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Abstract of Dissertation Presented to the Graduate Council
of the University of Florida in Partial Fulfillment of the

Requirements for the Degree of Doctor of Philosophy

THE MULTIVARIATE ONE-WAY CLASSIFICATION
MODEL WITH RANDOM EFFECTS

By

James Robert Schott

August 1981

Chairman: Dr. John G. Saw
Major Department: Statistics

A well-known model in univariate statistical analysis

is the one-way random effects model. In this paper we

investigate the multivariate generalization of this model,

that is, the multivariate one-way random effects model.

Two specific situations, regarding the structure of

the variance-covariance matrix of the random error vectors,

are considered. In the first and most general case, it is

only assumed that this variance-covariance matrix is sym-

metric and positive definite. In the second case, it is

assumed, in addition, that the variance-covariance matrix

is a scalar multiple of the identity matrix.

Maximum likelihood estimates are obtained and the

likelihood ratio test for a hypothesis test on the rank

of the variance-covariance matrix of the random effect

vectors is derived. Properties of the likelihood ratio



test are investigated for the general case, while for the

second case an alternative test is developed and its prop-

erties are investigated. In each case a sequential proce-

dure for determining the rank of the variance-covariance

matrix of the random effect vectors is presented.



CHAPTER 1

INTRODUCTION

1. 1 The Random Effects Model, Scalar Case

Suppose a physician is considering administering some

particular blood test to his patients as a part of their

physical examination. He suspects that the test results

vary with the presence and severity of a particular path-

ological condition. In order to examine variability in

the results of the blood test, the physician chooses to

administer the blood test n times to each of g patients.

This results in the observations x. .: i = l,2,...,g;

j = 1,2, . . . ,n.

A suitable model to explain the different values of

x..: i = 1,2,. . . ,g; j = 1,2, ... ,n would be

x
ij

= y + a
i

+ 2
ij- d.1.1)

Here u is an overall mean, a. is an effect due to the i

patient, and z. . represents a random error due to the

measuring process. We assume that z..: i = l,2,...,g;

j = l,2,...,n are independent and have a normal distribu-

2
tion with mean zero and variance a .

z



If the physician is interested in using the blood test

as a diagnostic tool, he will certainly be interested to know

whether a major source of variation in the results of the

blood test is due to variation between the patients. Since

the physician will administer the test to an unlimited num-

ber of patients in the future, we should properly regard the

g patients involved as a sample from the entire population

of patients. The patient effects, a.: i = 1,2,. . . ,g, now

have the role of random variables, and (1.1.1) is a random

effects model. Again we assume that a.: i = 1,2,. ..,g are

independent and have a normal distribution with mean zero

2
and variance a . Thus, from our model (1.1.1) we deduce that

a

x. . has a normal distribution with mean \i and variance

2 L
2

a + a .

a z

The variation in the results of the blood test is

2 2
governed by a + a . The portion of this attributable to

2 2 2
the patients is, of course, a / (°

a
+0

z
) > and the physician

would like to know whether this or, correspondingly,

9 ? 2 2
a /a is sizeable. If a /a is sufficiently large, he would
a z a z

choose to investigate the possible use of this test as a

means of detecting the pathological condition; otherwise

he would find the blood test essentially useless as a diag-

nostic tool. Hence, the physician might be interested in

2
testing the hypothesis H

Q
: a =0 against the hypothesis

H, : a
2

> 0.
1 a



In order to derive the likelihood ratio test for testing

the hypothesis H against H-, , we first need to obtain the

2 2
likelihood function of (u,a , a ). This is most easily done

z a

by making a transformation. Let C be an orthogonal matrix,

with the element in the i row and the j column denoted by

c • , such that c, . = l//n : j = 1,2, ... ,n. Since C is

orthogonal

,

n __ n
I c, .=/n E c, . cv . = for k = 2 ,3 , . . . ,n.

i=l ^ -i=l ^ 3
D x D -1

(1.1.2)

Consider the orthogonal transformation

^il^i2 W =C(x
il'

X
i2

x
in)'- (1 - 1 ' 3)

Upon replacing x . . by the right side of (1.1.1) and using

(1.1.2), we observe that

n _ __ _

il
k=1

IK i.

n

Yij
=

kl ±

C
Jk

Z
ik

for j
= 2 ' 3 '"" n '

n
where x. = Z x. /n. Thus,

i.
k=1

IK

Cov(y
i
.,y ik

) = for j # k,

2v (Y,-i) = a f°r 3 = 2,3,. ..,n,

and {x. ,y. - ,y .-,,... ,y . }. , is a set of gn mutually
l. J i2 J i3 ,Jm i=l 3 J

independent random variables, where x. has a normal dis-

2 2
tribution with mean u and variance a /n + a , and y.

.

z a J l j



has a normal distribution with mean zero and variance a
z

n n
2 " 2Note also from (1.1.3) that Z (x..-x. ) = I y .

j=l 1D X
-

j = 2 ^
and

denote this quantity by u . . We can now write the joint

density function of y . „ ,y .-,.... ,y . asJ J i2 J i3 '
' 1 in

n
f ^i2^i3 ^in ;a

z
2) -

.

H (2^) "^ expf-y2. /2 a2]

= (2.0*)-"*"- 1
' exp[- ly 2

.,2o
2

]
z . „n z

3=2 -

i ? 2 2. , 2,= g( .^/i j
;a

z
)

= 9<W'
so that from the set {x. ,y . „ ,y ...... ,y . }, (x. ,u.)

l. i2 J i3 'in i. i

2
is sufficient for (u,a ). Thus, we may assume that we have,

— 2independently, u. and x. for i = l,2,...,n, where u./a11. l z

has a chi-square distribution with v = n-1 degrees of

freedom, and x. has a normal distribution with mean y and

2 2variance a /n + a . Note that with
z a

g _
x = Z x. /g,

i=l
1 *

g - 2
g - - 2 - 2

I (x -y) = Z (x -x )

z
+ g(x -y) .

i=l " i=l '

2 2 2Then putting a = a /n+a , we can write the joint density

function of x n ,x„ , . . . ,x as
1 . Z . g.



— — — 2 2 —3? — 2 2
f(x, ,x , ...,x ;y,a ) = II (2iTa )

2 exp[-(x -y) /2a ]

i. ^. g. i=1
i-

= (2Tra
2

)

_35g
exp[- I (x . -y)

2
/2a

2
]

i=l
1 -

= (2vo
2 )~hg exp[-( E (x -x )

2
+g (x -y)

2
)/2a

2
]

i=1
x. ..

= g(x ,v;y,a ) ,

g - - 2
where v = n E (x . -x ) . Hence, from the set

i=l
X

* '•

— — — — 2 2
{x ,x

2
, . . . ,x }, (x ,v) is sufficient for (y,a /n + a ).

Also, if we let c denote a constant, we can write the joint

density function of u, ,u-,. .. ,u as

2 g
f (u

n
,u , . . . ,u^;a ) = II c exp (-u./2a

i
)u.

2V ±
/ (a^)

' i=l

2, %v-l . , 2,33V

= (a
2)^gv

exp(- E u./2a
2

) E c u^" 1

i=l
1 z

i-1
L

2
= g(u;a

z
)h(u

1
,u

2
, . . . ,u )

,

g
where u = E u.. Thus, from the set {u, ,u 9 ,...,u } , u is

i=1 1 L z q

2sufficient for a .

z

We may now assume that we have, independently, x ,

u, and v, where x has a normal distribution with mean

2 2 2
y and variance (a +no ) /gn; u/a has a chi-sguare distri-

2 2bution with e = g(n-l) degrees of freedom, and v/(a +naa )

has a chi-square distribution with h = g-1 degrees of

2 2freedom. The likelihood function of lu.a ,0 ) can be
z a

expressed as



_ exp[-(x -y) gn/2 (a
z
+na

a ) ] u 2 exp[-u/2o
z

]

f(x ,u,v) =
"-J- 2 pj

£-

(2tt (o^+nap /gn) 2
(2a^)

2=
r fte)

^h-1 r ,_, . 2
,

2. ,

v exp[-v/2(a +na )]

(2(o
2
+no*)) hh

T(hh)
z a

2 2 2
Let the set u> = { (o ,o ) : o = 0} and the set

a z a
2 2 2

fi = {(a ,a ) : a > 0}. We seek the maximum likelihood
or z a

2 2
estimators, u and d , of y and a when the parameters

' M
(x) ZO)

P
Z r

are restricted to lie within to , and the maximum likelihood

a 2 - 2 2 2
estimators, y„ , o^, and a^, of y, a , and a

&

when the parameters are restricted to lie within £2.

In to a =0 and
a

_ exp[-(x -y) gn/2a ] u exp[-u/2a ]

fz \ • • z z
(x ,u,v) =

(2vo
2
Jqn)

h (2aJ)W(%e)

Jjh-1
r /o~ 2

iv exp[-v/2a ]

(2a
2

z
)

Hh
T (hh)

so that the logarithm of the likelihood function, omitting

a function of the observations, is

(X -'" U)2gn u+v < e+h+1
> in o\ (1.1,4)

o„ 2 o„ 2 2 z
2a 2a

z z

2
Differentiating (1.1.4) with respect to y and a , we

obtain, respectively, the equations

(x..-y )gn (x -y) gn+u+v -+h+1
2

U ' _. 2.2 , 2
a
2

2(a
z

) 2a
z



which yield the maximum likelihood solutions

y = x ,

a
2

= (u+v) / (e+h+1)

.

zoo

In Q the logarithm of the likelihood function, omitting

a function of the observations, is

(^.. _y)2gn u e 2 v (h+1) „ , 2 M 2,
" - -~ £n a ~ ^— - £n (a +na ) .

0/ 2 2. -2 2 z 0/ 2^ 2, 2
l

z a
2 (a +na 2a 2 (a +no )

z a z z a

(1.1.5)

2 2
Differentiation of (1.1.5) with respect to y , a , and a

yields, respectively,

(x -y)gn

/ 2^ 2,
(o +na )

z a

= 0,

n((x_-u) 2
gn+v)

n(h+1) _
2 ? ? ~ 7 2 '

2 (a +na ) 2(a +na )
z a z a

(x_-y) 2
gn+v

u e (h+1) = q

2(a
2
+no

2
)

2
2 (a

2
)

2
2a

2
2 (a

2
+na

2
)

z a z z z a

2 2Solving these equations for \i , o , and a , we obtain the

~ ~2
maximal solution of the likelihood function in fl, (y/O ,

a
a ) , given by

y = x ,

.2 ,

a = u/e = u + ,
z *

a
2

= (v/(h+l)-u/e). /n = (vruj/n,



where u* = u/e and v* = v/ (h+1) . Since we insist that

a „ be greater than or equal to zero, the solution above

is the maximum likelihood solution only if v*-u* > 0.

Suppose, however, that v* < u*. Clearly (1.1.5) is still

maximized when y = x , so that we need to minimize

^r + e In a
2

+ —,
V

, + (h+1) k(aW)
a
2 z

(a
2
+na

2
)

Z

z z a

2 2
subject to the contraints a > and a > 0. Equivalently

,

we consider the problem of minimizing

ip(x,t) = u/x + e £n x + v/t + (h+1) £n t

subject to the constraint t>x>0 . For fixed x i|j(x,t) is

concave upward in t with its absolute minimum at t = v^.

For each x i>(x,t) is, therefore, minimized with respect to

t > x when

v* if v* > x,

'

,x if Vj, < x,

Thus, ijj(x,t) is minimized over {(t,x): t > x > 0} by

setting

t = v* and x = u^ if v* > u^

,

t = x = (u+v) / (e+h+1) if v* < u A .

Hence, for the maximum likelihood estimators when the

parameters are restricted to be within Q, we obtain

2
9..«

=
<v *-u *) /n '



if v* > u* , and

a
2
n = (u+v) /(e+h+1)

,

a
2
n = 0,

if v* < u*.

Substituting the maximum likelihood estimates into

the likelihood function, we see that in oo

u
^e-l

v
Hh-l

exp[ _ (e+h+1) /2]
»8* f(«..^v) - ———^-,%(e+h+ l, %

2
^ (e+h+1)'

'e+h+1'

and in fi

u
^e-l

v
%h-l exp[ _( e+h+1 )/ 2 ]

max f (x , u,v)=

nwrwuH,^?^ 11 ,^*^^!

max f (x ,u,v)

if v* > u*,

if v + < u+.

The likelihood ratio, X, is

^(u/e)^(v/(h+l))^ h+1)

A =
f (x ,u,v) /

[ (u+v) /(e+h+1)] h (e+h+1)

max f (x ,u,v)

if v + > ui(

if v t < u ;

Now putting w = u/ (u+v) and noting that

v* i u* , if and only if (iff)

h+1 " e '

u+v > ,1 ,
1 .

- u(- + rr-rr) ,h+1 'e h+1'

iff

iff

e
> JSL-

e+h+1 u+v
= w,
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we can rewrite the likelihood ratio

r(e+h+ l)*
(e+h+1)

he n ^(h+1) .- ,A— Wv^n v W (1-W) if W <

A =

ete (h+1)
%(h+ l) - «— " - * e+h+ l

1 if w >

v_ e+h+l

Since A is an increasing function of w, and H is rejected

for small values of A, it follows that H is rejected for

small values of w or large values of 1/w. Now

l = H±Z =1 +
v = 1 +

h
(

Wh
w u u e u/e

so the likelihood ratio test rejects H for ev/hu large.

2Recall that u/o has a chi-square distribution with

2 2
e degrees of freedom, and v/(a +na ) has a chi-square dis-

tribution with h degrees of freedom, independent of u.

2 2 2Hence, the quantity a ev/ (a +na ) hu has an F distribution
z z a

with h and e degrees of freedom. If we let F(h,e,a) denote

the constant for which P(F(h,e) > F(h,e,a)) = a where F(h,e)

has an F distribution with h and e degrees of freedom, then

we will reject H if ev/hu > F(h,e,a). The power function

2 2of this test is a function of 9 = a /a and is given by

6(6) = P(F(h,e) > F(h,e,a) /(l+n6) ) .

Although the analysis which we have just outlined is,

by now, quite standard to any graduate level course in design

and analysis, we have reproduced it since it motivates the

more general problem to be described in the next section.
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Indeed the situation we wish to consider contains the one-

way random effects model as a special case to which we can

return on occasion to check our work.

1. 2 The Multivariate Random Effects Model

Suppose a physician is considering administering a bat-

tery of m distinct types of blood tests to his patients as

a part of their physical examination. He believes that,

based on the results of these tests, he may be able to detect

any one of several particular pathological conditions. In

order to examine variability in the results of the blood

tests, the physician chooses to administer the battery of

blood tests n times to each of g patients. This results in

the observations x .
.
(mxl) : i = 1,2,. . . ,g; j = 1,2,. . . ,n.

A suitable model to explain the different values of

x..: i = 1,2,. ..,g; j = 1,2,. ..,n would be

2£ij
= H + «i + lij- (1.2.1)

Here jj(mxl) is an overall mean, a. (mxl) is an effect due to

the i patient, and z. . (mxl) represents a vector of random

errors due to the measuring process. We assume that

z...: i = l,2,...,g; j = 1,2,.. . ,n are independent and have an

m-variate normal distribution with mean _0 and variance-covar-

iance matrix E

.

Since the physician will administer the tests to an

unlimited number of patients in the future, we should prop-

erly regard the g patients involved as a sample from the
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entire population of patients. The patient effects,

a.: i = 1,2,. ..,g, now have the role of random vectors, and

(1.2.1) is a multivariate random effects model. We will

assume that a-: i = 1,2, ... ,q are independent and have an

m-variate normal distribution with mean 0^ and variance-

covariance matrix A. Hence, from our model (1.2.1) we see

that x. . has an m-variate normal distribution with mean u
-ID

and variance-covariance matrix A + I

.

While there are m different blood tests, it is believed

that there are some groups of tests for which the tests within

a group vary quite strongly together. In other words, the

data from some of the tests are highly correlated. For this

reason the number of sources of variation between the patients,

which we will denote by p, may be less than the number of tests,

m. That is, the rank of the variance-covariance matrix A is

p where p < m. Since A is symmetric, nonnegative definite,

and of rank p, there exists a matrix L (mxp) such that A = LL '

.

Clearly L is not unique since if A = LL ' and P(pxP) is such

that PP ' = I, then A = L*L* where L* = LP. This enables us to

rewrite (1.2.1) as

x. .
= y + Lf . + z.

.

,

(1.2.2)
-in - -x -i]

where f. (pxl) : i = 1,2,..., g are independently distributed,

having a p-variate normal distribution with mean _0 and

variance-covariance matrix equal to the identity matrix.
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If the physician is interested in using the blood tests

as a diagnostic tool, he will certainly be interested in deter-

mining the value p, since the p sources of variation may

correspond to p different pathological disorders. So of

particular interest to the physician is a test of the hypoth-

(s)esis H : the rank of the matrix LL ' < s-1 against the
o r

(s)hypothesis H, : the rank of the matrix LL ' = s. With such a

test procedure he could develop a sequential test procedure

for determining the rank of LL ' . He would first test H
o

against H, , and if he rejects H , he would stop and take

the rank of LL ' to be m; otherwise, he would proceed to test

H against H, . The procedure continues until either

(s)
some hypothesis H is rejected, in which case he then takes

the rank of LL ' to be s, or the hypothesis H is accepted,

in which case he would conclude that there is no significant

variation between patients.

In this paper we investigate the multivariate one-way

classification model with random effects, given by (1.2.2).

Two specific cases, regarding the structure of the variance-

covariance matrix Z, will be considered. In the first and

most general case we will assume no more than that I is sym-

metric and positive definite. In the second case we will

assume that the vector of random errors, z. ., is such that

its components are independent and have the same variance.

That is, we assume that £ is equal to some constant multiple

of the identity matrix. In each case we develop a test
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(s)procedure for testing the hypothesis H : the rank of

(s)LL ' < s-1 against the hypothesis H, : the rank of LL ' = s.

In addition, we investigate some of the properties of these

test procedures and present a numerical example to illustrate

the use of these procedures.

1. 3 Notation

The following notation will be used whenever convenient:

Notation Interpretation

(A)

.

row i of the matrix A

(A) column j of the matrix A

(A) .

.

the element in row i and column j

of the matrix A

a. . the element in row i and column j

of the matrix A

A the inverse of the matrix A

A

'

the transpose of the matrix A

|a| the determinant of the matrix A

tr A the trace of the matrix A

dg (A) the diagonal matrix which has as its

diagonal elements the diagonal

elements of A

diag (a, ,a
2

, . . .
,a ) the diagonal matrix which has a,,

ch. (A) the i largest latent root of the

matrix A
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Notation Interpretation

rank (A) the rank of the matrix A

I the m x m identity matrixm J

I the identity matrix (used when the

order of the matrix is obvious)

(0) the matrix which has all of its

elements equal to zero

x a vector

x. the i element of the vector x

_0 the vector which has all of its

elements equal to zero

E (x) the expected value of x

V(x) the variance of x

Cov(x,y) the covariance of x and y

P (A) the probability of event A

P(A|B) the probability of event A given

event B

r (x) the gamma function

x > x x converges to x in distribution
n n ^

a > a convergence of a sequence of constants

exp(x) Euler's constant, "e," raised to the

x power

£ is contained in

is distributed as

2
N(y,o ) the normal distribution with mean

u and variance a
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Notation Interpretation

N (y,E) the m-variate normal distribution with
m —

mean u_ and variance-covariance matrix Z

2
X the central chi-square distribution with

v degrees of freedom

V
l

F the central F distribution with v. numer-
V
2

1

ator degrees of freedom and v_ denomina-

tor degrees of freedom

W (Z.v.O) the central Wishart distribution with
m

variance-covariance matrix E and degrees

of freedom v

Jones [1973] the reference authored by Jones and

published in 1973

Jones [1973:1] page 1 of the reference authored by Jones

and published in 1973



CHAPTER 2

MAXIMIZATION OF THE LIKELIHOOD FUNCTION
FOR GENERAL E

2. 1 The Likelihood Function

Suppose the vectors x. . (mxl) : i = 1,2,... ,g; j = 1,2,

. . . ,n can be modeled by

2ij
= )L + Lli + Zj.j' (2.1.1)

wherein y(mxl) is a fixed but unknown vector, L (mxp) is

a fixed but unknown matrix, f. - N (0,1): i = 1, 2,...,g,

and z. . ~ N (0,£) : i = 1,2, . . . ,g; j = 1,2, ... ,n. We assume

that the set of random vectors { f_, , f _ , . . . , f ,
_z^ , . . . ,

_z }

are mutually independent. Thus, x. . ~ N (y,V) with V =

LL ' + Z. However, for any orthogonal matrix P (pxp) , V =

LL ' + Z = LP (LP) ' + Z so that L is not unique whereas LL

'

is unique. The purpose of this section is to derive the like-

lihood function for y_, LL ' , and E. Although x. . and x^ are

independent for all (j,£) when i # k, x. . and x.„ are not

independent even when j ^ £ , since Cov (x .

.
,x. . ) = LL'(Jt^).

Thus, the likelihood function is not simply the product of

the density functions of the x. .'s. A transformation of the

x. .'s will expedite the derivation of the likelihood function.
-ID

17
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Consider the Helmert transformation (see, for example,

Kendall and Stuart [1963:250]) given below:

£il
=

^i.
+ (2 * 1)_

^il +
( 3

* 2) "^i2 + *" + <n < n- 1))_^iv'

^i2
=

Hi. " (
2,1 )~^il +

( 3 * 2 )"^i 2
+ •** + (n(n-l))"^

iv ,

x
i3

= x
±

- 2(3-2)~^
i2 + •'• + (n(n-l))" 2

Yiv ,

x. = x. - (n-1) (n(n-l)) V ,

—in —l. 1V

where v = n-1. It will be helpful to note that the above

equations imply the following:

*
im

= n~\i + n~\
2

+ '•• + n" -in'

*il
= 2~%1 ~ 2~%2'

Yi2
= (3-2)

_Js
x
i]L

+ (3.2)
_is

x
i2

- 2(3-2)
_J5

x
i3 ,

y. = (n(n-l)) \ . . + ••• + (n(n-l)) \. n , - (n-1) (n (n-1) )

"
2x

.
,

In matrix formulation we have

<*ii
*
in

>' = H (Hi.'*ii ^iv }
''

and we note that, while not an orthogonal matrix, the columns

of H are orthogonal. The matrix H fails to be orthogonal

since H'H = diag (n, 1 , 1 , . . . , 1) . Observe that, upon replacing

x . . by the right side of (2.1.1), we have
-ID
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X. = y + Lf . + z . ,-l. - -1 —l.

'

*il = (2)"
i5

(z
il

-
li2 ),

Yi2 = (3.2)^(2.^2.2-22.3),

v. = {n(n-l)} 2
(z. ,+2. ,+. • .+z. ,-(n-l)z. ).iv —il —i2 —i,n-l —in

Thus

E^i.Zij) = (0) ,

E(X
i;j2iq )

= (0) if j # q '

E (y. .y.' .) = Z.

Hence, it follows that {x
i ,y_

i;L
' • • • 'Xiv^=l are a set of

gn mutually independent vectors with x. ~ N (y , (1/n) Z+LL '

)

:

i = 1,2,. ..,g and £„ - Nm (0,Z): i = 1,2,. ..,g; j = 1,2,. ..,n.

n _ __ v
Note also that Z (x. .-x. ) (x. .-x. )'= Z ¥_%! and denote

j=l J 1J x
" j=l X J 1

-)

this matrix by E.. We can now write the joint density function

of y .,,... ,y. as

f &il'..-rZiv '-Z) = ,n |2ttZ| S

exp[-^ij2 Zij]

-%v _ r ,. : ,_ ,
.-1

= |2ttZ| expf-ij Z (vf. Z y,,)]
j=l

i: 1 J

1, v ,

exp[-3s Z tr(W.Z v..)]
j=l X J x:i
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= |2ttZ|~
2V

exp[-h Z tr(E v.. y.'.)]

= |2ttZ|~
2V

exp[-Jj tr Z
-1

E.]

= g(E.;Z)

so that from the set {x. ,y . , ,y .„,... ,y . }, (E.,x. ) is

sufficient.

Thus, we may assume that we have, independently,

E. ~ W (Z, V, 0)
l m

x. - N (y, " Z + LL')—i . m — n

1 < i * g.

Note that

g_ _ g _ _ _ _
E <Xi "ii)

(2£i
-u)' = z

(2£i
-2 ) (^i

-x
>
'+g(* -Ji) (2£ -£) '/

i=l "
x

* i=l ' ...
g _

where x Z x. /g. Then putting W = (l/n)Z + LL ' ,

i=l
:Lm

we can write the joint density function of x n ,x„ , . . . ,x asJ — 1. —2 . g.

f(x
x

,x
2

,...,1 ?JJ,W) = JI \2-nW\~
ii
exp[-h(x

i
-yJ'W

-1^ -y ) ]

g. ^_^

,_j, g _-, _
=

|
2ttW| 2y exp[-^ Z tr ( (x. -y)' W (x. - y) ) ]

i=l
1 - 1 '

=
|
2ttW

I

2yexp[-^ Z tr(W (x. -y) (x. -y)'M
i=l 1 * x -

,-^a -1 ® — —
= |2ttW|

2y exp[-Js tr(W Z (x. y)(x. -y)' ) ]

i=l x * 1-
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= |2ttW| 2y exp[-lsg tr W (x -y) (x -y)'

-h tr(W
X

E (x. -x ) (x. -x )' )]

i=1
l. .. 1. ..

2ttW| 2yexp[-^g tr W (x -y) (x -y)'
]

_1 g _ _ _ _
x exp[-h tr W E (x. ~x ) (x . -x }' ]

i=l x
* • *

1 *

= g(x ,H;jj ,W) ,

g _ _ _ _
where H = n E (x . -x ) (x . -x )' . Hence, from the set

{ x, , . . . ,x } , (x ,H) is sufficient for (y , (1/n) E + LI/ ) .

Also if we let c denote a constant, we can write the joint

density function of E,,...,E as* 1' g

f(E
1

> E
q
;Z) = c n |E

i
|^

(v "m" 1) exp[-32 trfE^E..)]
g i=l

- c expf-J^ tr(E
_1

E E.)] II
|
E .

|

^ (V "m_1)

i=l
1

i=l
x

= g 1
(E;Z)g

2
(E

1
,E

2
, . . . ,E )

,

g
where E = E E.. Thus, from the set {E, , . . . ,E } , E is

i = l ^

sufficient for E.

Then we may assume that we have, independently,

^.. ~ Nm (^'gl{
(E+nLL' M '

E - W (Z,e,0) ,m

H~ W (Z+nLL' ,h,0) ,
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where e = g(n-l) and h = g-1. The problem is to estimate

y, £, and LL ' or, equivalently , to estimate jj, Z , and M where

M = nLL ' . Recall that L is not uniquely defined so that if

LL ' is an estimate of LL ' , then any L, such that LL ' = LL '

,

is an estimate of L. The likelihood function of (jj,Z,M) can

be expressed as

K (I,e)K (I,h) hlh ,. , , ,.

f(x ,E,H) =-2—^ r
m

^h rr IhI^^-^IeI^ 6-^ 1 )

— (E+M) r|l+MHn
|z|^

e
gn ' '

iii
x exp[-^(x -y) ' (— (E+M) )

_1
(x -y)-^tr (E^EJ-Jjtr (E+M)

_1
H] ,

where if
1
(I, v) » 2

lsmv
*
tal(m" 1) S r(%(v-j+l)).

The logarithm of the likelihood function, omitting a function

of the observations, is

-^trE~ E-2$e£n|Z| -%tr (E+M)
_1

K -*sh in
|
E+M'

- Jj £n|Z+M| - ^(x -y) '
( (1/gn) (E+M) )

-1
(x -y ) .

We seek the solution, (y ,E ,M) , which maximizes the equation

above, or equivalently, the solution which minimizes

tr E~ E-;-e£n|E| + tr (E+M)
_1

H+ (h+1) £n | E+M|

+ (x^-y) '( (1/gn) (E+M) )

_1
(x -y ) . (2.1.2)

Before we can minimize the above equation, we need some results

on differentiation. Let W (mxm) , X(raxm) , and Y (mxm) be sym-

metric matrices, and let z(mxl) and a(mxl) be vectors. The

proof of the first result can be found in Graybill [1969:267].
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Lemma 2.1.1

9£n|x| = 2X"
1

- dgtx"
1

)3X

Lemma 2.1.2 :

^n ljj+Y| = 2(X+Y)
_1

- dgUX+Y)
-1

).

Proof : Let V = X + Y. Then

3£n|x+YJ = 3£n|v[ = z z
3£n]v]

9v
pq = 3 An 1 V

|

3x. . 3x. . l<p<q<m 3v 3 X .

" " 3v .
'

13 i] r pq 13 13

so iMXiYi . MnM . 2v
-l.

dg(v-l, . 2(M) -l.ag((M) -l
|

Lemma 2.1.3 :

atr
ax

+Y)—" = - 2 (x+Y )~ lw
(x+Y )~ 1+dg((x+Y)" 1w(x+Y)" 1

)

.

Proof: Let V = X + Y. Note that

3v-
xv = (0) = (av^u +v-i/ 3V

3x.

.

vw ' \3x. .

J

v
3x.

.

iD V 137 V 13.

^u *.
9V"

1
TT-l f 3V V.-l

so that ^r- =
" v terr v

•

id V i:7

Then atrtx+Y)-^ = atrv^w = tr
/W^ w

3x. . 3x. . 3x.
ID 13 V l

= - tr V-M^-JV-^

mm , _ 3v
E Z (V

XWV i
) ^-£3

p=l q=l ^ 13
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- (v
1wv

X
) . .

- (v
1wv l

) . . if i 4 j

,

- (V
-1
WV

-1
) . . if i = j .

11 J

- 2 (V
1WV 1

) . . if i i- j,lj

- (V
_1
WV

-1
) . . if i = j.li

Hence ,
StrtX.Y)-^ = _ 2V

-1
WV

"1
+ dg(v

- 1
WV- 1

)

9X

Lemma 2.1.4

= -2(X+Y) ^(X+Y) 1
+ dg((X+Y) ^(X+Y)" 1

)

3 (z-a)' W(z-a)— -—=^^ = 2W(z-a)
dZ — —

9 (z-a)' W (z-a) „ /" m m
Proof: r = ^— Z I (z -a ) (z -a )w

3z
i

9z
i Vp=l q=l P P q q P<3

= I (z -a )w. + E (z -a )w .

q=l q q iq
p=l P q P1

= 2 E (z -a )w. =2 (W) . (z-a)

i q q iq i- —
3 (z-a)' W(z-a)

so that s = 2W(z-a) .

dZ — —

If we ignore the constraints that E is positive definite

and M is nonnegative definite and seek the stationary values

of (2.1.2) over all possible (_u,E,M), we find, upon taking the

partial derivatives of (2.1.2) with respect to E, M, and jj

and setting them equal to zero, that
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eE
_1

+(h+l) (E+M)"
1

- E~
1
EE

-1
-(Z+M)"

1H(Z+M)" 1

- gn(E+M)
-1

(x -y) (x -y)' (E+M)""
1

= (0),

(h+1) (E+M)"
1
- (E+M)~

1H(E+M)~
1-gn(E+M)~

1
(x -y ) (X -y)'(E+M)~

= (0) ,

gn(E+M)
-1

(x -y) = 0,

for which the solutions are

^
=

-. .

'

E = d/e)E,

M = (1/ (h+1) )H- (l/e)E.

Since M is a nonnegative definite matrix, its maximum likeli-

hood estimate must also be nonnegative definite, so the solu-

tions above are the maximum likelihood estimates only if

(1/ (h+1) ) H- (l/e)E is nonnegative definite. We find that,

while the solutions for _y_
and E are the natural unbiased esti-

mates, the solution for M is not. That is,

E(M) = (1/ (h+1) ) (hM-E) .

Hence, we see that E (M) is also not necessarily nonnegative

definite.

Suppose that instead of using the likelihood function

of (jj,E,M) we use the marginal likelihood function of (E,M).

Justification for this follows from the fact that (E,H) is

"marginally sufficient" for (E,M) or, in other words, (E,H)

is "sufficient for (E,M) in the absence of knowledge of jj."
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For a detailed description of the principle of marginal suffi-

ciency see Barnard [1963]. There is ample precedent for the

use of this principle in multivariate theory. For example,

Bartlett's test has two forms, one involving the sample size

and the other involving the degrees of freedom. The marginal

likelihood function of (E ,M) can be written

K (I,e)Km
(l,h) .(h.^D »,(e-m-l)

f (E,H) =
, h h

|H| |E|

|E+M| 2
\Z H

x exp[-h tr E
_1

E - h tr(E+M)
_1

H],

where

k_-(i,v) = 2^ ^ m ^-^
n r(Js(v-j+D),-i

The logarithm of the likelihood, omitting a function of the

observations, is

-h tr Z
-1

E -he ln\l\ - h tr(Z+M)
_1

H - hh £n|Z+M|.

We seek the solution, (E*,M*), which maximizes the above

equation, or equivalently , the solution which minimizes

tr E
-1

E + e £n
|
E

|

+ tr(E+M)
-1

H + h &n
|

Z+M
|

. (2.1.3)

Again if we ignore the constraints that E is positive defin-

ite and M is nonnegative definite and seek the stationary

values of (2.1.3) over all possible (E,M), we find,

upon taking the partial derivatives of (2.1.3) with respect to

E and M and setting them equal to zero, that

e E
x
+h(E+M) -E EE -(E+M) H(E+M) = (0),

h(E+M)
X
-(E+M)

1
H(E+M)

X
= (0) ,
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for which the solutions are

Z* = (l/e)E,

M* = (l/h)H-(l/e)E.

We see that these solutions are the natural unbiased estimates

of 1 and M, and thus E(M A ) = M is clearly nonnegative definite,

For this reason, we choose to continue our work with the mar-

ginal likelihood function of (£,M). Note that since M is non-

negative definite, the solutions above are the maximum likeli-

hood estimates only if (1/h) H- (1/e) E is also nonnegative

definite. In the next two sections we will derive maximum

likelihood estimates for £ and M which are valid for all

possible (E,H)

.

2 . 2 Some Lemmas

Consider the function

<J>(A,B;D,e,h) = e[tr A
_1

+ £n|A|] +h[tr B
_1

D +£n|B|],

where A, B, and D are m x m matrices. We assume that D is

diagonal with distinct, descending, positive diagonal elements;

that is, D = diag (d, ,d~, . . . ,d ) with d, > d~ > . . . > d > 0.
i z m i z m

We are interested in minimizing cf> (A,B;D , e ,h) subject to
s

(A,B) e C = {(A,B): A e P , B£P , B -A £ U P.}, where P.m m
-i=o 3 3

is the set of all symmetric, nonnegative definite matrices

of rank j. In this section it will be shown that the required

absolute minimum occurs when both A and B are diagonal.
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The proof of this result relies mainly on a lemma regard-

ing the stationary points of the function g(P) = tr PB P'D

where P (mxm) is orthogonal.

Lemma 2.2.1 : Consider g(P) = tr PXP 'D where P (mxm) is

such that PP ' = I , and X (mxm) and D (mxm) are both symmetric

and positive definite. It is assumed that D is diagonal with

distinct, descending, positive diagonal elements. Then the

stationary points of g(P) occur when PXP' is diagonal.

Further, the absolute maximum of g(P) is

m
max g(P) = E d.ch. (X) ,

P:PP'=I i=l
1

and the absolute minimum of g(P) is

m
min g(P) _ E d

m+1_i
ch

i

<

x )

•

P:PP'=I " i=l

Proof : Using the method of Lagrange multipliers, we look at

L(P,A) = tr PXP'D + tr A(PP'-I),

where A = A'. Let A be the matrix that has 1 in row i,
ij

column j , and O's elsewhere. Then

aL = tr (A . .XP'D+PXA . .D) + trA (A . .P '+PA . .

)

3p
i j

ID Di "" ID ' Di

= tr (DPXA . .+PXA . .D) + tr (PA . . A+APA . .

)

Di Di Di Di

= 2tr(A..DPX) + 2tr(A..AP)
Di Dl

= 2(DPX)
ii

+ 2(AP)
ij ,
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jp- = tr(A +A ) (PP'-I) = 2 (PP'-I).. if i * j,
ij J J J

•5-Y^- = tr A. . (PP'-I) = (PP'-I)...
3 A . . 11 iin

Thus, the stationary values of g(P) occur at the solutions to

2DPX + 2AP = 0,

(2.2.1)
PP ' = I.

From (2.2.1) it follows that

A = -DPXP '
,

so that A = A' implies that

DPXP' = PXP 'D,

or DY = YD, (2.2.2)

where Y = PXP '

.

Examining the (i,j) term on each side of (2.2.2), we see that

we must have d.y. .
= y. .d . . Since d. ^ d . : i ^ j, it follows

that y.. =0: i 4- j. Thus, Y = PXP' is diagonal. It is clear

then that the stationary values of tr PXP'D are given by the

set of values

m
_Z

i

d
t(i)

ch.(X),

where { t (1) , t (2) , . . . , t (m)} is a permutation of { 1,2 , . . . ,m }, the

set being formed over all such permutations. Further, the

absolute maximum of tr PXP'D is, clearly,

m
max tr PXP'D = E d. ch.(X),
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and the absolute minimum is, clearly,

m+l-i ch
i
(X)

m
min tr PXP'D = E d

P:PP'=I i=l

We will also need the following results, the first of

which can be found in Bellman [1970:117].

Lemma 2.2.2 : Let X(mxm) and Y (mxm) be symmetric matrices

with Y nonnegative definite. Then

ch. (X+Y) > ch. (X) for i = l,2,...,m.

If Y is positive definite, then

ch. (X+Y) > ch. (X) for i = l,2,...,m.

Lemma 2.2.3 : The function <j> (A,B; D , e ,h) has an absolute

minimum over the set of solutions C = { (A,B) : A e P , B e P ,
s m m

B - A e U P . } .

j=0 3

Proof : Since B is positive definite, it follows that B is

also positive definite, so that the diagonal elements of B~

are positive. Then we find that

-1 m -1 m -1 -1
tr B D = I (B ) . . d. > d E (B ) . .

= d tr B
. , n l m . , n mi=l i=l

m _ , m _

,

= d I ch (B
L

) = d £ (ch (B))m
i=1

i m . =1 i

since ch
.
(B ) = (ch ,, .(B))

-
. Hence, using the fact that

l m+l-i
m

for any matrix X (mxm) , tr X = £ ch. (X) and

m
|X|= II ch.(X), we see that

i=l x
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™ -1
(J)(A,B;D,e,h) > e Z ((ch. (A)) + £n(ch. (A)))

i=l

m -1
+ h I (d (ch. (B)) + ln(ch. (B) ) ) . (2.2.3)

. , m i i
i=l

From Lemma 2.2.2 we know that ch
.
(B-A) < ch. (B) , since A is

positive definite. Then C can be written

C = {(A,B): ch. (A) > 0: i = 1,2,. ..,m; cfcu (B) > 0:

i = l,2,...,m; < ch^ (B-A) < ch
i
(B) : i = l,2,...,s;

ch . (B-A) = : i = s+1 , . . . ,m; A = A ' , B = B ' } . The closure

,

~C , Of C is { (A,B) : ch . (A) > 0: i = l,2,...,m; ch. (B) > 0:
s s i i

i = 1,2,...,m; £ ch. (B-A) £ ch.(B): i = 1 , 2 , . . ., g; ch
i
(B-A)

= 0: i = s + l,...,m; A = A',B = B'}. Since
<J)
(A,B;D ,e,h) > 0,

it has an absolute minimum over C , since C is closed.

Note that from Lemma 2.2.2 if ch.(B-A) = ctu (B) for some i,

then it must be true that ch (A) =0, since A must then be
m

positive semidef inite. Thus, for every (A,B) £ c
s

~ c
s

it:

must be true that ch (A) = or ch (B) = or both. It then
m m

follows from (2.2.3) that cf> (A,B; D ,e ,h) = °° whenever (A,B)

£ ~C - C . Hence, <j>(A,B; D,e,h) has an absolute minimum

over C .

s

Lemma 2.2.4 : Suppose the function f (x) , minimized

over x e S, achieves a minimum at x = a. Let the set S,

be such that for any x £ S-S-. , there exists an x, £ S,

such that f(x ) < f (x) . Similarly, let the set s
2

be sucn

that for any x es~S
2 ' there exists an x„ e S- such that

f(x„) < f(x). Then it follows that a £ S
1

n S
2

.
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Proof : Suppose a f S^ Q S
2

. Then either a t S, or a t S
?

or both. However, if a t 5^, then a e 5-5-,, and there exists

no x
1

£ 5
1

such that f(x
;[

) < f (a) , since f is minimized at a.

This then is a contradiction, so it must be true that a e S, .

Similarly, if a £ S
2

, then a e S-S~, and there exists no

x
2

e 5
2

such that f(x
2

) < f (a) . This also is a contradiction,

so it must be true that a e S
2

. Hence, it follows that

a £ s
1

n S
2

.

In Lemma 2.2.3 it was seen that the function $ (A,B;D ,e,h)

has an absolute minimum over the set C . We will now show
s

that this absolute minimum will occur only when both A and B

are diagonal.

Lemma 2.2.5 : The absolute minimum of <}> (A,B; D, e ,h)

subject to (A,B) e C occurs when both A and B are diagonal.

We offer two proofs.

Proof 1 : Define the sets 5, and S
?

as follows:

5
1

= { (A,B) £ C
s

: A is diagonal},

5
2

= {(A, 3) e C
s

: B is diagonal}.

We want to show that if <j> (A,B;D ,e,h) achieves a minimum at

(A,B) = (A*,B A ), then (A*,BJ e s
±
AS.. Now with

A = D 2AD 2 and B = D 2BD 2

,

(A,B;D,e,h) - e[trA
_1

+£n|A[ ] + h [ trB
_1
D+£n | B |

]

= e[trA~ D~ +£n|A|] + h [trB
-1

+£n | B |
] +(e+h)£n|D|

= <t>(B,A;D~ ,h,e) + (e+h)£n|D|.
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_3^

Note that since D
2 is positive definite, (A,B) £ C

g
if and

only if (D~ 2AD~ 2 ,D~ 2BD~ 2
) = (A,B) e C . Thus, minimizing

4> (A,B;D,e,h) subject to (A,B) e C is equivalent to minimiz-

ing <MB,A;D ,h,e) subject to (A,B) e C . Moreover, if

(A*,BJ minimizes <MB,A;D ,h,e),then (D
2A*D 2 ,D 2 B* D 2

) min-

imizes 4> (A,B;D,e,h) . Now arbitrarily fix (A,B) e C
g

and

consider <j> (PBP ' ,PAP ' ;D~ ,h,e) for all orthogonal P. Clearly

the terms £n|PAP'|, tr PB~ P', and £n | PBP '
|
are constant for

all orthogonal P, so that 4> (PBP ' ,PAP ' ;D~ ,h,e) is minimized

with respect to P when tr PA~ P 'D is minimized. It follows

from Lemma 2.2.1 that all the stationary points, and thus the

absolute minimum, occur when PAP' is diagonal. Hence, for

any (A,B) e C - S, there exists an (A-^B^) e S
1

such that

(J)
(B

1
,A

1
;D

_1
,h,e) < cf>(B,A;D~ ,h,e).

— k — \l

But since A = D AD 2
, we know that A is diagonal if and only

if A is diagonal. So we find that for any (A,B) e C - S^,

there exists an (A
1
,B-

L
) e S

1
such that

tHAwB-]/ D, e,h) < <$> (A,B;D,e,h) .

In a similar manner now arbitrarily fix (A,B) £ C
g

and con-

sider
(J>
(PAP ' ,PBP ' ;D,e,h) for all orthogonal P. Clearly this

is minimized with respect to P when tr PB~ P 'D is minimized,

since the terms tr PA
-1

P', £n | PAP '
|

, and In | PBP
'

|
are con-

stant for all orthogonal P. So from Lemma 2.2.1 it follows

that all the stationary points, and therefore the absolute

minimum, of
<t>
(PAP ' ,PBP ' ;D ,e ,h) occur when PBP' is diagonal.
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This implies that for any (A,B) e C - S~ ' there exists an

(A
2
,B

2
) e S

2
such that

(J»(A 2/ B 2
;D,e / h) < <p (A,B;D,e ,h) .

The result now follows from Lemma 2.2.4. Furthermore, from

Lemma 2.2.1 we see that if (A*,B*) minimizes
<f>
(A,B;D ,e ,h) ,

then the diagonal elements of D 2A^D 2 are increasing and

the diagonal elements of B* are decreasing.

The second proof of Lemma 2.2.5 utilizes the concept of

"majorization" (see Marshall and Olkin [1974] )

.

Definition 2.2.6 : Let x and y_ be real mxl vectors

with i element x. and y., respectively, and i largest

element x... and y,-w respectively. We say that x major-

izes y_ and write x > y_, if

s s

Z x,.. 2 I y M > for s = l,2,...,m,
i=l [±) i=l y±>

with equality when s = m.

We will need some results which, while well known to

workers in the area of majorization, may not be readily

accessible to others. We prove the results here for the

benefit of the uninitiated reader.

Lemma 2.2.7 : If S (mxm) is doubly stochastic, then

x > sx = v..

Proof : Since S is doubly stochastic, it follows that

s. . > for all (i, j) , and
lj J
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* s
ij

= 1 for i = 1,2,. ..,m,
j = l

m
z s

ii
= 1 for j = 1,2,. . .,m.

1=1 J

Thus, for 1 < t ^ m there exists k
1
,k

2
,...,k

t
such that

t m
Z Y (i)

= Z (S
k i

+S
k i

+ *-' +S
lc i

)x i'1=1 u
' j=i

KlJ K
2 3 t 3 J

Clearly when t < m,

m
B
k
1 j

+S
k
2
j
+ --- +Bk

t
j * .^

S
ij = 1 for J = 1'2 m,

and

Z (s
k i

+s
k i

+ -" +sk -i>
= fc -

j=l K
l^ V k

t :

Then when t < m,

t i

1 y
(i)

= Z (s
k i

+s
k i

+ -" +sk -i>
x
ii=l u

' j=i
K
i^

k
2 j k

t D D

t

e

i=l

If t = m, then

* Ex....
-i (i)

s v -;
+su ^ + *..+s, .

= E s. . = 1,k
l : k

2^ V i=l ^

so that

t t
E y... = E (s .+s, .+...+S, .)x.

i=l (1)
j = l

k
l=>

k2^ V ^

t t
E x .

= Ex....
j=l ^ i=i

(i)
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ILl

Lemma 2.2.8 : If x > y_ and a . > a
(2

. > ... > a . . > 0,

then
m m

.

Z

=1
x

(i)
a

(i) *
.

Z
=/i

a
(i)-

Proof : Put d. = x..> ~ Yj_« Then

.^(D^i^i) = ^Vd)
= d

l
(a

(l)
_a

(2)
) +

(d 1+d 2
) (a

(2)
-a

(3)
) +

(d1+d 2+d 3
) (a

(3)
-a

(4)
) +

(d 1+d 2+ ... +dm_ 1
)(a

(m_ 1)
-a

(m)
) +

(d 1+d2+ ... +dm )a (ra)
.

The last term is zero, sincemm m
=I d = E (x

(i)
-y.) = I x - E y .

}

i=l 1 i=l {1) x i=l llj i=l u '

The partial sums are nonnegative, since

t t t t t

E d. = E x... - E y. * E x... - E y,,M > 0.

i=l
1

i=l
(1) i=l

X
i=l (1)

i=l
(1)

Further, the differences a
(1)

-a
(2)

, a
(2)

-a
(3)

, . . . , a
(m_ 1)

-a
(m)

are nonnegative. Hence, the result follows.

Lemma 2.2.9, Corollary : If x is an ordered vector,

that is, x, ^ x- 2. ... > x , S is doubly stochastic, and12 m

a is also an ordered vector, then x'a > (Sx) 'a.
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Lemma 2.2.10: If x > y and a.,, > a.„. >...> a. , > 0,- * (1) - (2) - - (m) - '

m
Z x. . . °.

,
, . . £ Z y . a

i=1 d) (m+l-i)
i=i

x (m+l-i)

Proof : The proof is similar to that of Lemma 2.2.8.

Letting d. = x . .

. -y . , we have3 l (l) J l

m m

.^(i)"^ (m+l-i)
= ^V (m+l-i)

= d
l
(a

(m)-
a
(m-l) ) +

(d
l
+d

2
)(a

(m-l)-
a
(m-2) ) +

(d
l
+d

2
+d

3
)(a

(m-2)-
a
(m-3) ) +

(d
1
+d

2
+...+dm_ 1

)(a
(2)

-a
(1)

) +

(d1+d 2
+...+dm)a (1)

.

t
We have seen that the partial sums , E d . : t=l , . . . ,m-l, are

i=l
1

m
nonnegative and Z d. is zero, so that the last term is zero

4-1 1

(m)~
a
(m-l)

,a
(m-l)" a

(m-2) '** * '

i=l

Further, the differences a, ,-a, ,,,a,_ ,
, -c

0,-,-a,,, are negative or zero. Hence, the result follows

Lemma 2.2.11, Corollary : If x is an ordered vector,

and y_ = Sx with S doubly stochastic, then

m m

•j^i (m+l-i) * J^i a (m+l-i)'

Furthermore, if a M , > a,-,. > ...> a, w then there is
(1) (2) (m)

equality only if y_ = x.
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We are now ready for the second proof of Lemma 2.2.5.

Recall that we need to show that the absolute minimum of

cf> (A,B;D,e,h) subject to (A,B) e C occurs when both A and B

are diagonal.

Proof 2 (Lemma 2.2.5) : Let S-. and S
7

be defined as before;

that is,

S, = { (A,B) e C : A is diagonal},

S
2

= { (A,B) e C : B is diagonal},

and recall that we need to show that if $ (A,B: D,e,h) is min-

imized at (A*,B*), then (A A ,B*) e S, fl S~ . Let

3i - 3o - • • • - 8 > be the latent roots of B , and

PB
_1

P' = diag(3m ,6m_ 1
,...,6

1
) . Then

{<j> (PAP' ,PBP';D,e,h) - $ (A,B;D,e ,h) }/h

= tr PB
-1

P'D - tr B
-1

D

m m / m
2

= Z 6 J. 1
-d. - E Z 3 _,, .P^ Id.

j=1
m+1-3 ] j=1 ^. =1 m+l-i 11) 3

m m
= I B -d .. .

- I y .d Al .

,

(2.2.4)
j=l 3 m+1-3

j=l 3 m+1_ 3

where y_ = P^Ji'Ji '
=

( B-, / 6
2

/ • • • , 3 ) , and P
2

is the matrix

with (i,j) element p ,, . ,, .. Since PP ' = P 'P = I,

we see that P~ is doubly stochastic. Also d = (d, ,d~,...,d )
2 J — 1 ' 2 ' m

and _B_ are ordered vectors, so by Lemma 2.2.11, equation (2.2.4)

is not positive. Furthermore, d, > d„ > . . . > d so thatr 12 m

6(PAP' ,PBP ';D,e,h) < $ (A,B;D , e ,h) ,
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with equality holding only when B = diag ( B , B ,,..., 8-, ) .

Therefore, for any (A,B) e C - S- there exists an (A„,B_) e S~

such that

<MA
2
,B

2
;D,e,h) < * (A,B; D ,e ,h)

.

Now with A = D ^AD 2 and B = D 2BD 2

<J>(A,B;D,e,h) = e[trA~ d" +£n|A|] + h[trB~ +An|5|]

+ (e+h)£n|D| (2.2.5)

= <j>(B,A;D~ /h,e) + (e+h)An|D|.

Let a, > a_ > . . . > a > n be the latent roots of A
1 2 m u

and QA Q' = diag (a,,a2 ,...,a ). Then by an argument iden-

tical to the previous one we find that

<$> (QBQ' ,QAQ ';D
_1

,h,e) < c(> (B , A; D
_1

,h , e) ,

with equality holdinq only when A = diag (a, ,a_ , . . . ,a ).^ 12m
From (2.2.5) it follows that

$ (D
2QAQ'D 2 ,D 2QBQ'D 2 ;D,e,h) < tj) (D

2AD 2 ,D 2
B D 2

; D ,e ,h) ,

with equality holding only when A = diag (a, ,a„ , . . . , a ).

h h - 1 -1
Note that D 2QAQ'D 2 = diag (d, a. , . . . ,d a ). Thus, for any

' 1 1 m m

(A,B) e C - 5, there exists an (A, ,B, ) e 5, such thatsi ill
<j> (A.,,B, ;D,e,h) <

<J>
(A,B; D ,e ,h) .

The result now follows from Lemma 2.2.4.

Lemma 2.2.12, Corollary : Let R be some restriction on

the latent roots of A or B or both, and let C be the subset
s

of C such that (A,B) e C implies that R is satisfied.

Since (A,B) e C*

R
if and only if (PAP',PBP') e C

R
for any

orthogonal P, it follows that the minimal value of
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T3

<j> (A,B;D,e,h) over (A,B) e C occurs when A and B are diagonal.

For example, if the latent roots of A were known to be pro-

portional to a given set, then the minimal value of

(j> (A,B;D,e,h) over (A,B) e C occurs when A is a diagonal

matrix with diagonal elements proportional to this set.

2 . 3 The Maximum Likelihood Estimates

In this section we seek the maximum likelihood estimates
s

of Z and M subject to the constraints Z e P and Me UP..m
j=0 3

Recall that the likelihood function of (Z,M) is

K (I,e)K (I,h) , ,, . . , .

f(Ef H) = m
|H

|%(h-m-l)
|E|

^(e-m-l)

Z+VL\
hii

\z\
h&

x exp[-JjtrZ
1E-%tr (Z+M)

_1
H] .

The logarithm of the likelihood function, omitting a function

of the observations, is

- ^trZ~
1
E-J3e£n| Z| - %tr (Z+M)

_1
H-Jshiln

|
Z+M

|
.

We seek the solution, (Z,M), which maximizes the above equa-

tion, or equivalently , the solution which minimizes

trZ
_1

E+e£n| Z | + tr (Z+M)
-1

H+h£n | Z+M

|

(2.3.1)

s
subject to Z e P and Me UP..

j = ^

Let E* = (l/e)E and H* = (l/h)H. Note that since E* and
m

H* are both symmetric matrices, and E^e P and H* e U P.,

there exists a nonsingular matrix K(raxm) such that

KE*K' = I and KH*K ' = D, where D = diag (d
1
,d

2
, . . . ,d ), and

d
l

> d
2

> "'' > dm
> ° are the latent roots of H*E* .
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Then with E = KZK ' and M = KMK '
, (2.3.1) can be rewritten

etrK'
-1

E~ K
-1

I+e£n| E |+htrK'
-1

(E+M)

~

1
K~

1D+h£n | E+M|

= e[trE
-1

+iin| E
|

] + h [tr (E+M)
-1

D+£n
|

Z+M| ]

- (e+h)£n|K[ 2

= <p (E,E+M;D,e,h) - (e+h)£n|K|
2

.

Thus, the problem has been reduced to that of minimizing
~ ,. _ ^ s

<j> (E,Z+M;D,e,h) subject to E e P and Me UP. or,J m . _ i
'

... - , D=0
J

equivalently , (E,E+M) e C . But from Lemma 2.2.5 it is

known that the minimal solution to $ (E ,E+M;D ,e,h) is such

that E and E+M are diagonal, and in addition, it is known

that the diagonal elements of D ^ED are increasing while

the diagonal elements of E+M are decreasing.

Consider the function

g(x,y) = e(^+2nx) + h^+£ny) , (2.3.2)

where d > 0. Differentiating (2.3.2) with respect to x and

y, we get the equations

-i + i-o.
2 x '

X

y
2 y

which yield the minimal solution x n
= 1 and y n

= d. If

instead we wanted to minimize (2.3.2) subject to x = y,

(2.3.2) would reduce to

g(x) = e (- + Hnx) + h (- + Jinx). (2.3.3)
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Then

dg (x) . 1,1.,,, d , 1.

d_- = e( _ _ + , + h(_ + }
= 0/

x x

so that x, = y. = —-r- minimizes (2.3.3).
1 1 e+n

Now let

f(d) = Q(x
l ,y 1

)
- g(x

Q
,y )

- ~ / e+h
, p„ , e+dh , . , ,

d(e+h) ,s+dhn" e (i+dh
+ £n (^F )

>
+ h ( e+dh + £n (

-

eTF ) )

- (e+h+h£nd)

_ n (d-1) h
x

. ..
,

(d-l)e.
,

. ,.. . ,e+dh.e(1 " -^dh- ] + h(1 + TRBr ) + (e+h) in (-^j^-)

- (e+h+hilnd)

= (e+h)Hn(^) - hind,
e+h

Differentiating f (d) with respect to d and noting that e > 1,

h > 1, we find that when d > 1

df.(d) _ h(e+h) h dh (e+h) -h (e+dh) eh (d-1)
dd e+dh d " (e+dh)d (e+dh)d '

In other words, the difference g(x,,y,) - g(x
n ,y_) is an

increasing function of d when d > 1.

Now with X = diag (x, ,x„ , . . . ,x ) and Y = diag (y, ,y_ , . . . ,y )

consider minimizing

m , m d

.

<|>(X,Y;D,e,h) = e I (7-+ tax.) + h T. (— + In y.) (2.3.4)
i=l

X
i

x
i=l Y i

x

subject to (X,Y) e C , which in this case implies that

y. > x. > for all i, and x. = y. for at least m - s of the
1 1 1 d 1

i's. Suppose that d n
> d„ > ... > d > 1 > d ,>...>d > 0.12 r r+1 m

Using the fact that f (d) is increasing in d for d > 1,
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it then follows that the minimal solution to (2.3.4) is

(X ,Y ) , where if r > s,

'x . = y . = (e+d.h) / (e+h) for s+1 < i < m,si J si 1 '

x . = 1, y . = d. for 1 < i < s,
«. si 2 si 1 '

and if r < s

,

fx . = y . = (e+d.h) / (e+h) for r+1 < i < m,

Ix . =1, y . = d. for 1 £ i < r.
v. si J si 1

Thus, cj)(E ,E+M;D,e,h) is minimized subject to

(E,Z+M) £ C at

Z = X ,s

M = Y -X ,
s s'

so that the maximum likelihood estimates of I and M are

E and M, where

E = K
-1

X K'
-1

,s '

M = K
_1

(Y -X )K'
_1

.

s s

We now present an example to illustrate the computation

involved in deriving the maximum likelihood estimates.

Consider model (2.1.1) in which we take m = 4, g = 21,

n = 6, Z = I, and M = diag (99 , 24 , , 0) . Hence, e = g(n-l) =

105 and h = g-1 = 20. Generating a matrix E from the dis-

tribution W. (1,105,0) and a matrix H from the distribution

W
4
(I+M,20,0) , we obtain
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E =

69.1329

H =

1845.85

4.07476

127.055

63.5986

688.962

-5.12762

-3.77638

116.342

-16.5227

1.14908

20.1453

-9.94924

20.4629

8.12511

100.186

-1.43363

-8.61601

-,0100181

12.2617

With E* = (1/105) E and H* = (1/20) H we need to find a non-

singular matrix K such that KE^K' = I and KH*K' = D, where

D is a diagonal matrix. Let D, = diag (ch, (E*) , . . . ,ch4
(E*) ) ,

and let P be the orthogonal matrix for which the i column

is the characteristic vector of E* corresponding to ch^ (E*)

,

then, since E* is symmetric, P'E*P = D. Similarly, let

D = diag(ch
1
(D

1

i5

P'H^PD^ 2
) ,. . . ,ch

4
(D

1

2
P'H

i
,PD

1

35

) ) , and let Q

be the orthogonal matrix for which the i column is the

— h —hcharacteristic vector of D, P'H^PD, 2 corresponding to

— \ —it — 1? —h
ch. (D,^P f H*PD,^) , then, since D

1
2P 'H^PD-j^

2 is symmetric,

Q 'D,
2P 'H*PD, 2Q = D. Thus, we may take K = Q 'D

1
2P '

. Using

the above decomposition for K, we find that, for our example,

1.24522

.0181884

.00831611

-.000914637

-.0464049

-.925978

-.00767896

-.0158712

.0380069

-.0477042

.940375

-.153048

.130133

.213476

-.237376

-.994866

and D = diag (142 . 729 , 29 . 6669 ,. 91847 ,. 625404 ) . Note that

dy > 1 and d_ < 1, so that r = 2 Simple calculation yields

X
Q

= Y
Q

= diag(23. 6766, 5. 5867, .986955, .940065) ,

X
x

= diag(l, 5. 5867, .986955, .940065) ,
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Y
1

= diag(142.729, 5.5867, .986955, .940065),

X
2
=X

3
=X

4
= diag(l, 1, .986955, .940065),

Y
2
=Y

3
=Y

4
= diag(142.729, 29.6669, .986955, .940065).

Hence, if we let E. and M. be the -n^ximum likelihood estimates

of I and M, respectively, subject to the constraints Z e P

i

and Me U P
.

, we find that
j=0 3

h =

15.3199 .541388

6.52813

-.173203

-.0210184

1.0919

-.0910632

.0947756

.064921

.899582 J

M A = (0) ,



M =M =M =
2 3 4
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91.6383 3.13344 -.788088 -.0129987

33.2548 .105117 -.549569

.00730371 -.002076

.00909865

Further commentary on these data will be made in

Sections 3.6, 4.2, and 5.4.

2. 4 The Likelihood Ratio Test
s

Recall that C = { (A,B) :AeP ,LeP ,B-Ae UP.},
s m m j

=(J ]

and suppose we know that (Z,E+M) e Q = C . We wish to test,
s

say, the null hypothesis that (E,Z+M)e co = C , O C . Thes-l s

alternative hypothesis is then that (E,E+M)e n - to =

C - C i- Thus, we are testing the hypothesis

H^
s)

: rank (M) < s-l

against the hypothesis

h|
s)

: rank (M) = s.

We adopt the likelihood approach and compare max f (E,H)

with max f(E,H). Specifically, we look at

max f(E,H)/»a*" f(E,H) = A e (0,1].

With the matrices X = diag (x -, ,x „,..., x ) and
s r si s2 sm

Y
s

= diag(y
gl ,ys2 ,...,ysm ) given by

x
s

X
s

i = y^-: = (e+d.h) / (e+h) for s+1 <, i <. m,

i
= 1 'y

s i
= d

i
for 1 * i £ s,
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if r > s, and

. = y . = (e+d.h) / (e+h) for r+1 < i < m,
;i -*si 1

x . = 1, y . = d. for 1 < i < r,
si J si 1

if r < s, the maximum likelihood estimators, Z , of Z and,

MQ , of M when the parameters are restricted to lie within

Q , are given by

h = k
"
1x

s
k '

_1
'

where K is a nonsingular matrix. Similarly, the maximum

likelihood estimators, Z , of Z and, ft , of M where the
CO ' CO

parameters are restricted to lie within lo , are given by

K = K'^s-lK'"
1

'

It should be noted that if r < s, then X = X , and
s s-1

Y = Y , , and if r - s, x . = x , . and y .
= y , .

s s-1 si s-l,i J si i s-l,i

only for i / s.

The likelihood ratio, A, is

A =

max f(E.H)
co

max f(E,H)
n

expt^trZ-V^rtZ^)-^] \t^J^\lj^
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exp[-JsetrX
a

-JshtrYg D] |Y
s_ 1

|

sn
|X

g_ 1 r

|Y |^|X
\

hG
1 s 1

' s

'

s-1 1

' s-1 1

since, if r < s,

etrfx'^-X
-1

) + htr(Y^
1
-Y~

1
)D (2.4.1)

= etrtX^-x" 1
) + htr(Y~ 1

-Y~
1
)D

= 0,

and, if r > s, (2.4.1) becomes

e (x , -x ) + h (y , -y d.
s-l,s ss -^s-^s ^ss s

/ ,i-\ d h(e+h)
= eje+hi _ _s

h
e+d h e+d h

s s

(e+d h) (e+h)
s -- (e+h) = 0.

e+d h
s

So we have

-%(e+h)
,. ,e+d h

d
hh{ s

s [ e+h
/

if r > s,

if r < s.

Since d-, > d > . . . > d >1> d_,, > ...> d_ > 0,
1 I r r+i m

clearly, r > s if and only if d > 1. Hence, we can write

if d
s

> 1,

if < d £ 1.
s
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Now upon taking the derivative of A with respect to d over
s

the range d > 1 , we get

dcT
= *h d

s
s

M ,,e+d h
^(e+h)-l

*sh-lf s

e+h

e+d h

e+h -d

= hh d'
Ve+d

8
hV ,s(e+h)- 1

\ e+h

e-d e
s

e+h _

which is negative for d > 1. Thus, A is a decreasing

function of d over the range d > 1. In addition,

, , fe+d hM 2-
s y e+h

rh(e+h)

< 1 for d > 1,
s '

with equality when d = 1, so that A is a decreasing func-

tion of d .

(s)The likelihood ratio test rejects H* for small values

of X . Since A is a decreasing function of d , the likeli-

(s)hood ratio test rejects H^ for large values of d . Now

recall that with H* = (l/h)H and E* = (l/e)E, there exists

a nonsingular matrix K such that KH*K' = D and KE^K' = I.

It follows then that d.: i = l,2,...,m are the solutions to

H +-dEj = iKH.K'-dKE^K' D-dl = 0,

thso we observe that d is the s largest solution to

H*-dE. = (2.4.2)

With cjk = d^/e : i = l,2,...,m, (2.4.2) can be written

H " fE| = 0,

or

H - = 0. (2.4.3)
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(s)
Hence, we would reject H' for large values of = d h/e,

where <$> is the s largest solution to (2.4.3). It is of

particular importance to recall that H ~ W (E+M,h,0) and

E ~ W (Z,e,0), independently.

(s)We have seen that the likelihood ratio test rejects H*

when
(J) >c for some constant c. Now we want to choose for
s

the constant c some number, which we will denote by c(a,m,s)

to indicate its dependence upon a, m, and s, such that

P ((f) > c(a,m,s)
|

(E,M) ) < a for all (£,Z+M) e C . For

c(a,m,s) we propose the a level critical value for the

largest root, 9,, from amongst the m-s+1 roots of |w,-9W-| = 0,

where W, - W , , (I ,h-s+l , 0) and W ~ W ,,(I,e,0), inde-
1 m-s+1 2 m-s+1

pendently. That is, we take c(a,m,s) such that

P(9
1

> c(a,m,s)) = a. Justification for this choice of

c(a,m,s) will be given in the next chapter.



CHAPTER 3

PROPERTIES OF THE s
th

LARGEST ROOT TEST

3 . 1 Introduction

In this chapter we investigate some properties of the

s largest root test presented in the previous chapter.

It would be desirable to show that this test is the uni-

formly most powerful test, but we were unable to do so for

general m. However, in Section 3.2 we show that for m = 1

the test is uniformly most powerful. Also, in Sections 3.3

and 3.4 it is shown that the s largest root test is an

(s) (s)invariant test of H' against H, and is the test obtained

by the union- intersection principle (see Roy [1953]). Finally,

in the last two sections we discuss an important monotonicity

property of the roots
<J>

. : i = l,2,...,m, and then use this

property in deriving the asymptotic distribution of cf> .

3. 2 The Uniformly Most Powerful
Test for m = 1

For m = 1 the problem reduces to that of the univariate

random effects model discussed in Section 1.1. Recall that
— 2 2 2 n

we have x «. N(u,(a +na ) /gn) , u ,. a y , and
z a z "e,222 22v .. (a +no ) X h , independently, where u,a , and a are all

2unknown, and we wish to test the hypothesis H„ : a = aqainst
a

H, : a
2

> 0.
1 a

51
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Suppose that for some set of points, y', in the space

of (x ,u,v) , we reject H
Q
whenever the experimental (x ,u,v)

belongs to y'. Let 6 (y '
; y ,a

2
,a

2
) = P [ (x ,u,v) ey '

I
V ,a

2
,a

2
]

and require that y' be such that 8(y';y,a 2
, ) = « Let

x = u + v and y = v/u, so that u = x/ (y+1) and v = xy/ (y+1)

.

Then the Jacobian, ||jj| , of x ,u, and v with respect to

x , x, and y is ||j]| =
|| 3 (x ,u,v) /3 (x ,x,y)|| = x/(y+l)

2
.

Then

3(y';y,a ,a ) = /// g (u;

a

2
) g (v;

a

2
a
2

) g_ (x ;y,a
2
,a

2
)du dv dx,

= /// f(x,y;a ,a )f (x ;y,a ,a )dx dy dx ,
-. ^ Ut U • • z ex » •

where y = { (x^ ,x,y) : (x ,u,v) e y'} and where, independently,

2 2
u - a v

,
z A e

2 2 2
v ~ (a +na ) y, /

z a Ah

x ~ N(y, (a
2
+na 2

) /gn) ,

so that

^%(e+h)-l „„„ r „ /n(.2,„2
f (x,y;o^,a^) = f (x,y) =

o 9
x
2ieT"ri exp[-x/2(o>na z

)]

z a
(2(a

2
+na

2
))

3s(e+h)
r(J5 (e+h))

(l+na
2/aVe y^" 1

(y+ l)
^ (e+h)

exp [-xna
2
/2a

2
(a

2
+na

2
) (y+1, ]a z =_ a z z a J

'

Btte^h)

and (x,y) is independent of x . We note that when a
2 = 0,
a

x and y are independent; that is,

f(x,y;a 2
,0) = f

±
(x; a

2
) f

2
(y) = f^xjf^y,
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where

2 2
x ~ a

z xe+h '

y . (h/e)Fg.

Letting y(x,x ) = {y: (x ,x,y) e y} , we can write

00 00

3(Y';u,a
2
,0) * / / / f(x,y)f

Q
(x )dy dx dx

^z -oo o y (x,x )

= / / f.(x)f n (x ) /_ f,(y)dy dx dx
— L U •• Y(x,x )

Putting

h(x,x ;a
2

) = h(x,x ) = /_ f
2
(y)dy,

z '

* y (x,x )

we see that

00 00

&(y';\i,a
2
,0) =11 f

1
(x)f

Q
(x )h(x,x^)dx dx .

x- -oo

2 — 2
When o = 0, (x,x ) is sufficient for (o

z
,\i). Further,

{f, (x) f n (x ) : -co < y < oo, a > 0} is a complete family (see,

2
for example, Lehmann [1959:130]). Thus, since & (y ' ;\i ,o

z>
0)

= a„, we must have h(x,x ) = a_.

Now let vi = { (x ,u,v): y = v/u > c} where c is some

2 2 2
constant. Then with 3 = (q 1 ,q

2
)' where q x

~ (a
z
+na

a ) xe+h

2 2
and q„ ~ N(y,(a +na ) /gn) , independently,

[3(Y;;y,a
2
,a

2
) - 6( Y ';y,a

2
,a

2
)] (l+no

2
/a

2
)

_3ie

2 2
= E (d (q; a , a ) ) ,-1 z a

where the expectation is with respect to the distribution

of 3.
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Here

d& a
l>

a
l) = y { }

f
2
(y)Q(y ' q l

)dy ' y{)
f
2
(y)Q(y ' q i

)dy '

where y*0 = Y*^ ,^ 2 ) ' Y () = Y (q
l' q 2

)
'
and

Q(y, qi )
= exp[-q

1
no

a
/2a

z
(a

z
+na

a ) (y+1) ] .

Therefore

,

d ^°z' a
a )

=
y,()^()

f
2
(y)Q(y ' q l

)dy " Y ()-Y*()
f
2
{y)Q(y'q

l
)dy '

Since

Q(Y,q 1
) > Q(c,q

1
) when y e y*()-Y()»

Q(y,q
1

) < Q(c,q
1

) when y e y()-Y*0#

we find that

d(a;a',a2) > Q(c, qi )[^ ()
/
Y()

f
2
(y)dy -

y () /^ ()
f
2
(y)dy]

= Q(c,q
x

) t

y
/

()
f
2
(y)dy -

Y
{)f

2
(y)dy]

= Q (c^) [a -a
Q

] = 0.

Thus,

so that

E(d(3 ;a
z
,a^)) > 0,

(Y*;u,°
z
,a

a
) > B(Y';U/a

z
,a

a
)

Therefore, amongst all critical regions of size a
Q

the crit-

ical region which rejects H
Q
when v/u > c is uniformly most

2 2
powerful in a test of H

Q
: o^ = against H-^ o

a
> 0. That

is, the critical region $ > c, where <j> is the only root of

(v-<jm) = 0, is uniformly most powerful.
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3. 3 An Invariance Property

Consider the group of transformations G = {g : K (m*m)

is nonsingular} , where g (E,H) = (KEK',KHK r

). Since
K

E „ Wm (Z,e,0) and H ~ W (I+M,h,0), it follows thatm m

KEK'~ W
m (KZK' ,e,0) ,KHK'~ W (KEK ' +KMK

' ,h , ) , and rank

(KMK') = rank (M) . Thus, the problem of testing the hypoth-

esis Hq : rank (M) < s-1 against h| s '

: rank (M) = s is

invariant under the group G.

We will need the following definition.

Definition 3.3.1 : Let X be a space and G, a group of

transformations on X. A function T (x) on X is said to be

a maximal invariant with respect to G if

a) T(g(x)) = T(x) for all xeX and g e G;

b) T (x^ = T(x
2

) implies x
1

= g(x») for some g e G.

We will also need the following well-known result (see,

for example, Lehmann [1959:216]).

Lemma 3.3.2 : Let X be a space, let G be a group of

transformations on X, and let T(x) be a maximal invariant

with respect to G. A function f (x) is invariant with respect

to G if and only if f (x) is a function of T (x) .

Now consider the roots, <J>, > d>„ > ... > d> , ofr l 2
Ym

I H— <J>E I = and the roots, 8 . > 9 n > . . . > 6 , of
± Z m

|KHK'-9KEK'| = 0, where K is nonsingular. Clearly

|KHK'-8KEK'
|

=

implies |k| |h-8E| |k'| =0

so that I H-6E I =0,
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and hence, 9. = <j> . : i = 1,2, . . . ,m. Suppose now that

9. = <t> . : i = 1,2/... /in are the roots of |H,-9E, I
= and

i
T
i ' ' 1 1

'

|
H_— 4> E _

[

= 0, respectively, where E,, E„, H-, , and H
2

are all

positive definite, symmetric matrices. Then there exist

nonsingular matrices K, and K~ such that

E
i

= K
i
K
i'

H
i

= K
i
$K

i'

E
2

= K
2
K
2

, H
2

= K
2
0K

2
,

where $ = diag (A. , 4>_ , . . . ,<J> ). It then follows that

9 -l^l'V = (K2K
I
lE

l
K
i"

lK
2' K2Kl

lH
l
K
i"

lK
2

)

21
= (K

2
K~

1
K
1
K

;

[K
:

[~
1
K^ ,K

2
K^

1
K
1
<I>K-[K-[~

1
K^)

= (K
2
K^,K

2
$K^)

= (E~ , H_ ) ,

where g„ „_, e G since, clearly, K„K, is nonsinqular. So by
K
2
K
1

Z l

Definition 3.3.1 {<$>: |H-AE| = 0} is the maximal invariant

with respect to G. The s largest root, A , is clearly a

function of (A, , A._ , . . . , <f> ), and hence, by Lemma 3.3.2 the

test statistic <j> is an invariant test statistic for testing

(s) (s)
the hypothesis H' against the hypothesis H, .

3 . 4 The Union-Intersection Principle

Suppose that in testing H-! : rank (M) < m-1 against

fm \

H, : rank (M) = m, we adopt the rule

R(m:m): reiect H„ if d> > c(a,m,m).
U m

Here <b, > A > . . . > <t> > are the roots of Ih-AEI = 0,y l 2 rm i
r i
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E ~ W (E,e,0) and H ~ W (Z+M,h,0), independently, and

c(ct,m,m) is chosen such that P(<j> > c(a,m,m)
|
H» ) < a.

(s) (s)
Consider now testing H* : rank (M) < s-1 against H, :

(s)
rank (M) = s. The hypothesis H' is true if and only if

(s)
the hypothesis „H,: : rank (FMF ' ) < s-1 is true for all

F e S(m,s), where S(m,s) is the class of all (sxm) matrices

(s)
of rank s. Similarly, the hypothesis H

Q
is false if and

Is)
only if the hypothesis

F
H
Q

is false, and the hypothesis

„H, : rank (FMF') = s is true, for at least one, and in fact
F 1

(s)
all F e S(m,s). Hence, we could think of H

Q
as

Fesft.,.) F
H

S
' ^ "I'' " Ftift.,.) F

H
1

S) and re^Ct H
S)

if (E,H) e y = _ e*L * Y(F), where y (F) is the rejection
r Eo ^m , S i

(s)
region appropriate to a test of the hypothesis H

Q
. The

sizes of Y (F) : F e S(m,s) should be such as to produce a

desired overall error of the first kind of the desired size.

This procedure is known as the union- intersection procedure.

(s)
Note that we will reject Hq : rank (M) < s-1 if for

some F e S(m,s), we reject
f
Hq

S)
: rank (FMF') < s-1. Let

A, >d)^ >...>*> be the roots of I FHF ' - 4>FEF '
|

= 0,
IF y 2F sF '

where, clearly, FEF ' ~ W e (FZF '
,e , 0) and FHF' ~ W (FZF

'

S s

+ FMF',h,0), independently. Then by the rule R(s:s) we

reject „H' S
' if <b „ > c (a ' , s , s), where a' is chosen to give

J F SF

the desired overall error of the first kind of the desired

(s)
size. Hence, we will reject Hq if for some F e S(m,s),

cf)
_ > c(a',s,s), or equivalently , if max <b _ > c(a',s,s)

sF FeS(m,s)
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We need the following results, the first two of which

can be found in Bellman [1970:115].

Lemma 3.4.1 : Let A(raxm) be a symmetric matrix. Then

the smallest latent root of A may be defined as follows:

ch (A) = min u'Au,

where u is a (mxl) vector.

The next result is well known as the Poincare separation

theorem.

Lemma 3.4.2 : Let A (mxm) be a symmetric matrix. Then

for any matrix F(sxm) such that FF ' = I

ch.(A) > ch.(FAF') > ch , . (A)
j j m-s+3

for j = 1, 2, . . . ,s.

We need Lemma 3.4.2 to prove the following lemma.

Lemma 3.4.3 : Let A (mxm) be a symmetric matrix. Then

max min u'FAF'u = ch (A), (3.4.1)
F:FF'=I u'u=l

S

where F is a s x m matrix, and u is a m x 1 vector.

Proof: Since A is symmetric, there exists an orthogonal

matrix P (mxm) such that P'AP = A = diag(ch
1
(A),

ch (A),...,ch (A)), and hence, for any F such that FF ' = I

min u'FAF'u = min u'FAF'u,
u'u=l ii'u=l

where F = FP and FF' = FPP'F' = FF' = I. Then we can

rewrite (3.4.1) as

max min u'FAF'u.
F:FF'=I u'u=l
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Let F
.
(sxm) be the matrix with (F + ) . .

= 1 for all i, and

(F.) . . = for all i 4 j. Then
* ij J

max min u'FAF'u > min u'F*AF£u = ch (A).

F:FF'=I u'u=l u'u=1 ' *"

Now by Lemma 3.4.2, for any F such that FF' = I , we know

that

min u'FAF'u < ch (A),
u'u=l

S

so that

max min u'FAF'u < ch (A) .

F:FF'=I u'u=l
S

Therefore, it follows that

max min u'FAF'u = ch (A).

F:FF'=I u'u=l
ta

We have seen that the union-intersection principle leads

(s)
to the rule which rejects H^ : rank (M) < s - 1 in favor of

H-f
s)

: rank (M) = s if max <b > c(a;s,s). Note that
1 F£S(m,s)

with T (mxm) andF(sxm ) such that TT ' = E and F = FT , then for

fixed F e S (m,s)

|

FHF ' - 4>FEF '|=0

implies

|FTT HT' T'F' - cj>FTT~ ET'~ T'F'| =0,

or

|FT
_1HT'

-1
F' - 4>FF'| = 0. (3.4.2)

Since F is of rank s, so also is FF' (sxs), and thus, there

exists a nonsingular matrix S(sxs) such that SFF's' = I.
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So with F = SF we find that (3.4.2) implies

|ft"
1
ht ,

~ 1
f' - <$>l\ = 0,

and clearly, FF ' = SFF'S' = I. Hence, it follows that

max
<J> F

= max min{cf):|FT
_

HT'~ F'-<t>l| ^=0}
FeS(m,s) S F:FF'=I

<J>

max min u'FT
-

HT'~ F'u,
F:FF'=I u'u=l

with the final equality due to Lemma 3.4.1. Now using

Lemma 3.4.3 and the fact that the latent roots of T~ HT'

~

are the roots of |h-<J>e| = 0, we observe that max tj) = <p

FeS(m,s)
S £

and thus, the union-intersection principle leads to the rule

(s)which rejects H^ if <\> > c (a ,s,s).

3 . 5 A Monotonicity Property
of the Power Function

The test procedure developed in the previous sections

depends on the latent roots, <j>, , <J> 2
, . . . , cj> , of the random

matrix HE . The distribution of these roots (see James

[1964]), and hence the power function of our test procedure,

depends upon the latent roots of the corresponding population

matrix (E+M)Z as parameters. Let 6, >6^ ^ . . . >6 > 1
v

'
r 12 m

be the latent roots of (E+M)E , and note that with T defined

such that Z = TT'

(Z+M)Z
1 - 61 I

=

implies

|M - (6-1)1
I

= 0,
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so that |T~
1
MT" - (5-1) I |

= 0.

Since I is nonsingular, T is also nonsingular, and so the

rank of T MT ' is the same as the rank of M. Hence, M

has rank of at most s-1 if and only if 6 =1, and testing

la) (a)
the hypothesis H^ : rank (M) < s - 1 against H' : rank (M) = s

(s)
is equivalent to testing the hypothesis 111 ' : 6 =1 against

(s)
H, : 6 > 1. A desirable property of the test statistic 4>

would be that it stochastically increases in 6 , and thus,

that the power function increases monotonically in 5 - In

this section we not only show that
<f>

stochastically increases

in 6 , but also that it stochastically increases in each

5.: i = l,2,...,m. This more general result will be utilized

in the following section.

We will first prove the result for the largest latent

root, 4>, . That is, we will show that cf>, stochastically

increases in 6 . : i = l,2,...,m.
l

Lemma 3.5.1 : The test with the acceptance region

<j>, = ch, (HE
-1

) < c

has power function which is monotonically increasing in

each population root 6 . .

The proof of Lemma 3.5.1 involves the followina three

results, the first of which is due to Anderson [1955].

Lemma 3.5.2: Let y ~ N (0,Z,) and u „ N (0,I„),— m —
' 1 — m —

' 2
'

where Z~ - Z, is nonnegative definite. If to is a convex

set, symmetric about the origin, then P (Yew) > ? (ueco) .
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Lemma 3.5.3: Let the random vectors y. ,y n ,y and the

matrix U be mutually independent, the distribution of y. being

N (0,Z): i = l,2,...,n. Let the set to , in the space of
m —

{y_, ,y~ , . . . ,y_ ,U}, be convex and symmetric in each y_. given

the other y_-'s and U. Denote by P^
,
(to) the probability of

the set co when £ = Z . . Then whenever Z n - Z, is nonnegative
1 2 1 r

definite, P v (to) > P v (to).
l l

z 2

Proof: Since Z, and Z ,. are symmetric and X, e P and
1 2 J 1 m

m
l £ UP. it follows that there exists a nonsingular matrix

K such that KZ , K ' = I and KZ-K' = A = diag ( 6, , 6 , . . . , 6 ).
1 2 ' 1 2 m

m
Since it is assumed that Z - Z, e U P . , we know that

2 X
j=0 3

6j_ > 1: i = l,2,...,m. Then y_. = K;^ - Nm (0,i) if j = j

and y_* - Ky^ ~ N
m (0,A) if Z = Z 2> Let oj* = {y_* ,£* , . . - ,£* ,U:

*
(y-, ,y 9 , . . . ,y ,U) e to}, then P v (to) = P_ (to ) and P_ (to) =

*
P. (to ). So without loss of generality we can take £, = i and

Z
2

= A. Let

A. = diag(6
1
,9

2
6.^,1,9.^ 9m ) ,

A
x

= diag(er e
2

ei-l^i' 9
i +i"-" e

m )'

R
i

=
{^i

: (^1'^2' -
* ' '^n'

U) £ Ui; Xn : J^i and u fixed},

where 8. e {1,6.}: j / i. Then from Lemma 3.5.2 it follows

that

P
A .

(Ri'Zj : ^i,U) > P
A
*(R

i | Zj : j*i,U). (3.5.1)

Multiplying both sides of the inequality (3.5.1) by the joint



63

density of the temporarily fixed variables and integrating

with respect to them, we obtain

P
A

(co) ^ P
A
* (co) .

i i

Then by induction we have

or equivalently

,

P.,- (co) > P
A

(co) ,

P (co) > P
y

(to)

^1 L
2

Finally, the third result we need is due to Das Gupta,

Anderson, and Mudholkar [1964].

Lemma 3.5.4 : For any symmetric matrix B (m><m) the region

to = {A(mxn): ch, (AA'B) < c} is convex in A.

Proof (Lemma 3.5.1) : Recall that H ~ W (Z+M,h,0) and

E - W (Z,e,0). Since the problem is invariant under trans-

formations g.j.(E,H) = (KEK',KHK'), we may assume, without loss

of generality, that I + M = A = diag (6
1

, &
2

, . . . , 6 ) and I = I.

Then we can write H = YY '
, where Y = (y_, ,y_2

, . . . ,Y.y) and

y_. ~ N (0_,A) : i = 1,2,. ..,h, independently. So the accep-

tance region can be written as {Y: ch,(YY'E ) < c}. From

Lemma 3.5.4 it follows that the acceptance region is convex

in Y, and clearly vie see that the acceptance region is also

symmetric in each of the column vectors of Y. Note that the

vectors Xi 'X? ' • • • 'Yy, an<^ E are mutually independent, and the

distribution of y. is N (0,A). The result now follows from
^•l m —

Lemma 3.5.3.

The main result of this section follows from a result

due to Anderson and Das Gupta [1964]

.
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Lemma 3.5.5 : Suppose V ~ W (Z,,v,0) and U ~ W (Z
2
,u,0),

independently. Let A, > X_ > . . . > A be the latent roots^ 2 12 m

of UV , and let to be a set in the space of A,,A~,...,A such^ 1 2 ' m

that when a point ( A, , A_ , . . .,A ) is in as, so is every point
* * * *

(A,, A _.,..., A ) for which A. < A.: i = l,2,...,m. Then the
l z m 11

probability of the set co depends on £, and Z_ only through the

latent roots of £_Z," and is a monotonically decreasing func-

tion of each of the latent roots of 2~Z, .

Clearly, the set co = { (cf>, ,
<J> 2 , . . . , cf) ) : <j> < c} satisfies

the conditions of Lemma 3.5.5, so it follows that the proba-

bility of the set co is monotonically decreasing in each of

the latent roots <5,,6~,...,5 of (Z+M)I . In other words,
1 2 m '

the power function of the s largest root test is a

monotonically increasing function of 6.: i = l,2,...,m.

We now know that as 6 -* °° , P(* >c) increases mono-
s s

tonically. We will show that actually, as 5 + °°

,

P (<$> >c) -* 1, and hence, for sufficiently large values of

(s)
6 the probability of rejecting H^ : 6 =1 will be arbi-

trarily close to one. Recall that there exists a nonsingu-

lar matrix K such that KEK ' ~ W (l,e,0) and KHK'~W (A,h,0).

Let K, (mxm) be such that

K, (mxm) = diag (ak, , ak„ , . . . , ak ,1,...,1).

Note that I^KHK'K' ~ Wm (K-^K^ ,h, 0) and

K A K{ = diag(a 2
k
2
S a

2
k
2
6 .. ,a

2
k
2
6 ,6 ,, 6

)x -1 -L-L £ I s s ' s + 1' ' m '

2 2so that as a + °°, a ^^ i
+ °°, and hence ch . (K,AKj) -* °° , for
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i = l,2,...,s. Thus, we need to show that

P (ch (K,KKK'K' (KEK')~ ) > c) > 1 as a + °°
. The followingsi 1

lemma provides the necessary result.

Lemma 3.5.6 : Let V ~ w
m ( s i'

v '°> and u ~ Wm ^ Z 2
/U ' 0)/

independently, and let

K , (mxm) = diag (ak, ,ak- , . . . , ak , 1, . . . ,1)

Then P (ch (K-^K-Jv ) > c) -*• 1 as a +

Proof: Let

U12A f
V
ll

V
12

U
2 2V VV21

V
22

where U, , is s x s, U_, is (m-s)xs, U, ~ is s x (m-s) , and

U
22

is (m-s) x (m-s) . Similarly, define V^, V
2 l'

V12' and V
22

Let F^ be the s x m matrix with (F A ) . . = 1: i = 1,2, ... ,s

and (F*)^ =0: i # j, and let

K
2
(sxs) = diag (k, ,k

2
, . . . ,k ).

Recall from Section 3.4 that

ch (K,UKjV
-1

) = max min{ X
:

| FK UK'F '- AFVF
'

[
= 0}

FeS(m,s) X
L l

> min{X: | F*K, UK'FJ-AF*VF£ |
= 0}

X ~ L

. o
= min{X:|a K

2
u
ii

K2~ Avil I

= °^
X

= oc
2ch

s
(K

2
UllK

^V-l).

Thus,

P(ch
s
(K

1
UK-[V~

1
) > c) > P(a 2

ch
s
(K

2
U
11

K
2
'V^) > c)

= p (ch
s
(K

2
U
11
K^V^) > c/a

2
),
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and K-U-, , K 'V, , is positive definite with probability one,

so that

lim P(ch (K,UK/V ) > c)
_ s 1 1

a ->oo

= lim P(ch <K
2
U
11

K
2
V
11 )

> c/a2)
a •* °°

= P(ch
s
(K

2
U
i;L

K^V~^) > 0) - 1.

3.6 The Limiting Distribution of $

We have seen that the likelihood ratio test for testing

the hypothesis Hq
S)

: rank (M) < s - 1 against k|
s)

: rank (:M)

= s is based on the s largest root, $ . However, if
<J>

is

to be used as a test statistic, it is necessary to compute

the significance level, a, where

a = sud P (c|> > c|H (s)
) .

„(s)
s °

H
Q

With 6, > 6 > ... > 5 as the latent roots of (Z+M)
Z~

I z m
(s)

the null hypothesis can be written H' : 6 = 1 , or more

precisely, H*
s)

: 6, > 6« > ... > 6 , > 1, 6 = 5 _,__
=r J ' 1 2

- s-1 s s + 1

... = 6 = 1. We will write
<J> . m (6

1
, 6

2
,. • . , 6m ) to indicate

that <$> is the s largest root of m roots and depends on
s

the population roots &^ , 8
2

, . . . ,

6

m . Then we may write a,

the significance level, as

sup P(* (6T ,6
9 ,. . . ,6 , ,1,.. . ,1) > c)

:...*6 ,>1
s-1

But we saw in the previous section that
<t> e is stochastically

1* 6 2*' --^s-l- 1

s

increasing in each 5 . : i = 1 , 2 , . . . ,m. It then follows that
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a = P ( *s-m
(o° ,C°' " ' *

'°°' 1
' ' • '

,:L) > c) '

where <{> (°° ,°° , . . . ,°° , 1 , . . . , 1) denotes the random variable

which has the limiting distribution of d> (<$-,, <5_ .... ,<5 , ,3 r s:m 1 2' ' s-1

1,...,1) as 5. + <»: i = 1,2,..., s-1. So the problem at

hand is to determine the distribution of d> (°° ,°°, • . . ,°°/Y s:m ' ' '
'

1,...,D.

Recall that E , W (Z,e,0), H ~ W (Z+M,h,0), and there

exists a matrix K such that KEK ' = I and K(E+M)K' = A =

diag (6, , 6-, , . . . , 6 ). If we define E and H as
l z m

E = A
_2
KEK'A~ 2

~ W (A
_1

,e,0),m

H = A~ 2KHK'A"' 2
~ W (l,h,0),m ' '

-k -3< -3- _J<
where A - 2 = diag(<5, ,6_ 2

, . . . , 6
2

) , then clearly 6 (6, ,12 m J T s:m 1

6 n ,...,& ) = ch (HE~ ) = ch (HE~ ). Hence, if we let
^ m s s

E ~ W (A ,e,0) , where A = diag (n<5 , ,n6 _ , . . . ,nS „ , ,1, . . . ,1) ,niun n. xz <z>™ x.

then we need to find the limiting distribution of ch (HE
-

)3 s n

as n •> oo. Since we can write E = Y Y', where Y = (y,
v

n n' n x l

(n)
— x x win: x trj i —iv .

n

(n) (n) %

(n) -1
I 2 '

-•• 'le )
and

^i ~ N
m (-^' n

): i = l»2,...,e, inde-

pendently, we can restate the problem as that of determining

the limiting distribution of ch (H (Y Y' ) ). Consider the
s n n

following elementary result.

Lemma 3.6.1 : Ifu ~ N(0,l/n), then u ——> u,

where u is a degenerate random variable with all of its

probability at zero.

We also need the following results, the first of which

is well known as the continuity theorem (see, for example,

Breiman [1968:236] )

.
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Lemma 3.6.2 : Let x, ,x» ,x_ , . . . be a sequence of random

vectors. Then x > x if and only if—n — J

lim E[exp(ix't)] = E[exp(ix't)]
n-><»

for all t where i = /-T.

Lemma 3.6.3: Suppose that as n * °° , x. >x.:

i -, j r (n) (n) (n) , , ,

j = 1 , 2 , . . . ,m, and suppose {x, ,X-> > • • • ti£ •> are mutually

independent for all n. Then

(n)

(n)

2l

(n)
x
2

(n)
x

L_ —m

^2

x J
v- —

m

Proof : Note that it follows from Lemma 3.6.2 that

lim E[exp (ix.
(n)

t . ) ] = E[exp (ix!t .) ] .

Also, because of independence,

E[exp(ix (n)
't)] = E[exp(i E xf

n)
't.)]

j
= 1 1 D

= n E[exp(ix! n ' t.)],
j=l 3 3

lim E[exp(ix (n)
't) ] = n lim E [exp (ix f

n)
't . ) ]

n->«> j=l n^-°° * -*

= n E[exp(ixft .) ]

j=l 3-3
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= E[exp(i I x'.t .) ]

= E[exp(ix't) ]

.

The result now follows from Lemma 3.6.2.

From Lemma 3.6.1 and Lemma 3.6.3 we observe that

Y —> Y with
n

2

where the elements of Y, ((s-l)xe) are all equal to zero with

probability one, and Y„ = (y2 -i 'Y.70 ' ' ' ' '%-2 ^ witn

y~ . ~N , , (0 ,1) : i=l,2,...,e, independently.
*-Zi m-s + I —

Consider the following result, the proof of which can be

found in Ostrowski [1973:334].

Lemma 3.6.4 : Let A(nxn) and B(nxn) be two matrices, and

suppose the latent roots of A and B are A. and A '. : i = 1,2,

...,n, respectively. Put

N = max
(

I a . . | , |
b . •

|
) ,

l^i^n,l^jin 1D 1D

and

1
n n

6=4t Z E la. .-b. . I

.

nN
i=l j=l ^ ^

Then to every root A.' of B there belongs a certain root

A . of A such that we have
1

|A^-A
i

|

< (n+2)N6
1/n

.

Further, for a suitable ordering of A. and A.' we have

I A. -A.' I £ 2 (n+l)
2
N6

1/n
.

1 1 1 '
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Lemma 3.6.5, Corollary : If A is an n x n matrix, then

for each i ch. (A) is a continuous function of the elements

of A.

Lemma 3.6.6, Corollary : Let A be an n x n matrix and B,

an n x p matrix. Then the roots of the equation

| A- ABB' |=0 (3.6.1)

are continuous functions of the elements of A and B except

at B such that | BB '
|

=0.

Proof : Let X.: i = l,2,...,n be the roots of (3.6.1). Then

when
|
BB '

]

4- 0, it follows that these roots are also the

latent roots of A(BB') . So, from Lemma 3.6.5, for each i

A. is a continuous function of the elements of A (BB '

)

But clearly, when [ BB
'

| #0, the elements of A(BB') are

continuous functions of the elements of A and B. Hence, for

each i X. is a continuous function of A and B except when
i

| BB '
j

= .

We need one final result involving the limiting distri-

bution of a function of random vectors (see Mann and Wald

[1943] ) .

Lemma 3.6.7: Let x >x, and let g (x) be a Borel—n — 3 —

measurable function such that the set R of discontinuity

points of g (x) is closed and P (x£R) = 0. Then

g(x
n )
—

"> 9(x)

Now recall that we seek the limiting distribution of

ch (H(Y Y') ). In order to use Lemma 3.6.7 it is neces-
s n n

sary to show that ch (H(YY') ) is continuous with
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probability one under the distribution of (H,Y) . Now with

11 l

12

H =

V H
21

n
22/

where H,, is (s-1) x (s-1) , H
12

is (s-1) x (m-s+1) , H
21

is

(m-s+1) x (s-1) , and H
22

is (m-s+1) * (m-s+1) , the roots under

the distribution of (h,Y) are the solutions to

H
11

H
12

(0) (0)

- *

H, H. (0) Y Y '

x
2 2*

= (3.6.2)

l

21 22

Since H is nonsingular with probability one, we may put

/'G-

H"
1

= G -
11

G
12>

V*21 22

so (3.6.2) can be written

( (0)

I -
m

G
12

Y
2
Y
2

(0) C V V 'b
22 2 2

= 0,

s-1 -*G 12
Y
2
Y
2

(0) Vs+r*G
22

Y
2
Y
2

Thus, it must be true that

I .. - 4)G„ 9Y„Y' = 0,
m-s+1 22 2 2

=

G
22 " *Y

2
Y
2|

=
°

(3.6.3)

-1,
Then we see that with probability one ch

1
(H(YY f

) ),

ch„ (H(YY')"
1

) , . . . ,ch _ 1
(H(YY')~

1
) are undefined, and
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ch (H(YY') ) is now the largest solution to (3.6.3); that is,

since YY ' is of rank m-s+1 with probability one, there are

only m-s + 1 solutions to |H-<J>YY'| =0. It can be shown (see,

for example, Graybill [1969:165]) that G
22

= (H
22

-H
2
,h7 }^

12 )

_1
>

since H -H--, H, , H, ~ is nonsingular with probability one,

so that (3.6.3) can be written

|H
22

-H
21

H~lfi
12

- 4>Y
2
Y^| = 0.

Clearly, Y~Y^ is also nonsingular with probability one,

and hence by Lemma 3.6.6 ch (H(YY') ) is continuous with

probability one under the distribution of (H,Y) . The set of

discontinuity points, R, is closed, since R = {(H, Y) :
|
Y-Y- |

=0}

Note also that as is well known (see, for example, Anderson

[1958:85]) H
22

-H
21
H~^H

12
~ W

+1 (I ,h-s+l , 0) . Therefore,

from Lemma 3.6.7 since (H,Y ) > (H,Y), it follows that

<$> (°°,°°, . . . ,°°,1, . . . ,1) - $, , , (1,1, . . . ,1) ,r s:m tii ii y l:m-s+l iii

where (j>, _ , (1 , 1 , . . . , 1) denotes the distribution of the

largest root of |w,-d>W»| = 0, where W, ~ W , , (I ,h-s+l , 0) ,3
' 1 2

'

1 m-s+1

and W_ , W _ , (l,e,0) , independently.

So in testing H^ '
: rank (M) < s-1 against HJ '

:

rank (M) = s we choose as our critical value c(a,m,s) , where

P (ch, (W-,W« ) > c(a,m,s)) = a. By so doing we will guarantee

that

fs)sup P (* s . m (<S 1 '5
2 ' * ' * "5 m ) > c (ct

'

m ' s )
I

h
q ) = a -

H (s)

Charts and tables of the distribution of the largest root,

0, , of |

W, -9 (W, +W_) |
= are available (see, for example,
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Morrison [1976:379], Pillai [1965,1967]). These may be used

to calculate c(a,m,s), since 8, =
<J>, / (l+<j>, ) , where <j>, is the

largest root of
|
W , — cJ>W _

|

= 0.

In order to determine the rank of M, a sequential test

procedure is used. To illustrate this procedure, we will

return to the example presented in Section 2.3. Recall that

D = diag(142.729, 29.6669, .91847, .625404), h = 20, e = 105,

so that <}>, - 27.1865, cf>

2
= 5.65084,

<J>

3
= .174947, and

<J> 4
=

(4)
.119125. First we consider testing the hypothesis H

Q
:

(4)
rank (M) < 3 against H^ - rank (M) =4. The null hypothesis,

H^
4)

, is rejected if <t>

A
> c(.05,4,4), where c(.05,4,4) =

17 F(17,105, .05) /105, and F (17 , 105 , . 05) is the constant for

which P(F(17,105) > F (17 , 105 , . 05) ) = .05 if F(17,105) ~

17
F, ot-(0). Thus, c (.05,4,4) is approximately equal to .28,

and clearly, $. = .119125 < .28, so that we do not reject

(4) (4)
H^ . Since H* is not rejected, we now consider testing

the hypothesis H*
3)

: rank (M) < 2 against H-[
3)

: rank (M) = 3.

(3)
The null hypothesis, H* ', is rejected if <f>_ > c(.05,4,3).

Using the charts mentioned earlier we find that c (.05,4,3)

is approximately equal to .36. Since $ -. - .174947 < .36,

(3)
we do not reject H* and so next consider testing the

hypothesis Hg
2)

: rank (M) < 1 against H-J
': rank (M) =2.

We find that c (.05,4,2) is approximately equal to .42, and

(2)
therefore, since <}>- = 5.65084 > .42, we reject K' and

conclude that the rank of M could very reasonably be taken

as two.
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The procedure above is open to objections on the grounds

that the significance level for the test criterion has not

been adjusted to take into account the fact that a sequence

of hypotheses is being tested, with each one dependent on

the previous ones not being rejected. The mathematical com-

plications involved in controlling the overall error make

such an adjustment virtually impossible to carry out.



CHAPTER 4

MAXIMIZATION OF THE LIKELIHOOD FUNCTION

WHEN £ = a I

4 . 1 The Likelihood Function

Suppose the vectors x . . (mxl) : i = 1 , 2 , . . . , g; j=l , 2 , . . . ,n

can be modeled by

x. . = u + Lf . + z. . , (4.1.1)

wherein jj(mxl) is a fixed but unknown vector, L (mxp)

is a fixed but unknown matrix, f. ~ N (0,1): i = 1,2,. ..,g,

2
and z . . ~ N (0,o I): i = l,2,...,g;i=l,2...,n. We assume—xj m — 3 J

that the set of random vectors {f, ,f „,..., f , z -,,,..., z }—1'—2 —g — 11 —gn

are mutually independent. Thus, x. .~ N (jj,V) with

2
V = LL ' + a I . For any orthogonal matrix P (pxp) it follows

that V = LL' + a
2
I = LP (LP)' + a I, so that, while LL' is

unique, L is not unique. In this section we will derive the

2likelihood function for \i, LL ' , and o .

By methods identical to those presented in Section 2.1

_ 2
it can be shown that (x ,E,H) is sufficient for (_p,a ,nLL')

where

g n
x = £ E x../gn ~ N

ffl
(j±, (1/gn) (cTI+nLL ') ) ,

i=l j=l

g n
2.E= I I (x,^-x. ) (x^-x. ) '-. W_(a l,e,0) ,

75

i=1 j
= 1

"ID -i. -ID -x.
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a _ _ _ _ 2
H = n Z (x. -x ) (x. -x ) '„ W (a I+nLL',h,0)

,

, —1. —
. . —l. — . . m

i=l

and e = g(n-l); h = g-1. In addition, if we let c denote

a constant, we find that the density of E can be written

f(E) = c|E|
Js(e"m~ 1) expi-htrio

2!)'^]

i ,-, i h (e-m-1) r , _, v / -,^2 1= c|E| exp[-( I e..)/2a ]

i=l
1X

m
2

= g ( S e..;a )g
2
(E).

1=1
m

Hence, from the set {e, , ,e, _ , . . . ,e , ,e } b=trE= £ e . .11' 12' ' m,m-l' mm . t n
2

1=1
is sufficient for a .

We may assume, then, that we have, independently,

x , b , and H where

*.. - Nm(iM l/gn)(a 2
I +nLL')),

b/a ~ x
B

f

H - W (a
2
I+nLL' ,h,0) ,m

2
and B = mg(n-l). The problem is to estimate jj, a , and LL ' ,

2
or equivalently , to estimate jj, a , and M where M = nLL ' .

We have seen that L is not uniquely defined and so if LL ' is

an estimate of LL ' , then any L, such that LL ' = LL ' , is an

2
estimate of L. The likelihood function of (jj,a ,M) can be

expressed as

*(Z b h) -
Km (I ' h) %3-l,

H
|Mh-m-l)

|

(2tr/gn) (a I+M)
|

2
\o I+M| 2

(2a )

2p
r (%0)

x exp[-Jsgn(x -u )
' (a

2
I+M)

_1
(x -y ) -hb/a

2-^tr (a
2
I+M)

-1
H] ,
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where, as before,

K
_1

(l,h) = 2
hmh ^m (m-D

n T(h(h-j + l)).m
j=l

The logarithm of the likelihood function, omitting a function

of the observations, is

-b/2o -h$lno
2
-htr (a

2
I+M)

-1
H-^h£n |

a

2
I+M[

-%£n| a
2I+M|-^gn(x -y) ' (a

2
I+M)

_1
(x -y) .

We seek the solution which maximizes the equation above, or

equivalent ly, the solution which minimizes

b/a
2
+6£na 2 +tr (a

2
I+M)

-1
H+(h+l) In |

a

2
I+M| (4.1.2)

+gn(x -y )
' (a

2
I+M)

_1
(x -u_) .

2If we ignore the constraints that a is positive and M is

nonnegative definite and seek the stationary values of (4.1.2)

2over all possible (v,o ,M) , we find, upon taking the partial

2derivatives of (4.1.2) with respect to a , M, and y and

setting them equal to zero, that

-b/ (a
2

)

2
+B/a

2 -tr (a
2
I+M)

-1
H (a

2
I+M)

-1
+ (h+1) tr (a

2
I+M)

_1

-tr (gn(a
2
I+M)

_1
(x -y ) (x -y ) ' (c

2
I+M)

_1
)
= 0,

- (a
2
I+M)

_1
H(a

2
I+M)

_1
+(h+l) (a

2
I+M)

_1

-gn(o
2
I+M)

_1
(x -y) (x -y ) ' (o

2
I+M)

_1
= (0),

gn(a 2
I+M)

_1
(x -y) = 0,

for which the solutions are

u, = x ,

o
2

= b/6,

M = (h+l)
_1

H - (b/6) I.
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Since M is a nonnegative definite matrix, its maximum likeli-

hood estimate must also be nonnegative definite, so the solu-

tions above are the maximum likelihood estimates only if

(h+1) H - (b/B)I is nonnegative definite. Although the

2solutions for _y and a are the natural unbiased estimates,

the solution for M is not since E (M) = (h+1) (hH-o I).

In addition, we observe that E (M) is also not necessarily

nonnegative definite.

Using the principle of marginal sufficiency referred

to in Chapter 2, we see that (b,H) is marginally sufficient

2for (a ,M) . Hence, we choose to use the marginal likelihood

2function of (a ,M) instead of the likelihood function of

2 2
(y,a ,M) . The marginal likelihood function of (a ,M) can be

expressed as

f(b , H >
._

ll

U ' h

2\ s
b
%6-l,

H|
Mh-m-l)

x exp[-b/2a 2
-J5tr (a

2
I+M)

-1
H] .

The logarithm of the likelihood, omitting a function of

the observations, is

-b/2a
2
-^B£na

2-^tr(a 2
I+M)

-1
H-%h£n|

a

2
I+M|

,

and we seek the solution which maximizes this equation, or

equivalently , the solution which minimizes

b/a
2 +6£no 2

+tr (a
2
I+M)

_1
H+h£n|

a

2
I+M|

.

(4.1.3)

2Again, if we ignore the constraints that a is positive and

M is nonnegative definite and seek the stationary value of

2
(4.1.3) over all possible (a ,M) , we find, upon taking
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2
the partial derivatives of (4.1.3) with respect to and M

and setting them equal to zero, that

-b/ (a
2

)

2
+8/a

2
-tr (a

2
I+M)

_1
H (a

2
I+M)

-1
+htr (a

2
I+M)

_1
= 0,

and

- (a
2
I+M)

-1
H(a

2
I+M)

-1
+h(a 2

I+M)
1 = (0) ,

for which the solutions are

a
2

= b/B,

M* = (l/h)H - (b/3)l.

Note that these solutions are the natural unbiased estimates

2of a and M and, clearly, E(M^) = M is nonnegative definite.

Hence, we choose to continue our work with the marginal like-

2lihood function of (a ,M) . Since M is nonnegative definite,

the solutions above are the maximum likelihood estimates

only if (l/h)H - (b/8)I is also nonnegative definite. In the

next section we will derive maximum likelihood estimates for

2
a and M which are valid for all possible (b,H).

4 . 2 The Maximum Likelihood Estimates

In this section we seek the maximum likelihood estimates

2 2
s

of a and M subject to the constraints a > and Me UP..
j-0 3

Recall that, aside from a constant, the logarithm of the

2likelihood function of (a ,M) is

-h/2a 2
-h&lno

2
-htr(o 2 I+M)~ 1

E-hhln\ g
2
I+M| .

We seek the solution which maximizes the equation above, or

equivalently , the solution which minimizes

b/a
2+0£na 2 +tr (o

2
I+M)

-1
H+h£n I

a

2
I+M|
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2
S

subiect to a > and Me U P.. Note that this can be
j-0 3

rewritten as

tr (a
2
I)

-1
(-I)+ -£n|a

2
l| +tr (a

2
I+M)

_1
H+Mn| a

2
I+M| . (4.2.1)v m ' m ' '

'
'

Since (b/6)I and H* = (l/h)H are both symmetric matrices,
m

and (b/3)I eP and H^e UP., there exists a nonsingular
m

* j=0 J

matrix K(mxm) such that K ( (b/3) I) K ' = I and KH*K ' = D where

D = diag (d, ,d„ , . . . ,d ) and d,>d
2
> . . . >d > are the latent

roots of H*((b/3)I)
-1

= (@/b)H*. Then with a
2

= Ba
2
/b and

M = KMK', (4.2.1) can be rewritten

£ tr K'~
1
(a

2
I)"

1
K
-1

+ -In I

a

2
I I +htrK

'

_1
(a

2
I+M)

-1
K
-1

D
m m

i 2 i

+ h£n[ a I+M|

= -^[tr (a
2
I)

_1
+S,n]a

2
l| ] +h [tr (a

2
I+M)

_1
D+£n I a

2
I+M| ]m

S i i 2
-

(

£+h) in Km

=
<J>
(a

2 I,a 2 I+M;D,-,h)- (- +h)£n|K|
2

,

where $ is the function discussed in Section 2.2. Thus, the

~2 ~2
problem has been reduced to that of minimizing <j) (a I, a I+M;

B 2 ~ s
D,— ,h) subject to a > and MeU P., or equivalently

,

m
j=0 3

(a
2
I,a

2
I+M) £ C since C = { (A,B) : AeP , BeP , 3-A£ UP.}.

s s mm -;_qJ

2 2- 2
Now for fixed (a I, a I+M) e C consider <|>(P(a I)P'r

P (o
2
I+M)P r ;D,-,h) = A (a

2
I,P(a

2
I+M)P' ;D,-,h) for all orthog-

'm m

onal P. Note that this is minimized with respect to P when

2 ~ -1
tr P(o I+.M) P'D is minimized. So from Lemma 2.2.1 it fol-

lows that all stationary points, and therefore the absolute

7 1 ~ B 2
minimum, of $ (a I ,P (a I+M ) P' ; D ,-,h) occur when P"(0 I+M)P'
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is diagonal. Hence, in searching for the absolute minimum

9 ft
"}0~"

of <$> (o 1,5 I+M;D,— ,h) over all (a I, a I+M) e C we may assume

2that a I+M is diagonal. This result also follows immediately

from Lemma 2.2.12.

Now with V = diag (v n , v„ , . . . ,v ) and f
.
(v

.
) = d . /v

.

3 * 1' 2 m 11 11
+ £n v . , consider minimizing

l v

R 1
m d

.

4>(uI,V;D,-,h) = 3(- +£nu)+h E (— + £nv.) (4.2.2)m u . , v. i
i=l l

1
m

= B(i +£nu)+h Z f.(v.) ,

i=l

subject to (uI,V) eC . The constraint (ul ,V ) zC can be

equivalently written as

v. > u > for i = 1,2,.. .,m, (4.2.3)

and

v. = u for i e J

,

(4.2.4)

where J c {l,2,...,m} is a set which has at least m - s

elements. Now

df (v )

—J — = (l-d./v )/v.,
dv- 11 i

so that the function f. decreases monotonically in v. for
l

2 l

v. e"(0,d.l, increases monotonically in v. for v. e [d., 00 ),li J i 11
and is minimized over all v. e (0,°°) when v. = d. . Thus,

i 11
the unrestricted minimum of (4.2.2) occurs when u = 1 and

V = D. It is evident from the structure of f . that if the
l

unrestricted minimum does not satisfy the constraints

(4.2.3) and (4.2.4), then the restricted minimum will
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occur when u = v. = v. = ... = v. for some set of integers

{i. ,i„ / . . . ,i, } <3 {1,2 , . . . ,m} . We need to determine k, the

number of integers, and also we need to know exactly which k

integers from amongst the integers l,2,...,m comprise the

set {i,,i
2

, . . . ,ik
>

.

First, we will consider the constraint given by (4.2.3).

Let the variable r be defined in the following manner. If

l<d<d . < . . . < d, , then let r = . If d < 1 <dm . < . . . < d, ,

m m- 1 1 m m- I 1

then let r = 1. If d < . . .< dL ..,< 1< d . < ...< d-., then
m m-t+l m-t i

let r, 1 < r < t, be the smallest value for which

m
d > (B+h l d.)/(3+rh).
m_r j=m-r+l 3

Finally, if d <d ,<...< d, < 1, then let r, 1 < r < m - I,
m m- 1 l

be the smallest value for which the inequality above is

satisfied. If the inequality is not satisfied for any

choice of r, H r i i - 1, then let r = m. Now if r = ,

the minimum of (4.2.2) subject to (4.2.3) is simply the

unrestricted minimum of (4.2.2), and if r > 0, the minimum

of (4.2.2) subject to (4.2.3) is just the minimum of (4.2.2)

subject tou=v = v ,=...= v . n
which occurs at

J m m-l m-r+i

m
fu = vm = ... = vm _, = (B+h I d.)/(B+rh),
I

m m_r+1 j=m-r+l 3

I v. = d. for i = l,2,...,m-r.
v. 1 1

Now consider the constraint given by (4.2.4). If

r > m - s, then the minimum of (4.2.2) subject to (4.2.3)
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and (4.2.4) is simply the minimum of (4.2.2) subject to

(4.2.3). If r < m - s, the minimum of (4.2.2) subject to

(4.2.3) and (4.2.4) is obtained by minimizing (4.2.2) sub-

ject to

rn = v . = v . = . . . = v

.

if r = 0,

)
Jl ' 2 Dra~ s

(4.2.5)

I u = v = = v ,i - v. = ... = v . if r > 0,m" r+1
3l ^m-s-r

where { j- ,

j

2
, . . .

O

m_ s _r ^ G {1,2 , . . . ,m-r-l,m--r} . We will

now show that, in fact, j, = m-r, j„ = m-r-1, . . . ,

J

m_ s_r
=

s+1. Note that for q = l,2,...,m-l (4.2.2) is minimized

subject to u = v = . . .=v , , whenJ m m-q+1

m

r
u - »„ - — - %-q+ i - ,3+h

j=m£q+1
d
j
)/,6+qh) '

l^v . = d. for j = l,2,...,m-q,

and has a minimal value equal to

m
•B+h I d

•_ _ -, j \
m-q

3

B+qh
+

—J + (3+qh)+h(m-q)+h £ Zndy (4.2.6)

Similarly, (4.2.2) is minimized subject to u = v = ...

= v , - v. , where i e {1 , 2 , . . . ,m-q-l ,m-q} , when
m-q+1 lm-q+

m
ru-v = . . . = v _,, = v. = (B+h I d.+hd. ) / (B+(q+l)h) ,

I m m-q+1 i j=m-q+ i 3 !

L.V. = d. for j = 1, . . . , i- ] , i+1, . . . ,m-q,

and has a minimal value equal to

m
/B+h £ d .+hd A _ _

( B+ (q+l)h)£nl ^-(f+TTh r ( 3+ (q+1) h) +h (m-^_1) +h
.

Z £nd
j

*

(4.2.7)
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Now subtracting (4.2.6) from (4.2.7), we obtain

m m
/6+h E d.+hd\ S+h E d\

(3+ (q+ l)h) &nf i^'^l
j

-(B+qh)£nf ^M*^,
^

(4.2.8)

which is the increase in the minimal value of (4.2.2) due to

the additional constraint, u = v.. Differentiation of (4.2.8)

with respect to d. yields

J msin^ . i ,

\3+h E d.+hd./
x

j=m-q+l : 1

m
which is negative when d. < (B+h E d.)/(g+qh) and positive

1 j=m-q+l J

m
when d. > (8+h E d.)/(6+qh). Hence, (4.2.8) is an increas-

j=m-q+l -*

m
ing function of d. when d. >

( 3+h E d.)/(8+qh), so that if
1 X

j=m-q+l D

m
d > (B+h E d.)/(B+qh), choosing i = m-q will yield
m~* j=m-q+l 3

a smaller minimum value than any other choice of i < m-q.

In a similar manner subtracting the unrestricted minimal value

of (4.2.2) from the minimal value of (4.2.2) subject to u = v.

where i e { 1 , 2 , . . . ,m} , we obtain

rtj+hdA
(6+hnnl-g^l-h £nd

i
,

which is an increasing function of d. for d. > 1. Thus, if

d > 1, choosing i = m will yield a smaller minimum value than
m

any other choice of i < m. Recall that we are investigating

the minimum of (4.2.2) subject to (4.2.3) and (4.2.4) when

r<m-s. If r = 0, then d > 1, so that m-r = m is the
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optimal choice for j,. Further, since d. > 1 for i = 1,2,

where r = , we have
m

d, (B+crh) ( Z d./a) m

m
6+h Z d^ (6+qh) ( Z d

. /q)
j=nt-q+l "

<
j=m-q+l 3 __ _ v

6+qh (6+qh) "
j=m-q+ l j m"q

'

for q = 1,2, . . . ,m-l, and hence, when r = choosing j, = m,

j 2
= m-l,...,j = s+1 in (4.2.5) will yield a smaller

minimum than any other choice of {j-,,J-,/...,i }a{l,2,J 1 J 2 ' J m-s

...,m-l,m}. Now from the definition of r we see that

m
dm-r

> (6+h Z d.)/(B+rh) if 1 < r < m-1. In addition,
j=m-r+l J

m
for q = l,2,...,m-2 if d >(6+h l d.)/(6+qh), then

q j=m-q+l J

m m
6+h Z d. (6+qh) ((6+h Z d.)/(6+qh)) + hd

j=m-q 3
= j=m-q+l J m_q

,m

6+(q+l)h 6+(q+l)h

< ((6+qh)d
m_q

+hd
m_g

)/(6+(q+l)h)

= d < dm-q m-q-1

m
Thus, d > (6+h Z d )/(6+qh) for q = r ,r+l , . . . ,m-l

.

j=m-q+l -1

It then follows that, when 1 < r < m-s, choosing j, = m-r,

j 2
= m-r-1, . . . ,

j

m_ s _ r
= s+1 in (4.2.5) will yield a smaller

minimum than any other choice of {i-,,i«,...,i }c
1 ~ 2. m-s-r

{1,2,. . . ,m-r-1,m-r }

.

We can now obtain the minimal solution to (4.2.2)

subject to (4.2.3) and (4.2.4). Denoting the minimal solution

by (u ,V ) , we find that if r > m-s,
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U o =V c TT1
=V o «. i

= --- =v
c: ™ ^i =

( B+h z d )/((3+rh),
s sm s,m-l s,m-r+l

j=m-r+l -1

v . = d. for j = 1,2, . . . ,m-r ,

and if r < m - s,

'

u.=v =v o m i
= --- =v

<= c+r< e+h z d.)/(3+(m-s)h) ,

s sm s,m-l s,s+l t=s+1 3

v . = d

.

for j = 1,2, ... ,s.

2 2-8
Thus, cj)(a I/O I+M;D,— ,h) is minimized subject to

(a~I,a
2 I+M)e C at

s

~2
a = u ,

s

M = V - u I.
s s

2
The maximum likelihood estimates of a and M are, therefore,

-2
a and M given by

a
2 = bu

s
/B,

M = K
-1

(V -u I)K'
_1

.

s s

To illustrate the computation involved in deriving the

maximum likelihood estimates, we will again consider the

example presented in Section 2.3. Recall that with m = 4,

g = 21, n = 6, 1 = 1, and M = diag(99, 24, 0, 0) a matrix E

from the distribution W.(I, 105, 0) and a matrix H from the

distribution W. (I+M, 20, 0) were generated. With

B = mg(n-l) = 420, b = trE, and H* = (1/20)H, we need to find

a nonsingular matrix K such that K((b/B)I)K' = I
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and KH*K ' = D where D is a diagonal matrix. Let D, =

diag (ch, (H*) ,ch_ (H*) , . . . ,ch (H A ) ) , and let Q be the orthog-

onal matrix for which the i column is the characteristic

vector of H A corresponding to ch
.
(H*) , then since H^ is sym-

metric , P 'H*P = D, . Clearly, ( ( B^/b^) P) '
( (b/B) I) ( (B^/b*

2
) P)

= P'P = I and ( (B^/b^P) 'H* ( (BVb^P) = (B/b)D
1

. Hence,

we find that, for our example,

K =

1.00723

.0551796

.00921922

-.000345628

.0551967

-1.00719

-.00261055

-.0128084

-.00906271

-.00310948

1.00874

-.000137374

-.00104477

.0127707

-.00010739

-1.0087

and D = diag ( 94 . 1065 , 34.8845, 1.01721, .618312). Note that

d . < 1 < d < d„ < d, , so that r = 1. Then simple calculation

yields u
Q

= 6.06506, V
Q

= 6.065061, u
1

= 2.39667, V
±

=

diag(94.1065, 2.39667, 2.39667, 2.39667), u
2

= .984153,

V
2

= diag(94.1065, 34.8845, .984153, .984153), u
3

- u
4

=

.982651, V = V
4

- diag(94.1065, 34.8845, 1.01721, .982651).

2
Thus, if we let a. and M. denote the maximum likelihood11

2estimates of a and M, respectively, subject to the con-

2 i
straints a > and Me U P . , we see that

j=0 3

„2
a
Q

= 5.95987,

M
Q

= (0) ,

aj = 2.3551,
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We adopt the likelihood approach and look at

max f(b,H)/max f(b,H) = X e (0,1].

With u and the matrix V = diag (v , ,v ~,...,v )

s s ' si s2 sm

given by

m
'u = v =...=v _,, = (6+h E d.)/(0+rh),

s sm s,m-r+l .__ ,, 1' j=m-r+l J

v .
= d. for j = l,2,...,m-r,

if r > m - s, and

u = v =...=v .. = (3+h I d.)/(B+(m-s)h) ,

s sm s,s+l j=s+l 3

v . = d. for j = l,2,...,s,
S] j

-2 2
if r < m - s, the maximum likelihood estimators a , of a , and

M
Q , of M, when the parameters are restricted to lie within

Q, , are given by

°l = bu
s
/3 '

M
Q

= K
"
1(V U

s
I)K

''_1
'

where K is a nonsingular matrix. Similarly, the maximum

~2 2
likelihood estimators a , of a , and M , of M, when the

parameters are restricted to lie within co , are given by

°l
= bu

s-l /B '

.K = K
- 1

<Vr u
s-i

I,K
'~ 1

-

It should be noted that if r > m - s +1, then V = V , and
s s-1

u = u , .

s s-1
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The likelihood ratio, A, is

A = max f(b,H)/max f(b,H)

exo[-b/2a
/

2 -3
5tr(S

2 I+M )

_1
H] (5

2
)

h®
I S

2
I+M n |

%h

exp[-b/2a 2
-^tr(a 2

I+ftn )

-1
H] (a

2
)

h ^\o
2
l+9i \

hh
U Q, U CO ' CO CO

'

exp[-6/2u ,-JshtrV
1

1
D] Iv I

hh
u
hi

S-I s-i ' s 1 s

exp[-6/2u -^htrV X
D] |v . I

hh
u^ 6

,
S S S~ X 3 — X

IV
\

hh u*
s s

s-1 1 s-1

since, if r > m - s + 1

6(u
s-l"

u
s
1) + h tr(V

s-l"
V
s
1)D (4.3.1)

= 6(u^
1
-u^

1
) + h tr(V~

s

1
-V~

s

l
)D

= 0,

and if r < m - s + 1, (4.3.1) becomes

g
|

V(m-s+l)h - B + (m-s)h \ hL) +
/Vfrn-s+DhA ™

d _ _
\

m m /\ I
m

j - 1
^B+h Id. 8+h Z d/ V \B+h Id. V

3-53

j=s -
1 j=s+l -

1 j=s -
1

g+(m-s)h "\ ™
1

m
/ •_ , -i j /

3+h E d. y 3-s+l y

j=s+l D

B+(r S+1)h
l (B+h ? d.) -fj±fet£lhJ\ (6+h Z d.) - h

.B+h z d 7 3=s - v6+h z d.y ^*+1 D

j=s D j=s+l 3

; + (m-s+l)h - (B+(m-s)h)-h = 0.
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So we have

%(6+h(m-s) )

X =

+ (m-s+l)h> ^+h(m-s+l))p.^ + 1

d
j
A

.

f < +1«
,

J
. —rr— if r < ra-s+1,mi I 3+ (m-s) h I

'

B+h I d. / V /
j=s :

if r > m-s+1.

Putting t = hd /(6+h £ d.), we can rewrite A as
j=s D

^f B+ (m-s +l)h f
h

f
6+(m-s+l)h> (6+h(m- s))

h 6+(m-s)h
.Jsh

's
t.-(l-y (6+h(m-s))

if r < m-s+1,

v if r > m-s+1

We will now show that r < m-s+1 if and only if

t > h/ (6+ (m-s+1) h) . First consider the case in which

s = m. Then r < m-s+1 = 1 if and only if d > 1, andm

t = hd /(6+hd ) = h/(6/d +h) > h/(6+h) if d > 1, andm m m m m

t = h/ (B/d +h) < h/ (B+h)m m

if d < 1. Consider now the case in which 1 < s < m-1.m

Again we want to show that r < m-s+1 if and only if

t > h/ (6+(m-s+l)h) . If r = 0, clearly

d .
> (B+h E d.)/(6+ih),

j=m-i+l 3

for i = 1,2, ... ,111-1. Also, if <r < m-s + 1, then
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d > (3+h Z d.)/(B+rh),m-r . , , 1j=m-r+l J

and we have seen that this implies that

m
d > (3+h E d.) / (3+qh)

,

m-q •
, i 1^ 3=m-q+l J

for q = r ,r+l, . . . ,m-l and, more specifically, for q = m-s.

Hence, if r<m-s+l,

d
s

> (3+h Z dJ/(3+(m-s)h) ,

which implies

j-8+1 3

+ h E d. < d (3+(m-s)h)+hd ,
i s s

D=s J

so that

+ h Z d. < hd (£ + m-s+1 ,
1 s h

D=s J

and thus

hd
t =
s m 3/h + m-s+1 3+ (m-s+1) h*

3+h E d.

j=s :

Also, if r > m-s+1, then it must be true that

dm-(m-s) = d
s

* (3+h_
=
Z

+i
d.)/(3+(m-s)h)

which implies that

t = -S- *
s m 3+ (m-s+1)

h

3+h E d.
j=s :
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It follows that the likelihood ratio, A, can be written as

fe+ (m-s+1) hY2 *1
(&+ (m-s+1) h

\

h ( 3+h (m" s) }

. hh .Js(3+h(m-s))

^ h
J

^3+(m-s)h
J

s
[L

s
j

A=
\

if fc

s
>

3+ (m-s+1) h '

h

V
1 lf t

s " 3+ (m-s+1) h
*

^ ,_ • /^ \ u-^h., , % (3+h (m-s) )Consider the function g t = t
2 1-t )

2X
.

s s s

The derivative of g (t ) with respect to t is
^ s s

t
%h" 1

(l-t )

H ^+h(m-s))-l [hh{1_t )_^ {3+h(m_ s ) )t ],
s s s s

which is negative for t e (h/ (3+ (m-s+1) h) , 1) . Thus, A is a
s

decreasing function of t when t e (h/ (3+ (m-s+1) h) , 1) . In
s s

addition,

i+ (m-s+1) h\
i8h

rB+(m-s+l)h^ (g+h(m" s)) ^h
f ., . ,h (3+h (m-s) ) < .

h
J ^ 3+(m-s)h

J
s
U~V " L '

for t e (h/ (3+ (m-s+1) h) ,1) , with equality when t =

h/ (3+ (m-s + 1) h) , so that A is a decreasing function of t .

(s

)

Since the likelihood ratio test rejects H~ for small

(s)
values of A, it equivalently rejects Hq for large values

of t . However, the distribution of t is intractable, and
s s

(s) (<=)
so use of t in a test of H„ versus H, is not practical,

s 1

In the following chapter we present an alternative test

(s) (s)
statistic for testing H~ versus H'



CHAPTER 5

AN ALTERNATIVE TEST WHEN Z =

a

2
I

AND ITS PROPERTIES

5 . 1 Introduction

We have seen that the likelihood ratio test rejects

(s)
m

H_ for sufficiently large values of hd /(8+h E d.),
i=s

where d,>d„>...>d are the solutions to I H+-d (b/B) 1 1
= 0.

l /. m i -k i

Let i^->^
2
> . . . >\]j be the solutions to

|
H— ipbl

|

= 0, that is,

^ i
=hd./6 for i = 1,2, . . . ,m. Then the likelihood ratio test

(s) m
rejects H' for sufficiently large values of ip / (1+ £ \\i . ) .

i=s

This quantity is an increasing function of ^ , so that it

(s)would be reasonable to reject H~ for sufficiently large

values of tj; . However, the complexity of the null distribu-

(s) (s)tion of \\j makes the use of 4> in a test of H^ versus H,

impractical. Therefore, in this chapter we present an

(s) (s)alternative test statistic for testing H^ against H,

(s) m
and consider the test which rejects H* when E iLi . is

.

r i
i=s

sufficiently large. In the remainder of this chapter we

investigate some properties of this new test. In Section 5.2

m
it is shown that the test based on I \b . is an invariant test

i=s x

(s) (s)of H
Q

against H . In the last two sections we discuss

94
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an important monotonicity property of the roots ty . i i =

1,2,... ,m and use this property in deriving the asymptotic

m
distribution of Z ty •

•

5 .2 An Invariance Property

Consider the group of transformations G = {g : a> 0,
a , P

P (mxra) is such that PP ' = al}, where g _(b,H) = (ab,PHP f

).
a , ir

If b ~ a
2
xl and H~W (a

2 I+M,h,0), then ab~aa 2
x?, PHP ' ~

2
W (ao I+PMP ' ,h, 0) and rank (PMP ' ) = rank(M). Hence, the
m

(s)problem of testing the hypothesis H' : rank (M) < s-1 against

(s)
H, : rank(M) = s is invariant under the group G.

Now consider the roots tL> -. >\b~> . . . >^ of |H-^bl| =12 m i
t

i

and the roots 6,>9^>...>e of [PHP'-9abI = 0, where a>0 and
I 2. m '

'

P is such that PP ' = al . Clearly,

| PHP' - 6abl |
=

implies

| PHP' - 9bPP' |=0,

so that

|

h - ebi |=o,

and thus, 9. = ^ . : i = l,2,...,m. Suppose now that

9. = \b . : i = 1,2,. . . ,m are the roots of |H,-9b,l| =11 '11'
and

|

H_— ip fc> „ I
|

= 0, respectively, where b, > 0, b^ > , and

H, and" H- are positive definite, symmetric matrices.

There exist orthogonal matrices Q, and Q ?
such that
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Q
1
(H

1
/b

1
)Q

;[
= V,

Q
2
(H

2
/b

2 )Q^
= Y,

where f = diag (i|j,, i|>

2 , . . . ,ty ). Take a = b_/b, and

P = /a QnQi • It now follows that

(a) 9a ,P
(b

l'
H
l

)
= (ab

1
,PH

1
P r

)

= (b
2
,ab

1Q^Q 1
(H

1
/b

1 )Q^Q 2
)

- <b
2
,b

2
Q£YQ

2
)

= (b
2
,b

2
(H

2
/b

2
) ) = (b

2
,H

2
),

(b) PP' = (/lQ^Q
1

) (/aQ^Q
1

)
'

= aQ^Q
1Q{Q 2

= ai,

and (c) a > ,

so that g D e G. Therefore, by Definition 3.3.1
a ,^

{i|i:|H-^bl| = 0} is the maximal invariant with respect to

m
G. The test statistic £ ty . is clearly a function of

i=s

(ijj, ,ijj_ , . . . , xp ), and so, by Lemma 3.3.2, the test statistic

m
£ iJj . is an invariant test statistic for testing the

i=s
(s) (s)hypothesis H~ against the hypothesis H-/

5 . 3 A Monotonicity Property of
the Power Function

The test procedure which we have been investigating

depends on the latent roots ip, , i\> ,.,..., \\i of the random

matrix H(bl)"
1

= (a"
2
H) ( (b/a

2
) I

)

_1
. If we let 9

1
>0

2
>...

-2 2
>0 be the latent roots of a H, then i/j . = a 8./b:
m li
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i = l,2,...,m. The distribution of the roots 6,,9~ / ... /

(see, for example, James [1964]) depends upon the latent

-2
roots of the corresponding population matrix I+a M as param-

-2
eters. Let 5,>6.->...>6 >1 be the latent roots of I+a M,

1 A m

and note that M has rank of at most s-1 if and only if 6 = 1.
s

(s) (s)
Thus, testing the hypothesis H~ : rank (M) £ s-1 against H-/ :

(s)
rank(M) = s is equivalent to testing the hypothesis H' :

(s) m
6 =1 against H, : 6 > 1. Since we are using Z \b . as
s ^ 1 s r

.

r i

( s

)

a test statistic in testing the hypothesis H
n

(s)against H, , a desirable property would be that it stochasti-

cally increases in 5 , and hence, the power function increases

monotonically in 6 . In this section we not only show that
m
Z ill. stochastically increases in 6 , but also that it

l s
i=s
stochastically increases in each 6.: i = l,2,...,m. This

more general result will be utilized in the following section.*.

We will need the following results from Anderson and

Das Gupta [1964]

.

Lemma 5.3.1 : Let X (m*h) (h>m) be a random matrix having

density

f(X;Z,h) = (2tt)
-ishm

|
E

|

_i2h
exp [-3strZ

_1
XX '

] ,

where I is positive definite. Let X, >A > . . . >A be the latentc 1 A - m

roots of XX' and to be a set in the space of A, , A~ , . . . , ALA m

such that when a point (A,,A~,...,A ) is in lo so is everyt- 1 ' 2 m -L

point (A '
, A ' , . . . , A ') for which A.' ^ A- : i = 1.2,...,m.

1 A m ii
Then the probability of the set co depends on Z only through
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the latent roots of I and is a monotonically decreasing func-

tion of each of the latent roots of Z.

Lemma 5.3.2 : Let A be a positive definite matrix of

order m, and D and D^ be two diagonal matrices of order m such

that D 4
- D is positive semidef inite , and D is positive

definite. Then

ch. (DAD) £ ch. (D^AD*) for i = l,2,...,m.

Using these two results, we can now prove the main

result of this section.

Lemma 5.3.3 : Let X (mxh) be a random matrix having

density

f(X;D,h) = (2TT)
-J5hm

|Dr^
h

exp[-%trD
_1

XX'] ,

where D = diag (d ,d
2

, . . . ,d ). Let V (mxm) be a random, posi-

tive definite matrix independent of X. Let u be a set in

the space of the latent roots of XX 'V satisfying the condi-

tion stated in Lemma 5.3.1. Then the probability of the

set co is a monotonically decreasing function of each of the

elements of D.

Proof : Consider V as fixed, and let V = T'T where T is

nonsingular. Then the density of W = TX is f(W;TDT',h),

and

ch. (XX'V
-1

) =ch.(TXX'T') =ch.(WW')
l l l

for i = l,2,...,m. Thus, for any fixed V, we have

_/.. f(X;D,h)dX= / f (W;TDT ' ,h) dW (5.3.1)
R(X)

R(W)
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where R(X) denotes the region {X: (ch (XX 'V
_1

) , . . . ,ch (XX 'V
-1

)

)

£ to}, and R(W) denotes the region {W: (ch, (WW') , . . . ,ch (WW'))

e w}. Let D* be a diagonal matrix for which D^-D is positive

semidefinite. It follows from Lemma 5.3.2 that

ch
i
(TD

vt
T') = ch

i
(D^(T'T)D^) ;> ch

i
(D*

5
(T 'T) D*) = ch.(TDT')

for i = l,2,...,m. Then from Lemma 5.3.1 and (5. 3.1) we have

/ f(X;D,h)dX > / f (X;D*,h)dX
R(X) R(X)

for any fixed V. Taking expectations with respect to V, we

find that

P
D

(u» > P
D# («).

Now recall that we are investigating the test statistic
m
I iK. Let P be the orthogonal matrix such that P(I+a M)P'

i=s

= A = diag(6
1
,5

2
, . . . ,6m ) . Then since a~

2
E ~ W (I-ra~

2
M,h, 0) ,

it follows that P(a" 2
H)P' ~W (A,h,0), and we can write

-2
P(a H)P' = XX', where X (m*h) has density f(X;A,h) given in

Lemma 5.3.1. The latent roots of a~
2
H ( (b/a

2
) I)

-1
are the

latent roots of P (a"
2
H) P '

( (b/a
2

) I

)

~\ or equivalently

,

2—1 9XX '((b/a )I) . Hence, with V = (b/a )I, clearly V is

independent of X, and 1^,1^,...,^ are the latent roots of

XX 'V . in addition, if E ii> . < c and \b.'<\b. : i = l 2 mX 1~" 1 *-?**? mm* fill f

m i=s ~

then I ty' < c, so that the set to = { (ty , ^ , . . . ,ty ) : 2 iJj.^c}
i = q

x 1 ^ m .

r i
_

1=s
satisfies the condition of Lemma 5.3.3. So it follows from

Lemma 5.3.3 that the probability of the set co is a monoton-

ically decreasing function of each of the latent roots
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_2
6,,6

2
,...,<5 of I+c M; in other words, the power function

m
of the test based on I i> . is a monotonically increasing

i=s

function of 6 . : i = l,2,...,m.

m
We now know that as 6 + 00 P( I i|j. >c) increases

i=s

monotonically. We will show that, in fact, as 5 -*• «
s

m
P( I i(j. > c) -* 1, and thus, for sufficiently large values

i=s .

of 6 the probability of rejecting H* : 6 =1 will be

arbitrarily close to unity. Let K, (mxm) be such that

K
1

= diag(ak
1
,ak

2
, . . . , ak , 1 , . . . ,1)

.

Note that K, P (a~
2
H) P 'K ' W (K, AK,' , h,0), and

1 1 rail
K,AK' = diag(a 2

k
2
6, ,a

2
k
2
6~,. . . ,a

2
k
2
6 ,1,...,1),li 3 11 22 s s iii

2 2
so that as a •* °° , ch . (K,AK') = a k 6 .

-> °° for i = 1,2, . . . ,s.

Thus, we need to show that

m -2 2-1
P( Z ch^^CK^io H)P'K-[( (b/a^)I)

x
) > c) + 1

i=s

as a -> oo. However, clearly,

m -2 2-1
P( E ch

i
(K

1
P(a ^HJP'K^ ( (b/a )I) ) >c)

i=s

2 P(ch
s
(K

1
P(a"

2
H)P'K^((b/a 2

)I)"
1

) > c) .

The result now follows from the following lemma.

Lemma 5.3.4 ; Let V (mxm) and U (mxm) be random matrices

independently distributed such that both V and U are positive

definite with probability one. Let

K, (mxm) = diag (ak, ,ak
2

, . . . ,ak ,1,...,1).

Then P (ch
g
(K-^K 'V

_1
) > c) + 1 as a * ».

Proof: The proof is identical to that of Lemma 3.5.6
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5 . 4 The Limiting Distribution of Z \p .

m
If I ij). is to be used as a test statistic in the test

i=s

of the hypothesis fA
s

'
: rank (M) < s-1 against h|

s)
: rank (M) = s,

it is necessary to compute the significance level, a, where

m . .

a = sup P ( I ty.
> c|Hi '

)

.

H
(s) i=s

x
'

u

H

_2
Let 6, ><$_>... >6 be the latent roots of I + a M, and recall

i - z~ - m
(s)that the null hypothesis can be written H* : 6 = 1 , or

more precisely, H^
s)

: 6,>6~>...>& ,>1,<5 =6 ,,=...=6 =1.12 s-1 s s+1 m

We will write ty. 16 , , &
2

• • • • ' 6 ) to indicate that ty . is

the i largest root of m roots and depends on the popu-

lation roots 5, , <$

2 / . . • * <5 • Then we may write a, the signif-

icance level, as

m
<* = sup P( E <K (5

7
,6 ? ,...,<5 ,,!,...,!)> c) .

6
1
>6

2
> . . .>6

g_ 1
>l i=s

1,m L
*

s " i

However, we have seen in the previous section that i> . isr i:m

stochastically increasing in each 6.: j = l,2,...,m. It

then follows that

m
a = P( Z ^

i . m (
00

,
00

, . . . ,°°,1, . . . ,D > c) ,

i = s

where \p . (°° ,°° , . . . ,°° , 1 , . . . , 1) denotes the random variable

which has the limiting distribution of i> . (6,, 6 _,..., 6 n ,i:m 1 2 ' s-1

1,...,1) as 6. -> °°: j = 1,2 , . . . ,s-l . Hence, we need to deter-

m
mine the distribution of I \b . f

00
,
00

, . . . ,°° , 1 , . . . , 1) .i:m iii ii
i=s
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Recall that b ~ o y a an <3 H ~ W (a I+M,h,0), anda
p m

-2
there exists an orthogonal matrix P such that P (I+a M)P f

= A = diag (6, ,6-, . . . , 6 ). If we define B and H as

B = (b/a
2
)A~

1
,

H = A
-J5

P(a~
2
H)P'A~

35

-h -k -k
where A

2 = diag (

" -k.

1
,u

2
'••*

' m

i:m (6
l'

6
2

!

) , then, clearly,

H~W (l,h,0) and f , (6, ,6 v ...,fi ) = ch . ( (a"
2
H) ( (b/a

2
) I)

X
)

= ch. (HB
1

) . Then if we let B = (b/a
2
)A , where

l n n

A = diag (n6, ,n6~ , . . . ,n6 , ,1,...,1), we need to find the
n r 1 2 s-1

m __i
limiting distribution of Z ch. (HB ) as n -> °°

.

r .in
i=s

We will need the following result.

Lemma 5.4.1: Suppose v ~ x • Then

x (mxl) =
—

n

"c,v/n

c-v/n

c
s-l

v/n

*1

where c c- , . . . ,c , are constants and x, ( (s-1) xl) is a
s-1 —

1

degenerate random vector with all of its probability at 0^.

Proof : Clearly x, and v are independent, so the character-

istic function of x is
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E [exp (i x ' t) ] = E [exp ( i x-f t, ) exp (i v E t
. ) ]

j=s D

E[exp(i x{t
1

) ] E[exp(ivE t.)]
j=s :

= E[exp(i v E t .)]

j=s 3

m _j,
= (1 - i 2 E t.)

j=s J

3CC

Now the characteristic function of x is—

n

s-1 m
E[exp(i x't)] = E[exp(i( E c.t./n + E t.)v]

j=l 3 3 j=s 3

s-1 m _,
= (1 - i 2( E c.t./n + E t.) )

2C\
j-i D : j= s y

so lim E[exp(i x't)] = (1 - i 2 E t.)
2a

= E[exp(i x't)].
n+» "

j = s -*

The result now follows from the continuity theorem

(Lemma 3.6.2)

.

From Lemma 5.4.1 we observe that B > B with
n

- 8 =f
Bi ,o,

yV(o) B
2 y

where §
1

( (s-l)x (s-1) ) = (0) with probability one, B„ ( (m-s+1)

2
x (m-s+1) ) = bl , and b -» x R

- We now need to show that

m __!
E ch

. (HB ) is continuous with probability one under the
i=s

distribution of (H,B) . Put

f
E
ll

H12A

H =

H
21

H 22'
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where E^ is (s-l)x(s-l), H
12

is (s-1) x (m-s+1) , H
21

is

(m-s+1) x (s-1) , and H„
2

is (m-s+1) x (m-s+1) . Then the roots

of interest are the solutions to

H
11

H
12

(0) (0)

- iC

H, H, JO) B.

= 0. (5.4.1)

'21 "22' vv ~' 2

Since H is nonsingular with probability one, we may put

H"
1

- G .

'11

'21

'12

'2 2-

so that (5.4.1) can be written

f(0)

i -
i>m r

d0)

G
12

B
2

G 22 B
2

= 0,

s-1

(0)

" ^G12
B
2

m-s+1 r 22 2

Hence, it must be true that

=

Vs+1 " ^G 22
B
2 I

= °'

G
2 2

" ^ 2 |

= 0. (5.4.2)

Thus, with probability one ch, (HB ),ch
2
(HB ),...,

ch , (HB~ ) are undefined and ch (HB ),ch L , (HB
-

),...,
s-1 s s+1

ch (HB ) are the solutions to (5.4.2); that is, since B

is of rank m-s+1 with probability one, there are only m-s+1
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solutions to
|
H— ipB

|

= 0. Now since H22-H2
,H, , H, ~ is non-

singular with probability one, it follows that G„~ =

(H22-H 2
,H, , H.. _) , and so (5.4.2) can be rewritten

|H
22

- H
21
H-^H

12
- *B

2
|
= 0.

Clearly B
2

is also nonsingular with probability one, and

thus, by Lemma 3.6.6, ch
.
(HB ) is continuous with proba-

bility one under the distribution of (H,B) for i = s,s+l,
m

•A«-l,
. . . ,m. This implies that Z ch

.
(HB ) is also continuous

i=s

with probability one under the distribution of (H,B)

.

Note that the set of discontinuity points, R, is closed,

since R = {(H,B): |§ 2 |

= 0} , and also recall that

H
22~**21**ll**12 ~ Wm-s+l

^

,h~ s+1 '°*
'

Therefore, from

Lemma 3.6.7, since (H,B )
> (H,B), it follows that for

i = s ,s+l , . . . ,m,

*i:m
(ca

'
M "' 1 !) ^i-s+lzm-s+l* 1 ' 1 1} '

where ^ i _ s+1 . m_ s+ i

t

1 /!/••• > 1) denotes the distribution of

the i-s+1 largest root of |w-ijjvl| = 0, with

2W - W . (I,h-s+l,0) and v ~Xo/ independently. Now if we

let e,>e >...>9
TY, „,, be the solutions to I

W- 6 1 1
= 0, then we

1 I m-s+l '
'

can put i>

i . m (°°,°°, . . . ,°°,1, . . . ,1) = 6._ +1 /v, so that

m m-s+l
^ ^ i . m (

00
,
00

, • . . ,°°,1, . . . ,D = Z 6./v = (trW)/v.
i=s " j=l -1

But tr W ~ x i where v = (m-s+l) (h-s+1) , so

m
1

*ism {-'- "' 1 1} ^| F 6-
i=s M M
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(s) (s)
Hence, in testing H* : rank (M) < s-1 against H, :

rank(M) = s , we choose -r F{v,3,a) as our critical value,

where F(v,8,a) is the constant for which P(F(v,B) >

F(v,8,a)) = a when F(v,8) ~F
R

. By so doing we will guarantee

m , .

sup P( E <K. m (S, ( L,...,U > | F(v,B,a) |H*
S
') = a.

„(s) i=s
1 - m X 2 m 6 °

H

In order to determine the rank of M, we will again use

a sequential procedure. To illustrate this procedure, we

will return to the example presented in Section 4.2.

Recall that D = diag ( 94 . 1065 , 34.8845, 1.01721, .618312),

h = 20, and 8 = 420, so that since i> .
= hd . / 6 : i = 1,2,3,4,

ty 1
= 4.4813, it = 1.6612, ip = .04844, and ^^ = .029443.

(4)We will first consider testing the hypothesis H^ :

(4)rank (M) < 3 against H, : rank (M) =4. We reject the null

hypothesis, Hq
4)

, if i> > 17 F(17, 420, .05J/420. Now

17 F(17, 420, .05)/420 is approximately equal to .066 and

iK = .029443 <.066, so that we do not reject H
(j

4) and,

13)instead, consider testing the hypothesis H^ : rank (M)

< 2 against h| 3)
: rank (M) = 3. The quantity 36 F(36, 420,

.05)/420 is approximately equal to .122, and clearly

\ii

3
+ ip

4
= .07788 < .122, so that the null hypothesis, H^

3
*

,

is not rejected. Since H.! is not rejected, we next con-

(2)sider testing the hypothesis H ' : rank (M) < 1 against

h| 2)
: rank(M) = 2. We find that 57 F(57, 420, .05)/420 is

approximately equal to .181, and therefore, since
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(2)
\p + ty- + \i>. = 1.7391 > .181, we reject H* ' and conclude

that the rank of M could very reasonably be taken as being

two

.

Note that this sequential procedure is open to the

same objections, regarding the use of the significance

level, a, at each step, mentioned earlier in Section 3.6.

Again, however, it seems unlikely to cause serious error

in practice. If the true rank of M is p, then there is

a small probability, usually less than a, that the rank, s,

determined by the sequential procedure will be greater than

p. Also, if 6 is sufficiently large, then the probability
ir

of s being less than p is also small.
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