Coast.Eng. Res. Ctr.

MR 81-4

Movable-Bed Laboratory Experiments Comparing Radiation Stress and Energy Flux Factor as Predictors of Longshore Transport Rate

by Philip Vitale

MISCELLANEOUS REPORT NO. 81-4 APRIL 1981

Approved for public release; distribution unlimited.

U.S. ARMY, CORPS OF ENGINEERS COASTAL ENGINEERING RESEARCH CENTER

> Kingman Building Fort Belvoir, Va. 22060

203 . USEL MR 81-

TC

Reprint or republication of any of this material shall give appropriate credit to the U.S. Army Coastal Engineering Research Center.

Limited free distribution within the United States of single copies of this publication has been made by this Center. Additional copies are available from:

> National Technical Information Service ATTN: Operations Division 5285 Port Royal Road Springfield, Virginia 22161

Contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

UNCLASSIFIED	
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)	
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION MR 81-4	NO. 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Sublitle) MOVABLE-BED LABORATORY EXPERIMENTS COMPARING RADIATION STRESS AND ENERGY FLUX FACTOR AS	5. TYPE OF REPORT & PERIOD COVERED Miscellaneous Report
PREDICTORS OF LONGSHORE TRANSPORT RATE	5. PERFORMING ORG, REPORT NUMBER
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(8)
Philip Vitale	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Coastal Engineering Reserch Center (CERRE-CS) Kingman Building, Fort Belvoir, Virginia 22060	D31193
11. CONTROLLING OFFICE NAME AND ADDRESS Department of the Army	12. REPORT DATE April 1981
Coastal Engineering Research Center Kingman Building, Fort Belvoir, Virginia 22060	13. NUMBER OF PAGES 94
14. MONITORING AGENCY NAME & ADDRESS(11 different from Controlling Off	ice) 15. SECURITY CLASS. (of this report) UNCLASSIFIED
	150. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release, distribution unlin	nited.
17. DISTRIBUTION STATEMENT (DI LIG BUSHACI BILETA IN DICK 20, IL DICK	
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block nu	imber)
Energy flux Mova	able-bed experiments
Longshore transport rate Radi	lation stress
20. ABSTRACT (Continue on reverse side if necessary and identify by block num	mber)
The results of three-dimensional movable- to empirically relate the longshore sediment t stress and the longshore energy flux factor. with the longshore transport rate, producing c values of approximately 0.70. The surf simil	bed laboratory tests are used ransport rate to the radiation Both correlate equally well orrelation coefficient squared larity parameter also shows a

strong influence on the longshore transport rate.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

PREFACE

This report is published to provide coastal engineers insight into the important coastal process of longshore transport along sandy beaches by presenting the results of three-dimensional movable-bed laboratory tests. It is hoped that future studies will expand on the analyses of the data in this report. The report was prepared under the nearshore sediment transport research program of the U.S. Army Coastal Engineering Research Center (CERC).

The report was written by Philip Vitale, Hydraulic Engineer, under the general supervision of Dr. R.M. Sorensen, Chief, Coastal Processes and Structures Branch, Research Division.

The author acknowledges C. Galvin, R.P. Savage, and R.P. Stafford for their assistance and advice in the design and operation of the experiment, and M.S. Bartolomei, S.L. Douglas, B. Keely, M. Koenig, M.W. Leffler, J.G. Tingler, J. Sullivan, K.P. Zirkle, and, in particular, L.O. Tornese for their help in collecting and analyzing the data.

Comments on this publication are invited.

Approved for publication in accordance with Public Law 166, 79th Congress, approved 31 July 1945, as supplemented by Public Law 172, 88th Congress, approved 7 November 1963.

FED E.

Colonel, Corps of Engineers Commander and Director

CONTENTS

		Page
	CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI)	7
	SYMBOLS AND DEFINITIONS	8
I	INTRODUCTION	11
II	<pre>EMPIRICAL RELATIONS</pre>	11 11 13 14 15 15
III	EXPERIMENTAL SETUP. 1. Basin Layout. 2. Generators. 3. Sand-Moving System. 4. Instruments. 5. Dye Injection. 6. Sand Size.	15 17 20 21 21 25 25
IV	EXPERIMENTAL PROCEDURE. 1. Hourly Cycle. 2. Daily Cycle. 3. Test Cycle. 4. Range of Variables.	26 26 28 28 32
V	DATA. 1. Hourly and Daily Data in Appendix A. 2. Summary Data Table. 3. Survey Data. 4. Overhead Photos.	33 33 33 35 35
VI	<pre>DATA ANALYSIS</pre>	35 35 36 36 36 37 38 41 42 42
VII	SUMMARY AND CONCLUSIONS	45
	LITERATURE CITED	46
PPENDIX A B C D E	HOURLY AND DAILY DATA. BEACH SURVEY DATA. PLOTTED BEACH PROFILES. SELECTED BREAKER BAR AND WATERLINE PHOTOS. HOURLY CYCLE CALCULATIONS.	47 62 67 76 88
T	DALLY CYCLE CALCULATIONS.	93

A

CONTENTS--Continued

TABLES

		rage
1	Locations of overhead cameras mounted on the catwalk	24
2	Locations of dye injection by test number	25
3	Test cycle variables and data	32
4	Example of hourly and daily data tables in Appendix A	34
5	Test cycle calculations	36
6	Comparisons of tests 1 and 2	38
7	Daily cycle statistics	38
8	Test cycle statistics	41
	FICURES	
1	Coordinate system for momentum flux derivation	11
•		
2	Diagram of test basin setup	16
3	Photo of test basin setup	17
4	Photo of sand trap	18
5	Diagram of diffraction analysis used to determine the alongshore length of the test beach	19
6	Shore-normal profile of the test beach, sand trap, concrete aprons, and adjacent rubble	19
7	Coordinate system used for test beach with locations of wave gages	20
8	Diagram of eductor	22
9	Photo of weighing station	22
10	Diagram of sand feeder	23
11	Photo of sand feeder	23
12	Diagram of complete sand-moving system	24
13	Size distribution of sand used for all tests	25
14	Schematic diagram of the interrelationship of the three experimental cycles	26
15	Example of overhead photo	27

CONTENTS

FIGURES--Continued

16	Example of breaking wave	age 27
17	Example of strip-chart wave record	27
18	Example of surf zone photos	29
19	Example series of drainage photos	30
20	Example of bed-form photo	32
21	Determination of beach slope used to calculate the surf similarity parameter	37
22	Relation between longshore transport rate, $I_{\ell},$ and radiation stress, $S_{_{\rm X}y},$ using daily cycle data	39
23	Relation between longshore transport rate, $I_{\ell},$ and longshore energy flux factor, $P_{\ell,b}$, using daily cycle data	40
24	Relation between longshore transport rate, $I_{\rm g},$ and radiation stress, $S_{\rm \chi y},$ using test cycle data	41
25	Relation between longshore transport rate, $I_{\ell},$ and longshore energy flux factor, $P_{\ell,b}$, using test cycle data	42
26	Relation between ${\tt K}_{\rm S}$ and the surf similarity parameter, ξ , using test cycle data	43
27	Relation between $K_{\rm p}$ and the surf similarity parameter, ξ , using test cycle data	43
28	Comparison of data in this report to past reports, using SPM Figure 4-36	44

 $U_{\ast}S_{\ast}$ customary units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	by	To obtain
inches	25.4	millimeters
	2.54	centimeters
square inches	6.452	square centimeters
cubic inches	16.39	cubic centimeters
feet	30.48	centimeters
	0.3048	meters
square feet	0.0929	square meters
cubic feet	0.0283	cubic meters
yards	0.9144	meters
square yards	0.836	square meters
cubic yards	0.7646	cubic meters
miles	1.6093	kilometers
square miles	259.0	hectares
knots	1.852	kilometers per hour
acres	0.4047	hectares
foot-pounds	1.3558	newton meters
millibars	1.0197×10^{-3}	kilograms per square centimeter
ounces	28.35	grams
pounds	453.6	grams
	0.4536	kilograms
ton, long	1.0160	metric tons
ton, short	0.9072	metric tons
degrees (angle)	0.01745	radians
Fahrenheit degrees	5/9	Celsius degrees or Kelvins ¹

¹To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use formula: C = (5/9) (F -32).

To obtain Kelvin (K) readings, use formula: K = (5/9) (F - 32) + 273.15.

SYMBOLS AND DEFINITIONS

a'	ratio of sand volume to total volume of a sand deposit
Ъ	subscript for breaker
С	wave phase velocity
cg	wave group velocity
d	water depth
d ₅₀	median sand size
E	energy density
Fx	flux of wave energy per alongshore distance
g	acceleration of gravity
Н	wave height
H	average wave height
^H rms	root-mean-square wave height
Hs	significant wave height
IL	longshore transport rate in immersed weight per unit time
i	subscript for any point seaward of breaker zone
К _р	empirical coefficient relating ${\rm I}_{\mbox{\boldmath$\ell$}}$ to ${\rm P}_{\mbox{\boldmath$\ell$}b}$
K _s	empirical coefficient relation I_{l} to $S_{{ m xy}}$
k	wave number = $2\pi/L$
L	wavelength
n	ratio of C _g to C
0	subscript for deepwater condition
Pl	energy flux term
P _{lb}	longshore energy flux factor as used in this report
Pls	longshore energy flux factor as used in the SPM
Q	longshore transport rate in volume per unit time
R	range of coordinate system defined in Figure 7

8

SYMBOLS AND DEFINITIONS--Continued

r	correlation coefficient
S	station of coordinate system defined in Figure 7
s _{xy}	radiation stress component (flux of y-momentum in x-direction)
Т	wave period
t	time
u	onshore component of water particle velocity
v	alongshore component of water particle velocity
x	coordinate in onshore direction
У	coordinate in alongshore direction
z	coordinate in vertical direction
α	angle between wave crest and shoreline
αg	angle between wave generator and shoreline
β	angle of beach slope with horizontal
η	water surface elevation
θ	wave phase
ξ	surf similarity parameter as used in this report
ξ _b	surf similarity parameter as used in Kamphuis and Readshaw (1978)
ρ	mass density of water
ρ _s	mass density of sand
ω	angular frequency of wave = $2\pi/T$

9

MOVABLE-BED LABORATORY EXPERIMENTS COMPARING RADIATION STRESS AND ENERGY FLUX FACTOR AS PREDICTORS OF LONGSHORE TRANSPORT RATE

by Philip Vitale

I. INTRODUCTION

Three-dimensional movable-bed laboratory tests were conducted to compare radiation stress and energy flux factor as predictors of the longshore sediment transport rate. The tests were performed in the U.S. Army Coastal Engineering Research Center's (CERC) Shore Processes Test Basin (SPTB). This report presents derivations of the radiation stress and the energy flux factor, documents the experimental setup and procedure, tabulates most of the data, and performs the data analyses. Many photos were taken during the tests; however, only a few were used in the report. The complete set of test photos is available from CERC's Coastal Engineering Information and Analysis Center (CEIAC).

II. EMPIRICAL RELATIONS

The longshore transport data are related empirically to the two expressions representing wave conditions. One, radiation stress, is based on momentum flux, the other on energy flux. An important concept which is also used in the data analyses is the surf similarity parameter.

1. Momentum Flux.

The dependent variable studied here is the longshore transport rate caused by waves approaching the beach; therefore, the consequential momentum term is the onshore flux of alongshore momentum. The derivation of the term follows Longuet-Higgins (1970) which applies the concept of wave momentum flux to the generation of longshore currents.

The coordinate system used is shown in Figure 1. The y-axis is along the shoreline, the x-axis is normal to the shoreline and positive shoreward, and the z-axis originates at the stillwater level and is positive upward. Using this system, the onshore flux of alongshore momentum is the flux of y-momentum in the x-direction, $S_{\rm xy}$. This term is one component of what is commonly called the radiation stress tensor.

Figure 1. Coordinate system for momentum flux derivation.

According to small-amplitude wave theory, the components of the water particle velocity in the x- and y-directions for a wave traveling at an angle, q, to the shoreline (Fig. 1) are, respectively,

$$u = \frac{H}{2} \frac{gT}{L} \frac{\cosh [k(z+d)]}{\cosh kd} \cos\theta \cos\alpha$$
(1)

$$v = \frac{H}{2} \frac{gT}{L} \frac{\cosh \left[k(z+d) \right]}{\cosh kd} \cos \theta \sin \alpha$$
(2)

where

- H = wave height
- g = acceleration of gravity
- T = wave period
- L = wavelength
- d = water depth
- k = wave number
- θ = wave phase.

The last two terms are defined as

 $k = \frac{2\pi}{1}$

and

 $\theta = kx - \omega t$

where t is time, and $\boldsymbol{\omega}$ the wave angular frequency

$$\omega = \frac{2\pi}{T}$$

The v-momentum (alongshore momentum) per unit volume is ρv where ρ is the water mass density. The flux of this momentum in the x-direction (onshore) per unit alongshore distance and unit water depth is ovu. Integrating over the water column and averaging over time produce the mean alongshore momentum flux in the x-direction per unit alongshore distance

> $S_{xy} = \int_{-d}$ (3)

where the overbar denotes the mean with respect to time and η the water surface elevation. Substituting equations (1) and (2) into (3) and dropping terms of higher than second order produce

$$S_{xy} = (\overline{E}C_g \cos\alpha) \frac{\sin\alpha}{C}$$
(4)

$$r = \int_{0}^{n} \rho v u \, dz$$

where C is the wave phase velocity, $C_{\rm g}$ the wave group velocity, and $\overline{\rm E}$ the wave energy density

$$\overline{E} = \frac{\rho g H_{rms}^2}{8}$$
(5)

where H_{rms} is the root-mean-square (rms) wave height. The term in parentheses in equation (4) is the flux of wave energy per alongshore distance, F_x , assuming straight and parallel bathymetric contours. When zero wave energy dissipation is assumed,

$$F_x = \overline{E}C_g \cos\alpha = \text{constant}$$
 (6)

In this report, dissipation is assumed to be zero up to the breaker zone; therefore, F_x is constant from deep water to the breaker zone. Since the ratio of sin α to C is constant due to Snell's law, equation (4), which represents the alongshore wave momentum entering the surf zone, is constant seaward of the breaker zone.

Equation (4) can be revised for application of monochromatic waves, as in this report. For such wave conditions, the average wave height, \overline{H} , measured during the tests (and discussed later in Section IV) is equal to $H_{\rm rms}$. By rewriting equation (4),

$$S_{xy} = \left(\frac{\rho g \overline{H}^2}{8} C_g \cos \alpha\right) \frac{\sin \alpha}{C}$$
(7)

 S_{xy} is now defined for use with laboratory monochromatic wave data. Note that equation (4) is valid for any wave condition; equation (7) is valid only for conditions where \overline{H} equals H_{rme} .

2. Energy Flux.

In literature, the longshore transport rate has been empirically related most frequently to a term found by multiplying both sides of equation (4) by the wave phase velocity, C, to yield

$$P_{\ell} = (\overline{E}C_{g} \cos \alpha) \sin \alpha$$
 (8)

Unlike S_{xy} , P_{ℓ} is not constant seaward of the breaker line; therefore, specifying where P_{ℓ} is being calculated is necessary. This report, following convention, determines P_{ℓ} at the breaker line,

$$P_{lb} = (\overline{E}C_g \cos\alpha)_b \sin\alpha_b$$
(9)

representing the value of P_{ℓ} at the point closest to where the longshore transport is occurring. The subscript b denotes breaker values. The term

in parentheses in equation (9) has been shown to be constant (see eq. 6) seaward of the breaker line; therefore, subscript b may be replaced by i which represents any point seaward of the breaker line. Making this change, using. equation (5), and letting $H_{\rm rms}$ equal $\overline{\rm H}$ for monochromatic waves, equation (9) becomes

$$P_{lb} = \left(\frac{\rho g \overline{H}^2}{8} C_g \cos \alpha\right)_i \sin \alpha_b$$
(10)

The Shore Protection Manual (SPM) (U.S. Army, Corps of Engineers, Coastal Engineering Research Center, 1977) provides a term similar to P_{lb} except that the wave height used is the significant height, H_s . The term, called the longshore energy flux factor, is defined as

$$P_{ls} = \left(\frac{\rho g H_s^2}{8} C_g \cos \alpha \sin \alpha\right)_b$$
(11)

 $P_{\rm gs}$ is derived in Galvin and Schweppe (1980). The relationship between $\rm H_{rms}$ and $\rm H_{s}$ has been shown in Longuet-Higgins (1952) to be

$$H_{s}^{2} = 2H_{rms}^{2}$$
(12)

assuming a Rayleigh distribution of wave heights as well as a number of other conditions. Therefore,

$$P_{\ell b} = \frac{P_{\ell s}}{2}$$
(13)

Since $P_{\ell,b}$ and $P_{\ell,s}$ are essentially the same terms, this report uses the SPM terminology and refers to $P_{\ell,b}$ as the longshore energy flux factor.

3. Longshore Transport Rate.

The longshore transport rate, Q, given in the SPM in units of volume per unit time, is also commonly shown as I_{ℓ} with units of immersed weight per unit time. The relationship between the two is

$$I_{\rho} = (\rho_{c} - \rho) ga' Q$$
(14)

where $\rho_{\rm S}$ is the mass density of sand and a' the ratio of sand volume to total volume of a sand deposit, which takes into account the sand porosity. For discussions of equation (14), see Komar and Inman (1970) and Galvin (1979). Since the laboratory tests described here measured I_l directly, this term is used in most of the data analysis.

4. Empirical Relations.

The expressions derived in the preceding paragraphs are used to set up the following empirical relations

$$I_{\ell} = K_{\rm p} P_{\ell \rm b} \tag{15}$$

and

$$I_{\ell} = K_{s} S_{xy} \tag{16}$$

where ${\rm K}_{\rm p}$ and ${\rm K}_{\rm s}$ are coefficients to be determined from the test data in this report.

Equation (15) is based on the concept that the work done in moving the sand alongshore is proportional to the energy which approaches the beach. The units are consistent and $K_{\rm p}$ is dimensionless.

Equation (16) is based on the concept that the sand transported alongshore depends on the alongshore force exerted by the wave motion on the bed inside the surf zone. By the equation of motion, this force is related to the change of momentum inside the surf zone. The alongshore momentum, S_{xy} , enters the surf zone through the breaker line but cannot exit through the shoreline boundary. Therefore, the change in alongshore momentum is S_{xy} and equation (16) results. K_c has dimensions of length over time.

5. Surf Similarity Parameter.

Kamphuis and Readshaw (1978) showed that ${\rm K}_{\rm p}$ and ${\rm K}_{\rm s}$ are dependent upon the surf similarity parameter,

$$\xi_{\rm b} = \frac{\tan \beta}{\left({\rm H_{\rm b}}/{\rm L_{\rm o}}\right)^{1/2}}$$
(17)

in which tan β is the beach slope, H_b the breaker height, and L_o the deepwater (d/L > 1/2) wavelength. ξ_b reflects variations in beach shape, breaker type, and rate of energy dissipation. Using the results of laboratory tests, the following relationships were found by Kamphuis and Readshaw

$$K_{\rm p} = 0.7\xi_{\rm b}$$
 for $0.4 < \xi_{\rm b} < 1.4$ (18)

$$K_{e} \simeq 0.08\xi_{b}$$
 for $0.4 < \xi_{b} < 1.25$ (19)

For values of $\xi_{\rm b}$ higher than the upper limits, ${\rm K}_{\rm p}$ and ${\rm K}_{\rm s}$ become independent of $\xi_{\rm b}.$

The surf similarity parameter is evaluated in this report to determine its effect on the longshore transport rate.

III. EXPERIMENTAL SETUP

This section discusses the setup in the SPTB (Figs. 2 and 3) and describes the wave generators, wave gages, and cameras and their positions. Also discussed are the sand-moving system, the method for measuring the longshore current velocity, and the size distribution of the sand used in the experiment. The design of the setup was based in large part on Fairchild (1970).

Figure 3. Photo of test basin setup.

1. Basin Layout.

A diagram of the basin setup is shown in Figure 2. The basin is 45.72 meters long, 30.48 meters wide, and 1.22 meters deep. The alongshore and the shore-normal directions of the sand beach were 7.62 and 11.45 meters, respectively. The backbeach was 3.05 meters in the shore-normal direction, but it was not part of the test beach.

Immediately downdrift of the beach was the sand trap, 0.91 meter wide and 12.7 centimeters deep (Fig. 4), used to catch the longshore transport.

Concrete aprons, 4.57 meters in the alongshore direction, were located on the downdrift side of the sand trap and on the updrift side of the beach. The updrift apron provided enough distance for the longshore current to develop between the updrift training wall and the beach. This phenomenon is discussed in Galvin and Eagleson (1965). The downdrift apron served two purposes--one as a platform for depositing the longshore transport that escaped the trap, the other as a surface on which the waves traveled to diminish diffraction effects since no downdrift training walls were used.

The major limitation in the experimental planning was the size of the SPTB, which permitted three wave generators, each 6.10 meters long, to be linked together and leave enough room to be rotated through various angles to the beach. The other limitation was the decision not to use downdrift training walls due to the wave reflection problem. When downdrift training walls are used, the wave energy, which is reflected off the beach at an angle in the downdrift direction, strikes the downdrift wall and is reflected back toward the updrift direction. The energy is then reflected by the updrift wall and the process repeats. The reflected wave energy is being trapped within the

Figure 4. Photo of sand trap.

two walls; this produces some complicated wave variability problems (e.g., see Fairchild, 1970). With no downdrift training walls, the reflected wave energy moves away from the beach area into the outer parts of the test basin where most of it is eventually dissipated by the rubble slope along the edge of the basin (Fig. 2). This, however, creates a problem with wave diffraction. The energy of the wave leaving the generator spreads laterally into still water and gradually decreases the wave height toward the updrift end of the wave creat.

To minimize the decrease in wave height over the test beach, it was designed using the diffraction diagram for a wave traveling past a semiinfinite breakwater from Figure 2-33 of the SPM. The period and angle used in the diffraction analysis were 3 seconds and 10° , respectively, since these values produced the maximum diffraction closest to the beach. The spreading of wave energy into the shadow of a breakwater is analogous to the spreading of wave energy into the area of the test basin downdrift of the generators. The diagram (Fig. 5) indicated that the alongshore length of the beach should be 7.62 meters. Most of the diffraction-caused decrease in wave height occurs over the downdrift concrete apron.

Rubble, ranging in size from 7.62 to 15.24 centimeters, was placed at several locations in the basin to absorb wave energy and provide gradual slopes between the concrete aprons and the basin floor. The beach, sand traps, concrete aprons, and adjacent rubble were all built to the same shorenormal profile (Fig. 6). This profile was based on Chesnutt's (1978) longterm two-dimensional tests in which waves were run onto a sand beach to determine profile response. After superposing several of Chesnutt's (1978)

Figure 5. Diagram of diffraction analysis used to determine the alongshore length of the test beach.

Figure 6. Shore-normal profile of the test beach, sand trap, concrete aprons, and adjacent rubble.

profiles run for 80 hours or more with wave periods similar to those used in this experiment, the shore-normal profile in Figure 6 was drawn as a compromise or average through the superposed profiles. This profile was used to lessen the onshore-offshore adjustment of the beach.

Figure 7 shows the coordinate system used for the test beach. The origin is at the updrift, shoreward corner of the beach. Ranges (in meters) are along the alongshore axis, and stations (in meters) along the shore-normal axis. Any point on the beach, or in the basin, can be described by a rangestation pair.

Figure 7. Coordinate system used for test beach with locations of wave gages (R = range, S = station).

2. Generators.

The three piston-type 6.10 meter-long generators used in this experiment produced only monochromatic waves and are discussed in Stafford and Chesnutt (1977). The generators were set at four different angles- -0° , 10° , 20° , and 30° -to the beach during the experiment. For each setting, an updrift training wall was built from the generator to the l-foot depth. This allowed circulation past the wall to feed the longshore current. Figure 2 shows the setup of the four generators and training wall.

For the 10° and 20° tests, the training wall was curved to allow for wave refraction. However, since the wall stopped at the 1-foot depth, the curves

were small and considered not worth the construction effort. Therefore, the curve for the 30° tests was deleted and a straight training wall was used.

3. Sand-Moving System.

As the waves approached the beach at an angle, the sand moved in the downdrift direction. Most of it deposited in the sand trap. The sand which escaped the trap deposited either on the downdrift concrete apron or beyond the apron and rubble (covered to keep sand from being lost within it) onto the basin floor. This area is shown in Figure 2 as the supplementary deposition area. Although separate measurements of the sand deposited in each area were not taken, it is estimated that 80 to 95 percent of the longshore transport fell into the trap. The greater the transport rate and the suspended sediment, the greater was the amount of sand escaping the sand trap.

The trap was cleaned continually during a test using an eductor attached to a small centrifugal pump. Water was pumped through the eductor at high speed, creating a suction to pick up the sand (Fig. 8). The sand was pumped to the weighing station (Fig. 9), deposited in one of two bins, and weighed submerged. When divided by the appropriate time period, the value became the immersed weight longshore transport rate.

After the weighing, the sand was pumped, using another eductor, into a sand feeder. The sand feeder is a vertical cylinder open at both ends in which sand is introduced through the top and removed by waves through the bottom. A diagram and a photo of the feeder are given in Figures 10 and 11. The primary advantage of the feeder is that it permits waves to control the amount of sand introduced onto the beach. Savage (1961) discusses the feeder and its development.

In summary, the complete sand-moving system (Fig. 12) included the following:

(a) A sand trap, a downdrift concrete apron, and a downdrift deposition area which trapped the sand;

(b) a downdrift eductor-pump combination which moved the trapped sand to the weighing station;

(c) a weighing station which weighed the amount of sand moved;

(d) an updrift eductor-pump combination which moved the sand from the weighing station to the sand feeder; and

(e) a sand feeder which redeposited the sand onto the beach.

4. Instruments.

Wave heights were measured using parallel-wire wave gages (see Fig. 7). Gages 1 and 2, located seaward of the toe of the beach, were used for all 15 tests. Gage 3, located over the beach, was used for tests 5 to 15. Gage 4A, located close to the breaker line, was used for tests 5 to 11. Beginning with test 12 for the remainder of the tests, gage 4A was adjusted to measure the breaker height and then renamed gage 4B.

Figure 8. Diagram of eductor.

Figure 9. Photo of weighing station.

Figure 12. Diagram of complete sand-moving system.

Two cameras were mounted over the beach on the catwalk of the SPTB. One was a view camera with an adapter for taking 4- by 5-inch Polaroid black-andwhite photos, and the other a standard 35-millimeter camera. The locations of the cameras are given in Table 1.

Other instruments used in the tests include standard hydraulic scales for weighing the sand, and a standard level and rod for surveying the beach after each test.

Location ¹	Camera			
	View (m)	35-mm (m)		
Range	3.9	3.9		
Station	4.9	4.7		
Elevation above SWL	8.5	8.5		

Table 1. Locations of overhead cameras mounted on the catwalk.

¹Accurate only to \pm 0.1 meter.

5. Dye Injection.

Longshore current velocities for tests 5 to 15 were measured by injecting dye into the surf zone through a hose which ran from the sand feeder to a small stake in the surf zone. Dye was poured by hand into the top of the hose. Table 2 gives the locations of the dye injection by test numbers. The change in location of the stake in tests 7 to 10 was a procedural error and not planned for a special purpose. The dye injection procedure is discussed in detail in the next section.

Test Nos.	Dye injected	Dye timed	Dye timed	Timed distance
	at range	from range	to range	traveled
	(m)	(m)	(m)	(m)
5 and 6	3.00	3.60	7.60	4.00
7 to 10	3.82	3.82	7.73	3.78
11 to 15	3.00	3.73	7.73	4.00

Table 2. Locations of dye injection by test number.

6. Sand Size.

Figure 13 shows the size distribution of the sand used for all 15 tests. The median diameter was 0.22 millimeter. The geometric standard deviation is defined as

$$\sigma_{\rm g} = \frac{{\rm d}_{16}^{1/2}}{{\rm d}_{84}} \tag{20}$$

where d_{16} and d_{84} are the sand sizes at which 16 and 84 percent, respectively, of the sample is coarser. The value of σ_{g} for the sand used was 1.22. Figure 13 indicates that the sand was well sorted.

Figure 13. Size distribution of sand used for all tests.

IV. EXPERIMENTAL PROCEDURE

Each test was composed of three major data collection cycles: an hourly cycle, a daily cycle, and a test cycle. For example, wave heights were measured every hour (hourly cycle), water temperature was measured twice a day (daily cycle), and beach surveys were taken at the end of each test (test cycle). The typical test schedule was 4 hourly cycles daily for 6 days for a total of 24 run-hours per test. Tests 1 and 2, as discussed later, were exceptions to this schedule. Figure 14 is a schematic diagram of the interrelationship of the three cycles. Since waves were run every other day, a complete test took about 3 weeks.

Figure 14. Schematic diagram of the interrelationship of the three experimental cycles.

1. Hourly Cycle.

The various types of data collected in a typical hourly cycle are shown in Figure 14, along with an indication of time of collection. Before a new hour of run-time was started, photos of the beach were taken from overhead with both the 35-millimeter camera (Fig. 15) and the view camera. A reference rope in the alongshore direction at station 5 and painted arrows on the concrete at each station bordering the beach can be seen in Figure 15. Photos, such as shown in Figure 15, provide a record of the change in waterline and breaker bar throughout the tests. The waves were then turned on and usually, within 5 minutes of the start, an overhead photo of the breaking wave was taken with the view camera. The angle between the breaking wave and the reference rope was later measured from the photo to determine the breaking angle of the wave (see Fig. 16). Note that this procedure assumes the alongshore direction remained constant throughout the tests. In actuality, however, the alongshore contours are changing, as evidenced in Figure 15.

After a run-time of 30 minutes, wave data were collected for 2 minutes. A sample strip-chart record is shown in Figure 17. The wave height was determined from this record. For a given length of wave record, a horizontal line was drawn along what appeared to be the average wave-crest elevation. A horizontal line was also drawn for the wave troughs. The distance between the two lines was measured to determine the average wave height, $\overline{\mathrm{H}}$. This procedure assumes that a nearly uniform distribution of wave heights is produced by the monochromatic wave generators.

Figure 15. Example of overhead photo.

Figure 16. Example of photo of breaking wave.

Immediately after the wave data were collected, dye was injected into the surf zone, as discussed in Section III, and the leading edge of the dye was timed over a distance of approximately 4 meters (see Table 2) to determine the longshore current velocity. Also recorded were the station at which the dye left the downdrift edge of the beach and the station at which the waves were breaking. Therefore, the determination of whether the dye moved offshore, along the breaker line, or onshore could be made. Most of the dye injections traveled along the breaker line.

During the hourly cycle, sand was continually picked up from the trap area and weighed when a bin was full. A complete record of the amount of sand moved in a given time period existed only at the end of the day after the waves had been stopped and all the remaining sand had been picked up and weighed. Therefore, the longshore transport rate can be given for a daily cycle or a test cycle only.

2. Daily Cycle.

At the start of every test day (see Fig. 14), the water temperature was recorded, the water level was corrected to 0.710 meter, the wave gages were calibrated, and a check of all equipment was made. The hourly cycles were then started. Four hourly cycles were usually completed each day.

Shortly before the waves were turned off at the end of the day, photos of the surf zone were taken from the side (see Fig. 18 for examples). After the waves were stopped, all the sand in the sand trap, on the downdrift concrete apron, and in the downdrift deposition area was moved to the weighing station and weighed. The day's longshore transport movement was then determined after the final weighing. This quantity, divided by the total number of run-hours, provided the immersed weight longshore transport rate for the day.

3. Test Cycle.

At the beginning of each test, new test values for the wave period, T, the generator angle, $\alpha_{\rm g}$, and the generator eccentricity, Ecc, were selected and set (Fig. 14). Ecc is half the distance the generator bulkhead moves. The combination of period and eccentricity produced a predicted wave height, using the calibration curve of the generators (see Fig. 2 in Fairchild, 1970). This guided the selection of T and Ecc but was not used for wave height determination.

The beach was regraded to the shore-normal profile (see Fig. 6) before each new test. This included raking the beach to remove all traces of ripples from the prior test. The basin was usually flooded to cover the entire beach and left over a weekend to allow the new beach to stabilize before the new test cycle began.

After the test was completed, the basin was drained in 10-centimeter increments, producing depth contours of 0, 10, 20, 30, 40, 50, and 60 centimeters. An overhead photo of the waterline was taken at each increment. An example series is shown in Figure 19. Surveys of the beach were then taken, using a standard level and rod, along ranges 1.5, 2, 3, 4, 5, 6, 7, and 7.6 meters. The elevation on each range was read at all major breaks in slope.

Figure 18. Example of surf zone photos.

Figure 19. Example series of drainage photos.

Finally, photos of the beach were taken at close range to document important bed forms, such as ripples and bars (Fig. 20).

Figure 20. Example of bed-form photo.

4. Range of Variables.

Table 3 gives the test variables for all 15 tests. Note that the 0.710meter water depth and the sand were the same for all tests. The wave heights listed are the average of all the hourly measurements of gages 1 and 2 for each test.

Test No.	Total run-time	Period	Generator angle	Water temperature	Wave height	Breaker angle	Longshore current	I ₂ •10 ⁴
	(hr)	(s)	(degrees)	(°C.)	(cm)	(degrees)	(cm/s)	(N/s)
1	25	2.35	10	22.8	8.2	8	1	6,117
2	50	2.35	10	22.8	8.0	7		6,890
3	24	1.50	10	20.7	12.8	7		8,396
4	24	1.90	10	15.9	11.5	7		6,188
5	24	3.00	10	12.6	7.2	3	3	7,544
6	24	2.35	20	12.3	7.7	9	17	9,966
7	24	1.90	20	11.7	10.2	11	30	7,281
8	24	1.90	20	13.8	10.0	11	20	3,446
9	24	1.50	20	14.7	10.3	15	27	5,227
10	24	1.90	20	18.8	16.5	15	29	10,605
11	24	2.35	00	20.7	7.4	-5	0	892
12	24	2.35	30	23.1	8.1	20	28	16,328
13	24	3.00	30	23.2	6.9	15	7	11,941
14	24	3.00	30	19.4	15.6	30	23	32,938
15	24	1.90	30	16.1	15.1	19	40	25,502

Table 3. Test cycle variables and data.

1 Not available.

V. DATA

1. Hourly and Daily Data in Appendix A.

Table 4 is an example of how the daily and hourly data are tabulated in Appendix A. Column 1 lists the run-time over which the data were collected. Run-time is defined as the cumulative time of wave operation from the beginning of the test. A run-time of 05 10 means that up to that point, waves had been run at the beach for a cumulative total of 5 hours and 10 minutes. This would be the case even if the first wave had been run 2 days before.

Column 2 lists the length of time (in minutes) waves were stopped to take overhead photos of the beach. The letters CFD or TC indicate that the testing was completed for the day or the test was completed. Between any two entries in column 2, the waves were run continuously. For example, from the beginning of the test at run-time 00 00 to run-time 01 00 (see Table 4), the waves were continuously run. At that point the waves were stopped for 5 minutes to take overhead photos of the beach. The waves were then restarted and run continuously until run-time 02 00.

Columns 3 and 4 list the water temperature and the water depth, respectively. These measurements were taken in the morning before the testing started and in the afternoon after the testing stopped.

Column 5 lists the immersed weight of sand moved during testing from the previous entry in the column. A value is always listed with a CFD or TC entry since it was only at the end of the day that the balance of sand not weighed during the time the waves were running could be picked up and weighed. In Table 4, the value of 4,227 immersed pounds of sand is the quantity of sand transported from run-hour 04 00 to 08 00. This column is not a cumulative listing of sand transported.

Columns 6, 7, 8, and 9 list the wave heights measured by gages 1, 2, 3, and 4A or 4B, respectively. Section III discusses the locations of these gages, which are shown in Figure 7. Column 10 lists the breaker angles measured from the Polaroid 4- by 5-inch photos of the breaking waves (see Fig. 16). Column 11 lists the longshore current velocity measured by dye injections, as discussed in Section III. Column 12 lists the breaker type, using the following code: sg, surging; p, plunging; c, collapsing; and sp, spilling. A double entry indicates both types of breakers were evident with the first type predominant.

2. Summary Data Table.

For a comparison of test conditions, Table 3 provides the average values of water temperature, wave height, wave breaker angle, longshore current velocity, and average longshore transport rate in immersed pounds per second for each test. Also included are the wave period and generator angle.

33

			PERIO	D 3.00 SEC	INDS	GENERA	TOR ANGLE	30 DEGREE	3		
RUN TIME HR'MN	NINUTES STOPPED	+STER TEMP CELSIUS	HATER DEPTH CH	IMMERSED REIGHT LBS	GÁGE 1	WAVE C GAGE 2	HEIGHT M GAGE 5	GAGE 4A748	BREAKER ANGLE - DEGREES	LONGSMORE CURRENT CM/S	BREAKER Type
		22.7	71.0								
0 4 0 30					5.0	7.6	7.1	7.1	15	6	86
1 0	5								15		
2 0	10				0./	0.0	/.3	0.4	14	8	30
2 43	5				6.1	7.6	7.0	9.1	10		· \$G
3 30					6.2	7.8	÷.7	9.0	16	8	5 6
4 0		22.9	71.0	4234							
4 30 5 0	10				7.2	7.0	5.9	11.9	••	8	56
5 5 5 30					6.7	6.8	6.1	11.6	19	,	36
65	10				6.8	A. 9	6.0	11.9	12		56
7 0	10				01-	•••		,	13	·	
7 30 8 0	¢∮D	23.1	71.0	4227	7.1	8.8	6.4	11.1		9	3 G
8 0 8 3 5 30		23.0	71.0		4-3	7.3	7.0	11.7	15		56
9 2	15				415		,	,	15	•	
9 30 10 0	¢*0	23.8	70.9	1861	6.2	7.0	7.0	12.2		8	SG
10 0		23.7	71.0					10.6	20		8.6
11 0	10							1010	14	v	•••
11 30 12 0	10				7.2	0.5	÷.8	9.9		9	56
12 5					7 . 1	6.4	6.9	9.4	16	10	56
13 6	10								14		•
14 0 14 0	C#D	23.5	71.0 71.0	3500		•.•	0.0	4.1		0	30
14 4			•		7.1	6.8	6.5	9,2	18	9	36
15 3	10								10		
16 0	10					•.•	0.4	4.0	15	1	86
16 30 17 0	10				6.5	6.7	5,8	8.0	••	7	3 G
17 0			••••	1471	6.2	6.7	6.8	10.9	12	7	8G
18 0	C · D	25*9	71.0	3033					16		
18 30 19 0	20				6.8	7.0	0.1	6.4	10	5	56
19 5					6.5	7.1	6.2	6.5	18	5	86
20 5	90				5.9	7.8			14		
21 0 21 5	10				24.	,,,,		7.5	12	•	50
21 30 22 0	6 F D	23.1	71.0	3789	5,8	8,2	7,2	8.0		4	86
0 55 2 55 0 55			71.0			• •			13		•6
23 0 23 3	5				3./	7.0	6°2	0.0	11	,	56
23 30 23 55					6 * 5	7.9	7.7	7.3	11	8 -	8G
24 0	70	23.1	71.0	1880							

Table 4. Example of hourly and daily data tables in Appendix A.

 1 CFD = testing completed for day; TC = testing completed.
3. Survey Data.

After each test, the SPTB was drained and the beach was surveyed. The distance and elevation pairs are listed in Appendix B and plotted in Appendix C. The elevation datum is the stillwater level (SWL), which corresponded to a 0.710-meter water depth.

4. Overhead Photos.

Every hour during testing, the waves were stopped to take an overhead 35millimeter photo of the beach (see Fig. 15). The photos show the waterline, the longshore bar, and the swash zone. They are useful for a qualitative description of how the beach responded to the waves. Appendix D contains a series of photos for run-times 01 00, 08 00, 16 00, and 24 00.

VI. DATA ANALYSIS

This section includes the data analysis to determine the relations between I_{ℓ} and S_{xy} and I_{ℓ} and $P_{\ell\,b}.$ The empirical coefficients found from these relations are then, in turn, related to the surf similarity parameter, ξ , which is adapted to the data collected. Also included is an explanation of the calculations of S_{xv} , $P_{l,h}$, ξ , and I_{l} , along with plots of the various relationships. The wave height used in the calculations is that measured at the toe of the beach (average of gages 1 and 2 wave heights). The breaker wave height, which would have been a better value, was not used for the following reasons. The wave height at the toe of the beach was measured for all 15 tests; the breaker height was not. Also, only one gage was used to measure breaker height, while two were used at the beach toe. The significant difference in height between waves measured at the two beach toe gages (see App. A) indicates that some wave height variability existed along the wave crest. Therefore, the average of the measurements at the two beach toe gages is probably a more reliable estimate of the entire wave passing the toe than the one gage measurement at the breaker is of the entire breaker wave. A comparison of the data in this report with past studies is shown in a Q versus P_{lb} graph.

1. Calculation of S_{xy}.

Equation (7)

$$S_{xy} = \left(\frac{\rho g \overline{H}^2}{8} C_g \cos \alpha\right) \frac{\sin \alpha}{C}$$

was used to calculate S_{xv} . Rearranging the equation,

$$S_{xy} = \frac{\rho g}{16} \overline{H}^2 n \sin 2\alpha$$
(21)

where n is the ratio C_g/C and a function of the water depth and wave period or length. $S_{\chi\gamma}$ was calculated at the toe of the beach by using the average of the wave heights measured at that location (see Fig. 7), and by using the generator angle for α . This was calculated for each set of wave data. Thus, for the standard 24-hour test, 24 values of $S_{\chi\gamma}$ were calculated (see App. E). The average of $S_{\chi\gamma}$ for each test is listed in Table 5.

Test	Total run time	S _{xy}	P _{lb}	IL	Ks	К _р	ξ
	(hr)	(N/m)	(J/m/s)	(N/s)	(m/s)		
1	25	1.179	2.201	0.6116	0.5190	0.2779	0.6604
2	30	1.137	2.043	0.6889	0.6058	0.3373	0.6686
3	24	2.280	3.232	0.8396	0.3682	0.2598	0.3374
4	24	2.158	3.615	0.6188	0.2868	0.1712	0.4508
5	24	0.987	0.789	0.7544	0.7640	0.9557	0.8997
6	24	1.977	2.144	0.9966	0.5042	0.4648	0.6815
7	24	3.161	4.158	0.7281	0.2303	0.1751	0.4787
8	24	3.018	3.918	0.3446	0.1142	0.0880	0.4835
9	24	2.808	4.286	0.5227	0.1862	0.1220	0.3761
10	24	8.250	14.761	1.0605	0.1285	0.0718	0.3764
12	24	2.942	4.839	1.6328	0.5550	0.3374	0.6644
13	24	2.241	2.948	1.1941	0.5328	0.4051	0.9190
14	24	11.578	28.802	3.2938	0.2845	0.1144	0.6112
15	24	9.253	13.536	2.5502	0.2756	0.1884	0.3934

Table 5. Test cycle calculations.

2. Calculation of P_{lb}.

Equation (10)

 $P_{\text{lb}} = \left(\frac{\rho g \overline{H}^2}{8} C_g \cos \alpha\right)_i \sin \alpha_b$

was used to calculate $P_{l,b}$. The term in the parentheses, like S_{xy} , was calculated at the toe of the beach. However, the sine term used the breaker angle as measured from the photos of the breaking waves. The breaker angle used in the calculation was the average of the breaker angles collected 30 minutes before and after the wave data were collected (see Fig. 14). $P_{l,b}$ was calculated for each set of wave data, 24 values of $P_{l,b}$ were calculated for the standard 24-hour test (see App. E). The average of $P_{l,b}$ for each test is listed in Table 5.

3. Calculation of ξ.

The surf similarity parameter of Kamphuis and Readshaw (1978) was presented in equation (17) as

$$\xi_{\rm b} = \frac{\tan \beta}{\left({\rm H_{\rm b}}/{\rm L_{\rm o}}\right)^{1/2}}$$

For the data in this report, a different surf similarity parameter is needed since \overline{H} will be substituted for H_b , as discussed at the beginning of this section. Therefore, the surf similarity parameter in the following analysis is

$$\xi = \frac{\tan \beta}{\left(\overline{H}/L_{o}\right)^{1/2}}$$
(22)

The same beach slope was used for all 15 tests and was determined as shown in Figure 21. A value of ξ was calculated for each test using the average \overline{H} for the entire test. These values are listed in Table 5.

Figure 21. Determination of beach slope used to calculate the surf similarity parameter.

4. Special Tests.

Three tests were performed under special circumstances. Test 2 was a repeat of test 1; test 8 was a repeat of test 7, except the sand feeder was moved shoreward; and test 11 was done with a generator angle of zero.

Tests 1 and 2 were both run with a period of 2.35 seconds, a generator angle of 10°, and a generator eccentricity of 5.97 centimeters. Test 1 ran for 25 hours, test 2 for 50 hours. A twofold comparison of the two tests was originally planned. The first 25 hours of test 2 data was to be compared to the test 1 data, and then, both sets of data were to be compared to the last 25 hours of test 2. Unfortunately, due to an experimental error, only the first 30 hours of the test 2 longshore transport data was collected accurately. Therefore, the only comparison made was test 1 to the first 30 hours of test 2. Reference to test 2 in the remainder of the report refers to the first 30 hours only. Appendix A contains all 50 hours of test 2 data.

Table 6 compares the results of the two tests. The differences listed give an indication of the repeatability of the data collection. The longshore transport rate changed by 12.6 percent, which is a significant variation. This is an inherent problem of longshore transport tests, indicating that some important unknown factors are at work.

141	DIE 0. U	Juparts	on or test	S I anu	2.0					
Test	Total	Avg	Avg	IL	Sxy	Рер				
	run-time	Ĥ	α _b							
	(hr)	(cm)	(degrees)	(N/s)	(N/m)	(J/m/s)				
1	25	8.17	8	0.612	1.18	2.20				
2	30	8.03	7	0.689	1.14	2.04				
Pct difference ¹		-1.7	-12.5	+12.6	-3.4	-7.3				
lPat difference = (Test 1 - Test 2) 100										

Table 6. Comparison of tests 1 and 2

Test 1

Tests 7 and 8 were both run with a period of 1.90 seconds, a generator angle of 20°, and a generator eccentricity of 5.97 centimeters. The only difference was that the sand feeder, which was located at the SWL for all other tests, was moved shoreward 1.4 meters for test 8. The feeder was moved because the shoreline at the end of test 7 significantly angled shoreward toward the downdrift side of the beach. This can be seen in the test 7 photos in Appendix D. The feeder was moved shoreward to see if a straight shoreline resulted. It did, as the photos in Appendix D for test 8 show. Another major effect was the change in $I_{\hat{k}}$ from 0.728 newton per second for test 7 to 0.345 newton per second for test 8, a decrease of 53 percent. Test 8 is excluded from the remaining data analyses.

Test 11 was run with a period of 2.35 seconds, a generator angle of 0°, and a generator eccentricity of 5.97 centimeters. The test was meant as a control to determine the amount of sand moved by the diffusion caused by breaking waves. This value of I_g for test 11 was 0.089 newton per second. A comparable quantity of sand, 0.059 newton per second, also moved updrift. Test 11 is also excluded from the remaining data analyses.

5. Daily Cycle Graphs.

As discussed previously, longshore transport could be measured only on a daily cycle or test cycle basis. For the typical 24-hour test, six values of longshore transport rate were calculated. Each rate covered a period of 4 run-hours. During this time period, four values of S_{xy} and $P_{\ell b}$ were calculated, averaged, and related to the corresponding value of I_{ℓ} . These values are listed in Appendix F and plotted in Figures 22 and 23. Table 7 lists the important statistical parameters.

Relation	Figure	r ²	Least squares lines						
	No.		Standard Y-intercept Through ori						
			slope		slope				
I _l versus S _{xy}	22	0.74	0.21	0.38	0.28				
I versus Plb	23	0.73	0.09	0.58	0.13				

Table 7. Daily cycle statistics.

The square of the correlation coefficients, r^2 , represents the fraction of the variation of I_{ℓ} about its mean which is explained by the abscissa term. r^2 for S_{xy} and $P_{\ell b}$ are 0.74 and 0.73, respectively. These numbers show that I_{ℓ} correlates well with both terms to approximately equal degrees. The least squares lines listed in Table 7 are in Figures 22 and 23, which also include the least squares lines calculated with the limitation that the lines pass through the origin. The slopes of these lines are 0.28 for the I_{ℓ} versus S_{xy} graph and 0.13 for the I_{ℓ} versus $P_{\ell b}$ graph.

Figure 22. Relation between longshore transport rate, I_{ℓ} , and radiation stress, S_{xy} , using daily cycle data (tests 8 and 11 excluded).

6. Test Cycle Graphs.

The average longshore transport rate for each test was calculated and compared with the test average of S_{xy} and P_{lb} . These values are listed in Table 5 and plotted in Figures 24 and 25. Statistical values are in Table 8. r² for I_{ℓ} versus S_{xy} and I_{ℓ} versus $P_{\ell b}$ are 0.72 and 0.74, respectively. As with the daily cycle calculations, I_{ℓ} is shown to correlate well with both terms to approximately equal degrees. Figures 24 and 25 include both the standard least squares line and the least squares line forced through the origin. The slopes of the latter lines are 0.26 for the I_{ℓ} versus S_{xy} graph and 0.13 for the I_{ℓ} versus $P_{\ell b}$ graph.

Relation	Figure	r ²		Least squares	lines
	No.		Standard	Y-intercept	Through origin
			slope		slope
I _l versus S _{xy}	24	0.72	0.21	0.40	0.26
I _l versus P _{lb}	25	0.74	0.09	0.58	0.13
K_s versus ξ	26	0.70	0.82	-0.07	
K_p versus ξ	27	0.56	0.89	-0.22	

Table 8	 Text 	cvcle	statistics.
---------	--------------------------	-------	-------------

Figure 25. Relation between longshore transport rate, I_{l} , and longshore energy flux factor, P_{lb} , using test cycle data (tests 8 and 11 excluded).

7. Surf Similarity Relation.

Figures 26 and 27 were drawn to test the dependence of K_g and K_p on ξ . Test numbers are indicated in the figures. Table 8 lists the statistics. The K terms were calculated using equations (15) and (16). These graphs show that K is far from being constant, as is commonly assumed, and that it is strongly related to ξ .

8. Comparison to Past Data.

The units of I_{ℓ} and $P_{\ell,b}$ were converted to those used in the SPM and plotted in Figure 28, which is taken from Figure 4-36 of the SPM. The SPM figure was modified by shifting the x-axis to convert from $P_{\ell,s}$ to $P_{\ell,b}$. Equation (13) shows the relation between $P_{\ell,b}$ and $P_{\ell,s}$. Test numbers for the data points of this report are noted in Figure 28.

Two major observations are immediately apparent. The first is that the laboratory data in this report, as in laboratory data from past reports, have considerable scatter. Since the surf similarity parameter, ξ , in this report varies by a significant amount for the different tests, as shown in Figures 26 and 27, some scatter is expected. The surf similarity parameter, of course, does not explain all of the scatter in the laboratory data. There are still some laboratory and scale effects which are not yet understood.

Figure 27. Relation between K_p and the surf similarity parameter, ξ , using test cycle data (tests 8 and 11 excluded).

The second observation is that most of the data fall beneath the SPM curve connoting low values of K_p . Since the SPM curve is based on field data, mostly from Komar and Inman (1970), a possible explanation is that the field data were collected under conditions of higher values of ξ than those for the laboratory data. Kamphuis and Readshaw (1978) suggest that Komar and Inman's data were indeed collected under conditions of high ξ_b . It seems reasonable to assume that the ξ values were also high.

VII. SUMMARY AND CONCLUSIONS

An analysis of the radiation stress, S_{xy} , and the energy flux factor, P_{lb} , shows that both predict longshore transport rate, I_l , to comparable degrees. Approximately 70 percent of the variance of I_l about its mean is explained by each term. There appears to be no major advantage in choosing one over the other to predict the longshore transport rate. However, S_{xy} has the advantage of being constant seaward of the breaker zone while P_{lb} is not. This makes the calculation of S_{xy} more convenient than P_{lb} , which must be determined at the breaker line. On the other hand, P_{lb} has the advantage of having the same units as I_l , which means that K_p is dimensionless.

The empirical coefficients, K_s and K_p , are far from constant although K_p is commonly assumed to be so in practice. Part of the variation of the coefficients can be related to the variation of the surf similarity parameter, ξ , as shown in Figures 26 and 27. These figures show that K_s and K_p will increase with ξ . The considerable scatter evident in Figure 28 can be partly explained by the relation between the empirical coefficients and ξ . The data in this report and past laboratory and field data are compared in Figure 28. The laboratory data generally predict lower values of I_{ℓ} for a given $P_{\ell b}$ compared to the field data. Part of this trend can be explained by the differences in the surf similarity parameters, assuming the field data were collected under conditions of high ξ . Also, laboratory and scale effects probably contribute to the lower laboratory transport rates. The relative importance of these factors is suggested as a subject of future research.

LITERATURE CITED

- CHESNUTT, C.B., "Analysis of Results from 10 Movable-Bed Experiments," Vol. VIII, MR 77-7, Laboratory Effects in Beach Studies, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., June 1978.
- FAIRCHILD, J.C., "Laboratory Tests of Longshore Transport," *Proceedings of the* 12th Conference on Coastal Engineering, American Society of Civil Engineers, Vol. II, 1970, pp. 867-889.
- GALVIN, C.J., "Relation Between Immersed Weight and Volume Rates of Longshore Transport," TP 79-1, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., May 1979.
- GALVIN, C.J. Jr., and EAGLESON, P.S., "Experimental Study of Longshore Currents on a Plane Beach," TM-10, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Washington, D.C., Jan. 1965.
- GALVIN, C. and SCHWEPPE, C.R., "The SPM Energy Flux Method for Predicting Longshore Transport Rate," TP 80-4, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., June 1980.
- KAMPHUIS, J.W., and READSHAW, J.S., "A Model Study of Alongshore Sediment Transport Rate," Proceedings of the 16th Conference on Coastal Engineering, American Society of Civil Engineers, Vol. II, 1978, pp. 1656-1674.
- KOMAR, P.D., and INMAN, D.L., "Longshore Sand Transport on Beaches," Journal of Geophysical Research, Vol. 75, No. 30, Oct. 1970, pp. 5914-5927.
- LONGUET-HIGGINS, M.S., "On the Statistical Distribution of the Height of Sea Waves, 1," Journal of Marine Research, Vol. 11, 1952, pp. 245-266.
- LONGUET-HIGGINS, M.S., "Longshore Currents Generated by Obliquely Incident Sea Waves," Journal of Geophysical Research, Vol. 75, No. 33, Nov. 1970, pp. 6778-6801.
- SAVAGE, R.P., "A Sand Feeder for Use in Laboratory Littoral Transport Studies," *The Annual Bulletin of the Beach Erosion Board*, Vol. 15, U.S. Army, Corps of Engineers, Washington, D.C., July 1961.
- STAFFORD, R.P., and CHESNUTT, C.B., "Procedures Used in 10 Movable-Bed Experiments," Vol. I, MR 77-7, Laboratory Effects in Beach Studies, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., June 1977.
- U.S. ARMY, CORPS OF ENGINEERS, COASTAL ENGINEERING RESEARCH CENTER, Shore Protection Manual, 3d ed., Vols, I, II, and III, Stock No. 008-022-00113-1, U.S. Government Printing Office, Washington, D.C., 1977, 1,262 pp.

APPENDIX A

HOURLY AND DAILY DATA

The data in this appendix are available on computer cards from CEIAC.

THE	MINUTER	*****	HATED	IMMERBED		HAVE HET	GH 1		BREAKER	LONGEMORE	8.9
4116. Na	STOPPED	TEMP CELSIUS	CH	LBB	GAGE 1	GAGE 2 GA	GE 3 I	GAGE 44/48	ANGLE DEGREEB	CURRENT CH/8	Ť
0			71.0								
0					10.0	6.4			8		
0	ÇFD	23.5	71.0	360							
5					9.0	0,8					
0	CFD		71.0	412					_		
8					10.0	6.2			•		
0	43										
0					1044	0.0					
0	CED			1376	9.0	7.0			•		
0	•				8.4	6.4			10		
0									8		
0	40				۶.9	6 . B					
0 3											
0					10,2	6.4					
80	-5-				9.8	6 .0			7		
0	C P 0	22.5	71.0	1610							
50					9.0	7,2			-		
50					9,4	7.2					
50	40				10.2	5.0			•		
5					10.0	6.2			19		
0									- 7		
0	55 0			35.48	10.0	e.2					
0	C , 0	22.5	71.0	2300	0.2	A o					
0					9.6	7.4			6		
0					9.6	7.4			8		
0					11.0	6.2			8		
0	60				10.0	0.8			•		
50					10.6	6.0					
0	CFD	22.8	71.0	3260							
5					10.0	5.6			•		
5									,		
0					4.0	/ . 0					
10	60				10.2	0.0			'		
\$ 50					10.0	5.4					
0					10.6	b . 0			8		
55	10			2644					٠		
					TFAT	a					
			PER10	0 2,38 86	CONDS	GENERATOR	ANGLE	10 DEGREE	8		
0		29.5	71.0						,		
0					10.4	5.8					
2					10.4	5,8			7		
0									,		
3					10+4	6 ,4			8		
0					10.0	.					
5					10-4						

 $^{\perp}$ CFD = testing completed for day; TC = testing completed.

TEST 02	CONT									
RUN TIHE	HINUTES STOPPED ¹	HATER TEMP CELSIUS	HATER DEPTH CM	IHHERBED Height LBB	GAGE 1	HAVE HEIGHT En Gade 2 gade 3	686E 44/48	BREAKER Angle Degress	LONGSHORE CURRENT CH/S	BREAKER
5 7 5 30					10.4-			٠		
6 0	C F D		71.0	3555				ð		
6 30 7 5					9,2	5.0		7		
7 30 8 0					10.0	3.4		٠		
8 30	r FD			1844	10.8	6,2				
	••••	21.5	71.0					7		
9 30					9.2	6.2		7		
10 30					8.4	7.8		7		
11 30 12 3					9.0	e.e		٠		
13 2								•		
14 0	CFD		•. •	2944	9.4	6 , 0				
14 2		21.3	/1.0		0.5			6		
15 2					10.0	6 .0				
16 0 16 30					9,9	6.0		7		
17 0 17 2								7		
17 30					9,8	e.0				
18 30					10.0	e .0		8		
19 30	c≢o			1290-	9,5	6.4		,		
20 0	•		71.0					,		
20 30 21 5					9.2	6.4		,		
21 30					9.3	0.1				
22 15					9.9	6.4		8		
25 5						. 1				
24 0					4.0	0,3		10		
24 30	C F D			2844	9.6	6.7				
25 0		55.0	71.0					9		
25 30 26 5					7.5	6,8				
27 0					10.2	.				
27 5 27 30					9.8.	0.1		•		
28 5	53				10.1	6.2		9		
28 35					9.7	u.8		0		
29 35					9.7	6,4		2		
30 0 30 0	¢≢D	23.0	71.0	2754				-		
30 5					9.7	0.1		,		
31 10								5		
32 0								•		
32 30					9,5	7.2				
33 10 33 30					9.6	6.2		6		
34 0	75							6		
34 30	¢≭D				410	3.0				
35 10		c3./	,1.0		8.7	7.3				
36 0						• • •		5		
36 30 37 0					9.3	6,5		_		
37 5					9.4			7		
38 10 38 10	46							4		
30 30	• • •							-		

TEST OR	CONT										
BUN TIME	MINUTES	WATER	HATER	IMMERSED		-	HEIGHT		BREAKER	LONGSHORE	MENT
HR MN	SIGHED.	CELSIUS	CH	LBS	GAGE 1	GAGE 2	GAGE 3	GAGE 44/48	ANGLE DEGREES	CURRENT CM/8	TYPE
39 0					10.8	5.7					
39 58					10.0	7.0			•		
40 0	CFD										
40 15		5313	71.0								
40 30					9.2	7.1					
41 5											
41 30					9.1	7.3					
42 30					0.3	7.0			ò		
43 0											
43 10					0.6	7.6			7		
44 0	60					/.0					
44 2									5		
45 0	CFD				***	0.0					
45 0		24.5	71.0								
45 30					9.8	5.4					
46 1									6		
47 0					4.7	6.3					
47 8									7		
48 6					9.2	2.0					
48 .									7		
48 30	50				9.1	5.9					
49 5					_				6		
50 0	TC				9,3	6.9					

			PERIOD	1.50	SECONDS	GENERATOR ANGLE	10 DEGREES	
0 0		22.5	71.0					
0 30 1 0	5				13.2	12,3		
1 30	5				13.1	11.6		8
2 30					12.7	12.4		•
3 6 3 30 4 0	CFD	22.0	70.9	2792	12.4	15.1		•
4 5 4 30 5 0		2100	,		13.1	14.0		•
5 30	5				13.2	14.7		•
6 5 6 30 7 0 7 0	CF0	21.8 21.0	70.7 71.0		12.8	13.3		•
728	CFD	21.0	71.0 71.0	2752	13.6	15*4		,
8 30 9 0	5				11.0	13,9		7
9 30 10 0	110				9.7	15,3		5
10 30 11 0	5				11.8	14,4		٠
11 \$ 11 30 12 0 12 0	C # 0	21.0	70.9 71.0	3018	11,3	14.0		5
12 30 13 0	5				11.3	15.0		8
13 5 13 30 14 0	115				13.2	13.2		5
14 30 15 0					11.4	10.00		4
15 2 15 30 16 0 16 0	CFD	20.2	70.9 71.0	2420	12.8	14,5		8.
16 2 16 30 17 0	5				12.0	12.2		9
17 3 17 30	-				12.1	11.0		7

1641 03	6041										
RUN TIME HR MN	HINUTES STOPPED	NATER TEMP CELSIUS	DEPTH CH	IMMERSED WEIGHT L88	GAGE 1	GAGE 2	HEIGHT H GAGE 3	946E 44/48	ANGLE DEGREES	CURRENT CM/S	TYPE
18 0	100				13.4	12.2			,		
19 0	5								6		
19 30 20 0 20 0	C±0	19.0 18.0	71.0 71.0	5959	12.8	11.8			10		
20 3					13+1	13.2			10		
21 4 21 30 22 0	115				12.1	11,3			11		
22 8					12.9	11.8			8		
23 0 23 3 23 30 24 0	* 10			2700	13.2	13.0			2 4		
			PERIOD	1,90 1	TEST	94 Generi	TOR ANGLE	10 DEGREES			
0 0		15.0	71.0								
0 30	5				9.6	11.5					
1 30	.15				10.4	13.2					
2 3 2 3 0	117				11.1	13.6			6		
3032	5				11-0	15.4			٠		
4 0	C#D	15.0	71.0 71.0	2300							
4 30					11+9	16.2			•		
5 30	,				11.0	14.2					
6 0 6 4	115				10.8	13.8			8		
7 0	5								,		
7 30	CFD	15.8	70.9	2164	10.4	14,8					
8 11 8 30		1-04	1100		11.8	12.5			6		
90	5				11.2	13.2			•		
10 0 10 \$	115								7		
10 30	5				10.0	14.7			a		
11 30 12 0	¢≢D	15.2	71.0	1915	10.0	13.7					
12 0		10.2	71.0		10.3	12.3			7		
13 0	5								9		
13 30 14 0	115				10.1	12.5					
14 30 15 0	5				9.4	12.0			-		
15 5 15 30				1806	9,5	12.8			8		
16 0 16 0 16 4	640	17.0	71.0	1940					8		
16 30	5				9,9	13,3					
17 30 17 30 18 0	110				9.4	11.8			•		
18 3 18 30					8,8	11.8			,		
19 5	,				8,8	12.4			7		
20 0	CFD	10.5	71.0 71.0	1968							
20 30 21 0	5				10.4	13.7			-		
21 3					10.4	12,4			6		
22 G 22 G	113				8,5	11.3					
23 0	5				•						

1581 04	CONT										
RUN TIME HR MN	HINUTES Stopped /	MATER TEMP CELSIUG	HATER DEPTH GH	IMMERS WEIGH L08	ED T GAGE	H/ 1 GAGE	CH CAGE 3	6462 44/48	BREAKER Angle Degrees	LONGSHORE Current CH/8	BREAKER TYPE
23 3 23 30 23 56					8,	1 11.	b		8		
24 0	τc	10+5	71.0	1720							
			PERIOD	3,00	SECONDS	T 05 Gen	ERATOR ANGLE	E 10 DEGREES	I.		
0 0		12.0	71.0						4		
0 30	5				é.,) 6.°	8.2	11.0	-		
1 30	90				7.0	ð 8,1	7.9	10.0	2		
2 30 3 0	5				6.8	7.0	7.9	9,8	2		
3 2 3 30 4 0 4 0	CFD .	11.5 11.5	70.9 71.0	1832	6.8	5 7.6	8.2	11.4	2		
4 30 5 0	5				5.9	7.4	7.6	10.4	4		
5 30					6.C	6.6 C	6.9	9,8	1		
6 3 6 30 [.]					6.7	7.8	8.1	11.0	2		
7 3 7 30	,				7.0	7.4	8.6	10.0	2		
80 80 82	CPD	11.5	70,9 71,0	2924					,		
8 30 9 0 9 4	5				6.8	9,0	10.2	10.4	•		
9 30 10 0	85				6.4	8.0	8.6	10.2	'		
10 4 10 30 11 0	5				e .t	8.8	9.1	10.0	2		
11 3 11 30 12 0	CFD			2674	6.2		8.0	10.4	۰.		
12 0		13.0	71.0				•		1		
13 0 13 2	5				÷.	· · · · ·	e.o	9.6			
13 30	40				6.0	8.0	8.2	9.2			
14 30 15 0	5				7.0	7.8	, 7.1	9.0			
15 30 16 0	CFO	13.0	70.9	2370	6.2	5,8	8,3	9.7	4		
16 0 16 3 16 30		14.0	71.0		7.4	7.7	7.2	9.2	2	2	P=36
17 0	5							0.2	3		P=56
18 0 18 3	115				,				7		
18 30 19 0 19 3	5				6.4	8 ₆ 7	V .1	4.4	4	"	P#36
1 0 30 20 0 20 0	€₽ 0	14.0	70.9	2788	ê.5	8,5		10.0		3	
20 10 20 30					6.ª	7.4	7.7	9.0	3	3	86
21 2 21 30	,				7.2	6,8	7,3	8.8	0		sG
22 0 22 2 20	85				6.9	7.6	8.1	9.3	10	3	86
23 0 23 4 23 10	5						• •		5	1	86
23 56	τc	13.6	70.9	2200		0.0	/	4.0	3	,	
					TEST	0.8					
0 0			PERIOD	2,35 8	ECONDE	GENE	RATOR ANGLE	20 DEGREES			
0 7					10.1	5.7	7.9	t0.0	13	17	P
1 2 1 30	,				9,0	5,8	7.3	8.6	8	15	Р

TEBT ON	CONT										
RUN TIME HR MN	MINUTES STOPPED F	WATER TEMP CELSIUS	NATER DEPTH CH	IHMERBED WEIGHT LOB	GAGE 1	WAVE GAGE 2	HEIGHT M GAGE 3	88GE 44/48	BREAKER Angle Degrees	LONGSHORE Current CH/8	OREAKER TYPE
2 2	\$15				10.2	3,3	6.4	6,2	10	17	37-7
3 0 3 4 1 1 1 0	5				9,8	5,5		8.0	11	17	87-1
4 0	€ F D	10.5	71.0 71.0	3545					11		-
4 30 5 0	5				4,6	6.6	7.8	9.0	10	1*	
5 30 0 0 7	115				4.5	6 ,0	7.0	8.9	,	17	
6 30 7 0 7 5	5				8,5	. 6.8	7.1	8.4	,	1.	
7 30	C FD	11.8	70.9 71.0	3040	8,3	b _7	8.5	4.2		15	- T
8 4 8 30 9 0					9.3	0.1	6.8	*.*	7	16	•
9 4 9 30					8,8	6 ,0	7.0	۰.0	•	17	•
10 30					8.4		7.4	۰.0	10	15	•
11 8 11 30	67D	12.4	¥1.0	2000	4,4	÷.1	6.5	*.*	,	15	٠
12 0	••••	18.0	71.0	•	9.1	•-1	7.0	*. 1	,	17	
13 0	· •				4.5		1.2	9.0	,	17	,
14 0	100				9,1	6.0	1.2	A.8	,	19	,
15 0	5						4.5	A.A	٠	18	
16 0 16 0	6FD	18.5	70.9 71.0	3304	010	•••			11		
16 30 17 0	5				9,3	4,5	7.0	9.4		17	۲
17 30	120				9.6	7.1	7.0	9+2	19	1+	P
18 30 18 30 19 0	5				4.6	4,7	6.5	8.7		17	۴
19 3 19 30 20 0	6FD	13.5	71.0	3588	9,3	6.4	7.0	8.7	v	10	•
20 0 20 5 20 30		14.5	71.0		8.8	+,5	7.8	8.9	7	1+	۳
21 0 21 4 21 30	,				8.0	6.7	6.0	10.0	11	15	
22 30 22 30	45				4,2	÷.1	4.5	• .7	7	1*	
23 0 23 3 23 30	,				9,3	0.1	* .1	8.6	7	10	
23 55 24 8	TC	18.5	70.4	3854					Υ.		
			PERI	00 1,40 SE	TEST Conds	OT GENEI	RATOR ANG	LE 20 DEGRE	E.8		
0 0		913	71.0					14.2	11	36	
0 55	,				1104	1240	1200		12		
1 30	80			2064	12.1	11.2	12.8		10	30	۲
2 30	5				12.4	10.6	12,3		12	29	٠
3 30 4 0	67D	9.5	71.0	1608	11+1	11.+	12.8		14	24	۲
4 0 4 8 4 30		11.0	75 <u>°</u> 0		9,3	10.3	12.7		10	31	•
5 30 5 30	5				*.1	9,6	12.7		11	32	•
6 0	85			1134							

TEST 07	CONT										
RUN TIME HR MN	HINUTES STOPPED	NATER TRMP CELSIUB	HATER DEPTH CH	INHERSE: WEIGHT LBS	D BAGE 1	<u>ğ</u> age 8 Mave	HEIGHT CM GAGE 3	9A62 4A/45	SREAKER Angle Degrees	LONGSHORE CURRENT CH/B	BREAKER
6 6 6 40					8,8	11.7	14.3		1.	11	,
7 4 7 30 8 0	CFD	11.5	70.9	1214	8.9	11.0	11.3		10	я	•
8 0 8 3 8 30	_	11.9	¥1.0		8.5	•,•	12.1	15.8	٠	84	,
9 A 9 30					8.4	4,4	12.4	15.9	12	31	•
10 \$					9,7	11.2	13+6	15.0	12	30	•
11 4 11 30 12 0	6 P D	12.5	70.4	2234	9,7	۹,2	14.0	15.8	10	33	•
12 0 12 1 12 30	_	18.5	91.0		۰,۵	10.4	12.6		11	30	
13 0 13 5 13 30					10.0	10.4	13.1		18	29	
14 0 14 3 14 30	eo				۹,4	11.2	13.4		11	32	٠
15 0 15 4 15 30	670	18.5	71.0	2016	8.6	۹.4	15*2		11	29	•
16 0 16 3 16 30		18.5	71.0		4.6	11.4	12.0		18	28	٠
17 0 17 4 17 30	3				.0	11.8	12.1		•	31	
18 0 18 5 18 30	90 580				۹,5	10.7	12.4		11	32	•
19 0 19 0 19 30	C	18.5	71.0		8.6	•.•	18.0		12	28	
20 0 20 0 20 4	6 P D	18.5	71.0 71.0	806#		-			п		_
20 30 21 0 21 5	5				9,3	10.1	18++		11	25	
21 30 22 9 22 9	100				10.0	11,0	12.3		11	20	
23 0	5					10.2	12.4	19-3	11	20	
23 51 24 0	TC	18.8	71.0	1800					13		
			PERIOD	1.90	TEST SECONDS	08 GENER	ATOR ANSL	E RO DEGRE	E #		
0 0		18.5	71.0						•		
0 30	5				10.4	11.7	9.5	15.3	•	24	•
1 30 2 0 2 6	105				9,5	+,3	10.8	16.5	18	56	
2 30	5				10.6	9.1	12.7	15.*	11	24	
4 0	€FD.	18.5 13.0	¥8.9 ¥1.0	2304	* • <i>'</i>	413	11	13.0		••	F
4 30 5 0	5				۹,1	۹,۰	13.8	15.4	13	23	•
5 30 6 0 6 4	•0				8,8	•,•	15*8	15.0	12	51	P+1P
630 70 73					6.2	11.5	12.4	15.0	11	26	
730 80 80	6 P D	18.5	70.9 71.0	1224	7.2	10.0	11.0	13.9			
8 30 9 0	,				7.6	11.2	11.8	15.3		1.	*
• 30 10 0 10 3	•0				8,5	10.4	12.8	15,0	10	20	•
10 30					9,4	12.6	12.3	15.5	-	15	•

TEST 08	CONT										
RUN TIME	HINWTES STOPPED!	HATER TEMP	HATER DEPTH	IMMERSED WEIGHT		HAVE	HEIGHT		BREAKER ANGLE	CURRENT	BREAHER
HE MN		CELSIUS	814	688	GAGE 1	GACE S	GAGE 3	GAGE 44/40	DECHEEN	64/8	
11 0 11 4	5								11		
11 30	678	14.0	70.0 71.0	1002	0.*	14+3	1340				
12 3	_				8,4	12.0	12.0	14.*	10	17	٠
13 3	•				4.2	18.8	12.5	14.9	10	19	P
14 0 14 4	•0								13		
14 30	5				7.9	15*5	12.8	15.8	14	17	
19 30	¢*0	14.0	70,9	730	8,1	11.0	13.2	15.8		15	•
16 0 18 3		15.0	¥1.0	,	8.0	11.1	13.2	15.3		1.	•
17 0	3				••••				10		
17 30	100				9.2	11.1	14.7	15.5	18	17	
18 30	5				8.0	11.7	13.0	14.7		80	
19 30				A00	۹,3	11.0	14.0	15.0	11	17	•
20 0	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	14.5	71.0	•••					13		
20 30 21 0	5				7.7	18.0	11.4	15.0		15	
21 30					7.9	12.+	12.0	15.0		10	•
22 5 22 30					8.6	18.0	11.7	17.0	1.8	15	•
23 0 23 3 23 30	•				.5	11.7	12.2	16.2	10	15	,
23 84	TC	14.5	70.4	748					11		
			PERIOO	1,50 8800	TEST I	GENER	ATOR ANGLE	L ZO DEGREE	•		
		13.0	71.0								
0 30					۰.*	18.0	11+0	11.4	15		
1 4 1 30	•				11.7	9,4	10.8	10.5	15	35	80-0
2 0 2 4 2	85				12-0		11.0	12.0	13	60	8P-P
3 0	5								13		98×8
3 30	640	13.5	71.0 81.0	2114	18-1	10.5	11.0	12.0		10	
4 3 4 30					11.2	+,5	12.0	11.1	11	30	8P=P
5 0	5				11.7	9.6	11.1	11.0	11	57	8P+P
6 0	102								14		
630 70 73	5				11.1	4,4	11.0	12.0	19	24	
7 30 8 0	6 F D	14.0	70.*	1920	10.0	9,6	10.4	13.4		n	20-0
8 0 8 2 8 10		14.5	¥1.0		10.8	8.6	11.2	12.5	14	24	\$P+P
• • 7	5								14		10-0
9 30 10 0	95				11.0	* •1	10.0	14			
10 30 11 0	5				9,8	7.4	11+0	13.1		22	D.
11 5	e Po	14-5	¥1.0	1930	10.2	8,8	10.2	12.5	14	27	88
12 0		14.5	71.0						14		
12 30	,				11.2	8,7	11.0	12.9		43	
13 30	•0				11.8	*, 4	11.5	13+2		31	88
14 3 14 30	-				11+7	۹.0	11.8	12.2	13	52	88
15 0 15 4 15 30	,				10.8	4,9	10.7	13.7	15	27	38
16 0	6PD	15.0	70.9 71.0	1504							

TEST Q®	CONT										
RUN TIME HR MN	MINUTES STOPPED	WATER TEMP CELSIUS	NATER DEPTH CH	IMMERSED HEIGHT LBS	GAGE 1	WAVE GAGE 2	MEIGHT CM GAGE 3	GAGE 4A/48	BREAKER ANGLE DEGREEB	LONGSHORE CURRENT CH/8	BREAKER TYPE
18 8 16 30					11.2		11.9	13+4	13	и	8.0
17 4 17 30	,				11+3	10.0	11.5	13.1	1.4	24	
18 0 18 3 18 30	5				11.4	10.1	11.8	11.7	18	19	1.0
19 0	5				12.1	9.0	11.4	11.0	17	1.	
50 0	€₽D .	15+5 15+5	71.0 71.0	1478							
20 30 21 0	,				11.5	7.8	11.+	18.0		24	81
21 4 21 30 27 0	e FD	19.5	71.0		11+4	6,3	11+6	10.1	15	35	88
22 0	•	15.5	71.0					10.8	15	16	18
23 0	5				11+1	4.0	14.1		п		
23 30 23 54 24 4	TC	15.5	71.0	804	15.5	10.8	12.8	10.5	15	21	
					TEST						
			PERIOD	1.90 SEC	ONDS	GENER	ATOR ANGLE	80 DEGREE	8		
0 18		1	71.0		14.4	18,3	17.1	12.9	11	26	
1 0 1 5 1 30	5				15,3	18,0	18,3	13.4	14	27	p
2 0 2 4 2 30	•0				14.3	17.1	17.6	15.3	14	Б	,
3 0	5								14		
5 30 4 0 4 0	670	18.5	70.9		12+3	1048	10.0	13.4		27	r
4 3 4 30 5 0					14.7	\$8.0	18.3	14.1	16	34	
5 4 5 30					13.8	17.4	17.0	14.2	14	27	
6 4 6 30	100				15.3	17.7	19.2	15.9	1.	76	
7 0 7 3 7 30	5				15.0	17.9	18.9	16.2	17	26	P
8 0	€ ₹ D	18.9 19.2	71.0 71.0								
8 30 9 0	5				14.7	18,5	18.3	17+7		34	•
9 30 10 0	5				14.4	18.2	17+4	18.3		11	
10 4					13.8	18.3	17+1	19.2	19	33	
11 4 11 30					14.7	17+9	18.0	18.2	10	11	
12 0 12 0 12 4	(10	18+4	71.0	****					15		
18 30 13 0 13 3	5				15*3	17.3	17+1	16.4	1.	31	
13 30 14 0	70				14.4	£8.0	16,4	3414		12	•
14 # 14 30 19 0	3				15.0	81.0	17.4	17+1		28	٠
15 4	C.F.D.	19.0	70.9	3928	13.7	19,5	15.5	18,3	14	22	۲
16 0 16 2	•	18.9	71.0						15		,
16 30 17 0 17 4	5				14,1	14.4	10.7	1/.*	14		
17 30	120				14.4	10,8	14.1	14.5	10	24	
18 30 19 0	5				14.1	19.8	19.2	18.0	1.6	Б	•
10 I0 17 I0	€ #D	18.3	70,8	3356	13.7	20.7	16.8	19.7		25	•
20 0 20 3 0 20		18.2	71.0		13.5	17.5	17.1	14.5	16	87	
21 0	8				• •	•			18		

RUN TIME	MINUTES Stopped ¹	NATER TEMP CRLSIUS	HATER DEPTH CH	IMMERSED HEIGHT LBS	GAGE 1	GAGE 2	HEIGHT CH GAGE 3	GAGE 44/48	BREAKER Angle Degrees	LONGSHORE CURRENT CM/8	BREAKER TYPE
21 30					14.3	17.2	17.0	10.2		87	
22 8					13.7	18.5	19.2	17.*	17		٠
23 3	*				14.6	18.0	14.2	18.5	10	34	
23 53	TC	18.2	70.4	3760					19		
			PERIOD	8,35 1	TEUT IECONDS	11 GENER	ATOR ANGLE	OO DEGREEI	l l		
0 0		20.7	71.0						=7		
0 30	3				10.2	9 .0	7.8	14.9	-4	-*	
1 30	40				•.7	8,5	7.6	14.4		= 7	•
2 35					•.4	5.2	9.0	13.8	••	0	•
3 0 3 3	15							14 •	•3	•	
4 0	670	20.8	¥1.0	642			10.0	1444		·	
4 9 4 33					9.1	5,2	9,6	13.0	•5	٠	۲
5 5 5 40					۰,۰	4,4	9.1	12.5	*3	0	
6 0 6 4 6 30	11				10.2	4.9	8.9	14.6	•5	0	
7073	5								•5	•	
8 G 8 Q	670	28.0	70.9 71.0	540		3.0	0,,,			·	
5 4 8 30					•.•	5.1	8.7	14.4	+4	0	•
• 5 • 30					9.1	5,1	•.•	13.5	•3	0	
10 0 10 6 10 30	,				۰.0	4,6	9.0	13.4	**	0	
11 0	10						4.7	14-0	*4	,	
12 0	67D	20.8	70.9 71.0	70						-	
12 5					•.•	7.4	10.0	11.3	**	0	•
13 0	3				•.7			11.7	+4	0	
14 0	5				•••				•3	•	
14 30	5				4,2	5.0	9,2	12.9	•4	2	
19 30	67 D	20.0	70.4	310	9,4	5.2	8.6	13.2		0	•
16 3 16 30		1444	11-0		9.2	5.0	9.1	14.1	*8	2	
17 0	7				9.8	4.9		12.8	*6	2	
18 0 18 4	•								• 5		-
19 0	5				v., 5	3,4	v,2	12.0	•3	•	۴
19 30 20 0	C#0	19+7	71.0	215	4.2	4.6	4.6	13.5		i	•
20 30	_				9.6	5.1	8.2	12.8	•4	z	
21 0 21 0 21 33	1				•.•	4,4	9.0	12.5	*8	0	
22 0	5							12.9	**	٥	
23 0 23 1	•								•5	•	-
23 30 23 59 24 0	TC	20.2	¥0	204	•.1	3,4	0.2	12.0	-4	0	•
			PERIOD	2,35	TEST BECONDS	18 GENER	ATOR ANGLE	SO DEGREE	1		
0 0	_	23.4	¥1.0								
0 13	€FD	23.3	¥1.0						21		

....

TEST 18	CONT						-		BREAKER		BREAKER
HR HN	STOPPED	TEHP CELSIUB	DEPTH	LBS	GAGE 1	GAGE 2	CH GAGE 3	845E 44/48	ANGLE DEGREE®	CURRENT CH/S	TYPE
0 30					9,7	5+3	7.3	۰.•		10	
1 5 1 30	,				4.5	5,4	8,1		₹1	25	٠
2 0 2 4 2 30	25				10.3	4,5	6.7	4,5	22	в	
3 0 3 1	10				10.0	4.7	0.1	8.4	18	24	,
4 0	C F D	22.9	71.0 71.0	3783							
4 5 4 30 5 0	,				10.3		7.5	11.8		25	۴
5 30					10.3			8.4	21	2 1	•
6 4 6 30					۰,5		6.9	9.4	24	18	
7 0 7 3 7 30	3				10.3		6.2	8.3	17	28	
8 Q 7 Q	6PD	22.0	70.4	\$437							
8 30 9 0	5				*.*	\$,7	ê _e 7	10.1		29	•
• 2 • 30 10 0	,				11.0	4,7	÷+1	*.*	14	25	•
10 4 10 30					10.5	4,9	6.5	۹.8	1 🔻	24	•
11 2 11 30	•3		_		10.3	5.2	0 +1	9.2	83	24	
12 0 12 0 12 8	C+D	23.1	70.0 71.0	3492					22		
12 30 13 0	8				11.3	4,3	÷.0	8.0	16	25	
13 30	,				10.1	4.9	6.1	8.0		82	٠
14 3					11.4	4.9	5,9	9.1	1.	19	•
15 0 15 3 15 30	10				9,9	5,3	6.0	8.8	11	33	٠
16 0 16 0	(FD	23.4	70.0	3020					22		
16 30 17 0	10				9,3	6.4	6.9	8,4		14	•
17 6 17 30 16 0	30				•,2	ð.1	6.1	8,2		37	•
18 3	••				9.6	5,4	6.2	8.8	18	32	•
19 14 19 30			.	-	9.9		6,3	9.6	51		۲
20 0 20 3	€≠D	23.4	71.0	5764					21		
20 30 21 0	10				9.7	6.5	7.3	10.1	20	83	
21 30 22 0					9.5	5,8	7.0	11.0		33	•
22 30	10				9.1	4,8	6.2	10.3	18	32	۲
23 3					9,5	5.0	6.2		1.	29	,
23 58 24 0	70	22.3	71.0	5775					ev		
			PERIOD	3,00 8	ECONDS	GENER	ATOR ANGL	E 30 DEGREE	8		
0 9		28.7	71.0				• •	• •	19		80
0 30	5				6.4	7.0	7.1	7.1		•	
1 30 2 0	10				4.7	8.0	7.3	÷.*	18	8	86
2 43 3 0	,				6.1	7.6	7.0	* #1			86
3 30	6FD	23-1	70.4	4239	6.2	7,8	6.7	۰.0	10	8	86
4 0 4 5		28.9	71.0			• •			1.4		86
4 30 5 0 5 5	10				7.2	7.0	2.4	11.**	1.	•	
5 30					6.7		6.1	11.0		7	36

TEST 13	CONT										
RUN TIME	HINUTES STOPPED	WATER TEMP	HATER Depth	INHERBED WEIGHT	r	HAVE	HEIGHT Ch		BREAKER	CURRENT	BREAKER TYPE
ME ME		CELSIUS	CH	LBS	GAGE 1	GAGE 2	GAGE 3	GAGE 44/48	DEGNEES	6478	
6 D 6 S	10								18		
6 32 7 0	10				6,8	4,9	6.0	11.9		•	86
7 30	¢≓D	23.1	71.0	4227	7.1		6.4	11+1	13	٠	86
8 0 8 3 8 30		23.0	¥1.0		6.3	7.3	7.0	11+7	15	•	86
• # • 30	19				4,2	7.0	7.0	12.2	18		86
10 0 10 0 10 2	€fD	23.8	70.0 71.0	1861 -					20		
10 30	10				6.6		6.2	10.0		•	86
11 30 12 0	10				7.2	+.5	4.8	*.*		•	89
12 5 12 30 13 0	10				7+1	4.4		4,4	п	10	86
13 4	EFD.	21.5	71.0	1544	7.0		6.0	* .1	14		86
14 0		23.5	71.0	,,,,,,					10		
14 30	10				7.1		812	414	16	•	
15 30 16 0	10				6.5	6.5	÷.*	9.8		7	86
16 2	10				6,5	6.7	5,8	8.6	14	7	86
17 8				1411	6,2	6.7	6.8	t0.9	1.8	7	86
18 0		22.8	71.0						16		
18 30	20				6.8	7.0	+ ,1	6.4		5	86
19 30					6.5	7.1	6.2	6.5		5	89
20 5 20 30					5.*	7.8	7.3	7.5	14	•	86
21 0 21 5 21 30	10				5,0	¥.2	7,2		18		\$G
22 0	670	23.1	71.0 71.0	3787							
22 30	5				5.7	7.4	6.5		13	3	86
23 30					6.2	7.9	7.7	7.3	11		89
23 33	TC	23.1	71.0	1080					11		
			PER100	3.00	TEST BECONDS	14 GENEI	ATOR ANGL	E 30 DEGRE	EB		
0 0		20.5	71.0						27		
0 30	10				13.2	17.4	14.7	17.0		11	
1 30	40				19.0	10.8	15.8	16.8	**	31	•
2 30					15.0	14.7	15.3	15.0	26	87	
3 8					15.6	16.2	15.0	16.8	23	60	
4 6	€FD	20.4	70.4 71.0	10356							
4 30 5 0	10				14.1	16.8	11.4	19.2		29	٠
5 30	10				14.4	17.0	12+4	18.8	50	51	Ρ
6 4 6 30					15.0	10,2	12.0	18.0	2*	81	
7 0	•0				18.4	18.7	12.2	18.6	31	п	
8 0 8 0	C F D	19.8 19.8	70.9 71.0	10030		••••					
830 90	10				14.0	18.3	11+4	1948	31	19	٠
9 5					14.7	16.8	12.0	19.5	54	17	Р
10 3					14.7	18.2	11.5	19.3	30	80	۲
11 0	75					• • •				-	

1681 74	CONT										
RUN TIME HR MN	HINUTES STOPPEDI	WAIER TEMP CRLSIUS	HATER DEPTH CH	FES HEICHL IHHEBSED	GAGE 1	WAVE Gage 2	MEIGHT CH GAGE 3	GAGE 44/48	BREAKER Angle Degreeb	LONGSHORE Current CH/8	BREAKER
11 3 11 30 12 0	CPD	19+4	70.*	10041	14.4	16,8	15*2	18.6	30	1.	
12, 0 12 3 12 30		17+0	71.0		14.1	10.1	13.4	17.0	32	30	
13 0 13 8 13 30	10				14.0	15.0	13.5	16,8	30	22	
14 0 14 8 14 30	15				14.4	15.4	13.8	17.8	38	19	
14 45 15 0 15 4	75								29		
15 30 18 0 16 0	6 F D	19+1 19+5	71.0 71.0	10824	14.7	19.2	13.5	10,8		1.0	•
16 9 16 30 17 0	10				13.8	10.8	12.8	17.9	30	Б	•
17 4 17 30 18 0	15				15,8	15.9	12.6	17.0	30	23	•
18 3 18 30 19 0	75				14.1	17.7	13.5	16.8	35	51	•
1 3 1 9 30 20 0	CFD.	19.8	70.9	10170	14.3	10.0	12.8	17+1	22	1.4	•
20 0 20 3 20 30		18.8	71.0		13.2	18.4	12.3	19.1	33	22	
21 0 21 3 21 30	15				19.2	17.4	12.2	18.0	38	22	P
21 50 21 50 22 0	25										
22 3 22 40 23 0	45				14,3	14.2	12.0	10.8	59	21	•
23 4 23 30 23 50					15.0	15.0	18.3	17+4	31	22	
24 .	TC	17.4	70.*	11954	TERT				-		
0 0			PERIO 71.0	D 1.90 BEC	ONDS	GENEI	ATOR ANGL	L 30 DEGREI	[0		
0 30	5				13.8	18.0	13.2	18.0	1*	**	8P-P
1 4 1 30 2 0	5				13.8	17,6	14.6	18.3	16	36	
2 6 2 20 2 30	5				12.6	17.6	15.3	18.3	16		17.7
3 0 3 5 3 10	195				13.7	16.8	15.3	18.3	20		
4 0 4 0 4 5	¢70		71.0 71.0	7426					1.8		
4 30	5				14.0	15.0	13.2	19.5	16	**	P=1P
5 30 6 0 6 4	5				13.4	17.0	12.0	19.2		35	P+1P
6 30 7 0	90				13.4	10.4	13.5	14.8		38	P=1P
7 30 8 0 8 0	6#D	18.8	71.0	6884	14.0	10.8	13.4	19.4		36	P=1P
8 3 8 30 8 54					13.8	17.0	14.0	18.*	1.	54	P+8P
8 56 9 0	5										
9 30	5				13.9	10.8	13.8	19+1			P+3P
10 30	•0				13.8	16.4	14.4	14.5		40	P+&P
11 30	CPD.	14.6	71.0	7929	13+4	14.8	14.3	18.0			P+8P
12 R 12 30	٩	1.469	1100		12.0	17.0		17.0	1.		P+3P
13 3 13 30					13.2	15.9		19.4	1.	**	P+sP
14 0 14 3 14 30	5				14.4	17.0		19.2	20	40	P+8P

RUN TIME	HINWTES	WATER	HATER	IMMERSED		WAVE	HEIGHT		BREAKER	LONGSHORE CURRENT	BREAKER
FE MN	alorrepi	CELEIUS	CH CH	LBS	GAGE 1	GAGE 2	GAGE S	GAGE 44/48	DEGREES	CH/8	
15 0 15 4 15 30 16 0	73 671	15.5	70.9	8683	13.2	18,3		18,9	18	*0	P+1P
16 0 16 5 16 30		10.0	71.0		12.5	10.0	12.8	18.6	10	*0	P=SP
17 0 17 3 17 30	10				12.4	16.8	10.7	19.7	18	41	P+2P
18 3 18 30	115				13.4	15,0	12.2	20.1	83	43	Pear
19 3 19 30 20 0	6FD	19.5	74.9	***	13.1	17,3	12.3	20.0	1.	43	P+8P
20 0 20 2 20 30		17.0	¥1.0		13.1	15.8		20.1	18	3.	,
21 3 21 30	10				12.0	14,5		20.+	1.		P
22 6	80				12,8	18,3		20.9	20	44	٠
23 4 23 30 23 53					13.2	15.0		19+5	21 21	41	
24 0	TC	19+5	70,9	4220							

APPENDIX B

BEACH SURVEY DATA

 	~	-	n
а г	- 22		

RANGE	1+5	RANGE	8.0	RANGE	3.0	RANGE	4.0	RANGE	5.0	RANGE		RANGE	7.0.	RANGE	7.6
STA	€L€v	8TA	BLEV	8TA	ELEV	8Ta	ELEV	#Ta	ELEV	8TA	ELEV	8 T A	ELEV	87.4	ELEV
(+)	(#3	(H)	(#)	(+)	(M)	(#)	{M}	(#)	(#)	(*)	(#)	(21)	(H)	(#)	{M)
0.00	.275	0.00	.275	0.00	.260	0.00	.275	0.00	.200	0.00	.270	0.00	.280	0.00	.275
1.37	.150	1.39	.135	1.18	.100	1.31	+135	1.40	.135	1.40	.140	1.30	.130	.83	.190
1.67	.110	1.75	.105	1.49	.120	1.80	.105	1.83	.140	1.85	.110	1.85	105	1.30	.150
2.12	.145	2.13	.120	1.71	.090	2.03	.120	8.62	··010	2.93	010	2.40		1.50	115
2.78		2.85	.005	2.19	.115	2.90	.010	3.20		3.17	e.135	2.90	.100	2.60	
1.24		3.38		2.80		2.94		3.00	-110	3.45	-170	3.34		3.00	
1.01	-150	1.08 1	.100	3.15	.050	3.12	.085	4.19	100	3.70		3.63		3.20	
1.49		3.90 1	.085	3.33	115	3.10		6.90		4.73		4.44		4.34	.175
4.34		4.64	165	3.67	.090	3.70	-115	8.69		6.20	8.300	5.29		4.45	
5.05	. 224	5.49	. 240	4.80	199	4.77			. 340	7.22	. 150	8.55		5.23	. 240
4.01		6.10		A-03 -	250	5.86	240	8.04	8.805	8.23		7.91		5.66	240
4.40	110	4.70	105	0.48	300	6.62	. 110	9.17		9.01		8-90		4.41	105
7.24	34.	7.24	.125	9.19	125	7.89		8.89		0.97		10.10		7.11	. 110
		1.44	180	9.88 C	145			11.00		11.08				7.84	. 180
										11.03					
		8.85			455	11.08								10 10	
						11.01	. 784								
			520											11.003	
				10.30										11443	4113
10.20		10.37													
11.45	+875	111443		11+**											
11,73 4															

TEST 2 (after 25 hours)

RANGE 1	1.5	RANGE 2.0	RANGE 3.0	RANGE 4.0	RANGE 5.0	RANGE 6.0	RANGE 7.0	RANGE 7.6
81A 8	ELEV	874 ELEY	STA ELEV	8TA ELEV	BIA ELEV	STA ELEV	STA ELEV	BTA ELEV
(*)	(*)	(H) (H)	(H) (H)	(H) (H)	(#) (#)	(#) (#)	(=) (=)	(H) (H)
000	. 245	0.00 .300	0.00 .315	0.00 .295	0.00 .290	0.00 .285	0.00 .295	0.00 .300
1.74	+115	1.81 .105	1.95 .095	1.58 .150	1.49 .145	1,51 +155	1.34 .140	1,48 ,150
2.15	. 150	8.16 .120	2.97	1.94 .135	1.80 .100	1.74 .160	1.40 .115	2.59 +.005
3.05 **	.805	3.05 0.000	3.17040	2.58 .005	2.02 0.005	2.59 0.000	2,58	3.15 0.075
3.54 **	08n	3.37 4.000	3.29	3.14100	2.99110	3.08115	3.08090	3,60 0.090
3.75	+30	1.00 **100	3.44 100	3.43 ==160	3.40 0.200	3.47200	3.44	5.00 *.225
3.91		3.87080	3.60	3.61095	3.70 =.100	3,81 0,09%	3.90100	6,74 =:310
4.56		4.13 8.115	4.33	4-48 e-170	9-51180	4.45 0.180	4.47170	8.03375
5.91		4.45 0.135	5.59	5.18 0.215	5.87240	5.43 =.270	5.88205	9.19
7.61		5.58	4-98 - 315	8.78	4.95	8.68 340	6.93 130	10.67
8.49		4.68	8.32	8.02 - 400	8.23	8.35 0.455	8.20 010	12.04 -1710
10.64		7.88	9.51	9.40	9.62	9.48 - 520	9.45520	
11.44		8.48525	10.70	10.73	10.82	10.90	10.73	
12.01 +4	.710	10.76635	11.84	11.87 +.715	11+87 +.715	11.98710	11.81705	

TEST 2 (after 50 hours)

RANGE 1.5	RANGE 2.0	RANGE 3.0	RANGE 4.0	RANGE 5.0	RANGE 6.0	RANGE 7.0	RANGE 7.6
STA ELEV	STA ELEV (H) (H)	STA ELEV	BTA ELEV	BTA ELEV (M) (M)	STA ELEV (H) (H)	BTA ELEV (H) (H)	BTA ELEV (H) (H)
$ \begin{array}{c} (m) & (m) \\ 0,00 & .295 \\ .58 & .120 \\ 2.09 & .155 \\ 2.09 & .155 \\ 2.92 & .005 \\ 3.19 & .030 \\ 3.18 & .075 \\ 3.40 & .320 \\ 3.61 & .075 \\ 3.61 & .075 \\ 3.61 & .075 \end{array} $	(m) (m) 0.00 .290 1.47 .130 2.12 .130 2.91 .005 3.52 .100 3.52 .100 3.74 .145 3.92 .080 4.15 .15 .15 5.06235	(h) (n) (n) (n) (n) (n) (n) (n) (n) (n) (n	(H) 0.00 .205 .89 .105 1.63 .140 1.62 .145 2.17 .000 2.46 .005 2.46 .005 3.17 .000 3.36 .0080 4.40 .100	(M) 0.00 .285 0.92 .185 1.38 .145 1.38 .145 1.38 .140 2.26 .045 2.28 .005 2.92 .045 3.32 .025 3.32 .025 3.32 .025 3.32 .025 3.35 3.55 3	(*) (*) 0,00 .285 .00 .205 1.41 .100 1.45 .149 2.53 0.000 2.90 .075 3.12 .13 3.40 .145 3.40 .145 3.40 .145 3.40 .145	(m) (m) 0 00 .290 1 48 140 2 20 0055 2 92 0055 2 92 0055 3 27 1100 3 47 100 3 47 100 3 47 100 3 47 100 3 47 105 3 47 105 3 47 105 3 405 3 405	(M) (N) 0.00 .300 1.75 .113 1.85 .075 2.45 .005 2.45 .005 3.18 .005 3.18 .005 3.50 .005 5.65 .200 5.65 .200 5.65 .200
5.21 0.245 6.74 0.325 8.63 0.490 10.44 0.605 11.80 0.700	7.25350 16.10595 11.65705	11.80715	5.46 0.260 6.97 0.355 9.49 0.520 11.78 0.715	3.50210 4.32160 6.17300 9.66715	5.44 0.440 6.88 0.370 8.50 0.495 10.04 0.595 11.85 0.705	7.20 0.245 7.20 0.350 8.53 0.470 10.04 0.590 11.68 0.705	7.20335 8.50045 10.06570 11.94715

RANGE 1.5	RANGE 2.0	RANGE 3.0	AANGE 4.0	RANGE 5.0	RANGE 6.0	RANGE 7.0	RANGE 7.6
STA ELEV (H) (H)	STA ELEV (M) (M)	BTA ELEV (H) (H)	BTA ELEV (M) (M)	BTA ELEV (M) (M)	BTA ELEV (M) (M)	BTA ELEV (M) (M)	GTA ELEV (H) (H)
0.00	0.00 .310 1.00 .100 3.30 0.05 3.43 0.05 3.73150 5.73275 6.62275 6.62285 18.77	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00 .295 1.65 .113 3.77 0.000 3.67 .000 3.61000 4.60200 6.23200 6.2000 6.200 6.200 6.200 6.200 6.2000 6.200 6.200 6.200 6.200 6.200	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00 .00 1.55 .000 3.55 .005 3.75 .075 4.52 .075 4.52 .025 4.52 .045 5.67 .045 5.67 .045 5.67 .045 5.67 .045 5.67 .045 5.67 .055 5.67 .055 5	0.00 .310 1.47 .130 2.48 .103 2.48 .113 3.47 .135 3.47 .145 3.47 .145 3.47 .145 3.47 .145 3.47 .145 3.47 .145 3.47 .145 3.47 .155 3.47 .155 .155 .155 .155 .155 .155 .155 .15

RANGE 1.5	RANGE 8.0	RANGE 3.0	RANGE 4.0	RANGE 5.0	RANGE 6.0	RANGE 7.0	RANGE 7.0
BTA ELEV (H) (M)	STA ELEV (H) (H)	STA ELEV (H) (H)	BTA ELEV (M) (M)	816 ELEV (M) (M)	ETA ELEV (H) (H)	87A ELEV (M) (M)	STA ELEV (H) (H)
$\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 1 & 10 & 0 & 155 \\ 1 & 36 & 0 & 105 \\ 1 & 66 & 0 & 105 \\ 2 & 11 & 0 & 001 \\ 2 & 11 & 0 & 001 \\ 3 & 07 & 0 & 005 \\ 3 & 35 & 0 & 055 \\ 4 & 36 & 0 & 10 \\ 4 & 55 & 0 & 10 \\ 4 & 55 & 0 & 055 \\ 7 & 00 & 0 & 0 & 285 \\ 7 & 00 & 0 & 0 & 285 \\ 7 & 00 & 0 & 0 & 285 \\ \end{array}$	0,00 .285 1,40 .095 1,41 .095 1,41 .095 2,10 .095 2,10 .085 2,21 .0085 2,21 .0085 2,21 .0085 2,21 .0075 3,22 .005 4,28 .0075 3,22 .005 4,28 .005 5,44 .	$\begin{array}{c} 0 & 0 & 0 & 375 \\ 0 & 0 & 235 \\ 1 & 0 & 235 \\ 1 & 0 & 35 \\ 1 & 0 & 35 \\ 1 & 0 & 35 \\ 1 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0$	0.00 .285 1.34 .135 1.34 .135 1.44 .105 1.71 .105 2.467 .090 2.467 .090 2.84 .005 3.19 .005 3.59 .005 3.59 .005 3.59 .100 3.94 .005 3.94 .005 3.95 .107 4.35170 4.35170	0:00 .295 .608 .230 1:45 .115 2:07 .005 2:43005 2:45005	$\begin{array}{c} 0 & 0 & 0 & 0 \\ 1 & 3 & 4 & 1 & 23 \\ 1 & 5 & 1 & 0 & 0 \\ 1 & 7 & 0 & 6 & 0 \\ 2 & 1 & 4 & 0 & 0 & 5 \\ 2 & 1 & 4 & 0 & 0 & 5 \\ 3 & 4 & 2 & 1 & 25 \\ 3 & 4 & 0 & 1 & 25 \\ 3 & 5 & 1 & 0 & 0 & 5 \\ 4 & 5 & 0 & 2 & 0 \\ 5 & 7 & 5 & 0 & 2 & 0 \\ 5 & 7 & 5 & 0 & 2 & 0 \\ 5 & 7 & 5 & 0 & 2 & 0 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0 & 0 & 0 & 0 \\ 1 & 20 & 170 \\ 1 & 24 & 0 & 15 \\ 1 & 67 & 0 & 000 \\ 2 & 21 & 0 & 076 \\ 3 & 20 & 0 & 076 \\ 3 & 20 & 0 & 076 \\ 4 & 73 & 0 & 136 \\ 4 & 73 & 0 & 175 \\ 5 & 23 & 0 & 275 \\ 5 & 23 & 0 & 275 \\ 6 & 10 & 0 & 230 \\ 7 & 00 & 0 & 296 \\ 8 & 06 & 0 & 1360 \end{array}$
10,26575 11,73705 11,78705 11,98715	7:47 -:325 8:33 -:410 9:20 -:505 10:75 -:625 11:63 -:75 11:68 -:715	0.02855 9.04925 90.30955 11.47715	4 47 4 10 5 4 17 4 220 6 4 4 4 225 6 4 6 2215 7 4 3 2275 7 4 3 2 275 7 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7.48230 0.63440 0.50540 0.90540 10.40450 11.41475 11.48705	7,18 -200 7,20 -235 7,61 -300 8,57 -30 9,15 -455 9,15 -455 10,38 -479	6.72 - 0.265 7.27 - 0.895 7.65 - 0.255 8.49 - 0.425 9.50 - 0.455 9.56 - 555 10.422 - 0.555 11.498 - 700	9,35 = 505 11,96 = 700
RANGE 1.5	BANGE 2.0	RANGE 3.0	RANGE 4.0	RANGE 5.0	RANGE 6.0	RANGE 7.0	RANGE 7.6
874 ELEV (H) (H)	STA ELEV (H) (H)	STA ELEV (H) (H)	8TA' ELEV (H) * (H)	814 ELEV (*) (*)	BTA ELEV (H) (H)	BTA ELEV (M) (M)	STA ELEV (H) (H)
$\begin{array}{cccc} 0 & 0 & 0 & & 27 \\ & 95 & & 105 \\ & 96 & & 105 \\ & 2.07 & & 105 \\ 2.73 & & 205 \\ 2.73 & & 205 \\ 3.78 & & 205 \\ 5.47 & & 205 \\ 5.47 & & 205 \\ 5.47 & & 205 \\ 5.47 & & 205 \\ 5.47 & & 205 \\ 5.47 & & 205 \\ 5.47 & & 205 \\ 5.47 & & 205 \\ 5.47 & & 205 \\ 5.47 & & 205 \\ 5.47 & & 205 \\ 5.47 & & 506 \\ 7.48 & & 205 \\ 1.58 & & 0.715 \\ 1.58 & &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0 & 0 & 280 \\ 0 & 0 & 175 \\ 1 & 02 & 190 \\ 1 & 74 & 80 \\ 2 & 80 & 901 \\ 3 & 63 & 901 \\ 4 & 14 & 920 \\ 4 & 91 & 920 \\ 4 & 91 & 920 \\ 4 & 91 & 920 \\ 7 & 47 & 931 \\ 8 & 80 & 80 \\ 1 & 97 & 971 \\ 1 & 97 & 971 \\ 1 & 97 & 971 \\ \end{array}$	$\begin{array}{c} 0 & 0 & 0 & 265 \\ + 0 & 190 \\ 1 & 62 & 235 \\ 2 & 74 & 010 \\ 3 & 65 & 225 \\ 4 & 16 & 220 \\ 4 & 76 & -165 \\ 5 & 40 & -225 \\ 8 & 67 & -235 \\ 8 & 67 & -330 \\ 4 & 50 & -455 \\ 8 & 67 & -455 \\ 1 & 9 & 57 & -635 \\ 1 & 9 & 57 & -635 \\ 1 & 9 & 5 & -675 \end{array}$	$\begin{array}{c} 0 & 0 & 280 \\ 0 & 5 & 190 \\ 1 & 24 & 205 \\ 2 & 55 & 010 \\ 3 & 25 & 010 \\ 3 & 24 & 090 \\ 4 & 00 & 220 \\ 6 & 68 & -190 \\ 6 & 68 & -190 \\ 6 & 68 & -190 \\ 6 & 68 & -190 \\ 8 & 28 & -190 \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.00 & .290\\ 1.000 & .180\\ 1.000 & .180\\ 2.010 & .040\\ 2.011 & .040\\ 3.010 & .040\\ 3.010 & .040\\ 3.00 & .040\\ 3.00 & .040\\ 5.34 & .015\\ 4.00 & .143\\ 4.00 & .143\\ 6.14 & .223\\ 7.60 & .213\\ 7.60 & .213\\ 7.60 & .203\\ 1.000 & .545\\ 11.000 & .710\\ \end{array}$
RANGE 1.5	RANGE 2.0	RANGE 3.0	RANGE 6.0	RANGE 5.0	RANGE 6.0	RANGE 7.0	RANGE 7.6
STA ELEV (H) (H)	STA ELEV (H) (H)	STA ELEV	BTA ELEV (M) (M)	STA ELEV (M) (N)	STA ELEV (H) (H)	STA ELEV (H) (H)	BTA ELEV (H) (H)
$\begin{array}{c} 0,00\\ & & \mbox{$$,75$}\\ 1,00\\ & & \mbox{$$,17$}\\ 2,00\\ & & \mbox{$$,00$}\\ 3,00\\ & & \mbo$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000.205 1.000.155 2.200.005 0.00	0.00 .225 1.00 .125 2.00 .100 2.00 .005 4.00 .005 4.00 .005 4.00 .005 4.00 .228 4.00 .228 4.00 .228 4.00 .228 10.45 .250 10.4555 11.4875	$\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 1 & -0 & -1 & 0 \\ 2 & -5 & -1 & 0 \\ 2 & -5 & -1 & 0 \\ 3 & -5 & -1 & 0 \\ 3 & -5 & -1 & 0 \\ 3 & -5 & -1 & 0 \\ 3 & -5 & -1 & 0 \\ 3 & -5 & -1 & 0 \\ 3 & -1 & 0 & -2 & 0 \\ 3 & -1 & 0 & -2 & 0 \\ 3 & -2 & 0 & -2 & 0 \\ 3 & -2 & 0 & -2 & 0 \\ 4 & -2 & 0 & -2 & 0 \\ 5 & -2 & 0 & -2 & 0 \\ 5 & -2 & 0 & -2 & 0 \\ 5 & -2 & 0 & -2 & 0 \\ 5 & -2 & 0 & -2 & 0 \\ 5 & -2 & 0 & -2 & 0 \\ 5 & -2 & 0 & -2 & 0 \\ 5 & -2 & 0 & -2 & 0 \\ 5 & -2 & 0 & -2 & 0 \\ 5 & -2 & 0 & -2 & 0 \\ 1 & -0 & 0 & -7 & 0 \\ 5 & -2 & 0 & 0 \\$	0.00.200 1.10.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
			TE	ST 7			
RANGE 1.5	RANGE R.O	RANGE 3.0	RANGE 4.0	RANGE 5.0	RANGE 6.0 Sta ELEV	RANGE 7.0 STA ELEV	RANGE 7.6 BTA ELEV
(H) (H)	(H) (H)	(H) (H)	(H) (H)	(A) (A)	(H) (H) 0.00 .290	(H) (H) 0=00 =260	(H) (H) 0.00 .275
$\begin{array}{c}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 + 5 - 0 + 5 2 + 50 - 0 + 5 2 + 79 - 0 - 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0		$\begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 1 \\ 7 \\ 1 \\ 2 \\ 4 \\ 1 \\ 1 \\ 7 \\ 2 \\ 4 \\ 1 \\ 1 \\ 7 \\ 2 \\ 4 \\ 1 \\ 1 \\ 7 \\ 2 \\ 4 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	$\begin{array}{c} & \cdot & \cdot & \cdot & \cdot \\ & \cdot & \cdot & \cdot & \cdot \\ & \cdot & \cdot$	50 230 50 125 157 000 252 10 00 252 00 3005 01 3005	

RANGE 1.5		RANGE \$.0	RANGE 4.0	RANGE 5.0	RANGE 6.0	RANGE 7.0	RANGE 7.6
BTA ELEV (H) (M)	BTA KLEV (H) (H)	STA ELEV (H) (H)	STA ELEV (H) (H)	8TA ELEV (m) (m)	STA ELEV (M) (M)	BTA ELEV (H) (H)	BTA ELEV (H) (H)
0.00 .845 .40 .815 .52 .115 .83 .040 1.18 .025 1.52 .0075 1.57 .005	0.00 .280 .32 .205 .40 .115 .79 .030 1.11 .025 1.60 .055 2.29 .130	0.00 .285 .42 .260 .45 .115 1.36 .040 2.31 .060 3.31095 3.31175	$\begin{array}{c} 0 & 0 & 0 & 295 \\ & 79 & 215 \\ & 455 & 0070 \\ 1 & 165 & -0015 \\ 2 & 63 & -120 \\ 3 & 63 & -175 \\ 4 & 32 & -150 \end{array}$	0.00 .300 .92 .210 .96 .130 1.63010 2.21125 3.66185 3.66180	$\begin{array}{c} 0 & 0 & 0 & 300 \\ & 76 & 235 \\ & 03 & 115 \\ 1 & 75 & 0 & 015 \\ 2 & 05 & 0 & 065 \\ 2 & 64 & 0 & 115 \\ 3 & 22 & 0 & 145 \end{array}$	0.00 .295 .65 .230 .66 .145 1.76 .009 3.16 .009 4.32215 5.04245	0.0J .285 .58 .220 .63 .155 1.72
2:15 -:120 2:51 -:145 2:57 -:145 2:72 -:175 2:72 -:175 4:67 -:215 4:67 -:225 4:67 -:225 4:65 -:225 4:75 -:225 4:75 -:225 4:75 -:255 4:75 -:255 4:755 -:255 4:755 -:255 4:755 -:255 4:755 -:255 4:755 -:255 4	2 + 93 = 0 + 153 3 - 94 = 0 + 175 3 - 95 = 0 + 185 4 - 70 = 0 + 195 5 - 11 = 0 + 0 9 + 0.8 = -205 6 - 0.3 = -205 7 - 23 = -205 7 - 23 = -205 7 - 23 = -205 7 - 23 = -205 9 - 36 = -318 9 - 36 = -518	3,76 = .183 4,34 = .190 4,81 = .173 5,58 = .480 7,38 = .315 6,10 = .375 8,76 = .445 9,40 = .510 10,14 = .585 10,995 = .445	3.13170 5.70215 6.74225 7.56283 8.32585 9.41520 9.92575 10.66680 11.60695 11.93705	4.60 m.175 5.65 m.205 6.50 m.255 7.55 m.255 4.30 m.255 9.31 m.535 10.09 m.605 10.09 m.660 11.03 m.705	4.03 e.235 5.15 e.245 5.55 e.212 6.95 e.221 8.05 e.393 9.48 e.551 10.20 e.705 11.93 e.705	5.76 0.205 6.63 0.205 6.80 0.270 7.91 0.365 8.81 0.655 9.55 0.655 10.26 0.615 11.00 0.035 11.03 0.005	6.27225 7.32200 8.20200 8.20200 9.79555 10.45495 11.03495
8,93 *.710	10.98 =.645						
			TE	7T 9			
RANGE 1.5	RANGE 8.0	RANGE 3.0	RANGE 4.0	RANGE 5.0	RANGE 6.0	RANGE 7.0	RANGE 7.6
878 ELSV (H) (H)	BTA ELEV (M) (M)	STA FLEV (H) (H)	STA ELEV (H) (H)	BTA ELEV (H) (H)	STA ELEV (M) (M)	814 ELEV (M) (M)	STA ELEV (H) (H)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00 .285 1.18 .125 1.67 .130 2.73 .005 3.85155 4.44 .155 5.50205 5.55215 5.56205	$\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 1 & 3 & 0 & 1 & 1 & 5 \\ 1 & 0 & 2 & 0 & 0 & 7 & 5 \\ 2 & 0 & 2 & 0 & 0 & 0 & 0 \\ 3 & 0 & 3 & 0 & 0 & 0 & 0 & 0 \\ 3 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 3 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 3 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 3 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 3 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 3 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & $	0.00 .300 1.58 0.05 2.32 0.05 3.42 0.05 3.45 0.05 3.45 0.05 3.45 0.05 3.45 0.05 3.45 0.05	$\begin{array}{cccc} 0 & \circ & 0 & 0 & \circ & 3 & 45 \\ 1 & \circ & 4 & 0 & \circ & 135 \\ 1 & \circ & 4 & 0 & \circ & 290 \\ 1 & \circ & 5 & \circ & 095 \\ 2 & \circ & 4 & 9 & \circ & 010 \\ 3 & 3 & 5 & \circ & 140 \\ 4 & 3 & 5 & \circ & 145 \\ 4 & 0 & 5 & \circ & 215 \\ 5 & 3 & 0 & \circ & 240 \\ 6 & 4 & 0 & \circ & 220 \\ 6 & 4 & 0 & \circ & 220 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 0 & 0 & 0 & 0 & 0 \\ 1 & 20 & 0 & 10 \\ 1 & 20 & 0 & 10 \\ 2 & 31 & 0 & 005 \\ 2 & 50 & 0 & 070 \\ 3 & 512 & 0 & 085 \\ 4 & 00 & 0 & 210 \\ 5 & 17 & 0 & 105 \\ 5 & 17 & 0 & 105 \\ 5 & 17 & 0 & 105 \\ 6 & 0 & 0 & 210 \\ 6 & 0 & 0 & 0 & 210 \\ 7 & 0 & 0 & 0 & 0 \\ 7 & 0 & 0 & 0 $	0.00 .20 1.24 .140 2.00 .020 2.89 .125 3.85 .170 6.62 .170 5.06 .170 5.08 .170 5.08 .170 6.62 .170 5.08 .170 6.62 .170 5.08 .170 6.62 .170 5.08 .170 5
5.84 .205 6.23	6,92 -,240 7,37 -,240 8,13 -,366 8,90 -,626 14,10 -,533 11,93 -,710	7-34	0.03 0.245 9.959 0.530 10.03 0.620 11.02 0.710	•10 •.430 •530 •.430 10.48 •.425 11.43 •.710	0.00000 11.00705	9.50 0.400 11.72 0.705	11.73705
RANGE 1-5	RANGE R.O.	RANGE 1.0	RANGE 4.0	RANGE 5.0	RANGE 6.0	RANGE 7.0	RANGE 7.6
STA ELEV	STA ELEV	STA ELEV (M) (M)	STA ELEV (H) (H)	BTA ELEV (H) (H)	STA ELEV (M) (M)	\$1A ELEV (H) (H)	STA ELEV (H) (H)
$\begin{array}{c} 0.00 &08\\ 1.04 &15\\ 1.04 &15\\ 2.07 &010\\ 3.40 &05\\ 3.40 &05\\ 3.40 &05\\ 3.50 &05\\ 4.15 &16\\ 4.2 &215\\ 5.55 &20\\ 5.55 &2$	0,00 ,285 ,99 ,173 1,07 ,135 1,05 ,015 1,05 ,015 1,05 ,015 1,05 ,015 1,05 ,015 1,05 ,05 ,05 ,05 ,05 ,05 ,05 ,05 ,05 ,05	0,00 ,285 1,25 ,130 3,15 ,003 3,15 ,003 3,	$\begin{array}{ccccccc} 0 & , 3 & 0 \\ 1 & 3 & , 1 & 1 \\ 1 & 4 & 5 & , 1 & 0 \\ 2 & , 7 & & 0 & 0 & 1 \\ 2 & , 7 & & 0 & , 1 & 0 \\ 4 & , 7 & & , 1 & 0 & , 1 \\ 4 & , 7 & & , 1 & 0 & , 1 \\ 4 & , 7 & & , 1 & 0 & , 1 \\ 5 & , 4 & , 4 & , 2 & 0 \\ 5 & , 4 & , 4 & , 2 & 0 \\ 7 & , 2 & , 4 & , 3 & 0 \\ 8 & , 4 & , 4 & , 4 & 0 \\ 8 & , 4 & , 4 & , 4 & 0 \\ 8 & , 4 & , 4 & , 4 & 0 \\ 1 & , 4 & , 4 & , 4 & 0 \\ 1 & , 4 & , 4 & , 4 & 0 \\ 1 & , 4 & , 4 & , 4 & 0 \\ 1 & , 4 & , 4 & , 4 & 0 \\ 1 & , 4 & , 4 & , 4 & 0 \\ 1 & , 4 & , 4 & , 4 & 0 \\ 1 & , 4 & , 4 & , 4 & 0 \\ 1 & , 4 & , 4 & , 4 & 0 \\ 1 & , 4 & , 4 & , 4 & 0 \\ 1 & , 4 & , 4 & , 4 & , 4 \\ 1 & , 4 & , 4 & , 4 \\ 1 & ,$	0.00 ,295 1=14 ,170 1=27 ,155 1=37 ,155 1=37 ,155 1=35 ,010 3.477 ,000 4.22 =1.125 4.25 =1.25 8.47 =2.25 8.47 =2.25 8.47 =2.25 1.45 =1.25 1.45 =1.45 1.45 =1.25 1.45 =1.251.45 =1.25 1.45 =1.25 =1.251.45 =1.25 1.45 =1.25 =1.251.45 =1.25 1.45 =1.25 =1.251.45 =1.25 =1.25 =1.251.45 =1.25 =1.25 =1.251.45 =1.25 =1.25 =1.251.45 =1.25 =1.25 =1.251.45 =1.25 =1.25 =1.251.45 =1.25 =1.25 =1.251.45 =1.25 =1.25 =1.251.45 =1.25 =1.25 =1.251.45 =1.25 =1.25 =1.25 =1.251.45 =1.25 =1	0,00 ,300 1,60 ,113 5,33 ,407 5,37 ,407 5,47 ,407 5,63 ,185 5,63 ,185 5,63 ,185 7,77 ,255 7,77 ,255 7,755 7,	0.00 .249 1.53 .153 .153 .153 .153 .153 .153 .153	v.00 .200 1.60 .210 1.60 .100 4.15 .000 4.15 .000 4.15 .000 4.15 .000 4.15 .000 4.15 .000 4.15 .000 4.15 .000 4.27 .225 4.27 .225 4.20 .200 7.00 .200 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000
			T	ST 11			
RANGE 1.5 STA ELEV	BANGE 8.0 BTA ELEV	RANGE 3.0 BTA ELEV	RANGE 4.0 BTA ELEV	BANGE 5.0 BIA ELEV	RANGE 6.0 STA ELEV	STA ELEV	BTA ELEV
(H) (H) 0.00 .280	(M) (M) 095+ 00+0	(*) (*) 0.00 .300	(H) (H) 0.00 .300	(H) (H) 0+00 +310	(H) (H) 0.00 .310	0.00 .310	0.00 .305
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1,30 & .120\\ 1,80 & .090\\ 1,80 & .090\\ 3,10 & .020\\ 3,02 & .020\\ 4,13 & .020\\ 4,13 & .150\\ 4,13 & .150\\ 4,10 & .260\\ 5,20 & .180\\ 6,01 & .260\\ 7,19 & .350\\ 7,19 & .350\\ 9,47 & .520\\ 11,95 & .010\\ 11,95 & .710\\ \end{array}$	$\begin{array}{c} 1 & 0 & 150\\ 1 & 27 & 160\\ 2 & 33 & 010\\ 2 & 570 & 0.040\\ 2 & 570 & 0.040\\ 3 & 026 & 0.090\\ 3 & 026 & 0.090\\ 3 & 026 & 0.070\\ 3 & 026 & 0.070\\ 4 & 022 & 200\\ 4 & 022 & 200\\ 4 & 022 & 200\\ 5 & 226 & 200\\ 7 & 12$.00 .200 .96 .110 1.85 .055 2.36 .055 2.87 .10 3.10 .105 3.74 .012 4.38 .105 5.83 .20 5.85 .20 5.85 .20 5.85 .20 7.44 .30 6.79 .20 6.79 .55 1.42 .05 1.42 .05 1.42 .20 5.44 .20 5.45 .20 5	.75 205 1022 2185 115 13 030 217 2030 217

RANGE 1.5		RANGE 1.0	RANGE 4.0	RANGE 5.0	RANGE 6:0	RANGE 7.0	RANGE 7.6
BTA ELEV (H) (H)	STA ELEV (H) (H)	STA ELEV (H) (H)	STA ELEV (N) (N)	\$TA ELEV (#) (M)	STA ELEV (M) (M)	STA ELEV (M) (M)	87A ELEV (H) (H)
$\begin{array}{c} 0,00&.280\\ ,700&.213\\ ,700&.213\\ ,700&.213\\ ,700&.213\\ ,700&.280\\ ,700$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00 .110 1.57 .100 2.01 .005 3.10 .010 3.10 .010 3.32 .005 3.32 .005 3.32 .005 3.42 .270 5.42 .270 5.42 .270 10.20 5.42 .270 10.2	0.00 .110 1.25 .135 1.00 .100 2.40 .035 2.40 .035 2.40 .035 3.01 .074 3.01 .074 3.014 3.014 .074 3.014 .074 3.004 .074 3.014 .074 .074 3.014 .074 .0740 .0740.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
			11.	51 15			
RANGE 1.5 BTA ELEV	RANGY R.O STA ELEV	RANGE 3.0 STA FLEY	RANGE 8.0 BTA ELFV	RANGE 5.0 BTA ELEV	RANGE 8.0 Sta elev	RANGE 7.0 81a ELEV	RANGE 7.6 BTA · ELEV
(H) (H)	(H) (H)	(H) (H)	(H) (H)	(H) (H)	(H) (H)	(H) (H)	(H) (H)
0.00.0.205 1.03.0.170 1.03.0.170 1.03.0.170 1.00.0.170 2.70.0.05 2.70.0.05 2.70.0.05 2.70.0.05 2.70.0.05 3.01.0.181 3.450.0.05 5.52.0.200	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 00 00 00 00 00 00 00 00 00 00 00 00 0		5. 10 5.	0 00 - 200 1,20 - 210 1,27 - 1130 2,08 - 010 2,08 - 010 2,08 - 010 3,08 - 255 3,08 - 255 3,08 - 255 3,08 - 255 3,08 - 255 1,0 - 200 5,0 - 200	0 00 210 1.50 110 2.20 005 3.29 0	0 0 0 115 1,03 005 2,33 005 3,39 000 4,44 020 6,28 020 0,31
8-NCE 1 8						BANGE T.O	RAUGE T.A
STA ELEV	STA ELEV	STA ELEV	BTA ELEV	STA ELEV	874 ELEY (H) (H)	STA ELEV (H) (H)	BTA ELEV (H) (N)
0.00 .20 .20 .20 .50 .225 .76 .00 1.53 .00 2.91 .00 2.91 .20 3.56 .20 0.3 .56 .20 0.3 .56 .20 0.3 .56 .20 0.4 .20 0.4 .20 0.5 .50 0.5 .50 0.50 0.5 .50 0.5 .50 0.5	0,00,20,20 ,20,255 ,21,115 ,07,025 ,24,115 ,07,025 ,24,20,225 ,25,20,225 ,25,20,225 ,24,20,225 ,25,20,225 ,25,20,205 ,24,20,225 ,25,20,205 ,24,20,225 ,24,20,225 ,24,20,225 ,24,20,225 ,24,20,225 ,24,20,225 ,24,20,225 ,24,20,255 ,25,20 ,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00 .305 0.00 .110 1.57 .0060 1.57 .0060 1.515 .1160 3.10 .250 0.75 .310 0.75 .310 0.75 .310 0.75 .315 0.75 .35 .35 .35 .35 .35 .35 .35 .35 .35 .3	0.00 ,310 .23 ,250 .26 ,150 1.15 *.010 1.21 *.010 1.21 *.015 2.30 *.165 1.22 *.285 4.02 *.285 4.72 *.285 4.72 *.285 4.71 *.180 4.51 *.185 1.12 *.195 1.12 *.195	0.00 ,303 +13 ,307 +13 ,170 +13 ,170 +252 +110 2.61 +152 -2.61 +15	0.00 .105 0.00 .235 .22 .100 1.22 .000 2.25 .100 2.25 .100 2.25 .100 3.10 .220 5.10 .200 5.10 .200 5.100 .200 5.1000 .2000	$\begin{array}{cccccccc} 0 & .305 \\ .33 & .255 \\ .37 & .210 \\ .7 & .210 \\ .7 & .210 \\ .7 & .210 \\ .7 & .210 \\ .7 & .210 \\ .7 & .210 \\ .7 & .210 \\ .7 & .100 \\ .7 $
R44GE 1.5	RANGE 8.0	RANGE 3,0	RANGE 4.0	RANGE 5.0	RANGE 6.0	RANGE 7.0	RANGE 7.8
STA ELEV (H) (H)	BTA ELEV (H) (H)	STA ELFV (H) (H)	STA ELEV (M) (M)	BTA ELEV' (M) (M)	STA ELEV (M) (M)	\$7A ELEV (M) (M)	BTA ELEV (M) (M)
$\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 5 & 0 & 0 \\ 1 & 1 & 5 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ 3 & 1 & 5 & 0 & 0 \\ 3 & 1 & 0 & 0 & 0 \\ 3 & 1 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 \\ 7 & 7 & 0 & 0 \\ 7 & 7 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & $	0,00 .285 .85 .175 1.03 .015 1.03 .021 1.03 .021 1	$\begin{array}{c} 0,000\\ & .63\\ & .63\\ & .63\\ & .25\\ & .63\\ & .25\\ & $	0.00 .285 .85 .123 1.13 .120 1.00 .005 3.00 .005 3.53 .30 .100 3.50 .100 4.85 .220 6.51 .200 6.51 .200 5.65 .200 5.65 .200 5.65 .000 5.65 .000 1.05 .000 0.0000 0.0000 0.0000 0.0000 0.000000	0.00 .305 .80 .200 115 1.32 .105 1.35 .015 3.43 .015 3.43 .120 3.43 .120 3.43 .120 3.43 .120 4.04 .13 .120 4.04 .15 5.60 .270 5.60 .251 1.40 .551 1.40	$\begin{array}{c} 0,00 & .395\\ .& 06 & .170\\ 1.00 & .128\\ 1.401 & .028\\ 2.75 & .035\\ 3.75 & .015\\ 3.75 & .0$	0.00 .295 .93 .10 1.36 .125 1.60 .125 2.90 .010 3.62 .030 3.63 .125 4.00 .105 4.00 .105 4.00 .105 4.00 .105 5.05 .100 5.05 .100 5.05 .200 1.610 .540	$\begin{array}{cccc} 0 & , 300 \\ 1 & , 00 & , 180 \\ 1 & , 23 & , 140 \\ 1 & , 5 & , 123 \\ 2 & , 3 & , 140 \\ 2 & , 5 & , 175 \\ 3 & , 25 & , 000 \\ 3 & , 25 & , 000 \\ 3 & , 25 & , 000 \\ 4 & , 75 & , 125 \\ 3 & , 000 \\ 4 & , 75 & , 125 \\ 4 & , 75 & , 000 \\ 4 & , 75 & , 000 \\ 4 & , 76 & , 000 \\ 4 & , 76 & , 000 \\ 4 & , 77 & , 000 \\ 4$

APPENDIX C

PLOTTED BEACH PROFILES

APPENDIX D

SELECTED BREAKER BAR AND WATERLINE PHOTOS

The following photos from 35-millimeter slides were taken at approximate run-hours 01, 08, 16, and 24. Figure 15 provides an explanation of features. The complete set of slides is available from CEIAC.

APPENDIX E

HOURLY CYCLE CALCULATIONS

A listing of the program which calculates the values in this appendix, using the data in Appendix A, is available from CEIAC.

z
C
-
÷.
-
-
0
-
U
140
~
~
-
-
<u></u>
2
0
_

BLB	3/4/5	3.793		010	4.754	4.541	3.727	3.587	2.039	1.828	2.758	2.338	2.527	2,292	1 • 592	3.807	3.417	2.869	2.872	01511	199.5	1.788			0/001		1.290	3.604	3.441	4.510	5.109	4.109	4.194	3.179	200°7	495.44	3 • 571		1// ° °		3C7 0 0	1011	10.1	447.0	2.701	100.1	1999	2.897	2.511								
8 X Y	W/W	2.268	10100	1110 C	676.6	2.715	2.376	2.449	2,162	2.180	2.394	2,232	2,412	2,431	1.688	2,599	2.043	1.959	2.111	2.111	0.0				COC 8 2		1.793	2.243	2.497	2.806	3.179	2.557	2.437	2.130	2.378	2.397	2.015	2020				1999 - C		1 1 2 0 0		0110	2001	1.570	1.503								
BREAKER Angles	DEGREES	е	ас (0 с				- 40	, r	- 0	~	-o	in N	an an	5	1	5 5	•	•					-	N (4		•		4	. e	8	¢	6	4 4	0 -0	6	¢.	8	~ 0	ю. Эт с	ел (1. т. т.		C 1	••		- 4	0 -0			,							
E MEIGHT F1 GAGED	N N N N N N N N N N N N N N N N N N N	2 12.3		1111	10.4	2 14.7	8 13.3	6 12.9	0 13.9	7 15.3	8 14.4	3 14 ° N	3 15.0	2 13.2	4 10.6	8 14.5	0 12.2	11.6	12.2						c 13.0		6 11.5	4 13.2	11.8	0 15.4	9 16.2	0 14.2	8 13.8	2 12.A	8 12.5	2 13.2	0 12.7	0 13.7	· · · · · ·								12-1		11.6								
N N N		<u> </u>	2						1		-	=	1	1	=	21	2	12	12		::		4				•	0	-	-	-	=	10	10	=	-	4 4				**		•	•	•												
DAT	ž	0		2 4	5		10	5	5	C M	30	5	ñ	50	5	20	0	5	2	-	1	1					50	5	0	5	C P	ň	30	30	ň	30	5	5		2	2		5 ¢		2		2		i P								
WAVE Sing		0.		V P	1	i un	0	•	e	•	0	-	~	1	3	5				0		0.0		N	ĉ		c	-	2	1	4	r	4	•	eC ·	•	10		2:	n : 	~	n 4						.,,	5	5							
1287		۳.	•••	•	n #		. 14		ריון ו		~	*	r	-	•	-	-						•	- •	•		17	1.31	77	- 31	7	17	1	1	1	7	1	3	3	3	3	3 -		3	3 5												
PLB	J/M/S	2.431	2.256	2.233	20102					52185 522 6						14001	6 1 5 5	5 . 4 5 9	2.517	2.402	2.053	1.684	1.907	2.103	406 1	2 . 0 5 S			004.01				2.101	1.748	2.018	2.459	1.767	1.955	1.616	2°043	2.043	1.616	1.772	1.884	1.992	2.043	1.884	1,613	1.893	2 = 2 + 1	5/ # · Z	C 8071	10770			20160	1.101
3×4	M/N	1,185	1.100	1-156	1	1.110											1 2 2 4	1.274	1.304	1.244	1.214	1.072	1.128	1.244	1.100	1.214		1 1 5 1					100-1	965	1.045	1.274	1.045	1.156	1.156	1.128	1.128	1.114	1.128	1.114	1.100	1.128	1-1-1	1 a 0 7 d	1.045	1.1.1	20101	1 1 1 1 1	1040			1 1 1 1 1	1 . 6 . 0
AKFR	REFS	0	æ	¢	<u>د</u>	6		E I	~ 0				3 • 1	-	¢.	•	æ	¢	æ	¢	•	-	• ►	• •	- 44	- 40		,	-	~ 1	c •	6 4	c •	0 P	• 0	•	• •		÷	0	40	•	2	-	æ	-	2	2	æ	€,	0	•			.	•	~
9.46	DEG	80	o	aD (• •	•	⊃ q	•	•	- 0	• a		• •			þ.	•	ac i	•0	C	•	•	~	-	-	- 40		•	- 1	- *	- 0	~	• •	• «C	~	•	~	-	-	•	o	•	•	-	-	æ		-			•	2	• 0	• •	• •	P 4	0
HEIGHT	C M C M	6. ⁴	6.8	6 • 5	•••		0 4	0 -		2 P							1.1	7.4	6 • 2	6.8	6.0	5.6	7.0	6-6	5	0.9			с «	r :			1 - 4		5.4	6.2	6.2	7.8	6 • 6	6 e 4	6 • b	6 e 4	6 • 0	6 ° J	6 ° J	6 e J	0 • 1	6 a d	6 e l	9.0						10	
A VE		10_0	•	0.0	10.6 1								4			4		0	11.0	10.0	10.6	1000	2	1072	0.01	10								20	10.0	80 C	°,	8	9.4	•	- - -	°*	10,00	•	°.	0.0		4				0 8 4 1 1				•	1.5
DATA		C 17	25	25	5	0	3 4	-	5				ĥ	5		2	5,	ŝ	C F	30	50	5	30	30	-	2					5	5	-	5	30	30	30	30	30	C M	30	30	20	C m	5	30	5	5	5	-				2		0 e	D
AVE	2 GK 2 II 2	e	-	~ 1	•	3 6	n 4		- a	•				u e ;	n :	-,	-	-	-	e		ñ	ā		1	1		•				1 3		•	-	¢	o	0	-	2	m	1	5	•	-	C	-	R.	2	2	2		1				'n
181		-	-	-												_			-	-	-	-	-	_										. ~	-	-	•	~	~	n.:	~	~	~	~	~	N	~	N	~	~	•••	•		~	• •	• •	

HOURIY CYCLE CALCULATIONS

PL8 J/H/5	90 90 90 90 90 90 90 90 90 90 90 90 90 9	- 31 W W W W W W W W J 31 W W J 34 W W W W W W W W W J 34 W Z W W Z W W W W W W M J 34 W Z W W Z Z W W Z Z W W W W Z Z W W W Z Z W W W Z Z W W W Z Z W W W Z Z W W W Z Z W W W Z Z W W W Z Z W W W Z Z W W W Z Z W W W Z Z W W W Z Z W W W Z Z W W W Z Z W W W Z Z W W W Z W Z Z W W W Z W Z W Z W W Z W Z W W Z W Z W W Z
8×4	22240000000000000000000000000000000000	2000 200 2000 2
BREAKER Angles Degrefs	-NCN0-2C0AAC-AAAAA -NCN0-200 NN0-0-200 -NN	······································
HE IGHT 0 4 0 5 2 CH	- 44 - 25 - 26 - 26 - 26 - 26 - 26 - 26 - 26	
KAVE GAGE1 CM		
DATA TINE HN	N U U U U U U U U U U U U U U U U U U U	1000 5555555555555555555555555555555
MAVE RUN HR	りょうちゅうかうかののしょうしょうかいしゃつ まれいりょうかいしょう しょうちょうしょう	
TEST	**********	~~~~
PLB 3/M/S	201 201 201 201 201 201 201 201 201 201	2000 200 2000 2
× × 5	Provide a construction of the construction of	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BREAKFR Angles Degrefs	30003-00-00-303000-3000 	NM ECTTCODRECTODOLTORONINNE ON MOOTTCODRECTODOLTORONINNE
E HEIGHT Ei 0agf2 Cm	9994344794792422256926969 469344794929944924949 490354494956666779999	
	0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	••••••••••••••••••••••••••••••••••••••
		00 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8 8 9 1 1 1 1 1 1 1 1 1	し し こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ	
7631	יש אוני או	*****

- 2	z
	-
- 2	
	2
-	2
-	
. 6	2
	4
	s
	1
- 27	1
	,
- 2	-
۰.	2
- 6	-
- 2	2
- 2	2
. 5	2

PLB	J/H/S	4.536	3.737	3.669	7.017	100	027.1	4.305	960 8	4.361	2.94.1	4.560	3.537		10.04	105	0.147	1 B T						3.113	3.661	21212				2.788	2,655	3.125	3.039	2 . 6 9 8	966 2	2000	2000 C	0000	10100	1.32	1 0 4 1	2.518	2.530	2,194	2.263
¥×8	1/2	2.511	2.444	2.681	4.735		4.735	2.612	2.750	2.646	2.681	<.716	2 01 E			614.6	5.578	108.0		1 1 1	1 1 1 1	402 0	0.000	2.406	2.578	2.234	A44.4		010.0	2 305	2.207	2.079	2.079	2.234	5.174	102.0		1000	1.985	515.6	2 207	2.239	2.339	2.110	2.372
BREAKER Angler	DEGREES	12 12	52 22	15 1A	18 21		10 11	21 19	19 17	17 23	23 22	22 16	16 19	22	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								14 60	15 15	15 18	18 16	10 19	6			15 15	15 2n	20 14	14 16	16 16	10 18	10 14		~ ~		101	14 15	12 13	13 11	11 11
HEIGHT	Ŧ	10 a 10 a	u - 1 1 1	4.7	10.1		10.3	5.7	4.7	0°7	5+5	4.03	0 0 7 :	7 P										7.6	9*0	7=6			0.0		7.3	7.0		ę••	6 • ü	6 •6						7.8	5.8	7.6	7.9
AVE GACE	1	-		10					11,0	50	105	۲. ۲.	10.1									4	n *	9 ° 9		9	4	4	0 4		.0	-0	3	-	4			. 0	4	- -			i.	i in	-0
DATA TINE	Ĩ	5	00	30	5	5	200	0	10	30	30	50	5	5,	5.	2 4							20	30	5	5	2	5	52	1	ŝ	ŝ	5	c	30	5	5	2	52	35	5	50	30	5	30
NAVE BUN	ar T	0.	- N	-	⊐r u	n 4	•	*	•	2		2			<u>.</u>					, 	1	2	ĉ	•	-	ຸ	m :	3 6	n 4		80	•	10	-	2	-	7,	1		-1			5	2	23
TE8T		2	~~	2	21	2:	10	:2	2	12	12	12	2	2	2	2:		<u>u</u> (23		2	2:	2	13	:	13	2	::	2:	22	:=	13	13	13	13	1	2	2	2:	2:	25	12	1	-	13
PLB	8/1/5	026.4	41 - 30 B	1010	102.4	4.390	3.871		5.004			1.698	4.349	4.6436	4.146	4.685	4.697	5.251	4°408	3.856	4.018	4.5?2	5.363	11.725	13.591	12.084	14.715		15.670	16-148	14.923	13.935	13.951	14.389	15.292	675°51	17.547		14.000		0.010	15.207	16-148	14-919	14.389
BXY	N/N	3,115	2.918	3.348	2.809	2.974	2.622		2 4 0 L	1 OAE	2117	2.596	2.946	2.809	2.809	J.289	2.474	3.050	2,918	2.442	2.544	2.863	3,289	8,092	8.392	7.461	8.493	2×0°0	100.4	8.491	8.341	B.043	7.798	8.043	8.043	1.944	908.5	195.0	5 - 5 4 C	1 2 4 1	8 055	100.8	8.493	7 846	8.043
BREAKER	DEGREFS	15 15	11		15 14	14 14	14 10		7		17 17			15 15	15. 13	13 14	14 14	16 17	17 15	15 15	15 15	15 15	15 16	11 14	14 14	14 14	14 16	10	0	1 2 1	16	15 15	15 16	16 15	15 18	18 16	16 15	5	12	14 16	4		0.P	17 14	16 15
HEIGHT		12.0	11 6	10.5	9°2	9.6	о. к		0.0	- 4	9 ° 4		9°6	0°0	6°0	2.11	10.0	10.1	c ° 6	7 . H	R.3	6°6	10.2	18.3	18.0	17.1	19.5				18.5	18.2	18.3	17.9	17.3	18.0	21.0	19.5	2.61		0 P • • •	10.01			18.0
MAVE	CM	8.6							4	•		-	-	1.1	10.8	2.	1	11.44		1	11.44	-	12.2	14.4	15.1	14.3	5		-		147	14.4	13_8	14.7	15.5	10.4	5	13.	14	3	4	4	1 1		9.7
ATA	1 1 1 1 1 1	30	50		30	ŝ	0	0	5				50	30	30	٩	c ç	30	30	¢,	30	3 c	30	30	30	ŝ	5	0	5		5	30	50	20	30	ŝ	50	ŝ	ç.	5	5	ŝ	5	5	1
NAVE D		0	- 0		4	m	••		0 0					3	<u>ا</u>	-	2		•	2	ž	2	24	•		~	m	3.1	n 4		•	o	0	-	2	-	31		-		0.0	- 6	5-	:.?	17
1631		ø	• 0	• •	•	o	• •	•	D C	• 0	. 0	. 0	•	•	o	•	o	o	•	•	0	•	œ	10	2	10	10	-	2:		0		10	10	10	10	01	10	0	2	2		2 5		0

~
0
-
-
-
- 72
_
-
-
v
_
-
-
-
0
-
Ξ.
0
~
_
œ
-
-
o
-
-

9/4/8 J/4/8		
× × 8	1,1,1,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,	00,055 00
BREAKER Angleg Degrefs		
HE IGHT GAGEZ CH	38 L NS C L L K C L L L L L L L L L L L L L L L	0 • • • • • • • • • • • • • • • • • • •
EAVE GAGE1 CH		0000
DATA TINE MN	мимимищимимимимимими ссососсссссссссссссс	
40° >⊃⊐1 ≥⊃1	うしていののようでいういうこうのの きよゆらいてき くうう くうくう	のまたえばいうらすのののもうこういうかのもうできょう ううろう きょうきょうしょう ううろう
1681	***************************************	

APPENDIX F

DAILY CYCLE CALCULATIONS

A listing of the program which calculates the values in this appendix, using the data in Appendix A, is available from CEIAC.

-
7
ñ.
1
÷.
2
U U
_
-
U
-
- 22
0
÷.,
-
0

¥ L		1591°	.1062	. n8h0	• 0515	007U*	- 05850 - 05850 	. 1400	.1138	. 1676	.1116	1550	1262	e1005	.0710	.0694	.0719	.0766	.2877	19197	• 3770	• 4010	. 3867	6277	5995	1 2 9 7 8				<017.			1074	1229	-1025	1330	1711	1650					0 1 1 0			
ŝ	8/M	.23hu	.1423	61010	0114 °	0 V 0 C •	. 7 4 5	2012.	.1695	5555	. 1 0 0 5	. 1445	5443	.1015	.1245	.1277	-1278	•1424	• ۵5A5 .	• 36Au	- 6244		• • 572	• 7105	8/75	12/2.	2024			, 1 0 V	24100		1090	-3119	- 2687	.3387	1010	1964				01010	. 3644			
11	N/5	*117 *	.3781	0825.	2773		5172	• • • 5 0 •	. 4695	2965	. 4646	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.4967	• 4967	1.0045	1.0A9A	1.0984	1.1614	1.1593	1.6794	1.6486	1.7378	1.7481	1.7838	1 • 3 • 4 4	1005 • 1	140101	CI01.1	1.1766	1.1704			2.0869	3.3434	3-1414	3.6925	9190.0	1001		2177 5		×024 • 2	C . 5 11 5 1			
PLA	3/4/5	3.675	3.560	3.415	4 ° 4 1 7	3.441	4.059	514.0	4.125	3.535	4,157	4 8 8 5 E	3.937	2 ° 6 4 3	14,138	15.710	15.273	15.166	4 ° ° 2 4	7.644	424 4	1.3 4	4.572	4.027	3, 191	5°008				5 C C C C C C C C C C C C C C C C C C C		C 1 C 8 C 2	619-02	27.201	30.657	27.77	11-010			100 11	14.001	13.062	125.61			
5×4	M/W	1.010	2 • 657	1.127	4 ° 1 8 2	202.00	182	0.40	2.770	2 · 3 · 4	061 * 4	1 • 0 5 3	2.443	3.076	A .071	R . 5 3 4	A.596	A.156	2.528	652°	2.672	2.045	0.64.6	2 • 5 1 1	0 2 2 4 0	1 U V * C	21 - C	<<		300.0	2004	191		121	1.692	10.01	5000	101		14110			A . 1 .			
3 41	ar T	7	•	12	\$1	5	51	3	¢	2	9	e o	22	54	~	16	50	2 (t	1	«	~	¢	ŝ	54	7 0	•	c .	7	5	2	: t	a t				10	-			~			2			
► X X C X C X	ar I	0	1	e¢	12	0	ñ	0	3	c	2	•	ñ	~	•	2	-0	ñ	c	3	a C (~	0	ñ	0	3 0	e i	-	3 6	-	n d		,	r,	-1-			2	•	•	-		2			
7E97 F		¢	¢	ĸ	×.	c	9C (•	•	0	•	o	•	6	c 1	10	10	~1	12	12	~	5	¢.	-	5	2	-	5	=:	• •			7 7	17 1	77		n ar			21	<u>_</u>	2			
۳. ۲		.1830	.2256	2400	.2601	.2710	2995°	.3354	.3149	. 3243	. 3779	.3633	5158	.3286	.2127	7004	4160	9262	. 2557	. 2591	.1964	.1012	.1481	.157A	.1939	.1772	*960Z	1.7465	1.9178	. A 0 8 0	.7671	.5712	. 3988			.5120	9957	.5569	.2265	.1968	.1726	.1738	.1974	.1587	.1625	-1368
жS жР	M/S	.3753 .1830	4627 2256	u619 2400	.5074 .2601	.5278 .2710	• \$ \$01 ° 2995	.9673 .3354	.5512 .3149	.6186 .3243	.6479 .3779	.6069 .3633	.4273 .3158	.6045 .3286	.3737 .2127	7328 2047	4158 4160	1275 2926	.3446 .2557	1725 2591	.3123 .1964	4,2595 ,1612	.2593 .1481	2943 157A	.3244 .1939	.2806 .1772	\$937 \$9602	.9420 1.7465	.79A5 1.9178	• 7413 • A080	.7963 .7671	.7095 .5712	-2000 -3488	.4761 .4154		•5554 •5120 •053 •5420	9954 7505	.5269 .5569	.2461 .2265	0 2514 1968	. P527 .1726	.2432 .1738	.2516 .1974	.2093 .1587	.2064 .1625	.1500 .1368
1L KS KP	N/S H/S	.4446 .3753 .1830	5090 .4627 .2256	5667 4819 2400	.5591 .5074 .2601	.6198 .5278 .2710	•6726 •5301 °2995	.6534 .9673 .3354	.6697 .5512 .3149	.6771 .6186 .3243	erra	.6775 .6069 .3633	adra	.6805 .6045 .3286	.8424 .3737 .2127	8501 3328 2047	9122 4158 4160	.7475 .1275 .2926	. R111 . 3446 . 2557	.8340 .3725 .2591	.7>90 .3123 .1964	«6484 «2595 «1612	\$5406 \$2593 1481	\$\$A57 \$2943 \$157A	.6n79 .3244 .1939	•5313 •2806 •1772	\$\$459 \$5937 \$9602	• 8414 • 9420 1.7465	.8260 .79A5 1.9178	.7321 .7413 .A080	•8612 •7963 •7671	• 6999 • 7095 • 5712	1.0014 .5000 .3988	•9390 •4761 •4154		1.0200 .5554 .5120	0057° 1505° 4440°1	1.0051 .5269 .5569	1.2751 .2961 .2265	9034 "2514 1968	"Told "P527 "1726	* 7512 .2432 .1738	.6901 .2516 .1974	.6227 .2093 .1587	.6388 .2064 .1625	.5460 .1500 .1368
PLH TL KS KP	JIMIS NIS MIS	2.431 .4448 .3753 .1830	2.256 .5090 .4627 .2256	2 361 5667 4819 2400	2.149 .5591 .5074 .2601	2.287 .6198 .5278 .2710	2,246 .6726 .5301 .2995	1.948 .6534 .9673 .3354	2.127 .6697 .5512 .3149	2.075 .6771 .6186 .3243	1.925 .7275 .6479 .3779	1.865 .6775 .6069 .3633	2,225 .7028 .6273 .3158	2.071 .6805 .6045 .3286	4.054 .8424 .3737 .2127	4.152 .8501 .3328 .2047	2 241 9122 4158 4160	2.555 .7475 .1275 .2926	3.172 .R111 .3446 .2557	3,219 .8340 .3725 .2591	3.711 .7290 .3123 .1964	4.14P .6484 .2595 .1612	3,989 ,5906 ,2593 ,1481	3.710 .5A57 .2943 .157A	3.135 .6n79 .3244 .1939	P.999 .5313 .2806 .1772	\$89 \$5459 \$5937 \$9602	.482 .8414 .9420 1.7465	.431 .8260 .79A5 1.9178	.9n6 .7321 .7413 .A080	1.123 .8612 .7963 .7671	1.225 .6999 .7095 .5712	2.511 1.0014 .5000 .3988	2.245 .9390 .4761 .4184			0057 LC05 0440 1 105 2	1. A05 1.0051 .5269 .5569	5.631 1.2751 .2961 .2265	5.048 .9934 .7514 .1968	4.066 .7018 .P527 .1726	4.321 .7512 .2432 .1738	3.496 .6901 .2516 .1974	3.925 .6227 .2093 .1587	3.932 .6588 .2064 .1625	4.055 .5560 .1560 .1368
SXY PLH IL KS KP	N/H J/H/S N/S	1.185 2.431 .4448 .3753 .1830	1.100 2.25h .5090 .4627 .225b	176 2.361 5667 4819 2400	1.102 2.149 .5591 15074 .7601	i=174 2.287 = 6198 .5278 .2710	1.269 2.246 .6726 .5301 .7995	i.152 1.948 .6534 .9673 .3354	1.215 P.127 .6697 .5512 .3149	i.095 2.075 .6771 .6186 .3243	i.123 1.925 .7275 .6479 .3779	i.116 1.865 .6775 .6069 .3633	i.120 2.25 .758 .673 .3158	1.126 2.071 .6R05 .6045 .3286	5.30A 4.054 .8424 .3737 .2127	2.554 4.152 .8501 .3328 .2047	0410 4158 4158 4160	2.283 2.555 .7475 .7275 .2926	2.056 3.172 .8111 .3946 .2557	2.239 3.219 .8340 .3725 .2591	2.335 3.711 .7290 .3123 .1964	j.576 4.14A .6484 .2595 .1612	2.278 3.989 .5906 .2593 .1481	j.990 %.710 .5A57 .2943 157A	i.874 3.135 .6079 .3244 .1939	1.893 2.999 .5313 .2806 .1772		egs are entred and are entred and a construction and a construction and a construction and a construction and a	1.034 .431 .0260 .79R5 1.9178	.988 .9n6 .7321 .7413 .A080	1.082 1.123 .841P .7963 .7671	.987 1.225 .6999 .7095 .5712	2.003 2.511 1.0014 .5000 .3988	1.472 2.245 .9390 .4761 .4154			00CH 1COS 0440"1 105"2 CC1"2	1.408 1.805 1.0051 .5269 .5569	4.307 5.631 1.2751 .2961 .2265	3.951 5.048 .9934 .2514 .1968	2.777 4.066 .7018 .P527 .1726	1.089 4.321 .7512 .2432 .1738	2.742 3.496 .6901 .2516 .1974	2.975 3.925 .6227 .2093 .1587	1.095 3.932 .6388 .2064 .1625	1.059 4.065 5560 1500 1168
TIME SXY PLH IL KS KP	H N/H J/H/S N/S	1 1.185 2.431 .4448 .3753 .1830	2 1.100 2.256 .5090 .4627 .2256	5 1.176 2.361 5667 4619 2400	9 i.102 2.149 .5591 :5074 .2601	14 i=174 2.287 =6198 5278 2710	20 1.269 2.246 .6726 .5301 .7995	25 1.152 1.948 .6534 .9573 .3354	6 1.215 P.127 .6697 .5512 .3149	9 i.095 2.075 .6771 .6186 .3243	14 1.123 1.925 .7275 .6479 .3779	20 i.116 1.865 .6775 .6069 .3633	25 1.120 2.225 .7028 .6273 .3158	30 i.126 2.071 .6805 .6045 .3286	u >.30A u.054 .8624 .3737 .2127	8 5.554 4.152 .8501 .1328 .2047	0410 4158 4150 4158 4160	16 5.283 2.555 .7475 .1275 .2926	20 2.056 3.172 .8111 .3946 .2557	24 2.239 3.219 8340 3725 2591	4 2.335 3.711 .7290 .3123 .1964	A 2.576 4.14A .6484 .2595 .1612	12 2.278 3.989 .5906 .2593 .1481	16 i.990 %.710 .5A57 .2943 157A	Zn i.874 3.135 .6n79 .3244 .1939	24 7.893 2.999 .5113 .2806 .1772	u 。953 。589 。5459 。5937 。9602	A .893 .482 .8414 .9420 1.7465	12 1.034 .431 .5260 .79A5 1.9178	16 .988 .9n6 .7321 .7413 .A080	20 1.082 1.123 .861P .7963 .7671	24 .987 1.225 .6999 .7095 .5712	4 2.003 2.511 1.0014 .5000 .3988	5 1.472 2.245 .9390 .4761 .4154		16 1. 1. 1. 993 1.0206 .5554 .5120	9057" 1505° EAUOI 100°2 551°5 02	24 1.908 1.805 1.0051 .5269 .5569	2 4+307 5+631 1+2751 +2961 +2265	u 3.951 5.048 .9934 .2514 .1968	6 2.777 4.066 .7018 .2527 .1726	B 1.089 4.321 .7512 .2432 .1738	12 2.742 3.496 .6901 .2516 .1974	16 2.975 3.925 .6227 .2093 .1587	20 1.095 3.932 .6388 .2064 .1625	24 1.069 4.065 .5560 .1568 .1568
RUNTIME SXY PLH IL KS KP		0 i i i85 2.431 .4448 .3753 .1830	1 2 1.100 2.256 .5090 .4627 .2256	2 5 1.176 2.361 5667 4819 2400	5 9 i.102 2.149 .5591 :5074 .7601	9 14 i=174 2.287 .6198 .5278 .2710	14 20 1.269 2.746 .6726 .5101 .7995	j0 25 j.152 1.948 .6534 .9673 .3354	0 6 1.215 2.127 .6697 .5512 .3149	6 9 3.095 2.075 .6771 .6186 .3243	9 14 i.123 i.925 .7275 .6479 .3779	44 20 1.116 1.865 .675 .6069 .3633	50 25 1.120 2.225 .7028 .6273 .3158	25 30 1.126 2.071 .6805 .6045 .3286	0 4 >.30A 4.054 .8624 .3737 .2127	u n n n 155 0560 1580 18601 1828 2001	8 12 5.242 2.241 9422 4158 4160	2 16 5-283 2-555 7475 1275 2926	10 20 2.056 3.172 .011 .3446 .2557	j0 24 j_239 3,219 .8340 .3725 .2591	0 4 2.335 3.711 .7290 .3123 .1964	u a 2,∘576 4,∘14R ₀6484 ₀2595 ₀1612	A 12 2.278 3.989 .5906 .2593 .1481	12 15 1. 1.990 3.710 .5A57 .2943 .157A	j6 20 j.874 3.135 .6079 .3244 .1939	50 24 7.893 7.999 .5313 .2806 .1772	0 // \$953 \$589 \$5459 \$5937 \$9602	u A 693 ,082 ,8010 ,9420 1,7465	8 12 1.034 .431 .8260 .79A5 1.9178	j2 16 .988 .9n6 .7321 .7413 .A080	16 20 1.082 1.123 .861P .7963 .7671	20 24 .987 1.225 .6999 .7095 .5712		a a 1.472 2.245 .9390 .4761 .4164			9007 1000° uture 1000° cciec 02 0	20 24 1.908 1.805 1.0051 .5269 .5569	0 2 4.307 5.631 1.2751 .2961 .2265	2 u 3.951 5.048 ,9934 ,7514 ,1968	4 6 2.777 4.066 .7018 .2527 .1726	6 8 4.089 4.321 .7512 .2432 .1738	8 12 2.742 3.496 .6901 .2516 .1974	12 16 2.975 3.925 .6227 .2093 .1587	je 20 1.095 3.932 .6388 .2064 .1625	⊃0 24 t.089 t.065 t5tb0 .1500 .1568

<pre>Vitale, Philip Witale, Philip Movuble-Ded laboratory experiments comparing radiation strees and Movuble-Ded laboratory experiments comparing radiation strees and mencry flux factors as predictors of longshore transport rares/by Philip VitaleFort Balvoir, Va.: uvailable from NTIS, 1981. (194) p.: 111.: 27 cm(Miscellaneous report / U.S. Aruy Coastal Engineering Research Center; no. 81-4) (2000 Filte) Phylineering Research Center; no. 81-4) Cover title. (2001 Filte) Mibilography: p. 46. Mibilography: p</pre>	<pre>Vitale, Philip Workhle-bed laboratory experiments comparing radiation stress and Movukhle-bed laboratory experiments companing radiation stress and mencry flux factors as predictors of longshore transport rate / by Philip VitaleFort Relvoir, Va.: U.S. Army Coastal Engineering Research Genter; jornelid, Va.: : available from NTIS, 1981. [941] p.: :111.; 27 cmC'Miscellaneous report / U.S. Army Coastal Engineering Research Genter; no. 81-4) Cover tille. "Arril 1991." Bhillography: p. 45. Three-dimensional movable-bed laboratory test results are used inflarity prelate the longshore sediment transport rate to the radiation stress and the longshore entergy flux factor. Both cor- relate equally well with the longshore transport rate in the suff similarity prameter also shows a strong influence on the rate. . Hydraulic models. 2. Movable beds. 3. Sediment transport. 4. Maye entergy. 1. Title. 1. Series in Miscellaneous report. (Costal Engineering Research Center (U.S.); no. 81-4. TC203. USBIAR.</pre>
<pre>Vitale, Philp Movable-bed laboratory experiments comparing radiation stress and Movable-bed laboratory experiments comparing radiation stress and energy flux factor Belvoir, Va.: U.S. Army Constal Engineering Remarkshows and the stress of the stress of the stress of the philip VitaleFort Belvoir, Va.: U.S. Army Constal Engineering Remarkshows and the stress of the stress of the stress of the [941] p.: 111.: 1, TomOMiscellaneous report / U.S. Army Constal [Bibliography: p. 46. Marking Research Center; no. 81-4) Cover title. "April 1981." Bibliography: p. 46. Three-dimensional movable-bed laboratory test results are used Three-dimensional movable-bed laboratory test results are used to empirically relate the longshore sediment transport rate to the relate equally well with the longshore restry flux factor. Both cor- relate equally well. With the longshore restry flux factor. Both cor- relate equally wells. 2. Notable beds. 3. Sediment transport. 1. Hydraults models. 2. Notable beds. 3. Streng flux factor. Both cor- relate equally wells. 2. Notable beds. 3. Streng flux factor. 1. Hydraults models. 2. Notable beds. 3. Streng flux factor. Stress flux flux flux flux flux flux factor. (Coastal Engineering Research Center (U.S.)); no. 81-4. 70203 .USBImr (D.S.) and Bell (S.)); no. 81-4. 627</pre>	<pre>Vitale, Philip Novable-bed laboratory experiments comparing radiation stress and movable-bed laboratory experiments comparing radiation stress and energy flux factor as predictors of longshore transport rate / by Philip vitalePort Enloyit, Va.: U.S. Army Obstal Engineering Research Genter ; Springfreid, Va.: available from NTIS, 1981. [941] p.: iill.: ; 27 cmCMMscellaneous report / U.S. Army Coastal Engineering Research Center ; no. 81-4) Cover tills Over tills Over tills Cover tills Three-dimensional movable-bed laboratory test results are used to empirically relate the longshore energy flux factor. Both cor- relate equally well with the longshore energy fulue factor. Both cor- relate equally well with the longshore energy fillence on the rate. 1. Hydraully maneter also shows a strong influence on the rate. 1. Hydraully models. 2. Movable beds. 3. Sediment transport similarity parameter also shows a strong influence on the rate. 1. Hydraully mering Research Center (U.S.); no. 81-4. (Coastal Engineering Research Center (U.S.); no. 81-4. 10203</pre>

