1917
$H 532$
1917
$H 532$

$$
\begin{align*}
& \text { HIGLEY } \\
& \text { MORPHOLOGY ANE BIOLOGY } \\
& \text { OF SONE TUBELIARIA FROM } \tag{12}\\
& \text { THE MISSISSIPPI RIVER } \\
& \text { BASIN. }
\end{align*}
$$

\qquad
\qquad

2
58

$$
-
$$

Abstract

\qquad \qquad

\qquad
\qquad
 \square


```
\(\square\)
```

```
                    15
```

```
                    15
```

```
                    15
```


\square
\square
\square
\square

\square
\square
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
1
$$

\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\square
\qquad
\qquad
\qquad
\qquad
\square

\square

\qquad
${ }^{2}$
\qquad
\qquad
\qquad
\qquad

 ,
\qquad
$+$

$$
14
$$

PI

$$
r_{r}
$$

x-

$$
\frac{1}{1}
$$

$$
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad

Digitized by the Internet Archive in 2013

MORPHOLOGY AND BIOLOGY OF SOME TUBELLARIA! FROM THE MISSISSIPPI RIVER BASIN

RUTH HIGLEY

A. B. Grinnell College, 1909.

THESIS

Submitted in Partial Fulfillment of the Requirements for the

Degree of

DOCTOR OF PHILOSOPHY

IN ZOOLOGY

I N

THE GRADUATE SCHOOL

OF THE
UNIVERSITY OF ILLINOIS

```
                                    Yathind +15 IN
```


$$
10 \operatorname{coc}_{2018} 5
$$

SMA5MDIt

$$
\begin{array}{ll}
10
\end{array}
$$

1917
 H532
 UNIVERSITY OF ILLINOIS
 THE GRADUATE SCHOOL

May 24,

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPER-

VISION BY

\qquad RUTH HIGLEY ENTITLED \qquad MORPHOLOGY AND BIOLOGY OF SOME TURBELLARIA FROM

THE MISSISSIPPI RIVER BASIN

BE ACCEPTED AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE OF \qquad DOCTOR OF PHILOSOPHY

Recommendation concurred in:*

char. I. Irate

TथAMkNFMNAK

[^0]

Fey is vall -

10 -2.26) 20

TABLE OF CONTENTS

INTRODUCTION 3Before 1900Since 1900MÍssissippi Valley forms
Scope of present paper
Economic importance
Acknowledgement
Technique
Methods of collection 8
Methods of culture
Methods of histological preparation
Methods of study11
Living material
Permanent mounts
Difficulties
Part I. BIOLOGY
Field notes 13Springs (General conclusions from a study ofeleven springs)Temporary puddies (Typical conditions in nine-teen collections)Streams (Detailed study of five rivers)
Ponds (Study of five ponds, summary of fortyothers)
Biology 25
Reaction to oxygen and carbon dioxide
Reaction to light
Reaction to temperature
Reaction to other forms Food
Enemies and protection
Part II. MORPHOLOGY
Detailed study of Strongylostoma rosaceurn 36 Morphology of body systeras Development
Life Habits
General study and notes on twenty species Family Planariddae 78
Planaria maculata minor nov. var. Planaria velata Stringer 1909 Family Catenulidae 83

$$
\text { fotren } 36
$$

$$
\begin{aligned}
& \square \mathrm{a}=\mathrm{a}
\end{aligned}
$$

$$
\begin{aligned}
& \text { TKint }
\end{aligned}
$$

(2)
Stenostomurn leucops 0. Scrmiat 1848Stenostomum tenuicauda vongraff 1911Stenostomum gisanteum nov, spec.
Stenostomum glandifera nov. spec.Family Microstomidae110
Microstomum caudatun Leidy 1851
Macrostomum gensitivum Silliman 1885Macrostomum albur nov. spec.
Family Prorhynchidae 121
Prorhynchus stagnalis M. Schultze 1851Family Typhloplanidae126
Rhynchomesostorna rostratum Muller 1773
Typhloplana viridatum Abilgaard 1790
Mesostoma ehrenloergifocke 1836
Mesostona simplex nov. spec.
Family Dalyellidae 140
Dalyellia dodgei vonGraff $19 b 1$
Dalyellia fusiforma nov. spec.
Dalyellia alba nov. spec.
Dalyellia megacephala nov. spec.
Part III. CONCLUSION AND SUMMARY
General discussion 154
Suramary
BIBLIOGRAPHY 160

INTRODUCTPTON

Altho of seeming insignificance, the Turbellaria as a class present certain characters of morphology and life-history which make them of especial interest. Furthermore, their biologic processes and life habits in relation to other forms, shed some light upon general problems of common existence. A knowleige of any group of animals is of value from a phylogenetic standpoint as well as in the explanation of the interdependence among various types, so this group, standing, as it were, at a point of connection between the very lowest phyla, the aberrent parasitic worms, and the more specialized higher types, makes possible an understanding of one of the important steps in the evolution of the animal kingdom. The simplicity of anatomical structuse and lack of conspicuons detail altho thas especially important in a comparative way, also enables these forms to carry on an existence almost unsuspected and generally entipely overlooked. The fact of the widespread distribution in both salt and fresh water passes, for the most part, unnoticed.

> While the fresh water Turbellaria of Europe have been recognized and carefully studied for nearly one hundred and fifty years, the American species have received little attention. The earliest records for this country are those of Ieidy. In 1348 , he gave the first brief description of the now well-known and very

Abstract

common Planaria maculata. He also studied rather completely Phagocata gracilis, distinguishing the fundamental points in which it differed from the Planaria. Later (1852) he added several other species to the list. No other studies were reported until a paper by Silliman appeared in 1885. This was also descriptive and systematic in character. The first morpholofical work was that by Ott (1892) who made the conmon Stenostoma leucops 0 . Sch. the basis of a detailed histological study. Woodworth (1896) and (1897) next published results of collections made from rather widely separated localities. He named four new species and added full descriptions of twelve others.

Since 1900, there have been a number of papers, a few descriptive, but by far the most the results of experimental work. Of the first type, the paper by vonGraff (1911) is noteworthy. In this, he gives descriptions and notes of some seventy-five species. Several other writers have from time to time adaed a few forms, but this is all. On the other hand, in a vast amount of experimental work the more common species have been used. Child's work with the coman flatworm has explained a large number of facts of farreaching general biologic significance. Other investigations, some of them exhaustive, have dealt with the more primitive rhabdocoels as well as with planaria. Among the many writers along this line are Kepner (1911) and (1915), Curtis (1905), Pearl (1903), and Keiler (1910).

Altho they are free-living forms, a few cases have been reported in which they are parasitic on molluscs and it is in these species that a beginning has been made in the study of the embryolosy and life-history. Two writers, Linton (1910) and Stan1cy C. Ball (1916) have published such investigations of a species living on Modiolus.

The Turbellaria of the central and western states are almost unknown. Woodworth (189\%) and Stringer (1909-1913) have published descriptions of five new species from Illinois and Nebra3ka. Eleven other forms, found also in the eastern states, have been reported from a few localities in Illinois, Nebraska, Michigan, and Wisconsin, but these are all. That some species, at least, are present in great numbers is evident from the various collections for experimental studies. The whole Mississippi valley region with its lakes and almost numberless ponds furnishes conditions in many respects ideal for such types, and their existence will sooner or later be demonstrated.

In fact, both Planaria and rhabdocoelida are of much more common occurrence than is generally supposed and for several reasons are especially valuable for study. First, they are available as living reproducing animals thruout the year. Then, they are good for experimental work since they illustrate a somewhat primitive phylum, one in which the body structure is very different from that commonly encountered. Well adapted to such studies, by their simplicity and great vitality, they have come to be the classic speci-
mens employed both for elementary experiment and for cmplicated investigation. The free-living method of life, together with the simple fundamental anatomy, when compared with the specialized and much changed condition of the nearly related parasitic worms shows clearly the variations possible and actually brought about by a different mode of life. As a whole, the group is of more than ordinary interest.

Always considered of no importance econornically, their possible relation to other forms has been overlooked, so that only by chance have thein habits of parasitism and voracious feeding been discovered, and there is need of further investifation along this line.

In the present paper, a brief study is made of a few forms found in small. lakes and ponds in Illinois and Iova. This covers three phases: First, a summary and comparison of the tjroes of habitat which deals with such environmental factors as flora, whether algae or higher water plants, animal comanities, whether few or many, bottom, whether sandy or muddy, and also the general water conditions; second, a few of the biological aspects, this olltine comprising a study of the reactions to the various stimuli: third, a morghological description of nine new species and additional data concerning twelve others. These descriptions embrace to some extent histological structure as well as gross anatomy, and a number of points regarding the distribution and characteristic variations of well-known species. In the case of one form, a
resume of the embryological stages is also given. Six plates which contain toto drawings of all the suecies are included, besides separate sketches of isolated parts.

The work was done mainly at the University of Illinois at the suggestion of Dr. H. B. Ward, and to him I wish to express my gratitude for hely and inspiration. I also had the opportunity to make collections and to study at the United States Biological Station at Fairport, Iowa, and my thanks are due to the director, Mr. A. F. Shira, and to Mr. H. I. Canfield, who aided me in every way possible. I am also indebted to Mr. R. L. Barney, of the United States Biological Station at Homer, Minnesota, for material sent me, and to Miss Elizabeth Bodfish, of the University of Illinois, for many specimens from this locality.

Collections were made in three ways. Surpace or open
water was dipped with a pail or jar , and as large anounts as possible carried back to the laboratory, partly for the purpose of abcertaininf whether or not specimenswere present, and partly for use in aquaria. Then with a long-handled dip net, masses of algee and water-weed were taken either from shallow places along the shore line, or from the surface out in deeper water where they floate in great tangles, or from the bottom. In some cases, a good deal of water was drained off and the mass of damp weed carried in, to be later plunged in pond or tap water. As a third method, the alga was taken with a minimum of disturbance, and kept as nearly as possible in its relative shape and condition. In small ponds where the water was not over three feet in depth, collections were made out in the middle and often the leaves and sterns of water lilies and other large plants were gathered. These were kept by themselves in clear water. The stems and undersides of the lily pads were generally covered with very fine algae or a growth of diatoms, which made a good shelter and feeding ground for many small forms. The bottom mud with its loose covering of organic debris was generally dipped up separately, with a small annount of water. Saraples were taken both near shore and out in the deeper portions. Many collections were kept alive in the laboratory for lengths of time varying from a few days to six months. The algae and other debris were floated out in either tap water, rain water,
or pond water. Glass jars were used for this purpose, sone very shallow and some eighteen inches deep. In cases where a few individuals or a special bit of water weed was to be isolated, shallow glass stenders could be employed. About half the aquaria were kept covered to prevent evaporation and the others left open, water beinf added at intervals. The amounts of sublight varied. A few jars have been so placed as to have sun all day but most have had it for only a few hours at a time and a good many not at all. Generally the temperature of the aquaria was that of the room. A few however have been held at much higher and a few at a much lower point. Balanced and favorable conditions are always easy to obtain, and in a number of cases there was a good deal of asexual reproduction by budding, as a result of fairly perfect vegetative processes. Occasionally when a number of surrounding details were precisely favorable, even the sexual reproduction could be studied and the life habits made out with some degree of completeness.

The aquaria have never been artificially aerated, but an attempt has always been made to furnish oxygen by means of plant life. In the case of planaria, food has been provided in the shape of small bits of meat, while in the jars where rhabodocoels were living there has always been an abundance of other animal forms to supply all possible need.

In preparation for histological study, the specimens have been killed and fixed with some measure of success. The individuals in some cases were anaesthetized with a solution of cocaine
hydrochlorate followed by chloretone of varyints strengths until they were quiet and expanded. The fixation was done with corrosive acetic solution. Material was generally stained in toto with Ehrİch's hematoxylin, embedded in parafíin, and sectioned 4 to 8μ in thickness. A counterstain of eosin or erythrosin was sometimes used. With planaria, a solution of one part nitric to three of water gave good results as a killing fluid. Cold corrosive sublimate was found useful in many instances, and under special conditions a warm solution was valuable.

METHODS OF STUDY

Specimens were studied either alive or in permanent
mounts. When living, they were controlled by means of a pipette and were isolated either in concave watch glasses or on a slide. The movements could be checked by burying in a drop of quince-sced jelly or by adaing small anounts of cocaine or chloretone to the water. The felly is of value in studying the cilia or the muscular systern, for it increases the violence of action while retarding the speed. It also shows more clearly the relative position of various organs, for the animal will turn over again and again, thus affording good lateral and ventral views. The objection to its use lies in the fact that only a very thick, opaque solution will be dense enough to reduce appreciably the movement. The chloretone has the advantage of quieting thoroughly, but it also causes the specimen to become so limp as to be easily injured, and to begin to disintegrate very soon. Another way is to confine the animal by the weight of the cover glass or by a minimura anount of water on the slide. This method flattens the body so as to make it more transparent. The several organs will be pushed entirely out of their natural position but can be studied separately better than under any other conditions, since they can be partially isolated and their interrelationships made out. Because of the transparency and lack of rigidity, many details are clearer in the live tissue than in permanently mounted material, where a large amount of cellular contraction is
unavoiabble. Many details of structure, especially those of the nervous system, are clear only from a study of prepared material. Serial sections in the several planes have been used to verify and correlate findings in the various body systeras.

Some little difficulty is experienced in an attempt at a detailed study of the tissues. The extreme contractility and sensitiveness make it almost impossible to kill and fix material in a condition anywhere near the normal. The delicacy of the structure as a whole and in fact of all the organs, very much increases the chance of infury and even when great care is used, the tissues are generally somewhat torn or out of shape. The integument is so easily ruptured that often only the weakest anesthetizing fluids can be used, and then a complete quiet is not obtained. Then also the species which reproduce by budding very easily break off from the growing divisions and are likely to be mutilated. As a consequence of this, especial gentleness and care must be used in the handiling and control.

FIFID NOTES

During the past two years, collections have been made in some eighty streams and poids. About fifty places have been visit od only once, a number of others two or three times, while from a few collections were made every few days for several months. The immediate surroundings, the state of the weather, the condition of the water, all vary to a greater or less degree. There were gradations from a sandy barren flat to a wooded hillside, from a hot July day to the intense cold of mid-winter, with five feet of ice thickness, from a few quarts of thick muddy water to a stream the size of the largest river. The types of places investigated may be summarized as streams, ponds, springs, and temporary mudholes. The springs and puddes seem to be unfavorable for many of the smaller animal forms, except in a few instances, along the bluffs above the Mississippi, at intervals of one or two miles there are many springs flowing out from a more or less rugged hillside forming little gulches or marshy flats in their course of two or three hundred yards across the bottom land. The water is always clear altho in several instances there is quite a little sand washed out with the stream. The presence of the extra amount of moisture causes a great luxuriance in the nearby vegetation so that the little pools are completely hidien. In these pools and the trickles fonnecting them, there are often many entomostraca and insect larvae but very little or no filanentous algae to form a
lurking place for voracious species. The food supply is also nearly nothing, as protozoa, rotifers, and small crustaceans are absent. The hardness of the spring water coupled with the almost lack of organic matter explains the absence of turbellarian species in such situations. In one exception, where the location has made it possible and where the spring furnishes sufficient water to make a fairly permanent little pond, both the plant and animal forms have a chance to develop and are present in abundance. Here Stenostomam may be found in great numbers.

If puddles are made by the overflow from some stream or larger pond, then the plant and animal forms present will be those of the main supply which have become marroned. They will eke out an existence as long as conditions permit or will thrive if chance favors thera. Thus in some years the rains are not so heavy as to violently stir up a pond, and then if the situation is partly protected from the drying power of the sun, the imprisoned fauna and flora may flourish thruout the season. It is very likely that the general life-balance of such heterogeneous colonies may be Changed, perhaps several times in a few weeks, with the result that the total fauna wuil vary. At one time, a single species may be vastly more abundant than even in its natural habitat and then at another time, very little later, it may be entirely absent. In many other puddles made from either a source of clear water or by a heavy rain, aquatic insects will appear in twenty-four hours and a little later many protozoans. If the water pemains for some
length of time so that filamentous algae have a chance to develop, there will probably be also many small ceustaceans and an abundance of other life but no rhabdocoels. That is, species capable of finding transportation thru the air may gain a foothold in ponds where other species unable to do this will not. This, perhaps, explains first the presence of certain rhaodocoels in some rudholes and not in others of different origin yet alike in general condition, and second the presence at one time and not at another.

The running water of streams and rivers does not produce situations favorable to delicate free-swimming organisms. Thus the type of turbellarian found in such places will be that capable of finding a sheltered and protected spot where there is also food and oxygen. In the Rock river, at Milan, Illinois, where it flows over six or eight miles of rocky bed, planarians find an ideal location. On the under side of nearly all the stones which project up from the bottom or out into the water or which lie against each other so that the underside is not buried, a number of specimens will be clinging. The stones are more or less rough, covered with tiny crevices which make good hiding places, the worm being almost below the surface and thoroughly protected but still able to make use of the swift current of fresh watyer. Collections have been made in several other localities upstream and within the limits of the rocky bed, but no planarians were discovered.

A situation similar to the above is found in the Salt
Fork of the Sangammon, at Homer, Illinois, where, for a distance of
a few hundred yards there are many rocks and pebbles in the strean bed. The water runs sluggishly everywhere except at one point, and here there is always a swift current from the overflow of a dam. This is an ideal locality and living upon the rociss over which the water is continually pouring are many planarians, the only ones to be found either up or down stream. The Sangammon, itself, is another stream of this same type, generally slow-flowing with few or no stones. Scattering planarians have been found clinging to rocks at a place where there was a little fall and consequently a swifter current for a short distance.

The larger rivers with sandy or muddy bottom have, as a rule, a fairly even shore-line with few small coves or indentations, While a strong current generally keeps the banks washed clean of any driftwood or riff-raff which might lodge masses of organic debris and thus offer shelter to microscopic forms. On the side of the river where the current is undermining and changing the shore, no life of any sort is possible, but on the beach side, many clams, snails, and insect larvae find a feeding ground. These, however, are able to anchor themselves firmiy in sand, while such types as flatworys and small crustaceans cannot exist. Altho there have been at different times many collections made by various workers and at numerous points along the Mississippi, rhabdocoels and planarians have not been reported. This absence seems to be easily explained since the conditions in the river are vastly different from those of any of its tributaries. Forms carrying on
a thriving existence a few yards up some smaller stream meet with entirely new enemies and encounter a powerful current which will quickly dash them to pieces upon entering this expanse of water. In the main branches of the Iowa, a like situation prevails, but here all along the course there are numerous mall ponds left by its very habitual and periodic overflow. This backwater is generally protected by growths of willow and swamp maple, and may receive enough drainage from surrounding fields to last thruout the season. The plant and animal life is often very profuse and many Stenostomum forms have been taken at different times from such ponds.

Another type of stream which often becomes a suitable location for many microscopic species as well as larger forms, is the artificial ditch or canal. Here generally the water flows slowly and comparatively evenly, there is little danger of flood, and many types gain a foothold. The Hennepin canal presents conditions cather unique in these respects. The banks are riff-raffed with rough stones which make numerous crevices, the shore line being perfectly straight with never a break or an eddy to disturb the calm. There is movement sufficient to prevent the water from becoraing stagnant but not sufficient to cause disturbance. The stones are covered with fine algae, which forms an ideal feeding ground. The larger crustaceans, predacious larvae, and even most of the microscopic species find it a poor situation, so that the rhaiodocoel enjoys an existence singularly free from enemies, tho
on this same account the food supply is limited almost entirely to protozoans. Altho not plentiful in numbers, these forras are seamingly in control at least along the edge.

The most nearly ideal conditions for rhabdocoel existonce are those found in permanent ponds. Here the water is comparatively quiet and the hunting grounds are sufficiently prolific. In one such pond, eight collections have been made at intervals of from three to nine days, with essentially the same conditions and forms appearing each time. This was primarily a little stream racing thru an open valley protected by low hills on either side. The water is held back by an earthen dam to make a pool about thirty yards across, and with a depth of from two and one half feet in the middle. It is used chiefly for wading by the cattle in the pasture and is kept stirred into a thick muddy semifluid with little life of any sort. In direct contrast to this, below the dam for four hundred yards the water is clear, kept fresh by a little trickle coning thru the spillway, and filled with an abundance of animal and plant life. At first spreading out for one hundred yards and with a depth of three feet, it later in the summer shrinks to one half this size. The ground around is "mucky" covered thruout the marshy portion with "Island Hay", then there is a region of Carex and Juncus. These, in the first place, harbor numbers of red winged blackbirds, secondly, their rigidity and harshness serve to keep away disturbing cattle, thirdly, act as a windbreak so that not even a rijple may disturb the surface
of the pond. The water is more or less filled with masses of Nostoc, Spirogyra, and diatoms. The number of protozoans is very large, then, of larger types, as water beetles, dragon flies, snails, frogs, etc., there is no lack. Members of the genus Stenostomum are abundant everywhere in water from the surface where they swim freely, from deeper portions more or less muddy, and clinging to water weed, which, when taken in quite drained, will show great numbers. Out in the middle deeper portion, are large patches of Nitella, most of it nearly covered with organic debris and harboring many speciraens. Taken from different portions of the pond there are some half-dozen species.

Another pool where many rhabdocoel species thrived, is in all respects a marked contrast to the above. This is Beatty Lake, a little body of water unique in its surroundings and foryation. It is situated at about the level of the Mississippi river, not more than five hundred yards back from the shore line and with the ground level between them not more than six or eight feet high. The side away from the river is bounded by a mound seventy five feet in height which bends around to the southward, forming a nearly perpendicular wall on that side. Toward the north, the sand slopes away gradually. Surrounded on all sides by barren sand, the pond is essentially a 'hole' with the bottom so near the river level that the water never seeps away, and with enough draining in to prevent its drying up completely. On the west and south, the wind is entirely shut off, while even on the north and east the
ground is high ehough to prevent much of a ripple ever disturbing the surface from that direction. There is almost no vegetation within a hundred yards of the pond in any direction. This is partly due to the blowing of the sand which covers everything. In one place, the bush-like branches can be seen, all that remains unburied of three tall locust trees. The pond bottom is sandy. very solid and smooth thruout. The banks slope very gradually into the water. It is covered around the edge with a thin layer of organic material deposited as the water slowly recedes a little, leaving some dead algae behind. The water itself is quite clear, from two to five feet deep, very warm at the surface and cold two feet down. Tho used by cattle to some extent for drinking and wading, the sand, when stirced up, quickly settles, leaving the water as clear as ever. There are no rushes, or other plants of this type, which reach up above the surface of the pond, so that the broad expanse is uninterxupted. Near the shallow portions, within the pond, are great masses of very coarse Spirogyra, showing very bright green against the sandy background. There are also patches of Nitella, heavy and dense, and sheltering at least five species of rhabdocoels, all active and well-developed specinens. In the deeper portions are large clumps of water lilies and several other flowering plants, such as arrowhead, and floating around at the surface, sheets of Cladophora and others of the low algae. Thus, while the plant life is very profuse, the animal forms are much fewer. There are, of course, many microscopic forms, but
larger types seem lacking. There are no frogs, clams, or snails, no water beetles, and only a few dragon flies. Out on the banks, a little sand toad is cormon together with four species of turtles and a little sand lizard. Altogether, the conditions prevailing seem to be ideal for several species of special interest tho not so favorable for most others.

A rather surprising situation was that encountered in an old boat anchored high and dry in a little clump of willows. It was protected from the wind and open to the sun so that evaporation would seem to have been rapid. However, the two or three tubs of water which the boat contained must have been put there two months before, at the time of high water, as there had been no rain. The whole boat was nearly filled with three species of conjugating Spirogyra. It was very luxuriant and harbored copepods, ostracods, diatoms, rotifers, and other lower algae. There were no insect larvae, as might be expected, but many species of protozoans and such simple organisms. There were rhabdocoels in abundance, the ever present Stenostomum and two other species, all thriving in their prison, a little world entirely isolated, but perfect.

Thirty yards away from the old boat was a muddy pond Which well illustrates a different type of condition. Early in June, the overilow flood-water spread out over a forty acre corn field, much of it drained away and by the middle of July there was only a depth of a few inches. For a rod baci from the actual
water edge, the ground was extremely mucky and soft down to a devth of eighteen inches. There were very large patches of mudcovered Nitella which seemed to be the only surviving species of plant life, growing all along the shore and out to a depth of ten inches. The water was "thick" and black, with only a few animal forms, except in the case of protozoans which seemed to flourish. Stenostomum was the only rhabdocoel present and all the individuals collected were very long and slender. In a situation absolutely pronibitive for most species, the Stenostomum was almost the only form above the Protozoa which could carry on its existence. Another very different type of pond are those of the United States Fish Connission. They are artificial in their origin and are always under control and present data interesting in comparison with natural conditions. The methods used to wipe out one species and further the existence of another throw much light upon the forces in nature which bring about these same results. These ponds are either cement lined or have a simple mud bottom. The depth and shape vary. Some are shallow, mere tanks with a smooth bottom, while others are long and narrow with a graded bottom giving half a dozen different depths. Often a number of half-partitions supply lurking places dark and secladed. The unlined ponds are generally apen and broad with a depth varying evenly un to eight feet. The small tanks are about three by eight feet, while the largest ponds will cover an acre of ground. The water is supplied from a common reservoir, filled from the river. There is
always an intake and outlet thru which is supplied a constant and steady flow. The loss by evaporation is thus supplied, the oxygen content kept nearly standard, and the water constantly free from organic debris. The life conditions are much less complex than is naturally the case, since either fish or clams are the only large species present. The vast number of microscopic forms have found their way accidentally, and flourish because the situation is favorable. All of the ponds contain a larger or smaller arnount of filamentous algae, water weed, and lower forms of plant life. This helps to furnish a never-onding supply of oxygen and a hiding place for huge communities of entomostracans and the like. There is no possibility of a sudden change in the several life factors, i.e., the conditions are constant and steady, a situation which is ideal for all sorts of tyoes and makes the number of species very large. Even during the winter, dow under the ice in the deeper parts, the stream of wam intake makes possible a continuance of almost summer conditions, and consequently there is not the wholesale killing off that generally follows the fall drop in temperature. Thus generation follows generation without a break, right through the coldest months. This is so much the case that every second season most of the ponds are drained and allowed to lie frozen and dry for several months in order to check the enormous multiplication of microscopic forms above the optimum for the species of economic importance. The cement tanks are also emptied every fall to prevent freezing, so that each spring the flora and fauna of
very many ponds begins anew, and it is of interest to see the rapidity with which both animal and plant comnunities manage to take up their existence.

Many other ponds, permanent and seeming to present conditions suitable for large annual communities, are more or less poor in such forms, and may also be said to be dead water, and many which contain various species will not show planarians or rhabdocoels. Perhaps the most influential factor in this poverty of fauna is the constant agitation of the water, which, when coupled with a variation in the amount, is sufficient to prevent much life. Then, too, many species are so retiring in their habits and spend so much of their lives hidden away that they escape notice even tho they are often present. Such is probably the case with many of the creeping rhabdocoels.

BIOLOGY

Any study of biologic conditions is at the outset superficial, and only the most general conclusions can be ventured. Definite and positive statements are to be questioned since so vast a number of factors is concerned, and it is often an impossibility to know or control nearly all of them. Consequently, many observations are qualified and results are guardedy and hesitatingly set forth. In studying any pond or stream, there are always many details of life habit which present themselves conspicuously, and many of the influences which bring about certain effects can be very clearly recognized.

Perhaps one of the most noticeable reactions is that to the amount of oxygen. For altho supplied with no tissue or organ by which to make direct use of oxygen or by which to effect an exchange of carbon dioxide, the Turbellaria are all quite sensitive to the presence or absence of either. The processes of respiration are carried on thru the skin, the parenchyma, and even thru the general cells of the body itself which are in direct communication with the surrounding water. Thus, altho the amount of oxygen necessary is infinitesimal, there is no reserve store, so that there must be a very constant source. In aquaria, when there begins to be only a slight overloading with carbon dioxide, many individuals can be seen making their way to the top where there is a layer of fresh water. Oftentimes this seems to be the only
method of driving certain species out from their hiding places. They are likely to remain near the top for days, staying quiet near the edge or very slowly gliding about just beneath the surface. Soretimes around the edge of the tank they will crowd up into the little film of water held by capillarity above the general surface. In balanced aquaria, on the other hand, large numbers are often hard to find, since even the deeper portions will be perfectly fresh. If, then, for any reason the balance is suadenly lost, up to the top will come several species. Some forms are habitually swimming free, and are much of the time to be found creeping over the surface or exploring pretty thoroughly the deeper regions, but under conditions of lack of oxygen, they will remain constantly in the upperroost water, avoiding the foul depths. Under normal conditions, many species find their most suitable habitat entangled in a mass of angae or creeping over bits of weed, probably as much for the supply of oxygen and consequent purer water as for a hiding place. This last conclusion is evident since in those pools where there is little plant life, all the specimens present will be found in close proximity to whatever bits of green algae there are, in the same way that any animal frantically clings to its last source of oxygen.

Planarians which live in vastly different locations from the above seern just as sensitive, for even tho their habitat is running water, not all parts of a stream are equally favorable. For example, the pebbles and rocks in sheltered, quiet pools
will show no specimens even tho the food is ample. If, however, at any point a little current passes thru, thus raisinf the oxygen content, there will be at least a few individuals. Out in the midde of the river, on the contrary, where the flow is exceedinfly swift, making a boiling, seething torrent as it tumbles over s tones, the oxygen content will be greater. Here the number of individuals in a given area is limited only by "standing room", even dead clam shells and bits of wood being entirely covered. Thus it seems that in respect to their use of oxygen the turbellarians are not essentially different from other higher phyla.

All the turbellarians are, to some extent at least, sensitive to light, but they react toward it in very different ways, so that no general statement can be given. The presence or absence of eyes cannot be taken as the main factor in this response, for altho the eyes are primaxily light detecting organs, species in which they do not occur may possess the ability to distinguish between light and darkness. The planarians and rhaiodocoels live under such different conditions that a difference in reaction is to be expected.

The planarians are definitely and obviously negative in their response both to diffise and localized light. In three species, common to this region, the eyes are large and well-developed.

The animals live ordinarily under stones or in the depths of algal masses where a good deal of precision in their reaction is necessary If placed in a large open dish, they will investigate very thor-
oughly every part and invariably come to rest at the point of greatest shadow. Their ability to estimate the size and density of the shadow is rather keen, since they seem able to distinguish even small dradations. Another factor which is perhaps to be correlated with the perfection of eyes is the relative anount of color. The pigment which here varies in amount with light and dark locations, is not present, at least to any degree, in forms which do not possess eyes, and it is not an unreasonable conclusion that color and eyes have evolved together.

The rhabdocoels have a more variable habitat and are not capaile of as exact a response as the planarians, altho some species possess as highly developed eyes. The color has no direct connection, as for instance Strongylostoma, a form which has relativ cly very large eyes but possesses no pigment. This is also the condition in several Dalyells. The merabers of these t wo genera are positively heliotropic, except when the light is intensely localized. The genus Stenostomurn, on the other hand, is without eyes or pignent, and has a negative response to light, be it strong ot weak. These forms do not habitually frequent deep, shaded places but rather a dimly lighted situation. This fact perhaps explains the rather general reaction, and their hacit of being content with merely the less lighted regions. This habit, however, is constant, tho in just what way the light is sensed is hard to understand. As a whole, the genus Stenostomurn is very simple in structure, all of the reactions being general rather than precise, and this re-
sponse to light is the most definite of all.
The effect of temperature in any detailed or definite
way is very hard to ascertain, since it is of general influence, having to do with large quantities of water rather than with any very limited portion. In the broad sense, temperature is the main inciting force which every season starts or retards the life processes, and almost never in nature will it be found as a localized stimulus. During the winter, the ice confines the cold to a layer at the surface and to some extent limits and restricts the extent of its influence. It acts somewhat as a blanket,preventing the cold of the air from penetrating too deeply, so that beneath it a vast deal of life continues thruout the year. It seems certain that rhabdocoels remain in this layer of free water, which is, in fact, their regular habitat, rather than hibernating in the more protected bottom mud. Thruout the winter of 1916, collections were made from a single pond every week. During January and February, the Cladophora was dragged up thru a hole in the ice. Two or three species appeared in every haul, tho sometimes not in great numbers. It is of course evident that myriads of individuals are killed by the cold every winter, especially since by far the most live in the region of the surface and are frozen. Those which are driven to deeper water carry on their existence, perhaps with not so much vigor, but nevertheless very successfully. Another factor which must be taken into consideration in arawing conclusions is that, with the onset of cold, the manufacture of oxygen is cut off
and a large proportion of the descruction which occurs is a result of the absence of oxygen and the presence of an increasing amount of carbon dioxide. As an interesting side light, in artificial ऐonds where thru the bottom there is a constant strean of pure water all winter long, life continues with unabated vigor. This is, of course, due partly to the supply of oxygen, but the higher temperature also has much influence.

With the melting of the ice, in the spring, the relative conditions in the water are entirely changed. The ponds lie open to the warming influence of the sun and the response in many species is very ready. Thus it is that most planarians and many rhabdocoels become sexually mature at this season. To a preat extent it is merely the change in teraperature which incites greater cellular activity. Those forms which do not have their repoductive seasons at this time almost invariaioly go thru a period of very active budding or fragmentation which does not occur when the teraperature is very low. Instances which well illustrate the power of heat are to be found in cases where a warm spring flows into a cold pond or strean. There, crowded into the water where the temperature is high, will be myriads of animal forms. Among these, planarians of all sizes are often very plentiful, while a few feet away, beyond the reach of warmth, there will be no specimens at all.

The lowering of the teraperature in the fall has two definite effects. First, it retards the life processes of many species and, second, in a directly opposite way, it induces an
acceleration in the growth of the sexual elercents. The first.
instance is the more common and has been referred to above. The second is rather difficult to understand. There are perhaps two theories to be offered in explanation. One is that those rhabdocoels which, in their primitive habitat, live in cold regions become sexually mature when the temperature comes the nearest to their ancestral condition. The other is that eggs which may develop slowly or lie dormant for some time if deposited in the fall, will be ready to begin a more rapid growth in the spring.

In the matter of food, the turbellarian is not fastidious. Many pieces of animal and plant material find their way bit by bit into the tiny and apparently inefficient mouth of the hungry hunters. Plant food seems to be second in choice, probably because the thick cellulose of its epidermis is too armor-like, is beyond the possibility of even receiving an impression from the delicate and jawless lips of these gentle feeders. Even the finest of the filanentous algae are theraselves as large as many of the rhabdocoels and too stiff to be managed, while the lower forms, such as the flagellate swarm-spores and the like, are as a general rule too swift and active to be caught alive. Even the planarians seen to prefer a more easily assimilated food. When, however, algal cell walls are broken down, so that the inclosed cytoplasmic content bacomes available, either free in the water or adhering to its original position, then it is greedily sucked up by almost any species. As soon as any of the lower plant forms begin to dis-
integrate, then they become a probable food supply.
The obtaining of animal food is somewhat more difficult, since only the soft parts can be used. The entomostracans, rotifers, and such types, furnish large amounts of food as soon as the individual dies, but they are seldom attacked when alive. In one instance, only, has a rhabdocoel been seen in an attempt on the life of a rotifer. For five minutes they strugfled, but the rotifer held its ground and the rhabdocoel finally left. The chitinous shield of small crustaceans armed with spines or other profections is formidable, but as soon as the segments of the body thru disintegration begin to fall apart, then it is possible for the rhabdocoel to craml inside and, thus protected, clean out the soft parts at its leisure. Protozoa are probably the nearest ideal food because their protoplasm is generally not so thoroughly covered as to be inaccessible and because they are common everywhere. In those species where a calcareous shell is secreted, the rhabdocoel swallows the whole, digests out the protoplasm, and then ejects the hard parts. The planarians, tho often dependent for their food on disintegrated fine organic debris, yet when the opportunity offers make the most stupendous efforts to obtain the flesh of higher animal forms.

As a whole, the turbellarians are scavengers, living generally upon bits of disintegrating organic matter. In the general life constituency of a pond community, they play an important part, constantly searching out and devouring particles which
might later be a source of bacterial growth. The smaller rhabaocoels can be found in great numbers, incessantly huntinfs thru the mazes of algae for dead crustaceans, etc., or burrowints and wormine their way thru the loose earth-like masses on the surface of the bottom. Here they find what is left of myriads of protozoans and also other material either plant or animal which they speedily devor.

Ainmals with feeding habits such as these would secra

 amlays to have more than a sufficiency of food supply at hand. But this is not always the case. Under special conditions, other worms or larger species may keep the sources of disintegrating raatter completely used up, or masses of debris may be entirely washed away to such an extent that a whole pond is cleaned of its fonc content. Under such conditions, the turbellarian does not die inmediately. It goes thru a process of starvation so slow as to be almost unnoticeable. The individuals become thinner and smaller, and in some species may gradually shrink until they are no more than one-fifteenth their original size, at the same time becoming almost transparent in color. This explains the immense arnount of variation in size of adult forms, the individual dinensions depending very directly upon the food taken. Planarians have been kept for eight months in clear water without food. The result was that at the end of the time they were still perfect individuals tho extremely small. Thus it seems that the food plays a very important part in the general appearance of most species.The enemies of the turbellarians are few. Altho such
delicate animals are evidently almost entirely ciefenseless, they manage to carry on a fairly free and unhampered existence. The smaller species spend much of their time swimning slowly out in open water where they encounter almost all the other inhabitants. It is especially noticeable in aquaria where many species collect at the surface or towards the light that the rhabdocoels or planarians mingle constantly with the others, crawling over them and around them in the most unconcerned manner. And often t wo or three individuals will collide with each other without the slightest inconvenience or apparent fear. This is easily explained in the case of the planariens which are enormous compared with the tiny crustaceans, but the rhabdocoels are so nearly the size of the other comon types that they wobld seem possible prey. However, a number of times rhabdocoels have been found gliding directly thru, between the valves of an ostracod unharmed, or resting contentedly under the carapace edge of some cladoceran.

This situation may partially be due to the fact that the crustaceans, themselves, habitually live upon disintegrating material and are not likely to attack living forms. Then, some of the rhabdocoel species possess nematocysts which would make them not only unfit for food but also rather well protected from most enemies. Others which do not possess stinging cells have especiall developed dermal rhabdites in very great numbers. While these are not weapons of defense, they probably render the individuals unpalatable.

Perhaps the most effective method of protection is the general habit of retirinf to well-guarded situations. The larfe planarian lying flat on the underside of some rough stone is in a fairly safe place, where few species are capable of dislodging it. The rhaboccoel hunts in some mass of alga where, at the same time, it is completely hidden from many large forms. If, however, it encounters an enerny of any sort, the rapidity with which it can contract enables it to disappear.

DETAIIED MORPHOLOGY, Strongylostoma rosaceum

Introduction

Specimens were first seen during the early part of November, 1916, in the ponds at the United States Biological Station at Fairport, Iowa. They appeared together with other rhabdocoel species, both swimming free in the water and also cominf out from masses of algae and water weod which were dragged up from the sides and bottom of the ponds. They were present in larger or smaller numbers in all. the collections made during the next three months. Individuals of this species were easily recognized by the rapidity of their movements thru the water and by their nabit of launching out spenly rather than crawling over the sides of the aquarium on the plants. They were frequent in roost of the ponds and the reservoir which supplied them, but in certain places where conditions seemed espacially favorable they were very abundant. Such conditions were, in general, a large amount of filamentous algae rather than the coarser water weeds, a depth of water of not more than eight feet, and as might perhaps seem reasonable they were more plentiful in ponds where there were few fish.

These forms are of especial interest for several reasons. Both color and preciseness of structural plan are striking in intensity and definiteness. Among the more common rhabdocoels the color is nearly lacking or at least dull and varying with the
surrounding conditions from a transparent white to an opaque graygreen. In comparison with such fresh-water types, these specinens are gorgeous, for even tho obscured by muddy water the clear delieate pink is noteworthy, and makes them stand out sherply against the greenish background, easily distinpuishable from all other animal species. While most rhabodocoels and even many Turbellaria are fairly simple structurally, in these the several organic systems are clear-cut and more completely develoned.

Though occurring in large numbers in these special ponds, they have not been found in other ponds in this region, and members of this same genus have been reported from only three localities in this country. Altho they are probably present in many places and will be reported at some time, they are evidently not at all commonly living in the fresh water mud holes of the Mississippi valley.

The fact that in water under the ice the number of individuals is large and that the period of sexual maturity is during mid-winter, may be correlated with the northern habitat of related species. In a number of rather widely separated regions in northern Europe, numbers of this genus have been described, and altogether it seeras to be a cold-loving form.

Special Technique

Specimens were taken from the ponds in pails of water in the common way, and then, one by one, removed with a pipette to small watch glasses or to a slide. For study alive, they with-
stood the presence of the cover glass better than other forms, since they do not easily or quickly break. Quince-seed jelly is not practical as only an extremely thick solution has any effect on the strong muscular moveraents. The best method is perhaps to quiet thera with a solution of cocaine followed by chloretone. They are very resistant to anything of this sort and it requires large doses to produce a condition of quiet, and then disintegration is liable to begin in a comparatively short time. When the animals can be killed, corrosive acetic or colf corrosive solation used directly after they have become quiet with the anesthetic will cause little contraction. They can then be stained, cleared and mounted in toto, and most of the organs will be fairly distinct. Sections were cut from four to eight micra in thickness and were stained in Ehrlich's hematoxylin and erythrosin.

General

The length was t aken when t he animal was at the point of greatest extension or at least when moving unhampered freely thru the water, so that both anterior and posterior tips were drawn out to rather acute points. There were a number of very small individuals which were probably fuvenile and not shrunken in size, due to lack of food. This seemed to be the case, since under starvation conditions, there was very little shrinkage of body size, most of the change being in relative amount of bulging in the intestinal wall. Those specinens apparently adult will vary from 1.0 mm . to 2.01 mm . in length, the average being within rather narrow
limits, 1.30 to 1.60 mm . The width is perhaps a little more difficult to compute, since it varies with physiological conaitions, i.e., it depends upon the amount of food recently taken in and also stage of development of the reproductive organs. The limits of variation here are from 0.10 mm . to 0.35 Mr ., the average being 0.20 mm . to 0.35 MM . The greatest depth is very nearly the same as the greatest width, for altho the ventral surface is flat and the anterior part very low, the portion of the body posterior to the middle is very much elevated so that it is nearly cylinarical. Both the measurements of width and depth were t aken at a point slightly posterior to the pharynx.

The amounts of expansion and contraction are very great so that measurements mean little except in a general way. A significant detail with r espect to shape is the amount of food in the intestine, or at least the abundance of food at previous times. This correlation of nourishment supply with shape variation is the result of the flexibility of the assimilative cells. Under starvation conditions, they are very minute and occupy no appreciable space in the body structure. When, however, the digestive sac is distended with nutrient material, these cells enlarge from five to ten times, and give the characteristic plump appearance to the animal as a whole. This species is especially contractile, so that it is able very quickly to accomodate itself to its surroundings. Under the slightest disturbance or fright, it may be drawn into an almost perfect sphere, the tips of the head and tail being
only the merest knob-like projections on the surface. The limits of extension are very much narcower, since there is almost no elongation posisible and the animal, when moving, is always at its greatest length. All the changes in shape are more marked in the posterior middle part than anywhere else, the head almost constantly keeping its form. The term 'head' is used, since the anterior third of the body is conspicuonsly divided from the rest by a somewhat narrower neck-like portion. The head, itself, is rather sharpIy pointed in front, the angle made being about fortyr-five descees. A little farther back, on each side, the outline angles again form two rather knob-like protaberances which are just a little in front of the eyes. Back of the eyes, the neck constriction begins. This is merely a curving in of the body wall, which soon begins to gradually bend outward again. As far back as the middle line (a point immediately posterior to the pharynx) the largest diameter is reached, giving an appearance of general plumpness. The posterior one-fourth narrows back rapidly to a slightly blunt point. Altogether, the shape is rather short and broad, with a triangular anterior end and a pointed posterior tip.

The color, which has already been stated as a delicate pink, varies from a pale rose to a deep terra-cotta, but is always of surprising brilliancy. This is apparent even to the naked eye, as is also the fact that it is only the posterior part which bears the color, while the head region is white. Usually, it is the cast that in most rhabdocoels there is very little if any tinge of
color, since the epidermis is not at all pimmented. Such a characteristic condition of the integument is found here, also, and the special rose tint is lodged in another tissue. As a result of metabolic processes, there is produced a very clear, light reddishorange oil, which, in the shape of globules, is stored in the ontside layer of the digestive tract wall, and, owing to the transparency of the epidermis, is distinctly visible. For this reason, that part of the body in which the intestine is sithated is also that which is highly colored, while the anterior end, into which it does not extend, remains clear. The variable condition of the digestive wall as a result of more or less plentiful sources of food, causes very evident changes in color and also in the limits to which the color extends. Consequently, when the lobes of the alimentary tract are fully extended and reach far anterior, t here will be some tint even in the head or, if there has been little or no food taken in for some time, then the whole animal will appear very light or almost white. Thus the color is in reality a byproduct of the organic processes, rather than of especial intrinsic significance.

Epithelium

The integument is made up of a single layer of high colunnar cells, in some portions carrying rhabdites and with a covering of cilia on the exterior. As a whole, it is an epithelium of the type found generally in the Turbellaria and varies only in many minor details of appearance and structure.

These high columnar cells make the epidermis a con-

spicuous body wall, a fact which is surpoising on account of the extreme delicacy of the structure. Altho there is no cuticular layer, the outer boundary is very clear and distinct. This is due, not to thickness of material, but to compactness and a membranelike toughness. The inner line of the epidermis is also well defined, tho not as dark and sharp as the outer portion. It is reinforced by a very thin basement membrane which helps to make a firm base of attachment for the numerous strands of muscle cells.

Since almost the whole of the muscular system is, to a greater or less extent, connected with the integument, this layer must be able to withstand the stress of very nearly every contraction. The midale part, between these two clear boundary walls, is very transparent, since the cross walls show but little, and for this reason the shape and size of the epithelial cells is difficult to ascertain. This fact offers some explanation for the ease and frequency with which the cells break apart. Most of the minor injuries to the worm are tearings or oreakings of this layer, which seems as easily healed again. It is probably of great advantage that the cells, because of their simple connection with each other, are able to repair an infury very quickly. Under conditions of injury, when the tension is released either entirely or only on one side, the cells very quickly become spheres, showing conspicuously their primitive flexibility and lack of specialized form. This flexibility is imperative when there is taken into
consideration the demands made upon the epithelium in the way of sudden contraction and expansion. There is an incessant and constant change in the amount of strain brought to bear upon a single cell or group of cells. For this reason, either in a small portion or in the whole layer the shape and thickness do not remain the same for any length of time and except when perfectly quiet the thickness is not the same for any two parts of the body. Under some pressure, the high columnar cells become flat, almost scalelike, and the layers consequently very thin. In general, the average thickness ranges from forty to one-hundred micra.

The external surface of the entire body is covered with a compact coat of cilia. These are distributed very evenly, not being grouped. There is also little variation in size as they are not longer or larger even at the tips of the head and tail. There are no sensory pits with large cilia and those around the edge of the mouth are also of the same general dimension. In shape they are slender spines with the base slightly larger than the upper portion, which is drawn out to a long, fine point. The length averages near the epithelium thickness, with a diameter of 3 to 6 micra, and they appear as extremely fine transparent lines. The vibrations are very rapid and tho generally the waves of motion are from anterior to posterior, yet upon occasion they may be reversed. Then, in different portions, the action may be at times entirely independent of the surrounding surface, continuing in some portions long after the main part of the animal hes been killed.

Other structures included, or at least connected, with
the integunent are the rhabdites. They are arranged in two tracts In the anterior portion of the head. These are symmetrical and are placed one on either side of the midale line in the dorsal part of the parenchyma. The anterior half of each group is a broad, fan-shaped portion which extends to the very tip of the head, and back and down on each side nearly to the level of the eyes. This central broad part as it runs posteriorly along the midde line toward the narrow neck-portion of the body becomes itselfvery slendar, like the handle of a fan, and thus continues back between the eyes for a distance.Then the posterior third of the whole group becomes wider again to about one-half the width of the antering fan, and bends outward away from the middle line, reaching almost to the sides of the body. The outer posterior edge is truncate and straight, parallel with the side of the body. Another group of rhabdites much smaller than and lying directly ventral to the dorsal division runs backward at some distance ventral to the brain. It starts anteriorly near the tip of the head as a part of the dorsal fan-shaped group, and, bending ventrally, becomes very narrow fust beneath the brain but broadens out again posterior to it. It ends abruptly under the extrene front end of the intestine. The rhabdites which make up these groups are arranged in strands of very regularly placed cells, each containing a cluster of rather large rods. In the anterior part there are from twelve to eighteen strands which narrow down to two or three, lying very
close to one another thruout the midale division, then in the remainder of the group there are from five to six strands broadening out a little. Each strand is composed offrom ten to thirty clusters of rods placed end to end so that the whole appears as a series of long lines.

The rhabdites or rods are surprisingly alike in size, shape, and color. The average length in adult specimens is twelve micra, while the width or diameter is about two micra. When released from pressure of the body, these measurements remained constant. The shape is a rather blurtly pointed spindie. Thruout most of the length, the diameter of the rod is the same, giving them the appearance of a rather long cylindrical pencil. The two ends are about equally pointed, and generally slightly curved or bent to fit the contour of the bundle. The color was almost a steel white, not at all transpasent, but bright and clear, with the edge very distinct and black. They seemed like bits of metallic rods sharp and hard, enbedded in the most delicate tissue imaginable. There is always a rather constant number in each cell, eight, nine, or ten, lying very closely packed in a solid ovoidal mass. The cell, itself, is quite large so that the rods occupy only the center and are surrounded by a large space filled with very finely granular protoplasm. These rod-bearing cells are situated either in the epithelium itself or in the parenchyma just beneath, as tho they had been crowded there. The rods develop one at a time, right in the cell, being differentiated, as it were, from the protoplasm.

The rods in many instances lie with their points towand the sura face and under very slipht pressure were discharged thru the outside wall, seemingly ky internal force, literally puncturinfs the cell. If, by chance, any entirely escape from the epiderais into the surroundines water so that all tension is removed, they immediately curl, sometimes tyinf a knot, and then spin around as they are swept away by the cilia-made currents of water. Even under slight disturbance in the body, they lose their straight position and appear more or less warped. Altogether the epithelium with its cilia and rhabites is a very characteristic part of he body structure.

Muscular System

The muscular structure forms not a layer but a finely ramifying system of most delicate fibers radiating in all directions thru the body mass. The fibers extend from one part to another, intertwining and interlacing into a regular tangle which is complete enough in itself, if the rest of the body mass were taken away to preserve almost a perfect outline of the body organs. One has only to watch the constant moveraent of many portions of the animal swake-wp to realize the existence of very many contrectile fibers. Since the worrs is very sensitive in every part of its structure, every part must be capable of quick response. Since the habitat makes it necessary to find a way thru any jungle of water weed or debris, each individual must find it possible to wriggle thru any maze within which food and shelter lie.

The anterior end is, of course, the most sensitive region and, as a consequence, its musculature is well-develojed, connecting the several head lobes with each other and with parts farther back. The muscle strands are extremely delicate, slender threads, most of thern ventral to the brain ganglia. A very few extend directly across from side to side, a few others are oblique, but by far the most run from the different parts of the head back to the intestine or the integument of posterior parts. They might be described as clusters of fibers starting froms ome point in the main body region and spreading out fan-like for their inacrtion somewhere on the inner surface of the head integrament. Since the head is very flat and there are few dorso-ventral strands, the whole complex forms a plate-like layer, very thin in front and becoming thicker toward the neck region.

The muscles of the posterior half for the most part run between the intestinal wall and the integument, anchorines and making both more firm. These are all rather short. Other strands run lengthwise or obliquely from one part of the outer wall to another, or, from a posterior region of the intestine to more anterior pats of the integument. There are also a few fibers reach ing from dorsal to ventral points. Taken altogether, these groups of strands form a peripheral layer just beneath the skin.

On the ventral side of the worm, most of the muscle cells are connected in some way with the pharynx or mouth, and function as an apparatus for drawing in or protruding the surface. The
musculature of the pharynx itself is quite complex. There are comparatively heavy banas of fibers encircling both outer and inner edges of the rosette, while between the heavy petal-like cells very numerous more narrow strands diagonal back and forth. The circular bands act as sphincters and by the force of their contraction cause the pharynx to work as a rubber bulb exerting powcr sufficient to dislodge very solid particles of fond material.

Connected with the reproductive systera is a series of muscle cells, having to do with the control of the atrial pore and the discharge of sperm and egg cells. The atrial pore, situated at the tip of a larger or smaller pauilla, is closed by the contraction of fibers lying near the ventral body surface. These are attached to the skin at one end and to the pharynx or neighboring structures at the other. In the walls of the reproductive organs thenselves are flat, thin layers of delicate muscle made up of many cells lying parallel to one another and acting together as a whole. These may be said to be temporary, as they develop very rapidly at the same time with the sexual organs, and are guite thoroughly weakened by the end of the reproductive season.

Thus the muscular system has to do with the functioning of the several organs or with the specialized reactions of the different parts, acting separately and independently of each other. In this species, it reaches a greater degree of contractility than is generally the case in other forms.

Parenchyma

Parenchyma, or Mesenchyma, as it is sometimes called, is the term used to designate the tissue, or rather mass of cells, which fills the interstices between the several olgans. It forms, as it were, the packing for the important parts which are thus buried and cushioned, fairly secure against at least minor injuries. The cells which compose the parenchyma are irrefular and variable in apperance. Soft and extreraely pliable, spherical when free, very angular when confined, they depend entirely upon surrounding conditions for shape. Since they are not limited to any part of the body space, but accomnodate thernselves equally well to the large open portions of head and neck region or crowd into the infinitesimal cavities between intestinal cells, it is imperative that they be capanle of very readily assuming any form. Correlated with such possibilities for variation is a very delicate and merabranous cell wall. The nucleus is large tho so clear as to be impossible to distinguish from the protoplasm around it except in cells which have escaped into the surrounding water. The cytoplasm is thin, almost watery looking, and contains a few rather conspicuous granules, the whole structure being very simple.

In functioning, this type of cell serves several pur-
poses. It takes the place of a circulatory system acting as the conductor for transfer of food materials. As it is in more or
less direct contact with all the grouns of cells in the whole structure, it forms a basis of connection between the digestive tract
and other regions. Where more highly specialized cells would preclude the possibility of such condition, these seem to be able to carry it on thru even a comparatively fonf series.

Another point of importence is the support which is given to the several body parts, the parenchyma acting in lieu of a skeletal systern. Since there is not even a cuticle to give stiffness to the integument, and since none of the organs possesses the necessary rigidity in themselves, the shape is maintained by internal pressure. The animal is, so to speak, inflated so that it can hold its form, much as plant cells are made still and resistant by their turgidity. Then, too, the soft tissues are held in place and prevented from crowaing one another so that their relative positions remain intact.

As well as serving for purposes of support, this most primitive of all the tissues also protects. It is very spongy, being capable of undergoing a great anount of compression, as for example when the animal squeezes thru an extremely small opening or when it bends or twists so that some one portion of the body is subjected to especial strain. The great amount of elasticity is also noticeable and causes the shape to vary. Thus, when the intestine is large and its wall thick, or when, α uring the period of sexual maturity, the reproductive organs occupy a great amount of space, the parenchyma is so compressed as to seem almost lacking. On the other hand, when the digestive cavity is empty and shrunken the whole body mass will appear to be composedet of parenchyma,
the cells of other sorts being insignificant in comparison. In the case of injury, also, this valuable layer plays the main part. Forming scar tissue and furnishing cells for regenerative purposes, it seeras embryonic in its ability to develop invarious directions. It seems not far from correct to sum up the foregoing characters by comparing the parenchyma with the enbryonic tissue of other forms.

Digestive System

The ${ }^{\text {disestive }}$ system is more complex than that found in most of the other groups of this class. Itc onsists of a very well-defined pharynx opening into a rather simply shaped, sac-like intestinal cavity, which occupies the greater part of the body space. So conspicuous is the whole structure that the general appearance of the animal depends entirely upon physiological condition. While all the other tissues are transparent and clear, the alimentary tract alone shows heavy and dark, giving the only suggestion of solidity and without which the individuals would seem altogether e phemeral.

Situated in the midale of the body on the ventral side, is the pharynx, which, viewed from above, is a large, sharply marked rosette. It is in reality an inverted cone or funnel with the small round mouth at the tip, opening down. The rosette is never entirely flattened, but slopes upward and outward to its connection with the intestinal wall. This connection is made with the very outermost edge of the pharynx, just above the large cirm
cular muscle band already mentioned. The lower, mouth-end of the cone is held in place by its attachment with the epidermis and by means of various muscle strands which also anchor it to portions of the ventral surface. There is no sharp line of dernarkation between the external epidermis and the epithelium lininp the rosett e so that the mouth is bounded only by the circular sphincter muscle. The pharynx wall, itself, is thick and heavy, due mainly to the size of the petal-like cells which, together with the mascles which control them, give the characteristic shape. There are from seven to ten of these wedge-shaped structures arranged with the smaller end pointing down toward the mouth. They are very rigid and act as a series of jaws. Criss-crossed between then and running in several directions are numerous strands of muscle fibers, which function in such a way as to vary the position of the rosette cells with respect to one another, and to make ther of value in seizing particles of food and in controlling the food after it has been taken into the mouth. Ins tructure and general mode of action, this resembles the bulbous pharynx of the Prorhyncidae, where the rosette cells number only four. The general shape of the whole rosette is changed very quickly and the complexity of its action makes possible a wide range of feeding habits.

The intestine into which the pharynx broady opens is comparatively thin-walled. This bounding wall which is very transparent and elastic is made up of one or two layers of cellswhich act as an absorptive surface, and are subject to an enormous
amount of variation in size. When there is little food material either in the main portion of the intestine or in some part of it, the wall draws in, so that the cavity is entirely obliterated. This is brought about by the pressure of the surrounding parenchyma as well as by the compressibility of the lining cells. On the other hand, when there is need for greater arnount of space in the alimentary tract, the wall is crowded out in all directions, portions of it compressing the muscle strands a nd other organs. The anterior end often reaches as far formard as the very tip of the head, pushing its way dorsal to the brain ganglion, and the eyes.

The digestive processes are carried on by means of these simple cells in the lining wall. In some manner, the food material is reduced to very minute clear globules which are often ejected as the result of slight pressure or otherstimulus. These globules are absorbed, converted during the process into an oil, and stored as droplets in the outer layers of the intestinal wall. These droplets are extremely variable in size and color. Those found in an individual at any one time will range from many which are just visible to some one-third as large as the pharynx rosette. The color is always very clear, a brilliant yellow-pink or some shade much darker. Generally, all the globules in a single 9 ecimen are of the same tint but there is the greatest difference among several individuals taken from the same very small aquariun jar. These rather striking details in the s tructure of the digestive system are characteristic of this family and sharply mark
it off from all others.

Nervous System

The nervous system contains fewer cells and a smaller bulk of protoplasm than any other part of the whole structure. The several tissues and organs are so arranged that they are very easily reached by means of a rather scant supply of nerve material. The kinds of stimuli received are few, as a consequence the receptive apparatus is not at all complex and the problems of correlation and response ares olved without great aifficulty. Arather high degree of sensitiveness in certain directions and the possibility of a precise response seem to have been achieved with a minimum of anatomical detail. As a result of such prirnitive plan, the nerve mass is not sharply marked off into separate divisions but appears as a very homogeneous, almost undifferentiated whole.

The main or central part of the nerve tissue is the brain ganglion which is situated near the anterior tip of the head, on a line with the widest place. It thus lies near the midale of the head, between the main muscle strands and the eyes. There is a slight division into lobes which gives the appearance, at least, of a double structure, but as there is no suggestion of symmetrically arranged nerve branches or in fact any regularity of position or size of fiber, there is little to show a truly paired condition. The nerve cells are fairly large, but show little detail of avelopment. The ganglion contains, also, other cells, either for nourishment or support. These may be distinguished by the fact that
they have no branches at all. It may, of course, be true that they later develop as true nerve cells. The- nerve connections can hardly be said to be definite trunks or even sjecial nerves. Since they seem almost like profections of the ganglion, amoeboid in their promiscuous wandering. Most of the fibers, or nerves, as they may be called provisionally, find their way to the skin, spreading out over the inner surface and forming a layer of receptive material Thus, these cellular projections are short, in the anterior region spreading out like many irregular rays from the ganglion, and become longer and longer as they reach farther and farther toward the posterior tip of the body. Therearevery few nerve strands extending toward the intestine and even the muscular system is poorly supplied. The greater part of the nerve mass is evidently sensory, and it seems the function of the motor nerves must be provided in some other way, perhops by the direct responsiveness of the muscular tissue itself. Since there seemto be no cells purely associative in their activity, the varions stimuli are probably passed from cell to cell. This fact would account for the relativefy small number of cell branches in the ganglion. But hovever primitive the nerve tissue may appear, it very truly shows a great advance over that found in related genera.

Closely connected with the nervous system and acting almost as a part of it, are three types of special sense organs, namely, the skin, the few specialized tactile or taste cell groups, and the eyes. The skin seeras highly receptive thruont its entire
surface and is evidently the most important medium of comunication with surpounding conditions. Only one cell in thickness, it serves as a most efficient conductor of stimuli of probably all general kinds. That it is extremely sensitive is apparent from the great number of contractions constantly taking place. On the ventral surface of the head, there are several suecial groups or patches of more highly differentiated epidermal cells. These patchesare each supplied with a special nerve branch and seem to be of value in selecting food, and in ascertaining more exact details as to environment so that they may be primitive taste or rather olfactory organs. They are composed of a cluster of several cells with rather heavy, rigid walls and denser cytoplasm. The whole head is generally in rather c onstant motion, parts are protmaded or pushed around in all. directions as tho investigating and locating any nearby somece of food. It is with these sensory patches that such activity is carried on.

The most conspicuous develowment in the way of sense organ is the eye. This is hardly more than a light-detecting organ but is noteworthy because of its characteristic shape and color. The eyes lie one on each side of the middle line just dorsal to the brain ganglion benenth the epidermis. The carmine-red color of the pigmented portion makes them stand out sharply against the clear head region. This color varies somewhat in different individuals but for the most part is heavy, dark, and very opaque. The outside surface of this dark part is exceedingly rough, coveredw ith
coarsely granular knobs. The shape, tou, is irregnalar, very jafjsea, almost suiny, and often with flecks of pignent completely isolated from the rest. The position of the pignented portion is quite constant. The pointed edge, which narrows outt o a sharp, bent tip, always is placed toward the middle line, at right angles with it, and directly opposite the eye of the other side. The remainder of the pigment is arranged like a cone-shaped cap with the much serrated external edge clasping a very tsansparent lens-like cell. This lens is all but invisible so that the inner surface of the dark cap can be distinctly seen much lighter than the outside, and also much smoother. The crystalline part is a solid bean-like structure, not ever exactly alike in the two eyes, and varying enormously in both size and shape. The nerve supply comes directly from the ganglion on whose surface the eye rests. It can hardly be said that optic nerves exist, since there are only clusters of cells which send branches or divisions of protoplasm up into the pignented layer. It searas hardly yossiblt that such an irregularly shaped mass could be capable of being more than a light-detecting organ, but the nerve supply would seera to indicate some true seeing ability.

The Excretory System

The excretory tubules are of the typical primitive type. They are protonephridia, rather large and well-developed, but exceedingly thin-walled and delicate, so that they are invisible except under very favorable conditions. The two long tubules have
their beginnings somewhere posterior to the middle part of the body and the extent and size are variable, so that in some individuals the tip may be very near the tail. The tubule, not at all constant in its position, wanders forward thru the parenchyma, quite deep below the surface, until it reaches the neck-region, where it bends dorsally around the anterior end of the intestine. In the head, it lies only a little way beneath the skin, beinf dor$3 a l$ to the nerve and muscular systems. A little in front of the eyes and between them, the two tubules, one for each side, approach each other and then bend around ventrally, forming two loops. They then run back still in a ventral direction till they reach the edge of the pharyngeal rosette, where they empty. Thruout their whole length, these tiny canals are nevert aut, but are irrogularly looned and folded so as to allow for a large amomet of stretching without any strain to the delicate walls. The flame cells are difficult to find, owing to their diminutive size and the deeply embedded position of the tubule. In some instances, there are a number of these waving cells scattered thruout he length of the tubule, while often only one or t wo can be found. As a whole, there is so little variation from the common type that a general description will apply directiy to most details of his form.

Reproductive System

Only during a rather limited period in the year are the reproductive oryans to be found. Then they stand out definite and heavy, easily recognizable among the other more transparent organs.

The season of sexual maturity extends from about the first of Novomber till the last of December, and during this time a single individual will produce several egrs. The animals are hermaphroditic but do not possess so complicated a series of organs as is generally to be found in this class. In brief, the reproductive organs consist of a paired testes, a single ovary, with small vitelline glands and an atrium seminalis which opens to the exterior by a short canal and pore situated on the ventsal surface. The organs lie close together just posterior to the pharynx rosette, ventral to the intestine but to a greater or less degree displacing it. The group of parts thus formed makes a noticeably cleaxer region, oval in shape, much larger than the pharynx in extent and lying in the middle of the body. The two testes are situated on the right and left of this transparent part, with the ovary befween them and in all three instances the ducts open forward and ventrally into the atrium. The vitelline glands,having their connection with the ove arian duct, ramify for a short distance among the adjacent lobes of the intestine. During the development of the egg, which takes place in the atrium, the other organs become crowded to either side. The organs, themselves, are characteristic and vary Iittle from the general type. The testes are spherical with a rather large duct leading to the atrium. This duct is very broad at the point where it leaves the testis and narrows gradually toward the opening, which gives it a funnel-shaped appearance. The wall of both testis and duct bear a layer of muscular fibers lying parallel
to each other. The wall is, however, of sufficient transparency to reveal the mass of sperm cells lying within. Thruout the whole reproductive period, the testes were tightly packed with sperm, all seamingly mature at least in size. The ovary varies a good deal in size at different times durins the sexual period. It 18 made up of a mass of extremely large cells packed closely one above the other, crowded into narrow plates, from six to ten cormpletely filling this organ. The shape is that of a pear but varies slightly toward an ovoidal. As the egrs become mature, at the lower end, they round out and draw away from the mass little by little until they escape into the duct leading to the atrium. Fertilization probably takes place while the egg is still in the canal, which is very short, or at the time it r eaches the a trium. The immature eggs are thin-walled with very large nuclei and finely granular prom toplasm. By the time the last egg has become mature, the ovary is very much diminished in size and is ready to almost disappear. In the atrium, which by means of its heavy wall becones the egg-capsule, the ovum goes thru the maturation stages, develops the yolkcells, and gains the heavy wail so characteristic. The atrium liec on the median line and as the egr enlarges it becomes more and more conspicuous. By the time the ovum isr eady for laying, it has a size nearly equal to that of the pharynx and has stretched the atrial wall to the limit so that the pressure is preat and only a small amount of displacement will cause it to be extruded. The can al leading from the atrium to the external pore is short and
held firmly in place by the surpounding tissues, but possesses a most elastic wall so that very quickly, when the pressure is sufficient, it enlarges many times to allow the passage of the egg. The pore itself has a very flexible wall, the opidermal cells flattening and lengthening to an almost unbelievable desree. At t he close of the sexual period, the organs are v ery much depleted and have shrunken, losing also the definitensss and toughness of he walls, so that the whole appearance is very different from that of the oarlier period.

DEVELJPMENT, Strumaz 0 Stomum rusicceum

Individuals carrying egrs were first noticed about the
middle of November, and a few were found in every haul made during the next four weeks. One mose appered on the twelfth of January, but none later In all cases, these individuals were not as enerally opaque as those not sexually mature, i.e., the intestine was not so clogged with food, and oil globules were piesent in only small. numbers. The body was also mach more slender, indicating either that the regular amount of food had not been taken or else that the strength was being used for the nourishment of the egis. Al tho sensitive, they moved around less actively than the others and seaned to be almost lacking in vigor.

The egig, which develops singly, is carried in the atrium seminalis and is visible because of its opaqueness even to the naked eye. It appears as a thick whitish spot, a tiny spherical knob causing the surface of the body to bul.ze a little on both dorsal and ventral surfaces. Under low magnification, it shows as a red-brow sphere, surrounded by a capsule made by the wall of the atrium. A little smaller than the pharynx rosette, this capsule generally lies just posterior to it and near the middle line of the body. On account of the transparency of the body and the heaviness of the egg, it appears as conspicuous as the rosette itself. The egg capsule though retaining its relative position in the body parenchyma is very movable, recalling a balloon buffeted about in
all directions but anchored to one spot by its tether, which latter is comparable to the short canal leading from the a trimm down to the pore on the ventral side of the body. This pore is eenerally almost invisible, but, under some conditions, it is draw uis into a rather large papilla, fust posterior to the pherynx. Tyis drawing up is due to the contraction of muscles in its walls and in the surcounding integument.

As soon as they were discovered, animals carrying effos were isolated in small watch glasses, where they were kept in about five cc. of water taken from the aquarium far in which they were found. These jars had been filled with water containing a greater or less amount of algae, water plants, many crustaceans, other rhabdocoels and an inch or more of mud and sticks at the bottom, in every way very much like the natural pond except in temperature, which was slightly variable-othe room temperature. The temperature was, of course, very different from that of the water under the ice in the ponds, but seemed to have little effect on the development other than perhaps to hasten it. This appeared true from the fact that in the hauls made every few aays young individuals were constantly found in increasing numbers and of several sizes up, from those smallest and evidently just hatched. When isolated, the individuals soon carne to rest and easily acconmodated themselves to the new surcoundings. Since the watch glasses were so small, there was some change due to evaporation, but this was as slight as possible because they were constantly watched and
the water replenished or completely changed. In order t p prevent too much evaporation, they were kept covered with beakers. Part of the time the water was changed every three or four hours, and part of the time once in forty-elght hours. The water used to rew plenish was either clear, from the reservoir which supplied all the ponds or else taken from the same aquarium as the individuals themselves and then carefully freed from all crustaceans and other small forms.

At first, the eggs were rolled around and moved by the force of the water from the pipette. They then either floated for a little time or slowly sank to the bottom. Two finally settled to the bottom and became fixed by a secretion of cement, so that their position remained absolutely unchanged thruout their incubation period. Others were rolled around more or less at different times. The parents were removed from the watch glasses just as soon as the egg was laid in order to prevent contamination of the water. Altho the individuals were isolated at different times during the day, in all cases the egigs were laid sometime late in the afternoon, the earliest at 2:30, the others about $5: 00$. It appeared that when the egg was ready or nearly ready for laying, it, required only a slight disturbance of any sort to bring this about. For example, in the case of egg number four, which was laid at 2:30 P.M., as the stream of fresh water entered the watch glass from the pipette, the animal somewhat aroused, contracted only slightly, but moved rather quickly about the dish for a moment, and

Just that small amount of extra contraction was enough to cause the egis to be extruded. In all the other cases where the egis was
laid several hours later in the day, the parent was quiet, more or less drawn up, clinging to the side of the glass or resting on the bottom.

The eggs vary slightly in shape, size, and color, showing perhaps the individual character of the mother. Never quite spherical, they can hardly be said to be ovoidal, the measurements averaging 14.5 by 14 micra. The outline of the eggis thus a very round-ovoidal. Sometimes, however, one end is more pointed than the other, giving almost an ellipsoidal appearance. That the shape is far from perfect was evident when the esg was rolled over and there came into view variations in the outline and in the amount of bulging in the different parts of the surface. The color is a rather clear deep yellow, verging a little on the red and brown, and is lodged entirely in the shell. This was demonstrated when the egg was broken and the white yolk was lost or when the embryo escaped after hatching, leaving the empty yellow shell. To the naked eye, the egis was a reddish-brown speck just barely visible, and appearing quite dark. Under some magnification, and with reflected light, the yellow was much stronger altho the influence of the white intensive portion of the egf was more noticeable. The shell though rather thick and heavy is quite transparent and clearly shows the yolk granules in the younger stages and the details of ombryonic structure in the later.

Fig. 10 shows the $e_{\text {gis }}$ as it appeurs durings the first few

 hours before sesgnentation has begun. The yolk granules give a cellular appearance and near the center can be seen the nucleus, rather large and with a heavy wall. The granules vary in size, some beine not more than one-quarter as large as others. They are slightly milky, somewhat transparent, almost a pure white, irregular in shape, somewhat angular, due partly to pressure, and closely packed. When the egg is broken, the granules escape into the water in a mass, the individual ones adhering quiteclosely, and holding their shape even when separated. Very little change could be noticed during the first six hours, but soon after that the even appearance was lost, as at different points there seemedt o be a breaking or drawing apart of the granules, showing lighter streaks. During the first twelve hours, the first and second cleavage stages were finished. The divisions were not distinct, showing very clearly only at the edge where a notch marked the rounding of the cells. By the end of the first thirty-six hour period, the cell divisions were much more distinct, the cells had attained a spherical shape and had arranged themselves definitely. The macromeres could be distinguished dram to one side of the eggw hile the four micromeres appeared toward the center and oponsite side. At different times, the nuclei of all the cells were visible as srall, round shadows. The spaces left by the formation and shaping of the cells was become roore transparent so that the outlines were distinct and the whole aspect of the egg was changed, i.e., the cells wereadhering to- each other only slichtly, but still one integral mass, and were floating in the surrounding fluid. The macromeres were very larige, about one-sixth the size of the egse and wiere placed in a hollow plate, while the micromeres, somewhat smaller, lay curved inside. By turning the egg slightly, different views of the various cells could be ortained, and their relations made out.

Durins the next few hours, the division stages continued.

In many cells, the new walls could still be distinguished but the mass soon became so solid and opaque that it was impossible to follow the cell lineage with any degree of accuracy. The two poles of the egg were marked by the difference in cells which at the micromere or animal pole increased in numbers, and soon filling- it began to push down as a cap over the large macromeres. At the begimning of the third day, the cap of small, compact cells had extonded more than half way over the egg, giving a typical gastrila stage. This was very conspicuous and characteristic, as the cells at the animal pole were dark and heavy, while the free portion at the opposite end was c lear and transparent. Durins the third and fourth days, the mass of cells in some places grew to extend all the way around to the ventral side.

The changes which take place durinf the fourth, fifth, and sixth days are those striking in their effect upon the appearance of the embryo. During the fourth day, the appearance is that of a mass of cells surrounded by a thick wall. It is at this perioc that the anlage of the various organs differentiate them-
selves and instead of a mass of cells the several tissues and organs begin to be apparent. The first noticearle change is in the wall of the embryo which develops into a clear, very thick layer so closely attached to the inner surface of the shell that it sems to be merely e lining membrane. That this is really the integument or epidermal layer of the young worm becomes evident when, thru the lengthening and expandinf process, this wall is folded in, away from the shell. Both outer and inner boundaries of the epidermis are sharply defined, so that the latter is a conspicuous portion of the embryo. The extreme thickness of this layer may be explained by the cramped and contracted position. Durinf this same period, the muscular syster begins its growth as many strands of cells attached to the firm inner wall of the integument. Thruout the following days, there is an increasingly greater anount of contraction and movement of the whole surface of the embryo. It is constantly being spasmodically draw in at one point or another for a minute, and then slowly released, as tho the different fibers were each receiving their quota of exercise.

About this same time, also, the anlagen of the intestine made its appearance as a mass of cells nearly in the center of the egs, the connection withthe mouth not taking place until later. It was merely a plate-like layer of cells at first, without any of the lobular ramifications of the adult organ. Little by little, out thru the parenchyma, small strands of cells became differentiated and enlarged as branches of the main portion of the digestive tract.
that the spherical condition was fradually lost en the minch folded, much crowded elongate worr was distinguishable. The two extremities were clear and very conspicuously different from the heavy, dark middle portion. In the anterior end, the mass of cells which forms the brain ganglion began to take shave and a little later the ejes could be seen. The t wo loops of the excretory tubules as well as the strands of rhabdites were visible. There was constantly a very slow rotating of the whole worm in the shell. It took sometimes from one and one-half to two hours for the whole embryo to turn completely over and it was rather difficult to distinguish the different parts, as the embryo was much twisted. At other times, the movement was much more rapid for a minute or $t w o$, and then the embryo would remain quiet for some time.

By the morning of the seventh day, the work was slowly twisting and turning almost constantly, often makinf a complete rotation in a few seconds. About this time, at points where the integument was draw away from the shell, in the space thus left long and well-dcveloped cilia could be seen vibrating rapidy in their close quarters. As soon as the wall returnedto its position against the shell, the cilia flattened down and were again invisible, altho their influence must have been felt as aidinf in the movernent of the body as a whole within the shell. It was to be seen, however, that the development of the cilia was parallel with the increase in the rapidity of motion, altho the muscular system
also had something to do with this motion. The intestinal tract was beginning to have a more definite boundary and to extend both forward and back, and to a slight extent around toward the ventral side. Durins the latter part of the seventh day, the eyes bergan to be distinguishable as very irregular brownish-red masses. They were almost crescent-shaped with the center somewhat pointed and jagged. They lacked, however, the extreme roughness of the adult form.

By this time, also, the several folds of the integument were lost and the worm had straightened out, doubled only once upon itself with one lon fold cutting thru the middle of the egg so that the anterior and posterior ends lay against each other at one side with the dark mass of the digestive tract around on the other side. Thus, the whole ventral surface was turned toward the center.

During the eighth day, one side of the egg showed a fine, dark line running around a portion about the outer surface of the egg. This line became more and more distinct and appeared like a crack in the shell. Its significance was explained later. The rhabdites at this time were still very small and difficult to distinguish on account of their transparency, but were fast taking the shape of the adult condition. They were arranged. a few in each cell but the number for a cell was smaller than in the adult. The mouth and pharynx rosette were also nearly complete. The two heavy, perfectly circular muscle strands and the intervening ro-
sette muscles were complete. The reproductive organs vere not developed, the atrial pore not broken thru, the papilia shovinfs only as the merest suggestion of an elevation.

The embryo was, by this time, very often rotating within the shell and was almost constantly contracting one portion or another. The intestine now extended well up toward the head and back almost to the end of the body, where it was broader and thickcr. In a lateral view, it could be seen extending ventrally to the rosette and the ventral wall. Several rather small oil plobules appeared in the wall, giving the characteristic orange color. These, however, were very few in comparison with the number which showed even immediately after birth. The embryo had, by this time, eviaently begun its metabolic processes and was an almost perfect individual.

During the first few hours of the ninth day, the r ing in the shell became very conspicuous as a point of cleavage and gradually, bit by bit, the cap-like portion pulled away from the rest, lessening the pressure within the shell and causing a cessation in the movement for the time being. Later, the embryo began struggling again, the force finally splitting the cap more than half way around and allowing it to spring up so as to permit the little worm to squeeze out thru the opening, leaving the erapty shell intact. The cap fell back almost into place. The newly hatched worm very closely resembled the adult except in size. It moved about very slowly at first, then more rapidly, and in a short time
was taking food in the sarne manner as adults. The color was that of the adult except that it was very much lighter. The length was 0.75 mm . by 0.60 mm . to 0.86 mm . by 0.65 mm . The animal was little more slender than the adult.

LIEE HABITS, Strongylostomurn rosaceuxn

The surroundings and imediate environment of these forms are much the same as those for other rhabdocoel species. S. rosaceum lives in ponds containing a rather large amount of green algae and perhaps some few other water plants with usually a muddy bottom, more or less deeply covered with leavee, sticks, and organic debris. The other animal. forms common in the ponds are such as will be found in very many other representative puddles. Akout twelve species of Cladocera, fifty rotifers, about a hundred protozoans, ten or twelve aquatic oligochaetes, besides very many insect larvae also inhabit these ponds.

Several environmental factors are of some detailed significance, perhaps the most vital of which is the water condition. The oxygen content seems to have little direct relation to the life processes, as the animal carries on its existence with seemingly equal ease in the clearest, freshest water, containing a high percentage of oxygen or in water heavily laden with carbon dioxide. The pond water tho constantly kept in motion by a steady stream running thru it, was often, especially near the bottom, very thick and muday. Sometimes thoroughly clogged with algal masses so that
many parts were dark, it also supported an extraordinarily larfe poyulation of animal species. Owing to a lack of balance, a number of times, in the aquarim fars, the water became very stale so that there was a igreat amount of bacterial srowth and much of the algae dies. Such conditions were, of course, fatal to a freat obeal of the animal life and in time would do away with those of the flatworm type also. These, however, seerned to withstand such adverse conditions longer than most of the others. The water temperature varies within very wide limits without causing any great difference in life processes except, perhaps, in the case of the reproductive organs. The surmer temperature is high and when standing in a sunny window, the aquarirm jars were often warm. Here the animals thrived, being more active in the warmer water. On the other hand, the reproductive season comes during the early winter months and that it is in the coldest months that the young generation starts its life independently is probably to be correlated with the low temperature. Thus the vegetative activity seerns greator in warm conditions while the reproductive organs function alone during the winter. HOwever, the life-cycle sems to be completed very soon after the eggs are laid, the individuals not existing thru two seasons. This may be due solely to the depletion of organic strength or, as seems possible, to the fact that the severcst and prolonged cold comes at a time when the animals are weakcned and unable to withstand such rigorous changes. The reaction
to light is positive but neither precise nor imnediate. When placed in watch glasses of water, lighted from one side, the individuals will always find their way to the lighted part after some time has elapsed. This was also true in large aquaria, but not as constant, due to influence of other factors.

The feeding haioits seemto be the result of the surrounding conditions. Altho active and much of the t ime living in open water, these a nimals do not attack living forms. Live, hard-shellen Cladocera and rotifers would be difficult for such soft, unarmed forms to manage, but even the smallest protozoans appear to be safe from their depredations. Repeatedly, upon encountering a most defenseless prototoan, the rhabdocoel will glide over it and leave it unharmed. However, the whole attitude is changed when the prey is dead. Very often the dead shells of small crustaceans, some of them many times the size of the rhabdocoels, are found entirely covered by an active hungry mass, eagerly devouring every bit of edible portion. It is quite impossible to dislodge even a single individual without crushing or injuring it, so tenacious is their hold. Figure 3 shows an empty shell of a Cyclops being cleaned out thoroughly by a few individuals. As they worked, it was possible to see how industrious and intense was the habit and manner of finding every particle of edible material. They remained within the shell for more than an hour, constantly at work, until it was completely emptied of all soft material and ready to fall apart. The
animals themsolves were by that time fully gorged and showed the digestive cavity dark and large, obscurinf even the pharynx rosette. Ostracod shells seem easy of access and are very often cleaned out in this same manner. Dear Protozoa, also other soft bits of animal debris, are eagerly attacked and devoured and it is probably in search of such particles which may be caught in the masses of algae or have reached the upper layer of soft bottom mud that the individuals are seen in large numbers finding their way hither and thither in the deeper portions. This may also explain the fact that water, dark with masses of organic debris, forms good feedinf ground, so that instead of being an unendurable condition, it is one in which there is possible greater vegetative activity. The role of scavenger is thus played by these small forms and their place in the balance of animal life must be an important one. Hardly to be considered as enemies of even a single individual, they are merely one of the types without which other more aggressive species could not exist.

It seems probable that so unarmed and defenseless a creature as this has a number of enemies, but the are evidently almost a negligible quantity. From an enemy like the fish, which takes in large amounts of water, the tiny rhabdocoel has no escape and no method of defense and numbers must thus become the food of large forms. Others will stray into the jaws of some animal along with the water, e.f., the crayfish, but the smaller crustaceans seem to make little headway in an attempt to kill and eat these dainty
morsels. Ostracods have a habit of attacking a resting individual and by means of strons appendages tearing a hole in the skin. It takes a good deal of persistence to accomplish this, however, as the rhabdocoel will either draw up into a compact ball hard to take hold of or will swim away, scraping off its tormentor in some mass of algae. Many, of course, must meet their death caught in some maze of filament or mass of loose mud but in open water they seem to be safe and able to swim quickly away frorn any danger. It may be, of course, that the taste is not delightful to some forms or the presence of dermal rhabaites may make ther unfit for food. In some way, they seem to be able to live a life singularly free from attack and they mingle in the most courageous manner with many species of larger forms, tho for the most part lurking in some secluded part of the deeper water and coming out to the light only occasionally.

They move very gracefully with but little muscular contraction. The coat of cilia serves as an efficient organ of locomotion and the result is a very even gliding, lacking entirely the twisting and turning so characteristic of other types. In pushing thru small openings or entanglements, there is more or less muscular contraction but otherwise the cilia are able to propel the body unaided.

In case of slight infury, there must be some amount of regeneration possible, but there is little eviãence of this. Among thousands of individuals exarnined, none were found in the process
of healing wounds or regenerating lost parts. This fact is conspicuous in comparison with other species where scars and wounis of one sort or another are common. With the above may be correlated the fact that no asexual budding has been discovered. It would appear, also, that a form of such complexity does not possess the power of unlimited regeneration but a condition of entire lack seems improbable. Further study will doubtless reveal sorne possibility along this line.

Family PLANARIIDAE

The Planarilaze in number of spectes is more fully
represented in the inland states than any other family of the Turbellaria. Seven species have been identified, five of which are new. Of these, Planaria maculatia Leidy 1348 is, of course, the most conmon, occurring in abundance in nearly all rocky streams and in many quiet ponds. Others appear more ralely but over such widely separated areas as to suggest that they exist with much greater frequency, and in larger numbers than is generally supposed. One of the species with such a wide-spread habitat is that mentioned below.

Planaria velata Stringer 1909

This has been taken from two very different localities, one a temporary puddle at Urbana, Illinois, the other a spring at Homer, Minnesota. At the former place, the water ws black and muddy with only a minimum amount of algal growth, the specimens coming from the bottom mud, with the loose silt, leaves, and sticks dragged up with a dip net. The conditions in the latter instance were almost the oponsite. The soring was of warm water flowing into the Mississippi and forming a little cove where there were almost summer conditions even during the coldest weather. All of these collections were made in February and March. Here a large number of species flourished. The plant forms and Protozoa were especially luxuriant so that there was an ample supply of food for a well populated community of microsconic forms. The list
containeत several rhabdocoels which were present in great abundance, and at least two planarians. One of these, Planneia velatr, was conspicuous amonis the other forms because of its dark brown color and lines of fragmentation. There was some characteristic variationk but most of the specinensw ere quite dark. Those few which did show a light gray were the small regenerating individuals. The color is due, as Miss STringer says, to a yellowish-brown pigment which causes the general dark tinge, but which under a lens is supprisingly pale and clear ggainst the almosttransparent groundwork. This pigment is arranged in very small spots, either round or irregular in shape, and lying in rows. These rowa are placed very evenly, close together, and follow the same windings. In general, they run longitudinally, but every projection of any part, every indentation, every wound, causes a drawing together, or else a cutting in two of the sowa around it. Moreover, thruout the mid-dorsal region, there is a contraction of both rows and spots which will explain the heavier color of the upper side. The pigment spots within the rowa vary in their relatinn to each other. They may be large and close together or far apart; they may be evenly separated or not: or they may be small, scattered or collected in groups. Under all conditions, however, there is a fine line of connection from one spot to the next. This is sometimes hardly more than a suggestion of pigment while in some places the connecting thread is knoboed and heavy. These color masses are all situated in the deeper portions of the epithelial

The smooth color was often interrupted by light gray lines running in different directions across the body. In sorne specimens, these could be seen as zrooves or furrows runninis into more or less conspicuous notches at the edge of the body. It is along these lines that later the splitting into fragments occurs. Often more than one or two lines could be distinguished at once and very probably in some specimens there might have been several since Miss Stringer reports as many as thirteen fragments from a single individual.

That the lines of division appear so early in the pigmentation and skin is notewnrthy, since in some species the internal divisions are laid down before the external are very prominent.

Planaria maculata minor nov. var.

In the many collections which have been made in the past, Pianaria maculata has appeared often and in large quantities. The situations in which it lives are necessarily varied, and often in many respects they are entirely opposite to those where it has been found previously. Then, too, the inmediate make-up of a pond or stream generally changes somewhat within the length of each season, and much of this change is detrimental. Another point to be considered is the lack of protective details, for, from many of its enemies it has no escape. A summary of these conditions will explain the very apparent differences in structure among the individuals of even a single pond. The variations are mainly
those of size, shape, and color, and since a very larise percentage have suffered mutilation, there are always many specimens which show parts in some stage of regeneration. Thus structures may be altered within wide limits and the aninal still be fairly typical. For these reasons, when many planarians from the Rock river showed small eyes, the fact was hardly noticed, and it, was not until large numbers revealed the same character that special attention was given to it. Several hundred specimens weret aken from different places along the river, all with this same distinguishing mark. Other collections in the Mississippi river, at Homer, Minnesota, at Fairport, Iowa, and alsn in the adjoinings ponds showed the same detail. In most respects, the characters are clearly those of Planaria maculata. The variations are of the same general nature, the habitat the same, the conspicuous difference being only in the size of the eyes and in the surcoundings pignent. Exact measurements were taken of the eyes in a few specimens from every collection and aporoximate comparisons made for several thousand more. Therew ere always to be found a number of individuals with clear white regions, lacking entirely any eye pigment, and there were always individuals with eyes at some stage of regeneration. These were never taken into account in the general results. The dark pigmented portion was measured for both length and width with some note as to the shape. From several hundred specimens measured, the average varies between 0.113 mm . and 0.167 mm . in length and 0.008 ram . and 0.031 mm . in width,

In general, the eyes are a fairly regular kidney-shmpe but the percentage of difference wetween the two eves of the individual is high. This, however, is true for all planarians. These measure ments were very nearly one-half those of an average Planaria maculata. The shape is a little more solid, bot inclined to be a crescent but always broader in proportion to the lertyth. The position of the eye is also significant. In the river type, the eyes are always very much nearer the median line than in the common form. They also lie almost in the edge of the midale pigmented stripe of epithelium. This situation makes their relation to the whole of the unpigmented region somewhat different from that of the common tyoe. That is, lateral to the eye-pignent, there is a very large irregular clear space. This is about five or six times the width of the eye itself, and is striking in its transparency. In the common type, on the other hand, the clear region, altho varying to some degree and irregular in outline, fits closely to the eve-pirment leavinfy only a wide margin of transparent integument.

This special character seems to be constant for the individuals found in the Mississippi river or its immediate vicinity. Whether it is only an environmental change due to some immediate biologic condition or whether it is develomental, remains to be seen.

The fanily Catenulicae was created by vonfraff in 1905 to contain five genera, two of which, Stenostommon 0 . Schn. anत Alaurina W. Busch, had, up to that time, been gronped under the family name Stenostomiaiea, and a third, Microstomurn O. Schn. had belonged to the Microstomida. To these three, he added two others, Rhynchoscolex Leidy and the old Catenula Anton Duges, which had hitherto been in a groun by itself, seemingly unrelated. He took the name of the new family from the oldest genus. Two years later, in 1907, Alex. Iuther added the genus Jiphorhynchus, a syecies with very heavy pre-oral furrow. Then, on the basis of the paired excretory tubules, and in agreeraent with the researches of Vejdovsky (1882), Sekira (1888) and himself, he removed Microstomum and Alauria, putting them together to form the Microstominae, a sub-family of the Macrostomidae. Another change came in 1908, when vonGraff substituted the generic name Fuhmannia for Lophorhynchus, since the latterw as already in used. The list of genera belonging to the Catenulidae was thus 1) Catenula, 2) Fuhmannia, 3) Stenostomum, 4) Rhynchoscolex, and this classification now stands.

This family is the simplect of the rhaodocoel group. It is characterized by the lack of an anterior prolongation of the intestinal cavity, and by the possession of a single protonephridium. The testes and ovary are always unpaired, tho in general they are not to be found, since periods of sexurl maturity are
rare. The common method of rempoduction is by budaini; and chains of two, four, or six zooids are much more frequent than sirfole individuals. Without eyes or rhabdites, almost entirely lacking in color, these forms are nost inconspicuous. With good reason, have they been likened to large protozoans, and superficially, at least, secm to be entirely without specialized structure, always small, few in number, compared with other types they are easily overlooked.

Of the four genera, three have been relorted from this country. One species of Satenula and two of Rhychoscolex were collected in small numbers around Philadelphia many years ago. They are probably present in other places in the eastern states, but have not yet been found here. The genus Stenostomurn is quite different in its distribution. Several syecies have been described from very separated localities and the genus as a whole seems to have a rather wide-spread occurrence. Itw as first described by 0. Schmidt (1888), who recognized the characters which separate it from Microstomum. He named two species and during the next thirty years eight others were added by different investigators. Up to 1905, the genus name was Stenostoma, then it was changed to Stenostomura, following the new nomenclature. In the United States, two European species have been identified, while four new ones have been added. This is the most important genus of the family, since it is by far the largest both in number of species and number of individuals. Altogether, there are sixteen species,
one being a salt-water form. Then, too, the feedinf; hnotts makes it seera to warrant an economic importance.

The most noticeable detalls of structure are the rather large sensory pits on either side of he head. These are unique and extraordinary in thenselves and probably take the place of the statocyst, eyes, and sensory organs of other types. The blunt, somewhat stiff anterior end and the protruding mouth region give a special shape and appearance to the head. The comparatively large intestinal cavity, filling so nearly the integumental sac is another conspicuous character. Altogether, these forms are worthy of more than ordinary interest.

Of the sixteen species which make up the genus, the oldest, Stenostomurn leucops 0. Schm. (1848) has had the most attention. The orifinal description was full and exact. Almost nothing more was done with it until H. N. Ott in 1892 made a careful and complete study of the histology of all the body systens, bringing out a number of details of value for c omoarative work with other families. Since this form is most primitive and evidently nearest the ancestral type, all characters of structure are of especial interest. In an experimental way, several authors have made exhaustive researches. C. M. Child during 1901-2 and 1903 published a series of five pauers dealing with the development of the zooids and regulation of fission using both this species and Stenostomurn grande. His results explain, at least to some degree, some of the life-habits and variations always to be
noticed. Since the asexmal reproduction is the general method, individuals in all stages of regeneration and development are to be found together. One or two of his general conclusions throw light on the laws which govern these common processes. Perhays the miost important are the following: When a zooid separates from the chain thru injury, "complete destruction of younger parts by older, may occur, but not older parts by younger." Again, if the separation from the parent is very early, the anterior portion of the young individual develops a brain regardless of its former relationships. These two facts will account for many of the halfchanged shapes and conditions present in smaller specimens. Ritter and Congdon (1900) have also used this convenient form as the basis of a series of experiments having to do with fission induced artificially or inhibited in some manner. These authors emphasized the migration of the brain ganglion and also certain special laws of regeneration which seen to hold. Child does not agree in his findings and brings forth rather exhaustive data to prove the truth of his conclusions.

The use to which this species has been put is due partly to the simplicity of structure, and consequent simplicity of reaction, partly to convenient size, and partly to the abundant supply of individuals. The distribution is very much wider than was earlier supposed. Silliman (1885) was the first to find it in the United States. He discovered it in large numbers in certain ponds in the east. The knowledge of its occurrence in other places
came slowly. Every few years it was reported from some new locality, but not until within the last fifteen years have the collectLons been adequate enough to prove its presence comion thrmout, the country. Now it is known to be living in three-fourths of all the ponds wherever there is other animal or plant life. During the winter, under the ice it seerns to carry on a successfin existence and can generally be found at any time. Of the whole group of rhabdocoels, this species is the most common, in fact almost cosmopolitan, and it is likely that future collections will prove it entirely so.

> In the way of biologic relationships, some few new observations may be of value. One chalacter which makes possible the very general habitat is the ability to exist under varying conditions. Stenostomum leucops is able to live in situations where the oxygen content is extremely low and where often the amount of carbon dioxide present is so large as to kill other members of this group. This explains the fact that it ma: be present in small puddles and ponds where there is almost no plant life, or in places where f ew animal types exist. Often, ton, in cases where the water is thick with bacterial growth and disintegrating material of all sorts, the Stenostomum is able to live long after the conditions seen entirely unfit. That they are sensitive to presence or absence of oxygen and carbon dioxide is shown when specimens are placed in water where part of it is cleared and fresher than the rest. They invariably find the freshest
parts, even tho the difference be very slight, and fure always to be found in the clearer portions of an aquartum.

The reaction to light is negative, tho not very pronpt, or definite. That is, the specimens a re always on the sian of the aquarium away from the light but it takes some time for then to find the position and many seera to prefer not, the very darkest places. It may perhaps be saia that both the brightest and darkest portions are unfavorable, and that a merely subdued lisht is to be preferred.

The reactions are not at all precise or prompt and the animals seern to be sensitive to general influences rather than to direct stimuli. Heat and cold in a general way seem to have almost. no appreciacle effect. Small weak individuals are found as yell in summer as in winter, large plump specimens in cold as well as in warm water, and, too, the period of sexual maturity is not so exactly dependent upon change in season and consequent change in temperature as in most rhacdocoels. It is true that in winter, ponds where a small stream of water raises the temperature, the numbers which find the warmer parts are very large, but other conditions very probacly hola here, as in such places there will be more food and often since the water was fresher, more oxypen. As a whole, the response to any ordinary stimulus is never strong. If the stimulus is so intense as to cause a decioed reaction, it is generally then of such a nature as to be injurious or perhaps to kill.

The food relationships are more complex than appears at first. How many enenies there may be is hard to ascertsin. That the Stenostomum becomes the food of other species is not clear since their bodiesare entirely of soft parts easily disintegrated. They seem not to be hunted down by other forms to any झreat extent, except in the case of some few fishes which would anyway easily take them along with other microscopic species. When, however, the body structure is disintegrating, the protoplasm ic content within the rhabdite-bearing integronent is good food for almost any form. They can hardly be said to form any conspicuous part of the food of any animal. The food they eat is of much more interest and importance. To some extent they are scavengers, eating the disintegeating organic material so plentiful in the surface of the bottom-mud, or entangled in masses of filamentous algae. They are voracious hunters and can nearly always be found working their way, truly worm-like, thru the soft silt, systematically seeking out every bit of available nutrient material. They also evidently swallow much indigestible matter, as after a period of feeding in such a situation, the intestine will be almost black and latert his residue will be extruded thru the mouth, sometimes a little at a time, and often in quite large masses. That this common form plays a large part in helping to keep clear the bottom water is very evident. The small algal s.ram spores, volvox, euglena, and the like, to some extent, are eaten but are probably more or less unpalatable. The food which is the most
conspicuous, tho hardly the most common, is made up of the larger animal types, such as ostracods, flochidia, encrusted protozoans, and the like. Stenostomura leucops especially searns to have a likinf for the largest possible morsels, preferring those with a hard shell. Difflusia is, perhaps, the most comnon form found lodged in the intestine and is present in even rather small-sized individuals. During a few days, five different species have been seen within the digestive cavity of specimens from a single pond. The naked protoplasm of t he animal part, even tho entirely drawn into its shell, is easily digested out and the comparatively smooth spherical exterior makes a mass easily extruded. The size is also convenient, not so large but that ever the contracted zone of fission may allow it to pass thru to the posterior zooids. In the same way, other small smooth forms seem especially desired. One example will show the tendency in this direction. An individual was noticed swinging around normally except that the movernent was a little slow. The shape, however, was conspicuous as the animal seemedto be a tiny cross, very clear-cut andoefinite. Under the microscope, the extra structure proved to be a good-sized ostracod lying in the intestinal cavity at right-angles to the length of the body and by its bulk causing t he body-wall to be pushed out on the two sides till the protruded part wase qual to the other divisions. The animal seemed to suffer no serious inconvenience tho the integunent and intestinal wall were stretched to the breaking point. Evidences of such unappropriate food are quite
common. Any rounded bard-chelled animal seeme acceptable either in part or entire, and the Stenostomum will often attempt particles entirely too large to be manarged. Spiny, rouizh, or even slightly irregular bits are almost never touched altho they may be small and easily captured. That very large bodies can be passed. thru the slender pharynx is evident, if the more or less constant dilation and contraction is noticed. When the intestinal valve is closed the the long pharynx is collapsed, it appears as only a narrow line running back from the buccal indentation. At various intervals, often rather suddenly, the mouth is opened, very wide, so that its dianeter is nearly that of the body, then imnediately the pharynx is dilated almost to a sphere, displacing the walls of the surrounding region and giving almost a globular shape to the head. It is this elasticity of the walls and envelopirg parenchyma as well as the heavy muscular contraction which gives the possibility of extended variation both in size and shape. The intestinal opening is also capable of enomous distention. The extreme flexibility and lack of cell intimacy have been mentioned as one of the important characters of the phylura and the development of such a character seems to have reached its height in this species, a fact which to some extent explains the variation in the food taken.

The types just mentioned as food preferred by rhabdncoels also help to make that of many of the fishes. Altho it seems hardly possible that individuals so minute could make an
appreciable difference with the food supply of anmmls like even the smallest fish, yet they are to be considered \& forminf a part of the life-strugsle of such economic species. To what extent they offset this by themselves being devoured can only be estimated, but it is probable that they do more harm than gond, since all the protoplasm upon which they feed is of definite food value, while them, thernselves, are too few to be taken into account as a supply.

Another striking detail of appearance is the diffecence in shape, size, and number of zooids arnong individuals not only of several ponds but those from one part of a single pond. This difference in appearance is the result of the formation of zooid chains, and all stages of growth are to be found present at almost any given tirne. In localities where conditions of food, oxysen, and temperature are ideal or nearly so, the chains of zooids form rapidly, and the segments cut off are small and blunt at first, tho they elongate very soon. Child (1902) very thoromithly worked out the history of the regreneration and starges thru which the segments pass before they are thernselves ready to divide. It is commonly know that almost immediately upon being separated, the segnents invariably attach themselves to some convenient substratum. The subsequent shape, Ghild says, is the r esult of this habit, and the "elongation of the body can be prevented by preventing the animals from attaching themselves". His final conclusion is of especial interest. "Due to attachment of animals by the tail,
and to mechanical tension cansen by ciliary action, the form of vegetating pieces is chanfyed; it is a mechanfcal phenmenon and ndt the effect of stimuli". The truncated, anterinc zonid after the cuttinig off of the others, is a conspichoils shape very frequently met with. It can never attach itself and so pather ainlessly swims about stiff and awkward until the rounded short gosterior and begins to become normal. In no other type is the shape so entirely dependent upon physiological aondition or relative age. The number of zooids for this species is generally two, altho longer chains are often to be seen. This is due to the fact that fission planes are rarely interpolated between others and that the first division takes place before a second zone of division begins. This is quite the opposite condition from that in the Microstomum, where when fission planes are laid dovn at all, they very closely follow each other. It may be said that in Stenostomm the asexual budding is not to be correlated with any season or with environmental conditions, since it is a constant process, but that the rapidity of the growth of zooids, i.e., the number of generations develnoed, is dependent upon these sumpondings.

Most often in ponds where Stenostomurn leucons is present, in larger or smaller numbers, there may be also several different species of chabdocoels, but generally no other members of this genus are to be found. In several of the ponds at Fairrort, Iowa, however, Stenostomum tenuicauda was also peesent and was in this instance the more frequent with very nearly the same life-
hadits and the same enviponment. The two sjecies existed siae hy side. But there was a great difference in their rapidity of movesment. S. leucous is much more pegular and quiet, holas rape constantly to comese, while S. tenuicaude shove a teridency toward a greater amount of action. In appenvance, too, they difcered decidedly, while the former is slightly opaque, the latter is quite clear and transparent, slizhtly yellowish in tinge. The slender tail region is also conspicuous when taken tofgether witht he blunt, and heavier condition in Stenostomum leucops.

Stenostomum giganteum nov. spec.
T^{h} is species was collected in large numbers in a pond with sandy bottom and clear water. The water was very warm at the surface and cold a few inches down. The drainage area was small, with no direct inlet, so that under all ordinary conditions very little outside water c ame in and since most of the water was seepage, there was no chance for any number of species to be washed in. There was a small rivulet carrying off some surplus, but for the most part there was no current and in fact not even disturbance of wind. The conditions were very nearly those of a balanced aquarium. These facts probably accomt for the scant number of species, and also for the large number of individuals of the few which had in some manner found their way to a place in so many ways so ideal. The comparative shallowness, with sandy surromdingf area prevented any silt from being deposited, then, too, the amount of disintegrating organic matter was minimm. The plant
life was profuse, enough to tike care of all the carbon dioxide generated, so that the water was always clear anc fresh. The animal life was c omposed of a few fish, mostly Amia, a few stray turtles, microscopic forms, a small crustacean, protozoans, and many rheodocoels. The lack of distrobance or change and the constancy of inter-relationships of varims species precluded mrent differences in the general fauna and flora and made possible the persistence of the same types and a continuation of the samer elative conditions. The situation in the present instance was, perhaps, slightly different from that of other years, since by a beeak in the shore line the river had swept dow thry the pond carrying away the whole thing. As a result, all the pond life was new, at least only that left when the water receded. The rhabdocoels were floated out in numbers from masses of Chara pilled up from the bottom where the water was eighteen inches deep, but they were not to be found in any of the masses of Spirogyra taken only a few feet away. The coarser leaves of the chara evidently harbosed more protozoans, more organic debris or other sorts, and thus furnished a larges supply of food, but the oxygen in that region must have been very much less. No specirnens were taken at the surface, they were always dovm a few inches where the water vas quite cool. Stenostomum leucops was present in only small numbers and Stenostomum giganteg was very numerous. The food seemed to be almost entirely protozoans and small crustaceans, the size making it possible to swallow easily a number of species.
and turnings so characteristic of Sten?stomyn loucops were very very nearly lacking. Most of the syecimens were macle up of t wo zooids, and not a single chain of more than that was forma. They were negatively heliotropic. Their lensth of life has not been ascertained, as they were found only duriny the summer months. A number of collections were made during Jamury, theu eighteen inches of ice but the very shallow water below this thickness showed only a very few crustaceans. Dead fish were seen and it was apparent that very little oxigen was left in this bottom layer.

The relations with other forns seemed quite simple, their only enemy was probably the fish, and the whole life condition was without great struggle.

Among the other aninal types to be seen in the collections, this species was very conspicuous, even to the naked eye. It was the largest of the nearly microscopic forms and moved quite enough to be easily distinguished. As has been mentioned, ninety percent of the speciraens were cornoosed of two zooids, and such individuals averaged in length from one to two millimeters. The two parts were not quite equal, the posterior generally being a little the longer, so that the measurernents would average about 0.7 to 0.9 mm . for the anterior segrnent and 0.8 to 1.0 mrn . for the posterior segment. The single individuals were, as a rule, those which had lately split and were of ordinary condition. They were almost always a little over one millimeter, but never reached the
length of 2 mm . The width and depth were very nearly the same except in the tail refion and in the very anterior end. This diameter was from one-fifth to one-quarter the entire lenfth of a double individual or in many instances where a separate sement was measured, was as much as one-third the lenisth. On the whole, this species semed about twice as large as the common Stenostomum leucops.

In shape, these specinens were quite different from other members of the genus. They were not so slender, but semed more stubby ard rod-like. The ratio of diameter to lenfth was 1 to 4 or 5, eather than 1 to 7 or 10. Not so agile or flexible, they were stiff little cylinders, tapering off bluntly to a short, tio. That is, from about the middle of the posterior zonid to a point just behind the mouth, the diameter is always the same (except at the fission plane). The region around the month is somewhat protruded as a sort of circular lin which on the posterior ventral portion is somewhat extended, making a bulge or knob-like enlargement at that point. The dorsal anterior part is only slightly inflated and slopes up to the anterior proboscis or lappetlike front end. This is a triangular flat portion extending back behind the ciliated pits. The greatest width of this triangle is nearly equal to that of the body in general but the thickness is not more than one-half the body depth, so that the mouth enlargement is accentuated. The shape of these forms generally
depands to a great extent on the amount of contraction or expanIon but here the rather unwieldy body is never tis a larese extent altered. That is, the aniunal is flexible and capable of contracting within somewhat narrow limits. The most contractile portion is, of course, just hehind the mouth region where the extreme flexibility of the pharynx demands heavy muscular action, and this part is much more thoroly developed than that of any other species. Such a condition can be correlated with the heavier kind of food. The regions of greatest contraction show clearly in the preserved material, where the anterior tip and pharymeal regions are draw back into the body integument.

The color appears quite white. Since the body is

 heavier and thicker than most forms, it is pyaque and not at all transparent. The heavier integment and thicker layer of parenchyma obscure the intestinal contents and also the intestine itself, so that there is no chance for any color to shine thru. Against the dark background of water, these individuals stand out strikingly.The integument is, of course, a one-celled layer, a little heavier in proportion than that of other species. It is not so transparent as might be expected, due to the rather solid outside cell walls, but in most respects is not very different from the general type. The thickness varies with contraction. In life, it is about 10 , in mounted sections it is close to 17.5 over all the body excent the anterior and posterior ends,
where it is from 20 to 25 . That the cohesion of the cells is slight is evident in such prepared material where many of the cells are practically pushed out or even completely तislodiged from thetr original position in the epithel ium. When the whole structure is thus crowded, the cells dove-tail into each other to some extent. They are then hish colimnar, but more or less inrefglar, alnost trapezoidal, often so as to fit compactly. The portion containing the nucleus is the larger and with few excentions is the inner they form
part. The nuclei are large and stain heavily so that/the most conspicuous part of the integument. In sections, they stand out against the very fine delicate cytoplasm. The cilia are veryfine and long, from 16 to 20 . They are of about the same size and are distributed evenly over all the body. They move in waves from anterior to posterior as a general rule. The cilia ining the sensory pits and mouth indentation are longer than the others and very even. The ventral side is not so much differentiated as in most species and the cilia are little different from those on the dorsil side. At one point near the posterior end, however, where the animal habitually attaches itself, the epithelial cells are a little heavier and the cilia show a tendency to be short and large. Another detail not so conspicuois is the presence of very small, clear rhabdites; where the integment is expanded they lie flat, parallel to the surface but scattered and more or less iregularly placed with regard to each other. Under heavy contraction, when the cells are narrow and deep, the rhabdites are
perpendicular to the surface, arranded evenly as a layer on the outermost surface, just benerth the cilia. They are even, smonth little rods with blunt ends and are all of the same size, and ocour over the whole surface of the body. The influence of killinf and fixing agents often slightly swells thern to transparent knob-like bodies.

The integument is very closely related to the muscular system which lies just beneath it. As Ott (1892) has pointed out, the inside, next the epithelium, is composed of ciecular strands while that inside toward the parenchyna is longitmoinal. The circular muscie cells are many and make a sinsle row of almost round cells extending the length of the body. This row of cells is interrupted at the fission plane and in the region of the ciliated pits. The several individual strands are often 20 apart, often side by side. The cytoplasm is gran lar and stains heavily. The longitidinal cells are very slender strands with the nuclei showing as tiny enlargements along at different points. They are not many in number and are scattered. Very few run directly longitudinally, most beinf slightly oblique or extending from one portion of the epithelium to the intestine or to some other part. The layers around the pharynx and mouth have the cells lying much closer together and on the whole they are longer. Around the wall of the intestine, the circular strands and also the longitudinal are almost embedded among the digestive cells. They show somewhat scattered heavily stained between the outer
ands of the light large cells which make np the assimilative layer. When the intestine is filled and the sraall guount of parenchjaa yushod away, these rauscle strands are close to those of the body wall. The most striking characteristic of this system is the extremely small number of strands or fibers thrusint the whole structure. There is much less true muscular contraction than in almost any other family of this froup and a great part of the rovernent of cells is due to changes in physiolofical condition.

The parenchyma is extremely vacuolate and the cells are very delicate. Most of the support givent he different or and also the stiffness of the body as a whole is due to the tursidity of these few parenchyme calls and to the watery protoplasm Which fills the vacuoles. As Ott finds, for Stenostomum leucons, the space between the intestine and body wall contains very few cells and the only material to be displaced under varying conditions is the body fluid. The largest mass of parenchyma is that just posterior to the brain and sureounding the anterior portion of the pharynx. In prepared sections, this shows as a very irregular network with very few nuclei, many of these connecting strands are broken and the cell bodies tom. The body of the cell is rather small but varies somewhat. The nucleus is round, stains deeply, showing large granules. There are generally five or eight longer or shorter threads or processes extending in all directions and forming a connection between neighboring parts. The simplicity of this syrstem is one of the characters of the genus and this
syecies seens to have fewer parenchjmatal cells than any other species.

The disestive tract is the most noticeable part of the anatomy. The mouth with its enormous stomadaeal indentation is conspicuous. The comparative size of this hollow epitheliallined portion is sufgestive. The cilia here are longer than in other parts of the integment. The mouth is really situated at the inner end and is the point where the true ectoderm ends. It is, of course, flexible and is controlled by a few strands of muscles. In the main, however, it opens or closes as a result of the expansion or contraction of the pharynx. The pharynx, when expanded to its limit, reaches the body wall and pushes that out, making the whole of that region appear pound. This amount of enlargement is greater than in any of the other common species. In other respects it resembles them, as in the presence of gland cells connected with the outer wall and the lining cilia. The entrance to the intestine is not as sharyly marked off as in some species and this opening is not so precisely governed as the mouth. A very few muscle cells surcound it but they are not stronj enough to act as a sphincter so that the closure is made by the pharynx altho there is a very distinct line of division between the phafMgeal cells and those of the intestine. The intestinal wall is perhaps the most specialized part of the body structime; altho made up of only one thick layer of cells it shows a supprising arnount of variation. When not inflated b:r a large amount of food, it is
thrown uy into a series of pather fegular folas. The onter porm tions of the cells under certain physiolorical conditions shows a protoplasm very finely granular--almost clear. It is these portions which undergo most of the pressure and stress when the intestinal shape varies and they generally are mich narrower and smaller than the inner half of the wall. This inner border is often very irregular, same cells beins pushed far out ints the intestinal cavity. This is caused either by the crowding of the outer margin of the wall or by the intemal pressume of the cytoplasm. For, as the assimilation process progresses, the protoplasmic portions of each cell require relatively large amounts of food material, generally in the shave of oil glocules. Sometimes the contained mass is so laree as to occupy the major portion of the cell, and gives a very characteristic appearance. Other cells so situated that only a narrow section of the intestinal surface is free may have no extra material and be small and shrunken. Thus in most respects the intestina is an ongan very like that of other species.

By slichtly flattening the animal, the simple excretory tubule can be seen contracting slowly and irregularly. It is lasge enough to be clearly distinguishable and its course can be followed from the posterior part forward to the anterior loop and then back to the external oyening. The diameter is about that of the thickness of the integument and the white color makes it stand out against the dorsal wall of the intestine.
the period of maturity sccurs rather seldn. The asexurl budaing is common. All of the sluecimens taken were either in the process of forming zooid chains or had evidently recently separated. Extcrnally, the first or median fission plane was the only one completely enough developed to be noticeable so that almost, all the specimens aupeared to be formed of only two parts. The r eason for this is the precocial or rayid develownent of the organs in the first budding zone, so that the separation takes place before the organs of the next zone have become visible from the exterior. Sections of such a zooid chain show the relative develoynent of the several parts. The situation is briefly this: The brain gange lion on the dorsal side and the buccal indentation on the ventral side of the digestive tract become about half-formed before the integument and parenchyma begin to narrow in at all. By the time this pushing-off process is nearly complete, the mouth has broken thru, the sensory pits are formed, and the last connection is by means of the intestinal cavity which is continuous thru the pro-boscis-like anterior end of the posterior zooid. In this syecies, such a connection remains intact for a longer t ime than in most others and it is broken off only just before the two individials separate. Generally, in both individuals of such developnent, a histological examination will shov the beginnings of another fission zone in the anlege of a new pharynx and another brain ganglion. The fission plane is quite exact and sharply cuts the parts, while
in some forms the constriction is ryaclual, so that the adjacent parts do not lie very close together.

Comuarinis this species with others of the semus, it seems very blunt and solid wy the side of the more slender, ayile types. The proportion of diameter to length is very mach freater than is common.

Stenostomum giandifera nov. spec.
The form given here was present in several ronds in all of which the bottom was muddy and covered with a fine layer of silt. The plant and animal species varied, lout in all cases the environmental conditions were much the same. Except in one pond, the sun and wind had mach effect upon the t emperature and quietness of the water. Stenostomurn leucops was also present with some degree of frequency. There was al ways either some filamentous alga or Chara, and the living surroundings were ideal for all types of microscopic animals. Most of the food material seens to be taken from the silt and very little from other sources, that is, this species is entirely a scavenger in its haoits. Tho swimming free when disturbed, and often at other timest quietly gliding around, it pays no attention to any food material and only feeds When hunting thru the thick bottom debris. This accounts for the fact that the intestine is always very dark in color. But, in general the life-habits are very similar to those of related forms. In a study of the anatomical details, a few characters are significant. The average size is about one millimeter, altho,
of course, there is the same variation as in the whole jenus. The shape, however, is more characteristic and defirite. This is a very slender form with little difference in dianeter. The relative proportion of lenigh to width and depth is acout one to eight, which is quite different from some others where it is one to five or six. The anterior tip in front of the mouth is much shorter than in most species, a condition which gives the head a much shorter, blunter aspect. The shape of this end is also less pointed than is often found. The posterior portion also is short, that is, the diameter of the body remains the same to a point about one-fifth the length of the body from the end. Thep, the sloping off to the posterior tip is very rapid and this end is nearly as rounded as the anterior end. The body, tho so regular. is not at all rigid and vends easily. The color is light, except in the intestinal region which generally shows up quite dark, making a decided contrast between the anterior quarter where the head and pharyngeal portion is nearly transparent and the heavy body part.

The integument is very thin, delicate, and transparent, which allows the internal condition to be easily seen. The cilia are short and very evenly distributed thruout. They are only slightly longer in the mouth region. The rhabdites correspond closely with those of other forms, being very small, regular rods scattered thruout the epithelium and lying parallel to the surface. Several are often grouped, lying side by side, but many are single.

The parenchyma is exceedinyly transparent and is concontrateci in the head region anterior to the digestive cavity. The fosterior triangle between the intestine and the tip is very small and fencrally almost obliterated. The layer enveloying the iritestine is so thin as to be very nearly lackinf, its presence being demonstrated only at the fission planes where it forms a mass graciuall: increasing and pinching off the digestive cavity.

The most noticeable character of morphology is the digestive tract. The mouth expands into a somewhat irregular round opening, but does not contract to such a small cavity as in some species. The mouth indentation is a deep funnel rather heavily muscular but not so flexirle as in those types which are in the habit of swallowing large masses of food material at a time. This funnel leads to the pharyngeal cavity which is rather long and narrow. The wall here is very transparent and the outsice cells small and almost invisible. The connection with the intestinal portions is very sharply marked by a deep constriction. Except when the opening is somewhat expanded, the pharynx appears pinched offcompletely. The lumen of the digestive cavity is small and fairly regular in general outline. The wall, of course, is folded more or less but the folds are of nearly the same size and follow one after the other about the same distance apart. Within this wall, or rather very closely applied to the outer surface, and really a part of it are numerous masses of cells. These are a little longer than wiōe and are scattered regularly over the whole
intestine. Vongraff (1911) figures intestinal glands fo Stenostomun tenuicauda. These are much smaller, varyint; somewhat but anout one-half the size and are more numerous, showing about threu times as many in each indiviaual. They are quite flat against the surface and protrude only slightly, while those of stennstommn tenuicauda are heavier and nearly globular. These glands are undoubtedly digestive in function but their exact wowkinf has not been made out.

Other details of suecific value are the special sensory organs. The ciliated pits on either side of the anterior lappet portion are small and shallow compared with those of Stenostomum leucops or Stenostomum tenuicauda. They are verynear the end, half as far from the tip as the width at that point. They are not so consyicuous as in most species, as the epithelium is not thick or the cilia long so that the outlines are not sharp. The patelliform or light-refracting organs, on the contraxy, are very distinct and appear as rather large, bright, almost irridicm cont spots directly back of the two sensory pits and on a line with the naterior edge of the mouth. They are not exactly round, but have a slightly angular outline, showing thrix the clear parenchyma, almost like two bright eyes. The size and brilliancy of these organs distinguishes them from the small and dull developments in other species.

The zooid formation is another developmental trait.
The first fission plane is far posterior, cutting offabout one-
third of the body lenisth and second and third divisions eref elom found. The diameter extemally is not changed intil the internal parts have been nearly completed. The parenchyma acts as a protedtive cushion surrounding the partially develoced brain and pharynx and at the same time confines and pushes back the intestine until only a very attenuated portion connects with the anterior zooid.

The distinctive details may be sumanarized as; first, slender glandular bodies occurring in the wall of the intestine: second, especially large and clear patelliform bodies together with small sensory pits; third, an extrenely constricted connection between pharynx and intestine; fourth, a cushion-like mass of parenchyma protecting the anterior end of the second 2ooid; fifth, the very regular cylindrical shape.

This family name was proposed in 1907 by Alex. Iather to contain two subfanilies, the Microstominae and the Macrostominae. The former had, before this time, been a genus of the CatenLidiae but the researches of Sckera (1888) and Vejdovsky (1895) and especially by himself made a new classification necessary. The latter had been a family by itself compnsed of three Eenera. The interrelation of these two subfamilies was made on the basis of the paired excretory tubules, simple pharynx, and veritral mouth. The main differentiating characters are the presence or absence of a preoral intestinal diverticulum and the habit of asexual budding possessed by the Microstominae to a surprising degree and not at all in the second group.

Microstomun caudatum Leidy 1851

The Microstominae contaïns two genera, one of which is found in this country, four species having been reported frorn one or two places in New York and Michigan. One of these, Microstomurn caudaturn, is present in large numbers in an artificial pond at Grinnell, Iowa. It has been taken as late as the last of Novcmber from heavy masses of cladophora floating near the shore, and to the naked eye appears very much like Stenostomurn leucons, which was also to be found in some parts of the pond. Almost all of the specimens showed three distinct fission planes, two nearly complete pharyngeal cavities and wo others at a much earliers tage of development.

This was clearly Microstomum candatum but in several
minor points it differed from the original descriptions of that suecies. In size, it was about two millineters long, the average of the whole number of sjecimens taken being within very narrow limits. The anterior end was not as large and round as the eastcin type. It seemed slifhtly pointed at the apex, beirig very little broader than the posterior tail end. The tail part also was somewhat different from that of the original type in that it was round and blunt and not at all pointed. The whole surface was quite smooth and regular, showing almost no indentations at the lines of fission. The color was a very transparent, almost irridiscent pale yellowish-green. The intestine when emvty was also surprisingly clear, showing hardly any yellow at all, blending with the surrounding parenchyma. There was the हreatest difference, however, when it was more or less filled with food material, as then the color was a distinct gray giving an entirely different tinge to the body as a whole.

The epithelium is very thin and transparent, but bears extremely long cilia which are few in number, of the same size all over the b ody and rather heavy. The most noteworthy details of structure are the nematocysts, which are very conspicuous. They are nearly one-third as large as the pharynx and a respherical in shape. Before being discharged, they appear to have a srall, sharply-tipped cone-shaped structure within, and lie parallel to the surface of the body. When thecell is set off, this thread
of the sting is shot out from the tip of the cone. The se nematocysts are scattered very evenly over the body, and are arout fifty or sixty in number.

The muscular system is very slightly develored and toGether with the parenchyma forms only a small part of the body make-up. The pharynx is deep and broad, cup-shaped, with the mouth opening very large. When closed, however, the mouth makes only a narrow slit on the ventral side, standing out sharply against the circle of the pharynx. The intestine is broad, its dianneter beirg very little less than that of the body, and the wall well marked out and solid. It is not an even cylinder but shows a tendency to widen out at each fission plane. This brief summary ernphasizes the many minor variations which may be evolved in - different environnents.

Macrostomum sensitivum Silliman 1885

One individual of this species was taken from a small
pond in which seven other rhabdocoels occurred in larger or smaller numbers. In most respects, it very closely agreed with Silliman's description but in regard to a few points, added details may be of value. The rhabdites which are arranged in groups of two or several, lie in large, spherical cells. In shape, these rods are long and straight, rounded at one end and somewhat pointed at the other. Generally, tho not always, they lie parallel to each other. The rhabdite-bearing cells are scattered evenly over the surface of the body and not at all gathered into tracts. In the
cytoplasm, there are a number of larige, light colorea flurules, placed in close proximity to the rhabdites. These flobules are relatively large and prominent and evidently have to do with the functioning of the cell, tho whether they are stored nutriment or are merely a by-product of the heavy metabolism is not clear. The sensory organs are also noticeable. The eyes are very far apart, nearer the lateral margin than the middle line of the head. The sensory hairs are very clear, sharply pointed and seem often to be bent back at right angles to about the midale. This bending may be directly opposite to the position of the cilia, a fact which seens almost impossible. In general these hairs are evenly distributed, but sometimes they may be grouped in tufts of six or eight.

The digestive system as a whole varies not at all from the eastern type but the muscular power of the pharymx seems extraordinarily developed. The mouth with its boundary of heavy glandular cells may be protruded as a cone-shaped elevation which is constantly being turned from side to side. The muscularity extends back thru one-fifth the length of the intestine and is very conspicuous in the live animal.

The reproductive organs are also noteworthy. The chitinous portion of the copulatory apparatus is bent, as usual, but the whole tip is broader and heavier than in the original diagrams. The eggs develop, a number at a time and crowd forward, stretching the oviduct and filling the space between the intestine
and the body-wall. This brief sumary covers the min detrils of variation.

Macrostomum album nov. spec.
Of the three genera which make up the family Macrostomidae, only one is represented in the eastern states. Two species, Macrostomum appenciculatum 0 . Fabricus and Macrostomum sensitivurn have been found, as a few specimens at two or three different times. The former has also been taken at Lincoln, Nebraska, thus the distribution appears wide-spread.

Several specimens of another species have been found in the same pond with Strongylostornum. Superficially, they appear like large Stenostoma, except that they are a more opaque white and are never seen swimming free in the water but crawling over the surface of the aquariun, hunching along, as it were, one part of the body at a time. It moves slowly and unevenly, with great difficulty, by means of a muscular contractions, slight waves passing over the body very slowly. When at rest, the animal lies crouched and somewhat drawn up with the head bent a little to one side and more or less of another little bend at sorne other point. When in motion, the head is hardly ever held straight with the body, but is constantly moved this way and that, as tho investigating the surrounding surface.

$$
\text { In size, the individuals vary from } 0.75 \mathrm{~mm} \text {. to } 2.10
$$

mar. in length, the measurements taken when the animal is as extended as possible. The width was hard to ascertain because of its

Great anount of varidion, never beinff the sume for wif lone: if time. The averaje was 0.3 mun , to 0.7 mm . for a point about the midale of the body. The depth was nerrly that of the wiath except In the tail restion, where there was some flattening. As a whole, the animal is very nearly cybinarical. The head end is as broad as any part of the whole body, but very anenable to chantse, so that often it appears pinted. In a lateral view, it shoas a slope to the ventral surface, making a blunt point. At aboirt, the reyion of the eyes, nearly one-fompth of the indy distance back from the anterior tip, there is a very slight constriction, which is gradual in slope and does not appear unless the animal is griet. and nearly fully extended. Posterior to this, the body diameters are very nearly the same as far back as the last one-fourth, where there is a gradual and even narrowing toward the truncated tail. The ventral durface is somewht flat, but the lateral surfaces very gradually round upward so that there is only a very narrow entirely bottom surface. Color seems to be laoking. The opacity apyarent to the naked eye disappers under the microscope, showing only a very transparent body. Even the outline is not as definite and clear-cut as in many other white forms. The intestine shows somewhat darker than the clearest portions but the outline is almost invisible. The eggs alone are dark and thick, but show no especial color. The atrium seminalis and sexual pore show as very gray-orange with smooth walls distinguishable from the cellular parenchyma. This parenchana gives a pale greenish tinge to the
body as a whole.
The epithelium is thin and clear, the cell outlines hardly visible and even the inner margin not distinct. It is of nearly even thickness over t he body excent on the ventfal surface of the t gil, where it is made heavier by cells specialized as a holdfast. There is no such highly developed point on the head, since the animal nearly always holds the anterior end a littie elevated, so that it does not come in contact with the substraturn. The rhaiodites are very inconspicabus, being small, regular in shape, and clear. They are straight rods scattered thruout the integument, to some little extent grouged together in threes or fours but generally lying in various positions, tho almost never end to end. The cilia are fine and are about the thickness of the epithelium, in lencth. They are distributed evenly over the surface of the body. Their noveraent is regular and gentle with no heavy waves of motion. This lack of power is to be correlated with the crawling rather than the swimming habit and also with the strong muscular contraction which causes a large amoint of bodily twisting and turning. There is never the smooth gliding motion so characteristic of types propelled by ciliary motion. The tail portion alone has specialized cilia. Over the upper surface and to some extent down on the ventral side there are cilia which are about four times the size of those of the rest of the body. They are from twenty to thirty in number and rather irregularly placed, standing out stiff and spine-like in all direct-

1ons. They do not flex and wave ns do the others but are more rifid, thicker walled and conspicumis. They are sharply pointed with somewhat broad, henvy bases, and sre evidently sensory in function. With this exception, the integmental detalls appere specialized to only a small degree.

The muscular system is important. The mascles are many
cells or fibers running in a more or less longitidinal direction tho often somewhat oblique. These connect the anterios regions With the posteriof end and are the principal source of locomotive power. The muscles which control the action of the head are strong er on the dorsal side and run in a number of directions, interlacing to form a network strong enough to lift the bulky head. The action of the pharynx is also heavy and forceful, in fact this is one of the most muscular species. But with all this power of contraction, the muscle strands are still so delicate as to be very nearly inat
visible. They are never concentrated as to be/all solid or firm, are rather single cells depending for their strength upon the sum of all their work.

The parenchyma is visible as a transparent material making nearly one-half the body mass. It is abranst the whole of the large head and extends back completely surpounding the intestine and r eproductive organs, even filling the broud tail region. The cellular structure is evident even tho its extreme delicacy makes it appear almost a coweb. The cells have several long, irregular processes, running in all directions, making a network
much like that of other forms but less henvy.
The digestive system is thin-walled and in all specimens very nearly as transparent as the parenchyna. Its boundary is somewhat irregular and the elasticity or limit of extension less than in many species. The pharynx is nothing more than the narrowing of the anterior end of the intestinal avity to the mouth region. It is not at all marked off from the rest of the digestive tract so that its limits cannot bedistinguished. The mouth when closed is a thin slit just posterior to the eyes, when open it is triangular of roundish in shape, the wider part beinc anterior. The bounding wall a round the mouth is wide, about twice the thickness of the integument. It is well-defined and shows the muscle strands which control it. The intestine itself extends far back into the tail region but not much farther forward than the mouth. The cells which make up the wall are rather lasge, and squamons-like, but their boundaries are not heavy enough to be distinguishable. They do not show the larse oil globules found in many species and the protoplasmic content is much more fluid.

The nervous system consists of an angular brain ganglion upon whose surface the eyes are glaced. This is about onefourth the body length from the anterior end and leaves a broad undifferentiated space before it, a detail which recalls the like condition in Macrostomum sensitivum. The eyesare dark, very small. crescents, placed near together. They call attention because of dirainutive size together with intensity of color a gainst a light
background. There seem to be no other especially developed sense organs, which is not surprising in an animal so slutifisish in movement and so lacking in definite reactions.

Ther eproductive organs are conspicunins because of their opaque grayness and consequent visibility. The testes are distinctly dull colored and extend from the ventral postesion region up around and forward partially clasping the inteotine. The ovaries are just back of the testes on either side. This form differs from others of the enus in that eggs develop thru the maturation stages in two diverticula of the ovarian ducts. These are simply elastic expansions of the ovarian wall and its duct and with the enlargement of several consecutive egrs it pushes form ward to a point only a little posterior to the mouth. A number of eggs of various sizes will thus lie in a row on each side of the body, the largest posterior, down near the sexual pore and those farthest forward not more than one-half the size. The female genital pore is very large, about one-fifth the distance from the posterior end. It is irregular in shape, and with! thick wall. The male pore is slightly posterior and much smaller and thin-walled. The reproductive season is during January and February. Evidences of asexual budding mere not present.

The general points of comparison with other species are oriefly: First, differences in shave. The head is much longer than Maccosfomum sensitivum, the tail much narrower than MacroStomum appendiculatum: second, the eyes are very small, much far-
ther back and closer together than in either of the other two forms: third, the male chitinous spicules a res horter, more simple and not so sharply pointed. Other details in which the merabers of the groip show some semblance are the very li.ght color, the larse, hair-like cilia at the posterior end, the large raouth and comparatively simple intestinal cavity, the position of the ovaries, dorsal to the testes, and the generally spatulate tail.

The family name Prorhynchidae was sugrested in 1362 by Diesing for the one genus, Prorhynchus, at that time containing a single syecies, P. stagnalis, which had been dascribed by M. Schultze in 1851 as a seemingly abercent form. It possesses an so armed proboscis-like structure/resembling the stinging apparatirs of the Nemertinea that the early authors thought it must be an intermediate type. vongraff, in 1885, pointed out that the so-called proboscis was merely the stylus of the copulatory organ sithated far anterior, and that there were really no special characters to relate this species to the Nemertinea. Thus the integrity of the family was settled. Eight other species have been added to this genus at even yet the family reinains the smallest of the Turbellarlan group. The nine species are strikingly similar in a general way, the differentiating characters, however, being well defined. Two species, Prophynchus stagnalis and Prophynchus apolamatus have been found in the United States, the formes in New York and in brackish water at Falmouth, Massachusetts, the latter in a greenhouse in Lincoln, Nebraska.

Prorhynchus stggnalis M. Schultze 1851

Several specirnens of this species have been found in ponds at Urbana, Illinois. They were taken during the latter part of April, from the protected side of a muddy bottomed little lake. They came with the mud or loose silt at 2 denth of three feet, Where the water was fairly clear with little or no algae.

> In a large aquarium of this same pond water, their actions were watched. Superficially, they resenbled little white leeches, both as to general shape and the manner of retracting the whole body and then stretching it sut quickly, the hend free searching in all directions. This motion was c onstant for lenifths of time, the animal seemin/s almost frantic in the quick nervous motions. It crawls over the glass wall of the cquarium, covering quite a distance as it does not hold its course much of the time. It also creeps up and down the lariser stems of Shara and other water plants, but never is free-swiraning. All the ravernents are of the muscular type and are precise and quick. There is only a weal ciliary actionw hich has little t) do with the locomotion, as it is as heavy when the animal is quiet as when it moves. The power of contraction is well-developed, the animal often drawing uy to one-fourth the extended length. The average when at rest is however between one-half anf three-fourths the greatest extension. A noticeable fact is that when drawn up and quiet the width is not changed, the extra enlargement having its effect entirely upon the delth. When thus contracted, the head is not generally draw nearly straight back up to the heavier part but is more or less bent to one side so that the form is not compact but irregular.

The general appearance was strixing and characteristic. In size, there is little variation, the length being very nearly four millimeters and the width 0.5 mm. , for any part of the body. The shape is noteworthy, being a regular oblong with only little
change at any point and as a whole it is thin and flat, the only appreciable thickness beinis thru the intestinal region just postorior to the midde where t he dorsal surface r ounds up to some extent. At both anterior and posterior ends the depth is exceedingly slight. The head is sharply truncate, square with the cillated pits smaller than reported for other forms. The posterior half of the body is much larger and darker than the European type, showing a greater contrast with the margin and with the head which is extremely transparent. The pear-shaped cells in the integument seem to be more conspicuous than is usual, as they are clearly outlined against the rest of the epithelium. Since there are very many so that they are arranged close together. The parts of the structure appeared clearly. A large sutside portion made of a single cell with thick definite wall contained an eccentrically placed smaller part round and dark in color. This evidently bears some relation to the nematocysts and rhabdites of other species. These details are of some interest in showing the amount of variation in a single form.

Prorhinchus apolanatus Kennel 1888

During the month of February, in collections from under the ice, individuals of this species appeared crawling in masses of Cladophora. This is a very different habitat with different environment from that of a greenhouse where it has been found before. The animal was noticeable on account of its pure white color and quick, jerky movements as it crawled thru heavy
tangles of the algae or hurried over the side of the acquarium jar. In a few respects, it differs from the tyroe descriptions. The body is not more than three millineters long when fully extended and about one-fifth as broad. It is extremely flat thruout the dorsal side, the arching over the intestine being slistht. The shape as a whole is not so slender as Kennel's drawings, beinis nearly an oblong with parallel sides and nearly parallel ends. The anterior surface is deeply notched at the point of the mouth opening, giving the two lateral comers an almost lobe-like apoearance. This, with the clear transparency, makes the head-region conspicuous. The tail end is much more rounded and short than in other cases, which causes the whole body to seem broader. The color as a whole is much denser and purer white than in Prorinychus stagnalis, showing a yellow tinge only over the intestine.

The pharynx shows clearly its division into heavy, large secondary cells which act as a support for the four pointed tooth-like cells which work in connection with each other and recall the Aristotle's Lantern arrangement in the Echinoid. They are relatively large and muscular, occuoying one-fifth the body length. The method of working is striking, as the movernent is entirely confined to the narrow space within the pharyngeal wall. There is little expansion and the limits of motion are narrow but this is balanced by the drawing backward and forward of the whole structure which gives a purchase on whatever material is held at the mouth opening. The intestinal diverticula are large but very
irregular and many are n)t straifht but curved and bent. This differs from the extremely even condition in the oribinal type. One other aetail might, perhaps, be mentioned, the small size of the eyes. They were of the same bright color but were not more than one-half the size given for the European specimens.

Family TYPHLOPLANIDAE

In 1531, Ehrenberg used the name Typhloplana for one of the twelve genera which he described at that t ime as making up the new class Turbellaria. Five years later he described the genus Mesostoma, which gave the family name used until 1905, when vongraff outlined the general characters and gave the distinguishing limits to the group. He then proposed the name Typhloplanidae from the oldest genus of Ehrenberg, for this new family, which included only the old Eumesostomina and a few new genera described by Luther (1904). The other parts of the Mesostominae Duges were made separate families. The Typhloplanidae stand now as composed of three tribes, as suggested by Luther (1904); six and two genera respectively. Of all the Turbellaria, this family is the best known. As vonGraff says, the histological work of Luther and the descriptive work of several otherw riters have made possible a clear understanding of their morpholong and biology.

Nine species belonging to this family have been reported from the United States, all from localities in New York except two, Bothromestoma perconatum and Mesostoma ehrenbergit, which have occurred in Michigan and Illinois. To this list, may be added several others.

Rhynchomesostoma rostratum Muller 1773
This is, perhaps, the most delicate of all the rhabdocoels. One of the very first to be described, it has appeared
again and again in many places. It is naturally a northern form and is found in cold water, under the ice or early in the sprinfe. vongraff had specimens from a peat-boig in Rochester, which measured only 2 mm . Those which I have had cane from a small temporary pond with a muddy bottom covered with dead leaves and sticks and a little algal growth. The water was never clear and was in the process of drying up. The length was in every instance more than 2 mm . and a few individuals were 3 mm . lonis. They were all, however, very slender when extended with the anterior and posterior ends drawn out to a very long, sharply pointed tips. The whole body made a regular spindle with the pharynx protruding only slightly on the rounded ventral side. The contraction of the proposcislike head is more conspicuous than in the European forms for it, can be witharawn into the body back to a point even with the pharynx, thus making the anterior surface the largest width. The two rings of muscle attachment were to be clearly seen. The tail was not at all retractile. The color is noteworthy. Since the integument is exceedin, ly transparent, the internal parts are easily distinguishable. The parenchyma is in all my specimens of a clear, pale rose, without the slightest tinge of yellow. Within this the intestine and reproductive organs showed definite outlines. The wall of the intestine is somewhat gray, with very small cells which are nearly all of the same size. Scattered among these are bright carraine-rea oil globules of about double the size of the other cells and evenly distributed over the outer layer of the
digestive tract wall. These helped to adu to the feneral readish color. Of the reproductive organs, the ovary, testes, and atrim were grayish with clear, sharp walls, and were not conspicuous. On the other hand, the developing egijs and vitelline glands are of a deep, brilliant red. The glands are compact with irregular lobed margins about one-tent? the total length of the body and near the surface on each side of the body at about the midale. They varied in size but not in intensity of color and came down to their connection with the atrium as a very narpow thread. The egss, either one or two were matured in the atrium which formed a sort of egis capsule. The color was lodged in the tough, thick shell which was with all sufficiency transparent to show the yolk granules within. These yolk granules when removed from the shell were white and clear, of somewhat varyincj size. One set of eight egfs measured showed diameters varying from 22.9 to 28.8 . They were very nearly spherical, two dianeters in a single egg generally differing not more than 5. They lay fust behind the pharyx in the heaviest part of the body and were visible even to the naked eye. The specimens were taken during April and all were carrying eggs which often were extruded as the animals were isolated in watch glasses. The first aieveloprental stages were carried thru but most of the eggs dies before the second cleavase.

This mud-loving form is, of all the Turbellaria, the most ethereal, it is daintily tinged, a mere transparent shadow against the dark background.

This is another species taken frequently during April and a fer times in the s urmer and fall. Altho very evidently to be identified with the European forrn, it varies somewhat from that, and also from those specimens already found in this country. The animals seem to come entirely from bottom water or from masses of algae living close to the bottom. The size variations are interesting. Three-fourths of the individuals were very nearly 0.5 mu. in length tho they were quite often different in plurnpness. The others seemed quite long and slender in comparison, tho they measured only about 0.75 mm ., but the relative width was less. The shape was quite different from other forrns. The slope toward the tail is much more gradual altho the point itself is not sharp, that is, the posterior region is not blunt and stubby, but more slender. The midale part of the body is round and not so cylindrical: then, too, it slopes into a slightly narrower neck-like portion which again rounds out into the head. This head, except for shape, can hardly be differentiated from the tail end, as it does not possess eyes or specialized sense organs of any sort. It is quite round and nearly as broad as the widest part, tapering not at all. On the whole, the shape is more like some of the related genera than of this species. The anterior end is much more contractile than the rest of the body and there is almost no contraction possible back ofthe midale line. The amount of contraction, however, is very much less than most nearly related species, and neither is
there the twisting and turning which is characteristic of other types. That is, the body secms stiff and solid. The color varies even to the naked eye. It depends upon the ampunt of green present. It is sometimes quite deep and brilliant, at other times pale and often almost a gray. This gray is the real color of the parenchyma and is due to absence of the pure green coloring matter. When there are a number of winter eggs, large and nearly mature, they alter the general appearance, giving a dull brown tinge which sornetimes may be quite dark.

The integument is very clear, showing not at a ll the cellular divisions so plainly to be seen in some forms and thus seeming almost homogeneous. The cilia are not at all clearly noticeable, as they are very fine and not differentiated. The rhab dites are very small and lie in the parenchyma just beneath the epithelium. They are not arranged in definite tracts but are scattered all thru. The thickness of the integument is somewhat surprising, as for such a small form it would hardly seem proportimate for the one layer of outside covering to reach a thickness equal to one-tenth the body diameter. The parenchyma is unique in every respect. The only cells which are conspicuous are those which contain the bright green color bodies. Those bodies are spherical and all of about the same size and arranged in a nearly solid mass Within the cell wall, which is in every instance so filled that the surface shows the outpushings of the solid bodies within. This makes the surface slightly rough. The wall, however, is fine and
delicate, partially elastic so that the boundaries of the freen bodies are visible. Most of the cells contrin from six to ten bodies but an especially large one might have as many as eishteen or twenty-five. These zoochlorellae are not at all regnlar in their placing, being scattered a few here, a few there, thruout the whole body. There were never, however, very many in the part, anterior to the pharymx, a fact which makes the head much lighter in color. Other parenchyme cells are of thecomon transparent color and are hardly visible unless the zoochlorellae are so nearly absent that the remaining cells are not obscured. The thinner material which makes up a part of the colored mass is more sharply differentiated than in other types. Its very homogeneous fluid nature is evident. It is a very smooth light green, but whether the color is merely a reflection from the zoochlolellae or is an intrinsic quality developed as a result of their action is hard to accertain.

In most of the specimens taken during the spring, a number of eggs were present. These varied in number from one to ten, and it is probable since it was near the last of the winter season that in those individuals carrying one egg, that was the last, the others having been laid, rather than that it was the first with others to develop later on. The one or two eggs always lay in about the midale of the body, and where there were more, they crowded forward toward the head, sometimes almost completely fillin the whole anterior half of even two-thirds. They were in two rows
except in a few instances where one, the olaest, occipied a position ventral to the others and nearer the sexurl pore. Since these were winter eggs, it was not surprising to find them with very thick shells. These shells were dark brown and about one-ninth the diameter of the egg in thickness. For the size of the animal, these were very large, measuring 8 to 12 across. The yolk cells showed thru very distinctly and were all of the sane size. They were large and few in number, giving a very different appearance than in the case of those where the yolk mass is finely granular. With a strong light, the nucleus wasv isible as a large clear spot. Of the other reproductive organs, the cirpus could be made out large and almost transparent in the parenchyma. It was nearly as large as the pharynx and clearly showed the concentric layers of cells in the wall. The sexual pore was guarded by a broady band of circular muscles. The testes appeared quite large and solid. From the several descriptions given by different authors and in the above details, it would appear that this species undergoes a greater amount of variation than is possible in many forms.

Mesostoma ehrenbergij Focke 1836

A form which I have called Mesostoma ehrenbergii has been taken from a little pond near Urbana. It is a cormon European species which has been identified from a number of places in this country and much variation very probably exists. In several respects, these specimens differ from others but they seem likely to be the r esult of environmental conditions rather than of specific
importance. They are essentially bottom lovers tho they very quickly creep into and thru any heavy mass of filfuntons alfae. The lenigth was always between three and five millirneters, which is a reasonable average but the width and depth were entirely out of proportion. Instead of a flat, leaf-like structure, the width was mot more than one-fifth the length while the average depth was something a little less than the width. Both these measurements, however, differed greatly in the different specimens and in the same specimen at different times. The whole shape was slender, cylindrical in a general way. The head end showed the characteristic conical, bluntly pointed portion witht he rhabdite tracts very conspicuous. It was flat and being constantly moved in all airections. The tailwas not pointed sharply but tapered to a short, blunt tip. Some ofthe specimenswere much inflated with young worms but this inflation was almost entirely effected on the upper surface alone. At a point just posterior to the eyes, the body wall very sharply rounded upward, making the head only a flat projection of the whole mass. The posterior end more gradually narrowed but the whole animal was exceedingly inflated. In the collection, a good many young individuals appeared. These were always more regular in outline, the head and tail ends tapering not at all and the width beinf nearly the same thruout the body. Another rather distinctive detail was conspicuous in specimens not swollen with young. This was a definite fold or angle about midway between dorsal and ventral surfaces and running from near the an-

terior end far back, almost to the tail. This fold was marked by thickness of the epithelial cells and by a lighter strip and then a darker strip. Such a fold has been described for very flat worms but not for such a round, compact type. The line of derarkation between the dorsal and ventral surfaces was also definitely developed as a lighter, heavier streak. Since the ventral surface was flat, this line was never to be seen unless the animal was partially turned on a side. This ventral line and the lateral fold were very much alike in appearance and structure. The color varies from a delicate to a dark brow and is lodged in the parenchyma. For this reason, the anterior head region in which there is little room for midale cells is entirely clear. The color is not the same over all parts of the body but is concentrated in a wide dark strip dom the middle of the dorsal surface. Then, also, the folds and angles along the edge are banked by a heavier band. Young individuals showed very pale yellow and those just born were entirely without color. The rhabdites sccur in the parenchyma in close relationship With the color cells and are sharply defined and clear. They lie in groups of six or ten or are promiscuously scattered and the head also shows heavy tracts. In shape, they are straight rods with rounded ends and without any variation in diameter. Under a lens, the rhabdites give the parenchyma a checkered, rough appearance. The intestine is much narrower than in most species of this size and is consequently more compact and also of greater $\bar{\alpha}$ epth. The pharynx rosette is a flattened sphere, that is, the upper margin is
somewhat drawn in and the whole structure is nore or less round, as aiffering from the flat, open funnel in other ε encra. The mouth is very small. The intestine seeras not to extend farther forward than the eyes, a possible reason being the lack of space in the head. So much for the more or less general characteristics.

The most striking detail of the whole body structure is, perhaps, the complex reproductive systen and the viviparous habit. The yolk glands lie next to the intestine and are opaque to such an extent as to be easily distinguishable from the other organs. The ovaries and testes are inconspicuous except during a short period of especial activity. Among the number of specimens bearing several developing worms, two or three were especisily prominent. In one of these, twelve erabryos could be seen, seven in the right and five in the left uterus. They were closely packed and most were somewhat curled up, the anterior end sharply bent on the other end. The movement was mainly a constant stirrins the several worms gliding over each other more or less and $t 0$ some extent changing their position in the body. The mother was finally killed, cocaine being used to produce anesthesia. By this method, the regions of greatest contraction were made out. The head and the region posterior to the pharynx are drawn toward the anterior midde part which very greatly increases in diameter, making a heavy knob-like portion. These contractions drove all the erabryos to this region where they were tightly massed. Another specimen showed seventeen embryos on the right side and twelve on the left. These were large, one-fifth the t otal length of the
body of the parent, but were not so confined as the jounjer specimens. The wall of the uterus is hervy and not elastic, but so enlarged as to give ample space within. All the younds worns were active and were incessantly hurryinf from one end to the other, arawling over each other in the most prorniscuous way. This enlargement of the uterus pushed toward the center the intestine and what little r emained of t he yolk glands. The testes had almost completely disappeared so that the main portion of the body on each side was occupied by the large transparent uteri. These, however, were extended only as far forward as the head region. The extra space needed wasgained by a dorsal swelling, the central upper surface being extraordinarily extended, making the shape of the animal most grotesque. The two uteri connected with each other across the midale line by uterine ducts but there never seemed to be any intermingling of the indiviauals feom the t wo sides. This was evidently because the duct was too small to adrait of the pasaage of so large a worm. By the time the embryos were ready for birth, the duct would be stretched but the tendency would be to pass to the exterior rather than across the body, since in that direction the resistance would be less. The young worms in this specimen and in the one mentioned above showed clearly two of the later stages of growth. In the first, the embryos were not long in proportion to width, the head was not at all marked off from the body regions, and the intestine was nearly clear. Int he second example, the embryos were much more elongate, the head tapered off slightly and
the intestinal wall was visible as a licht gray wall with many very regular globular cells. The eyes in both were prominnt. In the older worms, the pharynx was also fully developed and in fact, mone conspicuous than in the adult because of the transparency of the parenchyma and intestine and also because it was relatively very much larger. The tracts of rhabdites had also becorne heavy enough to be visible and most of the body structure was perfect. When, bu accident, the body wall of the parent was broken, all the embryos pushed out and swam away, semintily perfectly at hame. In the collections together with the adults a larger number of small individuals appeared. In size, these outreached all the unomen embryos only a very little. Thus it seens that the young are retained in the body of the mother until a very late stage in their àevelopment.

Mesostomum simplex nov. spec.

A number of specimens of this form appeared in a pond together with Mesostomum ehrenoergii and others of the same fannil: In many respects they closely resemble the more common species. That is, the general shape, the pharynx rosette, the slender lody, the black eyes, anterior tracts of rhabdites, all very closely resemble those of othergenera. In certain details they vary to a durprising degree, being decidedly different from their contemporaries.

Severai points of g eneral appenrance are notable. The size, altho not at all constant, is not over 1.5 nur. long by 0.45
mm. broad and 0.3 in depth. This is much below the avercitje for Mstostomum ehrenbergii. In shape, the aifference is more weomonnced. The head end is romnded, taperimig only a very littile, and not at all constricted or diffecentiated from the boriy refion. The diameter is about the same at all points excent, of course, there is some little narowing toward the tail. The head end is contractile and as the animal moves, it is turned from side to side and stretched in various directions. This causes more or less change in general shape, the tenctency toward a pointing of the anterior tip showing most readily. The ridge dividing dorsal from ventral surface is well-developed around the hend and this often comes into view as the aninal reaches up and out. The color is a light yellowish-brown and is as usual lodged in the parenchina. It is very even all over the body, which is quite the opposite from the condition in Mesostomum ehrenbersii. The anterin end, even, is not the least different in tinge from the rest. The integument is thick and clearly defined. It is transparent and of nemply equal thickness all over except at the angle and in some special anterior portion which seems to be mope sensitive. The cilia are not heavy and are evenly distributed over the whole surface. The rhabdites arescattered in a layer thruout the b ody just beneath the epithelium. Then, also, there are several prominent tracts arranger in a narrow fan in the middle part of the head. These lie dorsal to the brain, running back between the eyes, but they are heavy enough to be noticeable only far forward. They are not so con-
syicuous as those of mesost mum ehrenbererit, where they are sharp against the clear backisround. The parenchina of this new M. simplex is especially well-ievelnpeत, taking my most j^{n} the space in the body. The cells are close together and there appears to be less fluid than in some forms, being almost undefined. The containe matter makes only the central portion darker, and does not particularly intensify the wall cells. This conditions does not at all obscure the pharyms which stands out dark and heavy. Its sse is large comparatively and the rosette cellsare rather long. This specieshas not been taken when in the reproductive stage. The above outline summarizes the notable characters.

Pamily DALYETTIIDAE

The Dalyellidize have had an ireegrlar history. Sturting in 1343 with the descriptions of Oersted and continuing to the present time, this family has been the subjoct of descriptive and systematic studies. Oersted named several species beloniginis to the genus Deristoma and then proposed the family nane Derostumeae. Schmidt (1848), Ulianin (1870), and Jensen (1371) worked over this family adding species and defining the genus characters as well as describing several genera oelonging to other nearly related families. In 1832, vonGraff reclassified the whole group, incorporating with Derostoma the old genus Vortex Ehrenberf (1831) and naming the family from the latter \mathcal{E} enus. He created two subfamilies to contain the ei弓ht genera. Then, later, in 1903, he again renamed the Vorticiidae, making a family, Dalyelliidae, with two sub-families, the Graffillineae and the Dalyellinae named a fter the two oldest genera, respectively, and at this time also because Vortex had been used in 1797 for another form he surgested the name Dalyellina first used by Flaing in 1322 for that genus. Again in 1908 on the basis of a paired ovary he made two failies the Graffillidae with two ovaries and the Dalyelliidae with only one. The latter family was made to contain six genera and sixtyone species, all European forms. Before 1911 three or four species had been identified for this country, all new. In his paper of that year, vonGraff described eleven others, most of them taken from the locality around Rochester, N.Y.. Thus the present con-
ception of the family is quite different from the enrly orisinal description.

The more general distinguishinis details are the presence of a single ovary and two yolk iglands, a simpla genital pore, and the anterior barrel-shaped pharyix withoit a sheath.

The pharynx is the most clear and easily seen of any character. It is often slender and lone, often showt and nerrly suherical, but generally the checkered appenrance of the wall is well-developed. It is always of relatively large size and holds its shape constantly, not being at all collapsible. It is thus very sharply marked off from the intestine which is very different in structure. During the reproductive season the vitelline glands running forward on each side of the intestine are very prominent. The ovary, testes, and other accessory parts are often so embedded as to be difficult to rake out, but always the yolk glands can be seen nearly as large as the intestine itself, extending up around it toward the dorsal side. In many instances also the rather large opaque egg is evident more or less cornletely filling the postorior region of the body. The anterior end is comnonly truncate With the mouth a conspicuous whole just ventral to the very front margin. The develoment of a tail-like portion is somewhat variable but all the forms show at least a tendency in that direction. The shape as a whole is much more slender in man:r families. The color langes from almost black to clear transparency. The above sumrnary mentions points in the general make-up which causes this
group to be one of the most e日sily recoignized of all the families.

Dalyellia dodzei vongraff 1911

This species was taken together with half a dozen other rhabdocoels from a small tempnrary pond which durint April was up to four feet deep but which later would dry up completely unless the rains were especially heavy. It drained down intノ a little river so was not entirely cut off from jutside species. There was a muddy bottom with some algae and many leaves from nearby oak trees. The site was protected from wind by little hills so that the warmth of the sun was felt early. The special locality was the surface of bottom nud or a small mass of aligae. Either was a good hiding place as the animal was nearly black. The motions were sluggish and not constant. When at rest, the body was draim up to one-half its extended length and seemed alnost round. It was not as easily frightened as most of the other s pecies and when aroused more quickly became quiet. One little habit was quite noticeable. Very often when the rather small mouth was opened, the front end of the head was slightly elevated to give the ventrally placed opening a more advantageous pisition. The two corners of the head were very contractile and were used almost like lips to guide particles of food into the opening between them. When the animal was moving along, the roouth was closed and the ventral surface held down. The head was never turned from side to side, and the whole body was straight, keeping to a ratner definite course for the most part.

This form agrees closely with that descrioed by von
Graff from Rochester. He speaks of it there occurrints more frequently than almost any of the others. The conspicinons characters are double arrangement of the pharynx with its especially developed papillae, the mottling due to scattered pigment cells and the complexity of the reproductive organs. This western type is noteworthy as showing the distribution of a species found comenonly in a certain restricted locality and seems to be indicative of its probable wide-spread sccurrence. A resune of its variations may be of interest.

In size and shape, my speciraens are very nearly those of the eastern form but the color is strikingly different. Altho showing a sepia-brown when the animal is compressed to such an extent that the parenchyna is in a thin layer, yet under ordinary conditions it is very dark. It appears evident that the pigment cells when fully developed lie so close together as to agregate in a color nearly black. It is really a dull brownish-black, so ovaque as to entirely obscure the internal organs. On account of this color in the parenchyma, the integument by contrast is exceedingly prominent. It is especially thick and possesses an almost irridiscent transparency. It so reflects the light as to show the convexity of the body surface. This gives an appearance of solidity not present in most specimens. The cilia are fine, clear, and very swift and heavy in their motion, as a result of the lack of a strongly functional muscular system. The parenchyma is com-
posed almost entirely of pinnent-bearing cells. That is, there is no layer of colored cells on the oitside fust beneath the intefixment as is commonly the case but most of the parenchyne cells contain more or less pigment substance so that the color is scattered. The fluid material is present but it is not conspicuous. In shape, the cells are ireegular and in most respects they reselable the parenchyma of other forms. The digestive tract is different from the type only in minor details. So covered by the pigment that it is not apparent when crushed out from the surpounding tissues, it shows the characteristic green of the wall cells. The pharynx apparatus is especially long, extending back thru more than one-third the body length. The anterior vestibular portion is shorter than the pharynx proper, but is of about the same diameter. The papilla are very slender and lie far apart.

The only point of note in regard to the reproductive organs is the duct leading from the uterus to the genital pore. This is extremely slender and long, a mere thread reaching up into the body mass for a distance almost equalling the main diameter. In specirnens where the egg is large and ready for laying, the duct appears incapable of such extension as is necessary for the passage. The yolk glands, testes, and ovary lie embedded in the parenchyma.

It seems probable that tims species feeds upon the minute algal grovths in the rasses of filament where it habitually lives or upon plant debris just below on the surface of the mud.

It presents a type of structural detail very different from most other species.

Dalyellia fusiforma nov. spec.

Specinens of this speciesw ere found in abundant numbers in a sand-bottom pond together with a half-dozen other rhabdocoels. The habitat conditions were somewhat extraordinary, a fact Nhich will account for the specialized structure of all the species. It was taken always from masses of Nitella and never from the bottom or from any other plant tangles. In the aquaria, it very feeely swam out into the open places and was not one ofthe lurking tyoe but in the ond was never taken from open water. Possibly the reazon for this was the presence of food in the al.gal masses of the pond which would constantly attract.

Even to the naked eve, these specimens were suppoisingly different from the general tyroe, and the distinguishing details are all of a conspicuous nature. Never more than one millimeter in length, the average was much less. The greatest width and depth are at the middle and are both a little less than one-third the length. The shape is a rather uneven spindle. The anterior end is very bluntly pointed, the t wo lateral margins making an angle of 35°. The tail end, however, tapers out to a slender rounded tip Which is almost always held slightly curved or bent to one side, so that altho the animal when moving follows its course constantly, the body is never quite straight. This habit was much nore pronounced in some specimens than in others. The portion between the
head and tail is quite thick and solid in contrast to the attenuated extremities. It is cylinarical for only a short distance as the sloping begins very gradually. The contraction is not as conspicuous as in many forms but is better developed in the tail region than is common. The lack of a neck constriction and the shape of the whole anterior tip precludes much movement from side to side and the body as a whole is fairly rigid and stiff. The color is nearly white, ppaque to the naked eye and not very transparent under a lens. The only direct color, however, consists of a lattice work of heavy pigmented cells in the extreme anterior tip. These color cells are arranged in long, angular criss-crossed rods which are quite irregular. They make a maze of dark brown sticks surrounding and obscuring the eyes.
$T^{h} e$ integument is thin and transparent with well-developed cilia used to a great extent in loomotion. The rhabdites are small rods so clear that their concentration in parenchyma tracts is hardly distinguishable. The thickness is nearly uniform over the body except some little differentiation in the tail region which is used as a means of attachnent.

The parenchima is not heavy or closelt meshed but is
more opaque. It forms the supporting cushion layer for the pigment mass in the head, keeping the cells within their celative port ions.

Dalyellia alba nov. spec.
The habitat of this species presents conditinns very nearly like those of most ponds. A muddy bottom, with roily dark water, some amount of leaves and other osganic debris, much floating Cladophora make a surroundinf environment suitable for such rhabdocoel types. Chief among these is Stenostmurn leucops. The Dalyellias are always taken fron masses of algae. They apsear to find in such a situation both a good feeding ground and a safe lurking place. In very many hauls a few specimens appeared but they were never in such numbers as Stenostomun and were never so boldly free-swimming. They were often seen, however, glidins out from mazes of filament and seemed to swim partly by ciliar action and partly by muscular contraction. They spend most of the time clinging or crawling amonis the algae but when removed to a watch glass or aquarium never seemed to creep over the surface as do other species. That is, their methods of attachment were not developed and the locomotion was entirely free.

The general appearance much resembles a short, heavy Stenostomum. The length varies from 0.75 mm . to 1.0 mm . but seeras much less owing to the relative great width. The width is about one-fourth the total length except thruoxt the posterior third, which is narrowed as a tail portion. The depth varies at about the same rate as the width and is always very nearly the same for any given part. That is, the ventral surface is convex with no flattening. The twisting and contraction are only slightly developed,
tho the body is not as rigid as many forms and the hend is often drawn in, the back humped up and the whole made int, a neruly per-
 slight greenish tinge and is heavy enough to make the animals stano out prominently. There seems to be no pisment whatever, even the eyes are not brillient or dark as in most of the genus.

Both integument and parenchyma are somewhat clear. The former is thin and regular in outline, allowing the scattered rhabaites of the internal layer to show thru. The cilia are quite definitely heavy and regular all over the surface excent on the tuil, where they are about five times as large. The whole endportion of the tail region is evenly clothed with these larger cilia, making a specialized organ of locomotion. The layers of tissue beneath the skin are masses at either end of the body, and also forrn a thin envelope over the central body organs. This parcnchyma is very closely meshed with space for a very small annount of fluid material, so that the apvearance of both the head and tail is as thick and dark as the middle part. This is somewhat unusual, as the extremities are almost always nearly transparent. Anothei point to be considered is the fact that these two ends are of much greater relative size than is ordinarily the case. This seems the result of the storage on concentration there of so much differcntiated tissue.

The central body mass is almost entirely composed of the digestive and reproductive organs, the latter durinf the re-
productive season occupying most of the space. The pharymx and intestine are typically simple. The mouth is ventral, lyinf just posterior to the eyes and openinf int, the heavily-walled phar arix which is cask-shaped but very narrow in front. The boundary of this rather muscular structure is sharply defined and reflects the light to such an extent as to appear shiny. It is comparatively small and not more than one-sixth the body dlameter. It ojens directly into the intestine proper, which is thin-wallea and dark. This extends back to the genital pore. Durindy March and April, the intestine is more or less obscured by the large yolk glands which extend forward to the eyes. These are heavily lobed but when fully áveloped become compact with a very thin dividing wall. Overlapping the posterior thira on each side, is the testis very finely granular but much lishter in color. The ovary is snall, posterior in position and lies embedded in the parenchyma. The egrs are about one-fourth the body diameter in size, are thin-shelled and gray incolor. They pass the erabryolosical stages in the uterus near the middle or a little to ane side in close proximity to the genital pore which is very large. As a whole, the reproductive system is conspicuous.

The most noteworthy details of structure may be summarized as; first, a broad head and tail region with a large amount of parenchyma tissue; and second, a snall pharynx; third, large yolk-glands.

The situation in which this spectes is found is of truical formation, the important details being a muddy bottom, small amount of algae and a large animal community. The general ajpearance is striking, due especially to the relatively large eyes and pointed. head. The length is about $0.75 \mathrm{~mm} \cdot$, the width 0.20 to 0.25 mm . and the depth somewhat varyin but never more than the width. In shape, the animal very closely reserables many others of the same general type. The anterior end is bluntly pointed and quite flat. The midale region of the body is rounded out, is plump and much thicker than the rest. Then, the posterior end is slightly attcnuated and more pointed than the head but cylindrical instead of flat. There is really no color but to the naked eye the whiteness is opaque flecked with the black spots of eyes which are large enough to be seen.

The interument is conspicuons, since its bolundaries are definite and clear cut. Here again the inner wall is heavy. The cilia are very short and finc, all of about the same size and evenly distributed over the body. The rhabdites are not gathered in special tracts but are scattered thruont the inner portions of the epithelial cells. The arrangement is quite lattice-like in its irregularity, the small grouys of straight rods lying at right angles to each other.

> The ruscular system is heavier than in many forms,as much of the locomotion is effected by means of body contraction.

It lies, however, very near the interyment, due partly to thes fact that the parenchjma is not abundantly developed. The lack of parenchyma secms to be coreelated with relatively large digestive system, which nearly fills the body mass. The pharymx is very large and extends far forward leavinfs anterinc to it only a small triangular area. The wall of the pharynx is made up of two kinds of cells, regularly placed. Those lying lonitudinally are very slender and reach the whole length of the organ. Those extending around are also narrow and thread-like, and together with the lonfitudinal cells make a cross-hatching in the interstices of which are large, broad cells acting as a framework. The whole is very muscular and is turned and moved constantly. The position of the mouth is noticeable. When closed, it is a very short slit at the anterior ventral edge of the pharynx. When fully open, however, the posterior corner is drawn back ventrally as far as the connection with the intestine makinc the whole pharynx bend dowward. The opening itself is very large and conspicuons. The intestinal wall is rather heavy but otherwise the details of structure are not strikingly different from other species of the family.

The food is to some extent at least composed of the eggs of other forms. In one specimen, eleven egrjs of Typhloplana viridatum were founr. It was possibly true that these all cane from a single individual which had been bodily swallowed and the soft parts quickly digested. The heavy muscularity and such fond masses seen to indicate a habit of voracious feedinğ.

The reproductive systern is extmordinarily far forwird with the single genital pore nearly at it he madale of the roajo The two testes are long, slender organs openin; by a complicited sac-like apparatus into the receytaculum. The head portion of the suermatozoa is very large and is easily distirnjuished thru the wall of the vesicle. The ovary lies a lit.tle to one side of the nidale and carries about ten egios which in the younder stajes showeci ver: nany small irridiscent globules arranyed in rows along the ediges where the egrs touched each other. When the egiss leave $t_{i} \in$ ovary, they pass down the short ovidract to the uterus where, one at a time, they develop until they have a dianteteir one-fourth that of the body. At maturity, the eqg is very conspicuous becaise of its heavy wall and solid yolk mass, shovins thru even the thickest portion of the body mass.

Altogether this species possesses rather notable individual characters.

CONCIUSION

Of the sixteen families which mase ul the Rhardouoela, cepresentatives of five !ave ween fomnd in the Uniten States. Un, to the present time, about eirhty species have ween identified from the eastern states but only sixteen from the central region To this list of sixteen, can be added eirsht new syecies and different, localities for twelve others. Fron the collections just made, it, appears that a reat many forms found alonig the seacnast and in the border regions ase also present far inland. The biologic conditions in the lakes and streams of the Mississippi Valley are not vastly different from those of the ponds and rivers of the eastern slowe and very evidently the same species are to be looked for in both regions. When, however, such a forra as Microstomun, sensitivum, which is present in the brackish water of the open shore in Massachusetts appears again in the small ponds of New York and then is found in isolated puades in Illinois, some note must be taken of its power of adaptability and some consideration must ke given to the fact that a species so fragile and delicate may flourish in situations far removed from each other and of very different conaition. Other examples of a like nature are many, and it seens not too presumptuous to conslude that while few North American species will be the same as those of Europe, the forms in the Jnited. States not separated by more than a few thousand miles will be the identical.

Another point of importance in connection with the dis-
tribution is the anount of variation found in indivicinals of the same species but livinis under different hatitat conditions. This was noted lonf; afo, in the difference in average size anonf; sjecimens of Mesostoma ehrenversil from Euroje and from the United States and in the differences in both size and shave of Rhimchomesostoma rostratum from the two countries. There are, ton, many minor variations arong individuals eviäently of the same sjuecies. This possibility of change is apparent in nearly every one of the old species found for the first time in the central localities. These variations are not of either histological or of gross anatomical structure but are rather in the relative and cmparative $d \in-$ velopment of the several body organs. For example, the eyes may De larger or smaller or different in position in specimens from one pond than in those from another. Prorhynchus applanatus and

Typhloplana viridatum are other striking instances of minor changes. The specimens of the former from Urbana show a very mich shorter posterior portion with a more rounded tail than is given in the original description; also the intestinal diverticula are not regular and straight but pointed and curved. In I. viridatum, the differences are very marked. The shape of the head region instead of being pointed is nearly as broad as any part of the body. Then, the green color is diffused thruout t he parenchyma fluid and not held in the color bodies alone. These examples are sufficient to show the kind of variations common among the forras of the inland ponds.

Of the species present in different localities, some are much more widely occurrinis than others. Stenostorrm lemcojs seens to be almost cosmopolitan and mole than any other is found in small conds. Others, such as the fenera of the Microstomidae possessing a simple anatomy are also comnon. It seems evident that the more primitive types easily adavt t hemselves to unlike surround ings and also that they are not so responsive to environraent in the way of variation. On the other hand, several merabers of the Typhloplanidae occur in many places. They show a greater degree of anatomical change and are thus able to exist under diverse conditions. The two genera of the Prorhynchidae which have appeared here were found only at one place and then only as a few specimens. The Dalyells are another fanily not so widely scattered. S^{u} far, they have appeared in only two or three places. The question of distribution is partially one of chance and partially one of adactability. The above mentions only the peneral localities where the several families are found and the most prominent reason for this occurrence.

Any study of a number of families will reveal certain characters of comparative interest. Perhays the most conspicuous detail of structure in such a study of the Rhaboocoela is the shape which is at once significant and important. Within the group there is a striking similarity of form even among types differing essentially in anatomical particulars. Never long and cylindrical like the annelid worms, never very flat lik e the nearly
related Polyclads, these worms are intermediate between the Lwo . Some species are almost perfect spindle shape, lanje in the mincllo and tapering evenly toward either end, others are very nearlyr cigar-shaped, the head beinf broadened and slifjhtly truncate. The most common variations are in the two extrernities. The hend may be broad or pointed, rounded or sharply angled. The posterior end often tapers very gradually makinp a longs lender tail and often is broadened to form a heavy square spatula. Generally the anterior end is somewhat flat and the tail more or less cylindrical. Almost always the dorsal surface thru the center is elevated, the altho/shape is eally explained. Most of the eroup swim out frec thru the water or wrigisle their way thru dense masses of filament* ous algae and a spindle-shaped body is most easily propelled under such condition. The flatness of some species such as the Prorhynchidae is clearly the best shape for those types which habitually creep over smooth surfaces, as for instance the sterns and leaves of aquatic plants. Here they can cling closely without presenting a projecting mass by which they might be easily dislodsed. Then, too, the squarely truncated head will not cause any special inconvenience, as it might in free-swimming forras. Another point which may have to do with the shape is the entire lack of locomotor organs or projecting parts of any sort, and since the body is moved partly by muscular contraction and partly by the action of the cilia, extreme smoothness is a great advantage. As a whole, the shape is characteristic of the group and is closely
related to the mode of life.
The method of locomotion has been mentioned as being by means of cilia and by muscular action and the relative anount of development of either depends upon the functioning of the other. There are four types of locomotion; first, frec swimning movernent where there is no twisting or turning of the body: second, free swamming where the whole body rolls spirally; third, a creeping or crawling over surfaces in which instances the moveruent may be entirely a gliding or slipping, or may be by muscular contraction; fourth, a scrambling or wriggling thru masses of silt or a ebris. In the first type of moveraent, thecilia are large and evenly distributed over the whole body and the muscular system is used only for special contraction. Strongylostoma rosaceurn is an example of this sort. The second method, of rolling over a nd over, is illustrated by the habit of the Stenostomum, where the spiral twisting is very marked. Again in such forms as haioitually creep or crawl, the cilia are generally extremely fine while the muscular contraction of the body as a whole is well developed and is constantly used. Examples of this sort are Macrostoroum alburn and the several genera of the Prorhynchidae which always clines to some surface and do not let go, so that they never swim out unprotected into the water. The different species of Mesostoma also have this same habit.

These forms may be said to be lurking animals or bottom inhabitants, never found in open water. Upon occasion, when hunting in a mass of algae, any forra will make use of both muscular systern and
surface cilia in climbing around and thru tanfleB of filsment, but. generally where the activity is muscular the cilia are very mall. This correlation of cilia size with muscular develoment is a notable one in all the rhabdocoel families.

Other characters of comparative importance alos the relative thickness of integument, heavy eye pigment and extrernely specialized pharyngeal apparatus. It is perhaps sufficient to mention these details, since, as a whole, the merabers of this group are of especial importance in elucidating many problens of general biologic and phylogenetic significance. The following outline summarizes the most conspicuous points in this study.

SUMMARY

1. In swiftly flowing streams where there is a rocky bed to furnish a sheltered place of attachment, planarians and a few creeping rhabdocoels find a suitable location.
2. For most of the free-swimming species, ponds and t enoorary pudales supply the best conditions. Such a situation comprises; first, a protected retreat and also a feeding ground which may be found in a mass of filamentous algae: second, a source of food Which may be found among the animal communities.
3. The response to the presence or absence of oxygen and carbon dioxide is more precise than that caused by any other stimulus. 4. The reaction to light varies in different species but in most instances is negative tho not definitely so.
4. Response to temperature is to a general or diffine rather than a localized stimulus, as for example in the seasonal change in the condition of water.
5. Since nourishment is gained mostly frora disintegratinf protoplam the food relationships are very simple and altho nearly defenseless, there seem to be few enemies.
6. Strongylostoma rosaceum differs from other merabers of the genus in possessing large testes. The embryological stages cover a period of nine days.
7. Planaria maculata minor is a form in many respects reserabling P. maculata but differing in development of eyes. It is a type found only in the Mississippi river or very near it.
8. Stenostomun giganteum, a large species with a blunt anterior end, is found in a single pond. The mouth is not as far anterior as in most forms.
9. Stenostomum glandifera is slender end possesses many small glands in the wall of the intestine.
10. Macrostomum album, a very transparent form, is found creeping over botton surfaces.
11. Mesostoma simplex has a very transparent parenchyma and simple reproductive apparatus.
12. Dalyellia alba is a form small and light in color.
13. Dalyellia fusiforma possesses a conspicuous mass of pigmented cells in the anterior tip of the head.
14. Dalyellia megacenhala has a large nuscular pharynx and eyes placed far apart.

BIBLIOGRAPHY

Ball, Stanley C.
1915. The Develoment of Paravortex zernellipapa (Graffilla gernellipara Linton) Jour. Morph. : .

Child, C. M.
1901. Fission and Regulation in Stenostomun leucons. Biol. Bull. Boston, 2:329-31.
1902. An Experimental Study of Regulation in Stenostoma. (Amer. Morph. Soc.) Science, n.s., 15:527-8.
1902. Studies on Regulation I Fission and Regulation in Stenostomg. Arch. Entw. Mech. 15:187-236; 355-420; 3 pl.
1903. Studies on Regulation II Experimental Control of Form Regulation in Zooids and Pieces of Stenostomy. Arch. Entw. Mech. 15:603-37; 2 pl.
1903. Studies on Regulation Irf Regulatory Destruction of Zooids and Parts of Zooids in Stenostomum. Arch. Entw. Mech. 17: 1-40; 3 pl.

Fleining, J.
1822. The Philosophy of Zoology. Edinburgh, 2:604-5.
vonGraff, I.
1886. Die Turbellarien, Rhabdocoelida. Graz: 2 and Plates.
1903. Die Turbellarien als Parasiten und Wirte. Graz 1903 VI und 66 s mit 1 Text fig, und 3 Taf.
1905. Marine Turbellarien Ortoavas und der Kusten Euronas. Zeit. wiss. Zool.:83:68- .
1911. Acoela, Rhabdocoela und Alliocoela des vereinigen Staaten Nordamerikas. Zeit. wiss. Zool. 91:1-110.

Jensen, 0. S.
1878. Turbellaria ad litora Norvegiae occidentalis (Turbellaria ved Norges vestkyst). Bergen, Fol., 1-97 und 8 Taf.

Kepner, Wra. A., and W. H. Taliaferro.
1915. Preliminary Report on Relations between the Reactions of Rhabdocoels and Their Environnent. (Amer. Soc. Zonl.) Science, n.s., 41:473-

Leidy, J.

1851. Contributions to Helminthology. Proc. Acad. Nat. Sci. Phila. 5:225.
1852. Corrections and Additions to former Papers on Helminthology. Proc. Acad. Nat. Sci. Phila., 5:288-9.

Lille, F. R.
1901. A Comparison of Power of Regeneration in Three Genera of
1901. Notes on Regeneration and Resulation in Planneians Continued). Amer. Jour. Physiol. 6:129-41.

Linton, E .
1910. On a New Rhabdocoel Commensal with Modiolus plicqtulus. Jour. Exp. Zool. 9:40-137.

Luther, Alex.
1904. Die Eumesostominen. Zeit. wiss. Z001. 77:1-273.
1907. Ueber die systematische Stellung der Rhabdocolenfamilie Catenulidae s. str. Zool. Anz. Leipsig̃, 31:718-23.

Mast, S. 0.
1911. Prelininary Report on Reactions to Light in Marine Turbellaria. 9th Yearbook Carnegie Inst. Washington, 131-33.

Morgan, T. H.
1898-1900. Experimental Studies of the Regeneration of Planaria maculata. Arch. Entw.-Mech. 7:364-97.

Regeneration in Binalima. 9:563-85.
In Planarians, $10: 58-119$.
Oersted, A. S.
1844. Entwurf einer systematischen Eintheilung und Speciellen Beschreibung der Plattwumer auf Mikrokkopische Untersuchungen gegrundet. Copenhagen, 1844/80 96 pag., Tab. I-III \& 18 Holzschnitte.

Patterson, J. Thomas
1912. Early Development of Graffilla Semellinaia A Supposed Case of Polyembryony. Biol. Bull. Woods Hole, 22:173-204.

Scrmidt, 0 .
1848. Die rhabdocoelen Strudelwurner des sussen Wassers. Jena $1848,8^{\circ}, 65$ pag.

Sekera, E.

1388. Prispevky ku znamostem o turbellaruch sladkovoduich. Sitz.-Ber. d. k. bohm Ges. d. wissensch. Math.-Natum. Cl., Jahrg. 1888, s. 344.

Silliman, W. A.
1885. Beobachtungen uber die Susswasser-Turbellarien Nordamerikas. Zeit. wiss. Zool. 41:48-78.

Stringer, Caroline E.
1909. Notes on Nebraska Turbellaria with Descriptions of two new Species. Zool. Anz. 34:257-262.

Ulianin, W.
1870. Die Turvellarien der Bucht von Sebastopnl. Berichte des Vereins d. Freunde d. Natupwlssenschaften zu Moskaix. $1870,4^{\circ}, 96$ pag. und 7 Tafeln.

Vejdousky, \mathbb{F}.
1882. Tierreische Organismen der Brunnengewasser von Prag. Praf 1882, s. 54.
1895. Zur Vergl. Anatomie der Turbellarien. Zeit. wiss. Zool.

60:155-8, Tab. VII, fig. 95-102.
Walton, L. B.
1912. The Land Planariana of North America, with a Note on a New Species. (Amer. Soc. Zool.) Science, n.8., 35:940.

Wilhelmi, J.

1908. On the North American Triclads. Biol. Bull. 15:1-5.

Woodworth, W. McM.
1897. On Some Turbellaria frorn Illinois. Bull. Mus. Comp. Zonl. Harvard College, vol. 31, no. l, l-15.
1896. On the Identity of Procotyla flaviatilis Leidy and Dendrocoelum lacteum Oersted. Am. Nat. 30:1048-9.

Young, R. T.
1912. The Epithelium of Yurbellaria. Jour. Morphol. 23:255-58.

Zacharias, Otto
1902. Eine neue Turbellarienspecies. (Stenostomum turgidum) Zool. Anz. Bd. 26:41-2.

List of Abbreviations

```
a brain
of = body fold
: cilia
on}=\mathrm{ commissure
sp = ciliated pit
:s a cirrus sac
:yt = cytoplasm
a eye
op = epithelium
fl = flame cell
go = genital pore
int = intestine
int con = intestinal constriction
int gl = intestinal glands
int pr = intestinal prolongation
lrf= light refracting organ
m= mouth
n = nucleus
o = ovary
p = pigment
par a parenchyma
ph a pharynx
```


Explanation of Plate I

Fis. 1. Strongylostoma rosaceurn nov. spec. Dorsal view, x about 150. Fi6. 2. Strongylostorna mosaceura nov. spec. Lateral view, x about 150.
\qquad
$r h$
—_ ع
_oil

$\longrightarrow T$

1

PLATE I

Fig. 3. Cyclops shell with Strongylostoma rosaceum feeding within, x about 15 .

Fig. 4. Ovary of S. rosaceurn, camera lucia, X 100.
Fig. 5. Testes of $\underline{\text { S }}$. posaceum, X about 100 .
Fig. 6. Rhabaites lying free, camera lucida, X 100.
Fig. 7. Diagram of S. rosaceum extended, X about 90.
Fig. 8. Diagrarn of S. rosaceura contracted, X about 90.
Fig. 9. Cell with rhabdites, caners lucia, X 100.

—3n
3.
_sp

5

6
cyt $r h \longrightarrow 9$

21
§1
81
i!
61
$y!+1 \quad-61$
い)
p
81
0 O
\&f

PLATE III

Explanation of Plate IV

Fig. 25. Reproductive organs of Dalyellia alba, x about 200. Fig. 26. Protonephridium of Dalyellia alba, X about 360 . Fig. 27. Rhabdites of Typhloplana viridata, one in cell. Carnera lucida, X 350.

Fig. 28. Eye of Dalyellia alba, X about 200 .
Fig. 29. Tail region of Mesostoma ehrenbergii, X about 100. Fig. 30. Rhabdites of Typhloplana viridata. Canera lucida, X 350. Fig. 31. Rhabdites of T. viridata, ola cell, X about 350. Fig. 32. Tail region, Mesostoma simplex, X about 100. Fig. 33. Rhabdites in cell, Mesostoma alba. Camera lucida, X 150. Fig. 34. Vitelline gland cell, showing stored oil globules, X about 250.

Fig. 35. Ovary of Mesostoma alba, X about 350 .
Fig. 36. Sirrus sac, Mesostoma alba, X about 350.
Fis. 37. Testis, Mesostora alba, X about 350 .
Fig. 38. Rhabdites in cell, Mesostoma alba, X about 200. Fig. 39. Eye, Dalyellia alba, X about 175.
Fig. 40. End view of rhabdite-bearing cell of Mesostoraa alba, X about 350.

yon

Explanation of Plate V

Fig. 41. Mesostoma ehrenbergii, lateral view, slightly compressed, $\times 50$.

Fig. 42. Mesostoma simplex, slightly compressed, X 40.
Fig. 43. Eyes of Planaia maculata, X about 100.
Fig. 44. Eyes of Planarian moculata minor, camera lucida, X 100.
Fig. 45. Uterus of Mesostoma eheenbersii, showing young worms and eggs just ready to hatch, X about 50.

Wig. 46. Section thru fission plane of Stenostomum giganteum. Camera lucida, X 150.
et

4

14
$\sqrt{4}$
. 3

Explanation of Plate VI

Fig. 47. Stenostomum glandifera nov. spec. dorsal view, slightly compressed, X about 120 .

Interal

Fig. 48. Stenostomiun giganteun nov. spec. dopsiz view, slightly compressed, X 100.

Fig. 49. Head of Dalvellia dodgei, antero-dorsal view, shoming elevated mouth. X about 100.

Fig. 50. Head of Stenostomum leucojs, pharyon closed, X about 100. Fig. 51. Head of Stenostomurn leucops, pharymx open, X about 100 . Fig. 52. Nematocyst of Microstomum caudatum, X about 850.

Fig. 53. Lateral view of head of Microstomum candatom, X about 100.
Fig. 54. Dalyellia fusiforma, dorsal view, slightly compressed, X about 90 .

Fig. 55. Transverse section, Mesostoma ehrenbergii, showing folds of body wall. Camera lucida, X 250.

Fig. 56. Ventral view of head of Miciostomum caudatum, X about 100.
47
48
56.

1 そ
\quad ．

と
plate Vi

VITA

1885 Born, Syracuse, New York 1900 Entered high school, Muscatine, Iova

1904 Graduated from high school
1905 Entered Grinnell Gollege
1909 Gr aduated from Grinnell College, A.B. degree
1909-12 Instructor in Biology, Blackburn College, Carlinville, Ilinois
1910-11 Attended during summer sessions Brooklym Institute Laboratory, Cold Spring Harbor, Long Island

1912-13 Instructor in Botany and Zoology, Grinnell College
1913 Attended summer session at Lakeside Iaboratory, Okobofi, Iowa
1913-15 Instructor in 200logy, Grinnell College
1914 Attended summer session, Bermuda Biological Station
1915-17 Fellow in Zoology, University of Illinois

UNIVERSTTY OF ILLINOIS-URBANA

30112082199156

[^0]: *Required for doctor's degree but not for master's.

