the USA. Phytoneuron 2011-15: 1-11.
Radford, A.E., W.C. Dickison, J.R. Massey, and C.R. Bell. 1974. Vascular Plant Systematics. Harper \& Row, New York.


Figure 1. A. Echinate surface, European hedgehog, Erinaceus europaeus; B. Aculeate surface; prickles of Rosa stem; C. Muricate surface; individuals of purple dye-murex, Bolmus brandaris (originally Murex brandaris L.)


Figure 2 A Furrowed, vestiture of Gossypium hirsutum B Tuberculate, glabrous, a cultivar of Cucurbita melopepo C Smooth (or mostly lacking relief), glabrous (perhaps artificially)

# SYMPHYOTRICHUM PRATENSE (ASTERACEAE): NEW FOR THE FLORA OF OKLAHOMA 

Matt White<br>882 Hwy 24<br>Campbell, Texas 75422<br>mwhite@parisjc edu<br>David Arbour<br>1462 W Collin Raye Dr<br>De Queen, Arkansas 71832


#### Abstract

Symphyotrichum pratense is reported new for Oklahoma from a site east of Broken Bow, McCurtain County, in the extreme southeastern corner of the state. In 2010 this species was collected on a degraded limestone cedar glade, a habitat more typical of populations in the eastern United States rather than those in nearby Texas. This species is rare everywhere except Texas and Louisiana and should be considered imperiled in Oklahoma.


KEY WORDS: Asteraceae, Symphyotrichum, Symphyotrichum pratense, McCurtain Co., Oklahoma

Symphyotrichum pratense (Raf.) Nesom, barrens silky aster, is native to dry, sandy, saline, or rocky barrens and prairies or prairie-like habitats in the southeastern USA (Jones et al. 2008). It is closely related to $S$. sericeum, from which it can be distinguished by its larger involucre, less sericeous phyllaries, and phyllary morphology. In S. pratense the distal, green portion of the largest phyllaries are much longer than the proximal, indurate portion, while in $S$. sertceum the reverse is true-though in occasional individuals of the latter the two portions are about equal (Jones et al. 2008).

Except for a small region of central Texas, Symphyotrichum pratense and S. sertceum are allopatric. According to the excellent synopsis provided by Jones et al. (2008), S. sericeum is found primarily from Arkansas and Oklahoma north to southern Canada, western Michigan and Indiana, with disjunct populations in central Texas. The core range of the S. pratense lies in eastern Texas and western Louisiana with disjunct populations farther east. In Texas this species is associated more frequently with sandy and sandy loam soils - particularly those of the post oak savannah and the piney woods as well as coastal prairies-and less commonly with the calcareous clays of the blackland prairie. In contrast, Louisiana locations are in blackland prairie remnants, chalk hills, and calcareous clays as well as pine flatwoods. On the coastal plain of southern Arkansas, where it has apparently been mostly extirpated, it grows in open saline barrens. Farther east, the species grows mostly in calcareous chalk barrens, cedar glades, and limestone outcrops. These widely disjunct populations are in central Kentucky, scattered in middle Tennessee, western Virginia, western North Carolina (historically), northwest and south central Georgia, as well as the Florida Panhandle, northern and western Alabama, and east central Mississippi (Jones et al. 2008).

Prior to this discovery, Symphyotrichum pratense was not known from Oklahoma (Jones 1992; Jones et al. 2008; BONAP 2012). On 27 October 2010 Arbour collected the species east of Broken Bow, in McCurtain County, Oklahoma, on a subdivided tract that was for sale. Two days later White visited the site and counted around a dozen plants and obtained numerous characteristic photos and a partial specimen of a flowering head, which was scanned at high resolution. White and Arbour revisited this site 5 October 2012 and White collected another voucher.

Voucher specimens: Oklahoma. McCurtain Co.: 5.25 mi E of Broken Bow on US 70 and 0.5 mi N on county road to Mt Fork Park $\sim 50-80$ yards E of road in open glade, $34^{\circ} 02^{\prime} 91.40 \mathrm{~N}, 94^{\circ} 39^{\prime}$ 13.50 " W, 27 Oct 2010, Arbour s.n. (OKL); 5 Oct. 2012, White s.n. (BAYLU).


Figure 1. A (left). Symphyotrichum pratense scanned at 3600 dpi from a collection made, but not preserved, 29 Oct 2010. Note that the distal green portions of the largest phyllaries are approximately $2 / 3$ the length of the indurate proximal portions in this individual. B (right). Macrophotograph of M. White s.n. (BAYLU) collected 5 Oct 2012. Note the marginal cilia on the phyllaries. Photo by Matt White.

The Oklahoma site is a degraded cedar glade with thin soils over limestone. Symphyotrichum pratense is rare and occurs with Schizachyrium scoparium, Dalea compacta var. compacta, Physostegia virginiana, Rudbeckia missouriensis, Liatris squarrosa var. glabrata, Liatris pycnostachya, Spiranthes magnicamporum, Manfreda virginica subsp. virginica, Eupatorium altissimum, Silphium laciniatum, Stenaria nigricans and Carex microdonta.

The habitat at this site is in stark contrast to characteristic habitat on the coastal plain in neighboring Bowie County, Texas where Symphyotrichum pratense grows in abundance (M. White pers. obs.) in two "pocket prairies" remnants. The habitat at these prairie remnants was described by

Singhurst et al. (2011). In contrast, the McCurtain County site is on the edge of the Interior Highlands and the habitat more like that found in the disjunct eastern populations with many of the same plant associates.

When the species was discovered, the timber around the glade had been clearcut and the land subdivided and offered for sale, and some of the surrounding lots had been developed into domestic lots. The glade, however, was intact. It was subsequently sold and the scattered cedars were cleared with a dozer and pushed into piles although some of the remnant vegetation still existed 5 October 2012 when a search was conducted by Arbour and White and three plants were located.


Figure 1. Symphyotrichum pratense. Close up of flowering head and phyllaries. McCurtain County, Oklahoma. 29 Oct 2010. Photo by Matt White.

According to BONAP data (2012) the discovery of Symphyotrichum pratense in Oklahoma brings the number of Symphyotrichum species currently listed for the state to 26, with 17 in McCurtain County alone. Everywhere except Texas and Louisiana, S. pratense is considered rare. In Alabama, Georgia, Mississippi, Tennessee, and Virginia it is considered S1 or critically imperiled with fewer than five occurrences (Jones et al. 2008). Oklahoma should be added to the list because currently the species is known from one site and the continued survival of the population is tenuous. Additional populations should be actively sought on similar habitats on nearby timberlands.

## ACKNOWLEDGEMENTS

Thanks to Bruce Hoagland for reading the manuscript and to Guy Nesom for editorial help.

## LITERATURE CITED

BONAP. 2012. North American Plant Atlas (US county-level species maps). Biota of North America Program, Chapel Hill, North Carolina. Last update: Oct 2011
Singhurst, J.R., M. White, J.N. Mink, and W.C. Holmes. 2011. Castilleja coccinea (Orobanchaceae): New to Texas. Phytoneuron 2011-32:1-3.
Jones, A.G. 1992. Aster and Brachyactis (Asteraceae) in Oklahoma. Sida, Bot. Miscell. No. 8. Jones, R. L., T. Witsell, and G. Nesom. 2008. Distribution and taxonomy of Symphyotrichum sericeum and S. pratense (Asteraceae: Astereae). J. Bot. Res. Inst. Texas 2: 731-739.

# PITYOPSIS OLIGANTHA (ASTERACEAE) NEW TO TEXAS 

WALTER C. HOLMES<br>Department of Biology<br>Baylor University<br>Waco, Texas 76798-7388<br>walter_holmes@baylor edu<br>JASON R. SINGHURST<br>Wildlife Diversity Program<br>Texas Parks and Wildlife Department<br>4200 Smith School Road<br>Austin, Texas 78744<br>jason singhurst(outpwd state tx us


#### Abstract

Pityopsis oligantha, Large-flowered Goldenaster, is documented as new to Texas. The species was encoutered and collected in the West Gulf Coastal Plain Wetland Longleaf Pine Savannah of deep east Texas (Jasper County).


KEY WORDS: Asteraceae, Pityopsis, Longleaf Pine savannah, Texas.

In the Manual of the Vascular Plants of Texas, Correll and Johnston (1970) included Pityopsis oligantha (Chapm. ex Torr. \& A. Gray) Small under the synonym Heterotheca oligantha (Chapm.) Harms within the treatment of that genus. They mentioned that the species was "not yet noted from Tex. but possibly to be encountered [italics inserted] in extreme e. cos." Doubtless, the "record" of this species in the state originated here and was later included in Hatch et al. (1990) and Jones et al. (1997), both being checklists of the vascular plants of the state. It is not known why Correll and Johnson would consider the species as possibly occurring in Texas, for at that time (pre1970), the distribution of P. oligantha was known to be west Florida and adjacent Alabama and Georgia (Small 1933). The lack of a supporting specimen has resulted in the species no longer being included as a part of the Texas flora (Cronquist 1980; Turner et al. 2003; Semple 2006; USDA, NRCS 2012). Recently, a specimen (Figure 1) collected by the authors in the Longleaf Pine savannah in 2000 has been determined to be Pityopsts olvgantha. This specimen, cited following, substantiates the presence of the species in the state.

TEXAS. Jasper Co.: Kirbyville Airport, Kirbyville, flat periodically mowed area; heads yellow, 24 Sep 2000, W.C. Holmes \& J.R. Singhurst 11100 (BAYLU). Figure 1.

Pityopsis oligantha in Texas was documented in a globally rare (G1G2S1S2) West Gulf Coastal Plain Wetland Longleaf Pine Savanna community, occurring on saline soils (Brimstone silt loam, a Glossic Natraqualf) of the Pleistocene prairie terrace, with an open canopy of Pinus palustris. The dominants include Pinus palustris, Sporobolus silveanus, Muhlenbergia capillarts, and Rhynchospora spp. Important herbaceous species include Agalnis fasciculata, Andropogon capillipes, Arnoglossum ovatum, Ascleptas vertictllata, Btgelowia nuttallu, Chaetopappa asterotdes, Dalea candida var. candida, Desmodium sp., Dichanthelium spp., Echinacea sangunea, Eurybia hemisphericum, Eupatorium leucolepis, E. rotundifolia, Eryngum integrifoluum, Evolvilus sertceus, Hedyotis ntgricans, Pycnanthemum temuifoltum, Iva angustifolia, Liatris acidota, Liatris punctata, Liatris pycnostachya, Lobelia puberula, Marshallia caespitosa, Mecardonia acuminata, Muhlenbergia capillaris, Neptunia hitea, Panicum virgatum, Paspalum floridanum, Physostegia


Figure 1 Pityopsis oltgantha (Holmes \& Singhurst 11100, BAYLU) Photo by Darrel Vodopich
virginiana subsp. praemorsa, Polygala ramosa, Rhexia lutea, Rhexia virgmica, Rhynchospora colorata, R. divergens, R. elliotiti, R. glomerata, R. gracilenta, R. plumosa, R. mıcrocarpa, Rudbeckia texana, Sabatia campanulata, Scutellarta integrifolta, Schizachyrum tenerum, Solddago sempervirens, Spartina spartinae, Sporobolus junceus, S. pyramidatus, S. silveanus, S. compositus var. compositus, and Stylisma aquatica.

The major difficulty in classification of Pityopsis and related genera (Heterotheca and Chrysopsis) has been generic circumscription (see Gandhi and Thomas 1989 for an overview). However, specific recognition has seemingly been rather stable. Pityopsts oligantha is similar to $P$. grammifolta (Michx.) Nutt., which has two recognized varieties in Texas (Semple 2006). The latter species is widely distributed in the Pineywoods region of the state and also much of the Post Oak Savannahs, while $P$. oligantha is known only from the specimen cited above. The specimen was identified by use of the keys in Correll and Johnston (1970), Cronquist (1980), Gandhi and Thomas (1989) and Semple (2006), all keying to species with equal facility. Following we have produced a key derived from these sources.

## 1. Peduncles and involucre densely stipitate-glandular; cauline leaves mostly $2-7$; heads $1-6$ Pityopsis oligantha <br> 1. Peduncles and involucre not densely glandular-hairy; cauline leaves generally 10 or more, heads mostly 10 or more <br> Pityopsis graminifolia

Currently, Pityopsis oligantha has a Global Status of G3 (vulnerable) by reason of [as stated] being reported from four southern states of the USA, but with abundance not being known (Nature Serve 2012). These states are Florida, where it may be locally abundant in the panhandle (western Florida), Georgia, Alabama, and Mississippi. Not cited is Louisiana, where the species has been reported in Rapides Parish by Thomas and Allen (1996) and in eight parishes by USDA, NRCS (2012). Major threats to the species are land-use conversions, habitat fragmentation, succession, and forest management practices (Southern Appalachian Species Viability Project 2002). The species is apparently native in Texas and is considered to be a rare peripheral in the state (G3S1). It is presumably limited to longleaf pine savannahs in southeast Texas.

## ACKNOWLEDGEMENTS

We wish to thank Garrie P. Landry of the Herbarium, Biology Department, University of Louisiana at Lafayette, for providing digital photographs of Theret 25144 (LAF) from Rapides Parish, Louisiana, the specimen cited in Thomas and Allen (1996) as Pityopsis oligantha. Darrell Vodopich of the Biology Department, Baylor University, contributed to this study by taking the photograph of the specimen and processing it for publication.

## LITERATURE CITED

Correll, D.S. 1970. Manual of the Vascular Plants of Texas. Texas Research Foundation, Renner.
Cronquist, A. 1980. Vascular Flora of the Southeastern States. Vol. 1, Asteraceae. Univ. of North Carolina Press, Chapel Hill.
Gandhi, K.N. and R.D. Thomas. 1989. Asteraceae of Louisiana. Sida, Bot. Misc. 4. Bot. Res. Inst. Texas, Fort Worth.
Hatch, S.L., K.N. Gandhi, and L.E. Brown. 1990. Checklist of the Vascular Plants of Texas. Texas Agricultural Experiment Station Pub. MP-1655. Texas A\&M Univ., College Station.
Jones, D.D., J.K. Wipff, and P.M. Montgomery. 1997. Vascular Plants of Texas. Univ. of Texas Press, Austin.
Nature Serve. 2012. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. <http//www natureserve org/explorer> Accessed Nov 2012

Semple, J.C. 2006. Pityopsis Pp. 222-228, in Flora of North America Editorial Committee. Flora of North America, Vol. 20, Magnoliophyta: Asteridae, part 7: Asteraceae, Part 2. Oxford Univ. Press, New York.
Small, J.K. 1933. Manual of the Southeastern Flora. Hafner, New York.
Southern Appalachian Species Viability Project. 2002. A partnership between the U.S. Forest Service-Region 8, Natural Heritage Programs in the Southeast, NatureServe, and independent scientists to develop and review data on $1300+$ regionally and locally rare species in the Southern Appalachian and Alabama region. Database (Access 97) provided to the U.S. Forest Service by NatureServe, Durham, North Carolina.
Thomas, R.D. and C.M. Allen. 1996. Atlas of the Vascular Flora of Louisiana. Vol II: Dicotyledons, Acanthaceae - Euphorbiaceae. Louisiana Dept. of Wildlife \& Fisheries, Baton Rouge.
Turner, B.L., H. Nichols, G. Denny, and O. Doron. 2003. Atlas of the Vascular Plants of Texas, Vol. 1. Sida, Bot. Misc. 24. Bot. Res. Inst. Texas, Fort Worth.

USDA, NRCS. 2012. The PLANTS Database. National Plant Data Team, Greensboro, North Carolina. <http//plants usda gov> Accessed Dec 2012.

# NEOTYPIFICATION OF SOLIDAGO BUCKLEY (ASTERACEAE: ASTEREAE) AND OBSERVATIONS ON ITS DISTRIBUTION 

John C. Semple<br>Department of Brology<br>University of Waterloo<br>Waterloo, Ontano Canada N2L 3G1<br>jesemple@uwaterloo ca (author for correspondence)

Kanchi Gandhi<br>Harvard University Herbaria<br>22 Divinity Ave<br>Cambridge, Massachusetts 02138


#### Abstract

A neotype specimen is designated here for Solıdago buckleyi due to the lack of original material. The Buckley collection (Buckley s.n. NY ex Herb. LeRoy) from Alabama presumed to be the holotype is not the specimen seen by Torrey and A. Gray in the early 1840 s . Therefore, E.J. Palmer 31579 (NY) is designated as the neotype for the species name.


KEY WORDS: Solidago buckleyi, neotypification, multivariate morphometrics

Solidago buckleyt Torr. \& A. Gray (1842) is a member of the subsect. Thyrsiflorae A. Gray and is similar to S. petiolaris Ait. (Semple \& Cook 2006). Buckley's goldenrod is native to southern Missouri, southern Illinois, northwestern Kentucky, and extreme southwestern Indiana. In the protologue of S. buckleyt, a single collection was cited: "Interior of Alabama, Mr. S.B. Buckley' Oct." Nesom (1990) included a symbol for $S$. buckleyl from Jasper Co., Georgia, on his distribution map. There are problems with both the Alabama specimen and the Georgia specimen.

A putative collection of Solidago buckleyi from Jasper Co., Georgia, was seen in a loan from NY (Thiers, continuous update). The specimen (Porter s.n.) was labeled by Porter as S. buckleyi and annotated by Nesom as $S$. buckleyt in 1990 . However, the collection is an unrecognized isotype of Soltdago portert Small and is not a specimen of S. buckleyı. Therefore, the report of S. buckleyt from Georgia is an error. A manuscript on the rediscovery of $S$. porteri is in preparation by J.C. Semple and D. Estes.

The presumed holotype of Solidago buckleyi consists of a few fragments (Fig. 1), which makes the identity uncertain. Posted on the New York Botanical Garden web site is a digital photograph of the specimen (Buckley s.n.), which shows a folded card in the open position to reveal the fragments of stem, leaves and inflorescence. However, the front face of the card contains critical information regarding the eligibility of this specimen to be the holotype of S. buckleyi. In handscript on the card are the following: "Solidago Buckleyi" and "Ala 1836 Buckley." At the top of the card is the printed label "New York Botanical Garden / Herbarium of Mr. P.V. LeRoy / Purchased 1896" (see Fig. 1). Since the location datum does not mention "Interior of Alabama" and since this particular specimen did not come into the possession of the NY Herbarium until 1896 and was not seen by Torrey and/or A. Gray, the specimen does not qualify to be the holotype of S. buckleyt. Therefore, we do not consider the NY specimen as part of the original material. Furthermore, it is also not certain to what species the NY ex LeRoy Herbarium specimen belongs due to the nature of the fragments. It may belong to $S$. buckleyt, but we cannot be certain. The fact that the two large
leaves have large teeth is not a trait exclusive to $S$ buckleyn sensu authors. Therefore, we exclude the NY specimen from consideration for any typification and opt for a neotypification


Figure 1. Putative holotype of Solidago buckleyn (Buchley s $n$ NY) A.B C D

A revised dot distribution of Solidago buckleyi has been prepared (Fig. 2). It includes all collections seen and additional literature reports that are likely to be correct. The location of Buckley s.n. (NY) is indicated with a question mark as the exact location is unknown.


Figure 2. Distribution of Solidago buckleyi based on collections seen and literature

## Neotypification

Solidago buckleyi Torr. \& A. Gray, Fl. N. Amer. 2(2): 198. 1842. Aster buckleyi (Torr. \& A. Gray) Kuntze. Revis. Gen. PI. 1:317. 1891. Type: USA. Alabama. "interior of," Mr. S.B. Buckley s.n., not located. NEOTYPE (designated here): USA. Missouri. St. Francois Co.: thickets along small rock creek, near Bismarck, 6 Sep 1926, E.J. Palmer 31579 (NY, Figs. 3 and 4).

## ACKNOWLEDGEMENTS

This work was supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant to JCS. Joan Venn is thanked for her curatorial assistance with loans. The following herbaria are thanked for loaning specimens of subsect. Argutae: GH, LSU, MO, NCU, NY, and USF.

## LITERATURE CITED

Nesom, G.L. 1990. Taxonomy of Solidago petiolaris (Astereae: Asteraceae) and related Mexican species. Phytologia 69: 445-456.
Semple, J.C. and R.E. Cook. 2006. Solidago Linnaeus. Pp. 107-166, in Flora North America Editorial Committee (eds.). Flora of North America. Vol. 20. Asteraceae, Part 2. Astereae and Senecioneae. Oxford Univ. Press, New York.
Torrey, J. and A. Gray. 1842. Solidago. Pp. 195-231, in Flora North America. Vol. 2. Wiley \& Putnam, New York.


Figure 3 Neotype of Solidago buckleyi (E I Paimer 31579 NY)


Figure 4 Details of the neotype of Solidago buchey (EJ Palmer 31579 NY)

# SOLIDAGO JEJUNIFOLIA (ASTERACEAE: ASTEREAE) NEW TO MANITOBA AND CANADA 

JOHN C. SEMPLE* and LAN TONG<br>Department of Biology, University of Waterloo<br>Waterloo, Ontarıo Canada N2L, 3G1<br>*author for correspondence: jcsemple@uwaterloo ca<br>BRUCE A. FORD and C. ELIZABETH PUNTER<br>Department of Biological Sciences, University of Manitoba<br>Winnıpeg, Manitoba Canada R3T 2N2<br>bruce ford@ad umanitoba ca, elizabeth punter@ad umanitoba ca


#### Abstract

The presence of Solidago jejunifolia is reported for the first time in Canada, from south of Winnipeg, Manitoba, near the Minnesota border. This species has not been given special status in Canada but should be considered endangered.


KEY WORDS: Solidago jefunfolia, Solidago speciosa, Solidago rigiduscula, Solidago pallida, Manitoba, Canada, rare plants

A collection of what was thought to possibly be Solidago ullginosa Nutt. was made by B.A. Ford and D. and C.E. Punter on 1 September 1996 from northwest of Senkiw, north of Roseau River, Manitoba, Canada ( $49^{\circ} 12^{\prime} 40^{\prime \prime} \mathrm{N}, 96^{\circ} 53^{\prime} 42^{\prime \prime}$ W). A digital image of the collection Ford, Punter, \& Punter 9656, WIN (Fig. 1) was sent to J.C.S. for identification in the fall of 2012. The specimen was immediately recognized as $S$. jejunifoha Steele, a member of the S. spectosa Nutt. complex, on the basis of it having typical Solidago subsect. Squarrosae A. Gray traits of large basal stem and rosette leaves and a club to wand-shaped inflorescence and in having the diagnostic long, narrow petioles of S. jefuntfolia (Fig. 2).

Solidago jejunifolia was treated as a synonym of S. speciosa var. speciosa by Semple and Cook (2006). However, a multivariate morphometric analysis of the $S$. spectosa complex and all taxa in subsect. Squarrosae, and separate multivariate studies on all subsections of the genus, have resulted in a change in understanding of species limits in the genus. The S. spectosa complex is now divided into four species: S. speciosa, S. jejunifolia, S. pallida (Porter) Rydb., and S. rigidiuscula (Torr. \& A. Gray) Porter (see Semple et al. 2012).

Solddago jejunifolia grows in tall grass prairies, open areas in dry jack pine (Pinus banksiana) forests (Fig. 3A) and rejenerating jack pine forests, sand barrens, open pine plantings, dry prairie/savannahs, oak savannahs, roadsides, sandy dune areas, old fields, roadsides, road right-of-way embankments next to red pine (Pinus resinosa) and jack pine trees (Fig. 3B); based on herbarium label data (MIN, WAT, WIN; Thiers, continuously updated). It has been collected on reddish and pale brown sandy or gravelly soils.

Solddago jejunifolia has not been given special conservation status in Canada or Manitoba, but it should be considered endangered (N1, S1, respectively) based on Nature Conservancy rankings (http://www.natureserve.org/explorer/ranking.htm). The status of the single known Manitoba population is uncertain and the habitat may have been converted to agricultural uses.


Figure 1. Solidago jejunifolia voucher (Ford, Punter, \& Punter 9656, WIN).



Figure 3. Solidago jejunifolia habitats. A. Douglas Co., Wisconsin (Semple 11848, WAT). B. Delta Co., Michigan (Semple 11844 ,WAT). Arrows indicate locations of some of the plants in the populations

## ACKNOWLEDGEMENTS

This work was supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant to J.C.S. Joan Venn is thanked for her curatorial assistance with loans. The following herbaria are thanked for data and for loaning specimens of subsect. Squarrosae: MIN, WAT, and WIN. D. Punter assisted with fieldwork in Manitoba.

## LITERATURE CITED

Semple, J.C. and R.E. Cook. 2006. Solidago Linnaeus. Pp. 107-166, in Flora North America Editorial Committee (eds.). Flora of North America. Vol. 20. Asteraceae, Part 2. Astereae and Senecioneae. Oxford Univ. Press, New York
Semple, J.C., L. Tong, M.J. Oldham, and W. Bakowsky. 2012. Solidago pallida new to Ontario and Canada. Phytoneuron 2012-106: 1-5.
Thiers, B. [continuously updated]. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium.
<http///sciweb nybg org/science2/IndexHerbariorum asp>

# STUDIES OF NEOTROPICAL COMPOSITAE-VIII. THE NEW COMBINATION PSEUDONOSERIS GLANDULOSA AND REVISION OF PSEUDONOSERIS (LIABEAE) 

John F. Pruski<br>Missourı Botanical Garden<br>P. O Box 299<br>St Louis, Missouri 63166


#### Abstract

The new combination Pseudonoseris glandulosa (Compositae: Liabeae: Paranepheliinae) is proposed and Pseudonoserts revised with two species recognized, both found in Andean Peru and Bolivia only in and south of the Huancabamba Depression. Both species of Pseudonoserts were described originally in Onoseris (Mutisieae). Also included are images of holotypes, representative specimens, and capitula of both species of Pseudonoseris, as well as a distribution map.


KEY WORDS: Andes, Asteraceae, Bolivia, Compositae, Huancabamba Depression, Peru, Liabeae, Onoserts, Pleistocene climatic oscillations, Pseudonoserts discolor, Pseudonoserts glandulosa, Mutisieae, Paranepheliinae

Liabeae was described by Rydberg (1927) to accommodate five genera, including Liabum Adans. (Compositae), an opposite-leaved radiate-capitulate American genus having vernonioid styles (Cassini 1823). The styles of Liabeae resemble technically those of Vernonieae and Cichorieae by their adaxial continuous stigmatic surfaces and abaxial branch sweeping papillae extending downward onto the distal portion of trunk (Robinson 1983; Pruski \& Sancho 2004). Robinson and Brettell (1974) recognized 14 genera of Liabeae with several segregates culled mostly from Liabum s . lat., including Pseudonoserts H. Rob. \& Brettell (Compositae: Liabeae: Paranepheliinae). Tribe Liabeae now contains 19 genera, with 13 of these genera occurring in Peru, its center of diversity (Robinson 1978, 1983; Pruski \& Sancho 2004; Soejima et al. 2008; Robinson \& Funk 2011).

Robinson (1983) placed only Pseudonoseris and Paranephelius Poepp. into his newly described subtribe Paranepheliinae. Funk et al. (2012) expand Paranepheliinae to include six genera, including Erato DC. which extends into Central America. Soejima et al. (2008) dated origins of the Pseudonoserts-Paranephelus clade to the Miocene (very approximately to 13 Ma ). Thus, Pseudonoserts and Paranepheltus (or their immediate precursors) diversified well after the significant central Andean uplifts (Oligocene, ca. 30 Ma ), perhaps concurrently with major northern Andean orogeny (Pliocene-Pleistocene, ca. $3-5 \mathrm{Ma}$ ) and increased habitat heterogeneity in both the central and northern Andes (Soejima et al. 2008).

The central and northern Andes are discontinuous roughly at the Huancabamba Depression (approximately between $5^{\circ}$ and $6^{\circ} \mathrm{S}$ latitude in the deep upper Río Marañon and Río Chamaya basins, continuing westward over the Abra de Porculla at ca. 2145 m , and down to Olmos), an oft-cited biogeographic barrier for some plant distributions as well as an endemism center (Wurdack 1953; Simpson 1975; Molau 1988; Funk et al. 1995; Ayers 1999; Weigend 2002). It is perhaps noteworthy that, although climatic fluctuations in the Pleistocene lowered (in glacial maxima) vegetational zones facilitating some migrations across the Huancabamba Depression, core subtribal Paranepheliinae members Pseudonoseris and Paranephelus remain known from only in and south of the Huancabamba Depression (Robinson 1978, 1983; Soejima et al. 2008). While these two genera may have radiated only after the onset of Pleistocene climatic oscillations, the Huancabamba Depression may still have acted (either well before or during the Pleistocene) as a barrier to migration.


Figure 1. Representative specimen of Pseudonoseris discolor (Muschl.) H. Rob. \& Brettell (Araujo 4194, MO).


Figure 2 Close-up of capitula of Psoudonosers showng the linear-lanceolate phyllaries and the long-stipitateglandular peduncles A Pseudonoseris discolor (Muschl) H Rob \& Brettell B Pseudorosens glanduhasa (Hieron ) Pruski (A Arasjo 4194, MO, B Smath \& Cabaullas 7303, MO) [The scale bar on the right has increments of 1 cm ]

Here, Psendonaseris is revised, the new combination $P$ glandulasa is proposed, and this high-elevational Andean genus is recognized as containing only two species Pseudonoseris striata and $P$ szyszylowzczil were each usually recognized elsewhere (Robinson \& Brettell 1974, Robinson 1983, Beltrán et al 2006, Soejuma et al 2008), but both are reduced here to synonymy of $P$ glandulosa. Pseudonoseris glandulosa and $P$ discolor are disjunct from each other by about 1100 km ( $\mathrm{F}_{\mathrm{g}} \mathrm{3}$ )

Pseudonoseris H Rob \& Brettell, Phytologia 28591974 Type: Luabum striatum Cuatrec [= Pseudonaserzs glandulasa (Hieron) Pruski]

Small perennial subscapose herbs, leaves in basal rosettes or stems leafy proximally, with mulky latex, scape typically with a low arachnoid-pubescence and long stipitate-glandular trichomes held well above arachnord pubescence. Leaves opposite, sometimes in basal or cauline rosettes, sessile, blade subenture to lyrate-pinnatilobed, lanceolate to obovate, chartaceous to stiffly so, venation pinnate, surface discolorous, adaxial surface smooth to rugose, pubescent to glabrate, abaxial surface cinereous-griseous-tomentose (sometimes drying fulvous), base slightly clasping Capitulescence subscapose, paucicapitulate, open cymose with alternate branching, peduncles elongate, long-stipitate-glandular Capitula radate, involucre campanulate, phyllaries ca 40, weakly imbricate, graduate, 3-5-seriate, linear-lanceolate, long-stipitate-glandular, outer ones acute apically, often spreading in fruit, inter ones long-attenuate apically, clinanthum (phoranthum or receptacle) epaleate, low-alveolate, subglabrous Ray forets 12-26, pistillate, 1-seriate, corolla orangish-yellow to scarlet, tube pilose-villous, limb linear-oblanceolate, exserted from involucre, abaxially glabrous and not arachnoid-tomentulose, usually 4 -nerved and 3 -denticulate Disk florets 25-55, bisexual, corolla gradually funnelform, 5 -lobed, orangish-yellow or reddish-orange, hirsute near tube-throat juncture, tube elongate, lobes glabrous or with a single distal gland, anther thecae pale, base obtuse, ecaudate, endothecial tissue polarized, apical appendage ovate to oblong, slightly longer than wide, pollen tricolporate, echinate, tectum finely microperforate, columellate layer well-defined (Robinson \& Marticorena 1986), style base very slightly dilated, glabrous, trunk slightly papillose distally,
branches elongate and nearly filiform, $3-4 \mathrm{~mm}$ long, natrowing distally, abaxial surface roughpapillose, adaxially with continuous stigmatic surface Cypselae pmsmatic to obovord, thickly 10 costate (merely striate when mmature), costae often tan and setose with nearly appressed trichomes, furrows usually brown and glabrous, cells walls with elongate raphds (Robinson 1983), pappus distunctly or indistinctly 2 -senate, mostly with an inner senies of $15-30$ elongate stramineous scabrid capillary bristles, several mid-sized outer squamellae typically present, these sometmes absent adaxially and represented instead by small outer bnstles $x=12$ Two species found in Andean Peru and Bolivia

Pseudonoseris is a central Andean gemus (Fig. 3) of two species that Robinson (1983) treated within Liabeae subtribe Paranephelinae Pseudonoseris is dagnosed by its subscapose habit, milky latex, discolorous pinnately-vemed sessile leaves, indumentum of long-stipitate-glandular tnehomes on the scape, peduncles, and phyllanes, erect alternate-branched capitulescences, bnghtly colored ray corollas with limbs abaxially glabrous and not arachnoid-tomentulose, pale anthers, and filiform style branches. Color photographs of each species in the field were provided by Soejuma et al (2008) The two spectes of Pseudonoseris were each once treated withun sometimes stipitate-glandular, brightly colored, and large-capitulate Onoseris (Mutisieae), which differs most conspicuously by outer florets with bilabiate corollas, tailed anthers, and short-ovate style branches.


Figure 3. Distribution of Pseudonosens discolor (Muschl) H Rob \& Brettell and Pseudonoseris glandulosa (Hieron ) Pruski in Andean Peru and Bolivia


Figure 4 Phowograchs of the destroyed Betlen holocppes of the two recogured spectes of Psewdonavems A Onosens discolor Muschi [ F Fseuderosers sacalor (Musch]) H Rob \& Brettell] B Ornaserse giandulasa Fieron [三Foendonoserds glanailicaa (Hiercn ) Prusky]

Although in the Soejima et al (2008) study the relationshps between Petudionoseris glandulosa (as 'Psewdonoseris szyszylowicu') and Paramephelias are unresolved, Psewaionoseris is maintained here as chagnosed morphologically by Robins on (1983) Peadionoseris differs from Parchepheius most obviously by some stipitate-glandular (vs eglandular) indumentum, erect branched (vs usually sesisle) capitulescences, and by abaxially glabrous (va, arachnoid-tomentulose) ray corolla himbs. Cytologically, the base number of Labeae appear: to be $x=9$, Paramephedhs was reported ai $x=9$ and $x=14$, and Pseudanoseras has been counted only once, beng given as $x=12$ (Dillon \& Turner 1982, Robinson et al 1985)

Typification and etymology The genus, name for its resemblance to Choserfs, is typufied by Licbum stradum, the holotype of which is extant The holotypes (Fig 4) of our two apecies were destroyed, but neither species circumecription is in doubt Thus, there is no pressing need taxonomically to lectotypify or neotypufy either species name, and I am content to wait for possible holotype fragments or isotypes to be found. The descruptive basionym epithets discolor,
glandulosum, and striatum refer to the salient characters of Pseudonoseris of discolorous leaves, the distal stipitate-glandular indumentum, and the striate-costate cypselae, respectively.

1. Leaves simple, never lyrate-pinnatilobed, adaxial surface rugose to rugulose, ray corollas orange or sometimes orangish-yellow; cypselae with pappus indistinctly biseriate. ........Pseudonoseris discolor 1. Leaves lyrate-pinnatilobed, adaxial surface smooth; ray corollas scarlet or reddish-orange; at least some cypselae with an obviously biseriate pappus adaxially. $\qquad$ Pseudonoseris glandulosa

PSEUDONOSERIS DISCOLOR (Musch1.) H. Rob. \& Brettell, Phytologia 28: 60. 1974. Onoseris discolor Muschl., Bot. Jahrb. Syst. 50, Beibl. 111: 94. 1913. Liabum lanatum Ferreyra, Bol. Soc. Peruana Bot. 1: 17. 1948 (non Liabum discolor (Hook. \& Amn.) Benth. \& Hook. f. ex Hemsl.). Type: PERU. Puno. Inter Sandia et Cuyocuyo, 2600-2800 m, 1 May 1902, Weberbauer 883 (holotype: $\mathrm{B} \dagger$, photograph in F, MO, Macbride neg. 15889). Figs. 1, 2A, 4A.

Rosulate or less commonly leafy-stemmed herbs $10-70 \mathrm{~cm}$ tall; stems arachnoidpubescent, also moderately dense long-stipitate-glandular (trichomes to 1.8 mm long and sometimes longer than stem diam.) to near base, internodes not hirsute and without simple patent trichomes, all leaves basal or proximal-cauline, when cauline with leaves paired with internodes $1-4 \mathrm{~cm}$ long but always much shorter than the leaves. Leaves 4-24 $\times 1-6 \mathrm{~cm}$, lanceolate to oblong, broadest at midblade or slightly above mid-blade, simple, never lyrate-pinnatilobed, adaxial surface rugose to rugulose, usually lingering arachnoid-pubescent especially along midrib and secondary veins, sometimes glabrate, broad-based or more commonly base narrowly acute, margins unequally sinuousdentate to less commonly crenate or subentire, apex acute to sometimes obtuse. Capitulescence 1-2 per plant, held $9-50 \mathrm{~cm}$ above leaves, loosely cymose, 2-7-capitulate, branched in distal half; peduncles usually $2-10 \mathrm{~cm}$ long, moderately dense long-stipitate-glandular, sometimes with 2-3 linear bracteoles $1-3 \mathrm{~mm}$ long. Capitula $14-16(-18) \mathrm{mm}$ long (excluding rays); involucre $10-13 \times$ $8-18 \mathrm{~mm}$; phyllaries $3-13 \times 1-2 \mathrm{~mm}$, with a purplish mid-zone and scarious margins. Ray florets 12-26; corolla orange or sometimes orangish-yellow, tube $10-13 \mathrm{~mm}$ long, limb $20-24 \times 2.5-3 \mathrm{~mm}$. Disk florets: corolla $11-13 \mathrm{~mm}$ long, orangish-yellow, lobes $2-3 \mathrm{~mm}$ long. Cypselae $2-3.2 \mathrm{~mm}$ long, pappus indistinctly biseriate, inner pappus bristles $15-25,8-10 \mathrm{~mm}$ long, outer pappus bristles few, $0.1-0.3 \mathrm{~mm}$ long, not obviously much broader than inner series of bristles.

Representative exsiccatae examined. BOLIVIA. La Paz. Franz Tamayo, Parque Nacional Madidi, Keara-Moxos, Kellutoro, 3000 m, 13 May 2008, Araujo 4143 (BM, LPB, MO), Araujo 4194 (B, GH, LPB, MO); Franz Tamayo, ANMI Apolobamba, sector Laitiki hacia Piara, entre Pelechuco y Apolo, $2650 \mathrm{~m}, 20$ Apr 2006, Fuentes et al. 10422 (LBP, MO, NY). PERU. Puno. Sandia, Limbani, $3300 \mathrm{~m}, 7$ Jun 1974, Chávez 2382 (MO); Sandia, dry open hillside near Limbani, 3200-3450 m, 14 16 May 1942, Metcalf 30531 (MO, UC).

Distribution and ecology. Pseudonoserts discolor occurs in puna from 2600-3450 meters elevation, north of Lake Titicaca in the Andes of Puno, Peru, and adjacent La Paz, Bolivia (Fig. 3). The species is saxicolous and flowers from April to June.

Illustrations of Pseudonoseris discolor were provided by Ferreyra (1948) and Robinson (1983). Pseudonoseris discolor was given by Robinson and Brettell (1974), Robinson (1983), Beltrán et al. (2006), and Soejima et al. (2008) as endemic to Peru, but this species is now known from several collections in adjacent Bolivia. The protologue described it as similar to Onoseris glandulosa $[\equiv P$. glandulosa]. The few inner pappus bristles and the indistinctly biseriate pappus are distinctive features of $P$. discolor. Some color photographs of $P$. discolor appear to show the ray corollas as orangish-yellow, but the plants are usually described as orange-flowered.

Pseudonoseris glandulosa (Hieron.) Pruski, comb. nov. Onoseris glandulosa Hieron., Bot. Jahrb. Syst. 21: 366. 1895. Type: PERU. Cajamarca. Prope La Cruz de Celendín, inter Pacasmayo et Moyobamba, 3100 m , Apr-Jun 1868-1877, Stizbel $35 h$ (holotype: B $\dagger$, photograph in F, MO, Macbride neg. 15890). Figs. 2B, 4B, 5.
Liabum szyszylowiczil Hieron., Bot. Jahrb. Syst. 36: 503. 1905. Pseudonoseris szyszylowiczil (Hieron.) H. Rob. \& Brettell, Phytologia 28: 60. 1974. Type: PERU. Cajamarca. Prope Callacate, May 1879, Jelski 718 (holotype: B $\dagger$, photograph in F, MO, Macbride neg. 18133). Liabum striatum Cuatrec., Collect. Bot. (Barcelona) 3: 306. 1953. Pseudonoseris striata (Cuatrec.) H. Rob. \& Brettell, Phytologia 28: 60. 1974. TyPE: PERU. [presumably near the Lambayeque-Piura border near Abra de Porculla]. Above Olmos, 1800-1900 m, May 1915, Weberbauer 7107 (holotype: F, photograph in MO, Field neg. 49222).

Rosulate or leafy-stemmed herbs $20-90 \mathrm{~cm}$ tall; stems arachnoid-pubescent, also long-stipitate-glandular (trichomes to 1 mm long and sometimes longer than stem diam.) distally, grading to hirsute with simple patent trichomes proximally, all leaves basal or proximal-cauline, when cauline then in cauline-rosettes or with leaves paired with internodes $1-5 \mathrm{~cm}$ long but always much shorter than the leaves. Leaves $6-18 \times 2.5-10 \mathrm{~cm}$, lyrate-pinnatilobed with terminal lobe the largest and usually with $2-3$ pairs of lateral lobes, oblong to obovate in outline, adaxial surface smooth, hirsutulous to substrigillose with patent or subappressed trichomes, also sometimes arachnoidpubescent, broad-based or less commonly base attenuate, lobes nearly lateral, triangular-ovate with sinuous-denticulate margins, sinuses rounded, apex obtuse to sometimes acute. Capitulescence 1-$2(-3)$ per plant, usually held $15-30 \mathrm{~cm}$ above leaves, loosely cymose, usually $2-9$-capitulate, branched only in distal half; peduncles usually $2-15 \mathrm{~cm}$ long, more densely pubescent than stem and proximal capitulescence axis. Capitula $12-19 \mathrm{~mm}$ long (excluding rays); involucre $10-15 \times 10-20$ mm ; phyllaries $3-15 \times 1-2 \mathrm{~mm}$, linear-lanceolate, appearing 2 -costate at least near mid-phyllary. Ray florets $13-21$; corolla scarlet or reddish-orange, tube $10-11 \mathrm{~mm}$ long, limb $15-20 \times 2-3 \mathrm{~mm}$. Disk florets: corolla 9-12 mm long, reddish-orange, lobes 2-2.5 mm long. Cypselae 2-4 mm long; with pappus obviously (at least adaxially on some cypselae) biseriate, inner pappus bristles 25-30, 68 mm long, outer squamellae $0.5-1.5 \mathrm{~mm}$ long, at least the adaxial ones on some cypselae noticeably broad-based and obscuring inner bristle bases, the abaxial ones especially of the ray florets sometimes represented by very small bristles. $2 n=24$ (Dillon \& Turner 1982).

Representative exsiccatae examined. PERU. Amazonas. Chachapoyas, encima de 'Leimebamba', 2600-2700 m, 16 Apr 1964, Ferreyra 15465 (MO, USM); 6 kms along road W of Chachapoyas, $6600 \mathrm{ft}, 13$ Jan 1983, King \& Bishop 9198 (MO, US); 15 km from Chachapoyas towards Mendoza, $2200 \mathrm{~m}, 13 \mathrm{Mar} 1998$, van der Werff et al. 14833 (MO, US); 1 km SW of Chachapoyas, $2300 \mathrm{~m}, 22$ May 1962, Wurdack 467 (MO-2, US); Chachapoyas, km 422-417 on 'Leymebamba'-Balsas road, 2400-2700 m, 21 Feb 1984, Smith 6077 (MO). Ancash. Huari, 2500 m , 2 May 1962, Ames 7 (MO). Cajamarca. Jelij, grassland, $3035 \mathrm{~m}, 16$ June 2009, Bussmann et al. 15526 (MO, NY); Jaén, Sallique, de Catala a Piquijaca, 1940-2195 m, 29 Jul 1998, Campos \& Díaz 5396 (MO, US); Carretera entre Sócota y Cutervo, 2000-2200 m, 20 Apr 1988, Diaz \& Baldeón 2844 (F, MO); 26 km NW [on maps this appears instead to be NE] of Celendin on road to Balsas, 2300 m , 5 Jan 1979, Dillon \& Turner 1699 (F, MO, US); Yamaluc, entre Cochabamba y Huambos, 23002500 [annotated in pencil as 1900-2000] m, 1 Aug 1946 (post fruit), Ferreyra 828 (MO); Km 156 de la carretera Pacasmayo-Cajamarca, $2650 \mathrm{~m}, 5$ Apr 1982, Sánchez-Vega 2758 (MO); ChachapoyasCelendín road, above Celendín, $3000 \mathrm{~m}, 28$ May 1984, Smith \& Cabanillas 7303 (MO). Lambayeque. The type of synonymous Liabum striatum, presumably near the Lambayeque-Piura border near Abra de Porculla. Piura. Huancabamba, Porculla, $2200 \mathrm{~m}, 10$ May 1992, Llatas \& Cruz 3106 (F, MO).


Figure 5. Representative specimen of Pseudonoseris glandulosa (Hieron.) Pruski. (Smith \& Cabanillas 7303, MO)

Distribution and ecology. Pseudonoserts glandulosa is endemic to Andean Peru in and south of the Huancabamba Depression, where it occurs in both cordilleras, these separated by the Rio Marañon (Fig. 3). Pseudonoseris glandulosa occurs mostly in the montane zone and in jalca formations (sometimes it is saxicolous) from 1800-3400 meters elevation in the Departments of Amazonas, Ancash, Cajamarca, Lambayeque, [expected in La Libertad], and Piura and flowers from January to July. Although P. glandulosa presumably did not migrate across Huancabamba Depression during Pleistocene climatic oscillations, it is moderately successful ecologically as it occurs on the cordilleras both west and east of Rio Marañon valley. Dorobaea laciniata B. Nord. \& Pruski and Talamancalta putcalensis (Hieron.) B. Nord. \& Pruski (Nordenstam \& Pruski 1995; Beltrán \& Pruski 2000) are other regional subscapose lobe-leaved large-capitulate orange-flowered taxa (both are Senecioneae) resembling superficially $P$. glandulosa.

The protologue noted specifically that this taxon lacked the inner corolla lips typical of Onoserts (Mutisieae). Pseudonoseris glandulosa was excluded from Onoserts by Ferreyra (1944), who referred provisionally this species to Liabum. Pseudonoseris glandulosa was not treated subsequently in the Mutisieae in the Flora of Peru (Ferreyra 1995) nor elsewhere in the Mutisieae (Katinas et al. 2008). By opposite leaves, radiate capitula, moderately long-lobed disk corollas, ecaudate anthers, style trunks distally papillose, and style branches with continuous stigmatic surfaces, $P$. glandulosa keys to tribe Liabeae in Pruski and Sancho (2004), where it matches Pseudonoseris by its subscapose habit, indumentum of some long-stipitate-glandular trichomes, erect alternate-branched capitulescences, brightly colored ray corollas, pale anthers, and filiform style branches. Soejima et al. (2008) gave this species as having arisen through hybridization between Pseudonoserts and Paranephelnus. Cytologically, P. glandulosa was reported by Dillon and Turner (1982) as $2 n=24$, the only count published for the genus.

No significant consistent morphological differences are found between plants of (1) the Pacific slopes of the Cordillera Occidental - the coastal range- (e.g., the presumed type locality of $P$. striata), (2) those of the interior slopes Cordillera Oecidental just west of the Río Marañon (generally between $6^{\circ}$ and $7^{\circ} \mathrm{S}$ latitude) of Depto. Cajamarca (e.g., the types of $P$. glandulosa and $P$. szyszylowiczit), (3) those east of the Río Marañon in the Cordillera Oriental in Depto. Amazonas near Chachapoyas, or (4) with those much further south in Depto. Ancash. Weigend (2002) noted that although species are often restricted distributionally to one side of the Andes, this generalization may beak down in the upper Rio Marañon valley where several groups are found in the coastal as well as interior mountains. Although plants of $P$. glandulosa from the Cordillera Oceidental on average tend to have a more obviously biseriate pappus than, for example, do plants of the Cordillera Oriental from near Chachapoyas, this pappus variation is never as great as that found within some individual florets and within some individual capitula. Accordingly, both $P$. striata and $P$. szyszylowiczil are treated in synonymy of $P$. glandulosa, lowering from three to two the number of species recognized in Pseudonoserts.

## ACKNOWLEDGEMENTS

I would like to thank Guy Nesom and Rosa Ortiz (MO) for reading the manuscript, Stephanie Keil (MO) for taking the photographs of the MO sheets, Christine Niezgoda (F) for permission to use the photographs of the Berlin holotypes, and Rosa Ortiz for help in preparing the map.

## LITERATURE CITED

Ayers, T.J. 1999. Biogeography of Lysipomia (Campanulaceae), a high elevation endemic: an illustration of species richness at the Huancabamba Depression, Peru. Arnaldoa 6(2): 13-27.
Beltrán H. and J.F. Pruski. 2000. Talamancalia y Rolandra (Asteraceae): dos nuevos registros para el Perú. Arnaldoa 7(1-2): 13-18.

Beltrán, H., A. Granda, B. León, A. Sagástegui, I. Sánchez, and M. Zapata. 2006. Asteraceae endémicas del Perú. Revista Peruana Biol. (número especial) 13(2): 64s-164s.
Cassini, H. 1823. Liabon, Liabum. (Bot.). Pp. 203-211 m F. Cuvier (ed.), Dict. Sci. Nat. (ed. 2), Vol. 26. Paris.

Dillon, M. and B.L. Turner. 1982. Chromosome numbers of Peruvian Compositae. Rhodora 84: 131-137.
Ferreyra, R. 1944. Revisión del género Onoseris. J. Arnold Arbor. 25: 349-395 + 9 pl.
Ferreyra, R. 1948. Nota sobre el género Liabum. Bol. Soc. Peruana Bot. 1: 17-27. 1948.
Ferreyra, R. 1995. Family Asteraceae: Part VI. Flora of Peru. Fieldiana, Bot. n. ser. 35: [vi] + 1101.

Funk, V.A., C. Kelloff, and R. Chan. 2012. Phylogeny and biogeography of the tribe Liabeae (Compositae subfamily Cichorioideae). Taxon 61: 437-455.
Funk, V.A., H. Robinson, G.S. McKee, and J.F. Pruski. 1995. Neotropical Montane Compositae with an Emphasis on the Andes. Pp. 451-471 in S.P. Churchill et al. (eds.), Biodiversity and Conservation of Neotropical Montane Forests. New York Botanical Garden, Bronx.
Katinas, L., J.F. Pruski, G. Sancho, and M.C. Tellaría. 2008. The subfamily Mutisioideae (Asteraceae). Bot. Rev. 74: 469-716.
Molau, U. 1988. Scrophulariaceae Part I. Calceolarieae. Fl. Neotrop. Monogr. 47: [ii] + 1-326.
Nordenstam, B. and J.F. Pruski. 1995. Additions to Dorobaea and Talamancalia (CompositaeSenecioneae). Comp. Newsl. 27: 31-42.
Pruski, J.F. and G. Sancho. 2004. Asteraceae or Compositae (Aster or Sunflower Family). Pp. 33$39+$ pl. 5 in N. Smith et al. (eds.), Flowering Plants of the Neotropics. Princeton Univ. Press, Princeton.
Robinson, H. 1978. 190(2). Compositae-Liabeae. Flora of Ecuador 8: 1-62.
Robinson, H. 1983. A generic review of the tribe Liabeae (Asteraceae). Smithsonian Contr. Bot. 54: iii $+1-69$.
Robinson, H. and R.D. Brettell. 1974. Studies in the Liabeae (Asteraceae). II. Preliminary survey of the genera. Phytologia 28: 43-63.
Robinson, H. and V.A. Funk 2011. Stephanbeckta plumosa (Liabeae: Compositae): A new genus and species from southern Bolivia. Brittonia 63: 75-82.
Robinson, H. and C. Marticorena. 1986. A palynological study of the Liabeae (Asteraceae). Smithsonian Contr. Bot. 64: iii + 1-50.
Robinson, H., A.M. Powell, R.M. King, and J.F. Weedin. 1985. Chromosome numbers in Compositae, XV: Liabeae. Ann. Missouri Bot. Gard. 72: 469-479.
Rydberg, P.A. 1927. Carduaceae: Tribe 13. Liabeae, Tribe 14. Neurolaeneae, Tribe 15. Senecioneae [part]. N. Amer. Fl. 34(4): 289-360.
Simpson, B.B. 1975. Pleistocene changes in the flora of the high Andes. Paleobiology 1:273-294.
Soejima, D.D., J. Wen, M. Zapata, and M.O. Dillon. 2008. Phylogeny and putative hybridization in the subtribe Paranepheliinae (Liabeae, Asteraceae), implications for classification, biogeography, and Andean orogeny. J. Syst. Evol. 46: 375-390.
Weigend, M. 2002. Observations on the biogeography of the Amotape-Huancabamba Zone in northern Peru. Bot. Rev. 68:38-54.
Wurdack, J.J. 1953. A revision of the genus Brachyotum (Tibouchineae-Melastomataceae). Mem. New York Bot. Gard. 8: 343-407.

# JUSTICIA BRANDEGEEANA (ACANTHACEAE): <br> NEW TO THE TEXAS FLORA 

JASON R. SINGHURST<br>Wildlife Diversity Program<br>Texas Parks and Wildlife Department<br>3000 South IH-35, Suite 100<br>Austın, Texas 78704<br>jason singhurst@tpwd state tx us<br>WALTER C. HOLMES<br>Department of Biology<br>Baylor University<br>Waco, Texas 76798-7388<br>walter_holmes@baylor edu


#### Abstract

Justicia brandegeeana is documented as occurring outside of cultivation in Texas. Several colonies were found growing on a terrace above Coleto Creek in Victoria County. It is suspected that seeds were dispersed from landscape plantings in the Victoria area. Justicia brandegeeana has moderate invasive potential along the Texas coast.


KEY WORDS: Acanthaceae, Justicia, Texas, naturalized

Justicta brandegeeana Wassh. \& L.B. Sm. (Acanthaceae), commonly known as shrimpplant or Mexican shrimpplant, was recently documented as naturalizing in Victoria County, Texas. The species has not been previously reported outside of cultivation in Texas (Correll \& Johnston 1970; Hatch et al. 1990; Jones et al. 1997; Turner et al. 2003). The species has escaped cultivation and is naturalized in peninsular Florida, where it is reported in eight counties (USDA, NRCS 2012; Wunderlin \& Hansen 2012). In Texas, J. brandegeeana has been reported to naturalize in some places on the Texas coastal plain (Kress 2007) but without herbarium specimen evidence.

Justicia brandegeeana is an evergreen perennial shrub native to Mexico and a common ornamental that thrives in the shade in tropical areas (FLORIDATA 2012). The species is named after Townshend Stith Brandegee (1843-1925), botanist and expert on the Cape flora of Baja California. The flowers are white, protruding from rusty-reddish bracts that generally suggest a shrimp, hence the common name. A number of cultivars are available with yellow, pink, and dark brick-red flower bracts. The flower-bract complex attracts hummingbirds and butterflies.

Justicia brandegeeana (Figs. 1, 2) was discovered in a coastal live oak (Quercus virginiana) motte on a creek terrace in Victoria County. The dominant flora included Quercus virginiana, Ilex vomitoria, Vaccinium arboreum, Callicarpa americana, Erythrina herbacea, Malvaviscus drummondtu, Smilax bona-nox, Tillandsta recurvata, Sideroxylon lanuginosa, Cenchrus incertus, Toxicodendron radicans, Heterotheca subaxillaris, Froelicha sp., Cyperus sp., and Dichanthelium sp . It is suspected that shrimpplant seeds were dispersed from landscape plantings, possibly by birds, in the Victoria, Texas, area. Numerous colonies (averaging $1 \times 1$ meters) were present in a slightly over one hectare (three acres) site, with some colonies spreading to $3 \times 3$ meters. These colonies are reproducing vegetatively through rhizomes and adventitious roots on branches near the ground.


Figure 1. Habit of Justicia brandegeeana in Victoria County, Texas (Singhurst 19318, BAYLU).


Figure 2. Justicia brandegeeana inflorescence and flower (Singhurst 19318, BAYLU).

Voucher specimen. USA. Texas. Victoria Co.: 1.7 mi S of the jet of Dawn Road and Coleto Creek Park Road on Coleto Creek Park Road, to N side of Coleto Creek spillway below dam, then E of dam $0.4 \mathrm{mi}, 4$ Dec 2012, Singhurst 19318 (BAYLU).

Justicia brandegeeana (Figs. 1, 2) grows in clumps to 1-1.5 meters (3-5 ft) tall and 1 meters ( 3 ft ) wide that occasionally may spread or converge to form larger colonies. The stems are sprawling, weak, and slender. Stems are tipped by drooping spikes about 15 cm long of dark red to rusty brown bracts, each bract enclosing a tongue-like white flower. Shrimpplant is evergreen in mild climates and blooms almost continuously. The leaves are oval, light green, and $5-8 \mathrm{~cm}$ long. The young stems and the undersides of the leaves are soft and downy.

## ACKNOWLEDGEMENTS

The authors are indebted to Guy Nesom, friend, botanical colleague, and editor of Phytoneuron, for his contributions in preparation of this manuscript for publication.

## LITERATURE CITED

Correll, D.S. and M.C. Johnston. 1970. Manual of the Vascular Plants of Texas. Texas Research Foundation, Renner.
FLORIDATA. 2012. A photographic encyclopedia of landscape plants. Tallahassee, Florida. दhttp//www floridata com/index cfm>
Hatch, S.L., K.N. Ghandi, and L.E. Brown. 1990. Checklist of the Vascular Plants of Texas. Texas Agricultural Experiment Station Pub. 1655. Texas A\&M Univ., College Station.
Kress, Stephen W. 2007. Hummingbird Gardens: Turning Your Yard Into Hummingbird Heaven. Brooklyn Botanical Garden, Brooklyn, New York.
Jones, S.D., J.K. Wipff, and P.M. Montgomery. 1997. Vascular Plants of Texas: A Comprehensive Checklist Including Synonymy, Bibliography, and Index. Univ. of Texas Press, Austin.
Turner, B.L., H. Nichols, G.C. Denny, and O. Doron. 2003. Atlas of the Vascular Plants of Texas, Vol. 1. Sida, Bot. Misc. 24, Bot. Res. Inst. of Texas, Fort Worth.
USDA, NRCS. 2012. The PLANTS Database. National Plant Data Team, Greensboro, North Carolina. \&http //plants usda gov> Accessed December 2012.
Wunderlin, R.P. and B.F. Hansen. 2012. Atlas of Florida Vascular Plants. [S.M. Landry and K.N. Campbell (application development), Florida Center for Community Design and Research] Inst. for Systematic Botany, Univ. of South Florida, Tampa. http //www plantatlas usf edu/>


[^0]:    Amaryllis cittina Sibth. \& Sm., Fl. Graec. Prodr. 1: 221. Mai-Nov 1809.
    Amaryllis clustana Ker Gawl., Curtis's Bot. Mag. 27: ad t. 1089. 1 Mar 1808.
    Amaryllis colchtoflora (Waldst. \& Kit.) Ker Gawl., Curtis's Bot. Mag. 27: ad t. 1089. 1 Mar 1808.
    Amaryllis grandiflora (Lindl.) Herb., Amaryllidaceae 278. late Apr 1837.
    Amaryllis hybrida Neubert, Deutsch. Mag. 32: 333. 1879.
    Amaryllis $\times$ mooreana B.S. Williams, Garden (London) 5: 364. 25 Apr 1874.
    Amaryllis tettaut Haage \& Schmidt, Pfl-Cat. 1874: 1. Jan 1874.
    Amaryllis virginalis B.S. Williams, Gard. Chron., n.s., 1: 363. 21 Mar 1874.
    Chloraster fissus Haw., Philos. Mag. J. 63: 103. Feb 1824.
    Chloraster integer Haw., Philos. Mag. J. 63: 104. Feb 1824.
    Cooperia drummondiana Herb., Amaryllidaceae 178. late Apr 1837, nom. illeg.
    Corbularia albicans Haw., Syn. Pl. Succ. 332. 1812.
    Crinum $\times$ lousiae Herb., Amaryllidaceae 274. late Apr 1837.
    Crinum $\times$ gowenianum Herb., Trans. Hort. Soc. London 3: 190-191, fig. Jan-Feb 1820.
    Crinum alboense Herb., Amaryllidaceae 272. late Apr 1837.
    Crinum anomalum Herb., Curtis's Bot. Mag. 47: ad t. 2121. 1 Jan 1820.
    Crinum brevifolium Herb., Curtis's Bot. Mag. 47: ad t. 2121. 1 Jan 1820, nom. illeg.
    Crinum macrocarpon Herb., Curtis's Bot. Mag. 47: ad t. 2121. 1 Jan 1820.
    Crimum makoyanum E.C.Hend., Gard. Chron. 1873: 534. 19 Apr 1873.
    Crinum procerum Herb., Curtis's Bot. Mag. 47: ad t. 2121. 1 Jan 1820.
    Crinum venustum Carey ex Herb., Appendix 22. late Dec 1821.
    Crinum verecundum Carey ex Herb., Appendix 22. late Dec 1821.
    Doryanthes palmeri W.Bull, Gard. Chron. 1873: 606. 3 Mai 1873.
    Erinosma vernum (L.) Herb., Amaryllidaceae 331. late Apr 1837.
    Eucharis amazonica R.Hogg, Florist Fruitist Gard. Mise. 1856: 228. Aug 1856.
    Habranthus robustus Herb. in R. Sweet, Brit. Fl. Gard. ser. 2. 1: ad t. 14. 1 Sep 1829.
    Haemanthus cooperi E.G.Hend., Garden (London) 5: 430. 16 Mai 1874.
    Hermione jasminea Salisb. ex Haw., Philos. Mag., n.s., 8: 133. Aug 1830.
    Hermione lacticolor Haw. in R. Sweet, Brit. Fl. Gard., ser. 2. 25(App.): 10. 1 Jun 1831.
    Hermione Salisb. ex Haw., Suppl. PI. Succ. 137. Mai 1819.
    Hippeastrum ambiguum Herb., Curtis's Bot. Mag., n.s. 11: ad t. 3542. 1 Jan 1837.
    Hippeastrum breviflorum Herb., Curtis's Bot. Mag., n.s. 11: ad t. 3549. 1 Feb 1837.
    Hippeastrum oriflamme B.S.Williams, Florist \& Pomol. 27: 116. Mai 1874.
    Hippeastrum picturatum W.Bull, Garden (London) 5: 176. 28 Feb 1874.
    Hippeastrum striatifolium (Herb.) Herb., Appendix 34. Dee 1821.
    Hymenocalyx undulata (Kunth) Houllet, Rev. Hort. 1869: 418. 1 Nov 1869.
    Imantophyllum barkerı C.J.Barker, Gard. Chron., n.s., 1: 317. 7 Mar 1874.
    Jonquilla odora Raf., Fl. Tellur. 4: 20-21. mid 1838.
    Narcissus albicans (Haw.) Link, Handuch 1: 205. 4-11 Jul 1829, nom. illeg.
    Narcissus canariensis J.C.Niven, Garden (London) 7: 11. 2 Jan 1875.
    Narcissus floribundus (Haw.) Link, Handuch 1: 202. 4-11 Jul 1829.
    Narcissus spurius (Haw.) Link, Handuch 1: 204. 4-11 Jul 1829.
    Nerme $\times$ mitchamtae Herb., Amaryllidaceae 283, 286, t. 43. late Apr 1837.
    Nerine amabilis Tubergen, Wholesale Cat. Flowerroots 28. 1892.
    Pancratum notatum W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 28. 1 Apr 1871.
    Phylogyne heminalis Haw., Suppl. Pl. Succ. 136. Mai 1819.
    Phylogyne interjecta Haw., Suppl. Pl. Succ. 135. Mai 1819.
    Phylogyne minor Haw., Suppl. Pl. Suce. 137. Mai 1819.
    Phylogyne odora (L.) Haw., Suppl. P1. Succ. 134. Mai 1819.
    Phylogyne rugulosa Haw., Suppl. Pl. Succ. 133. Mai 1819.
    Phylogyne Salisb. ex Haw., Suppl. Pl. Succ. 132. Mai 1819.

[^1]:    Cypripedium longyfolium W.Bull, Retail List [Wholesale List New Beautiful Rare P1. 60:] 61. 1 Apr 1871, nom. illeg.
    Cypripedium $\times$ marshallianum Rehb.f., Gard. Chron., n.s., 4: 804. 25 Dec 1875.
    Cypripedium pearcn Veitch, Proc. Roy. Hort. Soc. 4:133. Jul 1864.
    Cypripedum $\times$ selligerum Veitch, Gard. Chron., n.s., 3: 728. 5 Mai 1875.
    Dendrobum $\times$ atnsworthil W.Mitch., Garden (London) 5: 176. 21 Feb 1874.
    Dendrobium citrinum W.Bull, Garden (London) 5: 502. 13 Jun 1874.
    Dendrobium eburneum Low, Proc. Roy. Hort. Soc. 4: 8. Jan 1864.
    Dendrobtum parishit Low, Proc. Roy. Hort. Soc. 3:281. 29 Mai 1863.
    Dendrobrum wallichtanum B.S.Williams, Orch. Grow. Man., ed. 2, 98. Oct 1862.
    Epidendron hanburyanum B.S. Williams, Orch. Grow. Man., ed. 2, 100. Oct 1862.
    Epidendron syringothyrsus Veitch, Cat. New Beautiful Pl. 1873: 19. Jul-Aug 1873.
    Goodyera dawsoniana W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 66. 1 Apr 1871.

    Goodyera dawsonii Boxall, Garden (London) 6: 197. 29 Aug 1874.
    Goodyera $\times$ dominit B.S. Williams, Orch. Grow. Man., ed. 2, 105. Oct 1862.
    Goodyera picta B.S.Williams, Orch. Grow. Man., ed. 2, 105. Oct 1862.
    Goodyera rubrovenia B.S.Williams, Orch. Grow. Man., ed. 2, 105. Oct 1862.
    Huntleya watlestae B.S.Williams, Orch. Grow. Man., ed. 2, 109. Oct 1862.
    Laelta gigantea R. Warner, Proc. Roy. Hort. Soc. 2:247. Mai 1862.
    Laeha maryann B.S.Williams, Orch. Grow. Man., ed. 2, 113. Oct 1862.
    Masdevallia harryana W.Bull, Retail List [Spec. List Gladiolus. 68:] 15. Sep-Oct 1872.
    Masdevallia ignea W.Bull, Retail List [Spec. List Gladiolus. 68:] 15. Sep-Oct 1872.
    Miltonta morelit B.S.Williams, Orch. Grow. Man., ed. 2, 119. Oct 1862.
    Mormodes critrina B.S.Williams, Orch. Grow. Man., ed. 2, 120. Oct 1862.
    Odontoglossum caradenil Veitch, Garden (London) 5: 256. 21 Mar 1874.
    Odontoglossum maxillare J.B.Norman, Gard. Chron., n.s., 2: 309. 5 Sep 1974, nom. illeg.
    Odontoglossum roezlu W.Bull, Garden (London) 4: 20 Sep 1873.
    Oeceoclades gunneensts W.Bull, Gard. Chron., n.s., 2: 309. 5 Sep 1874.
    Oncidium batemanit B.S. Williams, Orch. Grow. Man., ed. 2, 125. Oct 1862.
    Oncidium cavendishis B.S.Williams, Orch. Grow. Man., ed. 2, 126. Oct 1862.
    Oncıdium kramert J.Muir, Garden (London) 6: 384. 24 Oct 1874.
    Oncidium roezlianum W.Bull, Retail List [Wholesale List New Beautiful Rare Pl. 60:] 71. 1 Apr 1871.

    Paphnta ttgrina B.S.Williams, Orch. Grow. Man., ed. 2, 131. Oct 1862.
    Pescatoria albosanguinea W.Bull, Garden (London) 5: 538. 20 Jun 1874.
    Phalaenopsis lobbit (Rchb.f.) B.S.Williams, Orch. Grow. Man., ed. 2, 136. Oct 1862.
    Saccolabnum furcatum B.S.Williams, Orch. Grow. Man., ed. 2, 141. Oct 1862.
    Vanda pygmaea H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 20. Aug 1868.

    ## Osmundaceae Martinov

    Leptopteris intermedia G., Garden (London) 5: 414. 16 May 1874.
    Leptopteris wilkesiana (Brack.) G., Garden (London) 5: 414. 16 May 1874.
    Pandanaceae R.Br.
    Pandanus ceramensis W.Bull, Retail List [Spec. List Gladiolus. 68:] 15. Sep-Oct 1872.
    Pandanus gramineus (Blume) H.Laurentius, Cat. Gewächsh.-Pfl. Herbst-Cat. 40: 22. Aug 1868.
    Pandanus linnei Schaedtler, Hamburger Garten-Blumenzeitung 31: 298. Jul 1875.

[^2]:    CHRYSOGONUM VIRGINIANUM Linnaeus var. BREVISTOLON G.L. Nesom [no specimen located; reported from Rhode Island]

    CIRSIUM CANUM (Linnaeus) Allioni [no specimen located; reported from Massachusetts]
    CREPIS PANNONICA (Jacquin) K. Koch [no specimen located; reported from Connecticut]
    CRUPINA VULGARIS Persoon ex Cassini [no specimen located; reported from Massachusetts]

    EUCHITON INVOLUCRATUS (G. Forster) Anderberg (GNAPHALIUM INVOLUCRATUM G. Forster) [no voucher found for wild occurrence; reported from Massachusetts]

    EUPATORIUM CAPILLIFOLIUM (Lamarck) Small [no specimen located; reported from Connecticut and Massachusetts]

    Eurybia chlorolepts (E.S. Burgess) G.L. Nesom [specimen from Connecticut at CONN identified as this taxon is judged to be misidentified]

    EURYBIA SURCULOSA (Michaux) G.L. Nesom (ASTER SURCULOSA Michaux) [no specimen located; reported from Massachusetts and Connecticut]

    FLAVERIA TRINERVIA (Sprengel) C. Mohr [no voucher found for wild occurrence; reported from Massachusetts]

    GAILLARDIA ARISTATA Pursh [no voucher found for wild occurrence; reported from Connecticut, Massachusetts and New Hampshire]

    HELIANTHUS DEBILIS Nuttall subsp. DEBILIS [no voucher found for wild occurrence; reported from Maine]

    HELIANTHUS HIRSUTUS Rafinesque [no specimen located; reported from Connecticut]
    HELIANTHUS MICROCEPHALUS Torrey \& A. Gray [no voucher found for wild occurrence; reported from Connecticut]

    HELIANTHUS OCCIDENTALIS Riddell subsp. OCCIDENTALIS Torrey \& A. Gray [no specimen located; reported from Massachusetts]

    INULLA SALICINA Linnaeus [no specimen located; reported from Massachusetts]
    Lactuca floridana (Linnaeus) Gaertner [voucher has been re-identified as L. biennis; reported from Massachusetts]

    LACTUCA SALIGNA Linnaeus [no specimen located; reported from Maine and Massachusetts]

    LIATRIS LIGULISTYLIS (A. Nelson) K. Schumann [no specimen located; reported from Connecticut]

[^3]:    e. Asclepiadoideae Burnett, Outlines Bot.: 1012, 1095, 1103. Feb 1835
    e1. Fockeeae H. Kunze, Meve \& Liede, Taxon 43: 373. 31 Aug 1994
    e2. Marsdenieae Benth, Fl. Austral. 4: 325, 333. 16 Dec 1868
    e3. Ceropegieae Orb., Dict. Univ. Hist. Nat. 3: 339. 1 Jul 1843
    e4. Asclepiadeae Duby, Bot. Gall. 1: 323. 12-14 Apr 1828
    83. Solanales Juss. ex Bercht. \& J. Presl, Přtr. Rostlm: 243. Jan-Apr 1820

    Boraginales Juss. ex Bercht. \& J. Presl, Prír. Rostlin: 244. Jan-Apr 1820
    Cestrales Mart., Consp. Regn. Veg.: 22. Sep-Oct 1835
    Convolvulales Juss. ex Bercht. \& J. Pres1, Přir. Rostlin: 247. Jan-Apr 1820
    Cordtales Mart., Consp. Regn. Veg.: 23. Sep-Oct 1835
    Cuscutales Mart., Consp. Regn. Veg.: 22. Sep-Oct 1835
    Echiales Lindl., Veg. Kingd.: 649. 14-28 Mar 1846
    Ehrettales Mart., Consp. Regn. Veg.: 22. Sep-Oct 1835
    Hydroleales Mart., Consp. Regn. Veg.: 23. Sep-Oct 1835
    Hydrophyllales Mart., Consp. Regn. Veg.: 22. Sep-Oct 1835
    Nolanales Lindl., Nzx. Pl.: 18. 17 Sep 1833
    Sphenocleales Doweld, Tent. Syst. Pl. Vasc.: xlvii. 23 Dec 2001
    83a. Solanineae J. Presl, Nowočeská Bibl. [Wšobecný Rostl.] 7: 1117, 1118. 1846
    433. Montiniaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov]: 243. 20 Jul

    1943, nom. cons.
    Kalphoraceae Takht., Bot. Zhurn. (Moscow \& Leningrad) 81(2): 86. Mai-Jun 1996
    a1. Montinieae DC., Prodr. 3: 35. medio Mar 1828
    a2. Kaliphoreae Reveal, Phytoneuron 2012-37: 217. 23 Apr 2012
    434. Sphenocleaceae T. Baskerv., Affin. Pl.: 110. 1839, nom. cons.
    435. Hydroleaceae R. Br. ex Edwards, Bot. Rev. (London) 7: ad t. 566. 1 Aug 1821
    436. Convolvulaceae Juss., Gen. Pl.: 132. 4 Aug 1789, nom. cons.

    Cressaceae Raf., Ann. Gén. Scr. Phys. Bruxelles 8: 270.1821
    Cuscutaceae Dumort., Anal. Fam. Pl.: 20, 25. 1829, nom. cons.
    Dichondraceae Dumort., Anal. Fam. Pl.: 20, 24. 1829, nom. cons.
    Erycibaceae Endl. ex Meisn., Pl. Vasc. Gen.: Tab. Diagn. 272, Comm. 185. 5-11 Apr 1840
    Evolvulaceae Bercht. \& J. Presl, Přrr. Rostlın 2: 130, 132. 1825
    Humbertiaceae Pichon, Notul. Syst. (Paris) 13: 23. Jul-Sep 1947, nom. cons.
    Poranaceae J. Agardh, Theorta Syst. Pl.: 364. Apr-Sep 1858
    a. Humbertioideae Roberty, Candollea 14: 22. Oct 1952
    b. Convolvuloideae Burnett, Outlines Bot.: 1002, 1095, 1105. Feb 1835
    b1. Aniseieae Stefanović \& D.F. Austin in S. Stefanović, D.F. Austin \& R.G. Olmstead, Syst. Bot. 28: 796. 13 Nov. 2003
    b2. Poraneae Hallier f., Bot. Jahrb. Syst. 16: 562, 574. 27 Jun 1893
    b3. Convolvuleae Dumort., Fl. Belg.: 50. 1827
    b4. Cresseae C.B. Clarke in J.D. Hooker, Fl. Brit. India 4: 180. Jun 1883
    b5. Dichondreae Choisy ex G. Don, Gen. Hist. 4: 253, 302. 1837-8 Apr 1838
    b6. Erycibeae Hogg, Veg. Kingd.: 535. 1858
    b7. Ipomoeeae Hallier f., Bot. Jahrb. Syst. 16: 562, 583. 27 Jun 1893
    b8. Jacquemontieae Stefanović \& D.F. Austin in S. Stefanović, D.F. Austin \& R.G. Olmstead, Syst. Bot. 28: 802. 13 Nov. 2003
    b9. Maripeae Webb \& Berthel., Hist. Nat. Iles Canaries 3(2,3): 27. Apr 1844
    b 10. Merremieae D.F. Austin, Fl. Venez. 8(3): 16. 1982
    c. Cuscutoideae Burnett, Outlines Bot.: 1002, 1095, 1105. Feb 1835

[^4]:    6 Flowers in bracteolate, axillary cymes, short-pedicellate, leaf venation eucamptodromous 9 Hemichaena
    6. Flowers axillary and solitary, sessile to short-pedicellate or long-pedicellate, leaf venation acrodromous

[^5]:    1 Annual, hypocotyls epigeous, capsules with fragile walls, promptly dehiscent, corolla lobes without a large spot at the base, seeds ca $20-30,05-08 \mathrm{~mm}$ long

    Diplacus parryi

    1. Perennial, hypocotyls hypogeous, capsules with indurate walls, dehiscent after senescence of stem, corolla lobes with a large spot at the base, seeds 3-10, 1.2-1.5 mm long

    Diplacus rupicola

[^6]:    (FNANM)
    1a Diplacus bigelovii (A Gray) G. L Nesom, comb. nov. Eunanus bıgelovit A Gray, Pacif, Railr Rep 4(5) 1211857 Mimulus btgelovi (A Gray) A Gray, Proc Amer Acad Arts 11961876
    1b Diplacus bigelovii var cuspidatus (AL Grant) GL Nesom, comb. nov. Mimulus bigelovii var cuspidatus A L Grant, Ann Missouri Bot Gard 112791924 ["1924"] Mimulus spissus AL Grant, Ann Missourn Bot Gard 112771924 ["1924"]
    2 Diplacus bolanderi (A Gray) GL. Nesom, comb. nov. Mimulus bolanderi A Gray, Proc Amer Acad Arts 7.3811868 Eunanus bolanden (A Gray) Greene, Bull Calif Acad Sci 1:105. 1885
    3 Diplacus brevipes (Benth) GL Nesom, comb. nov. Mimulus brevipes Benth, Scroph Ind 281835 Eunanus brevipes (Benth) Greene, Bull Calif Acad Sci 1. 1051885
    4 Diplacus clivicola (Greenm ) G L Nesom, comb. nov. Mimulus clivicola Greenm, Erythea 7: 1191899 Eunanus clivicola (Greenm ) A Heller, Muhlenbergia 1601904
    5. Diplacus compactus (D M Thompson) GL. Nesom, Phytoneuron 2012-47 12012 Mimulus viscidus var compactus D M Thompson, Syst Bot Monogr 75 129. 2005.
    6 Diplacus constrictus (A L Grant) GL Nesom, comb. nov. Mimulus subsecundus subsp constrictus A L Grant, Ann Missour1 Bot Gard 11 287. 1925 ("1924") Mimulus constrictus (A L Grant) Pennell, Illustr Fl. Pacific States 3.7221951 Mimulus viscidus subsp constrictus (A L Grant) Munz, Aliso 4991958
    7. Diplacus cusickii (Greene) GL Nesom, comb. nov. Eunanus cusickit Greene, Pittonia 1. 361887 Mimulus cusicki (Greene) Rattan, Analytical Key West Coast Bot (ed 3) 631898
    8. Diplacus fremontii (Benth) G L. Nesom, comb. nov. Eunanus fremontii Benth in DC., Prodr 10. 374 1846 Mimulus fremonttı (Benth) A Gray, Proc Amer Acad Arts 11:96. 1876

[^7]:    (FNANM)

    1. Erythranthe linearifolia (AL Grant) GL Nesom \& NS Fraga, comb. nov. Mimulus primulondes var linearifohus A L Grant, Ann Missouri Bot Gard 112461925 ("1924") Mmulus linearifolius (A L Grant) Pennell, Ill Fl. Pacific States 3698 1951. Mimulus primuloides subsp linearvfolius (A L Grant) Munz, Aliso 4991958
    2 Erythranthe primuloides (Benth) GL Nesom \& NS Fraga, comb. nov. Mimulus primuloides Benth, Scroph Ind, 291835
    Mimulus pilosellus Greene, Erythea 422 1896. Mimulus primuloides var pilosellus (Greene) Smiley, Univ Calif Publ Bot 93321921
    Mimulus nevadensis Gand, Bull Soc Bot France 192181919
[^8]:    33. Stems sparsely but distinctly finely villosulous-glandular proximally to distally; leaves finely villosulous-glandular
    34. Erythranthe pardalis
[^9]:    * Alaska. Vickery et al. (1968) reported a tetraploid chromosome count for a plant of Erythranthe guttata. from Admiralty Island (Gambier Bay, sea level to 1000 ft , Aug 1958, Miller s.n., Vickery cult. 6152 (as published) or cult. 6250 (in UT). They observed bivalents frequently "paired in loose quadrivalent associations." Seed-grown plants of this individual produced hybrids in crosses with diploid plants from Contra Costa Co., California, but the F1s were sterile. Crosses of the Alaskan tetraploid with what Vickery et al. presumed was autotetraploid E. guttata from Arizona (Yavapai Co., Vickery 2593, see citation above) would not produce hybrids. Another chromosome count from Alaska has been reported as diploid, $2 n=28$ : Aleutian Islands, sea cliff on Amchitka Island, Vickery 11452 (Vickery et al. 1981). Also diploid is "Vicinity of Juneau," Vickery 5395, as listed in Vickery (1978). See further comments above under "Morphological variants."

[^10]:    Fig. 1. Values for five morphological characters used in Hawksworth and Wiens (1996) for the 13 subspecies of Arceuthobium campytopodum. The solid lines represent the ranges of values reported and the dot the mean. Dashed lines indicate that no minimum (or
    for subsp. stskiyotense third internode width minimum or maximum) values were reported. Staminate fower widths were not reported for subsp. Littorum, subsp.monticola, and subsp. siskiyouense. Also shown are the altitudinal ranges for each taxon.

