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NOTATION 

Incident wave amplitude 

Gravitational acceleration 

Body draft 

18 

18 

20 

20 

21 

Body moment of inertia in pitch about the center of gravity 

= Nil 

Bessel function of the first kind of order zero 

Wave number, w"/ 2g 

Radius of gyration, «2 = I/m 
y 

Body mass 

Unit normal vector into the body 

0 

-H 
(z = ac S(z) dz 
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Pp Pressure 

Q,(k) = fe (z - 2G)" S(z) eK dz 

R(z) Sectional radius of the body 

S(z) Sectional area of the body 

r Polar radius, re = x + y“ 

t Time 

(35 Wp £4) Cartesian coordinate system 

ZG Coordinate of the center of gravity 

iC Heave displacement 

¢* Free surface elevation 

8 Polar coordinate 

E Surge displacement 

fe) Fluid density 

o) Velocity potential 

xX Vertical prismatic coefficient 

co) Pitch angle 

w Frequency of oscillations 
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ABSTRACT 

A linearized theory is developed for the motions of a 

slender body of revolution, with vertical axis, which is float- 

ing in the presence of regular waves. Equations of motion 

are derived which are undamped to first order in the body 

diameter, but second-order damping forces are derived to 

provide solutions valid at all frequencies including resonance. 

Calculations made for a particular circular cylinder show 

extremely stable motions except for the low frequency range 

where very sharp maxima occur at resonance. 

INTRODUCTION 

The motions of a vertical body of revolution, which is floating in the 

presence of waves, present a problem of interest in several connections. 

The motions of a spar buoy, of a wave-height pole, and of floating rocket 

vehicles are important examples of such a problem. The same methods 

developed for these motions may be applied to find the forces acting on 

offshore radar and oil-drilling structures. 

A theoretical discussion of this problem, which also treats the sta- 

tistical problem of motions in irregular waves, has been presented by 

Barakat.’ However, this analysis is restricted to the case of a circular 

cylinder and is based upon several semi-empirical concepts of applied 

ship-motion theory. An alternative procedure is toformulate the (inviscid) 

hydrodynamic problem as a boundary-value problem for the velocity po- 

tential and to employ slender-body techniques to solve this problem. The 

latter approach is followed in the present work, leading to linearized equa- 

tions of motion which may be solved for an arbitrary slender body with a 

vertical axis of rotational symmetry. The particular case ofa circular 

cylinder, whose centers of buoyancy and gravity coincide, is treated in 

detail and curves are presented for the amplitudes of surge, heave, and 

“References are listed on page 27. 



pitch oscillations. 

In deriving the hydrodynamic forces and moments acting on the body, 

we shall assume that the incident waves and the oscillations of the body are 

small, and thus we shall retain only terms of first order in these ampli- 

tudes. We shall also assume that the body is slender. The analysis with 

only first-order terms in the body's diameter leads to undamped resonance 

oscillations of infinite amplitude. To analyze the motions near resonance, 

it is necessary to introduce damping forces which are of second order with 

respect to the diameter-length ratio. 

THE FIRST-ORDER VELOCITY POTENTIAL 

We shall consider the hydrodynamic problem of a floating slender 

body of revolution with a vertical axis in the presence of small incident 

surface waves. Let (x,y,z) be a fixed Cartesian coordinate system with 

the z-axis positive upwards and the plane z=0 situated at the undisturbed 

level of the free surface. The x-axis is taken to be the direction of propa- 

gation of the incident wave system, and the motion of the body is assumed 

to be confined to the plane y =0. We shali also employ a coordinate sys- 

tem (x',y',z') fixed in the body, with z' the axis of the body, so that with 

the body at rest, (x,y,z) = (x', y',z'); and a circular cylindrical system 

(r,9,z), where x =rcos 0 and y=r sin®@. If €, €, and w are the instan- 

taneous amplitudes of surge, heave, and pitch, respectively, relative to 

the body's center of gravity, it follows that 

se (2 op oe) COS Wh ar (zB! — ZG) sin | 

y=y' [1] 

N iT Ce ater sin J + (z' — z7,) cos Wt 2, 

where ZG is the vertical coordinate of the center of gravity in the body- 

fixed system; see Figure 1. The displacements €, €, and J are assumed 

to be small oscillatory functions of time; we shall consistently linearize 

by neglecting terms of second order in these functions or their products 

with the incident wave amplitude A. Thus Equation [1] may be replaced by 



Figure 1 - The Coordinate Systems 

x= SB was) ae (A = ae) 

y=y' [2] 

m= (6 Sad cp aY 

If an ideal incompressible fluid is assumed, there exists a velocity 

potential, ®(x,y,z,t), satisfying Laplace's equation, such that its gradi- 

ent is equal to the velocity of the fluid. This function must satisfy the 

following boundary conditions: 

(1) On the body, the normal velocity component of the body must equal 

the normal derivative of ®. For a body of revolution defined by the equa- 

tien r'=—=R(z'),, where r'= Nx'2 4 y'2, this boundary condition may be 

expressed by the equation’ 



[rot S IRB") = e + VO. Vv) [r' — R(z')] = 0 

[3] 
Gin ? S IR( yg") 

(2) On the free surface, the normal velocity component of the free 

surface must equal the normal velocity component of the fluid particles 

in this surface, and the pressure must equal atmospheric pressure. In 

the linearized theory, these conditions reduc e” to 

2 ® co) ) i 0 
— — = = O, 4 aD 8 Se 0 on z [4] 

or in the case of a sinusoidal disturbance with frequency w, 

Ran O83 @ on z= 0, [5] 
Oz 

where K = w/e. 

(3) At infinite distance from the body, the waves generated by the body 

are outgoing (the radiation condition). 

The free surface condition, Equation [5], and the radiation condition 

are satisfied by the potential of oscillating singularities beneath the free 

surface; the boundary condition on the body may be satisfied by a proper 

distribution of these singularities. This distribution may be found from 

slender-body theory but some care is required in linearizing the present 

problem. If r'= R(z') is the equation of the body surface over its sub- 

merged length (-H <,z'< 0), we shall assume that R and its first deriva- 

tive are continuous, that R(-H) = 0, and that the magnitude of the slope 

lar /az'|<< 1. The depth H i Ae sumed finite, and it follows that R is 

small of the same order, as dR/dz'. In the analysis to follow we shall 

also require that R be small compared to the wavelength of the incident 

wave system, or that KR << l. 

We wish to obtain the velocity potential of leading order in the small 

parameters of slenderness and oscillation amplitudes in order to obtain a 

consistent set of linearized equations of motion for the body. However, 

it will turn out that the potentials of different phases of the motion are of 



different orders of magnitude with respect to the slenderness parameter. 

For example, the potential due to surge or pitch is of order R as R— 0, 

whereas the potential due to heave is 0(R¢). Similar differences will oc- 

cur in considering the components of each potential which are in phase 

and out of phase with the respective velocities of the body. In order to 

circumvent these difficulties without unnecessary higher order perturba- 

tion analysis, we decompose the velocity potential in the following form: 

Os y725 6) = o- (x,y,z; t) + by (x,y, 25 t) + by, (% yt) 

[6] 
+Al[g/w eKZ cos (Kx — wt) + d, (x, y, Zt)! 

where be ; by , and $y, are linear in the displacements (€,€,) and their 

time derivatives, respectively. The potential A g/w eKZ cos (Kx - wt) 

represents the incident wave system and the potential Ad, (x,y,z; t) re- 

presents the diffracted wave potential, corresponding to waves incident 

on a restrained body. Each potential » in Equation [6] must satisfy the 

free surface boundary condition and the radiation condition; the complete 

potential © must satisfy the boundary condition on the body. This condi- 

tion, Equation [3], is reduced as follows: 

_ te) Ost | Ore Oy! a OTE OZ LEG RanOZE ) ££ 9Oe Pio Nia) se as 
(se mt (a dx' dt dy' dt az' ot dz’ ot 

OR) BS) de sae, 
or' oz' dz? 

or neglecting second-order terms in A, —€,{€, and y, 

— -— —-[&+(z-2zG)b] cos 6 +(6- xb) dR/dz = 0 

[7] 
Gr, 72 & IBY (52), 

where a dot denotes differentiation with respect to time. Substituting 

Equation [6] into Equation [7] and separating terms according to their 

dependence on different displacements, we obtain the following boundary 

conditions on the body: 



do : ob 
2 = Ecos + 0(R =) [8] 

or Zz 

do i fea) 
— = Uz - 2q)cos0 + 0(R =“) + 0(R2) [9] 

dp toR do 
2 = -= + 0(r—*) [10] 

or Oz Oz 

Oba 

=- w eKzZ [cose sin wt - (KR cos’ 6+ <) cos at] 
or dz 

o(R a 0(R) 

[11] 
= wekz [ cos @ sin wt +(3 KR + = +3 + = KR cos 26) cos ut] 

CLON 3 

5. 0(R + 0(R2) 
Oz 

To satisfy the above boundary conditions, we employ slender-body 

theory.° For example, the potential satisfying Equation [8] is an axial 

line of horizontal dipoles, of moment density 3& [R(z)]@ per unit length. 

Thus in an infinite fluid, 

') Ve ) 20 
oe FE [ [R(z})] ips [ie4 + (z - 2i)° i, ZiT [12] 

To satisfy the free ake and radiation conditions, we substitute 

for the source potential [r2 ar (4 > Fay 217 2 , the potential of an oscillating 

source under a free surface.” With this substitution we obtain, in place 

of Equation [12]: 

i 
ne 7 2 9 Deine 

Op S Be ie [R(z)] 2 {22+ -2) ee 

(oo) 

A f Isso Je) Js(0497 491) Jp (kr) ak} dz [13] 
hy) pets 

0 
+ roke| Eee cee aye : ~ [Jy(Kr)] dz, 



and, ina similar fashion, 

: 2 y) 2 Daz 
{ 2 

dy=2¥ ii [R(z,)] (4 - eq) {Iz ig ((4 =F) ] 

kt+tK ok + + f 28 —= (aay) y o (kr) ak } dz, [14] 

0 
+ roky [ [Rein (z= ze) ele tay) 2 J o(Kr)] dz, 

aH 

Be 1 
$= 2t if R (2) [p24 (z-2)°] * 

ee) 
k+K k(z+z,) i i ze 1 Jp (xr) ak dz, [15] 

0 
+ roKt 2) SES oS 9 Sul Wf (eae) ae ns 0 1 

-H Zi 

0 

da=-te [ eal le sad Beco! 
-H dz 

8 92 278 
+ R@ sinwt — + 2 TRS coswt —— [r* + (2-2) ee 

o 
[16] 

k+K k(zt A . k+K .k(z+ 2) ster) a} dz, 
k-K 

0) 

= 7TwK | pee tall( KR +22 )R sin wt 

Zi 

2 
- R* cosut Saag KR* a te Jo (Kr) dz, 

Ox 9x2 

where f denotes the Cauchy principal value. From the Appendix we see 

that the potentials [13] to [16] satisfy the boundary conditions [8] to [11], 

respectively, with a maximum fractional error of order R. Unfortunate- 

ly, this error is not so small as in the classical slender-body theory for 

an infinite fluid, where the error is of order R2 log R; for this reason 

the present theory may not hold for as wide a range of slenderness as in 

t 



the aerodynamic case. However, for the slender floating bodies which 

are envisaged at present (viz., a rocket vehicle or one support of a stable 

platform), this is not expected to cause practical problems. 

The values of the potentials [13] to [16] on the body may be found 

by setting r = R(z) and retaining the leading terms for small R. To lead- 

ing order, only the singular term moe (za 2,)2]72 contributes to the in- 

tegrals over z), and the integrals may be evaluated directly since for 

any continuous bounded function f(z,) and small values of r, 

0 1 

| MeV 4 (esas) 2 dz, = —2f(z)logr + 0(1) 
Br 

0) al 
{ fla) = [e? 2 (2 oa © Gia = 2 1) cose + 0(1) 

Ox -H 

0 2 Zul 

| g [s2 4 (esate) ° dz = p 22) cos 26 + 0(1) 
2 1 | 2 -H Ox ree 

tO Clal<w< 0, wiK< Jal. 

Thus on the body, 

, = E R(z) cos + 0(R2) [17] 

by = - | R(z)(z - zG) cos + 0(R*) [18] 

6, = ~6 RF log R + 0(R?) [19] 

A (hii 4 SS )R log R cos wt + Rcos® sin wt] + 0(R2) 

[20] 
e&Z R cos@ sin wt + 0(Ré log R) 



THE FIRST-ORDER FORCES AND EQUATIONS OF MOTION 

From Bernoulli's equation, the linearized pressure on the body is 

Ra oo Sa 

on oes 8b 
= - pez - pe pp pe - pal TE + ge? sin(KR cos 0 - at) 

= pgz + pER(z)cos® + eWR(z)(z - Zc) cos 0 = pAw*eX2R cos® cos wt 

te pgAeKz sin wt - ogAKe2R cos® cos wt + O(R2 log R) 

= pgz + p€R(z)cos0 + oR (z)(z = #@) COS 8) wv pgAeX2 sin wt 

- 2pw*Ae®4R cos® cos wt + 0(R% log R) [20] 

The force and moment exerted on the body by the fluid are obtained 

by integrating the pressure over the surface. In the absence of any other 

external forces, the force or moment must equal the respective accelera- 

tion times the mass or moment of inertia of the body. Thus, with % the 

unit normal vector into the body, the equations of motion are 

mé = ff pcos(n,x)dS [22] 

m(t + g) = ff p cos(n, z)ds [23] 

Iv = ff pl(z2- ZG)cos(n,x) - x cos(n,z)] dS [24] 

where m is the body's mass, I its moment of inertia about the center of 

gravity, and the surface integrals are over the submerged surface of the 

body. 

In computing the pressure integrals over the body surface, it is ex- 

pedient to employ the (x', y',z') system, fixed in the body. The direction 

cosines are 



cos(n,x') = — cos 6 + 0(R2) 

dR 2 i = = a) R cos(n, z') ag (R“) 

and the forces along the (x,z) axis are related to the forces along the 

(x',z') axis by 

E 2 Fy cos b+ FPF, sin=F + F_, + 0(u%) 

F, =F, cos $- Fy: sin= Fi: -h Fy: + 0(u7) 

Thus the equations of motion may be written in the form 

a 27 ce C+x'w dR 

m€ = - cos 0+ J —]} pRdz'dé' Id ( =) 0 -H 

i" Big Ge ge ap 
real (Gar ()) = J (SS + ¥ cos 0] pRdz'de' 

0 4-H fl 

: 2n pth Ct+x' 
i = J | [(2'- 2G) cos(n,x') - x! cos(n,z')] pRdz' do! 

0 -H 

2m pCF-C+x' 
is if | (z'- z¢)cos 8 pRdz'do' + 0(R>) 

0 0 

where (* is the free surface elevation at the body. Substituting Equation 

[21] for the pressure and neglecting second-order terms in the oscilla- 

tory displacements €,€,, and A, we obtain 

: Zant 9 dR 
mé -- vg [ J (- cos a+ y SS) (z'+ C - WR cos 6')Rdz' do! 

0 bar dz 

21 0) co - 

=p || J cos 0'[€R cos 0' + JR(z-— ZG) cos 0! 
0) -H 

1 

+ gAe®” sin wt — 2w“Ae’” R cos 0' cos wt] Rdz' do! 

10 



0 
= -— Tog f (yR+2y2 oe) R ae 

-H 

0 oy oo Kz' 

> (Our i] le + w(zt— ZG) DY OCI cos wt] R¢ dz' 

-H 

or, since 

0 
{ (yR + 2y2" oe) R az! = [i 1 (R22!) dz! = 0 
-H H dz 

it follows that 

0 ee ee 2 K 3 

i [é + f(z - 26) - 20 Ae” cos wt] S(z) dz + 0(R~ log R) 

[25] 

where 

S(z) = 7 [R(z)]* 

is the sectional area function. 

In a similar manner we obtain 

: 0 e ds 
m(¢+g) =-pgOS(0)+ pg | ' S(z)dz + pgA sin wt f eKkz ©? az 

-H -H dz 

4 + O(R~ log R) [26] 

Ip =-pgy (z - 2) S(z)dz IL, eee 
0 

- J [E +h (2 - 2¢)- 2u%Ae KZ cos wt] (z- Zc) S(z)dz 

+ 0(R° log R) [27] 

11 



From Archimedes! principle, or equivalently, satisfying Equation 

[26] to zero order in ©, 

0) 

gaa | Oe i] S(z)dz 
-H 

and thus 

- 0 

mC =-pgtS(0)+ pgA sin wot | 
-H 

while, from Equations [28] and [25], 

0 

eKz = dz + 0(R* log R) 
Z 

Dre 2S p I [G(z - 26) - 2u2Ae® cos ut] $(z)dz + 0(R? log R) 

Let us denote: 

Tete mké 

> Vertical Prismatic Coefficient 
pHS(0) 

p v n 
12 = — J (2-2) S(z)dz (n = 1,2) 

n m G 
-H 

v n Q,(K)= £ [  cK@(z-2g)"S(z)dz (m= 0,1) n ma J) ns 

and note that €, ©, and \ must be sinusoidal with frequency w. 

equations of motion then become 

fats, op 129 Wh 2AQ) cos wt 

(1 -XKH)¢ = A(l- XKHQ)) sin wt 

200] 
(P2+ky-=)4+ ES = = GINO} cos wt 

12 
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[28] 

[29] 

[30] 

[31] 

[32] 

[33] 



Note also that surge and pitch are coupled, unless P, = 0 or unless 

the centers of gravity and buoyancy coincide. 

The above equations of motion are not unexpected. The restoring 

forces on the left-hand side consist of hydrostatic and inertial forces plus 

entrained mass terms which double the inertial force at each section. 

This might have been deduced as a consequence of slender-body theory 

and the fact that the entrained mass of a circular cylinder in an infinite 

fluid is just equal to the displaced mass. In other words, the hydrodynam - 

ic forces on the left-hand side of Equations [31] to [33] could have been 

obtained by neglecting the presence of the free surface. Moreover, the 

exciting forces on the right-hand side of these equations are those which 

follow from the "Froude-Krylov" hypothesis that the pressure in the wave 

system is not affected by the presence of the body. These results are, of 

course, a consequence of the fact that the body is slender. 

The solutions of Equations [31] to [33] are 

1 - XQ) KH 
= A sinwt | ————_ 34 

: ( 1 -XKH ee 

2 
P,Q, -Q,(P5+k = 12%) 5S) 

b= 2Acos otf E22 yt | [35] 

2(P, + LS - P,/K) - PY 

P{Qy9- 2Q) 

wb = 2A cos wt as a ween ee [36] 
2(P, + IS - P,/K) - PY 

We note that when 

Ke [37] 
XH 

there is resonance in heave, and when 

Pi 
Renee eer TT Pe 

Is) 



there is resonance in pitch and surge. To determine the oscillation am- 

plitudes in the vicinity of these resonance frequencies, it is necessary to 

consider the damping mechanism due to energy dissipation in outgoing 

waves. Thus, for these frequencies, we must consider the free-surface 

effects on the restoring forces. For this purpose we must retain some 

terms which are of second order in the radius of the body. 

THE DAMPING FORCES 

The damping forces will follow by considering the last terms in 

Equations [13] to [16] and will consequently be of higher order in R than 

those terms which we retained in the previous analysis. This procedure 

is nevertheless consistent, since at resonance the lower order restoring 

forces vanish. In other words, we are retaining the lowest order force 

or moment of each phase separately. Fora further discussion of this 

point, see Reference 4. 

We proceed, therefore, to study the damping forces, or the forces 

in phase with each velocity. The only contribution from Equations [13] 

to [16] is the potential 

K v dR 2, @ Kz ec! Zz o* = twKe [ye (eG t [E + (z) - 2G)]R me 1 Jo (Kr) dz, 

[39] 

Since Jo (Kr) =l- i (Kr)@ + ..., it follows that on the surface r = R(z), 

the leading terms are 

II Jo (Kr) 

and 

0 1 al Jp (Kr) = 24 Kea = -1K2R cos 0 
Ox 

Thus, to second order in R the damping potential on the body is 

14 



i 3 lé+y (z) = Zc)] K* R(z)R(z)) cos o} eh41 dzy 

0 
=1yKeK2zz J oKZ1 ds_ dz [40] 

-H 
dz, : 

3 K : K 
- + wK’R(z) cos 0e"™” J [€ + b(z, - zc)Je al S(z}) dz) 

-H 

The damping pressure on the body is 

* : 0 
pe Sop 20% = -4 wp Kel? ¢ | eee ee dz, 

ot _H dz, 

[41] 
0 

+ + op K?R(z) cos 0 eX [6 + U(z, - Zc)] eal S(z)) dz) 

Then the heave damping force is 

0 27 0 2 
Pein = J J Drak Rvdeldz = — S wp Kt eKz 9S a, [42] 

Z -H (0) dz BE dz 

Similarly, the surge damping force and the pitch damping moment are 

0 27 
Fe oul J p* cos @RdO dz 

-H Jo 
[43] 

0 OR i: Kz, 2 - top> f s(z) eK az) | [é + p(Z)- zc)le “1 8(2,)42] 

-H -H 

and 

I) 



0 27 
M* =! p*(z - 2G) cos 6 R dé dz 

-H “0 

(z- 2q) S(2) eK? az ) [ 44] 

or in terms of the integrals Pj; Po, Qo: and Q): 

Ee = -i wp Kt[K = Q(K) - 5(0)]* 

45 
_ i eK 2 "al 

o 1 wm? 3 : ‘ pe Bos K~ Qo(K)[€ Qo(K) + Qy(K)] [ao]) 

eet Moca ; 
My = - 3 —— K°Q)(K)[6 Q9(K) + $Q)(K)] [47] 

In place of Equations [31], [32], and [33], we obtain the damped equa- 

tions of motion 

(a {2 9p Pi¥ =- 24 Q)(K) cos wt 

ne | } [48] 
+5 op K Q)(K)[€ Qo(K) a pQ,(K)] 

(1-xKH)¢ = A sin wot[1 -XKH Q,(K)] 

m KC 2 [ 

U(P - Py/K+ Ke) +P) & = - 2A Q,(K) cos ot 

[50] 
pspiadh K? Q,(K) [€ Qo(K) + JQ,(K)] 



The damping terms of these equations of motion are given by the terms 

linear in the velocities é, t , and wb. It should be noted that for a slender 

body m— 0, and thus the damping coefficients will be small, as was to be 

expected. To solve these equations for the three unknown displacements 

and their phases is a straightforward but tedious matter. For applications 

in ranges not including a resonance frequency, it is much simpler to em- 

ploy the undamped equations of motion, [31] to [33], and the resulting 

displacements, [34] to [36]. 

CALCULATIONS FOR THE CIRCULAR CYLINDER 

As a special case, we shall consider the circular cylinder R(z)=R 

= constant. Then 

¢ 2 1.0 

1 0 

Bos || (z-2zG)dz = -FH- Ze 

-H 

1 y 2 2 2 
Bp ig lL, (oe dz = 3H + Hzq4+ 26 

1 v K 1 KH ee Z Ss eu eae oreo iia a a edz sax Vi e ) 

1 Kz 1 -KH 1 -KH 
Op (SS) Se i o(4 2 aq) G4 B Se Sera iS Yl + Kzc) 

Ho Jy K K°H 

We shall assume, moreover, that the centers of buoyancy and gravity co- 

incide, or ZG ais H/2, so that the equations of motion are uncoupled and 

there is no resonance in pitch or surge. 

Then 

2 
Sa, lie sellin 2 & 12 0; P5 Game QS) ae ; 

17 
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Figure 2 - Plot of the Surge Amplitude-Wave Amplitude 

Ratio for the Circular Cylinder 
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Figure 3 - Plot of the Pitch Amplitude-Wave Slope 

Ratio for the Circular Cylinder 



and it follows that 

E = - 532 (1 - e KH) cos ut [22] 

th a 528 cos wt oe EES [52] 

(az) +] 
ae vote 5 ; [a SER) Shr bs 

(1 - KH)@ +[4 KH le) ae 
H 

[53] 

Plots of the above amplitudes and the heave phase angle are shown 

in Figures 2 to 6 as functions of KH. Figure 2 shows the ratio of surge 

amplitude to wave amplitude. For zero frequency this ratio is one and 

for increasing frequencies it decreases monotonically to zero. Figure 3 

shows the ratio of pitch angle to the maximum wave slope KA, multiplied 

by the coefficient C = 4 + 6 (ky /H)*. This coefficient is equal to one if the 

mass in the cylinder is uniformly distributed throughout its submerged 

length. The ratio starts at one for zero frequency and decreases mono- 

tonically to zero. Thus the pitch amplitude is always less than the wave 

slope. Figure 4 shows the ratio of heave amplitude to wave height for 

frequencies away from the vicinity of resonance. Near resonance, the 

amplitude is shown in Figure 5 and the phase angle in Figure 6 for the 

particular case R/H=.0.1. The ratio of heave amplitude to wave ampli- 

tude is unity for zero frequency, rises to a maximum of 

2 2 
£(2) ~ 0.865 (7) ™\R R 

at the resonance frequency KH = 1, and then decreases monotonically to 

zero. The phase angle is similar to conventional one-degree-of-freedom 

LY) 
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Ratio for the Undamped Circular Cylinder 
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for the Damped Circular Cylinder with R/H= 0.1 
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harmonic oscillators with linear damping; for low frequencies the heave 

displacement and wave height are in phase, at resonance they are in quad- 

rature, and at high frequencies they are 180 deg out of phase. 

DISCUSSION AND CONCLUSIONS 

The damped equations of motion as given by Equations [48] to [50] 

may be solved for an arbitrary body of revolution to obtain the oscillation 

amplitudes and phases. Except in the vicinity of the resonance frequencies 

defined by Equations [37] and [38], it should be sufficient to use the sim- 

pler undamped equations; the resulting oscillations are given by Equations 

[34] to [36]. Plots of these oscillations are shown in Figures 2 to 6 for 

a circular cylinder, with the important restriction that the centers of buoy- 

ancy and gravity coincide. If this restriction is relaxed, a resonance will 

be introduced into the equations for pitch and surge, but the frequency of 

this resonance may be kept small by ballasting. The amplitudes at reso- 

nance are extreme, but the resonance frequency for heave is quite small 

and can be kept out of the practical range of ocean waves by making the 

21 



draft sufficiently large. It would seem wise to do this in practice and to 

provide appropriate ballast so that the pitch resonance occurs at or below 

the heave resonance frequency. From Equations [37] and [38] this re- 

quires that 

The advantage of spar-buoy-type bodies lies in their very small 

motions in the higher frequency range. By proper design this advantage 

may be utilized; thus very calm motions can be expected in waves. 
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APPENDIX 

Here the potentials E> y ' Pi. and da» defined by Equations [13] 

to [16], are shown to satisfy the boundary conditions [8] to [11], respec- 

tively, to leading order in R. For this purpose, let us consider the po- 

tential 

0) of(z,,t) - 

pat J a fr te - 271 

-H 

oe) k+K 
+ + olay ai) Jp (kr) dk } dz, [54] 

o k-K 

tle 

K(z+t 2) 
0 

+ mwK I f(z,,t)e Jo (Kr) dz, 

-H 

where f(z),t) has sinusoidal time dependence with circular frequency w. 

By appropriate choice of the function f, the potentials Pe» by ; yp and 

oa can all be obtained from and dy/dx. Thus it is sufficient to estab- 

lish that the following conditions are satisfied on the body surface r = R: 

© R= Ile f(z, t) [55] 

a — f(z,t 56 
arIoe my ia Sena o! 

Employing an alternative form of the source potential,” we write 

in the form 

1 ok (44 2)) 

[57] 
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[57] 
Jo(Kr)dz, continued 

= Shy hea 

where 

b) = $ ip ~- ir ap ((v4p, S £4) 2 +[r~+ (z, + zy} *} az, 
-H 

0 
TONS J ea pO) Co ae Jy (Kr) dz, 

a 

The potential vy corresponds to an axial distribution of simple sources 

together with an image distribution above the free surface z= 0. To 

emphasize this fact we write yy) in the form 

pl 2 “2 = £(-|z,|.t) [> + (z= 2,)7] > okay [58] 

From the conventional slender-body theory of aerodynamics, we may ex- 

pect this potential to satisfy the boundary conditions [55] and [56] on the 

body to leading order in R. In fact, differentiating with aspect to r and 

neglecting terms which are of order R* or Ros @ inthe neighborhood 

of the body r = R, we have 

a 

or 

+ (z= 2,)°] dz) [59] 



= es peek Ret SROs ans, Lense RS Sr continued 

Sh Ciera, aye r go bs (FA 2) -H 

mS il he 

a at 

and similarly 

2 
Oh mn COED OF [60] 

Or Ox a Be 

Thus on the body the potential satisfies the conditions [55] and [56] to 

leading order in R. To establish that the same is true of J, we now show 

that the contributions from > and db>/ Ox are of higher order in R. 

Since 

fs) 
Be Jo (kr) = -kJ) (kr) 

it follows that 

dY> 0 © 
Buisie ot Ub eh eel ay (teriidled 2 

or Er ot ig) Mc aiK 1 

3 [61] 
+ Tw Ke { f (z,,t) or 2 eel TK) dzn 

We wish to show that 

Ny) 

= O(f a (f) 

and 

2 ay t= off Or Ox R 
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as R-— 0, and thus that 

2 2 
OOM Be Oh 

<< 

or or Or Ox Or Ox 

for R/H<< 1. From the series expansion of the Bessel function, 

J, (kr) = kr + 0(k?r?) 

and thus, where this expansion is permissible in Equation [61], the re- 

sulting terms are clearly of order fK. However, in the neighborhood of 

z= 0, the power series expansion is not permissible in the integral over 

k. It follows that, in the neighborhood of r=R, 

ow af(0,t Qos 
GS ge CENCE) J f is e871 3, (kr) dkdz, 

Or at jan d@ ie IX l 

+ 0(fR) 

A WE OOo) f u J, (kr) dk 
im at ) Rom OE 

af(0,t) fe J, (kr) 
Sif K eae SE we ak 

at 0 k 

oOo ae 0(£) 
at 

Similarly, 

2 a” t+ of) Or Ox R 

Thus, onthe body, 
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and 

a bo / a(n ai) 

or Ox Or Ox 

Therefore, the potential \ satisfies the conditions [55] and [56] witha 

fractional error of order R. 

REFERENCES 

1. Barakat, Richard, ''A Summary of the Theoretical Analysis of a 

Vertical Cylinder in a Regular and an Irregular Seaway,'' Reference No. 

57-41, Woods Hole Oceanographic Institution (Jul 1957), Unpublished 

Manuscript. 

2. Wehausen, J.V., "Surface Waves, '' Handbuch der Physik, Springer 

Verlag, Section 13 (1961). 

3. Lighthill, M.J., "Mathematics and Aeronautics,'' Journal of the 

Royal Aeronautical Society, Vol. 64, No. 595 (Jul 1960), pp. 375-394. 

4. Newman, J.N., "A Linearized Theory for the Motions of a Thin 

Ship in Regular Waves,'' Journal of Ship Research, Vol. 5, No. 1 (1961). 

27 



Hawt 

Phin | kia He am | aw ty eee) ‘ 

yay ey i] 

1 a J bai pe ra ti 

STUNT 8 i 



Copies 

10 

10 

INITIAL DISTRIBUTION 

CHBUSHIPS 
Tech Lib (Code 210L) 
Appl Res (Code 340) 

Des, Shipbldg, & Fleet Maint (Code 400) 

Prelim Des (Code 420) 
Sub Br (Code 525) 
LCDR B.I. Edelson (Code 3614) 
Oceanography (Code 342C) — i Oo 

CHBUWEPS 
1 Aero & Hydro Br (Code RAAD-3) 

1 Capt. Freitag (Code 45) 

1 Mr. Murri (Code RTSV-13) 

1 Dyn Sec (Code RAAD-222) 

CNO (Op-76), Attn: LCDR Duncan 

CHONR 
1 Nav Applications (Code 406) 

1 Math Br (Code 432) 
2 Fluid Dyn (Code 438) 

ONR, New York 

ONR, Pasadena 

ONR, Chicago 

ONR, Boston 

ONR, London 

CDR, USNOL, White Oak 

DIR, USNRL 
1 Mr. Faires (Code 5520) 

CDR, USNOTS, China Lake 

CDR, USNOTS, Pasadena 

CDR, USNAMISTESTCEN 
Attn: Mr. Eberspacher (Code 5610) 

CDR, PACMISRAN, Point Mugu, California 
Attn: Mr. W.L. Mackie, Consultant (Code 4110-1) 

CDR, DDS, Attn: TIPDR 

DIR, Natl BuStand 

Attn: Dr. G.B. Schubauer 

DIR, APL, JHUniv 

DIR, Fluid Mech Lab, Columbia Univ, New York 

29 

Copies 

1 DIR, Fluid Mech Lab, Univ of California 
Berkeley 

5 DIR, Davidson Lab, SIT, Hoboken 

1 DIR, Exptl Nav Tank, Univ of Michigan 

Ann Arbor 

1 DIR, Inst for Fluid Dyn & Appl Math 

Univ of Maryland, College Park 

1 DIR, Hydraulic Lab, Univ of Colorado 

Boulder 

1 _—DIR, Scripps Inst of Oceanography, Univ 

of California, La Jolla 

1 DIR, ORL Penn State 

1 DIR, WHOI 

3 OinC, PGSCOL, Webb 

1 Prof. Lewis 

1 Prof. Ward 

2 DIR, lowa Inst of Hydraulic Res, State 

Univ of lowa, lowa City 

1 Dr. Landweber 

1 DIR, St. Anthony Falls Hydraulic Lab, Univ 
of Minnesota, Minneapolis 

3 Head, NAME, MIT. 

1 Prof. Abkowitz 

1 Prof. Kerwin 

1 Inst for Math & Mech, New York Univ 

2 Dept of Engin, Nav Arch, Univ of California 

Berkeley 

1 Prof. Wehausen 

2 Hydronautics, Inc, Pindell School Rd 

Laurel, Maryland 

1 Dr. Willard J. Pierson, Jr., Coll of Engin 
New York Univ 

1 Mr. Robert Taussig, Grad Math Dept 

Columbia Univ, New York 

1 Or. Finn Michelsen, Dept of Nav Arch, Univ 

of Michigan, Ann Arbor 



Copies 

Prof. Richard MacCamy, Carnegie Tech, Pittsburgh 

Mr. John P. Maran! THERM, Inc, Ithaca, New York 

Dr. T.Y. Wu, Hydro Lab, CIT, Pasadena 

Dr. Hartley Pond, 14 Elliott Ave, New London, Connecticut 

Dr. Jack Kotik, TRG, Syosset, New York 

Prof. Byrne Perry, Dept of Civil Engin, Stanford Univ 

Palo Alto 

Prof. B.V. Korvin-Kroukovsky, East Randolph, Vermont 

Prof. L.N. Howard, Dept of Math, MIT, Cambridge 

Prof. M. Landahl, Dept of Aero & Astro, MIT, Cambridge 

Pres, Oceanics, Inc, New York 

Mr. Richard Barakat, Itek, Boston 

J. Ray McDermott Co., Saratoga Bldg., New Orleans 

North American Aviation Columbus Div., 4300 E. Fifth Ave. 

Columbus, Ohio 

30 





eis ay Ce meh 
i i f i. T i we, 

Pe soalbiiil 

Cah td 0b 



“
9
O
U
B
U
O
S
E
l
]
 

3
B
 
I
N
D
I
O
 

Bsutxew 
disys 

AJ0A 
oJeym 

eduBi 
Aouenbedy 

Mo] 
ey} 

10j 
ydeoxe 

suoljow 
e]quys 

ATowesyxe 
M
o
s
 

Jopur]AD 
IepNoITO 

IBpNoyIed 
B 

103 

OpBU 
SUOT}B[ND[BH 

‘eoUBUOSes 
Jurpnjour 

sorouenbeay 
[][¥ 7B 

PI[BA 

SUOTIN[OS 
eprtAoid 

0} 
PeAlJep 

e18 
SedI0J 

Surdwuep 
1epio-puodes 

qnq 
‘1ojewsIp 

Apog 
ey} 

UI JopsO 
4S11j 

07 
poduwpun 

ose 
Yyorym 

PpeAliep 
018 

UOT}OW 
Jo 

SUOTZeNbY 
‘seABM 

Is[Ndel 
Jo 

edueseid 

ey) 
UT 

SuUNVOT] 
ST 

YOTYM 
‘SIX’ 

[BOIZIOA 
YYIM 

‘TOTNTOAeI 
Jo 

Apoq 
Jepue|s 

B 
FO 

SUOCT}OW 
ey} 

10) 
pedojeaep 

st 
Al0ey) 

peziswoUl] 

SBIOYDIN “f ‘UBUIMEN ‘J 

Ar00y 

L.--uotop--([891912 

A) 

UOMNJOAeI 
JO 

SeIpog 
°% 

SISA|BUB 
[BOT]BWOEYISA 

CaIMISSV'TIONN 
‘sjoa 

‘snqt 
“dog 

‘at 
“gg6T 

ABW 
“UeUIMEN 

“N*E 
--wolop--sXonq 

reds 
: “T 

Aq 
‘
S
A
V
M
 

AV I
N
D
Y
 

NI 
A
O
N
E
 
U
V
d
S
 
V 

AO 
S
N
O
I
L
O
W
 
A
H
L
 

"66PL 
H
o
d
e
y
 
.
 ‘ulsog 

jepow 
40;40] 

piaog 

*
9
0
u
B
 
u
o
s
e
l
 
q
8
 
I
n
d
9
0
 

ewurxew 
disys 

A
o
A
 
oJeym 

osuszi 
AOuenbely 

Moy 
ey} 

10} 
ydeoxe 

suonjou 
e1qu3s 

A
J
o
w
e
%
x
e
 
Moys 

JoputfAd 
JeNdIId 

AB[NOTVIVd 
B 

10J 

e
p
s
 

SUOTZB[NO[BD 
‘eoUBUOSeEI 

SUIpN{oUr 
SeroueNbeg] 

[]¥ 
7B 

PI]BA 

SUOTIN[OS 
EptAoid 

Oj 
peAtJep 

018 
SsedJ0}) 

Jutduep 
1epio-puodes 

qnq 
‘1ejouBIp 

Apoq 
ey} 

UI JopsO 
4S11j 

07 
pedwepun 

ese 
YoryM 

PeAliop 
o18 

UOT}OUI 
JO 

sUOT}eNbyY 
“seABM 

JB[Ndel 
Jo 

edueseid 
OY) 

UL 
SUNBOT] 

ST 
YOTYM 

‘SIX’ 
[BOIZIOA 

YQTM 
‘TOTNTOAeI 

Jo 
Apoq 

Jepue|[s 
B 

JO 
SUOTJOW 

ey} 
10) 

pedoyeaep 
st 

A10ey) 
peziseeUl] 

V 

SBIOYOIN ‘f ‘UBUIMEN ‘] Ax00y I, --wornop--({821910 A) 
UOTNOAeI JO SeIpog °Z 

sIsh[eue 
[
B
o
I
B
M
E
Y
y
e
W
 

G
I
A
I
S
S
V
T
O
N
N
 

‘sjes 
‘snqt 

“dog 
‘at 

“eg6T 
ABW 

“UBUIMON 
“N’L 

--wo1jopj--sXong 
seds 

: ‘T 
Aq 

‘
S
A
V
M
 
A
V
I
N
D
O
A
A
 

NI 
A
O
N
E
 
U
V
d
S
 
V 

AO 
S
N
O
I
L
O
W
 
A
I
L
 

“66PL 
H
O
d
e
y
 

‘ulsog 
japow 

40)40] 
praog 

S
B
I
O
Y
D
I
N
 

‘f
 

‘
U
B
U
I
M
E
N
 

‘[
 

Ax
00
y 

L.
--

uo
rn

op
--

(1
80

19
10

 
A
)
 

UO
NI

JO
AS

I 
JO
 

Se
Ip
og
 

°G
 

SI
sA

[B
UB

 
[B
OI
FB
UI
O 

N
I
B
 

--
wo

no
p-

-s
fo

nq
 

re
ds

 
: 

“T
 

SB[OYDIN *f ‘UBMIMEN ‘| 

Ar00y 

[.--wornop--([801910 

A) 

UOTJNIOAGI jo seIpog °*Z 

SISA[BUB 

[BOIVBUIE 

YB 

--worow--sXonq 

seds 

: 
‘T 

“
@
D
U
B
U
O
S
E
l
 

4
B
 

I
N
D
I
O
 

swurxew disys Alea oeym oduvs Aouonbed Mo] ey) 10} ydeoxe 

suonjoul 

e]qz3s 

ATewes3xe 

MOYys 

JopurAD 

IB[NoITO 

IB[NoIWIed 

B 
OJ 

Opeul 
SUOTZB[ND[BD 

‘eoUBUOSeEI 
SuIpn[our 

setouenbeyj 
[[B 

9B 
PI[BAa 

SUOTJN[OS 
EptAoid 

0} 
peAtiop 

e148 
se010j 

Jutduiep 
Jepso-puodes 

yng 
‘1ejeulstp 

Apoq 
ey 

UI Jopio 
ysi1j 

07 
podwwpun 

ore 
yoryM 

PoeAlJep 
e18 

UOT}OW 
Jo 

suoTywnbyY 
‘seABmM 

JB[Ndel 
Jo 

eoueseld 
©Y} 

UL 
BuNBOTJ 

St 
YOTYA 

‘SIXB 
[BOIZI0A 

YQIM 
‘TOMNTOAeI 

Jo 
Apog 

Jepye|s 
B 

JO 
SUOTJOW 

ey} 
10} 

pedojedep 
st Aloey} 

peziiweul] 
¥ 

GAIAISSVTONN “sjea ‘“snqq: “dog ‘at e961 ABW “uBuIMeN “NE 

Aq 

‘SHAVM 

AV 
TANGA 

NI 

AONA 

UVdS 

V 
JO 

SNOLLOW 

AHL 

“66pl 

woday 

-ulsog 

japow 

s0;AD] 

pang 

“90UBUOSEl] 4B INDIO 

s
u
t
x
e
u
 

di
sy
s 

AJ
oA

 
o1

ey
m 

oS
uv

s 
A
o
u
e
n
b
e
y
 

Mo
y 

ey
} 

J0
j 

yd
eo
xe
 

su
oT
}O
W 

e]
qu

ys
 

AT
ew
le
sj
xe
 

MO
YS
 

Jo
pu
IT
AD
 

IB
[N
dI
ID
 

AB
[N
oW
Ie
d 

B 10
3 

OpBUl SUOT}B[ND[BY ‘eouBUOSeEI SuIpN[oUL setouenbed [[B IB pI[BA 

SUOT]N[OS 
eprAoid 

Oj 
peAtJop 

018 
se0J0j 

dutduivp 
Jepio-puooes ynq ‘1eyourstp Apog ey} ur Jopio 4si1j 07 peduepun ee yoryA PeATJep e148 UOTJOU Jo suOTyeNb|] ‘“soeABmM IB[Ndel Jo edueseid OY} Ul FUNBOT] ST YOTYM ‘StxB [BOTZIOA YyIM ‘UOTyNTOAeI Jo Apog 

Jepyue|s B JO SUOT}OW EY} 10} pedojeaop st A10ey) peztivoul, Y 

GA
IM
IS
SV
TO
NN
A 

‘s
je
i 

‘“
‘s
nq
yt
 

“d
og
 

‘a
t 

‘g
g6
T 

AB
W 

“u
BU
IM
ON
 

‘N
P 

Aq
 

‘S
HA

VM
 

UV
 

I
N
D
U
Y
 

NI
 

A
O
N
 

UV
dS
 

V 
AO

 
SN

OI
LO

W 
AH
L 

“6
6p
1 

Ho
da
y 

-u
ls

og
 

ja
po
w 

40
;4

0)
 

pr
an

g 



. 

* 

i “ 

Vy 

}, ? 1 end! ies 

Thy 
i 

‘ ‘ 

; ' are 

i 

i 

- 
i 

4 

a ie ; 



SBOYDIN 
*f ‘UBUIMEN 

*‘] 
Aso0y L--Wornop--(1891770 A)

 
WONNJOAeI 

JO 
SeIpog 

*S 
stsh[eus 

[BOIQBMOYIwY 
--wonow--sfong 

reds :
 ‘T SB[OYSIN “f¢ ‘UBMIMeN ‘| 

Ar100y, 

[.--Worop--([891710 

A) 

UOTINIOAGI JO SeIpog *Z 

sisk[wus 

[BOIBMEYwW 

--wolop--sXong 

reds 

: “T 

*@ouBUOSeI 
4B 

INDDO 

s
u
t
x
e
u
 
disys 

Alon 
esoym 

oduvi 
Aouenbaay 

mo] 
e
y
 

10) 
ydeoxe 

suoKNoU 
e]qB3s 

AJouIe+xe 
MoYys 

Joput]AD 
Ie[NOIIO 

JB[NoI7ZIEd 
B 

1OJ 

e
p
s
 

SUOIZB[ND[BD 
‘edUBUOSe 

JuIpNjouL 
selouenbed 

[[¥ 
48 

PI]eA 

SUOI}NJOS 
Optaoid 

07 
peAlJop 

e18 
Se010j 

Julduisp 
Jop1o-puoves 

qnq 
‘10jewe1p 

Apog 
e
y
 

UI Jepso 
4S811j 

07 
pedwepun 

oe 
YOIyA 

peatiep 
es 

UOTjJOW 
Jo 

S
U
C
T
w
N
b
Y
 

“seABmM 
IB[Ndel 

jo 
edueseid 

oY} 
Ul SUNBOT] 

ST 
Y
O
Y
 

‘SIxXB 
[BOTZIEA 

Y
T
 

‘TOINTOAeI 
Jo 

Apoq 

Jepue|s 
B 

JO 
suoT}OU 

ey} 
10} 

pedojeaep 
st 

A100y3 
peztBeUl] 

V 

CAIMISSV'TIONN 
‘sjea 

‘*snqtt 
“dog 

‘at 
“eg6T 

A
v
 

“weuMON 
“N“P 

hq ‘SHAVM 
AVTINDAY 

NI AONE 
UVdS 

V AO 
SNOLLOW 

FHL 
“66pL 

Hoday 
 “uysog 

japow 40/40, p1aog 

*
@
D
U
B
U
O
S
O
E
 

3
B
 
I
N
D
D
O
 

Bsuixew 
disys 

Aiea 
oroym 

odusBs 
Aouenbedy 

Mo] 
ey} 

10} 
ydeoxe 

suotoUW 
01q83s 

AToule;yxe 
MoYs 

JopurTAD 
IBpNOITO 

IJB[NoIyIed 
B 

I0y 

EpBul 
SUOTIB[ND[BD 

‘eouBUOSeI 
Zurpnjour 

serouenbed 
[[B 

9B 
PI[BA 

SUOTIN[OS 
eptAoid 

oj 
peatiep 

e18 
SsedI0} 

Juidwep 
Jopso-puoves 

qnq 
‘1ojowsrp 

Apog 
eyj 

UI 
Jopi0 

4SI1j 
07 

podurspun 
ese 

YoryM 

PpeAtiep 
o18 

UOT}OU 
Jo 

SUOTyBNbY 
‘“seABmM 

JB[Ndel 
Jo 

edueseld 

OY} 
UL T

U
N
V
O
T
 

ST 
YOTYM 

‘SIXB 
[BOTZIOA 

YIIM 
‘
U
O
N
J
O
A
e
I
 
Jo Apoqg 

JOpue|s 
B 

JO 
SUOTJOW 

oY} 
J0J 

pedojedep 
st 

Alooy) 
peztieoUul] 

V 

G
A
I
M
I
S
S
V
I
O
N
N
 

“sjes 
‘*snqyt 

“dog 
‘at 

“gg6T 
ABW 

“aeulMeN 
“N’C 

hq ‘SHAVM 
AV INDAA 

NI A
O
N
 

AVdS 
V AO 

SNOLLOW 
G
H
 

“66pL 
Hoday 

-usog 
japow 40j40) pang 

SBIOYOIN 
“f ‘UBUIMEN 

‘] 
Ayooy, L--wonop--([891)20 A) 

UONNIOAeI 
Jo 

seIpog 
° 

sIsh[ Bus 
[BOTBUEYIwW 

--uorop--sXkonq 
s
e
d
 :
 “T SB[OYDIN ‘f ‘UBUIMEN ‘T 

Arooy 

J,--uonop--([891910 

A) 

WONNJOAeI Jo seIpog * 

sIsh[Bus 

[BOI}BWOYIBA 

--uonop--sXonq 

iedg 

: 
‘T 

“
@
D
U
B
U
O
S
O
l
]
 

3
B
 
I
N
D
I
O
 

s
u
i
x
s
w
 
disys 

AJoA 
eloym 

oduss 
Aouonbedy 

MO] 
ey} 

J0J 
ydeoxe 

s
u
o
o
U
 

e]qB4s 
ATowe+Nxe 

MOYs 
Joput[AD 

JB[NOIIO 
IB[NoIyIEd 

B 
10J 

OpBul 
SUOTZB[NO[VD 

‘eouBUOSeI 
ZuIpnjour 

setouenbedy 
[[B 

4B 
PITA 

SUOTIN[OS 
eptAoid 

0) 
peAlJep 

e18 
60010) 

Jutduwp 
Jepio-puooes 

4nq 
‘1ojewetp 

Apog 
ey) 

Ut Jopso 
4sS11j 

0} 
pedwwpun 

ere 
yoryM 

PeAliep 
e128 

UOT}OU 
Jo 

SUCTWBNb|Y 
“seABM 

IJB[Ndel 
Jo 

eoueseld 

04) 
UL BUIQBOTJ 

SI YOTYM 
‘SIXB 

[BOTZIOA 
YWTM 

‘MOMNTOAeI 
Jo 

Apog 
Jopye|s 

B 
JO 

SUOTJOU! 
O43 

10} 
pedojeaep 

st A10eY} 
peztmeeul] 

V 

G
A
I
M
I
S
S
V
T
I
O
N
N
 

‘sjea 
‘‘snqy! 

“dog 
‘at 

“e96T 
A
B
W
 

“
U
B
W
M
O
N
 

“N’C 

Aq ‘SAAVM 
AV TINDAY 

NI 
A
O
N
 

AVdS 
V 

AO 
S
N
O
I
L
O
W
 
FHL 

"66pL 
wodey 

‘uisog 
japow 

s0jADy 
plang 

‘eousuosel 
4B 

Ind00 

s
w
i
x
e
w
 
disys 

AloA 
oseym 

eduss 
Aouenbesy 

Moy 
ey} 

10} 
ydeoxe 

s
u
o
n
o
w
 

o1qB3s 
AToulel}xe 

MOYs 
JopuT]AD 

IB[NOITO 
IB[NoIWIed 

B 
IO} 

Opsw 
SUOTZB[ND[BH 

‘eoUBUOSEI 
ZuUIpN[oUL 

SseroueNnbey 
[]B 

48 
PI[BA 

SUOTIN[OS 
eptAoid 

07 
peAtiop 

18 
se0I0} 

JurdwBp 
Jops0-puodes 

4nq 
‘sejeusrp 

Apog 
ey} 

ul Jepio 
4satj 

07 
pedwepun 

ese 
yorym 

peAliep 
18 

UOTJOUI 
Jo 

sUOT}eNbyY 
‘SoABM 

JB[Nde1 
Jo 

adueseld 

OY} 
UL SuNVoOT 

St 
Y
O
M
 

‘SIXB 
[BOT}IOA 

YYIM 
‘BOTNTOAeI 

Jo 
Apoqg 

Jepye]s 
B 

JO 
SsuOT}OW 

O47 
10) 

pedojedop 
st 

Aloey} 
peztivoul] 

V 

G
I
M
I
S
S
V
T
I
O
N
N
 

*sjos 
‘*snqyt 

“dog 
‘at 

“gg6T 
A
B
W
 

“UBWIMON 
“N’P 

Aq 
‘
S
H
A
V
M
 
U
V
I
N
O
A
 

NI 
A
O
N
 

U
V
d
S
 
V
 
A
O
 
S
N
O
I
L
O
W
 
A
H
L
 

“66YL 
Hoday 

-uIspg 
japow 40]40 4 pang 



7 

on 

+ ‘ul 
" . 

v oak 1 

b at 

r j ; 

Wy 4 

\ 
rf 

‘a a Lat i 

" 

; ; 

4 F 
‘ 

fei! 
hey 3 
q vy 

* 

i : ; ; 

y hen 
; hy 

mM f i i , ae 

(ryan 

) : ; nia : 

i 

a 

‘ 

i 
“ 

Baty 





baa 
Hh 

aay Dae War ary 


