POLYCHAETA OF SOUTHERN AFRICA

PART 1. ERRANTIA

J. H. DAY

Over eight hundred species of polychaetes from southern Africa are described in this lavishly illustrated monograph, including both the planktonic and the benthonic species of Angola, South-West Africa, the Republic of South Africa, Mozambique and the Malagasy Republic. Many of these marine worms are widespread in the Atlantic and Indian Oceans or are cosmopolitan in distribution so that the monograph is useful to marine zoologists and oceanographers in many parts of the world far beyond the confines of southern Africa. As polychaetes are among the commonest animals on the sea bed, the primary object of the author's research over thirty years has been to obtain data for determining distribution patterns of this important group. Information on collecting localities is given in some detail and a preliminary analysis of polychaete distribution is provided in the Introduction. With few exceptions, all of the species have been figured and keys are given to all of the families, genera and species. For the non-specialist there is an illustrated account of the more important diagnostic characters of each family as well as a glossary of technical terms.

Set of two books
Price $£ 15$

ROB DAY

A MONOGRAPH ON THE
 POLYCHAETA OF SOUTHERN AFRICA

PART I. ERRANTIA

Publication No. 656

A MONOGRAPH ON THE POLYCHAETA OF SOUTHERN AFRICA

PART i. ERRANTIA

BY

J. H. DAY,
Professor of Zoology,
University of Cape Town

TRUSTEES OF
THE BRITISH MUSEUM (NATURAL HISTORY) LONDON: 1967
(C) Trustees of the British Museum (Natural History) 1967

Polychaeta of Southern Africa. Pt. I

Corrigenda

p. 332. Gorrigendum, legend to Fig. 14.12, substitute:

Fig. 14. 12. Pseudonereis variegata. (A) Head. (B, C) Dorsal and ventral views of proboscis. (D) Anterior foot. (E) Falciger. (F) Posterior foot. Pseudonereis anomata (aftcr Gravier, 1901). (G) Hcad and proboscis. (H) Anterior foot. (I) Postcrior foot. (J) Falciger. Perinereis vancaurica. (K, L) Dorsal and ventral views of proboscis. (M) Anterior foot. (N) Posterior foot. (o) Falciger. Perinereis nuntia vallata. (P, Q) Dorsal and ventral views of proboscis. (R) Posterior foot. (s) Falciger.

p. 336. Corrigendum, legend to Fig. 14.13, substitute:

Fig. 14. 13. Perinereis falsovariegata. (A) Head. (B, C) Dorsal and ventral views of proboscis. (D) Falciger. (E) Anterior foot. (F) Posterior foot. Perinereis capensis. (G) Antcrior foot. (h) Posterior foot. (t) Head. (J, k) Dorsal and ventral views of proboscis. (L) Foot of heteronereid form. (m) Faleiger. Perinereis cultrifera. (O, p) Dorsal and ventral vicws of proboscis. (Q) Posterior foot. Perinereis nigropunctata. (R) Head. (s) Anterior foot. (T) Posterior foot. (U, v) Dorsal and ventral views of proboscis.

GONTENTS

PART I

PART 2

PREFACE

The polychaete fauna of southern Afriea is very rich and varied. Over 800 speeies have already been reeorded and there is no doubt that many more await discovery. Unfortunately the records and descriptions of the known species are scattered through more than 50 papers. There is thus an urgent need for a monograph not only as an aid for further taxonomic work but also for the rapid identification of eommon species for ecological and physiological studies.

This monograph covers "southern Afriea", here defined as the subcontinent south of the twentieth parallel and extending from the northern parts of South West Afriea around the Cape of Good Hope to the port of Beira in Mocambique. For good measure the faunae of Angola and Madagasear are ineluded too but as these regions are poorly explored it is unlikely that the treatment given here is adequate. The coverage of planktonic speeies is good for most of the speeies known from the world oceans have been found in samples as widely distributed as Angola, the southern tip of the Agulhas Bank and Nosy Bé in northern Madagascar. The depth range of benthonic speeies includes shore forms from eoasts and estuaries to dredged forms from the edge of the continental shelf. In general this is about 200 metres but there are also a few seattered records from greater depths, some exeeeding 3000 metres. Undoubtedly many more speeies remain to be described from these deeper levels of the continental slope.

The main purpose of this monograph is to provide an adequate deseription of all the species of polychactes known from this area with keys for rapid identifieation. Sinee the fauna is ineompletely known the keys cover many other genera and species, marked with an asterisk, whieh may later be found in the area. By the same token it is hoped that they will be useful to workers beyond the limits of southern Afriea. Another purpose is to provide a cheek-list of the whole fauna with a summarised distribution of each speeies and referenees to the works in which the records will be found. The method of presenting this is novel and will be described on p. 2 .

The collections on which this work is based were made mainly by the University of Cape Town, and I have to thank my colleagues and many past students for assistance in the field. I also wish to thank many other institutions for sending me material. Among these are the several South African universities and museums, the Division of Sea Fisheries, the National Institute of Oceanography in the United Kingdom, the British Museum (Natural History), the American Museum of Natural History, the Berlin Museum, the Danish Museum in Copenhagen and the State Museum in Stockholm. Not only was I able to examine much South African material in this way, but I was also able in many cases to compare this material
with the types. The types of my own new species have been deposited in two museums. Those of species described in "The polychaete fauna of South Africa: Part 5" (Day, 1960), have been placed in the South African Museum, Cape Town; while the types of all of the other new species described by me from southern Africa have been deposited in the British Muscum (Natural History), London.

This study has been carried on at intervals for more than 30 years and it would have been impossible without generous financial aid from several sources. I would like to acknowledge my gratitude to the University of Capc Town, the South African Council for Scientific and Industrial Research, the Carnegic Corporation of New York, the Nuffield Foundation and the Oppenheimer Memorial Trust.

Finally I would like to thank my many friends who have liclped in the preparation of the monograph. First Miss Margaret Denholm for the laborious work of typing (and often retyping) the text. Ncxt Miss V. J. Vanderplank, Miss Jenny Jarvis, Mr. George Branch and Miss Elizabeth Münchmeycr who helped with the illustrations and finally Mr. Reginald Sims and my many friends at the British Museum (Natural History) who have advised and assisted in the actual publication.

INTRODUCTION

A BRIEF SURVEY OF POLYCHAETE LITERATURE

The early classical accounts of what is now known as the Class Polychacta of the Phylum Annelida dealt largely with the taxonomy of European species. General aecounts such as those of Cuvier (1817), Savigny (1820), Audouin and MilneEdwards (1832-33), Grube (1851), Quatrefages (1865), Malmgren (1867) and Ehlers (1864-68) brought order out of the chaotic group "Vermes". These are only a few of the more important works and many more will be found in the list of references at the end of this monograph, while detailed accounts of particular groups will be referred to under the introduetions of the various families. The first comprehensive aecount of the European fauna with elear deseriptions, good figures and useful keys to the various families, genera and species was provided by Fauvel (1923 and 1927) in the Faune de France serics of monographs. Fauvel's monographs are invaluable to systematists everywhere.

It is now known that polychaetes are the dominant organisms living in soft bottoms at all depths of the sea. While many hundreds of speeies await deseription, attention is now turning to ecological and physiological studies. For references to all branches of polyehacte research up to 1950 the reader is referred to Dr. Olga Hartman's "Literature of the polychactous Annelids" published in 195I. Her "Catalogue of the polychaetous Annelids of the world" published in 1959 with a supplement and index in 1965 is also a useful tool in systematic work. For details of anatomy and physiology the most recent general works are those of Dales (1963) on the Annelida and Fauvel (1959) in Grassés "Traite de Zoologic" vol. V (I). Bulloek and Horridge (1965) give a detailed aecount of the structure and function of the nervous system.

Fauvel (1923 and 1927) covers most of the cosmopolitan and European specics in southern Afriea but does not deal with the tropieal species which dominate the fauna of Madagasear, Mocambique and Natal. For these Indo-west-Pacific speeies the most useful works are Gravier's beautiful monographs on the Red Sea fauna (Gravier 1899-1908), Fauvel (1919) on the fauna of Madagasear and Fauvel (1930, I 932 and 1953) on Indian species. There are, of course, many other papers dealing with the Indo-west-Pacific fauna but there is no space to mention them all. The few subantaretie speeies which reach the colder waters of the Cape are eovered by the works of Ehlers (1901), Monro (1930 and 1936) and the keys given by Hartman (1964).

This leaves the endemic species which comprise about 36 per cent of the fauna of
southern Africa. Unfortunatcly there is no comprehensive work which covers these and the descriptions are scattered through some 57 papers, which are listed chronologically on p. 3. A brief historical survey is given below.

The earliest records of polychaetes from southern Africa were made by individual explorers and collectors such as W. C. Peters (i854) who collected along the coast of Mocambique and J. A. Wahlberg who collceted in Natal and the Cape of Good Hope. The latter collection was later described by Kinberg (1858-1910). The most important of these early collections, however, was that made by Ludwig Schmarda and published in 186 I .

From 1850 onwards many scientific rescarch vessels called in at Table Bay en route to Antarctica or the Indian Occan. Stimpson (1856) described a small collection made at the Cape by the U.S. vessel "Blake", McIntosh (1885) described a few South African species as part of the "Challenger" collections and Ellers (igo8 and 1913) described the collections made by the "Valdivia" and the Dcutches Suidpolar Expedition. The more recent expeditions which collected around southern Africa are the "William Scoresby" and "Discovery" reported by Monro (r930 and 1936), the "Metcor" reported by Augener (1931) and the "Galathea" reported by Kirkcgaard (1959).

The first collections made by local scientists at the Cape were those of Dr. Percival of the South African Muscum and Professor Gilchrist of the University of Cape Town. Percival's collection was described by Willcy (1904) and Gilchrist's by McIntosh (1904 and 1925). Meanwhile collections were also made in South West Africa by Captain Hupfer and Professor Michaclsen. These were sent to the Zoological Museum in Hamburg and described by Augener (1918) in an important monograph covering the whole west African polychaete fauna. Another important collection was made about the same time in Madagascar and described by Fauvel (I919).

Professor T. A. Stephenson's classic survey of the intertidal fauna and flora of South Africa started in 1932 and the early polychaete collections were described by Monro (I933 and 1937). My own work also started at this time (Day 1934) and in 1938 I joined Professor Stephenson and made intertidal collections all around the South African coast. World War II interrupted the work and the intertidal collections were described much later along with the estuarine species in 195I, 1953, 1955 and 1957. The ecological surveys were then extended below tide marks and the polychaetes were reported in Day 1960, i96i, 1963 and 1963a. The more recent collections still have to be sorted and work on the shelf fauna will continue.

Little has been published on planktonic polychactes from southern Africa. A few scattered records from the area will be found in the works of Ehlers (1913 and 1917), Monro (I930 and I936) and Tebble (I960). By and large, however, all these works deal witly the South Atlantic and Antarctic scas. My own work on planktonic polychactes from southern Africa is still unpublished though descriptions and a summary of the records have been included in this monograph.

NOTES ON USING THE MONOGRAPH

When identifying material from a particular area it is first necessary to know
what papers eontain original reeords or deseriptions of the fauna. These are not easy to recognise in a long list of refcrenees such as that at the end of this monograph. For this reason a complete chronologieal list is given below.
I. Peters, W. C., 1854
2. Stimpson, W., 1856
3. Kinberg, J. G., 1858-1910
4. Sehmarda, L. K., 186 I
5. Baird, W., r865b
6. Quatrefages, Λ. de, 1865
7. Kinberg, J. G., 1867
8. Grube, E., 1867
9. Grube, E., 1869
io. McIntosh, W. C., 1885
11. Marenzeller, E. von, 1887
12. Willey, A., 1904
13. McIntosh, W. C., 1904
14. Gravier, C., 1905c
15. Ehlers, E., igo8a
16. Ehlers, L., Igo8
17. Gravier, C., Igo9
18. Mshworth, J., I910
19. Ashworth, J., 19 II
20. Pixell, H., I913
21. Ehlers, E., 1913
22. Ramsay, L., 19 I4
23. Horst, R., 1917
24. Ehlers, E., 1917
25. Horst, R., 1918
26. Augener, H., 1918
27. Fauvel, P., 1919
28. Fauvel, P., 192 r
29. Treadwell, A. L., I921
30. Seidler, H. J., 1923
31. Fauvel, P., 1923a
32. McIntosh, W. C., 1925
33. Monro, C. C. A., 1930
34. Augener, H., I93 I
35. Monro, C. C. A., I 933
36. Day, J. H., 1934
37. Monro, C. C. A., 1936
38. Monro, C. C. A., 1937
39. Treadwell, A. L., 1943
40. Day, J. H., 1951
41. Day, J. H., I953
42. Tebble, N., 1953
43. Tebble, N., I953a
44. Day, J. H., I955
45. Day, J. H., I957
46. Bansc, K., I957
47. Wilson, D. P., 195^{8}

48. Kirkegaard, J. B., I959
49. Tcbble, N., 1960
50. Day, J. H., 960
51. Day, J. H., ig6i
52. Usehakov, P. V., 1962
53. Day, J. H., 1962
54. Laubier, L., 1962
55. Day, J. H., 1963
56. Day, J. H., 1963 a
57. Bellan, G. and Picard, J., 1965

- Day, J. H., unpublished rceords

In biogeographieal studies onc must know what speeies are found in the area eovered by the monograph, where and at what depth they oeeur and what synonyms have been used in earlier works. It is hoped that the speeies lists appended to eaeh family will supply this information rapidly and that the "Reeords" and "Distribution" will supply the further details that may be required.
All the published reeords of polyehaetes from southern Afriea, Angola and Madagasear have been extraeted from the list of papers given above and other, more reeent unpublished reeords have been added. The eomplete list of valid speeies is given family by family. Eaeh list is arranged alphabetieally for ease of referenee with synonyms and ineorrect identifieations preeeded by the word "as". All species names are annotated by a eode showing which workers used that name and the provinee and depth in which the reeords were made. The eode is explained as follows:

Authority for the record
Shown by a number which refers to the numbered list of references given above.

> Province where collected
> $\mathrm{A}=$ Angola
> $\mathrm{C}=$ Cape Province
> $\mathrm{M}=$ Madagascar
> $\mathrm{N}=$ Natal
> $\mathrm{P}=$ Portuguese East Africa (Mocambique)
> W South West Africa

Depth range
a $=$ abyssal (over 1000 metres)
$\mathrm{d}=$ deep (I oo-499 metres)
$\mathrm{e}=$ estuarine
$\mathrm{i}=$ intertidal
$\mathrm{p}=$ planktonic
$\mathrm{s}=$ shallow ($\mathrm{I}-99$ metres)
$\mathrm{vd}=$ very deep (500-999 metres)

The use of the code is best shown by an example. Lepidonotus semitectus is listed among the Polynoinae on p. 37 as follows:

Lepidonotus semitectus Stimpson $\quad{ }_{2} \mathrm{Ci}$ (and other code numbers) as Lepidonotus wahlbergi Kinberg ${ }_{3} \mathrm{CiNi}$ (and other code numbers) as Polynoe trochiscophora Schmarda ${ }_{4} \mathrm{Ci}$

The first record shows that the valid name is Lepidonolus semilectus first used by Stimpson 1856 (code number 2 in the literature list) and his record was made in the Cape Province (code letter C) in the intertidal zone (code i). The same specific name has been used by several other workers as shown by the other code numbers against it. The first synonym is Lepidonotus wahlbergi Kinberg and the code ${ }_{3} \mathrm{CiNi}$ gives the reference to Kinberg's publication in 1858-19 Io and the information that these specimens were collected in the intertidal zone in the Cape Province and Natal. The second synonym is Polynoe trochiscophora Schmarda and the code letters 4Ci show that Schmarda's name was published in 186i and the specimens came from the intertidal zone of the Cape Province. Other synonyms and records follow and all of them together show the full range of synonyms which appear in the polychacte literature of southern Africa and that Lepidonotus semitectus is a common intertidal and shallow water species which extends from South West Africa around the Cape of Good Hope to Natal.

More detailed information is appended to the description of each species. If there are only three or four locality records, all of them are given, and if there are many, a summary shows the limits of the geographical and bathymetric range. After careful consideration, it was decided that place names would not be as helpful as latitude and longitude since the names of many collecting stations would not be found on ordinary maps and, in any case, dredged and plankton records would have to be given in degrees of latitude and longitude. Minutes of latitude and longitude have also been omitted for the sake of brevity and this means that unlcss the reader refers to the publication from which the record has been extracted, he will not be able to pinpoint the record more accurately than somewhere in the 60 mile square formed by a degrec of latitude and longitude. For most purposes this is sufficient. Luckily the whole of southern Africa is covered by degrees of south latitude and east longitude so that the words "south" and "east" are omitted. Thus the locality can be expressed in four figures and the depth range by a letter. For example the records for Hermonia hystrix described on p. 32 are shown as Cape (31/15/d) ; ? Natal (29/3I/s). This means that the species has been recorded in Cape waters in the latitude/longitude square $31^{\circ} \mathrm{S} / 15^{\circ} \mathrm{E}$, in the depth range $100-499$ metres; there is
also a doubtful record from Natal in the latitude/longitude squarc $29^{\circ} \mathrm{S} / 3 I^{\circ} \mathrm{E}$ in the depth range $\mathrm{I}-99$ metres. Reference to the map facing p. 9 will show that the Cape record is off Lamberts Bay and the doubtful Natal record is close to Durban.

Distribution beyond the limits of southern Africa is given in the conventional form and a code letter signifying the deptll range has been added when this information is available. It is urged that some indication of depth range should always be added to summaries of distribution since the fauna at different depths may differ markedly. For example tropical species are restricted to intertidal and shallow deptlis while the very deep and abyssal bottoms may be colonised by cold water species. It may also bc noted that the summary of distribution given in this monograph has been deliberately selected from twentieth century reports of well known taxonomists sincc earlier works are not always reliable.

THE DISTRIBUTION OF POLYCHAETES WITH PARTICULAR REFERENCE TO SOUTHERN AFRICA

Polychactes are an ancient group of worms. They are characteristically marine and the great majority are benthonic though some 50 planktonic species are distributed throughout the oceans of the world. Benthonic polychaetes are probably the commoncst type of macroscopic animal on sandy or muddy bottoms and they extend from the sea shore to the greatest depths of the hadal zone that have yet been sampled. They are also common in cstuaries and a few species extend into fresh water although none of these have been recorded from southern Africa.

In marine environments many species are very widely distributed. This is not surprising among planktonic forms for they are typically occanic rather than neritic and the oceanic forms of all groups of animals are widespread. Among benthonic animals, however, a world-wide distribution is very unusual. None the less many benthonic polychactes are known from all the oceans of the world and from the Arctic to the Antaretic. Spccies such as Chaelopterus varieopedatus, Owenia fusiformis and Hydroides norvegica seem to have been recorded from all seas that have been thoroughly investigated. Many other examples might be quoted and this has led some investigators to claim that the bulk of the Polychaeta are not restricted to the zoogeographical regions. This, however, is an overstatement. In the case of Diopatra neapolitana which was reported to have a cosmopolitan distribution, it was found that scveral closely related spceies had been misidentified and when other "cosmopolitan" species are studicd more carefully it will probably be found that many of them have been misidentified in the past. Current work on Nephtys hombergi suggests that this is another "cosmopolitan" species which has gained its reputation through misidentification.

Another widely distributed group is the circumtropical group of species. Eurythoe complanata is a good example for it is found in the shallow waters of all tropical scas: Other tropical species are morc limitcd. For example Iphione muricata is an Indo-west-Pacific species which extends from the Red Sea down the coast of Africa to Natal and across the Indian Ocean to Indoncsia and thence through the western Pacific to southern Japan and the Great Barrier Reef and Ncw Caledonia. In
tropieal America it is replaeed by the related form Iphione ovata whieh oecurs on both the Pacifie and Atlantic coasts.

In the Atlantic ocean there is a large group of speeies whiel appears to be restrieted to temperate waters for many Atlantie specics have been recorded from the eoasts of Europe and West Africa as far south as Cape Verde. They are not known from tropieal western Afriea but reappear in the cool waters of South West Afriea and extend down to Cape Agulhas. Possibly they will later be discovered in decper and thus eooler waters in tropical latitudes. This at any rate is the general theory regarding bipolar distribution.

The aecount given thus far has stressed the widespread distribution of four groups of speeies. But there are many other more restrieted groups. The work of Dr. Olga Hartman and other Ameriean taxonomists lias shown that the bulk of the new world fauna is distinet from that of the old world. Similarly Annenkova and Uschakov lave shown that there are eharacteristic species in the Aretic while Monro and others have deseribed many species whieh are restrieted to the Antaretic. As will be shown later, about 36 per eent of the South African fauna is endemie. Obviously a great deal more remains to be done in many parts of the world and many of the early records need revision but there is already suffieient evidenee that the distribution of polychaetes is essentially similar to that of other shallow water marine animals deseribed by Ekman (1953).

Within the limits of southern Afriea (defined earlier as Africa south of the twentieth parallel of latitude) the patterns of distribution of the intertidal marine fauna and flora are related to the occan eurrents. This has been shown conelusively by Stephenson in a long series of papers summarised in Stephenson (1941, 1944 and 1947). Stephenson's intertidal survey is now being extended downwards to the edge of the continental shelf. In these decper waters the eurrents ehange and sea temperatures are uniform over mueh wider areas of sea bottom than they are in the intertidal zone. The work is incomplete for an adequate eoverage of 2,500 miles of eoast and eontinental shelf takes a long time. In particular, little is yet known of the shelf fauna of Natal and Mocambique. None the less a preliminary analysis of the polyehaete fauna of southern Africa from the intertidal zone to about 200 metres provides a useful introduetion to further study and is given below. Earlier diseussions of polyehacte distribution in different parts of southern Africa will be found in Augener (1918), Fauvel (1919), Day (1957) and Kirkegaard (1959).

As mentioned earlier, about 750 speeies of polychactes are known from this region and altogether there must be over 5000 records. A random sample of this fauna was obtained by extraeting those benthonie speeies whose generie names started with the letters A to F. This gave 171 speeies. A preliminary inspeetion showed that 46 had been recorded from only one loeality in southern Afriea and a further 25 were known from only two. All of these were rejected as being too rare for distribution analysis and the remaining 100 speeies whieh were known from three or more localities were analysed further.

An analysis of the reeorded depths showed that there are very few records of more than 200 metres so that praetieally nothing is known of the arehibenthal or abyssal fauna and all the notes on distribution that follow apply to the intertidal and shelf

Fig. o.I. Distribution of faunistic components in a random sample of 100 polychaetes from southern Africa.
fauna. Of the roo species, 63 had been recorded from both the shorc and the shallows while 37 had never been reeorded from the intertidal zonc. This suggests that there are twiee as many species whieh are intcrtidal in some part of their range than those that are eonfined to deeper levels of the shelf. In passing it may be noted that there are very few speeies that are confined to the intertidal zone and never extend below low tide marks. One charaeteristie intertidal specics that springs to mind is the serpulid Pomatoleios kraussi.

The gcographieal distribution of the ioo species sample from Angola around the Cape to Mocambique and Madagascar is shown graphically in fig. o.r.

The main eolleeting stations are separated by intervals corresponding to the geographieal distances between them and the range of each specics is shown as a line joining the limits of the recorded distribution. This implies that the distribution is eontinuous between these points and for most spccies the locality records are scattered at fairly regular intervals throughout this range. Only in onc case (Eurythoe complanata) is the distribution believed to be discontinuous. This species is eircumtropical in distribution and in southern Afriea it has been recorded from the tropieal waters of Angola but is absent from the cold waters of South West Africa and the temperate waters of the southern Cape. It reappears again in the subtropical waters of Natal. It is significant that only onc speeics out of the sample 100 has this type of discontinuous distribution.

The sample 100 species has been divided into six faunistie eomponents on the basis of their distribution beyond the limits of southern Afriea and each component is described in turn.

Table I
Analysis of polyehacte distribution around southern Afriea

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \[
\begin{aligned}
\& \frac{5}{\circ} \\
\& 0 \\
\& \frac{0}{4}
\end{aligned}
\] \& \& \& \& \& \& \& \& \& \& \[
\begin{aligned}
\& \text { 吉 } \\
\& \text { B } \\
\& \text { है }
\end{aligned}
\] \& \& \[
\begin{aligned}
\& \text { E } \\
\& \text { 合 } \\
\& \text { Ey } \\
\& \text { Ey }
\end{aligned}
\] \& \\
\hline Number of records \& 3 \& 11 \& 32 \& 37 \& 49 \& 66 \& 70 \& 64 \& 56 \& 50 \& 47 \& 38 \& 30 \& 25 \\
\hline \begin{tabular}{l}
\% Cosmopolitan \\
\% Circumtropical \\
\% Indio-Pacific \\
\(\%\) Atlantic \\
\% Southern \\
\% Other foreign \\
\% Endemic
\end{tabular} \& \& 27

9
9
55 \& 19
6
6
3
16
50 \& 19
8
8
3
16
47 \& 20
6
12
2
12
47 \& 18
5
5
17
6
8
42 \& 16
7
6
17
6
9
40 \& 16
8
5
19
5
6
42 \& 16
9
5
18
5
7

49 \& $$
\begin{array}{r}
14 \\
16 \\
12 \\
18 \\
8 \\
82
\end{array}
$$ \& \[

$$
\begin{array}{r}
15 \\
23 \\
26 \\
13 \\
13 \\
4 \\
19
\end{array}
$$
\] \& 16

32
37
8

3
5 \& 20
37
43 \& 16
36
48

\hline
\end{tabular}

1. The Cosmopolitan Component includes those species which have been recorded from the tropics and the northern and southern cold temperate zones of all oceans. Some species are known from polar seas as wcll. In the 100 species sample 12 arc cosmopolitan and it will be scen that they are distributed all around southern Africa. The actual number recorded at any one collecting station is mainly a reflection of the intensity of collecting in that arca. For this reason the percentage composition of the total records from each locality is shown in Table 1.

From this it will be cvident that apart from Angola and Walvis Bay where the total number of records is too small to provide reliable perecntages, the cosmopolitan eomponent forms a very constant proportion of the fauna at all collccting stations. In bricf the cosmopolitan component comprises about i2 per cent of the total fauna of southern Africa and is uniformly distributed around its coasts.
2. The Circumtropical Component includes those specics which arc common in the tropics but may extend into warm temperate watcrs of the Indian, Atlantic and Pacific oceans. Thirteen such species occur in the 100 specics sample. As noted earlier only one has a discontinuous distribution and oceurs in Angola, is absent from the Cape and reappears in Natal. The other i2 species have been recorded from the tropical Atlantic but not from Angola possibly because little work has been donc therc. Neither have they been recordcd from South West Africa which is bathed by cold water. They are, however, strongly represented in Mocambique and Madagasear where they form more than 30 per cent of the fauna. From here they cxtend southwards in decreasing numbers. There is a marked fall at the Bashce River in the Transkei but a few reach the cast side of Cape Point (False Bay). In bricf the circumtropical component forms 13 per cent of the total fauna of southern Africa ; it is largely restricted to the tropical and subtropical shores of Mocambique and Natal.
3. The Tropical Indo-west-Pacific Component includes those species which are common in the tropical Indian Ocean or western Pacific but may extend into warm temperate waters. The western limit is the Mediterrancan and the castern limit is Hawaii. Fifteen species bclonging to this group occur in the sample 100 . They form more than 40 per cent of the fauna of Madagasear and extend southwards in decreasing numbers. There is a marked fall at the Bashee River but thereafter two to threc specics which form about 6 per cent of the local fauna extend all around the southern tip of Africa to Luderitz in South West Africa. It is notcworthy that there is no reduction at Cape Point and that this tropical component extends into the cold Bengucla Current. It is possiblc that South Africa endemics have been derived from cold tolerant forms of this group of Indo-west-Pacific species.
4. The Atlantic Component includes those species which are common in the temperate waters of the North Atlantic. Some of them cxtend into the Mediterranean and a few extend along the coasts of tropical western Africa. Most of them, however, appear to be absent from the tropies and reappear in the temperate waters of the South Atlantic. They have not been recorded from other oceans.

In tlic sample 1oo, there are I3 of thesc Atlantic species showing that this component forms as strong an clement in the total fauna of southern Africa as the
cosmopolitan, the circumtropical or the Indo-west-Pacific component. Their distribution within this area is surprising. It had been expected that they would have been restricted to the Atlantic coasts between Walvis Bay and Cape Point, but in fact they seem to be most common along the south coast betwecn Cape Point and the Bashee River and some even reach Lourenco Marques. The Atlantic component is common in dredgings and it is possible that the strength of this component along the south coast is a reflection of the large number of dredgings on this part of the coast.
5. The Southern Component includes those specics which are widcly distributed in temperate or cold waters of the southern hemisphere but do not extend to the tropics. Their range includes such areas as the Straits of Magellan, the Falkland Islands, Tristan da Cunha, Kerguelen, southern Australia and New Zealand. They do not reach Antarctica and it may be noted in passing that no typically antarctic species occur in southern Africa.

The southern component is represented by four species in the sample 100. It is thus a small but definite clement in the total fauna. Most of the records come from dredgings and they are fairly evenly spread between Walvis Bay and Port Elizabeth. Since the bottom temperature on the continental shelf within these limits is 12° to $14^{\circ} \mathrm{C}$. the distribution of the southern component is understandable.
6. "Other Foreign" species. Under this heading are lumped all those species whose distribution extends beyond the limits of southern Africa but which cannot be assigned to any of the components defined above. It is probable tlat they really belong to one of the other components but their distribution is imperfectly known and some of the anomalous records may be due to misidentifications. Records in southern Africa do not reveal any obvious pattern but the species tend to form a more important group on the Atlantic coast than elscwherc.
7. The Endemic Component includes those species which have not been recorded beyond the limits of southern Africa as defined carlier. There are 36 such species in the sample roo showing that the endemic component is about 36 per cent of the total fauna. The percentage of endemics at the different stations along the coast is particularly interesting. Table I shows that the percentage remains practically constant along the whole coast from Luderitz to Port Elizabeth. At Walvis Bay there is a slight increase to 55 per cent but as this represents 6 species out of 11 this change may not be significant in which case endemics would form about 45 per cent of the fauna at any point from South West Africa south and east to Port Elizabeth. Further along the coast the percentage of endemics drops abruptly to 32 per cent at Bashee River, 19 per cent at Durban and 5 per cent at Lourenco Marques. This sample shows no endemics further to the north but more complete records indicate that 1-2 per cent reach Inliambane.

It has often been implied that there are two groups of endemics in southern Africa or even three. This has arisen from the work of Stephenson on the intertidal biota who showed that there is a subtropical biota in Natal, a warm temperate biota on the southern coasts of the Cape and a cold temperate biota on the west or Atlantic coast stretching as far north as Cape Frio in South West Africa. These
three divisions of the total biota which includes of course not only the endemic component but all the other components as well, will be considered shortly but as far as the endemic polychaetes are concerned there is no evidence of two distinctive groups let alone three. Reference to fig. o.I shows that the range of individual endemic species is very variable. Some are restrieted to the west coast, some extend from various points on the west coast to the south coast or Natal, some are restricted to the south coast and others extend from there onto the coast of Natal or cven reach Lourenco Marques. None are restricted to the Natal coast. When all the cndemic species are considered together they do not form two distinct groups, one centred on the west coast, and the other centred on the south coast, but rather a single group. It is concluded that there is one endemic polychaetc fauna in southern Africa.

Faunistic Provinces in Southern Africa

When the various components of the polychaete fauna are considered together certain conclusions may be drawn. It would appear that the fauna of Madagascar and Mocambique is very similar and is composed mainly of circumtropical and Indo-west-Pacific speeies along with a few ever-present cosmopolitan forms. The strength of the tropical components in this area is not surprising considering the sea temperature is usually above $25^{\circ} \mathrm{C}$. South of Lourenco Marques which is incidentally the southern limit of coral rccfs though not of individual coral growths, there is a weakening of the tropical components and an increase of endemics and other components. This change continues along the Natal coast and becomes very marked at Bashee River which seems to be a critical point in geographical distribution. It is at this point that the warm Agulhas Current swings away from the coast and a wedge of cooler water lies over the shelf and occasionally comes to the surface inshore when the Agulhas Current swings further out to sea. From Bashee River south and west to Cape Point the tropical components are weak and other components arc more important. The endemic component in particular forms almost half the fauna at any point. From Cape Point northwards along the Atlantic coasts the fauna is verysimilar to the south coasts ; it is truc that the remnants of the circumtropical component do not pass Ciape Point but the Indo-west-Pacific component does not decrease any further and the endemic component remains equally strong. In brief there certainly are changes in the polychacte fauna in the vicinity of Cape Point but they are not marked. Capc Point is not as marked a barrier as is Bashee River. This finding is very different from that of Stephenson but it should be remembered that he was working on the intertidal biota alone and here the polychacte fauna both of the intcrtidal zone and the whole continental shelf down to a depth of 200 metres is being considered. When hydrographic conditions are cxamined the significance of the wider depth range is apparent. The intertidal zone of the south coast from Bashee River to Cape Point is bathed by surface waters which have a temperature range of about 15° to $20^{\circ} \mathrm{C}$. whereas from Cape Point north along the west coast to South West Africa the intertidal temperatures are about 12° to $15^{\circ} \mathrm{C}$. As a result there are distinct intertidal biotas on the two coasts.

At a depth of 100 metres the bottom temperature is surprisingly uniform at 12° to 14° C. from Port Elizabeth on around Cape Point and northwards along the west coast to Luderitz. In this casc it is not surprising that there is one shelf fauna and that those spccies which can tolerate a bathymetric range of o-100 metres can extend all around southern Africa from the Bashee River to South West Africa.

On the basis of the evidence presented above it is possible to summarise the faunistic provinces in southern Africa as follows :
I. The Mocambique-Madagascar province dominated by tropical species. This reaches Lourenco Marques.
2. The Natal province with many tropical species but also fair numbers of endemics and Atlantic species. This reaches Bashee River.
3. The Capc and South West African province dominated by endemics but with a few tropical species and several other components. The intertidal fauna of this province differs on the Indian and Atlantic coasts.
4. Angola is dominated by tropical western African species and is quite distinct from South West Africa. The faunistic boundary betwcen the two is still unknown but probably lies to the north of Cape Frio.

PLANKTONIC POLYCHAETA

Although the larvac of most polychactes are planktonic and the sexual stages of certain families such as the Syllidae and Ncreidae are found at night in tow-nettings over shallow water, the great majority of adult polychaetes are benthonic. Holoplanktonic species bclong to six familics nanncly the Phyllodocidae (subfamily Lopadorhynchinac), Pontodoridae, Iospilidac, Alciopidac, Tomoptcridae and Typhloscolccidac. Certain gencra of the Polynoinae such as Dreischia and Nectochaeta have also been found in the plankton but these are almost ecrtainly the late larval stagcs of the benthonic genus Lepidasthenia.

The planktonic families arc all highly transparent and probably carnivorous though a careful search of the transparent gut has failcd to reveal rccognisable prey ; on the other hand there is no sign of phytoplankton cither. Probably the most highly specialised for planktonic life are the Tomopteridae in which setac are replaced by membrancous pinnules and the Alciopidae which have cnormous eyes as well as vesicula seminales and reccptacula seminis for the direct transference of sperm. Useful references to planktonic forms will be found in Grceff (1885), Reibisch (1895), Apstein (1900), Rosa (1908), Southern (1909), Stop-Bowitz (1948), Dales (1957) and Tebble (1963). The earlier workers give descriptions and figures of the various species. Støp-Bowitz provides a uscful revicw, Dales has drawn up a valuable kcy to most of the species and Tebblc has discussed their distribution.

Although they are never common in plankton samples, planktonic polychaetes are very widely distributed and several species occur at great depths. In all the oceans of the world there are probably less than 60 species of which 48 are now reported from the seas around southern Africa. They are typically occanic and a neritic plankton sample may be distinguished from an oceanic one by the fact that
it contains numerous benthonic larvae but few holoplanktonic forms. A few species may prove useful indicators of specific water masses. Thus Tomopteris carpenteri and Vanadis antarctica are restricted to the southern oceans south of the subtropical convergence. Tomopteris dunckeri on the other hand appears to be restricted to the warm surface laycrs of the Indian Ocean. Tomopteris septentrionalis has been reported from most oceans but the early records were not made with closing nets and thus do not show at what depth the worm was living. In South African seas it is limitcd to cooler waters; it reaches the surface off the Cape Peninsula but is restricted to much deeper laycrs off Natal. This submergence under warm water masses may be the key to the wide distribution of many other species as well.

THE MAIN DIAGNOSTIC CHARACTERS OF THE POLYGHAETA

While no attempt will be made to describe the detailed morphology of the Polychaeta, a brief description of external structures is necessary here as an introduction to taxonomic studies. A glossary of technical terms is set out on p. 82r. Basically the whole body of a polychacte worm consists of a ccphalic lobe or prostomium, a scgmented body or metastomium and a tail end or pygidium on which the anus opens. Each is formed from a different part of the trochophore larva. The prostomium is formed from the pretrochal region in front of the ciliated girdle or prototroch, the pygidium is formed from the posterior end which bears the telotroch while the metastomium is formed by segmental division of the part between the prototroch and the telotroch. The most anterior segments are formed first and while the worm grows new segments are continually being formed in front of the pygidium. In most polychactes additional segments are added throughout life but in a few gencra (e.g. Ophelia) the number of scgments is fixed and is an important specific character.

The Prostomium. This is a pre-oral lobe which contains the cerebral ganglia and bears the most important sense organs. In primitive forms there are two pairs of eyes, threc antennae (a mcdian and two laterals), a pair of ventro-lateral palps and a pair of postero-lateral nuchal organs in the form of ciliated pits or grooves. In some familics such as the Nereidae the distak part of the palp or palpostyle is separated from the proximal part or palpophore by a dccp groove so that the whole palp is twojointed. All the prostomial sense organs are best developed in the Polychaeta Errantia which are usually active carnivores. In the Polychaeta Sedentaria which are inactive microphagous feeders the antennae, prostomial palps and even the eyes may be lost and the whole prostomium may be fused too, and indistinguishable from the first metastomial segments or peristome which develops food-gathering organs. Even in errantiate forms which have adopted burrowing habits many of the prostomial sense organs are reduced or lost. The antennac may be reduced from three to two or even lost entirely, the palps and eycs may be lost and the prostomium is then reduced to a naked lobe above the mouth as is found in Lumbrineris.

The Mouth. This is formed from a stomadeal invagination immediately behind the prototroch in what later becomes the buccal or peristomial segment. In the adult, the buccal cavity is eversible in errantiate families forming a proboscis which may be covered with papillae or provided with hard chitinous elements such as the
paragnaths and jaws of the Nereidae. These arc of coursc used for fecding but in burrowing forms such as Nephtys, Glycera and Arenicola the eversible proboscis is used for burrowing as well. In filter-fecding tubicolous forms such as Sabella and Serpula the buccal cavity is not eversible and there is no proboscis.

The Parapodia. In most polychactes the first scgment or the first few segments are modificd and joincd to the prostomium to form the head. This process of ccphalisation will be described later but in the most primitive genera the whole body or metastomium consists of numcrous similar scgments each bearing a pair of lateral parapodia. These are typically biramous, with the parapodial trunk clividing to form a dorsal notopodium and a ventral neuropodium. The two rami are basically similar and each consists of a cirrus and a setigerous lobe bearing chitinous sctae (olim chaetae) and supported by a stout internal chitinous rod or aciculum. There are many modifications of this basic plan and any part of the parapodium may be suppressed either along the whole length of the body or in some part of it. Thus all setac may be lacking so that the parapodium is achaetous or the setigerous lobes may fail to develop leaving only the dorsal and ventral cirri and the segment becomes apodous. Finally the cirri may be lost or the sctigerous lobes may develop without the cirri.

Again the two rami of the parapodium may differ in structure. Usually it is the notopodium which is reduced since it has less contact with the substratum. The dorsal cirrus often persists after the setigerous lobe of the notopodium has gonc and the notopodial aciculum may remain embedded in the cirrophore or base of the dorsal cirrus. Such a parapodium is termed sub-biramous or sesquiramous. If however all notopodial sctac and acicula are lost the parapodium is truly uniramous. In a fcw cases the whole parapodial projection is lost so that the setae arise directly from the body wall as in the Oligochaeta.

The Setae. These chitinous structures show an infinite varicty of form and do not change during preservation. They are thus of great importance in classification and many terms are used to describe them. The simplest forms are slender hair-like structurcs appropriately called capillary setae or just capillaries. The distal end of the capillary scta may bc flattencd to form a blade (limbate capillary) or have a central axis with a blade on cither side (winged capillary). They may be sculptured by the development of spinulcs, serrations, barbs or cusps. In the Errantia the ncurosetac and even the notosetae may be jointed so that the basc or shaft articulates with a distal blade or apcx. Such sctac are termed compound in contrast to the normal unjointed or simple setac. If the shaft-hcad of a compound scta is symmetrical it is termed homogomph and if asymmetrical it is said to be heterogomph; similarly if the distal portion is a tapering blade it is termed spinigerous and if it is stout and blunt or hooked it is said to be falcigerous. Sometimes a simple seta becomes very stout like a projecting aciculum and is then termed an acicular seta. In the Scdentaria in particular, stout spines curved at the cnd commonly occur in the ncuropodia. Earlicr workers often referred to these as crotchets but they are now usually refcrred to as hooks cven if they are only slightly curved. In some families thesc hooks have their ends protected by delicate bivalve hoods and are appropriatcly called hooded hooks. The most aberrant types of setae found in the Scdentaria are flattencd plates provided with recurved tecth. They are termed uncini and may be rectangular with
numerous teeth or Z-shaped with a single main fang or rostrum surrounded by a crest of denticles. Further details are described under the relevant families.

Branchiae. Since the body wall is thin and the parapodia large, special respiratory organs are seldom developed by active forms but they commonly oecur in tubicolous or sedentary forms. They may occur on any part of the body but are commonly dorsal in origin either on the dorsum itself or associated with the notopodium. Usually they are thin walled filaments richly supplied with blood but they may become complex branching organs. In filter-feeding fan worms the branchial crown on the head serves both as a respiratory organ and a food-gathering apparatus but in the deposit feeders the branehiae are separate from the buecal tentacles and oceur on a few segments behind the head.

Body Regions. As in other phyla of segmented animals there is a tendency for groups of segments to beeome specialised for different functions. The most obvious region is the head formed of the prostomium and a few anterior segments which bear the feeding and sensory appendages. In tubicolous forms the head may be further specialised to form an operculum or plug when the worm retracts into its tube. Behind the head, tubicolous forms often develop a specialised anterior region or thorax often bearing the respiratory organs and belind this a posterior rcgion or abdomen with poorly developed parapodia. When the end of the tube is open the last few segments may be specialised as a plug (e.g. the scaphe of Pectinaria) but usually the end of the tube is closed and the faecal pellets pass forward along a ventral groove or copragogue to be voided from the mouth of the tube.

Cephalisation. In its simplest form the head consists of the prostomium and the buccal segment or peristome. Apart from encircling the mouth, the peristome may be a normal segment with fully developed parapodia similar to those which follow. Such a peristome oceurs in the family Amphinomidae. Usually however the peristome beeomes specialised. In the Errantia the dorsal and ventral cirri often become elongated to act as tentacular cirri while the setigerous lobes and setae are reduced or disappear. Various degrees of this type of specialisation of the peristome occur in the Aphroditidae and in the genus Polynoe for example, only two or three setae remain at the bases of the tentacular eirri. The next segment however is normal apart from a slight elongation of the ventral eirri. Further eephatisation results in the fusion of additional segments to the peristome, the elongation of their eirri and the loss of their setigerous lobes. The Nereidac have four pairs of tentacular eirri derived from the fusion of two segments which have lost their setigerous lobes. The Phyllodocidae illustrate all stages of fusion of the first three segments and the loss of their setae while the Hesionidac have up to eight pairs of tentacular eirri derived from four segments.

In burrowing forms which ingest organic particles buried in the mud the head is usually very simple and lacks appendages. In the Orbiniidae and Capitellidae for example the prostomium is a simple conical lobe without antennae or palps and the peristomial segment usually lacks both parapodia and setae.

In deposit feeders the head may show many specialisations but usually the prostomium lacks appendages and the peristome or bueeal segment develops a pair of
grooved food-gathering appendagcs called "palps" which pick up the food particles from the surface and convey them to the mouth. These peristomial "palps" arisc from the post-trochal region of the larva and thus differ not only in structure and function but also in origin from the sensory palps of the Errantiate families which are pretrochal in origin. They should be given a separate name but it is difficult to conceive one which would not cause confusion and the homologies of other foodgathering organs of the Sedentaria still have to be worked out. The peristomial palps of the Spionidae are certainly homologous with the peristomial palps of Dodecaceria and Tharyx among the Cirratulidae. Further dissection has shown that the numerous grooved tentacular filaments of Cirriformia are also peristomial in origin and thus homologous with the "palps". In the Trochochactidae, grooved peristomial palps are again present but in addition there are three dorsal digitiform appendages possibly derived from the nuchal organs and the whole liead is protected by a ccphalic cage of long, forwardly dirccted setac originating from the second segment.

A somewhat similar arrangement is found in the Flabelligcridae. The grooved palps are obviously homologous and the cephalic cage is now formed from setae of two, threc or even four segments but the homologics of the "branchial filaments" are uncertain. The prostomium is reduced and fused to the peristomium and both are retractile into an introvert inside the ccphalic cage. It is possible that the "branchial filaments" of the Flabelligeridac are homologous with the "nuchal organs of the Trochochactidae.

The Pectinariidae, Ampharetidae and Terebcllidae arc another group of deposit feeders which Hessle (1917) has shown to be fairly closely related. The Pectinariidac show the greatcst degree of cephalisation for the prostomium is reduced to a cephalic veil protected by two fused segments which have grown forward over the dorsal surface to form an operculum. In the Ampharctidae the prostomium is not greatly modified but in the Terebellidae it is completely fused to the buccal segment to form a tentacular lobe from which the food-gathering tentacles arise. According to Hcssle (1917) thesc tentacles arise from the prostomium but the view adoptcd here is that they arise from the upper lip and are stomadeal in origin. A detailed discussion will be found in the 'Terebellidac.

The Sabellidae and Scrpulidae are suspension feeders which filter the plankton from the water by means of a branchial crown on the head. The prostomium is reduced and usually indistinguishable from the peristomium which bears a pair of branchial lobes each divided into a semi-circle of bipinnate radioles. When the worm is feeding these radioles form a funnel of interlacing pinnules which trap the food particles in mucus and convey them along ciliatcd grooves to the palps and mouth. In the Serpulidae one of the radiolcs is modified to form an operculum to plug the tube when the worm retracts.

METHODS

Collection. Polychaetes are one of the commonest groups of marine animals on the sea bottom and on soft substrata they usually form more than a third of all
the species collected. On the other hand most of them are small and seldom contribute greatly to the total biomass. They may be collected by all the methods commonly used in marinc biological work and for different purposes hand collecting, digging, dredging and grabbing are used. When sorting through the mud obtained by digging or grabbing it is important to remember than many species of polyehaetes measure no more than a few millimetres in length and it is neecssary to use a sieve of 1 mm . mesh if the majority of the species are required. A smaller mesh (e.g. 0.25 mm .) will naturally involve more labour and the additional specimens obtained are mainly post-larvae or small juveniles which are very difficult or impossible to identify. In many cases a good deal of sand will be retaincd by the I mm . mesh sieve along with the worms, small erustacea and other animals. This should all be spread out in a shallow sorting tray with a little water. If the tray is tilted so as to expose the mixture of sand and animals for a few seconds and then straightened again so that the water flows back over the mixture, most of the small crustacea whieh have a hydrophobic surface will be eaught on the surface film and may be filtered off through a piecc of plankton gauze.

The small worms and sand grains which remain are then sorted by rough sedimentation. The whole mixture is washed into a large jar of 3 to 4 litres capacity and rapidly swirled around. Just sufficient time is allowed for the heavier sand grains to settle and the lighter animals are immediately poured off through a piece of plankton gauzc. If this process is repeated five or six times very fcw worms are left mixed with the sand.

Preservation. When engagcd on routine dredging or grab-sampling at sea there is seldom time for elaborate and refined methods of preservation. After hand-sorting and sieving the whole catch is roughly sorted by size and the polychaetes and other small animals are washed into a cloth bag with a station label. The bag is simply placed into a large container, such as a five gallon milk churn, half-filled with 5 per cent formalin in sca water which has been neutralised with hexamine. In this way the polychaete catch may safely bc stored for a fcw months before the formalin acidifies. The formalin/sea-water mixture must then be washed out with freshwater, (the catch sorted to taxonomic groups) and the specimens preserved in 70 per eent alcohol.

When using the rapid bulk methods deseribed above many of the polychaetes will be twisted or broken and if time and faeilities permit more refined methods should be used. While still alive the worms are washed in sea water and then relaxed. This may be donc either by transferring them to a 7.5 pcr cent solution of MgCl 2 or by adding aleohol drop by drop to the sea watcr over an hour. A piece of filter paper is then damped with sea water and placed on a slanting sheet of glass. The worms are then straightened out on the filter paper and 70 per cent alcohol pipetted over them until they are dead. With the sudden addition of the strong alcohol the probosees of Phyllodocids, Nercids and Glyeerids are often everted and can be held in this position until the worm is fixed in a flat sorting tray of 70 per cent alcohol. None of the worms should be bottled until they arc thoroughly hardened in the flat tray.

Dissection and the mounting of parapodia. For taxonomic purposes it is often ncccssary to dissect out the proboscis to examine the jaws or other structures and it is always necessary to examine the parapodia under a microscope. The proboscis of a large worm may be dissected with a pair of fine scissors but most worms arc too small for this and the most useful instrument is a microscalpel shaped like a spear with a blade 2 to 3 millimetres long. If this is kept razor-sharp it is possible to dissect out the proboscis of a 5 mm . worm under a sterco dissecting microscope. For the removal of small parapodia the most useful instrument is a mounted needle which has been filed down to form an oblique cutting edgc. It necd not be particularly sharp for it is merely used to press down and scver the parapodium against the bottom of a glass dish. The parapodia are then transferred by means of a small pipette to a slide and mounted in a drop of glycero-formol. This is a half and half mixture of 5 per cent formalin and glyecrine. The parapodium may be transferred dircctly to it from the 70 per cent alcohol and if a permanent slide is required the cover slip is later ringed with cement.

THE SYSTEMATICS OF THE POLYCHAETA OF SOUTHERN AFRICA

CLASSIFICATION

The phylum Annelida to which the Polychacta and several other groups of worms belong, is difficult to elassify into classes and orders. Earlier workers included the Archiannelida, Polyehaeta, Myzostomida, Oligochacta, Hirudinea, Echiura, Sipuncula and Priapulida. Recent workers, including Dales (1963), regard the last three groups as distinct and consider each of the other groups as a separate class of the phylum Annelida.

The division of the class Polyehaeta into orders has been attempted by Benham (1896) and Dales (1963). They have based their divisions on the structure of the head and the naturc of the feeding organs, the regions of the body and the nature of the parapodia and setae. As shown earlier the method of feeding and the habitat whether it be planktonic, active erawling on the surface, burrowing in the mud or tubieolous does have an important effeet on the structure of the head and body. However there are still many doubts regarding the homologies of the feeding organs and there is still no general agreement as to which families should be included in the various orders whieh have been erected. For this reason it is better to leave the matter open and agree with Fauvel (1923) and many earlier workers that for praetical purposes the arbitrary grouping into Polychaeta Errantia and Polychaeta Sedentaria should be used.

The Polychaeta Errantia includes active carnivores and a few others while the Polychaeta Sedentaria includes the remaining microphagous feeders. There are no mutually exclusive eharaeters whieh define these two groups and a summation of characters is used in the following key.

Key to the Families of Polychaeta

Note Some families have such a wide range of characters that they appear twice in the key. In these cases a number in brackets refers to the other couplet in which the family appears.

Most of the following characters:
Prostomium with sensory appendages. Pharynx armed with jaws or teeth. Parapodia well developed and often bear compound setae . (Polychaeta Errantia) (p. 20)
Most of the following characters:
Prostomium seldom with sensory appendages and often fused to the peristome which may bear grooved palps, buccal cirri or a branchial crown. No jaws or tceth. Parapodia often reduccd and compound sctac very rare (Polychaeta Sedentaria) (p. 24 see also Part 2)

Polychaeta Errantia

(Part I)
I Elytra (dorsal seales) present on many segments, at least in the anterior half of the body (fig. 0.2.1)

- Elytra absent

2 Notosetac in transverse rows across the dorsum. (Gills present or absent) . . . 3

- Notosetae not in rows across the dorsum 5

3 Neurosetae compound. Gills absent 4

- Neurosetae simple. Rows of gills alternate with rows of notosetae

Amphinomidae (6) (Eupirosine) (p. 12o)
4 Notosetae are flattened paleae not supported by membranes. Neurosetae not hooked
(fig. o.2.3) Palmyridae (p. if5)

- Notosetae slender and supported by membrancs. Neurosetae are stout hooks (fig. o.3.4)

Sphintheridae (p. If9)
5 A sensory lobe (carunele) behind the prostomium. Setae tubular, never compound
(fig. o.2.2) Amphinomidae (4) (p. 120)

- No earunele behind the prostomium. Setae not tubular, often eompound . . . 6

6 Animal entirely planktonie with a clear translucent body 7
Animal normally benthonie with an opaque body 12
Eyes enormous (fig. 0.3.7) Alciopidae (p. 172)

- Eyes normal, rudimentary, or absent 8

8 Parapodia of body segments lack setae but have membraneous pinnules (fig. o.3.3)
Tomopteridae (p. 196)

- Parapodia of body segments have setac. Membranous pinnules absent . . . 9

9 Setigerous lobe well devcloped and setae always eompound Io

- Setigerous lobe small and setac always simple and aeicular (fig. o.3.6). (Large foliaceous dorsal and ventral cirri) Typiloscolecidae (p. 207)
io Setigerous lobe produeed as a slender thread among the setae (fig. o.2.4)
Pontodoridae (p. 167)
- Setigerous lobe not so produced ${ }^{11}$

11 Antennae absent. Body cylindrieal (fig. o.2.3) Iospilidae (p. 168)

- Four antennae. Body usually flattened . Phyllodocidae (22) (Lopadorhynchinae) (p. 156)

12 Prostomium with ventro-lateral palps 13

- Prostomium without palps 18
${ }_{13}$ Palps bi-articulate with a stout basal joint and a small distal one 14
- Palps simple, sometimes cushion-shaped and partially fused to the prostomium . . 16

14 Compound setae absent. Never more than two pairs of tentacular eirri (fig. o.2.9)
Pilargidae (p. 214)

- Compound setae present. Four or more pairs of tentacular cirri ${ }^{15}$

Fig. o.2. Illustrations of Family Characters. 1, Aphroditidac. 2, Amphinomidae. 3, Palymridae. 4, Pontodoridae. 5, Syllidae. 6, Iospilidac. 7, Pisionidae. 8, Eunicidae. 9, Pilargidac. (A) Entire worm. (B) Head; $\mathrm{B}^{1}, \mathrm{~B}^{2}$ maxillac and mandibles. (c) Foot. (D) Notoseta. (v) Neuroseta or seta of uniramous parapodium.
I_{5} Jaws, if present, usually styliform. Denticles absent. Tentacular cirri often jointed (fig. o.3.1) Hestonidae (p. 22 I)

- Two pairs of toothed jaws always present and often horny denticles as well. Tentacular cirri smooth (fig. o.3.2) . .

Nereidae (p. 291)
16 A barrel-shaped gizzard follows the pharynx (fig. 0.2.5) . . . Syllidae (p. 233)

- Gizzard absent ${ }_{17}$

17 Two pairs of jaws. Gills invariably absent (fig. 0.2.7) . . . Pisionidae (p. 132)

- Four or morc pairs of jaws. Gills may be prescnt (fig. o.2.8) . . Eunicidae (22) (p. 374)

18 Body papillose. Head indistinct (fig. o.3.5) Sphaerodoridae (p. 288)

- Body smooth. Head distinct 19

19 Proboscis without jaws 20

- Proboscis with jaws 21

20 Dorsal cirri lamcllar, not annulated. (fig. o.3.8). (No parapodial lamellae)
Phyllodocidae (13) (p. I36)

- Dorsal cirri long and annulated (fig. o.3.1). (No parapodial lamellac)

Hesionidae (17) (p. 221)

- Dorsal cirri short and conical, not annulated (Parapodial lamcllac present)

Lacydonidae (p. 350)
21 One pair of jaws Pilargidae (16) (Tahelesapia) (p. 214)

- Two or more pairs of jaws 22
22 Peristome with parapodia and setae 23
- Peristome without parapodia or setac (fig. o.2.8) Eunicidar (17) (p. 374)

23 Prostomium a pointed cone. Body circular in scction. Parapodia without lamellae (fig. o.3.10) Glyceridae (p. 352)

- Prostomium pentagonal. Body square in section. Parapodia with lamellae (fig. o.3.9)

Nephtyidae (p. 338)

Fig. o.3. Illustrations of Family Characters. 1, Hesionidae. 2, Nereidae. 3, Tomopteridae. 4, Sphintheridae. 5, Sphaerodoridae. 6, Typhloscolecidae. 7, Alciopidae. 8, Phyllodocidae. 9, Nephtyidac. 10, Glyceridae. (A) Entire worm. (B) Head. (c) Foot. (D) Notoseta. (v) Neuroseta or seta of uniramous parapodium.

Polychaeta Sedentaria

(Part 2)
1 Body short and stout with a tuft of filamentous anal gills (fig. o.5.8) Sternaspidae (p. 648)

- Body elongate. No anal gills

2 Head modified by the development of frilly membranes (fig. o.6.1b), buccal tentacles (fig. o.6.6) or a branchial crown around the mouth (fig. o.6.7). Prostomium often reduced and indistinguishable from the buccal segment

- Head not greatly modified. Prostomium usually well developed and obvious. Buccal segment sometimes with parapodia and may bear a pair of adhesive palps (fig. o.4.Ib) or a few grooved tentacles (fig. o.4.6b)
3 Buccal segment with tentacles retractile into the mouth (fig. o.6.5)
Ampharetidae (22) (p. 686)
- Buccal segment with a pair of adhesive palps (often broken off) or several grooved tentaeles dorsally
- Buceal segment without food-gathering appendages of any sort 10

4 Hooded hooks (fig. o.4.1.v) present in the posterior segments at least. Parapodia always well developed

- Hooded hooks entirely absent. Parapodia sometimes reduced to mere ridges . . 6

5 Hcad flattened and spade-shaped. Gills absent. Palps papillose (fig. o.4.2)

- Head not flattened. Gills often present. Palps grooved (fig. o.4.1) . Spionidae (p. 459)

6 Long filamentous gills at least on anterior segments. Parapodia reduced to ridges . 7

- Gills not long and filamentous. Parapodia not in the form of ridges 8

7 Body divided into an anterior region of short segments and a posterior region of long segments (fig. 0.4.5) Heterospionidae (p. 518)

- Body not divided into regions ; segments do not differ greatly in length (fig. o.4.6) Cirratulidae (p. 498)
8 Both ramiof anterior parapodia well developed and provided with long setae (fig. o.4.4)
- Either the notopodium or the ncuropodium of anterior segments reduced or absent . 9

9 Anterior segments uniramous having no neuropodia. Posterior segments biramous with neurosetac in the form of minute uncini (fig. o.4-3) . . Chartoptermane (p. 522)

- Anterior segments with notopodia reduced to cirriform lobes with an internal aciculum but not setae (fig. 0.4 .8) Aspitobranciiddae (p. 521)

Fig. o.4. Illustrations of Family Characters. 1, Spionidac. 2, Magelonidae. 3, Chactopteridae. 4, Trochochactidae. 5, Heterospionidac. 6, Cirratulidae. 7, Orbiniidae. 8, Aspitobranchidac. (A) Entire worm. (B) Head. (CA) Anterior foot. (CP) Posterior foot. (D) Notoseta. (v) Neuroseta.

Io Dentate-crested hooks (fig. $0.5 \cdot 7 \mathrm{v}$) present in posterior segments if not earlier

- No dentate-crested hooks II

I Capillary setae crenulate (fig. $0.4 \cdot 7 \mathrm{~d}$) Orbinidae (p. 533)

- Capillary setae not crenulate

12 A single long filiform gill arising from the dorsum of setiger 2 or 3 (fig. $0.5 \cdot 3$)
Cossuridae (p. 5^{81})

- Gills, if present, not single and median 3

13 Capillary setae winged in anterior segments. A median antenna may be present (fig. 0.5.1) Paraonidae (p. 555)

- Capillary setae not winged. A median antenna is never present . . 14

14 Prostomium a tapered cone. Body fusiform, often grooved ventrally (fig. 0.5.2)
Opheliddae (p. 570)

- Prostomium notched or lobed. Body swollen anteriorly but not grooved ventrally (fig. $0.5 \cdot 4$) Scalibregmidae (p. 583)
I5 Dentate-crested hooks with hoods (fig. 0.5.5). Body resembling an oligochaete
Capttellidae (p. 591)
- Dentate-crested hooks without hoods. Body not resembling an oligochacte.

I6 Middle segments greatly elongated but never annulated (fig. o.5.7). Gills rare
Maldanidae (p. 6i3)

- Middle segments not greatly elongated but always annulated (fig. o.5.6). Gills always present.
- Arenicolidae (p. 606)

Fig. o.5. Illustrations of Family Characters. 1, Paraonidae. 2, Opheliidae. 3, Cossuridae. 4, Scalibregmidae. 5, Capitellidae. 6, Arenicolidae. 7, Maldanidae. 8, Sternaspidae. (A) Entire worm. (B) Head. (CA) Anterior foot. (CP) Posterior foot. (D) Notoseta.
(v) Neuroseta.

17 Head usually with a frilled food-gathering membrane. Never any tentacles, palps or bipinnate radioles (fig. o.6.1) Owenidae (p. 649)

- Head without a frilled food-gathering membrane but has either tentacles or palps or bipinnate radioles
18 Head with stout sctac 19
Head without setae 21
19 Capillary setae annulated. No marked body regions. Setac on head usually in the form of a cephalic cage (fig. o.6.2) Flabelligeridae (p. 652)
- Capillary setae not annulated. Body regions well marked. Setac on head are paleae which form part of an operculum
20 Two to threc rows of paleae. Caudal region long and eylindrical. Tube attached (fig. o.6.3) Sabellarimae (p. 667)
- One row of paleae. Caudal region short and flattencd. Tube free (fig. o.6.4)

Pectinaridae (p. 678)
21 Head with soft tentacles for deposit feeding. Gills often present on the first few segments. Setal types not inverted in the posterior region

- Head with a erown of bipinnate radioles (fig. o.6.7) for suspension feeding. No gills behind the head. Setal types inverted in the posterior region23

22 Tentacles retractile into the mouth. They are either grooved or papillose (fig. o.6.5)
Ampharetidae (3) (p. 686)

- Tentacles not retractile into the mouth. They are grooved, never papillose (fig. o.6.6)

Terebellidae (p. 7o6)
23 Tube sandy or muddy. An operculum is never present among the radioles (fig. o.6.7)

- Tube calcareous. A stalked operculum often present among the radioles (fig. o.6.8)

Fig. o.6. Illustrations of Family Characters. 1, Oweniidae. 2, Flabclligeridae. 3, Sabellariidae.
4, Pcctinariidac. 5, Ampharetidac. 6, Terebellidac. 7, Sabellidae. 8, Serpulidae. (A) Entire worm. (B) Head. (CA) Anterior foot. (CP) Posterior foot. (D) Notoscta. (i) Palea from operculum. (т) Tube. (v) Neuroseta.

Family APHRODITIDAE Savigny, i8i 8

Body usually depressed and dorsum partially or completely covered with sealelike elytra. Prostomium rounded and sunk back between the anterior parapodia. It bears $\mathrm{I}-3$ antennae, $\mathrm{I}-2$ pairs of eyes and a pair of cirriform palps. Proboseis eversible and often armed with four jaws. Peristomial scgment with reduccd parapodia bearing a few sctae but the cirri are elongated and tentacular. Subsequent parapodia almost always biramous. Dorsal cirri alternate with elytra anteriorly but are variously developed postcriorly, sometimes present on all segments and sometimes completely replaced by elytra. Ventral cirri present on all scgments. Notosctae always simple and usually serrated. Neurosetac are simple except in the subfamily Sigalioninac.

Note on the subfamilies

Some authors liave considered the group to be onc family with four subfamilies; others have raiscd it to the rank of a superfamily with four separatc families. This is largely a matter of personal prcference but as the four subgroups arc more elosely related to onc another than the majority of the families of the Polychaeta, they are here considered as subfamilics. The distinctions between them present no difficultics and the diagnostic characters of the genera are discussed later.

Key to Subfamilies

1 Compound neurosetae present. All posterior segments bear elytra . Sigalioninae (p. 97)

- No compound setac at all. Elytra and dorsal cirri alternate fairly regularly

2 No horny jaws. Eyes often stalked. Only a single median antenna. Dorsum sometimes covered by a felt; harpoon setae may be present Aphroditinae (p. 30)

- Four horny jaws. Eycs stalked or sessile. o-3 antennac. Both fclt and harpoon setae absent
3 Spinning glands present in the notopodia. Eyes stalked or sessile. Thrce antennae, or less sometimes absent Polyodontinae (p. 93)
- Spinning glands absent. Eyes sessile. Always three antennae . . Polynoinae (p. 36)

> Subfamily APHRODITINAE Savigny, i 8 I 8 $(=$ HERMIONINAE Grube, ı 875$)$

Body oval with few segments. Prostomium with a single median antenna. Eycs usually stalked. A well developed facial tubercle on the upper lip. No horny jaws. Body covered with 5^{-20} pairs of clytra which occur on segments $2,4,5,7, \ldots$ and alternate with the dorsal cirri. Parapodia biramous; Notosctac include both finc silky setae forming the fclt and stout spines among which therc may be harpoonsetac on the elytrigerous scgments. Neurosctae simple, sometimes forked.

Records from southern Africa

Aphrodita alta Kinberg .
$32 \mathrm{Csd}, \mathrm{Ps}, \mathrm{Ns}, 50 \mathrm{Cd}, 55 \mathrm{Ca}$
Hermonia hystrix (Savigny) . . -Pd as Hermione hystrix (Savigny) . $31 \mathrm{As}, 32 \mathrm{Cd}$? as Laetmonice filicornis Kinberg . 32 Csd, vd

Laetmonice benthaliana MeIntosh	
as Laetmonice wyoillei (non MeI.)	55 Ca
Laetmonice producta wyvillei MeIntosh	52 Gvd , a
as Laetmonice producta (non Grube)	36 Pd
Pontogenia chrysocoma (Baird) .	$27 \mathrm{Mi}, 4 \mathrm{Pi}$

BIOLOGICAL NOTES

Aphrodita and its allies are slow moving worms which live on soft muddy bottoms. Photographs sometimes show the tracks where Aphrodita has plowed along through the silt, feeding on detritus and mieroscopie animals for it laeks jaws and is not an active predator. Instead its alimentary eanal bulges out between the septa to form

[SACTNENEO (0.833) a segmental series of pouehed eaeea. The thick felt of silky setae on the dorsum covers the elytra and keeps them elean to aet as respiratory organs. Laetmonice extends down to abyssal levels and its eaeca are often distended with foraminifera.

THE MAIN DIAGNOSTIC CHARACTERS

The body. The shape and number of segments is a useful character and in some speeies the last few segments are narrowed to form a tail.

The head. The most useful eharaeters are the eyes whieh may be sessile or borne on short broad stalks (ommatophores). Either type may lack ocular pigment.

Elytra. There are usually I5 pairs, more is diagnostic. The surface is usually smooth except in the genus Pontogenia.

Cirri and parapodia. The dorsal eirri are usually slender with knobbed tips but the ventral cirri are variable and in Laetmonice provide useful eharaeters. The parapodia and ventrum are often papillose to varying degrees.

Setae. The nature of the setae is very important but it should be noted that the eharaeter of the dorsal spines or harpoon setae may differ from elytrigerous to eirrigerous segments and from the anterior to the posterior end. When present the felt formed by fine silky setae is diagnostic, but in Laetmonice the felt is so fragile that it may be lost during eolleetion so that mere traces remain.

Key to Genera

I Harpoon-shaped dorsal spines present (fig 1.1.g) ${ }^{2}$

- No harpoon-shaped dorsal spines 3

2 Neurosate with one to four spurs but no fringe of hairs (fig i.1.e . . HERMONIA

- Neurosatac with one spur and a fringe of hairs (fig i.i.h). . . . LAETMONICE

3 Body oval. Notosatac include both stout spines and fine setae forming a thick felt (fig I.I.n)
APHRODITA

- Body oblong. Notosatae include flattened serrated paleae (fig I.I.t) and fine capillaries forming a felt

PONTOGENIA

HERMONIA Hartman, 1959
Body oval and depressed. Prostomium with a single antenna and swollen eyestalks (ommatophores). Fifteen pairs of elytra. Notosetae of elytrigerous feet inelude harpoon-setae, stout spines and a few small capillaries. Notosetac of eirrigerous feet
are more slender and harpoon-setae are absent. No felt. Neurosetae few, stout and bifurcate, often with one or more accessory teeth but not fringed with hairs.

Type species: Halithea hystrix Savigny, 1818.
Hermonia hystrix (Savigny, 1820)
(fig. i.I.a-e)
Halithea hystrix Savigny, 1820: 20.
Hermione hystrix: Fauvel, 1923 : 35, fig. I i.
Body oval and depressed (fig. 1.1.a), about $30-40 \mathrm{~mm}$. long with $32-34$ setigers. Prostomium (fig. i.i.b) small and rounded with a slender median antenna arising from a stout ceratophore. A pair of swollen ommatophores cach bearing two cycspots. Fiftecn pairs of smooth clytra. Notosetae of clytrigcrous feet include (a) very, long harpoon-setae, (b) sabre-sctac (fig. I.I.d) and (c) a fcw small capillaries. Notosetae of cirrigcrous feet (fig. i.I.c) smaller and lack harpoon-setae. Ncurosetae (fig. i.i.e) bifurcate, the longer prong having one to four accessory teeth but no fringe of hairs. Ventral surface papillose.

Type locality : Mediterranean.
Records : Cape (3I/15/vd) ; ? Natal (29/3I/s) ; Mocambique (24/35/d) occasional specimens.

Distribution : Northern Atlantic from Scotland to Senegal (s, d) ; Mediterrancan (s) ; Red Sea ; Indian Occan (s) ; (?) Japan.

LAETMONICE Kinberg, 1855
Body oval and depressed, with 3^{2-46} segments. A papillose facial tubercle. Prostomium rounded with a single median antenna and two stout ommatophores. Fifteen to twenty pairs of smooth elytra which cover the dorsum. Notosetae of elytrigerous feet include harpoon-setae, acicular setac and capillaries; notosctae of cirrigerous feet lack harpoon-setae but the silky capillaries may form a felt. Neurosetae bifurcate with a fringe of hairs on the longer limb.

Type species : Laetmonice filicornis Kinberg, 1855.

Key to Species

I Eighteen to twenty pairs of elytra 2

- Fifteen pairs of elytra 3
2 A pair of pursc-shaped lobes at the sides of the prostomium. Ventrum densely papillose
- No purse-shaped lobes at the sides of the prostomium. Ventrum almost smooth
L. producta zeyvillei

3 Ventrum densely papillose. Ventral cirri just reach the bases of the inferior neurosetae
L. filicornis*

- Ventrum smooth or almost so. Ventral cirri small and never reach the bases of the inferior neuroseta (fig. i.I.l) .

L. benthaliana

*Not recordcd from southern Africa.

Laetmonice producta zeyvillei MeIntosh, 1885
Laetmonice producta var. wyillei McIntosh, 1885 : 44.
Laetmonice producta (non Grube) : Day, 1934: 18.
Laetmonice producta wyvillei : Day, 1963 a : 357.
Body almost oblong, up to 35 mm . long for 42 segments. Ventrum smooth with only a few papillae between the parapodia. Oeular peduncles not pigmented. No lobes on the tentaeular segment at the sides of the prostomium. Eighteen pairs of elytra. Notopodia with mere vestiges of felt. Notosetae of elytrigerous segments stouter than those of eirrigerous ones and inelude long harpoon-setae. Ventral cirri small and weak and never reaeh the bases of the inferior neurosetae.

Type locality : Subantaretic ($53^{\circ} \mathrm{S} / 108^{\circ} \mathrm{E}$) in 1950 fth .
Records : Mocambique ($26 / 33 / \mathrm{vd}$).
Distribution : Subantaretie (abyssal).

Laetmonice benthaliana McIntosh, 1885

(fig. I.I.f-l)
Laetmonice producta var. benthaliana McIntosh, 1885 : 45, pl. 8 figs. 4-5, pl. 4A fig. 12, pl. 5 A figs. 1-2. Laetmonice benthaliana: Day, 1963: 356.

Body a flattened oval (fig. i.I.j), up to 30 mm . long for $32-36$ segments. Ventrum smooth with only a few papillae between the parapodia. Oeular pendueles (fig. I.I.k) not pigmented. No lobes on the tentacular segment at the sides of the prostomium. Fifteen pairs of elytra eovered by a very delicate felt. Notosetac of elytrigerous feet stouter than those of cirrigerous feet and inelude long harpoon-setac (fig. i.i.g). Neurosetae (fig. I.I.h) with a spur at the base of the feathered apex. Ventral cirri (fig. I.I.l) small and weak and never reach the bases of the inferior neurosetac.

Type logality : Prinee Edward Is.
Records : Cape (33/16/a, 34/17/a, 34/18/vd, ?33/18/s) - eommon on globigerina ooze.

Distribution : Subantaretie (vd, a).

APHRODITA Linnacus, 7758

Body oval, arehed dorsally and tapered posteriorly with 35-45 segments. Prostomium with a single median antenna and a pair of large sessile eyes which may laek pigment. The whole dorsum is covered with a lough felt and the ventrum is usually papillose. Fifteen pairs of smooth elytra hidden under the felt. Notosetae include stout acicular spines and long fine capillaries whieh form the felt. No harpoon-setac. Neurosetae very stout and acieular and arranged in three tiers.

Type species : Aphrodita aculeata Linnacus, 1758.

Fig. I.I. Hermonia hystrix. (A) Entire animal (natural sizc). (B) Head. (c) Cirrigerous foot. (D) Sabre-seta. (E) Bifurcate neuroseta with three accessory tecth. Laetmonice benthaliana. (F) Smooth notoseta. (G) Harpoon seta. (i) Neuroseta. (J) Entire animal (natural size). (к) Head. (L) Parapodium. Aphrodita alta. (м) Head. (N) Entire animal (1.5 times life size). (O) Cirrigerous foot. (P) Neuroseta. (e) Notoseta. Pontogenia chrysocoma. (R) Head. (s) Parapodium. (T) Sabre-seta. (U) Spurred neuroscta. (v) Entire animal ($1 \cdot 5$ times life size).

APHRODITIDAE

Afrrod'lélla Roule 1898
redigenier fy Crensang 972
if
35
Aphrodita alta Kinberg, $1855=$ Rshroditall alta (Kbg.)
(fig. I.I.m-q)
fide Otenva raj (7:\%
Aphrodita alta Kinberg, 1855 : 381; Kinberg, 1910: 2, pl. Ifig. I a-h; Day, 1960: 274.
Body (fig. i.I.n) oval in plan, about 30 mm . long and flattened ventrally with $37-40$ segments. The last few segments are tapered but there is no obvious tail. Median antenna small and slender with a slight swelling near the tip. Prostomium (fig. I.I.m) rounded with large, lightly pigmented ocular swellings. Felt well developed so that it almost covers the short acicular notosctae. Parapodia (fig. i.I.o) short, stout and papillose. Notosctac with hooked tips (fig. i.r.q) and shafts which are minutcly hairy proximatcly and minutcly nodular distally. Neuropodial spines (fig. I.I.p) brown, each with a bent pilose tip. Ventrum papillosc.

Type locality : Rio dc Janciro.
Records: Cape ($3 \mathrm{I} / \mathrm{I} 6 / \mathrm{s}$ and $34 / \mathrm{I} 6 / \mathrm{a}$ to $34 / 25 / \mathrm{d}$) ; Natal (29/3I/s, $30 / 3 \mathrm{I} / \mathrm{s}$) ; Mocambique (26/32/d).

Distribution : Brazil (s) ; Senegal (s) ; Antarctica (d).

PONTOGENIA Claparède, i 868

Body oblong and arched dorsally with $30-40$ scgments. Prostomium with a single median antenna and stalked eycs. A well developed facial tubercle. Fifteen pairs of elytra. Notosetac include large, flattened sabrelike setae and often finc capillaries forming a felt. No harpoon-sctae. Ncurosctac few, stout and spurred. Parapodia and ventrum often papillose.

Type species : Hermione chrysocoma Baird, 865.

Pontogenia chrysocoma (Baird, 1865)

(fig. i.I.r-v)
Hermione chrysocoma Baird, 1865: 178.
Pontogenia chrysocoma : Fauvel, 1923 : 38, fig. 13 a-f.
Body (fig. i.I.v) oblong, up to 40 mm . long with 34 segments. Dorsum arched and dark brown. Parapodia (fig. i.I.s) and ventrum papillose. Prostomium (fig. i.I.r) small with four cycs borne on a pair of divergent peduncles; median antenna with four uncqual joints. Facial tubercle papillosc. Fiftecn pairs of clytra bearing a few small chitinous tubercles. Notosetac include (a) a fan of large crect, sabrc-like paleac (fig. I.I.t) which are dentate on the convex margin ; (b) a few short capillaries and (c) a bundle of very long fine capillarics which form the fclt. Neurosetac (fig. I.I.u) few and stout with a very small spur below the apcx.

Type logality : Naples.
Records : Natal (30/30/s, 29/32/s) ; Mocambiquc (26/32/i) - few specimens.
Distribution : Mcditerrancan (s) ; Zanzibar (i) ; Madagascar (i) ; Morocco (i, s).

Subfamily POLYNOINAE Malmgren, 1867
Body depressed with seldom more than 50 segments. Prostomium bilobed with four sessile eycs and three antennac. Proboscis with four chitinous jaws and often a facial tubercle on the upper lip. No dorsal felt and no spinning glands in the notopodia. Setae simple in both rami, usually with rows of serrations. Elytra alternate more or less regularly with the dorsal cirri antcriorly and are present on segments $2,4,5,7,9$, ctc., but are irregular or absent posteriorly.

Records from southern Africa

Acholoe squamosa (Dellc Chiaje) as Acholoe orbiculata Treadwell . . 39Ai
Alentia australis (Monro)
as Hololepida australis Monro . . 50 Cd
Antinoe epitoca Monro $33 \mathrm{As}, 56 \mathrm{Cs}$
Antinoe lactea Day $4 \mathrm{I} \mathrm{Ci}, 50 \mathrm{Cs}$ Na $34 /-41 / \mathrm{a}$
\rightarrow Drieschia pelagica Michaelscn
-Np
Eunoe assimilis McIntosh . . . $32 \mathrm{Cd}, 55 \mathrm{Ca}$
Eunoe hubrechti (McIntosh) as Lagisca hubrechti (McIntosh) . . 33 Cd
Eunoe macrophthalma McIntosh . . 32 Cd
Eunoe nodulosa Day
$-\mathrm{Ci}$
Euphione elisabethae McIntosh . . . $10 \mathrm{Cd}, \mathrm{I}_{3} \mathrm{Cd}, \mathrm{I}_{5} \mathrm{Csd}$, $3_{2} \mathrm{Cd}, \mathrm{Ps}, 33 \mathrm{Cd}, 50 \mathrm{Cd}$
Gastrolepidia clavigera Schmarda . . ${ }_{27} \mathrm{Mi}, 28 \mathrm{Mi}, 53 \mathrm{Pi}$, Mi
Gattyana mossambica Day.
${ }_{53} \mathrm{Pi}$
Halosydna (Hyperhalnsydna) alleni Day . $36 \mathrm{Ci}, 40 \mathrm{Ci}, 4 \mathrm{ICi}$
Harmothoe aequiseta (Kinberg) . . . ${ }_{2} 6$ Wis, $35 \mathrm{Ci}, 4 \mathrm{ICi}, 50 \mathrm{Cs}$
as Antinoe aequiseta Kinberg . . 3 Ni
as Parmensis capensis Willey . . . 12 Ci
as Harmothoe crosetensis (non McIntosh) . 33 Cs
? as Lagisca extenuata (non Grube) . 2 ICi
Harmothoe agulhana Day 50Cs
Harnothoe aequiseta africana Augener. as Harmothoe africana Augener . . $26 \mathrm{Ai}, 50 \mathrm{Cs}$
Harmolhoe antilopis MeIntosh . . . 56 Cd , -Cs
Harmothoe corralophila Day . . . 50Csd
Harmothoe dictyophora (Grube) . . . ${ }_{23} \mathrm{Ni},{ }_{2}{ }_{7} \mathrm{Mi}, 40 \mathrm{Ni}, 41 \mathrm{Ci}$
as Parmensis reticulata McIntosh
${ }_{32} \mathrm{Pi}$
Harmothoe fraserthomsoni McIntosh . . ? $39 \mathrm{Ai}, 4 \mathrm{ICi}, 50 \mathrm{Cs}$
Harmothoe goreensis Augener . . . 26As, 45Pi, 50 Cs
Harmothoe gilchristi Day 50Cs
Harmothoe lagiscoides serrata Day . . 56 Cd
Harmothoe lumulata (Delle Chiajc) . . $45 \mathrm{Pi}, 50 \mathrm{Cs}, 53 \mathrm{Pi}$
Harmothoe profunda Day 55 Ca

Paralepidonotus indicus (Potts)

${ }_{45} \mathrm{Pi}$
Pareulepis geayi (Fauvel) $45 \mathrm{Ni}, \mathrm{Pi}, 53 \mathrm{Mi}$ as Eulepis geayi Fauvel . . . $27 \mathrm{Mi}, 40 \mathrm{Pi}$
Polyeunoa laevis McIntosh . . . $13 \mathrm{Cd}, 50 \mathrm{Csd}$
as Hemilepidia erythrotaenia (non Schmarda) 32 Cd
as Polynoe agnae McIntosh . . . 32 Cd
? as Polynoe capulleonis McIntosh . . 32 Cd
Polyeunoa nigropunctata (Horst). as Hololepidella nigropunctata (Horst) . 45 Pi
Polynoe erythrotaenia (Schmarda) . . $41 \mathrm{Ci}, 50 \mathrm{Cs}$ as Hemilepidia erythrotaenia Schmarda . $4 \mathrm{Ci}, 1 \mathrm{IWi}, 12 \mathrm{Ci}$ as Eunoe capensis McIntosh . . . $1_{0} \mathrm{Ci}, \mathrm{I}_{3} \mathrm{Ci}$
Polynoe scolopendrina Savigny . . . $12 \mathrm{Ci}, 3 \mathrm{ICs}, 32 \mathrm{Ci}, 35 \mathrm{Ci}$, $36 \mathrm{Ci},{ }_{4}{ }^{1 \mathrm{Ci},} 5^{0 \mathrm{Cs}}$
as Polynoe attenuata McIntosh . . ioCi
as Hemilepidia tuberculata Sclımarda . ${ }_{4} \mathrm{Ci},{ }_{1} 3 \mathrm{Ci}, 2 \mathrm{ICi}$
Pseudopolynoe inhaca (Day) . . . 53 Pi
as Allmaniella inhaca (Day) . . . 45 Pi
as Polynoe inhaca Day 40 Pi
Subadyte. GRE, Scaliselosusfragilis-(Claparède) . . -Ns, Ms
as Scalisetosus pellucidus (Ehlers) . . ${ }_{23} \mathrm{Ci},{ }_{33} \mathrm{Cs}, 4 \mathrm{ICi}, 50 \mathrm{Cs}$
as Scalisetosus communis Delle Chiaje . 21 Ci
Scalisetosus longicirrus (Schmarda) . . ${ }_{53} \mathrm{Pi}$

BIOLOGICAL NOTES
The polynoids arc a group of slow moving predators fceding on small prey in spite of their strong jaws. Many of them are phosphorescent and they are famous for their commensal habits. Different genera live with a wide varicty of invertebrate hosts. Acholoe, Malmgrenia and Gastrolepidia live with asteroids, echinoids and holothurians while many specics of Harmothoe, Polynoe and Lepidasthenia live with tubicolous worms, particularly polychaetes. One species is even commensal with the sea-anemone Bolocera and Harmothoe corralophila lives in tube-shaped galls on the branches of a stylasterid coral. By way of contrast, most of the specics of Lepidonotus are free-living. Some genera such as Pareulepis and Antinoe prefer sandy habitats while others, such as Iphione and Lepidonotus live under stoncs and dead coral. Many free-living species of Harmothoe occur on shelly bottoms and there seems to be a tendency for those specics whose elytra are fringed with long papillae to tolerate more silty conditions. Possibly the fringe keeps the silt from getting underncath the elytra where respirations takes place and where the developing eggs are carried by several species.

THE MAIN DIAGNOSTIC CHARACTERS

The head. The most important features are the arrangement of the antennae on the prostomium, the presence or absence of frontal peaks and the position of the anterior pair of eyes. The antennae, tentacular cirri and dorsal cirri are essentially
similar in structure so that if one is lost a good idea of its characters may be gained from those that remain. Each consists of a basal ceratophore and a distal ceratostyle which is usually much longer. The ceratophores of the median and two lateral antennae may all arise from the anterior margin of the prostomium so that the lateral antennae are smoothly continuous with the prostomium. This occurs in Lepidonotus (fig. I.2.e) whose lateral antennae are said to be terminal in origin. The ceratophores of the lateral antennac may also arise from the ventral surface of the prostomium as in Harmothoe (fig. I.2.a) whose lateral antennac are said to be ventral in origin. In this case the prostomium bulges forward on either side of the median antenna and may develop chitinised projections called antero-lateral horns or preferably prostomial peaks. Again the median antenna may arise from the antero-dorsal surface of the prostomium and then the laterals, though still arising from the anterior margin, are at a slightly lower level than the median and tend to push under it. This occurs in Alentia (fig. I.2.c) whose lateral antennae are said to be subterminal. A subterminal effect may also be developed in a different way. In Malmgrenia (fig. I.2.b) the ceratophores of the lateral antennac actually arise from the ventral surface of the prostomium but they are fused to it along their length and slant upwards so that when the prostomium is viewed from above it appears that the laterals arise from its anterior margin though at a slightly lower level than the median. This condition is best confirmed by turning the worm on its back and bending the head upwards. This method also permits an examination of the upper lip which sometimes devclops a projection or facial tubercle. As stated, the median antenna may be antero-dorsal in origin. It may cven arise from the middle of the dorsal surface as in Pareulepis (fig. I.2.f) or even from the posterior margin. In this position it is reduced to a papilla which may be concealed under a projecting fold of the first scgment called an occipital fold or collar. This happens in Iphione. Early workers sceing only the large lateral antennae described the type species I. muricata as having only two antennae.

The elytra. These vary in size from mere caps on the elytrophores to large scales which cover the whole dorsum. Commonly they extend over the whole length of the body (as may be checked by the disposition of the elytrophores if the elytra are missing), but in some forms such as Polynoe only the anterior half of the body develops elytra and the posterior half is naked and may develop fleshy dorsal tubercles. Segments which bear dorsal cirri (cirrigerous scgments) commonly bear fleshy dorsal swellings corresponding to the elytrophores showing that dorsal cirri and clytra arc not homologous organs. In the genus Euphione these swellings form a pair of transversely elongatcd ridges across the segment (paraelytrophores) and both they and the cirrophores bear branchial papillae. Early workers made much of the detailed segmental arrangement of elytrigerous and cirrigerous feet, but in the subfamily Polynoinae this is of doubtful value. On anterior segments the elytra occur on segments 2, 4, 5, 7, $9, \ldots$ and alternate segments (or segments $I, 2,4,6,8, \ldots$ if the tentacular segment is not counted) while the arrangement on postcrior segments is very variable. The outline shapes of the elytra also change along the body but the ornamentation is of great specific importance. Basically there are two structures. First the soft cylindrical papillae which may form a fringe on the postero-lateral margin or spread over the surfacc ; second the strongly chitinised tubercles, though intermediate forms are
not unknown. The tubereles may be limited to the anterior area which is covered by the preeeding clytron and thus presumably ensures a free flow of the respiratory eurrent between the two surfaces or the tubercles may eover the whole elytron. Their shape is variable from spccies to species, from anterior to posterior elytra and even on different parts of the same clytron. Morcover their thick chitin prevents the rapid inflow of viseid mounting media and shrinkage effeets are produced such as ridges, projections and star-like shapes. For all thesc rcasons it is best to examine the elytra first on the intact worm preserved in alcohol to determine the eharacters of the tubereles of the anterior elytra where they are best developed and then to remove an anterior elytron plus the next complete foot with a dorsal cirrus, brush both to remove adherent debris and examine under high power bearing in mind the effeets of the mounting medium.

The parapodia and setae. The dorsal cirrus itself may be smooth or have "cilia" or minute papillac. The notopodium may be well developed or be reduced to a mere papilla with an internal acieulum so that the foot is uniramous or sesquiramous. The neuropodium has a presetal lip which may be produced into a cirriform structure and a shortcr postsetal lip. The distal half of the notoseta is serrated to varying degrees; it may be eompletcly cncircled by rows of minute eusps or these may be limited to one side and if only the other side is visible the seta appears smooth. Often the tip is smooth or naked or may be grooved between the flanges whieh form the cusps further baek. The neurosetae have rather longer, finer projections known as spimules which are sometimes long enough to producc a bcarded effect. The tips of the neurosetac may taper to finc points but commonly they end in a strong hook or terminal tooth with or without a secondary tooth (bidentate and unidentate conditions). The secondary tootl is best developed in the middle of the fan of neurosetae and the slender superior neurosetac and stout inferior ones may be unidentate while the middle ones are minutely bidentate.

GENERIC GROUPING

For the reasons given earlier, the polynocids are here regarded as a subfamily of the Aphroditidae and not as an independent family. Diseussions regarding the whole group or sections of it will be found in Darboux 1899, Potts 1910, Bergström 1916, Horst 1917a, Chamberlin 1919, Fauvel 1923, and Seidler 1922, 1923 and 1924. Grube's 1875 and 1876 also Seidlcr's works contain the most completc reviews.

It is generally agreed that the numcrous genera are best grouped according to the arrangement of the antennae. Seidler follows Horst in reeognising three subfamilies of the Polynoidac [sic]. These are the Iphioninae, the Lcpidonotinac and the Harmothoinac. The Iphioninac were distinguished by the laek of a median antenna but as noted carlier a median antenna is aetually present far back on the prostomium. Another genus, Macellicephala, whieh was reported to lack latcral antennae has in fact got small caducous laterals as well as a median and it is probable that all polynocids have three antennae.

The Lepidonotinae arc well defined by having all threc antennae arising terminally from the anterior margin of the prostomium ; similarly the Harmothoinae all have the median antenna terminal and the lateral antennae ventral in origin. But if one

Fig. 1.2. Insertion of antennae on the head. (A) Harmothoe. (B) Malmgrenia. (c) Alentia. (D) Macellicephala. (E) Lepidonotus. (F) Pareulepis.
aeeepts these two major groups of genera one must go further and ereet a third group with the lateral antennae subterminal as in Malmgrenia, a fourth with the median antenna antero-dorsal as in Alentia and a fifth with the median antenna mid-dorsal to postero-dorsal as in Iphione, Macellicephala, Allmaniella and Pareulepis.

It would in fact be advantageous to divide the polynoeids into five groups in this way but unfortunately these divisions are not elear cut nor are they backed up by simultaneous differences in other characters sueh as the number of segments or the number of elytra. For these reasons the generic groupings are not recognised in the present work.

Key to Genera

1 Lateral antennac arise from a lower level of the prostomium than the median which may be antero-dorsal to postero-dorsal in origin .

- Lateral antennae arise from the same level as the median, all three being terminal in origin
2 Median antenna arises from the dorsal surface of the prostomium, sometimes far back (fig. 1.2.d and f). Lateral antennae always terminal. Eight to thirteen pairs of elytra
- Median antenna arises from the anterior or antero-dorsal part of the prostomium. Laterals cither terminal or ventral in origin (fig. I.2.a-e). Fifteen or more pairs of elytra
3 Median antenna well developed and antero-dorsal 4
- Median antenna a small postero-dorsal papilla usually hidden by the occipital fold 5

4 Lateral antennae well developed ALLMANIELLA*
Lateral antennae minute, often lost (fig. 1.2.b) MACELLICEPHALA (p. 44)
5 Notosetac are all fine capillaries. Prostomium markedly bilobed IPHIONE (p. 43)
- Notosetae are of two types (a) long and fine, (b) stout and bent. Prostomium not markedly bilobed PAREULEPIS (p. 45)
6 Median antenna antero-dorsal in origin and laterals terminal (fig. i.2.c) ALENTIA (p.44)
- Median antenna terminal in origin and laterals subterminal or ventral (fig. i.2.a or b) 7
7 Lateral antennae subterminal, their bases slanting up to the same level as the base of the median. Prostomial peaks never present (fig. I.2.b) 8
- Lateral antennae ventral, their bases projecting at a lower level than that of the median. Prostomial peaks usually present (fig. 1.2.c) II
8 Body short with i5 pairs of elytra. 9
- Body long with 20 or more pairs of elytra เо
9 Ventral lamellae present (fig. 1.5.c). Notosetae well scrrated
PARALEPIDONOTUS (p. 47)
- Ventral lamellae absent. Notosetae weakly serrated to smooth MALMGRENIA (p. 48)
to Large ventral lamellae present (fig. i.5.c). No branchial tubercles
GASTROLEPIDIA (p. 51)
- Ventral lamellae absent. A bilobed branehial tuberele on eirrigerous segments (fig. I.5.k)
ACHOLOE (p. 52)
I I Eighteen to twenty-eight pairs of elytra covering the dorsum POLYEUNOA (p. 52)
- Fifteen pairs of elytra.
POLYNOE (p. 55) 12 Body elongated ; posterior half not covered by elytra (fig. 1.6.a)
- Body short, mainly or entirely covered by elytra

ANTINOE (p. 57)
I3 Neurosetae with blades tapering to fine tips (fig. i.6.W)14
14 Neurosetac with tridentate tips GOREKIA*

- Neurosctae with unidentate or bidentate tips ${ }^{1} 5$
I5 Neurosetac with the distal spinules very long and hair-like AUSTROLAENILLA*
- Neurosetae with the distal serrations normal 16
16 One or more of the basal serrations on both the notosetac and neurosetac enlarged to form spinous poekets (fig. 1.7.j, k) . SUbociy. . . SCALISETOSUS (p. 58)
- Basal serrations on the setae not enlarged, often smaller than subsequent ones 17
17 Notosetae mueh finer than the neurosetac GATTYANA (p. 61)18
- Notosctac as stout or stouter than the ncurosetac
18 Notosetae with the distal spinules long and hair-like. (Neurosetae normal) BARRUKIA*
- Notosetae with the distal spinules decreasing in size 19
19 Notosetae mueh stouter than the neurosetae which are mainly or entirely unidentate(fig. I.7.s-u)
EUNOE (p. 6i)
- Notosetae not markedly stouter than the neurosetae which are mainly or entircly bidentate
HARMOTHOE (p. 64)
Planktonic forms (probably larval stages of benthonic genera). Notosetac absent, neurosetae mainly long and slender 21
- Benthonic forms with normal neurosetae 22
21 Thirteen pairs of elytra and long elytrophores (fig. I.12.f) DRIESCHIA (p. 75)
- Eighteen pairs of elytra HARMOPSIDES* HARMOPSIDES*
22 Twelve pairs of elytra. 23
- Fourteen or more pairs of elytra 26
23 Posterior elytra reduced. Notosetae few or absent HERMENIA (p. 77)
- Posterior elytra not reduced. Notosetae well developed and numcrous 24
24 Elytrophores and cirrophores with branchial papillae (fig. I.13.d). Notosetae all long, fine and silky 25
- No branchial papillae. Notosetae vary in length LEPIDONOTUS (p. 79)

25 Neurosetae have blades with stout spinules. Cirrigerous segments without paraclytrophotes (flat transverse ridges)

CHAETACANTHUS*

- Neurosetae have blades with long fine spinules giving a bearded effeet (fig. 1.13.f). Cirrigerous segments with paraelytrophores (transverse ridges) . EUPHIONE (p. 76)
26 Fifteen pairs of elytra mainly or entirely covering the dorsum (fig. 1.15.z). Notosetae present PARAHALOSYDNA (p. 86)
- Fifteen to seventeen pairs of elytra limited to the anterior half of the body (fig. 1.15.e). Notosetae present

PSEUDOPOLYNOE (p. 86)

- Eighteen to twenty-two pairs of elytra covering most of the dorsum (fig. 1.15.k). A few notosetae usually present in all parapodia

HALOSYDNA (p.88)

- Twenty-four or more pairs of elytra extending over the whole length of the body. Notosetac absent or restricted to a few anterior parapodia . LEPIDASTHENIA (p. 88)

IPHIONE Kinberg, 1855

Body short, oval and eompletely covered with I3 pairs of large, imbricating elytra. Lateral antennae inserted terminally at the anterior end of the prostomium. Median antenna very small and inserted so far back that it is usually hidden by the nuchal fold. A facial tubercle present. Notosetae very fine. Neurosetae stout and unidentate.

Type species : Polynoe muricata Savigny, i8i8.

Key to Species

1 Elytra with lateral fringes I. muricata

- Elytra not fringed I. ovata*

Iphione muricata (Savigny, 1818)
(fig. I.3.a-f)
Polynoe muricata Savigny, 1818: 308, pl. 3 fig. ı.
Iphione muricata : Gravier, 1901: 226, pl. 9 figs. 129-1 35 ; Fauvel, 1953 : 32, fig. 13 a-e.
Body (fig. r.3.a) oval and up to 20 mm . long with 29 segments. It is arched dorsally and eompletely eovered with 13 pairs of tough imbricating elytra. Prostomium (fig. I.3.b) square and decply bilobed. Lateral antennae terminal with large eeratophores fused to the faeial tuberele. Median antenna represented by a small papilla postero-dorsal in position and usually hidden under the nuehal fold. Eyes small and both pairs posterior. Elytra (fig. r.3.d) large, reniform and tough ; they are divided into punctate polygonal areas with one to two rows of stout chitinous projections and long adhesive papillae near the posterior margin. Dorsal and ventral cirri papillose. Notopodium (fig. i.3.e) short and bears numerous very fine biserrate eapillaries (see fig. I-3.e). Neuropodium large and truncate with numerous stout unidentate setae (fig. I.3.f) ornamented with transverse striations.

Type locality : Suez.

Regords : Cape (31/29/i) ; Natal (30/30/i to 28/32/i) ; Mocambique (26/32/i) fairly common under stones.

Distribution : Red Sca (i) and Indo-Pacifie reaehing Madagasear (i, s), Zanzibar (i), the Philippine Is. (i) and Japan.

ALENTIA Malmgren, 1865
(Characters amended to include Hololepida Moore, 1905)
Body elongate with 45-120 segments and 18-30 or more pairs of clytra which extend over the whole length of the body. Prostomium narrowed anteriorly and broad posteriorly. Median antenna antero-dorsal in origin ; laterals terminal but partly under the median. An occipital flap present. Notopodium small and tapered with slender, minutely spinulose setac. Neuropodium with a pointed presetal lobe and setac of two types: (a) a superior group of slender unidentate setae and (b) an inferior group of stouter bidentate setae.

Type species : Polynoe gelatinosa Sars, 1835

Alentia australis (Mono, 1936)
(fig. I.3.g-m)
Hololepida australis Monro, 1936 : 93, fig. 9 ah ; Day, 1960 : 287.
Body elongate and flattened, over 95 mm . long with more than 59 scgments. Prostomium (fig. I.3.g) with the lateral antennae terminal in origin but the median more dorsal. Two pairs of large eyes both laterally situated. Antennae smooth and about three times the length of the prostomium. Palps long. A marked facial tubercle and a large occipital flap. Dorsal cirri (fig. I.3.h) long and smooth. Elytra large and smooth with a scattering of small, thrce-prongcd tubercles (fig. I.3.j) on the surface. Notopodium (fig. I.3.h) small with a few long smooth capillaries (fig. I.3.k). Neuropodium large and pointed. Superior ncurosetae (fig. i.3.1) slender and lanceolate with denticulate tips. Inferior neurosctae (fig. r.3.m) numerous and bidentate with smooth slanting pockets along the blade.
type locality : South Georgia.
Records: Cape (31/r6/d).
Distribution : South Georgia and off the Falkland Is. (d).

see revision a new stop.
in Petti6one 1976 MACELLICEPHALA McIntosh, 1885
Body short with 18-30 segments. Prostomium markedly bilobed. No prostomial peaks. Median antenna large and dorsal in origin. Laterals minute and arise from the anterior ends of the prostomial lobes but are often lost. Facial tubercle prominent. Eyes usually absent. Eight to thirteen pairs of elytra which cover the dorsum. Notosetae few or absent. No sctac on the tentacular segment. Neuropodium with a long presetal lip. Ncurosetac transparent with long, spear-shaped tips.

Type species : Macellicephala mirabilis McIntosh, 1885.

Macellicephala mirabilis (McIntosh, 1885)
(fig. 1.3.n-p)

Polynoe (Macellicephala) mirabilis McIntosh, 1885: 121, pl. 16 fig. 1, pl. 12A figs. 9-1 1 .
Body purple, up to 30 mm . long with 18 segments. Prostomium (fig. I.3.n) with a pair of large, forwardly projecting lobes bearing minute lateral antennae at their ends though they are often broken off. Median antenna very large, smooth and arises from the dorsal surface. No eyes. Nine to ten pairs of elytra which cover the dorsum. Elytra deciduous, structure unknown. Dorsal cirri (fig. r.3.0) long, smooth and slightly expanded at the tip. Notosctac few, stout and lack serrations. No setae on the tentacular segment. Neurosetae (fig. I.3.p) long with slightly expanded, spear-shaped tips and weak serrations. No secondary tooth. Large nephridial papillae on segments IO-I2.

Type locality: Deep dredging off New Zealand.
Records: Cape (33/r $7 / \mathrm{vd}$ and 34/ $7 / \mathrm{vd}$) - occasional specimens.
Distribution : South Georgia ; New Zealand ; North Atlantic ; North Pacific.

PAREULEPIS Darboux, 1899

Body oblong with 35-40 segments. Prostomium largely covered by an adherent nuchal fold. Median antenna reduced and dorsal in origin. Lateral antennae inserted terminally. Twelve pairs of elytra. Notosetae of two types : (a) long and fine, (b) stout and bent. Neurosctae include a superior pectinate seta and numerous recurved ones with long smooth points.

Type species: Eulepis hamifera Grube, 1878.

Eulepis geayi Fauvel, 1918 : 503. Fauvel, 1919 : 335, pl. 15 figs. $17-21$; pl. 17 figs. 76 -79.
Body (fig. I.3.q) up to 35 mm . long, oblong in shape with $36-38$ setigers. Colour white. Prostomium (fig. I.3.r) broader than long but sunk back between anterior segments and attached in the median line to an overlying fold of setiger 2. Median antenna ovoid, dorsal in origin; lateral antennae conical, terminal in origin. Eyes absent or represented by indistinct dark pigment. Dorsum covered by 12 pairs of tough, glabrous elytra which increase in length posteriorly so that the 12th is two to three times as long as broad. First pair of elytra with three to four soft papillae near the anterior margin; subsequent ones (fig. I.3.s) have the external margin incised to form ro-12 digitiform processes none of which is jointed ; 12th elytron with ${ }^{1}-18$ processes. Dorsal cirrophores large and ridged ventrally ; dorsal cirri small, conical, smooth. Ventral cirri small and ovoid with a terminal filament. Anal cirri exceedingly long and slender. Notopodium short; notosetac of setiger i all long and silky ; notosetac of subsequent feet of two types: (a) long silky capillaries

Fig. 1.3. Iphione muricata. (A) Entire animal (1.5 times life size). (B) Head. (c) Parapodium (D, D^{1}) Elytron and details of marginal papilla. (E, E^{1}) Notoseta and details of serrations. (F) Neuroseta. Alentia australis. (G) Head. (H) Parapodium. (J) Elytral papillae. (K) Notoseta. ($\mathrm{L}, \mathrm{L}^{1}$) Superior neuroseta and details of serrations. (M) Middle neuroseta. Macellicephala mirabilis. (N) Head. (O) Parapodium. ($\mathrm{P}, \mathrm{p}^{1}$) Ncuroseta with details of serrations. Pareulepis geayi. (Q) Entire animal (natural size). (R) Head with segments 2 and 3 cut away on the right side. (s) Elytron. (T) Stout acicular notoseta. (U) Neuroseta.
some of which are spinulose and (b) stout brown setae (fig. I.3.t) with the flattened and spathulate tip bent at right angles to the shaft. Neuropodium truncate with the aciculum expanded at the tip. Neurosetae include (a) one superior pectinate seta and (b) numerous large recurved setae (fig. I.3.u) tapering to fine unidentate tips.

Type locality : Tulear, Madagascar.
Records : Natal (30/3o/s and 29/3r/i, s, d) ; Mocambique (26/32/i). Fairly common on sheltcred sandbanks.

Distribution : Indo-west-Pacific; Red Sea; Madagascar; New Caledonia.

PARALEPIDONOTUS Horst, 1915

Body short with about $35-40$ segments almost covered by i5 pairs of elytra. Prostomial peaks absent and lateral antennae inserted subterminally. The median is antcro-dorsal in origin and the laterals slant upward from below to appear at a slightly lower lcvel than the median. Notosetae serrated and all similar. Neurosetae bidentate. Ventral lamcllae present.

Type species : Polynoe ampullifera Grube, 1878.

Key to Species

1 Elytra with small blunt tubercles and large vesicles (fig. I.4.b1) near the posterior margin which has a small fringe P. ampulliferus

- Elytra with small dark spines. No posterior vesicles but a well developed marginal fringe
P. indicus

Paralepidonotus ampulliferus (Grube, 1878)
(fig. r.4.a-f)
Polynoe ampullifera Grube, 1878: 35, pl. 3 fig. 5 .
Lepidonotus ampulliferus: Gravier, 1901: 214, pl. 7 figs. III-II3.
Harmothoe ampullifera : Day, 1957: 64.
Body (fig. r.4.a) oblong, up to i 7 mm . long for 38 segments and mainly covercd by I 5 pairs of elytra. Prostomium (fig. I.4.c) without lateral peaks and the lateral antennae inserted subterminally below the level of the median. Anterior pair of cyes latcral and well back. Median antenna slender and I.5 times the length of the prostomium ; laterals $3 / 4$ prostomium. Dorsal cirri (fig. I.4.d) long and reach the tips of the neurosetac. Antennae and cirri papillose. Elytra (fig. r.4.b) oval with a small marginal fringe ; the surface bears numcrous small tubercles which may have two or three blunt projections. A serics of large pear-shaped vesicles ncar the posterior margins of the elytra. Ventral lamcllae conspicuous. Notosetae (fig. I.4.e)
numerous and coarsely scrrated to their blunt tips. Ncurosetac (fig. I.4.f) slender and mainly bidentate with the fine secondary tooth almost as long as the terminal one.

Type locality : Philippine Is.
Records: Mocambique (23/35/e) - rare.
Distribution : Red Sea (i) ; tropical Indo-Pacific from Mombasa (i, s) to the Philippine Is.

Paralepidonotus indicus (Potts, 1910)

$$
\text { (fig. } 1.4 \cdot g-k \text {) }
$$

Lagisca indica Potts, 1910 : 338, pl. 19 fig. 13, pl. 21 figs. 46-47.
Paralepidonotus indicus : Day, 1957 : 62, fig. I g-k.
Body oblong, up to 16 mm . long for 36 segments and completely covered by 15 pairs of elytra. Prostomium (fig. 1.4.g) without lateral peaks and with the lateral antennae inserted subterminally. Eyes large, the anterior pair being antero-lateral in position. Median antenna three times the length of the prostomium ; laterals twice the prostomial length. Antennae and dorsal cirri (fig. i.4.i) slender, densely covered with papillae and each with a subterminal swelling. Ventral lamellae present. Each elytron (fig. I.4.h) with a transverse arc of dark pigment and densely covered with small dark spines. Posterior margin (fig. I. $4 . \mathrm{h}^{1}$) fringed with papillae but there are no large vesicles. Notosetae (fig. i. 4 if $)^{\text {s }}$ stout and spinulose to their tips. Neurosetac (fig. I.4.k) slender with long blades bearing many rows of spinules; tips bidentate. The secondary tooth is best developed among the middle setae and is then straight and slender.

Type locality : Amirante, Maldives.
Records : Mocambique (26/32/i, 25/33/s).
Distribution : Maldives (i).

MALMGRENIA McIntosh, 1874

Body oblong with $36-41$ segments completely covered by 15 pairs of elytra. Prostomium without frontal peaks and lateral antennae inserted subterminally. Median antenna terminal in origin but the bases of the laterals are fused to the lower surface of the prostomium and slant upwards to its anterior margin. Notosetae fairly numerous, stout and weakly scrrated. Neurosctac unidentate or minutely bidentate.

Type species: Malmgrenia whiteavesi McIntosh, 1874.
Key ro Species
I Notosetae with numerous rows of very faint serrations (fig. I.4.l). Dorsal cirri short and stout M. purpurea

- Notosetae with a single series of eight-twelve denticles (fig. 1.4.p). Dorsal cirri long and tapered

Fig. I.4. Paralepidonotus ampulliferus. (1) Entire animal (twice life size). ($\mathrm{B}, \mathrm{B}^{1}$) Elytron and details of margin. (c) Head. (D) Parapodium. (E) Tip of notoseta. (F) Neuroseta. Paralepidonotus indicus. (G) Head. (H, H^{T}) Elytron and details of margin. (I) Parapodium. (J) Tip of notoseta. (K) Neuroseta. Malmgrenia purpurea. (L) Tip of notoseta. ($\mathrm{M}, \mathrm{M}^{1}$) Ncuroseta and details of tip. (N) Head. (o) Parapodium. Malmgrenia marquesensis. (P) Blade of notoseta. (Q, $Q^{\mathbf{1}}$) Neuroseta and details of tip. (R) Head. (s) Parapodium.

Malmgrenia purpurea Day, 1960
(fig. 1.4.1-0)
Malmgrenia purpurea Day, 1960; 281, fig. 2 f-k.
Body oblong, up to 17 mm . long with 38 segments and purple in colour. Prostomium (fig. 1.4.n) longer than broad with rather small cyes, the anterior pair being lateral and half-way back. Median antenna very stout and as long as the prostomium ; laterals half as long. A well marked facial tubercle. Tentacular cirri short with a single seta. Antennae and cirri (fig. 1.4.0) smooth, swollen and darkly pigmented. Elytra oval with smooth margins. The surface is also smooth apart from a small antcrior patch of rounded tubercles. Notopodia small with about I2 setac. Ncuropodia large, each with a pointed presetal lip. Ventral lamellac rudimentary. Notosetac (fig. 1.4.1) stout, curved and transparent, the convex margin being very lightly serrated and the tip being abruptly pointed. Ncurosetac (fig. 1.4.m) numerous, fairly sliort and slender with the blades bearing about 25 rows of fine spinules ; their tips are sharp and hooked and some have a minute secondary tooth. Animal probably commensal with Spatangus capensis.

Type locality : False Bay, South Africa.
Records : Cape (34/18/s, d to 34/23/d).
Distribution : Endemic.

Malmgrenia marquesensis (Monro, 1928)

(fig. 1.4.p-s)

Allmaniella marquesensis Monro, 1928 : 469, figs. I-4.
Malmgrenia marquesensis: Day, $1962: 628$.
Body oblong, up to 20 mm . long with mauve markings when fresh but mottled brown in alcohol with a white ridge across each segment. Prostomium (fig. 1.4.r) hexagonal with the anterior pair of eyes large and halfway back on lateral prominences. Median antenna longer than prostomium. Lateral antennac inserted subterminally, markedly tapered and borne on broad ceratophores. A well marked facial tubercle. Palps stout; tentacular cirri slender. Dorsal cirri (fig. 1.4.s) evenly tapered and reach the ends of the neurosetac. Antennac and cirri smooth. Fifteen pairs of oval to rounded clytra which cover the dorsum ; each is smooth apart from a small anterior pateh of rounded tubereles. They may be missing from posterior elytra which are sticky with adherent sandgrains. Notosetac (fig. 1.4.p) sabre-like with a single row of 8-12 denticles on the distal third of the blade and an abruptly pointed end. Ncurosetac (fig. I.4.q) bidentate and more slender than the notosctae. The spinous rows are long and well marked in the superior scries but become short and poorly marked inferiorly ; similarly the tip is truncate with two
subequal teeth superiorly but inferiorly the terminal tooth becomes more hooked and the secondary tooth mueh smaller. Animal commensal with Linckia multiforis (Asteroidea).

Type logality : Marquesas Is., S. Paeific.
 Distribution : S. Pacific.

GASTROLEPIDIA Sehmarda, 1861

Body elongate but not tapered and has more than 40 segments. Twenty-one or more pairs of elytra which cover the dorsum. Mcdian antenna antero-dorsal in origin and the laterals subterminal. Prostomial peaks absent. A well marked facial tubercle and a small nuehal fold. Antennae and cirri elub-shaped. Large scale-like ventral lamellae at the bases of the parapodia. Notosetae serrated. Neurosetae unidentate.

Types species: Gastrolepidá clavigera Sehmarda, 1861.

Gastrolepidia clavigera Sehmarda, 186I
(fig. I.5.a-f)
Gastrolepidia clavigera Schmarda, 1861 : 159, pl. 3^{6} fig. 3^{15}; Seidler, 1924 : 142, figg. 19-20; Fauvel 1953 : 51, fig. 22 d-f.

Body up to 30 mm . long, purple when fresh but fading in alcohol to dark brown. Prostomium (fig. 1.5.a) bilobed but without frontal peaks. Anterior pair of eyes lateral and half-way back. Median antenna with a subterminal swelling half the size of the prostomium. Laterals slightly smaller. Occipital fold well marked. Antennae and eirri (fig. 1.5.d) smooth with a pear-shaped swelling preceding the filiform tip. Twenty-one pairs of elytra (fig. 1.5.b), each largc, oval to reniform in shapc with smooth margins and without tubercles or papillae but with white blisterlike swellings near the posterior margin. A rounded ventral lamella (fig. 1.5.c) as broad as the segment is long at the base of each foot. Notopodia well developed. Notosetae (fig. 1.5.e) serrated to their blunt tips. Neuropodia large. Neurosetae (fig. 1.5.f) unidentate with slightly hooked tips. Animal commensal with Holothuria atra.

Type logality : Ceylon.
Records : Mocambique Is. (i).
Distribution : Tropical Indo-west-Pacifie from Ceylon and Madagasear (i) to New Caledonia (i).

ACHOLOE Claparède, 1870

Body elongate with numerous segments and over 30 pairs of elytra which cover the dorsum. Median antenna terminal ; lateral antennae inserted subterminally. Cirrigerous segments with a bilobed dorsal process. Notosetae serrated. Neurosctae few, stout, hooked and spinulose.

Type species : Nereis squamosal Belle Chiaje, 1825.

Acholoe squamose (Belle Chiaje, 1825)

(fig. $1.5 \cdot \mathrm{~g}-\mathrm{k}$)
Nereis squamosa Delle Chiaje, 1825: 400.
Acholoe astericola Fauvel, 1923 : 94, fig. 36 d-h.
Body very long and fragile reaching 50 mm . with more than 100 scgments. Prostomium (fig. 1.5.j) with frontal peaks and the lateral antennae inserted subterminally. Median antenna short and tapered. Antennac and cirri with a few small papillae. An occipital collar present. Up to 45 pairs of elytra which cover the dorsum. Each is oval in shape with a smooth margin and a surface which is glabrous apart from a small anterior patch of rounded tubercles. Dorsal cirri short. Cirrigerous segments (fig. 1.5.k) with T-sliapcd ciliated processes corresponding with the clytrophores. Notosetac (fig. I.5.g) few, curved, weakly serrated and bluntly pointed. Neurosetac (fig. I.5.h) stout and unidentate with a few weak spinous rows and a long curved and pointed apex. Animal commensal with asteroids.

Type locality : Naples.
Records: Not recorded from South Africa.
Distribution : English Channel (s) ; Mediterranean (s) ; Angola (s).

POLYEUNOA McIntosh, 1885
Body elongate and depressed with more than 50 segments and $18-28$ pairs of elytra which cover the dorsum. They alternate fairly regularly with the dorsal cirri anteriorly but become irregular posteriorly. Anterior cirrigerous segments with dorsal tubercles corresponding with the elytrophores. Prostomium with the lateral antennae inserted ventrally and frontal peaks obvious. No nuchal fold. Notosetae not numerous and weakly serrated. Neurosetae with unidentate to bidentate blades.

Type species : Polyeunoa laevis McIntosh, 1885.
Key to Species
1 Neurosetac mainly bidentate with hooked tips (fig. 1.5.u). Notosetae serrated to their ends Cannofarred
Neurosetae mainly unidentate with blade-like tips (fig. I.5.q). Notosetae weakly serrated with long naked tips .

Fig. 1.5. Gastrolepidia clavigera. (A) Head. (B) Elytron. (c) Ventral lamellae. (D) Parapodium. (E) Notoseta. (F) Ncuroscta. Acholoe squamosa. (G) Notoscta. (H) Neuroseta. (J) Head. (к) Parapodium with dorsal tubercle (after Fauvel). Polyeunoa laevis. (L) Entire animal (twice lifc sizc). (M) Head. (N) Parapodium. (P) Notoseta. (Q) Ncuroseta. Polyennoa nigropunctata. (R) Head. (s) Parapodium. (T) Notoseta. (U) Neuroseta. Holotebidella

Polyeunioa nigropunctata (Horst, 1915)

(fig. $1.5 . \mathrm{r}-\mathrm{u}$)
Polynoe nigro-punctata Horst, 1915; 20, pl. 21, figs. 15-17. Hololepidella nigropunctata: Day, 1957; 65, fig. I a-f.

Body about 15 mm . long with 55 segments. It is slender and flattened with a pair of dark stripes running along the dorsum. Prostomium (fig. r.5.r) grey anteriorly with large prostomial peaks. Anterior pair of eyes situated laterally. Lateral antennae short, smooth and ventral in origin. Median antenna unknown. Dorsal cirri (fig. 1.5 .5) long and smooth with dark elytrophores. Twenty-five pairs of elytra each with an entire margin and a surface which is smooth apart from a small patch of minute rounded tubercles anteriorly. Notosetae (fig. 1.5.t) stout and weakly spinulose to their tips. Ncurosctae (fig. 1.5.u) also weakly spinulose and either minutely bidentate or unidentate for the minute secondary tooth is often absent from inferior neurosetac.

Type locality : East Indies.
Records : Mocambique (26/32/i) - specimens rare.
Distribution : Indonesia.

Polyeunoa laevis McIntosh, 1885
(fig. I.5.l-q)
Polyeunoa laevis McIntosh, 1885 : 76, pl. 12 fig. 2, pl. 20 fig. 8, pl. 7A figs. 12-13. Enipio rhombigera Ehlers, 1908 : 47, pl. 4 figs. 1-12.

Body (fig. 1.5.l) elongate and flattened, up to 35 mm . long for 80 segments. Colour pale with reddish cross-bars at intervals. Prostomium (fig. $1.5 . \mathrm{m}$) bilobed with obvious frontal peaks and the lateral antennae inserted ventrally. Median antenna about five times the prostomial length but laterals only twice the prostomial length. Anterior pair of eyes lateral and half-way back. Antennae and eirri long, slender and smooth. Notopodium small and pointed with only a few stout notosetae (fig. 1.5.p) which are weakly serrated and have long pointed tips. Neuropodium (fig. 1.5.n) large and pointed with numerous long ncurosetac (fig. 1.5.q) whieh bear rows of small spinules and end in long blade-shaped tips which occasionally have a minute secondary tooth. About 20 pairs of deciduous clytra, each oval in shape with an entire margin and a glabrous surface.

Type locality : Prince Edward Is. in 567 metres.
Records: Cape ($3 \mathrm{r} / \mathrm{I} 6 / \mathrm{d}$ to $34 / 23 / \mathrm{s}, \mathrm{d}, \mathrm{vd}$).
Distribution : Antaretic and Subantaretic (s, d, vd).

POLYNOE Savigny, 1818

Body clongate and depressed with numerous segments. Lateral antennae inserted ventrally below the small prostomial peaks. Fifteen pairs of elytra restrieted to the anterior half of the body, the posterior half bearing dorsal eirri and often fleshy tubereles in plaee of the elytrophores. Notosetae stout ; neurosetac unidentate or bidentate.

Type species: Polynoe scolopendrina Savigny, 1822 ('designated' Hartman, $1959: 98$).

Key to Species

I Elytra half dark and half pale. Tail segments without a median row of swellings (fig. r.6.a)
P. erythrotaenia

- Elytra speckled. Tail segments with a median and two lateral rows of swellings (fig. r.6.g)
P. scolopendrina

Polynoe erythrotaenia (Sehmarda, 1861)
(fig. т.6.a-f)

Hemilepidia erythrotaenia Schmarda, 1861 : 150 pl. 37 fig. 318; Willey, 1904 : 258, pl. 13 figs. 6, 26.
Body (fig. 1.6.a) about 50 mm . long with numerous segments. Posterior naked segments with lateral rows of swellings but no median row. Prostomium (fig. i.6.c) roughly square with poorly marked frontal peaks below which the anterior pair of eyes is partly hidden. Lateral antennae equal to the prostomial length ; median half as long. Antennae and cirri eovered with small elavate papillae. Elytra (fig. i.6.d) half dark and half pale with a few small ehitinous tubereles near the anterior margin. Notosetae (fig. I.6.e) few (4-8), stout, blunt and weakly serrated. Neurosetae (fig. 1.6.f) stout and unidentate with few rows of spinules.

Type locality: Cape of Good Hope.
Records : South West Afriea (26/15/i) ; Cape (from 29/16/i to 34/18/i, s).
Distribution : Endemie.

Polynoe scolopendrina Savigny, 1822

(fig. r.6.g-m)

Polynoe scolopendrina Savigny, 1822: 25; McIntosh, 1900: 389.
Body about 50 mm . long with numerous segments. Anterior half of the body covered with speekled elytra and the posterior half (fig. r.6.g) naked, each segment having a median and two lateral swellings whieh are often pigmented. Prostomium (fig. I.6.k) hexagonal with the large anterior pair of eyes well forward and often hidden by the small prostomial peaks. Median antenna twiee the prostomial length, laterals rather shorter than the prostomium. Antennae and cirri with short papillae. Elytra (fig. I.6.h) speekled and blotehed, with a mieroseopie fringe along the external

Fig. 1.6. Polynoe erythrotaenia. (A) Entire animal (i.5 times life size). (B) Parapodium. (c) Head. (D) Elytron. (E) Notoseta. (F) Neuroseta. Polynoe scolopendrina. (G) Posterior segments showing segmental tubercles. (H) Elytron. (J) Details of elytral tubercles. (к) Head. (L) Notoseta. (m) Neuroseta. Antinoe epiloca. (N) Head. (P) Parapodium. (Q) Notoseta. (R) Neuroseta. Antinoe lactea. (s) Parapodium. (T) Entire animal (life size). (u) Head. (v) Elytron. (w) Notoscta. (x) Neuroseta.
margin and conical ehitinous tubereles (fig. 1.6.j) on the surface. Notosetae (fig. 1.6.1) numerous, serrated and tapered. Neurosetae (fig. I.6.m) strongly bidentate, but in the posterior feet of the adult one or two superior neurosetae become enlarged and unidentate and may lose their spinules.

Type locality : Red Sea.
Records : Cape (from $32 / 18 / \mathrm{i}$ to $32 / 27 / \mathrm{e}, \mathrm{i}, \mathrm{s}$) - fairly common.
Distribution : North Atlantic from Seotland to Senegal (i, s) ; Mediterranean (s) ; Red Sea.

ANTINOE Kinberg, 1855
Body depressed and oblong with $40-50$ scgments. Fifteen to sixteen pairs of elytra. Lateral antennac inserted ventrally and prostomial peaks present. Notosetae stout and scrrated. Neurosetac long and fine with the ends tapered to hair-like tips. Neuropodium with a pointed presetal lobe.

Type species : Antinoe microps Kinbcrg, 1855.
Key to Species
I Anterior pair of eyes under the prostomial peaks (fig. r.6.n). Serrations on setae very faint A. epitoca

- Anterior pair of eyes postero-dorsal to the prostomial peaks (fig. I.6.u). Serrations on setae well marked
A. lactea

Antinoe epitoca Monro, 1930

(fig. I.6.n-r)
Antinoe epitoca Monro, 1930: 67, fig. 19 a-f ; Day, 1963a : 389.
Body about 30 mm . long for 36 segments. Prostomium (fig. r.6.n) bilobed with the large anterior pair of eyes immediately below the prostomial peaks and above the bases of the small lateral antennac. Mcdian antenna twiee the prostomial length; laterals $3 / 4$ the prostomium. Antennae and dorsal eirri smooth. Elytra large and oval with entire margins and smooth surfaces. Dorsal cirri arise from large eirrophorcs and the cirrostyles are long and tapered. Notosetae (fig. r.6.q) numerous, long, fine and minutely scrrated or possibly smooth in some eases. Neuropodium (fig. I.6.p) with a pointed presctal lobc. Neurosetac (fig. I.6.r) with numerous rows of small weak spinules and long tapering hair-like tips.

Type locality : Dredged off Angola.
Records: Cape (34/18/s).
Distribution : Angola (s).
= Antrnodia Da-Siuhrodet 19748
Hide therrinoimn - Schroder
Antinoe lactea Day, 1953
(fig. I.6.s-x)
Antinoe lactea Day, 1953 : 403, fig. 2 a-g.
Body (fig. r.6.t) broad and flattened, up to 40 mm . long for 36 segments. It is creamy white with erescentric brown marks on the large elytra. Prostomium (fig. I.6.u) small with poorly developed peaks, small eyes and a slender median antenna twice the length of the prostomium. Anterior pair of eyes posterior to the prostomial peaks. Lateral antennae $3 / 4$ the length of the prostomium. Paps short and stout. Dorsal cirri long and slender. Fifteen pairs of elytra entirely covering the dorsum, each (fig. 1.6.v) large, oval and smooth apart from a small patch of minute tubercles near the anterior margin. Notosetac (fig. I.6.w) of varying length, the shorter ones fairly stout, the longer ones more slender and closely serrated to their fine tips. Neuropodium with a long pointed presetal lip. Neurosetae (fig. r.6.x) markedly spinulose to their long fine hair-like tips.

Type locality : Langebaan Lagoon, South Africa.
Records : Cape (33/18/i, s and $34 / 18 / \mathrm{i}$) - common on sheltered sandbanks.
Distribution : Endemic.

SCALISETOSUS McIntosh, 1885

Body short, flattened and fragile with $40-45$ segments. Lateral antennae inserted ventrally but frontal peaks not developed. Fifteen pairs of elytra which cover most or all of the dorsum. All setae translucent with the basal serrations enlarged to form spinous pockets.

Type species : Scalisetosus ceramensis McIntosh, 1885.

Key to Species

I Notosetae cither smooth or with only two to three serrations (fig. 1.7.d). Neurosetae mainly unidentate with vestigial serrations beyond the spinous pocket . S. longicirrus

- Notosctae with numerous coarse serrations (fig. 1.7.j). Neurosetae bidentate with well marked serrations
S. fragilis
$=$ Paradyle crinoidicola (BCC)

Polynoe (L.) longicirra Schmarda, 1861 : 152, pl. 36 fig. 309.
Scalisetosus longicirrus: Fauvel, 1953 : 50, fig. 22 a-c ; Day, 1962: 631.
Body up to 15 mm . long with 45^{-50} segments. Anterior end (fig. I. $7 . a$) narrowed and the dorsum arched, often with two dark stripes. Prostomium brown, markedly bilobed but without frontal peaks. Anterior pair of eyes well back and lateral in position. Median antenna twice the prostomial length ; laterals shorter and ventral
in origin. Dorsal cirri very long, projecting twice as far as the neurosetae. Antennae and cirri smooth, slender and tapered to delicate tips. About is pairs of elytra covering most of the dorsum (I2 posterior segments without elytra). Individual elytra (fig. I.7.b) delicate with entire margins and smooth surfaces apart from a few small tubercles near the anterior margin ; colour mauve with clear specks. Notopodium (fig. I.7.c) short and pointed; neuropodium larger with a triangular presetal lobe and a shorter rounded postsetal lip. Notosetae (fig. 1.7.d) sabreshaped with only three to four small serrations or entirely smooth to their stumpy bidentate tips. Neurosctae of two types : (a) a few superior slender setae (fig. 1.7.c) with faint serrations and bidentate tips ; (b) numerous inferior setae (fig. I.7.f) with falcate unidentatc tips and mere traces of serrations after the spinous pocket. Animal commensal with crinoids (Tropiometra carinata and Lamprometra klinzingeri).

Type locality : Ceylon.
Records : Mocambique (26/32/i) - a single specimen.
Distribution : Japan; tropical Indian Ocean (i) ; Red Sea.

Hermadion fragile Claparède, 1868 : 73, pl. 5 fig. 2.
Scalisetosus pellucidus (Ehlers) : Fauvel, 1923: 74, fig. 27 af.
Body short, depressed, very fragile and about $\mathrm{I}_{5} \mathrm{~mm}$. long. Prostomium (fig. I.7.g) bilobed but frontal peaks rudimentary. Anterior pair of eyes large and well back on the sides of the prostomium. Median antenna three times the prostomial length but laterals only slightly longer than the prostomium. Dorsal cirri long, extending well beyond the ncurosetae. Antennas and cirri with short papillae and a very long terminal filament. Elytra (fig. I.7.h) oval, delicate and markedly deciduous ; when present they entirely cover the body. Elytron surface (h^{1}) largely beset with very minute, weakly chitinised pedunculate tubercles and sometimes a few large spherical vesicles as well. A minute marginal fringe. Notopodium (fig. I.7.i) short and stout. Notosetac (fig. I.7.j) stout with about io very coarse serrations, the basal ones being particularly enlarged ; tips of notosetae pointed and minutely flanged. Neuropodium long and pointed. Neurosetae (fig. I.7.k) long, very transparent, with one large spinous pocket at the thickened base of the blade and others which decrease to coarse serrations distally; tips of neurosetae each with a strong curved terminal tooth and a smaller secondary tooth.

Type locality : Naples.
Records : South West Africa $\left(\frac{16 / 5 / 5}{} / 5\right.$ and 28/16/s) ; Cape (from 32/17/i to 32/28/i, s) ; Natal (29/3I/s) ; Madagascar (s).

Distribution : Atlantic from Scotland (s), North Carolina (s) and the English Channel (s) south to Madeira and Morocco (d) ; Mediterranean (s) ; Indian Ocean (Maldives (i) and Andamans (i)).

Puronure cirverizicola

Fig. 1.7. Scalisetosus longicirrus. (A) Anterior end. (B) Elytron. (C) Posterior view of foot.
(D) Notoseta. (E) Superior neuroseta. (F) Inferior neuroseta. Seत̃tisetostry frag tis. (G) Head. (H) Elytron. (I) Posterior view of foot. (J) Notoseta. (k) Neuroseta. Gattyana mossambica. (L) Head. (m) Elytron. (N) Posterior view of foot. (o and oly Notoseta and details of tip. ($\mathrm{P}, \mathrm{P}^{1}$) Neuroseta. Eunoe hubrechti. (Q) Head. (R) Elytron and enlarged view of tubercle. (s) Foot. (T) Notoseta. (U) Neuroseta. (v) Pygidium and caudal appendage.

GATTYANA MeIntosh, 1900

Body short with about 45 segments and 15 pairs of elytra whieh eover the dorsum. Prostomium with obvious frontal peaks and lateral antennae inserted ventrally. Notosetae very fine and spinulose. Neurosetae relatively stout and usually unidentate.

Type species: Aphrodite cirrosa Pallas, 1766.

Gattyana mossambica Day, 1962

(fig. 1.7.1-p)
Gallyana mossambica Day, 1962 : 629, fig. I a-e.
Body pale, up to 15 mm . long with 45 segments. Prostomium (fig. I.7.l) with the first pair of cyes well forward and ventro-lateral to the prostomial peaks. Lateral antennae half as long as the prostomium ; median antenna twice the prostomial length. Dorsal cirri (fig. 1.7.n) short, flattened, not reaching the tips of the neurosetae. Antennae and cirri with tapered tips and minute papillae. Fifteen pairs of elytra covering most of the dorsum ; cach (fig. 1.7.m) with a network of brown markings and a smooth margin. Anterior elytra covered with minute rounded tubercles but posterior ones with only a small pateh of rounded tuberelcs near the anterior margin. Notosetae (fig. I.7.0) much finer than the neurosetae; they appear to be smooth but actually have a close-set series of minute serrations extending to their hairlike tips. Neurosetae (fig. I.7.p) with about 15 rows of delieate spinules extending almost to the end of the blade. The two superior neurosetae are unidentate with tapered tips but the rest are bidentate. The nakes ends of the blades (p^{1}) are short and broad and appear to be split for the secondary tooth is almost as large as the apical one.

Type locality : Inhaca Island, Mocambique.
Records : Mocambique ($26 / 32 / \mathrm{i}, 24 / 34 / \mathrm{s}$).

EUNOE Malmgren, 1866

Body short with 35-45 segments and 15 pairs of elytra whieh eover all or most of the dorsum. Prostomial peaks present. Median antenna terminal and lateral antennae inserted ventrally. Notosetae markedly stouter than the neurosctae. Neurosetae mainly unidentate.

Type species: Polynoe nodosa Sars, 1861 .

Key to Species

1 Elytron surfacc covered with conical tubercles 2

- Elytron surface smooth apart from a small anterior patch of rounded tubercles . . 3

2 Appendages slender, smooth. Margins of elytra smooth. Bathypelagic with very long
setae (fig. 1.7.q) E. hubrechti

- Appendages papillose. Margins of elytra minutely fringed. Benthonic . E. nodulosa

3 Eyes absent E. assimilis

- Eyes very large E. macrophthalma

Eunoe hubrechti (McIntosh, 1900)
(fig. I.7.q-v)
Evarne Hubrechti McIntosh, 1900 : 360, pl. 28 fig. 6, pl. 30 fig. ro, pl. 33 fig. r, pl. 40, figs. 1-4. Lagisca Hubrechti: Fauvel, 1923 : 78, fig. 29.

Body brown, and up to 25 mm . long. Adult with 46 segments but planktonic juveniles with less than 30 . Postcrior segments tapercd and the last $9-10$ are not covercd with elytra. Prostomium (fig. 1.7.q) with frontal pcaks; the first pair of eyes are large and about one third the way back. Mcdian antenna very long and slender ; laterals shorter, only twice the prostomial length. Dorsal cirri (fig. 1.7.s) long and slender. All antcnnae and cirri quitc smooth. Elytra (fig. i.7.r) pale with smooth margins and the surfacc beset with numcrous, minute conical tubercles. Notosctae (fig. 1.7.t) very long and stout and held stiffly ercet. Each is crystallinc with the serrations reduced to mere ridges which half cncircle the blade but lcave the long pointcd tips nakcd. Ncurosetae (fig. I.7.u) slender and transparent with long blades bearing numerous rows of spinulcs preceding the very long naked tips. Tips usually unidentate but occasionally have a minutc secondary tooth. Pygidium with a voluminous caudal appendage. Bathypclagic.

Type locality: Bathypclagic off Ircland.
Records: Benguella Current ($33 / 15 / \mathrm{p}$) - one specimen.
Distribution : Atlantic from Greenland to the Antarctic.

Eunoe nodulosa sp. nov.
 (fig. I.8.a-e)

Body broad and palc in alcohol, about 30 mm . long for 45 segments. Prostomium (fig. i.8.a) without obvious frontal peaks. Eyes small, the anterior pair being almost half the way back. Palps short. Mcdian antenna small (? regenerating). Dorsal cirri (fig. i.8.c) slender, not as long as the ncurosetac. Antennae and cirri papillosc. Elytra (fig. 1.8.b) largc, oval, palc and minutely fringed. Elytron surface covered with small conical tubcrcles and short papillac; a fcw stouter tubercles near the postcrior margin. Notosctac (fig. i.8.d, d^{1}) very stout and weakly serratcd with long blunt tips. Neurosetac (fig. I.8.c, c^{1}) with very long blades bearing numcrous rows of spinules preceding the long naked tips which arc unidentate and faintly hooked; no sign of a secondary tooth. Holotype: B. M. (N.H.) Reg. No. 1966.26.1.

Type logality: Saldanha Bay, South Africa.
Records: Cape (33/18/i) - one spccimen.

Fig. i.8. Eunoe nodulosa. (A) Head. (B^{1} B 1) Elytron and details of margin. (C) Foot. (D) Notoscta. (E) Neuroseta. Eunoe macrophthalma (after McIntosh, 1925). (F) Notoseta. (G) Neuroseta. Eunoe assimilis. (н) Hcad. (I) Elytron. (J) Foot. (к) Notoseta. (L) Neuroseta. Harmothoe dictyophora. (M) Entire worm (twice life size). (N) Head. ($\mathrm{o}, \mathrm{o}^{1}$) Elytron and details of tubercles. (P) Foot. (Q) Notoseta. (R) Neuroseta.

Eunoe assimilis MeIntosh, 1925

> (fig. I.8.h-l)

Eunoe assimilis McIntosh, 1925 : 21, pl. 2 figs. 1-2, pl. 3 fig. 3 ; Day, 1963 : 359.
Body rather broad but tapered posteriorly, up to 30 mm . long for $30-70$ segments. Prostomium (fig. 1.8.h) with small frontal peaks but without eyes. Palps long. Lateral antennae markedly ventral in origin, but 1.5 times the prostomial length. Median antenna antero-dorsal in origin with a stout eeratophore and a very slender eeratostyle more than three times the prostomial length. Antennae and cirri apparently smooth but aetually elad with very short papillac. Elytra (fig. 1.8.i) large and delieate, mainly pale and smooth apart from a patch of small rounded tubercles near the anterior margin. Elytron margin smooth. Dorsal eirri (fig. r.8.j) tapered and reach the ends of the neurosetae. Notosetae (fig. r.8.k) few, very stout with elose-set rows of very weak serrations and long, almost blade-like pointed ends. Neurosetae (fig. i.8.1) few and unidentate, the short swollen blades bearing about 20 rows of short spinules preeeding the long, slightly hooked tip. No trace of a secondary tooth.
Type locality : Dredged west of Cape Town.
Records: Cape (33/16/a and 34/16/a).
Distribution: Endemic.

Eunoe macrophthalma MeIntosh, 1925
(fig. r.8.f-g)
Eunoe macrophthalma McIntosh, 1925 : 22, pl. 2 figs. 5-6.
Body short and slightly tapered. Eyes very large and eover most of the prostomium. Lateral antennae short. Dorsal eirri very long and slender. Elytra diaphanous, smooth and entire with a pateh of minute tubercles. Notosetae (fig. i.8.f) stout with rows of small serrations. Neurosetac (fig. i.8.g) unidentate with poorly marked spinules and long, almost straight tips without any sign of a secondary tooth.

Type locality: West of Cape Town in 2200 metres.
Records : Cape (33/I6/a) - a single specimen.

> HARMOTHOE Kinberg, I855
> (including LAGISCA Malmgren, I 865)

Body short and flattened with 35-45 segments and I5 pairs of elytra whieh cover most or all of the dorsum. Median antenna inserted terminally ; lateral antennae inserted ventrally. Prostomium with fronto-lateral peaks. Notosetae serrated and about as thiek as the neurosetae. Neurosetae mainly bidentate.

Type species: Harmothoe spinosa Kinberg, 1855.

Key to Species

1 Elytra obviously fringed with elongate papillac. Antennae and dorsal cirri always papillose 2

- Elytra with smooth margins. Antennae and dorsal cirri papillose or smooth $7-8$
2 Elytron-surface divided into polygonal areas (fig. 1.8.0). Tubercles elongate, some with two to five points
H. dictyophora (p. 65)
- Elytra without polygonal areas 3
3 First pair of cyes antero-ventral below the prostomial peaks (fig. r.9.a). No large vesicles on the elytra4
- First pair of eyes lateral and posterior to the prostomial peaks (fig. 1.9.n) . . . 6

4 Tubercles on the elytra long and thorn-like, sometimes ending in two or more points. Notosetae pointed

- Tubercles on the elytra short, cylindrical and truncate and ornamented to look like tall crowns (fig. i.9.b¹). Notosetae with blunt tips
H. antilopis (p. 66)

5 All tubercles ending in single points. (fig. r.9.g ${ }^{1}$). Neurosetae strongly bidentate H. aequiseta (p. 66)

- The larger tubercles cnding in two to four points (fig. I.9.m). Neurosetae weakly bidentate H. aequiseta africana (p. 68)
6 Neurosetae with a long slender secondary tooth. (Tubercles on the elytra capstanshaped (fig. 1.10.6¹)) H. gilchristi (p. 68)
- Neurosctac with a normal secondary tooth

7 Tubercles on the elytra small and bluntly conical (fig. 1.9.0 ${ }^{1}$), a few like small crowns
H. goreensis (p. 69)

- Tubercles on the elytra as curved thorns with four to five large ones near the posterior margin (fig. 1.10.g).
H. lagiscoides serrata (p. 69)

8 The fourth and subsequent elytra without tubercles posterior to the elytrophore . . 9

- All clytra with tubercles on the posterior half though these may be weakly chitinised . io

9 Middle elytra small, not overlapping and completely glabrous . . H. saldanha (p. 71)

- All elytra overlapping and with a patch of small rounded tubercles in front of the elytrophore but smooth posteriorly ; often with an oval ring of dark pigment (fig. 1.1o.q)

> H. lunulata (p. 7r)

- First pair of elytra heavily chitinised and covered with small tubercles; the second and third with smaller patches but later ones with only a few soft papillae (fig. r.in.b-c)
H. corralophila (p. 72)

Io Tubercles on the elytra all uniformly small

- Tubercles on the elytra vary greatly in size 12

I 1 All elytra uniformly covered with small, well chitinised tubercles (fig. 1.11.h)
H. waahli (p. 72)

- All clytra with an anterior patch of well chitinised tubercles but posterior tubercles small, weakly chitinised and blister-like (fig. I. i 1.r)
H. agulhana (p. 74)

12 Tubercles on the elytra grade from small, bluntly conical ones anteriorly to large ovoid one postcriorly (fig. 1.12.b)
H. profunda (p. 75)

- Tubercles of the elytra of two distinct types: an anterior patch of small tubercles and a posterior group of large mamilliform blisters (fig. 1.11.m) . H. fraserthomsoni (p. 74)

Harmothoe dictyophora (Grube, 1878)
(fig. r.8.m-r)

Polynoe dictyophorus Grube, 1878 : 44, pl. 15 fig. 9.
Harmothoe dictyophora : Willey, 1905: 251, pl. ifigs. 14-16; Day, 1951: 14 ; Fauvel, 1953: 44, fig. $20 \mathrm{a}, \mathrm{b}, \mathrm{m}$.
Body (fig. I.8.m) up to 25 mm . long for 36 segments and completely covered with I5 pairs of tough brown elytra. Prostomium (fig. I.8.n) with well marked frontal
peaks. Anterior pair of eyes lateral. Lateral antennac just longer than the prostomium and the median twice as long. Antennae and eirri densely elad with long papillae. Elytra (fig. 1.8.0) large, tough, divided into polygonal areas and eovered with eonical chitinous tubercles of varying size, the largest ones in the form of spines with two to three points. Margin densely fringed with long papillac. Notosetae (fig. r.8.q) very numerous, strongly serrated and end in long pointed tips. Neurosetae (fig. 1.8.r) strongly bidentate, with the secondary tooth far back.

Type locality: Phillipine Islands.
Records: Cape (32/28/i and 3I/29/i) ; Natal (29/31/i) - rare.
Distribution: Tropical Indo-Pacific (i, s); Red Sca (i, s).
Harmothoe antilopis MeIntosh, 1876
(fig. I.9.a-c)
Harmothoe antilopis McIntosh, 1876: 383 ; Fauvel, 1923: 56, fig. 19 a-l ; Day, 1963a: 386, fig. I a-f.
Length up to 25 mm . for 35 segments; flesh pink in aleohol with pale elytra. Prostomium (fig. I.9.a) hexagonal with the large anterior pair of eyes immediately below the small prostomial peaks. Median antenna I. 4 times the prostomial length ; laterals hardly more than half the prostomial length, markedly tapered and papillose. Dorsal cirri (fig. I.9.e) about as long as the neurosetae and covered with slender papillae. Elytra (fig. i.g.b) large, oval and fringed with slender papillac on the lateral margins ; the surface also has a few soft papillae but is mainly covered with numerous cylindrical tubereles with four to five blunt projections giving the effeet of tall crowns. A few tubereles near the posterior margin often eapstan-shaped and ornamented with three saucer-like depressions with raised margins. Notosetac (fig. I.g.d) stout with a close-set series of strong serrations extending almost to the faintly flanged tips. Neurosetac (fig. 1.9.e) with 15^{-20} rows of fine spinules and bidentate tips. The terminal tooth is broad, almost blade-shaped and the secondary tooth much shorter ; inferiorly the neurosetae become unidentate.

Type locality: Deep dredging off Scotland.
Records: Capc (34/23/d). Wairis Bay (i fix H-ㅇ.1974
Distribution : North Atlantic from Sweden (d) to Senegal (s); Mediterranean.

Harmothoe aequiseta aequiseta (Kinberg, 1855)

(fig. r.9.f-k)
Antinoe aequisela Kinberg, 1855 : 385.
Parmensis capensis Willey, 1904: 258, pl. 13 figs. 7, 8, 27-29.
Harmothoe aequiseta: Augener, 1918: 137.
Body oblong, up to 25 mm . long for 38 segments. Colour yellowish brown with dark eirrophores. Prostomium (fig. 1.g.f) with frontal peaks below which are the anterior pair of eyes. Median antenna twice the prostomial length ; laterals half as

Fig. 1.9. Harmothoe antilopis. (A) Head. (B, B ${ }^{1}$) Elytron and details of tubercles. (C) Foot. (D, Dl) Notoscta. (E, E ${ }^{1}$) Neuroseta. Harmothoe aequiseta. (F) Head. (G, G ${ }^{1}$) Elytron and details of tubercles. (H) Foot. (J, J ${ }^{1}$) Notoseta. ($\mathrm{K}, \mathrm{K}^{1}$) Ncuroscta. Harmothoe aequisela africana. (L) Tip of neuroseta. (м) Details of tuberclcs on elytron. Harmothoe goreensis. (N) Head. (O, o^{1}) Elytron and details of tubercles. (P) Foot. (Q, Q^{1}) Notoseta. ($\mathrm{R}, \mathrm{R}^{1}$) Neuroseta.
long. Dorsal eirri (fig. r.g.h) short. Antennae and eirri papillose. Elytra (fig. i.9.g) deeiduous, fringed and mottled brown, the surfaee being covered with thorn-like ehitinous tubereles with dark eentres. Notosetae (fig. I.9.j) of varying length, stout, elosely scrrated, the ends being stout and pointed. Neurosetae (fig. I.9.k) bidentate with rather long blades bearing I5 rows of spinules; secondary tooth far back from the apical one.
Type locality : Durban, South Africa.
Records: South West Afriea (22/14/i); Cape (from 29/15/i to 34/23/e, s); Natal ($29 / 3 \mathrm{I} / \mathrm{i}$) - fairly common under stones.

Distribution: Endemie.

Harmothoe aequiseta africana (Augener, 1918)
(fig. I.g.l-m)
Harmothoe afficana Augencr, 1918: 139 , pl. 2 figs. $15-19$; text-fig. 6 .
The subspecies H. a. africana differs from the nominate form in having the larger tubercles on the elytra (fig. I.9.m) ending in two to four points. Also the secondary tooth of the neurosetae (fig. r.g.l) is small and often absent from the inferior setae.

Type logality : Ambrizette, Angola.
Regords: Cape (34/I8/s).
Distribution : Angola (i); Senegal (i, s).

Harmothoe gilchristi Day, 1960
(fig. I.IO.a-e)
Harmothoe gilchristi Day, 1960 : 275, fig. a a-f.
Body oblong, up to 16 mm . long for 38 segments. Elytra extcnding to within six segments of the pygidium. Prostomium (fig. I.ro.a) with large frontal peaks; first pair of eyes latcral and half-way back. Lateral antcnnae three-quarters the prostomial length, median twiee as long. Antennae and eirri (fig. I.10.c) papillose and marked with two dark bands. Elytra (fig. i.ro.b) mottled brown, the surface being densely eovercd with truncate-cylindrical or eapstan-shaped tuberelcs. Elytron with a small marginal fringc. Notosetae (fig. i.Io.d) numcrous and strongly serrated to their blunt, grooved tips. Neurosetac (fig. I.Io.c) bidentate with fairly long blades bcaring 15 rows of well dcveloped spinules prceeding the long naked tip. The tcrminal tooth is strong and the seeondary tooth long and slender.

Type locality : Agulhas Bank, South Africa.
Records: Cape (34/r8/s and 34/23/d) - several specimens.
Distribution: Endemie.

Harmothoe goreensis Augener, 1918
(fig. I.9.n-r)
Harmothoe goreënsis Augener, 1918: 142. pl. 2 figs. 4^{-6}; pl. 3 fig. 4^{2}; text-fig. 7.
Body small, about 10 mm . long for $35-36$ segments. Colour rusty brown with conspicuously dark cirrophores (sec fig. I.9.p). Prostomium (fig. I.9.n) with sharp frontal pcaks and the anterior pair of cyes lateral and almost half the way back. Median antenna twiee the prostomial length and laterals one third the length of the median. Antcnnae and eirri papillose. Fifteen to sixteen pairs of elytra covering the dorsum. Elytra (fig. I.g.o) oval and brown apart from a central dark spot or ring; margins fringed with papillae. Elytron surface eovered with a few soft papillae and numcrous short, bluntly conical tubercles. Notosetae (fig. I.9.q) stout and strongly serrated with flanged and pointed ends. Neurosetac (fig. I.9.r) strongly bidentate, each with a broad terminal tooth and a straight sceondary tooth half its length. Inferior setae with the secondary tooth weak or absent.

Type locality: Goré, Scnegal.
Records: South West Afriea ($26 / 15 / \mathrm{i}, \mathrm{s}$) ; Cape (from $32 / \mathrm{s} 8 / \mathrm{s}$ to $28 / 32 / \mathrm{s}$); Natal (30/30/s) ; Mocambique (26/32/i, 24/34/s) - eommon in dredgings.

Distribution : Senegal (s) ; Angola (s).

Harmothoe lagiscoides serrata Day, 1963 (fig. I.Io.f-j)

Harmothoe lagiscoides serrata Day, $1963 \mathrm{a}: 388$, fig. 1 g-m.
Body palc brown, tapered posteriorly and about 20 mm . long. Prostomium (fig. I.IO.f) with well marked frontal peaks. First pair of eyes lateral and half-way baek. Lateral antennac obviously ventral in origin, two thirds of the prostomial length, tapercd and papillose. Median antenna unknown. Dorsal cirri (fig. i.Io.h) long, exceeding the tips of the neurosetae and covered with long papillac. Ventral cirri very small. Elytra (fig. i.Io.g) large, delicate and mottled brown. A few long slender papillae on the surfaee and numcrous ones fringing the postero-lateral margins. Tubercles on the elytra are sharp curved thorns of uniform size except for a row of largc ones on the postcrior margin. Notosetae (fig. i.Io.i) strongly serrated with pointed tips. Neurosetae (fig. I.Io.j) with 20 or more well developed spinules, long, naked, blade-like ends and bidentate tips.

Type locality : Dredged off Saldanha Bay, South Africa.
Records: Cape (33/17/d) - a single record.

Fig. i. io. Harmothoe gilchristi. (A) Head. ($\mathrm{B}, \mathrm{B}^{1}$) Elytron and details of tubercles. (C) Foot. (D) Notoseta. (E) Neuroseta. Harmothoe lagiscoides serrata. (F) Head. (G, c^{1}) Elytron and details of tubercles. (H) Foot. (I) Notoseta. (J) Neuroseta. Harmothoe saldanha. (k) Head. (L) Elytron. (m) Foot. (v) Notoseta. (o) Neuroseta. Harmothoe lunulata. (p) head. (Q) Elytron. (R) Foot. (s) Notoseta. (T) Neuroseta.

Harmothoe saldanha Day, 1953

(fig. I.10.k-o)
Harmothoe saldanha Day, 1953: 40x, fig. i a-d.
Body oblong, about 25 mm . long for 39 segments. Colour pale with a brown arc on the elytra which do not touch one another after the first three and leave most of the baek uncovcred. Prostomium (fig. I.Io.k) with blunt frontal peaks and the first pair of eyes well baek. Median antenna large but laterals short. Dorsal eirri (fig. 1.10.m) slorter than the neuropodia. Antenna and cirri sparsely beset with a few lumpy papillae. Elytra (fig. I.io.l) oval, longer than broad. Surface smooth and without any sign of a fringe. In the middle of the body they are too small to touch onc another and most of the baek is naked. Nephridial papillae well developed and have swollen bases. Notosetac (fig. i.io.n) Io-12 in number, short, weakly serrated and with long blunt tips. Neurosetae (fig. I.Io.o) strongly bidentate with the secondary tooth almost as long as the terminal one. In middle and posterior segments the superior neuroseta is stouter and darker than the rest, lacks spinules and becomes unidentate.
Type locality : Langebaan Lagoon, South Africa.
Regords: Cape (33/i $7 / \mathrm{s}, 33 / 18 / \mathrm{i}, 33 / 26 / \mathrm{s}$).
Distribution: Endemic.

Harmothoe lunulata (Delle Chiaje, 1841)

(fig. I.ro.p-t)
Polynoe lunulata Dellc Chiaje, 184. [in] Claparède $1868: 373$.
Harmothoe lunulata Fauvel, 1923: 70, fig. 36.
Body up to 35 mm . long for 39 segments. It is rather broad and completely covered with ${ }^{1} 5$ pairs of large glabrous elytra. Prostomium (fig. 1.1o.p) brownish with small frontal pcaks and well separated eyes, the first pair being antero-lateral. Lateral antennae short and strongly tapered. Dorsal cirri (fig. i.io.r) short and banded near the tip. Antennae and cirri sparsely beset with small clavate papillae. Elytra (fig. I.ro.q) large, oval, longer than broad, surface glabrous and cntire with only a few minute tubereles near the anterior margin. The elytra are pale, usually with a central spot and an ineomplete ereseentrie ring of brown pigment. Notosetae (fig. I.Io.s) short and serrated to their blunt tips. Neurosetac (fig. I.Io.t) fine with short blades and strongly bidentate tips, the secondary tooth being long and in line with the shaft. Animal commonly eommensal with tubieolous polyehaetes.

Type locality: Naples.
Records: South West Africa (26/15/s); Cape (34/88/s to 32/28/s); Natal (29/3 I / s) ; Mocambique ($23 / 35 / \mathrm{c}$).
Distribution: Atlantic coasts of Europe from the North Sea (i, s, d) to the Mediterranean (s) ; western Canada to southern California ; S. Arabia (s).

Harmothoe corralophila Day, 1960

(fig. I.II.a-f)
Harmothoe corralophila Day, 1960: 278, fig. 2 a-f.
Body rather broad and palc, up to 15 mm . long for 37 segments. Dorsum completely covered by elytra. Prostomium (fig. I.I i.a) with distinct frontal peaks. First pair of eyes lateral and half-way back. Median antenna three times the prostomial length but laterals much shorter. Dorsal cirri (fig. i.1 I.d) long. Antennae and cirri smooth. First pair of elytra (fig. I.II.b) small, rounded, strongly chitinised and covered with conical tubercles except for a marginal belt; next two pairs with smaller patches of similar tubercles; subsequent elytra (fig. i.1I.c) longer than broad, without tubercles and quite smooth apart from a few soft papillae. Margins smooth throughout. Notosetac (fig. I.I I.e) fcw and stout with strong, widely spaced serrations preceding the long tip. Neurosetae (fig. i.ir.f) numerous, long and glassy with 20 rows of poorly marked spinules; the tip is bidentate with a strong terminal tooth and a variable secondary onc - supcrior setae (fig. I.II.f ${ }^{1}$) have two almost equal tecth giving a bifid appearance but the inferior setae (fig. i.II.f ${ }^{2}$) have a small secondary tooth with a filiform tip. Animal commensal in tube-shaped galls on Stylasterid corals.

Type locality: Agulhas Bank, South Africa.
Records: Cape (33/57/s to 35/23/d).
Distribution: Endemic.

Harmothoe (Lagisca) waahli (Kinberg, 1855)
(fig. I.II.g-k)
Antinoe Wahhli Kinberg, 1855: 385.
Harnothoe Waahli : Monro, $1933: 489$, figs. 1-3.
Body up to 30 mm . long for 47 segments. Posterior cnd tapered in the adult and the last Io-12 segments not covered by elytra. Prostomium (fig. i.ir.g) with small frontal peaks and the first pair of eycs well forward and ventro-lateral. Parapodia (fig. i.If.i) short and stout. Antennae and dorsal cirri short, somewhat swollen subterminally and beset with very small papillae. Elytra (fig. i.i i.h) pale, tough and denscly covered with small ovoid tubercles. Margins smooth. Notosetae (fig. I.II.j) stout with strong, close-set scrrations and blunt, faintly grooved ends. Ncurosetae (fig. I.II.k) mainly bidentate with a stout secondary tooth half the length of the terminal one.

Type locality: Port Jackson, Australia.
Records: S.W. Africa (26/15/i); Cape (from 30/17/i to 33/25/s).
Distribution : Tahiti (i) ; Malaya; W. Australia (i).

Fig. 1.i i. Harmothoe corralophila. (A) Head. (B) First elytron. (c) Fifth elytron. (D) Foot.
(E) Notoseta. (F) Neuroseta. Harmohoe waahli. (G) Head. (H) Elytron. (I) Foot.
(J) Notoseta, (k) Neuroseta. Harmothoe fraserthomsoni. (L) Head. (m) Elytron. (N) Foot.
(o) Notoseta. (p) Neuroseta. Harmothoe agulhana. (Q) Head. (R) Elytron. (s) Foot.
(T) Notoseta. (U) Neuroseta.

Harmothoe fraserthomsoni McIntosh, 1897
(fig. I.1. .l-p)
Harmothoe Fraser-Thomsoni McIntosh, 1897 : 337, pl. 28 fig. 7, pl. 29 fig. 15, pl. 32 fig. 11, pl. 39 figs. 4-5; Fauvel, 1923: 68, fig. 25 a-e.
Body pale and relatively broad, up to 20 mm . long for 39-40 segments. Prostomium (fig. I.II.l) with well marked frontral peaks and the first pair of eyes well baek. Palps large. Median antenna slender, twiee the prostomial length, laterals equal to prostomium. Dorsal eirri (fig. I.I I.n) long with a subterminal brown band. Antennac and cirri beset with a few small papillac. Fifteen pairs of elytra whieh eompletely eover the dorsum. Elytra (fig. I.II.m) large and delieate with a smooth margin and the surface beset with a few small tubereles anteriorly and large blister-like swellings with a central nipple postero-laterally. Notosetae numerous, closely serrated and end in short blunt tips.* Neurosetae (fig. r.11.p) strongly bidentate but the seeondary tooth is muel smaller than the terminal one and diverges outwards.

Type locality: South-west Ireland.
Records: Cape (from 29/16/i to 33/26/i, s).
Distribution: Ireland (s) ; Plymouth (s); Cape Verde Is. (i, s) ; Mediterranean (s).
*South African specimens have notosetae with well spaced serrations and long naked tips (see fig. r.ir.o).

Harmothoe agulhana Day, 196o

> (fig. I.I I.q-u)

Harmothoe agulhana Day, 1960: 277, fig. I g-1.
Body up to 12 mm . long for 36 segments. Colour pale with speekled elytra whieh eover the dorsum. Prostomium (fig. I.II.q) with small frontal peaks and the first pair of eyes situated laterally. Lateral antennae short and stumpy; median tapered and equal to the length of the prostomium. Tentaeular eirri slender. Antennae and cirri sparsely beset with elavate papillae. Elytra (fig. I.I I.r) large, thin, speekled and reniform in shape, the surface having a pateh of small ehitinous tubereles anteromedially and a seattering of small, weakly chitinised and blister-like tubereles elsewhere. Margins smooth. Notosetae (fig. I.II.t) densely serrated right to their blunt tips. Neurosetac (fig. I.II.u) with a strong terminal tooth and a slender seeondary one three quarters the length of the terminal.

Type locality: Algoa Bay, South Afriea.
Records: Cape (34/88/s to 33/25/s).
Distribution : Endemic.

Harmothoe profunda Day, 1963
(fig. I.I2.a-e)
Harmothoe profunda Day, 1963: 357, fig. r a-e.
Body I 5 -20 mm. long for 35 segments. The dorsum is dark and the elytra and parapodia pale. Prostomium (fig. I.I2.a) with distinct frontal peaks and large eyes, the first pair being well back and to the sides. Median antenna unknown; laterals small, about half the length of the prostomium. Dorsal cirri extend to the tips of the neurosetac. Antennae and cirri sparscly clad with long papillae. Fifteen pairs of elytra which cover the dorsum ; individual elytra (fig. I.I2.b) rounded to oval and densely covered with tubereles which inerease gradually in size from small bluntly conical ones anteriorly to large, almost spherical ones near the posterior margin. The largest are smooth but others are rugose or have small blunt projections. Elytron margin with a few small papillac. Notopodium (fig. I.I2.c) well developed with notosetae much stouter than the neurosetae; individual notosetae (fig. I.I2.d) strongly scrrated and the tip blunt and flanged. Neurosetae (fig. I.I2.e) with long blades bearing ${ }^{\text {I }}$ - 20 rows of spinules and ending in bidentate tips with a strong terminal tooth and a straight secondary tooth half the length of the terminal onc.

Type locality : 2000 metres west of Cape Town.
Records: Capc (33/16/a and 34/16/a).
Distribution: No other records.

DRIESCHIA Michaclsen, 1892
Body short with $28-32$ segments and I3 pairs of elytra which cover the dorsum. Median and lateral antennae all inserted terminally at the same level. Dorsal cirri long with sausage-like cirrophores. Notopodia rudimentary, notosctac absent. Neurosetac include a superior group with long, slender, almost smooth blades and an inferior group of stouter setac with tapered spinulose blades ending in unidentate tips. Animal planktonic and probably a larval stage of Lepidasthenia.

Type species: Drieschia pelagica Michaelsen, i892.

Drieschia pelagica Michaclsen, 1892
(fig. I.I2.f-i)
Drieschia pelagica Michaelsen, 1892: 6; Seidler, 1923: 173; Fauvel, 1953: 54, fig. 24.
Body translucent ; five to eight mm. long for 30 segments. Prostomium (fig. I.I2.f) swollen posteriorly and the first pair of eyes well back. Median antenna slender and over twice the prostomial length; laterals shorter. Dorsal cirri (fig. I.I2.g) with very long swollen cirrophores and slender cirrostyles. Elytrophores stout; elytra deciduous, delicate and quite smooth. Notopodium represented by a small papilla

Euphione elisabethae MeIntosh, 1885
(fig. I.13.a-f)
Euphione elisabethae McIntosh, $1885: 62$, pl. 9 fig. 3, pl. 17 fig. 7 , pl. 18 fig. 10, pl. 8 A figs. 3-6.
Body (fig. I.13.a) broad, oval in outline. Length up to 46 mm . for 26 segments. Prostomium (fig. I.I3.b) with both pairs of cyes large, posterior and close together. Antcnnae long with small subterminal swellings. A prominent nuchal fold. Twclve pairs of large tough reniform elytra eaeh with a short fringe of papillae on the lateral and posterior margins. Elytron surface (fig. I.13.e) with large pedunculate tubercles often expanded to form daisy-like structures. Cirrigerous segments (fig. I.I3.d) with paraelytrophores. Nephridial papillae well developed. Segments 3^{-20} with about three small branchial papillae. Notosetae (fig. i.13.e) numerous with long, fine, silky blades completely ringed with minute spinulcs. Neurosetae (fig. i.I3.f) stout and unidentate with long fine spinules giving the blade a bearded appearance.

Type logality : 275 metres off the Cape of Good Hope.
Records: Cape (from 3I/I6/d and 34/17/vd to 35/23/vd).
Distribution : Endemic.

HERMENIA Grube, 1857

Body oblong with 27 segments and I2 pairs of elytra provided with very large tubcreles. The elytra do not ovcrlap on middle and posterior segments so that the dorsum is partly exposed and devclops warts or tubercles. Median and lateral antennae all inserted terminally at the same level. Notosetae poorly developed or absent. Ncurosetae with the spinous blade redueed to a pair of spines at the base of the long unidentate terminal tooth.

Type species : Hermenia verruculosa Grube, 1857.
Key to species
I Notosetae absent H. verruculosa*

- Notosetae present
H. acantholepis

Hermenia acantholepis (Grube, 1875)
Polynoe acantholefis Grube, 1875: 61.
Hermenia acantholepis: Seidler, 1924: 94: Fauvel, 1932: 16.
Body up to 30 mm . long, with ehestnut brown elytra. Prostomium with the anterior pair of cyes lateral. Median antenna I• 5 times as long as the prostomium, laterals equal to prostomium. Palps relatively short, , facial tubercle well developed. Antennae, tentacles and dorsal cirri banded distally and with a subterminal swelling and a slender tip. Dorsum warty where exposed between the clytra and parapodia and ventrum with minutc papillae. Elytra relativcly small so that only the first two or three pairs overlap and the rest are scparated. Individual elytra subcircular with

Fig. 1.13. Euphione elisabethae. (A) Entire animal (half natural size). (в) Head. (c) Elytron.
(D) Posterior view of foot. (E) Notoseta. (F) Neuroseta. Lepidonotus (Thormora) jukesi.
(G) Entire animal (twice natural size). (H) Head. (I) Elytron. (J) Anterior view of foot.
(к) Notoseta from eentral group. (L) Notoseta from outer palisade. (M) Neuroseta. Lepidonotus carinulatus. (N) Head. (o) Elytron. (P) Foot (posterior view). (Q) Notoseta. (R) Neuroseta.
a fringe of small papillae on the external margin and the surface beset with very large tubercles; those near the centre are flattened while those near the margin are ovoid and radiate out beyond the edge of the elytron. Notosetae few and weak with minute serrations extending to the tapered tip. Ncurosctae uniformly stout with the spinous blade reduced to faint transverse striations preceding a pair of stout spines at the base of the long terminal tooth. There is no sign of a secondary tooth.

Type locality : Philippine Islands.
Records: Madagascar (s).
Distribution: Tropical Indo-west-Pacific from the Philippine Islands (i) and Samoa to Ceylon (s) and Madagascar.

LEPIDONOTUS Leach, 18ı6
 (including THORMORA Baird, 1865)

Body short and oblong with 26-27 segments and I2 pairs of elytra covering the dorsum. Posterior elytra not markedly reduced in size. Median and lateral antennae all inserted terminally at the same level. Notosetac well developed, the outer ones short and always serrated, the central ones longer and in the subgenus Thormora they have smooth blades. Neurosetac with short spinous blades and hooked, unidentate or bidentate tips.

Type species: Aphrodita clava Montagu, 1808.

Key to Species

- Central notosetae serrated like the rest (subgenus Lepidonotus) 2
2 Elytra with fringed margins 3
- Elytra with smooth margins 6
? 3 Neurosetae strongly bidentate 4
- Neurosetae weakly bidentate or unidentate . proneico. 5 poet!

4 Large central tubercles on the clytra covered with spindles. Antennae with a marked subterminal swelling and a dark band L. jacksoni (p. Bo)

- Large central tubercles on the elytra cither smooth or with a few large thorns (fig. 1.13.0). Antennae without an obvious subtcrminal swelling . . L. carinulatus (p. 81)
5 Tubercles on the clytra large and swollen, the outer ones arising from polygonal areas

> L. magnatuberculatus (p. 81)

- Tubercles on the elytra small, rounded to conical (fig. 1.14.b). Polygonal areas absent
L. tenuisetosus (p. 82)

6 Anterior elytra without keels or enlarged crests.

- Anterior elytra with tumid, bilobed crests (fig. 1.14.g). Dorsal cirri cylindrical
L. cristatus (p. 82)
- Anterior elytra with narrow keeled ridges extending back from the elytrophore (fig. I. $4 . \mathrm{j}$).

Dorsal cirri flattened L. glaucus (p. 84)

$$
\text { Add L. Rernucriocden Ammuremeck } 1974 \text { from Matey ye ono }
$$

7 Elytra with large tubercles 8

- Elytra with a scattcring of minute ovoid tubercles (fig. 1.14.n). (Colour purple with a white spot) L. purpureus (p. 84)
8 Anterior elytra with capstan-shaped tubercles L. clava*
- Anterior clytra with long cylindrical tubercles (fig. 1.14.r) . . . L. semitectus (p. 85)
- Anterior elytra with large spherical tubercles (fig. 1.14.r) . . L. durbanensis (p. 85)

Lepidonotus (Thormora) jukesi/(Baird, 1865)

(fig. I.I3.g-m)
Thormora jukesii Baird, 1865: 199.
Lepidonotus (Thormora) jukesii: Seidler, 1924: 88; Fauvcl, 1953: 37, fig. 13 o-r.
Body (fig. 1.13.g) oblong, and up to 25 mm . long. Anterior part of prostomium grey (sce fig. I.I 3.h). First pair of eyes well back, second pair small and often hidden by a nuchal fold. Lateral antennae equal to the prostomial length; median longer about I 5 times the prostomium. Antennac, tentacular cirri and dorsal cirri smooth, each with a subterminal swelling marked by dark pigment. Body pale with dark pigment in the middle of the back between the elytra. Elytra (fig. i.i3.i) tough, not fringed, mainly dark grey with small conical tubercles best developed in a central group and a row around the cdges. All tubercles larger on anterior elytra. Notosetac (fig. I.I3.k-l) include an outer palisade or short curved forms with small, close-set serrations extending to their blunt tips, an inner palisade of long, smooth setae with hastate tips and in the centre even longer tuft of very finc setae essentially similar to the inner palisadc. Ncurosetae (fig. I.I3.m) much stouter, their blades having only 8-12 rows of spinules and long, naked, unidentate tips.

Type locality: Philippine Is.
Records: Mocambique Is. (i) ; Madagascar (i).
Distribution : Indo-west-Pacific from the Red Sea (i) to the Philippinc Is. (i, s) ; New Zealand (i) ; Japan.

Lepidonotus jacksoni Kinberg, 1858

Lepidonotus jacksoni Kinberg, 1858: 11, pl. 3 fig. 11, pl. 8 fig. 48: Scidlcr, 1924: 74: Fauvel, 1953: 34, fig. $13 \mathrm{k}-\mathrm{m}$: Day, 1962: 63 r .

Body about 20-25 mm. long, colour brown with a white splash on the elytra. Prostomium with the larger anterior pair of eyes lateral. Median antenna twice as long as the prostomium, laterals shorter. Palps and tentacular cirri longer than the antennae. Antennae and dorsal cirri with a dark band and a subterminal swelling. Elytra oval to reniform and entirely covering the body. Each has the external margin fringed with long papillae and the surface covered with rounded tubercles which are larger in the swollen centre of the eltyron. The smaller ones are often crown-like with spines and some are carinate but the larger ones arc/cchinulate

being eovered with small spinules: Notosetae are elosely beset with serrations to their tapered tips. Neurosetae have short serrated blades and are bidentate with a

Type locality : Port Jackson, South Australia.
Records: Madagasear, Nossi Be (s).
Distribution: Warm Indo-west-Pacifie from New Zealand and Australia to India (s) and tropical East Afriea (i)

Lepidonotus carinulatus (Grube, 1870) (fig. I.I 3.n-r)
Polynoe (Lepidonotus) carinulata Grube, $1870: 488$.
Lepidonotus carinulatus : Grube, 1878 : 26, pl. 3 fig. 2 ; Augener, $1922: 8$; Fauvel, 1953 : 34, fig. 13 g -i.
Body greyish brown and about I $5-30 \mathrm{~mm}$. long. Prostomium (fig. I.1 3.n) with the first pair of eyes lateral and well baek, the second pair partly concealed by an oecipital fold. Antennae and dorsal cirri without obvious subterminal swellings or dark bands. Elytra(fig. I.I3.0) oval to reniform and fringed on the posterior and lateral margins. Elytron surface with spherical tubereles varying in size, the larger ones towards the posterior margin being either smooth or with a few minute spines, the smaller ones near the lateral margin erown-like and strongly spinose. Notosetae (fig. I.13.q) small, slender and serrated to their tapered tips. Neurosetae (fig. I. i3 r) weakly bidentate.

Type locality: Red Sca.
Records: Madagascar (i) - one specimen. Kai-Xaic (hocambaizai) (i) veide f1-S197u
Distribution: Red Sea and Indo-west-Pacifie ($1, s$).

Lepidonotus magnatuberculatus Seidler, 1923
Lepidonotus magnatuberculata Seidler, 1923: 254, fig. i.
Prostomium as broad as long. Both pairs of eyes on the sides of the prostomium and well baek. Antennac not known. A nuehal fold present. Elytra reniform, leathery and partly divided into polygonal areas bearing large swollen tubercles with apical points. Anterior and inner parts of elytra with smaller tubercles and the postero-lateral margin fringed with long papillae. Dorsal eirri short, eaeh with a subterminal swelling. Notopodium small; notosetae fine and spinulose to their tapered tips. Neuropodium conical; neurosetac unidentate and slender with $9-1$ I spinous rows, but the inferior neurosetae of posterior feet are stouter with shorter spinous blades.

Type locality: ? Port Natal.
Records: Only the original doubtful record.

Lepidonotus tenuisetosus (Gravier, 1901)

(fig. 1.14.a-e)
Euphione tenuisetosa Gravier, 1901: 222, pl. 8 figs. 123-126, text-fig. 228-231.
Lepidonotus natalensis Day, 195 I: 9, fig. I e-l.
Lepidonotus tenuisetosus: Fauvel, 1953: 36, fig. 14 c-f; Day, 1962: 632.
Body oblong and up to 15 mm . long. Prostomium (fig. I.I4.a) longer than broad. First pair of eyes lateral and well back. Antennae and dorsal cirri smooth with a subtcrminal swclling and dark band. Median antenna twice the prostomial length, laterals shorter. Elytra fringed and the surfacc covercd with innumerable small conical tubercles which arc largest near the centre, and often bcar blunt projections so as to appcar star-shaped in plan. Parapodia (fig. I.I4.c) short and stout with bilabiatc neuropodia. Notosetae (fig. I.I4.d) numcrous, slender and spinulose to their tapered tips. Neurosetae (fig. I.I4.e) stouter, minutcly bidentate or unidentate.

Type locality: Red Sea.
Records: Capc (32/28/i to 3 I/29/i) ; Natal (30/30/i, s to 28/3I/i); Mocambique ($23 / 35 / i, s$) ; Madagascar (i) - fairly common on rocks.

Distribution : Tropical West Africa; Red Sea; Indo-west-Pacific to Japan.

Lepidonotus cristatus (Grube, 1876)
(fig. I.I4.f-i)
Polynoe cristata Grube, 1876: 62.
Lepidonotus cristatus: Gravier, 1901: 210, pl. 7 figs. 104-110, pl. 9 fig. 136, text-figs. 214-218; Fauvel, 1953: 35, fig. 13 n .

A very largc stout species reaching 40 mm . Prostomium (fig. I.I4.f) longer than broad but partly covered by a square occipital fold. Median and lateral antennae subcqual, about twice the prostomial length; they arc mounted on long ccratophores and arc smooth with subterminal swellings. Anterior pair of eyes large and set well back ; postcrior pair smaller, closer together and often hidden by the occipital fold. Elytra without marginal fringes. Each clytron (fig. I.14.g) palctte-shaped with a dark mark over the clytrophore and two large soft cushions ; surfacc covercd with conical tubercles. Cirrigerous segments with swellings corresponding to the elytrophores. Dorsal cirri similar to the antennae and reach the ends of the ncurosctae. Notosetae (fig. 1.14.11) fincly but closcly scriatcd and cnd in short tips. Neurosetae (fig. I.I4.i) stout with very numerous (ca. 24) rows of spinules, at first minute but becoming large distally bcfore the long hooked tips; most neurosetae are unidentate but some have a very small secondary tooth.

Type locality: Philippinc Islands.
Records: Mocambique (26/32/i) ; Madagascar (i).
Distribution: Red Sea (i) and tropical Indo-west-Pacific (i, s).

a

Fig. 1.14. Lepidonotus lenuisetosus. (A) Head. (B) Elytron. (c) Foot. (D) Notoseta. (E) Neuroseta. Lepidonotus cristatus. (F) Head. (G) Fourth elytron. (H) Notoseta. (I) Neuroseta. Lepidonotus glaucus. (J) Elytron. (к) Foot. (L) Notoseta. (м) Neuroscta. Lepidonotuspurpureus. (N) Elytron. (O) Foot. (P) Notoseta. (Q) Neuroseta. Lepidonotus semitectus. (R) Third elytron. (S) Foot. (T) Notoseta. (U) Neuroseta. Lepidonotus durbanensis. (v) Third elytron. (w) Notoseta. (x) Neuroseta.

Lepidonotus glaucus (Peters, 1854)
(fig. I.14.j-m)
Polynoe glauca Peters, 1854: 610.
Lepidonotus platycirrus Day, 1951: 11, fig. 2 a-f.
Lepidonotus glaucus: Day, 1957: 60, with synonymy.
Length up to 20 mm . Colour bluc-grey. Prostomium longer than broad with the anterior pair of eyes lateral and well baek. Median antenna smooth and 2.5 times the prostomial length; laterals a little shorter. Dorsal eirri (fig. r.14.k) often flattened, taper evenly towards the tip and laek subterminal swellings. Elytra (fig. I.I4.j) brown or bluc with smooth margins; the surface has a seattering of squat ridged tubereles whieh appear as pale spots against the blue baekground; often two ridges extend baek from the point of attachment and bear larger keeled tubereles. Notosetae (fig. 1.14.l) few (ea. 10), and small, the longer ones being dentieulate to their tapering tips. Neurosetae (fig. I.I4.m) stout and bidentate; they are strongly denticulate in anterior feet but weakly so posteriorly.

Type locality: Moeambique.
Records: Natal (3I/29/i) - a single specimen.
Distribution: Red Sea; tropieal Indian Oecan (i).

Lepidonotus purpureus Potts, 1910
(fig. I.I $4 . \mathrm{n}-\mathrm{q}$)
Lepidonotus purpureus Potts, 1910: 334, pl. 17 fig. 3; Day, 1957: 6i.
Body up to 20 mm . long. Colour mauve with a eentral white spot on each clytron. Prostomium hexagonal with long eirrophores. Median antenna 2.5 times the length of the prostomium, laterals only twice as long. Anterior pair of cyes lateral and well separated from the posterior pair. A well marked oceipital fold with lateral ridges. Antennae and dorsal eirri (fig. I.14.0) smooth with only slight subterminal swellings. Elytra/(fig. I.I4.n) not fringed and smooth apart from a seattering of minute ovoid tubercles whiel appear as refringent dots among the paler and darker pigment eells. Notosetac (fig. I.I 4.p) rather small and elosely serrated to their fine tips. Neurosetae (fig. I.I4.q) stout with short spinulose blades and elearly bidentate tips.

Type locality: Zanzibar.
Records : Moeambique (26/32/i and 23/35/e) ; Madagasear (s) - a few specimens.

Distribution : Tropical Indian Occan; Australia; New Zealand.

Lepidonotus semitectus Stimpson, 1856
(fig. I.I4.r-u)
Lepidonota semitecta Stimpson, $1856: 393$; Seidler, $1923: 51$ (with synonymy).
Lepidonotus wahlbergi Kinberg, 1857: 384.
Polynoe trochiscophora Schmarda, 1861: 151, pl. 36 fig. 3 1o.
Lepidonotus clava semitecta: Willey, 1904: 256, pl. is fig. 4.
Body tough, rusty brown and up to 40 mm . long. Often the head and anterior pair of clytra arc palc in contrast to the rest of the body. Prostomium longer than broad with the first pair of cyes well back and the second pair often hidden by the occipital fold. Median antenna longer than the prostomium, laterals a little shorter. Antemnae, tentacular cirri and dorsal cirri (fig. r.14.s) smooth with a swelling and a dark band preceding the filiform tip. Centre of dorsum not entirely covered by elytra. Individual clytra (fig. 1.14.r) tough, oval, entirc with cylindro-conical tubercles which are longest and minutcly granulose on the first two or three clytra and bccome ovoid posteriorly. Notosetae (fig. r.i4.t) fairly numerous, each short with close-sct rows of small serrations preceding the long, sharply pointed tip. Neuropodium large; neurosetae (fig. I.I4.u) with about seven rows of spinules and strong, curved unidentate tips. There is no secondary tooth but the spinule of the last row is well developed and may simulatc a secondary tooth.

Type locality: Cape of Good Hope.
Records: South West Africa (22/14/i and 26/15/i) ; Cape (from 29/16/i and $34 / \mathrm{I} 8 / \mathrm{i}, \mathrm{s}$ to $32 / 28 / \mathrm{i}$) ; Natal ($3 \mathrm{I} / 29 / \mathrm{i}$ to $29 / 3 \mathrm{r} / \mathrm{i}$). Very common under stones and in rocky dredgings.

Distribution : Endemic.

Lepidonotus durbanensis Day, 1934

(fig. I.I4.v-x)
Lepidonotus durbanensis Day, 1934: 18, fig. I a-c.
Body up to 30 mm . long, tough, grcy with reddish brown elytra. Prostomium longer than broad with the first pair of eyes half-way back. Antennac and dorsal cirri smooth with a dark band at the subterminal swelling. Median antenna twice the length of the prostomium ; laterals i. 5 times the prostomium. Elytra (fig. I.I4.v) oval with smooth margins and the surface beset with largc, almost spherical tubercles of various sizes; the largest tubercles are sculptured like golf balls and the smaller tubercles have minutcly scaly surfaces. Notosetae (fig. r.I4.w) small and closcly serrated to their filiform tips. Ncurosetae (fig. I.I4.x) very stout with short spinulose blades and unidentate curved tips though the last spinule is strong and may simulate a secondary tooth.

Type locality: Durban.
Records: Cape (34/22/s) ; Natal (29/3I/i) ; Mocambique (26/32/i) - common on the rocky shores of Natal.

Distribution: Endemic.

PARAHALOSYDNA Horst, 1915

Body short with about 45 segments and is pairs of elytra, which cover most or all of the dorsum. All three antennac terminal in origin and arise at the same level. Notosetae present in all parapodia. Neurosetae unidentate to bidentate.

Type species: Parahalosydna sibogae Horst, 19I5.

Parahalosydna capensis (MeIntosh, 1885)

(fig. I.I5.a-d)
Polynoe capensis McIntosh, 1885 : 114, pl. 4 fig. 4, pl. 15 fig. 1 , pl. 9 A figs. 4-5.
Body (fig. I.I5.a) oblong, about 25 mm . long with I5 pairs of elytra eovering all except the last four to six segments. All three antennae (fig. I.I5.b) terminal in origin as in Lepidonolus. Mcdian antenna unknown; laterals smooth and two thirds the prostomial length. Anterior pair of eyes lateral and almost half-way back. Dorsal eirri smooth and slightly swollen distally, not as long as the neurosetae. Notopodium well developed with numerous setae. Notosetae (fig. I.15.e) long and stout with minute serrations and abruptly pointed tips. Neuropodium long with a pointed presetal lip. Neurosetae (fig. I.I5.d) long with weakly spinulose blades and bidentate tips, the secondary tooth being very small.

Type locality : 180 metres off the Cape of Good Hope.
Records: Cape (34/i8/d) - a single reeord.

PSEUDOPOLYNOE Day, 1962

Body elongate with over 60 segments and rati pairs of elytra which eover only the anterior half of the body. Posterior segments all have dorsal eirri. All three antennac terminal in origin and arise at the same level as in Lepidonotus. Notopodia small but notosetae present in all parapodia. Neuropodia stout and bilabiate. Neurosetae with short serrated blades and bidentate tips.

Type species: Polynoe inhaca Day, 195 I.

Pseudopolynoe inhaca (Day, 1951)

(fig. I.I5.e-j)
Polynoe inhaca Day, 195I: 15, fig. 3 a-g.
Allmaniella inhaca: Day, 1957: 62.
Pseudopolynoe inhaca: Day, 1962: 634.
Body (fig. I.I5.c) elongate, tapered, up to 45 mm . long for 78 segments. Sixteen pairs of elytra covering the anterior half of the body, the posterior segments being all eirrigerous with three rows of fleshy tubereles on the dorsum. Prostomium (fig. r.i5.f) longer than broad with constrietions at the bases of the lateral eeratophores. Antennae smooth with slight subterminal swellings, the median being longer than

Fig. 1.15. Parahalosydna capensis. (A) Entire worm (twice natural size). (B) Head. (C) Notoseta. (D) Neuroseta (after McIntosh). Pseudopolynoe inhaca. (E) Entire worm (I.5 times natural size). (F) Head. (G) Elytron. (H) Elytrous tubercle. (I) Notoseta. (J) Neuroseta. Halosydna alleni. (к) Entire worm (twice natural size). (L) Head. (M) Anterior view of foot. (N) Notoseta. (o) Neuroseta.
the laterals and equal to twiee the prostomial length. Palps short and stout. Elytra (fig. I.I5.g) oval but not large enough to eover the centre of the dorsum ; individual elytra mottled grey with smooth margins and glabrous apart from a few small marginal tubereles (fig. I.I 5 .h). Notosetae (fig. I.I5.i) few, weak and spinulose to their fine tapered tips. Neurosetae (fig. I.I $5 . \mathrm{j}$) stout with short blades and strongly bidentate tips.

Type locality: Inhaca Is., Mocambique.
Records: Moeambique (26/32/i).
Distribution : No other records.

> HALOSYDNA Kinberg, 1855
> (including HYPERHALOSYDNA Augener, I 922 and HALOSYDNELLA Hartman, I938)

Body with 37-55 segments and 18-24 pairs of elytra which cover most or all of the dorsum. Prostomium with all three antennae inserted terminally at the same level as in Lefidonolus. No prostomial peaks nor oecipital fold. Notopodia poorly developed but notosetac are present in some notopodia. Neuropodia with equal presetal and posisetal lips. Neurosetac mainly bidentate.

Type species : Halosydna palagonica Kinberg, 1855.
Key to Species
1 Eighteen to nineteen pairs of elytra. Notosetae well developed (subgenus Halosydnella)
(no S. African speeies)

- Twenty to twenty-four pairs of elytra. Notosetae few, occasionally absent from some feet
H. (Hyperhalosydna) alleni

Halosydna (Hyperhalosydna) alleni Day, 1934
(fig. I.I5.k-o)
Halosydna (Hyperhalosydna) alleni Day, 1934: 23, fig. 3 a-e.
Body (fig. I.15.k) up to 35 mm . long for 55 segments. Twenty to twenty-four pairs of pale, mottled grey elytra extending almost to the end of the body. Prostomium (fig. I.I5.l) reetangular with both pairs of eyes on the posterior half and close together. All three antennae terminal in origin ; the median is slightly longer than the prostomium and the laterals are two thirds its length. Antennae and dorsal cirri smooth, sliglitly swollen distally and banded before the terminal filament. Elytra with smooth margins and smooth, mottled surfaces. Notopodia (fig. I.I5.m) very small with two to four minute notosetac (fig. I.I5.n) which are serrated to their slender and tapered tips. Neurosetae (fig. I.I5.0) large and mainly bidentate with short spinulose blades; in the posterior feet of large speeimens, however, there may be a single giant superior seta which is unidentate and praetically devoid of spinules.

Type locality: False Bay, South Afriea.
Records: Cape (34/i8/i, $32 / 28 / \mathrm{i}, 31 / 30 / \mathrm{i}$) ; Natal (30/30/i) - rare.
Distribution : Endemic.

> LEPIDASTHENIA Malmgren, 1867
> (including LEPIDAMETRIA Wcbster, I 879 and LEPIDASTHENIELLA Monro, I924)

Body elongate and flattened with 60-200 segments and from 24 to more than 100 pairs of elytra which extend to the end of the body but may be too small to eover the centre of the dorsum. Elytra on segment 2, 4, 5, 7 and alternate segments anteriorly, but become irregular posteriorly or may occur on every segment towards the end
of the body. All three antennae inserted terminally at the same level as in Lepidonotus. No prostomial peaks but an occipital fold may be present. Dorsal cirri smooth, often elongate. Notopodia small and notosetae either few or absent. Neuropodia long with equal presetal and postsetal lips. Neurosetae unidentate or bidentate; often with a superior group of fine setac anteriorly or a single giant seta posteriorly. Nectochaela, the planktonic stage, has fewer segments, long swollen elytrophores and numerous fine superior neurosetae.

Type species: Polynoe elegans Grube, 1840.

Key to Species

I Neurosetae all fine and unidentate 2

- Neurosetae mainly stout and bidentate though superior fine unidentate forms may oceur 3

2 Neurosetae spinulose with hair-like tips L. sp. (AFR. 790)

- Neurosetae with blunt naked tips (fig. 1.16.d) L. mossambica (p. 89)

3 Elytra minute after the first few (fig. 1.16.f) L. microlcpis (p. 90)

- All elytra at least as broad as the segment is long

4 Elytra speekled. Fine superior neurosetae absent or limited to a few anterior feet. A giant unidentate seta in middle segments (fig. I.16.j, m). . . L. elegans (p. 90)

- Elytra half brown and half white (fig. 1.16.0). Fine unidentate superior neurosetac in all feet. No giant posterior setae. L. brunnea (p. 92)
- Elytra with a central dark spot (fig. 1.16.t). Fine unidentate superior setae in a few anterior feet ; no giant posterior setae .
L. maculata (p. 92)

Lepidasthenia mossambica Day, 1962

(fig. i.I6.a-d)

Lepidasthenia mossambica Day, 1962: 632, fig. 2 a-d.
Length up to 100 mm . for 150 segments. Dorsum with regular brown eross-bars. Prostomium (fig. i.I6.a) reetangular and partly covered by a large oceipital fold with a papillose margin. First pair of cycs well back and latcral in position. Antennae slender with a vague subterminal swelling; median twice the length of the prostomium and laterats a little shorter. Palps very long. Dorsal eirri tapered and just reach the tips of the ncurosetae. Fifty-six pairs of elytra which are not large enough to cover the centre of the dorsum but extend to the posterior end of the body. They altcrnate regularly with the cirri antcriorly but become irregular posteriorly.

Each is rounded and has a smooth surface with a dark bar extending inward from the elythrophore (sce fig. I.I6.b) ; posteriorly the bar is reduced to a spot. Bases of anterior parapodia (fig. i.r6.c) papillose both dorsally and ventrally. Notopodia as small papillac which lack sctae except rarely on anterior fect. When present the fcw notosetac have 15 rows of spinules prceeding the blunt, almost truncate tips. Neurosetac (fig. i.r6.d) with io rows of spinules and blunt unidentate tips; no superior group of slender neurosetae in anterior feet and no giant ncuroseta in postcrior fect.

Type locality: Inhaca Is., Mocambique.
Records: Mocambique (26/32/i).
Distribution : No other records.

Lepidasthenia microlepis Potts, I910
(fig. i.I6.e-h)
Lepidasthenia microlepis Potts, 1910: 343, pl. 19 fig. 17, pl. 21 fig. 52 ; Day, 1951 : 18.
Body about 25 mm . long for 65 segments which are banded brown at irregular intervals. Prostomium (fig. i.i6.e) large. Anterior pair of eyes laterally situated. Median antenna $\mathrm{I} \cdot 5$ times the length of the prostomium, laterals slightly shorter. Dorsal eirri (fig. i.I6.g) pale and tapered, longer than the neurosetae. Nineteen pairs of elytra; the first (fig. 1.16.f ${ }^{2}$) is fairly large and brown but the next few deerease rapidly in size (figs. f^{3} and f^{5}) and sueceeding ones are even smaller and colourless, being merc caps on the small elytrophores. Parapodia without papillae. Notopodia very small; notosetae absent. Neurosetac (fig. I.I6.h) with short spinulose blades and bidentate tips, the seeondary tooth being almost equal to the apieal one and hardly diverging from it.

Type locality: Maldive Islands.
Records: Natal (30/30/i, 29/3I/i) ; Moeambiquc (26/32/i).
Distribution : Tropical Indo-west-Pacific (i).

Lepidasthenia elegans (Grube, 1840)
(fig. I.I6.i-m)
Polynoe elegans Grube, $1840: 85$.
Lepidasthenia elegans: Fauvel, 1923: 88, fig. 33 a-g; Day, 1960: 284.
Body elongate and flattened, up to 70 mm . long for 100 segments. Purple bars across most segments and elytra speckled with a white spot over the elytrophore. Prostomium (fig. i.16.i) bilobed with long antennae having banded subterminal swellings. Eyes well back. A small nuchal fold with a smooth margin. Dorsal cirri (fig. I.I6.k) of the first few segments long and have subterminal swellings but later ones shortcr, hardly cxtending beyond the neuropodia. Elytra (fig. i.16.j) small and leave most of the back uncovercd. Each is rounded with a smooth, speekled surface. Parapodia (fig. i.I6.k) without papillac. Notopodia small, notosetac usually absent but an oeeasional seta with weak serrations may oecur in anterior feet. Neurosetac include: (a) two to three superior slender setae in anterior feet (sometimes missing) ; (b)numerous bidentate setae (fig. I.I6.1) with short blacles and a seeondary tooth which is definitely smaller than the apieal one; (c) a giant brown unidentate superior seta (fig. I.I6.m) in posterior feet and sometimes other unidentate setac below it.

Type locality: Mediterranean Sea.
Records : Capc (34/18/s, 33/25/s) ; Mocambique (26/32/i) ; Madagasear (s) an oeeasional specimen commensal in the tubes of Terbellidae.

Distribution : Mcditerranean; Indo-west-Paeifie.

Frg. I.!6. Lepidasthenia mossambica. (A) Head. (B) Elytron. (C) Foot. (D) Neuroseta. Lepidasthenia microlepis. (E) Head. ($\left.\mathrm{F}^{1},{ }^{3},{ }^{5}\right)$ First, third and fifth elytron. (G) Foot. (н) Neuroseta. Lepidasthenia clegans. (r) Head. (J) Elytron. (к) Anterior foot. (L) Normal neuroseta. (m) Giant neuroseta. Lepidastheria brunnea. (N) Head. (o) Elytron. (p) Foot. (Q) Middle bidentate neuroseta. (R) Superior fine neuroscta. Lepidasthenia maculata. (s) Entire worm (natural size). (T) Elytron. (U) Foot. (v) Neuroseta.

Lepidasthenia brunnea Day, 1960
(fig. i.16.n-r)
Lepidasthenia brunnea Day, 1960: 285, fig. 3 a-d.
Body flattened and clongate, about 50 mm . long for 100 segments. Dorsum pale brown, elytra half brown and half white. Prostomium (fig. I.16.n) broad and bilobed with very long slender antennae cqual to the body width. Eycs large. No nuchal fold. Antcrior dorsal eirri very long but later ones just cxeced the tips of the neuropodia and laek subterminal swcllings. Twenty-five or more pairs of elytra (fig. 1.16.0), each large and oval with the postero-medial half brown and the outcr half palc. Notopodia small. No notosetae. Ncuropodia (fig. I.I6.p) large and pointed with the setae issuing from tapered lips. Ventral cirri short and a row of six to cight papillac on the ventral surface of each parapodium. Ncurosctae of all feet include numerous fine superior setae (fig. 1.I6.r) with long slender blades feathered to their hair-like tips and stouter bidentate setac (fig. I.16.q) with shorter blades and small apieal tceth. Secondary tooth smaller than the terminal onc. No giant seta in posterior fect.

Type locality: False Bay, South Afriea.
Records : Cape (34/17/d, 34/18/s)/ ; Natal (29/3I/d) - in Phyllochaetopterus tubes.
Distribution : ? New Zealand.

Lepidasthenia maculata Potts, 1910
(fig. I.16.s-v)
Lepidasthenia maculata Potts, 1910: 344, pl. 20 fig. 33, pl. 21 fig. 5^{1}; Seidler, 1923 : 157.
Body (fig. I.I6.s) clongate and flattened, up to 70 mm . long for 100 scgments. Purple bars aeross most segments cxcept alternatc cirrigcrous ones; elytra (fig. 1.16.t) with a dark spot. Prostomium bilobed with long slender antennae which lack subterminal swcllings. Eycs large. A prominent nuchal fold which may be papillosc. Dorsal eirri cxtend bcyond the tips of the neurosetac. About 30 pairs of clytra which extend over the whole length of the body but are not large enough to eover the centre of the dorsum. Individual elytra smooth and oval with a dark spot in the centre. Parapodia (fig. r.16.u) without papillac. Notopodium redueed to a conical papilla which seldom bears setae. Neuropodium largc, bilabiatc and obliqucly truneate. Neurosetac (fig. I.16.v) mainly bidentate with the secondary tooth almost as long as the terminal onc so that the cnd appears bifid; in addition the antcrior feet have two to four long finc superior setac with blunt tips. No cnlarged supcrior seta in posterior fect.

Type locality: Zanzibar.
Records: Moeambiquc (23/35/c) - scveral specimens commensal in the burrows of Dasybranchus caducus. Madagowear (Thamawisn 1970)

Distribution : North Atlantic between Seotland (s), ? North Carolina, Azores and Moroceo (s, d) ; Zanzibar (i).

Subfamily POLYODONTINAE Pflugfelder, 1934
Body vermiform and rounded in seetion with numerous segments. Animal tubicolous in a fibrous tube. Prostomium bilobed with two stalked eyes or four sessile ones. $0-3$ antennae, the median antenna being inserted dorsally and the laterals terminally below the eye-stalks. Pharynx with four ehitinous jaws whieh are denticulate basally. Numerous pairs of elytra extending over the whole length of the body but too small to eover the eentre of the dorsum. Spinning glands in the notopodia which produce the fibres composing the tube. Branchial vesieles sometimes present on the parapodia. Notosetae few and slender, neurosetae of three different types.

Records from southern Africa

> Eupanthalis kinbergi MeIntosh .
> as Eupanthalis tubifex 33As
> Panthalis oerstedi var. capensis MeIntosh . . 4 ICs
> Polyodontes melanonotus (Grube) . . . $40 \mathrm{Pi}, 45 \mathrm{Pi}, 53 \mathrm{Mi}$
> as Panthalis melanonotus Grube . . . 27 Mi

bIOLOGIGAL NOTES

The polyodontids are a rare group of large tubicolous worms living in sand or mud. The tube is composed of long silky threads seereted by the segmental spinning glands and woven into a criss-cross spiral which is surprisingly tough and may extend a metre or more down into the mud. The worm itself may exeeed 300 mm . in length. Polyodontids appear to be seavengers or omnivores. They have formidable jaws and apparently extend the anterior, flattened part of the body well out of the tube in their seareh for food. It is on these anterior segments that the branehial papillae are found while the posterior part of the body is soft and rounded.

THE MAIN DIAGNOSTIC CHARACTERS

The few genera may be distinguished by the structure of the eyes, the number of antennae, the presence of soft bladder-like branehial papillae on the anterior feet and the nature of the setac. All South African genera have three antennae. The anterior pair of eyes is borne on stout stalks (ommatophores) and may be pigmented or not ; the posterior pair of eyes when present is always sessile. The soft baggy branehial papillae or vesieles are variable in development and tend to be limited to anterior segments. The notosctae are few, weak and uniform in structure. The neurosetac are in three groups one above the other. In Eupanthalis the superior group are tapered and uniformly spinulose. In Panthalis the superior group have blunt ends (fig. I.I7.d) beyond whieh projeet a series of long hairs like a paint brush and are termed penicillate. In Polyodontes melanonotus the supcrior setae are "pseudopenicillate" and intermediate between these two types with the tapered tip of the blade just projeeting from the elump of hair-like spinules (fig. I.I7.l).

Key to Genera

1 Three antennae. Anterior pair of eyes stalked. Branchial vesicles present or absent

- Three antennac. Four sessile eyes. Branchial vesicles absent . . . EUPANTHALIS

2 Branchial vesicles present (fig. 1.17.i). Superior ncurosetae not truly penicillate
POLYODONTES

- Branchial vesicles absent. Superior neurosetae are truly penicillate

PANTHALIS

EUPANTHALIS McIntosh, 1876
Body vermiform with numerous segments. Prostomium bilobed with four sessile cyes. No branchial vesicles on anterior feet. Notosetac restricted to anterior feet and later notopodia have spinning glands instead. Neurosetac include (a) a superior group of tapered and spinulose setae, (b) a middle group of stout aristate setae with a hairy patcle on the blunt tip, and (c) an inferior group of serrated, tapering setac.

Type species: Eupanthalis kinbergi McIntosh, 1876.

Eupanthalis kinbergi McIntosh, 1876
(fig. I.I7.a-f)
Eupanthalis kinbergi McIntosh, 1876a: 404, pl. 72 figs. 12-16; Fauvel, 1923 : 100, fig. 38 i-q.
Body up to 130 mm . long with more than Ioo segments. Prostomium (fig. I.I7.a) bilobed with four sessile eyes in a rectangle. Median antenna postero-dorsal in origin, laterals terminal and longer than the prostomium. Palps very long. Jaws with four to five denticles at the base. The papillae on the dorsal margin of the proboscis are simple or bifid, the ventral ones trilobed. Dorsal cirri short and conical. Elytra smooth and oval ; the first few meet over the back but the posterior ones are lateral. A spinning gland from the 8 th or 9 th notopodium onwards. No branchial vesicles. Notopodium compressed and bears a few serrated capillaries. Neuropodium (fig. I.I 7.b, c) stout and truncate with three groups of setac; (a) a superior group of spinulose setae (fig. I.I7.d), (b) a middle group of stout aristate setae (fig. I.I7.e) which develop tapered hairy ends inferiorly and (c) an inferior group of serrulate setae (fig. I.I7.f) with curved and spirally serrated blades.

Type locality: Decp waters of North Atlantic.
Records: Angola (s).
Distribution: North Atlantic; Mediterranean (d).

POLYODONTES Renier, 1832

Body clongate and up to 300 mm . long. Prostomium bilobed with the anterior pair of eyes stalked and usually a small pair of sessile ones behind. Median antenna inserted dorsally, laterals terminal, under the eye-stalks. First foot not obviously modified. Branchial vesicles on anterior feet. Elytra extending over the whole

Fig. 1.17. Eupanthalis kinbergi (after Fauvel). (A) Head. (B) Anterior foot. (c) Posterior foot. (D) Superior spinulose neuroseta, (E) Aristate neuroseta. (F) Inferior serrulate neuroseta. Polyodontes melanonotus. (G) Head. (H) Entire worm (half natural size). (r) Anterior foot with branchial vesicles. (J) Notoseta. (к) Superior fine neuroseta. (г) Superior pseudopenicillate neuroseta. (m) Aristate neuroseta. (N) Inferior serrulate neuroseta.
length of the body but too small to meet over the back. Notopodium flattened and anterior to the neuropodium. Notosetae few, slender and serrated. Neuropodium stout and truneate with three types of setae; (a) a slender superior series with tapering, spinulose blades but not truly penicillate; (b) a middle series of stout acicular setae often with a pateh of hairs near the tip (aristate setac) ; (c) an inferior group of spirally serrated setae tapering to slender tips.

Type species: Phyllodoce maxillosa Ranzani, 18ı7.

Polyodontes melanonotus (Grube, 1876)

(fig. 1.17.g-n)
Panthalis melanonotus Grube, 1876 : 71.
Polyodontes melanonotus: Fauvel, 1953: 72, fig. 33 c-g; Day, 1962: 634.
A large tubicolous species reaching 300 mm . Body (fig. 1.17.h) stout anteriorly and flattened posteriorly. Palps long and banded. Prostomium (fig. 1.17.g) elongate and markedly bilobed with a raised ridge bearing the median antenna. Anterior pair of stalked eyes, large, pear-shaped and well pigmented; posterior pair of sessile eyes minute and situated on the bases of the ommatophores. Median antenna tapering, as long as the prostomium. Lateral antennae slightly shorter than the prostomium and usually hidden under the ommatophores. First segment almost as long as broad and forms a small oecipital fold. First foot clongated, directed forwards and bears a pair of tentaeular eirri and several fine setae. Numerous branehial vesieles (fig. 1.17.i) on anterior feet. Elytra oval in outline, smooth, brownish, not meeting aeross the dorsum; the outer edges tend to curl up to form a poeket. Notopodia as antero-dorsal folds above the very stout neuropodia. Notosetac (fig. 1.17.j) few, very fine, minutely spinulose. An internal eoiled spinning gland opens in the slit between the notopodium and ncuropodium from setiger 8 onwards. Superior neurosetae inelude a few short, very fine capillaries (fig. 1.17.k) and a longer series of pseudopenieillate setae (fig. 1.17.1) whiel vary in regard to the length of spinules, but all have a tuft of long spinules like a paint brush from whieh the long tapering tip protrudes. The middle group of very stout aristate setac (fig. 1.17.m) inelude some with stout blunt tips, others with a subterminal hairy patch and the inferior ones may have a subterminal hairy spike. Inferior setae (fig. 1.17.n) slender with recurved and spirally-serrated blades.

Type locality: Philippine Islands.
Records: Mocambique (23/35/e) <-oeeasionally found burrowing in sandy mud.
Distribution: Indo-Pacific (i, s); tropical West Afriea from Senegal to the Congo (i, s).

PANTHALIS Kinberg, 1857

Body elongate and vermiform. Animal tubicolous. Prostomium with a pair of bulbous, non-pigmented eye-stalks. Three antennae, the median being inserted dorsally and the laterals terminally under the eye-stalks. Branchial tubereles absent. First foot modified. Notopodium small with few notosetae. Numerous elytra which extend over the whole length of the body but do not cover the dorsum. Neurosetae of three basie types: a superior group ineluding finely serrated to penicillate forms with an abrupt tip beyond which extend a bunch of long hairs; (b) a middle group of stout aristate setae and (e) an inferior group of tapered and spirally serrated setae.

Type species: Panthalis oerstedi Kinberg, 1857.

Panthalis oerstedi capensis MeIntosh, 1925
Panthalis oerstedi var. capensis McIntosh, 1925: 31.
Length up to 120 mm . Prostomium small with the median antenna extending forwards beyond the cye-stalks. Lateral antennae thicker than the median and each with a brown spot. Elytra smooth and cover the head but further back most of the dorsum is naked. Notosetac slender and minutely spinulose. Neurosetae of three groups : (a) superior group unknown ; (b) stout aeieular setae (aristate setae) with rather flattened spear-like tips bearing a group of spinules ; (e) an inferior group of serrated setae with hairy tips projecting from a basal group of long spinules.

Type locality: South Afriea.
Records: Eastern Cape (32/28/s) - a single speeimen.

Subfamily SIGALIONINAE Malmgren, 1867
Body elongate and somewhat flattened with numerous segments. Prostomium rounded with four sessile eyes and one to threc antennae. Four chitinous jaws. Elytra numerous and extend over the whole length of the body; they are inserted on alternate segments anteriorly but on every segment from about the 25 th onwards. Dorsal cirri absent exeept sometimes on the third setiger. Cirriform branchiae arise from the elytrophores of all exeept a few anterior feet. Notosetae simple and usually spinulosc. Neurosetac compound and often aecompanied by a few superior simple setae.

BIOLOGICAL NOTES

The sigalionids are a group of burrowing predators living in sand or mud. Sthenelais boa is fairly common in sandy pools on roeky shores and Thalenessa oculata lives on sandy beaches. The latter has an unusual method of burrowing. Instead of digging in head first, it lies flat on the sand and by rotation of its parapodia seoops out the sand below until the whole body is covered. Presumably this is an adaptation for life in an area where it is often liable to be uneovered by the eroding action of the waves. Sthenelais limicola, S. papillosa and Sigalion mathildae live in sand at decper levels. Psammolyce appears to prefer gravel while the various species of Leamira are deep-sea mud-dwellers, many of them lacking cyes. In all cases the elytra are elevated above the dorsum and the notosetae arch over their edges so as to form a pair of respiratory channels above the parapodia in which the gills are situated. The only genus whieh lacks gills is the minute Pholoe which is not a burrower but ereeps over the surface of silty sand.

THE MAIN DIAGNOSTIC CHARACTERS

The generic distinctions are based primarily on the nature of the antennae, the presence or absence of gills on the elytrophores and the possession of a dorsal eirrus on setiger 3. Most genera are large, only Pholoe being lcss than 20 mm . long. Pholoe is also the only genus with a single antenna and no gills. In some genera the median antenna is borne on a ceratophore which may have basal lappets or "etenidia", in others it may be small and papilliform or even absent so that only the lateral antennae are left. The lateral antennac may be fused to the dorsal surface of the tentacular segment which extends forwards anterior to the prostomium.

The elytra change along the length of the body and both anterior and posterior ones should be examined. The cirriform branchiae are attached below the clytra usually on the outer sides of the elytrophores but some oceur on the median sides. Both the notopodium and the neuropodium are well developed and both have long papillac or stylodes near their ends; these change after the first few segments but are useful speeific characters. The notosetae are fairly uniform and seldom of taxonomie value. The neurosetae, however, are most uscful. They sometimes include a few superior simple setae with bipennate blades but most of the neurosctae arc eompound. In Leanira the blades are tapered to slender unidentatc tips and may be termed spinigerous; moreover they are ornamented with rows of internal structures which give a laddercd effeet when seen by transmitted light. In other genera, however, the tips of the blades are obviously or minutely bidentate and may be termed falcigerous. The blades may be short and stout or long and tapered with ineomplete joints and are then termed multiarticulate or pluriarticulate. The degree of serration of the shaft-head is also a useful character.

Key to Genera

```
1 Body small, less than 15 mm . long. Cirriform branchiae absent. (Median antenna without basal lappets)
PHOLOE (p. 99)
- Body large, well over 15 mm . long. Cirriform branchiae on the clytrophores after the first fcw feet (fig. i, 18.b)
2
2 Spinning glands present in middle and posterior notopodia. (Ncurosetae compound with
```



```
- Spinning glands absent 3
3 Compound neurosctae with falcigerous blades which are sometimes multiarticulate . . 4
```



```
- Median antenna, if present, without basal lappets on the ceratophore
5
5 Median antenna with a large ceratophore. Elytra with adhesive papillac and covercd with sand . . . . . . . . . . PSAMMOLYCE (p. 105)
- Median antenna absent or small and without a ceratophorc. Elytra with smooth, clean surfaces
6 Tentacular segment with two bundles of setae. Median antenna may be absent
SIGALION (p. 101)
- Tentacular segment with one bundle of setac. Median antenna always present
THALENESSA (p. 107)
7 Median antenna with basal lappets on the ceratophore . . STHENOLEPIS (p. 112)
- Median antenna without basal lappets . . . . . . LEANIRA (p. III)
8 Parapodeal stijcodeo wretorelthoritik?.... Sthënctais (P.108)
```



```
b. 105
```


PHOLOE Johnston, 1839

Body small, oblong, less than 20 mm . long with $35-75$ segments. Prostomium rounded with a median antenna mounted on a short eeratophore without basal lappets. Lateral antennae absent or minute and fused to the bases of the tentacular eirri. Two pairs of eyes coaleseent on each side. One or two pairs of tentacular eirri with or without setac at the base. No dorsal cirri. Numerous pairs of elytra eovering the dorsum; they arise on alternate segments up to the 23 rd and on every segment thereafter. No cirriform branchiae on the elytrophores. Parapodia biramous. Notosetae are small spinulose eapillaries. Neurosetae are eompound with simple falcigerous blades.

Type species: Aphrodita minuta Fabrieius, 1780.

Key to Species

1 Elytra very thick, with concentric growth lines. One pair of tentacular cirri with numerous setae at the base (fig. 1.18.h-i) P. dorsipapillata

- Elytra normal, without concentric growth lines. Two pairs of tentacular cirri without setae at the base (fig. 1.18.b-c) P. minuta

Pholoe dorsipapillata Marenzeller, 1893
(fig. 1.18.g-i)
Pholoe dorsipapillata Marenzeller, 1893 : 6, pl. 1 fig. 3 ; Fauvel, 1923 : 1 19, fig. 44 n-q; Day, 1963b : 389.

Body about io mm. long for 35-40 segments, and covered with hard elytra which leave the middle of the dorsum naked and papillose. Parapodia and ventrum with a few elongate papillae. Prostomium (fig. I.i 8.h) broader than long and partly covered by a fold of the first elytrigerous segment. Two pairs of coaleseent eyes. Median antenna long with a papillose subterminal swelling. Lateral antennae either absent or represented by minute projections fused to the bases of the tentacular cirri. A single pair of tentacular eirri similar to the median antenna with numerous fine setae arising from the stout base (see footnote).* Palps very short and swollen basally. Elytra (fig. I.I8.i) triangular with rounded corncrs. They are very thiek, almost brittle with marked concentric growth lines. Long secretory papillac on exposed margins and surface. Notosetae numerous, fine and serrated with tapered tips. Neuropodium with a few elongate apieal papillae. Neurosetae (fig. I. I8.g) compound with unidentate blades which are rather longer in the first few feet. Shaft-heads very finely serrated. Ventral eirri short with papillose swollen bases and knobbed tips.

Type locality : 381 metres in Mediterranean.
Records : Eastern Cape (33/28/s) ; Natal (29/32/d) ; Mocambique (24/35/d). Distribution : Mediterranean (d); Azores (d).

Pholoe minuta (Fabricius, 1780)
(fig. 1.18.a-f)
Aphrodita minuta Fabricius, 1780: 514.
Pholoe minuta: Fauvel, 1923: 120, fig. 44a-h.
Body (fig. I.18.a) minute, about 10 mm . long with $40-70$ scgments. Prostomium (fig. I.18.b) small and rounded with four eyes which eoalesee on eaeh side. Median antenna borne on a stout ceratophore and lightly papillose. Palps short and stout. Two pairs of tentaeular cirri longer than the median antenna. No sctae at the base of the tentacular cirri. Elytra (fig. 1.18.c) oval to reniform, the surface bearing short secretory papillac (c^{1}) with longer oncs on the margin. Many are wrinkled but none elcarly annulated. Parapodia (fig. 1.18.d) eovered with rounded sceretory papillac. Notosetac (fig. I.18.e) very fine, tapering and minutely spinulose. Ncurosetac (fig. 1.18.f) few, stout, compound and faleigerous with faintly spinous shaft-heads and unidentate hooked blades.

Type locality : Grecnland.
Records: A South West Africa ($22 / \mathrm{I} 4 \mathrm{i}$, s and $26 / 15 / \mathrm{s}$) around the Cape to 33/28/s - common in dredgings. and De apra Bay (i)

Distribution: Arctic Occan; N. Paeifie; N. Atlantie from Greenland and European eoasts to Moroceo (i, s) ; Mediterrancan.

[^0]

Prostomium with a median antenna having basal flaps on the ceratophore; lateral antennae fused to the bases of the tentacular segment. Parapodia with ctenidia and papillae. No dorsal cirrus on setiger 3. Spinning glands in posterior notopodia. Notosetac as simple spinulose capillaries; neurosetae compound with short, simple knife-like or conical appendices.

Type species: Euleanira-ehlersi-Horst,-1917. Pbandioncila wreiforemes Manot ypo

Sthenveanclia Euleanira ehlersi(Horst, 1917)

Euleanira ehlersi Horst, 1917: 122, pl. 27 figs. 1-5.
Body rather flattencd, 25 mm . long for 75 segments and encased in a fibrous tube stiffened with mud. Prostomium rounded, with four eyes, the anterior pair being the largcr. Median antenna mounted on a short ceratophore with basal lappets; ceratostyle $\mathrm{I}_{5} 5$ times the length of the prostomium. Lateral antennae short and fused to the bascs of the tentacular segment. Two pairs of smooth tentacular cirri of whicla the dorsal is longer than the ventral. No dorsal cirrus on sctigcr 3. Elytra smooth and oval without marginal notches or papillae but with a transverse arc of brown pigment. Thicy are prescnt on setigers 2, 4, 5, 7 and alternate segments to the 2ist then on all segments. Elytrophores with only a short conical branchial projection. Notopodia swollen but lack stylodes. Ncuropodia without stylodes but with three low bracts, one anterior, one ventral and one postcrior. Notosetac are long fine capillaries with whorls of minutc spinules. Spinning glands in the notopodia from about the 20 th foot. Neurosetae are all compound. A few on the most anterior feet have simple tapered blades but all the rest have short conical or sickle-shaped bladcs without any sign of sculpturing or falcigerous tips.
Type locality : Madura Strait, Indonesia.

$$
\text { Records: Natal }(29 / 32 / \mathrm{s}, 29 / 31 / \mathrm{d}) \text {. }
$$

SIGALION Audouin \& Milne Edwards, 1832 (characters emended)
Body elongate with numerous segments. Prostomium oblong with two pairs of small antennae arising from the antcrior margin and sometimes a small median dorsal one as well. The first setiger projects forwards and bears two pairs of tentacular cirri and two bundles of simplc capillaries. Dorsal cirrus on setiger 3 reduced or absent. Cirriform branchiac arise from the elytrophores of the $4^{\text {th }}$ and $5^{\text {th }}$ and all subsequent feet. Three ciliated cushions (ctenidia) above the notopodium. Elytra large and bear bipennate papillae on the external margin. Notosetae numerous, fine and smooth or minutely serratc. Neurosetae arc mainly compound with bidentate blades of various types but therc are usually a few simple bipennate setac as well.

Type species: Sigalion malhildae Audouin \& Milne Edwards, 1832.

Fig. 1.18. Pholoe minula. (A) Entire worm (four times natural size). (B) Head. (C, C1) Elytron and details of marginal papilla. (D) Foot. (E) Notoseta. (r) Neuroseta. Pholoe dorsipapillata. (G) Neuroseta. (H) Head. (r) Elytron. Sigalion capense. (J) Entire worm (natural size). (K) Head. (L) Foot. ($\mathrm{m}, \mathrm{m}^{1}$) Elytron and details of marginal papilla. (N) Notoseta. (o) Superior bipennate neuroseta. (P) Multiarticulate neuroseta. (Q) Serrated shaft-head. Sigalion mathildae (modified from Fauvel). (r) Foot. (s , s^{1}) Elytron and details of marginal papilla. (T) Neuroseta with a simple bladc. (U) Neuroseta with a serrated shaft-head and pluriarticulate blade.

Key to Species
1 All compound setae with pluriarticulate blades (fig. 1.18.p) S. capense

- Compound setae include some with simple blades (fig. 1.I8.t) others pluriarticulate . 2

2 Presetal lip of neuropodium well marked; bipennate marginal papillae of elytra with I5 pairs of branchcs (fig. I.I8.s ${ }^{1}$) S. mathildae

- Presetal lip of neuropodium rudimentary; bipennate marginal papillae of elytra with six to eight branches (fig. I.19.c ${ }^{1}$)
S. squamatum

Sigalion capense Day, I960
(fig. I.I8.j-q)
Sigalion capense Day, 1960: 291, fig. 4 a-f.
Body (fig. I. 18.j) about 30 mm . long, white, square in seetion. Prostomium (fig. I.18.k) oblong, rounded posteriorly. Anterior and posterior pairs of eyes very elose together. All antennae very small, median one often lost. Tentacular cirri (of setiger i) subequal. A dorsal eirrus on sctiger 3. Cirriform branchial arisc from the outer sidcs of the bases of the elytrophores from setigcr 4 onwards and from the medial sides from setiger 5. Elytrophores large, dorsally contiguous and may contain eggs. Elytra (fig. I.18.m) quadrangular with ro-15 bipennate marginal papillac $\left(\mathrm{m}^{1}\right)$ each having four to eight pairs of branches. Notopodium (fig. I.18.1) swollen distally with three eiliated cushions (ctenidia) on its supcrior margin, no obvious patch of tubereles on the anterior face, but a single large presetal papilla or stylode at its cnd. Notosetae (fig. r.18.n) long and fine with hair-like tips and oftcn with minutc serrations on the convex margin. Ncuropodium obliqucly truncatc with a eonieal acieular lobe, a vestigial presetal lip, a triangular postsetal lip, and a long ventral eirrus. Neurosctae includc thrce to six simple bipennate setac superiorly (fig. 1.18.0) and numerous compound sctae (fig. I.18.p, q) all of which have pluriartieulate blades and minutc, bidentate tips. Three to four superior oncs have stout serrated shaft-heads and the remainder have smooth shaft heads. The infcrior group includes very numerous fine eompound sctac with smooth shaft-hcads and pluriartieulate blades.

Type locality : False Bay, South Afriea.
Records: Cape (34/r8/s, 34/22/s) and Natal (29/3I/s) - not common.

Sigalion mathildae Audouin \& Milne Edwards, 1832
(fig. r.18.r-u)
Sigalion Mathildae Audouin \& Milne Edwards, 1832 : 441 ; Fauvel, 1923: 103 , fig. 39 a-l.
Body up to 150 mm . long with 200 segments. Prostomium oblong, rounded antcriorly; four small cycs in a rectangle; a pair of minute lateral antennae; two vcry long palps projceting from beneath the first setiger which is dirccted forwards and bears a long dorsal tentacular cirrus and a rudimentary ventral onc. Jaws not denticulate at the base. Notopodium (fig. i.r8.r) bulbous with a single presetal stylode and three superior etenidia; notopodial eapillaries numerous and finely
spinulose; neuropodium shorter, faintly bilobed with a superior stylode. Ventral cirrus slender. Neurosetae variable but include five forms; (a) four to five superior simple bipennate setae, (b) two to three compound setac (fig. i.I8.u) with spinous shafts and pluriarticulate bidentate blades, (c) several similar setac with smooth shafts, (d) several bidentate falcigers (fig. I.I8.t) with smooth shafts and simple blades, (e) several falcigers with bidentate tips borne on pluriarticulate tapered blades. Elytra (fig. i.I8.s) quadrilateral, thin and smooth, each bearing about 15 bipennate projections laterally $\left(s^{1}\right)$; a cirriform branchia on all elytrophores or cirrophores from the 5 th foot.

Type locality : Atlantic coast of France.
Records: Madagascar (i) - isolated spccimens.
Distribution : N. Atlantic (Scotland to Morocco (i, s) ; Mediterranean; tropical Indian Ocean (i, s) ; N.W. Japan.

Sigalion squamatum Delle Chiaje, 1841
(fig. I.I9.a-f)
Sigalion squamatum Delle Chiaje, 1841: 96; Fauvel, 1923: 104, fig. 39 m-0; Day, 1960: 290.
Body large, up to 300 mm . long with more than 200 segments. Prostomium (fig. 1.19.a) oval, longer than broad. Anterior and posterior pairs of eyes well separated. Antennae reduced to small cylindrical papillae. Dorsal and ventral tentacular cirri (on setiger i) subequal; no dorsal cirri on subsequent feet. Elytra (fig. i.ig.e) rectangular with about 15 bipennate papillae on the external margin, cach papilla (e^{1}) having 7-10 pairs of lanceolate branches. The first small cirriform gill appears on setiger 3 and gills are fully developed on both medial and lateral sides of the elytrophore from setiger 6. Notopodia (fig. I.I 9.b) swollen distally with three ciliated cushions (ctenidia) on the superior margin, a presetal papilla (stylode) at its end and a patch of conical tubercles on the anterior face. Neuropodia obliquely truncate with a conical acicular lobe separating superior and inferior groups of setae, a rudimentary superior presetal lip and bilobed postsetal lip but no apical stylode. Ventral cirrus slender. Notosetae long and hair-like, minutely serrate on the convex margin and terminally bidentate (fig. i.io.d). Neurosetae include a superior group of about six simple bipectinate sctae (a) and three types of compound setae, (b) a group with serrated shaft-heads and pluriarticulate blades, (c) about six with finely serrated shaft-heads and simple bidentate blades (fig. i.I9.e), (d) a very numerous fine inferior group with faintly serrate shaft-heads and very long, pluriarticulate blades (fig. I. Ig.f). All compound setae have bidentate tips (if not broken).

Type locality: Naples.
Records: Cape (34/18/s) - a few specimens.
Distribution : Mediterrancan (s); Scotland (s).

PSAMMOLYCE Kinberg, 1855
Body vermiform. Prostomium with a median antenna borne on a/eeratophore without ctenidial flaps and two lateral antennae often fused to the first setiger. Tentacular segment with two bundles of simple capillaries. Parapodia with ctenidia. Dorsal cirrus only on the third setiger. Cirriform branehiae on all except a few anterior feet. Notosetae as spinulose capillaries neurosetae compound and falcigerous. Elytra coated with sand.

Type species: Psammolyce flava Kinberg, 1855.

Key to Species

I Papillae on elytra jointed (fig. I.1g.i1). Ventral surface with subspherical tubercles

- Papillae on elytra not jointed. Ventral surface with elongate papillae. . . P. petersi

Psammolyce articulata Day, 1960

(fig. I.I $9 . \mathrm{g}^{-1}$)
Psammolyce articulata Day, 1960: 293, fig. $4 \mathrm{~g}-1$.
Body (fig. I.19.g) about 50 mm . long for 100 segments and rather flattened. Ventral surface covered with minute subspherical tubereles. Prostomium (fig. I.Ig.h) with lateral antennae small and not fused to the tentacular segment. Anterior pair of eyes ventral below the antennae ; seeond pair dorsal. First pair of elytra pearshaped without projections or incisions, second pair reniform, succeeding ones (fig. 1.19.i) with antero-medial lobes and posterior lappets (i^{1}), posterior ones triangular with posterior lappets. All elytra exeept the first bear long jointed papillae. Dorsal cirrus on setiger 3 large but not mueh longer than the neuropodium. Notosetae (fig. I.19.k) fine with well marked serrations. Notopodium with elongate papillac. Neurosetae (fig. I.19.1) with serrated shaft-heads and simple bidentate blades. Neuropodium (fig. I.I9.j) with rows of digitiform papillae near the apex. Ventral cirrus aceompanied by two to three long hair-like papillae. Ventrum and bases of the parapodia eovered with spherical papillae.

Type locality: False Bay, South Africa.
Records: Cape (34/18/s) - one specimen.

Psammolyce petersi Kinberg, 1858

Psammolyce petersi Kinberg, 1858: 31, pl. 9, fig. 43.
Body 65 mm . long with more than 70 segments. Prostomium broad posteriorly with all four eyes visible, the posterior pair being the larger and wider apart. Median antenna slender and borne on a large conical cirrophore which is longer than the prostomium. Pharynx with $9+9$ marginal papillae. Notopodium small with a

Fig. 1.19. Sigalion squamatum. (A) Head. (B) Foot. (C, c^{1}) Elytron and details of marginal papilla. (D) Tip of notoseta highly magnificd. (E) Neuroseta with simple bidentate blade. (F) Neuroseta with pluriarticulate blade. Psammolyce articulata. (c) Entire worm (half natural size). (iI) Head. (I, I^{1}) Eighth elytron and details of posterior margin. (J) Foot. (к) Notoseta. (L) Neuroseta. Thalenessa oculata. (m) Entire worm (half natural size). ($\mathrm{N}, \mathrm{N}^{1}$) Elytron and details of marginal papilla. (o) Head. (P) Neuroseta. (Q) Foot.
tuft of very fine serrulate setae. Ncuropodium longer and bearing compound setae with smooth shafts and bidentate apices. Lower surface of foot with numerous slender papillae. Elytra do not cover the middle of back which is sandy. First pair of elytra with anterior and inner margins straight ; later ones reniform ; all elytra sandy with adhesive papillae and hemispherical tubercles bearing long fringes.

Type locality : Mocambique Is.
Distribution: Mocambique Is. (i) - a single record.

$$
\begin{aligned}
& \text { Euctailce. We Darbocex } 1900 \\
& \text { THALENESSA Baird, } 1868
\end{aligned}
$$

Body elongated, tapered and somewhat flattened. Segments very numerous. Prostomium fused to the forwardly produced tentacular segment and bears two pairs of eyes and three antennac. Laterals arise either from the prostomial margin or the base of the tentacular segment. Median antenna without a ceratophore or basal lappets. Two pairs of tentacular cirri with one bundle of simple setae at the base. A prebuccal flange. Palps separated by a basal sheath from the tentacular segment. A dorsal cirrus on setiger 3 only. Elytra on sctigers 2, 4, 5, 7 and alternate segments to about the 27 th then on all succeeding segments. Dorsal cirriform branchiae on all segments from about the 5 th. Notopodia with three dorsal etenidial ridges. Notopodia and neuropodia with bract-like lamellae bearing digitiform stylodes. Notosetae are spinulose capillarics; neurosetae compound and falcigerous with simple or pluriarticulate blades. No simple neurosetac.

Type species: Sigalion-edwardsi-Kinberg, 1855°

> Key to Species ormit-dendrof rise is a symdreyple

I Tentacular segment well developed with the tentacular cirri terminal . . T. dendrolepis*

- Tentacular segment reduced to a prebuccal flange with fine setae and tentacular cirri attached to the base of the palp (fig. 1.19.0) T. oculata

Euthialencusa Thalenessaoculata (Peters, 1854) (ide Pettictoric 1970)

(fig. i.19.m-q)

Sigalion oculatum Peters, 1854: 610.
Euthalenessa insignis Ehlcrs, 1908 : 52, pl. I figs. 10-1 1 .
Body (fig. I.I9.m) up to 200 mm . long with more than 200 segments. Colour white with brown marks on elytra, a band across dorsum of setiger 12 and a fainter ont on setiger 13. Prostomium (fig. I.19.0) broader than long with a median ridge. Anterior pair of eyes well separated from posterior pair and slightly larger. Antennae short and subequal; all arise from the base of the tentacular segment immediately in front of the prostomium, the laterals slightly in front of the median. \& Setae of tentacular segment few, fine and arise from the groove formed by the prebuccal flange. Palps very long and slender. Dorsal tentacular cirrus shorter than the ventral. Dorsal cirrus on setiger 3 short. Elytra on alternate segments to sctiger 27

Neureoctäc arius belivecos the tex tentaso.e cirri. $<$ and then on all segments. First two elytra rounded and without marginal papillae;
later ones (fig. r.rg.n) fringed, and reniform. There are about 15^{-20} multifid papillae on the external margin, each papilla (n^{1}) having about eight filaments.

Cirriform branchiae on all segments from the $4^{\text {th }}$. Three eiliated etenidial ridges on all notopodia. Notopodium (fig. r.19.q) with presetal and postsetal lamcllae anteriorly bearing three to four stylodes each, later only one. Neuropodium stout with a blunt apex, projecting aciculum and two to threc lamellac eaeh of whieh has about thrce stylodes antcriorly but later only one or none. Notosetac numerous, fine and all well serrated. Neurosetae (fig. r.ig.p) all compound and falcigerous. The first few feet have setac with pluriartieulate blades but these decrease and most neurosetae in the middle of the body have simple blades. Shaft-heads faintly serrated. Ventral cirrus well developed reaehing the base of the neurosctae. Ventrum smooth.

Type locality: Moeambique.
Records: Cape (from $33 / \mathrm{I} 7 / \mathrm{s}$ and $33 / \mathrm{I} 8 / \mathrm{i}$, s to $33 / 28 / \mathrm{s}$) ; Natal (29/31/s); Moeambiquc (23/35/s).

Distribution : ? Endemie.

STHENELAIS Kinberg, 1855

Body vermiform. Prostomium rounded; median antenna mountcd on a ceratophore with basal lappets. Lateral antennac more or less fused to first setiger. Tentacular segment with two bundles of capillary setae. No dorsal cirrus on setiger 3. Dorsal etenidia and eirriform branehiae present. Notosctac as spinulose eapillaries. Neurosetae mainly eompound and faleigerous but often include a few simple spinulose eapillaries.

Type species: Sthenelais helenae Kinbcrg, 1855.

Key to Species

1 Ventral surface smooth; a few simple serrate setae in the superior, part of the neuro-

- Ventral surface papillose; no simple serrate setae in the superior part of the neuro

2 Outer edges of all elytra with simple digitiform papillae:. . . . S. boa
- Outer edges of anterior elytra with irregular processes, posterior clytra with an excision
S. limicola

Flimbriojthenclais -Sthenelais papillosa Day, $1960 \quad$ finde Pathobone
(fig. 1.20.a-e)
Sthenelais papillosa Day, 1960: 289, fig. $3 \mathrm{c}-\mathrm{j}$.
Body about 40 mm . long with numerous segments; eolour palc with speekled clytra. Prostomium (fig. 1.20.a) rounded with a median antenna I. 5 times the prostomial length. Basal lappets of median antenna rather small. Setiger I with a long dorsal tentacular cirrus, a shorter ventral eirrus and a presetal bract. Elytra
(fig. r.20.b) pale and reniform with minute unieellular marginal papillae, and tiny eushion-likc papillae on the surface. Notopodium (fig. I.20.e) with six short stylodes. Ncuropodium with two to three apieal stylodes and a low presetal lip edged with about eight elongate papillae. The ventral surface of the neuropodium bears numcrous spherical papillae spreading from the ventral surface of the body. Notosetae (fig. I.20.d) are numerous capillarics each with a finely serrated margin. Neurosctae lack superior serrate simple setae and the numerous compound faleigers (fig. I.20.e) have lightly serrated shaft-heads and long simple blades sometimes with two to three weak joints. None with long pluriarticulate blades.

Type locality: False-Bay, South-Afriea: Off Sheliand Do. Scothond)
Regords: Cape (34/i8/s).

Sthenelais boa (Johnston, 1839)
(fig. I.20.f-l)
Sigalion Boa Johnston, 1839: 439.
Sthenelais boa: Fauvel, 1923: 110, fig. 4^{1} a-1; Fauvel, 1953: 61, fig. 28 a-k.
Body up to 200 mm . long with 200 scgments. Colour grey. Prostomium (fig. 1.20.g) rounded; a long smooth median antenna with large basal lappets on the very stout ceratophorc. Setiger i with a long dorsal cirrus, a shorter ventral cirrus and a presetal bract. Sctiger 3 with a cirrophore but no dorsal cirrus. Notopodia (fig. I.20.i) with three ctenidia at base and three to four digitiform papillae at apex. Notosetae long, fine and spinulose. Ncuropodium eonical with an apieal papilla and three lamcllae, one superior, onc inferior (papillose) and one posterior and bilobed. Neurosetae of several kinds: (a) two to three superior, simple bipectinate setae (fig. I.20.j), (b) numerous eompound setae with blades short and bidentate (fig. I.20.k), (c) an inferior series of compound sctac with multiarticulate blades ending in bidentate tips (fig. 1.20.1). Elytra reniform and overlapping, with a simple external fringe of long papillae; surface eovered with minute rounded tubereles and usually with an arc of brown pigment on the postero-medial margin.

Type locality : English Channel.

Records: South West Africa (26/15/i and 28/i6/s) around the Cape (34/18/i, s) to Natal (29/3 I/i) ; Moeambique (26/32/i) ; Madagascar (s) -fairly eommon in sand among stones.

Distribution : Atlantic from Seotland (i, s), the English Channel (i, s) and North Carolina (s) soutlı to Senegal (s) ; Mediterranean ; Persian Gulf (s).

Fig. 1.20. Sthenelais papillosa. (A) Head. (B) Elytron. (C) Parapodium with gill shown by transpareney. (D) Tip of notoseta. (E) Neuroseta. Sthenelais boa. (F) Elytron with gill attached below. (G) Head. (H) Entire worm (natural size). (I) Parapodium. (J) Supcrior bipectinate ncuroseta. (k) Compound neuroseta with a simple blade. (L) Compound neuroseta with a multiarticulate blade. Sthenelais limicola. (M) Head. (N) Anterior elytron. (o) Parapodium. (P) Posterior elytron. (Q) Neuroseta with a simple blade. (R) Neuroseta with a multiarticulate blade.

Sthenelais limicola (Ehlers, 1864)
(fig. r.20.m-r)

Sigalion limicola Ehlers, 1864 : 120, pl. 4 figs. 4, 7, pl.5.
Sthenelais limicola: Fauvel, 1923: 113, fig. 42 a-g.
Body up to 80 mm . long with numerous segments. Colour pale with diffuse brownish patches on the elytra. Prostomium (fig. I.20.m) rounded with four eyes and a median antenna arising from a long ceratophore with large basal lappets. Setiger I with a long dorsal tentacular cirrus, a small filiform ventral cirrus and a very large presetal bract. Palps very long and slender. Setigers 2-4 bear numerous cirriform stylodes on both rami but these are reduced on subsequent feet. The $4^{\text {th }}$ and subscquent feet (fig. 1.20.0) bears a cirriform gill and three saucer-shaped ctenidia. Notopodia with three to four digitiform stylodes. Notosetae are numerous finely spinulose capillarics. Neuropodia stout, cach with a superior lobe, a single apical stylode and a posterior bract. Neurosetae of three kinds: (a) two to three bipectinate simple setac; (b) a few falcigerous setae with simple bidentatc blades (fig. 1.20.q) ; (c) numerous compound setac with long pluriarticulate blades (fig. r.20.r). Elytra overlap and cover the whole back; the first II (fig. I.20.n) have a few pointed marginal projections but cach of the posterior ones (fig. 1.20.p) has a deep excision on the external margin and lacks marginal projections.

Type locality: Italy.
Records: Cape (30/5 $5 / \mathrm{d}, 34 / \mathrm{I} 8 / \mathrm{s}, 34 / 2 \mathrm{I} / \mathrm{s}, 34 / 23 / \mathrm{s}$) - fairly common.
Distribution : North Atlantic (Sweden (d), Scotland (s) and North Carolina (s) to Morocco (s) and tropical western Africa Brazzaville Congo; Mediterranean.

LEANIRA Kinberg, 1855
(Characters cmended by Hartman, 1965)
Body vermiform. Prostomium rounded, with or without cyes. Median antenna on a ceratophore without basal lappets. Lateral antennae often fused to the tentacular segment. Tentacular segment with onc bundle of setac. A dorsal cirrus sometimes present on setiger 3. Cirriform branchiae arise from the elytrophores on all except a few anterior feet. Elytra on alternate segments anteriorly but on every segment after the 25 th. Notosetae as smooth or spinulose capillaries. Neurosctae mainly compound and spinigerous, with the blades appearing barred and sometimes a few superior simple serrated sctae as well.

Type species: Leanira quatrefagesi Kinberg, 1855.

Leanira hystricis Ehlers, 1874: 35, pl. 2 figs. 5-11 ; Fauvel, 1923 : 118, fig. $43 \mathrm{~h}-\mathrm{m}$; Day, 1963 : 360.
Body about 40 mm . long with $50-60$ sctigers. Prostomium (fig. I. 2 I.a) rounded. No eyes. Median antenna short, threc-jointed but lacks basal lappets. Lateral antennae similar to the median but fused basally to the tentacular segment which bears a few fine setae, a long tentacular cirrus, a small ventral one and a large perebuccal flange which ensheathe the bases of the very long palps. No dorsal cirrus on setiger 3. Notopodia with three to four stylodes on the setigers 2 and 3 but only one large sausage-shaped one thereafter (fig. I.21.0). Neuropodia with a similar arrangement of stylodes. Notosetae as fine spinulosc capillarics. Neurosetae compound with smooth shafts and blades with rectangular internal structures which give a laddered effect (fig. I.2I.d). No superior simple serrated neurosetae. A cirriform gill on all sctigers from the 24 th-3oth onwards. Elytra (fig. I.2I.b) small, rounded, smooth and transparent; they lack fringes and leave the middle of the back bare.
Type locality: Deep Atlantic, S.W. Ircland.
Records: Cape (33/16/a ($\mathrm{a}=$ abyssal), $33 / \mathrm{r} 7 / \mathrm{vd}, 34 / \mathrm{I} 6 / \mathrm{a}, 34 / \mathrm{y} / \mathrm{a}$) and Natal (29/3I/d) - a few specimens only.

Distribution : N. Atlantic from W. Scotland (a) and W. Ireland (vd) to Azores (a).

STHENOLEPIS Willey, 1905
Generally similar to Leanira (see above) but a pair of basal lappets present on the eeratophore.

Type species: Leanira japonica McIntosh, 1885.
Key to species

-Sthenolepis japonica (McIntosh, 1885)'
Leanira japonica McIntosh, 1885: 154, pl. 22 fig. 8, pl. 24A figs. i-2;Fauvel, 1953: 69, fig. 33 abb.
Body up to 50 mm . long with 100 segments. Colour pale in alcohol. Prostomium rounded with a long tapered median antena mounted on a ceratophore with well developed basal lappets. Lateral antennae fused to the base of the tentacular scgment. Palps long and tapered. Two pairs of eyes, of which the anterior pair are the larger and arc situated far forward below the base of the median antenna. No dorsal cirrus on setiger 3. Elytra on setigers 2, 4, 5, 7 and alternate segments
anteriorly and on all segments from setiger 27 onwards. Individual elytra oval to reniform, translucent with smooth surfaces and plain margins without papillae or notehes. Cirriform gills on all setigers from the $5^{\text {th }}$ onwards; they arise from the elytrophores or their homologues on non-elytrigerous segments. Dorsal surface of notopodium with three saueer-like ctenidia. Anterior feet with three stylodes on the notopodia and five on the neuropodia; posterior feet with only one to two on the neuropodia. Notosetae are eapillaries, some plain and others with serrated blades. Neurosetae may include one to two simple serrated superior setae on some feet but most of the setae in all feet are compound and spinigerous with longer or shorter "laddered" blades. Ventral cirrus single. Ventrum smooth.

Type locality: Kobe, Japan.
Records: Mocambique (24/35/d). IE*dagaicas-ridn Pmorneauv 1974
Distribution : Tropical Indo-west -Paeifie from Japan (s), Indian Ocean (d, vd) to Gulf of Oman. SoLomon is. (s)
-Sthenolepis incisa (Grubs, 1877) =E.dC.osiCeanvira civeina (Gr.) Sthenelais incisa Grubs, 1877: 519.
Sthenelais simplex Ehlers, 1887 : 60, pl. 13 figs. 2-3; pl. 14 figs. 1 -6.
Leanira incisa: Augener, 1918: 107.
Body up to 100 mm . long. Prostomium rounded, without eyes. Median antenna short and two-jointed with minute lappets on the eirrophore. Lateral antennae as long as the median and fused to the first setiger. Elytra smooth, without marginal papillae but with a notch on the external margin. Notopodium with several tapered stylodes. Neuropodium with a presetal lip and about nine tapered stylodes. Notosetae capillary and include both smooth and serrated forms. Neurosetae of two types: (a) two to three simple superior setae with bipeetinate blades; (b) numerous compound spinigerous setae with smooth shaft-heads and tapering blades bearing two rows of rectangular structures which give a laddered effect when viewed by transparency.

Type locality: Dredged off Congo coast.
Records: Not recorded from southern Africa.
Distribution : Angola (s) ; Brazzaville, Congo (s).

Sthenolepis tetragona (Oersted, 1845) (fig. I.2I.e-i)

NEt S. tarragona fido Petivone 1970
p. 370

Sigalion tetragonum Oersted, 1845: 404.
Leanira tetragona: Fauvel, 1923: 117 , fig. 43 a-g; Day, 1963: 360.
Body up to 80 mm . long with so setigers. Prostomium (fig. i.2I.f) rounded, without eyes. Median antenna cylindrical, with a very long terminal joint, a short basal joint and a very short eeratophore with a pair of etenidial flaps. Lateral antennae possibly fused to the tentacular segment which also bears a very long tentacular cirrus, a shorter ventral one and prebuceal flanges ensheathing the bases
of the long palps. A dorsal eirrus on setiger 3. Cirriform branehiae on all segments from the 5 th or 6th. Elytra (fig. I.21.e) with a few delicate papillae on the external margin. Notopodium (fig. I.2I.g) with three saucer-like etenidia and five to seven slender stylodes. Neuropodium with a bluntly triangular presetal lobe and a series of IO-I2 long slender stylodes at the origin of the setae. Notosetae (fig. I.2I.h) are fine spinulose eapillaries. No simple serrated setae in the neuropodium; all are eompound and spinigerous. The middle series are stout with smooth shaft-heads, but the superior and inferior ones (fig. 1.21.i) are slender with a single eusp in the shaft-head. Blades weakly ornamented internally, giving an obliquely laddered effect.

Type locality: Norway.
Records: Cape (33/r 7/a) - only two speeimens.
Distribution: Northern Atlantie from Greenland (d, a) and Sweden (d, vd) to Seotland (d) ; Mediterranean (vd).

Fig. 1.2 I. Leanira hystricis. (A) Head.
(B) Elytron. (c) Foot. (D) Ncuroscta. Sthenolepis tetragong. (E) Elytron. (F) Head. (G) Foot. (H) Notoseta. (I) Neuroseta.

Family PALMYRIDAE Kinberg, 1858
($=$ CHRYSOPETALIDAE Ehlers, 1864)
Small elongated and rather flattened worms, rectangular in section and somewhat brittle. Dorsal surface covered with palcae. Prostomium sunken between the anterior segments; it is rounded with one to two pairs of eyes, one to three short anntennae, a pair of small ventral palps and may have an anterior facial tubercle or a posterior caruncle. Peristomial segment reduced; it lacks neurosetae but bears notosetae and one to two pairs of tentacular cirri. Parapodia biramous; notopodium with a dorsal cirrus and a transverse row of notosetae usually expanded to form paleae which cover the dorsum. Ncuropodium with a ventral cirrus, and a compact setigerous lobe with compound, usually falcigerous setae.

Records from southern Africa

$$
\begin{aligned}
& \text { Bhawania goodei Webster . . } 26 \mathrm{As}, 36 \mathrm{Ci}, 50 \mathrm{Cs}, 53 \mathrm{Mi} \\
& \text { as Bharwania cryptocephala Gravier . }{ }_{27} \mathrm{Mi},{ }_{35} \mathrm{Ci}, 40 \mathrm{Ni} \\
& \text { Paleanotus chrysolepis Schmarda . } 4 \mathrm{Ci}, 2{ }_{1} \mathrm{Ci}, 26 \mathrm{Ws}, 45 \mathrm{Ni}, 50 \mathrm{Cs} \\
& \text { Paleanotus debilis (Grube) } \\
& \text { as Chrysopetalum debile Gravier . } 45 \mathrm{Pi} \\
& \text { Dysponctirst bider tatio Ruderity (i) frde Itartm.-Schi. } 1774
\end{aligned}
$$

BIOLOGICAL NOTES
The palmyrids are minute worms and not often seen. Their feeding habits are unknown. Bhawania is found in crevices of rocks or coral while Paleanotus is occasionally found in kelp holdfasts or in bryozoan tufts below tide marks. P. heteroseta the American species lives on the surface of shelly sandbanks.

THE MAIN DIAGNOSTIC CHARACTERS

The most important characters are the structures on the head and the nature of the paleae. The head is small, its appendages minute and usually covered by paleae. In Bhawania the whole prostomium is sunk back and covered by a fold of skin as well as palcae, but in Paleanotus it is clearly visible when the paleae are pushed aside. A facial tubercle projecting from the anterior margin of the prostomium has been describcd by Hartman (1954) in Palmyra and a caruncle is present in some species of Paleanotus if not in all. Usually there are two pairs of eyes but these may be lacking ; antennae may similarly be reduced from three to one. Palps may be well developed or reduced to mere papillae. The number of tentacular cirri is not always clear as they are not much larger than the dorsal and ventral cirri of succeeding segments. The dorsal and ventral cirri of the first or peristomial segment form two pairs of tentacular cirri but the dorsal cirrus of the second segment may also be elongated giving three pairs and sometimes the ventral cirrus too giving four pairs. Since the differences in size between tentacular cirri and normal cirri are not great the number of "tentacular" cirri does not appear to be a reliable character.

The notosetae arisc from a dorsal boss or ridge and most of them are usually expanded to form a transverse row of paleae; however, the extreme lateral ones near the dorsal cirrus are poorly developed and usually pointed. These have been
reported as a second type of notoseta. The ornamentation of the paleae is constant and provides good specific eharacters.

The neurosetae are all compound but the blades vary in length and degrec of taper - short falcigers, long falcigers and even spinigers have been reported. Since the superior neurosetae always have longer blades than the inferior ones only well marked differenees are important.

Key to Genera

1 A single median antenna. A large facial tubercle in front of the prostomium PALMYRA*

- Three antennae. No facial tubercle

2
2 Body short. Head visible between the palcae .
3

- Body long. Head completely concealed under a dorsal fold of skin bearing paleae

BHAWANIA
3 Notosetae few and not markedly flattened. One pair of eyes or none DYSPONETUS*

- Notosetae numerous and obviously flattened to form paleac covcring most of the dorsum. Two pairs of eyes

HETEROPALE ${ }^{4}$ 4 Alternate ribs of paleae ornamented with dises HETEROPALE*

- Blunt cusps or knobs on ribs of paleae PALEANOTUS

PALEANOTUS Schmarda, 186 r (ineluding CHR YSOPETALUM Ehlers, 1864)

Body short with relatively fow segments. Head visible between the paleae. Prostomium with a pair of eirriform ventral palps, two pairs of eycs and threc antennae. A carunele or nuehal fold may be present bchind the prostomium. The peristomial segment and the next are fused and pressed close against the sides of the prostomium; both lack ncurosetac but have palcae and dorsal and ventral cirri, those of the peristomial segment being elongated to form tentacular cirri. Normal scgments biramous, the notopodium having a dorsal eirrus and a stout boss from which the broad flattened paleac radiate over the dorsum. Neuropodium with a ventral cirrus and a setigerous lobe bearing a tuft of faleigerous or spinigerous neurosetae.

Type species: P. chrysolepis Sehmarda, 186ı.

Key to Spectes

Paleanotus chrysolepis Schmarda, 1861

$$
\text { (fig. 2.I. } 1-\mathrm{m} \text {) }
$$

Paleanotus chrysolepis Schmarda, 186ı: 163, pl. 37 figs. 326-329; Day, 1957: 66.
Body 12 to 15 mm . long with about 40 segments. Prostomium with a pair of lateral antennac extending forward and a shorter median antenna arising between the two pairs of eyes. Carunele doubtful. Palps stout. Paleae not covering the eentre of the dorsum. Paleae nearest the mid-dorsal line are symmetrical but the rest
(fig. 2.r.l) are asymmetrieal with the apex nearer the inner margin. Eaeh has 16 -20 ribs of equal size ; the rib on the outer margin is coarsely beaded but the others are finely beaded with minute transverse striae between them. The outermost paleac next the dorsal eirrus are slender and imperfectly formed. Neurosetae (fig. 2.i.m) have blades of varying length but all are unidentate and faleigerous.

Type locality : "Cape of Good Hope".

Regords: From South West Afriea (26/5/s) around the Cape (33/88/i and 34/ $\mathrm{I} 8 / \mathrm{s}$) to Natal ($29 / 3^{\mathrm{r}} / \mathrm{i}$) and Madagasear (s) - a few speeimens on roeks at extreme low tide or below. Mocanbique (Xai-Xeuri)

Distribution : Chile ($24^{\circ} \mathrm{S}-\mathrm{i}$) ; California (s) to Alaska; S.W. Australia.

Paleanotus debilis (Grube, 1855) (fig. 2.I.g-k)

Palmyra debilis Grube, 1855: 90.
Chrysopetalum debile : Fauvel, 1923 : 123, fig. 44 r-u.
Chrysopetalum ehlersi Gravier, 1901: 260, pl. 10 figs. 150-151, text-fig. 276 .
Palaenotus debilis: Day, 1962: 635 (synonymy).
Body (fig. 2.I.g) about io mm. long with 40 segments. Prostomium (fig. 2.i.h) oval with four distinet eyes, a tapered median antenna and a longer annulated pair of laterals extending forwards. Palps stout. Peristomial segment with very few paleae and two pairs of tentaeular eirri. Next segment fused to the peristome but dorsal and ventral eirri not elongated. A raised nuehal fold or "carunele" is present behind the prostomium. Paleae just meet over the mid-dorsal line. The central palea of eaeh row (fig. 2.1.i) is symmetrieal but the rest are asymmetrieal with their apiees inelined towards the eentral one. Each palea (fig. 2.I.j) has about six to eight narrow inner ribs which are very faintly beaded or almost smooth and two stout outer ones whiel are coarsely beaded or cusped. Ncurosetae (fig. 2.I.k) faleigerous with unidentate blades of even length.

Type locality: Mediterranean Sea.
Records: Mocambique (26/32/i, 24/35/d) - rare.
Distribution: N. Atlantie (Franee to Moroeeo) ; Mediterranean (s) ; Red Sea (i) ; tropical Indian Oeean (i).

BHAWANIA Schmarda, 186ェ
Body elongate with very numerous segments eompletely eovered by golden brown paleae. Head small and hidden by a fold bearing the paleae of anterior segments between whieh the head is embedded. Prostomium with two pairs of eyes, three antennae and a pair of palps. First setiger (or tentacular segment) with notosetac, neurosetae and dorsal and ventral eirri. Paleae arranged in transverse rows whieh eompletely eover the dorsum. Dorsal eirri retraetile into stout eirrophores anterior

Fig. 2.1. Bhawania goodei. (A) Entire worm (twice natural size). (B, B ${ }^{1}$) Head with the dorsum slit and paleae removed from right side. (c) Foot. (D) Palca. (E, F) Superior and inferior neurosetae. Paleanotus debilis. (c) Entire worm (twice natural size). (i) Head. ($\boldsymbol{\tau}$) Foot. (J) Palca. (к) Neuroseta. Paleanotus chrysolepis. (L) Palea. (м) Neuroseta.
to whieh is a tuft of small, rudimentary paleae. Neuropodium with a ventral eirrus and a setigerous lobe bearing a fan of compound setac with blades of varying length. The tips are indistinct superiorly but obviously falcigerous inferiorly.

Type species: Bhawania myrialepis Sehmarda, 186ı.

Bhavania goodei Webster, 1884

(fig. 2.1.a-f)
Bhawania goodei Webster, 1884: 308; Day, 1953:407.
Bhawania cryptocephala Gravier, 1901: 263, pl. го figs. 152-156.
Body (fig. 2.I.a) elongate, depressed, square in seetion and brittle. Length up to 50 mm . with over 300 segments and completely covered with golden brown palcae. Prostomium (fig. 2.i.b) small, rounded and retraetile, normally coneealed in a
poeket above the mouth. Four eyes, three antennae and a pair of palps. Caruncle not distinguished. First setigerous or tentacular segment small but with notosetae (paleae), neurosetae and dorsal and ventral cirri. Body segments with notopodia (fig. 2.I.e) as ridges extending almost to the mid-dorsal line and bearing rows of about 30 large paleae and a few small rudimentary ones in front of the dorsal cirrophore. Dorsal eirrus small and normally retraeted into the eavity of the eirrophore. Neuropodium an obliquely truneate lobe with a well developed ventral eirrus on a short eirrophore. Paleae (fig. 2.1.d) petaloid with rounded tips,* about 20 longitudinal ridges and fine transverse striae. The lateral and three central ridges are mueh stronger than the rest and bear a series of low rounded knobs or beads. Rudimentary external paleae relatively slender but essentially similar in strueture. Most neurosetac (fig. 2.1.f) are heterogomph faleigers but the superior ones (fig. 2.I.e) have long, effeetively spinigerous blades.

Type locality: West Indies.
Records: Cape (from 34/18/i, s to 32/28/i) ; Natal (30/30/i, 29/3I/i) ; Mocambique ($26 / 32 / \mathrm{i}, 24 / 34 / \mathrm{s}$) ; Madagasear (i).

Distribution: Red Sea (i) ; Indo-Pacifie to Japan (i); Tahiti (i); tropical West Africa (i) ; Moroceo (s) ; West Indies and North Carolina (s).

Family SPINTHERIDAE Augener, 1913
Body oval, eonvex dorsally and flattened ventrally. Found on sponges. Notopodia forming long radiating ridges on the dorsum with delieate lamellac supported by spinclike notosetae. No branehiae. Neuropodia eylindrieal bearing one or more stout compound hooks. Prostomium dorsal, ineonspieuous with a globular antenna and usually two pairs of eyes. Mouth ventral with an unarmed eversible proboseis.

[^1]
Family AMPHINOMIDAE Savigny, 1818

Body stout with relatively few segments and often square in seetion. Prostomium usually sunk between the anterior segments and consists of anterior and posterior lobes. The anterior lobe is rounded dorsally, grooved ventrally and bears a pair of cirriform palps laterally and the first pair of eyes and two antennac dorsally; the posterior lobe is square with the third (median) antenna, the second pair of eyes and a posteriorly projecting lobe or carunele which usually has a median keel and pleated sides. Pharynx unarmed. Parapodia biramous. Sctac typically brittle and tubular containing poison. Notopodia with one or more dorsal cirri, branchiac and simple notosetae. Ncuropodia with a single ventral cirrus, a setigerous lobe and usually simple neurosetae.

Records from southern Africa

BIOLOGICAL NOTES
Most of the amphinomids are sluggish carnivores feeding on soft-skinned attached animals such as sponges, hydroids and ascidians. They lack jaws but the cushion-like lips and the evaginable buceal cavity allows them to suck out the juices of their prey. Hipponoa indeed is almost parasitic on Lepas and its hooked neurosetae form efficient elinging organs. Pherecardia, on the other hand, is an active predator and has been
recorded as ingesting a Marphysa almost as large as itself in little more than an hour.
Amphinomids are popularly known as "fire worms" and have hollow calcareous sctae filled with poisonous secretions. When irritated the worm ereets its sharp setae which break off at a touch releasing their poisonous contents into the wound. Eurythoe complanata in particular is best collected with forceps. Most species oceur in warm or tropical seas on rocks, coral or other hard substrata covered with attached organisms. Amphinome itsclf lives on driftwood; Eurythoe lives under stones or dead coral; Euphrosine lives on sponges and in crevices but Chloeia seems to be much more active. It swims well and is occasionally taken in trawl nets and from the stomachs of fish.

THE MAIN DIAGNOSTIC CHARACTERS

Useful discussions of the family will be found in Potts (1909) and Horst (1912). Generic distinctions are based on the nature and size of the caruncle, the structure of the gills, the number of dorsal cirri and, to a lesser extent, the setae.

The caruncle has two basic parts which may be variously developed; there is a median ridge or keel and lamellate lateral folds which may be very narrow so that only the keel is obvious or the lateral folds may be expanded so that the whole caruncle is very broad and the lamellac obvious. The caruncle is attached as far back as setiger I or 2 but the posterior end often projects frecly over setiger 4 . There may be one or more branching branchial trunks per notopodium. In Chloeia there is a single gill with a main axis and regular, bipinnate lateral branches; in other genera there may be one, two or scveral branchial trunks but the branching is irregular without an obvious main trunk; such gills are described as "bushy". There may be one or two dorsal cirri per notopodium. The setae are hollow and contain poison. The segmental development of the setae is variable so that only major differences are important. This is particularly true in the genus Chloeia where the development of a lateral fork and the serration of the harpoon-setae changcs along the body.

Key to Genera

I Neurosetae as retractile hooks (fig. 3.1.a-c). Caruncle absent. Branchiae bushy
HIPPONOA (p. 122)

- Ncurosetac stout and acicular. Caruncle small and heart-shaped (fig. 3.1.g). Branchiac bushy AMPHINOME (p. 122)
- Ncurosctac neither acicular nor retractile 2

2 Branchiae bipinnate each with a main axis and paired lateral branches (fig. 3.1.n). Ncurosetae forked CHLOEIA (p. 123)

- Branchiac bushy without a main axis. Neurosetac cither forked or uniramous . . 3

3 Branchiae limited to anterior scgments 4

- Branchiae on all scgments after the first two to four. No hooks on setiger 1 . . 5

4 'Two stout hooks in the first setiger PARAMPHINOME*

- No stout hooks in the first sctigcr PSEUDEURYTHOE (p. 124)

5 Caruncle elongated with the narrow lateral folds more or lcss concealed by the median ridgc. Neurosetae forked .

- Caruncle broad with well developed lamellate lateral folds. Neurosetae either forked or uniramous
6 Notosetae and branchiae in transverse rows across the dorsum (fig. 3.1.u). Body oval
EUPHROSINE (p. 126)
- Notosetae and branchiae in compact lateral tufts. Body elongated and square in scction

EURYTHOE (p. 127)

7 Two dorsal cirri per notopodium. (Neurosetac forked) . . NOTOPYGOS (p. 130)

- One dorsal cirrus per notopodium 8

8 Neurosetae with a spur at the base of the blade. Two branchial trunks . . HERMODICE*

- Neurosetae not spurrcd but tips bent. A single branchial trunk. PHERECARDIA (p. 131)

HIPPONOA Audouin \& Milnc Edwards, 1833

Body fusiform, somewhat flattened with 25-40 segments. Prostomium without a posterior carunele. Three antcnnae and two digitiform palps. Four cyes. Mouth ventral. Parapodia biramous; notopodium with a tapcred eirrus and a bundlc of eapillary setae; neuropodium reduccd, and retractile with a papilliform ventral cirrus and a fcw hooked acicular setac. Branchiae bushy, onc per notopodium.

Type species: Hipponoa gaudichaudi gaudichaudi Audouin \& Milne Edwards, i833. Key to Species
I Neuropodial hooks with the minor tooth straight. Notosetae include some with bifid tips
H. gaudichaudi gaudichaudi*

- Neuropodial hooks with the minor tooth curved. Notosetae all with straight tips
H. gaudichaudi agulhana

Hipponoa gaudichaudi agulhana subsp. nov.

(fig. 3.I.a-c)
Body (fig. 3.I.a) fusiform, depressed, about 17 mm . long for 28 scgments. Prostomium (fig. 3.I.b) bluntly triangular with four wcll separated cycs in a rcetangle. Mcdian antenna longer than the anteriors and insertcd well back behind the cyes. Palps similar to the anterior antennac but inscrted ventro-laterally. Branehiac (fig. 3.1.c) buslyy and inscrted behind the notosetae from sctigcr 3 onwards. Dorsal eirri tapercd and postcro-ventral to the notosctac. Ventral cirri as papilliform swellings mediad to the neuropodial hooks. Notosetae (fig. 3.I.d) are bundles of tapered eylindrical capillaries throughout without a trace of serrations at the base and nonc have bifid tips. Neurosetae start on setiger 2 ; they are stout bidentate hooks (fig. 3.I.d), about eight per neuropodium and arc retractilc so that only the hooked ends are normally visible. The minor hook is curved in the same way as the stout terminal onc. Animal found between the valves of Lepas attaehed to floating objects. Holotype: B.M. (N.H.) Reg. No. 1966. 26. 6.

Type locality: Agulhas Current off Port Elizabcth.
Records: Capc (34/25/p) - a single record.

AMPHINOME Bruguiercs, 1789

Body elongate, often very large and pentagonal in section. Prostomium with a pair of lateral palps, two pairs of eyes, three antcnnae and a small cordate caruncle posteriorly. Branchiae bushy, one per notopodium. A single dorsal cirrus per notopodium. Notosetae include capillaries and harpoon-setac. Neurosetac few, stout, curved and acicular.

Type species: Aphrodita rostrata Pallas, 1766

Amphinome rostrata (Pallas, 1766)
(fig. 3.I.f-k)
Aphrodita rostrata Pallas, 1766 : 106.
Amphinome pallas Quatrefages: Fauvel, 1923: 127, fig. 46 ag.
Body (fig. 3.r.f) up to 250 mm . long, dark grey, pentagonal in section. Prostomium (fig. 3.I.g) rounded dorsally and grooved ventrally with a pair of lateral palps, three dorsal antennae and two pairs of eyes. Caruncle small, smooth and cordate reaching setiger 2. Branchiae (fig, 3.I.h) as a tuft of branches from setiger 2 or 3 onwards. A single dorsal cirrus posterior to the notosetae. Notosetae include simple eapillaries (fig. 3.I.i) and harpoon-setae with pointed tips and a row of recurved serrations (fig. 3.I.j). Neuropodium widely separated from the notopodium and very short and stout. A short ventral cirrus. Aciculum with a knobbed end. Neurosetae (fig. 3.I.k) few, stout, curved and acicular. Animal planktonic on driftwood.

Type locality: Tropical oceans.
Records: Fairly common on floating objects covered with Lepas in Agulhas Current from 34/24/p to 28/32/p.

Distribution: On driftwood in all warm and tropical seas.

CHLOEIA Savigny, 1818

Body depressed and oval with about 30 segments. Prostomium rounded anteriorly and grooved ventrally with a pair of lateral palps, two pairs of eyes and three antennae. Caruncle well developed and tapered with a median keel and pleated lateral folds. A single dorsal cirrus per notopodium. Branchiae from setiger 4 or 5, each consisting of a main axis with paired lateral (bipinnate) branches. Notosetac forked and serrated on the outer side of the longer prong; neurosetae usually smooth and forked. Both notosetae and neurosetae vary along the length of the body.

Type species: Aphrodita flava Pallas, i 766.
Key to Species
See also C. viridis from Angola.

I No colour pattern on the dorsum C. inermis

- A row of rounded spots along the mid-dorsal line C. flava
- Two narrow stripes along the dorsum C. fusca

Chloeia inermis Quatrefages, 1865
(fig. 3.I.l-q)
Chloeia inermis Quatrefages, $1865: 389$; Munro, 1936: 80; Day, $1960: 295$.
Body (fig. 3.I.I) up to 45 mm . long with 3I setigers. No colour markings on the dorsum. Median antenna (fig. 3.I.m) much longer than the laterals. Caruncle tapered with i5-20 lateral pleats. Dorsal and ventral cirri from the first foot. Branchiae (fig. 3.I.n) from setiger 4 ; they are bipinnate and the lateral branches
have secondary branches. Notosetae (fig. 3.I.o) mainly stout; ncurosetae (fig. 3.I.q) slender ; both have a very minute spur or step ncar the tip. No serrated (harpoon) setac in antcrior notopodia but a fcw wcakly scrrated forms (fig. 3.I.p) in postcrior feet.

Type locality: Ncw Zealand.
Records: Cape ($32 / \mathrm{I} 7 / \mathrm{d}, 33 / \mathrm{I} 7 / \mathrm{d}$) - oceasionally found in fish stomachs.
Distribution : New Zcaland.

Chloeia flava (Pallas, I 766)

(fig. 3.I.r)
Aphrodita flava Pallas, 1766 : 97, pl. 8 figs. 7-11.
Chloeia flava: Horst, 1912: 18, pl. 12 fig. 2; Fauvel, $1953: 96$, fig. 46 a.
Body up to 70 mm . long and oval in plan. A row of rounded purple spots along the middle of the dorsum (fig. 3.I.r). Median antenna slightly longer than the laterals. Caruncle extending to setiger 4 with over 30 lateral pleats. Branchiae from setiger 4. Notosctae serrated, the anterior ones with a slight step at the base of the blade but not obviously forked. Neurosctae long, silky, and spurred but not serrated.

Type locality: Tropical Indian Ocean.
Records: Natal (29/3I/i) - only a few specimens.
Distribution : Tropical Indo-Pacific (i).

Chloeia fusca McIntosh, 1885

(fig. 3.I.s)
Chlocia fusca McIntosh, 1885 : 14, pl. 2 figs. 1-2, pl. 1 A figs. 14-15, pl. 2A fig. 1-2; Horst, 1912: 22, pl. 7 fig. 7; Fauvel, 1953: 97, fig. 46 d.

Body brownish, about 20 mm . long with a pair of narrow purple stripes along the dorsum (fig. 3.i.s). Mcdian antenna longer than the laterals. Caruncle extending to setiger 4 with 16 lateral lamcllae. Branchiac from sctiger 5. Anterior notosetac smooth and forked with the longer limb four times the length of the shorter plus a few fine setae with the main fork much longer. Posterior notosctac include scrrated forms. Neurosetac are all forked and smooth.

Type locality : Mollucca Islands.
Records: Natal (29/3I/i, s) - a single specimen.
Distribution: Tropieal Indian Occan (i, s).
PSEUDEURYTHOE Fauvel, 1932
Body elongated and square in eross seetion. Prostomium divided transversely with the anterior part bilobed and bearing a pair of antennac and a pair of palps; the posterior part square with two pairs of eyes and a median antenna. Caruncle small or absent, usually sunk into the first setiger. Parapodia with the notopodia

Fig. 3.1. Hipponoa gaudichaudi agulhana. (A) Entire worm (twice natural size). (B) Head. (c) Posterior view of foot. (D) Notoseta. (E) Neuropodial hook. Amphinome rostrata. (r) Entire worm (half natural size). (G) Head. (H) Posterior view of foot. (I) Notopodial capillary. (J) Harpoonseta. (K) Neuroseta. Chlocia inermis. (L) Entirc worm (natural size). (m) Head. (N) Foot. (o) Notoseta. (I) Tip of harpoon seta. (Q) Ncuroseta. Chlocia flava. (R) Dorsal view of two segments showing pigment pattern (after Horst). Chloeia fusca. (s) Dorsal view of two segments showing pigment pattern (after Horst). Euphrosine capensis. (T) Lateral view of entire worm ($\mathrm{I} \cdot 5$ times natural size). (U) Head. (U^{1}) Ventral view of head. (v) Foot. (v^{1}) Enlarged view of tips of gill filaments. (w) Spurred notoseta. (x) Ringent notoseta. (y) Neuroseta. Euphrosine myrtosa. (z) Enlarged view of tips of gill filaments.
and neuropodia well separated. A single dorsal eirrus per notopodium. Branchiae as single branching tufts limited to the anterior part of the body. Setae all hollow and brittle; notosetae inelude harpoon-setae and eapillaries; neurosetae all spurred. No hooks in first setiger.

Type species: Pseudeurythoe paucibranchiata Fauvel, 1932.

Pseudeurythoe microcephala Fauvel, 1932
Pseudeurythoe microcephala Fauvel, 1932 : 49 pl. I figs 5-8, text fig. 9; Fauvel, 1953: 88, figs. 41 a-d and $42 \mathrm{a}-\mathrm{e}$.
Body about 30 mm . long with 120 segments. Prostomium small, the anterior part grooved ventrally and bearing a pair of eirriform antennae dorsally and a similar pair of palps laterally. Posterior part of prostomium roughly square, often hidden under a fold of skin and bears two pairs of eyes and a median antenna similar to the anterior lateral ones. Carunele very small, oblong and usually hidden. No hooks on setiger I. Tufted branehiae from setiger 3 to the middle of the body. Notosetae include a few harpoon setae and numerous slender forms with very faint serrations or smooth. Neurosetae are spurred forms of two lengths; most are very long with only a minute spur at the base of a lightly serrated blade while a few are short with a well marked spur and coarser serrations on the longer prong.

Type locality: Maldive Islands.
Records: Natal (29/3I/s, d; Moeambique (24/34/5). Madagancat Hmerescaux)
Distribution: Tropical Indian Ocean (i, s).

EUPHROSINE Savigny, 18ı8

Body short and oval with numerous segments; often red in colour. Prostomium elongated with the anterior part bearing the palps and first pair of eyes visible ventrally; posterior part dorsal with the seeond pair of eyes and three short antennae. Caruncle long and narrow without visible lateral folds. Notosetae in transverse rows across the dorsum but not meeting in the mid-dorsal line. Two dorsal eirri per notopodium. Branchiae bushy and arise as several distinet tufts behind the rows of notosetae. Notosetae may inelude harpoon-setae and spurred forms some with bent and serrated prongs. Neurosetae forked.

Type species: Euphrosine myrtosa Savigny, 1818.

Key to Species

1 Tips of branchial filaments swollen and pointed like acorns (fig. 3.1.v¹) . . E. capensis

- Tips of branchial filaments tapering smoothly to blunt tips E. myrtosa

$$
\text { add E.fotroje A.8M.E. from Madaguenear fide Anomureau× } 1974
$$

Euphrosine capensis Kinberg, 1857
(fig. 3.I.t-y)
Euphrosine capensis Kinberg, 1857: 14; McIntosh, 1885: 1, pl. 2 fig. 5, pl. 1A figs. 1-3.
Body (fig. 3.i.t) ovoid, up to 25 mm . long and red in colour. Antennae and palps short, almost papilliform (fig. 3.I. u^{1}). Caruncle (fig. 3.I.u) attached as far back as setiger 5 but ovcrlapping setiger 6. Branchiac from the first foot. Notopodia (fig. 3.I.v) with 9-I I branchial trunks even in juveniles of io mm. The terminal branches of the branchiac (fig. 3.I.v ${ }^{1}$) end in ovoid structures like acorns. Dorsal eirri shorter than the gills. First dorsal eirrus median to the first branchial trunk, second median to the third branchial trunk. Notosetae of two types: (a) smooth forked setae with very unequal prongs (fig. 3.I.w) ; (b) forked "ringent" setae (fig. 3.I.x) with the prongs serrated on their inner margins. Neurosetae (fig. 3.I.y) forked and smooth with unequal prongs.

Type locality: "Cape of Good Hope".
Records: South West Africa ($26 / \mathrm{I} 5 / \mathrm{i}$) around the Cape (i, s) to Natal (27/32/i) - fairly common under stones.

Distribution : Endemic.

Euphrosine myrtosa Savigny, 1818

(fig. 3.1.z)
Euphrosine myrtosa Savigny, 1818: 332; Fauvel, 1923: 139, fig. $49 \mathrm{k}-\mathrm{n}$; Fauvel, 1953: 101, fig. $48 \mathrm{k}-\mathrm{n}$; Gravier, 1901: 254, pl. 10 figs. 147-149, text-figs. 269-275.
Body ovoid, about 15 mm . long with $36-43$ setigers. Colour red to purple. Prostomium with four cycs, a stout, tapered median antenna and smaller anteroventral antennae. Carunele extending to setiger 5. Six to eight branchial tufts per notopodium. Tips of branehial filaments (fig. 3.1.z) long, evenly tapered and blunt. Dorsal eirri longer than the gills. First dorsal cirrus medial to the first branchial trunk, sccond medial to the third branchial trunk. Notosetae all forked and of two types: (a) with straight smooth prongs and (b) with curved prongs serrated on their inner margins (ringent setae). Neurosetae forked with smooth straight prongs.

Type locality: Gulf of Suez.
Records: Cape (34/r8/s, 32/28/s) to Natal (30/30/s, 29/3I/s) and Mocambique ($26 / 32 / \mathrm{i}$) - rare on stones and old coral.

Distrıbution: Mediterranean; Red Sea; Indian Ocean; tropical W. Afriea (Cameroons).

EURYTHOE Kinberg, 1857

Body elongate and reetangular in section. Colour usually pale grey. Prostomium large with two pairs of eyes, three antennae and a pair of palps. Carunele long and narrow with poorly developcd lateral folds mainly concealed by the broad keel.

Parapodia with the notopodium and neuropodium well separated and the setae very brittle and hollow eontaining poison. Notosetae inelude harpoon-setae and forked setae. Neurosetae all forked. A single dorsal eirrus per notopodium. Branehiae as single branching tufts per notopodium first appearing on setiger 1-3.

Type species: Eurythoe chilensis Kinberg, 1857.
Key to Species
I Branchiae from setiger 1. Caruncle short
E. matthaii*

- Branchiae from sctiger 2. Caruncle attached to setiger 3 and often overlapping setiger 4
- Branchiac from setiger 3. Caruncle not exceeding setiger 2 . . E. parvecarunculata

2 A large species reaching 140 mm . Spurred and forked setae smooth
E. complanata

- A small species not exceeding 25 mm . Spurred and forked setae with four to six serrations
E. chilensis

Eurythoe parvecarunculata Horst, 1912

(fig. 3.2.i-1)
Eurythoe parvecarunculata Horst, 1912: 37, pl. 1o figs. 1-5; Fauvel, $1953: 85$, fig. 38 e-i.
Body elongatcd, up to 220 mm . long for 120 segments. Median antenna mueh longer than the laterals. Posterior part of the prostomium (fig. 3.2.i) with a very small oval carunele often hidden by a fold of setiger 2. Branchiae from setiger 3. They have long filaments anteriorly but decrease in size posteriorly. Notosetae inelude short harpoon-setae (fig. 3.2.k) and spurred setae (fig. 3.2.j) with the tapering longer prong serrated. Neurosetae (fig. 3.2.1) are mainly forked setae plus a few finer setae in anterior segments with a step at the base of a faintly serrated blade.

Type locality: Indonesia.
Records: Natal (29/31/i, s) ; Moeambique (24/34/s) ; ? Madagascar (s).
Distribution: Tropical Indian Ocean (i,s) ; tropical W. Africa (i).

Eurythoe complanata (Pallas, 1766)

(fig. 3.2.a-h)
Aphrodita complanata Pallas, 1766 : 109.
Eurythoe complanata : Fauvel, 1953 : 83, fig. 38 b-m.
Eutythoe alcyonaria Gravier, I901: 248, pl. 9 figs. 140-143, pl. 10 figs. 144-146, text-figs. 257-268.
A large species reaching 140 mm . Body (fig. 3.2.b) elongate and flattened. Colour greyish green. Caruncle (fig. 3.2.a) elongated with a flat keel; it is attached as far baek as setiger 3 but overlaps setiger 4. Branchaie from setiger 2 onwards. Notosetae of three types: (a) smooth pointed setae (fig. 3.2.d), (b) harpoon-setae with reeurved serrations on one side (fig. 3.2.e), (e) fine setae with a small spur or step and a long slender blade with very faint serrations (fig. 3.2.f). Neurosetac of two types:

Fig. 3.2. Eurythoe complanala. (A) Head. (B) Entire worm (half natural size). (c) Posterior view of foot. (D) Smooth notopodial spine. (E) Harpoon seta. (F) Fine spurred notoseta. (G) Stout neuroseta. (H) Fine neuroseta. Eurythoe parvecarunculata. (1) Head. (J) Fine spurred notoseta. (K) Harpoon seta. (I.) Stout neuroseta. Eurythoe chilensis. (M) Head. (N) Stout spurred notoseta. (o) Fine spurred notoseta. Pherccardia striata. (P) Head. (Q) Foot (posterior vicw). (R) Fine notoseta. (s) Harpoon seta. (T) Neuroseta.
(a) forked setac with smooth prongs of unequal length (fig. $3.2 . \mathrm{g}$) and (b) slender setae with a small spur at the base of a long blade (fig. 3.2.h).
Type locality: Caribbean Sea.
Records: Eastern Cape (31/29/i); Natal (30/30/i to 27/32/i) ; Mocambique (26/32/i, s) ; Madagascar (i, s).
Distribution: All tropical seas (i, s).

Eurythoe chilensis Kinberg, 1857

(fig. 3.2.m-o)

Eurythoe chilensis Kinberg, 1857: 13; Monro, 1930: 28, fig. I a-e.
Pareurythoe chilensis: Hartman, 1948; 45, pl. 5 fig. ir.
Body small, seldom more than 25 mm . long with 50 segments. Caruncle (fig. 3.2 m) sinuous and elongate, attached as far as setiger 2 but overlapping setiger 3 or even 4. Dorsal eirri long and tapered. Branchiac from setiger 2 as four to seven finger-like branches. Notosetae inelude (a) harpoon-setae, (b) spurred setae with about two to four widely spaced serrations on the longer prong (fig. 3.2.n), (c) a few long spurred setae with minute serrations or steps on the blade (fig. 3.2.0). Neurosetae have better developed spurs and more serrations than the notosetac. They are mainly stout and similar to (b) but there are also a few long fine setae similar to (c).

Type locality: Chile.
Records: Cape (33/88/i, 34/88/s, 34/22/d, 34/23/d, 33/27/s) - a few speeimens on rocks and old shells.

Distribution: Tristan da Cunha (s) ; southern Chile (i, s).

NOTOPYGOS Grube, 1855

Body oval, slightly flattened. Prostomium transversely divided into a broad anterior portion which is grooved ventrally and bears the subulate palps and a pair of lateral antennae, and a rectangular posterior lobe with four eyes, a median antenna and a large carunele. The earunele is fusiform with a pleated erest, smooth sides and broad pleated margins. Branchiae as a single tuft of filaments starting on setiger 5 and present on all posterior segments. Parapodial rami not widely separated. Notopodia with two dorsal eirri and a radiating tuft of forked setae. Neuropodia with a similar tuft of forked neurosetae and a ventral eirrus. Anus dorsal, subterminal.

Type species: Notopygos crinita Grube, 1855.
Aíd N. Sieppida Pott 1909 from Mradagrascar fude Amoveveaux 1974
Notopygos cf. variabilis Potts, 1909
? Notopygos variabilis Potts, 1909: 360, pl. 45 fig. 9; Fauvel, 1953: 100 fig. 47 h.
Length up to 35 mm . Colour uniformly pinkish grey in aleohol (possibly the pattern has faded). Caruncle reaching setiger 6 with the smooth sides between the pleated margin and pleated crest not pigmented. Anus on setiger 22 or later. Setae all bifureated, usually with smooth prongs, but a few anterior neurosetac show faint rings on the external side of the longer prong.

Species of Notopygos are distinguished by their colour patterns and to a less extent
on the serration of the setac. The latter character is obviously variable and the eolour pattern fades. Whether there is really one variable speeies or several is open to question.

Type locality: (of \mathcal{N}. variabilis) Maldivc Islands.
Records: (of \mathcal{N}. ef. variabilis) Madagascar (s).
Distribution : (of \mathcal{N}. variabilis) Tropieal Indian Oeean.

PHERECARDIA Horst, 1886

Body elongatc and deprcsscd. Caruncle well developed with broad, pleated lateral folds. Branchiae bushy with irregular branches arising from a single base. A single dorsal cirrus per notopodium. No forked setae ; notosetae inelude both fine eapillaries and harpoon-setae; neurosetae with bent tips.

Type species: Hermodice striata Kinberg, 1857.

Pherecardia striata (Kinberg, 1857)
 (fig. 3.2.p-t)

Hermodice striata Kinberg, 1857: 13.
Pherecardia lobata Horst, 1912: 32.
Body clongate and up to 60 mm . in length with 60 segments. Dorsum streaked with brown. Prostomium (fig. 3.2.p) with four eyes and a large tapering median antenna much longer than the laterals. Carunele large with a tapering median ridge and broad latcral folds divided into six to cight lamcllac. Bushy branchiae start on sctiger I. The singlc dorsal cirrus on eaeh notopodium (fig. 3.2.q) has a long stout cirrophore and a long cirrostyle. Notosetae are mainly long, smooth, hair-like capillaries (fig. 3.2.r) but there are also a few stouter harpoon-setac (fig. 3.2 .5) in posterior segments. Neurosetae numerous, slightly thicker than the fine notosetae and with the shafts faintly serrated before the bent, abruptly pointed tips (fig. 3.2.t).

Type locality: Society Islands, S. Pacifie.
Records: Mocambique (26/32/i); Madagasear (s).
Distribution: Tropical Indo-west-Pacific (i); Tahiti.

Family PISIONIDAE Levinsen, 1887

Small thread-like worms with numerous segments. The prostomium is either well devcloped or greatly reduced. When well developed it has a pair of frontal antennac, a pair of lateral palps and two pairs of subdermal eycs. Peristomial segment with two pairs of tentacular cirri. When reduced the prostomium sinks back into the peristome and either lacks antennac entirely or has only one median one and the ventral palps are fused to the peristomial segment which with the tentacular cirri now bears three pairs of appendages and a pair of enlarged acicula directed forwards in front of the mouth. Pharynx eversible with two pairs of chitinous jaws. Normal body segments uniramous, cach parapodium having small dorsal and ventral cirri and a setigerous lobe with one or two acicula. Setae either absent, compound or simple. Pygidium with a pair of anal cirri. Copulatory organs may be present.
 on soft, silty bottoms and is remarkable for the reduction of the prostomium and the possession of a pair of acicula which projects obliqucly forward in front of the mouth. It has two pairs of true jaws far back but possibly these acicula act as additional jaws. Pisionidens is in some respects a very primitive worm and in others a very specialised one. It is an active burrower in tropical surf beachcs and has a well developed primitive type of head. Sperm is transferred by copulation and the complex reproductive organs are reminiscent of some of the Archiannelida. On the other hand it has uniramous parapodia and lacks setac in the adult.

Key to Genera

I Prostomium well developed with a pair of antennae, and a pair of palps. Peristomium with only two pairs of tentacular cirri .

PISIONIDENS (p. 132)

- Prostomium reduced and sunken into the peristomial segment which now bears the large palps as well as two pairs of tentacular cirri .
2 No prostomial appendages. The bases of the acicula of the first setiger project between the bases of the palps (fig. 4.I.a)

PISIONE (p. 133)

- Prostomium with a single median antenna. No acicula projecting forwards PISIONELLA*.

PISIONIDENS Aiyar \& Alikunhi, 1943
Body clongate with numerous segments. Prostomium well dcveloped with a pair of frontal antennac, a pair of lateral palps and subdermal cyes. Peristomc posterior to the prostomium and bears two pairs of tentacular cirri. Two pairs of chitinous jaws. Body segments with uniramous parapodia having small dorsal and ventral cirri and an clongated setigerous lobe. Mature males with copulatory organs.

Type species: Pisionella indica Aiyar \& Alikunhi, 1940.

Pisionidens indica (Aiyar \& Alikunhi, 1940)
(fig. 4.I.f-j)
Pisionella indica Aiyar \& Alikunhi, 1940 : 89, figs. 1-9, pls. $\mathbf{1}-2$.
Body elongate, slender and deprcssed, about 25 mm . long for 70 scgments. Prostomium (fig. 4.I.h) a dcprcsscd cone with one pair of frontal antennac and a pair of lateral palps with basal sheaths. Four subdermal eyes close together. Peristome fused to the prostomium and bears two pairs of long tentacular cirri. Mouth as a ventral slit at the lcvel of the tentacular cirri. Pharynx with marginal papillae and two pairs of small, lightly chitinised jaws. Body (fig. 4.I.i) with dorso-lateral muscular ridges and latcral grooves. Scgments poorly defined. Parapodia (fig. 4.I.j) with small biarticulate dorsal and ventral cirri and an elongate setigerous lobe supported by an aciculum but without setae in the adult. The first five to six parapodia lack setigcrous lobes. Scxes scparate. In the adult male certain middle segments (fig. 4.I.f) contain sperm and the next segment develops a club-shaped vesicula seminalis which opens on a large genital papilla which acts as a copulatory organ. In the female the segment following the ovary (fig. 4.I.g) devclops a rcceptaculum scminis opening below the parapodium. A scries of segmental genital suckers in the median ventral line. Pygidium with a pair of long and cirri.

Type logality: Madras.
Records: Natal (29/3I/i)/-not uncommon in localised areas on surf beaches.
Distribution : India (i). Carbbean \vee Pacizee cential firsecica (fude Facchaneol 1873),
PISIONE Grube, 1856
Small thrcad-likc worms with numcrous scgments. Proboscis eversible with marginal papillae and four chitinous jaws. Prostomium reduced, indistinct and lacks antennac; it has sunk back into the peristomial segment and fused with it. One to two pairs of subdermal cyes far back. Pcristomial segment with three pairs of appendages; the long forwardly directed palps with basal sheaths, and two pairs of smaller biarticulate tentacular cirri. Acicula of the peristomial segment enlarged and directed forwards so that their proximal cnds project between the bases of the palps. Normal body segments uniramous with small dorsal and ventral cirri and a long sctigerous lobe with two acicula and both compound and simple setac. Genital papillae sometimes present. Pygidium with a pair of anal cirri.

Type species: Pisione oerstedi Grube, 1856.
Pisione africana Day, 1963
(fig. 4.I.a-c)
Pisione africana Day, 1963 a : 390, fig. 2 a-e.
Small thread-like worms up to 20 mm . long with 75 segments. Prostomium (fig. 4.I.a) minute and completely enveloped by the peristomial segment. Onc pair of subdermal eyes possibly formed of two fused pairs. Two pairs of jaws. Peristomial

[^2]

Fig. 4.I. Pisione africana. (A) Head. (B) Parapodium. (C) Superior simple scta. (D) Superior compound seta. (E) Inferior compound seta. Pisionidens indica (after Aiyar and Alikunhi). (F) Diagram of male organs on the left side showing sperm in two segments, genital funnels fused to the nephridia whose ducts are enlarged as vesicula seminales and open on genital papillae with terminal elaspers. Ventral suekers shown as star-like structures. (G) Diagram of female organs on the right side showing ova in one segment followed by the genital funnel leading through the receptaculum seminis. (II) Anterior end with dotted lines indicating the position of the mouth, jaws and parapodia. (I) Diagrammatic section showing longitudinal muscles and the origin of a parapodium. (J) Parapodium with internal aciculum and terminal glands.
segment with a pair of large palps with sheathed bases and two pairs of biarticulatc tentacular cirri of which the ventral pair are very small and papilliform. Pcristomial acicula enlarged and directed forwards to project between the bases of the palps. Scgment 2 (the first setiger) with a small papilliform dorsal cirrus, a much
larger tapered ventral cirrus directed forwards and a setigerous lobe with normal setae. Dorsal cirrus of setiger 2 enlarged. Normal parapodia (fig. 4.r.b) with small, subequal dorsal and ventral cirri each of which is bottle-shaped, indistinctly two-jointed and tipped with long cilia. The setigcrous lobe is long and provided with two rounded presctal lips and a smaller postsctal one. There are two internal acicula and five setae. The superior on is a stout simple seta (fig. 4.I.c) with an expanded and obliquely truncate end. Other setae compound, one having a long tapering blade (fig. 4.I.d) and the other three with short, falcigerous blades (fig. 4.r.e). Reproductive organs unknown.

Type locality: Agulhas Bank, South Africa.
Records: Cape (34/r8/s, 34/2I/s, 33/25/s) - Juveniles common in grab samples from sandy mud.

Distribution : Endemic.

Anstalopricone maxclíatá Narlmāme. S. in der 1974
No eyes; foist twesent; pt setiger small, $2^{\text {nd }}$ larger with ate tory olo-nal curves; 10 a. Carrör segments rita setac ar.ol-Cast 9 -redeemed in. in - Ca af: Inti.

Family PHYLLODOCIDAE Williams, 185^{1}

Body long, slender and often green in benthonie forms but short, flattened and transparent in planktonic ones. Prostomium distinet, broad and rounded to eordiform. One pair of eyes. Two pairs of frontal antennae and often a median dorsal one as well but this may be reduced to a posterior oceipital papilla or bc entirely absent. Proboseis unarmed but usually long and papillosc. The first one to three segments are modified and may be partly redueed or fuscd; they may lose some or all of their setae and the eirri may clongate to form tentacular eirri. Normal body segments usually with uniramous parapodia bearing compound spinigerous setae and lamellar dorsal and ventral errri.

Key to Subfamilies

1 Body elongate and vermiform. Eyes well developed. Benthonic . Phyllodocinae (p. i36)

- Body short, flattened and transparent. Eyes faint or absent. Planktonic

Lopadoriyynchinae (p. 156)

Subfamily PHYLLODOCINAE Williams, 185^{1}

Benthonie worms with long slender bodies, numerous segments and often green or orange in colour. Prostomium usually cordiform with well developed cyes and often a median dorsal antennae or postcrior oceipital papilla. Proboscis long, eversible and usually papillose. Tentaeular cirri on the first one to thrce segments whieh may be partially fuscd or have reduced parapodia. Normal segments usually with uniramous parapodia but oceasionally the notopodial acieulum is present in the dorsal eirrophorc. Dorsal and ventral eirri lamellar. Setae compound and spinigerous, never acieular.

Records from southern Africa
Eteone foliosa Quatrefagcs $41 \mathrm{Ci}, 50 \mathrm{Cs}$ as Eteone spetsbergensis (? Malmgren) . . ${ }_{13} \mathrm{Ci}$
Eteone ornata Grubc 45 Pi
Eteone (Mysta) siphodonta (Dellc Chiaje) . 50Cs
Eteone sp. 50Cs
Eulalia (Hypoulalia) bilineata (Johnston) . 50Cs
Eulalia (Steggoa) capensis Sehmarda . . $4 \mathrm{Ci}, 10 \mathrm{Ci}, 11 \mathrm{Wi}$,
${ }_{12} \mathrm{Ci}, 21 \mathrm{Ci}, 50 \mathrm{Cs}$
as Eulatia viridis (non Müller) . . . 210 Ci
as Eulalia viridis var. capensis Schmarda . ${ }_{13} \mathrm{Ci},{ }_{2} 6 \mathrm{Wis}, 36 \mathrm{Ci}$,
41 Ci
as Steggoa magalhaensi (non Kinberg) . . 34 Wi
7 Eulalia (Sige) falsa Day 50Cs
Eulalia (Pterocirrus) macroceros Grube . . 50Cs
as Eulalia ? macroceros $4_{1} \mathrm{Ci}$
Eulalia (Steggoa) paraifubulifera Hortm,Schr. 177u-Lucterity (i)

Hezionura, portmanni Lax óvir 196? - Wa-lwis Bay (c) \} fiobe

PHYLLODOCIDAE
137

BIOLOGICAL NOTES

The phyllodocids are a group of slender errant worms often brilliant green or yellow or even red. Most of them live in crcvices or under stoncs and only Eteone is a typical sand dweller. As might be expected it is usually white in colour. Their aetive habits and remarkably well developed cycs suggest that the phyllodocids are carnivorous but no form of prey has becn found in the gut. For that matter no plant remains or silt have been found either. Dales is of the opinion that the Phyllodocids are amongst the most promitive of polychactes; if so then Notophyllum is more primitive than the rest for it is the only genus whieh has notopodial acicula and even here notosetae are lacking.

THE MAIN DIAGNOSTIC GHARACTERS

The prostomium This always bears two pairs of antero-lateral antennae and sometimes a median dorsal onc as well so that therc are four or five altogether. In the genus Phyllodoce there are never more than four fully developed antennae but there is often an occipital papilla in the notch betwcen the posterior lobes of the heartshapcd prostomium. Possibly this represcnts a rudiment of the fifth antenna of the primitive genus Notophyllum.

The proboscis. This is usually papillose and sometimes the nature and arrangement of papillae at the base of the proboseis differs from that towards the distal end. If the proboscis is not everted it should be dissected by a median ventral slit from the mouth backwards.

The tentacular segments and the tentacular cirri. Bergström (1914) who made a very thorough revision of the family based his main divisions on the number of tentacular segments and the degree of reduction and fusion between them and the prostomium. The phylogenctic valuc of his work is not disputed but while it is casy to count the number of tentacular segments it is not easy to decide the degree of fusion between them. The head end contracts on fixation and the degree of real fusion then becomes a matter of opinion. None the less this character is useful within limits.

The dorsal and ventral cirri of the tentacular segments may be normally short and lamellar or become elongated and cylindrical; again the setigerous lobes, acicula and setae may be reduced or lost entirely. To summarise these characters a "tentacular formula" has been developed in whicl the symbols 1 or N represent an clongate or a normal lamellar cirrus, S or 0 represent setae present or absent and a or o represent an aciculum present or absent. Thus the tentacular formula of Eulalia trilineata is $1+0 \frac{01}{\mathrm{al}}+\mathrm{S}_{\mathrm{aN}}^{01}$. This should be interpreted as threc tentacular scgments of which the first has one elongate tentacular cirrus only, the second has no setae but elongate dorsal and ventral cirri and an aciculum in the ventral cirrophore while the third segment has setae, an elongate dorsal cirrus without an aciculum and a short lamellar ventral cirrus with an acieulum in the setigerous lobe. In more detailed descriptions it is sometimes necessary to describe a particular tentacular cirrus and this may be specified as D_{2} or D_{3} referring to the dorsal cirrus of the second or third segment or V2 or V_{3} for the ventral homologucs.

Onc final point may be added here. The presence or absence of setae on the tentacular segments is constant and they are reasonably easy to sce and of great importance; the presence or absence of acicula, however, is very difficult to ascertain without damaging the specimen and in more recent work they are often omitted from the tentacular formula. In this way the tentacular formula for Eulaliatrilineata would be simplified as $1+0 \frac{1}{1}+S_{\frac{1}{N}}^{1}$.

Parapodia of body segments. Apart from the primitive genus Notophyllum which has an aciculum and sometimes a few setac issuing from the dorsal cirrophore, the Phyllodocids have uniramous parapodia. The literature contains detailed descriptions of the shapes of the dorsal cirri but the cxamination of even a single worm will show how much they vary along the length of the body. For this rcason only major differences in shape are of taxonomic importance. The setigerous lobe normally has a notched presetal lip and a single rounded postsetal one but occasionally the upper part of the presetal lip may be produced as a pointed lobe. The ventral cirri are of minor importance. The setae are compound and spinigerous and the sculpturing of the shaft-head is worth examination.

Colour. The gencral background coloration is usually green (which fades to brown) but occasionally some shade of red or yellow. Apart from major differences such as this the background coloration is variable and in any case it is affected by
preservatives and storage. Pattern is more important and may provide a rapid means of preliminary sorting for later, more laborious confirmation.

Key to Genera

I Two pairs of tentacular cirri on one segment ; no dorsal cirrus on tentacular segment 2 ; formula 0_{1}^{1} (fig. 5.r.a). Four antennae ETEONE (p. 139)

- More than two pairs of tentacular cirri borne on two or three segments. Four or five antennac
2 Thrcc pairs of tentacular cirri. Four antennae 3
- Four pairs of tentacular cirri. Four or five antennae 5

3 Tentacular cirri on three segments ; formula $1+S \frac{1}{\mathrm{~N}}+\mathrm{S} \frac{1}{\mathrm{~N}}$ (fig. 5.I.n)
PROTOMYSTIDES (p. 143)

- Tentacular cirri on two segments ; dorsal cirrus absent on segment 3 4

4 Setae present on scginent 2; formula $1+S_{1}^{1}$ (fig. 5.1.q). . . MYSTIDES (p. 141)

- No setac on scgment 2; formula $1+0_{1}^{1}$. ETEONIDES*-Elcoruides

5 Four antennae and often an occipital papilla PHYLLODOCE (p. 143)

- Five antennae. Occipital papilla absent 6

6 Parapodia biramous with an aciculum and sometimes setae in the notopodium (fig. $5 \cdot 3 . \mathrm{m}$)
NOTOPHYLLUM (p. I50)

- Parapodia uniramous EULALIA (p. 15 1)

ETEONE Savigny, 1818

Body clongate and depressed. Prostomium antcriorly truncate with four antennae and a pair of subdermal eyes often difficult to see. Two pairs of cylindrical tentacular cirri on the first scgment, the tentacular formula bcing 0_{1}^{1}; the second segment lacks a dorsal cirrus but has a normal foliaceous ventral one and sometimes a setigerous lobe and sctae as well. Body scgments with small rounded, foliaccous dorsal and ventral cirri. Parapodia uniramous with compound setae. Colour usually whitish.

Type species: Nereis flava Fabricius, 1780.

Key to Species

I The first segment behind the tentacular cirri has a setigerous lobe and setac. (Proboscis with paired ventro-lateral rows of large triangular papillae and a dorsal band of minute denticulate papillae. Dorsum uniformly brown)
E. (M.) siphodonta

- The first scgment behind the tentacular cirri lacks a setigerous lobe and setae 2
2 Body with three rows of dark spots. Proboseis with three to four rows of swollen papillae E. ornata
- Body uniformly palc. Proboscis with four rows of large papillae. (Dorsal cirri asymmetrical, broader than long) E. foliosa
- Body uniformly palc. Proboscis unknown. (Prostomium slender. Tentacular cirri very small) E. sp. (TRA. Io8K)

Eteone (Mysta) siphodonta (Delle Chiaje, 1822)
(fig. 5.1.a-e)
Lumbrinerus siphodonta Delle Chiaje, 1825: pl. 80.
Mysta siphonodonta: Bergström, 1914: 205, text-fig. 78.
Eteone siphonodonta: Fauvel, 1923: 178, fig. 63 e-h.
Eteone (Mysta) syphonodonta: Day, 1960: 305.
Body (fig. 5.I.c) elongate and flattened reaching 200 mm . with 350 segments. It is uniformly mauve brown dorsally and pale ventrally. Prostomium (fig. 5.1.a) a depressed truncate cone. Antennac equal and slender. Eyes clcarly visible. Tentacular cirri subequal and about as long as the breadth of the tentacular segment. The next segment lacks a dorsal cirrus but has a sctigerous lobe with several setae and a ventral cirrus. Proboscis with a wide dorsal band of minute flattened and denticulate papillac, paired ventrol-lateral rows of large triangular papillae and a narrow ventral streak in which small globular papillac are reported in Mediterranean specimens. None were found in South African specimens. Dorsal cirri (fig. 5.1.d) ovate, $\mathrm{I} \cdot 5-2$ times as long as broad and borne on fairly long cirrophores. Sctigerous lobe blunt and notched. Ventral cirrus bluntly pointed. Sctac (fig. 5.1.e) $15-20$ in number with fairly long blades and asymmetrical spiney slaft-heads, there being one large blunt tooth and three to five small ones.

Type locality: Naples.
Records : False Bay (34/18/s) to Natal (29/31/s) - occasional specimens.
Distribution: Mediterrancan (s) ; Morocco (s,d) ; Senegal (i, s, d).

Eteone ornata Grube, 1877
(fig. 5.1.f-i)
Eteone ornata Grube, 1877: 106; Fauvel, 1932: 73; Fauvel, 1953: 128, fig. 65 a-d; Day, 1957: 69.
Body pale with three rows of spots plus marks on the dorsal and ventral cirri. Prostomium (fig. 5.1.f) notched laterally and longer than broad. Four small antennae. Eycs small and below the surface. Proboscis with four rows of large soft papillac proximally but reduecd to threc rows distally (fig. 5.I.g). Two pairs of tentacular cirri which are cylindrical and tapered. No dorsal cirrus, setigerous lobe or setac on the second segment. Very few setac on the third and fourth segments but the fifth has many. Dorsal cirri (fig. 5.1.h) small, roughly oval, broader than long and arisc from broad cirrophorcs. Sctigerous lobe conical; ventral cirrus ovoid, slightly pointed, longer than setigcrous lobe. A fan of about 20 sctac with toothed shaft-heads and tapered blades (fig. 5.I.i).

Type locality: Japan.
Records: Mocambique ($26 / 32 / \mathrm{e}$) - a single record.
Distribution : India (s) ; Philippine Is. ; N. Japan.

Eteone foliosa Quatrefages, 1865
(fig. $5 \cdot 1 . j-\mathrm{m}$)
Eteone foliosa Quatrefages, 1865 : 164 ; Fauvel 1923: 174, figs. 62. g-k.
Body white and tapered reaching a length of 120 mm . Prostomium (fig. 5.I.j) a flattened cone, truneate anteriorly. Four short antennac and two subdermal eyes. Pharynx short and broad with four rows of large papillae (fig. 5.1.k). Two pairs of short, tapered tentacular cirri, the inferior pair being slightly longer than the superior. Sceond parapodium reduced to a ventral cirrus, there being neither dorsal cirrus, nor setigerous lobe nor setae. Dorsal cirri (fig. 5.1.I) reniform. Ventral cirrus ovoid. Setae (fig. 5.1 .m) with a stout curved spine on the shaft-head.

Type locality: Atlantic coast of France.
Records: Cape (33/工 $7 / \mathrm{s}, 33 / 18 / \mathrm{i}, \mathrm{s}, 34 / 18 / \mathrm{i}, \mathrm{s}, 34 / 23 / \mathrm{e}, \mathrm{s}, \mathrm{d}$) - occasionally found in sand.

Distribution : British Isles (i, s) ; English Channel (i) ; Bay of Biscay (i).
Eteone sp. (TRA. io8.K)
Body elongate and pale in aleohol. Prostomium very narrow and tapered, twice as long as broad. Proboscis unknown. Tentacular eirri very small, the dorsal pair half the length of the ventral pair which is one third of the breadth of the tentacular segment. The next segment lacks not only a dorsal cirrus but also a setigerous lobe and setac. Dorsal eirri small, roughly semicireular and no broader than the cirrophores. Setigerous lobes blunt and not notched. Ventral cirri ovoid. Setac about 10 per bundle with asymmetrieal shaft-heads having a large tooth on one side and a minute one on the other. Blades short and strongly tapered.

MYSTIDES Thécl, 1879

Body small and clongate. Prostomium rounded or ovoid. Two cyes. Four antennae but no occiptal papilla. Three pairs of tentacular cirri on two distinct segments, the formula being: $\mathrm{S} 1+1 \frac{10}{\mathrm{ai}}$ No dorsal cirrus on segment 3. Proboseis covered with papillae. Dorsal and ventral cirri foliaccous. Parapodia uniramous. Setae compound and spinigerous.

Type species: Mystides borealis Thécl, 1879.
Mystides angolaensis Augener, 1918
(fig. 5.1.q-s)
Mystides angolaïnsis Augener, 1918: 178, pl. 2 figs. 32-34; Hartman-Schröder, 1953: 212, figs. 12-14.
The single specimen recorded was 1 mm . long, yellowish white and elongate and with 15 segments. Prostomium (fig. 5.1.q) broadly cordate ; cyes large. Antennae $\frac{3}{4}$ prostomial length. Tentacular segments not distinet. Tentacular eirri of

Fig. 5.1. Eteone siphodonia. (A) Head with proboscis partly extruded. (B) Scction of proboscis cut in the mid-ventral linc and flattcncd. (B^{1}) Details of dorsal papilla. (c) Entire worm (natural size). (D) Foot. (E) Scta. Eteone ornata. (F) Head with proboscis partly extrudcd. (c) Section of proboscis cut in the mid-ventral line and flattened. (H) Foot. (1) Scta. Eteone foliosa. (J) Head with proboscis partly cxtruded. (k) Scction of proboscis cut in the mid-ventral line and flattened. (L) Foot. (M) Scta. Protomystides capensis. (N) Hcad. (O) Foot. (P) Seta. Mystides angolaensis. (Q) Head. (R) Foot. (s) Seta (modified from Wesenberg-Lund).
segment I and V_{2} subequal and spindle-shaped; D_{2} long and cylindrical, exceeding the segmental bread th. Dorsal cirri (fig. 5.I.r) ovoid. Setae (fig. 5.I.s) with serrated shaft-heads.

Type locality: Kinsembo, Angola.
Records: Not recorded from southern Africa.
Distribution : Angola.
PROTOMYSTIDES Czerniavsky, 1882
Body clongate. Prostomium with four antennae and one pair of eyes or none. No occipital papilla. Proboscis covered with irrcgularly arranged papillae. Three cylindrical tentacular cirri borne on three segments. Tentacular formula $1+S_{\frac{1}{N}}^{1}+S_{\frac{1}{N}}^{1}$. Parapodia uniramous. Sctae compound and spinigerous.
Type species: Mystides bidentata Langerhans, 1880 .
Protomystides capensis Day, I960 (fig. 5.I.n-p)

$$
\frac{\text { NB close to Pryclodoce }}{\text { cantanca }}
$$

Protomystides capensis Day, 1960: 306, fig. 6 d-f.
Body slender, about 15-20 mm. long and orange red in life but brown in alcohol. Prostomium (fig. 5.I.n) small and cordate. Antennae slender, eyes lateral. Proboscis unknown. First tentacular scgment fused to the head but the second and third distinct and separate. All tentacular cirri cylindrical but short; D2 which is the longest being only I. 5 times the prostomial length. Setigerous lobes and setae present on the second and third tentacular segments giving the formula $1+S_{\frac{1}{N}}^{1}+S_{\frac{1}{N}}$. Dorsal cirri (fig. 5.I.0) cordate and as broad as long. Sctigerous lobc fairly long and bluntly roundcd apically. Ventral cirri oval. Setae (fig. 5.I.p) 12-I8 per parapodium, with swollen symmetrical shaft-heads which are striated distally and short bladcs.

Type locality: Off Saldanha Bay, South Africa.
Records: Cape ($32 / \mathrm{y} / \mathrm{s}, 33 / \mathrm{y} / \mathrm{s}$) - two specimens only.
Distribution: Two records.

PHYLLODOCE Savigny, 1818
 (including ANAITIDES Czerniavsky, 1882)

Body elongate with numerous scgments. Prostomium oval to cordate with two pairs of frontal antennac and often an occipital papilla in the posterior notch. Two eyes. Four pairs of tentacular cirri on the first three segments which may be more or less fused or reduced. The second and third tentacular segments may bear setae. Proboscis long and usually papillosc. Dorsal and ventral cirri foliaccous. Parapodia uniramous. Setac compound and spinigerous.

Type species: Phyllodoce laminosa Savigny, 1818.

I Setae absent from all tentacular segments. Dorsal cirri variable. (Formula $1+0 \frac{1}{1}+0 \frac{1}{\mathbf{N}}$.) 3

- Setae present on third or the second and third tentacular segments. Dorsal cirri cordate 3

2 Setac on the third tentacular segment. (Formula $1+0 \frac{1}{1}+S_{N}^{1}$.) 7

- Setac on second and third tentacular segments. (Formula $1+S_{1}^{1}+S_{\frac{1}{N}}$) . . 8

3 Proboscis with regular rows of papillac at the sides of the base (s.g. Anailides) . . 4

- Proboscis with irregularly arranged papillac (s.g. Phyllodoce) 5

4 Setigerous lobe pointed. Dorsal cirri cordatc bccoming almost reniform P.longipes (p. 144)

- Sctigerous lobe bluntly rounded. Dorsal cirri hastate becoming rhomboidal
P. madeirensis (p. 145)

5 Tentacular cirri short and swollen except D_{2} which is cylindrical and tapered. Dorsal cirri oval Puadraticeps (p. 145)

- Tentacular cirri all cylindrical and tapered. Dorsal cirri hastatc to rhomboidal

6 Prostomium a long oval with postero-lateral lobcs. Occipital papilla minute. Colour uniform P. fristedti (p. 147)

- Prostomium cordate. Occipital papilla absent. Dorsum striped . P.malmgreni (p. 147)

7 First and second tentacular segments fused and cover part of prostomium P. capensis (p. 148)

- First segment not visiblc dorsally, second and third segments distinct and separate
P. tubicola (p. 148)

8 Body reddish. First and second tentacular segments fused dorsally. Occipital papilla absent
P. castanea (p. 149)

- Body green. First scgment not visible dorsally, second and third distinct and separatc. Occipital papilla small
. P. schmardai (p. 149)
$4=$ Setigerous lob rounded; do sal cirri roundet'?
P.(R.) Serrev. Forde Hark-Serr.

Phyllodoce (Anaitides) longipes Kinberg, 1866
(fig. 5.2.a-c)
Phyllodoce (Anaitides) longipes Kinberg, 1866: 241; Ehlers, 1901: 72, pl. 7 figs. 1-4; Day, 1963a: 394, fig. 3 d-f.

Length up to 25 mm . with the first three normal scgments dusky and later segments with three dark spots. Prostomium (fig. 5.2.a) longer than broad, almost oval with a decp posterior notch but no occipital papilla seen in Soutl African specimens. Eyes large. Proximal half of proboscis with long, regular rows of papillae at the sides, about 14 papillac per row; distal half with rugose ridges. First tentacular segment not visible dorsally, the second indistinct and only the third quite separate. Tentacular cirri all rounded in section and tapered, the longest being D2. No setae on any tentacular segment, the formula being $1+0 \frac{1}{1}+0 \frac{1}{\mathrm{~N}}$. Dorsal cirri (fig. $5.2 . \mathrm{b}$) large and cordate anteriorly, often dusky, but becomes broader, almost reniform posteriorly. Setigerous lobe with the superior division of the presetal lip long and pointed. Ventral cirri with pointed tips about as long as the setigerous lobes. Setae (fig. 5.2.c) with oval striated shaft-heads and serrated tapering blades.

Type locality : Chile.
Records: Cape (34/18/s, 33/27/s) Mocambique (24/34/s).
Distribution: Valparaiso (i) ; Chile; California (i).

Phyllodoce (Anaitides) madeirensis Langerhans, 1880

$$
\text { (fig. } 5 \cdot 2 . d-\mathrm{g} \text {) }
$$

Phyllodoce (Anaitides) madeirensis Langerhans, 1880: 307; Fauvel, 1923 : 150, fig. 23 d-h.
Body (fig. 5.2.e) up to 100 mm . long, tapered and greenish. Prostomium (fig. 5.2.d) cordatc with a deep posterior notch and an occipital papilla. Base of proboscis with six lateral rows of flattened papillac with about II papillae per row. A median dorsal row of four to five may also be present. Distal part of the proboscis with rugose ridges. First tentacular segment invisible dorsally, the second and third distinct and scparate. No sctac on any of the tentacular segments, the formula being $1+0 \frac{1}{i}+0 \frac{1}{N}$. Tentacular cirri all long and cylindrical. Dorsal cirri (fig. 5.2.f) hastate to rhomboidal and often curve over the dorsum. Sctigerous lobes apically blunt and rounded. Ventral cirri oval, distally pointed and slightly longer than the setigerous lobes. Setae (fig. 5.2.g) fairly numerous and have oval, strongly striated shaft-heads and long tapercd blades. Specimens found in depths of 20 metres or more are pale with scattered black dorsal cirri but are structurally identical with green intcrtidal forms.

Type locality: Madeira Island.
Records: Capc (33/17/d and 34/18/i, s) ; Natal (3I/29/i to 29/3I/i, s) ; Mocambique ($26 / 32 / \mathrm{i}$ and $23 / 35 / \mathrm{c}$) ; Madagascar (s) - fairly common under stones.

Distribution : Cosmopolitan in temperature and tropical seas (i, s, d).
2iosert Peareisfordi

Phyllodoce quadraticeps Grube, 1878
(fig. 5.2.h-j)
Phyllodoce quadraticeps Grube, 1878 : 98 ; Gravier, 1900: 198, pl. 1o figs. 22-24, text-figs. 56-60. Sphaerodoce quadraticeps: Bergström, 1914: 154, fig. 50.

Body over 100 mm . long but slender and ycllowish with a dark cross-bar on cach segment. Prostomium (fig. 5.2.h) oval to squarc and with an occipital papilla in the posterior notch. Antennae ovoid. A papilliform (? nuchal) organ in front of the first tentacular cirrus. Proboscis very long and covercd with irregularly arranged papillae. Tentacular segment I not visible dorsally, but the second and third distinct and separate. Tentacular cirri unusual, only D_{2} being cylindrical and tapered, the others having long cirrophores and short, swollen cirrostyles. Tentacular segments without setae, the formula being $1+0 \frac{1}{1}+0 \frac{1}{N}$. Dorsal cirri (fig. 5.2.i) reddish, oval and broader than long. Sctigcrous lobes long, faintly bilobed. Ventral cirri oval. Only five to six short setae per parapodium with swollen striated shaft-hcads and short, dagger-like blades (fig. 5.2.j).

Type locality: Philippine Islands.
Record: Mocambique Is. (i) - a singlc record.
Distribution: Tropical Indo-west-Pacific (i).

Fig. 5.2. Phyllodoce longipes. (A) Head. (B) Foot. (c) Scta. Phyllodoce madeirensis. (D) Head and everted proboscis. (E) Entire worm (natural size). (F) Foot. (G) Seta. Phyllodoce quadraticeps. (H) Head with proboscis partly everted. (x) Foot. (J) Seta. Phyllodoce fristedti. (k) Head with probescis partly everted. (L) Anterior foot. (M) Seta. Phyllodoce malmgreni. (N) Seta. (o) Head with proboscis partly everted. (P) Foot. Phyllodoce capensis. (Q) Foot. (r) Hcad. (s) Seta.

Phyllodoce fristedti Bergström, 1914

$$
\text { (fig. } 5 \cdot 2 \cdot \mathrm{k}-\mathrm{m} \text {) }
$$

Phyllodoce fristedti Bergström, 1914: 152, pl. 3 fig. 1 , text-fig. 49; Fauvel, 1953: 1 18, fig. 58 a-b; Day, $1962: 636$.

Body very long and slender reaching 100 mm . by 2 mm . Colour uniformly bluish grcen. Prostomium (fig. 5.2.k) cordate with large postero-lateral lobes and a minute occipital papilla in the posterior notch. Proboscis covered with small irregularly arranged papillae proximally and six rugose ridgcs distally. First tentacular segment not visible dorsally, the second and third distinct and scparatc. All tentacular cirri long and cylindrical. No setigcrous lobes or sctae on any tentacular segment, the formula being $1+0 \frac{1}{1}+0 \frac{1}{\mathrm{~N}}$. Dorsal cirri (fig. 5.2.l) hastatc anteriorly but bccome rhomboidal with obliquely truncate ends postcriorly. Setigerous lobes bluntly rounded. Ventral cirri oval and longer than the setigerous lobes. Sctac fairly numerous with oval shaft-heads which are marked by striate distally and have tapcring bladcs (fig. 5.2 m).

Type locality: Ccylon.
Records: Madagascar (s).
Distribution: Mombasa (i).

Phyllodoce malmgreni Gravier, 1900
(fig. 5.2.n-p)
Phyllodoce malmgreni Gravier, 1900: 207, pl. 1o figs. 29-31, text-figs. 66-69; Day, 1957: 68.
Body slender and about 70 mm . long. Colour grcen, often with a dark median stripe. Prostomium (fig. 5.2.0) cordate; occipital papilla absent. Proximal part of proboscis covered with irregularly arrangcd papillae, the distal part with six rugose ridgcs. First tentacular segment not visible dorsally, the second and third distinct and separate. Tentacular cirri very long and cylindrical. Third tentacular segment with a small sctigerous lobe and setae, the formula being $1+0 \frac{1}{1}+S_{\frac{1}{N}}^{1}$. Dorsal cirri (fig. 5.2.p) broadly rhomboidal or asymmetrically truncate. Setigerous lobes bluntly rounded. Ventral cirri pointed and longer than the setigcrous lobes. Sctac numerous with oval, striated shaft-heads and strongly tapered blades (fig. 5.2.n).

Type locality: Red Sea.
Records: Mocambique ($26 / 32 / \mathrm{i}, 23 / 35 / \mathrm{e}$) - a few specimens.
Distribution: Rcd Sca (i); India (i).
(fig. 5.2.q-s)
Phyllodoce (Anaites) capensis Day, 1960 : 298, fig. 5 a-c.
Body rather broad and short, about 35 mm . long and palc in alcohol. Prostomium (fig. 5.2.r) roundcd in front and with a median lobe posteriorly which bears the occipital papilla. Eyes large and partly covered by a shield formed by the first and second tentacular segments which are fuscd and cxtend forward to cover the sides of the head. Third tentacular scgment separate and distinct. All tentacular cirri cylindrical and tapered. Third tentacular segment with a setigerous lobe and sctac, the formula being $1+0 \frac{1}{1}+S_{\frac{1}{N}}$. Basal part of proboscis, smooth apart from 4-5 lateral papillac, distal part with six rows of large square papillac. Dorsal cirri (fig. 5.2.q) broadly cordate. Sctigcrous lobes bluntly rounded apically. Ventral cirri oval and slightly longer than the setigerous lobes. About 12 sctae per parapodium with asymmetrically toothed shaft-heads and long, finely serrated blades (fig. 5.2.s).

Type locality: False Bay, South Africa.
Record: Cape (34/r8/s) - a few specimens. Nalal 30/30/5

Phyllodoce tubicola Day, 1963
(fig. 5.3.a-c)
Phyllodoce tubicola Day, 1963a: 392, fig. 3 a-c.
Body about 30 mm . long, very slender and sometimes encased in a delicatc, transparent and closely ringed tube. Prostomium (fig. 5.3.a) longer than broad with marked postero-lateral lobes and a small posterior notch containing a very small occipital papilla. Proximal part of proboscis covered with irrcgularly arrangcd papillae, distal half with rugose ridges. First tentacular segment not visible dorsally, the second and third distinct and scparate. Tentacular cirri all cxtremely long and cylindrical, the longest being D_{2} which reaches back to sctiger 8 . A fcw setac present on the third tentacular segment, the formula being $1+0 \frac{1}{1}+S_{\frac{1}{N}}$. Dorsal cirri (fig. 5.3.b) bluntly cordate anteriorly but longer and almost hastate postcriorly. Setigerous lobe with a bluntly rounded apex. Ventral cirri tapered and pointed, much longer than the setigcrous lobes. Setac (fig. 5.3.c) with oval striated shafthcads and long, tapering blades.

Type locality: Agulhas Bank, South Africa.
Records: Cape (33/ri/d, 34/18/s, 34/23/s, $36 / 2 \mathrm{I} / \mathrm{d}$) - a fcw specimens.
Distribution : Endemic.

Phyllodoce (Genetyllis) castanea (Marenzeller, 1879)
(fig. $5 \cdot 3 \cdot \mathrm{~d}-$) $=$ Genctylliu car tanca
Carobia castanea Marenzeller, 1879: 127; Izuka, 1912: 199, pl. 21 fig. 3.
Genetyllis castanea: Bergström, 1914: 158, fig. 53, pl. 3 fig. 4.
Body short (less than 25 mm . long), rusty red in colour. Prostomium (fig. 5.3.d) rounded to oval, broader than long. No occipital papilla. Tentacular segments separatc from the prostomium, but the first often fused to the second and only the third always separate and distinct dorsally. Proboscis slender and covered with small irrcgularly arranged papillae. All tentacular cirri short and spindle-shaped. Both the second and the third tentacular segment with sctae, the formula being $1+S_{1}^{1}+S_{\frac{1}{N}}^{1}$. Dorsal cirri (fig. 5.3.e) cordate and reddish. Setigerous lobes bluntly rounded apically. Ventral cirri oval. Setac (fig. 5.3.f) few, with long shafts ending in truncate and strongly striated shaft-heads; blades short and dagger-like.

Type locality: Southern Japan.
Records: South West Africa (22/15/s); Cape (33/18/s and 34/19/i to 34/22/s) ; Natal (29/3I/i to 28/32/i); Mocambique (24/34/s) and Madagascar (s) - fairly common.

Distribution: Red Sea (i), Indian Ocean (i, s) and Pacific from N. Japan to Campbell Is. (s) and Chathay Is. (d). North Caidisita.

Phyllodoce schmardai Day, 1963

(fig. 5.3.g-j)
Phyllodoce schmardaei Day, 1963a: 392, fig. 2 f-h.
Phyllodoce macrophthalma: Day (non Schmarda), 1960: 297.
Body green, up to 30 mm . long and rather broad. Prostomium (fig. 5.3.h) cordate with large eyes and a small occipital papilla. Proximal half of proboscis lightly papillose, distal half with six rugose ridges. First tentacular scgment not visible dorsally, the second and third distinct and separate. All tentacular cirri cylindrical and fairly long. Setae present on tentacular segments 2 and 3 , the formula being $1+S_{\overline{1}}^{1}+S_{\frac{1}{N}}$. Dorsal cirri (fig. $5.3 . g$) cordatc, as broad as long anteriorly but longer, almost hastate posteriorly. Setigerous lobes bluntly rounded. Ventral cirri broad basally and distally pointed but not longer than the setigcrous lobes. Setac (fig. $5 \cdot 3 \cdot \mathrm{j}$) with oval, distally striated shaft-heads and rather short blades.

Type locality: False Bay, South Africa.
Records: Cape (34/18/i, 34/22/s) - a few specimens.; Madagay car fide Amourcauk
Distribution : Doubtful (synonymy confused).

Fig. 5.3. Phyllodoce tubicola. (A) Head with proboscis extruded. (B) Foot. (c) Scta. Phyllodoce castanea. (D) Hcad with proboscis partly extruded. (e) Foot. (F) Scta. Phyllodoce schmardai. (G) Foot. (H) Head with proboscis extruded. (J) Seta. Notophyllum splendens. (к) Entire worm (twice natural size). (L) Head with proboscis partly extruded. (m) Foot. (n) Seta.

NOTOPHYLLUM Ocrstcd, 1843

Body broad and rather short. Prostomium with two pairs of frontal antennac and a median dorsal one. Onc pair of cycs. A pair of simplc or multidigitate nuchal organs posteriorly. Proboscis diffuscly papillosc. Thrce tentacular segments bcaring four pairs of tentacular cirri according to the formula $1+S_{1}^{1}+S_{\frac{1}{N}}$. Dorsal
eirri large, reniform and imbrieating. Parapodia biramous with an acieulum in the notopodium and sometimes simple setae as well. Neurosetae compound and spinigerous.

Type species: Phyllodoce foliosa Sars, 1835.
Key to Species
I Nuchal organs as simple digitiform lobes N.foliosum*

- Nuchal organs as multigitate lobes .
N. splendens

Notophyllum splendens (Sehmarda, 1861)
(fig. 5.3.k-n)
Macrophyllum splendens Schmarda, 1861: 82.
Notophyllum splendens: Day, 1953: 408, fig. $2 \mathrm{~h}-\mathrm{k}$.
Body (fig. $5 \cdot 3 . \mathrm{k}$) short and broad, seldom exceeding 40 mm . in length but more unan 3 mm . widc. Colour usually grcen. Prostomium (fig. 5.3.1) rounded with large eyes and stout antennac. Proboseis stout with a series of close-set lamellae laterally and transverse ridges dorsally and ventrally. Large nuchal epaulcttcs with 1 wo to four finger-like lobes arise from the posterior margin of the prostomium. First tentacular segment not visible dorsally. Tentacular cirri short. Tentacular formula: $1+S_{\frac{1}{1}}^{1}+S_{\frac{1}{N}}^{1}$. Notopodia of body scgments (fig. $5 \cdot 3 \cdot \mathrm{~m}$) rcduced to stout eirrophores each containing an aciculum but bearing no setae. Dorsal cirri large, reniform and overlap so as to cover most of the dorsum. Neuropodia smaller and lateral. Sctae (fig. 5•3.n) with spinulose shaft-heads. Ventral eirri oval and attaehed to the posterior faces of the neuropodia.

Type locality: Table Bay, South Africa.
Records : South West Afriea ($26 / \mathrm{I} 5 / \mathrm{s}$ and $28 / \mathrm{I} 6 / \mathrm{s}$) to the Cape ($34 / \mathrm{I} 8 / \mathrm{i}, \mathrm{s}$)/- not uncommon.

Distribution: Indo-Pacifie (i, s) ; Red Sea (i).

EULALIA Savigny, 18ı8
Body elongate. Prostomium rounded to cordiform with two pairs of frontal antennae and a mcdian dorsal onc. Proboseis either smooth or covered with soft papillae. Four pairs of tentacular cirri arising from the first three segments whieh may be fused to the prostomium or to one another. Sctac often present on the sccond and third segments. Dorsal and ventral cirri foliaceous. Parapodia uniramous with a bilobed presetal lip. Setac eompound and spinigerous.

Type species: Nereis viridis Linnaeus, if67.

Key to Species

1 Setae absent from all three tentacular segments. Formula $1+0 \frac{1}{1}+0 \frac{1}{N}$. (A cushionshaped lobe occupying a posterior excavation in the prostomium)
E. (P.) macroceros (p. 152)

- Setac on the third tentacular segment only; formula $1+0 \frac{1}{1}+S \frac{1}{N}$.

Setae on both the second and third tentacular segments; formula $1+S_{\overline{1}}^{1}+S_{\frac{1}{N}}^{1} \quad . \quad 4$
2 Body yellowish with three rows of spots. A few setae with swollen shaft-heads and short blades E.trilineata (p. 152)

- Body uniformly green. Setae numerous 3

3 Head very small E. microcephala*

- Head normal in size E. capensis (p. 154)

4 Body yellowish with two stripes, Proboscis with crowded, conical papillae. Setigerous

- Body green; proboscis/quite smooth. Setigerous lobes blunt; ovas cordatE. sanguinea (p. 155)
- Body green ; proboscis with minute papillae. Setigerous lobes pointed
- E.falsa (p. 155)

Eulalia (Pterocirrus) macroceros (Grube, 1860)

(fig. $5 \cdot 4 . \mathrm{a}-\mathrm{c}$)
Phyllodoce (Eulalia) macroceros Grube, 1860: 82.
Eulalia (Plerocirrus) macroceros: ? Fauvel, 1923: 167, fig. 60 d-g;
Day, 1960 : 301, fig. $5 \mathrm{~g}-\mathrm{i}$.
Eulalia (Plerocirrus) ? macroceros: Day, 1953: 411.
(Non) Sige macroceros: Bergström, 1914: 136, text-fig. 40.
Body rather broad, usually greenish; length up to 20 mm . Prostomium (fig. 5.4.a) cordate with a posterior exeavation occupied by a brownish swelling of the first setiger. Two large eyes, five long antennae, the median being the longest and well forward in front of the cyes. Proboseis not seen everted; when disseeted it appears to have large fibrillar lamelle. The first tentaeular segment fused to the prostomium but the seeond and third distinct. Tentaeular cirri cylindrieal exeept for V_{2} which has a foliaccous inferior margin ; formula $1+0 \frac{1}{1}+0 \frac{1}{N}$. Dorsal eirri (fig. $5 \cdot 4 . \mathrm{b}$) elongate-eordate; ventral eirri pointed. Setigerous lobes long with the superior part of the presetal lip produeed and pointed. Setae (fig. $5.4 . \mathrm{e}$) long with markedly striate shaft-heads and long blades.

Type locality: Adriatie.
Records: Cape (34/22/i, s) - rare.
Distribution : Mediterranean (s) ; Moroeeo (s, d) ; Senegal (s).

Eulalia trilineata Saint Joseph, 1888

(fig. 5.4.d-f)

Eulalia trilineata Saint Joseph, 1888: 292, pl. 12 fig. 162; Fauvel, 1923 : 162, fig. 57 m; Day, 1953 : 410; Day, 1960: 305.
Body up to 20 mm . long, slender and yellowish green with a dark median spot and two lateral ones on eaeh segment forming three lines along the back. Median antenna arising in advanee of the cyes. Tentacular segments (fig. 5.4.d) all distinet with setae on the third. Tentacular eirri rounded in seetion exeept V2 which is

Fig. 5.4. Eulalia macroceros. (A) Head. (B) Foot. (c) Seta. Eulalia trilineata. (D) Head with proboscis partly everted. (E) Foot. (F) Seta. Eulalia capensis. (G) Foot. (H) Seta. (r) Entire worm (natural size). (J) Head and everted proboscis. Eulalia bilineata. (K) Head with proboscis partly everted.
somewhat flattened; tentacular formula $1+0_{\frac{1}{1}}^{\frac{1}{2}}+\mathrm{S}_{\mathrm{N}} \frac{1}{}$. Proboscis densely covered with small, irregularly arranged, conical papillac. Dorsal cirri (fig. 5.4.e) lanceolate. Ventral cirri ovoid, slightly longer than the blunt setigerous lobes. Setae (fig. 5.4.f) few, with markedly swollen, lightly serrated shaft-heads and very short serrated blades.

Type locality: France.
Records: (Cape (from $3^{2 / 18 / s}$ and $34 / \mathrm{I} 8 / \mathrm{i}$ to $3^{1 / 29 / i) \text { - several specimens. }}$
Distribution : North Sca; English Channel (s) ; Ireland (i, s).

154
POLYCHAETA OF SOUTHERN AFRICA
Eulalia (Steggoa) capensis Schmarda, 186I
(fig. $5 \cdot 4 \cdot \mathrm{~g}-\mathrm{j}$)
Eulalia capensis Schmarda, 186ı: 86.
Eulalia viridis var. capensis: McIntosh, 1904: 34; Augener, 1918: 177, pl. 3 fig. 48; Day, 1953: 410.

Body (fig. 5.4.i) uniformly green, up to 80 mm . long. Prostomium (fig. $5 \cdot 4 . \mathrm{j}$) large and cordate with a pair of large eyes and five short antennae, the median arising slightly anterior to the eyes. Proboscis denscly covered with small papillae and ending with 18 large soft papillae. The three tentacular scgments are distinct. Tentacular cirrus V2 definitcly flattened and the sccond segment lacks a setigerous lobe or setac, the tentacular formula being $1+0_{\frac{1}{1}}^{1}+\mathrm{S}_{\frac{1}{\mathrm{~N}}}$. Each body scgment has a hastatc, almost symmetrical dorsal cirrus (fig. $5 \cdot 4 \cdot \mathrm{~g}$), a rather truncate setigerous lobe with the notched presetal lip obviously longer than the smoothly rounded postsetal lip. Ventral cirrus ovoid and subequal to the setigerous lobc. Setae (fig. $5 \cdot 4 . h$) with denticulate shaft-heads and rather short, scrrated blades.

Type locality: Table Bay (South Africa).
Records: South West Africa (22/14/i) to the southern Cape (34/I8/i, s and 34/23/i) - common under stones.

Distribution : Endemic.

Eulalia (Hypoenlalia) bilineata (Johnston, 1840)
(fig. $5 \cdot 4 . \mathrm{k}-\mathrm{m}$)
Phyllodoce bilineata Johnston, 1840: 227, pl. 6 fig. 7-10.
Hypoeulalia bilineata: Bergström, 1914: 165, fig. 57.
Eulalia (Hypoeulatia) bilineata: Day, 1960: 300, fig. 5d-f.
Body slender up to 20 mm . long for I 55 segments. Colour ycllowish with two dark grcen stripes just above the parapodia. Prostomium (fig. $5 \cdot 4 . \mathrm{k}$) rounded in front, straight posteriorly. Frontal antennae well developed, median antenna well in advance of the large eyes. Proboscis denscly covered with small conical papillae. First segment frce from the prostomium but reduced. Second and third segments distinct. Dorsal tentacular cirri rounded but V_{2} flattened. Sctac and setigerous lobes on second and third segments. Tentacular formula $1+S_{1}^{1}+S_{\frac{1}{N}}$. Dorsal cirri (fig. 5.4.l) bluntly hastate. Prcsetal lip notched, cnds rounded. Ventral cirrus ovoid. Sctae (fig. $5 \cdot 4 \cdot \mathrm{~m}$) ${ }^{2} 2-16$ per parapodium with ovatc shaft-heads striated distally and lightly serrated blades of normal length.

Type locality: Coast of England.
Records: Cape (33/17/s, 34/18/s, 34/22/s, 32/28/s) - common in some drcdgings.
Distribution : North Atlantic from Greenland (s, d), North Carolina and Europe (i, s) to Mediterrancan; Arctic and North Pacific from Japan (d) to S. California (s).

Eulalia (Eumida) sanguinea Oersted, 1843
(fig. $5 \cdot 5 \cdot \mathrm{a}-\mathrm{c}$)
Eulalia sanguinea Oersted, 1843: 28.
Eumida sanguinea: Bergström, 1914: 131, fig. 37.
Eulalia (Eumida) sanguinea: Fauvel, 1923: 166, fig. 59 f-k.
Body $30-60 \mathrm{~mm}$. long and rather swollen; colour very variable. Prostomium (fig. $5 \cdot 5 . \mathrm{a}$) cordiform with two large eyes, four rather long antennae anteriorly and a fiftl inserted in front of the eyes and extending beyond the tip of the prostomium. Proboscis with a few obscure papillae. The first tentacular segment fused to the protstomium, the second and third distinct and setigerous. Tentacular cirrus V2 somewhat flattened, formula : $1+\mathrm{S} \frac{01}{\mathrm{a} 1}+\mathrm{S} \frac{01}{\mathrm{aN}}$. Dorsal cirri (fig. 5.5.b) cordate, as long as broad and borne on stout cirrophores. Ventral cirri ovoid, shorter than the blunt setigerous lobes. Setae (fig. $5 \cdot 5 . \mathrm{c}$) with oval striated shaft-heads and tapered blades.

Type locality: Denmark.
Angota, Namitia (Hartm,-Schr.19?4)
Records:/Cape coasts from $32 / \mathrm{I} 8 / \mathrm{i}$, s to $34 / 25 / \mathrm{s}$; Mocambique (24/34/s) and Madagascar (s) - not uncommon.

Distribution : Cosmopolitan in temperate and tropical seas (i, s, d).

Eulalia (Sige) falsa Day, 196o
(fig. $5 \cdot 5 \cdot \mathrm{~d}-\mathrm{f}$)
Eulalia (Sige) falsa Day, 1960: 303, fig. 6 a-c.
Body about 20 mm . long; pale brown in alcohol. Prostomium (fig. $5 \cdot 5 . \mathrm{d}$) cordate, frontal antennac subulate, median antenna short and in front of the large eyes. First tentacular segment fused to the prostomium dorso-laterally. Second and third segments distinct. Dorsal tentacular cirri cylindrical and long but V2 flattened. Second tentacular segment with a few setae ; third scgment with a setigerous lobe and setac. Formula $1+S_{1}^{1}+S_{\frac{1}{N}}^{1}$. Proboscis with six ridges and very poorly marked papillae. Dorsal cirri (fig. $5 \cdot 5 \cdot \mathrm{e}$) elongate-cordate. Setigerous lobe with a presetal lip which is long, pointed and deeply notched. Ventral cirrus pointed but shorter than the setigerous lobe. Setac (fig. $5 \cdot 5 . f$) numerous with shaft-heads very slightly expanded and bearing threc to four small denticles at the apex; blades fairly long.

Type locality: False Bay (South Africa).
Records: Cape coasts from 33/ז7/s, d to 33/27/s - a few specimens.
Distribution: Endemic.

Fig. 5.5. Eulalia sanguinea. (A) Head. (B) Foot. (C) Seta.
Eulalia falsa. (D) Head. (E) Foot. (F) Scta.

Subfamily LOPADORHYNCHINAE Claparc̀dc, I868
Entirely planktonic. Body small and rather flattened. Prostomium broad with four antennac, no palps and poorly dcvelopcd eyes. Proboscis unarmed and seldom cverted. Two to three tentacular cirri on the first one or two segments which may lack sctae. Parapodia uniramous with dorsal and ventral cirri. Setac mainly compound.

Records from southern Africa

BIOLOGICAL NOTES

Practically nothing is known of the biology of this group. Apart from Pelagobia longicirrata, they are rarc in plankton samples and neither this species nor any other
has ever been found with recognisable food in its gut. Certainly they do not feed on phytoplankton.

THE MAIN DIAGNOSTIC GHARACTERS

Uscful references regarding this group will be found in Greeff (1879), Reibisch (1893 and 1895) and Southern (1909). Rcvised descriptions are given by StøpBowitz (1948) and a valuable key by Dales (1957). The important characters arc similar to those of the Phyllodocinae but basically similar.

The Prostomium and Proboscis are of minor importance.
The First Three Segments. Thesc are of major importance.
The same tentacular formula that was used for the Phyllodocinae (sce p. 138) may be applied herc. The modification of the normal lamellar cirri to form clongate and cylindrical tentacular cirri is usually limited to the first segment behind the head but may be continued over two segments c.g. (Maupasia). In Lopadorhynchus, however, there is an additional complication for there is a vertical scries of three not two tentacular cirri on the first segment. The inferior one though minute appears to be consistently present and in L. brevis it is well developed. These tentacular cirri are best represented in the tentacular formula as $\frac{1}{1}$. In the Phyllodocinae the presence of two tentacular cirri on a single segment is obviously due to the modification of the dorsal and ventral cirri of that scgment but the presence of threc is more difficult to understand. It secms possible that the middle cirrus is a modified setigerous lobe but the fact that it has a cirrophore like those of the superior and inferior cirri makes this explanation unlikely.

Dorsal or ventral cirri may also be lacking from the next two or three segments. In Lopadorhynchus the presence or absence of ventral cirri from setigers 1-2 or 1-3 is difficult to obscrve as these cirri may be folded against the postsetal lobe and partially covered by a flange of the broad presetal lamella. The shape of subscquent dorsal and ventral cirri is also of taxonomic importance but as these structures arc soft and liable to shrinkage or bloating according to the method of fixation and preservation, only major differences in shape are rcliable.

Setae. Again it is the sctae of the first few segments that are most important. Only normal, compound, spinigerous setae are present on the tentacular segments of Pelagobia and Maupasia though simple setae have been described where the blade has fallen off. In Lopadorhynchus the first two or three setigers bchind the tentacular segment have short, stout, curved acicular sctae which are easily distinguished from the shafts of the compound setae.

In some species the distal part of the shaft and the edge of the blade is scrrated er denticulate on one side. When observing this claracter it is important that the seta be viewed in full lateral view; if the setae are even slightly rotated they may appear smooth.

Key to Genera

2 Two tentacular cirri on the first segment (formula $0 \frac{1}{1}$). Next two to three segments normal with compound setac (fig. 5.6. a) PEDINOSOMA (p. I_{5} 8)

- Two to three tentacular cirri on the first segment (formula $0 \frac{1}{1}$). Next two to three segments modified with curved acicular setae (fig. 5.6.d) . LOPADORHYNCHUS (p. ${ }^{158}$)
3 Two tentacular cirri on the first segment (formula $S_{\frac{1}{1}}^{1}$.) Next segment without a dorsal cirrus (fig. $5 \cdot 7 . \mathrm{h}$)
. PELAGOBIA (р. 163)
- Three tentacular cirri on two segments (formula $S_{\frac{1}{1}}+S_{\frac{1}{N}}$). Next segment with a/dorsal cirrus (fig. $5.7 . \mathrm{j}$) MAUPA゙SIA (p. 164)

PEDINOSOMA Reibiseh, 1895
Body small and flattened with few segments. Four antennae. Proboseis short with three glands. Two pairs of tentacular cirri but no sctae on the first segment (formula $\mathrm{O}_{\frac{1}{1}}$). All subsequent parapodia with cordate dorsal eirri, conieal setigerous lobes and lanceolate ventral cirri. Setae all fine and compound.

Type species: Pedinosoma curtum Reibisch, 1895.
Pedinosoma curtum Reibisch, 1895
(fig. 5.6.a-e)
Pedinosoma curtum Reibisch, $1895: 27$, pl. 2 fig. 17 , pl. 3 figs. i-4; Fauvel, 1923: 188, fig. 70 c-f.
Body (fig. 5.6.a) broad and flattencd, only 2 mm . long with seven to eight setigers. Prostomium eurved in front with two pairs of subequal antennac. Eyes not obvious. A pair of lateral nuehal organs. The first or tentaeular segments bears two pairs of tapered tentacular eirri of which the ventral is slightly longer and exceeds the width of the segment. Body segments (fig. 5.6.b) have bilabiate setigerous lobes, swollen cordate dorsal eirri and tapered ventral eirri which are longer than the setigerous lobes. Setae (fig. 5.6.c) are hetcrogomph spinigers with pointed shaft-heads and long blades.

Type logality : Azores.
Records: S.E. Atlantic (34/17/p) ; Agulhas Current (from 30/32/p to 35/22/p) 12 stations; Mocambique Current (12/47/p) ; S.W. Indian Occan (33/33/p, 39/38/p).

Distribution: Warm North Atlantic; North Pacific. Effol Atgenciciar

LOPADORHYNCHUS Grube, 1850

Body broad and flattened. Four antennae. Two to three tentacular eirri but 110 setae on the first segment which has the three cirri in a vertieal series (formula $0 \frac{1}{\frac{1}{1}}$). Proboseis with three glands. Scgments 2, 3 and somctimes 4 are stout, have acicular setae and may lack ventral cirri. Each body segment with a foliaceous dorsal cirrus, a setigcrous lobe with a rounded presetal lamella, numerous eompound sctae and sometimes a fcw simple acicular ones. Ventral eirri often subulate.

Type species: Lopadorhynchus brevis Grube, 1850.

Key to Species

1 Compound setae start on setiger 3 2

- Compound setae start on setiger 4. (One to two acicular setae persist to the fourth foot or later)
2 Setigers I and 2 without ventral cirri in the adult. Fourth and later setigers with or without an acicular seta among the compound forms
- Setigers 1 and 2 with ventral cirri partially fused to the inferior margins of the setigerous lobes. Fourth and latcr setigers without acicular setae among the compound forms
3 Only compound setae after the third foot. (Setigers 1 and 2 with a collar-like expansion
at the base of the setac)
- Compound setae accompanied by one inferior acicular setae in the fourth and subsequent feet L. krohni (p. 159)
4 Ventral cirri with long filiform tips L. appendiculatus (p. 161)
- Ventral cirri without filiform tips L. henseni (p. 161)

5 Sctigers 1 -3 without ventral cirri L. brevis (p. 162)

- Sctigers 1-3 with ventral cirri partially fused to the inferior margins of the setigcrous lobes
L. nationalis (p. 162)

Lopadorhynchus uncinatus Fauvel, 1915
(fig. 5.6.d-h)
Lopadorhynchus uncinatus Fauvel, 1915: 3, fig. 2; Fauvel, 1923: 184, fig. 67; Dales, 1957: 101, figs. 1-5.
Body (fig. $5.6 . \mathrm{g}$) up to 25 mm . long, but usually 12 mm . with $25-32$ setigers. First segment with three pairs of antennae in a vertieal series; the middle and upper ones slightly longer than the prostomium is broad, the lowest one minute. Setigers I and 2 (fig. 5.6.d) stout with stout acieular setae (fig. 5.6.h) each with a eonical setigerous lobe and a rounded presetal lamella, a small conical dorsal cirrus and a more pointed ventral eirrus. The setae (fig. 5.6.e) are all eompound with a pointed shaft-head and the base of the blade is dentieulate on one side.

Type locality: Azores and Mediterranean.
Records : S.E. Atlantic (32/1 $3 / \mathrm{p}$ and $34 / \mathrm{I} 6 / \mathrm{p}$).
Distribution: Warm North and South Atlantie; Mediterranean; off California.

Lopadorhynchus (Lopadorhynchus) krohni/(Claparède, 1870) (fig. $5.6 . \mathrm{i}-\mathrm{k}$)
Hydrophanes krohnii Claparède, 1870: 464, pl. 9 fig. 2.
Lopadorhynchus krohnii: Fauvel, 1923: 185, fig. 68 a-d.
Body rather broad, up to 4 mm . long with 35 setigers. Prostomium broader than long. Superior antennae almost twiee as long as the inferiors but still only one third of body width. Proboseis eversible with three digitiform papillae. Three pairs of tentaeular eirri on the first segment in a vertieal series, the upper two subequal and two-thirds the body width while the lowest one is a minute papilla. First two

Fig. 5.6. Pedinosoma curtum. (A) Entire worm (20 times natural size). (B) Posterior view of foot. (c) Seta. Lopadorhynchus uncinatus (modified from Fauvel, 1915). (D) Second foot. (E) Compound seta. (F) Simple hook from second foot. (G) Entire worm (dorsal view, three times natural size). (H) Tenth foot. Lopadorhynchus krohni. (1) Second foot. (J) Compound seta. (k) Seventh foot. Lopadorhynchus appendiculatus. (L) Second foot.
(M) Dorsal view of anterior end. (N) Tenth foot. (M) Dorsal view of anterior end. (N) Tenth foot. Lopadorhynchus henseni. (o) Ventral view of anterior end. (P) Compound seta. (Q) Second foot. (R) Seventh foot.
setigers (fig. 5.6 .1) shorter and stouter than subsequent ones and lack ventral eirri. Ventral cirri present from setiger 3. Eaeh parapodium in the middle of the body (fig. 5.6.k) has a conieal setigerous lobe with a rounded presetal lamella, an ovoid dorsal cirrus and a longer ventral cirrus. Simple acicular setae up to setiger 4-7; compound setae start in setiger 3 and have pointed shaft-heads and dentieulate blades.

Type locality: Naples.
Records: S.E. Atlantic off Cape Town; Agulhas Current and S.W. Indian Oecan.

Distribution : All warm and temperate seas.

Lopadorhynchus (Prolopadorhynchus) appendiculatus Southern, 1909 (fig. 5.6.1-n)
Lopadorhynchus appendiculatus Southern, 1909: 7, pl. 2 figs. 12-13, pl. 3 figs. 14-20; Fauvel, 1923: 187, fig. 69 a-l.

Body up to 13 mm . long with $18-25$ segments. Superior antennae (fig. $5.6 . \mathrm{m}$) longer than the inferiors and two-thirds the prostomial width. First segment with three pairs of tentacular eirri in a vertical series, the middle and upper ones fourfifth of body width, the lowest one small. First three segments with ventral shields having lateral projeetions. First two setigers (fig. 5.6.1) with short parapodia having inconspicuous, hooked, aeieular setae. Third setiger with long compound setae. First two parapodia with ventral eirri partially fused to the setigerous lobe. Middle parapodia (fig. 5.6.n) eaeh with a conical setigerous lobe bearing a rounded presetal lamella, a stout dorsal cirrus and a shorter ventral cirrus with a filiform apex and an internal gland. Compound setae with broad serrated blades.

Type locality : Atlantic, west of Ireland.
Records: Agulhas Current (34/27/p) ; S.W. Indian Ocean (33/33/p, 35/48/p).
Distribution : North Atlantie (off Ireland, Azores and Canary Is.).

Lopadorhynchus (Prolopadorhynchus) henseni Reibisch, $1895^{3 /}$
(fig. 5.6.0-r)
Lopadorhynchus henseni Reibisch, 1895: 35; Stop-Bowitz, 1948: 19, fig. 12 a-e.
Reibischia henseni: Bergström, 1914: 182, text-fig. 69.
Body oval, up to 5 mm . long for 20 segments. Superior antennae (fig. 5.6 .0) larger than the inferiors and a quarter of the segmental width. Three pairs of tentaeular eirri on the first segment in a vertieal series, the upper and middle ones subequal and two-third the segmental width, the lowest a minute papilla. First two setigers (fig. 5.6 .9) stouter and shorter than subsequent ones and have both ventral eirri and aeicular setae only. The ventral cirri lie parallel to the inferior margin
of the setigerous lobes. Third setger with numerous compound setae. Parapodia in the middle of the body (fig. 5.6.r) each with a conical setigerous lobe with a rounded presetal lamella, a stout dorsal cirrus and a blunt subulate ventral cirrus divergent from the setigerous lobe. Compound setae (fig. $5.6 . \mathrm{p}$) with pointed shaft-heads and broad blades with thickened denticulate margins.

Type locality : Central Atlantic.
Records: S.E. Atlantic ($34 / \mathrm{I} / \mathrm{p}$) ; Agulhas Current (from 30/30/p south west to $34 / 26 / \mathrm{p})$ - several stations.

Distribution : Central and North Atlantic.

Argeriten

Lopadorhynchus (Lopadorhynchus) brevis Grubs, 185°
(fig. 5.7.d-e)
Lopadorhynchus breves Grubs, 1850: 306; Dales, 1957: 104, figs. 7 and 8; Tebble, 1960: 200.
Body up to 20 mm . long with 27 setigers. Prostomium (fig. $5.7 . \mathrm{d}$) broader than long; superior antennae twice as long as the inferiors but still less than half body width. First segment with three pairs of tentacular cirri in a vertical series of decreasing length, the upperinost equal to the segmental width and the lowest small but well developed. The first three setigers shorter and stouter than subsequent ones; they have only simple acicular setae and lack ventral cirri. Middle parapodia (fig. $5 \cdot 7$.e) each with a pointed dorsal cirrus, a conical setigerous lobe with a rounded presetal lamella and a subulate ventral cirrus. Setae include a fan of compound setae and two to three inferior simple acicular setae.

Type locality: Mediterranean Sea.
Records: Not known from southern Africa.
Distribution : Mediterranean : warm South Atlantic; warm North Pacific.

Lopadorhynchus nationalis Reibisch, 1895
(fig. 5.7.a-c)
Lopadorhynchus natonialis Reibisch, 1895: 38, pl. 3 figs. 10-15.
Lopadorhynchus (Prolopadorhynchus) nationalis: Fauvel, 1923: 186, fig. 68 e-i; Stop-Bowitz, 1948: 19 ; Dales, 1957 : 106.
Body up to 15 mm . long with 36 segments but usually only 10 mm . with 25 segments. Inferior antennae (fig. 5•7.a) only half as long as the superior pair. First segment with three pairs of tentacular cirri in a vertical series; the two superior pairs are subequal and the third, inferior pair are unusually well developed, being half the length of the superior pairs. Eyes indistinct. Setigers one to three shorter and stouter than the rest and bear only simple acicular setae. Ventral cirri of setigers i-3 (fig. $5 \cdot 7 \cdot \mathrm{~b}$) are cylindrical and partly fused to the distal inferior margin behind the
sctae. The fourth and each of the later body segments (fig. 5.7.c) with a stout acornshaped dorsal cirrus, a setigerous lobe with a rounded presetal lamclla and a separate, tapered and blunt ventral cirrus. Stout curvcd acicular setae decreasc in number after setiger 3 but $\mathrm{I}-2$ are present in middle scgments. Compound sctac appear in setiger 4 , cach with a pointed shaft-head and a blade with minute denticles extending along one margin to the rounded tip.

Type locality: Tropical Atlantic.
Records: Mocambique current (26/31/p, 26/35/p) ; Agulhas current (32/29/p).
Distribution: Mediterranean ; tropical and subtropical Atlantic and Pacific.

PELAGOBIA Greeff, 1879

Body small and rather flattened. Four antennac. Two pairs of tentacular cirri on the first segment which also bears setac (formula $S_{\frac{1}{1}}$). Dorsal cirrus absent from the next segment. Later parapodia with long tapcred dorsal and ventral cirri and conical sctigcrous lobes. Setae compound.

Type species: Pelagobia longicirrata Greeff, 1879.

Pelagobia longicirrata Greeff, 1879

(fig. 5•7.f-i)
Pelagobia longicirrata Greeff, 1879: 247, pl. 14 figs. 23-25; Fauvel, 1923 : 192, fig. 7^{2} a-c.
Body (fig. $5 \cdot 7 . f$) about 5 mm . long with 20 scgments. Prostomium (fig. $5 \cdot 7 . \mathrm{h}$) bluntly triangular with a pair of small indistinct cycs and four antennae which are slender, subequal and less than the width of the prostomium. Tentacular segment with a few sctae and two pairs of tapered tentacular cirri longer than the width of the body. Second sctiger without a dorsal cirrus. Latcr parapodia (fig. 5•7.i) cach with a conical setigerous lobe and much longer, subcqual, dorsal and ventral cirri. Sctae (fig. $5.7 . \mathrm{g}$) with asymmetrical shaft-heads having a long tooth on one side; blades toothcd with faintly hooked tips. Middlc parapodia often yellowish brown.

Type locality: Canary Islands.
Records: Bengucla Current (22/12/p, 25/13/p, 28/14/p) ; S.E. Atlantic (34/12/p to $35 / \mathrm{I} 8 / \mathrm{p}$) ; Agulhas Current and neritic watcrs of the Cape (from 29/3 $/ \mathrm{p}$ to 35/22/p - I5 stations) ; Mocambique Current (I3/42/p to 24/39/p) ; S.W. Indian Ocean (28/39/p to 39/38/p).

Distribution: "Almost all cxplored water masses". Known depth range 5^{0-} 1000 metrcs.

MAUPASIA Viguier, 1886
Body broad and short, usually less than 5 mm . long with ${ }^{15}-25$ segments. Four antennae. Three pairs of tentacular cirri and setae on the first two segments (formula $S \frac{1}{1}+S_{\frac{1}{N}}$ Parapodia uniramous, cach with a conical setigerous lobe and acornshaped to cylindrical dorsal and ventral cirri. Setac compound.

Type species: Maupasia caeca Viguier, 1886.

Key to Species

I Dorsal cirri acorn- or flask-shaped (fig. 5.7.0) ; ventral cirri markedly tapered . M. caeca

- Dorsal cirri digitiform or subulate ; ventral cirri blunt 2

2 Tentacular cirrus D2 longer than twice the body width M. gracilis

- Tentacular cirrus D2 less than twice the body width
M. isochaeta*

Maupasia caeca Viguicr, 1886
(fig. 5.7.m-o)
Maupasia caeca Viguier, 1886: 382, pl. 21 figs. 14-20; Fauvel, 1923: 190, fig. 71 a-d.
Body (fig. $5 \cdot 7 . \mathrm{n}$) $3-5 \mathrm{~mm}$. long with about 15 segments. Prostomium square or faintly curved in front and without eyes. Two pairs of subequal antennae equal to the width of the prostomium. First tentacular scgment bearing a few setae and two tapered tentacular cirri of which the dorsal is rather longer than the ventral. Sccond tentacular scgment with a long dorsal cirrus equal to two-third the body width, a few setac and a normal ventral cirrus slightly shorter than those of the body. Middle segments (fig. 5.7.0) each with a swollen, flask-shaped dorsal cirrus, a conical setigerous lobe and a markedly tapered ventral cirrus a little longer than the dorsal one. Setac (fig. $5 \cdot 7 . \mathrm{m}$) with one side of the shaft-head ending in a long point and bcaring a very long fine bladc.

Type locality: Bay of Algicrs.
Records: S.E. Atlantic (34/17/p, 34/18/p) ; Agulhas Current (from 29/31/p to 34/25/p) - 12 stations; Mocambique Current; S.W. Indian Ocean.

Distribution: Mediterrancan; North Pacific; Subantarctic and Antarctic in warm deep water. Off Argciteion,

Maupasia gracilis (Reibisch, 1895)
(fig. 5•7.j-1)
Haliplanes gracilis Reibisch, 1895 : 25, pl. 2 figs. 10-13.
? Haliplanes magna Southern, 1gog: 5, pl. 1 fig. 6, pl. 2 figs. 7-1.
Body about 2 mm . long with $12-15$ sctigcrs. Prostomium (fig. 5.7.j) rounded in front and without eyes. Two pairs of subcqual slender antennae. Nuchal collar not evident. First tentacular segment with two pairs of slender, subequal tentacular cirri shorter than the segment is broad and a few compound setac. Second tentacular

Fig. 5.7. Lopadorhynchus nationalis. (A) Anterior end. (B) Second foot. (c) Tenth foot. Lopadorhynchus brcvis (modified from Dales, 1957). (D) Ventral view of anterior end. (E) Seventh foot. Pelagobia longicirrata. (F) Entire worm (II times natural size). (G) Seta. (H) Head. (I) Foot. Maupasia gracilis. (J) Head. (K) Foot. (L) Shaft-head of seta. Maupasia caeca. (M) Seta. (N) Entire worm (I2 times natural size). (o) Foot.
segment with a very long dorsal tentacular cirrus over twice as long as the segment is broad, a few compound setae and a normal ventral cirrus similar to those of subsequent segments. Normal body segments (fig. 5.7.k) have blunt digitiform dorsal cirri, shorter, conical setigerous lobes, and ventral cirri a little narrower than the dorsal ones. Setae (fig. 5.7.1) all compound and essentially similar though they may appear simple by the loss of the blade. Each seta has a shaft-head with one long blunt tooth with a thickened base and bears a very long slender blade. Some feet bear a seta with a much thicker shaft than the rest.

Type locality: Tropical Atlantic.
Records: Agulhas Current (32/29/p, 32/30/p, 33/28/p, 33/29/p); Mocambique Current (21/40/p).
and wam.
Distribution : Tropical/Atlantic; ? South Pacific.

Family PONTODORIDAE Bergström, 1914

Small planktonic worms with few segments and related to the Syllidae. Prostomium rounded with rudimentary palps, small cyes and one pair of slender antennac. Pharynx unarmed, papillose and followcd by a muscular gizzard. Tentacular segment with two pairs of tentacular cirri with internal acicula in the lower pair. Body elongate with numerous uniramous parapodia each having an elongated sctigerous lobe and small glandular dorsal and ventral cirri. Setae compound and spinigerous.

Records from southern Africa

Pontodora pelagica Greeff -Np, Pp
PONTODORA Greeff, 1879
The single genus has the characters of the family.
Type species: Pontodora pelagica Greeff, 1879.

$$
\text { Pontodora pelagica Greeff, } 1879
$$

(fig. 6.I.a-d)
Pontodora pelagica Greeff, 1879: 245, pl. 14 figs. 19-22; Fauvel, 1923: 197, fig. 73 f-k.
Body (fig. 6.I.a) vermifrom, $\mathrm{I}-2 \mathrm{~mm}$. long with up to 18 setigers. Prostomium (fig. 6.I.b) rounded with a pair of long, slender antennae and a pair of small eyes. Palps very indistinct, small and roundcd. Tentacular segment short and fused to the prostomium with two pairs of long, slender tentacular cirri and internal acicula in the lower pair. Antennae and cirri not jointed. Pharynx covered with long papillae and followed by a barrel-shaped muscular gizzard. No dorsal cirrus on the first setiger. Middle parapodia (fig. 6.i.c) each with a long cirriform setigerous lobe and short, fusiform, glandular dorsal and ventral cirri and three ciliated and pedunculate papillae. Setae (fig. 6.1.d) compound with symmetrical shaft-heads and long slender serrated blades.

Type logality: Canary Islands.
Records: Agulhas Current (30/3o/p) ; Mocambique Current (in $/ 42 / \mathrm{p}$).
Distribution: Warm North Atlantic.

Family IOSPILIDAE Bcrgström, $19{ }^{1} 4$

Small clongate planktonic worms. No antennac. Prostomium rounded. Two eyes. Two minute palps. Two fused tentacular segments with two pairs of tentacular cirri and sctae accompanying the second pair. The next two to ten segments with reduced parapodia. Latcr parapodia uniramous with short dorsal and ventral cirri, a longer setigerous lobe and compound spinigerous sctac. Proboscis eversible, with or without a pair of lateral jaws.

Records from southern Africa

> Iospilus phalacroides Viguier
> Phalacrophorus pictus Greeff
> Phalacrophorus uniformis Reibisch . \quad. $\quad . \quad . \quad . \quad-\mathrm{Cp}, \mathrm{Np}, \mathrm{Pp}$

BIOLOGICAL NOTES

The genus Iospilus is probably not as rare as the number of published records would suggest for it is easily mistaken for the larva of some benthonic form such as a spionid. This is mainly becausc it is one of the few holoplanktonic polychactes which feeds on diatoms. The other genus Phalacrophorus which has enormous jaws is quite obviously a predator. All iospilids have well marked branching chromatophores and are probably phosphoresecnt in life.

Key to Genera

1 Proboscis unarmed
IOSPILUS

- Proboscis with a pair of long chitinous jaws PHALACROPHORUS

IOSPILUS Viguicr, 1886
(including PARIOSPILUS Viguicr, 19 I 1)
Prostomium rounded, without antennae but with a pair of cyes. Two minute ventral palps on the outer edges of the mouth. Proboscis unarmed; two pairs of small tentacular cirri on the first two fused segments of which the first is achactous and the sccond bears sctae according to the formula $1+S_{0}^{1}$. Dorsal and ventral cirri of segments 3 and 4 rudimentary but small sctigcrous lobes and setae present. Segment 5 and succeeding segments with fully developed parapodia having small lamellar dorsal and ventral cirri and a long sctigerous lobe bearing compound setac. Pygidium glandular, without anal cirri.

Type species: Iospilus phalacroides Viguier, 1886

Fig. 6.1. Pontodora pelagica. (A) Entire worm (30 times natural size). (B) Head. (c) Foot. (D) Setal shaft-head and base of blade. Iospilus phalacroides. (E) Setal shaft-head and base of blade. (F) Entire worm (dorsal view, 15 times natural size). (G) Head. (H) Foot. Phalacrophorus uniformis. (1) Entire worm (ventral view showing chromatophores, 10 times natural size. (J) Dorsal view of head. (к) Everted proboscis. (L) Seta. (M) Foot. Phalacrophorus pictus. (N) Ventral view of anterior end. (o) Posterior view of foot showing chromatophores.

Iospilus phalacroides Viguier, 1886

(fig. 6.I.e-h)
Iospilus phalacroides Viguier, 1886 : 392, pl. 23 figs. 1-6; Fauvel, 1923: 194, fig. 72 e. Pariospilus affinis Viguicr, 191 $1: 250$; Fauvel, 1923 : 194, fig. 73 a-c.

Body (fig. 6.r.f) up to 5 mm . long with about 2 o segments and roughly cigar-shaped with blunt ends. Colour brownish, not translucent with two to four rows of starshaped chromatophores on the dorsum. Prostomium (fig. 6.I.g) rounded anteriorly and broader than long with a pair of indistinct cyes. A pair of minute palps ventrally on the outer edges of the mouth. Proboscis muscular with lobed lips but unarmed. First segment with a pair of small cylindrical tentacular cirri but no setac. Second segment fused to the first and bears a longer pair of tentacular cirri accompanied by a few setae. Segments 3 and 4 each with a small setigcrous lobe and setae and rudimentary dorsal and ventral cirri which are difficult to see. Subscquent parapodia fully formed and gradually increase in sizc to the eighth. Each parapodium (fig. 6.I.h) has a cordatc, rather swollen dorsal cirrus, a longer, conical setigerous lobe and a smaller ventral eirrus. Setae all compound and spinigerous with slender shafts ending in pointed shaft-heads (fig. 6.1.c) and slender sword-like blades. Pygidium broader than long, glandular and without appendages.

Type locality: Bay of Algiers

Records: Benguela Current (32/16/p); Agulhas Current and inshore waters (from 32/30/p to $35 / 23 /$ p - six stations) ; S.W. Indian Oeean (33/33/p).

Distribution: Mediterranean; S. Pacific.

PHALACROPHORUS Greeff, 1879

Body elongate, cylindrical and transparent. Prostomium small, rounded and without antennae but with a pair of small palps ventrally. Proboscis large, eversible and armed with a pair of long curved and pointed jaws. Two pairs of small tentaeular cirri on the first two segments of which the second bcars setae giving the formula $1+\mathrm{S}_{0}^{1}$ The next few scgments have reduced parapodia but thercafter each parapodium has ovoid dorsal and ventral cirri and a conical sctigerous lobe bearing compound spinigcrous setac. Pygidium glandular, without appendages.
Type spegies: Phalacrophorus pictus Greeff, 1879.

Key to Species
I First two to three parapodia rudimentary (fig. 6.1.n) P.pictus

- First eight to ten parapodia rudimentary. P. uniformis

Phalacrophorus pictus Greeff, 1879

(fig. 6.I.n-o)
Phalacrophorus pictus Greeff, 1879: 249, pl. 14 figs. 26-30; Fauvel, 1923: 196, fig. 72 f.
Body cylindrical, up to 6 mm . long for 30 segments. Prostomium (fig. 6.I.n) rounded in front with two eyes and a pair of minute palps. Proboscis large and eversible, with a lobed margin and a pair of ehitinous pointed jaws. The first tentacular cirrus is a mere dorsal papilla, the seeond longer, ventral and digitiform. According to Fauvel it is accompanied by a few setae but nonc were seen. Parapodia and setae of segments 3 and 4 poorly developed. From segment 5 onwards the parapodia and setae are all equally large, each (fig. 6.1.o) with a well developed conical setigerous lobe, a bluntly triangular dorsal cirrus and a smaller ventral eirrus. Segmental ehromatophores ventral to the parapodia. They are not developed in juveniles but in the adults branching ehromatophores develop on and between the parapodia. Setae slender with long pointed shaft-heads and slender blades.

Type locality: Canary Islands.
Records: S.W. Atlantic (32/r6/p, 34/17/p) ; Agulhas Current (from 30/31/p to $35 / 26 / \mathrm{p}$ - seven stations) ; Mocambique Current (1I/42/p, $2 \mathrm{I} / 37 / \mathrm{p}$); S.W. Indian Ocean (32/36/p, 34/39/p, 39/38/p).

Distribution : Temperate and tropical Atlantie, Paeific and Mediterranean.

Phalacrophorus uniformis Reibisch, 1895

(fig. 6.I.i-m)
Phalacrophorus uniformis Reibisch, 1895 : 15, pl. I figs. 10-16; Fauvel, 1923: 196, fig. 72 g-h.
Body (fig. 6. i.i) cylindrieal, up to 10 mm . long with about 50 segments. Prostomium (fig. 6.I.j) rounded in front with two indistinet eyes and two minute palps. Proboscis (fig. 6.I.k) large and evcrsible with a lobed margin and a pair of ehitinous pointed jaws. The first tentacular eirrus is a mere dorsal papilla, the second longer, ventral and digitiform and accompanied by a few fine setae. Parapodia of the next eight to ten segments all small but incrcasing in size and their setae are markedly shorter than those of later segments. Each fully developed parapodium (fig. 6.I.m) with a conical setigcrous lobe bearing long sctae, a cordatc dorsal eirrus and a slightly smaller ventral cirrus. Setae (fig. 6.i.l) slender with long, pointed shaftheads and slender blades. Small juveniles without ehromatophores; larger ones with branching ehromatophores below the parapodia; in addition the well developed segments of adults have a single small chromatophore on the midventrum.

Type logality : Tropical Atlantic.
Records : S.W. Atlantic (32/16/p, 34/17/p) ; Agulhas Current and inshorc waters (from 29/3I/p to $36 / 23 / \mathrm{p}-16$ stations) ; Mocambique Current (from II/42/p to 24/39/p - four stations) ; S.W. Indian Ocean (28/39/p, 27/41/p, 27/45/p).

Distribution : Tropieal Atlantic; temperate and tropical Pacific.

Family ALCIOPIDAE Ehlers, 1864

Planktonic polychaetes with slender transparent bodies and segmental glands at the bases of the parapodia. Prostomium roughly reetangular with two pairs of frontal antennae and a median dorsal one whieh is sometimes reduced or vestigial. Eyes enormously developed with large crystalline lenses. Proboscis eversible, without jaws but with marginal papillae or long lateral horns. Three short tentacular segments bearing three to five tentacular cirri according to the formula $1+\frac{1}{0-1}+\frac{1}{0-(1 \text { or } N)}$. The parapodia of the next few seginents may be redueed and lack setae and the dorsal cirri of segments 4 or 5 may be modified to form receptacula seminis in the female. Normal body segments arc uniramous, each with a conical setigerous lobe and foliaceous dorsal and ventral eirri. Sctae either simple or compound or both. Segmental organs usually darkly pigmented. Pygidium with a pair of anal eirri.

Records from southern Africa

Alciopa reynaudii Audouin \& Milne Edwards as Greeffia oahuensis MeIntosh
Alciopina parasitica Claparède \& Panceri Krohnia lepidota (Krohn).
Naiades cantrainii Delle Chiaje. as Alciopa cantrainii (Delle Chiaje)
Plotohelnis alata Chamberlin
Plotohelmis capitata (Greeff) as Rhynchonerella fulgens Grceff
Plotohelmis tenuis (Apstein)
Rhynchonerella angelini (Kinberg) as Callizona angelini (Kinberg)
Rhynchonerella gracilis Costa
Rhynchonerella moebii (Apstcin)
Rhynchonerella petersi (Langerhans)
Torrea candida (Delle Chiaje)
Vanadis cyystallina Grccff.
Vanadis crystallina var. inornata Day
Vanadis formosa Claparède
Vanadis fuscapunctata Treadwell
Vanadis longissima (Levinsen)
Vanadis minuta Treadwell
Vanadis violacea Apstein .

$$
\begin{aligned}
& { }_{49} \mathrm{Cp},-\mathrm{Cp}, \mathrm{~Np} \\
& \text { 37Cp } \\
& \text { - } \mathrm{Cp}, \mathrm{~Np}, \mathrm{Pp} \\
& \text { - Cp, Np, Pp } \\
& { }_{49 \mathrm{Cp},-\mathrm{Cp}, \mathrm{~Np}, \mathrm{Pp}} \\
& { }_{33} \mathrm{Cp} \\
& \text { - Pp, Mp } \\
& \text {-C.Cp, Np, Mp } \\
& 21 \mathrm{~Np} \\
& \text { - Ср, Mp } \\
& { }_{49} \mathrm{Cp} \\
& { }_{37} \mathrm{Cp} \\
& \text {-Cp, Np, Mp } \\
& \text { - Cp, Np, Mp } \\
& \text {-Cp, Np, Pp } \\
& { }_{33 \mathrm{Cp},-\mathrm{Cp}, \mathrm{~Np}, \mathrm{Mp}} \\
& \text { - }{ }_{49} \mathrm{Cp},-\mathrm{Cp}, \mathrm{Pp} \\
& \text { - } \mathrm{Np} \\
& { }_{32} \mathrm{~Np}, 33 \mathrm{Cp} \\
& { }_{37} \mathrm{Cp},{ }_{49} \mathrm{Cp},-\mathrm{Np} \\
& \text { - Cp, Np, Pp } \\
& \text { - Cp, Np, Pp } \\
& \text {-Cp, Np, Pp } \\
& { }_{37} \mathrm{Cp},-\mathrm{Cp}
\end{aligned}
$$

bIOLOGICAL NOTES

The aleiopids are the most interesting of the planktonic polyehaetes. The most striking feature is the great development of the cyes which are often so large that the other struetures on the head become insignificant. Thc eyes have spherical lenses,
cup-shaped retinas and there are even special optic lobes to the brain. One suspects that they are not only eapable of appreciating faint traces of light but even of forming images which would be unique in the Annelida. Apart from their efficient cyes, the alciopids arc rapid swimmors and have an eversiblc museular proboscis sometimes provided with a pair of lateral projections for grasping prey. Unfortunatcly the nature of the prey is unknown for nothing has been found in the transparent gut.

Female alciopids often have the parapodia of the fourth or fifth segment modified to act as receptacula seminalcs. Similarly the males of some species have large genital papillae on some segments at the time of sexual maturity. It would thus appear that sperm transfer is direet. Another line of evidence is that many alciopids have ehromatophores which reach thcir maximum devclopment in the adult and are then arranged in a species-specific fashion. It is probable that thcse ehromatophores are phosphoresccnt in life and may provide a means of specics recognition or even courtship display.

THE MAIN DIAGNOSTIC CHARAGTERS

A bcautifully illustrated aecount of this family will be found in Apstein (rgoo); a gcneral discussion of morphology is given by Dales (1955) and important revisions of the genera and species werc made by Greeff 1885 and Støp-Bowitz (1948). A useful key is given by Dales (1957). Sec aceo Qmenoang y Ramen

The Alciopidae are obviously related to the Phyllodocidae and the same basic charaeters are to be found in both familics; however, the Alciopidae are further speeialised for planktonic existence and have additional charaeters of taxonomic importanee.
Prostomium. The most obvious featurc is the enormous pair of cyes. Their structure seems to be constant but therc are specific differences in the angle at which they are directed. This character should be treated with caution as contraction of the head may direct the eycs ventrally. The anterior part of the prostomium may be flush with the anterior margin of the cyes or it may project forwards as a truncate cone or (exeeptionally) as a barrel-shapcd lobc. If the latter is present it is diagnostic but if not, it is possible that the specimen is a juvenile or has the lobe bent down as often happens. There are always five antennae, two pairs in a frontal position and a median dorsal one. This lattcr may bc well devcloped and cirriform or may be reduced to varying degrces - sometimes to an obscure dorsal ridge.

The proboscis. This never has ehitinous jaws but may have minute ehitiniscd papillae on its lining and large papillae or elongate lateral horns on its margin. These are important and if not extended or visible by transparency they may bc disseetcd by a dorsal or ventral slit through the body wall. Sometimes the membrane between the bases of the horns is lobed but unless the horns diverge widely (or arc stretehed apart) the presenec of lobes may be simulated by mere pleating of a smoothly continuous membrane.

Tentacular cirri and the first fero segments. In the Phyllodocidae the first one to three
segments have their cirri elongated and eylindrical forming tentacular cirri and the setigerous lobes and setae may be present or absent. In the Alciopidae therc are always threc tentacular segments without sctac or setigerous lobes. Indecd a setigerous lobe and setac is often absent from segment 4.

The tentacular formula cxplained on p. 138 ean thus be uscd in a simplified form omitting the setae and the acicula but retaining the symbol 1 for a cylindrical tentacular cirrus and N for a normal lamellar cirrus. Thus Naiades whieh has a single tentacular cirrus on cach of the first three segments has the formula $1+1+1$ and Plotohelnis alata which has four tentacular cirri spread over the first three segments and a normal ventral cirrus on segment 3 has the formula $1+\frac{1}{1}+\frac{1}{N}$. The symbols D_{2} and D_{3} can be used to specify the dorsal cirri of the sccond and third segments and V_{2} and V_{3} their ventral homologues. The tentacular cirri are not easy to observe because the "ncek" is usually contracted and the tentacular eirri of adjacent segments appear to arise dorsally and ventrally from the same segment. However, the neek can be stretched by turning the worm on its back, placing a blunt needle in its mouth and bending the head well over to one side. It will then be found that the tentacular cirri have cirrophores and that the cirrophore of the first segment is often broad and fused to the lower surface of the cyc.

In the genus Vanadis the first few segments behind those which bear the tentacular eirri also lack sctigerous lobes and their dorsal cirri though flattened may be slightly elongated and strap-like instead of being broad and cordiform. For this reason the anterior ones were confused with the tentacular cirri by carly workers. The number of anterior segments without setigerous lobes or setae is a useful character but there is confusion in the literature duc to the method of numbering them. Most workers have ealled the first segment behind those bearing the tentacular cirri "parapodial segment I" or even more obseurcly "segment I" and when the setae appear the first is labelled "setiger I " etc. In the aecount which follows the three tentacular segments are reekoned scgments $1-3$ and the ncxt or "first parapodial segment" as scgment 4 and so on. Thus the rceeptacula seminis of the female which are swollen dorsal cirri of "parapodial segment 1 or 1 and 2 " are herc stated to occur on "segment 4 or scgments 4 and 5 ".

Parapodia of normal body segments. A fully developed parapodium from the middle of the body has a lamellar dorsal eirrus, a conical setigerous lobe with o-2 cirriform appendages (or elongate papillae arising from the apex of the lobe) and a lamellar ventral cirrus. A segmental organ or swclling of the body wall next to the base of the parapodium is usually present and is often pigmented. All of these characters are of value. It is true that the shape of the cirrus changes along the length of the body but major differences remain good and the relative sizes of the dorsal and ventral eirri seem to be constant within limits. The presence or absence of a cirriform appendage (or two in Alciopa) is an important gencric character but several parapodia must be examined as the eirriform appendages are very delicatc and easily broken off. The segmental organs vary in position both segmentally and in rclation to the parapodium. A large chromatophore is commonly associated with the segmental organ but it has not reccived the attention whieh it deserves probably because
its intensity varies a good deal within a single species aecording to the sexual development as does the exaet segment on which it first appears. In general if it appears within the first four or five segments its segmental position will not vary by more than one or two but if it appears later on (say) segment 12 its first appearance may vary by four or five segments. In some species chromatophores are not present at all, in others they are dorso-lateral or lateral in position and in some they are ventrolateral and branch over the ventrum.

Setae. The majority of the setac are slender capillaries which are oceasionally simple but usually compound and spinigerous. In addition to these there may be stout acicular setac particularly on the first few setigcrous segments. The eapillaries arc often broken off and their presence should be cheeked before a parapodium is mounted for high power examination. It is also neeessary to examine the first few segments earefully to ascertain where the setae start and the number of acicular setae there since the latter decrease in later segments. One final point. In Rhynchonerella the aeicular setac may be compound with smooth or serrated blades. The spinigerous setae often have short blades in the first few feet which may be confused with the compound aeieular setae and the serrated blades of the latter will appear smooth unless examined in lateral view.

Key to Genera

1 Setae all simple and mainly capillaries, though acicular setae may also occur

- Setae mainly compound and spinigerous though simple or compound acicular setae may
also occur
2 Only simple capillary setac. Prostomium not projecting in front of eyes NAIADES (p. 176)
- Some simple acicular setae in anterior segments. Prostomium projects in front of eyes . 3

3 No cirriform appendage at the apex of the sctigerous lobe. Genital papillae below setigerous. parapodia ${ }^{10-18}$. ALCIOPINA (p. ${ }^{176}$)

- Onc short cirriform appendage at the apex of the setigerous lobe. No genital papillae

KROHNIA (p. 177)
4 No acicular setae (apart from the projecting aciculum) in anterior feet. Prostomium not projecting in front of eyes

- Acicular setae present in anterior feet at least. Prostomium projecting in front of eyes 7

5 Simple as well as compound capillaries present. (Cirri strap-shaped and longer than the setigerous lobe. Aciculum greatly elongated) WATELIO*

- Only compound capillaries prescnt 6

6 Apex of setigerous lobe with two cirriform appendages. Only the first segment behind the tentacular cirri reduccd and lacks setae ALCIOPA (p. 179)

- Apex of setigerous lobe with one cirriform appendage. The first one to six segments bchind the tentacular cirri reduccd and lack setae . . . VANADIS (p. 180)
- Apex of setigcrous lobe without a cirriform appendage. First segment behind the tentacular cirri with setae TORREA (p. 186)
7 Apex of sctigerous lobe with one cirriform appendage. Acicular setac sometimes compound

RHYNCHONERELLA (p. 188)

- Apcx of setigerous lobe without a cirriform appendage. Acicular setae always simple

PLOTOHELMIS (p. 192)

NAIADES Delle Chiaje, 1828

Body rather short and inflated. Prostomium not projecting in front of the eyes. Proboscis short with indistinct lateral horns. Three pairs of tentacular cirri according to the formula $1+1+1$ followed by three parapodia with acicula but no setae. Later parapodia with foliaceous dorsal and ventral cirri and a setigerous lobe without a cirriform appendage but with a projecting aciculum. The setae arc all simple capillaries.

Type species: Naiades cantrainii Delle Chiaje, 1825.

Naiades cantrainii Delle Chiaje, 1828
(fig. 7.I.a-c)
Naiades cantrainii Delle Chiaje, 1828: pl. 82 figs. 14, 18, 21 ; Stap-Bowitz, 1948: 24, fig. 15 . Alciopa cantrainii. Fauvel, 1923: 203 fig. 76 a-c.

Body (fig. 7.1.a) swollen and rounded in section; up to 100 mm . long with about 100 segments. Anterior margin of the prostomium (fig. 7.i.b) in linc with the eyes. Frontal antennae subequal but the median small and ovoid. Eyes directed slightly forward and downward. Proboscis broad and short with a frilly margin ; lateral horns short. Three tentacular cirri arranged $1+1+1$, the first mounted on a swollen cirrophore attached to the lower surface of the cye; it is short but still much longer than the second and third which are minute. Segments $4-6$ often constricted with small dorsal and ventral cirri plus a minute sctigerous lobe but no sctac. Parapodium of segment 5 swollen in the female to act as a rcceptaculum seminis. Segment 7 (the first normal setiger) and all subsequent scgments (fig. 7.I.c) with a hastate dorsal cirrus, a slightly shorter ventral cirrus and a longer conical setigerous lobe with a projecting aciculum but no cirriform appendage. Setae as a fan of simple capillaries. From scgment 6 or 7 (the first setiger) onwards there is a large dark, cushion-shaped scgmental organ postcrior to the parapodium. Ventral swellings (? vesiculae seminales) occur below the parapodia of some middle segments of mature males.

Type locality: Gulf of Naples.
Records : S.E. Atlantic (32/16/p, 33/55/p, 36/18/p) ; Agulhas Current (30/30/p to $36 / 22 / \mathrm{p}$ - five stations) ; Mocambique Current ($14 / 42 / \mathrm{p}, 21 / 40 / \mathrm{p}$) ; S.W. Indian Ocean 29/55/p.

Distribution : Warm and tropical Atlantic and Pacific; Mediterranean.

ALCIOPINA Claparède \& Panccri, 1867

Body rather short. Prostomium extending in front of the eyes. Median antenna represented by a raised keel. Proboscis short and without latcral horns. Four pairs of tentacular cirri according to the formula $1+\frac{1}{i}+\frac{1}{\mathrm{~N}}$. Segment 4 with or without a setigerous lobe and sctae. Succeeding segments well developed, the parapodia
having foliaccous dorsal and ventral cirri and a setigerous lobe without a cirriform appendagc. Stout genital papillae below the parapodia from setiger 9-18! Setae are mainly fine simple capillarics plus acicular sctac in the first few sctigers $\dot{\sim}$ at least. Dark scgmental organs from the first setiger onwards.

Type species: Alciopina parasitica Claparède \& Panceri, 1867.

$$
\text { Alciopina parasitica Claparède \& Panceri, } 1867
$$

(fig. 7.I.d-h)
Alciopina parassilica Claparède \& Panceri, 1867: 8; Stop-Bowitz, 1948: 32. Corynocephalus albo-maculalus: Fauvel, 1923: 208, fig. 78 d-i.

Body (fig. 7.1.d) rather short, seldom rcaching 30 mm . for 50 setigers. Prostomium (fig. 7.I.h) cxtending in front of eyes. Latcral antennae stout and subequal ; median antenna as an indistinct dorsal kecl. Eyes largc and directed laterally. Proboscis short and without lateral horns. Four pairs of tentacular cirri arranged $1+\frac{1}{1}+\frac{1}{N}$; D_{3} not equal to body width and only slightly longer than D_{2} which is longer than DI; V2 short and cylindrical, V3 lamellar. Segment 4 without a setigcrous lobe or setae. Subsequent segments with well dcveloped parapodia (fig. 7.I.c) having large cordate and imbricating dorsal cirri, conical setigerous lobes without cirriform appendagcs and asymmetrically cordate ventral cirri. Dark scgmental glands sometimes witl branching cliromatophores occur above the dorsal cirrophores from setiger $1-4$ onwards. In the adult male stout genital papillac occur bclow the parapodia from setiger $9^{-18 /}$ Setigers I-3 with only acicular setae (fig. 7.I.f) but from setiger 4 (the acicular setac are fewer and finc simple capillaries (fig. 7.I.g) bccome more and more numerous.

Type logality: Gulf of Naples.
Records: Agulhas Current (29/31/p to $35 / 26 / \mathrm{p}$ - II stations); Mocambique Current (II/42/p to 25/33/p - fivc stations) ; S.W. Indian Ocean 27/39/p.

Distribution: Meditcrrancan; warm North Atlantic. y If Argenetena

KROHNIA Quatrefagcs, 1865

Body elongate and transparent. Prostomium extending in front of eyes. Margin of proboscis with papillae but no lateral horns. Four pairs of tentacular cirri according to the formula $1+\frac{1}{1}+\frac{1}{N}$. Segment 4 and all subsequent ones with fully devcloped parapodia having foliaceous dorsal and ventral cirri and a setigcrous lobe with one cirriform appendage. The setae are mainly simple capillaries plus a few simple acicular setac in the antcrior feet.

Type species: Alciopa lepidota Krohn, 1845.

Fig. 7. I. Naiades cantrainii. (A) Entire worm (half natural size). (B) Head with proboscis shown by transparency. (c) Posterior view of middle foot. Alciopina parasitica. (D) Entire worm (twice natural size). (E) Posterior view of 15 th foot of 0 . (F) Acicular seta. (G) Capillary seta. (H) Ventral vicw of head with margin of proboseis just visible. Krohnia lepidota. (1) Entire worm (twice natural sizc). (J) Posterior view of middle foot. (k) Ventral view of head with end of proboseis extruded. Alciopa reynaudii. (L) Entire worm (natural size). (M) Seta. (N) Ventral view of head. (o) Posterior view of 18 th foot.

Krohnia lepidota (Krohn, 1845)
(fig. 7.1.i-k)
Alciopa lepidota Krohn, 1845: 75.
Callizonella lepidota: Fauvel, 1923: 211, fig. 79 a-h.
Krohnia lepidota: Stop-Bowitz, 1948: 33.
Body (fig. 7.i.i) elongate oecasionally reaching 100 mm . and transparent with dark specklcs ventrally, there being a conspicuous double row of small spots along the mid-ventral line and another at the bases of the parapodia. Prostomium (fig. 7.I.k) small and bluntly conical anteriorly with four papillose frontal antennac which arise close together. Median dorsal antenna well devcloped and digitiform. Eyes very large and directed slightly forward. Proboscis short with marginal papillac. Four tentacular cirri arranged $1+\frac{1}{1}+\frac{1}{N}$ with D_{3} equal to the width of the segment plus the parapodia and much longer than D_{2} or $\mathrm{D}_{1} ; \mathrm{V}_{2}$ small and eylindrical, V_{3} sinall and lamellar. Scgment 4 and all suceceding segments (fig. 7.I.j) with a very large foliaccous dorsal cirrus with a pointed apex, a smaller but similar ventral cirrus and a setigerous lobe with a very short eirriform appendage and a projecting aciculum. The first few setigers have a few long simplc acicular setae as well as simple capillaries but later segments have fine capillaries only. Segmental glands small and postero-dorsal to the parapodium from about the third foot.

Type logality : Tropical Atlantic or ? Messina (Meditcrrancan).
Records: ? S.E. Atlantic (34/17/p) ; Agulhas Current (30/3I/p to 35/26/p five stations) ; Moeambique Current ($\mathrm{I} 2 / 4 \mathrm{I} / \mathrm{p}$ to $2 \mathrm{I} / 4 \mathrm{O} / \mathrm{p}$) ; S.W. Indian Ocean (32/36/p).

Distribution : Mediterranean ; tropical and subtropical Atlantic and Pacific.

ALCIOPA Audouin \& Milne-Edwards, 1833

Body rather short and muscular. Prostomium small and not projecting in front of eycs. Proboseis short with two latcral horns. Three pairs of tentacular cirri aecording to the formula $1+1+1$. Segment 4 with reduced parapodia. Parapodia well developed from segment 5 onwards each having foliaceous dorsal and ventral cirri and a sctigcrous lobe ending in two cirriform appendages. Segmental organs divided into dorsal and ventral portions in males. The setac are all slender, compound and spinigerous.

Type species: Alciopa reynaudii Audouin \& Milne Edwards, 1833.

Alciopa reynaudii Audouin \& Milne Edwards, 1829 (fig. 7.1.l-0)

Alciopa reynaudii Audouin \& Milne Edwards, 1829: 202; Stop-Bowitz, 1948: 30, fig. 21. Greeffia celox Fauvel, 1923: 208, fig. 78 a-e.

Body (fig. 7.1.l) stout, $20-60 \mathrm{~mm}$. long by 6 mm . broad for 60 segments. Prostomium (fig. $7 \cdot 1 . n$) with four frontal antennae and a median dorsal antenna whieh is redueed to a swollen ridge. Eyes dirccted laterally. Proboscis with latcral horns and a membraneous margin between them whiel is often pleated so as to appear papillose. Three short pairs of tentacular cirri of which the sceond is the longest. Segment 4 reduced and lacks sctae but the fifth and all suecceding scgments (fig. 7.1.0) are well developed with large oval dorsal eirri which are broadcr than long, similar ventral cirri and a setigerous lobe with two eirriform appendages and a fan of compound sctae. Ventral eirri of scgments 5^{-8} or 9 arc swollen in females and may aet as reeeptacula seminis. Dark cushion-shaped segmental organs behind the dorsal cirri from segment 4 ; they are said to be dividcd into dorsal and ventral portions in the male (not seen). In addition there is a swollen vesicle above and below the parapodium from the $13^{\text {th }}$ foot onwards in both sexcs.

Type Locality: Atlantic Ocean.
Records: S.E. Atlantie (33/15/p) ; Agulhas Current (34/26/p) ; S.W. Indian Oeean (27/39/p, 32/43/p).

Distribution : Subtropieal and tropieal Atlantie ; Pacifie off California.

VANADIS Claparède, 1870

Body long and slendcr. Prostomium not extending in front of the eyes. Median dorsal antenna sometimes absent. Proboseis long, often with lateral horns. Three pairs of tentacular eirri on the first three scgments according to the formula $1+1+1$. The first one to six parapodia (on segment $4-10$) arc reduced and may lack setac or even sctigerous lobes. Dorsal cirri of scgments 4 or 5 or both enlarged in the female to act as reeeptacula seminis. Normal parapodia of later segments have foliaceous dorsal and ventral cirri and a long setigerous lobe cnding in one eirriform appendage. Apart from the projecting aciculum, the sctae are all eompound and spinigerous. Segmental organs usually pigmented on normal body segments.

Type species Vanadis formosa Claparèdc, 1870
Key to Species
I Proboscis with lateral horns 2

- Proboscis without lateral horns 7

2 Proboscis with two pairs of lateral horns V. tagensis*

- Proboscis with one pair of lateral horns 3

3 Setae start on segment 6 (third foot). Median antenna digitiform . V. formosa (p. 181)

- Setae start on segment 9-10 (sixth to seventh foot). Median antenna may be absent . 4

4 Median antenna digitiform. Females with receptacula seminis in the dorsal cirri of segments 4 and 5

- Median antenna indistinct or absent. Females with receptacula seminis in segment 5 only
5 Segmenttl organs pigmented from about segment in. Ventral cirri two-thirds the size of the dorsals V. crystallina crystallina (p. 182)
- Segmental organs not pigmented at all. Ventral cirri less than one-third the size of the dorsals
V. crystallina inornata (p. 182)

6. Dorsal cirri hastate. Segmental organs forming dark vertical bars behind the parapodia from scgment 7 onwards V. fuscapunctata (p. 184)

- Dorsal cirri ovate. Segmental organs not pigmented before segment 12 if at all
V. minuta (p. 184)

7 Segmental organs not pigmented. Body uniform violet when fresh . V. violacea (p. 185)

- Segmental organs and body strongly pigmented at intervals

8 Dark bars across the dorsum every five or ten segments for rec. V90\% longissima (p. 186)

- Dark bars across dorsum at intcrvals of two or three segments
V. antarctica*

Vanadis formosa Claparède, 1870 (fig. 7.2.a-e)

Vanadis formosa Claparède, 1870: 116, pl. 10 fig. 3; Fauvel, 1923: 205, fig. 77 a-c ; Stop-Bowitz, 1948: 25, fig. 17.

Body (fig. 7.2.a) up to 180 mm . long for 200 scgments. Superior frontal antennae short, the infcrior pair longer (fig. 7.2.e). Mcdian antenna digitiform. Eyes directed laterally. Proboseis (fig. 7.2.b) long with one pair of lateral horns and trilobed papillac between them. Three pairs of tentacular cirri arranged $1+1+1$; the first which is mounted on a stout cirrophore attached to the lower surface of the eye is slightly longer than the others. Segments 4 and 5 without setigerous lobes and in the female the dorsal cirri of both are enlarged to aet as receptacula seminales. The first setigcrous lobe and setae (or at least an aciculum) on scgment 6. The first few parapodia are small but the setigerous lobe and ventral eirrus are more than half the length of the dorsal cirrus. Parapodia rcach full size by segment 12 (fig. 7.2.d) which has a foliaccous and pointed dorsal cirrus about 1.5 times as long as broad, a setigcrous lobe with a long eirriform appendage and a foliaccous ventral eirrus only slightly smaller than the dorsal one. The setae (fig. 7.2.e) have blunt shaft-hcads and rather short blades. Scgmental organs as oval cushions behind the parapodia and are pigmented from the sccond setiger (segment 7) onwards.

Type locality: Gulf of Naples.
Records: S.E. Atlantic (33/15/p, 34/16/p, 35/17/p,35/18/p) ; Agulhas Current (28/32/p, 32/29/p, 34/27/p); S.W. Indian Ocean (27/43/p, 28/49/p, 32/43/p).

Distribution: Warm and tropieal Atlantic and Pacific; Mediterranean.

Vanadis crystallina crystallina Greeff, 1876
(fig. 7.2.f-g)
Vanadis crystallina Greeff, 1876: 68, pl. 4 figs. 35-39; Fauvel, 1923: 206, fig. 77 d-e (partim) ;
Støp-Bowitz, 1948: 27, fig. 19 a-b.
Body rather large, up to 100 mm . long with 200 segments, and 3 mm . across the tips of the parapodia. Dorsal antenna digitiform, inferior frontals longer than the superior pair. Eyes very large and dirceted laterally (fig. 7.2.f). Proboseis with a pair of lateral horns which are long in the adult and a membraneous lip between them divided into five papillae. Three pairs of tentacular cirri arranged $1+1+1$. The first pair are borne on stout cirrophores attaehed to the lower surface of the eye and their tips just reach its outer margin ; the second pair shorter and the third pair slightly shorter again. Segments $4-10$ with redueed parapodia having minute ventral cirri and setigerous lobes (less than half the length of the dorsal eirri). Females with the dorsal cirri of segments 4 and 5 swollen to form receptacula seminis. Normal body segments (fig. $7 \cdot 2 . \mathrm{g}$) have large ovate dorsal eirri twice as long as broad, ventral cirri at least half the size of the dorsal ones and a setigerous lobe with a long cirriform appendage. Segmental organs as oval eushions behind the parapodial trunks and are pigmented from about segment in onwards.

Type locality: Gulf of Naples.
Records: S.E. Atlantie (34/12/p, 33/15/p) ; Agulhas Current (34/27/p, 34/29/p); Mocambique Current (iI/42/p to $27 / 39 / \mathrm{p}$ - five stations) ; S.W. Indian Oecan (36/34/p).

Distribution: Mediterranean; tropical and subtropieal Atlantie and Pacifie.

Key to Subspecies of Vanadis crystallina

I Segmental organs pigmented from segment 8. Ventral cirri at least half the size of the dorsals V. crystallina crystallina

- Segmental organs not pigmented at all. Ventral cirri less than one-third the size of the dorsals

Vanadis crystallina inornata Subsp. nov.
(fig. 7.2.h)
Generally similar to V. crystallina crystallina but body rather smaller, the segmental organs are not pigmented or only a few are faintly pigmented and the ventral eirri are only about one quarter the size of the dorsal ones (fig. 7.2.h). Holotype: B.M. (N.H.) Reg. No. 1966.26.2.

Type locality: Mocambique Channel.
Records: A single reeord; (30.16S/31.49E in 0-150 metres).

Fig. 7.2. Vanadis formosa. (a) Entire worm (natural size). (B) Dorsal view of anterior end of ․ (c) Ventral view of anterior end of δ. (D) Posterior view of middle foot. (E) Seta. Vanadis crystallina crystallina. (F) Ventral view of anterior end of ㅇ. (G) Posterior view of middle foot. V. crystallina inornata. (H) Posterior view of middle foot. Vanadis fuscapunctata. (г) Ventral view of anterior end of δ^{\wedge}. (J) Posterior view of middle foot. Vanadis minuta. (K) Ventral view of anterior end of δ. (L) Receptaculum seminis of q. (M) Posterior view of middle foot. Vanadis violacea. (N) Ventral view of anterior end. (o) Dorsal view of anterior end. (P) Posterior view of middle foot.

Vanadis fuscapunctata Treadwell, $1906=V_{0}$ shédere Apsair 2893 (fig. 7.2.i-j)
fide Oremaning Rawnj1973

Vandis fusca-punctata Treadwell, 1906: 1 159, figs. 29-31.
Vanadis minuta (non Treadwell): Dales, 1957: I 19, figs. 29-30.
Body slender, reaching 100 mm . in length and 2 mm . between tips of parapodia. Median antenna an indistinct dorsal ridge. Inferior frontal antennae three times as long as the supcrior pair. Eyes dirccted laterally. Proboscis long with one pair of lateral horns and a notched marginal flange betwecn them. Thrce pairs of tentacular cirri arranged $1+1+1$ with the first pair mounted on flattencd cirrophores attached to the lower surface of the eycs and their tips just reaching the outer margin of the eye. The second and third pairs are minute and subequal, their tips not reaching the end of the cirrophore of the first pair. Parapodia of segments 4-8 rcduced and lack setigerous lobss and setac so that the first setiger is scgment 9 . Dorsal cirri of segments 4 and 5 of the male obviously larger than those of 6 and 7 (fig. 7.2.i). Females with a reccptaculum scminis on segment 5 only. Normal parapodia (fig. 7.2.j) with a lamellar dorsal cirrus three times as long as broad, a ventral cirrus half the size of the dorsal onc and a setigerous lobe with a long cirriform appendage. Scgmental organs as lateral ridges behind thc parapodia and are all boldly pigmented from scgment 7 onwards. Setae are all fine spinigers with obliquely truncate shaft-heads and short slender bladcs.

Type localrty: Pacific, off Hawaii.
Records: Mocambique Current (ri/42/p to 2r/40/p - five stations); Agulhas Current ($30 / 30 / \mathrm{p}$ to $34 / 26 / \mathrm{p}$ - four stations).

Distribution: Pacific (off Hawaii) - probably clsewhere but confused with V. minuta.

Vanadis minuta Treadwell, 1906
(fig. $7.2 . \mathrm{k}-\mathrm{m}$)
Vanadis minuta Treadwell, 1906: 1158, figs. 25-27; Tebble, 1962: 390, fig. 7.
Body small and slender, about 20 mm . long and less than $\mathrm{r} \cdot \mathrm{omm}$. broad between tips of parapodia. Mcdian antenna reduced to an indistinct dorsal ridgc. Frontal antennae well developed, the inferior pair twice as long as the superiors. Eyes directed laterally and slightly forwards. Proboscis (fig. 7.2.k) with one pair of long lateral horns and an unnotched marginal flange between them, though when contracted the flange is plcatcd simulating papillae. Three tentacular cirri arranged $1+1+1$ with the first pair mounted on flattened cirrophores attached to the lower surface of the eyes and their tips just projecting beyond their outer margins; second and third pairs subcqual and just reaching the end of the cirrophore of the first pair. Parapodia from scgment 4 to 8-9 are reduced and lack setigerous lobes or setae so that the first setiger is on segment 9 or ro. Dorsal cirri of scgments 4 and 5 of the male not markedly larger than thosc of segments 6 and 7 . Fcmales with a
reecptaculum seminis in the dorsal eirrus of segment 5 only (fig. 7.2.1). Mid-body segments (fig. $7.2 . \mathrm{m}$) have ovate dorsal eirri barely twice as long as broad, lamellar ventral cirri and setigerous lobes with a long eirriform appendage. Segmental organs as indistinet vertieal bars behind the parapodia but they are not pigmented or only faintly so from segment 12 onwards. Setae as fine spinigers eaeh with a short blunt apex to the shaft-head and a sword-like blade.

Type locality: Pacifie, off Hawaii.
Records: Agulhas Current ($30 / 30 / \mathrm{p}$ to $35 / 26 / \mathrm{p}$ - II stations) ; Moeambique Current (II/42/p to $28 / 39 / \mathrm{p}-9$ stations) ; S.W. Indian Oecan ($32 / 36 / \mathrm{p}, 34 / 34 / \mathrm{p}$, 36/36/p).

Distribution: Tropieal Paeifie (other reeords may be confused with V. fuscapunctata). Of Nugcarioia

Vanadis violacea Apstein, 1893
(fig. 7.2.n-p)
Vanadis violacea Apstein, 1893: 143, pl. 5 figs. 1-4; Monro, 1936: 1 17.
A large stout speeies up to 50 mm . long for 100 segments. Colour uniform purple when fresh but opaque brown later. Dorsal antenna (fig. 7.2.0) as a rounded papilla. Frontal antennae short and stout, the inferior pair slightly longer than the superiors. Eyes direeted outwards and slightly downwards. Proboseis without lateral horns but with about 12 triangular marginal papillae. Three obvious tentacular eirri (fig. 7.2.n) of whieh the first is very short and mounted on a stout cirrophore which is not attaehed to the eye, the seeond longer so that its tip reaches the outer margin of the eye and the third slightly shorter and directed ventrally but still longer than the first. Careful examination shows that below the second and the third there are minute but distinet ventral cirri so that the tentaeular formula is $1+\frac{1}{1}+\frac{1}{1}$. The parapodium of segment 4 is reduced to a small lamellar dorsal eirrus and a minute ventral eirrus similar to V_{3}; setigerous lobe absent. Female unknown. From segment 5 onwards the parapodia are fully formed, each having a triangular dorsal cirrus (fig. 7.2.p), a ventral eirrus half as large and a setigerous lobe with a short eirriform appendage. Segmental organs present from segment 5 as eushion-shaped swellings behind the dorsal cirriphores but never pigmented. The setae have blunt shaft-heads and very short blades.

Type locality: South Atlantic.
Records: S.E. Atlantic (35/15/p, 36/r8/p).

Vanadis longissima (Levinsen, 1885)

(fig. 7.3.a-c)
Rhynchonerella longissima Levinsen, 1885: 330, figs. 7-10.
Vanadis longissima: Dales, 1957: 121, figs. 31-33; Tebble, 1962: 392, fig. 8.
Body very long and slender reaehing 200 mm . Mcdian antenna digitiform and equal to the frontals. Eyes directed obliquely downwards and outwards. Proboseis without lateral horns but with about 12 eonieal marginal papillae. Three tentaeular cirri (fig. $7 \cdot 3 . a$) arranged $1+1+1$. The first is stout and mounted on a broad cirrophore attached to the lower surface of the cye and its tip just reaches the outer margin; the sccond is shorter and more slender and the third shorter still. Parapodia of scgments 4-8 arc reduced and lack setigerous lobcs and sctae which first appear on segment 7-9; the ventral cirri are all small and that on scgment 4 is a mere papilla. Dorsal cirri of segments 4 and 5 both swollen to act as reccptacula seminis in the female. Parapodia reach full size about scgment to and each parapodium (fig. $7.3 . c$) then has a lamellar dorsal cirrus 2.5 times as long as broad, a longer setigerous lobe with a long cirriform appendage and a smaller ventral eirrus cssentially similar to the dorsal one. At intervals of $5-10$ segments (fig. 7.3.b) i-2 segments have dark bands extending from the scgmental organs aeross the dorsum, giving a barred appearance to the whole worm. Sctae are all fine spinigers with blunt shaft-heads.

Type locality : North Atlantic ($26^{\circ} \mathrm{N} / 26^{\circ} \mathrm{W}$).
Records: S.E. Atlantie (34/16/p); Agulhas Current (30/31/p to 35/26/p - six stations) ; Mocambique Current ($12 / 48 / \mathrm{p}$ to $27 / 39 / \mathrm{p}$-six stations).

> Distribution: Warm to tropical Atlantic and North Paeifie. Off Airgautina

TORREA Quatrefages, 1850

Body elongated and eylindrical. Prostomium not projecting in front of the eyes. Proboscis long with a pair of lateral horns. Scgments I-3 bear three pairs of tentacular eirri according to the formula $1+1+1$. Segments 4 and 5 with sctae but have redueed setigcrous lobes; in females the dorsal cirri of both segments are enlarged to form reeeptacula seminis. Segment 6 and all subsequent ones with foliaeeous dorsal and ventral cirri and a conical setigcrous lobe without a eirriform appendage. The setae arc all compound and spinigerous. Darkly pigmented segmental organs.

Type species : Alcyope candida Delle Chiaje, 1841.

Fig. 7.3. Vanadis longissima. (A) Ventral view of anterior end of $\mathrm{J}^{\hat{0}}$. (B) Middle region of body showing pigmentation. (c) Foot. Torrea candida. (D) Dorsal view of anterior end of $\bar{\delta}$. (E) Posterior view of foot. (F) Seta. Rhynchorerella moebii. (G) Third foot. (н) Middle foot. (1) Dorsal view of anterior end. (j) Ventral vicw of anterior end. (к) Acicular seta. (L) Compound seta.

Torrea candida (Delle Chiaje, 184r)

> (fig. 7•3.d-f)

Alcyope candida Delle Chiaje, 1841: 98 ; Monro, $1930: 82$.
Asterope candida: Fauvel, 1923: 202, fig. 75 a-d.
Body up to 250 mm . long with more than 250 segments. Median antenna (fig. $7.3 . \mathrm{d}$) in the form of a prominent keel between the eyes; inferior pair of frontal antennae larger than the superior pair. Eyes directed outwards and slightly forwards. Proboscis long with rather short lateral horns and four to five marginal papillae or folds between them; the inner lining beset with minute chitinous denticles. Tentacular formula $1+1+1$. First pair of tentacular cirri mounted on broad eirrophores attached to the lower surface of the cyes and are larger than the second and third pairs; all three are united by transverse ventral ridges to their fellows. Segments 4 and 5 with redueed setigerous lobes bearing a few minute setae but have long ventral cirri; in the female the dorsal cirri of both segments are greatly enlarged to form receptacula seminis. Segments $6-12$ with fully formed but small parapodia. Middle parapodia (fig. 7.3.c) each with a foliaceous dorsal cirrus, a conical setigerous lobe of the same size which lacks a cirriform appendage and a small oval ventral cirrus. Each segmental organ as a large oval cushion behind the base of the dorsal cirrus from the first setiger (segment 4) onwards. Segmental organs densely pigmented and the pigment often spreads aeross the dorsum to form segmental bars. Setae (fig. 7.3.f) all compound with pointed shaft-heads and short blades.

Type locality: Sicily.
Records: Agulhas Current ($3^{1} / 29 / \mathrm{p}, 3^{1 / 31} / \mathrm{p}, 32 / 30 / \mathrm{p}, 33 / 28 / \mathrm{p}$); Mocambique Current (off Nosy Bé).

Distribution: Mediterrancan; warm waters of North Atlantic, Indian and North Pacific occans. O/f Argenteria

RHYNCHONERELLA Costa, 1864

Body long and slender. Prostomium extending forwards in front of the eyes. Proboscis short with small marginal papillac, but no lateral horns. Segments I-3 with four to five tentacular eirri according to the formula $1+\frac{1}{1}+\frac{1}{1 \operatorname{orN}}$. From segment 4 onwards the parapodia are fully developed, cach with a foliaceous dorsal cirrus, a setigerous lobe ending in one cirriform appendage and a foliaceous ventral cirrus. The setae are mainly compound and spinigerous but simple or compound acicular setac are also present at least in the anterior setigers.

Type species: Rhynchonerella gracilis Costa, 1862.
Key to Species

[^3] 3

2 Segments 4^{-6} with two to scven simple acicular sctae and their dorsal cirri much larger and more rounded than later ones R. moebii

- Segments 4-6 with one to two simple acicular setae and a few spinigers ; the first few dorsal cirri not obviously different from later ones R. gracilis
3 Blades of acicular setae smooth. Body very large reaching 120 mm . Prostomium and anterior dorsum dark. R. angelini
- Blades of acicular setae saw-edged. Body small, not exceeding 30 mm . Head not pigmented

Rhynchonerella moebii (Apstein, 1893)

$$
\text { (fig. } 7 \cdot 3 \cdot \mathrm{~g}-1 \text {) }
$$

Callizona möbii Apstein, 1893: 147; Apstein, 1900: 16, pl. 3 figs. 23-30.
Callizona moebii: Fauvel, 1923: 213, fig. 80 a-d.
Rhynchonerella möbii: Stop-Bowitz, 1948: 34; Tebblc, 1962: 396, fig. 11.
Body slender, up to 30 mm . long with 200 segments. Prostomium (fig. 7.3.i) with an anterior triangular portion projecting slightly in front of the cycs and bearing two pairs of subcqual frontal antennae and a smaller median dorsal antenna. Eyes dirccted obliqucly downwards and forwards. Five tentacular cirri (fig. 7.3.j) arranged $1+\frac{1}{1}+\frac{1}{1}$ with D_{2} and D_{3} subcqual and longer than the first which does not reach the margin of the cye. V_{2} and V_{3} small, subequal and lanceolate. Segment 4 and all subscquent scgments with fully developed parapodia, but those of segments $4-10$ smaller than later ones, and the dorsal cirri of scgments 4,5 and 6 are much larger and more rounded than later ones. Each of the middle parapodia (fig. 7.3.h) has a broadly hastate dorsal cirrus, a setigcrous lobe with a single short cirriform appendage and a smaller ventral cirrus. Segmental organs as oval cushions postcro-dorsal to the parapodia and in the adult they are pigmented from about the 15 th foot. Sctae include (a) numerous fine compound spinigers which appear on segment 7 or 8 (fourth or fifth foot) (b) stout simplc acicular sctae with curved tips which number two to seven in the first threc of four feet (fig. 7.3.g) and o-r in posterior fect.

Type logality : Mcssina, Sicily.
Records: Agulhas Current (29/3I/p to 35/22/p - ten stations); Mocambiquc Current (14/42/p to 24/39/p - fivc stations); ? S.W. Indian Ocean (28/39/p).

Distribution: Off Canary Is.; Meditcrranean; subtropical and tropical North Pacific.

Rhynchonerella gracilis Costa, 1862
(fig. 7.4.a-d)
Rhynchonerella gracilis Costa, 1862 : 168, pl. 4 figs. $13{ }^{-15}$; Tebble, $1962: 396$, fig. 10 a-b. Callizona nasula Fauvel, 1923: 215, fig. 81 a-c.

Body slender, up to 60 mm . long. Prostomium of the adult (fig. 7.4.a) with a barrcl-shaped antcrior lobc projecting far in front of the cyes and bcaring the four frontal antennae close together at its end; in juveniles it is a truncate pyramid. Mcdian antenna digitiform and situated between the eyes. Eycs directed slightly
downwards but not forwards. Five tentacular eirri (fig. 7.4.h) arranged $1+\frac{1}{1}+\frac{1}{1}$ with D_{1}, D_{2} and D_{3} inereasing in size so that D_{3} is equal to the segmental width and much longer than D_{2}. V2 and V_{3} small and eylindrical. Segment 4 (first foot) with a slightly enlarged lamellar dorsal eirrus, a foliaceous ventral cirrus but no setae or setigerous lobe. All parapodia after segment 4 (fig. 7.4.c) with foliaecous dorsal eirri having pointed tips, smaller ventral cirri and a sctigerous lobe with a small eirriform appendage. In the adult the segmental organs form dark lateral bars between the parapodia from segment $4-5$ onwards. Setae includc (a) numerous fine spinigers with blunt shaft-heads and rather short blades; (b) only onc to two simple aeicular setae (fig. 7.4.d) both in anterior and middle parapodia.

Type locality: Gulf of Naples.
Records: S.E. Atlantic (34/工 7/p) ; Agulhas Current (from 29/3I/p to 35/26/p I2 stations) ; Mocambique Current ($\mathrm{I} 3 / 42 / \mathrm{p}$ to $24 / 39 / \mathrm{p}$) ; S.W. Indian Ocean ($27 / 4 \mathrm{I} / \mathrm{p}, 32 / 36 / \mathrm{p}$).

Distribution : Mediterranean; tropical and subtropical Atlantic and Paeifie. Off Argentera

Rhynchonerella angelini (Kinberg, 1866)
(fig. $7 \cdot 4 \cdot \mathrm{e}-\mathrm{h}$)
Krohnia angelini Kinberg, 1866: 242.
Rhynchonerella angelini: Dales, 1957 : 133, figs. 44-46; Tebble, $1962: 400$, figs. 13 and 14 a-c.
Body large, reaching 120 mm . for 150 segments. Prostomium (fig. $7.4 . \mathrm{g}$) with a separate anterior lobe in front of the eyes whieh bears four stout, well separated frontal antennac. Median antenna ovoid and situated on the posterior part of the prostomium between the eyes. Eyes large with rather small lenses directed outwards and forwards. Five tentacular eirri (fig. 7.4.f) arranged $1+\frac{1}{1}+\frac{1}{1}$ with D_{2} and D_{3} subequal and larger than the first; V_{2} and V_{3} relatively long. Segment 4 and all subsequent scgments with large, fully formed parapodia (fig. 7.4.h) each having a eordate dorsal cirrus which covers the setigcrous lobe, a smaller and more clongate ventral cirrus and a setigerous lobe with one long eirriform appendage. Posterior parapodia with more elongatc eirri than the anterior oncs. Prostomium and anterior dorsum dark or vaguely barred. Segmental organs appcar on the ioth foot as dark cushions behind the dorsal cirrophores. Sctae are all compound and inelude stout acicular forms with minute smooth apices (fig. $7 \cdot 4 . \mathrm{e}$) and slender spinigers with short blades and rather long shaft-heads. The setae appear in segment 4 and at first are mainly acicular (up to I5 per bundle) but these decrease later and spinigers bccome more numerous. Middle feet have a sheaf of slender spinigers and one to two stout acieular forms (from which the apices are often lost).

Type locality: China Sea ($20^{\circ} \mathrm{S} / 107^{\circ} \mathrm{E}$).
Records: S.E. Atlantic (18/io/p, 34/5/p).
Distribution : China Sca; warm waters of North and South Atlantic and North Pacific.

Fig. 7.4. Rhynchonerella gracilis. (A) Dorsal view of anterior end. (B) Ventral vicw of anterior end. (c) Posterior view of foot from mid-rcgion. (D) Acicular seta. Rhynchonerella angelini. (E) Acicular seta. (F) Ventral vicw of head. (G) Dorsal vicw of head. (H) Posterior view of foot from mid-region. Rhynchonerella petersi. (I) Tip of acicular seta. (J) Posterior view of third foot. (k) Dorsal view of anterior end. (L) Ventral view of head with proboseis extruded. (M) Posterior view of foot from mid-region.

Alciopa (Halodora) petersii Langerhans, 1880: 312, pl. 17 fig. 49.
Callizona setosa Fauvel, 1923: 214, fig. $80 \mathrm{e}-\mathrm{k}$.
Rhynchonerella petersii: Stop-Bowitz, 1948: 34; Tebble, 1962: 398, fig. $12 \mathrm{a}-\mathrm{c}$.
A small, slender species about 15 mm . long for 50 segments. Prostomium (fig. $7 \cdot 4 . \mathrm{k}$) projecting slightly in front of the eyes with four stout frontal antennae arising close together from the apex and a small dorsal one further back. Eyes directed obliquely forwards and slightly down. Proboscis (fig. 7.4.l) short with io low marginal papillac. Tentacular cirri arranged $1+\frac{1}{1}+\frac{1}{N}$ with D_{3} equal to the segmental width and longer than D_{2} and this longer than D_{1}; V_{2} short, V_{3} foliaceous. All parapodia with one short cirriform appendage. Anterior fect (fig. 7.4.j) with a large cordate dorsal cirrus and a smaller ventral one; middle feet (fig. 7.4.m) with more clongate cirri. Setae include (a) a fan of fine compound spinigers with blunt shaft-heads and at first short but later long fine blades and (b) one to two infcrior acicular sctae (fig. 7.4.i) which are compound having blunt shaft-heads and daggerlike blades with oblique striations and a serrated edge; in the first few feet (fig. 7.4.j) these acicular setac form a graded series with the spinigers, but in later fect (fig. $7.4 . \mathrm{m}$) the single acicular seta is quite distinct. Segmental organs not pigmented until the 12 th foot and are then dark lateral bars between parapodia.

Type locality : Madeira Island.
Records: S.E. Atlantic (32/16/p) ; Agulhas Current and inshore waters (29/3I/p to $36 / 22 / \mathrm{p}$ - 12 stations) ; Mocambique Current (II $/ 42 / \mathrm{p}$ to $26 / 36 / \mathrm{p}$ - cight stations) ; S.W. Indian Ocean (28/39/p, 36/35/p).

Distribution: Warm to tropical waters of North Atlantic, Mediterranean and North Pacific. Qfobigculeria

PLOTOHELMIS Chamberlin, 1919

Body small, slender and elongate. Prostomium projecting in front of the eyes. Proboscis with marginal papillae but without latcral horns. The first three segments with four to five tentacular cirri according to the formula $1+\frac{1}{1}+\frac{1}{1 \text { orN }}$. Segment 4 and all subsequent segments fully developed with foliaceous dorsal and ventral cirri and a setigerous lobe without a cirriform appendage but with a projecting aciculum. The setae are mainly compound spinigerous forms plus a few simple, acicular setae which are more common in anterior segments.

Type species: Plotohelmis alata Chamberlin, igig.

Key to Spegies

I Eyes directed forwards. Tentacular cirrus D_{2} longer than D_{3}. Median antenna digitiform P. tenuis

- Eyes directed laterally. Tentacular cirrus D2 shorter than D3. Dorsal antenna not digitiform

2 Males with nine to ten genital papillae. Chromatophores ventro-lateral but not branching
P. alata

- Males with three to four genital papillae. Chromatophores ventro-lateral and branching on the ventrum.
P. capitata

Plotohelmis tenuis (Apstein, 1900)

(fig. 7.5.a-c)
Corynocephalus lenuis Apstein, 1900: 14, pl. 2 figs. 14-15.
Plotohelmis tenuis: Dales, 1957: 125, figs. $36-3^{8}$; Tebble, $1962: 403$, figs. 15 a-b, 16 , 17.
Body small and slender, reaching 30 mm . for 100 segments. Prostomium (fig. $7.5 . c)$ with a large bulging anterior lobe in front of the cyes. Frontal antennae tapered, the inferior pair longer ; dorsal antenna digitiform. Proboscis short with indistinct marginal papillae. Eyes large and directed obliquely forwards. Five tentacular cirri (fig. $7 \cdot 5 . \mathrm{b}$) arranged $1+\frac{1}{1}+\frac{1}{1}$ with D_{2} twice as long as DI_{1} or D_{3}. V2 small, V_{3} minute. Parapodia (fig. $7 \cdot 5 . \mathrm{a}$) each with a very large, broadly oval dorsal cirrus extending well beyond the setigerous lobe, a setigerous lobe without a cirriform appendage and a very small ventral cirrus. Segmental organs not pigmented in juveniles but as lateral bars behind the bases of the parapodia from segment 12-13 onwards in adults. Setae appear on segment 4 and at first all are stout, simple and acicular but slender compound spinigers soon replace them leaving only one simple acicular seta in middle parapodia.

Type locality: Tropical Atlantic.
Records: Agulhas Current (33/28/p and $35 / 26 / \mathrm{p}$) ; Mocambique Current ($12 / 48 / \mathrm{p}, 14 / 42 / \mathrm{p}, 22 / 4 \mathrm{I} / \mathrm{p}$).

Distribution: Pacific (off California) ; Mediterranean; tropical Atlantic.

Plotohelmis alata Chamberlin, 19ㄷ
(fig. 7.5.d-l)
Plotohelmis alata Chamberlin, 1919: 144, pl. 23 figs. 4-10, pl. 24 figs. $1-3$.
Body about 60 mm . long for 200 segments. Prostomium (fig. $7.5 \cdot \mathrm{c}$) projecting as a truncate pyramid in front of the eyes. Eyes directed laterally. Frontal antennae long and tapered. Dorsal antenna small, conical. Proboscis long with more than six marginal papillae. Four tentacular cirri (fig. 7.5.f) arranged $1+\frac{1}{1}+\frac{1}{N}$; the first is short and D_{2} and D_{3} are succcssively longer so that D_{3} equals the width of the segment and extends beyond the cyes. V_{2} is short and cylindrical but V_{3} is a normal lamellar ventral cirrus slightly smaller than that on segment 4. Segment 4 and all succeeding segments have fully formed parapodia each with a very large dorsal cirrus which covers the parapodium and is at first cordate but later more oval (fig. $7 \cdot 5 . \mathrm{d}$), a conical setigerous lobe without a cirriform appendage and a ventral cirrus similar to the dorsal one but slightly smaller. In the mature male, segments 13-22 have stout, curved, genital papillae (fig. $7.5 . g$) postcro-ventral to the parapodia. Segmental organs ventro-lateral and pigmented from segments 5^{-6}

b

d

f

g

k

Fig. 7.5. Plotohelmis tenuis. (A) Postcrior view of foot from mid region. (B) Ventral view of anterior end. (c) Dorsal view with proboscis extruded. Plotohelmis alata. (D) Posterior view of foot from mid region. (E) Dorsal view of head. (F) Ventral view of head. (G) Ventral view of segments 12-16 of male to show genital papillae. (H) Acicular seta. (i) Compound seta. Plotohelmis capitato. (J) Ventral view of anterior end showing branching chromatophores and genital papillae. (к) Dorsal view of head. (L) Posterior view of foot from midregion.
onwards; they are visible ventrally but not dorsally and do not branch. The first IO-I 5 setigers have three to four stout acicular setae with curved tips plus a few slender compound spinigers (fig. 7.5.i) ; in later segments the spinigers become numerous and the acicular setae are reduced to one to two and have straight tips (fig. 7.5.h).

Type locality: Pacific ($26^{\circ} \mathrm{I} 8^{\prime} \mathrm{N} / 2^{\circ} 8^{\circ} 54^{\prime} \mathrm{W}$).
Records: Mocambiquc Current ($2 \mathrm{I} / 4 \mathrm{o} / \mathrm{p}$).
Distribution : Subtropical North Pacific.

Plotohelmis capitata (Grecff, 1876)
(fig. $7 \cdot 5 \cdot \mathrm{j}-1$)
Rhynchonerella capitata Greeff, 1876 : 74, pl. 6 figs. 67-68.
Rhynchonerella fulgens Greeff, 1885: 450, pl. 13, figs. 27-32; pl. 14 figs. 33-34; Fauvel, 1923: 210 , fig. 79 a-d.
Body small, about 20 mm . long. Prostomium (fig. $7.5 \cdot \mathrm{k}$) projecting slightly in front of the eyes. Frontal antennac subulate. Dorsal antenna minute. Eyes directcd laterally. Proboscis short with 12-16 marginal papillae. Five tentacular cirri(fig. $7 \cdot 5 \cdot \mathrm{j}$) arranged $1+\frac{1}{1}+\frac{1}{1}$ with D_{3} about cqual to the scgmental width and much longer than D_{2} and this longer than the first. V_{2} and V_{3} minute and cylindrical to lanceolate. Segment 4 and all succceding segments have fully formed parapodia (fig. $7 \cdot 5.1$) cach with a broadly oval dorsal cirrus twicc as long as broad, a setigcrous lobe without a cirriform appendage and a small oval ventral cirrus. Mature males with sperm ducts opening on swellings postero-ventral to the parapodia of segments 10-13 or 12-15 (fig. 7.5.j). Segmental organs poorly marked but have characteristic chromatophores which start on scgment 5-9 and form vertical bars between the parapodia and cxtend on to the ventrum forming thin branching lines when cxpanded. Sctae include stout acicular forms with pointed tips and slender compound spinigers with blunt shaft-heads and slender blades. Scgments 4-Io have threc to five acicular setae with curved tips but later ones have only one to two with straight tips. Spinigers start on segment 5 and soon become numcrous.

Type locality: Algicrs.
Records: Agulhas Current (29/32/p to 35/22/p - ninc stations) ; Mocambique Current (II/42/p to $18 / 32 / \mathrm{p}$ - five stations) ; S.W. Indian Ocean (28/39/p, 33/33/p).

Distribution : Mediterranean and warm North Atlantic; Japan.

Family TOMOPTERIDAE Grube, 1848
Transparent planktonic worms with setac limited to the first two segments. The prostomium bears a pair of long divergent antennae, a pair of eyes and a pair of nuchal epaulettes. It is fused to the first two segments each of which develops a pair of cirriform appendages with an internal aciculum. During development the aciculum or even the whole first pair of cirri may be lost. In the adult the second pair of cirri is always retained and may grow as long as the body. Pharynx short and unarmed. Body of 12-40 biramous segments and often a tail region with rudimentary parapodia. Normal parapodia lack setac but both the notopodial and the neuropodial ramus is bordered by a membraneous pinnule. The neuropodial pinnule always bears a darkly staining chromophil gland from the ist-5th foot onwards. Either hyaline or rosette glands may be present in the pinnules as well. Gonads are always present in the dorsal ramus and sometimes in the ventral ramus too.

Records from southern Africa

BIOLOGICAL NOTES

While Tomopterids are never abundant, they are present in most plankton hauls and are found at all depths. When seen alive they look like delieate transparent feathers but they soon die and little is known about their biology. Nothing is to be seen in the transparent gut but the body cavity oceasionally contains large spherical protozoan parasites rather like eggs. The large chromophil glands are known to be phosphorescent but the functions of the other glands in the parapodia are unknown.

TOMOPTERIS Eschscholtz, 1825 (including-ENAPTERIS Rosa,-1908)
The single genus has the characters of the family. Enapteris Rosa, 1908 (type species Tomopteris euchaeta Chun) is a juvenile stage. For details see under Tomopteris euchaeta (p. 202).

Type species: Tomopteris onisciformis Eschscholtz, 1825.

THE MAIN DIAGNOSTIC GHARACTERS

Rosa (1908 and 1908a) has given a well illustrated account of this family. Revised dcscriptions of scveral species will be found in Støp-Bowitz (1948) and uscful keys in Dales (1957). SCC olis Oremwarez Y Rowne 1973

Tail. This is a posterior elongation of the trunk with rudimentary parapodia. The number of trunk segments is constant within broad limits and the presence or absence of a tail is a useful charactcr.

Gonads may bc present in the ventral rami as well as the dorsal ones. Difficulty is caused by frcely moving large eggs, and it is neccssary to check the location of the gonad. Dilutc haematoxylin stain makes the gonad stand out clearly.

Parapodial glands. Rosette glands are best seen in unstained specimens as small, yellowisll brown spots; when present they occur in the trunks of the first two fect and in both pinnulcs of later feet close to the apices of the rami.

Hyaline glands never occur with rosette glands and may also be seen in unstained specimens as clear arcas around a yellowish spot near the apcx of the pinnule. Sometimes the central spot is missing and brief staining with haematoxylin is then useful to make the clcar area stand out. Chromophil glands occur only in the ventral pinnules. They arc often swollen and obvious but when faint they can be made distinct by staining. In some species the chromophil glands arc accompanied by spur glands whose pointed tip projects from the edge of the pinnule ; the first few spur glands may occur in carlier feet than the chromophil glands. Diffuse tubular glands may also occur in both pinnules. The first pair of cirri are obvious but often misleading. In some species the first cirri are lost at the end of the larval stage ; in others they are lost during the growth of the juvenile stage and in some they are retained thoughout lifc.

Key to Species

I Tail present (fig. 8.r.g). Rosette glands and spur glands may be present . . . 2

- Tail absent (fig. 8.2.j). Rosette glands and spur glands always absent . . . ro

2 Gonads in both rami of the parapodia (fig. 8.i.c). (Hyaline glands absent.) . 3

- Gonads in the dorsal ramus only 6

3 Spur glands present (fig. 8.1.c). First cirrus always present (fig. 8.r.a). Rosette glands may be absent

- Spur glands absent. First cirrus may be absent. Rosette glands always present . . 5

4 Rosette glands present (fig. 8.r.b \& e). Chromophil glands from the second or third foot

- Rosette glands absent. Swollen chromophil glands from the third foot T. apsteini (p. 199)

5 First eirrus absent in adult. Faint chromophil glands from the first foot onwards
T. helgolandica (p. 199)

- First cirrus present in adult. Large chromophil glands from the third foot onwards
T. pacifica (p. 199)

6 Spur glands and rosette glands always present

- Spur glands absent. Rosette glands present or absent

7 Chromophil glands from the third foot T. dunckeri (p. 201)

- Chromophil glands from the fifth foot T. duccii* (p. 201)

8 Rosette glands present. Hyaline glands absent T. kempi* (p. 202)

- Rosette glands absent. Hyaline glands present (fig. 8.2.d)

9 Pinnules with an inner, broad, clear area and a narrow frilly outer margin containing the glands (fig. 8.2.b). Second cirrus more than twice the body length except in very large adults (40 mm . or more) Y. euchacta (p. 202)

- Pinnules normal. Second cirrus not exceeding the length of the trunk T. krampi (p. 204)
io Gonads in both rami. Adult very large ($30-80 \mathrm{~mm}$.) . . T. carpenteri* (p. 204)
- Gonads in notopodia only. Adult less than 30 mm . long. II
11 Pinnules continuous with dorsal and ventral ridges along the parapodial trunks (fig. 8.2.h)
- Pinnules almost or entirely restricted to the parapodial rami

12 First cirrus present in adults. (Hyaline glands restricted to the notopodia of the third and fourth foot) T. elegans (p. 205)

- First cirrus absent in adults 13

13 Chromophil glands faint and apically situated. (Diffuse tubular glands in both pinules.) Twenty-two to twenty-four pairs of parapodia (fig. 8.2.m)
T. septentrionalis (p. 205)

- Chromophil glands well developed in the inferior part of the ventral pinnule. Thirteen to eighteen pairs of parapodia
14 Chromophil glands at the proximal edge of the ventral pinnule (fig. 8.2.0). Faint hyaline glands at apex of ventral pinnule
.T. planktonis (p. 206)
- Chromophil glands in middle of ventral pinnule. Hyaline glands completely absent
T. cavallii (p. 206)

Tomopteris nationalis Apstein, 1900
(fig. 8.r.a-c)
Tomopteris nationalis Apstein, 1900: 41.
Tomopteris (Johnstonella) nationalis: Rosa, 1908: 278.
Length up to 20 mm . Prostomium (fig. 8.I.a) shallowly notched between the antennae. First cirrus almost as long as the antennac. Second cirrus equals body length plus tail. Body elongated with 17 segments and a long tail bearing 3-4 rudimentary parapodia. Pinnules restricted to the parapodial rami (fig. 8.i.b, c). Chromophil glands large, swollen and present from 2 nd or 3 rd foot. Spur glands present. Rosette glands in the trunks of the first two feet (fig. 8.I.b) and at the apices of both rami of later feet (fig. 8.I.c). Gonads in both rami from the 2 nd foot (or possibly the ist).

Type locality : Naples.
Records: Agulhas Current (33/28/p) ; Mocambique Current (I I/42/p, ? $13 / 42 / \mathrm{P}$, 22/41/p).

Distribution: Mediterranean.

Tomopteris apsteini Rosa, 1908
(fig. 8.I.d-e)
Tomopteris apsteini Rosa, 1908: 288, pl. 12 figs. 10-13; Fauvel, 1923: 220, fig. 83 a-d.
Length about 20 mm . Prostomium (fig. 8.I.d) notched between the antennac. First eirrus small. Second cirrus $3 / 4$ the length of the trunk. Body with $18-24$ pairs of parapodia plus four more forming the tapering tail. Pinnules restricted to parapodial rami. Chromophil glands from the 3 rd foot and soon become large and swollen (fig. 8.i.e). Spur glands from the 2nd foot. No rosette or hyaline glands but a clear area.* Gonads in both rami from the ist foot.

Type locality: Messina, Sicily.
Records: S.E. Atlantie (34/r6/p).
Distribution: Mediterrancan; subtropical and tropical Atlantie; tropieal Paeific.

Tomopteris helgolandica Greeff, 1879

 (fig. 8.t.f-h)Tomopteris helgolandica Greeff, 1879: 264; Apstein, 1900: 38, pl. io figs. I.6; Fauvel, $1923: 221$ fig. 83 h -i.
Length about 12 mm . (fig. 8.I.g). Prostomium (fig. 8.I.f) notehed betwcen the antennac. First cirrus present in juveniles, absent in adults. A narrow neek. Second cirrus $2 / 3$ the body length. I $4-16$ pairs of parapodia and a long tail with three to four rudimentary parapodia. Chromophil glands always small and faint (fig. 8.i.h) but present from the first foot and located in the middle of the inferior half of the pinnule. Well defined rosette glands from the first foot on the inner side of the pinnules next to the apex of each ramus. Gonads in both rami from the first foot.

Type locality: North Sea.
Records: Benguela Current (22/13/p to $32 / \mathrm{I} 7 / 9$) - five stations; south of Cape Agulhas (34/20/p, 35/2 I/p).

Distribution : North Atlantic.

Tomopteris pacifica Izuka, IgI4
(fig. 8.I.i-j)
Tomopteris pacifica Izuka, 1914: 11, figs. 1-4; Dales, 1957: 141, figs. 5 1 e and 53 f; Tebble, 1962: 385 , fig. 6.
Length up to 30 mm . Prostomium (fig. 8.r.i) not notehed between the antennae. First cirrus present. Second eirrus just longer than the body. Body with I_{4} well developed parapodia followed by a long tail with rudimentary parapodia. Pinnules

[^4]

Fig. 8.1. Tomopteris nationalis. (A) Head. (B) Second foot. (c) Fifth foot. Tomopteris apsteini. (D) Head. (E) Fifth foot. Tomopteris helgolandica. (F) Head. (G) Entire worm (seven times life size). (H) Fifth foot. Tomopteris pacifica. (i) Head. (J) Fifth foot. Tomopteris dunckeri. (к) Head. (ı) Fifth foot.
restricted to parapodial rami (fig. 8.i.j). Chromophil glands large and present from the third foot. No spur glands. Rosette glands in the trunks of the first two feet and at the tips of both rami of later feet. Gonads in both rami from the second foot.

Type locality: Misaki, Japan.
Records: Agulhas Current (29/3I/p).
Distribution : Boreal waters of North Pacific and deep water off California.

Tomopteris dunckeri Rosa, 1908
(fig. 8.I.k-l)
Tomopleris dunckeri Rosa, 1908: 276 , pl. 12 figs. 7-9.
Length up to 15 mm . Prostomium (fig. 8.I.k) notchcd between the large antennae which often have a frilly margin. First cirrus retained until the late juvenile stage* and their stumps visible in the adult. Nuehal epaulcttes very large. Sccond cirrus just execeding length of body. Body with $16-17$ pairs of parapodia plus $9-10$ on the tail which is not sharply marked off from the body. Pinnules restricted to the parapodial rami. Chromophil glands (fig. 8.r.l) large and start on the third foot. Spur glands present from the second or third foot. Rosette glands in the trunks of the first two feet and at the tips of both rami of later feet. Gonads in the dorsal rami from the first or second foot. Pinnules of middle feet appear reticulate when fresh.

Type locality: Ceylon.
Records: Agulhas Current (31/29/p, $31 / 31 / \mathrm{p}, 34 / 26 / \mathrm{p}$) ; Mocambique Current (I4/42/p to $27 / 45 / \mathrm{p}$ - five stations).

Distribution: Ceylon.

Tomopteris duccii Rosa, 1907
Tomopteris duccii Rosa, 1907: 166; Rosa, 1908: 273, pl. 12 figs. r-2.
Body with 19 pairs of parapodia and up to 15 mm . long plus a tail of 5 mm . First eirrus well devcloped. Second eirrus $2 / 3$ of body length. Pinnules restricted to parapodial rami. Chromophil glands large from the fifth foot and located in the inferior part of the ventral pinnule. Spur glands well developed from the third foot, indistinet in the first and sceond. Rosctte glands in the trunks of the first and second parapodia and near the tips of both rami thereafter. Gonads in the dorsal rami from the second foot.

Type locality: Pacific, ncar Mexico.
Records: Not recorded from southern Africa.

[^5]Tomopteris kempi Monro, 1930
Tomopteris kempi Monro, 1930: 88, fig. 27.
Body large and flaccid reaching 55 mm . for 16 body segments plus a tapering tail of more than seven segments. Prostomium notched between the long antennae. First cirrus absent in the adult. Nuchal grooves well marked. Proboscis eversible with a projecting upper lip. Parapodia swollen with short conical rami and narrow, tough pinnules. Chromophil glands well marked from the third foot, faint on the second and doubtful on the first. No spur glands. No hyaline glands. Rosette glands definite from the third foot ncar apex of each ramus but doubtful on the first and second foot. Gonads in the dorsal rami from the second foot.

Type locality: Tristan da Cunha, $-58\{$ Argcale
Records: Not recorded from southern Africa.

$$
\text { Enaplërs Tomopteris euchaeta (Chun, } 1888
$$

(fig. 8.2.a-b)
Tomopteris euchaeta Chun, 1888: 19.
Tomopteris nisseni Rosa, 1908a: 1 ; Stop-Bowitz, 1948 : 44, fig. 29 (adult).
Enapteris euchaela: Fauvel, 1923 : 218, fig. 82 a-c (juvenile).
Body up to 150 mm . long with 39 body segments and several tail segments. Prostomium (fig. 8.2.a) notclied between the long antennae which extend as wide as the parapodia. Eyes small. Pharynx short, not reaching the first foot. First cirrus lost after the larval stage and absent in both the juvenile and adult. Second cirrus very long in juveniles, up to four times body length, but shorter than body in large adults. Body with about I_{5} scgments in juveniles but up to 39 in adults including a long tail with sevcral distinct segments. Parapodial rami (fig. 8.2.b) expanded with broad pinnules each divided into an outer frilly area bearing the glands and an inner clear arca which simulates a flattencd extension of the ramus. Glandular outer edge not extending between the rami in juvenilcs. Chromophil glands from fourth foot, apico-inferior in position and becoming swollen in adults. No spur glands. Hyalinc glands indistinct but always present towards the distal cnd of the inferior part of the ventral pinnule from the third foot onwards. In the dorsal pinnule they are absent in juveniles and variable in adults. Gonads in the dorsal ramus from the second foot.

Type locality: Mediterranean Sca.

Records: S.E. Atlantic (34/I2/p, 34/16/p) ; Agulhas Current (from 30/31/p to $35 / 26 / \mathrm{p}$ - seven stations) ; Mocambiquc Current (II/42/p to $27 / 39 / \mathrm{p}$ - seven stations) ; S.W. Indian Occan ($32 / 53 / \mathrm{p}, 35 / 48 / \mathrm{p}, 37 / 58 / \mathrm{p}$) - all records from below roo metres and many from below 500 metres.

Distribution: Mcditerrancan; temperate and tropical Atlantic and North Pacific (recordcd as T. nisseni).

Fis. 8.2. Tomopteris euchaela. (A) Head. (B) Fifth foot. Tomopteris krampi. (c) Head.
(D) Fifth foot. Tomopteris carpenteri. (E) Head. (F) Fifth foot. Tomopteris ligulata. (G) Head. (H) Fifth foot. Tomopteris elegans. (I) Head. (J) Entire worm (six times life size). (к) Fourth foot. Tomopteris septentrionalis. (L) Head. (M) Fifth foot. Tomopteris planktonis.
(v) Head. (o) Fifth foot.

Tomopteris krampi Wesenberg-Lund, 1936
(fig. 8.2.e-d)
Tomopteris krampi Wesenberg-Lund, 1936: 8, figs. 1-3; Stop-Bowitz, 1948: 48, fig. 34. Tomopteris (Tomopteris) cavallii: Monro, 1930: 87.

Length up to 26 mm . Prostomium (fig. 8.2.c) not notehed between the long attennac. First eirrus retained in adult but slender. Sceond eirrus just longer than body. Body with 2 I pairs of parapodia and a very short tail. Pinnules extend on to the distal ends of the parapodial trunks (fig. 8.2.d). Chromophil glands voluminous from fourth foot onwards and are situated in the inferior half of the ventral pinnule. No spur glands. Hyaline glands very faint but present at the apices of both pinnules from the third or fourth foot. Gonads in the dorsal rami from third foot.

Type locality: S.W. of Iceland.
Records: S.E. Atlantic (34/r6/p).
Distribution: Atlantie from S.W. Iceland to warm South Atlantie; deep hauls off California.

Tomopteris carpenteri Quatrefages, 1865
(fig. 8.2.c-f)

Tomopteris carpenteri Quatrefages, 1865:227, pl. 20 figs. 1-2; Benham, 1921:6I, pl. 8 figs. 64-66; Tebble, 1960: 174, fig. 7.
A very large species reaching 90 mm . with 35 pairs of parapodia. No tail. Prostomium (fig. 8.2.e) not notehed between the antennac. Neek short and broad. First cirrus absent in adults. Seeond cirrus half the body length. Pinnules oval, frilly and extend on to the distal ends of the parapodial trunks (fig. 8.2.f). Chromophil glands from the fourth foot onwards; they are large and voluminous and located on the inferior half of the ventral pinnule. No spur glands. Hyaline glands pigmented and appear in the third foot in the superior half of the ventral pinnule and are present in all subsequent fect. Gonads in both dorsal and ventral rami from the first or second foot onwards.

Type logality: $60^{\circ}{ }^{\circ} 3^{\prime} \mathrm{S} / 00^{\circ}$ o6'E.
Regords: Not recorded from southern Africa.
Distribution: Subantaretic and Antarctic.

Tomopteris ligulata Rosa, 1908
(fig. 8.2.g-h)
Tomopteris ligulata Rosa, 1908a: 1; Rosa, 1908: 302, pl. 12 figs. 18-19; Stop-Bowitz, 1948: 52, fig. $3^{8 .}$
Body about 10 mm . long with 24 segments. No tail. Prostomium (fig. 8.2.g) not notehed between the antennac. First eirrus absent in adults. Second cirrus $3 / 4$ body length. Pinnules extend from the rami along the whole length of the
parapodial trunks as dorsal and ventral ridges (fig. 8.2.h). Chromophil glands large from the fourth foot onwards and are located in the inferior part of the ventral pinnule. No spur gland. Hyaline glands present in the superior part of the ventral pinnule from the third to seventh foot at least. Gonads in the dorsal rami from the third foot onwards.

Type locality: Tropieal Atlantic ($22^{\circ} \mathrm{N} / 35^{\circ} \mathrm{W}$).
Records: Agulhas Current (34/26/p, 34/27/p) ; S.W. Indian Ocean (33/33/p, 35/48/p).

Distribution : Warm to tropical Atlantic and Pacific.
Tomopteris elegans Chun, 1888
(fig. 8.2.i-k)
Tomopteris elegans Chun, 1888 : 18 , pl. 3 figs. 4-9; Stop-Bowitz, 1948 : 46, fig. 33 a-b. Tomopteris Kefersteinii Greeff, 1879: 275 .
Body (fig. 8.2.j) slender and delicate, less than io mm. long with 14 scgments. No tail. Prostomium (fig. 8.2.i) notehed betwecn the long, broad antennac. Neek narrow. First cirrus retaincd in adults but may be small. Second cirrus with a globular base and equal to $2 / 3$ the body length. Parapodial trunks long and slender. Pinnules oval and restricted to the parapodial rami (fig. 8.2.k). Chromophil glands well developed from the fourth foot onwards and situated below the tip of the ventral ramus. No spur glands. Hyaline glands restrieted to the dorsal pinnules of the third and fourth foot; they are situated at the apex of the pinnule but are seldom obvious except in sexually mature adults. Gonads present in the dorsal rami from the third to about the eighth foot.

Type locality : Canary Islands.
Records: S.E. Atlantic ($34 / \mathrm{I} 7 / \mathrm{p}$) ; Agulhas Current ($30 / 30 / \mathrm{p}$ to $36 / 23 / \mathrm{p}$ - 14 stations) ; Mocambique Current (II/42/p to 28/39/p-12 stations) ; S.W. Indian Ocean (32/36/p, 36/35/p).

Distribution: Atlantic (from temperate North Atlantic south to the subtropieal convergenee) ; warm North Pacific. Off (Crewuay.

Tomopteris septentrionalis Quatrefages, 1865
(fig. 8.2.1-m)
Tomopteris septentrionalis Quatrefages, 1865: 229; Fauvel, 1923: 224, fig. 84d; Stop-Bowitz, 1948 : 49, fig. 36.
Body up to 26 mm . long with 20-24 pairs of parapodia. No tail. Prostomium (fig. 8.2.1) notched between the antemnac. Nuchal epaulettes well marked. No first cirrus in the adult. Second cirrus $3 / 4$ the length of the body. Pinnules oval, the dorsal one on anterior feet extending onto the distal end of the parapodial trunk. Tubular glands in both pinnules from the first foot onwards so that the posterior
pinnules are often opaque (fig. 8.2.m). Chromophil glands not well developed but present at the apex of the ventral pinnule from the fourth foot onwards. No spur glands. Hyaline glands present at the apex of the ventral pinnule from the second to fourth foot but indistinct in later feet. Gonads in the dorsal rami from the seeond foot to about the i4th.

Type locality: Danish seas.
Records : Benguela Current (32/17/p, 34/18/p) ; S.E. Atlantic (26/12/p, 27/12/p, 29/12/p, 34/12/p) ; deep tows in Mocambique Current (14/42/p, 18/4I/p, $21 / 37 / \mathrm{p}$); S.W. Indian Ocean (39/38/p).

Distribution : Cosmopolitan in eold water masses.

Tomopteris planktonis Apstein, 1900

(fig. 8.2.n-o)
Tomopteris planktonis Apstein, 1900: 42, pl. 11 figs. 21-22, pl. 12; Fauvel, 1923: 224, fig. 84 f ; Stop-Bowitz, 1948: 52, fig. 39.
A small species about 7 mm . long with 13-18 pairs of parapodia. No tail. Prostomium (fig. 8.2.n) not notehed between the antennae. Neek broad and short. First eirrus absent in the adult. Second cirrus up to $3 / 4$ body length. Pinnules restricted to parapodial rami. Large chromophil glands from the fourth foot onwards and are located at the proximal end of the inferior half of the ventral pinnule where they eause an obvious swelling (fig. 8.2.0). No spur glands. Hyaline glands indistinct but present at the apiees of the ventral pinnules from the first foot onwards. Gonads in the dorsal rami from the seeond or third foot onwards.

Type locality: Central and North Atlantic.
Records : All round southern Afriea, mainly in oeeanie waters (50 stations).
Distribution: North Atlantic to the Antaretic ; sub-aretic zone of North Paeific.

Tomopteris cavalli Rosa, 1907

Tomopteris cavallii Rosa, 1907: 176; Rosa, 1908: 304, pl. 12 fig. 20; Dales, 1957: 144, fig. 51 b and 52 b .
A small species about 5 mm . long with I 7 pairs of parapodia. Prostomium shallowly notched between the short antennae. Neek broad and short. First cirrus absent in the adult. Second cirrus $2 / 3$ the body length. No tail. Pinnules restricted to parapodial rami. First two to three parapodia with diffuse tubular glands in the dorsal pinnules. Chromophil glands large and start on the fourth foot and located in the middle of the inferior half of the ventral pinnule. No hyaline or rosette glands. Gonads in the dorsal rami from the second or first foot.

Type locality: South Pacific.
Records: One doubtful record for southern Afriea. (Possibly synonymous with Tomopteris planktonis Apstein.)

Distribution : North western Atlantic; Indian Oeean; western Pacific.

Family TYPHLOSCOLECIDAE Uljanin, 1878

Transparent planktonic worms with fusiform bodies. Head conical or blunt, without eycs, sometimes with a dorsal caruncle but always with an internal retort organ above the pharynx, an anterior palpode and a pair of well developed nuchal organs which often form free posterior projections. The larval stage has a ciliated ridge or prototroeh encircling the head in front of the mouth and in the neotenic genus Typhloscolex this ridge is expanded to form large dorsal and ventral lobes. The first threc segments are fused to the prostomium and each bears a single pair of lamellar cirri which enfold the head. Normal body segments are uniramous with large foliaceous dorsal and ventral eirri whieh lie against the body but there is only a rudimentary setigerous lobe bearing a few simple acicular setae. Pygidium with a pair of large flattened anal eirri.

Records from southern Africa

Sagitella kowalewskii Wagner . . . 2 INp , -Wp, Cp, Np, Mp		
Travisiopsis coniceps (Chamberlin) . . $49 \mathrm{Cp},-\mathrm{Pp}$ as Sagitella lobifera Ehlers		
Travisiopsis dubia Stop-Bowitz . . . -Cp,		
? as Sagitella cornuta Ehlers . . . 33 Cp, 2 IN		
Travisiopsis lanceolata Southern as Sagitella kowalewskii: Monro (non Wagner) as Travisiopsis sp.		${ }_{49 \mathrm{Cp}}$, -? Np
		33 Cp
		33 Cp
Travisiopsis levinseni Southern . . . - Cp		
Travisiopsis lobifera Levinsen . . . $49 \mathrm{CP}, \mathrm{P}$		
Typhloscolex muelleri Busch ${ }^{2} \mathrm{INp},{ }^{49 \mathrm{Cp}} \mathrm{Np}, \mathrm{Mp}$		
Typhloscolex ef. phyllodes Reibisch . . . ?-СС¢, Мр		
Indeterminate species		
Travisiopsis capensis McIntosh		32 Np

REMARKS

Praetically nothing is known about the biology of this family. The only common speeies is Sagitella kowalewskii and this dies quickly in plankton samples. Most species of Travisiopsis are deep sea occanie forms though the juveniles are oceasionally taken near the surface. Typhloscolex itself is an enigma. Its small size, pear-shaped form and the ciliated lobes on the head are reminiscent of a trochophore and it is possible that Typhloscolex is a neotenie genus. Certainly the larvae of other genera show resemblenees to it.

Important taxonomie referenees include Southern (19ri), Fauvel (1923), StøpBowitz (1948) and Dales (1957). Generic differences are based on the strueture of the prostomium (partieularly the development of the carunele and nuchal organs). Speeifie differences include the number of segments and the shape of the anal eirri. Incidentally the latter are liable to fall off and the last pair of parapodial eirri have
been figured as anal cirri in at least one specics. There is a large flask-shaped organ of unknown function in the roof of the mouth, if this is everted then the whole head is distorted.

Key to Genera

1 Prostomium with large transverse ciliated lobes dorsally and ventrally (fig. 9.1.a)
TYPHLOSCOLEX (p. 208)

- Large transverse ciliated lobes absent

2 Nuchal organs as curved ridges without freely projecting lobes. No projecting carunclc (fig. 9.r.d) Anol cirre expancu déjurle. . . SAGITELLA (p. 209)

- Nuchal organs with freely projecting lobes. A caruncle usually present (fig. 9.r.h)

TRAVISIOPSIS (p. 21o)

TYPHLOSCOLEX Busch, 185 I

Body $3-5 \mathrm{~mm}$. long, markedly tapered posteriorly and with less than 25 segments. Prostomium rounded in front and with an asymmetrical palpode (? fuscd apieal cilia) and large dorsal and ventral ciliated lobes. A pair of free nuehal lobes borne on the sides of the dorsal eiliated lobc. A large retort organ above the pharynx. Threc pairs of lamellar eirri enfold the head. Each body segment with a large lamellar dorsal and ventral cirrus and a poorly marked setigerous lobe. Two to three acicular setac appear after the first few segments. Anal cirri small.

Type species: Typholoscolex muelleri Busch, i85i.

Key to Species

I Ciliated lobes about as broad as head. Dorsal and ventral cirri togcther equal to body width
T. muelleri

- Ciliated lobes much narrower than head. Dorsal and ventral cirri each cqual to body width

> Typhloscolex muelleri Busch, 185 I
> (fig. 9.1.a-b)

Typhloscolex Mïlleri Busch, 1851: 115, pl. 2 figs. 1-6; Reibisch, 1895:52, pl. 5 figs. 1-5; Fauvel, 1923: 226, fig. 85 a-h.

Body (fig. 9.i.a) tapered and $2-3 \mathrm{~mm}$. long for $20-24$ segments. Prostomium (fig. 9.I.b) blunt and bearing a small, asymmetrical palpode with a ventral swelling. Retort organ obvious internally. Ciliated lobes almost. as broad as the head, the dorsal one bearing a pair of small nuchal lappets atpesides! Sides of head enfolded by thrce pairs of flattened cirri the first of whiel is clongated in a dorso-ventral dircction. Eighteen body scgments with cordate to square dorsal and ventral cirri
which together equal the body width. Posterior cirri more pointed. Anal cirri small and ovate.

Type logality: Adriatic Sea.

Records: All around southern Africa from South West Africa to Madagascar (34 stations).

Distribution: Cosmopolitan apart from the Arctic Ocean; in the Antarctic it occurs in warm deep water.

Typhloscolex phyllodes Reibisch, I895

Typhloscolex phyllodes Reibisch, 1895 : 55, pl. 5 figs. 6-7.

Body 2.5 mm . long, stout anteriorly and markedly tapered postcriorly with 22 segments. Anterior palpode small, asymmetrical and with a ventral swelling. Dorsal and ventral ciliated lobes narrower than the width of the head, the dorsal one bearing a pair of small nuchal lappets at the sides. Three pairs of flattened cirri enfolding the sides of the head. Body segments with very large dorsal and ventral cirri which are roughly square in shape and cach cqual to the width of the body; postcrior cirri more rounded but still large. Setigerous lobes conical and prominent. Anal cirri unknown.

Records: No ccrtain record from southern Africa.
Type locality: Tropical Atlantic.
Note. This is a doubtful spccies ; possibly a larval stage of Travisiopsis sp.

SAGITELLA Wagner, 1872

Body slender, fusiform and very transparent, $5^{-1} 5 \mathrm{~mm}$ long. for $28-38$ segments. Head without ciliated lobes or projecting caruncle. A pair of semi-circular nuchal ridges on the postcrior part of the prostomium but no free nuchal lobes. Sides of head enfolded by three pairs of lamellar cirri. Body segments with both dorsal and ventral lamellar cirri and a rudimentary setigerous lobe which bears acicular setae after the first few segments. Anal cirri flattened and expanded.

Type species: Sagilella kowalewskii Wagner, 1872.

Sagitella kowaleweskii Wagner, 1872
(fig. 9.I.c-e)
Sagitella kowalezeskii Wagner, 1872 : 343, figs. A-C; Fauvcl, 1923: 228, fig. 85 a-c.
Body (fig. 9.I.c) from 5 to 5 mm . long, fusiform in shape and very transparent so that the inter-segmental scpta are visible. Threc head segments and 25-35 body segments with both dorsal and ventral cirri. Prostomium (fig. 9.I.d) conical and produced forward as a slender palpode. Head swollen dorsally but no projecting
caruncle. A pair of semicircular nuchal ridges outline the occipital region of the head. Cirri enfolding the head cordate. Anterior body segments with the dorsal and ventral cirri quadrangular, broader than long and pressed close against the sides of the body; posterior ones more cordate and the last few acuminate. Setigerous lobes obsolescent and the acicular sctae minute. Anal cirri subtriangular, broader than long (fig. 9.I.e).

Type locality: Tropical Atlantic.
Records: S.E. Atlantic (25/r3/p, 34/r7/p); Agulhas Current (29/31/p to 36/23/p - 18 stations) ; Mocambique Current ($\mathrm{I} 1 / 42 / \mathrm{p}$ to $24 / 39 / \mathrm{p}$ - nine stations) ; S.W. Indian Ocean (28/39/p to $40 / 32 / \mathrm{p}$ - cight stations).

TRAVISIOPSIS Levinsen, 1885

Body fusiform with $18-22$ setigerous scgments. Skin rather thick so that intersegmental septa are not easily visiblc. Prostomium conical with an anterior palpodc. Usually a projecting dorsal lobe or caruncle on the head. A pair of nuchal organs always with frec posterior lobes. Three pairs of lamellar cirri enfolding the sides of the head. Body segments with both dorsal and ventral foliaccous cirri and a small setigerous lobe bearing a few acicular setac. Pygidium with foliaceous anal cirri.

Type species: Travisiopsis lobifera Levinsen, 1885.

Key to Species

1 A freely projecting lobe or caruncle above the brain (fig. 9.1.f) 2

- Caruncle not freely projecting, merely an oval swelling above the brain . . . 3

2 Nuchal lobes branched (fig. 9.1.f). Anal cirri spathulate . . . T. coniceps (p. 210)

- Nuchal lobes simple and digitiform. Anal cirri long and ovate (fig. 9.1.i)
T. lanceolata (p. 212)

3 Anal cirri oval. Ninteen to twenty-five body segments. Nuchal lobes rounded (fig. 9.1.k)
T.dubia (p. 212)

- Anal cirri subtriangular (fig. 9.1.n). Eighteen body segments. Nuchal lobes digitiform and parallcl T. lobifera (p. 213)
- Anal cirri spathulate. Twenty-two body segments. Nuchal lobes semi-circular

Travisiopsis coniceps (Chamberlin, 1919)
(fig. 9.1.f-g)
Plotobia coniceps Chambcrlin, $1919: 156$, pl. 66, figs. 2-4.
Sagitella lobifera Ehlers, 1912: 24, pl. 3 figs. 1-4; Monro, 1930: 90. (Pre-occupied by T. lobifera Lcvinsen, 1885.)
Body fusiform, up to 18 mm . long with a head region of three segments each bearing a single pair of lamellar cirri and ig body segments with both dorsal and ventral cirri. Prostomium (fig. 9.I.f) conical with a stout palpode. Caruncle an erect, tongue-shaped lobe. Nuchal organs extending back as a pair of frec, branching

Fig. 9. I. Typhloscolex muelleri. (A) Lateral view of entire worm (25 times life size). (B) Dorsal view of head. Sagitella kowalewskii. (c) Lateral view of entire worm (eight times life size). (D) Dorsal view of head. (E) Tail end. Travisiopsis coniceps (afier Monro, 1936, fig. 16.b). (F) Dorsal view of head. (G) Tail end. Travisiopsis lanceolala. (H) Dorsal view of head. (1) Tail end. Travisiopsis dubia. (J) Lateral view of entire worm (4 times life size). (k) Dorsal view of head. (L) Tail end. Travisiopsis lobifera. (m) Dorsal view of head. (N) Tail end.
lobes. Setigerous lobes and setae prominent. Dorsal and ventral cirri cordate anteriorly but more pointed posteriorly. Anal cirri spathulate with a strengthening rib (fig. 9.1.g).

Type locality: Pacific, off Peru.
Records: S.E. Atlantic (33/5 5/p) ; Mocambique Current (21/40/p).
Distribution: A deep water spccies from the South Atlantic, Antarctic and Pacific from California to Peru.

Travisiopsis lanceolata Southern, I910

(fig. 9.I.h-i)
Travisiopsis lanceolata Southern, 1910: 429; Southern, 1911: 30, pl. Ifigs. 3, 5 and 6; Fauvel, 1923: 229, fig. 86 e-g ; Stop-Bowitz, 1948 : 58, fig. 45.
Body fusiform, up to 30 mm . long with a head region of threc segments each bearing a single pair of reniform lamellar cirri enfolding the head and ig body scgments with both dorsal and ventral cirri. Prostomium (fig. 9.r.h) conical with a stout palpode. Caruncle with a transversely oval basc produced back as a freely projecting tongue-shapcd lobe, the whole forming a broad T. Nuchal organs in the form of ridges embracing the caruncle and extending back as a pair of frce digitiform lobes twicc as long as the caruncle. Dorsal and ventral cirri quadrangular to cordate in the middlc of the body but elongated postcriorly so that the last few pairs are lanceolatc. Anal cirri (fig. 9.1.i) ovate-lanceolatc, broader basally than distally and strengthencd by a median rib.

Type locality : South-wcst Ireland.
Records: S.E. Atlantic (35/13/p) ; doubtful records of juveniles from Agulhas Current ($29 / 32 / \mathrm{p}$ and $3^{1 / 32 / p) \text {. }}$

Distribution: North Atlantic; temperate South Atlantic (in deep tows) ; North Pacific.

Travisiopsis dubia Stop-Bowitz, 1948
(fig. 9.I.j-l)
Travisiopsis dubia Stop-Bowitz, 1948: 6o, fig. 4^{8} a-c; Tebble, 1962: 414, fig. 20
? Sagitella cornuta Ehlers, 1913: 527, pl. 39 figs. 8-14.
A small elongate species (fig. 9.I.j) about 6 mm . long with a head region of three segments each bearing a single pair of cordate lamcllar cirri and a body region of 19-25 segments with both corsal and ventral cirri. Generally similar to Sagitella but with fewer scgments and the body more opaque and internal septa not visible. Prostomium (fig. 9.I.k) conical, swollen dorsally with an antcrior palpode but without a projecting carunclc. A pair of frecly projecting, rounded nucal lobes. Dorsal and ventral cirri cordate in the middle of the body but more longate posteriorly. Sctae where present, minute. Anal cirri (fig. 9.I.l) oval without an obvious midrib.

Type locality : North Atlantic ($39^{\circ} 30 \mathrm{~N} / 49^{\circ} 42 \mathrm{~W}$).
Records: Agulhas Current (29/31/p to 35/22/p - 15 stations); Mocambiquc Current (I2/48/p to 28/39/p - cight stations) ; S.W. Indian Ocean (32/36/p and 36/36/p).

Distribution : North Atlantic ; North Pacific.

Travisiopsis lobifera Lcvinscn, 1885
(fig. 9.I.m-n)
Travisiopsis lobifera Levinsen, 1885: 336, figs. 17-20; Fauvel, 1923: 229, fig. 86 a-d; Stop-Bowitz, 1948: 57, fig. 44.
Body fusiform, up to 25 mm . long with three head scyments cach bearing a pair of lamellar cirri and 18 segments with both dorsal and ventral cirri. Prostomium (fig. 9.r.m) conical with a large anterior palpodc. Dorsal surface of head swollen to form an oval caruncle, but a frccly projecting lobe is abscnt. Nuchal organs as a pair of scmicircular ridgcs embracing the caruncle and continuous with a pair of digitiform postcrior lobes. Dorsal and ventral cirri cordate in the middle of the body but become pointcd posteriorly. Anal cirri (fig. 9.1.n) subtriangular and expanded distally, about as broad as long. Setigcrous lobes and setae well marked on posterior scgments.

Type locality: North Atlantic ($42^{\circ} 50^{\prime} \mathrm{N} / 46^{\circ}$ ıo W).
Records: S.E. Atlantic (34/16/p); S.W. Indian Ocean (26/37/p, 34/34/p).
Distribution: Tcmperatc and tropical North and South Atlantic ; temperate to subtropical Pacific. If Argen tion

Travisiopsis levinseni Southern, 1910

Travisiopsis levinseni Southern, 1910: 429; Southern, 1911:32, pl. 2 figs. 7-11; Stop-Bowitz, 1948: 59, fig. 47.
Body fusiform, up to 24 mm . long with threc head scgments cach bcaring one pair of lamellar cirri and 22 body segments with both dorsal and ventral cirri. Prostomium conical with a small palpodc. Caruncle flattened, almost rectangular, without any frec lobc. Nuchal organs as a pair of short, scmicircular, frccly projecting lobes whose bases extend forward as narrow ridgcs on cither side of the caruncle to join a pair of small wart-like lobss. Thrce pairs of lamcllar cirri cnfold the head. Dorsal and ventral cirri of body segments cordate with a broad area of attachment. Postcrior cirri become long and tapered. Anal cirri ovatc-triangular bcing narrower proximally than distally.

Type locality : $53^{\circ} \mathrm{O} 7^{\prime} \mathrm{N} / 5^{\circ} 0^{\prime} \mathrm{W}$ (off Ircland).
Records: Doubtful rccords in S.E. Atlantic (33/5/p, 34/r6/p) ; just south of subtropical convergence ($40 / 32 / \mathrm{p}, 39 / 29 / \mathrm{p}, 39 / 27 / \mathrm{p}$).

Distribution: A deep watcr spccies in tempcrate North Atlantic, South Atlantic, subantarctic, Antarctic, North Pacific off California.

Family PILARGIDAE St. Joscph, I899
Elongate errant polychaetes with rather flattened bodies. Prostomium small, typically with a pair of biarticulate palps and two to three antennae. Proboscis eversible and unarmed except in the genus Talehsapia. Pcristomium apodous and achactous but usually with two pairs of tentacular cirri which lack internal acicula. Parapodia uniramous or if biramous the notopodial lobe is small. Dorsal and ventral cirri usually present. Sctae always simple, the notopodium often lacking setae but having a heavy projecting acicular spine or hook ; the neuropodium always with simple serrated setae. Pygidium with a pair of anal cirri or a sauccr-shaped plate.

Records from southern Africa

BIOLOGICAL NOTES
The pilargids are a small group of carnivorous or omnivorous worms living on muddy sand in warm seas. Ancistrosyllis has well developed head appendages and creeps on the surface; Pilargis has reduced head appendages and Loandalia with its microscopic head appendages and parapodia, is almost certainly a burrower. The stout acicular notosetac which arc often shaped like fish hooks are puzzling. They certainly become attached to fleshy objects very readily and it is possible that they are used to anchor the worm in some way.

THE MAIN DIAGNOSTIC CHARACTERS

The family Pilargidae is related to the Hesionidae from which it is distinguished by the absence of acicula in the tentacular segments, the entire absence of compound setae and usually the lack of jaws. Only five genera are recognised and they arc rare but widely distributed. A valuable review is given by Hartman (r947a). Generic distinctions are based mainly on the nature of the head appendages and specific characters include the size of the antennae, the development of the parapodia, the nature of the acicular notosetac and the presence or absence of surface papillac. The aberrant genus Talehsapia is included with hesitation and Cabira is a very doubtful genus. Neither have been reported from southern Africa.

Key to Genera

[^6]
ANCISTROSYLLIS MeIntosh, 1879

Body elongate and rather flattened. Prostomium with three antennae and two biartieulate palps having small palpostyles. Eyes small or absent. Pharnyx unarmed. Two pairs of tentaeular eirri. Notopodia vestigial but each with a stout spine or projeeting hook after the first few; neuropodia well developed with simple setae and sometimes a few forked ones as well.

Type species: Ancistrosyllis groenlandica MeIntosh, 1879.

Key to Species

2 Notopodia of middle segments with setac as well as stout hooks. (No ventral cirrus on setiger 2) A. constricta

- Notopodia of middle segments without setae apart from a stout hook 3

3 Notopodial hooks appear within the first to feet 4

- Notopodial hooks appear after setiger 60 A. robusta

4 Body papillose. Antennae very short A. groenlandica*

- Body smooth. Antennae elongate .

Ancistrosyllis rigida Fauvel, 1919: 373, fig. 4: Hartman, 1947: 498, pl. 62 figs. $1-7:$ Fauvel, 1953: IIo, fig. 53.
Body slender, wiry, up to 35 mm . long. Prostomium small, sometimes retraeted with three small, subequal fusiform antennae and a pair of large palps with minute palpostyles. Tentacular segment distinct and equal to the setigerous segments; it bears two pairs of short tentaeular eirri similar to the antennae. Subsequent segments all similar and museular with small lateral parapodia. The notopodium is reduced to a fusiform dorsal eirrus with an internal aeieulum and, from the i2th-20th setiger onwards, a heavy projeeting spine with a blunt tip. It is merely slightly eurved, never hooked. The neuropodium is a small truneate setigerous lobe with a fusiform ventral eirrus slightly smaller than the dorsal one; the latter is present on all segments ineluding the seeond. The neurosetae inelude one to two short forked setae and several eapillaries with a minutely spinulose margin.
Type focanitry : Red Sea. Canarye.
Recorbs: Natal ($29 / 3 / 1 / \mathrm{d}$).
Distribution: Gireumtropieal (i, s).
Ancistrosyllis ef. constricta Southern, I921
(fig. Io.I.a-c)
Ancistrosyllis ef. constricta Southern, 1921: 573, pl. 19 figs. I A-G; Day, 1957: 71, fig. 2 a-d.
Juveniles whieh may belong to A. constricta Southern 1921 are $3-4 \mathrm{~mm}$. long with 36 setigers. Prostomium (fig. io.i.a) with three eirriform antennae and two pairs of eyes. Palps massive, bent ventrally and bear slender palpostyles. Pharynx

[^7]muscular but without jaws. Peristomium distinct from prostomium and bears two pairs of tentacular cirri. No constricted neck rcgion. Each setiger with tapered dorsal and ventral cirri and a blunt seligerous lobe. No ventral cirris on setiger 2. Typical notopodia (fig. io.r. b) with an aciculum, one to fine capillaries and a stout recurved hook which first appears on setiger 8. Ncurosetae are serrated capillaries (fig. io.i.c).

Type locality (of A. constricta) : Chilka Lake, India.
Records: Natal (29/3 / /i) - two specimens.
Distribution : ? India (e).

Ancistrosyllis robusta Ehlcrs, 1908

(fig. 10.I.d-e)
Ancistrosyllis robusta Ehlers, 1908: 59, pl. 6 figs. 4-7.
Body colourless and clongate, rcaching 54 mm ., with 182 segments. Prostomium (fig. IO.I.d) broader than long, rounded in front, and with three slender antennae, the median antenna reaching back to setiger 5. Palps stout with knobshaped palpostyles. Pharynx short and stout and the mouth entrance is encircled by 16 ovoid papillae. Peristome distinct with two pairs of tentacular cirri similar to the antennae but sloorter. Dorsal cirrus of sctiger i twice the length of the tentacular cirri ; parapodial lobe and setae present (not shown in Ehlcr's figure). Ventral cirrus much shorter. Subsequent parapodia (fig. Io.I.e) cach with a tapered dorsal cirrus, an ovoid ncuropodial lobe and a shorter ventral cirrus. Presence of a ventral cirrus on setigcr 2 doubtful. A fine aciculum in each anterior dorsal cirrus but from setiger 70 this is replaced by a stout projecting hook. Neuropodial setae are capillaries of varying length, the shorter ones fincly serrated, the longer ones smooth.

Type locality: Great Fish Bay, Angola.
Records: Not rccorded from southern Africa.

Body (fig. io.I.g) about 10 mm . long, flattened and tapered. Prostomium (fig. Io.I.f) broader than long with the posterior margin straight. Palps very wide with minute palpostyles. No cyes. Antennac cqual to half the peristomial width, the median being slightly longer than the laterals. Proboscis with 10-12 marginal papillae of which the dorsal ones are slightly larger. Tentacular cirri similarly to the antennae, the ventral pair being slightly shorter. Body smooth with rather crowded segments anteriorly but longer ones posteriorly. First setiger with the dorsal cirrus

[^8]

Fig. 10.1. Ancistrosyllis cf. constricta. (A) Anterior end. (B) Ninth foot. (c, ${ }^{1}$) Saw-edged capillary seta. Ancistrosyllis robusta (after Ehlers, 1913). (D) Anterior end. (E) Forty-fourth foot. Ancistrosyllis parva. (F) Anterior end. (G) Entire worm (12 times life size). (H) Tenth foot. (1) Short outer neuroseta. (J) Long central neuroseta. Pilargis falcata. (к) Anterior end. (L) Tenth foot. (M) Blade of longer neuroseta. (N) Enlarged view of tip of shorter neuroseta.
longer than the tentacular cirri, a normal setigerous lobe and a ventral cirrus. Sccond setiger with a short dorsal cirrus and no ventral cirrus. Posterior feet (fig. 10.I.h) all essentially similar with a tapered dorsal cirrus borne on a stout cirrophore, a square setigerous lobe and a smaller ventral cirrus. Notosetae absent from setigers $\mathrm{r}-3$; from setiger 4 onwards a stout hook appears above the dorsal cirrophore but there are never any notopodial capillaries. Ncuroseta are all simple capillaries, the short outer ones with spinulose blades (fig. 10.r.i) and the longer central ones with smooth blades (fig. io.i.j). Ancistrosyllis tentaculata Treadwell is similar but the prostomium is excavate posteriorly. A. groenlandica McIntosh 1879 has a papillose body.

Records: Cape (34/18/s to 33/25/s); Natal (29/31/s, d to 30/30/s).
Distribution : endemic.

PILARGIS St. Joseph, I899
Body elongatc and rather flattencd. Prostomium with a pair of biarticulate palps with large palpophores and small palpostyles. A pair of small antennac on the antcro-lateral margins of the prostomium. Proboscis soft and epithelial and lacks jaws. Peristome with two pairs of tentacular cirri. Parapodia with the notopodium reduced to a dorsal cirrus, an aciculum and sometimes setac. A well devcloped neuropodium with a sctigcrous lobe and a ventral cirrus. Neurosctae simple.

Type species: Pilargis verrucosa St. Joseph, 1899.

Pilargis falcata Day, 1957

(fig. 10.1.k-n)
Pilargis falcata Day, 1957: 70, fig. 2 e-h.
Body about 50 mm . long for 150 segments, very fragile, flattened and tapered anteriorly. Prostomium (fig. Io.1.k) broader than long with a pair of minute antennac, a small pair of cyes and a pair of large palps with small palpostyles. Pharynx soft and unarmed. Peristome with two pairs of fusiform and papillose tentacular cirri. Parapodia (fig. Io.I.I) with ovoid and papillose dorsal cirri, truncate setigerous lobes and small ventral cirri. Cirri present on all feet. Notosetae absent from the first six feet but from the seventh foot onwards cach has a single large recurved hook. Ncurosetac (fig. Io.I.m) are sabre-shaped cach with a hooked tip and a minute secondary tooth. Small interior setae have minutely serrated blades (fig. Io.i.n).

Type locality: Delagoa Bay, Portugucsc East Africa.
Records : Mocambique (26/32/i and 23/35/e) - not common.

LOANDALIA Monro, 1936

Body elongate. Prostomium without eyes or antennac but with a pair of biarticulate palps. Pharynx unarmed. Peristome with or without tentacular cirri. Notopodia reduced; notosetac represented by a stout acicular hook with or without capillary setae. Neuropodia conical with a ventral cirrus and serrated capillary setae. Pygidium with a papillose anal plate.

Type species: Loandalia aberrans Moro 1936.
Key to Species
I Tentacular cirri absent. Digitiform branchiae behind the posterior neuropodia (fig. io.2.f)
L. aberrans

- Two pairs of small tentacular cirri (fig. Io.2.a). Branchiae absent
L. capensis

Fig. 10.2. Loandalia capensis. (A) Anterior end. (B) Tenth foot. (c) Notopodial hook. (D) Ncuropodial capillary. Loandalia aberrant (after Monro, 1936). (E) Head. (f) Anterior parapodium. (G) Posterior end. (H) Minute notoseta (fork doubtful). (I) Neuropodial capillary.

Loandalia capensis Day, 1963
(fig. Io.2.a-d)
Loandalia capensis Day, 1963a: 396, fig. 4 a-d.
Body about $I_{5} \mathrm{~mm}$. long with more than 56 segments. Segments twicc as broad as long with deep intersegmental constrictions between them. Head and first three setigers (fig. 10.2.a) with conical papillae. Prostomium ill-defined with a pair of stout biarticulate palps but no eycs or antennac. Proboscis soft and unarmed. Peristomial segment with two pairs of small tentacular cirri not much larger than the papillac. Each of the first seven segments with a small conical notopodium, but no notoscta. A stout notopodial hook appcars in setiger 8, so that all latcr segments are biramous with an aciculum and a stout recurved hook (fig. Io.2.c) with a granular tip in the rudimentary notopodium (fig. 10.2.b). Ncuropodium low and conical with a papilliform ventral cirrus below the apex and three to four slender capillaries (fig. Io.2.d) which arc either smooth or minutely serrate on one margin. No branchiae. Pygidium unknown.

Type locality : Agulhas Bank, South Africa.
Records: 34/23/s - only two specimens known.

Loandalia aberrans Monro, 1936
(fig. ro.2.e-i)
Loandalia aberrans Monro, 1936: 193, fig. 34 a-h.
Body cylindrical and clongatc and reaches 35 mm . for ino setigcrs. Colour ycllowish with brown markings. Prostomium (fig. 10.2.e) broader than long, lacks eyes and antennae but has a pair of small biarticulate palps. Pharynx muscular but unarmed. Peristome not distinct from the prostomium and lacks tentacular cirri. Notopodia absent from the first six sctigers and reduccd to button-like projections on the remainder. Notosetac represented by a stout acicular hook (broken in the holotype) plus a few minute simple setae which are possibly forked (fig. 10.2.h). Neuropodia (fig. 10.2.f) well dcveloped, bluntly conical in shape and each bears an aciculum plus a fcw simple capillaries with many transvcrse rows of spinules (fig. Io.2.i). A small papilliform ventral cirrus. Pygidium (fig. Io.2.g) as a rounded plate bearing three papillae. Simple digitiform gills behind the neuropodia in posterior segments.

Type locality: Dredged off Angola.
Records: Not recorded from southern Africa.
Distribution : Angola (s).

Family HESIONIDAE Malmgren, 1867
Errant polychaets with short, often cylindrical bodies composed of few segments. Prostomium rounded or cordiform with four eyes, two frontal antennae and often a median dorsal one as well. One pair of biartieulate palps is usually present. Proboscis large and muscular occasionally with jaws or tech. The first one to four segments are short and usually fused to the prostomium ; they are apodous but their dorsal and ventral cirri remain to form two to eight pairs of tentacular cirri which always have internal acicula. Normal body segments are either biramous or uniramons with the notopodium reduced to a dorsal cirrus with an internal aciculum in its eirrophorc. Dorsal cirri often long and jointed. Notosetae when present are simple. Neurosetae are always compound and usually falcigerous though the blade may be long and tapered.

Records from southern Africa

Who Neterapodetie fotsromarpha afrecena
Gyptis capensis (Day)
as Oxydromus capensis Day. . . 56 Csd
Gyptis sp. as Oxydromus sp. 26 Ai
Hesione splendida Savigny ${ }_{1} \mathrm{Pi}, 53 \mathrm{Mi}$ Hooconides arenuevie F-modricil 195\%

 as Hesione genetta Grubs as Hesione pantherina Risso
Kefersteinia cirrata (Keferstein)

Leocrates slaparedii-(Costa) . . . $36 \mathrm{Ni}, 40 \mathrm{Ni}, 45 \mathrm{Pi}, 53 \mathrm{Mi}$
${ }_{32} \mathrm{Pi}, 40 \mathrm{Pi}, 45 \mathrm{Ni}, \mathrm{Pi}$
losubacta Mart-Sedr

Ophiodromus spinosus (Ehlers) as Orthrodromus spinosus Ehlers ${ }_{15} \mathrm{As}$
Ophiodromus agilis (Ehlers)
as Podarke agilis Ehlers 50 Cs

biological notes

The hesionids arc closely related to the pilargids and both families arc intermediate between the nereids and the syllids. The hesionids are very active and some at least are undoubtedly carnivorous. Hesione for example has been observed to swallow part of a Marphysa almost as large as itself. Both Hesione and Leocrates are large stout worms found under stones and dead coral and both have beautiful iridescent colours. Syllidia which is banded in yellow and green and Kefersteinia which is purple when full of eggs are often found among dead shells on rocky shores.

THE MAIN DIAGNOSTIC CHARACTERS
Useful reviews of the family will bc found in Fauvel (1923) and Hesslc (1925). 1 Pattchone lo tc The individual genera and species are well defined. Spccifie characters include the
nature of the head appendages and proboscis and to a lesser degree the structure of the parapodia and setae.

The prostomium is bilobed with two or three antennae and typically a pair of palps. The median antenna may arise from a posterior notch or from the anterior margin or may be entirely absent. Difficulty may be caused by the fact that the median antenna falls off easily and in Leocrates a stout proboscial tubercle ariscs immediatcly in front of the head simulating an additional antenna; in Hesione the same papilla is well forward on the proboscis. The palps are present in all genera cxcept Hesione. In Microphthalmus and Parahesione the palps are said to be simple though this may be doubted; in all other genera the palps are two-jointed and there is considerable variation in the relative lengths of the palpophore and palpostylc.

The proboscis is a muscular eversible structure often with a ring of marginal papillae at its entrance and occasionally with a dorsal tuberclc. In Syllidia there is a pair of ventro-lateral toothed jaws with a median styliform tooth between them; the so-called jaws of other genera are in the form of a median tooth. Paragnaths such as are found in the Nereidac are never developed.

Tentacular segments and tentacular cirri. The Hesionidae show varying degrees of cephalisation. In Orseis there is only a single peristomial scgment behind the prostomium and its clongated dorsal and ventral cirri form two pairs of tentacular cirri with acicula in their cirrophores. In Syllidia there are three such segments and six pairs of tentacular cirri and in Leocrates there arc four segments and eight pairs of tentacular cirri. The tentacular segments show varying degrees of fusion and the cirri may be irregularly arranged.

Parapodia. The different genera show varying degrees of reduction of the notopodium. In Ophiodromus the notopodium is always well developed; in Leocrates the posterior parapodia are biramous with small notopodia but the first four parapodia arc uniramous with only an aciculum in the dorsal cirrophore to show what has happened to the notopodium. The dorsal cirri may be strongly annulated, vaguely annulated or smooth. The neuropodium often has a prcsctal papilla sheathing the end of the aciculum and a postsetal lip; the slape of the end of the neuropodium thus provides useful charactcrs.

The setae. The notosctac are always simple and often tapered capillarics; in some cases one margin is minutely spinulosc. Some species have forked notosetae but the appearance of these gives a suspicious impression of being due to splitting so that their presence or absence is not reliable. The neurosetac are all compound and falcigcrous though the blades may be very long and fine giving a spinigerous effcct. The tips are bidentate with a terminal hooked tooth and a splinter-shaped tooth directed towards it or tridentate with two strong tecth and the same splintershaped one.

Colour. Hesionids are beautifully iridescent with purples and grecns but it is doubtful whether these colours have taxonomic value since they fade in alcohol.

Hewionideparenarza \& Hgotart.

HESIONIDAE

Key to Genera

I Two pairs of tentacular cirri. (Three antennae) ORSEIS*

- Six pairs of tentacular cirri ${ }^{2}$
- Eight pairs of tentacular cirri 6

2 Two antero-lateral antennae plus one median one 3

- Only two antero-lateral antennae .

4
3 Palps not jointed (?). Pygidium with an anal plate. Notosetae absent
MICROPHTHALMUS*

- Palps jointed. No anal plate. Notopodial capillaries often present

OPHIODROMUS (p. م00) 223
4 A pair of ventro-lateral toothed jaws and a slender midventral tooth (fig. in.r.h). No notosetae

- Toothed jaws absent. Notosetae often present

PARAHESIONE*
5 Palps not jointed (?). Notopodia well formed with numerous capillary setae

- Palps two-jointed. Notopodia reduced to an aciculum in the dorsal cirrophore and sometimes a few setae

HESIONE (p.,日ニ) 227
6 Palps absent. (Two antennae. Jaws absent)
HeErojpode cíe. ${ }^{7}$

KEFERSTEINIA (p.,000) 228

- Three antennae. Parapodia biramous and notosetae present
. LEOCRATES ($\mathrm{p}, 000$) 2,30
8 A dorsal and a ventral tooth present
- Teeth and jaws absent.
$\begin{array}{lll}9 & \text { Proboscis with a circle of papillae. Dorsal cirri jointed GYPTIS (p,ooo) } 230 \\ \text { Proboscis without papillae. Dorsal cirri unjointed AMPHIDUROS* }\end{array}$
OPHIODROMUS Sars, I861
(Synonym PODARKE Ehlers, 1864)
Prostomium bilobed with four eyes, three antennae and a pair of biarticulate palps. Proboscis unarmed and without marginal papillac. Six pairs of tentaeular cirri. Parapodia biramous with well developed notopodia and jointed dorsal eirri. Notosetae eapillary, neurosetae compound and faleigerous.

Type species: Nereis flexuosa Della Chiaje, 1825.
Key to Species
adne O. angolacnzis (ro Polarkn a.

1 Notosetae numerous

- Notosetac either absent or only onc or two

Ophiodromus spinosus (Ehlers, 1908)

(fig. in.I.a-d)

Orthrodromus spinosus Ehlers, 1908: 61, pl. 7 figs. 1-7.
Body 8 mm . long for 30 segments. Prostomium (fig. it.1.a) broad, bilobed and sunk between the anterior segments. Two pairs of eyes. Antennae and palps very similar, the latter not obviously jointed. Proboseis with long marginal papillae but
no jaws. Peristome and the next two segments almost fused, achactous and apodous, their dorsal and ventral cirri forming six pairs of tentacular cirri. Normal parapodia (fig. i i.I.b) biramous with well developed notopodia bearing two cirriform appendages of which the longcr superior one corresponds to the dorsal cirrus. Notosetae are fine capillarics. Neuropodium with a terminal cirriform appendage similar to the inferiorly placed ventral cirrus. Ncurosetae (fig. II.I.c and d) falcigerous with blades of varying length ending in bidentate tips.

Type locality: Great Fish Bay, Angola.
Records: Not recorded from southern Africa.
Distribution : Angola (s).

Ophiodromus berrisfordi sp. nov.

(fig. II.3.a-c)
Body about 28 mm . long, flattened and tapered with 60 segments. Prostomium (fig. II.3.b) rectangular, over twice as broad as long, with four eyes. Median antenna minute and papilliform ; laterals tapered and about equal to the prostomial length. Palps slightly longer and biarticulatc with pointed tips. Proboscis muscular and without jaws or marginal papillac. Six pairs of tapered tentacular cirri of varying length, cach with a short cirrophore and a smooth, tapering cirrostyle. Parapodia uniramous and essentially similar throughout though the relative lengths of the dorsal cirrus and its cirrophore change over the first few feet. An average foot (fig. II.3.c) has a stout, sausage-shaped cirrophore containing two fine, pale acicula, and a smooth tapered dorsal cirrus. Therc are no notosetae. Sctigerous lobe stout with a digitiform presetal lobe, a low postsetal lip and a small ventral cirrus. Ncurosetae (fig. II.3.a) numcrous and all compound and falcigcrous. Shaft pointed and blade tapering and scrrated ; apex bidentate with a hooked terminal tooth below which is a curved guard giving the impression of a styliform tooth under low power.

Type locality: Walvis Bay, South West Africa.
Records: 22/I4/i.
Distribution : No other records.

Ophiodromus angustifrons (Grube, 1878)
Irma angustifrons Grube, 1878: 108, pl. 6 fig. 7.
Podarke angustifrons: Fauvel, 1932: 63; Fauvel, 1953: 109, fig. 52 a-d.
Body somewhat flattened and tapered, up to 20 mm . long; pale in alcohol but brown with white rings in life. Prostomium rectangular, broader than long with a minute median antenna on the antcrior margin and two larger laterals on either side. Palps biarticulate, slightly larger than the lateral antennae. Four eyes.

Fig. I I.I. Ophiodromus spinosus (after Ehlers, 1908). (A) Head. (B) Foot. (c) and (D) Inferior and superior neurosctae. Ophiodromus agilis (after Fauvel). (E) Foot. (F) Notoseta. (c) Head. Syllidia armata. (H) Proboseis. (1) Entire worm (io times life size). (J) Head. (к) Inferior seta. (L) Foot. Syllidia capensis (after MeIntosh, 1925). (m) Foot.

Proboscis unarmed but said to have marginal cilia. Six pairs of faintly ringed tentacular cirri on three fused segments. Body scgments rather short, parapodia biramous but notopodia reduced. Dorsal cirri long, faintly ringcd and mounted on ceratophorcs with internal acicula and a small tuft of notosetae. Neuropodia stout with a tapered presetal lobe and a low rounded postsctal lip. Ventral cirri subulate, about as long as the presetal lobes. Notosetae include several slender capillaries and a fcw forked setae with unequal prongs. Neurosetae all compound with falcigcrous blades varying in length. The tip is minutely bidentate with a faint guard.

Type locality: Philippine Islands.
Records: Natal (29/31/s).
Distribution: Tropical Indo-west-Pacific.

Ophiodromus agilis (Ehlers, 1864)

(fig. II.I.c-g)
Podarke agilis Ehlers, 1864: 197; Fauvel, 1923: 245, fig. 9 I e-h; ? Day, 1957: 70.
Body about $4^{-5} \mathrm{~mm}$. long with $16-22$ setigers. Prostomium (fig. 11.1.g) square with four cyes, the anterior pair being slightly larger and wider apart. Mcdian antenna fusiform and roughly equal to the prostomium; latcrals similar in shape but longer. Palps clongate with short palpophores. Proboscis without papillae or jaws. Six pairs of fusiform tentacular cirri borne on ringed ecratophores. Notopodia (fig. ir.I.e) reduccd to an aciculum, a single capillary seta and a vagucly ringed dorsal cirrus. Neuropodia with a triangular presetal lobc and a rounded postsetal lip. A slender ventral cirrus. Neurosctae falcigerous with long, finely bidentate blades.

Type locality: Adriatic.
Records: Onc doubtful record from Natal (29/32/i).
Distribution: Mediterranean.

SYLLIDIA Quatrefages, 1865
Body vermiform. Prostomium quadrangular with four cycs, two antennac and two biarticulate palps. Proboscis with a median ventral tooth and two lateral oncs; margin papillose. Six pairs of tentacular cirri. Parapodia uniramous. Setae entirely compound and falcigerous.

Type species: Syllidia armata Quatrcfagcs, 1865.
Key to Species
I Foot with a single median presetal lobe (fig. I I. i.l) S. armata

- Foot with three presetal lobes (fig. iI.I.m) S. capensis

Syllidia armata Quatrefages, 1865
(fig. Ir.r.h-l)
Syllidia armata Quatrefages, 1865 : 13 , pl. 8 figs. $10-15$.
Magalia perarmata Marion \& Bobretzky, 1875: 54, pl. 6 fig. 16, pl. 7 fig. 16; Fauvel, 1923: 246, fig. 92.
Body (fig. II.I.i) small, less than 10 mm . long but rather broad with $26-35$ setigers, greenish yellow in colour with transverse stripes which fade in aleohol. Prostomium (fig. II.I.j) almost square with four eyes, two long antennae and two biarticulate palps. Proboseis (fig. II.I.h) armed with a median ventral stylet and a pair of lateral jaws with serrated cutting edges; margin with 10-15 papillae. Six pairs of annulated tentacular eirri. Parapodia (fig. II.I.l) uniramous, the notopodium being reduced to a dorsal eirrus with an aciculum in its eirrophore. Dorsal eirri long and faintly annulated. Neuropodium with a triangular prcsetal lip and a low rounded postsetal lamclla. Setae (fig. Ir.r.k) faleigerous with blades of variable length ending in a terminal hook below whieh is a very fine sceondary tooth.

Type locality: La Roehelle, France.
Records: South West Africa (22/14/i and $26 / 15 / \mathrm{s}$) ; Capc ($32 / \mathrm{I} 7 / \mathrm{s}, 33 / \mathrm{l} / \mathrm{s}$, d,

Distribution: Scotland (i, s), English Channel (i, s), Madeira, Senegal and Angola; Meditcrranean.

Syllidia capensis (MeIntosh, 1925)
(fig. II.I.m)
Magalia capensis McIntosh, 1925: 41, pl. 5 fig. 2.
Body greyish, about 12 mm . long. Palps slightly tapered with an articulation at the distal third. Antennae unknown. Four eycs. Parapodia (fig. II.1.m) uniramous, the notopodium bcing represented by a long dorsal cirrus with at least four "spines" in its cirrophore. Neuropodium with three pointed lobes of whieh the middle onc is mueh larger than the other two. Ventral eirrus present. Neurosetae varying in length, those in the middlc being the longest and ending in hair-like (?) tips while the inferior ones have minutely bidentatc blades.

Type locality: $33^{\circ} 32 \mathrm{~S} / 17^{\circ} 24 \mathrm{E}$ in 448 fth .
Records: Capc ($33 / \mathrm{I} 7 / \mathrm{vd}$) - a single doubtful record.

HESIONE Savigny, I8r8

Body short and stout with about i6 segments. Prostomium eordate with four cyes and two small antero-lateral antennae. No palps. A facial tuberclc. Pharynx without jaws or marginal papillae. Eight pairs of tentacular cirri. Parapodia uniramous with compound, falcigerous setac only. Dorsal cirri jointed.

Type species: Hesione splendida Savigny, 1818.

Hesione splendida Savigny, 1818
(fig. II.2.a-c)
Hesione splendida Savigny, 1818: 316.
Hesione pantherina Risso, 1826: 418; Fauvel, 1923: 233, fig. 87; Fauvel, 1953: 104, fig. 49.
Body $40-70 \mathrm{~mm}$. long by $4^{-6} \mathrm{~mm}$. broad, cylindrical and slightly tapered posteriorly. Prostomium (fig. II.2.a) decply notched posteriorly. Anterior pair of eyes larger and wider apart than the postcrior pair. Two minute antero-lateral antennae. Pharynx widc and smooth with an ovoid dorsal tubercle in front of the prostomium but no jaws or marginal papillae. Tentacular cirri jointed and subequal and arranged in oblique rows $3,3,2$. Dorsal cirri long, closely jointed and borne on long cirrophores strengthencd by finc acicula. Setigerous lobe (fig. ir.2.b) stout with presetal and postsctal lips and a supcrior conical papilla. Setae (fig. ir.2.c) falcigerous with blades of varying length tipped with two strong tceth and a fine, straight accessory tooth below the secondary one. Ventral cirri indistinctly jointed and relatively short. Two long anal cirri.

Type locality: Rcd Sea.
Records: Mocambique (26/32/i and 23/35/e) ; Madagascar (s) - rarc.
Distribution : Atlantic (coast of France (i) to Senegal (i, s)); Mediterranean (i, s); Red Sea (i) and tropical Indo-west-Pacific (i, s).

KEFERSTEINIA Quatrefages, 1865

Body elongate, rather flattencd. Prostomium bilobed with four eyes, two lateral antennac and two biarticulatc palps. Proboscis with filiform marginal papillac but without chitinous jaws. Eight pairs of jointed tentacular cirri. Parapodia uniramous, the notopodium bcing reduced to a dorsal cirrus with an internal aciculum. No notosctac. Neuropodium well developed with numcrous long-bladed falcigerous setae. Ventral cirrus short. Two anal cirri.

Type species: Psamathe cirrata Keferstein, 1863.

Kefersteinia cirrata (Kcferstcin, 1863)
(fig. I I.2.d-f)
Psamathe cirrata Keferstcin, 1862: 107, pl. 9 figs. 32-36.
Kefersteinia cirrata : Fauvel, 1923: 238, fig. 89 a-c.
Body 20-40 mm. long, fragile with $36-65$ setigcrs. Colour ycllow in ripe males and mauve in ovigerous femalcs. Prostomium (fig. II.2.d) broader than long with two long biarticulate palps, two filiform antennae, and four eycs of which the anterior pair is the larger. Proboscis without jaws but the margin is bordered with 40 fine papillac. Eight pairs of tentacular cirri arranged 3,3,2. Parapodia (fig. ir.2.e) uniramous, the notopodium bcing reduced to a long, jointed, dorsal cirrus with two

Fig. 11.2. Hesione splendida. (A) Head. (B) Foot. (c) Seta. Kefersteinia cirrala. (D) Head. (E) Foot. (F) Seta. Leocrates claparedii. (G) Tenth foot. (H) Entire worm (twice natural size). (t) Head. (J) Notoseta. (k) Neuroseta. Gyptis capensis. (L) Tenth foot. (M) Forked type of notoseta. (N) Head. (o) Neuroseta.
acicula in its cirrophore. Neuropodium long and stout and terminated by two unequal presetal lobes and a postsetal lip. Neurosetae (fig. II.2.f) falcigcrous with saw-edged bladcs of varying length, each ending in a curved tooth with a slender spine below.

Type locality: Southern France.
Records: Capc (34/18/s and 33/25/s) ; Natal (30/30/s).
Distribution: N. Atlantic from the North Sea (s), and English Channel (i, s) to Senegal (s) ; Mediterrancan.

LEOCRATES Kinberg, 1866

Body short with few segments, often brightly coloured. Prostomium bilobed with four eyes, one dorsal and two anterior antennac and two biarticulate palps. Proboscis with a facial tubercle on its upper lip and dorsal and ventral tceth. Eight tentacular cirri. Parapodia mainly biramous, a small notopodium bearing a few simple capillaries appearing after the first few feet. Neuropodium large with falcigerous setae. Dorsal cirri jointed.

Type species: Leocrates chinensis Kinberg, 1866.

$$
\text { Chincensis Kinborg } 1866
$$

Leocrates claparedii-(Gosta, 1868)

> (fig. II.2.g-k)

Castalia claparedii Costa [in] Claparède, 1868 : 539.
Leocrates claparedii: Fauvel, 1923: 237, fig. 88 i-n ; Wesenberg-Lund, 1949: 271, fig. 10.
Body (fig. II.2.h) stout and about $40-60 \mathrm{~mm}$. long with $16-17$ rounded setigers. Prostomium (fig. II.2.i) bilobed with slender antennae and stout palps. A large ovoid facial tubcrcle immediatcly in front of the prostomium. Tentacular cirri long and closely annulated, the tentaculophorcs being strengthened by black acicula (fig. II.2.g). Proboscis with a singlc stout styliform dorsal tooth and a single finer ventral tooth. Notopodial capillarics (fig. II.2.j) appear on setiger 4 or 5 and are finely serrated distally. The falcigerous neurosetae (fig. II.2.k) have blades ending in two tceth and a fine accessory tooth below the sccondary one.

Type locality: Naplics. Horg Kong.
Records: Transkei (3I/29/i) and Natal (30/30/i and 29/3I/i, s) to Mocambique (26/32/i) and Madagascar (i, s) - not uncommon.

Distribution: Senegal (i); Mediterranean (s) ; Red Sea (i, s) and tropical Indo-west-Pacific (i, s).

> GYPTIS Marion \& Bobretzky I 875 (Synonym OXTDROMUS Grube, 1855 - preoccupicd)

Body short. Prostomium with four eyes, three antenna and two biarticulate palps. Proboscis unarmed but with marginal papillac. Eight pairs of tentacular

Fig. I 1.3. Ophiodromus berrisfordi. (A) Seta. (B) Anterior end. (c) Posterior view of tenth foot.
cirri. Parapodia biramous but with reduced notopodia bearing a few capillary notosetac. Neuropodium large with falcigerous neurosetae.

Type species: Gyptis propinqua Marion \& Bobretzky, 1875.

Gyptis capensis (Day, 1963)

(fig. II.2.l-o)
Oxydromus capensis Day, 1963a: 397, fig. $4 \mathrm{e}-\mathrm{j}$.
A small pale species about 10 mm . long with 50 segments. Prostomium (fig. II.2.n) broader than long. Two pairs of cyes with the anterior pair larger and wider apart. Three antennae all arising from the anterior margin of the prostomium ; the median is much shorter than the laterals which are slightly longer than the palps. Palps with a stout basal joint and a slightly shorter distal onc. Proboscis muscular and cversiblc, without jaws but with about ten large marginal papillac. Eight pairs of long, faintly articulated tentacular cirri on four short, ineompletely fused segments. Over 25 setigers of which the first five to seven arc uniramous and the rest biramous. First dorsal cirrus equal to $3 / 4$ body width, subsequent dorsal cirri reaching the tips of the neurosetae, smooth or faintly jointed and mounted on short cirrophores. The first few feet are uniramous with only an internal acicula in the dorsal cirrophore but from about the sixth foot onwards, a notopodial papilla appears on the ventral side
of the cirrophore and bears about ten sctac (fig. Ir.2.1). Neuropodium long with a triangular presetal lobe, a shorter, rounded postsetal lip, a tapered ventral cirrus and numerous setae. Notosetae includc capillarics with smooth flattened blades and forked setae (fig. I I.2.m). Neurosetae compound and falcigcrous (fig. II.2.0) with blades varying greatly in length but all have bidentate tips; the apical tooth is curved and almost mects the tip of the long slender secondary tooth.

Type locality: Agulhas Bank, South Africa.
Records: Cape (33/17/d, 34/23/s, 34/26/d) - scveral specimens.
Distribution : Endemic. Cook es (i rs)

Gyptis sp. (A doubtful spccics)

Oxydromus sp. Augener, 1918: 225.
Number of segments unknown. Prostomium with four eycs but antennae and palps unknown. Proboscis without a mcdian tooth but possibly has lateral jaws. Margin of proboscis papillose. Eight pairs of tentacular cirri. Parapodia biramous, the notopodia having one to two acicula, a few fine capillaries and one to two short bifurcate setae. Neurosetae compound and falcigcrous with blades of varying length.

Locality: Dredged off Angola.

Family SYLLIDAE Grube, 185°

Small thread-like worms typically with elongated and jointed dorsal cirri. Prostomium rounded with one to three antennae, four to six eyes and a pair of stout unjointed palps. The anterior part of the alimentary canal consists of a sheath with a papillose margin enclosing a chitin-lined pharynx often armed with teeth and behind this a muscular proventriculus which is transversely striated and papillose internally. Peristomial segment achaetous with one to two pairs of tentacular cirri which lack internal acicula. Parapodia uniramous with slender, often jointed dorsal cirri, a setigerous lobe with a fan of compound falcigerous setae, and usually a ventral cirrus. At maturity a sexual bud or buds may develop posteriorly or the whole body may develop gonads and natatory setae are formed below the dorsal cirrus so that the foot is biramous.

Records from southern Africa

 BIOLOGICAL NOTES
The syllids are a large and diverse group of small active worms most of which arc found crecping over sponges, ascidians, hydroids, bryozoa and algac. This is not always the ease, however, and the most minute forms, such as Exogone, burrow in the surface layers of silt and are common on protected sandbanks. Since no solid food has been found in the gut, it is assumed that syllids are not detritus feeders. On the other hand they all posscss an eversible pharynx usually armed with one or more tecth and behind this is the proventriculus. This is a muscular barrel-shaped structure often called a gizzard but there is no solid food in the gut so it can hardly be a grinding organ. It is suggested that it acts as a pump and that in a typical genus such as Syllis, the dorsal styliform tooth pierces the skin of some sedentary organism and the proventriculus pumps out the juice. Some syllids live on sponges, others on hydroids or compound ascidians and yct others on algae. The pharyngeal tecth of
syllids are very variable and a study of the feeding habits of syllids should produce interesting results.

Syllids also have intcresting reproductive habits. In some species of Syllis the body cavity merely becomes filled with eggs or sperm and the worms swarm in the plankton at night and discharge their gametes. Odontosyllis has similar habits but the males become phosphorescent. In Pionosyllis, Exogone and other genera, the eyes become enlarged and long notopodial swimming setae develop from the bases of the dorsal cirri before swarming takes place. In certain species of Syllis the sexual products are developed only in the posterior segments. Further development along the same lines results in the differentiation of two generations - an asexual benthonic stock formed from the anterior segments, which produces a sexual planktonic stolon which breaks off and discharges its sexual products in the plankton. The stolon may develop a rudimentary head with eyes and sensory appendages. In Trypanosyllis a number of stolon "buds" are formed at the base of the last setigerous segment and as each one matures it breaks off and swims away. Myrianida produces a long chain of buds which trail behind the stock and break off in turn. The sexual buds of Myrianida and of the whole subfamily Autolytinae are sexually dimorphic and are known as the Polybostrichus (male) and Saccocirrus (female) stages. Oncc the eggs have been extruded and fertilised in the plankton, the Saccocirrus retains them in a delicate bag which she carries until they hatch.

Many other syllids care for their developing young. In the Exogoninae the developing eggs are segmentally arranged on the back of the female and carried about. Pionosyllis of the subfamily Eusyllinae, deposits her eggs in a tubular cocoon attached to a hydroid stem and remains in the cocoon until the young leave at the ro-setiger stage.

THE MAIN DIAGNOSTIC CHARACTERS

Useful discussions of family characters will be found in Malaquin (1893), Gravier (1900) and Fauvel (1923).* The most useful characters vary according to the subfamily.

Subfamily SYLLINAE. Syllidae with distinct ventral cirri, separate palps, a straight pharynx usually armed with teeth, two pairs of tentacular cirri and long jointed dorsal cirri. Reproduction is by the formation of one or more posterior sexual stolons or buds.

The most important characters are the armature of the pharynx which must be dissected or examined by transparcncy after immersion in glycerinc, the number of joints on the dorsal cirri and the nature of the sctae. Unfortunately the last two characters are both variable and specific identification is often uncertain so that there are a large number of doubtful names in the literature. The anterior cirri are always longer than those in the middle of the body and it is to the latter that the descriptions refcr. The length of the setal blade decreases not only from anterior to middle segments but also from superior to inferior setae and the size of the secondary tooth on the blade varies in the same way. Again the blade of the seta may fall off giving the impression that the worm has simple setae. For these reasons

[^9]only major differences are important. The colour pattern is helpful in fresh specimens and seems to be very constant in some species.

Subfamily EUSYLLINAE. Syllidae with distinct ventral cirri, palps which are fused across the dorsal part of their bases and often bent ventrally, a straight or coiled pharynx usually with teeth and two pairs of tentacular cirri. The dorsal cirri are usually elongated and smooth but may be vaguely annulated. Reproduction is direct.

The distinction between the Syllinae and the Eusyllinae is not as easy as the above definition would suggest for the palps may not be clearly united basally. The ventral surface of the head should be examined. The smooth dorsal cirri are more obvious guides though species with annulated dorsal cirri do oceur. Generic distinctions are based on the armature of the pharynx and the species are well defined by differences in setae.

Subfamily EXOGONINAE. This subfamily includes many minute species, some only $2-3 \mathrm{~mm}$. long. The ventral cirri are usually distinct and the palps are united either wholly or for half their length to form a large lobe which is grooved ventrally and projects forward in front of the small prostomium. The pharynx is straight and bears a single dorsal tooth. The appendages are often small and papilliform; the number of antennac varies from one to three and the tentacular cirri from one to two pairs. Reproduction is usually direet and the developing eggs may be carried on the back of the female.

The subfamily is wcll defined and generic distinetions are based on the number of head appendages, the structure of the dorsal cirri, the presenee of a dorsal cirrus on setiger 2 , the nature of the setae which inelude both simple and compound forms and the presence of adhesive papillae on the dorsum provide good characters. In general, however, the worms are so small that it is necessary to elear in glyeerine and mount the whole worm on a slide before identification is possible.

Subfamily AUTOLTTINAE. No ventral cirri. Palps bent ventrally and partly or completely fused. Thrce antennac and one to two pairs of tentacular cirri. Pharynx sinuous (often S-shaped) and the anterior margin typically armed with a circle of teeth or trepan. Nuchal epaulettes often prominent. Dorsal cirri never jointed and may be missing after the first setiger. Reproduction by the formation of sexual buds which may develop one behind the other to form a chain. The buds are sexually dimorphic, the male or Polybostrichus form having bifid palps and threc antennae while the female or Saccocirrus form has no palps, three antennac and a ventral sac to contain the developing eggs.

There are only a few easily recognisable genera. At the specific level, the most reliable character is the detailed structure of the trepan, which must be dissected if it is to be seen elearly. The setac have minute blades and are all very similar with the secondary tooth usually larger than the apical onc. The development of the nuchal epaulettes is a good character and in fresh specimens the colour pattern as well. The relative lengths of the dorsal cirri are often quoted but this character should be used with caution.

Key to Subfamilies and Genera

1 Ventral cirri distinct (fig. 12.1.c) 2

- Ventral cirri absent (fig. 12.12.h). (Dorsal cirri not jointed. Paps partly or completely fused.) (fig. 12.10.h) (AUTOLYTINAE) ${ }^{1} 6$
No gentáacíar 2 Paps separate (fig. 12.1.m). Two pairs of tentacular cirri. Dorsal cirri jointed (SYLLINAE). 3
 alps fused basally (fig. 12.7.a). Two pairs of tentacular cirri. Dorsal cirri usually smooth (EUSYLLINAE). 5
- Paps fused for at least half their length (fig. 12.1o.b). One to two pairs of tentacular cirri. Dorsal cirri smooth, usually short (EXOGONINAE) 11
3 Pharynx lacks chitinous teeth but has a fleshy valve. (An occipital flap) (fig. 12.1.a, b)
PHARYNGEOVALVATA (p. 239)
Pore tharreveects Pharynx with one or more chitinous teeth 4
(see bile $\boldsymbol{\omega}$) : 4 Only a single large anterior tooth (fig.12.1.m) SYLLIS (p. 239)
Only a single large posterior tooth. (An occipital flap present) (fig. 12.5.c)
Only a single large posterior tooth. (An occipital flap present) (fig. 12.5.c)
OPISTHOSYLLIS (p. 252)
- A single anterior tooth plus a trepan (fig. 12.6.g). (Body flattened, often ribbon-like)
- Pharynx straight.AMBLYOSYLLIS (p. 257)77 Pharynx unarmed. (Antennae and anterior dorsal cirri short and wrinkled.) Ventralcirri longer than the sctigerous lobes8- Pharynx armed. Ventral cirri not longer than setigerous lobes .8 Enlarged knobbed acicula in anterior feet
9 STREPTOSYLLIS ${ }^{*}$
- No enlarged knobbed acicula SYLLIDES (p. 259)
9 Pharynx with a ventral semicircle of teeth and lateral cutting plates (fig. 12.7.j). (A
large occipital flap). ODONTOSYLLIS (p. 26o)
- Pharynx with a single anterior dorsal tooth and a smooth or denticulate margin Io
io Rim of pharynx smooth PIONOSYLLIS (p. 26ı)
- Rim of parynx denticulate (fig. 12.8.n) EUSYLLIS (p. 264)
II One pair of tentacular cirri 12
- Two pairs of tentacular cirri 15
- Six pairs of tentacular cirri (fig. 12.9-a). IRMULA (p. 266)
12 A single median antenna (fig. 12.9.9) SPERMOSYLLIS (p. 270))
13 Dorsal cirri much longer than the setigerous lobes (fig. 12.10.z) ANGUILLOSYLLIS (p. 271)
- Dorsal cirri not longer than the sctigerous lobes 14
14 Dorsal cirri papilliform (fig. i2.1o.b) EXOGONE (p. 27r)- Dorsal cirri flask-shaped (fig. i2.11.1)SPHAEROSYLLIS (p. 275)15 Dorsum with rows of globular papillaeEURYSYLLIS*
- Dorsum without.rows of papillae BRANIA (p. 267)16 One pair of tentacular cirri. (Antennae and cirri ovoid) (fig. 12.11.w)EXOGONOIDES (p. 279)
- Two pairs of tentacular cirri 17
17 Pharynx short, straight and unarmed. An occipital flap present ALLUANDELLA (p. 279)- Pharynx long, S-shaped or coiled and armed with a trepan usually with teeth. Nooccipital flap .18
18 Dorsal cirri present on all setigers 19
- Dorsal cirri absent after the first setiger (fig. 12.12.a) PROCERASTEA (p. 28o)
19 Dorsal cirri cylindrical or filiform . AUTOLYTUS (p. 281)
- Dorsal cirri foliaceous or at least somewhat flattened. (A long chain of buds) (fig. 12.13.1)

PHARYNGEOVALVATA Day, 195^{1}

Palps not fused. Thrce antennae and two pairs of tentacular cirri. An occipital palp present. Antennae, tentacular cirri and dorsal cirri indistinctly jointed and ventral cirri ovoid. Pharynx without chitinous teeth but with a fleshy, dorsal ridge meeting two ventro-lateral ones.

Type species: Pharyngeovalvata natalensis Day, 195I.

Pharyngeovalvata natalensis Day, 1951
(fig. 12.1.a-d)
Pharyngeovalvata natalensis Day, 195I: 26, fig. $4 \mathrm{e}-\mathrm{j}$.
Body about 12 mm . long, soft and swollen dorsally. Prostomium (fig. i2.I.a) broader than long with a pair of large eyes (? two pairs fused). Palps bent ventrally. An occipital flap. Pharynx (fig. 12.1.b) with a valve formed by a longitudinal dorsal ridge mecting transversc ventro-lateral ridges at the level of setiger 5. No chitinous tecth. Proventriculus from setiger 10 to 18 with 70 rows of points. Antennae, tentacular cirri and dorsal cirri (fig. 12.1.c) long and indistinctly jointed. Sctae (fig. 12.1.d) compound with expanded shaft-heads and short hooked blades which are either unidentate or have a minute secondary tooth.

Type locality : Tongaat, Natal.
Records: Cape (34/18/s) ; Natal (29/32/i) - two specimens known.
Distribution: Endemic.

SYLLIS Savigny, 1818

Palps not fused. Pharynx with a single anterior dorsal tooth. Thrce antennae and two pairs of tentacular cirri. Antennae, tentacular cirri and dorsal cirri elongate and jointed. Ventral cirri prescnt. Rcproduction by stolons.

Type species: Syllis monilaris Savigny, 1818.

Key to Species

1 Only a few enlarged simple setae corresponding to the shafts of compound setae (fig. 12.1.i). (Subgenus HAPLOSYLLIS)

- Mainly compound setae anteriorly then a few large simple setae formed by the loss of the blades. (Subgenus SYLLIS)
- Only compound setae present

2 Profile of seta shows two teeth, the terminal one bifid (fig. 12.1.i)
S. (H.) spongicola (p. 240)

- Profile of seta shows three large teeth (fig. 12.1.1) . . . S. (H.) trifalcata (p. 241)

3 Compound setae strongly bidentate and simple setae with Y-shaped prongs. Dorsal cirri with 7-12 joints (fig. 12.1.n, o, p) S. (S.) gracilis (p. 241)

- Compound setae unidentate or minutely bidentate 4
4 Simple setae obliquely truncate (fig. 12.2.d). Body of normal size. Dorsal cirri with ${ }^{15-25}$ joints S. (S.) amica (p. 243)
- Simple setae with broadly Y-shaped prongs (fig. 12.2.i). Body very long. Dorsal cirri with few joints S. (S.) longissima (p. 243)
5 Blades of a few superior setae much longer than the rest (fig. 12.2.m). (Subgenus
LANGERHANSIA)
- Blades of setae decrease cvenly in length. (Subgenus TYPOSYLLIS) . . . 8

6 Normal setae unidentatc. Eycs absent. (Aciculum very stout) . S. (L.) anops (p. 243)

- Normal setae bidentate. Eyes present .

7 Dorsal cirri slender, jointed anteriorly smooth posteriorly. (Secondary tooth becomes larger than terminal one) (fig. 12.2.r). S. (L.) ferrugina (p. 244)

- Dorsal cirri short and jointed throughout S. (L.) cornuta (p. 244)

8 Setae strongly bidentate 9

- Setae unidentate or minutely bidentate 14

9 Dorsal cirri with more than 20 joints 10

- Dorsal cirri short with 7-12 joints S. (T.) hyalina (p. 246)
ı Setal blades very short, strongly bidentate 11
- Setal blades of normal length 12
iI Shaft-heads swollen, sctal blades longer than broad (fig. 12.3.b)
S. (T.) cf. taprobanensis (p. 246)
S. (T.) Lutea

Hain-Sehso 1950

- Shaft-heads not obviously swollen, blades not longer than broad . S. sp. (Not identified)

12 Inferior setae with a long secondary tooth well separated from the terminal one (fig.
12.3.f). A small occipital flap .
S. (T.) bouvieri (p. 246)

- All setac with a normal secondary tooth close to the terminal one. No occipital flap . 13

13 Pharynx short. Two continuous dark bars across the dorsum of cach anterior scgment
(fig. 12.3.g)
S. (T.) prolifera (p. 248)

- Pharynx long. A pattern of broken brown bars across the dorsum of cach anterior segment (fig. 12.3.1) S. (T.) variegata (p. 248)
14 Pharynx with a black ring (fig. 12.2.0). (Dorsal cirri with about 20 joints)
S. (T.) nigropharyngea (p. 249)
- Pharynx without a black ring ${ }_{15}$

15 Alternately longcr dorsal cirri have 15 joints or less 16

- Alternatcly longer dorsal cirri have more than 20 joints 17

16 Dorsal cirri fusiform with stout joints. Setae minutely bidentate anteriorly but often unidentate in middle of body (fig. 12.4.b-d) . . . S. (T.) armillaris (p. 249)

- Dorsal cirri slender with long joints. Setae four to six and all unidentate (fig. 12.4.f, g)
S. (T.) benguelana (p. 249)

17 A small occipital flap (fig. 12.4.h). Superior setac minutely bidentatc, inferior ones unidentate S. (T.) exilis (p. 250)

- No occipital flap. Setae all unidentate 18

18 Dorsal cirri speckled (fig. 12.4.k). Sctac short and strongly hooked. Dorsum with rows of spots S. (T.) cirropunctata (p. 250)

- Dorsal cirri all pale. Setae of normal length. Dorsum often barred (fig. 12.4.m)

Syllis (Haplosyllis) spongicola Grube, 1855

(fig. 12.1.c-i)
Syllis spongicola Grube, 1855: 104; Fauvel, 1923: 257, fig. 95 a-d.
Body (fig. I2.1.f) about 25 mm . long, white and arehed dorsally. Prostomium (fig. 12.r.e) with four eyes and two ocular specks. Antennac slender. Pharynx long with an anterior dorsal tooth. Proventriculus long. Dorsal eirri (fig. 12.1.g)
long and tapered with 20-30 joints. No compound setae, there being two to three stout, boathook-shaped setae with the terminal point bifid (fig. i2.1.i). Thrce acicula with bent tips (fig. i2.I.h).

Type logality: Triestc (Adriatic Sea).
Records: Cape (from 3I/I6/d, and 34/18/s to 33/25/s) ; Natal (29/31/i) and Mocambique (26/32/i) - fairly common.

Distribution : Cosmopolitan in temperate and tropical seas (i, s, d).

Syllis (Haplosyllis) trifalcata Day, 1960

(fig. 12.1.j-l)
Syllis (Haplosyllis) trifalcata Day, 1960: 308, fig. 6 g-i.
Body 9 mm . long with 88 segments; colour pale in alcohol. Palps (fig. 12.1.j) broad but not unitcd. Antennae short and subcqual. Four eyes. Pharynx fairly long; proventriculus with 40 rows of points. Dorsal cirri (fig. 12.I.k) very short, tapcred, often coilcd and have 9-12 joints. Ventral cirri small. Parapodia each with three to six simple setae with the expanded shaft-head terminating in three subequal claw-like teeth (fig. 12.1.l).

Type locality: False Bay, South Africa.
Records: Cape (34/18/s) - a single specimen.
(fig. 12.1.m-p)
Syllis gracilis Grube, 1840: 77; Fauvel, 1923: 259, fig. 96 f-i.
Body slender and about 35 mm . long. Four eyes. Antennac (fig. 12.I.m) stout and have 8-12 joints. Pharynx long with an anterior tooth. Proventriculus from setiger 10 to 14. Dorsal cirri stout, antcrior oncs cylindrical with about 16 joints, middle ones shorter, somewhat fusiform with 8-12 joints (fig. i2.i.n). Antcrior sctae (fig. I2.I.0) compound and bidentate but by the middle of the body the compound setac are mainly or entirely replaced by two to threc stout Y-shaped simple setae (fig. I2.I.p) formed by thc loss of the blade of a compound seta. Compound setae reappear in postcrior segments. Two dark cross-bars across antcrior segments.

Type locality: Mediterrancan Sea.
Records: South West Africa (22/14/i) around the Cape (i, s) to Natal (29/32/i) and Mocambique ($26 / 32 / \mathrm{i}$ and $23 / 35 / \mathrm{s}$) - fairly common.

Distribution : Cosmopolitan in temperate and tropical seas (i,s).

Fig. 12.1. Pharyngeovalvala natalensis. (A) Head. (B) Pharynx showing valve. (c) Foot (D) Seta. Syllis spongicola. (E) Head. (F) Entire worm (four times life size). (G) Middle foot. (H) Tip of aciculum. (I) Simple seta. Syllis trifalcala. (J) Head. (k) Foot. (L) Seta. Syllis gracilis. (m) Head. (N) Middle foot. (o) Anterior seta. (P) Simple seta.

Syllis (Syllis) amica Quatrefages, 1865
(fig. 12.2.a-e)
Syllis amica Quatrefages, 1865 : 20, pl. 5 figs. 16-22; Fauvel, 1923: 258, fig. 95 e-m.
Length $20-60 \mathrm{~mm}$. Prostomium with four eyes. Pharynx long with an anterior tooth. Proventrieulus extends over five segments. Dorsal eirri (fig. 12.2.a) rather stout but tapered, having ${ }^{5}-25$ joints and roughly equal to the width of the body. Setae short and of two kinds; many compound setae laving short unidentate blades (fig. 12.2.c) or minutely bidentate blades (fig. 12.2.b) plus one to three stouter simple setae (fig. 12.2.d) formed by loss of the blade, the shaft-head being obliquely truncate. (ef. S. armillaris.) Tip of aciculum (fig. 12.2.c) with a small knob.

Type locality: France.
Records: Natal (30/30/i, 29/32/i) - few records.
Distribution : Ireland, English Channel, Madeira, Mediterranean (i, s).

Syllis (Syllis) longissima Gravier, 1900

(fig. 12.2.f-i)
Syllis longissima Gravier, 1900: 154, pl. 9 fig. 7, text-figs. 17-23.
A very long species reaching 130 mm . with two dark eross-bars aeross anterior segments. Prostomium broader than long with four eyes, the anterior pair being the larger. Antennac with 25 joints. Palps short and broad. Pharynx long, reaching setiger 2 I ; proventrieulus extending on to setiger 33. Dorsal cirri decrease markedly in length and change in shape being eylindrical with over 30 joints anteriorly but short and fusiform with only ten joints in the middle of the body (fig. 12.2.f). Anterior setae (fig. 12.2.g) with normal unidentate blades, later setac with very short triangular blades (fig. 12.2.h) and in the middle of the body, only two enlarged simple setae with Y-shaped tips (fig. 12.2.i). In posterior feet there are two inferior compound setac as well. Possibly this specics is a giant form of S. gracilis.

Type locality : Red Sea.
Records: Madagasear (i).
Distribution: Red Sca (i, s); Persian Gulf; Australia; Peru; Chile; Juan Fernandez.

Syllis (Langerhansia) anops Ehlers, 1897
(fig. 12.2.j-n)
Syllis (Ehlersia) anops Ehlers, 1897: 40, pl. 2 figs. 40-45.
Syllis (Langerhansia) anops: Day, 1960: 3 ro.
Body slender, measuring ${ }^{15}-25 \mathrm{~mm}$. for 120 segments. Prostomium (fig. 12.2.j) broader than long and laeks eyes. Antennae rather short, subequal and with 25-30 joints. Palps fused basally. Pharynx with an anterior tooth. Proventriculus extending over I I segments. Dorsal cirri (fig. 12.2.n) equal to the width of the body and
have about 30 joints. Anterior setae with blades differing in length and the tips minutely bidentate. Middle feet have superior Langerhansia-type setae (fig. 12.2.m) with very long slender blades and inferior setae (fig. 12.2.1) with normal unidentate blades. Aciculum (fig. 12.2.k) very stout with a blunt tip. Ventral cirri short and arise near the ends of the setigerous lobes.

Type locality : Punta Arenas, Magellan Straits.
Records: Cape (34/18/s, 33/25/s) - a few speeimens only.
Distribution: Magellan area. Chatham Is. (d).

Syllis (Langerhansia) ferrugina Langerhans, 1881

(fig. 12.2.0-r)
Ehlersia ferrugina Langerhans, 1881 : 104, pl. 4 fig. 10.
Syllis (Ehlersia) ferruginea: Augener, 1918: 271.
Syllis (Ehlersia ferrugina: Fauvel, 1923: 269, fig. $100 \mathrm{k}-\mathrm{u}$.
Body thread-like, about 10 mm . long. Prostomium with four eyes and two ocular speeks. Palps large. Pharynx long with an anterior tooth; proventrieulus with 25 rows of points. Dorsal cirri long and slender with 1_{5-25} joints whieh are distinet anteriorly but poorly marked posteriorly (fig. 12.2.0). Ventral eirri slightly longer than the setigerous lobes. Anterior setae with blades of variable length and with the terminal tooth stronger than the seeondary one (fig. 12.2.p). Middle parapodia with one to two superior setac with greatly elongated Langerhansia-type blades (fig. 12.2.q) and the rest with short blades with the seeondary tooth much stronger than the terminal one (fig. 12.2.r). Acieula stout with knobbed tips in middle parapodia.

Type locality: Canary Islands.
Records: Cape (32/18/s, 33/17/s, 33/18/i, s, 34/18/s) - fairly common.
Distribution : Atlantie from North Carolina and Ireland (i) to Angola (i).

Syllis (Langerhansia) cornuta Rathke, 1843

(fig. 12.2.s-u)
Syllis cornuta Rathke, 1843: 164.
Syllis (Ehlersia) cornuta: Fauvel, 1923: 267, fig. $100 \mathrm{~g}-\mathrm{i}$.
Body thread-like, ${ }^{10-15} 5 \mathrm{~mm}$. long. Prostomium with four eyes and two ocular speeks. Palps large. Pharynx long with an anterior tooth. Proventrieulus with $30-35$ rows of points. Dorsal cirri (fig. 12.2.s) short with $10-18$ joints which are always elearly marked. Onc to three superior setae with very long blades (fig. 12.2.t) and about six with normal bidentate blades with a slender seeondary tooth (fig. 12.2.u).

Type locality: Norway.
Records: Cape (34/18/i, 34/23/d) ; Natal (29/31/i) and Mocambique (26/32/i)fairly eommon.

Distribution : Atlantie from Greenland ($s, d, v d$) to Georgia (U.S.A.) (i, s) and Scotland (s) to the Antaretic (d) ; tropieal Indian Ocean (i, s, d).

Fr. 12.2. Syllis amica. (A) Middle foot. (B) Seta from anterior foot. (C) Tip of aciculum. (D) Superior simple seta from middle foot. (E) Compound seta from middle foot. Syllis longissima (from Gravier). (F) Middle foot. (G) Seta from anterior foot. (H) Compound seta from later foot. (1) Giant simple seta from middle foot. Syllis (Langerhansia) anops. (J) Head. (k) Tip of aciculum. (L) Normal seta. (m) Elongate seta. (N) Foot. Syllis (Langerhansia) ferrugina. (o) Middle foot. (P) Anterior seta. (Q) Elongate seta from middle foot. (R) Normal seta from middle foot. Syllis (Langerhansia) cornuta. (s) Foot. (T) Elongate seta. (u) Normal seta. Syllis hyalina. (v) Head. (w) Foot. (x) Seta.

Syllis (Typosyllis) hyalina Grube, 1863

(fig. 12.2.v-x)
Syllis hyalina Grube, 1863: 45 .
Syllis (Typosyllis) hyalina : Fauvel, $1923: 262$, fig. 98 a-h.
Body slender up to 35 mm . long. Prostomium (fig. 12.2.v) with four eyes and sometimes two ocular specks as well. Antennae short with about 10-15 joints. Pharynx long with an anterior tooth. Proventriculus rather short. Dorsal cirri (fig. I2.2.w) short but not stout and have alternately six to seven and eight to twelve joints. Setae (fig. 12.2.x) with strongly bidentate blades. Possibly a young stage of S. variegata.

Type locality: Adriatie Sea.
Records: Cape (34/18/d, 34/22/s) ; Mocambique (24/35/d); Madagasear (s).
Distribution: Atlantic (English Channel (i, s)), tropieal N. Africa (i) ; E. Pacific from Canada and California to Chile (i, s).

Syllis (Typosyllis) ef. taprobanensis (Willey, 1905)

(fig. 12.3.a-b)
Typosyllis taprobanensis Willey, 1905: 268.
Syllis cf. taprobanensis: Day, 1960: 309.
Body fairly stout, up to 15 mm . long with faint bars whieh fade in alcohol. Palps short and flattened but separate basally. Pharynx long with an anterior tooth; proventrieulus slightly longer. Dorsal cirri about equal to the body width, obviously tapered and have 20-30 joints (fig. 12.3.a). About 10-12 setae per bundle, each with an expanded shaft-head and a very short triangular blade having two large blunt teeth (fig. 12.3.b).

Type locality: Ceylon.
Records: ? Cape ($34 / 2 \mathrm{I} / \mathrm{s}, 34 / 25 / \mathrm{s}$).
Distribution : S. taprobanensis is known only from Ceylon.

Syllis (Typosyllis) bouvieri Gravier, 1900

(fig. 12.3.c-f)
Syllis (Typosyllis) bouvieri Gravier, 1900: 163 , pl. 9 fig. 10, text-figs. 31-34. Syllis bouvieri: Day, 1962: 637.

Body about io mm. long and pale in alcohol. Prostomium (fig. 12.3.c) broader than long with four eyes. Mcdian antenna inserted between the eyes and has 30 joints, laterals more anterior with 20 joints. A small occipital flap. Pharynx with an anterior tooth and cxtends to sctigcr 9 ; proventriculus extending on to setiger 15 with 35 rows of points. Dorsal cirri (fig. 12.3.d) tapered with $25-30$ joints. Setae with strongly bidentate blades of varying length ; the superior ones of anterior feet

Fig. 12.3. Syllis cf. taprobanensis. (A) Foot. (B) Seta. Syllis bouvieri. (c) Head. (D) Foot (E) Superior seta of anterior foot. (F) Inferior seta. Syllis prolifera. (G) Head. (H) Foot. (1) Seta. Syllis variegata. (J) Seta. (א) Foot. (土) Anterior end. Syllis nigropharyngea. (m) Foot. (N) Seta. (o) Head.
(fig. 12.3.e) have long blades with the two teeth projecting at right angles to the blades while the inferior ones (fig. 12.3.f) have short blades with sidely separated teeth. Middle feet have short blades with two strong, well separated teeth.
Type locality : Red Sea (Djibouti).
Records : Madagascar (i).
Distribution: Gulf of Aden.

Syllis (Typosyllis) prolifera Krohn, 1852

(fig. 12.3.g-i)
Syllis prolifera Krohn, 1852: 66.
Syllis (Typosyllis) zonata Augener, 1913: 195, pl. 3 fig. 22, text-fig. 2 1.
Syllis (Typosyllis) prolifera: Fauel, 1923: 261, fig. 97 a-g.
Body $10-20 \mathrm{~mm}$. long with two dark lincs across each of the anterior scgments (fig. 12.3.g). Prostomium with four cyes and fairly long, separate palps. Median antenna with 27 joints, laterals with i6. Pharynx reaches setiger 9 and the proventriculus extends on to setiger 15 and has $25-30$ rows of points.Dorsal cirri (fig. 12.3.h) alternately longer and shorter with 22 and 27 joints. About io compound setae with strongly bidentate blades of normal length (fig. 12.3.i).

Type locality: Mediterranean Sea.
Records: South West Africa (22/14/i) and the Cape (i, s) to Mocambique (26/32/i) - common on rocky shores. or Kadogescn.
Distribution : British Channel (i, s) ; Mediterranean; Indo-west-Pacific (i, s).

Syllis (Typosyllis) variegata Grube, 1860

(fig. 12.3.j-1)
Syllis variegata Grube, 1860 : 85.
Syllis (Typosyllis) variegata: Fauvel, 1923: 262, fig. $97 \mathrm{~h}-\mathrm{n}$.
Body up to 40 mm . long, tough, usually with a pattern of broken brown bars on antcrior scgments (fig. 12.3.1). Prostomium with four eyes. Pharynx long, reaching setiger 12 and provided with an anterior dorsal tooth. It is followed by a long proventriculus extending ovcr about 8-10 segments. Dorsal cirri (fig. 12.3.k) with 20-40 distinct joints and rather longer than the width of the body. Setae all compound with strongly bidentate blades of normal length (fig. 12.3.j).

Type locality: Adriatic.
Records: South West Africa ($26 / \mathrm{I} 5 / \mathrm{i}$) ; Cape (from $29 / \mathrm{I} 6 / \mathrm{i}$ and $34 / \mathrm{r} 8 / \mathrm{i}$, s); Natal (29/31/i) ; Mocambique ($26 / 32 / \mathrm{i}$) - very common on rocky shores.
Distribution: Cosmopolitan in temperate and tropical seas (i, s).

Syllis (Typosyllis) nigropharyngea Day, 195 I

(fig. 12.3.m-0)
Syllis nigropharyngea Day, 1951: 23, fig. 4 and.
Length about 20 mm . No colour markings. Prostomium (fig. 12.3.0) with two to three pairs of cycs fused on each side. Palps short and broad. A short pharynx reaching setiger 6 with the dorsal tooth set fairly far back and a black ring preceding the proventriculus which extends over four segments and has 35 rows of points.
 Dorsal cirri (fig. I2.3.m) cylindrical with I5-20 joints. Setae (fig. 12.3.n) with short, hooked, unidentate blades and expanded shaft-heads with a comb-like row of denticles.

Type locality : Natal coast.
Records: Natal (29/3I/i) - a single specimen.

Syllis (Typosyllis) armillaris (Müller, 1776)

> (fig. 12.4.a-d)

Nereis armillaris Müller, 1771 in Müller, $1776: 217$.
Syllis (Typosyllis) armillaris: Fauvel, 1923: 264, fig. 99 a-f.
Syllis (Typosyllis) brachychaeta Schmarda, 1861: 70; Augener, 1918: 247, pl. 4 figs. 83-85, pl. 5 fig. 9^{8}, text-fig. 20 (with synonymy).
Body (fig. 12.4.a) $25-35 \mathrm{~mm}$. long, pale and tough. Prostomium with four eyes and two ocular specks. Palps large and projecting. Pharynx long with an anterior dorsal tooth. Proventriculus long with about 40 rows of points. Dorsal cirri (fig. I2.4.b) short, stout and fusiform with 8-I2 joints. Setae (fig. I2.4.d) usually have short, often unidentate blades but a minute secondary tooth may be present in setae from anterior and posterior feet which have longer blades (fig. i2.4.c).

Type locality: Denmark.
Records: From South West Africa (22/i4/i and $26 / \mathrm{I} 5 / \mathrm{i}, \mathrm{s}$) around the Cape (i, s) to Natal ($29 / 31 / \mathrm{i}$, s) and Mocambique ($26 / 32 / \mathrm{i}$ and $24 / 34 / \mathrm{s}$) - very common and widely distributed.

Distribution: Completely cosmopolitan from Arctic and tropics to Antarctic (i, s, d).

Syllis (Typosyllis) benguellana Day, 1963

(fig. 12.4. eng)
Syllis benguellana Day, 1963a: 399, fig. 4 k-m.
A thread-like species with fine, delicate cirri. Size 9 mm . by 0.4 mm . for 90 segments. No colour markings. Prostomium (fig. 12.4.e) broader than long with three pairs of small eyes. Palps broad, not fused basally. Antennae slender, with 12-14 long joints. No occipital flap. Pharynx long, reaching setiger 9 and has a
small dorsal tooth. Proventriculus long with 35 rows of points. Body segments about four times as broad as long. Dorsal cirri (fig. 12.4.i) very slender with ${ }^{12-14}$ long joints anteriorly and cqual to two thirds the body breadth ; posterior cirri shorter with only $8-12$ joints. Ventral cirri rather long, exceeding the setigerous lobe. Two acicula per parapodium and about six compound setac (fig. 12.4.f) with straight unidentate blades of normal length. Posterior parapodia with a simple needle-like superior seta.
Type locality: In 27 metres off Lamberts Bay, South Africa.
Records: Cape ($32 / \mathrm{I} 8 / \mathrm{s}$) - locally abundant.

Syllis (Typosyllis) exilis Gravier, 1900

(fig. 12.4.h-j)
Syllis (Typosyllis) exilis Gravier, 1900 : 160 , pl. 9 fig. 9 , text-figs. 28-30.
Length about 8 mm . with 60 segments. Prostomium (fig. 12.4.h) with two pairs of cyes and a small occipital flap.* Pharynx rcaching sctiger 8 with the dorsal tooth well forward. Proventriculus from setiger 8 to 15 with about 33 rows of points. Dorsal cirri (fig. 12.4.i) long and rather slender with $30-40$ joints. Ventral cirri slender. Sctac (fig. 12.4.j) compound, the anterior ones with fairly long, minutely bidentate blades and the rest with short unidentate blades.

Type locality: Red Sea.
Records: Natal (29/31/i); Madagascar (i).
Distribution: Red Sca (i, s) and Indo-west-Pacific (i) to Japan.

Body about 15 mm . long. Prostomium with four eycs. Pharynx extending to setiger 8 with an anterior dorsal tooth. Proventriculus long with $30-45$ rows of points. Dorsal cirri (fig. 12.4.k) long and tapered with $30-40$ joints, some of which are partly black so that the whole cirrus appears speckled. Setae (fig. 12.4.1) compound with short, markedly hooked, unidentate blades and an expanded shaft-head which is almost bidentate at the apex. Body colour greyish with a darker mcdian stripe and often lateral spots.

Type locality: Naples.
Records: Mocambiquc (26/32/i) - a single spccimen.
Distribution: Mediterrancan.

[^10]

Fig. 12.4. Syllis armillaris. (A) Entire worm (five times life size). (в) Foot. (c) Seta from anterior foot. (D) Seta from middle foot. Syllis benguellana. (E) Head. (F) Seta. (G) Foot. Syllis exilis. (H) Head. (1) Foot. (J) Seta. Svllis cirropunctata. (K) Foot. (L) Seta. Syllis viltata. (m) Head. (N) Seta. (o) Foot.

Syllis (Typosyllis) vittata Grube, 1840 (fig. 12.4.m-0)
Syllis vittata Grube, 1840: 77-
Syllis (Typosyllis) vittata: Fauvel, 1923 : 263 , fig. 98 i-l.
Prostomium (fig. 12.4.m) quadrangular with four eyes. Pharynx cxtending back to sctiger 9 with an anterior dorsal tooth ; proventriculus long with almost 30 rows of points. Palps large. Dorsal cirri (fig. 12.4.0) long and slender with 25-40 joints. Setae (fig. 12.4.n) compound with blades of normal length and either unidentate or with a minute secondary tooth. Body often with dark cross-bars at the intersegmental constrictions and across the middle of cach scgment.

Type locality: Mediterrancan Sca.
Records: South West Africa (27/15/i) and the Cape (32/18/s, 34/18/s, 34/20/i, 24/32/s) - fairly common. Mo dagascar (Fede Hmwercceuv197 \&)

Distribution : N. Atlantic: Ireland (i, s), Francc and Morocco (i) ; Mediterranean.

OPISTHOSYLLIS Langcrhans, 1879
Body elongate with numcrous scgments. Palps not fuscd at the base. Prostomium with three antennae, at least two pairs of cycs and usually an occipital flap. Pharynx with a single dorsal tooth set far back. Two pairs of tentacular cirri. Antennae, tentacles and dorsal cirri jointed. Ventral cirri conical.

Type species: Opisthosyllis brunnea Langcrhans, 1879.

Key to Species

1 Middle fect with two large simple setae formed by fusion of the blade to the shaft (fig. 12.5.b) .

- Setac all compound apart from the few slender simple ones of posterior feet .
O. brunnea

2 Setae all unidentate. Pharyngeal tooth two-thirds the way back (fig. 12.5.e)

- Setae mainly bidentate. Pharyngeal tooth one-quarter the way back.
O. laevis
 Opisthosyllis ankylochaeta Fauvcl, 1921
(fig. 12.5.a-b)
Opisthosyllis ankylochaeta Fauve, 1921: 5, fig. I a-h.
Body smooth and colourlcss, about 15 mm . long. Prostomium with four large cyes and two long palps separated at the basc. Occipital flap (?) absent. Pharynx with the dorsal tooth far back at the lcvel of setiger io. Proventriculus long, extending over six scgments. Tentacular cirri with about 30 joints. Dorsal cirri alternatcly longer with 30 joints and equal to the body width or shorter with joints. Ventral cirri sausagc-shaped. Anterior and posterior feet with compound, unidentate sctae (fig. 12.5.a) ; middle feet with two simple setac (fig. 12.5.b) formed by fusion of the short, hooked blade to the shaft.

Type locality: Tamatave, Madagascar.
Records: Madagascar (i) - a single record from coral.
Distribution: New Caledonia.

Opisthosyllis brunnea Langerhans, 879
(fig. I2.5.c-e)
Opisthosyllis brunnea Langerhans, 1879: 541; Augener, 1918: 274, text-fig. 25.
Body smooth, rather soft and broad, up to 10 mm . long for 75 segments. Palps tapercd and twiec the prostomial length. An oeeipital flap covering the postcrior pair of eyes and part of the prostomium (fig. 12.5.e). Pharynx long and broad with a small dorsal tooth about two-thirds the way back at the level of setiger 8. Proventriculus extending over cight segments with 70 rows of points. Dorsal cirri (fig. $12.5 \cdot d)$ rather slender with about 20 joints. Setae eompound with short unidentate blades (fig. 12.5.e).

Type locality: Madeira.
Records : False Bay (34/r8/s) to Natal (30/30/i, s) and Mocambique (26/32/i) - Ma\&ogarar oeeasional specimens on roeky shores and in shallow dredgings.

Distribution : Madeira (i), tropical W. Afriea (i).

(fig. 12.5.f-g)
Opisthosyllis laevis Day, 1957: 74, fig. 3 a-d.
Body smooth, not pigmented, up to 30 mm . long. Prostomium with stout palps and large reddish eyes. A small occipital flap. Pharynx short rcaching setiger 6 with the large dorsal tooth only one quarter the way back. Dorsal cirri (fig. 12.5.f) equal to two-thirds the segmental width with 30 or more joints. Setae (fig. 12.5.g) compound and bidentatc, the secondary tooth being well separated from the terminal onc in middle segments.

Type locality: Moeambique; Madagasear (s).
Records : Moeambique ($26 / 32 / i$) - a single record.

TRYPANOSYLLIS Claparède, 1864
Body flattened and ribbon-like with short segments. Head with three antennae, two pairs of tentacular cirri and separate palps. Pharynx with a eirele of marginal teeth (trepan) and sometimes a single dorsal tooth as well. Antennae and eirri jointed. Ventral cirri present. Reproduction by stolons and a series of stolon buds may arise bclow the pygidium.

Type species: Trypanosyllis krohni Claparède, 1864 ($=$ Syllis zebra Grube, r86o).

> Key to Species

I Dorsal cirri short with less than 12 joints ${ }^{2}$

- Dorsal cirri with more than 20 joints

[^11]

2 Body normally elongate (fig. 12.5.i). Dorsal cirri with 8-12 joints. Setac compound
T. prampramensis

- Body very short (fig. 12.5.1). Dorsal cirri with six to eight joints. Sctae simple with the blade fused to the shaft (fig. 12.5.n) T. ankyloseta
3 Tail with a cluster of stolon-buds (fig. 12.6.h) 4
- Tail without a cluster of stolon-buds. (Setae always bidentate, the secondary tooth being close to the terminal one) (fig. 12.6.a) T. zebra
4 Setae always bidentate T. gemmipara
- Setae unidentate in some feet at least (fig. 12.6.e) T. gemmulifera add Tigega, LCa M゙O. 1825 fiom Aadagaver.

Trypanosyllis prampramensis Augener, 1918

(fig. 12.5.h-k)
Trypanosyllis prampramensis Augener, 1918: 276, pl. 4 figs. 91, 92, text-fig. 86; Day, 1953: $4{ }^{14}$.
Body (fig.12.5.i) elongate and ribbon-like being 25 mm . long by 2 mm . broad. Two dark lines across anterior segments. Prostomium (fig. 12.5.h) broader than long, faintly bilobed, with four antcrior eycs, short palps and short antennae with Io-12 joints. Tentacular cirri with I5-20 joints. Pharynx rather short with only io triangular tecth to the trepan. Proventriculus with $25-30$ rows of points. Dorsal cirri (fig. $12.5 \cdot \mathrm{k}$) short and stout, often spindlc-shaped with $8-12$ joints and purplish in colour when fresh. About io compound setae with short, unidentate, hooked blades (fig. 12.5.j). Possibly a single sexual stolon.

Type locality: Prampram, Ghana.
Records: Cape (34/18/i, s, 34/21/i) - occasional specimens.
Distribution: Tropical western Africa.

Trypanosyllis ankyloseta Day, 1960
 (fig. 12.5.1-0)

Trypanosyllis ankyloseta Day, 1960: 312, fig. 7 b-e.
A very short species (fig. 12.5.l) with a flattencd, oval body about 8 mm . long, by x .8 mm . for 120 segments. Prostomium (fig. $12.5 . \mathrm{m}$) inserted between the anterior scgments. Two ovoid palps and three short antennae with six to eight joints. Four cyes in a rectangle. Pharynx long and S-shaped with only ten teeth to the trepan. Proventriculus with $40-50$ rows of points. Segments about 20 times as broad as long. Dorsal cirri (fig. 12.5.0) with six to cight joints. Setae (fig. 12.5.n) simple with the falcate blade fuscd to the shaft-head.

Type locality: Forty-two metres in False Bay, South Africa.
Records: Cape (34/18/s) - a singlespecimen. and $33 / 18 / \mathrm{s}$

Trypanosyllis zebra (Grube, 1860)
(fig. 12.6.a-b)
Syllis zebra Grube, 1860: 86.
Trypanosyllis zebra: Fauvel, 1923 : 269 , fig. 101 a-e; Fauvel, 1953; 157, fig. 79 a-d.
Body $30-60 \mathrm{~mm}$. long, flattencd and ribbon-like with two purple bars per segment and often purple dorsal eirri as well. Prostomium broader than long with four eyes. Pharynx with a trepan of ten triangular teeth and a dorsal tooth as well. Proventriculus long with 30 rows of points. Dorsal cirri (fig. 12.6.b) alternately longer and shorter with 20 or 50 short joints. Ventral cirri pointed. Setae (fig. 12.6.a) bidentate with the secondary tooth immediately behind the terminal one. The blade has no basal spur and its edge is spinulose. No eluster of buds, reproduction by a single stolon.

Type locality : Mediterranean eoast of Franee.
Records: False Bay (34/i8/i, s) to Natal (29/3 $1 / \mathrm{i}$) and Mocambique ($23 / 35 / \mathrm{e}$ and $24 / 34 / \mathrm{s}$) ; Madagascar (s) - fairly common.

Distribution : N. Atlantic (Plymouth (s) to Morocco (s, d) and North Carolina to the West Indies) ; Mediterranean ; tropical Indian Oeean (i, s) ; Japan.
(Tryefore stonkila')
Trypanosyllis/gemmipara Johnson 1901
(fig. 12.6.e)
Trypanosyllis gemmipara Johnson, 1901: 405, pl. 7 figs, 72-76.
Trypanosyllis misakiensis Izuka, 1906: 283; Izuka, 1912: 185, pl. 20 figs. 2-6; Fauvel, 1932: 79; Fauvel, $1953: 158$.
Body flattened and about 20 mm . long. Pharynx with a trepan of only ten teeth. ℓ Proventrieulus with 30 rows of points. Dorsal cirri alternately longer and shorter with 25 or 40 joints. Setae (fig. 12.6.e) eompound with bidentate blades having the secondary tooth in the middle of the blade and a spur at its base. A vertieal series of stolon-buds under the pygidium.

Type locality: Japan.
Records: Natal (30/30/i) to Mocambique (26/32/i) - oceasional specimens on rocky shores.

Distribution: Indo-west-Pacific (i).

Trypanosyllis gemmulifera Augener, 1918*

(fig. 12.6.d-h)
Typanosyllis gemmulifera Augener, 1918: 278, pl. 5 figs. 99-101, text-fig. 27; Day, 1953: 413 .
Body flattened, ${ }^{25-35} \mathrm{~mm}$. long with two purple bars per segment. Prostomium (fig. 12.6.d) roughly square and notehed posteriorly. Four eyes. Threc antennae arising from the anterior margin of the prostomium. Pharynx with a trepan of only tcn triangular teeth (fig. 12.6.g). Proventriculus long with 35 rows of points. Dorsal

[^12]cirri (fig. 12.6.f) usually purple with $20-40$ joints. In anterior feet the setae are usually bidentate with the sccondary tooth near the centre of the blade which has a spur at its base (as in T. misakiensis). In posterior fect the sccondary tooth may be smaller or absent altogether. In some specimens all setae are unidentate (fig. I2.6.e). A cluster of stolon-buds under the last segment (fig. 12.6.h).

Type locality : Swakopmund, South West Africa.
Records: South Wcst Africa (22/i4/i, 26/i5/i, s and 28/16/s); Cape (33/18/i, s to $34 / 25 /$ s) - fairly common.

Distribution: Endemic.

LAMELLISYLLIS Day, i960

Body flattened with the prostomium sunk between the anterior segments. Prostomium with thrcc lamellar antennae. Palps united at the base. Pharynx straight with an anterior dorsal tooth. Prominent nuchal epaulettes. A single pair of tentacular cirri. Dorsal cirri lamcllar. Ventral cirri cylindrical and present on all scgments. Sctac compound.

Type species: Lamellisyllis comans Day, 1960.

Lamellisyllis comans Day, I960

(fig. 12.6.i-l)
Lamellisyllis comans Day, 196o: 319, fig. $7 \mathrm{f}-\mathrm{i}$.
A small, flattened worm, oval in outline and measuring 8 mm . with 50 segments. Prostomium (fig. 12.6.1) sunk between anterior scgments and bearing four cyes and thrce subequal, foliaceous antennac. Palps normal and unitcd only at their bascs. Pharynx straight with an antcrior dorsal tooth. Proventriculus oval and occupics five segments and has 20 rows of points. A pair of grooved nuchal organs extend back to sctiger 3. A single pair of cylindrical tentacular cirri. Body segments (fig. 12.6.i) very broad and short each with a lamellar dorsal cirrus, a setigerous lobe and a digitiform ventral cirrus. Dorsal cirri (fig. 12.6.k) broader than long and attached at the margin. Sctac (fig. I2.6.j) compound with bidentate blades and a group of very long spinules.

Type locality: False Bay, South Africa.
Records: Cape ($34 / 18 / \mathrm{s}$) - a single specimen. also $32 / 18 / 0$

Secord sfecemcin witk ser,berccir malarm sebac

AMBLYOSYLLIS Grube, 1857
Body short with a few well marked scgments. Palps fused at the basc. A pair of large nuchal cpaulettes. Pharynx long and coiled with scveral teeth at the margin. Ventral cirri present. Dorsal cirri vcry long. Antennae, tentacular cirri and dorsal cirri indistinctly jointed.

Type species : Amblyosyllis rhombeata Grube, 1857.

Fig. 12.6. Trypanosyllis zebra. (A) Seta. (B) Foot. Trypanosyllis misakiensis. (C) Seta. Trypanosyllis gemmulifera. (D) Head. (E) Unidentate seta. (F) Foot. (G) Trepan. (H) Cluster of stolon buds below last setiger. Lamellisyllis comans. (i) Anterior end. (J) Scta. (к) Foot. (L) Head. Amblyosyllis lineolata. (m) Scta. (N) Foot. (o) Head. (P) Entire worm (three times life size).

Amblyosyllis formosa Claparède, 1863
(fig. 12.6.m-p)
Pterosyllis formosa Claparède, $1863: 46$, pl. 12 figs. $30-34$; Fauvel, $1923: 280$, fig. $105 \mathrm{~h}-\mathrm{n}$.
Body (fig. I2.6.p) short, only $10-15 \mathrm{~mm}$. long with 13 setigers each of which is almost as long as broad. Prostomium (fig. 12.6.0) roughly square with four large eyes and the palps bent ventrally and fused at the base. Prominent nuchal epaulettes reaching setiger 2. Pharynx long and coiled and crowned with six to seven teeth. Proventriculus ovoid. Antennae, tentacular cirri and dorsal cirri very long, coiled and pseudo-articulate. Ventral cirri (fig. 12.6.n) pinniform, postero-ventral and longer than the setigerous lobes. Setae (fig. I2.6.m) with finely bidentate blades of varying length. A pattern of broken purple bars on the back of each segment.

Type locality: Normandy, France.
Records: Cape (32/18/i, 33/18/i, 34/18/i, s, 34/22/i) ; Madagascar (s) - occasional specimens on rocky shores.

Distribution : N. Atlantic (Plymouth (s) to Senegal (i)) ; Mediterranean; Japan.

Body minute with few segments. Palps fused at the base. Pharynx straight, unarmed. Antennae, tentacular cirri and anterior dorsal cirri short and wrinkled while later dorsal cirri are longer and obviously jointed. Ventral cirri digitiform. A superior simple, sabre-like seta, numerous compound setae and an inferior simple seta.

Type species: Syllis (Syllides) longocirrata Oersted, $1845 \cdot$

Syllides longocirrata Oersted, 1845
(fig. 12.7.a-d)
Syllis (Syllides) longocirrata Oersted, 1845: 408. Syllides longocirrata: Fauvel, 1923: 284, fig. 1o8 a-g.
Not S. Congoceralis.
fide Bourne 197 .
This for \& a che matter Exr savor
sclac r how bićentala falcegerss

Body about 5 mm . long with $37-46$ segments and long parapodia and cirri. Prostomium (fig. 12.7.a) broader than long. Paps large, fused at the base and bent ventrally. Antennae, tentacular cirri and anterior dorsal cirri slightly swollen distally and wrinkled. Dorsal cirri of later segments (fig. 12.7.d) long with 10-15 clearly marked joints. Pharynx unarmed ; proventriculus with $40-45$ rows of points. Parapodia long; ventral cirri slender; compound setae (fig. i2.7.b) with long, minutely bidentate blades. A simple, superior sabre-like seta (fig. 12.7.c) with a minutely serrated blade in all feet.

Type locality : Norway.
Records: Cape (34/18/s) - rare.
Distribution : N.E. Atlantic (Sweden (d, vd), Plymouth (s)) ; Mediterranean ; Chile (i) ; New Zealand (i)

ODONTOSYLLIS Claparède, 1863

Body elongate but soft and fragile, with cushion-like ventral cirri. Palps fused at the base. An occipital flap present. Pharynx armed with a semi-circle of recurved teeth. Antennae, tentacular cirri and dorsal cirri not jointed.

Type species: Syllis fulgurans Audouin \& Milne Edwards, 1833.

Key to Species

```
1 Compound setae with unidentate blades
- Compound setae with triangular bidentate blades, the secondary tooth being near the
    middle of the blade .

Syllis polycera Schmarda, 1861: 72.
Ondontosyllis polycera: Augener, 1918: 283, pl. 5 fig. 97; Day, 1953: 415.
Odontosyllis ctenostoma (non Claparède): Day, 1960: 313.
Body (fig. 12.7 k ) soft, swollen dorsally, easily broken. Length up to 50 mm . by 2 mm . Prostomium with four large eyes in a rectangle. The median antenna arises betwecn the cyes and behind the latcrals. A large occipital flap covers most of the prostomium (fig. 12.7.i). Pharynx long and bent into a vertical S, the anterior half thin-walled and the posterior half thick-walled. The anterior half has a soft dorsal ridge and at the junction with the posterior part there is a minute dorsal tooth and a ventral semicircle of six to nine triangular tecth with cutting plates on cither side (fig. 12.7.j). Proventriculus long, with \(60-80\) rows of points. Antennae and dorsal cirri tapered, smooth or faintly wrinkled, the anterior ones fairly long but in the middle of the body the dorsal cirri arc less than half the width of the body (fig. 12.7.1). Fect with about 25 compound setae with short, triangular, bidentatc blades, the secondary tooth being in the middle of the blade (fig. 12.7.m). Ventral cirri swollen, cushionlike and ventro-lateral to the setigerous lobe.

Type locality : Table Bay, South Africa.
Records: South West Africa ( \(26 / 15 / \mathrm{s}\) ) around the Cape (i, s) to ( \(33 / 27 / \mathrm{i}\) ); Mocambique (26/33/d); Madagascar (s) - fairly common.

Distribution: Chatham Is. (New Zealand) (i, s).

\section*{Odontosyllis gibba Claparèdc, 1863}
(fig. 12.7.e-f)
Odontosylis gibba Claparède, 1863: 47, pl. 12 fig. 7-8; Fauvel, 1923: 275, fig. 104 a-e; Day, 1957 : 74.

Body stout, easily broken, up to 25 mm . long for 60 segments. Prostomium broader than long, with antcro-lateral notches. Three short antennae, two pairs of eycs coalescent on either side. Palps large and bent ventrally. Pharynx with six recurved tecth ventrally and a pair of cutting plates laterally. Proventriculus short. A large occipital flap. Dorsal cirri (fig. 12.7.c) short and fusiform. Ventral cirri cushion-like and indistinct. Setac with long unidentate blades (fig. i2.7.f). Some specimens have alternate segments banded with black and there may be black patches on the occipital flap.

Type locality: Francc.
Records: Mocambique (26/32/i) - single specimen.
Distribution : English Channel (i, s) ; Atlantic coast of France ; Mediterranean.
Odontosyllis ctenostoma Claparède, 1868
(fig. 12.7.g-h)
Odontosyllis ctenostoma Claparède, 1868: 202, pl. 12 fig. 4; Fauvel, 1923: 277, fig. 104 f-l. (Non Day, 1960: 313.)
Body stout, easily broken, up to 20 mm . long for 100 scgments. Prostomium rounded, with four cyes and three rather short antennac. Palps joined at the basc and bent ventrally. Pharynx with a posterior muscular bulb provided with six ventral recurved tecth and latcral cutting plates. Proventriculus long. A large occipital flap. Dorsal cirri (fig. 12.7.h) stout and wrinkled, ventral cirri rather flattened and shorter than the setigerous lobes. Setac (fig. 12.7.g) with swollen shaft-heads and short, unidentate, hooked bladcs. Colour yellowish with indistinct segmental bars.
Type locality: Mediterrancan Sea.
Records: No Southern African records.
Distribution : N. Atlantic from English Channel (i, s) to Morocco (i) ; Mediterranean; Angola (i).

PIONOSYLLIS Malmgren, 1867
Body small. Palps fused at the basc. Two pairs of tentacular cirri and threc antennac. Pharynx chitinised but the rim is smooth and there is a large anterior dorsal tooth. Dorsal cirri usually smooth, sometimcs weakly annulated. Ventral cirri present. Setac mainly compound but a superior simple seta is often present.

Type species: Pionosylis compacta Malmgren, 1867.


Fig. 12.7. Syllides longocirrata. (A) Anterior end. (B) Compound sta. (C) Simple seta. (D) Foot. Odontosyllis gibba. (E) Foot. (F) Seta. Odontosyllis ctenostoma (after Fauvel). (G) Seta. (H) Foot. Odontosyllis polycera. (1) Head. (J) Ventral half of pharynx showing teeth and cutting plates. (k) Entire worm (three times life size). (L) Foot. (M) Seta.

\section*{Key to Species}

1 Compound setae with unidentate blades (fig. 12.8.b). (Pharynx with a very large tooth)
P. magnidens
- Compound setae with bidentate blades

2 Superior compound setae with greatly elongated blades (fig. 12.8.g). (A needle-like simple seta) . . . . . . . . . . P. ehlersiaeformis
- Superior compound setae not much longer than the others.

3 Dorsal cirri with \(16-30\) indistinct rings. Body large, reaching 40 mm .
- Dorsal cirri smooth. Body small, about 8 mm . AnGonco. td. cire y. Cone P. longocirrata


\section*{Pionosyllis magnidens Day, 1953}
(fig. 12.8.a-e)
Pionosyllis magnidens Day, 1953: 416, fig. 3 a-e.
Body about 4 mm . long with 45 segments. Prostomium (fig. 12.8.a) broader than long. Two pairs of eyes. Palps united at the base and bent ventrally. Antennae tapered and wrinkled but not annulated. The pharynx has a very large dorsal tooth and extends back to setiger 4 , the proventrieulus continuing on to setiger 11. Dorsal eirri (fig. I2.8.e) similar to antennac and equal to the width of the body. Setigerous lobes truncate, ventral eirri eonieal. Compound setae with short, unidentate blades ending in bold hooks (fig. 12.8.b). No simple setae.

Type locality: Lamberts Bay, South Afriea.
Records: Cape (32/i8/i, 34/18/i) - several specimens on algac.

\section*{Pionosyllis ef. ehlersiaeformis Augener, 1913*}
(fig. 12.8.d-h)
Pionosyllis ehlersiaeformis Augener, 1913: 225, pl. 3 fig. 32, text-fig. 31; Day, 1960: 313 .
Body (fig. 12.8.e) uniformly pale, up to 8.5 mm . long with 70 segments. Prostomium broader than long with two pairs of eyes of whieh the anterior pair are much the larger. Palps long and fused basally. Antennae wrinkled but not ringed. Median antenna twice the length of the laterals. The pharynx has an anterior dorsal tooth and extends back to setiger 7 ; the proventriculus has 25 rows of points and extends on to setiger 13. Anterior dorsal eirri slender, similar to the antennae and as long as the body is broad. Later dorsal cirri in the middle of the body (fig. 12.8.d) shorter, less than half the body width. Setigerous lobes slender. Most of the compound setae (fig. 12.8.f) have bidentate blades of normal length but in the middle and posterior feet there are also one to two superior setac (fig. 12.8.g) with very long Langerhansia-type blades, plus a slender superior simple seta (fig. 12.8.h). Ovigerous females make tubes on hydroid stems and ineubate their eggs; young released with ten setigers.

Type locality: Sharks Bay, Western Australia.
Records: South West Africa (22/14/i) around the Cape (s, d) to (34/25/s) fairly common.

Distribution: Western Australia.

\footnotetext{
*Augener (1913 and 1g18) stressed the point that \(P\). ehlersiaformis has compound setae in which the secondary tooth is stronger than the terminal. He also found a bidentate simple seta in posterior feet. In my material the secondary tooth of compound setae is weaker than the terminal and no inferior simple seta was found.
}

Pionosyllis malmgreni MeIntosh, 1869
(fig. 12.8.i-k)
Pionosyllis malmgreni McIntosh, 1869:414, pl. 16 fig. 10; McIntosh, 1904: 35.
Pionosyllis ehlersiaeformis: (Non Augener) Day, 1953: 415, fig. 3 d.
A large speeies reaching 40 mm . for \(\mathrm{I}_{5} 50\) segments. Two pairs of eyes. Antennac and tentacular eirri short and jointed. Pharynx short with the dorsal tooth one-third the way baek. Proventrieulus extending from setiger 6-9 with 30 rows of points. Anterior dorsal eirri (fig. 12.8.i) equal to body width with 20-30 well marked joints; later eirri shorter, equal to half body width and with only \(16-20\) indistinet joints or even smooth; ventral eirri long. Setae with blades deereasing in length inferiorly (fig. I2.8.j and k ) but none with the greatly elongated Langerhansia-type blades seen in P. ehlersiaeformis. Apex of blade bidentate with a stout sceondary tooth. No superior simple seta.

Type locality : Seotland.
Regords: Cape (33/17/s, 34/18/i, s, 34/20/i).
Distribution: Scotland.
Pionosyllis longocirrata Saint-Joseph, 1887
(fig. 12.8.1-m)
? Pionosyllis longocirrata Saint-Joscph, 1887 : 160, pl. 8 figs. 24-29; Fauvel, 1923: 288, fig. 110 h-1. Pionosyllis cf. longocirrata: Day, 1953: 418, fig. 3 c; Day, 1960: 314.

A small speeies 8 mm . long. Body soft and very fragile. Pharynx short with an anterior tooth. Proventriculus with 30 rows of points. Antennae and anterior dorsal eirri smooth, exceedingly long; later dorsal eirri (fig. 12.8.m) somewhat shorter but still exeeeding twiee the width of the body. Setigerous lobes long, ventral eirri large and triangular. Setae (fig. 12.8.1) very long and fine with slender, bidentate blades. The terminal tooth (fig. 12.8.1 \({ }^{1}\) ) is strong and hooked and the secondary tooth is weak and direeted towards it. No simple setae seen.

Type logality : Franec.
Records: Cape (33/r8/s) - one record.
Distribution: English Channel (i) ; Mediterrancan (s).

\section*{EUSYLLIS Malmgren, 1867}

Body fragile. Prostomium with three antennae and palps fused at the base. Two pairs of tentaeular eirri. Antennae, tentaeular eirri and dorsal eirri indistinetly ringed. Ventral eirri present. Pharynx ehitinised having a large, anterior, dorsal tooth and a dentieulate rim.

Type species: Eusyllis blomstrandi Malmgren, 1867.

\section*{Key to Species}

I Blades of compound setae all rathcr short and slongly bidentale .E. blomstrandi*
- Blades of compound setae include two to three long and numerous short forms E. assimilis
\[
\begin{aligned}
& \text { = Bladro Sf compd, yetae shoot, weath dicicnlate. No eyeo. } \\
& \text { Antënnac and dorve cérré nobtringcal....E. Fnonvecirvata }
\end{aligned}
\]


Fig. 12.8. Pionosyllis magnidens. (A) Head. (B) Scta. (c) Foot. Pionosyllis ef. chlersiaeformis.
(D) Middle foot. (E) Entire worm (Io times life size). (F) Normal compound seta.
(G) Superior Langerhansia-type seta. (1) Superior simple scta. Pionosyllis malmgreni. (1) Anterior foot. (J) Inferior scta. (K) Superior scta. Pionosyllis longocirrala. (L) Seta. (m) Foot. Eusyllis blomstrandi. (N) Ventral view of anterior end of pharynx. (o) Anterior end. (P) Middle foot. (Q) Seta.

Eusyllis blomstrandi Malmgren, 1867
(fig. 12.8.n-q)
Eusyllis blomstrandi, Malmgren, 1867: 159, pl. 7 fig. 43; Fauvel, 1923: 293, fig. \(112 \mathrm{~h}-\mathrm{m}\).
Length about 10 mm . for 50 segments. Body rather swollen and fragile. Prostomium broader than long with six eyc-spots. Median antenna I. 5 times laterals. Palps large and fused only at the base. A small occipital fold. Pharynx (fig. 12.8.11) short and chitinised with an anterior dorsal tooth and a denticulate rim with about 40 minute teeth. Proventriculus elongate with 50 rows of points. Tentacular cirri and anterior dorsal cirri indistinctly ringed and slightly longer than the body is broad but posterior oncs (fig. 12.8.p) smoother and shorter than body width. All ventral cirri stout and conical. Compound setac (fig. 12.8.q) all short with strongly bidentate blades. A posterior superior simple seta.

Type locality: Spitzbergen.
Records: Not recorded from southern Africa.
Distribution: Arctic; North Atlantic from the North Sca, Francc and Canada to Massachusetts; Mediterranean.

Eusyllis assimilis Marenzeller, 1875
Eusyllis assimilis Marenzeller, 1875: 30, pl. 7 fig. 2; Fauvel, 1923: 294, fig. 112 a-g.
Body rather stout and fragile, up to 20 mm . long for 70 segments. Prostomium almost rectangular with four eye-spots and two ocular specks. Antennac indistinctly

broad andstender/ ringed. \(K\) Palps fused at the basc and bent ventrally. Pharynx short and chitinised with an antcrior dorsal tooth and a minutely denticulatc rim. Proventriculus long with 50-80 rows of points. Dorsal cirri alternatcly longer and shorter but none longer than the width of the body; all are smooth or vaguely annulated. Ventral cirri as cempressed concs, all (including the first) being shorter than the sctigerous lobes. Acicula with bent tips. Sctac compound with strongly bidentate blades of unequal length; two to threc superior ones are longfand the rest short and triangular. Posterior feet have simple supcrior and inferior setac as well as compound ones.

Type locality: Mediterranean Sca.
Records: Capc (33/r8/s).
Distribution : N.E. Atlantic (English Channel) ; Mcditcrrancan; W. Canada to W. Mexico; Angola (i).

\section*{IRMULA Ehlers, 1913*}

Body vermiform and fragile with uniramous parapodia. Dorsal and ventral cirri present. Antennae and dorsal cirri long and not jointed. Setae compound and falcigerous. Prostomium with thrce antennae and four eycs. Palps fused basally and not jointed. Six pairs of tentacular cirri on three partially fused segments. Pharynx with an anterior dorsal tooth. Proventriculus well developed.

Type species: Irmula spissipes Ehlers, 1913.

\footnotetext{
*Ehlers included Irmula in the family Hesionidae.
}

Irmula spissipes Ehlers, 1913
(fig. 12.9.a-e)
Irmula spissipes Ehlers, 1913: 468, pl. 29, figs. 11-13.
Body vermiform and tapered; length 8 mm . for 60 segments; anterior breadth without parapodia 0.52 mm . Prostomium (fig. 12.9.a) rounded anteriorly, twice as broad as long. Four eyes widcly separated. Thrce slender antennae, the median arising near the posterior margin and the shorter laterals in front of the eyes. Neither the antennae nor tentacular cirri nor dorsal cirri are articulated. Palps stout, fused basally. Pharynx with a stout dorsal tooth anteriorly; proventriculus extending over 12 segments with 40 rows of points. Tentacular region indistinctly scgmented with six pairs of long thread-like tentacular cirri. Setigerous segments very short and intersegmental constrictions poorly marked. Parapodia (fig. 12.9.b) uniramous with long thread-like dorsal cirri equal to twice the segmental breadth; setigerous lobes rather long and obliquely truneate with numerous long setae; ventral cirri digitiform, shorter than the setigerous lobes. Setae (fig. I2.9.C) compound with long (?) bidentate blades.

Type locality : Simonstown, South Africa (only the holotype known).

> BRANIA Quatrefages, 1865
> (ineluding GRUBEA Quatrefages, 1865)

Body small, less than 10 mm . long. Palps fused for at least half their length and produced forwards. Two pairs of tentacular cirri. Pharnyx straight with an anterior dorsal tooth. Dorsal cirri short, not annulated, usually bottle-shaped. Ventral eirri present. Setae mainly compound but a superior and an inferior seta are present in posterior scgments at least. Natatory setae only present in mature males. Developing eggs and embryos earried on the backs of females.

Type species: Exogone pusilla Dujardin, 1851.

\section*{Key to Species}

Brania pusilla (Dujardin, 1839)
(fig. I2.9.d-f)
Exogene pusilla Dujardin, 1851 : 298, pl. 5 figs. 9-10.
Grubea pusilla: Fauvcl, 1923: 299, fig. 115 a-f.
Body about 2.5 mm . long with \(28-35\) segments. Prostomium (fig. 12.9.f) with four eyes in a posterior are and three tapered antennae, the median being inserted far back. Palps fused and produced forwards. Pharynx with an anterior tooth. Proventriculus extending over two segments with 12-15 rows of points. Tentacular


Fig. 12.9. Irmula spissipes (from Ehlers, 1908). (A) Anterior end. (B) Foot. (C) Seta. Brania pusilla (after Claparède). (D) Dorsal cirrus. (E) Seta. (F) Head. Brania furcelligera. (G) Anterior end. (i) Normal compound seta. (I) Superior simple seta. (J) Superior eompound seta of posterior foot. (к) Foot. Brania rhopalophora. (L) Anterior end. (м) Superior simple seta. ( N ) Compound seta. ( O ) Foot. Spermosyllis capensis. (p) Superior simple seta. (Q) Normal compound seta. (R) Superior eompound seta. (s) Head. (т) Foot.
segment separate from the prostomium and bears two pairs of bottle-shaped tentacular cirri. Dorsal cirri present on all segments including the second. Each is fusiform, truncate distally, and contains two yellowish fibrillar bodies (fig. 12.9.d). Acicula with swollen, fist-shaped ends. Setae include several compound forms with unidentate blades (fig. 12.9.e) plus superior and inferior simple setae in posterior segments.

Type locality : Coast of France.
Records: ? (26/55/i) - one doubtful specimen (see Augener, 1918: 296).
Distribution : N.E. Atlantic from English Channel (i) to Morocco (s) ; Mediterrancan.


Not
Grubea furcelligera Augener, 1913: 256, pl. 3 figs. 20-21, text-fig. 39; Day, 1960: 315 .
Body about 5 mm . long with up to 40 segments. Paps fused for half of their length. A pair of bottle-shaped lateral antennae inserted on the anterior margin of the prostomium, and a median, twice the length of the laterals, inserted further back (fig. 12.9.g). Four eyes and two ocular specks. Pharynx reaching setiger 4 and proventriculus extending on to setiger 6. Dorsal cirri all bottle-shaped (fig. 12.9.k) and present on all setigers including setiger 2. Most dorsal cirri arc longer than half the body width but that on setiger 2 is obviously shorter. Most of the compound setae have swollen shaft-heads and minutely bidentate, dagger-shaped blades (fig. 12.9.h). A superior simple seta (fig. 12.9.i) in anterior feet. In posterior feet of ovigerous females three to four superior compound setae with extremely long blades (fig. 12.9.j).

Type locality: Geraldton, Western Australia.
Records: Cape (34/is/s) - with eggs.
Distribution: Western Australia (s).
Aug. monthlies.

Brania rhopalophora (Ehlers, 1897) \(\quad ?=\) B. cculată
(fig. 12.9.1-0)
trart-Secho.
1950
Grubea rhopalophora Ehlers, 1897; 53, pl. 3 figs. 66-70.
Body up to 4 mm . long with 34 segments. Ends of palps separate. Prostomium (fig. 12.9.1) with four eyes close together on either side and three equal, bottleshaped antennas ; the laterals arise from the anterior margin but the median is set well back. Pharynx reaching setiger 3 and proventriculus extending on to sctiger 6 .

\footnotetext{
*The identification of South African specimens as Augener's Grubea furcelligera from Western Australia is somewhat uncertain. Augener's figures show a rather different shape for the antennae and dorsal cirri, the normal compound setae are described as unidentate not minutely bidentate and no mention is made of long-bladed compound setae in posterior feet.
}

Tentacular cirri similar to the antennae but smaller, the ventral tentacular cirrus being shorter than the dorsal. A dorsal eirrus on setiger 2. Dorsal cirri (fig. 12.9.0) bottle-shaped and less than half the body width. Aciculum with a knobbed end. About six compound setae (fig. 12.9.n) per foot, with unidentate blades of varying length. A superior simple seta (fig. 12.9.m) with a serrate end after the first few feet; in posterior feet it becomes stouter than all other setac.

Type locality: Terra del Fuego.
Records: South West Afriea (22/14/i) around the Cape (34/18/s to 34/22/s) fairly common.

Distribution : Chile (s), Magcllan area (s) and subantarctic islands (i).

\section*{SPERMOSYLLIS Claparède, 1864}

Body minute. Prostomium with the palps fused eompletely and directed forwards. A single median antenna. A single pair of tentacular cirri. Pharynx with a single dorsal tooth. Antenna, tentacular cirri and dorsal cirri small and papilliform. Ventral cirri may be absent from some feet. Development direct and eggs attached to the female.

Type species: Spermosyllis torulosa Claparède, 1864.

Spermosyllis capensis Day, I953
(fig. 12.9.p-t)
Spermosyllis capensis Day, 1953: 419, fig. 3 g-1.
Length 12 mm . for 60 segments. Prostomium (fig. 12.9.s) broader than long with the single median antenna arising near the anterior margin. Palps large, tapered, transversely striated and fused throughout their length. The pharynx extends back to setiger 6 and the proventriculus which has 25 rows of points eontinues on to setiger 9. Tentaeular segment scparate from the prostomium but partially fused to the first setiger. Ovoid dorsal cirri present on all setigers (fig. 12.9.1). Ventral cirri present throughout. Setigerous lobes obliquely truncatc. Setae include a superior simple seta (fig. 12.9.p) from the 12th segment onwards, one to three compound setae with long, knife-like blades (fig. i2.9.r) and five to eight compound setae with short, falcigerous blades with the secondary tooth large and the terminal one minute (fig. 12.9.g).

Type locality: Langebaan Lagoon, South Afriea.
Records: Cape (33/18/i) - a single speeimen.

\section*{ANGUILLOSYLLIS Day, 1963}

Body minutc. Palps well developed, elongated and fused for half their length. Three minute antennac. One pair of tentacular cirri. Pharynx straight and unarmed. Dorsal cirri long but not annulated. Ventral cirri present. Setigerous lobes of parapodia with a contractile dorsal projection.

Type species: Anguillosyllis capensis Day, 963.

\section*{Anguillosyllis capensis Day, 1963}
(fig. 12.10.z-zZZ)
Anguillosyllis capensis Day, 1963a: 400, fig. 5 a-d.
A minutc thread-like worm about 5 mm . long for 30 segments and tapered at each end. Prostomium (fig. 12.10.zz) broader than long; it lacks cycs but has three minute papilliform antennae and a pair of very large tapered palps fused for half their length. They extend straight forward like a pointed rostrum. Tentacular segment distinct from the prostomium with one pair of papilliform tentacular cirri arising from the sides. Pharynx short, broad and straight reaching sctiger 3. No visible dorsal tooth and the whole pharynx appears to be unarmed. Proventriculus barrelshaped; it extends from setiger 3 to setiger 6 with about 30 rows of points. Body smooth and slender with segments about four times as broad as long. Parapodia (fig. 12.10.z) large with long, often coilcd dorsal cirri and each sctigerous lobe with a tapered dorsal projection which appears to be retractile. Ventral cirri distinct and slender. Setac (fig. 12.10.zzz) all long, fine and compound; the blades are uniformly slender and each ends in a blunt apical tooth.

Type locality: Agulhas Bank, South Africa.
Records: Cape (33/17/d and 34/23/d).
Distribution: Endcmic.

EXOGONE Oerstcd, 1845
Body minute. Palps well developed and fused throughout. Three antennac and one rudimentary pair of tentacular cirri. Pharynx with a single anterior dorsal tooth. Dorsal cirri small and ovoid. Ventral cirri present. Eggs fixed to the female.

Type species : Exogone naidina Oersted, \(1845 \cdot\)

\section*{Key to Species}

I Dorsal cirri on all setigers including the second . . . . . . . 2
- No dorsal cirrus on setiger 2

3
2 Median antenna club-shaped and much longer than the laterals (fig. 12.Io.b)
- All three antennae minute and shorter than the prostomium (fig. 12.10.h)
E. verugera (p. 272)

3 Compound setae all similar and unidentate (fig. 12.10.w) . . . E. normalis (p. 275)

- Superior compound seta different from the rest

4
4 One superior compound seta with a swollen shaft-head and a broad triangular blade (fig. 12.10.n) . . . . . . . . . E. heterosetosa* (p. 274)
- One to three superior compound setae each with a normal shaft-head and a narrow daggerlike blade (fig. 12.ro.s)
. E. gemmifera (p. 274)

Exogone clavalor Ehlers, 1913: 485, pl. 33 figs. 1-6; Day, 1953: 418 , fig. 4 d-f.
Body (fig. 12.10.a) slender and about 4.5 mm . long for 40 to 50 segments. Prostomium (fig. 12.io.b) broader than long with four eyes, short lateral antennac and a much longer club-shaped median antenna which arises from betwcen the eyes. Palps large and fused almost to the tips. Tentacular cirri minute and ovoid. Pharynx about threc segments long with an anterior dorsal tooth. Proventriculus covers about 2.5 segments and has 25 rows of points. Dorsal cirri (fig. 12.10.c) ovoid and present on all segments including the second. Ventral cirrus slightly smaller than the dorsal and present on all feet. Sctigerous lobe truncatc and bears five to six setac and one aciculum with a knobbed end. A superior simple seta (fig. i2.Io.e) with an obliquely truncate end appears about the 10 th foot and gradually becomes stouter; an inferior simple seta similar to the dorsal one appears on posterior segments. Two superior compound sctac (fig. I2.IO.d) with long sword-shaped blades in the first foot, later only one and finally none in postcrior feet. About threc normal compound setae (fig. 12.io.f) with short bidentatc, chopper-shaped blades with the terminal tooth minutc and the secondary tooth larger.

\section*{Type locality : False-Bay, South Africa. USB}

Records: South West Africa (22/14/i), around the Cape (c, i, s, d) to (34/25/s) common.

Distribution: Endemic. Athanici y Pacific coastof of lish.
of reciana How Sctr. 1974
= E.verugera ofrecano Exogone verugera (Claparède, 1868)

Body thread-like, about 5 mm . long with 35-45 segments. Prostomium (fig. 12.Io.h) broader than long. Tentacular segment distinct but in contracted specimens it forms a sheath over the postcrior pair of eycs. Palps large and tapered. Four large coalescent eycs and threc small subcqual piriform antennac which arc shorter than the prostomium. Pharynx reaching setigcr 5 and proventriculus extending over two segments to sctiger 7 with \(25-30\) rows of points. Dorsal cirri (fig. 12.10.g) ovoid and present on all setigers including the second. Compound sctac includc about five with very small falcigerous bladcs (fig. 12.Io.k) and a supcrior one with a slender


Fig. 12.10. Exogone clavator. (A) Entire worm (25 timc slife size). (B) Head. (C) Foot. (D) Superior compound seta. (E) Simple scta. (F) Normal compound seta. Exogone verugera. (G) Foot. (н) Head. (r) Superior compound seta. (J) Simple seta. (к) Normal compound seta. (L) Simple seta from postcrior foot. Exogone heterosetosa. (m) Simple scta. (N) Superior compound seta. (o) Normal compound scta. Exogone gemmifera. (p) Head.
(Q) Foot with natatory setae. (R) Normal compound scta. (s) Superior compound seta. (T) Simple seta. (U) Natatory seta. Exogone normalis. (v) Simple seta. (w) Compound seta. ( x ) Head. ( y ) Foot. Anguillosyllis capensis. ( z ) Foot. ( zz ) Hcad. (zzz) Seta.
knife-like blade (fig. 12.10.i). A superior simple seta with an obliquely truncate blade (fig. i2.Io.j) appears after the first few feet and later a stout inferior one (fig. 12.10.1).

Type locality: Gulf of Naples.
Records: South West Africa (26/15/s) ; Cape (33/18/s, 34/18/i, s) - several specimens.

Distribution: N. Atlantic (Sweden (d), Plymouth (i), North Carolina (s,) Moroceo, Madeira) ; Mediterranean ; N.W. Japanese Sea ; Southern California (s).

Exogone heterosetosa MeIntosh, 1885 (fig. 12.10. m-o)

Exogone heleroselosa McIntosh, 1885: 205; Mono, 1939: 115, fig. 9; Day, 1954: 13, fig. 2 b-d.
Body minute averaging 2 mm . Surface smooth. Prostomium broader than long with two pairs of eyes and sometimes anterior cye-specks as well. Median antenna equal to prostomial length, laterals rather shorter. Tentacular segment distinct. Dorsal cirri ovoid, absent from setiger 2. Sctae of three types; (a) a superior simple seta with an obliquely truncate tip (fig. 12.Io.m), (b) a superior compound seta with a swollen shaft-head and a triangular blade not more than three times as long as broad (fig. 12.10.n), (e) about three compound setae with short bidentate blades with the secondary tooth larger than the apical one (fig. 12.10.0).

Type locality: Marion Island.
Records: Not recorded from southern Africa.
Distribution : Subantarctic (i, s, d) ; Antaretiea (d) ; Chile (s) ; Tristan da Cunt (i).

Nash-Salow Exogone gemmifera Pagenstecher, 1862: 267; Fauvel, 1923: 305, fig. 117 add; Day, 1960: 317.
Body minute, about \(2-4 \mathrm{~mm}\). long with \(24-33\) setigcrs. Prostomium (fig. 12.Io.p) broader than long with two pairs of eyes (sometimes not pigmented) and three claviform antennae inserted at the anterior margin of the prostomium. The median antenna is longer than the laterals and is just shorter than the palps which are relatively broad and rounded in front. The pharynx extends back to setiger 4 and the short rounded proventriculus occupies one or one and a half segments and has about in rows of points. Dorsal cirri (fig. I2.Io.q) ovoid and absent from sctiger 2. Ventral cirri small. Setac include (a) a superior simple seta with a curved tip (fig. 12.10.s), (b) one to three superior compound setae with fine dagger-like blades (fig. 12.IO.s), (c) five to eight compound setae having minute bidentate blades with
the terminal tooth hardly visible (fig. 12.Io.r) and (d) an inferior simple seta in posterior scgments. Breeding individuals develop a tuft of fine natatory setae (fig. I2.10.u) just below the dorsal cirrus (fig. I2.Io.q).

Type locality: Cette, Francc.
Records: Cape (33/r 7/s, 34/i8/s) - several specimens.
Distribution: Arctic ; N. Atlantic (English Channel (i, s), North Carolina (s)) ; Mediterranean ; Tropical West Africa ( \(\mathrm{i}, \mathrm{s}\) ) ; N. Pacific (Behring Sea, to Japan).

Exogone normalis Day, 1963
(fig. I2.Io.v-y)
Exogone normalis Day, 1963a: 401, fig. 5 e-h.
Body about 5 mm . long, pale, quite smooth. Palps (fig. i2.Io.x) completely fused, large, longer than broad. Prostomium short with two to three pairs of cyes. Mcdian antenna exceeds length of prostomium and reaches basc of palps. Lateral antennac small, only one third the length of the median. Tentacular scgment indistinet, tentacular cirri as minute papillae half the size of the first pair of dorsal cirri. Pharynx reaching setiger 5 and proventriculus extending on to setiger so with about 23 rows of points. Dorsal cirri (fig. 12.10.y) small and ovoid, absent from sctiger 2. Ventral cirri longer and project beyond the setigerous lobes.

About 12 setae anteriorly, reduced to about five posteriorly. Compound setae all similar with straight unidentate blades of moderate length and pointed shaft-heads (fig. 12.IO.w). No specialised supcrior compound seta. A superior simple seta (fig. i2.io.r) in the form of a blunt needle appears about setiger 10 and becomes much stouter in posterior segments. The last few segments have an inferior simple seta as well.

Type locality: Agulhas Bank, South Africa.
Records: Cape ( \(34 / \mathrm{I} 8 / \mathrm{s}\) and \(34 / 22 / \mathrm{d}\) to \(33 / 25 / \mathrm{s}\) ).
Distribution : Endemic.

\section*{SPHAEROSYLLIS Claparèdc, 1863}

Body minute. Palps well developed and fuscd throughout. Head with three antennac and one pair of tentacular cirri. Pharynx with a single anterior dorsal tooth. Antennae and dorsal cirri with swollen bases and tapered tips. Ventral cirri present. Skin often covered with adhesive papillae. Eggs fixed to the femalc.

Type species: Sphaerosyllis hystrix Claparc̀de, 1863.

\section*{Key to Species}

I A dorsal cirrus on setiger 2. (Fwo pairs of coalescent eyes.-Middle and posterior part of the body-with adhesive papillae) (fig. 12.11.a) . . . . S. semiverrucosa- \(/ \mathrm{A}\)
- Dorsal cirrus absent from setiger 2 .

In No egea; body surface smoott; supereir comperendulina
- Teso condescort eyeo; parbrime body with adho iore poplelae
```

2 Capsules of fibrillar structures above middle and posterior parapodia (fig. 12.11.i). Two
pairs of coalescent eyes. (Antennae long) S. capensis

- Capsules absent from above parapodia. Three pairs of eyes 3
3 Adhesive papillae on palps and back (fig. 12.11.k) S. erinaceus
- No adhesive papillae on palps and back (fig. 12.11.o) S. sublaevis

```

\section*{Sphaerosyllis semiverrucosa Ehlers, 1913}
(fig. 12.11.a-e)
Sphaerosyllis semiverrucosa Ehlers, \(19{ }^{1} 3: 483\), pl. 32 figs. 5-9.
A stout species resembling an elongated dirty sausage (fig. 12.11.a). Length 4.5 mm . for 34 segments. From about the 7 th segment onwards it is covered with minute papillae to which dirt adheres. Prostomium (fig. I2.11.b) with two pairs of cyes coalesecd to form a single pair. Palps broad, short and completcly fused dorsally. Antennae very short and onion-shaped, the median arising far back near the posterior margin of the prostomium. Tentacular segment very short and partially overlapping the prostomium with onc pair of tentacular cirri similar to the antennac. Five to six anterior segments smooth, later ones papillose. Dorsal cirri (fig. 12.11.c) present on all setigers, cach small and onion-shaped with the terminal portion partially retractile into the basc. Compound setae (fig. i2.II.e) with short unidentate blades. A superior curved simple seta (fig. 12.II Id) present in all parapodia. Natatory setae from the 8 th setiger in the male.

Type locality: False Bay, South Africa.
Records: Cape (34/18/s) - several specimens.
Distribution: Eildemic.

\section*{Sphaerosyllis capensis Day, 1953}
(fig. 12.11.g-j)
Sphaerosyllis hystrix var. capensis Day, 1953: 420, fig. g-1.
Body 3 mm . long with 29 sctigers and a lightly papillose surface. Prostomium (fig. 12.11.j) broader than long with two pairs of coalescent eyes and three long, piriform antennae on the antcrior margin. Palps fused and bent ventrally. Tentacular segment partially fuscd to the prostomium and bearing a single pair of tentacular cirri level with the eyes. The pharynx has an anterior tooth, extends back to setiger 2 and is surrounded by brownish glands. Proventriculus about two segments long and has IO-14 rows of points. Dorsal cirri (fig. I2.1 I.i) piriform and absent from setiger 2. A spherical vesicle containing fibrillar structures is embcdded in the back next to the dorsal cirrus from about setiger 4 onwards. The setigcrous lobe is conical with two apical papillae. Simple superior setae with curved tips (fig. I2.11.g) ; compound setac with unidentate blades (fig. 12.11.h). An inferior simple seta appears in posterior fect. Ventral eirri digitiform.

Type locality: Cape Agulhas, South Africa.
Records: Cape ( \(33 / \mathrm{I} 7 / \mathrm{s}, 34 / 20 / \mathrm{i}, 34 / 23 / \mathrm{s}, \mathrm{d}, 34 / 26 / \mathrm{d}\) ) - common on muddy sand.
Distribution: Endemic.

Sphaerosyllis erinaceus Claparède, 1863
(fig. I2.II.k-n)
Sphaerosylis erinaceus Claparède, 1863:45, pl. 13 fig. 38 ; Fauvel, \(1923: 302\), fig. 115 q, r; Day, 1954: 13, fig. 2 d-g.
Sphnerosyllis perspicax Ehlers, 1908: 66, pl. 6 figs. 1-3.
Body 3 mm . long, rather flattened and eompletely covered with adhesive papillae which even extend on to the palps and parapodia. About 30 segments. Prostomium (fig. I2.II.k) broader than long with three pairs of eyes and three flask-shaped antennae of equal size, the median being further back than the laterals. Tentacular segment very short and embracing the prostomium so that the tentacular eirri arise on a level with the cycs. Tentacular eirri and dorsal cirri (fig. i2.I r.l) similar to antennae but slightly larger. No dorsal eirrus on setiger 2. Pharynx with an antcrior dorsal tooth and extends back to setiger 3. Proventriculus extends on to setiger 6 and has \({ }^{1} 5-18\) rows of points. Ventral cirri small and eylindrical. Eaeh foot with about five compound setae with unidentate blades (fig. I2.II.n) and from the 6 th or 8 th onwards a superior simple seta (fig. I2.II.m) with an oblique point is present. No glands above parapodia.

Type locality: Atlantic coast of France.
Records : South West Africa (22/14/i and \(26 / \mathrm{I} 5 / \mathrm{s}\) ) to western Cape (32/17/d) several records.

Distribution: Ireland; English Channel (s) ; Aretie and N.W. Japanese Sea; Kerguelen.

Sphaerosyllis sublaevis Ehlers, 1913
(fig. I2.II.o-r)
Sphacrosyllis sublaevis Ehlers, 1913: 482, pl. 32, figs. 10-15; Day, 1960: 3 16.
A relatively large species up to io mm. long with 36 setigers. Dorsum smooth and adhesive papillae absent. Prostomium (fig. i2.II.o) arehed anteriorly, with two pairs of eyes and eye-speeks anteriorly. Antennae flask-shaped and about equal to the length of the prostomium. Palps stout and united dorsally for most of their length. Tentacular segment short and embracing the prostomium; tentaeular cirri lateral in origin and similar in shape to the antennae but smaller. Dorsal eirri (fig. I2.II.p) similar to antennac anteriorly but morc elongate postcriorly. No dorsal eirrus on setiger 2. Ventral cirri small and conical. Compound setac (fig. i2.II.r) with unidentate blades varying in length. A superior simple seta (fig. I2.II.q).

Type logality: False Bay, South Africa.
Records: Cape (34/18/s) - rare.
Distribution : Chile \(42^{\circ} \mathrm{S}(\mathrm{s})\).


Fig. 12.11. Sphaerosyllis semiverrucosa. (A) Entire worm (20 times life size). (B) Head. (c) Middle foot. (D) Superior simple seta. (E) Compound seta. Sphaerosyllis capensis. (G) Superior simple seta. (H) Compound seta. (1) Middle foot. (J) Anterior end. Sphaerosyllis erinaceus. (к) Anterior end. (L) Foot. (M) Superior simple seta. (N) Compound seta. Sphaerosyllis sublaevis. (o) Anterior end. (P) Foot. (Q) Superior simple seta. (r) Compound seta. Exogonoides antennata. (s) Ventral view of head. (T) Middle foot. (v) Simple seta. (v) Compound seta from anterior foot. (w) Anterior end.

\section*{EXOGONOIDES Day, 1963}

Prostomium with three ovoid frontal antennae. Palps small, ventral, partially fused. Pharynx straight without visible teeth. Proventriculus poorly developed. A single pair of ovoid tentacular cirri. Dorsal cirri ovoid, somewhat compressed. Ventral cirri absent (fused to setigerous lobe). Setae compound anteriorly but blades caducous and most segments have simple setae formed by loss of the blade of the anterior compound forms.

Type species: Exogonoides antennata Day, 1963.

\section*{Exogonoides antennata Day, 1963 \\ (fig. 12.11.s-w)}

Exogonoides antennata Day, 1963a: 403, fig. 5 jon.
Body very long, smooth and slender measuring 35 mm . by 0.5 mm . for over 200 segments. Prostomium (fig. I2.II.w) bluntly conical with three ovoid frontal antennae, the median being superior to the laterals. Four eyes. Paps (fig. i2.11.s) small, ventral and only partially fused. Pharynx slender reaching setiger 6 and the margin does not appear to have teeth or sign of a trepan. Proventriculus short, dark, not muscular with about 15 rows of large, poorly marked "points". Tentacular segment short and distinct with one pair of small ovoid tentacular cirri.

Anterior segments short and crowded, posterior ones longer, only twice as broad as long. Dorsal cirri (fig. i2.in.t) present on all setigerous segments including the second. Each is ovoid, compressed and subequal to the setigerous lobe. Ventral cirri absent being completely fused to the posterior margin of the conical setigerous lobe. About three to four setae per parapodium. In the first few feet they are compound with short triangular, bidentate blades (fig. 12.II.v). Later setae lose their apices and become simple with short shafts and bluntly triangular tips (fig. 12.11.u).

Type locality: Agulhas Bank, South Africa.
Records: Cape (34/23/s) - two specimens known.

\section*{ALLUAŃNELLA Graver, 1905}

Prostomium with three short antennae and half covered by an occipital flap. Palps small, flattened, antero-ventral, and fused throughout their length. Two pairs of short tentacular cirri. No ventral cirri. Setae simple throughout. Pharynx short and straight, completely unarmed.
```

doebty:cl

```

Type species: Alluandella madagascariensis Graver, 1905.

\section*{Alluandella madagascariensis Gravier, 1905.}

Alluandella madagascariensis Gravier, 1905c: 372, figs. 1-5.
Length io mm. by 0.85 mm . for 5 I segments. Body with dark markings. Prostomium much broader than long. Three very short, subequal and conieal antennae. A pair of large anterior eyes and brown pigment on posterior prostomium. A large oceipital flap arising from the tentacular segment. Two pairs of short tentacular eirri. Palps very small, flattened, ventrally situated and completely fused. Plarynx short, straight, and unarmed. Proventrieulus barrel-shaped with about 40 rows of points. Dorsum of body arehed and parapodia ventro-lateral in origin. Segments short, about eight times broader than long. Dorsal cirri short, almost eylindrical, not annulated and arise well above the setigerous lobes; these are rather long with pre- and postsetal lips. No ventral eirri. A single acieulum per parapodium and about five simple setae whieh seem to be formed by the loss of the blade from the shaft.

Type locality : Fort Dauphin, Madagasear.
Records: Madagascar (i) - only known from the original reeord.

PROCERASTEA Langerhans, 1884
Body elongate with numerous segments. Prostomium with three antennac and four eyes. Palps indistinet. Pharynx long and S-shaped with a trcpan of teeth at its entrance. Proventriculus ovoid. Two pairs of tentacular cirri and a single pair of dorsal cirri on the first setiger. Subsequent setigers without dorsal cirri and ventral cirri entircly absent. Reproduction by male and female stolons.

Type species: Proceraslea nemalodes Langerhans, 1884.

Procerastea perrieri Gravier, 1900
(fig. 12.12.a-f)
Procerastea perrieri Gravier, 1900: 35, pl. 1; Fauvel, 1923: 327, fig. 126 a-c.
Body (fig. i2.12.a) minute, about 8 mm . long with 40 segments. Prostomium (fig. 12.12.b) rounded and separate palps eannot be distinguished. Four large eyes and three sausage-shaped antennae. Tentacular eirri similar to antennae but smaller, the dorsal pair, though longer than the ventral pair, is still not equal to the breadth of the body. The single pair of dorsal eirri on the first setiger is similar to the tentacular eirri but shorter. Trepan (fig. I2.I2.c) with very minute obscure teeth. Proventrieulus with 20 rows of points. Normal parapodia (fig. 12.12.d) are redueed to stumpy setigerous lobes cach bearing four to six setae. The superior seta (fig. 12.12.e) has a swollen shaft-head and an exceedingly fine dagger-like blade. Middle and inferior setae (fig. I2.12.f) show a tendency for fusion of blade to shafthead. When fully developed the blades are chopper-shaped with a vestigial terminal
tooth and a large seeondary one. Anal eirri large and ovoid. This speeies is found ereeping on gymnoblastic hydroids.

\section*{Type locality: St.-Vaast-la-Hougue, France.}

Records: Cape (33/18/s) - a single record but many speeimens.
Distribution : English Channel (s) ; Falkland Islands.

\section*{AUTOLYTUS Grube, 1850}

Palps fused and bent ventrally. Three antennae and two pairs of tentaeular eirri. Dorsal eirri present throughout but ventral eirri absent. Appendages not jointed or ringed. Pharynx \(S\)-shaped or coiled, its margin armed with a trepan whieh is usually toothed. Reproduetion by stolons which are dimorphic, the male (Polybostrichus) has bifid palps and three antennae while the female (Saccocirrus) has no palps and threc antennae. Eggs earried in a ventral sae.
Type species: Nereis prolifera Müller, 1788.

\section*{Key to Species}

I Nuchal epaulettes large and distinct, reaching the third setiger at least . . . 2
- Nuchal epaulettes small, not reaching the third setiger . . . . . . 4

2 Nuchal epaulettes reaching the fourth or fifth setiger (fig. 12.12.j). (Trepan with io cqual teeth) . . . . . . . . . A.tuberculatus (p. 281)
- Nuchal epaulettes not exceeding setiger 3 3
3 Trepan with 18 tceth alternately large and small. Body banded with black (fig. 12.12.k, n)
A. charcoti (p. 283)
- Trepan with 16-20 equal teeth. Body uniformly pale . . . A aurantiacus*
- Trepan with 20 teeth alternately large and small. Body with red rectangles which fade in spirit (fig. 12.12.p, r)
A. pictus (p. 284)

4 Trepan with numerous very minute teeth. (First pair of dorsal cirri much longer than the rest) . . . . . . . . . . A. maclearnus (p. 284)
- Trepan with 1o-40 distinct teeth . . . . . . . . . . 5

5 Trepan with io equal teeth. (Dorsal cirri relatively short) . . A. prolifer (p. 284)
- Trepan with 40 teeth, alternatively large, medium, small, mcdium, large, etc.
A. bondei (p. 285)

\section*{Autolytus tuberculatus (Sehmarda, 1861)}
(fig. 12.12.g-j)

Cirrosyllis tuberculata Schmarda, 1861 : 76 , pl. 28 fig. 223.
Autolytus tuberculatus: Augener, 1918; 307; Day, 1953: 421.
Body (fig. 12.12.g) about 12 mm . long with about 60 segments and uniformly pale in spirit but salmon pink when fresh. Prostomium (fig. 12.12.j) rounded with three stout antennae, the laterals about as long as the body is broad and the median considerably longer. Pharynx S-shaped and armed with a trepan having io blunt teeth. Proventriculus extending from setiger 6 to 12 with about 40 rows of points. Nuehal epaulettes very long and prominent, diverging from the posterior margin


Fig. 12.12. Procerastea perrieri. (A) Entire worm (io times life size). (B) Head. (C) Margin of pharynx. (D) Foot. (E) Superior seta. (F) Normal compound seta. Autolytus tuberculatus. (G) Entire worm (seven times life size). (H) Foot. (i) Seta. (J) Anterior end. Autolytus charcoti. (k) Anterior end. (L) Foot. (M) Seta. (N) Rim of pharynx. Autolytus pictus (modified from St. Joseph). (o) Seta. ( P ) Anterior end. (Q) Foot. (R) Rim of pharynx. (s) Anterior end of Polybostrichus stage.
of the prostomium to the dorsal cirri of setiger 5. Anterior dorsal cirri mounted on stout cirrophores, cylindrical and of varying length, the first few being longer than those of middle segments (fig. 12.12.h) which are about equal to half the body width; all dorsal cirri are alternately longer and shortcr. Setae (fig. 12.12.i) with ovoid shaft-heads and obscurely bidentate blades.

Type locality: Cape of Good Hope.
Records: Cape (34/i8/i, s, 34/25/s) - common on hydroids.
Distribution : Endemic.

\section*{Autolytus charcoti Gravier, 1906}
(fig. 12.12.k-p)
Autolytus charcoti Gravier, 1906b: 283; Gravier, 1907: 7, pl. 1, figs. 1-2; Day, 1960: 317.
? Autolytus afer Ehlers, 1908a: \(4^{6 .}\)
Body up to 24 mm . long for 100 segments with conspicuous black intersegmental bands encircling the body at fairly regular intcrvals (fig. 12.12.k). Prostomium broader than long. Two pairs of eycs. Antennae, tentacular cirri and the first pair of dorsal cirri longer than the segmental width. Later dorsal cirri less than half body width (fig. 12.12.l). Pharynx S-shaped; trepan (fig. 12.12.n) with 18 teeth alternately large and small. Proventriculus extending over four setigers with about 60 rows of points. Diverging nuchal epaulettes extend from the prostomium back to setiger 2 or 3. Setae (fig. 12.12.m) with denticulated shaft-heads and bidentate blades.

Type locality: Antarctica.
Records: Cape (33/18/s, 34/18/s, 34/25/s) - three records only.
Distribution : Antarctica (s).

Autolytus aurantiacus (Claparède, I868)
Proceraca aurantiaca Claparède, 1868 : 219 , pl. 15 fig. i.
Autolytus aurantiaca: Fauvel, 1923: 313, fig. 120 a-d.
Body \(8-20 \mathrm{~mm}\). long and pale orange. Prostomium rounded with three long antennac, the median being longer than the laterals. Palps visible dorsally. Pharynx S-shaped with about \(16-20\) subcqual teeth on the trepan. Proventriculus almost globular, extending over setigers 8 -10 and having about 40 rows of points. Nuchal cpaulcttes indistinct and small. Tentacular cirri and dorsal cirri of setiger i long, about equal to the median antenna. Subsequent dorsal cirri not equal to body width.

Type locality: Gulf of Naples.
Records: Not recorded from southern Africa.
Distribution : English Channcl; Mcditerranean.

Autolytus pictus (Ehlers, 1864)
(fig. 12.12.0-S)
Proceraea picta Ehlers, 1864: 256, pl. in figs. 8-17.
Autolytus pictus: Fauvel, 1923: 315, fig. 121 a-f.
Body \(10-25 \mathrm{~mm}\). long with paired rectangles of red pigment dorsally whieh fade in aleohol (fig. I2.I2.p). Prostomium rather small with three long antennae, the median execeding the laterals. Palps not visible dorsally. Pharynx S-shaped and armed with a trepan of 20 teeth whieh are alternately large and small (fig. I2.12.r). Proventriculus with 50-60 rows of points. Nuehal epaulettcs indistinet and do not reach setiger 2. Tentaeular cirri and dorsal cirri of the first setiger much longer than subscquent ones whieh are not as long as the body is broad (fig. 12.12.q). Setae (fig. I2.12.0) elearly bidentate with denticulate shaft-heads.

Type locality : Adriatic Sea.
Records: Cape (33/88/i) - a doubtful speeimen.
Distribution : North Atlantic from the English Channel (s) to Madeira (i) and Moroceo (i, s) ; Mediterranean (s) ; Angola (i) ; S. W. Australia.

Autolytus maclearnus McIntosh, 1885
(fig.12.13.a-e)
Autolytus maclearnus McIntosh, 1885: 207; Ehlers, 1913: 488, pl. 33 figs. 9-11; Day, 1960: 318.
Body 6-12 mm. long, dusky anteriorly but pale otherwise. Prostomium (fig. 12.13.a) rounded with four eyes and three long wrinkled antennae. Palps just visible from above. Pharynx long and twisted, its poorly chitinised margin (fig. I2.I3.b) enclosed in a sheath with io papillac and provided with numerous very minute and indistinct teeth. Proventriculus in setiger 4 with 25-30 rows of points. Tentacular segment with indistinet nuchal epaulettes. Dorsal tentacular eirri long and similar to antennae; ventral tentacular eirri much shorter. Dorsal cirri of setiger i long, but subsequent ones (fig. I2.I3.e) much shorter, about one quarter body width. Setae include four to five eompound bidentate forms (fig. 12.13.e) and, in posterior feet a single superior seta with a pointed tip (fig. I2.I3.d).

Type locality: Kerguclen Island.
Records: Cape (33/工7/s, 34/18/s, 33/27/s) - oecasional specimens.
Distribution: Subantaretic (i, s), Chile, Kerguelen, Chatham Is.

\section*{Autolytus prolifer (Müller, 1788)}
(fig. I2.I3.f-k)
Nereis prolifera Müller, 1788 : 15 .
Autolyws prolifor: Fauvel, 1923: 311, fig. 119.
Body up to I5 mm. long, without an obvious colour pattern in spirit. Prostomium rounded with long antennae, the median being particularly long. Palps bent ventrally. Two pairs of eyes and a pair of oeular speeks in front of them. Pharynx S-shaped and erowned with a trepan of io large, equal triangular teeth (fig. I2.I3.f).

Proventriculus ovoid with \(30-70\) rows of points. Nuchal epaulettes indistinet and not extending beyond sctiger 1 . Tentacular cirri a little shorter than antennae. First pair of dorsal cirri considerably longer than the tentacular eirri, second pair shorter and subsequent ones (fig. i2.I3.i) shorter still, averaging one third to one quarter the body width. Setac include five to six compound forms with short bidentatc blades (fig. 12.13.h) and in postcrior fect a single slender superior seta with a tapered tip (fig. 12.13.g). Sexual buds formed in short chains of about four and then brcak off and become planktonic. Malc or Polybostrichus stage (fig. 12.13.j) with biramous palps and natatory setae from the fourth foot onwards. Female or Saccocirrus stage (fig. I2.13.k) without palps but with a large rounded egg sac.

Type locality: Norway.
Records: Cape (34/i8/i, s, 34/22/s, 32/22/s); Natal (29/3i/i) - occasional specimens.

Distribution : North Atlantic (Norway to France (i, s) and Gulf of St. Lawrence to Georgia (i, s) ; Madeira (s), Mediterranean.

\section*{Autolytus bondei Day, 1934}

Autolytus bondei Day, 1934: 37.
Body 12 mm . long and without a pigment pattern. Prostomium rounded with four large, red-brown eyes. Median antenna rather elub-shaped and about thrce times the prostomial length. Laterals slightly shorter. Palps bent ventrally. Pharynx long and S-shaped, and crowned with a trepan having 10 large, 10 small and 20 medium teeth in alternate serics. Proventriculus large and ovoid. Anterior dorsal cirri a little longer than the lateral antennae.

Type locality: St. James, South Africa.
Records: Cape (34/18/p) - a single specimen from the plankton.

\section*{MYRIANIDA Milne-Edwards, 1841}

Body elongate with a posterior ehain of developing sexual buds. Pharynx long and coilcd with a toothed trepan. Palps fused and bent ventrally. Three antennae. Two pairs of tentacular cirri. Dorsal cirri present throughout. Antennae, tentacular cirri and dorsal cirri ncver jointed and often borne on long cirrophores. No ventral eirri. Setae compound with short bidentate blades.

Type species: Nereis pinnigera Montagu, 1808.

\section*{Key to Species}

I Dorsal cirri in the middle of the body with broad, flattened tips. Trepan with 40-50 teeth
M. phyllocera
- Dorsal cirri lanceolate. Trepan with 20 teeth . . . . . . M. pulchella Thastate


Fig. 12.13. Autolytus maclearnus. (A) Head. (B) Margin of pharynx. (c) Superior seta of posterior foot. (D) Normal seta. (E) Foot. Autolytus prolifer. (F) Margin of pharynx. (c) Superior seta of posterior foot. (H) Normal seta. (1) Foot. (J) Polybostrichus stage (after Fauvel). (k) Saccocirrus stage (after Fauvel). Myrianida phyllocera. (L) Entire worm (six times life size). (m) Foot. (N) Trepan. (o) Scta. Myrianida pulchella. (P) Anterior end. (Q) Scta. (R) Foot.

Myrianida phyllocera Augener, I918
(fig. 12.13.1-o)
Myrianida phyllocera Augener, 1918: 301, pl. 4 figs. 87-89, text-fig. 30; Day, 1953: 42 r.
Body about 30 mm . long and white with orange markings when alive (fig. 12.13.1). Prostomium small, broader than long with four eyes in a trapezium, the anterior pair being the larger. Median antenna much longer than the laterals and reaches setiger 5. Pharynx long and coiled and crowned with a trepan having \(40-50\) teeth (fig. 12.13.n). Proventriculus extending from setiger \(12-18\) and has 45 rows of points. Nuchal epaulettes as prominent diverging ridges reaching back to setiger 3-5. Antennac, tentacular cirri and the first one to four pairs of dorsal cirri almost cylindrical but all later dorsal eirri flattened and lamellate with broadly rounded ends (fig. 12.13.m). Cirrophores less than half the length of the dorsal cirri. Compound sctae (fig. 12.13.0) with faintly denticulate shaft-heads and tapered, bidentate blades, the secondary tooth being larger than the terminal one.

Type logality: Luderitz, South West Africa.
Records : South West Africa (26/15/s) around the Cape (34/18/i, s) to (33/25/s) occasional specimens on rocky shores.

Distribution: Endemic.

\section*{Myrianida pulchella Day, 1953}
(fig. 12.13.p-r)
Myrianida pulchella Day, 1953: 422, fig. 4 a-c.
Body 25 mm . long, coral red when alive; pale in spirit. Prostomium (fig. I2.I3.p) small and rounded with two pairs of eyes. Palps fused and bent ventrally. Median antenna reaching setiger 3 and laterals a little shorter. Pharynx long, coiled and crowned with a trepan having about 20 teeth. Proventriculus extending from setiger 9-16 with 90-100 rows of points. Nuchal epaulettes in the form of prominent ridges which diverge from the rear of the prostomium and reach setiger 5. Antennae, tentacular cirri and dorsal cirri oval in section and taper to blunt tips. Dorsal cirri borne on long eirrophores which increase in length and in the middle of the body they are as long as the dorsal cirri themselves (fig. 12.13.r). Tips of dorsal cirri extend two-thirds the way across the body segments. Sctigerous lobes obliquely truncate, each with a swollen postsetal lobe representing the ventral cirrus. Compound setae with bidentate blades (fig. I2.I3.q), the secondary tooth being much larger than the apical one.

Type locality: St. James, South Africa.
Records: Cape (34/18/i, 34/20/i) ; Natal (29/3 \(1 / \mathrm{i}\) ) - rare.

Body small, ovoid or vermiform, rounded in section and covered with papillae. Relatively few segments. Prostomium indistinct and often retracted. Two to four eyes and four papillae simulating antennae. Pharynx unarmed and followed by a muscular gizzard. Parapodia poorly developed, uniramous and papillose. Setae simple or compound.
see fer II Setae simple, hooked
                                    SPHAERODORUM
                                    - Setae compound .
                                    SPHAERODORIDIUM

\section*{SPHAERODORUM Oersted, 1843}

Body ovoid or elongate. Prostomium indistinct and retractile but when extended shows two to four eyes and four elongate papillae simulating antennae. Buccal segment achactous and not distinct from the prostomium. Pharynx unarmed and followed by a muscular gizzard. Parapodia conical and uniramous. Two or more dorsal glandular capsules per segment. Setae simple.

Type species: Ephesia gracilis Rathke, 1843.

\section*{Sphaerodorum gracile (Rathke, 1843)}
(fig. 13.1.a-d)
Ephesia gracilis Rathke, 1843: 176 ; Fauvel, 1923: 377, fig. 148 a-f.
Body (fig. 13.I.a) vermiform, up to 35 mm . long. Prostomium (fig. 13.I.b) when extended rather square in front with two pairs of longer papillae simulating antennae as well as numerous smaller ones. Four subdermal eyes. Buccal segment achaetous with rudimentary parapodial lobes and globular dorsal cirri. Mouth ventral. Body segments each with four transversc rows of minute papillae and an cnlarged papilla above the setigcrous lobe represcnting the dorsal cirrus (fig. i3.i.c). A smaller papilla representing the ventral cirrus. Setigerous lobc conical and papillose. Setac (fig. I3.I.d) all short and simple, cach with a subtcrminal swelling and a falciform tip.

Type locality : Norway.
Records : South West Africa (26/15/s) ; Cape (from 32/18/s to 33/27/s) - common in dredgings. ficurazascas

Distribution : Arctic ; temperate North and South Atlantic (s, d) ; Subantarctic (d) ; Antarctic (d) ; Bering Sea to Southern California; N. Japan.

Body elongated or short and oval. Two or more rows of spherical glandular capsules per segment. Prostomium indistinct and retractile. Buccal segment not distinct. Pharynx unarmed and followed by a muscular gizzard. Parapodia conical and uniramous. Dorsal and ventral cirri represented by papillae. Setae compound and falcigerous.

Type species: Sphaerodorum claparedii Greeff, 1866.

\section*{Key to Species}

1 Setae obviously compound with long blades (fig. 13.1.e)

\section*{S. benguellarum}
- Setae obscurely compound with short, broad blades (fig. I3.1.i) .
S. capense

Spharrodoropsio Sphaerodoridium capense (Day, I963)
capone fire Fusion (d 1974 (fig. I3.I.h-i)
Sphaerodorum capense Day, 1963a: 407, fig. 7 d-f.
Body ovoid, 2.5 mm . long with 16 setigcrs. Head retractile and appendages unknown. One pair of eyes. Body covered with larger and smaller papillae arranged in two rows per segment. Anterior row with is larger papillae across the dorsum and the posterior irregular row of very numerous small papillae. Papillae above the parapodia not obviously enlarged. Parapodia (fig. I3.I.h) wrinkled and retractile with an ovoid terminal papilla and about ten similar compound setae. Sctal blade (fig. I3.I.i) broadly tringaular, unidentate and incompletely fused to expanded shaft-head.

Type locality: Cape Peninsula, South Africa.
Records : Cape (34/8/i) - a single specimen known.
\[
\begin{aligned}
& \text { Sphaerodoridium benguellarum (Day, 1963) = \&phacrodobopwe } \\
& \text { (fig. I3.r.e-g) range. С́caszen. } \\
& \begin{array}{c}
\text { fido honcho } 19 \mathrm{~d} \\
1774
\end{array}
\end{aligned}
\]

Sphaerodorum benguellarum Day, 1963a: 407, fig. 7 abc.
Body (fig. I3.I.g) ovoid, 2.2 mm . long with 24 setigers. Head retractile and appendages unknown. One pair of eyes. Body covered with larger and smaller papillac in-irregular-rows across the dorsum. Papillae above parapodia not larger than the others. Parapodia (fig. I3.I.f) wrinkled and retractile with a larger presetal forming 8 rows of lagedia (in. I 3.
v marie nave of Surtitle papillae


Fig. 13.1. Sphaerodorum gracile. (A) Entire worm (five times life size). (B) Head (after Fauvel)
(c) Parapodium. (D) Seta. Sphaerodoridium benguellarum. (E) Seta. (F) Parapodium.
(c) Entire worm (25 times life size). Sphaerodoridium capense. (H) Parapodium. (I) Seta.
papilla and two smaller postsetal ones. About 12 setae per parapodium each obviously compound with a sword-shaped, falcigerous blade whose tip is probably unidentate (fig. I3.I.e).

Type locality : 170 metres off Lamberts Bay, South Africa.
Records: Cape ( \(32 / 18 / \mathrm{d}\) ) - a single specimen known.

Family NEREIDAE Johnston, 1865
Body elongate with numerous segments. Head with a distinct prostomium and peristomium. Prostomium with two pairs of eyes, \(0-2\) frontal antennae and two largc, biarticulate palps. Peristome usually apodous and bears four (or occasionally three) pairs of tentacular cirri. Proboscis with a pair of toothed jaws and often numerous chitinous paragnaths or soft papillae. Parapodia usually biramous after the first two. Gills seldom present. Notopodium with a dorsal cirrus and one to three lobes. Neuropodium with two lobes and a ventral cirrus. Setae mainly compound and usually include both spinigers and falcigers.

\section*{Records from southern Africa}

Ceratonereis costae (Grube)
Ceratonereis ehlersiana Claparèdc
\({ }_{27} \mathrm{Mi},{ }_{45} \mathrm{Pi}\)
Ceratonereis erythraeensis Fauvel
\({ }_{27} \mathrm{Mi}\)
\({ }_{2} 7 \mathrm{Mi}, 36 \mathrm{Ni}, 40 \mathrm{Ni}\),
\(4^{1 \mathrm{Ci}}\)
Ceratonereis hircinicola Eisig
\(-\mathrm{Ms}, \mathrm{Ne}\)
Ceratonereis keiskama Day
\(41 \mathrm{Ce}, 45 \mathrm{Nc}\)
Ceratonereis mirabilis Kinberg . . . . \(27 \mathrm{Mi}, 28 \mathrm{Mi}, 45 \mathrm{Pe}\)
Ceratonereis pachychaeta Fauvcl
\({ }_{27} \mathrm{Mi}\)
Dendronereis arborifera Peters
\({ }_{1} \mathrm{Pi},{ }_{2}{ }_{7} \mathrm{Mi}, 40 \mathrm{Pe}\),
\(\mathrm{Ne}, 4{ }^{1 \mathrm{Ce}}\)
Dendronereides zululandica Day
40 Ne
Laeonereis ankyloseta - Day (eypurny.... \()\)
\({ }_{45} \mathrm{Pi}, \mathrm{Ni}, 50 \mathrm{Cs}\)
Leonnates decipiens Fauvel
\({ }_{45} \mathrm{Pi}\)
Leonnates jousseaumei Gravicr . . . . -Ms
Micronereides capensis Day
Namalycastis indica (Southern) as Lycastis indica Southern

40 Ni
Namanereis quadraticeps (Blanchard) . . Wi (Harty -Jさeho 1974) as Lycastio quadraticeps Blanchard . . \(26 \mathrm{Wi}, 41 \mathrm{Ci}\)
Nereis (Neanthes) agnesiae Augener . . . 26 Wi
Nereis (Neanthes) caudata (Della Chiaje) . . \(41 \mathrm{Ci}, 50 \mathrm{Cs}\)
Nereis (Neanthes) agulhana Day . . . 56 Csd
as Nereis (Neanthes) cf. kerguelensis McIntosh . 50Csd
Nereis (Neanthes) indica Kinberg var. brunnea Day 45 Pi
Nereis (Neanthes) mossambica Day
\({ }_{45} \mathrm{Pi}\)
Nereis (Neanthes) operta Stimpson . . . \(25 \mathrm{Ci}, 32 \mathrm{Pi}, 36 \mathrm{Ni}, \mathrm{Ci}\), \(40 \mathrm{Ni}, 4 \mathrm{ICi}, 50 \mathrm{Cs}\)
as Nereis polyodonta Schmarda . . . \({ }_{4} \mathrm{Ci}, 26 \mathrm{Wis}\)
as Mastigonereis operta (Stimpson) . . 12 Ci
as Mastigonereis latipalpa Schmarda . . 4Ci
Nereis (Neanthes) papillosa Day . . . 55 Ca
 as Nereis glandulosa Ehlers . . . . \(\mathrm{I}_{5} \mathrm{Cs}\) 1874.)



\section*{biological Notes}

Although nereids are essentially similar in structure, they differ greatly in their habits. Most of them live on rocky shores and creep about under stones and forage actively among sea-weeds, barnacles, ascidians and other sedentary animals for they are cssentially omnivorous. Many others however burrow in sandy mud. Ceratonereis erythraensis, for example, burrows in sheltcred sandbanks; Dendronereis arborifera lives in the black mud of mangrove swamps; Namanereis quadraticeps lives at the very top of the shore in damp crevices where it associatcs with terrestrial animals such as staphilinid bettles and small centipedes; Ceratonereis keiskama and the North Atlantic \(\mathcal{N e r e i s ~ d i v e r s i c o l o r ~ l i v e ~ i n ~ w a t c r s ~ o f ~ l o w ~ s a l i n i t y ~ n e a r ~ t h e ~ h e a d s ~ o f ~ e s t u a r i e s ~ a n d ~}\) both tunncl in stiff mud. Cheilonereis is a commensal with hermit erabs. Platynereis dumerilii makes slime tubes on sea-weeds. Nereis eugeniae lives in muddy sand near the edge of the continental shelf and \(\mathcal{N e r e i s ~ p a p i l l o s a ~ i s ~ a b y s s a l . ~ T h e ~ l a s t ~ t w o ~ s p e c i e s , ~}\) however, arc exceptional as the great majority of nereids are intertidal or restricted to very shallow water.

Undoubtcdly many nereids are omnivorous. Pseudonereis variegala one of the commonest nercids on South African shores, has a varied dict and its gut may contain the appendages of amphipods, setac of other polychaetes and large picees of algac obviously bitten off with its jaws. Platynereis dumerilii seems to feed mainly on cpiphytie algae and uses its comb-like paragnaths much as a snail uses its radula.

Dendronereis is largely a detritus feeder while Nereis diversicolor is said to supplement its diet by straining plankton through mueus nets which it makes at the mouth of its burrow.

The anatomical changes leading to the sexual heteronereid phase will be deseribed later. Enormous numbers of worms take part in sexual swarming on ealm nights in southern seas; even penguins feed on Platynereis dumerilii on summer nights and in the U.S.A. Nereis succinea forms windrows inches thick on the shores of lagoons when they die after spawning.

\section*{THE MAIN DIAGNOSTIC CHARACTERS}

Important discussions of the family Nereidae will be found in Fauvel (1923) and Hartman (1954a). For most genera the useful eharacters are the shape and distribution of the paragnaths or soft papillae on the proboscis, the number of lobes in the anterior notopodia, the shape of the dorsal lobe of posterior notopodia and the distribution and nature of the setae in posterior feet.

Head structures. Apart from Micronereis which has no antennae, and the recently discovered genus Unanereis which has a single antenna, all genera have two anterior antennae, and a pair of two-jointed palps. The prostomium varies somewhat in shape and is occasionally incised between the antennac. The peristomium is scldom important cxcept in aberrant gencra such as Cheilonereis wherc it is prolonged forwards to encompass the prostomium and develops papillae or frilly lobes ventrally. The length of the tentacular cirri though often quoted is not a reliable character. The armature of the proboscis is extremcly important and if it is not everted bcfore death it must be dissected by a longitudinal ventral incision from the mouth opening back to the fourth setiger. The two sides are then forced apart so that the whole of the buccal cavity back to the insertion of the toothed jaws is visible. The jaws themselves arc not important but the nature and arrangement of the soft papillae and/or chitinous paragnaths is eharacteristic for each species, though the exact number of paragnaths is not. A normally everted proboseis (fig. I4.r) is divided into two rings by a transverse groove or constriction. There is a basal or oral ring forming the mouth opening and lips and a maxillary or distal ring where the jaws or maxillae are inserted. Each ring is subdivided by longitudinal grooves into a number of prominenees or areas. By convention each arca is given a Roman number.

\section*{On the maxillary ring :}

Area or group I is dorsal and median.
Area or group II is dorsal and lateral.
Area or group III is ventral and median.
Area or group IV is ventral and lateral.
On the oral or basal ring:
Area or group V is dorsal and median.
Area or group VI is dorsal and lateral.
Arca or group VII is ventral and median.
Area or group VIII is ventral and lateral.


Fig. 14.i. Taxonomic terms used in Nereidae. (A) Dorsal view of head with extruded proboscis.
(B) Ventral view of proboscis. (c) Heterogomph falciger. (D) Homogomph falciger. (E) Natatory seta. (G) Conical paragnath or point. (H) Bar-shaped paragnath. (I) Comblike paragnath. (J) Anterior foot. (k) Posterior foot. (L) Homogomph spiniger.
(M)

Heterogomph spiniger.

In actual fact arcas VII and VIII are usually in the form of several longitudinal ridges on the sides and ventral surface of the oral ring but when the proboscis is everted the ridges are flattened and the grooves disappear and for this reason groups VII and VIII are described together as one continuous area. The most important areas are I, V, VI and VII + VIII.

Soft papillae or ehitinous paragnaths may be entirely absent so that the proboseis is quite featureless apart from irregularities duc to contraction. Usually soft papillae or paragnaths are present on some or all of the areas. The chitinous paragnaths (also ealled denticles) vary in shape from simple conical points (fig. I4.I.g) to smooth transverse bars (fig. 14.I.h) (confined to area VI) or pectinate (comb-like) bars (fig. I4.I.i). The number of paragnaths on each area is reasonably constant for each species; thus area (or group) I may have \(0-1\) or \(I-3\) and group VI may have a ring or rosette of \(4^{-8}\). The exact number of points on VII + VIII is only important if there is only a single row and even here variations from four to eight are expected. Usually VII + VIII has two to three irregular rows of larger and smaller points or even a broad band of numerous points.

Parapodia. In most genera exeept Micronereis and Micronereides the first segment bchind the head is apodous. In Namanereis all the parapodia are uniramous since the setigerous lobe of the notopodium is absent or vestigial. In other genera the first two feet are uniramous and the rest biramous. When fully developed the parapodium consists of five lobes or ligules plus a dorsal and a ventral cirrus. The notopodium (fig. i4.I.j) consists of the dorsal eirrus and three lobes, namely the superior lobe, the setigerous lobe and the inferior lobe. The setigerous lobe of the notopodium is, however, seldom developed in posterior feet and may even be absent in anterior fect which is thus reduced to two notopodial lobes. The neuropodium eonsists of two lobes - a setigerous lobe on which pre- and postsetal lips may be prominent, an inferior lobe and the ventral eirrus. Important points to note are the number of notopodial lobes in anterior feet, the origin of the dorsal eirrus and its length relative to the superior lobe of the notopodium and modifications of the latter in posterior feet.

Gills or branchiae. Speeialised gills are seldom found except in genera which inhabit de-oxygenated environments such as mangrove swamps. Dendronereis develops a gill by the formation of vascular outgrowths from the dorsal cirrus and Dendronereides develops vaseular outgrowths from the notopodial lobes.

Setae. The setae are eharacteristically eompound and simple sctae are rare. These are usually modifieations of compound setae either by the loss of the blade or the fusion of the blade to the shaft-head. The compound setac are of four basic types aecording to the symmetry of the shaft-head and the tapering of the blade. As shown in figures i4.i.e, \(d\), e, l, m, a compound seta may be either homogomph (fig. i.e.l) and have a symmetrical shaft-head or heterogomph (fig. I4.I.d, m) and have the shaft-head produccd on one side. The blade may be falcigerous (fig. i4.I.c, d) by which is meant that it is typically short and stout with a hooked cnd often attaehed back by a tendon or it may be spinigerous (fig. I4.I.l, m) and taper slowly to a fine tip. Some genera have spinigerous setae only but most have faleigers as well. The presence or absence of homogomph faleigerous setae in the posterior notopodia is important, also the exaet strueture of the blade. These notopodial faleigers are easily lost and several feet should be examined towards the end of the body to determine whether they really are absent in specics of \(\mathcal{N e r e i s}\).

Reproduction. As the sex eells mature, the body ehanges and the worm develops into the heteronereid phase. The eyes become enlarged, the setae and parapodia in the middle of the body become modified for swimming and the worm then leaves the bottom and swims to the surface at night diseharging the eggs and sperm. The most obvious changes are the development of long natatory setac (fig. I4.i.e) with broad paddle-shaped blades, the appearanee of lamellar cxpansions on the parapodial lobes and the bases of the cirri and occasionally the appearance of notehes along the length of the dorsal cirrus. Worms in the hetcroneid phase arc difficult to identify as the notopodial falcigers may clisappear but it is claimed that the position of the first foot is of specific value. Incidentally it is not certain that all speeies do undergo a heteronereid phase.

Colour. In fresh specimens the pattern on the head or back provides a rapid method of preliminary sorting but unfortunately most of the markings fade rapidly on preservation.

General. The Nereids are a well defined group and most of them have been well deseribed. The standard procedure for identifieation should be:
(a) Note any obvious colour pattern.
(b) Cheek any special features on the head.
(c) Dissect the proboseis and write out the formula.
(d) Remove one or two anterior feet (e.g. the roth-12th) note gradual changes along the body and remove one or two posterior feet which have intact setac.
(e) Mount the feet on a slide and examine the setae.

\section*{Key to Genera}
I No anterior apodous segment behind the peristomium. Paragnaths absent (fig. 14.2.a) 2
- anterior apodous segment present. Paragnaths present or absent (fig. 14.3.b) . . 3
2 Antennac absent.
MICRONEREIS*
- Two antennae present
MICRONEREIDES (p. 298)
3 One antenna present (fig. 14.2.g). Parapodia biramous after the first two. Paragnaths on maxillary ring only . . . . . . . UNANEREIS (p. 298)
- Two antennae present. 4
4 Parapodia uniramous throughout. (Paragnaths absent) . . . . . . 5
- Parapodia biramous after the first two . . . . . . . . . 6
5 Notopodial lobe and cirrus always short
NAMANEREIS (p. 299)
- Notopodial lobe and cirrus clongated posteriorly . . . NAMALYCASTIS (p. 30I)
6 Branched gills present (fig. 14.3.a)
- Branched sills absent
7 Gills arise from the dorsal cirrus and are regularly bipinnate (fig. 14.3.d)
DENDRONEREIS (p. 301)
- Gills arise from the notopodial lobes and are pinnately branched (fig. 14.3.j)
DENDRONEREIDES (p. 302)
8 Chitinous paragnaths entirely absent 5. ven weak
- Chitinous paragnaths present, well deuclofrat. . . . . . . . 12
9 Proboscis with fleshy papillac (fig. 14.11.k.l) . . . . . . . . 10
- Proboscis without fleshy papillae. Superior lobe of notopodium expanded in posterior feet . . . . . . . . . . LEPTONEREIS* (p. 305)
10 Fleshy papillae on both rings of the proboscis . . . . . . . . II
- Fleshy papillae on the maxillary ring only. Transverse rows of papillae on the ventra of anterior segments.
AUSTRALONEREIS*
- Fleshy papillac on the oral ring only . . . . . LAEONEREIS (p. 303)
II All sctae are homogomph spinigers . . . . . . . TYLONEREIS*
- Setae include both spinigers and falcigers. Ventral cirri double from the third foot
. CERATOCEPHALE*
12 Paragnaths all separate and conical (fig. 14.i.g) . . . . . . . 13
- Paragnaths of group VI are transverse bars (fig. 14.1.h) . . . . . . 14
- Paragnaths are pectinate bars (fig. 14.I.i) . . . . PLATYNEREIS (p. 305)

13 Chitinous paragnaths present on some or all groups of both the basal and maxillary rings
- Chitinous paragnaths present on the basal ring only . . . EUNEREIS* (p. 323)
- Chitinous paragnaths present on the maxillary ring only . . . . . . 14

W

14 Basal ring of proboscis smooth. Setae normal CERATONEREIS (p. 324)
- Basal ring of proboscis usually with soft papillae. Falcigers with saw-edged blades
(fig. 14.11.t) . : . . . . . . . LEONNATES (p. 328)
\({ }^{5} 5\) Superior lobe of posterior notopodia expanded (fig. 14.12.f) PSEUDONEREIS (p. 331)
- Superior lobe of posterior notopodia not expanded PERINEREIS (p. 333)

\section*{MICRONEREIDES Day, 1963}

Small Nereidae generally similar to Micronereis but possessing two antennae. Proboscis without paragnaths but with a pair of toothed jaws. Prostomium with a pair of antennae and a pair of biarticulate palps. Two pairs of tentacular cirri. No apodous segment behind the peristome. First two segments uniramous, subsequent ones biramous. Setae are all homogomph spinigers.

Type species: Micronereides capensis Day, 1963.

and a pair of toothed jaws on the maxillary ring. The first two pairs of parapodia uniramous but the rest biramous. Setae inelude both spinigers and falcigers.

Type species: Unanereis macgregori Day, 1962.

\section*{Unanereis macgregori Day, 1962}
(fig. 14.2.e-k)
Unanereis macgregori Day, 1962 : 637, fig. 3 a-g.
Length about 60 mm . for 120 segments. Prostomium (fig. I4.2.g) roughly oval. A single slender median antenna between a pair of long palps. Tentaeular eirri very long and slender. Proboseis with group \(I=0, I I=I 2, I I I=5, I V=12\), \(\mathrm{V}=\mathrm{o}, \mathrm{VI}=\mathrm{a}\) broad fleshy lobe, VII + VIII \(=\mathrm{o}\). Anterior parapodia (fig. I4.2.j) with two notopodial lobes and a very long dorsal eirrus. Setigcrous lobe of neuropodium with a long presctal lip. Posterior parapodia (fig. I4.2.k) with the superior lobe of the notopodium aeting as the cirrophore of the dorsal cirrus and the inferior lobe of the neuropodium reduced to a ventral papilla on the sctigerous lobe. Antcrior setae include heterogompl and homogomph spinigers and heterogomph falcigers with long blades. Posterior notosetac include homogomph spinigers and hemigomph faleigers (fig. 14.2.h) with bidentate apices. Postcrior neurosetae include homogomph and hetcrogomph spinigers and heterogomph faleigers (fig. 14.2.i) with blades similar to those in the notopodia.

Type locality: Diego Suarez, Madagascar.
Records: Madagascar (i) - a single spceimen known.
NAMANEREIS Chamberlin, 1919
Prostomium with two antennace and two biartieulate palps. Peristome with three or fedt
Nozalicito four* pairs of tentacular eirribut without parapodia. Proboscis withoutchitinousparagnaths but sometimes with soft papillae. Parapodia sesquiramous throughout, the setigerous notopodial lobe being absent though the notopodial acieulum remains and sometimes onc to two setac. Dorsal cirrus and superior lobe of notopodium always short. Neuropodia with two bundles of setae, the superior ones being spinigerous and the inferior ones falcigerous.

Type species: Lycastis quadraticeps Blanchard, 1849 .
Namanereis quadraticeps (Blanchard, 1849)
(fig. 14.2.1-0)
Lycastis quadraticeps Blanchard, 1849 : 25 ; Augener, 1918: 214, pl. 2 fig. 35, pl. 3 fig. 68, text-fig. 17 .
A slender yellowish species about 25 mm . long with 70 segments. Prostomium (fig. I 4.2.l) about as broad as long with small antennac and short, broad palps. Four pairs of short tentacular cirri. Proboseis without chitinous paragnaths or soft papillae. Parapodia (fig. 14.2 m ) almost uniramous each with a small dorsal cirrus shorter than the setigerous lobe and about as long as the slender ventral cirrus.

\footnotetext{
* Hartman (1959a) in a recent review of the genus states that it has three pairs of tentacular cirri. Chamberlin infers that there are four and this is certainly the case in \(\mathcal{N}\). quadraticeps from Southern Africa.
}


Fig. 14.2. Micronereides capensis. (A) Hcad with proboscis extruded. (B) Middle foot.
(c) Homogomph spiniger. Unanereis macgregori. (E, F) Dorsal and ventral views of proboscis. (G) Anterior end. (H) Notopodial falciger. (I) Neuropodial falciger. (J) Antcrior foot. (k) Posterior foot. Namanereis quadraticeps. (L) Head. (m) Eighteenth foot. (N) Heterogomph spiniger. (o) Heterogomph falciger. Namalycastis indica. (P) Anterior foot. (Q) Posterior foot. (R) Falciger. (s) Head.

Notosetae represented by an aciculum and one to three heterogomph spinigers. Neurosctae include one to two spinigers (fig. I4.2.n) and several heterogomph falcigers (fig. I4.2.0) with coarsely toothed blades.

Type locality: Chiloe, Chile.
Records: South West Africa (26/15/i) to the Cape (33/18/i) ; a few speeimens under stoncs on the shore.

Distribution: Southern California (i); North Carolina (e); Senegal (s) doubtful ; Chile (e, i) ; Magellan area (i); New Zealand (i) ; Japan.

\section*{NAMALYCASTIS Hartman, 1959}

Prostomium with two antennae and two biartieulate palps. Pcristome with four pairs of tentacular cirri, arranged \(2: 2\). Proboscis without chitinous paragnaths or soft papillae. Parapodia uniramous or sesquiramous, the notopodium being reduced to an aeiculum and sometimes one or two notosetae. Dorsal cirrus fused to the end of the dorsal lobe whieh is often enlarged in posterior feet. Neuropodium with a single lobe bearing both spinigcrous and falcigerous sctae.

Type species: Paranereis abiuma Müller [in] Grube, r87ı.
Namalycastis indica (Southern, 1921)
(fig. I4.2.p-s)
Lycastis indica Southern, 1921: 578, pl. 19 fig. 2.
Length up to 30 mm . for 200 scgments . Prostomium (fig. I4.2.s) quadrangular and grooved though not ineiscd between the widely separated antennae. Proboscis with neither papillae nor paragnaths. Palps short and stout. Peristome with four short tentaeular cirri arranged 2: 2. Anterior feet (fig. 14.2.p) with a dorsal cirrus representing the superior lobe with the true dorsal cirrus fused to its end, a single setigerous lobe with two acicula and one bundle of setae and a small ventral eirrus. Dorsal eirri elongate and rather flattened in posterior feet(fig.14.2.q). Notopodial setae usually absent, though one to two spinigers may be present here and there. Ncuropodial falcigers (fig. 14.2.r) with very long, straight, blunt blades.

Type locality: Chilka Lake, India.
Records: Natal (29/3I/e, 28/32/e) to Mocambique (23/35/e) - a few specimens in muddy sand of estuaries.

Distribution : India (c); Macassar (c) ; Andamans (e).

\section*{DENDRONEREIS Peters, 1854}

Prostomium deeply cleft between the two antennae. Two biarticulate palps. Peristome with four pairs of tentacular eirri but no parapodia. Proboseis without chitinous paragnaths but sometimes with soft papillae. The first two parapodia
uniramous, the rest biramous. The dorsal cirri of a number of middle feet bear pinnate gills. Neuropodia of several anterior feet multifid but posterior feet with reduced parapodial lobes. The setae are all homogomph spinigers.

Type species: Dendronereis arborifera Peters, 1854.

\section*{Dendronereis arborifera Peters, 1854}
(fig. I4.3.a-f)
Dendronereis arborifera Peters, 1854: 612; Fauvel, 1919: 399, pl. 15 figs. 5-8.
Body (fig. 14.3.a) slender, up to 85 mm . long. Colour pale with red gills when alive. Prostomium (fig. i4.3.b) deeply cleft between the antennae. Palps short, and fused to the divided prostomium. Tentacular cirri vagucly jointed distally. Proboscis without paragnaths or soft papillac. Anterior feet (fig. 14.3.c) with a simple tapered dorsal cirrus. Notopodium with three lobes. Neuropodium with four postsetal lobes and later one or two presetal ones. Ventral cirrus short. Bipinnately arranged branchial filaments appear on the dorsal cirri from about the 12 th foot and continue to the 24 th foot. Branchiferous feet (fig. 14.3.d) with a three-lobed notopodium ; setigerous lobe of neuropodium subdivided to form six or later four lobes. Posterior feet (fig. I4.3.f) simplified, each with a slender dorsal cirrus, a bilabiatc notopodium, a conical bilabiate neuropodium and a ventral cirrus. Setae are all homogomph spinigers (fig. I4.3.e), those of the neuropodium having shorter blades.
Type locality: Mocambique.
Records: Eastern Cape (33/27/e) and Natal (28/32/e) to Mocambique (25/35/e) - common in black mud among mangroves.

Distribution: Mocambique (e) ; Madagascar (e).
DENDRONEREIDES Southern, 1921
Prostomium with two antennae. Peristomc without parapodia. Proboscis without chitinous paragnaths but with soft papillae on both basal and maxillary rings. Parapodia biramous after the first two. In the anterior region the superior lobe of the notopodium is divided to form a simple serics of branchial filaments. Inferior lobe of neuropodium absent. Feet reduced and simplificd posteriorly.

Type species: Dendronereides heteropoda Southern, i92 i.
Dendronereides zululandica Day, 195 1
(fig. 14.3.g-1)
Dendronereides zululandica Day, 1951: 30, fig. 5 a -j.
Length about 70 mm . by I 5 mm . for 100 segments. Prostomium (fig. \(14.3 . \mathrm{g}\) ) slightly grooved between the two antennae. Peristome without parapodia but cirrophores large. Tentacular cirri short and arranged so as to suggest dorsal and ventral cirri of two partially fused segments. Proboscis (fig. 14.3.h, i) with a few
large low papillae on the basal ring and many small soft papillae on the maxillary ring. Anterior feet ( 3 rd to 7 th) with at first two and later three notopodial lobes and a dorsal cirrus of the same length. Neuropodium with a single broad sctigerous lobe, no inferior lobe and a very short ventral cirrus. Branchiae (fig. I4.3.j) from the 8th to 3 th foot, formed by four pinnate divisions of the superior lobe of the notopodium. Posterior feet (fig. I4.3.k) with reduced and simplified parapodial lobes; the notopodial lobes being reduced to two and then one, and the neuropodium to a single conical lobe. Notosetae are all homogomph spinigers. Neurosetae include both spinigers and falcigers (fig. 14.3.1) with straight, blunt blades.

Type locality: St. Lucia, Zululand.
Records: Natal (28/32/e) and Mocambique (26/32/e) - locally common in mud of tropical estuaries.

Distribution : Endemic.

\section*{LAEONEREIS Hartman, 1945}

Prostomium with two antennae. Peristome without parapodia. Proboscis without chitinous paragnaths but with fleshy papillae on the oral ring. Parapodia biramous cxcept for the first two. In posterior feet the superior lobe of the notopodium is not expanded and lamellar. Setae include both spinigers and falcigers.

Type species: Nereis culver Webster, 1879.

(fig. \(14 \cdot 3 \cdot \mathrm{~m}-\mathrm{t}\) )
Laeonereis ankyloseta Day, 1957: 83, fig. 5 a-j.
Body up to 50 mm . long with a pattern of brown spots on anterior segments. Prostomium (fig. i4.3.0) as broad as long with a median groove. Tentacular cirri short. Proboscis (fig. \(14.3 . \mathrm{m}, \mathrm{n}\) ) with a large soft transverse lobe on VI and row of six soft papillac on VII and VIII. Maxillary ring smooth. Anterior feet (fig. I4.3.p) with three notopodial lobes and a slightly longer dorsal cirrus. In posterior feet (fig. I4.3.q) the notopodium still has three lobes but the intermediate lobe may be very small, and the dorsal cirrus is long. Setigcrous lobe of the neuropodium with a long postsetal lip. Notosctac are spinigers throughout. Neuropodial falcigers have long straight blades anteriorly (fig. i4.3.r), but shorter ones posteriorly with a tendon at the tip (fig. \(14 \cdot 3 \cdot \mathrm{~s}\) ). Posterior neuropodia also have one to three enlarged simple setae (fig. I4.3.t) formed from enlarged falcigers in which the blade has become fused to the shaft. The tip is hammer-shaped and attached back by a tendon.

Type locality 'Durban, South Africa.) Perzeo'n Geol
Records: False Bay (32/I8/i, s) to Natal (29/31/i) and Mocambique (23/35/s). Common on sheltered sandbanks.

Distribution : Endemic.

\footnotetext{
* See footnote, page 323 .
}


Fic. 14.3. Dendronereis arborifera. (A) Entire worm (twice natural size). (B) Head. (C) Anterior view of prebranchial foot (fifth). (D) Anterior view of branchiferous foot (18th). (E) Homogomph spiniger. (F) Posterior foot. Dendronereides zululandica. (c) Head. ( \(\mathrm{H}, \mathrm{I}\) ) Dorsal and ventral views of proboseis. (J) Branchiferous foot. (к) Posterior foot.
(土) Falciger. Laeonereis ankyloseta. ( \(\mathrm{M}, \mathrm{N}\) ) Dorsal and ventral views of proboseis. (o) Head.
(P) Anterior foot (Ioth). (Q) Posterior foot. (R) Anterior falciger. (s) Posterior falciger.
(т) Enlarged simple falciger.

LEPTONEREIS Kinberg, 1866
Prostomium with two antennac. Peristome without parapodia. Proboscis without chitinous paragnaths or soft papillae. Parapodia biramous except for the first two. The superior lobe of the notopodium is expanded and lamellar in posterior feet. Notosetae consist of homogomph spinigers only. Neuropodial falcigers with long slender blades.

Type species: Leptonereis laevis Kinberg, i866. No South African representative.

\section*{PLATYNEREIS Kinberg, 1866}

Prostomium with two antennae. Peristome without parapodia. Proboscis with chitinous paragnaths in the form of minute pectinate bars which are present on all groups except I, and V. Parapodia biramous except for the first two. Sctae include both spinigers and falcigers. Notopodial falcigers usually present.

Type species : Platynereis magalhaensis Kinbcrg, 1866.

\section*{Key to Species}

I Notopodial falcigers absent in the adult and only one or two in juveniles . P. australis
- Notopodial falcigers present in posterior feet . . . . . . . . 2

2 Notopodial falcigers numerous from about the fifth foot and have short, smooth, strongly hooked apices (fig. 14.4.c).
P. calodonta
- A few notopodial falcigers appear in middle feet. The long blade has a hooked tip with a terminal knob (fig. I4.4.j)
P. dumerilii
- A few notopodial falcigers appear in middle feet. The blade is long but the hooked tip is smooth (fig. 14.4.1)
P. isolita

Platynereis australis (Schmarda, 1861)
\[
\text { (fig. } 14 \cdot 4 \cdot \mathrm{~m} \text { ) }
\]

Heteronereis australis Schmarda, 1861: 101.
Platynereis magalhaensis Kinberg, 1866 : 177 ; Fauvel, 1916 : 434, pl. 8 figs. \(21-22\); Monro, 1939: 106, fig. 37.
Platynereis australis: Ramsay, 1914: 45; Day, 1953: 429.
Length up to 105 mm . in subantarctic specimens but about 30 mm . in South African specimens. Characters similar to those of \(P\). dumerilii except that notopodial falcigers are absent in the adult and the dorsal cirri and notopodial lobes of postcrior feet arc longer (fig. \(14.4 . \mathrm{m}\) ).

Type locality : Auckland, New Zealand.
Records: South West Africa (26/15/i) ; Cape (from 29/i6/i to 34/19/i).
Distribution : Subantarctic (i, s).

Platymereis calodonta Kinberg, 1866
(fig. \(14 \cdot 4 \cdot \mathrm{a}-\mathrm{c}\) )
Platynereis calodonia Kinberg, 1866: 177.
Platynereis hewitti Day, 1934: 44, fig. 9 a-f.
Length about 30 mm . ; colour greenish. Prostomium longer than broad with a pair of swollen palps. Proboscis with comb-like paragnaths distributed as in other species of the genus but more strongly marked. Tentacular cirri long. Anterior feet (fig. I 4.4.a) with two rounded notopodial lobes and a longer dorsal cirrus. Posterior notopodia (fig. I 4.4.b) with an enlarged superior lobe bearing a long dorsal cirrus and a smaller inferior lobe. A few notopodial spinigers in all feet. Numerous notopodial falcigers present from about the fifth foot onwards. Each has a short, brown, strongly hooked bladc whose tip is attached back by a tendon to the base (fig. I4.4.C). Neurosetae include both spinigers and falcigers, the latter having obvious tendons attached to the tips of the blades.

Type locality : Cape of Good Hope.
```

and Poccionbuque

```

Records: From False Bay (34/r8/i, s) to Natal (29/3I/i)/- common among algac on rocky shores.

Distribution: Endemic.

Platynereis dumerilii (Audouin \& Milne-Edwards, 1833) (fig. I4.4.d-k)
Nereis dumerilii Audouin \& Milne-Edwards, 1834: 196.
Platynereis dumerilii: Fauvel, 1923: 359, fig. 141 a-f.
Body (fig. I4.4.d) up to 45 mm . long. Colour greenish often with a pale dorsal stripe. Prostomium longer than broad with large swollen palps. Proboscis (fig. I4.4.e, f) with comb-like paragnaths distributed as in other spccies of the genus. Tentacular cirri long. Anterior feet (fig. \(14.4 . \mathrm{g}\) ) with two large rounded notopodial lobcs, a minute intermediate lobe and a long dorsal cirrus. In postcrior feet (fig. 14.4.i) there are two conical notopodial lobes and a longer dorsal cirrus. Notosetae includc numerous spinigers and, from middle feet onwards, two to three homogomph falcigcrs (fig. I \(4 \cdot 4 . \mathrm{j}\) ). The blade is elongate and sharply bent back at the tip which has a terminal knob. Neurosetae include spinigers (fig. I4.4.1) and falcigers (fig. I4.4.k), the latter having blades whose curved tips are attached back by short tendons. In the heteronereid stage the first modified foot of the male is the 15 th and of the female the 18 th.

Type locality: France.
Records : South West Africa (22/14/i and 26/i5/i) ; around the Cape (34/i8/i, s) to Natal ( \(29 / 3^{1} / \mathrm{i}\) ) - very common, forming mucous tubes among algac.

Distribution : Cosmopolitan in temperate and tropical waters.

\section*{Platynereis isolita Gravier, Igor}

> (fig. 14•4.1)

Platynereis isolita Gravier, 1901: 197, pl. 12 fig. 53, text-figs. 203-206.
Length about 25 mm . This species is essentially similar to \(P\). dumerilii but differs in the shape of the notopodial falcigers. Whereas in \(P\). dumerilii the blade has a knob at the tip, in \(P\). isolita the tip is smoothly curved (fig. i4.4.1).

Type locality: Red Sea.
Records: Mocambique (26/32/i, 23/35/e) ; Madagascar (s) - a few specimens.
Distribution: Red Sea (i) ; Ceylon; Madras; Andaman Is.

\section*{NEREIS Linnaeus, I 758}

Prostomium with two antennae. Peristomial segment apodous. Proboscis with conical chitinous paragnaths on both the basal and the maxillary ring. The first two feet are uniramous, the rest biramous. Both spinigers and falcigers are usually present, but simple setae are either absent or very rare.

Type species: Nereis pelagica Linnaeus, 1758.

\section*{Key to Species}

I Notopodial falcigers present on posterior fect (subgenus Nereis) . . . . . 2
- Notopodial falcigers absent from posterior feet (subgenus Neanthes) . . . . If 12

2 All paragnaths as very minute, pale granules. A broad band on VII and VIII N. (Nereis) granulata (p. 309)
- Paragnaths of normal size with not more than four or five rows on VII and VIII . 3

3 Groups VII and VIII as a single row except in juveniles where it may be double . 4
- Groups VII and VIII as an irregular band two to four deep . . . . . 8

4 Notopodial falcigers with one to three large teeth . . . . . . . 5
- Notopodial falcigers either smooth or lightly serrated . . . . . . 6

5 Prostomium deeply notched between the antennae . . N. (Nereis) falcaria (p. 309)
- Prostomium not notched . . . . . . N. (Nereis) jacksoni (p. 311)

6 Superior lobe of notopodium expanded and lamellate in posterior fect
N. (Nereis) coutierei (p. \(3^{11}\) )
- Superior lobe of notopodium not expanded

7
7 Notopodial falcigers with very short, conical apices . . N. (Nereis) eugeniae (p. 312)
- Notopodial falcigers with long, almost straight blades . N. (Nereis) trifasciata (p. 312)

8 Apices of notopodial falcigers with one to three large tecth N. (Nereis) persica (p. 314)
- Apices of notopodial falcigers either smooth or lightly serrate

9 Anterior notopodia with three lobes. (Superior lobe of posterior feet expanded and lamellate with the cirrus terminal) . . . . N. (Nereis) lamellosa (p. 314)
- Anterior notopodia with two lobes 10
Io Posterior ncurosetac include a simple hook (fig. 14.w) . N. (Nereis) gilchristi (p. \({ }^{15}\) ) \({ }^{15}\) )
- Posterior ncurosetac without simple setae . . . . . . . . 11

1 I Apices of notopodial faleigers as smooth cones . . N. (Nereis) pelagica (p. 315)
- Apices of notopodial falcigers serrate and the ends bent and attached by a ligament N. (Nereis) falsa (p. 317)

12 Paragnaths of groups V and VI separate and VII and VIII as a single row I 3
- Paragnaths of V and VI separate and VII and VIII forming a band two to four deep 16
- Paragnaths of basal ring forming a continuous band which is broad ventrally . . 20


Fig. 14.4. Platynereis calodonta. (A) Anterior foot. (B) Posterior foot. (C) Homogomph falcigers. Platynereis dumerillii. (D) Entire worm. (E, F) Dorsal and ventral views of proboscis. (G) Anterior foot. (H) Hetcrogomph spiniger. (I) Posterior foot. (J) Notopodial falciger. (к) Neuropodial falciger. Platynereis isolita. (土) Notopodial falciger. Plalynereis australis. ( M ) Posterior foot.

13 Lobes of middle feet papillose. No brown bar on setiger 2. Group VI with two to three pale paragnaths . . . . . . .N. (Neanthes) papillosa (p. 317)
- Lobes of middle feet not papillose . . . . . . . . . 14

14 More than one paragnath on group VI. A brown bar on setiger 2 . . . . 15
- One paragnath on group VI. No brown bar on setiger 2. Setigerous lobe of anterior neuropodia with a digitiform presetal lip . . . N. (Neanthes) kerguelensis*
15 Two notopodial lobes on anterior feet. Paragnaths on group \(\mathrm{I}=\) a line of one to six
N. (Neanthes) unifasciata (p. 318)
- Three notopodial lobes on anterior feet. Paragnaths on group I \(=0\)
N. (Neanthes) agulhana (p. 318)

16 Group VI with one large point . . . . N. (Neanthes mossambica (p. 318)
- Group VI with several points 17
17 Anterior notopodia with two lobes. Superior lobe of posterior feet not expanded
N. (Neanthes) willeyi (p. 320)
- Anterior notopodia with three lobes 18
18 Superior lobe of posterior feet not expanded. Peristome brown N. (Neanthes) indica brunnea (p. 320)
- Superior lobe of posterior feet expanded

19 Falcigers entirely absent. Spinigers with short blades . N. (Neanthes) agnesiae (p. 321)
- Neuropodial falcigers present . . . . . N. (Neanthes) succinea (p. 321)

20 Superior lobe of posterior feet expanded . . . N. (Neanthes) caudata (p. 32I)
- Superior lobe of posterior feet elongate . . . . N. (Neanthes) operta (p. 323)

\section*{Nereis (Nereis) granulata Day, 1957}
(fig. I \(4 \cdot 5 \cdot \mathrm{a}-\mathrm{g}\) )
Nereis granulata Day, 1957: 82, fig. 4 a-g.
A small species 26 mm . long for 50 scgments with brown bands on setigers 2 and 3 and spots on other segments (fig. I \(4.5 . \mathrm{a}\) ). All paragnaths (fig. i \(4.5 . \mathrm{b}, \mathrm{c}\) ) minute, pale and granular. Group I with a patch of 6, II a wedgc-shaped area, III a small oval patch, IV a wedgc, V absent, VI a rosette of about 6, VII and VIII a very broad ventral band. Anterior fect (fig. 14.5.d) with two notopodial lobes and a longer dorsal cirrus. Postcrior fect similar but the dorsal cirrus is relatively longer (fig. I 4.5.e). Posterior feet bear one to two notopodial falcigers (fig. 14.5.f) with straight conical blades lightly serrate at the basc. Neuropodial falcigers (fig. 14.5.g) have rather straight blades.

Type locality : Inhaca Is., Delagoa Bay.
Records: Mocambique (26/32/i) - a singlc record.
Nereis (Nereis) falcaria (Willey, 1905)
(fig. \(14.5 . h-m\) )
Ceratonereis falcaria Willey, 1905: 272, pl. 4 fig. 89.
Nereis kauderni Fauvel, \(1921: 8\), pl. I figs. \(1-7\).
Nereis falcaria: Knox, 1951 : 215 , pl. 44 figs. 1-5.
\[
\begin{aligned}
& =\text { Nijactancur falcara } \\
& \text { fiok trarlin }-\sin C_{0} .1974
\end{aligned}
\]


A small slender species up to 30 mm . long with a pattern of broken brown bars anteriorly (fig. 14.5.h). Prostomium decply notehed between the antennae; tentacular cirri short. Proboscis (fig. \(14.5 . \mathrm{i}, \mathrm{j}\) ) with group \(I=0\), II as a double row of


Fig. 14.5. Nereis granulata. (A) Anterior end. (B, C) Dorsal and ventral views of proboscis. (D) Anterior foot. (E) Posterior foot. (F) Notopodial falciger. (G) Neuropodial falciger. Nereis falcaria. (H) Head. ( \(\mathrm{I}, \mathrm{J}\) ) Dorsal and ventral views of proboscis. (K) Anterior foot. (L) Posterior foot. (M) Notopodial falciger. Nereis jacksoni. (N) Head. (O, p) Dorsal and ventral views of proboscis. (Q) Anterior foot. (R) Posterior foot. (s) Notopodial falciger. (T) Neuropodial falciger.
about 8 , III as a scattered group of \(5-10\), IV as a wedgc-shaped group of \(6-10\), \(\mathrm{V}=0, \mathrm{VI}\) is a close-set cluster of \(3-4\), VII and VIII is a single row of about 8 points. All paragnaths may be pale and very difficult to sce. Notopodia have two lobes in all feet (figs. \(14.5 \cdot \mathrm{k}, \mathrm{l}\) ), but the superior one is always small and decreases in size posteriorly. Dorsal cirri longer than notopodial lobes. In the posterior notopodia therc are onc to two large homogomph falcigers (fig. \(14.5 . \mathrm{m}\) ) whose blades have two to three large teeth.

Type locality: Ceylon.
Records : Cape (34/18/i, 34/19/i, 34/20/i) and Mocambique (26/32/i) - occasional specimens.

Distribution : Indo-wcst-Pacific (i, s) ; Ncw Zcaland (i, s).

Nereis Jacksoni Kinberg, 1866: 169.
Nereis jacksoni: Augener, 1922: 18; Fauvel, 1932: 97 ; Fauvel, 1953: 189, fig. 95 e.
A small species, measures \({ }^{1} 5-25 \mathrm{~mm}\). Prostomium (fig. I \(4 \cdot 5 . \mathrm{n}\) ) not notched anteriorly. Tentacular cirri short. Proboscis (fig. \(14.5 .0, \mathrm{p}\) ) with group \(\mathrm{I}=0\), II as a doublc row, III as an oval patch of \(4^{-6}\) sometimes lacking, IV as a wedgc-shaped group, \(\mathrm{V}=\mathrm{o}\), VI as a small close-set group of \(3-6\), VII and VIII as a single row of 7-8. All paragnaths may be pale and difficult to see. Antcrior feet (fig. 14.5.q) with two notopodial lobes and a longer dorsal cirrus. The supcrior lobe of the notopodium is always small and in posterior feet (fig. 14.5.r) the superior lobe is even smaller. The notosctac are homogomph spinigers antcriorly but in postcrior notopodia thesc arc replaced by onc to two stout falcigers (fig. \(14 \cdot 5 \cdot 5\) ) whose dark blades have two to threc large teeth. In the neuropodia the hetcrogomph falcigers (fig. 14.5.t) have slightly curved blades.

Type locality: Port Jackson, Australia.
Records: Cape (34/24/d, 34/25/s, 33/28/s) ; Natal (30/30/s) and Mocambique (26/32/i, 24/34/s ; Madagascar (s) - common in tropical waters.

Distribution: Indo-west-Pacific (i, s) ; Rcd Sea (s) ; South Australia; New South Walcs (i, s) ; Chatham Is. (i).

\section*{Nereis (Nereis) coutierei Gravier, 1899}
(fig. 14.6.a-e)
Nereis coutierei Gravier, 1899: 237; Gravier, 1901: 167, pl. in figs. 38-41, text-figs. 166-172.
A small spccics about 25 mm . long. Proboscis (fig. 14.6.a, b) with group \(\mathrm{I}=\mathrm{o}-\mathrm{I}\), II \(=2-6\) in a linc, III is a small irregular group, IV is a triangular group, \(V=0\), VI is a close-set cluster of about 5 , VII and VIII is a single row of about 8 points. Anterior feet (fig. 14.6.e) have two notopodial lobes and a longer dorsal cirrus. In
posterior feet (fig. I 4.6.d) the superior lobe of the notopodium is expanded and the dorsal cirrus is long. Posterior notosetae include one to two homogomph faleigers (fig. i4.6.e) with straight, smooth apices.

Type locality: Red Sea.


Records: Natal (30/30/i, 29/3 i/i, 27/32/i) and Moeambique (26/32/i) - oceasional specimens on rocky shores.

Distribution : Suez Canal, Red Sea (e, i, s) and tropical Indian Ocean.

Nereis (Nereis) trifasciata Grube, 1878
(fig. i4.6.1-p)
Nereis (Lycoris) trifasciata Grube, 1878: 74.
Nereis trifasciata: Fauvel, 1953: 183, fig. 91 d-e.
Nereis unifasciata: (non Willey) Fauvel, 1921 : 7, pl. 1 figs. 8, 9.
Length \(15-30 \mathrm{~mm}\). Prostomium rather long. Proboscis (fig. I4.6.1, m) with group \(\mathrm{I}=\mathrm{o}-\mathrm{r}, \mathrm{II}=\) a double row, \(\mathrm{III}=6-12\) in an oval, \(\mathrm{IV}=\) a long triangular group, \(\mathrm{V}=0, \mathrm{VI}=\) a elosc-set group of \(3-9\), VII and VIII \(=\) a single row of 8 except in juveniles where there may be second row. Tentacular eirri long. Anterior feet (fig. 14.6.n) with two notopodial lobes and a slightly longer dorsal eirrus. Posterior feet (fig. i4.6.0) very similar but the superior lobe of the notopodium is slightly expanded. From the middle of the body onwards, one to two homogomph faleigers accompany the spinigers in the notopodium. They have straight elongate blades slightly scrrated near the base (fig. i4.6.p).

Type locality: Philippine Islands.
Records: Mocambique (26/32/i) ; Madagascar (s) - rare.
Distribution: Tropical Indo-west-Pacific (i); Red Sea (i, s); Madagasear (i); Juan Fernandez Is.

Nereis (Nereis) eugeniae (Kinberg, 1866)
(fig. 14.6.f-k)
Nicon Eugeniae Kinberg, 1866: 178.
Nereis eugeniae: Ehlcrs, 1897: 67, pl. 4 figs. 94-105; Monro, 1936: 136 ; Day, 1960: 322.
Length of S. Ameriean specimens up to 140 mm . and of S. African specimens 30 mm . Anterior part of prostomium free from base of palps. Eyes small. Proboscis (fig. 14.6.f, g) with group \(I=0\), \(I I=3^{-6}\) in a wedge, \(I I I=0-3\), \(I V=\) a wedge of about \(6-\mathrm{IO}, \mathrm{V}=0, \mathrm{VI}=\) a transverse group of \(3-5\), VII and VIII \(=\) a single row of \(4-6 .\). Tcntacles sliort. Anterior feet (fig. 14.6.h) have two notopodial lobes and a rather short dorsal eirrus. Posterior feet (fig. I4.6.i) are similar but all lobes are more pointcd. The superior lobe of the notopodium is long and pointed, not expanded and bcars a delieate dorsal eirrus on its upper margin. Anterior notosetae are homogomph spinigers and anterior neurosetae include spinigers plus


Fig. 14.6. Nereis coutierei. (A, B) Dorsal and ventral vicws of proboscis. (c) Anterior foot. (D) Posterior foot. (E) Notopodial falciger. Nereis eugeniae. (F, G) Dorsal and ventral views of proboscis. (H) Anterior foot. (1) Posterior foot. (J) Notopodial falciger. (k) Neuropodial falciger. Nereis trifasciata. (L, m) Dorsal and ventral views of proboscis. (N) Anterior foot. (o) Posterior foot. (P) Notopodial falcigcr. Nereis persica. (Q, R) Dorsal and ventral views of proboscis. (s) Anterior foot. (T) Posterior foot. (U) Notopodial falciger. (v) Neuropodial falciger.
falcigers with long straight blades (fig. I4.6.k). Posterior notosetae few, often limited to two homogomph falcigers with short conical blades (fig. i4.6.j). Posterior neurosetae similar to anterior ones.

Type locality: Rio de la Plata, Argentine.
Records: Western Cape (32/17/d, 32/18/d, 33/18/d, 34/17/d) - several specimens.
Distribution: Chile ( \(41^{\circ} \mathrm{S} . \mathrm{i}, \mathrm{s}\) ), Argentine and Subantarctic, e.g. (Magellan area (i, s), Falkland Is. (i, s), Kerguelcn Is. (s)).

Nereis (Nereis) persica Fauvel, I9II
(fig. I4.6.q-v)
Nereis zonata var. persica Fauvel, 1911: 385, pl. 19 figs. 10-16, 18-23, pl. 20 figs. 24, 25. Nereis zonata-persica: Fauvel, 1953 : 187, fig. 95 f-h.

Length \(15-30 \mathrm{~mm}\). Prostomium broadly triangular. Proboscis (fig. i4.6.q, r) with group \(\mathrm{I}=0-1\), II \(=\) a double row, III \(=\) a few scattered points, \(\mathrm{IV}=2-3\) rows, \(V=0, V I=\) a cluster of \(6-\mathrm{ro}, \mathrm{VII}\) and \(\mathrm{VIII}=\mathrm{a}\) broad band with an anterior row of large points and two to threc posterior rows of finc points. Anterior fect (fig. I 4.6.s) have two notopodial lobes and a long dorsal cirrus. Postcrior feet (fig. I4.6.t) arc similar but both notopodial lobes are smaller and more slender. Postcrior notosetae include one to two dark homogomph falcigers (fig. I4.6.u) which have blades with two to three blunt teeth. Neuropodial falcigers (fig. I4.6.v) have curved blades with a slight tendon at the tip.

Type locality: Bahrain, Persian Gulf.
Records: Cape (3I/29/s) ; Natal (29/3I/s) and Mocambiquc (24/34/s, 23/35/s) ; Madagascar (s) - sevcral specimens.

Distribution : Red Sea; tropical Indo-west-Pacific (i, s).

\section*{Nereis (Nereis) lamellosa Ehlcrs, 1868}
(fig. \(14 \cdot 7 \cdot \mathrm{a}-\mathrm{e}\) )
Nereis lamellosa Ehlers, \(1868: 564\), pl. 22 figs. \({ }^{10-17}\); Fauvel, \(1936: 36\).
Length \(20-30 \mathrm{~mm}\). Head and anterior scgments pale brown; prostomium as broad as long ; tentacular cirri rather short. Proboscis (fig. 14.7.a,b) with group I \(=\) \(\mathrm{I}-3, \mathrm{II}=\) an oblique double row, III \(=\) about three rows totalling \(20-30, \mathrm{IV}=\mathrm{a}\) wedge-shapcd group, \(V=0-3, V I=\) a rosette of about \(10, \mathrm{VII}\) and VIII \(=\) three or four irregular rows. Anterior feet (fig. 14.7.c) with threc notopodial lobes and a short dorsal cirrus. In middlc feet the intermediate notopodial lobe dccreases and the superior lobe becomes expanded and bears the dorsal cirrus near its end ; finally in posterior feet (fig. \(14.7 . \mathrm{d}\) ) the superior lobe is large and lamellate with the short dorsal cirrus in a terminal notch, the intermediate lobe is lost and the inferior notopodial lobe is lanceolate. Notosetae of posterior feet are mainly homogomph
spinigers but therc are also homogomph falcigers in some feet with elongate, lightly serrated blades (fig. 14.7.e).

Type locality : Adriatic Sea.
Records: Cape from \(32 / 18 / \mathrm{s}\) and \(34 / 23 / \mathrm{s}\), d to \(33 / 27 / \mathrm{s}\) - fairly common in dredgings.

Distribution : Morocco (s, d) ; Senegal (d).

Nereis (Nereis) gilchristi sp. nov.
(fig. 14.8.w)
Nereis (Nereis) sp. Day, 1960: 323, fig. 8a.
Body 8 mm . long for 40 segments. Prostomium broad, tentacles short. Proboscis with group \(\mathrm{I}=\mathrm{I}\), II \(=\) a close-set wedge, III \(=\mathrm{a}\) few scattercd points, \(\mathrm{IV}=\mathrm{a}\) wedge, \(\mathrm{V}=\mathrm{o}, \mathrm{VI}=\) a rosette of \(8-\mathrm{Io}\) points, VII and VIII \(=\) a continuous row two to three decp. Anterior feet with two notopodial lobes. Posterior fcet with an enlarged and flattened superior lobe bearing the cirrus at its apex. Postcrior feet have two to three notopodial falcigers with long straight blades and the neurosetae include onc to two simple hooks (fig. I4.8.w) formed by the fusion of the falcate blade to the shaft. Holotype: B.M. (N.H.) Reg. No. 1966. 26. 7.

Type logality: Agulhas Bank, South Africa.
Records: Cape (34/21/s).
Distribution : Only a single record.

\section*{Nereis (Nereis) pelagica Linnaeus, 1758}
(fig. 14.7.f-j)
Nereis pelagica Linnacus, 1758 : 654; Fauvel, 1923: 336, fig. 130 a-f.
Length \(60-120 \mathrm{~mm}\). with \(80-120\) segments. Prostomium as a broad inverted T with large palps and rather short tentacular cirri. Proboscis (fig. I4.7.f, g) with group \(I=2-3\), II \(=\) an oblique double row, III \(=\) an oval patch, \(I V=\) a wedgeshaped group, \(V=0, V I=4-5\) large points in a cross, VII and VIII \(=\mathrm{I}-2\) irregular rows of large points followed by several irrcgular rows of smaller ones. Anterior feet (fig. \(14.7 . \mathrm{h}\) ) with two subequal notopodial lobes and a lunger dorsal cirrus. Posterior feet (fig. 14.7.i) essentially similar. Notosctac of posterior feet include homogomph spinigers plus a single falciger with a short, smooth blade (fig. i4.7.j).

Type locality : Western Europe.
Records: Cape (33/88/i, s) ; Mocambique (24/34/s) - rare.
Distribution: Arctic; Atlantic coasts of Europe (i); Meditcrranean; Senegal (i) ; Okhotsk Sea (s) ; South Pacific.


Fig. 14.7. Nereis lamellosa. (A, B) Dorsal and ventral views of proboscis. (c) Anterior foot. (D) Posterior foot. (E) Notopodial falcigcr. Nereis pelagica. (F, G) Dorsal and ventral views of proboscis. (H) Antcrior foot. (I) Middle foot. (J) Notopodial falciger. Nereis falsa. ( \(\mathrm{K}, \mathrm{L}\) ) Dorsal and ventral views of proboscis, ( M ) Antcrior foot. (N) Posterior foot. (o) Notopodial falciger. Nereis papillosa. ( \(\mathrm{P}, \mathrm{Q}\) ) Dorsal and ventral views of proboscis. (R) Anterior foot. (s) Posterior foot. (T) Neuropodial falciger of posterior foot. Nereis unifasciata. ( \(\mathrm{U}, \mathrm{v}\) ) Dorsal and ventral views of proboscis. (w) Anterior foot. (x) Postcrior foot.
(x) Neuropodial falciger of posterior foot.

Nereis (Nereis) falsa* Quatrcfages, 1865 (sensu Fauvel, 1923) (fig. \(14 \cdot 7 \cdot \mathrm{k}-\mathrm{o}\) )

Nereis falsa Quatrefages, 1865: 505; Fauvel, 1923: 337, fig. 129 e-m.
Body about 40 mm . long with \(60-90\) segments. Prostomium a broad inverted T with long palps and tentacular cirri of varying length. Proboscis (fig. I \(4.7 . \mathrm{k}, \mathrm{l}\) ) with group \(I=2-3\) in line, \(I I=\) a wedge of about 30 equal points, III \(=\) an oval of about 20 points, IV \(=\mathrm{a}\) wedgc of about 35 points, \(\mathrm{V}=0\), VI \(=4\) points in a square, VII and VIII \(=2-3\) irregular rows of large subcqual points. Anterior fect (fig. I \(4.7 . \mathrm{m}\) ) with two notopodial lobes and a slightly longer dorsal cirrus. Posterior fect (fig. 14.7.n) with two conical notopodial lobes and a slender dorsal cirrus twice their length. Posterior notosctac include onc to threc homogomph spinigers plus one falciger whose blade is fairly long and finely scrrate with a knobbed tip attached back by a tendon (fig. I4.7.0). The hetcrogomph falcigers of the ncuropodium are very similar but the blades are slightly more triangular.

Type locality : Mediterranean Sea.
Records: South West Africa (22/14/i and 26/15/s); around the Cape (31/29/i) to Natal (28/32/i) - common on rocky shores in Natal.

Distribution : Atlantic coasts of France and Morocco (i), North Carolina (s); Tropical West Africa (i, s) ; Mediterrancan; Madagascar (i).

\section*{Nereis (Neanthes) papillosa Day, 1963}
(fig. I 4.7.p-t)
Nereis (Neanthes) papillosa Day, 1963: 360, fig. a-g.
Body 25 mm . long, without colour markings. Prostomium broad. Palps stout. Paragnatlis pale and poorly chitinised. Proboscis (fig. I4.7.p, q) with group I = I, \(\mathrm{II}=3-4\), \(\mathrm{III}=3^{-4}\), \(\mathrm{IV}=5^{-6}\) in a wedge, \(\mathrm{V}=0, \mathrm{VI}=2\) or 3 (very faint), VII and VIII \(=\) a single row of 3-4. Antcrior feet (fig. 14.7.r) with a short dorsal cirrus and two notopodial lobcs. Posterior fect (fig. 14.7.s) with a gap between the notopodium and ncuropodium and the dorsal cirrus slightly longer than the superior lobe of the notopodium. From the middle of the body all the lobes of the parapodia develop numcrous club-shaped papillac. Notosetae are homogomph spinigers throughout. Ncurosetac include both spinigers and falcigers with long blades (fig. 14.7.t).

Type locality : 2,000 metres west of Cape Town.
Records: Capc (33/r6/a) - single specimen on globigerina ooze.

\footnotetext{
*According to Hartman (1959) Nereis falsa Quatrefages is a synonym of \(\mathcal{N}\). diversicolor. South African specimens are not \(\mathcal{N}\). diversicolor but agree with Fauvel's description of \(\mathcal{N}\). falsa. See discussion in Day (1962).
}

Nereis (Neanthes) unifasciata Willey, 1905
(fig. I4.7.u-y)
Nereis unifasciata Willey, 1905: 271, pl. 4 figs. 85-88; Fauvel, 1953: 182, fig. 92 a-h.
Length \(20-30 \mathrm{~mm}\). Prostomium rather long and often touched with brown. Tentacular cirri long. A brown bar across setiger 2. Proboscis (fig. I4.7.u, r) with group \(I=\mathrm{I}-6\) in linc, \(I I=\) a double row, \(I I I=\) a small pateh of \(7-15, I V=a\) wedge-shaped group, \(V=0-\mathrm{I}, \mathrm{VI}=\) a roundcd or rcetangular group of \(3^{-8}\), VII and VIII \(=\) a single row of about 7. Antcrior feet (fig. 14.7.w) with two notopodial lobes and a shorter dorsal cirrus. Posterior fect (fig. I4.7.x) with all lobes more pointed and the supcrior notopodial lobe elongate. No notopodial falcigers. Ncuropodial falcigers with short hooked blades with the tip attached back by a distinet tendon (fig. I4.7.y).

Records : ? Mocambique (26/32/i) - rare.
Distribution : Tropieal Indo-west-Pacific (i, s).

Nereis (Neanthes) agulhana Day, 1963
(fig. I4.8.a-f)
Nereis (Neanthes) agulhana Day, 1963b: 406, fig. 6 d-j.
Nereis (Neanthes) cf. Kerguelensis: Day, 1960:321.
Body about 20 mm . long with brown bar across setiger 2 (fig. I4.8.a). Proboscis (fig. I4.8.b, c) with group \(\mathrm{I}=0, \mathrm{II}=8-9\) in a double row, \(\mathrm{III}=5^{-6}\) in a crescentric area, \(\mathrm{IV}=\mathrm{a}\) wedge of about \(1 \mathrm{o}, \mathrm{V}=0, \mathrm{VI}=2-4\) in a linc, VII and VIII \(=\mathrm{a}\) single row of 3 -5. Anterior fect (fig. 14.8.d) with three notopodial lobes, the intermediatc one being smaller than the other two. Posterior fect (fig. 14.8.e) with two notopodial lobes. Dorsal eirrus a little longer than the supcrior lobe. No notopodial faleigers. Each neuropodial falciger (fig. I4.8.f) with rather straight blade whose end is attached baek by an indistinet tendon.
Type locality: Agulhas Bank, South Africa.
Records: Cape ( \(34 / \mathrm{I} 8 / \mathrm{s}\) to \(34 / 23 / \mathrm{s}\), d and \(33 / 28 / \mathrm{s}\) ) - common in dredgings on sandy mud.

Distribution: Endemic.

Nereis (Neanthes) mossambica Day, 1957
(fig. I \(4.8 . \mathrm{g}-\mathrm{k}\) )
Nereis (Neanthes) mossambica Day, 1957: 78, fig. 3 e-k.
Body up to 35 mm . in length. Proboseis (fig. r4.8.g, h) with group I \(=\mathrm{I}-3\) in a line, \(I I=10-\mathrm{I} 2\) in two to three irregular rows, \(\mathrm{III}=\) a patch of about \(20, \mathrm{IV}=\mathrm{a}\) wedge of about \(20, \mathrm{~V}=\mathrm{o}, \mathrm{VI}=\mathrm{I}\) large oval paragnath, VII and VIII \(=\) two to thrce irregular rows. Anterior feet (fig. 14.8.i) with thrce notopodial lobes though


Fig. 14.8. Nereis agulhana. (A) Anterior end. (B, c) Dorsal and ventral views of proboscis. (D) Anterior foot. (E) Posterior foot. (F) Neuropodial falciger. Nereis mossambica. (G, H) Dorsal and ventral views of proboscis. (i) Anterior foot. (J) Posterior foot. (א) Neuropodial falciger. Nereis willeyi. ( \(\mathrm{L}, \mathrm{m}\) ) Dorsal and ventral views of proboscis. (N) Anterior foot. (o) Posterior foot. (P) Neuropodial falciger. Nereis indica brunnea. (Q) Anterior end. (R) Anterior foot. (s) Posterior foot. (T) Neuropodial falciger. ( \(\mathrm{U}, \mathrm{v}\) ) Dorsal and ventral views of proboscis. Nereis gilchristi. (w) Simple hook.
the setigcrous lobe is small and fused to the inferior lobe. Dorsal eirrus longer than the superior lobe. Postcrior feet (fig. I4.8.j) with two pointed notopodial lobes, the whole notopodium being longer than the neuropodium and separated from it by a marked cleft. Dorsal cirrus not greatly elongated. No notopodial faleigers. Neuropodial falcigers (fig. 14.8.k) with almost straight blades.

Type locality: Morrumbene estuary, Mocambique.
Records: Mocambique (23/35/s).
Distribution : Known only from the original record.

\section*{Nereis (Neanthes) willeyi Day, 1934}
(fig.14.8.1-p)
Nereis willeyi Day, 1934: 39 nom. nov. pro Nereis (Neanthes) capensis Willey, 1904: 216, pl. I3 fig. Io [non Nereis (Perinereis) capensis (Kinberg, 1865)].
Body up to 50 mm . long and often reddish. Prostomium broad. Proboscis (fig. I4.8.1, m ) with group \(\mathrm{I}=\mathrm{I}-2\) in line, \(\mathrm{II}=\) an oblique double row, \(\mathrm{III}=\) an oval patch, \(\mathrm{IV}=\mathrm{a}\) wedge-shaped group, \(\mathrm{V}=0-\mathrm{I}, \mathrm{VI}=\mathrm{a}\) rosette of 6 , VII and \(\mathrm{VIII}=\) 3-4 irregular rows of numerous points. Anterior feet (fig. 14.8.n) with two notopodial lobes and a longer dorsal cirrus. Posterior feet (fig. 14.8.0) essentially similar but the dorsal cirrus is relatively longer. No notopodial falcigcrs. Neuropodial falcigers of posterior feet have blades with distinet tendons attaehed to their tips (fig. I4.8.p).
Type locality: Table Bay, South Afriea.
Records: From 32/18/i around the Cape (34/i8/i, s) to Natal (30/30/i) - common on roeky shores and shallow dredgings.

Distribution: Suez Canal and Persian Gulf.

\section*{Nereis (Neanthes) indica brunnea Day, 1957}
(fig. I4.8.q-v)

Nereis (Neanthes) indica var. brunnea Day, 1957: 80, fig. 4 h-n.
A small speeies about 15 mm . long with a brown peristome (fig. I4.8.q). Proboscis (fig. I4.8.r, s) with group \(I=2-3\) in linc, \(I I=\) a double row, \(I I I=\) an oval patch, \(\mathrm{IV}=\mathrm{a}\) wedge of numerous points, \(\mathrm{V}=\mathrm{o}, \mathrm{VI}=\mathrm{a}\) group of \(6, \mathrm{VII}\) and VIII \(=\) 2-3 irregular rows. Antcrior feet (fig. I4.8.t) with three notopodial lobes and a dorsal cirrus the same length as the superior lobe. Posterior feet (fig. I4.8.u) with two notopodial lobes and a slightly longer dorsal cirrus. No notopodial falcigcrs. Neuropodial falcigers (fig. I4.8.v) with a blade having a well marked tendon attached to the tip.

Type locality: Inhambane, Moeambiquc.
Records: Mocambique (23/35/e) ; Madagasear (s).

Nereis (Neanthes) agnesiae Augener, I9ı 8
Nereis (Alitta) agnesiae Augener, 1918: 194, pl. 3 figs. 69-7r, pl. 4 figs. 76,76 , text-fig. 14.
Length about 80 mm . for 90 segments. Prostomium a broad inverted \(T\), with broad palps and short tentacular cirri. Proboscis with group \(\mathrm{I}=2\) in line, \(\mathrm{II}=\) I2-I5 in a doublc row, III = a triangular group of \(16, I V=\) a wcdgc of \(18-24\), \(\mathrm{V}=\mathrm{a}\) group of \(5, \mathrm{VI}=\) a rosetter of \(10, \mathrm{VII}\) and VIII \(=2-3\) rows of larger and smaller points. Antcrior fect with three notopodial lobes and a short dorsal cirrus. In middlc fect the superior notopodial lobe is expanded and bears the dorsal cirrus at its end, whilc in posterior feet it is large and lamellate with a small dorsal cirrus in a notch at its end. The setae arc spinigers throughout. There are no falcigers at all.

Type locality: Swakopmund, South West Africa.

\section*{Nereis (Neanthes) succinea Frcy \& Leuckart, 1847}
(fig. 14.9.a-e)
Nereis succinea Frey and Leuckart, 1847 : 154.
Nereis glandulosa Ehlers, 1908 : 74, pl. 8 figs. 1-6.
Body usually reddish brown and up to 80 mm . long. Proboscis (fig. 14.9.a, b) with group \(I=I, I I=\) a double row, \(I I I=\) a few scattered points, \(I V=a \operatorname{wcdgc}\) shaped group, \(V=3-5\), VI \(=\) a group of \(8-12\), VII and VIII \(=\) a broad band of about four irregular rows. Anterior fect (fig. I 4.9.c) with thrce notopodial lobes and setal lip. In posterior fect (fig. I4.9.d) the superior notopodial lobe is grcatly enlarged and lamellatc carrying the short dorsal cirrus in a notch at its end, the intermcdiate notopodial lobe is reduced and the inferior notopodial lobe is pointed. No notopodial falcigers. Ncuropodial falcigers (fig. I4.9.e) have long straight blades without distinct tendons at their tips.

Type locality: North Sea.
Records: South West Africa (22/I4/s) ; (Cape 34/23/i, s, 33/25/c, i, s, 33/26/e) and Natal (29/3I/i) - fairly common in muddy estuaries.

Distribution: Atlantic from North Sea (e, i), tropical western Africa (i, s) and Massachusctts to Gulf of Mexico (i, s) ; south to Uruguay; Pacific (California to Panama (c, i)).

\section*{Nereis (Neanthes) caudata Delle Chiaje, 184 I}
(fig. I \(4 \cdot 9 . f-\mathrm{j}\) )
Nereis (Neanthes) caudata Delle Chiaje, 1841; 96, pl. 102 figs. 10, 15; Fauvel, 1923: 347, fig. 135 a-e;
Day, 1953: 425; Day, 1960: 324.
Nereis (Neanthes) arenaceodonta: Pcttibone, 1963: 162, figs. 44 i, 45 e.
Length up to 60 mm . Prostomium as broad as long ; tentacular cirri rather short. Paragnaths (fig. I4.9.f, g) with group \(\mathrm{I}=\mathrm{a}\) line of 4 points or \(8-\mathrm{I} 2\) in an oval group, II = a wedge-shaped group, III \(=\) an oval group of about 20 , \(\mathrm{IV}=\mathrm{a}\) triangular group of about \(20, \mathrm{~V}, \mathrm{VI}\), VII and VIII form a complete broad band of


Fig. 14.9. Nereis succinea. (A, в) Dorsal and ventral views of proboscis. (c) Anterior foot. (D) Posterior foot. (E) Neuropodial falciger. Nereis caudata. (F, G) Dorsal and ventral views of proboscis. (H) Anterior foot. (1) Posterior foot. (J) Neuropodial falciger. Nereis operta. ( \(\mathrm{K}, \mathrm{L}\) ) Dorsal and ventral views of proboscis. (M) Anterior foot. (N) Posterior foot. (o) Neuropodial falciger.
several irregular rows of roughly equal points. Anterior feet (fig.14. 9.h) with three notopodial lobes and a dorsal cirrus about the same length. The superior lobe is triangular and the intermediate notopodial lobe is rather small. In the postcrior feet (fig. 14.9.i) the superior lobe of the notopodium is larger and more obviously lamellar. Therc are no notopodial falcigers. The heterogomph falcigers of the neuropodium arc rather fine and their blades are long and almost rectangular with a small hooked tip (fig. r4.9.j).

Type locality : Massachusetts, U.S.A.
Records: Cape ( \(33 / \mathrm{I} 8 / \mathrm{i}, \mathrm{s}, 34 / 22 / \mathrm{s}\) ) - rare.
Distribution : North Atlantic (English Channel (i) to Santander (i) and Massachusetts to Florida (i, s)) ; Mediterranean; Southern California (s) to Mexico; Tasmania; New Zealand (s).

Nereis (Neanthes) operta Stimpson, 1856
(fig. 14.9.k-o)
Nereis operta Stimpson, 1856: 292; Day, 1934: 38, fig. 5 a-c.
Nereis polyodonta Schmarda, 186ı: 103; Augener, 1918: 187.
Body up to 100 mm . long, usually reddish brown anteriorly. Prostomium as broad as long; tentaeular cirri short. Paragnaths (fig. \(14.9 \cdot \mathrm{k}, \mathrm{l}\) ) with group \(\mathrm{I}=\mathrm{i}\), II \(=2-3\) close-set rows, \(I I I=\) a rectangular pateh, \(I V=\) a wedge of elose-set points. The oral ring has a continuous band of points whieh is very broad ventrally so that paragnaths may be seen even when the proboseis is retracted. V is indistinguishable but VI is a distal are of larger points. Anterior feet (fig. 14.9.m) have two notopodial lobes (sometimes also a third very small setigerous lobe) and a short dorsal eirrus. In posterior feet (fig. 14.9.n) the superior notopodial lobe grows much longer and in most speeimens it is longer than the dorsal eirrus. There are no notopodial faleigers. The hetcrogomph faleigers of the neuropodia have rather blunt-ended blades (fig. 14.9.0).

Type locality: Table Bay, South Afriea.
Records : South West Africa (22/14/i to 28/i6/s) ; Cape (from 32/18/i, s to 34/23/e and \(33 / 27 / \mathrm{i}\) ) ; Natal (29/31/i) ; Moeambique (26/32/i).

Distribution: Endemic.

\section*{Nereis fusifera Quatrefages, 1865 (? Indeterminate)}

Nereis fusifera Quatrefages, 1865: 521.
Prostomium long with long stout palps and long antennae. Tentacular eirri short. Body 30 mm . long for \(60-70\) segments. Dorsal cirri stout and fusiform. Ventral cirri small. Dentielcs not seen. Setigerous lobe of notopodium entirely absent. Setae normal.

Type locality: Table Bay, South Africa.

EUNEREIS Malmgren, 1865
Gcnerally similar to the genus \(\mathcal{N e r e i s}\) but conical chitinous paragnaths restricted to the basal ring; maxillary ring smooth.

Type species: Nereis longissima Johnston, 1840.
Note. In some specimens, otherwise identical with Laeonereis ankyloseta Day deseribed on p. 303, chitinous paragnaths are present. The distribution is: groups I to IV \(=\) all o , group \(\mathrm{V}=\mathrm{o}\), group \(V I=\mathrm{I}\), groups VII and VIII \(=\) a singlc row of thrcc to four. Apart from the smaller number on VII and VIII and the prcsence of a giant simple seta in posterior neuropodia this speeies is then very elose to Eunereis hardyi Monro.

CERATONEREIS Kinberg, 1866
Prostomium with two antennae. Proboscis with conical paragnaths on the maxillary ring but the basal ring is quite smooth, lacking both chitinous paragnaths and soft papillae. Peristomial segment apodous. The first two parapodia uniramous, the rest biramous. Setae include both spinigers and falcigers.

Type species: Ceratonereis mirabilis Kinberg, 1866.

\section*{Key to Species}


Ceratonereis mirabilis Kinberg, 1866
(fig. 14.10.a-g)
Ceratonereis mirabilis Kinberg, 1866: 170; Gravier, 1901: 172, pl. 11, fig. \(4^{2}\); Fauvel, 1953; 200, fig. 103 a-e.

Body about 30 mm . long with vaguc brown bars across anterior segments (fig. I4.Io.c). Prostomium deeply cleft between the slender antennac; palps elongate; tentacular cirri very long. Paragnaths (fig. I4.io.a, b) with group I \(=0, I I=a\) wedge-shaped group, III \(=\) a few scattered points, \(I V=\) a wedge-shaped group. Dorsum minutcly papillose particularly on posterior segments. Anterior feet (fig. 14.IO.d) with very long dorsal cirri, and two notopodial lobes of which the superior is slender, sometimes appearing as a mere ventral branch of the dorsal cirrus. Posterior feet (fig. I4.Io.e) similar but the superior lobe of the notopodium becomes even smaller. Notosetae include one or two homogomph falcigers (fig. I4.Io.f) with long, slightly eurved and spinulose blades in posterior fect. Neuropodial falcigers (fig. 14.10.g) are heterogomph and have very long spinulose blades with hooked tips.

Type locality: Brazil.
Records: Mocambique ( \(26 / 32 / \mathrm{i}\) and \(23 / 35 / \mathrm{e}\) ), Madagascar ( \(\mathrm{i}, \mathrm{s}\) ) - occasional specimens.

Distribution: Brazil ; Gulf of Mexico (i) ; Red Sca (i) ; Indo-west-Pacific to Japan (i, s).

Ceratonereis costae (Grube, I840)
(fig.14.10.h-l)
Nereis costae Grube, 1840: 74.
Ceratonereis costae: Fauvel, 1923: 349, fig. 136 a-f.
Length up to 80 mm . Prostomium as broad as long; tentacular eirri of normal length. Paragnaths (fig. I4.Io.i, \(j\) ) with group \(I=0-1, I I=\) a double row, \(\mathrm{III}=3\) in a triangle, IV \(=\) a wedge-shaped group. The most anterior feet have only two notopodial lobes and a slightly longer dorsal cirrus, but on about io fect from about the 7 th to 17 th (fig. \(14.10 . h\) ) a small but distinct intcrmediate lobe is present. Setigerous lobe of the ncuropodium with a long presetal lip and a stouter postsctal lip. Posterior fect (fig. 14.10.l) with all the lobes longer and more pointed. No notopodial faleigers. Only a few heterogomph faleigers with long blades in the neuropodia (fig. I4.10.k) and in postcrior feet two of them are enlarged but usually lose their blades.

Type logality: Italy.
Records: Mocambique (26/32/i, 24/34/s and 23/35/e); Madagasear (i, s) oecasional speeimens on muddy sandbanks.

Distribution: North Atlantic (Santander, Madeira, Canary Is., Moroceo (s), Senegal (i, s)) ; Mcditerancan (s) ; Red Sea; Indo-west-Pacifie (i, s).

Ceratonereis pachychaeta Fauvel, 1918
(fig. 14.10.m-n)
Ceratonereis pachychaeta Fauvel, 1918: 506; Fauvel, 1919: 403, pl. 15 figs. 22-25, text-fig. 8.
Body up to 45 mm . long. Prostomium hexagonal ; tentacular cirri of normal length. Paragnaths of group \(I=0-1, I I=\) one to two rows of \(4-10, I I I=2-3\) in line, IV \(=4^{-6}\) in a triangle. Anterior feet with three subequal notopodial lobes and a longer dorsal cirrus. In postcrior feet the notopodia and neuropodia diverge, the setigerous lobe of the notopodium is small or vestigial and the other two notopodial lobes are long and pointed. No notopodial falcigcrs. Neuropodial faleigers of antcrior feet have straight or even convex blades, but posteriorly they become more hooked with a distinct tendon attached to the tip (fig. i4.io.n). In these posterior feet there are also two to threc giant faleigers with the blades partly fused to their shafts (fig. i4.10.m).

Type locality: Djibouti and Madagasear.
Records : Madagascar (i) - a single reeord.
Distribution: Suez, Red Sea, Indo-west-Pacific (i, s).


Fig. 14.10. Cieratonereis mirabilis. (A, B) Dorsal and ventral views of proboseis. (c) Head. (D) Antcrior foot. (E) Posterior foot. (F) Notopodial faleiger. (G) Neuropodial falciger. Ceratoneis costae. (H) Anterior foot. ( \(\mathbf{1}, \mathrm{J}\) ) Dorsal and ventral views of proboseis. (к) Neuropodial falciger. (L) Posterior foot. Ceratonereis pachychaeta (after Fauvel, 1919). (M) Giant simple falciger. ( N ) Normal neuropodial talciger. Ceratonereis erythraeersis. (o) Entire worm (twiee life size). ( \(\mathrm{P}, \mathrm{Q}\) ) Dorsal and ventral views of proboscis. ( R ) Giant simplc seta. (s) Normal neuropodial falciger. (r) Posterior foot.

\section*{Ceratonereis erythraeensis Fauvel, 1918}
(fig. I4.10.0-t)
Ceratonereis erythraënsis Fauvel, 1918: 505; Fauvel, 1919: 407, pl. 16, figs. 26-30, 42-47.
Body (fig. 14.10.0) slender, up to 160 mm . long. Prostomium broader than long; antennae short; tentacular cirri fairly long. Paragnaths (fig. i4.io.p, q) with group \(I=\) a group of \(2-6, I I=\) a double row of about \(10, I I I=\) a transverse patch of about \(18, I V=\) a wedge of 12-15. All paragnaths are elongate cones. Anterior feet with two notopodial lobes and a short dorsal eirrus of the same length ; posterior feet (fig. I4.Io.t) similar but the lobes are more pointed. No notopodial faleigers. Neuropodial falcigers (fig. I4.io.s) have short blades without tendons and in posterior feet one or two of them are enlarged with the blades fused to the shafts so that they form simple hooks (fig. I4.Io.s).

Type locality: Madagasear.
Records: South West Afriea (26/15/i); Cape (32/i8/e and 33/18/i) to Natal (29/31/i) and Moeambique (23/35/c, s).
Distribution : Indian Ocean (Djibouti (i), Madagasear (e) and W. Australia (e)); Japan.

Ceratonereis keiskama Day, 1953
(fig. 14.11.a-f)
Ceratonereis keiskama Day, 1953: 426, fig. 5 a-f.
A small cstuarine species, \(10-20 \mathrm{~mm}\). long. Prostomium (fig. 14.11.a) broadly triangular ; palps stout; tentacular cirri fairly short. Paragnaths (fig. 14.11. b, c) with group \(\mathrm{I}=\mathrm{o}, \mathrm{II}=\) a double row, \(\mathrm{III}=\) an oval patch, \(\mathrm{IV}=\) a long triangle. Anterior feet (fig. I4.1 I.d) with two notopodial lobes and a longer dorsal cirrus. In posterior feet (fig. 14.1I.e) the superior notopodial lobe is small or vestigial and there is a marked gap between the notopodium and neuropodium. No notopodial faleigcrs. Neuropodial falcigers (fig. 14.1 I.f) with rather long blades.

Type locality : Keiskama Estuary, Cape, South Africa.
Records: Cape ( \(32 / 18 / \mathrm{e}\) ) to Natal ( \(28 / 32 / \mathrm{e}\) ) - very common in water of low salinity at the top of estuaries.

Distribution: Endemic.

\section*{Ceratonereis hircinicola (Eisig, 1870)}

Nereis hircinicola Eisig, 1870: 103.
Ceratonereis hircinicola: Fauvel, 1923 : 350, fig. 136 g-n.
Head and anterior segments dirty brown. Body up to 110 mm . long. Prostomium broadly triangular; palps short and stout; tentacular cirri fairly short except for the posterior dorsal one. Paragnaths with group \(\mathrm{I}=\mathrm{o}, \mathrm{II}=2-3\) oblique rows of about 30, III \(=\) a roughly square patch of about \(20, I V=\) a triangular group of
about 30. All paragnaths small and conical. Anterior feet with two notopodial lobes and a slightly longer dorsal cirrus. Setigerous lobe of neuropodium with well marked presetal and postsetal lips. Ventral cirrus short. Posterior feet essentially similar with subequal notopodial lobes, and without a marked gap between notopodium and neuropodium. No notopodial falcigers; spinigers of posterior notopodia with short blades. Heterogomph falcigers of the neuropodia with straight blades (in South African but not Mediterranean forms - see Fauvel, fig. I36 n).

Type locality: Mediterrancan.
cabe (3\#'18/FB'e
Records: \(/\) Natal (28/32/e); Madagascar (s).
Distribution: Mediterranean, Madagascar.

\section*{LEONNATES Kinberg, 1866}

Prostomium with two antennae. Basal ring of proboscis either smooth or beset with soft papillae ; the maxillary ring has separate conical paragnaths. Peristomial segment apodous. The parapodia are biramous after the first two. Setae include normal spinigers and falcigers which have coarsely serrated blades.

Type species: Leonnates indicus Kinberg, 1866.
Key to Species
1 Prostomium notched in front. (No chitinous paragnaths on group III. Posterior falcigers with knobbed ends to the blades (fig. 14.11.i).) . . . . . . L. persica
- Prostomium not notched

2 Falcigers with stout, abruptly truncate ends to the blades (fig. 14.11.q)
L. decipiens
- Falcigers with slightly hooked ends to the blades (fig. 14.11.t) . . . L. jousseaumei*

Leonnates persica Wesenberg-Lund, 1949
(fig. I4.II.g-m)
Leonnates persica Wesenberg-Lund, 1949: 275, figs. 11-12; Day, 1957: 76, fig. 31.
Body stout, up to 40 mm . long. Prostomium (fig. I4.II.j) notched in front and as broad as long with four large eyes and a pair of slender antennae, large palps and long tentacular cirri. Basal ring of proboscis (fig. I4.ir.k, l) with a double row of soft papillae dorsally and four irregular rows ventrally; maxillary ring with very few paragnaths; group \(I=0\), II \(=2-3\), III \(=0\), \(I V=3-4\). Anterior feet (fig. I4.II.g) have short dorsal cirri and three notopodial lobes, the intermediate one being slightly shorter than the others. In the neuropodia, the setigerous lobe has a presetal and a post-setal lobe of equal size. Posterior feet (fig. i4.ri.m) are more elongate ; the dorsal cirrus is still small, the intermediate lobe of the notopodium now obviously smaller than adjacent ones and in the neuropodium the postsetal lip of the setigerous lobe is obviously longer than the presetal one. The notosetae are homogomph spinigers throughout. The neurosetac of anterior feet are also homogomph and show a complete gradation from spinigers to falcigers, the latter having


Fig. 14.11. Ceratonereis keiskama. (A) Head. (B, C) Dorsal and ventral vicws of proboscis.
(D) Anterior foot. (E) Postcrior foot. (F) Neuropodial falcigcr. Leonnates persica. (c) Anterior foot. (II) Falciger. (J) Head. ( \(\mathrm{K}, \mathrm{L}\) ) Dorsal and ventral views of proboscis. (m) Postcrior foot. Leonnates decipiens. ( N ) Head. ( o , P) Dorsal and ventral views of proboscis. (Q) Posterior falciger. (R) Anterior foot. (S) Posterior foot. Leonnales jousseaumei (after Fauvel, 1930). (T) Falcigcr.
long straight denticulate blades with slightly knobbed tips (fig. I4.II.h). In posterior feet the neurosetae are similar but the faleigers are now more numerous.

Type locality: Pcrsian Gulf.
Records: Mocambique (23/35/e) - a few specimens only.
Distribution : Persian Gulf (s).

Leonnates decipiens Fauvel, I929
(fig. I4.II.n-s)
Leonnates decipiens Fauvel, 1929: 180; Fauvel, 1930: 20, fig. 5 f-m ; Fauvel, 1953: 171, fig. 87.
Body stout, up to 300 mm . long by 2 mm . with 90 segments. Prostomium (fig. i4.11.n) broader than long; palps stout and as long as the antennae. Basal ring of proboseis (fig. I4.II.o, p) with rather indistinct soft papillae ; group \(\mathrm{V}=0, \mathrm{VI}=\) one large square papilla, VII and VIII \(=\) a single row. Chitinous paragnaths of maxillary ring with group \(I=0, I I=\) an oblique row, III \(=\) a transversc group, IV \(=\) a triangular group. Anterior feet (fig. I4.II.r) with three notopodial lobes and a dorsal cirrus of the same length ; neuropodium with a setigerous lobe having the presetal lip shorter than the postsetal one. Postcrior fect (fig. I4.1r.q) with the superior lobe of the notopodium longer than the dorsal cirrus; in the neuropodium the postsctal lip of the setigerous lobe is long and slender and equal to the inferior lobe. Notosetae are homogompl spinigers throughout. Neurosetae are homgomph spinigers and falcigers, the latter having convex spinous blades with expanded truncate tip (fig. I4.II.s).

Type locality: Gulf of Manaar.
Records: Moeambique (26/32/i) - a few specimens.
Distribution : Senegal (i) ; Congo (i) ; Suez; Gulf of Manaar.

\section*{Leonnates jousseaumei Gravier, 1901}

Leonnates jousseaumei Gravier, 1901: 160, pl. II figs. 34-37, text-figs. 162-165; Fauvel, 1953: 169, fig. \(86 \mathrm{~d}-\mathrm{f}\).

Body up to 80 mm . long with Ioo setigers; colour reddish brown. Proboscis with conieal chitinous paragnaths on the maxillary ring as follows: Group \(\mathrm{I}=0\); \(\mathrm{II}=6-8\); III \(=6-7\); IV \(=8\). Oral ring with soft papillae arranged as follows; \(\mathrm{V}=0 ; \mathrm{VI}=\mathrm{a}\) rosette of \(6-8 ; \mathrm{VII}\) and VIII \(=\) two to threc irrcgular rows. Palpostyles small ; tentacular eirri short, the longest not reaehing setiger 4. All feet with slender dorsal eirri hardly longer than the parapodial lobes which are markedly pointed throughout. Anterior feet with three notopodial lobes and a neuropodium with pointed presetal and postsetal lips to the setigerous lobe. Posterior fect similar but the setigerous lobe of the notopodiun is slender and the lips of the sctigerous lobe of the neuropodium are reduced. The setae are all homogomph. The notosetae are all spinigers in anterior feet, but include a few faleigcrs as well in
posterior feet. The ncurosetac include both spinigers and falcigers in all feet. Individual falcigers have boldly serrated blades ending in a curved and pointed terminal tooth.

Type locality: Obock, Gulf of Aden.
Records: Madagascar (s).
Distribution: Tropical Indian Ocean.

\section*{PSEUDONEREIS Kinbcrg, 1866}

Prostomium with two antennac. Paragnaths as transverse bars on group VI and conical points elsewhere, sometimes arranged to form pectinate rows on II, III and IV. Peristome apodous. Parapodia biramous except for the first two which are uniramous. Superior lobe of the notopodium expanded in posterior feet. Setae are compound and include both spinigers and falcigers.

Type species: Pseudonereis gallapagensis Kinberg, 1866.

\section*{Key to Species}

I Group VI as a single bar; V as a single point; VII and VIII as two to three rows
- Group VI with 6-10 short bars in a row; V \(=0\); VII and VIII as a single row
P. anomala

\section*{Pseudonereis variegata (Grubs, 1857)}
(fig. 14.12.a-f)

Nereilepas variegata Grubs, 1857: 164.
Nereis (Mastigonereis) variegata: McIntosh, 1904: 37, pl. 1 figs. 6-10, pl. 2 figs. \(11,12\).

Rebel lent from Moulanerncai
as is. gafiobagco io v bon Pseudonereis gallapagensis Kinberg, 1866: 174; Fauvel, 1953: 215, fig. 110 ac.

Body reaching 150 mm . by 8 mm . ; colour dark green. Ovigerous females bluish. Prostomium (fig. I4.12.a) a broad inverted T with large bulbous palps. Proboscis (fig. I4.12.b, c) with group \(I=0-1, I I=\) a double row of \(I_{2-15}\), III \(=\) three well marked rows of \(12-24, \mathrm{IV}=\) a wedge of \(\mathrm{I}_{5}-20, \mathrm{~V}=\mathrm{I}, \mathrm{VI}=\) a single large transverse bar, VII and VIII \(=2-3\) irregular rows. Paragnaths in groups II, III and IV arranged in comb-like rows but individual points do not join basally. Anterior feet (fig. I4.12.d) with two rounded notopodial lobes and a longer dorsal cirrus. In posterior feet (fig. I4.I2.f) the superior notopodial lobe is large, flattened and lamellate carrying the small dorsal cirrus at its truncate end. Notosetae are homogomph spinigers throughout. Ncuropodial falcigers stout with short, faintly hooked blades (fig. 14.12.e).

Type locality: Chile and Peru.
Records: South West Africa (21/13/i to \(26 / \mathrm{I} 5 / \mathrm{i}\) ) around the Cape (34/18/i) to Natal (29/3I/i) and Mocambique (26/32/i) - abundant under algae and barnacles on all rocky shores.

Distribution : Circumtropical (i).


Theis Reqent \(x=\) (co k the iefrestications if fig. 14,13

Fig. 14.12. Pseudonereis variegata. (A) Head. (B, C) Dorsal and ventral vicws of proboseis. (D) Anterior foot. (E) Falciger. (F) Posterior foot. Pseudonereis anomala (after Gravier, 1901). (G) Head and proboscis. ( H ) Anterior foot. (I) Posterior foot. (J) Faleiger. Perinereis vancaurica. ( \(\mathrm{K}, \mathrm{I}\) ) Dorsal and ventral views of proboscis. ( \(M\) ) Posterior foot. ancumbt ( \(\mathbb{N}\) ) Falciger: Perinereis nuntia vallata. ( \(\mathrm{O}, \mathrm{P}\) ) Dorsal and ventral views of proboscis. (Q) Posterior foot. (R) Falcigcr.
(N) posterior foot. (0) falciger

Pseudonereis anomala Gravier, 190 I
(fig. I4.12.g-j)
Pseudonereis anomala Gravier, 1901: 191, pl. 12 figs. 50-52, text-figs. 194-202; Fauvel, 1953 : 217, fig. \(110 \mathrm{e}-\mathrm{g}\).

Body up to 65 mm . long. Prostomium (fig. I4.12.g) a broad inverted T. Antennae continguous, rather large ; palpophores rather long. Paragnaths with group \(I=1-2\) in line, \(I I=4\) comb-like rows of points, III \(=4\) comb-like rows, \(I V=\) a series of comb-like rows, \(\mathrm{V}=\mathrm{o}, \mathrm{VI}=6\) short bars in a transverse row, VII and VIII \(=\mathrm{a}\) single row of about 14 points. Anterior feet (fig. I4.12.h) with two equal notopodial lobes and a long dorsal cirrus; in posterior feet (fig. I4.I2.i) the superior notopodial lobe is flattened and elongate, carrying the dorsal cirrus at its obliquely truncate tip. Neuropodial falcigers (fig. I4.12.j) with short blades.

Type locality: Red Sca.
Records: Madagasear (i) - a single record.
Distribution : Sucz, Red Sea (i) and tropical Indian Ocean (i, s) to W. Australia (i).

PERINEREIS Kinberg, 866
Prostomium with two antennae. Paragnaths include both transverse bars (on group VI) and conical points elsewhere. Peristomial segment apodous. Parapodia biramous except for the first two which are uniramous. The setae are compound and include both spinigers and falcigers.

Type species: Perinereis novaehollandiae Kinberg, 1866 ( \(=\) Nereis amblyodonta Schmarda, 186i).

3 Group \(\mathrm{V}=0 ; 1=1-3\) in line. (Dorsal cirrus and dorsal lobe of posterior feet both long) . . . . . . . . . . . . . P. capensis
- Group V = 1-3 in a triangle . . . . . . . . . . 4

4 Group \(\mathrm{I}=\mathrm{I}-3\) in linc. Dorsal lobe of posterior feet not expanded . . P. cultrifera
- Group \(I=6-12\) in an irregular group. Dorsal lobe of posterior foot enlarged bearing the dorsal cirrus on its superior distal margin

\section*{Perinereis vancaurica (Ehlers, 1868)}
(fig. I4.12.k-o)
Nereis vancaurica Ehlers, 1868 : p. xx.
Perinereis horsti Gravier, 1901: 182, pl. 11, fig. 47, text-figs. 182-4.
Perinereis vancaurica: Fauvel, 1932: 103; Fauvel, 1953: 205, fig. 105 f-g.
Body up to 80 mm . long. Prostomium broadly triangular; antennae tapered, tentacular cirri short. Paragnaths (fig. I4.12.k, 1 ) with group I \(=\mathrm{I}-2, \mathrm{II}=2\) curved rows, \(\mathrm{III}=\) a square group, \(\mathrm{IV}=\mathrm{a}\) triangular area of numerous points, \(\mathrm{V}=3\) large points in a triangle, VI \(=2\) narrow, transversely elongate bars, VII and VIII \(=2-3\) irregular rows. Anterior feet (fig. 14.12.m) with two notopodial lobes and a short dorsal cirrus of the same length. Infcrior lobe of the neuropodium short. Posterior feet (fig. I4.12.n) with slightly longcr lobes. Notosetac are homogomph spinigers with short blades. Hetcrogomph falcigers of the neuropodium with very straight blades (fig. 14.12.0).

Type locality: Vancauri (Nicobar Is.).
Records: Mocambique (23/35/e) - a single record.
Distribution : Red Sea and Indo-west-Pacific (i).
= P. vallalá fide
Martun. - Suha 1974

Perinereis nuntia vallata (Grube, 1857 )
(fig. 14.12.p-s)

Nereis vallata Grube, 1857: 159.
Perinereis nuntia var. vallata: Fauvel, 1932: 110; Fauvel, 1953: 212, fig. 109 a-g.
Body up to 120 mm . long. Prostomium broadly triangular; palps large, tentacular cirri short. Paragnaths (fig. I4.12.p, q) with group \(\mathrm{I}=\mathrm{r}-3\) in linc, \(\mathrm{II}=\mathrm{a}\) small triangular group of a few points, III \(=\) an oval patch, \(\mathrm{IV}=\) a wedge-shaped group, \(\mathrm{V}=\mathrm{I}, \mathrm{VI}=\mathrm{a}\) transverse row of \(8-\mathrm{I} 5\) short bars, VII and VIII \(=2-3\) irregular rows. Anterior feet with two notopodial lobes, somctimes with a rudimentary setigerous lobe (as well) and a dorsal cirrus of the same length. Posterior fcet (fig. 14.12.r) similar but with longer lobes. Notosetae are homogomph spinigers; neuropodial falcigcrs (fig. I4.12.s) have straight blades without any sign of a tendon. Colour dull brown fading posteriorly.

Type locality: Valparaiso, Chilc.
Records: South West Africa (22/14/i and 26/15/i), Capc (30/17/e to \(32 / 28 / \mathrm{i}\) ); Mocambique ( \(23 / 35 / \mathrm{e}\) ) - fairly common in sand under stones near high tide mark.
Distribution: Red Sea; Indian Ocean; S. Pacific; New Zealand (e, i); Chile (i).

Perinereis falsovariegata Monro, 1933
(fig. I4.13.a-f)
Perinereis falsovariegata Monro, 1933: 492, figs. 4-7.
Body up to 50 mm . long with a pattern of brown markings on the head and anterior segments (fig. I4.I3.a). Prostomium as broad as long. Paragnaths (fig. I4.I3.b, c) with group \(I=I\), II \(=2-3\) rows, III \(=\) about 20 points in an oval, \(\mathrm{IV}=\mathrm{a}\) triangular group of larger and smaller points, \(\mathrm{V}=\mathrm{I}\) large point, \(\mathrm{VI}=\mathrm{a}\) very short bar, VII and VIII \(=2-3\) irregular rows. Anterior feet (fig. i4.I3.c) with two notopodial lobes and a slightly longer dorsal cirrus. In posterior feet (fig. I4.I3.f) the superior notopodial lobe is longer and carries a long dorsal cirrus. Notosetac are homogomph spinigers; neuropodial falcigers have hooked blades without a trace of a tendon (fig. I4.I3.d).

Type locality: Still Bay, South Africa.
Records: Capc (33/18/i to \(33 / 26 / \mathrm{e}\), i) to Natal ( \(29 / 3 \mathrm{I} / \mathrm{i}\) ) and Mocambiquc (26/32/i) - fairly common among algae on sandy rocks.

Distribution: Endemic.

Perinereis capensis (Kinberg, I866)
(fig. I4.13.g-m)
Arele capensis Kinberg, 1866 : 174 .
Perinereis capensis: Monro, 1933: 495, figs. 7-11 ; Day, r934: 42, fig. 8 a-c.
Body brown anteriorly and up to 70 mm . long. Prostomium (fig. I4.I3.i) a broad inverted \(T\) with large, compressed palpophores cach with a small terminal button. Antennae tapered, tentacular cirri fairly short. Proboscis (fig. i4.i3.j, k) with group \(I=2-3\) in a row, \(I I=\) a wedge of \({ }^{12-I} 5\), III \(=\) an oval group of about \(\mathrm{Io}, \mathrm{IV}=\) a triangle of \(\mathrm{I} 5, \mathrm{~V}=0, \mathrm{VI}=\) a single large bar, VII and VIII \(=2\) irregular rows of larger and smaller points. Anterior parapodia (fig. I4.I3.g) have two to three notopodial lobes for the small intermediate lobe is fused to the large inferior notopodial lobe. Dorsal cirrus twice as long as the superior notopodial lobe from whose upper surface it arises. In posterior feet (fig. I4.13.h) the base of the superior notopodial lobe is enlarged carrying the dorsal cirrus with it. Neuropodia have a short, pointed postsctal projection to the setigerous lobe throughout. In the heteroncreid stage the lobes of the feet are expanded and the bases of the cirri have lamellae (fig. I 4 .I I 3, ). Notosetae are homogomph spinigers throughout. Ncurosctae include both homogompl and heterogomph spinigers and heterogomph falcigers with almost straight apices (fig. I4.I3.m).

Type locality: "Cape of Good Hope".
Records: False Bay (34/18/s) to Natal (27/32/i) - common on rocky shores.
Distribution : Tropical Indian Ocean (e, i) ; Senegal (i).


This logend xefors ló ilcuestrateóns 7 Fig. 14.12

Fig. 14.13. Perinereis falsovariegata. (A) Hcad. (B, C) Dorsal and ventral vicws of proboscis. (D) Falciger. (E) Anterior foot. (F) Posterior foot. Perinereis capensis. (G) Head. (H, I) Dorsal and ventral vicws of proboscis. (J) Anterior foot. (k) Posterior foot. (L) Foot of heteronercid form. (M) Falciger. Perinereis cultrifera. ( \(\mathrm{O}, \mathrm{P}\) ) Dorsal and ventral views of proboscis. (Q) Posterior foot. Perinereis nigropunctata. (R) Head. (s, T) Dorsal and ventral views of proboscis. (u) Anterior foot. (v) Posterior foot.

\section*{Perinereis cultrifera (Grube, 1840)}
(fig. 14.13.0-q)
Nereis cultrifera Grube, 1840: 74.
Perinereis cultrifera: Fauvel, 1923: 352, fig. 137.
Body up to 250 mm . long with 125 segments. Prostomium broadly triangular; palps large, tentacular eirri rather long and slender. Paragnaths (fig. i4.13.0, p) with group \(I=1-3\) large points in a line, \(I I=a\) few points in a triangle, \(I I I=\) an oval patch, \(\mathrm{IV}=\) a wedge, \(\mathrm{V}=3\) large points in a triangle, \(\mathrm{VI}=\) a transverse bar, VII and VIII \(=2-3\) rows of equal points. Anterior feet with two notopodial lobes and a short dorsal cirrus. In posterior feet (fig. i4.13.q) the lobes become more pointed but the cirrus hardly inereases in length. Neurpoodial faleigers with fairly straight blades.

Type locality : Naples.
Records: Cape (34/18/i and 26/33/i) ; Natal (30/30/i and 29/3I/i); Madagascar ( \(i, s\) ) - occasional specimens on rocky shores.

Distribution: N.E. Atlantic from the North Sea (i) to Senegal (i, s); Mediterranean and tropical Indo-west-Pacific (i).

> Perinereis nigropunctata (Horst, I889)
(fig. 14.13.r-v)

\section*{Nereis nigro-punctata Horst, 1889 : 171.}

Perinereis majorii Southern, 192 I : 595, pl. 23, fig. 10, text-figs. 7, 8.
Perinereis nigropunctata: Fauvel, 1932: 107; Day, 1957: 84; Fauvel, 1953: 210, fig. 107 b-f.
Body \(50-60 \mathrm{~mm}\). long with three rows of brown marks and a V on the prostomium. Tentacular cirri short (fig. I4.13.r). Paragnaths (fig.I4.I3., \(u\), v) with group \(I=\mathbf{a}\) patch of \(6-12\), II \(=2-3\) rows, III \(=\) a patch of \(\mathrm{I}_{5}-20, \mathrm{IV}=\) a wedge of about 20 , \(\mathrm{V}=3\) in a triangle, VI \(=\) a transverse bar, VII and VIII \(=2\) irregular rows. Anterior feet (fig. I4.13.s) with two notopodial lobes and a rudimentary fillet between them. Posterior feet (fig. I4.I3.t) with the superior lobe enlarged and elongated bearing the dorsal cirrus on its upper distal margin.

Type locality: Malaya.
Records: Mocambique Island (i) and Madagascar (i) - rare.
Distribution: Red Sea (i) and tropical Indo-west-Pacific (e, i).

\section*{Family NEPHTYIDAE Grubc, 1850}

Body clongate with numerous rectangular segments and usually white in colour. Prostomium small and pentagonal with four antennae. Cephalic eyes sometimes visible through the skin. Proboscis large, very muscular, with a papillose sheath and armed with a pair of internal jaws. Peristome with reduced parapodia. Normal body segments with biramous parapodia; the two rami are widely separated and there is usually an interramal branchia between them. Both the notopodium and the ncuropodium has a setigerous lobe, a presetal lamella and a postsetal lamella and two fans of simple setac. The preacicular row consists of barred or laddered capillaries and the postacicular row consists mainly of long capillaries minutely denticulate on one side but forked setae may also be present. A notopodial cirrus is present at the origin of the branchia and a ventral cirrus is present below the neuropodium.

Records from southern Africa
\begin{tabular}{lll} 
Nephtys (Aglaophamus) dibranchis Grube . & \multicolumn{1}{l}{\({ }^{2} \mathrm{Ni}, \mathrm{Nsd}\)} \\
Nephtys (Aglaophamus) lyrochaeta Fauvel . & 26 Ai \\
Nephiys (Aglaophamus) macroura Schmarda & \({ }^{2}\) & \(50 \mathrm{Csd}, 55 \mathrm{Ca}\) \\
Nephtys (Micronephthys) ambrizettana Augener & 26 Ai
\end{tabular}

Nephtys (Micronephthys) sphaerocirrata Wesenberg.
Lund
Nephtys (Nephtys) capensis Day . . . \(4 \mathrm{ICi}, 45 \mathrm{Ni}, 50 \mathrm{Cs}\)
Nephtys (Nephtys) hystricis MeIntosh . . 36Ps
Nephtys (Nephiys) hombergi Savigny . . I5Cs, I6Wi, 26Wis,
3IAs, \(4 \mathrm{ICi}, 50 \mathrm{Csd}\)
Nephtys (Nephtys) paradoxa Malmgren . . 50 Cd , ? 55 Ca , Malrn
Nephtys (Nephtys) tulearensis Fauvel . . \({ }_{27} \mathrm{Mi}, 40 \mathrm{PiNi}\),
\({ }_{4} \mathrm{ICi}, 50 \mathrm{Cs}\)

\section*{biological notes}

The nephtyids are typical inhabitants of sandy mud. They burrow actively by means of an eversible proboscis which can be distended by coelomic fluid. The parapodia are flattened against the sides of the rectangular body and the gills are protected in the gap between the notopodium and the neuropodium. Eyes which are well developed in the larvae, are often lost in the adult or sink below the surface of the skin and in some cases are most easily seen through the roof of the mouth. Nephtyids burrow rapidly and when dug out they are active swimmers. They live in all grades of sand or sandy mud. Nephtys capensis, for example, lives in clean sand and may cven be found on surf beaches; \(\mathcal{N}\). hombergi lives in sandy mud and is common in dredgings in many parts of the world while \(\mathcal{N}\). macroura is a cold water species living in soft mud down to I , ooo metres or more.

The alimentary canal rarcly contains any recognisable food remains and is ecrtainly never packed with sand as would be cxpected if Nephiys were a detritus feeder. Until recently it was thought that all nephtyids were carnivores but they
occur in such large numbers on certain shores that a doubt has arisen. They may be omnivores but they must be very selective in their diet.

\section*{THE MAIN DIAGNOSTIC CHARACTERS}

Recent reviews of the family will be found in Fauvel (1923) and Hartman (1950). The family is a very homogencous one and the 65 rccognisable species are usually placcd in the onc genus Nephlys. Hartman recognises three genera namely Nephtys Cuvier, 1817 , Aglaophanus Kinberg, 1866 and Micronephthys Friedrich, 1939, distinguished by the character of the gills. In the present work these are regarded as subgenera.

The main diagnostic characters are the number of rows of papillac on the proboscis, the nature of the branchiae, the shapes of the parapodial lamellac and to a less extent the types of sctae present.

The head. The prostomium is liable to vary in shape with the eversion or retraction of the proboscis and its exact shape is of doubtful valuc. The two pairs of antennae are small and do not vary greatly in length. A pair of cyes is present on the brain. They are often pale and as the skin thickens they may become invisible.

The proboscis (fig. 15.1.d). This is a large muscular organ with a pair of nodular chitinised plates (jaws) (fig. 15.1.b) internally, a circle of bilobed papillae at the distal end and 14 or 22 rows of tapered papillac on the surface. Sometimes there is also a larger mid-dorsal papilla between the ring of biloped papillae and the rows of tapered papillae. The bilobed papillae are not of systematic importance, but the others provide useful characters and if the proboscis is not everted it should be dissected. A longitudinal slit is madc through the body wall and proboscis sheath; the oesophagus and retractor muscles of the proboscis are then cut across and the proboscis pushed forwards. When it is in its normally cverted position the proboscis sheath with its papillae will be stretched over it and may be cxamined. To examine the jaws cut through the thick muscle of the proboscis.

The peristomium. This has a pair of reduced parapodia and the degree of development of the dorsal and ventral cirri is a useful character.

Parapodia and branchiae. The fcet are biramous and the two rami are widely separated with the interramal branchia ( = interramal cirrus Hartman) between them. Each ramus consists of a stout setigerous lobe whosc apex may be rounded, pointed or bilobed. This is a dubious character as it must be affected by the degree of contraction. Each setigerous lobe has a low presetal lamella on its antcrior face and a larger posisetal lamella on its posterior face. The size and shapes of these lamellae provide most useful charactcrs. The branchiae arises just below the apex of the notopodium and bears a dorsal cirrus or notopodial cirrus at its base. The branchia itself may be lamellar or cirriform and if the latter it may coil in two ways. In the subgenus Nephtys it bends inwards at first and then outwards, i.c. it is recurved. In the subgenus Aglaophamus (ag. 15.1.c) it bends outwards at first and then downwards and inwards, i.e. it is involute. Occasionally the gill docs not bend at all and projects straight out. In the subgenus Micronephthys the gill is entircly absent. Apart from these diffcrences the segment on which the first gill appears is important.

The setae. Each ramus of the parapodium bears two fan-shaped rows of simple setae and those on the notopodium are identical with those on the neuropodium. The anterior or pre-acicular row arc all barred or laddered (fig. 15.r.f) due to regular changes in the consistency of the seta. The posterior or post-acieular row of setae include three types: (a) The most numerous are long eapillaries with an oblique breaking plane at the base and a rather flattened blade with transverse rows of minute denticles on one margin (fig. 15.1.0). (b) There may be a few geniculate setae with the blade sharply bent on the shaft and coarsely toothed on the eonvex margin. (c) In some species of the subgenera Aglaophamus and Micronephthys there are two to three forked setae with short shafts and two lyriform prongs which are spinulose on their inner margins (fig. I5.I.h).

\section*{NEPHTYS Cuvier, 187}

Body elongate and depresscd with numerous segments. Prostomium small and pentagonal with four antennac and sometimes a pair of subdermal eycs. Proboscis stout and museular with a pair of chitinous jaws internally, a ring of bilobed terminal papillac and 14 or 22 rows of papillae on the surface. Parapodia biramous with divergent setigerous lobes each bearing delicate anterior and posterior lamellae. Two rows of simple setac, the anterior row consisting of laddered capillarics and the posterior row consisting of long capillaries minutely denticulate on onc margin though geniculate or forked setae may also be present. Intcrramal branchiae present or absent ; if present they arise from the notopodia and coil between the parapodail lobes.

Type species: Nereis ciliata Müller, 1789.

\section*{Key to Subgenera and Species}

1 Branchiae involute, coiling outwards then downwards (fig. 15.1.c) (subgenus AGLAOPHAMUS)
- Branchiae recurved, coiling downwards then outwards (fig. \({ }^{\text {I }}\).2.g) (subgenus \(\dot{\text { NEPHTYS }}\) ) 5
- Branchiae abscnt (fig. \({ }^{\text {I 5.3.c) (subgenus MICRONEPHTHYS) . . . . . } 9}\)

2 Forked setae present (fig. I5.I.h). A blade-like supcrior lamella on anterior neuropodia 3
- Forked sctac absent. Postsetal notopodial lamella bilobed . . . . . . 4

3 Notopodial cirrus very long in middle feet (fig. 15.I.i) . . . N. lyrochaeta (p. 341)
- Notopodial cirrus never elongatcd (fig. 15.1.e) . . . . . N. dibranchis (p. 341)

4 Branchiae start on setiger 3 or 4. Notopodial cirrus flattened and bladc-like (fig. 15.1.k)
- Branchiae start on setiger 9. Notopodial cirrus not flattened (fig. I5.1.n) macroura (p. 343)
- Branchiae start on sciger g. Notopodal cirrus not Altened (fig. fin.n)
N. malmgreni (p. 343)

5 Coarsely toothed geniculate setae present (fig. I5.2.c). Branchiae short, rather flattencd
N. capensis (p. 344)
- Coarsely toothed geniculate setac absent

6 Branchiae cirriform throughout \(\quad . \quad 7\)
- Branchiae foliaceous in some fect . . . . . . . . . . . . . . . . 8

7 Posterior lamellae largc; anterior dorsal lamella bilobed (fig. 15.2.g) . N. hombergi (p. 344)
- Posterior lamellae small, hardly exceeding the setigerous lobes . . N. hystricis (p. 345)

8 Branchiae from setigcr 4, and are cirriform anteriorly and foliaceous posteriorly (fig. I5.2.m). Ventral lamella large .


\section*{Nephtys (Aglaophamus) dibranchis Grube, 1877}
(fig. I5.1.a-h)
Nephthys dibranchis Grube, 1877b: 536; Fauvel, 1932: 117; Fauvel, 1953: 225, fig. 114 e. Aglaophamus dibranchis: Hartman, 1950; 121.

Body about 25 mm . long. Prostomium (fig. I5.I.d) pentagonal and straight in front with well developed, subequal and tapered antennae. Eyes visible through the skin. Proboseis with 14 rows of four to five papillae each plus a much longer median dorsal one. Jaws (fig. 15.r.b) as tetrahedral ehitinous plates. Dorsal cirrus of first foot well developed. Cirriform gills start on setiger 4 and project straight out or are involute, each having a finely tapercd notopodial eirrus at the base. Parapodial rami markedly divergent and setigcrous lobes pointed. In anterior notopodia (fig. I5.I.e) the presetal lamella is small and auricular and the postsetal lamella similar but larger; in middle feet (fig. I5.I.e) the postsetal lamella projects dorsally and in posterior fect the posterior lamella hardly execeds the acieular lobe. In anterior neuropidia there are three lamellae; an anterior aurieular one, a superior tongue-like lamella and a postsctal auricular one. In middle fect the superior one beeomes clongated and strap-like and in posterior feet all three lamellae dcerease and the supcrior one disappears.

The setae arc well developed. The anterior fan consists of laddercd capillaries (fig. I5.I.f) while the postcrior fan consists of numerous long, rather flattened capillaries (fig. I5.I.g) and a row of forked sctac (fig. I 5.I.h).

Type locality: New Guinea.
Records: Natal (30/30/s, 29/3I/s, d) / common in dredgings on sand.
Distribution : Tropical Indian Ocean (s, d, vd) ; ? New Zealand and Campbell Is. (s).

Nephtys (Aglaophamus) lyrochaeta Fauvel, 1902

> (fig. 15.I.i)

Nephthys lyrochaeta Fauvel, 1902: 72, figs. 9-12; Augener, 1918: 160, pl. 2 fig. 12, pl. 3 fig. 59.
Body about 30 mm . long. Prostomium pentagonal and straight in front. Eyes not visible. Proboscis with i4 rows of four to five papillae each plus a larger median dorsal one. Gills from the fourth or fifth sctiger, each involute with a notopodial cirrus at its base. According to Fauvel this cirrus is short and aceording to Augencr and Monro it is very long (fig. 15.1.e). In anterior feet all lamellae execed the setigerous lobes. The notopodium has a round presetal lamclla and a larger, orbieular postsetal one. The neuropodium has an oval presetal lamella, a bladc-like supcrior lamclla and a large orbicular postsctal lamella. In posterior feet all lamellae


Fig. 15.1. Nephlys dibranchis. (A) Entire worm (fivc times life size). (в) Chitinous jaw. (c) Twelfth foot. (D) Head with proboscis extrudcd. (E) Middlc foot. (F) Laddcred preacicular seta. (G) Post-acicular seta. (H) Forked seta. Nephyys lyrochaeta. (I) Thirty-fifth foot (from Monro, 1936). Nephlys macroura. (J) Head. (к) Antcrior foot. (L) Middle foot. (m) Post-acicular seta. Nephtys malmgreni. ( N ) Middle foot. (o) Post-acicular seta.
decrease so that they arc shorter than the setigerous lobes and the superior lamella of the ncuropodium disappears. Setae include the usual anterior fan of laddered capillaries and a posterior fan of long-bladed setae and in both rami there are also numerous forked sctae though these are difficult to find.

Type locality: Sencgal, western Africa.
Records: Not recorded from southern Africa.
Distribution : Morocco ; Brazzavillc-Congo (s) ; Persian Gulf (s).

Nephtys (Aglaophamus) macroura Schmarda, 1861 (fig. 15.1.j-m)
Nephthys macroura Schmarda, 1861 : 91 , figs. A, K, a, b; Day, 1960: 327.
Aglaophamus macroura: Hartman, 1950: 1 I8.
Body largc, rcaching 150 mm . Prostomium (fig. I5.I.j) subquadrate without visible eyes. Sccond antenna longer than the first and ventro-lateral in origin. Proboscis with 22 rows of large papillac distally and 14 rows of smaller papillae proximally. Ventral cirrus of first foot elongate and flattened, but the dorsal cirrus is absent. Branchiac from setiger 2-4, at first small but increase to maximum size at the 20th foot (fig. I5.1.k) and then decrease. Each is cirriform and involute and bcars a flattened, bladc-like dorsal cirrus. Ventral cirri blade-like throughout. Setigcrous lobes prolonged into small auricular processcs into which the acicula cxtend. Presental lamellae of both rami bilobed. In the notopodium the superior presetal lamella is very small, and the inferior one large and square. The latter becomes obscure after the first 20 feet but in the neuropodium the two widely separatcd parts persist as small lobes above and below the sctigerous lobe (fig. 15.1.l). Postsctal lamellac of both rami arc large and unequally bilobed. In the notopodium the larger supcrior part is cxpanded as a foliaceous process. In the neuropodium the main lobc is inferior and it becomes ligulate in postcrior feet. Setae include the usual laddered capillaries and a posterior fan of very long, rather flattened capillaries (fig. 15.1.m).

Type locality: Auckland, New Zealand.
Records: Capc (32/17/d, 33/17/d, 34/25/s).
Distribution : Subantarctic ( \(\mathrm{s}, \mathrm{d}\) ) ; Chile ( \(\mathrm{s}, \mathrm{d}\) ) ; Antarctica (d, vd).

\section*{Nephtys (Aglaophamus) malmgreni Theel, 1879}
(fig. 15.1.n-o)
Nephthys malmgreni Theel, \(1879: 26\), pl. 1 fig. 17, pl. 2 fig. 17 ; Fauvel, 1923: 371, fig. 145 k . Aglaophamus malmgreni : Pettibone, 1963: 191, fig. 48b.

Body up to 120 mm . long for 8 o scgments. Prostomium pentagonal, without cyes and with the inferior antennac stouter than the superior pair. Proboscis without an unpaired median papilla but with 14 rows of papillae. Each row has 12-18 papillae which are large distally but grade down to very small ones proximally. First setiger
with a rather long ventral cirrus but a short dorsal one. Brancliae from setiger \(10-15\), cylindrical and involute. They are well developed in later fect (fig. I5.I.11). Notopodium conical. Presetal notopodial lamella rudimentary. Postsctal notopodial lamella divided forming a large rounded superior part which projects above the level of the parapodium and a small inferior part at the apex of the setigerous lobe. Ncuropodium conical. Presetal ncuropodial lamella absent. Postsetal lamella rounded to auricular, slightly exceeding the setigerous lobe on anterior fect. Notopodial cirrus short and tapered but not flattened. Ventral cirrus small and conical. Anterior capillaries are laddered. Postcrior row of setac (fig. I5.I.o) long, fine and minutely denticulate on one margin. No specialised setae.

Type locality: Deep dredging off Norvaya Zembya.
Records: Not recorded from Southern Africa.
Distribution : Norway.
Nephtys (Nephtys) capensis Day, 1953
(fig. I5.2.a-f)
Nefhthys capensis Day, 1953: 431, fig. 5 g-m.
Body about 60 mm . long. Prostomium (fig. I5.2.f) pentagonal and slightly arched in front. Eyes not visible. Posterior pair of antennac only slightly shorter than anterior pair. Proboscis with 22 rows each with six papillac plus a larger median dorsal papilla. Ventral cirrus of first foot equal to antennac, dorsal cirrus lacking. Branchiac from the fourth foot, at first rectangular and comprcssed (fig. 15.2.d) but later ones become cirriform and recurved (fig. I5.2.c) particularly in large specimens. Notopodium conical with a small presetal lamella (which is not notched) and a large rounded postsetal one. Neuropodium conical with the upper margin of the small presetal lamella slightly produced and a large postsetal lamella with a rounded end projecting well bcyond the setigerous lobc. Sctac include an anterior fan of laddercd capillarics (fig. I5.2.a) and a larger postcrior fan containing numerous very long setae with spinulose margins (fig. \(15.2 . b, b^{1}\) ) and a fcw shorter geniculate setae with coarse tceth (fig. I5.2.c).

Type locality : Table Bay, South Africa.
Records: Capc (29/16/i, 32/r8/s and 33/r8/c, i, s to \(33 / 27 / \mathrm{c}\) ) ; Natal (29/3 \(/ \mathrm{s}\), 27/32/e).

Distribution : Endemic.
Nephtys (Nephtys) hombergi Savigny, 1820
(fig. I5.2.g-i)
Nephthys Hombergi Savigny, 1820: 34.
Nephthys hombergi : Fauvel, 1923: 367, fig. 143 a-d.
Length up to 200 mm . for 200 segments. Prostomium pentagonal with two small eyes and four subequal antennae. First setiger with a ventral cirrus similar to the antennae and a button-like dorsal cirrus. Proboscis with 22 rows each with two to
four papillae and a much larger median dorsal papilla. Jaws (fig. 15.2.i) as a pair of quadrangular ehitinous plaques. The two rami of the parpodia (fig. I5.2.g) are well separated and the setigerous lobes are rounded with a small projection over the aciculum. In the notopodium the presetal lamella is deeply bilobed and the postsetal lobe is orbicular and exeeeds the setigerous lobe. In the neuropodium the presetal lamella is bilobed with a longer superior part while the large postsetal lamella which is united to the presetal lamella superiorly; it is roughly oblong and greatly exceeds the setigerous lobe. Branchiae start on setiger 4 and are cirriform and recurved. Each bears a small notopodial cirrus. There are no speeialised setae, simply an anterior fan of laddered capillaries and a posterior fan of longer hispidedged setae (fig. I5.2.h).

Type locality : Coast of France.
Records: South West Africa (22/14/i, 26/I4/d, 26/i5/i, s) ; Cape (33/i8/i, s to \(34 / 23 / \mathrm{e}, \mathrm{s}, \mathrm{d}\) ) to Natal (31/29/s).

Distribution : Eastern Atlantic from Norway (s, d), Sweden (d) and the English Channel (e, i, s) to Moroeco (s, d) ; Angola (s), Mediterranean (s).

Nephtys (Nephtys) hystricis McIntosh, 1900
Nephthys hystricis McIntosh, 1900: 259; Fauvel, 1923: 373, fig. 146 a-e.
Body about 40 mm . long. Prostomium arched in front and pointed behind with four small, subequal antennae. Ventral cirrus of setiger 1 small and conieal, dorsal cirrus even smaller. Proboscis with 22 rows each with 35 small papillac and a long median dorsal papilla. Parapodial rami markedly divergent so that the segments appear X-shaped. Setigerous lobes conical and lamellae poorly developed. Presetal and postsetal lamellae of both the notopodium and neuropodium are rounded and slightly exceed the setigerous lobes. Branchiae start on setiger 9 , soon increase to large eirriform recurved organs bearing small notopodial cirri and then disappear about the 35 th to 40 th foot. Setae include an anterior fan of laddered eapillaries and a posterior fan of long, striate-edged capillaries.

Type locality: Mediterrancan.
Records: Southern African records doubtful (37/I7/vd and 26/32/?).
Distribution : Eastern Atlantie from the North Sea to Moroceo (s, d) ; Mediterranean (s).

Nephtys (Nephtys) tulearensis Fauvel, 1919
(fig. \(15.2 . j-m\) )
Nephthys tulearensis Fauvel, 1919: 422, pl. 16 figs. 37-39.
Length about 80 mm . by 2.5 mm . Prostomium slightly curved in front with four equal antennae. Proboseis with 22 rows of three to five papillae per row. Ventral cirrus of setiger I well developed; dorsal eirrus poorly developed. Setigerous lobes of parapodia bluntly conical. In anterior feet (fig. I5.2.1) the notopodium has a


Fig. 15.2. Nephtys capensis. (A) Laddered capillary. (B) Long post-acicular capillary and ( \(B^{1}\) ) details of marginal spinules. (C) Geniculate seta. (D) Anterior foot. (E) Posterior foot. (F) Head. Nephlys hombergi. (c) Foot. (is) Part of blade of post-acicular capillary. (I) Jaw. Nephtys tulearensis. (J) Jaw. (k) Part of blade of post-acicular capillary. (L) Anterior foot. (M) Posterior foot. Nephlys paradoxa (after Fauvel). (N) Middle foot. (o) Posterior foot.
small bilobed presetal lamella and a well developed oval postsctal lamella. Neuropodium with a small presetal lamella whose superior margin is united to the long postsetal lamella whose distal edge is rounded. Branchiae start on setiger 4 and are at first large, cirriform and recurved with a small notopodial cirrus at the origin. In postcrior fect (fig. 15.2 m ) the parapodial lamellae are all smaller but essentially similar in shapc while the branchiae develop a rounded lamellar expansion on the extcrnal margin. The setae include the normal anterior fan of laddered capillaries and the posterior fan of long capillarics with a finely spinulose margin (fig. 15.2.k).

Type logality: Tulear, Madagasear.
Records: Southern Cape (34/22/s and 33/25/e) to Natal (29/31/i) and Moeambique ( \(26 / 32 / \mathrm{i}\) and \(23 / 35 / \mathrm{c}, \mathrm{s}\) ) - common.

Distribution : Madagasear (i) and Persian Gulf (s).
Nephtys (Nephtys) paradoxa Malmgren, 1874
(fig. 15.2.n-o)
Nephthys paradoxa Malmgren, 1874: 77, pl. I fig. 2; Fauvel, 1923: 375, fig. i46 f-i; Pettibone, 1963: 200, fig. 47 d.
Nephtys? paradoxa: Day, 1960: 327.
A large species reaching 150 mm . Prostomium straight or slightly concave anteriorly. ? two eyes. Posterior pair of antennac larger than the antcrior pair. Ventral eirrus of first foot stout and conieal but the dorsal cirrus is mercly a low papilla. Proboscis with 22 rows each with four to six papillac and an enlarged median dorsal one. Parapodia with divergent rami. Notopodium with a broadly rounded setigerous lobe while that of the neuropodium is conical but both beeome more pointed posteriorly. Antcrior lamellae rudimentary in both rami. Postcrior lamellae of both rami small, rounded, hardly execeding the setigerous lobes. Branchiae start on setiger 8-10 and are at first eirriform and recurved with a small notopodial eirrus at the base. In later feet the branehiae bccome flattened or lamellar (fig. 15.2.n) and then decrease in size to disappear on posterior feet (fig. 15.2.0). Setae inelude the usual antcrior fan of laddered capillaries and a posterior fan of long, rather flattened eapillaries with transverse rows of fine teeth on onc margin.

Type locality: Goteborg, Sweden.
Records: Southern Africa records doubtful (32/17/d and 34/18/vd).
Distribution : North Atlantie (Greenland ( \(s\), d, vd), Norway ( \(s, d\) ), Swedeń (d, vd)) ; Maine and Massaehusetts (s, d) ; Arctie; Bchring Sea; N. W. Japan.

Nephtys (Micronephthys) sphaerocirrata Wesenberg-Lund, 1949
(fig. 15.3.a-d)
Nephthys sphacrocirrata Wesenberg-Lund, 1949: 294, figs. 24-26.
A small species up to 25 mm . long. Prostomium (fig. 15.3.b) pentagonal with a straight anterior margin and rather long, slender and knobbed antennac. Eyes far back, opposite setiger 2. Proboseis with 22 rows each with six to nine tapered


Fig. I5.3. Nephtys sphaerocirrata. (A) Part of long post-acicular capillary. (B) Head and proboscis. (c) Foot. (D) Forked seta. Paralacydonia paradoxa. (E) Head. (F) Simplc capillary. (G) Compound spinigerous scta. (H) Foot (anterior view).
papillae. No enlarged median dorsal papilla. Parapodia with vestigial lamellae, the first having a knobbed ventral cirrus. Subsequent feet (fig. 15-3.c) have small papilliform notopodial cirri but lack branchiae entirely. The setigerous lobe of the notopodium is bluntly conical without visible lamcllac. The setigcrous lobe of the neuropodium is conieal with a small postsetal lamella. Setae inelude an anterior fan
of laddered capillaries and a posterior fan of very long eapillaries with a spinulose margin (fig. 15.3.a) and two to three short forked setae with spinules on their inner margins (fig. I5.3.d).

Type locality : Persian Gulf.
Records: South West Afriea (26/15/s) ; Cape (from \(32 / 17 /\) d to \(33 / 27 /\) s) - abundant in muddy sand.

Distribution : Persian Gulf (s).

Nephtys (Micronephthys) ambrizettana Augener, 1918
Nephthys ambrizettana Augener, 1918: 166, pl. 2 fig. 13, pl. 3 figs. 60, 61.
A small species 6.5 mm . long with 42 segments. The prostomium is as broad as long with slender antennae. Doubtful eye-spots behind the prostomium. Ventral eirrus of setiger i longer than the setigerous lobe; dorsal cirrus similar. Normal body segments with poorly developed parapodia. Notopodial cirri and branchiae are entirely absent and the ventral cirri are small. Presetal lamellae are either rudimentary or absent. The setigerous lobes are conical and the postsetal lamellae though definitely present hardly exceed the setigerous lobes. Setae include an anterior fan of laddered eapillaries and a posterior fan of long setae which are finely serrate on the convex margin.

Type locality: Ambrizette, Angola.
Records: Not recorded from South Afriea.
Distribution: Angola.

\section*{Family LACYDONIIDAE Bergström, 1914}

Body vermiform with numcrous segments. Prostomium rounded or truneate with four small frontal antennae. Proboscis unarmcd, sometimes papillosc. Buccal scgment apodous and achactous but with one pair of tentacular eirri or nonc. The next one to three segments uniramous; subscquent segments biramous with lamcllate sctigcrous lobes and small conical dorsal and ventral cirri. Notosetae as simple eapillarics; ncurosctae mainly compound and spinigerous.

Bergström regarded the Lacydoniinac as a subfamily of the Phyllodocidae. Hartman (1959) raised it to family rank and Pettibonc (1963) felt that Paralacydonia should be plaeed in a separate family Paralacydoniidae related to the Nephtyidac.

Only two gencra known - Lacydonia Marion and Bobretzky and Paralacydonia Fauvel.

\section*{Key to Genera}

1 Peristome with one pair of tentacular cirri and the next three segments with uniramous parapodia

LACYDONIA*
- Peristome without tentacular cirri and only the next segment with uniramous parapodia

PARALACYDONIA

\section*{PARALACYDONIA Fauvel, 1913}

Body elongate, rcetangular in seetion and superficially like a small Nephtys. Prostomium truncate with four small frontal antennae. Pcristome apodous and achactous and the next segment with uniramous parapodia. Subsequent segments with flattencd, biramous parapodia. Notopodia and neuropodia well separated and supported by acieula. Notopodium with a dorsal cirrus and a fan of simple eapillarics; neuropodium with a ventral eirrus, a fan of eompound spinigerous setac and usually a fcw simple eapillaries. No branchiac.

Type species: Paralacydonia paradoxa Fauvel 1913.

Paralacydonia paradoxa Fauvel, I913
(fig. I5•3.e-h)
Paralacydonia paradoxa Fauvel, 1913: 54, fig. 55; Fauvel, 1923: 198, fig. 74 e-i; Pettibone, 1963 : 184, fig. 46.
Body \(20-30 \mathrm{~mm}\). long, rectangular in section and rcsembling a small Nephtys. Prostomium (fig. 15.3.e) a truncate cone with four small, biarticulate frontal antcnnae. A pair of obscure subdermal eycs (not notcd in earlier descriptions). Peristome reduccd and without parapodia or tentaeular cirri. Mouth ventral, with a smooth lining leading to an unarmed but museular pharynx. First setiger uniramous with a papilliform dorsal cirrus, a stout setigcrous lobe bearing a fan of compound spinigerous sctae and a ventral cirrus. Subsequent segments all with biramous parapodia. Notopodium (fig. I5.3.h) with a small eonical dorsal cirrus and a wcll
developed setigerous lobe with a low, rounded presetal lip and a larger, notehed postsetal lamella and between the two a fan of notosetac. Notopodia and neuropodia well separated without any sign of an interramal gill but with the inner surfaces eiliated. Neuropodium larger than the notopodium with a low rounded presetal lip, a fan of neurosetae and a large notched postsetal lamella and a digitiform ventral eirrus. Notosetac (fig. I5.3.f) are all simple capillarics with smooth, somewhat flattened blades. Neurosetae are mainly eompound with one to two simple capillaries inferiorly. The eompound setae (fig. 15.3.g) are heterogomph spinigers with one side of the shaft-head produced as a spine and the blade serrated on one margin.

Type locality: Monaco (Mediterranean).
Records: Natal (30/30/s) ; Mocambique (24/34/s).
Distribution: Mediterranean (s) ; Morocco (s) ; Atlantic and Pacific coasts of U.S.A. (d, vd.) ; Ycllow Sea.

Family GLYCERIDAE Grube, 1850
(including GONIADIDAE Kinberg, 1866)
Body elongate with numerous segments and tapered at both ends. Prostomium long and tapered, tipped with four small biannulate antennae and superficially ringed. One to two pairs of eycs. No palps. Proboscis very long with four jaws or two jaws and a circlc of paragnaths. The surface is papillose and V-shapcd chevrons may be present near the base. Parapodia from the peristomial segment onwards. Parapodia typically biramous with simple notosetae and compound neurosetae but the notopodium may be abscnt and the feet uniramous on some or all of the segments. When fully developed the foot has a dorsal cirrus, two presetal and two postsetal lobes and a ventral cirrus. Branchiae may be present or absent.

\section*{Records from southern Africa}

Glycera alba (Müller).
Glycera benguellana Augener . as Glycera capitata var. benguellana Augener .
Glycera convoluta Keferstein semonomar.
as Glycera africana Arwidsson
as Glycera conooluta africana Arwidsson . 12 Ci
as Glycera tridactyla Schmarda
Glycera lancadivae Schmarda
Glycera lonigipinnis Grube
Glycera natalensis Day . . . . . 45 Ni
Glycera papillosa Grube . . . . 50Cs
Glycera prashadi Fauvel . . . . \(40 \mathrm{Ni}, 4 \mathrm{ICi}, 45 \mathrm{Pi}, 50 \mathrm{Cs}\) as Glycera convoluta var. capensis Monro \(\quad . \quad 35 \mathrm{Ci}, 36 \mathrm{Ci}\) as Glycera cirrata (non Grube)
\({ }_{4} \mathrm{ICi}\)
Glycera rouxi Audouin \& Milne-Edwards . 50Csd, -Ns
as Glycera goesi Malmgren 32 Cd
Glycera subaenea Grube . . . . \({ }_{27} \mathrm{Mi}, 40 \mathrm{PiNi}\)
Glycera tesselata Grube. . . . . \(10 \mathrm{Cd},{ }_{2} 7 \mathrm{Mi}\)
Glycera unicornis Savigny . . . . \(4 \mathrm{ICi}, 45 \mathrm{Pi}, 50 \mathrm{Csd}\)
as Glycera kraussi Stimpson . . . \({ }_{2} \mathrm{Ci},{ }_{15} \mathrm{Csd}, 2 \mathrm{ICi}\)
Glycinde capensis Day . . . . . 50 Cs, -Nsd
Glycinde kameruniana Augener . . . 50 Cs
Goniadella gracilis (Verrill) . . . . 56 Csd
Goniadopsis incerta Fauvel . . . . 4 ICi
Goniadopsis maskallensis (Gravier) . . . 45 Ni
Goniada congoensis Grube . . . . 33As
eremilá
Goniada emerite Audouin \& Milne-Edwards . 40 Pi
Goniada maculata Oersted . . . . 40 Pi
Ophioglyṕcera eximia (Ehlers) . . . 50 Csd

BIOLOGICAL NOTES
The glyccrids burrow in sandy substrata by means of an eversible proboscis. They are very active worms and when dug out they lash about vigorously and shoot out a proboscis almost half as long as the body. At the end of the proboscis there are well dcveloped jaws and probably most species arc predators or at least carnivorous for very little sand is ever found in the gut.

\section*{THE MAIN DIAGNOSTIC CHARACTERS}

Recent reviews of the family will bc found in Fauvcl (1923) and Hartman (1950). Fauvel recogniscs a singlc family Glyceridae whereas Hartman has resurrected the superfamily Glycerea Grube (1850) and the two families erected by Malmgren (1867) namely Glyceridae and Goniadidae. Since thcir structure is cssentially similar and there are less than ten rccognisable genera, Fauvel's view of a single family Glyceridae is accepted here. However, in the key given below the two subfamilics Glycerinae and Godiadinae arc distinguished.

The head (fig. 16.1.a). This is a long, conical, annulated structurc with four small, biarticulated antennae at its tip and eyes may be present in both the basal and terminal rings. The number of rings may vary with the dcgree of contraction and the cycs may be hidden below the surface so both of these characters are of limited value.

The proboscis (fig. 16.1.m). This is a vcry long structure and in the living animal it may be extendcd to a surprising distance cither to grasp prey or to burrow through the sand. The structures on the proboscis provide valuable taxonomic characters and if it is not cverted it must be dissected by a slit along the body. The structures which may be found on the probosces of different genera include: (a) proboseidial papillac, (b) chevrons, (c) terminal papillae, (d) jaws with their supports, denticles or paragnaths.
(a) The proboscidial papillae or proboscidial organs (fig. 16.1.d, g, j, n) are soft or lightly chitinised papillae which cover the surface of the proboscis and may be arranged in distinct longitudinal rows. Their structure is basically tubular, the central canal ending in a terminal pore. The whole papilla may be broad and squat or long and conical and its sidcs arc either smooth, longitudinally ridged, transversely ringed (fig. 16.1.n) or there may be a striated flange at the distal end which is often slanting and gives the impression of a projecting finger-nail. In most genera the proboscidial papillac are essentially similar and uniformly distributed over the surface but in Glycinde (fig. 16.5.1) there are five longitudinal belts of papillae each differing in structure.
(b) The chevrons (fig. 16.4.b) are a serics of dark, V-shaped chitinous elements which occur on either side of the base of the proboscis. Their presence is of generic importance but their number and detailed structure is of doubtful value.
(c) The terminal pafillae are 15-20 large soft rounded papillac which encircle the distal end of the everted proboscis. They are of little taxonomic value.
(d) The jaw elements occur at the distal end of the proboscis and are black and heavily chitiniscd. In the Glycerinae there are four simple hooked jaws each with a jaw-support or aileron (fig. 16.1.h). The jaws seem to be very constant in shape but the jaw supports vary from species to species and provide useful characters. The basic structure is V-shaped with unequal prongs, but the two prongs may be united in varying degrees or onc prong may be reduced to a mere vestige fused to the base of the other (fig. 16.1.0). In the Goniadinae the jaw elements (fig. 16.4.c) consists of a pair of larger toothed jaws or macrognaths and two ares of denticles or micrognaths which together form a completc circle around the open end of the proboscis. There may be four or morc teeth on the macrognaths but it is suspected that the number of teeth increases with the size of the worm. The denticles are roughly X-shaped or Y-shaped but the exact shape is of doubtful importance. The number of dentieles however is a useful character if some allowance is made for the size of the specimen.

The parafodia and regions of the body. The fect are typically biramous. The notopodium consists of a dorsal cirrus and presetal and postsetal lobes with simple setac between them. Similarly the ncuropodium consists of presetal and postsetal lobes with compound setac between them and a ventral cirrus below. The two postsetal lobes are often united to form a single lobe (fig. 16.1.p). The notopodia may be reduced to a dorsal cirrus and the parapodium then becomes uniramous with compound setae only. This occurs in all fect of Hemipodus, in the first two fect of Glycera and in numerous anterior scgments of other gencra. In Goniada and Goniadella there is an abrupt change from the anterior uniramous segments to the posterior biramous segments so that two body regions are rccognised. In Goniadopsis, Glycinde and Ophioglycera the change is more gradual and a third intermediate or middle region is recognised. The structurc of the parapodial lobes and the number of scgments in the antcrior and middle regions provide useful characters.

The setae. The sctac are usually slender-bladed capillaries in the notopodia (fig. 16.1.c) and compound spinigerous forms in the ncuropodia (fig. 16.I.f) and the detailed structure is seldom important. In some species, however, there are stout spincs in the posterior notopodia which may have a tapercd hood or arista; in others there may be falcigerous compound sctae in the neuropodia.

The branchiae. In the genus Glycera the nature of the gills is of considerable importance. They may be entirely absent (fig. 16. I.p) or rectractile and inserted anywhere on the parapodium or non-retractile and inserted on the dorsal edge of the parapodium (fig. 16.i.b). They may also be simple or branched but they should be carefully investigated over a number of parapodia for the length will vary with the degrec of distension of the parapodium and retractile branchiae may show cvery degrec of eversion from conuplete retraction through partial eversion as a blunt sac to complete eversion and the appearance of two or more digitiform lobes.

\section*{Key to Genera}

1 Four horny jaws with supports (fig. 16.1.m). Parapodia all alike and the body not divided into regions (subfamily Glycerinae)
- A pair of large toothed jaws and a circle of denticles (fig. 16.4.b) (subfamily Goniadinae) 3

2 Parapodia uniramous with compound setae only
HEMIPODES*
- Parapodia biramous with simple capillaries and compound spinigers (fig. i6.i.b, e, f)

4 V-shaped chevrons present at the base of the proboscis (fig. 16.4.b). Body divided into two regions
- Proboscis with distinct rows of dissimilar papillae (fig. 16.5.l). Neurosetae are all spinigers
- Neurosetac include both falcigers in the anterior region and spinigers in the middle and posterior regions

GONIADOPSIS (p. 368)

\section*{GLYGERA Savigny, 1818}

Body elongate, rounded in section and tapered at both ends. Prostomium a long annulated cone bearing four small antennae at its tip. Proboscis very long with the surface densely papillose and four jaws at its end, each with a V-shaped support. Proboscidial papillae all essentially similar and not arranged in rows. Peristome and the next segment with uniramous parapodia but all subsequent segments with biramous parapodia. Notosctae are all simple capillaries; neurosetac compound and spinigerous.
Type species: Glycera unicornis Savigny, 1818.

\section*{Key to Species}

I A single postsetal lobe . . . . . . . . . . . 2
- Two postsetal lobes . . . . . . . . . . . . 7

2 Branchiae absent . . . . . . . . . . . . 3
- A single dorsal branchial filament (fig. 16.т.b) . . . G. longipinnis (p. 356)

3 Proboseidial papillae with a projecting flange like a fingernail. Postsetal lobe asymmetrically pointed (fig. I6.I.g, i)
G. natalensis (p. 356)
- Proboseidial papillac conical. Postsetal lobe low and rounded

4 Superior presctal lobe minute. (Proboseidial papillae very long, not ringed. Jaw supports deeply forked) (fig. I6.I.j-1) . . . . . . G. papillosa (p. 358)
- Prcsctal lobes subequal

5 Proboscidial papillae smooth. (Jaws supports without a notch between the two prongs)
G.capitata*
- Proboseidial papillae ringed (fig. i6.1.n)

6 Jaws supports with the two prongs almost separated. Postsetal lobe emarginate 16, G. lancadivae (sse 8) (p. 359)
- Jaw supports with only one prong developed (fig. 18.1.o). Postsctal lobe low and rounded . . . . . . . . . G. benguellana (p. 358)
7 Branchiae entirely absent. (Postsctal lobes low and rounded. Jaw supports deeply divided)
- Branchiae present but may be retractile.

8 Proboscidial papillac conical with \(\mathrm{I}_{5}-20\) rings . . G. lancadivae (see 6) (p. 359)
- Proboscidial papillae very long, not ringed . . . . . G. tesselata (p. 359)

9 Non-retractile branchiae arising from the dorsal edges of the parapodia . . . Io
- Retractile branchiae arising from the anterior faces of the parapodia . . . . 12
ro Branchiae branched and arise from the bases of the parapodia (fig. 16.2.f). Postsetal lobes cqual and pointed . . . . . . . . G. prashadi (p. 359)
- Branchiae simple and arise from the same level as the parapodial lobes (fig. 16.2.i). Superior postsetal lobe pointed, the inferior one rounded
II Branchial filament longer than the parapodial lobes (fig. I6.2.i) . G. convoluta-(p. 360)
- Branchial filament shorter than the parapodial lobes (fig. I6.2.k)
. G. alba (p. 36o)
12 Branchiae simple
13
- Branchiae compound

14
13 Branchiae globular. Posetal lobes equal and rounded (fig. 16.2.m) . G. gigantea* (p. 362)
Branchiae with two to three filaments. Postsetal lobes subequal and pointed (fig. \(16.3 . \mathrm{m}\) )
G. unicornis (p. 362)
- Branchiae with three to five filaments. Postsctal lobes unequal, the supcrior one pointed, the inferior one low and rounded (fig. 16.3.n)
G. subaenea (p. 363)

\section*{Glycera longipinnis Grube, 1878}
(fig. 16.I.a-f)
Glycera longipinnis Grube, 1878: 182, pl. 8 fig. 9; Fauvel, 1932: 125, pl. 4 figs. 11-14; Fauvel, 1953: 291, fig. 148 a-d; Day, 1960: 329.
Body pale, about 100 mm . long and tapered towards both extremities. Prostomium (fig. I6.I.a) a slender cone with about 12 rings. Proboscis covered with long cylindrical papillae without rings and a few stout forms (fig. I6.1.d). Jaw supports (fig. 16.2.c) with two long slender rami, onc twicc the length of the other and narrowly united at the base. Branchiae present from the 2oth foot. Each gill is a single filament/rather longer than the presetal lobes and ariscs from the dorsal edge of the foot near the origin of the parapodial lobes. Presetal lobes elongatc and pointed, subequal. Postsetal lobes fuscd to form a singlc low, rounded or faintly bilobed structure (fig. 16.1.b). Dorsal cirrus ovoid. Ventral cirrus triangular, much shorter than the presetal lobes. Notosetae (fig. i6.i.e) and neurosetae (fig. r6.I.f) with rows of minute spinules along the blades.

Type locality: Philippine Islands.
Regords: Cape (34/r8/s).
Distribution: Tropical Indo-west-Pacific (s, d).

\section*{Glycera natalensis Day, I957}
(fig. I6.I.g-i)
Glycera natalensis Day, 1957: 86, fig. 5 k-o.
Body palc and slendcr, up to 63 mm . long. Prostomium indistinctly annulatcd. Proboscis with long dclicate papillae (fig. 16.1.g) terminating in a fingernail-like cxpansions as in G. convoluta plus a few ovoid forms. Jaw supports (fig. i6.1.h) forked, the shorter ramus being half the length of the longer and completely united


Fig. I6.1. Glycera longipinnis. (A) Head and base of proboscis. (B) Posterior view of middle foot. (c) Jaw support. (D) Proboscideal papillae. (E) Notoseta. (F) Ncuroseta. Glyerca natalensis. (G) Proboscideal papillac. (H) Jaw support. (I) Posterior view of middle foot. Glycera papillosa. (J) Proboscideal papillae. (к) Jaw support. (L) Posterior view of middle foot. Glycera benguellana. (M) Entire worm (twice natural size). (N) Proboscideal papilla. (o) Jaw support. (P) Posterior view of middle foot.
to it by a paler chitinous area. No gills. Two equal, pointed presetal lobes and a postsetal lobe which might be termed one and a half there being a superior pointed portion united without a notch to an inferior rounded part (fig. 16.I.i).

Type locality: Durban, South Africa.
Records : Natal (29/3I/i) - no other records.

\section*{Glycera papillosa Grube, 1857}
(fig. 16.1.j-1)
Glycera papillosa Grube, 1857: 176; Augener, 1922: 203, text-fig. 9 a-c; Day, \(1960: 328\).
A small species \(20-30 \mathrm{~mm}\). long. Prostomium with about cight rings. The papillae on the proboscis (fig. r6.I.j) include a few ovoid forms and numerous very long, slender forms which are not ringed. The jaw supports (fig. I6.I.k) arc dceply forked and slender, the shorter limb being half the length of the longer one and united to it by a paler arca. There are no gills. The supcrior presetal lobe (fig. I6.I.l) is minutc, the inferior one large and pointed. There is a single broadly rounded postsetal lobe, the same length as the ventral cirrus. The dorsal cirrus is small and arises well above the foot.

Type locality: Valparaiso, Chile.
Records: Cape (34/18/s to 34/23/s, d and 33/28/s) ; Natal (30/30/s).
Distribution : Cbile ( \(i, s, d\) ) ; North Carolina ( \(s\) ).

Glycera benguellana Augencr, 193 1
(fig. I6.I.m-p)
Glycera capitata Oerst. var. benguellana Augener, 193 : 303, fig. 9.
Glycera benguellana: Day, 1960: 329, fig. 8 b-e.
Body (fig. I6.r.m) about 100 mm . long. Prostomium long, with numerous (? 30 ) indistinct rings. Proboscis with a few broadly conical papillac and numerous digitiform ones with ro-16 rings (fig. I6.I.n). Jaw supports (fig. i6.r.o) blade-like, the shorter limb being a merc expansion at the base of the other. Branchiae absent. Feet with two triangular presetal lobes of which the superior is very slightly shortcr in the middle of the body but definitely so posteriorly. The postsetal lobe is low and rounded (fig. I6.I.p). The dorsal cirrus is relatively large and arises just at the junction of the parapodium with the body.

Type locality: Dredged in 230 m . off the Orange River mouth, South Africa.
Records: South West Africa (28/16/s, 28/13/d); Cape (32/17/s to 34/23/d).
Distribution: Endemic.

Glycera lancadivae Schmarda, 1861
Glycera lancadivae Schmarda, 1861 : 95 with text-figs; Fauvel, 1953: 291, fig. 147 g-h; Day, 1962 : 641.

Glycera edwardsi Gravier, 1906: 139, pl. io figs. 160-162, text-figs. 293-298.
Body pale and up to 90 mm . long. Prostomium indistinetly ringcd. Proboseis with slender conieal papillac having \(16-20\) rings, and a few broader forms. Jaw supports with widely divergent, unequal prongs, so deeply divided as to be almost separatc. Branchiac absent. Parapodia with two subequal pointed presetal lobes and a low roundcd to emarginate postsetal lobe.

Type locality: Ceylon.
Records: Madagascar (i).
Distribution: Tropieal Indian Oeean (i, s); New Caledonia (i).
Glycera tesselata Grube, 1863
(fig. I6.2.a-c)
Glycera tesselata Grube, 1863: 4 ; Fauvel, 1923: 387, fig. 152 a-c.
Body small, 15-35 mm. long with 70-100 segments. Prostomium with 12-14 rings. Proboscis with very long grooved papillae without rings (fig. 16.2.b). Jaw supports (fig. 16.2.a) forked with one short limb and a very deep noteh between it and the longer limb. Presetal lobes of parapodia triangular and equal; postsetal lobes (fig. 16.2.c) shorter, rounded and cqual. No branchiac.

Type logality: Mediterranean Sea.
Records: Madagascar (i).
Distribution : Atlantie from Scotland (s,d) to Moroceo (s, d) ; North Carolina (s) ; ? tropical W. Africa (i) ; Mediterrancan (s); Rcd Sea (i); Tropical Indian Ocean (i, s) ; Japan; W. Canada to Southern California (d, vd).

\section*{Glycera prashadi* Fauvel, 1932}
(fig. 16.2.d-f)
Glycera parashadi Fauvel, 1932: 126, pl. 5 figs. 1-8.
Glycera prashadi: Day, 1951 : 35; Fauvel, 1953: 294, fig. 150 a-h.
Glycera cirrata: (non Grube) Fauvel, 1932 : 129, fig. 18 a-e; Day, 1953: 430.
Glycera convoluta var. capensis Monro, 1933: 499, fig. 12; Day, 1934: 47-
Length up to 45 mm . Prostomium with about 10 annulations. Papillae on the proboscis (fig. i6.2.e) with a distal flange shaped like a finger-nail. Jaw supports (fig. 16.2.d) with two rami, there being no noteh between the short and long ramus. Parapodia (fig. 16.2.f) with two equal, pointed presetal lobes and two shorter, pointed and equal postsetal lobes. Branchiae from the 30 th foot and arise from the

\footnotetext{
*The name Glycera parashadi as used by Fauvel (1932 : 126) is a typographical error for G. prashadi. It is corrected elsewhere in the text and by Fauvel (1953).
}
dorsal edge of the parapodium at its base and consist of one to fivc branching filaments.

Type locality: Pcrsian Gulf and Bay of Bengal.
Records: False Bay (34/i8/i, s to 34/23/e) ; Natal (29/31/i) and Mocambique (26/32/i and 23/35/e, s).

Distribution: Tropical Indian Ocean (s) ; Japan.
rédoitiola. Senmanta 1861
Glycera convoluta Keferstcin, 1862
(fig. I6.2.g-j)
Glycera convoluta Keferstein, 1862: 106; Fauvel, 1923: 383, fig. 150 a-h.
Length up to 120 mm . for 150 segments. Prostomium with \(14-16\) rings. Papillae on proboscis (fig. I6.2.h) with a distal flange shaped like a finger-nail. Jaw supports (fig. I6.2.g) with two uncqual limbs but no notch between them. Parapodia with two equal, pointcd presetal lobcs. In the middle parapodia (fig. 16.2.i) the superior postsetal lobe is pointed, the inferior one shorter and rounded ; this is better marked in posterior feet (fig. 16.2.j). Branchiae start on the 30 th foot and arise from the dorsal edge of the parapodium at the level of the parapodial lobes. Each gill is a single filament which is longer than the parapodial lobes.

Type locality : Mediterranean Sea.
Records : South West Africa (22/I4/s and 26/15/i, s) south to the Cape (33/18/i, s and \(34 / 22 / \mathrm{e}, \mathrm{j}\) ) and east to Natal (29/3 \(/ \mathrm{e}, \mathrm{i}\) ) and Mocambique (23/35/e, s) ; Madagascar (i).

Distribution: Eastern Atlantic from the English Channcl (e, i, s) to tropical western Africa (i) and Tristan da Cunha ; Mediterranean ; Persian Gulf (s) ; western Canada to southern California (s, d) ; Japan.
(fig. 16.2.k)
Nereis alba Müller, \(1788: 217\), pl. 2 figs. 6-7.
Glycera alba: Fauvel, 1923: 385, fig. 150.
Length up to 100 mm . Prostomium with \(8-10\) rings. Papillae on the proboscis with a distal flange shaped like a finger-nail. Parapodia with two equal, pointed, presetal lobes. Superior postsetal lobe pointed, the inferior onc shorter and rounded. Branchiae from 40 th foot and arise from the dorsal edge of the parapodium at the level of the presetal lobe. Each branchia is a single filament not longer than the presetal lobe (fig. r6.2.k).

Type locality: Norway.
Records: South West Africa (26/ı5/i); Cape (34/i8/d); Natal (29/3I/e); Mocambique ( \(26 / 32 / \mathrm{i}\), s and \(23 / 35 / \mathrm{c}, \mathrm{s}\) ).

Distribution : North-eastern Atlantic from Norway (s, d) to France; Red Sea and tropical Indian Ocean (i, s) ; Japan.

\footnotetext{
*This species is doubtfully distinct from \(G\). convoluta Keferstein.
}


Fig. r6.2. Glycera tesselata. (A) Jaw support. (B) Proboscideal papillae. (c) Posterior view of foot. Glycera prashadi. (D) Jaw support. (E) Proboscideal papillae. (F) Posterior view of foot. Glycera convoluta. (G) Jaw support. (H) Proboscideal papillae. (1) Posterior view of middle foot. (J) Posterior view of posterior foot. Glycera alba. (к) Posterior view of middle foot. Glycera gigantea (after Fauvel, 1923). (L) Jaw support. ( \(M, N\) ) Anterior and posterior views of middle foot (setae omitted).

\section*{Glycera gigantea Quatrefages, 1865}
(fig. 16.2.1-n)
Glycera gigantea Quatrefages, \(1865: 183\); Fauvel, \(1923: 387\), fig. \(152 \mathrm{~d}-\mathrm{k}\).
Body large, reaehing 350 mm . in length with 400 segments. Prostomium large and conieal with \({ }_{12-14}\) rings. Papillae on proboseis mainly elongate plus a few ovoid forms. Jaw supports (fig. r6.2.1) with only one divergent fork developed. Parapodia (fig. I6.2.m, n) rather small, presetal lobes digitiform, equal. Postsctal lobes low, rounded, not deeply divided; the superior one slightly larger. Dorsal cirrus ovoid and attached well above the foot. Ventral cirrus bluntly triangular. Branchiae retraetile, globular and insertcd on anterior face of the parapodia.

Type locality: Brehat, N.W. France.
Records: Not reeorded from southern Afriea.
Distribution: English Channel (i, s) ; Mediterranean.
Glycera rouxi Audouin \& Milne-Edwards, 1833 (fig. I6.3.a-d)
Glycera Rouxii Audouin and Milne-Edwards, 1833: 264; Fauvel, 1923: 389, fig. 153 a-c ; Day, 1960: 330.
Body 100-I 50 mm . long. Prostomium a tapered cone with io-12 poorly marked rings. Papillae on proboscis (fig. i6.3.a) include numerous smooth conieal forms plus a few globular ones. Jaw supports (fig. 16.3.b) with only one well developed prong; the other prong is represented by a triangular basal projeetion, not separated by a notch from the first. Parapodia (fig. 16.3.e) with presetal lobes equal and pointed. Postsetal lobes shorter than the presetal ones ; they are subequal in middle feet but later the superior one becomes longer and pointed and the inferior one shorter and rounded (fig. r6.3.d). Dorsal eirrus ovoid and attached at the base of the foot. Ventral eirrus long, pointed and directed downward. Branchiae retractile, each in the form of a single digitiform lobe arising from the anterior faee of the parapodium ; they start on the 20th foot.

Type locality: Marseilles, France.
Records: Cape (from 32/17/d to 34/r8/s); Natal (29/3I/s); Mocambique (26/32/i) ; Madagascar (i).
Distribution: Eastern Atlantic from Norway (s, d) to Sencgal (s) ; Mediterranean (s) ; tropieal Indian Ocean (s, d, vd) ; Japan.

\section*{Glycera unicornis Savigny, 18ı8}
(fig. \(16.3 . \mathrm{c}-\mathrm{j}\) )
Glycera unicornis Savigny, 1818: 315; Fauvel, 1923: 389, fig. 153 e-i.
Body large, reaching a maximum of 350 mm . Prostomium (fig. i6.3.e) conical with ro-I2 rings. Papillac on proboscis (fig. i6.3.f) mainly blunt concs plus a few larger and broader forms. Jaw supports with only one limb prolonged; the other
prong is represented by a triangular basal projection not separated by a notch from the first. Parapodia (fig. I6.3.h) with two equal pointed presctal lobes and two very similar but slightly shorter postsetal lobes, of which the superior becomes slightly longer in posterior fect/(fig. 16.3.j). Dorsal cirrus papilliform and attached at the base of the foot. Ventral cirrus triangular. Branchiae appear on the moth foot as
 two to three retractile filaments arising from the anterior face of the parapodium. Shafts of compound setae slightly heterogomph (fig. i6.3.i).

Type locality: Mediterranean Sea.
Records: Cape (34/18/i, s, d to \(32 / 28 / \mathrm{s}\) ) ; Mocambique ( \(26 / 32 / \mathrm{i}\) ).
Distribution: North Atlantic from the English Channel to Morocco (i, s); Mediterranean (i, s) ; Indian Octan (d).

Glycera subaenea Grubs, 1878
(fig. 16.3.k-n)
Glycera subaenea Grubs, 1878 : 184 , pl. 8 fig. 8 ; Fauvel, \(1919: 425\), p. 16 figs. \(48-5\) I ; Day, 195I : 34.

Length \(70-100 \mathrm{~mm}\). Prostomium with eight annulation. Jaw supports (fig. 16.3.1) with one prong well developed and the other short and completely united to the first by an oblique shelf. Proboscis with numerous bluntly conical papillae (fig. 16.3.k) some of which show one or two vague rings while others are subsphcrical and quite plain. Parapodia (fig. \(16.3 . \mathrm{m}, \mathrm{n}\) ) with two long, equal pointed prcsetal lobes. The superior postsctal lobe is pointed, the inferior one is shorter and blunt. Branchiae from the 12 th foot and arise on the anterior face of the foot; they are retractile and have two to five branched, finger-like lobes.

Type locality: Philippine Islands.
Records: Natal (29/31/i, s) north to Mocambique (26/32/i and 23/35/e, s); Madagascar (i, s).

Distribution: Aden (d) ; Philippine Islands (i) ; Japan.

\section*{GONIADA Audouin \& Milnc-Edwards, 1833}

Body divided into two regions; the anterior one with uniramous feet and the posterior one with biramous feet. Proboscis covered with essentially similar papillae and terminating in a mouth with a pair of large toothed jaws (macrognaths) and a circle of small micrognaths. A longitudinal row of V -shaped chevrons on either side of the base of the proboscis. No branchiac. Notosetae simple; neurosetae compound and spinigerous.

Type species : Goniada emerita Audouin \& Milnc-Edwards, 1833


Fig. 16.3. Glycera rouxi. (A) Proboscideal papillac. (B) Jaw support. (c) Anterior view of middle foot. (D) Posterior view of posterior foot. Glycera unicornis. (E) Prostomium. (F) Proboscideal papillae. (G) Jaw support. (H) Anterior view of middle foot. (I) Shafthead of neuroseta. (J) Posterior view of posterior foot. Glycera subaenea. (к) Proboscideal papillae. (L) Jaw support. ( \(\mathrm{m}, \mathrm{N}\) ) Anterior and posterior view of middle foot.

Key to Species
I Notosetae robust, acicular (25-55 X-shaped micrognaths) .
G. emerita
- Notosetae are all capillaries

2 Anterior region of 27 setigers. Papillae on proboscis conical and supported by five to six converging plates (fig. I6.4.j)
G. congoensis
- Anterior region of 35-40 setigers. Papillae on proboscis cordiform (fig. 16.4.1). (Four micrognaths dorsally and three to four ventrally).
G. maculata

\section*{eremita, \\ Goniada emerita Audouin \& Milne Edwards, \(1833^{\prime} 4\) (fig. 16.4.a-i)}

Goniada emerila Audouin and Milne-Edwards, 1833: 268; Fauvel, 1923: 391, fig. 154 h-q.
Body (fig. 16.4.a) elongate, tapered at both ends and iridescent brown in alcohol. Length up to 360 mm . Prostomium (fig. 16.4.b) a long cone with about \(8-10\) annulations and four short antennac but no cyes. Proboseis covered with small rounded papillac with a curved flange around a central porc and groove (fig. 16.4.d); 12-17 chcvrons on cither side of the base. Macrognaths with four teeth; micrognaths (fig. 16.4.e) 30 above and 15 below (fig. 16.4.c). Anterior region of \(60-70\) uniramous segments. Anterior feet (fig. 16.4.f)) each with a tapcred dorsal cirrus rather flattened at the base, a setigerous lobe with two digitiform presetal lips and a triangular postsetal one and below this a long triangular ventral cirrus. The last few feet before the posterior region are transitional but lack notosctac. Posterior feet (fig. \(16.4 . \mathrm{g}\) ) large, the notopodium having a triangular dorsal cirrus and a very similar inferior lobc; two to three simple blunt acicular setae (fig. 16.4.h) arise from between the two. Neuropodium large with two presetal lobes united at their base and a single postsetal lobe with an expanded base and pointed tip. A triangular ventral cirrus. Neurosetae spinigerous (fig. 16.4.i).

Type locality: Mcditerranean Sea.
Records: Capc (33/25/s) and Mocambique ( \(26 / 33 / 1\) ) ; Madagascar (i).
Distribution : N. Atlantic from Scotland (s) to Morocco (s,d) ; Mediterrancan (s) ; tropical Indian Ocean (e, i); Chatham Is. (s) (New Zealand).

Goniada congoensis Grube, 1877
(fig. 16.4.j)
Goniada congoensis Grube, 1877: 532, Arwidsson, 1898: 41, pl. 2 fig. 34, pl. 4 fig. 62.
Body reddish brown, up to 150 mm . long. Prostomium short, stout, doubtfully annulated but with lateral grooves. Eycs not seen. Proboscis with 14 chevrons and papillae which are in close-set irregular rows and all superficially similar. Each is conieal with five to six strap-like glandular structures converging at the apex which has a pore and a curved pcak (fig. 16.4.j). Carcful cxamination shows that the ventral rows have two minute curved peaks. Anterior region of 27 uniramous segments. Anterior feet each with a strap-like dorsal cirrus, two tapered presetal lobes, a single triangular postsetal lobc, and a hastate ventral cirrus. Posterior


Fig. 16.4. Goniada emerita. (A) Entire worm (natural size). (B) Head with proboscis partly everted. (c) Mouth with marginal papillac and jaw elements. (D) Proboseideal papilla. (E) Mierognath. (F) Posterior view of anterior foot. (G) Posterior view of posterior foot. (н) Acicular notoseta. (I) Spinigerous neuroseta. Goniada congoensis. (J) Proboscideal papilla. Goniada maculata. (к) Arrangement of jaw elements around mouth. (L, L. \({ }^{1}\) ) Plan and profile of proboscideal papilla. (M) Posterior view of anterior foot. (N) Posterior view of posterior foot. Goniadella gracilis. (o) Posterior view of anterior foot. (p) Posterior view of posterior foot. (Q) Proboseideal papilla. (R) Head and base of proboscis. (s) Acicular notoseta. (T) Neuropodial faleiger.
parapodia biramous. Each notopodium has a lamellar dorsal cirrus and a bilabiatc setigcrous lobe bearing fine, capillary notosetae. Neuropodia each with two presetal lobes of which the superior is somewhat longer, a single triangular postsetal lobe and a triangular ventral cirrus. Neurosctae are compound and spinigerous.

Type locality: Congo coast.
Records: Not recorded from South Africa.
Distribution: Angola (s), Congo.
Goniada maculata Oersted, 1843
(fig. 16.4.k-n)
Goniada maculata Oersted, 1843: 33; Fauvel, 1923: 392, fig. 154 a-g; Hartman, 1950: 20, pl. 1 figs. 7-8.
Body \(50-100 \mathrm{~mm}\). long and marked with brown. Prostomium conical with about \(8-10\) rings but without eyes. Proboscis with \(7-11\) chevrons and densely covered with low cordate papillae (fig. 16.4.l). Mouth with a dorsal arc of four micrognaths, a ventral arc of three micrognaths and a pair of ventro-lateral macrognaths with four to eight tecth (fig. \(16.4 . \mathrm{k}\) ). The anterior region consists of \(35-40\) uniramous segments. Each anterior foot (fig. \(16.4 . \mathrm{m}\) ) has a blade-shaped dorsal cirrus, a setigerous lobe in which the pre- and postsetal lobes are fused for the first 18 setigers and a blade-like ventral cirrus. From setiger 19 a second digitiform presetal lobc may be distinguished from the smaller postsetal lip and finally from setiger \(3^{1-37}\) two presctal and onc postsetal lips may be seen. Ventral cirri digitiform. The feet of the more flattened posterior biramous region (fig. 16.4.n) have a notopodium with a dorsal cirrus and an inferior setigerous lobe bearing a bundle of capillary notosctac. The neuropodium has two finger-like presetal lobcs and a single shorter, bluntly triangular postsetal lobe, a digitiform cirrus and a fan of spinigerous compound setae.

Type logality: Denmark.
Records: Cape (33/r \(7 / \mathrm{s}\), d to \(34 / 26 / \mathrm{s}\) ). Howizq ascal
Distribution : Arctic; N. Atlantic from Norway (i, s, d) to the English Channel (i, s) and North Carolina (s) ; N. Pacific (Alaska to Japan) ; ? Persian Gulf (s).

\section*{GONIADELLA Hartman, 1950}

Small worms with the body divided into two regions; the anterior one having uniramous parapodia and the posterior onc having biramous parapodia. Proboscis densely covercd with similar papillac and terminating in a mouth with a pair of large toothed jaws (macrognaths) and a circle of denticles (micrognaths). A longitudinal row of V -shaped chevrons on either side of the base of the proboscis. No branchiac. Notosetae simple; neurosetae compound and include both spinigers and falcigers in all parapodia.

Type species: Eone gracilis Verrill, 1873.
\[
\text { (fig. } 16.4 \cdot 0-\mathrm{t})
\]

Eone gracilis Verrill, \(1873: 596\).
Goniadella gracilis: Hartman, 1950 : 42, pl. 5 figs. 4-8; Day, 1963a : 408.
Body thrcad-like, up to 20 mm . long. Prostomium (fig. 16.4.r) with cight rings and a pair of eyes in the basal ring and somctimes in the terminal joint as well. Four slendcr, biarticulate antennae. Proboseis with 25-30 chevrons at the base. Proboscidial papillae all similar, eaeh broadly conieal and obliquely truncate (fig. 16.4.q). Macrognaths with four tecth. Three micrognaths ventrally and a semicircle of about 12 dorsally. Anterior region with 28-30 uniramous segments cach biannulate and with a pointed dorsal cirrus, a longer setigcrous lobe having a single long presetal projection fused to the shorter postsctal one and a triangular ventral eirrus (fig. 16.4.0). Posterior region (fig. 16.4.p) cssentially similar but distinguished by the possession of notosetae, the notopodium corresponding to the dorsal cirrus of the anterior region. One to three notosetae pcr foot, each a straight, blunt acicular spine (fig. r6.4.s). Sctac of the anterior region and neurosetac of the posterior region include three to five spinigers and two to four falcigers per foot. Spinigers have tapering blades and faleigers have short blades (fig. 16.4.t).

Type locality: Dredged off Massachusetts.
Records: Cape (34/18/s and 34/23/s, d to 33/27/s).
Distribution : Atlantic coast of U.S.A. and Eng Cand

GONIADOPSIS Fauvel, 1928
The body is divided into three regions. The anterior region has uniramous parapodia and stout falcigerous neurosetac; the middle region has uniramous parapodia and spinigerous ncurosetac and the posterior region has biramous parapodia, acicular notosctac and spinigerous, neurosetac. Proboseis without basal chevrons, its surface uniformly papilose and the mouth having a pair of large toothed macrognaths and a cirele of small mierognaths.

Type species : Goniadopsis agnesiae Fauvcl, 1928.

\section*{Key to Species}

\footnotetext{
I Middle region with very long ventral cirri (fig. 16.5.e). Posterior region with two presetal lobes to the neuropodium
G. incerta
- Middle region with normal ventral cirri (fig. 16.5.j). Posterior region with one presetal lobe to the neuropodium
G. maskallensis
}

Goniadopsis incerta Fauvel, 1932
(fig. \(16.5 . \mathrm{a}-\mathrm{g}\) )
Goniadopsis incerta Fauvel, 1932: 122, pl. 4 figs. 1-10; Fauvel, 1953: 286, fig. 146 a-k.
Body 50 mm . long and tapered at either end. Prostomium (fig. 16.5.a) with 10 rings. Proboseis covered with small spherical papilkae (fig.16.5.g). Mouth encireled by a dorsal arc of I 4 maerognaths, a pair of macrognaths cael with four teeth and a ventral are of 20 mierognaths. The anterior region consists of 36 uniramous segments each with a flattened lamcllar dorsal cirrus (fig. 16.5.b), two presetal and a single postsetal lobe bearing falcigerous setae (fig. 16.5.e) and a eirriform ventral eirrus. The middle region consists of 39 uniramous segments with ventro-lateral parapodia each with a tapered dorsal eirrus (fig. 16.5.c), two conical presetal lobes and a single postsetal one of the samc length bearing spinigerous setae and bclow this a very long ventral cirrus. The posterior region consists of numerous biramous segments (fig. I \(6.5 . \mathrm{f}\) ). Notopodia with onc presetal and two triangular postsetal lobes bearing acicular notosetae with faintly spoon-shaped ends (fig. 16.5.d). Neuropodia with two presetal lobes and a single triangular postsetal lobe bearing spinigerous ncurosetae. Ventral eirrus triangular.

Type locality : 530 fathoms off Burma.
Records: Cape (33/25/c).
Distribution : Burma (vd).

\section*{Goniadopsis maskallensis (Gravier, 1904)}
(fig. 16.5.h-k)
Glycinde maskallensis Gravier, 1904: 145, pl. 1 figs. 170-174, text-figs. 307-312.
Goniadopsis maskallensis: Day, 1957: 88.
Body slender, up to 75 mm . long and tapered at both ends. Prostomium with about io rings and rather long antennae. Proboscis covered with subspherieal papillae (fig. I6.5.i). Jaws (maerognaths) with four teeth. Thirtecn dorsal micrognaths and nine ventral oncs. The anterior region eonsists of 36 uniramous scgments (fig. 16.5.j) eaeh bearing a flattened dorsal cirrus, a single prcsetal lobe plus a single postsetal lobe bearing a fan of falcigerous setac and a ventral eirrus slightly larger than the sctigerous lobe. The change to the middle region is gradual. The middle region eonsists of 36 uniramous segments cach with a flattened dorsal eirrus, a presctal lobe, a fan of spinigerous setae and a rounded postsetal lobe below whieh is a rather smaller ventral cirrus. The eliange to the posterior region oceurs abruptly at setiger 73. Each postcrior parapodium (fig. 16.5.k) eonsists of two blunt notopodial lobes with one to three stout acicular setae with ends like long spoons (fig. 16.5.h) between them; below the notopodium are the longer presetal and shorter postsetal lobes of the neuropodium bearing a fan of spinigerous compound setae and the rather short ventral cirrus.

Type locality: Red Sea.
Records: Natal ( \(29 / 31 / \mathrm{i}\) ).
Distribution: Red Sea (i).


Fig. 16.5. Goniadopsis incerta. (A) Head. (B) Postcrior view of anterior foot. (c) Posterior view of middle foot. (D) Acicular notoseta. (E) Falcigerous neuroseta. (F) Posterior view of posterior foot. (G) Proboscideal papilla. Goniadopsis maskallensis. (H) Acicular notoseta. (I) Proboscidcal papilla. (J) Posterior view of anterior foot. (k) Postcrior vicw of posterior foot. Glycinde kameruniana. (L) Head with proboscis partly extrudcd. (м) Anterior view of anterior foot. ( N ) Anterior view of postcrior foot. (o) Acicular notoseta. ( \(\mathrm{P}^{1-5}\) ) Proboscideal papillae. Glycinde capensis. (Q) Anterior view of anterior foot. (R) Anterior view of posterior foot. ( \(\mathrm{s}^{1-5}\) ) Proboscidcal papillae.

\section*{GLYCINDE Müller, 1858}

Body elongate, tapered at both ends and divided into three regions, the anterior one having uniramous parapodia, the middle one having weak notopodia and the posterior one having biramous parapodia. Proboseis without V-shaped ehevrons at its base; its surface beset with five types of papillae arranged in longitudinal rows and its mouth encireled with small micrognaths and a pair of large toothed macrognaths.

Type species: Glycinde multidens Müller, 1858.

\section*{Key to Species}

I About 20 anterior segments. Parapodia with separate pre- and postsetal lobes. Four to five micrognaths . . . . . . . . . G. kameruniana
- About 28 anterior segments. Parapodia with fused pre- and postsetal lobes. Over 15 micrognaths
G. capensis

Glycinde kameruniana Augener, 1918
(fig. 16.5.1-0)
Glycinde kameruniana Augener, 19ı8: 398, pl. 4 fig. 93, pl. 7 fig. 211 ; Day, 196o: 332, fig. 8 j-m.
A small, pale species \(30-40 \mathrm{~mm}\). long. Prostomium (fig. 16.5.l) with eight rings and one pair of eyes cmbedded in the basal ring. Proboseis with the usual five longitudinal bands of papillac (fig. 16.5.p). Macrognaths ventral and have four teeth. A dorsal are of four to five mierognaths. The anterior region consists of 2 I uniramous segments (fig. \(16.5 . \mathrm{m}\) ) each with a strap-like dorsal cirrus, a sctigerous lobe with a single tapering presetal lobe, a similar, subequal postsetal lobe and a ventral eirrus similar to the dorsal one. From setiger \(1^{-20}\) the developing notopodium causes a ventral broadening of the dorsal cirrus. Posterior biramous parapodia (fig. I6.5.n) each have a notopodium with a small dorsal cirrus, a minutcly bilabiate setigerous lobe and two to three acicular notosetac each with a bluntly hooked apex and a pointed guard (fig. 16.5.0). Posterior neuropodia are essentially similar to the setigerous lobe of the anterior region but the presetal lobe grows longer than the postsetal one. Posterior neurosetae are compound and spinigerous like those of the anterior region.

Type locality: Cameroons, western Africa.
Records: South West Afriea (26/14/d and \(26 / 15 / \mathrm{s}\) ) ; Cape (34/18/s, 34/21/s, \(34 / 32 / \mathrm{s}\), d).

Distribution : Tropical west Africa (i).

\section*{Glycinde capensis Day, 1960}
(fig. 16.5.q-s)
Glycinde capensis Day, 1960 : 331, fig. 8 f-h.
Body yellowish brown, up to 40 mm . long for 112 segments. Prostomium with \(8-10\) rings and two pairs of eyes, one in the basal and one in the terminal ring. Proboseis with the usual five bands of papillae, a pair of maerognaths with five
teeth and a dorsal arc of \(\mathrm{I}^{-25}\) micrognaths. The anterior region consists of \(28-30\) uniramous segments, each parapodium (fig. 16.5.q) having a strap-like dorsal cirrus, a single tapered setigerous lobe formed by the fusion of pre- and postsetal lobes and a ventral cirrus similar to the dorsal one. The base of the dorsal cirrus is expanded inferiorly from the 20 th segment onwards. Posterior parapodia (fig. 16.5.r) are biramous, cach having a notopodium with a flattened dorsal cirrus and a setigerous lobe with a notch near the tip. Notosctae are acicular with bluntly hooked tips and pointed guards. Postcrior neuropodia are essentially similar to the setigerous lobes of the anterior region. The ncurosctae are compound and spinigerous.

Type locality: False Bay, South Africa.
Records: Cape (from \(34 / 18 / \mathrm{s}\) and \(34 / 23 / \mathrm{s}\), d to \(33 / 27 / \mathrm{s}\) ) ; Natal (31/29/s to 29/31/s, d).

Distribution: Endcmic.

\section*{OPHIOGLYCERA Vcrrill, 1885}

Body divided into three regions: an anterior region with uniramous parapodia, a middle region with developing notopodia and a postcrior region with biramous parapodia. Notosetae simple, either slender or acicular. Neurosetae all compound and spinigerous. Proboscis without V-shaped chevrons at its basc, and densely covered with similar papillae. Mouth with a pair of toothed jaws and numerous micrognaths.

Type species: Ophioglycera gigantea Verrill, 1885.

\section*{Ophioglycera eximia (Ehlers, 1901)}
(fig. 16.6.a-d)
Gondiada eximia Ehlers, 1901: 157, pl. 20 figs. \(7-17\) (partim) ; Monro, 1936: 141, fig. 25 a-j. Ophioglycera exinia: Hartman, 1950: 38; Day, 1960: 330.

A very large species, up to 760 mm . long by 13 mm ., rather flattened and tapered at each end. Prostomium small, conical and with cight rings. No eycs. Proboscis covercd with rounded papillae with oblique flanges (fig. 16.6.a). Macrognaths with four to five teeth. A circle of 25 larger micrognaths plus a few smaller ones. Anterior region of 59 uniramous setigers (fig. 16.6.b) each bearing a flattened, chopper-like dorsal cirrus, two small digitiform presetal lobes plus a longer, triangular postsetal one and below this a blade-like ventral cirrus. Sctac compound and spinigerous. The middle region consists of devcloping biramous setigers (fig. 16.6.c) but the notopodia have only a few small simple setae (fig. 16.6.e). Each notopodium consists of a lanccolate dorsal cirrus and a smaller setigerous lobe containing an aciculum and a few small simple capillaries between the two. The ncuropodium has two presetal lobes and a single triangular postsetal lobe which is slightly longer. The ventral cirrus is long and blade-likc. In the posterior region (fig. 16.6.d) the
notopodium is as large as the neuropodium and the capillary notosetae are obvious. The neuropodium has two tapered presetal lobes, a shorter triangular postsetal lobe and a ventral cirrus smaller than that in the mid-region.

Type locality: Terra del Fuego.
Records: Cape ( \(32 / \mathrm{I} 7 / \mathrm{d}\) and \(34 / 18 / \mathrm{s}\) ).
Distribution : Magellan area (i, s); Falkland Is. (i).


Fig. 16.6. Ophioglycera eximia. (A) Proboscideal papilla. (B) Anterior view of anterior foot. (c) Anterior view of middle foot. (D) Anterior view of posterior foot. (E) Notopodial capillary.

Family EUNICIDAE Savigny, 1818
Body vermiform and clongate with numerous segments. Head well developed with a distinet prostomium and peristomium. Palps very variable, sometimes digitiform or globular but often partially or completely fused with the lower surfaee of the prostomium. Nought to seven antennac and one to two pairs of eyes. Pharynx museular and armed with a ventral pair of mandibles and a dorsal scries of toothed maxillary plates. Peristome aehaetous and often the next segment as well. A single pair of tentaeular eirri may be present or absent. Parapodia uniramous but notopodial acieula may be embedded in the dorsal cirri. Dorsal cirri present or absent. Setigerous lobes with simple and often compound setae as well. Ventral cirri present or absent.

\section*{THE CHARACTERS OF THE SUBFAMILIES}

An important revision of the whole group will be found in Hartman (1944). Following the work of Kinberg (1865) and Ehlers (1864-68) she has based the main subdivisions on the nature of the jaws. She recognises a superfamily Eunicea containing six families: Eunicidae, Onuphidac, Lysaretidae, Arabellidae, Lumbrineridae and Dorvilleidac. These six divisions of the group are aecepted here but they are much more elosely related to one another than are other families of the polyehaeta such as the Syllidac, Hesionidae and Nereidae and for this reason they are ranked as subfamilies of the single family Eunicidae.

Apart from the nature of the jaws the distinctions between the subfamilies are based on the number of liead appendages, the number of anterior apodous segments and the presence or absence of branchiae and dorsal eirri.

The jaws. These should be dissected but not detached from the specimen. A ventral slit is made from the mouth baekwards and the pharyngeal museles freed from the body wall. A eut is then made in the side of the jaw museles so that the lower jaws or mandibles may be folded over to one side and examined from the dorsal surface. The oesophagus is then eut posterior to the jaw musculature and the whole jaw complex pulled forwards until it is attached only at the lips. The remains of the pharyngeal tissue is then cleared away and the upper jaws or maxillae cxamined. Before storage all the parts are folded baek into the body eavity for proteetion. The mandibles of the Dorvilleinae may be dissected in the same way but since the maxillae consists of numerous small, separate elements they are best examined in situ on the roof of the buccal cavity.

The upper jaws or maxillae are of four main types. In the Dorvilleinae whieh is the most primitive subfamily there are two or four longitudinal rows of numerous toothed elements with aceessory teeth on the larger ones. In the other five subfamilies there are four or five pairs of maxillary plates and two or three posterior maxillary supports or carriers. The maxillary plates are numbered I to V starting at the posterior end next to the maxillary supports and in the dental formula the number of teeth on the left side is shown first. Variations in numbers of teeth are best shown in braekets. Thus Mx. \(I=I+1, I I=(5-6)+(6-7), I I I=8+0, I V=3+10\). This means that the first pair of maxillary plates next to the supports has one tooth
on each side. These are usually large and falcate and are sometimes called the main fangs, forceps or pincers. The second and largest pair of plates has five to six teeth on the left side and six to seven on the right. The third pair has eight on the left but the right is absent. The fourth pair has thrce on the left and 10 on the right. It is obvious that these maxillary plates are asymmetrical. This condition is characteristic of the Eunicinae and Onuphinac where Mx. III and Mx. IV fuse on the right side. In the other subfamilies the maxillary supports are very long and slender and consist of three pieces - a pair of latcral pieces and a shorter unpaired dagger-shaped picce. In the other three subfamilies the maxillary supports are short and broad and there is no third, unpaired piece.

The head appendages. The palps show varying degrce of reduction and fusion to the ventral surface of the prostomium. In the Dorvilleinae they are well developed, digitiform organs with a distinct joint near the tip. In the Onuphinae they are separate globular structures. In the Eunicinae they are cushion-like and partially fused to the prostomium so that the latter often appears to be bilobed. In the Lumbrinerinae, Lysaretinae and Arabellinae they have merged completely with the ventral surfacc of the prostomium. The antennae arc also very variable. The number ranges from 7 in the Onuphinae to \(o\) in the Arabellinae though the number is constant for each genus. Each antenna is usually mounted on a single very short ring but in the Onuphinae there are two short frontal antennae and five long occipital antennae mounted on long ceratophores which have 4-20 rings and occasionally short lateral branches.

Apodous segments. There may be one or two segments behind the head without parapodia or setac. Tentacular cirri may be present or absent but if there are two apodous segments it is always the second which bears the tentacular cirri.

Dorsal cirri and branchiae. The parapodia are uniramous but if dorsal cirri are present they often contain an internal notopodial aciculum. The branchiae are vascular outgrowths of the dorsal cirri and may be simple and cirriform, pectinately branched or even have spirally arranged filaments. In some genera they are completely absent.

Parasitism. Most of the parasitic polychaets belong to the family Eunicidae and their hosts range from Hydrozoa, other Annelida, Echinodermata and even Pisces. Apart from the Eunicinae and the Onuphinae all the subfamilies include parasitic genera. The jaws are usually simplified, head appendages are reduced or absent and the sctac are small. Apart from Histriobdella which is a very doubtful member of the Polychaeta, the segmentation and even the parapodia are surprisingly well defined. In some cases at least, species which are internal parasites as juveniles are free-living as adults.

\section*{Key to Subfamlites}

I Maxillae consist of numerous small clements in two or four longitudinal series (fig. 17. r.b).
(Two antennae and two cylindrical palps) . . . . . Dorvilleinae (p. 450)
- Maxillae consist of four or five paired plates


Fig. 17.1. Characters of subfamilies of Eunicidae. (A) Head of Dorvillea. (B) Jaws of Dorvillea. (c) Foot of Dorvillea. (D) Head of Arabella. (E) Head of Aglaurides (Lysaretinae). (F) Jaws of Eunice. (c) Jaws of Arabella. (H) Head of Eunice. (I) Head of Onuphis. (J) Foot of Arabella. (K) Foot of Aglaurides (Lysaretinae). (L) Foot of Eunice. (M) Middle foot of Onuphis.

2 Two long slender maxillary supports plus a third median piece (fig. 17.r.g). Eyes present) .
. 3
3 Antenae absent Dose (kig ryir)
3 Antennac absen. Dorsal cirri rudimentary or absent . . . Arabellinae (p. 442)
- Three antennae. Dorsal cirri strap-like (fig. 17.i.e, k) . . . Lysaretinae (p. 425)

4 Dorsal cirri present and usually branchiae as well. One to seven antennae. Maxillary plates III and IV fused on the right side
- Dorsal cirri absent or rudimentary. Antennae usually absent. Maxillary plates symmetrical and not fused on the right side. (Eyes absent) . . Lumbrinerinae (p. 426)
5 Seven antennae, the posterior five having long ringed ceratophores (fig. 17.ri.i)
Onuphinae (p 405)
- Onc to five antennae, without ringed ceratophores (fig. 17.1.h) . . Eunicinae (p. 377)

\section*{Subfamily EUNICINAE Savigny, i8ı8}

Two stout cushion-like palps fused to the prostomium. One to five antennae without long ringed ceratophores. Maxillae with a pair of short broad supports but no median unpaired piece, four to five toothed plates and Mx. III and Mx. IV fused on the right side. Mandibles well developed. Two anterior apodous segments with a pair of tentacular cirri sometimes present on the second. Branchiae either absent, simple or pectinate. Setae include winged capillaries and usually compound setae, comb-setae and acicular setae.

\section*{Records from southern Africa}

Eunice afra Peters var. paupera Grube
Eunice afra var. punctata Peters. as Eunice punctata Peters
Eunice antennata (Savigny) . . \({ }_{2} 7 \mathrm{Mi}, 28 \mathrm{Mi}, 36 \mathrm{Ni}, 40 \mathrm{Ni}, 4 \mathrm{ICi}\)
Eunice aphroditois (Pallas) . . \({ }^{1} 3 \mathrm{Ci},{ }_{27} \mathrm{Mi}, 36 \mathrm{Ci}, 4 \mathrm{ONi}, 4 \mathrm{ICi}\), Wi
50 Cs
as Eunice macrobranchia Schmarda . 4 Ci
as Eriphyle capensis Kinberg . . \(3 \mathrm{Ci}, \mathrm{I}_{2} \mathrm{Ci}\)
as Eunice kinbergi Ehlers . . IIWi, I6Wi
as Eunice rousseaui Quatrefages . 33 Ci
Eunice australis Quatrefages . . \({ }_{5} \mathrm{Csd}, 40 \mathrm{Ni}, 4 \mathrm{ICi}, 50 \mathrm{Cs}\), —Psd, Mi as Eunice murrayi McIntosh . . IoCs, \(32 \mathrm{Cd}, 36 \mathrm{Ni}\)
Eunice coccinea Grube . . . \(26 \mathrm{Pi}, 27 \mathrm{Mi}\)
Eunice filamentosa Grube . . . 26 Ai , Wi as Eunice cirrobranchiata McIntosh . 32 Nd
Eunice (Nicidion) cincta Kinberg • ? \(32 \mathrm{Ns}, 4 \mathrm{ICi}, \mathrm{Mi}\), as Eunice filamentosa (non Grube) . \(\quad 35 \mathrm{Ci}\)
Eunice grubei Gravier . . . \(\mathrm{I}_{5} \mathrm{Cs},-\mathrm{Ps},-\mathrm{Ms}\)
Eunice indica Kinberg . . . \(2 \mathrm{ICi},{ }_{27} \mathrm{Mi}, 28 \mathrm{Mi}\)
Eunice norvegica (Linn.) as Eunice floridana (Pourtales) . \(3_{2} \mathrm{Pi}_{5}, 50 \mathrm{Cd}\)


\section*{BIOLOGICAL NOTES}

Eunice, Marphysa and allied genera occupy diversc habitats and eat a wide rangc of foods. Eunice aphroditois which grows to over a metre in length, is an errant form as a juvenile when it creeps about under stoncs, old shells and among the holdfasts of algae. As it grows larger it makes a morc permanent burrow under muddy stones and the biggest worms make a sort of papcry tube. Eunice norvegica makes a much tougher tube attached to stones and the tropical Eunice tubifex makes a parchmentlike tube which projects out from a crevice between corals often becoming overgrown with hydroids and bryozoa. The tube has several short branches through any of which the worm protrudes its head in scarch of prcy. Lysidice is a more sluggish worm; it has powerful gouge-likc mandibles and is ablc to burrow in dead coral on which it feeds. The Cape species \(L\). natalensis is common under the massed tests of the giant ascidian Pyura.

Whilc most spccies of Eunice are found in rocky habitats, Marphysa usually burrows in sand or mud and is seldom found below low tide. M. depressa is present in enormous numbers in the sheltered sandbanks of Langebaan Lagoon and M. macintoshi occurs in the same habitat along the tropical sloores of East Africa from Natal northward. M. mossambica is capablc of tolerating vcry low oxygen tensions and forms densc colonics in the evil-smelling black mud of tropical estuaries and mangrove swamps. The best known is \(M\). sanguinea which burrows in Zostera beds all over the world. All these species are omnivorous and live largely on detritus.

\section*{THE MAIN DIAGNOSTIC GHARACTERS}

The fcw genera are easily distinguished by the number of antennae, the presence or absence of tentacular cirri and the branchiac. The identification of species is more difficult.

Jaws. Neither the mandiblcs nor the number of teeth on the maxillary platcs have proved to bc of much value except in the gcnus Lysidice. None the less some species (e.g. Eunice siciliensis) always has vcry few teeth on Mx. II.

Prostomium and palps. The two cushion-likc palps on the antero-ventral surface of the prostomium commonly give the lattcr a bilobed appearance. A quadrilobed appearance is probably due to shrinkagc on preservation but in some species the two palps arc completely fuscd one to the other and the anterior margin of the prostomium then appears to be smoothly rounded.

Antennae. These may be smooth or ringed and thcy vary considerably in length. In some species the antennae are so deeply ringed that they appear beaded or moniliform (fig. 17.1.h). A smooth antenna may however bc wrinkled due to preservation and this may cause confusion, similarly the length varics so much with the statc of contraction that only major differences are significant. The same applies to the tentacular cirri.

Branchiae. In some genera branchiae are absent, but when present they arise from the dorsal cirri and vary from simple filaments to pectinately branced structures
with over 20 filaments in a comb-likc series. Brancliae may appcar as carly as setiger 3 but in other spccies they appear much latcr. They may also be confined to the anterior half of the worm or continue to near the postcrior end. In large specimens there are usually more filaments and the first branchia appears later. It would also appcar that the animal is able to "count more accuratcly" nearcr the head than further back. Thus a spccies whose first gill typically appears on setiger 3 may occasionally have the first one on setiger 4 or cven 5 while one whose gills normally start on setiger 20 may have the first gill anywhcre between sctiger 15 and 30.

Acicula, acicular setae and setae. The colour of the acicula and acicular setae, whether pale or dark has proved to be a valuable specific character when the middle foot of an adult-spccimen is cxamined but this character must be used with caution for the acicula are paler in young specimens and in the more anterior fect. The acicula themselves are usually bluntly pointed but exceptionally they have knobbed ends which arc characteristic. The acicular sctac are most uscful for they may bc unidentate, bidentate or tridentate. Unfortunately the acicular setae have the teeth edge-on when the parapodium is mounted on a slide and it may be necessary to remove the acicular scta and lay it on its side to see the real number of teeth. Only the major differences in the sctac are uscful. Thus the presence or absence of comb-setae and obvious diffcrences such as spinigerous and not falcigerous compound setae are useful but the exact shape of the blade is seldom diagnostic.

\section*{Key to Genera}


\section*{EUNICE Cuvicr, 1817}

Prostomium with five antennac without ringed ceratophores. Two partially fused, cushion-like palps on the antero-ventral margin of the prostomium. A pair of tentacular cirri on the second apodus scgment. Parapodia uniramous with tapered dorsal cirri, a blunt sctigerous lobe and broadly conical ventral cirri. Branchiac arise from the dorsal cirri and may be simple or pectinatc. Setae usually include simplc limbatc capillaries and comb-setae supcriorly and compound setae inferiorly with onc or more acicular setae at the base of the scrics.

Type species: Nereis aphroditois Pallas, 1788.

\section*{Key to Species}

I Gills cithcr absent or with one to two filaments starting behind the 4oth to 6oth setiger 2
- Gills always present and have three or more filaments starting in front of the 3 oth to \(5^{\text {oth }}\)
setiger . . . . . . . . . . . . .

2 Comb and acicular sctae absent; acicula stout, dark brown E. (Palolo) siciliensis (p. 382)
- Comb and acicular setae (fig. 17.2.i) present; acicula and acicular setac yellow
E. (Nicidion) cincta (p. 382)

3 Acicular setac tridentatc (fig. 1 7.2.s) 4
- Acicular sctae bidentate (fig. 17.2.i) . . . . . . . . . 7
- Acicular setae unidentate and black (fig. 17.4.j). (Gills from fifth setiger and continue to end of body) . . . . . . . . E. schemacephala* (p. 384)
4 Gills absent in posterior half of body 5
- Gills start on fourth to scventh foot and may have more filaments on posterior segments than in middle of body; (antennae deeply annulated (fig. 17.2.1); acicula yellow with curved, biloped tips (fig. 17.2.0))
. E. antennata (p. 384)
5 Antennae deeply jointed; falcigers with normal rounded guards (fig. 17.2.p); gills start between the third and cighth foot . . . . . E. australis (p. 385)
- Antennae nearly or quitc smooth; falcigers with sharp pointed guards (fig. 17.3.d); gills start on third to fourth foot
6 Third to fifth dorsal cirrus more than twice the length of the foot (fig. 17.3.a) ; middle feet with one or sometimes two acicular sctae (fig. 17.3.b) . . E. vittata (p. 385)
- Third to fifth dorsal cirrus less than twice the length of the foot (fig. 17.3.q) ; middle feet with three to five acicular setae (fig. 17.3.f)
E. indica (p. 386)

7 Tube tough and parchment-like (fig. 17.3.r). (Acicular setae black) 8
- Tube friable or absent.

8 Compound setac spinigerous anteriorly and falcigerous posteriorly (fig. 17.3.9, o). Branchiae from sctigcr 20 or later
E. tubifex (p. 386)
- Compound sctae falcigerous and bidentate throughout (fig. 17.3.u). Branchiae from the seventh to tentla foot
E. norvegica (p. 388)

9 Gills restricted to antcrior half of body; (acicular setac yellow) 10
- Gills extend to near end of body . . . . . . . . . . II
so Gills start on third to fourth foot; antennae faintly annulated distally (fig. 17.4.a)
E. pennata (p. 388)
- Gills start on sixth to seventh foot; antennae smooth (head and anterior segments red when fresh) . . . . . . . . . . E. coccinea (p. 389)
II Gills start before ninth foot 12
- Gills start bchind ninth foot . . . . . . . . . . . \({ }_{15}\)

12 Antennae wrinkled or smooth; gills start on fifth to eighth foot; a large species with up to 20 gill filaments (fig. 17.4.1) . . . . . E. aphroditois (p. 389)
- Antennae annulated ; gills start on sixth foot or earlier 13
13 Dorsal cirri annulatcd (gills from third or fourth foot and attain over ten filaments (fig. 17.4-r)
E. torquata (p. 389)
- Dorsal cirri smooth 14
14 Gills from third to sixth foot and attain six or more filaments; antennae moniliform (fig. 17.4.s). Acicula black. . . . . . . E. tentaculata (p. 391)
- Gills from third to fourth foot with five to cight filaments; antennae not strongly ringed. Acicula brown. (These species may be identical). E. grubei (p. 391)
15 Acicular end in a fist-like knob (fig. r.5). (Branchiae start after 20th foot)
E. filamentosa (p. 392)
- Acicula bluntly pointed. (E. afra)

16 Brancliae start before the 18th foot. Body with punctuate spots E. afra punctata (p. 393)
- Branchiae start after the 18 th foot. Body uniform brown.
E. afra paupera (p. 393)

Eunice (Palolo) siciliensis Grube, 1840
(fig. 17.2.a-f)
Eunice siciliensis Grube, 1840: 83; Fauvel, 1923: 405, fig. 159 e-m; Gravier, 1900: 26r, pl. 13 figs. 78-79, text-figs. 130-1 33 .

Body up to 300 mm . long with the anterior region tough and cylindrical and the posterior region soft and rather flattencd. Anterior margin of head (fig. 17.2.a) notched between the rounded palps. Antennae rather short, barely extending beyond the palps and often wrinkled when preserved. Tentacular cirri smooth. Mandibles (fig. i7.2.c) largc, gougc-shaped, often hcavily calcificd. Maxillae with only a few large teeth; maxillary formula: \(\mathrm{Mx} . \mathrm{I}=1+\mathrm{I} ; \mathrm{Mx} . \mathrm{II}=(2-3)+\) \((2-3) ; M x . I I I=1+0 ; M x . I V=\mathrm{I}+\mathrm{I} ; \mathrm{Mx} . \mathrm{V}=\mathrm{I}+\mathrm{I}\). Dorsal cirri smooth. Gills absent in small ( 25 mm .) specimens and do not appear before the 6oth setiger or even behind the rooth in adults; even then only one or at most two filaments arc present. Acicula black with slightly bent, blunt tips (fig. 17.2.e). No acicular setae or comb-setae; superior setae are simplc, narrow-winged capillaries with pilosc blades (fig. 17.2.d) and inferior ones are compound bidentate falcigers with short blades (fig. 17,2,f). Neá venfrae flat ono poslivior segmentó

Type locality: Sicily and Adriatic Sea.
Records: Cape (28/32/i); Natal (30/30/i, 29/31/i, s and 28/32/i); Mocambique (26/32/i, 24/34/s) ; Madagascar (i, s).

Distribution: Tropical Atlantic (Gulf of Mexico and western Africa (i, s)) ; Mediterranean ( \(\mathrm{s}, \mathrm{d}\) ) ; tropical Indo-west-Pacific ( \(\mathrm{i}, \mathrm{s}\) ).

\section*{Eunice (Nicidion) cincta (Kinberg, 1865)}
(fig. \(\mathrm{I} 7.2 . \mathrm{g}_{-j}\) )
Nicidion cincta Kinberg, 1865: 564; Kinberg, 1910: 43, pl. 16 fig. 2 1.
Eunice (Nicidion) cincta: Hartman, 1948: 80, pl. II figs. 10-12; Fauvel, \(1950: 362\) (with synonymy); Day, 1953: 433.

Body rounded anteriorly; length up to 120 mm . Anterior margin of head (fig. 17.2.g) deeply bilobed. Antennae subequal, one to five times prostomial length. Pcristomial segment long and bcars a pair of very small tentacular cirri. Branchiae entircly absent in small specimens of 25 mm . but represented by onc or two filaments on far posterior segments after the 5 th foot of adults. Acicula (fig. 17.2.h) stout, pale brown and bluntly pointed. Acicular setae (fig. 17.2.i) yellow with two small blunt teeth and small guards. Compound sctac falcigcrous with small bidentate blades (fig. 17.2.j). Comb setae present.

Type locality: Society Islands, Pacific.
Records: Cape (from 34/20/i to 32/28/i); Natal (29/31/s).
Distribution : South Pacific (i) ; Indian Ocean; Senegal.


Fig. 17.2. Eunice siciliensis. (A) Head. (B) Eightieth foot. (c) Jaws. (D) Simple capillary seta. (E) End of aciculum. (F) Compound seta. Eunice cincta. (G) Head. (iI) End of aciculum. ( I ) Acicular seta. (J) Compound seta. Eunice antennata. (k) Entire worm ( I .5 times life size). (L) Anterior end. (M) Thirty-fifth foot. (N) Comb seta. (o) Tip of aciculum. (p) Compound seta. (Q) Acicular seta. Eunice australis. (R) Tip of aciculum. (s) Acicular seta. (T) Twenty-fifth foot. (U) Anterior end.

Eunice schemacephala Schmarda, 186 I
(fig. I 7.4.g-k)
Eunice Schemacephala Schmarda, 1861: 132, pl. 32, fig. 260 \& text figs.; Hartman, 1944: 12 I.
Length \(70-90 \mathrm{~mm}\). Body red when alive but dark brown in alcohol. Anterior margin of head deeply notched betwcen the palps. Antennae (fig. ri.4.h) twice as long as the peristome and weakly articulated distally. Tcntacular cirri as long as the peristomc with threc weak joints. Mandibles with calcified cutting edgcs and straight dark shafts. Maxillae weekly chitinised and brown. Maxillary formula : \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+1 ; \mathrm{Mx} . \mathrm{II}=6+6 ; \mathrm{Mx} . \mathrm{III}=10+\mathrm{o} ; \mathrm{Mx} . \mathrm{IV}=9+12\); \(M x . V=1+1\). The first three to four pairs of dorsal cirri twicc as long as the setigerous lobe, later ones much shorter and not much stouter than the gill filaments. Gills start on setiger 5 as four filaments, increase to a maximum of eight filaments and persist in rcduced numbers to the end of the body. Ventral cirri of branchiferous segments (fig. \(17.4 . \mathrm{g}\) ) short and do not exceed the sctigerous lobc. Acicula (fig. \(17.4 . k\) ) black with blunt ends and, in the middle of the body, usually number two per foot. Acicular sctac start about setiger 40 and are charactcristically black with simple, very blunt points and lack guards (fig. 17.4.j). Compound sctac (fig. 17.4.i) falcigerous with short triangular blades with two poorly marked tceth and no visible guards.

Type locality : Jamaica.
Records: Not recorded from southern Africa.
Distribution : Tropical West Indies (i) ; tropical East Africa (Mombasa (i)).
Eunice antennata (Savigny, 1820)
\[
\text { (fig. I } 7 \cdot 2 \cdot \mathrm{k}-\mathrm{q} \text { ) }
\]

\section*{Leodice antennata Savigny, 1820: 50.}

Eunice antennata: Crossland, 1904: 312, pl. 22 figs. 1-7, text-figs. 56-60; Fauvel, 1953: 240, fig. 118 f-g.
Body (fig. 17.2.k) rounded anteriorly, somewhat flattencd posteriorly with a median row of pale spots when frcsh. Head (fig. I 7.2.1) notchcd between the palps. Jaws normal with four to five teeth on Mx. 2. Antennac and tentacular cirri deeply annulated. Gills start on the fourth to seventh foot, rapidly reach a maximum of 10-18 filaments (fig. \(17.2 . \mathrm{m}\) ), decrcasc in the middlc of the body and may increase again near the cnd. Falcigerous compound sctac (fig. 17.2.p) with bidentatc blades. Two yellow acicula with bent, truncatc to bilobed, tips (fig. 17.2.0) and two yellow acicular setac with tridentate tips and guards (fig. 17.2.q). The apical tooth is small and when broken the acicular seta appears bidentate.

Type locality: Gulf of Sucz.
Records: Cape (32/28/i and 31/21/i); Natal (from 20/31/i to 27/32/i); Mocambique (26/32/i; Madagascar (s).

Distribution : Gulf of Suez (i); Rcd Sea (i, s) ; tropical Indo-Pacific (i, s) ; southern California; Senegal (s); North Carolina (s).

\section*{Eunice australis Quatrefages, 1865}
(fig. I7.2. r-u)
Eunice australis Quatrefages, 1865: 321; Fauvel, 1953: 240, fig. \(118 \mathrm{~h}-\mathrm{l}\).
Eunice Murrayi McIntosh 1885: 288, pl. 39 figs. 7-8; pl. 20A figs. 19-20; Crossland 1904: 310; Willcy 1905: 28 I .

Length \(50-70 \mathrm{~mm}\). Body reddish brown with pale bars on the tentacular segment and the fifth setiger and white median spots on posterior segments. Anterior margin of head (fig. 17.2.u) deeply notehed between the palps. Antennae deeply annulated, the long modian measuring twiee the breadth of the peristome. Tentacular eirri annulatcd and barred with brown. Gills bcgin betwecn the third and cighth foot (usually sixth to seventh), soon increase to a maximum of 18 slender filaments (fig. 17.2.t) then decreasc to cnd about the middle or past the middlc of the body. Anterior dorsal cirri stout, barred with brown and weakly annulated. Aeicula (fig. 17.2.r) ycllow with curved tips. Acieular setae (fig. 17.2.s) yellow and tridentatc with small guards and two to four per parapodium starting after the 3oth foot.

Type locality: New Zealand.
Records: Cape ( \(34 / \mathrm{I} 8 / \mathrm{s}\) ), \(34 / 23 / \mathrm{e}\) and \(34 / 24 / \mathrm{i}\) ); Natal ( \(30 / 3 \mathrm{I} / \mathrm{i}\), s and 29/3 \(\mathrm{I} / \mathrm{i}\) ); Mocambiquc ( \(24 / 34 / \mathrm{s}, 24 / 35 / \mathrm{d}, 26 / 32 / \mathrm{i}\) ) ; Madagasear (i, s).
Distribution: Red Sea (s); tropieal Indian Ocean (i, s) ; Australia, New Zealand (s, d).

\section*{Eunice vittata (Delle Chiaje, 1825)}
(fig. I7.3.a-e)
Nereis vittata Delle Chiaje, 1825: 195.
Eunice vittata: Fauvel, 1923 : 404, fig. 58 h-n.
Length about 50 mm . Head (fig. 17.3.a) shallowly notched between the broad palps so that the antcrior margin is roundcd. Antennae long (equal to \(1 \cdot 5\) times the prostomial breadth) and indistinctly ringed distally. Tentacular eirri and the first five to six pairs of dorsal eirri very long and tapered. Maxillary formula : Mx. \(\mathrm{I}=\) \(1+1 ; M x\). II \(=9+10 ; M x\). III \(=9+0 ; M x . I V=10+13 ; M k . V=\) \(1+\) I. Anterior scgments with red-brown bars whieh fade in alcohol. Branehiae start on setiger 3, attain io-20 filaments about the 2oth setigcr and cnd about the 45th. Postcrior feet (fig. 17.3.b) with one or two acicular setac. Acicula (fig. 17.3.e) yellow with faintly curved and blunt tips. Acieular sctae (fig. 17.3.e) yellow, and tridentate with the apical tooth small. Falcigerous eompound setae (fig. 17.3.d) have bidentate bladcs with long pointed guards lightly striated near the base.

Type locality: Naples.

Records: Cape ( \(32 / \mathrm{I} 6 / \mathrm{d}\) to \(33 / 27 / \mathrm{s}\) ) ; Natal (29/31/s) ; Madagasear (i).
Distribution : Atlantic from the English Channel (s) and North Carolina (s) to tropieal W. Afriea (s, d) ; Mediterranean (s) ; southern California; E. Japan.

\section*{Eunice indic Kinberg, 1865}
(fig. \(17.3 . f-\mathrm{j}\) )
Eunice india Kinberg, 1865: 562; Crossland, 1904: 318, pl. 21 figs. 9-12; Fauvel, 1953: 241, fig. 119 g .

Body about 50 mm . long. Head (fig. i7.3.g) small with the palps mainly fused so that the anterior margin is only faintly notched. Antennae smooth and long reaching back to setiger 7 ; tentacular cirri long and slender. Jaws pale with numerous teeth ; maxillary formula : Xx. \(I=\mathrm{I}+\mathrm{I} ; \mathrm{Mx} . \mathrm{II}=(9-\mathrm{II})+(8-\mathrm{II})\); \(\mathrm{Mx} . \mathrm{III}=(8-\mathrm{II})+0 ; \mathrm{Mx} . \mathrm{IV}=(7-10)+13\). Anterior dorsal cirri not elongated and not more than \(I 5\) times the parapodial length. Branchiae from setiger 3 or 4 , increase rapidly to \(10-15\) filaments and are restricted to the anterior part of the body. Acicula almost straight, yellow and blunt (fig. I7.3.h). Compound setae (fig. I 7.3.1) bidentate with long pointed guards striated one margin. Acicular setae (fig. i 7.3.j) yellow and boldly tridentate with obvious guards and number four per foot in posterior feet (fig. 17.3.f).

Type locality: Bangka Strait, Sumatra.
Records: ? Cape (34/土8/s) ; Mocambique (25/33/5) ; Madagascar (i).
Distribution: Red Sea (i, s) ; tropical Indo-west-Pacifie (i, s, d, vd).

Eunice tubifex Crossland, 1904
(fig. I \(7 \cdot 3 \cdot \mathrm{k}-\mathrm{q}\) )
Eunice tubifex Crossland, 1904: 303, pl. 21 figs. 1-8; Day, 1951: 38; Fauvel, 1953: 232, fig. 116 a-g.
Body elongate, reaching 400 mm . ; it is rounded anteriorly and rather flattened posteriorly. The whole worm is in a tough, branching parchment-like tube with several openings (fig. 17.3.k). Head (fig. I 7.3.1) deeply notched between the palps. Five smooth or slightly wrinkled antennae which reach back to setiger 2. Mandibles strong and calcified. Maxillae well developed. Dental formula: Xx. I = \(1+1\); \(\mathrm{Mx} . \mathrm{II}=6+6 ; \mathrm{Mx} . \mathrm{III}=6+\mathrm{o} ; \mathrm{Mx} . \mathrm{IV}=3+8 ; \mathrm{Mx} . \mathrm{V}=1+\mathrm{I}\). Tentseular cirri short and smooth. All feet in the anterior part of the body (fig.17.3.m) have a brown glandular ridge below the setigerous lobe. Branchiae start on setiger 20-35 according to size, attain a maximum of five filaments (but usually only three) and decrease slightly towards the posterior end. Acicula (fig. 17.3.n) brown with simple blunt tips. Acicular setae (fig. 17.3.p) brown and bidentate with small guards. Compound setae with knife-shaped blades anteriorly (fig. 17.3.q) but falcigerous and bidentate posteriorly (fig. 17.3.0) with both types in middle segments.

Type locality : Zanzibar.
Records: Natal (30/30/i, s and 29/3I/i); Mocambique (26/32/i, 26/33/d); Madagascar (i).

Distribution : Tropical Indo-west-Pacific (i, s).


Fig. 17.3. Eunice viltata. (A) Head. (B) Posterior foot. (c) Tip of aciculum. (D) Compound seta. (E) Acicular seta. Eunice indica. (F) Posterior foot. (c) Head. (r) Tip of aciculum. (I) Compound seta. (J) Acicular seta. Eunice tubifex. (K) Tube. ( L ) Head. (M) Fifthieth foot. (N) Tip of aciculum. (O) Bidentate falciger from posterior foot. (P) Acicular seta. (Q) Spiniger from anterior foot. Eunice norvegica. (R) Tube. (s) Head. (T) Tip of aciculum. (U) Compound seta. (v) Acicular seta.

Eunice norvegica (Linnaeus, 1767 )
(fig. 17.3.r-v)
Nereis Norvegica Linnaeus, 1767 in Linnaeus, \(1788: 3116\).
Eunice norvegica: Pettibone, 1963: 240, fig. 63 f.
Eunice foridana (Pourtales) : Fauvel, 1923: 402, fig. 157 a-g.
Length \(100-200 \mathrm{~mm}\). Tube (fig. I7.3.r) parchment-like with the position of earlicr tube mouths now closed obvious on the sides. Anterior margin of head dccply notched between the palps. Antennae (fig. I7.3.s) very long and tapered with long indistinct joints distally and equal to twice the width of the peristome. Maxillary formula: \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+\mathrm{I} ; \mathrm{Mx} . \mathrm{II}=5+5 ; \mathrm{Mx}\). III \(=(7-10)+0 ; \mathrm{Mx}\). IV \(=(3-5)+(7-10) ; M x . V=I+1\). Tentacular cirri long and smooth reaching the anterior margin of the palps; anterior dorsal cirri very long and smooth; later ones shorter. Branchiac start on the 7 th-roth setiger, attain four to cight filaments and persist unreduced to the end of the body. Acicula (fig. I 7.3.t) black with blunt points. Acicular setac (fig. I7.3.v) black, and bidentate with small guards. Compound setae all falcigerous and bidentate with rounded guards (fig. I7.3.u).

Type locality: Norway.
Records: Cape (29/14/d, 30/15/d).
Distribution : North Atlantic including Norway, W. Iceland (d), Azores (d, vd), Senegal (s), Massachusetts to Gulf of Mexico (d) ; Mediterranean (?) ; tropical Indian Ocean (vd).

\section*{Eunice pennata (Müller, \({ }^{1} 776\) )}
(fig. I 7.4.a-f)
Nereis pennata Müller, 1776: 217 .
Eunice pennata: Fauvel, 1923 : 400, fig. 56 h-0; Day, 1960: 334.
Maximum length 50 mm . but S . African spccimens seldom more than 50 mm . Anterior margin of head notched betwecn the palps. Antennac (fig. 17.4.2) long, indistinctly ringed. Tentacular cirri smooth and as long as the peristome. Jaws (fig. I 7.4.c) with numerous tecth. Maxillary formula: \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+\mathrm{I} ; \mathrm{Mx} . \mathrm{II}=\) \((6-8)+(7-10) ; \mathrm{Mx} . \mathrm{III}=(8-12)+0 ; \mathrm{Mx} . \mathrm{IV}=(5-9)+(8-12) ; \mathrm{Mx} . \mathrm{V}=\) \(I+1\) (small chitinised areas). Branchiae start on setiger \(3-5\), increase to a maximum of 12 or more filaments and end about the 40 th setiger. Ventral cirri (fig. 17.4.b) well developed. Acicula (fig. 17.4 .d) and acicular setae (fig. I 7.4.f) ycllow: the latter bidentate with guards. Compound setae (fig. I \(7 \cdot 4 . \mathrm{e}\) ) with bluntly pointed guards.

Type locality: Denmark.
Records: Cape (3I/r6/d to 34/23/d).
Distribution : Arctic (d, vd) ; abyssal Atlantic from Sweden (d) to Morocco (d) ; Newfoundland to Florida (s, d, a) and Tristan-da-Cunha (s, d) ; subantarctic (s, d) ; Antarctica (a).

\section*{Eunice coccinea Grube, 1878}

Eunice coccinea Grube, 1878: 153; Crossland, 1904: 297, pl. 20 figs. 6-7, text-figs. 46-51; Fauvel, 1953: 236, fig. I 18 a-e.

Body copper-red, about 120 mm . long. Hcad with a shallow notch between the palps. Antennae smooth, and the median whieh is the longest is about cqual in length to the width of the peristome. Tentacular eirri extend forwards past the prostomial/peristomial junetion. Branchiae confined to antcrior third of body. The first filament appears on the 5 th-9th foot and over the i2th-2 ist foot there may be as many as io filaments more slender than the dorsal cirrus. Aeieula blaek and blunt. Aeicular sctae blaek, bidentate. Falcigerous compound setae with short almost triangular blades with poorly marked teeth.

Type locality: Plilippine Islands.
Records: Mocambique (26/32/i) ; Madagascar (i, s).
Distribution : Red Sea (i, s) ; tropical Indo-west-Pacific (i, s, d) ; Gulf of Guinea.
Eunice aphroditois (Pallas, 1788 )
(fig. I 7.4.1-o)
Nereis aphroditois Pallas, 7 788: 229.
Eunice rousseaui Quatrefages, \(1865: 309\); Fauvel, 1923: 403, fig. 158 a-g.
Body reaching 560 mm . long by 20 mm . wide and usually brownish purplc with a white head and pcristome and a whitc bar across setigcr 4 (fig. 17.4.l). Head with a deep notch between the large palps. Antennae slightly tapered, the median bcing twice the prostomial length and not ringed though often wrinkled when prescrved. Tentacular cirri smooth and shorter than the peristome. Dorsal eirri stouter than branehial filaments. The branehiae start on the 6th-roth foot, they attain a maximum of 20 filaments and decrease slowly to the posterior end. Acicula (fig. I7.4.m) black with pointed ends; acieular setae (fig. 17.4.n) blaek and bidentate with small guards but may be missing in some specimens. Compound setae (fig. 17.4.0) falcigcrous with two well-markcd teeth and roundcd guards.

Type logality: Indian Occan.
Records : South West Afriea (from (25/r4/i) to the Cape (34/r8/i, s and 34/23/e)) ; Natal (30/30/i).

Distribution: Warm North Atlantic from Francc (i) and West Indies (s) to Moroeco ; Meditcrranean ; tropical Indo-wcst-Pacifie to Japan (i) ; S. California.

Eunice torquata Quatrcfages, 1865
(fig. 17.4.p-r)
Eunice torquata Quatrefages, 1865: 312; Fauvel, 1923: 401, fig. 157 h-o.
Length \(100-250 \mathrm{~mm}\). Colour rcddish brown, often with a white bar on sctiger 4 . Antcrior margin of head deeply notched between the palps. Antennae (fig. 17.4.r) long, with wcll marked joints. Tentacular cirri jointed, and as long as the peristome.


Fig. 17.4. Eunice pernata. (A) Head. (b) Twenty-fifth foot. (c) Jaws. (d) Aciculum. (E) Compound seta. (F) Acicular seta. Eunice schemacephala. (G) Foot. (H) Head. (I) Compound seta. (J) Acicular seta. (k) Aciculum. Eunice aphroditois. (L) Head. (m) Aciculum. ( N ) Acicular seta. (o) Compound seta. Eunice torquata (after Fauvel). (P) Compound seta. (Q) Acicular seta. (R) Head. Eunice tentaculata. (s) Head. (r) Aciculum. (U) Compound seta. (v) Acicular seta.

Maxillary formula: \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+\mathrm{I} ; \mathrm{Mx} . \mathrm{II}=\left(5^{-6}\right)+(5-6) ; \mathrm{Mx} . \mathrm{III}=(6-7)+\) \(0 ; \mathrm{Mx} . \mathrm{IV}=(3-5)+(8-\mathrm{I} 0) ; \mathrm{Mx} . \mathrm{V}=\mathrm{I}+\mathrm{I}\). Dorsal cirri jointed. Branchiac from setiger 3 , reach a maximum over io filaments which are shorter than the dorsal cirri and decrease in number near the posterior end. Acicula and acicular setae black, the latter bidentate with small guards (fig. I7.4.q). Compound setae (fig. I 7.4.p) falcigerous and bidentate with two well markcd teeth and rounded guards.

Type locality: St. Jcan de Luz, Francc.
Records: Madagascar (s).
Distribution : Atlantic from the English Channcl to the Capc Vcrde Is. (d) and Angola; Meditcrrancan (s, d).

\section*{Eunice tentaculata Quatrefages, 1865}
(fig. I7.4.s-v)
Eunice tentaculata Quatrefages, \(1865: 317\); Fauvel, 1953: 234, fig. \(118 \mathrm{~m}-\mathrm{p}\).
Maximum size 350 mm . by 15 mm . Head notched deeply between the palps. Maxillary formula: \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+\mathrm{I} ; \mathrm{Mx}\). II \(=6+5\); Mx. II \(=6+5\); Mx. \(\mathrm{III}=6+o ; \mathrm{Mx} . \mathrm{IV}=6+7 ; \mathrm{Mx} . \mathrm{V}=\mathrm{I}+\mathrm{I}\). Antcnnae and tentacular cirri (fig. 17.4 .s) deeply annulatcd. First threc pairs of dorsal cirri twice as long as the feet, subscquent ones shorter. Gills start on the third to fourth foot, increase to six filaments on the sixth foot and attain 6-20 filaments, decreasing slowly to end of body. Acicula (fig. I7.4.t) black with blunt points. Acicular setae (fig.17.4.v) bidentatc with small guards. Compound setae (fig. I7.4.u) falcigerous with two well marked tecth and roundcd guards. Colour reddish brown often with a white collar on setiger 4 ( \(E\). torquata and \(E\). grubei arc very close).

Type locality: "Wcstern Port", Australia.
Records: Natal (30/30/i, 28/32/i) ; Mocambique (26/32/i, 26/33/d) ; Madagascar (s).

Distribution: Tropical Indian Ocean (Laccadive Is. - (d)), India (i, s), Ceylon (i, s), western Australia) ; New Zealand (s) ; ? Tasmania (d).

\section*{Eunice grubei Gravier, 1900}

Eunice grubei Gravier, 1900: 258, pl. 14 figs. 87-88, text-figs. 125-129; Fauvel, 1953: 237, fig. 119 a-e.

Length \(150-230 \mathrm{~mm}\). Antcrior margin of head notched between the palps. Antennae long, weakly ringed. Peristomial segment long, and bears smooth, slender tentacular cirri. Maxillary formula : \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+\mathrm{I} ; \mathrm{Mx} . \mathrm{II}=5+5 ; \mathrm{Mx} . \mathrm{III}=\) \(7+0 ; \mathrm{Mx}\). IV \(=6+9\). Anterior dorsal cirri longer than the gills. Branchiae
start on setiger 3, rapidly reach a maximum of eight filaments and then decrease slowly towards the end of body. Acicula and acicular setae brown; the latter bidentate with small guards.

Type logality: Rcd Sea.
Records : ? Cape (35/22/d) ; Mocambique (24/35/d) ; Madagascar (s).
Distribution: Red Sea (i); tropical Indo-west-Pacific (i).

\section*{Eunice filamentosa Grube, 1856}
(fig. I 7.5.f-h)
Eunice filamentosa Grube, 1856: 56; Monro, 1933: 65, text-fig. 27; Hartman, 1944: 107, pl. 6 figs. 123-126.
Body about 120 mm . long. Anterior margin of head with a dcep notch between the palps. Antennae short, slender, either smooth or wrinkled. Peristome rather long. Tentacular cirri half the length of the peristome. Dental formula: Mx. \(\mathrm{I}=\mathrm{I}+\mathrm{I}\); \(\mathrm{Mx} . \mathrm{II}=(4-5+(3-4) ; \mathrm{Mx}\). III \(=(5-4)+(6-8) ; \mathrm{Mx} . \mathrm{IV}=(3-7)+\) o. Branchiae start on setiger 26 , reach a maximum of three filaments and extend to the end of the body. Acicula (fig. \(17.5 . f\) ) brownish and end in characteristic fist-shaped knobs; acicular setae (fig. \(17.5 . \mathrm{h}\) ) brown and bidentate with recurved teeth and large guards. Compound setae (fig. \(17.5 . \mathrm{g}\) ) bidentate with rounded guards and well developed teeth.

Type locality: West Indies.
Records: Natal (29/3I/d).
Distribution : Tropical Atlantic from North Carolina (s) and Florida (i, s) to Ghana (i) and Angola (i).

Eunice afra afra Peters, 1854
(fig. \(17 \cdot 5 \cdot \mathrm{a}-\mathrm{e}\) )
Eunice afra Peters, 1854 : 611 ; Crossland, 1904: 289, pl. 20 figs. 1-5, text-figs. 43-45; Fauvel, 1953 : 235 , fig. \(116 \mathrm{~h}-\mathrm{i}\).
Length I \(50-250 \mathrm{~mm}\). Head (fig. I 7.5.a) notched between the palps. Maxillary formula: Mx . \(\mathrm{I}=\mathrm{I}+\mathrm{I} ; \mathrm{Mx}\). II \(=(4-6)+(4-7) ; \mathrm{Mx}\). III \(=(6-8)+\mathrm{o} ; \mathrm{Mx}\). \(\mathrm{IV}=\left(4^{-6}\right)+(8-1 \mathrm{I})\). Antennae smooth or faintly ringed and a little longer than the peristome. Tentacular cirri shortcr than the peristome. Gills start between the I4th and zoth foot; the number of filaments slowly increases to between three and eight (fig. \(17.5 . \mathrm{b}\) ) and then decreases towards the posterior end. Acicula (fig. \(17.5 . \mathrm{c}\) ) two to three per foot, ycllow in juvenilcs, becoming blackened near the tip in adults. Acicular setae (fig. I 7.5.e) dark brown near the tip, weakly bidentate with small
guards in juveniles, but without guards in adults. Compound setae (fig. I 7.5.d) bidentate with well marked tecth and rounded guards.

Type locality: Mocambique.
Records: Cape (32/28/i and \(31 / 29 / \mathrm{i}\) ) ; Natal (30/30/i and 28/32/i) ; Mocambique (27/32/i and 26/32/i) ; Madagascar (i).

Distribution: Gulf of Suez (i); Red Sea and tropical Indo-west-Pacific (d).

Eunice afra punctata Peters, 1854
Eunice punctata Peters, 1854: 61r.
Eunice afra var. punctata: Day, 1957:89.
Body brown, dotted with tiny white spots when fresh and sometimes a white bar across setiger 4. Gills start about the \(15^{\text {th }}-17^{\text {th }}\) setiger and reach a maximum of three to eight filaments.

Type locality: Mocambique.

\section*{Eunice afra paupera Grube, 1878}

Eunice paupera Grubc, 1878: 160.
Eunice afra var. paupera: Fauvcl, 1932: 135.
Body uniform brown, up to 250 mm . long. Gills start between the igth and \(4^{\text {th }}\) foot and have two to four filaments.

Type locality: Philippinc Islands.

MARPHYSA Quatrefages, 1865
Two cushion-like palps which may be partly or completcly fused so that the anterior margin of the head is bilobed or rounded. Two eyes. Five antennae; two anterior apodous segments ; no tentacular cirri. Upper jaws of four to five pairs of toothed plates. Branchiae simple or pectinate. Setae include simple eapillaries, comb-setac and usually compound sctac which may be falcigerous, spinigerous or both.

Type species: Nereis sanguinea Montagu, 18i5.

\section*{Key to Species}

I Inferior sctac as simplc capillaries (fig. 17.5.m) ; comb sctae absent M. mossambica (p. 395)
- Inferior setae compound; comb setae present . . . . . . . . 2

2 Compound sctac spinigerous only . . . . . . . . . . 3
- Compound setae falcigerous only . . . . . . . . . . 4
- Compound sctae both spinigerous and falcigerous (fig. 17.5.r, t) . . M. depressa (p. 395)

3 Acicular setae bidentate (fig. 17.5.w) ; body broad and oval in section (fig. 17.5.u)
M. sanguinea (p. 396)
- Acicular setae unidentate (fig. 17.6.c) ; body rounded in section. M. macintoshi (p. 397)


Fig. 17.5. Eunice afra punctata. (A) Head. (B) Fiftieth foot. (c) Aciculum. (D) Compound seta. (E) Acicular seta. Eunice filamentosa (after Hartman, 1944). (F) Aciculum. (G) Compound seta. (H) Acicular seta. Marphysa mossambica. (I) Head. (J) Fiftieth foot. (k) Aciculum. (L) Acicular scta. (M) Inferior simple scta. Marphysa depressa. (N) Head. (o) T/S middle segment. (P) Aciculum. (Q) Comb seta. (R) Spinigerous compound seta. ( S ) Acicular seta. ( T ) Falcigerous compound seta. Marphysa sanguinea. (U) T/S middle segment. (v) Aciculum. (w) Acicular seta. (x) Compound seta. (y) Head.

\(10 /\)
8

\section*{Marphysa mossambica (Peters, 1854)}
(fig. 17.5.i-m)
Eunice mossambica Peters, 1854: 612.
Marphysa mossambica: Crossland, 1903: 139, pl. 15 figs. 7-10; Graver, 1900: 267, pl. 14 figs. 89-90, text-figs. 137-139.
Body up to 350 mm . in length and flattened after the first few segments. Anterior margin of head (fig. 17.5.i) deeply bilobed. Antennae smooth, \(1 \cdot 5\) times prostomial length. Gills (fig. \(17.5 . j\) ) appear on the 25 th-33rd foot according to size, reach a maximum of six to eight filaments and persist to the end of the body. Setae (fig. \(17.5 . \mathrm{m}\) ) are all simple capillaries throughout, all with very narrow striated blades. No comb-setae. Acicula (fig. 17.5.k) shading from yellow to black with straight blunt ends. Acicular setae (fig. 16.5.1) pale, bidentate and only half the thickness of the acicula; they are not present in all feet.

Type locality: Mocambique Island.
Records: Mocambique Island (i).
Distribution: Red Sea (i); tropical Indo-west-Pacific (i).

Marphysa depress (Schmarda, 186I)
(fig. 17.5.n-t)
Eunice depress Schmarda, 1861: 127.
Marphysa depress: Day, 1953: 434, fig. 5 n, p.
Anterior margin of head bilobed (fig. 17.5.n). Antennae smooth and longer than the prostomium. Body slender, rounded in section (fig. 17.5.0) and up to 100 mm . long. Gills start from roth-25th foot according to size, reach a maximum of two to four filaments and decrease gradually to posterior end. Superior setae include capillaries and asymmetrical comb-setae with numerous teeth (fig. 17.5.q); inferior setae are compound with both spinigers (fig. 17.5.r) and long bladed bidentate falcigers (fig. 17.5.t), the latter being more common anteriorly. Acicula (fig. 17.5.p)
threc anteriorly, but reduced to two posteriorly, with pale tips and dark brown to black shafts. Acicular setae pale distally and bluntly bidentate, with small guards (fig. 17.5.s).

Type locality : Auckland, New Zealand.
Records: Cape (33/r8/i, s and 33/26/e) ; Natal ( \(29 / 3^{1 /} / \mathrm{i}\) ).
Distribution : New Zealand (i).

\section*{Marphysa sanguinea (Montagu, 1815)}
(fig. I7.5.u-y)
Nereis sanguinea Montagu, 1815: 20.
Marphysa sanguinea: Fauvel, 1923: 408, fig. 16ı a-h.
Body stout, oval in section (fig. 17.5.u), up to 250 mm . long. Anterior margin of head bilobed. Antennae (fig. 17.5.y) smooth, almost twice the length of the prostomium. Dorsal cirri as long as the setigerous lobes. Gills start from the 16 th-30th foot, reach a maximum of four to seven filaments and decrease towards the end of the body. Superior sctac include the usual winged capillaries and numerous combsetae with coarse teeth; inferior setac are compound and spinigerous (fig.17.5.x). Two to three black acicula with blunt tips (fig. \(\mathrm{I} 7.5 \cdot \mathrm{v}\) ). Acicular setae (fig. I 7.5 w w) relatively slender and inconspicuous, being pale and bidentate with small guards in the adult and with large guards in juveniles.

Type locality : Coast of Devon, England.
Records: South West Africa (26/15/i) ; Capc (33/8/i, s and 34/23/e to 33/26/i) common in muddy sandbanks and Zostera beds.

Distribution : N. Atlantic (Scotland (s), English Channel (e, i) to Sencgal (i, s) and North Carolina (i) to the Gulf of Mexico (i)) ; Mediterranean; New Zealand ; southern California (i, s) ; Japan (i).

Marphysa macintoshi Crossland, 1903
\[
\text { (fig.I } 7.6 . a-e \text { ) }
\]

Marphysa macintoshi Crossland, 1903: 137, pl. 14 figs. 3-6, text-fig. 12; Day, 1962: 643 (with synonymy).

Body over 200 mm . long, slender, rounded or somewhat flattened. Palps partially fused and the anterior margin of the head is not obviously bilobed. Antennae (fig. 17.6.a) smooth, about as long as the prostomium. Maxillary formula: \(\mathrm{Mx} . \mathrm{I}=\) \(\mathrm{I}+\mathrm{I} ; \mathrm{Mx} . \mathrm{II}=7+7 ; \mathrm{Mx} . \mathrm{III}=7+0 ; \mathrm{Mx} . \mathrm{IV}=3+8 ; \mathrm{Mx} . \mathrm{V}\) are chitinised areas without teeth. Eyes not defined. Mandibles normal. Gills appear on the 20th-50th foot according to size, reach a maximum of six filaments (fig. 17.6.e) and gradually decrease towards the cod of the body. Acicula (fig. i7.6.b) bluntly pointed and brown with pale tips; they decrease from threc anteriorly to one in the middle of the body. A single brown acicular seta (fig. I7.6.c) with a simple
blunt tip. Superior setae are winged eapillaries and comb-setae; inferior setae are eompound with knife-shaped blades (fig. I7.6.d), though they are often retraeted so deeply that only the blades protrude simulating simple setae.

Type locality: Zanzibar.
Records: Cape (34/24/i) to Natal (29/3I/i) and Moeambique (26/32/e, i and 23/35/e) ; Madagasear (i).

Bndo-4e ot - PR'efeic
Distribution: Red Sea (i, s) and tropical Indian Ocean (i, s, d).

\section*{Marphysa bifurcata Kott, 195 I}
(fig. I7.6.f-j)
Marphysa bifurcata Kott, 1951: 121 ; Day, 1957: 90, fig. 6 a-e.
Body about 80 mm . long. Palps fused completely so that the anterior margin of the head is rounded (fig. i 7.6.f). Antennae short, smooth and half the length of the prostomium. Gills from setiger 22 and extend to the end of the body and reach a maximum of four to five filaments which arise direetly from the dorsum and not from an axial filament (fig. i 7.6.g). Dorsal eirri short and eonieal anteriorly but beeome bifurcate in the branehial region. Superior setae are winged eapillaries and comb-setac. Three brown acicula with pale blunt tips (fig. I7.6.h) anteriorly redueed to one over the rest of the body; inferior setac faleigerous and bidentate with divergent teeth and rounded guards (fig. 17.6.j). Acieular setae (fig. I 7.6.i) brown shading to yellow near the tips which are minutely bidentate and laek guards.

Type locality: Port Derran, S.W. Australia.
Records: Moeambique (23/35/s).
Distribution : S.W. Australia.

Marphysa purcellana Willey, 1904
(fig. 17.6.k-o)
Marphysa purcellana Willey, 1904: 263, pl. 13 fig. 17; Day, 1953: 435.
Body (fig. I7.6.k) about 60 mm . long and oval in seetion with a brown bar on the prostomium and reddish brown pattern anteriorly. Anterior margin of head bilobed (fig. i 7.6.l). Maxillary formula : \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+\mathrm{I} ; \mathrm{Mx} . \mathrm{II}=5+5 ; \mathrm{Mx} . \mathrm{III}=\) \(5+o ; \mathrm{Mx}\). IV \(=3+8\). Antennae short, smooth and as long as the prostomium. Gills start on the eightl foot as four filaments, reach a maximum of 18 filaments on the 18 th foot and then deerease to end on the 28th foot. Dorsal eirri as long as the setigerous lobe in the prebranchial region, inerease to the same length as the branehial filaments in the branehial region and remain mueh longer than the setigerous lobe in the post-branehial region. Aeieular setac (fig. 17.6.n) yellow, and strongly


Fig. 17.6. Marthysa macintoshi. (A) Head. (B) Aciculum. (c) Acicular seta. (D) Compound seta. (E) Fiftieth foot. Marphysa bifurcala. (F) Head. (G) Fortieth foot. (H) Aciculum. (1) Acicular seta. (J) Compound seta. Marphysa purcellana. (к) Entire worm (twice life size). (L) Head. (M) Aciculum. (N) Acicular seta. (o) Compound seta. Marphysa adenensis. (p) Head. (Q) Aciculum. (R) Compound seta. (s) Acicular seta. Marphysa posterobranchia. (т) Compound seta. (v) Aciculum. (v) Acicular seta. (w) Head.
bidentate with small guards. Acicula (fig. I 7.6.m) blunt and yellow. Ventral setae (fig. i7.6.o) compound and falcigerous with two rather large tecth.

Type locality: Table Bay, South Africa.
Records: South West Africa (27/55/s, 28/16/s); Cape (33/土8/s to 33/26/s).
Distribution : Endemic.

\section*{Marphysa adenensis Gravier, I900}
(fig. I7.6.p-s)
Marbhysa adenensis Gravier, 1900 : 270, pl. 14 figs. \(91-92\); text-figs. 140-143.
Body slender, rounded in section and up to 70 mm . long for 200 scgments . No colour markings. Head (fig. I 7.6.p) smoothly rounded anteriorly. Antennac tapered, not ringed, the median slightly longer than the prostomium. Jaws weakly chitinised. \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+\mathrm{I} ; \mathrm{Mx} . \mathrm{II}=7+8 ; \mathrm{Mx} . \mathrm{III}=7+0 ; \mathrm{Mx} . \mathrm{IV}=7+\mathrm{II} ; \mathrm{Mx}\). \(\mathrm{V}=\) chitinous plates without teeth. Gills appear suddenly about the 15 th-igth foot and end abruptly 20 scgments latcr. Each gill is large and pectinate with 8 -ro long filaments arising from the shortcr dorsal cirrus. Acicula (fig. 17.6.q) blunt, always pale, threc antcriorly but only onc over most of the body. Onc acicular seta from sctiger 35-40 onwards, always palc and bidentate with a small terminal tooth and guards (fig. I7.6.s). Superior setac include narrow-winged capillarics and combsetae with \(5^{-10}\) tceth. Inferior setac (fig. i7.6.r) are compound and falcigerous with long narrow bidentatc blades.

Type locality: Adcn.
Records: Madagascar (i).
Distribution: Red Sea (i).
Marphysa posterobranchia Day, 1962
(fig. I7.6.t-w)
Marphysa posterobranchia Day, 1962: 645, fig. 4 a-e.
Body only about 30 mm . long, slender and rounded in section. Anterior margin of head bilobed. Antcnnae (fig. I7.6.w) smooth or wrinkled and just exceed the length of the prostomium. Maxillae pale, formula: \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+\mathrm{I} ; \mathrm{Mx}, \mathrm{II}=\) \(4+4 ; \mathrm{Mx}\). III \(=6+0 ; \mathrm{Mx}\). IV \(=5+10\). Gills as simple filaments restricted to the posterior segments. They do not appear before setiger 55 in juveniles and in adults arc best developed on the last few segments. Dorsal cirri well developed anteriorly but smaller than the gills posteriorly. Acicula and acicular sctae pale in juveniles, black in adults and appear about the 3oth foot. Acicula (fig. I7.6.u) with blunt cnds. Acicular setae (fig. I7.6.r) bidentate, with guards. Superior sctae are winged capillaries and comb-sctac with \(8-\mathrm{I} 5\) tceth; inferior setae compound and falcigcrous with two strong tceth (fig. i7.6.t).

Type locality: St. Michaels-on-Sea, Natal.
Records: Cape (33/25/s) to Natal (30/30/i).

Eunice capensis Schmarda, 1861: 126.
Marphysa capensis: Willey, 1904: 263 , pl. 13 fig. 16.
Body up to 150 mm . long and 10 mm . at its widest, roughly oval in scction (fig. 17.7.b). Colour brown with a slightly darker peristomc. Anterior margin of head bilobed (fig. 17.7.a). Antennac smooth and extending back to the first setiger. Maxillary formula: Mx. \(\mathrm{I}=\mathrm{I}+1 ; \mathrm{Mx} . \mathrm{II}=3+4 ; \mathrm{Mx} . \mathrm{III}=4+0 ; \mathrm{Mx}\). \(\mathrm{IV}=3+6 ; \mathrm{Mx} . \mathrm{V}=1+\mathrm{I}\). Branchiae start on the I 2 th -3 oth foot according to sizc and extend almost to the end of the body, with a maximum of four filaments. Superior sctac include the usual winged capillaries and comb-sctae. Inferior setae (fig. I7.7.e) are falcigerous with rounded guards. Aciculum (fig. 17.7.c) black, bluntly pointed. Acicular setae (fig. 17.7.d) black and characteristically unidentate without guards.

Type locality: Cape of Good Hope.
Records: South West Africa ( \(22 / 14 / \mathrm{i}\) and \(26 / 15 / \mathrm{i}\) ) to W. Cape ( \(33 / \mathrm{I} 8 / \mathrm{i}\), s).
Distribution: New Zealand; Chatham Is. (i) ; subantaretie (i) ; Antarctiea.

Marphysa corallina (Kinberg, 1865)
(fig. 17.7.f-j)
Nauphanta corallina Kinberg, 1865 : 564 .
Marphysa corallina: Hartman, 1948: 81, pl. in figs. 4-7; Day, 1954: 19.
Anterior margin of head bilobed (fig. 17.7.g). Antennae smooth, about 1.5 times as long as prostomium. Body very long rcaching 300 mm ., the anterior part rounded, and the posterior part flattencd (fig. 17.7.f). Gills start from the 20th-50th foot according to size, reach a maximum of six filaments and eontinue to the posterior end with a redueed number of filaments. Comb-setae with 20-25 teeth. Inferior sctae (fig. 17.7.j) eompound and falcigerous. Aeieula (fig. 17.7.h) dark with palc blunt tips; acieular setae (fig. 17.7.i) pale and characteristically bidentate with small guards.

Type locality: Oahu Island, Honolulu.
Records: Eastern Cape (32/28/i) to Natal (29/31/i and 28/32/i); Mocambique (26/32/i) ; and Madagasear (i).

Distribution: Tropical Indo-west-Pacifie (i, s).

\section*{LYSIDICE Savigny, 1818}

Two cushion-shaped palps whieh are partly fused so that the anterior margin of the head is bilobed. Two eyes. Three antennae. Maxillae with four to five pairs of toothed plates. Mandibles well developed. No tentacular cirri on the second


Fig. 17.7. Marphysa capensis. (A) Hcad. (B) T/S segment 100. (c) Aciculum. (D) Acicular seta. (E) Compound seta. Marphysa corallina. (F) T/S segment roo. (G) Head. (h) Aciculum. (I) Acicular scta. (J) Compound seta. Lysidice natalensis. (к) Head. (L) Jaws (maxillae abovc, mandibles below). (M) Fifticth foot. (N) Aciculum. (o) Acicular seta. (P) Compound seta. (Q) Comb seta. (R) Limbate capillary.
apodous segment. No branchiae. Setae include simple capillaries, comb-setae, compound falcigers and acicular setae.

Type species: Lysidice ninetta Audouin \& Milne Edwards, 1833.
Key to Species
I Second dental plate with 4 teeth . . . . . . . . . . \({ }_{2}\)
- Second dental plate with three heavy teeth (fig. 17.7.1) . . . . L. natalensis

2 Eyes reniform . . . . . . . . . . . . L. Collaris
- Eyes oval
L. ninetta minala

\section*{Lysidice natalensis Kinberg, 1865}
(fig. 17.7.k-r)
Ly 乡idice natalensis Kinberg, \(1865: 566\).
Lysidice capensis Grube, 1868: 12 ; McIntosh, 1904: 40, pl. 3 fig. 13.
Body up to 100 mm . long by 5 mm . ; colour brown with minute white spots. Anterior margin of head white and bilobed (fig. 17.7.k). A pair of reniform black eyes just external to the lateral antennae. Antennae white, slightly tapered, as long as the prostomium. Mandibles (fig. 17.7.1) heavy, gouge-shaped, and ealcified along the cutting margin. Maxillary formula: Mx. \(\mathrm{I}=1+1\); Mx . \(\mathrm{II}=3+3\); Mx. III \(=(2-3)+0 ; \mathrm{Mx}\). IV \(=2+(4-8) ; \mathrm{Mx} . \mathrm{V}=1+1\). The three teeth on Mx. II are characteristically heavy. Parapodia (fig. \(17.7 . \mathrm{m}\) ) each with a eonieal dorsal cirrus, a truneate setigerous lobe and a ventral eirrus which is at first rounded but later indistinguishable from the glandular ventral pad. Superior setae are limbate eapillaries (fig. 17.7.r) and comb-setae (fig. 17.7.q). Inferior setae (fig. 17.7.p) are compound with short falcigerous blades. Aeieula (fig. 17.7.n) blaek with blunt tips ; aeicular setae start about the 20th foot and are brown and bidentate with small guards (fig. 17.7.0).

Type locality: Durban.
Records: South-west Africa (26/15/i); Cape (31/17/i, 34/18/i, s, 34/23/e); Natal (30/30/i to 28/32/i).

Distribution: Endemic.

> minctia

Lysidice/collaris Grube, 1870
(fig. I 7.8.a-f)
Lysidice collaris Grube, 1870: 495; Gravier, 1900: 272, pl. 14 figs. 93-95, text-figs. 144-147.
Body/up to 75 mm . long. Anterior margin of head (fig. 17.8.a) bilobed. Antennae tapered, slightly longer than prostomium. Eyes reniform. Mandibles gouge-like, partly ealeified. Maxillary formula: Mx. \(\mathrm{I}=\mathrm{I}+\mathrm{I} ; \mathrm{Mx} . \mathrm{II}=(4-5)+4 ; \mathrm{Mx}\). III \(=(3-5)+0 ; \mathrm{Mx}\). IV \(=2+5 ; \mathrm{Mx}\). V are chitinised areas. Parapodia (fig. I 7.8.e) each with a short eonieal dorsal cirrus set well above the broad setigerous lobe and a papilliform ventral eirrus whieh is hardly distinguishable from the glandular pad after the 3 oth foot. Superior setae are limbate capillaries and comb-setae ;
inferior ones are bidentate falcigers (fig. I 7.8.d). Acicula (fig. I7.8.e) with brown shafts and blunt ends; acicular setae (fig. I7.8.f) start about the 20 th foot and are brown with blunt, minutely bilobed tips.

Type locality: Red Sea.
Records: Cape (34/23/e) ; Natal (28/32/i) ; Mocambique (26/32/i) ; Madagascar (i, s).

Distribution: Red Sea ( \(\mathrm{i}, \mathrm{s}\) ) and tropical Indo-west-Pacific ( \(\mathrm{i}, \mathrm{s}\) ) to Japan.
nincta
Lysidice ninetta/Audouin \& Milne Edwards, 1833
(fig. I 7.8.g-i)
Lysidice Ninetla Audouin and Milne-Edwards, 1833: 235; Fauvel, 1923: 41 1, fig. 162 a-f.
Body up to 150 mm . long, reddish with white punctuations and white bars on setigers 2 and 5. Antcrior margin of head bilobed (fig. I7.8.g). Antennae subequal and shorter than prostomium; eyes large, black, and characteristically oval. Mandibles heavy and gouge-like. \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+\mathrm{I} ; \mathrm{Mx}\). II \(=4+4 ; \mathrm{Mx}\). III \(=\) \(4+0 ; \mathrm{Mx}\). IV \(=4+4 ; \mathrm{Mx} . \mathrm{V}\) are chitinised patches. Dorsal cirri are digitiform and as long as the setigerous lobes which are compressed truncate cones; ventral cirri papilliform with swollen bases. Acicula dark; acicular setae bidentate with guards, and appear about the 20th foot. Superior setae are limbate capillaries and comb-setac. Inferior setae are compound, falcigerous and have bidentate blades.

Type logality: Isles of Chansey, France.
Records: ? South West Africa (22/I4/i, 26/i5/i).
Distribution : North Atlantic (English Channel (i, s) and North Carolina (i) ; Angola (i) ; Meditcrrancan; ? Indian Ocean.

\section*{NEMATONEREIS Schmarda, I86i}

Palps completely fused and head rounded in front. Two to four eyes. A single antenna. Maxillae with four pairs of toothed plates. Mandibles well developed. No tentacular cirri on the second apodous segment. No branchiae. Setae include simple capillaries, comb-setae, falcigerous compound sctae and acicular sctae.

Type species: Lumbriconereis unicornis Grube, i84o.

Nematonereis unicormis (Grube, 1840)
(fig. I 7.8.j-n)

Lumbriconereis unicornis Grube, 1840 : 80.
Nematonereis unicornis: Fauvel, 1923: 412, fig. 162 h-n.
Body slender, \(150-200 \mathrm{~mm}\). long, reddish anteriorly. Head (fig. i 7.8.j) ovoid, with a single tapered antenna slightly shorter than the prostomium and a pair of large, rounded, black cyes postcriorly. Mandibles gouge-shaped. Mx. I are falcate


Fig. 17.8. Lysidice collaris. (A) Head. (B) Jaws. (C) Fifieth foot. (D) Compound seta. (E) Aciculum. (F) Acicular seta. Lysidice ninetta (after Fauvel). (G) Head. (H) Compound seta. (I) Acicular scta. Nematonereis unicornis. (J) Head. (א) Fortieth foot. (L) Aciculum. (m) Acicular seta. (N) Compound seta.
and Mx. V are mere chitinised patches, the dental formula being: \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+\mathrm{I}\); \(\mathrm{Mx} . \mathrm{II}=4+5 ; \mathrm{Mx} . \mathrm{III}=4+\mathrm{o} ; \mathrm{Mx} . \mathrm{IV}=4+6\). The dorsal cirri (fig. i \(7.8 . \mathrm{k}\) ) are rather longer than the setigcrous lobes which are compressed, truncate cones. Ventral cirri papilliform with swollen bascs. Acicula (fig. i 7.8 .1 ) dark in the adult and palc in juvenilcs. Acicular sctae (fig. I7.8.m) appcar about the 20 th foot and are dark in the adult and boldly bidentate. Superior setac include winged capillaries and broad comb-setac. Inferior setac are bidentatc falcigers (fig. I7.8.n) with the sccondary tooth larger than the apical one.

Type locality: Adriatic and Mcditerranean.
Records: Natal (30/30/i, s) ; Madagascar (e).
Distribution: North Atlantic (English Channel (i, s) to Morocco (d)) ; Mediterrancan; Sucz Canal ; tropical Indo-west-Pacific (i).

Subfamily ONUPHINAE Kinberg, 1865
Prostomium with two globular palps, two short frontal antennae and five longer oecipital antennae mounted on ringed eeratophores. Mandibles well formed. Maxillae eonsist of four to five pairs of toothed plates with Mx. III and IV fused on the right side; maxillary supports short and broad without an unpaired median piccc. Only the buccal segment apodous. Tentacular cirri present or absent. Anterior parapodia often directed forwards and have tapered ventral cirri. Later parapodia smaller with cushion-like ventral eirri. Tapered dorsal cirri on all sctigerous segments. Branehiae often present and may have simple, peetinately branched or spirally arranged filaments. Setae inelude winged eapillaries and pseudoeompound forms in the first few feet and winged eapilaries, comb-setae and aeicular setae in later feet. Animals tubieolous.

\section*{Records from southern Africa}
\begin{tabular}{|c|c|}
\hline Diopatra cuprea (Bosc) as Dipatra neapolitana (non Delle Chiaje) & \[
\begin{aligned}
& { }^{15} \mathrm{AiCs}, ? 16 \mathrm{As}, P_{c} \\
& ?_{33} \mathrm{As}, ? 34 \mathrm{As}
\end{aligned}
\] \\
\hline Diopatra cuprea punctifera Ehlers . . & 50 Cs \\
\hline as Diopatra neapolitana (non Delle Chiaje) & 32 Cs \\
\hline as Diopatra punctifera Ehlers . & \({ }_{5} 5 \mathrm{Cs}\) \\
\hline Diopatra dubia Day & \(50 \mathrm{Cs}, 56 \mathrm{Cs}\) \\
\hline Diopatra monroi Day & 50Csd \(W^{\prime} i\), \\
\hline as Diopatra cuprea (non Bose) & 26 Wis \\
\hline as Diopatra punctifera (non Ehlers) & \(33 \mathrm{Cs}, 3{ }_{7} \mathrm{Cs}\) \\
\hline ? as Diopatra near dentata. & 32 Cd \\
\hline as Diopatra near viridis & 32 Cs \\
\hline Diopatra musseraensis Augener & 26 Ai \\
\hline Diopatra neapolitana Delle Chiajc & \(3^{1 / A i}, 37 \mathrm{As}, ? 39 \mathrm{Ai}, 45 \mathrm{Ni}, \mathrm{K}^{\circ}\) \\
\hline Diopatra neapolitana capensis Day & 50 Cs , -Ns \\
\hline Epidiopatra gilchristi Day. & 50 Cs \\
\hline Epidiopatra hupferiana Augencr. & 34 Wi - s/ \\
\hline \begin{tabular}{l}
Epidiopatra hupferiana monroi Day \\
as Epidiopatra hupferiana (non Augener)
\end{tabular} & \[
\begin{aligned}
& 45 \mathrm{Pi}^{\prime}, 50 \mathrm{Cs},-\mathrm{Ps} \\
& 33 \mathrm{Cs}
\end{aligned}
\] \\
\hline Epidiopatra papillosa Day n.sp . & -Ns \\
\hline Hyalinoecia tubicola (Müller) & \(32 \mathrm{Cd}, 50 \mathrm{Cs}\) \\
\hline as Onuphis tubicola (Müller). & 15 Csd \\
\hline Hyalinoecia sp. & \({ }_{55} \mathrm{Ca}\) \\
\hline Leptoecia antarctica Monro & 50 Cs \\
\hline Onuphis (Northria) conchylega Sars & \(45 \mathrm{Ps}, 50 \mathrm{Cs},-\mathrm{Ns}\) \\
\hline Onuphis (Nothria) geophiliformis Moore & 50 Cs \\
\hline Onuphis (Nothria) holobranchiata Marenzeller as Diopatra holobranchiata (Marenzeller). & \[
\begin{aligned}
& 50 \mathrm{Cs}, \mathrm{M} / \mathrm{s} \\
& 15 \mathrm{Cs}
\end{aligned}
\] \\
\hline Onuphis eremita Audouin \& Milne Edwards & \({ }_{27}{ }^{\text {Mi, }}\) 28Mi, \({ }_{3} \mathrm{Cs}\), 50 Cs \\
\hline Onuphis landanaesis Augencr & 26 Ai \\
\hline Onuphis quadricuspis Sars & ? 32 Cs \\
\hline
\end{tabular}
Onuphis quinquedens Day . .
Rhamphobrachium chuni Ehlers .
Rhamphobrachium capense Day .
. \(\quad\). \(\quad 40 \mathrm{Ni}, 56 \mathrm{Cl}\)
.

\section*{BIOLOGICAL NOTES}

The onuphids are tubicolous scavengers. They construct many different sorts of tubes and probably eat an equally wide variety of foods.

Onuphis quinquedens is a good example to start with though the better known O. eremita probably has similar habits. O. quinquedens lives in sand near the low tide mark where there is permanent seepage from higher levels. It makes vcrtical burrows and strengthens the walls with a mucoid secretion. The entrance to the burrow is not visible but every now and again the tentacles are protruded and if a dead shrimp is thrown close cnough it is dragged down. It is not clear whether this is done by the stout tentacles or whether these are only sensory and the jaws are used. When alarmed the worm retracts with great rapidity and it is only by jabbing a sharp knifc suddenly into the sand that the anterior end can be obtained. When the head is lost the rest of the worm may be dug out more leisurely.

Diopatra cuprea makes more elaboratc tubes. The walls are tougher than those of O. quinquedens and the last three or four centimetres project above the surface and are decorated with shells, leaves, bits of paper or any flat object but always set edgeways into the tube. The mouth of the tube curls over, possibly as a protection against wading birds. Judged by laboratory observations, Diopatra cuprea feeds mainly at night and a dead amphipod 5 cms . away was taken so the worm must scavenge a fair distance around the basc of its tube.

Diopatra monroi lives on the muddy fishing banks about 100 fathoms deep off the west coast of South Africa. It occurs in dense concentrations of more than 500 per square metre and the glutinous muddy tubes may fill the whole cod-end of an otter trawl. It is inconceivable that such a dense concentration of carnivorous worms could subsist solely on other members of the benthos. They must be dependent on planktonic organisms either alive or drifting dead ncar the bottom.

Epidiopatra gilchristi sccms to be adaptcd for life on rocky bottoms as it makes tough translucent tubes which are attached to stones. The tentacles are very long and may be uscd to catch planktonic forms for no trace of sand or bottom sediment has been found either in the gut or in the tube.

Onuphis conchylega makes a curious flattened tube out of large shell fragments. The first pair of feet are \(\operatorname{largc}\), directed forward and provided with stout claw-like setae. With these, the worm is said to crawl about dragging its tube much in the same way as a caddis larva. Hyalinoecia tubicola which lives on the continental slope has similar crawling habits. In this case, however, the tube is translucent and looks like the quill of an enormous feather for it may be 250 mm . long. When alarmed the worm retracts into the middle of the tube and both ends are closed by a series of pocket-like valves.

\section*{THE MAIN DIAGNOSTIC CHARACTERS}

Jaws. The number of teeth on the maxillary plates is usually too variable to be of systematic value but in one case at least (Diopatra monroi) the development of the mandibular shafts is characteristic.

Head appendages. These soft structures arc so contractile that only major differences are significant. The number of rings on the ceratophores of the occipital antennae are useful within limits, e.g. 3-4, 6-10, 12-20. Occasionally too, the rings develop blunt lateral lobes which gives the ceratophore a characteristic branched effect. The presence or absencc of tentacular cirri in the adult is of generic importance but it has been shown that these structures may develop fairly late so that small juveniles may be difficult.

Branchiae. The branchiac arise as outgrowths of the dorsal cirri and the arrangement of the filaments, whether single, in pectinate series or spirally arranged around a central axis is of generic importance. Among adults the position where the first branchia appears is constant within onc or two segments.

Setae. The most important setae are the pseudocompound hooks which are found on the first few feet. The joint between the shaft and the apex is seldom completc; usually there is merely a notch on one side of the shaft and cven this may be poorly defincd and in rare cases, absent. The apex may be unidentate to quadridentate and is often protectcd by a projecting sheath. In Rhamphobranchium these hooks arc very long and the shaft is usually thorny. The winged capillaries are very variable but the comb-setae which appear later are of value within limits. Thus the number of teeth within a single species may vary from \(5-10,12-18,15-25\).

Pattern. Colour itself is no guidc for it varics in intensity with the habitat of the worm, but the pattern has been found very useful in specics of Diopatra and if the material is prescrved in the dark it persists for many years.

Tubes. The nature of the tube depends in many cases on the nature of the material available to the worm. But this is not always true. Some species construct tough translucent tubes, others fragile tubes of debris, others tough muddy tubes and some species of Diopatra decorate the free end of the tube with shell fragments or leaves which are always set cdgcways on.

\section*{Key to Genera}

\footnotetext{
I Tentacular cirri absent (fig. r 7.9.b)
- Tentacular cirri present in the adult . . . . . . . . . 3

2 Branchial filaments arranged spirally (fig. i 7.9.i) . . . EPIDIOPATRA (p. 4.08)
- Branchiae as simple filaments (fig. 17.9.0) . . . . HYALINOECIA (p. 4 II)
- Branchiae abscnt (fig. 17.io.d) . . . . . . PAR ONUPHIS (p. 4 12)

3 Branchial filaments arranged spirally . . . . . . DIOPATRA (p. 4 12)
- Branchiae as simple or pectinate filaments

4 The first three fcet directed forwards and bcar long hooked setac often with spiney shafts. Occipital antennae short (fig. 17.12.g) . . . . RHAMPHOBRACHIUM (p. 4 I 8 )
- Anterior fcet only slightly modified. Pseudocompound hooks with smooth shafts. Occipital antennae long
}

\section*{EPIDIOPATRA Augcner, 1918}

No tentacular cirri. The first four to five feet have digitiform ventral cirri and bear hooded pseudocompound hooks as well as a few capillaries. Branchiae start on the fifth foot and arc poorly developed with a few filaments arranged in a spiral around a central axis. Parapodia of middle segments bear simple winged capillaries, combsetae and an acicular seta.

Type species: Epidiopatra hupferiana Augener, 1918.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Key to Species} \\
\hline 1 & Ceratostyles of occipital antennae papillose (fig. I7.II.b) & - - & E. papillosa \\
\hline & Ceratostyles of occipital antennae smooth & . . & . . . . 2 \\
\hline & Tube tough and translucent (fig. 17.9.a) . & - . & E. gilchristi \\
\hline & Tube fragile with attached debris & . \(\cdot\) & \\
\hline 3 & Gills \(15-20\) pairs & . & E. hupferiana hupferiana \\
\hline & Gills three to four pairs (fig. 17.9.g) & . . & E. hupferiana monroi \\
\hline
\end{tabular}

Epidiopatra papillosa sp. nov.

The type material consists of threc anterior fragments without tubes and it is presumed that the tube is fragile. The holotype is 7 mm . long for 40 segments and probably represents half of the whole worm. There are no colour markings. The head (fig. 17.1 i.b) has subulatc frontal antennae and five long occipital antennac with papillose ceratostyles (fig. if.iI.c) borne on short ceratophores with five to seven rings. The median antenna when folded back reaches setiger 8. The jaws were not examined. The tentacular segment lacks tentacular cirri. The body is rather flattened and the segments are about four times broader than long. The first three pairs of parapodia (fig. i7.1I.a) are slightly enlarged, directed obliquely forward and bear cirriform ventral cirri. Later parapodia are short, directed laterally and bear cushion-like ventral cirri. The postsetal lobe is poorly developed after the first three to four feet and the presental lobe is always inconspicuous. Setiger 5 is the only segment with gills and these are not well developed. In the smaller paratypes there is merely a digitiform projection but in the larger holotype the gill axis has four spirally arranged filaments. The first foot has three to four bidentate pscudocompound sctac with short hoods (fig. I7.II.e). Winged capillarics with strong serrations at the base of the blade appear in setiger 2 ; fine comb setac with about eight tceth and bidentate acicular setac (fig. I7.II.d) appear in setiger 8.

Type locality: Ten miles south of Durban in 70 metrcs ( \(30 / 30 / \mathrm{s}\) ).
Type material deposited in the British Muscum (Natural History). Register No. \(1966.26 .3-5\).

Records: Natal (29/3I/s) ; Mocambique (24/35/s);.

Epidiopatra gilchristi Day, I960
(fig. I 7.9.a-f)
Epidiopatra gilchristi Day, 1960: 352, fig. 11 a-f.
Body slender, up to 60 mm . long, and encased in an erect, tough, translucent tube (fig. I7.9.a) sometimes annulated and spirally twisted but always attached. Head (fig. I 7.9.b) with subulate frontal antennac and five smooth occipital antennae of normal length borne on ccratophorcs with five to seven rings. Stumpy projections sometimes present on the ccratophores of the inner latcrals. Jaws pale and weakly chitinised. Maxillary formula: \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+\mathrm{I} ; \mathrm{Mx} . \mathrm{II}=8+7 ; \mathrm{Mx} . \mathrm{III}=7+\) \(0 ; \mathrm{Mx} . \mathrm{IV}=6+\mathrm{I}\). Two to five pairs of poorly devcloped branchiae (fig. i 7.9.d) on sctigers \(4^{-9}\). Setigers \(1-3\) (fig. 17.9.c) each with a subulate dorsal cirrus, a low presctal lip, a postsetal lobe accompanied by an inferior papilla and finally a subulate ventral cirrus. Later the ventral cirrus bccomes a glandular pad and the postsctal lobe is reduced to a papilla. Pseudocompound setae of setigers \(\mathrm{I}-4\) are strongly bidentatc with well-marked hoods (fig. 17.9.e). Comb-setae with i2 teeth appear in the sixth foot and two bidentate acicular setae (fig. I7.9.f) a few segments later.

Type locality: Agulhas Bank.
Records : Southern and castern Cape (35/22/d to 33/28/s) ; Natal (29/3 I/s).
Distribution : Endemic.

Epidiopatra hupferiana hupferiana Augener, 19 18
Epidiopatra hupferiana Augener, 1918: 355, pl. 5 figs. 104-106, pl. 7 fig. 212, text-fig. 40.
Tube cncrusted with dcbris and coarse sand or mud. Body slender, up to 30 mm . long, brownish anteriorly with a darker spot behind each parapodium joined by a dorsal cross bar to its fellow. Prostomium with distinct cycs, subulatc frontal antcnnae and fairly long occipital antennae whose ccratophores have six to seven rings somctimes with stumpy latcral projections. Each of the first thrce feet has cirriform dorsal and ventral cirri and a tapered postsetal lobe. Branchiac start on setiger 5 and continue to setiger 20 or 30 . The first few are well devcloped with spirally arranged filaments but later ones decrease and the last few have only one to two filaments. Setac of the first threc to four fect include a few capillaries and pseudocompound hooks with bidentate ends and protecting hoods. In later feet the hooks are absent, the capillaries develop broader wings and comb-setac and bidentate acicular setae appear.

Type locality: Senegal.
Records: South West Africa (22/14/s).
Distribution : Sencgal (s).


Fig. 17.9. Epidiopatra gilchristi. (A) Tube (natural size). (B) Anterior cnd. (c) Anterior view of first foot. (D) Sixth foot. (E) Pseudocompound seta. (F) Acicular seta. Epidiopatra hupferiana monroi. (c) Anterior end and part of tube. (II) Anterior view of second foot. ( I ) Sixth foot. (J) Pseudocompound seta. (k) Acicular seta. Hyalinoecia tubicola. (L) Tube (half natural size). (m) Anterior end. (N) Posterior view of second foot. (o) Fortieth foot. (P) Spine from first foot. (Q) Winged capillary. (R) Acicular seta.

\section*{Epidiopatra hupferiana monroi Day, 1957}
(fig. I \(7 \cdot 9 . \mathrm{g}^{-\mathrm{k}}\) )
Epidiopatra hupferiana var. monroi Day, 1957: 92.
This is generally similar to the stcm form but has fewer gills. The tube (fig. 17.9.g) is composed of mud with attaehed debris. Body up to 35 mm . long. The head has ovoid frontal antennae and five pairs of oecipital antennae with five to six ringed ceratophores often with stumpy lateral projections. The first three feet (fig. I7. 9.h) are similar to those of the stem form. Branchiae (fig. I7.9.i) appear on sctiger 4 or 5 and cxtend over three to five segments, cach smaller than the last. The pseudoeompound hooks of the first two to three feet (fig. I 7.9.j) arc bidentate with short hoods. The acicular setac (fig. 17.9.k) are stout with well developed guards. The coloration is variable; the whole worm may be pale or develop four brown lines separated by pale strcaks (fig. I7.9.g).

Type locality: False Bay, South Africa.
Records: Cape (34/I8/s, 34/22/s, 34/25/s); Natal (29/32/s); Mocambique (26/32/i, 24/34/s).

Distribution : ? Endemic.

\section*{HYALINOECIA Malmgren, 1867}

Eyes present or absent. No tentacular cirri. Branehiae present as simple filaments. The first few segments bear simple, pseudocompound or compound setae ; sueceeding segments have winged capillaries, comb-setae and acicular setae. The tube is horny and translucent or membraneous.

Type species: Nereis tubicola Müller, i776.
Hyalinoecia tubicola (Müller, 1776)
(fig. I7.9.1-r)
Nereis tubicola Muller, 1776 : 18.
Hyalinoecia tubicola: Fauvel, 1923 : 421, fig. 166 i-q.
Body \(60-120 \mathrm{~mm}\). long, quite pale and encased in a transparent quill-like tube (fig. 17.9.1) which is free so that the animal crawls over the bottom. The tube is tapercd and provided with intcrnal valves at each end. Head (fig. 17.9.m) with a pair of globular palps, ovoid frontal antennae and oecipital antennac with short three to five ringed ceratophores and long ccratostylcs. Branchiae (fig. 17.9.0) are all simple filaments starting on setiger \(20-30\) and continuing to the posterior end; anterior ones are shorter than the dorsal cirri but later they inerease in length while the dorsal eirri decrease. Subulate ventral cirri present on the first threc to four setigers (fig. 17.9.n) but subscquent ventral cirri are modificd to form glandular cushions. Prebranchial fect with a presctal lip which is large in the first \(3-4\) fcet. A cirriform postsetal lobe persists to setiger 15 but thereafter diminishcs. Setigcrs i and 2 with stout capillaries and pseudocompound or simple eurved hooks without hoods
(fig. 17.9.p). Subsequent setigers with winged capillaries (fig. 17.9.q) and combsetac. Long-shafted bidentate acicular setac (fig. I7.9.r) appear later.

Type locality: Christiania Fjord, Norway.
Records: Cape (from 30/17/d, 33/r7/d and 33/r7/vd to 33/26/d); Natal (29/3 \(\mathrm{r} / \mathrm{s}\) ).
Distribution : North Atlantic from Greenland (vd, abyssal) and Norway ( \(\mathrm{s}, \mathrm{d}\) ) to the Gulf of Mexico (d) and South America (d, vd) and Senegal (d) ; Mcditerranean ( \(\mathrm{s}, \mathrm{d}\) ) ; Indian Ocean (s, d, vd, abyssal) ; Japan (?) ; New Zealand (s).

PARONUPHIS Ehlcrs, 1887
(Synonym LEPTOECIA Chambcrlin, 1919)
Tentacular cirri absent. The first one to threc feet have digitiform ventral cirri and bear hooded, often pseudocompound hooks. Later feet with ventral cirri reduced to cushions and winged capillary setae, comb-setae and bidentate acicular setae. Branchiae absent.

Type species: Onuphis (Paromuphis) gracilis Ehlers, 1887.

\section*{Paronuphis antarctica (Monro, 1930)*}
(fig.17.10.a-d)
Leptoecia antarctica Monro, 1930: 133, fig. 50; Day, 1960: 356, fig. 11 g -h.
A small species \(20-30 \mathrm{~mm}\). long which is pale in alcohol. Eyes present. Frontal antennae ovoid. Occipital antennae (fig. 17.10.a) with five to six rings and fairly long ceratostylcs. Tentacular cirri absent. Branchiac entircly absent cven on middle scgments (fig. I7.10.d). The first three feet project ventro-laterally but later ones are dorsal. The cirriform postsetal lobe persists for the first cight feet and the ventral cirrus is cirriform for the first three feet. Anterior pseudocompound setae (fig. 17.10.b) hooded and usually bidentate with the sccond tooth much smaller than the terminal one but occasionally unidentate. Bidentatc acicular setae (fig. 17.10.c) appear on the ninth foot. Comb-setae with about 14 teeth appear later.

Type locality: 1,080 metrcs, off South Shetland Islands.
Records: Cape (34/i8/s and 34/i9/i).
Distribution : South Shetlands (abyssal).

\section*{DIOPATRA Audouin \& Milne Edwards, 1833}

Tentacular cirri present in the adult. Branchiac present from about setiger 5 and have a central axis with whorls of filaments. Setae include pseudocompound hooks in the first fcw fect succeeded by winged capillaries often with serrated bladcs, combsetae and bidentate acicular setae.

Type species: Nereis cuprea Bosc, 1802.

\footnotetext{
*It is possible that the small specimens reported from South Africa are juveniles of other Onuphids which have not developed tentacular cirri or gills.
}

Key to Species
I Pseudocompound setae unidentate or with the secondary tooth very weak (fig. i 7.io.i, \(\mathrm{i}^{1}\) ) 2
- Pseudocompound setae strongly bidentate (fig. 17.11.q) \({ }^{\text {m }}\). . . . . 3

2 Branchiferous region with a single spot in the middle of the dorsum (fig. 17.10.f). Pseudocompound hooks with hoods . . . . D. neapolitana neapolitana (p. 413)
- Peristome brown and branchiferous region with a pattern of five short dark bars across the dorsum (fig. 17.1o.l). Pseudocompound hooks usually unidentate and lack hoods
D. neapolitana capensis (p. 413)

3 Frontal antennac flattened and spade-like. Ceratophores of occipital antennae often with lateral projections (fig. 17.11.a) . . . . . . D. dubia (p. 415)
- Frontal antennae subulate. Ceratophores of occipital antennae without lateral projections
4 A dark spot behind a median tentacle. Mandibles with thickened, often sausage-like shafts (fig. 17.11.i) . . . . . . . . . D. monroi (p. 415 )
- No dark spot bchind median tentacle. Mandibles with straight tapered shafts (fig. 17.11.0) 5

5 Blades of comb-setac spirally rolled and have numerous teeth (fig. 17.11.m)
D. musseraensis (p. 417)
- Blades of comb-setac flat or merely slightly curved.

6
6 Comb setae with 16-25 tecth. Colour uniform brown antcriorly without an obvious colour pattern (fig. 17.11.n) . . . . . . D. cuprea cuprea (p. 417)
- Comb setae with \({ }^{\text {10-1 }} 5\) tectrin. A transverse row of four brown spots on the first few segments and later segments with a pale median streak (fig. 17.12.f)
D. cuprea punctifera (p. 418)

\section*{Diopatra neapolitana neapolitana Delle Chiaje, 1841}
(fig. 17.10.e-k)
Diopatra neapolitana Delle Chiaje, 1841: 97; Day, 1960: 341, fig. 9 a-g.
A large species reaching a length of 300 mm . Tube (fig. 17.io.g) with shell fragments attached edgeways near the anterior end. Frontal antennae subulate. Ceratophore of median antenna with 9-12 rings. Mandibles with straight tapered shafts. A dark spot in the anterior margin of each of the first 10 branchiferous segments (fig. I 7.io.f). Gills with fairly long filaments in about 6-10 whorls. Pseudocompound setae of first few feet hooded and either unidentate or with a small secondary tooth (fig. 17.10.i, \(\mathrm{i}^{1}\) ). Comb-setae with \(5^{-10}\) coarse teeth (fig. 17.10.j). Parapodia of the branchiferous region with an asymmetrical presetal lobe having an inferior projection (fig. 17.10.h). Acicular setae (fig. I7.10.h) bidentate.

Type locality: Naples.
Records: South-West Africa (22/14/i) ; Natal (29/31/i).
Distribution : Mediterranean (other areas doubtful).

> Diopatra neapolitana capensis Day, 1960
> (fig. \(\mathrm{I} \cdot \mathrm{I} \cdot \mathrm{I} . \mathrm{l}-\mathrm{p}\) )

Diopatra neapolitana capensis Day, 1960: 344, fig. \(9 \mathrm{~h}-\mathrm{l}\).
Tube with shell fragments attached edgeways to the anterior end. Body about 80 mm . long. Frontal antennae subulate. Ceratophore of median occipital antenna with 10-I3 rings (fig. I7.io.l). Mandibles with straight, tapered shafts. Dorsal


Fig. 17.10. Paronuphis antarctica. (A) Head. (B) Pseudocompound seta. (c) Acicular seta. (D) Middle foot. Diopaira neapolitana. (E) Anterior view of second foot. (F) Branchiferous region showing pigment pattern. (G) Tube (half natural size). (H) Seventh foot. (I) Pseudocompound seta. (J) Comb seta. (k) Acicular seta. Diopatra neapolitana capensis. (L) Head. (M) Anterior view of second foot. (N) Pseudocompound seta. (o) Acicular seta. (P) Comb seta.
surface of peristome dark brown, the next few segments with five short bars arranged - - - and most of the branchiferous segments with a pair of brown spots on either side of the mid-dorsal line. Gills with stout trunks and short filaments not longer than twice the width of the branchial axis. Pseudocompound setae (fig. i 7.10.n) unidentate or with a minute secondary tooth and a poorly developed hood. Combsetac (fig. I7.10.p) have 5-12 teeth and appear about setiger 12. Bidentate acicular setae (fig. i7.io.o) start on setiger 18 . Early juvenile stages lack tentacular cirri.

Type locality : Algoa Bay, South Africa.
Records: Cape (29/16/s to 31/29/s); Natal (29/3I/s).
Distribution: Endemic.

Diopatra dubia Day, 1960
(fig. 17.11.g-j)
Diopatra dubia Day, 1960 : 348 , fig. \(10 \mathrm{~g}-\mathrm{k}\).
A small species about 35 mm . long with a fragile mud tube beset with large projecting shell fragments. Pigmentation variable but anterior segments are often brown in contrast to the whitc ventral cirri and a mid-ventral strcak. The frontal antcnnae (fig. I7.II.g, h) are mere flattencd expansions of the prostomium. Occipital antennae have short ringed ceratophores with lateral lobes projecting from the five rings. Jaws poorly dcveloped. Mandibles with straight, tapered shafts. Gills (fig. I7.II.j) appear on the fifth foot but are never well dcveloped; they have only two to threc whorls of filaments and disappear about the 30th foot. Anterior pseudocompound setac (fig. ip.ix.i) are hooded and strongly bidentate. Wingcd capillaries with normal serrated blades. Bidentate acicular setac appear on the roth foot and comb-setae with 18 -20 tecth are present on the 15 th. Juvenilcs lack tentacular cirri up to a fairly late stagc.

Type locality: False Bay, South Africa.
Records: Cape (from 32/16/d to 34/18/s and 33/27/s).
Distribution: Endemic.

Diopatra monroi Day, 196o
(fig. 17.11.k-p)
Diopatra monroi Day, 1960: 345, fig. io a-f.
Tube sausagc-like and composed of hardencd mud without shell fragments. Body 100-1 50 mm . long. Gcncral colour brown anteriorly with a darker spot just bchind the median occipital antenna and dark bars across the anterior branchiferous scgments (fig. I7.II.k). Frontal antennac subulatc. Ccratophorc of median occipital antcnna with six to eight rings. Mandibles (fig. 17.II.l) with dark, thickened, often sausage-shaped shafts in the adults. Gills from the fifth foot and have fairly long

filaments. Pseudocompound setae (fig. I7.II.m) hooded and strongly bidentate. Comb-setae (fig. if.ir.n) appear on the sixth to eighth foot and have i5-25 teeth. Bidentate acicular setae (fig. I7.Ir.p) appear about the i6th foot.

Type locality : 108 metres, off Lamberts Bay, South Africa.
Records: South West Africa (26/15/i, s, d) ; western Cape (32/17/s, d to 34/18/s).
Distribution: Endcmic.
Diopatra musseraensis Augener, 1918
(fig. I7.II.q)
Diopatra musseraensis Augener, 1918: 347, pl. 5 fig. 134, fig. 195, text-fig. 38.
Tube with projecting shell fragments. Body up to 50 mm . long, brown anteriorly but without an obvious pattern. Frontal antennae subulate. Ceratophore of median occipital antenna with io smooth rings. Mandibles with straight, tapered shafts. Gills normal with fairly long filaments. Pseudocompound setae are hooded and strongly bidentate. Comb-setae (fig. I7.II.q) have \(15-25\) teeth and the broad blades are rolled up to form a funnel which gives the appearance of having a broad central tooth.

Type locality: Mussera, Angola.
Records: Not recordcd from South Afriea.
Distribution: Tropical western Africa (Ghana to Angola (i)).
Diopatra cuprea cuprea (Bosc, 1802)
(fig. I7.12.a-d)
Nereis cuprea Bosc, 1802: 142.
Diopalra cuprea: Hartman, 1944:54, pl. I figs. 9-14; Day, 1960: 350; Pettibone, 1963: 250, fig. 66.

Anterior end of tube with shell fragments attached edgeways. Body about 120 mm . long, diffusely brown anteriorly but without an obvious pigment pattern. Frontal antennae subulate. Ceratophore of median occipital antenna (fig. 17.12.a) with 9-12 rings. Mandibles (fig. I 7.12.b) with straight, tapered shafts. Maxillae typical of the genus. Pseudoeompound setae hooded and strongly bidentate (fig. i 7.i2.c). Comb-setae (fig. I\%.I2.d) appear on the Ioth foot and have 18 - 30 tecth. Bidentate aeieular setae appear on the ninth foot.

Type locality : Charleston, U.S.A.
Records: ? South West Africa (22/14/i, 26/15/i, s) ; Natal (29/3 I/s) and Mocambique ( \(26 / 32 / \mathrm{i}\) and \(23 / 35 / \mathrm{e}, \mathrm{s}\) ).

Distribution: U.S.A. (New England (i, s) to Florida and the Gulf of Mexico (i)) ; Brazil (i) ; tropieal western Africa (Ghana (s) to Angola (s)) ; tropieal Indian Ocean (i, s, d).

\section*{Diopatra cuprea punctifera Ehlers, 1908}
(fig. I7.12.e-f)
Diopatra punctifera Ehlers, 1908: 78, pl. io figs. I-11.
Diopatra cuprea var. punctifera: Day, 1960: 35r.
Body \(60-120 \mathrm{~mm}\). long. Gencrally similar to \(D\). cuprea with the following exceptions. Instead of being uniformly brown, there is a pattern of dark spots on anterior segments (fig. I 7.I2.f). Thus segments \(4^{-8}\) have a transverse row of four spots. Further back the two spots on either sidc of the mid-dorsal line fuse leaving a pale streak down the middle of the back. In the nominate form the comb-setae have 18-25 teeth but in D.c. punctifera there are only \(9^{-15}\) (fig. 17.12.e).

Type locality: Agulhas Bank, South Africa.
Records : False Bay (34/18/s) to Agulhas (35/20/s, d) and on to the eastern Cape (31/29/s).

Distribution: Endemic.

\section*{RHAMPHOBRACHIUM Ehlers, 1887}

Prostomium with or without eycs. Occipital antennae short and stout. Tcntacular cirri present. Branchiae as simple or pectinate filaments. The first two to three feet enlarged, directed forwards and bear very long hooked setac often with spiney shafts and pseudocompound ends. Later setae include winged capillaries, combsetae and bidentate acicular setac.

Type species: Rhamphobrachium agassizi Ehlers, 1887.
Key to Species
I Branchiae as simple filaments throughout and start on setiger 30-40. Pseudocompound hooks usually bidentate and hooded
. R.capense
- Branchiae develop sevcral filaments and start on setiger 7-12. Pseudocompound hooks unidentate and lack hoods in the adult
2 No compound sctae with knife-like blades on setigers 4-7. (Branchiae from setiger 12)
R. chuni
- Compound setae present

3 Only the first two feet modified. Compound setac with knife-like blades . . R. bipes*
- The first three fect modified. Setiger 4 with falcigerous compound setae; later compound setae with knife-like blades. . . . . . . . R.diversosetosum*

Rhamphobrachium capense Day, 1960
(fig. I 7.12.g-k)

Rhamphobrachium capense Day, 1960: 355, fig. 1 I i-l.
Body about 35 mm . long. Tube fragile and encrusted with large fragments of shcll or corallines. Prostomium (fig. I7.12.g) with minutc eycs, ovoid frontal antennac, and short subulate, curved occipital antennae. Peristome narrow, tentacular cirri short. The first three to four feet are directed forwards, cach with a


Fig. 17.12. Diopatra cuprea. (A) Antcrior cnd. (B) Mandiblcs. (c) Pseudocompound seta. (D) Comb seta. Diopatra cuprea punctifera. (E) Comb seta. (F) Anterior end (ccratostylcs omitted). Rhamphobrachium capense. (G) Lateral view of anterior end. ( \(\mathrm{H}, \mathrm{H}^{1}\) ) Pseudocompound scta and variation. (1) Acicular seta. (J) Thirticth foot. (k) Comb seta. Onuphis eremita. (L) Anterior end. (M) Thirtieth foot. (N) Acicular seta. (o) Pseudocompound seta. (P) Winged capillary. (Q) Comb seta.
stout, subulate dorsal eirrus, a setigerous lobe with a larger superior and a smaller inferior lobe and a subulate ventral cirrus. Ventral eirri beeome glandular pads after setiger 5. Gills (fig. I7.12.j) as simple filaments from the 30th-40th foot to the end of the body. Pseudocompound setae (fig. 17.12.h) usually bidentate but oeeasionally unidentate or tridentate and have expanded, bivalve hoods usually ending in a pair of minute claws. The shaft has two rows of small spines along its length. No compound setae with bidentate or knifc-like blades in setiger 4. Posterior setac inelude many winged eapillaries with long filiform tips, two fine comb-setae with about 12 teeth (fig. 17.12.k) and one to two stout, bidentate aeieular setae with guard (fig. 17.12.i).
Type locality: False Bay, South Afriea.
 Distribution : Endemie.

Rhamphobrachium chuni Ehlers, 1908
Rhamphobrachium chuni Ehlers, 1908: 76, pl. 9 figs. 6-15; Fauvel, 1953: 261, fig. 132 a-b.
Body up to 190 mm . long and 5 mm . broad for 180 segments. The colour is greyish yellow flecked with dark pigment on the head and first three segments and the body is eneased in a stout mud-enerusted tube. Prostomium without eyes, with ovoid frontal antennac and short, stout oeeipital antennac with four-ringed ceratophores. Mandibles with calcified eutting edges and tapered shafts. Maxillae with 8-10 tecth on Mx. II. Setigers 1-3 enlarged and dirceted forwards on either side of the head. They bear very long fine setae which are said to be pseudocompound, hooded and tridentate in juveniles but are simple, strongly eurved hooks without hoods in adults. The shafts always have two rows of small spines. The dorsal and ventral cirri of the first three feet are both subulate. The fourth and all subsequent feet are directed laterally. Dorsal cirri are subulate and bear gills from the 9th to 12th setiger onwards; the first four to eight gills are simple filaments but later ones are pinnate with a maximum of six filaments on middle segments. The setigerous lobe is bluntly conieal and the ventral cirrus is a low glandular cushion. Apart from the first three fect which bear only spiny-shafted hooks, the setae are mainly narrowwinged capillaries. There are no compound setae. Anterior feet from the 4th to \({ }^{1} 5\) th have about four finc-tipped acieula. Two bidentate and hooded acieular setae appear in the 18th foot and fine comb setae with numerous teeth a few segments earlier.

Type locality: Tropical Indian Ocean ( \(0^{\circ} \mathrm{N} / 98^{\circ} \mathrm{E}\) in 677 metres).
Records: Natal (29/3 \(1 / \mathrm{d}\) ).
Distribution: Indo-west-Pacifie (a).

ONUPHIS Audouin \& Milne Edwards, 1833
Prostomium with or without cyes. Oecipital antennac elongated. Tentacular cirri present. Branchiae as simple or pectinate filaments. Anterior feet not greatly produeed forwards. Setae include pseudocompound hooks with smooth shafts in anterior feet and winged capillaries, comb-setae and bidentate acicular setae in later ones. Worms tubicolous.

Type species: Onuphis eremita Audouin \& Milne Edwards, 1833.

\section*{Key to Species}

I Gills in adults as simple filaments throughout (subgenus NOTHRIA) . . . . 4
- Gills in adults pectinate on middle segments at least (subgenus ONUPHIS). . . 2

2 Gills begin on the first foot (fig. 17.13.b) . . . . . . . . . 3
- Gills begin on the sixth to ninth foot . . . . . . O. (O.) quadricuspis

3 Tentacular cirri well separated and dorso-laterally situated (fig. 17.12.1)
O. (O.) eremita (p. 422)
- Tentacular cirri closc together on either side of the mid-dorsal line (fig. 17.13.b)
O. (O.) quinquedens (p. 422)

4 Gills begin on the first sctiger. Pseudocompound hooks tridentate with the third tooth fine (fig. 17.13.g) . . . . . . . O. (N) holobranchiata (p. 424)
- Gills begin on the fourth setiger. Pseudocompound hooks tridentate with the third tooth strong (fig. 17.13 h ) . . . . . . . O. (N.) geophiliformis (p. 424)
- Gills begin on the ninth setiger. Pseudocompound hooks bidentate. First two feet project far forwards (fig. 17.13.1) . . . . . O. (N.) conchylega (p. 425)

Onuphis (Onuphis) quadricuspis Sars, 1872
Onubhis quadricuspis Sars, 1872: 407; Fauvel, 1923: 418, fig. 165 f-p.
Tube reinforeed with mud. Body \(40-60 \mathrm{~mm}\). long with brown bars anteriorly. Anterior segments rounded, later ones flattened dorsally. A pair of minute anterior eyes. Oecipital antennae long, ceratophores short with about 6 rings. Maxillary formula: \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+\mathrm{I} ; \mathrm{Mx} . \mathrm{II}=7+8 ; \mathrm{Mx} . \mathrm{III}=8+0 ; \mathrm{Mx} . \mathrm{IV}=(4-6)\) \(+(7-8)\). Tentacular cirri inserted behind the inner lateral antennae and shorter than the peristomial segment. Ventral cirri subulate on setigers \(1-3\). Branchiae start on the sixth to ninth setiger, reach a maximum of four filaments and decrease to a single filament after setiger 40 . Pseudocompound hooks hooded and tridentate. Posterior feet bear winged capillaries, comb-setae and bidentate aeicular setae with guards. Acicula yellow.

Type logality: Dröbach, Norway.
Records: Cape (34/r8/s). (Doubtful).
Distribution : North Atlantic from Norway (d), Sweden (d, vd), Canada to Massachusetts (s, d, vd) ; English Channel (s) to Senegal (s).

Onuphis (Onuphis) eremita Audouin \& Milne Edwards, 1833
(fig. 17.12.1-q)
Onuphis eremita Audouin \& Milne Edwards, 1833: 226; Fauvel, 1923: 414, fig. 163.
Tube thin and encrusted with sand. Body \(80-120 \mathrm{~mm}\). long, iridescent, with red-brown bands anteriorly but pale posteriorly. Median occipital antennae (fig. 17.12.l) shorter than the inner laterals but its ceratophore is long and has \(12-14\) rings. Tentacular cirri inserted dorso-laterally and longer than the peristomial segment. Maxillary formula : Mx. \(I=1+1 ; M x . I I=(6-7)+(8-9) ; M x . \operatorname{III}=(8-9)\) \(+o ; M x . I V=4+(9-10)\). Large specimens with a presetal papilla on the 5 throth foot. Branchiae from the first foot as simple filaments; they increase to two filaments by the 22nd-24th foot, reach a maximum of four to five filaments (fig. I7.12.m) and later decrease. Anterior hooded pseudocompound hooks (fig. 17.12.0) have three teeth or even four minute teeth; they extend over sctigers \(1-5\). Posterior setae inelude winged eapillaries (fig. I7.12.p), eomb-setae with oblique blades and about 12 teeth (fig. 17.12.q) and two bidentate aeieular setae with guard (fig. I7.12.n).

Type logality: Mediterranean eoast of France.
Records: Cape (34/I7/d to 33/25/s).
Distribution : N. Atlantie from Franec (i) and North Carolina (s) to Senegal (i) ; Mediterranean (i); Suez Canal; tropieal Indian Ocean (i, s); Southern California (s).

\section*{Onuphis (Onuphis) quinquedens Day, 195}
(fig. 17.13.a-e)
Onuphis quinquedens Day, 1951: 40, fig. 6 a-h.
A large speeies reaching 350 mm . No eolour pattern. Anterior segments rounded, later ones flattened dorsally. Prostomium without eycs; oceipital antennae short and tapered but their ceratophores are long with \(18-30\) rings. Maxillary formula : \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+\mathrm{I} ; \mathrm{Mx} . \mathrm{II}=(5-6)+(5-6) ; \mathrm{Mx} . \mathrm{III}=(5-7+0: \mathrm{Mx} . \mathrm{IV}=5+\) (5-8). Tentaeular cirri (fig. 17.13.b) inserted close together on cither side of a notch behind the median oeeipital antenna. Antcrior feet projeet forwards but the sixth and subsequent ones projeet dorsally. Gills start as simple tapered filaments on setiger 1 , become pcetinate on setiger \(8-10\), attain a maximum of \(8-12\) filaments (fig. I7.13.d) and extend over the whole body. Anterior feet have one to two capillaries and bidentate pseudocompound hook (fig. I7.13.c). Bidentate aeieular setae (fig. 17.13.a) appear on the roth foot. Comb setae with about 25 tecth (fig. I7.13.e).

Type locality: Umpangazi, Zululand.
Records: False Bay (34/18/i) and Natal (28/32/i).
Distribution: Endemie.


Fig. 17.13. Onuphis quinquedens. (A) Acicular seta. (B) Head. (c) Pseudocompound hook. (D) Middle foot. (E) Comb seta. Onuphis holobranchiata. (F) Anterior end. (G) Pseudocompound hook. Onuphis geophiliformis. (H) Pseudocompound hook. (I) Anterior end. (J) Twelfth foot. Onuphis conchylega. (k) Dorsal view of first foot. ( L ) Anterior end. (m) Acicular scta. ( N ) Pscudocompound hook. (o) Comb seta. (p) Tube.

Onuphis (Nothria) holobranchiata Marenzeller, 1879:132;Izuka, 1912: 106, pl. II figs. 10-12; Day, 1960: 336.

Tube reinforeed with coarse sand. Body about 60 mm . long, somewhat depressed, often irideseent with a pattern of brown bars and a white median stripe. Prostomium with several eye-specks and a median antenna rather shorter than the inner laterals (fig. 17.13.f). Ceratophores with \(9-12\) rings. Maxillac delicate and pale; formula: \(\mathrm{Mx} . \mathrm{I}=1+1 ; \mathrm{Mx} . \mathrm{II}=7+7 ; \mathrm{Mx} . \mathrm{III}=7+0 ; \mathrm{Mx} . \mathrm{IV}=7+12\). First three feet not enlarged but direeted obliquely forwards. Gills as simple filaments from the first setiger to the end of the body. Pscuodeompound hooks persist to the 7 th foot. They are tridentate but the third tooth is small and sometimes difficult to see (fig. I7.13.g). Bidentate acieular setae appear on the loth foot. They possess guards and the secondary tooth is larger than the terminal one. The comb-setae have about 18 tethe. The ventral cirri are cirriform for the first five feet.

Type locality: South Japan.
Records: South West Africa ( \(26 / 15 / \mathrm{s}\) ) ; Cape ( \(32 / \mathrm{r} 8 / \mathrm{s}\) to \(34 / \mathrm{r} 8 / \mathrm{s}\) ).
Distribution: Tropical Indian Oeean (s) and Japan.

\section*{Onuphis (Nothria) geophiliformis Moorc, 1903}
(fig. I7.13.h-j)
Nothria geophiliformis Moore, 1903: 445, pl. 25 figs. 57-59.
Onuphis (Northria) geophiliformis: Day, 1960: 337.
Tube unknown. Body about 30 mm . long. Prostomium (fig. 17.13.i) with cyes. Median antenna shorter than the inner laterals and has eight to nine rings. Maxillae pale, formula : \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+\mathrm{I} ; \mathrm{Mx} . \mathrm{II}=8+9 ; \mathrm{Mx} . \mathrm{III}=8+\mathrm{o} ; \mathrm{Mx} . \mathrm{IV}=9\) +12. A brown bar aeross peristome when fresh. First threc feet not enlarged. Gills (fig. 17.13.j) as simple filaments throughout. They appear on setiger 4-5 and persist until about 40 segments from the pygidium. Pseudocompound hooded hooks of the first six feet are tridentate with the second and third tooth well developed (fig. 17.13.h). Bidentate aeicular setae appear on the 9 th or 10 th foot and combsetae with about 12 teeth appear a little later. Ventral eirri subulate on the first five feet.

Type locality: Japan.
Records: False Bay (34/r8/s) to the eastern Cape (33/28/s).
Distribution : N. Pacific (Bering Sea to Southern California) and Japan (d).

Onuphis (Nothria) conchylega Sars, 1835
(fig. I7.13.k-p)
Onuphis (Northria) conchylega Sars, 1835: 6r.
Northria conchylega: Hartman, 1944: 85, pl. 5 figs. 105-112; pl. 17 figs. 337, 338.
Onuphis conchylega: Fauvel, 1923: 415, fig. 164; Fauvel, 1953: 255, fig. \(128 \mathrm{a}-\mathrm{m}\).
A characteristically free flattencd tube (fig. 17.13.p) covered with large shell fragments. Body \(40-150 \mathrm{~mm}\). long. Prostomium cordate with a central brown spot, an anterior pair of minute eye spots and a large pair of eyes external to the inner lateral antennae. Ceratophores short with three to four rings, ceratostyles long and tapered reaching sctiger 6. Mandibles with an ill-defined tooth on the calcareous eutting edge and straight diverging shafts. Maxillac pale, the formula being \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+\mathrm{I}\); \(\mathrm{Mx} . \mathrm{II}=6+(6-7) ; \mathrm{Mx} . \mathrm{III}=8+\mathrm{o} ; \mathrm{Mx} . \mathrm{IV}=(6-8)+(8+\mathrm{Io}) ; \mathrm{Mx} . \mathrm{V}=\) \(o+o\) (dark toothless plates). Tentacular segment short but the tentacular cirri long, reaching the antcrior margin of the prostomium. Setigers I-3 greatly cnlarged and project forward, each with a stout setigerous lobe and much smaller dorsal and ventral cirri. The presetal lamella is dorsal and heart-shaped (fig. I7.13.k) but the postsetal lobe is cirriform and elongated from the 2nd-15th foot. Thereafter both lobes beeome reduced and obscure. Ventral cirri tapered on the first two to three feet but thereafter swollen and cushion-like. Dorsal cirri elongate and tapered on anterior feet but later reduced and smaller than the branchial filaments. A single branchial filament from setiger \(9-13\) according to size. Setigers \(I-3\) or \(I-4\) with three stout pseudocompound or simple hooks with smooth shafts and bidentate ends usually protected by small guards (fig. I7.13.n). From setiger 4 onwards three to four smoothwinged capillaries and about six fine comb-setac (fig. 17.13.0) with curved bladcs appear bearing 10-12 teeth. Two long stout acicular setae appear on the 10th-15 th foot; they have bent, bidentate ends (fig. 17.13.m).

Type locality: Dredged off Norway.
Records: Cape (34/21/s) ; Natal (29/3I/s) ; Mocambique (26/32/s).
Distribution: Cosmopolitan in dredgings from the Arctic to the subantarctic ( \(s, d, v d\) ).

\section*{Subfamily LYSARETINAE Kinberg, 1865}

Prostomium without palps but with cyes and usually three small antennac partially hidden by a fold of the peristomial segment which is biannulate. No tentacular cirri. Mandibles well developed. Maxillae consist of five pairs of toothed plates with a pair of long narrow supports and a median unpaired piece in freeliving forms. Parasitic forms with reduced maxillac. Parapodia uniramous with flattened or strap-like dorsal cirri. No ventral cirri. Setae mainly simple and include capillaries and acicular setae.

\section*{Records from southern Africa}


\section*{Key to Genera}

I Free living. No compound setae. No branchiae. Three very short antennae \(\left.\begin{array}{l}\text { OENONE } \\ -\end{array}\right]\) Parasitic. Compound setae and branchiae present. No antennae . .
IPHITIME*
OENONE Savigny, 1820
(Synonyms AGLAURIDES Ehlers, 1868 and HALLA Costa, 1844)
Prostomium rounded, without palps but with eyes and three short antennae at the posterior margin partially hidden by the pcristomial fold. Only the biannulate peristomial segment without parapodia. Maxillae consist of five pairs of toothed plates with long narrow supports plus a median unpaired piece. Dorsal cirri elongated and flattened. Setac simple. No branchiae.

Type species: Aglaura fulgida Savigny, i818.
Oenone fulgida (Savigny, 1818)
(fig. I 7.14.a-g)
Aglaura fulgida Savigny, 1818: 326.
Oenone lucida Savigny, 1820: 56.
Aglaurides eryihraeensis Gravier, 1900: 278, pl. 14 figs. 99-103, text-figs. 154-159; Fauvel, 1953: 250, fig. 125 a-f.
Length \(100-350 \mathrm{~mm}\). Prostomium (fig. 17.14.b) rounded with two pairs of eyes of which the outer pair are the larger. Three stout antennac much shorter than the prostomium and often hidden by the biannulate peristomial fold. Mandibles (fig. 17.14.d) well chitinised. Maxillae with long slender supports and a very faint, dagger-shaped median piecc. The jaws are often slightly asymmetrical, since Mx. I may posscss more teeth on the right side. The first tooth on each platc is much larger than the rest. Maxillary formula: \(\mathrm{Mx} . \mathrm{I}=\mathrm{I} 2(\) or 7 and 5\()+7 ; \mathrm{Mx} . \mathrm{II}=\) \(9+15 ; \mathrm{Mx} . \mathrm{III}=6+5 ; \mathrm{Mx} . \mathrm{IV}=6+6 ; \mathrm{Mx} . \mathrm{V}=\mathrm{I}+\mathrm{I}\). Parapodia (fig. I7.I4.e) similar throughout, each with a flattened, strap-like dorsal cirrus constricted at the basc, a short rounded presetal lobe and a longer postsetal lobc. Setac include fine tapcred capillarics (fig. I7.I4.f) and, in posterior feet, two yellow acicular setac with bidentate tips (fig. \(17.14 . \mathrm{g}\) ).

Type locality : Red Sea.
Records : Natal (30/30/i) ; Mocambique (26/32/i and 23/35/c, s) ; Madagascar (i, s).
Distribution: Suez (i); Rcd Sea (i, s) ; tropical Indo-west-Pacific (i, s).
Subfamily LUMBRINERINAE Malmgren, 1867
Elongate cylindrical worms with small uniramous parapodia and usually without head appendages. Prostomium roundcd to conical. No palps. No cyes. Usually without antennac. Two anterior apodous segments. No tentacular cirri. Mandibles and maxillae well devcloped in frec-living genera and consist of four to five pairs of
symmetrical toothed plates with a pair of short broad supports but no median unpaired piece. Parapodia with dorsal cirri rudimentary or absent and no ventral cirri. The setigerous lobe has a presetal and a postsetal lip and in \(\mathcal{N}\) inoe the latter may subdivide to form branchial lobes. Setae include winged capillaries and simple or compound hooded hooks.

\section*{Records from southern Africa}

\begin{tabular}{|c|c|}
\hline Lumbrineris aberrans Day & 56 Cs \\
\hline Lumbrineris albidentata Ehlers & \[
\begin{aligned}
& { }^{15 \mathrm{Cs},} 21 \mathrm{Cs}, 34 \mathrm{Cd}, \\
& 50 \mathrm{Csd},-\mathrm{Ns}, \mathrm{Pd}
\end{aligned}
\] \\
\hline Lumbrineris brevicirra (Schmarda) & \(50 \mathrm{Csd}, 55 \mathrm{Ca},-\mathrm{Nd}\) \\
\hline Lumbrineris cavifrons Grube & \[
\begin{aligned}
& 8 \mathrm{Ci}, 9 \mathrm{Ci},{ }_{2}{ }_{7}^{\mathrm{Mi}} \\
& 4 \mathrm{ICi}, 45 \mathrm{Pi}, 50 \mathrm{Ci}
\end{aligned}
\] \\
\hline as Lumbrineris debilis (non Grube) & 36 Ci \\
\hline as Lumbrineris tetraura (non Schmarda) & 33 Cs \\
\hline Lumbrineris coccinea (Renieri) & \[
\begin{aligned}
& 12 \mathrm{Ci}, 4 \mathrm{ICi}, 45 \mathrm{Pi}, \mathrm{Ai} \\
& 50 \mathrm{Cs}
\end{aligned}
\] \\
\hline as Lumbrineris cavifrons (non Grube) & \({ }_{13} \mathrm{Ci}\) \\
\hline as Lumbrineris capensis (? Grube). & \({ }_{12} \mathrm{Ci}\) \\
\hline as Lumbrineris albifrons (non Crossland) & 36 Ci \\
\hline Lumbrineris floridana Ehlers & 26 Ai \\
\hline Lumbrineris hartmani Day & \(4^{1 \mathrm{Ci}}, 50 \mathrm{Cs}\) \\
\hline Lumbrineris heteropoda Marenzeller & \(40 \mathrm{Pi},{ }_{45} \mathrm{Pi}\), \\
\hline Lumbrineris heteropoda difficilis Day as Lumbrineris heteropoda var. atlantica (non & 56 Cs \\
\hline Kinberg) & \(36 \mathrm{Cd}, 37 \mathrm{Cs}, 50 \mathrm{Csd}\) \\
\hline Lumbrineris inflata Moore as Lumbrineris albifrons Crossland & \[
45 \mathrm{NiPi} A \mathrm{~A}^{2}
\] \\
\hline Lumbrineris latreilli Audouin \& Milne Edwards & \[
\begin{aligned}
& 26 \mathrm{Ai}, 28 \mathrm{Mi}, 4 \mathrm{ICi} \\
& 45 \mathrm{Pi}, 50 \mathrm{Cs},-\mathrm{Nsd}
\end{aligned}
\] \\
\hline Lumbrineris magalhaenis (Kinberg) . as Lumbrineris pettigrewi McIntosh & \[
\begin{aligned}
& 50 \mathrm{Cs}, 55 \mathrm{Ca} \\
& \text { 1oCd }
\end{aligned}
\] \\
\hline Lumbrineris meteorana Augener as Lumbrineris cf. meteorana Augener & \[
\begin{aligned}
& 34 \mathrm{As}, 56 \mathrm{Csd} \\
& 50 \mathrm{Cs}
\end{aligned}
\] \\
\hline Lumbrineris oculata Ehlers & \({ }_{5} 5 \mathrm{Ci}\) \\
\hline Lumbrineris papillifera Fauvel. as Lumbrineris dubeni Kinberg & \[
\begin{aligned}
& { }_{2}^{7} \mathrm{Mi}, 45 \mathrm{NiPi} \\
& 3 \mathrm{Pi}
\end{aligned}
\] \\
\hline Lumbrineris tetraura (Schmarda) & \[
\begin{aligned}
& { }_{13} \mathrm{Ci},{ }_{15} \mathrm{Cs}, 21 \mathrm{Ci}, \\
& 33 \mathrm{Cs}(\mathrm{pp} .), 36 \mathrm{Ci}, \\
& 40 \mathrm{Ni}, 4 \mathrm{ICi}, 50 \mathrm{Cs}
\end{aligned}
\] \\
\hline as Notocirrus tetraurus Schmarda & \(4_{4} \mathrm{Ci}\) \\
\hline as Lumbrineris nardonis (? Grube) & \({ }_{12} \mathrm{Ci}\) \\
\hline as Lumbrineris capensis (non Grube) & \({ }_{12} \mathrm{Ci}\) \\
\hline as Lumbrineris impatiens Claparède & 26 Ai \\
\hline Ninoe lagosiana Augener & 26Ai \\
\hline
\end{tabular}

\section*{BIOLOGICAL NOTES}

The lumbrinereids are carnivorous but it it is not known whether they are mainly prcdaceous or mainly scavengers. They commonly burrow in sandy mud and have lost the prostomial antennae and eyes found in most of the cunicids. On the other hand, the anterior end of the prostomium is richly supplied with nerves and the jaws are very powerful. A few species of Lumbrineris are found under stones or in algal tufts. A common example is L. coccinea and it is noteworthy that this and other creeping forms have rounded prostomia and short bodies as compared with the conical prostomia and clongate bodies of the more typical burrowers.

\section*{THE MAIN DIAGNOSTIC CHARACTERS}

The most useful features include the shape of the prostomium, the number of teeth on the maxillary plates, the shape of the parapodial lobes, the presence or absence of compound hooks and their scgmental arrangement.

The prostomium. Although this is a soft structure and thus liable to distortion, a rounded prostomium seems to be associated with a short body and a creeping habitat while a conical prostomium is associated with a long body and burrowing habits.

The jaws. While the mandibles are very constant and the maxillary supports surprisingly variable within a single species the number of tecth on the maxillary plates is a useful character. In many species the maxillary formula is \(\mathbf{M x} . \mathrm{I}=\mathbf{1}+\mathbf{1}\); \(\mathrm{Mx} . \mathrm{II}=(4-5)+(4-5) ; \mathrm{Mx} . \mathrm{III}=2+2 ; \mathrm{Mx} . \mathrm{IV}=\mathrm{I}+\mathrm{I}\). Departures from this formula are important. Thus Mx. II may have three large tecth. Mx. III may be small platcs with a single tooth or large plates with a cutting edge on which no definite tooth is developed. Mx. IV rarely has more than one tooth but the whole plate may be very large and pale with a black margin.

Parapodial lobes. The basic structure is a low rounded presetal lobe, a longer postsetal lobe and setac between the two. The parapodial lobes change in shape along the length of the body and both anterior and posterior parapodia must be examined. In anterior feet the postsctal lobe is usually a simple blunt cone but it may be flattened and auricular in shape. In posterior feet it usually elongates and may even grow longer than the setae in extreme cases; in other species, however, the anterior lobe increases until the two lobes are subequal or both lobes may change into slender filaments near the posterior end of the body. In such cases anterior fragments cannot be identificd with certainty.

Acicula and setae. The acicula are usually pale and black acicula are diagnostic when they occur. Winged capillaries appear on the first foot and usually disappear about the middle of the body. They seldom provide useful characters. The hooded hooks (sometimes called crotchets) may be simple throughout or jointed (compound) in anterior feet and simplc in posterior feet. The length of the hood is also a useful character though the postcrior hooks always have shortcr hoods than the anterior ones. The number of tecth at the apex of the hook is of doubtful valuc except in extreme cases. Hooks may appear on the first foot or not until the middle of the body and their segmental arrangement is important but their exact position becomcs


Fig. 17.14. Aglaurides fulgida. (A) Entire worm (half natural size). (B) Head. (c) Maxillac. (D) Mandibles. (E) Foot. (F) Capillary seta. (G) Acicular seta. Augneria tentaculata (after Monro 1930). (H) Dorsal view of head. (1) Ventral view of head. Ninoe lagosiana (after Augener). (J) Posterior foot with postsetal lobe and gill.
less definite the later they appear. Within a single speeies variations between setigers \(1-4\) or \(10-16\) or \(30-50\) are to be expected.

\section*{Key to Geneva}
```

I Three small antennae partly hidden by the peristomial fold . . . AUGNERIA

- No antennae }
2 Cirriform branchiae arise from the postsetal lobes in some parapodia . . . NINOE
- Branchiae absent .
LUMBRINERIS

```


AUGNERIA Monro, \(193^{\circ}\)
Prostomium with three small antennae partly hidden by a peristomial fold. No eyes. Mandibles well developed. Maxillae consist of four symmetrical pairs of toothed plates with a pair of short broad maxillary supports. No median unpaired piece. Peristomium and next segment apodous and achaetous. No branchiae nor cirri. Setae inelude winged capillaries, and hooded hooks.
Type species: Augneria tentaculata Monro, 1930.

\section*{Augneria tentaculata Monro, 1930}
(fig. 17.14.h-i)
Augneria tentaculata Monro, 1930: I40, fig. \(52 \mathrm{a}-\mathrm{k}\); Monro, 1936: 155.
Maximum length 135 mm . by 3 mm . for 11 o segments. Body cylindrical, generally resembling a species of Lumbrineris. Prostomium (fig. 17.14.h, i) ovoid to rounded, but without cyes. Three small antennae in a small pocket formed by a fold of the peristomium. Peristomium and the next segment apodous and achaetous. A pair of buccal cushions in front of the mouth. Mandibles well developed with short divergent shafts. Maxillae consist of four symmetrieal toothed plates and small supports twice as long as broad. Dental formula : Mx. \(I=1+1\) (short, stout pincers); Mx. II \(=3+3 ; \mathrm{Mx} . \mathrm{III}=2+2 ; \mathrm{Mx} . \mathrm{IV}=\) ? \(\mathrm{I}+\) ? I (large rectangular plates without a definite tooth). Anterior feet with a low presetal lobe and a larger postsetal lobe shaped like a dog's ear. Posterior feet with subequal lobes the postsetal one having a superior point. Setae include winged capillaries and compound hooks anteriorly; in middle and posterior feet the blades of the capillaries become very narrow and the hooks become simple. No acicula seen.
Type locality: Dredged off South Orkney Islands.
Records: Not recorded from southern Africa.
Distribution: Subantarctic (d); Antaretic (d).

\section*{NINOE Kinberg, 1865}

Prostomium without antennae. Maxillae consist of four pairs of toothed plates with short, broad supports. Mandibles well developed. Cirriform gills arise from the postsetal lobes of some parapodia. Setae inelude eapillaries and hooded hooks.

Type species: Ninoe chilensis Kinberg, 1865.

Ninoe lagosiana Augener, 1918
(fig. I7.14.j)
Ninoe lagosiana Augener, 1918: 371, pl. 5 figs. 123-127, pl. 6 fig. 213, text-fig. 44 .
Body about 35 mm . long with 120 segments. Prostomium conical. Eyes not seen. Nuchal pockets obvious at the prostomial/peristomial junction. The mandibles are lightly chitinised. Maxillary plates weak with lightly curved fangs, poorly developed teeth and short triangular supports. Dental formula: \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+\mathrm{I} ; \mathrm{Mx} . \mathrm{II}=\) \(4+5 ; \mathrm{Mx}\). III \(=3+3 ; \mathrm{Mx} . \mathrm{IV}=\mathrm{I}+\mathrm{I}\). Anterior feet with a low, rounded presetal lobe and a longer digitiform postsetal lobe. A single digitiform gill arises from the postsetal lobe in the middle of the body, and two gills are present in posterior feet (fig. I7.14.j). Anterior setae are slender winged capillaries. Simple hooded hooks appear on setiger 37 and become more numerous further back.

Type locality: Lagos, Nigeria.
Records: Not recorded from South Africa.
Distribution : Nigeria (i), Angola (i).

\section*{LUMBRINERIS Blainville, 1828}

Prostomium conical or globular without eyes or antennae. Maxillae consist of four toothed plates with short broad supports. Mandibles well developed. Dorsal cirri vestigal or absent. No gills, Feet with a single presetal lobe and a single postsetal lobc. Setae include winged capillaries and hooded hooks which may be simple or jointed.

Type species: Lumbricus fragilis Müller, 1776.
Key to Species
1 Presetal and postsetal lobes subequal in posterior feet. Prostomium conical ..... 2
- Postsetal lobe markedly longer in posterior feet. Prostomium conical or rounded ..... 6
2 Anterior hooded hooks jointed (fig. 17.15.k) ..... 3
- Anterior hooded hooks simple, elongated. (Postsetal lobe of anterior feet dorso-ventrallydeeper than long). (Fig. rif.i6.a, b)5
3 Mx. II with three large teeth. Mx. IV a large white plate with a black edge (fig. 17.15.h) ..... 4
- Mx. II with four to five teeth. Mx. IV black with one tooth. (Posterior feet with twoshort lobes). (Fig. 17.15.a, d) . . . . . . L. magalhaensis (p. 432)4 Mandibular shafts in contaet throughout. Last few feet with elongated thread-likelobes (fig. \(17.15 \mathrm{~h}-\mathrm{n}\) ) . . . . . . . . L. meteorana (p. 434)
_ Mandibular shafts divergent posteriorly. Last few feet with stout lobes (fig. 17.15.q)
- Prostomium conical. Body cllongate (fig. 17.15.b, o) ..... 10
7 Hooded hooks jointed in the first few feet; later hooks simple ..... 8
- Hooded hooks simple throughout ..... 9

\title{
 L. he Fropodai (bowel, now Marengctiss) is a syournyin
}

8 Mr. III with three to four teeth; Mr. IV with two to three (fig. 17.16.d) L. inflata (p. 435)
- Max. III with two teeth; Mr. IV with one (fig. 17.16.1) . . . L. coccinea (p. 436)
- Max. III with one tooth; Max. IV with two . . . . . L. oculata (p. 436)

9 Mx . II with four to five teeth; Mr. III with two. Capillaries stop at setiger \(20-30\)
L. cavifrons (p. \(43^{8}\) )
- Mr. II with five to seven teeth ; Mr. III with two . . . . . L. capensis \(\dagger\)
- Mr. II with four to five teeth; Mr. III with one. Capillaries stop at setiger 16 L. debilis \(\dagger\)-valid sp

10 Hooded hooks jointed in the first few feet; later hooks simple (fig. 17.16.s, t)
L. latreilli (p. 438)
- Hooded hooks simple throughout . . . . . . . . . . II

11 Hooks appear within the first few feet. (Postsetal lobe always shorter than setae) . 12
- Hooks appear after the goth foot . . . . . . . . . . I3

12 Prostomium very long, and pointed. Max. II with three teeth (fig. 17.17.b)
Lumbrencridete.aberrans (p. 439)
- Prostomium normal. My. II with four to five teeth . . . L. tetraura (p. 439)

13 Postsetal lobe of anterior feet auricular or shaped like a dog's ear, but enormously etongated in posterior feet (fig. 17.17.g). Acicula black . L. heteropoda difficilis (p. 440)
- Postsetal lobe of anterior feet digitiform. Acicula yellow . . . . . . 14

14 Postsetal lobe of posterior feel much shorter than the setae (fig. 17.17.j) L. hartman (p. 440)
- Postsetal lobe of posterior feet slightly longer than the setae (fig. 17.17.0) . . . 15

15 Anterior feet with a rudimentary dorsal cirrus. No cirriform ventral papilla between posterior feet . . . . . . . L. heteropoda heteropoda (p. 440)
- No rudimentary dorsal cirrus. A cirriform ventral papilla between posterior feet in the adult (fig. \(17.17 . q\) ) . . . . . . . . L. papillifera (p. 442)



3
Body up to 100 mm . long. Prostomium (fig. \(\mathrm{I} 7.15 . \mathrm{b}\) ) conical. Dental formula : \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+\mathrm{I} ; \mathrm{Mx} . \mathrm{II}=4+4 ; \mathrm{Mx} . \mathrm{III}=\) ? \(\mathrm{I}+\) ? \(\mathrm{I} ; \mathrm{Mx} . \mathrm{IV}=\mathrm{I}+\mathrm{I} . \mathrm{Mx}\). III is curved cutting plate without a distinct tooth and the maxillary supports arc short and broad (fig. I7.I5.a). Feet with a low, rounded presetal lobe throughout. Postsetal lobe conical and compressed anteriorly; later the base of the foot becomes longer and in posterior feet the small posterior lobe is hardly longer than the anterior one (fig. 17.15.d). Setae include long winged capillaries in anterior feet (fig. 17.15.c) plus short-bladed compound hooks from setiger \(1-4\) to setiger 12-15. In posterior feet there are only simple hooks (fig. 17.15.g). Acicula yellow.

Type locality: Straits of Magellan.
Records: Cape (from 33/17/abyssal, 34/ \(7 / \mathrm{d}, 34 / \mathrm{I} 8 / \mathrm{s}\) to \(34 / 26 / \mathrm{d}\) ) - few specimens.
Distribution : Chile (i, s, d) ; subantarctic islands (i, s, d) ; Antarctica (d).

\footnotetext{
\(\dagger\) Doubtful species, not recorded since the original descriptions.
}


Fig. 17.15. Lumbrineris magalhaensis. (A) Maxillae. (B) Head. (c) Anterior foot. (D) Posterior foot. (E) Capillary seta. (F) Anterior compound hook. (G) Posterior simple hook. Lumbrineris meteorana. (i) Maxillae. (I) Mandibles. (J) Anterior foot. (k) Anterior compound hook. (L) Middle foot. (M) Posterior hook. (N) Far postcrior foot. Lumbrineris albidentata. (o) Entire worm (natural size). ( P ) Maxillac. (Q) Mandibles. (R) Anterior foot. (s) Posterior foot. (T) Anterior compound hook. (U) Capillary seta. (v) Posterior hook.

\section*{Lumbrineris meteorana (Augener, 1931)}
(fig. I7.15.h-n)
Lumbriconeris meteorana Augener, 1931: 300, fig. 8 (partim) ; Day, 1963a: 410, fig. \(7 \mathrm{~g}-\mathrm{n}\) Lumbrineris cf. meteorana: Day, 1960: 358.

Body slender, about 20 mm . long with about 120 segments. Colour pale yellow. Prostomium bluntly conical. Maxillary formula: \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+\mathrm{I} ; \mathrm{Mx} . \mathrm{II}=3+3\) (the three teeth being eharaeteristically stout, almost bilobed (fig. i7.15.h); Mx. \(\mathrm{III}=\) ? \(\mathrm{I}+\) ? I (cutting plates without obvious tecth) ; Mx. IV \(=\mathrm{I}+\mathrm{I}\) (large and rounded with dark edges and pale eentres). Mandibles (fig. I7.I5.i) poorly calcified with shafts united. Maxillary supports broad and triangular. Anterior feet (fig. I7.15.j) bilobed with the presetal lobe at first smaller than, but soon equal to the postsetal one. This condition persists over most of the body (fig. I7.15.1) but in the middle of the body the feet are markedly smaller than the anterior ones and in the tail region both lobes become long and filamentous but now the presetal one is slightly longer than the postsetal one and equals the length of the setae (fig.i7.15.n).

Anterior setae include about two long-bladcd compound hooks (fig. 17.15.k) and three to four winged capillaries. The latter deerease in number and end before the middle of the body. After the first IO-I 5 segments the hooks become both shorter and simple ; two to three simple hooks (fig. \(17.15 . \mathrm{m}\) ) persist to the end of the body. Acicula yellow.

Type locality: Dredged off South West Africa ( \(17^{\circ} 13^{\prime} \mathrm{S}\).).
Records: South West Africa (26/14/d, \(17 / \mathrm{Ir} / \mathrm{s}\) ) ; Cape (from 32/r7/d and 34/r8/s to \(34 / 26 / \mathrm{d}\) ) ; Natal ( \(30 / 30 / \mathrm{s}\) ) - common in dredgings on muddy sand.

Distribution : Endemic.

Lumbrineris albidentata (Ehlers, 1908)
(fig. I7.15.0-v)
Lumbriconereis albidentata Ehlers, 1908: 97, pl. 13 figs. 7-13; Day, 1960; 357, fig. 12 a-b.
An elongate speeies reaching 100 mm . (fig. 17.15.0). Prostomium conical with a conspicuous nuchal slit at the prostomial/peristomial junction. Jaws large and in juveniles the anterior segments are swollen to accommodate them. Mandibles (fig. I7.15.9) heavily ealeified and the shafts widely divergent. Maxillac characteristic with three large teeth on Mx. II and Mx. IV as large white plates with a black border and indistinct tecth (fig. 17.I5.p). Maxillary formula: Mx. \(\mathrm{I}=\mathrm{I}+\mathrm{I}\); \(\mathrm{Mx} . \mathrm{II}=(2-3)+(2-3) ; \mathrm{Mx} . \mathrm{III}=2+2 ; \mathrm{Mx} . \mathrm{IV}=\) ? \(\mathrm{I}+\) ? I. Maxillary supports long and triangular. Anterior feet (fig. i 7.i5.r) with a low presetal lobe and an orbieular postsetal lobe. Middle feet with subequal presetal and postsetal lobes direeted obliquely upwards. Posterior feet longer and bilabiate with stout lobes as long as the basal part of the foot (fig. I7.15.s). Setae inelude winged capillaries from the first to the 50th foot and long compound hooks (fig. I7.I5.t) from the first to the 30 th foot. From the 3Ist to the 50 th foot there are simple hooks and
eapillaries (fig. I7.15.u) and from there on there are only simple hooks. Acicula yellow, four per foot.

Type locality: Agulhas Bank, South Africa.
Records: South West Africa (26/14/d and28/14/d); Cape (from 30/55/d and 34/r8/s to 34/23/s, d) ; Natal (29/3I/s, d) ; Mocambique (26/33/d) - common in deep dredgings on muddy sand.

Distribution: North Carolina (s, d.)

\section*{Lumbrineris brevicirra (Schmarda, 186I)}
(fig. I 7.I6.a-c)
Notocirrus brevicirrus Schmarda, 1861: 117.
Lumbriconereis brevicirrus: Ehlcrs, 1904: 35, pl. 4 figs. 13-20, pl. 5 figs. 1-2; Day, 1960: 361, fig. 12 e-g.
Length about \(50-70 \mathrm{~mm}\). Prostomium conical. Maxillary formula: \(\mathrm{Mx} . \mathrm{I}=\) \(\mathrm{I}+\mathrm{I} ; \mathrm{Mx} . \mathrm{II}=5+5 ; \mathrm{Mx}\). III \(=\) ? \(2+\) ? \(2 ; \mathrm{Mx}\). IV \(=\mathrm{I}+\mathrm{I}\). (Mx. III is a cutting plate with indistinct teeth.) Anterior fect (fig. 17.I6.b) small with a rudimentary presetal lobe and a deep compressed postsetal lobe which is dorso-ventrally decper than long. Later the presetal lobe increases and the postsetal lobe decreases and in posterior segments the base of the foot is longer but the small postsetal lobe is not much longer than the presetal one (fig. I7.16.e). Slender capillaries continue to the middle of the body. Long-bladed simple hooks (fig. I7.16.a) appear within the first io setigers and continue posteriorly but the blade becomes shorter further back. Acicula pale throughout, but Knox (1960) reports black acicula in Chatham Island specimens.

Type locality: Port Jackson, Australia.
Records: Cape (32/16/d, 33/16/a, 34/I8/s, 36/2I/d); Natal (29/3I/d) - a rare species.

Distribution: New South Wales (i, s) ; Chatham Island (d); Chile (i, s, d) ; Japan.

\section*{Lumbrineris inflata (Moore, I9 I I)}
(fig. I7.16.d-h)
Lumbriconereis inflata Moore, 1911: 289.
Lumbriconereis albifrons Crossland, 1924: 50, text-figs. 65-72.
A small species about 20 mm . long with a spherical white prostomium (fig. i \(7.16 . j\) ) and a short orange body. Maxillac (fig. i7.I6.d) characteristic: \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+\mathrm{I}\); \(\mathrm{Mx} . \mathrm{II}=(4-5)+(4-5) ; \mathrm{Mx}\). III \(=(3-4)+(3-4) ; \mathrm{Mx} . \mathrm{IV}=2+2\). Maxillary supports long. Anterior feet with a low, rounded presetal lobe and a longer but essentially similar postsetal one. Setae always longer than the postsetal lobe even in postcrior fcet. Acicula yellow. Winged capillarics (fig. I7.16.e) present in the first \(30-40\) feet. Compound (or incompletely compound) hooded hooks (fig. I7.16.g)
appear within the first three to four feet, become simple later and persist to the posterior end.

Type locality: California.
Records: Natal (30/30/i and 29/3I/i); Mocambique (26/32/i) - few specimens on rocky shores.

Distribution : Circumtropieal (Atlantie, Indian and Pacific (i, s)).

\section*{Lumbrineris coccinea (Renicri, 1804)}
(fig. I 7.16.i-m)

Nereis coccinea Renieri, 1904: p. xix.
Lumbriconereis coccinea: Fauvel, 1923: 432, fig. 172 g-n.
Body (fig. if.i6.i), small, about 40 mm . long, orange when alive but pale in alcohol. Prostomium (fig. I 7.16.j) globular. Maxillary formula: Mx. \(I=1+1\); \(\mathrm{Mx} . \mathrm{II}=(4-5)+(4-5) ; \mathrm{Mx} . \mathrm{III}=2+2 ; \mathrm{Mx} . \mathrm{IV}=1+\mathrm{I}\) (see fig. 17.16.1). Anterior feet with a low, rounded presetal lobe and a longer conical postsetal one ; posterior feet (fig. I7.16.m) slightly longer but essentially similar, the setae always exeeeding the postsetal lobe. Acicula yellow. Winged capillaries extend over the first \(30-40\) feet. Compound hooks (fig. I7.16.k) extend from the first to about the 2oth foot and they beeome simple with opaque white heads thereafter.

Type logality: Mediterranean Sea.
Records: South West Africa ( \(26 / \mathrm{I}_{5} / \mathrm{i}\) ) ; Cape (from \(29 / \mathrm{I} 6 / \mathrm{i}\) and \(34 / \mathrm{I} 8 / \mathrm{i}\), s to \(32 / 28 / \mathrm{i}\) ) ; Moeambique ( \(26 / 32 / \mathrm{i}\) ) - common in algal tufts.

Distribution : North Atlantic from the coasts of U.S.A. and the English Channel ( \(i, s\) ) south to Moroceo ( \(s, d\) ) and Senegal ( \(i, s\) ) ; Mediterranean ( \(s\) ).
A. gracilio Efl. 1968 Lumbrineris oculata (Ehlers, I908)

Lumbriconereis oculata Ehlers, 1908 : 96 , pl. 13 figs. 1-6.
Body 20 mm . long for 87 segments; prostomium ovoid with dark pigment on the sidcs. Maxillary formula : \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+\mathrm{I} ; \mathrm{Mx} . \mathrm{II}=3+4 ; \mathrm{Mx} . \mathrm{III}=\mathrm{I}+\mathrm{I}\); Mx. IV \(=2+2\). Mx. III is a very small plate and the maxillary supports are long and kite-shapcd. Antcrior feet have low presetal lobes and long postsetal lobes which are roughly ear-shaped with an inferior cxpansion. Posterior feet not known. Winged eapillaries extend from the first to the 34 th foot. Long-shafted compound hooks extend from the first few feet to the 16 th and then simple short-headed hooks appear. Acieula unknown.

Type locality: Francis Bay, South Africa.
Records: Cape (34/24/l) - only the type specimen known.


Fig. 17.16. Lumbrineris brevicirra. (A) Anterior hook. (B) Anterior foot. (c) Posterior foot. Lumbrineris inflata (based on a specimen from North Carolina). (D) Maxillae. (E) Capillary seta. (F) Head. (G) Anterior compound hook. (H) Posterior foot. Lumbriners coccinea. (I) Entire worm ( 2.5 times life size). (J) Head. (k) Anterior compound hook. (L) Maxillae. (M) Posterior foot. Lumbrineris cavifrons. (N) Anterior simple hook. (o) Posterior foot. Lumbrineris latreilli. (P) Head. (Q) Anterior foot. (R) Posterior foot. (s) Anterior compound hook. ( T ) Posterior simple hook. Lumbrineris letraura. (U) Anterior hook. (v) Posterior hook. (w) Posterior foot.

Lumbrineris cavifrons (Grube, 1869)
(fig. I7.16.n-o)
Lumbriconereis cavifrons Grube, 1869: 13; Day, 1953: 437, fig. 6 a-d.
Body \(25-65 \mathrm{~mm}\). long. Prostomium broadly rounded and somewhat flattened in front. Maxillary formula: Mx. I \(=\mathrm{I}+\mathrm{I} ; \mathrm{Mx} . \mathrm{II}=4+4 ; \mathrm{Mx}\). III \(=2+2\); Mx. IV = I + I. Maxillary supports rather long. Anterior feet have a low, rounded presetal lobe and a thumb-shaped postsetal lobe a little longer; postcrior feet (fig. I7.16.0) essentially similar. Winged capillaries extend from the first foot to the 2oth. Hoodcd hooks (fig. i7.16.n) appear within the first four feet and continue to the posterior end; they are all simple and the heads are rather short. Acicula yellow.

Type locality: False Bay, South Africa. Madajescas finc Aamavercoux
Records: South West Africa (26/15/i) ; Cape (from 34/i8/i, s to 32/28/i, s) ; Natal ( \(30 / 30 / \mathrm{i}\) ) ; Mocambique ( \(26 / 32 / \mathrm{i}\) ) - common on rocky shores and in shallow dredgings.

Distribution: Doubtful.

Lumbrineris latreilli Audouin \& Milne Edwards, 1834 (fig. I 7.16.p-t)

Lumbrineris Lalreilli Audouin \& Milne Edwards, 1834: 168.
Lumbriconereis latreilli: Fauvel, \(1923: 43 \mathrm{r}\), fig. \(171 \mathrm{~m}-\mathrm{r}\).
Body up to 150 mm . long. Prostomium (fig. I7.16.p) conical. Maxillary formula : \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+\mathrm{I} ; \mathrm{Mx} . \mathrm{II}=(4-5)+(4-5) ; \mathrm{Mx} . \mathrm{III}=2+2 ; \mathrm{Mx} . \mathrm{IV}=\mathrm{I}+\mathrm{I}\). Maxillary supports fairly long. Antcrior fcet (fig. i7.16.q) with a low, rounded presetal lobe and a larger, bluntly triangular postsetal lobe; posterior feet (fig. \({ }^{1} 7.16 .1\) ) with long conical postsetal lobes, but never as long as the setac. Winged capillaries cxtend from the first to the 40 th or 50 th foot. Long-bladed compound hooks (fig. I7.16.s) appear about the third foot and extend to the 25 th foot where they are replaced by simple hooks whosc hcads becomc progrcssivcly shorter (fig. 17.16.t) ; these continue to the end of the body. Acicula yellow.

Type locality: France.
Records: Cape (from 34/18/s to \(31 / 29 / i, s)\); Natal (29/3I/s, d); Mocambique (26/32/i) - fairly common in sand.

Distribution : Cosmopolitan in temperate and tropical scas (i,s,d).
\[
\text { (fig. I 7.1 } 7 . \mathrm{a}-\mathrm{e} \text { ) }
\]

Lumbrineris aberrans Day, 1963b: 411, fig. 8 a-f.
A small species about 10 mm . long for 60 segments. Prostomium (fig. 17.17.a) conical, enormously elongated and cqual to the length of the peristome plus the first four setigers. Shafts of mandibles completely united. Maxillary supports (fig. I7.I7.6) very largc. Maxillary formula: \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+\mathrm{I} ; \mathrm{Mx}\). II \(=3+3\); Mx. III \(=\) ? I + ? I (short plates each with an indistinct tooth) \(; \mathrm{Mx}\). IV \(=0+0\) (oval plates without teeth). The parapodial lobes of the first six setigers are minute but on later segments they increase in size. Each is conical with a rudimentary presetal lobe and a conical postsctal lobe shorter than the setae (fig. 17.17.e). Posterior parapodia unknown. Winged capillaries are present from the first setiger and have very short broad blades (fig. I7.17.d). Simple hooks appear in setiger 4, each with two divergent teeth and a short, broad hood (fig. i 7.I7.c). Acicula pale.

Type locality: Agulhas Bank, South Africa.
Records: Cape (33/25/s) - a-single specimen.


Diactio Bermecta and Norith Tishol ne
walodr.

Lumbrineris tetraura (Schmarda, 186I)
(fig. I7.16.u-w)
Notocirrus tetraurus Schmarda, 1861: 117, 6 figs.
Lumbriconereis tetraurus: Day, 1953: 435 (with synonymy).
Lumbriconereis impatiens Claparède, 1868: 455; Fauvel, 1923: 429, fig. 171 a-1.
Body up to 250 mm . long. Prostomium conical. Dental formula: \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+\mathrm{I}\); \(\mathrm{Mx} . \mathrm{II}=(4-5)+(4-5) ; \mathrm{Mx}\). III \(=2+2 ; \mathrm{Mx} . \mathrm{IV}=\mathrm{I}+\mathrm{I}\). The great dental plates have four or fivc teeth according to size and the maxillary supports are usually long and kite-shaped. Anterior feet with the presetal lobe low and rounded and the postsetal lobe longer and bluntly conical. Posterior feet (fig. 17.16.w) longer but essentially similar in shape. Winged capillarics from the first to about the 6oth foot. Long-headed simple hooks (fig. I7.I6.u) appcar about the fourth foot and persist to the posterior end; but from about the 3oth foot the head of the hook is shortened and tends to become whitish (fig. 17.16.v). Acicula yellow.

Type locality: Cape of Good Hope and Chile.
Records: South-west Africa (22/14/i); Cape (from \(32 / \mathrm{r} 8 / \mathrm{i}\), s and \(34 / 25 / \mathrm{e}\), i, s to 29/3r/i) ; Natal (30/30/i to 28/32/i) - common in sand.

Distribution: Cosmopolitan in temperate and tropical waters.

\footnotetext{
*This species is close to \(L\). acuta (Verrill, 1875).
}

Lumbriconereis hartmani Day, 1953: 437, fig. 6 e-m.
Body long, reaching 100 mm . or more. Prostomium conieal. Maxillary formula : \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+\mathrm{I} ; \mathrm{Mx} . \mathrm{II}=(4-5)+(4-5) ; \mathrm{Mx} . \mathrm{III}=2+2 ; \mathrm{Mx} . \mathrm{IV}=\mathrm{I}+\mathrm{I}\). Maxillary supports long and triangular. Parapodia with unequal lobes, the anterior feet having a low, rounded presetal lobe and a longer, eonieal, postsetal one. In posterior feet (fig. I \(7.17 . j\) ) the postsetal lobe lengthens but never exeeeds the length of the setae. Anterior setae are winged eapillaries and these persist to the 6oth or 7oth foot. Long-bladed simple hooks (fig. 17.17.k) appear about the 25 th- 45 th foot and continue to the end of the body but the blade beeomes shorter after the middle of the body. Aeieula yellow.

Type locality: False Bay, South Africa.
Records: Cape (from \(34 / 18 / \mathrm{i}\), s to \(33 / 27 / \mathrm{s}\) ) - few speeimens seen.
Distribution: Endemie but elose to L. fragilis.

\section*{Lumbrineris heteropoda difficilis Day, 1963}
(fig. I 7.I 7.f-h)
Lumbrineris heteropoda difficilis Day, 1963: \(4^{10}\) (with synonymy) nom. nov. pro Lumbrineris heteropoda var. atlantica Day, 1960: 360, fig. 12 c-d (non Lumbriconereis atlantica Kinberg, 1865: 568).
Body long, often excecding 120 mm . Prostomium conieal with dark pigments at the base. Dental formula: \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+\mathrm{I} ; \mathrm{Mx}\). II \(=(4-5)+(4-5) ; \mathrm{Mx} . \mathrm{III}=\) \(2+2 ;\) Mx. IV = \(1+\mathrm{I}\). Maxillary supports heart-shaped. Anterior feet (fig. I \(7.17 . f\) ) with the presetal lobe low and rounded and the postsetal lobe eompressed and produced superiorly. In posterior fect (fig. I7.17.g) the postsetal lobe beeomes very long and digitiform, greatly exeeeding the length of the setac. Anterior setae are all winged eapillaries, long and tapering superiorly and short and blunt inferiorly. Long-bladed simple hooks (fig. I7.I7.h) appear about the 40 th foot and become shorter in posterior feet. Most of the setae in posterior feet are short-bladed hooks but an oceasional capillary appears here and there. Acieula charaeteristieally black.

Type locality: Dredged off Luderitz, South West Afriea.
Records: South West Africa (22/I4/s, 26/14/d and 27/15/s); Cape (from 32/I8/d to \(34 / \mathrm{I} 8 / \mathrm{d}\) ).

Distribution : Tristan da Cunha (s) ; Brazzaville Congo (s).

\section*{Lumbrineris heteropoda heteropoda (Marenzeller, 1879)}

> (fig. I 7.1 7.1-o) No!
= L. debilis Kbg
Lumbriconercis heteropoda Marenzeller, 1879: 30; Crossland, 1924:4, text-figs. 1-7; Hartman, 1942 :
121, fig. \(10 \mathrm{e}-\mathrm{g}\).
Body long, often reaching 120 mm . Prostomium (fig. I7.17.l) eonieal. Maxillary formula: \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+\mathrm{I} ; \mathrm{Mx} . \mathrm{II}=(4-5)+(4-5) ; \mathrm{Mx}\). III \(=2+2 ; \mathrm{Mx}\). IV \(=1+1\). Mandibles with straight shafts. Parapodia with uncqual lobes; in


Fig. 17.17. Lumbrineris aberrans. (A) Head. (B) Maxillae. (c) Hook. (D) Winged capillary.
(E) Middle foot. Lumbrineris heteropoda difficilis. (F) Anterior foot. (G) Posterior foot.
(II) Hook from middle foot. Lumbrineris hartmani. (t) Anterior foot. (J) Posterior foot.
(к) Hook from middle foot. Lumbrineris heteropoda. (L) Head. (м) Hook from middle foot. ( N ) Anterior foot. (o) Posterior foot. Lumbrineris papilififera. (P) Anterior foot. (Q) Ventrolateral view of three middle segments. (R) Hook from middle foot. (s) Posterior foot.
anterior feet (fig. 17.17.n) the presetal lobe is low and rounded and the postsctal lobe is longer and conical ; in posterior fect (fig. I7.17.0) the postsetal lobe becomes much longer though it never excceds the sctae. In some specimens it is bent upward. A rudimentary dorsal cirrus is present. Anterior setae are all winged capillaries. Long-bladed simple hooks (fig. I7.17.m) appear about setiger 36. Posterior setae are two to three short-bladed hooks and sometimes a winged capillary as well. Acicula pale throughout.

Type logality: South Japan.
Records: Natal (28/32/i) ; Mocambique Is. (i) ; Madagascar (i).
Distribution : Senegal (i); Red Sea (i) ; tropical Indian Ocean (i, s) ; Japan (s).

\section*{Lumbrineris papillifera (Fauvel, 1919)}
(fig. 17.17.p-s)
Lumbriconereis papillifera Fauvel, 1919: pl. I5 figs. 1-16.
Body long, reaching 100 mm . or more. Prostomium conical. Maxillary formula : \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+\mathrm{I} ; \mathrm{Mx} . \mathrm{II}=(4-5)+(4-5) ; \mathrm{Mx} . \mathrm{III}=2+2 ; \mathrm{Mx} . \mathrm{IV}=\mathrm{I}+\mathrm{I}\). Maxillary supports long and triangular. Anterior feet (fig. 17.17.p) with a low, rounded presetal lobe and a longer, conical postsetal lobc. Posterior feet (fig. I7.17.s) with a short presetal lobe and a very long postsctal lobe which may cxcced the length of the sctac. In adults a ventral papilla may appear bctwcen the parapodia from the middle of the body onwards (fig. 17.17.q). Anterior setae are all winged capillaries. Short-hcaded simple hooks (fig. I7.17.r) appear about the 4 oth foot and completely replace capillaries before the middle of the body. Acicula yellow.

Type locality: Madagascar.
Records: Natal (29/3I/i); Mocambiéque (26/32/i and 23/35/e); Madagascar (i).

Distribution: Tropical East Africa.

> Subfamily ARABELLINAE Hartman, 1944
> \((=\) ARABELLIDAE Hartman, 1944)

Elongate cylindrical worms with uniramous parapodia. Prostomium without appendages but usually with eyes. Mandibles present or absent. Free-living forms have well developed maxillae consisting of five pairs of toothed plates and long slender supports plus a shorter median piece. Two anterior apodous segments. Parapodia uniramous with dorsal cirri rudimentary or absent, but no ventral cirri. Setae arc winged capillarics throughout, there being no hooded hooks.

\section*{Records from southern Africa}



BIOLOGICAL NOTES
The arabellids are superficially similar to the lumbrincrids and many of them have similar carnivorous and burrowing habits. Common examples are Arabella iricolor caerulea found in sand under stones and Drilonereis falcata which burrows in sand at deeper levels. But many other members of the subfamily are parasitic at least during the early stages of their life histories. Labrorostratus is known only as a parasite in Odontosyllis. Drilognathus capensis is parasitic in the body cavity of Onuphis holobranchiata; its small sizc, lack of setae and poorly developed jaws suggest that it may be the early stage of some large free-living form. Some species of Drilonereis and Notocirrus have certainly adopted this type of life history but it is difficult to relate the young parasitic stage with the adult free-living form.

\section*{THE MAIN DIAGNOSTIC CHARACTERS}

The two important fcatures are the jaws and the acicula.
Jaws. In parasitic forms both the mandibles and the maxillac are poorly developed and in some frce-living forms the mandibles are absent. Possibly these are parasitic as juvenilcs and free living as adults as certain species are known to be. The maxillac are usually well developed but differ in the number of teeth on each plate and the degree of devclopment of the first tooth in the series. Dissection is cssential to see this.

Setae and Acicula. The winged capillarics may have serrated or smooth blades in the same species and do not provide reliable characters. As in most eunicids the acicula may bc internal with tapered tips but in some genera they project as heavy, blunt spines.


\section*{DRILOGNATHUS Day, 1960}

Endoparasitic worms with reduced jaws. Maxillae vestigial, without teeth. Mandibles well developed. Parapodia well formed and possess acicula but no setae.

Type species: Drilognathus capensis Day, 1960.

Drilognathus capensis Day, 1960
(fig. 17.18.a-c)
Drilognathus capensis Day, 1960: 370, fig. 14 e-i.
A small species about 3 mm . long for 60 segments and parasitic in the body cavity of Onuphis holobranchiata. Prostomium (fig. 17.18.a) well separated from the two anterior achaetous and apodous segments, ovoid to conical and with a pair of eyes concealed below the skin. Mandibles (fig. 17.18.c) well developed and black, each triangular and without any recurved rostrum. Maxillac (fig. I7.18.b) vcstigial, reduced to a long blackened strcak or chitinous ridgc on the roof of the stomadaeum. The third and subsequent segments are provided with well formed parapodia (fig. 17.18.d), cach with a rudimentary presetal lobe and a bluntly conical postsctal one. Each parapodium has a singlc, stout, pointed, yellow aciculum often projecting through the skin in front of the postsetal lobe. No other sctac. Posterior parapodia decreases in size and are not developed on the last 10 segments. Pygidium (fig. 17.18.e) conspicuous with large, laterally projecting anal cirri.

Type locality: Lamberts Bay, South Africa.
Records: Cape (32/r8/s) - only one record.

\section*{ARABELLA Grube, 1850}

Prostomium conical, usually with four cyes. Feet with unequal presetal and postsetal lobes. No gills. No ventral cirri. Dorsal cirri vestigial or absent. Only simple winged capillary setae, and without hooks or projecting acicula. Upper jaw of four to five toothed plates with long slender supports plus a median unpaired piece. Mandibles well developed, and Mx. I strongly falcate.

Type species: Nereis iricolor Montagu, 1804.

\section*{Key to Species}
I No hooded acicular setae . . . . . . . . . . . 2
a

\[
\square-
\]
j


Fig. 17.18. Drilognalhus capensis. (A) Head. (B) Vestiges of maxillae. (C) Mandibles. (D) Foot. (E) losterior end. Arabella mutans. (F) Hooded acieular seta. (G) Maxillae. (н) Foot. Arabella iricolor. (1) Foot with dorsal cirrus. (J) Maxillac. (к) Head. (L) Entire worm (natural size). (M) Mandibles. Arabella iricolor caerulea. (N) Foot. (o) Winged eapillary.

Arabella mutans (Chamberlin, 1919)
(fig. I 7.18.f-h)
Cenothrix mutans Chamberlin, 1919: 330.
Arabella novecrinita Crossland, 1924: 71, figs. 85-95.
Arabella mutans: Monro, 1933: 501.
Length up to 190 mm . with more than 300 segments. Prostomium conical with four eyes. Maxillae (fig. I7.I8.g) well developed. In the following formula the presence of an enlarged, faleate hook is shown by \(1: \mathrm{Mx} . \mathrm{I}=(1+4)+(1+4)\); \(\mathrm{Mx} . \mathrm{II}=(o+\mathrm{I} 2)+(0+12) ; \mathrm{Mx} . \mathrm{III}=(1+4)+(1+4) ; \mathrm{Mx} . \mathrm{IV}=(1+3)\) \(+(1+3) ;\) Mx. \(V=1+1\). Mandibles black, roughly M-shaped. Dorsal cirrus reduced to a slight swelling on the base of the parapodium (fig. 17.18h). Presetal lobe low and rounded. Postsctal lobe a longer blunt cone Acicula two to three, yellow, pointed and just piercing the skin between the parapodial lobes. Setac are winged capillaries with smooth or basally serrated bladcs. An inferior, asymmetrically hooded acicular seta (fig. 17.18.f).

Type locality : Easter Island.
Records: Cape (34/18/s, 34/21/1) ; Mocambiquc (26/32/i, 23/35/e).
Distribution : Easter Is.; Zanzibar; Cape Verdc Is.; North Carolina (s).

\section*{Arabella iricolor iricolor (Montagu, 1804) \\ (fig. I7.18.i-m)}

Nereis iricolor Montagu 1804: 82.
Arabella iricolor: Fauvel, 1923: 438, fig. 175 a-h.
Body (fig. if.i8.l) tough, wirey, iridescent, up to 100 mm . long. Prostomium (fig. I7.18.k) bluntly conical with four cyes in a transversc row across the posterior margin. Mandibles (fig. I7.18.m) strong, black, roughly H-shaped. In the following maxillary formula the presence of an enlarged first tooth is a series is indicated by 1 : \(\mathrm{Mx} . \mathrm{I}=(1+9)+(1+8) ; \mathrm{Mx} . \mathrm{II}=8+14 ; \mathrm{Mx} . \mathrm{III}=7+5 ; \mathrm{Mx} . \mathrm{IV}=\) \((1+4)+(1+3) ; \mathrm{Mx} . \mathrm{V}=1+1\). Body segments short and crowded. Parapodia (fig. 17.18.i) with a low, rounded presctal lobe and a longer, conical postsetal lobe. Dorsal cirrus well developed in anterior scgments as a curved papilla arising from the dorsal basc of the foot. Setae include four to five winged capillaries often serrated at the bases of the wings and about three pointed, yellow acicula which just pierce the skin of the parapodium.

Type logality: Devon, England.
Records: Madagascar (i, s). S.W. Hfica, Lobe, Nalal, Mecambuque (i,s
Distribution : Cosmopolitan in temperate and tropical seas (i, s).

Arabella iricolor caerulea (Schmarda, 186i)
(fig. i 7.18.n-o)


Aracoda caerulea Schmarda, 1861 : 115.
Arabella iricolor var. caerulea: McIntosh, 1904: 46, pl. 4 figs. 16-17; Day, 1953: 439, fig. 6 n.
Body up to 160 mm . long. The subspecies caerulea differs from the stem form in the development of the dorsal cirrus. In A. \(i\). caerulea the dorsal cirrus is merely an obscure papilla on the base of the foot (fig. 17.18.n). Setac (fig. 17.18.0) as in the stem form.

Type locality: Table Bay, South Africa.
Records: South West Africa (26/i5/i) ; Cape (29/16/i and 34/23/e, i to 32/28/i, s) ; Natal (30/30/i and 29/3I/i) ; Mocambique (26/32/i).

Distribution : Endemic.
DRILONEREIS Claparède, 1870
Prostomium bluntly conical with or without eyes. Maxillae consist of four to five pairs of toothed plates which are strongly faleate and have long filiform supports plus a median unpaired picee. Mandibles may be weak or absent. Parapodia with rudimentary dorsal cirri, unequal presetal and postsetal lobes but without gills or ventral cirri. Setac include winged eapillaries, fine acicula with filiform tips plus a stout projecting aciculum but no hooks.

Type species: Lumbriconereis filum Claparc̀de, 1868.

\section*{Key to Species}

1 Mandibles well developed. Mx. I with toothed bases. Mx. V present . . . D. falcata
- Mandibles absent. Mx. I without teeth at the bases. Mx. V absent . . . D. monroi

Drilonereis falcata Moore, IgiI
(fig. I7.19.a-f)
Drilonereis falcata Moore, 191 1: 298, pl. 20 figs. 150-154; Day, 1960: 364, fig. 13 a-e.
Body slender and rounded in section, about 100 mm . long. Prostomium (fig. i7.19.a) a depressed blunt cone. Internal eyes may be present. Mandibles (fig. I7.I9.c) stout, black, triangular. Maxillac (fig. I7.Ig.b) with tecth at the base of Mx . I and the anterior tooth of all plates larger than subsequent ones. Maxillary formula : \(\mathrm{Mx} . \mathrm{I}=8+6 ; \mathrm{Mx} . \mathrm{II}=8+8 ; \mathrm{Mx} . \mathrm{III}=4+3 ; \mathrm{Mx} . \mathrm{IV}=\mathrm{I}+\mathrm{I}\); \(M x . V=I+I\). Median unpaired support dagger-shaped and black throughout. Fect (fig. I7.Ig.d, f) well developed after the two anterior achactous segments. Presetal lobe very small, postsetal lobe conical. A stout projecting aciculum (fig. i 7.I9.e) present from the roth-2oth foot and there may be two acicula in some fect. Posterior end of body unknown.

Type locality: Monterey, California.
Records : South West Africa (28/16/s) ; Cape (34/18/s) - only two specimens.
Distribution : California (d).

\section*{Drilonereis monroi Day, 1960}
(fig. I7.19.g-i)
Drilonereis monroi Day, 196o: 365, fig. 13 f-i.
A long, tough, wiry species reaching more than 200 mm . Prostomium (fig. I7.19.9) blunt, depresscd and without eyes; it is almost fused to the first segment. Mandibles absent. Maxillae (fig. I 7.19.h) wcll devcloped but Mx. I have no teeth at the base of the fang and \(\mathrm{Mx} . \mathrm{V}\) is absent. Maxillary formula: \(\mathrm{Mx} . \mathrm{I}=\mathrm{I}+\mathrm{I}\); \(\mathrm{Mx} . \mathrm{II}=(6-8)+(6-8) ; \mathrm{Mx} . \mathrm{III}=4+4 ; \mathrm{Mx} . \mathrm{IV}=4+4\). Maxillary supports very slender and the unpaired median piece is pale except for a black heartshaped arca at the origin. Parapodia (fig. I7.19.i) small but wcll formed with a low, rounded presctal lobe and a bluntly, conical postsetal lobc. Between the two lobes there are four to five smooth-winged capillaries, onc stout, blunt, projecting aciculum and three to four internal acicula with long tapering tips which simulate emerging capillaries. Posterior feet are much longer and the presetal lobe increases until it is half the length of the postsetal one.

Type locality : io8 metres, off Lamberts Bay.
Records: South West Africa (26/14/s) ; Cape (29/16/s and 32/17/s, d to 34/18/s).
Distribution : Tristan da Cunha (s).
NOTOCIRRUS Schmarda, 186 I
Prostomium conical and usually has four eyes. Mandibles well developed. Maxillae consist of four to five pairs of toothed plates with long supports and a median unpaired piece. Maxillary plates either weakly falcate or with equal sized teeth. Parapodia with unequal prcsetal and postsetal lobes, vestigial dorsal cirri but no ventral cirri. Setae include winged capillaries and a hcavy projecting aciculum but no hooks.

Type species: Notocirrus chilensis Schmarda, I86i.

\section*{Key to Species}

I Body slender with well marked segments but not moniliform . . . N. australis
- Body slender with intersegmental constrictions so deep that the body is moniliform
N. scoticus*

Notocirrus australis Day, I960
\[
(\mathrm{I} 7.19 . j-\mathrm{m})
\]

Notocirrus australis Day, 1960: 367, fig. 14 a-d.
Body up to 60 mm . long, very slender but not moniliform. Prostomium (fig. 17.19.e) conical with four cyes in a posterior row. Jaws well developed. Mandibles (fig. I 7.Ig.k) strong, cach roughly triangular and the two are narrowly joined in the median line. The maxillac (fig. I7.19.j) have the first tooth of each plate slightly

\footnotetext{
*See Day (1960: 368).
}


Fig. 17.19. Drilonereis falcata. (A) Head. (B) Maxillae. (c) Mandibles. (D) Anterior foot. (E) End of projecting aciculum. (F) Middle foot. Drilonereis monroi. (G) Head. (H) Maxillae. (I) Middle foot. Nolocirrus australis. (J) Maxillae. (К) Mandibles. (L) Head. (м) Middle foot.
enlarged and Mx. I and Mx. II overlap and may fuse. Maxillary formula : Mx. I = \(7+7 ; \mathrm{Mx} . \mathrm{II}=7+8 ; \mathrm{Mx} . \mathrm{III}=7+6 ; \mathrm{Mx} . \mathrm{IV}=5+4 ; \mathrm{Mx} . \mathrm{V}=\mathrm{I}+\mathrm{I}\). Maxillary supports long and slender with the mcdian unpaired piecc very faint. Parapodia (fig. \(17.19 . \mathrm{m}\) ) small, each with an obscure dorsal cirrus, a rudimentary presetal lobe and a thumb-shaped postsetal one. Sctae include about thrce broadwinged capillaries, and a stout aciculum which projects almost as far as the end of the postsetal lobe.
Type logality: False Bay, South Africa.
Regords: Cape (34/I8/s) - a single rccord.

\section*{Subfamily DORVILLEINAE Chamberlin, 1919}

Small, \(10-20 \mathrm{~mm}\). worms with well developed appendages and parapodia. Prostomium rounded with two palps, two antennae and sometimcs a nuchal papilla. Mandibles usually dentate. Maxillae consist of two or four rows of numerous minute toothed platcs. The first two segments apodous and achactous. Parapodia uniramous, the notopodium being reduced to an internal aciculum in the cirrophore of the dorsal cirrus or absent. Ncuropodia wcll dcveloped with a large setigerous lobe and a ventral cirrus. Sctae include superior capillaries and sometimes forked setae; inferior setae compound with falcigerous blades of varying length.

\section*{Records from southern Africa}


The dorvilleids are the most primitive members of the family Eunicidac and this is reflected in their habits. They neither burrow like lumbrinerids and arabellids nor make tubes like the onuphids. Instead they creep slowly over the surface and may be found undcr loose stones or among old shells. Dorvillea itself is probably carnivorous for no algal food or detritus has been found in its gut. Ophryotrocha puerilis however is definitely an algal fcedcr. It is the smallest of the dorvillcids and is seldom taken in the field. It turns up in aquaria in many parts of the world and is
found feeding on the attached diatoms and filamentous algae which grow on the glass. Careful observation shows that it scrapes these off with the anterior maxillary plates which are beset with comb-like rows of microscope teeth like the radula of a limpet.

\section*{THE MAIN DIAGNOSTIC CHARACTERS}

The most recent revision of the subfamily is that of Pcttibone (196r). She regards the group as a separate family and recognises five genera namely Ophryotrocha, Protodorvillea, Dorvillea, Stauronereis and Papillodorvillea. The first two genera are quite distinct as shown in the key below. The last three genera are distinguished by the nature of the setae and the presence of a nuchal papilla in Papillodorvillea. The view adopted lucre is that these characters do not merit generic rank and all three are included in the genus Dorvillea.

The head and its appendages. The important characters include the relative size of the palps, the number of joints on the antennae and the presence or absence of a nuchal papilla. The presenec of one or two pairs of eyes seems to vary within a single species and the jaw clements are too small for accurate diagnosis.

Parapodia. These may be either uniramous or sub-biramous (sesquiramous) according to the genus. In the former case the dorsal cirri are very small and lack cirrophores and internal acicula; in the latter case the dorsal cirri are long, their cirrophores well developed and the internal acicula obvious. The presence of an enlarged presetal lobe to the neuropodium is important at the species level.

Setae. Three types may be present. The superior setae always include simple capillaries but forked setae may also be present. The inferior setae are compound and falcigerous but the blades vary in length and the terminal teeth are too minute for ready diagnosis.
\[
\text { Key to Genera see -解 ingeemaro } 197 \%
\]

1 Paps represented by minute papillae (fig. 17.20.b). Maxillae with only two rows of minute toothed plates. (Parapodia uniramous) . . OPHRYOTROCHA (p. 451)
- Paps well developed with a long palpostyle and a terminal palpophore)(fig. 17.21.f). Maxillae with four rows of small toothed plates
2 Parapodia uniramous with ovoid dorsal cirri, but no cirrophores nor notoacicula (fig.
\[
17.20 . \mathrm{i}) . \quad P R O T O D O R V I L L E A(\mathrm{p} .452)
\]
- Parapodia subbiramous with the dorsal cirri mounted on ceratophores containing notoacicula (fig. 17.2ı.b) . . . . . . . . DORVILLEA (p. 454)

OPHRYOTROCHA Claparède \& Mecznikov, 1869
Body small and linear with segmental rows of cilia. Prostomium with a pair of small papilliform palps and a similar pair of antennae. Two to four cyes. Maxillac consist of a pair of large forceps and two rows each of six to eight small dentate plates. Mandibles well developed. Peristome and the next segment apodous and achaetous. Body segments with uniramous parapodia each with a small dorsal and ventral cirrus attached to the stout setigerous lobe. Setae include simple eapillaries and compound forms.

Type species: Ophryotrocha puerilis Claparède \& Metsehnikov, i86g

Ophryotrocha puerilis Claparède \& Metschnikov, 1869 (fig. 17.20.a-f)
Ophryotrocha puerilis Claparède \& Metschnikov, 1869: 184; Fauvel, 1923: 450, fig. 180 a-h; Hartman, 1944: 191, pl. 15 figs. 325-330.

Body (fig. I 7.20.a) colourless and vermiform, about 5 mm . long for 20-30 segments. Prostomium (fig. I \(7.20 . \mathrm{b}\) ) roundcd with two rings of cilia, a pair of papilliform antennae dorsolaterally and a similar pair of palps antcro-ventrally. A single pair of eyes. Jaws brown and well chitinised. Mandibles (fig. 17.20.c) with divergent shafts and bilobed, crenulatc cutting edges. Maxillac consist of a pair of stout forccps not dentate at the basc and scven pairs of small dentate clements of which the basal three cach have about five teeth of decreasing sizc and the distal four about 12 minute subcqual teeth. All segments with rings of cilia. Parapodia (fig. 17.20.d) with small dorsal and ventral cirri attached to the setigerous lobc. Setae include one to three stout simple setac dorsally (fig. I 7.20.c), two to four unidentate falcigerous compound setae medially (fig. I7.20.f) and a single simple pointed seta ventrally.

Type locality: Mediterrancan Sea.
Records: Cape (34/i8/i) - a few specimens in an aquarium feeding on the algal film on the glass.

Distribution : Cosmopolitan in temperatc and tropical seas - intertidal and often appearing in aquaria.

\section*{PROTODORVILLEA Pcttibonc, 1961}

Prostomium biannulate with small antennae, sometimes absent. Palps usually elongate, always with a terminal palpostylc. No nuchal papilla. Mandibles flared and denticulate anteriorly. Maxillac with four long rows of numerous dentate elcments. Pcristome and the next segment apodous and achactous. Parapodia uniramous with small dorsal cirri which lack cirrophores and notocacicula and are inserted near the distal end of the foot. Ventral cirri present. Superior setae simple and include both capillarics and forked setac. Inferior setac compound and falcigerous.

Type species : Staurocephalus kefersteini McIntosh, 1869.

\section*{Key to Species}

1 Antennae biarticulate. Dorsal cirri on all parapodia including the first

\title{
hefcrubinci
}
- Antennae with a single long joint. No dorsal cirrus on the first foot P. egena
\[
\text { Fefervicimi } 7^{\circ} 2 \text { tour } 1869
\]

\section*{Protodorvillea biarticulata-Day,-1963-}
(fig. I7.20.g-1)
Protodorvillea biarticulata Day, 1963b: 414, fig. 8 g-l.
Body (fig. I 7.20.g) small, about 4 mm . long with 100 segments. Prostomium (fig. 17.20.h) ovoid anteriorly with one pair of eyes. Palps long, irregularly wrinkled and end in well-marked palpostyles. Antennae small with two clongated joints. Body


Fig. 17.20. Ophryotrocha puerilis. (A) Entire worm (16 times life size). (B) Head. (c) Mandibles. (D) Foot. (E) Superior simple seta. (F) Inferior compound seta. Protodorvillea biarliculala. (G) Entire worm (i6 times life size). (H) Head. (I) Foot. (J) Forked seta. (к) Superior capillary seta. (L) Falcigerous seta. Protodorvillea egena. (м) Hcad.
segments short, parapodia (fig. 17.20.i) relatively large. Dorsal cirri arise from the distal ends of the feet. They are small, ovoid and present on all feet including the first. No notociculum nor dorsal eirrophore. Setigerous lobe with a conical presetal lip and a much smaller postsetal one. Superior setae inelude two eapillaries (fig. \(17.20 . \mathrm{k}\) ) with the base of the blade serrated, and one forked seta (fig. 17.20.j) with a smooth shaft and short, subequal prongs whieh are flanged on their inner margins. Inferior setac are three to four heterogomph falcigers (fig. 17.20.l) with serrated shaft-heads and minutely bidentate blades of varying length.

Type locality: Agulhas-Bank, South Afriea. North fitiantec
Records: Cape (34/21/s) - a single record.
 Protodorvillea egena (Ehlers, 1913) off Git Bámio heof.
(fig. I 7.20.m)
Stauronereis egena Ehlers, 1913: 501, pl. 35 figs. 1-6.
(non) Stauronereis egena: Augener, 1918: 377, pl. 5 figs. 102-103, text-fig. 45 .
Protodorvillea egena: Day, 1963b: 412; Banse \& Hartmann-Schröder, 1964: 241 (synonymy).
Body \(4^{-8} \mathrm{~mm}\). long with about 60 segments. Prostomium (fig. I \(7.20 . \mathrm{m}\) ) broadly conical with two pairs of eyes, the anterior pair being minute. Antennae very small with one elub-shaped joint. Palps long and wrinkled but eaeh has a well-marked terminal palpostyle. Maxillae with four rows of minute dentate elements. Dorsal cirri short and ovoid, without internal acicula or eirrophores; they arise from the distal ends of the feet and are present on all feet exeept the first. Setigerous lobes long, eaeh with a triangular presetal lobe. Ventral cirri ovoid. Superior setae include one serrated eapillary and one to two forked setae with smooth shafts and short, equal prongs flanged on their inner margins. The four inferior setae are compound with short faleigerous blades which have minutely bidentate tips.

Type locality: False Bay, South Africa.
Records: Cape (34/18/s) - only two certain records.
Distribution : South India; Red Sea.


Prostomium rounded with two long palps bcaring small terminal palpostyles, two antennae and sometimes a nuehal papilla posteriorly. Maxillae consist of four scries of numerous small toothed plates. Mandibles often dentatc. The peristome and the next segment apodous and achactous. Parapodia sub-biramous with the dorsal cirrus mountcd on a cirrophore containing an internal aeieulum ; below this is a long setigerous lobe with a small ventral eirrus. Superior setae simple and include capillaries and often forked setac. Inferior setae compound with faleigerous blades of varying length.

Type species: Staurocephalus rubrovittatus Grube, 1855.

Key to Species

(fig. 17.21.a-c)
Staurocephalus gardineri Crossland, 1924: 93, fig. 112-118; Fauvel, 1953: 280, fig. 143 d-f.
Body large, up to 50 mm . long with 100 segments. Prostomium (fig. 17.21.a) small and rounded with four large eyes. The peristome is separated from the prostomium by a deep dorsal incision containing a large nuchal papilla. Antennae with about 10 indistinct annulations. Palps slightly longer than the antennae and the terminal palpostyle is poorly defined. Maxillae with four rows of toothed plates. Mandibles well developed with the anterior margins denticulate. Parapodia (fig. 17.2 I.b) with tapering dorsal eirri formed of a long eirrophore incompletely fused to the eirrostyle whieh is about a quarter its length. A dorsal cirrus is present on setiger I. Superior sctac are eapillaries with flattened blades and blunt tapering tips. Broken sctae give the effect of forked setae (fig. I7.2I.e). Inferior setae compound and falcigerous with short, tridentate blades.

Type locality: Maldive Is. and Wasin (tropical East Africa).
Records: Madagasear (i, s).
Distribution : Tropical Indian Occan (i).

\section*{Schicitomesinges \\ -Dorvillea neglecta (Fauvel, 1923)}

Staurocephalus neglectus Fauvel, 1923 : 447, fig. 79 i-q.
Body about 15 mm . long with 80 segments. Prostomium broadly conical and depressed. Two pairs of eyes. A pair of long palps each with a well marked terminal palpostyle; antennae slightly shorter with 8-I I joints. Mandibles with dentate cutting edges, the external three to four teeth being easily detached. Maxiltac consist of four rows of small toothed plates. No dorsal eirrus on setiger I. Eaeh of the later dorsal cirri has a long eirrophore with an internal aciculum and a cirrostyle only half its length. Setigerous lobe long with a conical presetal lip and a shorter postsetal one. Superior setac include three to four fine, faintly scrrated


Fig. 17.21. Dorvillea gardineri. (A) Head. (B) Foot. (c) Breaking plane of superior seta. Dorvillea rudolphi. (D) Forked seta. (E) Foot. (F) Head. (G) Superior simple seta. (H) Falcigerous inferior seta. (1) Maxillae. (J) Mandibles. Dorvillea rubrovittata (after Fauvel. (к) Head. (ц) Foot. (м) Blade of superior simple seta. Dorvillea angolona (after Augener). (x) Head.
capillaries and one to two forked setae with subequal prongs and smooth shafts. Inferior compound setae numerous with faintly serrated shafts and falcigerous blades of varying length and tridentate tips.

Type locality: France.
Records: Cape (32/18/s to \(34 / \mathrm{I} 8 / \mathrm{i}\), s and \(34 / 23 / \mathrm{d}\) ); Natal (29/31/i).
Distribution: English Channcl (i).

(fig. I7.21.d-j)
Nereis Rudolphi Delle Chiaje 1825: 176.
Staurocephalus Rudolphi: Fauvel 1923: 446, fig. 178 a-p.


Body about 15 mm . long with 80 segments. Prostomium (fig. 17.21.f) broadly conical and depressed. Two pairs of cyes. A pair of long palps each with a well markcd terminal palpostyle; antennae slightly shorter with 6-I I joints. Mandibles (fig. \(17.21 . j\) ) with dentate cutting edges, the cxternal \(3-4\) teeth being easily detached. Maxillae (fig. \(77.2 \mathrm{I} . \mathrm{i}\) ) consist of four rows of small toothed plates. No dorsal cirrus on setiger 1. Each of the later dorsal cirri (fig. I7.21.e) has a long cirrophore with an internal aciculum and a cirrostylc only half its length. Setigerous lobc long with a conical presctal lip and a sliorter postsetal one. Superior setae include 3-4 fine, faintly serrated capillaries (fig. I7.2I.g) and I-2 forked setae (fig. I7.2I.d) with unequal prongs and serrated shafts. Inferior compound setae numerous with faintly serrated shafts and falcigcrous blades of varying length and bidentate tips guarded by tiny hoods.

Type locality: Naples.
Records: Cápe (33/18/s).) ? (scefumuario)
Distrıbution : English Channel (i) ; North Carolina (s) ; Madeira (i) ; Mediterranean (s). Argentina

Dorvillea rubrovittata (Grube, 1855)
(fig. I7.21.k-m)
Staurocephalus rubrovittatus Grube, 1855: 97; Fauvel, 1923: 445, fig. 177 a-1.
Body 15-30 mm. long with 40-50 segments. Prostomium (fig. I 7.2 r.k) almost spherical with four eyes of which the anterior pair arc the larger. Palps short; antennae shorter, with three to four joints in adults. Mandibles with dentate cutting margins. Maxillae with four rows of small toothed plates. No dorsal cirrus on setiger i. Later segments with dorsal cirri which have long cirrophores supported by internal acicula and very short cirrostyles (fig. I7.2I.l). Setigerous lobes long, bluntly conical with fairly long presetal and postsetal lips. Ventral cirri digitform. Superior setae (fig.
\(17.21 . \mathrm{m})\) simple with flattened blades dentate on one margin and truncatc cnds. Inferior sctae compound and falcigerous with bidentate tips.

Type locality: Adriatic.
Records: Not recorded from southern Africa.
Distribution : Mediterrancan ; tropical West Africa (São Thomé and Angola).
Dorvillea angolana (Augener, 1918) (fig. 17.21.n)
Stauronereis angolana Augener, 1918: 380, pl. 5 figs. 132-133, pl. 6 fig. 217, text-fig. 46.
Body pale, about 10 mm . long for 80 segments. Prostomium (fig. i 7.2 I .n) slightly broader than long with two pairs of eyes of which the antcrior pair are much larger and more lateral in position. Palps about as long as the prostomium is broad, cach with a short terminal palpostyle.

Antennae rather longer and more slender than the palps, cach with five to nine wcll marked joints. Mandibles with the cutting margin dentatc and the outer teeth detached. Maxillae consist of four rows of small toothed plates. No dorsal cirrus on setiger 1 . Later dorsal cirri twice as long as the setigcrous lobes. The cirrophore has an internal aciculum and is 1.5 times the length of the cirrostyle. The setigerous lobe has a broadly oval presctal lip and a longer, triangular postsctal one. Ventral cirrus shortcr than the sctigerous lobe. Superior sctac arc simplc capillaries with slightly flattened blades scrrated towards the tips. Forkcd setac absent. Inferior setae compound and falcigcrous with blades of varying length.

Type locality: Ambrizette, Angola.
Records: Not recorded from South Africa.
Distribution : Angola (i, s) ; Gulf of Guinea (s).

\section*{INDEX OF SCIENTIFIC NAMES IN PART i}

Family and sub-family names are printed in small capital letters, new names are printed in bold type, other valid namcs are printed in Roman type and names listed in synonymy are printed in Italic type. Only the principal referencc is usually given to each name.
aberrans, Loandalia, 220
aberrans, Lumbrincris, 439
abiuma, Paranereis, 301
acantholepis, Hermenia, 77
acantholepis, Polynoe, 77
Acholoe, \(5^{2}\)
- astericola, 52
- orbiculata, \(3^{6}\)
- squamosa, 52
acicularum, Marplysa, 378
aculcata, Aphrodita, 33
acuta, Lumbrincris, 439
adenensis, Marphysa, 399
aenea, Marphysa, 378
aequista, Antinoe, 66
aequiseta, Harmothoe, 66
aequiseta acquiscta, Harmothoe, 66
- africana, Harmothoe, 68
afer, Autolytus, 283
affinis, Pariospilus, 170
afra, Eunice, 392
afra afra, Eunice, 392
- paupera, Eunice, 393
- punctata, Eunice, 393
africana, Eunereis, 293
africana, Glycera, 352
africana, Glycera convoluta, 352
africana, Harmothoe, 68
africana, Harmothoe aequiseta, 68
africana, Phyllodoce, 137
africana, Pisionc, 133
agassizi, Rhamphobrachium, 418
agilis, Ophiodromus, 226
agilis, Podarke, 226
Aglaophamus, 34.1
- dibranchis, 341
- macroura, 343
- malmgreni, 343

Aglaura fulgida, 426
Aglaurides, 426
- eryhhracensis, 426
agnae, Polynoe, \(3^{8}\)
agnesiae, Goniadopsis, 368
agnesiae, Nereis, \(3{ }^{21}\)
agulhana, Harmothoe, 74
agulhana, Hipponoa gaudichaudi, 122
agulhana, Nereis, 318
alata, Plotohelmis, 193
alba, Glycera, 360
alba, Nereis, 360
albidentata, Lumbriconereis, 434
albidentata, Lumbrineris, 434
albifrons, Lumbriconereis, 435
albifrons, Lumbrineris, 427
albini, Synelmis, 215
albomaculatus, Corynocephalus, 177
albopicta, Eulalia, 137
Alciopa, 179
- cantrainii, 176
- lepidola, 179
- petersii, 192
- reynaudii, 180

AlCIOPIDAE, 172
Alciopina, 176
- parasitica, 177
alcyonarin, Eurythoe, 128
Alcyope candida, 188
Alentia, 44
- australis, 44

Alitta. 321
alleni, Halosydna, 88
Allmaniella, 42
—inhaca, 86
- marquesensis, 50

Alluandella, 279
- madagascariensis, 280
alta, Aphrodita, 35
Amblyosyllis, 257
- formosa, 259
- lineolata, 233
- rhombeata, 257
ambrizettana, Nephtys, 349
ambylodonta, Nereis, 333
amica, Syllis, 243
Amphiduros, 223
Amphinome, 122
- incarunculata, 120
- pallasi, 123
- rostrata, 123

AMPHINOMIDAE, 120
ampullifera, Harmothoe, 47
ampullifera, Polynoe, 47
ampulliferus, Lepidonotus, 47
ampulliferus, Paralepidonotus, 47
Anaitides, 143
Ancistrosyllis, 215
- constricta, 215
- grocnlandica, 215
- parva, 216
- rigida, 215
- robusta, 216
angelini, Callizona, 172
angelini, Krohnia, 190
angelini, Rhynchonerella, 190
angolaensis, Mystides, 141
angolana, Dorvillea, \(45^{8}\)
angolana, Stauronereis, 458
Anguillosyllis, 271
- capensis, 271
angustifrons, Irma, 224
angustifrons, Ophiodromus, 224
angustifrons, Podarke, 224
ankylochacta, Opisthosyllis, 252
ankyloseta, Laeoncreis, 303, 323
ankyloseta, Trypanosyllis, 255
anomala, Pseudonereis, 333
anops, Syllis, 243
antarctica, Leploccia, 412
antarctia, Paronuphis, 412
antarctica, Vanadis, 18 I
antennata, Eunice, \(3^{8} 4\)
antennata, Exogonoides, 279
antennata, Leodice, \(3^{84}\)
antilopis, Harmothoe, 66
Antinoe, 57
- aequiseta, 66
- epitoca, 57
- lactca, 58
- microps, 57
-waahli, 72

Aphrodita, 33
- aculeata, 33
- alta, 35
- clava, 79
- complanata, 128
- flava, 124
- minuta, 100
- rostrata, 123

Aphrodite cirrosa, 6I
Aphroditidae, 30
APHRODITINAE, 30
aphroditois, Eunice, 389
aphroditois, Nereis, 389
appendiculatus, Lopadorhynchus, 16 I
apsteini, Tomopteris, 199
Arabella, 444
- iricolor cacrulca, 447
- - iricolor, 446
- mutans, 446
- novecrinita, \(44^{6}\)

ARABELLIDAE, \(44^{2}\)
arabellinae, 442
Aracoda caerulea, 447
- capensis, 442
- multidentata, 443
arborifera, Dendronercis, 302
arenaceodonta, Nereis, 321
Arete capensis, 335
armata, Syllidia, 227
armillaris, Nereis, 249
armillaris, Syllis, 249
articulata, Psammolyce, 105
assimilis, Eunoc, 64
assimilis, Eurythoe, 120
assimilis, Eusyllis, 266
astericola, Acholoe, 52
Asterope candida, 188
atlantica, Lumbriconereis, \(44^{\circ}\)
atlantica, Lumbrineris heteropoda, \(44^{\circ}\)
atra, Lysidice, 378
attenuata, Polynoe, \(3^{8}\)
Augeneria, \(43^{\circ}\)
- tentaculata, \(43^{\circ}\)
aurantiaca, Proceraea, 283
aurantiacus, Autolytus, 283
australis, Alentia, 44
australis, Eunice, \(3^{85}\)
australis, Heteronereis, 305
australis, Hololepida, 44
australis, Notocirrus, 448
australis, Platynereis, 305
Australonereis, 297
Austrolaenilla, 42
AUTOLYTINAE, 237

Autolytus, 281
—afer, 283
- aurantiacus, 283
- bondei, 285
- charcoti, 283
- inermis, 233
- maclearnus, 284
- pictus, 284
- prolifer, 284
- tuberculatus, 28 I

Barrukia, 42
benguellana, Glyccra, \(35^{8}\)
benguellana, Glycera capilata, \(35^{8}\)
bengucllana, Syllis, 249
bengucllarum, Sphaerodoridium, 289
benguellarum, Sphaerodorum, 289
benthaliana, Laetmonice, 33
benthaliana, Laetmonice producta, 33
berrisfordi, Ophiodromus, 224
Bhawania, 117
- cryplocephala, 118
- goodei, 118
- myrialepis, 118
biarticulata, Protodorvillea, 452
bidentata, Mystides, 143
bifilaris, Lumbrineris, 43 I
bifurcata, Marphysa, 397
bilincata, Eulalia, I54
bilineata, Hypoeulalia, I 54
bilineata, Phyllodoce, 154
bipes, Rhamphobrachium, 418
blomstrandi, Eusyllis, 266
boa, Sigalion, 109
boa, Sthenelais, Iog
bondei, Autolytus, 285
borealis, Mystides, I \(^{1}\)
bouvieri, Syllis, 246
brachychaeta, Syllis, 249
Brania, 267
- furcelligcra, 269
- pusilla, 267
- rhopalophora, 269
brevicirra, Lumbrineris, 435
brevicirrus, Lumbriconereis, 435
brevicirrus, Nolocirrus, 435
brevis, Lopadorhynchus, 162
brunnea, Lepidasthenia, 92
brunnea, Nercis indica, 320
brunnea, Opisthosyllis, 253
caeca, Maupasia, 164
caerulca, Arabella iricolor, 447
caerulea, Aracoda, 447
callaoana, Nereis, 292
Callizona angelini, 172
- möbii, 189
- moebii, 189
- nasula, 189
- setosa, 192

Callizonella lepidola, 179
calodonla, Platynereis, 306
candida, Alcyope, 188
candida, Aslcrope, 188
candida, Chlocia, 120
candida, Torrca, 188
canlrainit, Alciopa, 176
cantrainii, Naiades, 176
capensc, Rhamphobrachium, 418
capense, Sigalion, 103
capense, Sphaerodoridium, 289
capense, Sphacrodorum, 289
capensis, Anguillosyllis, 271
capensis Aracoda, 442
capensis, Arete, 335
capensis, Diopatra neapolitana, 413
capensis, Drilognathus, 444
capensis, Eriphyle, 377
capenis, Eulalia, 154
capenis, Eulalia viridis, 154
capensis, Eunice, 400
capensis, Eunoe, 38
capensis, Euphrosine, 127
capensis, Eurythoe, 120
capensis, Glyccra convoluta, 359
capensis, Glycinde, 371
capensis, Gyptis, 231
capensis, Loandalia, 220
capensis, Lumbrineris, 432
capensis, Lumbrineris, 427
capensis, Lysidice, 402
capensis, Maclovia iricolor, 443
capensis, Magalia, 227
capensis, Marphysa, 400
capensis, Micronereides, 298
capensis, Nephtys, 344
capensis, Nereir, 320
capensis, Notocirrus, 443
capensis, Oxydromus, 231
capensis, Panthalis oerstcdi, 97
capensis, Parahalosydna, 86
capensis, Parmensis, 66
capensis, Perinereis, 335
capensis, Phyllodoce, 148
capensis, Polynoe, 86
capensis, Protomystides, 143
capensis, Spermocyllis, 270
capensis, Sphacrosyllis, 276
capensis, Sphaerosyllis hysirix, 276
capensis, Syllidia, 227
capensis, Syllis, 235
capensis, Travisiopsis, 207
capitata, Glycera, 355
capitata benguellana, Glycera, \(35^{8}\)
capitata, Plotohelmis, 195
capitata, Rhynchonerella, 195
caputleonis, Polynoe, \(3^{8}\)
carinulata Polynoe, 8 ı
carinulatus, L.cpidonotus, 8i
Carobia castanea, 149
carpenteri, Tomopteris, 204
Caslalia claparedii, 230
castanea, Carobia, 149
caslanea, Genetyllis, 149
castanea, Phyllodoce, 149
caudata, Nereis, 321
cavalli, Tomopteris, 206
cavalli, Tomopleris, 204
cauifrons, Lumbriconereis, 438
cavifrons, Lumbrineris, \(43^{8}\)
cavifrons, Lumbrineris, 427
celox, Grceffa, 180
Cenothrix mutans, 446
ceramensis, Scalisetosus, 58
Ceratocephale, 297
Ccratonereis, 324
- costae, 325
- ehlersiana, 291
- erythracensis, 327
- falcaria, 309
- hircinicola, 327
- keiskama, 327
- mirabilis, 324
- pachychacta, 325

Chactacanthus, 43
charcoti, Autolytus, 283
chilcnsis, Eurythoe, 130
chilensis, Ninoe, 430
chilensis, Notocirrus, \(44^{8}\)
chilensis, Paraeurythoe, 130
chinensis, Leocrates, 230
Chloeia, 123
- candida, 120
- flava, 124
- fusca, 124
- gilchristi, 120
- inermis, 123
- nalalensis, 120
chrysocoma, Hermione, 35
chrysocoma, Pontogenia, 35
chrysolcpis, Paleanotus, 116
CHRYSOPETALIDAE, II5

Chyysopetalum, 116
- debile, 1:7
- ehlersi, 117
chuni, Rhamphobrachium, 420
ciliata, Nereis, 340
cincta, Eunicc, 382
cincta, Nicidion, 382
cirrata, Glycera, 359
cirrata, Kefcrsteinia, 228
cirrata, Psamathe, 228
cirrobranchiata, Eunice, 377
cirropunctata, Syllis, 250
cirrosa, Aphrodite, 61
cirrosa, Larymna, 425
Cirrosyllis picta, 233
- iuberculata, 281
claparedii, Castalia, 230
claparedii, Leocrates, 230
claparedii, Sphacrodorum, 289
clava, Aphrodita, 79
clava, Lepidonotus, 80
clava, Lepidonolus, 37
clava, Lejidonolus semitecta, 85
clavator, Exogone, 272
clavigera, Gastrolepidia, 51
closterobranchia, Syllis, 234
coccinea, Eunice, 389
coccinea, Lumbriconereis, 436
coccinca, Lumbrincris, 436
coccinea, Nercis, 436
collaris, Lysidice, 402
comans, Lamellisyllis, 257
communis, Scaliselosus, 38
compacta, Pionosyllis, 261
complanata, Aphrodila, 128
complanata, Eurythoe, 128
conchylega, Nothria, 425
conchylega, Onuphis, 425
congocnsis, Goniada, 365
coniceps, Plotobia, 210
coniccps, Travisiopsis, 210
constricta, Ancistrosyllis, 215
convoluta, Glycera, 360
- africana, Glycera, 352
- capenis, Glycera, 359
corallina, Marphysa, 400
corallina, Nauphanla, 400
cornuta, Sagitella, 212
cornuta, Syllis, 244
corralophila, Harmothoc, 72
Corynocephalus albomaculaius, 177
- lenuis, 193
costae, Ceratonereis, 325
costae, Nereis, 325
couticrei, Nereis, 3 II
crassicornis, Syllis, 234
crinita, Notopygos, 130
cristata, Polynoe, 82
cristatus, Lepidonotus, 82
crosetensis, Harmothoe, 36
cryplocephala, Bhawania, I 18
crystallina, Vanadis, 182
- inornata, Vanadis, 182
ctenostoma, Odontosyllis, 26 1
ctenostoma, Odontosyllis, 260
cultrifera, Nereis, 337
cultrifera, Perinercis, 337
cultrifera hcllcri, Perinereis, 292
culveri, Nereis, 303
cuprea, Nereis, 417
cuprea cuprca, Diopatra, \(4^{17}\)
- punctifera, Diopatra, 418
curtum, Pendinosoma, 158
debile, Chrysopetalum, 117
debilis, Lumbrineris, \(43^{2}\)
debilis, Lumbrineris, 427
debilis, Paleanotus, 117
debilis, Palnyra, 117
decipiens, Leonnates, \(33^{\circ}\)
dendrolepis, Sthenelais, 98
dendrolepis, Thalencssa, 107
Dendroncreides, 302
- hcteropoda, 302
- zululandica, 302

Dendronereis, 301
- arborifera, 302
dentata, Diopatra, 405
depressa, Eunice, 378, 395
depressa, Marphysa, 395
dibranchis, Aglaophamus, 341
dibranchis, Nephtys, 341
dictyophora, Harmothoc, 65
dictyophorus, Polynoe, 65
difficilis, Lumbrineris heteropoda, \(44^{\circ}\)
Diopatra, 412
- cuprea cuprea, 417
- punctifera, 418
- dentata, 405
- dubia, 415
- holobranchiala, 405
- monroi, 415
- musscracnsis, 417
- neapolitana capensis, 413
- ncapolitana, \(4^{1} 3\)
- punctifera, 418
- viridis, 405
diversicolor, Nereis, 317
diversidenlala, Perinereis, 293
diversosetosum, Rhamphobrachium, 418
djiboutiensis, Syllis, 235
dorsipapillata, Pholoe, ioo
Dorvillea, 454
- angolana, \(45^{8}\)
- gardincri, 455
- neglecta, 455
- rubrovittata, 457
- rudolphi, 457

Dorvilleinae, 450
Drieschia, 75
- pclagica, 75

Drilognathus, 444
- capensis, 444

Drilonereis, 447
-falcata, 447
- monroi, \(44^{8}\)
dubeni, Lumbrineris, 427
dubia, Diopatra, 4I5
dubia, Travisiopsis, 212
duccii, Tomopteris, 201
dumerilii, Nereis, 306
dumerilii, Platynereis, 306
dunckeri, Tomopteris, 201
durbanensis, Lcpidonotus, 85
durbanensis, Marphysa, 373
Dysponetus, i I6
edwardsi, Glycera, 359
cdwardsi, Sigalion, 107
cgena, Protodorvillea, 454
egena, Stauronereis, 454
ehlersi, Chrysopetalum, II 7
chlersi, Euleanira, 101
Ehlersia, 243, 244
- ferrugina, 244
chlersiacformis, Pionosyllis, 263
ehlersiaeformis, Pionosyllis, 264
chlersiana, Ceratonereis, 29 :
clegans, Lepidasthenia, 90
elegans, Polynoe, 90
elegans, 'Tomopteris, 205
elisabethae, Euphione, 77
emcrita, Goniada, 365
Enapteris, 197
- euchaeta, 202

Enipio rhombigera, 54
Eone gracilis, 368
Ephesia gracilis, 288
Epidiopatra, 408
- gilchristi, 409
- hupferiana, 409
- - hupferiana, 409
——monroi, 4 II
- papillosa, 408
epitoca, Antinoe, 57
eremita, Onuphis, 422
erinaceus, Sphacrosyllis, 277
Eriphyle capensis, 377
erythraeensis, Aglaurides, 426
erythraeensis, Ceratoncrcis, 327
erythrotaenia, Hemilepidia, 55
erythrotaenia, Polynoe, 55
Eteone, 139
- foliosa, 141
- ornata, 140
- siphonodonta, 140
- spetsbergensis, \(13^{6}\)
- syphonodonta, 140
- sp., 141

Eteonides, 139
Eucarunculata grubei, 120
euchaeta, Enapteris, 202
cuchacta, Tomopteris, 202
eugeniae, Nereis, 312
eugeniae, Nicon, 312
Eulalia, \({ }^{151}\)
—albopicta, 137
- bilineata, I 54
- capensis, 154
- falsa, I 55
- macroceros, 152
- microcephala, 152
- sanguinea, I55
- trilineata, 152
- viridis, \({ }_{1} 3^{6}\)
- - capensis, I54

Euleanira, IOI
- ehlersi, 10 I

Eulepis geayi, 45
Eulepis hamifera, 45
Eumida, 155
- sanguinea, I55

Eunereis, 323
- africana, 293
- hardyi, 323

Eunice, \(3^{80}\)
- afra, \(39^{2}\)
- - afra, \(39^{2}\)
- - paupera, 393
- - punctata, 393
- antennata, \(3^{84}\)
- aphroditois, 389
- australis, \(3^{88}\)
- capensis, 400
- cincta, \(3^{82}\)
- cirrobranchiata, 377
- coccinea, 389
- depressa, 378, 395
- filamentosa, 392
- flamentosa, 377
- foridana, 388
- grubei, 39 I
- indica, \(3^{86}\)
- kinbergi, 377
- macrobranchia, 377
- mossambica, 395
- murrayi, 385
- norvegica, 388
- paupera, 393
- pennata, 388
- punctata, 393
- rousscaui, 389
- savignyi, 378
- schemaccphala, 384
- siciliensis, \(3^{82}\)
- tentaculata, 39I
- torquata, \(3^{89}\)
- tubifex, \(3^{86}\)
- vittata, \(3^{8} 5\)

EUNCIDAE, 374
eunicinae, 377
Eunoe, 61
— assimilis, 64
- capensis, \(3^{8}\)
- hubrechti, 62
- macrophthalma, 64
- nodulosa, 62

Eupanthalis, 94
- kinbergi, 94
- tubifex, 93

Euphione, 76
- elisabethae, 77
- tenuisetosa, 82

Euphrosine, 126
- capensis, 127
- myrtosa, 127
- polybranchia, 120

Eurysyllis, 238
Eurythoe, 127
- alcyonaria, 128
- assimilis, 120
- capensis, 120
- chilensis, 130
- complanata, 128
- matthaii, 128
- parvecarunculata, 128

EUSYlLinae, 237
Eusyllis, 264
— assimilis, 266
— blomstrandi, 266
- monilicornis, 233
- setabulensis, 235

Euthalenessa insignis, 107
Evarne hubrechti, 62
exilis, Syllis, 250, 253
eximia, Goniada, 372
eximia, Ophioglycera, 372
Exogone pusilla, 267
Exogone, 271
- clavator, 272
- gemmifera, 274
- heterochaela, 233
- heterosetosa, 274
- naidina, 271
- normalis, 275
- verugera, 272

EXOGONINAE, 237
Exogonoides, 279
- antennata, 279
extenuala, Lagisca, \(3^{6}\)
falcaria, Ceratonereis, 309
falcaria, Nercis, 309
falcata, Drilonereis, 447
falcata, Pilargis, 218
falsa, Eulalia, 155
falsa, Nereis, 317
falsovariegata, Perinereis, 335
Fauveliella pulchra, 132
ferrugina, Ehlersia, 244
ferrugina, Syllis, 244
ferruginea, Syllis, 244
filamentosa, Eunicc, 392
filamentosa, Eunice, 377
filicornis, Laetmonice, 32
filicornis, Laetmonice, 30
filum, Lumbriconereis, 447
flava, Aphrodita, 124
flava, Chlocia, 124
flava, Nereis, 139
flava, Psammolyce, 105
flexuosa, Nereis, 223
floridana, Eunice, 388
floridana, Lumbrineris, 427
foliosa, Etcone, 141
foliosa, Phyllodoce, 151
foliosum, Notophyllum, 151
formosa, Amblyosyllis, 259
formosa, Pterosyllis, 259
formosa, Vanadis, 18!
fragile, Hermadion, 59
fragilis, Lumbricus, \(43^{1}\)
fragilis, Scalisetosus, 59
fraserthomsoni, Harmothoe, 74
fristcdti, Phyllodoce, 147
fulgens, Rhynchonerella, 195
fulgida, Aglaura, 426
fulgida, Oenone, 426
fulgurans, Syllis, 260
furcelligera, Brania, 269
furcelligera, Grubea, 269
fusca, Chlocia, 124
fuscapunctata, Vanadis, 184
fusicornis, Syllis, 235
fusifera, Nereis, 323
gallapagensis, Pseudonereis, 331
gardineri, Dorvillea, 455
gardineri, Staurocephalus, 455
Gastrolepidia, 51
- clavigera, 5 I

Gattyana, 6i
- mossambica, 61
gaudichaudi, Hipponoa, 122
gaudichaudi agulhana, Hipponoa, 122
- gaudichaudi, Hipponoa, 122
geayi, Eulepis, 45
geayi, Pareulepis, 45
gelatinosa, Polynoe, 44
gemmifcra, Exogone, 274
gemmpiara, Trypanosyllis, 256
gemmulifera, Trypanosyllis, 256
genella, Hesione, 221
Genctyllis, 149
- castanea, 149
geophiliformis, Nothria, 424
geophiliformis, Onuphis, 424
gibba, Odontosyllis, 261
gigantea, Glycera, 362
gigantea, Ophioglycera, 372
gilchrisit, Chloeia, 120
gilchristi, Epidiopatra, 409
gilchristi, Harmothoe, 68
gilchristi, Nereis, 315
glandulosa, Nereis, 321
glauca, Polynoe, 84
glaucus, Lepidonotus, 84
Glycera, 355
- africana, 352
- alba, 360
-benguellana, 358
- capitata, 355
——benguellana, \(35^{8}\)
- cirrala, 359
- convoluta, 360
- - africana, 352
- capensis, 359
- edwardsi, 359
- gigantea, 362
- goesi, \(35^{2}\)
- kraussi, \(35^{2}\)
- lancadivae, 359
- longipinnis, 356
- natalensis, 356
- papillosa, \(35^{8}\)
- parashadi, 359
- prashadi, 359
- rouxi, \(3^{62}\)
- subaenea, 363
- tesselata, 359
- Iridactyla, 352
- unicornis, 362

Glyceridae, \(35^{2}\)
Glycinde, 371
- capensis, 371
- kamcruniana, 371
- maskallensis, 369
- multidens, 371
goesi, Glycera, 352
Goniada, 363
- congoensis, 365
- emerita, 365
- eximia, 372
- maculata, 367

Goniadella, 367
- gracilis, 368

GONIADIDAE, 352
Goniadopsis, 368
- agnesiae, 368
- inccrta, 369
- maskallensis, 369
goodei, Bhawania, 118
goreensis, Harmothoe, 69
Gorekia, 42
gracile, Sphacrodorum, 288
gracilis, Eone, 368
gracilis, Ephesia, 288
gracilis, Goniadella, 368
gracilis, Haliplanes, 164
gracilis, Maupasia, 164
gracilis, Onuphis, 412
gracilis, Rhynchonerella, 189
gracilis, Syllis, 241
granulata, Nereis, 309
gravelyi, Odontosyllis, 260
Greeffia celox, 180
- oalutensis, 172
groenlandica, Ancistrosyllis, 215
Grubea, 267
- furcelligera, 269
- pusilla, 267
- rhopalophora, 269
grubei, Eucarunculata, 120
grubei, Eunice, 391
Gyptis, 230
- capensis, 231
- propinqua, 231
- sp., 232
haemasoma, Marphysa, 378
haemasoma, Marphysa saguinea, 378
Haliplanes gracilis, 164
- magna, 164

Halithea hystrix, 32
Halla, 426
Halosydna, 88
- alleni, 88
- patagonica, 88

Halosydnella, 88
hamifera, Eulepis, 45
Haplosyllis, \(24^{\circ}\)
hardyi, Eunereis, 323
Harmopsides, 42
Harmothoe, 64
- aequiseta, 66
- - acquiseta, 66
- - africana, 68
- africana, 68
- agulhana, 74
- ampullifera, 47
- antilopis, 66
- corralophila, 72
- croselensis, 36
- dictyophora, 65
- fraserthomsoni, 74
- gilchristi, 68
- gorecnsis, 69
- lagiscoides serrata, 69
- lunulata, 71
- profunda, 75
- saldanha, 71
- spinosa, 64
- waahli, 72
- sp., 37
hartmani, Lumbriconercis, 440
hartmani, Lumbrineris, \(44^{\circ}\)
helenae, Sthenelais, 108
helgolandica, Tomopteris, 99
helleri, Perinereis cultrifera, 292
Hemilepidia erythrotaenia, 55
- Iuberculata, 38

Hemipodus, 355
henseni, Lopadorhynchus, 16 I
henseni, Reibischia, 161
Hermadion fragile, 59
Hermenia, 77
- acantholepis, 77
- vcrruculosa, 77

Hermione chrysocoma, 35
- hystrix, 30

HERMIONINAE, 30
Hermodice, 122
- striata, 131

Hermonia, 31
- hystrix, 32

Hesione, 227
- genelta, 221
- pantherina, 228
- splendida, 228

HeSIonidae, 221
heterochaela, Exogone, 233
Heteronereis australis, 305
Heteropale, In6
heteropoda, Dendronereides, 302
heteropoda, Lumbriconereis, 440
heteropoda allantica, Lumbrineris, \(44^{\circ}\)
- difficilis, Lumbrineris, 440
- heteropoda, Lumbrineris, 440
heterosetosa, Exogone, 274
hewilti, Platynereis, 306
Hipponoa, 122
- gaudichaudi, 122
- agulhana, 122
- gaudichaudi, 122
hircinicola, Ceratonereis, 327
hircinicola, Nereis, 327
holobranchiata, Diopaira, 405
holobranchiata, Onuphis, 424
Hololepida, 44
- australis, 44

Hololepidella nigropunctata, 54
hombergi, Nephtys, 344
horsti, Perinereis, 334
hupferi, Lepidonolus, 37
hupferiana, Epidiopalra, 409
hupferiania hupferiana, Epidiopatra, 409
- monroí, Epidiopatra, 4 II
hubrechti, Eunoe, 62
hubrechti, Evarne, 62
hubrechli, Lagisca, 62
hyalina, Syllis, 246
Hyalinoecia, 4 II
- tubicola, 4 II
- sp., 405

Hydrophanes krohni, 159
Hyperhalosydna, 88
Hypoculalia, 154
- bilineata, 154
hystricis, Leanira, 112
hystricis, Nephtys, 345
hystrix, Halithea, 32
hystrix, Hermione, 30
hystrix, Hermonia, 32
hystrix, Sphaerosyllis, 275
hystrix capensis, Sphaerosyllis, 276
impatiens, Lumbriconereis, 439
impatiens, Lumbrineris, 427
incarunculata, Amphinome, 120
incerta, Goniadopsis, 369
incisa, Leanira, 113
incisa, Sthenelais, I 13
incisa, Sthenolepis, II3
indica, Eunice, 386
indica, Lagisca, 48
indica, Lycastis, 301
indica, Namalycastis, 301
indica brunnea, Nereis, 320
indica, Pisionella, I33
indica, Pisionidens, 133
indicus, Leonnates, 328
indicus, Paralepidonotus, 48
inermis, Chlocia, 123
intermis, Autolytus, 233
inflata, Lumbriconereis, 435
inflata, Lumbrineris, 435
ingens, Trppanosyllis, 235
inhaca, Allmaniella, 86
inhaca, Polynoe, 86
inhaca, Pscudopolynoe, 86
inomata, Pholoe minuta, 97
inornata, Vanadis crystallina, 182
insignis, Euthalenessa, 107
rospilidae, 168
Iospilus, 168
- phalacroides, 170

Iphione, 43
- muricata, 43
- ovata, 43
- spinosa, 37

Iphitime, 426
iricolor cacrulea, Arabella, 447
— iricolor, Arabella, 446
iricolor capensis, Maclovia, 443
iricolor, Nereis, 446
Irma angustifrons, 224
Irmula, 266
- spissipes, 267
isochaeta, Maupasia, 164
isolita, Platyncreis, 307
jacksoni, Lepidonotus, 8 o
jacksoni, Nereis, 3 II
japonica, Leanira, II2
japonica, Sthenolepis, II2
Johnstonella, 198
jousseaumei, Leonnates, 330
jukesii, Lepidonotus, 80
jukesii, Thormora, 80
kameruniana, Glycinde, 371
kauderni, Nereis, 309
kefersteini, Staurocephalus, 452
Kefersteinia, 228
- cirrata, 228
kefersteinii, Tomopteris, 205
keiskama, Ceratonereis, 327
kempi, Tomopteris, 202
kerguelensis, Nereis, 309
kerguelensis, Nereis, 318
kinbergi, Eunice, 377
kinbergi, Eupanthalis, 94
krampi, Tomopteris, 204
kraussi, Glycera, \(35^{2}\)
krohni, Hydrophanes, 159
krohni, Lopadorhynchus, 159
krohni simplex, Lopadorhynchus, 156
krohni, Syllis, 234
krohni, Trypanosyllis, 253
Krohnia, 177
- angelini, 190
- lepidota, 179
kowalewskii, Sagitella, 209
Labidognathus, 443
lactea, Antinoe, 58
Lacydonia, 350
Lacydonidae, \(35^{\circ}\)
Laeonereis, 303
- ankyloseta, 303, 323

Laetmonice, 32
-benthaliana, 33
- filicornis, 32
- filicornis, \(3^{\circ}\)
- producta, 32
- producta, 33
- Denthaliana, 33
- wyvillei, 33
- wyvillei, 3 I
laevis, Leptonereis, 305
laevis, Opisthosyllis, 253
laevis, Polyeunoa, 54
Lagisca, 72
Lagisca, 64
- extenuata, 36
- hubrechti, 62
- indica, 48
lagiscoides serrata, Harmothoe, 69
lagosiana, Ninoe, \(43^{1}\)
Lamellisyllis, 257
- comans, 257
lamellosa, Nereis, 314
laminosa, Phyllodoce, 143
lancadivac, Glycera, 359
lanceolata, Travisiopsis, 212
Langerhansia, 243
langi, Leodice, 378
Larymna cirrosa, \(42 \bar{\jmath}\)
latipalpa, Mastigonereis, 29 I
latipalpa typica, Neanthes, 292
latipalpa, Nereis, 292
latreilli, Lumbriconereis, 438
latreilli, Lumbrineris, \(43^{8}\)
Leanira, III
—hystricis, 112
- incisa, \({ }^{113}\)
- japonica, 112
- quatrefagesi, III
- tetragona, 113

Leocrates, 230
- chinensis, 230
- claparedii, 230

Leodice antennala, 384
- langi, \(37^{8}\)

Leonnates, 328
- decipiens, 330
- indicus, 328
- jousseaumei, 330
- persica, 328

Lepidametria, 88
Lepidasthenia, 88
- brunnea, 92
- elegans, 90
- maculata, 92
- microlepis, 90
- mossambica, 89
- sp., 37

Lepidastheniella, 88
Lepidonota semitecta, 85
Lepidonotus, 79
- ampulliferus, 47
- carinulatus, 81
- clava, 80
- clava, 37
—— semitecta, 85
- cristatus, 82
- durbanensis, 85
- glaucus, 84
- hupferi, 37
— jacksoni, 80
- jukesii, 8o
- magnatuberculatus, 8 r
- natalensis, 82
-platycirrus, 84
- purpureus, 84
- semicinctus, 37
- semitectus, 85
- tenuisetosus, 82
- trissochaetus, 37
- wahlbergi, 85
lepidota, Alciopa, 179
lepidola, Callizonella, 179
lepidota, Krolınia, i 79
Leploecia, 412
- antarctica, 412

Leptonercis, 305
- laevis, 305
leucopterum, Macrophyllum, 137
levenseni, Travisiopsis, 213
ligulata, Tomoptcris, 204
limicola, Sigalion, in I
limicola, Sthenclais, II I
lineata, Syllis, 234
lineolata, Amblyosyllis, 233
Loandalia, 2 I9
- akerrans, 220
- capensis, 220
lobata, Pherecardia, 131
lobifera, Sagitella, 2 Io
lobifcra, Travisiopsis, 213
longicirra, Polynoe, 58
longicirrata, Pclagobia, 163
longicirrus, Scalisetosus, \(5^{8}\)
longipes, Phyllodoce, 144
longipinnis, Glyccra, 356
longissima, Nercis, 323
longissima, Rhynchonerella, 186
longissima, Syllis, 243
longissima, Vanadis, 186
longocirrata, Pionosyllis, 264
longocirrata, Syllides, 259
longocirrata, Syllis, 259
LOPADORIIYNCIINAE, 156
Lopadorhynchus, 158
- appendiculatus, 161
- brevis, 162
- henseni, 16 i
- krohni, I59
- - simplex, \({ }_{15} 6\)
- nationalis, 162
- uncinatus, 159
lucida, Oenone, 426
lucipeta, Nereis, 292
Lumbriconereis albidentala, 434
- albifrons, 435
- allantica, \(44^{\circ}\)
- brevicirrus, 435
- cavifrons, 438
- coccinea, 436
- filum, 447
- hartmani, 440
- heleropoda, \(44^{\circ}\)
- impaliens, 439
- inflata, 435
- latreilli, 438
- meteorana, 434
- oculata, 436
- papillifera, 442
- tetraurus, 439
- unicornis, 403

Lumbricus fragilis, 431
- syphodonta, 140

Lumbrinerinae, 426
Lumbrineris, 431
- aberrans, 439
— acuta, 439
- albidentata, 434
- sonalbifr, 427
- bifilaris, \(43{ }^{1}\)
- brevicirra, 435
- capensis, 432
- capensis, 427
- cavifrons, \(43^{8}\)
- cavifrons, 427
- coccinea, 436
- debilis, 432
- debilis, 427
- dubeni, 427
- floridana, 427
- hartmani, \(44^{\circ}\)
- heteropoda atlantica, 440
- - difficilis, \(44^{\circ}\)
- - heteropoda, 440
- impatiens, 427
- inflata, 435
- latreilli, \(43^{8}\)
- magalhaensis, 432
- metcorana, 434
- nardonis, 427
- oculata, 436
- papillifera, 442
- pelligrewi, 427
- tctraura, 439
- tetraura, 427
lunulata, Harmothoe, 71
lunulata, Polynoe, 71
Lycastis indica, 301
- quadraliceps, 299

Lycoris, 312
lyrochaeta, Nephtys, 341

LySARETINAE, 425
Lysidice, 400
- atra, 378
- capensis, 402
- collaris, 402
- natalensis, 402
- ninetta, 403

Macellicephala, 44
- mirabilis, 45
maegregori, Unanereis, 299
macintoshi, Marphysa, 396
maclearnus, Autolytus, 284
Maclovia iricolor capensis, 443
macrobranchia, Eunice, 377
macroceros, Eulalia, 152
macroceros, Phyllodoce, 152
macroceros, Sige, 152
macrophthalma, Eunoe, 64
macrophthalma, Phyllodoce, 149
Macrophyllum leucopterum, 137
- splendens, 151
macroura, Aglaophamus, 343
macroura, Ncphtys, 343
maculata, Goniada, 367
maculata, Lepidasthenia, 92
madagascariensis, Alluandella, 280
madeirensis, Phyllodoce, 145
magalhaensi, Steggoa, 136
magalhaensis, Lumbrineris, 432
magalhaersis, Platynereis, 305
Magalia, capensis, 227
- perarmala, 227
magna, Haliplanes, 16.4
magnatuberculatus, Lepidonotus, 81
magnidcns, Pionosyllis, 263
majorii, Perinereis, 337
majungaensis, Perinereis nuntia, 292
Malmgrenia, \(4^{8}\)
- marquesensis, 50
- purpurea, 50
- whiteavesi, 48
malmagreni, Aglaophamos, 343
malmgreni, Nephtys, 343
malmgreni, Phyllodoce, 147
malmgreni, Pionosyllis, 264
Marphysa, 393
- acicularum, 378
- adenensis, 399
- aenea, 378
- bifurcata, 397
- eapensis, 400
- corallina, 400
- depressa, 395
- durbanensis, 378
- haemasoma, 378
- macintoshi, 396
- mossambica, 395
- posterobranchia, 399
- purcellana, 397
- sanguinea, 396
- - haemasoma, 378
- simplex, 378
- sp., 378
marquesensis, Allmaniella, 50
marquesensis, Malmgrenia, 50
maskallensis, Glycinde, 369
maskallensis, Goniadopsis, 369
Mastigonereis, 331
- latipalpa, 291
- operla, 291
- quadridentata, 293
- striata, 293
mathildae, Sigalion, 103
matthaii, Eurythoe, 128
Maupasia, 164
- caeca, 164
- gracilis, 16.4
— isochaeta, 164
maxillosa, Phyllodoce, 95
melanonolus, Panthalis, 96
melanonotus, Polyodontes, 96
mendax, Nereis, 293
mendax, Perinereis, 293
meteorana, Lumbriconereis, 434
meteorana, Lumbrineris, 434
microcephala, Eulalia, I52
microcephala, Pseudeurythoc, 126
microlepis, Lcpidasthenia, 90
Micronephthys, 347, 349
Micronereides, 298
- capensis, 298

Micronereis, 297
Microphthalmus, 223
microps, Antinoe, 57
minula, Aphrodita, 100
minuta, Pholoe, 100
minuta inornata, Pholoe, 97
minuta, Vanadis, 18 f
minuta, Vanadis, 184
mirabilis, Ceratoncreis, 324
mirabilis, Maccllicephala, 45
mirabilis, Polynoe, 45
misakiensis, Trypanosyllis, 256
móbii, Callizona, 189
möbii, Rhynchonerella, 189
moebii, Callizona, 189
moebii, Rhynchonerella, 189
monilaris, Syllis, 239
monilicornis, Eusyllis, 233
monroi, Diopatra, 415
monroi, Drilonereis, 448
monroi, Epidiopatra hupferiana, 4 II
mossambica, Eunice, 395
mossambica, Gattyana, 61
mossambica, Lepidasthenia, 89
mossambica, Marphysa, 395
mossambica, Nereis, 318
muelleri, Typhloscolex, 208
multidens, Glycinde, 371
multidentata, Aracoda, 443
muricata, Iphione, 43
muricata, Polynoe, 43
murrayi, Eunice, \(3^{85}\)
musseraensis, Diopatra, 417
mutans, Arabella, 446
mutans, Cenothrix, 446
myrialcpis, Bhawania, It 8
Myrianida, 285
- phyllocera, 287
- pulchella, 287
myrtosa, Euphrosine, 127
Mysta, 140
- siphonodonta, 140

Mystides, \(1^{11}\)
- angolaensis, \(4^{1}\)
- bidentata, 143
- borealis, 141

Naiades, \(\boldsymbol{1}_{7} 6\)
- cantrainii, 176
naidina, Exogone, 271
Namalycastis, 301
- indica, 301

Namanereis, 299
- quadraticeps, 299
nardonis, Lambrineris, 427
nasula, Callizona, 189
natalensis, Chloeia, 120
natalensis, Glycera, \(35^{6}\)
natalensis, Lepidonolus, 82
natalensis, Lysidice, 402
natalensis, Pharyngeovalvata, 239
nationalis, Lopadorhynchos, 162
nationalis, Tomopteris, 198
Nanphanta corallina, 400
Neanthcs, 317-323
- latipalpa typica, 292
neapolitana capensis, Diopatra, \(4^{1} 3\)
- neapolitana, Diopatra, 413
neglccta, Dorvillea, 455
neglectus, Staurocephalus, 455
nematodes, Procerastea, 280
Nematonereis, 403
- unicornis, 403
- sp., 378

Nephthys, 341-349
NEPHTYIDAE, \(33^{8}\)
Nephtys, \(34^{\circ}\)
- ambrizettana, 349
- capensis, 344
- dibranchis, \(34^{1}\)
- hombergi, 344
- hystricis, 345
- lyrochacta, 341
- macroura, 343
- malmgreni, 343
- paradoxa, 347
- sphaerocirrata, 347
- tulearensis, 345
nereidae, 291
Nereilepas, variegata, 331
Nereis, 307
- agnesiac, 32 I
- agulhana, 318
- alba, 360
- ambylodonta, 333
- aphroditois, \(3^{89}\)
- arenaceodonta, 32 I
- armillaris, 249
- callaouna, 292
- capensis, 320
- caudata, 321
- ciliata, \(34^{\circ}\)
- coccinea, 436
- coslar, 325
- coutierei, 3 II
- cultrifera, 337
- culveri, 303
- cuprea, 417
- diversicolor, 317
- dumerilii, 306
- eugeniae, 312
-falcaria, 309
-falsa, 317
- flava, 139
- flexuosa, 223
- fusifera, 323
- gilchristi, 315
- glandulosa, 321
- granulata, 309
- hircinicola, 327
- indica brunnea, 320
- iricolor, 446
- jacksoni, \(3^{\text {tI }}\)
- kauderni, 309
- kerguelensis, 309
- Kerguelensis, 318
- lamellosa, 314
- latipalpa, 292
- longissima, 323
- lucipeta, 292
- mendax, 293
- mossambica, 318
- nigropunctata, 337
- norvegica, 388
- operta, 323
- papillosa, 317
- pelagica, \(3^{15}\)
- pennala, 388
- persica, 314
- pinnigera, 285
- podocirra, 293
- polyodonta, 323
- prolifera, 284
- rudolphi, 457
- sanguinea, 396
- splendida, 292
- squamosa, 52
- stimpsonis, 293
- succinea, 321
- tongatabuensis, 293
- trifasciata, 312
- tubicola, 411
- unifasciata, 318
- unifasciala, 312
- vallata, 334
- vancaurica, 334
- variegata, 33 I
- viridis, 151
- vittata, 385
- willeyi, 320
- zonata persica, \(3^{14}\)
- sp., 315

Nerimyra, 223
Nicidion, 382
- cincta, \(3^{82}\)

Nicon eugeniae, 312
nigropharyngea, Syllis, 249
nigropunctata, Hololepidella, 54
nigropunctata, Nereis, 337
nigropunctata, Perinereis, 337
nigropunctata, Polyeunoa, 54
nigropunctata, Polynoe, 54
ninetta, Lysidice, 403
Ninoe, 430
- chilensis, 430
- lagosiana, 431
nisseni, Tomopteris, 202
nodosa, Polynoe, 6ı
nodulosa, Eunoe, 62
normalis, Exogone, 275
norvegica, Eunice, 388
norvegica, Nereis, 388
Nothria, 424
- conchylega, 425
- geophiliformis, 424

Notocirrus, \(44^{8}\)
- australis, \(44^{8}\)
- brevicirrus, 435
- capensis, 443
- chilensis, \(44^{8}\)
- scoticus, \(44^{8}\)
- tetraurus, 439

Notophyllum, 150
- foliosum, \({ }^{1} 51\)
- splendens, 151

Notopygos, 130
- crinita, 130
- variabilis, 130
novachollandiae, Perinereis, 333
novecrinita, Arabella, 446
nuntia majungaensis, Perinereis, 292
- vallata, Pcrinereis, 334
oahuensis, Greeffia, 172
oculata, Lumbriconereis, \(43^{6}\)
oculata, Lumbrineris, 436
oculata, Phyllodoce, 137
oculata, Sthenelais, 97
oculata, Thalenessa, 107
oculatum, Sigalion, 107
Odontosyllis, 260
- ctenostoma, 261
- ctenostoma, 260
- gibba, 26 r
- gravelyi, 260
- polycera, 260

Oenone, 426
- fulgida, 426
- lucida, 426
oerstedi, Panthalis, 96
ocrstedi capensis, Panthalis, 97
oerstedi, Pisione, 133
onisciformis, Tomopteris, 197
onUPhinae, 405
Onuphis, 421
- conchylega, 425
- eremita, 422
- geophiliformis, 424
- gracilis, \(4{ }^{12}\)
- holobranchiata, 424
- quadricuspis, 421
- quinquedens, 422
- tubicola, 405
operta, Mastigonereis, 291
operta, Nereis, 323
Ophiodromus, 223
- agilis, 226
- angustifrons, 224
- berrisfordi, 224
- spinosus, 223

Ophioglyccra, 372
- cximia, 372
- gigantea, 372

Ophryotrocha, \(45^{1}\)
- puerilis, 452

Opisthosyllis, 252
- ankylochacta, 252
- brunnea, 253
- laevis, 253
orbiculata, Acholoe, 36
ornata, Eteone, 140
Orseis, 223
Orthrodromus spinosus, 223
ovata, Iphione, 43
Oxydromus, 230
- capensis, 23 I
- sp., 232
pachycliacta, Ceratonereis, 325
pacifica, Tomopteris, 199
Paedophylax veruger, 272
Palcanotus, 116
- chrysolcpis, I 16
- debilis, 117
allasi, Amphinome, 123
Palmyra, 116
- debilis, 117

Palmyridae, 115
Palolo, 382
Panthalis, 96
- melanonotus, 96
- oerstedi, 96
- - capensis, 97
pantherina, Hesione, 228
papillifera, Lumbriconereis, \(44^{2}\)
papillifera, Lumbrineris, \(44^{2}\)
Papillodorvillea, 454
papillosa, Epidiopatra, 408
papillosa, Glycera, 358
papillosa, Ncreis, 317
papillosa, Sthenclais, 108
paradoxa, Nephtys, 347
paradoxa, Paralacydonia, 350
Paraeurythoe chilensis, 130
Parahalosydna, 86
- capensis, 86
- sibogae, 86

Parahesione, 223
Paralacydonia, 350
- paradoxa, 350

Paralepidonotus, 47
- ampulliferus, 47
- indicus, 48

Paramarphysa, 380
Paramphinome, 121
Paranaites, 148
Paranereis abiuma, 301
parashadi, Glycera, 359
parasitica, Alciopina, 177
Pareulepis, 45
- geayi, 45

Pariospilus, 168
- affinis, 170

Parmensis capensis, 66
- reticulata, 36

Paronuphis, 412
—antarctica, 412
parva, Ancistrosyllis, 216
parvecarunculata, Eurythoe, 128
patagonica, Halosydna, 88
patagonica, Phyllodoce, 137
paucibranchiata, Pseudoeurythoe, 126
paupera, Eunice, 393
paupera, Eunice afra, 393
Pedinosoma, 158
- curtum, 158
pelagica, Drieschia, 75
pelagica, Nereis, 315
pelagica, Pontodora, 167
Pelagobia, 163
- longicirrata, 163
pellucidus, Scalisetosus, 59
pennata, Eunice, 388
pennata, Nereis, 388
perarmata, Magalia, 227
Perinereis, 333
- capensis, 335
- cultrifera, 337
- helleri, 292
- diversidentata, 293
- falsovariegata, 335
- horsti, 334
- majorii, 337
- nendax, 293
- nigropunctata, 337
- novaehollandiae, 333
- nuntia majungaensis, 292
- vallata, 334
- vallata, 292
- vancaurica, 334
- variegata, 293
perrieri, Proccrastea, 280
persica, Lconnates, 328
persica, Nereis, 314
persica, Nereis zonata, 314
perspicar, Sphaerosyllis, 277
petersi, Psammolyce, 105
petersi, Rhynchonerella, 192
petersii, Alciopa, 192
pettigrewi, Lumbrineris, 427
phalacroides, Iosphilus, i 70
Phalacrophorus, 170
- pictus, 171
- uniformis, 171

Pharyngeovalvata, 239
- natalensis, 239

Pherccardia, 131
- lobata, 131
- striata, 131

Pholoe, 99
- dorsipapillata, 100
- minuta, 100
- inornata, 97
phyllocera, Myrianida, 287
phyllodes, Typhloscolex, 209
Phyllodoce, 143
- africana, 137
- bilineata, 154
- capensis, 148
- castanea, 149
- foliosa, 151
- fristcdti, 147
- laminosa, 143
- longipes, 144
- macroceros, 152
- macrophthalma, 149
— madcircnsis, 145
- malmgreni, 147
- maxillosa, 95
- oculata, 137
- palagonica, 137
- quadraticeps, 145
- rubiginosa, 137
- schmardaei, 149
- tubicola, 148
phyllodocidae, i36
PHYLLODOCINAE, I 36
picta, Cirrosyllis, 233
picta Proceraea, 284
pictus, Autolytus, 284
pictus, Plialacrophorus, 171
pilargidae, 214
Pilargis, 218
- falcata, 2 I8
— verrucosa, 218
pinnigera, Nereis, 285
Pionosyllis, 261
- compacta, 26 I
- ehlersiaeformis, 263
- ehlersiaeformis, 264
- longocirrata, 264
- magnidens, 263
- malmgreni, 264
-sp., 234
Pisione, i 33
-africana, 133
- oerstedi, 133

Pisionella, 132
- indica, 133
pisionidat, 132
Pisionidens, 132
—indica, 133
planktonis, Tomopteris, 206
platycirrus, Lepidonotus, 84
Platynereis, 305
- australis, 305
- calodonta, 306
- dumerilii, 306
- hewilti, 306
- isolita, 307
- inagalhaensis, 305
- tongatabuensis, 293

Plotobia coniceps, 210
Plotohelmis, 192
- alata, 193
- capitata, 195
- tenuis, 193

Podarke, 223
- agilis, 226
- angustifrons, 224
podocirra, Nereis, 293
polybranchia, Euphrosine, 120
polyccra, Odontosyllis, 260
polycera, Syllis, 260
Polyeunoa, 52
- laevis, 54
- nigropunctata, 54

Polynoe, 55
- acantholepis, 77
- agnae, \(3^{8}\)
- ampullifera, 47
- attenuata, 38
- capensis, 86
- caputleonis, 38
- carinulata, 81
- cristata, 82
- dictyophorus, 65
- elegans, 90
- erythrotaenia, 55
- gclatinosa, 44
- glauca, 84
- inhaca, 86
- longicirra, \(5^{8}\)
- lunulata, 71
- mirabilis, 45
- muricata, 43
- nigropunclala, 54
- nodosa, 6ı
- scolopendrina, 55
- trochiscophora, 85
polynoinae, 36
polyodonta, Nereis, 323
Polyodontes, 94
- melanonotus, 96

POLYODONTINAE, 93
Pontodora, 167
- pelagica, 167

PONTODORIDAE, 167
Pontogenia, 35
- chrysocoma, 35
postcrobranclia, Marphysa, 399
prampramensis, Trypanosyllis, 255
prashadi, Glycera, 359
Proceraea aurantiaca, 283
-picta, 284
Procerastea, 280
— nematodes, 280
- perrieri, 280
producta, Lactmonice, 32
producta, Laetmonice, 33
producta benthaliana, Laelmonice, 33
- wyvillci, Laetmonice, 33
profunda, Harmothoc, 75
Progoniada, 355
prolifer, Autolytus, 284
prolifera, Nereis, 284
prolifera, Syllis, \(24^{8}\)
Prolopadorhynclius, 161
propinqua, Gyptis, 23 I
Protodorvillea, \(45^{2}\)
- biarticulata, \(45^{2}\)
-cgena, 454
Protomystides, 143
- capensis, 143

Psamathe cirrata, 228
Psammolyce, 105
- articulata, 105
- flava, 105
- petersi, 105

Pseudeurythoe, 124
- microcephala, 126
- paucibranchiata, 126

Pscudonereis, 331
- anomala, 333
- gallapagensis, 331
- variegata, \(33^{1}\)

Pscudopolynoc, 86
- inhaca, 86

Ptcrocirrus, 152
Plerosyllis formosa, 259
puerilis, Ophryotrocha, \(45^{2}\)
pulchella, Myrianida, 287
pulchra, Fauveliella, 132
punctata, Eunice, 393
punctata, Eunice afra, 393
punctifera, Diopatra, 418
punctifera, Diopatra, cuprea, 418
purcellana, Marphysa, 397
purpurea, Malmgrenia, 50
purpureus, Lepidonotus, 84
pusilla, Brania, 267
pusilla, Exogone, 267
pusilla, Grubea, 267
quadraticeps, Lycastis, 299
quadraticcps, Namanereis, 299
quadraticcps, Phyllodoce, 145
quadraticeps, Sphaerodoce, 145
quadricuspis, Onuphis, 42 I
quadridentata, Mastigonereis, 293
quatrcfagesi, Leanira, III
quinquedens, Onuphis, 422
Reibischia henseni, I6I
reticulata, Parmensis, 36
reynaudii, Alciopa, 180
Rhamplıobrachium, 418
— agassizi, 4 I 8
—bipcs, \(4^{18}\)
- capense, 418
- chuni, 420
- diversosetosum, \(4^{18}\)
rhombeata, Amblyosyllis, 257
rhombigera, Enipio, 54
rhopalophora, Brania, 269
thopalophora, Grubea, 269
Rhynchonerclla, 188
- angelini, 190
- capitala, 195
- fulgens, 195
- gracilis, 189
- longissima, 186
- möbii, 189
— mocbii, 189
- petersi, 192
rigida, Ancistrosyllis, 215
robusta, Ancistrosyllis, 216
rostrata, Amphinome, 123
rosirata, Aphrodita, 123
rousseaui, Eunice, 389
rouxi, Glyeera, 362
rubiginosa, Phyllodoce, 137
rubrovittata, Dorvillea, 457
rubroviltatus, Stauroccphalus, 457
rubroviltatus, Stauronereis, \(45^{\circ}\)
rudolphi, Dorvillea, 457
rudolphi, Nereis, 457
rudolphi, Staurocephalus 457
Sagitella, 209
- cornuta, 212
- kowalewskii, 209
- lobifera, 210
saldanha, Harmothoe, 71
sanguinea, Eulalia, 155
sanguinca, Eumida, 155
sanguinea, Marphysa, 396
sanguinea haemasoma, Marphysa, 378
sanguinea, Vereis, 396
savignyi, Eunice, \(37^{8}\)
Scalisctosus, \(5^{8}\)
- ceramensis, 58
- communis, \(3^{8}\)
- fragilis, 59
- longicirrus, 58
- pellucidus, 59
schemacephala, Eunice, 384
schmardaei, Phyllodoce, I49
scolopendrina, Polynoe, 55
scoticus, Notocirrus, \(44^{8}\)
semicinctus, Lepidonotus, 37
semitecta, Lepidonota, 85
scmilecta, Lepidonotus clava, 85
semitectus, Lepidonotus, 85
semiverrucosa, Sphacrosyllis, 276
septentrionalis, Tomopteris, 205
serrata, Harmothoe lagiseoides, 69
setabulensis, Eusyllis, 235
setosa, Callizona, 192
sexoculata, Syllis, 235
sibogae, Parahalosydna, 86
siciliensis, Eunice, 382
Sigalion, 101
- boa, 109
- capense, 103
- edwardsi, 107
- limicola, III
- mathildae, 103
- oculatum, 107
- squamatum, 104
- tetragonum, 113
sigalioninae, 97
Sigambra, 216
Sige, E, 155
- macroceros, 152
simplex, Lopadorhynchus krohni, 156
simplex, Marphysa, 378
simplex, Sihenelais, 113
siphonodonta, Eleone, 140
siphonodonta, Mysta, 140
Spermosyllis, 270
- capensis, 270
- torulosa, 270
spelsbergensis, Eteone, \({ }^{136}\)
sphaerocirrata, Nephtys, 347
Sphaerodoce quadraliceps, 145
SPHAERODORIDAE, 288
Sphacrodoridium, 289
- benguellarum, 289
- capense, 289

Sphaerodorum, 288
- benguellarum, 289
- capense, 289
- claparedii, 289
- gracile, 288

Sphaerosyllis, 275
- capensis, 276
- erinaceus, 277
- hystrix, 275
- - capensis, 276
- perspicax, 277
- semiverrucosa, 276
- sublaevis, 277
spinosa, Harmothoe, 64
spinosa, iphione, 37
spinosus, Ophiodromus, 223
spinosus, Orthrodromus, 223
SPINTHERIDAE, II 9
spissipes, Irmula, 267
splendens, Macrophyllum, 151
splendens, Notophyllum, 15 I
splendida, Hesione, 228
splendida, Nereis, 292
spongicola, Syllis, 240
squamatum, Sigalion, 104
squamosa, Acholoc, 52
squamosa, Nereis, 52
Staurocephalus, gardineri, 455
- kefersteini, 452
- neglectus, 455
- rubrovittatus, 457
- rudolphi, 457

Stauronereis, 454
- angolana, \(45^{8}\)
- egena, 454
- rubrovittatus, \(45^{\circ}\)

Steggoa, 154
- magalhaensi, 136

Sthenelais, 108
- boa, 109
- dendrolepis, 98
- helenae, 108
- incisa, 113
- limicola, II
- oculata, 97
- papillosa, 108
- simplex, 113

Sthenolepis, 112
- incisa, 113
- japonica, 112
- tetragona, 113

Stimpsonis, Nereis, 293
Streptosyllis, \(23^{8}\)
striata, Hermodice, 131
striata, Mastigonereis, 293
striata, Phcrecardia, 131
subaenea, Glycera, 363
sublaevis, Sphaerosyllis, 277
succinea, Nercis, 321
syleidae, 233
Syllides, 259
- longocirrata, 259

Syllidia, 226
- armata, 227
- capensis, 227
sylliformis, Trichosyllis, 234
syllinae, 236
Syllis, 239
- amica, 243
- anops, 243
- armillaris, 249
- bengucllana, 249
- bouvieri, 246
- brachychaeta, 249
- capensis, 235
- cirropunctata, \(25^{\circ}\)
- closterobranchia, 234
- cornuta, 244
- crassicornis, 234
- djibouliensis, 235
- exilis, 250, 253
- fcrrugina, 244
- ferruginea, 244
- fulgurans, 260
- fusicornis, 235
- gracilis, 241
- hyalina, 246
- krohni, 234
- lineala, 234
- longissima, 243
- longocirrata, 259
- monilaris, 239
- nigropharyngea, 249
- polycera, 260
- prolifera, \(24^{8}\)
- sexoculata, 235
- spongicola, 240
- taprobanensis, 246
- trifalcata, 241
- varicgata, 248
- vittata, 252
- zebra, 256
- zonata, \(24^{8}\)
- sp., 235

Synelmis albini, 215
syphodonta, Lumbricus, 140
syphonodonta, Eteone, 140
tagensis, Vanadis, 180
Talchsapia, 214
taprobanensis, Syllis, 246
laprobanensis, Typsosyllis, 246
tentaculata, Augeneria, \(43^{\circ}\)
tentaculata, Eunice, 391
tenuis, Corynocephalus, 193
tenuis, Plotohclmis, 193
lenuisetosa, Euphione, 82
tenuisctosus, Lepidonotus, 82
tesselata, Glycera, 359
tetragona, Leanira, 113
tetragona, Sthenolepis, 113
tetragomum, Sigalion, 113
tetraura, Lumbrineris, 439
tetraura, Lumbrineris, 427
telraurus, Lumbriconereis, 439
tetraurus, Notocirrus, 439
Thalencssa, 107
- dendrolcpis, 107
- oculata, 107

Thormora, 79, 80
- jukesii, 80
tomopteridae, i96
Tomopteris, 197
- apsteini, 199
- carpenteri, 204
- cavalli, 206
- cavallii, 204
- duccii, 201
- dunckeri, 201
- elegans, 205
- euchaeta, 202
- helgolandica, 199
- kempi, 202
- kerfersteinii, 205
- krampi, 204
- ligulata, 204
- nationalis, 198
- nisseni, 202
- onisciformis, 197
- pacifica, 199
- planktonis, 206
- septentrionalis, 205
tongatabuensis, Nereis, 293
tongatabuensis, Platynereis, 293
torquata, Eunice, 389
Torrea, 186
- candida, 188
torulosa, Spermosyllis, 270
Travisiopsis, 210
- capensis, 207
- coniceps, 210
- dubia, 212
- lanceolata, 212
- levenseni, 213
- lobifera, 213
— sp., 207
Trichosyllis sylliformis, 234
tridactyla, Glycera, 352
trifalcata, Syllis, 241
trifasciata, Nereis, 312
trilineata, Eulalia, 152
trissochaetus, Lefidonotus, 37
trochiscophora, Polynoe, 85
Trypanosyllis, 253
- ankyloseta, 255
- gemmipara, 256
- gemmulifera, 256
- ingers, 235
- krohni, 253
- misakiensis, 256
- prampramensis, 255
- zebra, 256
tuberculata, Cirrosyllis, 281
tuberculata, Hemilepidia, \(3^{8}\)
tuberculatus, Autolytus, 281
tubicola, Hyalinoecia, 41 I
tubicola, Nereis, \(4^{11}\)
tubicola, Onuphis, 405
tubicola, Phyllodoce, 148
tubifex, Eunice, 386
tubifex, Eupanthalis, 93
tulearensis, Nephtys, 345
Tyloncreis, 297
TYPILLOSCOLECIDAE, 207
Typhloscolex, 208
- muelleri, 208
- phyllodes, 209
typica, Neanthes latipalpa, 292
Typosyllis, 246-252
- laprobanensis, 246

Unanereis, 298
- macgregori, 299
uncinatus, Lopadorhynchus, 159
unicornis, Glycera, 362
unicornis, Lumbriconereis, 403
unicornis, Nematonereis, 403
unifasciata, Nereis, 318
unifasciata, Nereis, 312
uniformis, Phalacrophorus, 171
vallata, Nereis, 334
vallata, Perinereis, 292
vallata, Perinereis nuntia, 334
Vanadis, 180
- antarctica, 18 r
- crystallina crystallina, 182
- - inornata, 182
- formosa, i81
- fuscapunctata, I84
- longissima, 186
- minuta, 184
- minuta, 184
- tagensis, 180
- violacea, 185
vancaurica, Nereis, 334
vancaurica, Perinereis, 334
variabilis, Notopygos, 130
variegata, Nereilepas, 331
variegata, Nereis, 33 I
variegata, Perinereis, 293
varicgata Pseudonereis, 331
variegata, Syllis, \(24^{8}\)
vcrrucosa, Pilargis, 218
verruculosa, Hermenia, 77
veruger, Paedoplylax, 272
verugera, Exogone, 272
violacca, Vanadis, 185
viridis, Diopatra, 405
viridis, Eulalia, 136
viridis capensis, Eulalia, 154
viridis, Nereis, 151
vittata, Eunice, 385
vittata, Nereis, 385
vittata, Syllis, \(25^{2}\)
waahli, Antinoe, 72
waahli, Harmothoe, 72
wahlbergi, Lepidonotus, 85
Watelio, 175
whiteavesi, Malmgrenia, \(4^{8}\) willeyi, Nereis, 320
wyoillei, Laetmonice, 3 I
wyvillci, Laetmonice producta, 33
zebra, Syllis, 256
zebra, Trypanosyllis, 256
zonata persica, Nereis, 314
zonata, Syllis, 248
zululandica, Dendronereides, 302
```


[^0]: *Fauvel (1923) states that the Mediterranean form has two pairs of tentacular cirri and makes no mention of setae.

[^1]: *B. cryptocephala Gravier differs only in having paleae with an apical point.

[^2]: (a) Firistu.

 Howtrin. - Scrin.
 (c) Sha, thearo df setan cheraclésintic

[^3]: 1 Acicular setae simple

 - Acicular setae compound

[^4]: *Tomopteris apsteini is probably a synonym of T. nationalis Apstein from which it may be distinguished mainly by the presence of a clear area. See Discussion in Dales, 1957: 136.

[^5]: *Note The juvenile stage with the first cirrus has been named T. membranacea Caroli. T. aloysius-sibaudii Rosa is close if not identical.

[^6]: 1 Prostomium with two or three antennae

 - Prostomium without antennae 3

 2 Prostomium with three antennae (fig. 10.1.f). Proboscis muscular

[^7]: * While this monograph was in the press, Dr. M. H. Pettibone (1966 Proc. U.S. Nat. Mus. 118 (3525), 155208) published an important revision of the Pilargidae in which she showed that Aneistrosylliorigida is a synonym of Synelmis albini (Langerhans 1881)

[^8]: * Referred to the genus Sigambra by Pettibone (1966) - see footnote on p. 215 .

[^9]: * Since going to press, an important review of the Syllidae of Japan has been published by Minoru Imajima 1966 (Publ, Seto Mar. Biol. Lab. 13 (5) and 44 (1, 2 and 3).

[^10]: *Gravier reported the postomium with a marked posterior identation. Natal specimens which certainly have a small occipital flap have a similar appcarance under the microscope. It is suggested that Gravier was misled.

[^11]: *Close to Syllis exilis.

[^12]: *Possibly synonymous with T. gemmipara.

